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Abstract 

Tacrolimus (TAC) is the mainstay of current immunosuppressive therapy following 

kidney transplantation. However, TAC pharmacokinetics (PK) are highly variable and 

excessive high and low whole blood trough TAC concentrations (TAC C0) have been 

associated with toxicity and acute rejection, respectively. Therefore, therapeutic drug 

monitoring (TDM), targeting TAC C0 between 5-15 ng/mL or a slightly varied range, 

has been adopted in most transplant centres to maximise immunosuppression and 

minimise toxicity. Nonetheless, a TAC C0-rejection relationship has not been 

adequately shown under TDM. In addition, TAC pharmacogenetic (PGx) and innate 

immunogenetic studies reported conflicting findings (except for CYP3A5*3) regarding 

their impact on dose-adjusted TAC C0 (TAC C0/D), acute rejection and kidney function. 

Therefore, this thesis hypothesised that: 1) TAC dispositional genes would affect TAC 

C0/D inter-individual variability, biopsy-proven acute rejection (BPAR) and estimated 

glomerular filtration rate (eGFR); 2) there would be a temporal relationship between 

TAC C0 and BPAR; and 3) innate immunogenetics would predict BPAR incidence.  

Chapters 2 and 3 investigated if CYP3A4/5, POR, ABCB1 and NR1I2 genetics affect 

TAC C0/D inter-individual variability, BPAR and eGFR in a retrospective cohort of 

165 Australian kidney transplant recipients in the first 3 months post-transplantation. 

CYP3A5 expressors (*1/*1 + *1/*3) (P = 5.5×10-16) and ABCB1 61G allele carriers (P 

= 0.001) had lower log-transformed TAC C0/D (56% and 26% lower geometric mean 

TAC C0/D, respectively) and accounted for approximately 30% and 4%, respectively, 

of log10-transformed TAC C0/D variability in the first 3 months post-transplantation. 

However, CYP3A4, POR and NR1I2 genotypes did not significantly affect TAC C0/D. 

In addition, none of these TAC PK genes significantly affected BPAR incidence in the 

first 14 days, or eGFR in the first 3 months, post-transplantation. Notably, an incidental 
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finding was that there was no significant difference in BPAR incidence between the 

groups with 1) TAC C0 < and ≥ 8 ng/mL, or 2) TAC C0 < and ≥ 5 ng/mL for 3 

consecutive days in the first 14 days post-transplantation, prompting further 

investigation. 

Chapter 4 explored the relationship between TAC C0 and BPAR incidence in the first 

14 days post-transplantation and confirmed that TAC C0 (log10-transformed) were 

lower on the day of (mean difference [95% confidence interval] = -0.13 [-0.24 to -

0.025], post-hoc P = 0.013), and 1 day prior to (-0.13 [-0.21 to -0.048], post-hoc P = 

0.002), BPAR. Adjusting for haematocrit variability assisted to identify this temporal 

TAC C0-response relationship. 

Chapter 5 found pro- and anti-inflammatory mediator (CASP1, CRP, IL1B, IL2, IL6, 

IL6R, IL10, TGFB and TNF) and MyD88-dependent TLR signalling pathway (LY96, 

MYD88, TLR2 and TLR4) genetics did not significantly affect BPAR incidence in the 

first 14 days post-transplantation. Notably, IL6 -6331C/C genotype had a higher 

incidence of BPAR compared to T/T genotype (Odds Ratio [95% confidence interval] 

= 6.6 [1.7 to 25.8], likelihood-ratio test P = 0.02), whereas it was non-significant after 

correction for multiple comparisons (P-value threshold = 0.0038). 

In summary, this thesis provides the first evidence that ABCB1 61A>G, along with 

confirming CYP3A5*3, affects TAC C0/D variability. However, the known single 

nucleotide polymorphisms (SNP) in TAC dispositional genes did not affect kidney 

transplant outcomes, likely due to TAC TDM substantially reducing the risk of sub- 

and supra-exposure of TAC. Notably, a temporal TAC C0-rejection relationship was 

identified, and it was shown for the first time that accounting for haematocrit variability 

assisted in identifying this response relationship. None of the investigated innate 

immunogenetic factors predicted BPAR incidence in a relatively limited cohort of 
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TAC-treated kidney transplant recipients. Therefore, future studies are still needed to 

confirm current findings and explore novel factors to predict kidney transplant 

outcomes. 
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Kidney transplantation is the most effective treatment for end-stage renal disease, 

enabling patients’ higher survival rates [1] and better quality of life than receiving 

dialysis alone. Immunosuppressive therapy is applied post-transplantation to suppress 

the recipient’s immune system to prevent rejection. Nowadays, most recipients will 

receive oral maintenance therapy consisting of a calcineurin inhibitor (CNI; e.g. 

ciclosporin A (CsA) or tacrolimus (TAC)), mycophenolate mofetil (MMF) or enteric 

coated mycophenolate sodium salt (MPA) and a corticosteroid. Since the introduction 

of the CNIs, the first-year graft survival rate has been dramatically improved from 

around 60% to over 90% in the last 40 years [1, 2]. Although CsA is the first CNI, TAC 

has about 100 times higher immunosuppressive potency [3] and fewer rejection 

complications [4]. Therefore, TAC has been used as the first-choice CNI in over 80% 

Australian kidney transplant recipients since 2009 [5].  

TAC is the backbone of maintenance therapy, however, there are still challenges in its 

clinical use, mainly the large inter-individual variability in TAC pharmacokinetics (PK) 

and the complications of acute rejection and kidney dysfunction. Single nucleotide 

polymorphisms (SNPs) in TAC dispositional genes can alter TAC metabolising 

enzymes and efflux transporter expression/activity [6-14]; therefore, they are likely to 

significantly contribute to the varied TAC PK and might affect kidney transplant 

outcomes via modifying TAC intracellular concentrations in T-cells and kidney cells. 

Trough whole blood TAC concentrations (TAC C0) from 5 to 15 ng/mL have been 

recommended to maximise immunosuppression and minimise toxicity [15]. Whilst 

TAC therapeutic drug monitoring (TDM) has been applied in most transplant centres 

(TAC TDM range may vary slightly in different hospitals and at different times post-

transplantation [16-19]), rejection episodes can still occur even within a target TAC 

TDM range [16-19]. In addition, the innate immune system assists T-cell differentiation, 



Chapter 1. Introduction 

3 
 

proliferation and activation [20], and intensifies the severity of kidney tissue injury [21-

23]. Therefore, any innate immune genetic variation which can alter pro- and anti-

inflammatory mediator secretion in leukocytes, may also cause the difference in 

rejection incidence between kidney transplant recipients.  

More than 50% of the inter-individual variability of dose-adjusted TAC C0 (TAC C0/D) 

cannot be explained by currently known TAC PK genetics [24-26], and conflicting 

findings also exist about their impact on TAC C0/D. In addition, no reliable 

pharmacogenetic (PGx) or innate immunogenetic predictors of kidney transplant 

outcomes have been found. Therefore, the main purpose of this introductory chapter is 

to update the progress of genetic research in TAC C0/D, acute rejection and kidney 

function and identify the research gaps in current TAC PGx and innate immunogenetic 

studies in kidney transplantation.  

1.1 Kidney rejection and TAC 

1.1.1 Kidney rejection post-transplantation 

The first and foremost challenge post-transplantation is rejection, which is mediated by 

the recipient’s immune system. Based on the time post-transplantation, kidney rejection 

can be classified into 4 sub-groups: 1) hyperacute rejection, which happens within 

minutes post-transplantation; 2) acute rejection, which occurs from days to weeks post-

transplantation; 3) late acute rejection, which develops after 3 months post-

transplantation; and 4) chronic rejection, which occurs months to years post-

transplantation [21]. Kidney rejection can also be grouped into antibody-mediated and 

T-cell-mediated rejection, and the latter is the most common type of acute rejection 

[21]. 

The major histocompatibility complex (MHC) on recipients’ antigen-presenting cells 

binds to the antigens derived from donors’ cells to form MHC-peptide complex, which 
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then is recognised by recipients’ T-cell receptor [21]. This binding triggers intracellular 

signalling transduction in T-cells (calcium mobilisation, etc.), resulting in the activation 

of transcription factors (e.g. nuclear factor of activated T cells (NFAT)) [27]. NFAT 

activation leads to the secretion of interleukin-2 (IL-2) [28], which drives T-cell 

differentiation, proliferation and activation [20]. Consequently, cytotoxic T-cells 

induce apoptosis and inflammation in the kidney cells [21].  

An increased serum creatinine (or decreased estimated glomerular filtration rate (eGFR) 

calculated from serum creatinine) may indicate rejection, however, it is not diagnostic. 

The only gold-standard of kidney rejection diagnosis remains tissue biopsy. The 2018 

Banff classification system [29] is the most updated clinical consensus of kidney graft 

pathology. 

To prevent rejection, a triple therapy of TAC, MMF or MPA, and a corticosteroid is 

widely applied post-transplantation and TAC is the cornerstone of the 

immunosuppressive therapy. 

1.1.2 Mechanism of action of TAC  

The molecular and cellular mechanisms of TAC immunosuppression to prevent kidney 

rejection has been reviewed by Thomson et al. [30] in depth. Overall, TAC binds to 

FK-506 binding protein 12 (FKBP-12) to form a drug-immunophilin complex to inhibit 

calcineurin phosphatase [31]. IL-2 is a T-cell growth factor and IL2 transcription is 

calcineurin-dependent [20]. In addition, calcineurin is a key rate-limiting enzyme of T-

cell signalling transduction [32]. Therefore, calcineurin inhibition by TAC ultimately 

prevents IL2 transcription and T-cell proliferation (see Figure 1). Consequently, T-cell 

mediated acute rejection is interrupted. 
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Figure 1. Mechanism of action of TAC. TAC binds to the immunophilin FKBP-12 to 

inhibit calcineurin activity. Therefore, the dephosphorylation of P-NFAT, to the 

transcription factor NFAT, is inhibited. NFAT is essential for T-cell signalling 

transduction, therefore, inhibition of P-NFAT dephosphorylation interrupts IL2 

transcription and T-cell differentiation, proliferation and activation.  

1.2 TAC PK  

1.2.1 TAC absorption, distribution, metabolism and excretion 

TAC PK has been reviewed by Venkataramanan et al. [33] and Staatz et al. [34] in 

depth. Therefore, this section only gives a descriptive summary of TAC absorption, 

distribution, metabolism and excretion primarily based on these 2 systematic reviews. 

Figure 2 briefly depicts TAC disposition in recipient intestine and liver, and donor 

kidney cells. 
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• Absorption 

TAC is dosed orally and its absorption is rapid. The time (Tmax) to the peak whole blood 

TAC concentration (Cmax) is usually within 2 hours (h) [33]. The bioavailability of TAC 

is low (mean bioavailability of 25%) and highly variable within and between patients 

(from 4 to 89%) [33]. The low bioavailability can be explained by the insolubility of 

TAC in aqueous media [35] and the extensive pre-systemic TAC metabolism in 

intestine [36]. In addition, TAC is a substrate of P-glycoprotein (P-gp; encoded by 

ABCB1 (ATP-binding cassette subfamily B member 1)) [37] and the apical membrane 

of intestinal cells expresses P-gp [38], therefore, P-gp can decrease TAC absorption by 

pumping TAC back into the intestinal lumen. 

• Distribution 

TAC is lipophilic and undergoes extensive body distribution [35]. In rats, TAC 

concentrations after intramuscular administration range from high to low in the order 

of lung, spleen, heart, kidney, pancreas and liver [35]. P-gp can decrease TAC hepatic 

and intestinal accumulation as P-gp is also expressed on the apical membrane of 

hepatocytes and tubular epithelial cells [38]. The whole blood TAC concentration is 

about 15-fold higher (range 4- to 114-fold) than plasma TAC concentration as TAC is 

extensively bound to erythrocytes [33, 34]. The volume of distribution of TAC is only 

about 1 L/kg based on the whole blood TAC concentration but can be 30 L/kg based 

on the plasma TAC concentration [39]. In plasma, over 70% of TAC is bound to α1-

acid glycoprotein and albumin [40]. Only the unbound TAC is therapeutically active. 

Whole blood has been chosen as the medium for TAC TDM as erythrocyte binding is 

temperature dependent; therefore, using whole blood reduces variability in TAC 

concentrations caused by variations in sample processing within and between 
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laboratories [41]. In addition, quantifying TAC whole blood concentrations mitigates 

sensitivity challenges as TAC concentrations are much higher in whole blood than 

plasma [41]. Haematocrit is the volume percentage of red blood cells in whole blood. 

A change of haematocrit can alter the distribution of TAC in whole blood, and more 

details are discussed in section 1.2.2.2 about the impact of haematocrit on TAC whole 

blood concentration.  

• Metabolism 

TAC undergoes extensive pre-systemic and systemic metabolism by the intestinal and 

hepatic cytochromes P450 3A4/5 (CYP3A4/5) [36, 42-44]. Less than 0.5% of TAC was 

found unchanged in urine [45]. More than 15 TAC metabolites have been found [33] 

but the demethylation of TAC to 13-O-demethyl-TAC is the predominant metabolic 

reaction [43]. The immunosuppressive activity of this major TAC metabolite is only 

about one-tenth compared with the parent drug [46]. Although CYP3A4 is the most 

abundant hepatic CYP3A enzyme, the catalytic efficiency of TAC to its major 

metabolite by CYP3A5 is over 60% higher than that by CYP3A4 [44].  

• Excretion 

More than 95% of the metabolites of TAC are excreted via the faeces or biliary route 

[35]. Renal clearance was responsible for < 3% of the total body clearance of TAC [45]. 

• TAC PK parameters 

The mean elimination half-life of TAC is about 12 h (ranging from 8.7 to 32.5 h) [33]. 

Total body clearance of orally administered TAC in the whole blood varies from 2 to 4 

L/h in kidney transplant recipients [33]. Intra- and inter-individual coefficients of 

variation for apparent whole blood TAC clearance range from 40 to 71% and 30 to 42%, 
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respectively [47]. Overall, TAC has highly variable PK and CYP3A4/5 and P-gp are 

major determinants of TAC disposition (see section 1.5.1.1).  

 

Figure 2. TAC disposition in recipient intestine and liver, and donor kidney cells. TAC 

undergoes extensive pre-systemic and systemic metabolism via intestinal and hepatic 

CYP3A4/5. Although kidney cells also express CYP3A5, the kidney is not the major 

metabolism organ of TAC systemic clearance. As TAC is a substrate of P-gp, and the 

apical membrane of intestine, liver and kidney cells all express P-gp, TAC absorption, 

hepatic and renal accumulation can decrease via pumping TAC out of these tissue cells. 

Dark and light blue lines in Figure 2 indicate the apical and basolateral membranes, 

respectively.  

1.2.2 Clinical factors affecting TAC PK 

Age, sex, haematocrit, liver function, food-drug and drug-drug interactions are potential 

clinical factors affecting TAC absorption, distribution and metabolism. Therefore, their 

impact on TAC PK intra- and/or inter-individual variability has been widely studied in 

kidney transplant recipients.  
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1.2.2.1 Age and sex 

In adult kidney transplant recipients, some studies reported age did not affect TAC PK 

[24, 48], whilst other studies found age as a significant factor increasing TAC C0 [49] 

or TAC C0/D [50-52]. However, the contribution of age to TAC C0/D is minor (~ 5%) 

based on multivariate analysis [50, 51]. In addition, most studies did not find sex 

affecting TAC PK [24, 49, 51, 52]. Altogether, these results suggest that age and sex 

are not the major clinical factors affecting TAC PK in adult kidney transplant recipients, 

therefore, TAC dosing is not age- or sex-based.  

