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Abstract

Understanding the structure of the quantum chromodynamic (QCD) vacuum is essential
to explaining the properties of the strong nuclear force. In this work, we explore
the centre vortex model for confinement, which has shown significant promise as an
explanation for the distinctive long range properties of QCD. Specifically, we investigate
the behaviour of the gluon propagator on three vortex-modified gauge field ensembles,
which enables us to isolate the vortex contribution to this fundamental quantity.
We also present novel visualisation techniques that allow for close inspection of the
properties of the vortex vacuum. This work further reinforces the significance of centre
vortices for a fundamental understanding of QCD vacuum structure.
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Chapter 1

Introduction

The Standard Model of particle physics is one of the great accomplishments of modern
physics, unifying three of the four forces of nature into one coherent theory. However,
despite the remarkable power of the Standard Model, there are still unsolved questions
within its framework. In particular, the theory of the strong interaction, Quantum Chro-
modynamics (QCD), is notorious for its mathematical intractability. QCD governs the
behaviour of quark colour interactions, mediated by the exchange of the force-carrying
gauge boson known as the gluon. This interaction is responsible for binding quarks into
baryons (quark triplets) and mesons (quark/anti-quark pairs). Due to the non-Abelian
nature of the SU(3) gauge group, the techniques of perturbation theory that have
proven so successful for performing Quantum Electrodynamics (QED) calculations
cannot be utilised when studying the low-energy behaviour of QCD. Instead, new ap-
proaches have been constructed to facilitate an understanding of this fundamental force.

First proposed in 1974 [1], the lattice is the primary technique used to perform
QCD calculations. Rather than treat space-time as a set of continuous axes, it is
instead discretised into a finite number of points on a four-dimensional hypercube.
With space-time reduced to a finite number of points, it becomes possible to perform
first-principles calculations that are otherwise intractable, albeit with the introduction
of systematic errors that must be accounted for. The lattice approach is systematically
improvable, and utilising the lattice framework along with the continual increase in
computing power available to researchers it has become possible over the last 40 years
to simulate the behaviour of QCD. These results have proven invaluable in developing
an understanding of QCD and in guiding the direction of experiments.



2 Introduction

Experimental observations have found two key low-energy properties of the strong
interaction that must somehow arise from the theory of QCD, namely the

1. Confinement of quarks, in which quarks are not observed in isolation.

2. Dynamical chiral symmetry breaking, leading to dynamical mass generation that
results in hadrons exhibiting a mass greater than the sum of their bare quark
components.

Numerous theories have been proposed to explain how QCD implies the emergence
of these properties, and one that has shown particular promise is the centre vortex
model [2–4]. This model proposes that the space-time vacuum is percolated by topo-
logically non-trivial sheet-like objects known as centre vortices that naturally give rise
to confining behaviour. Through lattice calculations it has been possible to investigate
the impact of centre vortices in QCD. The results of these calculations have been
very promising, suggesting an intimate relationship between centre vortices and the
properties of confinement and dynamical chiral symmetry breaking [5–12]. Continuing
this line of investigation, part of this research is devoted to exploring the impact of
centre vortices on the gluon propagator. The gauge-boson propagator is an essential
building block of any gauge theory, and an understanding of its behaviour is key to a
full understanding of the theory. The gluon propagator can also be compared to the well
understood photon propagator, allowing for a direct comparison to the non-confining
theory of QED. Most significantly, in this work we will present the first lattice QCD
calculation of the gluon propagator on a vortex only background, enabling us to view
for the first time the centre vortex contribution to this fundamental quantity.

We also present a new approach for studying the centre vortex model. By making
use of centre vortex identification techniques and 3D visualisation software, it becomes
possible to construct 3D models of centre vortices on the lattice. These models enable
us to explore the properties of centre vortices in a hands-on manner, allowing for
an intuitive graphical understanding of this theoretical model. They also reveal the
geometrical properties of centre vortices, raising interesting questions about the link
between vortex geometry and the properties of QCD.

This thesis is structured as follows: Chapter 2 will review QCD in the continuum
and demonstrate how this theory is reformulated on the lattice, naturally introducing
a non-perturbative regulator in the form of the lattice spacing. Chapter 3 will describe
in detail the centre vortex model, vortex identification and a brief discussion of other
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topological objects. Chapter 4 will detail the calculation of the gluon propagator and the
data analysis techniques used in this work. Chapter 5 provides an introduction to the
smoothing routines used to study topological objects on the lattice, and presents a novel
analysis of the effect of smoothing on the gluon propagator. Chapter 6 continues the
original work on the gluon propagator, presenting the analysis of the gluon propagator
on vortex modified backgrounds. Chapter 7 details new breakthroughs in visualisations
of the centre vortex vacuum, which compose the second major component of the original
work presented herein. Finally, Chapter 8 summarises the findings of this research.





Chapter 2

Lattice QCD

Currently, lattice QCD represents the only technique able to perform accurate low-
energy QCD calculations from first principles. The lattice prescription allows for
the explicit calculation of path integrals present in continuum QCD, at the cost of
introducing finite-spacing errors that must be systematically accounted for. In this
chapter we will discuss the behaviour of QCD in the continuum, and demonstrate how
the transition can be made to a finite set of coordinates on a lattice. We will then
briefly detail how this formulation can be used to generate simulations of the QCD
vacuum. Finally, we use this framework to describe how our generated configurations
can be fixed to Landau gauge, one of the two gauge choices used in this research.

2.1 QCD in the Continuum

2.1.1 Quarks and Gauge Invariance

QCD is the gauge field theory that describes the interactions of quarks and gluons.
Like all gauge theories, it has an internal symmetry group under which the Lagrangian
is invariant. In the case of QCD there are three quark colours, which leads to the
symmetry group being SU(3), the group of 3 × 3 unitary matrices of determinant 1.
Note that this description of SU(3) is only true in the fundamental representation,
however it is this representation that the quarks inhabit and is therefore a useful and
intuitive way to initially consider the group. We can observe this SU(3) symmetry by
inspecting the free quark Lagrangian

L0 = ψ̄(x) (i/∂ −m)ψ(x) . (2.1)
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where ψ(x) and ψ̄(x) contain the three quark and anti-quark fields respectively, m
is the quark mass and /∂ = ∂µ γ

µ. We make use of the Dirac representation for the
gamma matrices, given in Appendix A.1. If we apply an SU(3) transformation Ω to
the three colour indices of the quark and anti-quark fields such that

ψ(x) → Ωψ(x) (2.2)
ψ̄(x) → ψ̄(x) Ω† , (2.3)

we see that

L0 → L′
0 = ψ̄(x) Ω† (i/∂ −m) Ωψ(x)

= ψ̄(x) (i/∂ −m) Ω† Ωψ(x)
= ψ̄(x) (i/∂ −m)ψ(x)
= L0 , (2.4)

where we have made use of the unitarity property, Ω Ω† = I. If this symmetry were
all we required then L0 would be our Lagrangian and our theory would be pleasantly
simple. However, we find that we need our gauge symmetry to be local; that is, we
demand that our gauge transformation itself be a function of x [13]. In this case, we
find that the derivative in Eq. (2.1) acting on the gauge transformation results in a
loss of SU(3) symmetry. We can write an arbitrary local SU(3) gauge transformation
as an exponential of the eight traceless, Hermitian group generators λa, known as the
Gell-Mann matrices (see Appendix A.1 for their values), such that

Ω(x) = exp
(
iωa(x) λa

2

)
. (2.5)

Note that we make use of the summation convention to imply a sum over the repeated
indices. In this form, the spatial dependence is encapsulated entirely in the eight
parameters, ωa(x). Using this form for Ω(x), we find that under a gauge transformation
the Lagrangian is now

L0 → L′
0 = ψ̄(x) Ω†(x) (i/∂ −m) Ω(x)ψ(x)

= ψ̄(x) Ω†(x)
[
−λa

2 (/∂ ωa(x)) Ω(x)ψ(x) + iΩ(x) (/∂ ψ(x)) −mΩ(x)ψ(x)
]

= L0 − ψ̄(x) Ω†(x) λa

2 (/∂ ωa(x)) Ω(x)ψ(x) . (2.6)



2.1 QCD in the Continuum 7

It is apparent then that gauge invariance is lost under a local gauge transformation.
To restore gauge invariance, we introduce the notion of the gauge-covariant derivative

Dµ = ∂µ + igAµ(x) , (2.7)

where Aµ(x) = Aa
µ(x) λa

2 encapsulates the eight new ‘gauge potentials’ and g is the
strong coupling constant. As the gauge potentials are a linear combination of λa, they
belong not to the group SU(3), but to the Lie algebra su(3). In the context of QCD,
these gauge potentials are also known as the gluon field. For the sake of cleanliness,
we will stop explicitly writing the dependence of our fields and gauge transformations
on x from here on, but it should be remembered that all gauge transformations are
local unless explicitly stated otherwise.

Making the substitution ∂µ → Dµ, we obtain the new Lagrangian

Lquark = ψ̄ (i /D −m)ψ . (2.8)

This substitution introduces a new interaction term into the Lagrangian that gives rise
to an interaction between our quark and gauge fields.

Lint = −g ψ̄ Aµ ψ (2.9)

To preserve the gauge invariance of the Lagrangian, we need the gauge transformation
property of Eq. (2.9) to counteract the last term of Eq. (2.6). Hence we require that

−g ψ̄ Aµ ψ → −g ψ̄ Aµ ψ + ψ̄Ω† λa

2 (∂µ ω
a) Ωψ . (2.10)

Making use of the transformation properties of ψ and ψ̄, this implies that

Aµ → ΩAµ Ω† + i

g
(∂µ Ω) Ω† . (2.11)

This transformation property can also be expressed in terms of the covariant derivative.
Doing so, we find that

Dµ ψ →
(
∂µ + igΩAµ Ω† − (∂µ Ω) Ω†

)
Ωψ

= (∂µ Ω)ψ + Ω (∂µ ψ) + igΩAµ ψ − (∂µ Ω)ψ
= ΩDµ ψ . (2.12)
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And therefore
Dµ → ΩDµΩ† (2.13)

Eq. (2.12) tells us that the covariant derivative of a quark field transforms in the
same way as the quark field itself. This implies that the covariant derivative can be
understood as a connection between two points that may have a different underlying
gauge. For example, if we consider an infinitesimal translation in the quark field

dψ(x) = ψ(x+ dx) − ψ(x) , (2.14)

we note that the gauge at the point x and at x+ dx in general will differ. It therefore
does not make sense to compare the field values through the usual understanding of the
derivative, as this ignores the change in local gauge. Instead, the covariant derivative
accounts for this underlying gauge structure, ‘transporting’ the field from one position
to another. This is entirely analogous to the covariant derivative present in general
relativity, however in this case the transport occurs over an internal gauge manifold,
rather than an external curved space-time.

2.1.2 Field Strength Tensor

Using local gauge invariance as a guide, we can now seek other gauge invariant terms
to insert into the Lagrangian. We define the gluon field strength tensor to be

Fµν = ∂µAν − ∂νAµ + ig[Aµ, Aν ] . (2.15)

Alternatively, Fµν may also be written

Fµν = − i

g
[Dµ, Dν ] . (2.16)

By making use of the gauge transformation property of Aµ, given in Eq. (2.11), we
find that the field strength tensor transforms as

Fµν → ΩFµν Ω† . (2.17)

The proof of this is given in Appendix A.2. To obtain a gauge invariant quantity, we
take the trace of the contracted field strength tensor. This allows us to make use of
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the cyclic property of the trace to obtain

Tr(FµνF
µν) → Tr

(
ΩFµν Ω† ΩF µν Ω†

)
= Tr

(
Ω† ΩFµν F

µν
)

= Tr(FµνF
µν) (2.18)

Thus we define the full gauge invariant QCD Lagrangian to be

LQCD = ψ̄(x) (i /D −m)ψ(x) − 1
2 Tr(Fµν(x)F µν(x)) . (2.19)

This gluon term is not the only gauge invariant quantity we could construct; for
example, ψ̄ ψ ψ̄ ψ is clearly gauge invariant. However, it turns out that there is a
further condition that must be satisfied by each term in the Lagrangian; each term
must be renormalisable [13]. A complete discussion of renormalisation is unnecessary
for this work, but renormalisability can be quickly summarised by looking at the
dimensionality of each term in the Lagrangian. The Lagrangian must have units of
(Energy)4, which in natural units is (mass)4, hereafter referred to as just dimension
D = 4. We therefore require that each term and its accompanying coupling constant
give the same dimensionality. The fermion field has dimension 3

2 , the gauge potential
has dimension 1 and ∂µ has dimension 1. Thus, the terms present in Eq. (2.19) have
dimension

D[ψ̄(x) γµ ∂µ ψ(x)] = 3
2 + 1 + 3

2 = 4 (2.20)

D[ψ̄(x) γµ Aµ ψ(x)] = 3
2 + 1 + 3

2 = 4 (2.21)

D[mψ̄(x)ψ(x)] = 1 + 3
2 + 3

2 = 4 (2.22)

D[Fµν F
µν ] = 2 + 2 = 4 , (2.23)

as required. This also tells us that the coupling constant g is dimensionless. If a new
gauge invariant term hψ̄ ψ ψ̄ ψ with coupling constant h is introduced then by the above
rules we would require that h have dimension −2. It turns out that if the dimensionality
of the coupling constant is less than 0 then the term in non-renormalisable. This means
that integrals involving this new term will diverge in such a way that they cannot
be systematically be made finite through the use of a renormalisation scheme, and
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hence they cannot form part of any physical theory. By applying the requirements of
gauge invariance and renormalisability, it is apparent that Eq. (2.19) is the full QCD
Lagrangian.

2.1.3 Pure Gauge Action

For the purpose of this research, we are interested in the behaviour of gluons in the
absence of any quarks, and as such we need to develop a description of pure gauge
fields. In the continuum, a pure gauge field has the Lagrangian [14]

Lgluon = 1
2 Tr(Fµν F

µν) , (2.24)

which we observe to be the last term in Eq. (2.19). This Lagrangian has the corre-
sponding action

S =
∫

d4x Lgluon . (2.25)

When considering the path integral formulation of a gauge field theory, integrals such
as the generating functional,

Z =
∫

DAµ exp (iS [Aµ]) , (2.26)

and others of a similar form appear frequently. This integral closely resembles the
partition function found in statistical mechanics, Zclassical =

∫
d3x d3p exp (−β H(x, p)),

with the notable exception of the factor of i in the exponential. From the statistical
mechanics perspective, the exponential in Eq. (2.26) is a probability weighting for a
given gauge potential. However, unlike the classical case, the factor of i in Eq. (2.26)
results in an oscillatory weighting, rendering numerical simulations untenable. To
ensure that the weight factor is purely real, it is necessary to perform a Wick rotation
to Euclidean space [1, 15] such that

t → −it A0 → iA0 . (2.27)

This has the result of changing the action such that

iSMinkowski → −SEuclidean , (2.28)
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so that the generating functional now becomes

Z =
∫

DAµ exp (−SE [Aµ]) . (2.29)

This enables us to now truly consider the generating functional to be a probability
weighting for a given configuration.

In Euclidean space, we can make use of the generating functional to write the
expectation value of an arbitrary operator Q[Aµ] as [16]

⟨Q⟩ = 1
Z

∫
DAµ Q[Aµ] exp (−SE [Aµ]) . (2.30)

This definition of the expectation value, whilst potentially difficult or even impossible to
calculate analytically, has an intuitive interpretation. To calculate the expectation value
of some operator, we integrate over every possible configuration of Aµ(x), weighted by
the action of that configuration. In the case where the coupling constant g of the theory
is sufficiently small, as is the case for QED or high-energy QCD, it is possible to expand
exp (−SE [Aµ]) in terms of the coupling constant, leading to a perturbative expansion.
Alternatively, if the only relevant configurations in the theory are those near the classical
action satisfying δS[Aµ]

δAµ
= 0, then the action can be expanded around the classical

solution. However, in the case of low-energy QCD, both of these approximations are
invalid, and as such it becomes essential to sample possible configurations of Aµ(x) and
generate a representative finite subset that can be used to approximate the continuum
expectation value. Obtaining this subset on which we can perform calculations is one
of the key aims of lattice QCD.

2.2 Lattice Discretisation

Using the continuum understanding developed in the previous section, we can now
consider discretising space-time into a finite lattice. The lattice is a hypercube with
Ns lattice sites in the spacial directions and Nt sites in the time direction. Each lattice
site is separated by a spacing a, resulting in a total lattice volume V = (Ns a)3 ×Nt a.
A two dimensional example of a discrete lattice with spacing a is shown in Fig. 2.1.
The lattice notation µ̂ is used to denote the unit vector in the µ direction; for example,
ŷ = (0, 0, 1, 0). We also must impose boundary conditions for the lattice; in this work
we utilise periodic boundary conditions such that x+Nµaµ̂ = x.
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x
x+ aµ̂x− aµ̂

x+ aν̂

x− aν̂

a

Uν(x) Pµν(x)

Fig. 2.1 An example of a 2D lattice with lattice spacing a. From site x we define
x+ aµ̂ to refer to the next lattice site in the µ̂ direction. The gauge links Uµ(x) (see
Eq. (2.37)) are defined on the links between sites. The plaquette Pµν(x) (see Eq. (2.40))
is the product of the four gauge links around a 1 × 1 loop.

When space-time is discretised, it becomes necessary to consider derivatives as
finite differences and integrals as finite sums, such that.

∂µ f(x) → f(x+ aµ̂) − f(x− aµ̂)
2a (2.31)∫

d4x f(x) → a4∑
x

f(x) . (2.32)

For example, we can construct the lattice form of Eq. (2.15) as

F µν
Lat(x) =Aν(x+ aµ̂) − Aν(x− aµ̂)

2a − Aµ(x+ aν̂) − Aµ(x− aν̂)
2a

+ ig[Aµ(x), Aν(x)] . (2.33)

The notation Aν(x+ aµ̂) denotes the field Aν located at the site one lattice spacing in
the µ̂ direction from x. We could continue to reformulate our lattice theory by imposing
this method of discretisation, and indeed this is historically how the lattice framework
was constructed [1]. However, it is useful to instead formulate our lattice theory in
terms of gauge links. Analogous to how we introduced the covariant derivative to
compensate for the fact that the quark field at infinitesimally different points in space
has a different underlying gauge, we now want to have a mechanism for comparing
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gluon fields at some finite separation. This requires us to solve the parallel transport
equation of our gauge field [13]

dxµ(t)
dt

Dµ U(x(t), y) = 0 , (2.34)

where U(x(t), y) is an SU(3) element and x(t) is some path parametrised by t ∈ [0, 1]
satisfying x(0) = y. We further require that U(x(0), y) = I, as the parallel transport for
a fixed point is trivial. We can now make use of the explicit parametrisation of the path
between two adjacent lattice sites, xµ(t; ν) = yµ + a t δµ

ν , where yµ is a fixed position
and ν is the direction we are transporting the field. Substituting this parametrisation
into Eq. (2.34) we have

a δµ
ν (∂µ + igAµ)U(x(t; ν), y) = 0

a ∂ν U(x(t; ν), y) = −iag Aν U(x(t; ν), y)
∂

∂t
U(x(t; ν), y) = −iag Aν U(x(t; ν), y) . (2.35)

For a non-Abelian field, Eq. (2.35) is precisely the differential equation solved by the
path-ordered exponential, known as the Wilson line

U(x(t; ν), y) = P exp
(

−iag
∫ t

0
dt′ Aν(x(t′; ν))

)
(2.36)

Hence, for each direction µ̂, we define the gauge links between adjacent lattice sites to
be

Uµ(x) = P exp
(

−iag
∫ 1

0
dtAµ(x+ atµ̂)

)
. (2.37)

From this definition we also see that we can write the gauge link in the opposite
direction, i.e. from x+ aµ̂ to x, as

P exp
(

−iag
∫ 0

1
dtAµ(x+ atµ̂)

)
= P exp

(
+iag

∫ 1

0
dtAµ(x+ atµ̂)

)
= U †

µ(x) . (2.38)

These gauge links have the simple gauge transformation property [17] (see Appendix A.3)

Uµ(x) → Ω(x)Uµ(x) Ω†(x+ aµ̂) . (2.39)

Making use of this gauge transformation property, we can construct gauge invariant
Wilson loops by taking the trace of the product of the Uµ’s around a closed loop. These
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Wilson loops form an essential building block of the lattice action, and appear in later
chapters as quantity of interest in their own right. The simplest such loop, the 1 × 1
square, is called the plaquette, and is defined as

Pµν(x) = Uµ(x)Uν(x+ aµ̂)U †
µ(x+ aν̂)U †

ν(x) . (2.40)

Calculating the Wilson loop by taking the trace of the plaquette we see that, by the
cyclic property of the trace, the Wilson loop is gauge invariant

Tr (Pµν(x)) → Tr
(
Ω(x)Uµ(x)Ω†(x+ aµ̂) Ω(x+ aµ̂)Uν(x+ aµ̂) Ω†(x+ aµ̂+ aν̂)

Ω(x+ aµ̂+ aν̂)U †
µ(x+ aν̂) Ω†(x+ aν̂) Ω(x+ aµ̂)U †

ν(x) Ω†(x)
)

= Tr (Pµν(x)) . (2.41)

Both the gauge links and the plaquette are also visualised in Fig. 2.1.

