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Abstract

Functional porous materials are a class of materials that have found use in many indus-

trial applications. In particular, extended framework materials, such as metal–organic

frameworks (MOFs) and porous aromatic frameworks (PAFs), which are the subject

of this thesis, show significant promise for applications including gas storage and sep-

arations, catalysis, drug delivery, microelectronics and sensing. This broad scope of

applications stems from the immense chemical diversity afforded by their modular

bottom-up synthesis and design. Additionally, the rational choice of building blocks

allows for the precise control of the properties of the pore networks of crystalline ex-

tended porous materials. However, the process of finding optimal porous materials for

emerging applications is slow due to arduous trial-and-error experimental approaches.

The application of computational methods to analyze porous materials allows for the

development of design principles, which can guide experimental endeavors. Further-

more, high-throughput screening can be used to expand on experimental findings by

efficiently exploring chemical space for the best candidates for a given application.

This thesis reports several studies in which novel computational protocols are devel-

oped and applied to more rapidly screen porous functional materials for applications.

A coarse-grained molecular dynamics model was developed to investigate the formation

mechanism of PAFs and the role of structural and dynamics factors in determining their

highly porous, amorphous networks. PAF formation, which is kinetically controlled,

was found to robustly lead to a high degree of defects and porosity, and that relatively

weak dispersion interactions are responsible for inducing porosity-reducing interpene-

tration. The simulations suggest that bulky reaction intermediates or building blocks

with diminished dispersion interactions can be used to eliminate interpenetration and

increase material porosity.

Highly-ordered MOF thin films with macroscale in-plane and out-of-plane alignment

have many potential applications, but only a handful of examples have been reported

to date. Therefore, a high-throughput screening process was developed to suggest
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new MOFs that are likely to undergo aligned growth. The screening process was

parameterized from a set of experimental observations of the aligned growth of copper-

based MOFs from copper(II) hydroxide (Cu(OH)2) and allows for the screening of

thousands of MOF structures in a few days. Importantly, the number of known MOFs

that are likely to grow aligned from Cu(OH)2 was expanded and some design principles

were uncovered. In particular, it was found that the substrate imparts a directing

effect on the MOFs able to grow aligned, but does not limit the possible pore network

properties of aligned MOFs.

The biomimetic mineralization of MOFs around biomacromolecules was investi-

gated in two joint experimental and computational studies. Biomimetic mineralization

is a general and facile method for encapsulating biological entities to, for example,

enhance their stability in harsh conditions. Systematic experimental studies of the

encapsulation of proteins and carbohydrates by zeolitic imidazolate framework-8 (ZIF-

8) found that the electrostatic properties of the biomacromolecule govern biomimetic

mineralization and showed that chemical functionalization can be used to control this

process. Computational modelling verified the role of the negative charge on biomacro-

molecules in inducing ZIF growth as a result of enhancement of the surrounding zinc ion

concentration. Furthermore, calculations of the surface electrostatic potential and pI of

a protein were shown to accurately and efficiently predict whether a biomacromolecule

seeds MOF growth.

Finally, a high-throughput screening process was developed to explore enzymatic

reaction space to discover candidate reactions for MOF-encapsulated enzymes. This

screening process uses the molecular size of the components of a reaction to predict

whether the reaction can occur inside MOFs. The number of possible enzymatic reac-

tions that have been carried out inside ZIF-8 is very small, and many of those reactions

were found to have components that are likely too big to diffuse through ZIF-8. There-

fore, the screening process was applied to suggest reactions that can investigate the

relationship between the size of reaction components and enzymatic activity inside

ZIF-8. In this process, a reaction of significant commercial value was identified that

should occur in a MOF-encapsulated enzyme.
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Contextual statement

This thesis consists of four research chapters, three of which are in manuscript style.

Chapters 3, 4 and 5 have been published (or submitted for publication) in peer-reviewed

international journals.1–4 Statements of authorship can be found at the beginning of

each chapter. Chapter 6 is in the style of a manuscript, which we intend to submit to

a peer-reviewed international journal. Chapter 5 collates the computational analysis

that was carried out by the candidate (and the relevant experimental observations) in

two collaborative projects. This chapter is in a traditional thesis style. The candidate

completed all of the work presented in this thesis during the doctoral candidature.

Chapters 1 and 2 introduce the porous materials that are the focus of this thesis,

the concept of screening materials to explore chemical space, and the computational

methods that were applied to do so. Chapter 1 provides context for the significance of

the two classes of materials (porous aromatic frameworks (PAFs) and metal–organic

frameworks (MOFs)) studied in this thesis. In particular, two emerging applications

of MOFs are introduced, and the need for computational exploration is highlighted. A

review of the literature on the use of computational screening processes in materials

science is also provided. Chapter 2 serves as an introduction to the broader methods

that underpin the analysis applied in this thesis.

Chapters 3 and 5 highlight computational methods as a means to investigate molec-

ular processes in cases for which an experimental investigation is difficult. Chapter 3

details the use of coarse-grained molecular simulations to study the formation mech-

anism of amorphous PAFs as well as the role of monomer–monomer interactions and

monomer structure on their porosity.1 Chapter 5 details the application of theory and

computation to verify the role of the electrostatic properties of biomacromolecules

in the biomimetic mineralization of MOFs. In this case, the computational analysis

was performed to support a series of experiments. Importantly, this chapter provides

methods to predict whether a biomacromolecule seeds MOF growth, which enables the

efficient selection of proteins and carbohydrates for future experiments.3,4
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Chapters 4 and 6 report the development of high-throughput screening processes

to identify promising candidates for two different applications. Chapter 4 describes

screening of MOFs for aligned heteroepitaxial growth using geometrical descriptions of

MOF–substrate interfaces.2 Chapter 6 details an exploration of the known enzymatic

reaction space for viable reactions that can occur inside ZIF-8. In each case, a narrow

set of MOFs and enzymes have been tested experimentally to date, and our screening

processes efficiently explore viable experiments to help expand these relatively new

fields.
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CHAPTER 1

Introduction

1.1 Extended porous materials

Porous materials are an important class of materials with a long history of industrial

application for heterogeneous catalysis, gas storage and separation, and ion exchange.9

These materials are defined by the properties of their pore network. In particular,

microporous materials, which are the focus of this thesis, are defined as having pores

smaller than 2 nm.10 This makes them ideal for the adsorption of gases and other

small molecules. Furthermore, porous materials can be classified as extended, network

materials or discrete, molecular materials. This thesis is specifically concerned with the

properties of extended porous materials formed from a bottom-up, modular synthetic

approach, whereby distinct building blocks come together through covalent or metal-

ligand bonds to form a contiguous network that supports some pore architecture.11

The chemistry that governs the connection between building blocks determines the

structural properties of the resulting framework. For example, reversible framework

growth (e.g. when the building blocks bond through labile metal–ligand bonds) al-

lows for the formation of ordered, crystalline materials.12 Alternatively, irreversible

bonding during framework growth leads to the formation of disordered, amorphous

materials (Figure 1.1a).13,14 Furthermore, the modular synthetic approach allows for

the systematic modification of the building blocks toward materials that are finely

tuned, with respect to their pore chemistry and structure, for target applications (Fig-

ure 1.1b).12,15,16 Importantly, the number of potential building blocks is vast, and so

too are the libraries of existing and hypothetical extended porous materials.17 Hence,

the chemical space that has been and may be covered by porous materials is immense.

In the following sections, we introduce the two subclasses of porous materials and

computational strategies that are the subject of this thesis. In the remaining chapters,
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chemical diversityordered disordered

(a) (b)

irreversiblereversible

Figure 1.1: (a) Schematic of the impact of the framework formation mechanism on the
extent of order in extended framework materials. (b) Schematic of the chemical diversity
that arises from a bottom-up and modular synthetic approach.

we apply computation and theory to understand material assembly phenomena and

their impact on material properties and to explore chemical space toward new and

advanced materials efficiently.

1.2 Porous amorphous polymers

Porous amorphous polymers constitute a broad subclass of extended porous materials

formed through irreversible covalent linkages of organic building blocks.13,14 There are

several different classes of porous amorphous polymers, such as conjugated microporous

polymers (CMPs),18,19 hyper-cross-linked polymers (HCPs),20,21 polymers of intrinsic

microporosity (PIMs)22,23 and porous aromatic frameworks (PAFs).24,25 There exists

a diverse set of chemical reactions and building blocks that have been developed to

form porous amorphous polymers, which has led to large libraries of synthesized mate-

rials with distinct properties.14,15 Material growth using irreversible reactions leads to

the formation of amorphous materials, i.e. materials without long-range order (shown

schematically in Figure 1.1a). The amorphous nature of these extended networks makes

them difficult to characterize on the molecular or nano scales using experimental tech-

niques, such as X-ray diffraction (XRD).13,26 Nonetheless, many of these materials have

2



Figure 1.2: Chemical structure of the PAF-1 monomer.27

been shown to be porous and have useful catalytic and electronic properties.14 PAFs

are a class of porous amorphous polymers formed via cross-coupling reactions of tetra-

hedral building blocks containing aromatic substituents (Figure 1.2).24,25 PAFs have

some of the highest recorded Brunauer–Emmett–Teller (BET) surface areas of micro-

porous materials (e.g. PAF-1: 5640m2 g−1,27 PPN-4: 6461m2 g−1 28). Importantly,

the use of covalent linkages between building blocks provides these materials with high

physiochemical stability.27,28 With exceptional porosity and stability, PAF materials

have found use in many applications, including gas capture and separation,25,29 and

have been shown to improve the performance and long-term stability of membrane

materials.30,31 Nevertheless, PAFs exhibit a wide range of porosities depending on the

building block used, which is not well understood. Chapter 3 presents a computational

study into the formation mechanism of PAFs to investigate the molecular-level pro-

cesses that underpin their porosity. This work highlights the need for computational

strategies when experimental elucidation of a materials molecular-level structure is not

possible.

1.3 Metal–organic frameworks

A significant challenge with porous amorphous polymers is the experimental char-

acterization of their structure due to the high degree of disorder. In contrast to this,

metal–organic frameworks (MOFs), which form via reversible coordination bonds, have

ordered structures (Figure 1.1a) that can be characterized using techniques such as

single-crystal XRD. Since the discovery of permanent microporosity in the archetypal

MOF, MOF-5,32 these materials have been the subject of significant research effort.

MOFs are formed through a modular approach, in which distinct building blocks (or

3



PSM

Figure 1.3: Schematic of the post-synthetic modification (PSM) of MOFs to introduce new
chemistry into the pore network.

secondary building units (SBUs)) come together to form a 1D, 2D or 3D framework.33

In contrast to other microporous ordered materials (e.g. zeolites9), many thousands of

new MOFs have been discovered as a result of the modular synthetic approach11,16 and

relative ease of the synthesis.34 A unique property of MOFs is that the pore network

and chemistry can be precisely controlled and finely tuned toward a target applica-

tion using multiple strategies.33 Furthermore, due to the crystalline nature of MOFs,

this pore network is well defined throughout a single crystal. Firstly, the chemical

and structural properties of the SBUs can be treated independently from the chem-

istry that connects them. Hence, by using SBUs of different sizes and different con-

nectivities many frameworks (with tunable pore sizes and shapes, as well as diverse

topologies) can be achieved in a process termed “reticular chemistry”.16 Additionally,

chemical functionalization of the SBUs allows for modification of the chemistry of the

pore network. Different pore chemistries can be introduced by the synthesis of isoretic-

ular MOFs with functionalized ligands or MOFs with multiple ligands with distinct

functionalities in the same crystal.35,36 Post-synthetic modification (PSM) of a MOF

through chemical functionalization of a linker or the inclusion of functional guests can

be used to control pore chemistry and introduce new functionality (Figure 1.3).37–39

In summary, the chemical and structural diversity of the building blocks of MOFs, the

modular synthetic approach, and the ability to post-synthetically modify MOFs has

resulted in an immense library of MOF materials over the past two decades.

The experimental approaches described above indicate that MOFs can be finely

tuned toward applications rationally. Indeed, MOFs have found use in a broad range

of applications (including gas storage and separations,40,41 sensing,42 catalysis43 and

many more)44 for which the ability to finely tune their properties is crucial. The ability

to control the chemistry of MOFs allows for their integration with other materials. For

4



example, the inclusion of MOFs into mixed-matrix membranes as filler agents can

improve membrane performance (i.e. permeability and selectivity).45 In this thesis,

we study two emerging applications of MOFs: in Chapter 4, we study the integration

of MOFs into macroscopic structures and in Chapters 5 and 6 we study the MOF-

based encapsulation of biological entities. We briefly introduce these two applications

of MOFs in the following sections.

1.3.1 Integration of MOFs into thin films

As described above, MOF chemists have substantial control over the nature of the

pore network at the single-crystal scale. Recently, the growth of MOF structures

from macroscopic substrates has led to the translation of MOF properties to the

macroscale.46–51 In particular, thin-film fabrication of MOFs, through layer-by-layer

synthesis, liquid-phase epitaxy,52 and chemical-vapor or atomic-layer deposition,53,54

allows for the formation of uniform MOF layers. The ability to extend the well-defined

pore structure of MOF crystallites to the macroscale is crucial for the application of

MOFs in fields such as optoelectronics, gas separations, and sensing.47,52,54

substrate
pore network

MOF

alignment

Figure 1.4: Schematic of the macroscale alignment of MOF crystallites (blue rectangles)
grown from a substrate (green surface) via heteroepitaxy.55 Matching of the MOF lattice
with the binding sites of the substrate (red semi-circles) leads to heteroepitaxial growth
and MOF alignment, which results in macroscale orientation of the MOF pore network.
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A growing class of MOF thin films are surface-mounted metal–organic frameworks

(SURMOFs),52 in which MOF growth occurs from self-assembled monolayers (SAMs)

in a layer-by-layer process. SURMOFs have garnered significant interest because of

their homogenous morphology, the ability to precisely control their thickness, their low

defect densities and their potential for scale up to industrial settings.56 SURMOFs are

potentially useful in many applications that take advantage of their precise structures

such as gas adsorption and separations, sensing and electronic applications.52,56 The

out-of-plane orientation of SURMOFs with respect to the substrate can be controlled

by changing the chemistry of the SAM.57–59 The precise control over the thickness and

orientation of SURMOFs offers a well-defined model system for studying formation

mechanisms,60 chiral separations,57 and other intrinsic properties of MOFs.52 How-

ever, in-plane alignment is also required to achieve a precise translation of the single-

crystal scale pore network to the macroscale. Recently, Falcaro and co-workers achieved

macroscale in-plane and out-of-plane alignment of MOF crystallites via epitaxial MOF

growth from a well-ordered substrate in a facile, one-pot method (Figure 1.4).55 Thor-

ough XRD analysis confirmed macroscale alignment of a series MOFs, where epitaxial

matching between the substrate and MOF was found to be necessary for aligned growth.

However, there are very few examples of MOF thin films with controlled in-plane and

out-of-plane orientation. Therefore, in Chapter 4, we develop and apply a computa-

tional screening process to rapidly identify candidate MOFs for aligned heteroepitaxial

growth in order to expand the range of MOFs for which aligned thin films can be

produced.55

1.3.2 Encapsulation of biomacromolecules inside MOFs

The immense diversity of MOF structures has assisted with their integration into bio-

logical fields. For example, the ability to tailor the structure and chemistry of the pore

network toward a particular guest has been employed in drug delivery and biosens-

ing studies.61–63 Recently, the encapsulation of biomacromolecules inside MOFs has

become of significant interest because of the potential of MOFs to protect biomacro-

molecules from harsh environments.64–66 The encapsulation of biomacromolecules has

been achieved in a variety of ways, including through their infiltration into pre-assembled

MOF networks (Figure 1.5a).64–66 Alternatively, MOF crystallization can be induced
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(a)

(b)

linker

metal node

Figure 1.5: Schematic of enzyme encapsulation into a MOF lattice via (a) the diffusion of
the enzyme (shown in gold) into the MOF pores64 or (b) the biomimetic mineralization of
ZIFs, which is shown schematically as a sodalite cage surrounding the enzyme.67

in the presence of a biomacromolecule in a process termed “biomimetic mineraliza-

tion”, which leads to the formation of a MOF shell around the biomacromolecule (Fig-

ure 1.5b).67 Zeolitic imidazolate framework-8 (ZIF-8),68,69 which is formed from Zn2+

metal-ion nodes and 2-methylimidazole linkers, is the most widely explored MOF for

biomimetic mineralization. ZIF-8 is chemically and thermally stable and can be synthe-

sized in biologically compatible conditions.70–72 Note that biomimetic mineralization

has been achieved for other zeolitic imidazolate framework (ZIF) materials.8

Biomimetic mineralization (Figure 1.5b) is a facile process that has been used to

encapsulate biomacromolecules, including proteins, enzymes, DNA, and living cells

and viruses.67,73–76 The encapsulation of biomacromolecules inside MOFs is a very

new field with many open questions about the accessibility, stability and activity of

encapsulated enzymes.66 Nonetheless, there are many potential applications for this

technology. For example, the protection of therapeutic agents from harsh conditions

by encapsulating them in MOFs could help avoid degradation during transport, which

is a significant challenge for the administration of vaccines and therapies.66 Another po-

tential application for this technology is the encapsulation and protection of enzymes.
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Enzymes are proteins that catalyze chemical reactions with remarkable efficiency and

selectivity, but they are generally not stable to harsh industrial conditions and favor

homogeneous reaction conditions.64 Therefore, their application in industry is limited.

However, enzymes encapsulated inside MOFs (via biomimetic mineralization or infil-

tration) have been shown to have improved stability to temperature and denaturing

conditions.64,66,67,77 Furthermore, the MOF matrix can act as a gate for selective trans-

port of molecules to the enzyme and simplifies the collection and reuse of the catalyst

(compared to the use of enzymes in a homogeneous solution).

These potential applications of MOF-encapsulated biomacromolecules has stimu-

lated significant research in this field, but there remain many open questions that need

to be answered before the widespread application of these materials.66 In particular, the

impact of encapsulation on enzymatic activity remains unclear.8 Only a small number

of enzymes and MOFs have been studied experimentally for biomimetic mineralization.

By better understanding the mechanism of biomimetic mineralization by MOFs and

by developing high-throughput tools for screening MOFs and/or enzymes, the range of

materials and reactions can be rapidly expanded. To this end, the research presented

in Chapter 5 details studies into the mechanism that drives biomimetic mineralization

and how to apply it in general to protein and carbohydrate systems. Chapter 5 shows

that the number of enzymes that have a propensity to seed MOF growth is substantial.

Thus, in Chapter 6 we provide simplified ways to predict the viability of an enzymatic

reaction occurring inside MOFs to assist in the selection of new experiments.

1.4 Materials design using computational screening

As highlighted above, porous materials cover a broad range of chemical space and have

immense potential for many applications. It remains intractable to synthesise all possi-

ble combinations of building blocks to determine the optimal material.78 Therefore, it

is crucial to be able to efficiently explore chemical space when designing new materials

and new experiments. Computational screening processes that efficiently determine the

viability of a target molecule have been commonplace in the field of drug discovery for

many years.79 In this case, large databases of potential candidates are screened com-

putationally, where candidates are filtered and ranked in a step-wise approach using
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simple descriptors. Experimental trials are then conducted only on the remaining and

top-ranked candidates, thereby avoiding arduous experimental effort. Figure 1.6 shows

an idealized screening process that takes a library of candidates and simplified descrip-

tors that are defined using theory and experiments and produces future experiments,

advances on the existing theory, and useful materials. In the example of drug discov-

ery, the library of candidates are computationally screened using simplified descriptors

to predict the properties of interest (e.g. solubility) to determine their viability for a

specific application. This type of approach to drug discovery relies on large amounts

of available input data for small molecules (e.g. data available in the PubChem,80 and

ZINC81 databases), as well as their interactions with biological entities (e.g. available

in the ChEMBL82 database). The field of high-throughput computational drug dis-

covery has been highly successful due to the ability to describe properties of drug-like

compounds using easily calculated descriptors. For example, Lipinski’s rule of five

provides five simple molecular properties that can be used to efficiently screen drug

molecules.83 Similarly, simplified models and descriptors of the relevant chemical and

physical processes are required for the use of any computational screening process.

experiments

theory

top
candidates

design rules

library of 
candidates

screening

descriptors

useful
materials

Figure 1.6: Flowchart of a computational screening process.

Recently, there has been a push toward the collation of large amounts of data

on functional materials, including porous materials, to allow computational screen-

ing.78,84,85 An example of this is the Materials Genome Initiative (akin to the Human

Genome project), which attempts to bring together and make available experimental

and computational data on a large and diverse range of materials to enhance the ma-
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terials discovery process.86 Recent studies have used multiple approaches to exploit

the size of the Materials Genome Initiative to discover design principles (structure–

property relationships) as well as porous materials that could be optimal for hydro-

gen17 and methane87 storage and many other applications.88–92 Recently, Moghadam

and co-workers used a data set of experimentally known MOFs to computationally

screen for materials for oxygen storage. Their process resembled that shown schemat-

ically in Figure 1.6, in which large-scale computational screening led to the synthesis

of a top candidate MOF that performed as predicted during experiments for oxygen

storage.93

Crucial to these processes is the development of databases of known94 and hypo-

thetical porous materials.95,96 In particular, the modular nature of MOFs has allowed

for many in silico MOF generation algorithms.97–100 Wilmer and co-workers first re-

ported the generation of 138 000 hypothetical MOF structures by connecting SBUs

at predefined binding sites based on known MOF chemistry.101 However, the a priori

prediction of the structure of crystalline porous materials remains a daunting task,

and many computationally designed materials are not synthetically feasible. One ap-

proach to overcome this deficiency is to model material formation, but this is not a

trivial task and has only been carried out a handful of times for MOFs102,103 and cova-

lent organic frameworks (COFs).104,105 Furthermore, an understanding of the formation

mechanisms of materials can help elucidate the relationship between local structure and

global material properties.104 More widespread calculations of the assembly of porous

materials will require the development of more efficient simulation methods and mod-

els. Chapter 3 shows how a simplified model can be used to investigate the formation

mechanism of PAFs efficiently, which we use to understand the main factors underlying

their impressive porosity.

Simplified descriptors of target properties are required to be able to predict the

viability of a particular material efficiently. The vast majority of screening studies of

porous materials have focussed on their adsorption properties.78,84 This is partially be-

cause of the gas storage and separation applications that have dominated much research

on porous functional materials, and partially because simple geometrical descriptors of

the pore network (discussed in detail in Section 2.2) and accurate and efficient methods

for the simulation of adsorption processes exist. Furthermore, the properties of interest
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to specific adsorption or separation applications are well understood and can be clearly

defined.78,84 Many other properties of MOFs are calculable, e.g. electronic106–109 and

mechanical110–112 properties, using computationally expensive techniques (e.g. quan-

tum mechanical methods).84,113 However, these methods are not generally amenable to

high-throughput screening of large data sets and computationally cheap descriptors for

these properties are difficult to identify.84 Therefore, very few high-throughput screen-

ing studies for applications other than adsorption exist, with a handful of small-scale

computational screening studies of MOFs addressing applications in catalysis,114 drug

delivery,63 and thin-film growth115,116 have been performed.

A focus of this thesis is to develop and identify simplified models and descriptors

that can be used to study and predict the properties of porous materials. In Chap-

ters 3, 4 and 5 we simplify several assembly phenomena in porous materials to their

essential components to facilitate their study. In Chapter 3, we use a coarse-grained

model to simulate the kinetically controlled formation of PAFs on large length and

time scales. Chapter 3 is unique from the remaining chapters because we have used a

simplified simulation model to investigate the dynamics and kinetics of material forma-

tion. In Chapter 5, we use computation and theory to verify that simple descriptors of

the electrostatic properties of a protein can predict whether the protein will seed ZIF

growth or not. This result indicates that computational filtering of biomacromolecules

for encapsulation inside MOFs can be done accurately and efficiently. Finally, in the

studies discussed in Chapters 4 and 6 we use novel simplified descriptors and high-

throughput screening to identify candidate materials/molecules for applications in two

relatively new fields of MOF chemistry. In both cases, the number of promising can-

didate materials/molecules is increased significantly over the number already studied

experimentally in a few days of computation time, highlighting the importance of low-

cost, high-throughput computational strategies.
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CHAPTER 2

Computational methods

The following chapter broadly introduces the computational methods and theories ap-

plied throughout this thesis. Each following research chapter includes detailed method-

ology sections that describe the work carried out by the candidate.

2.1 Classical molecular simulations

Classical molecular simulations, including molecular dynamics (MD), Monte Carlo

(MC) methods and molecular mechanics (MM), are computational tools that describe

the interactions in molecular systems using classical mechanics. MD and MC ap-

proaches are efficient and allow for the sampling of large systems (105 or more par-

ticles) for long times (up to ∼1ms).117 In the realm of porous materials, a range of

molecular simulation methods are commonly used to accurately and efficiently model

adsorption78 and diffusion118 processes as well as MOF flexibility.84 In this thesis we

have used molecular simulations specifically to model the formation of porous materials

(Chapter 3), and for computationally efficient energy minimizations of molecular and

framework structures (Chapters 4 and 6).

Classical mechanics offers a low-cost strategy to define the energy of a chemical

system based on the configuration of the particles (e.g. atoms) and the bonds between

them. In this case, the energy of a system is defined by a force field, which is typically

a sum of several terms, each of which is a function of the particle (atom) positions:

U = UvdW + Uelectrostatic + Ubond + Uangle + Udihedral + Uinversion, (2.1)

where UvdW and Uelectrostatic represent nonbonded van der Waals (vdW) and electrostatic

(Coulombic) interactions, respectively, Ubond, Uangle, Udihedral and Uinversion are the bond

stretch, bond angle, dihedral angle and inversion potentials, respectively. The terms
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Ubond, Uangle and Udihedral represent the bonded potentials that are functions of bond

lengths, bond angles and dihedral angles, respectively, within a system. The term

Uinversion describes the inversion potential, or improper dihedral potential, of a bonded

system. Force fields are parameterized to reproduce thermodynamic or geometrical

properties of a system based on ab initio calculations or experiments. The universal

force field (UFF),119 which is used extensively in this thesis, has been parameterized to

describe the interactions between all atoms on the periodic table, and therefore can be

generally transferred to any system. Universality often results in a decreased accuracy,

but it is useful for studies of a broad range of chemical systems. Importantly, Addicoat

and co-workers have extended UFF to accurately describe MOF systems.120,121

Classical MD simulations provide a means to model the evolution of systems of

particles as a function of time.122 When considering the dynamics of condensed-phase

molecular systems, classical MD is often more accurate and physically appropriate

than quantum mechanical methods. The motion of particles in MD is determined by

numerically solving Newton’s equations of motion,

Fi(rN) = mi
d2ri
dt2 = −∇iU (rN), (2.2)

where t is the time, Fi is the force vector on particle i, mi is the mass of particle i, ri is

the position of particle i, rN is the configuration of the N-particle system, and U is the

potential energy described by the force field. Note that Equation 2.2 applies to con-

stant energy simulations and to consider other thermodynamic ensembles additional

terms are necessary, as discussed further below. During the simulation of molecular

systems, periodic boundary conditions and the minimum image convention are applied

(Figure 2.1). These state that particles that cross the periodic boundaries appear

on the other side of the simulation box and that only the energy due to interactions

between a particle and the nearest image of each of its neighbours is included. Further-

more, simulation efficiency is improved by implementing a cutoff distance, whereby the

interactions between pairs of particles further apart than this cutoff distance are not

considered.
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Figure 2.1: Schematic illustrating the concepts of periodic boundary conditions and the
minimum-image convention in MD simulations. The primary simulation cell that is simu-
lated is shaded blue. The particle in red translates across the boundary and appears on the
other side, but due to the minimum image convention, the blue particle interacts with the
image of the red particle in the neighbouring simulation box after the move (the dashed
line represents the interaction).

2.1.1 Coarse-grained molecular dynamics

Simulations of atomistic models are useful because they are accurate and allow for the

analysis of atomistic levels of detail. However, because all atoms are explicitly specified,

all-atomistic systems are not computationally efficient for simulations of large systems

over long times. Therefore, to study slow molecular processes, such as self-assembly, it

is necessary to improve simulation efficiency. The efficiency of molecular simulations

can be significantly improved by rationally agglomerating atoms into a smaller number

of particles or treating them as a continuous medium, i.e. coarse-graining the system.

Coarse-graining aims to simplify an atomistic system while maintaining its overall

physical and thermodynamic properties. The first step to significantly reducing the

number of atoms in a system is to replace the solvent atoms with an implicit solvent,

e.g. by using Langevin dynamics (LD).123 LD represents the collisions of molecular

bodies with solvent atoms by augmenting Newton’s equations of motion (Equation 2.2)
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with a frictional force and a fluctuating random force to give (for spherical particles)

F (t) = −∇U(x)− ξtmv(t) + fR(t), (2.3)

where F (t) is the total force on a body, ∇U(x) is the conservative force due to the in-

teraction potentials acting on the body, ξt is the translational friction coefficient, m and

v(t) are the mass and translational velocity of the body at time t, respectively, and fR(t)

is the random force applied to the bodies, which is assumed to have zero mean and be

δ-correlated in time and is related to the frictional force by the fluctuation-dissipation

theorem,123,124 which gives 〈fR(t)〉 = 0 and 〈fR(t)fR(t′)〉 = 2ξtkBTmδ(t− t′).123,125 To

further reduce the number of atoms in a model, multiple atoms in a molecule can be

mapped into a single interaction site to produce a coarse-grained (CG) model. The

design of CG models is often based on unifying atoms in such a way that freezes fast

degrees of freedom, such that the integration of the equations of motions can be done

over longer time steps. For example, unifying C–H groups into a single site removes

the need to model the very fast C–H bond stretch.

atomistic - 45 atoms

=

coarse-grained
5 ellipsoids

Figure 2.2: Coarse-graining scheme applied to porous aromatic frameworks (PAFs) in Chap-
ter 3. The atomistic structure on the left (of 45 atoms) is coarse-grained to a model con-
taining five ellipsoids. The all-atom model is colored to match the segments replaced by
the ellipsoid of the same color.

Figure 2.2 shows the coarse-graining scheme applied in Chapter 3 for our model

of PAFs. In this CG MD model, we applied LD to simulate an implicit solvent at

the desired temperature, we replaced effectively rigid groups (i.e. benzene rings) by a

single, ellipsoidal interaction site and we froze intramolecular degrees of freedom. We

used an ellipsoidal CG model because they can correctly capture the anisotropic prop-

erties of the interaction sites. For example, ellipsoidal models of DNA can capture the
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anisotropic effects of the stereochemistry of the bases.126 In Chapter 3, the ellipsoidal

model allows for the description of anisotropic interactions between PAF monomers.1

Note that an additional equation besides Equation 2.3 needs to be solved to describe

the evolution of the orientational degrees of freedom of the ellipsoids, as described in

Chapter 3. The use of CG models simplifies the physics of a given process to as few

variables as is necessary, which allows for the study of complex processes in an efficient

way. In particular, the study of assembly processes in biological systems126,127 and

porous materials102 can be simplified using the strategies discussed above. Indeed, in

Chapter 3 a CG model is applied to simulate the assembly of PAFs using large systems

and long time scales, which were not accessible using atomistic approaches.1

2.2 Descriptors of porosity

The pore network defines key properties of porous materials. Especially when con-

sidering the adsorption of gases and other small molecules, i.e. for gas separations

and storage. Geometrical pore characteristics, such as surface area and pore size dis-

tributions, can be determined indirectly from experimental adsorption isotherms. In

general, the surface area of porous materials are determined by applying the Brunauer–

Emmett–Teller (BET) theory to a N2 adsorption isotherm obtained at 77K.128 Use of

the BET theory assumes that adsorption occurs on a homogeneous surface, that there

is no interaction between multilayers, and that Langmuir theory applies to each layer.

Similarly, pore size distributions can be determined indirectly from adsorption data of

N2 obtained at 77K (other conditions may also be used), under the assumptions of a

reference pore geometry (i.e. cylindrical, slit-like, or spherical pores) and approximate

chemical composition.129 In both cases, approximations are made that may not hold

for MOFs and other microporous materials, due to their complex pore architectures,

and because atom-level details are ignored.84 Furthermore, there is variability in ex-

perimental adsorption data among similar materials.130 Nonetheless, these methods

represent standardized characterization techniques that allow for the comparison of

different materials.

For crystalline porous materials (e.g. MOFs), many computational methods have

been developed to directly determine pore characteristics from an experimental or
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calculated crystal structure.84,131 Geometrical descriptions of the solvent accessible

surface of the pore network (Figure 2.3a) can be used to calculate a surface area that

agrees with BET theory efficiently.132,133 Figure 2.3a also shows the van der Waals

and Connolly surfaces, which do not accurately consider the accessibility of a pore

surface to probe molecules. The Connolly surface is defined as the solvent excluded

surface, which is determined by tracing a probe molecule with a radius of 0Å along

the van der Waals surface of all of the atoms.133 The surface area of a crystal structure

can be determined using an MC approach, in which probe particles are placed at

random positions inside the framework and their overlap with framework atoms is

determined. From the overlap of many probes, a surface area, as well as pore volume,

can be calculated. Importantly, the size of the probe particle can be set to match the

diameter of the adsorbate used experimentally. However, this type of approach does

not consider the connectivity of the pore network. For example, the surface area of a

void that is only accessible via channels smaller than the size of the probe should not

be included in estimating total surface area of that material because the probe cannot

diffuse into that void. Algorithms to calculate surface areas and exclude inaccessible

pore space have been implemented in software such as RASPA2, which can also extract

pore size distributions.131

Voronoi decomposition of the void space in periodic networks of atoms is an alter-

native and efficient way to analyze the entirety of a pore network.134,135 Voronoi de-

composition represents a mathematical partitioning of the space surrounding n points

into n polygons such that the faces of each polygon is a plane equidistant from the two

points sharing the face (illustrated in 2D in Figure 2.3b).134 The nodes of the Voronoi

network of a porous material represent the void space in the pores. The algorithm im-

plemented in the open-source software Zeo++,134 which is used throughout this thesis,

calculates advanced geometrical descriptors that take into account the connectivity of

the pore network from a periodic Voronoi network.134,135 In particular, the diameter

of the largest included sphere (DI), the diameter of the largest free sphere (DF) and

the diameter of the largest included sphere along the free sphere path (DIF) (shown in

Figure 2.3c) can be used to better describe the bulk properties of a network of pores.

For example, DF represents the largest sphere able to freely diffuse through the pore

network, which can help understand the adsorption and separation of molecules based
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on their size.134 Furthermore, the Voronoi network of a system can be used as a finger-

print to describe porous materials. For example, Lee and co-workers used topological

analysis of the pore-space fingerprints obtained by Zeo++ to identify similar materi-

als, based purely on the properties of their pore network.136 This approach accurately

finds pairs of zeolites with similar pore networks and gas storage performances in a

high-throughput way.137

(a)

(b) (c)

probe molecule

van der Waals surface

Connolly surface

accessible surface

DF DIF

DI

Figure 2.3: (a) Schematic of the van der Waals surface (black line), Connolly surface (green
line) and accessible surface (dashed purple line) for a given probe molecule (red circle) used
to calculate geometric porosities of porous materials. (b) A representative depiction of a
Voronoi decomposition of 2D space. (c) Definition of the diameter of the largest included
sphere (DI), the diameter of the largest free sphere (DF) and the diameter of the largest
included sphere along the free sphere path (DIF).

The methods described above specifically analyze rigid periodic structures. Im-

portantly, the porosity of dynamic and amorphous systems has also been successfully

captured using a combination of MD simulations to build structural models and Voronoi

decomposition to analyze the pore space of each transient structure.138–140 In Chap-

ter 3, CG MD simulations were used to simulate the early-time formation of discrete,
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amorphous PAF clusters, for which the porosity was approximated using Zeo++ and

the techniques described above.134

2.3 Modelling electrostatic properties of biomacromolecules in

solution

Electrostatic interactions play vital roles in biological systems, which is evidenced

by the number of atoms carrying partial charges present in biological systems.141,142

Electrostatic complementarity between contacting surfaces is known to drive enzyme–

substrate binding and protein–protein interactions.143–145 The presence of ionizable

groups (on the side chains of amino acids) in a polypeptide chain results in electro-

static interactions that are crucial in defining their structure, which inevitably de-

fines their function.145 Furthermore, because amino acids are ionizable, their charge

state is a function of pH and their environment. Hence, the electrostatic properties of

biomacromolecules are influenced by the solution surrounding them. Computational

and theoretical methods can be used to model electrostatic interactions in biological

systems.142,143,145 However, modelling biological systems explicitly, i.e. by consider-

ing each atom, is computationally expensive.142 Therefore, simplified models based on

mean-field approximations are often used to implicitly model the components (e.g. the

electrolyte solution) of these systems.