1.2.2.2 Haematocrit  

Haematocrit is usually low due to kidney dysfunction pre-transplantation but can 

recover to normal in the weeks post-transplantation. However, transfusion, post-

transplantation anaemia and erythrocytosis [53] can contribute to haematocrit intra- and 

inter-individual variability. TAC is highly bound to red blood cells [54] and TAC 

concentration is measured in whole blood, therefore, changes in haematocrit over time 

can cause fluctuations in TAC C0 within and between patients. However, the 

therapeutically active unbound TAC concentration is not affected by haematocrit [55] 

as TAC is a low clearance drug with clearance equivalent to only 3% of liver blood 

flow [45]. If a recipient has a very high haematocrit (but “normal” whole blood 

clearance) and TAC C0 is above the target TDM range, a dose reduction may not be 

appropriate as it can increase the risk of acute rejection. Conversely for a very low 

haematocrit and increased risk of toxicity. TAC population PK models and multivariate 

analysis have already identified haematocrit as a significant confounder of TAC C0 

inter-individual variability [49, 52, 55, 56]. However, haematocrit variations have not 

been accounted for in clinical interpretation of TAC C0 under TDM. Although the 
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relationship between TAC C0 and rejection is not well defined, the role of haematocrit 

has not been adequately assessed in this concentration-response relationship. 

1.2.2.3 Liver dysfunction  

TAC clearance and bioavailability are similar between healthy volunteer subjects (n = 

6) and subjects with mild liver dysfunction (n = 8) [57]. However, severe liver 

dysfunction can substantially decrease TAC clearance by up to two thirds and increase 

the elimination half-life by up to 3-fold [58, 59]. In contrast, kidney function did not 

significantly affect TAC clearance [58, 60]. This can be explained by the fact that the 

intestine and liver but not the kidney are the major organs for TAC metabolism and 

excretion [33].  

1.2.2.4 Food-drug interaction  

Food, especially fatty food, and the relative time interval between food and TAC oral 

dosing can reduce TAC absorption and relative bioavailability [61, 62]. In a single-dose 

study in 15 healthy volunteers, subjects taking a high-fat meal had 10% lower mean 

area under TAC concentration-time curve (AUC), 35% lower Cmax and 2-fold longer 

Tmax than subjects taking a low-fat meal [61]. In another single-dose study of 16 healthy 

volunteers, compared to the fasting group or the group having TAC 1 h before meal, 

subjects showed about 35% decreased TAC AUC, 60% lower Cmax and 1.8-fold longer 

Tmax [62] in groups having TAC administration immediately, or 1.5 h, after a meal.  

Grapefruit juice is a CYP3A4 inhibitor and it can decrease intestinal CYP3A4 

expression by over 60% in 10 healthy volunteers [63]. A daily consumption of 500 mL 

grapefruit juice for 1 week increased TAC C0 by 2-fold in 30 liver transplant recipients 

[64].  
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1.2.2.5 Drug-drug interaction 

Since TAC is a CYP3A and P-gp substrate, any co-medications, which are CYP3A 

and/or P-gp inducers or inhibitors, may affect TAC PK. Liu et al. [65] and Kim et al. 

[66] have summarised the clinically common CYP3A and P-gp inhibitors and inducers 

which should be prescribed with caution when co-administered with TAC. The best 

examples are corticosteroids, well known inducers of both CYP3A [67, 68] and P-gp 

[69, 70]. In 2 groups of kidney transplant recipients in the first 2 weeks post-

transplantation, TAC C0 was about 20% lower in the group co-administered 

prednisolone than a non-corticosteroid group, even though the TAC dose was similar 

between the 2 groups [71]. A high-dose of corticosteroid > 0.25 mg/kg/day can increase 

TAC dose requirement by 40-80% to achieve the same target TAC C0 when compared 

with a low corticosteroid dose regimen < 0.15 mg/kg/day in the first 3 months post-

transplantation [72].  

Herbal supplements can also cause drug-drug interactions with TAC. For example, St. 

John's Wort is an anti-depressant herbal product, an inducer of intestinal and hepatic 

CYP3A4, and intestinal P-gp [73]. St. John's Wort can reduce TAC AUC by 40-60% 

in healthy volunteers [74] and kidney transplant recipients [75] (n = 10 in both studies). 

1.3 TAC TDM  

Calcineurin inhibition by TAC not only contributes to immunosuppression but also 

induces toxicity (e.g. nephrotoxicity) [76]. In addition, as TAC PK is highly variable 

between patients (see section 1.2.1), TAC undergoes TDM to maximise 

immunosuppression and minimise toxicity.  

A target TAC C0 from 5 to 15 ng/mL was derived from an open-label, concentration-

ranging trial of TAC in the first 42 days following kidney transplantation [15]. Ninety-
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six kidney transplant recipients were randomised to target 3 different TAC C0 ranges: 

1) 5 to 14 ng/mL; 2) 15 to 25 ng/mL; and 3) 26 to 40 ng/mL. All recipients were co-

administered antilymphocyte globulin, azathioprine and a corticosteroid. No toxicity 

event (e.g. kidney dysfunction) occurred when TAC C0 was < 5 ng/mL, however, it was 

over 50% when TAC C0 was > 15 ng/mL. Whilst biopsy-proven acute kidney rejection 

(BPAR) incidence was about 2- to 3-fold higher when TAC C0 was below compared 

with above 5 ng/mL, BPAR occurred even when TAC C0 was > 15 ng/mL. Therefore, 

the lower limit of TAC TDM to predict BPAR incidence remains under debate. In a 

cohort of 29 kidney transplant recipients treated with TAC, azathioprine and 

prednisolone, Staatz et al. [77] collected 349 TAC C0 data in total and found all 12 

rejectors and 10 out of 17 non-rejectors had a median trough concentration between 0 

and 10 ng/mL, whereas the remaining 7 non-rejectors had a median concentration 

between 10 and 15 ng/mL. Therefore, they concluded “In order to minimise rejection 

in the first month after renal transplantation, trough concentrations greater than 10 

ng/mL must be achieved”. However, in a pooled-analysis of 3 randomised, open-label 

clinical trials [16-18], Bouamar et al. [19] found TAC C0 1) below or above 5 ng/mL 

or 2) below or above 10 ng/mL was not significantly associated with BPAR incidence 

when patients were co-administered MMF and a corticosteroid in the first year post-

transplantation. The ELITE-Symphony study (n = 1645) [16], a prospective clinical 

trial, recommended a target TAC C0 from 3 to 7 ng/mL to decrease kidney dysfunction 

when recipients were also co-administered MMF and a corticosteroid in the first year 

post-transplantation. However, the relationship between TAC C0 and BPAR was not 

formally investigated.  

Although TAC TDM has been adopted to maximise immunosuppression, the 

relationship between TAC C0 and rejection has not been adequately shown and 
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limitations exist in the previous studies [19, 77, 78]. Firstly, the published studies only 

classified recipients with and without BPAR into 2 groups and then compared TAC C0 

between groups on each day post-transplantation. However, importantly, patients can 

develop BPAR on different days, in addition, no previous studies compared TAC C0 on 

the days prior to and on the day of BPAR within patients. Secondly, whilst haematocrit 

affects TAC C0 intra- and inter-individual variability (see section 1.2.2.2), TAC C0 was 

not adjusted for haematocrit. Overall, the relationship between TAC and BPAR under 

TDM still needs to be elucidated.  

TAC TDM for long-term transplant outcomes remains extremely complicated, which 

is beyond the scope of this study. Noteworthy, the Collaborative Transplant Study has 

published registry data indicating graft failure with TAC C0 < 5 ng/mL [79].  

For new TAC TDM approaches, especially intracellular TAC concentration monitoring, 

the Immunosuppressive Drugs Scientific Committee of the International Association of 

Therapeutic Drug Monitoring and Clinical Toxicology has issued a most up-to-date 

consensus report [80]. This report has comprehensively reviewed the pharmacological 

justifications, clinical evidence and current analytical methods for future TAC 

concentration monitoring. More details are covered in Chapter 6 (see section 6.3) about 

intracellular TAC concentration monitoring in peripheral blood mononuclear cells 

(PBMCs) in kidney transplant recipients.  

1.4 Kidney transplant outcomes  

Although kidney rejection rate has now been reduced to about 20% in the first 6 months 

post-transplantation, the average lifespan of a transplanted kidney is still less than 15 

years [1]. Acute rejection is the most common and serious early-stage complication 

post-transplantation and it affects kidney function and long-term graft survival [81]. In 

addition, a 30% decline of eGFR has been significantly associated with graft failure 
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[82]. Therefore, studies have been carried out to explore potential predictors (other than 

TAC C0) for acute rejection and kidney dysfunction post-transplantation. 

1.4.1 Factors affecting acute kidney rejection 

Human leukocyte antigen (HLA) mismatches are routinely examined before all 

transplantation surgery to reduce the risk of rejection. Other clinical factors including 

induction therapy, donor type (living or deceased donor), retransplant and peak panel-

reactive antibodies (PRA) scores, have been extensively studied for their impact on 

BPAR incidence in kidney transplant recipients receiving triple therapy in the last 10 

years [19, 78, 83-89]. However, acute rejection still happens under TAC TDM.  

Donor specific antibodies have been suggested as predicting biomarkers for antibody-

mediated rejection as recently reviewed [90]. However, no biomarkers for T-cell 

mediated acute rejection (the most common type of acute rejection) have been 

found/accepted as recently reviewed [91], although metabolomic, proteomic and 

genomic studies keep exploring novel predictors to identify high risk recipients of T-

cell mediated acute rejection and monitor pharmacodynamic (PD) response.  

Since the immunosuppressive site of action of TAC is in T-cells [30], TAC intracellular 

exposure in T-cells may determine TAC PD response. Therefore, any factor decreasing 

intracellular TAC concentration in T-cells is worthwhile to be explored as a predictor 

for BPAR in the future. 

1.4.2 Factors affecting kidney function post-transplantation 

Although most kidney transplant recipients have improved kidney function post-

transplantation, short- and long-term kidney function still differ between recipients. 

Acute kidney rejection, Thea Brennan-Krohn polyomavirus (BKV) infection [92] and 

delayed graft function [93] (DGF; dialysis in the first week post-transplantation due to 
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kidney dysfunction) can cause a decline in eGFR. Organs from deceased donors usually 

have longer cold ischaemia times than living donors. Due to the ischaemia/reperfusion 

injury to the kidney, cold ischaemia times > 20 h can increase DGF incidence by 50-

100% compared with cold ischaemia times < 10 h [94].  

TAC also plays an important role in decreasing kidney function. Over exposure of TAC 

in kidney cells is likely to cause acute kidney dysfunction due to endothelial cell injury 

and glomerular constriction by TAC [76]. The ongoing ischaemia by glomerular 

constriction can activate pro-fibrotic and pro-inflammatory pathways [95], leading to 

structural kidney damage. Whilst acute kidney dysfunction is reversible by reducing 

TAC dose or discontinuation of TAC, it increases the risk of BPAR [96]. In addition, 

the decline in eGFR by chronic allograft nephropathy is irreversible. Moreover, TAC 

drives new on-set diabetes and hypertension and these comorbidities can decrease 

kidney function [97]. Overall, any factor increasing intracellular TAC concentration in 

kidney cells is worthwhile exploring as a predictor for kidney function post-

transplantation. 

1.5 Genetic research in kidney transplantation  

TAC PGx and innate immunogenetic studies have been widely carried out to explore 

potential genetic determinants of the inter-individual variabilities in TAC PK and/or 

kidney transplant outcomes, which are only partially explained to date (see sections 1.2 

and 1.4). This section does not aim to be a comprehensive systemic review including 

all past relevant genetic research in TAC C0/D, BPAR and eGFR, but a summary of the 

a) accepted findings, b) conflicting findings and c) other research gaps in TAC PGx 

and innate immunogenetic studies in kidney transplantation. 
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1.5.1 TAC dispositional genetics  

SNPs in CYP3A4/5 and ABCB1 can alter CYP3A and P-gp expression and/or activity 

[6, 8-11], therefore, recipient CYP3A4/5 and ABCB1 genetics have been most widely 

investigated for their impact on TAC C0/D as discussed in section 1.5.1.1. Since the 

immunosuppressive site of action of TAC is in T-cells [30] and P-gp is also expressed 

on lymphocytes (including T-cells) [98], recipient ABCB1 genetics are also likely to 

affect BPAR incidence via modifying intracellular TAC concentrations in T-cells as 

discussed in section 1.5.1.2. In addition, TAC is nephrotoxic [76, 95] while CYP3A5 

[99] and P-gp [38] are also expressed in/on donor kidney cells, therefore, donor 

CYP3A5 and ABCB1 genetics are likely to affect kidney function by altering TAC 

intracellular concentration in kidney cells as discussed in section 1.5.1.3. Figure 3 

briefly depicts how recipient P-gp and donor CYP3A5 and P-gp can affect TAC local 

exposure in T-cells and kidney cells, respectively. 

SNPs in cytochrome P450 reductase (POR) [13] and NR1I2 (nuclear receptor subfamily 

1, group I, member 2; encoding gene for pregnane X receptor (PXR)) [7, 12] regulate 

CYP3A4/P-gp expression and/or activity. However, neither recipient nor donor POR 

or NR1I2 have been adequately studied for their genetic association with TAC C0/D 

and kidney transplant outcomes, and the results are inconclusive.  

The relevant key SNPs in CYP3A, ABCB1, POR and NR1I2, their functional 

consequences and allele frequencies (African, east Asian and European) are 

summarised in Table 1. Allele frequency data were collected from the Ensembl 

database (http://grch37.ensembl.org/Homo_sapiens/Info/Index (last accessed on 8th 

March 2019)).  
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Figure 3. CYP3A5 and/or P-gp can determine TAC intracellular exposure in kidney 

cells and T-cells as P-gp is expressed on T-cell membranes while both CYP3A5 and P-

gp are expressed in or on kidney cells. Dark and light blue lines in Figure 3 indicate the 

apical and basolateral membranes, respectively. 
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Table 1. Allele frequency (African, east Asian and Europeans) and functional consequences of key SNPs in CYP3A, ABCB1, POR and NR1I2 

Genes SNPs Allele frequency (%) Functional consequences Ref 
AFR EAS EUR   

CYP3A5 rs776746 (*3; 6986A>G) 18 71 94 loss of functional CYP3A5 [6] 

CYP3A4 rs2740574 (*1B; -392A>G) 77 - 3 *1B ↑ CYP3A4 expression  

1) *1B promoter had 1.2- to 1.9-fold ↑ luciferase expression 

than *1 promoter in MCF-7 and HepG2 cells (P < 0.0001) 

2) *1B promoter had 1.5- and 1.9-fold ↑ CYP3A4 expression 

than *1 promoter in human hepatocytes (P < 0.03)  

[8] 

rs35599367 (*22; 15389C>T) - - 5 T allele ↓ CYP3A4 expression and activity  

1) C/C had 1.7-fold ↑ CYP3A4 mRNA expression than T 

carriers in human hepatocytes (P = 0.03);  

2) C/C had 2.5-fold ↑ CYP3A4 activity than C/T in human 

hepatocytes (P = 0.04) 

[14] 

ABCB1 rs9282564 (61A>G; Asn21Asp) - - 8 5 common European ABCB1 SNPs are in strong LD, however, 

their genetics were associated with ↑, ↓ or ↔ P-gp efflux in 

in vitro or clinical studies with different substrates and/or in 

different ethnicities. Therefore, it has been suggested by the 

cited reviews that on balance the variant 

genotypes/haplotypes of the 5 SNPs ↓ P-gp efflux in a 
substrate- and ethnicity-dependent manner 

[100-105] 

 

 

rs2229109 (1199G>A; Ser400Asn) - - 3 

rs1128503 (1236C>T)  14 63 42 

rs2032582 (2677G>T; Ala893Ser) 2 40 41 

rs1045642 (3435C>T) 15 40 52 

POR rs1057868 (*28; Ala503Val) 17 37 30 *28 ↑ CYP3A4 activity  

*28 homozygotes had 1.6-fold ↑ CYP3A4 activity than *1 

allele carriers by midazolam phenotyping test (P = 0.004) 

[13] 
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NR1I2 rs3814055 (-25385C>T) 31 22 37 T allele ↑ CYP3A4 activity  

T/T had 2-fold ↑ CYP3A4 activity than C carriers in 

erythromycin breath test after rifampin treatment (P = 0.05) 

[7] 

rs2276707 (8055C>T)  42 47 17 T allele ↑ CYP3A4 expression  

T allele carriers had 2-fold ↑ intestinal CYP3A4 mRNA 

expression than C/C after rifampin treatment (P = 0.04) 

[7] 

rs2472677 (63396C>T) 37 62 66 T allele ↑ CYP3A4 activity  

T carriers had 3-fold ↑ CYP3A4 activity than C/C in 

testosterone 6β hydroxylation test in primary human 

hepatocytes (all CYP3A5 non-expressors; P = 0.006) 

[12] 

↑: increase; ↓: decrease; ↔: unchanged; AFR: African; Ala: alanine; Asn: asparagine; Asp: aspartic acid; EAS: east Asian; EUR: European; LD: 

linkage disequilibrium; Ref: reference(s); Ser: serine; SNPs: single nucleotide polymorphisms; Val: valine.  
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1.5.1.1 TAC dispositional genetics and TAC C0/D 

Recipient (RPT) genetics determine TAC systemic exposure as the donor (DNR) 

kidney is not the major metabolism or excretion organ of TAC (see sections 1.2.1 & 

1.2.2.3). A large number of TAC dispositional genetic studies (RPT) have been carried 

out for their impact on TAC C0/D. Accepted PGx findings on TAC C0/D are supported 

by the cited review articles and/or meta-analyses while conflicting findings are shown 

in Table 2, whereas other research gaps are concisely summarised in section 1.5.1.1.3. 

