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Abstract

Plant breeding has a rich history of producing yield gains in bread wheat through the in-

novation and adoption of new technologies. This result is driven by extensive research,

first in developing the technology, and second on establishing its application. Genomic

selection is a recent technology which over the past decade has been the focus of exten-

sive research effort. This research has been highly effective at developing the technology,

and our attention should now pivot towards establishing and refining the parameters un-

der which it should be applied. If genomic selection is to be successfully implemented

in wheat breeding programmes breeders must be better informed on the optimal design

of training strategies, and will also require cost-effective genotyping solutions. This body

of work concentrates on delivering three overarching intended research outcomes: i) es-

tablish the achievable accuracy of genomic prediction in a large breeding population, ii)

identify criteria for the optimal design of a genomic selection training strategy, and iii) in-

vestigate concepts and formulate methods for reducing the cost of implementing genomic

selection. We present a dataset of unprecedented size in genomic selection studies, and

utilise it to address these objectives.

In the first component of the project we confirmed the significant potential of genomic se-

lection by producing high prediction accuracies in a large and representative set of breed-

ing germplasm, and showed genomic selection to be more accurate than marker assisted

selection in all 14 traits tested. It was also demonstrated that genomic relationship infor-

mation can be incorporated into the analysis of phenotype data to significantly improve

model accuracy. The second component investigated factors affecting genomic predic-

tion accuracy and how these relationships could be exploited in order to efficiently design

accurate training strategies. We found that prediction accuracy continued to respond to

training set size well beyond sizes previously tested in the literature, and that this response
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was independent of the genetic complexity of the trait. The impact of relatedness on pre-

diction accuracy was highlighted, and it was shown that accuracy could be improved by

increasing relatedness between training and prediction sets, or by increasing the diversity

in the training set. To reduce the cost of implementing genomic selection, we present two

novel methodologies for accurately utilising a low density genotyping platform. These

approaches were shown to significantly increase the rate of genetic gain compared to a

high density platform, with the same total genotyping expenditure. They could also be

used to lower the cost of genomic selection without sacrificing genetic gain.

The work presented here represents a significant resource which will inform pragmatic

plant breeders on how to effectively and efficiently implement genomic selection in their

programmes. The findings clarify uncertainties and overcome constraints associated with

applying genomic selection, and can therefore be leveraged to facilitate increased rates of

genetic gain in wheat breeding programmes around the world.
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Chapter 1

Literature review

1.1 Introduction

With the global population forecast to exceed nine billion by 2050, FAO (2017) predict that

food production levels must rise by 60%. Wheat is the second most important crop for hu-

man dietary intake (FAO, 2017), and improving its yields could therefore be a key compo-

nent of achieving this production increase. Plant breeding has been successful in achieving

significant yield gains in wheat since the beginning of the 20th century (Wrigley & Rathjen,

1981), and it is critical that this continues if future production is to meet demand. Genomic

selection (GS), first proposed by (Meuwissen et al., 2001), has revolutionised dairy cattle

breeding and has since generated significant interest in its potential to increase rates of ge-

netic gain in plant breeding (Nakaya & Isobe, 2012). This review defines and analyses the

components and dynamics of GS that will determine its effectiveness in a wheat breeding

programme.

1.2 Overview of wheat breeding and genomic selection

Wheat breeding through artificial cross-fertilisation began in Australia late in the 19th cen-

tury (Wrigley & Rathjen, 1981). In the early 20th century, formal wheat breeding developed

as the process of making crosses and generating inbred lines, then selecting individuals for

variety release (Figure 1.1). Since its inception, wheat breeding has experienced immense

change, largely driven by the adoption of various technologies. For example, the use of

improved statistical techniques in trial analysis and line selection has revolutionised the

way genotypes are tested in the field.
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FIGURE 1.1: Core processes of wheat breeding (centre column), showing
some technologies that have already been implemented (left) (MAS: marker
assisted selection). Genomic selection (right) is a candidate technology yet

to be adopted.

Since molecular markers have become available in plant breeding, their application has

largely revolved around quantitative trait locus (QTL) and gene mapping, and marker

assisted selection (MAS). MAS can assist in parent selection or be employed during the in-

breeding stage (Figure 1.1), and is particularly effective when applied to qualitative traits

under monogenic control. However, many important traits (e.g. yield) are quantitative in

nature with complex polygenic control (Kuchel et al., 2007; Bennett et al., 2012; Maphosa

et al., 2014), and it is difficult to improve such traits through MAS (Dekkers et al., 2002).

GS is an emerging method in plant breeding, and is more suited to polygenic traits. GS

consists of an initial stage of model development, and a subsequent stage of prediction and

selection. A collection of lines related to the target germplasm (referred to as the training

set) with both phenotype and marker data is employed in the model development stage
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to determine marker effects. These effects are incorporated into a model and used to pre-

dict genomic estimated breeding values (GEBVs) for individuals in the target germplasm.

These individuals are therefore selected for crossing or progression to the next generation

based solely on their genotype.

The high potential for GS to increase rates of genetic gain is demonstrated by its suc-

cessfull adoption in the dairy industry. Over the last decade, it has led to genetic gains

of up to double that of conventional breeding, and is currently revolutionising the struc-

ture of dairy breeding programmes (Bouquet & Juga, 2013). Heffner et al. (2009) reviewed

the opportunity for applying GS in plant breeding and identified similarly high poten-

tial, discussing aspects such as statistical models, required marker density, maintaining

genetic diversity, and genotype by environment (G x E) interactions. Numerous stud-

ies have since been undertaken focussing on GS methods and its potential in maize and

wheat (Heffner et al., 2010; Jannink et al., 2010; Poland et al., 2012; Schulz-Streeck et al.,

2013; Crossa et al., 2014, 2016; He et al., 2016, 2017; González-Camacho et al., 2018; Michel

et al., 2018). On a world scale, the vast majority of maize breeding is undertaken by the

private sector, and while detailed information is not publicly available, it is understood

that commercial companies commonly use genomic prediction techniques in their breed-

ing programmes (Cooper et al., 2014). Wheat breeding is largely private in Europe and

Australia, but in North America there are both public and private programmes. Some pri-

vate companies in North America are currently adopting GS, and several North American

university breeding programmes have published research on the topic (Zhong et al., 2009;

Heffner et al., 2011a; Juliana et al., 2017). Of the private wheat programmes in Europe

and Australia, several are in the early to mid stages of applying GS (H. Kuchel, personal

communication).

1.3 Review of statistical methods

While the theory of genomic prediction is built on the same foundational concepts as QTL

analysis, there are several fundamental differences that should be acknowledged. This

section interrogates the respective statistical models of the two approaches in order to

highlight their differences.
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1.3.1 QTL analysis

QTL analysis is the process of identifying genomic regions that are linked to traits of in-

terest and estimating their effects; significant QTL can then be employed in MAS (Collard

et al., 2005). The concept of mapping QTL on the genome has existed since the beginning of

the 20th century where linkage between phenotypes was studied (Sax, 1923; Rasmusson,

1933). Initial approaches to QTL mapping with molecular markers, detailed by Soller et al.

(1976), involved analysing individual markers one at a time. Lander & Botstein (1989) de-

rived a simple interval mapping approach that used maximum likelihood for estimation

of QTL. This method was shown to be more powerful than single marker regression meth-

ods as it distinguishes between weak marker-QTL linkage and small QTL effects. Haley

& Knott (1992) developed a regression version of interval mapping which showed similar

performance to the maximum-likelihood approach, but was simpler to implement com-

putationally. However, this approach produced biased estimates of the residual variance

which affected the power of QTL detection (Xu & Atchley, 1995).

A disadvantage with these approaches is that separate models are used to estimate the

effects of individual QTL. This can result in the total variance explained by a QTL to be

overestimated (Xu, 2003). To overcome this, a method combining multiple regression anal-

ysis and interval mapping was proposed (Jansen, 1993; Zeng, 1993, 1994). Known as com-

posite interval mapping (CIM), this approach uses markers surrounding the interval of

interest as covariates to account for the effects of other QTL, thus reducing residual vari-

ance (background noise) (Kao et al., 1999). A natural extension of CIM is multiple interval

mapping (MIM), proposed by Kao et al. (1999). This approach uses multiple marker in-

tervals simultaneously to detect and estimate multiple putative QTL. This increases the

power and accuracy in QTL detection compared to CIM and earlier methods. Sillanpää &

Arjas (1998) proposed a novel approach for mapping multiple QTL based on Bayesian

hierarchical modelling. This method is similar to MIM and provides a more accurate rep-

resentation of individual putative QTL by simultaneously estimating the effects of QTL

elsewhere on the genome.

Although single marker and interval methods of QTL analysis have been popular, they
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are unfavourable for several reasons. Firstly, the genetic influence of the complete marker

set is not accounted for when estimating the effect of putative QTL. In addition, the ma-

jority of approaches do not allow for more complex model structures, such as additional

random or fixed components that often arise from plant experiments. Xu (2003) employed

a genome wide Bayesian approach detailed by Meuwissen et al. (2001) to simultaneously

estimate all marker effects. However, it fails to provide information on the significance

of QTL, and so identifying the strongest QTL becomes a challenge. These problems are

avoided with the whole genome average interval mapping (WGAIM) algorithm derived

by Verbyla et al. (2007). The WGAIM approach integrates whole genome QTL detection

and estimation with linear mixed modelling technology. In the initial stage of this algo-

rithm, a base linear mixed model is extended by incorporating the complete set of marker

intervals as random effects. An outlier detection method is then used to identify signif-

icant putative QTL. The QTL are moved to the fixed effects and the process is repeated

until no significant putative QTL are detected. This approach has been shown to be more

powerful than single marker and interval methods, and has been computationally imple-

mented in the WGAIM package (Taylor et al., 2011) available in the R statistical computing

environment (R Core Team, 2018). Verbyla et al. (2012) discuss a computationally efficient

random formulation of WGAIM. This reduces bias in selection and effect estimation of

putative QTL, and also decreases the occurrence of false positives.

1.3.2 Genomic prediction

A brief note on terminology, ”genomic prediction” is used here to describe the process

of calculating the genomic predictions, where genomic selection refers to both predicting

and selecting individuals in a breeding programme. Genomic prediction models gener-

ate GEBVs in two stages. Similar to whole genome QTL analysis, the first stage involves

the simultaneous estimation of marker effects. Secondly, net predictions are calculated

for each individual by summing the marker effects according to their marker-genotype.

There are many variations of genomic prediction models; the majority of which reside in

the first stage as there are numerous approaches to estimating marker effects. In their sem-

inal study where GS was first proposed, Meuwissen et al. (2001) discuss several variations

of genomic prediction models, and many have since been developed.
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One common approach to genomic prediction is the ridge regression formulation which

was first used in a whole genome QTL analysis context by Whittaker et al. (2000), and was

also used for genomic prediction by Heffner et al. (2011b) and Piepho et al. (2012b). Ridge

regression unrealistically assumes all marker effects to have equal variance; this assump-

tion results in all marker effects being equally shrunk toward zero, and can cause large

effect QTL to be underestimated (Nakaya & Isobe, 2012). Despite this, ridge regression

remains a suitable approach for quantitative traits, where small effect QTL are prevalent

(Heslot et al., 2012, 2013). The ridge regression approach can be extended by including

a reproducing kernel Hilbert space (RKHS) (de Los Campos et al., 2009) in the formula-

tion. Here, marker data is used to calculate the genetic relatedness between individuals.

This extension has been applied in GS studies by Crossa et al. (2010) and Heslot et al.

(2012). The ridge regression formulations generally require best linear unbiased predic-

tions (BLUP) for the estimation of marker or genotype effects. For this reason, the term

BLUP has been used quite broadly in the literature to describe various formulations of

ridge regression (Lorenzana & Bernardo, 2009; Crossa et al., 2010).

Another approach to genomic prediction is to use a Bayesian formulation and assign a

prior distribution to the variance of individual markers. Meuwissen et al. (2001) proposed

two variations known as BayesA and BayesB. BayesA uses an inverse chi-squared prior

distribution of individual marker variances that shrinks small marker effects close to zero

and enhances important effects. Realistically, some genomic regions will possess no QTL

for the trait of interest. The BayesB formulation accounts for this by allowing some mark-

ers to have zero effect. This uses a mixture prior distribution of individual marker vari-

ances that contains a fixed probability of zero variance. The Bayes-Cπ formulation is an

extension of BayesB that estimates this probability (Lorenz et al., 2010; Heslot et al., 2012).

Since their initial publication, numerous variations of these models have been proposed

and used. Among these is an expectation maximisation (EM) algorithm for the BayesB

model detailed by Hayashi & Iwata (2010), and used by Heslot et al. (2012). Empirical

Bayes (E-Bayes) is a variation of BayesA that uses a maximisation algorithm to estimate

the variance parameters and reduce computation time (Xu, 2007; Heslot et al., 2012). The

least absolute shrinkage and selection operator (LASSO) and Elastic Net methods have
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also been used in Bayesian formulations to shrink marker effects (Crossa et al., 2010; Hes-

lot et al., 2012).

1.3.3 Single and two-stage analyses

The process of generating genomic prediction calibrations can be described as having two

components; the first being the computation of adjusted phenotype means, and the second

the prediction of molecular marker effects using the adjusted means along with marker

genotype data. These processes can either be completed in two separate analyses (two-

stage), or together in one analysis (single-stage) (Schulz-Streeck et al., 2013). The adjusted

means have important variance-covariance structures associated with them; in a two-stage

analysis these structures are lost after the first stage as only the adjusted means are taken

to the second. Single-stage analyses on the other hand, can utilise the entire variance-

covariance structure. This may not be significant when phenotype data is produced in

small replicated field trials, but plant breeding programmes employ large unbalanced

multi-environment field trials which produce complex variance-covariance structures. In

such trials, the difference between single- and two-stage analyses becomes larger (Piepho

et al., 2012a).

