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Abstract 

Through many centuries of domestication, Aspergillus flavus, a dangerous 

human pathogen and producer of carcinogenic aflatoxin, has given rise to 

Aspergillus oryzae, a benign fungus widely cultivated in the Orient to 

produce traditional fermented foods and beverages.   Today A. oryzae is also 

a source of amylases and other hydrolytic enzymes used in industry, and has 

been proposed to be used in an environmentally friendly treatment process 

that would convert the organic material in winery wastewater into protein-

rich fungal biomass.  Such biomass could be sold as animal feed, offsetting 

treatment costs and reclaiming nutrients currently being lost as waste.   

To enhance the efficiency of this process, carbon catabolite repression 

(CCR) was disrupted in A. oryzae.  CCR is the repression of genes encoding 

enzymes for the utilisation of non-preferred carbon sources in the presence 

of a preferred carbon source such as glucose, which is abundant in winery 

wastewater.  To disrupt CCR, the gene creB, encoding a deubiquitinating 

enzyme, was deleted in two strains of A. oryzae.  In A. oryzae RIB40, creB 

deletion increased the production of secreted cellulases, xylanases, and 

amylases in inducing conditions, and greatly increased the production of 

secreted amylases in non-inducing and repressing conditions.  Repression of 

amylases by glucose was much weaker in the creB-deleted strain, indicating 

CCR was disrupted.   

In contrast, deletion of creB in A. oryzae DAR3699, a strain used in soy 

fermentation, had no discernible effect on CCR.  A. oryzae DAR3699 was 

shown to have weak CCR and other phenotypes characteristic of creB 

mutants.  It was found to have a single base pair insertion in a putative 

micro-open reading frame in the promoter of creB, predicted to greatly 

reduce the efficiency of translation.  Thus A. oryzae DAR3699 already 

possessed a loss-of-function mutation in creB. 
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To investigate whether creB deletion would be useful for winery wastewater 

treatment, creB-deleted A. oryzae RIB40 and its parent were grown on 

synthetic winery wastewater in a bench-scale bioreactor.  The two strains 

were found to perform similarly, with indistinguishable morphology and 

patterns of carbon source consumption.  Although no advantage of the 

creB-deleted strain was observed for this application, its robust growth and 

increased enzyme secretion suggest it may be useful in other industrial 

processes. 

Whereas A. flavus has only one copy of the gene for alpha-amylase, various 

A. oryzae strains are known to have additional copies, which have 

presumably arisen by gene duplication during domestication.  A. oryzae 

DAR3699 was observed to have lower amylase secretion than other strains, 

suggesting it might lack the additional copies.  Investigation revealed that it 

does in fact contain a second alpha-amylase gene, but that this copy has 

arisen from a duplication event independent of those that produced the 

second and third copies in A. oryae RIB40.  The duplications in the latter 

strain appear to have been mediated by complex transposition events 

involving a 9.1 kb transposable element of the Tc1/mariner class. 

 

 

 

 

 

 

 

 

 



 4 

Declaration 

 

 

I certify that this work contains no material which has been accepted for the award of any other 

degree or diploma in my name in any university or other tertiary institution and, to the best of 

my knowledge and belief, contains no material previously published or written by another 

person, except where due reference has been made in the text. In addition, I certify that no part 

of this work will, in the future, be used in a submission in my name for any other degree or 

diploma in any university or other tertiary institution without the prior approval of the 

University of Adelaide and where applicable, any partner institution responsible for the joint 

award of this degree. 

 

I give consent to this copy of my thesis when deposited in the University Library, being made 

available for loan and photocopying, subject to the provisions of the Copyright Act 1968. 

 

The author acknowledges that copyright of published works contained within this thesis 

resides with the copyright holder(s) of those works. 

 

I also give permission for the digital version of my thesis to be made available on the web, via 

the University's digital research repository, the Library Search and also through web search 

engines, unless permission has been granted by the University to restrict access for a period of 

time. 

 

 

Adrian Hunter 

 

 



 5 

 

Acknowledgements 

 

Thank you to my supervisors Doctor Joan Kelly, Professor Bo Jin, and Professor Christopher 

Saint.  You have all been very patient. 

 

Thank you also to all the postdocs, postgraduate students, undergraduate students and visitors 

who have shared my time in the labs.  There are far too many to name, but special thanks to 

Doctor Robin Lockington, Doctor Jai Denton, Doctor Vivian Georgakopoulos, Natasha Pyne, 

Tom Morris, Pia Tille, and Hugh Sheppard. 

 

I also thank the anonymous and unpaid reviewers of my papers. 

  

 

 



 6 

Contextual statement 

 

This work is based on, and in part funded by, an ARC linkage project grant titled, “Fungal 

Biomass Protein: A Bioproduct Derived from a Treatment Process of Winery Waste Streams” 

(Project ID LP0562153), with industry partner SA Water Corporation.  The proposed treatment 

process uses a filamentous fungus, Aspergillus oryzae, to consume organic material from winery 

wastewater within a bioreactor.  Depleted of organic material, the treated wastewater would be 

less polluting and should be suitable for re-use for irrigation.  An advantage of the treatment 

process would be the generation of protein-rich fungal biomass, which could be sold as nutritious 

animal feed. This would offset operating costs and make the process economically viable, as well 

as reclaiming value from a waste product, thus making the process environmentally friendly.  The 

process was originally developed for treating starch-rich liquid wastes from potato chip 

manufacturing, and the strain A. oryzae DAR3699 had been identified as especially suitable for 

this purpose.   

 

The project suffered a setback when the post-doctoral fellow who was to oversee the engineering 

aspects of adapting the process to winery wastewater was unable to join the project.  

Nevertheless, I continued with my planned role in the project, which was to disrupt carbon 

catabolite repression in A. oryzae DAR3699 by deleting the creB gene and investigating whether 

this improved the performance of the strain.  I observed early in my candidature that carbon 

catabolite repression in A. oryzae DAR3699 seemed weaker than in the model fungus Aspergillus 

nidulans, and later observed that it was also weaker than in A. oryzae strain RIB40, a widely used 

strain that was the source of DNA for the genome sequencing project.  Deleting creB in A. oryzae 

DAR3699 ultimately had only a very subtle effect on phenotype, with no discernible effect on 

carbon catabolite repression.  I determined this to be because A. oryzae DAR3699 already 

possessed a loss-of-function mutation in the promoter of the creB gene.  I also deleted creB in A. 

oryzae RIB40, and the phenotype was as expected, with reduced carbon catabolite repression and 

increased secretion of biomass-degrading enzymes.  The production and characterisation of the 

creB∆ strains are described in the publication presented in this thesis as Chapter 2, “Deletion of 

creB in Aspergillus oryzae increases secreted hydrolytic enzyme activity”. 
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Although creB deletion had the expected effect in A. oryzae RIB40 in terms of carbon 

metabolism and enzyme secretion, it remained to be seen whether the creB∆ phenotype was 

advantageous in wastewater treatment.  As creB deletion had so little effect in A. oryzae 

DAR3699, I focused on comparing A. oryzae RIB40 creB∆ and its parent.  The two strains were 

compared in a bench-scale bioreactor.  As real winery wastewater is highly variable, and as the 

treatment process had not been optimised for real winery wastewater due to the absence of the 

post-doctoral fellow, I used synthetic winery wastewater as the growth medium.  I observed no 

advantage in carbon content reduction for the creB∆ strain.  However, this strain retained the 

robust growth and desirable pellet morphology of its parent, suggesting that creB mutation might 

be useful in combination with other mutations, or in different industrial processes in which the 

altered metabolism and superior hydrolytic enzyme secretion may be advantageous.  This 

investigation is described in the manuscript presented in this thesis as Chapter 3, “Behavior of an 

Aspergillus oryzae strain with disrupted carbon catabolite repression in a mixed carbon source 

fermentation”. 

 

As with many strains used in industry, transforming A. oryzae DAR3699 proved difficult and 

time consuming, with results from each attempted transformation taking approximately one week 

to become apparent and many transformation attempts being necessary.  This afforded time to 

investigate this strain more broadly.  My sequencing of four genes in A. oryzae DAR3699 had 

revealed it to be extremely similar at the DNA level to A. oryzae RIB40.  Yet A. oryzae DAR3699 

differs strikingly from A. oryzae RIB40, both in morphology and in carbon metabolism; in 

particular, it secretes markedly lower levels of amylases.  A. oryzae is used as a source of 

amylases in industry, and four strains were known to have multiple highly similar copies of the 

gene encoding the most abundant secreted amylase, α-amylase, which had apparently arisen from 

a single ancestral gene since the domestication of A. oryzae.  It was therefore speculated that A. 

oryzae DAR3699 might not possess these additional α-amylase genes, representing the ancestral 

state of A. oryzae.  Experiments revealed that A. oryzae DAR3699 did, in fact, contain a second 

copy of α-amylase, but that this copy originated independently of the additional copies in A. 

oryzae RIB40.  This work culminated in the publication presented in this thesis as Chapter 4, 

“Independent duplications of α-amylase in different strains of Aspergillus oryzae”. 
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1 Introduction 

1.1 Food and beverage industry waste streams 

1.1.1 Winery waste streams 

Typical wineries produce 3 to 5 kL of wastewater for every tonne of grapes crushed 

(MOSSE et al. 2011).  In the past, wastewater has been discharged directly into rivers, 

causing considerable pollution.  The organic material in the wastewater causes depletion 

of oxygen from the water as it decays, leading to the death of aquatic organisms.  

Nitrogen and other nutrients in the wastewater promote algal blooms.  Algae block 

sunlight, retarding the growth of aquatic flora, and their metabolism exacerbates oxygen 

depletion.  Salts in the wastewater can also be toxic to aquatic organisms, and suspended 

solids can both block sunlight and smother habitats (stated in text CHAPMAN et al. 2001; 

SOUTH AUSTRALIAN EPA 2004; IOANNOU et al. 2015). 

Associated with growing public awareness of pollution problems, environmental 

legislation regarding wastewater disposal has become stricter, and wineries must now 

treat their waste streams.  Many wineries use wastewater to irrigate their grapevines 

and/or tree plantations established specifically for wastewater disposal.  However, 

untreated winery wastewater can have many adverse effects on soil.  Prolonged low levels 

of oxygen resulting from microbial decomposition of organic matter can kill plant roots.  

Suspended solids in the wastewater can reduce soil porosity, reducing oxygen transfer 

and thus further reducing oxygen levels.  Extremes of pH can affect the solubility and 

toxicity of heavy metals present in the soil, as well as being toxic in their own right.  Salts 

can reduce water uptake by plants.  The high levels of sodium relative to divalent cations 

present in winery wastewater disrupt the structure of clay soils, reducing transfer of air 

and water.  In addition, organic nitrogen from wastewater that leaches into groundwater 

supplies can be converted to nitrate, which is toxic and renders groundwater unfit for 

human consumption (stated in text CHAPMAN et al. 2001; SOUTH AUSTRALIAN EPA 

2004).  In contrast, treated winery wastewater does not appear to be harmful to soils 

(MOSSE et al. 2012). 

The sources of wastewater from a typical winery have been described (CHAPMAN 1995; 

CHAPMAN et al. 2001).  The sources include: 
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Alkali washwater  Grape juice and wine are rich in potassium-hydrogen 

bitartrate.  This adheres to equipment during storage and processing, and is 

deliberately precipitated during wine stabilisation, forming a solid deposit that 

also contains pigments, tannins and proteins.  This precipitate is dissolved 

using caustic cleaning agents, such as sodium hydroxide, potassium 

hydroxide, sodium metasilicate or sodium carbonate.  Sometimes these 

cleaning agents contain added enzymes.   

Rinsewater  Since high pH has adverse effects on wine quality, alkali washing 

is followed by washing with solutions of 2% to 5% citric or tartaric acid.  

Clean water is then used to remove traces of the acid, as well as for hosing the 

outsides of equipment and cellar floors.   

Earth filtration  Juice and wine may be filtered using diatomaceous earth.  

Rotating drum filters have their diatomaceous earth repacked using a slurry of 

diatomaceous earth in water.  This process may require over 20 kL of water, 

and may need to be performed twice daily during vintage.   

Cooling tower bleed  Evaporative cooling towers are used to keep juice and 

wine cool, to prevent spoilage.  A fraction of the cooling tower water must be 

continuously bled off to prevent salt accumulation and consequent corrosion.   

Ion exchange  Many wineries use an ion exchange column to acidify and/or 

stabilise wine, by replacing potassium and other ions with hydrogen or 

sodium.  The column is regenerated using a mineral acid, usually sulphuric 

acid, or sodium chloride.   

Figure 1 shows the relative contributions of these sources to the volume of wastewater 

produced by a large non-distilling Australian winery.  Although alkali washing and 

rinsewater are the major contributors to the volume of wastewater produced, other 

components can have important effects on the quality of the wastewater.  Water from 

earth filtration can be a major source of suspended solids; cooling tower bleed can be a 

major source of salts.  Ion exchange column regeneration produces small volumes of 

wastewater which is rich in potassium.  Depending on the type of column used, it is also 

highly acidic (pH <2) and rich in sulphate, or rich in chloride.   
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Table 1 gives general characteristics of wastewater from Australian wineries.  Vintage is 

a 6 to 20 week period during which winegrapes are harvested and crushed, and 

fermentation of grapes into wine occurs.  A large winery may produce around 2 to 3 

million litres of wastewater per week during vintage, declining to 1 million litres or fewer 

per week during non-vintage.  Biological oxygen demand (BOD) is an important 

indicator of pollution; South Australian regulations state that water discharged into 

aquatic ecosystems must have a BOD of no more than 10 mg.L-1 (SOUTH AUSTRALIAN 

EPA 2003).  Table 1 also emphasises the variability of wastewater, which is apparent 

day-to-day and even hour-by-hour, necessitating facilities that can store wastewater prior 

to microbial treatment. 

 

 

 

 

Figure 1: An example of the relative contributions of the sources of wastewater 

from a large non-distilling Australian winery.  Adapted from Chapman et al. (2001) 
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The organic carbon in Australian winery wastewater is dominated by simple sugars, 

carboxylic acids and alcohols (Table 2) (CHAPMAN 1995).  The major sources of organic 

carbon are grape juice and wine, largely from product losses.  The organic carbon 

composition of winery wastewater resembles that of grape juice during vintage, and wine 

during non-vintage.    

 

 

 

 

 

 

 

These cited studies by Chapman were the most comprehensive studies of the composition 

of Australian winery wastewater available at the commencement of this project; therefore, 

they formed the basis for the design of synthetic winery wastewater used in experiments.  

Many subsequent studies are reviewed in Mosse (2011).  The review confirms that 

 Vintage Non-Vintage 

Biological oxygen demand (mg/L) 1500 - 6000   500 - 3500 

Total organic carbon (mg/L)   700 - 2900   250 - 1800 

Total Kjeldahl nitrogen (mg/L) 34 - 60 22 - 40 

Total phosphorus (mg/L) 0.1 - 0.3 0.1 

Electrical conductivity (dS/m) 1.5 - 3.5 0.9 - 1.3 

pH 4 - 8  6 - 10 

  
Vintage 

(mg/L) 

Non-Vintage 

(mg/L) 

Tartaric acid   530 350 

Lactic acid   250 120 

Acetic acid   100   50 

Glucose 2500 230 

Fructose 2500 270 

Glycerol   190 120 

Ethanol 2400 2900* 

Table 2: An example of the organic composition of winery wastewater.   

(CHAPMAN 1995) 

* samples may contain butyric acid, which co-elutes 

with ethanol in this HPLC analysis 

Table 1: Typical characteristics of winery wastewater.  (CHAPMAN 1995) 
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glucose, fructose, and ethanol continue to be the typical major contributors to organic 

carbon in Australian winery wastewater, though one source reported 2.22 g/L maltose in 

outflow from a holding tank (MALANDRA et al. 2003).  The review cites far greater mean 

BOD (8858 mg/L) than Chapman (1995), possibly due to increasing use of water saving 

measures such as high-pressure cleaners concentrating organic materials into smaller 

volumes of wastewater.  A later study sampled wastewaters from four wineries after on-

site holding, and found that two contained around 2 g/L medium-chain fatty acids of six 

to ten carbons in one winery, and predominantly eight carbons in another (MOSSE et al. 

2013).  Such compounds are produced by yeasts such as Saccharomyces cerevisiae, the 

major fermenting organism of wine, and Dekkera bruxellensis, responsible for wine 

spoilage (RAZES et al. 1992).  Given that such compounds were not reported in 

abundance in fresh wastewater in any studies, they are likely to have been produced 

during on-site holding. 

In addition to wastewater, wineries also produce solid waste in the form of marc and lees.  

Grape marc is the stems, skins, and seeds of grapes left over after crushing; lees is the 

mixture of wine, yeast, bacteria, grape pulp, pectins, tannins and proteins produced after 

clarification of wine or grape juice by settling (CHAPMAN et al. 2001). 

1.1.2 Potato processing industry wastewater 

Like winery wastewater, potato processing wastewater from potato chip production is a 

nutrient-rich mixture of plant-derived organic substances produced in large quantities, 

and its disposal causes pollution problems (LOTZ et al. 1991).  It contains soil particles 

and residues of the skin and bodies of potatoes (MUNIRAJ et al. 2014).  Typical 

characteristics are summarised in Table 2. 

 

 

 

 

Total soluble starch (mg/L) 30 000 – 36 200 

Total soluble COD (mg/L)  35 000 – 40 000 

Total Kjeldahl nitrogen (mg/L) 400 - 620 

Ammonium nitrogen (mg/L) 190 

pH 4.5 - 5 

Table 2: Typical characteristics of potato processing wastewater.  (MUNIRAJ et al. 2014) 
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1.2 Aspergillus oryzae: A tool for wastewater treatment and 
biomass production 

Any treatment process of winery waste streams must reduce its potential to cause 

pollution.  An ideal treatment process would also utilise the waste to produce something 

of value.  The organic material and nutrients present in winery waste represent a potential 

energy resource, currently being lost, that could be channelled into the production of 

energy-rich feedstock in the form of microbial biomass.  Microbes such as bacteria, algae, 

yeasts and filamentous fungi can grow in liquid wastewater, consuming organic materials 

and treating the water as they do so.  The microbial biomass produced can then be used as 

a protein-rich food source for humans or animals.   

Several properties of filamentous fungi make them particularly attractive for treating 

winery wastewater.  Many thrive at low pH levels, which inhibit the growth of competing 

bacteria.  Many are capable of metabolising complex mixtures of organic compounds.  

Microbial biomass produced from fungi is particularly nutritious, having lower amounts 

of nucleic acids than bacterial or yeast biomass, while protein levels are reasonably high.  