1.5.1.1.1 Accepted PGx findings on TAC C0/D 

• CYP3A5*3 — a major genetic factor affecting TAC C0/D  

CYP3A5*3 results in non-functional CYP3A5 protein [6], therefore, CYP3A5 

phenotypes have been classified accordingly into extensive metabolisers (EM) – 

CYP3A5*1 homozygotes (CYP3A5 expressors), intermediate metabolisers (IM) – 

CYP3A5*3 heterozygotes (CYP3A5 expressors) and poor metabolisers (PM) – 

CYP3A5*3 homozygotes (CYP3A5 non-expressors) [106]. It has been summarised by 

Staatz et al. [101] in a TAC PK-PGx review that there is “an approximate halving of 

the tacrolimus C0/Dose and doubling of tacrolimus dose requirements in CYP3A5 

expressors compared with CYP3A5 non-expressors.”  

• CYP3A4*1B — a genetic factor dependent on CYP3A5 to affect TAC C0/D 

A meta-analysis reported that CYP3A4*1/*1 had significantly higher TAC C0/D than 

CYP3A4*1B carriers at 1, 6 and 12 months post-transplantation (P < 0.001, P = 0.001 

and 0.01, respectively); however, this impact was dependent on CYP3A5 genotypes 

(CYP3A4*1B is in strong LD with CYP3A5*1) [107]. Hesselink et al. [108] concluded 

in a PGx review that “Genotyping transplant patients for CYP3A4*1B therefore does 
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not appear to be meaningful from a clinical perspective.”  

• ABCB1 1236C>T, 2627G>T and 3435C>T — no/limited impact on TAC 

C0/D  

In terms of ABCB1 SNPs, TAC PGx studies mainly focused on 1236C>T, 2677G>T 

and 3435C>T. Most studies found the genotypes of these 3 SNPs did not affect TAC 

C0/D, whereas only a few but not all PGx studies found their haplotypes/diplotypes 

were statistically significant, but quantitively minor, contributors to TAC C0/D inter-

individual variability as reviewed by Staatz et al. [101]. ABCB1 haplotypes may have 

a combined genetic impact on P-gp efflux [101]. However, Hesselink et al. [108] 

concluded in a PGx review that “most association studies have reported negative results 

and the effect of variation in ABCB1 on tacrolimus pharmacokinetics, if any, is likely 

to be small and not clinically relevant.”  

1.5.1.1.2 Conflicting PGx findings on TAC C0/D 

• CYP3A4*22 

Inconsistent findings exist regarding the impact of CYP3A4*22 on TAC C0/D (see 

Table 2). Some studies found CYP3A4*22 increases TAC C0/D, however, others found 

CYP3A4*22 did not affect TAC C0/D unless adjusted for CYP3A5*3 or combined with 

CYP3A5*3 into the predicted EM/IM/PM phenotypes, suggesting CYP3A4*22 may 

only be a minor factor to affect TAC C0/D.  

• POR*28 

It is still inconclusive if POR*28 decreases or does not affect TAC C0/D (with or 

without adjusting for CYP3A5*3) and if the impact is through enhanced CYP3A4 [109] 

or CYP3A5 [110] activity given that POR*28 decreases TAC C0/D (see Table 2). Since 

small sample size is a common limitation in most PGx studies, especially when 
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stratification analysis is within CYP3A5 expressors (< 20% of Europeans) and multiple 

comparisons at different time post-transplantation are carried out, both type I and type 

II errors are likely to occur. This may be the main reason causing the conflicting 

findings of the impact of POR*28 on TAC C0/D. 

• NR1I2 -25385C>T and 8055C>T  

Only NR1I2 -25385C>T and 8055C>T have been studied for their genetic impact on 

TAC C0/D in kidney transplant recipients, however, neither SNP had a consistent 

impact on TAC C0/D, with or without adjusting for CYP3A5*3 (see Table 2). Different 

ethnicities between studies, small sample sizes and limited number of studies may 

contribute together to the inconsistent impact of NR1I2 genetics on TAC C0/D.  

1.5.1.1.3 Other gaps in PGx research on TAC C0/D  

• ABCB1 61A>G and 1199G>A  

Two ABCB1 SNPs found in Europeans, 61A>G and 1199G>A, have not been 

adequately studied for their effect on TAC C0/D. No study yet has investigated if 

61A>G affects TAC C0/D in kidney transplant recipients but only one study explored 

its impact, along with another 43 genetic variants, on TAC C0 under TDM as dose data 

were not reported [111]. Although 61A>G did not significantly affect TAC C0, 

CYP3A5*3 had not been adjusted for in that study (n = 1560; P = 1.0). In addition, only 

one study explored the relationship between 1199G>A and TAC C0/D in 96 kidney 

transplant recipients, however, the result was non-significant (P > 0.05) but also without 

adjusting for the impact of CYP3A5*3 on TAC C0/D [112].  

• NR1I2 63396C>T 
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NR1I2 63396C>T increases CYP3A4 activity (see Table 1), however, it has not been 

studied for its impact on TAC C0/D.  

1.5.1.1.4 Future directions in PGx research on TAC C0/D 

Future studies (European cohort) should take ABCB1 61A>G and 1199G>A, along with 

1236C>T, 2677G>T and 3435C>T, and their haplotypes into account for TAC C0/D 

inter-individual variability as these 5 SNPs have not been investigated together in 

kidney transplant recipients. Moreover, the impact of CYP3A4*22, POR*28 and NR1I2 

genetics on TAC C0/D needs further elucidation in a large cohort adjusting for the 

impact of CYP3A5*3 and the other potential cofounders (e.g. haematocrit and co-

medication) on TAC C0/D. 

1.5.1.2 TAC dispositional genetics and BPAR  

TAC dispositional genes (RPT & DNR) have been investigated for their impact on 

BPAR incidence, however, none of the genetic factors investigated have been identified 

as a reliable predictor for BPAR under TAC TDM due to minor contribution and poor 

reproducibility. Accepted PGx findings on BPAR incidence are supported by the cited 

review articles while conflicting findings are shown in Table 3, whereas other research 

gaps are concisely described in section 1.5.1.2.3. 

1.5.1.2.1 Accepted PGx findings on BPAR incidence 

• CYP3A5*3 (RPT), CYP3A4*1B (RPT), CYP3A4*22 & ABCB1 genetics 

(RPT & DNR) — limited/no impact on BPAR incidence 

Most studies did not find an association between recipient CYP3A5*3, CYP3A4*1B and 

ABCB1 1236C>T, 2677G>T and 3435C>T and BPAR incidence in kidney transplant 

recipients undergoing TDM as reviewed by Staatz et al. [113] and Shuker et al. [114] 
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in depth. In addition, CYP3A4*22 (RPT & DNR) [52, 115] and ABCB1 3435C>T (DNR) 

[116] did not significantly affect BPAR incidence, although the number of studies and 

sample sizes were both limited. TAC TDM has been widely applied to reduce the risk 

of sub-exposure of TAC and this may explain why TAC dispositional genes did not 

affect BPAR incidence. Overall, Hesselink et al. [108] concluded in a TAC PGx review 

that “Although some authors have reported an increased incidence of rejection in 

association with certain genotypes, the additional risk posed by one’s CYP3A or ABCB1 

genotype appears to be small and is unlikely to be clinically useful.” 

1.5.1.2.2 Conflicting findings on BPAR incidence  

• CYP3A5*3 and CYP3A4*1B (DNR) 

Glowacki et al. [116] reported CYP3A5*3 (DNR) did not affect BPAR incidence in 

kidney transplant recipients, however, Gervasini et al. (2018) [115] recently found 

CYP3A5*3 along with CYP3A4*1B (DNR) predicted increased BPAR incidence (see 

Table 3). Not all recipients were treated with TAC (some were treated with CsA) and 

HLA mismatches were not adjusted for BPAR incidence in the later study. Notably, 

even the authors could not justify the mechanism behind the genetic association 

between CYP3A (DNR) and BPAR. 

1.5.1.2.3 Other gaps in PGx research on BPAR incidence 

• ABCB1 61A>G and 1199G>A (RPT & DNR) 

ABCB1 1199G>A increases TAC concentration in PBMCs from kidney transplant 

recipients by 1.4-fold (P = 0.001) [112], whereas the impact of 61A>G on PBMCs TAC 

concentration is still unknown. However, neither 61A>G nor 1199G>A (RPT & DNR), 

nor the haplotypes consisting of the 5 ABCB1 SNPs, have been investigated for their 
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impact on BPAR incidence. 

• POR*28 (RPT & DNR) 

Only recipient but not donor POR*28 has been investigated for its impact on BPAR 

incidence, although no significant associations were found [110, 117]. However, if 

CYP3A (DNR) genetics predicted BPAR incidence, POR*28 (DNR) would be 

worthwhile investigating as it is essential for CYP3A (DNR) activity.  

• NR1I2 genetics (RPT & DNR) 

Whilst PXR regulates CYP3A and P-gp expression [118], no published studies have 

investigated if NR1I2 genetics (RPT & DNR) affected BPAR incidence.  

1.5.1.2.4 Future directions in PGx research on BPAR incidence 

Future studies (European cohort) should take ABCB1 61A>G and 1199G>A (RPT & 

DNR), along with 1236C>T, 2677G>T and 3435C>T, and their haplotypes into account 

for BPAR incidence as these 5 SNPs have not been investigated together in kidney 

transplant recipients. Moreover, POR*28 (DNR) and NR1I2 genetics (RPT & DNR) 

are worthwhile investigating in the future for their impact on BPAR incidence. 

Importantly, confounding factors (HLA mismatches, retransplant, etc.) should be 

adjusted when exploring the relationship between the genetic factors and BPAR. 

1.5.1.3 TAC dispositional genetics and eGFR 

TAC dispositional genes (RPT & DNR) have also been investigated for their impact on 

eGFR, an indicator to easily evaluate kidney dysfunction, which can be caused by 

factors such as BPAR, DGF and TAC-induced nephrotoxicity. However, similarly to 

BPAR results, no PGx study to date has identified a reliable predictor for eGFR due to 

minor contribution and/or poor reproducibility. Accepted PGx findings on eGFR are 
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supported by the consistent individual studies while conflicting findings are shown in 

Table 4, whereas other research gaps are concisely described in section 1.5.1.3.3. 

1.5.1.3.1 Accepted PGx findings on eGFR 

• CYP3A*3 and ABCB1 genetics (RPT) — no impact on eGFR 

Recipient CYP3A5*3 and ABCB1 genetics (1236C>T, 2677C>T and 3435C>T) did not 

affect eGFR [51, 52, 116, 119-124], probably because TDM has substantially reduced 

the risk of supra-exposure of TAC.  

1.5.1.3.2 Conflicting PGx findings on eGFR  

• CYP3A5*3 and ABCB1 3435C>T (DNR) 

No consistent associations between CYP3A5*3 and ABCB1 3435C>T (DNR), and 

eGFR have been identified in kidney transplant recipients (see Table 4). This 

inconsistency may be caused by varied and limited sample sizes (n = 50 – 237), different 

ethnicities and time post-transplantation (day 7 to 12 months). In addition, none of these 

studies were adjusted for the impact of clinical factors (e.g. BPAR and DGF) on eGFR. 

1.5.1.3.3 Other gaps in PGx research on eGFR 

• CYP3A4*1B and CYP3A4*22 (RPT) 

No published studies have investigated if CYP3A4*1B or CYP3A4*22 (RPT) affect 

eGFR. Notably, CYP3A4 genetics (DNR) has not been investigated for its impact on 

eGFR, probably because CYP3A4 is not expressed in kidney cells. 

• ABCB1 1236C>T, 2677G>T (DNR) and 61A>G and 1199G>A (RPT & 

DNR) 

Although donor 1236C>T and 2677G>T were not associated with eGFR, the number 

of studies and the sample sizes were limited [51, 120, 122]. The 1199G allele was 
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associated with decreased TAC accumulation in HEK293 and K562 recombinant cell 

lines [125]. However, neither 61A>G nor 1199G>A (RPT & DNR), nor the haplotypes 

consisting of the 5 ABCB1 SNPs (RPT & DNR), have been investigated for their impact 

on eGFR. 

• POR*28 (RPT & DNR) 

Only recipient but not donor POR*28 has been investigated for its impact on eGFR, 

although no significant results were reported [110, 117]. However, if CYP3A5*3 (DNR) 

predicted eGFR, POR*28 (DNR) would be worthwhile investigating as it is essential 

for CYP3A (DNR) activity.  

• NR1I2 genetics (RPT & DNR) 

Whilst PXR regulates CYP3A and P-gp expression [118], no published study has 

investigated its genetic impact (RPT & DNR) on eGFR.  

1.5.1.3.4 Future directions in PGx research on eGFR 

Future studies (European cohort) should take ABCB1 61A>G and 1199G>A (RPT & 

DNR), along with 1236C>T, 2677G>T and 3435C>T, and their haplotypes into account 

for eGFR as these 5 SNPs have not been investigated together in kidney transplant 

recipients. Moreover, POR*28 (DNR) and NR1I2 genetics (RPT & DNR) are 

worthwhile investigating in the future for their impact on eGFR. Importantly, 

confounding factors (e.g. BPAR and DGF) should be adjusted for when exploring the 

relationship between the genetic factors and eGFR. 
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Table 2. Conflicting PGx findings of CYP3A4*22, POR*28 and NR1I2 genetics on TAC C0/D in kidney transplant recipients 
Genes SNPs Ref N Eth Comedication Time Differences of TAC C0/D 

      (months) between genetic groups 
CYP3A4 15389C>T 

*22 
[25] 223  EUR NR 0-16.5±29.4 *22 carriers vs non-carriers (adjusted P-value 

threshold = 0.01) 

(1) German cohort (n = 10 vs 126): 1.5-fold ↑ TAC 
C0/D (P = 0.02);  
(2) Denmark cohort (n = 8 vs 79): P > 0.2; 

(3) Combined cohort (n = 18 vs 205): 1.5-fold ↑ TAC 
C0/D (P = 0.01) 

 [50] 49  EUR MMF or AZA & Steroid1 0-38.6±44.0 (1) *22 carriers vs non-carriers (n = 6 vs 43): 2-fold ↑ 
TAC C0/D (lowest P = 0.02); 
(2) CYP3A PM vs IM & EM (n = 6 vs 43): 1.6- to 4-

fold ↑ TAC C0/D (P < 0.001)  
 [52] 272  NR MMF & Steroid1 0-12 (1) *22 carriers vs non-carriers (n = 20-24 vs 200-237):  

      at day 5-7 to 6 months post-transplantation: 1.6- to 

2-fold ↑ TAC C0/D (lowest P = 0.006);  
      at 12 months 12 post-transplantation: P = 0.2; 
(2) CYP3A PM vs EM (n = 23 vs 41) and PM vs IM 

(n = 23 vs 198): 1.9- to 3.3-fold and 1.1- to 1.6-fold ↑ 
TAC C0/D, respectively (P < 0.0001) 

  [109] 1407  Mixed1 MMF & Steroid2 0-6 P = 0.3 
  [126] 241  EUR MMF & Steroid1 0-12 *22 carriers vs non-carriers (n = 13 vs 218):  

