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ABSTRACT  

Background  

There are well established links between maternal obesity, high infant birth weight and 

childhood obesity. However, the contribution of specific maternal dietary components 

and specific cardiometabolic and inflammatory measures to fetal growth and adiposity 

among overweight and obese women warrant further investigation. There is limited 

information describing the impact of maternal BMI on fetal growth trajectories and 

correlation between fetal and neonatal measures of growth and adiposity. 

 

Methods 

This thesis contains a series of secondary analyses involving 911 overweight and obese 

women who participated in the LIMIT trial and who were randomised to the ‘Standard 

Care’ group. Fetal biometry and adiposity measurements were obtained from 

ultrasound assessments at 28 and 36 weeks gestation. Analyses investigated:  

1) The contribution of maternal BMI to fetal growth trajectories;  

2) The contribution of maternal dietary factors to fetal growth and adiposity; 

3) The contribution of maternal cardiometabolic and inflammatory markers to fetal 

growth and adiposity; and 

4) The correlation between fetal and neonatal anthropometric measures. 
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Results  

The key findings of this thesis are 

1) Increased maternal BMI is associated with incremental increases in growth velocity 

of the fetal abdomen and estimated fetal weight. 

2) Pregnant women with BMI ≥ 40.0kg/m2 showed the greatest increase in all fetal 

biometry z-scores, abdominal fat mass and abdominal area at 28 and 36 weeks gestation. 

3) Maternal dietary measures are not consistently associated with fetal growth or 

adiposity. 

4)  Increased maternal concentrations of adiponectin are associated with a reduction in 

fetal abdominal circumference and estimated fetal weight.  

5) Increased maternal triglyceride concentrations are associated with an increase in fetal 

abdominal circumference z-score and estimated fetal weight at 36 weeks. 

6) Ultrasound assessment of fetal weight at 36 weeks gestation is a reliable indicator of 

infant birth weight, and ultrasound assessment of fetal HC and AC at 36 weeks are 

strongly correlated with newborn measures.  

Conclusions 

Among women who are overweight or obese, the contributions of maternal BMI, 

dietary factors and cardiometabolic and inflammatory markers to fetal growth and 

adiposity are highly complex. This study has confirmed that high maternal BMI is 

associated with higher fetal growth. Therefore, evaluation of interventions to modify 

fetal growth and adiposity through improving maternal health prior to conception are 

required. 
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CHAPTER 1: Literature Review 

Implications of maternal obesity on fetal growth and the role 

of ultrasound 

 

The literature review presented has been published (O’Brien CM et al 2017, Expert 

Review of Endocrinology & Metabolism), and is contained in Appendix 1. 

 

1.1 Introduction and Definitions 

Worldwide, it is estimated more than 1.46 billion adults, and 170 million children, are 

either overweight or obese (Lobstein et al. 2004, Finucane et al. 2011). The global 

prevalence of obesity has more than doubled between 1980 and 2014, with a more 

pronounced surge in low and middle-income countries (Finucane et al. 2011, WHO 

2018). Based on current trends, it is estimated that more than 50% of adults world-wide 

will be obese by 2030 (Wang et al. 2014). Obesity is the sixth most important risk factor 

contributing to overall burden of disease worldwide (Ezzati et al. 2002), and is an 

independent risk factor for the development of many associated morbidities, including 

hypertension, diabetes mellitus, and cardiovascular disease, all of which contribute to 

a significant reduction in life expectancy (Ezzati et al. 2002, AIHW 2017a).    

 

Body mass index (BMI) is defined as body weight in kilograms divided by the square 

of the height in metres (kg/m2). Overweight is defined as BMI inclusive of 25.0 to 
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29.9kg/m2. Obesity is defined as a BMI greater than or equal to 30kg/m2 and is further 

divided into 3 sub-categories as outlined in Table 1.1 (WHO 2004). The sub-categories 

include Class 1 obesity defined as BMI of 30.0 to 34.99 kg/m2, Class 2 obesity defined 

as BMI of 35.0 to 39.99 kg/m2 and Class 3 obesity, defined as BMI greater than or 

equal to 40 kg/m2.  

 

While pre-pregnancy measurement of BMI has many advantages, it is frequently 

unavailable, and reliance on self-reported pre-pregnancy weight particularly, is well 

recognized to be under-reported by women (Headen et al., 2017). While standardized 

BMI measurement in early pregnancy fails to account for early pregnancy weight gain 

(Carmichael, 1997), it has been demonstrated to correlate with pre-pregnancy BMI 

(Headen et al., 2017). Such an approach is consistent with standard obstetric practice 

and state wide perinatal practice guidelines (Government of South Australia 2019, 

Denison et al., 2018) 

 

Table 1.1:  World Health Organization classification of BMI Categories 

Definitions Body Mass Index 

Underweight < 18.50 kg/m2 

Normal weight 18.50 – 24.99 kg/m2 

Overweight 25.0 to 29.9 kg/m2 

Class 1 Obesity 30.0 to 34.99 kg/m2 

Class 2 Obesity 35.0 to 39.99 kg/m2 

Class 3 Obesity ≥ 40.0 kg/m2 
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Over 50% of women in high-income countries enter pregnancy with a BMI of 25kg/m2 

or more (Chu et al. 2009, Scheil et al. 2016), impacting significantly on maternal, fetal 

and neonatal health outcomes, both in the short term during pregnancy and birth, and 

in the longer term, contributing to high rates of childhood obesity (Whitaker 2004, Li 

et al. 2005, Yu et al. 2013, Leng et al. 2015, WHO 2016b). The associations between 

maternal obesity and subsequent childhood obesity are complex, involving both genetic 

and environmental factors, with a substantial impact reported to arise from intrauterine 

programming contributing to longer-term health complications (Whitaker 2004, 

Hawkins et al. 2006, Monasta et al. 2010). A recent commission into childhood obesity 

found escalation in prevalence across the world (WHO 2016b), with 41 million infants 

and children under the age of 5 years identified as overweight or obese (WHO 2018). 

The effect on a child’s later life is significant, including the development of diabetes, 

increased risk of cancer, respiratory disease, cognitive impairment, mental health issues, 

and reproductive disorders (Godfery et al. 2017). In addition, there is an impact on 

educational and recreational opportunities with subsequent economic impact for the 

family unit and society as a whole (WHO 2016b).   

	

There is considerable interest in understanding the mechanisms underlying fetal growth 

and adiposity patterns which may contribute to the intergenerational effects of obesity 

(Catalano 2003a). Figure 1.1 is a schematic diagram showing the potential mechanism 

linking maternal obesity to fetal overgrowth. From a public health perspective, 

preventive strategies targeting the peri-conceptual and antenatal periods, may 

contribute to a reduction in fetal overgrowth and adiposity, slowing the transmission of 

obesity between generations (Hanson et al. 2015, Hanson et al. 2017).   
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Figure 1.1 - The postulated mechanisms relating to maternal obesity and the 

effect on fetal growth patterns 

 

Figure 1.1 is a schematic diagram adapted from Catalano et al. 2017.  

 

1.2 Consequences of maternal obesity  

Entering pregnancy overweight or obese is an independent risk factor for almost all 

obstetric complications, the risk increasing linearly with increasing BMI category 

(Dodd et al. 2011a, Magann et al. 2013). Women who are overweight or obese are more 

likely to develop hypertensive disorders, including pre-eclampsia (Sibai et al. 1995, 

Cedergren 2004, Callaway et al. 2006, Doherty et al. 2006, Abenhaim et al. 2007, 

Athukorala et al. 2010, Magann et al. 2013), gestational diabetes mellitus (GDM) 
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(Callaway et al. 2006, Doherty et al. 2006, Abenhaim et al. 2007, Athukorala et al. 2010, 

Dodd et al. 2011a) and preterm birth (Callaway et al. 2006, Abenhaim et al. 2007, Dodd 

et al. 2011a). On a population level, increasing maternal BMI substantially increases 

the risk of antenatal stillbirth (Cedergren 2004, Callaway et al. 2006, Yao et al. 2014, 

Yao et al. 2017). A large meta-analysis found women classified as obese were two 

times more likely to experience a stillbirth compared with women with a normal BMI 

(Nohr et al. 2005, Chu et al. 2007). In a large hospital based cohort study in Denmark, 

most fetal deaths in the setting of maternal obesity were either term or post-term, with 

infants having lower mean birth weight and more likely to have an unknown cause of 

death (Kristensen et al. 2005). Postulated reasons for the increase in stillbirth include 

fetoplacental dysfunction and impaired blood flow (Kristensen et al. 2005).  

 

Women who are overweight or obese are more likely to give birth to an infant 

considered large for gestational age (LGA) or macrosomic (Rosenberg et al. 2003, 

Cedergren 2004, Whitaker 2004, Abenhaim et al. 2007, Dodd et al. 2011a), both of 

which contribute to intra-partum related complications including an increase in the risk 

of fetal distress, operative birth, including caesarean section, and perineal trauma (Jolly 

et al. 2003, Pasupathy et al. 2012).  In the neonatal period, infants born to women who 

are overweight or obese, irrespective of birth weight, are more likely to be born 

prematurely, are at higher risk of shoulder dystocia and hypoglycaemia, and are more 

likely to require admission to the neonatal intensive care unit (Rosenberg et al. 2003, 

Callaway et al. 2006, Dodd et al. 2011a, Magann et al. 2013).  	
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There is considerable heterogeneity across studies describing the effects of obesity on 

maternal, fetal, obstetric and neonatal outcomes. This reflects variation in study design, 

each associated with inherent limitations. Furthermore, the definition of clinical 

outcomes, type and timing of the collection of the BMI estimate (pre-pregnancy versus 

early pregnancy; self reported versus measured) and cut-offs to define overweight and 

obesity varied between studies. Table 1.2 summarises the main studies assessing the 

effect of maternal BMI on maternal, obstetric and perinatal outcomes.
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B
reast feeding  
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1.3 Large for gestational age, macrosomia, and neonatal body 

composition 

There is currently no international consensus regarding the definition, measurement, 

reporting and management of the large for gestational age (LGA) fetus or newborn 

(Campbell 2014). Furthermore, the distinction between prenatal ultrasound (providing 

an estimate of fetal weight) and birthweight (measured in the newborn period and 

adjusted for gestational age and gender) in the literature can be unclear (Pasupathy et 

al. 2012). 	

 

The definition and identification of the LGA fetus is based on prenatal ultrasound, and 

utilises measures of abdominal circumference (AC) or estimated fetal weight (EFW) 

using Hadlock’s formula, variably defined as greater than or equal to the 90th, 95th or 

97th centile for gestational age (Jolly et al. 2003, Pasupathy et al. 2012), using 

population based charts (Hui 2008).  The prenatal ultrasound measurement of EFW has 

a measurement error of ± 20% (Scioscia et al. 2008) with further reduction in 

performance in the setting of maternal obesity and at the extremes of fetal weight 

(Thornburg et al. 2008).  The term fetal macrosomia is also variably defined as an EFW 

greater than or equal to 4000 grams or 4500 grams (Campbell 2014). 	

 

In comparison, the classification of a LGA newborn infant is a measurement of birth 

weight, corrected for infant sex and gestational age at birth (Pasupathy et al. 2012), and 

can be variably defined as greater than or equal to the 90th, 95th or 97th centile. Similarly, 
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infant macrosomia is a postpartum definition based on infant birth weight of greater 

than or equal to 4000 grams or 4500 grams (Jolly et al. 2003). 	

 

There has been interest in using customised growth charts to identify the infant at risk 

of growth disorders, considering factors such as maternal ethnicity, height and weight, 

infant sex and gestational age (Gardosi et al. 1992). Some have advocated the use of 

customised growth charts to define the LGA infant (birth weight > 90th centile), as being 

superior in prediction of neonatal morbidity, when compared with definition of 

macrosomia (BW > 4000 grams) (Pasupathy et al. 2012), postulating that the higher 

predictive value relates to improved detection of excessive fetal growth or alteration in 

fetal body composition taking into consideration the constitution of the mother (Gardosi 

et al. 2011, Pasupathy et al. 2012). However, it remains to be determined whether the 

consideration of maternal overweight and obesity and its effects on fetal growth as 

“physiological” rather than “pathological” is appropriate in this setting. 	

 

Birth weight as a single measure reflects mass, and does not reflect variations in the 

distribution of adipose tissue nor the relative proportion of adipose and lean tissue mass.  

Lean body mass has been correlated with genetic factors, whereas fat mass has been 

correlated with the maternal environment (Sparks 1984). Most studies reported in the 

literature have compared lean and adipose tissue masses in infants born to women who 

are overweight or obese with infants born to lean women (Sewell et al. 2006, Hull et al. 

2008).  The intrauterine metabolic environment has been shown to affect the growth of 

adipose tissue but not lean tissue mass (Catalano et al. 2011). Neonatal fat mass 

accounts for approximately 14% of the total birth weight (Catalano et al. 2003b, 
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Catalano et al. 2011). These studies have shown that as maternal BMI increases, so too 

does neonatal adipose tissue mass (Sewell et al. 2006, Hull et al. 2008), which in turn 

is correlated with an increased risk of childhood obesity and longer-term metabolic 

dysfunction (Oken 2009).  

 

In contrast, the effect of maternal obesity on newborn lean tissue mass remain uncertain. 

While some have reported no association with maternal obesity (Sewell et al. 2006), 

others have reported associations between maternal obesity, lower newborn fat free 

mass, and higher total and percentage of fat mass as measured by air displacement 

plethysmography (Hull et al. 2008). There is a need for ongoing research into this area, 

including the longer-term follow-up of children to assess the impact of neonatal adipose 

tissue distribution on subsequent childhood obesity. 	

 

1.3.1 Clinical management of the large for gestational age fetus 

Despite the limitations identified relating to the definitions of LGA and fetal 

macrosomia, the widespread availability of ultrasound and concerns relating to 

maternal and infant pregnancy and birth complications has led to interest in the 

prediction of fetal macrosomia (Dodd et al. 2012) to potentially reduce morbidity 

through active clinical management.   	

 

Clinical management options remain controversial for women who are identified to 

have a LGA fetus in the antenatal period (Campbell 2014). A large decision analysis 

study by Rouse identified that an elective caesarean section for EFW greater than 4.5kg 
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was not an economically viable treatment option (Rouse et al. 1996). The cost of 

elective caesarean birth did not outweigh the prevention of shoulder dystocia and 

brachial plexus injuries (Rouse et al. 1996). In contrast, a similar study reached the 

opposite conclusions, when considering the “costs” related to maternal perineal trauma 

and subsequent faecal and urinary incontinence issues for the woman, in addition to the 

direct effects of shoulder dystocia and brachial plexus injuries for the offspring 

(Culligan et al. 2005). Importantly, any short or longer-term “costs” related to the 

effects of birth asphyxia have not been incorporated into these decision analyses 

(Campbell 2014).  

 

A multi-centre randomised trial involving 19 tertiary centres included 832 women with 

an average BMI between 25 – 26kg/m2 and with a fetus suspected to be LGA, who 

were randomised to either elective induction of labour or continued expectant 

pregnancy management (Boulvain et al. 2015). The trial identified a reduction in 

neonatal morbidity following induction of labour between 37 and 39 weeks following 

ultrasound identification of a LGA fetus defined as an EFW greater than the 95th centile 

(Boulvain et al. 2015). This type of clinical intervention was not associated with 

differences in a woman’s risk of caesarean birth. Incorporation of 4 similar randomised 

trials in a meta-analysis involving a total of 1,190 women, identified that induction of 

labour was associated with a reduction in the occurrence of shoulder dystocia, and any 

type of neonatal fracture, although there were no statistically significant differences 

identified in the rates of operative delivery, brachial plexus injury, low 5 minute Apgar 

scores or low arterial cord blood pH (Boulvain et al. 2016). The ability to more widely 

generalise these findings to women who are overweight or obese is uncertain, 
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particularly taking into consideration the reduction in accuracy of ultrasound estimation 

of fetal weight in this clinical setting (Boulvain et al. 2015, Boulvain et al. 2016).	

 

The clinical management debate will undoubtedly continue with consideration of 

multiple factors including a woman’s autonomy, obstetrician factors, ultrasound 

availability, ultrasound prediction and accuracy, evidence surrounding intervention and 

concern about rising caesarean birth rates in both the developed and developing world 

(Campbell 2014).   

 

1.4 The fetal “overgrowth” hypothesis 

In 1967, Pedersen and associates first proposed a hypothesis to describe the underlying 

mechanism relating to overgrowth of the fetus, seen primarily in women with diabetes 

mellitus during pregnancy (Pedersen 1967). This is commonly known as the direct 

pathway for fetal ‘overgrowth’ and is more commonly referred to as the Pedersen 

hypothesis (Pedersen 1967). Glucose has been long recognised as the primary fuel 

substrate for fetal growth and development, and is delivered across the placental 

interface via transport mediated facilitated diffusion (Catalano et al. 2009, Wright et al. 

2011).  In the setting of maternal hyperglycaemia and hyperinsulinaemia related to both 

maternal obesity and gestational diabetes, there is a greater diffusion gradient of 

glucose, which in turn leads to fetal hyperglycaemia (Catalano et al. 2009). 

Hyperglycaemia in the fetal circulation stimulates insulin production by the fetal 

pancreas, insulin-like growth factors (IGF), growth hormones and a range of other 

growth promoting factors, all of which stimulate fetal deposition of glycogen and fat 
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(Pedersen 1967). More recently, the hypothesis has been expanded to account for the 

placental transfer of lipids and their contribution to fetal growth (Catalano et al. 2011). 

	

Increasingly, there is evidence to support an ‘indirect’ pathway that can impact the 

delivery and quantity of the nutritional supply to the fetus across the placenta (Wright 

et al. 2011, Aye et al. 2013). The placenta is the interface between the maternal and 

fetal circulations, providing critical and complex functions for the developing fetus.  

The placenta plays an integral role in fetal growth through the regulation of blood flow, 

oxygen delivery, and nutrient transfer across the placenta (Belkacemi et al. 2011).  

While the placenta is likely to be an important mediator by which maternal obesity 

contributes to fetal overgrowth and adiposity (Lewis et al. 2013), there is a relative 

paucity of literature describing its role in the regulation of fetal growth in this setting. 

Various hypotheses include the regulation of placental transporters (Lewis et al. 2013) 

and the nutrient transfer capacity of the placenta, which directly relate to the structural 

and morphological features of the placenta, in addition to uteroplacental blood flow 

(Wright et al. 2011, Aye et al. 2013). 

 

1.5 Fetal growth restriction in the setting of maternal obesity 

Large population cohort studies have identified maternal obesity to not only be 

associated with fetal overgrowth, but also with fetal growth restriction (Cedergren 2004, 

Doherty et al. 2006, Abenhaim et al. 2007). In a large epidemiological study, the rate 

of fetal growth restriction was approximately 2.3% in women with a BMI greater than 

or equal to 40kg/m2 (Cedergren 2004). These rates are comparable to those derived 
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from large randomised trials. The LIMIT trial identified a risk of infant birth weight 

less than 2.5kg to be approximately 4.7% (Dodd et al. 2014a), consistent with the 

findings from the UPBEAT randomised trial (Poston et al. 2015) which utilised 

customised birth weight centiles. Babies born to women who are classified as obese are 

more likely to be appropriately grown (82.7%) or large for gestational age (14.9%) 

(Cedergren 2004). Similarly, the ultrasound measurements relating to fetal growth, 

including weight, were consistently above the population mean, as discussed 

subsequently (Grivell et al. 2016).  

 

Observational studies have identified higher rates of perinatal death in women who are 

overweight or obese, when compared with women of normal BMI (Kristensen et al. 

2005, Huda et al. 2010, Yao et al. 2014). In this setting, most stillborn infants were 

identified to be SGA, particularly beyond 37 weeks gestation (Kristensen et al. 2005, 

Yao et al. 2014). Intrauterine fetal death due to higher rates of fetoplacental dysfunction 

were found in obese women (5.4 fetal deaths per 1000 live births) compared with 

women with a normal BMI (1.4 fetal deaths per 1000 live births) (Kristensen et al. 

2005).  

 

The underlying mechanisms for a reduction in uteroplacental blood flow may relate to 

the exaggerated hyperlipidaemia observed in maternal obesity, along with increased 

free fatty acids and cholesterol, which may potentially increase the risk of placental 

thrombosis and subsequently reduce placental perfusion (Kristensen et al. 2005).  

Another potential explanation may reflect the high rates of pre-eclampsia identified in 

women with increasing BMI (Sibai et al. 1995, Cedergren 2004, Callaway et al. 2006, 
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Doherty et al. 2006, Thornburg et al. 2008, Athukorala et al. 2010). Oxidative stress 

and endothelial dysfunction from obesity may impact on trophoblastic invasion and 

contribute to poorer pregnancy outcomes, such as pre-eclampsia and placental 

insufficiency (Huda et al. 2010). Pre-eclampsia and defective trophoblastic invasion in 

turn affects placental function and may alter the fetal growth potential (Huda et al. 

2010). There remains uncertainty surrounding the exact mechanism contributing to 

reduced growth in fetuses born to women who are obese and whether inadequate 

trophoblast invasion or perfusion defects comes first.   

 

Impaired fetal growth in the setting of maternal overweight and obesity may also reflect 

the effects of maternal weight loss, which is more likely among obese women during 

pregnancy (Beyerlein et al. 2011). While lower maternal weight gain during pregnancy 

has been associated with a reduction in the risk of LGA infants and many pregnancy 

related complications, it appears to be at the expense of an increase in SGA infants 

(Lemas et al. 2015). While observational studies highlight this association, it is unclear 

if the contribution of weight loss to poor fetal growth reflects impaired nutrient delivery 

to the fetus, or whether other mechanisms are operational (Beyerlein et al. 2011).  

  

1.6 Maternal dietary determinants of fetal growth  

Women who are overweight or obese during pregnancy have been demonstrated to have 

poorer diet quality when compared with women with BMI in the normal range (Laraia 

et al. 2007, Rifas-Shiman et al. 2009, Tsigga et al. 2011, Moran et al. 2013), which 

persists into the postpartum period (Moran et al. 2013). In turn, poor diet quality is 
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associated with increased risk of glucose intolerance and pre-eclampsia (Rifas-Shiman 

et al. 2009), increased neonatal adiposity (Shapiro et al. 2016) and changes in child 

body composition (Catalano et al. 2017).  

 

There is growing interest in the programming of fetal growth and body composition, 

the critical time points and the influence of maternal diet as a potentially modifiable 

factor. The current literature is inconsistent, largely due to the heterogeneity and 

variability relating to the timing and types of dietary assessments, reporting and 

methodology, along with body composition measurements (Brei et al. 2018). Three 

studies have shown an increase in maternal carbohydrate intake to be associated with 

higher birth weight (Sharma et al. 2018), neonatal adiposity measured by air 

plethysmography (Crume et al. 2016), higher infant BMI (Chen et al. 2017) and an 

increased BMI in children (Chen et al. 2017). In contrast, a maternal diet with lower 

intake of carbohydrates has been associated with a decrease in neonatal adiposity 

(Renault et al. 2015) and a reduction in fat mass by 5 years of age (Brei et al. 2018). 

Protein and carbohydrate ratios or combination diets have also been evaluated, where 

a high protein, low carbohydrate, and low fat diet was associated with a reduction in 

neonatal abdominal adiposity (Chen et al. 2016, Brei et al. 2018). In contrast, an 

Australian study in women with a normal BMI showed that a low carbohydrate diet 

was associated an increase in abdominal fat mass in the fetus (Blumfield et al. 2012).  

 

Poor diet quality (defined as Healthy Eating Index score less than or equal to 57) has 

been associated with a higher percentage of neonatal fat mass as measured on air 

displacement plethysmography, independent of maternal BMI (Shapiro et al. 2016). 

Observational data from the Danish National Birth Cohort identified an association 
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between maternal dietary glycaemic load and a higher proportion of LGA infants (14%) 

and higher birth weight by 36 grams (Knudsen et al. 2013).  

 

There has been more limited evaluation of the contribution of maternal dietary intake 

to fetal growth and adiposity, particularly among overweight and obese pregnant 

women. Maternal protein, fatty acid and carbohydrate intake during pregnancy have all 

been associated with increased measures of fetal adiposity, although this has largely 

been evaluated only in women of normal BMI (Blumfield et al. 2012).  

 

 

 

 

1.7 Metabolic determinants of fetal growth 

Glucose, insulin, insulin-like growth factors, leptin, adiponectin and lipids have all been 

identified to contribute to fetal growth in a complex fashion.  Table 1.3 summarises the 

key metabolic substrates, their proposed physiology, effect on fetal growth and 

identified changes in the setting of maternal obesity. 

The contribution of specific maternal dietary components to fetal growth and 

adiposity among women who are overweight or obese is unclear,  

and warrants further investigation. 
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T
able 1.3: T

he key m
etabolic substrates during pregnancy, their effect on fetal grow

th and changes related to m
aternal obesity 

Factor 
Physiology 

E
ffect on fetal 

grow
th 

C
hanges in m

aternal obesity 
R

eferences 

G
lucose 

C
rosses the placenta via G

LU
Ts 

M
ain energy source for the fetus 

Prom
otes fetal 

overgrow
th 

H
igher in m

aternal obesity 
Increased risk of G

D
M

 and hyperglycaem
ia 

Positively associated w
ith birth w

eight 

M
etzger et al. 2008 

C
atalano et al. 2009 

U
ebel et al. 2014 

Torloni et al. 2009 
 

Insulin  
D

ecreased sensitivity to insulin, m
ainly 

in the post receptor pathw
ay, reducing 

intracellular insulin signalling pathw
ay 

via G
LU

T4. Secretion of placental 
lactogen, cytokines, tum

our necrosis 
factor and elevated lipids have been 
show

n to contribute in pregnant w
om

en. 
  

H
igh levels of glucose 

stim
ulate 

hyperinsulinaem
ia in the 

fetal pancreas  

O
besity is associated w

ith insulin resistance 
C

ontribution of pre-receptor action via insulin 
antibodies and decreased num

ber of receptors on 
the cell surface in addition to post-receptor 
defects (intracellular insulin signalling pathw

ay) 

C
atalano et al. 2010 

Pedersen 1967 

Insulin like 
grow

th factors 
Fam

ily of ligands (IG
Fs) and ligand-

binding proteins (IG
FB

Ps) 
Produced by the liver 
C

ontributes to placental invasion, grow
th 

and developm
ent 

Stim
ulates differentiation of pre-

adipocytes 
 

R
elative concentrations 

of IG
Fs and IG

FB
Ps 

determ
ine effect on fetal 

grow
th – free (bioactive) 

IG
F is prom

otor of fetal 
grow

th 

R
educed expression of IG

FB
P4 in cord blood of 

offspring, resulting in higher concentrations of 
free IG

F 

Ferraro et al. 2012 
Q

iu et al. 2005 
Juul et al. 2003 

Lipids 
Early pregnancy – m

aternal fat 
accum

ulation 
Late pregnancy – m

aternal 
hyperlipidaem

ia 

C
ontributes to fetal fat 

deposition in the third 
trim

ester 

H
igher plasm

a triglycerides throughout 
pregnancy 
Independently associated w

ith risk of LG
A

 and 
neonatal m

easures of adiposity 

Son et al. 2010 
V

rijkotte et al. 2011 
W

hyte et al. 2013 
Schaefer-G

rafe et al. 
2008 
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Leptin 
Produced predom

inantly by w
hite 

adipose tissue 
Involved in regulatory control of 
placental nutrient transport 

Prom
otes fetal 

overgrow
th 

H
igher circulating concentrations 

H
igher cord blood concentrations in offspring 

Positively correlates w
ith birth w

eight, neonatal 
adiposity and neonatal insulin resistance 

Tessier et al. 2013 
Tsai et al. 2015 
C

atalano et al. 2009 
K

arakosta et al. 2011 
Josefson et al. 2014 
 

A
diponectin 

Produced by adipose tissue 
C

ontributes to peripheral insulin 
sensitivity 
R

educes nutrient availability for the 
placenta 

N
egative regulator of 

fetal grow
th 

M
aternal concentrations low

er in obesity 
M

aternal concentrations negatively correlate 
w

ith birth w
eight and neonatal fat m

ass 

A
tegbo et al. 2006 

Low
e et al. 2010 
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1.7.1  Glucose and Insulin 

Maternal obesity, even in the absence of GDM, is associated with higher glucose 

concentrations, contributing to an intra-uterine hormonal environment that is 

comparable that associated with metabolic syndrome, characterised by hyperglycaemia 

and insulin resistance (Catalano et al. 2011). Offspring born to women who are obese 

have documented higher cord blood glucose and insulin concentrations, and are more 

insulin resistant (Catalano et al. 2009, Uebel et al. 2014, Lemas et al. 2015). This 

relationship between maternal obesity and insulin resistance measured in neonatal cord 

blood is present irrespective of a diagnosis of GDM (Catalano et al. 2009). Furthermore, 

findings from the HAPO study have confirmed a linear relationship between maternal 

glucose concentration and infant birth weight, even at glucose concentrations below 

those considered to be diagnostic of GDM (Metzger et al. 2008). Similar relationships 

between maternal glucose concentrations below the diagnostic threshold of GDM and 

adverse neonatal outcomes related to insulin resistance and glucose intolerance have 

been described in the other populations, including Canada, United States, United 

Kingdom, and Australia (Sermer et al. 1998, Dodd et al. 2007, Catalano et al. 2009, 

Torloni et al. 2009).  

 

1.7.2  Insulin-like growth factors 

Insulin-like growth factors (IGF) along with IGF binding proteins are produced in the 

liver. During pregnancy, the ligands and their binding proteins contribute to placental 

growth and development, and promote fetal growth. In maternal obesity, there is 

reduced expression of IGFBP4 in the cord blood of the offspring, resulting in higher 

concentrations of free IGF, which in turn further stimulates fetal growth (Juul 2003, 

Qiu et al. 2005, Ferraro et al. 2012).  
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1.7.3 Adiponectin 

Adiponectin is secreted by maternal adipose tissue, and is not transferred across the 

placenta (Aye et al. 2013, Parker-Duffen et al. 2014), but does act directly on placental 

function through the transfer of insulin and amino acids (Lekva et al. 2017). During 

pregnancy, adiponectin concentrations decrease as gestation advances (Fuglsang et al. 

2006). In both pregnant and non-pregnant individuals, obesity is associated with a lower 

adiponectin concentration (Lekva et al. 2017) along with type 2 diabetes mellitus 

(Weyer et al. 2001). Maternal and fetal adiponectin appear to exert opposing effects on 

fetal growth (Aye et al. 2013), with low maternal concentrations of adiponectin 

stimulating fetal overgrowth (Lekva et al. 2017). Conversely, cord blood and neonatal 

adiponectin concentrations have been reported to be up to 7 times higher than maternal 

concentrations, positively correlating with infant birth weight (Sivan et al. 2003) and 

increased neonatal adiposity (Sivan et al. 2003, Corbetta et al. 2005).  

	

1.7.4 Leptin 

Cord blood concentrations of leptin correlate positively with infant birth weight and 

neonatal fat mass (Catalano et al. 2009, Tessier et al. 2013, Josefson et al. 2014, Tsai 

et al. 2015).  Cord blood leptin concentrations have also been shown to positively 

correlate with measures of neonatal insulin resistance (Catalano et al. 2009), suggesting 

that neonatal fat mass and insulin resistance are related, which raises the possibility that 

neonatal adipose tissue is also metabolically active.   
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1.7.5.  Lipids 

Pregnancy is a physiological state associated with higher circulating concentrations of 

triglycerides and fatty acids (Montelongo et al. 1992) which is accentuated by maternal 

obesity, leading to enhanced placental transport of these substrates (Catalano et al. 

2017). While triglycerides do not readily cross the placental interface, the lipoprotein 

receptors and binding proteins and lipases enable the placental flow of maternal fatty 

acids (Schaefer-Graf et al. 2008). Studies investigating newborn cord blood 

concentrations of lipoproteins (Merzouk et al. 2000) have shown an association with 

adipose tissue in the fetus and newborn, contributing to infant birth weight (Schaefer-

Graf et al. 2008).  

 

 

1.7.6 Adipose tissue as a metabolically active contributor to fetal growth 

Adipose tissue is not an inert storage organ, but is metabolically active in the secretion 

of multiple hormones which contribute to metabolic homeostasis (Coelho et al. 2013).  

Fetal adipocytes begin to develop at 15 weeks and as gestation advances, there is an 

increase in fetal fat mass from 5 to 15% (Lau 2008). The development of adipose tissue 

in the fetus and in early neonatal life is sensitive to hormones such as insulin, insulin-

like growth factors and glucocorticoids (Muhlhausler et al. 2009). While it is recognised 

that the human fetus deposits a large amount of subcutaneous fat in late gestation 

(Symonds et al. 2012), subscapular and axillary fetal adiposity predominantly reflects 

brown adipose tissue (BAT) deposition, which is required for non-shivering 

The contribution of specific cardiometabolic measures to fetal growth and 

adiposity among women who are overweight or obese is unclear,  

and warrants further investigation 
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thermogenesis in the immediate adaptation to extra-uterine life (Stephens et al. 2011, 

Symonds et al. 2012). While it was initially thought that the presence of BAT was 

confined to early infancy, deposits have been identified using positron emission 

tomography (Stephens et al. 2011) in adults at sites that echo those of the neonate, being 

more commonly identified in women and lean individuals. Furthermore, the role of 

BAT in energy production and increasing basal metabolic rate has resulted in its 

identification as a potential target to ameliorate the effects of obesity (Stephens et al. 

2011, Symonds et al. 2012).   

 

1.7.7 The inflammatory response to maternal obesity  

Obesity (both in pregnancy and in non-pregnant individuals) is associated with a low-

grade, chronic inflammatory state (Pantham et al. 2015). Women who are overweight 

or obese enter pregnancy with an altered inflammatory profile, which may predispose 

to the development of pregnancy related complications including hypertension and 

GDM (Catalano 2010, Farah et al. 2012, Haghiac et al. 2015).  	

 

Increased secretion of pro-inflammatory cytokines from adipose tissue (Ingvorsen et al. 

2015) has been observed in obesity. Maternal obesity is associated with an increase in 

IL-6 compared with women with a normal BMI (Haghiac et al. 2015, Pantham et al. 

2015). The literature remains unclear regarding other cytokines during pregnancy and 

is limited by small sample size and study design (Farah et al. 2012, Coelho et al. 2013, 

Ingvorsen et al. 2015, Pantham et al. 2015). There has been one study that has 

investigated the association between maternal cytokine concentrations and fetal 

adiposity measurements (Farah et al. 2012). While maternal inflammatory markers 
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were identified to correlate with maternal adiposity, these did not appear to be related 

to measures of fetal adiposity (Farah et al. 2012).  

	

The placenta has been hypothesised to play a role in the mediation and regulation of 

the inflammatory reaction related to obesity (Pantham et al. 2015). Maternal 

inflammation may induce fetal programming through the passage of specific cytokines 

(IL-6) or immune cells (maternal monocytes, T and B cells), in addition to modifying 

the availability of nutrients for the fetus through placental regulation of IL-1B 

(Ingvorsen et al. 2015). Due to placental changes during gestation, this could potentially 

lead to variations in transfer of cytokines and immune cells with potential differential 

fetal effects across pregnancy (Ingvorsen et al. 2015).  

 

 

 

1.7.8 The role of the placenta in fetal growth 

The placenta is a complex organ containing chorionic villi and vasculature, which 

evolves and develops throughout gestation (Rampersad et al. 2011).  Factors which 

disturb or disrupt this process therefore have the capacity to permanently alter placental 

function (Lewis et al. 2013).  

 

The contribution of specific maternal inflammatory markers to fetal growth 

and adiposity among women who are overweight or obese is unclear,  

and warrants further investigation 
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The structure and morphology of the placenta including placental weight is a major 

determinant of fetal growth, directly reflecting the capacity of the nutrient transport 

system (Lewis et al. 2013). Placental nutrient transfer is dependent upon the number of 

transporters present, which in turn has been shown to be regulated by maternal 

endocrine and nutritional signalling (Lewis et al. 2013).  

 

A retrospective cohort study from Scotland analysed 55,105 births between 1976 to 

2007 and to evaluate associations between maternal BMI and placental weight. The 

findings demonstrate an association between increasing maternal BMI and both 

placental hypertrophy and reduced placental efficiency, suggesting that maternal 

obesity, may induce morphological and functional changes to the placenta when 

compared with women of normal BMI (Wallace et al. 2012). 

 

Placenta pathology has been reportedly associated with maternal obesity (Huang et al. 

2015, He et al. 2016, Bar et al. 2012, Bar et al. 2017). Commonly identified histological 

changes reflect inflammatory and vascular pathology, as well as increased placental 

thickness (Berceanu et al. 2018), placental overgrowth (Leon-Garcias et al. 2016, 

Wallace et al. 2012) and an increased incidence of marginal cord insertion (He et al. 

2016). Described Inflammatory lesions include maternal origin villitis (Huang et al. 

2015, He et al. 2016), histological chorioamnionitis and umbilical vasculitis, observed 

to occur almost 12 times more frequently in obese women as compared with women of 

normal BMI (He et al. 2016). Placental vascular lesions are also common in obese 

pregnant women, (Huang et al. 2015), with fetal vascular pathology identified more 

frequently than maternal vascular lesions (Bar et al. 2017). Of the maternal vascular 
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lesions reported, intervillous thrombus are commonly identified (He et al. 2016). While 

the precise mechanism causing these changes is unclear, they are well recognized 

contributors to pregnancy complications both for the woman and her developing fetus.	 

 

Uteroplacental blood flow also has a fundamental role in nutrient transfer to the fetus.  

Key to this process is maternal uterine artery blood supply, with alterations in blood 

flow as early as the first trimester of pregnancy having been associated with an 

increased risk of poor placentation and the subsequent development of pre-eclampsia 

and fetal growth restriction (Jeve et al. 2015). Placental perfusion may also be reduced 

by higher maternal concentrations of circulating lipids, free fatty acids and cholesterol, 

particularly in women who are obese, which has been postulated to contribute to an 

increased risk of placental thrombosis and reduced perfusion (Kristensen et al. 2005). 

In turn, these underlying perfusion related changes may contribute mechanistically to 

the higher risk of stillbirth and preterm birth observed in the setting of maternal obesity 

(Kristensen et al. 2005).  Additionally, oxidative stress and endothelial dysfunction may 

both contribute to and result from impaired trophoblastic invasion, and therefore may 

lead to the subsequent development of hypertensive diseases including pre-eclampsia 

(Huda et al. 2010).	

 

The fetal Umbilical Artery (UmA) delivers deoxygenated blood from the fetus back to 

the placenta, and is measured routinely during ultrasound assessment of fetal wellbeing 

(ISUOG Clinical Standards Committee 2013). Sarno and colleagues have conducted 

ultrasound umbilical artery Doppler (UmA) assessment in 185 women, of whom 23.2% 

were overweight, and 21.6% obese.  When compared with lean women, women of 
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higher BMI were found to have significantly higher umbilical artery resistance.  The 

positive correlation between maternal BMI and ultrasound determined umbilical artery 

resistance suggests a further mechanism whereby placental perfusion may be altered in 

the setting of maternal obesity (Sarno et al. 2015).   

 

Changes in nutrition in the setting of obesity would suggest that women who are obese 

or who have GDM would give birth to an LGA infant, reflecting the higher diffusion 

gradient and further stimulation of growth by glucose, insulin and insulin-like growth 

factors (Lewis et al. 2013). However, many obese women and women with GDM give 

birth to an appropriately grown infant. There have been several theories postulated to 

explain the ‘normalisation’ of fetal growth in the setting of maternal obesity (Sarno et 

al. 2015). For example, uteroplacental insufficiency could reduce substrate delivery 

thereby normalising the anticipated acceleration in fetal growth (Sarno et al. 2015). 

Another possible explanation is that maternal obesity or GDM alone may be insufficient 

to induce fetal overgrowth but additional exposures such as endocrine signalling, 

expression of transporters and alterations in lipid and amino acid transfers together may 

contribute to an increase in fetal growth and adiposity (Lewis et al. 2013). 	

	

1.8 The measurement of fetal growth and body composition using ultrasound 

Ultrasound has become the mainstay in the assessment of fetal growth and wellbeing 

and is widely utilised in both low and high-income countries.  There have been 

numerous studies evaluating ultrasound markers to identify and predict the LGA fetus, 

all of which have utilised different measurements, definitions and cut-off points (Wong 

et al. 2001, Coomarasamy et al. 2005, Kernaghan et al. 2007, Pates et al. 2008, El 
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Khouly et al. 2016). There is no universally accepted definition or specific 

measurement used in the detection of the LGA fetus in the antenatal period (Campbell 

2014). Due to maternal and infant complications, coupled with the growing access to 

ultrasound, there has been increasing interest in the use of ultrasound to attempt to 

predict newborn macrosomia to reduce complications such as shoulder dystocia (Rouse 

et al. 1996).     

 

Table 1.4 summarises the key literature to date assessing the sensitivity and predictive 

value of a range of ultrasound markers and cut-points to predict infant macrosomia and 

LGA. Coomarasamy and associates performed a large systematic review of the 

evidence pertaining to diagnostic ultrasound and the prediction of the LGA infant 

(Coomarasamy et al. 2005). While there was considerable heterogeneity between the 

studies including different study designs, estimated fetal weight formulae used, 

ultrasound equipment and reference range thresholds, EFW and AC greater than 90th 

centile were both identified to have acceptable positive predictive values as described 

in Table 1.4 (Coomarasamy et al. 2005).  However, the influence of maternal BMI on 

these assessments is difficult to ascertain, as there was no specific sub-group analysis 

relating to maternal BMI.  

 

Fetal growth velocity has been demonstrated to have low positive predictive value 

compared with EFW greater than the 95th centile (Kernaghan et al. 2007) in the 

prediction of LGA infants. Wong and colleagues identified that the prevalence of LGA 

infants was higher among women who were both obese and diagnosed with GDM, 

compared with women of normal BMI (Wong et al. 2001).  More recent studies have 
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combined EFW and amniotic fluid index together to increase the positive and negative 

predictive value in identifying the LGA infant, with variable results obtained in women 

considered to be at increased risk (Pates et al. 2008), despite better performance in low 

risk women entering labour (El Khouly et al. 2016).

