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Abstract 

Background 

Patient ventilator dyssynchrony is a physical characteristic of suboptimal interaction 

between patient and ventilator. Some primary clinical studies using neurally adjusted 

ventilatory assist compared to pressure support suggest it improves patient 

ventilator synchrony and reduces hospital mortality. With conflicting study outcomes, 

a systematic review of the effectiveness and safety of neutrally adjusted ventilatory 

assist is warranted. 

Objectives 

 
This systematic review aimed to evaluate the effectiveness of neutrally adjusted 

ventilatory assist (NAVA) compared to pressure support ventilation (PSV) in optimizing 

patient ventilator synchrony in critically ill adult patients in intensive care unit (ICU). 

Methods 

 
Seven databases ; the Cochrane Central Register of Controlled Trials, MEDLINE 

(PubMed), EMBASE, SCOPUS, ClinicalTrials.gov, Web of Science and CINAHL were 

searched using the following terms: neurally adjusted ventilatory assist, NAVA, neural 

trigger, interactive ventilatory support, respiration, artificial, mechanical ventilation, 

patient ventilator asynchrony, synchrony, asynchrony, dyssynchrony. The last search 

was conducted in April 2018. This review included studies that evaluated the use of 

NAVA compared with PSV in adult patients who required invasively mechanical 

ventilation. Outcomes of interest included the frequency of patient ventilator 

dyssynchrony (PVD) and mortality from all causes. The methodological 

quality of included studies was assessed, and the data were extracted by using 

standard forms. Standardized mean differences (SMDs) were calculated for 

continuous data and risk ratios for dichotomous data, both with 95% CIs. 
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Results 

 
A total of 1,078 articles were identified, for which 210 full text articles were reviewed. 

In total 17 studies met inclusion criteria. The outcome data were available for 

approximately 90% of participant (n=398). Neurally adjusted ventilatory assist 

significantly reduced the AI% by nearly one half of standard deviation; SMD 0.401, 

95% CI 0.223 to 0.57, p value 0.000 and I2 0.00% (fixed effect model; two RCTs,128 

participants). It was maintained in crossover study group 

; SMD 0.304, 95% CI: 0.079 to 0.528, p value 0.008 and I2 75.85% (random effects 

model, 13 crossover studies, 347 participants). The reduction of the AI% estimated 

effect size was found to be larger in a sedated group; SMD 0.413, 95% CI: 0.125 to 

0.702, p value 0.005 and I2 71.24% than a non-sedated group; SMD 0.225, 95% CI: - 

0.208 to 0.659, p value 0.308 and I2 86.76% (random effects model, 10 studies, 248 

participants). In addition, a higher reduction of AI% effect size was found in a treatment 

duration longer than an hour group; SMD 0.413, 95% CI:0.044 to 0.782, p value 0.028 

and I2 0.00% than a shorter than an hour group; SMD 0.287, 95% CI:0.069 to 0.505, 

p value 0.010 and I2 77.62% ( random effects model, 13 studies,301 participants). 

Similarly, in a 20- minute and longer PVD event-measurement time group found that 

NAVA reduced AI% more than in a shorter than 20-minute PVD event -measurement 

time group; SMD 0.389, 95% CI: 0.109 to 0.668, p value 0.006 and I2 0.00% and SMD 

0.267, 95% CI: 0.024 to 0.510, p value 0.031 and I2 82.18%, respectively ( random 

effects model, 13 studies, 301 participants). 

 

 
Neurally adjusted ventilatory assist was associated with a reduction of the risk of 

AI>10%; OR 0.688,95% CI:0.514  to  0.921,  p  value  0.012  and  I2   21.93%).  It 

significantly reduced the NeuroSync index; SMD 0.745, 95% CI:0.316 to 1.175, p 

value 0.001 and I2 0.00% (fixed effect model, two studies, 24 participants). In addition, 

patients in the NAVA group had a lower patient ventilator asynchrony % than in the 

PSV group in both two levels of assistance; NAVA-low and NAVA-high (Mean ± SD) 

7±2% and 7±2%; PSV-low and PSV-high 18±13% and 23±12%, respectively. Patient 

ventilated with NAVA had a lower ICU mortality compared to the PSV; OR 0.610, 95% 
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CI:0.263 to 1.418, p value 0.251 and I2 0.00% (fixed effect model, two RCTs, 153 

participants). 

 

 

Conclusion 

 
Neurally adjusted ventilatory assist is associated with a reduction of PVD frequency 

compared with PSV. However, effect on lowering the ICU mortality rate is uncertain. 
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Glossary 

 
ABG Arterial blood gas PAV Proportional Assisted 

Ventilation 
 

 ACV  Assist control ventilation  PBW  Predicted body weight  

AI  Asynchrony index PCV  Pressure control ventilation 
    

 

ARF  Acute respiratory failure PEEPe External positive end 

 
BIS 

  
Bispectral index 

   

PEEPi 

 expiratory pressure  

Intrinsic positive end 

expiratory pressure 
 

 CNS  Central nervous system  PPS Proportional Pressure 
Support™ 

CMV Control mechanical 
ventilation 

  

COPD Chronic obstructive 

 

PSV Pressure support 
ventilation 

  

PVI Patient ventilator 
      pulmonary disease     interaction  

Edi Electrical activity of 
diaphragm 

 

 ETS Expiratory trigger 

RASS Richmond Agitation and 
Sedation Scale 

  

sensitivity   RSS Ramsay Sedation Scale 

FiO2 Partial pressure of 
oxygen TA Trigger asynchrony 

   

IEE Ineffective inspiratory 

 

IMV 
  effort during expiration  

Invasive mechanical 
ventilation 

  VC  

 
VCV 

  Volume cycle  

 
Volume control ventilation 

ITI  Ineffective inspiratory 
trigger index 

 VIDD  Ventilator induced 
diaphragm 

ITS  Inspiratory trigger  VILI  Ventilator induced lung 
  sensitivity    injury 

CMA 
   

 Comprehensive Meta- 
 Analysis (software)  

  
 VT  

  
Tidal Volume 

PaO2  Partial pressure of     

  oxygen in arterial blood  µV  Microvolt 

Paw  Airway pressure     
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Chapter 1: Introduction 
 

1.1. Introduction 

 
Patient ventilator dyssynchrony (PVD) and suboptimal patient ventilator interaction are 

common in invasive mechanical ventilation (IMV).1-4 Patient ventilator dyssynchrony is 

associated with poor patient outcomes included wasted inspiratory effort,5 increased 

work of breathing,6 prolonged invasive mechanical ventilation 7,8 increased length of 

stay and higher mortality.7,9,10 It may also be a cause of adverse patient events 

including discomfort, dyspnoea, pain, panic and anxiety.11,12
 

 

 
Patient ventilator dyssynchrony is a physical characteristic of a suboptimal interaction 

between patient and ventilator. It can be defined as a mismatch between the patient 

and ventilator inspiratory and expiratory times or uncoupling of the mechanically 

delivered breath (ventilator) and neural respiratory effort (patient).13-15 Patient 

ventilator dyssynchrony can be identified and categorized into different waveform 

morphologies. Dyssynchrony characteristics reported in the literature include trigger 

asynchrony, ineffective effort or ineffective triggering or wasted effort, double 

triggering, auto triggering,16 flow asynchrony, premature inspiratory trigger (fast flow 

delivered), delayed inspiratory trigger (slow flow delivered), cycling off asynchrony, 

premature expiratory cycling off, delayed expiratory cycling off,17,18) and reverse 

triggering.19
 

 

 
There are multiple factors contributing to suboptimal patient ventilator interaction. Of 

these, mechanical ventilation modes that are used for ventilatory support patient play 

an important role. Neurally Adjusted Ventilatory Assist (NAVA) is one of many modes 

that has been shown to optimise patient ventilator synchrony (PVS) when ventilator 

parameters are adjusted to tailor to patient respiratory demands.9,10,20-23. Neurally 

Adjusted Ventilatory Assist uses an electrical activity diaphragm (Edi) to control the 

ventilator via a special catheter (Edi Catheter). This mode has been shown to be 

superior to pressure support ventilation (PSV) in reducing PVD24-26 and lowering 

mortality.9,10
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A preliminary literature search found primary studies have evaluated the efficacy of 

NAVA compared to standard conventional mechanical ventilation. To date, three 

homogenous parallel RCT studies evaluated AI% and AI>10%, mortality and other 

patient important outcomes have been published.9,10,27 This evidence suggests there 

is sufficient data to evaluate how effective NAVA is in optimizing patient ventilator 

synchrony, and what effect dyssynchrony has on patient outcomes when compared to 

standard conventional IMV (conventional mechanical ventilation is defined as PSV 

mode (see Appendix I: systematic review protocol)). 

 

This systematic review was conducted using The Joanna Briggs Institute (JBI) 

methodology for guidance.28-32 The guidance of JBI for conducting a systematic 

review of effectiveness research involves a rigorous analysis and synthesis of 

available evidence from a systematic and comprehensive search of literature, then 

summarizes the evidence, providing resources to health care professionals.33 This 

provides evidence-based information to policy makers and clinicians, and therefore 

improves clinical practice and health outcomes. The aim of this systematic review is 

to provide and expand knowledge in patient ventilator interaction, to inform clinicians 

in managing dyssynchrony in IMV patients and to meet the requirements of a Master 

of Clinical Science Degree. 

1.2. Structure of dissertation 

 
This dissertation is organised into 5 chapters. It includes: 

 
Chapter 1: Introduction: the first chapter describes the context of the systematic 

review including the review objective and questions, patient ventilator interaction, 

patient ventilator dyssynchrony classification, calculation of PVD frequency, and 

factors contributing to PVD and PVD associated patient outcomes. Current literature 

in the field is described, and evidence-based practice and evidence-based healthcare 

in patient ventilator management. 

 

Chapter 2: Background: The second chapter outlines indications for invasive 

mechanical ventilation, PSV and NAVA and measurement of treatment effects. 

 

Chapter 3: Methods: The third chapter describes the methodological process for this 
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systematic review contained within this thesis. It outlines the inclusion criteria for the 

systematic review. These include type of participants, interventions, comparators, 

outcomes and studies. This chapter also describes the systematic review 

methodology used for the search strategy: search method, search finding outcomes 

and assessment of methodological quality: critical appraisal step, data extraction and 

data synthesis. 

 

Chapter 4: Results: The fourth chapter presents the description of the included 

studies, search results, methodological quality results and overview of included 

studies. It outlines outcomes of interest and summary of review findings. The findings 

of the systematic review outcomes are outlined in the meta-analysis report of AI%, 

AI>10%, NeuroSync index, the narrative summary of patient ventilator asynchrony 

percentage (PVA%) and intensive care (ICU) mortality. 

 
Chapter 5: Discussion: The final chapter discusses the main finding outcomes from 

extracted data within the included studies in the context of existing literature to answer 

the review questions and identifies the limitations of the systematic review process. It 

describes implications for practice and research. 

 

 

1.3. Review objective/questions 

 

The objective of this systematic review was to systematically identify, appraise and 

synthesise the best available evidence on the safety and effectiveness of IMV in 

optimizing patient ventilator interaction by using NAVA compared with PSV in critically 

adult patients in ICUs. To evaluate the safety of NAVA is by analysing whether it 

causes higher PVD event and mortality rate. These IMV associated events are 

considered preventable. According to World Health Organization patient safety is 

defined as “the absence of preventable harm to a patient during the process of 

healthcare”.34 The specific questions this review sought to address were: 

Does NAVA influence patient ventilator synchrony measured by using AI%, 

NeuroSync index and PVA% compared to PSV among critically ill adult patients 

on IMV support in an intensive care environment? 
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What is the evidence of safety, related to use of NAVA, compared with PSV 

when used in critically ill adult patients in an intensive care environment? 

1.4. Patient ventilator interaction 

 
Mechanical ventilation is a respiratory function support used in the presence of acute 

respiratory failure when patient ventilatory capabilities are unable to adequately meet 

physical demands. Precipitating causes of respiratory inadequacy include acute 

respiratory failure, coma, chronic obstructive pulmonary disease (COPD) 

exacerbation, and neuromuscular diseases.35-37 The goals of mechanical ventilation 

support are to optimize gas exchange, improve patient comfort and reduce work of 

breathing.38 Furthermore, in spontaneous breathing with assisted IMV (defined as a 

patient breathing spontaneously to trigger and cycle off the ventilator, and the breath 

is assisted by the ventilator using either pressure control or volume control), the 

patient’s work of breathing should be supported adequately and synchronously with 

the activity of the patient’s intrinsic respiratory rhythm.15,39
 

 
 

Patient ventilator interaction is an interplay between two complex systems, the 

patient’s respiratory system that is driven by individual patient metabolic demand and 

a mechanical ventilator.40 With advanced microprocessor technology most ventilators 

are adjusted either by operators, or by artificial intelligence systems embedded into 

ventilators to optimize patient ventilator interaction.41-43 In the spontaneously breathing 

mechanically ventilated patient, the ventilator should deliver ventilatory assistance 

perfectly matched to the patient’s respiratory effort and sufficient unloading of the 

respiratory muscle work, and in responding to this the patient would breath 

synchronously with the ventilator.44 Important objectives of partial ventilatory assist are 

to respond efficiently to patient respiratory demands,45 to sufficiently unload respiratory 

muscle work,46,47 to avoid ventilator induced lung injury (VILI),48 and to prevent 

ventilator induced diaphragm dysfunction (VIDD).49-51
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Optimized patient ventilator interaction has been reported to improve important patient 

outcomes. The percentage of successful weaning was found to be higher in a group 

of patients who did not have patient ventilator triggered asynchrony (TA), and those 

who had a better patient ventilator interaction had shorter durations of IMV and lower 

tracheostomy and mortality rates.8,45 Suboptimal patient-ventilator interaction has 

been described as patient ventilator asynchrony (PVA),45 ineffective expiratory effort 

(IEE),7,52 PVD53 and TA.8 In this review, the term dyssynchrony “dys a prefix which 

means bad, difficult; GREEK” is used to define all terms that mean failure of synchrony 

between the patient and ventilator.54
 

1.5. Patient ventilator dyssynchrony classification 

 
Patient ventilator dyssynchrony can be identified and categorized by waveform 

morphology. It includes trigger asynchrony, ineffective effort or ineffective triggering, 

double triggering, auto triggering, flow asynchrony, premature inspiratory trigger (fast 

flow delivered), delayed inspiratory trigger (slow flow delivered), cycling off 

asynchrony, premature expiratory cycling off, delayed expiratory cycling off, and 

reverse triggering.38,45,55,56, 57-62
 

Studies have reported eight different types of patient ventilator interaction. The main 

dyssynchrony characteristics are type (i) to (iii). These eight patterns of dyssynchrony 

are defined as follows: 

 

(i) Ineffective triggering (IT) is also known as wasted efforts, and defined as one 

positive Edi deflection with or without airway pressure drops and not followed 

by an assisted breath, 45,16 or a deflection in airway pressure (Paw) 

corresponding to a decrease in expiratory flow not followed by either a 

ventilator cycle or an increase in inspiratory flow during a ventilator assisted 

breath.63 This is a type of suboptimal patient ventilator interaction when the 

ventilator fails to deliver inspiratory breath after the patient makes a neural 

inspiratory effort. 

(ii) Double triggering (DT) is defined as two assisted breaths delivered during a 

single positive Edi deflection or airway pressure drop,16,45 or characterized by 

the presence of two ventilator insufflations separated by a brief (i.e. less than 
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half of the average inspiratory time) expiratory time, in which only the first cycle 

was properly triggered by the patient.63
 

(iii)  Auto-triggering (AT) is defined as a mechanically delivered breath without an 

associated positive Edi deflection and without airway pressure drop,16 or a 

ventilator cycle without a preceding Paw deflection.63
 

(iv) Triggering delay/ inspiratory trigger delay is defined as the time difference 

between the onset of inspiratory effort and the beginning of ventilator 

pressurization.23,64
 

(v) Cycling delay is defined as the time difference between the end of neural 

inspiration and the ventilator inspiratory flow.65
 

(vi) Premature cycling is defined as an assisted breath with expiration starting 

before the end of patient’s effort as assessed by Edi (i.e. before Edi peak or 

right after it and/or with biphasic expiratory flow waveform).16
 

(vii) Short cycle is defined as a mechanical inspiratory time (Timech) less than one- 

half of the mean Timech.
64 

(viii) Prolonged cycle is defined as a mechanical inspiratory time greater than twice 

the mean Timech.
64 

The goals of patient ventilator interaction are to optimize PVS and to minimize PVD by 

setting and adjusting mechanical ventilatory assist parameters to effectively match 

patient intrinsic respiratory rhythm and demands simultaneously. In the partial 

mechanical ventilatory assist mode the breaths are initiated by the patient inspiratory 

effort. An interaction between patient and ventilator is sensed by the ventilator, which 

is called a trigger. There are two parts of the trigger that need to be set up by an 

operator in most modern ventilators. They are an inspiratory trigger (to initiate the 

inspiratory breath) and expiratory trigger (to end inspiratory breath or to initiate 

expiratory breath). In the pneumatic trigger system, the patient triggers the ventilator 

by generating the airflow or pressure. When the pressure or air flow reaches the 

trigger-threshold setting in the ventilator, which is called inspiratory trigger sensitivity 

(ITS), the ventilator delivers the breath. Breath delivery is achieved by targeting either 

a flow (flow targeted breath) or a pressure (pressure targeted breath). Similarly, when 

the flow or pressure is terminated, the expiratory trigger sensitivity (ETS) is reached 

and the ventilator ceases assisting breaths. However, in the neural trigger system in 
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NAVA, the inspiratory and expiratory breaths are triggered to initiate and terminate the 

assisting breaths by the patient’s neural inspiratory effort, which is measured from the 

Edi catheter. The neural inspiratory and expiratory trigger thresholds need to be set 

and adjusted to optimize PVS. The trigger threshold sensitivity is adjusted by the Edi 

value. Cycling off occurs when termination of inspiration and is achieved when a pre- 

set target (pressure or volume or time) has been delivered. In PSV, breath is 

terminated when the flow reaches a pre-set proportion of the peak flow, which is called 

the cycling off sensitivity/ETS. In NAVA, the ventilator cycles off when the Edi value 

drops to a pre-set ETS value.47,66 Pressure support and NAVA are pressure targeted 

and are always patient triggered. The speed at which the targeted pressure is reached 

is called the rise time.67 Various methods have been developed to capture a 

dyssynchrony event and to calculate it’s frequency. 

Figure 1 shows graphic waveforms illustrating the respiratory breathing cycle identified 

by pressure, flow and Edi waveforms, while figure 2 shows an ideal patient ventilator 

interaction (perfect patient ventilator synchrony). 
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Figure 1: Graphic waveforms of pressure, flow and Edi are used for visual 

inspection to detect patient ventilator dyssynchrony (adapted from Garcia- 

Munoz et al 2016).68
 

Edi-min: Electrical activity minimum value; Edi-max: Electrical activity maximum value 

/ peak value; nTi: neural inspiratory time; mTi: mechanical (ventilator) inspiratory time; 

PEEPe: external positive end expiratory pressure); Pmax: inspiratory airway pressure 

maximum / peak; Pressure (airway pressure- cmH2O); Tiex: inspiratory time in excess; 

TiTd: inspiratory trigger time delay 

1.6. Calculation of patient ventilator dyssynchrony 
frequency 

 
Patient ventilator dyssynchrony detection in this review is based on an objectively 

measured time mismatch between either airway flow or airway pressure (Paw) graphic 

waveforms to oesophageal pressure (Pes) waveform or Edi waveform. To calculate 

incidence of patient ventilator dyssynchrony, two main calculation methods were 

included, which are an asynchrony index 45 and NeuroSync index.25 The primary 

investigators of many synchrony related clinical trial studies frequently used the 

formula of Thille et al.45 In this formula the AI is calculated as follows: 

AI (expressed as percentage) = number of dyssynchrony events ÷ total respiratory rate 

(ventilator cycles + wasted effort) x 100. 

The total dyssynchrony events are measured in minutes or total duration of recording 

time during an intervention study period or during a control study period, or as reported 

by the investigator of the study, then it is reported as a percentage of total asynchrony 

events. 

 

 
The NeuroSync index is a percentage and detected by comparing the Edi and Paw 

timing dissociation. It is calculated by identifying the trigger error (PON-EdiON) and the 

cycle off error (POFF-EdiOFF) divided by the neural inspiratory detection period and 

number of neural expiratory detection periods X 100. An automated computer 

algorithm is used to capture and report these timing dissociations and the NeuroSync 

index is calculated by averaging the error for all breaths per minute per mode. A 
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complete dissociation between Edi and Paw, including wasted effort, auto triggering 

and double triggering are defined as a 100% error and asynchronous breaths. Breaths 

with absolute error of less than 33% are defined as synchronous, whereas breaths 

with absolute error more than 33% are defined as dyssynchronous breaths.25
 

 
 
 
 

Figure 2: Graphic of patient ventilator perfect synchrony (adapted from Sinderby 

et al)69
 

EAdi (Edi): electrical activity of diaphragm; Pv: ventilator pressure; PS: pressure 

support 

 

1.7. Factors contributing to patient ventilator dyssynchrony 

 
Patient ventilator dyssynchrony is highly prevalent. Seventy six percent of 36 patients 

in one study who had a variety of precipitating causes of acute respiratory failure were 

found to have ineffective effort. Their IMV days ranged from 15 to 50 days, and 55.5% 

of these patients had COPD.11 In other studies, the dyssynchrony event rate was 

reported as high as 87.9% in COPD patients in the respiratory care centre who were 

ventilated for more than 21 days.27 Moreover, in medical critical care patients’ 
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ineffective triggering was found in 85% of 20 IMV patients, and ineffective trigger 

events accounted for 88% of all dyssynchrony events.70 Patient ventilator 

dyssynchrony events are contributed to by numerous factors including patients,71 

ventilator modes,23 operators,63 level of assistance2,11,46 and measurement 

factors.27,72 Patient related factors include patient demographic characteristics and 

comorbidities.16
 

1.7.1. Patient factors 

 

Chao et al investigated 174 patients with prolonged IMV using a flow controlled, 

volume cycling mode. It was found that 10.9% of them had TA on initial assessment. 

Trigger asynchrony events were identified by detecting uncoupling of the patient's 

accessory respiratory muscle efforts and onset of ventilator breaths. Of this group, 

patients were significantly older, diagnosed with COPD, had a higher mean partial 

pressure of carbon dioxide (PaCO2) and a lower mean peak airway pressure 

compared to the group that had no TA.8 Similarly, Nava et al found that ineffective 

effort was higher in COPD patients than ARDS and post-surgical complication patients 

while ventilated with PSV.73
 

 
 

In a study to evaluate AI% in 10 ARDS patients with extremely low respiratory 

compliance undergoing extra corporeal oxygenation (ECMO), Mauri et al found that 

patients’ mean AI% ,measured by using Edi compared to flow tracing, was very high 

in all three study arms: PSV with ETS30%(103 ± 61), PSV with ETS1%(74 ± 43) and 

NAVA (20 ± 13).16 Duration of IMV also plays an important part in increased 

asynchrony incidence. In addition, sedative agents that effect conscious stages were 

found to induce poor patient ventilator interaction in PSV with flow trigger, in the study 

by Vaschetto et al. Patients under deep sedation had the highest ineffective triggering 

index (ITI) of 21.8% in patients who were ventilated with PSV, but no incidences of ITI 

were found in the NAVA group.26 Likewise, de Wit et al found deeper levels of sedation 

increased ITI in medical patients ventilated with synchronized intermittent mandatory 

ventilation (SIMV) mode with pressure support, PSV mode and PCV mode. The 

ineffective triggering index was 2% in awake patients compared to 11% in non-awake 

patients and as high as 15% in heavily sedated patients.70
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1.7.2. Ventilator factors 

 

Ventilator factors include manufacturer specifications. A study of modern ventilators 

used in the ICU reported that inspiratory delays differ significantly among 13 different 

ventilators, and delay times range from 75–149 milliseconds (ms) (p=0.03).74 Similar 

outcomes were found in testing of 13 modern ICU ventilators; four were turbine-based 

and nine were conventional servo-valve compressed-gas ventilators with a validated 

two-chamber Michigan test lung in PSV mode. Trigger delays in ms were found to 

have a significant difference between all ventilators, 58 ms range 42-88ms 

(p=0.0001).75 Other ventilator factors that can cause PVD include non-invasive 

positive pressure ventilation76-78 and heated humidification circuits.13,79
 

1.7.3. Clinician knowledge and skill factors 

 

Operator related factors may include knowledge and skills of clinicians and 

investigators who pre-set and adjust the ventilator and detection settings for PVD. 

These factors may contribute to suboptimal ventilator settings.45,61,80,81 Adjusting the 

ventilator setting, i.e. tidal volume target, levels of assistance/ pressure support,5,63,65 

ITS,13 external positive end expiratory pressure (PEEPe),6 and ETS,16 can also 

optimize PVS. Appropriate recognition, analysis and management of PVD also 

requires the knowledge, skills and appropriate tools to assess ventilator graphic 

waveforms. In a study to assess the ability of 10 expert and 10 non-expert ICU 

physicians in identifying patient ventilator dyssynchrony by using visual inspection 

method, three types of asynchrony (IT, DT and AT) from 43 reports of patients’ 

ventilator interaction graphic waveform. The flow, Paw and Edi ventilator graphic 

traces, were used. These patients were ventilated in PSV. It was found that specificity 

from breath by breath analysis by experts was significantly higher than non-experts at 

28%, (95% CI: 19-36) compared to 16% (95% CI: 9-23); p =0.03 respectively. In 

contrast, the non-expert performance specificity was higher than expert at 93% (95% 

CI: 85-97) and 88% (95% CI: 83-93) p=0.10 respectively. The positive predictive value 

of experts was lower compared to non- expert at 31% (95% CI: 24-42) and 32% (95% 

CI: 28-41) respectively, but not statistically significant with a p value of 0.77. However, 

the negative predictive value was slightly higher at 87% (95% CI: 85-88) compared to 
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non- expert at 86% (84-86) but was not a statistically significant difference with a p 

value of 0.10. 80 In contrast, one study found the number of dyssynchrony events 

visually inspected by two observers was highly correlated.45
 

1.7.4. Measurement factors 

 

Measurement modalities may contribute to detecting a prevalence of PVD, modalities 

of measurement including using graphic waveforms i.e. Paw, flow, Edi and Pes, and 

using different time durations i.e. intermittent manual inspection and automated real- 

time computerized measurements. 7,10,45,46,52,82-87 Kuo et al investigated patient 

ventilator asynchrony incidence rates before and after using an Edi catheter, Paw vs 

flow tracing compared to Paw vs Edi tracing. These were 60.6% vs 87.9%, p<0.001. 