Continuum models of electrolytes, based on a mean-field approximation of ions in

solution, have been widely applied to study a range of electrolyte phenomena accu-

rately.146 In such models, the relationship between the electrostatic potential and the

spatial distribution of charges is typically described by the Poisson–Boltzmann (PB)

equation,

∇ · [ε(r)∇ψ(r)] + e

[∑
i

ci,bulkzi exp
(
−zieψ
kBT

)]
= −ρ(r), (2.4)

where ψ, ρ(r) and ε(r) are the electrostatic potential, fixed (i.e. non-electrolyte) charge

density and the spatially varying dielectric permittivity at position r, respectively, ci,bulk

and zi are the bulk concentration and valency of ions of type i, respectively, e is the

elementary charge, kB is the Boltzmann constant and T is temperature. Note that the

sum is over all types of ions in the electrolyte solution. Equation 2.4 is referred to as
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the nonlinear PB equation. Analytical solutions to the nonlinear PB equation exist in

only a few simple cases (e.g. near a charged plate for a constant dielectric permittivity,

shown in Figure 2.4a),146 but by solving Equation 2.4 numerically it is possible to

obtain ionic distributions surrounding complex systems, such as proteins.147 To model

the electrostatic properties of proteins in Chapter 5, two simplifications were applied

to Equation 2.4. Firstly, the system was split into two separate media (Figure 2.4b)

with different ε(r): the solute (the protein) with a low dielectric constant (εint), and

the solvent (or electrolyte) with a high dielectric constant (εext). In this case, solvent

ions are excluded from the solute and the charge density of the solute is constant.
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Figure 2.4: (a) Representative ion distribution and electrostatic potential (represented by
the yellow line) near a charged plate. (b) Schematic of a two-phase system with an in-
ternal dielectric medium representing the solute (εint) and an external dielectric medium
representing the solvent (εext).

Solving the nonlinear PB equation for large systems can be computationally de-

manding. Therefore the second simplification was to use the linearized PB equation.

In the low-potential regime (zieψ � kBT,∀zi),142 Equation 2.4 can be linearized using

the first two terms of the series expansion

∑
i

ci,bulkzie exp
(
−zieψ
kBT

)
=
∑
i

ci,bulkzie

(
1− zieψ

kBT
+ · · ·

)
(2.5)

=
∑
i

ci,bulkzie−
∑
i

(zie)2ci,bulkψ

kBT
(2.6)

= −
∑
i

(zie)2ci,bulkψ

kBT
, (2.7)
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since ∑i ci,bulkzie = 0 due to charge neutrality of the bulk electrolyte, to give the

linearized PB equation,148

∇ · [ε(r)∇ψ(r)]− εrε0 [κ(r)]2 ψ(r) = −ρ(r), (2.8)

where ε0 is the vacuum permittivity, εr is the relative permittivity of the solution

(which is water (80) in all cases in this thesis), κ(r) is the Debye screening parameter,

given by

κ =
(
εrε0kBT

2e2I

)−1/2

, (2.9)

for values of r in the solution and taken to be zero for r inside of the solute. κ in the

solution is the inverse of the Debye screening length λD, i.e. λD = κ−1. In Equation 2.9,

I is the ionic strength of the electrolyte solution, given by I = 1
2
∑
i ci,bulkz

2
i . Finite-

difference methods can be used to solve Equation 2.8 numerically, by mapping all

physical quantities onto a grid.148 Indeed, this approach has been implemented in

software, such as APBS149 and DelPhi.147,150

Similarly, the nonlinear PB equation (Equation 2.4) in the solution can be simplified

to

ε0εr∇2ψ + e

[∑
i

ci,bulkzi exp(−zieψ
kBT

)
]

= −ρ(r), (2.10)

by assuming a constant dielectric permittivity, i.e. ε(r) = ε0εr for all r. This is

useful for a given model where distinctions between solute and solvent are physically

unclear. In each of the cases above, the underlying physics being modelled is similar

while the models and approximations used to do so differ. In Chapter 5, the linear

(Equation 2.8) and nonlinear (Equation 2.10) PB equations are successfully used to

study the interactions of zinc ions (precursors to zeolitic imidazolate framework-8 (ZIF-

8)) with charged proteins and carbohydrates to verify the role of electrostatic properties

in the biomimetic mineralization process.
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3.1 Abstract

The structural and dynamics factors governing porosity in porous aromatic frameworks

(PAFs) are investigated using coarse-grained molecular dynamics simulations. PAFs

form amorphous, porous networks with potential for gas storage and separation ap-

plications. We focus on a series of four PAFs – PAF-1, PPN-1, PPN-2 and PPN-3 –

which exhibit an unexpected trend in porosity as the structure of the PAF monomer is

varied. The simulations suggest that nonbonding dispersion interactions that stabilize

misbound monomer configurations play an essential role in the formation of porosity-

reducing interpenetrated frameworks in PAFs comprising the larger PPN-1 and PPN-2

monomers; on the other hand, the simulations indicate that the steric bulk of a key

reaction intermediate acts to limit interpenetration in PAFs made up of the smaller

PAF-1 and PPN-3 monomers. The simulations also show that the rate of cluster

growth, which depends largely on the monomer concentration used in the experimen-

tal synthesis, is significantly higher for PPN-1 and PPN-2, which would exacerbate

the kinetic trapping of interpenetrated misbound configurations. This work provides

design rules for synthesizing highly porous amorphous networks through the choice of

monomer structure and reaction conditions that limit framework interpenetration.

3.2 Introduction

Porous amorphous polymers, such as conjugated microporous polymers (CMPs),18

hyper-cross-linked polymers (HCPs)20 and porous aromatic frameworks (PAFs),24,25

are a class of porous solids that are synthesized via irreversible chemical reactions.

Their chemically robust structures and permanent porosity make them promising

candidates for application to the fields of catalysis and gas storage and separation.

In particular, porous aromatic frameworks (PAFs) have garnered significant inter-

est29–31,151–158 due to their high physiochemical stability and remarkably high porosity.

For example, the archetypal PAF, PAF-1,27 has one of the highest nitrogen BET sur-

face areas reported to date (5600m2 g−1). Other PAF materials have been synthesized,

namely PPN-1, PPN-2, and PPN-3, which are based upon larger tetrahedral building

units than PAF-1. However, in each case, their empirical surface areas are significantly
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and unexpectedly lower than PAF-1.28,159 The structural similarity of the monomers

used to construct this family of materials is illustrated in Figure 3.1a. PPN-3 dif-

fers from PAF-1 by the presence of an adamantane moiety instead of a carbon atom

at the monomer core, while PPN-1 and PPN-2 are analogues of PAF-1 and PPN-3,

respectively, in which the phenyl groups of the monomer have been extended by the

addition of an ethynyl group. Several factors could give rise to the lower porosity

observed for PPN-1, PPN-2, and PPN-3 compared with PAF-1. The most likely of

these are framework interpenetration160,161 and pore blocking as a result of structural

defects or reaction side-products.162 Furthermore, previous computer simulations per-

formed on related materials suggest that factors such as monomer flexibility have a

more pronounced effect on surface area than increasing the size of the monomer.163

Although these studies have provided some basic strategies for obtaining high surface

area amorphous polymers,161 the origin of the disparity in porosity between PAF-1 and

its analogues PPN-1, PPN-2, and PPN-3 remains unclear. Developing a detailed phys-

ical understanding of these systems will facilitate the design of novel PAF materials

with tailored porosity.

Structural characterization of amorphous solids is challenging as their lack of long-

range order limits the information that can be obtained from diffraction techniques.

Accordingly, computational methods have been widely employed to understand the

relationship between local structure and global properties of a material.26,163–166 A

key challenge in this area is to develop methods that produce hypothetical structures

that accurately represent the amorphous network. This requires a fundamental under-

standing of their synthesis chemistry and the noncovalent interactions that determine

their 3D architectures. Molecular simulations, such as molecular dynamics (MD) or

Monte Carlo (MC) approaches, can provide insight into these processes, but their

application is computationally demanding due to the large length and time scales in-

volved. To alleviate this issue coarse-grained (CG) models can be employed as they

enhance the efficiency of MD and MC simulations. Indeed, CGMD/CGMC simula-

tions have been used to study assembly processes in a range of model systems, such

as DNA and proteins.126,127,167–170 Furthermore, simulation algorithms developed to

model the formation of amorphous microporous polymers have previously been able

to replicate experimental data and offer insight into key factors governing a materials
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microporosity.26,165,166,171–174

(b)

(a)

PAF-1 PPN-3

PPN-1 PPN-2

Figure 3.1: (a) Four PAF monomers studied in this work. (b) Schematic showing the
coarse-graining of the PAF-1 monomer to the coarse-grained (CG) representation, which
consists of ellipsoidal sites. The all-atom model is colored to match the segments replaced
by the ellipsoid of the same color.

PAF-1 has been the focus of a series of modeling papers that employed molecular

simulations to capture the growth of the polymer network.165,166 These studies suggest

potential mechanisms that prevent framework interpenetration and give rise to the

high porosity of PAF-1: solvent templating, which is the result of framework–solvent

or solvent–solvent interactions,165 and a “snap-out” mechanism, whereby the rigidity

of the PAF monomers and the large change in the relative orientation of monomer

pairs during bond formation drive the formation of an open network.166 However, in

the aforementioned work, the influence of noncovalent π · · · π interactions on the 3D

structure of the polymer were not investigated. We contend that such interactions are

important as they have been shown to engender interpenetrated structures in other

amorphous porous polymers.164

In this work, we sought to develop a model for the synthesis of PAFs that captures
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the essential features of the assembly process—namely the monomer size and shape,

monomer concentration, rate of diffusion of reacting species, and strength of intermolec-

ular interactions between these species—to explain the origins of the large variations in

porosity observed for different PAF materials. The four PAF structures we focused on

were those based on “short-arm” monomers, PAF-1 and PPN-3,175,176 and “long-arm”

monomers, PPN-1 and PPN-2 (Figure 3.1a).177 Although the short-arm and long-arm

PAFs are formed via different synthetic procedures (see Appendix A.1 for details) they

nevertheless share common features: both reactions are reported to go to comple-

tion with high yields and the proposed mechanisms proceed via a monomer–catalyst

intermediate with a very fast subsequent carbon–carbon bond-forming reaction step.

Both reactions are irreversible; thus, to a good approximation, the assembly process

is kinetically rather than thermodynamically controlled. As a result, the kinetics of

the assembly mechanism is expected to be a key factor in determining the hitherto

unexplained differences in the properties of these PAFs. We employed coarse-grained

molecular dynamics (CGMD) as it provides an efficient means of simulating the kinet-

ics of assembly on the length and time scales necessary to produce frameworks that are

representative of the bulk materials. This approach to generating hypothetical PAF

structures addresses aspects of their synthesis that have not previously been considered

and will thus provide new insights into their chemistry and a guide for the design of

materials with tailored properties.

3.3 Methods

The coarse-graining process that was applied replaced groups of atoms by an ellipsoid

centered at the center-of-mass of the atom group. The shape of each ellipsoid was spec-

ified by principal diameters (given in Table A.1) determined from the Connolly volume

of the group of atoms that the ellipsoid replaces, obtained using the “Atom Volumes

and Surfaces” Tool within Materials Studio,178 where the Connolly volume is an ap-

proximation for the van der Waals volume.179 The shape of the bond-forming ellipsoid

was modified in the binding direction to yield the correct bond length upon binding;

the other principal axes remained unchanged. The mapping from the atomistic to the

CG representation is shown in Figure 3.1b for PAF-1 and in Figure A.2 for all the PAF
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monomers studied. Each CG PAF monomer was treated as a rigid body, which means

intramonomer structural fluctuations were quenched. This approximation is expected

to be reasonably accurate, given that the only significant intramonomer motions are

hindered rotations of the phenyl groups, which do not produce large conformational

changes of the monomer. Interactions between ellipsoids were described by the Gay-

Berne (GB) potential,180,181 which accounts for short-range repulsions and long-range

attractions between anisotropic particles (see Appendix A.3 for details). We used a

modular approach to distinguish three general types of interactions: primary bonding

(1◦), secondary nonbonding (2◦) and steric. The highly directional primary interactions

represent the irreversible coupling reaction between monomers, which for simplicity was

assumed to occur via an energetically barrierless process (Figure 3.2a). For all four

PAFs the maximum well depth of the primary interactions was assumed to be 100kBT

to give effectively irreversible bonding. The secondary interactions represent π · · · π,

alkyne· · · π, or alkyne· · · alkyne nonbonded interactions. The strength of these inter-

actions was set to values between ∼3 kJmol−1 (for alkyne· · · alkyne interactions) and

∼9 kJmol−1 (for π · · · π interactions), which is typical for such interactions182,183 (see

Appendix A.3 for details). To model the formation of the monomer–catalyst–monomer

complex that forms prior to monomer–monomer coupling in the reaction mechanism

for PAF-1 and PPN-3 (Figure 3.2b,c), a potential energy well at a larger distance than

the primary binding interaction, which we will call the “steric potential”, was added

(Figure 3.2a). The energy of the steric potential well was chosen to match approxi-

mately the energy of a typical nickel–carbon bond (see Appendix A.3 for details).175

The position of the energy minimum in the steric potential was chosen to match the

approximate distance between a monomer core site and an incoming phenyl group in

the presence of the catalyst complex (Figure 3.2a).
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Figure 3.2: (a) Pair potential energy as a function of the center-to-center distance between
two CG phenyl groups (shown in inset as blue ellipsoids) for the various interaction poten-
tials in our model. (Note that the curve for the primary interaction overlaps that for the
primary + steric interactions except at the small well around 9.3 Å, that these interaction
potentials are angular dependent and that the potential curves in the figure are for the spe-
cific relative site orientations shown.) (b, c) Chemical structures of the (b) product and (c)
proposed catalyst-bound intermediate of the Yamamoto reaction used to synthesize PAF-1
and PPN-3.

The motion of the PAF monomers in implicit solvent was simulated using GPU-

accelerated Langevin dynamics with LAMMPS.123,184,185 The temperature and friction

coefficients used in the Langevin dynamics were chosen to yield diffusion coefficients

that matched predicted values for Brownian motion of particles the size of the PAF

monomers at the experimental solvent viscosity and temperature, as described in the

Appendix A.3. Using PACKMOL,186 an initial configuration of 8000 randomly posi-

tioned monomers was specified in a cubic simulation box at the experimental monomer

concentration (given in Table A.3). To push apart overlapping atoms, the system

31



was evolved with soft nonbonded potentials using a small integration time step before

carrying out simulations with interactions specified by the GB potential with an inte-

gration time step (given in Table A.4) defined as one tenth of the Langevin dynamics

relaxation time, which is inversely proportional to the predicted diffusion coefficient.

Constant-volume simulations at the temperatures used in the experimental synthesis

of the PAFs (see Appendix A.3 for details) were run for at least one microsecond or

until the growth of clusters had halted. Simulations were carried out with only primary

interactions and with primary and secondary interactions for all four PAFs, as well as

with the additional presence of the steric potential for PAF-1 and PPN-3. Simula-

tions of all four PAFs were also carried out with the full set of interactions (primary +

secondary (+ steric for PAF-1 and PPN-3)) with isotropic compression of the simula-

tion box at a constant rate (see Appendix A.4 for details). Compression was stopped

when the system reached a cut-off pressure (Figure A.5) indicating that monomers

were starting to overlap.

All images of simulation configurations were rendered using Ovito.187 In-house

Python code was used to identify clusters of bonded monomers in the simulation tra-

jectories, which were distinguished by distance and density criteria via the DBSCAN

clustering algorithm.188 The clusters were then reverse mapped to an atomistic rep-

resentation. Details of the clustering and reverse-mapping procedures are given in

the Appendix A.5. The RASPA2 software was used to calculate pore size distributions

(PSDs) and X-ray diffraction (XRD) patterns of extracted clusters.131 The Zeo++ soft-

ware was used to calculate densities, N2 accessible surface areas, and accessible pore

volumes of extracted clusters.134 For clusters extracted from constant-volume simula-

tions, an algorithm was applied that minimizes the effect of the external surface of the

clusters on measured properties by taking the highest density portions of the cluster

(see Appendix A.7 for details). At the end of the compression simulations, the sys-

tem consisted of a single cluster; due to the high computer memory requirements of

the porosity analysis of a cluster of this size, smaller samples of the system-spanning

cluster were analyzed instead, which was found to be representative of the full system

(see Appendix A.8 for details).
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3.4 Results and discussion

To provide molecular-level insight into how PAFs are formed, we developed a model

designed to capture the essential features of their constituent monomers as they are

assembled. These include the monomer geometry and concentration, the strength and

anisotropy of intermonomer interactions, and the dynamics in solution of the monomers

and their aggregates. Furthermore, all simulation parameters were selected to match

the experimental conditions employed for each PAF. An understanding of how these

parameters affect the assembly process is an important step towards establishing design

principles for these materials. We note that our model is specific to these PAF systems,

but the approach should be generally applicable to the assembly of any porous polymer

synthesized via kinetically controlled reactions. A salient feature of our approach is that

the CG model allows simulations to be carried out using experimental concentrations

of monomer units at the length and time scales required to observe mesoscale assembly

processes (microseconds or longer).126 Such conditions were not employed for previous

simulations of amorphous, porous polymers,164–166 that used fully atomistic models due

to their high computational cost.

3.4.1 Effect of monomer structure on PAF structure

Examining the early stages of PAF synthesis in constant-volume simulations provides

insight into the role of which molecular interactions influence framework growth. We

performed simulations with and without secondary interactions (vide supra) for all four

PAF monomers. Figure 3.3 shows how different intermonomer interactions affect the

structures of assembled clusters for PPN-2 (see also Figures A.6–A.9 in the Appendix

for typical clusters formed by all four PAFs at early times on the order of 100 ns). The

simulation trajectories for all PAFs show the formation of numerous small clusters on

time scales of ca. 100–200ns (the free monomer concentration had fallen to 1% of its

original value by this point). These clusters then agglomerate to form larger clusters

on time scales on the order of a microsecond and longer. We stopped our simulations

after at least one microsecond as cluster growth had halted due to the slow diffusion

of larger clusters.
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(c)

t ~ 0 ns t ~ 30 ns t ~ 95 ns t ~ 325 ns

(b)

t ~ 0 ns t ~ 20 ns t ~ 55 ns t ~ 355 ns

(a)

t ~ 0 ns t ~ 100 ns t ~ 185 ns t ~ 430 ns

Figure 3.3: (a) Snapshots of a simulation trajectory of PPN-2 with primary and secondary
interactions. (b, c) Snapshots of the growth of a typical cluster from a simulation trajectory
of PPN-2 (b) with only primary interactions and (c) with primary and secondary interactions,
illustrating the more compact and less porous structure when secondary interactions are
present. Only bonds between sites (both intra- and intermonomer) and not the ellipsoidal
sites themselves are shown for clarity; intermonomer bonds are defined to exist between
pairs of binding sites separated by less than a threshold distance slightly larger than the
position of the energy minimum for the primary binding interaction in Figure 3.2.

The radial distribution functions (RDFs) in Figure 3.4, obtained using the SMAC

code,189 of the CG core sites (core sites are the carbon or adamantane group in PAF-1

and PPN-1 or PPN-2 and PPN-3, respectively) at the end of our simulations highlight

the structural differences due to the inclusion of secondary interactions and different

monomer sizes. For each PAF there is a dominant peak at the distance corresponding

to the irreversible binding of two monomers (rbind) and a second large peak at
√

8
3rbind,

corresponding to two monomers indirectly bonded via a third intervening monomer.

Figure 3.4 shows some less intense peaks at larger distances, but the lack of any other

significant peaks at larger values indicates that only short-ranged order exists in these

systems, which is consistent with experimental findings.27,28,159 We have confirmed that

the clusters extracted from our simulations are highly disordered by comparing their
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XRD patterns to the XRD patterns of perfectly ordered diamondoid PAF networks (see

Figures A.21 and A.22). When secondary interactions are present in the simulations,

the second highest peak in the RDFs in Figure 3.4 loses intensity and the inset shows

a smearing of peaks at larger distances, indicating a further decrease in order; peaks in

the RDF at distances smaller than rbind also gain in prominence due to defect formation

and framework interpenetration. Herein, we define interpenetration by any deviation

from local tetrahedral ordering near a PAF monomer. Note that this definition differs

from that of crystalline, frameworks with tetrahedral building blocks.160
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Figure 3.4: RDFs for (a) PAF-1, (b) PPN-3, (c) PPN-1, and (d) PPN-2 for all interaction
types. The insets highlight peaks at small distances.

Defect formation is expected for reactions governed by kinetic control as monomers

are unable to rearrange upon misbinding. We have defined a monomer pair as mis-

bound if their core-to-core distance is smaller than rbind. (Specifically, we took the

threshold distance of misbinding to be rbind − 2σbind, where σbind is the width of this

peak obtained from a Gaussian fit.) We note that this definition does not differentiate

between persistently and transiently misbound monomers. Using this definition, the

average number of monomers within rbind−2σbind of any given monomer was measured
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for each PAF as a function of time in the simulations and is shown in Figure 3.5. These

data highlight the increased degree of interpenetration in PPN-1 and PPN-2 compared

with PAF-1 and PPN-3 resulting from secondary interactions that effectively “switch

on” monomer misbinding. This conclusion is in agreement with a previous model of

covalent triazine frameworks (CTFs)164 and previous experimental work on PAFs.157,158
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Figure 3.5: Average number of monomers that are misbound to a given monomer versus
time for (a) PAF-1, (b) PPN-3, (c) PPN-1, and (d) PPN-2 for all interaction types.

To further investigate the cause of increased misbinding in PPN-1 and PPN-2, we

have calculated the energetic contributions from primary and secondary interactions

separately for all misbound monomer pairs at the end of simulations with both primary

and secondary interactions for all four PAFs (see Appendix A.9 for details). The distri-

bution of primary and secondary pairwise interaction energies (shown in Figure A.14)

overlaps for the short-arm PAFs, PAF-1 and PPN-3, whereas the distribution of sec-

ondary pairwise interaction energies for the long-arm PAFs, PPN-1 and PPN-2, is

skewed to significantly more negative energies than the distribution of primary pair

interaction energies. This result suggests that stronger secondary interactions in the

long-arm PAFs, PPN-1 and PPN-2, due to the additional alkyne functionality per

monomer arm, contributes significantly to the higher degree of misbinding compared
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with the short-arm PAFs, PAF-1 and PPN-3. Furthermore, it can be concluded that

energetic stabilization of misbound monomer configurations by secondary nonbonding

attractive interactions, such as π · · · π, alkyne· · · alkyne, and alkyne· · · π interactions

appear to be crucial for driving interpenetration and reduced porosity (discussed below)

in PAFs. These metastable configurations are sufficiently long-lived on the time scale

of framework assembly that the framework can grow around the misbound monomers,

preventing relaxation to the thermodynamically stable state, as discussed further be-

low.

3.4.2 Role of bulky catalyst–monomer intermediate on PAF structure

Hitherto, we have considered primary and secondary interactions between PAFmonomers.

These data suggest that interpenetration is possible for all four PAFs, but more preva-

lent in the long-arm PAFs, PPN-1 and PPN-2. Experimentally determined surface

areas and pore size distributions for the short-arm PAFs, PAF-127,29 and PPN-3,28,159

however, are consistent with values expected for noninterpenetrated frameworks. In

addition to the difference in the size of the monomers, PAF-1 and PPN-3 are formed

via a Yamamoto mechanism176 while PPN-1 and PPN-2 are synthesized via Eglinton

coupling (see Appendix A.1 for the proposed reaction mechanisms).177 In both reaction

mechanisms, catalyst–monomer intermediates are formed prior to C–C bond formation.

An important difference is that the intermediate formed during the Yamamoto mech-

anism is more sterically demanding than that in the Eglinton coupling (Figure A.1)

and may impede framework interpenetration in PAF-1 and PPN-3. The synthesis of

sterically bulky organic ligands is a common design strategy for minimizing the like-

lihood of interpenetration in metal–organic frameworks (MOFs).190–192 Furthermore,

the monomer–monomer coupling step in the proposed mechanism of the Eglinton reac-

tion does not involve a catalyst–monomer intermediate and so the steric bulk of such

intermediates is not expected to play an important role in determining the degree of

framework interpenetration in PPN-1 and PPN-2.

To account for the effect of the monomer–catalyst–monomer intermediate in the Ya-

mamoto coupling mechanism, a potential energy well (the steric potential) was added

to the monomer–monomer interaction potential at a distance approximately corre-

sponding to the monomer separation in the intermediate (Figure 3.2). The RDFs in
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Figure 3.4 show that the steric potential essentially eliminates interpenetration and

defect formation and thus facilitates the growth of the highly porous networks PAF-1

and PPN-3. The introduction of a steric potential affords a metastable state that acts

to slow down binding and to reduce misbinding of monomers. This is represented in

Figure A.15, which shows that the rate of free monomer loss is decreased when steric

interactions are present. Previous modeling studies performed on PAF-1 suggested that

the formation of the reaction intermediate eliminates interpenetration via a “snap-out”

mechanism,166 in which the two monomers change their orientation from noncollinear

in the intermediate to collinear after bond formation. This requires that monomers

binding to the edge of a cluster point away from the growing framework, leading to

a relatively low-density material. Our results show that a highly directional “snap-

out” mechanism is not required to explain the lack of interpenetration in PAF-1, as

the steric potential we employed is isotropic. Rather, it appears that the formation

of a sterically demanding intermediate prevents the monomers from approaching close

enough to become kinetically trapped in a misbound configuration via secondary in-

teractions. Solvent templating has also been advanced as a mechanism for minimizing

interpenetration.165 This current study indicates that this effect is also unnecessary for

explaining the apparent lack of interpenetration in PAF-1 and PPN-3, as our model

does not explicitly account for the structure of the solvent molecules.

3.4.3 Kinetics of PAF assembly

Figure 3.6 shows that the growth rate of the average cluster size with time depends on

the specific monomer and interaction type. However, in all cases, the growth rate is ap-

proximately linear with time in the early stages (time scales of < 200 ns) of framework

formation (see Figure A.16 for full data). The introduction of secondary nonbonding

interactions in addition to the primary irreversible bonding interactions does not affect

the cluster growth rates of PAF-1 and PPN-3, but these rates are approximately halved

upon the introduction of the steric potential representing the bulky catalyst intermedi-

ate. In contrast the rate of cluster growth for the long-arm PAFs, PPN-1 and PPN-2,

is significantly slower upon addition of secondary interactions. Furthermore, the rate

of cluster growth for the long-arm PAFs is roughly double that of the short-arm PAFs

in the absence of the steric potential. The faster rate of cluster growth for the long-
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arm PAFs would facilitate trapping of misbound monomers in the growing framework,

which, are more prevalent in these systems due to stronger secondary nonbonding in-

teractions. In summary, the more pronounced framework interpenetration in PPN-1

and PPN-2 likely results from a combination of thermodynamic (energetic stabilization

of misbound monomer pairs) and kinetic (rapid framework growth) effects.

0 50 100 150 200
Time [ns]

0

10

20

30

40

50

A
v
g
. 
cl

u
st

e
r 

si
ze

[n
o
. 
o
f 

m
o
n
o
m

e
rs

]

PAF-1

1°
1°+2°
1°+2°+Steric

0 50 100 150 200
Time [ns]

0

10

20

30

40

50

A
v
g
. 
cl

u
st

e
r 

si
ze

[n
o
. 
o
f 

m
o
n
o
m

e
rs

]
PPN-2

0 50 100 150 200
Time [ns]

0

10

20

30

40

50

A
v
g
. 
cl

u
st

e
r 

si
ze

[n
o
. 
o
f 

m
o
n
o
m

e
rs

]

PPN-3

0 50 100 150 200
Time [ns]

0

10

20

30

40

50

A
v
g
. 
cl

u
st

e
r 

si
ze

[n
o
. 
o
f 

m
o
n
o
m

e
rs

]

PPN-1

(a)

(c)

(b)

(d)

Figure 3.6: Average cluster size at early times for (a) PAF-1, (b) PPN-3, (c) PPN-1, and
(d) PPN-2 for all interaction types (solid lines). The dashed lines are linear fits.

The approximately linear growth of the average cluster size with time and the

different growth rates for the PAF networks can be rationalized using the Smoluchowski

coagulation model,193–195 a kinetic model that describes the size distribution of clusters

formed by irreversible two-body collisions in a well-mixed system. Analytical solutions

for the size distribution or its moments exist only in certain special cases of the model.

In particular, when the bimolecular rate constant Kij for the coagulation of a cluster

of i units with a cluster of j units is constant (Kij = K, for all i, j), the average

cluster size increases linearly with time, as observed in our simulations. Assuming

that K = αks is made up of two components, where α is a size-independent sticking

probability and ks is the rate constant for bimolecular collisions, this behavior implies

that ks is independent of the size of the colliding clusters in our simulations. We have
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confirmed this hypothesis by approximating ks as the rate constant of collision of two

Brownian hard spheres of radius Ri and Rj, respectively, and diffusion coefficient Di

andDj, respectively, which gives the analytical expression ks = 4π(Ri+Rj)(Di+Dj).195

By taking the radii of gyration and diffusion coefficients of clusters measured in our

simulations as the radii and diffusion coefficients in this equation, we obtained a large

spread of values of ks, which, as expected, do not depend very strongly on the sizes of

the colliding clusters in the linear growth regime (see Appendix A.10 for details). This

behavior can be rationalized as being due to the compensatory effects of the cluster

size and diffusion coefficient (which is inversely related to cluster size in the Stokes–

Einstein equation, Di = kBT / (6πηRi)) in the equation for ks. From the bimolecular

rate constant K, obtained by fitting the time dependence of the simulated average

cluster size to the Smoluchowski coagulation model (slope = KC1 / 2, where C1 is the

monomer concentration), and the calculated collision rate constants ks, the sticking

probability α was determined for each of the simulated systems. K, ks and α are given

in Table 3.1.

Table 3.1: Bimolecular coagulation rate constant K, collision rate constant ks, and sticking
probability α obtained from simulations.

PAF interactions K [nm3 ns−1] ks [nm3 ns−1] α

PAF-1
1◦ 26.85 69.0 0.39
1◦ + 2◦ 26.48 60.0 0.44
1◦ + 2◦ + steric 8.28 87.0 0.10

PPN-3
1◦ 24.40 80.0 0.31
1◦ + 2◦ 25.93 69.0 0.38
1◦ + 2◦ + steric 11.89 99.0 0.12

PPN-1 1◦ 26.10 57.0 0.46
1◦ + 2◦ 22.20 30.1 0.74

PPN-2 1◦ 44.90 89.3 0.50
1◦ + 2◦ 29.37 49.0 0.60

The coagulation rate constants for the same interaction type do not depend strongly

on monomer type, further supporting the assumption of cluster-size-independent coag-

ulation. This uniformity in coagulation rates across all monomer types is partly due to

the specific conditions of temperature T and solvent viscosity η used in the experiments

and simulations, which lead to similar size-dependent diffusion coefficients for all four

PAF systems according to the Stokes–Einstein relation. Thus, the 2-fold higher rate
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of cluster growth in the long-arm PAFs compared with the short-arm PAFs in Fig-

ure 3.6 is accounted for by the 2-fold higher monomer concentration used to synthesize

the long-arm PAFs. Hence, monomer concentration is the key parameter controlling

framework growth rates in these systems. Temperature or solvent viscosity can also

act as control parameters, but would produce smaller changes in growth rates for the

typical range of temperatures and viscosities that are feasible experimentally.

As expected, the sticking probability increases (slightly) with the addition of sec-

ondary nonbonding attractive interactions and decreases (dramatically) with the ad-

dition of the steric potential, which introduces a barrier to bond formation. Despite

the higher sticking probability when secondary interactions are present, cluster growth

is slower for the long-arm PAFs with these interactions because they lead to signifi-

cantly smaller and denser clusters for a given number of monomers due to substantial

monomer misbinding. This result is supported by a shift in the cluster radius of gyra-

tion distribution to smaller values as a function of number of monomers when secondary

interactions are added; on the other hand, the radius of gyration distribution for the

short-arm PAFs is less sensitive to interaction type due to the lower level of monomer

misbinding (see Figure A.18). The significantly smaller clusters in the presence of sec-

ondary interactions for the long-arm PAFs results in a smaller cluster collision rate

constant ks that reduces the cluster growth rate.

3.4.4 Cluster shape anisotropy and unbound terminal sites

The clusters formed at the early stages of framework growth in the simulations are typ-

ically anisotropic for all PAFs and all interaction types (see Figures A.6–A.9). Cluster

shape can be quantified in terms of the relative shape anisotropy (see Appendix A.11

for details), which was found to have a broad range of values for all PAFs, independent

of the interaction type. The results also show that a slower reaction rate due to the

addition of the steric potential does not influence the anisotropy of the clusters formed.

An implication of the formation of highly anisotropic clusters during framework growth

and nonreversible bonding is that large voids (mesopores) are formed as a result of in-

efficient packing when these clusters join together at later stages. Indeed, mesoporosity

has been measured experimentally in PAF-1 using positron annihilation lifetime spec-

troscopy, which showed mesopores as big as 5 nm in size.29 These mesopores have
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proven useful in applications involving impregnation of PAF-1 with polymers30,31,151

and electrolytes.29

With regards to unbound terminal sites, in the experimental systems these repre-

sent an unreacted bromine in PAF-1 or PPN-3 or an unreacted alkyne in PPN-1 or

PPN-2. The number of unbound terminal sites in the simulations versus time plateaus

above at least 30% for all four PAFs for all types of interactions (Figure A.23). This

contrasts with experimental evidence of negligible unbound terminal sites present in

all four PAFs. Nevertheless, our results are consistent with previous atomistic simu-

lations describing PAFs.165,166 For example, Trewin and co-workers166 reported large

variations in the dependence of the number of unbound terminal sites on reaction

conditions in atomistic molecular dynamics simulations with an artificial distance- and

angle-based bonding step and only found small values (down to ≈ 5%) when very weak

constraints on the directionality of bonding (100◦ from collinear) were used. Similarly,

simulations of amorphous silicon (topologically similar to PAF monomers26,165) show

that without a high-temperature annealing step the number of unbound terminal sites

remains high.196 Our model suggests that a high proportion of unbound terminal sites

is intrinsic to the assembly mechanism under experimental conditions. At the exper-

imental monomer concentration, the rate at which monomers diffuse and irreversibly

bind together produces small, anisotropic clusters at the early stages of assembly that

then agglomerate with irregular binding interfaces, which leaves many unbound ter-

minal sites. Furthermore, slowing down the rate of irreversible bond formation by a

factor of two, by adding the steric potential for PAF-1 and PPN-3, does not appear

to reduce the fraction of unbound terminal sites. In fact, our simulations suggest it

increases the number of unbound terminal sites, as shown in Figure A.23. Our results

suggest that further experiments designed to assess the presence of unbound termi-

nal sites are needed. Cooper and co-workers161 have suggested that discrepancies in

elemental analyses of PPN-1 (formed via palladium-catalyzed homocoupling in their

case) is a result of a high degree of unbound terminal sites. Similarly, the presence of

residual nickel in PAF-1 and PPN-3 and residual copper in PPN-1 and PPN-2 suggests

the possible formation of unbound terminal sites.27,28,159 Previous work suggests that

unbound terminal sites may be difficult to discern using standard techniques such as

solid-state NMR and FTIR.161,162
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3.4.5 Framework porosity

The properties of the bulk PAF materials were estimated from measurements of the

discrete clusters formed in the constant-volume simulations by using a method devised

to minimize the effect of the external surface of the clusters (see Appendix A.7 for de-

tails). The calculated average density and nitrogen-accessible surface areas are reported

in Table 3.2. The standard deviation of the calculated properties is large relative to the

mean, implying a high degree of variability among the simulated clusters. Note that

experimental porosity data of these types of materials are highly variable, which is evi-

dent when comparing reported PAF-1 BET surface areas in two different publications in

which identical synthetic procedures were used (5600 versus 3639m2 g−1).27,29 Table 3.2

also provides experimental BET surface areas for PPN-328,161 and PPN-1161 produced

via different synthetic methods. For PPN-3, Yamamoto coupling was employed in all

cases, but the temperature and solvents were varied. In this case the material with the

highest surface area (4221m2 g−1) was synthesized at room temperature in toluene and

dimethylformamide.28 The synthesis of PPN-1 followed a palladium-catalyzed proce-

dure.161

Table 3.2: Mean nitrogen-accessible surface areas and densities obtained from constant-
volume simulations (mean and standard deviations weighted by cluster mass) and for a
perfectly ordered diamondoid (dia) network, where experimental surface areas are also
given.

mean density [g cm−3] mean surface area [m2 g−1]
PAF interactions sim. sim. dia. sim. sim. dia. expt.