In terms of amino acid composition, fungal biomass protein more closely resembles 

animal protein than plant protein.  Moreover, the cost of separating microbial biomass 

from treated wastewater can be a significant contributor to the costs of producing 

microbial biomass.  Whereas bacteria or yeasts may need to be recovered by expensive 

centrifugation, filamentous fungi that grow as pellets or as compacted mycelial flocs may 

be harvested more cheaply, and with lower energy use, by filtration (JIN et al. 2002).   

1.2.1 The filamentous fungus Aspergillus oryzae 

Aspergillus oryzae is a filamentous fungus that has been used for the fermentation of 

foods and beverages in eastern Asia for over 2000 years, including sake (rice wine), miso 

(soybean paste) and shoyu (soy sauce).  It arose through the ancient domestication of 

Aspergillus flavus (CHANG et al. 2015), a serious agricultural pest, human pathogen, and 

producer of the potent carcinogen aflatoxin. However, A. oryzae does not produce 

aflatoxin.  Many strains lack multiple genes required for aflatoxin synthesis (TAO AND 

CHUNG 2014); those that contain all such genes have multiple missense mutations in aflJ, 

a co-activator necessary for aflatoxin production, that abolish its activity (KIYOTA et al. 

2011).  Moreover, the long history of use of A. oryzae in food production supports its 

safety, and it is classified as Generally Recognized As Safe (GRAS) by the US FDA.   
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The innate ability of A. oryzae to secrete large amounts of proteins, as well as the 

development of a transformation system (GOMI et al. 1987), have led to its widespread 

use in biotechnology for the expression of heterologous genes, including active human 

enzymes (reviewed in WARD et al. 2006).  Sequential gene deletions can be achieved 

using a single genetic marker by marker rescue using the Cre-loxP recombination system 

(MIZUTANI et al. 2012). In common with most fungi used in industry, sexual reproduction 

has not been reported in A. oryzae, making it difficult to combine desirable traits from 

different strains.  However, sexual reproduction was reported for A. flavus in 2009 (HORN 

et al. 2009), and two ideomorphs of the mating type gene MAT1 have been found in 

different A. oryzae strains (WADA et al. 2012), suggesting that sexual reproduction may 

be possible.  Strains can be combined using the parasexual cycle, and a system for 

promoting heterokaryon formation has been developed (WADA et al. 2014).  Recently, the 

CRISPR/Cas9 gene editing system has been applied to A. oryzae (KATAYAMA et al. 2016; 

NODVIG et al. 2018), which will greatly facilitate future genetic manipulations. 

The A. oryzae genome is 37 megabase pairs in size and contains 12,074 putative genes 

encoding proteins of more than 100 amino acids (MACHIDA et al. 2005).  It is thus a third 

larger than the genomes of related aspergilli, the genetics model organism Aspergillus 

(Emericella) nidulans and the dangerous human pathogen Aspergillus fumigatus.  

Comparison of the three genomes revealed that the A. oryzae genome contains blocks that 

share synteny with the other two genomes, as well as blocks specific to A. oryzae.   The 

blocks specific to A. oryzae are enriched with genes predicted to be involved with 

secondary metabolism that do not have direct orthologues in the other two aspergilli.  

Other gene categories involved in metabolism are also expanded in A. oryzae, including 

sugar uptake transporters, maltases, secreted proteases, secreted α-glucosidases, and 

genes involved in the uptake and metabolism of amino acids (KOBAYASHI et al. 2007).  

These findings provide theoretical backing to the use of A. oryzae in fermentation.   

1.2.2 Use of A. oryzae for wastewater treatment  

Industrial fermentations are performed in bioreactors, which are sealed vessels that 

provide tightly controlled conditions for biological fermentations.  This section describes 

how A. oryzae strain DAR3699 was chosen as suitable for the treatment of starch 

processing wastewater, as well as optimisation of the running of a bioreactor for high 

treatment efficacy and fungal biomass protein yield.  The demonstration that starch 
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processing wastewater could be feasibly treated by A. oryzae DAR3699 was the 

foundation for the proposal to treat winery wastewater using the same strain.    

1.2.2.1 Use of A. oryzae for treatment of potato processing wastewater 

A. oryzae DAR3699 was chosen from a screen of 30 microbial fungi and yeasts as being 

appropriate for starch processing wastewater treatment and fungal biomass protein 

production (JIN et al. 1999a).  Initially one representative strain of each of 15 species of 

filamentous fungi and yeasts was tested for growth in 50 ml shake flask cultures of starch 

processing wastewater, without pre-treatment or nutrient supplementation.  The cultures 

were grown for 24 h at 30°C under non-aseptic conditions.  A. oryzae was represented by 

strain DAR3699.  Of all the species tested, it was the best performer in all three criteria 

measured: it hydrolysed the most starch (100%), gave the greatest reduction in total 

organic carbon (86.7%), and had the highest growth rate (0.22 g l-1 h-1).  This and seven 

other strains of A. oryzae, as well as a total of seven other strains of Rhizopus 

oligosporus, Rhizopus arrhizus and Trichoderma viride were further tested.  DAR3699 

gave the third-highest yield of dry biomass (5.24 g l-1), third-highest COD reduction 

(88.8%), and equal highest specific growth rate (0.12 h-1).  Among the A. oryzae strains, 

DAR3699 had the second highest protein content (40.7%) and was one of three strains to 

grow as compact pellets (JIN et al. 1999a).  

Subsequent experiments focused on optimising fermentation conditions in an external 

airlift bioreactor.  Airlift bioreactors are alternatives to the more traditional stirred-tank 

bioreactors.  They are mixed by the action of air rising from a sparger at the bottom of the 

reactor, rather than by rotating impellers.  Although stirred tank reactors are more widely 

used, airlift bioreactors have the advantages of lower power consumption (and hence 

lower operating costs), simpler construction, better mixing and reduced shear stresses 

placed on delicate fungal hyphae.  An external airlift bioreactor has a separate 

downcomer distinct from the main riser housing the sparger (Figure 2).  This permits 

better mixing and therefore better transfer of heat, nutrients and waste products.   
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Figure 2: The external airlift bioreactor.  A, acid liquid; B, alkali liquid; F, antifoam 

liquid; R, relay; FM, air flow meter; S, spray ball; P, pressure indicator with gas outlet; 

Qx, wastewater stream.  From Jin et al. (2002) 

Table 1: Typical characteristics of winery wastewater.  (CHAPMAN 1995) 
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The maintenance of a high level of dissolved oxygen is widely recognised as a critical 

factor determining the success of aerobic airlift bioreactor processes, particularly those 

involving viscous mycelial broths.  The oxygen transfer in a pilot-scale (160 L) external 

airlift bioreactor containing starch processing wastewater and the filamentous fungus 

Rhizopus oligosporus was characterised and improved (JIN et al. 2001b).  A key finding 

was that while dissolved oxygen level increased almost linearly with air flow rate in the 

range of 0.25 to 1.00 volumes per volume per minute (v v-1 m-1), there was little further 

improvement in dissolved oxygen level as air flow rate was increased to 2.00 v v-1 m-1.  

This was particularly true for highly viscous broths resulting from high biomass 

concentrations, such as 4 or 8 g l-1.  Thus it would be difficult to achieve adequate 

dissolved oxygen levels solely through increased airflow, especially at the high biomass 

concentrations required for a continuous process.  Two methods were investigated for 

improving oxygenation.  First, the use of a second small air sparger in the downcomer 

created a more fully aerated environment within the bioreactor.  At a constant air flow 

rate of 1.0 v v-1 m-1, diversion of 10% of the air flow to the second sparger led to a slight 

increase in mixing time, but an increase in the minimum dissolved oxygen level from 

28% to 35% of saturation, and a concomitant increase in biomass productivity from 0.61 

to 0.71 g l-1 h-1.  Second, operating the bioreactor at a top pressure of 1.0 bar above 

atmospheric pressure improved the minimum dissolved oxygen level from 21% to 63% of 

saturation, and the biomass productivity from 0.71 to 0.96 g l-1 h-1.  Moreover, operating 

under a top pressure eliminated the production of foam, eliminating the need for 

antifoam, which would reduce operating costs.  Further increasing the top pressure to 1.5 

bar above atmospheric pressure resulted in only a slight increase in dissolved oxygen and 

no detectable increase in biomass productivity (JIN et al. 2001b).   

The fungus in the investigation described above grew as freely dispersed mycelia.  

Dispersed mycelial growth can be problematic in a bioreactor, since it tends to promote 

clogging around probes and blockages of sampling ports and spargers.  Moreover, 

mycelial broth is highly viscous, particularly at high biomass concentrations, limiting 

oxygen and nutrient transfer.  These problems are alleviated when filamentous fungi grow 

as discrete pellets, which are spherical agglomerates of several hyphal elements.  The 

conditions affecting morphology of A. oryzae DAR3699 and two other strains growing on 

starch processing wastewater were investigated (JIN et al. 1999b).  In 50 mL shake flask 

cultures inoculated with spore suspensions, pH values from 3.5 to 4.5 favoured compact 
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pellet formation for strain DAR3699.   At pH 5.0, pellets were formed that had a compact 

nucleus but a diffuse boundary (“clumpy pellets”); pH values of 3.0, 5.5 and 6.0 produced 

diffuse or aggregated mycelia but not discrete pellets.  The effect of inoculum quality on 

fungal morphology in a bench-scale (3.5 L) airlift bioreactor was then investigated.  At 

pH 5.5, pellet inoculum led to the formation of clumpy pellets, whereas pellets were not 

formed when dispersed mycelia were used as the inoculum.  At pH 4.0, compact pellets 

were formed regardless of whether the inoculum used was a spore suspension, dispersed 

mycelia or compact pellets.  However, inoculum quality affected pellet size, with spore 

suspension producing the smallest pellets, and pellet inoculum producing the largest 

pellets.  Pellet size was found to be inversely correlated to protein content, thought to be 

due to limited diffusion of oxygen and/or other nutrients into the centre of the larger 

pellets.  Pellet size was also found to be affected by aeration, with higher rates of aeration 

resulting in the formation of smaller pellets (JIN et al. 1999b).   

The pilot-plant scale 160 L bioreactor described above was used to determine the optimal 

process mode for bioreactor operation, i.e., batch, continuous or semi-continuous (JIN et 

al. 2001a).  In a semi-continuous process, a portion of the broth referred to as the Vout/Vt 

ratio is removed at regular intervals.  The remaining broth then serves as the new 

inoculum as the bioreactor is topped up with new growth media.  Vout/Vt ratios of 0.90, 

0.70 and 0.50 were tested.  Lower Vout/Vt ratios gave slightly lower biomass productivities 

and required more frequent medium exchanges.  All three Vout/Vt ratios resulted in higher 

biomass productivities than batch cultures, as well as avoiding the need for the 

preparation of numerous seed cultures, which are expensive for an industrial process.  

Continuous process was investigated with dilution rates ranging from 0.06 to 0.20 h-1; 

0.14 h-1 was found to be optimal for both biomass productivity and wastewater treatment, 

as assessed by reduction in chemical oxygen demand.  Although biomass productivity 

was higher for the continuous process than the other process modes, the variable 

composition of starch processing wastewater and blocking of the air sparger created 

difficulty in maintaining a steady state beyond 4 days of continuous cultivation.  Thus 

semi-continuous was deemed to be the best process mode (JIN et al. 2001a). 

The qualities of the treated wastewater and the fungal biomass, as well as kinetic 

parameters, were analysed in detail using the optimised pilot plant-scale process (JIN et 

al. 2002).  The 160 L bioreactor was inoculated with 8% (v/v) preculture and operated at 
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35°C, with the pH maintained between 4.5 and 6.5, and the aeration regulated between 

0.5 and 1.2 v v-1 m-1 so as to maintain the dissolved oxygen level above 50% of 

saturation.  There was no fungal growth observable by microscopy during the first 2 h 

after inoculation, but growth of hyphae and branching were visible at 3 h.  The 

exponential growth phase lasted from 4 h to 9 h.  Glucose accumulated during this time, 

reaching a peak of over 2.5 g l-1 at approximately 7 h growth, showing that the rate of 

starch hydrolysis exceeded the rate of glucose uptake by the cells.  A semi-continuous 

process was run with a Vout/Vt ratio of 0.90.  A biomass yield of 8.8 g l-1 was achieved, 

with a 0.9 g l-1 h-1 productivity.  Growth was retarded beyond 48 h, corresponding to the 

fifth exchange of media.  This may have been due to contamination and/or a reduction in 

dissolved oxygen resulting from clogging of the air sparger (JIN et al. 2002). 

The fungal biomass was produced in pellets of diameter 2 to 5 mm, allowing simple 

separation using a rotating drum filter with a pore size of 200 μm.  It had a pleasant 

odour, and biomass semi-dried by vacuum or pressure filtration could be stored at 

ambient conditions for several days without apparent deterioration in quality.  The 

biomass was found to contain 46% protein by dry weight, as well as 16% dietary fibre, 

24% total carbohydrate and only 2% fat.  The levels of 8 of the 10 essential amino acids 

exceeded the levels of the FAO reference protein (FAO/WHO 1974), while levels of 

tyrosine and tryptophan were slightly lower and may need to be supplemented if the 

fungal biomass is used as a feed material.  The treated wastewater had chemical oxygen 

demand, biological oxygen demand and suspended solids reduced by over 95%, while 

nitrogen and phosphorous were reduced by three-quarters.  Residual minerals were very 

low, and the treated wastewater would be suitable for farm irrigation.  The production of 

valuable fungal biomass protein, combined with efficiencies of operation such as simple 

biomass harvesting, asepsis during operation, low power consumption and the lack of 

need for wastewater pretreatments such as sterilisation, partial starch hydrolysis, nutrient 

supplementation or initial pH adjustment suggest the process may be economically 

feasible.  Clogging of the air sparger after 2 to 3 days of operation remained the major 

obstacle to be overcome (JIN et al. 2002). 
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1.3 Carbon catabolite repression  

1.3.1 CCR in winery wastewater treatment 

In the presence of two or more carbon sources, micro-organisms will typically utilise 

energetically favourable sources preferentially to less readily metabolised sources.  

Carbon catabolite repression (CCR) is the process by which the presence of favourable 

carbon sources leads to the repression of genes necessary for the utilisation of less 

favoured sources.  It affects the expression of hundreds of genes.  It is distinct from 

specific induction, which is the requirement for the presence of a particular carbon source 

(or derivative thereof) for genes required to utilise that carbon source to be expressed 

(reviewed in STULKE AND HILLEN 1999; FLIPPHI AND FELENBOK 2004; KELLY 2004).   

As an evolved mechanism, carbon catabolite repression must confer a selective advantage 

to filamentous fungi in their natural environment.  However, the environment that A. 

oryzae will encounter within a bioreactor containing winery wastewater differs to that of 

the natural environment of A. oryzae in several ways.  For example, due to the filtering 

effects of the cross-flow microscreen, the maintenance of low pH and the large 

monoculture inoculum, A. oryzae is likely to encounter reduced competition with other 

micro-organisms, compared with its natural environment.  Therefore, there is less need to 

rapidly consume the most energetically favourable carbon sources before they can be 

consumed by competing micro-organisms.  Moreover, the combinations, concentrations 

and relative proportions of carbon sources in winery wastewater differ from those of the 

natural environment of A. oryzae.  Thus it is possible that CCR will impede A. oryzae 

growth in a bioreactor.   

As discussed in the next section, mutation can create “derepressed” fungal strains with 

reduced CCR.  Following are four potential mechanisms by which a derepressed strain 

might more efficiently treat winery wastewater in a bioreactor:  

1. Reduction of lag phase(s) in a batch fermentation:  When presented with 

several carbon sources simultaneously, a micro-organism will typically utilise 

them in a sequential fashion: first the most preferred source (often glucose) is 

consumed, then after this is depleted the second most preferred source is 

consumed, and so on.   Concomitant with changes in carbon source utilisation are 

changes in growth rate, which may follow a stepwise pattern with the highest 
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growth rate during utilisation of the most preferred carbon source, followed by 

lower growth rates associated with utilisation of less preferred carbon sources.  

Often a lag phase follows the depletion of each carbon source, as the organism 

requires time to begin expressing the enzymes required for the next carbon source 

(reviewed in SIEGAL 2015).  For example, when the yeast S. cerevisiae is grown 

on glucose media, many strains produce ethanol as a byproduct of fermentation;  

upon depletion of the glucose, there is typically a lag phase lasting up to several 

hours associated with the diauxic shift from growth on glucose to growth on 

ethanol (MURPHY et al. 2015).  This suggests that, if A. orzyae is grown in winery 

wastewater in a batch culture, there may be a lag phase between the utilisation of 

the sugars and the ethanol.  Lag phases associated with switching between carbon 

sources are reduced in yeasts with weaker CCR (reviewed in SIEGAL 2015), 

suggesting disruption of CCR may improve the speed of batch culture treatment of 

complex mixtures such as winery wastewater. 

2. Engineering advantages:  As well as changes in growth rate, changes in carbon 

source utilisation can be accompanied by changes in morphology.  For example, 

A. nidulans looks markedly different when grown on glucose than on ethanol, 

with reduced hyphal diameter in the latter case (unpublished data).  A strain with 

disrupted CCR would consume multiple carbon sources simultaneously and likely 

have a more constant micromorphology throughout the fermentation than a strain 

with CCR.  This greater consistency may be advantageous from an engineering 

perspective.  For example, it may be simpler to optimise the physicochemical 

environment within the bioreactor (temperature, pH, agitation rate, dissolved 

oxygen, etc.) if the fungus has only one mode of growth throughout the 

fermentation, rather than one for each carbon source.  This may be particularly 

important for a filamentous fungus, where achieving the desired small pellet 

morphology is strongly dependent on fermentation parameters.  Conversely, a 

more natural growth pattern in which the specific growth rate slows as carbon 

sources are depleted and biomass accumulates may be preferable, as it is more 

difficult to keep a liquid culture mixed and well oxygenated in the later stages of a 

fermentation when total fungal oxygen consumption is highest and the culture 

broth is at its most viscous. 
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3. Higher feed rate in a continuous fermentation:  In continuous fermentation, 

growth substrate is fed to the bioreactor at a constant rate and all carbon sources 

are consumed simultaneously and at the same rate as they are being provided.  

Continuous fermentations provide advantages over batch fermentations such as 

eliminated time between batches, eliminated microbial lag phases, and greater 

potential for automation.  For a fungus with ordinary CCR, the rate at which 

winery wastewater could be provided in a continuous process would be 

constrained by glucose – the steady-state glucose concentration would have to be 

kept low enough to minimise CCR so that other carbon sources could be 

consumed.  In contrast, in a strain with disrupted CCR, simultaneous utilisation of 

carbon sources would be possible at higher glucose concentrations, allowing 

higher feed rates of winery wastewater and more rapid processing overall. 