1.4 Marker genotyping

For GS to be successfully implemented and economically viable on a commercial scale,

a molecular marker platform that provides dense coverage of the genome is required

(Heffner et al., 2010; Misztal & Legarra, 2017). Effective application of GS requires the

training set to adequately represent the target germplasm. Therefore, if the target germplasm

is very large, the training set may need to include thousands of individuals in order to rep-

resent it. Larger germplasm collections are capable of yielding more unique marker com-

binations due to a higher likelihood of recombination events occurring between tightly

linked markers. Sufficiently dense marker genotyping will therefore maximise the genetic

information represented by the markers, and hence captured in the model (Poland et al.,

2012; Hickey et al., 2014). Once GS is applied within a breeding programme, a large num-

ber of individuals require marker genotyping per cycle (Heffner et al., 2009; Heslot et al.,

2015). The cost of genotyping must therefore be suitably low for GS to be economically
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viable.

Fortunately, development in marker genotyping methods has been rapid; a decade ago

low-throughput gel-based platforms were prevalent (Collard et al., 2005), where now high-

throughput sequencer and chip based platforms can generate dense marker maps at real-

istic prices (Poland & Rife, 2012). Three types of platforms for high-throughput dense

marker genotyping are diversity array technology (DArT), chip based single nucleotide

polymorphism (SNP) arrays, and genotyping by sequencing (GBS). Chip based SNP ar-

rays are based on oligo ligation assay methods, and have been verified as a reliable and

cost-effective method for SNP genotyping in wheat (Akhunov et al., 2009). Here, SNPs

are first identified in a diverse germplasm collection, before being transferred to a fixed

assay to carry out genotyping (Poland & Rife, 2012). This method is therefore most effec-

tive when the germplasm used in SNP identification is representative of the germplasm

of interest; when this is not the case, ascertainment bias, and a reduction in polymorphic

markers can be expected (Heslot et al., 2013). GBS is a next generation sequencing method

that combines these two stages into one, hence enabling simultaneous discovery of SNPs,

and generation of their scores (Elshire et al., 2011). GBS has been successfully applied to

hexaploid wheat, and also shown to be a suitable platform for use in GS (Poland et al.,

2012). DArT is a hybridisation-based technique that scores the presence versus absence of

DNA fragments in genomic representations, and has been shown to be an effective method

for genotyping the hexaploid bread wheat genome (Akbari et al., 2006). DArT resembles

chip based assays in that it requires polymorphisms to be identified in a separate stage

prior to them being scored in the germplasm of interest.

Another approach of lowering genotyping cost is to use low and high density platforms

concurrently and impute low density progeny data up to high density using parental data.

This has been shown to be effective in animal and human genetics when imputing up to

sequence data (Kong et al., 2008; Howie et al., 2009; Antolı́n et al., 2017), but until very

recently little work has been carried out to develop suitable methods for highly structured

plant populations (Gonen et al., 2018), as earlier methods faced issues with long compu-

tational time (Hickey et al., 2015). Gorjanc et al. (2017) showed that if accurate imputation

methods were made available for plant breeders, they could be used to improve the overall
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impact achieved with GS.

1.5 Factors affecting accuracy of genomic estimated breeding val-

ues

True GEBV accuracy can be defined as the correlation between the GEBV and the true

breeding value (Heffner et al., 2009; Nakaya & Isobe, 2012). However, as the true breeding

value cannot be definitively known, accuracy is estimated by the correlation between the

GEBV and observed phenotypic values (Piepho, 2009; Crossa et al., 2010; Schmidt et al.,

2016). Erroneous phenotype data and GxE interactions will therefore contribute error to

the estimated GEBV accuracy. This can reduce how informative the estimated accuracy

is because a low estimated accuracy could be due to low true accuracy, or simply GxE

between the training and validation environments. Statistical methods of improving the

accuracy of phenotype data (i.e. spatial and multivariate analyses) are therefore valuable

in increasing the relative contribution that true GEBV accuracy makes to the estimated

GEBV accuracy. This section discusses both components of GEBV accuracy.

1.5.1 Prediction accuracy; contributing factors and a review of methodology

For GS to be effective in a plant breeding programme, a GEBV accuracy threshold must be

met (Heffner et al., 2010). This accuracy threshold will be specific to individual breeding

programmes and will vary with trait, breeding strategy, and the economics of phenotyping

and genotyping. Many studies on GS in plant breeding have estimated accuracies using

a range of methodologies (Table 1.5.1). Variations between methodologies arise from dif-

ferences in statistical models; marker platforms; germplasm type and size; structure of

training and validation sets; and management of genotype by environment interactions.

While these factors make it difficult to directly compare accuracies across studies, they can

be used to determine how relevant a study is to a particular breeding programme.

Size and type of germplasm collections

In order to maximise the gene pool available to breeders, breeding germplasm should be

large and genetically diverse. This enables more diverse genetic combinations to be cre-

ated, thus increasing the likelihood of achieving significant genetic gain (Bernardo, 2002).
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This is a challenge for GS as the prediction model must adequately account for all marker

effects and genetic backgrounds present in the germplasm. Researchers studying GS do

not always have access to breeding germplasm, and different GS strategies utilise dif-

ferent population types. A wide range of germplasm types have therefore been used in

studies reported thus far. Bi-parental populations were used by Heffner et al. (2011a) and

Lorenzana & Bernardo (2009) in wheat and barley respectively, with populations ranging

from 140 to 209 individuals in size. Collections of breeding lines ranging from 254 to 8416

individuals in size have been used in numerous studies with lines being sourced from

programmes such as the International Maize and Wheat Improvement Centre (CIMMYT)

(Crossa et al., 2010; Poland et al., 2012; Dawson et al., 2013; Lado et al., 2013; Crossa et al.,

2016), the Cornell University breeding programme (Heslot et al., 2013), and the private

European breeding company KWS (He et al., 2016, 2017). The largest training set used in

the literature is that of Crossa et al. (2016) at 3052 lines, which remains significantly smaller

than what would be available for large commercial programmes, but is significantly larger

than the majority of populations used in GS studies. Also, the effect of training set size on

prediction accuracy has not been explicitly investigated in training sets larger than 300

individuals, and so the optimum training set size remains unclear.

Structure of training and validation sets

The concept of GS in a plant breeding programme consists of developing a model in a

training set, and using it to predict the performance of lines in the breeding programme.

Consequently, the relatedness between the training set and the lines to be predicted has a

significant impact on GEBV accuracy (Nakaya & Isobe, 2012). Structures of training and

validation sets used in studies often differ to those in breeding programmes, but the fun-

damental relationship between relatedness and GEBV accuracy remains. The structure

of validation and training sets used in studies therefore influences the GEBV accuracy

achieved. The most common method of partitioning germplasm into training and vali-

dation sets is cross-validation. Here, germplasm is divided into a number of sets (10 for

example), nine of which are combined for model development (training set), and GEBVs

are then calculated for lines in the remaining set (validation set). Accuracy is estimated

by correlating the GEBVs with phenotype data in the validation set. This process is car-

ried out 10 times with a different set used for validation each time. Estimated accuracies



Chapter 1. Literature review 11

of each repetition can then be averaged (Crossa et al., 2010). Cross-validation methodol-

ogy can vary in the number of sets used, which determines the training:-validation ratio

(Lorenzana & Bernardo, 2009; Lado et al., 2013). It has been suggested that a higher train-

ing: validation ratio is needed when the germplasm has higher genetic diversity, or when

the trait of interest has lower heritability (Nakaya & Isobe, 2012).

Methodology also varies in the way the germplasm is divided into sets; most studies ran-

domly assign sets (Lorenzana & Bernardo, 2009; Crossa et al., 2010; Heslot et al., 2012,

2013; Lado et al., 2013; He et al., 2016), but some have managed relatedness between train-

ing and validation sets by grouping closely related individuals within sets (Poland et al.,

2012). Having lower relatedness between the training and validation sets is a closer sce-

nario to that of a breeding programme where historical lines might be used to predict the

performance of future lines.

Few studies have specifically investigated the response of GEBV accuracy to varying levels

of relatedness between the training and validation sets (Scutari et al., 2016). When applied

in a breeding programme, relatedness will likely fluctuate continuously. A comprehensive

understanding of this response would allow breeders to comprehend the degree to which

they can predict germplasm outside the training set.

Management of genotype by environment interactions

Genotype by environment (GxE) interactions (i.e. variability in the relative performance

of individuals across environments) is a major challenge in plant breeding. This is par-

ticularly true in countries such as Australia, where key growth factors such as rainfall

and soil type are subject to large temporal and spatial variation (Haldane, 1946; Cooper

& DeLacy, 1994). Plant breeders have employed a range of methods to negate this chal-

lenge (Basford et al., 1991); chief among them is the grouping of environments into clusters

that behave similarly (Horner & Frey, 1957). With GS, approaches to managing GxE in-

teractions are much the same. Crossa et al. (2010) and Dawson et al. (2013) both used a

grouping approach, such that a prediction model is generated for each environment clus-

ter. Breeders could then assess predictions for each cluster, and base their selections on

the relative importance of cluster. Another approach used in studies reviewed here is
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a global prediction, where data from multiple environments is incorporated into a sin-

gle prediction model (Dawson et al., 2013; Heslot et al., 2013). This approach works best

when environments are highly correlated, but is unlikely to be effective in managing large

GxE interactions. Several studies performed GS across environments, taking training data

from one set of environments, and validation data from another (Heffner et al., 2011a,b;

Dawson et al., 2013; Lado et al., 2013; He et al., 2016). The point should be raised that

this approach increases the degree to which environmental factors affect the estimation of

GEBV accuracy (i.e. a low estimated accuracy may simply be the result of a large GxE

interaction, and thus a poor correlation between environments). This can confound the in-

terpretation of GEBV accuracies with other factors being investigated, such as relatedness

between training and validation sets. It is therefore important to consider all contributing

factors when assessing estimated accuracies. Heslot et al. (2012) analysed the same wheat

data set used by Heffner et al. (2011b). Here, Heslot performed cross-validation within

environment, where Heffner cross-validated across environment. Heffner’s method also

used a larger portion of the germplasm in model development. The contrast in approaches

showed through in the accuracies. For yield, Heffner’s ridge regression accuracy was 0.19

compared to Heslot’s 0.36, highlighting the impact of GxE and cross-validation structure

on accuracy estimation.

Statistical methods

Numerous statistical methods for calculating GEBVs have been studied to determine which

are most accurate, and whether that accuracy is related to the trait being predicted. Crossa

et al. (2010) compared a Bayesian method with RKHS regression and observed slightly

higher accuracies with RKHS regression when predicting for yield. Also trialled was a

BLUP method, which was consistently less accurate. The inclusion of pedigree data was

also tested, and slightly improved accuracies with both models. It was suggested that

as marker density increases, improvement from including the pedigree would decrease

(Crossa et al., 2010).

Heffner et al. (2011a) used RR-BLUP and Bayes-Cπ on a range of quality traits in two

bi-parental populations. Bayes-Cπ produced higher accuracies in the population derived

from a wide cross, and RR-BLUP was superior in the population from a narrow cross. It
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was put forward that Bayes-Cπ is better suited to germplasm with larger QTL effects (such

as those derived from wider crosses) as it allows some markers to contribute no effect, thus

enabling the remaining larger marker effects to contribute more to the GEBV.

Lorenzana & Bernardo (2009) compared a BLUP approach with several Bayesian varia-

tions. BLUP consistently produced higher accuracy than the Bayesian approaches, which

contrasts with the finding of Crossa et al. (2010). These studies used different genetic mate-

rial and marker platforms, and methodology varied slightly, making it difficult to compare

their findings.

Heslot et al. (2012) compared 10 statistical methods within a range of barley and wheat

germplasm collections, predicting for yield and several other traits. In his study, the

RKHS method consistently outperformed ridge regression, Bayesian LASSO and Bayes-

Cπ, which all performed similarly. The E-Bayes method produced lower accuracies than

each of the other methods.

Traits of interest

The accuracy of genomic prediction varies according to the genetic control of the trait

of interest. Higher accuracies are commonly achieved when predicting qualitative traits

with simple genetic control, as opposed to quantitative traits (Huang et al., 2006; Heffner

et al., 2011b). This is true when using either genomic prediction, or a more traditional QTL

approach such as multiple linear regression (MLR). This can be attributed to the fact that

qualitative traits are predominantly controlled by few genes with large effect, which are

easier to account for than the many genes of small effect that control quantitative traits.

While qualitative traits are more easily predicted using MLR with several QTL (Butler

et al., 2005; Sadeque & Turner, 2010; Heslot et al., 2012), it is not fully known if GS is

more accurate than MLR in these instances. Almost all studies investigating GS in plant

breeding have focused on grain yield, which is quantitative, but some studies have also

considered a range of other traits, both quantitative and qualitative (Table 1.5.1).
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TABLE 1.1: A summary of genomic selection studies in wheat and barley.

