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Abstract  
 
This thesis contains a series of journal and conference papers focused on the 

development of an efficient technique based on a one-dimensional beam finite element 

model for analysis of thin-walled composite beams having both open and closed cross 

sections.  

 

The formulation derived in this study has sufficient generality for accommodating any 

stacking sequence of individual beam walls and it has considered all possible couplings 

between axial, shear, bending and torsional deformation modes of the beam. The effect 

of transverse shear deformation of walls and out of plane warping of the beam section 

is considered where provision exists to restrain or allow the cross-sectional warping.  

 

Composite laminates are generally weak in transverse shear due to their low shear 

stiffness relative to the extensional rigidity. Thus, it is important to incorporate the 

effect of shear deformation to ensure reliable predictive capability for all relevant 

loading scenarios. However, the implementation of shear deformation in a finite 

element framework has been found to be challenging. The different techniques 

proposed so far by other researchers to address these difficulties are unfortunately 

having some issues such as instability/spurious deformation modes in the results or 

presence of non-physical displacement components in these formulations. 

  

In this thesis, the incorporation of shear deformation within a finite element 

formulation for thin-walled composite beams is successfully achieved in a novel way. 

The proposed model is further developed for Vibration, Vibration with preloading, 

Buckling, Preloaded Buckling and Dynamic Stability of thin-walled laminated 

composite beams. Numerical examples of open sections I beams and closed section box 

beams are solved by the proposed approach. A large number of results obtained in this 

study are compared with those available in literature for the validation of the proposed 

model, which show a very good performance of the model. The effect of preloading in 

the form of axial load, end moments and their combined actions on the behaviour of 

these composite beams are studied.  
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1. Chapter 1 –Thesis General Overview  
 

 Introduction 
 
During the last decades, the use of composite materials in various engineering 
applications has been popular steadily. New production methods and quality assurance 
procedure developed by this time have made composite materials cheaper, reliable and 
more competitive than ever before.  Moreover, the multilayer composite materials can 
be customized by changing the number of layers, fibre orientations and other 
parameters to provide a desired characteristic at different locations. This customized 
design across different structural components can lead to further reduction of structure 
mass which is very important in weight sensitive structures. In addition to the 
orthotropic material response of fibre reinforced composites, the multi-layered 
construction significantly increases the complexity of the behaviour due to strong 
coupling effects between different modes of deformation. 
 
In reality, many applications of such multi-layered composite materials are found in the 
form of beam like structures such as wind turbine blades, helicopter blades, handrails, 
vehicle chassis framing and many others. Also, the thin-walled nature of these 
structures increases modelling complexity due to distortions such as cross-sectional 
warping. This wide range of application of these composite beams requires powerful 
and efficient tools for their analysis and design proposes. This has drawn a considerable 
interest of many researchers who have contributed significantly in this area. This is 
good start but there are many other issues which need to be addressed to exploit the full 
capability of these material and structural system with improved confidence.  
 
In principle, the structural response of thin-walled structural members having open or 
closed cross section made of laminated composite materials may be simulated by 
adopting a full 3D finite element (FE) modelling strategy based on solid or shell 
elements. However, such a modelling strategy can be infeasible in many cases due to 
high computational demand. This type of modelling leads to a gigantic finite element 
mesh with a very large number of nodes/nodal unknowns. It’s known that number of 
arithmetic operations required for solving a set of simultaneous equations needs at least 
square of the number of unknown. Thus, as the problem size increases, computational 
demand/cost to solve the problem increases exponentially. It should be noted that while 
the computational power of computers are increasing with time, the demand for 
analysing these structures is also increasing due to a steady increase of their size and 
complexity. Also, the demand for an optimum design needs an iterative technique 
where the computation efficiency of a structural analysis play a big role.  
 
In order to address the above problem, a group of researchers have attempted to 
develop alternative modelling techniques where the approach based on 1D beam 
elements appeared to be most attractive due to their efficiency and affordability in real 
life applications.  However, a major challenge in developing such reduced order FE 
models is the inclusion of all relevant physical effects and their coupling in the 
condensed (1D) formulation for thin-walled composite beams. 
 
The developments of an efficient technique based on a one-dimensional beam finite 
element model for the analysis of thin-walled laminated composite beams having 
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open/closed sections under different scenarios are presented in this thesis in the form of 
a number of papers as outlined in following section.  
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 Scope of the present work 
 
The primary objective of this research is to develop a new formulation for efficient yet 
accurate analysis of thin-walled laminated composite beams having open and closed 
cross section with minimal level of computational cost. In order to achieve this aim, the 
following objectives are fulfilled. 
 
Objective 1- Develop a generalized model for the prediction of free vibration 
characteristics of thin-walled laminated composite beams having open and closed cross 
sections. The beam cross-sectional matrices necessary for stiffness and mass matrices 
are derived analytically for box and I sections which are utilised in developing the 1D 
beam finite element required for vibration analysis. For the implementation of this 
model, a computer program is developed using FORTRAN which is used to study the 
free vibrational response of various composite beams.   
 
Objective 2- Develop a model based on similar considerations for buckling analysis of 
thin-walled laminated composite beams having open and closed cross sections. The 
beam cross-sectional matrices necessary for geometric stiffness matrices are derived 
analytically for box and I sections and these are used along with the stiffness matrices 
(Objective 1) to develop the 1D beam finite element for buckling analysis of these 
beams. A computer program developed using MATLAB for its implementation which 
is used to predict the buckling characteristics of various beams with or without preloads 
in the form of axial force and end moments.  
 
Objective 3- Develop a model for preloaded vibration of thin-walled laminated 
composite beams having open and closed cross section. The effects of preloads were 
explored taking a wide number of cases where the preload can be axial force, end 
moments and their combinations. It is two stage analysis where a buckling problem is 
solves to get the critical buckling load. The vibration analysis is conducted in the 
second phase taking a fraction of the critical load as preload. A computer program is 
developed using MATLAB for the implementation of this model utilising stiffness 
matrices (Objective 1), mass matrices (objective 1) and geometric stiffness matrices 
(objective 2) and the program is used to study the behaviour of these thin-walled 
laminated composite beams. 
 
Objective 4- Develop an all-inclusive model for dynamic stability of these composite 
beams under axial load and end moments preload for both open and closed cross 
sections. It is a three stage analysis where an addition vibration analysis is needed to 
get boundaries of the instability region. For the implementation of the model, a 
computer program is developed using MATLAB which is applied to study the dynamic 
stability behaviour of various beam problems under different levels of axial and end 
moments preload.   
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 Thesis Outline 
 
This thesis is written in a publication-based format. The main body of this thesis 
consists of three journal papers and two conference papers which are presented in 
Chapters 2 to 4. In Chapter 5, the conclusions are drawn and recommendations for 
future work are discussed.  
 
Chapter 2 (Journal Paper 1) [Sheikh AH, Asadi A, Thomsen, OT (2015) [2]] were 
initially presented in the 18th International Conference of Composite Structures [1]. The 
conference technical committee assessed all the submissions and suggested a selection 
of papers to be expanded as a full length journal paper and submitted to Composite 
Structures for publication. This is one of these selected papers which has finally been 
published in Composite Structures [2]. This paper presents analytical formulations and 
derives principal cross-sectional matrices corresponding to stiffness and mass matrices 
which are incorporated within a 1D beam finite element model for vibrational analysis 
of thin-walled laminated composite beams having open and closed section. Different 
examples were presented for I and box sections and different lamination scheme were 
taken to study the vibrational response of thin-walled composite beams (Objective 1). 
 
Chapter 3 (Journal Paper 2) [Asadi A., Sheikh AH, Thomsen, OT (2018) [3]] This 
paper presents analytical formulations and derives principal cross-sectional matrices 
corresponding to geometric stiffness matrices which are incorporated along with the 
stiffness matrices within a 1D beam finite element model for buckling analysis thin-
walled laminated composite beams having open and closed section under axial and end 
moments.  Different numerical examples for both I and box sections are solved by this 
model taking different lamination scheme, boundary condition, axial load, end 
moments and simultaneous axial load and end moments as preloads to study the 
vibrational characteristics of thin-walled composite beams (Objective 2).  
 
Sub-Chapter 3A (Conference Paper 1) [Asadi A., Sheikh AH, Thomsen, OT (2015) 
[4]] were presented in the 20th International Conference on Composite Materials [4]. 
This may be considered as a sub-set of journal paper 2. However, most of the numerical 
examples presented in this conference paper are different from those presented in the 
journal paper.  
 
Chapter 4 (Journal Paper 3) [Asadi A., Sheikh AH, Thomsen, OT (2018) [5]] This 
paper presents a 1D beam finite element model utilising the relevant matrices derived 
in previous sections for static and dynamic instability analysis of preloaded thin-walled 
laminated composite beams having open and closed section. A number of examples 
were solved for both I and box sections taking different lamination scheme, boundary 
condition, axial load, end moments and simultaneous axial load and end moments as 
preloads to study the static and dynamic stability of thin-walled composite beams 
(Objective 3 and 4).   
 
Sub-Chapter 4A (Conference Paper 2) [Asadi A., Sheikh AH (2017) [6]] were 
presented in the 9th Australasian Congress on Applied Mechanics [6]. This may be 
considered as a sub-set of paper 3. However, the numerical examples presented in this 
conference paper are different from those presented in the journal paper.   
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a b s t r a c t

An efficient technique based on one dimensional beam finite element analysis for vibration of thin-walled
laminated composite beams having open and closed sections is proposed in this paper. The developed
technique is quite generic which can accommodate any stacking sequence of individual walls and consid-
ers all possible couplings between different modes of deformation. The formulation has accommodated
the effect of transverse shear deformation of walls as well as out of plane warping of the beam section
where the warping can be restrained or released. The inclusion of shear deformation has imposed a prob-
lem in the finite element formulation of the beam which is solved successfully utilising a concept devel-
oped by one of the authors. A number of numerical examples of open section (I and C sections) beams and
closed section box beams are solved by the proposed technique and the results predicted by the proposed
model are compared with those obtained from literature as well as detailed finite element analysis using
a commercial code. The results show a very good performance of the proposed modelling technique.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The use of thin-walled beam like slender structures made of
laminated composite materials is found in many engineering appli-
cations such as helicopter rotor blades, construction industry, long
wind turbine blades and few other situations. The behavior of
these structures can be accurately predicted by a detailed finite
element model using three-dimensional (3D) or shell elements
but the computational demand of such model is extremely high.
In order to avoid this problem, a group of researchers tried to
model these structures as a condensed one-dimensional (1D) beam
elements which will drastically improve the computational effi-
ciency but the major challenge in that approach is the formulation
of a suitable beam element that will be able to capture all effects
and their couplings found in these complex thin-walled composite
structural system. This has drawn attention of a number of
researchers which made this topic an active area of research in
recent years. Some representative samples of these models are pro-
vided in references [1–8]. The studies carried out so far can be
divided into two broad groups based on the technique used to
determine the cross-sectional matrixes which can be used to for-

mulate the one dimensional beam element. The first approach is
based on ‘analytical techniques’ while the second approach uses
a two-dimensional (2D) cross-sectional analysis based on a 2D
finite element model for the determination of the cross-sectional
matrixes which can be utilised to carry out the 1D beam analysis.

Hodges and his co-workers [3] have significantly contributed
toward the development of the second approach where the three
dimensional (3D) elasticity problem defining the deformation of
these beam like structures is systematically divided into a one-
dimensional (1D) beam problem and a 2D cross-sectional problem.
This method is generally referred to as variational asymptotic
beam section analysis (VABS) which is based on variational asymp-
totic method (VAM) [9]. This approach is also suitable for mod-
elling solid and the thick walled cross-sections. The same group
of researchers ([10–14]) has also attempted to solve the 2D
cross-sectional problem defined within the framework of VAM
analytically but this approach involves rigorous mathematical
treatments to evaluate the cross-sectional stiffness coefficients.

Since the present paper is primarily focusing on the analysis of
thin-walled composite beams, the analytical approach (first
approach) is used for determination of cross-sectional matrixes.
Moreover, the 2D finite element analysis or a complex mathemat-
ical treatment involved with the other approach is avoided in the
present investigation. Specifically, the current study has adopted

http://dx.doi.org/10.1016/j.compstruct.2015.08.025
0263-8223/� 2015 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail address: abdul.sheikh@adelaide.edu.au (A.H. Sheikh).

Composite Structures 134 (2015) 209–215

Contents lists available at ScienceDirect

Composite Structures

journal homepage: www.elsevier .com/locate /compstruct
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the analytical approach proposed by Sheikh and Thomsen [8] and
extended to vibration. The different modes of deformation consid-
ered in the development of present closed-form analytical solution
are axial, torsion, bi-axial bending, bi-axial shear as well as out of
plane warping for the torsional deformation. The cross-sectional
matrices are explicitly derived for the open I section, C section
and closed box section. The present formulation considered both
plane stress and plain strain conditions of a lamina. The 1D beam
problem is solved by the finite element approximations. The incor-
poration of the out of plane warping displacement demands a C1

continuous finite element formulation for the twisting rotation,
which is accommodated using Hermetian interpolation functions.
On the other hand, the usual treatment of the transverse shear
deformation requires a C0 formulation. This needs the use of
reduced integration technique for avoiding any shear locking prob-
lem. The different degrees of continuity for the different modes of
deformation and their coupling impose a problem for their numer-
ical implementation. This problem is addressed satisfactorily util-
ising the concept proposed by Sheikh [15] which permits a full
integration and avoid the problem of using any reduced integra-
tion. For the 1D beam finite element analysis, a three node beam
element as shown in Fig. 1 has been developed.

A computer code is written in FORTRAN to implement the pre-
sent formulation. Numerical examples of thin-walled composite
beams having different cross sections and other conditions are
analysed by the proposed model and the results obtained in the
form of vibration frequencies are validated with the available
results in literature. These results demonstrate a very good perfor-
mance of proposed model.

2. Formulation

Fig. 2 shows a segment of the composite beam shell wall where
x–y–z is taken as the global Cartesian coordinate system with x
being directed along the beam axis which is passing through the
centroid of the beam section. A local orthogonal coordinate system
x–s–n is also defined where x–s plane passes through the tangential
plane of beam wall mid-plane (local x-axis is parallel to the global
x-axis) and n is directed along the wall thickness. The displacement
components at the mid-plane of the shell wall in the local coordi-
nate system (x–s–n) can be expressed in term of the global dis-
placement components of the beam [1] as

�u ¼ U þ yhy þ zhz þuh0x;
�v ¼ V cosaþW sina� rhx;
�w ¼ �V sinaþW cosaþ qhx;

ð1Þ

where u is the warping function, hx is the torsional rotation and hy,
hz are bending rotations of the cross-section of the beam along (not
about) y and z, respectively. These bending rotations can be
expressed as hy ¼ �V 0 þWy and hz ¼ �W 0 þWz, where Wy, Wz are
shear rotations of the beam section about z and y, respectively,
and V 0,W 0 and h0x are respectively the derivatives of V,W and hx with
respect to x.

It has been observed that the warping displacement of a closed
section beam is relatively less than that of an open section beam
[14] but the present formulation has considered the effect of

warping in all cases. Considering the effects of bending and trans-
verse shear deformation of the beam shell wall, the displacements
at any point of the shell wall away from its mid-plane may be
expressed as

u ¼ �uþ n � @ �w
@x þ wxn

� �
;

v ¼ �v þ n � @ �w
@s þ wsn

� �
;

w ¼ �w;

ð2Þ

where wxn and wsn are shear rotations of the shell wall section about
s and x, respectively. It is assumed that wsn ¼ 0 whereas wxn can be
expresses in terms of the corresponding global components ðWy and
WzÞ as wxn ¼ �Wy sinaþWz cosa. Substituting this as well as Eq. (1)
in the above Eq. (2), the displacements at any point within the shell
wall along its local coordinate system (x–s–n) can be expressed in
terms of the global displacement components of the 1D beam as

u ¼ U þ ðy� n sinaÞhy þ ðzþ n cosaÞhz þ ðu� nqÞh0x;
v ¼ V cosaþW sina� ðr þ nÞhx;
w ¼ �V sinaþW cosaþ qhx:

ð3Þ

With the above beam kinematics (3), the free vibration govern-
ing equation for the beam can be derived from its total energy. The
total energy of a structure consists of strain energy (U) and kinetic
energy (T) which can be used to derive the stiffness matrix ½K� and
mass matrix[M], respectively used in finite element analysis of the
structure. As the derivation of the stiffness matrix ½K� has already
been shown elsewhere [8], it is not repeated here. Taking q as den-
sity of the material, the kinetic energy for free vibration of a beam
may be written as

T ¼ 1
2

Z
V
f _UgTqf _Ugdv ¼ �x2

2

Z
V
fUgTqfUgdv : ð4Þ

Fig. 1. A typical beam element.

Fig. 2. Cross-section of a portion of beam shell wall with local and global coordinate
system and displacement components.
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where q is the mass density of the material, x is the vibration fre-

quency, fUgT ¼ ½u v w � (Eq. (3)) is the displacement vector and
f _Ug ¼ dfUg=dt is the velocity vector. The displacement vector (Eq.
(3)) can be conveniently written as

fUg ¼ ½Hm�f�ug: ð5Þ
where ½Hm� contains sectional parameters (y, z, n, r, u, q, a depen-
dent on y and z whereas f�ug contains global parameters (U, V, W,
hz, hy and hz) of the 1D beam (depended on x). After substitution
of the above Eq. (5) in Eq. (4), it can be written as

T ¼ �x2

2

Z
V
fUgTqfUgdv ¼ �x2

2

Z
L
f�ugT ½Fm�f�ugdx ð6Þ

where ½Fm� ¼
R
A ½Hm�Tq½Hm�dsdn ¼ R ðR ½Hm�Tq½Hm�dnÞds ¼

R ð½Cm�Þds
For I, C and box section beams, all elements of the above matri-

ces ½Fm� and ½Cm� are explicitly derived which are given in Appendix
A and B.

For finite element implementation of the beam, quadratic
Lagrangian interpolation functions are used for the axial deforma-
tion while cubic Hermetian interpolation functions are used for
torsional deformation which will ensure the desired C1 continuity
of torsional rotation (h) as the displacement field (Eq. (3)) contains
derivative of h. As mentioned earlier, the bending deformations are
treated in a different manner along with shear deformations

following the concept of Sheikh [15] where the shear rotations
Wy and Wz are adopted as field variables instead of hy and hz in
addition to the bending displacements V and W. Taking a linear
approximation of Wy, Wz and a cubic approximation of V and W,
the field variables can be written as

U ¼ a1 þ a2xþ a3x2

V ¼ a4 þ a5xþ a6x2 þ a7x3

W ¼ a8 þ a9xþ a10x2 þ a11x3;

Wy ¼ a12 þ a13x; Wz ¼ a14 þ a15x

hx ¼ a16 þ a17xþ a18x2 þ a19x3

ð7Þ

ThoughWy andWz are taken as field variables, they are not used
as nodal degrees of freedom. Interestingly, the corresponding nodal
degrees of freedom are hy and hz which are introduced with the
help of bending deformations and may be expressed using the
above equations as

hy ¼ Wy � V 0 ¼ a12 þ a13x� a5 � 2a6x� 3a7x2;
hz ¼ Wz �W 0 ¼ a14 þ a15x� a9 � 2a10x� 3a11x2:

ð8Þ

The unknown constants (a1, a2, a3 . . . a19) found in Eq. (7) can be
replaced in terms of nodal displacement parameters by substitu-
tion of U, V , W , hy and hz (Eqs. (7) and (8)) at all three nodes of
the beam element (Fig. 1), and hx (Eq. (7)) and its derivative h0x at
the two end nodes as

fdg ¼ ½R�fag or fag ¼ ½R��1fdg ð9Þ

where fagT ¼ ½ a1 a2 a3 � � � a19 �, [R] consists of coordinates (x values)
of the 3 nodes and fdgT ¼ ½U1 V1 W1 hx1 hy1 hz1 h0x1 U2 V2 W2

hy2 hz2 U3 V3 W3 hx3 hy3 hz3 h0x3� is the nodal displacement vector.

Table 1
Natural frequencies of a 2 m long simply supported I-beam (Hz).

Lay-ups References Mode number

1 2 3 4 5 6

[0]16 Present 24.16 35.21 45.04 96.29 109.39 177.75
Vo and Lee [17] 24.19 35.23 45.24 96.73 109.44 180.62
Kim et al. [16] 24.15 35.17 45.06 96.39 109.01 178.13

[15/-15]4s Present 22.97 36.11 42.84 91.60 107.44 169.31
Vo and Lee [17] 23.00 36.25 43.00 91.94 107.66 171.68
Kim et al. [16] 22.96 36.07 42.85 91.70 107.16 169.62

[30/-30]4s Present 19.80 36.83 36.95 79.03 100.62 146.46
Vo and Lee [17] 19.82 37.05 37.86 79.23 102.16 147.94
Kim et al. [16] 19.78 36.80 36.95 79.13 100.47 146.66

[45/-45]4s Present 16.48 30.76 35.16 65.80 90.52 122.14
Vo and Lee [17] 16.49 30.83 37.92 65.92 94.88 123.09
Kim et al. [16] 16.45 30.76 35.13 65.90 90.45 122.29

[60/-60]4s Present 14.66 27.36 32.24 58.53 82.03 108.68
Vo and Lee [17] 14.67 27.42 35.37 58.63 87.05 109.48
Kim et al. [16] 14.63 27.36 32.21 58.62 81.97 108.80

[75/-75]4s Present 14.07 26.26 29.97 56.17 77.22 104.22
Vo and Lee [17] 14.08 26.32 31.31 56.28 79.33 105.09
Kim et al. [16] 14.04 26.26 29.95 56.26 77.15 104.34

[0/90]4s Present 13.96 26.05 29.16 55.74 75.73 103.37
Vo and Lee [17] 13.97 26.12 29.18 55.85 75.77 104.29
Kim et al. [16] 13.94 26.06 29.13 55.82 75.65 103.49

Table 3
Natural frequencies of a cantilever composite box-beam having an asymmetric
lamination scheme.

Mode Mitra et al. [22] Vo and Lee [19]+ Vo et al. [18]+ Present+

No shear With
Shear

ANSYS

1 31.06 31.02 30.99 31.30 31.04 31.54
2 49.34 49.17 49.19 49.86 49.54 50.02
3 194.57 192.55 187.22 196.16 194.06 195.82
4 308.75 301.63 298.13 312.48 304.79 306.82
5 862.40 817.54 794.24 874.97 826.46 831.46
6 1757.35 1642.38 1680.80 1779.29 1659.92 1670.83
7 2107.33 2107.28 2111.70 2145.28 2145.09 2144.65
8 2619.31 2381.89 2349.40 2657.98 2437.71 2423.24
9 2771.02 2409.78 2418.00 2834.36 2440.04 2448.82
10 3321.34 3220.05 3198.00 3419.13 3262.88 3275.80

+ Includes shear effects.

Table 2
Natural frequency (Hz) of a cantilever composite box-beam (fundamental mode).

Model I II III IV V

Top Flange [30]6 [45]6 [15]6 [0/30]3 [0/45]3
Bottom Flange [-30]6 [-45]6 [15]6 [0/30]3 [0/45]3
Left Web [30/-30]3 [45/-45]3 [15]6 [0/30]3 [0/45]3
Right Web [30/-30]3 [45/-45]3 [15]6 [0/30]3 [0/45]3
Mode TV TV VB VB VB
ANSYS 28.42 33.665 32.061
Vo et al. [18]+ 21.80 14.86 32.02 34.47 32.41
Vo & Lee [19]* 22.07 15.13 38.65 35.53 32.52
Qin and Librescu [20]* 21.80 15.04 30.06 34.58 32.64
Chandra & Chopra [21]� 20.96 16.67 28.66 30.66 30.00
Present+ 22.24 14.89 31.88 34.29 32.24

+ Includes shear effects.
* Shear effects not included.
x Experimental TV: twist-vertical bending coupling VB: vertical bending.

Fig. 3. Variation of natural frequencies with respect to the number of element.
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With the help of Eqs. (7–9), the vector f�ug as defined in Eq. (5)
may be expressed in terms of nodal displacement vector fdg as

f�ug ¼ ½Sm�fag ¼ ½Sm�½R��1fdg ¼ ½Bm�fdg: ð10Þ
Again this equation is substituted in Eq. (6) and it is rewritten as

T ¼ �x2

2

Z
L
f�ugT ½Fm�f�ugdx

¼ �x2

2

Z
L
fdgT ½Bm�T ½Fm� ½Bm�fdgdx ¼ �x2

2
fdgT ½M�fdg ð11Þ

where ½M� ¼ R
L ½Bm�T ½Fm�½Bm�dx is the mass matrix of an element.

The stiffness and mass matrices of all elements are assembled
together to form the corresponding matrices of the whole struc-
ture. Taking the same notations of these assembled matrices, the
governing equation of free vibrating beams may be expressed as

½K�fdg ¼ x2½M�fdg ð12Þ
This is an Eigen-value problem which is solved to get the vibra-

tion frequencies as Eigen values and modes of vibration as Eigen
vectors.