4. Higher expression of genes encoding enzymes for carbon utilisation:  Even in 

the absence of glucose or another repressing carbon source, residual activity of the 

mechanism of CCR often seems to limit expression of genes involved in carbon 

source utilisation, and this can restrict growth.  Evidence for this is that 

derepressed strains often grow better than their parent strains on certain non-

preferred carbon sources.  For example, an A. nidulans derepressed strain grows 

better than its parent on protein and on acetamide as sole carbon sources, and 

these differences are attributed to higher expression of proteases and acetamidase 

in the deprepressed strain (HYNES AND KELLY 1977).  Similarly, a deprepressed 

strain of Trichoderma reesei grows better than its parent on maltose, likely due to 

higher expression of an α-glucosidase (DENTON AND KELLY 2011).  A derepressed 

A. oryzae strain grows better than its parent on 5% xylose (but not 1% xylose), 

though the reason for this is unknown (ICHINOSE et al. 2017).  If utilisation of 

fructose or ethanol is limited by CCR in A. oryzae, then disruption of CCR may 

lead to faster consumption of these carbon sources and thus faster treatment of 

winery wastewater. 

1.3.2 The genetics of CCR in filamentous fungi 

A fruitful method for discovering genes involved in CCR in filamentous fungi has been 

genetic screens for suppressors of areA loss-of-function mutants in the model fungus A. 

nidulans.  In a system analogous to CCR, filamentous fungi do not normally express 

enzymes for the utilisation of nitrogen sources when a more preferred nitrogen source, 
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such as ammonium, is present.  The gene areA encodes a positively acting transcription 

factor that permits utilisation of non-preferred nitrogen sources in the absence of 

ammonium.  Fungal strains harbouring loss-of-function mutants of areA always behave as 

though ample ammonium were present; that is, they do not respond to nitrogen starvation 

by expressing enzymes for the utilisation of non-preferred nitrogen sources.  Compounds 

such as acetamide and proline provide the cell with both a carbon source and a nitrogen 

source, and genes encoding proteins required for their utilisation, including acetamidase 

and proline permease, may be subject to regulation by both ammonium repression and 

carbon catabolite repression (reviewed in Caddick et al. 1994).  Fungal strains that are 

wildtype except for a loss-of-function mutation in areA cannot grow in a medium 

containing repressing concentrations of glucose and acetamide as a sole nitrogen source, 

as they will be starved of nitrogen.  However, if CCR is disturbed, the fungus will utilise 

acetamide as a carbon source.  Since acetamide is also a nitrogen source, its utilisation 

relieves nitrogen starvation and permits growth.  Th us mutations disabling CCR can be 

identified as suppressors of areA mutants, when mutagenised fungi are grown in 

appropriate media.  The genes creA, creB and creC were first identified in this manner.  

Since this kind of screen has been carried out several times, it is likely that these are the 

only genes in A. nidulans that can be mutated to relieve CCR without killing the organism 

(reviewed in KELLY 2004).   

1.3.2.1 creA 

The creA gene and its orthologues are ubiquitous throughout the fungal kingdom 

(BENOCCI et al. 2017).  CreA is orthologous to the well-studied Mig1 in the yeast S. 

cerevisiae, and both are negatively acting transcription factors that repress a broad range 

of target genes, mostly involved in utilisation of non-preferred carbon sources.  However, 

the mechanism of CCR is quite different in yeast than in filamentous fungi.  Mig1 leaves 

the nucleus in derepressing conditions, relieving CCR (DE VIT et al. 1997), whereas in A. 

nidulans CreA can still regulate CCR correctly when present at high levels in both the 

nucleus and the cytoplasm (ROY et al. 2008).  CCR is mediated by glucose only in S. 

cerevisiae, but by a range of carbon sources in A. nidulans and other filamentous fungi 

(reviewed in BENOCCI et al. 2017).  Relief of CCR requires specific induction in 

filamentous fungi but not in yeast (reviewed in BROWN et al. 2014).  The latter two 

differences reflect the specialisation of yeast to glucose-rich environments, in contrast to 

filamentous fungi, which tend to be generalists that can use a variety of carbon sources. 
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Under repressing conditions, creA deletion mutants in A. nidulans have decreased growth 

rates and reduced conidiation on solid media (SHROFF et al. 1997), and increased 

branching and reduced culture viscosity in liquid media (AGGER et al. 2002); similar 

morphological changes have been observed in other species (reviewed in BENOCCI et al. 

2017).  Many enzymes required for the utilisation of non-preferred carbon sources, 

including alcohol dehydrogenase I and β-galactosidase, as well one or more α-amylases, 

are derepressed (RUIJTER AND VISSER 1997; SHROFF 1997; MOGENSEN et al. 2006).   

As well as its effects in repressing conditions, creA also has effects in derepressing 

conditions.  A microarray analysis in A. nidulans adds to previous findings of enhanced 

expression of enzymes for carbon source utilisation, finding that over 25% of the genes 

whose expressions increase in a creAΔ mutant in 1% glucose, representing repressing 

conditions, also increase during growth in 1% ethanol, representing derepressing 

conditions (SIMS et al. 2004).   

CreA contains two highly conserved Cys2-His2 class zinc finger DNA-binding motifs 

(DOWZER AND KELLY 1991).  Many CreA orthologues contain a homopolymeric stretch 

of Ala, Asp or His residues several residues C-terminal of the DNA binding domain; the 

function of this region of the protein or of the corresponding region of transcript, if any, is 

unknown (reviewed in KELLY 2004) .  Binding of CreA to DNA has been shown to 

depend on the core recognition sequence 5’-SYGGRG-3’ (KULMBURG et al. 1993; 

CUBERO AND SCAZZOCCHIO 1994).  Frequently multiple copies of this motif are present in 

the promoters of genes subject to carbon catabolite repression, although some may not be 

functional (reviewed in KELLY 2004).   

Strains of A. nidulans containing different mutant alleles of creA exhibit remarkable 

phenotypic heterogeneity.  For example, one allele results in elevated levels of 

α-L-arabinofuranosidase B during growth on medium containing L-arabitol as a sole 

carbon source whilst having little effect on the level of endo-arabinase; another allele has 

the opposite effect (VAN DER VEEN et al. 1994).  Presumably these complexities reflect 

the intricate binding of CreA to DNA, which is predicted to involve the link between the 

zinc finger domains as well as seven amino acid residues across the two domains 

(ESPERON et al. 2014). 
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The regulation of creA is complex and appears to differ among fungi.  In A. nidulans, 

creA transcripts are more abundant in non-repressing than repressing conditions 

(VAUTARD et al. 1999), which seems counterintuitive given that CreA ought to be more 

active in repressing conditions.  In contrast, protein levels of the CreA orthologue in the 

filamentous fungus Sclerotinia sclerotiorum appear relatively constant (CZIFERSZKY et al. 

2002), although the A. nidulans and S. sclerotiorum studies used different derepressing 

media.  The orthologue of CreA in T. reesei, Cre1, can only bind DNA after 

phosphorylation at amino acid 241, a serine residue (VAUTARD-MEY AND FEVRE 2000).  

Mutation of the corresponding serine in S. sclerotiorum does not affect protein 

localisation, which is predominantly nuclear in both repressing and derepressing 

conditions in S. sclerotiorum (VAUTARD et al. 1999).  In A. nidulans, CreA localisation is 

predominantly nuclear in both repressing and derepressing conditions when expressed by 

a strong constitutive promoter (ROY et al. 2008).  In contrast, when expressed from its 

native promoter, localisation is predominantly nuclear in repressing conditions but 

predominantly cytoplasmic in derepressing conditions (RIES et al. 2016). CreA negatively 

autoregulates its own expression, presumably by binding to the 5’-SYGGRG-3’ motifs in 

its own promoter (reviewed in KELLY 2004), but this autoregulation is not essential for 

CreA function (ROY et al. 2008).  CreA function is not wholly dependent on de novo 

translation in T. reesei (LICHIUS et al. 2014) or A. nidulans (RIES et al. 2016).  Although 

there was one report that CreA may be ubiquitinated (RIES et al. 2016), this was not 

corroborated by mass spectroscopy analysis of the proteome (CHU et al. 2016) or of 

purified CreA (ALAM et al. 2017). 

Of particular interest in biotechnology, RUT-C30, a cellulase hyper-producing strain of T. 

reesei that has been been widely used in industry, was created by random mutagenesis 

and later found to express a truncated form of Cre1 (ILMEN et al. 1996).  Not only does 

this explain the reduced CCR in this strain, but the truncated form acts on target genes in 

a positive manner by opening the chromatin structure, facilitating transcription (MELLO-

DE-SOUSA et al. 2014).  Although creA homologues have now been deleted in several 

fungi of industrial importance (RUIJTER et al. 1997; ICHINOSE et al. 2014), there are as yet 

no reported attempts to engineer positively-acting CreA derivatives in other fungi.   
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1.3.2.2 creB and creC 

Initial investigation of creB and creC was conducted in A. nidulans areA mutant strains.  

In this background, the phenotypes associated with mutations in creB and creC are 

indistinguishable and non-additive, and there is no phenotypic heterogeneity.  Mutations 

in either gene cause slightly reduced colony density and conidiation in both complete and 

minimal media.  Many genes show relief from CCR, including amdS encoding 

acetamidase, alcA encoding alcohol dehydrogenase, and genes involved in acetate 

metabolism.  Uptake of proline and glutamate are greatly reduced, whereas glucose 

uptake is unaffected, although there is a reduction in the acidification of the growth media 

normally associated with glucose uptake.  There is reduced utilisation of hexose and 

pentose sugars, amino acids and nitrate.  Mutations in creB and creC also impart 

resistance to several toxic sugar analogues and molybdate, but hypersensitivity to 

acriflavine.  Secretion of proteases is increased (HYNES AND KELLY 1977; LOCKINGTON 

AND KELLY 2001; reviewed in FLIPPHI AND FELENBOK 2004).  Subsequent analyses in an 

areA wildtype background found that the phenotypes of creC mutant strains are slightly 

weaker than those of creB mutant strains (Robin Lockington, pers. comms.).  Although 

creA mediates CCR due to many carbon sources, creB and creC are not involved in CCR 

due to gluconeogenic carbon sources such as acetate, which is a strongly repressing 

carbon source in A. nidulans that represses via creA and other genes (GEORGAKOPOULOS 

et al. 2012). 

Consistent with the similar phenotypes of creB and creC mutants, CreB and CreC have 

been shown to physically interact in A. nidulans in vivo by co-immunoprecipitation 

(LOCKINGTON AND KELLY 2002).  In carbon catabolite derepressing conditions, full-

length CreB cannot be detected unless CreC is also present, although a degradation 

product is detectable.  In addition, overexpression of CreB alone, in the absence of any 

CreC, is sufficient to restore glucose repression of alcohol dehydrogenase in carbon 

catabolite repressing conditions, although quinate utilisation under derepressing 

conditions is only partially restored.  Overexpression of CreC in the absence of CreB does 

not alleviate the creB/C phenotype.  Taken together, these data indicate that a major role 

of CreC is to stabilise CreB, although the possibility that CreC also influences the 

substrate specificity of CreB cannot be excluded (LOCKINGTON AND KELLY 2002).    
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In repressing conditions, mutation of creC in A. nidulans changed the apparent cellular 

distribution of a CreA::GFP fusion protein from nuclear to homogeneous and greatly 

reduced the abundance of full-length CreA::GFP, whereas mutation of creB had little 

effect on CreA::GFP localisation or abundance (RIES et al. 2016).  However, it is unclear 

whether the observed GFP fluorescence in the nucleus corresponds to full-length 

CreA::GFP or one or more degradation products, given that degradation products were far 

more abundant than full-length CreA:GFP in that study, and that a poly-alanine rich 

region in the N-terminal third of CreA is important for CreA to leave the nucleus (RIES et 

al. 2016).  

CreB is a functional deubiquitinating enzyme (LOCKINGTON AND KELLY 2001), but CreA 

is not one of its targets (ALAM et al. 2017).  Although no targets of CreB are known, its 

physical interactors in A. nidulans tend to be involved in cellular transportation and 

organisation (ALAM AND KELLY 2017).  In particular, Hir3 (histone transcription regulator 

3) physically interacts with both CreA and CreB, suggesting Hir3 may be a component of 

the CCR regulatory network not yet investigated (ALAM AND KELLY 2017).  As well as 

six DUB homology domains, CreB contains a region predicted to form a coiled-coil 

(LOCKINGTON AND KELLY 2001) and four PEST sequences (LOCKINGTON AND KELLY 

2002).  PEST sequences, when exposed, mark proteins for ubiquitination and rapid 

degradation by the proteasome (reviewed in RECHSTEINER AND ROGERS 1996).  CreC 

contains a proline rich sequence and a series of five WD40 repeats, which are predicted to 

fold into a five-bladed propeller structure (TODD et al. 2000).  Proline rich sequences and 

WD40 repeats are both involved in protein-protein interactions (WILLIAMSON 1994; 

CHEN et al. 2004).  CreC also contains a predicted nuclear localisation sequence of the 

SV-40 T antigen type (LOCKINGTON AND KELLY 2002), although studies of its 

localisation have not been reported.  CreB, when overexpressed, is predominantly 

cytoplasmic (ROY 2008). 

1.3.2.3 creD, acrB and apyA 

In contrast to creA, creB and creC, mutations in creD and acrB lead to tighter carbon 

catabolite repression in A. nidulans.  Mutations in creD impart resistance to fluoroacetate 

toxicity in the presence of glucose, implying that the gene encoding acetyl coA 

synthetase, facA, may be under tighter glucose repression in creD mutants than in 

wildtype organisms  (BOASE AND KELLY 2004).  Mutations in creD and acrB both 
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suppress the derepression of alcA exhibited by creB and creC mutants (KELLY AND 

HYNES 1977), and creD mutants also suppress the derepression of facA in creB and creC 

mutants (KELLY AND HYNES 1977; BOASE AND KELLY 2004).  Mutations in both creD 

and acrB confer resistance to acriflavine and hypersensitivity to molybdate, the reverse of 

the phenotypes of creB and creC mutants (BOASE AND KELLY 2004).  In derepressing 

conditions, acrB (but not creD) suppresses the poor growth of creB and creC mutants on 

quinate.   CreD interacts with the HECT ubiquitin ligase HulA in vitro (BOASE et al. 

2003).  Taken together, these data suggest that creD and acrB may play opposing roles to 

creB and creC, and hence may be involved in ubiquitination.  An additional aspect of the 

acrB mutant phenotype is reduced utilisation of many carbon sources, including ethanol, 

acetate, starch and several simple saccharides including fructose, maltose and cellobiose.  

Several ω-amino acids are also poorly utilised, both as sole carbon sources and as sole 

nitrogen sources (BOASE et al. 2003).   

AcrB is predicted to contain three transmembrane domains and a coiled-coil domain 

(BOASE et al. 2003).  The coiled-coil domain is predicted to occur on the non-cytosolic 

face of the membrane.  CreD contains an arrestin domain and three PY motifs (BOASE 

AND KELLY 2004).  PY motifs can bind WW domains (CHEN AND SUDOL 1995) , PxY 

being a core motif than can bind with some affinity (CHEN et al. 1997).  Arrestins play a 

role in signal transduction, binding phosphorylated G-proteins and altering their 

signalling properties (reviewed in PALCZEWSKI 1994).  

ApyA was implicated in CCR by its amino acid sequence homology to the first two-thirds 

of CreD (BOASE AND KELLY 2004).  It is named because, like CreD, it has an arrestin 

domain and a PY motif.  Also in common with CreD, it interacts with HulA in vitro 

(BOASE AND KELLY 2004).  No phenotypic effects were seen in an apyA mutant, although 

a creD/apyA double-mutant had strong morphological impairment, and apyA mutation 

partially suppressed the phenotypes of creB and creC mutations (DENTON 2011).  

Multiple copies of apyA did not suppress the phenotypes of a creD mutation (DENTON 

2011).  Together, these data indicate a role in CCR for apyA distinct from that of creD. 

 

 







Deletion of creB in Aspergillus oryzae Increases Secreted Hydrolytic
Enzyme Activity
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Aspergillus oryzae has been used in the food and beverage industry for centuries, and industrial strains have been produced by
multiple rounds of selection. Targeted gene deletion technology is particularly useful for strain improvement in such strains,
particularly when they do not have a well-characterized meiotic cycle. Phenotypes of an Aspergillus nidulans strain null for the
CreB deubiquitinating enzyme include effects on growth and repression, including increased activity levels of various enzymes.
We show that Aspergillus oryzae contains a functional homologue of the CreB deubiquitinating enzyme and that a null strain
shows increased activity levels of industrially important secreted enzymes, including cellulases, xylanases, amylases, and pro-
teases, as well as alleviated inhibition of spore germination on glucose medium. Reverse transcription-quantitative PCR (RT-
qPCR) analysis showed that the increased levels of enzyme activity in both Aspergillus nidulans and Aspergillus oryzae are mir-
rored at the transcript level, indicating transcriptional regulation. We report that Aspergillus oryzae DAR3699, originally
isolated from soy fermentation, has a similar phenotype to that of a creB deletion mutant of the RIB40 strain, and it contains a
mutation in the creB gene. Collectively, the results for Aspergillus oryzae, Aspergillus nidulans, Trichoderma reesei, and Penicil-
lium decumbens show that deletion of creB may be broadly useful in diverse fungi for increasing production of a variety of
enzymes.

Aspergillus oryzae is a multicellular fungus that has been used
for centuries for the production of Asian foods and beverages,

including sake (rice wine) and shoyu (fermented soybean). Today
it is also used industrially as a source of secreted enzymes, includ-
ing cellulases, amylases, proteases, �-galactosidase, and lipase, and
as a host for the production of heterologous proteins (1, 2).

creB was identified in the model filamentous fungus Aspergillus
nidulans in a screen for mutations that alleviate carbon catabolite
repression (CCR) (3). CCR is a mechanism by which genes for the
utilization of nonpreferred carbon sources are repressed in the
presence of preferred carbon sources; organisms thus avoid wast-
ing energy producing enzymes for the degradation of complex
carbon sources when more readily metabolized carbon sources are
available. A. nidulans creB mutants grow well and alleviate CCR of
various enzymes, including acetyl-coenzyme A (acetyl-CoA) syn-
thetase, isocitrate lyase, acetamidase, and alcohol dehydrogenase
(3, 4). In addition, A. nidulans creB mutants show a pleiotropic
range of phenotypes apparently unrelated to CCR, including
slightly reduced conidiation, reduced growth with quinate, pro-
line, or glucuronate as the sole carbon source, enhanced growth
on acetamide or acrylamide, resistance to molybdate, hypersensi-
tivity to acriflavine, and reduced acidification of liquid growth
media (3–5). creB encodes a deubiquitinating enzyme (DUB);
DUBs are cysteine proteases that specifically cleave ubiquitin from
ubiquitin-conjugated protein substrates (6, 7).

