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Abstract

This thesis focuses on one of the fundamental problems in computer vision, semantic
segmentation, whose task is to predict a semantic label for each pixel of an image.
Although semantic segmentation models have been largely improved thanks to the
great representative power of deep learning techniques, there are still open questions
needed to be discussed. In this thesis, we discuss two problems regarding semantic
segmentation, scene consistency and weakly supervised segmentation.

In the first part of the thesis, we discuss the issue of scene consistency in se-
mantic segmentation. This issue comes from the fact that trained models sometimes
produce noisy and implausible predictions that are not semantically consistent with
the scene or context. By explicitly considering scene consistency both locally and
globally, we can narrow down the possible categories for each pixel and generate the
desired prediction more easily. In the thesis, we address this issue by introducing
a dense multi-label module. In general, multi-label classification refers to the task
of assigning multiple labels to a given image. We extend the idea to different levels
of the image, and assign multiple labels to different regions of the image. Dense
multi-label acts as a constraint to encourage scene consistency locally and globally.

For dense prediction problems such as semantic segmentation, training a model
requires densely annotated data as ground-truth, which involves a great amount of
human annotation effort and is very time-consuming. Therefore, it is worth inves-
tigating semi- or weakly supervised methods that require much less supervision.
Particularly, weakly supervised segmentation refers to training the model using only
image-level labels, while semi-supervised segmentation refers to using partially an-
notated data or a small portion of fully annotated data to train. In the thesis, two
weakly supervised methods are proposed where only image-level labels are required.
The two methods share some similar motivations. First of all, since pixel-level masks
are missing in this particular setting, the two methods are all designed to estimate
the missing ground-truth and further use them as pseudo ground-truth for training.
Secondly, they both use data retrieved from the internet as auxiliary data because
web data are cheap to obtain and exist in a large amount. Although there are sim-
ilarities between these two methods, they are designed from different perspectives.
The motivation for the first method is that given a group of images crawled from
the internet that belong to the same semantic category, it is a good choice to use
co-segmentation to extract the masks of them, which gives us almost free pixel-wise
training samples. Those internet images along with the extracted masks are used to
train a mask generator to help us estimate the pseudo ground-truth for the training
images. The second method is designed as a bi-directional framework between the
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target domain and the web domain. The term “bi-directional” refers to the concept
that the knowledge learnt from the target domain can be transferred to the web do-
main and the knowledge encoded in the web domain can be transferred back to the
target domain. This kind of interaction between two domains is the core to boost the
performance of webly supervised segmentation.
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Chapter 1

Introduction

In computer vision or robotic vision, how to understand images is a crucial problem.

Important tasks such as object detection, image classification, semantic segmenta-

tion, are all about how to extract useful features from the raw pixels and utilize the

features to give predictions.

Traditional methods use hand-crafted features such as SIFT and HOG (Lowe

[1999]; Dalal and Triggs [2005]), which are low-level features used to describe lo-

cal regions. With the advent of deep neural networks, the features can be learnt

from the data in an end-to-end manner. More importantly, the features are learnt

hierarchically, which means low-level features are used to describe the local regions

whereas high-level features are used to represent more abstract and semantic infor-

mation. The whole community has greatly benefited from deep neural networks and

neural network based methods have achieved a great success in image classification

(Simonyan and Zisserman [2015]; He et al. [2016]; Szegedy et al.; Krizhevsky et al.

[2012]), object detection (Girshick et al. [2014]; Ren et al. [2015]; Liu et al. [2016]),

semantic segmentation (Lin et al. [2017a]; Long et al. [2015]; Chen et al. [2015a]), etc.

In this thesis, we mainly focus on one of the problems mentioned above, semantic

segmentation, and address some important issues. Semantic segmentation is crucial

when it comes to image understanding. The task is to assign a semantic label to

each pixel of an image so that all the classes can be distinguished. Although some

methods (Lin et al. [2017a]; Long et al. [2015]; Chen et al. [2015a]) have achieved a

great success, there are still open questions out there for us to explore. One of the
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2 Introduction

problems is “scene consistency”, which refers to the fact that predictions sometimes

are noisy and inconsistent with the context, but we would like to have more plausi-

ble predictions. Explicitly encouraging consistency is like imposing a constraint to

narrow down possible candidates for each pixel. Another problem discussed in the

thesis is how we train networks with partially annotated data, which leads to semi-

or weakly supervised problems. In this thesis, we explore these two problems and

propose novel solutions.

1.1 Semantic Segmentation

Semantic segmentation is one of the fundamental problems in computer vision whose

goal is to classify each pixel of an image into a pre-defined category. For example,

an image has a car and a person. Our task is to distinguish the regions of the car, the

person and the background. In the early stage of the development of Deep Convo-

lutional Neural Networks (DCNN) based methods (Girshick et al. [2014]; Hariharan

et al. [2014]; Carreira et al. [2012]; Cogswell et al. [2014]), two-stage approaches are

very common, in which bottom-up image segmentation is usually used to partition

the image and a DCNN-based classifier is used to assign categories to the divided

regions.

Fully Convolutional Networks (FCN) were proposed by Long et al. [2015]. In this

framework, the fully connected layers of a classification network are converted into

fully convolutional layers, which makes the network accept various input size and is

able to retain spatial information. We are able to perform semantic segmentation in

an end-to-end fashion using FCNs. Since then, FCN based methods have dominated

the area with different variants (Liu et al. [2015]; Lin et al. [2017a]; Chen et al. [2015a];

Noh et al. [2015]; Zhao et al. [2017]).

Different methods emphasize different aspects of the problem such as enlarging

the field of view of the network Chen et al. [2015a], retaining the resolution of the

output Noh et al. [2015], and fusing different levels of features Lin et al. [2017a]. The
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two issues we try to address in the thesis, scene consistency and weakly supervised

segmentation, will be explained in the next two sections.

1.2 Scene Consistency

Semantic segmentation is basically a multi-class classification problem but in a dense

form, which means that for each pixel, we classify it into the most possible class. In

such dense prediction problems, it is very common that predictions are sometimes

noisy or inconsistent because the predictions are relatively independent. There are

mainly two situations, low-level inconsistency and semantic inconsistency.

In the first situation, it happens when the predictions sharing the similar low

level features do not agree with other. The basic assumption behind is that usually,

when regions share similar low-level features such as colours and textures, they are

likely to belong to the same class. However, if the predictions fail to produce the

same result, it could lead to inconsistency.

Another situation is when the predictions are not semantically consistent with

the context. For example, in an indoor image, it is likely to have chairs, tables or

people, but almost impossible to have planes, trucks or boats. We also call this

scene consistency, which means the model should have reasonable predictions given

a particular scene.

The first issue can be solved by introducing smoothness to the outputs. Chen et al.

[2015a] use Conditional Random Field (CRF) as a post-processing step to smooth the

predictions. Similar neighbours tend to have the same label, otherwise there would

be great a penalty to the energy. As to the second issue, Liu et al. [2015] propose to

include global features to the output to make things globally consistent. Zhao et al.

[2017] also propose a pyramid structure to include different levels of features. In this

thesis, we will also address this issue in Chapter 3 by introducing a dense multi-label

module.
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1.3 Weakly Supervised Segmentation

Training a FCN-based network usually requires a dataset with pixel-wise annotation.

This indicates that each pixel should be annotated manually, which is very time-

consuming. To reduce annotation effort, some methods have been proposed using

other types of supervision such as bounding boxes, scribbles and points. Methods

relying on pixel-wise labels are usually called fully supervised, whereas other meth-

ods relying on other weaker supervisions are called semi- or weakly supervised. To

define the terms more formally, we usually call methods that only use image-level

labels weakly supervised methods, and call ones that do not use all pixel-level labels

semi-supervised methods. In this thesis, we particularly focus on weakly supervised

methods requiring only image-level labels.

As pointed in Bearman et al. [2016], it takes averagely 239.7 seconds to process

one image to get full supervision, 102.5 seconds to get bounding boxes, and only

20 seconds to get image-level labels. It is obvious that using weak supervisions can

greatly save annotation time and make it easier to collect more data. Certainly, the

gap between weakly supervised methods and fully supervised methods still exists

in terms of performance, but it is worth exploring the situations where only partially

annotated data is provided.

Among different types of supervision, image-level labels are the weakest super-

vision and requires least annotation time. At the same time, it is undoubtedly the

most challenging task since there is no evidence indicating the position or extent of

objects. The only thing we have access to is the presence of the classes. In this thesis,

we focus on this particular task and introduce two weakly supervised methods in

Chapter 4 and Chapter 5 respectively.
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1.4 Main Contributions

The main contributions of the thesis include a method for scene consistency issue

and two frameworks for weakly supervised semantic segmentation. More specific

contributions are as follows.

• Semantic image segmentation is a fundamental task in image understanding.

Per-pixel semantic labelling of an image benefits greatly from the ability to

consider region consistency both locally and globally. However, many Fully

Convolutional Network based methods do not impose such consistency, which

may give rise to noisy and implausible predictions. We address this issue by

proposing a dense multi-label network module that is able to encourage the

region consistency at different levels. This simple but effective module can be

easily integrated into any semantic segmentation systems. With comprehensive

experiments, we show that the dense multi-label can successfully remove the

implausible labels and clear the confusion so as to boost the performance of

semantic segmentation systems.

• We propose a novel method for weakly supervised semantic segmentation with

only image-level labels. The method relies on a large scale co-segmentation

framework that can produce object masks for a group of images containing ob-

jects belonging to the same semantic class. We first retrieve images from search

engines, e.g. Flickr and Google, using semantic class names as queries, e.g.

class names in PASCAL VOC 2012. We then use high quality masks produced

by co-segmentation on the retrieved images as well as the target dataset images

with image level labels to train segmentation networks. We obtain IoU 56.9 on

test set of PASCAL VOC 2012, which reaches state of the art performance.

• We develop a bi-directional framework for training a high-quality pixel-level

classifier for semantic segmentation, using only image-level class labels as the

provided ground-truth. Our method is formulated as a two-stage approach



6 Introduction

in which we first aim to create accurate pixel-level masks for the training im-

ages via a bootstrapping process, and then use these now-accurately segmented

images as a proxy ground-truth in a more standard supervised setting. The

key driver for our work is that in the target dataset we typically have reli-

able ground-truth image-level labels, while data crawled from the web may

have unreliable labels, but can be filtered to comprise only easy images to seg-

ment, therefore having reliable boundaries. These two forms of information

are complementary and we use this observation to build a novel bi-directional

transfer learning framework. This framework transfers knowledge between

two domains, target domain and web domain, bootstrapping the performance

of weakly supervised semantic segmentation. Conducting experiments on the

popular benchmark dataset PASCAL VOC 2012 based on both a VGG16 net-

work and on ResNet50, we reach state-of-the-art performance with scores of

60.2% IoU and 63.9% IoU respectively

1.5 Thesis Overview

The structure of the thesis is organized as follows.

Chapter 2 presents a literature review on DCNNs including basic building blocks

and some popular architectures. There is also related work introduced about seman-

tic segmentation and related problems.

In Chapter 3, we will address the issue of scene consistency by introducing a

dense multi-label module, which enforces scene consistency locally and globally.

In Chapter 4, we will explore the problem of weakly supervised segmentation.

We introduce a framework that utilizes co-segmentation to estimate pixel-wise masks

that are not available in weakly supervised settings.

In Chapter 5, we will introduce a bi-directional framework for weakly supervised

segmentation. The framework transfers knowledge between two domains, the target

domain and the web domain, and boosts the performance.



§1.5 Thesis Overview 7

In Chapter 6, we will give a brief conclusion to the thesis and suggest some future

work for the two main problems discussed in the thesis.
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Chapter 2

Literature Review

In this chapter, we first review Convolutional Neural Networks (CNNs) including

some common components and architectures. Then we review semantic segmenta-

tion and introduce some related work.

2.1 Convolutional Neural Networks

2.1.1 Introduction

Artificial Neural Networks (ANN) were originally inspired by biological neural net-

works and have been studied for decades. An ANN can be viewed as a highly

non-linear function that maps some inputs to some outputs. ANNs usually consist

of hidden nodes, weights and activation functions. Hidden nodes can form into hid-

den layers and hidden layers can interact with each other. When training an ANN,

we normally provide training data with inputs and corresponding outputs and alter

the weights to minimize the loss and fit into the training data.

In the early stage of ANNs, networks are simple and shallow, which means only

a few hidden layers are involved. For example, Perceptron is a very simple algorithm

that deals with binary classification problems. In this model, the output is basically

a linear combination of the inputs without any hidden layers. Multilayer Perceptron

(MLP) is a network with one or more hidden layers. These networks have limited

capacity and representation power. Therefore, it is difficult to apply them to complex

problems. Besides, since nodes are fully connected between layers, it is difficult to

9
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scale up to image-related problems due to the huge number of parameters involved.