3. Results and discussions

In the section, numerical examples of thin-walled composite
beams having I, C and Box sections are solved using the proposed
model and the results obtained are validated with the analytical
and numerical results available in literature and/or produced with
a detailed finite element analysis of these structures using a com-
mercial code (ANSYS).

Example 1: The problem of a simply supported thin-walled
composite I-beam having a span of 2 m is studied using plane
stress condition (rs ¼ 0) of the plies. The flanges are 50 mm wide
and the web is 50 mm deep whereas all these walls are made with
symmetrical laminates consist of 16 glass–epoxy layers each
0.13 mm thick. Material properties used for the glass–epoxy layers
are: E1 = 53.78 GPa, E2 = 17.93 GPa, G12 = G13 = 8.96 GPa, G23 =
3.45 GPa, m12 = 0.25 and q = 1970 kg/m3. Taking 30� fibre orienta-
tion for all layers, the beam is analysed using different number of
elements and the variations of first five natural frequencies pre-
dicted by the proposed technique are plotted in Fig. 3. The results
show a rapid and monotonic convergence of all these natural fre-
quencies as the number of elements increased.

Example 2: The same beam used in the previous example is
analysed with 10 elements taking different fiber orientations of
the web and flanges. The first six vibration frequencies obtained

in the present analysis are presented in Table 1 along with those
produced by Kim et al. [16], and Vo and Lee [17] who studied this
problem earlier with their approach. The table shows that the pre-
sent results have good agreement with the existing results [16,17].

Example 3: The behavior of an 844.5 mm long cantilever thin-
walled composite beam having a box section (flange width:
24.21 mm, web depth: 13.46 mm) made of 6-ply laminates (thick-
ness of each ply: 0.127 mm) for all walls is investigated for differ-
ent ply orientations of the flanges and webs. The material
properties used for these layers are: E1 = 141.9 GPa, E2 = 9.78 GPa,
G12 = G13 = 6.13 GPa, G23 = 4.8 GPa, m12 = 0.42, q = 1445 kg/m3. Tak-
ing plane stress condition (rs ¼ 0) of the plies, the analysis is car-
ried out with 13 elements in all cases and the results obtained are
presented in Table 2 along with those of Vo et al. [18], Vo and Lee
[19], Qin and Librescu [20] and experimental results of Chandra
and Chopra [21]. The table shows close agreements between the
results for different model configurations.

The same beam is analysed again taking an asymmetric lamina-
tion scheme [0/90] and [90/0] for the top and bottom flanges
respectively and similar configuration for the webs. A number of
vibration frequencies obtain by the proposed technique are pre-
sented in Table 3 and compared with the results reported by Mitra
et al. [22], Vo and Lee [19], and Vo et al. [18]. The table also
includes results produced from a full-blown finite element model
of the beamwith eight-node brick elements which was undertaken
by Mitra et al. [22] using the finite element code ANSYS. Table 3
shows an acceptable correlation between the results obtained from
different approaches developed by different researchers.

Example 4: In order to study the effect of shear deformation on
the natural frequencies and mode shapes as well as coupling
between different modes of deformation, a 6 m long thin-walled
composite box-beam having a cross-section as shown in Fig. 4 is
analysed for different ply orientations taking different values of h
(Fig. 4). Taking clamped boundaries at the two ends of the beam,
the analysis is carried out using plane stress condition of the plies
which are having the following properties: E1/E2 = 25, G12/E2 = 0.6,
G12 = G13 = G23, m12 = 0.25. The natural frequencies predicted by the
proposed model are presented in non-dimensional forms

( �x ¼ xl2
ffiffiffiffiffiffiffiffiffiffiffi
q=E2

p
=b1) along with those obtained by Vo et al. [18]

using two approaches in Table 4 which shows a good agreement
between them.

Table 4
Non-dimensional natural frequencies for different fiber angle and l=b1 ¼ 20; all
results includes shear effect.

Fiber Angle (h) Mode 1 2 3 4

0 Present 26.327 31.944 41.900 61.632
Orthotropic Solution [18] 26.759 32.442 41.594 63.252
FEM [18] 26.759 32.442 41.594

15 Present 25.830 33.794 65.054 72.192
Orthotropic Solution [18] 25.959 33.911 65.630 71.530
FEM [18] 25.941 33.903 65.581

30 Present 16.184 21.690 43.093 56.955
Orthotropic Solution [18] 16.215 21.716 43.242 57.085
FEM [18] 16.202 21.709 43.209

45 Present 9.344 12.583 25.297 33.741
Orthotropic Solution [18] 9.354 12.593 25.358 33.801
FEM [18] 9.350 12.591 25.348

60 Present 7.036 9.479 19.121 25.525
Orthotropic Solution [18] 7.041 9.486 19.163 25.574
FEM [18] 7.041 9.486 19.161

75 Present 6.434 8.661 17.490 23.314
Orthotropic Solution [18] 6.349 8.669 17.531 23.367
FEM [18] 6.439 8.669 17.530

90 Present 6.322 8.508 17.184 22.887
Orthotropic Solution [18] 6.327 8.516 17.226 22.944
FEM [18] 6.327 8.516 17.226

Fig. 4. Cross section and laminate configuration of a thin-walled composite box-
beam.
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Example 5: A 2 m long thin-walled composite beam having a
channel section with 6 mm wide flanges 20 mm deep web is anal-
ysed with the proposed technique. The beam is clamped at its ends
and all the walls are made of 6-ply asymmetrical laminate ½�h�3
where each ply has a thickness of 0.127 mm and the following
material properties: E1 = 141.9 GPa, E2 = 9.78 GPa, G12 = G13 = 6.13 -
GPa, G23 = 4.8 GPa, m12 = 0.42, q = 1445 kg/m3. For the validation of
the present results, a detailed finite element analysis of the beam
using 8 node shell elements is carried out using ANSYS. The results
produced by the two approaches are presented in Table 5 which
shows a very good performance of the proposed beam element.
In this example, the pole/shear centre (Fig. 2) of the beam section
and its centroid are located in different places where the distance

between them (yp) is calculated based on method proposed by
Shan and Qiao [23].

In order to study the effect of ply orientations of the laminated
walls further, the beam is analysed again in a similar manner tak-
ing symmetric layup ½h�6 of the walls and the results obtained for
different values of h are presented in Table 6. A closed examination
of the results shows a conformity between the results produced by
the proposed beam model and the detailed finite element model
(ANSYS) in most of the cases. However, some visible differences
are found when the fiber angle varied from 15� to 45�. A review
of the mode shapes found from the detailed finite element model
of the beam shows a pronounced sectional distortion which is
not considered in the beam model.

Fig. 5. Thin-walled beam having open and closed section.

Table 5
Natural frequencies for different ply orientations of the asymmetric laminated walls ½�h�3 of a clamped beam having a channel section.

Mode Fibre Angle (h) 0 15 30 45 60 75 90

1 Present+ 15.931 14.345 9.781 6.174 4.708 4.281 4.121
Ansys* 15.902 14.247 9.749 6.221 4.752 4.286 4.187

2 Present+ 32.692 39.532 26.959 17.018 12.977 11.802 11.359
Ansys* 34.549 39.187 26.874 17.153 13.099 11.813 11.540

3 Present+ 43.890 40.662 37.271 25.031 19.262 17.485 16.798
Ansys* 43.705 43.059 39.260 25.921 19.873 17.828 17.115

4 Present+ 71.641 68.182 52.854 33.367 25.444 23.140 22.272
Ansys* 72.895 68.591 52.687 33.632 25.678 23.155 22.615

5 Present+ 73.098 77.480 55.454 44.278 36.631 32.689 30.903
Ansys* 75.059 76.756 66.488 55.605 4 2.446 38.267 32.479

+ Includes shear effect.
* Detailed finite element model (ANSYS).

Table 6
Natural frequencies for different ply orientations of the symmetric laminated walls ½h�6 of a clamped beam having a channel section.

Mode Fiber Angle (h) 0 15 30 45 60 75 90

1 Present+ 15.931 12.751 8.393 5.744 4.648 4.271 4.184
Ansys* 15.904 10.498 6.754 5.210 4.536 4.260 4.187

2 Present+ 32.692 35.105 23.127 15.833 12.812 11.774 11.534
Ansys* 34.797 28.887 18.606 14.357 12.502 11.739 11.540

3 Present+ 43.890 41.106 37.271 25.059 19.367 17.486 17.057
Ansys* 43.712 37.865 27.752 21.599 18.771 17.502 17.115

4 Present+ 71.641 68.156 45.318 31.042 25.120 23.086 22.616
Ansys* 72.929 54.821 36.472 28.142 24.505 23.007 22.615

5 Present+ 73.098 68.840 55.808 44.702 36.928 32.702 31.381
Ansys* 75.534 56.590 56.314 46.488 40.482 35.150 32.479

+ Includes shear effect.
* Detailed finite element model (ANSYS).
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4. Conclusions

An efficient one dimensional beam element is developed for
vibration analysis of thin-walled composite beams of open and
closed cross sections considering axial displacement, torsion,
bi-axial bending and transverse shear deformations as well as
out of plane sectional warping. The cross-sectional matrices
required for the formulation of mass matrices of the beam are
derived analytically where all possible couplings between the
abovementioned modes of deformation are considered. The
effect of shear deformation of the beam walls is included which
requires a C0 continuous finite element formulation of the bend-
ing deformation coupled with the shear deformation. On the
other hand, the torsional deformation requires a C1 continuous
FE formulation due to the incorporation of warping deformation.
The difficulty associated with the implementation of both these
formulations in the present coupled problem is successfully
overcome by using a novel concept of one of the authors. The
proposed analysis technique is used to solve numerical examples
of thin-walled laminated composite beams having open I, C and
closed box sections taking different boundary conditions and
stacking sequences of the beam walls. In many cases, the results
predicted by the proposed technique are validated with the ana-
lytical and/or numerical results available in literature. The agree-
ment between the results is found to be very good in most of
the cases which ensures the reliability and range of applicability
of the proposed element. New results are also presented in this
paper which should be useful to future researchers.

Appendix A.

The non-zero elements appeared in the upper triangle of the
symmetric matrix [Cm] (Eq. (6)) are presented in their explicit form
as follows (applicable for I, C and box sections).

Cm
11 ¼ Cm

22 ¼ Cm
33 ¼ A; Cm

15 ¼ Ay; Cm
16 ¼ Az; Cm

17 ¼ A/;

Cm
24 ¼ �Aðq sinaþ r cosaÞ;

Cm
34 ¼ Aðq cosa� r sinaÞ; Cm

44 ¼ Aðq2 þ r^2Þ þ C=12;

Cm
55 ¼ Ay2 þ C sin2 a=12;

Cm
56 ¼ Ayz� C sinð2aÞ=24; Cm

57 ¼ Ay/þ Cq sina=12;

Cm
66 ¼ Az2 þ C cos2 a=12;

Cm
67 ¼ Az/� Cq cosa=12; Cm

77 ¼ A/2 þ Cq2=12

where A ¼ P
tiqi; B ¼ P

t2i qi and C ¼ P
t3i qi

Appendix B.

The non-zero elements appeared in the upper triangle of the
symmetric matrix [Fm] (Eq. (9)) are presented in their explicit form
as follows (applicable for I section, Fig. 5a).

Fm
11 ¼ F g

22 ¼ F g
33 ¼ b1A1 þ b2A2 þ dA3;

Fm
16 ¼ �Fm

24 ¼ dðb1A1 � b2A2Þ=2;

Fm
44 ¼ ðb3

1A1 þ b3
2A2 þ d3A3Þ=12þ d2ðb1A1 þ b2A2Þ=4

þ ðb1C1 þ b2C2 þ dC3Þ=12;

Fm
55 ¼ ðb3

1A1 þ b3
2A2Þ=12þ dC3=3; Fm

57 ¼ dðb3
1A1 � b3

2A2Þ=24;

Fm
66 ¼ d3A3=12þ d2ðb1A1 þ b2A2Þ=4þ ðb1C1 þ b2C2Þ=3;

Fm
77 ¼ d2ðb3

1A1 þ b3
2A2Þ=48þ d3C3=36

The non-zero elements appeared in the upper triangle of the
symmetric matrix [Fm] (Eq. (9)) are presented in their explicit form
as follows (applicable for channel section, Fig. 5b).

Fm
11 ¼ F g

22 ¼ F g
33 ¼ bðA1 þ A2Þ þ dA3; Fm

15 ¼ bybðA1 þ A2Þ � dydA3;

Fm
16 ¼ �Fm

24 ¼ bdðA1 � A2Þ=2; Fm
17 ¼ bdðA1 � A2Þðyb þ 2yd � ypÞ=2

Fm
34 ¼ bðA1 þ A2Þðyb þ ypÞ � dðyd � ypÞA3;

Fm
44 ¼ bðA1 þ A2Þðb2

=12þ d2
=4þ ðyb þ ypÞ2� þ dA3½d2

=12

þ ðyd � ypÞ2� þ ½bðC1 þ C2Þ þ dC3�=12;

Fm
55 ¼ bðA1 þ A2Þðb2

=12þ y2bÞ þ dA3y2d þ dC3=12;
Fm
56 ¼ bdybðA1 � A2Þ=2

Fm
57 ¼ bdðA1 � A2Þ½b2

=12þ ybðyb þ 2yd � ypÞ�=2;

Fm
66 ¼ d3A3=12þ bd2ðA1 þ A2Þ=4þ bðC1 þ C2Þ=12;

Fm
67 ¼ bd2ðA1 þ A2Þðyb þ 2yd � ypÞ=4þ d3A3ðyd � ypÞ=12

� bðyp þ ybÞðC1 þ C2Þ=12;

Fm
77 ¼ bd2ðA1 þ A2Þ½b2

=48þ ðyb � ypÞ2=4þ ydðyd þ yb � ypÞ�
þd3A3ðyd � ypÞ2=12þ bðC1 þ C2Þ½b2

=12þ ðybÞ
þðypÞ2�=12þ d3C3=144

The non-zero elements appeared in the upper triangle of the
symmetric matrix [Fm] (Eq. (9)) are presented in their explicit form
as follows (applicable for box section, Fig. 5c).

Fm
11 ¼ F g

22 ¼ F g
33 ¼ bðA1 þ A2Þ þ dðA3 þ A4Þ;

Fm
15 ¼ Fm

34 ¼ bdðA4 � A3Þ=2;

Fm
16 ¼ �Fm

24 ¼ bdðA1 � A2Þ=2;

Fm
44 ¼ ½b3ðA1 þ A2Þ þ d3ðA3 þ A4Þ�=12þ bd½dðA1 þ A2Þ

þ bðA3 þ A4Þ�=4þ ½bðC1 þ C2Þ þ dðC3 þ C4Þ�=12;

Fm
55 ¼ b3ðA1 þ A2Þ=12þ b2dðA3 þ A4Þ=4þ dðC3 þ C4Þ=3;

Fm
57 ¼ b3dðA1 � A2Þ=24;

Fm
66 ¼ d3ðA3 þ A4Þ=12þ bd2ðA1 þ A2Þ=4þ bðC1 þ C2Þ=3;

Fm
67 ¼ bbd3ðA4 � A3Þ=24;

Fm
77 ¼ b2b2d2½bðA1 þ A2Þ þ dðA3 þ A4Þ�=48þ b2½b3ðC1 þ C2Þ

þd3ðC3 þ C4Þ�=144� b½b3ðC1 þ C2Þ � d3ðC3 þ C4Þ�=72
þ½b3ðC1 þ C2Þ � d3ðC3 þ C4Þ�=144
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ABSTRACT 

An efficient modelling technique based on one dimensional (1D) beam finite element 
analysis for buckling of thin-walled laminated composite beams having open/closed sections 
is proposed. The formulation derived has sufficient generality for accommodating arbitrary 
stacking sequences of the individual beam section walls, and includes all possible couplings 
between axial, shear, bending and torsional modes of deformation. The effects of transverse 
shear deformation of the section walls and out-of-plane warping of the beam section are 
considered where provision exists to restrain or allow warping deformation. The 
incorporation of shear deformation leads to a problem in the finite element implementation of 
the proposed beam kinematics, but this is successfully addressed adopting a novel modelling 
concept. Numerical results obtained for the sample cases of open sections I beams and closed 
section box beams are presented. The numerical results are benchmarked/compared to data 
available in open literature, and it is shown that the proposed model performs very well. 
Finally, a study of the effect of axial and end moment loading, acting alone or in 
combination, on the buckling response of thin-walled composite beams is presented.  

 
1. INTRODUCTION  

1.1. Background  

The use of long beam like structural components having a thin-walled construction is 
common in many real-life engineering products such as wind turbine blades, helicopter rotor 
blades, aero-structures, ship masts and many other civil engineering applications such as 
composite beams, columns and reinforcement. In recent years, laminated fibre reinforced 
composite materials (hereinafter referred to as composites) have gained widespread 
acceptance and usage as structural materials in various engineering products including the 
above mentioned structural applications. The rationale is that composites helps to enhance the 
structural performance significantly due to high specific strength and stiffness in addition to 
high fatigue resistance and durability. The use of composite structural elements utilising 
multi-layered composite laminates with arbitrary fibre orientations of the individual layers 
(plies) provide a high degree of flexibility in tailoring the structural performance, but this can 
lead to complexities in their behaviour due to couplings between different modes of 
deformation. Thus, the use of composites introduces additional challenges in the modelling of 
composite structures of thin-walled construction, which is already inherently complex for 
thin-walled structures made from isotropic materials due to warping deformation and other 
characteristic behaviours. In principle, the load-response behaviour of the thin-walled 
construction composite structural elements of open or closed cross section may be analysed 
using a 3D modelling strategy based on solid or shell finite elements (FE), but this modelling 
technique is unfeasible in many cases due to high computational cost and time. To address 
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this problem previous research available in open literature has proposed to develop 
alternative modelling techniques, preferably based on 1D FE beam elements, which leads to 
more efficient and affordable techniques for modelling [e.g. 1-9]. However, a real and 
significant challenge in developing such reduced order 1D FE models is the inclusion of all 
relevant physical coupling effects in the condensed (1D) formulation for thin-walled 
composite beams. 

 
The relevant previous research can be broadly divided into two groups based on the 

approaches used for determining the constitutive matrix of the beam element. The first 
approach is based on ‘analytical techniques’, while the second alternative utilises a two-
dimensional (2D) cross-sectional analysis based on a 2D finite element model for calculating 
the cross-sectional matrices. Hodges et al. [3,10,11] have contributed significantly toward the 
development of the second approach, which has significant merit in terms of generality, but 
the 2D finite element analysis needed for the evaluation of cross-sectional stiffness 
coefficients is a major task. This was experienced and documented in a recent study [12], 
which is based on a similar approach. On the other hand, the first option (analytical 
approach), like that presented in Ref. [6], adopted in this paper does not require 2D finite 
element analysis, nor does it involve the complex mathematical operations involved with the 
second approach.  

 
1.2. Review of analytical approaches  

Vo & Lee et al. studied the behaviour of thin-walled composite beams having open [e.g. 
13] and closed [e.g. 14] sections, including buckling analysis. It is observed that their 
analyses are mostly based on classical lamination theory, thus neglecting the effect of 
transverse shear deformation of the composite laminated section walls. However, composite 
laminates are generally weak in transverse shear due to their low shear stiffness and strength 
relative to the extensional rigidity and strength. Thus, it is important to incorporate the effect 
of shear deformation to ensure reliable predictive capability for all relevant loading scenarios. 
In order to address this issue, Vo & Lee [15] incorporated the effect of shear deformation, but 
the treatment adopted for the finite element implementation of torsional deformations is not 
promising. They [15] simply extended the concept used for the incorporation of transverse 
shear deformation in a typical isoparametric FE formulation to express the torsional 
deformation by introducing an additional parameter. This parameter is analogous to the 
transverse shear strain but, unfortunately, it does not have any real physical representation. 
Moreover, the formulation faced the difficulty of breaking down the torsional moment into 
three components as they attempted to express the beam response behaviour of these beams 
in terms of stress resultants. With this treatment for the torsion, they [15] succeeded to derive 
their beam element using an isoparametric formulation for all deformation modes. The 
element has three nodes thus providing a quadratic interpolation of all (seven) field variables 
using Lagrangian interpolation functions giving seven degrees of freedom at each node. 

     
Kim et al. [16-18] also considered the effect of shear deformations following the concept 

introduced by Vo & Lee [15] and encountered similar difficulties. Thus, for the finite element 
implementation of the beam theory, an isoparametric formulation for all field variables to 
develop a beam element having C0 continuous deformations was adopted. The well-known 
shear locking problem is typically faced in isoparametric elements as this formulation use the 
same interpolation functions for all field variables. A simple solution of this problem is the 
application of a reduced integration technique, as adopted by Kim et al. [16-18], but that may 
lead to spurious zero energy modes for some cases in addition to stress oscillations within the 
element. Moreover, the reduced integration will affect the evaluation of the stiffness 
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corresponding to other modes of deformation, including axial and torsion modes and their 
couplings. Furthermore, it is also difficult to apply a selective reduced integration scheme in 
this coupled problem. However, Kim et al. [e.g. 16-18]   have contributed significantly in this 
area through investigating various aspects of thin-walled section composite beams.   

 
Piovan and Cortinez [19] developed a shear deformable beam element following a 

different approach which seems to be interesting. The beam element has also incorporated the 
effects of warping. In order to avoid shear locking problem, the implementation of shear 
deformation has been achieved by defining transverse displacement and its derivatives as 
done in classical beam model, but an additional term been added to the expression for the 
derivative of transverse displacement. This additional term contributes to the shear 
deformation, but it is a function of material property and geometry of the element which need 
to be calculated for individual cases separately. Also, this term seems to be constant over the 
beam length. The same treatment has also been applied to the torsional deformation of the 
beam taking torsional rotation and its derivative accompanied with a similar function.  

 
Ascione et al. [20] proposed another interesting approach where different plate elements 

forming the beam section are taken separately as beams and they are connected at their 
longitudinal edges using spring elements. This approach helped to accommodate different 
features including shear deformation, but this model needs more unknowns as it will have 
multiple nodes at any cross-section.         

 
The formulations presented by both these groups [14,16] are consistent when the 

contribution of shear deformation is neglected. For this case, the Lagrangian interpolation 
functions are only used for the axial deformation, whereas other deformation modes, i.e. 
torsion and bending (bi-axial), are interpolated with Hermitian interpolation functions. Thus, 
these elements provide C0 continuity (1 degree of freedom at each node – field variable only) 
for the axial displacement, and C1 continuity (2 degrees of freedom at each node – field 
variable and its derivative) for the other modes of deformation.   

  
1.3. Proposed Model  

The aim of this this study is to develop a consistent formulation that includes the effect of 
shear deformation as composite materials are compliant/weak in shear as mentioned above. 
In this formulation, the issues associated with the existing modelling approaches e.g. [15,18], 
discussed in detail above, will be overcome by introducing an alternative approach. The 
proposed formulation will be applied to study the buckling characteristics of thin-walled 
composite beams with open or closed cross sections subjected to axial forces, end moments 
and combinations of these. The different modes of deformation and their coupling included in 
the formulation include: axial, torsional, bi-axial bending, bi-axial shear as well as warping 
(for torsion) deformation. The cross-sectional stiffness property matrices are derived in 
closed-form for both open and closed beam cross sections, including the assumption of both 
plane stress and plain strain conditions at the lamina level.  Once the cross-sectional matrices 
of these thin-walled composite beams are derived, the remaining part of the analysis is the 
formulation and solution of the 1D beam problem, which in this study is achieved by 
adopting a finite element approximation.  

 
Numerical examples of thin-walled composite beams having different cross sections, 

material configurations, boundary conditions and other features have been analysed by the 
proposed model, and the results obtained are presented in terms of predicted critical buckling 
loads (axial and end moment loads) and buckling mode-shapes. A significant amount of the 
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numerical predictions have been compared and benchmarked against results available in 
literature, and it is demonstrated that the proposed modelling approach provides a very close 
match with other model predictions, and that it generally performs very well. New numerical 
results are also presented for a number of problems that may be beneficial to future research 
efforts in this area. 

 
2. MODEL FORMULATION 

2.1. Finite element formulation – basic concepts 

The conventional treatment adopted for incorporating transverse shear deformation in an 
isoparametric finite element context requires a C0 continuous formulation, whilst the warping 
displacement produced by torsion requires a C1 continuous formulation for the twisting 
rotation. The C1 formulation for the torsional deformation is conveniently achieved in this 
study by using cubic Hermitian interpolation functions, including the angle of twist and its 
derivative at the two end nodes of the proposed beam element, see Fig. 1. Alternatively, if the 
C0 continuous formulation is adopted for the transverse shear deformation, this will require 
adoption of a reduced integration technique, but its implementation is problematic in the 
present coupled problem as discussed above. This is a crucial issue, which in this study is 
addressed adopting the approach proposed by Sheikh [22], which eliminates the need for do 
reduced integration.  