Other genes identified in the same screen for mutations that
reduce CCR were creA and creC (3, 4). Molecular analysis of creA
showed that it encodes a DNA-binding regulatory protein that is
the major regulatory protein involved in CCR in A. nidulans (8)
and many other multicellular fungi subsequently analyzed. creA
mutations lead to derepression of a wider range of enzymes than
creB mutations, but lack-of-function alleles lead to severe mor-
phological effects (9, 10). Molecular analysis of creC revealed that

it encodes a WD40-containing protein (11). The pleiotropic phe-
notypes of mutations in creB and creC are similar and nonadditive,
and overexpression of creB can suppress the absence of creC, but
not vice versa, indicating that CreB is the active partner (7).

The finding that creB mutations in A. nidulans reduce CCR with-
out causing the severe morphological effects associated with muta-
tions in creA makes creB an attractive target for mutagenesis in indus-
trially useful strains. To date, creB disruption has been reported in two
industrial sources of cellulase enzymes: Trichoderma reesei and Peni-
cillium decumbens (12, 13). The T. reesei creB disruptant has increased
growth on maltose, increased secretion of proteases, and greatly in-
creased total secreted cellulase and xylanase activities in the absence of
glucose. The P. decumbens creB deletion mutant has increased cellu-
lase and xylanase activities and increased total secreted protein levels.

We deleted the creB gene from A. oryzae and analyzed the phe-
notypic effects, with an emphasis on the expression and secretion
of industrially relevant enzymes, and we found that a null strain
showed increased activity levels. Reverse transcription-quantita-
tive PCR (RT-qPCR) experiments showed that this increase was
due to increased levels of mRNA, indicating effects at the level of
transcriptional control.

MATERIALS AND METHODS
Strains and media. A. oryzae RIB40 (ATCC 42149) and NBRC 30105
(JCM02239) were obtained from the NITE Biological Resource Centre
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(NBRC), Japan. A. oryzae DAR3699, isolated during soy fermentation,
was obtained from CSIRO Division of Food Science & Technology, Aus-
tralia (14). The A. nidulans “wild-type” strain had the full genotype biA1;
riboB2; niiA4, and the A. nidulans creB1937 strain had the full genotype
yA1 pabaA1; creB1937; riboB2 (6).

Specific growth tests were undertaken in minimal medium (contain-
ing 0.05% KCl, 0.05% MgSO4, and 0.15% KH2PO4 plus traces of
Na2B4O7, CuSO4, FePO4, MnSO4, NaMoO4, and ZnSO4, with the pH
adjusted to 6.5) supplemented with the appropriate carbon and nitrogen
sources, as indicated in each experiment. Unless otherwise specified, the
nitrogen source was filter-sterilized 10 mM urea added after autoclaving;
nitrate was not used because creB deletion reduces nitrate utilization.
Solid medium also contained 1% agar.

Spore germination assays. Spores were scraped from plates contain-
ing 1% sucrose after growth for 8 days at 30°C, vortexed in 0.1% Tween 20
to dislodge any hyphae, and centrifuged at 1,000 � g for 1 min. Pelleted
spores were resuspended in fresh 0.1% Tween 20, vortexed vigorously to
separate clumps, and counted with a hemocytometer. Plates were inocu-
lated with 200 �l 0.1% Tween 20 containing 500 or 5,000 spores and
incubated at 30°C.

Enzyme assays. Spores were scraped from spread plates containing
1% sucrose supplemented with 0.1 M KCl to promote extensive sporula-
tion (15). Spores were prepared as described above, except with centrifu-
gation at 1,500 � g for 10 min. A suspension containing 2 � 107 spores per
ml was prepared in 0.1% Tween 20, and 0.5 ml of this suspension was
added to 50 ml autoclaved medium in a 250-ml Erlenmeyer flask, produc-
ing a final spore concentration of 2 � 105 spores per ml. Where necessary,
xylan from oat-spelt (Fluka) was dissolved before autoclaving via ex-
tended heating on a hot plate with vigorous stirring. The starch used was
analytical-grade soluble starch (Univar). Inoculated flasks were incubated
at 30°C with shaking at 150 rpm. Because light has been shown to influ-
ence secreted cellulase levels in some fungi (16, 17), a glass-front incuba-
tor was used, and ordinary fluorescent indoor lighting was left on
throughout incubation to maintain approximately constant ambient
light. Under these conditions, all strains grew as discrete pellets. After 48 h,
supernatant samples were added to a one-sixth volume of Complete pro-
tease inhibitor (Roche) and frozen at �80°C until analysis. Biomass sam-
ples were vacuum filtered through 55-mm filter paper circles (Whatman)
that had been preweighed after drying at 65°C. Filters with biomass were
then washed with 200 ml reverse osmosis (RO)-purified water, dried at
65°C to constant mass, and weighed. Total secreted cellulase, xylanase,
and amylase activities were measured using EnzChek cellulase, xylanase,
and amylase substrates (Invitrogen).

Quantitative real-time PCR. For RNA preparation, conidial suspen-
sions were prepared from 2-day-old conidia in 0.01% Tween 20, and 4.0 �
107 spores were added to 200 ml liquid medium, producing a final spore
concentration of 2 � 105 spores per ml, in 1-liter flasks. The cultures were
incubated overnight at 30°C with shaking at 150 rpm. Total RNA was isolated

from mycelia grown under the specified conditions, using an RNeasy Plant
minikit (Qiagen) according to the manufacturer’s instructions. For cDNA
synthesis, total RNA was treated with DNase (Promega). cDNA first-strand
synthesis was performed using a Moloney murine leukemia virus (M-MLV)
reverse transcriptase kit (Promega). The design of primers and the calculation
of optimum annealing temperatures for PCR were performed using
NetPrimer (www.premierbiosoft.com/netprimer/). RT-qPCRs were per-
formed according to the instructions of Applied Biosystems. All experiments
were performed with SYBR green as the detector, using an ABI Prism 7000
sequence detection system with a 2-step PCR and 60°C as the annealing tem-
perature, unless otherwise stated.

The primers used for this study are shown in Tables 1 and 2.
Statistical analysis. All claims of statistical significance are based on

two-tailed two-sample Student’s t tests assuming unequal variance.

RESULTS
The A. oryzae genome contains orthologues of genes involved in
carbon catabolite repression in A. nidulans. Although many
genes have been shown to be affected by CCR in A. oryzae (18),
there has been little research into the genetics of CCR in this fun-
gus. We used published amino acid sequences of A. nidulans pro-
teins to identify putative orthologues in the A. oryzae genome.
Clear orthologues of creA, creB, and creC were identified (Table 3).
When sequences were aligned, the A. oryzae CreB protein showed
63% amino acid identity with CreB from A. nidulans and 42%
amino acid identity with Cre2 from T. reesei, and there was 38%
identity when all three proteins were aligned, with conservation
strongest in the six DUB homology domains surrounding con-
served cysteine, aspartic acid, and histidine residues required for
catalytic activity. CreB in A. nidulans and Cre2 in T. reesei share
41% amino acid identity.

Creation of A. oryzae creB deletion and complemented
strains. A deletion construct was made which lacks 2,191 bp of
creB, beginning from 4 nucleotides past the start codon, and con-
tains 621 bp 5= of creB and 769 bp 3= of creB, surrounding the ptrA1
pyrithiamine resistance selectable marker (19). The plasmid was
used to transform RIB40, and pyrithiamine-resistant colonies
were obtained. To verify that a deletion of creB was obtained, one
colony was analyzed using PCR to show that both ends of creB
were replaced (Fig. 1). To confirm that the phenotype was due to
the deletion, the strain was further transformed with a plasmid
containing creB to produce a complemented strain for use as a
control in experiments. To do this, a chlorate-resistant sector was
isolated and shown to be a niaD mutant, as it was complemented
by the A. nidulans niaD gene (20). This creB�;niaD1 mutant was

TABLE 1 Oligonucleotide primers used for RT-qPCR

Organism Primer Primer sequence (5= ¡ 3=)
Exons whose boundary
was crossed

Amplicon
size (bp)

A. nidulans alcA F GAGGCTCTGGACTTCTTCGCT 2 and 3 107
alcA R GCGATTCTGCCTTGTTCCATA 2 and 3 107
tubC F TAACCTGCTCAACCCTGTTCC 5 and 6 137
tubC R CATAGAGCACAGAGCAGTTTGGAC 5 and 6 137

A. oryzae �-tubulin F GGTAACCAAATAGGTGCCGC 4 and 5 80
�-tubulin R GAGGAGCCATTGTAAACACCG 4 and 5 80
amyABC F AGGCGTGTACTGTATCGGCG 6 and 7 117
amyABC R CGTTGAGGAGTGGATAGTAAATGG 6 and 7 117
glaA F AGGCAATCTTGAATAATATCGGC 1 and 2 113
glaA R CACGGGTCCAGGTATAGAAATAATG 1 and 2 113
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transformed using a plasmid containing both A. oryzae creB and A.
nidulans niaD, and colonies that grew on nitrate were selected and
tested.

Growth of A. oryzae creB� strain. Growth phenotypes of the
RIB40 parent strain, the creB deletion strain, and the creB de-
letion strain complemented with creB were tested under a range
of conditions (Fig. 2). The deletion mutant strain grew well on
standard minimal media such as Czapek-Dox medium, which
contains 3% sucrose as a carbon source, and on richer media
such as potato dextrose agar (which contains starch and 2%
glucose), albeit with slightly reduced conidiation and mycelial
density. The strain also grew robustly in liquid culture: after 48
h, the biomasses of A. oryzae creB� triplicate spore-inoculated
cultures grown in sorbitol, xylan, or xylan plus sucrose were
not significantly different from the biomass of the wild-type or
complemented strain (Fig. 3A).

The deletion mutant exhibited pleiotropic phenotypes similar
to those seen in A. nidulans, with commonalities including re-
duced growth on quinate, proline, or glucuronate as the sole car-
bon source, reduced growth on nitrate as the sole nitrogen source,
enhanced growth on acetamide, resistance to molybdate, and hy-
persensitivity to high concentrations of acriflavine. In contrast to

the case for the creB disruptant in T. reesei, improved growth was
not observed on maltose, likely because secreted �-glucosidase
activity would not limit growth of A. oryzae RIB40, which was
selected for strong starch degradation (21).

Of particular note, the A. oryzae creB� strain showed greatly
enhanced growth on the protein bovine serum albumin, with a
slightly broader halo of degraded protein on plates containing
milk. Together, these observations indicate increased protease se-
cretion in the creB-deleted strain.

RIB40 and the creB� and complemented strains were germi-
nated on glass coverslips in 1% sorbitol and 10 mM urea liquid
medium and examined microscopically after 18 and 24 h. No
differences in morphology, hyphal length, or the amount of
branching between the strains were apparent. Similarly, when
conidia of the three strains were inoculated on solid medium lack-

TABLE 2 General oligonucleotide primers

Primer Sequence (5= ¡ 3=) Purpose

creB_US_F CGTTCGCTCTCTAACTCCGTC Amplification of upstream region of creB for deletion construct
creB_US_R CCCCATAATTGTCACAAC Amplification of upstream region of creB for deletion construct
creB_DS_F GAGGGATCAGGAAGCGAG Amplification of downstream region of creB for deletion

construct
creB_DS_R CCAGCTATGTGACCCAGG Amplification of downstream region of creB for deletion

construct
ptrA_F GACGGGCAATTGATTACG Amplification of ptrA for deletion construct
ptrA_R CTATCATGGGGTGACGATG Amplification of ptrA for deletion construct
creB_US_R_Fus CGTATAGATCAGCGGCACCCCATAATTGTCACAAC Assembly of creB deletion construct by fusion PCR
creB_DS_F_Fus CTCATCGTCACCCCATGATAGGAGGGATCAGGAAGCGAG Assembly of creB deletion construct by fusion PCR
Ao_creB_US_F2 ACCGCCAATCCACACGTC Confirmation of replacement of creB at upstream end (Fig. 1)
pPTR_for_creB_US2 GATAGTGTTGGGGTCCATGC Confirmation of replacement of creB at upstream end (Fig. 1)
Ao_DS_creBKOtest_F TATGTAAATGGCTGTGTCCC Confirmation of replacement of creB at downstream end (Fig. 1)
Ao_DS_creBKOtest_R ACCGTTCCCAAAACCTG Confirmation of replacement of creB at downstream end (Fig. 1)
Ao_�-tub_RT_F_bridge TTTTGGGATGGAGAATTACG Semiquantitative RT-PCR of creB mRNA levels with respect to

�-tubulin levels in A. oryzae DAR3699
Ao_�-tub_RT_R CTTGAAGAGCTCCTGGATGG Semiquantitative RT-PCR of creB mRNA levels with respect to

�-tubulin levels in A. oryzae DAR3699
Ao_creB_RT_F_bridge ACCTGCTCTGCTATCTTCCG Semiquantitative RT-PCR of creB mRNA levels with respect to

�-tubulin levels in A. oryzae DAR3699
Ao_creB_RT_R GCGAAGTTTTGATAGCGAAG Semiquantitative RT-PCR of creB mRNA levels with respect to

�-tubulin levels in A. oryzae DAR3699

TABLE 3 Conservation of proteins involved in CCR in A. nidulans and
A. oryzaea

Protein % Identity % Similarity

CreA 84.7 87.1
CreB 73.5 78.5
CreC 80.1 83.9
CreD 81.7 85.8
AcrB 77.2 81.6
a Putative A. oryzae orthologues of genes involved in CCR in A. nidulans were identified
by BLAST searching of the A. oryzae genome, and putative amino acid sequences were
determined. Orthologous amino acid sequences were aligned using Gap (GCG).

FIG 1 Verification of gene replacement. (A) Schematic showing primer bind-
ing sites. Primers (see Table 2 for details): 1, Ao_creB_US_F2; 2,
pPTR_for_creB_US2p; 3, Ao_DS_creBKOtest_F; 4, Ao_DS_creBKOtest_R.
(B) Agarose gel showing PCR products. Lane 1, molecular size markers; lane 2,
blank; lanes 3 to 6, primers and DNA templates for strains, as indicated. �,
creB� strain; �, creB� strain.
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ing either a carbon or nitrogen source, the spidery hyphal exten-
sions had similar diameters and were present in similar amounts.
When the three strains were grown with shaking in liquid medium
for RNA and enzyme analyses (see Materials and Methods), all
strains grew as discrete pellets, and thus there was no apparent
effect on viscosity due to deletion of creB.

Deletion of creB alleviates glucose inhibition of conidial ger-
mination. A. oryzae RIB40 germinates very poorly from conidial
spore suspensions on 1% glucose medium and somewhat poorly
on 1% sucrose medium compared to medium containing 1%
fructose as the carbon source (Fig. 4; Table 4), indicating that
glucose inhibits germination. This finding has not previously been
reported explicitly, and the reason for it is not understood. This

inhibition is not specific to the RIB40 strain, as it was also seen in
A. oryzae NBRC 30105. Inhibition was not detected in the pres-
ence of a low concentration of glucose (0.1%) or on rich medium
containing 1% glucose together with yeast extract, peptone, and
amino acids (data not shown). The inhibition of conidial germi-
nation was abolished in the creB� strain (Fig. 4; Table 4).

Deletion of creB increases expression of cellulases and xyla-
nases under inducing conditions. Preliminary experiments in
RIB40 found that 1% sorbitol can be used as a carbon source that
is neither an inducer nor a repressor of cellulases, amylases, and
xylanases and that 2% sucrose causes repression of these enzymes.
Subsequently, triplicate spore-inoculated 50-ml shake flask cul-
tures of the three strains were grown under noninducing (1%
sorbitol), inducing (1% xylan), and repressing (1% xylan plus 2%
sucrose) conditions. After 48 h, total secreted cellulase activities
were measured using EnzChek cellulase substrate and are ex-
pressed as activities per unit of dry weight biomass, normalized
such that activity in the wild-type strain under inducing condi-
tions was 100 units (Fig. 3B). Activity was barely detectable for all
three strains under noninducing conditions, and the three strains’
activities did not differ significantly. Under repressing conditions,
activities were low but detectable and did not differ significantly
between the three strains. Activities were over 2 orders of magni-
tude higher under inducing conditions. The wild-type and com-
plemented strains’ activities were not significantly different,
whereas the creB� strain had significantly greater activity (P �
0.05), with the mean for the creB� strain cultures being 50%
higher than that for the wild-type strain.

The same cultures were also analyzed for total secreted xyla-
nase activity, using EnzChek xylanase substrate, and the results are
expressed and normalized in the same manner as that described
above (Fig. 3C). The results mirrored those for the cellulase assays,
consistent with reports that cellulases and xylanases are regulated
similarly in A. oryzae (22). Activities were barely detectable in all
three strains under noninducing conditions, and the three strains’
activities did not differ significantly. Under repressing conditions,
activities were low but detectable and did not differ significantly
between the three strains. Activities were over 3 orders of magni-
tude higher under inducing conditions. The wild-type and com-
plemented strains’ activities were not significantly different,
whereas the creB� strain had significantly greater activity (P �
0.05), with the mean for the creB� strain cultures being almost
double that for the wild-type strain.

Thus, deletion of creB increases the expression of cellulases and
xylanases in the absence of CCR but does not affect the response
to CCR.

Deletion of creB increases expression of amylases under var-
ious conditions via an increase in gene transcription. Triplicate
spore-inoculated 50-ml shake flask cultures of the three strains
were grown under noninducing (1% sorbitol), inducing (1% sor-
bitol plus 1% starch), and repressing (1% sorbitol plus 1% starch
plus 2% sucrose) conditions. After 48 h, total secreted amylase
activities were measured using EnzChek amylase substrate and are
expressed as activities per unit of dry weight biomass, normalized
such that activity in the wild-type strain under inducing condi-
tions was 100 units (Fig. 5A).

Under all three growth conditions, the activity of the creB�
strain was significantly higher than that of the wild-type or com-
plemented strain (P � 0.001 for noninducing conditions, P � 0.01
for inducing conditions, and P � 0.001 for repressing conditions).

FIG 2 Phenotypic effects of deleting creB in A. oryzae. The indicated strains
were grown for 4 days at 30°C on the indicated media. Sucrose was added at
1%; proline, acetamide, glucuronate, and quinate were added at 50 mM, as
carbon sources; urea, proline, and acetamide were added at 10 mM, as nitrogen
sources; and bovine serum albumin (BSA) was added at 0.01%. PDA, potato
dextrose agar.
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The activities of the wild-type and complemented strains were not
significantly different from one another under any growth condi-
tion. The creB� strain produced readily detectable activity under
noninducing conditions, with more than double the wild-type
activity under inducing conditions and 40-fold more than the
wild-type activity under repressing conditions.

The addition of 2% sucrose reduced amylase activities in the
wild-type and complemented strains (P � 0.01) about 35-fold. It
also reduced amylase activities in the mutant strain, but only by
one-third. This indicates a high level of carbon catabolite dere-
pression of one or more genes encoding starch-degrading en-
zymes in the mutant strain.