PAF-1
1◦ 0.20 ± 0.15

0.32
7620 ± 1240

5930 5600,27 3639291◦ + 2◦ 0.35 ± 0.10 5150 ± 1020
1◦ + 2◦ + steric 0.29 ± 0.00 7680 ± 300

PPN-3
1◦ 0.18 ± 0.11

0.20
8430 ± 1600

6623 2840,159 3180,161 4221281◦ + 2◦ 0.28 ± 0.09 5990 ± 940
1◦ + 2◦ + steric 0.16 ± 0.04 8960 ± 1220

PPN-1 1◦ 0.08 ± 0.04 0.07 10100 ± 680 10560 1249,159 1470161
1◦ + 2◦ 0.13 ± 0.08 6370 ± 670

PPN-2 1◦ 0.04 ± 0.04 0.09 10100 ± 600 8340 1764159
1◦ + 2◦ 0.10 ± 0.06 7070 ± 420

The results in Table 3.2 highlight the drastic effect of secondary nonbonding inter-

actions on the gravimetric surface area of PPN-1 and PPN-2. The greater decrease in

porosity for PPN-1 and PPN-2 compared with PAF-1 and PPN-3 when secondary in-

teractions are introduced indicates a higher propensity for interpenetration in PPN-1
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and PPN-2 due to monomer misbinding, as discussed earlier. For all PAFs except

PPN-1, the gravimetric surface area obtained from our model is greater than the sur-

face areas obtained from the ideal diamondoid framework. This is largely the result of

the lower densities in clusters produced by our model. Experimental validation of the

densities, using helium or mercury picometry for example, would offer much needed

insight. Volumetric surface areas and pore volumes are also reported in Table A.8. In

our models, interpenetration does not completely block the pores, the result of which

is the formation of many small pores and a higher volumetric surface area, as shown in

Table A.8, when secondary interactions are present compared with when only primary

interactions are present. Our results show that the volumetric surface area increases

as the density of the framework increases and pore volume decreases as the density of

the framework increases (Table 3.2 and Table A.8).

Table 3.2 shows that our model can qualitatively rationalize the relative porosities

of PAF-1, PPN-1, PPN-2, and PPN-3. As expected, interpenetration leads to a signifi-

cant loss in porosity for all four PAFs (1◦ + 2◦). Furthermore, the presence of sterically

demanding intermediates in the synthesis of PAF-1 and PPN-3 (1◦ + 2◦ + steric) lead

to the retention of high degrees of porosity. However, the order of the surface areas

of PAF-1 and PPN-3 disagree with experimental findings. We note that the simulated

porosity in all cases is higher than that measured experimentally, and this behavior

is replicated in the pore volumes (see Appendix A.12). The porosity analysis mini-

mized the effect of the external surface of the clusters and is consistent with results

obtained from the compression simulations (discussed below) in which there was no

external surface in the system. Therefore, we suggest that the discrepancies between

our results and experiments are due to an unexplored aspect of the mechanism of PAF

formation that is not captured by our simulation model, which accurately accounts

for the key properties of monomer shape, interaction strength, concentration, diffu-

sion coefficients, and irreversible binding. Considering the frameworks produced by

our model are consistently highly porous, despite the substantial variations in system

parameters between the different PAFs studied, we suggest the possibility of side reac-

tions that produce defect sites and pore blockages in PAF synthesis as a key factor in

determining framework porosity. It has been suggested previously for other amorphous

porous polymers that the kinetically controlled reactions that are employed likely pro-
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duce defect-ridden frameworks that would be difficult to distinguish from the desired

products by standard techniques.161,162 Previous syntheses of each PAF have reported

elemental analyses indicating the presence of residual reactants and impurities within

the pores, which suggests the blocking of pores could play a role in experimental poros-

ity loss that our model does not capture.28,161 With respect to PPN-1 and PPN-2, the

color change to brown reported in the experimental procedure suggests the presence

of defects, as reported for other alkyne-bridged polymers.197 The presence of copper

in the Eglinton reaction (mostly as copper(II), although short-lived copper(I) species

may be produced) suggests the possibility for nanoparticle formation, which would not

only act as pore-blocking defect sites but also show reactivity towards alkyne groups

(such as oxidation of the alkyne groups).198,199 Framework collapse upon desolvation

is also likely to occur based on the high degree of dangling bonds (discussed above), as

computer simulations have shown that amorphous cross-linked polymers formed under

conditions that lead to decreased cross-linking have a high propensity for framework

collapse and our model does not account for such a process.173 Finally, within our

models, all coupling reactions were treated equally but the reaction efficiencies and

mechanisms for the different PAFs likely differ in experiments, which may impact the

quantitative results.

3.4.6 Compression simulations

The analysis up to this point has been of the early stages of PAF assembly and of

properties of relatively small discrete clusters from constant-volume simulations. The

extrapolation to the properties of the bulk PAF material from those of the discrete

clusters was inexact, so we have also run simulations of each PAF in which the system

was isotropically compressed at a constant rate to approximate the later stages of PAF

assembly, during which the small clusters agglomerate to form the bulk PAF (Fig-

ure 3.7a). Porosity analysis of compressed systems obtained using two different com-

pression rates that differed by a factor of 2 yielded similar results (see Appendix A.13),

suggesting that the simulated porosity is representative of PAFs formed under con-

ditions of much slower agglomeration that may occur experimentally. Furthermore,

the results of analysis of the discrete clusters from the constant-volume simulations

is comparable to that for the compressed systems, in which a single cluster spanned
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the entire periodically replicated system with no external surface, indicating that the

cluster analysis from the early stages of assembly provides a good representation of

the bulk material. Although the systems were compressed, there remains significant

void space, as highlighted by the holes running through slices of the final compressed

systems shown in Figure 3.7b–e. This result further supports the suggestion that the

formation of large void spaces is inherent to the irreversible bond formation in PAF

materials and results from anisotropic clusters that are formed early in the assem-

bly process agglomerating in a disordered fashion under kinetic control. Furthermore,

Cooper and co-workers have reported syntheses of PAF-1, PPN-1 and PPN-3 in which

only 30–60% of the experimental pore volume was due to micropores.161 Pore size

distributions (PSDs) were calculated for the compressed systems and are shown in Fig-

ure 3.7f–i. Good agreement with experiment is obtained in all cases for the position

of the peak in the pore size distribution when the full set of interactions (primary

+ secondary (+ steric for PAF-1 and PPN-3)) is used for each PAF. Additionally, a

significant shift in the distribution to smaller pore sizes is seen for PPN-1 and PPN-2

when secondary interactions leading to interpenetration are switched on. Note that the

approximate size of the catalyst complex in the Yamamoto mechanism is described by

an energy well (Figure 3.2a) that is only slightly smaller than the position of the peak

in the simulated pore size distributions for PAF-1 and PPN-3 in Figure 3.7, suggesting

why the formation of this intermediate effectively suppresses interpenetration in these

PAFs.

46



0 10 20 30 40 50 60

Pore size [Å]

P
ro

b
a
b
ili

ty

PAF-1

1° - Fast

Full - Fast

Full - Slow

expt

0 10 20 30 40 50 60

Pore size [Å]

P
ro

b
a
b
ili

ty

PPN-2

0 10 20 30 40 50 60

Pore size [Å]

P
ro

b
a
b
ili

ty

PPN-3

0 10 20 30 40 50 60

Pore size [Å]

P
ro

b
a
b
ili

ty

PPN-1

(a)

t = 0 ns

t = 473 ns

PAF
growth

compression

(b)

PAF-1

(c)

PPN-3
(d)

PPN-1

(e)

PPN-2
(f) (g)

(h) (i)

Figure 3.7: (a) Compression of PAF-1 at a constant rate toward the cutoff pressure at the
“fast” rate. (b-e) Slices through the final compressed system for (b) PAF-1, (c) PPN-3,
(d) PPN-1, and (e) PPN-2 in the presence of the full set of interactions. Simulated and
experimental pore size distributions for (f) PAF-1, (g) PPN-3, (h) PPN-1, and (i) PPN-2
compressed at two rates with the full set of interactions and in the presence of primary
interactions only.
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3.5 Conclusions

We have developed a mesoscale CGmolecular dynamics simulation model to account for

the essential features of porous aromatic framework (PAF) assembly: monomer geom-

etry, monomer concentration, energetics and anisotropy of intermonomer interactions,

and dynamics of monomers and their aggregates. With experimental characterization

of PAF materials limited due to their amorphous nature, the results of our model help

to clarify the structural properties and assembly mechanism of a series of four PAFs;

PAF-1, PPN-1, PPN-2, and PPN-3. The simulations suggest that relatively weak dis-

persion forces due to π · · · π, alkyne · · · π, or alkyne · · · alkyne interactions and bulky re-

action intermediates are crucial in determining the structure and porosity of PAF mate-

rials. Our findings suggest that the propensity for framework interpenetration of a PAF

material is substantially determined by the presence of these nonbonding dispersion

interactions, which stabilize misbound monomer configurations, and the rate of cluster

growth, which depends largely on the monomer concentration used in the experimental

synthesis of the PAFs studied. We found that interpenetration only becomes significant

in the presence of π · · · π, alkyne · · · π, or alkyne· · · alkyne interactions, which implies

that minimization of these interactions (for example, via the replacement of alkyne

and aryl groups with rigid alkyl groups such as bicyclo[1.1.1]hexane) would reduce in-

terpenetration. We note that quantum chemistry calculations200,201 have shown that

adding substituents to benzene always increases the strength of face-to-face binding in

aromatic dimers, regardless of the electron-donating or electron-withdrawing nature of

the substituent, and can increase the strength of face-to-edge binding, suggesting that

adding substituents to the aromatic rings in PAFs is unlikely to be a fruitful strategy

for reducing framework interpenetration. We introduced an interaction potential into

the model that mimics the formation of bulky metastable reaction intermediates in the

Yamamoto mechanism for synthesizing PAF-1 and PPN-3 and showed that interpen-

etration is effectively eliminated in PAFs formed by this mechanism, resulting in high

porosity. Thus, one strategy to reduce interpenetration and improve porosity in PAFs

is to employ a reaction that introduces steric hindrance using a bulky intermediate,

for example by increasing the steric bulk of the ligands associated with the catalyst.

In particular, our results suggest that using a catalyst complex similar in size to the
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pores in the noninterpenetrated framework can effectively suppress interpenetration.

However, we also note that too large a catalyst could impede framework formation.

We showed that irreversible binding of monomers generally leads to highly disordered,

poorly connected porous networks and a significant proportion of unbound terminal

sites. Slowing down the rate of bond formation by adding a barrier to irreversible

binding does not dramatically change this result. In fact, our results suggest that

for typical monomer shapes, concentrations, and diffusion coefficients in experiments,

frameworks produced by irreversible binding of monomers form highly porous struc-

tures very robustly. Counterintuitively, this behavior is a result of, rather than in spite

of, their kinetically controlled formation mechanism and inherent disorder. Although

interpenetrated structures were found for PPN-1 and PPN-2, interpenetration under

the conditions simulated did not reduce porosity as much as expected based on ex-

perimental measurements. This result suggests other causes of low porosity (such as

side reactions and reaction byproducts) that are not captured by the simulation model

and remain poorly understood. However, if these factors could be eliminated, our find-

ings indicate that very porous structures would be obtained. These findings should be

generally applicable to other porous polymers formed through irreversible reactions.
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4.1 Abstract

The ability to align porous metal–organic frameworks (MOFs) on substrate surfaces

on a macroscopic scale is a vital step toward integrating MOFs into functional devices.

But macroscale surface alignment of MOF crystals has only been demonstrated in a

few cases. To accelerate the materials discovery process, we have developed a high-

throughput computational screening algorithm to identify MOFs that are likely to un-

dergo macroscale aligned heteroepitaxial growth on a substrate. Screening of thousands

of MOF structures by this process can be achieved in a few days on a desktop work-

station. The algorithm filters MOFs based on surface chemical compatibility, lattice

matching with the substrate, and interfacial bonding. Our method uses a simple new

computationally efficient measure of the interfacial energy that considers both bond

and defect formation at the interface. Furthermore, we show that this novel descriptor

is a better predictor of aligned heteroepitaxial growth than other established interface

descriptors, by testing our screening algorithm on a sample set of copper MOFs that

have been grown heteroepitaxially on a copper hydroxide surface. Application of the

screening process to several MOF databases reveals that the top candidates for aligned

growth on copper hydroxide comprise mostly MOFs with rectangular lattice symmetry

in the plane of the substrate. This result indicates a substrate-directing effect that

could be exploited in targeted synthetic strategies. We also identify that MOFs likely

to form aligned heterostructures have broad distributions of in-plane pore sizes and

anisotropies. Accordingly, this suggests that aligned MOF thin films with a wide range

of properties may be experimentally accessible.

4.2 Introduction

Metal–organic frameworks (MOFs) are a class of materials formed by connecting metal

nodes and organic links into an extended network. In the past two decades, a fo-

cus of MOF research has been to develop synthetic strategies for the precise control

of pore structure and functionality on the single-crystal scale.33 However, more re-

cently, extending the design principles of MOF chemistry from single-crystal to macro-

scopic dimensions (nm to cm) has garnered significant interest.46–48 Approaches to
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MOF thin-film fabrication include layer-by-layer synthesis, liquid-phase epitaxy, and

chemical-vapor or atomic-layer deposition.53,54 However, these techniques have yielded

partially oriented thin films with out-of-plane alignment only.46,57,202,203 To fully realize

the potential of crystalline MOF thin films in applications such as optoelectronics, gas

separation, and sensing, alignment in both in-plane and out-of-plane directions is re-

quired.47,54 Recently, Falcaro and co-workers have developed a one-pot methodology for

the fabrication of centimeter-scale MOF films that achieved both in-plane and out-of-

plane alignment.55 In this case, prealigned crystalline copper(II) hydroxide (Cu(OH)2)

nanobelts were used as a sacrificial substrate for the epitaxial growth204 of copper-

based MOFs and precise pore alignment was confirmed by comprehensive diffraction

experiments. It was found that a necessary condition for epitaxial growth was a close

matching between the MOF and Cu(OH)2 lattice parameters. Such macroscale align-

ment was demonstrated only for four MOFs, which represents a very small subset

of known MOF structure types and functionalities. To fully exploit this fabrication

strategy, an efficient procedure for selecting MOFs that possess lattice parameters that

match those of the Cu(OH)2 substrate from the vast database of known structures is

essential.

Materials design through high-throughput computational screening offers a low-cost

strategy to efficiently guide experimental endeavors. In recent years, advancements in

computer hardware and the development of open databases of experimental and the-

oretical material properties, which are continually growing, have led to rapid growth

in this research area.17,84,87 Indeed, high-throughput screening of candidate materials

for aligned heteroepitaxial growth of MOFs would avoid an arduous and inefficient

experimental approach. To this end, we have developed a high-throughput screening

process to select and rank MOFs based on their likelihood to form aligned crystal-

lites on a Cu(OH)2 substrate. Although an atomic-level description of the growth

mechanism and interfacial chemistry is necessary to fully characterize the kinetics and

thermodynamics of these MOF films, such considerations are not amenable to rapid

screening.48,116,205–208 Instead, we have extended established methods for evaluating

interfacial lattice matching115,116,209–212 and chemical compatibility213 to assess MOF–

substrate interactions in a manner that accounts for framework porosity and allows for

high-throughput screening. Geometrical lattice-matching algorithms209,210 have been
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employed in many screening studies as they offer an efficient way to exclude incompat-

ible interfacial structures based on lattice mismatches.115,116,211–213 However, chemical

compatibility at the interface is expected to be a more discriminating measure of in-

terfacial stability than lattice matching.212,213 For example, Walsh and co-workers re-

ported an efficient screening process for matching contact layers in hybrid perovskites

that considered the chemical compatibility at the interface by calculating the overlap

of atoms on either side of the interface.213 Although this approach was demonstrated

to be effective for nonporous solids, in this present work, we show that the atomic site

overlap is not the most suitable measure of interfacial binding for highly porous mate-

rials such as MOFs. We identify a simple and easily computed proxy for the interfacial

energy that considers the number of bonds formed and broken as a result of interface

formation, which accurately predicts macroscale alignment of MOFs on a Cu(OH)2
substrate. Application of our screening process to the CORE MOF,94 hMOF,101 and

TOBACCO99,214 databases shows that specific MOF topologies are favored for aligned

growth from Cu(OH)2, but that a wide range of pore network properties can never-

theless be obtained. Such knowledge will underpin design principles that will lead to

a significant decrease in the experimental workload to develop precisely aligned MOF

films.

4.3 Computational approach

We have applied a three-step screening process: (1) selection of candidate MOFs based

on chemistry (in this study, MOF structures were searched for that possess copper-

bound carboxylate functionalities); (2) refinement of the data set based on lattice

matching; and (3) ranking of MOFs by interfacial bonding (see Figure 4.1). While

step 3 is the most computationally intensive, high-throughput screening can be achieved

with this process: e.g., ∼5000 crystal structures were screened in ∼25 h on six Intel

i7-4790K CPU cores. In general, crystallographic information files (CIFs) are used as

the input for the MOF layer (film) and a single crystal structure (also from a CIF) is

used as input for the substrate layer (Cu(OH)2 in the following work). A definition of

the binding geometry across the interface between the two materials is also required.

The coordination geometry within the MOF is defined by the input crystal structure,
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and thus the screening process automatically accounts for multiple coordination ge-

ometries in the MOF that could arise, e.g., from multiple oxidation states of the metal

nodes. Although we consider only a single interfacial binding geometry in this work,

the algorithm can readily be extended to consider different types of interfacial bind-

ing atoms and/or binding geometries. This work focuses on the epitaxial growth of

MOFs from a metal-hydroxide surface (specifically carboxylate-bound copper MOFs

on Cu(OH)2); however, the screening algorithm is not fundamentally limited to these

specific systems.
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Figure 4.1: Flowchart of the screening process, in which a database of MOF crystal struc-
tures and a target substrate crystal structure act as inputs. The MOF database is filtered
toward a smaller list of candidate structures for aligned heteroepitaxial growth. Each step
is illustrated schematically on the right. Step 1 filters the database for MOFs that contain
a carboxylate functionality bound to copper atoms and do not contain any metal other
than copper. Step 2 checks if matching supercells (e.g., those outlined in solid lines, with
dashed lines showing the corresponding unit cells; in this example, the red supercell is the
same size and shape as the unit cell) exist for a given MOF–substrate pair. Step 3 checks
all possible supercells for interfacial bonding, allowing for translations along the supercell
vectors.

4.3.1 Identifying structures with appropriate chemistry

Step 1 of the screening process is designed to filter out all MOFs that do not possess

the appropriate chemistry to bind to the substrate. This step can be generalized
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to any binding geometry. The algorithm uses the Atomic Simulation Environment

(ASE)215 and pymatgen216 Python libraries (description provided in Appendix B.1).

In this study, the search was limited to MOFs containing copper nodes and carboxylate

functional groups with each oxygen bound to a copper atom (see Figure 4.1). This

constraint was guided by experiments by Falcaro and co-workers, in which Cu(OH)2
acted as a sacrificial substrate and metal source for the MOF. However, there is no

experimental evidence that heteroepitaxial growth of MOFs is limited to sacrificial

substrates or to MOFs of the same metal as the substrate. Walsh and co-workers115

suggested that the chemical similarity of both sides of the interface (defined in their

work by the difference in Pearson hardness between the metals in the two environments)

is a driving force for stability at the interface. According to this criterion, copper-based

MOFs on a copper-based substrate are expected to produce stable interfaces.

4.3.2 Identifying structures with matching lattices

Step 2 of the screening process determines whether at least one Miller plane of a given

MOF matches the lattice dimensions of the target substrate. In this work, the (010)

Miller plane of Cu(OH)2 217 was selected as it is known from experiments that this

plane is exposed at the surface of this material.55 Zur and McGill209,210 developed

an efficient geometrical lattice-matching algorithm that has been widely adopted and

shown to predict heteroepitaxial interfaces consistent with experimental data.116,211–213

The lattice-matching algorithm requires that the translational symmetry of each lat-

tice matches at the interface within a specified tolerance. Although lattice matching

is not a sufficient condition for growth, poor lattice matching can impact interfacial

growth and can be used to rule out candidate structures for aligned MOF films. For

example, large lattice mismatches have been found to anisotropically limit the size of

hybrid perovskite crystals/grains in the direction of high mismatch.213,218 Given a set

of primitive vectors for a specified lattice on one side of the interface (the unit cell), the

algorithm (implemented using the pymatgen Python library216,219) produces a series of

supercells made up of an integer multiple of contiguous unit cells. A supercell is de-

fined by two lattice vectors, which are reduced such that the supercell is unique.209,210

A pair of supercells on either side of the interface, with match areas m times the MOF

unit cell area and n times the substrate unit cell area, are deemed to match based on
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four criteria: (1) the supercell match areas are below a defined threshold (set to the

smaller of 90× the substrate unit cell area or 9× the film unit cell area), (2) the area

ratio deviation,
∣∣∣∣AMOF

Asub
− n

m

∣∣∣∣, where AMOF and Asub are the MOF and substrate unit

cell areas, respectively, is below a defined threshold (set to 15%), (3) the corresponding

lattice vectors are equal in length within a defined tolerance (set to 10%), and (4)

the angles between the lattice vectors on either side of the interface are equal within

a defined tolerance (set to 2%). (The choice of the parameters used in the matching

criteria are discussed further in Section 4.4.1 and Appendix B.2). In the screening

process, a MOF structure is eliminated if no Miller plane with indices −1 ≤ h, k, l ≤ 1

is found to have a matching lattice with the substrate. If at least one pair of supercells

for a MOF–substrate pair passes all four tests, then that MOF continues to step 3 of

the screening process.

4.3.3 Identifying interfaces with favorable binding

Even if MOF and substrate lattices are found to match, chemical compatibility at the

interface is expected to be the major factor in determining interfacial stability.209,212,213

Hence, the purpose of the final step of the screening algorithm is to identify interfaces

with favorable binding by employing a geometric definition of interfacial binding. To

do this, all possible binding planes of each MOF Miller plane that pass step 2 of

the screening process are determined. We define MOF binding planes as those that in-

clude oxygens from carboxylate groups and Cu(OH)2 binding planes as those that have

a layer of copper atoms in the (010) Miller plane. When building the MOF binding

plane, a 3D slab of the crystal structure with one face corresponding to the interface

Miller plane216,219 is selected, in which the axis bisecting the O–C–O angle of each car-

boxylate functionality at the surface is approximately orthogonal to the interface (see

Appendix B.3). We use this definition because density functional theory calculations

show that the bridging binding mode (one oxygen bound to one metal) of deproto-

nated carboxylates with this axis orthogonal to a metal-oxide surface (e.g., TiO2) is

most stable for the benzene dicarboxylate (BDC) ligand.116,220 To test the chemical

compatibility between a selected Miller plane of a MOF and the (010) Miller plane of

Cu(OH)2, the degree of binding at the interface of the MOF and Cu(OH)2 binding plane

unit cells is calculated once the unit cells are mapped onto each of their correspond-
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ing supercells (identified in the lattice-matching step (step 2)).221 By iterating over all

prescribed supercells and searching interfacial configurations, interfaces with the most

favorable binding for each MOF–substrate pair are identified (see Appendix B.3.4).

Several different geometric measures of interfacial binding were used to quantify the

chemical compatibility of an interface. Each of these measures can take values between

0 (no binding) and 1 (perfect binding). One previously applied geometric definition of

the degree of bonding at the interface is the atomic site overlap (ASO), defined as213

ASO = 2SC

SA + SB
, (4.1)

where SA and SB are the number of binding atoms in the substrate and film binding

planes, respectively, and SC is the number of coincident atom pairs at the interface.

Throughout this work, two atoms on either side of the interface were defined as coin-

cident (bonded) if their separation in the 2D binding plane was less than the mean of

their ionic radii (0.96Å for copper (0.57Å) and oxygen (1.35Å)).222,223 This definition

for the ASO has previously been applied to determine the chemical stability of contact

layers in hybrid perovskites;213 however, for interactions involving porous structures,

such as MOFs, it yields low ASOs in general due to the disparity between the num-

ber of binding sites per unit area in the MOF and substrate layers as a result of the

porous MOF structure.115 Therefore, we have redefined the ASO to be a function of

the coordination of the MOF binding sites only as

ASO = S ′C
SB
, (4.2)

where S ′C is the number of MOF (film) binding atoms that form bonds with the sub-

strate and SB remains the number of film binding atoms, as defined above. Thus, the

ASO describes the proportion of MOF binding atoms that can form bonds with the

substrate.

The atom positions in a given supercell are not uniquely specified, but can be

varied by rigid translations of the lattice along the supercell vectors without changing

the supercell itself. We use a Metropolis Monte Carlo (MC) algorithm to apply random

rigid translations along the MOF supercell vectors with respect to the fixed substrate to

find the maximum ASO (see Appendix B.4 for details). For computational simplicity,
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we assumed rigid MOF and substrate structures (we also did not consider the possibility

of surface reconstruction); however, flexibility is implicitly taken into account by the

lattice-matching and binding tolerances used in screening steps 2 and 3. Assuming rigid

frameworks could lead to false negatives in the screening process as structural relaxation

could enhance interfacial binding. Nevertheless, we found that the rigid approximation

yields sufficient agreement with experimental results while allowing efficient screening

(see Section 4.4.1). Structural distortions of the MOF framework55,206 and in-plane

rotations that afford improved epitaxial matching224 have previously been shown to

relieve interfacial stress in MOF heterostructures. Accordingly, our screening process

accounts—either explicitly or implicitly—for mechanisms by which interfacial stress can

be reduced by considering multiple interface orientations and inherent MOF flexibility.

As MOFs are formed from metal nodes and organic linkers, slicing their crystal

structures without breaking strong covalent bonds (that may be part of the organic link-

ers) is nontrivial.115 We use a bond network approach to determine appropriate binding

planes when slicing a MOF crystal at a particular Miller plane (see Appendix B.3),

which introduces missing linker defects (i.e., removes the entire linker) when covalent

bonds of the linker are broken by the slicing process. This approach is similar to

that used in recent work that applied a graph network analysis to determine the most

stable way to slice a crystal structure based on the assumption that the most stable

slice minimizes the number of broken bonds.225 A missing linker defect results in co-

ordinatively unsaturated metal centers in the MOF near the binding plane, which is

likely to be energetically unfavorable with respect to the pristine structure.226 How-

ever, we note that a number of MOFs possessing defect sites are known to retain their

structural integrity.206,226–228 As the ASO does not account for the number of dangling

or noncoordinated MOF atoms that are not carboxylate oxygens, thermodynamically

unstable interfaces with a large proportion of dangling bonds can potentially have high

ASOs and thus falsely predict macroscale aligned heteroepitaxial growth. Therefore,

we propose a novel geometric measure of interfacial binding that is similar to the ASO,

but also considers the number of dangling MOF bonds at the interface and thus is ex-

pected to be a better proxy for the interfacial energy. We call this quantity the change
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in interfacial bonds or ∆IB and define it to be

∆IB = nformed

nformed + nbroken
, (4.3)

where nformed is the number of MOF–substrate bonds that are formed and nbroken is

the number of MOF metal–linker bonds that are broken to form the interface but are

not re-formed as MOF–substrate bonds. ∆IB is identical to the ASO if no missing

linker defects (broken bonds) are introduced when building the interface and only one

MOF–substrate bond is formed per binding atom pair at the interface, but decreases

relative to the ASO with increasing numbers of missing linker defects. We contend

that considering the energetic cost of forming the interface using ∆IB provides a more

accurate measure of interface stability than previously used geometric descriptors. In-

deed, in Section 4.4.1.2 we demonstrate the superiority of the ∆IB over the ASO as a

predictor for aligned heteroepitaxial growth of MOFs.

4.3.4 Structural characterization

We measured crystal structure porosity using Zeo++,134 which applies a Voronoi de-

composition to model the void space in a crystal structure and, due to its efficiency,

has been widely employed for high-throughput screening processes.17,229–231 Where ap-

plicable, all Zeo++ calculations used a probe radius of 1.82Å to represent N2. The

pore-limiting diameter (or largest free sphere) was calculated along each of the three

crystallographic axes using the resex command in Zeo++. All structures were rendered

with OVITO.187

4.4 Results and discussion

4.4.1 Validation of screening methodology

We validated our screening algorithm and determined an optimal set of parameters

for each step and substep by comparing the results to experimental data obtained

for a series of aligned MOFs heteroepitaxially grown through a one-pot synthetic

method on a Cu(OH)2 (010) surface.55 The experimental MOF data set (given in
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Table B.2) comprised six ditopic carboxylate-linked MOFs and CuBTC (also known

as HKUST-1), a well-studied 3D MOF with a tritopic carboxylate linker. Two of the

dicarboxylate-linked MOFs were 3D pillared frameworks (containing 1,4-benzene di-

carboxylate (BDC) and either 4,4′-bipyridine (BPY) or 1,4-diazabicyclo[2.2.2]octane

(DABCO) coordinated to the axial positions of the copper paddle wheel), while the

remaining four were 2D eclipsed sheet structures. Each of the MOFs possess cop-

per paddle wheels as their metal nodes. Aside from the 2D MOF formed from the

1,4-terphenyl dicarboxylate (TDC) linker, all ditopic MOFs were shown to grow with

in-plane alignment on the Cu(OH)2 substrate. CuBTC did not form crystals with in-

plane alignment, but out-of-plane alignment was reported. Note that our algorithm

specifically identifies structures that are likely to grow with in-plane alignment on

Cu(OH)2.

The choice of tolerance parameters in the screening process was motivated by the

values used in previous applications of the lattice-matching algorithm,115,116,209–213 as

well as by the ability to correctly categorize the MOFs in the experimental validation

data set. A length mismatch tolerance between supercell vectors of 10%, an angle

mismatch tolerance of 2%, a maximum match area of the smaller of 90× the sub-

strate unit cell area (∼1350Å2 for Cu(OH)2 (010)) or 9× the film unit cell area, and

a maximum area ratio tolerance of 15% were used. A larger length mismatch tol-

erance was used than generally applied in the lattice-matching literature115,209–211,213

due to the flexible nature of MOFs.115 This choice is supported by experimental data

for synthesized MOF-on-MOF heterostructures, in which large lattice mismatches are

alleviated by MOF flexibility.206 To allow testing of MOFs with large unit cells and

to ensure that all MOFs in the experimental data set were found to have at least one

Miller plane with a substrate-matching lattice, the maximum match area used was

much larger than values previously used for metal-oxide interfaces (∼600Å2)209,210 or

for MOF-on-metal-oxide or MOF-on-metal interfaces (20× the unit cell area for the

MOF or metal/metal oxide).115 A limit on the number of unit cells in the supercell was

imposed because large-area interfaces are unlikely to form without defects. Thus, com-

parison of computed results for very large match areas with experiment is not expected

to be meaningful. An analysis of the effect of varying the tolerances and maximum area

constraints on the final results for a test database found that the chosen parameters
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provide robust results (see Appendix B.2).

Figure 4.2: Categorical scatter plots of all crystal structures in the experimental data set
(listed in Tables B.2 and B.3) showing categorization based on the (a) minimum coincident
match area, (b) minimum ratio of MOF and substrate unit-cell areas, (c) maximum ASO,
and (d) maximum ∆IB. The shaded region indicates the approximate threshold ∆IB above
which in-plane heteroepitaxial alignment occurs. The red line indicates the ∆IB threshold
(0.67) applied throughout the remainder of this work. Separated nets of CuBDC-BPY
are shown as CuBDC-BPY-i-1 and CuBDC-BPY-i-2, while the interpenetrated structure is
not shown (see Appendix B.7). Categorization is based on whether the associated Miller
plane grows experimentally from Cu(OH)2 with in-plane alignment (determined by X-ray
diffraction).55

Figure 4.2 shows the experimental data set55 categorized by four different descrip-

tors: (1) the minimum coincident match area, (2) the minimum ratio of MOF and sub-

strate unit cell areas, (3) the maximum ASO, and (4) the maximum ∆IB obtained for

each crystal structure in the experimental data set (Table B.3). Screening of materials,
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including MOFs, for heteroepitaxial growth using the lattice-matching algorithm209,210

has previously shown that top candidates can be determined by ranking matching lat-

tices by their minimal coincident match area (or the smallest unit-cell multiple that

yields a matching lattice).115,116,211 This is because interfaces with smaller match areas

(and smaller mismatch) are expected to have fewer defects.209,210,213 Figure 4.2a shows

that the minimum coincident match area does not distinguish between MOFs that

undergo aligned heteroepitaxial growth from those that do not; furthermore, in some

cases for which such growth occurs, the MOF interface that grows on the substrate is

not the one with the minimum coincident match area. On the other hand, Figure 4.2b

shows that the minimum ratio of the MOF and substrate unit-cell areas for all Miller

planes successfully categorizes almost all the MOFs in the experimental data set and

suggests that a small ratio of MOF and substrate unit-cell areas is correlated with

aligned heteroepitaxial growth.

Both the minimum coincident match area and unit-cell area ratio are geometrical

descriptors that do not consider the chemistry at the interface and are significantly

faster to calculate than the ASO or ∆IB. But the neglect of interface chemistry misses

crucial features of interface formation. For example, in each of the cases in Figure 4.2a

for which the lowest match-area interface is not the one that is known to exhibit

heteroepitaxial growth, the associated MOF binding interface was found to have low

ASO and ∆IB (≈ 0.5; not shown in Figure 4.2). Figure 4.2b suggests that aligned

heteroepitaxial growth occurs for a unit-cell area ratio below about 10. However,

several MOFs in the validation data set have Miller planes that satisfy this criterion

but are not observed to undergo aligned growth on Cu(OH)2. By contrast, the ∆IB

descriptor, which does account for bonding between atoms at the interface, correctly

categorizes almost all of the MOF interfaces that grow aligned on Cu(OH)2, as shown

in Figure 4.2d, without predicting aligned growth for Miller planes that have not been

observed. On the other hand, the ASO, which also considers interfacial binding between

atoms and has previously been used to categorize heteroepitaxial growth,213 does not

appear to be as good a predictor of aligned heteroepitaxy as ∆IB, as indicated by the

lack of any obvious trend in Figure 4.2c.

Figure 4.2 shows that CuTDC is an outlier by both the unit-cell area ratio and

∆IB descriptors; i.e., by these measures, it would be predicted to undergo aligned het-
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eroepitaxial growth that is not observed experimentally. We suggest that experimental

factors associated with CuTDC that are not accounted for in the screening algorithm,

such as the low solubility of the TDC linker, may inhibit aligned MOF growth. Out of

the MOFs that experimentally show aligned heteroepitaxial growth on Cu(OH)2, only

CuNDC has a lower ASO or ∆IB than CuTDC. CuNDC has been found to deform at

MOF–MOF interfaces with high lattice mismatch,206 which our screening algorithm

does not consider, and so this MOF could also potentially be miscategorized by the

metrics in Figure 4.2. Neglecting CuTDC, Figure 4.2 suggests that MOFs with a ∆IB

above a threshold somewhere between 0.60 and 0.77 undergo aligned heteroepitaxial

growth, while those with ∆IB below this threshold do not. We have applied a threshold

value around the midpoint of this range (∆IB = 0.67) in further analysis. For all MOFs

for which aligned heteroepitaxial growth has been shown to occur experimentally, only

one in-plane orientation of the MOF crystallites was found. Our screening results are

consistent with this observation: for example, the MOFs in Figure 4.2d with ∆IB above

the threshold for aligned heteroepitaxial growth (≥ 0.67) have no other in-plane orien-

tations or Miller planes with a ∆IB above this threshold (the method used to identify

unique interfaces is described in Appendix B.5.1). The following two sections discuss

the robustness of the screening algorithm and highlight the importance of considering

the interfacial energy (via ∆IB) to avoid false positives.

4.4.1.1 Effect of crystal structure

In many cases, multiple published crystal structures exist for a given set of MOF

building blocks (i.e., organic linker and metal node). For example, there are at least

17 entries of CuBTC in the CORE MOF database, which contains approximately 5000

experimental MOF structures.94 The lattice parameters of these structures vary in

many cases by a small amount (∼0.1Å). Step 3 of our screening process uses the

structures of matching MOF and substrate supercells identified in step 2 to calculate

the ASO and ∆IB. Each supercell has a particular relative orientation of the atoms on

either side of the interface, with only certain relative orientations aligning the binding

sites such that the ASO (or ∆IB) is high (see Appendix B.3.4). Both the lattice

mismatch and the set of matching supercells depend on the crystal lattice parameters,

and these affect the ASO and ∆IB. We have used a set of crystal structures (Table B.3)

66



for the MOFs CuBDC, CuBDC-DABCO, and CuBTC in the experimental data set to

investigate the impact of different crystal structures of the same MOF on the results

of our screening process.