 
Adopting the above, a three noded beam element as shown in Fig.1 has been developed, 

where the end nodes have seven degrees of freedom (three displacements, three  rotations and 
the derivative of the torsional rotation), and the middle node has five degrees of freedom 
(three  displacements, two bending rotations). It should be noted that quadratic Lagrangian 
interpolation functions are used to model the axial deformation taking one degrees of 
freedom at each node. A computer code was written in MATLAB for the implementation of 
the formulation.    

 

 
Fig. 1:  Schematic of beam finite element 

 
2.2. Kinematics of the beam deformations 

Fig. 2 shows part of the cross section of a laminated beam wall segment along with global 
and local coordinate systems and their corresponding displacement components, which form 
the basis for the development of the proposed formulation. The curved geometry of the 
section wall is shown to represent a generic scenario, but the section walls can also be of 
straight geometry.  
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Fig. 2: Cross section of a beam section wall segment with local and global coordinate 

system and corresponding displacement components 
 
In Fig. 2 x-y-z axes define the global Cartesian coordinate system, where x is along the 

beam axis, passing through the centroid of the complete beam cross section, and y, z define 
the beam cross section coordinates. The other axes are the local orthogonal coordinate system 
x-s-n, defined at the mid-plane of a laminated section wall, where n is normal to the shell 
(wall) mid-plane, s is the circumference coordinate, and x is parallel to global x coordinate 
axis. The displacement components at the mid-plane of the shell wall in the local coordinate 
system (x-s-n) can be expressed in terms of the global displacements of the beam (Fig. 2) in 
the form [22]:   

 

y z xu U y z        , 
cos sin ( ) xv V W r s     , 

sin cos ( ) xw V W q s      , 

(1) 

 
where y , z are bending rotations (including shear deformations) of the beam cross 

section relative to the along y and z axes, respectively, x  is the torsional rotation of the beam 

cross section relative to the x axis, and   is the warping function. U, V and W are the 

displacement components in the global x, y and z coordinate directions. Defining y , z  as 

cross-sectional rotations due to shear deformations of the beam section about the y and z axes, 
the bending rotations can be expressed as y yV    and z zW    , respectively, and 

V  ,W   and x  are the derivatives of V, W and x  with respect to x. 

Although the effects of warping displacement in beams having closed cross sections is 
generally not as significant as for beams with open cross section [21], the contribution of 
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warping displacements is incorporated for both types of cross sections to deliver a generic 
formulation. 

The displacement at any point of the shell wall located at a distance n from the shell wall 
mid-plane can be expressed in terms of the bending and transverse shear deformations of the 
wall as:  

 

xn

w
u u n

x
       , 

sn

w
v v n

s
       , 

w w , 

(2) 

 
where xn  and sn are rotations of the shell wall sections due to shear deformations about s 

and x, respectively. Now, xn can be expressed in terms of the corresponding global cross 

section rotations ( y , z ) as sin cosxn y z       , whereas 0sn   based on the 

restrictive assumption that the overall shape of the beam cross section will not be altered 
during the deformation of the beam.  

Substituting the above expressions for xn  and sn  as well as Eq. (1) into Eq. (2), the 

displacements at any point within the shell wall along its local coordinate system (x-s-n) can 
be expressed in terms of the global displacement components of the 1D beam as follows: 

 

     sin cos ( )y z xu U y n z n nq s           
, 

 cos sin ( ) xv V W r s n     
, 

sin cos ( ) xw V W q s     
  

(3) 

 
2.3. Energy systems of the beam 

The potential energy ( Π ) of a beam undergoing buckling caused by an external forces can 
be expressed in terms of the strain energy (U) and the work done by external forces ( eW ) as: 

 

eU W    (4) 

 
Now the strain energy appeared in the above equation can be expressed in terms of stress 

  and strain   vectors of the shell walls expressed in their local axis system (x-s-n) as:  

 

   1

2
TU dv  

  

(5) 

 
The relationship between the above stress and strain vectors for a ply of the laminated 

shell wall having any orientation can be expressed using its constitutive matrix Q  
following ‘classical lamination theory’ (CLT) as described in texts on mechanics of 
composite materials [4] as: 
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   

11 12 16

21 22 26

61 62 66

55 54

45 44

0 0

0 0

0 0

0 0 0

0 0 0

x x

s s

xs xs

xn xn

sn sn

Q Q Q

Q Q Q

QQ Q Q

Q Q

Q Q

 
 

   
 
 

    
    
                     
    
          

(6) 

 
The above equation is written in terms of all five stress and strain components typically 

occurring in a shell element, but some of these components will not be present in the present 
problem due to the restrictive assumption adopted that the beam cross section will not change 
shape during deformation. Thus, there will be no bending and shear deformations in the s-n 
plane, which leads to 0ns   and 0s   (usually defined as plane stress condition) or 0s   

(plane strain condition). By incorporating this the above equation reduces to:   
 

   
11 16

61 66

55

0

0

0 0

x x

xs xs

xn xn

Q Q

Q Q Q

Q

 
   

 

    
              

        

 
  


 

(7) 

 

where 1111

~
QQ  , 1616

~
QQ  , 6666

~
QQ   and 5555

~
QQ   for plane strain condition ( s = 0); 

and 2212121111 /
~

QQQQQ  , /
~

26121616 QQQQ   22Q , 2216166666 /
~

QQQQQ   and 5555

~
QQ   

for plane stress ( s = 0) condition.   

  
The substitution of the expressions for the local displacement components, at any point of 

the shell wall in terms of the global displacement components (Eq. 3), into the reduced strain 
vector (Eq. (7)), leads to:   

 

 
     

 
sin cos

cos sin 2

sin cos

y z x

y z x

xn y z

u x U y n z n nq

u s v x n r s

     
    

  

            
                  

       

 (8) 

 
The local strain vector can now be decoupled in terms of the cross section stiffness matrix 

( H ) and strain vector of the beam (  ) which contains global displacement parameters for 

1D beam as : 
 

     H 
  

(9) 

 
where 

 

   T

y z x x y zU V W                

   ,

1 sin cos 0 0 0

0 0 0 0 2 cos sin

0 0 0 0 0 sin cos

s

y n z n nq

H n r

  
  

 

   
 

     
 
 

  

(10) 
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By substitution of Eqs. (7-9) into Eq. (5), the strain energy of the system can be expressed 

as:  
 

               1 1 1

2 2 2

TT T T
U dv H Q H dndsdx D dx           

 (11) 

where  
 

        T
D H Q H dn ds C ds     

 
(12) 

 
All individual elements of the matrix [C] are derived explicitly in closed form. Similarly, 

all elements of the cross sectional stiffness matrix [D] are derived specifically and in closed 
form for open I section and closed box section profiles having generic geometric 
configurations, as depicted in Fig. 3. This includes general specification of cross section 
dimensions, and arbitrary lay-up (stacking sequence) of the cross section walls in terms of 
choice of material, number of plies, and ply orientations. The explicit expressions for the 
components of [C] and [D] are derived in a previous article by the authors [23].  

 

 
(a)                                     (b) 

Fig. 3: Thin-walled beam having open and closed section 
For the purpose of this study the warping function   used in the above equations are taken 

as: 
 

2 /c srds A     (13) 

 

where 
66

s

ds

Q
    , 

66

ds

Q
     . For a closed beam cross section profile cA  is the cross-

sectional area enclosed by the wall mid-plane line/contour. For an open section profile, the 
warping function may be simply obtained by dropping the second term associated with 
secondary warping, thus giving .rds    

 
The external forces considered in this study, which will be causing the buckling of the 

thin-walled composite beams are axial force ( 0P ) and end moment ( 0M ) loading. Both these 

forces induce only one stress component, the axial stress ( x ), which can be expressed in 

simple form and used to formulate the problem conveniently, i.e.:   
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0
y

x
y

MP
z

A I
    (14) 

 
where A  and yI  are cross-sectional area and moment of inertia of the beam cross sectional 

area. It should be noted that the above equation will give a stress that can be defined as an 
equivalent stress. The aim here to estimate this stress in a simple way without affecting the 
results significantly rather than undertaking a detailed analysis for predicting the stress 
distribution over the individual layers precisely. The work done ( eW ) by the external forces 

0P  and 0M  can be expressed as: 

 

     2 21 1 1
( )

2 2 2

T

e x x g x g

V V V

v
W v w dv v w dv dv

w
    

         
    (15) 

 
Using Eq. (3), the geometric strain vector  g  in the above equation can be written as  

 

   g g g
'
x

V
v cos sin ( r n )

W [ H ]
w sin cos q

 
 

 


 
                   

 

. (16) 

 
Eqs. (14) and (16) may be substituted into Eq. (15) leading to: 
 

       0 0

2 2

T T

e g g g g
yV L

P M
W dv z dv

A I
     

 

       0 0

2 2

T TP M
g g g g g g

yL L

P M
F dx F dx

A I
           

 

(17) 

where  
 

   T TP P
g g g g g g

A

F H H dsdn H H dn ds C ds                         
TM

g g g

A

F H z H dsdn           
 

(18) 

 
The individual elements of the matrices P

gC    are derived explicitly and provided in 

Appendix A. Also, all elements of the matrices P
gF    and M

gF    are derived for the 

considered generic I (open) and box (closed) beam sections and given in Appendix B.   
 

2.4. Finite element formulation 

For the 1D finite element implementation of the thin-walled beam theory based on the 
energy expressions presented in the previous section, quadratic Lagrangian interpolation 
functions are used for the axial deformation, while cubic Hermitian interpolation functions 
are used for the torsional deformation. This ensures the desired C1 continuity of the torsional 
rotation ( x ) as the strain vector (Eq. 8) contains second derivative of x . As mentioned 

earlier, the bending deformations along with the shear deformations are treated in a different 
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manner following the approach introduced in [21] to eliminate the difficulties faced by other 
existing formulations [13-15], [16-18]. According to [21], the cross-sectional rotations y  

and z  due to shear deformations are adopted as field variables instead of y  and z in 

addition to the bending displacements V and W. adopting a linear approximation of y , z , 

and a cubic approximation of V and W, these field variables (V, W, y   and z ) along with 

the remaining two field variables (U and x ) can be expressed in the form:   

 
2

1 2 3U a a x a x    
2 3

4 5 6 7V a a x a x a x     
2 3

8 9 10 11W a a x a x a x     
12 13y a a x      
14 15z a a x    

2 3
16 17 18 19x a a x a x a x     

(19) 

 
It should be noted that y  and z  are defined as field variables, but they are not used as 

nodal degrees of freedom in the finite element formulation. The corresponding nodal degrees 
of freedom correspond to y   and z  which can be expressed in the following form y   and 

z by invoking the above Eqs. (19): 

 
2

12 13 5 6 72 3y y V a a x a a x a x        
, 
2

14 15 9 10 112 3z z W a a x a a x a x          
(20) 

 
The unknown constants (a1, a2, a3 ...... a19) appearing in Eqs. (19) can be replaced in terms 

of the nodal displacement vector    by substitution of U , V , W (from Eqs. 19), y  and 

z  (from Eq. (20)) at all three nodes of the beam element (see Fig. 1), and x  (from Eqs. 

(19)) and its derivative x   2
17 18 192 3a a x a x   at the two end nodes, thus giving: 

 

    R a 
or      1a R 

      (21) 

 
where    1 2 3 19

T
a a a a a  , [R] consists of the coordinates (x values) of the three 

nodes and   
 

   1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 .
T

x y z x y z x y z xU V W U V W U V W           

 
Using Eqs. (19-21), the strain vector of the beam    as appearing in Eq. (9) can be 

expressed in terms of the nodal displacement vector   as:   

 

   T

y z x x y zU V W              
 

          1[ ( )]{ } [ ( )][ ] [ ]S x a S x R B   
 

(22) 
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The above equation can be substituted into Eq. (11) and it is rewritten to get the stiffness 

matrix [K] of the beam element as  
 

                  1 1 1

2 2 2
TT T T

U D dx B D B dx k        
  

(23) 

 
Again Eqs. (19 - 21) can be substituted into the vector  g  as found in Eq. (16) and it can 

further be expressed in terms of   as:  

 

     ' 1[ ( )]{ } [ ( )][ ] [ ]
T

g x g g gV W S x a S x R B         
. 

(24) 

 
The above equation is substituted into Eq. (17) and rewritten in the form:  
 

       

       

0 0

0 0

2 2

2 2

T TT TP M
e g g g g g g

yL L

T TP M
g g

P M
W B F B dx B F B dx

A I

P M
k k

                     

       

    

   
 

(25) 

 

where 
1 TP P

g g g g

L

k B F B dx
A

               and 
1 TM M

g g g g
y L

k B F B dx
I

               are the 

geometric stiffness matrix of the beam element corresponding to axial ( 0P ) and end moment (

0M ) loads, respectively. 

 
Now the strain energy (Eq. (23)) and the work done by the external forces (Eq. (25)) for 

all elements are substituted into the potential energy of the structural system (Eq. (4)), 
followed by minimisation with respect to the nodal displacements of the structure   , to 

obtain the final governing equation of the thin-walled cross section beam as: 
 

   0 0 0P y M
g gK P K M K         

  
(26) 

 
where  K  is the stiffness matrix of the structure, and P

gK    and M
gK    are the geometric 

stiffness matrices for the axial (P) and end moment ( yM ) load cases, respectively. These are 

obtained by assembling their corresponding components of the individual elements.  
 

Eq. (26) can be reduced to a simple Eigen-value problem by taking 0 0yM   or 0 0P  , and 

this can be solved to obtain the critical value of the axial load ( CRP ) or the critical value of the 

end moment ( CRM ) as the Eigen value. For a beam subjected to combined axial force and 

end moments and displaying interaction between these loads, one of the load parameters 

should be specified (i.e. 0 0
y

CRM M M   or 0 CRP P ), whilst and the other parameter will be 

the unknown Eigen value that will be solved to obtain its critical value (i.e. i
crP  or i

crM ). A 
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given thin-walled beam problem can display multiple buckling modes that will provide 
multiple Eigen values as well as multiple Eigen vectors and mode shapes, which will be 
extracted from   .     

 
3. RESULTS AND DISCUSSION 

In this section, numerical examples of thin-walled composite beams having I and box 
sections are analysed using the developed modelling approach. Initially, the results predicted 
are compared and benchmarked against analytical and numerical results available in literature 
to show the performance of the model proposed herein. After this, the results of parametric 
studies are presented to demonstrate the effect of different parameters on the buckling 
behaviour of the considered thin-walled cross section beams.  

 
3.1. Benchmarking against results from literature  

3.1.1. Buckling of a simply supported doubly symmetric I-section beam subjected to axial 
compression  

A thin-walled laminated composite beam having a span of 6 m is studied assuming plane 
stress conditions ( 0s  ) in the plies. A doubly symmetric I beam cross section is chosen 

with a flange width (b) of 600 mm and a depth (d) of 600 mm for its web. All flange and web 
plates are assumed to be made of four plies of 7.5 mm thickness (so t1 = t2 = t3 = 30 mm - 
total thickness), and they are assumed to have identical stacking sequence. Five different 
stacking sequence configurations (Table 1) are considered to investigate the five different 
cases of the thin-walled I-beam. All plies are assumed to be made of graphite/epoxy with the 
following properties: E1=144 GPa, E2=9.65 GPa, G12= G13=4.14 GPa, G23=3.45 GPa, 
12=0.3. To show the convergence of the proposed model with respect to element size, a 
specific case having the stacking sequence of  0 90

S
/  is considered and the results are 

presented in Fig. 4.  
 

 
Fig. 4: Predicted buckling load of a simply supported double symmetric composite I-

section ( 0 90
S

/ ) beam vs. number of elements 

 
Fig. 4 shows that the predicted buckling load converges when the number of elements is 8 

or more. Based on this observation, all other composite beams studied ahead are analysed 
with 10 elements unless mentioned otherwise.   
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The critical buckling loads predicted by the modelling approach developed in this study is 
shown in Table 1 for all five composite lay-up cases (outer right column). Table 1 also shows 
the corresponding buckling loads predicted by Vo & Lee [17], Machado & Cortinez [24], and 
Back & Will [25]. Considering the results predicted by the detailed 3D finite element model 
[25] (ABAQUS - high computational cost) as reference results in terms of accuracy, the 
proposed 1D beam element model (high computational efficiency) performed comparatively 
better than other modes. Though the model of Vo & Lee [15] performed well, the problem of 
their formulation for accommodating shear deformation has been explained in Section 1.   

 
Table 1: Critical buckling load (in MN) of a simply supported doubly symmetric 

composite I-section beam 

Lay-ups 
Machado & Cortinez [24] Back & Will [25] 

Vo & Lee 
[15] 

Present 
model 

No shear Incl. shear ABAQUS Incl. shear With shear Incl. shear 

 40
 42.11 33.18 30.78 28.85 30.38 30.93 

 30
S


 - - 13.06 13.17 13.17 13.16 

 45
S


 4.45 4.44 4.41 4.41 4.41 4.41 

 60
S


 - - 2.89 2.89 2.88 2.88 

 0 90
S

/
 22.57 19.84 20.41 20.63 20.63 20.63 

 

 
3.1.2. Buckling of a cantilever mono-symmetric I-section beam subjected to axial 
compression  

A cantilever mono-symmetric I section beam length of 1.0 m is investigated for seven 
different wall stacking sequences (see Table 2) assuming identical lay-up for all section walls 
in each case. The web of the beam is assumed to be 50 mm deep, and the top and bottom 
flanges are 30 mm and 50 mm wide, respectively. The web and flange walls/plates are made 
of 16 layers/plies each 0.13 mm thick with a symmetrical  4S

  lay-up. The material 

assumed for all the layers is glass/epoxy with the following elastic properties E1=53.78 GPa, 
E2=17.93 GPa, G12= G13=8.96GPa, G23=3.45, GPa, 12=0.25. The I-section beam has been 
analysed with the model proposed herein, and the critical buckling loads obtained for the 
seven different stacking sequences are presented in Table 2 along with numerical results 
reported by Kim et al. [16], and Vo & Lee [15]. The comparison of the results demonstrates 
an excellent match between the predictions obtained using the element proposed here and the 
results from [15, 16].   

 
 

3.1.3. Buckling of a simply supported I-section beam under axial load and end moments 

A composite I-section beam having a span of l = 8 m is analysed adopting a plane stress 
condition (𝜎௦ = 0) for the plies. Both flanges are assumed to be 100 mm wide (b), and the 
section is assumed to be 200 mm deep (d). All section walls are made of two plies each 2.5 
mm thick (total thickness: t = 5mm) with unidirectional 2[0]  lay-up for the top flange and the 

web, while the bottom flange is assumed to have a [ ]  lay-up. The material used for all the 
layers is assumed to have the following (normalised) elastic parameters: E1/E2=25, 
G12/E2=0.6, G13=G23 =G12, 12=0.25. The I-beam is first analysed with the proposed model to 
obtain the critical buckling load ( crP ) when the end moment is zero. Then, under the action of 
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three different values of the axial force ( 0 crP P ), the critical end buckling moments ( i
crM ) 

corresponding to each of the different value of 0P  interactive scenarios are calculated. Note 

that i
cr crM M  for the case of no axial preload, i.e. 0 0P  . These results, expressed in non-

dimensional form ( 2 3
2/ ( )cr crP P l d tE ; 3

2/ ( )i i
cr crM M l d tE ), are presented in Table 3 along 

with results obtained from Vo & Lee [14].  Table 3 shows that the predictions of the 
modelling approach proposed here show a good correlation with the results of [14]. Further, 
the effect of shear deformation is observable for the cases of end moment loading (only 
included in present model).   

 
 

Table 2: Critical buckling load (N) of a mono-symmetric cantilever composite I-section 
beam with a symmetrical layup  4S

  

Lay-ups 
Kim et al. [16] Vo & Lee [15] Present model 
No Shear Incl. shear Incl. shear 

 16
0

 2998.2 2993.2 2994.5 

 4
15

S


 2811.8 2803.6 2803.3 

 4
30

S


 2199.7 2184.7 2185.1 

 4
45

S


 1561.9 1546.0 1547.2 

 4
60

S


 1241.3 1227.8 1229.0 

 4
75

S


 1134.5 1126.7 1127.9 

 4
0 90

S
/

 2113.9 2100.6 2101.8 
 
 
Table 3: Critical buckling load crP and end moment i

crM  with axial preload of a composite I-

beam (bottom flange: [ ] , web and top flange: 2[0] ) 

0

cr

P

P
 Critical 

Load 
Reference 

Fiber Angle  (degree) 
0 15 30 45 60 75 90 

 
crP  

Vo & Lee [14] * 5.153 4.565 2.771 1.631 1.259 1.140 1.112 
Present + 5.139 4.492 2.780 1.576 1.242 1.134 1.109 

-0.5 i
crM  

Vo & Lee [14] * 10.175 9.233 6.071 4.265 3.655 3.448 3.397 
Present + 10.183 9.405 6.160 4.427 3.650 3.469 3.374 

0 i
crM  

Vo & Lee [14] * 7.370 6.883 4.895 3.597 3.117 2.948 2.905 
Present + 7.372 6.885 4.833 3.540 3.184 2.821 2.821 

0.5 i
crM  

Vo & Lee [14] * 4.451 4.042 2.498 1.819 1.621 1.553 1.536 
Present + 4.446 4.244 2.456 1.866 1.688 1.612 1.416 

* Shear effects not included  + Shear effects included 
 

 
3.1.4. Buckling of a simply supported I-section beam under eccentric axial compression 

The behaviour of a 5 m long I-section beam subjected to eccentric axial loading as shown 
in Fig. 5 is investigated. The application of a compression load with a constant known 
eccentricity (e) will induce a proportional end moment ( 0 0M P e ). This enabled Eq. (26) to 

be expressed in terms of a single unknown load parameter ( 0P ), and the solution of this 
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equation provides the critical value of this load ( i
crP ) as the eigenvalue.  For this sample case, 

all the section walls (including the web plate) are assumed to be 50 mm wide and made of 16 
layers each 0.13 mm thick with a symmetrical  4S

 lay-up. The material for all the layers is 

glass/epoxy assuming the following elastic properties: E1=53.78 GPa, E2=17.93 GPa, G12= 
G13=8.96 GPa, G23=3.45 GPa, 12=0.25.  

 
 

 
Fig. 5: Simply supported beam under eccentric axial load 

 
 
The I-section beam has been analysed using the proposed model for three distinct values 

of the eccentricity; e = 0, h/4 and h/2, where h is the depth of the beam.  The predicted values 
of i

crP  by the proposed model are presented in Table 4 along with the results of Vo & Lee 

[14] and Kim et al. [26]. Again, it is found that predictions of the present model are in good 
agreement with the results obtained from ABAQUS [26] (a detailed 3D shell based finite 
element model using the commercial software Abaqus) as well as the predictions of [14]. 

 
 
Table 4: Effect of eccentricities on critical buckling loads (N) of a composite I-beam with 

a symmetrical  4S
 lay-up for all walls 

e Reference 
Layups 

 16
0

  4
15

S


  4
30

S


  4
45

S


  4
60

S


  4
75

S


 

0 
Vo & Lee [14] + 920.80 832.00 617.80 427.60 338.40 311.70 
Present + 920.56 831.76 617.68 427.60 338.33 311.69 

4

h

 

Kim et al. 
[26] 

ABAQUS  809.20 608.10 423.50 335.50 308.60 
Analytical 
* 

 810.70 608.70 423.70 335.60 308.60 

Vo & Lee [14] + 890.30 810.50 608.00 422.90 334.90 308.30 
Present + 890.63 810.69 608.63 423.36 334.64 308.03 

2

h

 

Vo & Lee [14] + 818.60 757.50 582.20 410.00 325.30 298.80 
Present + 820.02 758.38 581.55 411.59 326.39 297.98 

* Shear effects not included + Shear effects are included 
 

3.1.5. Buckling of a simply supported box-section beam under axial load and end moments 

The effect of different predefined axial loads on the critical end moments causing buckling 
of an 8 m long beam having a box section has been investigated as well. The box section is 
assumed to be of width b = 100 mm and depth d = 200mm, and different lay-up sequences 
are studied. All section walls are assumed to be made of two layers, each having a thickness 
of 2.5 mm (total thickness: t = 5mm), and with (relative) elastic properties of E1/E2=25, 
G12/E2=0.6, G13=G23 =G12, 12=0.25. The top and bottom flanges are assumed to have 
unidirectional  20  lay-ups, and the webs have    lay-ups.  
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Initially, the box section beam is analysed using the method presented herein to estimate 
the critical buckling loads ( crP ) with no end moments being applied. Following this, the 

critical end moments ( i
crM ) are calculated for three different values of axial preloads; 

0 0 5 crP . P  , 0 0P  , and 0 0 5 crP . P  . The results are expressed in non-dimensional form, 
2 3

2/ ( )cr crP P l d tE  and 3
2/ ( )i i

cr crM M l d tE , and presented in Table 5 along with results 

reported by Vo et al. [13].  
 

