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Summary 

Understanding the patterns of spatial change in community composition (beta-

diversity), and the processes that structure biological communities are central 

themes in ecology. While the impacts of habitat change on beta-diversity are 

well-studied, most studies have been restricted to a single spatial scale. As a 

result, the effects of changing spatial scale on beta-diversity patterns across both 

natural and human-modified habitats are little known. My thesis targets the 

effect of spatial scale on tree and bird beta-diversity in the Asia-Pacific region 

across gradients of latitude, elevation and land-use change.  

 The First Chapter uses tree data (> one billion stems and > 2500 species) 

from 15 long-term ForestGEO plots across the Asia-Pacific region to show how 

spatial scale changes the relationship between beta-diversity and latitude. At 

small spatial scales, beta-diversity decreased with increasing latitude; but at 

large spatial scales, beta-diversity did not change with increasing latitude. 

Different relationships across spatial scales were caused by differences in 

species richness, which influenced β-diversity values at small spatial scales, but 

not at large spatial scales. 

 The Second Chapter uses bird data from Sri Lanka to show how 

horizontal (geographic) and vertical (elevation) distances can influence bird 

beta-diversity within three different land-use types (protected rainforests, 

reserve buffers and intensive agriculture). I show that bird beta-diversity within 

all land-use types were similar across horizontal distances. However, bird beta-

diversity within land-use types were not similar across vertical distances; 

protected rainforests had higher beta-diversity than the other two habitats.  

The Third Chapter uses bird data from the Western Ghats – Sri Lanka 

biodiversity hotspot to determine the drivers of bird community assembly at 

three different spatial scales. The geographic barrier (the Palk Strait) is the most 

important driver of bird beta-diversity at large spatial scale. Land-use and 
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environment were equally important at intermediate scales and land-use was 

the most important driver at small scales.  

 In conclusion, this thesis demonstrates the importance of sampling at 

multiple spatial scales to better understand natural and human-influenced beta-

diversity. In the First Chapter I showed that spatial scale changes the 

relationship between beta-diversity and latitude; and improving sampling 

representativeness avoids the species richness dependence of beta-diversity. In 

the Second Chapter I demonstrated the crucial importance of conserving 

rainforests across the full elevation range available. In the Third Chapter I 

showed that considering community assembly processes at multiple spatial 

scales while selecting sites for biological conservation holds great promise for 

preventing further species loss. 
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Chapter 1 
 

General introduction 
 

Understanding the change in species composition from site-to-site (β-diversity) 

is a central theme in ecology and biogeography since the time of Wallace and 

Darwin (Terborgh 2017). In an influential paper, Whittaker (1960) coined the 

term ‘β-diversity’ and quantified it as the ratio of γ diversity (pooled diversity 

in a set of sampling sites) and α-diversity (average diversity of sampling sites; 

Tuomisto 2010a, 2010b). However, ecologists quantified β-diversity way 

before Whittaker (1960).  

β-diversity is an important variable in ecology’s oldest law, the Species-

area relationship (SAR) – “you will find more species if you sample a larger 

area” (Rosenzweig 1995). Ecologists credit H. C. Watson with its discovery in 

c. 1859 when he built up plant species starting with smaller areas within Surrey 

(Britain’s county) and expanding it to the whole island (Dony 1963; Williams 

1964; Rosenzweig 1995; Fig. 1.1), and Arrhenius (1921) was the first to suggest 

the species-area equation (S = c.AZ). The number of species ‘S’ scales with the 

sample area ‘A’ according to S = c.Az where ‘c’ and ‘z’ are constants. The 

constant ‘c’ is the number of species when the value of ‘A’ is equal to one (in 

any metric), and the constant ‘z’ is the rate of increase in species richness. Many 

studies have discussed the relationship between Whittaker’s diversity 

partitioning (γ = α.β) and species-area relationship (S = c.Az; Rosenzweig 1995; 

Ricotta et al. 2002; Koleff et al. 2003a; Socolar et al. 2016). Koleff et al. 

(2003a) showed that the ‘z’ value is a form of β-diversity, and multiplicative 

diversity partitioning is similar to species-area relationship. 

Another earlier form of β-diversity was described by botanist Paul 

Jaccard in 1901 as “coefficient de communauté” when he compared the species 

composition of plants on different mountains (Jaccard 1901). While the 

Whittaker’s approach used the entire dataset to quantify β-diversity, Jaccard’s 
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approach used two sites at a time. Therefore, it is also called as the Jaccard’s 

pairwise similarity index. Another botanist Thorvald Julius Sørensen described 

a pairwise similarity index in 1948 (Sørensen, 1948), which was similar to 

Jaccard’s index and is called Sørensen’s pairwise similarity index. These are 

still much used indices in the 21st century, and around fifty different β-diversity 

indices have been introduced since then (see Koleff et al. 2003a; Tuomisto 

2010a, 2010b, Anderson et al. 2011; Barwell et al. 2015). 

 

 
Fig 1.1. First empirical example of the species-area relationship (SAR) by H. 

C. Watson in 1859. This plant SAR begins with Britain’s richest county – 

Surrey and builds up to whole Great Britain Island. Figure adapted from 

Rosenzweig (1995).  

 

Quantifying β-diversity 

There are two types of β-diversity: directional variation in community structure 

along a specified gradient and non-directional variation in community structure 

(Fig. 1.2). The directional variation approach is used to quantify β-diversity 

along a gradient (e.g. distance, environment), which produces multiple values 

to estimate the rate of turnover along a gradient. The non-directional variation 

approach is used to quantify β-diversity of the entire sampling area, which 

produces a single value. 



 
CHAPTER 1. GENERAL INTRODUCTION 

 
 

 
 

3 

 

 
Fig 1.2. The two types of beta-diversity: directional variation along a gradient 

(a) and non-directional variation within a sample area (b). Directional variation 

is a pairwise comparison of samples that differ in space (distance), environment 

(climate, forest cover, soil characteristics, etc.) and time. Non-directional 

variation is the comparison between two scales – average species in a sample 

unit (alpha diversity) and total species in the spatial extent (gamma diversity). 

Figures from Anderson et al. (2011). 

 

 

 Baselga (2010) showed that β-diversity can be a result of two 

phenomena, loss or gain in species richness from one site to another 

(nestedness), and the replacement of a set of species in one site by a set of 

species in another site (turnover). Both turnover and nestedness can collectively 

reflect β-diversity, and has been widely used in β-diversity studies along 

gradients of climate (Hortal et al. 2011, Sreekar et al. 2017), land-use (Sreekar 

et al. 2017), space (Castro-Insua et al. 2016, Viana et al. 2016) and time (Beaten 

et al. 2012, Angeler et al. 2013). Turnover may reflect important community 

assembly processes like dispersal limitation and environmental filtering, 
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whereas nestedness may reflect ordered extinction-colonization dynamics (Si 

et al. 2016).    

Anderson et al. (2011) suggested that different measures of β-diversity 

may result in different conclusions because different measures can emphasize 

on different properties of biodiversity data – for example, presence/absence, 

relative abundance and inclusion of joint absences. So, they suggested that there 

is no single robust measure of β-diversity, and ecologists should carefully match 

the measure of β-diversity with the relevant question. Anderson et al. (2011) 

also advocated rigorous application of null models for studying β-diversity. The 

use of null models in β-diversity studies has stirred discussions on its use and 

conclusions of studies. 

 

Null models in β-diversity 

Null models in β-diversity were developed to account for random sampling 

effects, and its dependence on species richness (γ-diversity and/or α-diversity). 

Random sampling effects are caused by random assortment of species into sites 

caused by random community assembly in nature or by random failure to detect 

a species at a site (sampling errors; Socolar et al. 2016). For example, β-

diversity was observed to decrease with increasing latitude (Kraft et al. 2011). 

However, when species are shuffled randomly between sites, the expected β-

diversity also decreased with increasing latitude, suggesting that the observed 

latitudinal β-diversity pattern was caused by random sampling effects (Kraft et 

al. 2011). 

Null model generated β-deviation (standardized difference between 

observed and expected β-diversity) attempted to account for scale-dependent 

and γ-dependent effects (Kraft et al. 2011). Though widely used in the recent 

past (Myers et al. 2013, 2015, Ashton et al. 2016), this approach has been 

criticized for incorporating mechanisms that generate the investigating pattern, 

violating the fundamental assumption of the null model (Qian et al. 2013). 

Moreover, as randomization processes force β- and γ-diversity to become 

interdependent, it is difficult discern whether the correlations between β- and γ-
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diversity are simply caused by differences in species pool or if they reflect 

important ecological processes (Ulrich et al., 2017). Tuomisto & Ruokolainen 

(2012) also argued that it is mathematically invalid that β-diversity is dependent 

on γ-diversity. Furthermore, in contrast to our previous understanding, Bennett 

& Gilbert (2016) recently showed that the null model does not remove the 

dependence of β on γ-diversity. Therefore, it is important to identify methods 

that take away γ-dependence without using null models. 

 

Dependence of β-diversity on species richness 

Measures of β-diversity are often considered to be nonlinearly dependent on 

species richness (Anderson et al. 2011; Ulrich et al. 2018). However, as 

mentioned above, mathematically, this may be problematic assumption to start 

a study with (Tuomisto & Ruokolainen 2012). The γ-diversity (if defined as γ 

= α * β) cannot be a causal factor that determines β-diversity any more than the 

volume of a cylinder (volume = cross section area * height) can be a causal 

factor that determines its height (Anonymous Reviewer, personal 

communication). However, just like volume and height, γ-diversity and β-

diversity are conceptually independent phenomena that can vary independently 

of each other. A correlation between γ- and β-diversity emerges only because 

in real datasets the sampling grain (sampling unit size) is often so small that α-

diversity becomes constrained and cannot increase beyond the number of 

individuals per sampling unit even if there are more species available in the 

local species pool (Tuomisto et al. 2010a, 2010b). Since γ-diversity is based on 

the total number of individuals sampled, it can increase with species pool size 

much further than α-diversity can, and when the α-diversity component cannot 

increase any more, the β-diversity component has to become dependent 

(correlated) with γ-diversity. In such cases, conclusions are dependent on γ-

diversity, and not β-diversity.  

How to avoid dependence of β-diversity on γ-diversity? Anderson et al. 

(2011) recommended the use of null models to account for the correlation 

between β- and γ-diversity, and many β-diversity started using them (Kraft et 
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al. 2011, Karp et al. 2012, Myers et al. 2013, 2015, Ashton et al. 2016, Karp et 

 
Fig 1.3. Increasing extent size by 1) increasing the number of grains and fixing 

grain size following Bennett and Gilbert (2016), which increases γ-diversity but 

keeps α-diversity constant, and by 2) maintaining the number of grains constant 

and increasing grain size, which increases both α- and γ-diversities. In the first 

scenario, mean pairwise Sorensen’s distance remains constant with increasing 

γ-diversity, but classical proportional β-diversity increases significantly. In the 

second scenario, both mean pairwise Sorensen’s distance and classical 

proportional β-diversity show similar patterns, decreasing significantly with 

increasing γ-diversity. Figure from Rachakonda Sreekar (unpublished). 

 

al. 2018). However, many recent studies also cautioned the application of null 

models, which can result in high artificial rejection rates of focal patterns (type 

II errors; Qian et al. 2013, Bennett & Gilbert 2016, Ulrich et al. 2017). Instead, 

recent studies suggested the use of mean pairwise dissimilarity measures of β-

diversity to account for effects of sampling intensity and γ-diversity (Bennett 

and Gilbert 2016, Marion et al. 2017). These studies sought to increase their 

extent size by fixing grain size and increasing the number of grains, therefore 

they assume that α-diversity does not increase with γ-diversity across richness 

gradients (e.g. latitudinal or altitudinal diversity gradient; see Fig. 1.3; 

Anderson et al. 2011, Barton et al. 2013). This is not appropriate for 
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comparative ecology because α-diversity does not remain constant when 

sampling from different habitat types with varying γ-diversity (Tuomisto and 

Ruokolainen 2012). An ideal method is to increase both grain and extent size 

by varying grain size but keeping the number of grains constant (see Fig. 1.3; 

Tuomisto and Ruokolainen 2012). As expected, mean pairwise Sorensen’s 

distance was independent of γ-diversity only when grain-size was not allowed 

to vary with extent size, but was significantly correlated with γ-diversity when 

both grain- and extent-size were free to vary (Fig. 1.3; Sreekar, unpublished 

results). As both null models and mean pairwise dissimilarity may not be an 

ideal method to use for accounting for γ-dependence on β-diversity, Ulrich et 

al. (2018) suggested that as a minimum, species richness (γ-diversity) should 

be used a statistical covariate in regression analyses.  

 

From natural to human-driven variation 

Studies often reached different conclusions as to the fundamental patterns in β-

diversity, such as change across habitat types. Although niche compression 

hypothesis predicted higher β-diversity at lower latitudes (MacArthur 1965, 

Terborgh 2017), there was never a consensus (Koleff et al. 2003b, Kraft et al. 

2011, Qian et al. 2013, Ashton et al. 2016; Fig. 1.4). Around half of the earlier 

studies have shown that β-diversity declines with increasing latitude (Fig. 1.4). 

But, in a seminal paper, Kraft et al. (2011) used a null model approach to show 

that β-deviation (standardized difference between observed and expected β-

diversity) among plant communities did not change with increasing latitude. 

However, Qian et al. (2013) and Ashton et al. (2016) used the same approach 

to show increase, decrease and no change in β-deviation when using different 

datasets.  

Studies comparing natural habitats with human-modified habitats are no 

different. There is also a lack of consensus about higher β-diversity in natural 

habitats. For example, Kitching et al. (2013) sampled moths in primary and 

logged forests of Danum valley, Borneo to show that β-diversity is higher in 

primary forests in comparison with logged forests. Contrastingly, Berry et al. 
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(2008) sampled trees in the same study area to show that β-diversity is higher  

 

	
Fig 1.4. Lack of consensus on latitudinal β-diversity patterns among studies. 

Data from Koleff et al. (2003b). 

 

 

in logged forests in comparison to primary forests. The results of these two 

studies were completely different from the results of a recent quantitative 

synthesis (Newbold et al. 2016), which showed that β-diversity in primary 

forest is similar to β-diversity in all types of human-modified habitats 

(secondary forests, plantations, pasture and urban). 

 Karp et al. (2012) showed that the observed bird β-diversity in high 

intensity agriculture is higher than forests due to random community assembly. 

They found out that as bird abundance is generally low in high-intensity 

agriculture, birds occurred randomly in sample sites. When null models were 

used to remove random sampling effects (randomly sample individuals while 

retaining α-diversity), the β-diversity in high intensity agriculture became 

smaller than primary forests. Terborgh et al. (1990) showed that, in contrast to 

expectations, bird β-diversity in forests is generally small. When territories of 

territorial birds were superimposed in an Amazonian lowland forest, as many 
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as 150 species were found to overlap at a single point. Thus, showing that most 

forest birds are generalists with high α-diversity and low β-diversity (Terborgh 

et al. 1990, Terborgh 2015). Therefore, within habitat β-diversity should not be 

used for conservation decision making, and natural habitats with low β-

diversity can also have high conservation value. 

 

β-diversity reflects community assembly mechanisms 

The prevailing theory for community assembly suggests that environmental 

filtering in conjunction with dispersal limitation and stochasticity drive β-

diversity patterns (Audino et al. 2017). However, the relative importance of 

community assembly mechanisms change with latitude. (Myers et al. 2013). 

Dispersal limitation is the main driver for tree β-diversity at lower latitudes, 

while environmental filtering was the main driver for tree β-diversity at higher 

latitudes (Myers et al. 2013). 

  Legendre et al. (2009), Cáceres et al. (2012) and Spasojevic et al. (2016) 

showed that spatial scale can change the importance of drivers that influence 

tree community assembly. Increasing spatial scale may result in larger variation 

in environment like soil and topography; and distinct soil and topography types 

can shape tree community structure (Davies et al. 2005, Katabuchi et al. 2012). 

Biotic processes causing conspecific negative density dependence (CNDD) 

results in lower species aggregation, lower β-diversity and higher species 

diversity (LaManna et al. 2017a, 2017b). Therefore, if CNDD is higher at lower 

latitudes (LaManna et al. 2017a), we should expect higher species diversity and 

lower β-diversity. In contrast, many studies report higher β-diversity at the 

equator (Fig. 1.4). It has been more than 50 years since Whitaker (1960) coined 

the term β-diversity, and we still do not understand the basic patterns and 

drivers of β-diversity. 