The impact of maternal BMI on fetal growth trajectories among infants born 

to women who are overweight or obese is unclear,  

and warrants further investigation 
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1.9 Antenatal ultrasound assessment of fetal body composition  

In 1991, Bernstein and colleagues were among the first to describe the measurement of 

fetal body composition using prenatal ultrasound (Bernstein et al. 1991). Since then, 

there have been substantial advances in both two and three-dimensional 

ultrasonography, resulting in the development and validation of fetal body composition 

measurements (Larciprete et al. 2003, Hure et al. 2012, O'Connor et al. 2014, Walsh et 

al. 2015, Gibson et al. 2016) as outlined in Table 1.5.	Most of the identified studies 

have been limited by relatively small sample sizes (O'Connor et al. 2014, Walsh et al. 

2015, Gibson et al. 2016), with wide variation in both the type of fetal body composition 

measurement utilised, and variation in the reporting of results (Larciprete et al. 2003, 

Hure et al. 2012, O'Connor et al. 2014, Walsh et al. 2015, Gibson et al. 2016). Larciprete 

and colleagues validated ultrasound derived body composition measurements in the 

fetuses of 218 healthy pregnant Italian women with a normal BMI (Larciprete et al. 

2003). The generalisability to other populations, particularly in women who are 

overweight or obese is limited. 	
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The largest study to date to assess fetal biometry and body composition measurements 

using ultrasound was performed by Grivell and colleagues (Grivell et al. 2016). This 

study included women enrolled in the LIMIT trial (Dodd et al. 2014a) who were 

randomised to receive a comprehensive lifestyle intervention across pregnancy 

compared with women who received standard antenatal care. While the proportion of 

newborns classified as LGA (birth weight above the 90th centile), did not differ between 

the two treatment groups, the intervention was associated with a significant 18% 

relative risk reduction in the chance of infant birth weight greater than or equal to 4kg, 

and a 41% reduction in risk of birth weight above 4.5kg (Dodd et al. 2014b). Women 

who received the antenatal intervention demonstrated significant improvements in their 

self-reported dietary intake (Dodd et al. 2014c) and physical activity, when compared 

with women randomised to the standard care group (Dodd et al. 2014c).  	

 

In this setting, fetal body composition measurements and biometry were obtained from 

1,847 women at both 28 and 36 weeks gestation (Grivell et al. 2016). Fetal z-scores for 

all biometry and adiposity related measures were above the population means, 

regardless of treatment group, indicating that the fetuses of women who are overweight 

or obese have growth measures above population standards (Grivell et al. 2016). 

Furthermore, increases in head (HC) and abdominal circumference (AC) growth were 

both identified to contribute to the increase in EFW (Grivell et al. 2016), compared with 

the increase in AC only, which has in the past been demonstrated in fetal growth in 

women with GDM (Wong et al. 2002, Wong et al. 2006, Walsh et al. 2015). 	
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Two-dimensional fetal body composition measurements have been poorly correlated 

with neonatal measurements of body composition, lean tissue and body fat mass 

(Khoury et al. 2009, Lee et al. 2009, Moyer-Mileur et al. 2009). Thus, there has been 

increasing interest in three-dimensional imaging due to its increased availability over 

the past 5 years. Gibson and associates have assessed body composition in fetuses with 

suspected macrosomia using 3-dimensional mean thigh volume. Thigh volume Z-

scores were correlated with infant birth weight (R2 = 0.52 [0.54 – 84], P < 0.001), 

neonatal anthropometric body fat (R2 = 0.22 [0.17 – 0.69], P = 0.04) and skin-fold 

thickness measurements (SFTM) including triceps, subscapular, umbilical, flank and 

thigh skinfolds (Gibson et al. 2016). With the increasing availability of air displacement 

plethysmography for the assessment of neonatal body composition, Lee and associates 

have identified that 3-dimensional fractional limb volume is correlated well with 

calculated neonatal fat mass (Lee et al. 2009). However, despite these promising 

findings, fractional limb volume measurement using 3-dimensional imaging requires 

specific training, specialised software and is not routinely used in clinical practice 

(Gibson et al. 2016).  	

 

To date, there is no “gold standard” measure to predict the large for gestational age 

fetus or an increase in fetal adiposity (Campbell 2014). Further research is required, 

specifically focusing on women who enter pregnancy overweight or obese, as the fetus 

of these women remain at high risk of future health complications.    
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1.10 Gaps in our current knowledge identified from this literature 

review 

• The contribution of specific maternal dietary components to fetal growth and 

adiposity among women who are overweight or obese is unclear, and warrants 

further investigation. 

• The contribution of specific cardiometabolic measures to fetal growth and adiposity 

among women who are overweight or obese is unclear, and warrants further 

investigation. 

• The contribution of specific maternal inflammatory markers to fetal growth and 

adiposity among women who are overweight or obese is unclear, and warrants 

further investigation. 

• The impact of maternal BMI on fetal growth trajectories among infants born to 

women who are overweight or obese is unclear, and warrants further investigation. 

• The correlation between fetal and neonatal measures of growth and adiposity 

among infants born to women who are overweight or obese is unclear, and warrants 

further investigation. 

	  

The correlation between fetal and neonatal measures of growth and adiposity 

among infants born to women who are overweight or obese is unclear,  

and warrants further investigation 
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1.11 The aims of this research study 

The specific aims of this thesis were to conduct exploratory analyses to address the 

identified research gaps.  

 

The first aim of this study was to determine the association between maternal BMI and 

fetal growth, body composition and growth velocity in a population of overweight and 

obese women.  

 

The second aim was to evaluate associations between maternal dietary factors and fetal 

growth and adiposity measured by ultrasound at 28 and 36 weeks gestation in 

overweight and obese women. 

 

The third aim was to determine if maternal cardiometabolic and inflammatory markers 

were associated with fetal growth and adiposity measured by ultrasound in women who 

were overweight or obese in pregnancy at 28 and 36 weeks gestation. 

 

The fourth aim was to evaluate the correlation between fetal ultrasound biometry and 

adiposity measures at 36 weeks gestation and neonatal biometry and adiposity measures, 

in pregnant women who were overweight or obese. 
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CHAPTER 2: Methods 

The series of studies described in this thesis were conducted as secondary exploratory analyses 

of data from the LIMIT randomised controlled trial.  

 

2.1 The LIMIT Randomised Trial 

The methodology of the LIMIT randomised trial has been reported previously (Dodd et al. 

2014a). In brief, women were recruited from 3 metropolitan maternity units in South Australia, 

following ethical approval. Women were eligible to participate with a singleton pregnancy 

between 10+0 and 20+0 weeks gestation, and with BMI greater than or equal to 25kg/m2. Women 

with a diagnosis of Type 1 or Type 2 diabetes prior to pregnancy, or with a multiple pregnancy 

were excluded.  

 

The sample size for the LIMIT randomised controlled trial was calculated to give sufficient 

power to detect the primary infant birth outcome of LGA: details are given in the published 

paper (Dodd et al. 2014a and Dodd et al. 2011c). The analyses conducted in this study were 

exploratory, with the sample size determined by the available data; power calculations were 

not performed as there was no predetermined effect size which we aimed to detect, and no 

primary hypothesis which was tested. 

 

At the time of the first antenatal visit, maternal weight and height were measured by the 

research assistants or the attending midwife. Early pregnancy measurement of BMI has been 

demonstrated to correlate with pre-pregnancy BMI (Headen et al., 2017). This approach is 
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consistent with standard obstetric practice and state wide perinatal practice guidelines 

(Government of South Australia, 2015, Denison et al., 2018).  

 

Consenting women were then randomised to either the Lifestyle Advice Group or to the 

Standard Care Group, using a central randomisation service and computer generated 

randomisation schedule. Stratification variables included parity (0 versus ≥ 1), BMI at antenatal 

booking (overweight versus obese) and hospital of birth. 

 

Women who were randomised to the ‘Lifestyle Advice Group’ participated in a comprehensive 

dietary and lifestyle intervention, which included a combination of dietary, exercise and 

behavioural strategies. The intervention was delivered by a research dietitian and trained 

research assistants. Further details regarding content of the intervention have been published 

previously (Dodd et al. 2014a).  

 

Women who were randomised to the Standard Care group received their pregnancy care 

according to their hospital of birth and local hospital guidelines. This care did not include the 

routine provision of dietary and lifestyle advice, or information relating to gestational weight 

gain in pregnancy. The women included in this series of secondary analyses were those 

randomised to the Standard Care Group. 

 

2.2 Flow of Participants and Baseline Characteristics  

The overall flow of participants within the LIMIT randomised controlled trial is outlined in 

Figure 2.1, detailing the number of women eligible, number of women who participated in the 
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LIMIT trial, women lost to follow up and the number of women who had 28 and 36 week 

ultrasound data available. Within each Chapter, individual flowcharts and baseline 

characteristics are presented.  

Figure 2.1: Flow chart of participants included in the secondary analysis from the 

Standard Care Group of the LIMIT randomised trial 
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2.3 Ultrasound Assessment 

All women who participated in the trial were offered an ultrasound scan at 28 (range 26+0 to 

29+6) and 36 (range 34+0 to 37+6) weeks gestation to obtain biometry and body composition 

measurements (Grivell et al. 2016).  

 

The estimated date of confinement and gestational age was calculated from an early pregnancy 

ultrasound and menstrual period dating. All research ultrasounds were performed by medical 

practitioners with specialist or subspecialist training in obstetric ultrasound. All sonographers 

were blinded to the treatment allocation, and all measurements and calculations were obtained 

prospectively. Inter-observer reliability for the fetal adiposity measures was fair to moderate 

as reported previously (Grivell et al. 2016).  

 

Ultrasounds were performed using the Medison Accuvix V20 Ultrasound System (Samsung 

Medison Co., Ltd., Seoul, Korea). A C2-61C curved probe was used, with a frequency of range 

of 2MHz – 6MHz, with a 58 degree field of view with 60mm radius of curvature.  

 

2.2.1 Fetal biometry and estimated fetal weight 

Ultrasound assessment included measurements of standard biometry (head circumference, bi-

parietal diameter, abdominal circumference and femur length), measured in accordance with 

national and international standards of practice (ASUM 2007). Estimated fetal weight was 

calculated using the Hadlock C formula (Hadlock et al. 1991). Figure 2.2 shows the 

standardised measurement of fetal biometry as per the ASUM guideline (ASUM 2007).  
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Figure 2.2: Standardised measurement of fetal biometry as per the Practice guidelines 

for performance of the routine mid-trimester fetal ultrasound (Salomon et al. 2013).  
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2.2.2 Fetal adiposity measurements  

Fetal adiposity measures were obtained in a standardised fashion, as reported previously 

(Grivell et al. 2016), and included mid-thigh lean mass (MTLM), mid-thigh fat mass (MTFM), 

abdominal fat mass (AFM), and subscapular fat mass (SSFM).  

 

(i) Mid thigh total, lean and fat mass 

Mid thigh lean mass (MTLM) and mid thigh fat mass (MTFM) were measured according to 

described techniques (Bernstein et al. 1991, Larciprete et al. 2003, Grivell et al. 2016). Mid 

thigh measurements were calculated by firstly obtaining a sagittal view of the femur. Using a 

curvilinear transducer, the midpoint of the femur length was 0 degrees to the transducer. The 

transducer was then rotated through a 90 degree angle to obtain the cross-sectional view of the 

mid thigh, and a trace of the circumference of the mid thigh total mass (MTTM) was performed 

and the area calculated. The mid thigh lean mass (MTLM) incorporating muscle and bone was 

outlined using a continuous trace to calculate the area as shown in Figure 2.3. A subtraction 

was performed between the MTTM and the MTLM to calculate the mid thigh fat mass (MTFM).  

 

(ii) Abdominal fat mass  

Fetal abdominal fat mass or anterior abdominal wall thickness was measured between the mid-

axillary lines and anterior to the margins of the ribs, at the level of the abdominal circumference, 

with the subcutaneous fat represented by the echogenic envelope surrounding the abdomen and 

measured in millimetres as shown in Figure 2.4 (Bernstein et al. 1991, Larciprete et al. 2003, 

Grivell et al. 2016). Using magnification, 4 measurements of the anterior abdominal wall 

envelope were undertaken with 2 distally and 2 proximally. The mean of all 4 measurements 

was calculated and used within the analysis. 
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Figure 2.3 Ultrasound images illustrating fetal mid thigh total and lean mass calculation

 

Figure 2.4 Ultrasound images illustrating the fetal abdominal fat mass (AFM) calculation 
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(iii) Subscapular fat mass 

Subscapular fat mass was measured using a sagittal view of the fetal trunk to visualise the 

entire longitudinal section of the scapula and is illustrated in Figure 2.5 (Bernstein et al. 1991, 

Larciprete et al. 2003, Grivell et al. 2016). The subcutaneous measurement between the skin 

surface and the subcutaneous tissue at the interface with the super-spinous and infra-spinous 

muscles was obtained on two occasions, with the mean value used in the analysis. 

 

Figure 2.5 Ultrasound images illustrating the fetal subscapular fat mass (SSFM) 

calculation 

	

(iv) Fetal z-scores 

For each fetal growth and adiposity measurement, z-scores were calculated using ultrasound 

growth charts in clinical use (Hadlock et al. 1991).  
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(v) Fetal growth velocity  

Fetal growth velocity was defined as the difference in biometry between 36 and 28 week 

measurements divided by actual time (in days) between measures. The growth velocity 

measurement was expressed as growth in millimetres per day for BPD, HC, FL, MTFM, AFM, 

SSFM, grams per day for EFW and z-scores were calculated for BPD, FL, EFW and abdominal 

area using reference values from Owen and colleagues (Owen et al. 1996). Abdominal area 

(AA) velocity, expressed as cm2, was used instead of Abdominal Circumference (AC) due to 

the availability of reference values for AA (Owen et al. 1996), not but for AC. 

 

2.2.3 Statistical Analysis 

Baseline characteristics of women contributing data to each analysis were assessed 

descriptively. Continuous variables were reported as mean and standard deviation or median 

and interquartile range as appropriate, and categorical variables as a number and percentage.  

 

The specific methodologies and statistical analyses are unique to each chapter, and will be 

described in more detail subsequently. Statistical significance was assessed at the two-sided 

0.05 level. Because the analyses are exploratory, no adjustment has been made for multiple 

comparisons. Analyses were performed using SAS 9.4 (Cary, NC, USA) and Stata version 14 

(Stata corporation, Texas, USA).  
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CHAPTER 3: The effect of maternal overweight and obesity on 

fetal biometry, body composition and growth velocity  

 

This chapter forms the basis of a manuscript that has been recently published (O’Brien CM et 

al The Journal of Maternal Fetal and Neonatal Medicine), which is contained in Appendix 2.   

 

3.1 Introduction  

With advances in ultrasound technology there has been growing interest in the identification 

of the fetus at risk of overgrowth and increased adiposity, utilising both standard ultrasound 

biometry and fetal body composition measurements. While several studies have evaluated a 

range of ultrasound derived fetal body composition measures (O'Connor et al. 2014, Walsh et 

al. 2015, Gibson et al. 2016), they have been somewhat limited by their relatively small sample 

sizes and having been performed mostly in women with a normal BMI (Larciprete et al. 2003, 

Parretti et al. 2003) or diabetes (Kehl et al. 1996, Bethune et al. 2003, Kernaghan et al. 2007). 

The generalisability of these measures in other populations, particularly among women who 

are overweight or obese, is unclear and further evaluation is required. 

 

3.2 Aims  

The aim of this study was to determine the association between maternal BMI and fetal growth, 

body composition and growth velocity in a population of overweight and obese pregnant 

women.  
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3.3 Methods 

The research methodology (Dodd et al. 2011, Dodd et al. 2014a, Dodd et al. 2014c) of the 

LIMIT randomised controlled trial have been outlined in Chapter 2. As previously described, 

all women who participated in the trial were offered a research ultrasound scan at 28 (range 

26+0 to 29+6) and 36 (range 34+0 to 37+6) weeks gestation to obtain fetal biometry and body 

composition measurements (Grivell et al. 2016), with fetal biometry, EFW and body 

composition obtained in accordance with international standards of practice.  

 

3.3.1 Statistical analysis 

Maternal BMI was included as a categorical variable with the following categories: overweight 

(BMI 25.0 - 29.9 kg/m2), Class 1 obesity (BMI 30.0 - 34.9 kg/m2), Class 2 obesity (BMI 35.0 

- 39.9 kg/m2) and Class 3 obesity (BMI ≥ 40 kg/m2) (Modder et al. 2010, ACOG 2015).  

 

For analysis, BMI 25.0 – 29.9 kg/m2 was used as the reference category with the estimates 

made of the difference in mean fetal growth for each higher BMI category compared with BMI 

25.0 – 29.9 kg/m2.  

 

Fetal biometry and adiposity outcomes were analysed using linear regression models with 

adjustment for confounders including centre, parity, maternal age, smoking and socio-

economic status using the SEIFA Index of Relative Socio-Economic Disadvantage (IRSD) 

quintile. 
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A time-by-BMI-category interaction term was included in the model to test whether the effect 

of maternal BMI differed over time. Generalised Estimating Equations (GEE) were used to 

account for repeated measures. Additional sensitivity analyses were also performed using BMI 

as a continuous measure, results are not reported here. 	

	

3.4 Results  

3.4.1 Demographic characteristics 

Flow of participants and baseline characteristics are presented in Figure 3.1 and Table 3.1 

respectively. A total of 911 women from the Standard Care group had ultrasound information 

at one or more time points, with 777 having ultrasound data at both 28 and 36 weeks.  Of the 

911 women included in the secondary analysis, 41% (n = 376) were overweight, 29.8% (n = 

271) had Class 1 Obesity, 16.8% (n=153) had Class 2 Obesity and 12.2% (n = 111) had Class 

3 Obesity (Table 3.1). The mean age of women was 29.6 years, the majority (92%; n = 835) 

were of Caucasian ethnicity, with 40% (n = 369) in their first ongoing pregnancy, and almost 

30% (n = 265) from the highest quintile of social disadvantage. The overall rate of gestational 

diabetes in the Standard Care group was 11.2% (n=102). Sixty-six women (7.2%) had data 

only for 28 weeks, and 68 women (7.5%) had data only at 36 weeks gestation (Table 3.1). 

These baseline characteristics are consistent with the baseline characteristics of the entire 

LIMIT Trial randomised cohort (Dodd et al. 2014a). 
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Figure 3.1: Flow chart of the participants included in analysis of effect of maternal BMI 

on fetal measures 
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Table 3.1 – Baseline and post-randomisation characteristics of participants included in 

analysis of the effect of maternal BMI on fetal measures 

 Body Mass Index category (kg/m2) Overall 
 

N (%) Overweight 
25.0-29.9 

Class 1 
30.0-34.9 

Class 2 
35.0-39.9 

Class 3 
≥ 40.0 

Total number  
N (%) 

 
376 (41.3) 

 
271 (29.8) 

 
153 (16.8) 

 
111 (12.2) 

 
911 

Maternal Age 
at trial entry 
(years) 
Mean (SD) 

 
29.9 (5.25) 

 
29.6 (5.69) 

 
29.2 (5.40) 

 
28.9 (5.97) 

 
29.6 (5.50) 

Gestational 
Age at trial 
entry (weeks) 
Mean (SD) 

 
14.68 (3.10) 

 
14.55 (2.97) 

 
14.47 (2.97) 

 
14.52 (3.08) 

 
14.59 (3.03) 

Caucasian 
n (%) 

 
340 (90.4) 

 
248 (91.5) 

 
141 (92.2) 

 
106 (95.5) 

 
835 (91.7) 

Nulliparous 
n (%)  

 
168 (44.68) 

 
108 (39.85) 

 
50 (32.68) 

 
43 (38.74) 

 
369 (40.50) 

Smoker   
n (%) 

 
38 (10.11) 

 
35 (12.92) 

 
14 (9.15) 

 
14 (12.61) 

 
101 (11.09) 

Gestational 
Diabetes 
n (%) 

 
26 (6.91) 

 
37 (13.65) 

 
19 (12.42) 

 
20 (18.02) 

 
102 (11.20) 

 
SEIFA IRSD (Quintile)  

Quintile 1      
Most 

disadvantaged 
n (%) 

 
94 (25.00) 

 
83 (30.63) 

 
48 (31.37) 

 
40 (36.04) 

 
265 (29.09) 

Quintile 2      
n (%) 

 
87 (23.14) 

 
63 (23.25) 

 
37 (13.65) 

 
40 (14.76) 

 
48 (17.71) 

Quintile 3      
n (%) 

 
59 (15.69) 

 
37 (13.65) 

 
29 (18.95) 

 
18 (16.22) 

 
143 (15.70) 

Quintile 4      
n (%) 

 
70 (18.62) 

 
40 (14.76) 

 
20 (13.07) 

 
12 (10.81) 

 
142 (15.59) 

Quintile 5      
Least 

disadvantaged 
n (%) 

 
66 (17.55) 

 
48 (17.71) 

 
14 (9.15) 

 
11 (9.91) 

 
139 (15.26) 
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3.4.2 Maternal BMI and the relationship with fetal biometry and estimated fetal 

weight z-scores 

Neither maternal obesity Class 1 or Class 2 were associated with fetal BPD, HC, or FL 

z-scores at either 28 or 36 weeks gestation, when compared with fetal biometry 

measures from women who were overweight (Table 3.2). However, the fetuses of 

women with obesity Class 3 demonstrated significantly higher z-scores for BPD 

compared with the fetuses of women who were overweight: the estimated mean 

difference was 0.36 (95% CI: 0.06, 0.65) at 28 weeks (p=0.017), and 0.39 (95% CI: 

0.15, 0.63) at 36 weeks (p=0.002). Similarly, HC z-scores were higher by 0.47 (95% 

CI: 0.26, 0.68) at 28 weeks and 0.51 (95% CI: 0.32, 0.71) at 36 weeks (p<0.001 for 

both time points), while FL z-scores were higher by 0.36 (95% CI: 0.13, 0.58) at 28 

weeks (p=0.002) and by 0.27 (95% CI: 0.02, 0.52) at 36 weeks (p=0.035).  

 

For both AC and EFW z-scores, there was a consistent pattern of higher measures with 

increasing maternal BMI at both time points (Table 3.3). The mean fetal AC z-scores 

at both 28 and 36 weeks were significantly higher in women with Class 1 obesity, with 

the magnitude of the increase being higher for Class 2 and Class 3 obesity categories 

in comparison to women in the overweight group. Women with Class 1 obesity had AC 

z-scores 0.18 (95% CI: 0.02, 0.33, p=0.028) higher at 28 weeks, and 0.21 (95% CI: 

0.04, 0.38, p=0.017) higher at 36 weeks. Women with Class 2 obesity had AC z-scores 

0.20 (95% CI: 0.01, 0.38; p=0.04) higher at 28 weeks, and 0.24 (95% CI: 0.05, 0.43, 

p=0.013) higher at 36 weeks. For the women with Class 3 obesity, the increase in AC 

z-score was 0.40 (95% CI: 0.17, 0.63, p=0.013) at 28 weeks, and 0.39 (95% CI: 0.15, 

0.63, p=0.001) at 36 weeks compared to the overweight group. Women with Class 1 

obesity had EFW z-scores 0.18 (95% CI: 0.04, 0.33, p=0.014) higher at 28 weeks, and 
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0.17 (95% CI: 0.008, 0.32, p=0.04) higher at 36 weeks. For the women with Class 3 

obesity, the increase in EFW z-score was 0.46 (95% CI: 0.23, 0.69, p<0.001) at 28 

weeks, and 0.42 (95% CI: 0.19, 0.64, p<0.001) at 36 weeks compared to the overweight 

group.  

 

There was no evidence that the observed associations between maternal BMI and fetal 

growth measurements changed over time, with the interaction p values non-significant 

for all outcomes.   

 

Figure 3.2: Relationship between maternal BMI and fetal abdominal 

circumference at 28 weeks (blue) and 36 weeks (red) gestation 
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3.4.3 Maternal BMI and fetal adiposity measurements 

Table 3.3 presents results of analyses for the effect of maternal BMI category on fetal 

adiposity measures. There were no significant differences between BMI categories in 

relation to mid-thigh fat mass (MTFM).  

 

For abdominal area (AA), there were no significant differences for Class 2 obesity; 

however there were significant differences for Class 1 and Class 3 obesity when 

compared to women who were overweight. Compared to overweight women, the mean 

abdominal area was 1.80cm2 (95% CI: 0.13, 3.46, p = 0.035) higher at 36 weeks 

gestation in the fetuses of women with Class 1 obesity. Similarly, the mean abdominal 

area was higher by 2.19cm2 at 28 weeks (95% CI: 0.31, 4.08, p = 0.02) and 3.42cm2 at 

36 weeks (95% CI: 1.09, 5.74, p = 0.004) in the fetuses of women with Class 3 obesity. 

 

For abdominal fat mass (AFM), there were no significant differences in the fetuses of 

women with Class 1 or Class 2 obesity, when compared to those of women who were 

overweight. However, in the fetuses of women with Class 3 obesity abdominal fat mass 

was higher by 0.61 mm (95% CI: 0.08, 1.14, p=0.03) at 36 weeks compared with those 

of overweight women.  

 

For subscapular fat mass (SSFM), there were no significant differences in the fetuses 

of women with Class 2 or Class 3 obesity, compared to women who were overweight. 

However, in the fetuses of women with Class 3 obesity, subscapular fat mass was 
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reduced by 0.2 mm (-0.37, -0.04, p=0.016) at 28 weeks compared to fetuses of 

overweight women.  

  

There was no evidence that the effect maternal BMI category differed over time for any 

of the adiposity measurements. 

 

3.4.4 The effect of maternal BMI on fetal growth velocity 

There were no significant differences between the maternal BMI categories in relation 

to MTFM velocity, AFM velocity, or SSFM velocity. For EFW and AA velocity, there 

were no significant differences for women with Class 1 and Class 2 obesity; however 

there were significant differences between the Class 3 obesity and overweight 

categories. The mean EFW velocity was 2.03 grams per day (0.86, 3.2, p<0.001) higher 

in women with Class 3 obesity compared to overweight women. EFW velocity z-score 

was also higher by 0.44 (95% CI: 1.2, 0.69, p<0.001). Similarly, AA velocity was 

higher by 0.035 cm2/day (95% CI: 0.004, 0.066, p=0.029), and the AA velocity z-score 

was higher by 0.24 (95% CI: 0.02, 0.45, p=0.03). 

 

In sensitivity analyses utilising BMI as a continuous variable, results were consistent 

with the findings reported above. 
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Figure 3.3 – Estimated change in fetal weight by maternal BMI category  
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0.066  

(-0.093, 0.225) 

0.413 
0.06 

(1.06) 

-0.120 

(-0.319, 0.079) 

0.236 
0.51  

(1.00) 

0.355 

(0.132, 0.578) 

0.002 

36 w
eeks 

0.09 
(1.06) 

R
ef 

0.15 

(1.01) 

0.064  

(-0.102, 0.229) 

0.450 
0.20 

(1.07) 

0.072 

(-0.129, 0.272) 

0.484 
0.33 

(1.22) 

0.271 

(0.019, 0.522) 

0.004 

EFW
 

0.776^ 
 

 
 

 
 

 
 

 
 

 
 

28 w
eeks 

0.12 
(0.87) 

R
ef 

0.29 

(0.93) 

0.182 

(0.036, 0.327) 

0.014 
0.20 

(0.90) 

0.107 

(-0.063, 0.278) 

0.216 
0.54  

(1.07) 

0.460 

(0.233, 0.686) 

< 0.001 

36 w
eeks 

0.17 
(0.96) 

R
ef 

0.35 

(1.01) 

0.165 

(0.008, 0.322) 

0.04 
0.33 

(0.87) 
0.169 

(-0.001, 0.339) 

0.051 
0.55 

(1.11) 

0.416 

(0.194, 0.638) 

< 0.001 

 N
otes: This table show

s the results of analysis of the effect m
aternal B

M
I category and fetal biom

etry z-scores m
easured at 28 and 36 w

eeks gestation. For each B
M

I category, 
the m

ean and standard deviation is presented for each tim
e point. Estim

ates are differences in m
eans (95%

 C
I) for each B

M
I category com

pared to the low
est B

M
I category 

(25.0-29.9). A
ll m

odels w
ere adjusted for centre, parity, SEIFA

 IR
SD

 quintile, sm
oking status and age at consent.  

^ Interaction p values for B
M

I category by tim
e point interaction. R

ef = R
eference category
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T
able 3.3 – M

aternal B
M

I category and fetal adiposity m
easurem

ents at 28 and 36 w
eeks  

 
B

ody M
ass Index C

ategory 
O

verw
eight  

25-29.9 kg/m
2 

C
lass 1 O

besity 
30-34.9 kg/m

2 
C

lass 2 O
besity 

35-39.9 kg/m
2 

C
lass 3 O

besity 
≥ 40.0 kg/m

2 
 

G
estation 

M
ean 

(SD
) 

A
djusted  

E
stim

ate  
(95%

 C
I) 

M
ean 

(SD
) 

A
djusted  

E
stim

ate  
(95%

 C
I) 

P 
value 

M
ean 

(SD
) 

A
djusted  

E
stim

ate  
(95%

 C
I) 

P  
value 

M
ean 

(SD
) 

A
djusted  

E
stim

ate  
(95%

 C
I) 

P  
value 

M
id thigh 

fat m
ass 

(cm
2) 

(M
TFM

) 

0.636^ 
 

 
 

 
 

 
 

 
 

 
 

28 w
eeks 

4.50  

(1.27) 

R
ef 

4.56  

(1.20) 

0.009 

(-0.231, 0.250) 

 

0.94 
4.48 

(1.11) 

-0.051 

(-0.343, 0.242) 

0.734 
4.76  

(1.43) 

0.297  

(-0.123, 0.718) 

0.166 

36 w
eeks 

11.17 

(2.88) 

R
ef 

11.30  

(2.88) 

0.08 

(-0.519, 0.678) 

 

0.794 
10.99 

(2.57) 

-0.166 

(-0.872, 0.539) 

 

0.644 
12.16  

(3.25) 

0.967  

(-0.148, 2.081) 

0.089 

A
bdom

inal 
area (cm

2) 
(A

A
) 

0.293^ 
 

 
 

 
 

 
 

 
 

 
 

28 w
eeks 

47.56 

(6.70) 

R
ef 

47.77 

(5.93) 

0.269 

(-0.759, 1.296) 

 

0.608 
48.64 

(7.12) 

1.236 

(-0.134, 2.605) 

 

0.077 
49.72 

(8.82) 

2.193  

(0.309, 4.076) 

0.023 

36 w
eeks 

84.19 

(10.40) 

R
ef 

85.78 

(10.47) 

1.795  

(0.13, 3.46) 

 

0.035 
85.91  

(9.95) 

1.773 

(-0.190, 3.735) 

0.077 
87.12 

(11.34) 

3.415  

(1.091, 5.739) 

0.004 

0.724^ 
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A
bdom

inal 
fat m

ass 
(m

m
) 

(A
FM

) 

28 w
eeks 

3.46 

(1.04) 

R
ef 

3.56 

(1.06) 

0.060 

(-0.135, 0.255) 

0.544 
3.49  

(0.89) 

0.028 

(-0.201, 0.256) 

0.813 
3.80 

(1.18) 

0.351  

(0.00, 0.702) 

0.05 

36 w
eeks 

5.60 

(1.58) 

R
ef 

5.82  

(1.56) 

0.186 

(-0.122, 0.494) 

0.237 
5.64 

(1.56) 

-0.011 

(-0.388, 0.367) 

0.956 
6.20 

(0.567) 

0.606  

(0.078, 1.134) 

0.025 

Subscapular 
fat m

ass 
(m

m
) 

(SSFM
) 

0.226^ 
 

 
 

 
 

 
 

 
 

 
 

28 w
eeks 

3.25 

(0.94) 

R
ef 

3.05  

(0.80) 

-0.201 

(-0.365,-0.037) 

0.016 
3.19  

(0.88) 

-0.079 

(-0.295, 0.138) 

0.477 
3.29  

(0.93) 

0.060  

(-0.219, 0.338) 

0.675 

36 w
eeks 

5.31  

(1.38) 

R
ef 

5.48 

(1.49) 

0.136 

(-0.161, 0.433) 

0.369 
5.35 

(1.29) 

0.046 

(-0.290, 0.362) 

0.828 
5.52 

(1.53) 

0.235  

(-0.252, 0.723) 

0.344 

 N
otes: This table show

s the results of analyses of the effect of m
aternal B

M
I category on fetal adiposity m

easurem
ents. Each biom

etry m
easurem

ent is described across the 
three B

M
I categories for both tim

e points. For each B
M

I category, the m
ean and standard deviation is presented for each tim

e point. Estim
ates are differences in m

eans (95%
 

C
I) for each B

M
I category com

pared to the low
est B

M
I category (25.0-29.9). A

ll m
odels w

ere adjusted for centre, parity, SEIFA
 IR

SD
 quintile, sm

oking status and age at 
consent.  
^ Interaction p values for B

M
I category by tim

e point interaction. R
ef = R

eference category 
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T
able 3.4 – M

aternal B
M

I category and fetal grow
th velocity betw

een 28 and 36 w
eeks  

 
B

ody M
ass Index C

ategory 
O

verw
eight  

25-29.9 kg/m
2 

C
lass 1 O

besity 
30-34.9 kg/m

2 
C

lass 2 O
besity 

35-39.9 kg/m
2 

C
lass 3 O

besity 
≥ 40.0 kg/m

2 
V

elocity  
Interaction 

P value 
M

ean 
(SD

) 
A

djusted  
E

stim
ate  

(95%
 C

I) 

M
ean 

(SD
) 

A
djusted  

E
stim

ate  
(95%

 C
I) 

P 
value 

M
ean 

(SD
) 

A
djusted  

E
stim

ate  
(95%

 C
I) 

P  
value 

M
ean 

(SD
) 

A
djusted  

E
stim

ate  
(95%

 C
I) 

P  
value 

Estim
ated 

fetal w
eight 

(EFW
) 

 

0.005 

29.46 

(4.99) 

R
ef 

29.61 

(5.39) 

0.153  

(-0.705, 1.011) 

 

0.727 
30.37 

(4.55) 

0.765 

(-0.291, 1.820) 

 

0.156 
31.21 

(5.62) 

2.028 

(0.861, 3.196) 

 

< 0.001 

M
id thigh fat 

m
ass 

(M
TFM

) 

 

0.292 

0.12 
(0.05) 

R
ef 

0.12 

(0.05) 

 

-0.002 

(-0.13, 0.010) 

 

0.765 
0.12 

(0.05) 

0.009 

(-0.006, 0.024) 

 

0.238 
0.13  

(0.05) 

0.017 

(-0.007, 0.042) 

 

0.163 

A
bdom

inal 
area (cm

2) 
(A

A
) 

 

0.145 

0.68 

(0.13) 

R
ef 

0.68 

(0.13) 

0.009 

(-0.014, 0.032) 

 

0.425 
0.70 

(0.13) 

0.019 

(-0.009, 0.048) 

 

0.175 
0.70 

(0.16) 

0.035 

(0.004, 0.066) 

 

0.029 

A
bdom

inal 
fat m

ass 
(A

FM
) 

 

0.762 

0.04 

(0.03) 

R
ef 

0.04 

(0.03) 

0.003  

(-0.003, 0.009) 

 

0.317 
0.04 

(0.03) 

0.002 

(-0.006, 0.010) 

 

0.580 
0.04 

(0.03) 

0.00 

(-0.013, 0.012) 

 

0.948 

Subscapular 
fat m

ass 
(SSFM

) 

 

0.238 

0.04 

(0.03) 

R
ef 

0.04 

(0.03) 

0.005 

(-0.001, 0.011) 

 

0.106 
0.04 

(0.03) 

0.006 

(-0.002, 0.014) 

 

0.12 
0.04 

(0.02) 

-0.001 

(-0.012, 0.011) 

 

0.876 
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A
A

  
velocity  
Z-score 

 

0.165 

0.51 

(0.93) 

R
ef 

0.54 

(0.91) 

0.0045 

(-0.112, 0.203) 

 

0.574 
0.62 

(0.85) 

0.112 

(-0.082, 0.306) 

 

0.259 
0.67 

(1.06) 

0.238 

(0.022, 0.453) 

 

0.03 

EFW
  

velocity  
Z-score 

 

0.003 

0.60 

(1.06) 

R
ef 

0.62 

(1.12) 

0.016 

(-0.165, 0.196) 

 

0.865 
0.78 

(0.94) 

0.152 

(-0.07, 0.375) 

0.179 
0.99 

(1.19) 

0.441 

(0.196, 0.687) 

< 0.001 

	N
otes: This table sum

m
arises the results of analysis of the effect of m

aternal B
M

I categories on grow
th velocity for EFW

, M
TFM

, A
A

, A
FM

, SSFM
 and EFW

 velocity z-
scores. Each m

easurem
ent is described across the three B

M
I categories for both tim

e points. V
alues are m

ean (standard deviation) for m
aternal B

M
I categories, and estim

ates 
are differences in m

eans (95%
 C

I) for each B
M

I category com
pared to the low

est category (B
M

I 25.0-29.9) and w
ere adjusted for centre, parity, SEIFA

 IR
SD

 quintile, sm
oking 

status and age at consent. R
ef = R

eferences 
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3.5 Discussion  

This study describes fetal growth patterns and growth velocity over time in women who 

are overweight or obese and identifies an association between higher maternal BMI 

category and an increase in fetal biometry z-scores, abdominal related adiposity and 

growth velocity. A consistent and significant increase in all fetal biometry 

measurements was evident at both 28 and 36 weeks gestation from women with Class 

3 obesity (BMI greater than or equal to 40kg/m2). Fetal adiposity measurements were 

not universally increased but abdominal fat mass and abdominal area were associated 

with maternal obesity in this cohort. With increasing maternal BMI category, there were 

incremental increases in growth velocity of the fetal abdomen and estimated fetal 

weight. This study was a secondary analysis and while other associations were 

identified, these were inconsistent and likely due to chance.  

 

Much of the literature pertaining to ultrasound measured fetal growth patterns relates 

to women with pre-existing diabetes (Kehl et al. 1996) and gestational diabetes 

(Bethune et al. 2003, Larciprete et al. 2003, Parretti et al. 2003, Kernaghan et al. 2007). 

Maternal diabetes has been shown to increase fetal abdominal circumference and 

abdominal fat mass through the stimulation of insulin sensitive tissues (Kehl et al. 1996).  

 

In contrast, maternal obesity appears to be associated with an overall increase in fetal 

lean mass and skeletal growth. This study has confirmed that a significant increase in 

skeletal growth (head circumference and femur length) and abdominal area velocity 

and fat mass among women with Class 3 obesity compared with the lesser BMI 



	
	

	 82	

categories. This is confirmed by a recent study in women classified as obese and non-

obese in pregnancy, which also found an increase in fetal skeletal growth, with 

significant increases in head circumference, humeral and femur lengths in fetuses of 

obese women (Zhang et al. 2018). The difference in EFW comparing women who were 

non-obese to obese was apparent from 32 weeks (Zhang et al. 2018).  

 

Women with Class 3 obesity (BMI greater than or equal to 40kg/m2) are likely to 

represent a metabolically different group. From epidemiological studies, higher 

maternal BMI category is associated with a further increase in the rate of adverse 

perinatal outcomes including macrosomia (Cedergren 2004, Dodd et al. 2011, Magann 

et al. 2013, Gaudet et al. 2014) and there is emerging evidence of an association with 

childhood obesity (Whitaker 2004, Yu et al. 2013, World Health Organization 2016). 

The stimulation of fetal growth through the complex pathway including insulin growth 

factors (via hyperglycaemia and hyperinsulinaemia) (Ferraro et al. 2012), 

hyperlipidaemia (Schaefer-Graf et al. 2008), leptin (Josefson et al. 2014), adiponectin 

(Catalano et al. 2006), and inflammatory mediators (Friis et al. 2013) is likely to be 

accentuated in women of higher BMI. Thus, targeted interventions for women with the 

highest BMI may be more beneficial in reducing the fetal effects of obesity when 

compared with women of lower BMI. 

 

This is the first study to report on velocity of fetal growth and adiposity in the setting 

of maternal overweight and obesity. The literature to date has used measurement of 

growth velocity as a tool for screening and identification of the small for gestational 

age infant (Sovio et al. 2016) or for screening for macrosomia associated with pre-
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existing or gestational diabetes (Landon et al. 1989, Kehl et al. 1996, Hiersch et al. 

2018). The velocity of fetal growth changes throughout gestation (Bertino et al. 1996, 

Milani et al. 2005). Of interest, growth in the abdominal circumference peaks at 

12.5mm per week at 24 weeks gestation, reducing to 8mm per week by 40 weeks 

gestation (Bertino et al. 1996). The current study demonstrates an incremental increase 

in the rate of growth in the 3rd trimester associated with maternal obesity. Further 

understanding of the timing and regulation of the fetal growth velocity in the setting of 

maternal obesity is critical to developing successful interventions to improve perinatal 

outcomes.  

 

The main limitation of this secondary analysis is the lack of a comparator group, 

defined as women entering pregnancy with a normal BMI. There was also missing data 

in the velocity comparisons due to the availability of the 2 scans to calculate the growth 

velocity over time, affecting 15% of women within the cohort. Thirdly, the study 

incorporated only two time points to assess velocity in the 3rd trimester. Other 

descriptive studies for growth velocity have used multiple time points from 12 to 40 

weeks gestation in order to describe the variation in velocity throughout the entire 

pregnancy (Bertino et al. 1996, Milani et al. 2005).  

 

There is a need for further studies into the mechanisms and timing of critical fetal 

growth changes. This would help guide and assist with the timing of potential 

interventions that may modulate fetal growth in utero. From a public health perspective, 

if preventive strategies could modify fetal growth, velocity and adiposity patterns in 
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utero, this may alter the transmission of obesity and its cardiometabolic complications 

to the next generation (Hanson et al. 2016, Godfery et al. 2017). 

 

3.6 Conclusion  

This study indicates that maternal Class 3 obesity is associated with an increase in  

• All fetal biometry z-scores at both 28 and 36 weeks gestation and 

• Fetal abdominal fat mass and abdominal area. 