Table 5: Critical buckling load crP and moment i
crM  with axial preload of a composite 

box-beam (flanges:  20 , webs:   ) 

0

cr

P

P  

Critical 
Load 

Reference 
Fiber Angle  (degree) 

0 15 30 45 60 75 90 

 
crP  

Vo et al. [13]* 36.009 29.245 13.549 7.858 6.67 6.419 6.375 
Present + 35.510 28.917 13.479 7.834 6.653 6.403 6.359 

-0.5 i
crM  

Vo et al. [13]* 3.309 4.571 3.374 2.111 1.633 1.441 1.386 
Present + 3.269 4.519 3.324 2.098 1.611 1.428 1.379 

0 i
crM  

Vo et al. [13]* 2.688 3.725 2.753 1.722 1.332 1.175 1.131 
Present + 2.660 3.681 2.711 1.712 1.315 1.165 1.125 

0.5 i
crM  

Vo et al. [13]* 1.891 2.629 1.945 1.217 0.941 0.830 0.798 
Present + 1.874 2.597 1.915 1.210 0.929 0.823 0.795 

* Shear effects not included  + Shear effects are included 
 
To study the effects of varying the stacking sequences of the section of the section walls 

further, the same box section beam is analysed in an exactly the same manner assuming  2

stacking sequence for the top flange and the left web, and  20  for the right web and the 

bottom flange. The coupling between the different loads will be more pronounced for the 
case of unsymmetrical stacking sequence scheme in comparison with the previous case 
(Table 5). The results predicted by the proposed model are presents in Table 6 along with 
results presented in. [13]. Table 5 and Table 6 show a good agreement between the results.  

 
Table 6: Critical buckling load crP and moment i

crM  with axial preload of a composite 

box-beam (top flange and left web:  2 ,  bottom flange and right web:  2
0 ) 

0

cr

P

P  

Critical 
Load 

Reference 
Fiber Angle  (degree) 

0 15 30 45 60 75 90 

 
crP  

Vo & Lee [13]* 36.009 30.210 17.015 9.899 7.918 7.454 7.370 
Present + 35.510 29.964 16.820 9.808 7.870 7.415 7.304 

-0.5 i
crM  

Vo & Lee [13]* 3.309 3.366 2.834 2.133 1.743 1.571 1.523 
Present + 3.283 3.346 2.842 2.133 1.742 1.570 1.519 

0 i
crM  

Vo & Lee [13]* 2.688 2.741 2.322 1.748 1.427 1.285 1.246 
Present + 2.673 2.713 2.303 1.731 1.416 1.277 1.236 

0.5 i
crM  

Vo & Lee [13]* 1.891 1.922 1.625 1.232 1.008 0.909 0.881 
Present + 1.884 1.897 1.605 1.209 0.991 0.895 0.867 

* Shear effects not included  + Shear effects included 
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3.2. Parametric Study  

3.2.1. Buckling of a fully clamped I-section beam subjected to axial compression loading  

A clamped I-section beam subjected to axial compression loading is considered. The effect 
of different fibre orientations () of the bottom flange ( 2 ) with unaltered laminate lay-up (

 0 / 45 ) for the top flange and the web on the buckling behaviour is studied for different 

slenderness ratios (l/d) of the beam (l is length and d is the depth). The beam section is 300 
mm deep and its flanges are 200mm wide. All section walls are assumed to be made of two 
layers having a thickness of 2.5mm giving a total wall thickness (t) of 5 mm, and the 
normalised elastic properties of these layers are specified to: E1/E2=25, G12/E2=0.6, G13=G23 
=G12, 12=0.25. The asymmetry with respect to the top and bottom flange laminations is 
responsible for producing nonzero off-diagonal terms in the cross-sectional stiffness matrix 
(F13, F16, F24, F35, see Appendix B [23]), which in turn introduces coupling of different 
deformation modes. The variation of the critical axial load, as predicted by the proposed 
model, for varying values of , ranging from 0 to 900, is presented in Fig. 6 as a non-
dimensional buckling load parameter ( 2 3

2/ ( )crP P l d tE ) taking l/d = 5 (short beam), 10 and 

25 (long beam). It is seen that the critical buckling load decreased monotonically with 
increasing fibre angle (), where the effect is visibly pronounced when  is ranging between 
200 and 500. It is further observed that the effect of varying the slenderness ratio (l/d) is most 
prominent when  is varied between 0 and 200, reduces gradually with increasing values of  
, to become negligible beyond 500. In order to show the contribution of shear deformation, 
the present formulation is amended to exclude the shear deformation by dropping the terms 

y  and z . The amended formulation without shear deformation is used to produce in a 

similar manner and included in Fig. 6. Though a similar trend of results is obtained by the 
two formulations, but the contribution of shear deformation is found to be significant for l/d = 
5 (short beam) specifically for lower range of  and it is reduced with the increase of l/d ratio. 
It is also clear from the figure that the non-dimensional buckling load for all l/d ratios without 
shear deformation are identical and very close to shear deformable results for a long beam 
(l/d = 25).               

 
 
 

 
Fig. 6: Variation of buckling load parameter ( P ) of a clamped I-section composite beam 

with respect to fibre angle ( ) of its bottom flange 
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The mode shapes the lateral displacements v and the torsional rotation x (beam twist) 
corresponding to the specific parametric case of the beam;   = 75°, l/d = 25, 1 2.48P  , are 

plotted in Fig. 7, which shows a very pronounced coupled buckling response displaying 
combined bending and twist. 

 

 
Fig. 7: Typical buckling mode shapes of a clamped I-section composite beam 

 
3.2.2. Buckling of a simply supported I-section composite beam subjected to eccentric axial 
compression and end moment preloading 

The case of a simply supported I-section composite beam subjected to combined eccentric 
axial compression and end moment loading is considered, see Fig. 8. It is assumed that the 
beam has the same material properties and geometry as discussed in section 3.1.4. 

 

 
Fig. 8: Simply supported beam subjected to eccentric axial compression and end moment 

loading 
 
In addition to the eccentric axial compression load 0P , additional end moments AddM  are 

applied as a preload, which are combined with the bending moments induced by the eccentric 
axial load as explained in section 3.1.4. Initially, the value of the axial load 0P  is taken as 

zero and the critical value of the end moment, Add crM M , is then calculated. Following this, 

different values of the end moment, Add crM M , are applied as preloading, and the critical 

value of the eccentric axial load i
crP  is calculated. Utilising these results, the interaction 

curves for the eccentric axial force, 0
i

crP P , and the preloading end moment, i
Add crM M , 

which produce buckling of the I-section beam, is plotted in Fig. 9 for three different 
eccentricities, e = 0, h/2 and h, and three different fibre angles,  0,30    and 60 , for all 

section walls having  4s
 lay-up. 
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Fig. 9: Interaction between the eccentric axial loads and preloaded end moments for the 

buckling of a composite I-section beam 
 
Fig. 9 shows that both the critical values of the axial force i

crP  and the end moment i
AddM  

decrease with increasing fibre angle . The reason for this is that the cross section stiffness 
reduces when the fibre angle   is increased. Further, it is observed that the critical values of 
the axial loads and end moments are reduced when the loading eccentricity e is increased as 
expected. 

 
 

3.2.3. Buckling of a cantilever I-section composite beam subjected to axial and end 
moment loadings 

A cantilever I-section beam subjected to axial and end moment loading is considered, with a 
focus of investigating a wide range of interactions between the axial compression and the end 
moment loads. The following beam dimensions are assumed; span l = 8 m, flange width 
b=100 mm, web depth d = 200 mm.  It is further assumed that all laminated section walls are 
of  3  lay-up, and that each ply is 1.25 mm thick (total thickness t = 7.5 mm). The 

following normalised material properties are assumed: E1/E2=25, G12/E2=0.6, G13=G23 =G12, 
12=0.25. Initially the I-section beam is first analysed assuming only axial loading (i.e. no end 
moment) to determine the critical value, crP , and following that the case of pure end moment 

loading (i.e. no axial compression load) is analysed to evaluate crM . In the next stage, a 

parametric study is conducted in which the axial force 0P  is applied as a preload and varied 

over a wide range from 0 / 0.8crP P   to 0 / 0.8crP P    (axial tension) in increments of 0.2, 

followed by calculation of the critical end moment i
crM  for each value of the axial preload.  

The results are expressed in non-dimensional form 3
2/ ( )i i

cr crM M l d tE and presented in 

Table 7 for different values of   ranging from 0 to 900 with increments of 150. The results 
show that there is a stabilizing effects of axial tension on the buckling of the member for all 
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values of  . Also, for all preload values, it is observed that i
crM increases while   increases 

from 0 to 150 whereas i
crM  decreases monotonically as   increases beyond 150. 

 
 

Table 7: Critical end moment i
crM for buckling of axially preloaded cantilever composite 

I-section beam with  3  lay-up in all section walls  

0

cr

P

P  

Fiber Angle   (degree) 

0 15 30 45 60 75 90 

-0.8 12.8825 13.5666 7.5088 3.2986 1.9903 1.5811 1.4801 
-0.6 11.7575 12.5667 7.0303 3.0983 1.8704 1.4853 1.3901 
-0.4 10.6225 11.5416 6.5300 2.8873 1.7439 1.3843 1.2953 
-0.2 9.4740 10.4841 6.0025 2.6629 1.6092 1.2769 1.1945 
0.0 8.3064 9.3833 5.4398 2.4216 1.4641 1.1614 1.0862 
0.2 7.1103 8.2217 4.8298 2.1576 1.3051 1.0349 0.9677 
0.4 5.8683 6.9689 4.1516 1.8612 1.1265 0.8929 0.8347 
0.6 4.5429 5.5639 3.3641 1.5137 0.9166 0.7263 0.6788 
0.8 3.0263 3.8429 2.3605 1.0661 0.6459 0.5116 0.4780 

 
Similarly, a parametric study is conducted in which the end moment 0M  is applied as a 

preload and varied over the range from 0 / 0crM M   to 0.9 in increments of 0.1, followed by 

calculation of the critical axial load i
crP  for each value of the end moment preload. The results 

are presented in Table 8 expressed in non-dimensional form 3
2/ ( )i i

cr crP P l d tE for the same 

range of fibre orientations . Results shows that the value of i
crP  decreases monotonically 

with the increase of   for all preload values. 
 

 
3.2.4. Buckling of a simply supported I-section composite beam subjected to axial and end 

moment loadings 

In this section the behaviour of a 10 m long I-section beam is studied in a similar manner 
as in the previous example analysing four different values of the flange width (b) and web 
height (d), while maintaining same cross-sectional area and wall thickness for all four cases. 

Fixed ply orientation ( 0 0 00 30 30 90
S

/ / /   ) is assumed for the web and flange plates, 

where each ply is assumed to 1.25 mm with the following normalised elastic properties: 
E1/E2=25, G12/E2=0.6, G13=G23 =G12, 12=0.25. The variation of critical axial load for the 
buckling of the four I-section beam cases subjected to preloading end moments are plotted in 
Fig. 10. Similarly, Fig. 11 presents the variation of the critical end moments causing buckling 
of I section beams when subjected to axial preloads. Both these figures (Figs. 10 and 11) 
show that the buckling resistance of these beams having same mass enhances with the 
increase of b/d ratio of the beam section i.e., a wide flanged beam performs better. In this 
case, the beam section with highest b/d ratio ( 0.175, 0.150)b d   outperformed the other 
sections in terms of axial load and end moment buckling capacity.  
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Table 8: Critical axial force i
crP  for buckling of end moment preloaded cantilever 

composite I-section beam with  3  lay-up for all walls under preloaded end moments 

0

cr

M

M  

Fiber Angle   (degree) 

0 15 30 45 60 75 90 

0.0 5.1552 4.0337 1.4082 0.4551 0.2562 0.2141 0.2068 
0.1 5.0673 3.9833 1.3930 0.4504 0.2536 0.2119 0.2046 
0.2 4.8156 3.8341 1.3476 0.4362 0.2456 0.2052 0.1982 
0.3 4.4289 3.5912 1.2725 0.4126 0.2324 0.1942 0.1875 
0.4 3.9399 3.2625 1.1683 0.3799 0.2140 0.1787 0.1726 
0.5 3.3767 2.8572 1.0361 0.3380 0.1905 0.1591 0.1535 
0.6 2.7603 2.3849 0.8771 0.2872 0.1620 0.1352 0.1304 
0.7 2.1055 1.8551 0.6924 0.2277 0.1285 0.1072 0.1034 
0.8 1.4228 1.2762 0.4837 0.1598 0.0903 0.0753 0.0726 
0.9 0.7193 0.6557 0.2524 0.0838 0.0474 0.0395 0.0381 

 
 

 
Fig. 10: Variation of buckling loads of composite I-section beams having the same cross 

section with different sectional parameters subjected to different end moment preloading 
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Fig. 11: Variation of end critical moment loading causing buckling of composite I-section 

beams having the same cross section with different sectional parameters subjected to different 
axial preloads 

 
3.2.5. Buckling of a simply supported box-section composite beam subjected to axial and 

end moment loadings 

In this section a simply supported composite box section beam subjected axial and end 
moment loading is considered. The beam is assumed to be of span l = 8 m with flanges of 
width of b=100 mm, and depth of the webs d = 200 mm. The analyses conducted focus on the 
interactions between the axial and end moment loadings in a similar manner as shown in the 
previous sections. It is assumed that laminated sections are of  2

  lay-up, with each ply 

assumed to be 1.25 mm thick, and assuming the following normalised elastic material 
properties: E1/E2=25, G12/E2=0.6, G13=G23 =G12, 12=0.25. Table 9 presents the variation of 
the non-dimensional critical end moments causing buckling of the box section beams 
subjected to axial preloads. Similarly, it is observed for all axial preloading values that i

crM

increases with the increase of   from 0 to 150 while i
crM  decreases monotonically as   

increases from 150 to 900. Also, Table 10 presents the variation of the non-dimensional 
critical axial load for the buckling of the box section beams when subjected to preloaded end 
moments. The table shows that the value of i

crP  decreases monotonically with the increase of 

  for all moment preloading values. 
 
3.2.6. Buckling of a simply supported optimized box-section beam subjected to axial and 

end moment loading 

Similar to the previous example, the behaviour of a 8 m long composite box-section beam 
is investigated considering four different values of flange width (b) and web height (d), while 
maintaining the same cross-sectional area and section wall thickness for all four cases. In this 
case, a fixed ply orientation ( 2

60 ) is used for the all the laminated section walls where 

each ply is 1.25 mm thick and assuming the following normalised elastic properties: 
E1/E2=25, G12/E2=0.6, G13=G23 =G12, 12=0.25.  
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The variation of critical axial load for the buckling of the four different box-beam cases 
when subjected to varying preload end moments is shown in Fig. 12. In the same way, Fig. 
13 presents the variation of critical end moments causing buckling of the four different box-
beam cases when subjected to varying levels of axial preloading. Fig. 12 shows that the 
resistance in terms of axial buckling load capacity of the beam with square section 
( 0.200, 0.200)b d   is superior over rectangular beams sections having same cross-
sectional area. The buckling load capacity is found to deteriorate with the increase of aspect 
ratio of the cross-section. This is due to the buckling characteristic of box-section beams 
which undergo lateral buckling in the weakest direction. It is found to be different for I-
section beams (Figs. 10 and 11) as they undergo lateral-torsion buckling where a wide flange 
beam (lower d/b ratio) is beneficial. On the other hand, Fig. 13 shows that the rectangular 
beam section having the highest aspect ratio (d/b) ( 0.125, 0.275)b d   provides the highest 
resistance for end buckling moment and this behaviour is just opposite to that of I-section 
beam (Fig. 11).  
 

Table 9: Critical buckling moment i
crM  of a simply supported composite box-section 

beam with  2
 lay-up in all section walls and subjected to different axial preloads 0 crP P  

0

cr

P

P  

Fiber Angle   (degrees) 

0 15 30 45 60 75 90 
-0.8 226.70 348.48 226.18 102.07 61.31 48.37 45.14 
-0.6 213.47 328.47 213.24 96.23 57.81 45.60 42.56 
-0.4 199.44 307.17 199.46 90.02 54.07 42.66 39.81 
-0.2 184.41 284.30 184.65 83.34 50.06 39.49 36.86 
0.0 168.14 259.46 168.56 76.08 45.70 36.05 33.65 
0.2 150.20 232.01 150.76 68.05 40.88 32.25 30.09 
0.4 129.92 200.87 130.56 58.93 35.40 27.93 26.06 
0.6 105.94 163.96 106.59 48.12 28.91 22.80 21.28 
0.8 74.82 115.91 75.37 34.03 20.44 16.12 15.05 

 
Table 10: Critical axial buckling load i

crP  of a simply supported composite Box-section 

beam having  2
  lamination for all walls and subjected to different end moment preloads

0 CRM M  

0

cr

M

M  

Fiber Angle   (degree) 

0 15 30 45 60 75 90 
0.0 44.4808 35.0107 12.2659 3.9677 2.2344 1.8671 1.8033 
0.1 44.0305 34.6596 12.1432 3.9280 2.2120 1.8485 1.7853 
0.2 42.6802 33.6066 11.7751 3.8090 2.1450 1.7924 1.7312 
0.3 40.4320 31.8519 11.1616 3.6106 2.0333 1.6991 1.6410 
0.4 37.2893 29.3962 10.3028 3.3329 1.8769 1.5684 1.5148 
0.5 33.2567 26.2402 9.1986 2.9758 1.6758 1.4004 1.3525 
0.6 28.3404 22.3849 7.8492 2.5394 1.4301 1.1950 1.1541 
0.7 22.5476 17.8317 6.2545 2.0236 1.1396 0.9523 0.9197 
0.8 15.8866 12.5820 4.4147 1.4285 0.8045 0.6722 0.6492 
0.9 8.3672 6.6374 2.3298 0.7539 0.4246 0.3548 0.3426 
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Fig. 12: Variation of buckling loads of composite box-section beams having the same 

cross section with different flange widths (b) and web heights (d) and subjected to different 
levels of preload end moments 

 

 
Fig. 13: Variation of critical end moment causing buckling of composite box-section 

beams having the same cross section with different flange widths (b) and web heights (d) and 
subjected to different levels of axial preloading 
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4. CONCLUSIONS 

A new technique for the buckling analysis of thin-walled composite beams subjected to 
axial forces and end moment loading has been presented. The new technique is based on one-
dimensional beam element formulation that helped to improve the computation efficiency 
significantly in contrast with a typical full-blown three-dimensional finite element model 
using solid or shell elements. The proposed model is valid for thin-walled open and closed 
section beams, and is especially well-suited for the analysis of the load response and buckling 
behaviour of composite beams displaying complex mode interactions. The formulation is 
general, includes axial deformation, torsion, bi-axial bending and transverse shear 
deformation as well as out of plane cross-sectional warping. The cross-sectional matrices of 
the beams are derived analytically and includes all the possible couplings between the 
abovementioned modes of deformation. The effect of shear deformation of the beam section 
walls is included in the formulation, which typically demands a C0 continuous finite element 
formulation for the bending deformations of the beam element coupled with transverse shear 
deformations. Previous attempts [16-18] to include cross-sectional warping effects within the 
framework of C0 continuity have displayed susceptibility to shear locking problems, which 
have typically been circumvented by using the reduced integration technique which supresses 
the problematic terms related to shear energy. However, this affects the solution accuracy, 
including stress oscillations and other related issues due to inadequate integration of other 
terms of the strain energy of the structural system. Moreover, a consistent implementation of 
cross-sectional warping demands a C1 continuous formulation for the torsional deformation 
due to the appearance of second order derivatives of the torsional rotation (twist) in the strain 
vector. To overcome this in a C0 continuous formulation requires inclusion of fictitious nodal 
parameters that cannot be attributed any physical meaning [15]. To overcome these 
difficulties a C1 continuous formulation is adopted in this research, which includes full 
integration to achieve correct evaluation of the strain energy. The model proposed overcomes 
the crucial obstacles by adopting a different formulation for the coupled bending and shear 
deformations of the beam element which permits the use of full integration. The new 
modelling technique is used to solve numerical examples of thin-walled laminated composite 
beams having open (I) and closed (box) sections assuming different boundary conditions, 
laminated section wall stacking sequences, and different loading conditions. The results 
produced are thoroughly benchmarked and validated against analytical and numerical results 
available in literature, and it is shown that the proposed model performs very well in terms of 
both accuracy and computational efficiency. Finally, the new finite element is used to 
conduct extensive parametric studies to demonstrate the effect of varying different 
parameters on the buckling characteristics of composite thin-walled beams subjected to 
different loading scenarios involving the interactions between axial and end moment loads. It 
is anticipated that these new results can prove to be useful as benchmarks for future research 
in this area.   
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APPENDIX A 

The non-zero elements appearing in the upper triangle of the symmetric matrix [Cg] (Eq. 
(18)) are presented in their explicit form as follows (applicable for I and box sections).  
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APPENDIX B 

The non-zero elements appeared in the upper triangle of the symmetric matrix P
gF    and 

M
gF    (Eq. (18)) are presented in their explicit form as follows (applicable for I section, Fig. 

3(a)).  
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The non-zero elements appeared in the upper triangle of the symmetric matrix  P
gF  and  M

gF  (Eq. 

(18)) are presented in their explicit form as follows (applicable for box section, Fig. 3(b)).  
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ABSTRACT 

An efficient modelling technique based on one dimensional beam finite element analysis for 

buckling and vibration of thin-walled laminated composite beams having open/closed sections is 

proposed in this paper. For the vibration analysis, the effect of axial load is also incorporated. The 

formulation is generalised so as to accommodate any stacking sequence of individual walls and 

consider all possible couplings between different modes of deformation. The effect of transverse shear 

deformation of walls and out of plane warping of the beam section is considered where the warping 

can be restrained or free. The incorporation of shear deformation in the finite element formulation of 

the beam has imposed a difficulty which is successfully addressed using a concept proposed by one of 

the authors. Numerical examples of open section I beams and closed section box beams are solved by 

the proposed approach and the results are compared with those available in literature to show the 

performance of the proposed method.   

 

1 INTRODUCTION 

Modelling of thin-walled laminated composite beams having open and closed cross-sections as a 

condensed one dimensional beam model has drawn considerable attentions of many researchers in 

recent years. It leads to the development of a number of modelling techniques and their advancements 

which helped to have a better understanding of the behaviour of such beams under complex loading 

and boundary conditions. References 1-8 are simply few recent representative samples of these 

models. One of the early applications of this approach is found in the modelling and analysis of 

helicopter blades which is then followed by analysis of pultruded composite profiles, wind turbine 

blades and some similar structures. 

 

The previous studies may be divided into two major categories based on the approach used for 

calculating the cross-section stiffness coefficients of these composite beams. The first approach is 

based on ‘analytical technique’ while the other approach utilizes a two-dimensional (2D) cross-

sectional analysis based on a (2D) finite element model to calculate the cross-section matrices. 

 

Hodges and co-workers [3] have significantly contributed toward the development of the second 

approach where the three dimensional (3D) elasticity problem defining the deformation of these beams 

is systematically divided into a one-dimensional beam problem and a two dimensional cross-sectional 

problem. This method is generally referred to as variational asymptotic beam section analysis (VABS) 

which is based on variational asymptotic method (VAM) [9]. This approach is also suitable for 

modelling solid and the thick walled cross-sections. The same group ([10-14]) have also attempted to 

solve the 2D cross-sectional problem defined within the framework of VAM analytically but this 

approach involves rigorous mathematical treatments to evaluate the cross-sectional stiffness 

coefficients.  
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In the present study, the analytical approach (first approach) is adopted for the determination of the 

cross-sectional matrices as the objective of this paper is to analyse thin-walled composite beams. 

Moreover, the 2D finite element analysis or a complex mathematical treatment involved with the other 

approach can be avoided in the present approach. Specifically, the current study has adopted the 

analytical approach proposed by Sheikh and Thomsen [8] and extended to buckling and vibration 

with/without axial load of these structures. The different modes of deformation and their coupling 

considered in the development of the present closed-form analytical solution are axial, torsion, bi-axial 

bending, bi-axial shear as well as warping for the torsional deformation. The cross-sectional matrices 

are explicitly derived for the open I section and closed box section. The present formulation 

considered both plane stress and plain strain conditions of a lamina. The 1D beam problem is solved 

by the finite element approximations. The out of plane warping displacement requires a C
1
 continuous 

finite element formulation for the twisting rotation, which is accommodated using Hermetian 

interpolation functions. On the other hand, the usual treatment of the transverse shear deformation 

requires a C
0
 formulation. This needs the reduced integration technique to avoid any shear locking 

problem. The different degrees of continuity for the different modes of deformation and their coupling 

impose a problem for their implementation. This problem is addressed satisfactorily utilising the 

concept proposed by Sheikh [15] which does not require the reduced integration technique. For the 1D 

beam finite element analysis, a three node beam element as shown in Fig.1 has been developed.  

 

 
 

Figure 1: A typical beam element 

 

A computer code is written in FORTRAN to implement present formulation. Numerical examples 

of thin-walled composite beams having different cross sections and other conditions are analysed by 

the proposed model and the results obtained in the form of buckling loads and vibration frequencies 

and validated with the available results in literature. These results demonstrate a very good 

performance of proposed finite element model.  