  Quantitative synthesis of β-diversity within different land-use types 

suggested that all land-use types have similar β-diversity (Newbold et al. 2016). 

Similarly, the relative importance of community assembly mechanisms appears 

to remain unchanged with land-use change. For example, Myers et al. (2015) 
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showed that the relative importance of community assembly mechanisms that 

drove woody-plant assembly in unburned and burned forests in Missouri, USA 

was similar to each other. Unfortunately, there aren’t many studies that 

compared community assembly within multiple land-use types. More 

comparative studies will provide important insights into the mechanisms of 

community assembly.  

 

β-diversity in biodiversity conservation  

Increasing anthropogenic activities is decreasing the biodiversity on our planet, 

and reducing biodiversity loss is an important aspect of conservation biology. 

While most field-based studies and quantitative synthesis of biodiversity 

change are focused on analysis of α-diversity, most biodiversity change is 

happening through β-diversity (Catano et al. 2017, Hillebrand et al. 2018). 

However, there are two faces of β-diversity, and both lower and higher β-

diversity can be important for biodiversity conservation. It depends on the 

question and context (Anderson et al. 2011, Socolar et al. 2016; Fig. 1.2).  

First, I will introduce within habitat β-diversity. In general, this is a 

categorical comparison. For example, a comparison of β-diversity values 

between primary and secondary forests. When a primary forest is degraded into 

a secondary forest – ranges of specialist species contract, which results in 

species replacement by generalist species. As generalist species tend to have 

higher habitat breadth, local communities tend to be similar or homogenized 

(McKinney et al. 2006). Therefore, hypothetically, primary forests should have 

higher β-diversity. In most cases, habitats with higher β-diversity is good for 

biodiversity conservation, as it helps conservation of distinct communities in 

the landscape. However, the overall richness of species in the community, and 

especially threatened species should also be considered while using higher β-

diversity as an index for biodiversity conservation. A primary forest might 

harbor multiple threatened species with high α-diversity and low β-diversity 

(Terborgh 1990), but a secondary forest might harbor no threatened species, 

low α-diversity, but high β-diversity. Neutral sampling effects can cause high 

β-diversity in modified landscapes due to low community size (Catano et al. 
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2017). For example, Karp et al. (2012) showed that high intensive agricultural 

landscapes had higher β-diversity than forests. Communities in high intensive 

agricultural landscapes are generally small in both species richness and the 

number of individuals in a community. Sampling small communities from a 

meta-community can increase the chances that the two communities are 

different from one another due to random community assembly in nature. After 

controlling for such stochastic effects using null models, Karp et al. (2012) 

showed that forests had higher β-diversity than high intensive agricultural 

landscapes. Terborgh (2017) suggested that β-diversity in tropical rainforests 

are generally small, especially for birds. Therefore, comparing between habitat 

types can be futile, unless conducted at large spatial scales with variation in 

environment and in presence of major biogeographic barriers.    

  Second, I will introduce the across habitat β-diversity. In general, this 

is a continuous comparison (Fig. 1.2). For example, a comparison of pairwise 

β-diversity values along any gradient. For example, along gradients of rainfall, 

land-use change, geographic distance, elevation, etc. Multiple community 

assembly mechanisms like environmental filtering and dispersal limitation can 

restrict the distribution of species causing species aggregations (Myers et al. 

2013, Catano et al. 2017). In the context of biodiversity conservation, lower β-

diversity along a disturbance gradient is good, in most cases. For example, 

lower β-diversity between primary and secondary forests (land-use gradient) is 

a good indicator of biodiversity maintenance by the secondary forest. Higher β-

diversity along the same gradient suggests a loss of forest specialist species and 

replacement of generalist species that prefer human-modified habitats. 

Similarly, higher β-diversity due to climate change indicates that communities 

are vulnerable, but a lower β-diversity suggest that communities are 

comparatively resilient. Analysing the importance of land-use, elevation and 

spatial gradients together can have important implications for protected area 

and restoration planning (Socolar et al. 2016). For example, equal importance 

of land-use and elevation on variation in β-diversity suggests that natural 

habitats should be protected along the complete elevation range (Sreekar et al. 
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2017). However, most studies that determined the importance of multiple 

gradients on β-diversity usually sampled at small spatial scales. At small spatial 

scales, previous studies have suggested that land-use change is the most 

important variable for explaining β-diversity (Becca et al. 2017, Audino et al 

2017). Future studies should determine the drivers of community assembly at 

multiple spatial scales. 

 

 

Thesis outline 
This thesis is comprised of four chapters motivated by research questions that 

are crucial for advancing our understanding of β-diversity within and among 

land-use types across multiple spatial scales.  

1. Why is there a lack of consensus on basic β-diversity patterns? 

2. Can intensive agriculture erase β-diversity in natural habitats? 

3. Are the drivers of community assembly affected by spatial scale? 

In Chapter Two, I collate a large tree dataset to answer the first question. 

I will determine the relationship between latitude and β-diversity at different 

spatial scales. The relationship between latitude and β-diversity is highly 

variable (Fig. 1.4). In many studies, the relationship is negative, where β-

diversity peaks at lower latitudes. In other studies, there is no significant 

relationship, where β-diversity is similar across all latitudes (see Fig. 1.4). A 

possible reason for this lack of consensus among studies is data are often 

collected at different spatial scales (sampling effects). As β-diversity has a non-

linear relationship with spatial scale (Rosindell et al. 2011), we can expect the 

relationship between β-diversity and latitude to depend on the spatial scale at 

which the data was collected. 

I used a large tree dataset of around one million individual trees 

belonging to around 3000 species across 15 permanent ForestGEO plots in the 

Asia-Pacific region (Anderson-Teixeira et al. 2015). Each ForestGEO plot was 

≥15 ha. This allowed me to sample at different spatial scales and test the 

alternative hypothesis – spatial scale changes the relationship between beta-
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diversity and latitude. The main aim of Chapter Two is to determine the drivers 

of β-diversity patterns along latitudinal gradients. This could help better 

understand the importance of spatial scale in β-diversity studies across all fields 

of study. 

The change in species composition (β-diversity) from the base of a 

mountain to its peak is a well-known and a striking biodiversity pattern. It is 

relatively unknown, if such patterns can persist in human-modified 

environments. In Chapter Three, I focus on the effects of horizontal 

(geographic) and vertical (elevation) distance on β-diversity in natural and 

human-modified environments. I use a large bird dataset of around 30,000 

observations and 120 species along an elevation gradient with steep climatic 

changes. Using this dataset, I test the alternative hypothesis by comparing the 

β-diversity along an elevation gradient in three different habitats: protected 

rainforests, reserve buffer and intensive agriculture. This could help us 

understand if β-diversity patterns can persist in human-modified landscapes. 

Niche-based processes are known to structure biotic communities along 

gradients of land-use change (Audino et al. 2017, Becca et al. 2017). But, 

studies are often restricted to small spatial scales with limited to no variation in 

environment and space (dispersal barriers). In Chapter Four, I estimate the 

relative importance of community assembly mechanisms that structure 

communities at multiple spatial scales. The community assembly theory states 

that species composition is influenced by niche-based processes in conjunction 

with dispersal limitation and stochasticity (Hubbell 2001, Rosindell et al. 2011, 

Audino et al. 2017). Niche theory suggests that local scale environmental 

factors like habitat and soil type; and landscape scale environmental factors like 

elevation, temperature and precipitation determine biotic species composition 

change – environment limits or enables dispersal of organisms (Leite et al. 

2013, Audino et al. 2017). However, dispersal limitation can also be important 

due to spatial attributes like geographic barriers that limit dispersal of 

organisms even in the presence of favorable environmental conditions (Ricklefs 

1987, Hubbell 2001). Partitioning the variation explained by environmental and 
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spatial variables will help us understand the relative importance of community 

assembly mechanisms in structuring communities at multiple spatial scales. 

I use a large bird dataset of around 37,000 observations belonging to 

190 species across 32 two km transects along land-use (natural rainforest to 

intensive agriculture), elevation (45–1295 m) and spatial (5-500 km) gradients 

in the Western Ghats–Sri Lanka biodiversity hotspot. This allowed me to 

sample at two different spatial scales within the biodiversity hotspot. The large 

spatial scale included all transects in the variation partitioning analysis and the 

intermediate spatial scale analyzed transects in the Western Ghats and Sri 

Lanka, separately. The main aim of Chapter Four is to determine the relative 

importance of different community assembly mechanisms in the biodiversity 

hotspot. This could help understand the importance of considering natural 

variation along with human impacts in a biodiversity conservation context.  

In the final part of the thesis, I synthesize the findings of the next four 

chapters and expand our knowledge on the patterns and processes that shape 

biodiversity in the Anthropocene. 
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2.1  Summary 

The relationship between β-diversity and latitude still remains to be a core 

question in ecology because of the lack of consensus between studies. One 

hypothesis for the lack of consensus between studies is that spatial scale 

changes the relationship between latitude and β-diversity. Here, we test this 

hypothesis using tree data from 15 large-scale forest plots (≥15 ha, dbh ≥1 cm) 

across a latitudinal gradient (3-30o) in the Asia-Pacific region. We found that 

the observed β-diversity decreased with increasing latitude when sampling local 

tree communities at small spatial scale (grain size ≤0.1 ha), but the observed β-

diversity did not change with latitude when sampling at large spatial scales 

(≥0.25 ha). Differences in latitudinal β-diversity gradients across spatial scales 

were caused by pooled species richness (γ-diversity), which influenced 

observed β-diversity values at small spatial scales, but not at large spatial scales. 

Therefore, spatial scale changes the relationship between β-diversity, γ-

diversity and latitude, and improving sample representativeness avoids the γ-

dependence of β-diversity.  

 

2.2  Introduction 
Decreasing species richness from the equator to the poles is one of the best-

recognized patterns in ecology [1,2]. This latitudinal pattern in species richness 

is consistent across different spatial scales, habitats, and taxonomic groups [3]. 

However, latitudinal differences in species co-occurrence still remain a core 

question in ecology because of the lack of consensus on the patterns of site-to-

site variability in species composition (β-diversity) across latitudinal gradients 

[4-7]. Difficulties in disentangling the variation caused by pooled species 

richness (γ-diversity) and site-to-site variation in species composition (β-

diversity), as well as in the estimation of β-diversity itself, pose challenges to 

understanding the latitudinal β-diversity patterns. 

Null model approaches have been proposed to account for variation 

caused by γ-diversity, by calculating the rate of deviation of observed β-

diversity from a null-model generated stochastic expectation (hereafter β-
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deviation), and have been widely used in studies on β-diversity [4,6,8-10]. 

Although recent studies have criticized the use of null models (see discussion) 

[7,11,12], they still provide heuristic values that may help understand how non-

random (biological) processes structure local communities. A β-deviation of 

zero indicates that the observed β-diversity is similar to random sampling, while 

positive β-deviation values reflect species aggregation [6,8] As the degree of 

species aggregation is known to increase with grain size [13], we should expect 

spatial-scale effects on β-deviation as well [10,11].  

The majority of previous studies that examined latitudinal tree β-

diversity patterns used small grain sizes to measure α-diversity (≤0.1 ha) [5-

7,14]. However, studies have demonstrated that β-diversity metrics may risk 

false conclusions when data is collected using such small grains [15,16], 

primarily because biodiversity patterns measured at small grains are weaker and 

more variable [17,18]. Observations show that β-diversity decreases 

exponentially with increasing spatial scale [19], and can be divided into two 

segments (figure 2.1): the first segment where the grain sizes are small and its 

influence on β-diversity is high, and the second segment where grain sizes are 

comparatively large and its influence on β-diversity is low (figure 2.1). Steeper 

slopes in the first segment can be caused by sampling at small grains that result 

in artificially lower local (α) diversity and higher γ:αratios (β-diversity; 

statistical Type I errors). A lower influence of α-diversity results in the 

correlation between β- and γ-diversity [20]. This potentially prevents accurate 

estimation of β-diversity, especially when γ-diversity varies with environmental 

gradients such as elevation and latitude [6,21]. Previous studies have shown 

that the influence of γ-diversity on β-diversity decreases with increasing grain 

size [6,22] and changes β-diversity patterns across broad-scale ecological 

gradients [22]. The largest grain size in the previous studies was 0.1 ha [22].  

In this study, we compare the relationship between β-diversity, γ-

diversity and latitude at multiple spatial scales. First, we use tree census data 

from two 50 ha plots to determine: i) the sensitivity of β-diversity to grain size; 

and ii) if the null-model generated β-deviation is also sensitive to grain size. 
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Second, we use tree census data from 15 plots (≥15 ha) along a latitudinal 

gradient in the Asia-Pacific region to assess: iii) if the relationship between β-

diversity and latitude changes with increasing grain size; and iv) if the 

relationship between the null model generated β-deviation and latitude remains 

similar at all grain sizes.   

 

 
Figure 2.1. Illustration of the relationship between observed β-diversity and 

spatial scale (grain size) showing a bi-phasic curve: 1) large variation at small 

spatial scales, and 2) small variation at large spatial scales. Decreasing γ-diversity 

with increasing latitude is well known [3], and if β-diversity is correlated with γ-

diversity at small spatial scales, we should also expect β-diversity to decline with 

increasing latitude. However, reliance of β-diversity on γ-diversity is 

mathematically invalid as long as α-diversity is large and allowed to vary freely 

with γ-diversity [15]. Therefore, at large spatial scales, we should expect β-

diversity not to be reliant on γ-diversity, and the latitudinal β-diversity patterns in 

such scenarios remain unknown.  

 

2.3  Methods  

Sensitivity of β-diversity 

We compared the effects of grain size on classical multiplicative β-diversity 

and null-model generated β-deviation using woody-plant data from a 52-ha 

(1040 m x 500 m) forest plot in Lambir Hills National Park, Sarawak, Malaysia 

(4o186’ N, 114o017’ E; elevation: 104-244 m) and a 50-ha forest plot on Barro 
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Colorado Island (BCI), Panama (9o154’ N, 79o846’ W; elevation: 120-160 m). 

All stems with diameter at breast height (DBH) 1 cm or greater were identified 

to species and precisely mapped across the entire area. The Lambir and BCI 

plots contain more than 350,000 and 200,000 mapped trees (≥1 cm DBH) 

belonging to c. 1200 and c. 300 species, respectively [23-27]. All stems that are 

≥1 cm were identified to species and precisely mapped across the entire area. 

Nothing is omitted and nearly all individuals are assigned to distinct taxa. The 

Lambir and BCI plots have been censused approximately every five years since 

1991 and 1981, respectively. Our analysis of Lambir and BCI plots is based on 

the 2007-08 census and 2010 census, respectively. The 52 ha (1040 m X 500 

m) Lambir plot was trimmed to 50 ha (1000 m X 500 m) to evenly fit multiple 

non-overlapping grains ranging from 10 m X 10 m to 150 m X 150 m.  

A grain is a sample at local scale (α) and an extent (γ) is a set of multiple 

grains. In this study, each extent had a set of nine grains of varying sizes (10 m 

x 10 m to 150 m x 150 m), all contained within one of the two 50-ha plots 

(Lambir and BCI). We chose the first sampling grain randomly and the 

remaining eight were chosen alongside this in a 3 x 3 matrix design. We then 

repeated the sampling 25 times for each grain size. We measured α-diversity as 

the mean species richness of each grain and γ-diversity as the species richness 

of an extent.  

We calculated three classical measures of β-diversity (multiplicative β-

diversity, proportional β-diversity and z-value of the species-area relationship) 

and two multivariate distance measures of β-diversity (mean pairwise Sørensen 

distance and Hellinger’s distance). We calculated:  

(i) Classical multiplicative β-diversity as γ/α.  

(ii) Classical proportional β-diversity as 1-(α/γ). 

(iii)  z-value [28] of the species-area relationship as log(γ)-log(α)/log(grain 

number).  

(iv)  Mean pairwise Sørensen distance using ‘beta.pair’ function in betapart 

package in R (http://www.r-project.org/).  

(v) Hellinger’s distance using ‘beta.div’ function in adespatial package in R. 
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In this paper we only present the results of classical multiplicative β-diversity 

because all metrics were highly correlated with each other (Pearson r > 0.95).   