Similarly, the numbers of dyssynchrony events (AI %) found to increase from 

7.4%±8.5% vs 13.2±13.5 %,( mean ± SD) after the Edi catheter was used.27 In 

addition, Mauri et al reported AIEdi% was higher than AI(Paw-flow)%, (data from personal 

communication, see Appendix IV), when used to identify PVD events in a crossover 

study of ARDS patients in NAVA group 20±3 and 16±9, and in PSV1(1% ETS) 74±43 

to 44±16 ( mean ± SD).16
 

 
 

In a study to validate mathematical algorithms, Better Care, it automatically detects 

ineffective respiratory efforts during expiration (IEE). The Better Care was used to 

detect IEE by evaluating flow and Edi traces. The Better Care identified IEE by using 

Edi tracing found to have a better specificity and positive predictive value but lower 

sensitivity (65.2% sensitivity, 99.3% specificity, 90.8% positive predictive value, 96.5% 

negative predictive value, and 73.9% Kappa index (95% CI:71.3%- 76.3%), compared 

to flow tracing (91.5% sensitivity, 91.7% specificity, 80.3% positive predictive value, 

96.7% negative predictive value and 79.7% Kappa index (95% CI:75.6% to 83.8%).52
 

 
 

The prevalence of PVD also varies with the time of day. The prevalence of AI is found 

to be highest between 6 am to 12 pm and the lowest from 12 am to 6 am, with median 

and interquartile range (IQR) of 2.14% (0.69-5.51) and 1.69 (0.47-4.78), respectively.7 

Patient  ventilator  dyssynchrony  events  are  globally  recognized  as  an  important 
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surrogate outcome when IMV is instituted to support patient’s respiratory function and 

demands. A high number of PVD events using AI>10% has been studied and found to 

associated with higher patient mortality and other negative patient outcomes.9,27
 

 

 
1.7.5. Patient ventilator dyssynchrony associated patient 

outcomes 

 

Invasive mechanical ventilation is a life support intervention that is commonly used in 

ICU. The use of IMV with PSV and other standard conventional mechanical ventilation 

modes in critical ill patients is increasing; a prospective international study in 349 ICUs 

from 23 countries identified that 25% of patient admitted to ICU were mechanically 

ventilated for more than 12 hours.88 However, a one day point prevalence of two 

studies, one in 55 ICUs in Australia and New Zealand, and another one in 83 ICUs in 

Poland, found that the numbers of patients mechanically ventilated is more than double 

that of an international study, at 58% and 73% respectively.35,89 The incidence of 

dyssynchrony associated with the use of IMV also appeared to increase when an Edi 

catheter was used to identify PVD events.27
 

 
 

Patient ventilator dyssynchrony is associated with suboptimal patient outcomes 

including longer duration of IMV, longer ICU and hospital length of stay, and less likely 

to be discharged home in a group of patients who had ITI>10%. 56 Similarly, a group 

of AI>10% patients had a longer duration of IMV, higher rate of tracheostomy,45 higher 

ICU and hospital mortality.7 Moreover, three RCT parallel studies reported the AI% in 

patients in a NAVA group were significantly lower than in a PSV group, mortality was 

also lower than in the PSV group.9,10,27 In addition, PVD may also be a cause of patient 

adverse events including discomfort, dyspnoea, pain, panic and anxiety.11,12
 

 
 

There have been reports of important patient outcomes associated with PVD with 

different ventilator parameter settings, modes, demographic characteristics and 

healthcare settings. A prospective cohort study of a group of 174 tracheostomized 

patients who were ventilated in a volume cycled (VC) mode with pressure trigger in a 
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regional weaning centre, reported that only three of 19 (16%) patients with inspiratory 

trigger asynchrony were successfully weaned from IMV after 70, 72 and 108 days. In 

contrast, 57% of patients who had undetected inspiratory trigger asynchrony were 

successfully weaned with a median IQR of 33 days (3-182).8 

 
 

Patients with AI >10% had similar intubation and tracheostomy rates, a trend toward a 

longer duration of IMV, and their ICU and hospital mortality rates were significantly 

higher than in patients who had AI <10%.7 In contrast, the mortality rate of 16 patients 

who had an ineffective trigger index (ITI) ≥10% was found to be not statistically 

different to a group of patients who had an ITI <10% among a cohort of 60 patients. 

However, ICU and hospital length of stay were reported to be longer when ITI was 

>10%.56
 

 

 
Similarly, an observational study was conducted to investigate PVD in 62 medical 

intensive care patients requiring IMV for more than 24 hours with a Ramsey Sedation 

Scale (RSS) median and IQR of 3 (2–5). Eighty-two percent of patients were ventilated 

on PSV mode and 18% were on assist-control ventilation (ACV). The investigators 

found that 24% of patients had an AI >10% and a median and IQR of 26% (18-31), 

respectively. Patients with AI >10% were found to have a longer duration of 

mechanical ventilation and were likely to be on IMV for more than seven days and be 

tracheostomized.45
 

 
 

In a study comparing NAVA to PSV, 25 patients who were ventilated with control 

mechanical ventilation (CMV) for at least 72 hours were randomly to be ventilated for 

48 hours with NAVA (13 patients) or PSV (12 patients). Patient ventilator interactions 

were visually detected offline from the pressure airway opening (PAO), flow and Edi 

digital records of the last 10 minutes of each 4-hour period (total 120 minutes). The AI 

was found to be higher in patients ventilated with PSV, who had a median and IQR of 

9.48 (6.38 – 21.73), than in patients ventilated with NAVA, having a median and IQR 

of 5.39 (3.78 – 8.36), p=0.04. Moreover, mortality was higher in the PSV group (25%) 



16  

 

compared to the NAVA group (23%). In contrast, the IMV day was similar (mean ± SD) 

5.1 ±1.3 versus 5.1 ± 1.7 days, respectively.10
 

 

 
There have been conflicting patient dyssynchrony-related outcomes reported in IMV 

studies. This systemic review aims to evaluate the effectiveness of PSV compared to 

NAVA in optimizing synchrony for better patient outcomes. 

 

 

1.8. Current literature on Neurally Adjusted Ventilatory 
Assist 

 
Since spontaneous breathing with assisted, pressure trigger IMV was introduced into 

clinical practice decades ago.90 The different modalities of trigger and sensing in the 

mechanical ventilator have been further developed to include flow triggers and flow 

shape/waveform triggers.56,91,92 With progressive advances in microprocessor and 

computer technology, subjective identification of patient ventilator interactions by 

detecting airway pressure, flow, volume and oesophageal pressure waveforms 

became feasible.73,93-96 The latest trigger modality, a neural trigger (using Edi), was 

invented and patent in 1995.97 It is being used in some clinical settings.1,98-103 NAVA 

is a mode that uses an Edi catheter to capture, filter and amplify the electrical activity 

of the diaphragm, then the modified Edi is used to trigger and cycle off mechanical 

ventilation. In addition, the Edi waveform also has been used to monitor patient 

ventilator interaction and to identify PVD.63,104,105 A growing body of clinical research 

concludes that NAVA is associated with optimal patient ventilator interaction by 

minimizing PVD when compared to PSV. It lowers AI,1,9,20,59,65,106-108 has less timing 

inspiratory trigger 109 and cycling off responses,1,10,64,65,109 and a lower NeuroSync 

index,25,110These PVD events are identified by either using a visual inspection of the 

respiratory graphic display waveforms compared between Paw and flow to Pes and/or 

to Edi, and using an automated computer analysis software. 

 

 
A search of the literature uncovered one review that analysed studies that used NAVA 

in children who were ventilatory supported with invasive and non-invasive NAVA.111
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However, there were no systematic reviews identified comparing the effectiveness and 

safety of NAVA with PSV in adult patients. Given the clinical impact of PVD, numerous 

studies have individually reported strategies to optimize PVD by managing patient 

ventilator interaction. This includes reduced discomfort, shorter length of stay, 

prevention of ventilator induced diaphragm dysfunction (VIDD), avoiding ventilator 

induced lung injury (VILI) and lowering mortality in critically ill patients and in prolonged 

IMV patients by using different modes of IMV, such as PSV, NAVA, PCV and ACV. 

Therefore, it is timely to compare the effectiveness of clinical application of NAVA to 

PSV mode in a systematic review, with the aim to assess the methodological quality 

of included studies and quantitively synthesize these results. There are similarities and 

differences to the ventilator modes that clinicians must be aware of to ascertain which 

method is most applicable based on the best quality of rigorous and transparent 

syntheses of available scientific evidence to support the practice. 

 

 
The protocol for the research conducted in this thesis was published and available 

online.112 However, this systematic review report presents a new revised systematic 

review protocol It was modified for appropriateness so as to meet the requirement of 

the Master of Clinical Science degree. The revised systematic review protocol is 

presented in Appendix I. This systematic review reports a statistical synthesis of data 

(meta-analysis) of finding outcomes including AI%, AI>10%, NeuroSync index and 

mortality, and in a narrative writing style of PVA%. 

1.8.1. Evidence based practice and evidence-based healthcare in 
patient ventilator management 

 

With evidence-based medicine, evidence-based healthcare and evidence-based 

practice becoming prominent, nurses and other clinicians are expected to use 

research evidence to support their decision making. Since the first Evidence-Based 

Guidelines for Weaning and Discontinuing Ventilatory Support* A Collective Task 

Force Facilitated by the American College of Chest Physicians; the American 

Association for Respiratory Care; and the American College of Critical Care Medicine’ 

was published in 2001, it has been cited more than 1,199 times to date.113 This 

evidence suggests that patient ventilator interaction and management in critically ill 
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A ventilator synchrony study using Edi graphic measurement was published in 2007,116
 

 

IMV patients are crucial and imperative in ICU practice. Moreover, the Cochrane 

collaboration continues to update a review of weaning adult patients in ICU setting, 

using a weaning protocol compared to not using weaning protocol/ usual care which 

was first published in 2014.114 The outcomes were that a total geometric mean duration 

of mechanical ventilation on average was reduced by 26% and that there was no 

difference in ICU and hospital mortality, using data synthesised from 14 studies. 

However, the authors did not report the weaning protocols using ventilator setting 

 
 
 
 

In searching for the best intervention for IMV patients in ICU who developed ARDS, 

The ARDS Network was established in 1994. The network has a goal to efficiently test 

promising agents, devices, or management strategies to improve the care of patients 

with ARDS. It has conducted 10 RCTs and one observational study and enrolled 5,527 

patients into the studies to date. The network provided validated tools for clinicians’ 

practice with ARDS patient groups. Its Clinical Network Mechanical Ventilation 

Protocol provided ventilator parameter settings, and patient goals (oxygenation, PH 

and plateau pressure goal) have been published. 115 Notably, optimization patient 

ventilator interaction by using PVS was not in the goals. 

 
 
 

Since then patient ventilator interaction (synchrony, asynchrony and dyssynchrony) 

has been studied extensively. Investigators have been using the PVD event index 

(AI%, IEE and NeuroSync index) as a surrogate patient outcome. However, to this 

authors’ knowledge the guideline and protocol for optimizing patient ventilator 

interaction/ synchrony has never been established. An overview of data from 17 

included studies in this systematic review found investigators used/ adjusted different 

ventilator parameters to optimize settings for a better synchrony based on 

investigators’ and ICU physicians’ knowledge and skill. To provide the best available 

evidence at the point of care, in the evidence synthesis of optimizing patient ventilator 

interaction by using the latest technology (Edi catheter/ NAVA) compared to PSV, the 

JBI systematic review process is used. This process follows five series of the 

parameters to optimize patient ventilator interaction by optimizing PVS.114
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 systematic review, step by step. In the systematic review there is an overview, 33
 

developing the review question and inclusion criteria,31 constructing a search strategy 

and searching for evidence, 28 study selection and critical appraisal,30 and data 

extraction and synthesis.29
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Chapter 2: Background  

This chapter discusses indications for IMV in adult patients, mechanical settings of 

PSV, NAVA and measurement of treatment effects. 

2.1. Indications for invasive mechanical ventilation 

Indication for IMV support are based on the patients’ clinical presentation and past 

medical history; biological parameters and pulmonary function evaluation are also 

required.118 Studies report that the most common indication to institute IMV is acute 

respiratory failure (ARF). A point prevalence study has found that 66% of patients who 

required intubation had ARF while other studies have found acute respiratory failure 

can be as high as 88.9% (a study of 55 ICUs in Australia and New Zealand). 117, 89 

Some studies also report that clinicians use risk of developing respiratory failure and 

clinical signs of respiratory distress as reasons to provide IMV support.118-120
 

 

2.2. Pressure support ventilation 

 
Pressure support ventilation is one of the most frequently used partial ventilatory 

support modes, as indicated by an international survey on mechanical ventilation 

across 361 ICUs in 20 countries published in 2002. Pressure support ventilation was 

used as a weaning process in almost 21% of patients.121
 

 
 

Pressure support is a partial ventilatory assist mode, which provides targeted pressure. 

The breath is patient triggered and the ventilator delivers a constant preset pressure. 

It allows the patient to initiate and terminate the breathing cycle. When the ventilator 

ITS threshold is reached, the preset targeted pressure support is provided breath-by- 

breath synchronously with patient respiratory effort. Inspiratory trigger sensitivity can 

be set as either a pressure trigger or a flow trigger. In addition, pressure support is 

maintained until the machine determines the end of expiration. The expiratory trigger 

sensitivity is based on declining inspiratory flow. As inspiratory flow falls below a 

cycling off threshold value (ETS level), such as between 2 to 6 L/min or 12 % or 25% 

of peak inspiratory flow, depending on the manufacturer’s algorithm, the ventilator 
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cycles to the expiratory phase releasing the pressure support and opening its 

expiratory port.122-124
 

 
Pressure support can be divided into three phases (i) recognition of the beginning of 

inspiration, (ii) pressurization provided, and (iii) recognition of the end of expiration.122 

The operator sets a level of pressure (targeted pressure) but not a flow setting, then 

when the patient initiates the spontaneous effort to reach the ITS threshold, the assist- 

targeted pressure is provided. The respiratory parameters that can be altered by the 

patient are respiratory frequency, inspiratory time, and tidal volume.125 Adjusting a 

preset pressure support by increased pressure level in PSV mode has been found to 

increase ineffective effort.46
 

 
Pressure support ventilation was found to relieve discomfort from IMV when compared 

with volume controlled continuous mandatory ventilation (VC-CMV). The mean 

comfort score of PSV was significantly higher than VC-CMV, which was 83 ± 11, 95% 

CI: 76.9-89.6 and 70 ±18 95% CI: 59.4-79.9, respectively.126 A systematic review 

compared PSV with T-tube during a spontaneous breathing trial (SBT) and found that 

PSV had a significantly higher rate of success in SBT (RR 1.09,95% CI:1.02 to 1.17, 

p=0.009), risk difference (RD) 0.07,95% CI:0.02 to 0.12, p=0.009, I2=0.000%, a pooled 

estimated size from four studies with moderate quality of evidence. Despite this 

positive outcomes in higher comfort score and rate of success in SBT, PSV 

demonstrated no difference in weaning success, ICU mortality, reintubation rate, ICU 

and long-term weaning unit length of stay, and adverse event (pneumonia).127 In 

addition, a mean cost of care in PSV was higher compared with proportional assist 

ventilation (PAV™),128 and PSV was less cost effective when compared to NAVA.128
 

 
 

 

2.3. Neurally Adjusted Ventilatory Assist (NAVA) 

Neurally Adjusted Ventilatory Assist is a relatively new mode of mechanical 

ventilation.129 The unique feature of NAVA is it uses the diaphragmatic electrical 

activity signal to control the ventilator. The electrical activity of the diaphragm is 

collected from electrodes placed on an orogastric catheter or nasogastric catheter. 
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During NAVA, positive pressure is applied to the airway opening in direct proportion to 

the Edi amplitude, so a pre-defined pressure or volume is not required. The catheter 

is placed in the esophagus at the level of gastro-esophageal junction such that the 

direction of the electrode array is perpendicular to the diaphragmatic fibers, illustrated 

in Figure 3. Neurally Adjusted Ventilatory Assist does not require measurement of 

respiratory system mechanics in sensing and responding to the patient respiratory 

demand.130 In Figure 4, a diagram of an ideal mechanical ventilation to optimize patient 

ventilator interaction is presented. 

 

Figure 3: Demographics of diaphragmatic activity in Neurally Adjusted 

Ventilatory Assist 

The electrical activity of the diaphragm (Edi) is derived by use of an array of electrodes 
mounted on a nasogastric tube, then signals from each electrode pair on the array are 
differentially amplified, filtered, and multiplied by a proportionality factor (NAVA level) 
before the signal is used to control the pressure generated by the ventilator Hence, 
with NAVA, the pressure delivered to the patient is synchronous and (virtually) 
instantaneously proportional to the patient’s Edi (adapted from Sinderby et al 1999 and 

Brander & Slutsky2015). 100,131
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Figure 4: Diagram of a neuro-mechanical coupling and control of the ventilator 
(adapted from Sinderby et al 1999 and Brander & Slutsky2015).100,131

 

 
The amplitude of Edi waveform has been shown to be related to global diaphragmatic 

activation.132 The Edi waveform represents the neural breathing pattern, such as 

neural inspiratory time, neural expiratory time and neural respiratory rate. It can be 

used to monitor patient ventilator interaction.46,104,133,134 It can also be used to quantify 

the ventilator response delay in an assisted breath by comparing to the airway 

pressure waveform, i.e. inspiratory trigger delay, premature cycling off and cycling off 

delay, and can be used to detect other types of asynchrony, such as ineffective 

triggering, auto triggering and double triggering.1,64,108
 

 
Neurally Adjusted Ventilatory Assist can be delivered by invasive and non-invasive 

interfaces in all patient ages. However, NAVA cannot be used if the Edi signal is 

absent, insertion of an orogastric or nasogastric catheter is contraindicated, or 

ventilatory parameters are unacceptable. Because NAVA uses the Edi to control the 

assist, the assist is mostly delivered in synchrony and in proportion to neural inspiratory 

efforts. To control the ventilator, the efficiency of pressure generation depends on the 

NAVA level, and the gain factor which controls the amount of pressure for a given Edi. 

When the Edi remains constant, an increase in the NAVA level only increases the 

ventilator’s relative contribution to the trans-pulmonary pressure.66
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Setting the trigger in the NAVA, the assist is triggered by the initial increase in Edi. The 

NAVA is triggered by a deflection in Edi, not an absolute level of Edi. There are two 

inspiratory trigger functions in NAVA. The first principal function is the Edi signal, which 

should precede the pneumatic trigger function. The second function, which is a default 

function, is an airway pressure signal and inspiratory flow signal. To avoid inspiratory 

occlusions during triggering, if pneumatic triggering occurs (before Edi triggering), a 

pressure of 2 cmH2O is delivered until the Edi appears. This event may occur when 

the filtering of the ECG or artifacts coincides with the beginning of the Edi, or the flow 

may be generated first by the inspiratory muscles. In this case, the ventilator is  

triggered by either change in Edi or flow, on a “first come, first served principle”.59,66
 

 
In NAVA, the ventilator delivers airway pressure in proportion to the Edi. The Edi signal 

is updated every 16 ms, and it is multiplied by a proportionality constant known as the 

NAVA level (gain), which is used to increase or decrease the assist. The level is 

available from 0 to 15 µV and can be adjusted in steps of 0.1 cmH2O/µV. The upper 

limits are applied during NAVA and can be adjusted; the default is 5 cmH2O below the 

dial in limit. To set the NAVA level the operator adjusts the proportionality between the 

voltage and airway pressure to achieve ventilation goals and optimal ventilatory 

parameters, including level of inspiratory pressure support, tidal volume and 

respiratory rate.67
 

 
Inspiratory cycling off in NAVA is set when the Edi drops to 70% of the highest Edi 

value (Edi-peak/Edi-max). When the Edi peak value is low, cycling off occurs at lower 

percentages. The breath cycles off anytime peak pressure exceeds the predicted 

NAVA pressure by 3 cmH2O. In the case of a long neural inspiration, there are time 

criteria for cycling off: 1.5 seconds in infants and 2.5 seconds in adults. Neurally 

Adjusted Ventilatory Assist may be considered a self-weaning mode, as when ARF 

improves the Edi amplitude decreases, and the airway pressure delivered will also 

decrease.66
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2.4. Measurement of the treatment effects 

 
Given the included studies are considered to have enough in common in their PICOs 

and study designs, a statistical approach for quantitative data synthesis was used. 

Meta-analysis is used to evaluate and summarize an overall effect size from two or 

more individual studies effect sizes (estimated as a weighted average effect size), the 

dispersion of effect size, the homogeneity/ heterogeneity of effect size (observed effect 

sizes) and the publication bias.135
 

 
 

The studies in this systematic review shared a similar population group, used similar 

intervention and were compared to a similar comparator. All studies also investigated 

head to head comparison of NAVA versus PSV and reported the PVD outcome 

measures in the same measurement instrument and scale, which measured AI%, 

NeuroSync index and ICU mortality. To calculate the indexes, the AI% group used a 

similar formula and in the NeuroSync index group used an identical formula. However, 

the included studies have two different study designs, the first group were RCTs (two 

studies), the second group were cohort crossover designs (15 studies). 

 

 
A crossover design study may raise a concern about a carry-over effect, which could 

modify a physiological effect that influences the patient responses to the subsequent 

intervention. In the included studies, the wash out period in each study was considered 

reasonable practice. According one study that evaluated the time necessary to 

stabilize respiratory mechanics after changing the ventilator setting to PSV mode in 

COPD patients, six to eight breaths is required to stabilize their values.136 This time 

required can be considered a minimum wash out period. According to Elbourne et al, 

if the parallel and crossover trials evaluate the same treatment (not discounting the 

possible presence of a carryover effect into consideration), and if the trial design is not 

based upon different therapeutic indications or clinical conditions which could alter the 

treatment effects, it is reasonable to combine parallel and crossover trials in a 

systematic review.137
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The studies included in this systematic review were characterised by clinical and 

methodological heterogeneity i.e. participant clinical characteristics, IMV setting 

strategies in each mode, group of investigators, study design, quality of the studies, 

the extent of participant withdrawal numbers, and other covariates that might be known 

or not known to be related to the size of the effect. Therefore, each study expects to 

be similar but not identical. The meta-analysis model that accounts for this variation is 

a random effects model as it assumes that the true effect varies between studies and 

are normally distributed.138 The random effects model of meta-analysis was used in 

the outcomes that have a greater number of studies, to statistically estimate the 

magnitude of individual study effect size and associated precision. For the outcomes 

that have a small number of studies i.e. the two RCTs that investigated AI% and 

mortality outcomes and two crossover cohort studies that investigated the NeuroSync 

index, the fixed effect model is recommended and considered appropriate. 139
 

 
Furthermore, a statistical test in meta-analysis that provides information about 

heterogeneity, which are a Q statistic test with a p value, I2, Tau squared (T2) and 

Tau were evaluated.135 When the heterogeneity of effect size presented in a moderate 

and high proportion of I2, a subgroup/moderator analysis was conducted. 

Methodological differences in study design (cohort crossover and RCT), treatment 

duration and treatment measurement-time were assessed and clinical differences that 

could possibly impact on the effect size were assessed i.e. patient levels of 

consciousness by evaluating sedation practice in each study (sedated and non- 

sedated study groups). Other possible covariates/ moderators were not evaluated 

because there was limited availability of data from the primary study studies. 

 
The following chapter, the systematic review method, outlines the inclusion criteria for 

the systematic review search strategy and assessment of methodological quality. 
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Chapter 3: Methods  
 

 

Review objective/questions 

 

As stated in Chapter One, the objective of this systematic review was to systematically 

review the best available evidence on the safety and effectiveness of NAVA compared 

with PSV in critically adult patients in ICUs. The safety and effectiveness are measured 

by less preventable harm or absence of preventable harm to the patients ( lower or 

absence of PVD frequency and mortality) from using the interventions.34
 

The specific questions this review sought to address were: 
 

• Does NAVA influence patient ventilator synchrony compare to PSV among 

critically ill adult patients on IMV support in an intensive care environment? 

• What is the evidence of safety (PVD frequency and mortality) related to use of 

NAVA compared with PSV when used in critically ill adult patients in an 

intensive care environment? 

 

 

3.1. Inclusion criteria 

 
3.1.1. Types of participants 

 
The review considered studies that included critically ill adult patients in all 

demographic groups with or without existing comorbidities, and with any cause of 

precipitating respiratory failure requiring partial assisted invasive mechanical 

ventilation via endotracheal or tracheostomized intubation in ICUs. 

3.1.2. Types of intervention and comparators 

 
The primary intervention of interest was NAVA with an optimal ventilatory support 

setting. If multiple levels of NAVA gain factor (level of assistance) were studied, they 

were defined as potentially suboptimal (low assistance), optimal (adequate assistance) 

and high (over assistance). The optimal setting of NAVA (examined by the authors and 
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as stated by the primary study authors) was considered and synthesized. If a study 

used only one group of setting parameters of NAVA and PSV, they are considered 

optimal settings in this regard. 