 

1 FORMULATION 

Figure 2 shows a segment of the composite beam shell wall where x-y-z is taken as the global 

Cartesian coordinate system and x is directed along the beam axis which is passing through the 

centroid of the beam section. A local orthogonal coordinate system x-s-n is also defined where x-n 

plane passes through the tangential plane of beam wall mid plane (local x-axis is parallel to the global 

x-axis) and n is directed along the wall thickness. The displacement components at the mid-plane of 

the shell wall in the local coordinate system (x-s-n) can be expressed in term of the global 

displacement components of the beam [1] as  
 

xzy zyUu   , 

xrWVv   sincos , 

xqWVw   cossin , 

(1) 

 

where  is the warping function, x  is the torsional rotation and y, z are bending rotations of the 

cross-section of the beam along x and y, respectively. These bending rotations can again be expressed 

as 
yy V  and zz W  , where 

y , 
z  are shear rotations of the beam section about z 

and y, respectively, and V  ,W   and 
x   are respectively the derivatives of V, W and 

x  with respect to x. 

 

It has been observed that the warping displacement of a closed section beam is relatively less than 

that of an open section beam [14] but the present formulation has considered the effect of warping in 
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all cases.  Considering the effects of bending and transverse shear deformation of the beam shell wall, 

the displacements at any point of the shell wall away from its mid-plane may be expressed as  
 














 xn

x

w
nuu  , 














 sn

s

w
nvv  , 

ww  , 

(2) 

 

where 
xn  and 

sn are shear rotations of the shell wall section about s and x , respectively. It is 

assumed that 0sn  whereas 
xn  can be expresses in terms of the corresponding global components 

y(  and )z  as  cossin zyxn  .  

 

 
Figure 2: Cross-section of a portion of beam shell wall with local and global coordinate 

system and displacement component 

 

Substituting this and as well as Equation (1) in the above equation (2), the displacements at any 

point within the shell wall along its local coordinate system (x-s-n) can be expressed in terms of the 

global displacement components of the 1D beam as 
 

      xzy nqnznyUu   cossin , 

  xnrWVv   sincos , 

xqWVw   cossin . 
  
 

(3) 

With the beam kinematics (3), the governing equation of the axially loaded vibration beam can be 

derived from its total energy utilising Hamilton’s principle. The total energy of a structure consists of 

strain energy (U), strain energy due to axial force (Ug) and kinetic energy (T) which can be used to 

derive the stiffness matrix  K , geometric stiffness matrix  gK  and mass matrix  M , respectively in a 

finite element analysis of the structure. As the derivation of the stiffness matrix  K  has already been 

shown elsewhere [8], it is not repeated here. For a beam under an axial force ( AP  ) acting uniformly 

over its entire cross-sectional area (A), the strain energy due to the axial force may be written as 
 

dvwvU
V

g   )(
2

1 22  

      













V

g

T

g

VV

g dv
A

P
dv

w

v
wv

A

P
dvwv

A

P
U 

22
)(

2

22 . 

(4) 
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Using equation (3), the geometric strain vector  
g  in the above equation can be written as  

 

   
gg

x

g HW

V

q

nr

w

v






 ][
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
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(5) 

 

The above equation (5) may be substituted in equation (4) and it leads to 
 

         
L

gg

T

g

V

g

T

gg dxF
A

P
dv

A

P
U 

22
 

(6) 

 

where              dsCdsdnHHdsdnHHF gg

T

g

A

g

T

gg    .  

The above equation can be used to derive the geometric stiffness matrix conveniently using finite 

element approximation of the geometric strain vector  
g . The individual elements of the matrices 

 gF  and  gC  for I and box sections are explicitly given in Appendix A and Appendix B, respectively.   

 

Now the kinetic energy of the beam having a harmonic motion may be written as 
 

        
V

T

V

T
dvUUdvUUT 




22

1 2

 . 
(7) 

 

where   is the mass density of the material,   is the vibration frequency,    wvuU
T

  

(equation 3) is the displacement vector and     dtUdU /  is the velocity vector. In a similar manner, 

the displacement vector (equation 3) can be written as  
 

   uHU m ][ . (8) 

 

where ][ mH  contains sectional parameters (x, y, n, r, q, 𝛼) whereas  u  contains global parameters (U, 

V, W, z , y   and z ) of the 1D beam. After substitution of the above equation (8) in equation (7), it 

can be written as  
 

         
L

m

T

V

T
dxuFudvUUT

22

22 



 

(9) 

 

where              dsCdsdnHHdsdnHHF mm

T

m

A

m

T

mm     .  

For I and box section beams, all elements of the above matrices  mF  and  mC  are explicitly derived 

which are given in Appendix C and Appendix D.   

 

For finite element implementation of the beam, quadratic Lagrangian interpolation functions are 

used for the axial deformation while cubic Hermetian interpolation functions are used for torsional 

deformation which will ensure the desired C
1
 continuity of torsional rotation ( ) as the displacement 

field (equation 3) contains derivative of  . As mentioned earlier, the bending deformations which are 

coupled with shear deformations and these are treated in a different manner following the concept of 

Sheikh [15] where the shear rotations y  and z  are adopted as field variables instead of y   and z  

in addition to the bending displacements V and W. Taking a linear approximation of y , z  and a 

cubic approximation of V and W, the field variables can be written as   
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2

321 xaxaaU   

3

7

2

654 xaxaxaaV   

3

11

2

1098 xaxaxaaW   

xaay 1312   ,  xaaz 1514   

3

19

2

181716 xaxaxaax   

    (10) 

 

Though 
y  and 

z  are taken as field variables, they are not used as nodal degrees of freedom. 

Interestingly, the corresponding nodal degrees of freedom are 
y   and 

z  which are introduced with the 

help of bending deformations which may be expressed using the above equations as  
 

2

7651312 32 xaxaaxaaVyy  , 

2

111091514 32 xaxaaxaaWzz  . 

    (11) 

 

The unknown constants (a1, a2, a3 ...... a19) found in Equations (10) can be replaced in terms of 

nodal displacement parameters by substitution of U , V , W , 
y  and 

z  (Equations 10 and 11) at all 

three nodes of the beam element (Fig. 1), and 
x  (Equation 10) and its derivative 

x   at the two end 

nodes as  
 

    aR  or      1 Ra      (12) 

 

where    19321 aaaaa
T

 , [R] consists of coordinates (x values) of the 3 nodes and    
T

   

 3333333222221111111 xzyxzyxzyx WVUWVUWVU    is the 

nodal displacement vector.   

 

With the help of Equations (10) and (12), the vector  
g  as defined in Equation (5) may be 

expressed in terms of nodal displacement vector    as   
 

        ][]][[}]{[ 1'

ggg

T

xg BRSaSWV  
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    (13) 

 

The above equation is substituted in Equation (6) and it is rewritten as  
 

                  g
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T

L
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222
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    (14) 

 

where       
L

gg

T

gg dxBFB
A

K
1  is the geometric stiffness matrix of a beam element. 

 

Similarly, the vector  u  as defined in Equation (9) may be expressed in terms of    with the help 

of Equations (10) (11) and (12) as   
 

      ][]][[}]{[ 1

mmm BRSaSu  
.     (15) 

 

Again this equation is substituted in Equation (9) and it is rewritten as   
 

                 

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

mdxBFBdxuFuT
T

L

mm

T

m

T

L

m

T

222

222

   
    (16) 

 

where       
L

mm

T

m dxBFBM  is the mass matrix of an element. 
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The stiffness, geometric stiffness and mass matrices of all elements are assembled together to form 

the form these matrices of the whole beam. Taking same notations of these assembled matrices, the 

governing equation of the axially loaded (P = axial compression) vibrating beams may be expressed as  
 

  }]{[}{][][ 2  MKPK g   (17) 

 

This is an Eigen-value problem which is solved to get the vibration frequencies as Eigen values and 

modes of vibration as Eigen vectors. The buckling of these beams can also be solved by the above 

equation by simply dropping the mass matrix and can be rewritten as  
 

}]{[}]{[  gcr KPK   (18) 

 

where crP  is the critical value of the axial compression P for the buckling of the beam.  

 

2 RESULTS AND DISCUSSION 

In the section, numerical examples of thin-walled composite beams having I and Box sections are 

solved using proposed model and the results obtained are validated with the analytical and numerical 

results available in literature.  

 

Example 1: The problem of a simply supported thin-walled laminated composite beam having a 

span of 6m is studied using plane stress condition (𝜎𝑠 = 0) of the plies. The beam has a double 

symmetric I section where both the flanges are 600mm wide and the web is 600mm deep. All the 

flange and web plates are made of 4 plies each 7.5mm thick (30mm total thickness) which are having 

5 different ply orientations. The material used for all the plies is Graphite-epoxy and its properties are: 

E1=144GPa, E2=9.65GPa, G12= G13=4.14GPa, G23=3.45GPa, 12=0.3. The beam is analysed with the 

proposed technique using diffident number of elements and it is observed that the results are 

converged when the number of elements is 10 or more which is used to generate results in all cases. 

The critical buckling loads predicted by the proposed technique are presented in Table 1 along with 

those produced by other investigators who studied this problem earlier with their approach. The table 

shows that the present results have good agreement with the existing results. 

 

Lay-ups 

Machado & Cortinez 

[16]  
Back & Will [17] 

Vo and Lee 

[18] 
Present 

No shear With shear ABAQUS With shear With shear With shear 

[0]4 42.11 33.18 30.78 28.85 30.38 35.51 

[30/-30]s -   - 13.06 13.17 13.17 13.16 

[45/-45]s 4.45 4.44 4.41 4.41 4.41 4.41 

[60/-60]s  - -  2.89 2.89 2.88 2.88 

[0/90]s 22.57 19.84 20.41 20.63 20.63 20.52 
 

Table 1: Critical buckling load (MN) of a simply supported doubly-symmetric composite I-beam 

 

Example 2: The behaviour of a 1m long cantilever beam having a mono-symmetric I section is 

investigated for 7 different stacking sequences for its laminated walls. The web of the beam is 50mm 

deep whereas the breadths of its top and bottom flanges are 30mm and 50mm, respectively. The web 

and flanges are made of 16 layers each 0.13mm thick with a symmetrical layup. The material used for 

all the layers is glass-epoxy having the following properties: E1=53.78GPa, E2=17.93GPa, G12= 

G13=8.96GPa, G23=3.45GPa, 12=0.25. The beam is analysed with the proposed approach and the 

critical buckling loads obtained for different ply orientations are presented in Table 2 along with those 

reported by Kim et al. [19], and Vo and Lee [18]. The comparison of the results shows a very good 

performance of the proposed element. 
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Lay-ups 
Kim et al. [19] Vo and Lee[18] Present 

Abaqus No Shear With shear With shear 

[0]16 2969.7 2998.2 2993.2 2994.5 

[15/-15]4s 2790.9 2811.8 2803.6 2803.3 

[30/-30]4s 2190.6 2199.7 2184.7 2185.1 

[45/-45]4s 1558.9 1561.9 1546.0 1547.2 

[60/-60]4s 1239.4 1241.3 1227.8 1229.0 

[75/-75]4s 1132.2 1134.5 1126.7 1127.9 

[0/90]4s 2101.5 2113.9 2100.6 2101.8 
 

Table 2: Critical buckling load (N) of a cantilever mono-symmetric composite I-beam 

 

Example 3: A double symmetric I section beam clamped at its two ends is taken to study the effect 

of fibre orientations of one of its laminated flanges for different values of the beam length (l) with 

respect to the depth (d) of the web. The web and flanges are made of 2 layers where each layer has a 

thickness of 2.5mm (total thickness t=5mm) and the following material properties: E1/E2=25, 

G12/E2=0.6, G13=G23=G12, 12=0.25. The layup of the top flange and the web is [0/45
0
] and that of the 

bottom flange is []2 where the value of  is varies from 0 to 90 degrees. The asymmetric laminated 

configuration found in this situation produces nonzero off-diagonal terms of the cross sectional 

stiffness matrix (F13, F16, F24, F35) which is responsible for coupling of different deformation modes. 

The variation of normalized critical buckling load )/( 2

32 tEdlPP cr  with respect to  as predicted 

by the proposed model is presented in Fig. 3 for three different values of (l/d) ratio. Figure 3 shows 

that the critical buckling load decreases monolithically with the increase of fiber angle (). However, 

there is a small increasing tendency of this buckling load parameter ( P ) for low span-to-depth ratios 

(l/d) when the fiber angle is ranging from 0 to 15 degrees. Also, the mode shapes for different 

displacement components corresponding to 48.2P1   (=75°, l/d=25) are plotted in Fig.4.  

 

 
 

Figure 3: Variation of buckling load parameter ( P ) of a clamped composite I-beam with respect to 

fiber angle () of its bottom flange   

Example 4: The buckling characteristics of a 12m long simply supported beam having a box 

section (300mm wide and 600mm deep) is studied for different stacking sequences of its laminated 

walls. In all these cases, the four laminated walls of this box section beam consist of 4 layers each 

having a thickness of 7.5mm. The material used for these layers is Graphite-Epoxy (AS4/3501) which 

is having the following properties: E1=144GPa, E2=9.65GPa, G12=G13=4.14GPa, G23=3.45GPa, 

12=0.3. The lamination schemes used for all the beam walls are [0]4, [0/90]2s and [45/-45]2s. The 

critical buckling loads predicted by the proposed model are presented in Table 3 along with those of 
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Cortinez and Piovan [20] and Kim et al. [11] (based on two techniques) which show a very good 

correlation between the results obtained by different techniques.  

 

 
 

Figure 4: Mode shapes of a clamped I section composite beam (=75° and l/d=25)  

 

Lay-ups 

Cortinez and 

Piovan [20] 

(no shear) 

Kim et al. [21] 

Present 30 H-Beam 

elements 

(with shear) 

SMM 

(with shear) 

[0/0/0/0] 9.33 9.35 9.35 9.00 

[45/-45/-45/45] 0.97 0.97 0.97 0.97 

[0/90/90/0] 4.97 5.02 5.02 4.94 
 

Table 3: Critical buckling load (MN) of a simply supported composite box-beam  

 

Example 5: An 8m long simply supported beam having a box section (100mm width and 200mm 

deep) is used to study its buckling and vibration characteristics. The four walls of the beam are made 

of two layers each having a thickness of 2.5mm and the following material properties: E1/E2=25, 

G12/E2=0.6, 12=0.25. The flanges have a stacking sequence of [0]2 and that of the webs is [𝜃/−𝜃] 

where the value of  is varied from 0 to 90
0
 with an increment of 15

0
. The non-dimensional critical 

buckling load )/( 2

32 tEblPP cr  evaluated by the proposed technique and presented with those of Vo 

and Lee [22] in Table 4 which shows a good agreement between them.  

 

Fiber angle 
Vo and Lee [22] 

(with shear) 
Present 

0 36.009 35.509 

15 29.245 28.916 

30 13.549 13.479 

45 7.858 7.834 

60 6.670 6.653 

75 6.419 6.403 

90 6.375 6.359 
 

Table 4: Normalized critical buckling load P of a simply supported composite box-beam 
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The vibration analysis of this beam subjected axial load is also carried out by the proposed model 

where the axial load is varied from 
crP  to 

crP . The variation of natural frequency for the 

fundamental mode with respect to the axial load is plotted in Fig. 5 for different values of . Figure 5 

clearly shows a monotonic decrease of the vibration frequency with the increase of axial compression 

as expected. 

 

 
 

Figure 5: Effects on axial load on vibration frequency of a composite box- beam 

3 CONCLUSIONS 

An efficient one dimensional beam element is developed for buckling and vibration analysis of 

thin-walled composite beams of open and closed cross sections considering axial displacement, 

torsion, bi-axial bending and transverse shear deformations as well as out of plane sectional warping.  

The cross-sectional matrices required for the formulation of geometric stiffness and mass matrices of 

the beam are derived analytically where all possible couplings between the abovementioned modes of 

deformation are considered. The effect of shear deformation of the beam walls is included which 

requires a C
0
 continuous finite element formulation of the bending deformation coupled with the shear 

deformation. On the other hand, the torsional deformation requires a C
1
 continuous FE formulation 

due to the incorporation of warping deformation. The difficulty associated with the implementation of 

both these formulations in the present coupled problem is successfully overcome by using a novel 

concept proposed by of one of the authors. The proposed analysis technique is used to solve numerical 

examples of thin-walled laminated composite beams having open I and closed box sections taking 

different boundary conditions and stacking sequences of the beam walls. For the vibration analysis of 

beams, the effect of axial force on the frequency of vibration is also studied. In many cases, the results 

predicted by the proposed technique are validated with the analytical and/or numerical results 

available in literature. The agreement between the results is found to be very good in most of the cases 

which ensures the reliability and range of applicability of the proposed element. New results are also 

presented in this paper which should be useful to future researchers.     

 

REFERENCES 

[1] N.R. Bauld and L.S. Tzeng, A Vlasov theory for fiber-reinforced beams with thin-walled open 

cross section, International Journal of Solid and Structures, 20(3), 1984, pp. 277–97. 

[2] R. Chandra, A.D. Stemple and I, Chopra, Thin-walled composite beams under bending, torsion, 

and extensional load. AIAA Journal, 27(7), 1990, pp 619-626. 

[3] C.E.S. Cesnik, D.H. Hodges, VABS: A new concept for composite rotor blade cross section 

modelling, Journal of the American Helicopter Society 42(1), 1997, pp. 27–38. 

0

10

20

30

40

- 1  - 0 . 5  0  0 . 5  1  


 

P/PCR 

0 15 30

45 60 75

90

54



 Arash Asadi, Abdul Hamid Sheikh and Ole Thybo Thomsen 

[4] L.P.Kollar and G.S. Springer, Mechanics of composite structures,  1st edition, Cambridge 

University Press, 2003.  

[5] H.A. Salim and J.F. Devalos J.F., Torsion of open and closed thin-walled laminated composite 

sections, Journal of composite materials, 39(6), 2005, pp 497-524. 

[6] J. Lee, Flexural analysis of thin-walled composite beams using shear-deformable beam theory, 

Composite Structures, 70(2), 2005, pp 212-222. 

[7] L. Librescu, and O. Song, Thin-walled composite beams, 1st edition, Springer, 2006.  

[8] A.H. Sheikh and O.T. Thomsen, An efficient beam element for the analysis of laminated 

composite beams, Composites Science and Technology, 68, 2008, pp. 2273–2281. 

[9] V.L. Berdichevsky, Variational-asymptotic method of constructing a theory of shell, PMM, 

43(4), 1979, pp. 664–87. 

[10] V.V. Volovoi, , D.H. Hodges, V.L. Berdichevsky, and V.G. Sutyrin, Asymptotic theory for 

static behaviour of elastic anisotropic I-beams, International Journal of Solids and Structures. 

36, 1999, pp.1017-1043. 

[11] V.V. Volovoi, D.H. Hodges, C.E.S. Cesnik, and B. Popescu, Assessment of beam modelling 

methods for rotor blade applications, Mathematical and Computer Modelling, 33, 2001, 

pp.1099-1112. 

[12] V.V. Volovoi and D.H. Hodges, Single-and multi-celled composite thin-walled beams, AIAA 

Journal, 40, 2002, pp. 960–965. 

[13] V.V. Volovoi and D.H. Hodges, Theory of anisotropic thin-walled beams, Journal of Applied 

Mechanic, 67, 2000, pp.453–459. 

[14] W. Yu, D.H. Hodges, V.V. Volovoi and E.D. Fuchs, A generalized Vlasov theory for composite 

beams, Thin Walled Structures, 43, 2005, pp.1493–511. 

[15] A.H. Sheikh, New Concept to include shear deformation in a curved beam element, Journal of 

structural engineering, 2002, 128(3), pp. 406-410. 

[16] S.P. Machado, and V.H. Cortinez, Lateral buckling of thin-walled composite bisymmetric 

beams with prebuckling and shear deformation, Engineering Structures, 27, 2005, pp.1185-

1196. 

[17] S.Y. Back and K.M. Will, Shear-flexible thin-walled element for composite I-beams, 

Engineering Structures, 30, 2008, pp. 1447-1458. 

[18] T.P. VO and J. Lee, On sixfold coupled buckling of thin-walled composite beams, Composite 

Structures, 90, 2009, pp.295-303. 

[19] N-I. Kim, D.K. Shin, and M-Y. Kim, Flexural–torsional buckling loads for spatially coupled 

stability analysis of thin-walled composite columns, Advances in Engineering Software, 39, 

2008, pp.949-961. 

[20] V.H. Cortinez and M.T. Piovan, Vibration and buckling of composite thin-walled beams with 

shear deformability, Journal of Sound and Vibration, 258(4), 2002, pp. 701-723.  

[21] N-I. Kim, D.K. Shin and Y-S. Park, Coupled stability analysis of thin-walled composite beams 

with closed cross-section, Thin-Walled Structures, 48, 2010,  p.581–596. 

[22] T.P. VO, and J. Lee, Interaction curves for vibration and buckling of thin-walled composite box 

beams under axial loads and end moments. Applied Mathematical Modelling. 34, 2010, 

pp.3142-3157.   

 

 

 

 

 

 

 

 

 

 

 

55



20th International Conference on Composite Materials 

Copenhagen, 19-24th July 2015 

APPENDIX A 

The non-zero elements appeared in the upper triangle of the symmetric matrix [Cg] (Equation 6) are 

presented in their explicit form as follows (applicable for I and box sections).  
 

112211 ACC gg  , )cossin(cos 1111

g

13  rqABC   

)sincos(sin 111123 αrαqAαBC g  , )(2 22

11111133 rqArBCC g   

 

APPENDIX B 

The non-zero elements appeared in the upper triangle of the symmetric matrix [Fg] (Equation 6) are 

presented in their explicit form as follows (applicable for I section, Fig. 6a).  
 

3

11

2

11

1

112211 )( dAAAbFF gg  , )(2)( 1

11

2

11

1

11

2

1113 BBb/AAbdF g  , 
3

1123 dBF g   

1212)()(4)(12)( 3

11

3

11

32

11

1

11

2

11

1

11

2

11

1

11

22

11

1

11

3

33 /dC/AdCCbBBbd/AAbd/AAbF g   

 

      
(a)                                                        (b) 

 

Figure 6: Thin-walled beam having open and closed section 

 

The non-zero elements appeared in the upper triangle of the symmetric matrix [Fg] (Equation 6) are 

presented in their explicit form as follows (applicable for box section, Fig. 6b).  
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APPENDIX C 

The non-zero elements appeared in the upper triangle of the symmetric matrix [Cm] (Equation 6) are 

presented in their explicit form as follows (applicable for I and box sections).  
 

ACCC mmm  332211 , AyCm 15  , AzCm 16  , ACm 17 , )cossin(24  rqACm  ,  

)sincos(34  rqACm  , 12/)( 2^2

44 CrqACm   , 12/sin22

55 CAyCm  , 

24/)2sin(56 CAyzCm   , 12/sin57  CqAyCm  , 12/cos22

66 CAzCm  , 

12/cos67  CqAzCm  , 12/22

77 CqACm    
 

where  iitA  ,  iitB 2
 and  iitC 3
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APPENDIX D 

The non-zero elements appeared in the upper triangle of the symmetric matrix [Fm] (Equation 9) are 

presented in their explicit form as follows (applicable for I section, Fig. 6a).  
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The non-zero elements appeared in the upper triangle of the symmetric matrix [Fm] (Equation 9) are 

presented in their explicit form as follows (applicable for box section, Fig. 6b).  
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ABSTRACT 

An efficient technique based on a one dimensional beam finite element model for dynamic 

stability and vibration of thin-walled laminated composite beams having open/closed sections 

and subjected to axial loading and end moment preloads is proposed in this paper. The 

formulation accommodates for arbitrary stacking sequence of the individual section walls and 

includes all possible couplings between axial, shear, bending and torsional modes of 

deformation of the beam. The effects of transverse shear deformation of the section walls and 

out-of-plane warping are also included, where provision is made to either restrain or allow 

cross-sectional warping. Shear deformation is included in the finite element formulation of the 

beam by means of a novel concept proposed by the authors. A number of numerical examples 

involving open sections I beams and closed section box beams are analysed using the 

proposed approach, and it is shown that the new model performs very well when 

benchmarked against model results available in literature and finite element analysis results 

obtained using the software package Abaqus.  Further, a parametric study is performed to 

elucidate the effects of axial load, end moments preload, and the combination of both loading 

actions on the vibration response and dynamic stability of various thin-walled composite 

beams.  

1. INTRODUCTION 

The use of long and slender beam like structural components having a thin-walled 

construction is very common in many real-life engineering products such as wind turbine 
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blades, helicopter rotor blades, civil engineering construction and other applications. In recent 

years, laminated fibre reinforced polymer materials (referred to as composite materials or just 

composites) have gained widespread use as structural materials in such structures. The 

motivation for this is the high specific stiffness and strength (stiffness and strength relative to 

mass/weight), which provides for more efficient structures with improved performance 

characteristics in many cases. Composites also display other desirable properties of high 

importance for many engineering applications, including high fatigue resistance and 

environmental durability to mention some.  