LeCun et al. [1998] first proposed a CNN, called LetNet, to solve the image clas-

sification problem. Different from conventional neural networks with all fully con-

nected layers, a CNN consists of convolutional layers that partially connected. In this

way, weights can be shared across the image and the parameters are largely reduced.

In addition, sub-sampling operations were also introduced to reduce the size of fea-

ture maps and increase receptive field. The main idea of CNNs has influenced the

community greatly. Krizhevsky et al. [2012] first proposed a CNN, called AlexNet,

for large scale image classification, which showed outstanding performance and in-

dicated great potential to computer vision problems. With more attention drawn for

CNNs, more good structures, GoogLeNet Szegedy et al. [2015], VGGNet Simonyan

and Zisserman [2015], ResNet He et al. [2016], etc., have been proposed in the re-

cently several years. More techniques, skip connection He et al. [2016], batch nor-

malization Ioffe and Szegedy [2015], etc., have also been introduced to accelerate the

optimization process and increase the depth.

The newly proposed networks such as AlexNet, VGGNet, ResNet, etc. have much

more layers than the conventional neural networks. Variants of ResNet have 101

layers, 152 layers or even 1000 layers. The community stepped into the deep learning

era and many methods have been proposed for various vision problems. In the next

two sub-sections, we review some important components of CNNs and some popular

architectures.

2.1.2 Components

A CNN is usually comprised of several convolutional layers with some activation

layers, pooling layers and fully connected layers. There are also auxiliary layers

such as batch normalization layers and dropout layers, to accelerate convergence or

increase generalization capacity. In this section, we give a brief review of these basic

building blocks.
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• Convolutional Layer is the most basic building block of CNNs. A typical con-

volutional layer has dimensions of Cout × Cin × K× K for 2D CNNs, where Cin

indicates the number of channels of the previous layer; Cout indicates the num-

ber of filters and K is the size of the kernel. K is usually 1 or 3. Although large

kernels, 5 or 7, are also used, it is more common to replace a large kernel with a

series 3× 3 kernels to reduce computation. Compared with conventional neural

networks where nodes are fully connected, convolutional layers only make the

feature maps partially connected. Taking a 3× 3 kernel as an example, a point

of the output only corresponds to 9 points of the input instead of the whole

input. In addition, the weights are shared across all the nodes. In this way,

both the computation and the number of parameters are largely decreased. To

further decrease the computation, convolutional layers can also be used as a

sub-sampler to reduce the spatial dimensions of the feature maps. To achieve

this, we simply use a larger stride, larger than 1, to skip some convolution

operations. A stride of 2 will result in half size of the input size.

• Pooling Layer is another way of sub-sampling feature maps. Similarly, a pool-

ing layer uses different strides to reduce the resolution of the feature maps.

There are two types of pooling layers commonly used, average pooling and

max pooling, which refer to average and max operation on a local region re-

spectively. The role of pooling layers is to reduce the spatial dimensions of the

feature maps so as to reduce the computation, and also to introduce translation

invariance, which makes the network insensitive to small shift.

• Fully Connected Layer makes a connection between every input point and out-

put point. The layer is usually used before the classifier of a CNN to transform

the spatial information to global information for classification. It is widely used

in popular structures such as AlexNet Krizhevsky et al. [2012] and VGGNet Si-

monyan and Zisserman [2015]. However, the downside of this layer is that it

might bring a big computational burden.
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• Activation Layer is usually a non-linear function that allows networks to deal

with more complex problems. Sigmoid activation layer used to be popular in

the early methods, but it turned out that it gets saturated easily and makes

optimization hard. Rectified Linear Unit (ReLU) was proposed by Nair and

Hinton [2010] to deal with the issue. Now, ReLU has become a standard activa-

tion layer following convolutional layers or fully connected layers. ReLU makes

optimization easier and deeper networks possible. There are also variants of

ReLU such as Leaky ReLU Maas et al. [2013] and ELU Clevert et al. [2016].

• Dropout Layer provides a way to prevent overfitting Srivastava et al. [2014].

During training, it randomly sets some nodes to zero, which, in other words,

prevents them from activating. This random drop-out process is able to prevent

overfitting in a sense that each time only a few number of nodes are activated,

which introduces sparsity to the model and reduces the complexity. During

inference, the behaviour is a bit different. There is no node prevented from

activating, but the outputs should be multiplied by a scalar to keep the magni-

tude.

• Batch Normalization Layer is an effective layer for accelerating training speed

and preventing overfitting. In the original paper Ioffe and Szegedy [2015], the

authors discuss an issue called "internal covariate shift", which is the main

cause of the slow training. They address the issue by proposing batch normal-

ization layer to normalize the input of a layer within a batch. By using batch

normalization, the training time is significantly decreased and the network is

robust to different initializations. Additionally, they also claim that the layer

can act as a regularizer making it an alternative to dropout.

2.1.3 Architectures

Since AlexNet Krizhevsky et al. [2012] won the "ImageNet Large Scale Visual Recog-

nition Challenge" (ILSVRC) Russakovsky et al. [2015] in 2012 by a big margin, there
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have been several well-designed network architectures proposed. In this section, we

review some popular architectures that have been widely used in the computer vision

community.

• AlexNet was proposed by Krizhevsky et al. [2012] and was the winner of

ILSVRC in 2012. The network has five convolutional layers and three fully con-

nected layers. There are also max pooling layers in between to down-sample

the features. The fully-connected layer before the classifier has 4096 neurons.

• VGGNet was proposed by Simonyan and Zisserman [2015]. There are two

versions, VGG16 and VGG19, which contain 16 and 19 convolutional layers

respectively. There are five groups in VGGNet. each group has several 3x3

convolutional layers followed by a ReLU. The features are downsampled after

each group, and correspondingly the number of channels is doubled in the

next group. There are also 4096 neurons before the classifier. VGGNet is much

deeper than AlexNet and achieves better performance in various vision tasks.

• GoogLeNet Szegedy et al. [2015] was the winner of ILSVRC in 2014. The net-

work is built with building blocks called "Inception modules". In each Incep-

tion module, there are parallel kernels in different sizes and there are also 1x1

kernels for dimension reduction.

• ResNet He et al. [2016] won ILSVRC in 2015. There are different variants based

on the depth of the networks, ResNet50, ResNet101, and ResNet152. Obviously

ResNet is much deeper than all the previous architectures. The issue for the

other relatively shallow architectures was that with the depth of the network

increasing, it is difficult to back propagate gradients to the early layers. In

ResNet, a residual module was proposed as the basic building unit. In the

module, there is a skip connection from the input directly to the output, which

makes the gradient pass backward very easily. Besides, a bottle neck design

is adopted to reduce the dimension of the input and increase the dimension
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of the output, which largely reduces the number of parameters and improves

the speed. Batch Normalization is also an important component of the residual

block that helps to accelerate the training.

2.2 Semantic Segmentation

2.2.1 Introduction

Semantic segmentation is one of the fundamental problems in computer vision that

aims to predict a semantic label for all the pixels given an image. Semantic segmen-

tation gives us good understanding of the scene and other computer vision tasks can

also benefit from the result.

In the early stage, semantic segmentation methods rely on hand-crafted features

and separate classifiers (Shotton et al. [2008]; Carreira et al. [2012]; Krähenbühl and

Koltun [2011]; Shotton et al. [2006]).

Later on, with the success of deep neural networks, hand-crafted features are

outperformed by the deep features learnt from large image datasets. Some methods

(Farabet et al. [2013]; Girshick et al. [2014]; Hariharan et al. [2014]) are proposed to

use deep networks as either a feature extractor or a deep classifier to improve seman-

tic segmentation performance. However, those methods still treat deep networks as

a separate module for a specific role. Long et al. [2015] first propose an end-to-end

framework for semantic segmentation called Fully Convolutional Networks (FCNs).

The idea is to convert the fully connected layers in classification networks to convo-

lutional layers so that the output will contain spatial information. Since then, FCN-

based frameworks have achieved remarkable success in semantic segmentation. In

the following sections, we will only focus on FCN-based methods.
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2.2.2 Fully Supervised Methods

In Long et al. [2015], the classification network is firstly modified by replacing the

fully-connected layers to convolutional layers. The last classifier layer is also replaced

by a newly initialized layer to fit in the new segmentation task. The model is then

finetuned on the target dataset. In order to train such a model, pixel-level labels are

usually required, which means all the pixels should be annotated for all the training

images. The training scheme is called fully supervised training because the images

are densely annotated to include all the information.

Since the original FCN model, there have been variants of FCN model that have

dominated the field of semantic segmentation. Noh et al. [2015] propose an encoder-

decoder framework using VGG16 as the backbone. First, the image goes into an

encoder converted from a standard VGG16 and the features are downsampled 5

times. Then a mirrored structure is used as the decoder to upsample the features.

Instead of further downsampling the features, the decoder uses unpooling layers or

deconvolutional layers to upsample the features and reconstruct the details. The final

prediction is given by the output of the decoder.

Chen et al. [2016] introduce a FCN-based model with atrous convolution and

fully connected CRFs. Atrous convolution is used to enlarge the field-of-view of

the kernels without increasing the number of parameters. It allows use to explicitly

control the resolution of network. Fully connected CRF is used to post-process the

prediction so that the final prediction is smooth and has better boundaries.

Lin et al. [2017b] address the problem of explicitly modelling context information

in semantic segmentation. In order to make predictions semantically more consistent,

they define several pairwise potential functions to model the relationships between

nodes. Unlike Chen et al. [2016] where CRF is used as a post-processing step, this

framework combines the FCN and CRF together as a unified network to formulate

patch-patch context between image regions.

Lin et al. [2017a] propose an end-to-end network to explicitly reuse low-level fea-
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tures to help reconstruct details for high-level features at low resolution. The paper

introduces a chained residual pooling and a residual convolution unit to process and

fuse the features from multiple paths.

2.2.3 Semi- and Weakly Supervised Methods

In the last section, we have discussed some popular fully supervised methods. How-

ever, a problem we are facing for fully supervised methods is that pixel-level labels

are always required, which is very expensive in term of annotation effort. To this

end, some weakly and semi supervised methods have been proposed to alleviate this

issue.

There are various types of supervision that have been explored such as points,

bounding boxes, scribbles. Bearman et al. [2016] use point supervision to replace

pixel-level masks. Objects are annotated with points and a specific loss is designed

for this particular supervision. In addition, objectness priors are also integrated to

impose the smoothness and consistency. Dai et al. [2015] train segmentation net-

works with only bounding boxes. The motivation is that bounding boxes accurately

indicate the location as well as the extent of objects. With the help of some mask pro-

posal method (e.g. Multiscale Combinatorial Grouping), it is possible to find pixel-

level masks for the objects. Lin et al. [2016a] use scribbles to supervise the network.

Scribbles are not as accurate as bounding boxes, but it is easier to annotate images

with scribbles. In this work, they use scribble-based and network-based unary terms

and pairwise term to formulate a graphical model and find the pixel-level mask.

Among different types of supervision, the weakest supervision is image-level la-

bels. There is no information indicating the location or size of the objects. The only

information is the presence of the objects. Pinheiro and Collobert [2015] treat weakly

supervised segmentation as a multiple instance learning problem where every train-

ing image is known to have at least one pixel belonging to the class shown in the

image-level label. Then they use the attention learnt by image classification as well
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as smoothing priors to generate pixel-level predictions. Pathak et al. [2015] formulate

the weakly supervised segmentation as a constrained optimization problem and pro-

pose some constraints such as suppression constraint, foreground and background

constraint, and size constraint. Kolesnikov and Lampert [2016] present an end-to-end

network for weakly supervised segmentation where three losses, seed, expand and

constrain, are proposed to supervise the model. Seed loss supervises the model with

network attentions; expand loss controls how to aggregate the heat maps; constraint

loss makes the prediction respect the boundaries of the objects.

There are some special weakly supervised methods that use extra web data as

supervision. Since the web data are almost unlimited and easy to obtain, using

web data does not involve much human effort. The methods that use web data are

sometimes called webly supervised methods. Wei et al. [2017b] propose a simple-

to-complex framework for weakly supervised segmentation. They start by retrieving

images from the internet and use saliency to extract the foreground. This retrieved

dataset is then used to train a FCN. Then the model is used to generate masks for

the target dataset and further enhanced by using image-level labels. Jin et al. [2017]

is another similar framework where some simple images are first retrieved from the

internet and used to learn the features of all classes. Then the model is used to

estimate masks for the target dataset. Hong et al. [2017] present a weakly supervised

method using web videos. In this work, a large number of videos are crawled from

the internet. The frames extracted from the videos are further filtered to remove

noise. Then they formulate an optimization problem to extract the foreground of the

video frames using network attentions, motion cues and smoothness terms.