We now return to the lattice formulation of QCD, making use of the gauge links to
define our quantities of interest. Firstly, we approximate our gauge links on the lattice
by using a midpoint definition, such that

U lat
µ (x) = exp

(
−iag Aµ

(
x+ a

2 µ̂
))

. (2.42)

From this definition, we can also recover the midpoint gauge potential [18, 19]

Aµ

(
x+ a

2 µ̂
)

= i

2ag
(
Uµ(x) − U †

µ(x)
)

− i

6ag Tr
(
Uµ(x) − U †

µ(x)
)
I + O(a2) . (2.43)

We then note that we can write Fµν in terms of the plaquette by Taylor expanding
Eq. (2.40) (see Appendix A.4) to obtain [20]

Pµν = I − ia2g Fµν − a4g2

2 F 2
µν + O(a6) , (2.44)

and hence to O(a2)

a4

2 Tr (FµνF
µν) =

∑
µ, ν

1
g2 Tr

(
I − 1

2
(
Pµν + P †

µν

))
. (2.45)

We have now arrived at a definition of the contracted field strength tensor that can be
used to define our lattice action. We can make a further simplification by noting that
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because Pµν = P †
νµ, Re(Pµν) = Re(Pνµ) and therefore we only need to sum over the 6

plaquettes for which µ < ν, so long as we introduce a factor of 2. This gives us the
definition of the Wilson action,

SW = β
∑

x

∑
µ<ν

1
3 Tr

(
I − 1

2
(
Pµν + P †

µν

))
, (2.46)

where β = 6
g2 is the lattice coupling constant. To remove higher order errors from the

lattice action, it is possible to take into account terms containing larger Wilson loops,
following procedure similar to the one outlined above [21–23].

For the purpose of this work, the gauge fields were generated using the O(a2)-
improved Lüscher-Weisz action [16],

SLW =
∑

x

5β
9
∑
µ<ν

Tr
{

1 − 1
2
(
Pµν + P †

µν

)}

− β

36u2
0

∑
rect

Tr
{

1 − 1
2
(
Rµν +R†

µν

)}]
, (2.47)

where
u0 =

(1
3 Re Tr⟨Pµν⟩

) 1
4
, (2.48)

and Rµν is the 2 × 1 + 1 × 2 rectangular Wilson loop, defined similarly to the plaquette

Rµν(x) =Uµ(x)Uν(x+ µ̂)Uν(x+ ν̂ + µ̂)U †
µ(x+ 2ν̂)U †

ν(x+ ν̂)U †
ν(x)

+ Uµ(x)Uµ(x+ µ̂)Uν(x+ 2µ̂)U †
µ(x+ µ̂+ ν̂)U †

µ(x+ ν̂)U †
ν(x) . (2.49)

The presence of the ‘tadpole’ improvement factor u0 is necessary to ensure the per-
turbatively defined coefficient is accurate [24]. This choice of action provides reduced
errors in comparison to the Wilson action.

This lattice framework provides the tools necessary to explicitly calculate quantities
of interest from a first-principles standpoint. Firstly, the gauge links are generated
by Markov-chain Monte Carlo methods, using exp (−S) as a probability weighting in
the Metropolis accept/reject for a given configuration. Once these configurations are
generated, gauge fixing can be performed (Sec. 2.3.1, 3.2.3), and quantities of interest
such as the gluon propagator (Chapter 4) can be obtained.
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2.3 Gauge Fixing

The choice of gauge is crucial when performing calculations of quantities which are
gauge dependent. There are two choices of gauge relevant to this study: Landau gauge
and maximal centre gauge. Maximal centre gauge is best explored in the context of
centre vortices, and will therefore be detailed in Chapter 3.2.3, however the Landau
gauge fixing condition provides a good introduction to the gauge-fixing procedure, and
as such will be described here.

2.3.1 Landau Gauge

In the continuum, Landau gauge corresponds to imposing the condition

∂µA
µ = 0 . (2.50)

On the lattice, we can approximate this condition by imposing

∆(x) =
∑

µ

Aµ

(
x+ a

2 µ̂
)

− Aµ

(
x− a

2 µ̂
)

= 0 . (2.51)

Here the fact that we have defined the lattice gauge potential to be at the midpoint
of the link produces an improved continuum limit when we consider Eq. (2.51) in
momentum space [19]. The Landau gauge condition is imposed on the lattice by finding
extrema of the O(a2)-improved functional [25]

F = 4
3F1 − 1

12u0
F2 , (2.52)

where

F1 =
∑
µ,x

1
2 Tr

{
UΩ

µ (x) + UΩ
µ (x)†

}
(2.53)

F2 =
∑
µ,x

1
2 Tr

{
UΩ

µ (x)UΩ
µ (x+ aµ̂) + UΩ

µ (x+ aµ̂)† UΩ
µ (x)†

}
. (2.54)

We explicitly write UΩ
µ to emphasise that we are considering gauge links under an as

yet unknown gauge transformation Ω. It becomes apparent why we seek the extrema
of this particular functional when we take the functional derivative with respect to the
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free parameters of the gauge transformation , ωa(x) (see Eq. (2.5)).

δ
{

4
3F1 − 1

12u0
F2
}

δωa(x) = ga2∑
µ

Tr
{[
∂µAµ(x) − 4

360a
4∂5

µAµ(x) + O
(
a6
)] λa

2

}
+O

(
g3a4

)
.

(2.55)
If Eq. (2.55) is at an extrema, then

∑
µ

∂µAµ(x) =
∑

µ

4
360a

4∂5
µ Aµ(x) + O(a6) + O(g3a4) . (2.56)

Hence up to errors of order O(a4), finding the extrema of Eq. (2.55) is equivalent to
satisfying the continuum Landau gauge condition given in Eq. (2.50). This Landau
gauge fixing method gives an example of how a gauge choice can be implemented on
a discrete lattice such that it approximates the continuum condition. This in turn
enables us to use the continuum Landau gauge definition of the gluon propagator as
described in Chapter 4, which forms a vital component of this research.





Chapter 3

Topology on the Lattice

As discussed in Chapter 1, QCD is distinguished from other forces of nature by the
properties of confinement and dynamical chiral symmetry breaking. These properties
have been observed experimentally, however the question of how they arise from the
gauge theory of QCD outlined in the preceding chapter is still the subject of intense
investigation. It is believed that both these properties are connected by some underly-
ing topological structure of the QCD vacuum. Proposed candidates include Abelian
monopoles [26–33], instantons [15, 34–38] and centre vortices [2, 4, 38–42].

Confinement arising from abelian monopoles is one of the oldest topological theories
of confinement, however there are notable issues with the confining behaviour it predicts
that have resulted in this model falling out of favour in recent years [10]. Instantons
have enjoyed some success as a generator of dynamical quark mass, however they are
no longer thought to play a significant role in confinement [43]. A brief discussion of
instantons is included in Sec. 3.3.2.

With the advent of lattice simulations, the most promising of these models appears
to be the centre vortex model. Numerical evidence from the lattice has been amassed
that indicates that topological objects known as centre vortices are tied to both con-
finement and dynamical chiral symmetry breaking [3, 5–12, 44–47]. It is therefore the
subject of this research to further extend the investigation into the properties of centre
vortices, specifically in the gluonic sector of QCD.

As dynamical chiral symmetry breaking is primarily concerned with quarks, we will
omit a detailed discussion of this property and instead begin this chapter outlining
the confinement property exhibited by the strong force. We will then introduce centre
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vortices and motivate how they provide a potential explanation for confinement in
QCD. From here we will describe how it is that we can identify centre vortices on
the lattice, and survey the lattice results found in current literature pertaining to
centre vortices. Finally, we will briefly describe instantons and topological charge, in
preparation for later chapters that draw on these concepts.

3.1 Confinement

The confinement property of QCD is one of the defining low-energy features of the
theory of the strong interaction. After Gell-Mann and Zweig’s concurrent proposal of
quarks as the elementary constituents of baryons and mesons [48, 49], it was natural
to then attempt to observe these new particles in isolation. However, prior efforts to
observe any substructure of the proton were inconsistent with this new quark model.
These experiments tested the behaviour of electron-proton collisions, and demonstrated
that protons scatter elastically, behaving as though they are finite-sized particles
recoiling electromagnetically from the incident electron [50]. However, as accelerator
energies improved, later experiments [51, 52] using electron energies of 7 and 10 GeV
found that inelastic scattering effects became dominant, with electrons behaving as
though they were scattering off of loosely bound constituent particles. To explain
this behaviour, Feynman proposed what is known as the ‘parton’ model [53], treating
the proton as being comprised of non-interacting electrically charged particles in the
limit that the incident electron energy tends towards infinity. This is precisely the
notion of confinement; at large distance scales the partons are tightly bound, whereas
at short distances they behave as free particles. It did not take long for the separate
theories of quarks and partons to recognised as complementary, and by the early 70’s
the quark-parton model of hadrons accurately explained the the experimental results
observed in particle colliders.

These experimental and theoretical results led in part to the development of the
non-Abelian gauge field theory of QCD, as introduced in Chapter 2. The proof that
non-Abelian gauge theories behave as a free theory at high energy was discovered
in 1973 [54], and experimental evidence of the existence of 3 quark colours through
study of the cross section of e+e− collisions supports the initial SU(3) colour symmetry
anticipated by Gell-Mann and Zweig. At high energies, QCD has consistently explained
the behaviour of hadronic matter, and has become the accepted theory of the strong
interaction. However, the mathematical proof that QCD is indeed a confining theory
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still remains to be formulated. As confinement is a low-momentum property of QCD,
it is apparent that any analytic proof of confinement must take place far from the
asymptotic limit. To date, no such analytic proof has been found.

Lattice calculations are currently the only method by which it is possible to in-
vestigate low-energy QCD phenomena from first-principles. Calculations of the static
potential between two massive quarks, both recent and old [55–58], have shown that
the potential rises linearly at sufficiently large separation distances. This behaviour is
precisely what is expected of a colour confining theory. In dynamical QCD the potential
is screened and q̄ q creation admits meson production, but once again there are no
isolated quarks. Other confinement mechanisms have also been proposed on the lattice,
including mechanisms based on the behaviour of the gluon propagator at q = 0 [59]
and the behaviour of the pion mass and Polyakov loop at light quark masses [60]. All
lattice results so far have indicated that QCD is in fact a confining theory at low energy.

There is good evidence that confinement has its roots in the topological properties of
the QCD vacuum. It is well understood that the QCD vacuum, unlike the QED vacuum,
admits non-trivial instanton solutions: solutions of the vacuum field configurations
that are a minima of the classical action, yet are distinguished from one another by a
topological quantum number [34]. The presence of instanton solutions was significant
in resolving the U(1) anomaly [61], and provides an interesting model for calculating
the ground state hadron spectrum [15]. The non-trivial topology of the QCD vacuum,
and the success of topological features in resolving QCD anomalies, motivates the
search for a topological explanation of confinement.

3.2 Centre Vortices

3.2.1 Motivation for the Model

Originally proposed by ’t Hooft in 1978 [4, 39], centre vortices are closed two-dimensional
surfaces present in four-dimensional Euclidean space-time that carry ‘centre charge’.
The key property of a centre vortex is that in three dimensions, where the vortices
appear as closed tubes, any Wilson loop calculated on a path C (see Sec. 2.2) that
encloses a vortex will acquire a centre phase, such that

W (C) → z W (C) , (3.1)
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Fig. 3.1 A single thin centre vortex (dashed line) intersecting a Wilson loop (solid
line) in 3 dimensions. The Wilson loop will acquire a centre phase corresponding to
the phase of the vortex.

where z is a non-trivial centre element of Z(3). The centre of a group is the subgroup
that contains all the elements of the group that commute with all other elements. In
the case of SU(3) this corresponds to

Z(3) =
{

exp
(
m2πi

3

)
I | m = 0,±1

}
. (3.2)

Thus, the non-trivial elements of Z(3) are z = exp (±2πi/3) I. In the centre vortex
model, it is therefore natural to refer to a vortex as being a ‘+1’ or ‘−1’ vortex,
corresponding to the sign of the centre phase. When considering the value of any given
Wilson loop, the centre vortex model suggests that

W (C) =
∏

i

zi ×W0(C) , (3.3)

where the zi correspond to the phases of the centre vortices intersecting the loop C,
and W0(C) encapsulates the short-distance physics. A simple visualisation of this idea
is shown in Fig. 3.1.

An important distinction to make is the difference between thin and thick vortices.
Physical vortices are thick, meaning that they require some finite-sized Wilson loop
encircling them to capture the centre phase [44]. In 3D these can be pictured as closed
tubes with some finite radius. For the purposes of this work we will more frequently
think of thin vortices, otherwise known as projected or P-vortices for reasons that will be
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made clear in Sec. 3.2.2. These vortices are infinitely thin, and can instead be thought of
as closed lines in 3D. Hence, any size Wilson loop can acquire the centre phase, so long
as it encircles the line. Thin vortices are a representation of the thick vortices, and for
the majority of this work we will focus on P-vortices. It is these vortices that we identify
on the lattice and that are responsible for the long range effects that we are interested in.

It is not immediately apparent why the centre vortex picture is related to confine-
ment, however a simple SU(3) calculation motivates the relevance of this model [62].
To understand the significance of this calculation it is worth first deviating slightly
to detail the relationship between the Wilson loop and the potential energy between
two massive (static) quarks. Following the argument presented in Ref. [63], consider a
Wilson loop calculated around a rectangle in the t− x plane with dimensions T ×R.
As the Wilson loop is gauge invariant, we are free to select a convenient gauge in which
to perform the calculation. To this end, we choose the fields to be in axial gauge, such
that A0(x) = 0 ∀x. This results in any Wilson line in the purely temporal direction
being the identity. We then construct the straight Wilson line U(t) from (t, 0) to (t, R)
to be

U(t, R) = P exp
(

−ig
∫ R

0
dxA1(t, x)

)
. (3.4)

Using this construction, our rectangular Wilson loop can be written as the product of
the Wilson lines oriented in the x direction.

W (R × T ) = Tr
(
U(0, R)U †(T,R)

)
. (3.5)

We can insert a complete set of energy eigenstates, ∑n |n⟩ ⟨n | = 1 to obtain

W (R × T ) = Tr
(∑

n

⟨U(0, R) |n⟩ ⟨n | e−En(R) T |U(0, R)⟩
)

=
∑

n

Tr
(∣∣∣⟨U(0, R) |n⟩

∣∣∣2) e−En(R) T . (3.6)

As T → ∞, the only surviving contribution will be the lowest energy, E0(R). This
means that

lim
T →∞

W (R × T ) ∝ e−E0(R) T . (3.7)

The quantity E0(R) is the static quark potential, and if it is linear then its slope is
referred to as the ‘string tension’, σ.
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With Eq. (3.7) in mind, we return to the aforementioned SU(3) confinement model.
Consider a two-dimensional plane of area L2, with 2N vortices piercing the plane.
Assuming an even distribution of vortices, the total vortex density is ρ = 2N/L2.
As there are two SU(3) vortex types, corresponding to the two non-trivial phases,
z = exp (±2πi/3), we assume that there is an equal distribution of vortex phases, i.e.
there are N vortices of each type. The probability of finding n vortices of a given phase
in some region of the plane A ⊂ L2 is equal to the probability that exactly n vortices
are in A, multiplied by the probability that exactly N − n vortices are outside of A,
multiplied by a combinatoric factor. Expressed mathematically, this is

PN(n) =
(
N

n

)(
A

L2

)n (
1 − A

L2

)N−n

. (3.8)

The expectation value of the Wilson loop around the perimeter of A can be written as

⟨W (∂A)⟩ =
N∑

m,n=0

(
exp

(2πi
3

))n

PN(n)
(

exp
(

−2πi
3

))m

PN(m) . (3.9)

If we assume the vortex phases are uncorrelated, then we can make use of the following
property of uncorrelated random variables X and Y ,

⟨X Y ⟩ = ⟨X ⟩ ⟨Y ⟩ , (3.10)

to write

⟨W (∂A)⟩ =
N∑

n=0

(
exp

(2πi
3

))n

PN(n)
N∑

m=0

(
exp

(2πi
3

))m

PN(m) . (3.11)

Consider the first sum in Eq. (3.11),

N∑
n=0

(
exp

(2πi
3

))n

PN(n) =
(

1 − A

L2

)N N∑
n=0

(
N

n

)(
exp

(2πi
3

)
A

L2

(
1 − A

L2

)−1)n

=
(

1 +
(

exp
(2πi

3

)
− 1

)
A

L2

)N

, (3.12)
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where we have made use of the binomial series to evaluate the sum. Hence the total
expectation value is

⟨W (∂A)⟩ =
(

1 +
(

exp
(2πi

3

)
− 1

)
A

L2

)N (
1 +

(
exp

(−2πi
3

)
− 1

)
A

L2

)N

=
(

1 − 3 A
L2 + 3

(
A

L2

)2)N

=
((

A

L2

)3
+
(

1 − A

L2

)3)N

. (3.13)

Rewriting Eq. (3.13) in terms of the vortex density ρ = 2N/L2, we have

⟨W (∂A)⟩ =
((

Aρ

2N

)3
+
(

1 − Aρ

2N

)3)N

. (3.14)

Now we take the limit as N,L2 → ∞, keeping ρ constant. Taking the limit, we find

⟨W (∂A)⟩ = exp
(

−3
2ρA

)
. (3.15)

Letting A = R × T as in Eq. (3.7), we see that E0(R) = 3
2ρR, so the static quark

potential rises linearly with string tension σ = 3
2ρ, exactly as it should in a confining

theory. Eq. (3.15) demonstrates an area law behaviour of the Wilson loop; this is often
taken as a requirement for confinement [46, 64]. We see then that we have, from a set
of simple assumptions, constructed a model that exhibits confinement.

It is important to highlight some of the subtleties of the above argument. Most
easily addressed is the assumption that there is an equal number of +1 and −1
vortices. This is an expected result, as vortices are tubes of chromo-magnetic flux,
and thus must satisfy the Bianchi identity [65]. This requirement is analogous to the
electrodynamics condition ∇ · B = 0, so we see that the flux line cannot terminate,
and thus the tubes must be closed. Hence, over all space, we would expect that every
+1 vortex is accompanied by a −1 vortex arising from the tube piercing the same plane
in the opposite direction. By identifying vortices in Monte-Carlo generated lattice
configurations and plotting the distribution of phases in Fig. 3.2, we confirm that there
is indeed little deviation from an even distribution, especially in the ensemble average.
We observe a slight deviation from this idealised condition due to vortices being closed
by lattice periodicity, but it is apparent that on average there is no preferred phase.
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Fig. 3.2 A plot of the vortex phase distribution of 100 Monte-Carlo generated config-
urations, as a percentage of the total number of vortices. The dashed line indicates
33.3̇%, which corresponds to an equal distribution. The method by which vortices are
identified will be detailed in Sec. 3.2.2.

The condition that the vortex locations are uncorrelated has interesting implica-
tions [66]. As vortices must form closed lines in 3D, let us suppose that instead of being
randomly distributed, the vortices come in pairs separated by a maximum distance d.
This corresponds to requiring that vortex lines form a closed loop of some maximum
diameter d. If this vortex line pierces the Wilson loop in both directions, then the
product of the phases, exp

(
2πi
3

)
× exp

(
−2πi

3

)
= 1, results in no contribution to the

Wilson loop. Hence, the only vortices capable of contributing a non-trivial phase to
the Wilson loop are those contained within a strip of width d about the perimeter of
the loop. Note that not every vortex within this strip will contribute a non-trivial
phase, as the vortex may be smaller than d or oriented such that the vortex flows
in direction of ∂A and thus still pierces twice. We will take the most generous case,
however, and assume that every vortex piercing this strip contributes a non-trivial
phase. To first order, the area of relevance to to the expectation value of the Wilson
loop is now Astrip = P (∂A) d, where P (∂A) is the length of the perimeter of A. The
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probability to find N vortices lying within this strip is

PN(n) =
(
N

n

)(
P (∂A) d
L2

)n (
1 − P (∂A) d

L2

)N−n

. (3.16)

By following the same steps used to arrive at Eq. (3.15), we find

⟨W (∂A)⟩ = e− 3
2 ρ d P (∂A) . (3.17)

So we see that instead of an area law, we now have a perimeter law for the Wilson
loop, dependent on the upper bound for the vortex size. This implies that if there
is some upper limit on the size of a vortex, we can no longer expect to see confining
behaviour. We therefore deduce that to obtain a confining theory, it is necessary to
allow the vortex size to be potentially infinite. In the language of the vortex model,
this is called vortex percolation. Conversely, the presence of an upper bound on the
vortex size would imply a deconfined phase. This suggests that the size of vortices can
be used as an order parameter for confinement [45], with two distinct phases:

1. Vortex percolation =⇒ confinement.

2. Loss of vortex percolation =⇒ deconfinement.

3.2.2 Locating Centre Vortices

Now that we have motivated the case for the centre vortex model, we wish to consider
how it is that we identify vortices on a lattice configuration. The guiding principle
behind the method we employ is that we wish to find some way to distinguish between
a configuration containing vortices, and the same configuration with the vortices re-
moved. Note that the vortex-free configuration is not necessarily trivial; it will still
contain short distance physics for example. We should therefore discuss how it is that
a vortex can be inserted into a configuration to first build up a picture of what it is
that separates a configuration containing vortices from one that does not.