 

An increase in maternal BMI category is associated with  

• Incremental increases in growth velocity of the fetal abdomen and estimated fetal 

weight.
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CHAPTER 4:  The effect of maternal dietary factors on fetal 

growth and adiposity 

 

This chapter forms the basis of a published manuscript (O’Brien CM et al, Nutrients 

2018), which is contained in Appendix 3.	

 

4.1 Introduction 

Maternal dietary intake is recognised as a factor contributing to fetal growth (Starling 

et al. 2017). In women who are overweight or obese during pregnancy, poorer diet 

quality has been identified when compared with women with BMI in the normal range 

(Laraia et al. 2007, Rifas-Shiman et al. 2009, Tsigga et al. 2011, Moran et al. 2013) and 

this in turn is associated with an increased risk of glucose intolerance and pre-eclampsia 

(Rifas-Shiman et al. 2009), increased neonatal adiposity (Shapiro et al. 2016) and 

changes in child body composition (Catalano et al. 2017). It has been suggested that 

among women with normal BMI, maternal protein, fatty acid and carbohydrate intake 

during pregnancy are associated with increased measures of fetal adiposity (Blumfield 

et al. 2012). The contribution of specific maternal dietary components to fetal growth 

and adiposity among women who are overweight or obese is uncertain, and warrants 

further investigation. 
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4.2 Aims 

The aim of this study was to evaluate the associations between maternal dietary factors 

and fetal growth and adiposity measured by ultrasound at 28 and 36 weeks gestation in 

overweight and obese women. 

 

4.3 Methods 

The research methodology (Dodd et al. 2011, Dodd et al. 2014a, Dodd et al. 2014c) of 

the LIMIT randomised controlled trial have been outlined in chapter 2, as has the 

methodology relating to ultrasound assessment of fetal biometry and adiposity 

measures. 

 

4.3.1 Maternal Dietary Assessment 

Women completed the Harvard Semi-quantitative Food Frequency (Willett) 

questionnaire, (Willett 1987) to obtain a measure of their daily dietary intake of 

nutrients from 126 food items, including portion size and incorporation within the main 

7 food groups, which has been validated in pregnancy (Fawzi et al. 2004) and amongst 

Australian pregnant women (Rumbold et al. 2006). The questionnaire was completed 

at the time of study entry, 28 and 36 weeks gestation. At study entry women were asked, 

on average, how often the food was consumed during the last 12 months, while 

assessment at 28 and 36 weeks gestation asked women to indicate, on average, how 

often the food was consumed since the previous questionnaire time point. 
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Daily nutrient intake was estimated using the nutrient compositions from the Australian 

food composition tables according to pre-specified portion size (FSANZ, 2013). 

Adherence to dietary recommendations was assessed by allocating all food and drink 

consumption into the food groups as described by the Australian Guide to Healthy 

Eating (NHMRC 2013). Foods were classified as ‘non-core foods’ if the food did not 

meet the criteria of the five core food groups, provided minimal nutrient content, and 

was high in fat, sugar or salt (Athukorala et al. 2010, NHMRC 2013). 

 

Micronutrient values were obtained from the Harvard Semi-quantitative Food 

Frequency (Willett) questionnaire (Willett 1987) and analysed as mean intake, utilising 

the Food Works Nutrient Analysis Software Package (FoodWorks, version 7, 

Professional; Xyris Software 2012; Australia), and using Australian Food composition 

tables. 

 

Diet quality was assessed using the Healthy Eating Index (HEI), which has 12 

components to yield a maximum score of 100 (Guenther et al. 2008). These 12 

components include total fruit, total vegetables, dark green and orange vegetables and 

legumes, total grains and whole grains, all of which receive a score out of 5. Milk, meat 

and beans, oils, saturated fat and sodium based foods were scored out of 10. Calories 

from solid fats, alcohol related beverages and added sugars were scored out of 20. A 

HEI score of 80 is considered good, a score between 50 and 80 is one that needs 

improvement, and scores of less than 50 are considered poor. The HEI has been 

validated for use in pregnant women (Pick et al. 2005). 
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Dietary glycaemic index (GI) values were obtained using data taken from the Harvard 

Semi-quantitative Food Frequency (Willett) questionnaire (Willett 1987) and analysed 

using the Food Works Nutrient Analysis Software Package (FoodWorks, version 7, 

Professional; Xyris Software 2012; Australia), and along with published dietary 

glycaemic index values. 

 

4.3.2 Statistical Analysis 

Linear regression was used to model the association between dietary factors and fetal 

growth and adiposity, with diet variables considered as ‘predictors’ (independent 

variables) and fetal growth and adiposity variables as ‘outcomes’ (dependent variables). 

A time-by-diet-variable interaction term was included to allow for estimation of the 

association at each time point separately, and to test whether the association differed 

between time points. Generalised Estimating Equations were used to account for 

repeated measures. Both unadjusted and adjusted analyses were performed. Adjusted 

analyses included maternal BMI category (25.0-29.9kg/m2 vs ≥ 30.0kg/m2), smoking, 

parity (0 versus ≥ 1), age and SEIFA of Relative Socio-Economic Disadvantage (IRSD) 

quintile, which is a rank of areas within Australia according to relative socio-economic 

disadvantage. All analyses were additionally adjusted for baseline diet variables, as a 

potential confounder. 

 

4.4 Results 

4.4.1 Demographic characteristics 

Flow of participants and baseline characteristics are presented in Figure 4.1 and Table 

4.1 respectively.  There were 721 women included in this secondary analysis. The mean 

age of women participating was 29.9 years (standard deviation 5.3), with median 
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gestation at study entry 14.3 weeks (interquartile range from 12.1 to 17.0 weeks). Most 

women (91%; n=659) were of Caucasian ethnicity, 41.3% (n=298) in their first ongoing 

pregnancy, and 52% (n=373) from the highest two quintiles of social disadvantage. The 

baseline characteristics of the women contributing dietary and ultrasound data were 

comparable to all women in the Standard Care group, and all women included in the 

LIMIT randomised trial (Dodd et al. 2014a). 

 

Figure 4.1: Flow chart of the participants included in the secondary analysis with 

maternal dietary assessment 
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Table 4.1 – Baseline characteristics of participants included in the analysis of the 

effect of maternal diet on fetal growth and adiposity 

 

Baseline Characteristic Result  

Total Number: N (%) 721 

Maternal Age at Trial Entry 
Mean (SD) 

29.88  
(5.33) 

Gestational age at Trial Entry 
(weeks) 
Median (IQR) 

14.29  
(12.14, 17.00) 

BMI (kg/m2) 
Median (IQR) 

31.00  

(27.70, 35.20) 

BMI Category:           25.0-29.9 kg/m2 310 (43.00) 

30.0-34.9 kg/m2 219 (30.37) 

35.0-39.9 kg/m2 116 (16.09) 

≥ 40.0 kg/m2 76 (10.54) 

Caucasian: n (%) 659 (91.40) 

Nulliparous: n (%) 298 (41.33) 

Smoker: n (%) 67 (9.29) 

SEIFA IRSD Quintile: n (%)  

Most disadvantaged Quintile 1 199 (27.60) 

Quintile 2 174 (24.13) 

Quintile 3 117 (16.23) 

Quintile 4 116 (16.09) 

Least disadvantaged Quintile 5 115 (15.95) 
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4.4.2 Healthy Eating Index (HEI) 

There were no consistent associations between HEI and fetal biometry, MTFM, MTLM 

or AFM (Table 4.2). There was a negative association between HEI and SSFM at 28 

weeks, whereby a 10-unit increase in HEI reduced SSFM by 0.17mm (95% CI -0.32 to 

-0.03; p=0.021).  

 

4.4.3 Log Total Energy 

Total Energy was log-transformed for analysis due to substantial right skew. There 

were no associations between log total energy and AC, EFW, all fetal biometry z-

scores, MTFM, AFM or SSFM (Table 4.3). There was a negative association with log 

total energy and biometry measurements of BPD and HC at 36 weeks, such that a 10 

unit increase in log total energy reduced BPD by 1.48 mm (95% CI: -2.55mm, -

0.40mm; p=0.007) and HC by 4.07mm (95% CI: -7.6mm, -0.54mm; p=0.024).  

 

At 28 and 36 weeks gestation, there were negative associations between log total energy 

and MTLM, such that a 10-unit increase in log total energy reduced MTLM by 4.94mm 

(95% CI: -9.57mm, -0.32mm; p =0.036) at 28 weeks; and by 7.02mm (95% CI: -

13.69mm, -0.35mm; p=0.039) at 36 weeks.  

 

4.4.4 Glycaemic Index 

There were no associations between maternal Glycaemic Index and fetal biometry 

including HC, FL, AC and EFW, related z-scores and adiposity measures (Table 4.4). 

A negative association was identified between Glycaemic Index and fetal BPD and its 

z-score, such that a 10-unit increase in Glycaemic Index reduced BPD by 0.11 mm 
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(95% CI: -0.21mm, -0.01mm; p=0.035), and BPD z-score by 0.35 (95% CI: -0.69, -

0.01; p=0.045) at 28 weeks.  

 

4.4.5 Glycaemic Load 

There were no consistent associations between dietary glycaemic load and fetal 

biometry, z-scores or adiposity measures at either 28 or 36 weeks (Table 4.5). 

 

4.4.6 Fat, carbohydrate and protein as a percent of total energy 

There were no associations identified between fat (Table 4.6), carbohydrate (Table 4.7) 

or protein (Table 4.8) as a percentage of total energy and fetal ultrasound 

measurements.   
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Table 4.2: Healthy Eating Index and fetal ultrasound measurements 

Outcome Unadjusted 
Estimate (95% CI) 

Unadj 
p value 

Adjusted Estimate 
(95% CI) 

Adjusted  
p value 

BPD  0.992†  0.968† 

28 weeks -0.03 (-0.08, 0.02) 0.239 -0.03 (-0.08, 0.02) 0.221 

36 weeks -0.03 (-0.08, 0.02) 0.235 -0.03 (-0.08, 0.02) 0.234 

BPD z-score  0.728†  0.645† 

28 weeks -0.13 (-0.29, 0.04) 0.128 -0.13 (-0.30, 0.03) 0.117 

36 weeks -0.10 (-0.24, 0.04) 0.166 -0.09 (-0.24, 0.05) 0.194 

HC  0.060†  0.064† 

28 weeks -0.06 (-0.22, 0.09) 0.425 -0.08 (-0.24, 0.08) 0.305 

36 weeks 0.10 (-0.05, 0.09) 0.194 0.08 (-0.08, 0.24) 0.313 

HC z-score  0.026†  0.025† 

28 weeks -0.06 (-0.17, 0.05) 0.317 -0.07 (-0.18, 0.04) 0.210 

36 weeks 0.08 (-0.03, 0.05) 0.161 0.07 (-0.05, 0.18) 0.247 

FL  0.168†  0.211† 

28 weeks -0.02 (-0.06, 0.02) 0.283 -0.02 (-0.06, 0.02) 0.232 

36 weeks 0.01 (-0.03, 0.02) 0.646 0.00 (-0.03, 0.04) 0.855 

FL z-score  0.097†  0.116† 

28 weeks -0.09 (-0.20, 0.03) 0.154 -0.09 (-0.21, 0.03) 0.131 

36 weeks 0.02 (-0.09, 0.03) 0.678 0.01 (-0.10, 0.13) 0.817 

AC  0.927†  0.976† 

28 weeks -0.07 (-0.28, 0.13) 0.484 -0.13 (-0.33, 0.07) 0.210 

36 weeks -0.06 (-0.32, 0.13) 0.637 -0.13 (-0.38, 0.13) 0.338 

AC z-score  0.712†  0.691† 

28 weeks -0.03 (-0.14, 0.09) 0.660 -0.06 (-0.18, 0.05) 0.264 

36 weeks -0.05 (-0.18, 0.09) 0.471 -0.09 (-0.22, 0.04) 0.193 

EFW  0.512†  0.562† 

28 weeks -22.42 (-52.33, 7.48) 0.142 -30.24 (-60.55, 0.07) 0.051 

36 weeks -6.80 (-58.91, 7.48) 0.798 -16.24 (-68.74, 36.27) 0.544 
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EFW z-score  0.344†  0.366† 

28 weeks -0.08 (-0.18, 0.03) 0.170 -0.10 (-0.21, 0.01) 0.063 

36 weeks -0.02 (-0.14, 0.03) 0.723 -0.05 (-0.17, 0.07) 0.415 

MTLM  0.742†  0.891† 

28 weeks -0.07 (-0.25, 0.10) 0.417 -0.08 (-0.26, 0.09) 0.361 

36 weeks -0.12 (-0.36, 0.10) 0.341 -0.10 (-0.35, 0.15) 0.425 

MTFM  0.239†  0.263† 

28 weeks -0.10 (-0.33, 0.12) 0.370 -0.09 (-0.32, 0.14) 0.444 

36 weeks -0.39 (-0.90, 0.12) 0.141 -0.37 (-0.90, 0.17) 0.177 

AFM  0.377†  0.431† 

28 weeks -0.07 (-0.23, 0.08) 0.357 -0.12 (-0.29, 0.04) 0.141 

36 weeks -0.17 (-0.41, 0.08) 0.152 -0.21 (-0.44, 0.02) 0.075 

SSFM  0.824†  0.930† 

28 weeks -0.14 (-0.28, 0.00) 0.053 -0.17 (-0.32, -0.03) 0.021 

36 weeks -0.17 (-0.39, 0.00) 0.141 -0.18 (-0.41, 0.04) 0.115 
 

Notes: † denotes p value for test of interaction between HEI and time. Estimates are difference in mean 
fetal measure (95% CI) corresponding to a 10 unit increase in HEI score. Unadj = Unadjusted.  
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Table 4.3: Log Total Energy and fetal ultrasound measurements 

Outcome Unadjusted Estimate 
(95% CI) 

Unadj 
p value 

Adjusted Estimate 
(95% CI) 

Adj 
p value 

BPD  0.116†  0.099† 

28 weeks -0.31 (-1.48, 0.86) 0.603 -0.36 (-1.55, 0.82) 0.547 

36 weeks -1.36 (-2.43, 0.86) 0.012 -1.48 (-2.55, -0.40) 0.007 

BPD z-score  0.417†  0.477† 

28 weeks -0.34 (-4.39, 3.71) 0.869 -0.59 (-4.71, 3.54) 0.780 

36 weeks -2.14 (-5.59, 3.71) 0.225 -2.18 (-5.70, 1.35) 0.226 

HC  0.260†  0.169† 

28 weeks -0.90 (-5.01, 3.22) 0.669 -0.72 (-4.84, 3.40) 0.732 

36 weeks -3.64 (-7.17, 3.22) 0.043 -4.07 (-7.60, -0.54) 0.024 

HC z-score  0.390†  0.347† 

28 weeks 0.52 (-2.27, 3.31) 0.716 0.67 (-2.18, 3.52) 0.647 

36 weeks -0.83 (-3.33, 3.31) 0.519 -0.83 (-3.36, 1.71) 0.524 

FL  0.657†  0.570† 

28 weeks -0.20 (-1.17, 0.76) 0.680 -0.22 (-1.20, 0.75) 0.653 

36 weeks -0.47 (-1.40, 0.76) 0.327 -0.56 (-1.52, 0.39) 0.248 

FL z-score  0.785†  0.762† 

28 weeks 0.02 (-2.92, 2.97) 0.988 -0.06 (-3.07, 2.96) 0.970 

36 weeks 0.51 (-2.59, 2.97) 0.746 0.49 (-2.67, 3.65) 0.762 

AC  0.246†  0.181† 

28 weeks -0.21 (-5.45, 5.04) 0.938 0.81 (-4.23, 5.85) 0.753 

36 weeks -3.83 (-9.40, 5.04) 0.178 -3.34 (-8.86, 2.19) 0.236 

AC z-score  0.860†  0.815† 

28 weeks 0.44 (-2.27, 3.16) 0.748 1.14 (-1.51, 3.78) 0.399 

36 weeks 0.18 (-2.73, 3.16) 0.905 0.78 (-2.16, 3.72) 0.603 

EFW  0.082†  0.059† 

28 weeks 130.32 (-598.56, 859.21) 0.726 204.16 (-512.19, 920.51) 0.576 

36 weeks -887.76 (-2026.25,859.21) 0.126 -901.31 (-2028.21, 225.59) 0.117 
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EFW z-score  0.305†  0.300† 

28 weeks 1.14 (-1.32, 3.59) 0.364 1.47 (-0.96, 3.91) 0.236 

36 weeks -0.29 (-2.85, 3.59) 0.825 0.01 (-2.58, 2.61) 0.991 

MTLM  0.495†  0.574† 

28 weeks -4.56 (-9.20, 0.08) 0.054 -4.94 (-9.57, -0.32) 0.036 

36 weeks -7.07 (-13.69, 0.08) 0.037 -7.02 (-13.69, -0.35) 0.039 

MTFM  0.812†  0.795† 

28 weeks -0.90 (-6.35, 4.55) 0.746 -1.76 (-7.35, 3.83) 0.538 

36 weeks 0.46 (-10.91, 4.55) 0.937 -0.25 (-11.82, 11.31) 0.966 

AFM  0.563†  0.603† 

28 weeks -1.00 (-5.03, 3.03) 0.627 -0.59 (-4.65, 3.48) 0.777 

36 weeks 0.88 (-5.59, 3.03) 0.791 1.10 (-5.27, 7.47) 0.734 

SSFM  0.779†  0.760† 

28 weeks 2.72 (-0.73, 6.17) 0.122 3.23 (-0.22, 6.69) 0.067 

36 weeks 1.88 (-3.72, 6.17) 0.511 2.32 (-3.26, 7.90) 0.416 
 

Notes: † denotes p value for test of interaction between HEI and time. Estimates are difference in mean 
fetal measure (95% CI) corresponding to a 10 unit increase in HEI score. Unadj = Unadjusted. Adj = 
Adjusted.  
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Table 4.4: Glycaemic Index and fetal ultrasound measurements 

Outcome Unadjusted Estimate 
(95% CI) 

Unadj   
p value 

Adjusted Estimate 
(95% CI) 

Adjusted   
p value 

BPD  0.079†  0.060† 

28 weeks -0.12 (-0.21, -0.02) 0.021 -0.11 (-0.21, -0.01) 0.035 

36 weeks -0.01 (-0.11, -0.02) 0.876 0.01 (-0.09, 0.11) 0.885 

BPD z-score  0.075†  0.083† 

28 weeks -0.36 (-0.70, -0.02) 0.037 -0.35 (-0.69, -0.01) 0.045 

36 weeks -0.03 (-0.31, -0.02) 0.812 -0.03 (-0.31, 0.25) 0.833 

HC  0.601†  0.620† 

28 weeks -0.19 (-0.54, 0.16) 0.288 -0.14 (-0.50, 0.21) 0.422 

36 weeks -0.08 (-0.42, 0.16) 0.642 -0.04 (-0.38, 0.30) 0.816 

HC z-score  0.652†  0.540† 

28 weeks 0.02 (-0.22, 0.26) 0.880 0.04 (-0.20, 0.29) 0.724 

36 weeks -0.04 (-0.27, 0.26) 0.709 -0.04 (-0.26, 0.18) 0.723 

FL  0.729†  0.634† 

28 weeks -0.05 (-0.13, 0.03) 0.250 -0.05 (-0.13, 0.03) 0.236 

36 weeks -0.03 (-0.12, 0.03) 0.521 -0.02 (-0.11, 0.07) 0.595 

FL z-score  0.904†  0.931† 

28 weeks -0.03 (-0.29, 0.23) 0.820 -0.04 (-0.30, 0.23) 0.790 

36 weeks -0.01 (-0.31, 0.23) 0.949 -0.02 (-0.32, 0.27) 0.891 

AC  0.185†  0.158† 

28 weeks -0.24 (-0.66, 0.17) 0.248 -0.23 (-0.63, 0.17) 0.257 

36 weeks 0.10 (-0.34, 0.17) 0.649 0.13 (-0.30, 0.57) 0.556 

AC z-score  0.151†  0.182† 

28 weeks -0.09 (-0.31, 0.13) 0.422 -0.09 (-0.31, 0.12) 0.383 

36 weeks 0.09 (-0.12, 0.13) 0.396 0.07 (-0.14, 0.28) 0.491 

EFW  0.583†  0.551† 

28 weeks -18.94 (-79.38, 41.50) 0.539 -17.21 (-77.32, 42.90) 0.575 

36 weeks 8.76 (-89.14, 41.50) 0.861 12.58 (-84.02, 109.19) 0.799 
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EFW z-score  0.212†  0.247† 

28 weeks -0.11 (-0.33, 0.10) 0.314 -0.11 (-0.32, 0.10) 0.316 

36 weeks 0.03 (-0.17, 0.10) 0.749 0.02 (-0.18, 0.22) 0.813 

MTLM  0.706†  0.686† 

28 weeks 0.11 (-0.25, 0.46) 0.548 0.13 (-0.22, 0.49) 0.462 

36 weeks -0.02 (-0.63, 0.46) 0.950 -0.00 (-0.61, 0.61) 0.993 

MTFM  0.015†  0.025† 

28 weeks -0.36 (-0.80, 0.07) 0.104 -0.34 (-0.77, 0.10) 0.133 

36 weeks 0.79 (-0.12, 0.07) 0.089 0.74 (-0.18, 1.65) 0.116 

AFM  0.115†  0.150† 

28 weeks -0.11 (-0.41, 0.19) 0.475 -0.13 (-0.44, 0.18) 0.415 

36 weeks 0.34 (-0.19, 0.19) 0.211 0.28 (-0.24, 0.81) 0.291 

SSFM  0.215†  0.176† 

28 weeks -0.06 (-0.35, 0.22) 0.661 -0.07 (-0.35, 0.22) 0.639 

36 weeks 0.25 (-0.21, 0.22) 0.287 0.28 (-0.19, 0.75) 0.248 
	

Notes: † denotes p value for test of interaction between Glycaemic index and time. Estimates are 
difference in mean fetal measure (95% CI) corresponding to a 10 unit increase in Glycaemic index score. 
Unadj = Unadjusted. 
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Table 4.5: Glycaemic load and fetal ultrasound measurements 

Outcome Unadjusted Estimate 
(95% CI) 

Unadj       
p value 

Adjusted Estimate 
(95% CI) 

Adjusted    
p value 

BPD  0.567†  0.490† 

28 weeks -0.00 (-0.01, 0.00) 0.251 -0.00 (-0.01, 0.00) 0.276 

36 weeks -0.01 (-0.01, 0.00) 0.063 -0.01 (-0.01, 0.00) 0.054 

BPD z-score  0.821†  0.831† 

28 weeks -0.01 (-0.04, 0.01) 0.227 -0.01 (-0.04, 0.01) 0.227 

36 weeks -0.01 (-0.03, 0.01) 0.295 -0.01 (-0.03, 0.01) 0.291 

HC  0.562†  0.374† 

28 weeks -0.01 (-0.03, 0.02) 0.530 -0.01 (-0.03, 0.02) 0.683 

36 weeks -0.02 (-0.04, 0.02) 0.137 -0.02 (-0.04, 0.00) 0.102 

HC z-score  0.606†  0.479† 

28 weeks 0.00 (-0.02, 0.02) 0.964 0.00 (-0.02, 0.02) 0.808 

36 weeks -0.01 (-0.02, 0.02) 0.557 -0.01 (-0.02, 0.01) 0.539 

FL  0.827†  0.737† 

28 weeks -0.00 (-0.01, 0.01) 0.698 -0.00 (-0.01, 0.01) 0.762 

36 weeks -0.00 (-0.01, 0.01) 0.471 -0.00 (-0.01, 0.00) 0.437 

FL z-score  0.676†  0.674† 

28 weeks -0.00 (-0.02, 0.02) 0.923 -0.00 (-0.02, 0.02) 0.965 

36 weeks 0.00 (-0.02, 0.02) 0.688 0.00 (-0.01, 0.02) 0.653 

AC  0.492†  0.391† 

28 weeks -0.00 (-0.04, 0.03) 0.837 0.00 (-0.03, 0.04) 0.814 

36 weeks -0.02 (-0.05, 0.03) 0.340 -0.01 (-0.05, 0.02) 0.465 

AC z-score  0.861†  0.969† 

28 weeks 0.00 (-0.02, 0.02) 0.973 0.00 (-0.01, 0.02) 0.548 

36 weeks 0.00 (-0.02, 0.02) 0.835 0.01 (-0.01, 0.02) 0.604 

EFW  0.181†  0.145† 

28 weeks 0.93 (-3.72, 5.59) 0.694 1.66 (-2.95, 6.27) 0.481 

36 weeks -4.15 (-11.63, 5.59) 0.276 -3.95 (-11.48, 3.58) 0.304 
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EFW z-score  0.636†  0.567† 

28 weeks 0.00 (-0.01, 0.02) 0.717 0.01 (-0.01, 0.02) 0.459 

36 weeks -0.00 (-0.02, 0.02) 0.857 0.00 (-0.02, 0.02) 0.980 

MTLM  0.406†  0.462† 

28 weeks -0.02 (-0.05, 0.00) 0.098 -0.02 (-0.05, 0.00) 0.093 

36 weeks -0.04 (-0.08, 0.00) 0.052 -0.04 (-0.08, 0.00) 0.064 

MTFM  0.252†  0.264† 

28 weeks -0.02 (-0.05, 0.01) 0.262 -0.02 (-0.05, 0.01) 0.215 

36 weeks 0.02 (-0.05, 0.01) 0.522 0.02 (-0.05, 0.10) 0.578 

AFM  0.278†  0.326† 

28 weeks 0.00 (-0.02, 0.03) 0.891 0.00 (-0.02, 0.03) 0.721 

36 weeks 0.02 (-0.02, 0.03) 0.244 0.03 (-0.02, 0.07) 0.223 

SSFM  0.737†  0.757† 

28 weeks 0.01 (-0.01, 0.04) 0.185 0.02 (-0.00, 0.04) 0.106 

36 weeks 0.02 (-0.01, 0.04) 0.239 0.02 (-0.01, 0.06) 0.189 
	

Notes: † denotes p value for test of interaction between Glycaemic load and time. Estimates are 
difference in mean fetal measure (95% CI) corresponding to a 10 unit increase in Glycaemic load score. 
Unadj = Unadjusted 
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Table 4.6: Fat as a percentage of total energy and fetal ultrasound measurements 

Outcome Unadjusted Estimate 
(95% CI) 

Unadj 
p value 

Adjusted Estimate 
(95% CI) 

Adjusted 
p value 

BPD  0.593†  0.646† 

28 weeks 0.04 (-0.05, 0.12) 0.396 0.04 (-0.05, 0.12) 0.418 

36 weeks 0.01 (-0.08, 0.12) 0.841 0.01 (-0.08, 0.10) 0.793 

BPD z-score  0.387†  0.507† 

28 weeks 0.21 (-0.08, 0.50) 0.152 0.17 (-0.12, 0.46) 0.238 

36 weeks 0.08 (-0.16, 0.50) 0.524 0.07 (-0.17, 0.31) 0.560 

HC  0.083†  0.123† 

28 weeks 0.16 (-0.12, 0.44) 0.255 0.18 (-0.11, 0.46) 0.228 

36 weeks -0.13 (-0.39, 0.44) 0.318 -0.09 (-0.35, 0.17) 0.499 

HC z-score  0.016†  0.033† 

28 weeks 0.22 (0.01, 0.43) 0.036 0.21 (-0.00, 0.43) 0.053 

36 weeks -0.05 (-0.23, 0.43) 0.570 -0.03 (-0.21, 0.14) 0.714 

FL  0.413†  0.560† 

28 weeks 0.00 (-0.07, 0.07) 0.896 0.00 (-0.07, 0.07) 0.950 

36 weeks -0.03 (-0.10, 0.07) 0.381 -0.02 (-0.09, 0.04) 0.514 

FL z-score  0.414†  0.577† 

28 weeks 0.06 (-0.15, 0.28) 0.563 0.03 (-0.19, 0.24) 0.808 

36 weeks -0.04 (-0.26, 0.28) 0.683 -0.05 (-0.26, 0.17) 0.664 

AC  0.556†  0.609† 

28 weeks -0.02 (-0.37, 0.33) 0.920 0.03 (-0.32, 0.39) 0.853 

36 weeks -0.15 (-0.53, 0.33) 0.428 -0.08 (-0.46, 0.29) 0.660 

AC z-score  0.968†  0.806† 

28 weeks -0.02 (-0.21, 0.16) 0.799 -0.01 (-0.20, 0.18) 0.922 

36 weeks -0.02 (-0.21, 0.16) 0.833 0.02 (-0.17, 0.20) 0.851 

EFW  0.253†  0.307† 

28 weeks 14.86 (-35.95, 65.68) 0.566 18.79 (-33.86, 71.44) 0.484 

36 weeks -34.32 (-113.89, 65.68) 0.398 -25.56 (-104.88, 53.76) 0.528 
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EFW z-score  0.308†  0.477† 

28 weeks 0.05 (-0.12, 0.22) 0.567 0.05 (-0.13, 0.22) 0.610 

36 weeks -0.05 (-0.21, 0.22) 0.551 -0.02 (-0.19, 0.14) 0.771 

MTLM  0.446†  0.372† 

28 weeks 0.07 (-0.26, 0.40) 0.669 0.09 (-0.25, 0.44) 0.602 

36 weeks -0.15 (-0.67, 0.40) 0.565 -0.18 (-0.70, 0.35) 0.511 

MTFM  0.287†  0.284† 

28 weeks 0.03 (-0.38, 0.44) 0.882 0.04 (-0.38, 0.47) 0.837 

36 weeks -0.40 (-1.12, 0.44) 0.281 -0.39 (-1.12, 0.33) 0.290 

AFM  0.049†  0.060† 

28 weeks 0.01 (-0.26, 0.29) 0.917 0.06 (-0.24, 0.36) 0.709 

36 weeks -0.46 (-0.90, 0.29) 0.041 -0.39 (-0.82, 0.04) 0.075 

SSFM  0.368†  0.295† 

28 weeks 0.15 (-0.08, 0.37) 0.200 0.17 (-0.06, 0.40) 0.144 

36 weeks -0.03 (-0.39, 0.37) 0.863 -0.04 (-0.40, 0.32) 0.829 
	

Notes: † denotes p value for test of interaction between fat as a percentage of total energy and time. 
Estimates are difference in mean fetal measure (95% CI) corresponding to a 10 unit increase in fat as a 
percentage of total energy. Unadj = Unadjusted 



 

	 103	

Table 4.7: Carbohydrate as a percentage of total energy and fetal ultrasound 

Outcome Unadjusted Estimate 
(95% CI) 

Unadj  
p value 

Adjusted Estimate 
(95% CI) 

Adjusted 
p value 

BPD  0.339†  0.381† 

28 weeks -0.03 (-0.10, 0.05) 0.482 -0.02 (-0.09, 0.06) 0.634 

36 weeks 0.02 (-0.05, 0.05) 0.653 0.02 (-0.05, 0.09) 0.554 

BPD z-score  0.156†  0.241† 

28 weeks -0.16 (-0.38, 0.05) 0.143 -0.13 (-0.35, 0.09) 0.262 

36 weeks 0.01 (-0.17, 0.05) 0.883 0.02 (-0.16, 0.21) 0.819 

HC  0.199†  0.306† 

28 weeks -0.08 (-0.31, 0.15) 0.499 -0.05 (-0.28, 0.19) 0.685 

36 weeks 0.10 (-0.11, 0.15) 0.354 0.09 (-0.11, 0.29) 0.374 

HC z-score  0.099†  0.188† 

28 weeks -0.10 (-0.26, 0.05) 0.200 -0.08 (-0.24, 0.08) 0.331 

36 weeks 0.05 (-0.09, 0.05) 0.503 0.04 (-0.10, 0.18) 0.562 

FL  0.849†  0.816† 

28 weeks 0.02 (-0.04, 0.08) 0.480 0.03 (-0.03, 0.08) 0.336 

36 weeks 0.01 (-0.03, 0.08) 0.579 0.02 (-0.03, 0.07) 0.415 

FL z-score  0.996†  0.943† 

28 weeks 0.04 (-0.13, 0.20) 0.652 0.07 (-0.10, 0.23) 0.432 

36 weeks 0.04 (-0.12, 0.20) 0.651 0.06 (-0.10, 0.22) 0.470 

AC  0.913†  0.782† 

28 weeks 0.05 (-0.26, 0.35) 0.771 0.10 (-0.21, 0.41) 0.532 

36 weeks 0.03 (-0.25, 0.35) 0.853 0.05 (-0.23, 0.33) 0.729 

AC z-score  0.751†  0.482† 

28 weeks 0.03 (-0.12, 0.18) 0.732 0.06 (-0.09, 0.21) 0.420 

36 weeks -0.00 (-0.14, 0.18) 0.983 -0.00 (-0.14, 0.14) 0.994 

EFW  0.962†  0.976† 

28 weeks 7.29 (-36.60, 51.19) 0.745 16.48 (-28.72, 61.67) 0.475 

36 weeks 8.87 (-50.10, 51.19) 0.768 15.46 (-43.22, 74.14) 0.606 
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EFW z-score  0.777†  0.953† 

28 weeks 0.00 (-0.13, 0.14) 0.979 0.04 (-0.10, 0.17) 0.611 

36 weeks 0.03 (-0.10, 0.14) 0.699 0.03 (-0.10, 0.16) 0.643 

MTLM  0.867†  0.838† 

28 weeks -0.06 (-0.33, 0.20) 0.639 -0.04 (-0.31, 0.23) 0.783 

36 weeks -0.02 (-0.40, 0.20) 0.901 0.01 (-0.37, 0.39) 0.961 

MTFM  0.406†  0.406† 

28 weeks -0.10 (-0.44, 0.24) 0.558 -0.07 (-0.41, 0.27) 0.683 

36 weeks 0.17 (-0.41, 0.24) 0.563 0.20 (-0.38, 0.79) 0.495 

AFM  0.118†  0.173† 

28 weeks 0.04 (-0.18, 0.26) 0.732 0.06 (-0.17, 0.28) 0.614 

36 weeks 0.32 (-0.00, 0.26) 0.051 0.30 (-0.02, 0.62) 0.062 

SSFM  0.800†  0.836† 

28 weeks 0.00 (-0.18, 0.18) 0.966 0.01 (-0.17, 0.19) 0.879 

36 weeks 0.04 (-0.23, 0.18) 0.755 0.05 (-0.23, 0.32) 0.738 
	

Notes: † denotes p value for test of interaction between carbohydrate as a percentage of total energy and 
time. Estimates are difference in mean fetal measure (95% CI) corresponding to a 10 unit increase in 
carbohydrate as a percentage of total energy. Unadj = Unadjusted 
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Table 4.8: Protein as a percentage of total energy and fetal ultrasound measures 

Outcome Unadjusted Estimate 
(95% CI) 

Unadj 
p value 

Adjusted Estimate 
(95% CI) 

Adjusted 
p value 

BPD  0.507†  0.546† 

28 weeks 0.01 (-0.10, 0.11) 0.921 -0.01 (-0.11, 0.10) 0.914 

36 weeks -0.03 (-0.12, 0.11) 0.466 -0.04 (-0.13, 0.05) 0.361 

BPD z-score  0.153†  0.210† 

28 weeks 0.13 (-0.18, 0.44) 0.414 0.10 (-0.21, 0.42) 0.522 

36 weeks -0.10 (-0.35, 0.44) 0.400 -0.11 (-0.35, 0.14) 0.399 

HC  0.991†  0.802† 

28 weeks -0.05 (-0.38, 0.27) 0.755 -0.12 (-0.45, 0.22) 0.489 

36 weeks -0.05 (-0.33, 0.27) 0.723 -0.07 (-0.34, 0.20) 0.618 

HC z-score  0.983†  0.806† 

28 weeks -0.05 (-0.26, 0.16) 0.621 -0.08 (-0.30, 0.13) 0.440 

36 weeks -0.05 (-0.23, 0.16) 0.588 -0.05 (-0.24, 0.13) 0.567 

FL  0.212†  0.269† 

28 weeks -0.06 (-0.14, 0.02) 0.143 -0.06 (-0.14, 0.01) 0.110 

36 weeks 0.00 (-0.07, 0.02) 0.994 -0.01 (-0.08, 0.05) 0.692 

FL z-score  0.499†  0.633† 

28 weeks -0.14 (-0.37, 0.09) 0.224 -0.14 (-0.36, 0.09) 0.235 

36 weeks -0.04 (-0.26, 0.09) 0.719 -0.07 (-0.29, 0.15) 0.547 

AC  0.264†  0.187† 

28 weeks -0.16 (-0.60, 0.29) 0.490 -0.29 (-0.74, 0.16) 0.208 

36 weeks 0.13 (-0.28, 0.29) 0.531 0.06 (-0.35, 0.47) 0.785 

AC z-score  0.501†  0.281† 

28 weeks -0.06 (-0.27, 0.15) 0.584 -0.13 (-0.34, 0.08) 0.211 

36 weeks 0.02 (-0.18, 0.15) 0.839 -0.00 (-0.21, 0.21) 0.992 

EFW  0.175†  0.173† 

28 weeks -40.93 (-105.51, 23.64) 0.214 -56.34 (-123.01, 10.33) 0.098 

36 weeks 22.54 (-62.18, 23.64) 0.602 7.75 (-76.06, 91.57) 0.856 
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EFW z-score  0.478†  0.351† 

28 weeks -0.09 (-0.28, 0.10) 0.350 -0.14 (-0.33, 0.05) 0.155 

36 weeks -0.01 (-0.20, 0.10) 0.915 -0.03 (-0.22, 0.16) 0.753 

MTLM  0.433†  0.395† 

28 weeks 0.09 (-0.26, 0.44) 0.617 0.05 (-0.31, 0.41) 0.800 

36 weeks 0.33 (-0.18, 0.44) 0.201 0.31 (-0.19, 0.81) 0.227 

MTFM  0.833†  0.823† 

28 weeks 0.08 (-0.35, 0.51) 0.711 0.07 (-0.37, 0.51) 0.765 

36 weeks -0.02 (-0.91, 0.51) 0.968 -0.04 (-0.93, 0.85) 0.932 

AFM  0.467†  0.661† 

28 weeks -0.10 (-0.41, 0.22) 0.548 -0.17 (-0.49, 0.14) 0.288 

36 weeks -0.26 (-0.68, 0.22) 0.216 -0.27 (-0.68, 0.14) 0.194 

SSFM  0.872†  0.736† 

28 weeks -0.18 (-0.44, 0.09) 0.189 -0.21 (-0.48, 0.05) 0.119 

36 weeks -0.14 (-0.57, 0.09) 0.524 -0.13 (-0.55, 0.29) 0.550 
 

Notes: † denotes p value for test of interaction between time and Protein as a percentage of total energy. 
Estimates are difference in mean fetal measure (95% CI) corresponding to a 10 unit increase in 
carbohydrate as a percentage of total energy. Unadj = Unadjusted 
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4.5 Discussion 

The objective of this secondary exploratory analysis was to determine if maternal 

dietary factors were associated with fetal body composition in women entering 

pregnancy overweight or obese. This study identified that an increase in total energy of 

the maternal diet was associated with a reduction in mid-thigh lean mass of the fetus. 

Secondly, an increase in the Healthy Eating Index was associated with a reduction in 

the subscapular fat mass. While these individual associations were statistically 

significant, the actual differences were of small magnitude and were unlikely to be of 

clinical significance. Overall, no consistent associations between maternal diet and fetal 

growth or adiposity were identified.  

 

This is the first study to describe the relationship between maternal dietary factors and 

fetal body composition in women entering pregnancy overweight and obese. There has 

been one study to describe the maternal dietary factors and fetal adiposity 

measurements in 179 women with a normal BMI (Blumfield et al. 2012). While this 

study utilised food frequency questionnaires, dietary variables were reported in a 

different manner, including a derived ratio comparing protein and carbohydrate, and 

poly-unsaturated fatty acids as a percentage of energy intake. The authors also 

described different ultrasound techniques and measurements of fetal adiposity 

(Blumfield et al. 2012). Women with lower dietary protein intake demonstrated higher 

abdominal wall adiposity, while fetal thigh adiposity was greatest among women whose 

diet consisted of low carbohydrate, intermediate protein and high fat intake (Blumfield 

et al. 2012). 
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The vast majority of the available literature describes associations between maternal 

dietary factors and neonatal and infant body composition (Moore et al. 2004, Chen et 

al. 2016, Brei et al. 2018), and birth weight (Renault et al. 2015, Crume et al. 2016, 

Sharma et al. 2018), with variable methodology and inconsistent findings (Chen et al. 

2016, Chia et al. 2016). A possible explanation for the lack of association identified in 

the current study and inconsistent findings within the literature may relate to the timing 

of the dietary assessment in the early 2nd trimester (Moore et al. 2004, Hauner et al. 

2009, Renault et al. 2015, Brei et al. 2018). Dietary assessment between 8 and 12 weeks 

identified that carbohydrate consumption was associated with increases in birth weight, 

whereas fat intake was associated with lower birth weight (Sharma et al. 2018).  

 

Strengths of the current study include the large sample size of overweight or obese 

pregnant women, use of robust methodology (Dodd et al. 2014a), including the first to 

evaluate the effect of maternal dietary factors on fetal biometry and adiposity. A 

limitation is the reliance on self-reported measurement of maternal dietary intake. 

Dietary analysis is subject to multiple biases including measurement error, recall bias 

related to the food questionnaire, along with reporting bias. Additionally, a comparator 

group of women entering pregnancy with a normal BMI would have enabled 

comparison of the effects of maternal dietary intake on fetal growth patterns across the 

BMI spectrum. 

 

Several randomised trials have identified improvements in maternal dietary patterns 

during pregnancy following provision of a lifestyle intervention (Luoto et al. 2011, 

Renault et al. 2014, Dodd et al. 2014a, Dodd et al. 2014c, Poston et al. 2015, Geraghty 

et al. 2016). The LIMIT trial demonstrated that the provision of the antenatal lifestyle 
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and dietary intervention improved women’s intake of fibre, saturated fat, fruits and 

vegetables and micronutrient intake, although did not impact overall energy intake 

(Dodd et al. 2014c). Other trials have also shown significant improvements in maternal 

diet, physical activity (Luoto et al. 2011, Dodd et al. 2014c, Poston et al. 2015, Geraghty 

et al. 2016) and insulin resistance (Vinter et al. 2011, Geraghty et al. 2016) 

 

While individual trials conducted in overweight and obese pregnant women have 

described positive effects on maternal dietary and lifestyle behaviours (Flynn et al. 