(1)1.3-fold ↑ TAC C0/D at month 3 post-
transplantation (P = 0.02);  
(2) lowest P = 0.1 at day 7, month 1, 6 or 12 post-
transplantation 
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POR *28 [25] 223  EUR NR 0-16.5±29.4 *1/*1 vs *1/*28 vs *28/*28: 
(1) German cohort (total n = 136): P = 0.1; 
(2) Denmark cohort (total n = 87): P = 0.7 

  [52] 272  NR MMF & Steroid1 0-12 lowest P = 0.2  
  [109] 1429  Mixed1 MMF & Steroid2 0-6 (1) POR*28 carriers vs non-carriers when adjusting 

for:  
       CYP3A5*1: P > 0.05;        

       CYP3A5*1 & clinical factors*: 5% ↓ geometric 
mean TAC C0/D (P = 0.04); 
(2) POR*28 carriers vs non-carriers in:  

      CYP3A5 non-expressors: 5.6% ↓ TAC C0/D 
when  
              also adjusting for clinical factors* (P = 0.03); 
      CYP3A5 expressors: P = 0.7  

  [110] 184  Mixed2 MMF & Steroid3 0-12 (1) *1/*1 vs *1/*28 vs *28/*28: lowest P = 0.2; 
(2) *28 carriers vs non-carriers in: 
       CYP3A5 expressors: lowest P = 0.07; 
       CYP3A5 non-expressors: lowest P = 0.6  
(3) *28/*28 vs *1 carriers in CYP3A5 non-expressors: 

24.1% ↓ TAC C0/D (P = 0.02); 
(4) CYP3A5*3/*3-POR*1 carriers had 1.3- to 1.8-fold 

↑ TAC C0/D than CYP3A5*3/*3-POR*28/*28, 
CYP3A5*1 carriers-POR*1/*1 and CYP3A5*1 
carriers-POR*28/*28 (lowest P = 0.04) 

  [127] 229  Mixed3 MMF & Steroid3 0-3 *28 carriers vs non-carriers in: 
(1) the whole cohort: P = 0.2; 
(2) CYP3A5 expressors: P = 0.1 

NR1I2 -25385C>T [26] 159  EAS MMF & Steroid2 day 7 T/T vs C allele carriers (P threshold = 0.007) in: 
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(1) whole cohort: P = 0.06; 
(2) CYP3A5 expressors: P = 0.8; 
(3) CYP3A5 non-expressors: P = 0.03  

  [48] 142  EAS MMF & Steroid1 NR P = 0.6 
  [128] 240  EUR MMF & Steroid1 0-6 (1) T allele carriers vs C/C (n = 42 vs 98): ~ 1.5-fold 

↑ TAC C0/D (P = 0.005);  
(2) T allele carriers vs C/C in:  
      CYP3A5 non-expressors (n = 39 vs 183): ~ 1.2-

fold ↑ TAC C0/D (P = 0.004)  
      CYP3A5 expressors (n = 3 vs 15): P = 0.4  

 8055C>T [25] 223  EUR NR NR T allele carriers vs non-carriers (after adjusting for 
CYP3A5*3): 

(1) German cohort (n = 42 vs 94): 30-50% ↓ TAC 
C0/D (P = 0.01); 
(2) Danish cohort (n = 30 vs 57): P = 0.3; 
(3) combined cohort (n = 72 vs 151): P = 0.2  

  [128] 240  EUR MMF & Steroid1 0-6 T allele carriers vs C/C in: 
(1) whole cohort: P = 0.4; 
(2) CYP3A5 expressors: P = 1; 
(3) CYP3A5 non-expressors: P = 0.3 

↑: increase; ↓: decrease; AZA: azathioprine; clinical factors*: time post-transplantation, age, comorbidity and comedication; CYP3A EM: 

CYP3A5*1-CYP3A4*1/*1 carriers; CYP3A IM: CYP3A5*3/*3-CYP3A4*1/*1 carriers; CYP3A PM: CYP3A5*3/*3-CYP3A4*22 carriers; 

CYP3A5 expressors: CYP3A5*1 allele carriers; CYP3A5 non-expressors: CYP3A5*3 homozygotes; EAS: east Asian; Eth: ethnicity; EUR: 

European; Mixed1: African-American, Asian, European, Hawaiian/Pacific islander, Native American/Aleutian Islander and other ethnicities; 



Chapter 1. Introduction 

31 
 

Mixed2: African, Asian and European and other ethnicities; Mixed3: European and other ethnicities; MMF: mycophenolate mofetil; N or n: number 

of patients; NR: not reported; P: point-wise P-value; PGx: pharmacogenetic; Ref: reference(s); SNPs: single nucleotide polymorphisms; Steroid1: 

methylprednisolone and prednisolone; Steroid2: prednisolone; Steroid3: corticosteroid but details not given; TAC C0/D: dose corrected tacrolimus 

trough whole blood concentration.   
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Table 3. Conflicting PGx findings of donor CYP3A5*3 on BPAR incidence  
SNPs Ref N Eth Immunosuppressants Time  

(month) 
Differences of BPAR incidence  

between genetic groups 
 

CYP3A5*3 (6986A>G) 
 &  

CYP3A4*1B (392A>G) 

[115] 137 (RPT)  
+  

137 (DNR) 

EUR TAC or CsA, MMF &  
Steroid1 

0-12 RPT: lowest P = 0.7; 
DNR (adjusted P-value threshold = 0.017):  
(1) CYP3A5 expressors vs CYP3A5 non-

expressors (n = 21 vs 116): ↑ BPAR incidence 
(OR = 3.4; P = 0.04) 
(2) *1B carriers vs non-carriers (n = 13 vs 124):    

↑ BPAR incidence (OR = 6.3; P = 0.008); 
(3) CYP3A4*1B-CYP3A5*1 homozygotes vs 

non-carriers (n = 13 vs 116): ↑ BPAR 
incidence (OR = 6.2; P = 0.007)  

CYP3A5*3 (6986A>G) [116] 203 (RPT)  
+ 

201 (DNR) 

EUR TAC, MMF & Steroid2 0-21.8±9 RPT & DNR: P > 0.05 

↑: increase; BPAR: biopsy-proven acute rejection; CsA: ciclosporin A; CYP3A5 expressors: CYP3A5*1 allele carriers; CYP3A5 non-expressors:  

CYP3A5*3/*3 carriers; DNR: donor; Eth: ethnicity; EUR: European; MMF: mycophenolate mofetil; N or n: number of patients; OR: Odds ratio; 

P: point-wise P-value; PGx: pharmacogenetic; RPT: recipient; Ref: reference(s); Steroid1: methylprednisolone and prednisolone; Steroid2: 

corticosteroid but details not reported; SNPs: single nucleotide polymorphisms; TAC: tacrolimus.  
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Table 4. Conflicting PGx findings of CYP3A5*3 and ABCB1 3435C>T (R & D) on eGFR 
Genes SNPs Ref N Eth Immunosuppressants Time  

(month) 
Differences of eGFR between genetic groups 

CYP3A5 *3 
(6986A>G) 

[116] 203 (RPT) + 
201 (DNR) 

EUR TAC, MMF & Steroid1 0-21.8±9 RPT & DNR: P > 0.05 

  [121] 90 (RPT) +  
65 (DNR) 

EUR TAC, MMF & Steroid3 0-12 RPT: lowest P = 0.1; D: lowest P = 0.3 

  [122] 120 (RPT) +  
120 (DNR) 

EAS TAC, MMF & Steroid2 0-10 RPT & DNR: P > 0.05 

  [124] 237 (RPT) +  
232 (DNR) 

Mixed TAC, MMF & Steroid3 0-3 RPT: P > 0.05; D: lowest P = 0.2 

  [129] 50(RPT)+ 
50 (DNR) 

EAS TAC, MMF & Steroid3 12 & 36 RPT: lowest P = 0.5 and 0.06 on month 12 and 
36 post-transplantation, respectively; 
DNR: CYP3A5 non expressors vs expressors (n 
= 29 vs 21) 

(1) 18% ↓ eGFR at month 12 post-
transplantation (P = 0.005) 
(2) P = 0.3 at month 36 post-transplantation 

ABCB1 3435C>T [116] 202 (RPT) + 
195 (DNR) 

EUR TAC, MMF & Steroid1 0-21.8±9 RPT & DNR: P > 0.05 

  [121] 90 (RPT) +  
65 (DNR) 

EUR TAC, MMF & Steroid3 0-12 RPT: lowest P > 0.2; 
DNR: T allele carriers vs C/C (n = 67 vs 23):     
(1) P = 0.35 in the first 2 weeks post-
transplantation 

(2) 4-26% ↓ eGFR at month 1, 3, 6 and 12 post-
transplantation (lowest P = 0.01) 

  [122] 120 (RPT) +  
120 (DNR) 

EAS TAC, MMF & Steroid2 0-6 RPT: P > 0.05; 
DNR: T allele carriers vs non-carriers (n = 69-
79 vs 37-41):  
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(1) 10-26% ↑ eGFR on day1, 2, 3, 7, 14, 21 and 
at 1 month post-transplantation (lowest P = 
0.04) 
(2) lowest P = 0.06 at month 2, 3, 4, 5 and 6 
post-transplantation 

↑: increase;  ↓: decrease; CYP3A5 expressors: CYP3A5*1 allele carriers; CYP3A5 non-expressors:  CYP3A5*3/*3; DNR: donor; eGFR: estimated 

glomerular filtration rate; EAS: east Asian; Eth: ethnicity; EUR: European; Mixed: African, Asian and European and other ethnicities; MMF: 

mycophenolate mofetil; N or n: number of patients; P: point-wise P-value; PGx: pharmacogenetic; RPT: recipient; Ref: reference(s); SNPs: single 

nucleotide polymorphisms; Steroid1: corticosteroid without details; Steroid2: methylprednisolone and prednisolone; Steroid3: prednisolone; TAC: 

tacrolimus. 

 

 



Chapter 1. Introduction 

35 
 

1.5.2 Innate immunogenetics and acute kidney rejection 

1.5.2.1 Adaptive and innate immune system in acute kidney rejection 

The T-cell driven adaptive immune system plays a major role in acute kidney rejection, 

with a fast immune-response of antigen presentation and recognition, T-cell 

proliferation, differentiation, migration and infiltration into the allograft, finally causing 

kidney tissue cell apoptosis [21]. However, an acute rejection event cannot happen 

without the involvement of the innate immune system, which can assist T-cell 

proliferation and differentiation, and intensifies the severity of kidney tissue injury [21-

23].  

In the innate immune system, pattern recognition receptors (PRRs) can not only 

recognise pathogen-associated molecules [130] but also self-molecules from the 

apoptotic or necrotic cells [131]. Damage/danger-associated molecular patterns 

(DAMPs) are the biomolecules from the damaged tissue cells or chemical stress from 

ischaemia-reperfusion injury. Toll-like receptors (TLRs) belong to PRRs and they can 

recognise DAMPs [132]. Extracellular DAMPs bind to membrane-bound TLR2 and 

TLR4, with recruitment of intracellular myeloid differentiation primary response 88 

(MyD88), leading to subsequent signal transduction by Toll/IL-1 receptor domain (TIR) 

pathway [133]. Consequently, transcription factors, e.g. nuclear factor κ-light-chain-

enhancer of activated B cells (NF-κB), are translocated into the nucleus to activate the 

transcription and subsequent release of pro-inflammatory mediators (see Figure 4) 

[134]. These pro-inflammatory mediators, including ILs and tumour necrosis factor-α 

(TNF-α), can drive T-cell differentiation, proliferation and activation [20] and intensify 

inflammation in the transplanted kidney [21-23]. In contrast, the anti-inflammatory 

effect from IL-10 and transforming growth factor-β (TGF-β) can decrease the release 

of pro-inflammatory cytokines [135], with the potential to attenuate rejection risk.  
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Figure 4. Joint contribution of the innate and adaptive immune system to acute kidney 

rejection. Damage-associated molecular patterns (DAMPs) caused by transplantation 

surgery can cause nuclear translocation of nuclear factor κ-light-chain-enhancer of 

activated B cells (NF-κB) via myeloid differentiation primary response 88 (MyD88)-

dependent toll-like receptor (TLR) signalling pathway. MD-2 (encoded by LY96) is 

required as a co-factor binding with TLR4 for NF-κB nuclear translocation. 

Translocated NF-κB can activate the secretion of pro-inflammatory ILs and TNF-α. 

Caspase 1 coverts pro-IL-1β into mature IL-1β. These pro-inflammatory mediators 

assist T-cell proliferation and differentiation and intensify the severity of kidney tissue 

injury. In contrast, anti-inflammatory effect from IL-10 and TGF-β1 can decrease the 

pro-inflammatory cytokine release, with the potential to attenuate rejection risk.  
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1.5.2.2 Innate immunogenetics and BPAR 

Relevant key SNPs in pro- and anti-inflammatory mediators (CASP1, IL1B, IL2, IL6, 

IL6R, IL10, TGFB, TNF and CRP) and MyD88-dependent TLR signalling pathway 

(MYD88, TLR2, TLR4 and LY96) are associated with increased or decreased cytokine 

secretion or immune activation as summarised in Table 5. Allele frequencies (African, 

East Asian and European) of these SNPs are collected from the Ensembl database 

(http://grch37.ensembl.org/Homo_sapiens/Info/Index (last accessed on 8th March 

2019)). 

Accepted innate immunogenetic findings on BPAR incidence are supported by the cited 

meta-analyses or consistent individual studies while conflicting findings are shown in 

Table 6, whereas other research gaps are concisely summarised in section 1.5.2.2.3.  
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Table 5. Allele frequency and functional consequences or associations with immunological response/risk of key SNPs in pro- and anti-

inflammatory mediators and MyD88-dependent TLR signalling pathway 

Genes SNPs Allele Frequency (%) Functional consequences or 
associations with immunological response/risk 

Ref 

AFR EAS EUR   
CASP1 rs580253 (5352G>A) 9 1 18 ↓ IL-1β protein production in vitro 

5352A and 10643C ↓ IL-1β protein production by 2-3% (log-
transformed) in LPS-treated whole blood samples from elderly population 
with (increased risk of) vascular diseases (P = 0.008 and 0.009, 
respectively) 

[136] 

 rs554344 (10643G>C) 9 1 18 

CRP rs2794521 (-717T>C) 13 20 29 ↓ CRP transcriptional activity in reporter gene assay 

T allele vs C allele: 2- to 3-fold ↑ luciferace acitivy in HepG2 cells (P < 
0.005) 

[137] 

IL1B rs16944 (-511C>T) 57 47 35 ↑ IL-1β protein production in vitro 

-511T and -31C ↑ IL-1β protein production by 2- to 3-fold in LPS-treated 
whole blood samples from healthy volunteers and rheumatoid arthritis 
patients (P = 0.008 and 0.002, respectively) 

[138] 

 rs1143627 (-31T>C) 63 48 35 

 rs1143634 (3954C>T) 12 2 25 ↓ Serum IL-1β concentration in infliximab-treated IBD patients 

T allele carriers vs C/C: 97% ↓ serum IL-1β concentration (P = 0.03) 

[139] 
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IL2 rs2069762 (-330T>G) 3 32 29 ↑ IL-2 protein production in vitro 

G/G vs T allele carriers: over 3-fold ↑ IL-2 protein production in anti-
CD3/CD28-stimulated PBL from healthy volunteers (P < 0.001) 

[140] 

IL6 rs10499563 (-6331T>C) 23 16 23 ↓ Plasma/serum IL-6 concentration in an acute inflammatory state in 
vivo 

(1) C/C vs G/G: 42% ↓ plasma IL-6 concentration at 6 h post-CABG 
surgery (P = 0.02); 
(2) C/C vs G/G: 74-84% ↓ serum IL-6 concentration at 24 h and 1 week 
after IPT (P < 0.0001 and P = 0.02, respectively) 

[141] 

 rs1800795 (-174G>C) 2 0 42 ↓ plasma IL-6 concentration in healthy volunteers 

G/G vs C/C: 2-fold ↑ plasma IL-6 concentration (P = 0.02) 

[142] 

IL6R rs2228145*  
(48892A>C; Asp358Ala) 

9 32 36 ↑ Serum sIL-6R concentration in healthy volunteers 

C allele carriers vs A/A: 25-67% ↑ serum sIL6-R concentration (P < 
0.0001) 