 

 
The comparator was a standard conventional mechanical ventilation, which is defined 

as PSV. The pressure support ventilation used different levels of ventilator setting 

parameters such as levels of pressure support assistance, levels of ITS, levels of ETS 

and level of PEEPe. They can be defined as suboptimal (low), adequate (optimal), and 

high (over-assistance). The optimal level is the level that showed the lowest PVD 

events (AI% and NeuroSync index or patient ventilator asynchrony %), or the primary 

study authors stated it is the optimal setting. The optimal levels are classified based 

on available scientific evidence in the literature according to the primary investigator’s 

reported data, and it is an arbitrary level. 

3.1.3. Type of outcomes 

 

The outcome measures for this review were modified from the original systematic 

review protocol.112 The new revised systematic review protocol is provided in Appendix 

I. The major change was to reduce the (very large) number of outcomes of interest 

(from 9 to 2) to enable the project to be completed within the available resources and 

timeframe. For methodological appropriateness and clinical meaningfulness PVD 

frequency measured by AI%, AI>10%, NeuroSync index and PVA% and mortality, 

were included. Outcome data was extracted based upon the following descriptions. 

1. Patient ventilator dyssynchrony frequency: It is detected by visual inspection of 

airway pressure, flow oesophageal pressure and Edi graphic waveform and by 

automated computer analysis of patient ventilator interaction. For calculation of 

dyssynchrony incidence by visual inspection of graphic waveforms, an 

asynchrony index formula was used45, and for PVA the PVA% formular was 

used.65 With automated computer analysis, the NeuroSync definition and 

calculation were used to identify and calculate the NeuroSync index.140
 

2. Mortality from all causes and from IMV related causes as reported by the 

primary study authors. 
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3.1.4. Types of studies 

 
 

This review considered experimental and observational studies that examined the 

effectiveness of NAVA compared to PSV. Experimental study designs, including 

randomized controlled trials, non-randomized controlled trials/quasi-experimental 

studies; cohort studies were also considered. 

 

3.2. Search strategy 

 
The search was conducted in accordance with the Joanna Briggs Institute (JBI) 

methodology guidelines for a systematic review assessing the effectiveness of an 

intervention and therapy.141 The suitability of the proposed review topic was 

determined by conducting a preliminary investigation of major electronic databases. 

Results of searches of the Joanna Briggs Institute Library of Systematic Review 

Protocols, the JBI Database of Systematic Reviews and Implementation Reports, 

Cochrane Database of Systematic Reviews, PubMed, PROSPERO and DARE 

databases showed that there had been no recently published systematic reviews on 

the same topic. 

3.2.1. Search method 

The search strategy was developed based upon a three-step process and was 

designed to find published and unpublished studies. No date restrictions were applied 

initially. An initial search of PubMed, EMBASE, and Cochrane CENTRAL was 

undertaken to identify keywords in titles and abstracts related to the PICO elements 

of the review questions. The initial keywords and terms included patient-ventilator 

interaction, patient ventilator asynchrony, Neurally Adjusted Ventilatory Assist, 

NAVA, invasive mechanical ventilation, artificial respiration and patient ventilator 

synchrony, asynchrony, and dyssynchrony. 

A second search of each database was then conducted utilizing all identified free text 

and database specific index terms (Appendix II), ensuring as comprehensive a 

search as possible. When searching, consideration was given to each databases’ 

unique indexing language to ensure all relevant indexing terms were identified. 
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Included in the search of international databases were clinical trial registries as well 

as the following international electronic databases: Cochrane (CENTRAL), CINAHL, 

Web of Science, EMBASE, PubMed and SCOPUS. A system alert for possible 

relevant new publications in each database was set by using their relevant indexing 

terms. 

A third search of databases was conducted to ensure that all relevant studies were 

identified and to finalize a comprehensive and up to date search. This final search 

was limited to the English language due to unavailability of translation resources. This 

search filter including the terms human and year 2007 were used in this step of 

database search. The reason for this is that the first human experimental study with 

NAVA was published in 2007.142 A final search was conducted to update the search 

to the 30th March 2018 for four databases including Cochrane, PubMed, ACOPUS 

and Clinical Trials registries and on the 6th of April 2018 for EMBASE. Details for the 

final databases searched are provided (Table 1). 

Using citations that were identified based on keywords in abstract and titles, full 

papers were retrieved and scanned to determine whether inclusion criteria had been 

met. Finally, to ensure that all relevant studies were identified, the reference list of 

retrieved papers was scanned and a full text of included and excluded studies’ 

reference list (1299 studies) also screened to identify any additional studies. 

Appendix II reports details of search strategies for each database and trial registry 

website. Results of database searching were managed using the bibliography 

software EndNote x8 (Thomson Reuters, USA, 2015).143 The EndNote library created 

was used to facilitate screening of titles and abstract of citation to assess eligibility 

for the review. 

3.2.2. Search results 

 

The Following table displays numbers of items found in each electronic database from 

a final search in which 1078 items were retrieved. 
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Table 1: Database searched, including search dates, filter limit, and frequency 
of items found 

 

Conducting Date 

 
 

 
30.03.2018 

 
 

06.04.2018 

 
 

30.03.2018 

 
 
 

 
www.ClinicalTrials.gov 

30.03.2018 
Completed studies, adult and senior 35 

 

 

 
3.3. Assessment of methodological quality 

 
3.3.1. Critical appraisal step 

 

Quantitative studies were independently assessed by two reviewers (AP and DC) for 

methodological quality and validity to ensure transparency and minimize risk of bias 

prior to inclusion into the review.30 The Joanna Briggs Institute critical appraisal tools 

designed to assess the internal validity and methodological quality of the studies were 

used to allow consideration of the extent to which each study had addressed the 

likelihood of bias in the study design, conduct and analysis. The two parallel RCT 

studies were assessed against the Checklist for Randomized Controlled Trials and 15 

crossover studies were assessed using the Checklist for Cohort Studies (see Appendix 

III). 

The critical appraisal step employed the JBI checklist for randomized controlled trials. 

It consists of 13 quality assurance questions that could be answered ‘Yes’, ‘No’, 

‘Unclear (U)’ or ‘Not applicable (NA)’. The checklist for cohort studies consists of 11 

reference reading 

1 
study (see Appendix II) each database and 

As per each database used 
Additional Resources 

Electronic database alert from 

Databases and Search 
Filters and limits

 
 

Item(s) found 

Cochrane 

(CENTRAL) 
Trial 

 

 
95 

EMBASE 
No limit or filter 

 
285 

MEDLINE (PubMed) 
No limit/ filter 

 
382 

SCOPUS Date 2007 to Present (30.03.2018), subject area,  

humans,    English    journal,  humans,   journal, 280 
30.03.2018 access type (open and others) 

 

http://www.clinicaltrials.gov/
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quality assurance questions. Quality criteria were developed around each of the 

appraisal questions to ensure consistency and transparency in interpretation between 

reviewers. A ‘Yes’ answer deemed that the study met the requirements of question, a 

‘No’ meant it did not meet the requirements, an ‘Unclear’ indicated that insufficient 

study information had been provided to enable a conclusive decision about the 

inclusion, and a ‘Not applicable’ indicated non-discernible to assess by means of a 

reliable objective or subjective measurement tool. ‘Yes’ and ‘Not applicable’ answers 

were allocated a score of ‘1’ while ‘No’, ‘Unclear’ were scored ‘0’. The explanation for 

given each answer provided in Appendix IV. 

Tables 4 and 5 provide the critical appraisal scores of 17 included studies in question 

11 for a cohort crossover study and question 12 for an RCT, which relate to the 

statistical analysis used. All studies were given a score of 1 in the critical appraisal 

assessment of statistical analysis questions. 

Statistical analysis of included studies 

Overall, the 17 included studies used appropriate statistical test models including 

normality tests, nonspecific null hypothesis tests, post hoc analysis and procedures for 

reducing family wise error rates and false discovery rates. The following is an overview 

of statistical procedures/tests that the included studies used to statistically analysed 

the outcomes that met systematic review outcomes. 

Normality distribution test 
 

Six included studies reported a normality assumption test with three models that 

included the Shapiro-Wilks test, Kolmogorov Smirnov test and D’Agostino test.144-146 

The Shapiro-Wilks test was used by one crossover study;147 the Kolmogorov Smirnov 

test was used by four crossover studies;1,20,148,149 and the D’Agostino test was used by 

one RCT.10 In this group of studies, one crossover study provided AI% in median and 

IQRs) and the number of patients had AI>10%, but a statistical analysis was not 

performed for difference in these two outcomes.106 In practice, the normality test was 

advised to be performed after a visual method test was done. The visual method 

included visual analysis of the frequency distribution (histogram), stem- and- leaf plot, 

boxplot and P-P plot etc.146 The normality test is performed to provide the next step of 

an appropriate analysis model. 
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(i) Non-specific null hypothesis test 

• A χ2 test is to be used with any number of variables to determine an association 

between two categorical variables. There are four assumptions needing to be 

satisfied: to be able to use this model samples must be independent, 

participants in each group have been randomly and independently selected, the 

classification categories in the distribution are mutually exclusive and 

exhaustive, and the sample size is reasonably large.150 The study by Demoule 

et al 2016 used the χ2 test, as they considered the four assumptions were met, 

to evaluate an association between modes and mortality.109
 

• An analysis of variance (ANOVA) is used for normally distributed data. In this 

case, Two-way ANOVA with repeated measures was used with study phase as 

with-in subject and between subject factors ( Mauri et al 2013: NAVA, PSV1%, 

PSV30%).16 Two-way ANOVA with repeated measures also used to compare 

variables between two modes and the two levels of assist ( Spahija et al 2010: 

NAVA-low, NAVA-high, PSV-low, PSV-high).65 Two way ANOVA was used to 

compare each variable dataset ( Terzi et al 2010: NAVA and PSV level 100, 

120,140 and 160).2 These studies satisfied criteria of the Two-way ANOVA 

repeated measures as the participants are the same in each group (crossover), 

participants were measured multiple times in each group and participants were 

subjected to more than one condition. 

• As an alternative to ANOVA for non-parametric test with repeated measures, 

the Friedmann test was used by six studies,21,46,140,149,151,152 to evaluate the 

difference between groups for matched datasets.153 All studies evaluate two 

modes with multiple factors measured at different times except one crossover 

study evaluated three modes.154
 

• As an alternative to ANOVA for non-parametric test with repeated measures, 

the Friedmann test was used by six studies,21,46,140,149,151,152 to evaluate the 

difference between groups for matched datasets.153 All studies evaluate two 

modes with multiple factors measured at different times except one crossover 

study evaluated three modes.154
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(ii) Post hoc analysis 

When a non-directional hypothesis test reported that the null hypothesis is rejected, a 

post hoc analysis for each study was conducted. In one study, a mixed model analysis 

was used for repeated measures on each subject over time to evaluate an interaction 

between modes and levels of assistance after a two-way ANOVA was performed, and 

the null hypothesis was rejected. Each mode used 4 levels of assistance evaluated 

(NAVA-Edi, NAVA-IF, PSV). The AI % of each mode was reported in a graphic 

display.155
 

• The Wilcoxson signed rank test or Mann-Whitney test are basically the same. 

Both are used to compare two repeated measures in non-parametric data. The 

data required to meet four assumptions include dependent variable measures 

in the ordinal or continuous level, consisting of two categorical independent 

groups, the two samples have to be independent on observations of cases and 

a non-parametric distribution.156 Five crossover studies used the Wilcoxon 

signed rank test to perform a post hoc pairwise comparison.20,21,24,46,152 All 

studies investigated two modes (categorical data) and to meet the Wilcoxon 

signed rank test assumptions, they reported AI% (continuous data) and AI>10% 

(dichotomous data), except one study reported only AI%;148 consisted of two 

categorical independent groups (NAVA vs PSV); had dependent observations 

(pre and post measurements); and had non-parametric data (reported median, 

IQR). 

• The Mann-Whitney U test is sometimes called Wilcoxon Mann Whitney U test. 

It is used to compare two-separate unrelated (independent) groups and is a 

nonparametric alternative to a two-sample t-test.157 Two of the included RCT 

studies used this test to evaluated continuous independent variables (AI% and 

mortality).10,109
 

• The Student-Neuman-Keuls test was used to perform pairwise comparison and 

step wise approach in three studies to identify significant difference.1,65,140
 

• Dunn’s test was used in one crossover study to evaluate difference between 

modes in multiple comparisons, and it reported a NeuroSync index in three 

modes.151
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• The Tukey test is used to identify where differences lie in multiple comparisons 

and to keep family wise error down.158 One crossover study used the Tukey test 

for multiple comparisons to identify those differences which compared two 

modes with two conditions in PSV and reported AI% (Mean ± SD) when the 

Tukey test assumptions were met.16
 

 
(iii) Categorical variable statistical analysis 

For analysis of categorical variables, two studies used a non-parametric test as 

following. 

• The McNemar’s test is used to identify whether there are any differences 

between a dichotomous variable between two related group (paired data).153 It 

was used by one crossover study to evaluate AI>10% in the study of two modes 

of ventilators with five factors of study in each mode.148
 

• Fisher’s exact test is a non-parametric test used when χ2 assumptions are not 

satisfied. It is used to evaluate an association and difference in two categorical 

variables.153 Two crossover studies used it to analyse the number of participant 

that AI>10%.22,152
 

 
(iv) Family wise error rate/ false discovery rate 

 

To control the family wise error rate in multiple comparisons, different studies used 

different procedures. The Bonferroni adjustment/ correction was used in two crossover 

studies 151,152 and p values adjusted according. To prevent over estimation of statistical 

significance in a small data set, Yate’s correction was used in one crossover study.20 

It is used after a χ2 test is performed to evaluate an associations between two 

dichotomous variables (AI>10% in two modes).159 In addition, Benjamini Hochberg 

was used by one crossover study to control false discovery rate.160 A descriptive 

overview of statistical analysis is provided in Appendix VII. 

Any disagreement that arose between the reviewers was resolved through 

consultation with the third reviewer (CL). Given there were limited studies that 

evaluated PVD frequency, a low threshold for methodological quality was used to 

include 15 cohort crossover studies into the review. All 15 studies scored 11 / 11 from 



36  

 

using the JBI critical appraisal cohort study checklist tool. There were two RCTs 

included in this review. The critical appraisal score of these two studies were 8/13 and 

11/13, which was considered moderate to high quality. The following Table presents 

outcomes measured from each study that reported the systematic review outcomes. 

 
Table 2: Studies by review outcome measures 

 
 

AI% Ferreira 2017,  Beloncle 2017,  Di  mussi  2016,  Demoule 2016,  Carteaux 2015, 
Schmidt 2015, Yonis 2016, Vaschetto 2014, Mauri 2013, Patroniti 2012, Piquilloud 
2011, Terzi 2010, Colombo 2008 

 

 

NeuroSync index Doorduin 2015, Liu 2015 

 
 

Mortality Di mussi 2016, Demoule 2016 
 

 

 

3.3.2. Data extraction 

 

Descriptive and outcome data was extracted from the included studies using the 

standardized data extraction tool from the JBI MAStARI presented in Appendix IV. The 

data extracted included specific details of intervention (NAVA) and comparators (PSV). 

These parameters include ventilator setting parameters that may cause PVD, i.e. 

levels of assistance, PEEPe, ETS, ITS, study dependent variable, constant variable 

setting, identical settings, NAVA gain and PS level (Appendix V). Data of demographic 

characteristics of included studies in the review are presented in Table 6, and 

demographic characteristics of participants in included studies presented in Appendix 

VI. A request for additional data was made to corresponding authors of the RCTs and 

the information requested was provided. Data provided by the study authors are 

detailed in Appendix VII.2,4,25,59,65,109,148
 

 

Outcome Measures Study 

Ferreira 2017, Beloncle 2017, Costa 2017, Carteaux 2015, Yonis 2015, Schmidt 
2015, Vaschetto 2014, Patroniti 2012, Piquilloud 2011, Colombo 2008 

AI>10% 

 

PVA% Spahija 2010 
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3.3.3. Data synthesis 

 

Most included studies used the PVD calculation by Thille et al, 2006, p.1517.45 Two 

studies used the NeuroSync index .140,151 and one study used patient ventilator 

asynchrony %.65 Of the 14 studies that used the Thille at al formula to calculate AI%, 

three studies identified AT, DT and IT;20,149,152 two studies identified DT and IT;2,147 

the other four studies identified AT, DT, IT and premature cycling.1,10,16,46 However of 

these four studies, two studies also identified cycling off delay/ delay cycling.10,46 

Considering there were two or more studies that measured PVD events by identifying 

similar defined dyssynchrony events and measurement scale, and two RCTs 

investigated mortality outcomes, pooling data for statistical meta-analysis using 

Comprehensive Meta-Analysis software (CMA) was considered appropriate and 

clinically meaningful. Therefore, the finding of AI% and AI>10% were meta-analytic in 

a random effects model when the number of studies is more than two. In the random 

effects model, it assumes that the true effect size varies, and the summary of effect 

size is an estimation of the mean of the distribution of effect sizes. The NeuroSync 

index in two crossover studies, the AI% and ICU mortality in two RCTs were meta- 

analytic in a fixed effects model. Under the fixed effect meta-analysis, it is assumed 

that all studies have one true (common) effect size, and all observed dispersion 

indicates sampling error. Meta-analysis is used to compute a summary effect. The Z 

statistic test is used to test for significance tests of the weight average effect size. The 

null hypothesis for the difference is zero (that d is 0.0), and for the ratio is one. The p 

value is less than 0.05 when 95% CI does not include the null hypothesis.161 The 

patient ventilator asynchrony percentage was written in a narrative summary. 

• Meta-analysis method 

Sixteen studies presented data suitable for inclusion into meta-analysis (13 studies for 

AI%, 10 studies for AI>10%, two studies for NeuroSync index and two studies for 

mortality). One study was reported in narrative format as it was not able to be combined 

in meta-analysis. Of those studies reporting AI% and AI>10%, 10 studies reported both 

index outcomes. Required data were provided by seven study authors (Appendix VII) 

and required paired comparison p values were calculated for seven studies (Appendix 

X). MedCalc Software was used to calculate significance values for the studies that 
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did not report p values.162 The prediction interval was calculated using Excel program, 

with a formula from the CMA Software.163
 

When the studies reported the continuous outcome (AI %) in median and IQR, the 

numbers were approximately estimated to be mean ± SD by using formulas 

   and which were recommended by Wan et al 

2014,when ‘q1’ is the first quartile, ‘q3’ is the third quartile, ‘m’ is median, and ‘n’ is the 

sample size are available.164 The first formula is from wan et al 2014 (p. 6) estimation, 

and the second formula was recommended by the Cochrane Handbook;165 Outcome 

data extraction and calculation details are provided in Appendix X. 

For pooled estimation of overall effect size in continuous outcomes, the difference in 

means, 95% CI and the standard error of the difference were calculated, and for 

dichotomous data, the treatment effects were reported in odds ratios (OR) and 95% 

CIs. The computational meta-analysis of continuous data is performed by using 

standardized mean difference (SMD) which is an unbiased effect size parameter, 

Hedges’ g.161 Hedges’ g is used because it is recommended to use in less well-known 

measurement and when the different studies use different instruments to assess the 

outcomes. In this case, the measurement and calculation of AI% in each study used a 

few (two to five) of seven defined patient ventilator asynchrony characteristics (see 

Table 6), so it can be stated that included studies used the same measurement index 

but calculated differently. Therefore, it is more meaningful to use the standardised 

mean differences in estimating the summary of effect sizes. The Q hypothesis is ‘all 

studies share a common effect size’. Of any observed Q with a conventional alpha set 

0.05, if the p value less than set alpha, the null hypothesis is rejected. Prediction 

intervals were calculated in meta-analysis that used a random effects analysis. When 

p value of Q statistic test is significant, the prediction intervals were calculated. These 

numbers shows how the true effects are distributed around the mean effect size.161
 

Chapter 4 outlines the results, which includes description of the search results, 

included studies, mythological quality, and provides an overview of included studies, 

study characteristics, intervention types, outcome measures and methodology of 

measurement and outcome of interest. The summary of systematic review findings is 

presented in the final section. 
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Chapter 4: Results  
 

4.1. Description of the included studies 

 
Seventeen studies were included in this review. These are described in Table 6. Each 

individual study involved a sample size of 10 to 128 patients. A total number of 398 

patients were recruited. Of these, 46 patients were unable to complete the study that 

measure AI% (38 patients in RCTs and eight patients in crossover studies). These 

eight patients were excluded from the studies that measured both AI% and AI>10% in 

crossover studies, and 38 patients were excluded from the RCT studies that measured 

AI%. Thirteen patients were withdrawn from the study that reported the ICU mortality. 

Three hundred and fifty-two patients from 17 included studies provided 576 datasets 

which were evaluated and synthesized for PVD frequency. One hundred and fifty- 

three datasets from two RCTs were evaluated for ICU mortality. Only one study factor/ 

condition (level of assistance, ETS, NAVA gain, PS level and PEEPe) that provided 

the lowest PVD frequency (lowest AI%, lowest AI>10% event and lowest NeuroSync 

index) from intervention and comparator in each included study was considered for 

inclusion in the data synthesis, and missing datasets that the primary study authors 

did not report were not included. 

Data synthesis for mortality was performed in 153 participants from two parallel RCTs. 

Of these two RCTs, one study stated that the outcomes were analysed with intention 

to treat (ITT).109 To resolve the 25 missing datasets, the investigators performed a 

simulation by using a predictive mean matching method and reported a mortality 

outcome identified in 128 patients (NAVA; n=62 and PSV; n=66). The AI% was 

reported in 103 datasets (NAVA; n=53, PSV; n=50). The other eight missing datasets 

were from six crossover studies. Reasons for excluded patients from the primary 

studies are provided in the following table, Table 3. 



40  

 

Table 3: Reasons for exclusion participants from the primary study 

 
Di mussi 

(2016)10
 

 
 
 

Demoule 

(2017)109
 

Seven out of 20 patients did not complete 
the protocol according to the decision of 
attending physician. Two patients lost Edi- 
pneumatic synchrony, and five patients had 
the Edi signal persistently lower than the Edi 
trigger threshold. 

For technical reasons ventilator data 
collection failed in four patients. 

Six out of 18 patients did not complete the protocol 
due to the decision of the attending physician. Two 
patients had persistently high respiratory rate, and 
four patients had a persistently low respiratory rate. 

 

 
For technical reasons, ventilator data collection 
failed in six patients. 

Patroniti 

(2012)147
 

Vaschetto 

(2014)152
 

Piquilloud 

(2011)1
 

Colombo 

(2008)22
 

One patient was excluded from the analysis because unable to tolerate NAVA level 3, 4 and 5 
cmH2O/µV and PS 16 cmH2O. 

Two patients dropped out, one had hypotension and one was agitated. 

 
Three patients were excluded, one patient had neuromuscular disease, and two patients had un- 
normalized Edi during PSV. 

Two patients were excluded because of Paw-peak > 40 cmH2O during NAVA 150% (NAVA-high 
assistance). 

 
 

4.2. Search results 

 
A first comprehensive search of electronic databases followed the outline search 

strategies documented in Appendix II. The initial search of seven databases 

(Cochrane: CENTRAL, CINAHL, EMBASE, MEDLINE: PubMed, SCOPUS, Web of 

Science and ClinicalTrials.gov on 31st of May 2015 found 687 articles, and an email 

alert from six databases were set post initial search to receive potential relevant 

studies. All abstracts and available full texts of these articles were screened and 

assessed for eligibility. The potentially relevant study references were also screened 

from eight crossover studies,1,2,16,22,23,26,65,147 which met PICO criteria and investigated 

PVD. The email system alert provided the author possible relevant studies being 

published. It identified identical published studies that provided by the final database 

search. a further nine studies in addition to those from the initial comprehensive search 

met inclusion criteria .9,10,20,21,24,25,46,140,148 The final comprehensive search, conducted 

on the 30th March 2018 in Cochrane: CENTRAL, EMBASE, MEDLINE: PubMed, 

SCOPUS, and ClinicalTrials.gov and in EMBASE on the 6th April 2018, retrieved 1,077 

potentially relevant articles/studies, plus an additional study from reference 

screening140  (Figure 5).   Six hundred and twenty-one articles were screened after 

PSV 

Reasons for dropout 
 

NAVA 

Study 
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duplicates were removed. Four hundred and eleven studies were excluded based on 

review of titles and abstracts, and 210 studies with full texts were assessed for 

eligibility. A further 193 studies were excluded as they did not meet the inclusion 

criteria. Seventeen studies were analysed for methodology quality as per the revised 

systematic review protocol and included in the review, and all were subsequently 

included in the systematic review. The following PRISMA diagram outlines the study 

selection process of the final search. 

 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 

 

 
 

 

 

 
Figure 5: PRISMA flow diagram outlines of study selection and inclusion 
process.166

 

Records identified through 
database searching (n = 1077) 

Additional records idenfied 
through other sources (n = 1) 

Full-text articles excluded, 
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Studies included in 
narrative synthesis (n=1) 

Studies included in meta- 
analysis (n=16) 
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4.3. Methodological quality results 

 
The cohort studies included in this review were rated as moderate quality, and the 

randomised controlled studies were rated as moderate to high quality as per 

critical appraisal checklist tool.167 The appraisal scores of the 17 included studies are 

presented in Table 4 and Table 5. 

 

Table 4: Critical appraisal score for randomized controlled trials meeting eligibly 
criteria as per systematic review protocol 

 

 
Study Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Total 

Di mussi U 

(2016)10
 

U Y U U U Y Y Y Y Y Y Y 8/13 

Demoule Y Y Y U N Y Y Y Y Y Y Y Y 11/13 

(2016)109
 

 
 

Table 4 in the study by Di mussi et al 2016, it was unclear in the randomised method 

and the concealment allocation method and overall blinding. Question 1, 2, 4, 5 and 6 

were marked as unclear because there was no description of the required details 

reported. Similarly, there was no details given whether participants were blinded to 

the treatment assignment (Q4) in the study by Demoule et al 2016. 