2016), intervention trials overall have generated disappointing results in terms of 

clinical pregnancy and birth outcomes. Whether relatively modest improvements in 

maternal diet are sufficient to impact fetal adiposity measures, which themselves are 

relatively insensitive indices, remains to be determined (Rogozinska et al. 2017a, 

Rogozinska et al. 2017b). Furthermore, there is evidence to suggest that fetal growth 

and adiposity may be programmed much earlier in gestation than current interventions 

have targeted (Jahan-Mihan et al. 2015), highlighting the importance of optimal diet 

and maternal weight prior to conception (Opray et al. 2015, Hanson et al. 2016, Godfery 

et al. 2017, Hanson et al. 2017).  

 

4.6 Conclusions 

Among overweight and obese pregnant women in this study, maternal dietary measures 

were not consistently associated with fetal body composition. 
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CHAPTER 5:  The impact of maternal cardiometabolic and 

inflammatory markers on fetal growth 

 

This chapter forms the basis of a manuscript currently under peer review (O’Brien CM et al 

BMC Obesity), which is contained in Appendix 4. 		

 

5.1 Introduction 

There are well-recognised associations between obesity in pregnancy and maternal, fetal and 

neonatal health outcomes (Cedergren 2006) and clear longer-term associations between 

maternal obesity, fetal overgrowth, high infant birth weight, and subsequent childhood obesity 

(Yu et al. 2013). While these associations are well defined, there has been limited exploration 

of the potential pathways leading to fetal overgrowth, adiposity and subsequent childhood 

obesity.  These include maternal cardiometabolic hormones such as leptin, adiponectin, 

triglycerides, and fatty acids, along with inflammatory markers.   

 

5.2 Aims  

The aim of this study was to evaluate associations between maternal cardiometabolic and 

inflammatory markers and ultrasound assessed fetal growth and adiposity measures.  
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5.3 Methods 

The research methodology (Dodd et al. 2011, Dodd et al. 2014a, Dodd et al. 2014c) of the 

LIMIT randomised controlled trial have been outlined in Chapter 2, as has the methodology 

relating to ultrasound assessment of fetal biometry and adiposity. 

 

5.3.1 Cardiometabolic and Inflammatory Markers 

Maternal blood samples were obtained at trial entry, 28 and 36 weeks gestation for assessment 

of cardiometabolic and inflammatory markers. The methodology has been previously 

described in detail (Moran et al. 2017). At 28 weeks, a fasting maternal plasma sample was 

collected and the following cardiometabolic markers were measured at trial entry, 28 and 36 

weeks gestation; total cholesterol, triglycerides, non-esterified fatty acids (NEFA), high-

density lipoprotein cholesterol, insulin, glucose, leptin, adiponectin and CRP. At 36 weeks, a 

non-fasting maternal plasma sample was collected and total cholesterol, triglycerides, non-

esterified fatty acids (NEFA), high-density lipoprotein cholesterol, insulin, glucose, leptin, 

adiponectin and CRP were measured. 

 

The majority (glucose, cholesterol, HDL-C, triglycerides, NEFA and CRP) were measured 

using Roche Diagnostics commercial kits (Australia) and non-esterified fatty acids were 

measured using Wako Pure Chemical Industries (Japan). All assays were performed on the 

automated Hitachi Auto 912 analyser or Cobas Integra 400 Plus with appropriate calibrators 

and quality controls (Roche for Roche assays and Wako standard and Sero QC’s for the NEFA 

C assay). Plasma leptin (in singulate; HL-81 K; Millipore, St. Charles, MO, USA) and 

adiponectin (in singulate; HADP-61HK; Millipore, St. Charles, MO, USA) were determined 

by double antibody radioimmunoassay following the methods from the supplier.  
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5.3.2 Statistical Analysis 

The analyses investigated cross-sectional relationships to determine whether there was an 

association between cardiometabolic and inflammatory markers at 28 weeks, and fetal 

ultrasound measures at 28 weeks (and similarly for 36 weeks). Because the nature of the 

association was of interest, and because most of the cardiometabolic and inflammatory markers 

exhibited skewness in distribution, each of the cardiometabolic and inflammatory markers were 

log-transformed prior to analysis. Estimates represent the difference in mean fetal measure 

corresponding to a 1-unit increase in log cardiometabolic marker.  

 

Three of the cardiometabolic and inflammatory markers (CRP, leptin and adiponectin) were 

measured at both 28 and 36 weeks gestations. For each of these markers, linear regression 

models were used to model the relationship between the marker and fetal ultrasound measures 

at each time point, including a time-by- marker interaction term to test whether the relationship 

differed between time points. Generalised Estimating Equations (GEEs) were used to account 

for repeated measures. Triglycerides and fasting glucose were measured at 28 weeks only; 

therefore, for these markers, relationships with 28 week fetal ultrasound measures only were 

investigated using linear regression models. 

 

Both unadjusted and adjusted analyses were performed with adjusted analyses including BMI 

category (BMI 25.0 – 29.9 versus BMI ≥ 20.0), parity (0 versus ≥ 1), age at consent, smoking 

status, study centre and SEIFA IRDS quintile as co-variates.  
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5.4 Results 

5.4.1 Demographic characteristics 

Flow of participants and baseline characteristics are presented in Figure 5.1 and Table 5.1 

respectively. Mean maternal age was 29.6 years (standard deviation 5.5) with 41% of women 

(n = 377) overweight, 46.5% (n = 424) obese (BMI 30 – 39.9kg/m2), and 12.2% (n = 111) 

morbidly obese (BMI ≥ 40kg/m2). Most women (92%; n=835) were of Caucasian ethnicity, 

40% (n = 369) were in their first ongoing pregnancy, and approximately 30% (n = 265) were 

from the highest quintile of social disadvantage.  

 

Figure 5.1: Flow chart of the participants included in the secondary analysis with 

cardiometabolic markers   
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Table 5.1 – Baseline characteristics of participants included in analysis of the effect of 

maternal cardiometabolic and inflammatory markers on fetal growth and adiposity 

 
 

  

Baseline Characteristic  Results  

Total Number: N (%) 911 

Maternal Age at trial entry (years)  
Mean (SD) 

29.6  

(5.5) 

Gestational age at Trial Entry (weeks) 
Median (IQR) 

14.58  

(3.03) 

Body Mass Index (kg/m2)  
Mean (SD) 

32.60  

(6.01) 

BMI Category: n (%)  

25.0 – 29.9 kg/m2 377 (41.3) 

30.0 – 34.9 kg/m2 271 (29.7) 

35.0 – 39.9 kg/m2 153 (16.8) 

≥ 40.0 kg/m2 111 (12.2) 

Caucasian: n (%) 836 (91.67) 

Nulliparous: n (%)  369 (40.5) 

Smoker: n (%) 101 (11.1) 

SEIFA IRSD Quintiles: n (%)  

Most disadvantaged Quintile 1 265 (29.06) 

Quintile 2 223 (24.45) 

Quintile 3 143 (15.68) 

Quintile 4 142 (15.57) 

Least disadvantaged Quintile 5 139 (15.24) 
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5.4.2 C-Reactive Protein (CRP) 

No consistent associations were found between maternal plasma CRP concentrations and fetal 

ultrasound measures of biometry and adiposity (Table 5.2).  

 

Table 5.2:  Relationship between log CRP and fetal ultrasound markers 

Ultrasound 
Measure 

Unadjusted 
Estimate (95% CI) 

Unadjusted 
p value 

Adjusted Estimate 
(95% CI) 

Adjusted   
p value 

EFW (grams)  0.559*  0.835* 

28 weeks -6.41 (-26.19, 13.36) 0.525 -8.62 (-29.88, 12.63) 0.426 

36 weeks -17.06 (-53.13, 19.01) 0.354 -12.50 (-47.91, 22.90) 0.489 

SSFM (mm)  0.842*  0.850* 

28 weeks -0.00 (-0.10, 0.09) 0.920 0.02 (-0.08, 0.11) 0.744 

36 weeks 0.01 (-0.14, 0.16) 0.875 0.03 (-0.12, 0.18) 0.675 

AFM (mm)  0.442*  0.394* 

28 weeks 0.00 (-0.10, 0.10) 0.990 -0.00 (-0.11, 0.11) 0.976 

36 weeks 0.07 (-0.09, 0.23) 0.396 0.08 (-0.08, 0.23) 0.353 

MTFM (mm2)  0.988*  0.998* 

28 weeks 0.04 (-0.08, 0.17) 0.514 0.05 (-0.09, 0.19) 0.456 

36 weeks 0.04 (-0.29, 0.37) 0.817 0.05 (-0.28, 0.39) 0.758 

MTLM (mm2)  0.419*  0.376* 

28 weeks 0.04 (-0.06, 0.15) 0.414 0.05 (-0.06, 0.16) 0.367 

36 weeks -0.05 (-0.28, 0.17) 0.636 -0.06 (-0.28, 0.17) 0.615 

AC (mm)  0.698*  0.998* 

28 weeks -0.05 (-0.20, 0.09) 0.473 -0.07 (-0.22, 0.08) 0.351 

36 weeks -0.09 (-0.26, 0.08) 0.296 -0.07 (-0.24, 0.10) 0.407 

BPD (mm)  0.114*  0.147* 

28 weeks -0.03 (-0.06, 0.00) 0.096 -0.02 (-0.06, 0.01) 0.167 

36 weeks 0.00 (-0.03, 0.03) 0.883 0.00 (-0.03, 0.04) 0.770 

HC (mm)  0.682*  0.568* 



 

	 116	

28 weeks -0.07 (-0.19, 0.05) 0.259 -0.07 (-0.19, 0.05) 0.280 

36 weeks -0.04 (-0.15, 0.07) 0.462 -0.03 (-0.13, 0.08) 0.625 

FL (mm)  0.961*  0.824* 

28 weeks -0.01 (-0.04, 0.02) 0.491 -0.01 (-0.04, 0.02) 0.428 

36 weeks -0.01 (-0.04, 0.02) 0.478 -0.01 (-0.04, 0.02) 0.602 

EFW z-score  0.466*  0.587* 

28 weeks 0.03 (-0.04, 0.10) 0.380 0.02 (-0.04, 0.09) 0.482 

36 weeks -0.00 (-0.08, 0.08) 0.981 0.00 (-0.08, 0.08) 0.979 

AC z-score  0.611*  0.791* 

28 weeks 0.02 (-0.06, 0.10) 0.609 0.01 (-0.07, 0.09) 0.808 

36 weeks -0.01 (-0.10, 0.09) 0.900 -0.00 (-0.09, 0.09) 0.931 

BPD z-score  0.095*  0.169* 

28 weeks -0.05 (-0.16, 0.06) 0.399 -0.04 (-0.15, 0.08) 0.544 

36 weeks 0.05 (-0.04, 0.15) 0.261 0.05 (-0.05, 0.15) 0.302 

HC z-score  0.706*  0.637* 

28 weeks -0.00 (-0.08, 0.08) 0.932 -0.00 (-0.09, 0.08) 0.914 

36 weeks 0.01 (-0.06, 0.09) 0.738 0.02 (-0.06, 0.09) 0.674 

FL z-score  0.942*  0.827* 

28 weeks 0.01 (-0.07, 0.09) 0.768 0.00 (-0.08, 0.09) 0.920 

36 weeks 0.02 (-0.07, 0.11) 0.726 0.02 (-0.08, 0.11) 0.738 

 

Notes: Results are expressed as the difference in means (95% CI) corresponding to a one unit change in log CRP. 
* p value for test of time-by-log CRP interaction.  
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5.4.3 Triglycerides 

There were no consistent associations identified between plasma triglyceride concentrations at 

28 weeks and fetal ultrasound markers of biometry and adiposity (Table 5.3). However, there 

was a positive association identified between maternal plasma triglyceride concentrations and 

biometry z-scores. Specifically, a 1-unit increase in log triglyceride concentration was 

associated with an increase in mean EFW z-score of 0.20 (0.01 to 0.39; p=0.041), and an 

increase in mean AC z-score of 0.25 (0.05 to 0.46; p=0.016). 

 

Table 5.3:  Relationship between log Triglycerides and fetal ultrasound markers 

Ultrasound 
Measure 

Unadjusted Estimate 
(95% CI) 

Unadjusted 
p value 

Adjusted Estimate 
(95% CI) 

Adjusted    
p value 

EFW (grams) 26.96 (-19.21, 73.13) 0.252 28.14 (-18.38, 74.67) 0.236 

SSFM (mm) 0.02 (-0.21, 0.25) 0.870 0.06 (-0.18, 0.29) 0.633 

AFM (mm) 0.02 (-0.23, 0.27) 0.899 0.01 (-0.24, 0.26) 0.940 

MTFM (mm2) -0.01 (-0.32, 0.31) 0.964 -0.00 (-0.32, 0.32) >0.99 

MTLM (mm2) 0.08 (-0.19, 0.34) 0.567 0.04 (-0.23, 0.31) 0.779 

AC (mm) 0.27 (-0.07, 0.62) 0.121 0.25 (-0.10, 0.60) 0.154 

BPD (mm) 0.03 (-0.06, 0.11) 0.540 0.04 (-0.04, 0.13) 0.334 

HC (mm) -0.01 (-0.29, 0.27) 0.946 0.03 (-0.26, 0.32) 0.851 

FL (mm) -0.01 (-0.07, 0.06) 0.842 0.00 (-0.06, 0.07) 0.908 

EFW z-score 0.23 (0.04, 0.42) 0.020 0.20 (0.01, 0.39) 0.041 

AC z-score 0.30 (0.09, 0.50) 0.004 0.25 (0.05, 0.46) 0.016 

BPD z-score 0.25 (-0.06, 0.55) 0.113 0.29 (-0.02, 0.59) 0.067 

HC z-score 0.03 (-0.18, 0.23) 0.808 0.03 (-0.18, 0.24) 0.796 

FL z-score 0.05 (-0.15, 0.26) 0.612 0.07 (-0.14, 0.28) 0.499 
 

Notes: Results are expressed as the difference in means (95% CI) corresponding to a one unit increase in log 
Triglycerides. 
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5.4.4 Fasting Glucose 

There were no consistent associations found between fasting glucose concentrations at 28 

weeks and fetal ultrasound measures of biometry and adiposity (Table 5.4).  

 

Table 5.4:  Relationship between log Fasting Glucose and fetal ultrasound markers 

Ultrasound 
Measure 

Unadjusted Estimate 
(95% CI) 

Unadjusted 
p value 

Adjusted Estimate 
(95% CI) 

Adjusted    
p value 

EFW (grams) 59.68 (-33.80, 153.16) 0.211 53.52 (-56.64, 163.68) 0.341 

SSFM (mm) -0.32 (-0.81, 0.17) 0.201 -0.17 (-0.74, 0.41) 0.575 

AFM (mm) -0.54 (-1.10, 0.02) 0.058 -0.10 (-0.76, 0.57) 0.772 

MTFM (mm2) -0.25 (-0.97, 0.47) 0.493 0.02 (-0.83, 0.87) 0.959 

MTLM (mm2) -0.28 (-0.91, 0.35) 0.387 0.03 (-0.72, 0.77) 0.946 

AC (mm) 0.16 (-0.55, 0.88) 0.653 0.33 (-0.50, 1.17) 0.430 

BPD (mm) 0.16 (-0.01, 0.33) 0.067 0.08 (-0.13, 0.28) 0.460 

HC (mm) 0.19 (-0.38, 0.77) 0.509 0.05 (-0.63, 0.74) 0.884 

FL (mm) 0.12 (-0.01, 0.26) 0.077 0.09 (-0.07, 0.25) 0.289 

EFW z-score 0.33 (-0.09, 0.74) 0.120 0.46 (-0.01, 0.94) 0.057 

AC z-score 0.08 (-0.35, 0.51) 0.714 0.36 (-0.14, 0.87) 0.153 

BPD z-score 0.61 (-0.03, 1.25) 0.061 0.42 (-0.32, 1.17) 0.263 

HC z-score 0.10 (-0.34, 0.53) 0.659 0.07 (-0.45, 0.59) 0.800 

FL z-score 0.50 (0.06, 0.94) 0.027 0.49 (-0.04, 1.03) 0.071 
 

Notes: Results are expressed as difference in mean (95% CI) corresponding to a one unit increase in log fasting 
glucose. 
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5.4.5 Leptin 

There were no consistent associations identified between plasma leptin concentrations and fetal 

ultrasound markers of biometry and adiposity (Table 5.5). However, there was a positive 

association identified between plasma leptin concentration and mid-thigh fat mass (MTFM). 

Specifically, a 1-unit increase in log leptin concentration was associated with a greater 

reduction in mean MTFM of -0.37 (-0.67, -0.07) at 28 weeks (p = 0.015).  

 

Table 5.5:  The relationship between log Leptin and fetal ultrasound markers 

Ultrasound 
Measure 

Unadjusted 
Estimate (95% CI) 

Unadjusted 
p value 

Adjusted Estimate 
(95% CI) 

Adjusted p 
value 

EFW (grams)  0.815*  0.785* 

28 weeks -40.68 (-79.26, -2.09) 0.039 -41.08 (-83.65, 1.49) 0.059 

36 weeks -32.84 (-95.88, 30.20) 0.307 -31.83 (-95.48, 31.83) 0.327 

SSFM (mm)  0.925*  0.999* 

28 weeks 0.01 (-0.17, 0.20) 0.880 0.14 (-0.06, 0.34) 0.167 

36 weeks 0.03 (-0.24, 0.30) 0.833 0.14 (-0.13, 0.41) 0.303 

AFM (mm)  0.988*  0.912* 

28 weeks -0.02 (-0.22, 0.17) 0.814 0.03 (-0.19, 0.24) 0.802 

36 weeks -0.02 (-0.33, 0.28) 0.894 0.01 (-0.30, 0.32) 0.960 

MTFM (mm2)   0.561*  0.563* 

28 weeks -0.25 (-0.51, 0.00) 0.053 -0.37 (-0.67, -0.07) 0.015 

36 weeks -0.08 (-0.65, 0.49) 0.778 -0.20 (-0.76, 0.36) 0.488 

MTLM(mm2)  0.231*  0.191* 

28 weeks 0.07 (-0.13, 0.27) 0.496 0.00 (-0.24, 0.24) 0.995 

36 weeks -0.16 (-0.50, 0.19) 0.373 -0.25 (-0.60, 0.10) 0.167 

AC(mm)  0.705*  0.631* 

28 weeks -0.25 (-0.52, 0.02) 0.065 -0.26 (-0.54, 0.02) 0.067 

36 weeks -0.19 (-0.48, 0.11) 0.221 -0.18 (-0.48, 0.13) 0.259 
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BPD (mm)  0.400*  0.420* 

28 weeks -0.02 (-0.09, 0.05) 0.605 -0.01 (-0.08, 0.06) 0.735 

36 weeks 0.02 (-0.04, 0.08) 0.614 0.02 (-0.04, 0.08) 0.525 

HC (mm)  0.343*  0.380* 

28 weeks -0.12 (-0.35, 0.11) 0.303 -0.10 (-0.34, 0.14) 0.425 

36 weeks 0.02 (-0.19, 0.23) 0.878 0.03 (-0.19, 0.25) 0.791 

FL (mm)   0.392*  0.369* 

28 weeks -0.03 (-0.09, 0.02) 0.244 -0.02 (-0.08, 0.04) 0.442 

36 weeks -0.00 (-0.05, 0.05) 0.880 0.01 (-0.04, 0.06) 0.729 

EFW z-score  0.900*  0.901* 

28 weeks -0.05 (-0.18, 0.09) 0.476 -0.06 (-0.20, 0.09) 0.432 

36 weeks -0.04 (-0.17, 0.10) 0.567 -0.05 (-0.19, 0.09) 0.498 

AC z-score  0.865*  0.832* 

28 weeks -0.04 (-0.18, 0.11) 0.603 -0.05 (-0.21, 0.10) 0.513 

36 weeks -0.02 (-0.17, 0.12) 0.749 -0.03 (-0.18, 0.12) 0.668 

BPD z-score  0.909*  0.810* 

28 weeks 0.11 (-0.12, 0.35) 0.344 0.12 (-0.13, 0.36) 0.340 

36 weeks 0.10 (-0.07, 0.27) 0.239 0.09 (-0.09, 0.27) 0.336 

HC z-score  0.970*  0.850* 

28 weeks 0.04 (-0.11, 0.19) 0.584 0.04 (-0.12, 0.21) 0.607 

36 weeks 0.04 (-0.11, 0.18) 0.600 0.03 (-0.13, 0.18) 0.736 

FL z-score  0.515*  0.506* 

28 weeks 0.00 (-0.16, 0.17) 0.954 0.03 (-0.14, 0.20) 0.736 

36 weeks 0.07 (-0.09, 0.23) 0.407 0.10 (-0.07, 0.27) 0.268 

 

Notes: Results are expressed as difference in means (95% CI) corresponding to a one unit increase in log Leptin. 
* p value for test of time-by-log Leptin interaction.  
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5.4.6 Adiponectin  

There were consistent associations identified between maternal plasma adiponectin 

concentrations and fetal ultrasound measures (Table 5.6).  

 

There were negative associations identified between plasma adiponectin concentrations 

and measures of abdominal circumference (AC) and estimated fetal weight (EFW). 

Specifically, a 1-unit increase in log adiponectin concentration was associated with a 

reduction in mean AC of -0.53 (95% CI: -0.83, -0.22) millimetres (p < 0.001) and 

reduction in mean EFW of -100.85 (-164.98, -36.71) grams (p = 0.002) at 36 weeks 

gestation.  

 

There were negative associations identified between plasma adiponectin concentration 

and z-scores for abdominal circumference (AC) and estimated fetal weight (EFW). 

Specifically, a 1-unit increase in log adiponectin concentration was associated with a 

reduction in the mean AC z-score of -0.21 (-0.35, -0.07) at 28 weeks (p = 0.004) and of 

-0.30 (-0.46, -0.13) at 36 weeks (p < 0.001). Similarly, a 1-unit increase in log 

adiponectin concentration was associated with a reduction in the mean EFW z-score of 

-0.23 (-0.37, -0.10) at 28 weeks (p < 0.001) and of -0.24 (-0.38, -0.10) at 36 weeks (p 

< 0.001).  

 

There was a negative association identified between plasma log adiponectin 

concentration and MTLM. Specifically, a 1-unit increase in log Adiponectin 

concentration was associated with a reduction in the mean MTLM of -0.41 (-0.77, -

0.05) millimetres at 36 weeks (p < 0.001).  
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Table 5.6: The relationship between log Adiponectin and fetal ultrasound markers 

Ultrasound 
Measure 

Unadjusted Estimate  
(95% CI) 

Unadj 
p value 

Adjusted Estimate      
(95% CI) 

Adjusted 
p value 

EFW  0.010*  0.008* 

28 weeks -5.36 (-42.08, 31.35) 0.775 -8.77 (-45.68, 28.14) 0.641 

36 weeks -94.09 (-158.68, -29.51) 0.004 -100.85 (-164.98, -36.71) 0.002 

SSFM  0.110*  0.101* 

28 weeks 0.11 (-0.05, 0.28) 0.179 0.12 (-0.05, 0.30) 0.160 

36 weeks -0.12 (-0.38, 0.13) 0.343 -0.12 (-0.38, 0.13) 0.354 

AFM  0.634*  0.651* 

28 weeks -0.05 (-0.26, 0.16) 0.651 -0.00 (-0.21, 0.21) 0.988 

36 weeks -0.13 (-0.43, 0.17) 0.393 -0.08 (-0.39, 0.23) 0.607 

MTFM  0.688*  0.517* 

28 weeks 0.00 (-0.23, 0.24) 0.970 -0.01 (-0.25, 0.23) 0.943 

36 weeks -0.11 (-0.69, 0.46) 0.705 -0.20 (-0.79, 0.39) 0.509 

MTLM  0.035*  0.013* 

28 weeks 0.09 (-0.11, 0.29) 0.377 0.09 (-0.12, 0.29) 0.405 

36 weeks -0.33 (-0.70, 0.03) 0.074 -0.41 (-0.77, -0.05) 0.027 

AC  0.012*  0.010* 

28 weeks -0.04 (-0.31, 0.23) 0.768 -0.04 (-0.31, 0.23) 0.779 

36 weeks -0.51 (-0.82, -0.21) 0.001 -0.53 (-0.83, -0.22) <.001 

BPD  0.056*  0.056* 

28 weeks 0.06 (-0.00, 0.12) 0.055 0.04 (-0.02, 0.11) 0.176 

36 weeks -0.02 (-0.08, 0.04) 0.545 -0.04 (-0.10, 0.02) 0.244 

HC  0.042*  0.043* 

28 weeks 0.09 (-0.13, 0.30) 0.429 0.10 (-0.12, 0.32) 0.363 

36 weeks -0.20 (-0.41, 0.02) 0.071 -0.18 (-0.39, 0.03) 0.095 

FL  0.061*  0.088* 

28 weeks 0.03 (-0.02, 0.08) 0.272 0.02 (-0.03, 0.08) 0.406 
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36 weeks -0.03 (-0.08, 0.02) 0.179 -0.04 (-0.08, 0.01) 0.160 

EFW z-score  0.986*  0.938* 

28 weeks -0.24 (-0.37, -0.10) <.001 -0.23 (-0.37, -0.10) <.001 

36 weeks -0.24 (-0.38, -0.09) 0.001 -0.24 (-0.38, -0.10) <.001 

AC z-score  0.427*  0.371* 

28 weeks -0.22 (-0.36, -0.08) 0.002 -0.21 (-0.35, -0.07) 0.004 

36 weeks -0.30 (-0.47, -0.13) <.001 -0.30 (-0.46, -0.13) <.001 

BPD z-score  0.685*  0.609* 

28 weeks 0.04 (-0.18, 0.26) 0.749 -0.01 (-0.23, 0.21) 0.949 

36 weeks -0.02 (-0.19, 0.16) 0.861 -0.07 (-0.26, 0.11) 0.434 

HC z-score  0.759*  0.702* 

28 weeks -0.10 (-0.27, 0.06) 0.204 -0.08 (-0.24, 0.08) 0.316 

36 weeks -0.13 (-0.29, 0.02) 0.086 -0.12 (-0.27, 0.03) 0.124 

FL z-score  0.530*  0.645* 

28 weeks -0.06 (-0.23, 0.11) 0.514 -0.07 (-0.24, 0.11) 0.454 

36 weeks -0.12 (-0.29, 0.04) 0.150 -0.11 (-0.28, 0.05) 0.176 
 
Notes: Results are expressed as difference in means (95% CI) corresponding to a 1 unit increase in log 
Adiponectin. * p value for test of time-by-log Adiponectin interaction.  
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5.4.7 The interaction between cardiometabolic markers and fetal growth over time  

The associations between maternal plasma log adiponectin concentration and mean 

EFW changed over time. At 28 weeks, there was a small and not statistically significant 

association but at 36 weeks, the association was larger in magnitude and the interaction 

was statistically significant.  

 

The association between maternal plasma log Adiponectin concentration and mean AC 

changed over time. At 28 weeks, there was a small and not statistically significant 

association whereas at 36 weeks, the association was larger in magnitude and there was 

a statistically significant interaction.  

 

The association between maternal plasma log adiponectin concentration and mean HC 

changed over time, although neither individual association was statistically significant. 

At 28 weeks, women with higher log adiponectin concentrations had fetuses with 

bigger head circumference, whereas at 36 weeks, women with higher log Adiponectin 

had fetuses with lower HC on average.  

 

The association between maternal plasma log adiponectin concentrations and mean 

MTLM changed over time. At 28 weeks, there was a small and not statistically 

significant association; whereas at 36 weeks, the association was larger in magnitude 

and interaction was statistically significant (p = 0.013).  
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5.5 Discussion   

This secondary exploratory analysis demonstrated that increasing maternal 

concentrations of adiponectin were associated with a reduction in abdominal 

circumference and estimated fetal weight, with the magnitude of this effect increasing 

over gestation. Furthermore, a higher triglyceride concentration was associated with an 

increase in abdominal circumference z-score and estimated fetal weight at 28 weeks 

gestation. There were no apparent associations between inflammatory markers, fasting 

glucose, triglyceride and leptin concentrations, and fetal ultrasound measurements.  

 

This is the first study to describe the relationship between cardiometabolic biomarkers 

and fetal ultrasound measurements of biometry and adiposity. The literature to date has 

reported on maternal or cord blood sampling and postnatal measurements of neonatal 

adiposity (Patenaude et al. 2017) or child growth trajectories (Karakosta et al. 2016), 

and generally involved studies of small sample sizes. There have been two large studies 

evaluating maternal cardiometabolic and inflammatory markers in the setting of 

randomised control trials testing the effect of an antenatal dietary and lifestyle 

intervention (Moran et al. 2017, Sagedal et al. 2017).  

 

The strength of this current analysis is the large sample size of 911 women and the 

reporting of fetal body composition as an outcome measurement. A potential limitation 

of this study relates to the absence of a comparator group of women entering pregnancy 

with a normal BMI. Fasting measurements at 36 weeks for triglycerides and glucose 

were not obtained and this also limited interpretation to one time point only for these 

two cardiometabolic markers.  
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The primary role of maternal adiponectin is to promote insulin sensitivity, which in turn 

increases the uptake of glucose by maternal skeletal muscle, thereby reducing the 

availability for placental transfer (Aye et al. 2013). Additionally, adiponectin modulates 

the insulin receptor in the trophoblast, preventing the placental transfer and uptake of 

amino acids (Aye et al. 2013). Adiponectin has been postulated as a possible link 

between maternal adipose tissue, placental transport and fetal growth (Aye et al. 2013).   

 

The role of adiponectin in adult cardiovascular disease (Parker-Duffen et al. 2014, 

Lekva et al. 2017) and Type 2 Diabetes (Weyer et al. 2001) has been well defined. The 

current literature pertaining to pregnancy is limited to six studies, half of which reported 

on cord blood adiponectin concentrations only (Sivan et al. 2003, Tsai et al. 2004, 

Mantzoros et al. 2009). Maternal adiponectin concentrations have been reported in 

women entering pregnancy with a normal BMI (Lekva et al. 2017) or with GDM 

(Ategbo et al. 2006). In women entering pregnancy with a normal BMI, a reduction in 

adiponectin concentrations in the 3rd trimester was identified, and was independent of 

both maternal BMI and insulin resistance (Lekva et al. 2017). Low adiponectin 

concentrations have also been associated with a higher prevalence of newborn infants 

being classified as LGA and having increased birth weight (Lekva et al. 2017).  

 

However, randomised dietary intervention trials have not confirmed an association 

between adiponectin concentrations and infant birth weight. The LIMIT trial did not 

identify differences between treatment groups with regards to concentrations of 

cardiometabolic and inflammatory markers in women who were overweight or obese 

(Moran et al. 2017). The Fit for Delivery antenatal intervention in healthy, non-diabetic 

women did demonstrate a reduction in both insulin and leptin concentrations with no 
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difference in either mean birth weight or the proportion of babies weighing over 4kg 

(Sagedal et al. 2017). This effect was seen predominantly in lean women and was not 

statistically significant in women with a BMI ≥ 25kg/m2 (Sagedal et al. 2017).  

 

While adiponectin concentrations do not alter with dietary change, there is increasing 

interest in the supplementation of adiponectin as a promising application in non-

pregnant adults for treatment of obesity (Parker-Duffen et al. 2014, Lekva et al. 2017, 

Lekva et al. 2017), although robust evidence is limited. With regards to pregnancy, 

animal studies have identified that adiponectin supplementation may alter fetal growth 

through improving insulin sensitivity and placental function (Rosario et al. 2012). The 

proposed mechanism relates to the down regulation of key placental nutrient 

transporters within the syncytiotrophoblasts, including amino acid transporters such as 

System A (Rosario et al. 2012, Lekva et al. 2017). Adiponectin has also been suggested 

as a therapeutic agent to reduce cardiovascular risk, having been studied in overweight 

and obese mice and rodents (Parker-Duffen et al. 2014).  

 

This study did not find a consistent association between leptin and fetal growth or 

adiposity. This finding is comparable to the study by Castro and associates, who 

measured maternal plasma leptin concentrations between 24 to 72 hours after birth, 

with no identified associations with neonatal adiposity (Castro et al. 2017). In contrast, 

Josefson and colleagues measured maternal concentrations at 36 weeks gestation, 

identifying a relationship with neonatal adiposity (Josefson et al. 2014). Fetal exposure 

in utero to high leptin concentrations has also been positively associated with infant 

birth weight, neonatal adiposity, and postnatal and childhood growth trajectories 

(Karakosta et al. 2016).  
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Maternal triglyceride concentrations at 36 weeks were associated with an increase in 

AC and EFW z-scores. This relationship is consistent with others who have reported 

hypertriglycerideaemia to be a strong determinant of fetal growth, independent of 

maternal BMI, in women with diabetes (Schaefer-Graf et al. 2008). Other studies have 

identified a similar association between maternal triglycerides measured in both early 

(Vrijkotte et al. 2011) and late pregnancy (Mossayebi et al. 2014) and fetal growth. 

Uncertainty remains regarding maternal concentrations influence fetal growth 

(Catalano 2010) and the role of lipoprotein receptors, binding proteins and lipases, 

which contribute to the placental flow of maternal fatty acids (Schaefer-Graf, Graf et 

al. 2008).	

	

5.6 Conclusion  

Among pregnant women who are overweight or obese  

• Increasing maternal concentrations of adiponectin were associated with a reduction 

in abdominal circumference and estimated fetal weight;  

• The magnitude of this effect increased over gestation;  

• Increased triglyceride concentrations were associated with an increase in abdominal 

circumference z-score and estimated fetal weight at 36 weeks gestation; and 

• There were no apparent associations between inflammatory markers, fasting 

glucose, triglyceride and leptin concentrations and fetal ultrasound measurements.  
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CHAPTER 6:  Associations between fetal ultrasound 

biometry and newborn anthropometry in infants born to 

women who are overweight or obese 

 

This chapter forms the basis of a manuscript currently under peer review (O’Brien CM et 

al American Journal of Obstetrics and Gynaecology, Maternal Fetal Medicine), which is 

contained in Appendix 5. 		

	

6.1 Introduction  

Ultrasound is widely available and used clinically for antenatal detection of the LGA fetus 

to assist in clinical management regarding both the method and timing of birth, as 

potential strategies to reduce birth complications including operative delivery (Boulvain 

et al. 2016) and shoulder dystocia (Dodd et al. 2012). While several studies have 

attempted to evaluate the relationship between prenatal ultrasound and neonatal measures 

of body composition, they are limited by the relatively small sample sizes involved, with 

the majority of women being of normal BMI, and largely confined to either gestational 

or pre-existing diabetes (Bernstein et al. 1991, Larciprete et al. 2003, Parretti et al. 2003, 

Hure et al. 2012, O'Connor et al. 2014, Walsh et al. 2015, Gibson et al. 2016).  
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6.2 Aims  

The aim of this study was to evaluate the relationship between fetal ultrasound biometry 

and adiposity measures at 36 weeks gestation and neonatal biometry and adiposity 

measures, in infants born to women who were overweight or obese. 

 

6.3 Methods 

The research methodology (Dodd et al. 2011, Dodd et al., 2014a, Dodd et al. 2014c) of 

the LIMIT randomised controlled trial have been outlined in Chapter 2, as has the 

methodology relating to ultrasound assessment of fetal biometry and adiposity measures. 

 

6.3.1 Neonatal anthropometric measures 

Infant birth weight (grams), HC (cm) and length (cm) were measured within the first 2 

hours of birth by the attending midwife. Birth weight was measured using calibrated 

electronic scales to the nearest 1 gram with the newborn infant undressed. Length was 

measured using a length board and the infant laid supine, the head held against the top of 

the board and a sliding foot plate moved and rested flat against the foot of the infant with 

the legs fully extended, and read to the nearest 0.1cm (Dodd et al. 2016). Large for 

gestational age was defined as birth weight at or above the 90th centile for gestational age 

and infant sex. Z-scores were calculated using Australian population reference ranges 

(Beeby et al. 1996).  
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(i) Skin fold thickness measurements (SFTM) 

Trained research assistants obtained anthropometric measurements according to a 

standardised protocol, within the first few days of life and prior to discharge from hospital 

(Dodd et al. 2016). SFTM were obtained on the right side of the body using Harpenden 

Skinfold Callipers, with the infant undressed. The skinfold was identified and grasped 

between the left thumb and index finger, so that a double fold of skin and subcutaneous 

adipose tissue was held without the incorporation of underlying muscle. The calliper jaws 

were placed perpendicular to the length of the skin fold and the measurement was 

recorded 2 seconds after the pressure was applied. For each site, the measurements were 

duplicated and if there was a difference more than 1.0mm, a third measure was taken. The 

final value presented the mean of two measurements or a median of the three (Marfell-

Jones et al. 2006).  

 

Abdominal SFTM was identified 2cm to the right of the umbilicus and measured 

perpendicular to the long axis of the abdomen. Subscapular SFTM was measured after 

identifying the lower tip of the scapula, with the observer’s thumb placed below this 

laterally.    

 

(ii) Body circumference measurements  

Circumference measures were obtained according to a standardised protocol, with the 

infant undressed, supine and using a fibreglass measuring tape and recorded to the nearest 

0.1cm (Kannieappan et al. 2013). HC was measured at the widest point above the 

eyebrows anteriorly (glabella) and the most prominent point of the occiput posteriorly. 
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AC was measured at the level of the umbilicus in a plane at right angles to the spine and 

at the end of a normal expiration.      

	
6.3.2 Statistical analysis 

Associations between 36 week fetal ultrasound measures and corresponding birth 

measures were explored in multiple ways. Firstly, to descriptively assess strength and 

linearity of association, scatterplots were created, with a lowess smooth and line of best 

fit superimposed. Secondly, a Pearson Correlation Coefficient was calculated for each 

pair of variables to measure the overall strength of linear association. Thirdly, to estimate 

the change in mean birth measure associated with increased values of the 36 week 

measure, linear regression models were fitted using the birth measure as the dependent 

variable (outcome) and the 36 week measure as the independent variable (predictor). 

Models were adjusted for the actual amount of time between 36 week ultrasound and date 

of birth. Lastly, to determine if the strength and direction of the association differed by 

maternal BMI category, linear regression models were fitted using birth measure as the 

dependent variable, and 36 week measure, BMI category, and their interaction, as the 

independent variables. Adjustments were made for the amount of time between the 36 

week ultrasound and date of birth.  

	

6.4 Results 

6.4.1 Demographic characteristics 

Flow of participants and baseline characteristics are presented in Figure 6.1 and Table 6.1 

respectively. A total of 845 women and infants are included in this analysis. The median 

gestation at trial entry was 14.3 weeks (Interquartile range (IQR) 12.0 – 17.0) (Table 1). 
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The median maternal BMI was 31.2kg/m2 (IQR 27.8 – 35.8) kg/m2, with 41% (n = 350) 

of women overweight and 58.6% (n =495) obese. Ninety-two percent (92%) of women 

in our cohort are of Caucasian ethnicity (n = 773) and 59% of women (n = 501) were in 

their first ongoing pregnancy. Fifteen percent (n = 128) of women were classified within 

the highest quintile of social disadvantage using the Socio-Economic Indexes for Areas 

(SEIFA). The baseline characteristics of the women contributing ultrasound and neonatal 

data were comparable to all women in the standard care group, and to the full randomised 

LIMIT cohort (Dodd et al. 2014a). 

 

Figure 6.1: Flow chart of participants included in the analysis of associations 

between fetal and neonatal measures 
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Table 6.1 – Baseline characteristics of participants included in the analysis of 

associations between fetal and neonatal measures   

 

Baseline Characteristics Results 

Total Number: N (%) 845 
 Maternal Age at Trial Entry 

Mean (SD) 
29.50  
(5.46) 

Gestational age at Trial Entry (weeks) 
Median (IQR) 

14.29  
(12.00, 17.00) 

BMI (kg/m2) 
Median (IQR) 

31.20  

(27.80, 35.80) 

BMI Category: n (%)  

25.0-29.9 kg/m2 350 (41.42) 

 ≥ 30.0 kg/m2 495 (58.58) 

Caucasian: n (%) 773 (91.48) 

Nulliparous: n (%) 344 (40.71) 

Smoker: n (%) 94 (11.12) 

SEIFA Quintile: n (%)  

Most disadvantaged Quintile 1 242 (28.64) 

Quintile 2 207 (24.50) 

Quintile 3 133 (15.74) 

Quintile 4 135 (15.98) 

Least disadvantaged Quintile 5 128 (15.15) 
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6.4.2 Correlation between ultrasound measures and neonatal measures 

Both EFW (0.62) and EFW z-score (0.70) at 36 weeks gestation were strongly correlated with 

birth weight (Table 6.2 and Figure 6.2). While there was moderate correlation between 

ultrasound derived SSFM (0.32) and subscapular SFTM measured at birth, ultrasound derived 

AFM was poorly correlated with abdominal SFTM (0.07) (Table 6.2). 

 

Table 6.2: Correlation coefficients between fetal and neonatal body composition 

measurements 

 

Association Between Pearson Correlation Coefficient 

Birthweight and 36 Week EFW 0.62 

Birth HC and 36 Week HC 0.52 

Birth AC and 36 Week AC 0.49 

Birth SSFM and 36 Week SSFM 0.34 

Birth AFM and 36 Week AFM 0.07 

Birthweight z-score and 36 Week EFW z-score 0.70 

Birth HC z-score and 36 Week HC z-score 0.51 
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Figure 6.2: Relationship between birth measures and (a) Estimated Fetal Weight (EFW) 

and (b) Abdominal Fat Mass (AFM) 

	

 

 

Figure 6.2a illustrates birthweights by 36 week estimation of fetal weight. Figure 6.2b 

illustrates birth abdominal SFTM and AFM measured at 36 weeks. The lines represent lowess 

and smoothing.  
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6.4.3 Linear regression models for the association between ultrasound measures and 

neonatal measures  

Table 6.3 summarises the results of linear regression models investigating the association 

between 36 week ultrasound measurements and birth measurements. For every 1gram increase 

in EFW at 36 weeks gestation, there was a 0.94 gram increase in infant birth weight (95% CI 

0.88 to 0.99 grams; p<0.001). The combination of ultrasound derived EFW at 36 weeks 

gestation and the number of subsequent days until birth accounted for 63% of the variability in 

measures (R2=0.63). There were similar findings for HC, HC z-score, AC and SSFM, with a 

moderate to high degree of overall variability explained (Table 6.3). The exception was 

abdominal skin fold thickness, where the 36 week measure (SSFM) was not significantly 

associated with abdominal SFTM measured at birth (0.06 mm; 95% CI: -0.03, 0.15).  