[143] 

IL10 rs1800896 (-1082G>A) 69 99 55 ↓ IL-10 protein production in vitro 

A allele carriers vs G/G: 25% ↓ IL-10 protein production in ConA 
stimulated PBL from healthy volunteers 

[144] 

 rs1800871 (-819C>T) 44 68 24 ↔ IL-10 protein production in vitro 

both in LD with -1082G>A 

[144] 

 rs1800872 (-592C>A) 44 68 24  
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TGFB rs1800469 (-509C>T) 22 55 31 ↑ plasma TGF-β1 concentration in healthy female volunteers 

(1) C/T vs C/C: 1.3-fold ↑ plasma TGF-β1 concentration (P = 0.04)  

(2) T/T vs C/C: 2-fold ↑ plasma TGF-β1 concentration (P = 0.002)  

[145] 

 rs1800470  
(869T>C; Leu10Pro) 

41 55 38 ↑ TGF-β1 protein production in vitro 

C allele vs T allele: 2.4-fold ↑ (mean; P not reported) TGF-β1 protein 
production in CMV-promoter transfected HeLa cells 

[146] 

 rs1800471  
(915G>C; Arg25Pro) 

94 100 93 ↓ TGF-β1 protein production in vitro 

G/C vs G/G: 33% ↓ TGF-β1 protein production in PHA and PMA-
stimulated PBL from healthy volunteers (P < 0.02) 

[147] 

TNF rs1800629 (-308G>A) 12 6 13 ↑ TNF transcriptional activity in reporter gene assay 

A allele vs G allele: 1.7-fold (P < 0.05) and 2.1-fold (P < 0.01) ↑ 
luciferace acitivy in PMA-stimulated Jurkat and U937 cells, respectively  

[148] 

MYD88 rs6853 (1593A>G) 29 2 13 ↓ vaccine response in vivo 

G/G vs A allele carriers: ~80% ↓ dose-related measles-specific antibody 
response (P = 0.001) 

[149] 

TLR2 rs3804100 (1350T>C) 5 24 6 ↓ vaccine response and ↑ susceptibility to infection in vivo 

(1) T/C vs T/T: 26% ↓ dose-related measles-specific antibody response 
(P = 0.002) 
(2) frequency of C/C genotype vs T/T genotype or T allele carriers in 
paediatric patients infected with congenital CMV: OR = 11.7 (P = 0.02) 
and 9.5 (P = 0.01), respectively 

[150, 151] 
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TLR4 rs4986790 
(896A>G; Asp299Gly) 

7 0 6 ↑ vaccine response and inflammation in vivo 

(1) A/G vs A/A: 2-fold ↑ dose-related measles-specific IL-4 response (P 
= 0.01) 

(2) A/G vs A/A: 1.4-fold ↑ lymphocyte count in ESRD patients (P = 0.01) 

[149, 152] 

 rs4986791 
(1196C>T; Pro399Leu) 

1 0 6  ↑ vaccine response in vivo 

C/T vs C/C: 2-fold ↑ dose-related measles-specific IL-4 response (P = 
0.009) 

[149] 

LY96 rs11466004  
(379C>T; Ser157Pro) 

0 0 2 ↓ vaccine response in vivo 

C/T vs C/C: ~87% ↓ dose-related measles-specific IL-10 response (P = 
0.03) 

[149] 

↑: increase; ↓: decrease; ↔: unchanged; AFR: African; Ala: alanine; Arg: arginine; Asp: aspartic acid; CABG: coronary artery bypass grafting; 

ConA: concanavalin A; CMV: cytomegalovirus; EAS: east Asian; ESRD: end-stage renal disease; EUR: European; Gly: glycine; hour: h; IBD: 

inflammatory bowel diseases; IPT: intensive periodontal therapy; Leu: leucine; LD: linkage disequilibrium; LPS: lipopolysaccharides; OR: Odds 

ratio; PBL: peripheral blood lymphocyte; PHA: phytohemagglutinin; PMA: phorbol myristate acetate; Pro: proline; rs2228145*: previously known 

as rs8192284; Ref: reference(s); Ser: serine; sIL-6R: soluble IL-6R; SNPs: single nucleotide polymorphisms; TLR: Toll-like receptor.
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1.5.2.2.1 Accepted innate immunogenetic findings on BPAR incidence 

• IL2, IL6, IL10, TGFB and TNF genetics (RPT or RPT & DNR) — no 

impact on BPAR incidence 

Recent meta-analyses reported IL2 -330T>G (RPT) [153], IL6 -174G>C (RPT & DNR) 

[154], IL10 -1082G>A, -819C>T and -592C>A (RPT) [153, 154], TGFB 869T>C and 

915G>C (RPT & DNR) [157, 158] and TNF -308G>A (RPT & DNR) [159] did not 

affect BPAR incidence in (European) kidney transplant recipients.  

• IL1B -511C>T (RPT) — no impact on BPAR incidence 

IL1B -511C>T (RPT) [160-164] did not affect BPAR incidence in kidney transplant 

recipients.  

1.5.2.2.2 Conflicting innate immunogenetic findings on BPAR incidence 

• TLR4 869A>G & 1196C>T (RPT & DNR) 

Inconsistent results exist on whether TLR4 genetics affect BPAR incidence (see Table 

6). Notably, not all studies adjusted for confounding factors (e.g. HLA mismatches) 

when associating TLR4 genetics with BPAR incidence. In addition, different 

immunosuppressive protocols, limited sample size (n = 122 - 238) and low 896G and 

1196T frequencies (see Table 5) may contribute together to the conflicting impact of 

TLR4 genetics on BPAR incidence.  

1.5.2.2.3 Other gaps in innate immunogenetic research on BPAR incidence 

• Other IL1B and IL6 genotypes/diplotypes (RPT)  

In a study of 200 kidney transplant recipients and their donors, recipient but not donor 

IL1B 3954C/T carriers had higher BPAR incidence than C/C carriers (OR = 3.1, P = 
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0.045), however, there was no significant difference between C/C and T/T carriers (P 

= 0.4) [162]. No other published studies investigated the relationship between 3954C>T 

and BPAR incidence in kidney transplant recipients. In addition, no published studies 

yet have explored if IL1B -31T>C or IL1B diplotypes (-511C>T and -31T>C) affect 

BPAR incidence.  

Although IL6 -6331T>C decreases plasma/serum IL-6 concentration in an acute 

inflammatory state in vivo (see Table 5), it has not been studied for the impact on BPAR 

incidence. 

• TGFB -509C>T (RPT & DNR) 

Two studies were carried out respectively for an association between recipient (n = 209) 

or donor (n = 145) TGFB -509C>T and BPAR incidence [160, 161], although the 

relationship was non-significant (both P = 0.9). No other studies have investigated the 

relationship between -509C>T (R & D) and BPAR incidence. 

• CASP1, CRP, IL6R, LY96, MYD88 and TLR2 genetics (RPT & DNR) 

The associations between CASP1, CRP, IL6R, LY96, MYD88 and TLR2 SNPs and 

immunological response/risk are summarised in Table 5, however, no study has 

explored if these SNPs affect BPAR incidence.  

1.5.2.2.4 Future directions in innate immunogenetic research on BPAR incidence 

Currently, no innate immunogenetic studies have been carried out in TAC-treated 

kidney transplant recipients only (previous studies were either in a CsA-treated cohort 

or a mixed cohort of CsA/TAC). Therefore, it is still worthwhile investigating if all 

these immunogenetic factors mentioned above could affect BPAR incidence in a TAC-

treated kidney transplant cohort. 



Chapter 1. Introduction 

44 
 

Table 6. Conflicting innate immunogenetic findings of TLR4 genetics (RPT & DNR) on BPAR incidence 
SNPs Ref N Eth Immunosuppressants Time  Differences of BPAR incidence  

     (month) between genetic groups 

896A>G 
(Asp299Gly) 

& 
1196C>T 

(Pro399Leu) 

[165] 238 (RPT) EUR (1) CsA, AZA & Steroid1 or 
(2) CsA, MMF & Steroid1 or 
(3) TAC, MMF & Steroid1 or 
(4) MMF & Steroid1 

95±29 896A/A-1196C/C vs other (n = 211 vs 27):  
(1) 72% ↓ BPAR incidence (P = 0.02) 
(2) RR = 0.4; P = 0.01 (Cox regression 
analysis) 

[166] 122 (RPT) +  
122 (DNR) 

EUR CsA or TAC, MMF & Steroid2 36±15 896A/A-1196C/C vs other (RPT: n = 104 vs 
18; DNR: n = 102 vs 20) 
RPT: 20% vs 22% (P = 0.8);  
DNR: 16% vs 0% (P = 0.04) 

[167] 200 (RPT) +  
186 (DNR) 

BRAZILIAN NR 108±85 896A/A-1196C/C vs other (RPT: n = 183 vs 
17; DNR: n = 167 vs 19) 
RPT: 39.5% vs 17.6% (P = 0.4);  
DNR: P > 0.05 

↓: decrease; Asp: aspartic acid; AZA: azathioprine; BPAR: biopsy-proven acute rejection; CsA: ciclosporin A; DNR: donor; Eth: ethnicity; EUR: 

European; Gly: glycine; Leu: leucine; MMF: mycophenolate mofetil; N or n: number of patients; NR: not reported; P: point-wise P-value; Pro: 

proline; RPT: recipient; Ref: reference(s); RR: relative risk; SNPs: single nucleotide polymorphisms; Steroid1: prednisolone; Steroid2: 

methylprednisolone and prednisolone; TAC: tacrolimus.  
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1.6 Research gaps and aims  

There are 4 main gaps in the current genetic research on the inter-individual variabilities 

in TAC C0/D, BPAR incidence and eGFR:  

1) if TAC dispositional genetics (other than CYP3A5*3 (RPT)) determine TAC 

C0/D inter-individual variability in kidney transplant recipients; 

2) if TAC dispositional genetics account for BPAR incidence and eGFR in kidney 

transplant recipients; 

3) if a temporal response relationship exists between TAC C0 and BPAR under 

TAC TDM; 

4)  if innate immunogenetics affect BPAR incidence in kidney transplant 

recipients. 

To bridge these research gaps, I aimed to assess: 

1) the impact of recipient CYP3A5*3, CYP3A4*22, POR*28, ABCB1 61A>G, 

1199G>A, 1236C>T, 2677G>T and 3435C>T, and NR1I2 8055C>T and 

63396C>T genotypes/haplotypes on TAC C0/D in 165 Australian kidney 

transplant recipients in the first 3 months post-transplantation. This 

included confirmation of the major impact of CYP3A5*3 on TAC C0/D and, for 

the first time in kidney transplant recipients, the investigation of the 5 most 

common European ABCB1 SNPs together with their haplotypes for their impact 

on TAC C0/D — addressed in Chapter 2.  

2) the impact of recipient (n = 165) and donor (n = 129) CYP3A5*3, 

CYP3A4*22, ABCB1 61A>G, 1199G>A, 1236C>T, 2677G>T and 3435C>T, 

POR*28 and NR1I2 8055C>T and 63396C>T genotypes/haplotypes on 

BPAR incidence in the first 14 days, and eGFR in the first 3 months, post-
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transplantation. This included investigating, for the first time, the impact of 

NR1I2 genetics (RPT & DNR) and the 5 most common European ABCB1 SNPs 

together with their haplotypes on kidney transplant outcomes in organ 

transplantation — addressed in Chapter 3. 

3) the temporal relationship between TAC C0 and BPAR incidence (n = 38) in 

the first 14 days post-transplantation. This included investigating the TAC 

C0 and haematocrit immediately preceding BPAR and on the day of BPAR for 

the first time in a TAC concentration-response relationship study. Also, 

haematocrit has been included for the first time in TAC C0-rejection relationship 

— addressed in Chapter 4. 

4) the genetics of pro- and anti-inflammatory mediators, and MyD88-

dependent TLR signalling pathway, and their impact on BPAR incidence 

in 165 Australian kidney transplant recipients in the first 14 days post-

transplantation. Nineteen immunogenetic SNPs (RPT & DNR) were included: 

CASP1 5352G>A and 10643G>C, CRP -717T>C, IL1B -511C>T, -31T>C and 

3954C>T, IL2-330T>G, IL6 -6331T>C, IL6R 48892A>C, IL10-1082G>A and 

-819C>T, LY96 379C>T, MYD88 1593A>G, TGF -1287G>A and -509C>T; 

TLR2 1350T>C, TLR4 896A>G and 1196C>T and TNF -308G>A. It is the first 

time that CASP1, CRP, IL6R, TLR2, LY96 and MYD88 genotypes/diplotypes 

have been studied for their impact on BPAR incidence in kidney transplant 

recipients receiving TAC as the only calcineurin inhibitor — addressed in 

Chapter 5. 

Notably, to exclude the potential impact from clinical and non-clinical factors (e.g. 

HLA mismatch) on TAC C0/D, acute rejection and kidney function (see factors 
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summarized in sections 1.2.2 and 1.4), the following factors went into the study 

design:  

1) age, sex and haematocrit were adjusted for PGx impact on TAC C0/D in the 

linear mixed effects regression analysis in Chapter 2. 

2) HLA mismatches, induction therapy, kidney transplant number, peak PRA 

scores and living donor were adjusted for PGx impact on BPAR incidence in 

the generalised linear mixed effects regression analysis in Chapter 3.  

3) BPAR incidence, DGF and living donor were adjusted for PGx impact on 

kidney function in the linear mixed effects regression analysis in Chapter 3. 

4) HLA mismatches, induction therapy, kidney transplant number, peak PRA 

scores and living donor were adjusted for innate immunogenetic impact on 

BPAR incidence in the generalised linear mixed effects regression analysis in 

Chapter 5.  
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Appendix tables: Table 1. Sequences and concentrations of primers and probes, annealing temperatures and product sizes for probe-based 

allelic discrimination genotyping assays 

Genes SNPs Annealing 
temperature 

Product 
size (bp) 

Primer/ 
Probe  Sequence 

ABCB1 61A>G 70.0°C 253 F  5’-ATCTTGAAGGGGACCGCAATGGAGGAG-3’ 
R 5’-CATATGCTGTGCTCCACTCAGCCAACA-3’ 
W [ROX]AAGCTAGTTACCTTTTAT[+T][+G][+T][+T][+C][+A]G[BHQ2] 
V [Q670]AAGCTAGTTACCTTTTAT[+C][+G][+T][+T][+C][+A]G[BHQ3] 

1199G>A 68.0°C 241 F  5’-TGACAGCTATTCGAAGAGTGGGCACAA-3’ 
R 5’-GGCAATTCACAGACACAGGATATAGGAACTGA-3’ 
W [FAM]ATGTTCACT[+T][+C][+A][+G][+T][+T]ACCCATCTCG[BHQ1] 
V [HEX]ATGTTCACT[+T][+C][+A][+A][+T][+T]ACCCATCTCG[BHQ1] 

1236C>T 71.5°C 168 F  5’-TCCTGTGTCTGTGAATTGCCTTGAAGTTT-3’ 
R 5’-CTGTGGGGTCATAGAGCCTCTGCATCA-3’ 
W [FAM]CCTTCAGGTTC[+A][+G][+G][+C][+C]CTTCAAGAT[BHQ1] 
V [HEX]CCTTCAGGTTC[+A][+G][+A][+C][+C]CTTCAAGAT[BHQ1] 

2677G>T 68.0°C 279 F  5’-CCCATCATTGCAATAGCAGGAGTTGTTGA-3’ 
R 5’-TGAGTCCAAGAACTGGCTTTGCTACTTTCTG-3’ 
W [FAM]TCACCTTCCC[+A][+G][+C][+A][+C]CTTCTAGTTC[BHQ1] 
V [HEX]TCACCTTCCC[+A][+G][+A][+A][+C]CTTCTAGTTC[BHQ1] 

3435C>T 70.0°C 199 F  5’-GTCCCAGGAGCCCATCCTGTTTGACT-3’ 
R 5’-TATAGGCCAGAGAGGCTGCCACATGCT-3’ 
W [FAM]CAGGAAGAGA[+T][+C][+G]TGAGGGCAGCAA[BHQ1] 
V [CalFluor540]CAGGAAGAGA[+T][+T][+G]TGAGGGCAGCAA[BHQ1] 