 
Table 5: Critical appraisal score for cohort studies meeting eligibly criteria as 
per systematic review protocol 

 
 

Study 
 

Q1 
 

Q2 
 

Q3 
 

Q4 
 

Q5 
 

Q6 
 

Q7 
 

Q8 
 

Q9 
 

Q10 
 

Q11 
 

Total 

Beloncle (2017)21
 Y Y Y Y Y NA Y Y Y NA Y 11/11 

Ferreira (2017)24
 Y Y Y Y Y NA Y Y Y NA Y 11/11 

Costa (2017)148
 Y Y Y Y Y NA Y Y Y NA Y 11/11 

Carteaux (2016)46
 Y Y Y Y Y NA Y Y Y NA Y 11/11 

Schmidt (2015)149
 Y Y Y Y Y NA Y Y Y Y Y 11/11 

Yonis (2015)20
 Y Y Y Y Y NA Y Y Y NA Y 11/11 

Liu (2015)140
 y Y Y Y Y NA Y Y Y NA Y 11/11 

Doorduin (2015)151
 Y Y Y Y Y NA Y Y Y Y Y 11/11 

Vaschetto (2014)152
 Y Y Y Y Y NA Y Y Y Y Y 11/11 

Mauri (2012)16
 Y Y Y Y Y NA Y Y Y NA Y 11/11 
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Table 5: Critical appraisal score for cohort studies meeting eligibly criteria as 
per systematic review protocol 

 
 

Study 
 

Q1 
 

Q2 
 

Q3 
 

Q4 
 

Q5 
 

Q6 
 

Q7 
 

Q8 
 

Q9 
 

Q10 
 

Q11 
 

Total 

Patroniti (2012)147
 Y Y Y Y Y NA Y Y Y Y Y 11/11 

Piquilloud (2011)1
 Y Y Y Y Y NA Y Y Y Y Y 11/11 

Terzi (2010)2
 Y Y Y Y Y NA Y Y Y NA Y 11/11 

Colombo (2008)22
 Y Y Y Y Y NA Y Y Y Y Y 11/11 

Q= question= yes, N=no, U = unclear and NA= not applicable. For each yes and NA 

1 point accrues. 

Table 5 in question 6 the score was given one mark because it could be considered 

that the question may be irrelevant with this group of patients who required this life 

support equipment and may not be applicable to the study design. To the author’s 

knowledge there is no mode of ventilator has been justified and provided support to 

patient with perfect synchrony. For question 10 if there was no drop out in question 

nine, this question was considered not applicable. However, when there was a drop 

out, the authors simply excluded the patients from the studies or excluded the patient 

data from analysis. 

Finally, 17 studies met the systematic review protocol criteria for inclusion. These 17 

studies were assessed and appraised for methodological quality by two authors (AP 

and DC). All studies were included. 

 

4.4. Overview of included studies 

 
Studies were conducted on four continents: 13 studies in 24 ICUs of 14 European 

countries; France 2,20,46,109,149 Italy 10,16,22,147,148,152 Netherlands;151 Switzerland and 

Belgium); 1 two studies in North America from Canada 21,65 one study from South 

America from Brazil 24 and one study from Asia, China 140 The studies were conducted 

in 28 ICUs, one study was conducted in 11 ICUs (six medical ICUs,109 four medical 

and surgical ICUs and one surgical ICU did not specify the sites were a university 

setting), and one study conducted in two ICUs (both in medical surgical ICU),1 other 

15 studies were conducted in a single ICU. Of these 28 ICUs, that were reported 

participants were recruited from a variety of ICU including 10 university ICUs, 15 
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medical ICUs, nine medical/surgical ICUs, two general ICUs, one surgical ICU and 

one trauma/ medical/ surgical ICU. 

Of these primary studies, the authors examined PVD frequency in a group with 

different aetiologies of ARF that identified as ARDS patients ,2,16,151 COPD 

patients,1,140 and the other 12 groups were a mixture of medical/surgical, trauma/ 

medical/ surgical and surgical patients. An overview of the 17 included studies 

characteristics is provided in Table 6. 

4.4.1. Study characteristics 

 

Of the 17 included studies, 15 were cohort crossover studies, and two were RCTs. A 

total of 13 studies investigated AI% (two RCTs and 11 crossover studies) and 10 

crossover studies investigated AI>10% (Table 6). Of the 17 studies, nine studies 

investigated both AI% and AI>10%, four studies investigated only AI%, one study 

investigated only AI>10%, two studies investigated NeuroSync index, and one study 

investigated PVA%. Two parallel RCTs from 17 included studies investigated AI% and 

mortality. Fourteen studies used the Thille et al 2006 formula as reference to calculate 

AI%.45 Two studies used NeuroSync index formula and one study used PVA% 

formula. The studied times investigated PVD events in the crossover studies ranged 

from 5 minutes to 23 hours (one study did not report duration of the treatment)2 and 

the measurement time for PVD frequency was from 3 minutes to 30 minutes. One 

study measured for 100 breaths rather than time in minutes.65 Intervention time 

(investigated PVD events in the parallel RCT studies) was 48 hours in duration and 

that record/ measurement time was 80 minutes in one study109 and 120 minutes 

another study10. 

 
All studies used Servo-I ventilators except one study which used a modified Servo- 

300.65 The Edi, Paw, flow graphic wave forms were used to identified PVD events. 

There was only one study where the person analysing the waveform tracings was 

blinded to the participants.2 One study concealed the treatment by partially covering 

the ventilator screen to blind the bedside clinicians. 24
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Fifteen studies used VT and/or Paw or mean airway pressure or Edi to set an identical 

level of assistance in both modes. Seven studies used both VT and Paw 

2,20,22,65,109,140,151 three studies used Paw;1,21,24 two studies used only VT.
10,16 Two 

studies used VT and Edi;148,152 and one study used VT and mean airway pressure.149 

Two studies did not report how identical levels of assistance were set in both modes 

.46,147 The studies reported that the PVD frequency was altered by adjusted ventilator 

parameters such as ITS, ETS, PEEPe, VT and PS. All studies reported setting ITS to 

avoid auto trigger in both modes and optimize an effective trigger, except in the study 

did not report in NAVA. 22 Ten studies reported setting PEEPe which ranged from 

median (IQR) 4 (4-5) to Mean ± SD 9.5±3.5 (see Appendix V). External positive end 

expiratory pressure settings were not reported in seven studies 16,46,148,151,152 Of these, 

one reported unmodified PEEPe during a study and another one reported adjusted 

PEEPe to PEEPi. One study investigated the effect of levels of PEEPe to NeuroSync 

index,140 one study investigated levels of ETS settings in both modes affecting AI%,16 

and one study investigated an additional PS to NAVA and PSV setting that affected 

PVA%.65 Ventilator setting strategy details are provided in Appendix V. 

 

 
Recruited participants were mostly a medical patient, the study’s primary study authors 

reported a variety of aetiologies of acute respiratory failure, and these were separately 

identified as 113 acute respiratory failure with respiratory causes (intra-pulmonary), 42 

extra-pulmonary, 46 ARDS, 27 post-operatives, 33 COPD, 37 surgical and trauma, 11 

pneumonias and 32 other types. The mean age of participants ranged from (mean ± 

SD) 58.9 ±15.89 to 78.8 ± 8.6 years with 200 males and 111 females. Four studies, 

which recruited 69 patients, did not report sex. The number of IMV days at recruited 

time ranged from (mean ± SD) 3±2 days to 23± 17 days. Participant demographic 

characteristics details are provided in Appendix VI. 

 

 
A total of nine studies reported sedating of patients.2,10,22,109,147,152 Three studies did 

not report a sedation scores and did not report whether patients were sedated 1,21,24, 

three study reported patients were not sedated, 16,20,65 and one study reported 

recruited patients who were sedated and non-sedated.10 There was a group of 
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patients in five studies reported to have Richmond Agitation Sedation Scale (RASS) 

scores ranging from -5 (un-rousable to stimulus) to 4 (combative),10,16,46,109,151 a group 

of patients in six studies had Ramsey Sedation Scale (RSS) scores ranging from 2 

(cooperative, orientated and tranquil) to 4 (brisk response to stimulus),2,22,140,147,148,152 

and a group of patients in one study used a Bispectral index (BIS) titrated sedative 

agent dose to achieve a target level of consciousness.152 The sedative agents used in 

the reported studies were propofol, midazolam, fentanyl and remifentanil. Details of 

sedation scores and sedative agents used are provided in Appendix VI. 

 

4.4.2. Intervention types 

 

All 17 studies investigated NAVA compared to PSV. Of 15 crossover studies, the 

primary study authors investigated not only two modes (NAVA and PSV), but some 

studies also investigated other modes that included PCV and PAV. The investigators 

also investigated multiple conditions(factors) in each mode. Of the 15 crossover 

studies, 13 studies compared NAVA to PSV, and two studies investigated three 

modes, one study investigated NAVA, PSV and PCV ,151 one study investigated NAVA 

with PSV and PAV. 149 Of these, 13 crossover studies evaluated between two modes, 

nine studies evaluated two modes with multiple factors/conditions (levels of ventilatory 

support) 2,16,21,22,46,65,140,147,152 and four studies evaluated two modes with each mode 

assumed to have optimal ventilatory setting parameters.1,20,24,148 Ventilator setting 

strategies and numbers of study factors/ conditions are provided in Appendix V. 

As per the systematic review protocol, only NAVA and PSV outcome data were 

analysed and the AI%, AI>10%, NeuroSync index and PVA% from the optimal 

ventilatory setting (arbitrary scale identified by the outcomes that had the lowest 

number of PVD frequency) were used. Ventilator settings in all studies (ITS, ETS, 

PEEPe, VT, Paw, PS, NAVA gain, FiO2) were assumed to be optimal in each mode to 

meet individual patient respiratory demands. These settings were not altered during 

the study unless they were a factor in the study. To set the ventilatory support in both 

modes, the primary study authors set Paw and/ or VT to get an identical level/ number. 

The factors that the primary study authors investigated were level of assistance (15 

studies), PEEPe,140 ETS,16 assist level plus additional PS 65 and the effects of sedative 

agents and sedation level on the patients who were ventilated by each mode.148,152
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4.4.3. Outcome measures and methodology of measurement 

 

All studies used Edi, flow, Paw-graphic waveforms to identify PVD frequency, these 

were acquired from the ventilator monitor and transferred to the computer by using 

dedicated software. These patient data (graphic-waveforms) were analysed off line. 

These data were then used to calculate the AI% or NeuroSync index or PVA% by 

using different methods of identification and calculation. Of the 17 included studies, 14 

used the AI% formula and two studies used the NeuroSync index formula,140,151 and 

one study used PVA% formula.65 Details of methodological of measure outcomes, 

calculation of PVD frequency and what PVD events each study measured are reported 

in Table 6. 



52  

 

 

Table 6: Included study characteristics 

 
Costa (2017)148

 post-operative ICU of 13/0 25 min 5 min IT, DT and AT AI = total number of 
Crossover cohort the Catholic 

University of Rome, 
Italy 

     asynchronous events divided by 
the number of 
triggered and not triggered 
breaths 

Ferreira ICU of 20/0 30 min 30 min  IT, DT, AT, cycling delay AI= the number of cycles with 
(2017) 24

 a university hospital in     and premature cycling asynchrony / the number of 
Crossover cohort São Paulo, Brazil,      monitored neural 

       cycles x100 

Belonecle Medical/surgical ICU of 11/0 10 min 5 min  IT, AT, DT, delayed AI= sum of 5 types of major 
(2017)21

 St Michael’s hospital in     cycling and premature asynchrony/ MRR+ IT x 100 

Crossover cohort Toronto, Canada,     cycling  

Demoule 11 hospitals / centres Investigated PVD: NAVA: 6.0 80 min (20min IT, DT, AT, premature AI= number of asynchrony 
(2016)109

 in ICU in France NAVA:62/9 (53) (3.0–12.5) days from 12, 24, 36 cycling and late cycling events/total respiratory rate 
Parallel RCT  PSV:66/16 (50) PSV: 8.0 and 48 hr from  (ventilator cycles + wasted 

  Investigate mortality: (5.0–13.0) days enrolled)   efforts) × 100. 
  NAVA:62/0      

  PSV:66/0      

Di Mussi (2016)10
 ICU of the University of NAVA:20/7 (13) 48 hr 120 min  IT, DT, AT, premature AI= total number of asynchronies 

Parallel RCT Bari Academic PSV: 18/6 (12)    cycling and short cycling, /MRR+ missed effort x100 
 Hospital, Bari, Italy       

Carteaux (2016)46 Medical   ICU  of  The 11/0 5 to 10min 3 min IT, DT, AT, AI (%) = (number of 
Crossover cohort Henri Mondor    premature cycling, asynchronies/ [ineffective 

University Hospital and delayed cycling breaths + ventilator cycles]) 
Créteil, France.  x100.168

 

Doorduin ICU of the Radboud 12/0 30 min 5 min Automated computer NeuroSync index calculated by 
(2015)151

 University Medical    algorithm detects error averaging the 
Crossover cohort Centre, The    between Edi and Paw. errors for all breaths per patient 

 Netherlands    PVD events defined as a per mode.151
 

     trigger error, cycling off  

     error, IT, DT and AT.  

participant / drop out intervention 
Asynchrony index calculation of Patient ventilator 

dyssynchrony event 
measured 

of Duration 
measurement 

Duration Number of Setting Study/Study 
design 
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Table 6: Included study characteristics 
 

Study/Study 
design 

 

Setting 
 

Number of 
participant / drop out 

 

Duration 
intervention 

 

of 
 

Duration 
measurement 

 

of 
 

Patient ventilator 
dyssynchrony event 
measured 

 

Asynchrony index calculation 

Liu (2015) General ICU 12/0 12 min 3 min Automated computer The NeuroSync index was 
Crossover cohort teaching hospital    algorithm for all defined calculated by averaging the 

 affiliated with    PVD events: early and errors for all events/total 
 Southeast University in    late trigger, early and late breath.69,140

 

 China.    cycling off, AT, and IT  

Schmidt 
(2015)149

 

ICU of Sorbonne 
University, 

16/0 30 min 10 min IT, AT and DT AI-Thille AI formula45
 

= number of asynchrony 

Crossover cohort Paris, France     events/total respiratory rate 
(ventilator cycles +wasted 
efforts) × 100 

Yonis (2015)20 

Crossover cohort 

ICU of Rangueil 
Hospital, France 

30/0 23 hr 25 min IT, AT and DT AI= total number of asynchrony 
events/ 
numbers of Edi signals x 100. 

Vaschetto 
(2014)152

 

Crossover 
cohort 

ICU of the University 
Hospital of Maggiore 
Della Carità, Novara, 
Italy 

16/2 25 min 5 min IT, AT and DT AI= ITI=IT breath/Total 
breathsx100; absent of DT and 
AT 
Thille (2006),45 Colombo 
(2008)22 and de Wit (2009) 
formulas were used.56

 

Mauri 
(2013)16

 

ICU of San Gerardo 
Hospital, 

10/0 30min 5 min IT, DT, AT, and premature 
cycling 

AI-Edi = (flow- pressure and Edi 
based asynchrony events/ Edi 

Crossover cohort Monza, Italy     RR x 100; 
Edi Thille= used Thille formula45

 

Patroniti (2012)147 

Crossover cohort 

ICU of San Gerardo 
Hospital, Milan, Italy 

15/0 10 min 5 min IT and DT AI= Number of asynchrony 
events (IT and DT/ total RR 
(MRR and IT) x 100 

Piquilloud (2011)1
 Medical and surgical 25/3 20 min 20 min IT, AT, DT, Cd and AI= Number of asynchrony 

Crossover cohort ICUs    premature cycling events/ MRR+ IT x 100 
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Table 6: Included study characteristics 

 
Terzi 
(2010)2

 

Crossover cohort 

Medical ICU of the 
university hospital in 
Caen 
France 

11/0 NR 5 min Wasted effort(IT) and DT AI= IT+DT/ Edi RR x 100 

 

 
Colombo (2008)22

 

Crossover cohort 
ICU, the Azienda 
Ospedaliera Maggiore 
della Carita, 
Novara, Italy 

16/2 20min 5 min IT and DT (IT+DT÷MRR+ IT) x 100 
Thille2006& 
Chao1997 

 

 

ICU: intensive care unit, min: minute, PSV: pressure support ventilation, NAVA: Neurally adjusted ventilatory assist, PCV: pressure- 

controlled ventilation, PAV: proportional Assisted Ventilation, NR: not report, IT: ineffective trigger, DT: double trigger, AT: auto trigger: 

trigger delay, Cd: cycling off delay, Tdi: inspiratory trigger delay, MRR: mechanical respiratory rate, Edi RR: Electrical activity of 

diaphragmatic respiratory rate. 

Spahija (2010)65 

Crossover cohort 

Critical care unit, 14/0 10min 100 breaths Tdi and Cd Ventilator asynchrony=Sum of 

Sacre´ Coeur 
Hospital, University 
of Montreal, 
Canada 

Cd and Tdi per breath, 

expressed as % of total breath 
duration 

Study/Study 
design 

Setting Number of Duration of Duration 
measurement 

of Patient ventilator 
dyssynchrony event 
measured 

Asynchrony index calculation 
participant / drop out intervention 

of two 
hospitals 

university 
in Geneva, 

Switzerland 
and Brussels, Belgium 



 

 

4.5 Outcomes of interest 

 
The systematic review outcomes of interest are patient ventilator dyssynchrony 

frequency and mortality from all causes and from IMV related causes. The patient 

ventilator dyssynchrony frequency outcomes are categorized into AI%, AI>10%, 

NeuroSync index and PVA%. The mortality in the studies compared PSV with NAVA 

which reported PVD frequency is synthesized and reported in odds ratio and as 

reported by the study authors. 

 

 

4.6. Summary of systematic review findings 

 
4.6.1. Asynchrony index (%) 

 

There were 13 studies that reported on the AI%. The individual study effect size and 

a summary estimate of effect size of SMDs are displayed in the forest plot of meta- 

analysis fixed effect, random effects and mixed effects as appropriate. A total of 13 

studies were included in the AI% analysis outcome. 

 

 
Figure 6 displays the fixed effect meta-analysis of summary effect size from two RCTs, 

which compared the effects of ventilator modes (NAVA versus PSV) on AI%. Both 

studies’ populations were sampled from a group of 12 medical and surgical ICU 

settings from two countries in Europe (France and Italy). 
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• Meta-analysis of asynchrony index (%) from randomized controlled trials 
 

 
 

Effect size and 95% confidence interval Test of null (2-Tail) Heterogeneity 

Point 
estimate 

Standard 
error 

Variance Lower 
limit 

Upper 
limit 

Z-value P-value Q-value df(Q) P-value I2 Tau- 
squared 

Standard 
- error 

Variance Tau 

0.401 0.091 0.008 0.223 0.579 4.415 0.000 0.012 1 0.914 0.000 0.000 0.036 0.001 0.000 

 
 

Figure 6: Meta-analysis fixed effect of two RCTs depicts the pooled data of an estimated size SMD 0.401, 95% CI: 0.223 - 

0.579, Z value 4.415, p=0.000, which is a statistically significant difference in reduction of AI% in the NAVA interventions 

compared with PSV. 
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Favours NAVA Favours PSV 

2.00 1.00 0.00 -1.00 

Hedges's Lower Upper 
g limit limit p-Value Total 

Di mussi 2017 0.421 0.023 0.818 0.038 25 

Demoule 2017 0.396 0.197 0.595 0.000 103 

0.401 0.223 0.579 0.000 128 

 
-2.00 

 Hedges's g and 95% CI  Statistics for each study Study name 



 

 

The analysis is based on two studies that evaluated the effect of NAVA compared with 

PSV in optimizing patient ventilator synchrony by using AI% on partial assist invasive 

mechanical ventilated critically ill mixed medical and surgical patients in 12 ICUs. In 

each study the patients were randomly assigned to either NAVA or PSV, and the 

researchers recorded their PVD events intermittently during 48 hours of treatment with 

a PVD event measurement-time of 80 minutes109 and 120 minutes. 10 The effect size 

is the SMD. The difference in means is 0.401 with the Z-value for testing the null 

hypothesis (that d is 0.0) being 4.415 and an associated p value of 0.000. On average, 

patients who were ventilated with the NAVA mode had an AI% nearly one half a 

standard deviation lower than those ventilated with PSV mode. The 95% confidence 

interval of the difference in means is 0.223 to 0.579, which indicates that the mean 

effect size could fall anywhere between this range, and it does not include an effect 

size of zero. Furthermore, there is no evidence of variation of true effect. In this case 

the Q value is 0.012 with 1 df, and p value is 0.914, which fails to reject the null 

hypothesis that the true effect size is identical in all studies. The I2 at 0.00% indicates 

that there is no evidence to suggest that there is a proportion of the observed variance 

reflecting differences in the true effect sizes rather than sampling error. Tau and T2 

are zero. This meta-analysis of effect size provides strong evidence for rejecting the 

null hypothesis that is the mean true effect is not zero. The forest plot display provides 

evidence to suggest that NAVA has a better effect in reduction of AI% than PSV. 
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Study name Statistics for each study Hedges's g and 95% CI 

Hedges's Lower Upper 
g limit limit p-Value Total 

-2.00 -1.00 0.00 1.00 2.00 

Favours PSV Favours NAVA 

 
 
 

• Meta-analysis of asynchrony index (%) from cohort crossover studies 
 
 
 
 

 
Beloncle 2017 -0.108 -0.512 0.296 0.601 22 

Ferreira 2017 0.343 0.030 0.656 0.032 40 

Carteaux 2016 -0.299 -0.712 0.113 0.155 22 

Yonis 2015 0.424 0.163 0.686 0.001 60 

Schmidt 2015 -0.337 -0.685 0.011 0.058 32 

Vaschetto 2014 0.837 0.416 1.259 0.000 28 

Mauri 2013 0.624 0.161 1.088 0.008 20 

Patroniti 2012 0.298 -0.070 0.667 0.113 28 

Piquilloud 2011 0.361 0.061 0.661 0.018 44 

Terzi 2010 0.983 0.486 1.480 0.000 22 

Colombo 2008 0.343 -0.028 0.714 0.070 28 
 0.304 0.079 0.528 0.008 346 

 
 
 
 

 
 

Effect size and 95% confidence interval Test of null (2-Tail) Heterogeneity 

Point 
estimate 

Standard 
error 

Variance Lower 
limit 

Upper 
limit 

Z-value P-value Q-value df(Q) P-value I2 Tau- 
squared 

Standard 
-error 

Variance Tau 

0.304 0.115 0.013 0.079 0.528 2.650 0.008 41.415 10 0.000 75.845 0.107 0.066 0.004 0.327 

 

 

Figure 7: Meta-analysis random effects of 11 cohort crossover studies depicts the pooled data of an estimated size SMD 

0.304, 95% CI: 0.079 -0.528, Z value 2.650, p=0.008, which is a statistically significant difference in reduction of AI% in the 

interventions compared NAVA with PSV. 
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The above analysis is based on 11 cohort crossover studies that evaluated the effect 

of NAVA compared with PSV in optimizing patient ventilator synchrony by using an 

AI% on partial assist invasive mechanical ventilated critically ill mixed medical and 

surgical patients in 12 ICUs in four European countries, one North America and one 

South America country. These studies relied upon convenience sampling of patients 

assigned to either NAVA or PSV, and the researchers recorded their AI% during the 

treatment duration (10 minutes to 23 hours) with the measurement time from 5 minutes 

to 25 minutes. One study did not report treatment time. 2 The effect size is the SMD, 

which is 0.304 with the Z-value for testing the null hypothesis is 2.650 and associated 

p value of 0.008. It suggests a statistically significant difference in effect size. On 

average, patients who were ventilated with NAVA mode had an AI% one third of a 

standard deviation lower than those ventilated with PSV mode. The 95% confidence 

interval is 0.079 to 0.528, which indicates that the mean effect size could fall anywhere 

between this range, and it does not include an effect size of zero. Furthermore, there 

is some evidence of variation true effect. In this case the Q value is 41.415 with 10 df, 

and p value is 0.000, in which the null hypothesis is rejected, so the true effect size is 

non-identical in all studies. The I2 is 75.854% indicating that there is evidence to 

suggest that there is a high proportion of the observed variance that reflects 

differences in the true effect sizes rather than sampling error. Tau squared is 0.107, 

and the prediction interval is -0.4802 to 1.0882; this would suggest that in some 95% 

of all populations, the true effect size will fall in this range. The pooled estimate of 

effect provides evidence to suggest that NAVA has a better effect in reduction of AI% 

than PSV. 