Species
Germplasm
type (size)

Marker platform (# of
markers)1

Statistical
model(s)2 Traits # of environments GEBV accuracy Reference

Wheat
Collection of

CIMMYT3lines
(599)4

DArT (1279)
Pedigree-RKHS,

Pedigree-BL, RKHS, BL,
BLUP

Grain yield 4 (clusters)
RKHS: 0.45− 0.60

P-RKHS: 0.48− 0.61
Crossa et al.

(2010)

Wheat
Collection of

CIMMYT landrace
accessions (8416)4

DArT (23574-23946 GBLUP
9 agronomic and

quality traits
2 (drought & heat) 0.34− 0.60

Crossa et al.
(2016)

Wheat
Collection of

CIMMYT lines
(384)

GBS SNP (13357) RR
Grain yield, TKW5,

maturity, KPS6 5

GY: 0.23− 0.62
TKW: 0.76− 0.84

Maturity: 0.40− 0.58
KPS: 0.46− 0.67

Lado et al.
(2013)

Wheat
Collection of

CIMMYT lines
(622)

GBS SNP (34483) BLUP Grain yield 168 (historic data)
All years TP: 0.44

3-year window TP: 0.43
Random 16-fold CV: 0.56

Dawson et al.
(2013)

Wheat
Bi-parental DH

(209)
SSR, DArT, AFLP,
TRAP, RFLP (484)

RR, Bayesian, MLR 9 grain quality traits 19
RR: 0.27− 0.68

Bayesian: 0.31− 0.67
MLR: 0.17− 0.51

Heffner et al.
(2011a)

Wheat
Bi-parental DH

(174)
DArT (574) RR, Bayesian, MLR 9 grain quality traits 19

RR: 0.37− 0.63
Bayesian: 0.43− 0.74

MLR: 0.27− 0.48

Heffner et al.
(2011a)

Wheat
Collection of

Cornell University
lines (365)

DArT (1544) RR

Grain yield, plant
height, maturity,

sprouting
6

GY: 0.36
Height: 0.48

Maturity: 0.30
Sprouting: 0.47

Heslot et al.
(2013)

Wheat
Collection of

Cornell University
lines (365)

GBS SNP (38412) RR

Grain yield, plant
height, maturity,

sprouting
6

GY: 0.41
Height: 0.52

Maturity: 0.47
Sprouting: 0.57

Heslot et al.
(2013)

Wheat
KWS elite winter

lines (2325)
SNP array (12642) RR, Bayes-Cπ, RKHS,

Extended GBLUP
Grain yield 9

RR: 0.63
Extended GBLUP: 0.68

RKHS: 0.68
Bayes-Cπ: 0.62

He et al. (2016)
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TABLE 1.1: A summary of genomic selection studies in wheat and barley.

Species
Germplasm
type (size)

Marker platform (# of
markers)1

Statistical
model(s)2 Traits # of environments GEBV accuracy Reference

Wheat
KWS elite winter

lines (3816)
SNP array (3047− 9153)

GBLUP, Extended
GBLUP, RR-haplotype

Grain yield 10

GBLUP: 0.63
Extended GBLUP: 0.65

RR-haplotype: 0.64
He et al. (2017)

Wheat
DH breeding lines

(840)
GBS (4598)

RR, W-BLUP,
MW-BLUP

7 end use quality traits 10
RR: 0.30− 0.53

W-BLUP: 0.35− 0.61
MW-BLUP: 0.38− 0.63

Michel et al.
(2018)

Barley
KWS elite spring

lines (training sets:
65− 424)

SNP array (4095) RR
12 quality and

agronomic traits
2− 7 0.14− 0.58

Schmidt et al.
(2016)

Barley
KWS elite winter

lines (3816)
SNP array (4359) RR

12 quality and
agronomic traits 6 0.11− 0.30

Schmidt et al.
(2016)

Barley
Bi-parental

population DH
(150)

RFLP (223) BLUP, e-Bayes

Grain yield, plant
height, protein, malt

extract, α-amylase
activity

16
BLUP: 0.64− 0.86

e-Bayes: 0.51− 0.79
Lorenzana &

Bernardo (2009)

Barley
Bi-parental

population DH
(140)

RFLP, AFLP (107) BLUP, e-Bayes

Grain yield, plant
height, protein, malt

extract, α-amylase
activity

9
BLUP: 0.61− 0.85

e-Bayes: 0.58− 0.86
Lorenzana &

Bernardo (2009)

Wheat
Collection of

CIMMYT lines
(254)

DArT (1276) BLUP
Grain yield, TKW,

maturity
2 (drought
irrigated)

GY (irrigated): 0.13
GY (drought): 0.18

TKW: 0.28
Maturity: 0.20

Poland et al.
(2012)

Wheat
Collection of

CIMMYT lines
(254)

GBS SNP (1827) BLUP
Grain yield, TKW,

maturity
2 (drought &

irrigated)

GY (irrigated): 0.25
GY (drought): 0.35

TKW: 0.26
Maturity: 0.34

Poland et al.
(2012)

Wheat
Collection of

CIMMYT lines
(254)

GBS SNP (34749) BLUP
Grain yield, TKW,

maturity
2 (drought &

irrigated)

GY (irrigated): 0.32
GY (drought): 0.42

TKW: 0.33
Maturity: 0.33

Poland et al.
(2012)
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TABLE 1.1: A summary of genomic selection studies in wheat and barley.

Species
Germplasm
type (size)

Marker platform (# of
markers)1

Statistical
model(s)2 Traits # of environments GEBV accuracy Reference

Wheat
Collection of

CIMMYT lines
(599)

DArT (1279
RR, BL, Elastic net,
wBSR, Bayes-Cπ,

e-Bayes, RKHS
Grain yield 4 (clusters)

RR: 0.38− 0.51
BL: 0.37− 0.50

Elastic net: 0.35− 0.46
wBSR: 0.36− 0.50

Bayes-Cπ: 0.58− 0.51
e-Bayes: 0.36− 0.49
RKHS: 0.43− 0.59

Heslot et al.
(2012)

Wheat
Collection of

Cornell University
lines (374)7

DArT (1158)
RR, BL, Elastic net,
wBSR, Bayes-Cπ,

e-Bayes, RKHS
Grain yield, maturity 2

RR: 0.36− 0.45
BL: 0.35− 0.44

Elastic net: 0.37− 0.41
wBSR: 0.37− 0.44

Bayes-Cπ: 0.34− 0.44
e-Bayes: 0.26− 0.41
RKHS: 0.28− 0.55

Heslot et al.
(2012)

Wheat
Partial diallel (eight

crosses, five
parents) (551)

SNP (319)
RR, BL, Elastic net,
wBSR, Bayes-Cπ,

e-Bayes, RKHS

Grain yield, plant
height, TKW 6

RR: 0.53− 0.64
BL: 0.52− 0.66

Elastic net: 0.51− 0.68
wBSR: 0.52− 0.67

Bayes-Cπ: 0.53− 0.66
e-Bayes: 0.51− 0.67
RKHS: 0.58− 0.73

Heslot et al.
(2012)

Barley
Collection of

Limagrain Europe
elite lines (761)

SNP (338)
RR, BL, Elastic net,
wBSR, Bayes-Cπ,

e-Bayes, RKHS
Grain yield 24 (sparse)

RR: 0.53
BL: 0.55

Elastic net: 0.52
wBSR: 0.53

Bayes-Cπ: 0.53
e-Bayes: 0.53
RKHS: 0.60

Heslot et al.
(2012)
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TABLE 1.1: A summary of genomic selection studies in wheat and barley.

Species
Germplasm
type (size)

Marker platform (# of
markers)1

Statistical
model(s)2 Traits # of environments GEBV accuracy Reference

Barley
Collection of CAP8

lines (911)
SNP (2146)

RR, BL, Elastic net,
wBSR, Bayes-Cπ,

e-Bayes, RKHS
β-glucan content 15 (sparse)

RR: 0.57
BL: 0.57

Elastic net: 0.57
wBSR: 0.57

Bayes-Cπ: 0.57
e-Bayes: 0.57
RKHS: 0.60

Heslot et al.
(2012)

Wheat
Collection of

Cornell University
lines

DArT (1158)
RR, Bayes-A, Bayes-B,

Bayes-Cπ

Grain yield, 12
agronomic and quality

traits
6

RR: 0.20− 0.75
Bayes-A: 0.22− 0.76
Bayes-B: 0.22− 0.75

Bayes-Cπ: 0.17− 0.76

Heffner et al.
(2011b)

1 DArT (diversity array technology), SNP (single nucleotide polymorphism), GBS (genotyped by sequencing)
2 RR (ridge regression), W-BLUP (ridge regression with large effect markers included as fixed effects), MW-BLUP (multi-trait W-BLUP model), RKHS (reproducing kernel Hilbert space regression),

BL (Bayesian least absolute shrinkage and selection operator), BLUP (best linear unbiased prediction), MLR (multiple linear regression), e-Bayes (empirical Bayesian), Bayes (Bayesian), wBSR
(weighted Bayesian shrinkage regression)

3 International Maize and Wheat Improvement Centre
4 The CIMMYT dataset used by Heslot et al. (2012) is the same as that used by Crossa et al. (2010)
5 Thousand kernel weight
6 Kernels per spike
7 The Cornell University dataset used by Heslot et al. (2012) is the same as that used by Heffner et al. (2011b)
8 Coordinated Agricultural Project
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1.5.2 Relevance of reported accuracies

Studies reviewed here report estimated GEBV accuracies ranging from 0.13 to 0.86. As

detailed above, there are many factors contributing to both estimated and true GEBV

accuracy in GS studies. These factors are highly variable across studies, which makes

comparisons difficult and affects how relevant a study is to breeding applications. When

designing studies, consideration should be given to maximise the relevance to breeding

programmes.

1.6 Genomic selection in a plant breeding programme

The potential for GS to be applied in plant breeding programmes has been a point of

speculation for almost two decades (Meuwissen et al., 2001). In the past ten years, research

effort into GS for plant breeding has increased dramatically (Lorenzana & Bernardo, 2009;

Heffner et al., 2011b; Heslot et al., 2012; Dawson et al., 2013; Crossa et al., 2014; Hickey

et al., 2014; He et al., 2016; Gaynor et al., 2017; Gorjanc et al., 2018). This section explores

some important issues surrounding the application of GS.

1.6.1 Wheat breeding strategies utilising genomic selection

Several studies have proposed plant breeding strategies around GS that have the potential

to significantly increase the rate of genetic gain (Heffner et al., 2009; Nakaya & Isobe, 2012).

Figure 1.2 details the structure of a GS wheat breeding programme adapted from Heffner

et al. (2009) and Morrell et al. (2011). The key difference from a conventional programme

is that progeny of crosses are selected as parents for the next cross using GS, as opposed to

phenotypic selection. This greatly reduces what is known as the generation interval, one

of the key determinants of rate of genetic gain. As wheat is an inbred crop, lines must be

selfed in order to produce homozygous individuals (or otherwise use technology such as

doubled haploid). In conventional programmes, this inbreeding stage takes place before

intense phenotypic assessment, although there is some overlap of the two. This can also

be the case in GS programmes, with some level of inbreeding taking place before the GS

stage (Heffner et al., 2010). Figure 1.2 illustrates a strategy where crossing designs (e.g.

straight cross, top cross, or backcross) are carried out to produce an F1 generation which

immediately undergoes genotyping and GS (Gaynor et al., 2017).
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FIGURE 1.2: Adapted from Heffner et al. (2009) and Morrell et al. (2011).
Crossing cycle and generation interval is shortened by using genomic se-
lection in place of phenotyping for selection of parents. The model is up-
dated with data from new individuals to maintain prediction accuracy. New

germplasm is introduced to increase genetic diversity.

As well as selecting parents for crossing, Figure 1.2 shows individuals would also be se-

lected for progression in the breeding programme towards variety release. It should be

noted that when selecting for parents breeders are interested in the individual’s breed-

ing value (only additive effects), but when selecting for progression in the programme

breeders are interested in that individual’s phenotypic performance. This is referred to

as the genotypic value, and includes both additive and non-additive effects (Bernardo,

2002). Models described in the review of statistical methods section include only additive

effects, and hence predict the breeding value. As wheat is an inbred crop, the genetic per-

formance is comprised of additive and additive-by-additive interactions (epistasis) only.

There is uncertainty around the importance of epistasis in the control of quantitative traits
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(Hill et al., 2008; Cooper et al., 2009). The amount and size of epistatic effects will de-

fine how accurate an additive model is at predicting genotypic value. If epistasis scarcely

contributes to the control of quantitative traits, as suggested by Oakey et al. (2006), then

an additive model would likely suffice for predicting genotypic value. If the contribution

from epistasis is large however, models that account for epistatic effects would be needed;

Wang et al. (2012) presented such a model.

1.6.2 Maintaining prediction accuracy

Genomic prediction models use markers to represent the effect of QTL with which they

are in linkage disequilibrium (LD). A QTL effect will only be accurately represented by its

corresponding marker while the two remain in LD (Cooper et al., 2014). LD between mark-

ers and QTL can decay over multiple generations as recombination events create different

linkage phases in some individuals which can be inherited in the next generation. Decay

of LD therefore poses a threat to genomic prediction accuracy after several generations of

GS (Muir, 2007). In order to negate this issue, the model should be periodically re-trained

by including genotype and phenotype data from the new individuals in the training set

(model updating cycle in Figure 1.2). It should also be noted that LD decay occurs most

rapidly when LD between two loci is weak. LD is more intense between loci that have

tighter physical linkage (Nakaya & Isobe, 2012); having tighter physical linkage between

markers and QTL will therefore slow the rate of LD decay. Higher marker densities result

in more markers having tighter physical linkage with QTL, and could therefore act as a

buffer against loss of prediction accuracy over generations (Hickey et al., 2014).