The use of composite structural elements utilising multi-layered composite laminates with 

arbitrary fibre orientations of the individual layers (plies) provide a high degree of flexibility 

in tailoring the structural performance, but this can lead to complex in their behaviour due to 

couplings between different modes of deformation. Thus, the use of composites introduces 

additional challenges in the modelling of composite structures of thin-walled construction, 

which is already inherently complex for thin-walled structures made from isotropic materials 

due to warping deformation and other characteristic behaviours. In principle, the load-

response behaviour of the thin-walled construction composite structural elements of open or 

closed cross section may be analysed using a 3D modelling strategy based on solid or shell 

finite elements (FE), but this modelling technique is unfeasible in many cases due to high 

computational cost and time. To address this problem previous research available in open 

literature has proposed to develop alternative modelling techniques, preferably based on 1D 

FE beam elements, which leads to more efficient and affordable techniques for modelling 

[e.g. 1-9]. 

The relevant previous research can be broadly divided into two groups based on the 

approaches used for determining the constitutive matrix of the beam element. The first 

approach is based on ‘analytical techniques’, while the second alternative utilises a two-

dimensional (2D) cross-sectional analysis based on a 2D finite element model for calculating 

the cross-sectional matrices. Hodges et al. [3,10,11] have contributed significantly toward the 

development of the second approach, which has significant merit in terms of generality, but 

the 2D finite element analysis needed for the evaluation of cross-sectional stiffness 

coefficients is a major task. This was experienced and documented in a recent study [12], 

which is based on a similar approach. On the other hand, the first option (analytical 

approach), like presented in e.g. [6], adopted in this paper does not require 2D finite element 
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analysis, nor does it involve the complex mathematical operations involved with the second 

approach.  

Vo & Lee et al. studied the behaviour of thin-walled composite beams having closed [e.g. 13] 

and open [e.g. 14, 15] sections, including buckling analysis. It is observed that their analyses 

are mostly based on classical lamination theory, thus neglecting the effect of transverse shear 

deformation of the composite laminated section walls. However, composite laminates are 

generally weak/compliant in transverse shear due to their low shear stiffness and strength 

relative to the extensional rigidity and strength. Thus, it is important to incorporate the effect 

of shear deformation to ensure reliable predictive capability for all relevant loading scenarios. 

In order to address this issue, Vo & Lee [16] incorporated the effect of shear deformation, by 

simply extending the concept used for the incorporation of transverse shear deformation in a 

typical isoparametric FE formulation to express the torsional deformation by introducing an 

additional parameter. This parameter is analogous to the transverse shear strain but, 

unfortunately, it does not have any real physical representation. Moreover, following this 

formulation   it is difficult to resolve the torsional moment into three components to express 

the beam response in terms of stress resultants. However, by adopting this treatment of torsion 

loading, is was shown in [16] to be possible to derive an operational beam element using an 

isoparametric formulation for all deformation modes. The element has three nodes thus 

providing a quadratic interpolation of all (seven) field variables using Lagrangian 

interpolation functions giving seven degrees of freedom at each node.     

Kim et al. [18-20] also considered the effect of shear deformations following the concept 

introduced by Vo & Lee [16] and encountered similar difficulties. Thus, for the finite element 

implementation of the beam theory, an isoparametric formulation for all field variables to 

develop a beam element having C0 continuous deformations was adopted. The well known 

shear locking problem is typically faced in isoparametric elements as this formulation use the 

same interpolation functions for all field variables. A simple solution of this problem is the 

application of a reduced integration technique, as adopted by Kim et al. [18-20], but that may 

lead to spurious zero energy modes for some cases in addition to non-physical stress 

oscillations within the element. Moreover, the reduced integration will affect the evaluation of 

the stiffness corresponding to other modes of deformation, including axial and torsion modes 

and their couplings. Furthermore, it is also difficult to apply a selective reduced integration 

scheme in this coupled problem. However, Kim et al. [e.g. 18-22]   have contributed 
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significantly in this area through investigating various aspects of thin-walled section 

composite beams.   

The formulations presented by both these groups [13-16, 18-20] are consistent when the 

contribution of shear deformation is neglected. For this case, the Lagrangian interpolation 

functions are only used for the axial deformation, whereas other deformation modes, i.e. 

torsion and bending (bi-axial), are interpolated with Hermitian interpolation functions. Thus, 

these elements provide C0 continuity (1 degree of freedom at each node – field variable only) 

for the axial displacement, and C1 continuity (2 degrees of freedom at each node – field 

variable and its derivative) for the other modes of deformation.  Machado et al. [23-30] also 

included the effect of shear deformation in their modelling of thin-walled composite beams in 

a series of studies. These are mostly based on the use of the Ritz method to develop analytical 

solutions that are applied to symmetrically balanced laminates or special layups to decouple 

the equations for simplicity. The models were also employed for the analysis of dynamic 

stability problems of thin-walled composite beams subjected to periodic transverse and axial 

loads [27,28]. Furthermore, a finite element model for simulating vibration and dynamic 

stability was proposed in [31] considering the effect of shear deformation and cross-sectional 

warping due to torsion. As mentioned above, the finite element formulation for torsional 

deformation typically requires C1 continuity for the angle of twist ( x )due to the presence of 

the derivative of the twist ( x  ) in the expression for the displacement fields of the beam. 

However, x  and x   were treated as independent variables, thus enabling the derivation of a 

C0 continuous element having linear interpolations for all displacement field variables. 

However, ass x   is not physically independent of x , this approach can be expected to 

display physically inconsistent results in some cases.  

The literature review shows that a limited number of studies have been conducted on dynamic 

stability and vibration of thin-walled composite beams with arbitrary cross sections and 

arbitrary laminate layups subjected to preloading (axial force and/or end moments). Thus, the 

focus of this paper is to propose a new and efficient finite element based modelling approach 

to address the analysis of such composite beam structures and ensuring a high level of 

generality. The model proposed includes the effect of shear deformation since composites are 

compliant in shear as mentioned above. However, the problems associated with existing 

techniques, e.g. [16,20], will be overcome by introducing an alternative formulation.  
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The new formulation will be applied to thin-walled composite beams with both open and 

closed cross sections subjected to axial forces, end moments and combinations of these 

applied as preloads. The model addresses all the different modes of deformation and their 

coupling including axial, torsional, bi-axial bending, bi-axial shear as well as warping (for 

torsion) deformations. The cross-sectional property matrixes are derived explicitly in closed 

form for open and closed cross sections for both plane stress and plane strain conditions of the 

laminae.  

Based on the evaluation of the components of the cross-sectional matrixes of a thin-wall 

composite beam, the analysis is achieved through the solution of the 1D finite element 

formulation of the beam problem. The usual approach adopted for incorporating the 

transverse shear deformation in an isoparametric FE model framework requires a C0 

continuous formulation, whilst the warping displacement produced by torsion requires a C1 

continuous formulation for the twisting rotation. The C1 formulation for the torsional 

deformation is conveniently achieved in this study by using cubic Hermitian interpolation 

functions for the angle of twist and its derivative at the two end nodes of the proposed beam 

element (Fig. 1). If the conventional C0 continuous formulation is adopted for the transverse 

shear deformation, this will require the need for reduced integration, but the implementation 

of this is problematic for the considered coupled beam problem as discussed above. This is a 

crucial issue, which can be circumvented conveniently by utilising the modelling concept 

proposed by Sheikh [32] that eliminates the need for reduced integration. 

For the 1D beam finite element analysis, a three-node beam element as shown in Fig. 1 has 

been developed, where the two end nodes have seven degrees of freedom (three 

displacements, three rotations and the derivative of the twist) and the middle node has five 

degrees of freedom (three displacements, two bending rotations). It should be noted that 

quadratic Lagrangian interpolation functions are used to model the axial deformation taking 

one degrees of freedom at each node.  

 

 

 

Fig. 1: A typical beam element 
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A computer code was written in MATLAB for the implementation of the formulation. 

Numerical examples of thin-walled composite beams having different cross sections, material 

configurations, boundary conditions and other features are analysed by the proposed model. 

The results obtained are presented in the form of preloaded vibrational and dynamic stability 

regions, and the predictions are compared to and benchmarked against data available in open 

literature. It is shown that the present finite element model formulations performs very well in 

comparison with other published models. Finally, the new model has been used to investigate 

a number of cases of special interest, which generate results that are considered to be 

beneficial benchmarks for future research in this area.  

2. FORMULATION  

2.1. Kinematics of the Beam Deformations 

Fig. 2 shows part of the cross section of a laminated beam wall segment along with global and 

local coordinate systems and their corresponding displacement components, which form the 

basis for the development of the proposed formulation. The curved geometry of the section 

wall is shown to represent a generic scenario, but the section walls can also be of straight 

geometry.  

In Fig. 2, the x-y-z axes define the global Cartesian coordinate system, where x is along the 

beam axis, passing through the centroid of the complete beam cross section, and y, z define 

the beam cross section coordinates. The other axes in Fig. 2 are the local orthogonal 

coordinate system x-s-n, defined at the mid-plane of a laminated section wall, where n is 

normal to the shell (wall) mid-plane, s is the circumference coordinate, and x is parallel to 

global x coordinate axis. The displacement components at the mid-plane of the shell wall in 

the local coordinate system (x-s-n) can be expressed in terms of the global displacements of 

the beam (Fig. 2) in the form [1]: 

y z xu U y z      
, 

cos sin ( ) xv V W r s     , 

sin cos ( ) xw V W q s      , 

(1) 

where y , z are bending rotations (including shear deformations) of the beam cross section 

relative to the along y and z axes, respectively, x  is the torsional rotation of the beam cross 

section relative to the x axis, and   is the warping function. U, V and W are the displacement 
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components in the global x, y and z coordinate directions. Defining y , z  as cross-sectional 

rotations due to shear deformations of the beam section about the y and z axes, the bending 

rotations can be expressed as y yV    and z zW    , respectively, and V  ,W   and 

x   are the derivatives of V, W and x  with respect to x. 

 

Fig. 2: Cross section of a beam section wall segment with local and global coordinate system 

and corresponding displacement components 

Although the effects of warping displacement in beams having closed cross sections is 

generally not as significant as for beams with open cross section, the contribution of warping 

displacements is incorporated for both types of cross sections to deliver a generic and 

complete formulation. 

The displacement at any point of the shell wall located at a distance n from the shell wall mid-

plane can be expressed in terms of the bending and transverse shear deformations of the wall 

as:  

xn

w
u u n

x
       , 

sn

w
v v n

s
       , 

w w , 

(2) 

66



 Arash Asadi, Abdul Hamid Sheikh and Ole Thybo Thomsen 

where xn  and sn are rotations of the shell wall sections due to shear deformations about s 

and x, respectively. Now, xn can be expressed in terms of the corresponding global cross 

section rotations ( y , z ) as sin cosxn y z       , whereas 0sn   based on the 

restrictive assumption that the overall shape of the beam cross section will not be altered 

during the deformation of the beam. 

Substituting the above expressions for xn  and sn  as well as Eq. (1) into Eq. (2), the 

displacements at any point within the shell wall along its local coordinate system (x-s-n) can 

be expressed in terms of the global displacement components of the 1D beam as follows: 

     sin cos ( )y z xu U y n z n nq s           
, 

 cos sin ( ) xv V W r s n     
, 

sin cos ( ) xw V W q s     
 

 

(3) 

2.2. Energy Systems for the Composite Beam 

The potential energy ( Π ) of a beam undergoing buckling caused by an external forces can be 

expressed in terms of the strain energy (U), Kinetic energy (T), and the work done by external 

forces ( eW ) as: 

eU T W    , 

 

(4) 

Now the strain energy appearing in the above equation can be expressed in terms of stress 

  and strain   vectors of the shell walls expressed in their local axis system (x-s-n) as:  

   1

2
TU dv  

  
 

(5) 

The relationship between the stress and strain vectors for a ply of the laminated shell wall 

having any orientation can be expressed using its constitutive matrix Q   following the 

‘classical lamination theory’ (CLT) as described in text books on mechanics of composite 

materials [4] as:  

   

11 12 16

21 22 26

61 62 66

55 54

45 44

0 0

0 0

0 0

0 0 0

0 0 0

x x

s s

xs xs

xn xn

sn sn

Q Q Q

Q Q Q

QQ Q Q

Q Q

Q Q

 
 

   
 
 

    
    
                     
    
           

(6) 
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Eq (6) above is expressed in terms of all five stress and strain components typically occurring 

in a shell element, but some of these components will not be present in the present problem 

due to the restrictive assumption adopted that the beam cross section will not change shape 

during deformation. Thus, there will be no bending and shear deformations in the s-n plane, 

which leads to 0ns   and 0s   (usually defined as a plane stress condition) or 0s   (i.e. 

a plane strain condition). By incorporating this the above equation reduces to:  

   
11 16

61 66

55

0

0

0 0

x x

xs xs

xn xn

Q Q

Q Q Q

Q

 
   

 

    
              

        

 
  


  

(7) 

where 1111

~
QQ  , 1616

~
QQ  , 6666

~
QQ   and 5555

~
QQ   for plane strain condition ( s = 0); and 

2212121111 /
~

QQQQQ  , /
~

26121616 QQQQ   22Q , 2216166666 /
~

QQQQQ   and 5555

~
QQ   for the 

plane stress ( s = 0) condition.  

The substitution of the expressions for the local displacement components, at any point of the 

shell wall in terms of the global displacement components (Eq. (3)), into the reduced strain 

vector (Eq. (7)), leads to: 

 
     

 
sin cos

cos sin 2

sin cos

y z x

y z x

xn y z

u x U y n z n nq

u s v x n r s

            
                   

       

     
    

  
  (8) 

where 

2 /c srds A      
(9) 

where
66

s

ds

Q
    , 

66

ds

Q
     . For a closed beam cross section profile cA  is the cross-sectional 

area enclosed by the wall mid-plane line/contour. For an open section profile, the warping 

function may be simplified to rds   . 

Eq. (8) can now be rearranged as multiplication of the cross section stiffness matrix ( H ) 

and the strain vector of the beam (  ) which contains global displacement parameters for 

1D beam as: 

     H    

 

(10) 

where 
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   T

y z x x y zU V W                 

   ,

1 sin cos 0 0 0

0 0 0 0 2 cos sin

0 0 0 0 0 sin cos

s

y n z n nq

H n r

   
 

     
 
 

  
  

 

  

 

(11) 

By substitution of Eqs. (7, 8, 10) into Eq. (5), the strain energy of the system can be expressed 

as:  

               1 1 1

2 2 2

TT T T
U dv H Q H dndsdx D dx           

  
(12) 

where  

        T
D H Q H dn ds C ds     

  
(13) 

All individual elements of the matrix [C] are derived explicitly in closed form. Similarly, all 

elements of the cross sectional stiffness matrix [D] are derived specifically and in closed form 

for open I section and closed box section profiles having generic geometric configurations. 

This includes general specification of cross section dimensions, and arbitrary lay-up (stacking 

sequence) of the cross section walls in terms of choice of material, number of plies, and ply 

orientations. The explicit expressions for the components of [C] and [D] are derived in a 

previous article by the authors [33].  

The kinematic energy can be expressed in terms of derivative of the displacement vector ( u ) 

and mass density of the laminate material (  ) as:  

    1

2
T

T u u dv   
  

(14) 

Using Eq. (3) the displacement vector  u  may be expressed in the form:  

    m

u

u v H

w

 
   
 
 



  

(15) 

where 

 
1 0 0 0 sin cos ( )

0 cos sin ( ) 0 0 0

0 sin cos ( ) 0 0 0
m

y n z n nq s

H r s n

q s

   
    
  

  
 
 

 

   T

x y zU V W     
  

(16) 

Taking the derivative of Eq. (15) with respect to regards to time (t) yields: 
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    mu H  
  

(17) 

And substituting Eq. (17) into Eq. (14), the kinetic energy can be expressed as  

 

            1 1

2 2

T T
T

m m mT H H dv F dx         
  

(18) 

where  

              T T

m m m m m m

A

F H H dsdn H H dn ds C ds      
 

(19) 

The individual elements of the matrices  mC and  mF  have been derived in explicit form and 

are presented in a previous paper by the authors [34]. 

The external forces considered in this study, which will be causing the buckling of the thin-

walled composite beams, are axial force ( 0P ) and end moment ( 0M ) loading. Both these 

forces induce only one stress component, the axial stress ( x ), which can be expressed in 

simple form and used to formulate the problem conveniently, i.e.: 

0
y

x
y

MP
z

A I
     (20) 

where A  and yI  are cross-sectional area and moment of inertia of the beam cross sectional 

area. It should be noted that the above equation will give a stress that can be defined as an 

equivalent stress. The aim here to estimate this stress in a simple way without affecting the 

results significantly rather than undertaking a detailed analysis for predicting the stress 

distribution over the individual layers precisely. The work done ( eW ) by the external forces P0 

and M0 can be expressed as: 

     2 21 1 1
( )

2 2 2

T

e x x g x g

V V V

v
W v w dv v w dv dv

w
    

         
     (21) 

Using Eq. (3), the geometric strain vector  g  in the above equation can be written as  

   g g g
'
x

V
v cos sin ( r n )

W [ H ]
w sin cos q

 
                   

 

 
 

 


. (22) 

Eqs. (14) and (16) may be substituted into Eq. (15) leading to: 

70



 Arash Asadi, Abdul Hamid Sheikh and Ole Thybo Thomsen 

       0 0

2 2

T T

e g g g g
yV L

P M
W dv z dv

A I
     

 

       0 0

2 2

T TP M
g g g g g g

yL L

P M
F dx F dx

A I
           

 

(23) 

where  

 

   T TP P
g g g g g g

A

F H H dsdn H H dn ds C ds                         
 

TM
g g g

A

F H z H dsdn           
 

(24) 

 

The individual elements of the matrices P
gC    are derived explicitly and provided in 

Appendix A. Also, all elements of the matrices P
gF    and M

gF    are derived for the 

considered generic I (open) and box (closed) beam sections and given in Appendix B. 

 

2.3. Finite Element Formulation 

For the 1D finite element implementation of the thin-walled beam theory based on the energy 

expressions presented in the previous section, quadratic Lagrangian interpolation functions 

are used for the axial deformation, while cubic Hermitian interpolation functions are used for 

the torsional deformation. This ensures the desired C1 continuity of the torsional rotation ( x ) 

as the strain vector (Eq. (8)) contains second derivative of x . As mentioned earlier, the 

bending deformations along with the shear deformations are treated in a different manner 

following the approach introduced in [32] to eliminate the difficulties faced by other existing 

formulations. Accordingly, the cross-sectional rotations y  and z  due to shear 

deformations are adopted as field variables instead of y  and z in addition to the bending 

displacements V and W. adopting a linear approximation of y , z , and a cubic 

approximation of V and W, these field variables (V, W, y   and z ) along with the remaining 

two field variables (U and x ) can be expressed in the form:   
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2
1 2 3U a a x a x     

2 3
4 5 6 7V a a x a x a x      

2 3
8 9 10 11W a a x a x a x      

12 13y a a x      

14 15z a a x     

2 3
16 17 18 19x a a x a x a x      

  (25) 

 

It should be noted that y  and z  are taken as field variables, but that they are not used as 

nodal degrees of freedom. Rather, the corresponding nodal degrees of freedom correspond to 

y  and z  utilising the following equations for y  and z  obtained by invoking Eqs. (25): 

 

2
12 13 5 6 72 3y y V a a x a a x a x        , 

2
14 15 9 10 112 3z z W a a x a a x a x           

 (26) 

 

The unknown constants (a1, a2, a3 ...... a19) appearing in Eqs. (25) can be replaced by the 

nodal displacement vector    by substitution of U , V , W (from Eqs. 25), y  and z  (Eq. 

(26)) at all three nodes of the beam element (Fig. 1), and x  (from Eq. 25) and its derivative 

x   2
17 18 192 3a a x a x   at the two end nodes as: 

    R a   or      1a R     (27) 

where    1 2 3 19

T
a a a a a  , [R] consists of coordinates (x values) of the three  

element nodes, and 

   1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3

T

x y z x y z x y z xU V W U V W U V W            .  

Utilising Eqs. (25-27), the strain vector of the beam    appearing in Eq. (9) can be 

expressed in terms of nodal displacement vector   in the form:  

   T

y z x x y zU V W                

       1[ ( )]{ } [ ( )][ ] [ ]S x a S x R B     
  (28) 

The above equation is substituted into Eq. (11) and rewritten to obtain the stiffness matrix [K] 

of the beam element as: 
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                  1 1 1

2 2 2

TT T T
U D dx B D B dx k        

 
 (29) 

Similarly, using of Eqs. (25-27), the vector    appearing in Eq. (15) can be expressed in 

terms of    as:  

      1
( )mS x R

 
 

 (30) 

By taking the derivative of Eq. (30) with respect to time (t),    may be expressed as:  

      1
( )mS x R

  
 

 (31) 

Eq. (31) is then substituted into Eq. (18) and regrouped to get:  

                 11 1
( ) ( )

2 2

T T TT T T

m m mT R S x F S x R dv M
        

  
(32) 

Again Eqs. (25-27) can be substituted into the vector  g  appearing in Eq. (16) and it can be 

expressed in terms of   as: 

     ' 1[ ( )]{ } [ ( )][ ] [ ]
T

g x g g gV W S x a S x R B          .  (33) 

Eq. (33) is now substituted into Eq. (23) which can be regrouped to yield:   

       

       

0 0

0 0

2 2

2 2

T TT TP M
e g g g g g g

yL L

T TP M
g g

P M
W B F B dx B F B dx

A I

P M
k k

   

   

                     

       

 
  (34) 

where 
1 TP P

g g g g

L

k B F B dx
A

              , and 
1 TM M

g g g g
y L

k B F B dx
I

               are the 

geometric stiffness matrices of the beam element corresponding to axial loading and end 

moment loading, respectively. 

Now the strain energy (Eq. (29)), the kinetic energy (Eq. (32)) and the work done by external 

loads (Eq. (34)) for all elements are substituted into the expression for the total potential 

energy of the structural system (Eq. (4)). This is then minimised with respect to the nodal 

displacements of the structure    to obtain the final governing equation of the beam in the 

form: 

      0 0 0P y M
g gK P K M K M           

  (35) 
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where  K  is the stiffness matrix of the structure,  M  is the mass matrix of the structure, 

and P
gK    and M

gK    are the geometric stiffness matrices for the axial load (P) and the end 

moments ( yM ), respectively, which are obtained by assembling their corresponding 

components of the individual elements.  

Eq. (35) can be reduced to a simple Eigenvalue problem by taking 0 0yM   or 0 0P   in 

addition to  M = 0, and the equation can be solved to obtain the critical value of the axial 

load ( CRP ) or the critical value of end moment ( CRM ) (the Eigen value). Eq. (35) can also be 

reduced to a simple Eigenvalue problem by assigning preload values 0 0yM   and 0 0P  , and 

following this solving the equation to obtain the natural vibration frequencies of the system as 

the Eigen values. Furthermore, for a composite beam subjected to static axial force and/or end 

moments ( 0
y

CRM M  and 0 CRP P ) the equation can be solved to obtain vibration 

frequencies of the preloaded system as the Eigen values. The composite beam problem 

exhibits multiple vibrational modes that will provide multiple Eigen values, as well as 

multiple Eigen vectors as mode shapes that can be extracted from   .  

So far, the axial force and end moments have been considered as static actions but in many 

practical problems, they are often found to include a dynamic component varying over time in 

addition to the static component. For such scenarios, a special type of instability can occur 

where even the algebraic summation of the static and dynamic (peak) components will be less 

than the static critical buckling load. This phenomenon is typically referred to as dynamic 

instability, and it occurs when the frequency of the dynamic load element exerts a significant 

influence on the structural response. This will be addressed in the following section.  

2.4. Dynamic Stability Formulation 

The axial force can be expressed as the sum of a static and a dynamic part, which can further 

be expressed in terms of critical the static buckling load ( CRP ) in the form: 

0 ( cos( ))ST Dyn CRP P P P t       (36) 

where the dynamic load part is assumed to be a simple harmonic excitation with a frequency 

of   for simplicity. In the absence of end moments, Eq. (36) can be substituted into Eq. (35) 

and written as: 

74



 Arash Asadi, Abdul Hamid Sheikh and Ole Thybo Thomsen 

 [ ] ( cos( ))[ ] { } [ ]{ } 0P
CR gK P t K M        (37) 

Eq. (37) has the form of a so-called Mathieu-Hill equation, and is a mathematical 

representation of the instability behaviour of a composite beam subjected to periodic axial 

loading [35] The region of instability is determined by using periodic solutions of the 

response with a period of T and 2T where 2T    . With this, the solution for the 

displacement vector can be expressed as [35]: 

     
1,3,5,...

( sin cos )
2 2k k

k

k t k t
a b





 
    (38) 

After substitution of Eq. (38) into Eq. (37), and considering only the first term in the series 

expansion only [35], the following is obtained: 

 2[ ] ( 0.5 )[ ] 0.25 [ ] { } 0P
CR g abK P a K M       (39) 

 

Eq. (39) is a standard Eigenvalue problem and it is solved twice corresponding to positive and 

negative signs of   to determine the two frequencies indicating the boundaries of the 

instability region. 