 

Table 6.3: Linear regression analyses measuring the association between fetal and 

neonatal measurements of body composition  

 

Association Estimate (95% CI) p value R2 

Birthweight / EFW 0.94 (0.88, 0.99) <0.001 0.63 

Head Circumference 0.69 (0.63, 0.75) <0.001 0.41 

Abdomen Circumference 0.69 (0.60, 0.79) <0.001 0.34 

SSFM 0.29 (0.20, 0.39) <0.001 0.13 

AFM 0.06 (-0.03, 0.15) 0.203 0.01 

Birthweight z-score / EFW z-score 0.78 (0.73, 0.84) <0.001 0.50 

HC z-score 0.62 (0.55, 0.70) <0.001 0.26 

 

Note: Estimates are differences in mean birth measure (95% CI) corresponding to a 1 unit increase in 36 week 
ultrasound measure. All models were adjusted for time (in days) elapsed between 36 week ultrasound and birth. 
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6.4.4 Linear regression models allowing for effect modification by BMI category 

Table 6.4 presents the results of linear regression models investigating whether the association 

between 36 week ultrasound measurements and birth measurements was modified by maternal 

BMI category, with the estimates of the association between 36 week measures and neonatal 

measures presented separately by maternal BMI category.  

 

For all measures except AFM, a similar pattern was observed, in which there was a significant 

relationship between the 36 week measure (EFW, HC, AC, SSFM) and the corresponding birth 

measure (BW, HC, AC, subscapular skin fold thickness) in both overweight and obese BMI 

categories. The magnitude and direction of this association was consistent across both 

overweight and obese BMI categories. The difference in the estimates of association between 

overweight and obese BMI categories was not statistically significant or clinically meaningful. 

 

In relation to the ultrasound derived AFM and abdominal SFTM measured at birth (Table 6.4), 

the association was not statistically significant at either time point and there was no evidence 

of effect modification by maternal BMI category.  
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Table 6.4: Interaction analysis assessing influence of maternal BMI on fetal and neonatal 

measurements 

 

Association Estimate (95% CI) p value R2 

Birthweight/EFW  0.803* 0.63 

 - BMI 25.0-29.9 0.93 (0.84, 1.01) <0.001  

 - BMI ≥ 30.0 0.94 (0.87, 1.01) <0.001  

HC  0.373* 0.41 

 - BMI 25.0-29.9 0.73 (0.62, 0.83) <0.001  

 - BMI ≥ 30.0 0.67 (0.59, 0.75) <0.001  

AC  0.655* 0.34 

 - BMI 25.0-29.9 0.72 (0.57, 0.87) <0.001  

 - BMI ≥ 30.0 0.68 (0.55, 0.80) <0.001  

SSFM  0.403* 0.14 

 - BMI 25.0-29.9 0.34 (0.20, 0.48) <0.001  

 - BMI ≥ 30.0 0.26 (0.13, 0.38) <0.001  

AFM  0.592* 0.01 

 - BMI 25.0-29.9 0.08 (-0.04, 0.21) 0.196  

 - BMI ≥ 30.0 0.03 (-0.09, 0.16) 0.598  

Birthweight and EFW z-scores  0.970* 0.50 

 - BMI 25.0-29.9 0.78 (0.69, 0.86) <0.001  

 - BMI ≥ 30.0 0.78 (0.71, 0.85) <0.001  

HC z-score  0.753* 0.26 

 - BMI 25.0-29.9 0.61 (0.49, 0.73) <0.001  

 - BMI ≥ 30.0 0.63 (0.54, 0.72) <0.001  
 
 
Notes: All models included 36 week measure, BMI category (kg/m2), and the interaction between 36 week 
measure and BMI category as predictors. Estimates are differences in mean estimated birth measure corresponding 
to a 1 unit increase in 36 week measure, in each BMI category. * denotes p value for test of interaction between 
36 week measure and BMI category 
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6.5 Discussion  

The findings of this study demonstrate that among overweight and obese pregnant women, 

ultrasound assessment of fetal weight at 36 weeks gestation is a reliable indicator of infant birth 

weight. While fetal ultrasound assessment of HC and AC at 36 weeks gestation is strongly 

correlated with birth HC and AC, fetal and newborn measures of adiposity were only 

moderately or poorly correlated. 

 

Strengths of this study include the robust trial methodology of the LIMIT trial, in addition to 

the adherence to standardised ultrasound and newborn anthropometry protocols (Marfell-Jones 

et al. 2006, ASUM 2007). This study is the largest to date comparing fetal ultrasound measures 

at 36 weeks gestation with neonatal anthropometric measures obtained at birth. While this 

analysis includes data from 845 women and infants rather than the full Standard Care LIMIT 

group, the risk of selection bias is considered minimal. The characteristics of the current cohort 

did not differ significantly from either the characteristics of the Standard Care group, or the 

entire LIMIT cohort (Dodd et al. 2014a, Dodd et al. 2016, Grivell et al. 2016). The findings of 

this study would be enhanced by the inclusion of data from women entering pregnancy with a 

normal BMI.   

 

Generally, SFTM are reliable and relatively non-invasive tools to assess newborn fat 

distribution, having been correlated with more invasive assessments (Moyer-Mileur et al. 2009, 

Lingwood et al. 2012) including Dual-energy X-ray Absorptiometry (DXA) (Friis et al. 2013). 

In addition, there is moderate to excellent inter-observer agreement in obtaining both 

ultrasound (Grivell et al. 2016) and newborn SFTM in this population of women (Kannieappan 
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et al. 2013) through adherence to standardised research quality protocols, validating their use 

in a large clinical trial setting. While the use of alternate infant body composition assessments 

may have been more strongly correlated with fetal ultrasound assessment measures than were 

observed with SFTM, such an approach is not feasible within the practical constraints of a 

large-scale clinical research trial.  

 

Importantly, there were no differences identified in the relationship between ultrasound derived 

fetal and neonatal biometry and adiposity measures according to maternal BMI, despite the 

well-documented limitations of ultrasound in obese women (Paladini 2009). These findings are 

consistent with those of Zhang and colleagues, who have also demonstrated no effect from 

maternal obesity on the quality of fetal biometric measurements (Zhang et al. 2018). 

 

In contrast, fetal ultrasound measures of adiposity were poorly correlated with skin fold 

thickness measures at birth. While neonatal adiposity has been examined extensively in the 

literature, few studies have directly compared fetal ultrasound to neonatal body composition. 

However, there is a lack of consistency in the comparative measurements at birth and this is 

likely to contribute to the variability in findings. The direct comparison may also be limited by 

the fact that the caliper used to measure skin fold thickness incorporates a double layer of tissue, 

which differs from the single layer measured on ultrasound (Borkan et al. 1982). This 

relationship may not be exactly a 2:1 ratio due to compression of the tissue by the caliper 

(Borkan et al. 1982).   
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Fetal thigh and arm circumferences and volumes utilising both 2- and 3-dimensional ultrasound 

techniques (Khoury et al. 2009, Lee et al. 2009, Ikenoue et al. 2017) have shown the most 

promising results, improving the predictive value of both macrosomia and infant birthweight 

in women with obesity (Gibson et al. 2016) and diabetes (Garcia-Flores et al. 2017). There is 

a clear need for prospective studies with robust methodology, consistency in fetal and neonatal 

measurement and large sample sizes to further delineate the predictive value of fetal and 

neonatal adiposity.  

 

The findings of this study validate the use of the 36 week fetal ultrasound as a tool to accurately 

represent both neonatal biometry and birthweight in women who are overweight or obese. In 

contrast, the routine incorporation of ultrasound derived fetal adiposity measures is not 

advocated given their poor correlation with neonatal skin fold thickness measurements.  

	

6.6 Conclusion  

Among infants born to overweight and obese pregnant women, 

• Ultrasound assessment of fetal weight at 36 weeks gestation is a reliable indicator of infant 

birth weight; 

• Ultrasound assessment of HC and AC at 36 weeks are strongly correlated with newborn 

measures;  

• Fetal and newborn measures of adiposity are only moderately or poorly correlated. 

• Maternal BMI did not change the associations between fetal and neonatal measurements  
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CHAPTER 7: Overall Conclusions 

 

Maternal obesity has a significant impact on pregnancy and birth related outcomes for 

the woman, the developing fetus, the newborn infant, and in the longer-term, on child- 

and adult-hood health. While there are well-established links between maternal obesity, 

high infant birth weight and childhood obesity, the relative contributions of maternal 

BMI, maternal diet, and cardiometabolic and inflammatory markers to fetal biometry, 

body composition and growth over time have been under-evaluated. The series of 

studies contained in this thesis have explored the impact of these factors on fetal growth 

and adiposity.  

 

7.1 The impact of maternal BMI on ultrasound derived fetal growth 

and adiposity, and growth velocities 

For pregnant women who are overweight or obese  

• Increasing maternal BMI is associated with incremental increases in growth 

velocity of the fetal abdomen circumference and estimated fetal weight. 

For pregnant women with BMI ≥ 40.0kg/m2 there is an increase in 

• All fetal biometry z-scores at both 28 and 36 weeks gestation; and 

• Abdominal fat mass and abdominal area. 
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7.2 The impact of maternal dietary factors on ultrasound derived 

fetal growth and adiposity 

For pregnant women who are overweight or obese 

• Maternal dietary measures are not consistently associated with fetal growth or 

adiposity.  

 

7.3 The impact of maternal cardiometabolic and inflammatory 

markers on ultrasound derived fetal growth and adiposity 

For pregnant women who are overweight or obese 

• Increasing maternal concentrations of adiponectin were associated with a reduction 

in abdominal circumference and estimated fetal weight;  

• The magnitude of this effect increased over gestation;  

• Increased triglyceride concentrations were associated with an increase in abdominal 

circumference z-score and estimated fetal weight at 36 weeks gestation; and 

• There were no apparent associations between inflammatory markers, fasting 

glucose, triglyceride and leptin concentrations and fetal ultrasound measurements.  
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7.4 Associations between fetal ultrasound biometry and newborn 

anthropometry 

Among infants born to pregnant women who are overweight or obese: 

• Ultrasound assessment of fetal weight at 36 weeks gestation is a reliable indicator 

of infant birth weight; 

• Ultrasound assessment of fetal HC and AC at 36 weeks are strongly correlated with 

newborn measures;  

• Maternal BMI contributes a large proportion to the overall variability of ultrasound 

obtained fetal growth measures; and  

• Fetal and newborn measures of adiposity are only moderately or poorly correlated. 

 

7.5 External validity, generalisability, strengths and limitations   

As has been identified in the main clinical manuscripts describing the findings of the 

LIMIT randomised trial (Dodd et al. 2014b, Dodd et al. 2014c, Dodd et al. 2014d, Dodd 

et al. 2016, Grivell et al. 2016), the trial population was predominately of Caucasian 

origin, of high social disadvantage and were overweight and obese entering pregnancy. 

The findings of this thesis may therefore not be generalisable to other populations of 

pregnant women with different demographic characteristics.   

 

The strengths of this study include the large number of overweight and obese women 

and their fetuses along with the use of robust methodology (Dodd et al. 2014a, Dodd et 

al. 2011) as part of LIMIT randomised controlled trial. The main limitation to this study 
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was the lack of a comparator group of women entering pregnancy with a normal BMI 

would have enabled on fetal growth patterns across the BMI spectrum.  

 

7.6 Implications for clinical practice 

In overweight and obese pregnant women, ultrasound assessment of fetal biometry and 

EFW is a reliable tool that correlates well with infant birth measurements, and should 

continue to be used in routine clinical practice. However, there is insufficient evidence 

to support the routine incorporation of ultrasound measures of fetal adiposity into 

standard clinical care. 

 

7.6 Implications for further research 

The findings generated from the series of studies contained in this thesis highlight the 

complex nature of factors influencing fetal growth and adiposity. All secondary 

analyses were conducted among overweight and obese pregnant women, and would 

benefit from the inclusion of and comparison with data from women of normal BMI. It 

is anticipated that this will be possible within the next several years, following the 

publication of the findings from the OPTIMISE randomised trial, evaluating a dietary 

and lifestyle intervention among pregnant women with a normal BMI (Dodd et al. 

2018). 

  

In the past decade, there has been considerable research interest in the provision of 

antenatal dietary and lifestyle interventions in pregnancy, particularly for women who 
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are overweight or obese. The underlying assumption has been that dietary and physical 

activity modification will limit gestational weight gain, with the expectation of 

improvements in pregnancy and birth outcomes both for women and their infants. 

However, an individual participant data meta-analysis incorporating data from 36 

randomised trials, and more than 12,500 pregnant women globally who received an 

antenatal dietary and/or lifestyle intervention (International Weight Management in 

Pregnancy Collaborative 2017) indicates only a modest reduction in gestational weight 

gain (mean difference -0.7kg), and very little effect on clinical pregnancy outcomes. 

Future research efforts should target overweight and obese women to facilitate weight 

loss and adoption of a healthy lifestyle in the period prior to conception. 
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ABSTRACT
Introduction: Over fifty percent of women entering pregnancy are overweight or obese. This has a
significant impact on short and long term maternal and infant health outcomes, and the intergenera-
tional effects of obesity are now a major public health problem globally.
Areas covered: There are two major pathways contributing to fetal growth. Glucose and insulin directly
affect growth, while other substrates such as leptin, adiponectin and insulin-like growth factors
indirectly influence growth through structural and morphological effects on the placenta, uteroplacen-
tal blood flow, and regulation of placental transporters. Advances in ultrasonography over the past
decade have led to interest in the prediction of the fetus at risk of overgrowth and adiposity utilizing
both standard ultrasound biometry and fetal body composition measurements. However, to date there
is no consensus regarding the definition of fetal overgrowth, its reporting, and clinical management.
Expert commentary: Maternal dietary intervention targeting the antenatal period appear to be too late
to sufficiently affect fetal growth. The peri-conceptual period and early pregnancy are being evaluated
to determine if the intergenerational effects of maternal obesity can be altered to improve newborn,
infant and child health.
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1. Introduction

Worldwide, it is estimated more than 1.46 billion adults, and
170 million children, are either overweight or obese [1,2]. The
global prevalence of obesity has more than doubled between
1980 and 2014 [3], with a more pronounced surge in low- and
middle-income countries [2,3]. Based on current trends, it is
estimated that more than 50% of adults worldwide will be
obese by 2030 [4]. Obesity is the sixth most important risk
factor contributing to overall burden of disease worldwide [5],
and is an independent risk factor for the development of
many associated morbidities, including hypertension, diabetes
mellitus, and cardiovascular disease, all of which contribute to
a significant reduction in life expectancy [5].

Over 50% of women in high-income countries enter preg-
nancy with a body mass index (BMI) greater than 25 kg/m2 [6–
8], impacting significantly on maternal, fetal, and neonatal
health outcomes, both in the short term during pregnancy
and birth, and in the longer term, contributing to high rates of
childhood obesity [9–13]. The associations between maternal
obesity and subsequent childhood obesity is complex, invol-
ving both genetic and environmental factors, with a substan-
tial impact reported to arise from intrauterine programming
contributing to longer term health complications [13–15]. A
recent commission into childhood obesity found escalation in
the prevalence across the world [9], with 41 million infants and
children under the age of 5 years identified as overweight or
obese [3]. The effect on a child’s later life is significant,

including the development of diabetes, increased risk of can-
cer, respiratory disease, cognitive impairment, mental health
issues, and reproductive disorders [9]. In addition, there is an
impact on educational and recreational opportunities with
subsequent economic impact for the family unit and society
as a whole [9].

There is considerable interest in understanding the
mechanisms underlying fetal growth and adiposity patterns
which may contribute to the intergenerational effects of obe-
sity [16]. From a public health perspective, preventive strate-
gies targeting the periconceptual and antenatal periods, may
contribute to a reduction in fetal overgrowth and adiposity,
slowing the transmission of obesity between generations [17].

1.1. The consequences relating to maternal obesity

Entering pregnancy as overweight or obese are independent
risk factors for almost all pregnancy and birth complications,
the risk increasing linearly with increasing BMI category
[18,19]. Women who are overweight or obese are more likely
to develop hypertensive disorders, including preeclampsia
[19–25], gestational diabetes mellitus (GDM) [18,20,23–25]
and contribute to a significantly increased risk of antenatal
stillbirth [20,22,26,27] and preterm birth [18,20,24].

Women who are overweight or obese are more likely to
give birth to an infant that is considered large for gestational
age (LGA) or macrosomic [13,18,22,24,28], both of which con-
tribute to intrapartum-related complications including an
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increase in the rates of fetal distress, operative birth, including
caesarean section, and perineal trauma [29,30]. In the neonatal
period, infants born to women who are overweight or obese,
irrespective of birthweight, are more likely to be born prema-
turely, are at higher risk of shoulder dystocia, hypoglycemia,
and are more likely to require admission to the neonatal
intensive care unit [18–20,28].

2. Large for gestational age, macrosomia, and
neonatal body composition

It is important to highlight there is no international consensus
regarding the definition, measurement, reporting, and man-
agement of the LGA or macrosomic fetus or newborn [31].
Furthermore, the distinction between prenatal ultrasound,
which provides an estimate of fetal weight, versus the new-
born period, which measure actual birthweight and can be
adjusted for gestational age at birth and gender, are often not
clear [30].

The definition of the LGA fetus is based on prenatal ultra-
sound, and utilizes measures of abdominal circumference (AC)
or estimated fetal weight (EFW) using Hadlock’s formula, vari-
ably defined as greater than or equal to the 90th, 95th or 97th
centile for gestational age [29,30] using population-based
charts [32]. The prenatal ultrasound measurement of EFW
has a measurement error of ±20% [33] with further reduction
in performance in the setting of maternal obesity and at the
extremes of fetal weight [34]. The term fetal macrosomia is
also variably defined as an EFW greater than or equal to
4000 g or 4500 g [31].

In comparison, the classification of a LGA newborn infant is
a measurement of birthweight, corrected for infant sex and
gestational age at birth [30], although again, this can be
variably defined as greater than or equal to the 90th, 95th or
97th centiles. Similarly, infant macrosomia is a postpartum
definition based on infant birthweight of greater than or
equal to 4000 g or 4500 g [29].

There has been interest in using customized growth charts
to identify the infant at risk of growth disorders, taking into
account factors such as maternal ethnicity, height and weight,
infant sex, and gestational age [35]. Some have advocated the
use of customized growth charts to define the LGA infant
(birthweight >90th centile), as being superior in prediction of
neonatal morbidity, when compared with definition of macro-
somia (BW ≥4000 g) [30], postulating that the higher predic-
tive value relates to improved detection of excessive fetal
growth or alteration in fetal body composition taking into
consideration the constitution of the mother [30,36].
However, it remains to be determined whether the considera-
tion of maternal overweight and obesity and its effects on
fetal growth as ‘physiological’ rather than ‘pathological’ is
appropriate in this setting.

Birthweight as a single measure reflects mass, and does not
reflect variations in the distribution of adipose tissue nor the
relative proportion of adipose and lean tissue mass. Lean body
mass has been correlated with genetic factors, whereas fat
mass has been correlated with the maternal environment [37].
Most studies reported in the literature have compared lean

and adipose tissue masses in infants born to women who are
overweight or obese with infants born to lean women [38,39].
The intrauterine metabolic environment has been shown to
affect the growth of adipose tissue but not lean tissue mass
[40]. Neonatal fat mass accounts for approximately 14% of the
total birthweight but has been shown to significantly contri-
bute to the birthweight variation in over 50% of newborns
[40,41]. These studies have shown that as maternal BMI
increases, so too does neonatal adipose tissue mass [38,39],
which in turn is correlated with an increased risk of childhood
obesity and longer term metabolic dysfunction [42].

In contrast, the effect of maternal obesity on newborn lean
tissue mass remains uncertain. While some have reported no
association with maternal obesity [38], others have reported
associations between maternal obesity, lower newborn fat free
mass, and higher total and percentage of fat mass as mea-
sured by air displacement plethysmography [39]. There is a
need for ongoing research into this area, including the longer
term follow-up of children to assess the impact of neonatal
adipose tissue distribution on subsequent childhood obesity.

3. Clinical management for the large for gestational
age fetus

Despite the limitations identified above relating to the defini-
tions of LGA and fetal macrosomia, the widespread availability
of ultrasound and concerns relating to maternal and infant
pregnancy and birth complications, has led to interest in the
prediction of fetal macrosomia [43] in an attempt to reduce
morbidity through active clinical management.

Clinical management options remain controversial for
women who are identified to have a macrosomic fetus in the
antenatal period [31]. A large decision analysis study by Rouse
identified that an elective caesarean section for EFW greater
than 4.5 kg, was not an economically viable treatment option
[44]. The cost of elective caesarean birth did not outweigh the
prevention of shoulder dystocia and brachial plexus injuries
[44]. In contrast, a similar study reached the opposite conclu-
sions, when considering the ‘costs’ related to maternal peri-
neal trauma and subsequent fecal and urinary incontinence
issues for the woman, in addition to the direct effects of
shoulder dystocia and brachial plexus injuries for the offspring
[45]. Importantly, any short or longer term ‘costs’ related to
the effects of birth asphyxia have not been incorporated into
these decision analyses [31].

A recent multicenter randomized trial involving 19 tertiary
centers including 832 women with an average BMI between
25–26 kg/m2 with a fetus suspected to be LGA, were rando-
mized to elective induction of labor or continued expectant
management [46]. The trial identified a reduction in neonatal
morbidity following induction of labor between 37 and
39 weeks following ultrasound identification of a LGA fetus
defined as an EFW greater than the 95th centile [46]. This type
of clinical intervention was not associated with differences in a
woman’s risk of caesarean birth. Incorporation of 4 similar
randomized trials in a meta-analysis involving a total of 1190
women, identified that induction of labor was associated with
a reduction in the occurrence of shoulder dystocia, and any
type of neonatal fracture, although there are no statistically
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significant differences in the rates of operative delivery, bra-
chial plexus injury, low 5-min Apgar scores or low arterial cord
blood pH [47]. The generalizability of these findings for
women who are overweight or obese is uncertain, particularly
taking into consideration the reduction in accuracy of ultra-
sound estimation of fetal weight in this clinical setting [43,47].

The clinical management debate will continue with con-
sideration of multiple factors including a woman’s autonomy,
obstetrician factors, ultrasound availability, prediction and
accuracy, evidence surrounding intervention, and concern
about rising caesarean birth rates in the developed world [31].

4. The fetal ‘overgrowth’ hypothesis

In 1967, Pedersen and associates first proposed a hypothesis
to describe the underlying mechanism relating to overgrowth
of the fetus, seen primarily in women with diabetes mellitus
during pregnancy [48]. This is commonly known as the direct
pathway for fetal ‘overgrowth’ and is more commonly referred
to as the Pedersen hypothesis [48]. Glucose has been long
recognized as the primary fuel substrate for fetal growth and
development, and is delivered across the placental interface
via transport mediated facilitated diffusion [49,50]. In the set-
ting of maternal hyperglycaemia and hyperinsulinaemia
related to both maternal obesity and gestational diabetes,
there is a greater diffusion gradient of glucose, which in turn
leads to fetal hyperglycaemia [49]. Hyperglycaemia in the fetal
circulation, stimulates insulin production by the fetal pancreas,
insulin-like growth factors (IGF), growth hormones, and a
range of other growth promoting factors, all of which stimu-
late fetal deposition of glycogen and fat [48]. More recently,
the hypothesis has been expanded to account for the placen-
tal transfer of lipids and their contribution to fetal growth
13[40].

Increasingly, there is evidence to support an ‘indirect’ path-
way that can impact the delivery and quantity of the nutri-
tional supply to the fetus across the placenta [50,51]. The
placenta is the interface between the maternal and fetal cir-
culations, providing critical and complex functions for the
developing fetus. The placenta plays an integral role in fetal
growth through the regulation of blood flow, oxygen delivery,
and nutrient transfer across the placenta [52]. While the pla-
centa is likely to be an important mediator by which maternal
obesity contributes to fetal overgrowth and adiposity [53],
there is a relative paucity of literature describing its role in
the regulation of fetal growth in this setting. Various hypoth-
eses include the regulation of placental transporters [53] and
the nutrient transfer capacity of the placenta, which directly
relate to the structural and morphological features of the
placenta, in addition to uteroplacental blood flow [50,54].

5. Fetal growth restriction in the setting of maternal
obesity

Large population cohort studies have identified maternal obe-
sity to not only be associated with fetal overgrowth but also
with growth restriction [22–24]. While, the risk of fetal growth
restriction and small for gestational age (SGA) infants in obese
women is approximately 2.3% in women with a BMI greater

than or equal to 40 kg/m2, the incidence for SGA is much
smaller than an appropriately grown infant (82.7%), or LGA
infant (14.9%) [22]. These rates are similar to those derived
from large randomized trials. The LIMIT trial identified a risk of
infant birthweight less than 2.5 kg (or SGA) to be approxi-
mately 4.7% [55], consistent with the findings from the
UPBEAT randomized trial [56] which utilized customized birth-
weight centiles. Similarly, the ultrasound measurements relat-
ing to fetal growth, including weight, were consistently above
the mean, as discussed subsequently [57].

Observational studies have identified women who are over-
weight or obese to be at increased risk of perinatal death,
when compared with women of normal BMI [26,27,58]. In this
setting, the majority of stillborn infants were identified to be
SGA, particularly beyond 37 weeks’ gestation [26,27].
Furthermore, higher rates of fetoplacental dysfunction were
found in women who are obese (5.4 fetal deaths per 1000 live
births) compared with women with a normal BMI (1.4 fetal
deaths per 1000 live births) [26].

The underlying mechanisms for a reduction in uteroplacen-
tal blood flow may relate to the exaggerated hyperlipidaemia
along with increased free fatty acids and cholesterol, which
may potentially increase the risk of placental thrombosis and
subsequently reduce placental perfusion [26]. Another poten-
tial explanation may reflect the high rates of preeclampsia
identified in women with increasing BMI [20–23,25,34].
Oxidative stress and endothelial dysfunction from obesity
may impact on trophoblastic invasion and contribute to
poorer pregnancy outcomes, such as preeclampsia and pla-
cental insufficiency [59]. Preeclampsia and defective tropho-
blastic invasion in turn affects placental function and may alter
the fetal growth potential [59]. There remains uncertainty
surrounding the exact mechanism contributing to reduced
growth in fetuses born to women who are obese and whether
inadequate trophoblast invasion or perfusion defects comes
first.

Impaired fetal growth in the setting of maternal overweight
and obesity may also reflect the effects of maternal weight
loss, which is more likely among obese women during preg-
nancy [60]. While lower maternal weight gain during preg-
nancy has been associated with a reduction in the risk of LGA
infants and many pregnancy-related complications, it appears
to be at the expense of an increase in SGA infants [61]. While
observational studies highlight this association, it is unclear if
the contribution of weight loss to poor fetal growth reflects
impaired nutrient delivery to the fetus, or whether other
mechanisms are operational [60].

6. Metabolic determinants of fetal growth

6.1. Glucose

Maternal obesity, even in the absence of GDM, is associated
with higher glucose concentrations, contributing to an intrau-
terine hormonal environment that is similar to that associated
with metabolic syndrome, characterized by hyperglycemia
and insulin resistance [40]. Offspring born to women who
are obese have documented higher cord blood glucose and
insulin concentrations, and are more insulin resistant
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[49,62,63]. This relationship between maternal obesity and
insulin resistance measured in neonatal cord blood is present
irrespective of a diagnosis of gestational diabetes [49].
Furthermore, findings from the Hyperglycaemia and Adverse
Pregnancy Outcomes (HAPO) study have confirmed a linear
relationship between maternal glucose concentration and
infant birthweight, even at glucose concentrations below
those considered to be diagnostic of GDM [64]. Similar rela-
tionships between maternal glucose concentrations below the
diagnostic threshold of GDM, and adverse neonatal outcomes
related to insulin resistance and glucose intolerance have
been described in the other populations, including North
America, the United States, and the United Kingdom
[49,64,65].

6.2. Maternal hormones

Leptin, adiponectin, lipid metabolism, and insulin growth factors
have all been identified to contribute to fetal growth in a com-
plex fashion. Table 1 summarizes the key metabolic substrates,
their proposed physiology, effect on fetal growth, and changes
which have been identified in the setting of maternal obesity.

6.3. Adipose tissue as a metabolically active contributor
to fetal growth

Adipose tissue is not simply an inert storage organ, but is
metabolically active in the secretion of multiple hormones
which contribute to metabolic homeostasis [80]. Fetal adipo-
cytes begin to develop at 15 weeks and as gestation advances,
there is an increase in fetal fat mass from 5% to 15% [81]. The
development of adipose tissue in the fetus and early neonatal

life is sensitive to hormones such as insulin, IGF and glucocorti-
coids [82]. While it is recognized that the human fetus deposits
a large amount of subcutaneous fat in late gestation [83],
subscapular and axillary fetal adiposity predominantly reflects
brown adipose tissue (BAT) deposition, which is required for
non-shivering thermogenesis in the immediate adaptation to
extrauterine life [83,84]. While it was initially thought that the
presence of BAT was confined to early infancy, deposits have
been identified in adults at sites that echo those of the neonate,
through the use of positron emission tomography [84], being
more commonly identified in women and lean individuals.
Furthermore, the role of BAT in energy production and increas-
ing basal metabolic rate has resulted in its identification as a
potential target to ameliorate the effects of obesity [83,84].

Similar to the relationships between adipokines and over-
weight and obesity in adults, cord blood concentrations of
leptin correlates positively with infant birthweight and neona-
tal fat mass [49,71–74,85,86]. Cord blood leptin concentrations
have also been shown to positively correlate with measures of
neonatal insulin resistance [49], suggesting that neonatal fat
mass and insulin resistance are related, and raising the possi-
bility that neonatal adipose tissue is also metabolically active.

6.4. The inflammatory response to maternal obesity

Women who are overweight or obese, enter pregnancy with
an altered inflammatory environment, which may predispose
to the development of pregnancy-related complications
including hypertension and gestational diabetes [87,88].
Obesity (both in pregnancy and nonpregnant individuals) is
associated with a low-grade, chronic inflammatory state [89],
which in animal models has been associated with the

Table 1. The key metabolic substrates during pregnancy, their effect on fetal growth, and changes related to maternal obesity.

Factor Physiology Effect on fetal growth Changes in maternal obesity References

Glucose Crosses the placenta via GLUTs
Main energy source for the fetus

Promotes fetal overgrowth Higher in maternal obesity
Increased risk of GDM and hyperglycemia
Positively associated with birthweight

Metzger [64]
Catalano [49]
Uebel [63]
Torloni, 2009
[66]

Lipids Early pregnancy – maternal fat
accumulation

Late pregnancy – maternal
hyperlipidemia

Contributes to fetal fat
deposition in the third
trimester

Higher serum triglycerides throughout pregnancy
Independently associated with risk of LGA and
neonatal measures of adiposity

Son, 2010 [67]
Vrijkotte, 2011
[68]
Whyte, 2013
[69]
Schaefer-Grafe,
2008 [70]

Leptin Produced predominantly by white
adipose tissue
Involved in regulatory control of
placental nutrient transport

Promotes fetal overgrowth Higher circulating levels
Higher cord blood levels in offspring
Positively correlates with birthweight, neonatal
adiposity and neonatal insulin resistance

Tessier [71]
Tsai, 2015 [72]
Catalano [49]
Karakosta [73]
Josefson [74]

Adiponectin Produced by adipose tissue
Contributes to peripheral insulin
sensitivity

Reduces nutrient availability for the
placenta

Negative regulator of fetal
growth

Maternal levels lower in obesity
Maternal levels negatively correlate with
birthweight and neonatal fat mass

Ategbo, 2006
[75]
Lowe, 2010
[76]

IGF’s Family of ligands (IGF’s) and
ligand-binding proteins
(IGFBP’s)

Produced by the liver
Contributes to placental invasion,
growth and development

Stimulates differentiation of pre-
adipocytes

Relative levels of IGF’s and
IGFBP’s determine effect on
fetal growth – free
(bioactive) IGF is promotor
of fetal growth

Reduced expression of IGFBP4 in cord blood of
offspring, resulting in higher levels of free IGF

Ferraro, 2012
[77]
Qiu, 2005 [78]
Juul, 2003 [79]

48 C. M. O’BRIEN ET AL.



activation of adipokines and the resultant inflammatory cas-
cade, contributing to insulin resistance [90].

Obesity is associated with a pro-inflammatory state, result-
ing in an increase in the secretion of pro-inflammatory cyto-
kines from the adipose tissue [91]. In pregnancy, maternal
obesity is associated with an increase in IL-6 compared with
women with a normal BMI [89,90]. The literature remains
unclear regarding other cytokines during pregnancy and is
limited by small sample size and study design [88–90]. There
has been one study that has investigated the association
between maternal cytokine concentrations with fetal adiposity
measurements. While maternal inflammatory markers were
identified to correlate with maternal adiposity, these were
not related to measures of fetal adiposity [88].

The placenta has been hypothesized to play a role in the
mediation and regulation of the inflammatory reaction related
to obesity [89]. Maternal inflammation may induce fetal pro-
gramming through the passage of specific cytokines (IL-6) or
immune cells (maternal monocytes, T and B cells), in addition
to modifying the availability of nutrients for the fetus through
placental regulation of IL-1 beta [91]. Due to the placental
changes during gestation, this could potentially lead to varia-
tions in transfer of cytokines and immune cells with potential
differential fetal effects across pregnancy [91].

7. The role of the placenta in fetal growth

The placenta is a complex structure compromising of chorio-
nic villi and vasculature, which evolves through gestation [92].
Factors which disturb or disrupt this process have the capacity
to permanently alter placental function [53].

The structure and morphology of the placenta including
placental weight is a major determinant of fetal growth, directly
reflecting the capacity of the nutrient transport system [53].
Placental weight has been demonstrated to increase with mater-
nal BMI and has been estimated to be approximately 4.4 g per
additional kg/m2 increase in maternal weight [93]. Placental
nutrient transfer is dependent upon the number of transporters
present, which in turn has been shown to be regulated by
maternal endocrine and nutritional signalling [53].

Uteroplacental blood flow also has a fundamental role in
nutrient transfer to the fetus. Key to this process is maternal
uterine artery blood supply, with alterations in blood flow as
early as the first trimester of pregnancy having been asso-
ciated with an increased risk of poor placentation and the
subsequent development of preeclampsia and fetal growth
restriction [94]. Placental perfusion may also be reduced by
higher maternal concentrations of circulating lipids, free fatty
acids, and cholesterol, particularly in women who are obese,
which has been postulated to contribute to an increased risk
of placental thrombosis and reduced perfusion [26]. In turn,
these underlying perfusion-related changes may contribute
mechanistically to the higher risk of stillbirth and preterm
birth observed in the setting of maternal obesity [26].
Additionally, oxidative stress and endothelial dysfunction
may both contribute to and result from impaired trophoblastic
invasion, and therefore the subsequent development of
hypertensive diseases including preeclampsia [59].

The fetal umbilical artery (UmA) delivers deoxygenated
blood from the fetus back to the placenta, and is measured
routinely during ultrasound assessment of fetal well-being
[95]. Sarno and colleagues have conducted ultrasound UmA
Doppler assessment in 185 women, of whom 23.2% were
overweight, and 21.6% obese. When compared with lean
women, women of higher BMI were found to have signifi-
cantly higher UmA resistance. The positive correlation
between maternal BMI and ultrasound determined UmA resis-
tance suggests a further mechanism whereby placental perfu-
sion may be altered in the setting of maternal obesity [96].

Changes in maternal nutrition in the setting of obesity
suggest that the majority of women who are obese or who
have gestational diabetes would give birth to an infant LGA,
reflecting the higher diffusion gradient and stimulation of
growth by glucose, insulin, and IGF [53]. However, many
obese women and women with gestational diabetes have an
appropriately grown infant. There have been several theories
postulated to explain the ‘normalization’ of fetal growth in the
setting of maternal obesity [96]. For example, uteroplacental
insufficiency could reduce substrate delivery thereby normal-
izing the anticipated acceleration in fetal growth [96]. Another
possible explanation is that maternal obesity or gestational
diabetes alone may be insufficient to induce fetal overgrowth
but additional exposures such as endocrine signalling, expres-
sion of transporters, and change in lipid and amino acid
transfers together could combine to increases in fetal growth
and adiposity [53].

8. The measurement of fetal growth and body
composition using ultrasound

Ultrasound has become the mainstay in the assessment of fetal
growth and well-being and is widely utilized in both low- and
high-income countries. There have been numerous studies eval-
uating ultrasound markers to identify and predict the LGA fetus,
all of which have utilized different measurements, definitions,
and cut-off points [97–101], as outlined above and described in
Table 2. There is no universally accepted definition or specific
measurement used in the detection of LGA fetus in the antenatal
period [31]. As a result of maternal and infant complications,
coupled with the growing access to ultrasound, there has been
increasing interest in the use of ultrasound to attempt to predict
newborn macrosomia in order to reduce complications such as
shoulder dystocia [43].

Table 2 summarizes the key articles and systematic reviews
that have assessed the sensitivity and predictive value of a range
of ultrasound markers and cut-points to predict infant macro-
somia and LGA. Coomarasamy and associates performed a large
systematic review of the evidence pertaining to diagnostic ultra-
sound and the prediction of the large for gestational infant [97].
While there was considerable heterogeneity between the studies
including different study designs, EFW formulae used, ultrasound
equipment and reference range thresholds, EFW, and AC greater
than 90th centile were both identified to have good positive
predictive values of 9.3 and 4.2, respectively [97]. However, the
influence of maternal BMI on these assessments is difficult to
ascertain, as there was no specific subgroup analysis relating to
maternal BMI.
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Fetal growth velocity has been demonstrated to have low
positive predictive value compared with EFW greater than the
95th centile [98] in the prediction of LGA infants. Wong and
colleagues identified that the prevalence of LGA infants was
higher among women who were both obese and diagnosed
with gestational diabetes, compared with women of normal BMI
[99]. More recent studies have combined EFW and amniotic fluid
index together to increase the positive and negative predictive
value in identifying the LGA infant, with variable results obtained
in women considered to be at increased risk [100], despite better
performance in low risk women entering labor [101].

In summary, there is a lack of robust evidence to provide a
consensus and predictive cut-off values using ultrasound, par-
ticularly in women who enter pregnancy overweight or obese
[31]. Specifically, there have been no randomized trials that
have assessed the fetal surveillance regimens in the detection
of the LGA fetus and whether such tools can improve maternal
and infant outcomes [103].

9. Antenatal ultrasound assessment of fetal body
composition

In 1991, Bernstein and colleagues were among the first to
describe the measurement of fetal body composition using
prenatal ultrasound [104]. Since then, there have been sub-
stantial advances in both two- and three-dimensional ultraso-
nography, resulting in the development and validation of fetal
body composition measurements [105–109] as outlined in
Table 3.

Most of the identified studies have been limited by rela-
tively small sample sizes [106,109,110], with wide variation in
both the type of fetal body composition measurement uti-
lized, and the reporting of results [106,108–111]. Larciprete
and colleagues validated the three main fetal body composi-
tion measurements in a population of 218 healthy pregnant
Italian women with a normal BMI [111]. The generalizability of
these measures in other populations, particularly women who
are overweight or obese would appear to be more limited.

Table 2. Prenatal ultrasound measurements and the prediction of large for gestational age infant.

Author, year Study details
Ultrasound
marker Strengths Limitations Maternal BMI

Prediction of LGA
infant

Coomarasamy,
Connock
et al. [97]

N = 147
Studies = 2
Part of a large systematic

review

EFW greater
than 90th
centile

Pooled analyses
Small numbers
Moderate to high

quality

Clinical
heterogeneity
(different
methods
estimated EFW
and AC)

No specific analysis Positive LR 9.3 (3.7–24)
Negative LR 0.4 (0.14–

0.93)

Coomarasamy,
Connock
et al. [97]

Studies = 5
N = 1864
Part of large systematic

review

AC >90th
centile

Pooled analyses
Moderate to high

quality

Different ultrasound
equipment and
reference
standard
thresholds

No specific analysis Positive LR 4.2 (2.3–
7.7)

Negative LR 0.33
(0.21–0.54)

Kernaghan, Ola
et al. [98]

N = 242
Pre-existing and gestational

diabetes
Sheffield, The U.K.

EFW
z-score (≥1.7 or

≥95.5th
centile)

Prospective design Included women
with diabetes
alone

No analysis Prevalence = 27%
PPV = 51%
NPV = 91%
LR positive test = 2.8

Kernaghan, Ola
et al. [98]

N = 242
Preexisting and gestational

diabetes
Sheffield, The U.K.