To determine if β-diversity deviated from the null expectations of 

random sampling (standardized β-deviation, which we refer to as β-deviation), 

we compared β-diversity of observed and randomized datasets [4,6]. 

Specifically, we generated randomized datasets by randomizing trees (≥1 cm 

DBH) across all nine grains, while retaining the relative species abundance 

across the extent and the total number of individuals in each grain. This 

accounts for variation in γ-diversity [4,6]. We generated 1000 randomized 

datasets for each sampling design. We calculated β-deviation = (βobs - 

βrand)/SDrand, where βobs is the observed β-diversity, and βrand and SDrand are the 

mean and standard deviation, respectively, of the expected β-diversity. Under 

the null hypothesis of equal values for the observed and expected β-diversity, 

the distribution of β-deviation is approximately standard normal [29], which we 

assumed when calculating P-values (i.e., 95% of β-deviation values are 

expected to fall in the range of -1.96 to 1.96) [6]. 

 

Latitudinal β-diversity patterns 

We used tree data from 15 long-term, large-scale forest dynamics plots along a 

latitudinal gradient from Papua New Guinea to northern China. The Center for 

Tropical Forest Science/Smithsonian Institution Global Earth Observatories 

(CTFS/SIGEO; http://www.sigeo.si.edu/) and the Chinese Forest Biodiversity 

Network (CForBio; http://cfbiodiv.org/) coordinated data collections in all 

plots: Badagongshan, Fushan, Gutianshan, Hainan, Heishiding, Lambir, 

Lienhuachih, Mo Singto, Nonggang, Palanan, Pasoh, Sinharaja, Tiantongshan, 

Wanang, Xishuangbanna (electronic supplementary material, figure S2.1). 

Each of the 15 plots covers 15 ha to 52 ha of forest in which all stems with 

diameter at breast height (DBH) 1 cm or greater were identified and precisely 

mapped across the entire area. 	

For analyses of latitudinal β-diversity patterns, we use 20 grains of 

varying sizes: 10 m x 10 m (0.01 ha), 20 m x 20 m (0.04 ha), 30 m x 30 m (0.09 

ha), 50 m x 50 m (0.25 ha), 70 m x 70 m (0.49 ha) and 100 m x 100 m (1 ha). 
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We used a nested design, where we chose the first grain randomly and the 

remaining 19 next to each other in a 4 x 5 matrix design. We did not fit 100 m 

x 100 m grains into Palanan and Nonggang plots due to their small size (<20 

ha). Extent size represents the combination of 20 grains, and therefore extent 

size (γ-scale) varies with grain size (α-scale). We measured α-diversity as the 

mean species richness of each grain and γ-diversity as the species richness of 

an extent (electronic supplementary material, figure S2.2, figure S2.3). We used 

the two most widely used metrics of β-diversity, classical multiplicative β-

diversity (β = γ/α) [30] and mean pairwise Sørensen dissimilarity distance as 

measures of β-diversity [31]. These two metrics were highly correlated with 

proportional beta, z-value and Hellinger’s distance (Pearson r > 0.89; electronic 

supplementary material, figure S2.4). A randomized null-model approach was 

used to measure the deviation of observed β-diversity from the null expectations 

of random sampling (β-deviation; see above for details). We also calculated the 

rate of deviation of observed mean pairwise Sørensen from a null-model 

generated stochastic expectation (hereafter pairwise Sørensen deviation). We 

extracted mean monthly temperature and mean annual precipitation data for 

each plot from the WORLDCLIM database version 1.4 [32]. 

	

Data analysis 

Tree β-diversity often shows a non-linear bi-phasic curve with spatial scale, 

with faster change in β-diversity values at small spatial scales, and slower 

change at comparatively larger spatial scales (figure 2.1) [19]. We therefore 

fitted a regression model with segmented relationships between β-diversity and 

spatial scale to estimate a threshold between small and large spatial scale (see 

figure 2.1). Segmented-regression is a method where two regression lines are 

fitted onto an independent variable (grain size in our analysis), which are joined 

together at a break point [33]. It can be used to detect changes in model fits and 

can be important in decision-making.  

We used general linear models with normal error structure to determine 

the change in β-diversity and β-deviation of different grain sizes with γ-
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diversity and latitude. We did not include temperature in the models as it was 

highly correlated with latitude (Pearson r = 0.9, p < 0.001), but precipitation 

was included as a covariate. We used backward elimination technique to 

simplify the models. We loge transformed γ-diversity prior to analysis and used 

absolute values of latitude. We removed the Lambir site from the models 

determining the change in β-deviation with varying γ-diversity and latitude 

because of high heteroscedasticity. Lambir had β-deviation (spatial 

aggregation) values up to two times higher than any other site, which may be 

caused by the presence of distinct soil types and strong habitat associations 

within this particular plot [34,35]. All analyses were conducted in the statistical 

program R (R Core Team, v. 3.3.1). The data are available in supplementary 

information (electronic supplementary material, table S2.1) and on request from 

ForestGEO (http://forestgeo.si.edu) and CForBio (http://cfbiodiv.org). The R-

codes for the analyses of the sensitivity of β-diversity and latitudinal β-diversity 

patterns are available in the electronic supplementary material, appendix S2.1 

and appendix S.2.2, respectively.  

 

2.4	 	Results	
Sensitivity of β-diversity 

Grain size significantly influenced classical multiplicative β-diversity at both 

tropical forest sites with a sharp decrease in values at very small grains (Lambir: 

R2 = 0.94, P < 0.001; BCI: R2 = 0.97, P < 0.001; figure 2.2). The slope of the 

first segment (10 m x 10 m to 35 m x 35 m; Lambir: -0.110 ± 0.005 [SE]; BCI: 

-0.066 ± 0.003) was c. 16 times higher than that of the second (Lambir: -0.007 

± 0.0006; BCI: -0.004 ± 0.0003) at both sites (figure 2.2). Grain size had a very 

strong relationship with both number of individuals sampled and γ-diversity 

(R2 > 0.95). For both Lambir and BCI sites, β-deviation did not differ from 

stochastic expectation at small grain sizes (|β-deviation| < 1.96), but increased 

with grain size (Lambir: R2 = 0.28, P < 0.001; BCI: R2 = 0.63, P < 0.001; figure 

2.2). 
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Figure 2.2. Variation in classical multiplicative β-diversity and β-deviation 

with increasing grain size in Lambir, Malaysia and BCI, Panama. β-deviation 

of zero indicates that the observed pattern does not differ from random 

sampling. The dashed lines in β-deviation plots represent the criterion (±1.96 

standard deviations) for assessing the statistical significance. The x-axis 

represents grain size at α-scale (e.g. 50 = 50 m x 50 m).  

 

Latitudinal β-diversity patterns 

Changes in precipitation did not affect either of the β-diversity metrics 

(classical multiplicative and mean pairwise Sørensen) at any grain size 

(electronic supplementary material, table S2.2), and precipitation was therefore 

eliminated from all models. Both the β-diversity metrics increased significantly 

with γ-diversity at small grains (10 m x 10 m to 30 m x 30 m), but showed no 

relationship with γ-diversity at larger grains (50 m x 50 m to 100 m x 100 m; 

figure 2.3; electronic supplementary material, figure S2.5). Latitudinal β-

diversity patterns were similar. Both the measured β-diversity indices decreased 

significantly with increasing latitude while sampling at small grains (10 m x 10 

m to 30 m x 30 m), but showed no relationship with latitude at relatively larger 
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grains (50 m x 50 m to 100 m x 100 m; figure 2.4; electronic supplementary 

material, figure S2.5). The γ-diversity was highly correlated with α-diversity at 

all grain sizes (R2 > 0.84, p < 0.01), and the number of individuals in each grain 

did not change with latitude (R2 = 0.001; P = 0.85). 

 

 

Figure 2.3. Classical multiplicative β-diversity increased with γ-diversity when 

sampling at small grains (10 m x 10 m to 30 m x 30 m) within each ForestGEO 

plot, but showed no relationship with γ-diversity at larger grains (50 m x 50 m 

to 100 m x 100 m).  
 

Changes in precipitation did not affect either β-deviation or Sørensen-deviation 

at any grain size, and so precipitation was eliminated from all models 

(electronic supplementary material, table S2.3). Standardized β-deviation did 

not vary with either γ-diversity or latitude at all grain sizes (figure 2.5; 

electronic supplementary material, table S2.4). The pairwise Sørensen 

deviation was similar to β-deviation. The values of pairwise Sørensen deviation 

also did not vary with either γ-diversity or latitude at all grain sizes (electronic 

supplementary material, figure S2.6). 
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Figure 2.4. Classical multiplicative β-diversity decreased with increasing 

latitude when sampling at small grains (10 m x 10 m to 30 m x 30 m) within 

each ForestGEO plot, but showed no relationship with latitude at larger grains 

(50 m x 50 m to 100 m x 100 m).  

 

2.5  Discussion 
Our results demonstrate that latitudinal β-diversity gradients are strongly 

dependent on spatial scale (grain size). We found that β-diversity was highly 

dependent on γ-diversity at small grains, but not at large grains (figure 2.3; 

electronic supplementary material, figure S2.4). Our study therefore confirms 

that the use of large grains still remains to be the best-known method for 

measuring γ-independent β-diversity [15, 36, 37], unless questions specific to 

β-diversity at smaller spatial scales are being addressed. Their correlation is 

problematic because variation in γ-diversity alone can account for gradients in 

β-diversity [6]. At relatively large grains (≥0.25 ha), where β-diversity is not 

influenced by γ-diversity, β-diversity remained similar across the latitudinal 

gradient (figure 2.4; electronic supplementary material, figure S2.4).  

  It should be noted that the grain size is relative and will vary with 

sampling method and taxon. Our study sampled all trees ≥ 1 cm DBH, but when 
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sampling trees ≥ 10 cm DBH even a grain size of 100 m x 100 m can be 

considered small [38]. Sampling using small grains could explain the 

correlation between β- and γ-diversity. For example, let us assume a 

homogeneous community with 100 species and a β-diversity (β = γ/α) of one, 

i.e. α-diversity is equal to γ-diversity. But, if only 40 individuals are sampled at 

α-scale, the probability of β-diversity being one is zero, simply caused by 

constraining α-diversity that makes β-diversity dependent on γ-diversity [15]. 

Therefore, β-diversity at small grains is higher at the equator because of 

sampling inadequacy, which makes it dependent on γ-diversity [6,15,20].  

 

 

Figure 2.5. Standardized β-deviation did not vary significantly with γ-diversity 

and latitude at any grain size. However, β-deviation values increased 

significantly with grain size, indicating stronger intraspecific aggregation at 

larger spatial scales. Dashed lines indicate non-significant relationships. 

 

  Methods to account for γ-dependence of β-diversity have received 

strong scientific attention and stirred discussions [6,7,10-12]. Previous studies 

used null-model generated β-deviation to account for γ-dependent effects 

[4,6,10]. But recent studies have challenged the use of β-deviation for 

comparing between habitat types [11,12], as studies that used β-deviation have 

resulted in contrasting conclusions within and across studies [4,6,7]. Recently, 

Ulrich et al. [12] has showed that the use of null models can result in high 

artificial rejection rates of focal patterns (Type II statistical errors). Our case 
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study, along with several previous studies, suggests that the use of large grains 

is the best available method to avoid γ-dependence of β-diversity [15, 36, 37].  

  Our data was limited to forests in the tropics and subtropics and we did 

not have data from permanent plots in the temperate region (>30o latitude). 

Recently, Castro-Insua et al. [39] investigated if there were any latitudinal 

thresholds in β-diversity, and showed that different β-diversity patterns exist on 

either side of a threshold at c. 30o latitude. Although we found no relationship 

between β-diversity and latitude, this relationship might change in the 

temperate region. Our plots also have a broader longitudinal spread that is ideal 

in a study of latitudinal effects, and seven of 15 plots are on islands. Future 

studies should examine latitudinal β-diversity patterns using large spatial scales 

in a different regions that includes temperate plots. Studies using more sites, 

across American and African latitudinal gradients, and using multiple growth 

forms and larger distances between grains, will be useful to determine spatial 

scale effects on β-diversity patterns and differences in the mechanisms that 

drive community assembly.  

  Our results suggest that sampling at large sampling grains can remove 

the influences of γ- on β-diversity. Specifically, we show that observed β-

diversity does not change with increasing latitude (3-30o latitude; figure 2.3). 

Therefore, our results support the idea that β-diversity in the tropics is similar 

to β-diversity in the sub-tropics. These results have important implications for 

community ecology and demonstrate that the general β-diversity patterns and 

the processes structuring communities are still open for discussion. 
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2.7  Supporting information 

 

 

Figure S2.1. Asia-Pacific map showing the locations of the 15 large forest 

dynamics plots studied in this paper.  
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Figure S2.2. Relationship between α-diversity and grain size at all the 15 

sampled sites. 

 

 

 

Figure S2.3. Relationship between γ-diversity and grain size at all the 15 

sampled sites. 
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Figure S2.4. Pearson’s Correlation matrix of all the measured beta-diversity 

metrics. All measured metrics were highly correlated with each other.  
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Figure S2.5. Mean pairwise Sørensen increased with γ-diversity and decreased 

with latitude when sampling used small grains (10 m x 10 m to 30 m x 30 m), 

but showed no relationship with γ-diversity and latitude at larger grains (50 m 

x 50 m to 100 m x 100 m).  

 

 

 

Figure S2.6. Standardized pairwise Sørensen-deviation did not vary 

significantly with γ-diversity and latitude at any grain size. However, pairwise 

Sørensen-deviation values increased significantly with grain size, indicating 

stronger intraspecific aggregation at larger spatial scales. Dashed lines indicate 

non-significant relationships. 
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Table S2.1. Classical beta-diversity and mean pairwise Sørensen for each site 
at different grain sizes.  

Site Grain size Gamma 
Multiplicative 
Beta 

Mean pairwise 
Sørensen 

Xishuangbanna 100 x 100 411 1.72967291 0.279756841 

Xishuangbanna 70 x 70 380 2.310030395 0.337580068 

Xishuangbanna 50 x 50 337 2.737611698 0.446970732 

Xishuangbanna 30 x 30 238 3.129520053 0.468792946 

Xishuangbanna 20 x 20 207 4.456404736 0.599185204 

Xishuangbanna 10 x 10 108 6.260869565 0.644315211 

Heishiding 100 x 100 195 1.450892857 0.150193897 

Heishiding 70 x 70 181 1.589811155 0.185963876 

Heishiding 50 x 50 169 1.752203214 0.241376744 

Heishiding 30 x 30 147 2.176165803 0.33123569 

Heishiding 20 x 20 124 2.941874259 0.408301589 

Heishiding 10 x 10 96 4.571428571 0.598697089 

Lienhuachih 100 x 100 134 1.554524362 0.177924443 

Lienhuachih 70 x 70 124 1.643472498 0.157798053 

Lienhuachih 50 x 50 110 1.736385162 0.204017254 

Lienhuachih 30 x 30 91 1.830985915 0.238748017 

Lienhuachih 20 x 20 66 1.85915493 0.455909136 

Lienhuachih 10 x 10 63 2.8 0.484524719 

Fushan 100 x 100 106 1.504613201 0.131889597 

Fushan 70 x 70 102 1.607565012 0.169612458 

Fushan 50 x 50 95 1.744719927 0.182727001 

Fushan 30 x 30  76 1.822541966 0.179610377 

Fushan 20 x 20 66 2.413162706 0.356053547 

Fushan 10 x 10 51 4.454148472 0.356111165 
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Mo Singto 100 x 100 254 1.896229937 0.235795013 