1.6.3 Performing genomic selection: tools and approaches

Making selections is one of the most important processes in plant breeding. Conventional

breeding programmes commonly perform between one and two rounds of selection for

crossing per year, but with GS this number could theoretically exceed five (Morrell et al.,

2011). Therefore, efficient selection methods will play an important role in increasing the

efficiency and effectiveness of GS breeding programmes.
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Selection indices

The concept of using selection indices to rank breeding lines has been reported since the

1930s (Smith, 1936), and is the process of combining performance data of multiple traits

into one value based on the relative economic importance of traits (Lin, 1978). A common

model for an index, known as the Smith-Hazel index (Smith, 1936; Hazel, 1943), also ac-

counts for genetic and phenotypic correlations between traits. Heffner et al. (2011b) used

the Smith-Hazel index in a GS study and showed indexing based on GEBV to be slightly

more accurate than indexing based on phenotype, and suggested more research go into

selection indices with GS. This selection index, as used by Heffner, is not an ideal model

as it unreasonably assigns a multiplier weight to threshold traits that actually only need

to be better than a defined cut-off (e.g. test weight). This results in threshold traits con-

tributing to the index even after surpassing their threshold performance. However, this

study along with successful applications of selection indices with GS in livestock breeding

(Dekkers, 2007; Börner & Reinsch, 2012), does reveal potential for their application in GS

plant breeding programmes. Future research in applying selection indices to plant breed-

ing would be valuable, particularly in addressing better management of threshold traits

and accounting for varying trait heritabilities. This topic is further discussed in section

5.4.1.

Maintaining genetic diversity

Issues have been raised around an increased rate of inbreeding and subsequent loss of

genetic diversity when using GS (Daetwyler et al., 2007; Heffner et al., 2009; Jannink et al.,

2010; Gorjanc et al., 2016; Gaynor et al., 2017). This can occur when superior individuals

are constantly selected for crossing, causing alleles they carry to contribute increasingly to

succeeding generations and alleles from inferior individuals to contribute less. This leads

to an undesirable loss of genetic diversity within the germplasm. To combat this, Jannink

et al. (2010) describes a method of placing weight on favourable alleles with low frequency,

thus reducing the loss of favourable alleles and maintaining genetic diversity. However,

this area requires continued research effort to ensure that high rates of genetic gain are

maintained under GS over time.
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1.7 Summary

Since their inception, the principal use of molecular markers in breeding programmes has

been QTL analysis and MAS. Recent advances in dense marker genotyping and statistical

methods have resulted in a shift of focus towards whole genome approaches such as GS.

There are numerous factors that determine the effectiveness of GS in a wheat breeding pro-

gramme; sufficient prediction accuracy is required, as are optimised breeding strategies.

Many factors regulate true prediction accuracy, and methods for estimating prediction ac-

curacy vary. The optimal methodology is therefore not clear among current literature; this

needs to be determined in order for plant breeders to make informed decisions about the

potential deployment of GS in their programmes. While several studies have recently in-

creased the size of training sets up to 3052 individuals, the effect of training set size on

prediction accuracy has not been explicitly investigated and so the optimum training set

size remains unclear. Breeding programmes often have access to much larger populations,

and these should be studied in regards to size and relatedness if we are to better under-

stand the optimal design of GS training sets. If breeders can efficiently implement accurate

GS with low cost genotyping strategies, then GS is likely to realise its potential and enable

a significant increase in rate of genetic gain achieved by plant breeding programmes.
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Chapter 2

An initial assessment of genomic

prediction accuracy

2.1 Exegetical statement

For GS to be applied in a breeding programme, large populations require genotyping both

for training the model and for selection. Even with low-cost genotyping strategies, this

represents a significant financial investment that needs to be justified by the potential ben-

efits. An understanding is therefore required of the accuracy that can be achieved when

predicting relevant traits in relevant large-scale breeding germplasm. In addition, quali-

tative traits with simple genetic control may be better predicted with only several quan-

titative trait loci using marker assisted selection. Predictive ability of the two methods

should therefore be assessed in traits of varying genetic complexity. This paper utilises a

dataset of unprecedented size to address these questions by comparing cross-validation

accuracies of genomic and marker assisted prediction in 14 traits of varying genetic con-

trol. We investigate the level of linkage disequilibrium in the dataset which is important in

understanding how the prediction calibrations are capturing the genetic effects, and also

characterise the genetic and residual correlations between traits which reveal to breeders

where correlated response to selection may be occurring.
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genotyped using a custom  AxiomTM Affymetrix SNP array. 
A high-quality consensus map was also constructed, allow-
ing the linkage disequilibrium present in the germplasm to 
be investigated. Using the complete SNP array, genomic 
prediction accuracies were found to be substantially higher 
than those previously observed in smaller populations and 
also more accurate compared to prediction approaches using 
a finite number of selected quantitative trait loci. Multi-trait 
genetic correlations were also assessed at an additive and 
residual genetic level, identifying a negative genetic corre-
lation between grain yield and protein as well as a positive 
genetic correlation between grain size and test weight.

Introduction

Plant breeding has been successful in producing significant 
yield gains in wheat since the beginning of the twentieth 
century (Wrigley and Rathjen 1981); this has largely been 
driven by the innovation and adoption of new breeding 
technologies. Such progress is underpinned by extensive 
research, first in developing the technology, and second 
on establishing its application. If new technologies are to 
continue enabling plant breeding to deliver genetic gain to 
growers, innovative research must be undertaken in datasets 
that are relevant to the setting in which they will be applied.

Molecular markers are one technology that represent an 
invaluable research tool for understanding the genetic con-
trol of various traits. They have frequently been utilised in 
quantitative trait loci (QTL) mapping studies, and applied 
in breeding programmes through marker-assisted selection 
(MAS) (Koebner and Summers 2003; Collard and Mackill 
2008). Early statistical modelling approaches to QTL map-
ping involved the analysis of individual markers through 
simple scanning procedures (Soller et al. 1976). In more 

Abstract 
Key message Genomic prediction accuracy within a 
large panel was found to be substantially higher than 
that previously observed in smaller populations, and also 
higher than QTL‑based prediction.
Abstract In recent years, genomic selection for wheat 
breeding has been widely studied, but this has typically 
been restricted to population sizes under 1000 individuals. 
To assess its efficacy in germplasm representative of com-
mercial breeding programmes, we used a panel of 10,375 
Australian wheat breeding lines to investigate the accuracy 
of genomic prediction for grain yield, physical grain qual-
ity and other physiological traits. To achieve this, the com-
plete panel was phenotyped in a dedicated field trial and 
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modern approaches, statistical methods have improved the 
efficiency and power of QTL detection through the simulta-
neous incorporation of markers from the whole genome in 
complex linear mixed models (Zhang et al. 2010; Verbyla 
et al. 2012). There has also been focus on whole genome 
QTL mapping in broader multiparent populations (Huang 
et al. 2012; Sannemann et al. 2015; Mackay et al. 2014), and 
diverse association panels (Neumann et al. 2011; Bentley 
et al. 2014; Zanke et al. 2014). The latter usually involves 
the use of genome-wide association studies (GWAS) and 
has become a valuable tool for broad validation of previ-
ously identified QTL as well as identification of QTL in 
the target breeding germplasm. For qualitative traits under 
simple genetic control, GWAS, and subsequent application 
of MAS has been shown to be an effective tool in breed-
ing programmes (Xu and Crouch 2008). However, for more 
complex polygenic quantitative traits such as grain yield, 
there have been few examples of genetic improvement using 
MAS (Dekkers et al. 2002). This deficiency can be overcome 
by implementing a genomic selection (GS) method that uses 
a complete set of molecular marker effects for predicting 
the performance of quantitative polygenic traits (Meuwissen 
et al. 2001). Current research in this area suggests with suf-
ficient prediction accuracy, GS can be successfully applied 
in a breeding programme to increase rates of genetic gain 
(Cooper et al. 2014; Schmidt et al. 2016). Recent studies 
investigating the accuracy of GS in wheat have used popula-
tion sizes ranging from several hundred to several thousand 
individuals, and achieved prediction accuracies mostly in the 
range of 0.50–0.60 as measured by Pearson correlation coef-
ficients (Heslot et al. 2012; Nakaya and Isobe 2012; Isidro 
et al. 2015; He et al. 2016).

In GWAS and QTL analysis, the use of physical and 
genetic maps has been widely adopted (Kang et al. 2010; 
Zhang et al. 2010). Recombination information from these 
maps could also be used in GS programmes to simulate 
the progeny of specific parents for the purpose of design-
ing crosses (Podlich and Cooper 1998). Physical maps are 
becoming available for wheat (Pozniak 2016), but can be of 
limited value if the individuals sequenced are not closely 
related to the target germplasm. Additionally, physical 
maps do not incorporate recombination information, which 
reduces their value when we are interested in simulating 
progeny based on recombination probabilities in the germ-
plasm of interest. Therefore, high-quality genetic maps 
built from relevant germplasm are a better resource for 
these applications. Examples of such maps in the literature 
include those produced using multi-parent advanced genera-
tion inter-cross (MAGIC) populations (Huang et al. 2012; 
Gardner et al. 2016), as well as consensus maps constructed 
from multiple bi-parental populations (Cavanagh et al. 2013; 
Wang et al. 2014). These maps can also be used to measure 
the extent of linkage disequilibrium (LD) between markers 

(Zhao et al. 2005; Chao et al. 2010). In the context of associ-
ation mapping and genomic prediction, LD becomes vitally 
important as it influences the achievable mapping resolution 
(Huang et al. 2012), power and accuracy of QTL detection 
(Somers et al. 2007), and the accuracy of genomic prediction 
in a breeding programme after multiple generations (Muir 
2007). The extent of LD is also known to vary significantly 
depending on the germplasm structure (Hao et al. 2011; 
Huang et al. 2012) and as a consequence, assessments of LD 
should be conducted on the genetic material being studied.

For GS to be applied effectively, plant breeders must have 
a sound understanding of the relationship between traits of 
interest as it enables optimisation of selection strategies 
through correlated response to selection (Bernardo 2002). 
Trait correlations in bread wheat have long been reported at 
the phenotypic level (Bhatt and Derera 1975; Fischer and 
Wood 1979). Advances in statistical techniques have since 
made it possible to draw genetic correlations between traits 
by separating the genetic variance from the residual error 
(Gilmour et al. 1997), and these have been reported for 
various physiological traits in bread wheat (Rebetzke and 
Richards 1999; Sukumaran et al. 2015). These approaches, 
coupled with the use of pedigree or molecular marker infor-
mation, can also be used to separate the genetic variance into 
its additive and residual components, thus allowing genetic 
correlations to be drawn at the additive and residual genetic 
level (Rebetzke et al. 2013). These genetic correlations, par-
ticularly the additive, provide a more precise measure of trait 
relationships and facilitate better optimisation of selection 
strategies.

In the present study we use a panel of 10,375 lines from 
a commercial wheat breeding programme to: (1) assess the 
level of LD using a constructed high-quality genetic con-
sensus map; (2) investigate genetic correlations between 
traits at an additive and residual genetic level; (3) investigate 
the improvement in selection accuracy that is achieved by 
incorporating a genomic relationship matrix into the analysis 
model; (4) investigate the improvement in genomic predic-
tion accuracy that is achievable with a germplasm of this 
size and compare it to a simplified prediction approach based 
on selection of finite QTL.

Materials and methods

Plant material and phenotype data

A panel of diverse bread wheat lines was provided by 
Australian Grain Technologies Pty Ltd (AGT). The panel 
consists of lines from preliminary yield testing (PYT) and 
advanced yield testing (AYT) stages of the AGT breed-
ing programmes. Online Resource 1 summarises the panel 
and its subsets. The PYT-South and AYT-South sets are 
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comprised of lines bred for southern Australia, and the AYT-
Other set represents lines from the north eastern, eastern, 
and western growing regions. PYT material is a combination 
of F2 and F5 derived lines, whereas AYT lines are derived 
from the F5 generation or later. By including germplasm 
from both preliminary and advanced stages of the breeding 
programme, a set of unselected lines exist for each trait of 
interest. The panel was phenotyped in 2014 in a dedicated 
field trial at Roseworthy, South Australia (−34.52, 138.69), 
which was sown as a non-replicated randomised design with 
repeated grid checks (1 check per 11 plots). The trial was 
non-replicated as the large number of lines in the AWP made 
loading a replicated trial logistically infeasible. Dimensions 
of the trial were 476 rows by 24 ranges, and plot size was 
3m2. The trial was managed according to best local practice 
including fertiliser applications to maximise grain yield and 
grain quality, and fungicide applications to control disease. 
Table 1 details the phenotyping methods and summarises 
the data for each trait, while Online Resource 2 highlights 
the phenotypic differences between the germplasm sets. Raw 
phenotype data are provided in Online Resource 3.