2.2.4 Scene Consistency Issue

Although many FCN-based models handle the problem of semantic segmentation

well, there still exists an issue of scene consistency. Scene consistency, or region

consistency, refers to consistency of predictions within a region. A model that fails
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to retain scene consistency would predict noisy results.

There have been some papers trying to address the issue. Lin et al. [2017b] exploit

context information by introducing pairwise potentials into the framework. There is

no explicit consistency imposed, but the final predictions would benefit from consid-

ering the neighbours. Liu et al. [2015] address the problem by concatenating global

features to the dense features. In such way, the predictions will not only rely on

the local features but also the global features. Zhao et al. [2017] introduce a pyra-

mid pooling module to consider different levels of features. The different levels of

features are extracted using different sliding windows and concatenated together

along with the dense features. The final predictions become more consistent with

the scene. Wang et al. [2016] propose a learnable histogram layer that learn to rep-

resent the scene by a histogram. The histogram can then be used as global context

constraint to impose on the final predictions.



Chapter 3

Learning Multi-level Region

Consistency with Dense

Multi-label Networks

3.1 Introduction

In this chapter, we will discuss the problem of scene consistency. We have seen the

remarkable performance achieved by FCN-based models (Dai et al. [2015]; Chen et al.

[2015a]; Lin et al. [2016b]; Chen et al. [2016]). These models are simple and effective

because of the powerful capacity of CNNs and being able to be trained end-to-end.

However, most existing methods do not have the mechanism to enforce the region

consistency, which plays an important role in semantic segmentation. Consider, for

example, Figure 3.1, in which the lower left image is the output of a vanilla FCN,

whose prediction contains some noisy labels that do not appear in the ground truth.

With enforced region consistency, we can simply eliminate those implausible labels

and clear the confusion. Our aim in this chapter is to introduce constraints to en-

courage this consistency.

Our proposal is both simple and effective: we argue that the region consistency in

a certain region can be formulated as a multi-label classification problem. Multi-label

classification has also been widely studied (Jiang [2016]; Wei et al. [2016]; Guo and

Gu [2011]), whose task is to assign one or more labels to the image. By performing

19
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Network without 
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Figure 3.1: Illustration of region consistency. For a region in the input image, which
is coloured in red, the corresponding part in the ground truth contains only three
classes. In the network without region consistency, there are five classes that appear.
If we explicitly encourage the consistency, those unlikely classes will be eliminated

and the prediction will be better as shown on top.

multi-label classification in a region, we can allow the model to suggest which labels

are likely within the broad context of the region, and use this information to sup-

press implausible classes predicted without reference to the broader context, thereby

improving scene consistency. While typical multi-label problems are formulated as

whole-image inference, we adapt this approach to dense prediction problems such

as semantic segmentation, by introducing dense multi-label prediction for image re-

gions of various sizes.

Dense multi-label prediction is performed in a sliding window fashion: the clas-

sification for each spatial point is influenced by the network prediction and by the

multi-label result for the surrounding window. By employing different window sizes,

we are able to construct a multi-level structure for dense multi-label and enforce the
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Dense multi-label

Figure 3.2: Illustration of dense multi-label with multi-level. Windows in different
colours indicate different regions for dense multi-label classification.

region consistency at different levels both locally and globally. Figure 3.2 is an illus-

tration of dense multi-label at multiple windows sizes.Here we use three windows

of different sizes. The red window, the smallest, focuses more on the local region

consistency, while the green window, the largest, is responsible for global region

consistency. The other one, in blue, is for mid-level consistency. By sliding the win-

dows to consider each spatial point, we perform multi-label densely at different level,

encouraging the segmentation predictor to give predictions that are consistent with

the dense multi-label prediction.

Main contributions can be summarised as follows:

• We address the problem of region consistency in semantic segmentation by

proposing a dense multi-label module to achieve the goal of retaining region

consistency, which is simple and effective. We also introduce a multi-level

structure for dense multi-label to preserve region consistency both locally and

globally.

• We evaluate our method on four popular semantic segmentation datasets in-

cluding NYUDv2, SUN-RGBD, PASCAL-Context and ADE 20k, and achieve

promising results. We also give analysis on how dense multi-label can remove

the implausible labels, clear confusion and effectively boost the segmentation
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systems.

3.2 Background

Semantic segmentation has been widely studied (Girshick et al. [2014]; Carreira

et al. [2012]; Hariharan et al. [2014]; Yadollahpour et al. [2013]; Farabet et al. [2013];

Cogswell et al. [2014]). Early CNN based methods rely on region proposals or su-

perpixels. They make segmentation prediction by classifying these local features.

More recently, with Long et al. [2015] introducing applying FCNs to semantic

segmentation, the FCN-based segmentation models (Dai et al. [2015]; Hong et al.

[2015]; Shen and Zeng [2016]; Chen et al. [2015a]; Lin et al. [2016b]; Chen et al. [2016])

have become popular. Long et al. [2015] convert the last fully connected layers into

convolutional layers thus make the CNN accept abitrary input size. Since the output

retains the spatial information, it is straightforward to train the network jointly in

an end-to-end fashion. They also introduce skip architecture to combine features

from different levels. Chen et al. [2015a] modify the original FCN by introducing

dilated kernels, in which kernels are inserted with zeros, to enable large field of

view and Fully Connected CRF to refine outputs. Lin et al. [2016b] introduce a joint

training model with CRFs. In this work, CRFs are not simply used for smoothness

as in Chen et al. [2015a], but a more general term to learn context information to

help boost the unary performance. Liu et al. [2015] utilise global features to improve

semantic segmentation. They extract global features from different levels and fuse

them by using L2 normalization layer. Our method is different from those. We

attempt to improve the performance of segmentation by enforcing region consistency

using dense multi-label.

Multi-label classification has also been widely studied. Traditional methods are

based on graphical models (Xue et al. [2011]; Guo and Gu [2011]), while the re-

cent studies benefit more from CNNs Wei et al. [2014]; Jiang [2016]; Gong et al.

[2013]. Gong et al. [2013] transform a single-label classification model into multi-
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label classification model and use ranking loss to train the model. Wei et al. [2014]

also use the transfer learning from single-label classification models. They perform

the multi-label classification by first generating the object hypotheses and the fus-

ing predictions as the final prediction for the whole image. Jiang [2016] propose a

unified framework for multi-label classification by using CNN and Recurrent Neural

Network (RNN).

Here we propose a dense multi-label module to take advantage of multi-label

classification and integrate it into semantic segmentation systems. Dense multi-label

is performed in a sliding window fashion and treats all area in a window as multi-

label classification. Experiments show that dense multi-label can help to keep the

scene consistency, clear confusion and boost the performance of semantic segmenta-

tion.

3.3 Methods

3.3.1 Dense Multi-label

Multi-label classification is a task where each image can have more than one label,

unlike a multi-class classification problem (Simonyan and Zisserman [2015]; Szegedy

et al.; He et al. [2016]) whose goal is to assign only one label to the image. This

is more natural in reality because for majority of images, objects are not isolated,

instead they are in context with other objects or the scene. Multi-label classification

gives us more information of the image.

For a dense prediction task such as segmentation, it treats every spatial point

as a multi-class classification problem, where the point is assigned with one of the

categories. As shown in the upper part of Figure 3.3, the model predicts scores

for each class and picks the highest one. The ground truth is an one-hot vector

correspondingly. For a dense multi-label problem, each spatial point will be assigned

with several labels to show what labels appear in the a certain window centered at



24 Learning Multi-level Region Consistency with Dense Multi-label Networks

Figure 3.3: An illustration of differences between pixel classification and dense multi-
label prediction. In pixel classification, we treat each spatial point as a single-label
classification problem where only one class is supposed to get very high confidence;
dense multi-label focuses on label concurrence where the labels that appear in the

region will have equally high confidence.

this point. As shown in lower part of Figure 3.3, there are two classes being predicted

with high confidence and the ground truth is given by a “multiple hot” vector.

Here we propose a method to learn a dense multi-label system and a segmen-

tation system at the same time. We aim at using dense multi-label to suppress the

implausible classes and encourage appropriate classes so as to retain the region con-

sistency for the segmentation prediction both globally and locally. In the next section,

more details of the whole framework will be provided.
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3.3.2 Overview of Framework

An overview of the structure is shown in Figure 3.4, with the part in the dashed-

line rectangle being the dense multi-label module. Without it, the network simply

becomes a FCN. The input image is first fed into several low level feature layers

that are shared by the following blocks. Then apart from going into the segmenta-

tion block, the features also enter three blocks for dense multi-label prediction. The

outputs of theses blocks are merged element-wise for the final prediction.

In the training phase, the network is guided by four loss functions: the segmenta-

tion loss and three dense multi-label losses. We use softmax loss for the segmentation

path, and use logistic loss for all the dense multi-label blocks.

The dense multi-label blocks have different window sizes for performing dense

multi-label prediction within different contexts. With this multi-level structure, we

are able to retain region consistency both locally and globally.

Let x denote the image. The process of the low level feature block can be de-

scribed as:

o = flow(x; θlow), (3.1)

where o is the output and θlow the layer parameters.

The dense multi-label blocks and the segmentation block are defined as:

m(j) = f (j)
mul(o; θ

(j)
mul), j ∈ {1, 2, 3} (3.2)

s = fseg(o; θseg), (3.3)

where m(j) and s denote the output of jth multi-label block and the output of seg-

mentation respectively. θ
(j)
mul and θseg are layer parameters.

The final prediction is:

p = s + m(1) + m(2) + m(3), (3.4)
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where p is the fused score for segmentation.

For the loss functions, we use logistic loss for the prediction of dense multi label

blocks, m(1),m(2) and m(3); softmax loss is used for final prediction p. Let mik be

the out of a dense multi-label block at ith position for kth class, and ymul
ik be the

ground truth for the corresponding position and class. The loss function for dense

multi-label is defined as:

lmul(ymul , m) =
1

IK

I

∑
i

K

∑
k

ymul
ik log(

1
1 + e−mik

)

+ (1− ymul
ik ) log(

e−mik

1 + e−mik
), (3.5)

where ymul
ik ∈ {0, 1}; I and K represent the number of spatial points and classes,

respectively.

Similarly, let pik be the fused output at ith position for kth class, and yseg
i be

the ground truth for segmentation prediction at ith position. The loss function for

segmentation is defined as:

lseg(yseg, p) =
1
I

I

∑
i

K

∑
k

I(yseg
i = k) log(

epik

∑j epij
), (3.6)

where yseg
i ∈ {1 . . . K}.

Our goal is to minimize the objective function:

min lseg + λ(l(1)mul + l(2)mul + l(3)mul), (3.7)

where λ controls the balance between the segmentation block and the dense multi-

label blocks. I observe this parameter is not very sensitive. We set λ = 1 to treat each

part equally.
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Conv layers
with downsampling

1/8 features Dense Multi-label block

1/32 score

Sliding window
max pooling

Adaptive
layers

Figure 3.5: Details of a single dense multi-label block. The input features are fed into
several convolutional layers and further downsampled. Then we perform sliding
window with max pooling operation. After some adaptive layers, we have scores for

dense multi-label at 1/32 resolution.

3.3.3 Dense Multi-label Block

The details of the dense multi-label block are shown in Figure 3.5, where the input

is feature maps at 1/8 resolution, due to the downsampling in the low level feature

layers. After some convolutional layers with further downsampling, the dense multi-

label is performed at 1/32 resolution with the sliding window and following adaptive

layers. The reason for this setting is because dense multi-label requires a large sliding

window, which will become a computational burden if we work at a high resolution.

Downsampling can greatly reduce the size of feature maps and more importantly, the

size of sliding window will shrink accordingly, thus making the computation more

efficient. On the other hand, dense multi-label requires more high level information.

Therefore, working at a coarse level can capture the high level features better. The

output of the dense multi-label is upsampled to be compatible with the segmentation

block’s output.

3.3.4 Ground Truth Generation

The ground truth for dense multi-label can be generated from the segmentation

ground truth. The process is described in Figure 3.6. Firstly, the segmentation ground

truth is converted to channel-wise labels, which means each channel only contains

1 or 0 to indicate whether the corresponding class appears or not. To generate a

ground-truth mask for each class, for a given window size, we slide the window
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Segmentation
ground truth

Channel-wise
ground truth

Dense multi-label
ground truth

Figure 3.6: The segmentation ground truth is firstly converted to channel-wise labels,
with 0 or 1 in each channel. The ground truth for dense multi-label can be obtained

by performing max pooling on the channel-wise labels.

across each binary channel and perform a max-pool operation (this is equivalent to

a binary dilation using a structuring element of the same size and shape as the win-

dow). We repeat this process for each window size. As noted in section 3.3.3, the

dense multi-label classification is performed at 1/32 resolution while the segmenta-

tion is at 1/8. Therefore, we generate multi-label ground-truth data at 1/8 resolution

with stride 4.