Mo Singto 70 x 70 224 2.049405306 0.257739984 

Mo Singto 50 x 50 196 2.222222222 0.52345062 

Mo Singto 30 x 30  168 2.6709062 0.371354948 

Mo Singto 20 x 20 139 3.137697517 0.414527201 

Mo Singto 10 x 10 91 4.631043257 0.624008621 

Sinharaja 100 x 100 234 1.518494484 0.163015453 

Sinharaja 70 x 70 221 1.687667048 0.207391863 

Sinharaja 50 x 50 211 1.837178929 0.272509511 

Sinharaja 30 x 30  177 2.289780078 0.336959426 

Sinharaja 20 x 20 153 3.184183143 0.4650329 

Sinharaja 10 x 10 103 4.629213483 0.6207393 

Wanang 100 x 100 514 1.713047825 0.193909383 

Wanang 70 x 70 442 1.808140724 0.218555945 

Wanang 50 x 50 404 1.996540647 0.2712884 

Wanang 30 x 30  342 2.598784195 0.345037468 

Wanang 20 x 20 255 3.359683794 0.489905646 

Wanang 10 x 10 191 6.324503311 0.723726086 

Pasoh 100 x 100 787 1.67162277 0.205738183 

Pasoh 70 x 70 726 1.942474916 0.260867424 

Pasoh 50 x 50 685 2.213962508 0.329341807 

Pasoh 30 x 30  531 3.019618993 0.446205209 

Pasoh 20 x 20 404 3.964671246 0.580326571 

Pasoh 10 x 10 297 5.582706767 0.787044323 

Nonggang 70 x 70 205 2.239213545 0.361573519 

Nonggang 50 x 50 170 2.492668622 0.43880577 

Nonggang 30 x 30  139 2.774451098 0.387116167 

Nonggang 20 x 20 117 3.416058394 0.516521123 
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Nonggang 10 x 10 45 3.781512605 0.517819378 

Tiantongshan 100 x 100 152 1.789287816 0.222135883 

Tiantongshan 70 x 70 137 1.943262411 0.232017585 

Tiantongshan 50 x 50 119 2.109929078 0.273843341 

Tiantongshan 30 x 30  90 2.100350058 0.342641601 

Tiantongshan 20 x 20 79 3.104125737 0.47995031 

Tiantongshan 10 x 10 55 2.972972973 0.531874913 

Gutianshan 100 x 100 154 1.669376694 0.187920091 

Gutianshan 70 x 70 137 1.773462783 0.214863285 

Gutianshan 50 x 50 129 2.014051522 0.224637054 

Gutianshan 30 x 30  101 2.20043573 0.251872352 

Gutianshan 20 x 20 81 2.4 0.309096547 

Gutianshan 10 x 10 80 3.470715835 0.42459787 

Badagongshan 100 x 100 235 1.796636086 0.198170391 

Badagongshan 70 x 70 204 1.921808761 0.210354704 

Badagongshan 50 x 50 180 2.088167053 0.251628457 

Badagongshan 30 x 30  134 2.178861789 0.266323984 

Badagongshan 20 x 20 122 2.579281184 0.307577534 

Badagongshan 10 x 10 84 3.775280899 0.451209741 

Palanan 70 x 70 300 1.927401221 0.312620514 

Palanan 50 x 50 259 2.215568862 0.256934098 

Palanan 30 x 30  242 2.258516099 0.336983674 

Palanan 20 x 20 205 2.994886779 0.467565575 

Palanan 10 x 10 135 4.945054945 0.6409486 

Hainan 100 x 100 268 1.358337557 0.11916625 

Hainan 70 x 70 249 1.418399316 0.135884149 

Hainan 50 x 50 239 1.581733951 0.180078049 

Hainan 30 x 30  225 1.999111506 0.292777268 
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Hainan 20 x 20 193 2.325301205 0.428409055 

Hainan 10 x 10 140 3.41047503 0.567101074 

Lambir 100 x 100 1158 1.693849192 0.238724561 

Lambir 70 x 70 1103 2.070778185 0.310339439 

Lambir 50 x 50 1015 2.54258517 0.387883059 

Lambir 30 x 30  845 3.561643836 0.460911384 

Lambir 20 x 20 669 4.832069339 0.604341535 

Lambir 10 x 10 365 7.142857143 0.76565142 
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Table S2.2. Relationship between precipitation and observed β-diversity 

metrics (classical multiplicative β-diversity and mean pairwise Sørensen)  

Multiplicative β-diversity   

Grain size Estimate ± SE P-value 

10 m x 10 m 0.00065 ± 0.00036 0.096 

20 m x 20 m 0.00008 ± 0.00025 0.736 

30 m x 30 m 0.00000 ± 0.00016 0.962 

50 m x 50 m -0.00007 ± 0.0001 0.5 

70 m x 70 m -0.00007 ± 0.00007 0.352 

100 m x 100 m -0.00004 ± 0.00005 0.421 

   

Mean pairwise Sørensen   

Grain size Estimate ± SE P-value 

10 m x 10 m 0.00003 ± 0.00004 0.44 

20 m x 20 m 0.00001 ± 0.00003 0.594 

30 m x 30 m -0.00001 ± 0.00002 0.658 

50 m x 50 m -0.00004 ± 0.0003 0.247 

70 m x 70 m -0.00001 ± 0.00002 0.468 

100 m x 100 m -0.00001 ± 0.00001 0.46 
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Table S2.3. Relationship between precipitation and null-model generated β-

deviation and Sørensen-deviation 

β-deviation   

Grain size Estimate ± SE P-value 

10 m x 10 m -0.00021 ± 0.00172 0.901 

20 m x 20 m -0.00125 ± 0.00423 0.772 

30 m x 30 m -0.00306 ± 0.00372 0.425 

50 m x 50 m -0.00366 ± 0.00468 0.467 

70 m x 70 m -0.00362 ± 0.00638 0.581 

100 m x 100 m -0.00106 ± 0.00446 0.817 

   

Sørensen-deviation   

Grain size Estimate ± SE P-value 

10 m x 10 m -0.00206 ± 0.00095 0.052 

20 m x 20 m -0.00434 ± 0.00256 0.116 

30 m x 30 m -0.00246 ± 0.00162 0.156 

50 m x 50 m -0.00349 ± 0.00528 0.52 

70 m x 70 m -0.00395 ± 0.00518 0.46 

100 m x 100 m -0.00098 ± 0.00512 0.851 
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Table S2.4. Latitude and γ-diversity did not affect standardized β-deviation 

across all sampling scales (quadrat sizes).  

 γ-diversity Latitude 

Quadrat size R2 p R2 p 

10 m x 10 m 0.001 0.95 0.004 0.81 

20 m x 20 m 0.03 0.53 0.009 0.75 

30 m x 30 m 0.002 0.87 0.01 0.74 

50 m x 50 m 0.07 0.37 0.07 0.38 

70 m x 70 m 0.06 0.40 0.06 0.41 

100 m x 100 m 0.16 0.21 0.15 0.23 
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Appendix S2.1. Sensitivity of β-diversity analyses. The R-code used for 

extracting and analyzing data from the 50-ha plots in Lambir, Borneo and BCI, 

Republic of Panama. 

 
 rm(list = ls()) ### This clears everything from memory 
library(dplyr) 

d<-read.csv("~data.csv") ### read the plot data 

 

### function to make names of local communites 

Quad.func <- function(data, size = 20){ 

 

  data2 <- data %>% mutate(temp.x = as.integer(gx / size) + 

1) %>% 

    mutate(temp.y = as.integer(gy / size) + 1) %>% 

    mutate(temp.quad = paste(temp.x, temp.y, sep = "_")) 

   

  temp.name <- names(data2) 

  temp.name[temp.name == "temp.x"] <- paste("gx", size, sep = 

"") 

  temp.name[temp.name == "temp.y"] <- paste("gy", size, sep = 

"") 

  temp.name[temp.name == "temp.quad"] <- paste("quadrat", size, 

sep = "") 

   

  names(data2) <- temp.name   

  data2 

} 

 

#### making quadrats 

D <- d %>% 

  filter(gx < 1000) %>% 

  Quad.func(5) %>% 

  Quad.func(10) %>% 

  Quad.func(20) %>% 

  Quad.func(50) %>% 

  Quad.func(100) 

 

head(D) 



 
CHAPTER 2. LATITUDINAL PATTERNS 

 
 

 
 

59 

 

### Making tables accordingly 

m1.5 <- table(D$quadrat5, D$sp) 

m1.10 <- table(D$quadrat10, D$sp) 

m1.20 <- table(D$quadrat20, D$sp) 

m1.50 <- table(D$quadrat50, D$sp) 

m1.100 <- table(D$quadrat100, D$sp) 

 

library(vegan) 

library(segmented) 

 

 

### FUNCTIONS ###  

 

#### Large quadrats 

Large.quad <- function(data, n.sample, size = 120){ 

  if (n.sample > 4) stop("Maximum sample size is 4 by 4") 

  lim.size <- n.sample * 0.5 

   

  sp.data <- data %>% 

    select(sp) %>% 

    distinct 

   

  temp.dat <- data %>% 

    filter((gx >= lim.size * size) & (gx < max(gx) - lim.size * 

size)) %>% filter((gy >= lim.size * size) & (gy < max(gy) - 

lim.size * size)) 

   

  if (nrow(temp.dat) == 0) stop("Quadrat size or sample size are 

too large") 

   

  x.mid <- sample(temp.dat$gx, 1) 

  y.mid <- sample(temp.dat$gy, 1) 

   

  temp.dat2 <- data %>% 

    filter((gx >= x.mid - lim.size * size) & (gx < x.mid + 

lim.size * size)) %>% 

    filter((gy >= y.mid - lim.size * size) & (gy < y.mid + 



 
 Beta diversity at multiple spatial scales 

60 
 

lim.size * size)) %>% 

    mutate(gx.new = gx - min(gx)) %>% 

    mutate(gy.new = gy - min(gy)) %>% 

    mutate(x.site = as.integer(gx.new / size) + 1) %>% 

    mutate(y.site = as.integer(gy.new / size) + 1) %>% 

    mutate(temp.quad = paste(x.site, y.site, sep = "_")) %>% 

    full_join(., sp.data, by = "sp") 

   

  com.mat <- table(temp.dat2$temp.quad, temp.dat2$sp) 

   

  com.mat 

} 

 

### Null model 

 

My.shuffle <- function(samp){ 

  samp.n <- r2dtable(1, rowSums(samp), colSums(samp))[[1]] 

  rownames(samp.n) <- rownames(samp) 

  colnames(samp.n) <- colnames(samp) 

  samp.n 

} 

 

SES.func <- function(res.list, runs){ 

  obs.alpha <- sapply(res.list, specnumber) %>% apply(2, mean) 

  obs.ind <- sapply(res.list,sum) 

  obs.gamma <- res.list %>% 

    lapply(function(x) apply(x, 2, sum)) %>% 

    sapply(specnumber) 

   

  obs.beta <- obs.gamma / obs.alpha 

  obs.z <- (log(obs.gamma)-log(obs.alpha))/log(9) 

  rand.alpha <- matrix(NA, nrow = runs, ncol = length(res.list)) 

  rand.beta <- rand.alpha 

  rand.gamma <- rand.alpha 

   

  for (i in 1:runs){ 

    rand.dat <- lapply(res.list, My.shuffle) 

    rand.alpha[i, ] <- sapply(rand.dat, specnumber) %>% apply(2, 

mean) 
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    rand.beta <- obs.gamma / rand.alpha  

  } 

   

  mean.rand.beta <- apply(rand.beta, 2, mean) 

  sd.rand.beta <- apply(rand.beta, 2, sd) 

   

  ses.beta <- (obs.beta - mean.rand.beta) / sd.rand.beta 

   

  data.frame(site = 1:length(res.list), obs.ind, obs.alpha, 

obs.gamma, obs.beta, obs.z,mean.rand.beta, sd.rand.beta, 

ses.beta, runs) 

} 

 

### Sampling function 

Samp.func<-function(data.matrix, n.sample, n.gap) { 

  x.vec <- data.matrix %>% 

    rownames() %>% 

    strsplit("_") %>% 

    sapply("[",1) %>% 

    as.numeric() 

   

  x.n <- x.vec[x.vec <= (max(x.vec) - 

                           (n.sample * (n.gap + 1) - n.gap - 

1))] %>% 

    sample(1) 

   

  y.vec <- data.matrix %>% 

    rownames() %>% 

    strsplit("_") %>% 

    sapply("[",2) %>% 

    as.numeric() 

   

  y.n <- y.vec[y.vec <= (max(y.vec) - 

                           (n.sample * (n.gap + 1) - n.gap - 

1))] %>% 

    sample(1) 

   

  x.n2 <- seq(x.n, (x.n + n.sample * (n.gap + 1)) - n.gap - 1) 
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  y.n2 <- seq(y.n, (y.n + n.sample * (n.gap + 1)) - n.gap - 1) 

   

  if (n.gap != 0) { 

    x.n2 <- (n.gap + 1) * c(1:n.sample) - n.gap + x.n - 1 

    y.n2 <- (n.gap + 1) * c(1:n.sample) - n.gap + y.n - 1 

  } 

   

  temp <- expand.grid(x.n2, y.n2) 

  site.name <- paste(temp$Var1, temp$Var2, sep = "_") 

  data.matrix[site.name, ] 

} 

 

### Analysis ### 

### Quadrat size 

size.vec <- seq(10, 150, by = 10) 

 

obs.alpha <- NULL 

before <- proc.time() 

for (i in 1:length(size.vec)){ 

  temp <- lapply(1:10, function(x) Large.quad(D1, n.sample = 3, 

size = size.vec[i])) 

  obs.alpha <- c(obs.alpha, SES.func(temp, runs = 1)$obs.alpha) 

} 

 

obs.beta <- NULL 

before <- proc.time() 

for (i in 1:length(size.vec)){ 

  temp <- lapply(1:10, function(x) Large.quad(D1, n.sample = 3, 

size = size.vec[i])) 

  obs.beta <- c(obs.beta, SES.func(temp, runs = 1)$obs.beta) 

} 

 

obs.gamma <- NULL 

before <- proc.time() 

for (i in 1:length(size.vec)){ 

  temp <- lapply(1:10, function(x) Large.quad(D1, n.sample = 3, 

size = size.vec[i])) 

  obs.gamma <- c(obs.gamma, SES.func(temp, runs = 1)$obs.gamma) 

} 
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ses.beta <- NULL 

before <- proc.time() 

for (i in 1:length(size.vec)){ 

  temp <- lapply(1:10, function(x) Large.quad(D1, n.sample = 3, 

size = size.vec[i])) 

  ses.beta <- c(ses.beta, SES.func(temp, runs = 99)$ses.beta) 

} 

 

(L.Divers<-data.frame(obs.alpha, obs.beta, 

obs.z,obs.gamma,obs.ind, ses.beta, size = rep(size.vec, each = 

10))) 

 

 

### Figure 

par(mfrow=c(1,2)) 

plot(obs.beta ~ size ,L.Divers,cex=2,xlab='Quadrat 

size',ylab='Beta',cex.lab=1.5, 

     cex.axis=1.5) 

lm_b2<-lm(obs.beta ~ size ,L.Divers) 

L.o.seg_b2<-segmented(lm_b2,seg.Z=~size) 

plot(L.o.seg_b2, add=T, lwd=4,  rug=F, 

conf.interval=0.95,shade=T) 

 

plot(ses.beta ~ size ,L.Divers,cex=2,xlab='Quadrat 

size',ylab='Beta deviation',  

      cex.lab=1.5, cex.axis=1.3) 

lm_ses2<-lm(ses.beta ~ size  ,L.Divers) 

L.o.seg_ses2<-segmented(lm_ses2,seg.Z=~size) 

plot(L.o.seg_ses2, add=T, lwd=4,  rug=F, 

conf.interval=0.95,shade=T) 
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Appendix S2.2. Latitudinal β-diversity pattern analyses. The R-code used for 

extracting measuring β-diversity and β-deviation at multiple grainsizes.  