We know from the previous section that our thin vortex insertion must result in a
transformation of the Wilson loop containing the vortex such that

W (C) → zW (C), z = exp
(±2πi

3

)
. (3.18)
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It should be apparent that this behaviour is not possible from an ordinary gauge
transformation, as the Wilson loop is a gauge invariant quantity. In the continuum,
there is an infinite class of gauge transformations that can result in this behaviour,
but the key property connecting them is that they are singular [4]. This means that
the transformations associate the same point in space with two different values. For
example, consider a gauge potential Aµ undergoing a gauge transformation Ω around
a closed circle C. Let x(θ) be the parametrised path around the circle C, and define
the gauge transformation

Ω(θ) = exp (−iθQ) , θ ∈ [0, 2π] , (3.19)

where
Q = 1

2λ3 + 1
2
√

3
λ8 = 1

3 diag (2,−1,−1) . (3.20)

As Ω(0) ̸= Ω(2π), the transformation is singular. According to Eq. (2.39) the Wilson
line around the path, U(x(θ)), then becomes

U(x(θ)) → Ω(2π)U(x(θ)) Ω(0) , (3.21)

with the corresponding Wilson loop

W0(C(θ)) → Tr (Ω(2π)U(x(θ)) Ω(0))

= Tr
(

exp
(2πi

3

)
U(x(θ))

)
= exp

(2πi
3

)
W0(C(θ)) . (3.22)

We see that through the use of a singular centre transformation we have introduced
a centre vortex to the configuration. Note that the transformation in Eq. (3.19) is
not unique. As our vortex depends only on the angular coordinate, what we have
inserted here is a thin vortex, as any size Wilson loop will acquire the vortex flux.
Transformations creating thick vortices by adding a radial profile to the singular gauge
transformation have been explored in Ref. [44].

On the lattice, the singular gauge transformation given in Eq. (3.19) corresponds
to multiplying a single link Uµ(x) by the centre phase exp (2πi/3), such that the
plaquettes associated with this link are multiplied by the same centre phase, creating
in 3D a 1 × 1 vortex, as seen in Fig. 3.3. Larger vortices are created by multiplying
more links by the same centre phase. This suggests that we can consider our gauge
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links to be of the form
Uµ(x) = Zµ(x)Rµ(x) , (3.23)

where Zµ(x) is the ‘vortex-only’ field consisting of centre elements, and Rµ(x) is the
background ‘vortex-removed’ field.

x

y

z

Fig. 3.3 A +1 1 × 1 vortex (blue) piercing the four shaded plaquettes, created by
multiplying the centre link (dashed) by the centre phase exp

(
2πi
3

)
. Note that there

are two more plaquttes in the time direction that have been suppressed, which serve to
make the vortex the surface of a cube in 4D space-time.

With the understanding that a configuration containing vortices differs from one
that doesn’t by a singular gauge transformation, we should consider the adjoint
representation of SU(3), as it has the property of being invariant under centre trans-
formations [67]. The adjoint representation is defined such that any SU(3) element
in this representation can be written in the form UA

µ (x) = exp
(
iωk(x)fk

)
, where fk

are the 8 × 8 SU(3) structure constants. These constants are given by the Lie algebra
relationship [

λi

2 ,
λj

2

]
= i

∑
k

fk
ij

λk

2 . (3.24)

To transform the gauge links Uµ(x) from the fundamental representation to the adjoint
representation, it is necessary to find a mapping H : SU(3)F → SU(3)A that preserves
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the group operation. This means that for any U, V ∈ SU(3)F , then we require that

H(U V ) = H(U)H(V ) . (3.25)

Consider the mapping

[
UA

µ (x)
]

ij
= [H(Uµ(x))]ij = 1

2 Tr
(
λi Uµ(x)λj Uµ(x)†

)
. (3.26)

This mapping satisfies Eq. (3.25) (see Appendix A.5), and it is easy to see that if
Uµ(x) → Zµ(x)Uµ(x) for Zµ ∈ Z3 then UA

µ (x) is unchanged. This means that the
adjoint representation is invariant under singular centre transformations (or, more
generally, any centre transformation) and is therefore insensitive to the presence of
vortices in a given configuration. Considering the decomposition of Uµ(x) into vortex-
only and vortex-removed components presented in Eq. (3.23), we see that in the adjoint
representation,

UA
µ = RA

µ . (3.27)

It is then clear that the adjoint representation can be utilised to isolate the background
vortex-removed field.

To summarise, we have shown that a singular gauge transformation used to make a
thin vortex in the continuum translates to a decomposition of our lattice configuration
into the product of the vortex only and vortex removed fields, such that Uµ = Zµ Rµ.
This decomposition suggests that we would like to find a way to isolate these two
components such that they may be studied independently. To do this, we make use of
the adjoint representation that has the useful property of being completely insensitive
to the Zµ field, allowing us to perform operations that only affect the Rµ field. This
then enables us to attempt to remove the Rµ contribution so that we can identify the
remaining vortex only field. This identification procedure is the maximal centre gauge
method discussed in the next section.

3.2.3 Maximal Centre Gauge

Maximal centre gauge (MCG) is the choice of gauge used to identify vortices in the
fundamental representation. This gauge serves to bring each gauge link on the lattice
as close as possible to a centre element, such that

∥∥∥UΩ
µ (x) − Zµ(x)

∥∥∥ , (3.28)
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is minimised. There are numerous implementations of this gauge [68, 69]. We utilise
the most common choice in the literature and implement it by maximising the “mesonic”
functional [47]

R = 1
V Ndimn2

c

∑
x,µ

∣∣∣TrUG
µ (x)

∣∣∣2 , (3.29)

where V Ndim is the number of links on the lattice, and nc = 3 is the number of
colours. At first glance it is unclear why this gauge would assist in isolating vortices.
To elucidate the connection, we consider the trace of the adjoint gauge link UA

µ (x)
obtained from Eq. (3.26),

Tr
(
UA

µ (x)
)

= |Tr (Uµ(x))|2 − 1 . (3.30)

The details of the above expression are given in Appendix A.5. We see therefore that
maximising Eq. (3.29) is equivalent to maximising

RA = 1
V Ndimn2

c

∑
x,µ

(
TrUA, G

µ (x)
)
. (3.31)

RA is clearly maximised when UA
µ (x) = I, which requires that Uµ(x) ∈ Z3. Thus,

maximising RA is equivalent to bringing the vortex-removed field Rµ(x) as close as
possible to the identity, which in the idealised case would take Uµ(x) → Zµ(x). Of
course, it is in general not possible to fully gauge-away the Rµ(x) field, but we assume
that once R is maximised the trace is sufficiently close to the centre phase Zµ(x)
that it identifies the centre element associated with this link. To then construct the
vortex-only field, we simply project onto this nearest centre element. This gives us a
vastly simpler configuration where every gauge link is now one of only three possible
elements. Once we have performed this projection, we identify vortices by calculating
the value of each plaquette on the lattice, such that

Pµν = exp
(2πi

3

)
=⇒ +1 vortex

Pµν = exp
(

−2πi
3

)
=⇒ −1 vortex.

There are two further points worth making about the MCG method [67]. The first
is whether the partitioning of Uµ(x) into Zµ(x) and Rµ(x) is valid. In other words,
we assume that the physical thick vortices are sufficiently small such that they can
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be defined by a series of single-link centre transformations on the lattice, like that
shown in Fig. 3.3, rather than by a larger multiple-link transformation, as shown in
Fig. 3.4. This is equivalent to the discontinuity related to the vortex gauge field being
significantly larger than a single plaquette. If the vortices are too thick, the MCG
procedure becomes unable to contract their thickness to the point that they are able
to be identified by a single link transformation [70, 71].

exp (πiQ) exp (πiQ)

Fig. 3.4 An example of a 2 × 1 vortex, arising from a centre transformation split across
two links (cyan). Each 1 × 1 plaquette individually will not acquire a centre phase,
but the the 2 × 1 loop will.

The second point is due to the degeneracy in the maxima of R, the so-called Gribov
copy issue. This degeneracy results in it being unclear whether a given maximum of R
is the global maximum, or instead local. The impact of this Gribov issue on centre
vortices in SU(3) will form the subject of future work. However, we are confident
that the MCG procedure does accurately identify centre vortices. Numerical evidence
has shown that if a vortex is inserted into a configuration by hand, then the above
MCG procedure is capable of consistently identifying its location [67, 68]. Furthermore,
efforts to improve the obtained value of R through use of simulated annealing [72] or
preconditioning [70] have found that the number of identified vortices actually decreases
as R is increased, and the resulting phenomenology is worse overall. The proposed
reasoning for this is that these improvement techniques have the property of increasing
the size of vortices, resulting in an amplification of the issue raised above, in which the
MCG procedure fails to identify large vortices. Hence, based on these prior findings,
we do not attempt to increase R beyond this first local maximum, as in the study of
centre vortices it is appropriate to remain near this local maximum.
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With the procedure described in this section, we can now construct our vortex-
modified ensembles via the following procedure. The untouched configurations are
generated in a random gauge, then fixed to maximal centre gauge. From here we define
our vortex-only configurations by projecting these MCG configurations onto Z(3). We
then define the vortex removed configurations as Rµ = Z†

µ(x)Uµ(x). A random gauge
transformation is applied to the vortex-modified configurations, then all the ensembles
are independently fixed to Landau gauge via the method outlined in Sec. 2.3.1. Hence,
the three ensembles utilised for this work are the

1. Original ‘untouched’ fields, Uµ(x),

2. Projected vortex-only fields, Zµ(x),

3. Vortex-removed fields, Rµ(x).

These three sets will be collectively referred to as our vortex-modified ensembles for
the remainder of this research.

3.2.4 Current Evidence for Centre Vortices

Now that we have developed an understanding of centre vortices and how they are
located, we can summarise briefly the current lattice evidence surrounding vortices and
their relationship to various calculable quantities.

String Tension

As discussed previously in Sec. 3.2.1, the string tension is the slope of the linear
potential observed between two static quarks. In SU(2) studies, it has been shown
that vortex removal results in a complete loss of the string tension, and on vortex only
configurations it is possible to fully replicate it [70]. In SU(3) the picture is less clear.
Without smoothing (see Chapter 5), it is only possible to regain ∼ 62% of the original
string tension on the vortex only configurations [47]; however, under vortex removal
the string tension vanishes just as in the SU(2) case. It is possible to achieve ∼ 97%
agreement between the smoothed untouched and vortex only configurations, however
the overall string tension on both configurations is reduced to approximately 37% of
the original un-smoothed string tension [7].
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Hadron Spectrum

The low-lying hadron spectrum provides an excellent probe of the presence of dynamical
chiral symmetry breaking. By comparing the masses of hadrons that would have
degenerate mass if chiral symmetry is restored, we can observe whether dynamical
mass generation effects are present. Through use of the overlap fermion action, it has
been possible to show in SU(3) that the vortex-only spectrum under a small amount
of cooling closely follows the trends of the untouched hadron spectrum [9]. The slight
discrepancy can be attributed to the necessity of cooling when considering the vortex
only configurations. On the vortex removed configurations, dynamical mass generation
vanishes and hadrons with the same quark content once again become degenerate [9].
This is a clear signal of the restoration of chiral symmetry.

Mass Function

The mass function, M(p), represents the observed mass of a quark as a function of
momentum. Dynamical mass generation presents itself as an amplification of the
low-momentum mass function, indicating an observed long-range mass that is greater
than the bare mass of the quark. After 10 sweeps of cooling this amplification is indeed
observed on both the vortex only and untouched mass function of SU(3) configurations,
whereas on the vortex removed mass function this amplification is greatly suppressed [8].
In SU(2), similar behaviour has also been observed [6].

Casimir Scaling

Casimir scaling refers to the behaviour of the SU(N) string tension in different
representations (see e.g. the adjoint representation introduced in Sec. 3.2.2). As N
becomes increasingly large, it is found that the fundamental string tension σF is related
to the adjoint string tension σA by σA = 2σF [73]. Given our prior discussion of the
adjoint representation, this should at first glance appear a surprising result, as we
stressed that the adjoint representation is insensitive to the presence of vortices and
thus the centre vortex model would suggest a vanishing string tension in the adjoint
representation. However, numerical evidence shows that this is certainly not the case,
even for SU(2) and SU(3) [74–76]. This apparent contradiction can be resolved by
considering vortices of finite thickness, as done in Ref. [44]. This finite thickness
manifests as a Wilson loop acquiring a vortex contribution of the form

G(x) = Ω exp (iαC(x) Q) Ω† (3.32)
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where Ω ∈ SU(3), Q is as defined in Eq. (3.20) and αC ∈ [0, 2π] is a function satisfying

αC(x) =

0 , Vortex lies entirely outside the Wilson loop of perimeter C
2π , Vortex lies entirely inside the Wilson loop of perimeter C

.

(3.33)
Clearly for αC(x) = 0, 2π we recover the thin vortex behaviour, however the structure
of αC(x) away from these cases encodes a generalised vortex thickness. This thickness
appears to resolve the Casimir scaling contradiction, and gives the appropriate scaling
behaviour for other representations of SU(N) as well [44].

Gluon Propagator

The low momentum behaviour of the gluon propagator, D(p2) (see Chapter 4), serves as
an indicator of confinement. Similar to the mass function, low-momentum enhancement
indicates non-perturbative behaviour. In both SU(2) and SU(3) it has been shown that
vortex removal indicates a loss of this enhancement, suggesting a loss of confinement [12,
77, 78]. However, vortex only results have not been previously calculated; these results
are one of the main accomplishments of this research, and are presented in Chapter 6.

3.3 Further Topological Quantities

While discussing topological quantities on the lattice, it is informative to provide
a definition for topological charge and introduce the notion of an instanton. Both
these quantities provide a useful measure of the topological structure of the lattice,
especially when we come to consider smoothing routines in Chapter 5. Topological
charge provides a simple numerical measure of the contribution of all topological objects.
Furthermore, there is a connection between the location of topological charge density
and the geometry of centre vortices, specifically the intersection, touching and writhing
points of centre vortices [79, 80]. Instantons are often used as the reference topological
object in the literature [7, 81], with preservation of the instanton content of the lattice
equated to a preserved topological structure.

3.3.1 Topological Charge

The total topological charge is the ‘degree’ of a particular field configuration, counting
how many times Aµ covers the Lie algebra su(3). Given this counting definition, it is
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clear that the topological charge must be an integer. Numerically, it is given by [82]

Q =
∫
d4x

1
16π2 ϵµνρσ Tr (FµνFρσ) ∈ Z . (3.34)

The integrand of Eq. (3.34) is known as the topological charge density, and is denoted

q(x) = 1
16π2 ϵµνρσ Tr (FµνFρσ) . (3.35)

From Eq. (2.44) it is clear we could evaluate Fµν on the lattice by taking the imaginary
part of Pµν . However, it is common to instead make use of the clover leaf definition,

qclov(x) = 1
16π2 ϵµνρσ Tr (Cµν Cρσ) , (3.36)

where

Cµν(x) = 1
4 Im (Pµν(x)Pµν(x− µ̂)Pµν(x− ν̂)Pµν(x− µ̂− ν̂)) . (3.37)

The clover-leaf loop combination is shown in Fig. 3.5. Much like the Lüscher-Weisz
gluon action, we can expand this clover definition with larger combinations of loops
to remove higher order errors. In our calculation of topological charge in Sec. 7.3, we
employ a 5-loop improved topological charge, taking into account a linear combination
of 1 × 1, 2 × 1, 2 × 2, 2 × 3 and 3 × 3 clover loops [83]. Although this operator is
very large, it should be noted that the algorithm is designed such that 96% of the
topological charge contribution arises from the 1 × 1 and 2 × 1 terms, and hence can
still be considered a local measure of topological charge density [84]. This definition
can then be employed to calculate the lattice topological charge density, allowing us
to assess the distribution of topological objects in a quantitative manner, as done in
Sec. 7.3.
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µ̂

ν̂

Fig. 3.5 The four plaquettes that compose the clover combination Cµν(x).

3.3.2 Instantons

Instantons on the lattice are the lowest-action, and therefore classical, vacuum configu-
rations that possess non-trivial topological charge. They are of interest in QCD as it
is understood that they are a generator of dynamical quark mass [37]. Furthermore,
the stability of instanton-like objects serves as a useful measure of whether topological
objects are being preserved or destroyed by smoothing algorithms, as shall be discussed
in more detail in Chapter 5.

There is a known Q = 1 instanton solution in SU(2), known as the Belavin-Polyakov-
Schwartz-Tyupkin (BPST) instanton solution [34], which can then be embedded in
SU(3). It has the form

Aµ(x) = 2ηaµν xν

x2 + ρ2
σa

2 , (3.38)

where

ηaµν =


ϵaµν , µ, ν = 1, 2, 3
δaµ , ν = 4
−δaν , µ = 4

, (3.39)

σa are the Pauli matrices (see Appendix A.1) and ρ is an arbitrary parameter known
as the instanton radius. An anti-instanton solution corresponding to Q = −1 can be
obtained by substituting η with η̄, where η̄ is the same as Eq. (3.39) but with a factor
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of −1 in the last two cases. The action associated with this configuration is

S0 = 8π2

g2 , (3.40)

and the field strength tensor is given by [15]

(
F a

µν

)2
= 192ρ2

(x2 + ρ2)4 . (3.41)

The topological charge density at the centre of an instanton x0 is given as a function
of ρ by [37]

q(x0) = Q
6

π2 ρ4 , (3.42)

where Q = ∓1 for the (anti-) instanton.

Once the BPST solution is embedded in SU(3) it is possible to identify instanton-
like objects on the lattice, as performed in Refs. [7, 85]. These instanton-like objects
can be used to measure how topological objects change under various procedures
performed on the lattice. For the purposes of this research we will use the preservation
of instantons as a measure of the performance of our smoothing algorithms, described
in Chapter 5.

3.4 Summary

In this chapter we have introduced the important QCD property of confinement and
shown that it can be explained by Wilson loops exhibiting an area-law behaviour; that
is to say that a Wilson loop of area A is confining if it has expectation value

⟨W (∂A)⟩ ≈ e−σA , (3.43)

for large A. We then demonstrated that the centre vortex model naturally gives rise
to precisely this area law behaviour in the case of a sufficiently large loop, and hence
suggests that centre vortices are a viable explanation for confinement. From here
we showed that we can identify centre vortices on the lattice by fixing our lattice
configurations to maximal centre gauge, then projecting onto the nearest centre element.
This allows us to define our untouched, vortex removed and vortex only gauge field
configurations, collectively referred to as our vortex-modified configurations. We then
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presented a brief summary of the current evidence for centre vortices, showing that
numerical evidence supports the proposal that centre vortices can give rise to all the
salient features of QCD. Finally we introduced the notion of topological charge and
saw how it can be used to classify the different QCD vacua, with instantons as an
example of a topologically non-trivial field configuration. With this background theory
sufficiently developed, we are now in a position to consider the specific calculations
performed in this research that allow us to investigate the effect of centre vortices on
the gluon propagator.





Chapter 4

Lattice Configurations and the
Gluon Propagator

Now that we have developed the required background understanding of lattice QCD and
the topological objects of interest to this research, we can explain how our calculations
are performed. This chapter will first describe how we calculate the Landau gauge
gluon propagator on the lattice. This is the primary quantity of interest for the first
part of the original research, and as such we will explicitly detail its calculation. We will
then motivate our choice of momentum variables, before proceeding to a description of
the renormalisation scheme we employ. Finally, we will present the lattice parameters
and data cuts utilised in this work.

4.1 Lattice Definition of the Gluon Propagator

In a gauge field theory the position-space propagator, Dµν(x, y), of the gauge boson
is the two-point correlation function. In the case of perturbative QCD this can be
interpreted as the probability amplitude of a gluon being created at the space-time
point x, propagating to y, and then being annihilated. The propagator therefore
serves as a useful measure of the behaviour of gluons as a function of distance; or,
correspondingly, as a function of momentum in the momentum-space representation.
In this section we detail how the non-perturbative momentum-space Landau gauge
gluon propagator is calculated on the lattice. We begin with the definition of the
coordinate-space propagator as a two-point correlator [59, 77, 86].

Dab
µν(x) = ⟨Aa

µ(x)Ab
ν(0)⟩. (4.1)
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The propagator in momentum space is simply related by the discrete Fourier transform,

Dab
µν(p) =

∑
x

e−ip·x⟨Aa
µ(x)Ab

ν(0)⟩. (4.2)

Noting that the coordinate space propagator Dab
µν(x− y) only depends on the difference

x− y, such that
⟨Aa

µ(x)Ab
ν(0)⟩ = ⟨Aa

µ(x+ y)Ab
ν(y)⟩ , (4.3)

we can make use of translational invariance to average over the four-dimensional volume
to obtain the form for the momentum space propagator.