To investigate the molecular basis of these observations, glu-
coamylase (glaA) and �-amylase (amyA, amyB, and amyC) tran-
script levels in the wild-type and creB� strains were measured
under all three growth conditions, using quantitative real-time
PCR. Representative results from three independent experiments
are shown in Fig. 5. There are three genes for secreted �-amylase in
A. oryzae RIB40, with almost identical nucleotide sequences,
which are all expressed (23, 24); our measurements indicate the
total transcript levels of these three genes combined. The tran-
script levels of both glucoamylase (Fig. 5B) and �-amylase (Fig.
5C) were significantly higher (P � 0.01) in the creB� strain than in
the wild-type strain under all three growth conditions, reflecting
the higher secreted total amylase activities observed. Thus, creB

deletion increases total secreted amylase activity by increasing
transcript levels of multiple amylase-encoding genes.

The finding that deletion of creB in A. oryzae elevates the levels
of glucoamylase and �-amylase transcripts and almost abolishes
repression led us to look at an A. nidulans example, as the effects of
creB on transcription have not been published. We chose alcA,
encoding alcohol dehydrogenase I, as it has been well character-
ized at the plate test and enzyme activity levels and shows dere-
pressed expression in medium containing both an inducer and a
repressor (3). To investigate the molecular basis of this dere-
pressed expression, transcript levels of the wild-type and creB1937
null strains grown under uninduced, ethyl methyl ketone (EMK)-
induced, and EMK-plus-glucose-repressed conditions were mea-
sured using quantitative real-time PCR. Representative results
from three independent experiments are shown in Fig. 5D. The
data were assessed for the effects of creB1937 on the elevation of
transcript levels, the inducibility of the system, and derepression.
The transcript levels in the uninduced cultures showed that there
was very low basal transcription, with no evidence of elevation of
alcA transcription due to creB1937. The transcript levels increased
significantly (P � 0.001) in the induced samples compared to the
uninduced levels, with the increase being greater in the creB1937
strain than in the wild-type strain. While the strains induced with
EMK showed very large elevations in transcription of alcA, there

FIG 3 Deletion of creB increases secretion of cellulases and xylanases under inducing conditions. Triplicate spore-inoculated 50-ml shake flask cultures of the
three strains were grown under noninducing (1% sorbitol), inducing (1% xylan), and repressing (1% xylan plus 2% sucrose) conditions. After 48 h, biomass and
supernatants were harvested, and total secreted enzyme activities were measured using EnzChek cellulase substrate or EnzChek xylanase substrate and are
expressed as activities per unit of dry weight biomass, normalized such that activity in the wild-type strain under inducing conditions was 100 units. (A) Growth
in liquid medium. (B) Total secreted cellulase activity. (C) Total secreted xylanase activity.

FIG 4 Inhibition of germination of A. oryzae by glucose. Strain RIB40, the
creB� strain, and the creB�::creB� strain (left to right) were grown from 500
spores for 2 days at 30°C on 1% fructose (top) or 1% glucose (bottom).

TABLE 4 Deletion of creB alleviates inhibition of spore germination in
the presence of repressing carbon sourcesa

Carbon source

Spore germinationb

Wild-type strain creB� strain
Complemented
strain

1% fructose ��� ��� ���
1% sucrose �� ��� ��
1% sucrose � 1% glucose � ��� �
1% glucose —* ��� —*
0.1% glucose ��� ��� ���
a Five hundred spores were spread on agar plates containing the indicated carbon
sources as described in Materials and Methods.
b Symbols indicate the numbers of colonies visible after 2 days of incubation. —, 0
colonies; �, 2 colonies; ��, 75 to 80 colonies; ���, 	200 colonies. Similar trends
were observed on plates inoculated with 5,000 spores (data not shown). * indicates
colonies present at higher-density plating.
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was a significant decrease (P � 0.001) when a repressor was added.
In the wild type, this decrease was to the uninduced level; however,
in the creB1937 strain, there remained, on average, a 20-fold in-
crease in alcA transcript levels compared to that in the uninduced
culture. These experiments were replicated using ethanol rather
than EMK as the inducer of alcA, and the absolute levels of induc-
tion were reduced as expected, but the same results regarding
elevation and repression were apparent. Thus, in A. nidulans,
creB1937 leads to both elevation and partial derepression of alcA
transcription.

A. oryzae DAR3699 has a phenotype similar to that of RIB40
creB�. DAR3699, an A. oryzae strain from the CSIRO collec-
tion, was originally isolated during soy fermentation. Previous
analyses found it to secrete high levels of amylase, to have a
good growth rate, and to grow as compact pellets suitable for
biomass production (14). As these properties make it suitable
for bioreactor use, we included it in our phenotypic tests.
DAR3699 showed phenotypes that were similar to those of the
RIB40 creB� strain, including molybdate resistance, strong
growth on acetamide, weak growth on proline, quinate, and
arabinose, and high protease secretion. As indicated above,
glucose inhibited the germination of RIB40 spores, but creB
deletion abolished this inhibition; this inhibition was also ab-

sent in DAR3699. Furthermore, when we deleted creB in the
DAR3699 strain, the phenotype was unchanged from that of
DAR3699. These phenotypes indicated that DAR3699 might be
a creB mutant strain and that this might contribute to its useful
properties. We sequenced 8 kb of genomic DNA covering at
least 200 bp upstream and 100 bp downstream of the creA, creB,
and creC loci and found no differences between RIB40 and
DAR3699 for creA and creC. The DAR3699 creB locus contains
a single base pair insertion in a putative upstream open reading
frame, lengthening it to 46 codons (Fig. 6). To test whether this
change led to reduced transcription, RNAs were extracted from
RIB40 and DAR3699 grown as surface colonies on liquid me-
dium containing 1% glucose, and primers that amplify creB or
�-tubulin were used in semiquantitative RT-PCRs. No reduc-
tion was detected in the amount of creB mRNA in DAR3699
compared with RIB40; thus, if the insertion in DAR3699 affects
CreB levels, the effects are likely to be at the translational level.
This suggestion is supported by findings in Saccharomyces
cerevisiae which have shown that translation efficiency de-
creases markedly as upstream open reading frame length is
increased, with 36 codons reducing translation by about 95%
(25).

FIG 5 Deletion of creB increases secretion of amylases under various conditions via an increase in gene transcription. (A) Triplicate spore-inoculated 50-ml
shake flask cultures of the three strains were grown under noninducing (1% sorbitol), inducing (1% sorbitol plus 1% starch), and repressing (1% sorbitol plus
1% starch plus 2% sucrose) conditions. After 48 h, biomass and supernatants were harvested, and total secreted amylase activities were measured using EnzChek
amylase substrate and are expressed as activities per unit of dry weight biomass, normalized such that activity in the wild-type strain under inducing conditions
was 100 units. (B) qRT-PCR analysis of total �-amylase transcript levels in A. oryzae RIB40 and the creB� strain. (C) qRT-PCR analysis of glucoamylase A
transcript levels in A. oryzae RIB40 and the creB� strain. Strains were induced using starch (1%) or repressed using sucrose (2%) and were grown at 30°C for 24
h. Transcript levels were standardized against �-tubulin levels. (D) qRT-PCR analysis of alcA transcript levels in A. nidulans wild-type and creB1936 strains.
Strains were induced using EMK (50 mM) or repressed using glucose (1%) and were grown at 37°C for 16 to 18 h. Transcript levels were standardized against
�-tubulin levels. Results shown are fold changes compared to the wild type induced with ethanol.
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DISCUSSION

A. oryzae is used widely in the sake and soy brewing industries, as
it produces and secretes a variety of amylases, cellulases, and pro-
teases to break down carbohydrates and proteins in rice, wheat,
and soybean to produce nitrogen and other nutrients, and these
enzymes are also used to accelerate hydrolysis of substrates in fish
sauce fermentation (1). Production strains have been selected
over centuries for enhanced properties, but further improvements
are possible.

Many of the genes encoding industrially important enzymes
are not expressed when a good carbon source is available, due to
the transcriptional control mechanism of CCR. For example, the
gene expression profiles of A. oryzae cells were analyzed for myce-
lia grown in glucose-rich and glucose-poor media. A key finding
was that cultures grown with wheat bran mimicked the glucose-
depleted cultures and showed a diverse gene expression profile for
hydrolytic enzymes, most probably due to a relaxation of CCR
(18). Thus, an important approach to strain development is to
perturb CCR in production strains, using information from
model fungi and techniques that allow precise gene manipula-
tions, to increase production of useful enzymes. Gene targeting
has advantages over random mutagenesis, particularly in intro-
ducing multiple desired changes in organisms where genetic
crosses cannot be undertaken due to the lack of a sexual cycle.
Even though functional mating type genes were recently identified
in A. oryzae (26), because production strains have a range of le-
sions in their genomes, molecular rather than meiotic approaches
will still be preferable to maintain the overall phenotypes.

In A. nidulans, deletion of creA, encoding the major CCR re-
pressor, has severe effects on morphology, so to avoid these effects,
we chose to disrupt the A. oryzae creB gene. In A. nidulans, the
regulatory deubiquitinating enzyme CreB is proposed to be in-
volved in carbon metabolism by two possibly distinct mechanisms
(3, 4). First, under carbon catabolite-repressing conditions, null
alleles lead to derepressed expression of enzymes, including alco-
hol dehydrogenase I and acetamidase. Second, on a range of car-
bon sources generally not considered to be repressing, null alleles
show altered growth, such as increased growth on maltose and

decreased growth on D-quinate. Complete details of the mecha-
nism of action of CreB are not fully understood, but the reduced
growth on compounds such as quinate and proline is due to a
direct targeting of permeases by CreB that is required to prevent
premature turnover (27; N. Kamglangdee and J. M. Kelly, unpub-
lished data). We demonstrate here that when A. oryzae lacks the
CreB deubiquitinase, it produces higher levels of amylase, cellu-
lase, xylanase, and protease activities. For cellulase and xylanase,
these increased levels were apparent when no repressing carbon
source had been added to the medium but not when a repressing
carbon source was exogenously added, whereas amylase expres-
sion was increased under both conditions. Thus, we propose that
A. oryzae CreB is involved not only in derepression of some en-
zymes but also in the expression of some enzymes even in the
absence of CCR, consistent with observations in A. nidulans (3–6).
The molecular basis of the creB deletion derepression phenotypes
is not understood for any organism, so to determine whether there
are effects on transcription, glucoamylase and �-amylase tran-
script levels were compared between the wild-type and creB�
strains, and enzyme activity changes were found to be mirrored at
the transcript level. This finding is significant, and because there
are no published data about the transcriptional effects of creB
mutations in A. nidulans, we examined alcA expression. alcA en-
codes alcohol dehydrogenase I, has been well characterized at the
plate test and enzyme activity levels, and shows derepressed activ-
ity in medium containing both an inducer and a repressor (3).
Comparisons between the wild-type and creB� strains showed
that enzyme activity changes were mirrored at the transcript level
in this organism as well. Importantly, this evidence indicates that
the increased amount of expression, at least for the systems tested,
has a transcriptional component and thus is likely due to a direct
involvement of CreB in CCR rather than a consequence of the
effects of creB on permeases (27). Although effects on permeases
may alter intracellular inducer levels for some systems, e.g., at least
in the case of ethanol induction of alcA in A. nidulans, no per-
mease is required.

During our phenotypic analysis of the mutant strain, we found
that glucose and, to a lesser degree, sucrose inhibit germination of
A. oryzae RIB40 conidia. This inhibition of conidial germination
was abolished in the creB� strain. Although we do not understand
the molecular basis of this observation, this may provide a novel
way of selecting new mutant strains: if spores are subjected to
mutagenesis and then germinated in glucose-containing medium,
the population of spores that regenerate is likely to be enriched for
mutants with phenotypes overlapping those of the creB� strain.
Furthermore, the germination of the creB� strain in the presence
of glucose may be useful in industrial processes in which the pre-
culture or primary fermentation is inoculated with conidia.

A. oryzae DAR3699 was already known to have many valuable
properties for biotechnological use. Among 15 fungal strains
tested, it had the highest protein content and shared the highest
specific growth rate in starch processing wastewater, as well as
having strong secreted amylase activity and a compact pellet mor-
phology ideal for use in a bioreactor (14). In a pilot plant-scale air
lift bioreactor, the strain efficiently converted carbon and other
nutrients in starch processing wastewater into protein-rich fungal
biomass (28). Yet little is known of the genetics of this strain. We
have shown that A. oryzae DAR3699 has a mutation in the pro-
moter of its creB gene; that it has many phenotypes consistent
with loss of creB function, including strong growth on acet-

FIG 6 Analysis of DAR3699 creB locus. The schematic shows a representation
of the region at the 5= end of the creB gene in A. nidulans, A. oryzae RIB40, and
A. oryzae DAR3699 (not to scale). The top line represents the 5= region of A.
nidulans creB, showing the mapped start points of transcription (6) and an
upstream open reading frame of 12 codons that is conserved in A. oryzae. The
middle line represents the 5= region of A. oryzae RIB40 creB, showing a putative
11-codon upstream open reading frame spanning the site that is the major start
point of transcription in A. nidulans. The bottom line represents the 5= region
of A. oryzae DAR3699 creB, showing the effect of the insertion of one base pair
into the upstream open reading frame sequence, lengthening it to 46 codons.
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amide, weak growth on proline, quinate, or arabinose, resis-
tance to molybdate, high protease secretion, and little or no
inhibition of spore germination by glucose; and that deleting
creB in this strain does not change the phenotype. A. oryzae
arose through the ancient domestication of Aspergillus flavus
and has undergone genetic changes during its centuries of use
in Asian food and beverage production (29). Our data suggest
that for A. oryzae DAR3699, one of these genetic changes is
likely to have been partial or complete loss of creB function.
This change may have been selected for the consequent in-
crease in protease secretion, as this strain is used in soy fermen-
tation, which is initially limited by low levels of free nitrogen.

In addition to being mutated in the model fungus A. nidulans
(3), creB has now been mutated in three industrially useful fungi,
diverse among the Ascomycetes: A. oryzae, P. decumbens (13), and
T. reesei (12). In every case, loss of creB function has resulted in
increased activities of multiple secreted hydrolases of industrial
importance. Furthermore, we have shown that A. oryzae
DAR3699, a strain useful in both solid-state food production and
industrial wastewater treatment, is likely to have lost creB func-
tion. Taken together, these findings indicate that deletion of creB
homologues may be broadly useful in a variety of fungi for pro-
ducing a range of enzymes.
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SIGNIFICANCE AND IMPACT OF THE STUDY 19 

Carbon catabolite repression (CCR) is often undesirable in industrial bioprocesses as it 20 

can limit the production of useful enzymes.  Deletion of creB is known to alleviate CCR 21 

and increase enzyme secretion in filamentous fungi, potentially stimulating 22 

bioconversion.  However, creB deletion has not been investigated in the context of 23 

industrial fermentation. This is the first report of a creB-deleted strain grown in a 24 

bioreactor. In synthetic winery wastewater, creB-deleted Aspergillus oryzae retained the 25 

robust growth and bioconversion capabilities of its parent, as well as the desirable pellet 26 

morphology that enables optimized harvesting of this protein-rich biomass.    27 

 28 

ABSTRACT 29 

The filamentous fungus Aspergillus oryzae is used in food and beverage production as a 30 

source of hydrolytic enzymes. Deletion of creB, encoding a deubiquitinating enzyme, has 31 

previously been shown to increase enzyme production and reduce carbon catabolite 32 

repression.  We grew wildtype and creB-deleted strains in a bench-scale stirred tank 33 

bioreactor. In these fermentation trials, the strains were grown in media based on 34 

wastewater produced by Australian wineries containing glucose, fructose, and ethanol.  35 

Supplementation with 5 mmol l-1 urea enabled rapid consumption of the sugars. Both 36 

strains showed a strong preference for consuming the glucose first, with appreciable 37 

consumption of fructose beginning only when glucose concentrations were reduced to 38 

around 0.7 g l-1.  Consumption of ethanol was detectable only after the fructose 39 

concentration was similarly reduced.  The overall patterns of carbon source consumption, 40 

growth and morphology were similar in the two strains. 41 
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 46 

Introduction 47 

 48 

In the presence of glucose or other readily metabolized carbon sources, most micro-49 

organisms reduce the expression of genes encoding enzymes for the utilization of 50 

complex or non-preferred carbon sources.  This reduced expression is called carbon 51 

catabolite repression (CCR), and its targets include genes encoding many enzymes 52 

important in biotechnology such as amylases, cellulases and xylanases.  Overcoming or 53 

circumventing CCR is therefore a key objective in optimizing many industrial 54 

fermentation processes. 55 

 56 

The major regulator of CCR in filamentous fungi is creA, which encodes a DNA-binding 57 

transcriptional repressor (Dowzer and Kelly 1991).  The creA gene has been studied in 58 

many species, and its disruption leads to increased expression of many genes affected by 59 

CCR, but also to impaired growth and aberrant morphology (Hynes and Kelly 1977).  60 

Less well studied is creB.  In the model fungus Aspergillus nidulans, mutations in creB 61 

have a milder effect on growth than creA mutations and cause pleiotropic effects on 62 

carbon metabolism including alleviation of CCR in a subset of those genes affected by 63 

creA, as well as increased production of some enzymes (Hynes and Kelly 1977). The 64 
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creB gene encodes a deubiquitinating enzyme that works in a complex with CreC, a 65 

WD40 repeat-containing protein (Lockington and Kelly 2001; Lockington and Kelly 66 

2002).  The only protein known to be targeted by CreB is QutD, a cell membrane quinate 67 

permease (Kamlangdee 2008).  CreA is not a direct target of CreB (Alam et al. 2017).  68 

Proteins that co-purify with CreB tend to be involved in cellular materials transport and 69 

organization (Alam and Kelly 2017).   Among fungi used in industry, creB has been 70 

disrupted in Trichoderma reesei and Penicillium decumbens, and this increased cellulase 71 

production in both species (Denton et al. 2011; Zhou et al. 2012).   72 

 73 

Aspergillus oryzae is a domesticated filamentous fungus that has been used in East Asia 74 

for centuries for fermenting soy sauce, sake, and other foods and beverages.  The 75 

generation and properties of A. oryzae creBΔ have been described (Hunter et al. 2013).  76 

Growth is slightly reduced on solid media but no difference in growth was detected in 77 

shake flasks.  The creBΔ strain secretes higher levels of cellulases and xylanases than its 78 

parent in inducing conditions, and higher levels of amylases in non-inducing, inducing, 79 

and repressing conditions.  It also secretes higher levels of proteases and, unlike wildtype 80 