 

rm(list = ls()) # This clears everything from memory. 

library(dplyr) 

library(vegan) 

library(adespatial) 

library(betapart) 

 

dat <- read.csv("~sp_abun.csv") ## read the dataset 

summary(dat) 

d<-dat ## if plot is only sampled once 

#d <- subset(dat, status == 'A') ## Select only 'alive' 

individuals 

#d<-subset(dat, status=='Alive') 

 

## function to make names of local communites 

Quad.func <- function(data, size = 20){ 

  data2 <- data %>% mutate(temp.x = as.integer(gx / size) + 1) 

%>% 

    mutate(temp.y = as.integer(gy / size) + 1) %>% 

    mutate(temp.quad = paste(temp.x, temp.y, sep = "_")) 

  temp.name <- names(data2) 

  temp.name[temp.name == "temp.x"] <- paste("gx", size, sep = 

"") 

  temp.name[temp.name == "temp.y"] <- paste("gy", size, sep = 

"") 
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  temp.name[temp.name == "temp.quad"] <- paste("quadrat", size, 

sep = "") 

  names(data2) <- temp.name 

  data2  

} 

 

####making 20 one ha (100 m X 100 m) quadrats and trim the plot 

to 20 ha (500 m X 400 m) 

D <- d %>% 

  filter(gx < 500) %>% ##Check gx range for Banna 

  ## filter(gx < 800)  %>%   ## for Mo Singto 

  ## filter(gx > 300)  %>%    ## for Mo Singto 

  filter(gy < 400) %>% 

  Quad.func(70)  

head(D) 

 

## Making table 

m1.70 <- table(D$quadrat70, D$sp) 

head(m1.70) 

 

####### Simulation 

 

My.shuffle <- function(samp){ 

  samp.n <- r2dtable(1, rowSums(samp), colSums(samp))[[1]] 

  rownames(samp.n) <- rownames(samp) 

  colnames(samp.n) <- colnames(samp) 

  samp.n 
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} 

 

div.func <- function(samp){ 

  alpha <- specnumber(samp) %>% mean 

  gamma <- apply(samp, 2, sum) %>% specnumber 

  beta <- gamma/alpha 

  betaP <- (gamma-alpha)/gamma 

  y <- samp 

  y[y>0]=1 

  betaT <- mean(beta.pair(y)$beta.sor) 

  betaP <- mean(bray.part(samp)$bray) 

  c(alpha = alpha, beta = beta, betaP = betaP, betaT = betaT, 

gamma = gamma) 

} 

 

SES.func <- function(samp, runs){ 

  obs <- div.func(samp) 

  obs.alpha <- obs["alpha"] 

  obs.gamma <- obs["gamma"] 

  obs.beta <- obs["beta"] 

  obs.betaP <- obs["betaP"] 

  obs.betaT <- obs["betaT"] 

   

  rand.res <- replicate(runs, div.func(My.shuffle(samp))) 

  mean.rand.beta <- rand.res["beta", ] %>% mean 

  sd.rand.beta <- rand.res["beta", ] %>% sd 

  mean.rand.betaP <- rand.res["betaP", ] %>% mean 
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  sd.rand.betaP <- rand.res["betaP", ] %>% sd 

  mean.rand.betaT <- rand.res["betaT", ] %>% mean 

  sd.rand.betaT <- rand.res["betaT", ] %>% sd 

   

  ses.beta <- (obs.beta - mean.rand.beta) / sd.rand.beta 

  ses.betaP <- (obs.betaP - mean.rand.betaP) / sd.rand.betaP 

  ses.betaT <- (obs.betaT - mean.rand.betaT) / sd.rand.betaT 

   

  data.frame (ses.beta, ses.betaP, ses.betaT) 

} 

 

####################### 

#### plot sizes    #### 

 

Large.quad <- function(data, n.sample, size = 120){ 

  if (n.sample > 5) stop("Maximum sample size is 5 by 5") 

  lim.size <- n.sample * 0.5  

  sp.data <- data %>% 

    select(sp) %>% 

    distinct 

  temp.dat <- data %>% 

    filter((gx >= lim.size * size) & (gx < max(gx) - lim.size * 

size)) %>% 

    filter((gy >= (lim.size-0.5) * size) & (gy < max(gy) - 

(lim.size-0.5) * size))  

  if (nrow(temp.dat) == 0) stop("Quadrat size or sample size are 

too large")   
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  x.mid <- sample(temp.dat$gx, 1) 

  y.mid <- sample(temp.dat$gy, 1) 

  temp.dat2 <- data %>% 

    filter((gx >= x.mid - lim.size * size) & (gx < x.mid + 

lim.size * size)) %>% 

    filter((gy >= y.mid - (lim.size-0.5) * size) & (gy < y.mid 

+ (lim.size-0.5) * size)) %>% 

    mutate(gx.new = gx - min(gx)) %>% 

    mutate(gy.new = gy - min(gy)) %>% 

    mutate(x.site = as.integer(gx.new / size) + 1) %>% 

    mutate(y.site = as.integer(gy.new / size) + 1) %>% 

    mutate(temp.quad = paste(x.site, y.site, sep = "_")) %>% 

    full_join(., sp.data, by = "sp")  

  com.mat <- table(temp.dat2$temp.quad, temp.dat2$sp) 

  com.mat 

} 

 

################################## 

###          Analysis         #### 

################################## 

 

## Generating 20 70 X 70 m quadrats from the plots 

m1.70 <- Large.quad(D, n.sample = 5, size = 70) 

(Gamma.70 <- specnumber(apply(m1.70, 2, sum))) 

(Alpha.70 <- mean(specnumber(m1.70))) 

(Beta.70 <- Gamma.70/Alpha.70) 

m1.70X<-m1.70 
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m1.70X[m1.70X>0]=1 

(BetaP.70 <- mean(beta.pair(m1.70X)$beta.sor)) 

(BetaB.70 <- mean(bray.part(m1.70)$bray)) 

(BetaSES.70 <-SES.func(m1.70,1000)) 

(PL.70<-data.frame(Gamma.70, Alpha.70, Beta.70, BetaP.70, 

BetaB.70, BetaSES.70)) 

 

#### Generating 20 50 x 50 m plots 

m1.50 <- Large.quad(D, n.sample = 5, size = 50) 

(Gamma.50 <- specnumber(apply(m1.50, 2, sum))) 

(Alpha.50 <- mean(specnumber(m1.50))) 

(Beta.50 <- Gamma.50/Alpha.50) 

m1.50X<-m1.50 

m1.50X[m1.50X>0]=1 

(BetaP.50 <- mean(beta.pair(m1.50X)$beta.sor)) 

(BetaB.50 <- mean(bray.part(m1.50)$bray)) 

(BetaSES.50 <-SES.func(m1.50,1000)) 

(PL.50<-data.frame(Gamma.50, Alpha.50, Beta.50, BetaP.50, 

BetaB.50, BetaSES.50)) 

 

## Generating 20 30 X 30 m quadrats from the plots 

m1.30 <- Large.quad(D, n.sample = 5, size = 30) 

(Gamma.30 <- specnumber(apply(m1.30, 2, sum))) 

(Alpha.30 <- mean(specnumber(m1.30))) 

(Beta.30 <- Gamma.30/Alpha.30) 

m1.30X<-m1.30 

m1.30X[m1.30X>0]=1 
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(BetaP.30 <- mean(beta.pair(m1.30X)$beta.sor)) 

(BetaB.30 <- mean(bray.part(m1.30)$bray)) 

(BetaSES.30 <-SES.func(m1.30,1000)) 

(PL.30<-data.frame(Gamma.30, Alpha.30, Beta.30, BetaP.30, 

BetaB.30, BetaSES.30)) 

## Generating 20 20 X 20 m quadrats from the plots 

m1.20 <- Large.quad(D, n.sample = 5, size = 20) 

(Gamma.20 <- specnumber(apply(m1.20, 2, sum))) 

(Alpha.20 <- mean(specnumber(m1.20))) 

(Beta.20 <- Gamma.20/Alpha.20) 

m1.20X<-m1.20 

m1.20X[m1.20X>0]=1 

(BetaP.20 <- mean(beta.pair(m1.20X)$beta.sor)) 

(BetaB.20 <- mean(bray.part(m1.20)$bray)) 

(BetaSES.20 <-SES.func(m1.20,1000)) 

(PL.20<-data.frame(Gamma.20, Alpha.20, Beta.20, BetaP.20, 

BetaB.20, BetaSES.20)) 

 

## Generating 20 10 X 10 m quadrats from the plots 

m1.10 <- Large.quad(D, n.sample = 5, size = 10) 

(Gamma.10 <- specnumber(apply(m1.10, 2, sum))) 

(Alpha.10 <- mean(specnumber(m1.10))) 

(Beta.10 <- Gamma.10/Alpha.10) 

m1.10X<-m1.10 

m1.10X[m1.10X>0]=1 

(BetaP.10 <- mean(beta.pair(m1.10X)$beta.sor)) 

(BetaB.10 <- mean(bray.part(m1.10)$bray)) 
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(BetaSES.10 <-SES.func(m1.10,1000)) 

(PL.10<-data.frame(Gamma.10, Alpha.10, Beta.10, BetaP.10, 

BetaB.10, BetaSES.10)) 

 

 

pl.n<-data.frame(PL.70,PL.50,PL.30,PL.20,PL.10) 

pl.n2<-matrix(pl.n, nrow=5, byrow=TRUE) 

colnames(pl.n2)<-c('Gamma', 'Alpha', 'Beta', 'BetaP', 'BetaB', 

'SES_Beta', 'SES_Bray', 'SES_Sor') 

pl.n2 

write.csv(pl.n2,'plot_xxxx.csv') ## Results in .csv file 
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3.1 Summary 

Large tracts of tropical rainforests are being converted into intensive 

agricultural lands. Such anthropogenic disturbances are known to reduce 

species turnover across horizontal distances. But it is not known if they can also 

reduce species turnover across vertical distances (elevation), which have 

steeper climatic differences. We measured turnover in birds across horizontal 

and vertical sampling transects in three land-use types of Sri Lanka: protected 

forest, reserve buffer, and intensive-agriculture, from 90 to 2100 m a.s.l. Bird 

turnover rates across horizontal distances were similar across all habitats, and 

much less than vertical turnover rates. Vertical turnover rates were not similar 

across habitats. Forest had higher turnover rates than the other two habitats for 

all bird species. Buffer and intensive-agriculture had similar turnover rates, 

even though buffer habitats were situated at the forest edge. Therefore, our 

results demonstrate the crucial importance of conserving primary forest across 

the full elevational range available.  

 

3.2  Introduction 

One of the most documented patterns in ecology is that species richness 

generally declines with increasing anthropogenic activities. Species 

composition homogenization is considered to be the underlying mechanism 

governing such patterns [1-3], with generalist species expanding their ranges, 

while specialist species ranges contract, leading to specialists being replaced by 

generalists, and increasing similarities among communities in space and time 

[4].  Climate change is likely to increase the severity of homogenization, as 

climate change and land-use change favour the same generalist species, which 

expand their ranges tracking the climate, while ranges of specialists contract 

[5]. Studies have repeatedly shown reduced horizontal turnover indicating 

greater homogenization within human-modified landscapes compared with 

forests [1-3], but changes in vertical turnover remain unknown. Vertical 
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distances show high variation in temperature (6oC per km), yet all previous 

studies that measured turnover rates across vertical distances have mainly used 

natural habitats [6-7]. Human-modified habitats are known to have simplified 

communities with generalist species that can use multiple habitats [8], leading 

to the testable hypothesis that vertical turnover in human-modified habitats 

would be lower compared to less disturbed, proximal habitats.  

Here we compare species turnover within bird guilds with horizontal 

and vertical distances across a tropical mountain range in three different land-

use types: within relatively undisturbed and protected forest, at the edges of 

those protected reserves, and in intensive agriculture. We hypothesized that 

species turnover will be: 1) highest in forest and lowest in intensive-agriculture 

habitats, because forest species are more specialized, and 2) higher vertically 

than horizontally, because the climatic gradient is steeper; and highest in forest 

because the vertical gradient in vegetation structure and composition is steeper 

in natural than anthropogenic habitats. Understanding these patterns is 

important both for efficient conservation planning and for predicting—and 

hopefully mitigating—the impacts of on-going climate change. 

 

3.3  Methods 

Study site 

We conducted this study in wet-evergreen regions of Sri Lanka (figure S3.1). 

Forty-one 2-km transects were spaced along an elevational gradient between 90 

and 2180 m, in three different land-use types: 1) Interior forest transects were 

inside mature evergreen rainforests within protected areas, 2) Buffer transects 

were along the boundaries of protected areas, within degraded forests and 

timber plantations, and 3) intensive-agriculture transects were in open habitats 

with intensive agriculture. Mean monthly temperature (range: 14.7 - 27.1oC) 

and mean annual precipitation (1972 - 4273 mm) for each transect were 

extracted from the WORLDCLIM database (30 arc-seconds resolution; version 

1.4; [9]). For every one-kilometer increase in elevation, temperature decreased 
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by c. 5oC and annual precipitation decreased by c. 1000 mm (see results; figure 

S3.1). Some amount of caution is required while interpreting the climate data 

because WORLDCLIM is modeled data and may not exactly represent true 

climatic parameters. Tree canopy cover for the entire island of Sri Lanka was 

extracted from the global forest change dataset [10].  

Bird data  

A team of two walked along the transects at one km/hr, identified all the 

individual birds seen and heard, and recorded their distances from the transect 

line. Each transect was visited 7.2 ± 4.0 (SD) times in one year, in both the 

breeding and non-breeding seasons. The data consists of 27234 observations of 

125 bird species. Transects were horizontal with little variation in elevation and 

transect co-ordinates were extracted from the center of transect. We used 

DISTANCE software (http://www.distancesampling.org) to estimate relative 

densities by accounting for detectability of species (see Appendix S3.1 for 

details). We recorded all 27 endemic diurnal birds of Sri Lanka, of which 14—

all predominantly forest birds—are threatened with extinction 

(http://www.iucnredlist.org). We divided the birds into three non-exclusive 

guilds: 1) All birds, 2) Insectivores, with arthropods as their primary diet, and 

3) Understorey insectivores, which primarily used the understorey. See 

previous studies for details [11,12]. All analyses were conducted in the 

statistical program R (R Core Team, v. 3.3.1). We partitioned Bray-Curtis 

dissimilarity into nestedness and turnover components, and used the turnover 

component as a response variable to determine the turnover across horizontal 

and vertical distances in each habitat and across all three guilds. We used 

coefficients of each model to estimate the turnover rate (turnover per km) and 

compared coefficients between habitats and between horizontal and vertical 

distances.  
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Data analysis 

We partitioned abundance-based Bray-Curtis dissimilarity to measure 

nestedness and turnover between sites using bray.part function in ‘betapart’ 

package [13]. Nestedness is defined as biological subsets where species remain 

constant, but individuals are lost from richer sites to poorer sites. Turnover is 

defined as the balanced variation where individuals remain constant, but species 

are swapped between sites [14]. In this study, we used turnover as a response 

variable. 

We measured the horizontal distance as the shortest distance (in kms) 

between two transects (as the crow flies) according to the haversine method 

(distm function in ‘geosphere’ package) [15-16], and the vertical distance as the 

difference in elevation (in kms) between two transects. We used multivariate 

regression of distance matrices (MRM function in ‘ecodist’ package) to 

investigate the turnover of bird guilds across horizontal and vertical distances 

in each land-use type [17-18]. MRM is more flexible than the mantel test and 

more than one predictor can be used. Significance of coefficients was tested 

with 1000 permutations. We measured the turnover rate (turnover per km) in a 

habitat type as the estimated coefficient in the model. To generate confidence 

intervals of estimated coefficients, we sampled communities with replacement, 

generated turnover distance matrix with resampled data, ran the model to 

generate coefficient of interest and repeated the process 1000 times to generate 

1000 coefficient values. To compare turnover rates (coefficients) between 

habitats, we calculated an approximate two-tailed p value as 

p = 1 − 2	. & '
()))

	− 0.5& 

where ‘x’ is the mean coefficient value of the intercept [19]. The forest habitat 

was used as an intercept to compare differences with buffer and intensive-

agriculture habitats, and buffer was used as an intercept to compare differences 

between buffer and intensive-agriculture habitats. We used Bonferroni 
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correction to adjust significance levels for multiple comparisons using the 

p.adjust function. 

Many recent studies have suggested the use of a null model approach to 

account for variation in gamma-diversity on turnover [20], but turnover was not 

correlated with pairwise gamma-diversity in our study (mantel tests: p > 0.05), 

except for all birds guild in forests (table S3), so we did not do this. Pairwise 

gamma-diversity was measured as the total number of species in a plot-pair. 

Horizontal and vertical trends in pairwise gamma diversity did not influence 

turnover rates (figure S3.4). Furthermore, many other studies have challenged 

the use of the null-modeling approach [21]. 

We used generalized linear models with Poisson error structure to 

determine the elevation effects on the relative densities of 14 threatened forest 

endemic species. We used a multivariate generalized linear model (MGLM; 

manyglm function in ‘mvabund’ package) to determine the influence of both 

land-use and elevation on Sri Lankan bird community (response variable). 

MGLMs were shown to have better power properties than distance-based 

methods [22]. We obtained estimated p-values from monte-carlo resampling 

(999 random permutations), and used non-metric multi-dimensional scaling 

(NMDS) to visualize results. 