3.3.5 Network Configuration

The dense multi-label module is suitable for any segmentation system and it can be

easily integrated. In this study, we use Residual 50-layer network He et al. [2016]

with dilated kernels Chen et al. [2015a]. In order to work at a relatively high resolu-

tion while keeping the efficiency, we use 8-stride setting, which means that the final

output is at 1/8 resolution. As we mentioned in the last section, we perform dense

multi-label at 1/32 resolution to make it more efficient and effective. The window

sizes are then defined at 1/32 resolution. For example,let w be the window size. A

window with w = 17 at 1/32 resolution means 4w = 68 at 1/8 resolution. The cor-

responding window for the original image is 32w = 544. We use w1 = 35, w2 = 17

and w3 = 7 for all the experiments.
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Block name Initial layers Stride
Low level feature block conv1 to res3d 8

Segmentation block res4a to res5c 1
Dense multi-label block res4a to res5c 4

Table 3.1: Configuration for Res50 network. The low level feature block is initialized
by layers “conv1” to “res3d” and has 8 stride. The segmentation block and dense
multi-label blocks are initialized by layers “res4a” to “res5c” but do not share the
weights with each other. The segmentation block does not have any downsampling,

but the dense multi-label blocks have further 4 stride downsampling.

Table 3.1 shows the configuration with 50-layer Residual net (Res50) as the base

network. The low level feature block contains layers from “conv1” to “res3d”. The

segmentation block and dense multi-label blocks have layers from “res4a” to “res5c”

as well as some adaptive layers. It is worth noting that it does not mean these blocks

will share the weights even though they initialize the weights from the same layers.

After initialization, they will learn their own features separately.

3.4 Experiments and Analysis

We evaluate our model on 4 commonly used semantic segmentation datasets: ADE

20k, NYUDv2, SUN-RGBD and PASCAL-Context. Our comprehensive experiments

show that dense multi-label can successfully suppress many unlikely labels, retain

region consistency and thus improve the performance of semantic segmentation.

The results are evaluated using the Intersection-over-Union (IoU) score Evering-

ham et al. [2010]. Moreover, since our original motivation is to suppress noisy and

unreasonable labels to keep labels consistent with the region, we also introduce new

measurements to evaluate the number of classes that are not in ground truth, and

further, the number of pixels that are predicted to be these wrong classes for each

image.

We only use Res50 as base network to compare and analyse the performance. For

all the experiments, we use batch size of 8, momentum of 0.9 and weight decay of

0.0005.
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Figure 3.7: Example outputs of Res50 baseline and DML-Res50 on ADE 20k dataset.

3.4.1 Results on ADE 20k dataset

We first evaluate our result on ADE 20k dataset Zhou et al. [2016b], which contains

150 semantic categories including objects such as person, car etc., and “stuff” such

as sky, road etc. There are 20210 images in the training set and 2000 images in the

validation set.

As shown in Table 3.2, the model with dense multi-label (DML-Res50) yields

a 2% improvement. To analyse the effectiveness of label suppression, we also use

two criteria to evaluate this performance, which are shown as “Wrong class” and

“Wrong labels”. Wrong class means the number classes that are not supposed to

appear but are mistakenly predicted by the model. Wrong labels describe how many

pixels are assigned with those wrong classes. We observe that using Dense multi-
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input ground truth prediction

Figure 3.8: More example outputs of dense multi-label network on ADE dataset.

label effectively reduces the wrong classes and labels, by 35% and 16% respectively.

Some examples are shown in Figure 3.7. To make fair comparison, all the images

are raw outputs directly from the network. The last column shows the outputs from

the network with dense multi-label where we can observe great scene consistency

compared with the output of the baseline network shown in the middle.

In comparison with other methods, we achieve better results than the models

reported in Zhou et al. [2016b], as shown in Table 3.3. More examples can be found

in Figure 3.8
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Model IOU #Wrong class #Wrong label
Res50 baseline 34.5 5.576 21836

DML Res50 36.49 3.6 18294

Table 3.2: Results on ADE dataset. The dense multi-label boosts the performance by
2% of IOU and helps reduce the number of wrong class and label by 35% and 16%

respectively.

Model IOU
DilatedNet Zhou et al. [2016b] 32.31

Cascade-DilatedNet Zhou et al. [2016b] 34.90
DML-Res50(ours) 36.49

Table 3.3: Comparsion with other models on ADE dataset. Our model achieves the
best performance.

3.4.2 Results on PASCAL-Context

PASCAL-Context dataset Mottaghi et al. [2014] is a set of additional annotations for

PASCAL VOC 2010, which provides annotations for the whole scene with 60 classes

(59 classes and a background class). It contains 4998 images in training set and 5105

images in validation set.

Figure 3.9 shows some typical examples on this dataset. We can also see clear

scene consistency with dense multi-label involved. The outputs in the middle contain

many noisy classes, especially the lower middle image contains “bird” and “sky”,

which are very unlikely in this scene. From Table 3.4, we can also see the great boost

with dense multi-label. The wrong classes and labels are greatly reduced by 37% and

15%.

To compare with other models, we list several results on this dataset. Since differ-

ent models have various settings such as multi-scale training, extra data, etc. we also

explain it in Table 3.5. Considering all the factors involved, our method is compara-

ble since we only use Res50 as the base network and do not use mult-scale training

and extra MS-COCO data for pretraining. More examples are shown in 3.10.
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Figure 3.9: Example outputs of Res50 baseline and DML-Res50 on PASCAL-Context
dataset.

Model IOU #Wrong class #Wrong label
Res50 baseline 41.37 4.5 26308

DML-Res50 44.39 2.8 22367

Table 3.4: Results on PASCAL-Context dataset. The dense multi-label model in-
creases the IOU by 3% and reduces the wrong classes and labels by 37% and 15%.

3.4.3 Results on NYUDv2

NYUDv2 Silberman et al. [2012] is comprised of 1449 images from a variety of indoor

scenes. We use the standard split of 795 training images and 654 testing images.

Table 3.6 shows the results on this dataset. With dense multi-label, the perfor-

mance is improved by more than 1%, and the number of wrong class and label

decrease by about 40% and 16%. Some examples are shown in Figure 3.11. Scene

consistency still plays an important role in removing those noisy labels. Compared

with some other models, we achieve the best result, as shown in Table 3.7.
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Model Base MS Ex data IOU
FCN-8s Long et al. [2015] VGG16 no no 37.8
PaserNet Liu et al. [2015] VGG16 no no 40.4

HO_CRF Arnab et al. [2015] VGG16 no no 41.3
Context Lin et al. [2017b] VGG16 yes no 43.3
VeryDeep Wu et al. [2016] Res101 no no 44.5
DeepLab Chen et al. [2016] Res101 yes COCO 45.7

DML-Res50 (ours) Res50 no no 44.39

Table 3.5: Results on PASCAL-Context dataset. MS means using multi-scale inputs
and fusing the results in training. Ex data stands for using extra data such as MS-
COCO Lin et al. [2014]. Compared with state of the art, since we only use Res50
instead of Res101 and do not use multi-scale training as well as extra data, our result

is comparable.

Model IOU #Wrong class #Wrong label
Res50 baseline 38.8 8.2 27577

DML-Res50 40.23 4.9 23057

Table 3.6: Results on NYUDv2 dataset. Dense multi-label network has 1.4% higher
IOU and 40% and 16% lower wrong classes and labels respectively.

3.4.4 Results on SUN-RGBD

SUN-RGBD Song et al. [2015] is an extension of NYUDv2 Silberman et al. [2012],

which contains 5285 training images and 5050 validation images, and provides pixel

labelling masks for 37 classes.

Figure 3.12 shows some output comparison on this dataset, where we can easily

observe the effect of dense multi-label. The results are shown in Table 3.8. The

network with dense multi-label helps improve the IOU by more than 3%. The wrong

classes and wrong labels also get decreased by 36% and 18% respectively. Compared

with other methods, the network with dense multi-label reaches the best result, as

shown in Table 3.9. More examples can be found in Figure 3.13.

3.4.5 Ablation Study on PASCAL-Context

Table 3.10 shows an ablation study on the PASCAL-Context. The Res50 baseline

yields mean IOU of 41.37%. Treating this as a baseline, we introduce dense multi-
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Model IOU
FCN-32s Long et al. [2015] 29.2

FCN-HHA Long et al. [2015] 34.0
Context Lin et al. [2017b] 40.0

DML-Res50 (ours) 40.23

Table 3.7: Comparison with other models on NYUDv2 dataset. Our method achieves
the best result.

Model IOU #Wrong class #Wrong label
Res50 baseline 39.28 5.3 24602

DML-Res50 42.34 3.36 20104

Table 3.8: Results on SUN-RGBD dataset. Dense multi-label helps increase the per-
formance by more than 3% of IOU and decrease the wrong classes and labels by 36%

and 18%.

level module. Firstly, in the one level setting, we use the largest window size, which

is basically global multi-label classification. Accordding to the results, the first level

gives the biggest boost. With 2 levels involved, the global and mid-level window, the

performance is improved further. The final level, the smallest window, brings 0.6%

more improvement. The dense multi-label module helps improve the performance

by 2.2% in total. After using CRF as post-processing, we can achieve IOU of 44.39

without using extra MS COCO dataset.

3.4.6 Failure Analysis

We also observed some failure cases from the outputs, with two main types of failure

shown in Figure 3.14. The left half of Figure 3.14 depicts a failure mode in which

the objects are totally misclassified into another class; here the assigned lables are

consistent due to the dense multi-label module but the object/region class is wrong.

Another failure type is shown in the right half of the figure, where the labels are

consistent but the model failed to detect some objects or detected some non-existing

objects. In the former case, the error here appears primarily to be one exacerbated by

the dense multi-label prediction. This could be mitigated by improving the quality of

dense multi-label prediction and/or adjusting the balance between the dense multi-
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Model IOU
Kendall Kendall et al. [2015] 30.7

Context Lin et al. [2017b] 42.3
DML-Res50 (ours) 42.34

Table 3.9: Comparison with other models on SUN-RGBD dataset. We achieve the
best result with dense multi-label network.

Model IOU
Res50 baseline 41.37

DML-Res50 1level 42.52
DML-Res50 2level 42.95
DML-Res50 3level 43.59

DML-Res50 3level + CRF 44.39

Table 3.10: Ablation study on PASCAL-Context.

label module and the segmentation part. We emphasize however, that the dense

multi-label technically can be integrated into any segmentation system to help retain

the consistency, and our results show the efficacy of doing so.

3.5 Conclusion

In this study, we propose a dense multi-label module to address the problem of scene

consistency. With comprehensive experiments, we have shown that dense multi-label

can enforce the scene consistency in a simple and effective way. More importantly,

the dense multi-label is a module and can be easily integrated into other semantic

segmentation systems.
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input ground truth prediction

Figure 3.10: More example outputs of dense multi-label network on PASCAL-Context
dataset.
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Figure 3.11: Example outputs of Res50 baseline and DML-Res50 on NYUDv2 dataset.
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Figure 3.13: Good examples on SUN-RGBD dataset.
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Figure 3.14: Examples of failed case.
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Chapter 4

Weakly Supervised Segmentation

Based on Web Image

Co-segmentation

4.1 Introduction

In the previous chapter, we have discussed an important problem in semantic seg-

mentation, scene consistency, and proposed a dense multi-label module to impose

such consistency constraint. In this chapter, we will discuss another problem, weakly

supervised learning. We notice that in a classification task (Krizhevsky et al. [2012];

Simonyan and Zisserman [2015]; He et al. [2016]), labels are simply image-level la-

bels. However, dense prediction tasks such as semantic segmentation require pixel-

label labels, which involve great annotation effort. As pointed in Bearman et al.

[2016], it takes averagely 239.7 seconds to process one image to get full supervision,

and only 20 seconds to get image-level labels. Obviously, reducing the labelling time

makes us achieve training data more cheaply, and further enable more training data

to be collected easily.

To reduce the cost of generating pixel-level ground truth, it is worth exploring

methods working in weakly and semi-supervised settings. In addition to image-

level labels (Kolesnikov and Lampert [2016]; Pathak et al. [2015]), other means of

supervision have also been utilized such as bounding boxes Pathak et al. [2015],

43
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scribble Lin et al. [2016a], points Bearman et al. [2016] etc. Point supervision is able

to indicate the location of objects, and bounding boxes and scribble can even indicate

the location as well as the extent of objects. Image-level supervision is obviously the

most challenging task where we only know the existence of objects. The objective of

this work is to perform semantic segmentation only with image-level labels and try to

reduce the gap between weakly supervised methods and fully supervised methods.