For both CuBDC and CuBDC-DABCO, slight differences between unit-cell vectors

for different crystal structures yield MOF supercells with the same highest ASO that

have the same orientation but different area. This is because small changes in the

unit-cell vectors can lead to certain supercells failing the lattice-matching step of the

screening. However, these differences do not impact the screening process, as the

same ASO or ∆IB is obtained for all crystal structures. On the other hand, in the

case of CuBTC, Figure 4.3a shows that the particular crystal structure can affect

the maximum ASO and, more importantly, the Miller plane with the highest ASO.

Figure 4.3b–e shows the four different binding interfaces found for all CuBTC crystal

structures. This difference between the maximum ASO for different CuBTC structures

is a consequence of two factors. First, small changes to the unit-cell vectors can result

in a given supercell orientation of a particular MOF Miller plane failing the lattice-

matching criteria; i.e., different crystal structures yield different supercell orientations

and ASOs. This explains the dramatic difference between the maximum ASO of the

binding interface (Figure 4.3b) for CuBTC-g compared with those of the other crystal

structures (Figure 4.3a). Second, small changes to the unit-cell vectors modify the

spacing between atoms in the supercell, which can impact the coincidence of atoms at

the interface. Figure 4.3f shows the orientation and lattice spacing that gives rise to

the ASO of 1 for CuBTC-g and an example interface with a maximum ASO ≈ 0.33

for the other CuBTC crystal structures. These issues could be partially resolved by

using less stringent interface bonding criteria, but this would likely lead to spurious

lattice and binding matches for other MOFs. On the other hand, the maximum ∆IB is

comparable and low for all CuBTC crystal structures (Figure 4.2d). Thus, ∆IB does

not show the same sensitivity to the crystal structure lattice parameters as the ASO

and so appears to be a more robust descriptor for aligned heteroepitaxial growth.
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Figure 4.3: (a) Maximum ASO for all possible binding interfaces of a set of CuBTC crystal
structures as a function of the number of binding oxygens per unit cell. Filled symbols are
the maximum ASO obtained for each crystal structure. Points in the sections of the plot
labelled b–e correspond to the same number of binding sites and interfacial structure shown
in (b)–(e), respectively, in which surface-binding carboxylate oxygens and undercoordinated
copper atoms are highlighted as large spheres (Cu: green; O: red; C: gray; H atoms
omitted for clarity). Substrate surfaces are shown schematically as green slabs in (b)–(e).
(f) Comparison of the interfaces with a maximum ASO of 1.0 and ≈0.33 for the sets of
points marked “1” and “2”, respectively, in (a).
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4.4.1.2 Cost of interface formation on chemical compatibility

Figure 4.3b shows the binding interface of the (111̄) Miller plane of CuBTC and high-

lights the carboxylate-oxygen binding sites and coordinatively unsaturated copper sites

associated with missing-linker defects. This interface gives the maximum possible ASO

of 1 for the CuBTC-g crystal structure. However, this surface of CuBTC has not been

shown to exist experimentally on the facets of CuBTC crystals,232 nor has it been

shown to be the most energetically stable.233 Furthermore, it has not been shown to

bind to surfaces in any examples of surface-anchored CuBTC structures.58,59 This con-

tradiction between the computed ASO and experimental observations indicates that

the ASO is not always a good predictor of favorable interface formation. In particular,

the ASO ignores energetically unfavorable broken or dangling bonds. In the case of the

(111̄) Miller plane of CuBTC, 16 bonds are broken per unit cell to form the interface

in Figure 4.3b.

On the other hand, the ∆IB metric that we have introduced considers both the

bonds that are formed and those that are broken to form the interface, resulting in a

low ∆IB of 0.125 for this interface. In contrast, the (111) and (100) Miller planes, which

have been experimentally observed at CuBTC surfaces, each have lower ASOs but no

missing linker defects are required to form interfaces with Cu(OH)2 (Figure 4.3d,e);

thus, they have higher ∆IBs (≈0.36 and ≈0.28, respectively) than the (111̄) Miller

plane. This result is consistent with previous theory and experiment, in which the

(111) and (100) Miller planes have been found to be the most stable surfaces232,233

and have been shown to form interfaces with other materials.58,59 In contrast to the

ASO, ∆IB is similar and low for all Miller planes of CuBTC, indicating that in-plane

heteroepitaxial alignment of this MOF on Cu(OH)2 is not favored. This agrees with

experimental results that show crystal growth of CuBTC with out-of-plane orientation

only.55 It is also possible that the presence of multiple interfaces with similar ∆IB

values could lead to competitive growth of multiple distinct orientations, which could

be the cause of diminished in-plane alignment on the macroscale for CuBTC. In either

case, this example highlights the superiority of the ∆IB over the ASO in explaining

the experimental observations.
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4.4.2 Screening CORE MOF database

Figure 4.4: Nitrogen-accessible void fraction versus pore-limiting diameter for all crystal
structures in the CORE MOF database. Points are colored by how far the MOF progressed
through the screening process.

We have applied our screening algorithm to the Computation-Ready, Experimental

(CORE) MOF database. The CORE MOF database comprises approximately 5000

MOF structures with pore-limiting diameters greater than 2.4Å that have been pro-

cessed by removing solvent from the pores, fixing atom position disorder, and convert-

ing each structure to its primitive unit cell.94 Figure 4.4 shows the nitrogen-accessible

void fraction as a function of the pore-limiting diameter (also known as the largest

free sphere) of all structures in the CORE MOF database. For each crystal structure,

the screening process was applied with the validated parameters determined from the

analysis of the experimental data set in Section 4.4.1. Only 8% of the CORE MOF

database passed the chemistry test and 89% of those MOFs passed the lattice-matching

step, resulting in 7% of the database or 336 structures whose interfacial binding was

tested; 20 of these structures were interpenetrated, which led to 40 additional struc-

tures representing the separated nets of those 20 structures that were screened (the

processing of interpenetrated structures is described in Appendix B.7). To emphasize

the efficiency of the screening process, the first two steps took minutes on six Intel

i7-4790k CPU cores for the entire CORE MOF database, while the final step for the

remaining 376 structures took approximately 25 h on six CPU cores.

Figure 4.5 shows the maximum ∆IB of each of the 376 structures that passed the

first two screening steps as a function of the ratio of the MOF and substrate unit-
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cell areas. Because macroscale aligned heteroepitaxial growth relies on the preferential

growth of only one MOF crystal orientation with respect to the substrate, the points in

Figure 4.5 are colored according to the second highest ∆IB (∆IB2), which corresponds

to a different Miller plane or a different in-plane orientation of the same Miller plane.

The symbol shape in Figure 4.5 indicates the MOF topology, which was obtained from

the TTO ToposPro topological database.234,235 The standard cluster representation

of 3D MOFs was used, which separates the atomic net into building blocks (such as

metal clusters and organic linkers), which are then treated as nodes to determine the

underlying network topology.236,237 Structures listed as unknown did not have cluster

representation topology entries in the database. Similar to what was found for the

limited experimental data set in Figure 4.2, there is no clear correlation between the

maximum ∆IB and the ratio of the unit-cell areas for the MOF structures in the CORE

MOF database. Although all structures with high ∆IB values correspond to low unit-

cell area ratios, the converse is not true, with structures with low ∆IB exhibiting a

wide range of unit-cell area ratios. Therefore, the data suggest that a low ratio of unit

cell areas does lead to favorable interfaces, as has previously been suggested,115 but

the interfacial energy (through ∆IB) should be considered to identify MOFs likely to

show aligned heteroepitaxial growth.

Figure 4.5: Maximum ∆IB of crystal structures in the CORE MOF database that passed
screening steps 1 and 2 as a function of the ratio of the MOF and substrate unit-cell areas for
the Miller plane with the maximum ∆IB. Coloring is by the value of the second highest ∆IB
(∆IB2). The symbol shape indicates the 3D MOF topology (structures with no reported
topology are given as “unknown”). The percentage of MOFs that passed screening step 2
of each topology is given in the legend. The shaded region indicates the approximate ∆IB
threshold for heteroepitaxial in-plane alignment determined in Section 4.4.1. The red line
indicates the value of ∆IB used as the threshold for top candidates.
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From Figure 4.5, the top candidates in the MOF database for aligned heteroepitaxial

growth on Cu(OH)2 can be identified as those with maximum ∆IB above the previously

defined threshold of approximately 0.67 (see Section 4.4.1) and second highest ∆IB

(∆IB2) below this threshold. Figure 4.6 shows the interface structures of the top

candidates (MOFs with similar structures have been grouped together). Three of the

top candidates (NEJRUR, NEJSAY, and NEJSEC) correspond to different crystal

structures (all of which are interpenetrated MOFs with pcu topology) of the MOF

CuBDC-BPY (Figure 4.6a), which has been shown experimentally to grow aligned

from Cu(OH)2 (one of these structures, NEJRUR, was in the parameterization data

set). Top candidate CEHPIP (Figure 4.6b) corresponds to an interpenetrated MOF

that is isoreticular to CuBDC-BPY, in which the BDC linker has been replaced with

1,4-cyclohexanedicarboxylic acid. CEHPIP also has an underlying pcu topology. Top

candidate ZAZBUZ (tfc topology) is made up of BDC linkers bound to chainlike copper

nodes, rather than the paddle wheel in CuBDC (Figure 4.6c), and the top candidate

ZECKID has a dia topology (Figure 4.6d). Two binding planes (equivalent within a

90◦ rotation) for the same Miller plane of ZECKID were found with the same maximum

∆IB, one of which was excluded manually upon visual inspection of all top candidates.

Finally, one of the top candidates corresponds to an interpenetrated MOF (UNABUH,

Figure 4.6e), which has an unknown topology by the cluster representation (using the

standard unsimplified representation, it has a tfs topology).

Figure 4.5 along with experimental data show that the Cu(OH)2 (010) substrate

favors the growth of MOFs with the pcu topology (many of the high-ranking points

with pcu topology are overlapping in Figure 4.5). Furthermore, the Miller planes that

meet the ∆IB criteria for top candidates for aligned heteroepitaxial growth have ap-

proximate rectangular symmetry, as indicated by their in-plane unit-cell lattice vectors

(Figure B.11a). These findings suggest that the rectangular symmetry of the (010)

plane of Cu(OH)2 selects out top candidates for aligned heteroepitaxial growth with

similar symmetry. Note that MOFs with pcu and other similar topologies that com-

monly have at least one lattice plane with rectangular symmetry have been shown

previously to exhibit in-plane alignment when grown via heteroepitaxy;224,238 impor-

tantly, the pcu topology has been shown to produce superior internal surface areas

compared to other MOF topologies, suggesting that the ability to target pcu MOFs
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with heteroepitaxy could be beneficial for developing useful MOF heterostructures.239

Note that MOFs with topologies other than pcu have high maximum ASOs, while

their maximum ∆IB is significantly diminished due to the number of missing linker

defects required to form the interface. This result suggests that certain topologies may

not grow heteroepitaxially due to the difficulty of cleaving the crystal structure at a

planar interface without breaking a large number of bonds.

(b) (c)

(e)(d)

(a)

Figure 4.6: Representative interface structures of the top candidates for heteroepitaxial
growth from screening the CORE MOF database: (a) NEJRUR, NEJSAY, and NEJSEC
(all of which are isostructural to CuBDC-BPY), (b) CEHPIP, (c) ZAZBUZ, (d) ZECKID,
and (e) UNABUH. In each case, the interface that yields the highest ∆IB is shown (Cu:
green; O: red; C: gray; N: blue; H atoms are omitted for clarity; MOF supercells: red;
substrate supercells: black). Interpenetrated structures are shown in (a), (b) and (e).
Substrate surfaces are shown schematically as green slabs.

4.4.3 Selective MOF growth by topology

Experimental data55 as well as the top candidates found using our screening process

on the CORE MOF database suggest that the rectangular symmetry of the (010)

Miller plane of Cu(OH)2 preferentially selects MOFs with at least one Miller plane

with rectangular symmetry. The majority of selected MOFs were found to also have

pcu topology, a topology that often corresponds to structures having lattice planes of

rectangular symmetry. The ability to select a specific MOF topology could greatly aid

the development of MOF heterostructures and provides a design principle for further

experimental study. To investigate whether selectivity by MOF topology is expected
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to occur generally for Cu(OH)2, we applied our screening process to two other MOF

databases, the TOBACCO database99,214 and the hMOF database,101 which contain

hypothetical MOF structures that were built using in silico structure generation. The

TOBACCO database contains approximately 13 000 noninterpenetrated MOF struc-

tures constructed from a diverse range of metal nodes, organic linkers, and underlying

network topologies.99,214 Figure 4.7a shows the maximum ∆IB as a function of the

ratio of the MOF and substrate unit-cell areas for all crystal structures that passed

screening steps 1 and 2 (10.3% of the full database). The points are also colored by

the value of the second highest ∆IB. Note that none of the MOFs in this database

with pcu topology passed the chemistry test of the screening process, as they were all

zinc MOFs. Nonetheless, the screening process picks out a small subset of topologies

with high maximum ∆IBs, namely lvt-b and nbo-b, although only nbo-b MOFs are

predicted to yield aligned heteroepitaxial growth on Cu(OH)2. Screening of the TO-

BACCO database predicts again that the Cu(OH)2 substrate selects MOFs with only a

small set of topologies as well as Miller planes with in-plane rectangular symmetry (see

Figure B.11b). Note that there are MOFs in the TOBACCO database with topologies

other than lvt-b and nbo-b with high maximum ASO and low maximum ∆IB, which

suggests that the ability to cleave 3D MOF structures at a 2D planar interface with

minimal broken bonds also drives their selection. In addition, Figure 4.7a shows that

many binding planes in the TOBACCO database have large unit-cell areas compared

to the Cu(OH)2 substrate, which are not expected to be good candidates for aligned

heteroepitaxial growth because large, pristine substrate surfaces would be required,

which is unlikely to occur in real systems.

To confirm the favorability of the pcu topology for heteroepitaxial alignment on the

Cu(OH)2 substrate, we screened the hMOF database, which contains approximately

150 000 hypothetical MOF structures, approximately 90% of which have underlying

pcu nets.101 Only the unfunctionalized and noninterpenetrated structures were con-

sidered, resulting in only 2570 structures that were screened, 27% or 693 of which

made it to the final step of the screening process. Figure 4.7b shows that out of the

693 structures, 266 have only one orientation of one Miller plane with ∆IB greater

than the 0.67 threshold, all of which have pcu topologies, which supports the assertion

that the pcu topology is favorable for aligned growth on the Cu(OH)2 substrate. As
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Figure 4.7: Maximum ∆IB of crystal structures in the (a) TOBACCO99,214 and (b) hMOF
database101 that passed screening steps 1 and 2 as a function of the ratio of the MOF and
substrate unit-cell areas for the Miller plane with the maximum ∆IB. Points are colored
by the value of the second highest ∆IB (∆IB2). The symbol shape in (a) indicates the
3D MOF topology (the percentages of MOFs in the entire TOBACCO database with the
specified topologies are given in the legend). The shaded region indicates the approximate
∆IB threshold for heteroepitaxial in-plane alignment determined in Section 4.4.1. The red
line indicates the value of ∆IB used as the threshold for top candidates.

observed for the other two MOF databases, these top candidates for aligned growth

also have binding planes with approximate rectangular symmetry (see Figure B.11c).

Figure 4.7b also shows that many MOFs in this database (145 in total) have multiple

Miller planes with ∆IB ≥ 0.67, unlike the experimental data set, in which only one

Miller plane was found to have a high ∆IB for each MOF. This is because each hMOF

structure is built from up to three unique (but sometimes structurally similar) ligands

from a ligand database, leading to more inequivalent Miller planes per MOF and often

to multiple Miller planes with similar ∆IB values. Many MOFs in the hMOF database

also have similar organic linkers, which results in similar structures and interfaces and

helps to explain why many MOFs have a maximum ∆IB above the threshold. Both the

hMOF and TOBACCO databases were compiled from mostly hypothetical structures,

which limits their applicability in an experimental setting. Nevertheless, screening of

the three MOF databases has identified a small number of MOF topologies as useful

starting points for future experimental investigation of MOF heteroepitaxy.

4.4.4 Templating pore architecture through epitaxial growth

Intuitively, aligned heteroepitaxially grown MOF crystals could lead to anisotropy

in the pores along the different directions with respect to the substrate. To test this

hypothesis, we calculated the pore-limiting diameters in the a, b, and c crystallographic
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dimensions for all pcu MOFs in the hMOF database whose maximum ∆IB occurs for

a Miller plane with |h|+ |k|+ |l| = 1 (a subset of those in Figure 4.7b). This subset of

MOFs was chosen because, for the pcu topology, it can reasonably be assumed that the

pore windows align with the three crystallographic axes of the MOF for these Miller

planes, for which the pore-limiting diameter was calculated. Figures B.13 and B.14

show that high ∆IB MOFs that are predicted to undergo aligned heteroepitaxial growth

have a similar distribution of in-plane pore-limiting diameters to low ∆IB MOFs, which

suggests that epitaxial growth does not constrain the in-plane pore-limiting diameters

as a result of the registry with the substrate lattice. This suggests that a broad range

of possible pore sizes can be achieved for a given substrate and, therefore, MOFs with

precise pore sizes can be chosen for target applications.

Falcaro and co-workers55 showed that macroscale alignment of the CuBPDC MOF

on a Cu(OH)2 substrate could be employed to align fluorescent molecules within the

MOF and yield anisotropic fluorescence from the MOF film. It follows that anisotropy

of the pore network is an important design aspect for MOF thin films that could be

controlled through in-plane heteroepitaxial alignment. Furthermore, the directional-

ity of the pores with respect to the surface due to a preferred crystal orientation has

been shown to impact adsorption properties of porous-coordination polymers,240 and

such properties can be predicted once the in-plane orientation is determined. To in-

vestigate this concept further, we calculated the pore network anisotropies from the

pore-limiting diameters along the three crystallographic axes (described above) for

each pcu MOF in the hMOF database with a maximum ∆IB ≥ 0.67 associated with

a Miller plane with |h| + |k| + |l| = 1. Pore network anisotropies were calculated as

either the ratio or the absolute difference between the maximum in-plane pore-limiting

diameter (PLDin-plane,max) and the pore-limiting diameters in the other two crystallo-

graphic dimensions (the minimum in-plane pore-limiting diameter (PLDin-plane,min) or

the out-of-plane pore-limiting diameter (PLDout-of-plane)). Figure 4.8 shows that the top

candidates from our screening process for the hMOF database cover a broad range of

anisotropies and pore shapes (using either definition), including some very anisotropic

pore networks. While this allows for the selection of the desired pore properties for

a target application, we note that the definition of anisotropy that matters will be

different for certain applications. For example, a MOF in which all three pores are
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large may have high anisotropy with respect to the difference between the pore sizes,

but low anisotropy with respect to their ratios. This type of pore network would not

provide any notable anisotropic effect for the adsorption of relatively small molecules,

but may be useful for some other application, such as alignment of large guests.

- --

- -- - --

-
-

-
-

-
-

Figure 4.8: Pore network anisotropy for all MOF structures in the hMOF database pre-
dicted to grow aligned on Cu(OH)2 whose maximum ∆IB is associated with a Miller plane
for which |h| + |k| + |l| = 1: (a) ratio and (b) absolute difference of the largest in-
plane pore-limiting diameter (PLDin-plane,max) and minimum in-plane pore-limiting diameter
(PLDin-plane,min) versus that of the largest in-plane pore-limiting diameter and out-of-plane
pore-limiting diameter (PLDout-of-plane). Points are colored by the value of the maximum
∆IB and only those with the second highest ∆IB < 0.67 are shown.

4.5 Conclusions

We have developed a robust and efficient screening process of metal–organic frameworks

(MOFs) for aligned heteroepitaxial growth on metal-hydroxide substrates, which we

have validated by comparison with experimental measurements.55 This process applies

a geometrical lattice-matching algorithm209,210 and extends previous methodologies for

determining chemical compatibility at an interface213 to filter and categorize MOF

structures. We have proposed a novel metric for the favorability of interfacial binding,

∆IB, which is simple and efficient to compute and accounts for both the energetic gain

of bond formation and the energetic cost of broken and dangling bonds. Importantly,

our screening process can be generalized to cases other than those studied in this

work. The MOF in the experimental data set made from the TDC linker was found

to be an outlier in the validation of the screening process, which we suggest could
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be due to experimental difficulties associated with the solubility of that linker. This

finding highlights the need to consider the chemistry of the MOF building blocks of

any top candidates generated by computational screening before further experimental

evaluation.

Our screening process does not consider the kinetics or thermodynamics of MOF

growth from the substrate or the possibility of competing binding modes of the lig-

ands used to form the MOF (for example, the nitrogen donors of bipyridine ligands

may coordinate to copper species and compete with carboxylate groups). Further-

more, we have limited our analysis to a substrate in which the metal ion is in a single

oxidation state and for which a single interfacial binding geometry is expected to dom-

inate. Substrate interfaces at which multiple coordination geometries are possible at

a given site would be less likely to yield aligned heteroepitaxial growth due to the

less stringent constraints on binding, and therefore are potentially less promising for

aligned heteroepitaxial growth. Neglecting to consider multiple binding geometries in

the screening process in cases in which they are possible could potentially lead to in-

correct predictions of aligned growth or of no growth. The screening algorithm in this

work can readily be extended to consider different types of interfacial binding atoms

and/or binding geometries in these circumstances. In addition, more computationally

intensive simulations that quantitatively model different interfacial interactions could

be used after initial high-throughput screening in the final selection of MOF candi-

dates.116,206,220 Nonetheless, the criteria we have implemented allow for an efficient

screening process that considers the necessary conditions for aligned heteroepitaxial

growth of MOF crystallites on the macroscale.

We used the screening process to compile a list of top candidates for aligned het-

eroepitaxial growth from the COREMOF,94 hMOF,101 and TOBACCO99,214 databases,

which equated to screening approximately 20 000 structures in a few days on a desktop

workstation. The screening results showed that MOFs that have at least one lattice

plane with rectangular symmetry have the greatest propensity for aligned heteroepi-

taxial growth on Cu(OH)2, a condition that is commonly satisfied only for certain

MOF topologies (the pcu and nbo-b topologies were found to make up the major-

ity of top candidates). This finding indicates a substrate-directing effect, whereby

the symmetry of the substrate surface determines the preferential symmetry of MOF
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binding sites at the interface and, hence, the symmetry of the MOF binding plane.

Knowledge of substrate-dependent design principles like this allows for topologically

targeted synthetic strategies, which offers an efficient route to viable experimental tar-

gets.97,98,239 We identified seven (five of which are unique) experimentally realized MOF

structures (REFCODES: ZAZBUZ, ZECKID, CEHPIP, NEJRUR, NEJSAY, NEJSEC,

and UNABUH) that are likely to form aligned heteroepitaxial structures on Cu(OH)2.

Furthermore, we used the hypothetical MOF database (hMOF), which comprises

mostly pcu MOF structures, to show that the dimensions of the substrate lattice,

which determine the registry and alignment of the MOF, do not constrain the available

range of pore diameters and the anisotropy of the pore networks. A broad range of

possible pore architectures means that the design of MOF thin films can be tailored

toward target applications. The screening algorithm we have described offers a fast and

robust way to find MOF candidates for further experimental analysis in the growing

field of MOF thin films and device development. In addition, the categorization of vast

MOF databases afforded the determination of design principles and structure–property

relationships.

All code used in this work is freely available at https://bitbucket.org/andrewtarzia/

epitmof/src/master/.
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5.1 Abstract

Biomacromolecules, such as proteins and carbohydrates, can be encapsulated inside

MOF shells via a process called biomimetic mineralization. Herein, we present calcu-

lations that corroborate experimental results that suggest a vital role of the electro-

static properties of biomacromolecules on the biomimetic mineralization process and

use calculations of these electrostatic properties to predict the propensity of biomacro-

molecules to induce biomineralization. We use theory and computation to model the

interactions of proteins with their surrounding electrolyte to verify, for the first time,

the role of negatively charged protein surfaces in the accumulation of nearby zinc ions,

which is expected to enhance ZIF growth. Therefore, we find that the surface electro-

static potential of a protein is strongly correlated with its propensity for seeding ZIF-8

growth. The calculated pI of a protein was also found to predict whether a protein

would seed ZIF-8 growth accurately. Furthermore, the effect of chemical functional-

ization of a protein, shown experimentally to allow for the control of the biomimetic

mineralization process, on its propensity to seed ZIF growth can be predicted using the

sequence pI. The efficiency and accuracy of the sequence pI as a predictor for biomimetic

mineralization allows for the high-throughput screening of proteins for encapsulation

inside MOFs. Importantly, these results were corroborated by an experimental and

computational study of functionalized carbohydrate systems, which suggests that the

prediction of biomimetic mineralization based on electrostatic interactions can be gen-

erally applied to a wide range of biomacromolecules.

5.2 Introduction

Metal–organic frameworks (MOFs) are a class of crystalline, porous materials syn-

thesized via a modular approach from metal-based nodes and organic linkers.33 Re-

cently, MOFs have been used as encapsulating agents for biomacromolecules.64–66,77

Specifically, the growth of zeolitic imidazolate framework-8 (ZIF-8), formed from Zn2+

ions and 2-methyl imidazole (2mIM) linkers,68,69 can be triggered by the presence

of biomacromolecules in a facile process termed biomimetic mineralization,67 which

has been applied to the encapsulation of proteins, DNA, viruses and cells.67,73–76 The
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archetypal MOF for biomimetic mineralization, ZIF-8, is thermally stable and can be

synthesized in biologically compatible conditions.70–72 Encapsulation yields biomacro-

molecules with enhanced stability and protection from the surrounding environment,

facilitates size-selective transport of enzyme substrates,67,77,241 and allows for controlled

release of cargo.67,76 Furthermore, MOFs have been shown to act as carriers for ther-

apeutic agents.61,242,243 In summary, encapsulation of biomacromolecules inside MOFs

offers many advantages for biotechnological and biomedical applications. However, to

apply biomimetic mineralization generally, an understanding of how the encapsulation

process occurs is needed.

The first report of biomimetic mineralization posited, based on experimental anal-

ysis, that the accumulation of MOF building blocks near bovine serum albumin (BSA)

lead to enhanced kinetics for ZIF formation, but this analysis was limited to only one

protein.67 To further understanding of the biomimetic mineralization process, our ex-

perimental collaborators investigated a series of proteins3 and carbohydrates (CHs)4

for their propensity to seed ZIF-8 growth. In both cases, the experiments suggested

that ZIF-8 formation requires the presence of a negatively charged seeding entity. Fur-

thermore, modification of the charge on a biomacromolecule through chemical func-

tionalization was found to be a general procedure for controlling the biomimetic miner-

alization process. However, experimental screening of biological entities for successful

biomimetic mineralization is slow and expensive. Therefore, it is necessary to de-

velop generalized methodologies and predictive techniques to expand the application

of MOF-based biocomposites.

By solving the Poisson–Boltzmann (PB) equation, we modelled the interaction of

proteins and carbohydrates with their surrounding electrolyte and confirmed that ZIF

formation correlates with substantial enhancements of the zinc ion concentration near

negatively charged biomacromolecules. The computational and experimental findings

show that the calculated surface electrostatic potential and isoelectronic point (pI)

of a protein can adequately predict biomimetic mineralization, which allows for fast

screening before experimental testing. Finally, the computational results obtained from

the distinct protein and carbohydrate models support the same general mechanism for

biomimetic mineralization, which paves the way for further advances in the develop-

ment of MOF-encapsulated biomacromolecules.
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Herein, I present my contribution to two collaborative projects, for which I designed

computational approaches to rationalize and build upon experimental findings. Below

I include a brief description of the experiments that are crucial to the computational

results; for a detailed summary, see Refs 3 and 4. In both cases, we carried out a

systematic study of the growth of ZIF-8 in the presence of biomacromolecules, for

conditions that do not lead to ZIF formation without the presence of a macromolecule.

5.3 Experimental results

5.3.1 Controlling biomimetic mineralization via protein surface functional-

ization

To understand the main features of a proteins surface chemistry that control the

biomimetic mineralization process, the encapsulation of a range of proteins by ZIF-8

was studied. Table 5.1 shows the set of structurally distinct proteins that were screened

for their ability to seed ZIF-8 growth under identical conditions (0.5mgml−1 of protein

dissolved in a solution of 1 : 4 : 278 molar ratio of Zn2+ : 2mIM : H2O). All proteins

were homogeneously dispersed and ZIF-8 formation does not occur without a seed-

ing entity under these conditions. Importantly, this data shows that the biomimetic

mineralization process is protein dependent. Furthermore, Table 5.1 suggests that

proteins with low pIs are necessary to seed ZIF formation. A low pI is related to a

higher proportion of acidic residues (aspartic acid side-chain pKa = 4.05, and glutamic

acid side-chain pKa = 4.45),244 which are negatively charged under these conditions

(pH ≈ 11). Proteins with high pIs have a higher proportion of basic residues (lysine

side-chain pKa = 10.0, and arginine side-chain pKa = 12.0),244 which are positively

charged under these conditions, leading to a repulsion of Zn2+ ions and diminished

ZIF-8 growth.
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Table 5.1: Reported pI (pH at which the protein is uncharged), experimental zeta potential
(ζ) in a 2mIM solution at pH 11, and binary ZIF-8 growth result for each protein tested in
this work. The yes/no descriptor for ZIF growth indicates the formation of a biocomposite
with sodalite topology (determined by PXRD). Uncertainties are twice the standard error
in the mean.

protein pI ζ [mV] ZIF-8 modification ζ [mV] ZIF-8
pepsin 2.9245 −30.9± 1.4 yes amination −7.9± 0.6 no
BSA 5.3246 −36.4± 1.4 yes amination −5.8± 0.2 no
lipase 4–8a 247 −31.7± 0.3 yes
catalase 5.4b 248 −30.4± 0.6 yes
HRP 3.0-9.0c 249 −36.4± 1.0 yes
haemoglobin 8.1(α), 7.0(β)245 −21.0± 2.4 no succinylation −37.0± 2.7 yes

acetylation −35.9± 2.6 yesd

myoglobin 7.6245 −14.7± 2.0 no succinylation −36.6± 0.2 yes
acetylation −36.1± 3.6 yesd

trypsin 10.7245 −9.0± 1.05 no
lysozyme 11, 11.3245 6.6± 0.2 no

a Broad experimental isoelectric region
b Computational value
c Seven isozymes
d Not phase pure

To systematically study the role of protein charge on ZIF formation, amino acid

modifications were applied to a subset of proteins in Table 5.1. Amino acid modifi-

cations are used to enhance binding affinity during immobilization by altering elec-

trostatic interactions.250 Figure 5.1 shows the reaction schemes of the three surface

modifications carried out to alter the charge of a protein. See Reference 3 for full

experimental details. Succinylation and acetylation convert basic side-chains of ly-

sine residues into acidic or non-ionizable groups, respectively, while amination converts

acidic side-chains into basic groups. It was found that succinylation or acetylation of

haemoglobin and myoglobin (corresponding to an increase of the negative charge of the

proteins) enhanced ZIF growth in all cases, while amination of pepsin and BSA (cor-

responding to a decrease of the negative charge of the proteins) inhibited ZIF growth

(Figure 5.2). In summary, there results suggested that amino acid modifications, which

occur mostly on the surface, could be used to control the biomimetic mineralization

process by modulating the surface charge of a protein.
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Figure 5.1: Surface modification reactions. Succinylation and acetylation reactions lower
the pI of a protein by modification of exposed amine groups. Amination reactions cap
carboxyl groups with a free amine, thus increasing the pI. (Source: Maddigan et. al.,
Chem. Sci. 2018, 9, 4217-4223.3)

Figure 5.2: Schematic representations of the outcomes of biomimetic mineralization for
two proteins, namely haemoglobin and BSA. Haemoglobin does not undergo biomimetic
mineralization under standard conditions but can be chemically modified by acetylation or
succinylation (shown) to increase the surface negative charge and facilitate ZIF-8 formation
and encapsulation. BSA successfully undergoes biomimetic mineralization but amination
introduces surface amine groups that are protonated under the conditions used for ZIF-8
formation and thereby prevent mineralization. (Source: Maddigan et. al., Chem. Sci.
2018, 9, 4217-4223.3)

To quantify the role of the surface charge, the zeta potential (ζ) of each protein (as

well as the modified proteins) was determined in a 160mM solution of 2mIM (pH ≈ 11)

(shown in Table 5.1) and Milli-Q water (pH ≈ 7). Zeta potential measurements were
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recorded in aqueous solutions using a Malvern Zetasizer nano and the Smoluchowski

approximation.3 The zeta potential is a measure of the electrostatic potential near the

surface of a macromolecule in solution.251 Table 5.1 shows that a zeta potential below

c.a. −30mV leads to ZIF-8 formation and that surface modifications can decrease (in-

crease) a protein’s zeta potential to below (above) this threshold to turn “on” (“off”)

biomimetic mineralization. These results show that amino acid modifications are an

effective and general way to control biomimetic mineralization and that the zeta poten-

tial and pI are good predictors for ZIF growth. Experimental determination of the zeta

potential and pI of a protein is slow and expensive. However, both of these properties

can be calculated using theory, allowing for accurate and fast prediction of biomimetic

mineralization.

5.3.2 Encapsulation of functionalized carbohydrates

In recent years, the importance of carbohydrates (CHs) to many biological functions

has become more clear, and CH-based therapies have gained significant interest.252–254

Inspired by the work described in Section 5.3.1, the ability of a range of carbohydrate

molecules to induce biomimetic mineralization of ZIF-8 was investigated. By testing a

series of mono- and polysaccharides, it was found that only carbohydrate chains with

negatively charged functionalization lead to the reliable formation of ZIF biocompos-

ites.4 Importantly, the molecular weight of dextran polysaccharides was not found to

impact the biomimetic mineralization process. Using the same experimental condi-

tions as in Section 5.3.1, ZIF growth was tested in the presence of amino- (AM) and

carboxymethyl-functionalized (CM) dextrans with similar molecular weight (10 kDa

and 10−20 kDa, respectively). Only the solution containing CM-dextran showed rapid

precipitation (Figure 5.3), which was confirmed by FT-IR to be a composite of CM-

dextran and ZIF.4 Again, these findings show that the presence of negatively charged

macromolecules induces biomimetic mineralization.
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Figure 5.3: Schematic of the biomimetic mineralization of CM-dextran@Zn(2mIM)2 accord-
ing to the infrared investigation; photograph of a control sample (2mIM, Zn(OAc)2 and
water) and the same solution in presence of CM-dextran. (Source: Astria et. al., Mater.
Horiz. 2019, accepted.4)

5.4 Computational methods

5.4.1 Calculation of the average charge of an ionizable residue

We calculated the average charge (q±,i) of an ionizable residue of type i in a biomacro-

molecule using the Henderson–Hasselbach equation,

q±,i = ± 10∓pH±pKa,i

10∓pH±pKa,i + 1 , (5.1)

where pKa,i is the pKa of the residue and the sign of q±,i is positive for positively

charged residues (e.g. basic amino acids) and negative for negatively charged residues

(e.g. acidic amino acids).

5.4.2 Calculation of the pI from protein sequence

For each protein, we extracted the sequence of natural amino acids from a FASTA file.

We calculated the total protein charge as Q = ∑
iNiq±,i, where q±,i and Ni are the

average charge (Section 5.4.1) and number of ionizable residues of type i, respectively.

The pH was varied until the total protein charge was within 0± 0.0001e to determine

the sequence pI. We used the Biopython module244,255,256 to calculate the pI of an

amino acid sequence, where the side-chain pKa,i of all residue types were kept constant

and defined in Ref. 244. Note that this method also considers the ionization of the

N and C-termini of the polypeptide chain using Equation 5.1 and pKa defined in Ref.

244. The pI from this method is referred to as the ‘sequence model’ pI in this chapter
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and we compare it to the pI calculated from a 3D model in Section 5.5.1.

5.4.3 Calculation of the average hydropathic index from protein sequence

The hydropathic index is a measure of an amino acid sequence’s hydropathicity. Neg-

ative hydropathicities indicate an overall hydrophilic protein, whereas positive values

indicate an overall hydrophobic protein. We calculated the hydropathic index for a

protein sequence using the Biopython module255,257 and the Kyte and Doolittle scale

of residue hydropathicity,258 which quantifies the hydropathicity of each residue. We

reported the average hydropathy index for the entire sequence as a single value.