To better meet the assumptions of DISTANCE, we used half normal 

models with cosine adjustments selected by Akaike Information Criterion 

(AIC) and 100 m truncation. If a species had more than 40 observations outside 

of flocks, we estimated its detectability, and if a species had more than 40 such 

observations in each of the three land-uses, we estimated its detectability 

stratified by land-use. Species with less than 40 observations in total were given 

the detectability of the average species. 
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Figure 3.1. Species turnover per kilometer across horizontal and vertical 

distances between transects for all birds (n = 125 species), insectivores (n = 70 

species) and understorey insectivores (n = 23 species) in forest, buffer and 

intensive-agriculture habitats. The figure represents mean of 1000 coefficient 

values (in grey) generated by multiple regression on distance matrices (MRM) 

after resampling the response with replacement. The black dashed line indicates 

no turnover (see table 3.1), * indicates significant turnover with distance, and 

habitats with different letters have significantly different turnover rates.  

 

3.4  Results 

Annual precipitation changed significantly with only vertical (estimate = 

1093.35 mm/km; p = 0.001) distance, but not with horizontal distance (estimate 

= 4.52 mm/km; p = 0.087). Mean monthly temperature changed significantly 

with both vertical (estimate = 4.73oC/km, p = 0.001) and horizontal distances 

(estimate = 0.01oC/km, p = 0.013), but much more rapidly vertically than 

horizontally.  

Analyzing across increasing horizontal distance, bird turnover in forest habitats 

increased significantly for all bird and insectivore guilds, though not for the 



 
CHAPTER 3. HORIZONTAL & VERTICAL TURNOVER 

 
 

 
 

83 

understorey insectivore group (figure 3.1; asterisk indicates significant 

turnover). In buffer habitats, bird turnover increased with horizontal distance 

across all guilds. In contrast, birds in intensive-agriculture habitats remained 

similar with horizontal distance across all guilds. Analyzing across increasing 

vertical distance, bird turnover increased across all guilds in forest habitats. 

Bird turnover in buffer and intensive-agriculture habitats increased with vertical 

distance for all birds and insectivores, though not for the understorey 

insectivore group (figure 3.1). 

 The horizontal turnover rates were similar among habitats for all 

guilds (p > 0.05; figure 3.1; same letters indicate similar turnover rates). The 

vertical turnover rates in intensive-agriculture habitats were similar to buffer 

habitats for all guilds (p > 0.05, table S3.1). However, intensive-agriculture 

habitats had lower vertical turnover rates than forests for all birds (p = 0.001) 

and insectivore guilds (p = 0.012). Similarly, buffer habitats had lower turnover 

rates than forests for all birds (p = 0.03) and understorey insectivore guilds (p 

= 0.001). Vertical turnover of all birds in forest, buffer and intensive agriculture 

habitats was 287, 60 and 91 times greater than horizontal turnover (table 3.1).   

 Among the 14 threatened endemic forest species, seven 

preferred low elevations, one preferred middle elevations, five preferred high 

elevations, and one did not show any elevation preference (figure 3.2, table 

S3.2). Both elevation (p < 0.001) and land-use (p < 0.001) had a significant 

influence on Sri Lankan bird community composition (figure S3.2).  

 

3.5  Discussion 

Previous studies on land-use intensification have looked at turnover rates in 

different types of human disturbance across horizontal gradients but not vertical 

gradients [1-3]. To our knowledge, our results show for the first time that, buffer 

and intensive-agriculture habitats show significant vertical turnover rates, but  
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Figure 3.2. Relative density of threatened Sri Lankan endemic species across 

an elevation gradient in Sri Lanka showing differences in elevational 

preferences. See table S3.2 for details. 

 

not as high as forests. Low and high elevation forests harbor markedly different 

bird communities, but the bird communities in low and high elevation buffer 

and agriculture are only moderately different. Within forests, although 

bothvertical and horizontal distances influenced forest bird turnover, small 

vertical distances (c. 2 km; 0.373 per km) had a much bigger effect than large 

horizontal distances (c. 75 km; 0.0013 per km). Both these results are consistent 

with a dominant influence of vertical distance on bird turnover in all habitats at 

regional scales. Recent studies suggest that biotic factors (habitat, diet and 

interspecific competition) that are indirectly related to temperature may be 

driving high turnover rates across vertical gradients [23-24].  

Among forest birds, 14 threatened endemic diurnal forest species 

showed high turnover with elevation (figure 3.2). Five preferred high elevation 

forests (> 1500 m), increasing their extinction risk due to climate change, 

especially in islands like Sri Lanka where opportunities for dispersal are 

limited. Rapid upward shifts in tropical organisms have already been observed 
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Table 3.1. Results of multiple regression of distance matrices with turnover as 

response variable and horizontal distance and vertical distance as predictor 

variables.  

 Estimate p value 
All birds   
Forest (R2 = 0.86)   
Horizontal   0.0013 0.022 
Vertical 0.373 0.001 
Buffer (R2 = 0.62)   
Horizontal   0.0034 0.002 
Vertical 0.203 0.001 
Agriculture (R2 = 0.60)   
Horizontal   0.0022 0.061 
Vertical 0.200 0.001 
   
Insectivores   
Forest (R2 = 0.85)   
Horizontal   0.0012 0.037 
Vertical 0.376 0.001 
Buffer (R2 = 0.50)   
Horizontal   0.0032 0.006 
Vertical 0.215 0.001 
Agriculture (R2 = 0.27)   
Horizontal   -0.0001 0.958 
Vertical 0.1964 0.005 
   
Understorey insectivores   
Forest (R2 = 0.63)   
Horizontal   -0.0005 0.554 
Vertical 0.3493 0.001 
Buffer (R2 = 0.30)   
Horizontal   0.0053 0.003 
Vertical 0.048 0.382 
Agriculture (R2 = 0.27)   
Horizontal   0.0037 0.061 
Vertical 0. 107 0.142 
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with warming of c. 0.5oC in tropical land areas over the last 50 years [25]. A 

recent study predicted that a 2oC rise in temperature would shift the bird 

communities upwards by 400 m [15]. For the whole of Sri Lanka, the forested 

area (> 75% tree cover) at elevations > 1500 m and > 1900 m is 583 km2 and 

152 km2, respectively. So, a 400 m shift upwards would reduce the potential 

habitat for high elevation threatened endemic species by 74%. Similar shifts 

might extirpate entire populations of these species in the isolated Knuckles 

mountain range where the highest peak is 1863 m (figure S3.3).  

In conclusion, our study shows that the turnover rate in tropical birds is 

very sensitive to vertical distance in all land-use types, and especially high in 

forests; while turnover with horizontal distance is much smaller. Land-use 

intensity was also important for turnover in bird communities (figure S3.2). 

These results suggest a need to prioritize the protection of sufficient forest area 

across the full elevational range over protecting additional forest areas at similar 

elevations, as long as enough habitat is protected at any one elevation to sustain 

populations. Even though established reserves are relatively well protected in 

Sri Lanka, the extraordinary level of endemicity, both of fauna and flora [26-

27], call for restoration of degraded areas and expansion of the relatively small 

size of the existing protected area to cover endemic hotspots. The results also 

highlight the vulnerability of high-elevation specialists to even moderate global 

warming and thus emphasize the critical importance of achieving the targets 

included in the 2015 Paris Agreement. 
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3.7 Supporting information 
 

Table S3.1. Differences in turnover rates of multiple bird guilds between 

habitats across horizontal and vertical distances. The p values were adjusted 

using Bonferroni correction, and bold values indicate significance (p < 0.05). 

 p value 
All birds  
Horizontal  
Forest vs. buffer 0.357 
Forest vs. agriculture 0.758 
Buffer vs. agriculture 0.822 
Vertical  
Forest vs. buffer 0.026 
Forest vs. agriculture 0.001 
Buffer vs. agriculture 0.995 
  
Insectivores  
Horizontal  
Forest vs. buffer 0.484 
Forest vs. agriculture 0.667 
Buffer vs. agriculture 0.249 
Vertical  
Forest vs. buffer 0.114 
Forest vs. agriculture 0.012 
Buffer vs. agriculture 0.952 
  
Understorey insectivores  
Horizontal  
Forest vs. buffer 0.387 
Forest vs. agriculture 0.950 
Buffer vs. agriculture 0.966 
Vertical  
Forest vs. buffer 0.006 
Forest vs. agriculture 0.623 
Buffer vs. agriculture 0.829 
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Table S3.2. Results of generalised linear models with relative densities of 

threatened endemic forest species as response variables and elevation as 

predictor variable. We sampled 15 forest transects along the elevational 

gradient. IUCN threatened status of each is specified in parentheses next to the 

common name, VU: vulnerable, NT: near threatened and EN: endangered.  

 

Species Estimate ± SE z value p value 
Ashy-headed laughingthrush 
(VU) 

-0.0018 ± 0.00006 -31.17 <0.0001 

Sri Lanka myna (NT) -0.0011 ± 0.00008 -12.64 <0.0001 
Orange-billed babbler (NT) -0.0012 ± 0.00003 -40.82 <0.0001 
Red-faced malkoha (VU) -0.0024 ± 0.00025 -9.636 <0.0001 
Sri Lanka magpie (VU) -0.00039 ± 

0.00013 
-2.893 0.00382 

White-faced starling (VU) -0.00269 ± 
0.00028 

-9.493 <0.0001 

White-throated flowerpecker 
(NT) 

-0.00117 ± 
0.00016 

-7.315 <0.0001 

Green-billed coucal (VU) 0.0092 ± 0.00359  2.562 0.0104 
Spot-winged thrush (NT) -0.00022 ± 0.0002 -1.164 0.104 
Dull-blue flycatcher (NT) 0.00199 ± 

0.00009 
20.01 <0.0001 

Sri Lanka bush-warbler (NT) 0.00905 ± 
0.00034 

26.63 <0.0001 

Sri Lanka wood pigeon (VU)  0.00177 ± 
0.00021 

8.225 <0.0001 

Sri Lanka whistling thrush (EN) 0.00236 ± 
0.00045 

5.233 <0.0001 

Yellow-eared bulbul (NT) 0.0019 ± 0.00006 29.73 <0.0001 
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Table S3.3. Relationship between turnover and pairwise gamma-diversity in 

different habitats and for multiple guilds show no correlation except for all birds 

guild in forest habitats. Mantel tests were used to determine the correlation 

between the two distance matrices. 

 

 mantel-r p value 
All birds   
Forest  -0.246 0.022 
Buffer  -0.029 0.805 
Agriculture -0.264 0.153 
   
Insectivores   
Forest  -0.219 0.055 
Buffer  0.048 0.700 
Agriculture -0.298 0.061 
   
Understorey insectivores   
Forest  -0.238 0.065 
Buffer  -0.126 0.320 
Agriculture -0.225 0.144 
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Figure S3.1. Map showing forest (filled black circles), buffer (filled grey 

circles), and intensive-agriculture (open circles) transects across gradients of 

elevation, temperature and precipitation in Sri Lanka.  
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Figure S3.2. A non-metric dimensional scaling (NMDS) plot showing 

differences across land-use types and elevation. The size of the circle is 

proportion to the elevation. The first and second axes show the influence of 

elevation and land-use type on bird communities, respectively.  
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Figure S3.3. Map showing high elevation (>1500 m) regions in Sri Lanka. The 

isolated light-grey patch on the top (7.24 N) is the Knuckles mountain range. 

 

 

 

 

 

 



 
 Beta diversity at multiple spatial scales 

96 
 

 

Figure S3.4. Change in pairwise gamma diversity (per km) across horizontal 

and vertical distances between transects for all birds, insectivores and 

understorey insectivores in forest, buffer and intensive-agriculture habitats. The 

figure represents mean of 1000 coefficient values (in grey) generated by 

multiple regression on distance matrices (MRM) after resampling the 

communities with replacement. The black dashed line indicates no change.	
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4.1 Summary 

Context The importance of community assembly theory for biodiversity 

conservation is increasingly being recognized. Conservation policies aimed at 

improving forest cover can benefit by better understanding the relative 

importance of different ecological mechanisms in structuring ecological 

communities.   

Objectives While the importance of niche-based processes that restrict 

species to a specific land-use type is known to drive species composition change 

at small spatial scales, the relative importance of land-use change on species 

composition at larger scales remain poorly known. In this study, we evaluated 

the drivers of species composition change at larger spatial scales with 

significant variation in environment and space.  

Methods We used a variation-partitioning approach to evaluate the 

relative importance of land-use (ranked value of forest loss), environment 

(temperature and precipitation) and space (geographic position and barriers) on 

bird species composition across 32 two-km line transects in the Western Ghats–

Sri Lanka biodiversity hotspot.  

Results Space was the most important variable to explain species 

composition change in the biodiversity hotspot, suggesting that assembly was 

predominantly driven by dispersal limitation over the Palk Strait, which 

separates Western Ghats and Sri Lanka. Land-use and environment variables 

were equally important to explain species composition change on either side of 

the Palk Strait, suggesting that assembly was predominantly driven by niche-

based processes at intermediate scales.  

Conclusions Therefore, to conserve distinct communities in a biodiversity 

hotspot, it may be important to consider geographic barriers and environmental 

variation along with land-use change. 
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4.2 Introduction 

Understanding the patterns of change in community composition (beta-

diversity) in space and time, and the processes that structure communities is a 

central theme in ecology (Hubbell, 2001; Chase & Myers, 2011). While the 

impacts of land-use change on beta-diversity are widely known (see Newbold 

et al., 2016), most studies have been restricted to small spatial scales, with 

minimal differences in environmental conditions and space (geographic 

distance). A better understanding of the mechanisms that alter beta-diversity at 

multiple spatial scales would not only help expand community assembly theory, 

but also expand our knowledge on how to manage and restore biodiversity in 

the Anthropocene (Myers et al., 2015, Audino et al., 2017). For example, while 

forest loss and climate change may increase dispersal of birds into favourable 

landscapes (Davey et al. 2013, Karp et al. 2018), environment and space can 

restrict their dispersal patterns (Ramachandran et al., 2017; Sreekar et al., 

2017). Therefore, policies aimed at improving forest cover in a biodiversity 

hotspot will benefit by better understanding the relative importance of different 

ecological mechanisms in structuring ecological communities.  

 Partitioning the variation of observed beta-diversity into components 

explained by land-use intensity, environment, and space provides insights into 

mechanisms of community assembly (Legendre et al., 2009; Myers et al., 

2015). For example, in a changing landscape with increasing forest loss, beta-

diversity is expected to increase with land-use change because of the spatial 

aggregation of habitat-specialist species (Audino et al., 2017; Becca et al., 

2017). Similarly, large differences in environment (temperature and 

precipitation) and space can also cause spatial aggregations of species due to 

environmental filtering and dispersal limitation, respectively (Ricklefs, 1987; 

Hubbell, 2001; Kraft et al., 2011). Unmeasured environmental variables and 

stochastic processes may influence the unexplained variance in beta-diversity 

(Legendre et al., 2009; Myers et al., 2013, 2015). Here, we use the variation-
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partitioning approach to determine the relative importance of land-use change, 

environment, and space in explaining the variation in bird beta-diversity at 

multiple spatial scales in a biodiversity hotspot. 

In this study, we determined the drivers of variation in bird beta-diversity 

across multiple spatial scales in Western Ghats – Sri Lanka biodiversity hotspot. 

Specifically, we ask two questions:  

i. At a large spatial scale, differences in environment and space have been 

shown to drive bird beta-diversity in the Western Ghats – Sri Lanka 

biodiversity hotspot (Ramachandran et al., 2017). Space is influenced 

by geographic barrier effects (the Palk Strait). However, Ramachandran 

et al. (2017) did not incorporate land-use in their study, and therefore 

the relative importance of land-use change to drive bird beta-diversity 

at large spatial scale remains unknown. Is spatial variation in land-use 

the most important driver of bird beta-diversity in the biodiversity 

hotspot, more important than environmental differences and spatial 

separation (the Palk Strait)?  

ii. At intermediate scales, changes in environment due to differences in 

elevation have been shown to drive bird beta-diversity (Sreekar et al., 

2017). Compared to environment, what is the relative importance of 

land-use and space (geographic distance)? 