Genotype data

Genotyping platform

Marker genotyping was performed using a custom  AxiomTM 
Affymetrix array containing 18,101 SNP markers. To build 
the customised array, SNPs were selected from previous 
variant identifications and SNP screenings in a range of 
genotyping platforms. The most prominent platform was a 

high-density  AxiomTM array developed in the collaborative 
French BreedWheat project (Etienne Paux, personal commu-
nication) consisting of 420,000 diverse SNPs. This was used 
to genotype a panel of approximately 200 wheat accessions 
from a range of geographic regions (western Europe, eastern 
Europe, North America, Australia, and exotic sources) for 
use in SNP selection. To achieve adequate and even cover-
age of the genome, SNPs were clustered into 20,000 groups 
based on a linkage disequilibrium threshold of r2 = 0.96. 
One SNP per group was then selected based on technical 
quality, information content, and to have a call rate greater 
than 70%. It was ensured that SNPs could be accurately read 
as co-dominant markers by confirming they generated clear 
allele clusters, and required fewer probes. A final selection 
was then carried out based on initial batches from the 20K 
array, and 18,101 of the most reliable and reproducible SNPs 
were selected. This final selection of SNPs was used to build 
the custom 18K  AxiomTM 384 layout array from Affymetrix. 
Arrays were read using the GeneTitan Multi-Channel Instru-
ment, and allele calls were made using  AxiomTM Analysis 
Suite software by Affymetrix.

Consensus map

To provide an accurate assessment of LD between SNP 
markers in the AWP a consensus map was constructed using 
nine doubled haploid (DH) populations (Online Resource 
1) genotyped on the custom  AxiomTM Affymetrix array. 
The DH populations represent key families of Australian 
wheat germplasm and were chosen to maximise polymor-
phic markers across the genome. The individual SNP DH 

Table 1  Summary of the 
phenotype data and the methods 
used for collection

Mean and standard deviation are calculated from the raw phenotype data
a Trimble (2016)
b Zadoks et al. (1974)
c Zeutec (2016)

Trait Assessment method Scale Mean SD

Growth habit Visual 1–9; 1 = erect 2.4 1.0
Leaf width Visual 1–9; 1 = narrow 4.8 1.4
Biomass Visual 1–9; 1 = low biomass 6.9 1.3
NDVI GreenSeekera NDVI 0.68 0.1
Physiological yellows Visual 1–9; 1 = low expression 1.7 0.9
Relative maturity Visual Zadoks scaleb 53 5.7
Greenness Visual 1–9; 1 = pale green 5.7 1.5
Glaucousness Visual 1–9; 1 = low expression 3.5 2.0
Leaf loss Visual 1–9; 1 = low loss 4.6 1.7
Plant height Visual 1–9; 1 = short 5.2 1.1
Grain yield Machine harvester kg/ha 5124 655
Test weight Chondrometer kg/hl 84.4 1.8
Thousand kernel weight Image analysis TKW 37.5 4.6
Grain protein NIRc Concentration (%) 11.1 0.9
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linkage maps were constructed using a synergistic com-
bination of the R/qtl (Broman and Sen 2009; Broman and 
Wu 2015) and R/ASMap (Taylor and Butler 2017) pack-
ages available in the R statistical computing environment (R 
Development Core Team 2015). Before construction, indi-
vidual marker sets were thoroughly diagnostically checked 
and problematic lines and markers containing excessive 
segregation distortion or missing values were removed. For 
each DH population, markers were clustered and optimally 
ordered using the MSTmap (Wu et al. 2008) functionality 
available in R/ASMap. The individual constructed linkage 
maps were scrutinized and lines with excessive recombina-
tion or markers exhibiting large numbers of double crosso-
vers removed. Chromosomal alignment of linkage maps 
occurred sequentially with initial alignment of the Kukri/
RAC875 SNP map performed using legacy markers from 
the pre-existing Kukri/RAC875 SSR/DArT map (Bennett 
et al. 2012; Edwards 2012). All other DH SNP linkage maps 
were then aligned to the Kukri/RAC875 SNP map through 
commonality of markers. A summary of the final individual 
DH linkage maps and their common markers is given in 
Online Resource 4.

The complete set of nine DH linkage maps (marker names 
and positions) were then used in MergeMap (Wu et al. 2011) 
to form a consensus map. To ensure the greatest marker 
position accuracy, the population size for each bi-parental 
linkage map was also passed to MergeMap as a set of pre-
defined weights. A total 13,747 markers were assigned to 
linkage groups and relative positions across the 21 chro-
mosomes of the wheat genome. The MergeMap algorithm 
is known to inflate consensus map linkage group distances 
(Close et al. 2009; Cavanagh et al. 2013; Wang et al. 2014). 
Scaling of the consensus map in this research used a mini-
mum mean square criterion. Let Mijk be the position of the 
kth marker in the jth linkage group of the ith bi-parental 
linkage map and Cjk be the position of the equivalent marker 
in the jth linkage group of the consensus map. The optimal 
scaling factor Rj applied to the jth consensus linkage group 
was then derived using

The function is easily minimised by considering Rj = D̄j∕D
c
j
 

where Dc
j
 is the length of the jth observed consensus linkage 

group and profiling D̄j over a conservative window in the 
vicinity of the average length of jth linkage groups from the 
bi-parental linkage maps. This procedure was repeated for 
all 21 chromosomes and the consensus map was scaled 
accordingly. Assessment of LD was then based on these 
scaled positions within each of the chromosomes. Table 2 
summarises the consensus map by detailing individual 

argminRj∈ℝ

9∑
i=1

Nij

Ni∑
k=1

(CjkRj −Mijk)
2

chromosomes, chromosome groups and genomes, while final 
scaled (as well as unscaled) consensus map positions for the 
13,747 markers are given in Online Resource 4.

Imputation

Before imputation, markers were omitted if they had a minor 
allele frequency less than 1%. The remaining markers in the 
SNP array had a low missing call rate of 1%. The substantial 
numerical dimensions of the complete SNP array made it 
computationally impractical to impute missing allele scores 
using algorithms based on unclustered and unsorted markers 
(Rutkoski et al. 2013). To reduce this computational burden, 
chromosomal identifications of the markers from the con-
sensus map were used to subset the SNP marker set. The 
remaining 4354 markers with no consensus map chromo-
somal assignment were then linked to these subsets using 
LD. For each chromosome subset, the K-nearest neighbour 
(KNN) method (Troyanskaya et al. 2001) implemented in 
the R package pedicure (Butler 2016) was used to impute 
missing allele calls from the weighted average of the data 
points at the nearest 10 markers. The complete marker 
matrix of 10,375 lines by 17,181 markers from herein was 
defined as �.

Statistical methods

Statistical modelling

An initial baseline linear mixed model was used to provide a 
preliminary assessment of the genetic variation of the traits 
collected from the Roseworthy trial. For a given vector of 
trait observations, � = (y1,… , yn), the linear mixed model 
had the form

Here, � is a vector of fixed effects, with associated design 
matrix �, and contained an intercept and potential coeffi-
cients for covariates in � explaining trends across the exper-
imental layout. Non-genetic variation associated with the 
design of the experiment, such as blocks in the experimental 
area, was accounted for through the random effects � with 
indicator design matrix � with � ∼ N(�, �2

u
�). Other remain-

ing sources of non-genetic environmental variation were 
modelled through the residual error � which was assumed 
to have the form � ∼ N(�, �2�) with � = �r(𝜌r)⊗ �c(𝜌c) 
defining a two-dimensional separable AR1 ⊗ AR1 cor-
relation structure in the rows and column direction of the 
experiment (Gilmour et al. 1997). In the baseline model the 
total genetic variation of the 10,375 AWP lines was captured 
using the random effects �t with indicator design matrix �g 
which maps AWP lines to the appropriate random effects 
in �t. These effects were assumed to have the distribution 

(1)� = �� + �� + �g�t + �
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�t ∼ N(�, �2
t
�) and the set of effects (�, �t, �) were considered 

to be mutually independent.
For each of the traits, the baseline model (1) was then 

extended by partitioning the total genetic effects into addi-
tive marker and residual genetic effects to form the marker 
linear mixed model

where �m is a vector of marker effects and �p is a vector of 
residual genetic effects. The effects were assumed to be dis-
tributed �m ∼ N(�, �2

a
�) and �p ∼ N(�, �2

p
�) with (�, �m, �p, �) 

mutually independent. The large number of markers in �, 
coupled with the substantial number of lines in the popula-
tion made the fitting of (2) computationally prohibitive. For 
this reason an alternative formulation using the approach 

(2)� = �� + �� + �g(��m + �p) + �

of Strandén and Garrick (2009) was sought. Let �a define 
a set of additive genotype effects with �a = ��m then the 
genotype linear mixed model used was

where �a ∼ N(�, �2
a
�) and � = ��T is a 10, 375 × 10, 375 

additive relationship matrix. For the purpose of providing an 
appropriate scaling, � was replaced by �s = ��T

∕r with 
r = trace (�)∕10,375 (Forni et al. 2011). An eigen decom-
position of �s revealed only positive eigenvalues indicating 
�s was positive definite and could be safely inverted.

Estimation of the parameters for the linear mixed models 
(1) and (3) occurred iteratively. Fixed effect estimates and 
predictions of random effects were determined through direct 
solving of the mixed model equations (Henderson 1953). 

(3)� = �� + �� + �g(�a + �p) + �

Table 2  Summary of the 
consensus linkage map

a Mean interval (cM) between unique map positions

Total markers Map positions Markers per 
map position

Genetic length Mean  intervala

1A 838 308 2.7 129 0.42
1B 905 250 3.6 136 0.55
1D 222 112 2.0 137 1.22
2A 777 226 3.4 128 0.57
2B 1074 286 3.8 147 0.51
2D 204 109 1.9 159 1.46
3A 909 267 3.4 156 0.58
3B 1175 282 4.2 145 0.51
3D 246 120 2.1 152 1.27
4A 652 276 2.4 168 0.61
4B 490 184 2.7 113 0.61
4D 237 120 2.0 129 1.08
5A 922 350 2.6 190 0.54
5B 1057 340 3.1 172 0.51
5D 236 147 1.6 198 1.35
6A 590 208 2.8 127 0.61
6B 893 237 3.8 114 0.48
6D 209 101 2.1 142 1.40
7A 1068 319 3.3 164 0.51
7B 814 221 3.7 147 0.66
7D 229 140 1.6 171 1.22
Genome A 5756 1954 2.9 1062 0.54
Genome B 6408 1800 3.6 974 0.54
Genome D 1583 849 1.9 1088 1.28
Group 1 1965 670 2.9 403 0.60
Group 2 2055 621 3.3 434 0.70
Group 3 2330 669 3.5 453 0.68
Group 4 1379 580 2.4 410 0.71
Group 5 2215 837 2.6 560 0.67
Group 6 1692 546 3.1 383 0.70
Group 7 2111 680 3.1 482 0.71
Total 13,747 4603 3.0 3124 0.68
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Variance parameters were estimated using residual maximum 
likelihoood (REML) (Patterson and Thompson 1971). From 
the fitted baseline model (1) broad sense heritabilities were 
then calculated for each of the traits using REML estimates 
of the variance parameters, namely H2

= �2
t
∕(�2

t
+ �2

).  
For the fitted additive genotype model (3) the broad sense 
heritability was calculated by replacing the total genetic var-
iability in H2 by �2

t
= �2

a
+ �2

p
. Narrow sense heritabilities 

were also calculated using h2
= �2

a
∕(�2

t
+ �2

).

Genomic prediction

Using mixed model results, genomic best linear unbiased 
predictions of the additive genetic effects �a and predictions 
of the residual genetic effects �p in (3) were immediately 
determined for each trait using

w h e r e  � = �−1
−�−1�(�T�−1�)−1�)−1�T�−1 a n d 

� = �2� + �2
u
��T

+ �g(�2
a
�s + �2

p
�)�T

g
.  The additive 

genetic effects, �̃a reflect the breeding value of lines esti-
mated from phenotpyic and genetic information. Both �̃a and 
�̃p were used to investigate the additive and residual genetic 
relationships between the analysed Roseworthy traits.

From the marker linear mixed model (2), predicted 
marker effects were immediately calculated using

This result ensured the marker effects were efficiently 
derived from the additive genetic values for the lines given 
by (4). Inversion of �s would usually be computationally 
expensive but was very efficient using the highly parallelised 
Basic Linear Algebra Subprograms available in the  IntelTM 
Math Kernel Libraries. Given a new set of lines with marker 
data �∗ genotyped across identical markers in �, genomic 
predictions for the new lines can then be determined using 
the simple equation �̃∗ = �∗�̃m, utilizing the complete set 
of predicted marker effects.

To evaluate the power of the genomic prediction approach 
using the results derived from the full additive genotype lin-
ear mixed model (3), it was compared to a simplified predic-
tion approach based on finite selection of putative QTL. To 
provide a mechanism for selecting important markers linked 
to a QTL for each of the traits, the complete set of marker 
outlier statistics were calculated using the formula derived 
in Verbyla et al. (2007). For any given trait, the kth marker 
outlier statistic is

(4)
�̃a = 𝜎2

a
�s�

T
g
��

�̃p = 𝜎2
p
�T
g
��

(5)�̃m = 𝜎2
a
�T�T

g
�� = �T�−1

s
�̃a

tk =
g̃2
m;k

var (g̃m;k)

where g̃m;k is the kth marker effect obtained directly from (5) 
with its variance extracted from the diagonal components 
of the variance matrix var (�̃m) = �T�−1

s
var (�̃a)�

−1
s
�. In 

most modern linear mixed modelling software var (�̃a) is 
usually available from the fitted additive genotype model in 
(3), ensuring efficient computing of the variance of the pre-
dicted marker effects. For each of the traits, the largest one 
and five marker outlier statistics were identified iteratively 
using a consensus map exclusion window of 25cM either 
side of any selected marker. The selected markers were then 
extracted from �, denoted �1 and �5, respectively, placed 
in the baseline model (1) as an additive set of QTL fixed 
effects

where j = (1, 5) and �j are the QTL fixed effect parameters 
for the selected markers in �j. In this model, �t has been 
replaced with a residual genetic effect �p as the inclusion of 
markers strongly linked to QTL will absorb genetic varia-
tion. The genetic value of the lines were then calculated 
directly from the equation �̃a = �j�̂j, where �̂j are estimates 
of the QTL fixed effects extracted from the fitted model of 
(6). Similarly, given a new set of lines with marker data for 
the selected markers, �∗

j
, QTL-based predictions for the new 

lines can be calculated using �̃∗ = �∗

j
�̂j.