Dab
µν(p) = 1

V

∑
x,y

e−ip·x⟨Aa
µ(x+ y)Ab

ν(y)⟩

= 1
V

∑
x,y

⟨e−ip·(x+y)Aa
µ(x+ y) e+ip·yAb

ν(y)⟩

= 1
V

⟨Aa
µ(p)Ab

ν(−p)⟩. (4.4)

Hence we find that the momentum space gluon propagator on a finite lattice with
four-dimensional volume V is given by

Dab
µν(p) ≡ 1

V

〈
Aa

µ(p)Ab
ν(−p)

〉
. (4.5)

In the continuum, the Landau-gauge momentum-space gluon propagator has the
following form [18, 87]

Dab
µν(p) =

(
δµν − pµpν

p2

)
δab D(p2) , (4.6)

where D(p2) is the scalar gluon propagator. Contracting Gell-Mann index b with a

and Lorentz index ν with µ one has

Daa
µµ(p) = (4 − 1) (n2

c − 1)D(p2) , (4.7)

such that the scalar function can be obtained from the gluon propagator via

D(p2) = 1
3(n2

c − 1) D
aa
µµ(p) , (4.8)

where nc = 3 is the number of colours.
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As the lattice gauge links Uµ(x) naturally reside in the 3 × 3 fundamental rep-
resentation of SU(3), we now wish to work in the matrix representation of Aµ(x),
as introduced in Eq. (2.7). Using the orthogonality relation Tr(λaλb) = 2δab for the
Gell-Mann matrices, it is straightforward to see that

2 Tr(Aµ Aµ) = Aa
µA

a
µ , (4.9)

which can be substituted into Eq. (4.8) to obtain the final expression for the lattice
scalar gluon propagator,

D(p2) = 2
3 (n2

c − 1)V
〈
TrAµ(p)Aµ(−p)

〉
. (4.10)

To calculate Eq. (4.10) on the lattice, we need to define Aµ(p). As defined in
Eq. (2.43), we make use of the midpoint definition of the coordinate-space gauge
potential in terms of the lattice link variables such that

Aµ

(
x+ a

2 µ̂
)

= i

2ag
(
Uµ(x) − U †

µ(x)
)

− i

6ag Tr
(
Uµ(x) − U †

µ(x)
)
I + O(a2) . (4.11)

Once the link variables are fixed to Landau gauge following the procedure described in
Sec. 2.3.1, we can obtain the momentum-space gauge potential by performing a Fourier
transform,

Aµ(p) =
∑

x

e−ip·(x+µ̂/2) Aµ(x+ µ̂/2) . (4.12)

We have now constructed a workable lattice definition to calculate the Landau gauge
scalar gluon propagator within the lattice framework established in Chapter 2.

4.2 Momentum Variables

As discussed in Sec. 3.1, it is understood that at high energies QCD is asymptotically
free. With this understanding, we expect that at high momentum the Landau gauge
gluon propagator will tend towards the Landau gauge photon propagator [14]

Dγ(p2) = 1
p2 . (4.13)

However, lattice discretisation errors cause a deviation from this idealised behaviour
that we would like to systematically account for. To do this, we follow the work
of Refs. [22, 23, 88–90]. As we are considering the propagator at high momenta, it
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is sufficient to consider the behaviour of the photon propagator on the lattice. We
therefore consider for this section only an Abelian theory. The commutator in the field
strength tensor then vanishes, simplifying to

Fµν = ∂µ Aν − ∂ν Aµ (4.14)

We consider this Abelian field to be on a lattice generated using the Wilson action
(see Eq. (2.46)). From Eq. (2.45) we know that the Wilson action can be written as
SW = a4 1

2
∑

x FµνF
µν +O(a4). As we are interested in the momentum-space propagator,

we write the field strength tensor at the plaquette midpoint x̃ as

Fµν(x̃) =
Aν

(
x̃+ a µ̂

2

)
− Aν

(
x̃− a µ̂

2

)
a

−
Aµ

(
x̃+ a ν̂

2

)
− Aµ

(
x̃− a ν̂

2

)
a

= 1
a

∑
p

eip·x̃
(
Ãν(p) e−iap µ̂

2 − Ãν(p) eiap µ̂
2 − Ãµ(p) e−iap ν̂

2 + Ãµ(p) eiap ν̂
2
)

= −1
a

∑
p

eip·x̃
(

2i sin
(
apµ

2

)
Ãν(p) − 2i sin

(
apν

2

)
Ãµ(p)

)
= −

∑
p

eip·x̃f̃µν(p) , (4.15)

where
f̃µν(p) = i

(
k̂µÃν(p) − k̂νÃµ(p)

)
, k̂µ = 2

a
sin

(
apµ

2

)
. (4.16)

The Wilson action can therefore be written as

SW = a4 1
2
∑

x̃

∑
p, p′

eix̃(p+p′)f̃µν(p) f̃µν(p′)

= a4 1
2
∑
p, p′

δ(p+ p′)f̃µν(p) f̃µν(p′)

= a4 1
2
∑

p

f̃µν(p) f̃µν(−p) + O(a4) . (4.17)

We are now in a position to consider the propagator. Equivalent to the two-point
correlator definition, the propagator is also the Green’s function of the equations of
motion, Mµν , satisfying

MµνD
νλ(p) = δλ

µ . (4.18)
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In the continuum, we can write the Abelian Lagrangian density in terms of momentum
space variables as

L = 1
2 F̃µν F̃

µν

= 1
2(pµ Ãν − pν Ãµ) (pµ Ãν − pν Ãµ)

= (p2δµν − pµ pν)Ãµ Ãν , (4.19)

and hence
Mµν = (p2δµν − pµ pν) . (4.20)

However, it is understood that in the continuum the equations of motion are not
invertible unless an additional gauge fixing term is added, with a gauge fixing parameter
α. Hence, the equations of motion for the photon field in momentum space are given
by Eq. (4.20) with an additional gauge fixing term [14]

Mµν = p2δµν −
(

1 − 1
α

)
pµpν . (4.21)

By inspection, we see that Eq. (4.17) for the lattice Wilson action will have the same
equations of motion, with the substitution pµ → k̂µ. In turn, this gives the propagator

Dµν(p) = 1
k̂2

δµν + (α− 1) k̂µk̂ν

k̂2

 . (4.22)

Landau gauge corresponds to setting α = 0, so we find that

Dµµ(p) = 3
k̂2
, (4.23)

and therefore by comparison with Eq. (4.8) we see that

D(p2) = 1
k̂2
. (4.24)

This suggests that for the Wilson action we should make the substitution pµ → k̂µ =
2
a

sin (apµ/2) so that at tree-level we observe the expected behaviour of the gluon
propagator.

A similar analysis can be performed for the Lüscher-Weisz action used in this work,
taking into account the contributions from the rectangle terms. The Lüscher-Weisz
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action written in the same form as Eq. (4.17) is [88]

LLW = a4 1
2
∑

p

(
1 + 1

12a
2k̂2

)
f̃µν(p) f̃µν(−p) + O(a6) . (4.25)

The equations of motion then become

Mµν =
(
k̂2 + 1

12a
2k̂4

)
δµν −

(
1 − 1

α

)√k̂2
µ + 1

12a
2k̂4

µ

√k̂2
ν + 1

12a
2k̂4

ν

 . (4.26)

Therefore the propagator is

Dµν(p) = 1
q2

[
δµν + (α− 1)qµqν

q2

]
, (4.27)

with

qµ =
√
k̂2

µ + 1
12a

2k̂4
µ = 2

a

√
sin2

(
pµa

2

)
+ 1

3 sin4
(
pµa

2

)
. (4.28)

In Landau gauge, this tells us that the tree-level form for the scalar propagator is

D(p2) = a2

4 sin2
(

pµa
2

)
+ 1

3 sin4
(

pµa
2

) = 1
q2 . (4.29)

Given Eq. (4.29), in this work we make the variable substitution pµ → qµ to ensure
that at high momentum the gluon propagator tends towards tree level as required.

4.3 Renormalisation

Before plotting the propagator, it is essential to discuss the issue of renormalisation.
On the lattice, we calculate the bare dimensionless propagator DB(q2,Λ), as the lattice
introduces an explicit regularisation parameter in the form of the momentum cutoff,
Λ = π/a. This is related to the renormalised propagator DR(q2, µ) through the relation

DB(q2,Λ) = Z3(µ,Λ)DR(q2, µ) , (4.30)

where µ is the renormalisation scale. To obtain the renormalisation constant Z3(µ,Λ),
and therefore the renormalised propagator, it is necessary to enforce a renormalisation
scheme. Here we employ the momentum space subtraction (MOM) scheme [87, 91, 92],
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which requires that for some sufficiently large µ

DR(q2, µ)
∣∣∣
q2=µ2

= 1
µ2 . (4.31)

This sets the value of the renormalisation constant to be

Z3(µ,Λ) = µ2 DB(µ2,Λ) , (4.32)

such that
DR(q2, µ) = DB(q2,Λ)

µ2 DB(µ2,Λ) . (4.33)

This renormalised propagator is what we plot in e.g. Fig. 4.2, and will be denoted
as simply D(q2) hereafter. The value of µ is arbitrary, however to make contact with
perturbation theory it is necessary that it is sufficiently large such that it is outside
the infrared region where the gluon propagator exhibits substantial deviation from
perturbative behaviour. Furthermore, µ must be away from the momentum cutoff,
as the renormalisation constant is only independent of the cutoff in the limit that
the cutoff tends towards infinity [87, 93]. Once the renormalisation scheme has been
imposed, it is then possible to connect the lattice results with those obtained from
perturbation theory by connecting the renormalisation constant from the MOM scheme
with those obtained from the renormalisation schemes used in perturbation theory.

The crux of this argument is that it is the renormalised propagator, not the bare
propagator, that carries the physical meaning. More generally, it is the shape of
the propagator that carries meaning, and we are free to impose a scaling constant
without changing the physical significance of the result. To facilitate comparisons
between vortex-modified ensembles, we make use of the original Z3(µ,Λ) obtained for
the untouched propagator unless specified otherwise. Maintaining this consistency is
sufficient to comment on the qualitative shape of the propagator, which is the most
significant point of interest in this research.

4.4 Lattice Parameters and Data Cuts

We calculate the gluon propagator on 100 configurations of a 203 × 40 SU(3) lattice
with spacing a = 0.125 fm, as used in Refs. [8, 11]. The momentum variables chosen for
both the Wilson and Lüscher-Weisz action have been numerically verified to provide
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better tree level agreement in Refs. [87, 94], and we present a comparison of the
Lüscher-Weisz and uncorrected variables in Fig. 4.1. To visualise this improvement,
we plot k2 D(k2) (where kµ = pµ, qµ is the momentum variable for the given case
under consideration) such that the tree-level propagator appears as k2 D(k2) = 1,
shown as the black dashed line. This choice of plotting k2 D(k2) against ka has the
benefit of aiding both the visualisation of the tree-level behaviour, and the onset of the
non-perturbative infrared properties of the propagator. Via the method described in
the previous section, we have renormalised the Lüscher-Weisz corrected propagator
such that q2 D(q2) = 1 at qa = 6.0, and applied this same renormalisation constant
to the uncorrected propagator. While this choice of renormalisation point is near the
cutoff, it provides a renormalised propagator that approaches tree-level from above.
In subsequent sections we will select renormalisation points further away from the cutoff.

We can clearly see that at high momenta the corrected gluon propagator tends
towards the expected tree-level behaviour, whereas the uncorrected propagator fans out
considerably. This fanning is the result of asymmetry between the spatial and temporal
components of the propagator, which is accounted for in the tree-level correction [94].
The results presented in Fig. 4.1 clearly motivate the need for tree-level correction
when calculating the gluon propagator on the lattice.
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Fig. 4.1 The scalar gluon propagator is plotted with no tree-level momentum correction
(blue crosses) and the Lüscher-Weisz correction (red dots) presented in Eq. (4.29). It
is clear that the corrected momentum has improved tree-level behaviour, free from the
fanning effect present in the uncorrected case.

When considering the gluon propagator we shall maintain the plotting convention
introduced in Fig. 4.1 of considering q2D(q2) against qa for the remainder of this work.
To improve the momentum-corrected propagator presented in Fig. 4.1 we follow the
procedure of Ref. [18, 87] and perform a momentum half-cut. The momentum half-cut
corresponds to only considering lattice momenta in the range

pµ = 2πnµ

aNµ

, nµ ∈
(

−Nµ

4 ,
Nµ

4

]
. (4.34)

This cut limits the positive range of the kinematically corrected qµ to

qµ ∈
[
0, 2

√
21

3a

]
≈
[
0, 3.06

a

]
. (4.35)
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Furthermore, a cylinder cut of radius pa = 2 lattice units is performed, such that we
only consider points within two lattice units of the diagonal. This cut is implemented
by considering points satisfying

|pa|2 sin(θc) ≤ 2 , (4.36)

where
θc = cos−1

(
pa · n̂
|pa|

)
, (4.37)

and n̂ = 1
2(1, 1, 1, 1) is the unit vector along the diagonal. This is performed so

that all directions are equally sampled, whilst omitting points where one direction
dominates the signal. This reduces the impact of lattice cutoff artefacts. Finally, we
can take advantage of the rotational symmetry of the scalar propagator to perform
Z(3) averaging over the Cartesian coordinates. This means that we average over all
points with the same Cartesian radius; for example, we would average across the
points (nx, ny, nz) = (2, 1, 1), (1, 2, 1) and (1, 1, 2). These choices of cuts assist in
producing a cleaner signal that accurately represents the behaviour of the continuum
propagator. With the momentum half-cut, we now renormalise at qa = 3.0. This choice
of renormalisation point is both sufficiently large and away from the lattice momentum
cutoff, as well as falling within the momentum half-cut range of qa ∈ [0, 3.06]. This
choice of renormalisation point will be used for the remainder of this work.

With these cuts implemented, the gluon propagator on the original untouched
configurations appears as Fig. 4.2. We observe the expected tree-level behaviour at
high momenta, with an infrared enhancement indicative of amplified low-momentum
propagation. It should be noted that the difference in peak height observed between
Fig. 4.1 and Fig. 4.2 is due to the different renormalisation constant. Due to the cuts
we have made, we observe a much cleaner signal, particularly in the region qa ≥ 1.5,
in agreement with the results of Ref. [87]. For the remainder of this work we will
employ these data cuts and this choice of momentum variables when plotting the gluon
propagator to ensure an accurate and clear signal.
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Fig. 4.2 The untouched gluon propagator with all data cuts and correct momentum
variables utilised. We observe a substantially cleaner signal when compared to the
untouched propagator shown in Fig. 4.1.





Chapter 5

Smoothing

Lattice definitions of topological objects are plagued by short-distance fluctuations
originating from the Monte-Carlo generation of the lattice configurations. Hence, when
considering the behaviour of topological objects on the lattice, it has been proven
to be necessary to remove the high frequency fluctuations in the gauge fields [95].
Furthermore, when investigating the long range behaviour of the lattice it is also
beneficial to filter off the short distance fluctuations to better reveal the physics in the
domain of interest [81]. This filtering process is known as smoothing, and it typically
forms an important step in the study of lattice topological objects and long range
behaviour. For example, it has previously been shown that smoothing is necessary to
obtain agreement between the untouched and vortex only string tension, mass function
and instanton content [7–9]. The process of smoothing in turn falls into two well known
sub-categories: cooling and smearing.

The purpose of both these methods is similar, however, the algorithms used to
implement them differ. Cooling assesses each link in turn, replacing the existing link
with one that locally minimises some choice of action (see e.g. the Wilson action,
Eq. (2.46)). Rather than explicitly minimising a given action, smearing instead replaces
the links with a weighted average of their nearest neighbours. Once every link in the
lattice has been updated according to one of these methods, the configuration is said
to have had one sweep of smoothing applied. The process can then be repeated to an
arbitrary number of sweeps to achieve the desired degree of smoothness. Due to the
differences in the routines, it is important to compare the results from both to observe
how they each perform and quantify how they alter the result.
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5.1 Smoothing Methods

5.1.1 Cooling

Cooling is the original method devised for smoothing lattice gauge fields, first utilised
in an analysis of the topological susceptibility of simplified lattice models [96]. It
was shown early on that the process of cooling can be used to distinguish between
‘genuine’ topological charge that is representative of classical minima of the action, and
background Monte-Carlo topological charge brought about by random fluctuations
created during the generation of the lattice configuration. Under cooling, the former is
preserved whilst the latter is annihilated. The process of cooling according to the sim-
plest Wilson action is based on the method outlined by Cabibbo and Marinari [97, 98],
and is performed as follows.

We first define the ‘staple’ associated with a link Uµ. A staple is the product of all
the link variables around a chosen loop, except for the link being cooled. For example,
the 1 × 1 plaquette staple associated with Uµ is

Ũ1×1
µν (x) = Uν(x+ µ̂)U †

µ(x+ ν̂)U †
ν(x) . (5.1)

Graphically, this can be seen as in Fig. 5.1. Larger staples are defined similarly; for
example a 2 × 2 staple corresponds to the product of seven of the eight links in the
2 × 2 square, with Uµ(x) omitted. For the Wilson action, which is all we shall consider
for now, the six unique 1 × 1 staples are the only ones required. Once all relevant
staples are calculated, they are summed to obtain

Ū =
6∑

α=1
Ũα , (5.2)

where α enumerates the staples, not the Lorentz index. We can now rewrite the Wilson
action associated with a single link Uµ as,

S(Uµ) = 3 − Re Tr(UµŪ) , (5.3)

which is a different, but completely equivalent, form of Eq. (2.46).
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Uν(x+ µ̂)

U †
µ(x+ ν̂)

U †
ν(x)

Uµ(x)

Fig. 5.1 An example 1 × 1 staple, with the dashed link indicating the link the staple
is relative to. The origin of the name staple is apparent from the shape of the 3 solid
links.

The objective of cooling is to select a new SU(3) matrix, U ′
µ, to replace Uµ with

such that U ′
µ minimises Eq. (5.3). This is equivalent to maximising

R = Re Tr(U ′
µ Ū) . (5.4)

Naively, it would seem that U ′
µ = Ū−1 would be the ideal choice. However, Ū is a sum of

SU(3) matrices, and SU(3) is only closed under multiplication, not addition. Hence, Ū ,
and by extension Ū−1, are not necessarily in SU(3), making Ū−1 an invalid substitute
for Uµ. However, any SU(2) element can be written in the form U = a0I + i⃗a · σ⃗, where
σ⃗ are the Pauli matrices and a ∈ R4 satisfies a2 = 1. Hence, a sum of SU(2) elements
will be proportional to another SU(2) element. We can exploit this fact to construct
an new SU(3) element from three SU(2) subgroups. To this end, we wish to find a U ′

of the form
U ′

µ = a3 a2 a1 Uµ , (5.5)
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where the ai are each in a different 3 × 3 representation of SU(2). The optimal choice
is

a1 = 1
k1


1
2

(
(Uµ Ū)11 + (Uµ Ū)∗

22

)
1
2

(
(Uµ Ū)12 − (Uµ Ū)∗

21

)
0

1
2

(
(Uµ Ū)21 − (Uµ Ū)∗

12

)
1
2

(
(Uµ Ū)∗

11 + (Uµ Ū)22
)

0
0 0 k1


†

(5.6)

a2 = 1
k2


1
2

(
(Uµ Ū)11 + (Uµ Ū)∗

33

)
0 1

2

(
(Uµ Ū)13 − (Uµ Ū)∗

31

)
0 k2 0

1
2

(
(Uµ Ū)31 − (Uµ Ū)∗

13

)
0 1

2

(
(Uµ Ū)∗

11 + (Uµ Ū)33
)


†

(5.7)

a3 = 1
k3


k3 0 0
0 1

2

(
(Uµ Ū)22 + (Uµ Ū)∗

33

)
1
2

(
(Uµ Ū)23 − (Uµ Ū)∗

32

)
0 1

2

(
(Uµ Ū)32 − (Uµ Ū)∗

23

)
1
2

(
(Uµ Ū)∗

22 + (Uµ Ū)33
)


†

. (5.8)

The factor of 1
ki

fixes the determinant such that det(ai) = 1. The procedure for identify-
ing these SU(2) elements is described in detail in Appendix A.6. With this construction
of U ′

µ we locally minimise the Wilson action for each link. This determination of U ′
µ is

repeated 12 times per link. One sweep of cooling constitutes updating each link on the
lattice according to this procedure.

As detailed in Ref. [95], this process can be thought of as locally minimising the
Wilson action of the three SU(2) subgroups, which collectively minimises the Wilson
action of the full SU(3) link. It is then simple to extend this procedure to different
actions by expanding the size and shape of the staples considered in the construction of
Ū . As all of the quantities utilised in the cooling procedure are gauge invariant, cooling
can be performed in any gauge to arrive at the same cooled configuration. However,
cooling is not a gauge transformation, and as such it represents a deviation from the
original physical configuration. We therefore need to be careful when selecting the
action used for the cooling routine to ensure that we are not removing the physics that
we are interested in. To best study instantons and topological charge on a periodic
lattice, it has been shown that a O(a4) three-loop improved action is most suitable [84].
This action is dubbed a ‘three-loop’ action as it consists of a linear combination of
1 × 1, 2 × 2 and 3 × 3 Wilson loops. This choice of action combines both computational
efficiency with an effective stabilisation of instantons and an accurate preservation of
the topological charge under repeated cooling sweeps. As a result, it is this three-loop
cooling routine that will be utilised in this research.
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5.1.2 Over-Improved Smearing

Despite the accurate results obtained from cooled lattice configurations, cooling presents
certain computational inefficiencies. Given that the staples, Ūα must remain constant
while updating a given link Uµ, there are limitations to how parallelised the algorithm
can be, especially for larger combinations of loops such as those used in the chosen
three-loop improved action. To avoid these issues, a different type of smoothing was
developed, known as ‘smearing’. Rather than locally minimising the action by direct
substitution of each link, the initial APE smearing [99, 100] routine replaces each link
with a weighted average of its nearest neighbours, according to

U ′ = (1 − α)Uµ + α

6 Ū
† , (5.9)

where Ū is the sum of the staples given in Eq. (5.2) and α is some weighting parameter.
However, as stated in the previous section, a linear combination of SU(3) matrices is
not necessarily in SU(3), so APE smearing is dependent on a choice of projection into
the SU(3) group. To remove the need for this projection step, the method of stout-link
smearing was developed [101].