 

4.3 Methods 

Study area 

We used bird data collected along 32 two-km transects across a gradient of land-

use, environment and space to determine the drivers of the bird community 

assembly at multiple spatial scales in the Western Ghats–Sri Lanka biodiversity 

hotspot (Goodale et al. 2014; Mammides et al. 2015). We divided the dataset 

into three spatial scales – (i) large spatial scale: it includes all 32 transects, some 

of which are separated by a physical geographic barrier (the Palk Strait; Fig. 
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4.1), altitude of c. 1200 m and across various land-use types (protected primary 

forest, reserve border areas -“buffer”, and intensive agriculture); (ii) 

intermediate spatial scale: transects in Western Ghats (n =16) and Sri Lanka (n 

= 16) were divided into different datasets. Therefore, transects are separated by 

comparatively small distances (< 50 km), but are varied by elevation and land-

use (Fig. 4.1). 

 

FIGURE 4.1 Map showing the 32 transects that were used to sample birds in 

South Asia, 16 transects on either side of the Palk strait, and 8 in each elevation 

type on either side: low (<500 m) and mid (<1300 m). Elevation above sea-

level data was downloaded from http://www.worldclim.org/. 

 

A team of two walked along transects at 1 km/hr and identified all the 

individual birds seen and heard. Each transect was visited an average of 7.2 

times per year in both breeding and non-breeding seasons. Transects were 

walked in the morning (08:00 – 10:00) and in the afternoon (15:00 – 17:00). 

Relative densities of each species were estimated by accounting for the 

detection probability of each species using DISTANCE 

(http://distancesampling.org). We used half normal models with 100 m 
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truncation and cosine adjustments selected by Akaike Information Criterion 

(AIC) (Sreekar et al. 2015, 2017). We estimated detectability for species that 

have more than forty observations. If a species had less than 40 observations, 

we gave them the detectability of the average species.  

We used haversine method to measure the shortest distance (in kms) 

between transects (distm function in ‘geosphere’ package; Sinnott 1984; 

Hijmans et al. 2011). We used mean annual precipitation and mean monthly 

temperature data extracted from WORLDCLIM database (30 arc-seconds 

resolution data; http://worldclim.org/version1; Hijmans et al. 2005) to measure 

environmental differences. We quantified variation in land-use by assigning 

ranks to land-use types: protected primary forests to ‘3’, reserve buffers to ‘2’ 

and intensive agriculture to ‘1’.  

 

Data analysis 

We measured the variation in species composition (beta diversity) between two 

transects using a comparatively robust abundance-based pairwise dissimilarity 

metric, Bray-Curtis dissimilarity (Beck et al. 2013). We partitioned Bray-Curtis 

dissimilarity into abundance gradient and balanced turnover components using 

the bray.part function in ‘betapart’ package in R (Baselga and Orme 2012). 

Abundance gradients are biological subsets where species remain constant, but 

individuals are lost from richer sites to poorer sites. Balanced turnover is 

defined as species replacement between sites with constant number of 

individuals (Baselga 2013). Here, abundance gradients and balanced turnover 

were used as response variables to estimate variation across multiple spatial 

scales, and to determine the drivers of variation. We used a non-parametric 

multivariate analysis of variances based on distance to centroid to compare the 

bird beta diversity in India and Sri Lanka (Anderson et al. 2006; ‘betadisper’ 

function in vegan package). Similarly, we also used ‘betadisper’ to compare 

beta diversity in lower and middle elevation within each country. This 

procedure compares the homogeneity of beta diversity within each group. 
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Previous studies suggested that variation in pooled species richness 

(gamma diversity) can explain gradients in observed beta diversity due to 

random sampling effects (Kraft et al. 2011; Ashton et al. 2016). Therefore, we 

used a Mantel test to determine the correlation between beta diversity and 

pooled species richness (gamma diversity). Mantel test produces a matrix 

correlation value between two distance matrices. A regular correlation test (e.g. 

Pearson test) cannot be used because distance matrices have inherent non-

independence. 

We used distance-based redundancy analysis (‘dbrda’ function in vegan 

package) to determine the influence of land-use, environment and space 

variables on bird abundance gradients and balanced turnover. The distance-

based redundancy analysis performs automatic data standardization using non-

metric dimensional scaling. Therefore, we used the metric multidimensional 

scaling (MDS) to visualize the effects of land-use, environment and space 

variables on bird beta-diversity. We used principal coordinates of 

neighbourhood matrices (PCNM) to transform spatial distances into matrices 

(eigenvectors), which are suitable for ordination analysis (Legendre et al. 

2009). We considered latitude, longitude and eigenvectors as our spatial 

variables. Latitude and longitude were highly correlated with each other at large 

all spatial scales (Pearson’s r > 0.75; Table S4.1). Latitude was also highly 

correlated with the first eigenvector of PCNM (r > 0.80; Table S4.2) at all 

spatial scales. Our exploratory analysis suggested that the remaining 

eigenvectors did not explain significant variation in the response variable at any 

spatial scale (P > 0.05). Therefore, we included latitude as a spatial variable at 

all spatial scales. In practice, space means North and South of the Palk Strait at 

the large spatial scale.  

Environmental variables included mean annual temperature and 

precipitation. Mean annual temperature and precipitation were highly 

correlated at all spatial scales (r > 0.75; Table S4.3). Therefore, only mean 

annual temperature was included as an environmental variable. Ranked land-

use type was used a land-use variable at all spatial scales.  
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We used forward model selection to obtain significant explanatory 

variables (Blanchet et al. 2008) using ‘ordistep’ function in the vegan package, 

and partitioned the observed variance into proportions explained by each 

variable based on adjusted R2 using the ‘varpart’ function in vegan package. We 

used non-parametric bootstrapping to determine the difference in the variation 

explained by land-use, environmental and spatial variables. We sampled 

communities with replacement, generated the response matrix with resampled 

data, and ran dbRDA to determine the variance explained by each variable. We 

repeated the process 1000 times to generate mean and 95% quantiles of the 

variance explained by each variable. 

 

4.4 Results 

We detected 37,370 individuals across 196 species (Sri Lanka - 107 species, 

India – 152 species) along temperature (19.6-27.8 oC), precipitation (1868-3765 

mm/yr), elevation (45–1295 m) and spatial (5-500 km) gradients in the Western 

Ghats–Sri Lanka biodiversity hotspot. There were no significant predictors of 

abundance gradients at any of the examined spatial scales. In contrast, balanced 

turnover was influenced by different variables at different spatial scales (Fig. 

4.2, Fig. 4.3). Balanced turnover was highly correlated with Bray-Curtis 

dissimilarity (Mantel r > 0.85; Table S4.4), and gamma-diversity did not 

influence balanced turnover at any spatial scale—therefore suggesting no 

significant random sampling effects (Table S4.5). 

At the largest spatial scale, balanced turnover was influenced by 

dissimilarity in all measured variables (land-use, environment and space; Fig. 

4.2), which explained c. 65% of the total observed variation (Fig. 4.3). Space 

explained higher variation (c. 36%) than environment (c. 9%) and land-use (c. 

14%), respectively, while land-use and environment explained similar amount 

of variation. 
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FIGURE 4.2 Drivers of bird beta-diversity (balanced turnover) at multiple 

spatial scales presented using multi-dimensional scaling (MDS). Balanced 

turnover was highly correlated with Bray-Curtis dissimilarity (Mantel r > 0.85; 

Table S4). The ordination plots are for visualization only. See figure 4.3 for 

statistical analysis. 

 

At intermediate spatial scales, the net balanced turnover in Sri Lanka 

and India was similar (F(1,30) = 0.17, P = 0.69; Fig. S4.1). Balanced turnover 

was influenced by environment and land-use, (Fig. 4.2) which together 

explained 74% and 60% of the total variation in Sri Lanka and India, 

respectively. Forward model selection suggested that space did not drive bird 

community assembly at the intermediate scale, in either of the countries. In Sri 

Lanka, environment (c. 32%) and land-use (c. 38%) were equally important in 

driving bird community assembly (Fig. 4.3). Similarly, environment (c. 27%) 

and land-use (c. 36%) were also equally important in driving bird assembly in 

India (Fig. 4.3).  
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FIGURE 4.3 Variation explained (adjusted R2) by space (dispersal limitation), 

environment (temperature and precipitation) and land-use type at large and 

intermediate spatial scales in Western Ghats – Sri Lanka biodiversity hotspot 

(south Asia). Dispersal limitation was the most important driver of bird 

community assembly in the hotspot. Environment and land-use were equally 

important for driving bird assembly in Western Ghats, India and Sri Lanka. 

Space did not drive bird community assembly at intermediate spatial scales in 

both countries. The error bars are the 95% quantiles generated by non-

parametric bootstrapping. 

 
 

4.5 Discussion 

We show that the bird beta-diversity in the Western Ghats–Sri Lanka 

biodiversity hotspot was predominantly driven by balanced turnover (species 

replacement) and not abundance gradients (species loss). Our results suggest 
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that spatial scale changes the relative importance of variables that drive the 

balanced turnover of birds in the Western Ghats–Sri Lanka biodiversity hotspot, 

South Asia (Fig. 4.3). At the large spatial scale, our results show that space is 

the most important variable that drives balanced turnover in the biodiversity 

hotspot, up to three times more important than land-use change due to forest 

loss (Fig. 4.3). Our result reflects high bird endemicity on either side of the 

physical barrier—the Palk Strait—caused by many birds’ inability to cross the 

sea (dispersal limitation). At intermediate scales, on either side of the Palk 

Strait, our results show that both land-use and environment were equally 

important in driving balanced bird species turnover, indicating the role of niche-

based processes. The environmental differences between sites at intermediate 

scales was c. 4oC (range: 2.8oC to 5.8oC) in temperature and/or c. 1350 mm 

(range: 1063 mm to 1580 mm) in precipitation. Therefore, our results suggest 

that balanced turnover caused by c. 4oC change in temperature and/or c. 1350 

mm change in precipitation is numerically similar to balanced turnover caused 

by land-use change due to conversion of tropical rainforests into intensive 

agriculture in the Western Ghats–Sri Lanka biodiversity hotspot. 

There are two main limitations in our study. First, we only sampled the 

low- (<500 m) and mid-elevation (800-1300 m) regions of the Western Ghats–

Sri Lanka biodiversity hotspot. The high elevation (>1500 m) regions were not 

sampled in this study. The inclusion of high elevation regions into balanced 

turnover analysis may increase the importance of environment in comparison 

to land-use because multiple high elevation endemic bird species occur from 

1500 m upwards (Robin et al. 2014, Sreekar et al. 2017). Second, the distance 

between our Western Ghats and Sri Lankan plots was c. 600 km (Fig. 4.1). 

Therefore, it could also be possible that the balanced bird species turnover at 

large spatial scales was simply caused by the decay of community composition 

with geographic distance (distance decay; Nekola and White 1999), and not by 

the physical biogeographic barrier – the Palk Strait. However, we are confident 

that the Palk Strait is causing balanced turnover in the region because our results 

were in concordance with previous studies that have used different methods 
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(molecular and species distributions) to show that the Palk Strait is the major 

physical barrier in the region causing balanced turnover between Western Ghats 

and Sri Lanka (Bossuyt et al. 2004; Ramachandran et al. 2017).  

 

Spatial scale changes the drivers of bird community assembly 

Most previous studies assessing the importance of forest loss on balanced 

species turnover are restricted to small spatial scales with minimal differences 

in environment and space (see Newbold et al. 2016). To our knowledge, our 

study is the first to simultaneously sample birds across a land-use, elevation and 

latitude gradient to determine the relative importance of land-use, environment 

and space on bird species composition. We showed that, in the Western Ghats–

Sri Lanka biodiversity hotspot, space (the Palk Strait) is the most important 

variable that causes species aggregations. It explained c. 36% of the total 

variation in balanced turnover. Therefore, our result reflects the importance of 

dispersal limitation (over sea) processes in the biodiversity hotspot. Land-use 

and environment explained c. 14% and c. 9% of the total variance, respectively. 

This implies smaller influence of land-use and environment on balanced bird 

species turnover at large spatial scales in the biodiversity hotspot. Although the 

endemicity of birds within Sri Lanka is low when compared to other threatened 

taxa like amphibians, freshwater fishes, molluscs and reptiles (Bossuyt et al. 

2004; Gunawardene et al. 2007), our results show that the Palk Strait is the most 

important cause of balanced bird species turnover in the biodiversity hotspot, 

surpassing the effects of changes in land-use and environment. This only 

heightens the importance of dispersal limitation for balanced turnover in most 

other taxa with lower dispersal abilities. It is also important to note that the dry 

savannahs that surround the Palk Strait also act as a dispersal barrier for 

rainforest organisms. Although a land bridge connected India and Sri Lanka on 

several occasions in the last 10,000 years, the climate remained similar (Pan & 

Kumar 1997; Bossuyt et al. 2004). Therefore, the strait along with the dry 

savannah region act as a barrier for rainforest organisms to disperse between 
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the rainforests of Western Ghats and Sri Lanka. If savannah habitats were 

sampled in southern India and Sri Lanka, their species composition would be 

more similar than species composition of rainforest habitats (Rasmussen & 

Anderton 2012). Our study along with previous studies suggests that the 

dissimilarity in ecological communities between Western Ghats and Sri Lanka 

should be taken into account during the global analysis of biodiversity hotspots 

(Bossuyt et al. 2004; Ramachandran et al. 2017; Wickramasinghe et al. 2017). 

 At intermediate spatial scales, our study showed that the variation 

explained by land-use change due to forest loss is similar to the variation 

explained by environment (Fig. 4.3). The changes in environment (temperature 

and precipitation) in our study were caused by differences in elevation. We 

obtained similar results in both Western Ghats, India and in Sri Lanka. Both 

regions also had similar beta-diversity (Fig. S4.1), which means that the net 

outcome of community assembly processes was also similar. Therefore, our 

study suggests that both land-use and environment are equally important for 

causing cause species aggregations, and together explained c. 60-74% of the 

total variation in balanced bird species turnover at intermediate scales. 

Unmeasured environmental variables (e.g. canopy cover, basal area, distance to 

edge, litter depth, undergrowth thickness) and stochastic processes could 

explain the remaining 26-40% variation in balanced turnover. In highly mobile 

taxa like birds, the influence of stochastic processes (e.g., chance colonization) 

should be small, especially at intermediate spatial scales (<50 km as a crow 

flies) in a well-sampled dataset (37,370 individuals).   

 

Conclusions 

Our results suggest that bird community assembly in the Western Ghats–Sri 

Lanka biodiversity hotspot is heavily influenced by dispersal limitation across 

a physical biogeographic barrier – the Palk Strait (space; Fig. 4.2, Fig. 4.3). 

Therefore, increasing the percentage of forested area only on one side of the 

Palk Strait does not prevent further loss of threatened species. This may also 
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apply to other dispersal barriers within the Western Ghats–Sri Lanka 

biodiversity hotspot (Robin et al., 2015; Vijayakumar et al. 2016; 

Ramachandran et al. 2017). On either side of the Palk Strait, bird community 

assembly was equally influenced by differences in land-use change and 

elevation (Fig. 4.3). Therefore, to prevent threatened species loss, protected 

areas should be expanded across the full available elevation gradient. 

Expanding protected areas without considering important ecological processes 

(e.g. dispersal limitation and niche-based processes) that structure communities 

will only be useful for conservation at small spatial scales. It is well known that 

the current protected area estate is biased towards certain regions that are not 

important for biodiversity, or are homogenous (low species turnover) in nature 

(Venter et al. 2014). Considering community assembly at multiple spatial scales 

while selecting sites for biological conservation holds promise for preventing 

further loss of threatened species.   
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4.7  Supporting information 

 

TABLE S4.1 Correlation between latitude and longitude at all spatial scales. 

Spatial scale Pearson’s r P 

Large -0.994 <0.0001 

Intermediate (Sri Lanka) 0.763 0.0005 

Intermediate (India) 0.88 <0.0001 

 

 

TABLE S4.2 Correlation between latitude and ‘PCNM 1’ at all spatial scales. 

Spatial scale Pearson’s r P 

Large -0.998 <0.0001 

Intermediate (Sri Lanka) 0.806 <0.0001 

Intermediate (India) 0.974 <0.0001 
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 TABLE S4.3 Correlation between mean annual temperature and precipitation 

at all spatial scales. 