Prediction accuracy

To provide an informative comparison with genomic predic-
tion results discussed in the plant research literature, the 
predictive ability of the fitted additive genotype model (3), 
as well as of predictions obtained using selected QTL effects 
estimated from the fitted model of (6), was calculated for 
each of the traits using fivefold cross-validation. The cross-
validation method initially randomly partitioned the AWP 
lines into five equal subsets. Let (�(i)

a
, �(i)

p
) be the additive and 

residual genetic effects of the AWP lines in the ith subset 
(validation set) and (�(−i)

a
, �(−i)

p
) the additive and residual 

genetic effects of the AWP lines remaining in the other four 
(training set). The cross-validation for each prediction 
method was conducted sequentially for each of the folds 
i = 1,… , 5. For the genomic prediction approach incorporat-
ing the additive relationship matrix, (�(−i)

a
, �(−i)

p
) were fitted 

as additive and residual genetic effects in the additive geno-
type model, the additive genetic values for �̃(−i)

a
 were derived 

using (3) and marker effects, �̃(−i)
m

, were calculated using (5). 
The AWP lines in the ith validation set were then predicted 
using �̃(i)

a
= �

(i)

j
�̃(−i)
m

. For prediction methods using selected 

QTL, �(−i)
p

 was fitted in (6) and QTL effects �̂(−i)
j

 were 

extracted and used to calculate predictions for the validation 
set of AWP lines using �̃(i)

a
= �

(i)

j
�̂
(−i)

j
. Prediction accuracies 

(6)� = �g�j�j + �� + �� + �g�p + �

41



Theor Appl Genet 

1 3

were calculated by correlating the validation set predictions 
obtained from each cross-validation fold, {�̃(i)

a
;i = 1,… , 5}, 

to their full additive genetic values (�̃a) extracted from the 
additive genotype model containing the complete set of 
lines. To enable the comparison of these results to those of 
previous studies, validation set predictions were also cor-
related to their corresponding total genetic values obtained 
from the baseline model, and divided by the square root of 
the heritability of the baseline model (Heffner et al. 2011b; 
Estaghvirou et al. 2013; Battenfield et al. 2016). Comparing 
predictions to both total and additive genetic values enabled 
an assessment of prediction accuracy to be made for line 
selection and parental value, respectively.

Computations

All linear mixed modelling was conducted using the 
ASReml-R package (Butler et al. 2009) available in the R 

statistical computing environment (R Core Team 2017). 
Trait models containing the full additive relationship matrix 
took an average of 60 h computational time to converge 
on a Windows 10 box with a quad core  IntelTM i7-6700K 
(4.00Ghz) with 64Gb RAM.

Results

Linkage disequilibrium

Linkage disequilibrium was assessed by calculating r2 values 
between marker pairs within each consensus map chromo-
some (Fig. 1). In the full panel, the median r2 for marker 
pairs with proximity less than 2 cM is just 0.12, and this 
steadily decreases as the distance between a pair of markers 
increases. However, there is significant variation in the r2 
value between markers in very close proximity, with some 

Fig. 1  Boxplots comparing linkage disequilibrium (r2) of marker pairs with their proximity on the consensus map
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being in complete LD with each other. The boxplots clearly 
show that this variation decreases rapidly with increasing 
distance, and plateaus off after proximity exceeds 20 cM. 
The broad pattern of LD decay was very similar for each 
of the germplasm sets, but there were subtle differences 
for close marker pairs (<2 cM) with AYT-South showing 
slightly higher LD than PYT-South, which itself was higher 
than AYT-Other.

Genetic trait correlations

From each of the traits, the additive genetic values and 
residual genetic values were extracted from their respec-
tive fitted additive genotype models and used to understand 
genetic relationships between the traits. Table 3 presents the 
pairwise additive and residual genetic correlations between 
traits analysed in the 2014 Roseworthy field trial. The two 
correlation measures largely agreed, with a correlation of 
0.79 across the 91 trait pairs. Of the 91 trait pairs, 74 had 
correlations in the same direction, and those that differed 
in direction were all near zero. Additive genetic correla-
tions were overall stronger than residual genetic with an 
absolute mean of 0.26 compared to 0.14. Notable correla-
tions include the well-known strong negative relationship 
between grain yield and grain protein, with an additive 
correlation of −0.55 and a residual genetic of −0.30. A 
negative relationship was also observed between grain pro-
tein and test weight (additive correlation −0.22, residual 
genetic −0.43). Strong positive relationships were observed 
between test weight and thousand kernel weight (TKW) 
(additive correlation: 0.37, residual genetic 0.52), and rela-
tive maturity score and biomass (additive correlation 0.76, 
residual genetic 0.42).

A comparison of additive and baseline models

All traits collected from the Roseworthy experiment were 
analysed and results from the fitted baseline models and 
additive genotype linear mixed models are compared in 
Table 4. Additive models had significantly higher log-like-
lihood (model fit) for all traits, with an average improvement 
of 44% over the equivalent baseline models. The additive 
model also improved broad sense heritability for all traits, 
with an average increase of 24%. Narrow sense heritabilities 
of the additive models were comparable with the broad sense 
heritability from the equivalent baseline models, being just 
0.5% lower on average. The proportion of the genetic vari-
ance that was additive averaged 81% across all traits, and 
ranged from 58% (NDVI) to 91% (grain size). There was 
a strong positive relationship between the improvement in 
model fit obtained with the additive model and narrow sense 
heritability (r = 0.86).

Prediction accuracy

Table 5 presents the fivefold cross-validation accuracies 
of the genomic predictions and QTL-based predictions for 
all 14 traits. Prediction accuracy was assessed by correlat-
ing genomic and QTL-based predictions to both the addi-
tive genetic values from the full additive genotype model 
(shown to be the model of best fit for every trait, Table 4), 
and the total genetic values from the baseline model. 
When comparing genomic predictions to total genetic 
values, prediction accuracies were varied with a range 
between 0.55 (yellows) and 0.85 (TKW). As expected, 
comparing these predictions to the additive genetic 
values produced higher and more consistent prediction 

Table 3  Pairwise genetic correlations between traits from the Roseworthy experiment

Additive genetic correlations are in the upper triangle and residual genetic are in the lower triangle

Bm. Gl. GP GY Gr. GH PH LL LW Mat. NDVI TW TKW Yl.

Biomass – −0.24 −0.39 0.49 −0.44 −0.45 0.10 0.69 0.49 0.76 0.51 0.15 0.19 −0.34

Glaucousness −0.18 – 0.41 −0.01 0.73 −0.23 −0.04 −0.41 0.24 −0.30 −0.28 −0.04 0.13 0.41
Grain protein −0.14 0.15 – −0.55 0.50 0.10 0.02 −0.40 −0.08 −0.39 −0.34 −0.22 −0.23 0.35
Grain yield 0.27 −0.03 −0.30 – 0.06 −0.06 0.11 0.01 0.10 0.19 0.16 0.28 0.23 −0.19

Greenness −0.14 0.23 0.22 −0.15 – −0.14 −0.05 −0.61 0.02 −0.43 −0.45 −0.02 −0.01 0.49
Growth habit −0.15 0.07 0.20 −0.30 0.11 – 0.15 −0.36 −0.59 −0.48 0.25 −0.10 −0.30 −0.25

Plant height 0.19 −0.14 −0.04 −0.27 −0.08 0.05 – −0.10 −0.01 −0.10 0.12 0.09 −0.04 −0.16

Leaf loss 0.32 −0.16 −0.22 0.28 −0.26 −0.23 −0.05 – 0.33 0.75 0.31 0.10 0.23 −0.18

Leaf width 0.22 −0.04 −0.05 0.30 −0.03 −0.11 0.06 0.13 – 0.43 0.04 0.05 0.37 0.09
Maturity 0.42 −0.19 −0.30 0.36 −0.19 −0.32 0.01 0.45 0.19 – 0.24 0.24 0.29 −0.20

NDVI 0.34 −0.13 −0.01 0.43 −0.10 0.12 0.20 0.14 0.05 0.08 – 0.04 0.06 −0.51

Test weight 0.12 −0.10 −0.43 0.29 −0.09 −0.17 0.01 0.02 0.02 0.21 0.12 – 0.37 0.00
TKW 0.14 −0.08 −0.33 0.39 −0.08 −0.20 0.06 0.12 0.15 0.35 −0.06 0.52 – 0.11
Yellows −0.11 0.04 0.00 −0.25 −0.04 −0.07 −0.15 0.06 −0.01 −0.06 −0.04 −0.01 −0.05 –
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accuracies with all traits falling between 0.96 and 0.98. 
Using one QTL to predict performance was much less 
accurate with traits ranging between 0.11 (test weight) 
and 0.45 (glaucousness) when comparing to total genetic 
values, and between 0.10 (test weight) and 0.54 (green-
ness) when comparing to additive genetic values. The five 
QTL model yielded prediction accuracies ranging from 
0.31 (NDVI) to 0.68 (glaucousness) when compared to 

total genetic values, and between 0.42 (NDVI) and 0.78 
(greenness) when compared to additive genetic val-
ues. There was a strong positive relationship (r = 0.84) 
between genomic prediction accuracy calculated using 
total genetic values and the proportion of genetic vari-
ance that was additive for the trait. This relationship was 
negligible for genomic prediction accuracies calculated 
using additive genetic values values (r = −0.13).

Table 4  Comparison of the 
baseline and genomic mixed 
linear models

Broad sense heritabilities are presented for each model, and narrow sense for the genomic model as there is 
no term in the base model to capture the additive genetic variance. Model fit is compared through the log-
likelihood measure
a  Proportion of the variance accounted for by the model that is additive

Baseline model Genomic model

H2 Log l H2 h2 Log l Add. var. (%)a

Biomass 0.56 −4113 0.75 0.56 −2401 75
Glaucousness 0.81 −12,424 0.89 0.76 −8370 86
Grain protein 0.57 −1119 0.75 0.62 1517 82
Grain yield 0.44 −76,861 0.63 0.45 −75,322 72
Greenness 0.64 −9271 0.75 0.58 −6479 77
Growth habit 0.71 −4148 0.89 0.78 −1781 88
Plant height 0.74 −5212 0.91 0.81 −2655 89
Leaf loss 0.67 −10,067 0.83 0.69 −7648 82
Leaf width 0.71 −7888 0.86 0.75 −4674 87
Maturity 0.92 −24,045 0.98 0.91 −20,562 93
NDVI 0.45 25, 269 0.62 0.36 26, 160 58
Test weight 0.75 −10,566 0.91 0.82 −7546 90
TKW 0.79 −21,047 0.93 0.85 −17076 91
Yellows 0.73 −3662 0.82 0.53 −2418 65

Table 5  Fivefold cross-
validation accuracy of genomic 
and QTL prediction models 
(one and five QTL)

a  Correlation between the predicted values and the additive genetic values from the full genomic model
b  Correlation between the predicted values and the total genetic values from the baseline model, divided by 
the square root of the broad sense heritability

Genomic One QTL Five QTL

Additive a Total b Additive Total Additive Total

Biomass 0.97 0.72 0.26 0.20 0.46 0.48
Glaucousness 0.98 0.82 0.49 0.45 0.76 0.68
Grain protein 0.97 0.84 0.16 0.16 0.59 0.54
Grain yield 0.97 0.71 0.19 0.16 0.64 0.51
Greenness 0.98 0.80 0.54 0.44 0.78 0.65
Growth habit 0.96 0.75 0.36 0.30 0.59 0.50
Plant height 0.96 0.76 0.28 0.24 0.48 0.43
Leaf loss 0.97 0.77 0.41 0.37 0.55 0.54
Leaf width 0.98 0.81 0.26 0.24 0.54 0.46
Maturity 0.96 0.77 0.26 0.25 0.59 0.55
NDVI 0.96 0.56 0.20 0.15 0.42 0.31
Test weight 0.96 0.80 0.10 0.11 0.43 0.39
TKW 0.97 0.85 0.38 0.33 0.52 0.49
Yellows 0.97 0.55 0.17 0.15 0.63 0.41
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Discussion

Previous applications of GS have predominantly used wheat 
germplasm collections of approximately 500 individuals 
(Crossa et al. 2010; Heslot et al. 2012, 2013; Dawson et al. 
2013; Lado et al. 2013), while two recent studies used panels 
containing over 3000 individuals (He et al. 2016, 2017). This 
research has been invaluable in promoting the concept of GS 
in wheat, and providing a framework for future research. 
The natural progression is to work with larger datasets that 
provide more direct relevance to large-scale breeding pro-
grammes. In this study we used a panel of 10,375 wheat 
breeding lines to investigate the genomic prediction accu-
racy achievable in germplasm of this size and nature. We 
also compare these prediction accuracies to those achieved 
with models using a finite number of QTL, which are reflec-
tive of the style of marker-assisted selection already being 
used within wheat breeding programmes. We also assessed 
the extent of LD present in the germplasm and investigated 
genetic correlations between traits.