We will first outline the stout-link smearing algorithm, then extend this to the
over-improved stout-link smearing employed in this research. To begin, we define

Σµ = ρsm (Uµ Ū)† , (5.10)

where ρsm is a smearing constant chosen to remain fixed for all lattice sites and Ū is
the sum of the relevant staples depending on the choice of action. Using this definition
we construct

Qµ = i

2
(
Σ†

µ − Σµ

)
− i

6 Tr
(
Σ†

µ − Σµ

)
I . (5.11)

By construction, Qµ is Hermitian (Qµ = Q†
µ) and traceless, so it belongs to the SU(3)

Lie algebra. It can therefore be exponentiated to obtain an element of SU(3). We then
define the new smeared link by

U ′
µ = exp(iQµ)Uµ . (5.12)

This definition effectively corresponds to a complex sum of neighbouring link com-
binations, however it has numerically been demonstrated to give similar results to
the previous APE smearing technique, provided that the smearing parameter ρsm is
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selected appropriately [101]. For this work, we choose ρsm = 0.06, in accordance with
the results of Ref. [81]. As in the case of cooling, the choice of staples used to define
Ū has significant impact on the behaviour of topological objects under smearing. To
this end, work has been done to tune the smearing algorithm so that it preserves
instanton-like objects under repeated smearing sweeps, leading to the development of
over-improved stout-link smearing [81].

To see the necessity for over-improved stout-link smearing, it is important to detail
how we quantitatively measure the effect of smearing on topological objects. To do this,
we calculate the instanton action in terms of the instanton radius. The error terms in
the instanton action then give an indication of how the instanton radius will change
as the action decreases under smearing. This in turn gives an indication of how well
the smearing routine preserves topological objects. If the Baker-Campbell-Hausdorff
plaquette expansion given in Appendix A.4 is instead truncated at O(a4) rather than
O(a2), the Wilson action becomes [102]

SW = a4∑
x

∑
µ, ν

Tr
[

1
2F

2
µν + a2

24
{
(DµFµν(x))2 + (DνFµν(x))2

}
+ O(a4)

]
. (5.13)

Substituting in the instanton potential (Eq. (3.38)) and field strength tensor (Eq. (3.41)),
we find that the Wilson action goes like

Sinst
W = 8π2

g2

1 − 1
5

(
a

ρ

)2

+ O
(
a

ρ

)4
 , (5.14)

where ρ is the instanton radius. We note then that as the Wilson action is minimised,
the −1

5 (a/ρ)2 term must become increasingly negative, implying that the instanton
radius decreases. This is precisely the effect we wish to avoid, as the instanton radius
will shrink under smearing to the point where the instanton-like objects ‘fall through’
the lattice as ρ → a. A similar calculation can be done for the Lüscher and Weisz
action, showing that [102]

Sinst
LW = 8π2

g2

1 − 17
210

(
a

ρ

)4

+ O
(
a

ρ

)6
 . (5.15)

In both of the previous instanton actions, the leading error term is negative, resulting
in a suppression of the instanton radius. To counteract this we ‘over-improve’ the action
by modifying it to be a linear combination of SW and SLW, introducing a parameter ϵ
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that interpolates between them [81]. This modified action is given as

S(ϵ) = β
∑

x

∑
µ>ν

[5 − 2ϵ
3 (1 − Pµν(x)) − 1 − ϵ

12 ((1 −Rµν(x)) + (1 −Rνµ(x)))
]
.

(5.16)
We see that S(1) = SW and S(0) = SLW. Expanding S(ϵ) in terms of the instanton
solution, we have

Sinst(ϵ) = 8π2

g2

1 − ϵ

5

(
a

ρ

)2

+ 14ϵ− 17
210

(
a

ρ

)4

+ O
(
a

ρ

)6
 . (5.17)

The parameter ϵ can now be tuned so as to preserve instantons under smearing.
Performing stout-link smearing with this choice of action dependent on ϵ is known as
over-improved stout-link smearing. When using this routine, it is necessary to select
appropriate ρsm and ϵ parameters. We keep the previous value of ρsm = 0.06, however
there is some subtlety to finding an appropriate ϵ. The natural choice for ϵ may be
to follow Ref. [102] and set ϵ = −1 to ensure that the leading error term is positive.
However, one then runs the risk of unphysically growing the instanton size such that
it annihilates with anti-instantons present on the lattice. Furthermore, we wish to
smear such that the instantons are minimally distorted as they undergo the smearing
process. To this end, we follow the results of Ref. [81] and choose ϵ = −0.25. We
then choose the corresponding staple parameter Ū to be the sum over the 1 × 1 and
(2 × 1) + (1 × 2) loops with Uµ omitted, with respective weightings 5−2ϵ

3 and −1−ϵ
12 .

We can now utilise this over-improved stout-link smearing routine to filter out short
distance physics, isolating the topological objects of interest.

5.2 Results from the Gluon Propagator

This section is based on the paper “Gluon propagator on a centre-vortex background”,
Biddle et al. [5].

We now wish to present original work that compares of the effect of each of these
smoothing methods on the gluon propagator. Summarising the previous sections, we
employ O(a4)-improved three-loop cooling and over-improved stout-link smearing with
smearing parameters ρsm = 0.06 and ϵ = −0.25. We first plot the untouched propagator
after 0, 1, 2, 4 and 8 sweeps of cooling in Fig. 5.2. In gauge fixing to Landau gauge,
each sweep has been preconditioned by the Landau gauge transformation of the prior
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Fig. 5.2 Comparison of the gluon propagator on the untouched configurations after
cooling. For clarity we have selected a sample of sweeps between 1 and 8.

sweep in descending order (i.e. the transformation for sweep 10 preconditions sweep 9).
This preconditioning is done to ensure that the Landau gauge functional is near the
same local minima for each cooling sweep. We observe the expected removal of short
distance fluctuations that is typical of smoothing, resulting in a suppressed propagator
at large q. This is complemented by an amplification in the infra-red region which can
be attributed to the increase in low momentum modes arising from the smoothing of
the gauge fields.

To compare the effects of cooling and over-improved smearing, the untouched gluon
propagator is plotted in Fig. 5.3 after either over-improved smearing or cooling. By
comparing the smeared and cooled propagator we can see that cooling has a more
rapid effect, related to the well-known fast removal of action from the lattice. The
qualitative shape of the propagator remains the same however, and it can be seen
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Fig. 5.3 The gluon propagator after cooling or improved smearing. We see that the
shape of the plot changes minimally between the smoothing routines. However cooling
requires fewer sweeps to produce the same effect when compared to smearing.

that, for example, 4 smearing sweeps produces a propagator remarkably similar to
1 cooling sweep. More generally, we observe that in regards to the shape of the
propagator, nsm ≈ 4ncool. Following the observation made in Ref. [103] that the
number of over-improved stout-link smearing sweeps is related to the gradient flow
time by

t ≈ ρ nsm , (5.18)

we deduce that the relationship between gradient flow time and cooling is

t ≈ 0.24ncool . (5.19)



62 Smoothing

It is well understood that smoothing alters the vortex background, and based
on previous work [7, 46, 70] we anticipate that the vortices identified on smoothed
configurations would differ to those identified on the unsmoothed configurations. We
therefore perform vortex identification only on the untouched configurations, with
smoothing then being performed independently on the untouched, vortex-only and
vortex-removed configurations, as shown in Chapter 6. We choose to use cooling as the
smoothing algorithm for the results presented in this research as it lowers the action
of the lattice configurations faster than over-improved smearing, however it is worth
noting that similar results can be obtained with the use of over-improved smearing.
With this understanding of smoothing routines developed, we are now in a position to
calculate the gluon propagator on our vortex modified configurations. We are now free
to employ cooling to expose the long-range physics and isolate the vortex contribution
to the propagator, illuminating the significance of centre vortices.



Chapter 6

Gluon Propagator on
Vortex-Modified Backgrounds

This chapter is based on the paper “Gluon propagator on a centre-vortex background”,
Biddle et al. [5].

6.1 Preliminary Results

Here we present the results from the Landau-gauge gluon propagator, calculated ac-
cording to method outlined in Chapter 4, on our three vortex-modified configurations.
Calculating the scalar propagator on untouched, vortex-removed and vortex only con-
figurations gives the results illustrated in Fig. 6.1. To make contact with the tree-level
propagator at large q2, we renormalise such that q2D(q2) = 1 for qa = 3.0 on the origi-
nal configurations, and apply this same renormalisation factor to the vortex removed
and vortex only propagators. The vortex removed configurations display the expected
behaviour, with vortex removal corresponding to significant infrared suppression of
the propagator when compared to the untouched propagator, in agreement with the
results of Ref. [12]. The increased roughness of the gauge fields after vortex removal is
evidenced by the enhancement of the propagator at large q. This reflects the increase
in short-distance fluctuations that have been introduced to the gauge fields by the
vortex removal procedure.
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Fig. 6.1 The gluon propagator calculated from the original untouched configurations
(red dots), shown with the vortex removed (blue triangles) and vortex only (green open
circles) results. Here, the renormalisation factor for the vortex removed and vortex
only propagators is chosen to be the same as for the untouched propagator.

It is interesting to note that the vortex only propagator retains approximately two
thirds of the untouched propagator’s peak strength. This is comparable to previous work
showing partial recovery of the string tension on vortex only configurations [7, 9, 47, 104].
Despite only recovering a portion of the original strength, the infrared peak is still
considerably greater than the peak observed in the vortex removed propagator. The
loss of strength is most likely in part because of the known imperfections in the vortex
identification algorithm (see Sec. 3.2.2) that results in some vortex matter remaining
in the vortex removed configurations. The vortex only configurations also exhibit a
loss of short range strength, due to the absence of the high frequency modes that are
instead contained within the vortex removed field.
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Fig. 6.2 The gluon propagator from the original untouched ensemble as in Fig. 6.1,
plotted alongside the independently renormalised sum (cyan triangles) of the vortex
removed and vortex only propagators. The two vortex modified propagators are also
shown, but here their renormalisation factor is chosen to be the same as for the summed
propagator.

If we sum the vortex only and vortex removed propagators and independently
renormalise such that q2 D(q2) = 1 at qa = 3.0, we obtain the result shown in Fig. 6.2.
Here we observe agreement between the untouched and summed propagators. This
indicates that vortex modification effectively partitions the lattice configuration into
short range physics on the vortex removed configurations and long range physics on
the vortex only configurations, up to errors in the vortex identification procedure.
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In Fig. 6.2 it proved necessary to independently renormalise the untouched and
summed propagators such that they agree at qa = 3.0. The need for a different
renormalisation factor for the propagator reconstructed from the vortex-modified
ensembles follows from the vortex identification process. Vortex identification increases
the action and takes the configurations away from their equilibrium distribution. This
increased roughness enhances the bare propagator at all momentum scales. However,
as discussed in Sec=. 4.3, it is the renormalised propagator that carries the physical
meaning. Hence, the fact that the untouched and summed propagators agree after
renormalisation in Fig. 6.2 is an important result indicating the effective partitioning
of the gluon propagator under vortex modification.

6.1.1 Partitioning

Partitioning of the untouched gluon propagator into vortex removed and vortex only
contributions is expected if the vortex only and vortex removed configurations are
orthogonal. To see how this behaviour emerges, suppose that we can decompose the
gluon field Aµ into two independent fields as follows

Aµ(p) = Bµ(p) + Cµ(p). (6.1)

In the context of this work, we associate Bµ with the background field of short-range
gluon fluctuations and Cµ with the centre vortex field. Note also that if B and C are in
Landau gauge then so is A. Using this partitioning it follows that the gluon propagator
for A can be written as the sum of the respective gluon propagators for B and C,

DA
µν(p) = 1

V
⟨Aµ(p)Aν(−p)⟩

= 1
V

(
⟨Bµ(p)Bν(−p)⟩ + ⟨Cµ(p)Cν(−p)⟩

+ ⟨Bµ(p)Cν(−p) + Cµ(p)Bν(−p)⟩
)

= DB
µν(p) +DC

µν(p), (6.2)

where we have made use of the fact that B and C represent orthogonal degrees of
freedom in the gauge field and hence in the ensemble average the cross-correlations
should vanish. These cross-correlations are explicitly calculated by evaluating

Dcross-terms(p2) = 2
3 (n2

c − 1)V ⟨Tr (Bµ(p)Cµ(−p) + Cµ(p)Bµ(−p))⟩ , (6.3)
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analogous to the scalar gluon propagator derived in Chapter 4. As can be clearly seen
from Fig. 6.3, in the ensemble average Eq. (6.3) vanishes, indicating that the vortex
only and vortex removed configurations truly do represent a orthogonal degrees of
freedom.
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Fig. 6.3 Calculation of the propagator cross-terms arising from Eq. (6.2)

To elucidate the connection to the unitary formulation of the lattice gauge links,
we suppose that we can transform A to an “ideal centre gauge” such that in lattice
units the field C consists purely of centre phases,

Cµ(x) = k
2π
3 I, k ∈ {−1, 0,+1}. (6.4)

As A = B + C it immediately follows that we can write

Uµ(x) = eiBµ(x+µ̂/2) eiCµ(x+µ̂/2), (6.5)
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noting that in our ideal centre gauge [B,C] = 0 so the Baker-Campbell-Haussdorff
relation (see Appendix A.4 is trivial. Identifying

Zµ(x) = eiCµ(x+µ̂/2) , (6.6)

as the vortex-projected field, and

Rµ(x) = eiBµ(x+µ̂/2) , (6.7)

as the background remainder field we thus recover the decomposition of the links used
herein,

Uµ(x) = Zµ(x) ·Rµ(x). (6.8)

In practise, on the lattice the maximal centre gauge fixing that is implemented will
differ from the ideal centre gauge postulated here due to apparent numerical difficulties
in simultaneously identifying all vortex matter within an SU(3) gauge field. What this
means is that the projected field Z may not capture all of the vortex matter such that
there are some non-trivial topological structures that remain in the background field
R. It is possible that these structures may be responsible for the infrared enhancement
observed in Fig. 6.1.

6.2 Impact of Cooling

We now perform 10 sweeps of cooling on the untouched, vortex-removed and vortex-only
ensembles, the results of which are shown in Fig. 6.4. As is typical of cooling, the
removal of short range structures means that all three ensembles tend to zero as q → ∞.
There is now a noticeable improvement in the agreement between the untouched and
vortex only configurations; however there is still a difference present, especially in the
qa ≈ 0.5 and qa ≈ 1.5 regions.
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Fig. 6.4 The gluon propagator calculated on the three ensembles after 10 sweeps of
cooling. We now observe an improved agreement between the untouched and vortex
only propagators.

We perform the same analysis of the vortex only propagator under cooling as
performed in Sec. 5.2 on the untouched propagator. Once again in gauge fixing, each
sweep is preconditioned by the Landau gauge transformation of the previous sweep
in descending order. The result of this analysis is shown in Fig. 6.5. This figure
shows a similar change in the vortex only propagator when compared to the untouched
propagator in Fig. 5.2, with an enhancement in the infrared and suppression in the UV
modes. However, the UV suppression is less noticeable in this case due to the prior
removal of short range effects brought about by the vortex identification.
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Fig. 6.5 The vortex only propagator after different sweeps of cooling. A trend similar
to Fig. 5.2 is observed, with enhancement in the infrared and suppression in the UV
region.

When we compare the vortex only and untouched propagators in Fig. 6.4, we
observe that the peak in the vortex only propagator sits below that of the untouched
propagator. Additionally, the untouched propagator is suppressed in the qa ≈ 1.5
region as compared to the vortex only propagator. These discrepancies between prop-
agators are the same as those observed between the untouched propagator under
differing numbers of cooling sweeps, as seen in Fig. 5.2 and Fig. 6.5. As the vortex only
propagator in Fig. 6.4 resembles the untouched propagator under a lesser number of
cooling sweeps, this indicates that further cooling on the vortex only propagator would
align it with the untouched propagator in Fig. 6.4. This follows from an understanding
that the vortex-only configurations are initially much rougher than their untouched
counterparts [8], and should therefore require additional cooling to obtain agreement
with the untouched configurations.
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To measure the roughness of a configuration we consider the average O(a4) three-
loop improved action of the lattice divided by the single instanton action S0 = 8π2

g2 (see
Sec. 3.3.2), denoted S̄/S0. We observe that for n < 20 cooling sweeps the vortex-only
configurations have a significantly higher action than their untouched counterparts
after the same number of sweeps of cooling, as illustrated in Fig. 6.6. We therefore seek
to find the number of sweeps required to best match the action between the vortex-only
and untouched configurations. The results of this procedure are shown in Table 6.1.
If we now plot these matched configurations, we obtain the results shown in Fig. 6.7.
Here we have truncated the plot at large qa to better show the agreement in the mid-qa
region. By matching the actions as closely as possible with an integer number of cooling
sweeps, we see that there is a better agreement between the untouched and vortex-only
gluon propagators.
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Fig. 6.6 The average action calculated on the untouched and vortex-only configurations
as a function of cooling sweeps, n. The vortex only configurations are initially rougher
than the untouched, as evidenced by the higher average action.
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Table 6.1 Comparison of the number of cooling sweeps on the untouched (nU) and
vortex only (nV O) configurations required to match the average action.

nU S̄/S0 nV O S̄/S0

5 734.83 11 727.67
10 344.22 15 357.68
15 238.21 20 231.19
20 187.55 24 184.68
25 156.92 28 155.72
30 135.91 32 135.61
35 120.29 36 120.66
40 107.08 40 109.02

Noting that sufficient smoothing of a vortex-only field generates a topological
background of instanton-like objects, we can regard the thin centre vortices as the seeds
of instantons. The smoothing process that is applied on the vortex-only configurations
raises a question regarding the precise role of vortices in the restoration of the infrared
propagator: is it simply the presence of (sufficiently smoothed) vortices giving rise
to the infrared propagator, or is it more indirectly the result of the reformation of
the instanton background? If we examine Fig. 6.4, we see that after the application
of 10 sweeps of cooling the vortex-only propagator has the appropriate qualitative
infrared behaviour. Comparing with previous work, in particular Fig. 7 within Ref. [7]
(replicated in Fig. 6.8) which shows the typical distribution of the instanton radius
against the topological charge at the centre,

q(x0) = Q
6

π2 ρ4 , (6.9)

we can see that after only 10 sweeps of cooling the vortex-only distribution still deviates
significantly from the ideal theoretical instanton relationship. This suggests that it is
the smoothed centre vortices that are directly responsible for the infrared structure of
the gluon propagator.
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Fig. 6.7 Comparison of the gluon propagator on the untouched and vortex only
configurations after tuning the number of cooling sweeps to best match the average
plaquette action. This procedure gives a much better agreement in the shape of the
gluon propagator from the two configurations.

6.3 Summary

The results presented above concur with the now significant body of evidence that
centre vortices contain the essential degrees of freedom of the Yang-Mills vacuum, such
that the application of smoothing enables the recreation of the major features of QCD [7–
9, 46, 105]. We have shown that vortex identification partitions the gluon propagator
into low and high momentum modes, with the vortex only configurations encapsulating
the majority of the infrared strength. Cross-correlation between the vortex only and
vortex removed propagators can be seen to vanish in the ensemble average. By cooling
the configurations, we observe that the vortex removed configurations are continuously
suppressed, while the infrared peak in the untouched and vortex only propagator
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acquires better agreement. By tuning the number of cooling sweeps to best match
the average action of the vortex only and untouched configurations, we can effectively
match the gluon propagators obtained from each of these configurations. These results
clearly demonstrate that centre vortices play a crucial role in the infrared structure of
the gluon propagator.
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Fig. 6.8 These plots are reproduced from Trewartha et al. [7]. The topological charge
at the instanton centre, q(x0), is plotted against the instanton radius ρ for the vortex-
modified configurations under 10 and 40 sweeps of cooling. The solid line represents
the theoretical distribution given in Eq. (3.42).





Chapter 7

Centre Vortex Visualisations

A brief discussion of the work presented in this chapter will appear in the proceedings
“Visualizations of Centre Vortex Structure in Lattice Simulations”, Biddle et al. [106]
and “Publicizing Lattice Field Theory through Visualization”, Biddle et al. [107].

The digital version of this chapter contains interactive 3D models embedded in
the document. To interact with these models, it is necessary to open the document
in Adobe Reader or Adobe Acrobat (requires version 9 or newer). Linux users should
install Adobe acroread version 9.4.1, the last edition to have full 3D support. Note
that 3D content must also be enabled for the interactive content to be available, and
for proper rendering it is necessary to enable double-sided rendering in the preferences
menu. To view the models, click on the figures marked as Interactive in the cap-
tion. To rotate the model, click and hold the left mouse button and move the mouse.
Use the scroll wheel or shift-click to zoom. Some pre-set views of the model are also
provided to highlight areas of interest. To reset the model back to its original orien-
tation and zoom, press the ‘home’ icon in the toolbar or change the view to ‘Default view’.