A. oryzae, its spores germinate efficiently in the presence of high concentrations of 81 

glucose. 82 

 83 

Winery wastewater is produced in large quantities and is rich in glucose, fructose, and 84 

ethanol (reviewed in Mosse et al. 2011).  The high carbon content makes treatment of 85 

winery wastewater by conventional means costly.  A. oryzae shows potential for treating 86 

winery wastewater in an environmentally friendly manner, by consuming its organic 87 
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materials and converting them into protein-rich fungal biomass (Zhang et al. 2008).  This 88 

biomass could be used as animal feed, helping to off-set the operating costs of the 89 

treatment process as well as extracting value from a nutrient-rich resource that is usually 90 

lost as waste.  Here we report growing A. oryzae wildtype and creBΔ strains in synthetic 91 

winery wastewater in shake flasks and in a laboratory scale stirred tank bioreactor.  Our 92 

aims are to compare the creBΔ strain to its parent and to investigate the behavior of both 93 

strains in a mixed carbon source fermentation. 94 

 95 

Results and discussion 96 

 97 

Before progressing to bioreactor experiments, we performed preliminary investigations of 98 

the growth of A. oryzae in synthetic winery wastewater in shake flasks (results not 99 

presented). As real winery wastewater is highly variable, both throughout the year and 100 

even hour by hour (reviewed in Mosse et al. 2011), we designed synthetic winery 101 

wastewater to ensure consistency between experiments (Table 1). Doubling the 102 

concentration of salt and trace element solution in synthetic winery wastewater 103 

supplemented with 3 g l-1 (NH4)2SO4 did not improve growth of A. oryzae after 72 hours, 104 

indicating the concentrations of salts and trace elements are not limiting in these 105 

conditions.  Growth of A. oryzae after 48 h was the same in synthetic winery wastewater 106 

as in modified synthetic winery wastewater lacking ethanol, indicating A. oryzae is not 107 

inhibited by ethanol at a concentration typical for South Australian winery wastewater.  108 

A. oryzae grew well in synthetic winery wastewater supplemented with 3 g l-1 (NH4)2SO4 109 

at 30, 34, and 37 °C, without large differences in carbon content reduction or biomass 110 
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accumulation between temperatures.  Both wildtype and creBΔ strains grew well at 30 °C 111 

in synthetic winery wastewater supplemented with 3 g l-1 (NH4)2SO4 and 10 mmol l-1 112 

citric acid as buffer and set to pH 3.0, 4.0, 5.0, or 6.0, again without large differences in 113 

carbon content reduction or biomass generation.  Thus A. oryzae grows robustly in 114 

synthetic winery wastewater in a broad range of temperature and pH conditions.  30 °C 115 

and pH 6.0 were chosen as conditions for further experiments.     116 

 117 

Growth of both A. oryzae creBΔ and its parent was poor in a stirred-tank bioreactor 118 

containing synthetic winery wastewater without nitrogen supplementation, which was 119 

expected as real winery wastewater is deficient in nitrogen (Chapman 2001).  Therefore 120 

wildtype A. oryzae was grown in duplicate shake flasks containing synthetic winery 121 

wastewater supplemented with 0–20 mmol l-1 urea.  Based on sugar consumption during 122 

48 h incubation, 5 mmol l-1 urea supplementation was found to be optimal (Figure 1); 123 

additional urea did not markedly improve sugar consumption. Therefore 5 mmol l-1 urea 124 

supplementation was used in subsequent bioreactor experiments.   125 

 126 

Results for two 48-h fermentations with each strain are shown in Figure 2.  Glucose was 127 

the preferred carbon source for both strains, and there was little consumption of fructose 128 

before glucose concentrations decreased to approximately 0.7 g l-1.  Fructose 129 

concentrations were reduced to undetectable levels by each strain in at least one 130 

bioreactor run, whereas glucose concentrations tended to stabilize at 0.1–0.2 g l-1.  Early 131 

in the fermentations, ethanol was lost at a gradual and constant rate due to evaporation 132 

rather than consumption.  After 36–40 hours, sugar concentrations were low, and ethanol 133 
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concentrations began decreasing more rapidly due to consumption in addition to 134 

evaporation.  The performance of the two strains appeared similar.  Both strains 135 

consumed over 90% of the sugars and much of the ethanol after 48 h, and grew as white 136 

fluffy pellets (Figure 3).  This is a desirable morphology as the fluffiness presents a high 137 

surface area of mycelium in contact with the substrate.  Importantly, the pellet form of 138 

fungal biomass can lead to low viscosity of the fermentation broth, which is beneficial for 139 

enhancing energy and mass transfer, and consequently the fungal growth and production 140 

rates.  Furthermore, pellets can be easily and cheaply separated from the substrate by 141 

filtration (Jin et al. 2002). 142 

  143 

To more closely analyze CCR in the fermentations shown in Figure 2, concentrations of 144 

non-preferred carbon sources (fructose and ethanol) were plotted as functions of 145 

concentrations of preferred carbon sources (either glucose or total sugars, meaning 146 

glucose plus fructose) in Figure 4.  These graphs eliminate time as a variable, reducing 147 

the influence of experimental variation between repeat fermentations.  If there were 148 

hypothetical perfect CCR, these graphs would run directly left from the starting point in 149 

the top-right corner of the plot, indicating complete consumption of the preferred carbon 150 

source before any consumption of the non-preferred carbon source.  In the complete 151 

absence of CCR, given equal starting concentrations of carbon sources, the graphs would 152 

be linear from the starting point to the origin, indicating simultaneous utilization of 153 

carbon sources.  Figure 4 (a) shows that glucose is preferred over fructose to the same 154 

degree in wildtype and in creBΔ strains.  Thus there is a mechanism of glucose repression 155 

of fructose consumption that is independent of creB.   The mechanism is likely to involve 156 
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creA, as deletion of the homologue of creA in Saccharomyces cerevisiae, mig1, causes 157 

glucose to be consumed simultaneously with otherwise non-preferred sugars maltose 158 

(Klein et al. 1997) and sucrose (Klein et al. 1999).  Figures 4 (b) and (c) show that CCR 159 

of ethanol consumption appeared to be modestly reduced in the creBΔ strain, indicated by 160 

graphs slightly closer to the center of the plots than those of the wildtype strain.  Greater 161 

consumption of ethanol in the presence of sugars in A. oryzae creBΔ is consistent with 162 

our data about mRNA levels in A. nidulans (Hunter et al. 2013).  In A. nidulans, the 163 

major enzyme for ethanol utilization is alcohol dehydrogenase I, encoded by alcA which 164 

is subject to CCR (Lockington et al. 1985). Mutation of creB in A. nidulans strongly 165 

derepresses alcA expression, permitting levels of alcA mRNA in the presence of glucose 166 

20-fold higher than in a creB+ strain, similar to the levels seen in the creB+ strain in the 167 

absence of glucose (Hunter et al. 2013).  A. oryzae is also known to have a catabolic 168 

alcohol dehydrogenase gene, adhB, which is subject to glucose repression (Maeda et al. 169 

2004).  Thus creB is involved in CCR of ethanol catabolism in both A. nidulans and A. 170 

oryzae. 171 

 172 

Some fungi, including the ascomycete Candida boidinii (GenBank: AFI55138.1), 173 

produce glucose isomerase (xylose isomerase, EC 5.3.1.5), which can interconvert 174 

glucose and fructose.  To investigate whether A. oryzae might have produced glucose 175 

isomerase during the experiments described above, wildtype and creBΔ strains were 176 

grown in separate shake flasks containing synthetic winery wastewater supplemented 177 

with 5 mmol l-1 urea, but lacking either glucose or fructose.  After 24, 52, 72, or 96 h 178 

incubation, no converted sugar could be detected (results not shown).  Thus neither A. 179 
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oryzae strain produced detectable glucose isomerase activity when grown in modified 180 

synthetic winery wastewater. 181 

 182 

To our knowledge, this is the first report of a creB-deleted fungal strain grown in a 183 

bioreactor.  The strain performed well, with similar morphology and carbon source 184 

consumption to its parent.  This contrasts with creA-deleted strains, which have aberrant 185 

morphology and reduced growth rate in A. nidulans, not only on solid media but also in 186 

batch bioreactor cultures (Agger et al. 2001; David et al. 2005).  Deletion of creB slightly 187 

reduces growth on solid media in A. nidulans (Hynes and Kelly 1977), T. reesei (Denton 188 

et al. 2011), and A. oryzae (Hunter et al. 2013), but was not found to reduce growth in A. 189 

oryzae grown in shake flasks (Hunter et al. 2013).  In this study we observed no 190 

inhibition of growth in the creB-deleted strain, either in shake flasks or in the bioreactor.  191 

Thus creB-deleted strains may be particularly useful in liquid-phase industrial 192 

fermentations in which fungal growth is beneficial, particularly in processes in which 193 

increased enzyme secretion is desirable.  Deletion of creB may further enhance strains 194 

already possessing beneficial mutations.  For example, an A. oryzae creAΔ /creBΔ double 195 

mutant was found to have superior secreted α-amylase activity to strains possessing either 196 

mutation alone (Ichinose et al. 2014). 197 

 198 

Materials and Methods 199 

 200 

Strains  201 
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A. oryzae RIB40 (also called ATCC42149 or NBRC 100959), obtained from the NITE 202 

Biological Resource Center, was used as the wildtype strain in this study.  The generation 203 

of A. oryzae RIB40 creBΔ was described in Hunter et al. (2013). 204 

 205 

Media 206 

Synthetic winery wastewater was designed to represent wastewater from a typical South 207 

Australian winery during vintage.  The composition is given in Table 1.  208 

 209 

Spores were harvested from spread plates containing Aspergillus nitrogen-free medium 210 

(Todd et al. 2007) with 2.2% agar, 10 mmol l-1 urea, and 0.1 mol l-1 KCl to promote 211 

extensive sporulation (Song et al. 2001). 212 

 213 

Shake flask experiments 214 

All shake flask experiments were performed with 50 ml cultures in 250 ml Erlenmeyer 215 

flasks, with the rubber seal removed from the caps and the caps sitting loosely on the 216 

flasks to facilitate aeration.  Inoculated flasks were incubated at 30°C unless otherwise 217 

indicated, with shaking at 150 rpm.  As A. oryzae can respond to light (Hatakeyama et al. 218 

2007), a glass-fronted incubator was used, and fluorescent indoor lighting was left on 219 

throughout incubation to maintain approximately constant ambient light. 220 

 221 

Bioreactor experiments 222 

The bioreactor used was a BioFlo III 3.3-l stirred tank reactor with a 2.5 l working 223 

volume (New Brunswick Scientific, USA).  To produce the inoculum, 0.01% Tween 20 224 
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was used to harvest spores from a spread plate inoculated 5 days prior, and the 225 

suspension was pelleted by centrifugation, resuspended in fresh 0.01% Tween 20 in a 20 226 

ml McCartney bottle, and vortexed vigorously to break up spore clumps.  Spore 227 

concentration was determined using a haemocytometer, and 2 × 108 spores in 10 ml 228 

0.01% Tween 20 were added to 50 ml synthetic winery wastewater supplemented with 5 229 

mmol l-1 urea in a 250 ml Erlenmeyer flask.  This spore suspension was incubated for 6 h 230 

as described for shake flask experiments, producing a pre-culture with a high 231 

concentration of very fine pellets.    232 

 233 

After autoclaving the bioreactor, glucose, fructose and ethanol were added from a single 234 

filter-sterilized stock solution.  Reactor conditions were: temperature, 30 °C; stirring rate, 235 

200 rpm; aeration rate, 0.5 v v-1 min-1; pH, 6.0 controlled with 1 mol l-1 H2SO4 and 2 mol 236 

l-1 NaOH.  A baffle was not used as preliminary experiments found too much fungal 237 

growth stuck to the baffle; the sensors and sampling ports appeared to introduce 238 

sufficient turbulence.  The condenser was connected to a recirculating ice water bath to 239 

minimize loss of ethanol due to evaporation.  Fluorescent indoor lighting was left on 240 

throughout inoculum incubation and bioreactor experiments as for the shake flask 241 

experiments.   242 

 243 

Analytical methods 244 

To measure concentrations of sugars or ethanol, culture samples were centrifuged at 245 

10,000 g for 5 min and the supernatants diluted 5 or 10 times and filtered using 0.45 µm 246 

filters.  Concentrations were measured with a Varian Pro Star HPLC machine, with a 247 
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Rezex ROA organic acid column (300 × 7.8 mm, Phenomenex, Australia), refractive 248 

index detector (Model 350, Varian, Australia), 4 mmol l-1 H2SO4 mobile phase, 65 °C 249 

column temperature and 0.6 ml min-1 flow rate.   250 

 251 

To measure biomass, contents of shake flasks were vacuum-filtered through 55-mm filter 252 

paper circles (Whatman) that had been pre-weighed after drying at 65 °C.  Filters with 253 

biomass were then washed with 200 ml reverse osmosis-purified water, dried at 65 °C to 254 

constant mass, and weighed. 255 
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Table 1 Composition of synthetic winery wastewater used in this study.  The 360 

composition is based on wastewater from South Australian wineries during vintage.  361 

Total ammonia nitrogen is from Zhang et al. (2008).  Other characteristics are from 362 

Chapman et al. (2001). 363 

Typical composition of winery 

wastewater 

Composition of synthetic winery 

wastewater 

Glucose 2500 mg l-1 Glucose 2500 mg l-1 

Fructose 2500 mg l-1 Fructose 2500 mg l-1 

Ethanol 2400 mg l-1 Ethanol 2500 mg l-1 

Total Kjeldahl nitrogen 34–60 mg l-1 Proteose peptone 250 mg l-1 (= total 

Kjeldahl nitrogen 40 mg l-1) 

Total ammonia nitrogen 6.0–21.1 mg l-1 Ammonium sulphate 0.25 mmol l-1 (= 9 mg 

l-1 ammonium) 

 1× Salt and trace element solution (Todd et 

al. 2007) 

pH 4–8 pH to 6.0 using concentrated NaOH 

 364 

365 
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 366 

 367 

 368 

 369 

 370 

 371 

 372 

 373 

 374 

 375 

Fig. 1 Optimization of concentration of urea supplementation of synthetic winery 376 

wastewater.  A. oryzae was incubated in synthetic winery wastewater in shake flasks as 377 

described in the methods.  Means and standard deviations of duplicate flasks are shown.  378 

5 mmol l-1 urea was found to be optimal for fungal consumption of sugars. ( ) 20 h, ( ) 379 

26 h, ( ) 42 h, ( ) 48 h 380 

381 
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 382 

 383 

 384 

 385 

 386 

 387 

 388 

 389 

 390 

 391 

 392 

 393 

Fig. 2 Consumption of carbon sources in synthetic winery wastewater by A. oryzae 394 

strains.  A. oryzae was grown in synthetic winery wastewater in a stirred tank bioreactor 395 

as described in the methods.  (a) (i) and (ii) show duplicate fermentations with wildtype 396 

A. oryzae.  (b) (i) and (ii) show duplicate fermentations with A. oryzae creBΔ. (●) and 397 

(○), glucose; (■) and (□), fructose; () and (), ethanol.  398 

399 
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 400 

Fig. 3 Morphology of A. oryzae creBΔ.  The fungus was grown 48 h in a stirred-tank 401 

bioreactor containing synthetic winery wastewater supplemented with urea as described 402 

in Materials and Methods.  It grew as fluffy white pellets, shown here in a standard 80 403 

mm Petri dish. 404 

405 
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 406 

 407 

 408 

 409 

 410 

 411 

 412 

 413 

 414 

 415 

 416 

 417 

 418 

Fig. 4 Consumption of non-preferred carbon sources as a function of concentrations 419 

of preferred carbon sources for the fermentations shown in Figure 2.   In each plot, 420 

the starting points of each fermentation are to the upper right, and fermentations progress 421 

toward the origin.  (●) and (■) with solid lines indicate duplicate fermentations with 422 

wildtype A. oryzae. (○) and (□) with dashed lines indicate duplicate fermentations with 423 

A. oryzae creBΔ. (a) Consumption of fructose as a function of glucose concentration. (b) 424 

Consumption of ethanol as a function of glucose concentration. (c) Consumption of 425 

ethanol as a function of total sugar concentration.  Note that ethanol concentrations 426 

reduced due to evaporation as well as consumption.  427 
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Aspergillus oryzae is a filamentous fungus that has arisen through the ancient domestication of Aspergillus
flavus for making traditional oriental foods and beverages. In the many centuries A. oryzae has been used
for fermenting the starch in rice to simple sugars, it has undergone selection for increased secretion of
starch-degrading enzymes. In particular, all A. oryzae strains investigated thus far have two or more cop-
ies of a gene encoding a-amylase, whereas A. flavus has only one. Here we investigate the duplications
leading to these copies in three A. oryzae strains. We find evidence of at least three separate duplications
of a-amylase, an example of parallel evolution in a micro-organism under artificial selection. At least two
of these duplications appear to be associated with activity of transposable elements of the Tc1/mariner
class. Both involve a 9.1 kb element that terminates in inverted repeats, encodes a putative transposase
and another putative protein of unknown function, and contains an unusual arrangement of four short
internal imperfect repeats. Although ‘‘unusual Mariners’’ of this size have previously been identified in
A. oryzae, Aspergillus fumigatus and Aspergillus nidulans, this is the first evidence we know of that at least
some of them are active in modern times and that their activity can contribute to beneficial genetic
changes.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction unsurprising that A. oryzae has experienced considerable selection
Aspergillus oryzae is a filamentous fungus that has been used for
centuries in the production of traditional oriental foods and bever-
ages. In particular, it is used in the fermentation of rice for sake
production, during which it secretes large amounts of amylases
for the saccharification of starch into glucose for subsequent fer-
mentation by yeasts. Great quantities of A. oryzae amylases are also
prepared and used in food production industries (Berka et al.,
1992).

Alpha-amylase (EC 3.2.1.1) catalyses the hydrolysis of internal
a-1,4-glycosidic bonds in starch and related molecules and is the
major secreted amylase in A. oryzae solid-state culture (Oda
et al., 2006). The A. oryzae a-amylase is known as Taka-amylase
and has been studied extensively at the levels of transcription ini-
tiation (Tanaka et al., 2000; Tani et al., 2000), protein folding (Kaw-
ata et al., 1998), crystal structure (Swift et al., 1991), glycosylation
(Eriksen et al., 1998), secretion kinetics (Santerre Henriksen et al.,
1999), and reaction kinetics (Batlle et al., 2000); there have also
been many investigations of the optimal conditions for a-amylase
production and activity.

Given the importance of a-amylase in rice fermentation and the
length of time A. oryzae has been used to ferment rice, it is
ll rights reserved.