Similarly, the end moment can be written as the sum of a static and a dynamic part, which can 

further be expressed in terms of the critical static buckling load ( CRM ) as: 

( cos( ))y y y
ST Dyn CRM M M M t      (40) 

where it is assumed, for simplicity, that the dynamic loading part can be modelled as a simple 

harmonic excitation with frequency of  . In the absence of axial force, the above equation 

can be substituted into Eq. (35) and rewritten as: 

 [ ] ( cos( ))[ ] { } [ ]{ } 0y M
CR gK M t K M        (41) 

Similarly, the regions of instability for Eq. (41) can be determined using periodic solutions 

with the Period T and 2T where 2T   . With this, the solution for the displacement vector 

can be expressed as [35]: 

     
1,3,5,...

( sin cos )
2 2k k

k

k t k t
c d





 
    (42) 

After substitution of Eq. (38) into Eq. (37) and considering only the first term in the series 

expansion [35] the following relation is obtained: 
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 2[ ] ( 0.5 )[ ] 0.25 [ ] { } 0y M
CR g cdK M K M        (43) 

As before, Eq. (43) is a standard Eigenvalue problem and it is solved twice corresponding to 

positive and negative signs of   to determine the two frequencies indicating the boundaries of 

the instability region. 

 

 

3. RESULTS AND DISCUSSION 

In this section, numerical examples of thin-walled composite beams having I and box sections 

are presented based on solutions obtained using the proposed model. Firstly, the vibration 

behaviour of composite beams preloaded with axial force and/or end moments is presented. 

Secondly, the predictive results are benchmarked and compared against results available in 

open literature. Finally, predictions regarding dynamic instability of composite beams are 

presented and discussed.   

 

3.1. Vibration of Preloaded Composite Beams  

3.1.1. Vibration of a cantilever mono-symmetric I section beam under axial preload  

The behaviour of a 1 m long cantilever beam having a mono-symmetric I section is 

investigated for different stacking sequences for its laminated walls. The web of the beam is 

50 mm deep and the width of its top and bottom flanges are 30 mm and 50 mm, respectively. 

The web and flanges are made of 16 plies, each 0.13 mm thick, with a symmetrical lay-up 

4[ ] S . The material used for all the layers is glass-epoxy having the following properties: 

E1=53.78GPa, E2=17.93GPa, G12=G13=8.96GPa, G23=3.45GPa, 12=0.25, =1968.9 kg/m3. 

To show the convergence behaviour of the proposed model with respect to element size, a 

specific design case from Table 1 having the stacking sequence of 4[ 45] S  and subjected to an 

axial preload of -781.2 N (see Table 1, θ = 450) is considered and the results are presented in 

Fig. 3. Figure shows that the analyses have converged with eight elements or more along the 

length of the beam. Based on this observation, all subsequent analyses of composite beams 

are analysed with 10 elements unless mentioned otherwise.   
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Fig. 3: Variation of first vibration frequency of a simply supported composite I-section        

( 4[ 45] S ) beam subjected to axial preloading beam vs. number of elements 

The beam is analysed for six different values of   and three different axial preload values, 

and the vibration frequencies predicted are presented in Table 1. Table 1 also shows 

predictions by Vo & Lee [36] for the same problem, and it is observed that there is a good 

correlation between the predictions of the present model and the results of [36]. However, the 

predictions of the present model are slightly lower than the results of [36], and this slight 

discrepancy is due to the contribution of shear deformations considered in the model 

presented herein.  

 

Fig. 4: Effect of axial preload (P0) on the vibration frequency of a cantilever mono-symmetric 

composite I- beam 
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Table 1: Natural Frequencies (Hz) of the cantilever mono-symmetric composite I-beam 

with a symmetrical layup 4[ ] S  under different axial preloads  

  

(deg.) 

Axial 

Preload 

(N) # 

Kim & Sin [37]* Vo & Lee [36]* Present + 

f1 f2 f3 f1 f2 f3 f1 f2 f3 

0 

1499.05 19.09 43.27 59.24 19.09 43.27 59.30 18.73 42.69 61.24 
0 26.30 46.47 61.99 26.30 46.47 62.05 25.93 45.91 63.83 

-1499.1 31.50 49.41 64.59 31.50 49.41 64.65 31.11 48.86 66.28 

15 

1406.9 18.51 44.52 56.21 18.46 44.39 56.27 18.14 43.71 58.18 

0 25.51 47.35 58.92 25.48 47.22 58.98 25.14 46.57 60.73 

-1406.9 30.57 49.97 61.48 30.54 49.85 61.55 30.18 49.22 63.16 

30 

1100.55 16.40 46.34 48.30 16.30 45.16 48.36 16.06 44.35 50.11 

0 22.64 48.33 50.77 22.56 47.21 50.83 22.30 46.42 52.43 

-1100.6 27.16 50.21 53.10 27.09 49.15 53.15 26.79 48.38 54.64 

45 

781.2 13.84 40.14 45.88 13.71 40.18 42.79 13.54 41.68 41.96 

0 19.13 42.24 47.27 19.02 42.29 44.29 18.82 43.47 43.67 

-781.2 22.97 44.22 48.59 22.89 44.27 45.72 22.63 44.91 45.55 

60 

620.75 12.34 35.69 42.65 12.22 35.73 39.16 12.07 37.08 38.38 

0 17.06 37.58 43.83 16.96 37.62 40.45 16.78 38.85 39.69 

-620.75 20.49 39.35 44.96 20.39 39.39 41.69 20.18 40.53 40.94 

75 

567.25 11.79 34.27 37.99 11.73 34.31 36.48 11.58 35.59 35.77 
0 16.29 36.07 39.21 16.24 36.10 37.76 16.07 37.06 37.28 

-567.25 19.56 37.75 40.37 19.51 37.79 38.97 19.31 38.29 38.88 

* Without shear deformation     + With shear deformation       # Tension has negative sign 

 

To study the effect of axial preload (P0), the composite beam is analysed by varying the 

magnitude of P0 over a wide range for   = 15º, 30º, 45º and 60º, and the results are shown 

Fig. 4. It is clearly seen from Fig. 4 that axial preloading exerts a stiffening effects on the 

natural frequency of the beam for axial tension loading, and the opposite, i.e. a softening 

effect on the on the natural frequency for axial compression loading. 
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3.1.2. Vibration of a simply supported box section beam preloaded with axial force and end 

moment loading 

The effects of different preloads on the vibration frequencies of a composite box section beam 

of width 100 mm, depth d = 200 mm and length l = 8 m is studied for different laminate lay-

ups of the webs. All walls are assume to be made of two layers, each having a thickness of 2.5 

mm (total thickness: t = 5mm), with assumed material properties of E1/E2=25, G12/E2=0.6, 

G13=G23 =G12, 12=0.25. The top and bottom flanges are assumed to have unidirectional 

laminate lay-ups  20 , while the webs have   lay-ups.  

Initially, the box analysed assuming that it is only subjected to pure axial compressive loading 

(no end moment) to determine the critical value crP , and secondly analyses are conducted 

assuming pure end moment loading (no axial force) to evaluate crM . Following this, the first 

three non-dimensional vibrational frequencies [
2( / )l d    ] are calculated for three 

different combinations of axial and end moment preloads for four different fibre angles  , 

and the results are displayed in Table 2 along with predictions of Vo et al. [13]. From Table 2 

it is seen that the predictions of the model posted here correlate well with the predictions of 

[13]. However, the present model predicts slightly lower frequencies than reported by Vo et 

al. [13], which is due to the effect of the shear deformations that are included in the proposed 

model. Also, Table 2 shows that a change of axial preload from compression to tension results 

is a rapid increase of the vibrational frequencies due to the stabilizing effects of the axial 

tension, as can be intuitively be expected. 
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Table 2: Non-dimensional natural frequencies of a simply supported composite box-beam 

preloaded with axial and end moments (flanges: 2[0]  and webs:   ) 

 

(deg.) 

Pre 

Load # 

Non-dimensional Natural frequencies 

Present +  Vo et al. [13]* 

1  2  3   1  2  3  

0 

0 .5 crP  

0.5 crM  

6.504 16.350 37.892  6.656 16.704 39.937 

30 4.022 14.673 23.755  4.088 14.750 24.511 

60 2.827 13.964 16.775  2.868 14.097 17.209 

90 2.764 13.894 16.404  2.804 14.068 16.823 

0 

0.5 crM  

9.342 18.047 40.841  9.401 18.392 42.041 

30 5.763 15.410 25.551  5.780 15.487 25.835 

60 4.050 14.350 18.031  4.055 14.481 18.137 

90 3.959 14.265 17.631  3.964 14.436 17.730 

0 

0.5 crP  

0.5 crM  

11.494 19.597 43.563  11.499 19.937 44.034 

30 7.087 16.112 27.229  7.078 16.191 27.093 

60 4.980 14.726 19.205  4.966 14.855 19.019 

90 4.869 14.627 18.779  4.854 14.795 18.591 

* Without shear deformation     + With shear deformation       # Tension has negative sign 

 

The same box beam is now reanalysed changing the laminate lay-ups of the top flange and 

left web to  2
 , while specifying  20  lay-up for the other walls to activate more coupling 

effects. Similarly, the effect of preloading (axial and end moment loads) on the non-

dimensional natural frequencies are investigated for different lamination angles  . The results 

obtained by the proposed model are presented in Table 3 along with results published in [13]. 

Similar trends are seen as for the previous comparative studies (Tables 1 and 2).   
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Table 3: Non-dimensional natural frequencies of a simply supported composite box-beam 

preloaded with different axial and moments (top flange and left web:  2
 ; other walls:  20 ) 

  

(deg.) 

Pre 

Load 

Non-dimensional Natural frequencies 

Present +  Vo & Lee [13] – FEM * 

1  2  3   1  2  3  

0 
0 5 cr. P   

crM0.5

 

6.464 16.337 38.914  6.656 16.704 39.937 

30 4.564 12.790 23.102  4.656 13.113 23.652 

60 3.047 11.622 18.168  3.135 11.918 18.624 

90 2.936 11.533 17.739  3.020 11.867 18.095 

0 

crM0.5

 

9.163 17.944 40.988  9.401 18.392 42.041 

30 6.387 13.751 24.832  6.555 14.139 25.438 

60 4.311 12.167 19.146  4.429 12.458 19.650 

90 4.157 12.017 18.637  4.269 12.375 19.074 

0 
0 5 cr. P   

crM0.5

 

11.172 19.507 42.933  11.499 19.937 44.034 

30 7.813 14.730 26.348  8.038 15.093 27.118 

60 5.308 12.610 20.106  5.427 12.973 20.629 

90 5.116 12.554 19.494  5.230 12.859 20.007 

* Without shear deformation  + With shear deformation 

 

Further, the vibration behaviour of a box beam subjected to axial preloading ( 0P ) is now 

investigated by varying the preload over a wide range from tension to compression (from 

0 / 1crP P    to 0 / 1crP P  ) for a number different values of  the fibre angle  . Fig. 5 shows 

the predicted variation of the non-dimensional frequency. As expected, Fig. 5 displays a 

monotonic decrease of the vibration frequency with increasing axial load going from tension 

to compression for all fibre angles. Fig. 5 also confirms the reduction of the vibrational 

frequency of the box beam as the axial stiffness reduces with increasing fibre angle  , albeit 

it is noted that this reduction diminishes (and almost vanishes) for fibre orientation angles   

above 450.  
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Fig. 5: Effect of axial preload on the first vibration frequency of a simply supported 

composite box-beam 

 

Fig. 6: Interaction curves for vibration frequencies of simply supported composite box 

section beam with respect to axial force and end moment loads 

 

Finally, the influence of both axial and end moment loads (combined preloading) on the 

vibration characteristics of composite box beam is investigated for two specific fibre angles; 
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030  and 600. By varying the axial load (from 0 / crP P = 0 to 0 / crP P = 0.875 in increments of 

0.125) and end moments ( 0 crM M ), the composite box beam is analysed, and the predicted 

frequencies ( ) are plotted in Fig. 6 as interaction curves with respect to the non-

dimensional axial force ( 2 3
0 2/ ( )P P l d tE ) and end moments ( 3

0 2/ ( )M M l d tE ). Fig. 6 

shows that the amplitude of the moment-frequency interaction curves reduces as the axial load 

increases. Similarly, the amplitude of the 3D interaction surface that correlates the critical 

axial load, critical end moment and frequency reduces with increasing fibre angle ( ).  

Interestingly, as the axial preload increases, a monotonic reduction of the vibration frequency 

is observed. Moreover, as the axial preload approaches crP , the interaction curves vanish to a 

single point, representing the degenerated case of natural vibration with zero frequency and 

zero end moment (preload). Similar behaviour is also observed when end the moment 

approach crM .  

 

3.2. Dynamic Instability  

3.2.1. Dynamic stability of a simply supported box section beam preloaded with axial force  

The dynamic stability of a composite box section beam of width 100 mm, depth d = 200 mm 

and length l = 8 m is studied for three different laminate lay-ups of the webs. All walls are 

assumed to be made of four layers, each having a thickness of 2.5 mm (total thickness: t = 

10mm), with material properties of E1/E2=25, G12/E2=0.6, G13=G23 =G12, 12=0.25. The top 

and bottom flanges are assumed to have unidirectional laminate lay-ups  40 , while the webs 

have  2
 lay-ups. The non-dimensional natural vibration frequency (

2( / )l d    ) 

and the critical axial buckling loads are estimated by using the proposed model, and the 

results are presented in Table 4. For the validation of the predictions of the model proposed, 

the box beam structure is analysed using the commercial finite element code Abaqus. The 

results obtained from this detailed finite element model based on assemblage of laminated 

shell elements are included in Table 4. Moreover, the dynamic instability ranges predicted by 

the proposed model as well as the detailed finite element model (Abaqus) are presented in 

Fig. 7, where the static component is taken as / 0.2ST crP P   while the dynamic 

component /Dyn crP P   is varied over a wide range for three different values of the fibre 

angle ( ). Although the present model utilizes a formulation with a significantly reduced 
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number of degrees of freedom for finite element analyses, Table 4 and Fig. 7 show that the 

proposed model performs very well. However, minor deviations between the results obtained 

from the two modelling techniques is observed. This is due to the difference in the modelling 

of the beam ends in imposing the axial load as well as the support conditions. The stiffness of 

the beam is increased with lower values of   (all fibres oriented along the beam axis when   

= 0) which is clearly reflected in the increase of frequencies.    

 Table 4: Normalized Natural frequencies and critical axial buckling load of a simply 

supported composite box-beam (top flange and left web:  40 ; other walls:  2
 ) 

    crP  

Abaqus Present Abaqus Present 
00 10.434 10.818 33.118 35.585 

300 6.313 6.663 12.115 13.500 
900 4.082 4.574 5.068 6.362 

 

 
Fig. 7: Non-dimensional dynamic instability regions for simply supported composite box 

section beam subjected to a static axial load factor ( 0.2 ) (flanges:  40 ; webs:  2
 )  

 

The performance and efficiency characteristics of the proposed 1D beam finite element model 

and the detailed FE shell element model (Abaqus) used for analysing the box beam structure 

(both models with adequately converged solutions) are presented in Table 5. The table clearly 

shows that proposed model requires considerably less number of degrees of freedom (DOF), 

more than 90 times lower than the shell FE model, to achieve a similar degree of accuracy. 

This difference in efficiency becomes even more pronounced when considering the number of 
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floating point operations (FLOPS) needed to complete the analysed. For an example, the 

number of FLOPS required to calculate the inverse of the stiffness matrix having a size of 

n×n will be in the order of n3, which indicates that the computational effort to conduct this 

operation using the detailed finite element model (Abaqus) is approximately 760,000 times 

higher than the proposed model for a simple static analysis. This difference in performance 

and efficiency will be further magnified further when solving an Eigenvalue problem, as is 

necessary for vibration and buckling problems, due to the iterative nature of such a solution. 

This clearly shows that the proposed model predicts an accurate behaviour of thin walled 

composite beams with great computational efficiency. 

Table 5: Comparison of model performance and efficiency for simply supported beam 

between the proposed model and shell FE model developed using Abaqus 

Model Element Type Number of 
Elements 

Number 
of Nodes 

Degrees of 
Freedom 

FLOPS 
Matrix Inversion 

Present Beam 
3 Noded 10 21 127 2.05E+06 

Abaqus Shell 
4 Noded 1920 1932 11592 1.56E+12 

Ratio Abaqus/ 
Present 192 92 91 7.60E+05 

 

3.2.2. Dynamic stability of a simply supported box section beam preloaded with axial force 

and end moments  

The composite box section beam discussed in section 3.1.2 is now investigated with respect to 

its behaviour in terms of dynamic instability region within two limiting frequency plots. 

Initially, an axial preload 0 ST DynP P P   is assumed, where the static component is taken to be 

/ 0.5ST crP P   , whilst the dynamic component is varied over a wide range and 

/Dyn crP P  . The dynamic instability range predicted by the proposed model is shown in Fig. 

8 for four different values of the fibre angle  . The dynamic instability region is found to 

move towards the lower frequency region with increasing values of   (i.e., reduction of axial 

stiffness) as expected. Moreover, the range of the instability region is narrowed with 

increasing   values. Now the value of the load parameter  is varied over a range for a 

specific value of the fibre angle ( 045  ), and the predicted dynamic stability regions are 

shown in Fig. 9. It is observed that the dynamic component of the preload can be larger than 

the critical buckling load crP  obtained for the static case, i.e.   > 1, when the static 
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component of the preload is less than 50% of crP  (i.e.  0.5). For example, the value of DynP

is found to be 1.6 crP  (i.e. 1.6  ) for 0.2ST crP P  (i.e. 0.2  ).  

Now the beam is analysed with imposed end moments instead of axial preloading, and the 

non-dimensional results (
2( / )l d    ) predicted by the proposed model are presented 

in Figs. 10 and 11.  In Fig. 10a, the dynamic instability region is plotted for five different 

values of   (Fig. 10a) taking 0.5  (static component of the end moment is 50% of the 

critical moment for static loading conditions). Fig. 11 shows the instability regions for 

different values of   corresponding to a specific value of the fibre angle ( 030  ). Similar to 

Fig. 8, Fig. 10a shows a shift of the dynamic instability regions towards the lower frequency 

domain with increasing values of  . Also, it is seen that the range of the instability region is 

narrowed with increasing values of  , and this pattern of behaviour is similarly to the trend 

observed in Fig. 9. Moreover, a similar trend of movement of the instability regions towards 

the lower frequency domain with increasing   is observed in Fig. 10b.  

In Fig. 11, the shift of the instability regions with increasing   values appears to display what 

resembles an arbitrary or erratic fluctuation. However, a closer examination of the mode 

shapes of the beam (not shown here) indicates that the cause of this behaviour is that the 

deformation of the beam changes from lateral instability to coupled lateral-torsional 

instability. Moreover, this sudden change of type/mode of instability also affects the gradual 

smooth variation of the bounding curve as observed for the lower bounding curves of  0.2 

and 0.4.     

 

Fig. 8: Dynamic instability region for simply supported composite box section beam 

subjected to a specific static axial load ( 0.5 ) (flanges: 2[0] ; webs: [ ] ) for different 

values 
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Fig. 9: Dynamic instability region for simply supported composite box section beam 

subjected to varying static axial loads  0 to 0.9 (flanges: 2[0] ; webs: 0[ 45 ] ) 

 

 
Fig. 10a: Dynamic instability region for simply supported composite box section beam 

subjected to specific static end moment loads ( 0.5 ) (flanges: 2[0] ; webs: [ ] ) for 

different  values 

 
Fig. 10b: Magnified view a critical region of Fig. 10a around  =20  

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 2 4 6 8 10 12 14






0

0.2

0.4

0.6

0.8

0.9

0

0.2

0.4

0.6

0.8

0 5 10 15 20 25 30






0
30
45
60
90

0

0.2

0.4

17 18 19 20 21 22 23






0
30
45
60
90

87



 

 
Fig. 11: Dynamic instability region for simply supported composite box section beam 

subjected to varying static end moment loads  0 to 0.9 (flanges: 2[0] ; webs: 0[ 30 ] ) 

 

3.2.3. Dynamic stability of a simply supported I section beam preloaded with axial force and 

end moments  

A composite I section beam having a span of l = 8 m is investigated to study its dynamic 

instability behaviour when subjected to different combinations of preloads. It is assumed that 

both flanges are 100 mm wide, while the section is 200 mm high. All section walls are 

assumed to be made of two plies, each 2.5 mm thick (total thickness: t = 5 mm), with 

unidirectional 2[0]  lay-up for the web, whilst the both top and bottom flanges have    lay-

up. The material used for all the layers is assumed to have the following properties: E1/E2=25, 

G12/E2=0.6, G13=G23 =G12, 12=0.25. The dynamic stability regions when the beam is 

subjected to pure axial loading are first determined for different fibre angles  , assuming a 

specific value of the static axial load, 5.0 . The predicted results are presented in Fig. 12.  

Similarly, the effects of static axial loading on the dynamic instability regions of the I section 

beam for a specific fibre angle, 045  , are shown in Fig. 13, where the value of   is varied 

gradually from 0 to 0.9.  Following the same procedure, the dynamic stability behaviour of 

the I section beam subjected to end moments is studied for   = 0.5, and the results predicted 

by the model are plotted in Fig. 14. Also, the effects of static end moments on the dynamic 

instability regions of the I section beam with the fibre orientation angle prescribed to 030   

are presented in Fig. 15.  

As demonstrated before, increasing values of the fibre angle   reduces the cross sectional 

stiffness, which in turn leads to a softening of the beam with corresponding reduced 
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frequencies. This is demonstrated in the form of a shift of the bounding instability region 

towards the lower frequency range in Figs. 12 and 14. A similar behaviour is observed in 

Figs. 13 and 15, where the softening of the beam, in the form of reduction of its effective 

stiffness, is caused by an increase of the static preload. In Figs. 15, the maximum value of the 

upper bounding frequency curves is found to be stabilised at a fixed value (e.g. 5.13 Hz for all 

the cases of ), which corresponds to the static buckling load.      

 

Fig. 12: Dynamic instability region for simply supported composite I-section beam subjected 

to a specific static axial load ( 0.5  ) (flanges: [ ] , web:  20 ) 

 

Fig. 13: Dynamic instability region for simply supported composite I section beam subjected 

to varying axial preloading  0 to 0.9 (flanges: 0[ 45 ] , web:  20 ) 
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Fig. 14: Dynamic instability region for simply supported composite box section beam 

subjected to specific static end moment loads ( 0.5 ) (flanges: [ ] , web:  20 ) 

 

Fig. 15: Dynamic instability region for simply supported composite box-section beam 

subjected to varying static end moment loads  0 to 0.9 (flanges: 0[ 30 ] , web:  20 ) 

4. CONCLUSIONS 

The paper has presented a new model for the static and dynamic analysis of slender composite 

beams structures. The new model is based on an efficient one-dimensional beam finite 

element formulation for dynamic stability and includes the effects of axial and end moment 

preloads. The formulation is applicable for the analysis of both open and closed beam cross 

sections, and encompasses the effects of axial, torsion, bi-axial bending and transverse shear 

deformations, as well as out of plane cross-sectional warping. The cross-sectional stiffness 

matrices of the composite section are derived analytically and include all possible couplings 

between the abovementioned modes of deformation. The effect of shear deformation of the 

beam section walls is included in the formulation, which typically demands a C0 continuous 
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finite element formulation for the bending deformations coupled with transverse shear 

deformations. Such a formulation is susceptible to shear locking problem, which may be 

avoided by using the reduced integration technique to supress the problematic terms related to 

shear energy. However, this affects the solution accuracy and leads to stress oscillations and 

other related issues due to inadequate integration of the energy terms of the structural system. 

The issue is circumvented in this paper by adopting a C1 continuous formulation that enables 

full integration for accurate evaluation of the various energy terms. This is achieved by 

adopting a novel formulation for coupled bending and shear deformation. The proposed 

model is used to analyse a series of challenging example problems involving thin-walled 

laminated composite beams having open (I) and closed (box) sections, accounting for 

different boundary conditions, section wall stacking sequences, as well as different loading 

conditions. For most of the presented example cases, the predicted results for the vibration of 

preloaded thin-walled composite beams are compared against analytical and/or numerical 

results available in literature, and a very good match is found. However, due to a lack of 

similar studies in open literature for dynamic instability, the commercial and generally 

recognised finite element code Abaqus is used to verify the dynamic instability predictions 

generated by the proposed model. Collectively, the comparative results demonstrate that the 

proposed model performs very well. Finally, an extensive parametric study is conducted to 

demonstrate the effect of various important design parameters on the dynamic stability 

characteristics of slender open and closed section composite beam structures. This also 

includes complex load interactions that occur by the simultaneous application of axial and/or 

end moment loadings. This has produced new results, which are anticipated to be useful as 

benchmarks for future research in this area.   
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APPENDIX A 

The non-zero elements appearing in the upper triangle of the symmetric matrices [Cg] (Eq. 