5.4.4 Surface modification of proteins

We calculated the pI of surface-modified proteins using Biopython255 and assumed

100% efficiency of modification reactions on all target residues. Figure 5.1 shows the

reaction schemes of the surface modification reactions used in this work. For the

amination reaction, the pKa and charge of the functionalized aspartic acid or glutamic

acid residues was taken to be that of lysine. For the acetylation and succinylation

reactions, any lysine residues were either ignored in the calculation of the protein

charge (acetylation) or their pKa and charge was taken to be that of glutamic acid

(succinylation).

5.4.5 Calculation of electrostatic potential around a protein

We obtained all protein crystal structures used in this work from the Protein Data

Bank259 (PDB accession codes given in Table 5.2). Where available, we obtained a

protein structure associated with the same organism as the experimental source. Each

PDB file contains one or more polypeptide chain. We used only the first polypeptide

chain in the PDB file for BSA because this protein is expected to exist as a monomer

in solution. We used all chains in the PDB files in all other cases. We only modelled

the polypeptide chain, i.e. we removed heteroatoms (ligands), bound ions or water

molecules that were in the protein structures.

PROPKA 3.0269,270 was used to estimate the pKa of each ionizable residue in each

protein structure using a highly efficient, empirical method. PROPKA calculates the
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Table 5.2: Protein Data Bank (PDB)259 accession codes for all protein crystal structures.

protein PDB accession code
pepsin 4pep260

bovine serum albumin (BSA) 4f5s261
lipase, Candida antarctica lipase B (CALB) 1tca262
catalase 3re8263

peroxidase from horseradish (HRP) 1w4w264

myoglobin 2frf265
haemoglobin 2dn2266

trypsin 1s81267

lysozyme 2vb1268

shift in the pKa of an ionizable group in the 3D environment of a protein compared

to that same group in water by calculating the difference between the free energies of

deprotonation of the ionizable group in both environments. To do so in an efficient

way, the 3D protein structure surrounding a given charge centre is treated as a small

environmental perturbation on the water reference state of that charge centre. The

total perturbation for a given ionizable group is taken as the sum of three terms: a

Coulombic interaction term due to the charge-charge interactions between it and other

charged groups in the protein, an energetic penalty for desolvation of the residue and

an interaction term that accounts for non-Coulombic interactions with other atoms in

the protein. The desolvation contribution of a charge centre is approximated by the

volume of neighbouring atoms and their distance from the charge centre. All other

interactions with the remainder of the protein (other than the Coulombic interactions)

are approximated by two terms: a hydrogen bond term and a repulsive interaction

term. Each of the above terms includes empirically fitted parameters, which were

parameterized by comparing to experimental pKa values.269 We have confirmed that

similar results are obtained for the calculated pKa’s using the more sophisticated Del-

Phi pKa
271 to assign atom charges and protonation states (results not shown). DelPhi

pKa uses a variable dielectric coefficient within the protein and the free energy differ-

ence between the protonated and deprotonated state of each ionizable residue within

the 3D structure (using a PB-based approach to calculate the free energy difference)

to obtain the pKa for each residue. The calculated pKa of each ionizable residue, given

by PROPKA, was used to define the charge state of a 3D model (discussed below) of

each protein and also to calculate the ‘3D model’ pI using the Henderson-Hasselbach
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equation.

Before analysing each crystal structure, we used the PDB2PQR software272,273 to

add missing heavy atoms, to make sure there were no overlapping atoms in the struc-

ture, to protonate the structure based on the pKa’s calculated by PROPKA and the

given pH and to assign atomic charges and radii from the AMBER274 force field to each

atom. We used PDB2PQR because it is efficient and commonly applied to prepare pro-

tein structures for electrostatic calculations.149,275 Note that default parameters were

used in general.272,273 PDB2PQR protonates residues if their pKa is greater than the

given pH, which is a crude method for setting the charge on a residue and will deviate

from the total protein charge determined using the Henderson-Hasselbach equation

(Equation 5.1), as in Section 5.4.2. Furthermore, we note that some protonation states

derived from PROPKA are not supported by the AMBER force field, i.e. charge and

radii parameters are not provided. In these cases the residue was treated as its pH 7

protonation state.

Using the SURFPOT module150 within the DelPhi software147 we solved the lin-

earized PB equation,148

∇ · [ε(r)∇ψ(r)]− ε0εrκ(r)2ψ(r) = −ρ(r), (5.2)

to calculate the electrostatic potential, ψ(r), at position r. In Equation 5.2, ρ(r) is

the (fixed) charge density of the solute (protein), ε(r) is the spatially varying dielectric

permittivity, which is different in the protein and in the solution, ε0 is the vacuum

permittivity, εr is the relative permittivity of water (80), and κ(r) is the Debye screening

parameter, given by

κ =
(
εrε0kBT

2e2I

)−1/2

(5.3)

for values of r outside of the protein and taken to be zero for r inside of the protein.

κ outside of the protein is the inverse of the Debye screening length λD, i.e. λD =

κ−1. In Equation 5.3, e is the elementary charge, kB is the Boltzmann constant, T

is temperature, and I is the ionic strength of the electrolyte solution, given by I =
1
2
∑
i=± ci,bulkz

2
i . Under the standard ZIF-8 synthesis conditions used throughout this

work, the bulk zinc ion (Zn2+) concentration (c+,bulk) was 0.04M and the concentration

of counter ions (c−,bulk), with a valency -1, was 0.08M. Therefore, λD = 8.8Å for all
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of our calculations.

The zeta potential for each protein was estimated to be the average electrostatic

potential on a surface at 4Å from the van der Waals (vdW) surface of the protein. The

zeta potential of a particle undergoing electrophoresis is defined by the electrostatic

potential at the shear plane, which is not readily determined for heterogeneous and

rough surfaces such as proteins. We expect the chosen surface at which the zeta poten-

tial was calculated to be a reasonable approximation for the shear plane and is similar

to that used previously in the literature to estimate the zeta potential of proteins.150

We used an interior protein dielectric coefficient of 4 and we confirmed that the av-

erage surface potential was not sensitive to this parameter within the range of 4–20

(results not shown), which agrees well with literature.150 We note that the dielectric

coefficient changes sharply at the interface between the protein and the solvent. We

used a grid spacing of 0.5Å, a probe radius (to define the protein surface) of 1.4Å,

which is equivalent to the radius of a water molecule, dipolar boundary conditions on

the edge of the box, and a box size such that the longest dimension of the solute was

60% of the box size.

5.4.6 Calculation of electrostatic potential around a carbohydrate molecule

We modelled a dextran chain as an ion-permeable sphere with a radius given by the

radius of gyration (Rg) of a freely-jointed chain of length N segments, where N was

the degree of polymerization (DP), (Figure 5.4),276 since single-molecule AFM studies

of functionalized and native dextran chains have shown from their elasticity they they

can be described approximately as freely-jointed chains with Kuhn lengths equal to

the length of the glucose monomer (4.4Å).277,278 Although branching is common for

dextran chains, the branching density of the experimental samples was unknown, so

for simplicity we assumed that the dextran chains in our model were unbranched.

Nevertheless, we do not expect the conclusions from the model to change significantly

if branching were considered. We applied the ion-permeable sphere model (Figure 5.4)

because most of the pervaded volume will be accessible to ions in solution (the average

separation of monomers in the pervaded volume ≈ 5.7Å, whereas the diameter of a

Zn2+ ion is 1.48Å and the diameter of the acetate counter-ion is ≈ 3.72Å).279 Table 5.3

shows the parameters used.
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Table 5.3: Parameters of the ion-permeable sphere model of dextrans.

parameter value
carbohydrate concentration 0.72mgmL−1

degree of polymerisation (DP) 60
Kuhn length (lk) 4.4 Å277

polymer molecular weight (M) ≈10 kDa
radius of gyration (Rg) 13.91Å

bulk zinc concentration (c+,bulk) 0.04M
pKa of CM 4.0
pKa of AM 10.64280

pH 11
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Figure 5.4: Schematic of the ion-permeable spherical model of a carbohydrate chain with
a radius of gyration (Rg) in an electrolyte solution. The electrostatic potential was taken
to be zero at a large distance, R, from the center of the ion-permeable sphere.

The average number of functionalized sites per glucose mononer is given by the

degree of substitution (DS), α, which can take any value from 0 to 3. DS was ap-

proximately 0.125 in the experiments, which corresponds to 1 functionalized group

every eight monomers. We calculated the total charge (Q±) on a dextran chain as

Q± = αNq±, where q± ≡ q±,i is given by Equation 5.1 (only one residue type per dex-

tran chain was considered) and the sign of q± is determined by the sign of the charge

on the functionality (-1 for carboxymethyl (CM) functionalization and +1 for amine

(AM) functionalization). A range of values have been reported for pKa of the CM

functionality, but in all cases it is much smaller than the pH (≈11) used in the exper-

98



iments. Thus, each CM functionality is expected to have a full negative charge under

the experimental conditions. Furthermore, there are multiple amine species associated

with the AM functionality and it is expected that each amine will have a different

pKa. For simplicity, we have assumed a single pKa value, representative of a tertiary

amine,280 which will be partially positively charged at the pH used in the experiments.

Figure 5.5 shows the volume charge density (ρs = 3Q±
4πR3

g
) of the carbohydrate chain as

a function of DS for both functionalities with the specified parameters (Table 5.3).

Figure 5.5: Volume charge density (ρs) of the ion-permeable spheres as a function of degree
of substitution (DS) for carboxymethyl (CM) and amine (AM) functionalities. The black
line represents the approximate DS used in the experiments.

Unlike the model described in Section 5.4.5, the ion-permeable sphere has ra-

dial symmetry; therefore, r is simply the radial distance from the center of the ion-

permeable sphere. Note that the electrolyte concentrations and Debye length are

the same as in Section 5.4.5. We used the boundary value problem solver in the

SciPy Python library281 to solve the nonlinear PB equation around an ion-permeable

sphere,282

ε0εr∇2ψ + e

∑
i=±

ci,bulkzi exp(−zieψ
kBT

)
 = −ρ(r), (5.4)

where ψ is the electrostatic potential at the radial coordinate r, and ρ(r) is the charge

density due to the carbohydrate chain, given by

ρ(r) =


ρs, if 0 ≤ r ≤ Rg

0, if r > Rg

. (5.5)
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All other quantities have been defined previously. Note that the entire system is as-

sumed to be the same dielectric medium (i.e. εr = 80). The following boundary

conditions were applied to Equation 5.4:

1.

lim
r→0

dψ

dr
= 0 (5.6)

2.

ψ(r = R)→ 0 (5.7)

R was set to be a large enough value (100Å) such that its specific value did not af-

fect the calculated potential or ion concentrations near the ion-permeable sphere. We

also applied the analytical solution to the linearized PB equation for an ion-permeable

sphere reported by Ohshima and co-workers.283 We note that the linearized PB equa-

tion is only applicable when |ψ| � kBT

z+e
≈ 12mV. Therefore, numerical solutions to

the nonlinear PB equation were required in general.

For numerical stability, we replaced the step-function form of ρ(r) in Equation 5.5

by the smooth function

ρ(r) = −ρs

2

[
tanh

(
r −Rg

2w

)
− 1

]
, (5.8)

where w defines the width of the transition of ρ(r) from ρs to 0. w was set to 0.02λD

and the final enhancement results were found to be robust to changes in w in the range

0.01λD ≤ w ≤ 0.5λD.

All code used for the ion-permeable sphere model is freely available at https:

//bitbucket.org/andrewtarzia/sugar_source.

5.4.7 Calculation of ion concentration and enhancement

In both the protein and carbohydrate models, the concentration of ions of type i at

position r was calculated from the electrostatic potential (ψ(r)) using the Boltzmann

equation,

ci(r) = ci,bulk exp
[
−zieψ(r)
kBT

]
. (5.9)
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The zinc ion enhancement at coordinate r was calculated from the zinc ion concentra-

tion (c+(r)) as the ratio c+(r)
c+,bulk

.

5.5 Results and discussion

5.5.1 Modelling the electrostatic properties of proteins

We applied the computational tools described above to verify the crucial role of elec-

trostatic interactions in biomimetic mineralization of ZIF-8 and to provide an efficient

and accurate means of predicting ZIF formation. We calculated an approximate zinc

ion enhancement from the experimental zeta potential using the Boltzmann equation

(Equation 5.9), assuming that the zeta potential was equal to the surface electrostatic

potential. Figure 5.6a shows that a zinc ion concentration enhancement > 10 (or a

zinc ion concentration > 0.4M) is required for ZIF formation. We calculated the av-

erage hydropathic index of a sequence for each protein in Table 5.1 (see Section 5.4.3

for details). Figure 5.6b shows that the hydropathy of a protein does not predict ZIF

formation, suggesting that hydrophobic interactions do not play a crucial role.

(a) (b)

Figure 5.6: Categorical scatterplots of (a) the zinc ion enhancement calculated from the
experimental zeta potentials at pH 11 and (b) the average hydropathicity of the peptide
sequences for all unmodified proteins. Closed circles and the “ZIF” label denote proteins
that form ZIF-8 and open circles and the “no ZIF” label denote proteins that do not form
ZIF-8. Error bars in (a) were calculated from the standard errors reported in Table 5.1.

Table 5.1 shows that the pI of a protein is also a reasonable predictor for suc-

cessful biomimetic mineralization. The pI can be calculated using a 3D model and the

PROPKA software (described in Section 5.4.5)269,270 or using a sequence model and the

BioPython library (described in Section 5.4.2).244,255,256 Figure 5.7a shows agreement
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between the pI calculated using the 3D model and the sequence model and Figure 5.7b

shows reasonable agreement between the pI calculated using the sequence model and

the reported pI. Figure 5.7c shows that the pI calculated using the sequence model can

adequately categorize the propensity of proteins to induce biomimetic mineralization

for all proteins in Table 5.1: a pI of around 7 separates proteins that successfully un-

dergo biomimetic mineralization from those that do not. For high-throughput screening

of proteins for biomimetic mineralization, a sequence-based model is ideal because it

avoids the need for a 3D structural model, which can be difficult to obtain and allows

for straightforward predictions of the effect of amino acid modifications on the pI of a

protein, as shown in Figure 5.8. We calculated the impact of amino acid modifications

on the pI of a sequence by assuming 100% conversion of all target residues. We expect

this approach to overestimate the calculated change in pI because it does not consider

whether an amino acid is buried or not and assumes 100% reaction efficiency (see Sec-

tion 5.4.4 for details). Nonetheless, Figure 5.8 shows that the calculated pI accurately

predicts the effect of the amino acid modification on the ability of a protein to seed

ZIF-8 growth. Furthermore, agreement with experimental pI values was obtained (e.g.

aminated BSA has a pI > 9.5).284

(b)(a) (c)

Figure 5.7: Parity plots comparing (a) the calculated pI values from the 3D model and the
sequence model and (b) the calculated pI from the sequence model and the reported pI
values for all unmodified proteins (the y = x line is shown). Error bars in (b) represent
ranges of pI values reported in Table 5.1. (c) Categorical scatter plot of the calculated
pI from the sequence model of all proteins. (“ZIF” denotes ZIF formation and “no ZIF”
denotes no ZIF formation.)
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Figure 5.8: Categorical scatter plot of the calculated pI for BSA, pepsin, haemoglobin and
myoglobin, with and without the surface modifications used in the experiments (Figure 5.2).
The same protein is represented by the same marker. Arrows indicate the general outcome
of each modification reaction. (“ZIF” denotes ZIF formation and “no ZIF” denotes no ZIF
formation.)

We computed the electrostatic potential by solving the linearized PB equation

around each protein in Table 5.1 to investigate its role in determining the ability of

a protein to seed ZIF-8 growth (see Section 5.4.5 for details). The calculated average

surface potentials from the 3D model of each protein show reasonable agreement with

the experimental zeta potentials (Figure 5.9a–b). The average surface potentials for

very highly charged proteins, such as BSA, catalase and pepsin, are overestimated com-

pared with experimental zeta potentials, likely because of the use of the linearized PB

equation, which breaks down in regimes of high zeta potential (|ζ| > kBT

z+e
≈ 12mV).

Note that we did not use the nonlinear PB equation because it is much more com-

putationally demanding than the linearized equation for complex 3D systems. The

underestimation of the magnitude of the average surface potential compared with ex-

perimental zeta potentials at pH 11 for lipase and HRP is likely a result of differences

between the experimental and calculated structures. Both proteins are expected to be

glycosylated,285,286 which is known to affect zeta potential measurements,287 whereas

the calculations used nonglycosylated structures. Additionally, HRP could be a mix-

ture of different isoenzymes, which are enzymes that differ in peptide sequence but

catalyze the same reaction, with vastly different electrostatic properties.288 We note
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that both proteins have reported pIs that span a broad range of values (Table 5.1),

indicating a broad range of electrostatic properties for different samples.

(a) (c)(b)

Figure 5.9: Parity plots comparing the calculated surface potential from our 3D model and
experimental zeta potentials at (a) pH 7 and (b) pH 11 for all proteins (the y = x line is
shown). (c) Categorical scatter plot of the calculated surface potential from our 3D model
at pH 11 for all proteins. Closed circles and the “ZIF” label denote proteins that form
ZIF-8 and open circles and the “no ZIF” label denote proteins that do not form ZIF-8. The
shaded region in (c) highlights the approximate boundary of the calculated surface potential
that separates proteins that do and do not seed ZIF-8 growth.

In all of our calculations, we have approximated each protein by a static 3D model

obtained from X-ray crystallography. We note that a static structure is unlikely to be

representative of a protein structure in solution at pH 11. At high pHs, the presence

of high-charge regions would lead to electrostatic repulsion and a degree of unfolding,

which our model does not take into account. We also note that the interior of a protein

has a highly variable dielectric coefficient and assuming a constant dielectric coefficient,

as we have, can give rise to errors in the potential near the surface of proteins.289

Furthermore, by taking the average surface potential to be equal to the experimental

zeta potential for a heterogeneous protein surface we have assumed that the electric

double layer surrounding the protein is thin compared with the size of the protein

and that the linearized PB equation applies, which may not always be the case for the

systems studied (discussed above).142 The semiquantitative agreement with experiment

in most cases in Figure 5.9a–b is encouraging, considering the approximations in the

calculations. Finally, we emphasize that the efficiency of the linearized PB equation

makes it more amenable to high-throughput computational screening than solving the

full nonlinear equation for complex 3D models.

Figure 5.9c shows a categorical scatter plot of the calculated average surface poten-
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tials at pH 11 for all proteins. These results support the experimental findings and show

a reasonable ability to predict a protein’s propensity to seed ZIF-8 formation. We show

results at pH 11 because the initial solution (before adding zinc ions) in the biomimetic

mineralization experiments is at approximately pH 11, but we note that upon addition

of zinc ions, the pH quickly decreases to around 9, likely due to ZIF nucleation.71 In

addition, we found good agreement between the calculated surface potential at pH 11

and the experimental zeta potentials, which were measured at approximately pH 11

(Figure 5.9b).

log10(enhancement)

potential [mV]
-60 60

(a)

(b)

(c)

Figure 5.10: (a) Stick representations of protein crystal structures of (left) BSA and (right)
lysozyme. Hydrogens are omitted for clarity. (b) Calculated surface potential and (c) log 10
of the zinc ion enhancement at the surface of both proteins. Structure and surface figures
were made using OVITO.187

The calculated surface potential also provides comprehensive 3D information about

the electrostatic interactions of the protein with the surrounding electrolyte solution.

Figure 5.10 shows 3D maps of the electrostatic potential and zinc ion enhancement

at pH 11 for BSA and lysozyme. These 3D maps clearly highlight the significant

differences in the interactions with the surrounding electrolyte between proteins that

do seed ZIF growth and those that do not.

105



5.5.2 Screening enzymes for biomimetic mineralization

Based on Figure 5.7c, we suggest that the pI of a protein calculated from its sequence

can be used to accurately predict whether that protein will induce biomimetic min-

eralization of ZIF-8 or not. To highlight the broad applicability of this screening

technique as well as biomimetic mineralization, we calculated the pI of all enzyme se-

quences with known Enzyme Commission numbers in the BRENDA database (∼105

sequences).290,291 Figure 5.11 shows that the vast majority of enzyme sequences have

pI values below the threshold for biomimetic mineralization. Therefore, there are

many enzyme candidates that could be used. Furthermore, the effect of amino acid

modifications on the pI could be predicted (Section 5.4.4) to determine if biomimetic

mineralization is viable for proteins with pI values above 7.

Figure 5.11: Normalized distribution of the pI for all enzyme sequences with known Enzyme
Commission numbers from the BRENDA database.290,291 The black vertical line highlights
the threshold pI (≈ 7) below which biomimetic mineralization is expected to occur, as
determined from Figure 5.7c.

5.5.3 Modelling the electrostatic properties of carbohydrates

The experimental results in Section 5.3.2 support the hypothesis that electrostatic in-

teractions drive the biomimetic mineralization process for carbohydrate molecules. To

further understand these findings, we applied a computational model of the electro-

static potential and ion concentrations near dextran chains as a function of their charge.

It is possible to modify the charge of a functionalized dextran chain by changing the

degree of substitution (DS) of neutral hydroxyl groups with ionizable functional groups

along the chain. In the experiments above, DS ≈ 0.125, which corresponds to about

one ionizable group per eight glucose monomers. Unlike for proteins (Section 5.3.1),
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the 3D structure of dextran chains is not well defined, but experimental measurements

of their elasticity indicates that they can be approximated as freely jointed chains (see

Section 5.4.6 for details).277,278 To describe the electrostatics, we have treated dextran

chains as ion-permeable spheres because most of the pervaded volume occupied by the

dextran molecule is accessible to the ions in solution.276 Therefore, to investigate the

role of dextran functionalization on ZIF formation, we calculated the electrostatic po-

tential and ion concentrations surrounding an ion-permeable sphere using numerical282

and analytical283 solutions to the PB equation, where positive and negative charges

were added to a neutral dextran backbone as a function of DS (see Section 5.4.6 for

details). Figure 5.12 shows the electrostatic potential surrounding AM and CM func-

tionalized dextran chains for DS = 0.01, 0.04, 0.06, and 0.1 calculated using the ana-

lytical solution to the linearized PB equation and numerical solutions to the nonlinear

PB equation. The numerical solution deviates significantly from the analytical solution

for values of DS ≥ 0.04 for the CM functionalized dextran where |ψ| > 12mV, hence

the linearized PB equation is not expected to apply (see Section 5.4.6 for details).

(a) (b)

Figure 5.12: Comparison of the calculated electrostatic potential as a function of the radial
coordinate r for (a) AM and (b) CM functionalized dextrans for different values of DS using
the analytical283 (dashed lines) and numerical282 (solid lines) solutions to the PB equation.

Figure 5.13 shows the electrostatic potential and zinc ion enhancement at the center

of the ion-permeable sphere as a function of DS. The positively charged AM-dextran de-

pletes zinc ions near the dextran chain, while the negatively charged CM-dextran chain

enhances the zinc ion concentration. Importantly, at the DS used in the experiments

(the black vertical line), the zinc ion enhancement is above the approximate threshold

identified for the biomimetic mineralization of proteins in Section 5.3.1, where a zinc ion
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enhancement ≈ 10 (calculated from experimental zeta potentials) was required for ZIF

formation.3 Figure 5.13 shows the electrostatic potential and zinc ion enhancement at

the center of the ion-permeable sphere (r = 0) because the approximate size of the MOF

precursors (Zn2+ diameter = 1.48Å and 2mIM diameter ≈ 5.2Å) are smaller than the

average separation of dextran monomers in the pervaded volume (≈5.7Å). Therefore,

it is possible that ZIF formation would occur anywhere within the pervaded volume of

the carbohydrate chain. Thus, it can reasonably be expected that ZIF formation will

be governed by the electrostatic potential and zinc ion enhancement at the center of

the ion-permeable sphere where the zinc ion concentration is greatest, but we note that

ZIF growth could be seeded at any point for 0 ≤ r ≤ Rg. These findings, alongside

those in Section 5.3.1, confirm the importance of a biomacromolecule’s charge on the

biomimetic mineralization process. They also show that the same threshold for the

electrostatic potential governs successful encapsulation of distinct biomacromolecules.

(a) (b)

Figure 5.13: Calculated (a) electrostatic potential and (b) zinc ion enhancement at the
center of the carbohydrate versus degree of carboxymethyl or amino functionalization.

5.6 Conclusions

In conclusion, by assessing the biomimetic mineralization of ZIF-8 by biomacromolecules

under experimental conditions that usually do not lead to ZIF-8 growth, we have con-

firmed that the electrostatic properties of a biomacromolecule are the dominant factor

in inducing ZIF-8 growth in water.3,4 We showed that surface modification of proteins

allows for modulation of their surface charge and control over the biomimetic mineral-

ization process. Therefore, biomimetic mineralization may generally be applied using
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this strategy. Experimental collaborators found that the zeta potential, which is re-

lated to a protein’s surface charge, and the pI of a protein are good predictors for

whether a protein will seed ZIF-8 growth.

To investigate the impact of the charge on a biomacromolecule on biomimetic min-

eralization at the molecular level, we modelled the surrounding electrostatic potential

and ion distribution using the PB equation. For proteins, the average surface electro-

static potential, calculated based on a static 3D structure, was found to qualitatively

agree with experimental zeta potentials at pH 7 and pH 11 and was able to predict

ZIF-8 growth. By modelling the interactions between biomacromolecules and their

surrounding electrolyte solution, we verified that the enhancement of the zinc ion con-

centration near negatively charged biomacromolecules drives biomimetic mineraliza-

tion. Furthermore, we showed that the predictions made by a simple sequence-based

model of the protein pI and a more physical 3D structure-based model of the surface

electrostatic potential are similar and that both of these calculations agree with the

experimental findings. Calculation of the pI of a protein is fast and general, allowing

for the screening of proteins or enzymes for biomimetic mineralization before applying

any experimental effort. By calculating the pI of 105 enzyme sequences, we highlight

the broad applicability of biomimetic mineralization because the majority of enzyme

sequences have pI values below the threshold of 7.

Inspired by these findings, we sought out to determine if they are transferable

to other biomacromolecules. Experimental collaborators carried out a systematic

study (varying synthesis conditions and carbohydrate (CH) properties) of CH-seeded

biomimetic mineralization and found that only CHs functionalized with negatively

charged groups reproducibly lead to ZIF-8 formation and CH encapsulation. We mod-

elled a CH chain as an ion-permeable sphere and calculated the surrounding electro-

static potential and electrolyte concentration as a function of the degree of substitution

of the CH chain and found that zinc ion enhancement increases significantly for small

degrees of negatively charged functionalization of the CH backbone. By our calcula-

tions, the experimental degree of substitution on the CH chain produces a similar zinc

ion enhancement as that determined from the experimental zeta potentials of proteins

for which biomimetic mineralization occurs. These findings further solidify the role

of electrostatic interactions and the enhancement of zinc ion concentration in seed-
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ing crystallisation and suggest that biomimetic mineralization can be generalized to a

broad range of biomacromolecules.
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CHAPTER 6

Analysis of the enzymatic reaction space of

enzyme@MOF biocomposites

This chapter contains unpublished work written in manuscript style.

enzymatic
reaction 
space

candidate
reactions

6.1 Abstract

The encapsulation of enzymes inside metal–organic frameworks (MOFs) is a rapidly

expanding field because of the potential to maintain enzyme activity in harsh industrial

conditions. The ability to carry out an enzymatic reaction inside a MOF relies on the

reactants and products being able to diffuse through the MOF pores. Therefore, to

determine the viability of an enzymatic reaction inside a MOF, the molecular size of

all components is calculated using a new, efficient approach that accurately matches

measured kinetic diameters for a wide range of small molecules. Many of the enzymatic

reactions tested in the literature in the MOF ZIF-8 were found to have molecules

bigger than the proposed diffusion threshold for ZIF-8 (4–6.6Å), suggesting that the

substrates and products do not reach the encapsulated enzyme via the MOF pores

but instead via defects in the MOF structure or that the reaction is occurring via

surface-bound enzymes. Furthermore, the reported library of enzymatic reactions that

have been carried out in ZIF-8 represents a small subset of all possible reactions.

Hence, a screening process was developed to collect and classify all enzymatic reactions
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available in an online database for viability in MOFs. A series of enzymatic reactions

that allow for the systematic investigation of the impact of molecular size on activity

in enzyme@MOF composites are suggested based on informatics descriptors of their

molecular components.

6.2 Introduction

Metal–organic frameworks (MOFs) are a class of materials synthesized via a modular

approach from metal-based nodes and organic linkers.33 Recently, biomacromolecules

have been successfully encapsulated within MOFs using a variety of approaches.64,77

One such approach, termed biomimetic mineralization,67,292 has been shown to encap-

sulate enzymes,67 viruses73,74 and cells75,76 in a facile process that leads to enhanced

stability of the biomacromolecules in harsh environments. To date, zeolitic imidazo-

late framework-8 (ZIF-8), composed of Zn2+ ions and 2-methyl imidazole links,68,69

is the most widely explored MOF for biomimetic mineralization because it is stable

and can be synthesized in biologically compatible conditions.70–72 Importantly, general

approaches have been reported that can drive the encapsulation of a broad range of

biomacromolecules.3,293

Enzymes are a class of protein whose function is to catalyze the biochemical trans-

formation of a substrate to a product. Through encapsulation in MOF matrices

(enzyme@MOF), enzymes are able to retain their activity in harsh conditions (e.g.

elevated temperatures or proteolytic media) due to the protection afforded by the

MOF matrix.67,241,292,294–296 Improved durability is a crucial step toward the commer-

cial application of enzymes as industrial catalysts.250 The ZIF-8 matrix also affords

size-selective transport of substrates to the active site of an enzyme via its pore net-

work.67,292 However, an essential and under-explored aspect of the application of en-

zymes inside ZIFs and other MOFs is the extent to which the pore network limits the

mass transfer of substrates and products to and from the encapsulated enzyme.

A tremendous amount of research effort has gone into understanding the molecular

sieving behaviour of ZIF-8 and other ZIFs because of their potential use in membrane

and separation applications.297–299 ZIF-8 allows for the diffusion of molecules signifi-

cantly larger than its crystallographic pore aperture (3.4Å) through rotations of the

112



organic linker and deformation of the pore window.300–306 Gas-phase experiments have

shown that molecules as big as 1,2,4-trimethylbenzene (kinetic diameter of 7.6Å) were

able to diffuse into ZIF-8, but the diffusivity of molecules this large was found to be

slow.307 A series of gas-phase experiments and simulations found that a molecule’s dif-

fusivity through ZIF-8 can be related to its kinetic diameter and decreases significantly

for kinetic diameters around 4.0 –4.5Å.300,307,308 This property of ZIF-8 gives rise to

the kinetic separation of molecules of different size, e.g. propylene and propane.309

Liquid-phase adsorption studies of ZIF-8 at room temperature (performed over 24h)

have shown adsorption of n-hexane and benzene, but rejection of mesitylene,310 which

puts an approximate threshold for adsorption between 5.4–8.2Å (based on the diam-

eters of benzene311 and mesitylene312). Furthermore, desalination experiments and

simulations have shown complete rejection of ions by ZIF-8 membranes at room tem-

perature, which narrows the diffusion threshold to approximately 6.6Å based on the

hydrated diameters of rejected ions.298

The experimental and simulation studies outlined above suggest that there exists an

approximate size threshold (≈4.0–4.5Å) where diffusion through ZIF-8 slows down by

orders of magnitude.300,307–309,313 Molecular size alone does not determine a hard limit

for diffusion,118 because diffusion depends significantly on many factors,314 including

(i) experimental conditions (such as temperature, pressure,300 whether the adsorbate

is in the gas or liquid phase301 and adsorbate concentration304,315), (ii) the presence of

defects,316 (iii) crystal size,317 (iv) pore aperture flexibility,318,319 (v) molecular flex-

ibility,318–320 (vi) molecular shape312,318–320 and, (vii) thermodynamic factors such as

adsorbate-MOF interactions.314,321,322 Nonetheless, the size of a molecule has been

shown to approximate its ability to diffuse through ZIF-8 at a reasonable rate.300,307,308

Importantly, a recent study of the diffusion of neutral and charged molecules in MOFs

found a linear relationship between diffusivity and the relative size of the pores and

adsorbate.322 Hence, we have applied molecular size as the criterion to determine if an

enzymatic reaction can occur inside crystalline ZIF-8 without significant mass transfer

limitations.

During our analysis of the literature, we found that the set of enzymatic reactions

that have been carried out inside ZIF-8 is a small subset of all possible enzymatic reac-

tions. Therefore, we developed a computational screening process for viable enzymatic
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reactions to assist the rapid expansion of the use of enzyme@MOF composites. The use

of computational approaches to efficiently explore chemical space is crucial to multiple

scientific fields, including materials science17,87 and drug design,323 because they offer

a low-cost strategy to advance experimental endeavors. Our screening process extracts

known enzymatic reactions from online databases and determines their viability for ap-

plication inside MOFs. In this work, we used the size of the molecular components of a

reaction, which can be related to their ability to diffuse through MOFs, as the primary

determinant of viability. Multiple online databases that contain many thousands of

possible enzymatic reactions exist (such as the KEGG,324–326 BRENDA,290,291 SABIO-

RK,327–329 and ATLAS330 databases). Therefore, the ability to efficiently screen these

databases for candidate reactions that can be expected to occur inside ZIF-8 and other

MOFs without arduous and expensive experimental testing is important. We used

our screening process to collect and analyze ∼4000 unique reactions from the KEGG

database. From the resultant data set we suggest a series of reactions that could be

used to test the impact of molecular size on the enzymatic activity inside MOFs.

6.3 Calculation of molecular size

We implemented an efficient algorithm to calculate the molecular size that correlates

well with known kinetic diameters. Table C.2 shows the molecules and their kinetic

diameters used to parameterize our algorithm. We chose this data set as these molecules

have reported kinetic diameters307,308,311 and a subset have been tested for diffusion

through ZIF-8.301,307,308,310,313,315,331–333 The algorithm effectively calculates the cross-

sectional size of the van der Waals (vdW) volume of a given molecule and is similar to

approaches used to determine the molecular size of adsorbates.312 Our method differs

in the use of multiple 3D conformers to efficiently account for molecular flexibility,

which is crucial for modelling diffusion through porous materials.320 We used RDKit

(a cheminformatics Python toolkit)334 to convert the SMILES string of a molecule

into N (N = 100 in this work) 3D conformers using the ETKDG algorithm, followed

by energy minimization using the universal force field (UFF) (Figure 6.1a,b).119,335

The ETKDG algorithm stochastically initializes atom positions in 3D space based on

the bonding of the molecule and then uses empirical bond, angle and torsional-angle
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information as well as a small set of basic structural constraints to build reasonable 3D

conformers. We calculated a grid representation of the vdW volume of each conformer

using RDKit (shown in Figure 6.1c). The grid is defined by a box margin, which sets

the length that the grid extends beyond the positions of the atoms, and a grid spacing,

which sets the distance between points in the grid (in the following section we discuss

the choice of parameters used in this algorithm).

(a)

(b)

(c)

slow diffusion

fast diffusion

d

d

cyclohexane
SMILES:

C1CCCCC1

ethanol
SMILES:

CCO

(d)

SMILES = CCCCCCCCCC(=O)O

Figure 6.1: (a–c) Example calculation of the molecular size of n-decanoic acid from (a) a
SMILES string (a 2D representation of n-decanoic acid is also shown). (b) Multiple 3D
conformers of n-decanoic acid are generated (shown in distinct colors) and (c) the minimum
volume ellipsoid (black grid) that encloses a grid representation of the vdW volume of each
conformer (shown as green marks) is calculated. Atom positions are omitted for clarity
in (c). (d) Schematic of the molecular size d of ethanol and cyclohexane and its impact
on diffusivity through ZIF-8 (represented by a sodalite cage). Example minimum volume
ellipsoids that encompass the vdW volume of ethanol and cyclohexane (represented by gray
clouds) are shown in green and red, respectively.336,337

We then calculated the minimum-volume enclosing ellipsoid (shown in black in

Figure 6.1c) for the points in the vdW volume of each conformer using a minimization
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algorithm based on the Khachiyan algorithm (we used a tolerance of 0.1 for the error

in the solution with respect to the optimal value).336,337 An ellipsoid is defined by its

three principal diameters, where its second largest (or intermediate) diameter defines

the smallest sized cross-section that is required to diffuse through the MOF pores

(assuming cylindrical pores).312 We assigned the size of a molecule from the minimum

intermediate diameter (d) of all of its conformers. Our measure of molecular size

accounts for molecular flexibility during diffusion320 by assigning size based on the

smallest possible value among all conformers, which is exemplified by the four different

ellipsoids of n-decanoic acid in Figure 6.1c. Note that we extract the conformer with

the smallest intermediate diameter, not the most stable conformer. We do not consider

the charge state or solvation shell of a compound when calculating the molecular size,

which could lead to an underestimation of d for charged molecules. Finally, we applied

a molecular weight limit of 500 gmol−1 because this method is not expected to apply

for large, flexible molecules.338

The sensitivity of the calculated molecular size to the calculation parameters is

studied in detail in Appendix C.2. Figure C.2 shows good agreement between the cal-

culated molecular size d and reported kinetic diameters for all molecules in Table C.2

using a box margin of 4Å, a grid spacing of 0.5Å, N = 100, and a vdW scale parame-

ter of 0.8. Furthermore, Figure C.3 shows our methodology can accurately reproduce

the relationship between self-diffusivity and molecular size. Nevertheless, discrepan-

cies between the reported kinetic diameters and d were found (∼1.0Å) for flexible alkyl

chains, such as n-heptane. The calculation of d was designed to be efficient and does

not consider many factors that may enhance or limit diffusion. For example, using d

alone correctly predicts that cyclohexane (6.2Å) will diffuse easier than cyclooctene

(6.9Å),339 but fails to predict the exclusion of n-decane (5.5Å) and diffusion of ani-

line (6.3Å)340 or the exclusion of 2,2′-dimethylbutane (6.0Å).341 The failure of d in

these examples suggests that factors other than molecular size can determine diffusion

through ZIF-8. Indeed, increased adsorbate-MOF dispersion interactions, compared

to shorter alkyl chains, was found to impact n-decane adsorption inside ZIF-8.342 This

work does not consider substrate functionality and adsorbate-MOF interactions, which

may have a significant impact on diffusion through the MOF pores. In general there

is a trade-off between accuracy and computational efficiency, but the methodology
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appears sufficient to approximate the kinetic diameters of small molecules accurately.