For weakly supervised methods with only image-level labels (Bearman et al.

[2016]; Wei et al. [2017b]; Pinheiro and Collobert [2015]), it is very common to in-

troduce some prior knowledge by other auxiliary methods such as Objectness Alexe

et al. [2012], Multiscale Combinatorial Grouping (MCG) Arbeláez et al. [2014], and

saliency dectection Jiang et al. [2013]. It is worth noting that these methods might

rely on more than just image-level labels to be trained. For example, Objectness Alexe

et al. [2012] requires bounding boxes to train and MCG requires pixel-level ground

truth. Therefore, strictly speaking, using only image-level labels indicates no more

supervision other than image-level labels including the training of the other methods

involved.

In this chapter, we aim to propose a weakly supervised framework for semantic

segmentation that strictly complies with the rules of image-level supervision, which

means apart from image-level labels, there is no extra supervision implicitly involved.

Our method is based on a co-segmentation method Chen et al. [2014], which is an

unsupervised and robust method for large scale co-segmentation. More specifically,

our framework has two steps, training an initial network as a mask generator and

training another network as the final model. The mask generator is trained with the

retrieved images from the internet and is used to provide masks for the final model.

The final model is trained by the masks from the mask generator as well as the image-

level labels provided. In the first step, we first retrieve images from search engines

(Flickr and Google) according to class names. Then for each class, which has a large

number of images containing the same semantic object, we use co-segmentation to
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extract masks for each image. These masks are used to train the mask generator.

In the second step, the mask generator produces masks for the target dataset, e.g.

PASCAL VOC 2012. With these mask as well as the image-level labels that helps

to eliminate impossible predictions, we are able to train the final model with high

quality ground truth.

Our contributions are as follows:

• We propose a new weakly supervised method based on co-segmentation. Apart

from image-level supervision, there is no extra supervision involved. We show

that this two-step framework is simple but effective.

• We use the most popular benchmark dataset, PASCAL-VOC12 to demonstrate

the performance of our framework and we achieved state of the art perfor-

mance.

4.2 Background

4.2.1 Weakly Supervised Semantic Segmentation

In the literature, there have been many weakly- and semi-supervised methods pro-

posed for semantic segmentation. Those methods utilize different forms of super-

vision including image-level labels (Pathak et al. [2015]; Kolesnikov and Lampert

[2016]; Oh et al. [2017]; Wei et al. [2017b]; Pinheiro and Collobert [2015]), bounding

boxes Dai et al. [2015], points Bearman et al. [2016], scribble Lin et al. [2016a], or

combined supervision (Hong et al. [2015]; Papandreou et al. [2015]).

Our work only uses image-level labels. Therefore, we will discuss some works

with the same supervision setting. Pinheiro and Collobert [2015] treat weakly su-

pervised segmentation as a Multiple Instance Learning (MIL) task. They claim that

using image-level label for training makes the model learn to discriminate the right

pixels, and using some extra smoothing priors can give good pixel labelling results.

Pathak et al. [2015] introduce a constrained CNN for weakly supervised training by
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setting a series constraints for object size, foreground, background. Kolesnikov and

Lampert [2016] propose a "seed, expand and constrain" framework where they em-

ploy localization cues from DCNN to find the object’s location, use global weighted

rank pooling to expand the mask, and use Conditional Random Fields (CRFs) to re-

fine the boundary. Oh et al. [2017] combine localization cues and saliency to localize

objects and obtain their extent so as to generate semantic masks. Wei et al. [2017b]

use a simple to complex framework for weakly supervised learning. They retrieve

images from Flickr and use saliency maps as ground truth for training. Then they

train the model in a "simple to complex" fashion as they train initial model, enhanced

model and powerful model step by step. It is worth noting that using saliency has its

own limitation because it is class-agnostic and the interesting region might not be the

salient region detected. Our co-segmentation based framework will be more robust

and respect the co-occurrence regions. More details will be discussed in Section 4.3.1.

4.2.2 Co-segmentation

The objective of co-segmentation is to segment similar objects from a pair of images

or a group of images. Some methods are focused on small scale co-segmentation

where only a small number of images are involved (Hochbaum and Singh [2009];

Joulin et al. [2010]; Dai et al. [2013]). These bottom-up methods use low level features

to find similarities between images and formulate optimization problems to find the

co-segments.

There are some other methods aiming at large scale co-segmentation with a large

number of images presented including noisy data (Faktor and Irani [2013]; Chen

et al. [2014]). Faktor and Irani [2013] define co-segmentation as a composition prob-

lem where good co-segments can be easily composed and vice versa. The method

is suitable for both large scale data and even a single image. Chen et al. [2014]

propose an approach to combine top-down segmentation priors learned from visual

subcategories and bottom-up cues to produce good co-segmentation from noisy web
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data. Our framework is based on this technique, which can provide us good training

masks for retrieved images.

4.3 Method

Figure 4.1 shows the overall pipeline of our framework. Basically, there are two steps.

In the first step, we retrieve images according to class names, e.g. 20 object names in

PASCAL-VOC12, and we use large scale co-segmentation method Chen et al. [2014]

for each class group. In each group, we assume that most of the images contain

the desired object in the corresponding class. Since the co-segmentation method has

great ability to tolerate noise, we can control the balance between recall and precision

and get high quality results. After we obtain the co-segmentation results, we treat

them as ground truth masks and train a CNN as initial mask generator. In the second

step, we use the mask generator to produce masks for images of the target dataset,

e.g. PASCAL VOC 2012. Furthermore, since we have access to image-level labels, we

can use it to eliminate impossible predictions and enhance the masks. Finally we use

these high quality masks as well as image-level labels to train another CNN as the

final model. More details will be discussed in later sections.

Let I be an image, and Y = [y1, y2, ..., yC] be the label vector, where yj = 1 if

the image is annotated with class j and otherwise yj = 0; C is the number of class.

Assume we have training data, D = {(Xn, Yn)}N
n=1, where N is the number of training

data. Our objective is to learn a DCNN function f (X; `) parameterized by `.

4.3.1 Saliency vs Co-segmentation

In this section, let us first discuss the advantages of co-segmentation methods in

terms of estimating the mask of retrieved images compared with saliency detection.

In Wei et al. [2017b], saliency detection method DRFI Jiang et al. [2013] is used to

generate masks for internet retrieved images. Generally speaking, saliency detec-

tion frameworks require relatively clean background and high contrast between fore-
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ground and background. For relatively complex images, saliency has its own limita-

tion, which may detect undesired objects. One situation could be that the salient part

is not the target object. Another situation could be that saliency only concentrates on

the most salient part so that the other parts of the object are ignored.

In contrast, co-segmentation has more advantages in terms of localizing the de-

sire object and finding the accurate contour. In Chen et al. [2014], to perform co-

segmentation on a group of images, e.g. a group of car images, it first uses low-level

features to find aligned homogeneous clusters and learns a set of visual subcate-

gories. Then top-down segmentation priors can be created and used to extract the

final segment for each image with the help of graph-cut algorithm. This bottom-

up and top-down procedure can better localize the common objects in the image

collection and obtain accurate contour.

Figure 4.2 shows some examples of saliency map produced by DRFI and co-

segmentation mask. In each half, the first column is the original image; the middle is

the saliency map and the last is the co-segmentation mask. In the left half, we show

some example when saliency fails to detect the object as a whole part. Instead only

a small portion has high probability, which makes it difficult to capture the entire

object. In comparison, co-segmentation can capture the whole part. In the right half,

there are some circumstances where saliency produces lots of false positives and fails

to detect the part we expect. Co-segmentation can find better patterns from the large

collection of images containing the common objects, which gives us more promising

results.

4.3.2 Training Initial Mask Generator

To train the initial mask generator, we retrieve images from Flickr and Google and

use co-segmentation to obtain estimated ground truth for each image. We define M

as the mask, and this data set is expressed as D1 = {(Xn, Mn)}N1
n=1, where N1 is the

number of retrieved images. We train the initial Mask generator as in standard fully-
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supervised framework using softmax loss. For a single image, the loss is defined

as:

L1 =
1
I

I

∑
i

C

∑
j
1(mi = j) log(

exp( fij)

∑k exp( fik)
), (4.1)

where fi j is the prediction from the network for class j at spatial position i; mi is the

training mask for spatial position i; I is the number of spatial points.

The network structure we use is Resnet50 He et al. [2016] with dilations, similar

to DeepLab Chen et al. [2016].

4.3.3 Training Final Model

After we trained the initial mask generator, we can use it to generate pixel-level labels

for images of the target dataset. However, these labels could be noisy. For example,

"cow" pixels could be predicted to "sheep" pixels but the image does not have sheep.

Fortunately since image-level labels are accessible to these images, we can use it as

constraints to eliminate impossible predictions to obtain high quality masks. For an

image in the target dataset, we apply the following operation:

mi = arg max
j∈{0,..,C−1}

yj fij, (4.2)

where yj = 1 if class j is shown and otherwise 0; fij is the score for class j at position

i; mi is the label for position i.

So far, we have the masks for all the images in the target dataset. The training set

can be expressed as D = {(Xn, Yn, Mn)}N
n=1.

We train the final model also in fully supervised setting. Furthermore, in order to

include more context information, we borrow the idea from Shen et al. [2017b] where

multi-label classification is combined to enforce scene consistency. For simplicity, we

only add one branch for global context. Thus the training process is guided by two

losses, softmax loss and multi-label loss. The softmax loss is the same as in Equation
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4.1, while the multi-label loss for single image is a binary logistic loss expressed as:

L2 =
1
C ∑

j
yj log(

1
1 + e−pj

) + (1− yj) log(
e−pj

1 + e−pj
), (4.3)

where pj is the prediction for class j.

The objective is to minimize the combined loss for all images:

L =
N

∑
n
Ln

1 + λLn
2 , (4.4)

where λ controls balance between losses.

Intuitively, multi-label classification imposes constraints to the segmentation pre-

diction so that the prediction would be consistent to the scene globally. Implausible

predictions will be largely modified. The final model still uses Resnet50 with dila-

tions as basic structure. The difference is the multi-label branch. The branch shares

some low-level layers with the main branch and has its own high level layers.

4.4 Experiments

4.4.1 Datasets

Retrieved Dataset: We construct a dataset by retrieving images from Flickr and

Google. By using the corresponding class names in our target dataset PASCAL VOC

2012 as queries, we retrieve 75802 images in total. It is worth noting that we do not

have any filtering process as in Wei et al. [2017b] where they adopt multiple methods

to filter the crawled images. Since the co-segmentation we use has good tolerance to

noise, we simply use all the images crawled. The only preprocessing is resizing all

the images so that the maximum dimension is 340. This dataset is used to train our

initial mask generator.

PASCAL VOC 2012: We train and evaluate the final model on this dataset. The

original dataset Everingham et al. [2010] contains 1464 training images, 1449 vali-
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dation images and 1456 testing images. The dataset is further augmented to 10582

training images as in Hariharan et al. [2011]. There are totally 21 semantic classes in

the benchmark. The evaluation metric is the standard Intersection over Union (IoU)

averaged on all 21 classes.

4.4.2 Experiment Setup

Co-segmentation: We use the public available code of Chen et al. [2014]. For all the

retrieved images, the images belonging to the same semantic class will be in a large

group for co-segmentation. Therefore, there are 20 groups (excluding background

class) of images. We used all default settings without tweaking any parameters.

After obtaining the results, we only keep the images that have foreground pixels

between 20%-%80 of the whole image, which results in 37211 images.

Initial mask generator: We use the images from co-segmentation to train the

mask generator. To make the images compatible to PASCAL VOC 2012, we resize

the original images and masks so that the maximum dimension is 500. The network

is trained with public toolbox MXNet Chen et al. [2015b]. The network structure is

basically Resnet50 with dilated convolutions, which has resolution of 1/8, similar

to Deeplab structure Chen et al. [2016]. We use standard Stochastic Gradient De-

scent (SGD) with batch size 16, crop size 320, learning rate 16e-4, weight decay 5e-4

and momentum 0.9. The training takes around 5000 iterations. The learning rate is

decreased by factor of 10 once for further fine-tuning. It is worth noting that longer

training time will worsen the performance because the model might fit to some noisy

data or bad quality data.