Significant LD within a training set leads to low genetic 
resolution and results in prediction calibrations which break 
down quickly in a breeding programme (Hickey et al. 2014). 
The panel presented here contains very low levels of LD 
compared to multi-parent advanced inter-cross (MAGIC) 
populations (Huang et al. 2012), and is more comparable to 
diverse germplasm collections (Chao et al. 2010; Sukumaran 
et al. 2015). This information, along with the high prediction 
accuracies we observed, highlights that our calibration suc-
cessfully exploited short haplotype effects rather than long. 
Hickey et al. (2014) suggested that this type of calibration 
would retain prediction accuracy over multiple generations 
of inter-crossing, which future work will investigate.

The additive and residual genetic correlations between 91 
trait combinations show that while the two measures com-
monly mirror each other, they do at times differ (glaucous-
ness–greenness, leaf loss–maturity). A negative relationship 
between grain protein and grain yield has frequently been 
identified at a phenotypic level (Brooks et al. 1982; Jenner 
et al. 1991; Simmonds 1995; Oury and Godin 2007), and 
here we extend this understanding by showing the relation-
ship exists at both an additive and residual genetic level. The 
same applies for the strong positive relationship between 
test weight and TKW, where phenotypic correlations were 
previously demonstrated by (Sharma and Anderson 2004; 
Rharrabti et al. 2003). Negative correlations between grain 
protein and test weight, as observed here, are common when 
plants are stressed during grain fill (Sadras et al. 2002) as 
the Roseworthy experiment was. The positive additive and 
residual genetic correlations between grain yield and relative 
maturity score were caused by the dry finish to the season, 
which favoured early maturing lines.

Incorporating the genomic relationship matrix into the 
linear mixed models vastly improved the model fit for all 
traits. This translates to more genetic variation of the trait 
being captured by the model, and also more accurate par-
titioning of variance into genetic (subsequently partitioned 
into additive and residual genetic) and residual error sources. 
The strong positive correlation between improvement in 
model fit and narrow sense heritability demonstrates that 
the additive relationship matrix improves the model by more 
accurately capturing additive genetic variance. Traits with a 
high proportion of additive genetic variance will, therefore, 
benefit most from the inclusion of the marker relationship 
matrix in the model.

The efficacy of genomic prediction is typically assessed 
by means of cross-validation, where predictions of the vali-
dation set are correlated to the corresponding phenotypic 
estimated breeding values (Crossa et al. 2010; Lado et al. 
2013). These phenotypic values (in this case a best linear 
unbiased prediction) represent both additive and residual 
genetic variance, whereas the genomic prediction represents 
only additive genetic variance. This discrepancy between the 
two values results in lower perceived prediction accuracies 
that are skewed according to the proportion of trait variance 
that is additive. The results presented in Table 5 demonstrate 
this as the genomic prediction accuracies produced by cor-
relating predictions to total genetic values and dividing by 
the square root of heritability were significantly lower than 
those produced by correlating to additive genetic values, and 
were also strongly related to the proportion of genetic vari-
ance that is additive. Correlating cross-validation predictions 
directly to the additive genetic values, therefore, provides a 
purer measure of prediction accuracy as both values contain 
only additive genetic variance, which prevents the propor-
tion of additive variance from confounding the measure. 
Breeders can then use the prediction accuracy of a given 
trait (as measured by correlating to additive genetic values) 
to judge how effective GS will be for selecting lines with 
high breeding value (parents), and use both the prediction 
accuracy and the proportion of additive variance to judge 
how effective GS will be for selecting lines with high phe-
notypic performance (varieties). The concept of separating 
these two breeding objectives was investigated by Gaynor 
et al. (2017) and was found to significantly increase the rate 
of genetic gain.

Genomic prediction accuracy was very high for all traits 
when comparing to additive genetic values. This suggests 
that genomic selection is promising for all traits when the 
breeder is interested in additive genetic variance, i.e. when 
selecting parents. When assessed against total genetic val-
ues, cross-validation accuracies for grain yield, maturity, 
TKW, plant height and grain protein were all higher than 
those reported in previous studies (Crossa et al. 2010; Hef-
fner et al. 2011b; Heslot et al. 2012, 2013; Poland et al. 
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2012; Dawson et al. 2013; Lado et al. 2013; He et al. 2016). 
The prediction accuracy improvement is likely due to larger 
population size of this study compared to those previous 
(between 254 and 2325). In addition, previous studies some-
times sourced phenotype data from multiple environments 
which introduce genotype by environment (GxE) variation 
and decrease prediction accuracy. In this study we used just 
one environment to remove the confounding effect of GxE 
and gain a more direct assessment of genomic prediction 
accuracy in the most optimal scenario. However, the predic-
tion accuracies observed here were still higher than previous 
cross-validation accuracies produced within one environ-
ment, showing that larger population size is important in 
achieving high prediction accuracy.

QTL-based predictions calculated from five selected QTL 
were more accurate for all traits than those utilizing one 
QTL, while the use of genomic prediction was significantly 
more accurate than both. This result is in line with previous 
comparisons between QTL-based prediction and genomic 
prediction in different traits. Rutkoski et al. (2012) found 
that genome-wide prediction models outperformed targeted 
marker models for most traits related to Fusarium head 
blight, while Heffner et al. (2011a) showed that genomic pre-
dictions were significantly more accurate than QTL-based 
predictions for grain quality traits. The research presented 
here demonstrates that this trend holds true for grain yield, 
physical grain quality, and physiological traits. The traits 
that were most accurately predicted by QTL were green-
ness and glaucousness. These two traits expressed several 
large effect QTL (Online Resource 5) which explain their 
high prediction accuracy (Desta and Ortiz 2014). NDVI 
showed low QTL-based prediction accuracy as there were 
no moderate or large effect QTL influencing the trait (Online 
Resource 5).

The dataset used in this study represents an unprece-
dented resource for studying the efficacy and application of 
genomic selection in bread wheat. We showed that incorpo-
rating a genomic additive relationship matrix into the lin-
ear mixed model significantly improved the model fit and 
increased trait heritability. The fivefold cross-validation pro-
duced higher genomic prediction accuracies than those from 
previous studies which used smaller populations. We also 
showed that for all traits assessed in this research, genomic 
prediction was significantly more accurate than QTL-based 
prediction, but as expected the improvement was smaller for 
qualitative traits. This panel will be used in future work to 
investigate the effects of population size, population struc-
ture, and GxE interaction on genomic prediction accuracy.

Addendum Marker data will be available for downloading 
as supplementary material 12 months after publication, or in 
advance from the authors subject to the terms of a material 
transfer agreement.
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Chapter 3

Criteria for the optimal design of a

genomic selection training strategy

3.1 Exegetical statement

For plant breeders to most effectively implement GS in their programmes, an understand-

ing on how to manage factors affecting prediction accuracy is required. It is understood

(from work in small populations) that larger training set sizes produce higher prediction

accuracies, but it is not known if this trend holds true at very large training sets. If it ex-

ists, a point of diminishing returns could be exploited to reduce the cost of producing an

effective training set. Relatedness between training and predictions sets is understood to

affect prediction accuracy, but again the extent to which this is true has not been well char-

acterised. This will influence how much representative material is required in the training

set and how diverse it should be, which could have flow on effects for the required marker

density. While Chapter 2 addressed the “why” of GS, this chapter shifts focus to the “how”

of GS training. It makes use of the dataset presented in Chapter 2 to inform breeders on

how to optimally design their training strategy in regard to training set size, genetic relat-

edness, genetic diversity, predicting across breeding cohorts, and marker density.
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ABSTRACT Genomic selection applied to plant breeding enables earlier estimates of a line’s performance
and significant reductions in generation interval. Several factors affecting prediction accuracy should be well
understood if breeders are to harness genomic selection to its full potential. We used a panel of 10,375
bread wheat (Triticum aestivum) lines genotyped with 18,101 SNP markers to investigate the effect and
interaction of training set size, population structure and marker density on genomic prediction accuracy.
Through assessing the effect of training set size we showed the rate at which prediction accuracy increases
is slower beyond approximately 2,000 lines. The structure of the panel was assessed via principal compo-
nent analysis and K-means clustering, and its effect on prediction accuracy was examined through a novel
cross-validation analysis according to the K-means clusters and breeding cohorts. Here we showed that
accuracy can be improved by increasing the diversity within the training set, particularly when relatedness
between training and validation sets is low. The breeding cohort analysis revealed that traits with higher
selection pressure (lower allelic diversity) can be more accurately predicted by including several previous
cohorts in the training set. The effect of marker density and its interaction with population structure was
assessed for marker subsets containing between 100 and 17,181 markers. This analysis showed that re-
sponse to increased marker density is largest when using a diverse training set to predict between poorly
related material. These findings represent a significant resource for plant breeders and contribute to the
collective knowledge on the optimal structure of calibration panels for genomic prediction.
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For breeders to make the best use of genomic selection, several factors
influencing genomic prediction accuracy should be well understood
from empirical breeding germplasm datasets in order to optimize rates
of genetic gain. Also, before breeding programs divert finite resources
toward the implementation of genomic selection, a number of potentially
derailing features of diversity based genetic analysis deserve further
attention.

Genomic selection involves estimating a large number of marker
effects using a set of training lines, and then using these to predict the
value of a separate set of lines (Meuwissen et al., 2001). Three major
factors that affect the accuracy at which lines can be predicted are
training set size, marker density, and population structure, which have
been studied previously in wheat populations up to 8,416 lines in size
(Nakaya and Isobe 2012; Crossa et al., 2016; He et al., 2017). Larger
training sets were shown to increase prediction accuracy within
bi-parental populations by Heffner et al. (2011a), where training sets
consisted of 24 to 96 lines, and also in multifamily populations by
Heffner et al. (2011b), where training sets ranged from 96 to 288 lines
in size. This result was corroborated by Isidro et al. (2015) and Michel
et al. (2017) where training sets up to 300 lines in size were tested.
Training sets consisting of up to 3,052 lines have been used in other
studies, but not to directly investigate the effect of training set size.
Larger training sets give higher prediction accuracy as increased sample
size reduces bias and decreases the variance of marker effect estimates
(Liu et al., 2011; de los Campos et al., 2013). Of the studies investigating
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the effect of training set size, none reached the point where further
increases in size would not continue to increase prediction accuracy.
Here we address this question using uniquely large training sets (n =
8,300). This research therefore provides the most relevant results
to large scale breeding programs which typically work with tens of
thousands of lines.

Another factor for breeding programs to consider is the required
marker density. Prediction accuracy increases with marker density due
tomorequantitative trait loci (QTL) being in LDwith amarker (Heffner
et al., 2009; Desta and Ortiz 2014). Solberg et al. (2008) showed using
simulated data that increasing single nucleotide polymorphism (SNP)
density from one to eight SNP per cM resulted in a 25% increase in
prediction accuracy. Heffner et al. (2011b) used a multifamily wheat
dataset to show a 10% increase in prediction accuracy was achieved
when moving from 192 to 1,158 markers. However, most of this in-
crease occurred from 192 to 384 markers, indicating that the response
to increased marker density would eventually reach a plateau (de los
Campos et al., 2013). The point at which this plateau occurs is de-
termined by the genetic diversity within the population, and the
relatedness between the training and prediction sets. Hickey et al.
(2014) showed in a maize simulation study that fewer markers are
required when there is high relatedness between training and pre-
diction sets, as they share long haplotype effects and large linkage
blocks. The study also found that increasing the size and diversity of
the training set was only beneficial when using a large number of
markers. Heffner et al. (2011a) investigated the response of prediction
accuracy to marker density using bi-parental wheat populations, and
found a positive response up to 256 markers but a decrease when
increasing to 384. As explained by Hickey et al. (2014), large numbers
of markers can result in the model being overfitted, where non-
genetic effects are attributed to the markers. While this improves the
model fit, it decreases the accuracy of predicting independent data
sets which do not share the non-genetic effects (Jannink et al., 2010).
Previous studies have investigated the required marker density in
wheat using small empirical datasets of up to 1,158 markers, while
other species have been studied using simulated datasets. The current
study uses a much larger empirical dataset to extend previous findings
into the range where responses can plateau.

Discretegroupsof lineswithcontrastingoriginoftenhavedifferences
in allele frequency (population structure) due to selection or parentage
(founder effects) (Isidro et al., 2015). This can be problematic as dif-
ferences in observed phenotypic performance between the two groups
may be associated with the markers differing in allele frequency, re-
gardless of whether they are linked to the QTL responsible for the trait
variance (Price et al., 2010). The underlying structure of a population is
commonly assessed and accounted for using principal component
analysis (PCA) of the complete genetic marker set (Patterson et al.,
2006; Bentley et al., 2014; Daetwyler et al., 2014). This is an effective
method for identifying and visualizing the genetic structure of diverse
germplasm panels.

The extent andnature of genetic structurewithin and across training
and validation sets influences the achievable prediction accuracy, and is
therefore of interest to breeders when designing training sets.When the
training set contains lines closely related to those being predicted,
accuracy is higher due to shared long haplotype effects (Daetwyler
et al., 2013). BenHassen et al. (2018) recently observed this relationship
in a small rice germplasm set. However, these large linkage blocks are
quickly broken up by recombination events, and so crossing cycles can
rapidly decrease prediction accuracy (Hickey et al., 2014). If marker
density is adequate, increased diversity in the training set will lead to
calibration by linkage disequilibrium where short haplotype effects are

exploited; this is more stable over multiple generations of crossing
(Hickey et al., 2014). However, distant relationships increase noise
and bias in the genomic relationship matrix, which in turn reduces
the power of prediction (Lund et al., 2016). This study uses multiple
breeding cohorts from a commercial breeding program in a unique
cross-validation design to investigate the interaction of these opposing
effects in an applied scenario, which will inform breeders on optimal
training set design.