Therefore, it was applied to approximate diffusion through ZIF-8 (Figure 6.1d).

6.4 Re-evaluation of previous enzyme@MOF measurements

Table 6.1 summarises the enzymatic reactions reported to have some degree of activity

inside ZIF-8. We did not filter reactions based on the encapsulation method, but we

did ignore reported reactions occurring at pH < 6 because ZIF-8 degrades under these

conditions.67 Table C.3 contains all substrates and products (that had to be able to

diffuse through ZIF-8 for a reaction to occur) of all reactions in Table 6.1. Table 6.1

shows the Enzyme Commission (EC) numbers,343 which classify an enzyme by the

reaction it completes. EC numbers are represented by four numbers or levels, with the

first level being the most general and the fourth level being the most specific. The EC

numbers in Table 6.1 represent a small subset of possible EC numbers (15 of ∼7000),

and hence, possible enzymatic reactions. Note that EC numbers have not been fully

specified (to the fourth level) for many enzymatic reactions.330,344

Table 6.1: Reactions reported to be completed by enzymes encapsulated in ZIF-8 and their
associated EC numbers. Similar reactions are grouped together.

reaction EC No. of enzyme
ethanol oxidation296 1.1.1.1
pyruvate reduction296 1.1.1.27/1.1.1.28
glucose oxidation67,292,295,296,345–347 1.1.3.4, 1.1.5.2
peroxide decomposition67,77,292,294–296,346,348–350 1.11.1.5, 1.11.1.6,

1.11.1.7, 1.9.3.1
lactate oxidation346 1.13.12.4
ester hydrolysis77,350–354 3.1.1.3, 3.1.1.6
lactose hydrolysis296 3.2.1.23
sucrose hydrolysis346 3.2.1.26
urea conversion67,295,355 3.5.1.5
production of 6-APA348 -
kinetic resolution354 -
catalase inhibition294 -
methylene blue reduction296 -

As discussed above, the kinetic or molecular diameter of a molecule is related to its

diffusivity through ZIF-8 and a significant decrease in diffusivity was found to occur

for molecules with kinetic diameters in the range of 4–6.6Å.298,300,307,308,310 Therefore,

117



molecules with kinetic diameters greater than this threshold would be unlikely to dif-

fuse through ZIF-8, severely limiting their viability for reaction inside ZIF-8. Based

on these findings, we implemented an efficient descriptor of molecular size to predict

the diffusion of small molecules through ZIF-8, and hence, the viability of a target

reaction (see Section 6.3 for details). Figure 6.2 shows many molecules in Table C.3

are not expected to diffuse through ZIF-8 at a reasonable rate, based on their value

of d. While the literature does not confirm complete exclusion of all molecules larger

than 6.6Å, it does suggest that mass transfer is limited for reactions that have com-

ponents larger than this size. Nonetheless, there are alternate pathways to alleviate

mass transfer issues, which may explain these findings. Firstly, the presence of enzyme

on the surface of ZIF-8 may lead to activity, which would be indistinguishable from

the activity of enzymes inside the MOF,8,77 and would not be limited by mass transfer

through the MOF pores. Experiments have confirmed the presence of enzymes inside

and near the surface of ZIF-8.77,293 We note that simply immobilizing enzymes on the

surface of MOF particles, and surfaces in general, can lead to enhanced activity or sta-

bility.356,357 Secondly, different preparation methods72,347,354,358 may lead to differing

degrees of ZIF crystallinity, which could lead to large interstitial diffusion pathways.

For example, the decreased crystallinity of ZIF-8 formed via mechanical synthesis may

explain the reported diffusion of p-nitrophenyl octanoate (6.7Å); in this case, diffusion

inside ZIF-8 was confirmed by infra-red spectroscopy.354 Finally, recent reports have

shown the degradation of ZIF-8 particles under certain reaction conditions,359 which

would result in large diffusion pathways through the MOF. These results suggest that

careful characterization of the presence of surface-bound enzymes and ZIF crystallinity

before and after measuring enzyme activity should be carried out to ensure that the

reported activity originates from enzymes inside the MOF. Chen and co-workers re-

cently reported enzymatic cascade reactions (with large molecular components) inside

crystalline ZIF-8 (crystallinity was confirmed by SEM and X-ray diffraction), for which

they thoroughly checked for surface-bound enzyme.296 Their results suggest that an as-

yet unknown factor may explain the enzymatic activity inside ZIF-8 for reactions with

large molecular components.

Figure 6.2 shows that many enzymatic reactions that have been reported to occur

inside ZIF-8 are likely to be limited by mass transfer and so the reported activity is
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ZIF-8
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Figure 6.2: Molecular size d of all molecular components of enzymatic reaction systems
reported to occur within ZIF-8 (Table C.3). The vertical shaded region indicates the approx-
imate range for the threshold for diffusion through ZIF-8 from the literature.298,300,307,308,310
The black vertical line corresponds to the crystallographic pore diameter (3.4 Å) of ZIF-8.
The 3D structure and molecular size of urea (d ≈ 5.2Å) is highlighted.

likely due to surface-bound enzymes or defects in the MOF structure. Enzyme@MOF

reactions that require surface-bound enzymes or MOF defects to occur are unlikely

to be useful in practical applications as surface-bound enzymes are likely to be dena-

tured and MOF defects near encapsulated enzymes are unlikely to be straightforward

to engineer in a reproducible fashion. These data suggest it will be important to sys-

tematically test the effect of molecular size on enymatic activity for enzymes that can

be verified to be fully encapsulated in ZIF-8. To this end, we suggest two series of

reactions from the reported reactions in Table 6.1. The first test examines the decom-

position of peroxides (hydrogen peroxide, methyl ethyl ketone peroxide and tert-butyl

hyperperoxide) of increasing size (Figure 6.3a).77 The benefit of this series of reactions

is that many enzymes show peroxidase activity and multiple assays exist for monitor-

ing peroxide decomposition.77 The second series of reactions examines p-nitrophenyl

ester hydrolysis, which is commonly used as an assay for lipase activity.77,350–354 Fig-

ure 6.3b shows the ester substrates and acid products that have been reported, which

represent a systematic increase in molecular size, flexibility and hydrophobicity. Fur-

thermore, lipases are generally stable to immobilization.360 Importantly, the diffusion

of p-nitrophenyl octanoate (C8) through mechanically synthesised ZIF-8 was confirmed

by infra-red spectroscopy.354 In both cases, a broad range of enzymes can be used, and

the molecular properties can be systematically varied.

The values of d in Figure 6.3 span values for which mass transfer is predicted to

limit or not to limit the reactions. Therefore, the presence or absence of enzymatic
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(a) (b)

Figure 6.3: Molecular size d calculated for (a) hydrogen peroxide, methyl ethyl ketone
peroxide and tert-butyl hyperperoxide as a function of their molecular weights (chemical
structures are also shown) and (b) the ester substrates and acid products of a series ester
hydrolysis reactions as a function of the number of carbons in the acid chain. The purple
line in (b) indicates d of p-nitrophenol, which is another product of all of the ester hydrolysis
reactions. The gray region indicates the approximate range for the threshold for diffusion
of molecules through ZIF-8 from the literature.298,300,307,308,310

activity in ZIF-8 for these reaction series provides a sensitive test of molecular-size

limitations on enzyme@MOF reactions. Based on the molecular-size threshold for

diffusion in ZIF-8, the reaction series in Figure 6.3b may not show significant activity

because all of the reactants (the esters) are near or above the threshold. We note

that small increments in the pore size of ZIF-8 can be achieved using solvent-assisted

linker exchange (SALE), which can increase the pore size of ZIF-8 by ∼1Å.361 By

using SALE, for example, it may be possible to monitor the impact of ZIF pore size on

enzymatic activity for this series of reactions. The relationship between the molecular

size of the substrates and products of a reaction, the MOF pore size and enzymatic

activity remains unclear, but an understanding of this relationship is crucial for the

design and control of enzyme@MOF composites in the future. In the following sections

we describe a screening process that will aid in the selection of viable enzyme@MOF

reactions, for which we have assumed the size of the molecular components to be the

critical factor determining reaction viability. From our screening process we suggest

further reactions that could be used to understand the relationship between molecular

size and enzymatic activity in MOFs.
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6.5 Identification of new enzyme@MOF reactions

Progress toward a better understanding and improved control over the encapsulation

of enzymes in MOFs is being undertaken293,362 and, in general, conditions that lead to

successful encapsulation can be found64,73,74,295 through strategies such as amino acid

modification.3 Nonetheless, Table 6.1 shows a limited scope of enzymatic reactions that

have been tested inside ZIF-8. The cost of purified enzymes and the time required to

prepare and screen new enzymes is significant. Hence, accurate predictions of which

reactions may be possible inside a given MOF before doing costly experiments are

valuable. To this end, we have designed an efficient screening process to explore the

known enzymatic reaction space (Figure 6.4). The screening process uses molecular

information from databases of biochemical transformations to determine the viability

of a given reaction and suggest the best candidates for further experiments. The KEGG

database324–326 of ∼11 000 curated enzymatic reactions was used to compile a list of

possible reactions with known molecular components.

select
EC number

reaction
database

get 
reaction systems

get substrate
and product
properties

identify
possible

 reactions

molecule
database

calculate:
(i) solubility

(ii) complexity
(iii) size

candidate
 reactions 

+ 
experiments

scr
eening

Figure 6.4: Flowchart of the process used to screen enzymatic reactions in MOFs. A series
of reaction systems are collected for all EC numbers from a database of enzymatic reactions
(the KEGG database was used).324–326 The molecular structures of the components of each
reaction system are extracted and analyzed to provide a list of possible reactions, which are
then screened for target properties.

Based on the importance of molecule size in determining diffusivity in ZIF-8, we

used the size of the largest component (d) of each reaction as the first check for vi-
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ability. Figure 6.5a shows the distribution of the maximum component size of all

reaction systems collected from the KEGG database and the cumulative number of

reactions as a function of the maximum d of the components of each reaction. We

excluded reactions with components with molecular weights > 500 g mol−1, which ex-

plains the plateau in Figure 6.5a around 10Å. We found 36 reactions in this data set

with maximum component sizes < 4.5Å, where mass transfer should not be limited

in ZIF-8.300,307,308 The number of reactions increases dramatically (up to ∼1000) near

the approximate diffusion threshold of ZIF-8, indicating that many new reactions may

be possible with current experimental methodologies. Nonetheless, Figure 6.5a shows

that the small pore aperture of ZIF-8 is a limiting factor in the utility of encapsulated

enzymes. Figures 6.5a and C.4 show that the distributions of the maximum compo-

nent size are centered around 7–9Å. Therefore, it is important to target ZIFs with

pore-limiting diameters around that size. The pore size and chemistry of ZIF mate-

rials can be systematically controlled through stiffening the framework using electric

fields,363,364 the formation of mixed-linker ZIFs,333,365,366 structuralization367,368 and

linker exchange (during and post-synthesis).313,331,361,363,369–372 Furthermore, there are

many experimentally known ZIF structures that have been reported with larger pore

apertures (up to ≈13Å).68,69,373–375 The vertical dashed line in Figure 6.5a highlights

the number of unique reactions (∼4000) accessible to experimentally realized ZIFs with

larger pore apertures (the largest having a pore-limiting diameter of 13.1Å).373 Encap-

sulation of enzymes in other ZIFs has been reported, which suggests that the chemistry

is transferable.8,77,241,294 Figure 6.5a shows that even small increases in the pore size

can lead to significant expansion of the reaction scope of enzyme@MOF composites.

Methods such as SALE,361 that allow for the systematic modification of pore sizes of

ZIFs provide another means of studying the effect of molecular size without changing

the enzymatic reaction being studied. Our results indicate that an increase in pore size

by ∼1Å, which can be achieved using SALE,361 will allow access to hundreds of new

reactions.

Alongside the maximum component size, we calculated a series of properties of

each reaction system that are expected to be relevant for high-throughput screening

of enzymatic reactions in MOFs. The aqueous solubility (logS) and hydrophobicity

(logP) of each component is crucial for the experimental viability of a reaction in aque-

122



ZIF-8
diffusion
threshold

(a) (b)

(c) (d)

Figure 6.5: Distributions of the (a) molecular size d of the largest component, (b) change
in SAscore, (c) logP of the most hydrophobic component and (d) logS of the least water
soluble component for all reaction systems collected. The black curve in (a) shows the
cumulative number of reactions extracted from the KEGG database324–326 as a function
of the d of the largest molecular component of each reaction. The hatched region in
(a) indicates the approximate range for the threshold for diffusion through ZIF-8 from
the literature.298,300,307,308,310 The vertical dashed line in (a) represents the largest pore-
limiting diameter of any experimentally realized ZIF structure.373,374 Only unique reactions
are shown in all distributions.

ous solution.376 Experimental evidence suggests that the hydrophobicity of ZIF-8 does

not inhibit the diffusion of water through its pores.297,298 Therefore, we consider the

aqueous solubility of the reaction components to be a more critical factor, because all

reported reactions, so far, have been done in water. Nonetheless, increased hydropho-

bicity of the MOF pores relative to water could potentially limit the diffusion from

water into the MOF or vice versa if a molecule is extremely hydrophilic or hydropho-

bic, respectively (ignoring the impact of hydration and surface tension). Alternatively,

less hydrophobic ZIFs (i.e. MAF-7) could be used.8,371 We used the AlogP98 method

(implemented in RDKit and termed “logP” in this paper) to determine the hydropho-

bicity (defined by the octanol-water partition coefficient) of a molecule.334,377,378 This

method defines logP as a sum of contributions from all of its atoms, taking into ac-

count intramolecular interactions based on an atoms neighbours.377 We predicted the

aqueous solubility of a molecule (represented here by logS) from a molecules logP and
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structure (e.g. molecular weight, number of rotatable bonds and the proportion of

atoms in the molecule with aromatic bonds).376 We applied an updated version379 of

the ESOL approach376 implemented using RDKit.334

The value added by a reaction, based on the molecular complexity of the products

compared to the reactants, is another useful descriptor for screening candidate reac-

tions. Synthetic accessibility (given by a synthetic accessibility score, SAscore) is a

cheminformatic estimate of how difficult it would be to synthesize a molecule.380 SAs-

core takes into account molecular complexity and the “historical synthetic knowledge”.

Molecular complexity has been defined in multiple ways (see Appendix C.5 for details),

but in the calculation of the SAscore, complexity is defined by the size of the molec-

ule and the presence of complex fragments (such as macrocycles). Historical synthetic

knowledge is taken into account by scoring each fragment present in a molecule, where

a fragments score is determined by its prevalence in the PubChem database (fragments

that appear with frequently in molecules in the PubChem database are assumed to be

more synthetically accessible).380 The SAscore is a number ranging from 1 to 10, where

a value of 10 implies that a molecule is difficult to synthesize. A high value-added re-

action would take an easy to make compound (lower SAscore) and produce a difficult

to make compound (higher SAscore). Interestingly, Figure C.5 shows that biological

transformations do not often induce large changes in synthetic accessibility. Impor-

tantly, we can calculate the SAscore, as well as the logS and logP of each molecule

efficiently using RDKit.334

The impact of encapsulation in MOFs on enzyme structure is still an open ques-

tion,8,362 but the immobilization of proteins on surfaces and on/in MOFs has been

shown to lead to conformational changes from their native structures, which may lead

to a loss or gain in activity.352,381 The encapsulation process may also impact enzyme

activity by interrupting the binding of co-factors or resulting in MOF building blocks

inhibiting the enzyme active site. Therefore, it is crucial to undertake an experimen-

tal analysis of the integrity of an enzyme before and after testing bioactivity. Many

factors, including the ability of an enzyme to retain its native configuration, deter-

mine the activity of immobilized enzymes.360,382 Therefore, predicting the bioactivity

of an immobilized enzyme is not trivial and still not fully understood. Thus, we have

not considered this factor in our screening process but this would be a crucial step to
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screening candidate enzymatic reactions.

Figure 6.5b–c show distributions of the change in SAscore, logP of the most hy-

drophobic component and logS of the least water soluble component of all reaction

systems collected (we further analyze these data in Appendix C.5). Note that we did

not use the change in SAscore in the following analysis because the KEGG database

does not specify the directionality of its reactions (we manually determined the di-

rectionality of the final set of candidate reactions). We designed an example process

that uses the above data to screen the ∼4000 candidate reactions (Figure 6.5) for a

reaction that adds value and can be monitored in situ to probe enzymatic activity

inside a MOF. Figure 6.6 shows the applied screening process. Firstly, we extracted

reactions with maximum component sizes (d) in the range of 5–7Å. This size regime is

at the diffusion threshold for ZIF-8 and ∼1–2Å above the size at which diffusivity was

found to decrease by orders of magnitude (≈4–4.5Å).300,307,308 Therefore, the impact

of molecular size on enzymatic activity can be tested. Furthermore, because the maxi-

mum component size is within ∼1–2Å of the diffusion threshold, it is possible to apply

SALE361 to monitor the change in activity as a function of the change in pore size.

1233 reactions remained after this first step. Secondly, we extracted the reactions that

included components with a nitrile group on at least one side of the reaction (deter-

mined by the RDKit fragment classifier).334 Nitrile groups have been used as probes in

protein systems because of their distinct infra-red signal (≈2200 cm−1) in a region that

is relatively uncluttered by protein backbone signals.383 Therefore, the presence of a

nitrile signal may allow for the reaction to be followed in situ by infra-red spectroscopy.

From 33 reactions, we extracted 21 reactions for which the least soluble and most hy-

drophobic molecule was at least more soluble and less hydrophobic, respectively, than

n-pentane (based on the calculated values of logS and logP of n-pentane, which is an

example of a solvent that is immiscible in water). Finally, we manually determined

the directionality and value added (defined by the cost of the substrates and products)

of each reaction using the primary literature available in the KEGG database and the

ZINC database of purchasable compounds.81
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(a)

(c)

(b)

KEGG: R02846 - EC: 4.4.1.9

+

has nitrile
(33 reactions)

+

1233 reactions

21 reactions

Figure 6.6: An example application of our screening process to identify novel enzyme@MOF
reactions. (a) Reactions are filtered by the d of their largest component (reactions in the
red region of the histogram are extracted), the presence of a nitrile functionality on at
least one side of the reaction and (b) the logP and logS of their most hydrophobic and
least water-soluble component, respectively. Reactions (shown by the gray crosses) with
maximum logP or minimum logS values above or below, respectively, that of n-pentane
(shown by the vertical and horizontal gray lines, respectively) are excluded. (c) A candidate
reaction, with its KEGG reaction identifier, EC number, and molecular components given.

Figure 6.6c shows the selected enzymatic transformation of cysteine (a natural

amino acid, ∼$5 g−1)384 to 3-cyano-L-alanine (∼$300 g−1),384 which is carried out by

β-cyano-L-alanine synthase (with an EC number 4.4.1.9).385,386 β-cyano-L-alanine syn-

thase requires pyridoxal 5′-phosphate as a cofactor to carry out the reaction in Fig-

ure 6.6c.385 We note that any cofactors, which can be relatively large molecules such

as pyridoxal 5′-phosphate, should be considered when determining the viability of a

reaction. However, many cofactors remain bound to the enzyme during a reaction.

Therefore, through careful preparation, any required cofactor could be bound to the en-

zyme before encapsulation, which avoids the need for their diffusion through the MOF

pores. We note that whether or not the encapsulation process interrupts the binding

of cofactors would need to be confirmed by experiments. In this work, we have collated

all molecular components of each reaction as present in the KEGG database,324–326

assuming that any other required cofactors may be introduced before encapsulation.
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While the change in SAscore for this reaction is relatively small (0.26), the fact that the

substrate is an abundant amino acid may explain why there is such a price discrepancy.

The infra-red signal of the nitrile group in the product (≈2200 cm−1) will differ enough

from the signal of the cyanide ions in the reactants (≈2050 cm−1)387 such that it will be

possible to monitor reaction progress in situ.383 Figure 6.6 is an example of an efficient

screening process for new and interesting enzymatic reactions to test inside MOFs.

In future, the cost of substrates and products could be considered automatically using

the ZINC database to speed up this process further.81 Furthermore, screening for other

functionalities and molecular fingerprints using RDKit334 is possible and larger data

sets of enzymatic reactions (e.g. the ATLAS,330 BRENDA290,291 or SABIO-RK327–329

databases) could be used to broaden the diversity of these results.

6.6 Conclusion

The encapsulation of enzymes in MOFs allows for enhanced stability in harsh environ-

ments, which could expand their use in industrial applications. ZIF-8 allows for the dif-

fusion of molecules much larger than its crystallographic pore aperture.307 An analysis

of the literature puts a diffusion threshold for ZIF-8 around 4–6.6Å,298,300,307,308,310 with

diffusion (in the gas phase) decreasing by orders of magnitude (compared to smaller

molecules) for molecules with kinetic diameters around 4–4.5Å.307,308 Therefore, the

kinetic diameter could be used to estimate diffusivity through ZIF-8.300,307,308 Based

on these results, we introduced an efficient measure of molecular size to determine the

likelihood that a component can diffuse through ZIF-8 (Section 6.3). The method was

found to agree with reported kinetic diameters (Figure C.2) using a stochastic descrip-

tion of the conformational space of each molecule. Therefore, we applied this simple

descriptor of molecular size as a first approximation for the likelihood of diffusion

through ZIF-8.

We have shown that many reactions reported to occur inside ZIF-8 (Table 6.1) are

expected to be strongly limited by mass transfer through the pore network due to the

size of the molecular components and therefore are unlikely to be due to completely

encapsulated enzymes (Figure 6.2). We suggest that the presence of surface-bound

enzymes or MOF defects may explain the reported activity. This finding highlights
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the importance of undertaking a careful analysis of the integrity of enzyme@MOF

composites. Furthermore, screening of enzymatic reactions by the size of molecular

components alone will lead to false negatives under experimental conditions where

surface-bound enzymes or MOF defects are prevalent. However, the lack of control-

lability and predictability in material properties under such conditions is undesirable

for practical applications. We suggest series of reactions from the list of previously

tested reactions that could be used to further investigate the impact of molecular size

on enzyme activity in enzyme@MOF composites.

The available literature shows a narrow exploration of enzymatic reaction space

in ZIF-8 (Table 6.1). Recent studies have shown that systematic selection of experi-

mental conditions293 and chemical modification of proteins and enzymes,3 can be used

to achieve encapsulation in general. Furthermore, encapsulation of enzymes in other

ZIFs241,294 and MOFs295,388 suggests that achieving enzyme encapsulation inside MOFs

is not a limiting factor. Therefore, the ability to intelligently explore reaction space

while avoiding expensive and arduous experiments is necessary. To that end, we have

reported an efficient methodology to screen for reactions that may be able to diffuse

through ZIF-8 and other MOFs. We collected ∼4000 unique enzymatic reactions using

the KEGG database324–326 and, in concert with other established informatics tech-

niques, we determined the viability of these reactions for application inside MOFs. We

found that ∼1000 of the collected reactions may be viable inside ZIF-8. Furthermore,

the distributions of molecular size of all collected reactions are centered around 7–9Å,

suggesting that MOFs with pore sizes in this range should be targeted. Finally, we

designed a screening process to find candidate reactions that could be monitored in

situ (by searching for specific functionalities) and that added significant value from

substrates to products (based on cost per gram). In this process, we screened for

reactions with maximum component sizes near the diffusion threshold to further inves-

tigate the impact of molecular size on enzymatic activity in ZIF-8. We found a candi-

date reaction that corresponds to the transformation of a cheap amino acid (cysteine)

into a significantly more expensive nitrile-containing compound, where the presence of

the nitrile functionality allows for in situ monitoring of reaction progress by infra-red

spectroscopy (Figure 6.6). We have shown that this method can be used to assist ex-

perimental endeavours by efficiently exploring enzymatic reaction space and designing
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new experiments that can help answer some open questions in the expanding field of

enzyme encapsulation in MOFs.

Approximating diffusivity through ZIF-8 by molecular size alone does not consider

multiple factors that may play an important role in the activity of enzymes in MOFs

such as substrate- and product-MOF interactions and other experimental factors.314

More computationally expensive calculations of molecular diffusion through ZIF-8 and

other porous materials118,138,300,304,306,316,389,390 as well as analysis of adsorbate-MOF

interactions338,391 could be used to consider the role of factors other than molecular

size. The analysis presented herein does not explicitly consider the nature of the MOF

beyond pore size, i.e. MOFs with different flexibilities or pore chemistries may behave

differently to ZIF-8. Nevertheless, we expect screening reactions based on molecular

size to be a useful first approximation. Finally, a crucial factor that has not been

considered in our screening process is whether an enzyme will retain its activity after

being encapsulated in a MOF matrix. Predicting whether enzymes retain their activity

after immobilization is not trivial and this remains an open question in the field.

All code used in this work is freely available at https://bitbucket.org/andrewtarzia/

psp_source/src/master/.
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CHAPTER 7

Conclusion

7.1 Summary and future directions

This thesis describes computational approaches to explore the chemical space of func-

tional porous materials efficiently. We have used computational methods to build upon

and provide molecular-level insight into experimental findings associated with a range

of different assembly phenomena.

In Chapter 3, we developed a coarse-grained (CG) molecular dynamics (MD) sim-

ulation model to study the formation mechanism of a series of four porous aromatic

frameworks (PAFs).1 Experimental findings showed an unexpected trend in the poros-

ity of these PAFs as a function of the structure of their monomer. Our results showed

that relatively weak dispersion forces induce interpenetration in PAF materials, which

lowers their porosity. Furthermore, we found that bulky reaction intermediates in some

PAF reaction mechanisms effectively eliminated interpenetration, which may be a way

to improve the porosity in future experiments. Finally, our analysis suggested that

the kinetic growth mechanism of PAFs robustly leads to highly defective and highly

porous networks. Our physical model of PAF formation facilitates a molecular-level

understanding of amorphous materials, for which experimental characterization is diffi-

cult. We modelled the porosity of discrete PAF clusters using an approximate method

that treats each cluster as periodic. Recently developed geometrical approaches for

modelling the porosity of discrete porous organic cages, which have distinct internal

and external accessible surface areas, could be used to improve the characterization

of early-time PAF clusters formed using our model.392,393 Our CG simulation model

could be extended to other porous materials to study their formation. In particular,

crystalline materials formed using tetrahedral monomers, structurally similar to those

modelled in Chapter 3, show polymorphism as a function of their synthesis conditions,
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which is expected to be a result of the interplay between kinetic and thermodynamic

control.6 Only small modifications to our existing model would be required to study

the driving force for the different polymorphs in these systems.

In Chapter 4, we developed a high-throughput screening method to find known

metal–organic frameworks (MOFs) that would be good candidates for aligned het-

eroepitaxial growth.2 Importantly, we expanded the number of known MOFs likely to

undergo aligned growth and uncovered some design principles. Specifically, we found

evidence for a substrate-directing effect, by which the in-plane symmetry of the sub-

strate selects for MOF interfaces with similar symmetries. The algorithm we developed

is not limited to the specific case that was studied (copper-based MOFs grown from a

Cu(OH)2 substrate via carboxylate binding sites) and an extension of our work would

be to study a broader set of substrates, MOFs and binding geometries. Such a study

may help to further understand the proposed substrate-directing effects by exploring

a more diverse set of structures, while still providing top candidates (both substrate

and MOF candidates) for expansion of the field of MOF thin films. When considering

different binding geometries, it is necessary to account for the relative binding energies

of each geometry with the substrate. An extension of our current model could achieve

this by including a relative binding energy term into a scoring function analogous to

∆IB. The relative binding energy of different binding site configurations as a function

of their 2D position with respect to the substrate could be parameterized using density

functional theory (DFT) calculations.116 Therefore, from the relative positions in 2D

of each atom in the MOF and substrate binding planes relative binding energies could

be calculated and included in the scoring function based on the DFT parameterization.

Furthermore, our 2D description of the interface is simple and efficient, but we note

that a 3D description of the interface may be necessary to consider more complicated

MOF-substrate binding interactions. Recent studies that systematically sliced zeolites

to form reasonable interfaces may offer guidance for the process of systematically slicing

MOF structures.225,394 Finally, the formation mechanism underpinning the growth of

aligned MOFs from a sacrificial substrate remains unclear.55 As explored in Chapters 3

and 5, molecular simulation and theory are an excellent strategy for studying such pro-

cesses, and it would be valuable to understand how the kinetics and thermodynamics

of MOF formation control their macroscale alignment.
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In Chapter 5, we used theory and computation to verify experimental evidence that

the electrostatic properties of a biomacromolecule are the dominant factor in inducing

zeolitic imidazolate framework-8 (ZIF-8) growth in water.3,4 We used the Poisson–

Boltzmann (PB) equation to verify that increased negative charge of a biomacro-

molecule leads to an increased concentration of zinc ions in the surrounding solution,

which is expected to enhance zeolitic imidazolate framework (ZIF) formation kinet-

ics. These findings were transferable to carbohydrate systems,4 which suggests that

biomimetic mineralization can generally be applied using chemical functionalization

to a broad range of biomacromolecules. Importantly, we can calculate the zeta po-

tential and pI of a protein efficiently, which we show to predict ZIF-8 formation in

the presence of proteins accurately. These findings show the potential for computa-

tional screening to advance experimental endeavors in this burgeoning field of MOF

chemistry by screening biomacromolecules for their ability to seed MOF growth be-

fore carrying out experiments. We emphasized both the efficiency of these calculations

and the generality of biomimetic mineralization by calculating the pI of ∼105 enzyme

sequences, which shows that many enzymes have pI values low enough to seed ZIF-8

growth. We studied only a small set of all of the protein systems that exist in nature,

but our improved understanding of how to control the biomimetic mineralization pro-

cess can guide future experiments. However, a molecular-level understanding of how

the enhanced zinc-ion concentration induces biomimetic mineralization is still lacking.

A first step to understanding ZIF self-assembly in the presence of biomacromolecules

would be to develop a kinetic model that considers the concentration (calculated using

the methods reported in Chapter 5) and the dynamics of ZIF precursors. The kinetic

model could be parameterized using previously reported models72,395 and experimental

investigations of ZIF formation.71,72,395–398

A small set of possible enzymatic reactions have been carried out inside ZIF-8 to-

date. Therefore, we developed a screening process for viable enzymatic reactions that

can be studied inside enzyme@MOF composites. We defined the first check for viability

to be whether the substrates and products can diffuse through the MOF shell to and

from the target enzyme. Thus, we implemented an efficient descriptor for molecular

size to approximate a molecules ability to diffuse through ZIF-8. Our descriptor con-

sidered the flexibility of molecules and was found to match reported kinetic diameters.
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Using this descriptor we have shown that the components of many of the reactions

reported to occur inside ZIF-8 are unlikely to be able to diffuse through ZIF-8. We

suggest that surface-bound enzymes or defects in the MOF structure may explain the

reported enzyme activity. Finally, we screened ∼11 000 enzymatic reactions from the

KEGG database324–326 using our molecular size descriptor and other cheminformatic

descriptors. Expanding our screening process to other databases of enzymatic reac-

tions, such as the BRENDA database,290,291 for a complete survey of the enzymatic

reaction space is crucial. Furthermore, the SABIO-RK database327–329 specifies (when

available) the enzyme peptide sequence that completes each the reaction. Therefore it

may be possible to screen based on enzyme properties also. Unfortunately, it is not

trivial to predict whether an enzyme retains its activity after immobilization.360,382

Therefore, we did not include an analysis of the enzymes in our screening process, but

we expect this to be a crucial factor in the application of enzyme@MOF composites.

It may be possible to use bioinformatic tools to efficiently score proteins (based on pre-

dicted properties such as thermostability) to approximately predict whether an enzyme

is stable to encapsulation, but at this stage, very little experimental data exists to test

the predictions of any proposed model of the stability of MOF-encapsulated enzymes.

Ultimately, we determined that the small pore aperture of ZIF-8 excludes a majority

of enzymatic reactions in the KEGG database. However, the role of molecular size

on the activity of enzymes in ZIF-8 remains unclear. Furthermore, it remains unclear

whether reported activity from enzyme@MOF composites is occurring inside the MOF.

Therefore, we suggested a series of reactions that allow for the systematic analysis of

the impact of molecular size on enzymatic activity inside ZIF-8. However, we suggest

that the development of experimental methodologies that unambiguously confirm that

the observed activity is from enzymes inside MOFs is crucial to the advancement of

this field.

Finally, we have highlighted in this thesis the benefits of computational analysis and

screening processes in advancing materials science, especially in relatively new fields.

However, the usefulness of the screening methods described in Chapters 4 and 6 rests, in

part, in their ability to accurately select out the best candidates for future experiments.

Hence, for all reported screening processes, further experimental analysis of the top

candidates is required to confirm the accuracy of the applied simple descriptors.
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APPENDIX A

Supporting information: Molecular insight

into assembly mechanisms of porous

aromatic frameworks

A.1 Proposed reaction mechanisms for PAF synthesis

a)

b)
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pyridine
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Figure A.1: The proposed mechanisms of the homo-coupling of Ari and Arj via (a) the
Yamamoto reaction and (b) the Eglinton reaction. BPY is 2,2′-bipyridine, COD is 1,5-
cyclooctadiene.

Two reactions are used in experiments to synthesize the four porous aromatic frame-

works (PAFs) studied in this work: the Yamamoto homo-coupling176 and the Eglinton

homo-coupling.177 The proposed mechanism of the two reactions are in Figure A.1.
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A.2 Coarse-grained mapping of PAFs

Table A.1: Principal diameters of the ellipsoidal coarse-grained sites obtained from the
Connolly volumes for all moieties of all monomers.

moiety ai [Å] bi [Å] ci [Å]
carbon 3.5 3.5 3.5
phenyl 7.3 7.3 3.4
alkyne 4.7 3.5 3.5

adamantane 7.3 7.0 7.4

As illustrated in Figure A.2 the coarse-graining procedure replaced different functional

moieties of the PAF monomers with ellipsoidal particles. The size and shape of each

ellipsoid was specified by the principal diameters, (ai, bi and ci, determined from

Connolly volumes, which were obtained using the “Atom Volumes and Surfaces” Tool

within Materials Studio)178 given in Table A.1. The shape of the bond-forming ellipsoid

was modified in the binding direction to yield the correct bond length upon binding.

Each PAF monomer was treated as a rigid body, which means structural fluctuations

were quenched.
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(a)

(b)

(c)

(d)

Figure A.2: Mapping of atomistic monomers of (a) PAF-1, (b) PPN-3, (c) PPN-1, and
(d) PPN-2 to coarse-grained monomers. Colors of atoms in all-atom models match the
ellipsoid that replaces them.