Final model: After having the mask generator trained, we use it to generate

masks for 10582 training images in PASCAl VOC 2012. Following Equation 4.2,

we make predictions with the image-level label constraint. Also we use multi-scale

inference to combine results at different scales to increase the performance, which is

common practice as in Lin et al. [2017a]; Peng et al. [2017]. The final model is trained
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only using these data. The network structure is a little different from the initial mask

generator. As mentioned in Section 4.3.3, we include a global multi-label branch to

enforce the scene consistency globally, it turns out to be very useful, as shown in later

ablation study in Section 4.4.4. The parameters are similar to the training process for

the mask generator. The extra parameter λ in Equation 4.4 is set to 1.0. Besides, we

train the model for 11000 iterations and further fine-tune it for several iterations with

the learning rate decreased by factor of 10. The final outputs are post-processed by

CRF Krähenbühl and Koltun [2011].

4.4.3 Experimental Results

Table 4.1 and 4.2 show the IoU scores of our method and other weakly-supervised

methods on validation set and test set of PASCAL VOC 2012, where we achieve IoU

of 56.91 on test set. From the table, we can easily see that our method outperforms

other methods in majority of classes. For some classes, our method increases the

score by a big margin, for example, bottle, cow, bus. This big improvement benefits

from the good quality masks produced by co-segmentation. For some low score

classes, such as chair and person, we suspect it is due to the extreme co-occurrence,

for which co-segmentation always treats them as a whole part. For instance, chair

always shows with dining-table or motorbike always appears with person. Some

examples can be seen in later failure analysis in Section 4.4.5.

We also compare the results with other methods with stronger supervision, as

shown Table 4.3. In the upper half, those are methods that either use stronger su-

pervision apart from image-level labels or use other techniques that involve other

supervisions. In Lin et al. [2016a] and Dai et al. [2015], their supervision, scribble

and bounding box can indicate not only the location of objects but also the extent of

objects, which is far more informative than image-level labels. In Hong et al. [2015],

they use pixel-level masks, which, even with relatively small number, can greatly

1http://host.robots.ox.ac.uk:8080/anonymous/NNRJCF.html
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boost the performance. For Oh et al. [2017] and B et al. [2016], the techniques in-

volved, saliency and MCG, require additional supervision, e.g. bounding boxes or

pixel-level masks to train. We can safely conclude that with stronger supervision, the

performance gets better accordingly. Our method only uses the weakest supervision

but can reach competitive performance compared with other supervision settings.

Some qualitative results are shown in Figure 4.3.

4.4.4 Ablation Study

To analyse the effect of each part in the framework, we conducted an ablation exper-

iment, whose results on validation set are shown in Table 4.4. In the first stage of the

framework, the initial mask generator is trained to reach IoU of 48.3. Then if we use

the same structure without the global multi-label module mentioned in Section 4.3.3,

we only get IoU of 53.3. With the help of the global multi-label module, this per-

formance can be increased to 55.1. With some post-processing, multi-scale inference

and CRF, the final score is 56.4 on validation set.

4.4.5 Failure Analysis

In Figure 4.4, there are some failure cases presented. In the left half, it is a type of

failure where two objects are recognized as one part due to strong co-occurrence. The

right half shows another type of failure where the object is underestimated or overes-

timated. The reason could be some bad quality masks produced by co-segmentation.

4.5 Conclusion

We have presented a framework for weakly supervised semantic segmentation us-

ing only image-level labels. The framework utilises co-segmentation and retrieved

images from the internet to obtain training data with pixel-level masks. Our two-

step framework uses these high quality masks as well as the image-level labels of
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Model IoU
Initial mask generator 48.3

Simple final model 53.3
Final model with multi-label module 55.1

Final model+MS infer+CRF 56.4

Table 4.4: Results with different settings on validation set.

the target dataset to train a semantic segmentation network. Based on the experi-

ments shown on a popular benchmark dataset, we show that our simple but effective

framework reaches state of the art performance.
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Apply initial
mask generator

VOC training set

Train network of
final model

Aeroplane

Bird
Search engines

…

Co-
segmentation

… Train network of
initial mask generator

STEP1

STEP2

Co-
segmentation

…

Image-level labels

High quality masks

Refine 
mask

Figure 4.1: Illustration of the framework. In the first step, we firstly retrieve im-
ages from searching engines according to different semantic class names. Then co-
segmentation is used to get pixel-wise masks for each semantic class group. Next we
use these masks together with the images to train the initial mask generator. In the
second step, we apply the mask generator to obtain pixel-wise masks for the target
dataset, PASCAL VOC 2012, and further we refine the masks by using image-level
labels to remove wrong predictions. The final model is trained with high quality

masks.
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Figure 4.2: Comparison between saliency and co-segmentation. In each half, the
first column is the original image, the middle is the saliency and the last is the
segmentation mask. In the left half, these are examples when saliency fails to detect
the object as a whole part. In the right half, it shows some cases where saliency gives

high probability to many parts and fails to detect desired object.

image ground truth prediction image ground truth prediction

Figure 4.3: Qualitative segmentation results on PASCAL VOC 2012 validation set.
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Figure 4.4: Examples of some failure cases.



Chapter 5

Bootstrapping the Performance of

Webly Supervised Segmentation

5.1 Introduction

In the last chapter, we have addressed the problem of weakly supervised seman-

tic segmentation by proposing a framework based on web image co-segmentation.

The main idea of the framework was to train a “mask generator” using cheap data

from the internet and use it to generate pixel-level masks for the training images of

the target dataset. In this chapter, we follow the similar idea and propose a new

framework for generating high-quality masks, closer in accuracy to those created by

humans. This new framework does not rely on co-segmentation methods and gives

better estimation of the masks.

The new framework is similar to the previous method in another aspect that they

are all webly supervised methods. Web data exist in large quantities and we can

easily collect a group of images associated with a particular class label by using the

label (and synonyms) as a query to a search engine. The hope is that these extra

data can be used to boost the performance, and indeed a number of papers (Wei

et al. [2017b]; Jin et al. [2017]; Shen et al. [2017a]) have previously explored this

idea to improve results of weakly supervised methods. There are two hurdles to

overcome; the first is that the retrieved web data will often be noisy, in the sense that

the image labels (tags) may not match the image content, or be inconsistent with the

61
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Model-T Model-W

Web domain

Filter

Enhance

Figure 5.1: Illustration of the bi-directional framework. Model-T and Model-W are
trained in the target domain and the web domain respectively. Model-T uses the
knowledge in its domain to help Model-W to filter out image with incorrect tags,
yielding a set of high quality easy images. Model-W trained with high quality web
images transfers the knowledge back to the target domain, helping Model-T enhance

the results.

concept/object we are trying to capture. The second is of course that the retrieved

images will not have the ground-truth segmentation masks associated with them.

In this chapter, we describe a bootstrapping process, in which we leverage bi-

directional flow of information between two domains, a target domain (i.e. the set of

classes for which we want segmentation and a set of training images with accurate

image-level labels) and the web domain (i.e. images crawled from the web using the

target class labels as search keywords). For simplicity, we use Model-T and Model-W

to represent models in the target and web domain respectively (see Figure 5.1). The

key insight is that we can use a weakly supervised network (Model-T, trained on

the target domain using only image-level labels) to effectively filter the web-retrieved

images to eliminate labelling errors and to retain only images that are relatively easy

to segment, having a simple background, single semantic class, and decent-sized

objects. By doing this, we create a new dataset with high quality images that are

easier to segment with only weak supervision. Figure 5.2 illustrates typical images

and segmentation results from the two domains. Images in the target domain usually

have a complex scene and multiple, overlapping objects, whereas web images filtered
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are simpler and therefore easier to segment using a weakly supervised network.

Since the model trained with the target dataset can filter the web data and pro-

vides us with a high quality dataset, we propose to learn a model with these web

images and in return help enhance our results. As shown in Figure 5.3, the first two

masks are estimated by the model trained with the target dataset and web images

respectively. We observe that the model trained with the target dataset is good at dis-

tinguishing semantic classes but provides bad boundaries, while the model trained

with web images gives good boundaries but tends to merge different semantic re-

gions. By our merging strategy, the enhanced mask, shown in right bottom of Figure

5.3, takes advantage from both masks and makes high quality estimation. There is

also the ground truth annotation in upper right for visual comparison, which is not

available in our weakly supervised setting.

Our contributions can be summarized as follows:

• We propose a bidirectional transfer learning framework for bootstrapping we-

bly supervised semantic segmentation.

• We propose an effective approach to filter web data and find high quality im-

ages, which are suitable for weakly supervised semantic segmentation.

• We transfer the knowledge learnt from the web domain to the target domain

and generate high quality masks.

• By using the high quality masks as proxy ground truth, we train a standard

FCN and achieve state-of-the-art performance. The gap between weakly super-

vised methods and fully supervised methods is further reduced.

5.2 Background

Semantic segmentation has greatly benefited from FCN based networks that enable

training dense prediction models in an end-to-end fashion. Many methods have been
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Target domain

Web domain

Figure 5.2: Mask estimation in two domains. In the upper part, the mask is given by
the model trained in the target domain, which is coarse due to complex scene and
overlapping objects of the images. The lower part shows an example given by the

model trained in the web domain, which is better because of the simple context.

proposed (Long et al. [2015]; Lin et al. [2016b]; Chen et al. [2015a]; Lin et al. [2017a];

Noh et al. [2015]; Zhao et al. [2017]) and achieved remarkable success. However

these methods are designed in fully supervised setting and require pixel-level masks,

which involves a large amount of human labour and time to obtain.

In order to reduce the effort of annotation, many semi- and weakly supervised

methods have been proposed (Pinheiro and Collobert [2015]; Bearman et al. [2016];

Shen et al. [2017a]; Lin et al. [2016a]; Kolesnikov and Lampert [2016]; Wei et al.

[2017b]; Dai et al. [2015]; Pathak et al. [2015]). In these methods, various forms

of supervision are investigated to achieve reasonable performance compared with

fully supervised methods. Dai et al. [2015] propose a bounding box supervised
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estimated mask 
(model with target dataset)

estimated mask 
(model with web dataset)

enhanced estimation

ground truth
(not available)

image
(in target training set)

Figure 5.3: Illustration of enhancing mask. The upper part shows an image in the
training set and ground truth (which is not available in our weakly supervised set-
ting). In the lower part, the first two masks are estimated by the model in the target

domain and the web domain respectively and the last one is the enhanced mask.

method where they extract object masks based on the bounding box by using MCG.

Lin et al. [2016a] use scribbles as supervision and construct a graphical model to

tackle the problem. In Bearman et al. [2016], only points are used as supervision

to train a model. Among these supervisions, the most challenging one is image-

level annotation. Pathak et al. [2015] introduce a constrained convolutional neural

network with assumptions on object size, foreground and background. Pinheiro and

Collobert [2015] propose a Multiple Instance Learning (MIL) based method for the

problem. In Kolesnikov and Lampert [2016], a "seed, expand and constrain" (SEC)

framework is proposed using only image-level labels where localization cues from

classification networks are used to find the object; a weighted rank pooling loss is

used to constrain the object extent; CRF is used to refine the boundaries. Our method

uses SEC model as a starting point and use web images to learn better features.
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Our method is closely related to webly supervised learning (Chen and Gupta

[2015]; Krause et al. [2016]; Xiao et al. [2015]; Chen et al. [2013]), which is focused

on extracting useful knowledge or features from noisy web data. Many webly based

semantic segmentation methods have also been proposed (Jin et al. [2017]; Shen et al.

[2017a]; Wei et al. [2017b]; Hong et al. [2017]). In Jin et al. [2017]; Wei et al. [2017b], a

network is firstly trained with simple images from the internet and the corresponding

masks estimated using saliency detection. Then the network is adapted to the target

domain with progressive improvement. Shen et al. [2017a] use co-segmentation to

extract the masks of web images and train the network. Hong et al. [2017] use data

from the web crawled videos and extract masks based on temporal information and

attention cues.

5.3 Method

The pipeline of our framework is described in Figure 5.4. Our goal is to estimate

the masks for training images in the target domain, which will then be used as a

proxy for ground truth to train the final segmentation network. The models in two

domains interact with each other to transfer knowledge and finally provide us with

high quality masks for the training images.

In detail, our bi-directional framework is based on the two domains:

• In the target domain, we train Initial-SEC on VOC images with only image-

level labels and get initial estimation of the masks. Details are presented in

Section 5.3.1.

• In the web domain, we transfer the knowledge from target domain by using

Initial-SEC as a filter to clean noisy web data. Then we have three steps to learn

the knowledge from the web domain by training Web-SEC (Section 5.3.2.2), us-

ing Grabcut refinement (Section 5.3.2.3) and training Web-FCN (Section 5.3.2.4).

• Back to the target domain, we transfer the knowledge from the web domain
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back to enhance the initial estimation of the masks, which is described in Sec-

tion 5.3.3.

• Finally Final-FCN is trained using the estimated masks, as described in Section

5.3.4.