 
Although the overall effect size is significant, the high I2 indicates substantial variability 

among the studies. When I2 is 25% (arbitrary) and higher, a combined effect size from 

meta-analysis should not be interpreted as meaningful.135 Therefore, the combined 

effect size of this meta-analysis is considered less meaningful. To investigate and 

quantify the extent of inconsistency findings across the studies a subgroup/ moderator 

analysis was conducted.167 This investigation aims to evaluate the influences of 

specific clinical differences (Figure 8) and methodological differences between the 

studies (Figure 9 and Figure 10). 
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• Meta-analysis of asynchrony index (%) of randomized controlled trials and cohort crossover studies: effects of 
clinical differences on heterogeneity (I2) 

 

Group by  
Sedation 

Study name  Statistics for each study Hedges's g and 95% CI 

Hedges's Lower Upper 

g limit limit Total p-Value 

Non sedated Schmidt 2015 -0.337 -0.685 0.011 32 0.058 

Non sedated Mauri 2013 0.624 0.161 1.088 20 0.008 

Non sedated Yonis 2015 0.424 0.163 0.686 60 0.001 

Non sedated 0.225 -0.208 0.659 112 0.308 

Sedated Carteaux 2016 -0.299 -0.712 0.113 22 0.155 

Sedated Patroniti 2012 0.298 -0.070 0.667 28 0.113 

Sedated Colombo 2008 0.343 -0.028 0.714 28 0.070 

Sedated Di mussi 2017 0.421 0.023 0.818 25 0.038 

Sedated Terzi 2010 0.983 0.486 1.480 22 0.000 

Sedated Vaschetto 2014 0.837 0.416 1.259 28 0.000 

Sedated Demoule 2017 0.396 0.197 0.595 103 0.000 

Sedated 0.413 0.125 0.702 256 0.005 

Overall 0.356 0.116 0.596 368 0.004 

 

 

-2.00 -1.00 0.00 1.00 2.00 

 

Favours PSV Favours NAVA 
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Effect size and 95% confidence interval Test of null (2-Tail) Heterogeneity 
Groups 

Point 
estimate 

Standard 
error 

Variance Lower 
limit 

Upper 
limit 

Z-value P-value Q-value df(Q) P-value I2 Tau- 
squared 

Standard 
-error 

Variance Tau 

 

Fixed effect analysis 
 

Non- 0.230 0.097 0.009 0.040 0.421 2.372 0.018 15.107 2 0.001 86.761 0.206 0.247 0.061 0.454 
sedated                

Sedated 0.392 0.065 0.004 0.266 0.520 6.055 0.000 20.862 6 0.002 71.239 0.081 0.071 0.005 0.285 

 

Random effects analysis 
 

Non- 0.225 0.221 0.049 -0.208 0.659 1.019 0.308 
sedated        

Sedated 0.413 0.147 0.022 0.125 0.702 2.811 0.005 

 

 
Figure 8: Meta-analysis mixed effects of two RCTs and eight cohort crossover studies depicts the pooled data of an 
estimated size SMD 0.225, 95% CI: -0.208 -0.659, Z value 1.019, p=0.308, which is a non-statistically significant result of the 
interventions compared NAVA with PSV in reduction of AI% in a non- sedated group, and an estimated size SMD0.413, 95% 
CI: 0.125-0.702, Z value 2.881, p=0.005, which is a statistically significant result of the interventions compared NAVA with 
PSV in reduction of AI% in a sedated group. 



 

 

An Investigation of clinical differences evaluated the cause of heterogeneity of overall 

effect size in the AI% by evaluating the effect of sedation on AI% in sedated and non- 

sedated groups. A random effects meta-analysis in Figure 8 illustrates that in the non- 

sedated group the estimated summary of effect size, SMD is 0.225 with the Z-value 

for testing the null hypothesis being 1.019, the 95% CI of -0.208 to 0.659 and 

associated p value of 0.308. It suggests a statistical non-significance difference in 

effect size. In the sedated group the SMD is 0.413 with the Z-value for testing the null 

hypothesis being 2.811, the 95% CI of 0.125 to 0.702 and a significance p value of 

0.05. The Q statistic shows values greater than df in both groups (non-sedated and 

sedated 15.107>2 and 20.862>6, respectively), and the associated p values are 

significant in both groups (non-sedated is 0.001 and sedated group is 0.002). Both 

non-sedated and sedated group have a high proportion of I2 of 86.761% and 71.239%, 

respectively. T2 and Tau of non-sedated are 0.206 and 0.454, and T2 and Tau of 

sedated group are 0.081 and 0.285. 

 

The information provided by the sedation subgroup analysis to identify which of the 

subgroups might be homogenous enough to allow an estimate of a combined effect in 

the subgroup. The summary effect sizes showed that NAVA compared to PSV 

reduced AI% greater in sedated group than in non-sedated group. The heterogeneity 

test yielded substantially high proportion of observed variation in effect sizes in both 

groups, which is not useful for interpreting the combined effect in both groups, so 

prediction intervals of both groups were calculated. The estimated effect of non- 

sedated group is 0.225 with the prediction intervals of-6.1917 to 6.6417, and the 

estimated effect of sedated group is 0.413 with the prediction interval of-0.4110 to 

1.2370. Given both prediction intervals, it is expected that in some 95% of all 

populations, the true effect size will fall in these ranges. 
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•  Meta-analysis of asynchrony index (%) of randomized controlled trials and cohort crossover studies: Effect of 

methodological differences / treatment duration on heterogeneity (I2) 

Group by  
Treatment duration 

Study name  Statistics for each study Hedges's g and 95% CI 

Hedges's Lower Upper 

 

 

-2.00 -1.00 0.00 1.00 2.00 

 

Favours PSV Favours NAVA 

 g limit limit p-Value Total 

< an hour Beloncle 2017 -0.108 -0.512 0.296 0.601 22 

< an hour Ferreira 2017 0.343 0.030 0.656 0.032 40 

< an hour Carteaux 2016 -0.299 -0.712 0.113 0.155 22 

< an hour Schmidt 2015 -0.337 -0.685 0.011 0.058 32 

< an hour Vaschetto 2014 0.837 0.416 1.259 0.000 28 

< an hour Mauri 2013 0.624 0.161 1.088 0.008 20 

< an hour Patroniti 2012 0.298 -0.070 0.667 0.113 28 

< an hour Piquilloud 2011 0.361 0.061 0.661 0.018 44 

< an hour Terzi 2010 0.983 0.486 1.480 0.000 22 

< an hour Colombo 2008 0.343 -0.028 0.714 0.070 28 

< an hour  0.287 0.069 0.505 0.010 286 

> an hour Di mussi 2017 0.421 0.023 0.818 0.038 25 

> an hour Demoule 2017 0.396 0.197 0.595 0.000 103 

> an hour Yonis 2015 0.424 0.163 0.686 0.001 60 

> an hour  0.413 0.044 0.782 0.028 188 

Overall  0.320 0.132 0.508 0.001 474 
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Effect size and 95% confidence interval Test of null (2-Tail) Heterogeneity 
Groups 

Point 
estimate 

Standard 
error 

Variance Lower 
limit 

Upper 
limit 

Z-value P-value Q-value df(Q) P-value I2 Tau- 
squared 

Standard 
-error 

Variance Tau 

 

Fixed effect analysis 
 

< an hour 0.264 0.061 0.004 0.145 0.383 4.431 0.000 40.208 9 0.000 77.617 0.129 0.080 0.006 0.306 

>an hour 0.408 0.075 0.006 0.261 0.556 5.443 0.000 0.033 2 0.984 0.000 0.000 0.019 0.000 0.000 

Overall 0.321 0.047 0.002 0.228 0.414 6.798 0.000 42.491 12 0.000 71.759 0.076 0.046 0.002 0.276 

 
Random effects analysis 

< an hour 0.287 0.111 0.012 0.069 0.505 2.557 0.010 

>An hour 0.413 0.188 0.035 0.044 0.782 2.193 0.028 

Overall 0.302 0.096 0.009 0.132 0.508 3.335 0.001 

 

 
Figure 9: Meta-analysis mixed effects of two RCTs and 11 cohort crossover studies depicts the pooled data of estimated 

size SMD 0.287, 95% CI: 0.697 -0.505, Z value 2.557, p=0.010, which is a statistically significant result of the interventions 

compared NAVA with PSV in reduction of AI% in a more than an hour intervention group, and the pooled data of estimated 

size SMD 0.413, 95% CI:0.069-0.505, Z value 2.193,p=028, which is a statistically significant result of the interventions 

compared NAVA with PSV in reduction of AI% in a less than an hour intervention group. 



 

 

Further investigation of methodological differences to identify heterogeneity was 

conducted. Figure 9 illustrates graphical and numerical subgroup random effects 

meta-analysis in two RCTs and 11 crossover studies in a group of the treatments 

(NAVA and PSV) in optimizing patient ventilator synchrony by measuring the AI%. 

The treatment group were divided into two groups, which were a less than an hour 

group and longer than an hour group. The information provided by the treatment-time 

subgroup analysis to identify subgroup that might be homogenous enough to allow an 

estimate of a combined effect in the subgroup. The summary effect sizes showed that 

NAVA compared to PSV reduced AI% greater in > an hour group than in < an hour 

group. The heterogeneity test yielded I2 of 0.000% in > an hour treatment group, but 

not in < an hour group that yielded I2 of 77.617%. This indicates that NAVA compared 

with PSV in a > an hour treatment group, NAVA was able to reduce the effect size of 

AI% nearly a half of SD, and all included study shares a common effect size. However, 

in a< an hour treatment group, it is not meaningful to interpret the combined effect due 

to a substantial high proportion of observed variation in effect sizes, so prediction 

interval was calculated. The estimate effect of < an hour of treatment group is 0.287 

with the prediction intervals of -0.5800 to 1.1540 Given the prediction interval, it is 

expected that in some 95% of all populations, the true effect size will fall in these 

ranges. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

65 



66  

 
 

• Meta-analysis of asynchrony index (%) of randomized controlled trials and cohort crossover studies: Effect of 

methodological differences/ measurement time on heterogeneity (I2) 

Group by  
Measurement time 

Study name  Statistics for each study Hedges's g and 95% CI 

Hedges's Lower Upper 

 

 

-2.00 -1.00 0.00 1.00 2.00 

 

Favours PSV Favours NAVA 

 g limit limit p-Value Total 

< 20 min Beloncle 2017 -0.108 -0.512 0.296 0.601 22 

< 20 min Carteaux 2016 -0.299 -0.712 0.113 0.155 22 

< 20 min Schmidt 2015 -0.337 -0.685 0.011 0.058 32 

< 20 min Vaschetto 2014 0.837 0.416 1.259 0.000 28 

< 20 min Mauri 2013 0.624 0.161 1.088 0.008 20 

< 20 min Patroniti 2012 0.298 -0.070 0.667 0.113 28 

< 20 min Terzi 2010 0.983 0.486 1.480 0.000 22 

< 20 min Colombo 2008 0.343 -0.028 0.714 0.070 28 

< 20 min  0.267 0.024 0.510 0.031 202 

20 min & longer Di mussi 2017 0.421 0.023 0.818 0.038 25 

20 min & longer Demoule 2017 0.396 0.197 0.595 0.000 103 

20 min & longer Ferreira 2017 0.343 0.030 0.656 0.032 40 

20 min & longer Yonis 2015 0.424 0.163 0.686 0.001 60 

20 min & longer Piquilloud 2011 0.361 0.061 0.661 0.018 44 

20 min & longer  0.389 0.109 0.668 0.006 272 

Overall  0.319 0.136 0.503 0.001 474 
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Effect size and 95% confidence interval Test of null (2-Tail) Heterogeneity 
Groups 

Point 
estimate 

Standard 
error 

Variance Lower 
limit 

Upper 
limit 

Z-value P-value Q-value df(Q) P-value I2 Tau- 
squared 

Standard
- error 

Variance Tau 

 

Fixed effect analysis 
 

< 20 min 0.225 0.073 0.005 0.083 0.368 3.099 0.002 39.280 7 0.000 82.179 0.196 0.129 0.017 0.443 

20 min 
longer 

& 0.391 0.062 0.004 0.269 0.512 6.294 0.000 0.217 4 0.995 0.000 0.000 0.014 0.000 0.000 

Overall 0.321 0.047 0.002 0.228 0.414 6.798 0.000 42.491 12 0.000 71.759 0.076 0.046 0.002 0.276 

 
Random effects analysis 

<20 min 0.267 0.124 0.015 0.024 0.510 2.155 0.031 

20 min 
longer 

& 0.389 0.143 0.020 0.109 0.668 2.726 0.006 

Overall 0.319 0.094 0.009 0.136 0.503 3.414 0.001 

 

Figure 10: Meta-analysis mixed effects of two RCTs and 11 cohort crossover studies depicts the pooled data of estimated 
size SMD 0.267, 95% CI: 0.024 -0.510, Z value 2.155, p=0.031, which is a statistically significant result of of the interventions 
compared NAVA with PSV in reduction of AI% in a < 20 minute measurement time group, and the pooled data of estimated 
size SMD 0.389, 95% CI:0.109-0.668, Z value 2.726, p=006, which is a statistically significant result of the interventions 
compared NAVA with PSV in reduction of AI% in a 20 minute and longer measurement time group. 
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Figure 10 illustrates a graphical and numerical subgroup random effects meta-analysis 

in two RCTs and 11 cohort crossover studies in a group of duration of measurement 

(NAVA and PSV) in optimizing patient ventilator synchrony by measuring the AI%. 

The measurement-time was divided into two groups, which were a less than 20 

minute- group and a 20 minute- and longer group. The information provided by the 

treatment-time subgroup analysis to identify which of the subgroups might be 

homogenous enough to allow an estimate a combined effect in the subgroup. The 

summary effect sizes showed that NAVA compared to PSV reduced AI% greater in 

20 minute-and longer group than in < 20 minute- group. The heterogeneity test yielded 

I2 of 0.00% (20 minutes and longer) and 82.179% (< 20 minutes), which it is not useful 

to interpret combine effect in both groups, so prediction intervals of < 20-minute group 

were calculated. The estimate effect of < 20-minute-measurement-time-group is 0.292 

with a prediction interval of -0.8580 to 1.3920. Given the prediction interval value, it 

is expected that in some 95% of all populations, the true effect size will fall in these 

ranges. 

 

 
Selection bias analysis 

There is one analysis that has been used for bias test in meta-analysis which is a 

publication bias analysis. It is a form of testing for a selection bias in meta-analysis.135 

A funnel plot is used to display any evidence of publication bias. If there is no 

publication bias, the funnel plot is shown to have the studies distributed evenly and 

symmetrically. However, asymmetrical funnel plots can be caused by not only 

publication bias but also other factors included location biases ( English language bias, 

citation bias, multiple publication bias), true heterogeneity ( size of effect differs 

according to study size), data irregularities (poor methodology design of small studies, 

inadequate analysis, fraud), artefact ( choice of effect measure) and chance.169 When 

publication bias occurs, the studies are distributed asymmetrically on the top, not 

present in the middle and with more missing in the bottom. If the more significant 

studies are included more than non-significant studies, the studies locate in the top 

right, middle right and the right bottom with a smaller number of studies located in the 

left, and no study located in the left bottom. This analysis may provide useful 
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information; however, it is suggested that this test cannot be used to quantify the effect 

of publication bias on the overall effect in the meta-analysis.161
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 11: Funnel plot standard error by Hedges’s g to assess publication bias 

of 13 studies comparing NAVA with PSV in reducing AI 10% . A solid vertical 

line represents a summary estimate of effect size, a diagonal line represents 

95% CI. 
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Figure 11 displays a funnel plot of publication bias analysis in the AI% outcome. There 

is one study that has the smallest SE on the top and in a significant side, many studies 

locate close to the line of estimated effect in the middle toward the top. Many studies 

are missing in the bottom of both sides, one study appears to cross the null hypothesis 

line (1.0), and more studies appear on the right middle top than the left side. It suggests 

there are more significant studies that were being published and located than non- 

significant studies. A visual inspection and subjective impression found the funnel plot 

shows asymmetry suggestive of bias is likely. 
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4.6.2. Asynchrony index more than 10% 

• Meta-analysis of asynchrony index >10% of cohort crossover studies 

Study name   Statistics for each study  Odds ratio and 95% 

CI Odds Lower Upper 
ratio limit limit p-Value 

Ferreir 2017 1.066 0.584 1.947 0.835 

Costa 2017 0.404 0.190 0.858 0.018 

Beloncle 2017 2.095 0.491 8.936 0.318 

Carteaux 2016 2.095 0.491 8.936 0.318 

Yonis 2015 0.766 0.471 1.246 0.283 

Schmidt 2015 1.000 0.060 16.684 1.000 

Vaschetto 2014 0.464 0.162 1.330 0.153 

Patroniti 2012 0.429 0.193 0.954 0.038 

Piquilloud 2011 0.674 0.392 1.158 0.153 

Colombo 2008 0.446 0.183 1.088 0.076 

0.688 0.514 0.921 0.012 

0.01 0.1 1 10 100 
 

Favours NAVA Favours PSV
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Effect size and 95% confidence interval Test of null (2-Tail) Heterogeneity 

Point estimate Lower limit Upper limit Z-value P-value Q-value df(Q) P-value I2 Tau- 
squared 

Standard 

- error 

Variance Tau 

0.688 0.504 0.921 2.513 0.012 11.528 9 0.241 21.929 0.046 0.100 0.010 0.215 

 
 

Figure 12: Meta-analysis random effects of 10 cohort crossover studies depicts the pooled data of an estimated size OR 

0.688, 95% CI: 0.514 -0.921, Z value -2.513, p=0.012, which showed a statistically significant difference in reduction of AI>10% 

of the interventions compared NAVA with PS 



73  

 

Figure 12 displays a random effects meta-analysis summarized estimated effect size 

of AI>10%. The analysis is based on 10 cohort crossover studies that evaluated the 

effect of NAVA compared with PSV in optimizing patient ventilator synchrony by using 

AI >10% score on partial assist invasive mechanical ventilated critically ill mixed 

medical and surgical patients in 11 ICUs. These studies were sampled participants 

from convenience samples of populations assigned to either NAVA or PSV, and the 

researchers recorded their AI >10% during the treatment duration with measurement 

time from 5 minutes to 25 minutes. The effect size is the odds ratios. The summary 

effect size shows it is likely in the clinically important range. The summary effect is OR 

0.688 with a 95% CI of 0.514 to 0.921. The I2 of < 25% is considered a low proportion 

of heterogeneity. An odds ratio less than 1 is negatively associated with AI> 10%. A 

shared OR of 0.688 means that AI>10% in NAVA is 31% less likely than in PSV. 

 

 
Publication bias analysis 

Figure 13 displays a funnel plot of publication bias analysis in the AI>10% outcome. 

There are more studies appear on the top right than the top left, two largest studies 

which have the smallest SE locates close to zero on the top of in each side of the 

summary of treatment effect line and many small studies missing in the middle and 

lower left than the right side. A distribution of intercept was shifted towards negative 

value and is very close to -0.5 because the estimated treatment ORs of two largest 

studies are close to -0.5. The diagonal line shows a very wide 95% CIs. There are also 

studies missing in the bottom of both sides. It suggests there are more non-significant 

studies that were being published and located than significant studies. A visual 

inspection and subjective impression found the funnel plot shows asymmetry. This 

suggests that bias is likely. 
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Figure 13: Funnel plot standard error by log odd ratio to assess publication bias 

of 10 cohort crossover studies comparing NAVA with PSV in reducing AI>10% 

. A solid vertical line represents a summary estimate of effect size, a diagonal 

line represents 95% CI. 
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4.6.3. NeuroSync index 
• Meta-analysis of NeuroSync index of cohort crossover trials 

 

Study name Statistics for each study  Hedges's g and 95% CI 

Hedges's Lower Upper 
g limit limit p-Value Total 

Doorduin 2015 0.625 0.042 1.208 0.035 12 

Liu 2015 0.888 0.253 1.523 0.006 12 

0.745 0.316 1.175 0.001 24 

-2.00 -1.00 0.00 1.00 2.00 

Favours PSV Favours NAVA 
 
 
 
 

 

Effect size and 95% confidence interval Test of null (2-Tail) Heterogeneity 

Point 
estimate 

Standard 
error 

Variance Lower 
limit 

Upper 
limit 

Z-value P-value Q-value df(Q) P-value I2 Tau- 
squared 

Standard
- error 

Variance Tau 

0.745 0.219 0.048 0.316 1.175 3.402 0.001 0.357 1 0.550 0.000 0.000 0.137 0.019 0.000 

 

 

Figure 14: Meta-analysis fixed effect of two cohort crossover studies depicts the pooled data of an estimated size SMD 

0.745, 95% CI: 0.316 -1.175, Z value 3.402, p=0.001, which is a statistically significant difference in reduction of NeuroSync 

index in the interventions compared NAVA with PSV. 
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Figure 14 illustrates a fixed effect meta-analysis of effect sizes of NeuroSync index 

(%) compared between NAVA and PSV. The analysis is based on two studies that 

evaluated the effect of NAVA in optimizing patient ventilator synchrony by using 

NeuroSync index on partial assist invasive mechanical ventilated critically ill in COPD 

and ARDS patients in two ICUs (The Netherlands and China). In each study the 

patients were recruited from convenience samples that were allocated to NAVA or 

PSV. The effect size is the SMD. The standardized mean difference is 0.745. On 

average, patients who were ventilated with NAVA mode had NeuroSync index nearly 

three quarter of a standard deviation overall effect size lower than those ventilated 

with PSV mode. The 95% confidence interval of the difference in means is 0.316 to 

1.175, which indicates that the mean effect size could fall anywhere between this 

range, and it does not include an effect size of zero. Furthermore, there is no evidence 

of a variation true effect. In this case the Q value is 0.357 with 1 df, and p value is 

0.550. The I2 is 0.000% indicates that there is no evidence to suggest that there is a 

portion of the observed variance reflecting differences in the true effect sizes rather 

than sampling error. As a result, the T2 and Tau are zero. 

 

4.6.4. Patient ventilator asynchrony percentage 

 

The patient ventilator asynchrony percentage was reported by one included study. It 

is a cohort crossover study which evaluated NAVA in a modified Servo 300 ventilator 

compared to PSV in a group of 14 non-sedated IMV patients who were ready to be 

weaned from IMV. Twelve of 14 patients had COPD. Patient ventilator interaction was 

investigated in NAVA and PSV by assessing a trigger delay (an inspiratory trigger 

delay) and cycling off (expiratory trigger) delay. Other patient ventilator parameters 

were optimized (see Appendix V). There were two ventilator modes with two factors 

including PSV -low, which is PSV with the lowest (level of assistance) pressure support 

patients could tolerate and PSV-high, which is PSV-low with additional of 7 cmH2O of 

pressure support, and NAVA with two settings: NAVA-low which was a setting of 

similar peak airway pressure to the lowest pressure support in PSV mode, and NAVA- 

high which was a setting of NAVA-low with additional 7 cmH2O of pressure support. 

These four ventilator settings were randomly allocated, and the patients were 
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ventilated on each setting for 10 minutes. The measurement of patient ventilator 

interaction was recorded for 100 breaths after the 10 minutes of each intervention. The 

inspiratory trigger delay was measured by the time difference between the onset of 

Edi and flow, and the cycling off delay was measured by the time difference between 

the end of neural inspiration and the end of flow inspiratory. Patient ventilator 

asynchrony percentage was measured by the sum of the trigger delay and cycling of 

delay per breath and calculated as a percentage of total breath duration.65 It was 

found that NAVA in both settings had lower PVA% (7±2%) than PSV-low (18±13%) 

and PSV-high (23±12%). However, statistical analysis determining the significance 

was not performed on these outcome datasets by the primary study authors. 



 

 
 
 
 

 

4.6.5. Mortality in intensive care unit 

• Meta-analysis of intensive care unit mortality of randomized controlled trials 
 

Study name   Statistics for each study  Odds ratio and 95% 

CI Odds Lower Upper 
ratio limit limit p-Value 

Di mussi 2016 0.900 0.143 5.646 0.910 

Demoule 2016 0.550 0.213 1.421 0.217 

0.610 0.263 1.418 0.251 

0.01 0.1 1 10 100 

Favours NAVA Favours PSV 

 

Effect size and 95% confidence interval Test of null (2-Tail) Heterogeneity 

Point estimate Lower limit Upper limit Z-value P-value Q-value df(Q) P-value I2 Tau- 
squared 

Standard 
- error 

Variance Tau 

0.601 0.263 1.418 -1.148 0.251 0.218 1 0.641 0.000 0.000 0.786  0.618  0.000 

 
 

Figure 15: Meta-analysis fixed effect of two RCTs depicts the pooled data of an estimated size OR 0.610, 95% CI: 0.263 - 

1.418, Z value -1.148, p=0.251, which showed a non-statistically significant difference in ICU mortality in the interventions 

compared NAVA with PSV. 
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Figure 15 illustrates a fixed effect meta-analysis of the numerical and graphical 

estimation of overall effect size, observed effects of individual study and heterogeneity 

in effect sizes of mortality compared between NAVA and PSV. The analysis was based 

on two studies that evaluated the effect of NAVA compared to PSV on AI% and 

mortality in critically adult patients with multiple causes of acute respiratory failure in 

ICUs. Each studies’ patients were randomly assigned to either NAVA or PSV, and the 

researchers recorded the PVD events intermittently during the treatment period of 48 

hours. Intensive Care Unit mortality was evaluated via a fixed effects meta-analysis, 

the odds ratio was 0.610. An odds ratio less than one indicates a negative association 

with mortality. On average, patients in the NAVA group were likely to have an event 

(death) 40% less than in the PSV group. The 95% confidence interval for the odd ratios 

was 0.263 to 1.418. This range includes one (the line of no effect). The result is 

therefore not statistically significant because the confidence interval includes one. The 

effect size was small, the number of included studies was small, and the sample size 

was also too small to demonstrate a significant difference. However, both studies 

were shown to have a common effect size (Q<df, p value of 0.641 and I2 of 0.00%). 

In addition, one study also reported a 28-day mortality in patients who were 

ventilated with NAVA compared with PSV. The authors concluded that the 28 day- 

mortality rate was not significantly different between NAVA (9%) and PSV 15 %,( p= 

0.25).109
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Chapter 5: Discussion  
 

 

5.1. Summary of findings 

 
This review was conducted to systematically identify available evidence, critically 

appraise, synthesise and evaluate the effectiveness of NAVA compared to PSV. It is 

the first systematic review to evaluate effectiveness of NAVA compared to PSV in 

critically ill invasively mechanical ventilated patients in ICU. Through the analysis of 

this review, evidence has emerged that there is a gap between current patient 

ventilator interaction practice and that of optimal patient ventilator interaction practice 

existing in optimizing patient ventilator synchrony. Many ventilator-setting strategies 

have been investigated in both ventilator modes to optimize patient ventilator 

synchrony available in the literature. However, a comprehensive evaluation of the 

effectiveness of an optimal setting of parameters in each mode, by tailoring to 

individual patient respiratory demand to optimize patient ventilator synchrony, has not 

been systematically performed, analysed and synthesised. Based on the results, the 

setting parameters in each mode that provided the lowest patient ventilator 

dyssynchrony events were selected for a comprehensive data analysis aimed at 

comparing NAVA with PSV. These setting parameters were arbitrarily assumed to be 

optimal in the sense of available data in the literature, but not in the justification from 

treatment effect size analysis. 