(A.J. Hunter), bo.jin@adelai-
lly).
for increased a-amylase secretion (Hara et al., 1992). In 1989 four
groups independently reported that A. oryzae has multiple copies
of a-amylase. Using Southern blotting, two copies were detected
in A. oryzae NBRC 30105 (Tsukagoshi et al., 1989) and
NRC401013 (Gines et al., 1989), and three copies in A. oryzae
RIB40 (Tada et al., 1989) and DSM63303 (Wirsel et al., 1989). To
our knowledge, no-one has reported an A. oryzae strain with fewer
than two a-amylase copies. The genome of A. oryzae RIB40 was
subsequently sequenced, confirming it had exactly three copies
of a-amylase on different chromosomes (Machida et al., 2005).
These copies have almost identical nucleotide sequences, differing
at only three sites across a region spanning 3.2 kb. A. oryzae has
arisen through the ancient domestication of Aspergillus flavus
(Geiser et al., 1998), which has only one a-amylase gene (Fakhoury
and Woloshuk, 1999). Thus it is likely that the additional copies of
a-amylase have arisen through gene duplication in A. oryzae during
its domestication.

Gene duplication can result from a variety of genetic changes
associated with transposable elements (reviewed in Gray, 2000).
Although transposable elements have long been considered genet-
ic parasites, the last two decades have seen the description of many
examples of beneficial genetic changes mediated by transposable
elements (reviewed in Sinzelle et al., 2009). Transposable elements
may be especially beneficial as a source of genetic variation in fil-
amentous fungi such as A. oryzae that lack a known sexual cycle;
indeed, transposition of transposable elements of the Tc1/mariner
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superfamily has been shown to be enhanced by stress conditions in
A. oryzae (Ogasawara et al., 2009). Members of the Tc1/mariner
superfamily are the predominant transposable elements in A. ory-
zae, comprising approximately half of all transposable elements
and repetitive sequences (Galagan et al., 2005 Supplementary data
§5). They characteristically integrate at TA dinucleotide sites, and
their excision leaves duplicates of the TA integration site separated
by two or three base pairs (reviewed in Plasterk et al., 1999).

Here we argue for the involvement of Tc1/mariner-type trans-
posable elements in the duplications of a-amylase in A. oryzae
strains NBRC 30105 and RIB40. In addition, we show that A. oryzae
DAR3699, a strain used in soy fermentation (FRR Culture Collection
catalogue, http://www.foodscience.afisc.csiro.au, accessed 2/16/
2008) and shown to be an effective degrader of starch (Jin et al.,
1999), also has two copies of a-amylase but that its second copy
has arisen independently of that of the other strains previously
characterised. Thus in an example of parallel evolution, duplication
of an a-amylase gene has occurred at least three times in different
A. oryzae strains.

2. Materials and methods

2.1. Strains

A. oryzae strains used were DAR3699 from the FRR culture col-
lection (http://www.foodscience.afisc.csiro.au), NBRC 30105 (also
called JCM02239) from the NITE Biological Resource Center
(http://www.nbrc.nite.go.jp/NBRC2/NBRCDispSearchServlet), and
RIB40 (also called ATCC42149 or NBRC 100959), also from the NITE
Biological Resource Center.

2.2. Southern hybridization

Southern hybridization was performed using the DIG High
Prime DNA Labelling and Detection Kit (Roche) according to the
manufacturer’s instructions. The probe to detect a-amylase bound
a region of the a-amylase coding sequence and was constructed
using the primers Ao_amy_F (AGGGAATGGGCTTCACAG) and
A. oryzae RIB40:

Chromosome 2
A. flavus NRRL 3357:

Chromosome 5

Chromosome 3

A. oryzae RIB40:

A. flavus NRRL 3357:

A. oryzae NBRC30105:

A. flavus NRRL 3357:

A. oryzae RIB40:

Fig. 1. Schematic of chromosomal regions about a-amylase genes in A. oryzae RIB40 an
regions of homology on the corresponding chromosome between strains. TA dinucleotid
indicated in smaller capital letters. Nucleotides not mentioned in the text are written in lo
or white triangles. The repeats in the Aot1 complex indicated by white triangles all ter
arrow, a-amylase gene; white arrow, gene for a putative transposase tpnA; black arrow,
9.1 kb element binds; speckled box, 3.2 kb conserved region in A. oryzae or part thereof
region unique to A. flavus.
Ao_amy_R (GGCGTTGAGGAGTGGATAG) and Taq polymerase
(NEB). The probe to detect the 9.1 kb element bound a region indi-
cated in Fig. 1 and was constructed using the primers 9kb_detect_F
(ATGCCTCCACCCTCAACG) and 9kb_detect_R (CCCTCACGGA-
CACTCTTGCT) and Taq polymerase (Roche).

2.3. PCR

Primers used for showing A. oryzae DAR3699 lacks a copy of a-
amylase on chromosome 5 in the location where one is present in
A. oryzae RIB40 were Ao_amy_C5_F (CTCATGGGCAGGAAACTTGG)
and Ao_amy_C5_R (AGACCGAAGGACTTGAAACACC). This was done
using Taq polymerase (NEB) according to the manufacturer’s
instructions. All other PCR was performed using Taq polymerase
(Roche) according to the manufacturer’s instructions. Primers used
in generating Fig. 3A were Ao_amy_copy1_fwd (CCAGGCTCGCAC-
TATGTATG), Ao_amy_copy2_fwd (GGACGGGATTGGATGAGG),
Ao_amy_copy3_fwd (CAATAGTCATCTAACGCCTCG), and Ao_amy_-
copyX_rev (CGGCTGCTCGGTCTACTAC) with an annealing tempera-
ture of 55 �C, an extension time of 45 s, and 30 cycles. Primers used
to investigate chromosome 3 of A. oryzae NBRC 30105 were Ao_a-
my_copy2_fwd given above and Ao_amy_C3_R (CGATAATAC-
CACTCCCCAAAGC), used with annealing temperatures from 50 to
70 �C, an extension time of 200 s, and 40 cycles.

2.4. Sequence alignment

Fig. 2 was created by aligning 300 nt of each sequence using
MUSCLE alignment with a terminal gap open score of zero, but
otherwise using the default parameters of Geneious (Drummond
et al., 2010). Other alignments used in creating Figs. 2 and 5 but
not shown were generated using CLUSTAL.

2.5. Amylase assays

Fresh spores were point-inoculated onto 1% Aspergillus nitro-
gen-free media (Cove, 1966) containing 10 mM urea and 1% solu-
ble starch (BDH). After two days’ growth at 30 �C, the plates were
d corresponding regions of other strains. Not to scale. Grey shaded areas indicate
es are indicated in large capital letters. Other nucleotides mentioned in the text are
wer case. Corresponding pairs of inverted repeats are indicated by chequered, black,
minate in TA dinucleotides, which are not depicted due to space constraints. Gray
putative gene of unknown function; grey box, region to which probe for detecting
in A. flavus; white box, 9.1 kb conserved Mariner-like element; striped box, 2.8 kb
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Fig. 2. Alignments of various sequences depicted in Fig. 1. In each alignment, the top sequence corresponds to the left end of the element as depicted in Fig. 1, and the bottom
sequence corresponds to the reverse complement of the right end of the element. In the Aot1 alignment the four sequences from top to bottom correspond to the indicated
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typical of Mariner-class elements. The sequence unique to A. flavus chromosome 3 that is not present in A. oryzae RIB40 does not end in inverted repeats and does not appear
to be a transposable element. The beginning of the 3.2 kb conserved block and the end of the 9.1 kb conserved block show little or no sequence similarity.
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flushed with 0.033% iodine solution, which darkly stained remain-
ing starch in the growth media. Total secreted amylase activity was
estimated by the diameter of unstained haloes around the colonies.

3. Results

3.1. Arrangement of a-amylase genes in A. oryzae RIB40

The following is based on examination of the A. oryzae RIB40
genomic sequence (Machida et al., 2005). Three copies of a-amy-
lase are present, on chromosomes 2, 5, and 3 (Fig. 1). The copy
on chromosome 2 is part of a cluster of genes associated with
starch utilisation, and occurs downstream of genes encoding an
a-glucosidase and the maltose-induced transcriptional activator
AmyR. Similar gene clusters occur in Aspergillus nidulans (NCBI
accession number AF208225) and in A. flavus (http://www.asperg-
illusflavus.org/genomics/). The a-amylase copies on chromosomes
5 and 3 are not part of a similar cluster; therefore, the copy on
chromosome 2 is the original a-amylase gene, ancestral to the
other two copies. Each of the three a-amylase copies lies within
a separate 3.2 kb block of highly conserved sequence. The 3.2 kb
blocks containing the a-amylase copies on chromosomes 5 and 3
are identical in sequence, whereas the 3.2 kb block on chromosome
2 differs from the other two blocks by two mismatches upstream of
a-amylase and one mismatch within the a-amylase coding region,
coding for glutamine instead of arginine. In addition, immediately
downstream of the 3.2 kb blocks on chromosomes 5 and 3 are
9.1 kb blocks of highly conserved sequence that differ by only
one mismatch. The 3.2 kb and 9.1 kb blocks on chromosomes 5
and 3 thus form a pair of 12.3 kb blocks of highly conserved se-
quence differing by a single mismatch. Both 9.1 kb blocks and all
three 3.2 kb blocks are immediately flanked by TA dinucleotides,
in common with transposable elements of the Tc1/mariner
superfamily. The 9.1 kb blocks terminate in imperfect inverted re-
peats of approximately 83 bp (Fig. 2). Each encodes a putative
transposase previously designated tpnA and a putative transpo-
son-like element previously designated Aot1 (NCBI accession num-
ber AB072434). Aot1 was identified based on 41 bp imperfect
inverted repeats terminating in TA dinucleotides. Examination of
the full sequence of the 9.1 kb element reveals that these are two
in a cluster of four repeats of similar length, each terminating in
a TA dinucleotide, in the arrangement depicted in Fig. 1. Only
53 bp separate the TA dinucleotides of the second and third repeat.
The first and second repeats are separated by 1.9 kb, and the third
and fourth by 1.6 kb. A putative gene between the first two repeats
encodes a hypothetical protein of 194 amino acids (NCBI accession
number AP007157). A third highly conserved copy of the entire
9.1 kb element occurs on chromosome 3 77 kb downstream of
the copy depicted in Fig. 1. BLASTN searching of the nr database
at the National Center for Biotechnology Information (http://blas-
t.ncbi.nlm.nih.gov/Blast.cgi) revealed that Aspergillus niger also
contains a copy of this element with greater than 99.9% sequence
conservation. BLASTN revealed no other sequences with similarity
to this element across its full length, although sequences of 7–9 kb
described as ‘‘unusual Mariners’’ have previously been identified in
the genomes of A. flavus, A. oryzae and A. nidulans (Galagan et al.,
2005 Supplementary data §5).

3.2. Comparison to A. flavus

The genome of the sequenced strain of A. flavus, NRRL 3357, is
highly similar to that of A. oryzae RIB40, with the 16 largest geno-
mic scaffolds of A. flavus essentially corresponding to the 16 arms
of the eight chromosomes of A. oryzae (Payne et al., 2006). Because
A. flavus is the ancestor of A. oryzae, examination of the regions of
the A. flavus genome corresponding to the loci into which the
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Fig. 3. Copies of a-amylase in different strains of A. oryzae. A, PCRs to detect the 3.2 kb block containing an a-amylase gene in genomic locations corresponding to those in A.
oryzae RIB40. The reactions to detect the block on each chromosome use a common reverse primer binding near the 50-end of the 3.2 kb block, and different forward primers
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chromosomes 2, 5, and 3 of RIB40 are 7.0, 4.7, and 7.9 kb respectively for MscI digestion and 8.8, 5.4, and 6.9 kb respectively for SfuI digestion. The restriction fragment
lengths expected if the 9.1 kb Mariner-like element excised from chromosome 5 are 10.9 kb for MscI digestion and 7.2 kb for SfuI digestion.
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amylase genes duplicated in A. oryzae RIB40 provides insight into
the nature of these duplications.

The sole copy of a-amylase in A. flavus NRRL 3357 occurs on
chromosome 2 and, similar to a-amylase in A. nidulans and the
a-amylase on chromosome 2 in A. oryzae, lies downstream of genes
encoding an a-glucosidase and AmyR. In all three of the mis-
matches that distinguish the 3.2 kb block on A. oryzae RIB40 chro-
mosome 2 from the other two 3.2 kb blocks, the corresponding
base pair in A. flavus matches that on A. oryzae RIB40 chromosome
2, further confirming that this is the ancestral copy. There is 1.9 kb
of sequence between a-amylase and a-glucosidase in A. oryzae
RIB40 that is not homologous to any sequence in A. flavus NRRL
3357. This sequence includes imperfect 52 bp inverted terminal re-
peats ending in TA dinucleotides and has been previously desig-
nated as the transposon-like element Tao1 (NCBI accession
number AB021710). The sequences in A. flavus homologous to
the sequences flanking Tao1 are contiguous and share a common
TA dinucleotide, corresponding to the site of insertion of Tao1.
Thus the insertion of Tao1 into the A. oryzae genome was typical
for a transposable element of the Tc1/mariner superfamily.

Chromosome 5 of A. flavus lacks the 3.2 kb and 9.1 kb blocks
described earlier that are present on chromosome 5 of A. oryzae.
In A. flavus, sequences homologous to sequences upstream and
downstream of these blocks in A. oryzae are contiguous, and share
a common TA dinucleotide that was presumably the site of
insertion of these blocks in A. oryzae. A. oryzae also contains an
additional four base pairs, TATG, immediately upstream of the
3.2 kb block that is not present in A. flavus.

A. flavus chromosome 3 contains sequence homologous to that
immediately upstream of the 3.2 kb sequence block on A. oryzae
chromosome 3, and sequence homologous to that immediately
downstream of the 9.1 kb sequence block on A. oryzae chromosome
3, flanking and an additional 2.8 kb of sequence not present in A.
oryzae RIB40. This sequence is immediately flanked by TA dinucle-
otides. It contains several short putative open reading frames,
although BLASTN searches of all Aspergillus genomes available at
the Broad Institute (http://www.broadinstitute.org/annotation/
genome/aspergillus_group/Blast.html), and all sequences in the
nr database at the National Center for Biotechnology Information
(http://blast.ncbi.nlm.nih.gov/Blast.cgi) using default parameters
did not identify any other sequence with similarity across more
than 10% of its length. In A. flavus, sequences homologous to the se-
quences flanking the additional copy of the 9.1 kb element on chro-
mosome 3 of A. oryzae RIB40 are contiguous and share a common
TA dinucleotide, which presumably corresponds to the site of the
insertion of the element in the A. oryzae RIB40 lineage.

3.3. Comparison to A. oryzae NBRC 30105 and A. oryzae DAR3699

A. oryzae NBRC 30105 was shown to have two copies of a-amy-
lase by Southern hybridization (Tsukagoshi et al., 1989). We have
used PCR and Southern hybridization to compare this strain to
A. oryzae RIB40 (Fig. 3) and examined sequence data from Tsukag-
oshi et al. (1989) in light of information now available from the
A. oryzae RIB40 genome. PCR was performed with three pairs of
primers designed to detect the three copies of the 3.2 kb conserved
block in A. oryzae RIB40. The three primer pairs all included one
common reverse primer binding within the 3.2 kb conserved block,
and each included a separate forward primer binding to a region
shortly upstream of one of the 3.2 kb blocks. Separate reactions
using each of these primer pairs and A. oryzae RIB40 genomic
DNA all generated a product. When genomic DNA from A. oryzae
NBRC 30105 was used instead, only the reactions detecting the
3.2 kb blocks on chromosomes 2 and 5 produced a product
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(Fig. 3A), indicating the two copies of a-amylase in this strain cor-
responded to two of the a-amylase copies in A. oryzae RIB40.
Sequencing of the PCR product that detected the 3.2 kb block on
chromosome 5 confirmed the genomic sequence at the upstream
boundary of the 3.2 kb block in A. oryzae NBRC 30105 matches that
of A. oryzae RIB40 (data not shown). However, Southern hybridiza-
tion to A. oryzae NBRC 30105 genomic DNA of a probe binding the
a-amylase coding region did not produce a band for chromosome 5
the same size as that seen in A. oryzae RIB40 (Fig 3B). Examination
of sequence data presented by Tsukagoshi et al. (1989) reveals
why: A. oryzae NBRC 30105 lacks the 9.1 kb Mariner-like element
immediately downstream of the 3.2 kb block on chromosome 5
in A. oryzae RIB40. Instead, the 3.2 kb block is followed by a pair
of TA dinucleotides flanking the sequence CAG. The molecular
weights of the bands observed for A. oryzae NBRC 30105 match
what would be expected for A. oryzae RIB40 lacking the 9.1 kb ele-
ment. Thus it appears that the 9.1 kb element has excised from this
location in the A. oryzae NBRC 30105 lineage, leaving a canonical
footprint for a member of the Tc1/mariner superfamily.

We have shown A. oryzae DAR3699 also contains at least two
copies of a-amylase by Southern hybridization to the a-amylase
coding region following digestion with the restriction endonucle-
ases SfuI (Fig. 3B) and PciI (data not shown). However, Southern
hybridization following digestion with MscI produced only a single
band at 7.0 kb, consistent with a large duplication spanning the
7.0 kb MscI fragment. Of the three PCRs described above, only
the one designed to detect the 3.2 kb conserved block in chromo-
some 2 produced a product when using A. oryzae DAR3699 geno-
mic DNA. Taken together, these data indicate the duplication
leading to the second a-amylase copy in A. oryzae DAR3699 was
likely independent of those in the other two strains, and that this
duplication included sequence upstream of the 3.2 kb block. We
have also sequenced across the region of A. oryzae DAR3699 chro-
mosome 5 where A. oryzae RIB40 contains 12.3 kb of conserved se-
quence including a-amylase but A. flavus does not, and found the
sequence of A. oryzae DAR3699 to be identical to that of A. flavus
NRRL 3357, proving A. oryzae DAR3699 does not possess a copy
of a-amylase at this location (data not shown). The PCR and South-
ern hybridization results are consistent with A. oryzae DAR3699
retaining the ancestral a-amylase on chromosome 2 and having
one additional a-amylase copy in an undetermined location.