A.3 Simulation methodology and parameters

The molecular dynamics (MD) simulation program LAMMPS184 was used to perform

GPU-accelerated Langevin dynamics of rigid bodies representing PAF monomers com-

posed of ellipsoidal particles. The ellipsoidal particles interacted via the Gay-Berne

(GB) potential.180,181 The GB potential is an anisotropic and shifted Lennard-Jones

(LJ) 12-6 interaction, which can be written as a product of 3 terms,

U = Ur · η · χ, (A.1)

parameterized by the ellipsoid shapes and relative interaction energies. A shape matrix

is specified for ellipsoid i as Si = diag(ai, bi, ci)/σ, where σ is the distance scale used
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in simulations. Relative well depths εia, εib and εic for particles interacting along the

corresponding principal axes (end-to-end, side-to-side, and face-to-face interactions)

give the matrix Ei = diag(εia, εib, εic) for ellipsoid i. The orientation of ellipsoid i is

determined by the rotation matrix Ai, which represents the transformation from the

lab frame to the body frame.

In Equation A.1, Ur represents the shifted LJ interaction, which is determined by

the distance of closest approach hij, the distance scale σ, energy scale ε and shift factor

γ (set to 1 in all cases),

Ur = 4ε(ρ12
ij − ρ6

ij), (A.2)

ρij = σ

hij + γσ
, (A.3)

hij = rij −
[1
2 r̂T

ijG−1
ij r̂ij

]1/2
, (A.4)

where rij = ri−rj, with ri and rj the positions of particles i and j, respectively, rij =

|rij|, r̂ij = rij/rij, and Gij = AT
i S2

iAi+AT
j S2

jAj. In addition to the distance of closest

approach, the interaction anisotropy is characterized by the distance-independent terms

η and χ that control the interaction strength based on the particle shapes and relative

well depths, respectively, with

η =
[

2sisj
det(Gij)

]υ/2

, (A.5)

si = [aibi + cici][aibi]1/2 (A.6)

and

χ =
[
2r̂T

ijB−1
ij r̂ij

]µ
, (A.7)

Bij = AT
i E2

iAi + AT
j E2

jAj. (A.8)

The parameters υ and µ in Equations A.5 and A.7 are exponents that can be tuned

to adjust the angular dependence of the potential; both were set to 1 in all simulations,

for which the homo-coupling interaction becomes negligible when the ellipsoids deviate

by more than about ±15◦ from collinear at the simulation temperature. The angular

dependence of the potential was made strict so that bound monomers approximately

modelled the flexibility of a carbon-carbon bond. We used a modular approach to
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distinguish three types of interactions: primary (1◦), secondary (2◦) and steric. The

potential functions used to represent primary interactions were chosen to model irre-

versible carbon-carbon bond formation by using a deep well, as shown in Table A.2

and Figure 3.2. Note that the small differences between energy values for the primary

interactions of PPN-3 compared with the other three PAFs will have a negligible effect

on the simulations because the very strong interactions lead to irreversible binding in

all cases (a value of 100kBT was used for all PAFs, resulting in a different value for

PPN-3 due to the different temperature, T , used in the experimental synthesis). Sec-

ondary interactions (such as π · · · π, alkyne · · · alkyne and alkyne · · ·π interactions)

were modelled using potentials with relatively shallow wells, as shown in Table A.2

and Figure 3.2, that were matched approximately to literature values for these types

of interactions and which give reversible binding.182,183 To approximate the steric in-

teractions due to the reaction intermediates in the synthesis of PAF-1 and PPN-3,

we introduced an isotropic potential between phenyl and monomer-core sites with a

Gaussian well,

Usteric (rij) = −α exp
[
−β(rij − δ)2

]
, (A.9)

where α determines the well depth, β determines the well width and δ determines

the position of the well (set to 12.2Å = 9.3Å (approximately the size of the catalyst

as measured by its Connolly volume) + 2.9Å (phenyl arm length)). A well depth

of approximately 30 kJmol−1 for both PAF-1 and PPN-3, which matches the energy

of nickel–ligand binding,175 was used as nickel acts as the catalyst in the Yamamoto

mechanism.

Table A.2: Maximum potential well depth for all interaction types.

sites interaction energy [kJmol−1]
homo-couplinga end-to-end 294b / 319c

phenyl–phenyl edge-to-edge 8.82
phenyl–phenyl face-to-face 5.88
phenyl–alkyne edge-to-edge 8.82
phenyl–alkyne face-to-face 5.88
alkyne–alkyne edge-to-edge 2.94
alkyne–alkyne face-to-face 2.94

a Phenyl–phenyl for PAF-1 and PPN-3; Alkyne–alkyne
for PPN-1 and PPN-2.
b PAF-1, PPN-1 and PPN-2.
c PPN-3.
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PACKMOL was used to initialize a system of randomly placed, non-overlapping

monomers at the desired monomer density (ρmon in Table A.3).186 To push apart over-

lapping atoms, the system was evolved with soft non-bonded potentials before carrying

out simulations with interactions specified by the GB potential with an integration

time step (given in Table A.4 for each system) defined as one tenth of the Langevin

dynamics relaxation time, which is inversely proportional to the predicted diffusion co-

efficient. For ease of comparison to the simulations of PAF-1 (performed at 80 ◦C), the

temperature of the reactions for PPN-1 and PPN-2 was taken to be 80 ◦C, which is ap-

proximately the reaction temperature used in the Eglinton reactions that were carried

out under reflux conditions in the experiments using a 1:4 mixture of methanol:pyridine

(the boiling points of methanol and pyridine are 65.7 ◦C and 115.3 ◦C, respectively).159

Table A.3: Experimental and simulation parameters for the four PAF systems studied. η is
the solvent viscosity.

PAF solvent Texp [◦C] ρmon [mol L−1] η [mPa s]
PAF-1 N,N-dimethylformamide 80 0.013 0.47399

PPN-1 4:1 pyridine:methanol reflux 0.022 0.60400

PPN-2 4:1 pyridine:methanol reflux 0.022 0.60400

PPN-3 1:2 N,N-dimethylformamide:toluene 110 0.013 0.67401

Langevin dynamics was used to simulate the presence of solvent molecules implicitly.

The functional form of the Langevin equation applied to rigid bodies123,185 is

F (t) = −∇U(x)− ξtmv(t) + fR(t), (A.10)

τ(t) = −∇U(x)− ξrIω(t) + τR(t), (A.11)

where F (t) and τ(t) are the total force and torque, respectively, on a body, ∇U(x) is

the conservative force due to the interaction potentials acting on the body, ξt and ξr

are the translational and rotational friction coefficients, respectively, m is the monomer

mass, I is the moment of inertia, v(t) and ω(t) are the translational and rotational

velocities of the bodies at time t, respectively, and fR(t) and τR(t) are the random

force and random torque, respectively, applied to the bodies. As no simple analytical

expression exists to describe the diffusion of ellipsoids in general, we have assumed

that the monomers diffuse like spherically symmetric Brownian particles, for which the
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Stokes-Einstein equation gives the translational diffusion coefficient as

Dt = kBT

6πηR, (A.12)

where η is the solvent viscosity,399–401 R is the radius of the particle, kB is the Boltzmann

constant and T is the temperature. The translational friction coefficient, ξt, can be

determined from

ξt = kBT

Dtm
. (A.13)

For spherical Brownian particles, the rotational coefficients, ξr and τR(t), are obtained

by scaling ξt and fR(t) by 10
3 and

√
10
3 , respectively. The random force and torque,

have zero mean and a white-noise spectrum and are related to the respective friction

coefficients via the fluctuation-dissipation theorem.

The translational and rotational diffusion coefficients of each monomer were esti-

mated using HydroPRO,402–404 which computes the hydrodynamic properties of rigid

molecules using the properties of the solvent and a bead model of the molecules. The

value of Dt obtained was then used in Equation A.13 to determine the value of ξt used

in the simulations, from which fR(t), ξr and τR(t) were determined, as described above.

Translational diffusion coefficients were calculated from simulations of 400 non-

interacting PAF monomers by fitting the mean squared displacement (MSD) of the

monomer center-of-mass to a straight line (Figure A.3), i.e.

〈| r(t+ t′)− r(t′) |2〉 ∼ 6Dtt. (A.14)

The rotational diffusion coefficients were calculated from the same set of simulations

by fitting the natural logarithm of the decay of the orientation autocorrelation function

to a straight line (Figure A.4), i.e.

ln〈ûi(t′) · ûi(t+ t′)〉 ∼ 2Drt. (A.15)

ûi(t) is the unit vector pointing along the ith arm of the tetrahedral monomer at

time t. The translational (Dt) and rotational (Dr) diffusion coefficient measured from

the simulations were found to agree well with those computed by HydroPRO (see

Table A.4), suggesting that the assumption that the symmetric tetrahedral monomers
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diffuse like spherical particles is reasonable.

Table A.4: Langevin dynamics simulation parameters. ξt is the friction coefficient applied
to the Langevin dynamics. Dt,HP and Dr,HP are the translational and rotational diffusion
coefficients calculated by HydroPRO.

PAF translational [10−9m2 s−1] rotational [10−9 s−1]
Dt,HP Dt Dr,HP Dr ξt [1012 s−1] time step [fs]

PAF-1 1.138 1.160 3.537 4.282 8.13 12.5
PPN-1 0.640 0.634 0.939 1.286 11.11 8.8
PPN-2 0.590 0.600 0.694 1.082 9.35 10.8
PPN-3 0.755 0.765 1.707 1.987 9.62 10.5
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Figure A.3: The mean square displacement (MSD) for each PAF (solid lines) and linear
fits to these curves (dashed lines). The slope is proportional to the translational diffusion
coefficient.
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Figure A.4: Natural logarithm of the decay of the orientational auto-correlation function
(solid lines) and linear fits to these curves (dashed lines). The slope is proportional to the
rotation diffusion coefficient.

A.4 Compression simulation methodology

To facilitate assembly and to capture the growth of larger clusters than observed in

the constant-volume simulations, the simulation box was isotropically compressed at

a constant rate. The pressure was monitored as the simulation box was compressed

and plotted as a rolling average as a function of time, as shown in Figure A.5. The

simulation was stopped when the pressure started to rise precipitously (the cut-off

point was set at an average pressure of 5× 105 atm), shown by the vertical lines in

Figure A.5, indicating that the particles were starting to overlap. The initial and

final box sizes are reported in Table A.5. Simulations were otherwise identical to the

constant-volume simulations described above. Compression was carried out at two

different rates to verify that there was no effect of compression rate on the results –

these are denoted ‘fast’ and ‘slow’, where the slow compression rate was half the fast

compression rate. Table A.5 shows the times at which each simulation reached its

cut-off pressure at each rate. In addition, similar simulations were carried out in the

presence of primary interactions only at the ‘fast’ rate (see Table A.6 below).
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Figure A.5: (a) Instantaneous pressure as each PAF system is compressed at the fast rate.
(b) Rolling average of the pressure from (a) with vertical lines highlighting the time point
at which the cut-off pressure was met and analysis was undertaken.

Table A.5: Simulation parameters for assembly with compression from experimental con-
centration with box dimension li to the final analysis state with box dimension lf at both
compression rates and the time tf at which the cut-off pressure was reached. 1◦ and 2◦
denote primary and secondary interactions, respectively.

system interactions li [Å] lf - fast [Å] tf - fast [ns] lf - slow [Å] tf - slow [ns]
PAF-1 1◦+2◦+steric 1006 276.5 473 251.4 982
PPN-3 1◦+2◦+steric 1006 341.7 478 361.5 927
PPN-1 1◦+2◦ 842 286.7 637 297.0 1241
PPN-2 1◦+2◦ 842 337.2 598 327.5 1202

Table A.6: Simulation parameters for systems with primary interactions only for assembly
with compression from experimental concentration with box dimension li to the final analysis
state with box dimension lf and the time tf at which the cut-off pressure was reached.

system interactions li [Å] lf [Å] tf [ns]
PAF-1 1◦ 1006 351.6 426
PPN-3 1◦ 1006 349.1 473
PPN-1 1◦ 842 388.2 509
PPN-2 1◦ 842 442.2 483

A.5 Cluster selection and reverse mapping methods

Monomers were assigned to clusters at selected time steps along the simulation tra-

jectory of each PAF using the Density-based spatial clustering of applications with

noise (DBSCAN) clustering algorithm,188 which identifies contiguous regions in which

the local particle density at any point stays above a specified threshold. Shown in
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Table A.7, the threshold parameters were chosen such that diffuse PAF chains were ex-

cluded from clusters. A distance parameter (taken as the monomer–monomer binding

distance for each PAF, rbind) was also specified to define the radius around each parti-

cle within which the density of neighbouring particles was measured. Selected clusters

were reverse-mapped to their atomistic representations by a one-to-one mapping, be-

cause monomers were assumed to be rigid, from the CG representation. Following

reverse mapping, the energies of the atomistic clusters were relaxed using the Open

Babel software405 and the UFF forcefield.119,120

Table A.7: Minimum number of neighbours threshold used in the DBSCAN algorithm for
all PAFs for all interaction types.

material 1◦ 1◦ + 2◦ 1◦ + 2◦ + steric
PAF-1 12 18 12
PPN-3 12 18 12
PPN-1 24 30 -
PPN-2 24 30 -

A.6 Typical clusters from constant-volume simulations

Typical clusters in their coarse-grained representation are shown in Figures A.6–A.9 for

all four PAFs for all types of interactions studied. These clusters were extracted from

constant-volume simulations at the point in time when the free monomer concentration

fell to 1% of its original value, which occurred after 100–200 ns. Therefore these clusters

are not as big as those formed by the end of the simulations, which were carried out

for ∼1–2µs in all cases, but do highlight the different morphologies obtained and the

effect of different interactions.
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PAF-1 : primary

PAF-1 : primary + secondary

PAF-1 : primary+ secondary + steric

Figure A.6: Typical clusters extracted from simulations of PAF-1 for all interaction types.
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PPN-1 : primary

PPN-1 : primary + secondary

Figure A.7: Typical clusters extracted from simulations of PPN-1 for all interaction types.
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PPN-2 : primary + secondary

PPN-2 : primary

Figure A.8: Typical clusters extracted from simulations of PPN-2 for all interaction types.
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PPN-3 : primary

PPN-3 : primary + secondary

PPN-3 : primary+ secondary + steric

Figure A.9: Typical clusters extracted from simulations of PPN-3 for all interaction types.

A.7 Porosity analysis of clusters in uncompressed systems

All constant-volume simulations yielded many clusters of each PAF, for which struc-

tural properties such as density, pore surface area and pore volumes could be deter-

mined. As described earlier, clusters were extracted at certain time steps from simula-

tion trajectories and reverse mapped to the atomistic representation. All of the above

properties are affected by the external surface of the finite-sized clusters, so a method
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was developed to minimize this effect in order to approximate the properties of the

bulk material:

1. A cluster was selected and reverse mapped using the previously described method.

The cluster was rotated to align its principal axes with a reference Cartesian

frame. The dimensions of the cuboid of minimum dimensions centered at the

center-of-mass of the cluster and aligned with the reference Cartesian axes that

enclosed the whole cluster were determined (step 1 in Figure A.10).

2. Properties (e.g. density, pore surface area, pore volume) were measured for the

fraction of the cluster enclosed by a smaller box with dimensions proportional to

those of the cuboid determined in step 1 for progressively increasing box sizes

(step 2–3 in Figure A.10). For the porosity analysis, it was assumed that periodic

boundary conditions applied to the atoms enclosed by the box.

3. The measured density from the analysis in step 2 generally had a maximum as

a function of increasing fraction of the cluster considered (Figure A.11) – very

small fractions were not representative of the bulk material whereas large fractions

enclosed a significant amount of external void space. So the fraction that yields

the maximum density is expected to be most representative of the bulk PAF.

The measured value of any other property (e.g. pore surface area, as illustrated

in Figure A.11) that best approximated that of the bulk PAF was thus assumed

to be the value at this density maximum.

4. The reported values of each property was taken to be the mass-weighted average

of the approximate bulk value measured for each cluster.
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step 1 step 2 step 3

Figure A.10: Schematic of the algorithm used to measure cluster properties. The red
polyhedra represents a cluster of PAF selected from a LAMMPS trajectory. The cluster
is first rotated to align the principal axes with a reference Cartesian frame. The next two
steps illustrates the incrementing of the size of the box centered at the centre-of-mass of
the cluster in which properties are measured to produce a plot such as the one seen in
Figure A.11.
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Figure A.11: Example of incremental cluster property measurements applied to a PAF-1
cluster, showing the change in density (crosses) and gravimetric surface area (circles) with
increasing fraction of the cluster considered. The red box highlights the cluster fraction of
maximum density, for which the surface area is taken to be the best approximation for that
of the bulk material.

A.8 Random-sampling method for analysis of compressed sys-

tems

The compression simulations produced one connected cluster that exceeded the com-

puter memory requirements for analysis using RASPA2 and Zeo++, so we analyzed

smaller random samples of the simulated system using the following procedure:

1. At the desired time step the full simulation box was reverse-mapped to the atom-

istic representation without structural relaxation.

2. Random points within the simulation box were then selected and for each point

all atoms within a box centered around that point with dimensions equal to some
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percentage of the full simulation box dimensions were extracted (the effect of the

sampled box size was analyzed below).

3. Properties (e.g. density, pore surface area, pore volume, pore size distribution

and X-ray diffraction pattern) were measured for each random sample. The

reported value of each property was taken to be the mass-weighted average of

the measured value from each sample.

Figures A.12 and A.13 show that using two different sampling box sizes, comprising

15% and 30% of the total simulation cell, respectively, in this analysis yields essentially

the same results for the pore surface area, indicating that the results for the smaller

box size are representative of the simulation cell. Using the smaller box size generally

affords slightly higher density samples because the algorithm described above tends to

avoid large void spaces. For the data in Figures A.12 and A.13, a similar incrementing

algorithm to the one used above for clusters was applied and shows approximately

linear relationship between the total pore surface area and mass or volume, which

indicates that the gravimetric and volumetric surface area has converged to a limiting

value for quite small samples of the framework.
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Figure A.12: Absolute surface area as a function of number of monomers for each volume
increment of each random sample for all four PAFs with both sampling box sizes.
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Figure A.13: Absolute surface area as a function of box volume for each volume increment
of each random sample for all four PAFs with both sampling box sizes.

A.9 Energies of misbound PAF monomer pairs

From the core-core RDFs in Figure 3.4 we defined misbound monomer pairs as any pair

within the simulation configuration with a core-to-core distance less than rbind−2σbind,

where rbind is the position of the most prominent peak in the core–core RDF, which cor-

responds to the core–core distance between two irreversibly bound monomers, and σbind

is the peak width. This definition gives an approximate means of quantifying misbind-

ing. For all misbound monomer pairs present in the final configuration of simulations

run with primary and secondary interactions, the contribution to the interaction energy

between pairs of monomers from primary interactions and from secondary interactions

were separately calculated; a normalized distribution of the pair energy contributions

is shown in Figure A.14. For PAF-1 and PPN-3 the distributions for both types of

interactions generally overlap, while for PPN-1 and PPN-2 there is a clear distinction

between the two types of interactions, with the distribution of secondary interaction

energies skewed to significantly more negative values.
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Figure A.14: The distribution of pair-wise energies of misbound monomer pairs due to
primary and secondary interactions for (a) PAF-1, (b) PPN-3, (c) PPN-1, and (d) PPN-2.

A.10 Kinetics of PAF growth

The kinetics of PAF growth in the simulations was quantified for all four PAFs by

measuring the number of free monomers and average cluster size as a function of time,

as shown in Figures A.15 and A.16, respectively. Figure A.15 shows similar rates of free

monomer loss in the presence of primary and primary + secondary interactions, with

the rate when secondary interactions are added being slightly faster. Introduction of

the steric potential slows the rate of free monomer loss, as expected due to the presence

of a barrier to primary and secondary binding. The average cluster size versus time in

Figure A.16 shows a similar decrease in growth rate when steric interactions are present.

In all four cases the growth of the average cluster size with secondary interactions is

smaller than without secondary interactions, which is an effect of the formation of more

compact clusters due to the secondary interactions, as more compact clusters are less

likely to collide.
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We rationalize the approximately linear behaviour of the average cluster size with

time at early times (Figure 3.6) in terms of the Smoluchowski coagulation model,193,194

which is a general model for describing irreversible coagulation. The Smoluchowski co-

agulation model assumes that assembly occurs by bimolecular collisions of clusters and

is irreversible, the system is well-mixed and can be fully specified by the distribution

of the number of monomers in each cluster.195 These assumptions are expected to hold

reasonably well in our simulations. A linear relationship between the average cluster

size and time, as observed to a good approximation in all of our simulations at early

times, indicates that the bimolecular coagulation rate constant Kij between a cluster

containing i units and a cluster containing j units is constant, i.e. Kij = K. Further-

more, the loss of free monomers with time follows the exponential decay expected for a

constant coagulation rate constant K.195 Assuming the coagulation rate constant can

be written as

K = αks, (A.16)

where α is the sticking probability upon collision and ks is the bimolecular collision rate

constant. Assuming that the clusters can be approximated as hard spheres of radius

Ri and Rj, respectively, which undergo Brownian motion with diffusion coefficients Di

and Dj, respectively, the collision rate constant is

ks = 4π (Ri +Rj) (Di +Dj) . (A.17)

To confirm the size-independent behaviour at early times, ks was calculated for a

random selection of clusters extracted at 100 ns from constant-volume simulations for

all PAFs for all interaction types. The radius of each cluster in our simulations was

taken to be its radius of gyration. Each cluster was placed on its own in a very large

simulation box, in which its motion was simulated for ∼1 ns using an identical Langevin

dynamics algorithm and parameters to those applied in the assembly simulations. The

translational diffusion coefficient was calculated from the MSD of the cluster center

of mass using the same method described in Section A.3. Diffusion coefficients as a

function of number of monomers in a cluster are shown in Figure A.17. The radius of
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gyration of each cluster (shown in Figure A.18) was calculated as

Rg =
√
λ2

1 + λ2
2 + λ2

3, (A.18)

where λi is the ith eigenvalue of the gyration tensor Q,

Qmn = 1
N

N∑
i=1

r(i)
m r

(i)
n , (A.19)

where N is the number of monomers in a cluster and r(i)
m and r(i)

n are the mth and nth

cartesian coordinates of the position vector r(i) of the ith monomer, respectively. ks

was calculated for all pairs of clusters using Equation A.17 and is plotted as a function

of the total number of monomers in the pair of clusters, Ni+Nj, in Figure A.19, which

shows a large spread of points with a relatively weak relationship with cluster size,

indicating approximate size-independent behaviour. The bimolecular coagulation rate

constantK, was obtained from the slope of the data in Figure 3.6 using the equation for

the average cluster size 〈N(t)〉 versus time from the Smoluchowski coagulation model

with constant K,

〈N(t)〉 = 〈N(0)〉+ 1
2KC1t, (A.20)

where C1 is the concentration of monomers in solution. The value of K, mean value

of ks in Figure A.19, and the sticking probability α calculated from Equation A.16 are

reported in Table 3.1 for each PAF and for each interaction type.
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Figure A.15: Number of free monomers versus time for (a) PAF-1, (b) PPN-3, (c) PPN-1,
and (d) PPN-2 for all types of interactions.
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Figure A.16: Average cluster size for (a) PAF-1,(b) PPN-3, (c) PPN-1, and (d) PPN-2 for
all types of interactions.
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Figure A.17: Translational diffusion coefficient of clusters selected after 100 ns of framework
growth for (a) PAF-1,(b) PPN-3, (c) PPN-1, and (d) PPN-2 for all types of interactions.
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Figure A.18: Radius of gyration of clusters selected after 100 ns of framework growth for
(a) PAF-1,(b) PPN-3, (c) PPN-1, and (d) PPN-2 for all types of interactions.
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Figure A.19: Bimolecular collis ion rate constant, ks, of clusters selected after 100 ns of
framework growth for (a) PAF-1,(b) PPN-3, (c) PPN-1, and (d) PPN-2 for all types of
interactions. Lines represent the mean of ks as a function of Ni +Nj.

A.11 Relative shape anisotropy of PAF clusters

The relative shape anisotropy (κ2) of each cluster extracted from the final configuration

in the constant-volume simulations of all four PAFs is shown in Figure A.20 as a

function of the radius of gyration (Rg), which is a measure of cluster size. κ2 was

calculated from the eigenvalues (λ1, λ2 and λ3) of the gyration tensor as

κ2 = 1− 3(λ1λ2 + λ1λ3 + λ2λ3)/R4
g. (A.21)

κ2 equals zero for a sphere and one for a linear rod. Figure A.20 shows a wide spread

of values for all PAFs for all types of interactions, which suggests a limited effect on

shape anisotropy due to cluster size, monomer type or interaction type.

159



0 2 4 6 8 10
Rg [nm]

0.0

0.2

0.4

0.6

0.8

1.0

2

PAF-1

1°
1°+2°
1°+2°+Steric

0 2 4 6 8 10
Rg [nm]

0.0

0.2

0.4

0.6

0.8

1.0

2

PPN-2

0 2 4 6 8 10
Rg [nm]

0.0

0.2

0.4

0.6

0.8

1.0

2

PPN-1

0 2 4 6 8 10
Rg [nm]

0.0

0.2

0.4

0.6

0.8

1.0

2

PPN-3(a)

(c)

(b)

(d)

Figure A.20: Relative shape anisotropy κ2 as a function of the radius of gyration Rg of
each cluster identified for (a) PAF-1,(b) PPN-3, (c) PPN-1, and (d) PPN-2 for all types of
interactions.
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A.12 Porosity in constant-volume simulations

Table A.8: Nitrogen-accessible surface areas and pore volumes obtained from constant-
volume simulations reported in the main text. Primary interactions are denoted by 1◦,
secondary interactions by 2◦. Errors are one standard deviation. Simulated values for a
perfectly ordered diamondoid (dia) network are also shown.

material expt. dia. 1◦ only 1◦+2◦ 1◦+2◦+steric
Volumetric Surface Area [m2 cm−3]

PAF-1 - 1930 1390 ± 550 1720 ± 240 2250 ± 72
PPN-3 - 1300 1350 ± 360 1640 ± 250 1400 ± 310
PPN-1 - 730 890 ± 420 760 ± 420 -
PPN-2 - 750 450 ± 390 700 ± 450 -

Pore Volume [cm3g−1]
PAF-1 0.89–1.44a 1.45 4.63 ± 2.86 1.41 ± 0.77 1.79 ± 0.20
PPN-3 1.70159/1.69b/2.67c 3.38 5.06 ± 2.35 2.02 ± 0.68 4.53 ± 1.12
PPN-1 0.45159/0.91d 12.36 12.72 ± 6.26 8.79 ± 4.52 -
PPN-2 1.26159 9.48 30.52 ± 14.13 12.01 ± 5.42 -

Pore Volume Fraction [%]
PAF-1 - 47 65 ± 17 42 ± 14 52 ± 6
PPN-3 - 66 70 ± 17 52 ± 12 67 ± 8
PPN-1 - 86 82 ± 10 78 ± 12 -
PPN-2 - 85 91 ± 9 84 ± 12 -

a Range of experimental data.165
b Synthesized at 80 ◦C.161
c Synthesized at room temperature in a different solvent (DMF/THF).28
d Synthesized under palladium catalyzed conditions.161
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A.13 Porosity in compression simulations

Table A.9: Nitrogen-accessible surface areas, densities and pore volumes obtained from
compression simulations reported in the main text. Primary interactions are denoted by 1◦.
Errors are one standard deviation. “1◦ only” and “full fast” simulations were run at the fast
rate with 1◦ interactions only and the full set of interactions, respectively, and “full slow”
simulations were run at the slow rate with the full set of interactions (where the slow rate
was half the fast rate). Simulated values for a perfectly ordered diamondoid (dia) network
are also shown.

material expt. dia. 1◦ only full fast full slow
Gravimetric Surface Area [m2 g−1]

PAF-1 560027/363929 5930 8460 ± 440 9100 ± 330 7150 ± 720
PPN-3 2840159/3180a/4221b 6623 8340 ± 350 8990 ± 460 9020 ± 390
PPN-1 1249159/1470c 10560 10920 ± 440 5460 ± 330 6200 ± 320
PPN-2 1764159 8340 10670 ± 370 7300 ± 500 7330 ± 680

Volumetric Surface Area [m2 cm−3]
PAF-1 - 1930 1270 ± 80 1790 ± 90 2050 ± 80
PPN-3 - 1300 1440 ± 50 1380 ± 80 1400 ± 80
PPN-1 - 730 1160 ± 100 1830 ± 60 1800 ± 90
PPN-2 - 750 1100 ± 70 1590 ± 140 1580 ± 120

Density [gcm−3]
PAF-1 - 0.324 0.15 ± 0.01 0.20 ± 0.01 0.29 ± 0.03
PPN-3 - 0.196 0.17 ± 0.01 0.15 ± 0.01 0.16 ± 0.01
PPN-1 - 0.069 0.11 ± 0.01 0.34 ± 0.02 0.29 ± 0.01
PPN-2 - 0.089 0.10 ± 0.01 0.22 ± 0.03 0.22 ± 0.03

Pore Volume [cm3g−1]
PAF-1 0.89–1.44d 1.45 4.70 ± 0.42 2.97 ± 0.35 1.61 ± 0.22
PPN-3 1.70159/1.69a/2.67b 3.38 3.78 ± 0.28 4.49 ± 0.41 4.44 ± 0.51
PPN-1 0.45159/0.91c 12.36 7.26 ± 0.96 1.17 ± 0.17 1.59 ± 0.13
PPN-2 1.26159 9.48 7.40 ± 0.70 2.66 ± 0.52 2.69 ± 0.44

Pore Volume Fraction [%]
PAF-1 - 47 70 ± 2 58 ± 3 46 ± 3
PPN-3 - 66 76 ± 2 68 ± 2 68 ± 3
PPN-1 - 86 76 ± 3 39 ± 4 46 ± 2
PPN-2 - 85 65 ± 2 56 ± 5 57 ± 4

a Synthesized at 80 ◦C.161
b Synthesized at room temperature in a different solvent (DMF/THF).28
c Synthesized under palladium catalyzed conditions.161
d Range of experimental data.165
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A.14 X-ray diffraction patterns

X-ray diffraction (XRD) patterns were calculated using RASPA2131 for all clusters ex-

tracted from the constant-volume simulations without applying the incremental method

described above and averaged. For the compression simulations, the XRD patterns were

calculated for each random sample selected using the methods described earlier and

averaged.

The XRD patterns of structures extracted from the constant-volume simulations

and compressed simulations provide further evidence of the high degree of disorder in

the simulated structures when compared with the XRD patterns of modelled diamon-

doid structures of each PAF (purple lines in Figure A.21 and Figure A.22). Similarly

to previous simulations of PAF-1,165 much better agreement with experiment was ob-

tained with XRD patterns of amorphous structures than the crystalline structures.

The agreement between XRD patterns from our model and powder X-ray diffraction

(PXRD) patterns from experiments is poor at large angles, which suggests there is a

higher degree of interpenetration (larger angles implies atoms at shorter distances) in

the experimental systems.
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Figure A.21: Simulated X-ray diffraction patterns from constant-volume simulations, pre-
viously reported experiments27,159 and modelled diamondoid frameworks of (a) PAF-1, (b)
PPN-3, (c) PPN-1, and (d) PPN-2.
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Figure A.22: Simulated X-ray diffraction patterns from compression simulations, previously
reported experiments27,159 and modelled diamondoid frameworks of (a) PAF-1, (b) PPN-3,
(c) PPN-1, and (d) PPN-2.
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A.15 Unbound terminal sites in PAFs

In the experiments used to synthesize PAFs, an unbound terminal site (or dangling

bond) is either the unreacted bromine group in PAF-1 or PPN-3 or the unreacted

acetylene in PPN-1 or PPN-2. In all reported syntheses of these four materials, FTIR

and NMR show no evidence of either unreacted terminal site at the end of the reac-

tion. In our simulations, an unbound terminal site was defined as a primary binding

site with no other primary site within some cut-off binding distance (rb), which are

shown in Table A.10 and were set to encompass the possible distances of the primary

binding interaction subject to thermal fluctuations. Figure A.23 shows that the num-

ber of unbound terminal sites does not depend strongly on the type of interaction for

PAF-1 and PPN-3. For PPN-1 and PPN-2, the introduction of secondary interactions

increased the number of misbound monomers, which increased the proportion of un-

bound monomers in PPN-1 and PPN-2. The same was not true for PAF-1 and PPN-3

as there were less misbound monomers for those PAFs. Similarly, Figure A.24 shows

that compression of the system had a small effect. Drops in the proportion of unbound

terminals occurred when clusters came together, but due to the high degree of disorder

and the irreversibility of the primary interactions, many unbound terminal sites still

existed. Note the rate of compression had very little effect.

Table A.10: Cut-off distances (rb) used to determine if two sites were bound.

material rb [Å]
PAF-1 5.42
PPN-1 3.42
PPN-2 3.42
PPN-3 5.42
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Figure A.23: Percent of unbound terminal sites in all four PAFs, for each type of interaction
in constant-volume simulations.
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Figure A.24: Percent of unbound terminal sites in all four PAFs, in the presence of primary
interactions only or the full set of interactions in compression simulations.
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APPENDIX B

Supporting information: High-throughput

screening of metal–organic frameworks for

macroscale heteroepitaxial alignment

B.1 Identifying structures with appropriate chemistry

The first step of the screening process tests whether a MOF crystal structure contains

the desired substrate binding site anywhere within its crystal structure. Figure B.1

shows the binding site used when screening MOFs for aligned growth from Cu(OH)2
(a metal-bound carboxylate group). First, for simplicity we determine whether the

crystal structure contains copper and no other transition or alkali metals. Second, we

search a 2 × 2 × 2 supercell of the MOF crystal structure for the desired binding site

using the following substeps (see Figure B.1 for naming convention):

i. Find an oxygen (O1) within a specified cut-off distance of a copper atom (M1) and

a carbon atom (C).

ii. Check that C has another oxygen (O2) within a specified cut-off distance.

iii. Check that O2 has a copper atom (M2) within a specified cut-off distance.

If all substeps are passed at least once for a given structure, the structure moves on

to the next step of the screening process. Two atoms are classified as bonded if they

are within a distance given by the covalent radii of the two atoms + a skin distance of

0.3Å.215 We have confirmed that this step of the screening process is robust in general,

but the large skin distance means that the bonding criterion is lenient. The definition

above requires that both oxygens be bound to copper atoms, but not that those copper
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atoms be different. Therefore the search is not limited only to the copper paddle wheel

structure.

M1

M2

O1

O2

C

Figure B.1: Schematic of the desired binding site, where M is copper. Labels correspond
to those described in Section B.1.

B.2 Parameterization of the lattice-matching algorithm

Using the lattice-matching algorithm209,210 implemented in the pymatgen software,216

supercells are tested up to some maximum multiple of the unit cell areas of the MOF

(AMOF) and substrate (Asub). The area ratio matching criterion determines the multi-

ples m and n of the MOF and substrate unit cells, respectively, that are tested using

∣∣∣∣AMOF

Asub
− n

m

∣∣∣∣ < αAR, (B.1)

where αAR is the maximum area ratio tolerance, which was set to 15%. For all m

and n that pass this test, an array of possible supercells are produced by the lattice-

matching algorithm. The mismatch tolerances in the length of and the angle between

the supercell vectors were set to 10% and 2%, respectively. Figure B.2 shows that the

maximum ∆IB for a small set of MOFs is robust to increasing values of all tolerances.

Decreases in the length mismatch tolerance or αAR from the chosen value result in

substantial changes in the maximum ∆IB as supercells with high atomic overlap are

excluded in the lattice-matching algorithm.
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a) b) c)

Figure B.2: Parity plots of the maximum ∆IB for each binding plane for all Miller planes
for MOF crystal structures in a small data set (including structures from the experimental
validation data set and CORE MOF database) comparing the effects of varying the (a)
length tolerances, (b) angle tolerances, and (c) max area ratio tolerances (αAR) in the
lattice-matching algorithm. Modified values are given in the figure legends, default values
used for screening in the main paper are given in the x-axis titles. Modified parameters
may change whether a particular Miller plane has any matching lattices for which a ∆IB
can be calculated. Cases with no matching lattices were assigned maximum ∆IB values of
zero.

B.2.1 Upper bound on unit-cell expansions

The smaller unit cell of the (010) slab of Cu(OH)2 compared with most MOFs (due to

their low densities) means that in most cases the number of unit-cell multiples required

to build a matching supercell at the MOF–substrate interface will be much higher for

the substrate than for the MOF. An upper bound on the match area is required because

matching lattices can always be found for large enough supercells without necessarily

yielding favorable binding between atoms at the interface. Limiting the maximum unit-

cell multiple also makes the algorithm more efficient because it reduces the number of

lattices that require testing. We chose the maximum area of the MOF and substrate

supercells to be equal to the smaller of 9× the MOF unit-cell area or 90× the substrate

unit-cell area, since this allowed all MOFs in the experimental validation data set to

pass the lattice-matching step (required for validation of all steps of the screening

process) and provided robust results for the full screening process, while remaining

computationally efficient. Figure B.3 shows that a large increase in the maximum

number of MOF and substrate unit-cell multiples does not significantly change the

maximum ∆IB for a test set of MOF structures. The calculations with the larger

maximum area do not offer any substantial changes in the maximum ∆IB for interfaces
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already tested with the default parameters (although the maximum ASO (not shown)

for some of the structures does change) and are much more computationally expensive.