Spatial scale Pearson’s r P 

Large 0.752 <0.0001 

Intermediate (Sri Lanka) 0.958 <0.0001 

Intermediate (India) 0.981 <0.0001 

 

 

TABLE S4.4 Beta-diversity (Bray-Curtis pairwise dissimilarity) was highly 

correlated with balanced turnover (pairwise dissimilarity of balanced variation 

in abundance) at all spatial scales. 

Spatial scale Mantel r P 

Large 0.957 0.001 

Intermediate (Sri Lanka) 0.927 0.001 

Intermediate (India) 0.881 0.001 
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TABLE S4.5 Pooled species richness (gamma-diversity) did not influence 

balanced turnover at all spatial scales. In our study, balanced turnover was 

highly correlated with beta diversity (mantel r > 0.85; Table S4). 

Spatial scale Mantel r P 

Large -0.049 0.394 

Intermediate (Sri Lanka) 0.047 0.688 

Intermediate (India) -0.114 0.398 
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FIGURE S4.1 Distance to centroid values for plots within each country shows 

no difference between them (F(1,30) = 0.17, P = 0.69). 
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Chapter 5 

 

General Conclusions 

 

In this thesis I have shown that spatial scale has a profound impact on biotic 

beta-diversity and the processes that shape them. My thesis can help resolve a 

long-standing discrepancy in community ecology, and has important 

implications for both ecology and conservation. I conclude that the lack of 

consensus regarding the basic patterns in beta-diversity and processes that 

shape them is due to the differences in spatial scale among studies.  

Contrasting results among studies that examine the relationship between 

beta-diversity and latitude are well known (Kraft et al. 2011; Qian et al. 2013; 

Ashton et al. 2016). In Chapter Two, I have shown that spatial scale changes 

the relationship between tree beta-diversity and latitude. As studies often 

sample at different spatial scales, contrasting results can therefore be expected. 

Similarly, contrasting results among studies comparing beta-diversity between 

natural and human-modified habitats are also well known (Berry et al. 2008, 

Karp et al. 2012, Kitching et al. 2013, Newbold et al. 2016). In Chapter Three, 

I have shown that the bird beta diversity along a geographic gradient in natural 

forest is similar to that in intensive agriculture, but beta diversity along an 

environment gradient in natural forest is higher than intensive agriculture. As 

field-studies are often conducted at relatively small spatial scales with no or 

little variation in environment, beta-diversity between habitats can remain 

similar or can be higher in the habitat that shows higher variation in 

environment. In Chapter Four, I have shown that the relative importance of the 

drivers of bird community assembly also change with spatial scale. Niche-based 

mechanisms are important at small spatial scales, but the relative importance of 

dispersal limitation increases with increasing spatial scale. In this final chapter, 

I will compare the results in existing literature with the results presented in this 
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thesis to discuss the importance of considering spatial scale in community 

ecology. 

 

Latitude does not affect tree beta-diversity 

Although the relationship between beta-diversity and latitude were widely 

studied, spatial scale effects are often ignored (Tuomisto and Ruokolainen, 

2012). In Chapter Two, I have shown that all measured beta-diversity metrics 

are dependent on spatial scale. Beta-diversity was especially sensitive to scale-

dependent effects at small grain sizes, however it was comparatively robust at 

large grain sizes. I show that the strength of correlation between gamma- and 

beta-diversity weakens with increasing grain size and becomes insignificant at 

around 50 m x 50 m (0.25 ha). Their correlation is problematic because the 

observed variation may be entirely caused by gamma-diversity, not beta-

diversity. The use of large samples is therefore the best-known method for 

measuring beta-diversity (Beck et al. 2013, Sreekar et al. 2018). At relatively 

large grain sizes (>0.24 ha), I showed that beta-diversity remained similar 

across the examined latitudinal gradient (3o-30o) in the Asia-Pacific region.  

  Inadequate sampling of local communities (α-diversity) could explain 

the correlation between beta- and gamma-diversity. A 50 ha plot in a tropical 

rainforest can contain more than a thousand species and requires a large number 

of individuals to be representative of local communities (Chao et al. 2009, 

Tuomisto and Ruokolainen 2012). A 10 m x 10 m grain or a 20 m x 20 m grain 

has only around 50 and 200 individuals, respectively, which is sometimes 

smaller than the species richness of the entire community. Therefore, lower α-

diversity can simply be an artefact of inadequate sampling, which then 

erroneously inflates β-diversity values (β = γ/α). Inadequate sampling is 

especially high in habitats with higher species diversity (e.g. lower latitudes), 

in comparison with habitats with lower species diversity (e.g. higher latitudes). 

For example, Pitman et al. (1999) sampled trees using large grain sizes (0.9 – 

2.5 ha) and showed that Amazonian tree communities have low β-diversity. 

This contrasted with many earlier studies that suggested high tree β-diversity, 

as they were not large enough to eliminate artifactual β-diversity caused by 
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insufficient sampling (Pitman et al. 1999). Site-to-site variation in species 

composition (β-diversity) between two small grains in species-rich habitat 

could therefore just be caused by sampling effects, and not be due to ecological 

processes such as environmental filtering, competitive interactions or dispersal 

limitation. In summary, our results suggest that just standardizing grain size is 

not enough (Chase and Knight 2013); grains should be large enough for 

adequate sampling (>50 m x 50 m for trees in forests with DBH ≥1 cm).  

  The deviation of observed β-diversity from stochastic expectations 

generated by a null model (β-deviation) remained similar across the latitudinal 

gradient, suggesting no differences in the strength of intraspecific aggregation 

in all forests across the examined latitude gradient. The β-deviation values 

remained close to zero when sampling at small spatial scales indicating that 

sampling effects produce the measured β-diversity. Recently, a few studies have 

challenged the use of β-deviation for comparing between habitat types (Bennett 

and Gilbert 2016, Ulrich et al. 2017), as studies that used β-deviation have 

resulted in contrasting conclusions across studies (Kraft et al. 2011, Qian et al. 

2013, Ashton et al. 2016). We suggest that unstandardized sampling could 

cause such contrasting results. Standardizing grain size does not necessarily 

standardize the number of individuals sampled, as 30 m x 30 m plot in Pasoh, 

Malaysia and Fushan, Taiwan had 493 and 495 individuals, respectively, 

whereas 30 m x 30 m plots in Sinharaja, Sri Lanka, and Lienhuachih, Taiwan, 

had 728 and 756 individuals respectively. The number of individuals does not 

necessarily correlate with latitude or γ-diversity. Consequently, as β-deviation 

is sensitive to the number of individuals sampled, it cannot maintain 

directionality (negative and positive correlation) with habitat change (see Qian 

et al. 2013, Ashton et al. 2016).  

  I showed that the use of large grain sizes is the most simple and straight-

forward method to avoid correlation between species richness and beta-

diversity. Furthermore, I show that the beta-diversity in species rich tropical 

forests is similar to comparatively species poor subtropical forest. It should not 

come as a surprise because beta-diversity in species-rich natural forests is 
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similar to species-poor intensive agriculture (Newbold et al. 2016). I will 

discuss the possibility of higher beta-diversity in species rich areas below. 

 

Human-modified landscapes erode bird beta-diversity 

In a seminal paper, Newbold et al. (2016) synthesized that the beta-diversity in 

natural habitats is similar to beta-diversity in highly modified habitats like 

pasture. In Chapter Three, I have also shown that the beta-diversity in protected 

rainforests and intensive agriculture are similar because beta-diversity is 

generally small along a relatively short distance gradient and in the absence of 

significant environmental variation (Sreekar et al. 2017). In, this study, I 

showed that beta-diversity along an elevation gradient with significant variation 

in environment can be around 100 times higher. Therefore, environmental 

variation drives beta-diversity at small spatial scales and beta-diversity in 

protected rainforests is higher than intensive agriculture when there is 

environmental variation. In Chapter Two, although we showed that there is no 

difference in tree beta-diversity between tropical and subtropical forests, it 

could just be because of the lack of environmental variability. Comparing tree 

beta-diversity along a standardised environmental gradient in tropical and sub-

tropical forests might lead to different conclusions. 

  High rates of turnover with changing temperature can actually be a 

problem in the context of climate change. As temperature and habitat becomes 

more suitable for birds in lower elevations, they might compete with birds at 

higher elevations, which have nowhere to go. This might be especially 

problematic to island fauna where dispersal is limited due to the sea-barrier. In 

Sri Lanka, there are 14 threatened endemic diurnal forest bird species, which 

are all (except one, spot-winged thrush) effected by change in temperature. 

Among these 14 species, five of them are restricted to high elevation forests 

(>1500 m) and should be of conservation priority as 2oC rise in temperature can 

reduce their already small distribution size by 75% and extirpate populations 

(Figure S3.3). 

  High turnover rates in mountain areas also emphasizes the importance 

of protecting the entire elevation gradient. Currently, Asia has the lowest 
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elevational protection among all continents and should be improved (Elsen et 

al. 2018). Another major reason for improving elevational protection in Asian 

tropics is islands – a significant land area of tropical Asia is on islands. 

Mountain tops and islands limit dispersal, therefore, most small-ranged 

threatened endemic species are found here (Pimm et al. 2018). Even though 

elevational protection in Sri Lanka is comparatively high (Elsen et al. 2018), 

more conservation actions are required because endemicity in certain groups 

with lower dispersal abilities like amphibians and molluscs is over 75%.  

  In conclusion, I presented the importance of conserving forest along 

entire elevational gradients, especially in island nations like Sri Lanka with high 

endemism. Furthermore, I showed that the difference in beta-diversity between 

natural and human-modified landscapes are dependent on environmental 

variation (Sreekar et al. 2017). Measuring the relative importance of ecological 

mechanisms that shape bird beta-diversity can also be important for ecological 

management and conservation (Audino et al. 2017).  In the next paragraph, I 

will discuss the ecological mechanisms that drive bird community assembly in 

the Western Ghats-Sri Lanka biodiversity hotspot. 

 

Ecological mechanisms that create and maintain bird communities 

The inability of species to persist in all environments shapes ecological 

community assembly in a landscape (Keddy 1992, Baldeck et al. 2013). In 

Chapter Four, I show that spatial scale changes the relative importance of the 

drivers that shape bird community assembly in Western Ghats–Sri Lanka 

biodiversity hotspot. Currently, most currently research is conducted at 

landscape scales and they have already shown that human-driven habitat change 

is the most important driver of biotic community assembly. For example, Becca 

et al. (2017) showed that difference in forest cover is the only variable that 

explained mammal turnover among forest patches in biofuel plantations. 

Similarly, Audino et al. (2017) showed that difference in canopy cover nearly 

explained all the variance in dung beetle species composition among tropical 

forest restoration sites. However, habitat change is not just human-driven, but 
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also occurs naturally. For example, change in soil type and/or elevation can also 

result in habitat and biodiversity change (Katabuchi et al. 2012, Liu et al. 2014, 

Salindra et al. 2017). Few studies have examined the relative importance of 

natural habitat change in comparison to human-driven habitat change. In 

Chapter Four, I show that elevational variation in habitat change can be as 

important as human-driven habitat change for species community assembly. 

Therefore, conservation efforts should look beyond the proportion of natural 

habitat cover. At larger scales, dispersal limitation due to biogeographic barriers 

like large rivers and seas can shape biotic community assembly (Ramachandran 

et al. 2017). When I determined the drivers of bird community assembly at large 

spatial scales, space was the most important variable to explain bird species 

composition in the Western Ghats–Sri Lanka biodiversity hotspot. This 

suggests that dispersal limitation over the Palk Strait is the most important 

driver of bird community assembly in the biodiversity hotspot. My results 

indicate that there needs to be matched conservation effort on both sides of the 

biogeographic sea barrier, and protected areas on either side of the barrier need 

to include a range of elevations.  

 

Recommendations for future work 

 The results of this research improves our understanding of the mechanisms that 

structure biodiversity. Specifics such as changing latitudinal beta-diversity 

patterns with changing spatial scale, changing differences in bird beta-diversity 

between habitats with changing spatial scale, changing community assembly 

mechanisms with changing spatial scale, and importance of using beta-diversity 

for monitoring and managing biodiversity. Throughout the research, future 

recommendation have been identified to advance our understanding of patterns 

and processes that shape biodiversity. Some of these recommendations include: 

1. The research in Chapter Two focuses on the relationship between beta-

diversity and latitude. But, it does not include sites from temperate 

regions (greater than 30 degrees). Recently, Castro-Insua et al. (2016) 

suggested the existence of thresholds in the latitudinal beta-diversity 
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patterns It is possible that the relationship between beta-diversity and 

latitude on either side of the 30o latitude may be different (Castro-Insua 

et al. 2016).  However, we do not know if such thresholds exist at all 

spatial scales. Moreover, most tropical Asian sites are on large islands, 

a feature in this part of the world that is difficult to omit while studying 

latitudinal patterns. Therefore, future studies should replicate our 

Chapter Two by determining beta-diversity at multiple spatial scales 

along latitudinal gradients in America or Africa and Europe by 

including tropical, sub-tropical and also temperate sites. 

Random sampling effects will cause beta-diversity values to be 

highly dependent on species pool size (gamma-diversity) – a major issue 

in beta-diversity research (Kraft et al. 2011, Ashton et al. 2016, Bennett 

& Gilbert 2016). In all my research chapters, I show that beta-diversity 

is not correlated with gamma-diversity as our sampling grains were 

adequately sampled. Therefore, adequate grain sampling still remains to 

be the best method to avoid gamma-dependence of beta-diversity. 

Previous researchers suggested the use of null models, and in Chapter 

Two we showed that the results of our null models were similar to the 

results of well-sampled grains. However, Ulrich et al. (2017) argues that 

the use of null models may result in type-II errors as some of the 

variation explained by non-random processes can be lost while 

calculating null-model based beta-deviation. More studies should be 

conducted to determine the best method to account for random sampling 

effects when studying biodiversity at small grains, where sampling 

effects are unavoidable. 

2. The research in Chapter Three showed that beta-diversity in species rich 

tropical rainforests are similar to intensive agriculture when sampling 

along a geographic gradient with no environmental variation. We 

showed that beta-diversity in species rich tropical rainforest is higher 

than intensive agriculture when sampling along an elevation gradient 

with environmental variation. Although, in Chapter Two, we showed 



  
 Beta diversity at multiple spatial scales 
 

128 
 

that beta-diversity in tropics is similar to beta-diversity in sub-tropics, 

this pattern may change when measuring beta-diversity along elevation 

gradients. Future studies should examine beta-diversity along a fixed 

elevation gradient and at different latitudes, to determine if beta-

diversity in species rich tropics is similar to higher latitudes. 

The research in Chapter Three also showed that the turnover 

along elevation gradients is so steep that high-elevation threatened 

endemic bird species of Sri Lanka may lose 75% of their available 

range, if climate change increases the temperature by 2oC (also see 

Freeman et al. 2018). Therefore, future studies should conduct 

experimental warming experiments in the high-elevation regions of Sri 

Lanka to determine the species that may be vulnerable to climate change 

and start ex-situ conservation programs wherever required. 

3. In Chapter four, I showed that spatial scale changes the relative 

importance of ecological mechanisms that drive bird community 

assembly. At the largest scale, dispersal limitation due to the spatial 

differences between plots was the most important driver of bird 

community assembly. In our study, the maximum distance between two 

points was around 600 km. However, space was also influenced by a 

biogeographically important sea-barrier, the Palk Strait (Bossuyt et al. 

2004, Ramachandran et al. 2017). We consider Palk Strait as the main 

driver of bird community assembly in the biodiversity hotspot. Future 

studies should determine the importance of large distances between 

points without biogeographical barriers on bird species composition. 

Novotny et al. (2007) sampled herbivorous insects across 75,000 km2 

of lowland rainforests in Papua New Guinea to show that space has little 

effect on species composition. A study dedicated to partitioning the 

effects of biogeographical barriers from spatial distance on biotic beta-

diversity is required. 

At intermediate scale, elevation and land-use change had similar 

effects on bird species composition in the Western Ghats–Sri Lanka 
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biodiversity hotspot. However, it should be noted that we did not 

investigate the entire elevation range. Our study was restricted to 

elevations below 1300 m, but mountains can reach heights over 2000 m 

in both Western Ghats and Sri Lanka. Therefore, elevation may be more 

important than land-use change if the whole elevation range was 

sampled. As the results suggests, spatial scale can change the relative 

importance of the drivers that shape bird species composition. Future 

studies that examine community assembly in biodiversity hotspots 

should sample complete elevation range to better inform conservation 

practitioners. 
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