We investigated whether the 9.1 kb element that had excised in
the A. oryzae NBRC 30105 lineage was present elsewhere in that
genome or in the A. oryzae DAR3699 genome using Southern
hybridization (Fig. S1). For A. oryzae RIB40, the expected pattern
of three restriction fragments was detected. For A. oryzae
DAR3699, two bands of hybridization were seen for each of the
three restriction endonucleases used. For A. oryzae NBRC 30105,
two bands were seen for XhoI and BglII, but one dark band and
two fainter bands were seen for MfeI; this is most likely due to
an MfeI site within the region to which the probe binds in one of
the 9.1 kb elements in this strain. Thus the results are consistent
with A. oryzae strains DAR3699 and NBRC 30105 both having two
copies of the 9.1 kb element.
4. Discussion

Through centuries of growth on starch-rich substrates under
domestication, A. oryzae has undergone selection for increased
amylase secretion. How this selection has been manifest is of inter-
est with regard to the development of industrial A. oryzae strains
with even higher amylase production. Here we have shown that
selection has resulted in duplication of an a-amylase gene on at
least three occasions: once in the RIB40 and NBRC 30105
lineage to chromosome 5, once again in the RIB40 lineage to
chromosome 3, and once again in the DAR3699 lineage to an unde-
termined location. Although we have not analysed the contribution
of each a-amylase copy to the total secreted amylase activity, we
found that A. oryzae RIB40, the strain with the highest a-amylase
gene copy number, also has the highest total secreted amylase
activity as estimated by a starch halo test (data not shown). These
observations suggest not only that gene duplication is a common
natural mechanism for increasing amylase secretion, but also that
creating further duplications may be a viable route for producing
amylase hyper-secreting strains. We have also implicated transpo-
sition events involving members of the Tc1/mariner superfamily in
at least two of these duplications, based on the 12.3 kb duplicated
regions in A. oryzae RIB40 both being flanked by TA dinucleotides,
and each either inserting into a specific TA dinucleotide in the case
of chromosome 5, or replacing a region flanked by TA dinucleotides
in the case of chromosome 3. This supports the notion that trans-
posable elements are important in evolution, perhaps especially
so in fungi such as A. oryzae that lack a known sexual cycle.

In Fig. 4 we present one possible sequence of events that could
have led to the arrangement of a-amylases observed in A. oryzae
strains NBRC 30105 and RIB40. An ancestral A. flavus strain resem-
bled A. flavus NRRL 3357. Insertion of the DNA transposon Tao1
into a TA dinucleotide upstream of a-amylase led to Predicted
Intermediate 1, and might have occurred before or after the
domestication of A. flavus. Use of Predicted Intermediate 1 for rice
fermentation then selected for a duplication of a 3.2 kb block of se-
quence containing a-amylase and part of Tao1, and was associated
with the arrival of the 9.1 kb Mariner-like element. Whether Tao1
played any functional role in this duplication is unknown. A. oryzae
NBRC 30105 is a descendant of Predicted Intermediate 2 in which
the 9.1 kb Mariner-like element has excised. Chromosome 3 of
A. oryzae NBRC 30105 is represented by a question mark, because
a pair of PCR primers that amplified a portion of A. oryzae RIB40
genomic DNA spanning this region failed to produce a product
from A. oryzae NBRC 30105 genomic DNA (data not shown), sug-
gesting further uncharacterised chromosomal re-arrangements
have occurred. In a separate lineage leading to A. oryzae RIB40, fur-
ther growth on rice selected for a duplication of the 3.2 kb block
and the 9.1 kb block together to chromosome 3, displacing a block
of unneeded sequence flanked by TA dinucleotides. The mecha-
nism underlying this duplication is unclear, as there is little or no
sequence similarity between the upstream end of the 3.2 kb block
and the downstream end of the 9.1 kb block (Fig. 2). It may have
involved insertion and excision of some other element to leave
what appears to be a Tc1/mariner-class element footprint immedi-
ately upstream of the 3.2 kb block on chromosome 3.

An alternative sequence of events has A. oryzae NBRC 30105 as a
descendant of the RIB40 lineage in which a-amylase has been lost
from chromosome 3. This seems less likely, as an environment that
selected for the emergence of three a-amylase copies would pre-
sumably continue to exert selective pressure to maintain them.

Gene duplication as a mechanism for increasing a-amylase pro-
duction in response to environmental selection has occurred not
only in fungi, but also in animals. Per haploid genome, healthy hu-
mans can have from one copy of the salivary amylase gene AMY1 to
a cluster of up to seven copies arranged as tandem repeats (Groot
et al., 1989); higher copy numbers correlate with higher levels of
salivary amylase and are more common in populations with
high-starch diets (Perry et al., 2007). Amplification of amylases
has also been characterised in the mouse and rat (Sugino, 2007),
chicken (Benkel et al., 2005), and in several species of Drosophila
(Schaeffer et al., 2003; Zhang et al., 2003 and references therein).

In the Supplementary data to the A. nidulans genome paper it
was noted in passing that the genomes of A. nidulans, A. fumigatus,
and A. oryzae all contain ‘‘unusual Mariners’’ of 7–9 kb that encode
both a transposase and a conserved protein of unknown function
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(Galagan et al., 2005 Supplementary data §5). The 9.1 kb blocks of
sequence downstream of the a-amylase genes on chromosomes 5
and 3 appear to be examples of such Mariners. At the position on
chromosome 5 in which A. oryzae RIB40 has a 9.1 kb Mariner-like
element, A. oryzae NBRC 30105 chromosome 5 instead contains
the nucleotides CAG, flanked by a pair of TA dinucleotides. This
matches the canonical footprint of an element of the Tc1/mariner
superfamily, indicating the 9.1 kb element has most likely excised
in the A. oryzae NBRC 30105 lineage. The CAG nucleotides might be
derived from the first two base pairs and the last base pair of the
9.1 kb element, which would be consistent with the source of the
three base pairs left between TA dinucleotides by the excision of
crawler, another Tc1/mariner class transposable element in A. ory-
zae (Ogasawara et al., 2009). Alternatively, they may simply be de-
rived from the first three nucleotides of the 9.1 kb element. The
apparent excision of the 9.1 kb element in the A. oryzae
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NBRC 30105 lineage is the first evidence we know of that at least
some of the 7–9 kb elements present in the three Aspergilli may
be active. The arrangement of the four inverted repeats in this ele-
ment is unusual, though a set of four repeats in a similar arrange-
ment has been observed about the element Tan1 in Aspergillus niger
(Nyyssonen et al., 1996). Tan1 is also a member of the Tc1/mariner
superfamily. The 9.1 kb element has a GC content of 44%, lower
than the average GC content of the genomes of either A. oryzae
(48%, Galagan et al., 2005) or A. niger (50%, Pel et al., 2007). This
and the extreme conservation between the copies of the 9.1 kb ele-
ment in A. oryzae and A. niger suggest both might have received the
element through horizontal transfer from an unidentified third
species.
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Supplementary Fig. S1. Hybridization of a probe binding the 9.1 kb element to genomic 

DNA. DNA samples from A. oryzae strains DAR3699 “D”, NBRC 30105 “N”, and 

RIB40 “R” were digested with XhoI, MfeI, or BglII. The region to which the probe binds 

is depicted in Fig. 1. For A. oryzae RIB40, the restriction fragment lengths expected for 

the 9.1 kb elements on chromosome 5, on chromosome 3 near α-amylase, and on 

chromosome 3 distant from α-amylase, are 4.8 kb, 5.2 kb and 6.3 kb respectively for 

XhoI, 2.3 kb, 2.7 kb and 4.2 kb respectively for MfeI, and 5.2 kb, 2.3 kb and 1.6 kb 

respectively for BglII. 
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5 Discussion  

5.1 Amylase gene copy number 

The domestication of plants, animals, and micro-organisms has been a tremendous driver 

of human prosperity since the beginning of agriculture.  Although the often dramatic 

phenotypic changes accompanying domestication have long been recognised, only 

recently have we become able to understand the genetic basis of these changes.  In the 

centuries or millenia A. oryzae has been grown on starch-rich rice, there has been strong 

selection for higher secretion of starch-degrading amylase enzymes.  Independent groups 

discovered multiple copies of the gene encoding α-amylase in several strains of A. oryzae 

(Gines et al. 1989; Tada et al. 1989; Tsukagoshi et al. 1989; Wirsel et al. 1989); more 

recently, it was shown that the wild ancestor of A. oryzae, A. flavus, has only a single 

copy (Fakhoury and Woloshuk 1999).  We have shown that the increase in copy number 

of the α-amylase gene in A. oryzae has happened not only once, but independently in 

different strains.  Thus increase in α -amylase gene copy number was not an extremely 

improbable once-off event, but something that occurred multiple times in an example of 

parallel evolution.   

Remarkably, a comparable post-domestication increase in α-amylase copy number 

occurred in the domestic dog, Canis lupus familiaris (Axelsson et al. 2013).  Whereas the 

wild ancestor of the dog, the grey wolf (Canis lupus lupus), has a single copy of the 

pancreatic α-amylase gene AMY2B, domestic dogs have 4–30 copies per diploid genome, 

and higher copy numbers correlate with higher α-amylase expression levels and activities 

(Axelsson et al. 2013).  This reflects the change from the mainly carnivorous diet of 

wolves to the starch-rich diet of dogs, which are believed to have fed on starch-rich 

human refuse and scraps early in their domestication.  Humans similarly vary widely in 

the copy number of the gene encoding salivary amylase, AMY1.  In human populations 

with long histories of consuming starch-rich diets due to agriculture, the average copy 

number of salivary amylase has increased (Perry et al. 2007), and higher copy numbers 

correlate with slightly higher α-amylase expression levels and activities (Carpenter et al. 

2017).  That our own genomes have undergone such similar changes to those of dogs and 

A. oryzae – all within the last few tens of thousands of years and all in response to 

changes in human culture – reflects the deep kinship humanity has with these two 

domesticated species. 
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5.2 Carbon catabolite repression in A. oryzae 

Subsequent to Hunter et al. (2013), there have been three published reports describing 

manipulations of CCR in A. oryzae, all involving mutation of creB.   

Ichinose et al. (2014) deleted creA and creB both singly and in combination, and assayed 

α-amylase activity in several conditions.  Surprisingly, no effect of creB deletion was 

observed on α-amylase activity under non-inducing, repressing conditions (Figure 4a of 

their paper).  Although we did not test such conditions, we did test both non-inducing, 

non-repressing and inducing, repressing conditions.  In both cases the creBΔ strain 

produced vastly more α-amylase activity, and in both cases the difference was very highly 

significant (P < 0.001); mRNA levels measured by qPCR reflected enzyme activity levels 

(HUNTER et al. 2013).  Ichinose et al. (2014) also tested inducing, repressing conditions, 

and found approximately 3-fold higher α-amylase activity in the creBΔ strain compared to 

its parent – much less than the approximately 40-fold increase we observed (HUNTER et 

al. 2013).  Although both studies used strains derived from A. oryzae RIB40, they used 

quite different growth media, which might explain the apparent discrepancies.  Ichinose et 

al. (2014) used rich media containing yeast extract and peptone, with 1% glucose as a 

source of repression, whereas Hunter et al. (2013) used simple media containing urea as a 

nitrogen source and 2% sucrose as a source of repression.   Possibly the glucose or some 

other component of the rich media exerted stronger CCR that was less mitigated by creB 

deletion, or the rich media may have contained low concentrations of gluconeogenic 

repressing carbon sources that exert CCR through mechanisms independent of creB.   

Ichinose et al. (2017) describes further characterisation of the strains described in 

Ichinose et al. (2014), focusing on the production of cellulolytic and xylanolytic enzymes.  

Consistent with Hunter et al. (2013), creB deletion modestly increased activity levels of 

both types of enzymes in inducing, non-repressing liquid culture.  Across both papers by 

Ichinose et al., there was a loose trend whereby the quantities of secreted enzymes by the 

four strains tended to order wildtype < creBΔ < creAΔ < creAΔ/creBΔ, although the exact 

order varied according to the enzyme and growth conditions.  

A. oryzae is the first fungus in which manipulation of creD in a species used in 

biotechnology has been reported (TANAKA et al. 2017).  Deletion of creD increased CCR, 

as in A. nidulans, and reduced α-amylase production.  Two phosphorylated serine 

residues in CreD were identified, although neither phosphorylation nor dephosphorylation 
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mimics of these residues influenced interaction with HulA, and both mimics only slightly 

reduced α-amylase production.  However, the dephosphorylation mimic enhanced the 

creBΔ phenotype by further increasing α-amylase activity, whereas creD deletion and 

especially the phosphorylation mimic suppressed the creBΔ phenotype.  That 

manipulation of creD had a phenotypic effect even in a creB-null strain implies CreD 

must not operate solely by influencing CreB. 

5.3 Reproducibility between biological replicates  

One factor that made comparing strains difficult in liquid culture tests was the substantial 

variability between replicate shake flasks.  Flasks inoculated at the same time and grown 

side by side varied in the number and size of fungal pellets, in the proportion of the 

mycelium that grew on the side of the flask rather than as suspended pellets, and in the 

overall amount of growth.  This variability persisted despite using a single inoculum to 

inoculate replicate flasks, preparing a single batch of medium to aliquot to replicate 

flasks, rejecting any flasks with visible scratches or other damage, using uniform loose-

fitting hard plastic lids rather than potentially variable hand-made stoppers or lids with 

rubber inserts that may grip the tops of flasks to varying degrees, and rinsing all flasks 

with distilled water after cleaning to remove all traces of detergent (small quantities of 

detergent can profoundly alter fungal morphology; see, for example, Lee et al. 2017).  

Growing flasks for 48 hours rather than 24 reduced variability but did not eliminate it.  

For enzyme assays, best results were obtained by determining dry biomass in each flask 

and expressing secreted enzyme activity per unit dry weight.      

5.4 Future perspectives 

5.4.1 Improving reproducibility 

One technique for reducing variability between shake flasks that was not attempted is 

silanisation of the flasks, which should prevent mycelia sticking to and growing on the 

sides of the flasks.  Such growth is probably stronger than pellet growth, as solid phase is 

a more natural growth mode for filamentous fungi, and the shaking of the flasks 

frequently exposes the sides to air, providing more oxygen.  As growth on the sides of 

flasks varied markedly between replicate flasks, silanisation may be a powerful technique 

for improving reproducibility.  

The flasks used to inoculate replicate bioreactor experiments contained tiny pellets in 

suspension, with no visible growth on the sides of the flasks.  Nevertheless, it is 
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speculated that some of the variation between replicate bioreactor experiments may have 

resulted from variation between inocula.  If this is the case, one way to create more 

consistent inocula may be to produce each one across three flasks that are then combined 

immediately before inoculation.   

5.4.2 Winery wastewater and creB mutant strains 

Although this thesis only describes fungal growth in synthetic winery wastewater, the 

feasibility of growing A. oryzae in sterilised real winery wastewater has also been 

demonstrated (ZHANG et al. 2008).  A. oryzae was grown in shake flasks on wastewater 

from a South Australian winery produced during vintage.  With nitrogen 

supplementation, A. oryzae reduced the wastewater COD by 91.6% after 54 h, and at 

48 h, biomass protein content was 35.3%, corresponding to a productivity of 

0.382 g l-1 h-1
. 

Water conservation measures are driving more wineries toward smaller volumes of more 

highly concentrated effluent.  This should favour the economics of bioreactor-based 

treatment processes, as smaller bioreactors have lower capital and operating costs.  

Higher concentrations of organic material in more concentrated effluents should enhance 

fungal growth, though whether this will be offset by higher concentrations of toxins or 

cleaning product residues would need to be determined empirically.  Higher 

concentrations of organic material would impose stronger CCR, strengthening the case 

for testing strains with defective CCR. 

We observed no advantage of creB deletion in treating synthetic winery wastewater in 

this study, though any small advantage would have been obscured by variability between 

experimental replicates.  Future studies should investigate growth on non-synthetic 

winery wastewater, as it remains to be seen whether creB deletion influences 

susceptibility to any of the toxic compounds present in low concentrations in winery 

wastewater, such as tannins and other polyphenolics (MOSSE et al. 2013).   

5.4.3 Solid winery wastes and creB mutant strains 

As well as treating winery wastewater, fungi also have potential for treating solid winery 

wastes such as grape marc.  Fungi can convert grape marc into a fermented product with 

increased digestibility and protein content, which is more valuable and nutritious as 

animal feed than untreated grape marc (ZEPF AND JIN 2013).  Given that disruption of 
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creB increases cellulase secretion in all fungi tested thus far, creB deletion seems more 

likely to be beneficial in processing solid cellulosic biomass such as grape marc than in 

processing liquid waste.  Increased secretion of cellulytic and hemicellulytic enzymes 

could improve performance in two ways.  One is by liberating more sugars from plant cell 

walls for the fungus to use as an energy source.  Jin et al. (2016) found that sugar 

utilisation was strongly correlated with the ability of different fungal strains to generate 

protein through grape marc fermentation.  The other way is by helping the fungus access 

more digestible nutrients behind cell walls within plant cell cytoplasms, such as starch, 

protein, and amino acids.  In particular, protein and amino acids are nitrogen sources, and 

grape marc has scarce nitrogen accessible to micro-organisms outside the tough plant cell 

walls.  Jin et al. (2016) also found that adding wine lees or yeast extract to grape marc 

markedly improved the ability of the fungi to generate protein and increase digestibility, 

probably because these are nitrogen-rich supplements.  Fungi with creB deleted may be 

advantageous not only because their improved secretion of hydrolytic enzymes improves 

their ability to access nitrogen-rich cell cytoplasms, but also because creB deletion 

increases protease secretion (HYNES AND KELLY 1977; HUNTER et al. 2013), which would 

help convert protein inside or outside cell walls into assimilable nitrogen.  This would be 

analogous to the selection of the creB mutation in A. oryzae DAR3699, which may have 

occurred because the increased protease secretion improved access to nitrogen during 

fermentation of soy, which initially has little accessible nitrogen (HUNTER et al. 2013). 

Jin et al. (2016) compared the performance of 13 fungal strains from Aspergillus, 

Rhizopus, and Trichoderma genera in their ability to rapidly produce protein from grape 

marc and improve digestibility.  A. oryzae RIB40, A. oryzae DAR3699, and T. reesei 

RUTC30 were identified as the best performers.  Remarkably, two of these three strains 

are known to have defective CCR.  T. reesei RUTC30 has a mutated cre1, the orthologue 

of creA in Trichoderma sp., that encodes a dominant negatively-acting truncated protein 

that greatly reduces CCR, as well as activating target genes (MELLO-DE-SOUSA et al. 

2014); this strain performed far better than its parent strain, T. reesei QM6a, or three other 

Trichoderma strains tested. We have shown that creB in A. oryzae DAR3699 has a loss-

of-function mutation that likely explains the weak CCR in this strain (HUNTER et al. 

2013).  These findings further support the notion that creB mutation would be beneficial 

for treating solid wastes.  The third of the best-performing strains identified by Jin et al. 

(2016), A. oryzae RIB40, is the strain in which I deleted creB, creating a mutant strain 
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with increased production of cellulases, xylanases and proteases (HUNTER et al. 2013).  It 

would therefore be of great interest to investigate the performance of A. oryzae RIB40 

creB∆ in grape marc bioconversion.  Ideally, the performance of the creB mutants of A. 

oryzae, A. nidulans, T. reesei and P. decumbens would all be compared to their parent 

strains, allowing a broad analysis of how deleting creB in distantly related ascomycete 

fungi influences solid waste treatment. 

ignore this. 
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