NR1I2 8055C>T 
 

68.5°C 150 F  5’-GCTACGCCAGGATATGCAGG-3’ 
 R 5’-TTGCTGGAAGCCACCTGTG-3’ 
 W [FAM]AGCTGCCCCTCCAT[+C]CTGTTACCAT[BHQ1] 
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 V [HEX]AGCTGCCCCTCCAT[+T]CTGTTACCAT[BHQ1] 
 -25385 C>T 68.5°C 75 F  5’-ACC TGA AGA CAA CTG TGG TCA T-3’ 
 R 5’-GGA GAC CAC GAT TGA GCA AAC-3’ 
 W [TxRd]CA ATC CCA G[+G][+T][+T][+C][+T][+C]TT TTC TAC[BHQ2] 
 V [Cy5]CA ATC CCA G[+G][+T][+T][+T][+T][+C]TT TTC TAC[BHQ2] 

 63396C>T 
 

64.0°C 
 

361 
 

F 
R 
W 
V 

5’-TGGTCATTCATAGCTTCTTTGG-3’ 
         5’-ACTGGTGGTTGGTAAGACAG-3’ 

 [FAM]CTTTTTTGTGCCATATTTT[+T][+T][+C][+T]G[BHQ1] 
 [HEX]CTTTTTTGTGCCATATTTT[+T][+T][+T][+T]G[BHQ1] 

POR *28 
 

70.0°C 
 

133 
 

F  5’-TGCGGTGGTTGTGGAGTAC-3’ 
R 5’-GGACTTGCGCACGAACATG-3’ 
W [FAM]TTCTCCCCG[+G]CAGGCTCCTT[BHQ1] 
V [HEX]CGTTCTCCCCG[+A]CAGGCTCCTT[BHQ1] 

BHQ = Black Hole Quencher; bp: base pairs; CalFluor540 = CalFluor Gold 540; Cy5: Cyanine 5; F: forward primer; FAM: 6-carboxy-

fluorescein; HEX: hexachloro-6-carboxy-fluorescein; Q670 = Quasar 670; R: reverse primer; ROX: 6-Carboxyl-X-Rhodamine; TxRd: Texas 

red; V: variant probe; W: wild-type probe; “+” precedes locked nucleic acid bases. 
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Appendix tables: Table 2. Median [interquartile range] TAC C0/D for different 

genotypes and haplotypes in the first 3 months post-transplant 

Genes 
Genotypes/  
Haplotypes 

TAC C0/D (ng/ml per mg/day) 
1 month 3 month 

ABCB1 61A>G A/A 1.45 [0.98-1.94] 1.53 [1.09-2.34] 
A/G+G/G 1.15 [0.99-1.35] 1.23 [0.92-1.60] 

1199G>A G/G 1.33 [0.97-1.81] 1.45 [0.99-2.24] 
G/A 1.46 [1.16-1.93] 1.75 [1.20-2.46] 

1236C>T C/C 1.44 [1.09-1.73] 1.55 [0.97-2.35] 
C/T 1.35 [0.95-1.83] 1.42 [0.93-2.18] 
T/T 1.28 [1.08-1.83] 1.48 [1.16-2.33] 

2677G>T G/G 1.35 [1.08-1.76] 1.60 [0.96-2.41] 
G/T 1.34 [0.94-1.86] 1.42 [0.98-2.10] 
T/T 1.31 [1.08-1.80] 1.46 [1.17-2.23] 

3435C>T C/C 1.44 [0.99-1.83] 1.57 [0.97-2.59] 
C/T 1.39 [1.01-1.78] 1.55 [1.05-2.25] 
T/T 1.15 [0.90-1.79] 1.25 [1.02-1.90] 

AGCGC 0 copies 1.30 [1.00-1.80] 1.43 [1.13-2.03] 
1 copy 1.43 [0.97-1.67] 1.42 [0.93-2.24] 

2 copies 1.37 [1.14-1.85] 1.70 [1.22-2.72] 
AGCGT 0 copies 1.35 [0.99-1.83] 1.45 [1.05-2.29] 

1+2 copies 1.35 [0.86-1.66] 1.43 [0.83-2.22] 
AGTTT 0 copies 1.27 [1.00-1.55] 1.40 [0.90-2.23] 

1 copy 1.44 [0.90-2.07] 1.53 [1.11-2.19] 
2 copies 1.59 [1.08-2.17] 1.57 [1.19-2.74] 

GGTTT 0 copies 1.44 [0.97-1.88] 1.53 [1.03-2.37] 
1+2 copies 1.12 [0.99-1.34] 1.24 [0.93-1.59] 

CYP3A4 *22 *1/*1 1.33 [0.97-1.71] 1.44 [1.06-2.20] 
*1/*22 1.34 [0.97-1.79] 1.45 [1.05-2.23] 

CYP3A5 *3 *1/*1+*1/*3 0.63 [0.51-0.95] 0.59 [0.45-0.97] 
*3/*3 1.45 [1.12-1.86] 1.60 [1.20-2.29] 

NR1I2 8055C>T C/C 1.35 [0.95-1.67] 1.45 [0.91-1.88] 
 C/T+T/T 1.33 [1.09-1.92] 1.35 [1.20-2.11] 
 63396C>T C/C 1.22 [0.80-1.52] 1.31 [0.88-2.18] 
 C/T 1.45 [1.12-1.85] 1.55 [1.16-2.22] 
 T/T 1.58 [1.07-2.13] 1.59 [1.17-2.08] 

POR *28 *1/*1 1.28 [0.93-1.65] 1.48 [1.10-2.22] 
*1/*28 1.37 [1.02-1.85] 1.45 [0.97-2.23] 
*28/*28 1.35 [1.20-2.11] 1.68 [1.18-2.33] 

TAC C0/D: dose-adjusted trough blood tacrolimus concentration. 
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Abstract  

Background Innate immunity contributes to acute rejection after kidney 

transplantation. IL2 -330T>G, IL10 -1082G>A, -819C>T and -592C>A, and TNF  

-308G>A are not associated with acute rejection risk in European kidney transplant 

recipients. However, for other important innate immune genetic markers in recipients 

and donors, associations with rejection have not been studied or results have been 

inconclusive. Objective To investigate the effect of recipient and donor CASP1, CRP, 

IL1B, IL2, IL6, IL6R, IL10, LY96, MYD88, TGFB, TLR2, TLR4 and TNF genetics on 

acute kidney rejection in the first 2 weeks post-transplant. Methods This study included 

165 kidney transplant recipients and 129 donors. Recipient and donor 

genotype/diplotype differences in acute rejection incidence within the first 2 weeks 

post-transplantation were assessed by logistic regression, adjusted for induction therapy, 

human leukocyte antigen mismatches, kidney transplant number, living donor and peak 

panel-reactive antibody scores. Results Although recipients with  

IL6 -6331C/C genotype had a higher incidence of acute rejection compared to T/T 

genotype (Odds Ratio [95% confidence interval] = 6.6 [1.7 to 25.8], likelihood-ratio 

test P = 0.02), no genetic factors were associated with rejection after correction for 

multiple comparisons (P-value threshold = 0.0036). Conclusions Recipient and donor 

innate immune genetics investigated in this study did not significantly impact on acute 

kidney rejection incidence in the first 2 weeks post-transplantation.  

Key words kidney transplantation, acute rejection, recipient, donor, innate immune 

genetics, genotype, diplotype 

 

 

1. Introduction 



Chapter 5. Innate immunogenetics and acute kidney rejection   
 

86 
Rong Hu, PhD thesis 2019 

Acute rejection remains the biggest short-term challenge following kidney 

transplantation and it affects long-term graft survival [1]. Although induction therapy, 

human leukocyte antigens (HLA) mismatches, number of kidney transplants, living 

donor and peak panel-reactive antibodies (PRA) have been studied as rejection 

predictors [2, 3], acute rejection still occurs. 

The T-cell driven adaptive immune system plays a major role in acute rejection. 

However, innate immunity is also essential. Damage-associated molecular patterns 

(DAMPs) from transplantation surgery and ischemia/reperfusion injury can activate 

nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) via the myeloid 

differentiation primary response 88 (MyD88)-dependent Toll-like receptor (TLR) 

signaling pathway in leukocytes, which leads to pro-inflammatory cytokine (e.g. 

interleukin (IL)-1β, IL-2, etc.) secretion [4]. These cytokines assist T-cell proliferation, 

differentiation, and intensify kidney tissue damage [4]. In contrast, anti-inflammatory 

cytokines (e.g. IL-10) can decrease pro-inflammatory cytokine release [5] and therefore 

may have the potential to attenuate rejection risk. 

Meta-analyses show that recipient and/or donor IL2 -330T>G (rs2069762) [6],  

IL10 -1082G>A (rs1800896), -819C>T (rs1800871) and -592C>A (rs1800872) [7], and 

TNF -308G>A (rs1800629) [8] are not significantly associated with acute rejection 

incidence in European kidney transplant recipients. However, as recently reviewed [9], 

the impact of some important innate immune genetic variations (e.g. IL1B 3954C>T 

(rs1143634) and TLR4 896A>G (rs4986790)) on acute rejection remains inconclusive. 

This is likely due to different criteria for acute rejection (biopsy-proven acute rejection 

(BPAR) versus clinical evidence, e.g. serum creatinine change), recipient ethnicities 

and time of rejection post-transplantation between cross-sectional studies. In addition, 

adjustment for multiple statistical comparisons was not always conducted. Finally, 
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other important innate immune genetic loci, including CASP1, CRP, IL6R, LY96, 

MYD88 and TLR2 have not been examined for their impact on acute rejection in kidney 

transplant recipients.  

Therefore, this study aimed to explore the impact of innate immune genetics on acute 

rejection risk in a cohort of predominantly European kidney transplant recipients and 

donors [3]. An innate immune gene panel, including SNPs of CASP1, CRP, IL1B, IL2, 

IL6, IL6R, IL10, LY96, MYD88, TGFB, TLR2, TLR4 and TNF, has been designed and 

reported by our group [10-12]. We hypothesized that these recipient and donor innate 

immune genetics would affect acute rejection incidence in kidney transplant recipients 

in the first 2 weeks post-transplantation.  

2. Methods 

2.1. Study participants and data collection 

This study was approved by the Central Adelaide Local Health Network Human 

Research Ethics Committee (Protocol number 2008178). All procedures complied with 

the Declaration of Helsinki and/or institutional research committee ethical requirements.  

As described previously, 165 kidney transplant recipients and 129 donors were 

recruited [3, 13]. All recipients and living donors gave informed consent before 

participation. For deceased donors, their respective recipients gave informed consent to 

use excess donor tissue blood vessels for genotyping. Recipient inclusion and exclusion 

criteria, demographics, anti-CD-25 induction therapy, immunosuppressant regimen, the 

number of HLA mismatches (HLA-A, -B and -DR antigens) between recipients and 

donors, number of kidney transplants, donor type (living or deceased), peak PRA and 

BPAR have all been described [3, 13]. 

2.2. Genotyping  
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Genomic DNA was extracted from blood and kidney tissue as described previously [3, 

13]. A panel of 19 SNPs in 13 innate immune genes were assayed by Agena Bioscience 

(previously Sequenom) MassARRAY at the Australian Genome Research Facility 

(Brisbane, Australia) [10-12]: MyD88-dependent TLR signaling pathway – TLR2 

1350T>C (rs3804100), TLR4 896A>G (rs4986790) and 1196C>T (rs4986791), LY96 

(rs11466004), and MYD88 (rs6853); and pro- and anti-inflammatory mediators – 

CASP1 5352G>A (rs580253) and 10643G>C (rs554344), CRP -717T>C (rs2794521), 

IL1B -511C>T (rs16944), -31T>C (rs1143627) and 3954C>T (rs1143634),  

IL2 -330T>G (rs2069762), IL6 -6331T>C (rs10499563), IL6R (rs8192284),  

IL10 -1082G>A (rs1800896) and -819C>T (rs1800871), TGFB -1287G>A 

(rs11466314) and -509C>T (rs1800469), and TNF -308G>A (rs1800629). The panel 

also included SNPs in BDNF (rs6265) and OPRM1 (rs1799971) but these were not 

included in the analysis as they were considered outside the scope of this study. Notably, 

only 154 recipients and 81 donors (3 donors each provided kidneys for 2 recipients) 

had sufficient DNA for genotyping. Donors were counted only once in Hardy-

Weinberg equilibrium (HWE) tests but were treated independently for logistic 

regression analyses. For some SNPs, 1 to 4 recipients and/or donors had missing 

genotypes due to genotyping failure.  

2.3. Statistical analysis  

Hardy-Weinberg equilibrium (HWE) tests for all genotypes, linkage disequilibrium 

(LD) between SNPs within the same gene, haplotype inference (CASP1, IL1B, IL10 

and TLR4), and logistic regression analyses were as described previously [3, 11-13]. 

The associations between SNPs, diplotypes and BPAR incidence were analyzed 

separately by logistic regression, adjusted for induction therapy (yes/no (Y/N)), living 

donor (Y/N), HLA mismatches (< 3 or ≥ 3), kidney transplant number (1 or ≥ 2) and 
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peak PRA (≤ 10% or > 10%). The genetic impact on BPAR incidence was assessed by 

the likelihood-ratio test, Odds ratios (OR) with 95% confidence intervals (CI) as 

previously described [3]. In addition, genotype differences in BPAR without adjusting 

for non-genetic variables were tested by Fisher or Chi-square tests and OR with 95% 

CI. Multiple testing-adjusted P-value threshold for significance was corrected by 

Bonferroni-adjustment (α = 0.05/N, where N is the number of genotype/diplotype tests 

carried out in the recipient or donor cohort, respectively).  

3. Results 

In total, 23% (n = 38) of patients developed BPAR in the first 2 weeks post-

transplantation. The impact of induction therapy, HLA mismatches, kidney transplant 

number, living donor and peak PRA scores on BPAR has been reported [3]; none were 

statistically significant (likelihood-ratio test P-value > 0.1). 

3.1. Genetic variability in kidney transplant recipients and donors 

No variant allele was found for TGFB rs11466314. LY96 rs11466004 was excluded 

from further analysis due to its low variant allele frequency in both recipients and 

donors (3% and 1%, respectively). All other recipient and donor genotypes were in 

HWE (P ≥ 0.2). Where required, rare homozygous genotypes (n < 5) were combined 

with heterozygous genotypes for further analyses: recipient MYD88 rs6853 A/A 

genotype versus G allele carriers (A/G + G/G); donor IL6 -6331T/T genotype versus C 

allele carriers (T/C + C/C); recipient and donor TLR2 1350T/T genotype versus C allele 

carriers (T/C + C/C); recipient and donor TNF -308G/G genotype versus A allele 

carriers (G/A + A/A).  

Recipient and donor CASP1 10643G and 5352G, IL1B -511C and -31T, IL10 -1082G 

and -819C, and TLR4 896A and 1196C were in strong LD (D’ > 0.99, r2 ≥ 0.3). 

Recipient and donor genotype, allele, haplotype and diplotype frequencies are 
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summarized in Table 1. The following rare CASP1, IL1B, IL10 and TGFB diplotypes 

(n < 5) were not included in further analyses: recipient and donor CASP1 (5352G>A & 

10643G>C) A-C/A-C, recipient and donor IL1B (-511C>T & -31T>C) C-C/C-C, donor 

IL10 (-1082G>A & -819C>T) A-T/A-T, and recipient and donor TLR4 (896A>G & 

1196C>T) A-C/A-T and G-T/G-T. Consequently, a multiple testing-adjusted P-value 

threshold for significance was determined at 0.0036 (a = 0.05/14, 10 individual SNP 

and 4 gene diplotype tests in recipients and donors).  

3.2. Genetic effect on BPAR incidence 

Table 2 summarizes associations between recipient and donor genotype/diplotype and 

BPAR incidence in the first 2 weeks post-transplant, adjusting for induction therapy, 

HLA mismatches, kidney transplant number, living donor and peak PRA scores. 

Although recipients with IL6 -6331C/C genotype had a higher incidence of BPAR 

compared to T/T genotype recipients (OR [95% CI] = 6.6 [1.7 - 25.8], likelihood-ratio 

test P-value = 0.02), no genetic factors were significantly associated with rejection after 

correction for multiple comparisons (P-value threshold = 0.0036). Fisher and Chi-

square tests also showed similar results (point-wise P-value > 0.05; data not shown). 