In previous chapters we have motivated the significance of centre vortices in QCD
through the calculation of the gluon propagator. Although we can predict many of
the properties of vortices through calculation, these properties can also be explored
through visualisations of the lattice. To this end, in this chapter we present a novel
visualisation technique that allows us to view thin centre vortices on the lattice through
the use of 3D models 1. These models allow for a highly interactive exploration of the
vortex structure of the QCD vacuum.

1All 3D models have been generated using Advanced Visual Systems (AVS) Express Visualisation
Edition, version 8.4.1.
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7.1 Spatially-Oriented Vortices

As the lattice is a four-dimensional hypercube, we visualise the centre vortices on a
set of 3D slices. The choice of dimension to take slices along is irrelevant in Euclidean
space, so to maximise the volume of each slice we choose to take slices along the x-axis,
resulting in Nx slices each with dimensions Ny × Nz × Nt. However, the transition
between slices is most intuitively thought of as ‘stepping though time’, so we re-label
our coordinates such that each slice is considered to be a snapshot at fixed t, with local
coordinates (x, y, z). Within each slice we can visualise all vortices associated with an
x− y, x− z or y − z plaquette by calculating Px y(x), Py z(x) and Pz x(x) for all x in
the slice. These vortices will be referred to as the ‘spatially-oriented’ vortices, as they
are fixed in time. The plaquettes are evaluated on a centre projected configuration,
so Pµν ∈ {−1, 0, +1}. For a +1 vortex, a blue jet is plotted piercing the centre of
the plaquette, and for a −1 vortex a red jet is plotted. The direction of the jet is set
according to a right-hand rule, such that

• Px y = ±1 =⇒ ±ẑ direction.

• Py z = ±1 =⇒ ±x̂ direction.

• Px z = ±1 =⇒ ∓ŷ direction,

An example of this plotting convention is shown in Fig. 7.1.

Zx(x)

Z†
y(x)

Zy(x+ x̂)

Z†
x(x+ ŷ)

x

z y
Zx(x)

Z†
y(x)

Zy(x+ x̂)

Z†
x(x+ ŷ)

Fig. 7.1 An example of the plotting convention for vortices located within a 3D time
slice. Left: A +1 vortex in the +ẑ direction. Right: A −1 vortex in the −ẑ direction.
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The 3D slices for t = 1, 2 with the spatially-oriented vortices plotted appear as in
Figs. 7.3, 7.4. At first glance the vortex structure appears highly complex, and it is
difficult to identify the significant features. As such, we make use of the 3D models to
hone in and isolate the important features present in these slices. We present some of
these features in Fig. 7.2.

Fig. 7.2 Left: Vortices form continuous lines, highlighted with orange arrows in this
diagram. Note that because of the lattice periodicity, these lines may wrap around to
the opposite edge of the lattice. Middle: Vortices must form closed loops to conserve
the vortex flux. Right: SU(3) vortices are capable of forming monopoles or branching
points where three vortices emerge or converge at a single point.

It is an excellent sanity check to see that the vortices do indeed form closed lines, as
they must to conserve the centre flux and satisfy the Bianchi identity [65, 79]. We also
observe that the vortex loops tend to be large. This agrees with the observation made
of SU(2) vortices in Refs. [66, 108] that below the critical deconfinement temperature,
TC , almost all vortices identified had the maximum possible extent. It will be the
subject of future work to investigate whether as the temperature increases the SU(3)
vortex loops begin to shrink and cease to percolate, indicating a transition to the
deconfining phase.

The presence of branching/monopole points is of particular interest, as previous
studies have primarily focussed on SU(2) theory which is free from these structures.
This is because it is only in SU(3) (or more generally, SU(N) with N > 2) that it is
possible to conserve the centre flux at the intersection of 3 vortices, as shown in Fig. 7.5.
It is clear from our visualisations that these points occur frequently in the confining
phase, in agreement with the findings of Ref. [79]. The ambiguity between monopoles
and branching points arises from the lack of definite orientation for the vortex line.
With our plotting convention, each jet can be thought of as indicating directed flow of
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Fig. 7.3 The t = 1 slice with all spatially-oriented vortices plotted. (Interactive)

Fig. 7.4 The t = 2 slice with all spatially-oriented vortices plotted. (Interactive)



////////////////////////////////////////////////////////////////////////////////
//
// (C) 2012--today, Alexander Grahn
//
// 3Dmenu.js
//
// version 20140923
//
////////////////////////////////////////////////////////////////////////////////
//
// 3D JavaScript used by media9.sty
//
// Extended functionality of the (right click) context menu of 3D annotations.
//
//  1.) Adds the following items to the 3D context menu:
//
//   * `Generate Default View'
//
//      Finds good default camera settings, returned as options for use with
//      the \includemedia command.
//
//   * `Get Current View'
//
//      Determines camera, cross section and part settings of the current view,
//      returned as `VIEW' section that can be copied into a views file of
//      additional views. The views file is inserted using the `3Dviews' option
//      of \includemedia.
//
//   * `Cross Section'
//
//      Toggle switch to add or remove a cross section into or from the current
//      view. The cross section can be moved in the x, y, z directions using x,
//      y, z and X, Y, Z keys on the keyboard, be tilted against and spun
//      around the upright Z axis using the Up/Down and Left/Right arrow keys
//      and caled using the s and S keys.
//
//  2.) Enables manipulation of position and orientation of indiviual parts and
//      groups of parts in the 3D scene. Parts which have been selected with the
//      mouse can be scaled moved around and rotated like the cross section as
//      described above. To spin the parts around their local up-axis, keep
//      Control key pressed while using the Up/Down and Left/Right arrow keys.
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License, either version 1.3
// of this license or (at your option) any later version.
// The latest version of this license is in
//   http://www.latex-project.org/lppl.txt
// and version 1.3 or later is part of all distributions of LaTeX
// version 2005/12/01 or later.
//
// This work has the LPPL maintenance status `maintained'.
//
// The Current Maintainer of this work is A. Grahn.
//
// The code borrows heavily from Bernd Gaertners `Miniball' software,
// originally written in C++, for computing the smallest enclosing ball of a
// set of points; see: http://www.inf.ethz.ch/personal/gaertner/miniball.html
//
////////////////////////////////////////////////////////////////////////////////
//host.console.show();

//constructor for doubly linked list
function List(){
  this.first_node=null;
  this.last_node=new Node(undefined);
}
List.prototype.push_back=function(x){
  var new_node=new Node(x);
  if(this.first_node==null){
    this.first_node=new_node;
    new_node.prev=null;
  }else{
    new_node.prev=this.last_node.prev;
    new_node.prev.next=new_node;
  }
  new_node.next=this.last_node;
  this.last_node.prev=new_node;
};
List.prototype.move_to_front=function(it){
  var node=it.get();
  if(node.next!=null && node.prev!=null){
    node.next.prev=node.prev;
    node.prev.next=node.next;
    node.prev=null;
    node.next=this.first_node;
    this.first_node.prev=node;
    this.first_node=node;
  }
};
List.prototype.begin=function(){
  var i=new Iterator();
  i.target=this.first_node;
  return(i);
};
List.prototype.end=function(){
  var i=new Iterator();
  i.target=this.last_node;
  return(i);
};
function Iterator(it){
  if( it!=undefined ){
    this.target=it.target;
  }else {
    this.target=null;
  }
}
Iterator.prototype.set=function(it){this.target=it.target;};
Iterator.prototype.get=function(){return(this.target);};
Iterator.prototype.deref=function(){return(this.target.data);};
Iterator.prototype.incr=function(){
  if(this.target.next!=null) this.target=this.target.next;
};
//constructor for node objects that populate the linked list
function Node(x){
  this.prev=null;
  this.next=null;
  this.data=x;
}
function sqr(r){return(r*r);}//helper function

//Miniball algorithm by B. Gaertner
function Basis(){
  this.m=0;
  this.q0=new Array(3);
  this.z=new Array(4);
  this.f=new Array(4);
  this.v=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.a=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.c=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.sqr_r=new Array(4);
  this.current_c=this.c[0];
  this.current_sqr_r=0;
  this.reset();
}
Basis.prototype.center=function(){return(this.current_c);};
Basis.prototype.size=function(){return(this.m);};
Basis.prototype.pop=function(){--this.m;};
Basis.prototype.excess=function(p){
  var e=-this.current_sqr_r;
  for(var k=0;k<3;++k){
    e+=sqr(p[k]-this.current_c[k]);
  }
  return(e);
};
Basis.prototype.reset=function(){
  this.m=0;
  for(var j=0;j<3;++j){
    this.c[0][j]=0;
  }
  this.current_c=this.c[0];
  this.current_sqr_r=-1;
};
Basis.prototype.push=function(p){
  var i, j;
  var eps=1e-32;
  if(this.m==0){
    for(i=0;i<3;++i){
      this.q0[i]=p[i];
    }
    for(i=0;i<3;++i){
      this.c[0][i]=this.q0[i];
    }
    this.sqr_r[0]=0;
  }else {
    for(i=0;i<3;++i){
      this.v[this.m][i]=p[i]-this.q0[i];
    }
    for(i=1;i<this.m;++i){
      this.a[this.m][i]=0;
      for(j=0;j<3;++j){
        this.a[this.m][i]+=this.v[i][j]*this.v[this.m][j];
      }
      this.a[this.m][i]*=(2/this.z[i]);
    }
    for(i=1;i<this.m;++i){
      for(j=0;j<3;++j){
        this.v[this.m][j]-=this.a[this.m][i]*this.v[i][j];
      }
    }
    this.z[this.m]=0;
    for(j=0;j<3;++j){
      this.z[this.m]+=sqr(this.v[this.m][j]);
    }
    this.z[this.m]*=2;
    if(this.z[this.m]<eps*this.current_sqr_r) return(false);
    var e=-this.sqr_r[this.m-1];
    for(i=0;i<3;++i){
      e+=sqr(p[i]-this.c[this.m-1][i]);
    }
    this.f[this.m]=e/this.z[this.m];
    for(i=0;i<3;++i){
      this.c[this.m][i]=this.c[this.m-1][i]+this.f[this.m]*this.v[this.m][i];
    }
    this.sqr_r[this.m]=this.sqr_r[this.m-1]+e*this.f[this.m]/2;
  }
  this.current_c=this.c[this.m];
  this.current_sqr_r=this.sqr_r[this.m];
  ++this.m;
  return(true);
};
function Miniball(){
  this.L=new List();
  this.B=new Basis();
  this.support_end=new Iterator();
}
Miniball.prototype.mtf_mb=function(it){
  var i=new Iterator(it);
  this.support_end.set(this.L.begin());
  if((this.B.size())==4) return;
  for(var k=new Iterator(this.L.begin());k.get()!=i.get();){
    var j=new Iterator(k);
    k.incr();
    if(this.B.excess(j.deref()) > 0){
      if(this.B.push(j.deref())){
        this.mtf_mb(j);
        this.B.pop();
        if(this.support_end.get()==j.get())
          this.support_end.incr();
        this.L.move_to_front(j);
      }
    }
  }
};
Miniball.prototype.check_in=function(b){
  this.L.push_back(b);
};
Miniball.prototype.build=function(){
  this.B.reset();
  this.support_end.set(this.L.begin());
  this.mtf_mb(this.L.end());
};
Miniball.prototype.center=function(){
  return(this.B.center());
};
Miniball.prototype.radius=function(){
  return(Math.sqrt(this.B.current_sqr_r));
};

//functions called by menu items
function calc3Dopts () {
  //create Miniball object
  var mb=new Miniball();
  //auxiliary vector
  var corner=new Vector3();
  //iterate over all visible mesh nodes in the scene
  for(i=0;i<scene.meshes.count;i++){
    var mesh=scene.meshes.getByIndex(i);
    if(!mesh.visible) continue;
    //local to parent transformation matrix
    var trans=mesh.transform;
    //build local to world transformation matrix by recursively
    //multiplying the parent's transf. matrix on the right
    var parent=mesh.parent;
    while(parent.transform){
      trans=trans.multiply(parent.transform);
      parent=parent.parent;
    }
    //get the bbox of the mesh (local coordinates)
    var bbox=mesh.computeBoundingBox();
    //transform the local bounding box corner coordinates to
    //world coordinates for bounding sphere determination
    //BBox.min
    corner.set(bbox.min);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    //BBox.max
    corner.set(bbox.max);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    //remaining six BBox corners
    corner.set(bbox.min.x, bbox.max.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.min.x, bbox.min.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.min.x, bbox.max.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.min.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.min.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.max.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
  }
  //compute the smallest enclosing bounding sphere
  mb.build();
  //
  //current camera settings
  //
  var camera=scene.cameras.getByIndex(0);
  var res=''; //initialize result string
  //aperture angle of the virtual camera (perspective projection) *or*
  //orthographic scale (orthographic projection)
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var aac=camera.fov*180/Math.PI;
    if(host.util.printf('%.4f', aac)!=30)
      res+=host.util.printf('\n3Daac=%s,', aac);
  }else{
      camera.viewPlaneSize=2.*mb.radius();
      res+=host.util.printf('\n3Dortho=%s,', 1./camera.viewPlaneSize);
  }
  //camera roll
  var roll = camera.roll*180/Math.PI;
  if(host.util.printf('%.4f', roll)!=0)
    res+=host.util.printf('\n3Droll=%s,',roll);
  //target to camera vector
  var c2c=new Vector3();
  c2c.set(camera.position);
  c2c.subtractInPlace(camera.targetPosition);
  c2c.normalize();
  if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
    res+=host.util.printf('\n3Dc2c=%s %s %s,', c2c.x, c2c.y, c2c.z);
  //
  //new camera settings
  //
  //bounding sphere centre --> new camera target
  var coo=new Vector3();
  coo.set((mb.center())[0], (mb.center())[1], (mb.center())[2]);
  if(coo.length)
    res+=host.util.printf('\n3Dcoo=%s %s %s,', coo.x, coo.y, coo.z);
  //radius of orbit
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var roo=mb.radius()/ Math.sin(aac * Math.PI/ 360.);
  }else{
    //orthographic projection
    var roo=mb.radius();
  }
  res+=host.util.printf('\n3Droo=%s,', roo);
  //update camera settings in the viewer
  var currol=camera.roll;
  camera.targetPosition.set(coo);
  camera.position.set(coo.add(c2c.scale(roo)));
  camera.roll=currol;
  //determine background colour
  rgb=scene.background.getColor();
  if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
    res+=host.util.printf('\n3Dbg=%s %s %s,', rgb.r, rgb.g, rgb.b);
  //determine lighting scheme
  switch(scene.lightScheme){
    case scene.LIGHT_MODE_FILE:
      curlights='Artwork';break;
    case scene.LIGHT_MODE_NONE:
      curlights='None';break;
    case scene.LIGHT_MODE_WHITE:
      curlights='White';break;
    case scene.LIGHT_MODE_DAY:
      curlights='Day';break;
    case scene.LIGHT_MODE_NIGHT:
      curlights='Night';break;
    case scene.LIGHT_MODE_BRIGHT:
      curlights='Hard';break;
    case scene.LIGHT_MODE_RGB:
      curlights='Primary';break;
    case scene.LIGHT_MODE_BLUE:
      curlights='Blue';break;
    case scene.LIGHT_MODE_RED:
      curlights='Red';break;
    case scene.LIGHT_MODE_CUBE:
      curlights='Cube';break;
    case scene.LIGHT_MODE_CAD:
      curlights='CAD';break;
    case scene.LIGHT_MODE_HEADLAMP:
      curlights='Headlamp';break;
  }
  if(curlights!='Artwork')
    res+=host.util.printf('\n3Dlights=%s,', curlights);
  //determine global render mode
  switch(scene.renderMode){
    case scene.RENDER_MODE_BOUNDING_BOX:
      currender='BoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
      currender='TransparentBoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
      currender='TransparentBoundingBoxOutline';break;
    case scene.RENDER_MODE_VERTICES:
      currender='Vertices';break;
    case scene.RENDER_MODE_SHADED_VERTICES:
      currender='ShadedVertices';break;
    case scene.RENDER_MODE_WIREFRAME:
      currender='Wireframe';break;
    case scene.RENDER_MODE_SHADED_WIREFRAME:
      currender='ShadedWireframe';break;
    case scene.RENDER_MODE_SOLID:
      currender='Solid';break;
    case scene.RENDER_MODE_TRANSPARENT:
      currender='Transparent';break;
    case scene.RENDER_MODE_SOLID_WIREFRAME:
      currender='SolidWireframe';break;
    case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
      currender='TransparentWireframe';break;
    case scene.RENDER_MODE_ILLUSTRATION:
      currender='Illustration';break;
    case scene.RENDER_MODE_SOLID_OUTLINE:
      currender='SolidOutline';break;
    case scene.RENDER_MODE_SHADED_ILLUSTRATION:
      currender='ShadedIllustration';break;
    case scene.RENDER_MODE_HIDDEN_WIREFRAME:
      currender='HiddenWireframe';break;
  }
  if(currender!='Solid')
    res+=host.util.printf('\n3Drender=%s,', currender);
  //write result string to the console
  host.console.show();
//  host.console.clear();
  host.console.println('%%\n%% Copy and paste the following text to the\n'+
    '%% option list of \\includemedia!\n%%' + res + '\n');
}

function get3Dview () {
  var camera=scene.cameras.getByIndex(0);
  var coo=camera.targetPosition;
  var c2c=camera.position.subtract(coo);
  var roo=c2c.length;
  c2c.normalize();
  var res='VIEW%=insert optional name here\n';
  if(!(coo.x==0 && coo.y==0 && coo.z==0))
    res+=host.util.printf('  COO=%s %s %s\n', coo.x, coo.y, coo.z);
  if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
    res+=host.util.printf('  C2C=%s %s %s\n', c2c.x, c2c.y, c2c.z);
  if(roo > 1e-9)
    res+=host.util.printf('  ROO=%s\n', roo);
  var roll = camera.roll*180/Math.PI;
  if(host.util.printf('%.4f', roll)!=0)
    res+=host.util.printf('  ROLL=%s\n', roll);
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var aac=camera.fov * 180/Math.PI;
    if(host.util.printf('%.4f', aac)!=30)
      res+=host.util.printf('  AAC=%s\n', aac);
  }else{
    if(host.util.printf('%.4f', camera.viewPlaneSize)!=1)
      res+=host.util.printf('  ORTHO=%s\n', 1./camera.viewPlaneSize);
  }
  rgb=scene.background.getColor();
  if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
    res+=host.util.printf('  BGCOLOR=%s %s %s\n', rgb.r, rgb.g, rgb.b);
  switch(scene.lightScheme){
    case scene.LIGHT_MODE_FILE:
      curlights='Artwork';break;
    case scene.LIGHT_MODE_NONE:
      curlights='None';break;
    case scene.LIGHT_MODE_WHITE:
      curlights='White';break;
    case scene.LIGHT_MODE_DAY:
      curlights='Day';break;
    case scene.LIGHT_MODE_NIGHT:
      curlights='Night';break;
    case scene.LIGHT_MODE_BRIGHT:
      curlights='Hard';break;
    case scene.LIGHT_MODE_RGB:
      curlights='Primary';break;
    case scene.LIGHT_MODE_BLUE:
      curlights='Blue';break;
    case scene.LIGHT_MODE_RED:
      curlights='Red';break;
    case scene.LIGHT_MODE_CUBE:
      curlights='Cube';break;
    case scene.LIGHT_MODE_CAD:
      curlights='CAD';break;
    case scene.LIGHT_MODE_HEADLAMP:
      curlights='Headlamp';break;
  }
  if(curlights!='Artwork')
    res+='  LIGHTS='+curlights+'\n';
  switch(scene.renderMode){
    case scene.RENDER_MODE_BOUNDING_BOX:
      defaultrender='BoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
      defaultrender='TransparentBoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
      defaultrender='TransparentBoundingBoxOutline';break;
    case scene.RENDER_MODE_VERTICES:
      defaultrender='Vertices';break;
    case scene.RENDER_MODE_SHADED_VERTICES:
      defaultrender='ShadedVertices';break;
    case scene.RENDER_MODE_WIREFRAME:
      defaultrender='Wireframe';break;
    case scene.RENDER_MODE_SHADED_WIREFRAME:
      defaultrender='ShadedWireframe';break;
    case scene.RENDER_MODE_SOLID:
      defaultrender='Solid';break;
    case scene.RENDER_MODE_TRANSPARENT:
      defaultrender='Transparent';break;
    case scene.RENDER_MODE_SOLID_WIREFRAME:
      defaultrender='SolidWireframe';break;
    case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
      defaultrender='TransparentWireframe';break;
    case scene.RENDER_MODE_ILLUSTRATION:
      defaultrender='Illustration';break;
    case scene.RENDER_MODE_SOLID_OUTLINE:
      defaultrender='SolidOutline';break;
    case scene.RENDER_MODE_SHADED_ILLUSTRATION:
      defaultrender='ShadedIllustration';break;
    case scene.RENDER_MODE_HIDDEN_WIREFRAME:
      defaultrender='HiddenWireframe';break;
  }
  if(defaultrender!='Solid')
    res+='  RENDERMODE='+defaultrender+'\n';