Fetal growth
velocity
(FGV)

Prospective design Included women
with diabetes
alone

No analysis Prevalence = 27%
PPV 35%
NPV 76.1%

Wong, Chan
et al. [102]

N = 100
Retrospective study at the

Mater Hospital in
Brisbane, Australia

1994–1999

AC
extrapolated
from clinical
ultrasound
reports

z-scores
calculated

Confounding
variables were not
adjusted for in
analyses

Small numbers

Retrospective
Included only

diabetes

Mean BMI was in the
overweight range

LGA group had a higher
BMI

Progressive increase in
z-scores as gestation
advances in
newborns with LGA

Difference in mean z-
score was 0.68 at
18–22 weeks to 1.96
at 34–38 weeks)

Pates, McIntire
et al. [100]

N = 3115
Retrospective cohort study in

Texas, The U.S.A. during
1997 and 2006

BW ≥4000 g
± AFI ≥20 cm
± Risk factors

for
macrosomia

Selection bias due to
the clinical concern
of macrosomia
lead to a USS

Retrospective
design

Indications for
clinical scans
were variable

BMI >30 accounted for
81% of BW >4000 g
compared with 41% in
BW <4000 g

Neonatal macrosomia
rate = 7.6%

PPV using USS, AFI,
and risk factor was
71%, NPV = 94%

Sn = 29%, Sp = 29%
El Khouly,
Elkelani
et al. [101]

N = 600
Prospective observational

study from large
maternity hospital in
Egypt between
2014–2016

Ultrasound in
the 1st
stage of
labor

EFW >4000 g
and AFI
>16.4 cm

Prospective design
Sample size

Lack of clinical
outcomes

No separate analysis
performed

10.6% macrosomia
rate based on
newborn weight

2% incidence if
Diabetes

Combined EFW and
AFI had a
PPV = 92.3% in the
detection of
macrosomia

EFW alone (PPV 75%)
and AFI (27%)

PEAPOD: AIr displacement plethysmography; AFI: Amniotic fluid index; PPV: Positive predictive value; NPV: Negative predictive value; LR: Likelihood Ratio; GWG:
Gestational weight gain; USS: Ultrasound.
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The largest study to date to assess fetal biometry and body
composition measurements using ultrasound was performed
by Grivell and colleagues [57]. This study included women
enrolled in the LIMIT trial [112] who were randomized to
receive a comprehensive lifestyle intervention across preg-
nancy compared with women who received standard antena-
tal care. While the proportion of newborns classified as LGA
(birthweight above the 90th centile), did not differ between
the two groups, the intervention was associated with a sig-
nificant 18% relative risk reduction in the chance of infant
birthweight greater than or equal to 4 kg [112], and a 41%
reduction in risk of birthweight above 4.5 kg [113]. Women
who received the antenatal intervention demonstrated signifi-
cant improvements in their self-reported dietary intake [113]
and physical activity, when compared with women rando-
mized to the standard care group [113].

In this setting, fetal body composition measurements and
biometry were obtained from 1847 women at both 28 and
36 weeks’ gestation [57]. Fetal z-scores for all biometry and
adiposity-related measures were above the population means,
regardless of treatment group, indicating that the fetuses of
women who are overweight or obese have growth measures
above population standards [57]. Furthermore, increases in
head and AC growth were both identified to contribute to
the increase in EFW [57], compared with the increase in AC
only, which has in the past been demonstrated in fetal growth
in women with gestational diabetes [102,114,115].

Two-dimensional fetal body composition measurements
have been poorly correlated with neonatal measurements of
body composition, lean tissue, and body fat mass [116–118].
As a result, there has been increasing interest in three-dimen-
sional imaging due to its availability over the past 5 years.
Gibson and associates have assessed body composition in
those fetuses with suspected macrosomia using three-dimen-
sional mean thigh volume. Thigh volume z-scores were corre-
lated with infant birthweight (R2 = 0.52 [0.54–84], P < 0.001)
and neonatal anthropometric body fat (R2 = 0.22 [0.17–0.69],
P = 0.04) and skinfold thickness measurements including tri-
ceps, subscapular, umbilical, flank, and thigh skinfolds [109].
With the increasing availability of air displacement plethysmo-
graphy for the assessment of neonatal body composition, Lee
and associates have identified that three-dimensional frac-
tional limb volume is correlated well with calculated neonatal
fat mass [118]. However, despite these promising findings,
fractional limb volume measurement using three-dimensional
imaging requires specific training, specialized software, and is
not routinely used in clinical practice [109].

In summary, to date there is no ‘gold standard’ measure
that can be utilized in the ultrasound prediction of the LGA
fetus, macrosomia, or fetal adiposity [31]. Further research is
required, specifically focusing on women who enter preg-
nancy overweight or obese, as these fetuses remain at high
risk of future health complications.

10. Can fetal growth be modified through
intervention?

In the recent past, there has been considerable interest in the
evaluation of antenatal dietary and physical activity

interventions as a strategy to limit gestational weight gain
and reduce the risk of maternal and perinatal complications.
A comprehensive review by Thangaratinam and colleagues
identified 44 studies assessing lifestyle and dietary interven-
tions, in which provision of an antenatal intervention was
associated with a modest reduction in gestational weight
gain 1.42 kg (95% confidence intervals 0.95–1.89) [119].
Importantly, few trials reported the effect of the intervention
on ultrasound measures of fetal growth.

The LIMIT trial represents the largest trial to date to com-
prehensively perform ultrasound-based assessment of fetal
growth and different adiposity measurements [57] comparing
an antenatal dietary and lifestyle intervention provided to
pregnant women who were overweight or obese [112]. In
this context, fetuses of women who received the antenatal
dietary and lifestyle advice were shown to have a slower rate
of subscapular adipose tissue deposition and a higher mean
mid-thigh fat mass (MTFM). It has been suggested that lower
body fat deposition may have a greater protective role, when
compared with upper body fat deposition, which is more likely
to be associated with type 2 diabetes and cardiovascular
disease [120].

Metformin has also been investigated in pregnancy as an
adjuvant therapy for women who are overweight or obese.
Metformin is an oral biguanide that can increase the sensitivity
to insulin, in addition to its recognized anti-inflammatory
properties [94]. Metformin has been used in a number of
fertility-related settings, largely in women with a diagnosis of
polycystic ovarian syndrome (PCOS) [121]. While metformin
treatment in women with PCOS has been associated with
weight loss prior to conception, the effect on pregnancy-
related outcomes is less clear [121].

Two recently completed and published randomized trials
have utilized metformin treatment specifically in pregnant
women who are obese [122,123]. While both of these trials
reported no differences in either the diagnosis of gestational
diabetes or infant birthweight [122,123], Syngelaki reported
metformin use to be associated with a reduction in gestational
weight gain and the occurrence of preeclampsia [123]. These
findings highlight the complexity surrounding maternal obesity
and effect on fetal growth, with insulin resistance only part of a
highly complex and regulated pathway [122]. The findings of
the GROW randomized trial, evaluating the use of metformin as
an adjuvant to dietary and lifestyle advice in pregnant women
who are overweight or obese, are awaited [124]. Ongoing fol-
low-up of the children whose mothers participated in these trials
is important, as there is evidence that the use of metformin in
the treatment of gestational diabetes is associated with lower
visceral body fat at 2 years of age compared with children born
to women who had treatment with insulin [125], despite no
difference in infant birthweight [126].

The lack of measurable effect in ultrasound measures of
fetal biometry and adiposity suggests that modification of
maternal diet in the second trimester of pregnancy may be
‘too late’ to substantially modify fetal adiposity and growth,
raising the possibility of targeting women who are overweight
or obese prior to conception as a strategy to improve health
outcomes for women and their children. Opray and colleagues
performed a systematic review evaluating the effect of weight
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loss prior to conception among women who are overweight
or obese on pregnancy and birth outcomes [127]. No rando-
mized controlled trials targeting this period to promote
weight loss in overweight or obese women generally, were
identified. Challenges of interventional trials in the preconcep-
tion period and assessment of birth-related outcomes include
the identification, recruitment, and following up of women
before and after pregnancy [128]. Despite these challenges,
future research into this important area is required as a matter
of priority and current trials are already underway [129,130].

11. Expert commentary

The intergenerational effects of obesity have been highlighted
as a major public health issue, and is associated with the
escalating rates of maternal, infant, childhood, and adolescent
obesity, across the world.

Both obesity and gestational diabetes share a similar com-
plex pathophysiology, contributing to metabolic dysfunction
in both the woman and her fetus. Key mechanisms relate to
the exaggerated reduction in peripheral insulin sensitivity in
the woman, beyond the normal physiological response, which
in turn, increases glucose availability for the fetus, a direct
pathway to increase fetal growth. Other important metabolic
determinants of fetal growth include leptin, adiponectin, insu-
lin growth factors, and lipids. There is also increasing evidence
of an indirect pathway contributing to fetal growth, involving
the up-regulation of placental transporters, the impact of
placental structure and morphology, along with contributions
from uteroplacental blood flow.

While technological advances in ultrasonography has led to
increasing interest in the identification of the LGA fetus fol-
lowing the measurement of fetal body composition (body fat
versus lean tissue mass), there is no consensus regarding the
appropriate measures to be utilized, impacting greatly on the
quality of the evidence surrounding this important outcome.
With improvements in the sensitivity of measures of fetal
growth and adiposity, it may be possible not only to identify
subtle changes reflecting the effects of both preconception
and antenatal interventions but also to more appropriately
identify the fetus at increased risk of adverse perinatal out-
comes, and the child at risk of obesity. In time, these interven-
tions may represent efficacious strategies to impact the
vicious cycle of maternal obesity and the intergenerational
effect for the infant and child.

12. Five—year view

The United Nations Assembly in April 2016 called for an
urgent response to the obesity epidemic with a global refocus,
a ‘Decade of Action on Nutrition’ [128], as has the World
Health Organization, in response to the commission on child-
hood obesity [9]. This will lead to increasing public health
campaigns over the next 5 years, including health education
and promotion strategies to ensure a move towards a global
improvement in nutrition, particularly aimed at children and
adolescents. This will be accompanied by further advances in

both basic and clinical sciences investigating the mechanisms
underlying fetal growth and adiposity.

Periconceptual care and early pregnancy interventions are
being highlighted as a key intervention period that could
potentially influence a future child’s body composition,
growth and health consequences [131], with a focus on inter-
vention trials to reduce maternal and paternal obesity prior to
conception. Interventions and health education during this
periconceptual period will be key in promoting a more favor-
able intrauterine environment, that could ‘normalize’ fetal
growth and body composition for the infant and child.

There will be paradigm shift from increasing antenatal care
as a woman approaches term, to early pregnancy screening to
identify the woman at risk of preterm birth, preeclampsia, and
GDM and then institute appropriate monitoring and treatment
via models stratified for low- or high-risk antenatal care
[132,133]. The first trimester of pregnancy could therefore
represent an ideal time to identify women at risk of obesity-
related complications and gestational diabetes, and to intro-
duce interventions, education, and support for these ‘higher
risk’ women [132].

The intergenerational effects of obesity remain an impor-
tant area of ongoing research. If interventional studies can
reduce the impact of maternal obesity on subsequent child
obesity, this will be a significant step forward and one of the
greatest legacies we can give the next generation.

Key issues

● The intergenerational effects of obesity have been high-
lighted as a major public health issue, leading to interest
in understanding and modifying fetal overgrowth to reduce
childhood obesity rates.

● Direct effects of glucose and insulin and the indirect effects
of leptin and adiponectin, insulin growth factor along with
placental factors can influence fetal growth.

● Ultrasound technology has led to interest in the prediction
of fetal overgrowth and adiposity, however, there remains
no international consensus regarding the clinical manage-
ment of fetuses predicted to be large for gestational age.

● The evidence surrounding antenatal interventions suggest
that this strategy may be ‘too late’ to modify fetal adiposity
and growth, raising the question of targeting the pericon-
ceptual period or early pregnancy.
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ABSTRACT
Introduction: The aim of this secondary analysis was to investigate the relationship between
maternal body mass index (BMI) and fetal biometry, body composition, and velocity measure-
ments at 28 and 36 weeks gestation.
Materials and methods: The current analysis involves 911 overweight or obese women who
were randomized to the Standard Care group of the LIMIT randomized trial.
Results: The fetus of women with Class 3 obesity (BMI! 40.0) showed the greatest increase in
all biometry z-scores, abdominal area (AA), and abdominal fat mass (AFM) compared with
women classified as overweight (BMI 25.0–29.9). In women with Class 3 obesity, AA velocity was
increased by 0.035 cm2 (0.004, 0.066, p¼ .029) and the z-score velocity was increased by 0.238
(0.022, 0.453, p¼ .03). Estimated fetal weight (EFW) velocity for women with Class 3 obesity was
higher than that of overweight women by 2.028 g per day (0.861, 3.196, p<.001) and the z-score
velocity was also higher by 0.441 per day (0.196, 0.687, p< .001).
Conclusions: Maternal obesity is associated with an increase in fetal abdominal circumference,
AFM and area along with EFW velocity over time. Women with Class 3 obesity (BMI! 40.0) may
represent a higher risk group for perpetuating the intergenerational transmission of obesity to
their offspring.
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Introduction

Overweight and obesity affect 1.9 billion adults
around the globe [1], and more than 41 million chil-
dren under the age of 5 years [2]. Furthermore, over
50% of women in high-income countries enter preg-
nancy with a body mass index (BMI) greater than
25 kg/m2 [3]. Obesity in pregnancy has a significant
effect on maternal, fetal, and neonatal health out-
comes and in the longer term, is associated with an
increased risk of childhood obesity in offspring [2,4].
The contribution of maternal obesity to subsequent
childhood obesity is complex, involving both genetic
and environmental factors, with substantial impact
arising from intrauterine programming [5]. To this end,
there has been considerable interest in understanding
the stimulation and regulation of fetal growth and adi-
posity patterns, and how this contributes to the inter-
generational effects of obesity [6].

The developmental overnutrition hypothesis [7]
proposes that maternal hyperglycemia, in the setting

of diabetes, increases placental transfer of glucose,
resulting in fetal hyperglycemia, increasing insulin-
mediated fetal growth, principally adiposity. There has
also been extension of this hypothesis to fetal growth
in the setting of maternal obesity, with recognition
that other substrates such as leptin, adiponectin, tri-
glycerides, cholesterol, and inflammatory cytokines
may indirectly influence growth through the regula-
tion of placental nutrient transport [8].

With advances in ultrasound technology, there has
been increasing interest in the identification of the
fetus at risk of overgrowth and adiposity, utilizing
both standard ultrasound biometry and fetal body
composition measurements. While several studies
have evaluated a range of fetal body composition
measures using ultrasound [9–11], they have been
somewhat limited by their relatively small sample sizes
and having been performed mostly in women with a
normal BMI [12,13] or diabetes [14–16]. The generaliz-
ability of these measures in other populations, particu-
larly women who are overweight or obese, is unclear.
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The aim of this study was to determine the association
between maternal BMI and fetal growth, body compos-
ition and growth velocity in a population of overweight
and obese women. The hypothesis of this study is that
higher maternal prepregnancy BMI is associated with
increased fetal growth and greater fetal adiposity.

Materials and methods

The research methodology [17] and clinical findings
[18,19] of the LIMIT randomized controlled trial have
been published, in which a total of 2212 women who
were overweight or obese were recruited to assess the
effects of a dietary and lifestyle intervention, com-
pared with standard antenatal care.

Eligibility and participants

Women were approached at their first antenatal booking
appointment, where their height and weight were meas-
ured and BMI was calculated. Women with a singleton
pregnancy between 10þ 0 and 20þ 0 weeks gestation,
and BMI greater than or equal to 25 kg/m2 were eligible
for inclusion. Women with a diagnosis of Type 1 or Type
2 diabetes, or multiple pregnancy were excluded.

Ethics approval

Women were recruited from three public hospitals across
metropolitan Adelaide and provided written informed
consent to participate. The ethics approval study number
for LIMIT randomized controlled trial was 1839/6
(approved July 2006) and for the fetal growth ancillary
study number was 2051/4 (approved April 2008).

Randomization

At the time of the first antenatal visit, all women had
their height and weight measured, and BMI was calcu-
lated. A central randomization service using a com-
puter generated schedule randomized women to
either the “Lifestyle Advice Group” or “Standard Care
Group”. Stratification variables included parity (0 ver-
sus 1þ), BMI at antenatal booking (25.0–29.9 kg/m2

versus" 30.0 kg/m2) and hospital of birth. Women
included in this analysis were those randomized to the
Standard Care group.

Intervention

Women who were randomized to receive Lifestyle
Advice participated in a comprehensive dietary and

lifestyle intervention, which included a combination of
dietary, exercise and behavioral strategies. Further
details regarding content of the intervention have
been published previously [18,19]. Women who were
randomized to the Standard Care group received their
pregnancy care according to the guidelines of the
hospital where they were planning to birth, which did
not include the routine provision of dietary and life-
style advice, or information relating to gestational
weight gain in pregnancy [18,19].

Ultrasound assessment

All women who participated in the trial were offered a
research ultrasound scan at 28 (range 26þ 0 to
29þ 6) and 36 (range 34þ 0 to 37þ 6) weeks’ gesta-
tion to obtain fetal biometry and body composition
measurements, performed by a medical practitioner
with specialist or subspecialist training in obstetric
ultrasound [20]. The estimated date of confinement
and gestational age were calculated on the early preg-
nancy ultrasound and menstrual period dating.

Ultrasound outcome measurements

Using ultrasound, fetal biometry, estimated fetal
weight (EFW), and fetal body composition were meas-
ured at 28 and 36 weeks gestation and have been
described in detail in related publications [20].

Biometry and estimated fetal weight

Ultrasound assessment at these time points included
measurements of standard biometry including head cir-
cumference (HC), biparietal diameter (BPD), abdominal
circumference (AC), and femur length (FL). The biometry
was measured in accordance with national and inter-
national standards of practice [21]. Estimated fetal
weight was calculated using the Hadlock C formula [22].

Fetal body composition measures

Fetal body composition measures were obtained in a
standardized fashion, as we have reported previously
[20], and included midthigh lean mass (MTLM), mid-
thigh fat mass (MTFM), abdominal fat mass (AFM), and
subscapular fat mass (SSFM).

Midthigh total, lean, and fat mass

Midthigh lean mass and MTFM were measured accord-
ing to described techniques [12,20,23], as we have
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reported previously [20]. Midthigh lean mass was cal-
culated by first obtaining a longitudinal view of the
femur and identification of the midpoint at a 0! angle.
The transducer was then rotated through a 90! angle
to obtain the cross-sectional view of the midthigh,
and a trace of the circumference of the midthigh total
mass (MTTM) performed and area calculated. The
MTLM incorporating muscle and bone was outlined
using a continuous trace to calculate the area. A sub-
traction was performed between the MTTM and the
MTLM to calculate the MTFM.

Abdominal fat mass

Fetal AFM or anterior abdominal wall thickness was
measured between the midaxillary lines and anterior
to the margins of the ribs, at the level of the AC, with
the subcutaneous fat represented by the echogenic
envelope surrounding the abdomen and measured in
millimeters [12,20,23]. Using magnification, four meas-
urements were obtained from one or two separate
images, with the mean value used in the analysis.

Subscapular fat mass

Subscapular fat mass was measured using a sagittal
view of the fetal trunk to visualize the entire longitu-
dinal section of the scapula as per the described tech-
nique [12,20,23]. The subcutaneous measurement
between the skin surface and the subcutaneous tissue
at the interface with the superspinous and infraspi-
nous muscles was obtained on two occasions, with
the mean value used in the analysis.

Fetal z-scores

For each fetal growth and adiposity measurement, z-
scores were calculated using ultrasound growth charts
in clinical use [22].

Fetal growth velocity

Fetal growth velocity was defined as the difference in
biometry between 36 and 28 week measurements div-
ided by actual time between measures. The growth
velocity measurement was expressed as growth in
mm per day for BPD, HC, FL, MTFM, AFM, SSFM, and
z-scores were calculated for BPD, FL, EFW, and abdom-
inal area (AA) using reference values from Owen et al.
[24]. Abdominal area expressed as cm2 with z-scores
was calculated [24], as there are no appropriate refer-
ence ranges for AC velocity.

Statistical analysis

Baseline characteristics of women in the Standard
Care group were assessed descriptively, with continu-
ous variables were reported as mean and standard
deviation or median and interquartile range as appro-
priate, and categorical variables were reported as
number and percentage.

Maternal BMI was analyzed within four groups
including overweight (BMI range between 25.0 and
29.99 kg/m2), Class 1 obesity (BMI range between 30.0
and 34.99 kg/m2), Class 2 obesity (BMI range between
35.0 and 39.9 kg/m2), and Class 3 obesity (BMI greater
than or equal to 40 kg/m2) [25,26].

Fetal biometry and adiposity outcomes were ana-
lyzed using linear regression models with adjustment
for confounders including center, parity, maternal age,
smoking, socioeconomic status (Socioeconomic Index
for Areas (SEIFA) Index of Relative Socio-Economic
Disadvantage (IRSD) quintile).

For outcomes considered at two time points, gener-
alized estimating equations (GEEs) were used to
account for repeated measures, with a time-by-meas-
ure interaction term included in the model to test for
difference in association between time points.

Statistical significance was assessed at the two
sided p< .05 and no adjustment was made for mul-
tiple comparisons, as this is an exploratory rather than
confirmatory analysis. All analyses were performed
using SAS 9.4 (Cary, NC) and Stata v14 (Stata
Corporation, College Station, TX).

Results

Demographic characteristics

Of the 911 women included in the secondary analysis,
41% (n ¼ 376) were overweight, 29.8% (n ¼ 271) had
Class 1 obesity, 16.8% (n ¼ 153) had Class 2 obesity, and
12.2% (n ¼ 111) had Class 3 obesity (Table 1). The mean
age of women was 29.6 years, the majority (92%;
n ¼ 835) were Caucasian in origin, with 40% (n ¼ 369)
in their first ongoing pregnancy, and almost 30%
(n ¼ 265) from the highest quintile of social disadvan-
tage. The overall rate of gestational diabetes in the
Standard Care group was 11.2% (n ¼ 102). These base-
line characteristics are consistent with the baseline char-
acteristics of the entire LIMIT Trial randomized cohort
[18]. A total of 911 women from the Standard Care group
had ultrasound information at one or more time points,
with 777 having ultrasound data at both 28 and
36 weeks. Sixty-six women (7.2%) had data only for
28 weeks, and 68 women (7.5%) had data only at 36-
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week gestation (Table 1). There were no statistically sig-
nificant differences in the demographic characteristics
between the four BMI categories.

Maternal BMI and the relationship with fetal
biometry and estimated fetal weight z-scores

Neither maternal obesity Class 1 or Class 2 was associ-
ated with fetal BPD, HC, or FL z-scores at either 28 or
36 weeks gestation, when compared with fetal biometry
measures from women who were overweight (Table 2).
However, the fetuses of women with obesity Class 3
demonstrated significantly higher z-scores for BPD com-
pared with the fetuses of women who were overweight:
the estimated mean difference was 0.36 (0.06, 0.65) at
28 weeks (p¼ .017), and 0.39 (0.15, 0.63) at 36 weeks
(p¼ .002). Similarly, HC z-scores were higher by 0.47
(0.26, 0.68) at 28 weeks and 0.51 (0.32, 0.71) at 36 weeks
(p< .001 for both time points), while FL z-scores were
higher by 0.36 (0.13, 0.58) at 28 weeks (p¼ .002) and by
0.27 (0.02, 0.52) at 36 weeks (p¼ .035) (Table 2).

For both AC and EFW z-scores, there was a consist-
ent pattern of higher measures with increasing mater-
nal BMI at both time points as shown in Table 2. The
mean fetal AC z-scores at both 28 and 36 weeks were
significantly higher in the fetus of women with Class 1
obesity, with the magnitude of the increase being
higher for Class 2 and Class 3 obesity categories in
comparison to women in the overweight group.
Women with Class 1 obesity had AC z-scores 0.18

(0.02, 0.33, p¼ .028) higher at 28 weeks, and 0.21
(0.04, 0.38, p¼ .017) higher at 36 weeks. Women with
Class 2 obesity had AC z-scores 0.20 (0.01, 0.38;
p¼ .04) higher at 28 weeks, and 0.24 (0.05, 0.43,
p¼ .013) higher at 36 weeks. For the women with
Class 3 obesity, the increase in AC z-score was 0.40
(0.17, 0.63, p¼ .013) at 28 weeks, and 0.39 (0.15, 0.63,
p¼ .001) at 36 weeks compared to the overweight
group. Women with Class 1 obesity had EFW z-scores
0.18 (0.04, 0.33, p¼ .014) higher at 28 weeks, and 0.17
(0.008, 0.32, p¼ .04) higher at 36 weeks. For the
women with Class 3 obesity, the increase in EFW z-
score was 0.46 (0.23, 0.69, p< .001) at 28 weeks, and
0.42 (0.19, 0.64, p< .001) at 36 weeks compared to the
overweight group (Table 2).

Figure 1 illustrates the positive association between
maternal BMI (continuous variable) and fetal AC
z-score when measured at 28 and 36 weeks (Figure 2).
For every 1 unit increase in BMI, AC z-score increases
by 0.021 units (95 CI 0.01–0.032) at 28 weeks (p< .001)
and 0.025 (95 CI 0.013–0.036) at 36 weeks (p< .001).

In the time-by-treatment interaction analyses, there
was no evidence that the observed associations
between maternal BMI and fetal growth and adiposity
measurements changed over time.

Maternal BMI and fetal adiposity measurements

There were no significant differences between the
maternal BMI categories MTFM as shown in Table 3.

Table 1. Baseline characteristics of the Standard Care group within the LIMIT Trial.
Body mass index category

Overall
Total number Overweight Class 1 Class 2 Class 3 N (%) p Value

25.0–29.9 30.0–34.9 35.0–39.9 "40.0

N (%) 376 (41.3) 271 (29.8) 153 (16.8) 111 (12.2) 911
Maternal age (years)
Mean (SD) 29.9 (5.25) 29.6 (5.69) 29.2 (5.40) 28.9 (5.97) 29.6 (5.50) .24
Caucasian
n (%) 340 (90.4) 248 (91.5) 141 (92.2) 106 (95.5) 835 (91.7) .40
Nulliparous
n (%) 168 (44.68) 108 (39.85) 50 (32.68) 43 (38.74) 369 (40.50) .08
Smoker
n (%) 38 (10.11) 35 (12.92) 14 (9.15) 14 (12.61) 101 (11.09) .52
Gestational diabetes
n (%) 26 (6.91) 37 (13.65) 19 (12.42) 20 (18.02) 102 (11.20) .88
SEIFA
Quintile 1
Most disadvantaged
n (%)

94 (25.00) 83 (30.63) 48 (31.37) 40 (36.04) 265 (29.09) .06

Quintile 2
n (%) 87 (23.14) 63 (23.25) 37 (13.65) 40 (14.76) 48 (17.71)
Quintile 3
n (%) 59 (15.69) 37 (13.65) 29 (18.95) 18 (16.22) 143 (15.70)
Quintile 4
n (%) 70 (18.62) 40 (14.76) 20 (13.07) 12 (10.81) 142 (15.59)
Quintile 5
Least disadvantaged
n (%)

66 (17.55) 48 (17.71) 14 (9.15) 11 (9.91) 139 (15.26)

4 C. M. O’BRIEN ET AL.
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For AA, there were no significant differences for the
obesity Class 2 category; however, there were signifi-
cant differences between the obesity Class 1 and Class
3 categories when compared to measurements from
women who were overweight. The mean AA was
1.795 cm2 (0.13, 3.46, p¼ .035) higher at 36-week ges-
tation in the fetus of women with Class 1 obesity.
Similarly, the mean AA was higher by 2.19 cm2 at
28 weeks (0.31, 4.08, p¼ .02) and 3.42 cm2 at 36 weeks
(1.09, 5.74, p¼ .004) in the fetus of women with Class
3 obesity (Table 3).

For AFM, there were no significant differences in
the fetus of women with Class 1 or Class 2 obesity;

however, there were significant differences between
the obesity Class 3 when compared to measurements
from women who were overweight. In the fetus of
women with Class 3 obesity AFM was increased by
0.61mm (0.08, 1.14, p¼ .03) at 36 weeks (Table 3).

For SSFM, there were no significant differences in
the fetuses of women with Class 2 or Class 3 obesity;
however, there were significant differences between
obesity Class 1 when compared to women who were
overweight. In the fetus of women with Class 3 obes-
ity, SSFM was reduced by 0.2mm ("0.37, "0.04,
p¼ .016) at 28 weeks (Table 3).

There was no evidence that the association with
maternal BMI category differed over time for the adi-
posity measurements.

Maternal BMI with fetal growth velocity over time

There were no significant differences between the
maternal BMI categories and MTFM velocity, AFM vel-
ocity, or SSFM velocity (Table 4). For EFW and AA vel-
ocity, there were no significant differences for women
with Class 1 and Class 2 obesity; however, there were
significant differences between the Class 3 obesity
and overweight categories. The mean EFW velocity
was 2.03 g per day (0.86, 3.2, p< .001) higher in
women with Class 3 obesity. The EFW z-score velocity
was also higher by 0.44 (1.2, 0.69, p< .001). Similarly,
AA velocity was higher by 0.035 cm2/day (0.004, 0.066,
p¼ .029), and the AA z-score velocity was higher by
0.24 (0.02, 0.45, p¼ .03) (Table 4).

Figure 2 illustrates EFW growth velocity expressed
as the mean growth per day for each BMI category.
The reference group has been included to show how
maternal obesity, regardless of BMI category, results in
a higher fetal growth velocity rate. This diagram shows
the incremental increase in velocity with maternal BMI
category, the highest velocity being found in the fetus
of women with obesity Class 3 (Table 4).

In addition to the analyses reported above, BMI
was also analyzed as a continuous variable and the
results are consistent with the above findings
described for the analysis of the four BMI groups.

Discussion

This study describes the fetal growth patterns and
growth velocity over time in women who are over-
weight or obese. Our study identifies an association
between higher maternal BMI category and an
increase in fetal biometry z-scores, abdominal-related
adiposity and growth velocity. We found a consistent

Figure 1. There is a positive association between increasing
maternal BMI and fetal abdominal circumference (AC) z-score
when measured at 28 weeks (blue) and 36 weeks (red). For
every 1 unit increase in BMI, AC z-score increases by 0.021
units (95th CI 0.01–0.032) at 28 weeks (p< .001) and 0.025
(95th CI 0.013–0.036) at 36 weeks (p< .001).

Figure 2. This graph illustrates the mean estimated fetal
weight change per day from 28 weeks to 36 weeks for each
BMI category. The reference group is the growth velocity from
28 to 35 weeks inclusive from low risk pregnancies reported
by Owen and associates in 1996 [23]. As BMI category
increases, there is an incremental increase in the rate of
growth per day when compared to the reference group.

6 C. M. O’BRIEN ET AL.
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and significant increase in all fetal biometry measure-
ments at both 28 and 36 weeks gestation from
women with Class 3 obesity (BMI greater than or
equal to 40 kg/m2). Fetal adiposity measurements
were not universally increased but AFM and AA were
associated with maternal obesity in our cohort. With
increasing maternal BMI category, there were incre-
mental increases in growth velocity of the fetal abdo-
men and EFW. This study was a secondary analysis
and while other associations were identified, these
were inconsistent and likely due to chance.

Much of the literature pertaining to ultrasound
measured fetal growth patterns relates to women with
pre-existing diabetes [15] and gestational diabetes
[13,14,16,27]. Maternal obesity is associated with an
overall increase in lean mass and skeletal growth [20].
In contrast, maternal diabetes results mainly in an
increase in AC and AFM through the stimulation of
insulin sensitive tissues [15]. The main findings in this
study confirmed this, where a significant increase in
skeletal growth (HC and FL) and AA velocity and fat
mass was found in women with Class 3 obesity com-
pared with the lesser BMI categories. A recent study
by Zhang et al. in women classified as obese and non-
obese in pregnancy, also found an increase in skeletal
growth, with significant increases in HC, humeral and
FLs in fetuses of obese women [28]. The difference in
EFW comparing women who were nonobese to obese
was apparent from 32 weeks [28].

Women with Class 3 obesity (BMI greater than or
equal to 40 kg/m2) are likely to represent a metabolic-
ally different group. From epidemiological studies,
higher BMI category is associated with a further
increase in the rate of adverse perinatal outcomes
including macrosomia [29–32] and there is emerging
evidence of associated childhood obesity [33–35]. The
stimulation of fetal growth through the complex path-
way including insulin growth factors (via hypergly-
cemia and hyperinsulinemia) [36], hyperlipidemia [37],
leptin [38], adiponectin [39], and inflammatory media-
tors [40] is likely to be accentuated in women of
higher BMIs. Thus, targeted interventions in the Class
3 obesity group may be more beneficial in reducing
the fetal effects of obesity when compared to women
with lower BMI categories.

This is the first study to report on velocity of fetal
growth and adiposity in the setting of maternal obes-
ity. The literature to date has used measurement of
growth velocity as a tool for screening and identifica-
tion of the small for gestational age infant [41] or for
screening for macrosomia associated with pre-existing
or gestational diabetes [15,42,43]. The velocity of fetal

growth changes throughout gestation [44,45]. Of inter-
est, growth in the abdomen circumference over time
peaks at 12.5mm per week at 24 weeks’ gestation,
reducing to 8mm per week by 40 weeks’ gestation
[44]. Our study has shown an incremental increase in
the rate of growth velocity in third trimester associ-
ated with maternal obesity. Further understanding
into the timing and regulation of the fetal growth vel-
ocity in the setting of maternal obesity is critical to
developing successful interventions to improve peri-
natal outcomes.

The main limitation of this secondary analysis is the
lack of a comparator group, defined as women enter-
ing pregnancy with a normal BMI. There was also
missing data in the velocity comparisons due to the
availability of the second scan to calculate the growth
velocity over time, affecting 15% of women within the
cohort. Third, the study incorporated two time points
to assess velocity in the third trimester. Other descrip-
tive studies for growth velocity used multiple time
points from 12 to 40 weeks gestation in order to
describe the variation in velocity throughout the
entire pregnancy [44,45]. Lastly, while multiple com-
parisons were used in this secondary analysis, this has
not been adjusted for as this study is an exploratory
not a confirmatory analysis.

There is a need for further studies into the mecha-
nisms and timing of critical fetal growth changes. This
would help guide and assist with the timing of poten-
tial interventions that may modulate fetal growth in
utero. From a public health perspective, if preventive
strategies could modify fetal growth, velocity and adi-
posity patterns in utero, this may alter the transmission
of obesity and its cardiometabolic complications to
the next generation [46,47].
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Abstract: The aim of our study was to evaluate associations between maternal dietary factors and
fetal growth and adiposity in overweight and obese women. Women randomised to the ‘Standard
Care’ group of the LIMIT trial were included. Maternal dietary factors including Healthy Eating
Index, total energy, fat, carbohydrates, protein, glycaemic load and index were measured using the
Harvard semi-quantitative Food Frequency questionnaire at time of study entry, 28 and 36 weeks’
gestation. Fetal ultrasound measurements of biometry and adiposity were obtained at 28 and
36 weeks’ gestation. Linear regression models were used to associate between dietary factors and
fetal growth and adiposity measurements. There were 721 women included in this exploratory
analysis. A 10 unit increase in the log total energy was associated with a reduction in mid-thigh
lean mass by 4.94 mm at 28 weeks (95% CI �9.57 mm, �0.32 mm; p = 0.036) and 7.02 mm at
36 weeks (95% CI �13.69 mm, �0.35 mm; p = 0.039). A 10 unit increase in Healthy Eating Index
score was associated with a reduced mean subscapular skin fold measure at 28 weeks by 0.17 mm
(95% CI �0.32 mm, �0.03 mm; p = 0.021). We did not identify consistent associations between
maternal diet and measures of fetal growth and adiposity in overweight and obese women.

Keywords: obesity; pregnancy; fetal biometry; adiposity; healthy eating index; total energy;
glycaemic index; protein intake; carbohydrate intake; fat intake

1. Introduction

Over the past 40 years, rates of obesity have tripled worldwide [1], to the extent that it is
considered a public health crisis [2]. In many developed countries, including the United Kingdom and
United States of America, 1 in 2 women now enter pregnancy overweight or obese [3–5]. There are
well-recognised independent associations between obesity in pregnancy and maternal, fetal and
neonatal health outcomes [6,7], and in the longer-term maternal obesity has been linked with childhood
obesity [8].

Women who are overweight or obese during pregnancy have been demonstrated to have poorer
diet quality when compared with women with BMI in the normal range [9–12], which persists into
the postpartum period [10]. In turn, poor diet quality is associated with increased risk of glucose
intolerance and pre-eclampsia [11], increased neonatal adiposity [13] and changes in child body
composition [14].

Nutrients 2018, 10, 870; doi:10.3390/nu10070870 www.mdpi.com/journal/nutrients
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There is growing interest in the programming of fetal growth, the critical time points and the
influence of maternal diet as a potentially modifiable factor. The current literature is inconsistent,
largely due to the heterogeneity and variability relating to the timing and types of dietary assessments,
reporting and methodology along with body composition outcome measurements [15]. In relation
to maternal carbohydrate intake for example, some studies have shown a positive effective of high
carbohydrates on childhood BMI [16] and others have shown a low carbohydrate diet was associated
with increased fetal abdominal fat [17]. The majority have shown a negative effect [18–20] and one
study has shown no effect [15]. Protein and carbohydrate ratios or combination diets have also
been reported, where high protein associated with low carbohydrate and fat diet was associated
with a reduction in neonatal abdominal adiposity [21], whereas another study showed low protein:
carbohydrate ratio was associated with increased abdominal fat in the fetus.

Several studies have explored the association between maternal dietary intake and outcomes
in the perinatal period, focussing predominantly on birthweight [22–25], preterm birth [26], infants
born small for gestational age [27], and newborn anthropometry [13,17,18,22,28,29]. Poor diet quality
(defined as Healthy Eating Index score less than or equal to 57) has been associated with a higher
percentage of neonatal fat mass as measured on air displacement plethysmography, independent of
maternal BMI [13]. Observational data from the Danish National Birth Cohort identified an association
between maternal dietary glycaemic load and both an increased risk of large for gestational age infants
(14%) and higher birthweight (36 grams) [29].

There has been more limited evaluation of the contribution of maternal dietary intake to fetal
growth and adiposity. Maternal protein, fatty acid and carbohydrate intake during pregnancy have all
been associated with increased measures of fetal adiposity, although this has been evaluated in women
of normal BMI [17]. The contribution of specific maternal dietary components to fetal growth and
adiposity among women who are overweight or obese is unclear, and warrants further investigation.

The aim of our study was to evaluate associations between maternal dietary factors and fetal
growth and adiposity measured by ultrasound at 28 and 36 weeks gestation in overweight and
obese women.

2. Materials and Methods

The study cohort involves 721 overweight or obese pregnant women who participated in the
Standard Care Group of the LIMIT trial. The methodology and findings of the LIMIT Trial have
been reported in detail previously [30,31]. Briefly, women were recruited from maternity hospitals in
South Australia, after ethics approval and informed written consent to participate. Eligible women
were those with a singleton pregnancy and BMI � 25 kg/m2 at booking antenatal appointment,
and who were between 10+0 and 20+0 weeks’ gestation. The exclusion criteria included women with
Type 1 or 2 Diabetes diagnosed prior to pregnancy or multiple pregnancy. At the booking antenatal
appointment, all women had their height and weight measured, and BMI calculated by clinical staff.
Women in the Standard Care group continued pregnancy care according to the guidelines of their
local hospital and did not include specific information relating to weight gain, or diet and physical
activity during pregnancy. The ethics approval study number for LIMIT randomised controlled
trial was 1839/6 (approved July 2006) and for the fetal growth ancillary study the number was
2051/4 (approved April 2008).

2.1. Dietary Assessment

Women completed the Harvard Semi-quantitative Food Frequency (Willett) questionnaire [32] to
measure the daily dietary intake of nutrients from 126 food items, including portion size and
incorporation of the 7 food groups, which has been validated in pregnancy [33] and among Australian
pregnant women [34]. The questionnaire was completed at the time of study entry, 28 and 36 weeks’
gestation. At study entry, women were asked on average, how often was the food consumed during
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the last 12 months, while assessment at 28 and 36 weeks’ gestation asked women to indicate on average,
how often the amount of food was consumed since the previous questionnaire time point.

Daily nutrient intake was estimated using the nutrient compositions from the Australian food
composition tables according to pre-specified portion size. Adherence to dietary recommendations
was performed by allocating all food and drink consumption into the food groups as described by the
Australian Guide to Healthy Eating [35]. Foods were classified as ‘non-core foods’ if the food did not
meet the criteria of the five core food groups, provided minimal nutrient content, and were high in fat,
sugar or salt [35,36].

Micronutrient values were obtained from the Harvard Semi-quantitative Food Frequency (Willett)
questionnaire [32] and analysed as mean intake, utilising the Food Works Nutrient Analysis Software
Package (FoodWorks, version 7, Professional; Xyris Software 2012; Australia), and using Australian
Food composition tables.

Diet quality was assessed using the Healthy Eating Index (HEI), which has 12 components to yield
a maximum score of 100 [37]. These 12 components include total fruit, total vegetables, dark green and
orange vegetables and legumes, total grains and whole grains, all of which receive a score out of 5.
Milk, meat and beans, oils, saturated fat and sodium-based foods were scored out of 10. Calories from
solid fats, alcohol related beverages and added sugars were scored out of 20. A HEI score of 80 is
considered good, a score between 50 and 80 is one that needs improvement, and scores of less than
50 are considered poor. The HEI has been validated for use in pregnant women [38].

Dietary glycaemic index (GI) values were obtained from the Harvard Semi-quantitative Food
Frequency (Willett) questionnaire [32] and analysed using the Food Works Nutrient Analysis Software
Package (FoodWorks, version 7, Professional; Xyris Software 2012; Brisbane, Australia), and published
dietary glycaemic index values.

2.2. Ultrasound Assessment

A research ultrasound scan was offered to all women participating in the study at approximately
28 and 36 weeks’ gestation. Fetal biometry and body composition measurements were obtained
as previously described [39]. Research ultrasounds were performed by medical practitioners with
specialist or subspecialist training in obstetric ultrasound, while blinded to the participant’s treatment
allocation, and all measurements were obtained prospectively. The estimated date of confinement and
gestational age were calculated on the early pregnancy clinical ultrasound and menstrual period dating.

Ultrasound measurements of biometry and fetal adiposity were obtained as described in detail
previously [39]. In brief, fetal biometry was measured at 28 and 36 weeks’ gestation. This included
head circumference (HC), biparietal diameter (BPD), abdominal circumference (AC) and femur length
(FL), measured in accordance with national and international standards of practice [40]. Estimated
fetal weight (EFW) was calculated using the Hadlock C formula [41].

Fetal body composition measures included mid-thigh lean mass (MTLM), mid-thigh fat mass
(MTFM), abdominal fat mass (AFM), and subscapular fat mass (SSFM) using techniques reported
previously [39]. The techniques for acquisition of these measurements have been published in
detail [39]. MTLM was calculated by tracing the circumference of the mid-thigh total mass (MTTM)
followed by the MTLM incorporating muscle and bone. A subtraction was performed between the
MTTM and the MTLM to calculate the mid-thigh fat mass (MTFM). Abdominal fat mass was measured
in millimetres between the mid-axillary lines and anterior to the margins of the ribs, at the level of the
abdominal circumference. Two measurements of the subcutaneous skin width were obtained from
a longitudinal section of the scapula at the interface with the super-spinous and infra-spinous muscles.