To the author’s knowledge there is no best available evidence and/or best practice 

guideline/consensus to optimize patient ventilator interaction/ synchrony by optimally 

setting ventilator parameters to individual patients with different aetiology of respiratory 

failure, different lung mechanics and multiple comorbidity in critically ill patients exist. 

Neural mechanical ventilator sensing is in its early phase of introduction into bedside 

ICU practice. The evidence of its’ use in relation to optimizing patient ventilator 

synchrony is therefore limited. 

 

 
The systematic review search conducted in seven electronic databases in 2014 

through 2015 when the first systematic review protocol was published, found less than 
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10 cohort crossover studies. Recently, additional studies were published, which have 

provided the data to evaluate effectiveness of this intervention. These studies were 

identified via a comprehensive update search, from five electronic databases, from 

system email alerts of five databases, and by searching through the references 

provided from17 studies that met the inclusion criteria. Of these 17 studies, there were 

two parallel- RCT studies of moderately good quality, and which provided data to 

evaluate the effectiveness of NAVA compared with PSV in optimizing patient ventilator 

synchrony. 

 

Influence on patient ventilator synchrony and the evidence 
of safety 

 
In comparison with PSV, NAVA was strongly associated with reducing of the PVD 

frequency. This PVD frequency reduction was found in all measurements included 

reduction of AI% in RCT group and cohort crossover study group, reduction of AI>10% 

group, NeuroSync index group and PVA% study. However, substantial heterogeneity 

among study effect estimates of AI% in the cohort crossover studies, sedated and 

non-sedated group, intervention less than an hour group, measurement less than 20- 

minute group ( 75.9%,71.3% 86.8%,77.6% and 82.2%, respectively) indicated that the 

findings should be interpreted with caution. Although, there were no heterogeneity 

found in the RCTs group, treatment longer than an hour group, and measurement 20 

minute and longer group, and a small proportion of heterogeneity found in AI>10% 

group (21.9%), these findings were from only two RCTs ( measured AI%), 13 studies 

( two RCTs and 11 cohort crossover studies) in treatment longer than an hour and 

measurement time 20 minute and longer groups that measured AI%. In the AI>10% 

group the summary of effect size was from 10 cohort crossover studies with moderate 

to high quality of evidence and high risk of bias. 

 

 
With substantial reduction of NeuroSync index and no heterogeneity found in the 

NeuroSync index group, the summary effect was from only two cohort crossover 

studies with a small number of participants. Similarly, the PVA% effect was analysed 

from only one cohort crossover study. 
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Influence on mortality 

 
Neurally adjusted ventilatory assist did not show a significance difference in reduction 

of the ICU mortality when compared with PSV. This effect was estimated from two 

RCTs with moderate to large sample size and no heterogeneity. A twenty-eight-day 

mortality which reported by one study found to have no significance difference. 

 

 
In conclusion, neurally adjusted ventilator assist is considered to be safe to use as in 

part it reduced the PVD frequency. However, there were only two RCTs with a total 

sample size of 153 patients that provided evaluation of effectiveness and safety (AI% 

and mortality). Neurally adjusted ventilatory assist showed a weak association with 

reducing of mortality compared with PSV. In addition, an assessment of publication 

bias found the evidence of asymmetrical funnel plots in AI% and AI>10% outcomes. 

These findings suggest that publication bias is likely therefore; an interpretation of our 

meta-analysis outcomes should be caution and cannot prove the apparent outcomes 

are due to bias. 

 

 

5.2. Limitations of the systematic review 

 
Overall the quality of the evidence was considered moderate in a crossover study to 

moderate to high in RCT studies and the majority of studies were rated as having a 

high risk of bias across six domains of bias (random sequence, allocation 

concealment, incomplete outcome data, selective reporting, blinding of participants 

and investigator and blinding of outcome assessor). Given characteristics of the 

intervention, the clinicians cannot be blinded to the intervention due to the nature of 

the treatment, as it is not feasible to conduct the treatment without possibly being 

aware of the ventilator settings. 

 

 
Most of the included studies are a cohort crossover study (15 trials). This study design 

causes a concern of some biases toward a treatment effect. Based on the reviewers’ 

assumption, in those studies the study investigators took all reasonable considerations 
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and actions to minimize the effect of study design. The factors that can cause concern 

are a time period effect, a time period by treatment interaction, a carryover, patient by 

treatment interaction, and patient by time period interaction. These factors might cause 

the crossover differences not to be distributed at random about true treatment 

effects.170 As a minimum, the first factor (period effect) and third factors (carry over) 

are considered. Considering the two factors, randomization must be applied, and with 

carryover effects, the investigator must design the study to have a wash out period 

that is adequate to eliminate the effect of the previously given treatment.170 In the 

clinical study of NAVA compared to PSV, only an active wash out is clinically possible 

and ethically acceptable, as well as limited measurement outcomes must be measured 

in the latter part of the study period to minimize the risk of a carry-over effect. When 

multiple interventions are being investigated, a consideration of the length of time a 

treatment takes to reach a steady state; the wash out period for the trial must be no 

less than the longest presumed time to reach steady state for any treatment to prevent 

a carryover effect. To the authors knowledge, what is believed to be the best 

knowledge and scientific evidence available to time to support the wash out period 

used in the trial was sufficient to eliminate the effect of a treatment given previously is 

probably a study by Viale et al 1998. This study assessed time course evolution of 

ventilatory responses to inspiratory unloading when adjusting the pressure support in 

PSV. The ventilator settings were altered by changing Paw, the Pes swing and 

integrated electro-myo-diaphragmatic activity (∫EMGdi), the duration required to 

achieve stabilization was about six to eight breaths.136
 

 
 

To possibly minimize the potential bias in the review process, the systematic review 

process outline by the JBI Reviewers’ Manual was followed, and the librarian was 

consulted for a systematic search for evidence. The critical appraisal process was 

conducted by two authors (AP and DC), and any disagreement between both authors 

was discussed with the third author (CL). Study selection (exclusion and inclusion) 

was performed by all three authors. The data extraction, synthesis and analysis were 

performed by the primary author. The outcome data were available for approximately 

90% of participant (n=398), of which there were 86.7% for asynchrony index (AI) %, 

95.38% for AI>10%, 100% for NeuroSync index, 100% for patient ventilator 
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asynchrony (PVA)% and 92.2% for ICU mortality. Even though literature searches 

were conducted rigorously and an alert system from the electronic databases were set 

up, we could never be certain that we have included all studies that meet inclusion 

criteria. In addition, searches conducted were limited to find English only publications, 

which possibly eliminated the chance of finding studies published in other languages. 

To identify and evaluate the risk of publication bias a funnel plot was used and 

presented. It showed asymmetrical funnel plots for both AI% and AI>10%, which 

suggests bias is likely, and the extent of this bias affects the summary outcomes is 

uncertain. 

5.3. Implications for practice 

 
Based on the data from 17 studies with a total of 398 participants who provided 729 

datasets for analysing the effectiveness of NAVA compared to PSV, utilization of 

NAVA with optimal setting parameters (ITS, ETS, PEEPe, VT and PS) tailored to 

patient respiratory demands is able to reduce patient ventilator dyssynchrony events 

(AI%, AI>10%,NeuroSync index and PVA%). The reduction of the AI% is more likely 

to be notable in groups where patients were sedated, had the treatment > an hour 

group and measurement of PVD event 20 minutes or longer. The identified reduction 

of AI>10% in NAVA group compared with PSV group is unlikely to be clinically and 

practically meaningful because of a lack of a high-quality evidence of AI>10% studies 

that investigated the effects of AI>10% on patient clinical important outcomes. 

Therefore, this finding is of limited patient benefit. The meta-analysis of data in ICU 

mortality and the NeuroSync index demonstrate preliminary outcomes in any 

evaluation of the effectiveness of NAVA compared with PSV in these study 

populations, and it is not generalizable to other groups of a population. Furthermore, 

a PVA% study report can provide insightful knowledge into patient ventilator 

interaction with these two modes; this can be of less justifiable benefit in possible 

outcomes. 

 

 
Optimizing patient ventilator interaction is an emerging outcome objective that 

clinicians practicing in the field have recently gained interest in. Since the neural 

sensor (Edi catheter) with NAVA was introduced in ICUs, there have been more 
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studies conducted to evaluate its effectiveness in reducing patient ventilator 

dyssynchrony, and other important patient outcomes such as mortality, length of ICU 

stay and length of IMV use. However, the number of completed and published studies 

of NAVA as compared with PSV was limited and was further compounded by a  

moderate quality of studies in crossover studies, a moderate to high quality in RCTs 

and a small number of participants. It can be stated that the available evidence that 

was used to synthesise and analyse the effectiveness of NAVA compared to PSV is 

insufficient to provide a statistical meaningful recommendation. However, it is able to 

provide an insight into current clinical practice related to optimizing patient ventilator 

synchrony. 

 

 

5.4. Implications for research 

 
Given the outcome report from a statistical analysis of individual study’s effect size 

and the heterogeneity test, which provides a high proportion of heterogeneity in a 

crossover study group that investigated the AI%, and in its’ subgroup analysis in a 

group of sedated, non-sedated, shorter duration (< an hour) and shorter measurement 

time (< 20 minutes)), there is a need for a specifically tailored and appropriate study 

designs; ideally, adequately powered, high quality and multi centre randomized 

controlled trials among this group of patients. This will investigate the effects of NAVA 

in patients’ surrogate outcomes (AI%, AI>10% and NeuroSync index) when compared 

with PSV, and, further, evaluate an association/ effects of these patient’s surrogate 

outcomes on patient’s important outcomes i.e. mortality, ICU length of stay, and 

duration of IMV. This study trial will have ventilator parameter setting strategies that 

optimize patient ventilator synchrony in both intervention mode and comparator mode 

for each individual patient. Such settings will include ITS to prevent auto trigger, and 

ETS to match appropriate patient respiratory cycling off time and prevent unintentional 

creation of an intrinsic PEEP and optimal PEEPe to optimize patient ventilator 

synchrony. The levels of assistance in each mode (PS in PSV and NAVA gain in 

NAVA) need to be adjusted appropriately to the setting of VT and Paw. Furthermore, 

given sedative agents to some patients to optimize patient ventilator interaction if 

required, is recommended. Essentially, the treatment duration and measurement time 
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need to be conducted as long as possible to be sufficient in justifying the outcome 

difference. Ideally, a continuous monitoring PVD event during the whole duration of 

the trial must be carried out. 

 

 
In summary, it is recommended that the study should have the following PICOs and 

practices: 

1. Participants should be as homogenous as possible to represent the population 

of interest that is critically ill patients who are intubated and ventilated (meeting 

a standardised weaning criteria) in the period of weaning trial with an 

appropriate weaning strategy (weaning protocol). 

2. Intervention and measurement of AI% should be carried out in a justifiable time 

frame according to the outcomes; i.e. a whole period of intervention if the 

mortality outcome was measured. The intervention of NAVA should have NAVA 

settings to minimize PVD frequency, the settings should be appropriate justified 

from a high level of evidence. The settings to minimize PVD frequency in NAVA 

must include at least ITS, ETS, PEEPe and NAVA gain. The identical level of 

assistance between NAVA and PSV have to identify and report in each 

individual patient, this could be done by using VT, Paw, Edi level or work of 

breathing parameter to justify the level of support. 

3. Pressure support ventilation as a comparator needs to be appropriately set to 

minimize the PVD frequency, the setting parameters are ITS, ETS, PEEPe and 

PS level. 

4. Outcomes of PVD frequency should be done continuously until the end of the 

study period. The effective and reliable measurement tool and method should 

be used for outcome measurement i.e. continuous monitoring and real-time 

analysing of PVD frequency. Appropriate justification and computed data 

should be used if there is an attrition. 

5. To improve the methodological quality in conducting a primary study, it is 

recommended to conduct the research to reduce/ eliminate six domains of 

bias. 

6. To provide a transparent report of the trial, the guideline for reporting a parallel 

RCT in the CONSORT statement is recommended.171
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APPENDICES 
Appendix I: Systematic review protocol 
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Appendix II: Search strategy 
 

PubMed Search 
 

A complete search strategy for MEDLINE by searching PubMed interface 

A search strategy is based on the main concepts being examined in the review. These 
concepts included the keywords in the title, eligibility criteria for studies to be included; 
they were used to assist in the selection of appropriate subject headings and text 
words for the search strategy. 
All relevant keywords and text words were searched in each database interface to find 
controlled vocabularies and text words or thesauruses that are a standardized subject 
term assigned by indexers. A logic grid for each database was formulated into a table, 
and then each individual search term was used to search in each search interface 
accordingly. 
Following is a step for comprehensive searching in each database: 

1. The keywords that relevant to the systematic review concepts and PICO 
were identified. 

2. Each keyword was used to find controlled vocabularies or text words or 
thesauruses which is a standardized subject term (indexing term) 
assigned by indexers in each database interface. 

3. The standardized subject terms for individual database were built with 
synonyms, related terms, variant spellings, truncation and wildcards 
then formulated into a table for each database as an individual database 
logic grid. 

4. Each standardized subject term in each logic grid column then used to 
test for sensitivity and precision at a time. 

5. Each individual search results (item found) then joined with BOOLEAN 
operators AND, OR and NOT within each column, then within between 
column. 

6.  Each individual item found then scan reading to identify sensitivity and 
precision. 

7. The final search was based on the most sensitivity; precision and 
relevant to concepts of review, standardized subject terms that found the 
most relevant terms. 

8. The final item founds (search results) from each database then exported 
into a bibliographic software or reference management software, 
EndNote. 

9. Duplicate items were identified and removed by using EndNote function. 

 
Comprehensive searching for PubMed 

1. Step 1: Identified keywords, which relevant to the systematic review concepts 
and PICO. Including Neurally Adjusted Ventilatory Assist, mechanical 
ventilation, asynchrony, dyssynchrony, synchrony, and patient ventilator 
interaction. 

2. Step 2: Indexing terms in PubMed were searched in Mesh database. Items 
were found as following: 
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• Neurally Adjusted Ventilatory Assist is “Interactive Ventilatory Support” 
[Mesh] which indexed in 2012. 

• Mechanical ventilation which indexed as “Respiration, Artificial” [Mesh] 

• Asynchrony, dyssynchrony, synchrony, and patient ventilator interaction 
none of the terms were found indexing in the PubMed, so the following 
term truncation asterisk (*) and PubMed syntax [tw] were used in order 
to find the most relevant studies. 

3. Step 3: The standardized subject terms then formulated into a table for the 
PubMed logic grid as shown below. 

4. Step 4: Each standardized subject term in each logic grid column then used to 
test for sensitivity and precision at a time. No filter and limit were used. 

5. Step 4 to step 7 explicit as following: 

6. The final item founds (search results in the table of results i.e. #32) from each 
database then exported into a bibliographic software or reference management 
software, EndNote. 

 
 

 

"Interactive Ventilatory 
Support"[Mesh] 

OR 

Neurally Adjusted 
Ventilatory Assist*[tw] 

OR 

Neural trigger*[tw] 

OR 

NAVA [tw] 

OR 

Neurally Adjusted 
Ventilatory AssistNEXT20 

 
(NAVA) 

OR 

Neurally adjusted 
ventilatory assist 

Respiration, Artificial 
[Mesh] 

OR 
 

Artificial Respirat*[tw] 

OR 

Ventilation, 
Mechanical*[tw] 

 
OR 

 
Mechanical Ventilat*[tw] 

Asynchron*[tw] 

OR 

dyssynchron*[tw] 

OR 

Dysynchron*[tw] 

OR 

Synchron*[tw] 

OR 

Patient-ventilator 
interact*[tw] 

OR 

Patient-ventilator 
asynchrony*[tw] 

OR 

PVA [tw] 

A C 



113  

 

Following is a table of search outcomes from PubMed search on 30th of March 2018. 

 

 
Table 1: Outcomes from updated search 

 
 
 

Cochrane 
(CENTRAL) 
30.03.2018 

 
"Neurally Adjusted Ventilatory Assist" 

None Trial 95 

EMBASE 

06.04.2018 

'neurally adjusted ventilatory assist'/exp OR 
'neural trigger*' OR 'interactive ventilatory 
support'/exp 

OR No limit or filter 285 

30.03.2018 
("Interactive Ventilatory Support"[Mesh] OR 

Item(s) 
found operator 

used 

Conducting Date terms used in search interfaces 
Filters and limits Databases and Search Controlled vocabulary and indexed Boolean 

MEDLINE (PubMed) 
(neurally adjusted ventilatory assist) OR 

neurally adjusted ventilator 

OR No limit/ filter 382 

Assist*[tw] OR neural trigger*[tw] OR NAVA 
[tw] OR neurally adjusted 

   

Ventilator assistnext20 (nava) OR neurally    

adjusted ventilatory assist)    

SCOPUS 
30.03.2018 

(TITLE-ABS-KEY ( "Neurally  adjusted 
ventilatory assist" ) OR TITLE-ABS- 
KEY ( "Interactive Ventilatory 
Support" ) OR TITLE-ABS-KEY ( "Neural 
trigger*" ) ) AND ( LIMIT- 

OR 
and 
AND 

Date 2007 to 
Present 
(30.03.2018), 
subject  area, 
humans, English 

280 

 TO ( SUBJAREA , "MEDI" ) OR  LIMIT- 
TO ( SUBJAREA , "BIOC" ) OR  LIMIT- 
TO ( SUBJAREA , "NEUR" ) OR LIMIT- 
TO ( SUBJAREA , "ENGI" ) ) AND ( LIMI 
T TO ( EXACTKEYWORD , 
"Humans”)) AND (LIMIT- 

TO (LANGUAGE,” English”)) AND (LIMIT- 
TO (SRCTYPE,”j”) ) AND (LIMIT TO 

 journal, humans, 
journal, access 
type (open and 
others) 

 

 (ACCESSTYPE (OA)) 
OR LIMIT TO 
(ACCESSTYPE(OTHER))) 
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www.ClinicalTrials.gov 

30.03.2018 

Neurally adjusted ventilatory assist | 
Completed Studies | Adult, Senior 

None Completed 35 
studies, adult and 
senior 

Additional Resources 

Electronic database alert 
from each database and 
study reference reading 

As per each database indexed terms As per each 

database 
used 

As per each 1 
database used 

Item(s) 

found operator 
used 

Conducting Date terms used in search interfaces 

Filters and limits Databases and Search Controlled vocabulary and indexed Boolean 

http://www.clinicaltrials.gov/
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Appendix III: Joanna Briggs Institute (JBI) Critical Appraisal 
Instruments 
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Appendix IV: Explanation for given answers in the critical 
appraisal tools  

 

 

The following is the set to answer to the questions in the JBI critical appraisal check 

list for RCTs and cohort studies. To give each question yes, no, unclear or not 

applicable to the RCT checklist questions the criteria were set for each question. For 

the RCT check list tool, the criteria to give the score are: 

Qestion1. Given yes if the random method was stated, no if stated not random, and 

unclear if state random, but no method was clearly written. 

Question 2. Given ‘Yes’ if the concealed method was stated, ‘No’ if concealed method 

was stated not concealed, and ‘Unclear’ if there was no clear statement about 

concealed method. 

Question 3. Given ‘Yes’ if participant characteristics were similar, ‘No’ if not and 

‘Unclear’ if not report at all. 

Question 4. Given ‘Yes’ if stated participant were blinded, given ‘No’ if stated not 

blinded and given ‘Unclear if not stated. 

Question 5. Given ‘Yes’ if stated investigators were blinded, given ‘No’ if stated 

investigator were not blinded, and given ‘Unclear if not stated. 

Question 6. Given ‘Yes’ if the stated that the outcomes assessor was blinded, given 

‘No’ if stated not blinded, and given ‘Unclear’ if not stated. 

Question 7. Given ‘Yes’ if participants were treated/cared similarly and given ‘No’ if 

were not 

Question 8. Given ‘Yes’ if stated all participants completed the study, if all participant 

data were analysed and if there was a number of drop out participant with reasons 

provided for post assignment attrition, and the numbers in both groups (intervention 

and comparator) were comparable, given ‘No’ if stated there was a number for post 

assignment attrition and the numbers were not comparable, given ‘Unclear’ if not 

stated. 

Question 9. Given ‘Yes’ if: 
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• The participant data were analysed into the group participant allocated to, and 

all the participants completed the study and the participant data were analysed 

according to statistic concept of intention to treat (ITT) to give an unbiased 

estimate of the treatment.172
 

• There was a dropout or withdrawn number or missing outcome data, or 

outcome data were unobtainable ( met the exclusion criteria protocol during the 

study) or missing data was dealt with by using the last observation carried 

forward or used imputation technique 173 or analysed data as per protocol (PP) 

analysis (data being analysed only from the participant who completed the 

study.174
 

Given ‘No’ if there was a dropout or incomplete, the data were not analysed, and the 

study authors stated it. Given ‘Unclear’ if there was no report of numbers of dropout, 

in-completed study, and no full datasets were clearly written. 

Question 10. Given ‘Yes’ if the intervention and comparator group used the same tool, 

scale and same duration of measurement, given ‘No’ if the primary study authors 

reported not using the same tool, scale and duration of measurement and given 

‘Unclear’ if not stated. 

Question 11. Given ‘Yes’ if the investigator/ rater quality was stated (experts/ raters 

were trained to use the measurement tool), given ‘No’ if the investigator quality 

reported as non-expert and given ‘Unclear’ if there was no report. 

Question 12. Given ‘Yes’ if appropriate statistical analysis was used and given ‘No’ if 

inappropriate statistic was used. 

Question 13. Given ‘Yes’ if the study design was appropriate to topic and given ‘No’ if 

the study design was not appropriate to the topic. 

To give each question yes, no, unclear or not applicable to the cohort study check list 

questions, the criteria were set for each question. For the cohort study check list tool, 

the criteria to give the score are following. 

Question 1. Given ‘Yes’ if the two group is similar in their characteristics or if a matched 

paired, or a crossover design, given ‘No’ if the participant characteristic were not 

similar, given ‘Unclear ‘if there was no report of participant characteristics. 
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Question 2. Given ‘Yes’ if the exposures (intervention) and non-exposure (comparator/ 

control) measured in similar way, given ‘No’ if stated not measured similar and given 

‘Unclear’ if no report. 

Question 3. Given ‘Yes’ if exposure measured in a reliable way, given ‘No’ if stated it 

was not and given ‘Unclear’ if there was no report. 

Question 4. Given ’Yes’ if stated confounding factors were identified, given ‘No’ if 

confounder stated not identified and given ‘Unclear if there was no report of 

confounders. 

Question 5. Given ’Yes’ if strategies to deal with confounding factors were stated, 

given ‘No, if stated confounding factor not being identified/ controlled, given ‘Unclear’ 

if no report of possible confounders. 

Question 6. Given ‘Yes’ if stated groups/participants free of the outcome at the start of 

the study, given ‘No, if stated not free from outcome/s, given ‘Unclear’ if not stated and 

given ‘Not applicable’ if not relevant to the study design or justification of evidence 

indiscernible. 

Question 7. Given ‘Yes’ if the outcome measured in a valid and reliable way, given 

‘No’ if stated not and given ‘Unclear’ if no report of measurement details. 

Question 8. Given ‘Yes’ if the follow up time reported and sufficient to be long enough 

for outcomes to occur and given ‘No’ if stated not sufficient to be long enough for 

outcomes to occur. 

Question 9. Given ‘Yes, if follow up complete and if not, the reasons for loss of follow 

up described and explored and given ‘No’ if the follow up not completed and the reason 

for loss of follow up not given. 

Question 10. Given ‘Yes’ if strategies to address incomplete follow up utilized either 

used last outcome forward or as per protocol, given ‘No’ if none of the strategies were 

stated and given ‘Not applicable if there was no dropout or in complete study 

participant. 