  //detect existing Clipping Plane (3D Cross Section)
  var clip=null;
  if(
    clip=scene.nodes.getByName('$$$$$$')||
    clip=scene.nodes.getByName('Clipping Plane')
  );
  for(var i=0;i<scene.nodes.count;i++){
    var nd=scene.nodes.getByIndex(i);
    if(nd==clip||nd.name=='') continue;
    var ndUTFName='';
    for (var j=0; j<nd.name.length; j++) {
      var theUnicode = nd.name.charCodeAt(j).toString(16);
      while (theUnicode.length<4) theUnicode = '0' + theUnicode;
      ndUTFName += theUnicode;
    }
    var end=nd.name.lastIndexOf('.');
    if(end>0) var ndUserName=nd.name.substr(0,end);
    else var ndUserName=nd.name;
    respart='  PART='+ndUserName+'\n';
    respart+='    UTF16NAME='+ndUTFName+'\n';
    defaultvals=true;
    if(!nd.visible){
      respart+='    VISIBLE=false\n';
      defaultvals=false;
    }
    if(nd.opacity<1.0){
      respart+='    OPACITY='+nd.opacity+'\n';
      defaultvals=false;
    }
    if(nd.constructor.name=='Mesh'){
      currender=defaultrender;
      switch(nd.renderMode){
        case scene.RENDER_MODE_BOUNDING_BOX:
          currender='BoundingBox';break;
        case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
          currender='TransparentBoundingBox';break;
        case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
          currender='TransparentBoundingBoxOutline';break;
        case scene.RENDER_MODE_VERTICES:
          currender='Vertices';break;
        case scene.RENDER_MODE_SHADED_VERTICES:
          currender='ShadedVertices';break;
        case scene.RENDER_MODE_WIREFRAME:
          currender='Wireframe';break;
        case scene.RENDER_MODE_SHADED_WIREFRAME:
          currender='ShadedWireframe';break;
        case scene.RENDER_MODE_SOLID:
          currender='Solid';break;
        case scene.RENDER_MODE_TRANSPARENT:
          currender='Transparent';break;
        case scene.RENDER_MODE_SOLID_WIREFRAME:
          currender='SolidWireframe';break;
        case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
          currender='TransparentWireframe';break;
        case scene.RENDER_MODE_ILLUSTRATION:
          currender='Illustration';break;
        case scene.RENDER_MODE_SOLID_OUTLINE:
          currender='SolidOutline';break;
        case scene.RENDER_MODE_SHADED_ILLUSTRATION:
          currender='ShadedIllustration';break;
        case scene.RENDER_MODE_HIDDEN_WIREFRAME:
          currender='HiddenWireframe';break;
        //case scene.RENDER_MODE_DEFAULT:
        //  currender='Default';break;
      }
      if(currender!=defaultrender){
        respart+='    RENDERMODE='+currender+'\n';
        defaultvals=false;
      }
    }
    if(origtrans[nd.name]&&!nd.transform.isEqual(origtrans[nd.name])){
      var lvec=nd.transform.transformDirection(new Vector3(1,0,0));
      var uvec=nd.transform.transformDirection(new Vector3(0,1,0));
      var vvec=nd.transform.transformDirection(new Vector3(0,0,1));
      respart+='    TRANSFORM='
               +lvec.x+' '+lvec.y+' '+lvec.z+' '
               +uvec.x+' '+uvec.y+' '+uvec.z+' '
               +vvec.x+' '+vvec.y+' '+vvec.z+' '
               +nd.transform.translation.x+' '
               +nd.transform.translation.y+' '
               +nd.transform.translation.z+'\n';
      defaultvals=false;
    }
    respart+='  END\n';
    if(!defaultvals) res+=respart;
  }
  if(clip){
    var centre=clip.transform.translation;
    var normal=clip.transform.transformDirection(new Vector3(0,0,1));
    res+='  CROSSSECT\n';
    if(!(centre.x==0 && centre.y==0 && centre.z==0))
      res+=host.util.printf(
        '    CENTER=%s %s %s\n', centre.x, centre.y, centre.z);
    if(!(normal.x==1 && normal.y==0 && normal.z==0))
      res+=host.util.printf(
        '    NORMAL=%s %s %s\n', normal.x, normal.y, normal.z);
    res+=host.util.printf(
      '    VISIBLE=%s\n', clip.visible);
    res+=host.util.printf(
      '    PLANECOLOR=%s %s %s\n', clip.material.emissiveColor.r,
             clip.material.emissiveColor.g, clip.material.emissiveColor.b);
    res+=host.util.printf(
      '    OPACITY=%s\n', clip.opacity);
    res+=host.util.printf(
      '    INTERSECTIONCOLOR=%s %s %s\n',
        clip.wireframeColor.r, clip.wireframeColor.g, clip.wireframeColor.b);
    res+='  END\n';
//    for(var propt in clip){
//      console.println(propt+':'+clip[propt]);
//    }
  }
  res+='END\n';
  host.console.show();
//  host.console.clear();
  host.console.println('%%\n%% Add the following VIEW section to a file of\n'+
    '%% predefined views (See option "3Dviews"!).\n%%\n' +
    '%% The view may be given a name after VIEW=...\n' +
    '%% (Remove \'%\' in front of \'=\'.)\n%%');
  host.console.println(res + '\n');
}

//add items to 3D context menu
runtime.addCustomMenuItem("dfltview", "Generate Default View", "default", 0);
runtime.addCustomMenuItem("currview", "Get Current View", "default", 0);
runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);

//menu event handlers
menuEventHandler = new MenuEventHandler();
menuEventHandler.onEvent = function(e) {
  switch(e.menuItemName){
    case "dfltview": calc3Dopts(); break;
    case "currview": get3Dview(); break;
    case "csection":
      addremoveClipPlane(e.menuItemChecked);
      break;
  }
};
runtime.addEventHandler(menuEventHandler);

//global variable taking reference to currently selected node;
var target=null;
selectionEventHandler=new SelectionEventHandler();
selectionEventHandler.onEvent=function(e){
  if(e.selected&&e.node.name!=''){
    target=e.node;
  }else{
    target=null;
  }
}
runtime.addEventHandler(selectionEventHandler);

cameraEventHandler=new CameraEventHandler();
cameraEventHandler.onEvent=function(e){
  var clip=null;
  runtime.removeCustomMenuItem("csection");
  runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);
  if(clip=scene.nodes.getByName('$$$$$$')|| //predefined
    scene.nodes.getByName('Clipping Plane')){ //added via context menu
    runtime.removeCustomMenuItem("csection");
    runtime.addCustomMenuItem("csection", "Cross Section", "checked", 1);
  }
  if(clip){//plane in predefined views must be rotated by 90 deg around normal
    clip.transform.rotateAboutLineInPlace(
      Math.PI/2,clip.transform.translation,
      clip.transform.transformDirection(new Vector3(0,0,1))
    );
  }
  for(var i=0; i<rot4x4.length; i++){rot4x4[i].setIdentity()}
  target=null;
}
runtime.addEventHandler(cameraEventHandler);

var rot4x4=new Array(); //keeps track of spin and tilt axes transformations
//key event handler for scaling moving, spinning and tilting objects
keyEventHandler=new KeyEventHandler();
keyEventHandler.onEvent=function(e){
  var backtrans=new Matrix4x4();
  var trgt=null;
  if(target) {
    trgt=target;
    var backtrans=new Matrix4x4();
    var trans=trgt.transform;
    var parent=trgt.parent;
    while(parent.transform){
      //build local to world transformation matrix
      trans.multiplyInPlace(parent.transform);
      //also build world to local back-transformation matrix
      backtrans.multiplyInPlace(parent.transform.inverse.transpose);
      parent=parent.parent;
    }
    backtrans.transposeInPlace();
  }else{
    if(
      trgt=scene.nodes.getByName('$$$$$$')||
      trgt=scene.nodes.getByName('Clipping Plane')
    ) var trans=trgt.transform;
  }
  if(!trgt) return;

  var tname=trgt.name;
  if(typeof(rot4x4[tname])=='undefined') rot4x4[tname]=new Matrix4x4();
  if(target)
    var tiltAxis=rot4x4[tname].transformDirection(new Vector3(0,1,0));
  else  
    var tiltAxis=trans.transformDirection(new Vector3(0,1,0));
  var spinAxis=rot4x4[tname].transformDirection(new Vector3(0,0,1));

  //get the centre of the mesh
  if(target&&trgt.constructor.name=='Mesh'){
    var centre=trans.transformPosition(trgt.computeBoundingBox().center);
  }else{ //part group (Node3 parent node, clipping plane)
    var centre=new Vector3(trans.translation);
  }
  switch(e.characterCode){
    case 30://tilt up
      rot4x4[tname].rotateAboutLineInPlace(
          -Math.PI/900,rot4x4[tname].translation,tiltAxis);
      trans.rotateAboutLineInPlace(-Math.PI/900,centre,tiltAxis);
      break;
    case 31://tilt down
      rot4x4[tname].rotateAboutLineInPlace(
          Math.PI/900,rot4x4[tname].translation,tiltAxis);
      trans.rotateAboutLineInPlace(Math.PI/900,centre,tiltAxis);
      break;
    case 28://spin right
      if(e.ctrlKeyDown&&target){
        trans.rotateAboutLineInPlace(-Math.PI/900,centre,spinAxis);
      }else{
        rot4x4[tname].rotateAboutLineInPlace(
            -Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
        trans.rotateAboutLineInPlace(-Math.PI/900,centre,new Vector3(0,0,1));
      }
      break;
    case 29://spin left
      if(e.ctrlKeyDown&&target){
        trans.rotateAboutLineInPlace(Math.PI/900,centre,spinAxis);
      }else{
        rot4x4[tname].rotateAboutLineInPlace(
            Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
        trans.rotateAboutLineInPlace(Math.PI/900,centre,new Vector3(0,0,1));
      }
      break;
    case 120: //x
      translateTarget(trans, new Vector3(1,0,0), e);
      break;
    case 121: //y
      translateTarget(trans, new Vector3(0,1,0), e);
      break;
    case 122: //z
      translateTarget(trans, new Vector3(0,0,1), e);
      break;
    case 88: //shift + x
      translateTarget(trans, new Vector3(-1,0,0), e);
      break;
    case 89: //shift + y
      translateTarget(trans, new Vector3(0,-1,0), e);
      break;
    case 90: //shift + z
      translateTarget(trans, new Vector3(0,0,-1), e);
      break;
    case 115: //s
      trans.translateInPlace(centre.scale(-1));
      trans.scaleInPlace(1.01);
      trans.translateInPlace(centre.scale(1));
      break;
    case 83: //shift + s
      trans.translateInPlace(centre.scale(-1));
      trans.scaleInPlace(1/1.01);
      trans.translateInPlace(centre.scale(1));
      break;
  }
  trans.multiplyInPlace(backtrans);
}
runtime.addEventHandler(keyEventHandler);

//translates object by amount calculated from Canvas size
function translateTarget(t, d, e){
  var cam=scene.cameras.getByIndex(0);
  if(cam.projectionType==cam.TYPE_PERSPECTIVE){
    var scale=Math.tan(cam.fov/2)
              *cam.targetPosition.subtract(cam.position).length
              /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
  }else{
    var scale=cam.viewPlaneSize/2
              /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
  }
  t.translateInPlace(d.scale(scale));
}

function addremoveClipPlane(chk) {
  var curTrans=getCurTrans();
  var clip=scene.createClippingPlane();
  if(chk){
    //add Clipping Plane and place its center either into the camera target
    //position or into the centre of the currently selected mesh node
    var centre=new Vector3();
    if(target){
      var trans=target.transform;
      var parent=target.parent;
      while(parent.transform){
        trans=trans.multiply(parent.transform);
        parent=parent.parent;
      }
      if(target.constructor.name=='Mesh'){
        var centre=trans.transformPosition(target.computeBoundingBox().center);
      }else{
        var centre=new Vector3(trans.translation);
      }
      target=null;
    }else{
      centre.set(scene.cameras.getByIndex(0).targetPosition);
    }
    clip.transform.setView(
      new Vector3(0,0,0), new Vector3(1,0,0), new Vector3(0,1,0));
    clip.transform.translateInPlace(centre);
  }else{
    if(
      scene.nodes.getByName('$$$$$$')||
      scene.nodes.getByName('Clipping Plane')
    ){
      clip.remove();clip=null;
    }
  }
  restoreTrans(curTrans);
  return clip;
}

//function to store current transformation matrix of all nodes in the scene
function getCurTrans() {
  var tA=new Array();
  for(var i=0; i<scene.nodes.count; i++){
    var nd=scene.nodes.getByIndex(i);
    if(nd.name=='') continue;
    tA[nd.name]=new Matrix4x4(nd.transform);
  }
  return tA;
}

//function to restore transformation matrices given as arg
function restoreTrans(tA) {
  for(var i=0; i<scene.nodes.count; i++){
    var nd=scene.nodes.getByIndex(i);
    if(tA[nd.name]) nd.transform.set(tA[nd.name]);
  }
}

//store original transformation matrix of all mesh nodes in the scene
var origtrans=getCurTrans();

//set initial state of "Cross Section" menu entry
cameraEventHandler.onEvent(1);

//host.console.clear();
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+1 centre charge. However, this is entirely equivalent to picturing −1 charge flowing in
the direction opposite to the jet due to the fact that the Pµν = P †

νµ, so calculating the
plaquette with the opposite orientation will give the opposite charge. Furthermore,
because exp(2πi/3) = exp(−4πi/3), one unit of positive charge is equivalent to two
units of negative charge (and vice-versa), and hence we could also interpret our models
as representing the directed flow of two units of negative charge. This ambiguity is
highlighted in Fig. 7.5, where we see the equivalence between a branching point and a
monopole. Although it may seem to be a drawback, the lack of definite orientation for
vortices is also an important property of the vortex model, as it permits non-vanishing
topological charge [109, 110]. It is nevertheless important to keep in mind the presence
of this ambiguity when visualising the vortex vacuum.

−1 = +2

+1

+1

+1

+1

+1

b b

bb

Fig. 7.5 Left: A vortex branching point. Right: A vortex monopole. The arrows
indicate the direction of flow for the labelled charge. Note that for both figures, the
vortex charge is conserved at the vertex. By considering the charge of the left-most
vortex flowing in the opposite direction, these two diagrams can be interchanged.

7.2 Spacetime-oriented Vortices

For each link in a given 3D slice there are two additional plaquettes that lie in the xi − t

plane, pointing in the positive and negative time directions. Vortices associated with
spacetime-oriented plaquettes contain information about the way the line-like vortices
evolve with time, or equivalently, how the vortex surfaces appear in four dimensions.
In a given 3D slice we only have access to one link associated with a spacetime-oriented
vortex, and as such we plot an arrow along this link to indicate its association with
this vortex. We adopt the following plotting convention for these spacetime-oriented
vortices:
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• +1 vortex, forward in time =⇒ cyan arrow, positively oriented.

• +1 vortex, backward in time =⇒ cyan arrow, negatively oriented.

• −1 vortex, forward in time =⇒ orange arrow, positively oriented.

• −1 vortex, backward in time =⇒ orange arrow, negatively oriented.

An example of these conventions is shown in Fig. 7.6. Utilising these conventions, we
see that the first two time slices now appear as Figs. 7.7, 7.8.

x

t y

Fig. 7.6 Left: A +1 vortex in the forward x− t plane (shaded blue) will be plotted
as a cyan arrow in the +x̂ direction. Right: A −1 vortex in the forward x− t plane
(shaded red) will be plotted as an orange arrow in the +x̂ direction.

As we step through time, we expect to see the positively oriented vortices retain their
colour but swap direction as they transition from being forwards in time to backwards
in time, as shown in Fig. 7.9. The spacetime-oriented vortices act as predictors of
vortex motion between slices. To see this, consider Fig. 7.10. In Fig. 7.10a, we observe
a line of four −1 (red) spatially-oriented vortices with no spacetime-oriented links
associated with them, indicating that this line should remain fixed as we step through
time. Alternatively, towards the top of the red line we observe a branching point with
two associated −1 spacetime-oriented arrows, indicating that this branching point
should move in the direction of the spacetime-oriented vortices. Observing the same
region at t = 2 in Fig. 7.10b, we see that this is precisely what occurs. The vortex line
has remained fixed, whereas the branching point has shifted one lattice spacing to the
left, in accordance with the direction indicated by the spacetime-oriented vortex.
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Fig. 7.7 The t = 1 slice with all spatially-oriented and spacetime-oriented vortices
plotted. (Interactive)

Fig. 7.8 The t = 2 slice with all spatially-oriented and spacetime-oriented vortices
plotted. (Interactive)
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(a) t = 1 (b) t = 2

Fig. 7.9 The change in spacetime-oriented vortices as we step through time. We observe
the spacetime-oriented arrows change direction, however the phase (colour) of the
vortex remains the same.

(a) t = 1 (b) t = 2

Fig. 7.10 An example of spacetime-oriented vortices predicting the motion of the
spatially-oriented vortices. We observe the −1 (red) vortex line with no associated
spacetime-oriented vortices remain stationary as we transition from t = 1 to t = 2.

Another example of spacetime-oriented vortices predicting the motion of vortices
is shown in Fig. 7.11. Here we see in Fig. 7.11a a line of three +1 spatially-oriented
vortices each with an associated −1 spacetime-oriented vortex below them. As we step
to t = 2 in Fig. 7.11b we observe the spacetime-oriented arrows change direction as
expected, and the spatially-oriented vortex line shifts one lattice spacing down such
that the spacetime-oriented vortices are now above them.
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(a) t = 1 (b) t = 2

Fig. 7.11 A second example of spacetime-oriented vortices predicting the motion of the
spatially-oriented vortices. Here we see the +1 (blue) vortex line transition one lattice
spacing down as we step from t = 1 to t = 2.

The cases presented in Fig. 7.10 and Fig. 7.11 are ideal, where the spatially-oriented
vortex shifts only one lattice spacing between time slices. However, it is frequently
the case where the spatially-oriented vortices shift multiple lattice spacings per time
step. To see how this occurs diagrammatically, consider Fig. 7.12. The shaded red
plaquettes indicate the location of a spatially-oriented vortex which would be plotted
in the suppressed x̂ direction. The red line demonstrates how the centre charge pierces
between the two time slices. Within each slice we would observe the spacetime-oriented
links shown, however the spatially-oriented vortex appears to move three plaquettes
in one time step. These multiple transitions make it harder to track the motion of
vortices between time slices; nevertheless, the spacetime-oriented vortices are a useful
tool for understanding how centre vortices evolve with time. It is worth making clear
that if a spatially-oriented vortex has no associated spacetime-oriented vortices then
it is guaranteed to remain stationary. In this respect, the lack of spacetime-oriented
vortices is a clear and valuable indicator of vortex behaviour.



86 Centre Vortex Visualisations

t=1

t=2
y

t z

Fig. 7.12 A demonstration of how spatially-oriented vortices can transition multiple
lattice spacings in a single time step.

7.3 Topological Charge

We now wish to observe the relationship between vortices and topological charge. As
stated in Sec. 3.3.1, the topological charge density is given by

q(x) = 1
32π2 ϵµνρσ Tr (Fµν(x)Fρσ(x)) . (7.1)

Given the presence of the antisymmetric tensor, it is clear that for there to be non-trivial
topological charge present on the projected vortex configurations, we require that the
tangent vectors of the vortex surface span all four dimensions. This condition is met at
so-called singular points. The contribution to the topological charge from these singular
points is discussed in detail in Refs. [109–112]. In our visualisations, these singular
points appear as a spatially-oriented vortex running parallel to a spacetime-oriented
vortex, as shown in Fig. 7.13.
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x

z y

Fig. 7.13 The signature of a singular point, in which the vortex surface spans all four
directions. The colour and orientation of the vortices is irrelevant, so long as they are
parallel.

We calculate the topological charge via the method outlined in Sec. 3.3.1 on a
lattice configuration after eight sweeps of cooling. This cooling is necessary to remove
short-range fluctuations, but is a sufficiently low number of sweeps so as to minimally
perturb the configuration. We plot regions of positive topological charge in red, and
regions of negative topological charge in blue, with a colour gradient to indicate the
magnitude. Only topological charge of sufficient magnitude is plotted to better em-
phasise regions of significant topological charge. Overlaying the topological charge
visualisation onto Figs. 7.7, 7.8, we obtain Figs. 7.15, 7.16. By studying the regions of
high topological charge, we note that we can indeed observe their relationship with
singular points, as shown in Fig. 7.14.

Fig. 7.14 A collection of singular points shown with (left) and without (right) topological
charge overlaid.
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Fig. 7.15 Topological charge density overlaying the t = 1 slice. (Interactive)

Fig. 7.16 Topological charge density overlaying the t = 2 slice. (Interactive)
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To quantify the correlation between vortex locations and topological charge, we use
the following measure

C = V

∑
x |q(x)|L(x)∑

x |q(x)| ∑x L(x) , (7.2)

where V is the lattice volume, and

L(x) =

1 , Vortex associated with any plaquette touching x
0 , No vortex associated with any plaquette touching x .

(7.3)

In the case of no correlation, C = 1. If there is correlation or anti-correlation, then
C > 1 or C < 1 respectively. The value of C for our configurations is shown in
Fig. 7.17, with an average over all 100 configurations of C̄ = 1.46. This indicates a
correlation between vortex locations and regions of high topological charge. Further
work to investigate the precise nature of this correlation and its relationship to singular
points is planned.