4. Discussion 

To our knowledge, this is the first innate immunogenetic study investigating both 

recipient and donor CASP1, CRP, IL1B, IL2, IL6, IL6R, IL10, LY96, MYD88, TGFB, 

TLR2, TLR4 and TNF genotypes/diplotypes for their association with BPAR incidence 

in kidney transplant recipients receiving TAC as the only calcineurin inhibitor.  

We are the first to investigate the impact of IL6 -6331T>C on BPAR incidence in 

kidney transplant recipients. Our results indicate the C/C genotype might be associated 

with 6.6-fold higher OR of BPAR, but the effect was not statistically significant after 

adjusting for multiple comparisons. The physiological and/or pathological impact of 
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IL6 -6331T>C on inflammation remains uncertain. IL6 -6331T>C was not significantly 

associated with plasma IL-6 concentrations in healthy volunteers (n = 421) [14]. In 321 

surgical patients at 6 hours after coronary artery bypass grafting, T/T carriers had 73% 

higher plasma IL-6 concentrations than C/C carriers, but this difference was non-

significant at 24 hours post-surgery [14]. However, in 173 patients receiving intensive 

periodontal therapy, T/T carriers had 4- to 6-fold higher plasma IL-6 concentrations 

than C/C carriers at 24 hours and 7 days post-therapy, respectively [14]. This 

inconsistency is likely due to the study participants having different diseases, different 

time post-surgery and sample size limitations. Moreover, the relationship between  

-6331T>C and plasma IL-6 concentration has not been explored in kidney transplant 

recipients. Therefore, more studies might still be needed to elucidate if -6331T>C 

affects BPAR incidence.  

Three meta-analyses reported that IL2, IL10 and TNF genotypes/haplotypes were not 

significant predictors of acute rejection in European kidney transplant patients [6-8]; 

our results are in accordance with these findings. In addition, IL1B and TLR4 genetics 

have been associated with rejection risk in some studies, however, results were not 

always reproducible as reviewed previously [9]. We also did not find any significant 

impact of IL1B and TLR4 genetics on BPAR incidence. The inconsistency might be due 

to varied definitions of acute rejection, time post-transplantation, sample size between 

studies, statistical interpretations (e.g. with or without multiple comparison adjustment) 

and genetic differences between ethnicities. Overall, these inconsistent results suggest 

that the IL1B and TLR4 genotypes/diplotypes investigated might not be major factors 

affecting BPAR incidence in kidney transplant recipients.  

The impact of recipient and donor CASP1, CRP, IL6R, MYD88 and TLR2 genetics on 

BPAR incidence in kidney transplant patients has not been reported previously. TLRs 
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and the MyD88 adaptor are important in innate immune response to DAMPs, which 

can lead to tissue damage [4]. Caspase-1 (encoded by CASP1) activates pro-IL-1β into 

its active IL-1β form [4], and IL-6/soluble IL-6R enhances the expansion and activation 

of T- and B-cells and induces several acute phase reactants, e.g. C-reactive protein [15]. 

Therefore, they are expected to be important for any innate immune contribution to 

acute rejection. However, common variations in these genes had no significant impact 

on BPAR incidence in our study.  

Our study has several limitations to consider when interpreting these results. Firstly, we 

had a relatively limited sample size and not all genotypes/diplotypes were available for 

every recipient and donor. This necessitated combination of some rare homozygous 

genotypes and exclusion of some rare diplotypes for statistical purposes, therefore, the 

effect of certain rare diplotypes or homozygous genotypes are unknown. Secondly, a 

few key SNPs, e.g. IL6 -174G>C and IL10 -592C>A, were not included because of 

incompatibility with the genotyping array, and there was insufficient DNA available to 

carry out separate genotyping of these SNPs. Thirdly, some important innate immune 

genes, e.g. IFNG (encoding for IFN-γ) [9] and NFKB1 (encoding for the NF-κB1 

subunit) [9], were not included in the gene panel design and are worthwhile exploring 

in the future. 

In conclusion, this study found no statistically significant impact of recipient or donor 

innate immune genetics on BPAR incidence in kidney transplant recipients in the first 

two weeks post-transplantation.  
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Table 1. Recipient and donor genotype, allele, haplotype and diplotype frequencies. 

Genes & SNPs 
Recipients# (n = 124 - 154) Donors* (n = 77 - 81) 

Genotypes/Diplotypes 
(n, %) 

Alleles/Haplotypes 
(n, %) 

HWE 
P 

Genotypes/Haplotypes 
(n, %) 

Allele/Haplotypes 
(n, %) 

HWE 
P 

CASP1 G/G (107, 69) 
G/A (44, 29) 
A/A (3, 2) 

G (258, 84) 0.8 G/G (58, 72) 
G/A (21, 26) 
A/A (2, 2) 

G (137, 85) 1 

5352G>A A (50, 16)  A (25, 15)  

     

 G/G (107, 69) 
G/C (44, 29) 

C/C (3, 2) 

G (258, 84) 0.8 G/G (58, 72) 
G/C (21, 26) 

C/C (2, 2) 

G (137, 85) 1 

10643G>C C (50, 16)  C (25, 15)  

     

 G-G/G-G (107, 69) 
G-G/A-C (44, 29) 

A-C/A-C (3, 2) 

G-G (258, 84)  G-G/G-G (58, 72) 
G-G/A-C (21, 26) 

A-C/A-C (2, 2) 

G-G (137, 85)  

5352G>A & 10643G>C  A-C (50, 16)  A-C (25, 15)  

     

CRP T/T (77, 50) 
T/C (61, 40) 
C/C (16, 10) 

T (215, 70) 0.4 T/T (33, 41) 
T/C (37, 46) 
C/C (10, 13) 

T (103, 64) 1 

-717T>C C (93, 30)  C (57, 36)  

     

IL1B C/C (76, 49) 
C/T (63, 41) 
T/T (15, 10) 

C (215, 70) 0.7 C/C (41, 51) 
C/T (32, 40) 
T/T (8, 10) 

C (114, 70) 0.8 

-511C>T T (93, 30)  T (48, 30)  
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 T/T (74, 48) 
T/C (63, 41) 
C/C (16, 10) 

T (211, 69) 0.7 T/T (41, 51) 
T/C (32, 40) 
C/C (8, 10) 

T (114, 70) 0.8 

-31T>C C (95, 31)  C (48, 30)  

     

 C-T/C-T (75, 49) C-T (213, 70)  C-T/C-T (41, 51) C-T (114, 70)  

-511C>T & -31T>C  C-T/T-C (63, 41) T-C (93, 30)  C-T/T-C (32, 40) T-C (48, 30)  

 T-C/T-C (15, 10) C-C (2, 1)  T-C/T-C (8, 10)   

 C-C/C-C (1, 1)      

 C/C (84, 55) 
C/T (61, 40) 

T/T (9, 6) 

C (229, 74) 0.5 C/C (52, 64) 
C/T (24, 30) 

T/T (5, 6) 

C (128, 79) 0.5 

3954C>T T (79, 26)  T (34, 21)  

     

IL2 T/T (70, 45) 
T/G (63, 41) 
G/G (21, 14) 

T (203, 66) 0.3 T/T (39, 48) 
T/G (36, 44) 
G/G (6, 7) 

T (114, 70) 0.6 

-330T>G G (105, 34)  G (48, 30)  

     

IL6 T/T (80, 52) 
T/C (61, 40) 
C/C (13, 8) 

T (221, 72) 0.8 T/T (50, 62) 
T/C (28, 35) 
C/C (3, 4) 

T (128, 79) 1 

-6331T>C C (87, 28)  C (34, 21)  

     

IL6R A/A (50, 33) A (178, 58) 0.6 A/A (27, 34) A (93, 58) 1 

Asp358Ala A>C A/C (78, 51) C (128, 42)  A/C (39, 49) C (67, 42)  

 C/C (25, 16)   C/C (14, 18)   
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IL10 G/G (31, 20) G (141, 46) 0.6 G/G (16, 20) G (68, 42) 0.5 

-1082G>A G/A (79, 52) A (165, 54)  G/A (36, 44) A (94, 58)  

 A/A (43, 28)   A/A (29, 36)   

 C/C (88, 58) C (230, 75) 0.5 C/C (42, 52) C (119, 73) 0.4 

-819C>T C/T (54, 35) T (76, 25)  C/T (35, 43) T (43, 27)  

 T/T (11, 7)   T/T (4, 5)   

 G-C/G-C (31, 20) G-C (141, 46)  G-C/G-C (16, 20) G-C (68, 42)  

 G-C/G-T (43, 28) G-T (89, 29)  G-C/G-T (14, 17) G-T (51, 31)  

-1082G>A & -819C>T  G-C/A-T (36, 24) A-T (76, 25)  G-C/A-T (22, 27) A-T (43, 27)  

 G-T/G-T (14, 9)   G-T/G-T (12, 15)   

 G-T/A-T (18, 12)   G-T/-A-T (13, 16)   

 A-T/A-T (11, 7)   A-T/A-T (4, 5)   

LY96 C/C (146, 95) C (300, 97) 1 C/C (76, 99) C (153, 99) 1 

Ser157Pro C>T C/T (8, 5) T (8, 3)  C/T (1, 1) T (1, 1)  

 T/T (0, 0)   T/T (0, 0)   

MYD88 A/A (123, 80) A (275, 89) 0.7 A/A (64, 79) A (145, 90) 0.6 

rs6853 A>G A/G (29, 19) G (33, 11)  A/G (17, 21) G (17, 10)  

 G/G (2, 1)   G/G (0, 0)   

TGFB                -1287G>A G/G (154, 100) G (308, 100)  G/G (81, 100) G (162, 100)  
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-509C>T 

C/C (81, 53) 
C/T (60, 39) 
T/T (13, 8) 

C (222, 72) 0.8 C/C (45, 56) 
C/T (29, 36) 

T/T (7, 9) 

C (119, 73) 0.6 

T (86, 28)  T (43, 27)  

    

TLR2 T/T (133, 86) 
T/C (19, 12) 
C/C (2, 1) 

T (285, 93) 0.2 T/T (74, 91) 
T/C (6, 7) 
C/C (1, 1) 

T (154, 95) 0.2 

1350T>C C (23, 7)  C (8, 5)  

     

TLR4 
896A>G 

A/A (137, 89) 
A/G (16, 10) 
G/G (1, 1) 

A (290, 94) 
G (18, 6) 

0.4 A/A (71, 88) 
A/G (10, 12) 
G/G (0, 0) 

A (152, 94) 
G (10, 6) 

1 

 

 

 C/C (136, 88) C (289, 94) 0.4 C/C (70, 88) C (150, 94) 1 

1196C>T C/T (17, 11) 
T/T (1, 1) 

T (19, 6)  C/T (10, 13) 
T/T (0, 0) 

T (10, 6)  

     

 A-C/A-C (136, 88) A-C (289, 94)  A-C/A-C (71, 88) A-C (152, 94)  

896A>G & 1196C>T  A-C/G-T (16, 10) G-T (18, 6)  A-C/G-T (10, 12) G-T (10, 6)  

 A-C/A-T (1, 1) A-T (1, 1)     

 G-T/G-T (1, 1)     

TNF G/G (113, 73) 
G/A (35, 23) 
A/A (6, 4) 

G (261, 85) 0.2 G/G (50, 62) 
G/A (30, 37) 
A/A (1, 1) 

G (130, 80) 0.2 

-308G>A A (47, 15)  A (32, 20)  
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Ala: Alanine; Asp: Aspartic acid; Donors*: donor numbers may differ from those in Table 2, as 3 donors were for 2 recipients, respectively, and 

they were not counted twice in HWE. In addition, donor numbers may differ within Table 1 due to genotyping failure or if the predicted haplotype 

probability was < 0.8; HWE P: HWE P-value; Pro: Proline; Recipients#: recipient numbers may differ within Table 1 due to genotyping failure or 

if the predicted haplotype probability was < 0.8; SNP: single nucleotide polymorphism. Percentages may not sum up to 100% due to rounding. 
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Table 2. Recipient and donor innate immune genotype/diplotype differences in BPAR incidence in the first 2 weeks post-transplantation, 

adjusting for HLA mismatches, induction therapy, kidney transplant number, living donor and peak PRA scores. 

Genes & SNPs 
 
 

Recipients# (n = 124 - 154) Donors* (n = 73 - 84) 

Genotypes/Diplotypes 
 (n, %) 

BPAR  
(n, %) 

OR 
 [95% CI] 

P Genotypes/Diplotypes 
 (n, %) 

BPAR  
(n, %) 

OR 
 [95% CI] 

P 

CASP1 
5352G>A & 10643G>C 

G-G/G-G (107, 71) 
G-G/A-C (44, 29) 

19, 18 Ref 0.07 G-G/G-G (60, 73)  
 G-G/A-C (22, 27) 

16, 27 Ref 0.9 

15, 34 2.2 [0.9 - 5.2]  6, 29 1.0 [0.3 - 2.9]  

CRP T/T (77, 50) 
T/C (61, 40) 
C/C (16, 10) 

12, 16 Ref 0.05 T/T (34, 41) 
T/C (39, 47) 
C/C (10, 12) 

6, 18 Ref 0.1 

-717T>C 18, 30 3.0 [1.2 - 7.6]  15, 38 3.1 [1.0 - 10.5]  

 5, 31 2.1 [0.5 - 7.8]  2, 20 1.3 [0.2 - 7.5]  

IL1B 
-511C>T & -31T>C 

 
 

3954C>T 
 

C-T/C-T (75, 49) 
C-T/T-C (63, 41) 
T-C/T-C (15, 10) 

18, 24 
13, 21 

Ref 
0.8 [0.3 - 1.9] 

0.9 
 

C-T/C-T (41, 49) 
C-T/T-C (34, 40) 
T-C/T-C (9, 11) 

13, 32 
9, 26 

Ref 
0.7 [0.2 - 2.2] 

0.5 
 

4, 27 0.9 [0.2 - 3.6]  1, 11 0.3 [0.01 - 1.9]  

C/C (84, 55) 
C/T (61, 40) 

T/T (9, 6) 

16, 19 
18, 30 
1, 11 

Ref 
2.0 [0.9 - 4.6] 
0.6 [0.03 - 4.1] 

0.2 C/C (54, 64) 
C/T (25, 30) 

T/T (5, 6) 

13, 24 
10, 40 
0, 0 

Ref 
2.3 [0.8 - 6.6] 

NA 

0.07 

IL2 
-330T>G 

T/T (70, 45) 
T/G (63, 41) 
G/G (21, 14) 

12, 17 Ref 0.3 T/T (41, 49) 
T/G (37, 44) 
G/G (6, 7) 

10, 24 Ref 0.09 

16, 25 1.5 [0.6 - 3.6] 9, 24 1.1 [0.4 - 3.2]  

7, 33 2.4 [0.7 - 7.2]  4, 67 8.1 [1.2 - 78.5]  
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IL6 

-6331T>C 

T/T (80, 52) 

T/C (61, 40) 

C/C (13, 8) 

14, 18 Ref 0.02 T/T (52, 62) 

T/C+ C/C (32, 38) 

11, 21 Ref 0.09 

15, 25 1.6 [0.7 - 4.0] 12, 38 2.4 [0.9 - 6.9]  

6, 46 6.6 [1.7 - 25.8]     

IL6R 

Asp358Ala A>C 
 

A/A (50, 33) 
A/C (78, 51) 

C/C (25, 16) 

12, 24 Ref 0.9 A/A (29, 35) 
A/C (39, 47) 

C/C (15, 18) 

4, 14 Ref 0.09 

16, 21 0.8 [0.3 - 2.1] 11, 28 2.3 [0.6 - 10.1]  

6, 24 0.9 [0.3 - 3.2] 7, 47 5.4 [1.2 - 27.5]  

IL10 

 

-1082G>A & -819C>T 
 

G-C/G-C (31, 20) 
G-C/G-T (43, 28) 

G-C/A-T (36, 24) 
G-T/G-T (14, 9) 

G-T/A-T (18, 12) 

A-T/A-T (11, 7) 