5.3.1 Training Initial-SEC in the Target Domain

Our framework starts in the target domain, where we train a SEC model, termed

Initial-SEC, on VOC images. We first review the SEC architecture Kolesnikov and

Lampert [2016]. Let I = {(Xn, Yn)}N1 be our target dataset, e.g. PASCAL VOC

2012, which consists of N1 images. Each Image Xn is annotated by image-level labels

Yn ∈ {0, 1}C where C is the number of classes. The goal is to train a DCNN f (X),

short for f (X; `), that is parameterized by ` and models category probabilities for

each pixel. The SEC model is trained by three losses:

L =
N1

∑
n
Lseed( f (Xn), Yn) + Lexpand( f (Xn), Yn)

+Lconstrain( f (Xn), Xn)

(5.1)

Lseed supervises the network with localization cues obtained from Class Activa-

tion Mapping (CAM) Zhou et al. [2016a]. Lexpand controls how to aggregate the heat

maps to be consistent with image-level labels where a global weighted rank pool-

ing (GWRP) is proposed. Lconstrain makes the predictions respect the boundaries of

objects.

In the original paper, the trained model is the final model. Unlike their approach,

we apply the model back to the training images to generate their masks. These masks

are coarse, as shown in left bottom of Figure 5.3, and will be enhanced by the model

trained in the web domain.

Since we have access to image-level labels, we use them to further refine the masks
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image ground truth

raw prediction refined prediction

Figure 5.5: Illustration of removing confusions of the initial masks by using image-
level labels. Given an image in upper left, the raw estimation is shown in lower left.
Using this information, we get cleaned estimation in right bottom. We also use the

ground truth annotation for visual comparison(not available in our setting).

of the training images as follows:

mi = arg max
j∈{1,..,C}

yi fij (5.2)

where mi is the mask prediction for ith pixel (i.e. we choose the class label as the

most likely one from the set of valid labels). An example is illustrated in Figure 5.5.

Compared with the raw prediction on left bottom, the confusion is removed in the

refined prediction shown on right bottom. We also use the ground truth annotation

for visual comparison, which is not available in our setting.
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5.3.2 Training Models in the Web Domain

The masks estimated from Section 5.3.1 are still too rough to be used as the ground

truth, as shown in right upper of Figure 5.2. In this section we show how we can

leverage web-crawled data, transferring knowledge from the target domain to the

web domain and learn new knowledge in the web domain.

5.3.2.1 Crawl and Filter Web Images

High quality web data processed by good filtering methods are crucial to learning

good segmentation models. In this section, we show how to transfer the knowledge

from the target domain to filter web data.

We first search for images based on class names using search engines (Bing in

our experiments). The class names are used as seeds, along with synonyms, and

similar words suggested by the search engines. For example, when searching for

“dog”, “German Shepherd dog”, “Pitbull dog” etc. are also suggested. After greedily

crawling all related images, we use the Initial-SEC model trained on VOC images as

our filter to clean the web data.

Applying the SEC model to web images, we are able to obtain masks with per-

pixel class labels. Based on the dense masks information, we can easily identify

qualified images by scene complexity of the image, extent of the object and semantic

relevance. Specifically, we select the images according to two criteria: (i) the number

of pixels for the target class must lie in a predefined range, t1 < 1
N ∑i 1(mi = c) < t2;

and (ii) the number of other foreground pixels should be lower than a threshold,

1
N ∑i 1(mi 6= c and mi 6= background) < t3. The intuition is we want to select images

with a “proper” size for the foreground. It is expected that such images can be easily

segmented. Different from existing filtering approaches Wei et al. [2017b]; Hong et al.

[2017], our method is based on dense masks and provides richer information of the

images.
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5.3.2.2 Training of Web-SEC

The filtering process described above creates a dataset of accurately labelled, high

quality web images from a noisy web search. Our goal now is to improve the es-

timates of their masks. To this end, we train another SEC model on the web data

which we term “Web-SEC”. Unlike in the target domain, where images are associ-

ated with multiple class labels, images in the web domain are much simpler, filtered

to be likely to contain only one class, and therefore easier to segment.

The Web-SEC model is able to generate masks for these web images of higher

quality than Initial-SEC. Figure 5.6 shows a qualitative comparison between these two

models (Initial-SEC and Web-SEC). The middle masks are from Initial-SEC trained in

the target domain. It gives basic semantic information and rough extent of the object.

Clearly the masks on the right, outputs from Web-SEC, are well adapted to the web

domain and provide more accurate estimation.

5.3.2.3 Grabcut Refinement

The masks generated by Web-SEC are good at capturing the whole object but some-

times overestimate the object, as illustrated in the second column of Figure 5.7. To

further refine the masks, we develop a Grabcut based refinement method. It is sim-

ilar to Khoreva et al. [2017], but we use the mask as prior knowledge to indicate the

foreground and background instead of the bound box. We simply jitter the window

that tightly surrounds the mask and perform Grabcut Rother et al. [2004]. By multi-

ple samples, we are able to get a probability heat map of the foreground as shown

in the third column of Figure 5.7, and we retain as foreground only the pixels with

high probability.

For a mask estimated by Web-SEC, li ∈ {1, ..., C} is the label for ith pixel. After

Grabcut refinement, we have pi ∈ [0, 1] for ith pixel representing the probability of
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image Initial-SEC Web-SEC

Figure 5.6: Comparison of the estimated mask for web images between Initial-SEC
model and Web-SEC model. The middle column shows the masks estimated from
Initial-SEC model, which are coarse. The masks on the right are from the Web-SEC

model, which provide more accurate estimation.

being kept. The refined mask is defined as:

l̂i =


li if pi ≥ t

background if pi < t and li = background

void if pi < t and li 6= background

(5.3)

where l̂i is the new label for ith pixel; t is the threshold; void indicates unclear

regions.

We are able to control the balance between precision and recall by choosing a

proper threshold. By using a high threshold, we have high confidence about the

pixels being kept. Since those with low probability are set to void, they will be

ignored during the training and not have a big impact.
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image Web-SEC Grabcut refinementGrabcut heatmap

Figure 5.7: Illustration of Grabcut refinement. The second column shows the masks
from Web-SEC model. The third column shows the probability heat map after Grab-

cut. The last column shows the refined masks.

5.3.2.4 Training of Web-FCN

After Section 5.3.2.3, we obtain a web image dataset with estimated masks. Let

W = {(Xn, Mn)}N2 be the dataset with N2 images, where Xn and Mn are the image

and the estimated mask respectively. We now are able to train a standard FCN

(Web-FCN), which is used to estimate masks for our target dataset. The architecture

we adopt here is a 1/8 resolution FCN with dilated convolution kernels, similar to

DeepLab Chen et al. [2015a]. This becomes a “fully supervised” problem and the

objective is to minimize a softmax loss:

L =
N2

∑
n
Lso f tmax( f (Xn), Mn) (5.4)

The Web-FCN trained in the web domain encodes the knowledge in this domain.

The knowledge will be transferred to the target domain by applying this model to

the target dataset.

5.3.3 Enhancing the Initial Estimation

In this section, we describe how to transfer the knowledge learnt from the web do-

main to the target domain and improve the estimation. Recall that in lower part of
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Figure 5.3, the first two masks are from models in the target and the web domain re-

spectively. We observe that the model in the target domain is good at distinguishing

classes because it is trained with confident image-level labels. In contrast, the model

in the web domain provides better boundaries and captures more complete extent

but is prone to making mistakes about the class labels. We address this by fusing

the estimations from both domains and get the final enhanced mask, shown in right

bottom of Figure 5.3.

More specifically, let M(t) be the mask from the target domain and M(t)
i ∈ {1, ..., C}

represent the category for ith pixel. Likewise, M(w) and M( f ) represent the mask from

the web domain and the final enhanced mask respectively. The fusion strategy is as

follows:

M( f )
i =



M(t)
i if M(w)

i 6= background

M(t)
i if M(w)

i = background

and ∑k 1(M(w)
k = M(t)

i ) < ε

M(w)
i otherwise

(5.5)

where ε is a small number.

The intuition for this strategy is that for foreground pixels in M(w), the category

labels will follow M(t) because it has better ability to distinguish classes. For back-

ground pixels in M(w), if the number of pixels for a valid class is lower than a thresh-

old, we also follow the label in M(t). This indicates if a class is shown in image-level

labels, we should guarantee some pixels for this class, otherwise the information for

this class will be lost. In any other cases, we follow M(w).

5.3.4 Training Final-FCN

After obtaining the enhanced masks, the problem is similar to a “fully supervised”

problem. The target dataset becomes I = {(Xn, Yn, Mn)}N1 , where we have pixel-wise

masks besides image-level labels. This enables us to train a standard FCN model.
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The structure we adopt in our experiment is a FCN with dilated kernels, similar to

DeepLab Chen et al. [2015a]. Besides, we also adopt a global-multi label branch for

scene consistency, as in Shen et al. [2017b]. We train Final-FCN by minimizing two

loss functions:

L =
N1

∑
n
Lso f tmax( f (Xn), Mn) + Lmulti(g(Xn), Yn) (5.6)

where g(Xn) is the output for global multi-label and Lmulti is a logistic multi-label

loss.

5.4 Experiments

5.4.1 Dataset

Retrieved Dataset: We retrieve images from Bing based on class names. We use class

names as seeds and greedily search for related images, including synonyms, words

suggested by the searching engine. By using our Initial-SEC as a filter and setting a

threshold for each class as the maximum number of images, we obtain a retrieved

dataset with 76683 images. All images are resized so that the larger dimension is

500. In term of the parameters mentioned in Section 5.3.2.1, t1 = 0.3, t2 = 0.7 and

t3 = 0.1.

PASCAL VOC 2012: We use this dataset as our target dataset and evaluate the

performance based on this. The original dataset Everingham et al. [2010] contains

1464 training images, 1449 validation images and 1456 testing images. As common

practice, we also use the augmented data from Hariharan et al. [2011], which gives

10582 training images in total. There are 21 classes including a background class.

The result is evaluated with Intersection over Union (IoU) averaged over 21 classes.
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5.4.2 Implementation Details

The implementation is based on MXNet Chen et al. [2015b]. For details of training

SEC models, Initial-SEC and Web-SEC, please refer to the original paper Kolesnikov

and Lampert [2016]. We follow the same parameters except that for training Web-

SEC, we use a smaller initial learning rate of 1e-4. For Grabcut refinement, Section

5.3.2.3, we set the threshold t = 0.7. For Web-FCN we use DeepLab-based Chen

et al. [2015a] structure, which has output resolution of 1/8. For Final-FCN, apart

from the basic structure, a global multi-label branch is also introduced to encourage

scene consistency, similar to Shen et al. [2017b]. We use standard Stochastic Gradi-

ent Descent (SGD) for optimization. For post-processing, multi-scale inference and

dense-CRF are used as common practice.

5.4.3 Experiment Results

The results on PASCAL VOC validation set and test set are shown in Table 5.4 and

Table 5.5 respectively. According to the tables, the one with VGG16 Simonyan and

Zisserman [2015], same as the other’s base network, already achieves state of the art

performance, 60.21. By using another base net, Resnet 50 He et al. [2016], we achieve

much better result 63.92, which significantly outperforms other methods.

Table 5.1 also shows a comparison with methods using different supervision,

where the extra supervision is explained in the last column. In the upper half of the

table, we list methods with stronger supervision than image-level labels. It is worth

noting that our method does not use any other auxiliary methods that involve extra

supervision. Some qualitative examples are shown in Figure 5.8.

1http://host.robots.ox.ac.uk:8080/anonymous/X0CH0F.html
2http://host.robots.ox.ac.uk:8080/anonymous/GKJXB6.html
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Method val test Extra Supervision
Chen Chen et al. [2015a] 63.7 66.4 Fully supervised

Lin Lin et al. [2016a] 63.1 - Scribble
Dai Dai et al. [2015] 62.0 64.6 Bounding box+MCG
Oh Oh et al. [2017] 55.7 56.7 Bounding box

Bearman Bearman et al. [2016] 46.1 - Point
Wei Wei et al. [2017a] 55.0 55.7 Supervised saliency
STC Wei et al. [2017b] 49.8 51.2 Supervised saliency

EM-Adapt Papandreou et al. [2015] 33.8 39.6 -
CCNN Pathak et al. [2015] 35.3 35.6 -

SEC Kolesnikov and Lampert [2016] 50.7 51.7 -
Hong Hong et al. [2017] 58.1 58.7 -

Ours-VGG16 58.8 60.2 -
Ours-Res50 63.0 63.9 -

Table 5.1: Comparison with methods using other supervisions.