2.3. Statistical Analysis

Baseline characteristics of women contributing data were assessed descriptively. Continuous
variables were reported as mean and standard deviation or median and interquartile range as
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appropriate, and categorical variables as a number and percentage. For each fetal biometry
measurement, z scores were calculated using ultrasound growth charts in clinical use [41,42].

The analyses were exploratory, with no pre-specification of a primary outcome. Instead,
the associations between diet and fetal growth and adiposity were investigated using a range of
dietary variables (HEI, Total Energy, Glycaemic Index, Glycaemic Load, Fat, Carbohydrate and
Protein as Percent of Total Energy) and a range of fetal growth and adiposity measures (BPD and
BPD z-score, EFW and EFW z-score, HC and HC z-score, AC and AC z-score, FL and FL z-score,
MTLM, MTFM, AFM, SSFM). Both dietary and fetal growth variables were measured at 28 weeks’ and
36 weeks’ gestation.

Linear regression was used to model the association between dietary factors and fetal growth
and adiposity, with diet variables considered as ‘predictors’ (independent variables) and fetal growth
and adiposity variables as ‘outcomes’ (dependent variables). A time-by-diet-variable interaction
term was included to allow for estimation of the association at each time point separately, and to
test whether the association differed between time points. Generalised Estimating Equations with
exchangeable working correlation were used to account for repeated measures. Both unadjusted
and adjusted analyses were performed. Adjusted analyses included maternal BMI category
(25.0–29.9 kg/m2 vs. �30.0 kg/m2 as measured at study entry), smoking, parity (0 vs. �1), age and
Socio-Economic Indexes for Areas Index of Relative Socio-Economic Disadvantage (SEIFA IRSD)
quintile, which is a rank of areas within Australia according to socio-economic disadvantage, obtained
from the Census that occurs every 5 years. All analyses were additionally adjusted for baseline diet
variables, as a potential confounder.

Statistical significance was assessed at the two-sided p < 0.05 and no adjustment was made for
multiple comparisons. All analyses were performed using SAS 9.4 (Cary, NC, USA).

3. Results

3.1. Demographic Characteristics

There were 721 women included in this secondary analysis and the baseline characteristics
are shown in Table 1. The mean age of women participating was 29.9 years (SD 5.3), with median
gestation at study entry 14.3 weeks (Interquartile range between 12.1 to 17.0 weeks). Forty-three
percent (n = 310) of women were overweight, while 46.5% (n = 335) were obese (BMI 30.0–39.9 kg/m2),
and 10.5% (n = 76) morbidly obese (BMI � 40.0 kg/m2). Most women (91%; n = 659) were of Caucasian
origin, 41.3% (n = 298) in their first ongoing pregnancy, and 52% (n = 373) from the highest two quintiles
of social disadvantage. The baseline characteristics of the women contributing dietary and ultrasound
data were comparable to all women in the Standard Care group, and all women included in the LIMIT
randomised trial [30].

Table 1. Baseline characteristics of the Standard Care group within the LIMIT Trial.

Characteristic Number (%), Mean (SD) or Median (IQR)

Overall Number 721
- Both 28 and 36 Weeks 453
- 28 Weeks Only 158
- 36 Weeks Only 110

Age at Trial Entry: Mean (SD) 29.88 (5.33)

Parity: N (%)
- 0 298 (41.33)
- �1 423 (58.67)

BMI: Median (IQR) 31.00 (27.70, 35.20)
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Table 1. Cont.

Characteristic Number (%), Mean (SD) or Median (IQR)

BMI Category: N (%)
- BMI 25.0–29.9 310 (43.00)
- BMI 30.0–34.9 219 (30.37)
- BMI 35.0–39.9 116 (16.09)
- BMI � 40.0 76 (10.54)

Smoker: N (%)
- Yes 67 (9.29)
- No 639 (88.63)
- Unknown 15 (2.08)

GA at Trial Entry: Median (IQR) 14.29 (12.14, 17.00)

Public Patient: N (%)
- Yes 707 (98.06)
- No 14 (1.94)

Ethnicity: N (%)
- Caucasian 659 (91.40)
- Asian 22 (3.05)
- Aboriginal or TSI 8 (1.11)
- Indian, Pakistani, Sri-Lankan 22 (3.05)
- African 5 (0.69)
- Other 5 (0.69)

SEIFA IRSD Quintile: N (%)
- Quintile 1 199 (27.60)
- Quintile 2 174 (24.13)
- Quintile 3 117 (16.23)
- Quintile 4 116 (16.09)
- Quintile 5 115 (15.95)

3.2. Healthy Eating Index (HEI)

There were no consistent associations between HEI and fetal biometry, MTFM, MTLM and AFM
(Table 2). There was a negative association between HEI and SSFM at 28 weeks, whereby a 10-unit
increase in HEI reduced SSFM by 0.17 mm (95% CI �0.32 to �0.03; p = 0.021).

Table 2. Healthy Eating Index and fetal ultrasound measurements.

Outcome Unadjusted
Estimate (95% CI)

Unadjusted
p Value

Adjusted
Estimate (95% CI)

Adjusted
p Value

BPD 0.992 † 0.968 †

- 28 Weeks �0.03 (�0.08, 0.02) 0.239 �0.03 (�0.08, 0.02) 0.221
- 36 Weeks �0.03 (�0.08, 0.02) 0.235 �0.03 (�0.08, 0.02) 0.234

BPD z-score 0.728 † 0.645 †

- 28 Weeks �0.13 (�0.29, 0.04) 0.128 �0.13 (�0.30, 0.03) 0.117
- 36 Weeks �0.10 (�0.24, 0.04) 0.166 �0.09 (�0.24, 0.05) 0.194

HC 0.060 † 0.064 †

- 28 Weeks �0.06 (�0.22, 0.09) 0.425 �0.08 (�0.24, 0.08) 0.305
- 36 Weeks 0.10 (�0.05, 0.09) 0.194 0.08 (�0.08, 0.24) 0.313

HC z-score 0.026 † 0.025 †

- 28 Weeks �0.06 (�0.17, 0.05) 0.317 �0.07 (�0.18, 0.04) 0.210
- 36 Weeks 0.08 (�0.03, 0.05) 0.161 0.07 (�0.05, 0.18) 0.247

FL 0.168 † 0.211 †

- 28 Weeks �0.02 (�0.06, 0.02) 0.283 �0.02 (�0.06, 0.02) 0.232
- 36 Weeks 0.01 (�0.03, 0.02) 0.646 0.00 (�0.03, 0.04) 0.855
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Table 2. Cont.

Outcome Unadjusted
Estimate (95% CI)

Unadjusted
p Value

Adjusted
Estimate (95% CI)

Adjusted
p Value

FL z-score 0.097 † 0.116 †

- 28 Weeks �0.09 (�0.20, 0.03) 0.154 �0.09 (�0.21, 0.03) 0.131
- 36 Weeks 0.02 (�0.09, 0.03) 0.678 0.01 (�0.10, 0.13) 0.817

AC 0.927 † 0.976 †

- 28 Weeks �0.07 (�0.28, 0.13) 0.484 �0.13 (�0.33, 0.07) 0.210
- 36 Weeks �0.06 (�0.32, 0.13) 0.637 �0.13 (�0.38, 0.13) 0.338

AC z-score 0.712 † 0.691 †

- 28 Weeks �0.03 (�0.14, 0.09) 0.660 �0.06 (�0.18, 0.05) 0.264
- 36 Weeks �0.05 (�0.18, 0.09) 0.471 �0.09 (�0.22, 0.04) 0.193

EFW 0.512 † 0.562 †

- 28 Weeks �22.42 (�52.33, 7.48) 0.142 �30.24 (�60.55, 0.07) 0.051
- 36 Weeks �6.80 (�58.91, 7.48) 0.798 �16.24 (�68.74, 36.27) 0.544

EFW
z-score 0.344 † 0.366 †

- 28 Weeks �0.08 (�0.18, 0.03) 0.170 �0.10 (�0.21, 0.01) 0.063
- 36 Weeks �0.02 (�0.14, 0.03) 0.723 �0.05 (�0.17, 0.07) 0.415

MTLM 0.742 † 0.891 †

- 28 Weeks �0.07 (�0.25, 0.10) 0.417 �0.08 (�0.26, 0.09) 0.361
- 36 Weeks �0.12 (�0.36, 0.10) 0.341 �0.10 (�0.35, 0.15) 0.425

MTFM 0.239 † 0.263 †

- 28 Weeks �0.10 (�0.33, 0.12) 0.370 �0.09 (�0.32, 0.14) 0.444
- 36 Weeks �0.39 (�0.90, 0.12) 0.141 �0.37 (�0.90, 0.17) 0.177

AFM 0.377 † 0.431 †

- 28 Weeks �0.07 (�0.23, 0.08) 0.357 �0.12 (�0.29, 0.04) 0.141
- 36 Weeks �0.17 (�0.41, 0.08) 0.152 �0.21 (�0.44, 0.02) 0.075

SSFM 0.824 † 0.930 †

- 28 Weeks �0.14 (�0.28, 0.00) 0.053 �0.17 (�0.32, �0.03) 0.021
- 36 Weeks �0.17 (�0.39, 0.00) 0.141 �0.18 (�0.41, 0.04) 0.115

† Denotes p value for test of interaction between HEI and time. That is, for a test of whether the association between
HEI and fetal growth/adiposity at 28 weeks differs from the association at 36 weeks.

3.3. Log Total Energy

Total Energy was log-transformed for analysis due to substantial right skew. There were no
associations between log total energy and AC, EFW, all fetal biometry z-scores, MTFM, AFM and
SSFM (Table 3). There was a negative association with log total energy and biometry measurements of
BPD and HC at 36 weeks, such that a 10 unit increase in log total energy reduced BPD by 1.48 mm
(95% CI �2.55 mm to �0.40 mm; p = 0.007); and HC by 4.07 mm (95% CI �7.6 mm to �0.54 mm;
p = 0.024).

Table 3. Log Dietary Intake and fetal ultrasound measurements.

Outcome Unadjusted
Estimate (95% CI)

Unadjusted
p Value

Adjusted
Estimate (95% CI)

Adjusted
p Value

BPD 0.116 † 0.099 †

- 28 Weeks �0.31 (�1.48, 0.86) 0.603 �0.36 (�1.55, 0.82) 0.547
- 36 Weeks �1.36 (�2.43, 0.86) 0.012 �1.48 (�2.55, �0.40) 0.007

BPD z score 0.417 † 0.477 †

- 28 Weeks �0.34 (�4.39, 3.71) 0.869 �0.59 (�4.71, 3.54) 0.780
- 36 Weeks �2.14 (�5.59, 3.71) 0.225 �2.18 (�5.70, 1.35) 0.226
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Table 3. Cont.

Outcome Unadjusted
Estimate (95% CI)

Unadjusted
p Value

Adjusted
Estimate (95% CI)

Adjusted
p Value

HC 0.260 † 0.169 †

- 28 Weeks �0.90 (�5.01, 3.22) 0.669 �0.72 (�4.84, 3.40) 0.732
- 36 Weeks �3.64 (�7.17, 3.22) 0.043 �4.07 (�7.60, �0.54) 0.024

HC z score 0.390 † 0.347 †

- 28 Weeks 0.52 (�2.27, 3.31) 0.716 0.67 (�2.18, 3.52) 0.647
- 36 Weeks �0.83 (�3.33, 3.31) 0.519 �0.83 (�3.36, 1.71) 0.524

FL 0.657 † 0.570 †

- 28 Weeks �0.20 (�1.17, 0.76) 0.680 �0.22 (�1.20, 0.75) 0.653
- 36 Weeks �0.47 (�1.40, 0.76) 0.327 �0.56 (�1.52, 0.39) 0.248

FL z score 0.785 † 0.762 †

- 28 Weeks 0.02 (�2.92, 2.97) 0.988 �0.06 (�3.07, 2.96) 0.970
- 36 Weeks 0.51 (�2.59, 2.97) 0.746 0.49 (�2.67, 3.65) 0.762

AC 0.246 † 0.181 †

- 28 Weeks �0.21 (�5.45, 5.04) 0.938 0.81 (�4.23, 5.85) 0.753
- 36 Weeks �3.83 (�9.40, 5.04) 0.178 �3.34 (�8.86, 2.19) 0.236

AC z score 0.860 † 0.815 †

- 28 Weeks 0.44 (�2.27, 3.16) 0.748 1.14 (�1.51, 3.78) 0.399
- 36 Weeks 0.18 (�2.73, 3.16) 0.905 0.78 (�2.16, 3.72) 0.603

EFW 0.082 † 0.059 †

- 28 Weeks 130.32 (�598.56, 859.21) 0.726 204.16 (�512.19, 920.51) 0.576
- 36 Weeks �887.76 (�2026.25, 859.21) 0.126 �901.31 (�2028.21, 225.59) 0.117

EFW z score 0.305 † 0.300 †

- 28 Weeks 1.14 (�1.32, 3.59) 0.364 1.47 (�0.96, 3.91) 0.236
- 36 Weeks �0.29 (�2.85, 3.59) 0.825 0.01 (�2.58, 2.61) 0.991

MTLM 0.495 † 0.574 †

- 28 Weeks �4.56 (�9.20, 0.08) 0.054 �4.94 (�9.57, �0.32) 0.036
- 36 Weeks �7.07 (�13.69, 0.08) 0.037 �7.02 (�13.69, �0.35) 0.039

MTFM 0.812 † 0.795 †

- 28 Weeks �0.90 (�6.35, 4.55) 0.746 �1.76 (�7.35, 3.83) 0.538
- 36 Weeks 0.46 (�10.91, 4.55) 0.937 �0.25 (�11.82, 11.31) 0.966

AFM 0.563 † 0.603 †

- 28 Weeks �1.00 (�5.03, 3.03) 0.627 �0.59 (�4.65, 3.48) 0.777
- 36 Weeks 0.88 (�5.59, 3.03) 0.791 1.10 (�5.27, 7.47) 0.734

SSFM 0.779 † 0.760 †

- 28 Weeks 2.72 (�0.73, 6.17) 0.122 3.23 (�0.22, 6.69) 0.067
- 36 Weeks 1.88 (�3.72, 6.17) 0.511 2.32 (�3.26, 7.90) 0.416

† Denotes p value for interaction between time and log Total Energy; that is, for a test of whether the association
between log Total Energy and fetal growth/adiposity at 28 weeks differs from the association at 36 weeks.

At 28 and 36 weeks’ gestation, there were negative associations between log total energy and
MTLM, such that a 10-unit increase in log total energy reduced MTLM by 4.94 mm (95% CI �9.57 mm
to �0.32 mm; p = 0.036) at 28 weeks; and by 7.02 mm (95% CI �13.69 mm to �0.35 mm; p = 0.039)
at 36 weeks.

3.4. Glycaemic Index

There were no associations between dietary Glycaemic Index and fetal biometry including HC,
FL, AC and EFW, related z scores and adiposity measures (Table 4). A negative association was
identified between dietary glycaemic index and fetal BPD and its z-score, such that a 10-unit increase
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in dietary glycaemic index reduced BPD by 0.11 mm (95% CI �0.21 mm to �0.01 mm; p = 0.035),
and BPD z-score by 0.35SD (95% CI �0.69SD to �0.01SD; p = 0.045) at 28 weeks.

Table 4. Glycaemic Index and fetal ultrasound measurements.

Outcome Unadjusted
Estimate (95% CI)

Unadjusted
p Value

Adjusted
Estimate (95% CI)

Adjusted
p Value

BPD 0.079 † 0.060 †

- 28 Weeks �0.12 (�0.21, �0.02) 0.021 �0.11 (�0.21, �0.01) 0.035
- 36 Weeks �0.01 (�0.11, �0.02) 0.876 0.01 (�0.09, 0.11) 0.885

BPD z-score 0.075 † 0.083 †

- 28 Weeks �0.36 (�0.70, �0.02) 0.037 �0.35 (�0.69, �0.01) 0.045
- 36 Weeks �0.03 (�0.31, �0.02) 0.812 �0.03 (�0.31, 0.25) 0.833

HC 0.601 † 0.620 †

- 28 Weeks �0.19 (�0.54, 0.16) 0.288 �0.14 (�0.50, 0.21) 0.422
- 36 Weeks �0.08 (�0.42, 0.16) 0.642 �0.04 (�0.38, 0.30) 0.816

HC z-score 0.652 † 0.540 †

- 28 Weeks 0.02 (�0.22, 0.26) 0.880 0.04 (�0.20, 0.29) 0.724
- 36 Weeks �0.04 (�0.27, 0.26) 0.709 �0.04 (�0.26, 0.18) 0.723

FL 0.729 † 0.634 †

- 28 Weeks �0.05 (�0.13, 0.03) 0.250 �0.05 (�0.13, 0.03) 0.236
- 36 Weeks �0.03 (�0.12, 0.03) 0.521 �0.02 (�0.11, 0.07) 0.595

FL z-score 0.904 † 0.931 †

- 28 Weeks �0.03 (�0.29, 0.23) 0.820 �0.04 (�0.30, 0.23) 0.790
- 36 Weeks �0.01 (�0.31, 0.23) 0.949 �0.02 (�0.32, 0.27) 0.891

AC 0.185 † 0.158 †

- 28 Weeks �0.24 (�0.66, 0.17) 0.248 �0.23 (�0.63, 0.17) 0.257
- 36 Weeks 0.10 (�0.34, 0.17) 0.649 0.13 (�0.30, 0.57) 0.556

AC z-score 0.151 † 0.182 †

- 28 Weeks �0.09 (�0.31, 0.13) 0.422 �0.09 (�0.31, 0.12) 0.383
- 36 Weeks 0.09 (�0.12, 0.13) 0.396 0.07 (�0.14, 0.28) 0.491

EFW 0.583 † 0.551 †

- 28 Weeks �18.94 (�79.38, 41.50) 0.539 �17.21 (�77.32, 42.90) 0.575
- 36 Weeks 8.76 (�89.14, 41.50) 0.861 12.58 (�84.02, 109.19) 0.799

EFW
z-score 0.212 † 0.247 †

- 28 Weeks �0.11 (�0.33, 0.10) 0.314 �0.11 (�0.32, 0.10) 0.316
- 36 Weeks 0.03 (�0.17, 0.10) 0.749 0.02 (�0.18, 0.22) 0.813

MTLM 0.706 † 0.686 †

- 28 Weeks 0.11 (�0.25, 0.46) 0.548 0.13 (�0.22, 0.49) 0.462
- 36 Weeks �0.02 (�0.63, 0.46) 0.950 �0.00 (�0.61, 0.61) 0.993

MTFM 0.015 † 0.025 †

- 28 Weeks �0.36 (�0.80, 0.07) 0.104 �0.34 (�0.77, 0.10) 0.133
- 36 Weeks 0.79 (�0.12, 0.07) 0.089 0.74 (�0.18, 1.65) 0.116

AFM 0.115 † 0.150 †

- 28 Weeks �0.11 (�0.41, 0.19) 0.475 �0.13 (�0.44, 0.18) 0.415
- 36 Weeks 0.34 (�0.19, 0.19) 0.211 0.28 (�0.24, 0.81) 0.291

SSFM 0.215 † 0.176 †

- 28 Weeks �0.06 (�0.35, 0.22) 0.661 �0.07 (�0.35, 0.22) 0.639
- 36 Weeks 0.25 (�0.21, 0.22) 0.287 0.28 (�0.19, 0.75) 0.248

† Denotes p value for time-by-GI interaction; that is does the association between GI and fetal growth/adiposity at
28 weeks differ from that at 36 weeks.
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3.5. Glycaemic Load

There were no consistent associations between dietary glycaemic load and fetal biometry, z-scores
or adiposity measures at either 28 or 36 weeks (Table 5).

Table 5. Glycaemic load and fetal ultrasound measurements.

Outcome Unadjusted
Estimate (95% CI)

Unadjusted
p Value

Adjusted
Estimate (95% CI)

Adjusted
p Value

BPD 0.567 † 0.490 †

- 28 Weeks �0.00 (�0.01, 0.00) 0.251 �0.00 (�0.01, 0.00) 0.276
- 36 Weeks �0.01 (�0.01, 0.00) 0.063 �0.01 (�0.01, 0.00) 0.054

BPD z-score 0.821 † 0.831 †

- 28 Weeks �0.01 (�0.04, 0.01) 0.227 �0.01 (�0.04, 0.01) 0.227
- 36 Weeks �0.01 (�0.03, 0.01) 0.295 �0.01 (�0.03, 0.01) 0.291

HC 0.562 † 0.374 †

- 28 Weeks �0.01 (�0.03, 0.02) 0.530 �0.01 (�0.03, 0.02) 0.683
- 36 Weeks �0.02 (�0.04, 0.02) 0.137 �0.02 (�0.04, 0.00) 0.102

HC z-score 0.606 † 0.479 †

- 28 Weeks 0.00 (�0.02, 0.02) 0.964 0.00 (�0.02, 0.02) 0.808
- 36 Weeks �0.01 (�0.02, 0.02) 0.557 �0.01 (�0.02, 0.01) 0.539

FL 0.827 † 0.737 †

- 28 Weeks �0.00 (�0.01, 0.01) 0.698 �0.00 (�0.01, 0.01) 0.762
- 36 Weeks �0.00 (�0.01, 0.01) 0.471 �0.00 (�0.01, 0.00) 0.437

FL z-score 0.676 † 0.674 †

- 28 Weeks �0.00 (�0.02, 0.02) 0.923 �0.00 (�0.02, 0.02) 0.965
- 36 Weeks 0.00 (�0.02, 0.02) 0.688 0.00 (�0.01, 0.02) 0.653

AC 0.492 † 0.391 †

- 28 Weeks �0.00 (�0.04, 0.03) 0.837 0.00 (�0.03, 0.04) 0.814
- 36 Weeks �0.02 (�0.05, 0.03) 0.340 �0.01 (�0.05, 0.02) 0.465

AC z-score 0.861 † 0.969 †

- 28 Weeks 0.00 (�0.02, 0.02) 0.973 0.00 (�0.01, 0.02) 0.548
- 36 Weeks 0.00 (�0.02, 0.02) 0.835 0.01 (�0.01, 0.02) 0.604

EFW 0.181 † 0.145 †

- 28 Weeks 0.93 (�3.72, 5.59) 0.694 1.66 (�2.95, 6.27) 0.481
- 36 Weeks �4.15 (�11.63, 5.59) 0.276 �3.95 (�11.48, 3.58) 0.304

EFW
z-score 0.636 † 0.567 †

- 28 Weeks 0.00 (�0.01, 0.02) 0.717 0.01 (�0.01, 0.02) 0.459
- 36 Weeks �0.00 (�0.02, 0.02) 0.857 0.00 (�0.02, 0.02) 0.980

MTLM 0.406 † 0.462 †

- 28 Weeks �0.02 (�0.05, 0.00) 0.098 �0.02 (�0.05, 0.00) 0.093
- 36 Weeks �0.04 (�0.08, 0.00) 0.052 �0.04 (�0.08, 0.00) 0.064

MTFM 0.252 † 0.264 †

- 28 Weeks �0.02 (�0.05, 0.01) 0.262 �0.02 (�0.05, 0.01) 0.215
- 36 Weeks 0.02 (�0.05, 0.01) 0.522 0.02 (�0.05, 0.10) 0.578

AFM 0.278 † 0.326 †

- 28 Weeks 0.00 (�0.02, 0.03) 0.891 0.00 (�0.02, 0.03) 0.721
- 36 Weeks 0.02 (�0.02, 0.03) 0.244 0.03 (�0.02, 0.07) 0.223

SSFM 0.737 † 0.757 †

- 28 Weeks 0.01 (�0.01, 0.04) 0.185 0.02 (�0.00, 0.04) 0.106
- 36 Weeks 0.02 (�0.01, 0.04) 0.239 0.02 (�0.01, 0.06) 0.189

† Denotes p value for interaction between time and Glycaemic Load; that is does the association between GL and
fetal growth/adiposity at 28 weeks differ from that at 36 weeks.
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3.6. Fat, Carbohydrate and Protein as a Percent of Total Energy

There were no associations identified between fat as shown in Table 6.

Table 6. Fat as a percentage of total energy and fetal ultrasound measurements.

Outcome Unadjusted
Estimate (95% CI)

Unadjusted
p Value

Adjusted
Estimate (95% CI)

Adjusted
p Value

BPD 0.593 † 0.646 †

- 28 Weeks 0.04 (�0.05, 0.12) 0.396 0.04 (�0.05, 0.12) 0.418
- 36 Weeks 0.01 (�0.08, 0.12) 0.841 0.01 (�0.08, 0.10) 0.793

BPD z-score 0.387 † 0.507 †

- 28 Weeks 0.21 (�0.08, 0.50) 0.152 0.17 (�0.12, 0.46) 0.238
- 36 Weeks 0.08 (�0.16, 0.50) 0.524 0.07 (�0.17, 0.31) 0.560

HC 0.083 † 0.123 †

- 28 Weeks 0.16 (�0.12, 0.44) 0.255 0.18 (�0.11, 0.46) 0.228
- 36 Weeks �0.13 (�0.39, 0.44) 0.318 �0.09 (�0.35, 0.17) 0.499

HC z-score 0.016 † 0.033 †

- 28 Weeks 0.22 (0.01, 0.43) 0.036 0.21 (�0.00, 0.43) 0.053
- 36 Weeks �0.05 (�0.23, 0.43) 0.570 �0.03 (�0.21, 0.14) 0.714

FL 0.413 † 0.560 †

- 28 Weeks 0.00 (�0.07, 0.07) 0.896 0.00 (�0.07, 0.07) 0.950
- 36 Weeks �0.03 (�0.10, 0.07) 0.381 �0.02 (�0.09, 0.04) 0.514

FL z-score 0.414 † 0.577 †

- 28 Weeks 0.06 (�0.15, 0.28) 0.563 0.03 (�0.19, 0.24) 0.808
- 36 Weeks �0.04 (�0.26, 0.28) 0.683 �0.05 (�0.26, 0.17) 0.664

AC 0.556 † 0.609 †

- 28 Weeks �0.02 (�0.37, 0.33) 0.920 0.03 (�0.32, 0.39) 0.853
- 36 Weeks �0.15 (�0.53, 0.33) 0.428 �0.08 (�0.46, 0.29) 0.660

AC z-score 0.968 † 0.806 †

- 28 Weeks �0.02 (�0.21, 0.16) 0.799 �0.01 (�0.20, 0.18) 0.922
- 36 Weeks �0.02 (�0.21, 0.16) 0.833 0.02 (�0.17, 0.20) 0.851

EFW 0.253 † 0.307 †

- 28 Weeks 14.86 (�35.95, 65.68) 0.566 18.79 (�33.86, 71.44) 0.484
- 36 Weeks �34.32 (�113.89, 65.68) 0.398 �25.56 (�104.88, 53.76) 0.528

EFW
z-score 0.308 † 0.477 †

- 28 Weeks 0.05 (�0.12, 0.22) 0.567 0.05 (�0.13, 0.22) 0.610
- 36 Weeks �0.05 (�0.21, 0.22) 0.551 �0.02 (�0.19, 0.14) 0.771

MTLM 0.446 † 0.372 †

- 28 Weeks 0.07 (�0.26, 0.40) 0.669 0.09 (�0.25, 0.44) 0.602
- 36 Weeks �0.15 (�0.67, 0.40) 0.565 �0.18 (�0.70, 0.35) 0.511

MTFM 0.287 † 0.284 †

- 28 Weeks 0.03 (�0.38, 0.44) 0.882 0.04 (�0.38, 0.47) 0.837
- 36 Weeks �0.40 (�1.12, 0.44) 0.281 �0.39 (�1.12, 0.33) 0.290

AFM 0.049 † 0.060 †

- 28 Weeks 0.01 (�0.26, 0.29) 0.917 0.06 (�0.24, 0.36) 0.709
- 36 Weeks �0.46 (�0.90, 0.29) 0.041 �0.39 (�0.82, 0.04) 0.075

SSFM 0.368 † 0.295 †

- 28 Weeks 0.15 (�0.08, 0.37) 0.200 0.17 (�0.06, 0.40) 0.144
- 36 Weeks �0.03 (�0.39, 0.37) 0.863 �0.04 (�0.40, 0.32) 0.829

† denotes p value for test of interaction between fat % and time. That is, whether the association at 28 weeks differs
from that at 36 weeks.
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There were no consistent associations between carbohydrate (Table 7) and protein intake (Table 8)
and fetal biometry, z-scores or adiposity measures at either 28 or 36 weeks.

Table 7. Carbohydrate as a percentage of total energy and fetal ultrasound measurements.

Outcome Unadjusted
Estimate (95% CI)

Unadjusted
p Value

Adjusted
Estimate (95% CI)

Adjusted
p Value

BPD 0.339 † 0.381 †

- 28 Weeks �0.03 (�0.10, 0.05) 0.482 �0.02 (�0.09, 0.06) 0.634
- 36 Weeks 0.02 (�0.05, 0.05) 0.653 0.02 (�0.05, 0.09) 0.554

BPD z-score 0.156 † 0.241 †

- 28 Weeks �0.16 (�0.38, 0.05) 0.143 �0.13 (�0.35, 0.09) 0.262
- 36 Weeks 0.01 (�0.17, 0.05) 0.883 0.02 (�0.16, 0.21) 0.819

HC 0.199 † 0.306 †

- 28 Weeks �0.08 (�0.31, 0.15) 0.499 �0.05 (�0.28, 0.19) 0.685
- 36 Weeks 0.10 (�0.11, 0.15) 0.354 0.09 (�0.11, 0.29) 0.374

HC z-score 0.099 † 0.188 †

- 28 Weeks �0.10 (�0.26, 0.05) 0.200 �0.08 (�0.24, 0.08) 0.331
- 36 Weeks 0.05 (�0.09, 0.05) 0.503 0.04 (�0.10, 0.18) 0.562

FL 0.849 † 0.816 †

- 28 Weeks 0.02 (�0.04, 0.08) 0.480 0.03 (�0.03, 0.08) 0.336
- 36 Weeks 0.01 (�0.03, 0.08) 0.579 0.02 (�0.03, 0.07) 0.415

FL z-score 0.996 † 0.943 †

� 28 Weeks 0.04 (�0.13, 0.20) 0.652 0.07 (�0.10, 0.23) 0.432
- 36 Weeks 0.04 (�0.12, 0.20) 0.651 0.06 (�0.10, 0.22) 0.470

AC 0.913 † 0.782 †

- 28 Weeks 0.05 (�0.26, 0.35) 0.771 0.10 (�0.21, 0.41) 0.532
- 36 Weeks 0.03 (�0.25, 0.35) 0.853 0.05 (�0.23, 0.33) 0.729

AC z-score 0.751 † 0.482 †

- 28 Weeks 0.03 (�0.12, 0.18) 0.732 0.06 (�0.09, 0.21) 0.420
- 36 Weeks �0.00 (�0.14, 0.18) 0.983 �0.00 (�0.14, 0.14) 0.994

EFW 0.962 † 0.976 †

- 28 Weeks 7.29 (�36.60, 51.19) 0.745 16.48 (�28.72, 61.67) 0.475
- 36 Weeks 8.87 (�50.10, 51.19) 0.768 15.46 (�43.22, 74.14) 0.606

EFW
z-score

0.777 † 0.953 †

- 28 Weeks 0.00 (�0.13, 0.14) 0.979 0.04 (�0.10, 0.17) 0.611
- 36 Weeks 0.03 (�0.10, 0.14) 0.699 0.03 (�0.10, 0.16) 0.643

MTLM 0.867 † 0.838 †

- 28 Weeks �0.06 (�0.33, 0.20) 0.639 �0.04 (�0.31, 0.23) 0.783
- 36 Weeks �0.02 (�0.40, 0.20) 0.901 0.01 (�0.37, 0.39) 0.961

MTFM 0.406 † 0.406 †

- 28 Weeks �0.10 (�0.44, 0.24) 0.558 �0.07 (�0.41, 0.27) 0.683
- 36 Weeks 0.17 (�0.41, 0.24) 0.563 0.20 (�0.38, 0.79) 0.495

AFM 0.118 † 0.173 †

- 28 Weeks 0.04 (�0.18, 0.26) 0.732 0.06 (�0.17, 0.28) 0.614
- 36 Weeks 0.32 (�0.00, 0.26) 0.051 0.30 (�0.02, 0.62) 0.062

SSFM 0.800 † 0.836 †

- 28 Weeks 0.00 (�0.18, 0.18) 0.966 0.01 (�0.17, 0.19) 0.879
- 36 Weeks 0.04 (�0.23, 0.18) 0.755 0.05 (�0.23, 0.32) 0.738

† Denotes p value for test of interaction between Carbohydrate % and fetal growth/adiposity; that is, whether the
association at 28 weeks differs from that at 36 weeks.
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Table 8. Protein as a percentage of total energy and fetal ultrasound measurements.

Outcome Unadjusted
Estimate (95% CI)

Unadjusted
p Value

Adjusted
Estimate (95% CI)

Adjusted
p Value

BPD 0.507 † 0.546 †

- 28 Weeks 0.01 (�0.10, 0.11) 0.921 �0.01 (�0.11, 0.10) 0.914
- 36 Weeks �0.03 (�0.12, 0.11) 0.466 �0.04 (�0.13, 0.05) 0.361

BPD z-score 0.153 † 0.210 †

- 28 Weeks 0.13 (�0.18, 0.44) 0.414 0.10 (�0.21, 0.42) 0.522
- 36 Weeks �0.10 (�0.35, 0.44) 0.400 �0.11 (�0.35, 0.14) 0.399

HC 0.991 † 0.802 †

- 28 Weeks �0.05 (�0.38, 0.27) 0.755 �0.12 (�0.45, 0.22) 0.489
- 36 Weeks �0.05 (�0.33, 0.27) 0.723 �0.07 (�0.34, 0.20) 0.618

HC z-score 0.983 † 0.806 †

- 28 Weeks �0.05 (�0.26, 0.16) 0.621 �0.08 (�0.30, 0.13) 0.440
- 36 Weeks �0.05 (�0.23, 0.16) 0.588 �0.05 (�0.24, 0.13) 0.567

FL 0.212 † 0.269 †

- 28 Weeks �0.06 (�0.14, 0.02) 0.143 �0.06 (�0.14, 0.01) 0.110
- 36 Weeks 0.00 (�0.07, 0.02) 0.994 �0.01 (�0.08, 0.05) 0.692

FL z-score 0.499 † 0.633 †

- 28 Weeks �0.14 (�0.37, 0.09) 0.224 �0.14 (�0.36, 0.09) 0.235
- 36 Weeks �0.04 (�0.26, 0.09) 0.719 �0.07 (�0.29, 0.15) 0.547

AC 0.264 † 0.187 †

- 28 Weeks �0.16 (�0.60, 0.29) 0.490 �0.29 (�0.74, 0.16) 0.208
- 36 Weeks 0.13 (�0.28, 0.29) 0.531 0.06 (�0.35, 0.47) 0.785

AC z-score 0.501 † 0.281 †

- 28 Weeks �0.06 (�0.27, 0.15) 0.584 �0.13 (�0.34, 0.08) 0.211
- 36 Weeks 0.02 (�0.18, 0.15) 0.839 �0.00 (�0.21, 0.21) 0.992

EFW 0.175 † 0.173 †

- 28 Weeks �40.93 (�105.51, 23.64) 0.214 �56.34 (�123.01, 10.33) 0.098
- 36 Weeks 22.54 (�62.18, 23.64) 0.602 7.75 (�76.06, 91.57) 0.856

EFW
z-score 0.478 † 0.351 †

- 28 Weeks �0.09 (�0.28, 0.10) 0.350 �0.14 (�0.33, 0.05) 0.155
- 36 Weeks �0.01 (�0.20, 0.10) 0.915 �0.03 (�0.22, 0.16) 0.753

MTLM 0.433 † 0.395 †

- 28 Weeks 0.09 (�0.26, 0.44) 0.617 0.05 (�0.31, 0.41) 0.800
- 36 Weeks 0.33 (�0.18, 0.44) 0.201 0.31 (�0.19, 0.81) 0.227

MTFM 0.833 † 0.823 †

- 28 Weeks 0.08 (�0.35, 0.51) 0.711 0.07 (�0.37, 0.51) 0.765
- 36 Weeks �0.02 (�0.91, 0.51) 0.968 �0.04 (�0.93, 0.85) 0.932

AFM 0.467 † 0.661 †

- 28 Weeks �0.10 (�0.41, 0.22) 0.548 �0.17 (�0.49, 0.14) 0.288
- 36 Weeks �0.26 (�0.68, 0.22) 0.216 �0.27 (�0.68, 0.14) 0.194

SSFM 0.872 † 0.736 †

- 28 Weeks �0.18 (�0.44, 0.09) 0.189 �0.21 (�0.48, 0.05) 0.119
- 36 Weeks �0.14 (�0.57, 0.09) 0.524 �0.13 (�0.55, 0.29) 0.550

† Denotes p value for test of interaction between time and Protein %; that is, whether the association at 28 weeks
differs from that at 36 weeks.



Nutrients 2018, 10, 870 13 of 17

4. Discussion

The objective of this secondary exploratory analysis [30], was to determine if maternal dietary
factors were associated with fetal body composition in women entering pregnancy overweight or
obese. Our analysis found an increase in total energy of the maternal diet was associated with
a reduction in mid-thigh lean mass of the fetus. Secondly, an increase in the Healthy Eating Index
was associated with a reduction in the subscapular fat mass. While these individual associations were
statistically significant, the actual differences were of small magnitude and were unlikely to be of
clinical significance. Overall, we did not identify consistent associations between maternal diet and
fetal growth or adiposity.

To our knowledge, this is the first study to describe the relationship between maternal dietary
factors and fetal body composition in women entering pregnancy overweight and obese. There has
been one study to describe the maternal dietary factors and fetal adiposity measurements in 179 women
with a normal BMI [17]. This study measured different dietary variables including a derived ratio
comparing protein and carbohydrate, and poly-unsaturated fatty acids as a percentage of energy
intake. The authors also described a variation in ultrasound techniques for the measurement of
fetal adiposity [17]. Women with lower dietary protein intake demonstrated higher abdominal
wall adiposity, while fetal thigh adiposity was greatest among women whose diet consisted of low
carbohydrate, intermediate protein and high fat intake [17].

The majority of the literature relates to neonatal and infant body composition [15,21,24],
birthweight [18–20] with variable methodology and inconsistent findings [21,43]. An explanation for
the lack of association seen in our study and inconsistent findings within the literature may relate
to the timing of the dietary assessment. Early 2nd trimester maternal dietary analysis has been
assessed in the literature [15,44] with no consistent findings [15,20,24,44]. One study assessed dietary
intake between 8 and 12 weeks and found carbohydrate consumption was associated with increase in
birthweight, whereas fat intake was associated with lower birthweight [19]. It is also likely that the
fetal programming of infant growth patterns is much more complex, with the impact of epigenetics,
paternal factors, postnatal environment [45].

The main strength of our secondary analysis relates to the large sample size of women entering
pregnancy overweight or obese. The data was derived from the largest randomised controlled trial
utilising robust methodology [30] and the first to measure the effect of an antenatal intervention
on fetal biometry and adiposity [39]. The main limitation of the current analysis is the reliance on
self-reported measurements of maternal dietary intake. Dietary analysis is subject to multiple biases
including measurement error, recall bias related to the food questionnaire, along with reporting bias.
A comparator group of women entering pregnancy with a normal BMI would have also added valuable
data, including a baseline for assessment of both fetal growth patterns and maternal dietary intake.

Several randomised trials have identified improvements in maternal dietary patterns during
pregnancy following provision of a lifestyle intervention [30,31,46–49]. The LIMIT trial demonstrated
that the provision of the antenatal lifestyle and dietary intervention improved women’s intake of
fibre, saturated fat, fruits and vegetables and micronutrient intake, although did not impact overall
energy intake [31]. Other trials have also shown significant improvements in maternal diet, physical
activity [31,46–48] and insulin resistance [46,50].

While individual trials conducted in overweight and obese pregnant women have described
positive effects on maternal dietary and lifestyle behaviours [51], intervention trials overall have
generated disappointing results in terms of clinical pregnancy and birth outcomes. Whether
relatively modest improvements in maternal diet are sufficient to impact fetal adiposity measures,
which themselves are relatively insensitive indices, remains to be determined [52,53]. Furthermore,
there is evidence to suggest that fetal growth and adiposity may be programmed much earlier in
gestation than current interventions have targeted [54], highlighting the importance of optimal diet
and maternal weight prior to conception [2,55–57].
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There is growing interest in strategies to optimise both maternal and paternal dietary intake
and weight in the peri-conceptual period [3,58,59]. This primary prevention strategy may reduce
the intergenerational transmission of obesity from mother to child and may improve pregnancy
outcomes [2,45,60]. Further studies are required to understand the timing of and factors relating to
programming of fetal growth and body composition.
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ABSTRACT 

 

Background: To determine the association between maternal cardiometabolic and 
inflammatory markers with measures of fetal biometry and adiposity.  

 

Methods: Women included in this exploratory analysis were randomised to the ‘Standard Care’ 
group (N = 911) from the LIMIT randomised trial involving a total of 2212 pregnant women 
who were overweight or obese (ACTRN12607000161426, Date of registration 9/03/2007, 
prospectively registered).  Fetal biometry including abdominal circumference (AC), estimated 
fetal weight (EFW), and adiposity measurements (mid-thigh fat mass, subscapular fat mass, 
abdominal fat mass) were obtained from ultrasound assessments at 28 and 36 weeks gestation.  
Maternal markers included C reactive protein (CRP), leptin and adiponectin concentrations, 
measured at 28 and 36 weeks gestation and fasting triglycerides and glucose concentrations 
measured at 28 weeks gestation. 

 

Results: There were negative associations identified between maternal plasma adiponectin and 
fetal ultrasound markers of biometry and adiposity.  After adjusting for confounders, a 1-unit 
increase in log Adiponectin was associated with a reduction in the mean AC z-score [-0.21 (-
0.35, -0.07), P = 0.004] and EFW [-0.23 (-0.37, -0.10), P < 0.001] at 28 weeks gestation.  
Similarly, a 1-unit increase in log Adiponectin was association with a reduction in the mean 
AC z-score [-0.30 (-0.46, -0.13), P < 0.001] and EFW [-0.24 (-0.38, -0.10), P < 0.001] at 36 
weeks gestation.  There were no consistent associations between maternal cardiometabolic and 
inflammatory markers with measurements of fetal adiposity. 