Question 11. Given ’Yes’ if appropriate statistical test to analyse the data was used, 

given ‘No’ if not. 
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Appendix V: Joanna Briggs Institute Data Extraction Tool  
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Appendix VI: Ventilator setting strategies 
 

 
Ferreira 
(2017) 

10.3(5.2- 
22.9) 

5 Optimal NR Edi 0.5μV Varies to 
individual 

70% Edi- 
peak 

13-52% of 
peak 
inspiratory 
flow 

5 5 Assistance 
level 

Paw PEEPe, PS 
and FiO2 

 

 
Beloncl 
e 
(2017) 

Edi- 
max:16.8 
(14-22.3) 

9(8-10); 
step2 

Optimal 
(step 4) 

Optimal 
Step 1, 
2 
and 3 

Adjusted 
to reduce 
ineffectiv
e effort 

Adjusted 
to 
optimize 
PVS 

70% Edi- 
peak 

47.5% 
(40-53) %of 
peak 
inspiratory 
flow 

8(7.25- 
9.75) 

8(5.75-8) Level of 
assistance 

Paw PS 

 

 
Di mussi 
(2016) 

1.35±0.38 11.4±2.1 Optimal Optimal Edi 0.5μV 
plus, 
default 

Flow by 5 
au 
(Servo-i) 

70% 
Preced- 
ing Edi- 
peak 

30%  of peak 
inspiratory 
flow (default) 

7.5±1.7 7.9±1.4 Mode with 
optimal 
variable 
setting 

VT 5-8ml/kg 
PBW 

PEEPe, FiO2 
(NAVA: 
43.1±6.3) 
(PSV: 
45.4±9.4) 

Demoul 
e (2017) 

1.93±1.15 27±1 Optimal Optimal Edi 0.5μV 50% 70% Tailored to Constant Constant Mode  with VT  6-8ml/kg FiO2 & 

above 

base line 

change precedin patient to (high (high 

of bias g Edi- optimize PVI 

flow 
2LPM 

peak 

optimal 

PEEPe PEEPe  variable 
and low and low setting 
FiO2 FiO2 

ideal body PEEPe 
weight  & according to 
peak Paw  local 

guidelines 

Costa 
(2017) 

No data No data Optimal Optimal Edi 0.5μV 
above 
base line 
plus 
default 

50% 
change 
of bias 
flow 
(2PLM) 

70% Edi- Tailored to 
peak patient to 

Tailored 
to 
individual 
patient 
clinical 
required 

Tailored to 
individual 
patient 
clinical 
required 

Mode with 
optimal 
variable 

VT   6-8ml/kg FiO2 & 

reported, 
setting to 
achieve 
VT 6-8ml/kg 
ideal body 
weight 

reported, 
setting 
achieve 

VT 
8ml/kg 

ideal body PEEPe 

to optimize PVI weight (VT according to 
setting with and   Edi   as local 

6- four close as guidelines 

ideal body 
weight 

different possible) 
Remifenta-
nil infusion 
rates 

Ventilator setting strategies 

Study 
Assistance level Categorized level ITS 

of setting 

ETS PEEPe 
Independent Identical 

NAVA gain PS level 
(cmH2O/μV) (cmH2O) 

NAVA PSV NAVA PSV NAVA PSV NAVA PSV variables setting 
Constant 
setting 
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Carteau 
x (2016) 

N aka 
NAVA 
N1: 56% 
(49-60) 

P aka PSV 
P7: 33% 
(24-47) 

Low Low Edi 0.5μV 
& default 
flow at 
1LPM 

Flow 
trigger: 
lowest 
possible 

NR 25% of peak 
inspiratory 
flow 

6±1.4 6±1.4 Mode with 
optimal 
variable 
setting with 

PEEPe set 
by attending 
clinician 

PEEPe 

 N2: 74% 
(70-83) 

P10: 46% 
(35-56) 

Optimal Optimal       NAVA gain 
9 levels 

  

 N4: 83% 
(81-86) 

P25: 82% 
(72-90) 

High High       and PSV 5 
levels 

  

Schmidt N aka P aka PSV Low Low Above Flow At 70% 30% of peak 4(4-5) 4(4-5) Modes with VT 6-8ml/kg FiO2 
(2015) NAVA P50:   the base trigger: Edi-peak inspiratory   3 levels of PBW; &PEEPe 

 N50:0. 7.0(7.0-   line noise lowest  flow (default)   assistance comparable  

 6(0.4-0.9) 
N100: 
1.3(0.8-1.8) 

7.2) 
P100: 
14.0(11.5- 

 

Optimal 
 

Optimal 
avoiding 
auto 
trigger 

possible 
without 
inducing 

     Paw-mean 
observed 

 

  
N150: 

15.2) 
P150: 

 
High 

 
High 

 auto 
trigger 

       

 1.9(1.2-2.7) 21.0(17.2-            

  21.7)            

Doordui 1.93±1.15 11.9±3.2 Optimal Optimal Edi-ON: P-ON Edi-OFF: Decrease in 14.5±2.1 14.5±2.1 Mode with VT 6ml/kg PEEPe 
n     0.5μV of detected detect Paw   optimal PBW, Paw (higher 
(2015)     increasin by Edi    variable  PEEPe & 

     g Edi increase 
d of 
Paw>3 
cmH2O 

decrease 
d to 70% 
Edi-peak 

   setting  lower FiO2) 

Liu PSN aka PSP aka Low Low Edi 0.5μV Flow 70% 30% of peak PEEPe PEEPe Mode with VT 6ml/kg  

(2015) NAVA PSV    trigger precedin inspiratory 0%, 40%, 0%, 40%, & 4 levels PSN PSN 
 NAVA- PSV-ZEEP    1LPM& g Edi- flow (default) 80% 80% of PEEPe pressure limit pressure 
 ZEEP      peak  &120% &120%  same as max 

Constant 
setting setting variables PSV NAVA PSV NAVA PSV NAVA PSV NAVA NAVA gain PS level 

(cmH2O/μV) (cmH2O) 

Independent Identical 
PEEPe ETS Categorized level ITS 

of setting 

Assistance level 
Study 

Ventilator setting strategies 
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NAVA- 
PEEe40% 

PSV- 
PEEpe40 
% 

Optimal Optimal Inspirator 
y rise 
time: 

PSP (Paw- 
peak above 
PEEPe) 

15cmH2O/ 
μV   &   Paw- 
peak   above 

NAVA- 
PEEPe80% 

 

NAVA- 

PEEP120% 

PSV- 
PEEPe80 
% 
PSV- 
PEEPe120 
% 

High High 0. 05 
second 

PEEPe 

 

Yonis 
(2015) 

6 12.5(4-20) Optimal Optimal Edi 0.5μV 
plus, 
default 

Flow 
trigger 
(set to 
optimize 
PVI) 

Fixed at 
70% Edi- 
peak 

30% (21- 
40%) of peak 
inspiratory 
flow 

PEEPe 
was 
adapted 
to PEEPi 
and ETS 

PEEPe 
was 
adjusted to 
PEEPi and 
ETS 

Mode with 
optimal 
variable 
setting 

PEEPe, VT 6- 

8ml/kg& 
Paw-peak 

PEEPe 

Vaschet 
t0 
(2014) 

Awake: 
defined at 
this level, 
NR 
continuous 
data 
Light 
sedation 
Deep 
sedation 

Awake: 

11.7±2.5 all 
level 

 
 

Light 
sedation 
Deep 
Sedation 

Optimal Optimal Edi 0.5μV 

plus, 
default 

 
 

Optimal Optimal 

Optimal Optimal 

Level  5 
equals 
50% of 
2LPM 

Fixed at 

70% Edi- 
peak 

30% of peak 
inspiratory 
flow 

8.4±2.4 8.4±2.4 Mode   with 

optimal 
variable 
setting and 
3 levels of 
sedation in 
each mode 

VT 6-8ml/kg, 
identical VT& 
Edi 

FiO2 & 
PEEPe 

 

 

Mauri 
(2013) 

1.1±0.6 12±2 Optimal PSV1% 
: low 
PSV30 
%: 
optimal 

Edi 0.5μV 
plus 
default 

Pressure At 70% of 
Edi peak 

PAS1at 1% 
PSV30 

NR 
(constant 

at ant) 

NR 
(constant) 

One assist VT as pre- 
at 
2cmH2O 

- 

FiO2, PEEPe 
and ECMO 

30% of flow 
peak volume 

level with 3 clinical 
levels of setting for blood and 

& flow ETS 
(NAVA 1, 

optimal PSV, Gas flow 

based at 
2-5 LPM 

VT 3-5ml/kg, 
PSV1   and Paw<30, 

PSV30) RR<35 

Ventilator setting strategies 

Study 
Assistance level Categorized level ITS 

of setting 

ETS PEEPe 
Independent Identical 

NAVA gain PS level 
(cmH2O/μV) (cmH2O) 

NAVA PSV NAVA PSV NAVA PSV NAVA PSV variables setting 
Constant 
setting 
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Patroniti NAVA0.5 PSV4 Low Low Above Flow Edi 30% of peak 8.1 ±2.2 8.1 ±2.2 Mode with Alarm limited FiO2 & 
(2012) NAVA1.0 Low 

NAVA1.5 Optimal 
NAVA2.0 PSV8 Optimal Optimal 
NAVA2.5 PSV10 High Optimal 
NAVA3.0 PSV16 High High 
NAVA4.0 

the base 
line Edi 

lowest 
possible 
without 
auto 
triggering 

decrease 
d at 70% 
of its 
inspirator 
y peak 

inspiratory 
flow 

adjusted 
based on 
PaO2 
responses 
& 
respiratory 
compliance 

optimal 
variable 
setting with 
NAVA gain 
7 levels 
and PSV 4 
levels 

Paw-peak at 
35 cmH2O 

PEEPe 

 

 
Terzi NAVA100 PSV100 Optimal Optimal Edi 0.5 Flow NR inspiratory 5.37±1.4 5.27±1.42 One level Peak FiO2 & 
(2010) NAVA120   PSV120   High    High 

NAVA140   PSV140   High    High 
NAVA160 PSV160 High High 

μV 
and 
default 

lowest 
possible 
without 
auto 
triggering 

flow 2 
decreases to 
<25 % of 
peak flow 

of 
assistance 

pressure, VT 
6-8ml/kg 

PEEPe 

Spahija 
(2010) 

NAVA-low 

+PS 
7.6±4.6 

PSV- low 

+PS 
7.6±4.6 

High High Above 
the base 
line noise 

Pressure 
-1cmH2O 
below 

At 70% of 
Edi peak 

Servo 300 
flow cycling 
fixed at 5% 

5.8±1.6 5.8±1.6 Assistance 
level plus 

VT 6-8ml/kg, 
and Paw- 
peak 

FiO2 & 
PEEPe 

Piquillo 
ud 
(2011) 

2.2 ± 1.8 13±3 Optimal Optimal Edi 0.5μV 
And 
default 

- 
Pressure 
trigger -4 

70%of 
Edi peak 

25 to 30% of 
peak 
inspiratory 
flow 

7±2 7±2 Assistance Paw 
level VT: NAVA 6.6 
(optimal (6.1-7.9) 

FiO2, 
PEEPe, ETS 
& ITS 

to 
cmH2O 
(2/22) 

-Flow 
trigger 

-5 level of PSV1: 
assistance 
in each 

1.2 LPM 
-- 
Pressure 
slope 
100- 
150ms 

mode); 

PSV 
perform 
twice with 
same 
setting 

Ventilator setting strategies 

Study 
Assistance level Categorized level ITS 

of setting 

ETS PEEPe 
Independent Identical 

NAVA gain PS level 
(cmH2O/μV) (cmH2O) 

NAVA PSV NAVA PSV NAVA PSV NAVA PSV variables setting 
Constant 
setting 
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Colomb 
o (2008) 

NAVA50:0. 
6±0.6 

PS50: 
5.7±2 

Low Low ‘First 
serves 

Lowest 
possible 

Edi  fell to 
70% its 

30% of peak 
inspiratory 

NAVA50: 
9.7±3.3 

PSV50: 
9.5±3.3 

Mode   with 
3 levels of 

-Inspiratory 
peak – Paw 

FiO2& 
PEEPe 

NAVA100: 
1.3±1.2 

PS100: 
11±3.2 

Optimal Optimal first’; NR 
for NAVA 
ITS 

avoid 
auto 
trigger 

peak flow NAVA10 
0: 
9.6±3.2 

PSV100: 
9.6±3.2 

assistance - VT6-8ml/kg 
PBW 

NAVA150: 
1.9±1.8 

PS150: 
16.3±4.6 

High High NAVA15 
0: 
9.6±3.2 

PSV150: 
9.6±3.2 

 

NAVA: Neurally Adjusted Ventilatory Assist, PSV: pressure support ventilation, ITS: inspiratory trigger sensitivity, ETS: expiratory 

trigger sensitivity, PS pressure support, Edi: Electrical activity of diaphragm, μV: microvolt, cmH2O: centimeter of water, NR: not 

report, LPM: litter per minute, PVI: patient ventilator interaction, VT: tidal volume, FiO2: fraction of oxygen, PEEPe: external positive 

end expiratory pressure, PEEPi: intrinsic positive end expiratory pressure, ZEEP: zero end expiratory pressure, SBT: spontaneous 

breathing trial, PBW: predicted body weight, Paw: airway pressure, PaO2: partial pressure of oxygen, ms: millisecond. 

Ventilator setting strategies 

Study 
Assistance level Categorized level 

of setting 

ITS ETS PEEPe 
Independent Identical 

NAVA gain 
(cmH2O/μV) 

PS level 
(cmH2O) 

NAVA PSV NAVA PSV NAVA PSV NAVA PSV variables setting 
Constant 
setting 

NAVA-high 
+PS 
17.4±4.3 

PS50: 
5.7±2 

Low Low avoiding 
auto 
triggering 

PEEPe, 
Rise time 
set 1% of 
respirator 

peak 
inspiratory 
flow 

additional 
PS 

y cycle 
time 
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Appendix VII: Demographic characteristics of participants in included studies 
 

 
 

Study 
 

Etiology of ARF (n) 
 

Sample size 
 

Gender 
 

PEEPe 
 

Sedation score/ 
 

APACHE-II/ 
 

Mean 
 
SAPS-II/SOFA 

Duration of 
IMV 

  (n) 
Age (years) 

(male/ 
female) 

 medications Cstrs FiO2  (Day/s) at 
inclusion 

Costa Post-operative (13) M10/ F3 NR (PEEPe RSS 2 to 3 (2pt had NR/NR NR: NR/NR NR but on 

(2017)148
 ARF (9) 

Pneumonia (2) 
Exacerbation of COPD 
(2) 

 

58.9±15.86 
 unmodified) RSS 4) 

Remifentanil 
mcg/kg/min 

 Unmodified 
during the 
study 

 partial vent 
support <72h 
priori 
included 

Ferreira 

(2017) 24
 

COPD (7), pneumonia 
(5), Plural effusion (1) 
Extra- pulmonary (7) 

(20) 

 
64.45±17.12 

NR Mean: 
6.7±1.50S, PS: 
9.85±2.80 

NR/NR NR/NR 0.34±0.06 SOFA III: 
64.45±17.12 

>48h 

Mean= 
6.20±2.78 

Beloncle History of: COPD (6); (11) M7/F4 Step1: NR/NR 20(17-23.5)/; 0.5(0.4-0.5) SOFA: 5(3.5-8) Expected 

(2017)21
 Obesity (5); Median & IQR  8(5.75-8)  Cstrs: NR   IMV for >24h; 

 Bronchiectasis (1); left 
ventricular 
dysfunction (1); 
Interstitial pulmonary 
disease (1) 

=70 
(68-80) 

 Step2: 
8(5.75-8) 
Step3: 
8(7.25-9.75) 
Step4: 
8(7.25-9.75) 

    Median 
&IQR=4(1- 
13) 

Demoule NAVA/PSV: NAVA (66) NAVA: NAVA:6(5-8) RASS at most 4/ NR/NR NR but report SAPS 2: >24h 
(2016)109

 De no vo: (34/38), PSV (62) M47/F15 PSV:6(5-8) medication NR  PaO2/FiO2 NAVA=44(36- NAVA=4(2- 
 post-operative: (13/13) Median & PSV:M39    NAVA=235(18 64); 8); PSV=5(3- 

 acute on chronic: 
(12/12), 
acute cardiogenic 

IQR:66 
(57-77) 

/27    5-265); 
PSV=227(192- 
286) 

PSV=43.5(34- 
59) 

8) 

pulmonary edema: 
(3/3) 
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 Duration of 

Study Etiology of ARF (n) Sample size Gender PEEPe Sedation score/ APACHE-II/ Mean SAPS-II/SOFA  IMV 

  (n) 
Age (years) 

(male/ 
female) 

 medications Cstrs FiO2   (Day/s) at 
inclusion 

Di Mussi Pulmonary: NAVA (7);  NR NR RASS 0 to -1 with no NAVA: NAVA: NR/NR  At least 72h; 
(2016)10

 PSV (7) NAVA (13):   or moderate 13.2±4.3 43.1±6.3   NAVA: 

 Extra pulmonary: 
NAVA (6), 

66.8± 
17.3 

  sedation using 
Remifentanil, and/or 

PSV: 14.6±3.4; 
Cstrs: NR 

PSV: 45.4±9.4   5.1±1.7d 
PSV: 5.1±1.3 

 PSV (5) PSV (12) 
:69.8±15 

  Midazolam and /or 
Propofol 

     

Carteaux ARDS (9) (11) M5/ F6 NR RASS -3 to 1 52.46±1.420.2; FiO2:0.4±0.1 SAP II: 16±11 

(2016)46
 Cardiogenic pulmonary 

edema (2) 

69.8±13.9   No patient received 
any drug during the 
study 

Cstrs: NR PaO2/FiO2: 
261.9±92.1 

52.36±20.2 
/NR 

  

Doorduin 

(2015)151
 

ARDS (12) (12) 

64±11.2 

NR NR RASS-5 to 0 NR/NR FiO2: 
0.53±0.12 
PaO2/FiO2: 
143.5±43.0 

NR/NR  6.9±9 

Liu 
(2015)140

 

COPD (12) (12) 
78.8±8.6 

NR 5.8±1.1 RSS 2 to 3; awake 
and able to follow 
commands 

APACHE- 
II:32.4±4.5, 
Cstrs:33.1±8.1 

40.8±2.9 NR/NR  3.8±2.1 

     No sedation or      

minimal analgesia 

with low dose of 

morphine <3 mg/h, 

by continuous 

intravenous infusion 

Schmidt ARDS (4) (16) M10/F6 4 (4-5) Stop>6 h NR/NR FiO2:0.5 ( 0.5- SAP-II:  55  (48- 7.9±4.9 
(2015)149 COPD (3) 69.7±8.9 0-5) 64) /NR 

Pneumonia (9) 
Yonis Medical (14), surgical (30) M19/F11 Adjusted to Without sedation NR/NR PaO2/FiO2 SAP II: NR 

(2015)20
 (13) & trauma (3) 

known pulmonary 
disease 56.6% 

66.3±11  PEEPi 

continuous 
data) 

(NR   PSV: 203.15 
(113.2-389.3) 

58.6±20.6 
/NR 
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ARDS 50%; Cardiac 
36.6% 

NAVA: 
254.3(136.4- 
409.6) 

 

 
Vaschetto 
(2014)152

 

Pulmonary (12) 
Extra pulmonary (2) 

(16) 
66.6±14 

M10/F4 NR RSS: 
Awake: 2.2±0.4; 
Light: 3.9±1.3; 
Deep: 6.0±0 (BIS of 
40)/ 
Propofol 

NR/NR 0.42±0.1 at 
inclusion 

NR/NR NR 

Mauri 10 ARDS with low (10) M7/F3 NR RASS -1 to 0 with no APACHE+II:N Identical all NR/NR 23±17 

(2013)16
 respiratory system 

compliance 
46±13   sedation R; 

Cstrs 18 ±8 

(ml/cmH2O) 

settings:0.55± 
0.20; 
PaO2/FiO2: 
approximately 
identical: 
244±116 

  

Patroniti 

(2012)147
 

Pulmonary (10) 

Extra pulmonary (5) 

(15) 

68±2 

M9/F6 8.13±2.2 RSS 2 to 3 

Midazolam or 
Propofol and either 
Remifentanil or 
Fentanyl 

NR/NR 0.43± 0.1 
PaO2/FiO2:247 
.07±80.8 

NR/NR 15±12 

Piquilloud 
(2011)1

 

Pulmonary (9) 
Others (13) 

(11) 
66± 12 

M7/F15 7±2 NR NR/NR 0.43±0.17 SAP II: 48±12 
/NR 

3±2 

Terzi 

(2010)2
 

 
ARDS patients (11) 

(11) 

56.1±11.1 

M10/F1 5.27±1.4 RSS 2 to 3 received 

Propofol only, 

NR/NR PaO2/FiO2=10 
1.636 ±31.3 

NR/ 

SOFA 8.9±2,6 

14±5.4 

Spahija 
(2010)65

 

COPD (10) 
Extra pulmonary (4) 

(14) 
69±10 

M10/F1 5.9±3.7 Stopped 
sedation>4h 

NR/ 
Cstrs 0.063 
±0.02 L/cm, 
mean (SD) 

0.33±0.04 NR/NR 4.9±2.6 

Duration of 
IMV 
(Day/s) at 
inclusion Age (years) female) 

(male/ (n) 
SAPS-II/SOFA Mean 

FiO2 
Sedation score/ APACHE-II/ 
medications  Cstrs 

PEEPe Sample  size Gender Etiology of ARF (n) Study 
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 Duration of 

Study Etiology of ARF (n) Sample  size Gender 
(n) (male/ 
Age (years) female) 

PEEPe Sedation 
medications 

score/ APACHE-II/ 
Cstrs 

Mean 
FiO2 

SAPS-II/SOFA IMV 
(Day/s) 
inclusion 

 

at 

        

Colombo 
(2008)22

 

Pulmonary (4) 
Extra pulmonary (10) 

(16) 
55.4±15.8 

M12/F2 9.5±3.5 RSS 3 get either 
Propofol alone or 
with Fentanyl or 
Remifentanil 

NR/NR 0.375±0.6 NR/NR 7.21±5.1 

Continuous data reported as mean and standard deviation, otherwise stated, ARDS: acute respiratory distress syndrome, COPD: 
chronic obstructive pulmonary disease, PSV: pressure support ventilation, NAVA: Neurally adjusted ventilatory assist, NR: not report, 
PEEPe: external positive end expiratory pressure, RASS: Richmond Agitation Sedation Scale, RSS: Ramsey Sedation Scale, 
M:male, F: female, APACHE( Acute Physiology and Chronic Health Enquiry, n= number of participant, IQR: interquartile range Cstrs: 
static respiratory system compliance, LIS: Lung injury score. 

 

Appendix VIII: Details of additional data obtain from included study authors 
 

 
Costa 
(2017) 

longhini.federico@gmail.com Number of participants who have AI>10% The principle investigator provided a raw dataset. 

 

 

1. Dyssynchrony prevalence data were recorded 20 
minutes in each time point at 12,24,36 and 48 hours 
that in total it was 80 minutes in each group of 
participants. 
2. Inspiratory trigger sensitivity for each patient in 
NAVA was set at 0.5µV and adjusted by the 
physician in charge if required according to the local 
guideline. 
3. Inspiratory trigger sensitivity for PSV setting was 
unavailable, however; the flow trigger was used. 

alexandre.demoule@psl.aphp.fr Relevant outcome data 
1. Total time for asynchrony prevalence data record 
2. Inspiratory trigger sensitivity setting for both modes 

Demoule 
(2015) 

 

Studies Contact details Queries Response/outcome data provided 

mailto:longhini.federico@gmail.com
mailto:alexandre.demoule@psl.aphp.fr
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Mauri 
(2013) 

ResearchGate via message to 
Dr. Tommaso Mauri 

Continuous data for AI in each mode The AI of Edi number is correct, but that is not the 
normal AI as in Thille 2006 publication. In facts, we 
counted respiratory rate by Edi deflections and not on 
Paw waveform. The values of the classical AI were: 
PSV30: MEAN 51 (SD 18) PSV1: 44 (16) NAVA: 16 
(9) 

 

 
Terzi 
(2010) 

ResearchGate via message to 
Dr. Terzi 

To clarify a statistic report, requested for a continuous data of PVA and 
ventilator ETS 

1. Is due to mixed model 
2. Cycling off 70% 

 

 
Doorduin 
(2015) 

ResearchGate 1. What random method was used in the study? In the study protocol 
on   the   page   182   stated   that   "   were   randomly   applied. 
2. On the page 186 in the patient-ventilator interaction heading, 
would you be able to provide the data of % of the patient trigger and 
ventilator trigger in PSV and NAVA mode? 
3. In table 4 on the page 187, Which data are mean standard error, 
and which are medians? I ask these questions because the mean 
is required for estimating the effect of intervention. 
4. Was any statistic method being used to test for carry over effect 
in this crossover trial? 

1.A simple randomization by drawing envelopes to 
determine the order of ventilation modes. 
2. During PSV and NAVA mode all breaths were 
patient triggered. 
3. Data with the ±sign are means and data with a 
range between brackets are medians. 
4. Randomization was used to minimize carry over 

effect, but no statistic tests. 

Continuous and dichotomous data were provided by 
Davide Colombo 

paolo.navalesi@med.unipmn.it Continuous data of AI% Colombo 
(2008) 

‘au ‘of Edi (EAdi) meant arbitrary unit, not to be 
quantified with a microvolt jadranka.spahija@mcgill.ca 

Spahija" Clarified au (arbitrary unit) and study design (wash out period) Jadranka "Dr. Spahija 
(2012) 

 

Studies Contact details Queries Response/outcome data provided 

mailto:paolo.navalesi@med.unipmn.it
mailto:jadranka.spahija@mcgill.ca
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Appendix IX: Inclusion and exclusion criteria for included studies’ participants 
 

 

 
Costa (2017)148 1)Patient ≥ 18 years old, 

2) Orally intubated and undergoing partial ventilatory support for a 
period ≤ 72 h, 
3) Received only short acting sedative agents (i.e., Propofol and/or 
Remifentanil); required to be conscious, as indicated by a Glasgow 
Coma Scale (GCS) of 11 and a Ramsay sedation Score of 1. 

 
 
 
 
 

 
Ferreira (2017)24 1)Received IMV ≥48 h and the ICU team 

considered to be ready to undergo an SBT. 

2) It must be the first SBT attempt. 

 
 

Belonecle (2017)21 1) Ventilated using PSV for an expected 
duration of ventilation for >24 hours 
2) known or suspected history of chronic pulmonary 
obstructive (COPD) or restrictive disease, obesity (defined 
as body mass index (BMI) ≥ 30 kg.m-2) 
3) visible asynchronies or suspected intrinsic PEEP 

 

Demoule (2016)109 1) Received endotracheal mechanical ventilation 
for > 24 h for ARF of respiratory causes 
2) Ability to sustain PSV for at least 30 min with a total level of 
inspiratory pressure below 30 cmH2O, estimated remaining 
duration of IMV 
>48 h, 

1) Hemodynamic instability, as defined by a systolic arterial 
pressure<90 mmHg or mean arterial pressure< 60 mmHg, or use of vasoactive agents 
despite adequate fluid replacement 
2) Contraindication to the EAdi catheter positioning (i.e., history of oesophageal 

varices or gastroesophageal bleeding or gastroesophageal surgery in previous 12 
months) 
3) Renal failure (i.e., serum creatinine ≥ 110 μmol/L) 

4) Core temperature greater than 38 ° 
5)Pregnancy; 6) recent history of traumatic injuries 
6) Recent history of traumatic injuries or surgical wound 
causing major painful stimuli 
7) Refused consent. 

 

1) Age <18 years, is pregnant, and tracheotomized 
2) participation in other clinical trials 

1) Contraindications to the placement of the oesophageal catheter 
(nasal pathologies, facial trauma or burns, or oesophageal 
varicose or gastro oesophageal bleeding in the past 30 days 

 

1) contraindication to nasogastric tube placement 
2) poor short-term prognosis or “Do not resuscitate” order already established and in 
palliative care. 