Note that increasing the maximum area limit does allow for new interfaces to be tested,

but none of those interfaces were found to have high maximum ∆IB values (Figure B.3).
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Figure B.3: Parity plot of the maximum ∆IB for each binding plane for all Miller planes for
MOF crystal structures in a small data set (which includes structures from the experimental
validation data set and CORE MOF database) when the MOF maximum area is capped at
the smaller of 9× the MOF unit cell area or 90× the substrate unit cell area compared with
the smaller of 15× the MOF unit cell area or 1000× the substrate unit cell area. Modified
parameters may change whether a particular Miller plane has any matching lattices for
which a ∆IB can be calculated. Cases with no matching lattices were assigned maximum
∆IB values of zero.

B.3 Building binding planes

Each interface is made up of two binding planes, which are 2D structures containing

only the binding atoms on each side of the interface. In this work, the binding atoms

were the specified metal (Cu for copper hydroxide) for the substrate, and the car-

boxylate oxygens for the MOF. The extraction of binding planes from the 3D crystal

structures differs for the MOF and substrate due to the more complex topology of the

MOF structure. The algorithms used to extract the binding planes for the substrate

and MOF are outlined in the following sections.
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B.3.1 Determining bonded components

A neighbor list approach (built into the Atomic Simulation Environment (ASE) code)215

is used to identify bonded components within a crystal structure. Two atoms are con-

sidered bonded if the distance between them is less then the sum of their covalent radii

plus the skin distance (0.3Å). Each atom is assigned to a molecule based on whether

it is part of a connected network of neighbors (bonded atoms). The atoms comprising

each organic linker are determined by identifying the separate connected networks that

are formed after all metals are removed from the structure. In some cases, the large

skin distance used gives rise to unphysical bonds between the carbons in a carboxylate

functionality and the associated copper atom (i.e. a bond between C and M1 in Fig-

ure B.1), which results in overcounting of the number of bonds broken at an interface

(see Section B.4). For this reason, any copper–carbon or hydrogen-containing bro-

ken bonds are not counted during the calculation of the ∆IB. For simplicity we have

assumed all copper–carbon bonds correspond to the aforementioned unphysical case.

Indeed, none of the MOFs in the screened databases that passed the lattice-matching

step contain a copper–carbon bond.

B.3.2 Substrate interfaces

The following steps are used to produce binding planes of the substrates:

i. Read in the substrate crystal structure.

ii. Build a specific 3D slab of the substrate for the target Miller plane (this could

be generalized to any Miller plane) using the SlabGenerator function in pymat-

gen.216,219 Slabs are produced such that the z axis is normal to the surface. A slab

has cell parameters (specifically a, b, and γ) that define the unit cell lattice vectors

used in the lattice-matching algorithm. Conversion of slabs to primitive structures

was not attempted.

iii. Remove all atoms that are not substrate binding atoms (i.e. all non-copper atoms

when testing Cu(OH)2).

iv. Slice the slab at the binding atom with the highest z coordinate and collect all

binding atoms within a buffer zone of ±0.8Å to produce a 2D binding plane.
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B.3.3 MOF interfaces

The following steps are used to produce binding planes for all MOFs:

i. Read in the MOF crystal structure. For consistency, all crystal structures are

converted to primitive symmetry by pymatgen.216

ii. Build 3D slabs of the MOF structure for all structurally distinct Miller planes

with indices −1 ≤ h, k, l ≤ 1 using the SlabGenerator function in pymatgen.216,219

Slabs are produced such that the z axis is normal to the surface. A slab has cell

parameters (specifically a, b, and γ) that define the unit cell lattice vectors used

in the lattice-matching algorithm. Conversion of slabs to primitive structures was

not attempted.

iii. For each slab, duplicate the structure in the z direction and search for a specific

binding functionality. A search for metal-bound carboxylate functionalities like

that in step 1 of the overall screening process is carried out, but specifically for

binding groups pointing in the z direction towards the interface (see Figure B.4).

This is determined by the angle between the normal to the plane containing the

carbon and two oxygen atoms in a carboxylate group (nOCO) and the z axis: any

functionalities with angles less than 30◦ are excluded. Finally, we make sure that

the z coordinates of the two oxygens in the carboxylate group are within approxi-

mately one oxygen covalent radius (0.6Å) of one another (dOO in Figure B.4). If

all of these criteria are satisfied, then the crystal structure will be sliced at the z

coordinate of this binding functionality (in practice the structure is sliced at the

maximum of the z coordinates of the two oxygen binding atoms). Before slicing

the crystal structure, merge all carboxylate functionalities that also pass all the

above criteria and are within a range of z values (the “slicing buffer”, set to 1.2Å,

which is approximately twice the oxygen covalent radius) of the first carboxylate

group into one collection of binding atoms and one slicing position. Changing

the parameters used to determine binding interfaces would result in changing the

number and nature of the binding interfaces that are tested by our screening pro-

cess. Nevertheless, physically reasonable variations of the parameters around the

chosen values do not affect the results of the screening process for a test data set
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that includes the experimental validation data set, as shown in Figure B.5.

iv. For each slicing position (which may be a collection of more than one carboxylate

functionality), if organic bonds are broken during the slicing, enforce a cleaning

procedure of the binding interface that introduces missing linker defects, which are

produced when the binding plane slices through part of an organic linker. If any

linker containing a binding site oxygen atom is sliced in this process, the binding

plane is discarded.

v. If there are no nonbinding atoms in the cleaned 3D binding interface with a z

coordinate less than the z coordinate of the slicing position (i.e. there are no over-

lapping atoms at the interface), extract the 2D binding plane from the cleaned 3D

binding interface by extracting all binding atoms (carboxylate oxygens in our case).

Any Miller plane may have possible binding planes at multiple slicing positions.

Without the use of expensive energy calculations, it is not possible to determine

which binding plane configuration is most likely to form an interface, and so all

unique binding plane configurations for each Miller plane are tested. We exclude

any binding planes that are duplicates, based on the number of binding atoms and

their x and y coordinates. Only oxygens that match the carboxylate functionality

criteria are extracted as part of the binding plane and each carboxylate oxygen

atom is only considered in one binding plane per MOF Miller plane.
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Figure B.4: Schematic of the definition of a binding site used for determining the binding
interface, where M1 and M2 are copper atoms (note that M1 and M2 can be the same
atom), dOO is the difference between the z coordinates of the two carboxylate oxygens,
nOCO is the normal to the the plane containing the two oxygens and carbon in the car-
boxylate group, and the red line represents the plane where the MOF crystal structure is
sliced.

a) b) c)

Figure B.5: Parity plots of the maximum ∆IB for each binding plane for all Miller planes
for MOF structures in a small data set (which includes structures from the experimental
validation data set and CORE MOF databases) comparing the effects of the default pa-
rameters in the binding plane building algorithm and modified (a) dOO, (b) angle allowed
between nOCO and the z axis, and (c) slicing buffer. Modified values are given in the figure
legends and default values used for screening in the main paper are given in the x-axis
titles. Modified parameters may change whether a particular Miller plane has any matching
lattices for which a ∆IB can be calculated. Cases with no matching lattices were given
maximum ∆IB values of zero.
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B.3.4 Building supercells

Using the reduction scheme and lattice-matching algorithm,209,210 a list of supercells

of both the MOF and substrate unit cells with areas matching within some tolerance

are calculated. For each pair of supercells of the MOF and substrate deemed to be

matching, the unit cell atom positions are mapped to their respective supercells, using

the MPInterfaces software,221 which uses the pymatgen Python library.216 Once both

sides of the interface have been transformed to their supercells, the MOF supercell

is rotated about the z axis such that its shortest vector is parallel to the shortest

vector of the substrate supercell. The lattice-matching algorithm can produce MOF

supercells that are mirror images of each other, but except when the angle between the

primitive supercell vectors is close to 90◦, one of these supercells corresponds to the

MOF and substrate being on the same side of the interface, which is unphysical and

so this supercell is discarded. Once both sides of the interface have been transformed

to their supercells, the ASO is calculated from the coordinates of the atoms in the xy

plane. For each MOF supercell, the supercell lattice vectors u and v are multiplied

by integers Iu and Iv such that they span at least three times each of the MOF unit

cell vectors, a and b. The substrate supercell vectors are then multiplied by Iu and

Iv. This expansion of the supercell is used to ensure that the ASO accounts for the

lattice mismatch between the supercells. Without applying this expansion, examples

of 1 × 1 supercells were found with binding planes with large lattice mismatches that

produced high ASOs. In all of these cases, the high ASOs are decreased after expansion

as the lattice mismatch causes atoms in neighboring unit cells to no longer overlap with

the substrate atoms. Note that the supercell without expansion is tested during the

lattice-matching step, and upon passing, is expanded for the ASO calculation.

B.4 Monte Carlo algorithm for ASO maximization

A Metropolis Monte Carlo (MC) algorithm is applied to find the maximum possible

ASO for each interface using rigid translations of the MOF binding atoms.213 The MC

algorithm allows for translations of the MOF atom positions along the MOF supercell

lattice vectors by a random number uniformly distributed in the range of ±1 multi-
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plied by a maximum displacement that is varied as the MC simulation proceeds so as

to maintain an acceptance rate of 20% for MC moves. Because of the lattice mismatch,

periodic boundary conditions are not applied in the MC algorithm to avoid spurious

boundary effects. To stop the MOF supercell translations from sampling positions too

far away from the center of the substrate supercell unnecessarily, if the cumulative dis-

placement of the MOF atoms after step i is greater than the size of the MOF supercell

in the x or y dimension, the translation in step i+1 is forced away from the boundary of

the supercell by requiring the MC moves to reduce the cumulative displacement along

the specified dimension. The ASO is calculated after each translation and a move is

accepted if the new ASO at step i (ASOi) is greater than the previous ASO (ASOi−1)

or if

exp (−β (−ASOi + ASOi−1)) > R, (B.2)

where β is a parameter that acts like an inverse effective temperature and R is a

random number selected from a uniform distribution between 0 and 1. Each matched

pair of supercells undergoes MT trials of MS MC steps. The initial positions of the

MOF atoms relative to the substrate are randomized in each trial. The maximum ASO

obtained from all MT trials is taken to be the ASO for that pair of supercells.

Figure B.6 shows that the MC algorithm is robust to changes to the parameters

(Table B.1), but a range of configurations with similar ASOs are found for interfaces

with a low maximum ASO, resulting in significant uncertainty in the value of the

maximum ASO for these low-ASO interfaces. The time taken to calculate the maximum

ASO scales linearly with the number of trials or steps. Thus, we have used values for

the number of trials and steps that are as small as possible, while still obtaining robust

results for the maximum ∆IB for each MOF crystal structure (see Figure B.6a and b).

Figure B.6c shows minimal changes in the maximum ∆IB for all crystal structures for

wide range of β values.

Table B.1: Description and value for each parameter in the Metropolis MC algorithm used
to calculate the maximum ASO.

parameter value description
MT 40 no. of MC simulations (trials) per interface
MS 400 no. of steps in each individual MC simulations
∆ 0.5 Å initial maximum displacement along each supercell lattice vector
β 50 MC acceptance parameter
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a) b) c)

Figure B.6: Parity plots of the maximum ∆IB for each binding plane for all Miller planes for
MOF crystal structures in a small data set (which includes structures from the experimental
validation data set and COREMOF database) comparing the default parameters (Table B.1)
and modified (a) number of trials, (b) number of steps, and (c) β. Modified values are
given in the figure legends and default values are given in the x-axis titles.

B.5 Calculating binding at the interface

For each matching pair of supercells calculated from the lattice-matching algorithm, the

ASO is calculated from the number of bonds that can be formed between binding sites

of the MOF and binding sites of the substrate. Atoms on either side of the interface

are defined to be coincident if the distance between them, in the xy plane, is less than

or equal to the arithmetic mean of the ionic radii of the MOF and substrate-binding

atoms.222,223 Unlike the previous application of the ASO, we only consider specific

binding atoms at the interface and not all atoms.213 In this work we have only allowed

one bond per atom on either side of the interface, but this could be generalized to

allow multiple bonds per atom. Our algorithm calculates the ASO for each supercell

for each binding plane for each Miller plane for a given MOF and substrate pair. From

all ASOs, a ∆IB is calculated post processing. In general, we report a single ∆IB and

supercell for each MOF crystal structure, which is the maximum possible ∆IB for all

Miller planes of that structure. The following steps are implemented to calculate the

ASO and ∆IB:

i For each Miller plane of a given MOF crystal structure, build the binding planes

(described in Section B.3).

ii For each binding plane, obtain an array of possible MOF–substrate supercell pairs

(using the lattice-matching algorithm).209,210
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iii For each supercell pair, carry out MC simulations (described in Section B.4) to

obtain the maximum ASO for that supercell pair.

iv For each supercell pair, calculate ∆IB using the configuration from the previous

step that yields the maximum ASO for that supercell pair.

v Take the maximum ∆IB of the MOF–substrate pair to be the highest ∆IB for all

supercell pairs, binding planes, and MOF Miller planes.

B.5.1 Identifying equivalent MOF–substrate supercell pairs

Two MOF–substrate supercell pairs are effectively equivalent, regardless of their size,

if the orientation of the MOF surface in the two MOF supercells with respect to the

substrate surface is the same within some tolerance. We identify equivalent MOF–

substrate supercell pairs as those in which the in-plane positions (relative to the sub-

strate) of equivalent MOF binding sites in the unit cells of the two MOF supercells

is no greater than 0.5Å. This corresponds to an in-plane rotation of the MOF unit

cells with respect to one another of no more than ≈ 10◦. (In practice, the minimum

pairwise distance between atoms in the two MOF unit cells is calculated and the two

supercell pairs are deemed to be equivalent if the largest minimum pairwise distance

is less than 0.5Å.)

B.6 Experimental validation data set

B.6.1 Substrate

Copper(II) hydroxide (Cu(OH)2) has been shown to form highly aligned macroscale

structures, such as nanobelts or nanotubes, on silica substrates.55 Aligned Cu(OH)2
has also been shown to act as a sacrifical epitaxial substrate for MOF growth, and when

epitaxial registry between the MOF lattice and substrate lattice exists, the MOF lattice

has been shown to grow aligned with the substrate lattice. Cu(OH)2 has Cmc21 sym-

metry with the (010) Miller plane exposed at the surface.55,217 Note that experimental

results of aligned heteroepitaxial growth were only available for the Cu(OH)2 substrate

at the time of submission, but the previously described experimental method55 and our
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screening process are not limited to this substrate.

B.6.2 MOFs

Table B.2: Common name, organic linkers, dimensionality and binary yes/no result of
alignment experiment of all MOFs in the experimental data set used to validate the screening
algorithm. Structures of the organic linkers are shown in Figure B.7.

name linkers dimensionality aligned?
CuBDC 1,4-BDC 2D Yes55
CuBPDC 4,4’-BPDC 2D Yes55
CuNDC 2,6-NDC 2D Yes55

CuBDC-DABCO 1,4-BDC + DABCO 3D Yes55
CuBDC-BPY 1,4-BDC + 4,4’-BPY 3D Yesa

CuTDC 1,4-TDC 2D No55

CuBTC 1,3,6-BTC 3D No55

a See Figure B.8
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Figure B.7: Organic linkers in the experimental MOF data set given by their common
names.

Table B.2 and Figure B.7 give the MOFs and organic linkers for which there are exper-

imental results on aligned heteroepitaxial growth on Cu(OH)2. We used one or more

crystal structures for each of these MOFs to parameterize and validate the screening

process. For the MOFs (CuBDC, CuBPDC, CuNDC, CuTDC), we used Materials Stu-

dio178 to build crystal structures with experimental values for the lattice parameters

(Table B.3) and the UFF4MOF120,121 force field and the General Utility Lattice Pro-

gram (GULP)406,407 to energy minimize the atom positions, while the cell parameters

were constrained. All 2D layered materials were built with an eclipsed (P4) layering

structure.206,408 For CuBDC-BPY, we used the CIF NEJRUR from the CORE MOF
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database,94 which is derived from an experimental crystal structure.409 For CuBDC-

DABCO-a, we used an experimental crystal structure for an isostructural MOF with

the fluorinated BDC ligand,410 which we also used as a starting point to build a non-

fluorinated crystal structure, CuBDC-DABCO-b, with experimental lattice parameters

(Table B.3) using Materials Studio, GULP and UFF4MOF. For CuBTC (also known as

HKUST-1), we extracted crystal structures from the CORE MOF database (structures

in the CORE MOF database were extracted from the Cambridge Structural Database

(CSD)),94 the hypothetical MOF database,101 and one structure from the Crystallogra-

phy Open Database (COD).411,412 Table B.3 shows the lattice parameters for all crystal

structures used for all MOFs in the experimental data set.

Table B.3: Names, lattice parameters and citations (and CSD REFCODES if available) of
all crystal structures used in the experimental parameterization database.

name CIF a b c α β γ

CuBDC-a 413 10.61 5.80 10.61 90.0 90.0 90.0
CuBDC-b 408 11.19 5.80 11.19 90.0 90.0 90.0
CuNDC 408 13.35 5.90 13.35 90.0 90.0 90.0
CuBPDC 408 15.49 5.90 15.49 90.0 90.0 90.0

CuBDC-DABCO-a ACATAAa 410 10.87 10.87 9.67 90.0 90.0 90.0
CuBDC-DABCO-b 414 10.60 10.60 9.50 90.0 90.0 90.0

CuBDC-BPY NEJRUR94,409 10.81 10.85 14.02 87.5 89.0 86.0
CuTDC 408 19.84 5.90 19.84 90.0 90.0 90.0
CuBTC-a 101 18.63 18.63 18.63 120 90 60
CuBTC-b 2300380b 415 26.30 26.30 26.30 90.0 90.0 90.0
CuBTC-c XAMDUM94,416 18.62 18.62 18.62 60.0 60.0 60.0
CuBTC-d XAMDUM0194,416 18.60 18.60 18.60 60.0 60.0 60.0
CuBTC-e XAMDUM0294,416 18.59 18.59 18.59 60.0 60.0 60.0
CuBTC-f XAMDUM0394,416 18.57 18.57 18.57 60.0 60.0 60.0
CuBTC-g XAMDUM0494,416 18.35 18.35 18.35 60.0 60.0 60.0
CuBTC-h XAMDUM0594,416 18.51 18.51 18.51 60.0 60.0 60.0
CuBTC-i XAMDUM0694,416 18.60 18.60 18.60 60.0 60.0 60.0
CuBTC-j XAMDUM0794,416 18.66 18.66 18.66 60.0 60.0 60.0

a Crystal structure of isostructural MOF with fluorinated BDC ligand.
b Non-P1 symmetry = Fm-3m; reference ID for Crystallography Open Database411,412
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Figure B.8: X-ray diffraction patterns of CuBDC-BPY MOFs grown epitaxially on an aligned
Cu(OH)2 substrate, measured out-of-plane (blue line), in-plane perpendicular (red line),
and in-plane parallel (black line) with respect to the longitudinal direction of the aligned
Cu(OH)2 nanobelts in the substrate, using methods described previously.55 All patterns are
normalized to their maximum values for the 2θ range shown. Significant differences in the
relative intensities of the peaks from 2θ = 7.5–10◦ between the three diffraction patterns
support the macroscale in-plane and out-of-plane alignment of CuBDC-BPY. (Note that
several peaks (in the 10–15◦ range) in the in-plane parallel plot could not be indexed and are
likely due to an impurity phase, possibly a derivative phase of the interpenetrated framework
structure. These peaks are very small in the out-of-plane measurement, indicating that the
proportion of this impurity phase is less than ∼ 5%.)

B.7 Effect of interpenetration

During the cleaning process used to produce the CORE MOF database, interpene-

trating nets were retained by identifying the number of atoms, N , in the largest of

all bonded components in a crystal structure, and retaining any components with at

least N
2 atoms.94 We used this definition to determine if a crystal structure was inter-

penetrated and, if so, we extracted each component with at least N
2 atoms and wrote

that component to a new structure file, which we tested independently in step 3 of

the screening process. Note that we did not check if the two separated nets were inde-

pendently stable or reasonable structures. For CuBDC-BPY we used a structure from

the CORE MOF database with the REFCODE: NEJRUR,94,409 which, by the above

definition, was interpenetrated with two identical nets. Figure B.9 shows the binding

interfaces for the (100) Miller plane of the original crystal structure and the two sepa-

rate nets. The maximum ASO of the full and separated structures were the same, but

the ∆IB of the full structure suffers from slicing the other net (see Figure B.10). Hence,

for the screening process we removed the interpenetrated structures and only tested
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each net separately. Note that interpenetration in CuBDC-BPY has been shown to be

suppressed when it forms as a surface-anchored MOF using layer-by-layer liquid-phase

epitaxy, but that was suggested to be due partially to the washing process.417 Hence,

experimental results do not clearly suggest that interpenetration is less favored, al-

though Figure B.10 does suggest that at the interface, a non-interpenetrated structure

will be more stable. Throughout this work, when necessary, we report the porosity of

the interpenetrated version of any structure.

a)

b) c)

missing 
linker
defect

binding sites

Figure B.9: (100) unit cell of the binding interface of the (a) interpenetrated and (b,c)
separated nets of the NEJRUR crystal structure. Hydrogens are omitted for clarity and
separate nets are shown in distinct colors. The carboxylate binding functionalities and
missing linker defects in the interpenetrated structure are highlighted. Atoms that were
removed to form the binding plane are semitransparent.
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Figure B.10: Parity plot of the maximum ∆IB obtained for all separated nets of inter-
penetrated MOFs in the CORE MOF database versus the maximum ∆IB obtained for the
interpenetrated MOF.

B.8 Symmetry of binding plane of MOF candidates

Figures B.11 and B.12 show normalized distributions of the angle between the unit-cell

vectors for the Miller plane with the maximum ∆IB for all crystal structures in all

three MOF databases that were screened. Separate histograms are plotted for MOFs

that are predicted to undergo aligned heteroepitaxial growth on Cu(OH)2 and for

MOFs that are not. These results indicate that the top MOF candidates for aligned

growth predominantly have binding interfaces with approximate rectangular symmetry

(i.e. angles between in-plane unit-cell vectors close to 90◦). Furthermore, a greater

proportion of these top candidates have binding interfaces with rectangular symmetry

compared with MOFs that are not expected to exhibit aligned growth, indicating that

aligned heteroepitaxial growth on Cu(OH)2 selects for MOF interfaces with rectangular

symmetry.
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c)

b)
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Figure B.11: Distribution of the in-plane unit cell lattice angle for all binding planes in
the (a) CORE MOF, (b) TOBACCO, and (c) hMOF database. Binding planes predicted
to undergo aligned heteroepitaxial growth on Cu(OH)2 (∆IB ≥ 0.67 and ∆IB2 < 0.67)
are counted in the blue distributions, while all other binding planes are counted in the red
distributions.
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Figure B.12: Distribution of the in-plane unit-cell lattice angle of binding planes in the
CORE MOF, TOBACCO, and hMOF databases. Binding planes predicted to undergo
aligned heteroepitaxial growth on Cu(OH)2 (∆IB ≥ 0.67 and ∆IB2 < 0.67) are counted
in the blue distribution, while all other binding planes are counted in the red distribution.
The inset shows the full distribution of angles.

B.9 Pore characteristics of hMOF candidates

Figure B.13 shows the maximum ∆IB for all crystal structures in the hMOF database as

a function of their pore-limiting diameter (PLD) and in-plane PLD, calculated using

the “resex” command in Zeo++.134 The in-plane PLD was taken as the maximum

PLD along the two crystallographic dimensions that were parallel to the Miller plane

bound to the substrate. Figure B.14 shows the normalized distribution of the PLDs

and in-plane PLDs for MOFs with ∆IB above and below the threshold for aligned

heteroepitaxial growth. Both Figures B.13 and B.14 highlight a broad distribution of

pore characteristics available for MOFs that are predicted to grow aligned on Cu(OH)2.

185



Figure B.13: Maximum ∆IB versus (a) pore-limiting diameter and (b) in-plane pore-limiting
diameter for all structures in the hMOF database whose maximum ∆IB is associated with
a Miller plane where |h| + |k| + |l| = 1. Points are colored by the value of the second
highest ∆IB (∆IB2). The shaded region indicates the approximate ∆IB threshold for
heteroepitaxial in-plane alignment determined in Section 4.4.1. The red line indicates the
value of ∆IB used as the threshold for top candidates.

Figure B.14: Distribution of the (a) pore-limiting diameter and (b) in-plane pore-limiting
diameter for all structures in the hMOF database whose maximum ∆IB is associated with
a Miller plane where |h|+ |k|+ |l| = 1.
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APPENDIX C

Supporting information: Analysis of the

enzymatic reaction space of enzyme@MOF

biocomposites

C.1 Enzyme Commission number

Table C.1: First level (most general) Enzyme Commission (EC) number classifications.

first-level EC number name
1. oxidoreductases
2. transferases
3. hydrolases
4. lyases
5. isomerases
6. ligases

C.2 Determining molecular accessibility

In this work we have implemented an efficient method for calculating the size of small

molecules based on their van der Waals (vdW) volume (Section 6.3). In the following

section we examine the sensitivity of the calculated molecular size on the parameters

used in our method. Figure C.1 shows the effect of the grid spacing and the number of

conformers (N) on the value of d for a small set of molecules (we used a box margin of

4Å in all calculations). We found that over the range of parameters tested, the change

in d is less than 0.6Å and 0.3Å for the grid spacing and number of conformers, respec-

tively. Decreasing the grid spacing used or increasing N increases computation time

and memory requirements. Therefore, the choice of parameters is a balance between
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accuracy and efficiency. In this work, we used values of 0.5Å for the grid spacing and

N = 100. The algorithm that builds the 3D conformers provides a stochastic sampling

of conformational space (focused on chemically reasonable structures) for each mol-

ecule.335 The number of conformers needed to sample the conformational space of a

molecule approximately depends on the number of degrees of freedom in the molecule,

which can be related to the number of heavy atoms or number of rotatable bonds.335

Therefore, it is possible to select N as a function of the number of rotatable bonds in

a given molecule to improve the efficiency of our methodology.

(a) (b)

Figure C.1: Molecular size d as a function of the (a) grid spacing and (b) number of
conformers (N). For each plot, the unchanged parameters were set to: a grid spacing of
0.5 Å, N = 100, vdW scale parameter of 0.8 and box margin of 4.0 Å, which are the values
used in this work.
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Table C.2: Kinetic diameters of molecules used to parameterize our methodology for calcu-
lating the molecular size. All kinetic diameters were taken from Ref. 311 unless otherwise
cited. Where applicable, the smaller value of a range was used in Figure C.2.

name kinetic diameter [Å] name kinetic diameter [Å]
He 2.551 dimethyl ether 4.307
Ne 2.82 ethane 4.443
Ar 3.542 ethene 4.163
Kr 3.655 ethanol 4.530
Xe 4.047 n-propane 4.3–5.118
H2 2.827–2.89 cyclopropane 4.23–4.807
Cl2 4.217 propene 4.678
Br2 4.296 acetone 4.600
CO2 3.3 n-butane 4.687
O2 3.467 1-butene 4.5
N2 3.64–3.80 i-butane 5.278
H2O 2.641 2,2-dimethylbutane 6.2
NO 3.492 cis-2-butene 4.23
CO 3.69 1,3-butadiene 5.2
N2O 3.828 n-pentane 4.5
HCl 3.339 i-pentane 5
HBr 3.353 neo-pentane 6.2–6.464
CS2 4.483 2-methyl pentane 5.5
COS 4.130 2,2,4-trimethylpentane 6.2
SO2 4.112 3-methylpentane 5.5
H2S 3.623 n-hexane 4.3
NH3 2.900 n-heptane 4.3
NF3 3.62 n-octane 4.3
CCl2F2 5.0 cyclohexane 6–6.182
CH3Cl 4.182 benzene 5.349–5.85
CH2Cl2 4.898 ethyl-benzene 5.8
CHCl3 5.389 para-xylene 5.8
CCl4 5.947 meta-xylene 6.8
CF4 4.662 ortho-xylene 6.8
C2F6 5.1 i-butene 4.8308

n-C6F14 7 1-butanol 4.5307

methane 3.758 2,3-dimethylbutane 5.6307

methanol 3.626 1,2,4-trimethylbenzene 7.6307

acetylene 3.3 mesitylene 8.2a 312

toluene 5.25
a Calculated critical diameter

189



Figure C.2 compares the calculated molecular size d and the reported kinetic diam-

eters for all molecules in Table C.2. Deviations from the line y = x in Figure C.2 are

up to ∼1Å, which is expected for larger or more flexible molecules or molecules with

irregular shapes.338 For example, d of n-heptane and n-octane differ significantly from

their reported kinetic diameters (by ≈0.9Å in both cases). We used a constant random

seed (1000) for the generation of 3D conformers, which allows for reproducibility over

subsequent runs. Nonetheless, we can efficiently approximate the kinetic or molecular

diameter of small molecules using this methodology. Note that the kinetic diameter of

a molecule is a temperature dependent parameter, which our algorithm does not con-

sider. Figure C.3 shows the relationship between simulated self-diffusivities of small

molecules through ZIF-8300 and the molecular size d calculated using our method. The

simulated values were shown to match well to experimental results.300 As expected,

self-diffusivity becomes significantly smaller for d above approximately ≈4.0–4.5Å.

2 4 6 8 10
kinetic diameter [Å]

2

4

6

8

10

d 
[Å

]

vdW scale = 0.8
vdW scale = 1.0

Figure C.2: Comparison of the calculated molecular size d and reported kinetic diameters
for all molecules in Table C.2 for two values of the RDKit vdW scale parameter.
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Figure C.3: Simulated self-diffusivities of small molecules in ZIF-8 extracted from Ref. 300
versus the calculated molecular size d from this work.

C.3 Components of reported enzyme@ZIF-8 reactions

Table C.3: Common names of molecules that have been components of enzymatic reactions
carried out by enzymes encapsulated in ZIF-8.

water hydrogen peroxide oxygen
urea carbon dioxide ammonia

pyrogallol purporogallin 3-amino-1,2,4-triazole
ABTS amplex red resorufin

methyl ethyl ketone peroxide tert-butyl hydroperoxide methosulfate
5-methylphenazin-5-ium 2,6-dichloroindophenol benzoquinone

D-glucose (ring) D-glucono lactone D-galactose
methylene blue pyruvate L-lactate

sucrose D-fructose beta-lactose
phosphate acetic acid butyric acid

hexanoic acid octanoic acid decanoic acid
dodecanoic acid p-nitrophenol vinyl acetate
octyl acetate p-nitrophenyl acetate p-nitrophenyl phosphate

p-nitrophenyl butyrate p-nitrophenyl hexanoate p-nitrophenyl octanoate
p-nitrophenyl decanoate p-nitrophenyl dodecanoate 2-octanol

penicillin-G ethanol acetaldehyde
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C.4 Collection of enzyme reaction systems

The KEGG database includes ≈11 000 biochemical reactions, which are manually cu-

rated.324–326 We iteratively collected the components and properties of all reactions

for all EC numbers in the KEGG database, where EC numbers specify the reaction

carried out by an enzyme. Because of the difficulties (mostly to do with nomenclature)

associated with the curation of biochemical databases,418 we avoided any cases for

which molecular structures or properties were not unambiguously defined. For simplic-

ity, we avoided name-based searching for chemical compounds except when secondary

descriptors (such as database identifiers) were available to confirm the search result.

We manually checked a subset of the collected reactions and molecules for agreement

with the online database to confirm the reliability of the web interface. All reactions

reported in the KEGG database as of the 5th of September, 2018, and their molecular

components were collected using the steps below. In all cases, the structures extracted

from a database were not modified or cleaned in any way and represent the structure

contained online. The following steps are used to extract reaction systems from the

KEGG database:

1. Collect reaction system information using the KEGG web service.324–326

2. Collect the molecular components of the reaction system.

(a) Collect the KEGG identifier and role in reaction of each component. KEGG

does not specify roles as substrate or products because all reactions are

reported as reversible. Therefore, reactions were separated into the left-

hand side and right-hand side.

(b) Collect the molecular structure as a MOL file from the KEGG website using

the KEGG identifier and KEGG web service. If no structural information

was obtained, or the structure was generic, for any component of the reac-

tion, then the reaction was skipped. The charge state of the molecule was

not modified from what is provided on the KEGG website.

(c) Convert KEGG MOL file into RDKit molecule and SMILES string.

(d) Skip reactions that have any components that are generic (given by “*” in

the SMILES string) or polymeric.
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(e) Calculate the hydrophobicity (AlogP98, referred to as logP in this work),377

synthetic accessibility score (SAscore)380 and water solubility (logS)376,379

using RDKit.

(f) Extract XLogP3-AA378 and complexity419,420 from the PubChem database.80,421

(g) Calculate molecular size using the method described in Section 6.3. If a

molecule downloaded from the KEGG database cannot be converted to an

RDKit molecule object, then the reaction was skipped.

C.5 Analysis of enzyme reaction systems

As part of our screening process (Section C.4), we analyzed each reaction and its com-

ponents using cheminformatics tools. For completeness, we do not report a certain

property of a reaction if the property of interest could not be calculated for all com-

ponents. All of the following methodologies are approximate and efficient. Hence,

each candidate reaction should be checked more thoroughly before experimental test-

ing. However, Figure 6.6 shows that these simple descriptors can effectively narrow

the regions of interest in the chemical space associated with enzymatic reactions. We

used the molecular size (d, see Section 6.3) to estimate the likelihood of diffusion of

molecular components through ZIF-8. Figure C.4 shows the size of the maximum

component of all reactions, separated by the first level EC numbers (Table C.1). The

distributions of the size of the largest component are broad and centered around 7–9Å

in most cases, except for ligases (EC: 6) and transferases (EC: 2). For ligases, there

are very few collected reactions and for transferases the sharp peak around 9Å likely

corresponds to co-enzyme molecules that act as donors in these classes of reactions.
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(c) (d)

(e) (f)

(g)

Figure C.4: Histogram of molecular size d of the largest component of each reaction.
Reactions are separated into their first level EC categories (Table C.1).
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Figure C.5 shows the change in SAscore (as SAscore(right-hand side)− SAscore(left-

hand side)) for all reactions collected from the KEGG database (separated by the first-

level EC numbers), where the SAscore of each side of the reaction was that of the

largest molecule (defined by the number of heavy atoms) on that side. We note that

the SAscore can be over estimated for small molecules (. 5 heavy atoms) because their

fragments are uncommon in the PubChem database (Figure C.6a). We also extracted

the complexity419,420 reported on the PubChem website,80,421 which determines com-

plexity by the bond network and symmetry of a molecule. Figure C.6b shows that

SAscore and PubChem complexity are well correlated even though the measures of

complexity are defined differently.
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Figure C.5: Histograms of the change in SAscore of all reactions separated into their first
level EC categories (Table C.1).
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(a) (b)

Figure C.6: SAscore as a function of (a) the number of heavy atoms and (b) the complexity
(collected from PubChem)80,421 for all molecules collected for all reaction systems.

There are many ways to calculate the hydrophobicity of a molecule.422 In this

work, we used the octanol–water partition coefficient as measured by the AlogP98

method (implemented in RDKit and termed “logP” in this paper).334,377,378 Figure C.7

shows the logP of the most hydrophobic component of all reactions collected in this

work. Some logP values are higher than that of n-pentane (logP ≈ 2.2), indicating

that compounds in the KEGG database can be quite hydrophobic. Figure C.8 com-

pares logP calculated using RDKit and XlogP3-AA378 extracted from the PubChem

database.80,421 These methods are two of the most efficient and accurate methods for

calculating logP.422 We used the logP of a single charge state when dealing with an

ionizable molecule. In particular, we used the charge state extracted from the KEGG

database in all cases. Figure C.9 shows the logS of the least water-soluble component

of all reactions collected. Similarly to the logP values, compounds less water-soluble

than pentane (logS ≈ −1.8) are present in the KEGG database.
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(g)

Figure C.7: Histograms of logP of the most hydrophobic component of each reaction
separated into their first level EC categories (Table C.1).
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Figure C.8: LogP (AlogP-98)377 versus XlogP3-AA (from PubChem)80,378,421 for all mole-
cules in all reaction systems collected.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure C.9: Histograms of logS of the least water-soluble component of each reaction
separated into their first level EC categories (Table C.1).
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