0 20 40 60 80

Configuration Number

1.2

1.3

1.4

1.5

1.6

1.7

C

C

C̄

Fig. 7.17 The correlation measure for each configuration. The dashed line indicates
the average value across all 100 configurations, with one standard deviation of the
distribution shown in green.
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Finally, it is also interesting to study the vortex structure of the lattice after cooling.
After eight sweeps of cooling, we obtain Fig. 7.18. We clearly see that the complexity
of the vortex structure has been greatly reduced, however the regions associated with
topological charge have been less affected by the smoothing process. We can see this
by recalculating the topological charge correlation (see Eq. (7.2)), shown in Fig. 7.19.
The average correlation has increased to a new average of C̄ = 1.76, indicating that
the residual vortices show a stronger correlation to the regions of high topological
charge than those on the un-cooled configurations. This further supports the previously
mentioned notion that cooling serves to isolate ‘genuine’ topological objects and filter
out those arising from fluctuations during the Monte-Carlo lattice generation process.

Fig. 7.18 The vortex structure and topological charge after eight sweeps of cooling, for
t = 1. (Interactive)
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Fig. 7.19 The correlation measure for each configuration after eight sweeps of cooling.
The dashed line indicates the average value across all 100 configurations, with one
standard deviation of the distribution shown in green.

7.4 Summary

In this chapter we have presented a new way to visualise the four-dimensional structure
of centre vortices on the lattice through the use of 3D visualisation techniques. These
visualisations give new insight into the geometry and time-evolution of vortices, as
well as revealing a direct connection to topological charge. The work presented here
confirms the qualitative expectations of the centre vortex model. In future it will be
valuable to explore the Gribov issue in vortex identification and the sensitivity of our
visualisations to the Gribov copy problem. Quantitative studies of branching/monopole
points and singular points are also of interest. Studying the change in size of centre
vortex loops as the temperature tends towards the deconfining phase would be a
worthwhile line of investigation as well. From this work, it is clear that visualisations
of centre vortices provide valuable information about the structure of the QCD vacuum
that is otherwise not apparent through purely numerical results, and that visualisations
elegantly complement the exploration of vortex models.





Chapter 8

Conclusion

In this work we have studied the impact of centre vortices on the Landau gauge
gluon propagator by calculating the gluon propagator on original, vortex removed and
vortex only lattice ensembles. We observe that the identification of centre vortices
effectively partitions the propagator into long-distance and short-distance strength,
with the vortex only configurations encapsulating much of the non-perturbative infrared
behaviour of the propagator. This partitioning is consistent with the vortex modified
gauge potentials representing orthogonal degrees of freedom. Indeed, after summing
the vortex-only and vortex-removed propagators, it is possible to fully recreate the
original untouched propagator. From these results it is clear that vortices are crucial
to the long-range behaviour of the gluon propagator.

We then investigated the effect of smoothing on the gluon propagator, determining
that both three-loop cooling and over-improved stoutlink smearing produce similar
amplification of infrared strength and supression of high frequency modes. Indeed, we
found that for each sweep of cooling, four sweeps of smearing produces a remarkably
similar propagator when calculated on the original configurations. Using cooling as
our smoothing method of choice, we found that cooling brings the gluon propagator on
the untouched and vortex only configurations closer together. By using the average
action as a measure of roughness, we see that it is possible to recover the infrared
strength of the vortex-only propagator when compared to the untouched propagator.
The accuracy to which it is possible to recreate the gluon propagator form vortex only
configurations on similarly smooth original configurations is of particular note.
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Finally, we presented a novel method for visualising projected vortex configurations,
allowing for analysis of vortex geometry in a highly interactive manner. From these
visualisations we discover that, at low temperature, vortices tend to span the full lattice
extent. Furthermore, we observe an abundance of branching/monopole points present
in the vortex structure. By overlaying the topological charge density, we note a distinct
relationship between topological charge and singular points where the vortex sheets span
all four dimensions. We also find an explicit correlation between vortex locations and
regions of high topological charge. Under cooling, we find that the vortex structure of
the lattice is considerably simplified, with the residual vortex matter showing a stronger
correlation to regions of high topological charge. This indicates that cooling does indeed
preserve genuine topological objects relevant to the long distance behaviour of QCD,
whilst filtering out extraneous structures. These visualisations open many new avenues
for investigation of the vacuum structure of QCD and the significance of centre vortices.

These findings suggest many potential directions for future work. It would be
valuable to investigate whether improved vortex identification allows us to remove
all infrared enhancement of the gluon propagator obtained from the vortex-removed
ensemble. It is also of interest to calculate the gluon propagator in full QCD, where
it is anticipated that we would observe infrared screening due to the presence of
fermions. Understanding if centre vortices can capture this physics is of particular
interest. The relevance of smoothing is currently poorly understood, and studying
the behaviour of the gluon propagator in the continuum limit would clarify whether
smoothing is essential to grow vortices to a physical size, or if it is simply neces-
sary to remove high-frequency fluctuations present on the vortex-only configurations.
Developing techniques to identify singular points within our visualisations and quantita-
tively assessing their relationship with topological charge would also be of great interest.

The centre vortex model has demonstrated remarkable success in recent years, and
the work presented here continues to support the relevance of centre vortices to the
essential properties of confinement and dynamical chiral symmetry breaking in QCD. It
is increasingly apparent that centre vortices are an essential component in a complete
understanding of QCD vacuum structure.
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Appendix A

Supplementary Material

A.1 Matrix definitions

The standard form of the 2 × 2 Pauli matrices is

σ1 =
0 1

1 0

 , σ2 =
0 −i
i 0

 , σ3 =
1 0

0 −1

 , . (A.1)

The 4 × 4 gamma matrices in the Dirac representation in Euclidean space are therefore
given by

γi =
 0 σi

−σi 0

 , γ4 =
I 0

0 −I

 . (A.2)

The gamma matrices in this representation are evidently Hermitian, and satisfy the
anti-commutation relationship,

{γµ , γµ} = 2 δµν . (A.3)

The Gell-Mann matrices λa are related to the generators of SU(3), ta, by [13]

ta = λa

2 . (A.4)
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The matrices are given by

λ1 =


0 1 0
1 0 0
0 0 0

 λ2 =


0 −i 0
i 0 0
0 0 0

 λ3 =


1 0 0
0 −1 0
0 0 0



λ4 =


0 0 1
0 0 0
1 0 0

 λ5 =


0 0 −i
0 0 0
i 0 0



λ6 =


0 0 0
0 0 1
0 1 0

 λ7 =


0 0 0
0 0 −i
0 i 0

 λ8 = 1√
3


1 0 0
0 1 0
0 0 −2

 . (A.5)

A.2 Gauge transformation of Fµν
Recall from Eq. (2.15) that the field strength tensor is defined to be

Fµν = ∂µAν − ∂νAµ + ig[Aµ, Aν ] . (A.6)

To calculate how Fµν transforms under a gauge transformation, we will also make use
of the gauge transformation property for Aµ,

Aµ → ΩAµ Ω† + i

g
(∂µ Ω) Ω† . (A.7)

We will also make repeated use of the unitarity of Ω, specifically the fact that

∂µ

(
Ω Ω†

)
= (∂µ Ω) Ω† + Ω

(
∂µ Ω†

)
= ∂µ I

= 0
=⇒ (∂µ Ω) Ω† = −Ω

(
∂µ Ω†

)
. (A.8)
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Substituting Eq. (A.7) into Eq. (A.6) we obtain

Fµν → (∂µ Ω)Aν Ω† + Ω (∂µ Aν) Ω† + ΩAν

(
∂µ Ω†

)
+ i

g
(∂ν ∂µ Ω) Ω† + i

g
(∂ν Ω)

(
∂µ Ω†

)
− (∂ν Ω)Aµ Ω† − Ω (∂ν Aµ) Ω† − ΩAµ

(
∂ν Ω†

)
− i

g
(∂ν ∂µ Ω) Ω† − i

g
(∂µ Ω)

(
∂ν Ω†

)
+ igΩAµ Aν Ω† − (∂µ Ω)Aν Ω† + ΩAµ

(
∂ν Ω†

)
+ i

g
(∂µ Ω)

(
∂ν Ω†

)
− igΩAν Aµ Ω† + (∂ν Ω)Aµ Ω† − ΩAν

(
∂µ Ω†

)
− i

g
(∂ν Ω)

(
∂µ Ω†

)
. (A.9)

Cancelling off terms reduces the above expression to the desired result,

Fµν → Ω (∂µ Aν) Ω† − Ω (∂ν Aµ) Ω† + igΩ [Aµ, Aν ] Ω†

= ΩFµν Ω† . (A.10)

A.3 Wilson line gauge transformation

We wish to show that the Wilson line obeys the gauge transformation property

Uµ(x) → Ω(x)Uµ(x) Ω†(x) (A.11)

We can apply a gauge transformation to Aµ to obtain

Uµ(x) → P exp
(

−iag
∫ 1

0
dtΩ(x(t))Aµ(x(t)) Ω†(x(t)) + i

g
(∂µ Ω(x(t))) Ω†(x(t))

)
,

(A.12)
where x(t) = x+atµ̂. To simplify this expression, we need to make use of an equivalent
expression for the path-ordered exponential. For a generic path-ordered exponential of
a function a(t) we can write

P
(∫ t

0
dt′ a(t′)

)
= lim

N→∞

(
ea(tN )∆t ea(tN−1)∆t · · · ea(t0)∆t

)
=⇒ P

(
−
∫ t

0
dt′ a(t′)

)
= lim

N→∞

(
ea(t0)∆t ea(t1)∆t · · · ea(tN )∆t

)
, (A.13)
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where {t0 = 0, · · · , tN = t} is a partition of the integration range into equal slices of
length ∆t = t

N
. We also wish to utilise the fact that

eig Ω(x) Aµ(x) Ω†(x) = Ω(x) eig Aµ(x) Ω†(x) , (A.14)

as can be easily derived from writing the exponential as an infinite sum.

Writing Eq. (A.12) in the form of Eq. (A.13) and employing the fact that path-
ordering permits us to only retain the first order terms in the Baker-Campbell-Hausdorff
identity (see Eq. (A.22)), we find that

Uµ(x) → lim
N→∞

(
Ω(x0) eig Aµ(x0) ∆x Ω†(x0) exp

(
(∂µ Ω(x0)) Ω†(x0)

)
× Ω(x1) eig Aµ(x1) ∆x Ω†(x1) exp

(
(∂µ Ω(x1)) Ω†(x1)∆x

)
× · · ·

× Ω(xN−1) eig Aµ(xN−1) ∆x Ω†(xN−1) exp
(
(∂µ Ω(xN−1)) Ω†(xN−1)∆x

))
,

(A.15)

where ∆x = a
N

, x0 = x and xN = x + aµ̂. However, in the limit as N → ∞,
exp

(
(∂µ Ω(xi)) Ω†(xi)∆x

)
is precisely the parallel transport operator for Ω over the

distance ∆x, and hence satisfies

Ω†(xi) exp
(
(∂µ Ω(xi)) Ω†(xi)∆x

)
= Ω†(xi+1) . (A.16)

Substituting Eq. (A.16) into Eq. (A.15) eliminates all the gauge transformation terms
except for the first and last transformations. This then reduces to our desired result,

Uµ(x) → Ω(x)Uµ(x) Ω†(x+ aµ̂) . (A.17)

A.4 Taylor expansion of Pµν
Here we sketch out how to construct the field strength tensor in terms of the plaquette.
We will neglect a discussion of the O(a3) terms found in Eq. (A.23) as a more careful
treatment outside the scope of this work is required to show that these higher order
terms do not render the expansion shown in Eq. (2.44) incorrect. However, this
derivation highlights the key steps in arriving at the desired result. First, we recall the
definitions of the gauge link in the continuum

Uµ(x) = P exp
(

−iag
∫ 1

0
dtAµ(x+ atµ̂)

)
, (A.18)
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and the plaquette formed from the product of the gauge links around a 1 × 1 loop

Pµν = Uµ(x)Uν(x+ aµ̂)U †
µ(x+ aν̂)U †

ν(x) . (A.19)

We can approximate the integral in Eq. (A.18) by Taylor expanding Aµ around a = 0
and explicitly evaluating the integral. Note that once we have Taylor expanded Aµ,
the term within the integral commutes with itself for all values of t, allowing us to
omit the path ordering from Eq. (A.18). Performing the expansion, we find that

Uµ(x) = exp
(

−iag
∫ 1

0
dt
(
Aµ (x) + at∂µAµ(x) + O(a3)

))
= exp

(
−iagAµ (x) − 1

2ia
2g ∂µAµ (x) + O(a3)

)
. (A.20)

Similarly, we evaluate

Uν(x+ aµ̂) = exp
(

−iag
∫ 1

0
dt
(
Aν(x) + a∂µAν + at∂νAν + O(a3)

))
= exp

(
−iagAν(x) − ia2g ∂µAν(x) − 1

2ia
2g ∂νAν(x) + O(a3)

)
. (A.21)

We will also require the Baker-Campbell-Hausdorff identity for non-Abelian matrix
exponentials

exp(A) exp(B) = exp
(
A+B + 1

2[A, B]
)
. (A.22)

Substituting Eq. (A.20) and Eq. (A.21) into Eq. (A.19) and retaining only terms up
to O(a2) we find that

Pµν ≃ exp
(

−ig
(
aAµ(x) + 1

2a
2 ∂µAµ(x)

))
× exp

(
−ig

(
aAν(x) + 1

2a
2 ∂νAν(x) + a2 ∂µAν(x)

))
× exp

(
ig
(
aAµ(x) + 1

2a
2 ∂µAµ(x) + a2 ∂νAµ(x)

))
× exp

(
ig
(
aAν(x) + 1

2a
2 ∂νAν(x)

))
≃ exp

(
−ia2g ∂µAν(x) + ia2g ∂νAµ(x) + a2g2

2 [Aµ(x), Aν(x)] − a2g2

2 [Aν(x), Aµ(x)]
)

= exp
(
−ia2gFµν(x) + O(a3)

)
. (A.23)
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A.5 Properties of the adjoint representation

Consider the mapping H : SU(3)fundamental → SU(3)adjoint defined by

[H(U)]ij = 1
2 Tr

(
λi U λj U

†
)
. (A.24)

We want to show that for U, V ∈ SU(3)F

[H(U)]ij [H(V )]jk = [H(UV )] k
i . (A.25)

To do this, we will need to make use of the following Fierz completeness relations for
the SU(3) generators

λa
bλ

d
c = 2 δa

c δ
d
b − 2

3δ
a
b δ

d
c . (A.26)

Substituting Eq. (A.24) into Eq. (A.25) and noting that repeated indicies are summed
over, we have

[H(U)]αβ [H(V )]βγ = 1
2λ

α
ab Ubc λ

β
cd U

†
da × 1

2λ
β
ef Vfg λ

γ
gh V

†
he

= 1
2Ubc U

†
da Vfg V

†
he λ

α
ab λ

γ
gh

(
δcf δde − 1

3δcdδef

)
= 1

2Ubc Vcg λ
γ
gh V

†
hd U

†
da λ

α
ab − 1

6Ubc U
†
ca V

†
he Vegλ

α
ab λ

γ
gh

= 1
2Ubc Vcg λ

γ
gh V

†
hd U

†
da λ

α
ab − 1

6δbaδhgλ
α
ab λ

γ
gh

= 1
2 Tr

(
U V λγ (U V )†λα

)
− 1

6 Tr (λα) Tr (λγ) . (A.27)

Making use of the cyclic property of the trace and the fact that the Gell-Mann matrices
are traceless, we find the desired result,

[H(U)]αβ [H(V )]βγ = 1
2 Tr

(
λαU V λγ (U V )†

)
= [H(UV )]αγ . (A.28)

We also wish to show that for UA ∈ SU(3)A and U ∈ SU(3)F that

Tr
(
UA

)
= |Tr(U)|2 − 1 . (A.29)
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Making use of Eq. (A.24), we have

Tr
(
UA

)
=

8∑
α=1

1
2 Tr

(
λα Uµ(x)λα U †

µ(x)
)

= 1
2Ubc U

†
da λ

α
ab λ

α
cd

= Ubc U
†
da

(
δad δbc − 1

3δab δcd

)
= Tr (U) Tr

(
U †
)

− 1
3 Tr

(
U U †

)
= |Tr(U)|2 − 1 (A.30)

A.6 Cooling algorithm derivation

We wish to find ai such that
U ′

µ = a3 a2 a1 Uµ , (A.31)

minimises the local Wilson action associated with the link Uµ. This minimisation is
equivalent to maximising

R = Re Tr(U ′
µ Ū) . (A.32)

To determine the optimal choice for the ai, we define the following three functions,
Fi(V ), such that Fi : SU(3) → SU(2):

F1(V ) = 1
k1


1
2 (V11 + V ∗

22) 1
2 (V12 − V ∗

21) 0
1
2 (V21 − V ∗

12) 1
2 (V ∗

11 + V22) 0
0 0 k1

 , (A.33)

F2(V ) = 1
k2


1
2 (V11 + V ∗

33) 0 1
2 (V13 − V ∗

31)
0 k2 0

1
2 (V31 − V ∗

13) 0 1
2 (V ∗

11 + V33)

 , (A.34)

F3(V ) = 1
k3


k3 0 0
0 1

2 (V22 + V ∗
33) 1

2 (V23 − V ∗
32)

0 1
2 (V32 − V ∗

23) 1
2 (V ∗

22 + V33)

 , (A.35)

where k2
i is the determinant of the 2 × 2 SU(2) sub-block. The 1

ki
factor therefore

fixes the determinant such that det(Fi(V )) = 1. We now wish to find a suitable V
to define our ai’s. Consider the first case, U (1)

µ = a1 Uµ, and let a1 = F1(Uµ Ū)†. It is
worth stating explicitly that it is this step where the fact that a sum of SU(2) matrices
is proportional to an SU(2) matrix is utilised. Despite the fact that Uµ Ū /∈ SU(3),
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Uµ Ũα ∈ SU(3) ∀α, which implies that Fi(Uµ Ũα) ∈ SU(2). Then we have, for example,

F1(Uµ Ū) = 1
k1

∑
α


1
2

(
(Uµ Ũα)11 + (Uµ Ũα)∗

22

)
1
2

(
(Uµ Ũα)12 − (Uµ Ũα)∗

21

)
0

1
2

(
(Uµ Ũα)21 − (Uµ Ũα)∗

12

)
1
2

(
(Uµ Ũα)∗

11 + (Uµ Ũα)22
)

0
0 0 k1



= 1
k1

∑
α


k1, α

(
F1(Uµ Ũα)

)
11

k1, α

(
F1(Uµ Ũα)

)
12

0
k1, α

(
F1(Uµ Ũα)

)
21

k1, α

(
F1(Uµ Ũα)

)
22

0
0 0 k1


= 1
k1

∑
α

k1, α F1(Uµ Ũα)2×2 0
0 k1

 (A.36)

The 2 × 2 block in Eq. (A.36) is a sum over terms proportional to SU(2) matrices,
and hence the result is proportional to an SU(2) matrix. Thus with the appropriate
normalisation from the k1 factor, we see that F1(Uµ Ū) ∈ SU(2). The same result
holds true for F2 and F3.

With the definition a1 = F1(Uµ Ū)†, the functional in Eq. (A.32) we are seeking to
maximise can now be directly evaluated. Setting U = Uµ Ū , we can write Eq. (A.32) as

Re Tr(F1(U)† U) = Re
( 1
k1

[1
2 U11 (U22 + U∗

11) − 1
2 U21 (U12 − U∗

21)

+ 1
2 U22 (U11 + U∗

22) − 1
2 U12 (U21 − U∗

12) + k1 U33

])
= 1
k1

Re
(

|U11|2

2 + |U22|2

2 + |U12|2

2 + |U21|2

2 + U11 U22 − U12 U21 + k1 U33

)
.

(A.37)

Here we have used the fact that by the construction of F1(U), k1 is real and can
therefore be brought to the front of Eq. (A.37). We now wish to make use of the known
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determinant of F1(U) to simplify this expression.

det(F1(U)) = 1
4 k2

1
((U11 + U∗

22) (U∗
11 + U22) − (U12 − U∗

21) (U21 − U∗
12))

= 1
4 k2

1

(
|U11|2 + |U22|2 + |U12|2 + |U21|2 (A.38)

+ U11 U22 + U∗
11 U

∗
22 + U12 U21 + U∗

12 U
∗
21

)
= 1

2 k2
1

Re
(

|U11|2

2 + |U22|2

2 + |U12|2

2 + |U21|2

2 + U11 U22 − U12 U21

)
= 1 . (A.39)

Substituting this determinant back into Eq. (A.37), we find that

Re Tr(F1(U)† U) = Re
( 1
k1

(2k2
1 + k1 U33))

)
= 2 k1 + Re (U33) . (A.40)

Finally, substituting back U = Uµ Ū brings us to the desired result,

Re Tr(F1(Uµ Ū)† Uµ Ū) = 2k1 + Re
(
(Uµ Ū)33

)
. (A.41)

By the matrix structure of F1(V ) it is apparent that Re(Uµ Ū)33 is invariant under pre-
multiplication by a1, so it is clear that Eq. (A.41) represents the maximum attainable
value for this form of U (1)

µ . Similarly, we let a2 = F2(Uµ Ū)† and a3 = F3(Uµ Ū)† to
obtain the final value of U ′

µ according to Eq. (A.31). This construction results in a
choice of U ′

µ ∈ SU(3) that minimises the local Wilson action.
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