T-domain Web-domain
Initial-SEC Web-SEC GC Web-FCN post IoU

! 49.3
! ! 52.6
! ! ! 55.7
! ! ! ! 56.6
! ! ! ! ! 58.8

Table 5.2: Comparison under different settings on the PASCAL VOC 2012 validation
set.

Number of web images IoU
76.7k 56.6
58.1k 56.4
39.1k 56.3
20.0k 56.4
10.0k 56.4

6k 55.7
2k 55.3

80.0k without filtering 49.8

Table 5.3: Ablation study using different number of web images on the PASCAL
VOC 2012 validation set.



78 Bootstrapping the Performance of Webly Supervised Segmentation

M
ethod

bk
plane

bike
bird

boat
bottle

bus
car

cat
chair

cow
table

dog
horse

m
otor

personplant
sheep

sofa
train

tv
m

ean

EM
-A

dapt
67.2

29.2
17.6

28.6
22.2

29.6
47.0

44.0
44.2

14.6
35.1

24.9
41.0

34.8
41.6

32.1
24.8

37.4
24.0

38.1
31.6

33.8

C
C

N
N

68.5
25.5

18.0
25.4

20.2
36.3

46.8
47.1

48.0
15.8

37.9
21.0

44.5
34.5

46.2
40.7

30.4
36.3

22.2
38.8

36.9
35.3

M
IL+seg

79.6
50.2

21.6
40.9

34.9
40.5

45.9
51.5

60.6
12.6

51.2
11.6

56.8
52.9

44.8
42.7

31.2
55.4

21.5
38.8

36.9
42.0

SEC
82.4

62.9
26.4

61.6
27.6

38.1
66.6

62.7
75.2

22.1
53.5

28.3
65.8

57.8
62.3

52.5
32.5

62.6
32.1

45.4
45.3

50.7

STC
84.5

68.0
19.5

60.5
42.5

44.8
68.4

64.0
64.8

14.5
52.0

22.8
58.0

55.3
57.8

60.5
40.6

56.7
23.0

57.1
31.2

49.8

W
ebS

84.3
65.3

27.4
65.4

53.9
46.3

70.1
69.8

79.4
13.8

61.1
17.4

73.8
58.1

57.8
56.2

35.7
66.5

22.0
50.1

46.2
53.4

C
raw

lSeg
87.0

69.3
32.2

70.2
31.2

58.4
73.6

68.5
76.5

26.8
63.8

29.1
73.5

69.5
66.5

70.4
46.8

72.1
27.3

57.4
50.2

58.1

O
urs-V

G
G

16
85.0

74.4
24.9

76.2
20.7

58.2
82.3

73.6
81.0

25.9
71.3

37.4
71.8

69.6
70.3

71.0
44.1

73.8
34.1

48.4
40.0

58.8

O
urs-R

esnet50
86.8

71.2
32.4

77.0
24.4

69.8
85.3

71.9
86.5

27.6
78.9

40.7
78.5

79.1
72.7

73.1
49.6

74.8
36.1

48.1
59.2

63.0

Table
5.4:R

esults
on

the
PA

SC
A

L
V

O
C

2012
validation

set,com
pared

w
ith

other
m

ethods,EM
-A

dapt(Papandreou
etal.[2015]),

C
C

N
N

(Pathak
et

al.
[2015]),

M
IL+seg

(Pinheiro
and

C
ollobert

[2015]),
SEC

(K
olesnikov

and
Lam

pert
[2016]),

STC
(W

ei
et

al.
[2017b]),W

ebS
(Jin

et
al.[2017])

and
C

raw
lSeg

(H
ong

et
al.[2017]).



§5.4 Experiments 79

M
et

ho
d

bk
pl

an
e

bi
ke

bi
rd

bo
at

bo
tt

le
bu

s
ca

r
ca

t
ch

ai
r

co
w

ta
bl

e
do

g
ho

rs
e

m
ot

or
pe

rs
on

pl
an

t
sh

ee
p

so
fa

tr
ai

n
tv

m
ea

n

EM
-A

da
pt

76
.3

37
.1

21
.9

41
.6

26
.1

38
.5

50
.8

44
.9

48
.9

16
.7

40
.8

29
.4

47
.1

45
.8

54
.8

28
.2

30
.0

44
.0

29
.2

34
.3

46
.0

39
.6

C
C

N
N

70
.1

24
.2

19
.9

26
.3

18
.6

38
.1

51
.7

42
.9

48
.2

15
.6

37
.2

18
.3

43
.0

38
.2

52
.2

40
.0

33
.8

36
.0

21
.6

33
.4

38
.3

35
.6

M
IL

+s
eg

78
.7

48
.0

21
.2

31
.1

28
.4

35
.1

51
.4

55
.5

52
.8

7.
8

56
.2

19
.9

53
.8

50
.3

40
.0

38
.6

27
.8

51
.8

24
.7

33
.3

46
.3

40
.6

SE
C

83
.5

56
.4

28
.5

64
.1

23
.6

46
.5

70
.6

58
.5

71
.3

23
.2

54
.0

28
.0

68
.1

62
.1

70
.0

55
.0

38
.4

58
.0

39
.9

38
.4

48
.3

51
.7

ST
C

85
.2

62
.7

21
.1

58
.0

31
.4

55
.0

68
.8

63
.9

63
.7

14
.2

57
.6

28
.3

63
.0

59
.8

67
.6

61
.7

42
.9

61
.0

23
.2

52
.4

33
.1

51
.2

W
eb

S
85

.8
66

.1
30

.0
64

.1
47

.9
58

.6
70

.7
68

.5
75

.2
11

.3
62

.6
19

.0
75

.6
67

.2
72

.8
61

.4
44

.7
71

.5
23

.1
42

.3
43

.6
55

.3

H
on

g
87

.2
63

.9
32

.8
72

.4
26

.7
64

.0
72

.1
70

.5
77

.8
23

.9
63

.6
32

.1
77

.2
75

.3
76

.2
71

.5
45

.0
68

.8
35

.5
46

.2
49

.3
58

.7

O
ur

s-
V

G
G

16
85

.3
77

.6
26

.2
76

.6
17

.3
61

.4
82

.4
74

.8
83

.8
25

.7
66

.9
46

.2
74

.0
75

.6
79

.2
70

.8
48

.3
73

.1
40

.5
38

.8
39

.0
60

.2

O
ur

s-
R

es
ne

t5
0

87
.2

76
.8

31
.6

72
.9

19
.1

64
.9

86
.7

75
.4

86
.8

30
.0

76
.6

48
.5

80
.5

79
.9

79
.7

72
.6

50
.1

83
.5

48
.3

39
.6

52
.2

63
.9

Ta
bl

e
5.

5:
R

es
ul

ts
on

th
e

PA
SC

A
L

V
O

C
20

12
te

st
se

t,
co

m
pa

re
d

w
it

h
ot

he
r

m
et

ho
ds

,E
M

-A
da

pt
(P

ap
an

dr
eo

u
et

al
.[

20
15

])
,C

C
N

N
(P

at
ha

k
et

al
.[

20
15

])
,M

IL
+s

eg
(P

in
he

ir
o

an
d

C
ol

lo
be

rt
[2

01
5]

),
SE

C
(K

ol
es

ni
ko

v
an

d
La

m
pe

rt
[2

01
6]

),
ST

C
(W

ei
et

al
.[

20
17

b]
),

W
eb

S
(J

in
et

al
.[

20
17

])
an

d
C

ra
w

lS
eg

(H
on

g
et

al
.[

20
17

])
.



80 Bootstrapping the Performance of Webly Supervised Segmentation

input
ground

truth
prediction

input
ground

truth
prediction

Figure
5.8:Q

ualitative
results

on
PA

SC
A

L
V

O
C

2012
validation

set.



§5.4 Experiments 81

5.4.4 Ablation Study

5.4.4.1 Analysis of Different Modules

To analyse the effectiveness of our bi-directional transfer learning framework, we

conduct ablation study with different settings. Recall that our goal is to generate high

quality masks for the training images and train a FCN using the estimated masks.

Therefore, the quality of the masks directly affects the final performance. Table 5.2

shows a comparison under different settings. Starting with the simplest one where

only target domain is involved, we only get 49.3 by using Initial-SEC. With the web

domain introduced, we train Web-SEC for the web images, which gives us 3.3 point

improvement. This indicates the effectiveness of the knowledge transferred from the

web domain. We continue training Web-FCN without using Grabcut refinement and

further improve the result to 55.7. By using Grabcut refinements, we get almost one

more point of improvement. The final score is obtained by post-processing including

multi-scale inference and dense-CRF as common practice.

5.4.4.2 Analysis of Number of Web Images

It is also interesting to analyse how the number of web images involved affects the

result. Table 5.3 shows an ablation study using different numbers of web images.The

best performance is obtained by using 76.7k images. We also run experiments with

different numbers of images by varying the threshold of maximum images for each

class. It is interesting that the performance does not drop much with the number of

web images decreasing. Even the number of images is decreased to 2k, the perfor-

mance only drops by 1.3%. This indicates that our bi-directional framework is pretty

robust to noise and the filtered images are high quality. Furthermore, we also show

an experiment without filtering the images, which is shown in the last row. Using

80k noisy web images, we only get score of 49.8, which is 6.8 lower than the best one.

This again indicates the importance of using knowledge learnt in target domain to

filter web data.
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5.5 Conclusion

In this chapter, we tackle the problem of weakly supervised semantic segmentation

using only image-level labels. Apart from the target dataset with confident image-

level labels, we propose to use noisy web data to boost the performance. To leverage

the data in two domains, target domain and web domain, we propose a novel bi-

directional transfer learning framework that is able to generate high quality masks

for the training images. Using these masks as proxy ground truth, we achieve state-

of-the-art performance and further narrow down the gap between weakly and fully

supervised methods.



Chapter 6

Conclusion and Future Directions

6.1 Conclusion

In this thesis, we have discussed two problems in semantic segmentation, scene con-

sistency and weakly supervised training.

In Chapter 3, we have addressed the problem of scene consistency by introduc-

ing a dense multi-label module. With comprehensive experiments, we have shown

great potential of the module in terms of enforcing scene consistency in multiple

levels. Our simple yet effective module can be easily integrated into other semantic

segmentation systems to give more plausible and consistent predictions.

In Chapter 4 and 5, we have discussed two methods for weakly supervised se-

mantic segmentation using only image-level labels. The two methods share the sim-

ilar idea of using web data to obtain extra free supervision and further improve the

performance, but they are designed from different perspectives. Chapter 4 has pre-

sented a framework that uses co-segmentation and web data to get a web dataset with

pixel-level masks and use these data to further estimate the target dataset. Chapter

5 has described a bi-directional framework with two domains, the web domain and

the target domain. We have discussed how the two domains interact and transfer

knowledge with each other and finally boost the performance of the model in the

target domain. We have also shown state-of-the-art performance achieved by our

methods.

The two problems discussed in the thesis address semantic segmentation from

two different angles. The multi-label module is introduced to solve the issue of

83
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scene consistency. While the multi-label module is not the only way to deal with

scene consistency issue, but it reveals a fact that explicitly imposing constraint will

make models more reliable than relying on the model itself to learn everything.

The other problem, weakly supervised learning, addresses the problem from how

to train networks using limited information. The research on weakly supervised

segmentation not only provides us with the methods to train models using limited

supervision, but also shows us great insight of what the minimum information the

model truly needs in order to get satisfactory results.

6.2 Future Work

We have presented some solutions to the issues stated, but the models are yet perfect

and some issues remain unresolved. We point out some future directions for these

two problems.

The issue of scene consistency has been discussed in Chapter 3 and the dense

multi-label module has been introduced to address this. However, there have been

better methods for semantic segmentation proposed since then that have achieved

remarkable results (such as Chen et al. [2017]). It is worth investigating the potential

of our module on these better models. From another angle, it is also important to

explore a more efficient structure of the module. Since the current implementation

involves several branches, which might bring high overhead when applied to real-

time systems.

There are also future directions for weakly supervised methods discussed in

Chapter 4 and 5. The method in Chapter 4 highly relies on the performance of co-

segmentation methods. Therefore, it is interesting to explore other co-segmentation

methods, or design a new co-segmentation method that is more suitable for our

particular setting and can be easily integrated into the whole system. For the bi-

directional framework presented Chapter 5, the whole pipeline is a little bit com-

plicated because of the multiple stages involved. There are also heuristics in the
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framework, such as the filter thresholds, GrabCut refinement parameters and mask

merging strategies. We are particular interested to have a cleaner and more ele-

gant framework. We have also noticed the step of GrabCut refinement is very time-

consuming because we have to sample many times for each image and there is not

gpu-accelerated version. It would be better either to integrate a gpu-version of Grab-

Cut refinement unit into the system or find other alternative methods to refine the

masks.
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