 
 
 

1) Age < 18 years 
2) known pregnancy 
3) participation in another trial within the 30 days preceding completion of the eligibility 
criteria, 
4) Contraindication to placement of the NAVA oesophageal tube (i.e. any 
contraindication to placement of a gastric tube or repositioning of a tube already in 
place, recent gastrointestinal suture, rupture of 
oesophageal varices with gastrointestinal bleeding during the 4 days prior to inclusion) 

 
Study Inclusion criteria Exclusion criteria 
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Di mussi (2016)10 1)≥ 18 years old, orotracheally or nasotracheal intubated had been 

ventilated for acute respiratory failure with CMV (flow-limited, 
pressure-limited or volume-targeted pressure-limited) for ≥72 hours 
consecutively and were candidates for assisted ventilation. 
2) Required PEEPe ≤10cmH2O, FiO2<0.5, RASS between -1 
3) No to moderate levels of sedation and, d) ability to trigger the 
ventilator, i.e., to decrease pressure airway opening (PAO) >3–4 
cmH2O during a brief (5–10 s) end-expiratory occlusion test. 
4) Hemodynamic stability without vasopressor or inotropes 
(excluding a dobutamine and dopamine infusion <5 mcg/Kg/min 
and 3 mcg/ Kg/min, respectively) 
5) Normothermia 

 

Carteaux (2016)46 1)Has the ability to trigger every ventilatory cycle 
2) Richmond Agitation Sedation Scale ≥–3, 

3) SpO2 ≥90% with FIO2 ≤0.6 and PEEPe ≤ 8 cm H2O 
4) Temperature between 36°C and 39°C 
No patient received any sedative drug during the study. 

 

Doorduin (2015)151 Adult patients who fulfilled the Berlin definition of 
ARDS. 

 
 
 

Liu (2015)140 1) Static PEEPi ≥5 cmH2O 

2) Hemodynamic stability (heart rate<140 beats/minute, no 
vasopressors required, or <5 μg/ 
kg/min dopamine); 
3) No sedation or minimal analgesia with low dose of morphine (<3 
mg/h, by continuous 

1) Affected by neurological or neuromuscular pathology and/or known phrenic nerve 
dysfunction 
2) Contraindication to the insertion of a nasogastric tube 
(recent upper gastrointestinal surgery, oesophageal varices). 

 
 
 
 
 
 
 

 
1) Contraindication to oesophageal catheter insertion 

2) Severe cardiac arrhythmia with heart rate more than 130/min, epinephrine or 
norepinephrine infusion more than 0.3 μg/kg/min, 
3) Age <18 years, pregnancy, or moribund patient. 

 
 

1)Patients who had hemodynamic instability. 
2)Contraindications to changing a nasogastric tube (i.e., 
recent nasal bleeding, upper airway/oesophageal pathology, 
or surgery) 
3) Previously known neuromuscular disorder 

 
1)Tracheostomy 
2)Treatment abandonment 

3) History of oesophageal varices 
4) Gastroesophageal surgery in the previous 12 months or gastroesophageal bleeding 
in the previous 30 days 
5) Coagulation disorders (international normalized ratio >1.5 

3) level of sedation at most 4 on the Ramsay scale in the absence 5)decision to withhold life-sustaining treatment. 
of medical decision to increase the level of sedation, 4) FiO2 ≤50 % 
with PEEPe ≤8 cmH2O 
5) Not required of high-dose vasopressor therapy defined as 
norepinephrine above 0.3 μg kg−1 min−1 or dopamine above 10 μg 
kg−1 min 

Exclusion criteria Inclusion criteria Study 
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Yonis (2015)20 1)Ventilated IMV and present with predictive criteria of 

difficult weaning 
2) Difficult weaning was defined as a high duration of mechanical 
ventilation, or a history of respiratory (chronic obstructive pulmonary 
disease and restrictive 
disease), heart (left heart failure and coronary artery 
disease) or neuromuscular diseases. 
3) Stop sedation 

4) Meet the consensus for weaning criteria175
 

 
 
 
 
 

 
Schmidt (2015)149 1) Ventilated for acute respiratory failure via an endotracheal tube 

for > 48 hour 
2) Have the ability to trigger the ventilator with an FiO2 of ≤0.5 and 
PEEPe ≤5 cmH2O) 
3) sedation had been stopped for more than 6 hours, 
4) hemodynamic stability was achieved without vasopressor or 
inotropic medication. 

 

Vaschetto (2014)152 1) intubated patients with central venous and arterial indwelling 

catheters undergoing partial ventilatory support for ≤ 48 hours 
2) Received only short-acting sedative agents (i.e., Propofol and/or 
Remifentanil), and with a Glasgow Coma Scale greater than 10 at 
sedation discontinuation. 

 

Criteria for protocol discontinuation 
1)hemodynamic instability as defined in exclusion criteria 

1) Contraindication to Edi catheter 
placement (e.g., recent gastric or oesophageal surgery and 
the presence of oesophageal varicose veins) 
2) presence of a tracheotomy 
3) a progressive infectious process, such as nosocomial pneumonia, which was 
defined with at least two of the following criteria: rectal temperature > 38.5 °C 
or < 36.5 °C, mucopurulent bronchial secretions, recent or persistent diffuse or 
localized parenchymatous infiltrate on pulmonary X-ray, and hyperleukocytosis 
greater than 12 G/L or leukopenia less than 5 G/L, associated with a 
positive bacteriological swab obtained by bronchoalveolar washing (positive if ≥ 104 
CFU/ml) or by tracheal aspiration (positive if ≥ 106 CFU/ml); nosocomial bacteraemia, 
defined in accordance with the Bone criteria for a septic 
syndrome; hemodynamic failure with a mean arterial pressure < 65 mmHg or a need 
for catecholaminergic treatment 
4) Decision to withhold life-sustaining treatment and presence of a guardianship. 

 

1) known or suspected phrenic nerve dysfunction or other neuromuscular disorders 
that may involve the diaphragm or impair respiratory drive. 
2) Contraindications to Edi catheter placement 
3) Patients in whom the decision had been made to withhold life-sustaining treatment 

 
 
 

1) Age ≤18 years 

2) contraindications for an electrical activity of the Edi catheter 
placement, i.e., oesophageal varices, upper gastroesophageal 
bleeding in the previous 30 days, and gastroesophageal surgery in the previous 12 
months 
3) hemodynamic instability despite adequate filling (i.e., need for epinephrine or 
vasopressin infusion, or need for dopamine or dobutamine> 5 μg/kg/min, or need for 

4) breathing  spontaneously  but  in  need  of  partial  ventilatory 6) History of acute central or peripheral nervous system disorder or neuromuscular 
assistance, and disease, and 
5) Awake and able to positively cooperate, defined as the ability to 7) Lack of informed consent. 
follow an instruction 

and activated partial thromboplastin time >44 s) intravenous infusion 

Exclusion criteria Inclusion criteria Study 
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2) agitation 
3) Inability to maintain pulse arterial oxygen saturation ≥92%. 

 
 
 
 
 
 
 
 
 
 
 
 

 
Mauri (2014)16 1)ARDS patients with low Cstrs values (as 

reported by the attending physician) undergoing ECMO within 48 h 
after switching from controlled 
ventilation to PSV 

 

Patroniti (2012)147 1)Patients with ARF receiving partial ventilatory support Study 
protocol 

norepinephrine > 0.1 μg/kg/min to maintain mean arterial blood pressure > 60 mm 
Hg); 
4) core temperature > 38°C, 

5) ; renal failure (i.e., blood creatinine ≥ 110 μmol/L); 6) pregnancy 
7) presence of major painful stimuli, such as recent surgical wound or traumatic 

injuries 
8) history of allergy to Propofol components 

9) Inability to maintain a VT ≤ 8 mL/kg with a minimum inspiratory support of 8 cm 
H2O 
10) PEEPe > 12 cm H2O and/or FIO2 > 0.6 
11) Prior Propofol infusion > 2 mg/kg/h lasting 8 hours or more or < 2 mg/kg/h for < 8 
hours whenever Propofol washout was not possible 
because of occurrence of either agitation, as defined RSS or hypertension (arterial 
systolic pressure > 180 mm Hg) and tachycardia (> 125 bpm), or unbearable patient’s 
discomfort; and 
12) inclusion in other research protocols. 

 

1)Age <18 years 
2)Hemodynamic instability 
3) contraindications to inserting a NAVA dedicated nasogastric tube (NGT) (e.g., 
nasal bleeding) 

 
1) Age< 18 years 

2) Contraindication to nasogastric tube positioning or substitution (gastroesophageal 
surgery in the previous 12 months, gastroesophageal bleeding in the previous 30 
days, history of oesophageal varices, facial trauma, and/ or surgery), hemodynamic 
instability 
3) Unavailability of the Servo-I ventilator integrating the NAVA module 

 

 
Spahija (2010)65 1)Ready for ventilator weaning and fulfilled established weaning 

criteria 
No exclusion criteria were set. 

1) Age ≤ 16 years 

2) Hypoxic required FiO2≥ 0.5 
3) Haemodynamic instability 
4) Oesophageal problem, active upper gastro intestinal bleeding 
5) Contraindication for naso-gastric tube insertion 
6) High risk of death in the next 7 days and have neuromuscular disease 

1)intubated for acute respiratory failure and ventilated with PSV Piquilloud (2011)1
 

 
Study Inclusion criteria Exclusion criteria 
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2) All continuous sedative infusions were discontinued at least 4 
hours before starting the trial. 

 

Terzi (2010)2 1) ARDS patients caused by pulmonary disease ventilated with IMV 
and able to 
breathing spontaneously and pneumatically 
triggering the ventilator for 24 hrs. 
2) required PS ≤ 20 cm H2O 
3) Definition of ARDS based on four criteria as per The American 
European Consensus Conference on ARDS.176

 

 
 

1) Age < 18 years 
2) Hemodynamic instability or a history of oesophageal varices or gastroesophageal 
bleeding in the past 30 days. 
3) Requiring sedation received Propofol only, without opiates, to maintain the RSS 
score 2 to 3 

 

Colombo (2008)22 All intubated patients receiving partial ventilatory support 1) Age 18 years 
2) Gastro-oesophageal surgery in the previous 12 months 
3) Gastro-oesophageal bleeding in the previous 30 days 

4) History of oesophageal varices and facial trauma and/or surgery 
5) Hemodynamic instability despite adequate filling [i.e. need for continuous infusion 
of epinephrine or vasopressin, or dopamine >5 c/ (kg min) or norepinephrine >0.1 c/ 
(kg min) to maintain systolic arterial blood pressure>90 mmHg] 
6) Core temperature >38 C 
7) Coagulation disorders (INR ratio >1.5 and PTT >44 s), 

8) Inability to maintain a tidal volume≤8 ml/kg with a minimum inspiratory support of 8 
cmH2O 
9) Inclusion in other research protocol. 

 
 

Appendix X: Description of statistical analysis perform in included studies 
 

 
Kolmogorov– 
Smirnov 
test 

The Kolmogorov-Smirnov test is used to check the assumption of 
normality.145,153

 

Costa 2017148 

Schmidt2015149 

Yonis 201620
 

Piquilloud 20111
 

 

Statistical Test Description Statistical analysis used in study 

 
Study Inclusion criteria Exclusion criteria 
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Shapiro-Wilks test       The Shapiro-Wilks test is the test for normality distribution data.  
It provides a more specialized alternative to the Kolmogorov- 
Smirnov test. This test compares the variance of the data, 
estimated with the variance expected by normal distribution. 

 
 

D’ Angostino test  D’ Angostino test is one of the main test of  normality assumption 
test, which it recommended to used additional to the graphical 
assessment of normality. 146

 

Patroniti 2012147
 

The normality assumption was tested by the Shapiro–Wilks test. The AI% data 
were reported in median and IQR, which assumed the data are not normally 
distributed. Continuous data (AI%) and categorical variable (AI>10%) were not 
statistically analysis. 

 

Di mussi 201610
 

All data were test for normality distribution, Data of AI% was non-parametric as 
was reported in median and IQR. 

 

Analysis of 
Variance (ANOVA) 

Analysis of variance is a nonspecific null hypothesis (Ho) test for 
normally distributed data, and when Ho is rejected, the conclusion 
is that at least one population mean is different from at least one 
other means, so the post hoc analysis is needed. An ANOVA is 
conducted in one factor (independent variables) is called a one- 
way ANOVA and in two factors, then the ANOVA is called a two- 

way ANOVA.153,158
 

 

One-way ANOVA with repeated measures is used to compare 
three or more group means where the participants are the same 
in each group. This usually occurs in two situations: 

1. when participants are measured multiple times to see 
changes to an intervention. 

2. when participants are subjected to more than one 
condition/trial and the response to each of these 
conditions wants to be compared.158

 

Doordin 2015151
 

One-way ANOVA for repeated measures was performed to compare modes. 
Mauri 201316

 

Two-way ANOVA for repeated measures with study phase as within-subject and 
randomization sequence as between-subject factors (modes, ETS and AI%) was 
used. 
Terzi 20102

 

The two-way ANOVA was used to test for each variable dataset. When two-way 
ANOVA identified a significant interaction, mixed-model analysis was performed 
to evaluate the effects of assist level by ventilation mode, 
Spahija 201065

 

Variables were compared between NAVA and 
PSV and the two levels of assist, using two-way 
repeated-measures ANOVA. 

 

A two-way repeated measures ANOVA is used to compare the 
mean differences between groups that have been split on two 
within-subjects’ factors to evaluate if there is an interaction 
between these factors on the dependent variable. A two-way 
repeated measures ANOVA is often used in studies where a 
dependent variable is measured over two or more-time points, or 

when subjects have undergone two or more conditions.153
 

 
Statistical Test Description Statistical analysis used in study 
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Friedman test The Friedman test is a non-parametric alternative to the one way 

ANOVA with repeated measures and used to test for differences 
between groups for a matched datasets.153,177

 

Beloncle 201721
 

The measured parameters were compared across the different steps using 
nonparametric Friedman test. 
Doorduin 2017151

 

Friedman Test was used as the data are nonparametric 
equivalent to compare difference between the modes. 

Carteaux 201646
 

The effect of the level of assistance during NAVA and PSV was assessed 
separately by a Friedman test. 
Liu 2015140

 

The effects of PEEPe levels were assessed within the mode, within both modes 
and between PSN(NAVA) PEEPe 0% and PSP(PSV) PEEPe80%. The datasets 
were non-parametric, the data then analyzed within-subject comparison of all 
eight conditions 
with one-way repeated measures ANOVA on ranks was used. 
Schmidt 2015149

 

Friedman ANOVA for repeated measures was performed 
to compare the prevalence of the main asynchronies between three modes as 
data failed normality test 
Vaschetto 2014152

 

Friedman tests for repeated-measures analysis of variance by ranks was used 
because of a small sample size and nonparametric data. It was used to compare 
continuous variables which compared between depths of sedation within each 
ventilatory mode. 

 

Mixed models Mixed model is a data analysis that used of both random and fixed 
effects. It is a flexible approach to corelated data included 
repeated measures on each subject overtime, or to multiple 
related outcome measures at one point in time.178

 

 
Sign test or Wilcoxon test is used to compare two repeated 

Terzi 2010 

The mixed model analysis was used to evaluate the modes affect the level of 
assist. 

 

Ferreira 201724
 

The Wilcoxon 

signed rank test 

measures is a nonparametric alternative to the paired t-test. The 
data needs to meet four assumptions: 

 
1. Dependent variable should be measured at 

the ordinal or continuous level 
2. Independent variable should consist of two categorical 

independent groups. 

The paired Wilcoxon signed-rank test was used to compare continuous variables 
during the SBT in NAVA and PSV. 
Beloncle 201721

 

The measured parameters were compared across the different steps (factors) 
Wilcoxon tests were used to perform post hoc pairwise comparisons with 
correction for multiple comparisons using the false discovery rate approach. 
Carteaux 201546

 

 
Statistical Test Description Statistical analysis used in study 
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3. Have independence of observations (data taken from 

the same group or two separate occasions or data from 
matched group) 

4. Two variables are not normally distributed.157,177
 

 
 
 

Mann-Whitney U test Mann-Whitney U test is sometimes called Wilcoxon Mann  
Whitney U test. It is used to compare two separates unrelated 
(independent) groups and is a non-parametric alternative to a 
two-sample t-test, or any distribution data provide there is 
reasonable spread of data across the range. 

The effect of the level of assistance during NAVA and PSV was assessed 
separately by a Friedman test and then a Wilcoxon test. 
Yonis 201620

 

The two modes of ventilatory support were compared using the non-parametric 
Wilcoxon test the groups was performed by the χ2 tests. 
Vaschetto 2014152

 

Pairwise comparisons test was performed with the Wilcoxon test. 
 

Demoule 2016109
 

Differences between groups were assessed with 
The Mann–Whitney U test for continuous variables. 
Di mussi 201610

 

The breathing parameters data is not normally distributed. The Mann-Whitney U 
test was used to compare AI% (continuous data) between two modes. Mortality 
outcome was not statistically analyzed. 

 

Student– Newman–
Keuls test 

The Newman-Keuls method is used to perform pair wise 
comparisons and a stepwise approach, comparing pairs ordered 
from smallest to largest. It considers separately the alpha of each 
of the possible contrasts.158

 

Liu 2015140
 

Student-Newman-Keuls test for post hoc analysis of multiple comparisons was 
used following the one-way repeated measures ANOVA on ranks was used 
(within subject of eight conditions). It used to identify the difference of effects of 
PEEPe levels within the mode, within both modes and between PSN(NAVA) 
PEEPe 0% and PSP(PSV) PEEPe80%. 
Piquilloud 20111

 

A post hoc pairwise comparisons were performed using the Newman–Keuls 
procedure. 
Spahija201065

 

The Student-Newman-Keuls test was used for 
post hoc test to identify significant effects. 

 

 
McNemar’s test The McNemar’s test is used to determine if there are differences 

on a dichotomous dependent variable between two related 
groups (paired data).153

 

Costa 2017148
 

The asynchrony index (categorical) was compared by McNemar's test and a P 
value< 0.05 was considered significant. 

rate, and the false discovery rate.179 Newman–Keuls test or Dunn test. 

Dunn’s test  is a multiple non-parametric pairwise  test following Doordin 2015151
 

rejection of  a Kruskal-Willis test, for control  of family wise error Post hoc analysis was performed with the Student– 
Dunn’s test 

 
Statistical Test Description Statistical analysis used in study 
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Statistical analysis used in study Description Statistical Test 

 
 
 
 

 

The χ2 tests The χ2 tests are used with any number of variables to determine 
an association in between two categorical variables in the sample 
are likely to reflect a real association between these two variables 
in the population. They are a non-directional hypothesis test. To 
use the χ2 tests four assumptions must be satisfied in general. 

1. Samples are independent 

2.  Participant in each group have been randomly and 
independent selected. 

3. The classification categories in the distribution are 
mutually exclusive and exhaustive. 

The sample size is reasonably large.150
 

 

Yate’s correction       The effect of Yates' correction is used to prevent overestimation  
of statistical significance for small data. It might be applied to a χ2 

analysis when evaluating the association between two 
dichotomous variables.159

 

Fisher’s exact test Fisher’s exact test is used to evaluate an  association  and  
difference in two categorical variables, where the outcomes can 
be classified as either present or absent for example. It is a non- 
parametric test when using the χ2 test assumptions are not 
satisfied.153,157

 

 
The Tukey Test The Tukey Test or Tukey procedure or Tukey’s Honest 

Significant Difference test, is a post-hoc test for multiple 
comparisons to identify where those differences lie. The test 
compares all possible pairs of means to keep error rates low.158

 

Demoule 2016109
 

The was used to evaluate categorical variables, which is mortality outcomes (as 
number of events and percentage). 

 
 
 
 
 
 
 

 
Yonis201620

 

Yates correction was used when necessary after the two modes of ventilatory 
support were compared by using the non-parametric Wilcoxon test then the 

groups was performed by the χ2 tests. 
Colombo 200822

 

Asynchrony index >10% was compared between the two modes using Fisher’s 
exact test. 
Vaschetto 2014152

 

Categorical data were compared by Fisher exact test. 

 

Mauri 201416
 

Tukey method was used if the ventilation strategy effect was statistically 
significant, a post hoc analysis was performed comparing the three treatments at 
each step. 

 

 
Bonferroni 
adjustment/ 
Correction 

Bonferroni post-test is for multiple comparisons and used to 

control the familywise error rate. It is used to correct a 

Doordin 2015151
 

Bonferroni post-test was performed to test for associations, a two-tailed P < 
0.0001 was considered significance for comparing the NeuroSync index between 
three modes. 
Patroniti 2012147

 

Benjamini-Hochberg is used to control the false discovery rate 
Carteaux 201646

 

Benjamini-Hochberg correction was used for paired measures. 
provided the test statistics have a certain positive regression 

dependency.160
 

Benjamini-Hochberg 
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critical P level for significance, the alpha then set in a lower 

critical value. It adjusts for number of tests.157,180
 

Bonferroni correction was used to compare each level of assistance with both the 
highest and lowest level of assistance within the same ventilatory mode. 
Vaschetto 2014152

 

Bonferroni correction was used for adjusting the threshold for statistical 
significance by means of for multiple comparisons; p values less than 0.017 were 
considered significant. 

 
 

Appendix XI: Outcome data extraction and calculation 
 

Asynchrony index (%) 
 
 

 

Study name 
Sample size 

 
Total 

 

 
Withdraw 

Intervention 

 
Mean 

outcome: NAVA 

 
SD 

Comparator 

 
Mean 

outcome: PSV 

 
SD 

 

Calculated p 
value 

 

p value 

Beloncle 201721
 11 0 1.33* 2.96* 0.83* 1.11* 0.605 NR 

Ferreira 201724
 20 0 11.8* 11.49* 21.7* 20.9*  0.033 

Di mussi 201610
 NAVA:20 

PSV:18 
NAVA:7 
PSV:6 

5.84* 3.4* 12.53* 11.38*  0.04 

Demoule 2016109
 NAVA:62 

PSV:66 
NAVA:9 
PSV: 16 

16.23* 6.97* 29.2* 21.27* 0.0001 0.001 

Carteaux 201646
 11 0 0.23* 0.52* 0* 0* 0.16 >0.05 

Yonis 201520
 30 0 7.32* 14.65* 12.61* 25.55* 0.0015 0.0015 

Schmidt 2015149
 16 0 1.6* 1.72* 0.64* 0.92* 0.06 >0.05 

Vaschetto 2014152
 16 2 0 0 7.6 NR 0.0001 NR 

 
Statistical Test Description Statistical analysis used in study 
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Study name 

Sample size 

 
Total 

 

 
Withdraw 

Intervention 

 
Mean 

outcome: NAVA 

 
SD 

Comparator 

 
Mean 

outcome: PSV 

 
SD 

 
Calculated p 
value 

 
p value 

Mauri 201316
 10 0 20 13 74 43 0.01 0.01 

Patroniti 2012147
 15 1 0 0 1.667* 3.704* 0.116 NR 

Piquilloud 20111
 25 3 5.67* 5.41* 14.4* 16.01* 0.019 <0.05 

Terzi 20102
 11 0 1.5 ¥ 1 ¥ 4.5 ¥ 1 ¥ 0.0001 NR 

Colombo 2008 16 2 0*# 0*# 7.1*# 14.77*# 0.073 NR 

 
 
 

Asynchrony index > 10% 
 

Study name Sample size Intervention outcome: NAVA Comparator outcome: PSV 

 Recruit sample Withdraw Number of events Total sample size Number of events Total sample size 

Ferreira 201724
 20 0 12 20 11 20 

Costa 2017148
 13 0 0* 13 5* 13 

Beloncle 201721
 11 0 1 11 0 11 

Carteaux 201646
 11 0 1 11 0 11 

Yonis 201520
 30 0 5 30 9 30 

Schmidt 2015149
 16 0 0 16 0 16 

Vaschetto 2012152
 16 2 0 14 2 14 

Patroniti 2012147
 15 1 0 14 4 14 
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Study name Sample size Intervention outcome: NAVA Comparator outcome: PSV 

 
Recruit sample Withdraw Number of events Total sample size Number of events Total sample size 

Piquilloud 20111
 25 3 6 22 12 22 

Colombo 200822
 16 2 0* 14 3* 14 

NeuroSync index 
     

Sample size Intervention Comparator outcome: PSV 
Study name outcome: NAVA Calculated p value P value 

 Total Withdraw Mean SD Mean SD  

Doorduin 2015151
 12 0 (7.673)# (4.331)# (21.23)# (21.076)# 0.04 <0.05* 

Liu 2015140
 12 0 6.6 2.52 19.7 15.12 0.007 

Patient ventilator asynchrony percentage 

 

Study name 
Sample 
size 

 

Factors of study 
Intervention outcome: NAVA Comparator out come: PSV 

Calculated p value 
 

P value 

 Total  Mean SD Mean SD   

Spahija 201065
 14 (NAVA-low vs PSV- 

low) 

7 2 18 3 0.0001 NR 

  NAVA-high vs PSV- 
high 

7 2 23 12 0.0001 NR 

 

Mortality in intensive care unit 
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Di mussi 201610 NAVA: 62 

PSV:66 
0 8 66 14 66 

Demoule 2016109 NAVA:20 
PSV:18 

NAVA:7 
PSV:6 

0 13 3 12 

 

#: Data provided by the primary authors; ¥: Estimated from figure; NR: not report,*: Calculated data (Mean and SD) used MedCalc software. 
This procedure calculates the difference of an observed mean with a hypothesized value. A significance value (p value) and 95% 
confidence interval (CI) of the observed mean is reported. The p value is the probability of obtaining the observed mean in the sample 
if the null hypothesis value were the true value. The p value is calculated using the one sample t-test, with the value t calculated as: 

 
 

Number of events Total sample size Number of event Total sample size Recruit sample Withdraw 

Comparator outcome: PSV Intervention outcome: NAVA Sample size Study name 