Conclusion: Adiponectin concentrations are associated with measures of fetal growth. Our 
findings contribute to understanding fetal growth in the setting of women who are overweight 
or obesity.  

 

KEYWORDS: 

Obesity 

Pregnancy 

Cardiometabolic markers 

Adiponectin  

Fetal body composition 
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Background 

Overweight and obesity represent a major global health challenge, with over 50% of 
women in high-income countries entering pregnancy with a body mass index (BMI) 
greater than 25kg/m2 (Scheil et al. 2016). There are well-recognised associations 
between obesity in pregnancy and maternal, fetal and neonatal health outcomes 
(Cedergren 2006) and clear longer-term associations between maternal obesity, fetal 
overgrowth, high infant birth weight, and subsequent childhood obesity (Yu et al. 2013). 
While these associations are well defined, there has been limited exploration of the 
potential pathways leading to fetal overgrowth, adiposity and subsequent childhood 
obesity.   

A direct pathway has been postulated to include maternal hyperglycaemia stimulating 
hyperinsulinemia in the fetus, which in turn directly stimulates fetal growth through 
insulin growth factors (Pedersen 1967).  There has been increasing recognition of the 
contribution of an additional ‘indirect’ pathway, involving leptin, adiponectin, 
triglycerides, cholesterol and inflammatory cytokines which is mediated via placental 
transfer (Catalano et al. 2017).  In the setting of obesity, maternal obesity during critical 
time points for fetal development may also alter fetal programming through epigenetic 
modification (Logan et al. 2017).  

Pregnancy is a physiological state associated with higher circulating concentrations of 
triglycerides and fatty acids (Montelongo et al. 1992) which is accentuated by maternal 
obesity, leading to enhanced placental transport of these substrates (Catalano et al. 
2017). While triglycerides do not readily cross the placental interface, the lipoprotein 
receptors and binding proteins and lipases enable the placental flow of maternal fatty 
acids (Schaefer-Graf et al. 2008).  Studies investigating newborn cord blood 
concentrations of lipoproteins (Merzouk et al. 2000) have shown an association with 
adipose tissue in the fetus and newborn, contributing to infant birth weight (Schaefer-
Graf et al. 2008).  

Another key component in this pathway is adiponectin, which is secreted by maternal 
adipose tissue, which is not transferred across the placenta (Aye et al. 2013, Parker-
Duffen et al. 2014), but acts directly on the placental function through the transfer of 
insulin and amino acids (Lekva et al. 2017).  During pregnancy, adiponectin levels 
reduce as gestation advances (Fuglsang et al. 2006). In both pregnant and non-pregnant 
individuals, obesity lowers adiponectin concentrations (Lekva et al. 2017) which has 
been shown to be associated with gestational (Lekva et al. 2017) and type 2 Diabetes 
mellitus (Weyer et al. 2001).  Maternal and fetal adiponectin appear to exert opposing 
effects in fetal growth (Aye et al. 2013), with low maternal concentrations of 
adiponectin stimulating fetal overgrowth (Lekva et al. 2017). Conversely, cord blood 
and neonatal adiponectin concentrations have been reported to be up to 7 times higher 
than maternal concentrations, with positive correlations with infant birth weight (Sivan 
et al. 2003) and anthropometric measures of neonatal adiposity (Sivan et al. 2003, 
Corbetta et al. 2005).   

With the widespread availability and technological advances in fetal ultrasound, there 
is growing interest in the measurement and prediction of fetal overgrowth and adiposity 
(Boulvain et al. 2015). However, the current literature is limited to relatively small 
sample sizes and mostly involving healthy pregnant women of normal BMI (Larciprete 
et al. 2003, Larciprete et al. 2003, Larciprete et al. 2003, O'Connor et al. 2014).  
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The aim of this secondary exploratory analysis was to determine if cardiometabolic and 
inflammatory markers measured in the mother were associated with fetal growth and 
adiposity measured by ultrasound in women who are overweight or obese in pregnancy 
at 28 and 36 weeks gestation.  

 
Methods 
The research methodology (Dodd et al. 2011) and clinical findings (Dodd et al. 2014a) 
of the LIMIT randomised controlled trial have been published previously. Women were 
recruited between June 2008 and December 2011 from 3 public hospitals across 
metropolitan Adelaide.  Eligibility criteria included women with a singleton pregnancy 
between 10+0 and 20+0 weeks gestation and body mass index greater ≥ 25kg/m2 were 
randomised to either the ‘Lifestyle Advice Group’ or ‘Standard Care Group’.  Women 
with a multiple pregnancy or women diagnosed with Type 1 or Type 2 Diabetes were 
excluded. Women who were randomised to receive the ‘Lifestyle Advice’ participated 
in a comprehensive dietary and lifestyle intervention, which included a combination of 
dietary, exercise and behavioural strategies.  The intervention was delivered by a 
research dietician and trained research assistants.  Further details regarding content of 
the intervention have been published (Dodd et al. 2014a, Dodd 2014b).   

Women included in this analysis were those randomised to the Standard Care Group, 
who received their pregnancy care as per the local hospital guidelines.  This care did 
not include the routine provision of dietary and lifestyle advice, or information relating 
to gestational weight gain in pregnancy.  

Ethics approval 

The ethics approval study number for LIMIT randomised controlled trial was 1839/6 
(approved July 2006) and for the fetal growth ancillary study number was 2051/4 
(approved April 2008). 

Measurement of cardiometabolic and inflammatory markers 

Maternal blood samples were obtained at 28 and 36 weeks gestation and the 
methodology has been previously described in detail (Moran et al. 2017).  At 28 weeks, 
a fasting maternal plasma sample was collected for all participants in the LIMIT trial.  
The following cardiometabolic markers were measured; total cholesterol, triglycerides, 
non-esterified fatty acids (NEFA), high-density lipoprotein cholesterol, insulin, glucose, 
leptin, adiponectin and C reactive protein.  The majority (glucose, cholesterol, HDL-C, 
triglycerides, NEFA and CRP) were measured using Roche Diagnostics commercial 
kits (Australia) and non-esterified fatty acids were measured using Wako Pure 
Chemical Industries (Japan).  All assays were performed on the automated Hitachi Auto 
912 analyser or Cobas Integra 400 Plus with appropriate calibrators and quality controls 
(Roche for Roche assays and Wako standard and Sero QC’s for the NEFA C assay). 
Plasma leptin (in singulate; HL-81 K; Millipore, St. Charles, MO, USA) and 
adiponectin (in singulate; HADP-61HK; Millipore, St. Charles, MO, USA) were 
determined by double antibody radioimmunoassay following the methods from the 
supplier.  
At 36 weeks, a non-fasting maternal plasma sample was collected and total cholesterol, 
triglycerides, non-esterified fatty acids (NEFA), high-density lipoprotein cholesterol, 
insulin, glucose, leptin, adiponectin and C reactive protein were measured. 
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Ultrasound Assessment 

Women were offered a research ultrasound scan at approximately 28 and 36 weeks 
gestation, at which time fetal biometry, wellbeing and body composition measurements 
were obtained as previously described (Grivell et al. 2016).  The estimated date of 
confinement and gestational age was calculated on the early pregnancy ultrasound and 
menstrual period dating. Ultrasounds were performed by medical practitioners with 
specialist or subspecialist training in obstetric ultrasound, while blinded to the 
participant’s treatment allocation, and all measurements were obtained prospectively.  

Ultrasound outcome measurements 
Biometry and estimated fetal weight 
Fetal biometry included head circumference, biparietal diameter, abdominal 
circumference and femur length, measured in accordance with national and 
international standards of practice (Australasian Society of Ultrasound Medicine 
(ASUM) 2007). Estimated fetal weight was calculated using the Hadlock C formula 
(Hadlock et al. 1991).  
Fetal body composition measurements 
Fetal body composition measures included mid-thigh lean mass (MTLM), mid-thigh 
fat mass (MTFM), abdominal fat mass (AFM), and subscapular fat mass (SSFM) using 
techniques that have been published previously (Grivell et al. 2016).  Grivell and 
associates also reported the inter-observer variability for adiposity measures and found 
moderate agreement demonstrated for SSFM, MTTM, MTFM and fair agreement for 
AFM and MTLM (Grivell et al. 2016).   

Mid-thigh total, lean and fat mass 
MTLM was calculated by obtaining a longitudinal view of the femur and identification 
of the midpoint at a zero degree angle.  The transducer was rotated through 90 degrees 
to obtain a cross sectional view of the mid-thigh.  A trace of the circumference of the 
MTTM was performed and area was calculated, followed by the MTLM incorporating 
muscle and bone.  A subtraction was performed between the MTTM and the MTLM to 
calculate the mid-thigh fat mass (MTFM).   
Abdominal fat mass  
Abdominal fat mass or anterior abdominal wall thickness was obtained between the 
mid-axillary lines and anterior to the margins of the ribs, at the level of the abdominal 
circumference.  The subcutaneous fat is represented by the echogenic envelope 
surrounding the abdomen and is measured in millimetres.  Using magnification, 4 
measurements were obtained from one or two separate images, and the mean was used 
in the analysis.  

 
Subscapular fat mass 
Using a sagittal view of the fetal trunk, the entire longitudinal section of the scapular 
was located between the skin surface and the subcutaneous tissue at the interface with 
the super-spinous and infra-spinous muscles.  Two measurements of the subcutaneous 
skin width at the end of the bone were taken and the mean value was used in the analysis.  
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Statistical analysis 
Baseline characteristics of women in the Standard Care group were assessed 
descriptively.  Normally distributed continuous variables are reported as mean and 
standard deviation or median and interquartile range as appropriate.  Categorical 
variables are reported as a number and percentage and the chi squared statistic was used 
accordingly.   

 
For each fetal biometry measured, z-scores were calculated using ultrasound growth 
charts in clinical use (Hadlock et al. 1991).  All cardiometabolic markers were log 
transformed prior to analysis due to skewed distributions.  Estimates are back-
transformed to the original scale and therefore represent ratios of geometric means 
(approximately ratios of medians).   

 
The investigation concerns cross-sectional relationships, i.e. whether there is an 
association between cardiometabolic/inflammatory markers at 28 weeks, and fetal 
ultrasound measures at 28 weeks (and similarly for 36 weeks).  Because the nature of 
the association was of interest, and because most of the cardiometabolic/inflammatory 
markers exhibited skewness in distribution, each of the cardiometabolic/inflammatory 
markers was log-transformed prior to analysis.  Estimates represent the difference in 
mean fetal measure corresponding to a 1-unit increase in log cardiometabolic marker.  
For example at 28 weeks gestation, a 1 unit increase in log CRP corresponds to a 
decrease in mean EFW of 8.62 (29.88, 12.63) grams (p=0.426).   

 
Three of the cardiometabolic/inflammatory markers (CRP, leptin and adiponectin) 
were measured at both 28 and 36 weeks.  For these markers, linear regression models 
were used to model the relationship between the marker and fetal ultrasound measures 
at each time point, including a time-by- marker interaction term to test whether the 
relationship differs between time points.  Generalised Estimating Equations (GEEs) 
with exchangeable working correlation were used to account for repeated measures.  
Triglycerides and fasting glucose were measured at 28 weeks only; therefore, for these 
markers, relationships with 28 week fetal ultrasound measures only were investigated 
using linear regression models. 

 
Both unadjusted and adjusted analyses were performed, with the adjusted analyses 
including study centre, parity (0 versus ≥ 1), maternal BMI category (25.0-29.9 vs 
≥30.0), smoking status, SEIFA IRSD quintile, and age at consent as covariates. 

 
Although both fetal biometry and adiposity measures and maternal cardiometabolic and 
inflammatory markers varied over time, standard linear regression models with GEEs 
were considered appropriate to model the associations, as no causal interpretation of 
the associations was intended, and there is additionally no plausible pathway by which 
the fetal biometry and adiposity outcomes at the earlier time point could influence the 
value of maternal cardiometabolic markers at a later time point.   
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Statistical significance was assessed at the two sided P < 0.05 and no adjustment was 
made for multiple comparisons. All analyses were performed using SAS 9.4 (Cary, NC, 
USA).  
 

Results 
Demographic characteristics 

The results of this exploratory secondary analysis relates to the 1104 women, who were 
randomised to the ‘Standard Care’ group.  Of these women, 912 women had a minimum 
of one ultrasound performed at 28 or 36 weeks and one woman was excluded from this 
analysis due to incomplete ultrasound data (Figure 1).  Table 1 summarises the baseline 
characteristics of the 911 women who participated in these analyses. Mean maternal 
age was 29.6 years (standard deviation 5.5) with 41% of women (n = 377) overweight, 
46.5% (n = 424) obese (BMI 30 – 39.9kg/m2), and 12.2% (n = 111) morbidly obese, 
with BMI greater than 40kg/m2. Most women (92%; n=835) were of Caucasian origin, 
40% (n = 369) were in their first ongoing pregnancy, and approximately 30% (n = 265) 
were from the highest quintile of social disadvantage. The baseline characteristics of 
the women contributing ultrasound data were comparable to all women in the standard 
care group, and to the full randomized LIMIT cohort (Dodd et al. 2014a). 

C-Reactive Protein (CRP) 

No consistent associations were found between plasma CRP concentrations and fetal 
ultrasound measures of biometry and adiposity (Table 2).  

Triglycerides 

There were no consistent associations identified between plasma triglyceride 
concentrations at 28 weeks and fetal ultrasound markers of biometry and adiposity 
(Table 3). However, there was a positive association identified between maternal 
plasma triglyceride concentrations and biometry z-scores. Specifically, a 1-unit 
increase in log triglyceride concentration was associated with an increase in mean EFW 
z-score of 0.20 (0.01 to 0.39; p=0.041), and an increase in mean AC z-score of 0.25 
(0.05 to 0.46; p=0.016). 

Fasting Glucose 

There were no consistent associations found between fasting glucose concentrations at 
28 weeks and fetal ultrasound measures of biometry and adiposity (Table 4).  

Leptin 

There were no consistent associations identified between plasma leptin concentrations 
and fetal ultrasound markers of biometry and adiposity (Table 5). However, there was 
a positive association identified between plasma leptin concentration and mid-thigh fat 
mass (MTFM). Specifically, a 1-unit increase in log leptin concentration was associated 
with a greater reduction in mean MTFM of -0.37 (-0.67, -0.07) at 28 weeks (p = 0.015).  

Adiponectin  

There were consistent associations identified between plasma adiponectin 
concentrations and fetal ultrasound measures (Table 6).    
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There were negative associations identified between plasma adiponectin concentrations 
and measures of abdominal circumference (AC) and estimated fetal weight (EFW). 
Specifically, a 1-unit increase in log adiponectin concentration was associated with a 
reduction in mean AC of -0.53 (-0.83, -0.22) millimetres (p < 0.001) and reduction in 
the mean EFW of -100.85 (-164.98, -36.71) grams (p = 0.002) at 36 weeks gestation.  

There were negative associations identified between plasma adiponectin concentration 
and z-scores for abdominal circumference (AC) and estimated fetal weight (EFW). 
Specifically, a 1-unit increase in log adiponectin concentration was associated with a 
reduction in the mean AC z-score of -0.21 (-0.35, -0.07) at 28 weeks (p = 0.004) and of 
-0.30 (-0.46, -0.13) at 36 weeks (p < 0.001).  Similarly, a 1-unit increase in log 
adiponectin concentration was associated with a reduction in the mean EFW z-score of 
-0.23 (-0.37, -0.10) at 28 weeks (p < 0.001) and of -0.24 (-0.38, -0.10) at 36 weeks (p 
< 0.001).  

There was a negative association identified between plasma log adiponectin 
concentration and MTLM. Specifically, a 1-unit increase in log Adiponectin 
concentration was associated with a reduction in the mean MTLM of -0.41 (0.77, -0.05) 
millimetres at 36 weeks (p < 0.001).   

Time by Cardiometabolic interaction  

The associations between plasma log adiponectin concentration and mean EFW 
changed over time.  At 28 weeks, there was a small and not statistically significant 
association and at 36 weeks, the association was larger in magnitude and statistically 
significant (p = 0.008).   

The association between plasma log Adiponectin concentration and mean AC changed 
over time.  At 28 weeks, there was a small and not statistically significant association 
compared with at 36 weeks, the association was larger in magnitude and statistically 
significant (p = 0.01).   

The association between plasma log adiponectin concentration and mean HC changed 
over time, although neither individual associations were statistically significant.  At 28 
weeks, women with higher log adiponectin concentrations had fetuses with bigger head 
circumference, whereas at 36 weeks, women with higher log Adiponectin had fetuses 
with lower HC (p = 0.01). 

The association between plasma log adiponectin concentrations and mean MTLM 
changed over time. At 28 weeks, there was a small and not statistically significant 
association compared with at 36 weeks, the association was larger in magnitude and 
statistically significant (p = 0.013).  

Discussion 

This secondary exploratory analysis has demonstrated increasing concentrations of 
adiponectin were associated with a reduction in abdominal circumference and estimated 
fetal weight with this effect increasing over time.  Furthermore, a higher triglyceride 
concentration was associated with an increase in abdominal circumference z-score and 
estimated fetal weight at 28 weeks gestation. There were no apparent associations 
between inflammatory markers, fasting glucose, triglyceride and leptin concentrations 
with fetal ultrasound measurements.  
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This is the first study to describe the relationship between cardiometabolic biomarkers 
with fetal ultrasound measurements of biometry and adiposity.  The current literature 
to date has reported on maternal or cord blood sampling and postnatal measurements 
of neonatal adiposity (Patenaude et al. 2017) or child growth trajectories (Karakosta et 
al. 2016) with small sample sizes.  There have been two large studies which have 
evaluated maternal cardiometabolic markers in the setting of a randomised control trials 
testing the effect of an antenatal dietary and lifestyle intervention (Moran et al. 2017, 
Sagedal et al. 2017).  

The strength of our analysis is the large sample size of 911 women and the reporting of 
fetal body composition as an outcome measurement.  The limitation of this secondary 
analysis relates to the absence of a comparator group of women entering pregnancy 
with a normal BMI.  Fasting measurements at 36 weeks for triglycerides and glucose 
were not obtained and this limited our interpretation to one time point only for these 
two cardiometabolic markers, although there is some literature to suggest that the 
impact of fasting versus non-fasting samples may not be as great as initially thought. 

Our main finding of our secondary analysis relates to adiponectin. The primary role of 
maternal adiponectin promotes insulin sensitivity. This in turn increases the uptake of 
glucose by the maternal skeletal muscle, thereby reducing the availability for placental 
transfer (Aye et al. 2013). The second action of adiponectin relates to the placental 
transportation of amnio acids, whereby adiponectin modulates the insulin receptor in 
the trophoblast, preventing the uptake of amino acids (Aye et al. 2013). Adiponectin is 
thought to be the link between maternal adipose tissue, placental transport and fetal 
growth (19).     

The role of adiponectin in adult cardiovascular disease (Parker-Duffen et al. 2014, 
Lekva et al. 2017) and Type 2 Diabetes (Weyer et al. 2001) has been well defined.  The 
current literature pertaining to pregnancy is limited to six studies, half of which reported 
on cord adiponectin only (Sivan et al. 2003, Tsai et al. 2004, Mantzoros et al. 2009).  
Maternal adiponectin concentrations have been reported in women entering pregnancy 
with a normal body mass index (Lekva et al. 2017) or with gestational diabetes (Ategbo 
et al. 2006).  In women entering pregnancy with a normal body mass index, this study 
found a reduction in adiponectin concentrations in the 3rd trimester, and this occurred 
independently of body mass index and maternal insulin resistance (Lekva et al. 2017).  
Low adiponectin concentration has also been associated with a higher prevalence of 
newborns classified as large for gestational age and increased birthweight (Lekva et al. 
2017).  Regarding interventions during pregnancy, the LIMIT trial showed that a 
dietary and lifestyle intervention did not change the concentrations of the 
cardiometabolic biomarkers in women who were overweight and obese (Moran et al. 
2017). The Fit for Delivery intervention in low risk women (Sagedal et al. 2017) 
showed a reduction in insulin and leptin concentrations, but this did not reduce the 
incidence of gestational diabetes, the primary outcome.  

While adiponectin concentrations do not alter with dietary change, there is increasing 
interest in the supplementation of adiponectin has promising applications in the adult 
populations (Parker-Duffen et al. 2014, Lekva et al. 2017, Lekva et al. 2017).  In vivo 
and in vitro studies have shown that adiponectin supplementation in pregnancy may 
alter fetal growth through improving insulin sensitivity and placental function (Rosario 
et al. 2012). The proposed mechanism relates to the down regulation of key placental 
nutrient transporters within the syncytiotrophoblasts, including amino acid transporters 
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such as System A (Rosario et al. 2012, Lekva et al. 2017). Adiponectin has also had 
increasing interest as a therapy to reduce cardiovascular risk in the non-pregnant 
overweight and obese mouse (Parker-Duffen et al. 2014). Further studies are required 
in both experimental models along with exploring the clinical applications.     

Interestingly, leptin did not show any consistent effect on fetal growth or adiposity in 
This study. This was supported by a recent study by Castro who performed maternal 
plasma leptin sampling after delivery (to reduce the effect of placental leptin 
production), and found no association with neonatal adiposity (Castro et al. 2017). 
Josefson measured the concentrations at 36 weeks gestation and found an association 
with neonatal adiposity (Josefson et al. 2014). This highlights that each cardiometabolic 
marker has a different pattern during pregnancy and the timing of sampling may impact 
on the interpretation of results.  Interestingly, fetal exposure to leptin along with high 
cord blood concentrations, have been positively associated with birthweight, neonatal 
adiposity, postnatal and childhood growth trajectories (Karakosta et al. 2016).  

In This study, an association between maternal triglyceride concentration at 28 weeks 
with an increase in z-scores for abdominal circumference and estimated fetal weight 
was identified.  This is consistent with the similar relationship found in women with 
gestational diabetes, where lipid concentrations were a strong determinant of fetal 
growth, independent of maternal body mass index (Schaefer-Graf et al. 2008). Other 
studies have shown this association with maternal triglycerides measured in early 
pregnancy (Vrijkotte et al. 2011) and another study has also reported this in late 
pregnancy (Mossayebi et al. 2014). Lipid are an essential component of fetal 
development, however, the mechanism underpinning fetal growth remains unclear 
(Catalano 2010). 

Understanding of the mechanisms and timing of critical fetal growth changes represents 
an evolving area of obesity related research. From a public health perspective, the only 
preventive strategy to reduce the intergenerational transmission of obesity (Godfery et 
al. 2017) is to optimise maternal weight and reduce obesity related morbidity prior to 
pregnancy.  Current studies are underway to assess dietary and lifestyle interventions 
along with medications to reduce maternal obesity prior to pregnancy or in early 
pregnancy (Hanson et al. 2017).  Further research is required to assess the role of 
adiponectin and potential supplementation in the setting of obesity in pregnancy (Aye 
et al. 2013).  

Conclusion 

Preventing the transmission of obesity from the mother to the child is the only public 
health strategy that may slow the obesity epidemic. This study has contributed to the 
further understanding of the fetal overgrowth pathway. Further studies in this area are 
needed. Adiponectin is a promising biomarker that may have a role in the modulation 
of fetal growth in the future.  
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ABSTRACT 

 

Objective: Our aim was to evaluate the association between fetal ultrasound and newborn 
biometry and adiposity measures.  

 

Methods: The study population involved 845 overweight or obese pregnant women, who 
participated in the Standard Care group of the LIMIT randomized trial. At 36 weeks 
gestation, an ultrasound examination was performed to obtain fetal biometry, estimated 
fetal weight (EFW) and adiposity measures including mid-thigh fat mass (MTFM), 
subscapular fat mass (SSFM), and abdominal fat mass (AFM.) Neonatal anthropometric 
measurements were obtained after birth and included birthweight, head circumference 
(HC), abdominal circumference (AC) and skin fold thickness measurements (SFTM) of 
the subscapular region and abdomen.    

 

Results: Every 1 gram increase in EFW at 36 weeks was associated with a 0.94gram 
increase in birthweight (95% CI 0.88 to 0.99; p< 0.001). At 36 weeks gestation, every 
1mm increase in US HC was associated with a 0.69mm increase in birth HC (95% CI 
0.63 to 0.75, p< 0.001), and every 1mm increase in ultrasound AC with a 0.69mm 
increase in birth AC (95% CI 0.60 to 0.79, p< 0.001). Fetal and neonatal subscapular 
SFTM (0.29mm, 95% CI 0.20 – 0.39, p< 0.001) were moderately associated, but 
abdominal SFTM were not (0.06mm, -0.03 to 0.15, p=0.203). There is no evidence that 
these relationships differed by maternal BMI.  

 

Conclusion:  

In women who are overweight or obese, fetal ultrasound accurately predicts neonatal 
birthweight, head and abdominal circumference.  

 

Keywords 

Obesity 

Pregnancy 

Fetal body composition 

Adiposity 

Fetal biometry 

Birthweight 

Skin fold thickness  
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Introduction  

Worldwide, obesity rates have tripled and now 1.9 billion adults over 18 years of age are 
considered overweight or obese (World Health Organization (WHO) 2018). A large 
proportion are women of reproductive age, with approximately 1 in 2 women entering 
pregnancy overweight or obese (Scheil et al. 2016, AIHW 2017b). Maternal obesity is 
associated with a well-documented increase in risk of pregnancy related complications 
(Cedergren 2004, Chu et al. 2007, Johansson et al. 2014). Furthermore, overweight and 
obesity in pregnancy is associated with a two-fold increased risk of the birth of an infant 
with high birth weight (Gaudet et al. 2014), which in the long term, is associated with the 
development of childhood obesity (Yu et al. 2013, Tie et al. 2014).  

With the widespread availability of ultrasound there is increasing interest in the antenatal 
detection of the large for gestational age (LGA) fetus to assist in clinical management 
decisions regarding both the method and timing of birth, as potential strategies to reduce 
birth complications including operative delivery (Boulvain et al. 2016) and shoulder 
dystocia (Dodd et al. 2012). While ultrasound estimated fetal weight (EFW) and 
abdominal circumference (AC) have been demonstrated to have good positive predictive 
value in identifying LGA infants at birth, the influence of maternal body mass index 
(BMI), particularly overweight and obesity, on accuracy remains uncertain 
(Coomarasamy et al. 2005).  

There is limited information assessing the role of ultrasound measures of fetal adiposity, 
and its relationship to neonatal adiposity. While several studies have attempted to 
evaluate this, they are limited by the relatively small sample sizes involved, particularly 
of women who are overweight or obese, and have largely been confined to women with 
gestational or pre-existing diabetes (Bernstein et al. 1991, Larciprete et al. 2003, 
Larciprete et al. 2003, Parretti et al. 2003, Hure et al. 2012, O'Connor et al. 2014, Walsh 
et al. 2015, Gibson et al. 2016). Studies have also varied considerably in terms of the 
ultrasound and neonatal measures assessed. For example, ultrasound assessment has 
included arm and thigh volumes (Moyer-Mileur et al. 2009) utilising both 2- and 3-
dimensional techniques (O'Connor et al. 2014), as well as incorporation of abdominal 
wall thickness (Hure et al. 2012, O'Connor et al. 2014), subscapular fat mass (Larciprete 
et al. 2003), and other compartment models to estimate fetal adiposity (Ikenoue et al. 
2017). Tools to assess neonatal adiposity include skin fold thickness measurements 
(Gibson et al. 2016), dual-energy x-ray absorptiometry (DEXA) (Ikenoue et al. 2017) and 
air displacement plethysmography (PEA-POD) (Moyer-Mileur et al. 2009).  While air 
displacement plethysmography (Au et al. 2013, Au et al. 2013) has been reported to 
correlate poorly with fetal ultrasound body composition measures, (Moyer-Mileur et al. 
2009, Lingwood et al. 2012) correlation between fetal ultrasound and neonatal skin-fold 
thickness measures, as well as the impact of maternal obesity have not been reported.  

The aim of this secondary analysis was to evaluate the correlation between fetal 
ultrasound biometry and adiposity measures at 36 weeks gestation and the neonatal 
biometry and adiposity measures, in pregnant women who are overweight or obese. 
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Methods 
The clinical findings from the LIMIT randomised controlled trial and the detailed 
methodology have been published previously, (Dodd et al. 2011, Dodd et al. 2014a, Dodd 
2014b, Dodd et al. 2014c, Dodd et al. 2014d) with the trial registered on the Australian 
and New Zealand Clinical trials registry (ACTRN12607000161426).   

Women were recruited from 3 public maternity hospitals across metropolitan Adelaide 
and provided written informed consent to participate, following local ethics approval. 
Eligible women were those with a singleton pregnancy, between 10+0 and 20+0 weeks 
gestation, and whose BMI was ≥25kg/m2.    

At the time of their first antenatal appointment, maternal height and weight were 
measured and BMI calculated. This secondary analysis includes women randomised to 
the Standard Care Group of the LIMIT randomised trial. Women in the Standard Care 
Group continued to receive their pregnancy care according to local hospital protocols, 
and did not include provision of dietary and lifestyle advice, or information relating to 
gestational weight gain in pregnancy (Dodd et al. 2014a, Dodd et al. 2014d).  

Ultrasound Assessment 

At 28 and 36 weeks gestation, all women were offered a research ultrasound performed 
by medical practitioners with specialist or subspecialist training in obstetric ultrasound. 
All measurements were obtained prospectively as we have described previously (Grivell 
et al. 2016), using an estimated date of confinement and gestational age calculated using 
an early pregnancy ultrasound and menstrual period dating. 

As we have reported previously, fetal biometry, estimated fetal weight (EFW) and fetal 
body composition measures were obtained (Grivell et al. 2016). Briefly, fetal head 
circumference (HC), bi-parietal diameter (BPD), abdominal circumference (AC) and 
femur length (FL) were measured in accordance with national and international standards 
of practice ((ASUM) 2007). The estimated fetal weight was calculated using the Hadlock 
C formula (Hadlock et al. 1991). For each fetal biometry measure, z-scores were 
calculated using ultrasound growth charts in clinical use ((ASUM) 2007). Fetal body 
composition measurements included mid-thigh lean mass (MTLM), mid-thigh fat mass 
(MTFM), abdominal fat mass (AFM), and subscapular fat mass (SSFM) using techniques 
we have reported previously (Grivell et al. 2016).  

Mid-thigh total, lean and fat mass 
A longitudinal view of the femur and identification of the midpoint at a zero degree angle 
was obtained. Then the transducer was rotated through 90 degrees to obtain a cross 
sectional view of the mid-thigh. A trace of the circumference of the MTTM was 
performed and area was calculated, followed by the MTLM incorporating muscle and 
bone. The MTLM was then subtracted from MTTM to calculate the mid-thigh fat mass 
(MTFM) (Bernstein et al. 1991, Larciprete et al. 2003).  
Abdominal fat mass (AFM) 
Abdominal fat mass was defined as the anterior abdominal wall thickness obtained 
between the mid-axillary lines and anterior to the margins of the ribs, at the level of the 
abdominal circumference. The subcutaneous fat was distinguished by the echogenic 
envelope surrounding the abdomen and is measured in millimetres. Using magnification, 
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4 measurements were obtained from one or two separate images, and the mean was used 
in the analysis (Gardeil et al. 1999, Larciprete et al. 2003).  
Subscapular fat mass (SSFM) 
At the interface with the super-spinous and infra-spinous muscles, using a sagittal view 
of the fetal trunk, the entire longitudinal section of the scapula was located between the 
skin surface and the subcutaneous tissue. Then, two measurements of the width of the 
subcutaneous tissue and skin at the distal end of the bone were taken and the mean value 
was used in the analysis (Larciprete et al. 2003). 
 
Neonatal body composition  
Infant birthweight (grams), HC (cm) and length (cm) were taken within the first 2 hours 
of birth by the attending midwife. Birthweight was measured using calibrated electronic 
scales to the nearest 1 gram with the newborn infant undressed. Length was measured 
using a length board and the infant laid supine, the head held against the top of the board 
and a sliding foot plate moved and rested flat against the foot of the infant with the legs 
fully extended, and read to the nearest 0.1cm (Dodd et al. 2016). Large for gestational 
age was defined as birthweight at or above the 90th centile for gestational age and infant 
sex. Z-scores were calculated using Australian population reference ranges (Beeby et al. 
1996). 

Skin fold thickness measurements (SFTM) 
Trained research assistants obtained anthropometric measurements according to a 
standardised protocol as we have described previously, within the first few days of life 
and prior to discharge from hospital (Dodd et al. 2016). SFTM were obtained on the right 
side of the body using Harpenden Skinfold Callipers, with the infant undressed. The 
skinfold was identified and grasped between the left thumb and index finger, so that a 
double fold of skin and subcutaneous adipose tissue was held without the incorporation 
of underlying muscle. The calliper jaws were placed perpendicular to the length of the 
skin fold and the measurement was recorded 2 seconds after the pressure was applied. 
For each site, the measurements were duplicated and if there was a difference more than 
1.0mm, a third measure was taken. The final value presented the mean of two 
measurements or a median of the three (Marfell-Jones et al. 2006). Abdominal SFTM 
was identified 2cm to the right of the umbilicus and measured perpendicular to the long 
axis of the abdomen. Subscapular SFTM was measured after identifying the lower tip of 
the scapula, with the observer’s thumb placed below this laterally.      
Body circumference measurements  
Circumference measures were obtained according to a standardised protocol, with the 
infant undressed, supine and using a fibreglass measuring tape and recorded to the nearest 
0.1cm (add reference). HC was measured at the widest point above the eyebrows 
anteriorly (glabella) and the most prominent point of the occiput posteriorly. AC was 
measured at the level of the umbilicus in a plane at right angles to the spine and at the end 
of a normal expiration.        
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Statistical analysis 
Baseline characteristics of women in the Standard Care group were assessed descriptively, 
with continuous variables reported as mean and standard deviation or median and 
interquartile range as appropriate. Categorical variables are reported as a number and 
percentage.   
Associations between 36 week fetal ultrasound measures and corresponding birth 
measures were explored in multiple ways. Firstly, to descriptively assess strength and 
linearity of association, scatterplots were created, with locally weighted scatterplot 
smoothing (lowess) and line of best fit superimposed. Secondly, a Pearson Correlation 
Coefficient was calculated for each pair of variables to measure the overall strength of 
association. Thirdly, to estimate the change in mean birth measure associated with 
increased values of the 36 week measure, linear regression models were fitted using the 
birth measure as the dependent variable (outcome) and the 36 week measure as the 
independent variable (predictor). Models were adjusted for the actual amount of time 
between 36 week ultrasound and date of birth. Lastly, to determine if the strength and 
direction of the association differed by maternal BMI category, linear regression models 
were fitted using birth measure as the dependent variable, and 36 week measure, BMI 
category, and their interaction, as the independent variables. Adjustment were made for 
the amount of time between the 36 week ultrasound and date of birth. 
Statistical significance was assessed at the two-sided p < 0.05 level and no adjustment 
was made for multiple comparisons. All analyses were performed using SAS 9.4 (Cary, 
NC, USA).  

 
Results 
Demographic characteristics 

A total of 845 women and infants are included in this analysis. The median gestation at 
trial entry was 14.3 weeks (Interquartile range (IQR) 12.0 – 17.0) (Table 1). The median 
maternal BMI was 31.2kg/m2 (IQR 27.8 – 35.8) kg/m2, with 41% (n = 350) of women 
overweight and 58.6% (n =495) obese. Ninety-two percent (92%) of women in our cohort 
identified as Caucasian (n = 773) and 59% of women (n = 501) were in their first ongoing 
pregnancy. Fifteen percent (n = 128) of women were classified within the highest quintile 
of social disadvantage using the Socio-Economic Indexes for Areas (SEIFA) (Australian 
Bureau of Statistics (ABS) 2018). The baseline characteristics of the women contributing 
ultrasound and neonatal data were comparable to all women in the standard care group, 
and to the full randomised LIMIT cohort (Dodd et al. 2014a). 

Correlation between ultrasound measures and neonatal measures 
Both EFW (0.62) and EFW z-score (0.70) at 36 weeks gestation were strongly correlated 
with birthweight (Table 2). While there was moderate correlation between ultrasound 
derived SSFM (0.32) and subscapular SFTM measured at birth, ultrasound derived AFM 
was poorly correlated with abdominal SFTM (0.07) (Table 2). 

Linear regression models for the association between ultrasound measures and 
neonatal measures  
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Table 3 summarises the results of linear regression models investigating whether the 
association between 36 week ultrasound measurements and birth measurements. For 
every 1gram increase in EFW at 36 weeks gestation, there was a 0.94gram increase in 
infant birthweight (95% CI 0.88 to 0.99 grams; p<0.001). The combination of ultrasound 
derived EFW at 36 weeks gestation and the number of subsequent days until birth 
accounted for 63% of the variability in measures (R2=0.63). 

There were similar findings for HC, HC z-score, AC and SSFM, with a moderate to high 
degree of overall variability explained (Table 3). The exception was abdominal skin fold 
thickness, where the 36 week measure (SSFM) was not associated with abdominal SFTM 
measured at birth (0.06 mm; 95% CI: -0.03, 0.15).  

Linear regression models allowing for effect modification by BMI category 
Table 4 presents the results of linear regression models investigating whether the 
association between 36 week ultrasound measurements and birth measurements was 
modified by maternal BMI category, with the estimates of the association between 36 
week measures and neonatal measures presented separately by maternal BMI category.   

For all measures except AFM, a similar pattern was observed, in which there was a 
significant relationship between the 36 week measure (EFW, HC, AC, SSFM) and the 
corresponding birth measure (BW, HC, AC, subscapular skin fold thickness) in both BMI 
categories. The magnitude and direction of this association was consistent across BMI 
categories. The difference in the estimates of association between the BMI categories was 
not statistically significant or clinically meaningful. 

In relation to the ultrasound derived AFM and abdominal SFTM measured at birth (Table 
4), the association was not statistically significant at either time point and there was no 
evidence of effect modification by BMI category. 

Discussion  

The findings of This study demonstrate that among overweight and obese pregnant 
women, ultrasound assessment of fetal weight at 36 weeks gestation is a reliable indicator 
of infant birthweight, with maternal BMI contributing a large proportion to the overall 
variability of measures. While fetal ultrasound assessment of HC and AC at 36 weeks 
gestation is strongly correlated with birth HC and AC, fetal and newborn measures of 
adiposity were only moderately or poorly correlated. 

Strengths of This study include the robust trial methodology of the LIMIT trial, in 
addition to our adherence to standardised ultrasound and newborn anthropometry 
protocols (Marfell-Jones et al. 2006, Australasian Society of Ultrasound Medicine 
(ASUM) 2007). This study is the largest to date comparing fetal ultrasound measures at 
36 weeks gestation with neonatal anthropometric measures obtained at birth. While this 
analysis includes data from 845 women and infants (38% of the entire LIMIT cohort), we 
consider the risk of selection bias to be minimal. The characteristics of the current cohort 
did not differ significantly from either the characteristics of the Standard Care group, or 
the entire LIMIT cohort (Dodd et al. 2014a, Dodd et al. 2016, Grivell et al. 2016). Our 
findings would be enhanced by the inclusion of data from women entering pregnancy 
with a normal BMI, which will be possible at a later date with the analysis of data from 
the OPTIMISE randomized trial (Dodd et al. 2018).  
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Generally, infant SFTM are reliable and relatively non-invasive tools to assess newborn 
fat distribution, having been correlated with more invasive assessments, (Schmelzle et al. 
2002, Thomson et al. 2007, Volgyi et al. 2008, Lingwood et al. 2012) including DXA 
(Schmelzle et al. 2002, Godang et al. 2010). We have previously reported moderate to 
excellent inter-observer agreement in obtaining both ultrasound (Grivell et al. 2016) and 
newborn SFTM (Kannieappan et al. 2013) through adherence to standardised research 
quality protocols, validating their use in a large clinical trial setting. While the use of 
alternate infant body composition assessments may have been more strongly correlated 
with fetal ultrasound assessment measures than were observed with SFTM, such an 
approach was not feasible within the practical constraints of our research setting.  

Importantly, we did not identify differences in the relationship between ultrasound 
derived fetal and neonatal biometry and adiposity measures according to maternal BMI, 
despite the well-documented limitations of ultrasound in obese women (Paladini 2009). 
Our findings are consistent with those of Zhang and colleagues, who have also 
demonstrated no effect from maternal obesity on the quality of fetal biometric 
measurements (Zhang et al. 2018). 

In contrast, fetal ultrasound measures of adiposity were poorly correlated with skin fold 
thickness at birth. While neonatal adiposity has been examined extensively in the 
literature, few studies have directly compared fetal ultrasound to neonatal body 
composition. However, there is a lack of consistency in the comparative measurements 
at birth and this is likely to contribute to the variability in findings. The direct comparison 
may also be limited by the fact that the caliper used to measure skin fold thickness 
incorporates a double layer of tissue, which differs from the single layer measured on 
ultrasound (Borkan et al. 1982). This relationship is not exactly a 2:1 ratio due to 
compression of the tissue by the caliper (Borkan et al. 1982), and may have contributed 
to the weak correlations in our analysis.  Fetal thigh and arm circumferences and volumes 
utilising both 2- and 3-dimensional ultrasound techniques (Khoury et al. 2009, Lee et al. 
2009, Ikenoue et al. 2017) have shown the most promising results, improving the 
predictive value of both macrosomia and infant birthweight in women with obesity 
(Gibson et al. 2016) and diabetes (Garcia-Flores et al. 2015). There is a clear need for 
prospective studies with robust methodology, consistency in fetal and neonatal 
measurement and large sample sizes to further delineate the predictive value of fetal and 
neonatal adiposity.   

The findings of This study validate the use of the 36 week fetal ultrasound as a tool to 
accurately represent both neonatal biometry and birthweight in women who are 
overweight or obese. In contrast, the routine incorporation of ultrasound derived fetal 
adiposity measures is not advocated given their poor correlation with neonatal skin fold 
thickness measurements. Our findings highlight the need for further well-designed 
prospective studies to further delineate the best markers of both fetal and neonatal 
adiposity. 
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