(24)) are presented in their explicit form as follows (applicable for I and box sections):  
 

11 22
gP gPC C A  , 

gP
13 cos ( sin cos )C B A q r      

23 sin ( cos sin )gPC B α A q α r α   , 
2 2

33 2 ( )gPC C rB A q r     

where 2 3( , , , ) (1, , , )
t

A B D F n n n dn   

APPENDIX B 

The non-zero elements appearing in the upper triangles of the symmetric matrices P
gF    and 

M
gF    (Eq. (24)) are presented in their explicit form as follows (applicable for I section, Fig. 

16(a)):  
 

322112211 dAAbAbFF ggP  , )2()2( 22211113 Bd/AbBd/AbF gP  , dBFgP
323   

 

 

and  

 

)5.0()5.0( 2221112211 BdAbBdAbFF gMMg  ,  

12/)25.0()25.0( 3
322

2
2211

2
1131 dADdBdAbDdBdAbF Mg  , 

24/)242/361832( 111
2

1
3

1
2
11

2
1133 FdDBdAdBbdAbbF Mg 
2 2 3 2

2 2 2 2 2 2 2 2 2          - 2 3 18 36 2 24 24b (b dA b B d A d B dD / F ) /      

 

(a)                                     (b) 

Fig. 16: Thin-walled beam having open and closed section 
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The non-zero elements appearing in the upper triangle of the symmetric matriec  P
gF  and 

 M
gF  (Eq. (24)) are presented in their explicit form as follows (applicable for box section, 

Fig. 16(b)):  
 

11 22 1 2 3 4
gP gPF F b( A A ) d( A A )     , 13 2 1 2 12gPF bd( A A ) / b( B B )    , 

23 4 3 4 32gPF bd( A A )/ d(B B )    , 

3 2 2
33 1 2 1 2 3 4 1 2 3 412 4 4gPF b ( A A ) / bd ( A A )/ b d( A A ) / bd( B B B B )           

 

          
3

1 2 3 4 3 412b(C C ) d ( A A ) / d(C C )       

and 

 

11 22 1 2 1 22gM gMF F bd( A A ) / b( B B )     , 

2 3
13 1 2 1 2 1 2 3 44 12gMF bd ( A A ) / bd( B B ) b( D D ) d ( A A ) /        , 

3 3 3 2
33 1 2 1 2 1 2 1 224 12 8 3 4gMF b d( A A ) / b ( B B ) / bd ( A A ) / bd ( B B )/                 

           1 2 1 23 2bd( D D )/ b( F F )     
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Abstract: An efficient modelling technique based on one dimensional beam finite element 
analysis is proposed for buckling of thin-walled laminated composite beams having open/closed 
sections. The proposed formulation is quite generic that can accommodate any stacking sequence of 
individual walls and consider all possible couplings between axial, shear, bending and torsional modes 
of deformation. The effect of transverse shear deformation of walls and out of plane warping of the beam 
section is incorporated where the warping can be restrained or it can be free. The incorporation of shear 
deformation in the finite element formulation of the beam has imposed difficulties, which are successfully 
addressed by using a concept proposed by one of the authors. Numerical examples of open I section 
and closed box section beams are solved by the proposed approach and the effect of axial load and 
end moments is studied. The results are compared with those available in literature which show a very 
good performance of the proposed model.  
 
Keywords: Thin-walled composite beams, Buckling, Shear deformation, Warping, FE model.  

1. Introduction  

The application of thin-walled laminated composite beams is found in various engineering constructions 
such a wind turbine blades, helicopter rotor blades and the many other beam like long structures. The 
behaviour of this type of structures is complex due to thin-walled cross-sectional geometry and multi-
layered laminated composite walls with arbitrary ply orientations. A detailed finite element modelling of 
these structures using 3D or shell elements can provide a good solution of this problem, but such 
modelling scheme is highly demanding computationally and may not always be affordable in practice. 
In order to address this problem, a group of researchers tried to develop techniques for modelling these 
structures using 1D beam elements with enhanced cross-sectional features so as to achieve a 
computational efficient solution of the problem [1-8]. However, the formulation of these techniques 
involves new challenges in capturing all effects of thin-walled composite beam sections and their 
coupling. 
 
The existing research in this direction can be divided into two broad group based on the approaches 
used to determine the constitutive matrix of the beam element. The first approach is based on ‘analytical 
techniques’ while the second approach utilises a 2D cross-sectional analysis utilising a 2D finite element 
model for calculating cross-sectional matrixes. Hodges and co-workers [3] may be regarded as the major 
contributors toward the development of the second approach which seems to have merit but this 
approach needs a 2D cross-sectional finite element analysis to evaluate the cross-sectional stiffness 
coefficients. On the other hand, the first approach (analytical approach) adopted in this study does not 
need this 2D finite element analysis in addition to complex mathematical treatments involved with the 
second approach.  
 
The study of Vo and Lee [8] is one of the representative examples belonging to the first approach where 
the cross-sectional matrices are derived analytically. The focus of this specific study [8] is on the buckling 
of thin-walled composite beams having open sections where the effect of shear deformations and 
lamination schemes on axial buckling behaviour has been investigated. The formulation proposed by 
Vo and Lee [8] considered the effect of coupling between flexure, torsion and shear deformations 
following the first-order shear deformable beam theory. They used a quadratic isoparametric element 
having three nodes where each node contains seven unknowns (three displacements, torsional rotation, 
two bending rotations and warping rotation). Though the isoparametric formulation helped to simplify 

98



 

the derivation of the element metrics, the treatment of the torsional deformation made the formulation 
unappealing as it involved non-physical parameters. Vo and Lee [9] have also studied the effect of 
lamination schemes, axial loads and end moments on vibration and buckling behaviour of thin-walled 
composite box beams using a different model where this model did not include the effect of shear 
deformation which helped to get a reduced number (four) of field variables (three displacement and 
torsional rotation). The axial displacement is expressed using linear Lagrangian interpolation functions 
while cubic Hermitian polynomial functions are adopted for the remaining displacement fields. This 
helped to develop a two node heterogeneous beam element having seven degrees of freedom per node 
(three displacements, torsional rotation, derivatives of two bending displacements and derivative of the 
torsional rotational angle). Subsequently, Vo and Lee have extended their model [9] to vibrational and 
buckling analysis under axial loads and end moments [10].  
 
Kim et al. [11] have investigated the effects of ply orientations of laminated walls, boundary conditions 
and axial loads on the flexural-torsional stability of thin-walled composite beams having open cross 
sections. Their model [11] utilised four filed variables (three displacements and torsional rotation) where 
the axial displacement is approximated using linear Lagrangian interpolation functions and cubic 
Hermitian functions are used for the other field variables in a manner similar to that of Vo and Lee [9]. 
They studied the behaviour of symmetrically laminated doubly and mono symmetric I-beams and 
arbitrary laminated mono-symmetric I-beams. Later, Kim et al. [12] have extended their formulation for 
modelling beams having non-symmetrical laminations. Kim et al. [13] have extended their model further 
for analysing thin-walled composite beams having closed cross section and studied the effects of 
different boundary conditions, lamination schemes, and axial loads on the stability of symmetrically 
laminated box beams.  
 
In this paper, a comprehensive formulation for modelling buckling of thin-walled laminated composite 
beams having both open and closed sections under axial loads and end moments is presented. The 
different modes of deformations and their coupling considered in the development of the proposed 
closed-form analytical model are axial, torsional rotation, bi-axial bending, bi-axial shear as well as 
warping for the torsional deformation. The cross-sectional matrixes are derived explicitly specifically for 
the open I section and the closed box section. The propose formulation has the provision of considering 
plane stress condition as well as plain strain condition of a lamina.  
 
The 1D beam problem is solved using finite element approximations in an innovative manner so as to 
avoid any involvement of non-physical parameters as found in the formulation of Vo and Lee [8]. This is 
achieved by using mixed approach where a C1 continuous finite element formulation using cubic 
Hermitian polynomials is applied for the torsion while other deformations are modelled using C0 
continuous formulations. The treatment of shear deformations within a C0 formulation needs reduced 
integrations for avoiding shear locking problems but the implementation of the reduced integration 
technique within the present formulation is a challenge due to mixing C1 and C0 formulations. This 
problem is addressed satisfactorily utilising the concept proposed by Sheikh [14], which does not require 
the reduced integration technique. For the 1D beam finite element analysis, a three node beam element 
as shown in Figure1 has been developed where each end node contains 7 degrees of freedom (three 
displacements, three rotations and the derivative of the torsional rotation) and the middle node contains 
5 degrees of freedom (three displacements, two bending rotations). 
 

 

Figure 1 – A Typical Beam Element 

 
A computer code is written in Matlab to implement the present formulation. Numerical examples of thin-
walled composite beams having different cross sections and other conditions are analysed by the 
proposed model and the results obtained in the form of critical axial loads and end moments for buckling 
and mode-shapes are validated with the available results in literature. These results demonstrate a very 
good performance of proposed finite element model.  
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2. Formulation  

Figure 2 shows a representative segment of a shell wall of a thin-walled composite beam along with two 
orthogonal axes system and displacement components. In this figure, x-y-z is taken as the global axis 
system where x is directed along the beam axis and passing through the centroid of the beam section, 
while x-s-n is the local axis system where x-n plane passes through the tangential plane of the beam 
wall mid plane (local x-axis is parallel to the global x-axis) and n is directed along the wall thickness. 
The displacement components at the mid-plane of the shell wall in the local coordinate system (x-s-n) 
can be expressed in term of the global displacement components of the beam [1] as 
 

xzy zyUu   , 

xrWVv   sincos , 

xqWVw   cossin , 

(1) 

 

where  is the warping function, x  is the torsional rotation and y, z are bending rotations of the cross-

section of the beam along x and y, respectively. These bending rotations can again be expressed as 

yy V  and zz W  , where 
y  and 

z  are shear rotations of the beam section about z 

and y, respectively, and V  ,W   and 
x  are respectively the derivatives of V, W and 

x  with respect to x. 

 

 

Figure 2 – Cross-section of a portion of a beam shell wall along with local and global axes system and 
displacement components 

 
Although the effect of warping displacements in beams having closed sections is not as significant as 
that of beams with open sections [14], warping displacements are considered for both type of cross 
sections. The displacement at any point of the shell wall at a distance n from the mid-plane may be 
expressed using bending and shear deformation of the beam as 
 








 



 xnx

w
nuu  , 








 



 sns

w
nvv  , 

ww  , 

(2) 

 

where xn  and sn are shear rotations of the shell wall section about s and x , respectively. It is assumed 

that 0sn  whereas 
xn  can be expresses in terms of the corresponding global components y(  and 

)z  as  cossin zyxn  .  
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Substituting the above relationship along with Eq. (1) in the above equation (2), the displacements at 
any point within the shell wall along its local axis system (x-s-n) can be expressed in terms of the global 
displacement components of the 1D beam as 
 

      xzy nqnznyUu   cossin , 

  xnrWVv   sincos , 

xqWVw   cossin . 
 

(3) 

 
With the deformation kinematics of the beam presented in Eq. (3), the governing equation for the 
buckling of the beam can be derived using energy principle. The total energy of a structure consists of 
strain energy (U) and energy or work done by the externally applied axial loads or end moments (Ug), 
which can be used to derive the stiffness matrix  K  and the geometric stiffness matrix  gK , respectively. 

As the derivation of the stiffness matrix has already been shown elsewhere [15], this is not repeated in 
this paper. For the derivation of the geometric stiffness matrix, the combined effect of axial load (P) and 

uniaxial end moment (My) can be taken in the form of longitudinal stress  y
x

y

MP
z

A I
   where A is the 

cross-sectional area of the beam section and Iy is the corresponding second moment of area. The energy 
due to this longitudinal stress can be expressed as 
 

     T2 2
g x x g x g

V V V

v1 1 1
U (v w ) dv v w dv dv

w2 2 2

              
    (4) 

 
Using Eq. (3), the geometric strain vector appeared in the above equation can be written as  
 

   g g g

'
x

V
v cos sin (r n)

W [H ]
w sin cos q

 
                          

 (5) 

 
Using the relationship of the longitudinal stress in terms of axial load (P) and end moment (My) and 
substituted of the above equation in Eq. (4), it leads to 
 

       T Ty
g g g g g

yV L

MP
U dv z dx

2A 2I
       , 

       T TyP M
g g g g g g g

yL L

MP
U F dx F dx

2A 2I
             . 

(6) 

where 

 T TP P
g g g g g g

A

F H H dsdn H H dn ds C ds                          , 

TM M
g g g g

A A

F H z H dsdn C dsdn               . 
(7) 

 
The above equations can be used to derive the geometric stiffness matrix using finite element 

approximation of the geometric strain vector  g . The individual elements of the matrices P
gC    and 

M
gC    are derived explicitly. Also, the individual elements of the matrices P

gF    and M
gF    are derived 

explicitly for I and box sections.   
 
For the finite element implementation of the beam, quadratic Lagrangian interpolation functions are used 
for the axial deformation while cubic Hermetian interpolation functions are used for the torsional 
deformation which ensured the desired C1 continuity of torsional rotation () as the displacement field 
(Eq. 3) contains derivative of . As mentioned earlier, the bending deformations along with the shear 
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deformations are treated in a different manner following the concept of Sheikh[14] where the shear 

rotations y  and z  are adopted as field variables instead of y   and z  in addition to the bending 

displacements V and W. Taking a linear approximation for y  and z , and a cubic approximation for V 

and W, the field variables can be written as   
 

2
1 2 3U a a x a x   , 2 3

4 5 6 7V a a x a x a x    , 2 3
8 9 10 11W a a x a x a x    , 

y 12 13a a x   , z 14 15a a x   , 2 3
x 16 17 18 19a a x a x a x      

    (8) 

 
Though 

y  and z  are taken as field variables, they are not used as nodal degrees of freedom. 

Interestingly, the corresponding nodal degrees of freedom are y   and z  which are introduced with 

the help of bending deformations and can be expressed using the above equations as  
 

2
y y 12 13 5 6 7V a a x a 2a x 3a x         , 

2
z z 14 15 9 10 11W a a x a 2a x 3a x         . 

    (9) 

 
The unknown constants (a1, a2, a3 ...... a19) found in Eq. (8) can be replaced in terms of nodal 
displacements by substitution of U, V, W, (Eq.8) y  and 

z  (Eq. 9) at the three nodes of the element 

(Figure 1), and 
x  (Eq. 8) and its derivative 

x   at the two end nodes as  
 

    R a     or       1
a R

       (10) 

 

where    T

1 2 3 19a a a a a  , [R] consists of coordinates (x values) of the 3 nodes and  T 

1 1 1 x1 y1 z1 x1 2 2 2 y2 z2 3 3 3 x3 y3 z3 x3[U V W U V W U V W ]            is the 

nodal displacement vector.  
 

With the help of Equations (8) and (10), the geometric strain vector  g  as defined in Eq. (5) can be 

expressed in terms of nodal displacement vector    as   

 

     
T' 1

g x g g gV W [S ]{a} [S ][R] [B ]                (11) 

 
The above equation is substituted in Eq. (6) and it is rewritten as  

 

       

       

T TT TyP M
g g g g g g g

yL L

T TyP M
g g

MP
U B F B dx B F B dx

2A 2I

MP
K K

2 2

                         

           

 
 

 

    (12) 

Where 
TP P

g g g g

L

1
K B F B dx

A
              and 

TM M
g g g g

y L

1
K B F B dx

I
              are the components of 

geometric stiffness matrix of the beam element corresponding to axial load and end moment, 
respectively. With these matrices and the stiffness matrix [K], the governing equation of an element can 
be written as 
 

 P M
g y g[K] P[K ] M [K ] { } 0     (13) 

 
The above equation (Eigen-value problem) is similarly applicable for a beam which can be solved to get 
the buckling of the beam subjected to axial load (P) and end moment (My) where the critical value of 

one of these loads ( crP  or 
cr
yM ) can be determined when the other load is kept constant as preload (
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cr
yy MM 0

or crPP 0 ) or critical value of both loads ( crP  and 
cr
yM ) when they are increased together 

maintaining a constant ratio between them.  
 

3. Results and Discussions   

A number of examples of thin-walled composite beams are studied using the proposed model but some 
sample cases are only presented in this section due to page restriction.  
 
Example 1: The proposed model is used to predict the buckling characteristic of a 12m long thin-walled 
box section composite beam simply supported at its two ends under the action of an axial load. The box 
section is 300mm wide and 600mm deep where all walls consist of four plies each 7.5mm thick. Three 
different cases of stacking sequence (0/0/0/0, 45/-45/-45/45 and 0/90/90/0) are studied where all walls 
are having same stacking sequence in each case. The material used for each ply is graphite-epoxy 
(AS4/3501) which is having the following properties: E1 = 144GPa, E2 = 9.65GPa, G12 = G13 = 4.14GPa, 
G23 = 3.45GPa, 12  = 0.3. The critical loads of buckling predicted by the proposed model are presented 

along with those reported by Cortinez and Piovan [16] and Kim et al. [13] in Table 2 which shows a very 
good agreement between the results obtained from different sources.   
 

Table 1 Critical buckling load (MN) of a simply supported box section thin-walled composite beam  
 

Staking Sequence References 
Cortinez and 
Piovan [16]* 

Kim et al. [13]** Present** 

0/0/0/0 9.33 9.35 9.00 
45/-45/-45/45 0.97 0.97 0.97 

0/90/90/0 4.97 5.02 4.94 
 

    *Without deformation, **With shear deformation     
 
Example 2: The buckling of a simply supported 8m long (l) thin-walled open section composite beam 
subjected to different combination of axial load and end moment is studied using the proposed model. 
The beam has a double symmetric I section where the flange is 100mm wide and the web is 200mm 
deep (d). All flange and web walls are made of two plies each 2.5mm thick (total wall thickness t: 5mm) 
where flanges are having a staking sequence of [ /- ] and this is [0]2 for the webs. The material 

properties used for all plies are: E1/E2 = 25, G12/E2 = 0.6, G13 = G23 = G12, 12  = 0.25. For different values 

of   (fiber orientation of flange plies), the critical values of the axial load or the end moment causing 
bucking of the beam as predicted by the proposed model are presented in Table 2 in non-dimensional 

form ( )/( 2
32 tEdlPP crcr   and )/( 2

3tEdlMM cr
y

cr
y  ) along with those reported by Vo and Lee [10]. The 

results shows a good performance of the proposed element.         
 

Table 2 Critical buckling load/moment of a simply supported I section thin-walled composite beam  
 

Loading Condition Reference Fibre orientation ( ) 
0 30 60 90 

crPP  , 00.yM  Vo and Lee [10]* 5.153 1.404 0.225 0.206 
Present** 5.139 1.403 0.225 0.206 

crPP 50. , 
cr
yy MM   Vo and Lee [10] 4.451 2.358 0.701 0.528 

Present 4.455 2.086 0.686 0.523 

00.P , 
cr
yy MM   Vo and Lee [10] 7.370 3.496 1.009 0.763 

Present 7.372 3.130 0.989 0.755 
crPP 50. , 

cr
yy MM   Vo and Lee [10] 10.175 4.472 1.258 0.953 

Present 10.175 4.041 1.233 0.943 
 
*Without deformation, **With shear deformation     
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Example 3: The interaction of axial loads and end moments causing buckling of a 5m long simply 
supported thin-walled composite beam having a double symmetric I section is studied in this section. 
For this section, the flange is 50mm wide and the web is 50mm deep (h) where both flange and web are 
having 16 plies each 0.13mm thick with a stacking sequence of [ /- ]4s. The material properties of 
glass-epoxy used for all plies are: E1 = 53.78GPa, E2 = 17.93GPa, G12 = G13 = 8.96GPa, G23 = 3.45GPa, 

12  = 0.25. The analysis is carried out taking three different values of the eccentricity (e) of the axial 

load (e = 0, h/2, h) and three different values of the fiber orientations (  = 0, 30 and 60 degrees) where 
different combinations of critical axial loads and end moments causing buckling of the beam are 
determined. These and used to produce the interactional curves which are plotted in Figure 3 where 
these curves followed an expected trend.          
 

 

    Figure 3 – Interaction curves for axial eccentric loads and end moments causing buckling of thin-
walled open section (I section) composite beams 

4. Summary and Conclusions    

An efficient 1D beam element is developed for buckling of thin-walled composite beams having open 
and closed sections subjected to axial loads and end moments. The formulation of the element followed 
a comprehensive treatment considering the effects of axial displacement, torsion, bi-axial bending and 
transverse shear deformations as well as out of plane sectional warping. The cross-sectional matrices 
required for the formulation of geometric stiffness matrix of the beam are derived analytically where all 
possible couplings between the abovementioned modes of deformation are considered. The effect of 
shear deformation of the beam walls is included which usually requires a C0 continuous finite element 
formulation of the bending deformation coupled with the shear deformation. On the other hand, the 
torsional deformation requires a C1 continuous FE formulation due to the incorporation of warping 
deformation. The difficulty associated with the implementation of both these formulations in the present 
coupled problem is successfully overcome by using a novel concept proposed by of one of the authors. 
The proposed analysis technique is used to solve numerical examples of thin-walled laminated 
composite beams having open I and closed box sections taking different stacking sequences of the 
beam walls. In many cases, the results predicted by the proposed technique are validated with the 
analytical and/or numerical results available in literature. The agreement between the results is found 
to be very good in most of cases which ensures the reliability and range of applicability of the proposed 
element.  
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7. Chapter 5 – Conclusion and Recommendations for future 
study  

 
A new efficient technique is developed for an accurate prediction of the 

behaviours of thin-walled laminated composite beams having open and closed sections 

in this thesis under different scenarios. This includes free vibration; buckling under 

axial load, end moments and their interactions; vibration with preloading (axial load, 

end moments and their combinations); and dynamic instability with/without preloads of 

these composite beams. The new model is based on an efficient one-dimensional beam 

element formulation that is capable of simulating the behaviour of thin-walled open and 

closed section beams accurately by capturing the complex deformation modes and their 

interactions of these structures. The formulation is sufficiently general, which included 

axial deformation, torsion, bi-axial bending, transverse shear deformation, out of plane 

cross-sectional warping and their coupling. In order to achieve the above model having 

all these capabilities, the use of a rigorous cross-sectional analysis became necessary 

for deriving different sectional matrices which are utilised by the beam finite element 

model. These cross-sectional matrices are derived analytically for beams having I and 

box section. The effect of shear deformation of beam walls included in the formulation 

usually demands C0 continuity in its finite element implementation for modelling the 

bending deformations of the beam element coupled with transverse shear deformations.  

However, the incorporation of cross-sectional warping demands a C1 continuous 

formulation for the torsional deformation due to the appearance of second order 

derivatives of the torsional rotation (twist) in the strain vector. A C0 continuous 

formulation for shear deformable beam is typically susceptible to shear locking 

problems, which is generally circumvented by using the reduced integration technique 

by supressing the problematic terms in the shear energy. However, this affects the 

solution accuracy, including stress oscillations and other related issues due to 

inadequate integration of other terms in the strain energy of the structural system. 

Moreover, it is challenging to apply reduced integration only for the shear coupled 

bending deformation whereas full integration for the other deformation modes (to retain 

accuracy of these terms) in the present problem having coupling between bending/shear 

deformation with other deformations. In order to solve this problem, there is an attempt 

by a previous researcher who tried to forcefully model the torsional deformation with a 
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C0 continuous formulation but it requires inclusion of fictitious nodal parameters that 

cannot be attributed with any physical meaning. In order to have a satisfactory solution 

of this problem, an attempt has been made to model the shear coupled bending 

deformation in a different way and this innovative approach has helped use a full 

integration for this deformation mode which in turn allowed a C1 continuous 

formulation for the torsional deformation with full integration. Thus the proposed 

model has overcome the crucial obstacles encountered by the researchers in this area 

for long time. The new modelling technique is used to solve a large number of 

numerical examples of thin-walled laminated composite beams having open (I) and 

closed (box) sections taking different boundary conditions, laminated wall stacking 

sequences, and loading conditions. The results produced by the model are thoroughly 

validated against analytical and numerical results available in literature, which 

demonstrates that the proposed model performs very well in terms of both accuracy and 

computational efficiency. Moreover, a detailed 3D finite element model of few 

composite beams are modelled using commercially available code Ansys and Abaqus  

for the validation of the proposed model in some cases where there is no available 

results. Finally, the new finite element model is used to conduct extensive parametric 

studies to demonstrate the effect of varying different parameters on the behaviour of 

thin-walled laminated composite beams subjected to different loading scenarios 

including their interactions (axial load and end moments). It is anticipated that these 

new results can prove to be useful as benchmarks for future research in this area.   

 

Some recommendations for the future research are as follows:  

 
1- Extend the model to incorporate the effect of geometric non-linearity in the 

analysis of thin-walled laminated composite beams having open and closed 

cross sections.  

2- Extend the model for thin-walled composite beams having multi-cell closed 

cross sections connected with/without open sections.   

3- Extend the model for accurately simulating the behaviour (specifically torsion) 

of stiffening members of stiffened panels.  

4- Extend the model to undertake dynamic response of these thin-walled laminated 

composite structures.  
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