8, 26 
12, 28 

7, 19 
2, 14 

3, 17 

3, 27 

Ref 
1.3 [0.4 - 4.1] 

0.7 [0.2 - 2.5] 
0.6 [0.08 - 3.2] 

0.4 [0.05 - 2.0] 

1.3 [0.2 - 6.1] 

0.7 G/C-G/C (18, 23) 
G-C/G-T (14, 18) 

G-C/A-T (23, 29) 
G-T/G-T (12, 15) 

G-T/A-T (13, 16) 

 

2, 11 
4, 29 

7, 30 
2, 17 

7, 54 

 

Ref 
2.1 [0.4 - 13.3] 

2.6 [0.6 - 14.5] 
1.2 [0.1 - 8.7] 

6.7 [1.3 - 43.4] 

 

0.2 

MYD88 A/A (123, 80) 

A/G +G/G (31, 20) 

28, 23 Ref 0.6 A/A (66, 79) 

A/G (18, 21) 

17, 26 Ref 0.5 

rs6853 A>G 7, 23 0.7 [0.2 - 2.0]  6, 33 1.5 [0.4 - 4.7]  

TGFB C/C (81, 53) 
C/T (60, 39) 

T/T (13, 8) 

18, 22 Ref 0.7 C/C (47, 56) 
C/T (29, 35) 

T/T (8, 10) 

14, 30 Ref 0.5 

-509C>T 13, 22 1.0 [0.4 - 2.3]  6, 21 0.5 [0.2 - 1.7]  

 4, 31 1.7 [0.4 - 6.1]  3, 38 1.3 [0.2 - 6.2]  

TLR2 T/T (133, 86) 
T/C +C/C (21, 14) 

33, 25 Ref 0.07 T/T (77, 92) 
T/C+C/C (7, 8) 

22, 29 Ref 0.5 

1350T>C 2, 10 0.3 [0.04 - 1.1]  1, 14 0.5 [0.02 - 3.4]  
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TLR4 A-C/A-C (136, 89) 

A-C/G-T (16, 11) 

30, 22 Ref 0.5 A-C/A-C (74, 88) 

A-C/G-T (10, 12) 

20, 27 Ref 0.9 

896A>G & 1196C>T 4, 25 1.5 [0.4 -5.0]  3, 30 0.9 [0.2 - 3.8]  

TNF G/G (113, 73) 

G/A+A/A (41, 27) 

21, 19 Ref 0.04 G/G (53, 63) 

G/A+A/A (31, 37) 

13, 25 Ref 0.5 

-308G>A 14, 34 2.4 [1.0 - 5.7]  10, 32 1.4 [0.5 - 3.8]  

Ala: Alanine; Asp: Aspartic acid; BPAR: biopsy-proven acute rejection; Donors*: donor numbers may differ from those in Table 1, as 3 donors 

were for 2 recipients, respectively, and they were treated independently when associated with BPAR of the individual recipients. In addition, donor 

numbers may differ within Table 2 due to genotyping failure or due to exclusion of rare diplotypes (n < 5) so the total number of diplotypes in 

each SNP may be different; human leukocyte antigens (HLA-A, -B and -DR) mismatches; NA: not available; OR: Odds ratio; P: likelihood-ratio 

P-value; peak PRA: peak panel-reactive antibodies scores assessed by serum lymphocytotoxicity assay; Recipients#: recipient numbers may differ 

within Table 1 due to genotyping failure or due to exclusion of rare diplotypes (n < 5) so the total number of diplotypes in each SNP may be 

different; Ref: reference group; 95% CI: 95% confidence interval. 
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TAC is the backbone of maintenance immunosuppressive therapy post-transplantation. 

However, challenges exist in its clinical use even under TDM, mainly due to acute 

rejection and kidney dysfunction. In addition, the relationship between TAC C0 and 

acute kidney rejection has not been adequately shown under TDM. Therefore, the main 

aim of this study was to assess the impact of TAC dispositional genetics on TAC C0/D, 

BPAR incidence and eGFR in a retrospective cohort of 165 Australian kidney 

transplant recipients and their respective donors in the first 3 months post-

transplantation. In addition, the innate immunogenetic factors were examined as 

potential predictors of BPAR. A secondary aim was to explore if there could be a TAC 

C0-rejection relationship under TDM in kidney transplant recipients in the first 14 days 

post-transplantation. Due to the initial study design, only short- but not long-term 

kidney dysfunction was investigated in this study. 

6.1 Significance of the study 

• ABCB1 61A>G as a novel SNP contributing to TAC C0/D variability 

As introduced in sections 1.2 and 1.5.1 in Chapter 1, recipient CYP3A4/5 are the main 

hepatic/intestinal metabolising enzymes of TAC and P-gp is responsible for TAC efflux. 

In addition, NR1I2 and POR regulate CYP3A4/5 and/or P-gp expression or activity. 

Therefore, in Chapter 2, I examined the known key SNPs in TAC dispositional genes 

and their impact on TAC C0/D and identified a novel although minor impact of recipient 

ABCB1 61A>G on TAC PK variability (explaining 3-4% of log10 transformed TAC 

C0/D) for the first time in kidney transplant recipients in the first 3 months post-

transplantation. I also confirmed the major impact of recipient CYP3A5*3, accounting 

for 25-30% of log10 transformed TAC C0/D variability in the same cohort. Altogether, 

recipient CYP3A5*3, ABCB1 61A>G and non-genetic factors (age, sex and haematocrit) 
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accounted for ~35% of TAC C0/D variability (log10 transformed) in the first 3 months 

post-transplantation. The residual unexplained TAC C0/D variability may be due to 

other genetic (e.g. CYP3A4 phenotypes) and/or non-genetic factors (e.g. co-medication), 

both of which could not be addressed in this study due to the initial study design.  

• TDM may attenuate the genetic influence on kidney transplant outcomes 

As introduced in section 1.5.1 in Chapter 1, recipient ABCB1 and donor CYP3A5 and 

ABCB1 genetics are likely to affect TAC intracellular concentrations in T-cells and 

kidney cells, respectively. Therefore, TAC dispositional genes may also affect kidney 

transplant outcomes (e.g. BPAR and decreased eGFR post-transplantation).  

In Chapter 3, I examined recipient and donor CYP3A4/5, POR, ABCB1 and NR1I2 

genotype/haplotypes for their impact on BPAR incidence in the first 14 days post-

transplantation and eGFR in the first 3 months post-transplantation. However, none of 

these genetic factors can predict these kidney transplant outcomes in this cohort. TDM 

attempts to limit TAC C0 within a narrow range (e.g. 8-15 ng/mL in this study), 

therefore, it may have substantially counteracted the effect of recipient CYP3A5*3 and 

ABCB1 61A>G on TAC PK and consequently reduced the risk of sub- and supra-

exposure of TAC. This helped to explain why TAC dispositional genes affected TAC 

C0/D (see Chapter 2), but did not impact on BPAR or eGFR under TDM conditions. 

• A temporal TAC C0-rejection relationship in kidney transplant recipients 

As discussed in section 1.3 in Chapter 1, there is no agreement if a TAC C0-rejection 

relationship exists under TDM. However, this study showed for the first time that there 

was a temporal relationship between TAC C0 and BPAR in kidney transplant recipients. 

In Chapter 3, I found there was no difference in BPAR incidence between groups with 

TAC C0 < and ≥ 8 ng/mL or TAC C0 < and ≥ 5 ng/mL (both P-value = 0.7), this 
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observation also indicated that the relationship between TAC C0 and BPAR may be 

variable between kidney transplant recipients. This variability is likely due to the inter-

individual differences in haematocrit, plasma protein binding, TAC intracellular 

distribution or recipients’ immunological risk of BPAR (e.g. immunogenetic 

differences between recipients and the immunosuppressive effect from MMF and 

corticosteroid). Therefore, each recipient may have their own optimal TAC C0 TDM 

range, which assists to explain why some recipients experience BPAR even within or 

above current TAC TDM range. Furthermore, in Chapter 4, I reported for the first time 

that TAC C0 on the day of, and 1 day prior to, BPAR were lower than on preceding 

days. In addition, adjusting for haematocrit variability assisted in identifying this 

temporal TAC C0-rejection relationship. In conclusion, there was a temporal 

concentration-response relationship within kidney transplant recipients under TAC 

TDM. 

• Innate immunogenetic impact on BPAR incidence — not conclusive yet 

As introduced in section 1.5.2.1 in Chapter 1, the innate immune system is essential in 

rejection pathophysiology. In addition, recipients may have different immunological 

risks of BPAR due to immunogenetic variabilities. Therefore, the genetics of pro- and 

anti-inflammatory mediators, and the MyD88-dependent TLR signalling pathway, 

which mediates pro-inflammatory cytokine secretion, have the theoretical potential to 

affect BPAR. Most importantly, innate immunogenetics have never been examined in 

a transplant cohort treated with TAC as the only CNI.  

In chapter 5, however, I did not find the recipient and donor innate immunogenetics 

(CASP1, CRP, IL1B, IL2, IL6, IL6R, IL10, LY96, MYD88, TGFB, TLR2, TLR4 and TNF) 

affected BPAR incidence in TAC-treated kidney transplant recipients in the first 14 

days post-transplantation. The negative finding may be due to potent 
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immunosuppression by TAC in both adaptive (T-cell proliferation) and innate (IL-2 

secretion) immune system as described in section 1.1.2 in Chapter 1 and the use of  anti-

CD25 induction therapy, in over 90% of recipients in this Australian cohort, which may 

have inhibited IL-2/IL-2 receptor signalling. Notably, SNPs in CASP1, CRP, IL6R, 

LY96, MYD88 and TLR2 were studied for the first time for BPAR incidence in a 

relatively limited number of kidney transplant recipients and donors (n = 165 and 129, 

respectively), with missing genotypes/haplotypes in some individuals. In addition, due 

to the low rare allele frequency in some of these SNPs (see Table 5 in Chapter 1), it is 

still not conclusive whether the innate immune genetic factors investigated in this study 

affect BPAR in TAC-treated kidney transplant recipients. 

6.2 Limitations and strengths of the study 

Study limitations were summarised in the discussion in Chapters 2 to 5; specifically the 

limited sample size, lack of information on co-medications (especially MMF) and long-

term kidney function. As a retrospective study, the limited sample size (recipient n = 

165, donor = 129) may be insufficient to support the negative findings (no major PGx 

or immunogenetic impact on BPAR incidence and/or kidney function) in Chapters 3 

and 5. For example, in Chapter 3, detection of OR > 6.1 for BPAR for CYP3A5 

genotype which the study had 80% power to detect is not biologically plausible. 

However, the data presented in this thesis, along with other PGx and innate 

immunogenetic studies may together provide valuable information for meta-analysis in 

the future. 

Two strengths of this study should be highlighted. Firstly, this study employed linear 

and generalised linear (binomial) mixed effects modelling to account for repeated 

measurements and confounding factors, which enhanced the chance to identify the 

minor contribution of recipient ABCB1 61A>G to TAC C0/D variability and the TAC 
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C0-rejection relationship (see Chapters 2 and 4). In addition, multiple comparison 

adjustment was applied throughout the whole study, which can attenuate the chances 

of interpreting “false positive” results. Secondly, this was the first study to compare 

TAC C0 on the days prior to and on the day of BPAR within and between recipients, as 

they can develop BPAR on different days post-transplantation. Also, it was the first 

study to account for haematocrit in TAC C0-rejection relationship as haematocrit 

contributes to TAC C0 intra- and inter-individual variability (see section 1.2.2.2 in 

Chapter 1). Most importantly, it was the first study to allow for the inter-individual 

variabilities in the relationship between TAC C0 and BPAR via incorporating random 

effects (TAC C0 and haematocrit both on random slope and intercept) in the generalised 

linear (binomial) mixed effects modelling.  

6.3 Future perspectives  

• Progress of TAC PK monitoring: from whole blood to cells  

Current TAC TDM is based on TAC C0 monitoring, however, TAC C0-rejection 

relationship is variable between recipients. In addition, the whole blood TAC 

concentration is not therapeutically active, as only the plasma unbound TAC can enter 

the T-cells (the immunosuppressive site of action) to suppress the immune system. It 

has also been reported that there is a lack of a significant correlation between TAC C0 

and intracellular TAC concentrations in PBMCs (70-85% of which are T-cells) [168], 

indicating whole blood TAC concentration is unlikely to accurately reflect the 

immunosuppressive effect of TAC in vivo.  

Liquid chromatography–mass spectrometry quantification (LC-MS/MS) methods have 

been established in recent years for plasma unbound and PBMC TAC quantification 

[169-171], although they are much more laborious than TAC C0 monitoring. Several 

studies have already reported that PBMCs but not trough whole blood CNI (TAC/CsA) 
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concentrations were associated with BPAR incidence following liver or kidney 

transplantation [172-174]. However, PBMC TAC concentration was not correlated 

with BPAR in kidney transplant recipients, likely due to the small sample size and low 

BPAR incidence (n = 6 out of 96 recipients) [112]. Notably, similar to the limitations 

in those cross-sectional studies of TAC C0-rejection relationship, PBMC TAC 

concentrations used to categorize recipients into rejection and non-rejection groups 

were not always concurrent with BPAR. 

Therefore, future studies should investigate what genetic and non-genetic determinants 

are causing the variable relationship between TAC C0 and BPAR. Also, it is worthwhile 

exploring if plasma unbound and/or PBMC TAC concentrations can predict BPAR 

incidence in kidney transplant recipients.  

• TAC PD monitoring: beyond drug concentrations  

Although TAC PK monitoring is essential to correct inter- and intra-recipient viabilities 

in TAC disposition, it does not reflect recipients’ immunosuppressive response. 

Therefore, TAC PD biomarker monitoring may play an additional TDM role to TAC 

PK biomarker monitoring to guide TAC clinical use in the future. As reviewed recently 

[175], calcineurin phosphatase activity has been quantified to assess the degree of 

immunosuppression. However, calcineurin phosphatase activity is still not used as a 

TAC PD biomarker due to low reproducibility, expensive costs and time-consuming 

laboratory practice. Other PD biomarkers, for example, NFAT-regulated gene 

expression and NF-κB and p38 mitogen-activated protein kinases phosphorylation, 

have less specificity than calcineurin phosphatase activity to predict the degree of 

immunosuppression. However, they may better reflect the biological efficacy of TAC 

than monitoring concentration alone. More validation studies are still needed for these 

potential PD biomarkers before clinical implementation.  
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• Prospect in biomarkers: early and non-invasive genetic and non-genetic 

predictors of BPAR incidence 

Current biomarkers widely used for BPAR are graft histology (e.g. needle biopsy) and 

serum creatinine/eGFR. However, biopsy is invasive and can increase the chance of 

infection post-transplantation. Most importantly, biopsy is only diagnostic but not 

predictive of BPAR. In addition, serum creatinine/eGFR is non-specific to BPAR.  

Genetic factors in immune system (e.g. NFAT and NF-κB) and TAC PD pathway (e.g. 

immunophilin and calcineurin-calmodulin complex) may predict BPAR as they are 

theoretically able to affect individuals’ immunological risk of rejection and recipients’ 

response to immunosuppressive therapy. Although no genetic factors have been 

accepted as predictors of BPAR [176], it might be due to the limited sample size in 

cross-sectional studies and the selectively designed gene panels. Therefore, genome-

wide association studies in large kidney transplant cohorts (likely with multi-centre 

collaboration) may enhance the chance to identify the genetic predictors of BPAR. 

Other biochemical factors, e.g. donor-reactive T-cell response and epitope mismatch 

load, have been studied as novel biochemical predictors of BPAR but still require 

validation before clinical implementation [177].   

6.4 Conclusion 

In conclusion, ABCB1 61A>G and CYP3A5*3 significantly affected TAC C0/D 

variability in kidney transplant recipients in the first 3 months post-transplantation. 

Also, there was a temporal TAC C0-rejection relationship under TDM in kidney 

transplant recipients in the first 14 days post-transplantation. However, validations of 

these findings are still needed in the future due to the limited sample size in this study. 

Future work can focus on plasma unbound or PBMCs TAC concentration monitoring, 
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TAC PD monitoring and the novel genetic and non-genetic predictors of BPAR to 

maximise TAC immunosuppression and minimise BPAR incidence in kidney 

transplant recipients. 
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