In this research we study the optimal design of genomic selection
trainingsetsbyusingapanelof10,375wheat lines to investigate theeffect
that training set size, marker density, and genetic structure have on
genomic prediction accuracy.We also examine the interaction between
marker density and population structure.

MATERIALS AND METHODS

Plant material and associated data
This study utilizes an association panel of 10,375 bread wheat lines,
sourced from preliminary and advanced yield testing programs of
Australian Grain Technologies Pty Ltd (AGT). The panel was
phenotyped in a dedicated field trial at Roseworthy, South Australia
(-34.52, 138.69) in the 2014 growing season. We studied data from
a single site in order to remove the potentially confounding effect
of genotype by environment interaction (GxE). As described in
Norman et al. (2017), the trial was sown as a non-replicated ran-
domized design with repeated grid checks (1 check per 11 plots), as
the large number of lines made a replicated trial logistically infea-
sible. Dimensions of the trial were 476 rows by 24 ranges, and plot
size was 3m2. The trial was managed according to best local practice
which included fertilizer applications to maximize grain yield and
grain quality, and fungicide applications to control disease. Grain
yield was measured with a machine harvester and thousand kernel
weight (TKW) through image analysis. Both glaucousness and rel-
ative maturity were assessed visually, glaucousness on a 1-9 scale
(1 = low expression) and relative maturity using the Zadoks scale
(Zadoks et al., 1974). These four traits were selected for the current
study as they display sufficient phenotypic variation, represent
varying levels of genetic control, and experience different selection
pressure in a breeding program. Glaucousness has simple genetic
control (Bennett et al., 2012a; Norman et al., 2017) and was not
actively selected for in this breeding program. Maturity is predomi-
nantly controlled by several large effect genes (Snape et al., 2001; Cane
et al., 2013) and is selected for mid range performance suitable for the
Australian environment. TKW is quantitative (Huang et al., 2006;
Sun et al., 2009; Bennett et al., 2012b), and lines are heavily selected
to perform above a threshold. Grain yield is a highly complex trait
(Kuchel et al., 2007; Bennett et al., 2012b; Maphosa et al., 2014) and
lines are strongly selected to yield as high as possible.

Marker genotyping was performed using a custom Axiom™ Affy-
metrix array containing 18,101 single nucleotide polymorphism (SNP)
markers. Markers with minor allele frequency (MAF) lower than 0.01
were removed. Further details on the development of the genotyping
platform and preparation of the marker data are provided in Norman
et al. (2017).

Statistical modeling

One step genomic prediction model: In this research we followed
the statistical modeling approach similar to Norman et al. (2017).
Initially, the phenotypic data from the full Roseworthy trial as well as
the complete genotypic marker data was used to form a one-step
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genomic prediction linear mixed model. Let y ¼ ðy1; . . . ; ynÞ be a
vector of trait observations then the linear mixed model had the form

y ¼ Xt þ Zuþ Zggþ e (1)

where t was a vector of fixed effects with associated design matrix X,
and contains an intercept and coefficients for covariates in X explain-
ing potential trends or known environmental anomalies across the
layout of the trial. Extraneous non-genetic variation due to the ex-
perimental design such as blocks were captured using random effects
u with design matrix Z where the effects were assumed to be distrib-
uted u � Nð0;s2

uIÞ: To ensure dependence between trait observa-
tions was appropriately modeled, the residual error, e, was assumed
to be distributed e � Nð0;s2RÞ where R ¼ RrðrrÞ5RcðrcÞ was par-
ameterised as a separable AR1 5 AR1 (AR1 = auto-regressive of
order 1) correlation structure in the row and column dimensions of
the experimental layout (Gilmour et al., 1997). In (1) the ng length
vector of total genetic effects g were defined by the genetic model

g ¼ aþ p (2)

where a and p were the additive and residual genetic effects respec-
tively with joint distribution

�
a
p

�
� N

��
0
0

�
;

�
s2
aK 0
0 s2

pI

��

Here, K ¼ MMT=s where M is the complete marker matrix and s is a
scaling constant defined by s ¼ P​ ng

j¼1djj
� �

=ng where djj is the jth di-

agonal element of MMT (Forni et al., 2011). The matrix K is known as
the additive relationship or kinship matrix (VanRaden 2008) and can be
viewed as a full rank variance matrix detailing the additive connectivity
between the genotyped lines. The constant s ensures the genetic variance
parameters s2

a and s2
p are numerically comparable and interpretable.

Parameter estimation in the one-step genomic prediction linear
mixed model (1) was achieved through an iterative algorithm. Best
linear unbiased estimators (BLUEs) of the fixed effects and best linear
unbiased predictions (BLUPs) of the randomeffectswereobtained from
solutions to the mixed model equations (MMEs) (Henderson 1953).
Estimates of the variance parameters are then obtained through an
average information algorithm (Gilmour et al., 1995) implemented
throughmaximizing the residual maximum likelihood (REML) derived
in Patterson and Thompson (1971). From these solutions the genomic
best linear unbiased predictions (GBLUPs) of the additive genetic ef-
fects a can be written as

~a ¼ s2
aKZ

T
g Py (3)

where P ¼ H21 2H21XðXTH21XÞ21XTH21 and H ¼ varðyÞ ¼
s2Rþ s2

uZZ
T þ s2

aZgKZT
g þ s2

pZgZT
g : These GBLUPs ~a represent

the relative genetic merit of the lines and are commonly called esti-
mated breeding values.

Cross validation: For each cross-validation scenario conducted, train-
ing data sets were created by setting the validation set records from the
phenotypic data to missing and appropriately subsetting the genetic
marker data to include training set lines only. A training set model was
fitted using an adaptation of the linear mixedmodel defined in (1) with
non-genetic parameters fixed at their estimates from the full model.
Marker effects were then predicted using the methods described in
Norman et al. (2017), namely

~qt ¼ MT
t K

21
t ~at (4)

whereMt and Kt were the genetic marker data and additive relation-
ship matrix respectively for the training set of lines and ~at were
GBLUPs for training lines calculated using (3). Genomic predictions
for lines in the validation set were then determined using

~av ¼ Mv~qt (5)

where Mv is the genetic marker data for the validation set and ~qt is
defined in (4).

For cross-validation scenarios in section 2.6 where the number of
markers is reducedbelow thenumberof lines used in the training set, the
model (1) cannot be used due to rank deficiency in the relationship
matrix. Consequently, an alternative formulation was adopted for the
genetic effects defined in (2), namely

gt ¼ M�
t qt þ pt (6)

where M�
t is the genetic marker data with reduced numbers of

markers for the training set, qt represents a vector of marker effects
with assumed distribution qt � Nð0;s2

aIÞ and pt are the residual
genetic effects defined in (2). The iterative estimation algorithm pro-
ceeds similarly to the previous section and marker effect predictions
for the training set were determined directly using

~qt ¼ s2
aM

�T
t ZT

g Py

GBLUPs of the additive effects for the validation lines were then
immediately determined using an analogous equation to (5), namely
~av ¼ M�

v~qt .

Computations: All statistical analysis was carried out in the R Statistical
Computing Environment (R Core Team 2017). Linear mixed models
were fitted using the flexible linear mixed modeling package ASReml-R
(Butler et al., 2009) available as an R package and downloadable from
www.vsni.co.uk/software/asreml.

Impact of training set size on prediction accuracy
The effect of training set size on genomic prediction accuracy was assessed
through an extended five-fold cross-validation analysis. First, the full panel
was randomly divided into five folds each containing 2,075 lines. Four of
these folds acted as a training set (8,300 lines) which was used to predict the
remaining fold (validationset).The training setwas thenrandomly sampled
to sizes of 250, 500, 1,000, 2,000, 3,000, 4,000, 5,000, 6,000 and 7,000, where
each acted as a training set to predict that fold’s validation set which
remained at a fixed size of 2,075 lines. These subsets were sampled without
replacement resulting in varying levels of replication for the different sizes.
Within each fold there were 33 reps at 250, 16 of 500, 8 of 1,000, 4 of
2,000, 2 of 3,000, 2 of 4,000, and 1 of 5,000 and above. All training
models were fitted according to (1) where marker effects were then
calculated by (4), and used to form genomic predictions of lines in the
validation set according to (5). All training sets within each fold were
used to predict the same validation set. Relative prediction accuracies
were calculated by correlating the genomic predictions to the corre-
sponding additive GBLUP values from the full data set model. For the
remainder of this paper, the term prediction accuracy is used to de-
scribe the capacity of the comprised training sets to predict line per-
formance as described by the maximal model.

Impact of population structure on prediction accuracy
To investigate how genomic prediction training sets can be optimally
designed, the panel was partitioned using two different approaches
for the purposes of training and cross-validation. In the first method,
K-means clustering was used to partition based on genetic similarity. This
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was used as a surrogate for assessing calibration within and between
germplasm pool (breeding program). In the second method, the
germplasmwaspartitionedbycross-yeartoexaminetheeffectonprediction
accuracy of including multiple historical ‘breeding cohorts’ (historical lines/
data). Online Resource 1 details which lines belong to each cluster and
breeding cohort.

Impact of underlying population structure: K-means clustering
was performed on a marker based genetic dissimilarity matrix using the
K-means functionality inside the R statistical computing environment
(R Core Team 2017). The sum of squares within clusters was assessed
when setting the number of clusters between 2 and 50, which showed the
variance plateaus when there weremore than five. The number of clusters
was therefore set at five. In order to achieve clusters of equal size, 1,500
lines were randomly selected from each to be used in the cross-validation
analysis.With these 7,500 lines, four cross-validation designs (detailed in
Figure 1) were then used to achieve i) equal representation of all clusters
in both the training and validation sets (‘all clusters’), ii) representing
the same cluster in both the training and validation set (‘within cluster’),
iii) representing one cluster in the training set and one different cluster in

the validation set (‘between cluster - narrow training’), and iv) represent-
ing four clusters in the training set and the remaining one cluster in the
validation set (‘between cluster - broad training’). Within each cluster,
lines were randomly sampled without replacement to produce subsets.
This allowed all training sets in each of the four designs to contain 1,000
lines, and all validation sets to contain 500 lines. In each design these
subsets were rotated to all possible combinations in order to provide
replication. All training models were fitted according to (1) where
marker effects were then calculated by (4), and used to form genomic
predictions of lines in the validation set according to (5). Prediction
accuracies were calculated by correlating the genomic predictions to
the corresponding additive GBLUP values from the full data set model.

Impact of breeding cohort: Here, lines from four different breed-
ing cohorts were selected from the PYT-South subset of breeding lines.
The cohorts were randomly selected from the second yield testing stage
of the south breeding program from years 2010 to 2013, and each
cohort contained 996 lines. Three cross-validation designs were used
to assess i) one cohort year (training set) used to predict the following
cohort year (validation set), ii) two cohort years (training set) used to

Figure 1 Description of the four cross-validation designs used to assess the impact of underlying population structure. The partitions within each
cluster were formed by randomly sampling without replacement. Replication was achieved by rotating partitions within each design to provide all
combinations of partitions and clusters. All designs had consistent training and validation set sizes of 1,000 and 500 respectively.

2892 | A. Norman et al.

55



predict the following cohort year (validation set), and iii) three cohort
years (training set) used to predict the following cohort year (validation
set).As in theK-means clusteringmethod, lineswere randomly sampled
without replacement within each cohort year to produce subsets. This
allowed all training and validation sets in each of the three designs to
contain 996 lines. In design ii) the training sets were made up of one
498 line subset from each of the two cohort years, and in design iii) they
consisted of one 332 line subset from each of the three cohort years.
Cross-validations were performed according to the same methods used
in the K-means clustering method.

Marker density analysis
Marker subsets of varying size (100, 500, 1,000, 3,000, 5,000, 10,000, 13,639
and 17,181) were selected in order to assess the effect ofmarker density on
prediction accuracy, and its interaction with population structure. The
13,639 markers on the consensus map from Norman et al. (2017) were
selected as the first subset, from which markers for the lower densities
were selected with the criteria of being evenly distributed on the genome,
as well as having high minor allele frequency (MAF). To achieve this,
markers were first allocated into linkagemap bins of varying size for each
target density, and those with the highest MAF within each bin were
selected. Table 1 summarizes each marker subset and genetic maps
of each subset are plotted in Online Resource 2. Online Resource
3 details which markers belonged to each subset.

Random five-fold cross validation: The effect of marker density
on prediction accuracy was assessed with random five-fold cross
validation, where training sets consisted of 8,300 lines and validation
sets 2,075 lines. The cross validation was repeated for each marker
density. Trainingmodels formarker densities containing fewermarkers
than lines were fitted according to (6) where marker effects were
determined directly. For densities containing more markers than lines,
trainingmodelswerefittedaccording to (1) andmarker effectswere then
calculated through (4). Marker effects from either method were then
used to formulate genomic predictions of lines in the training set
according to(5),andpredictionaccuracieswerecalculatedbycorrelating
the predictions to additive GBLUP values from the full model.

K-means clustering: The response of prediction accuracy to marker
densitywas assessed in different population structures by repeating the
K-means clustering method for each marker density. As in section
2.6.1, trainingmodels for densities containing fewermarkers than lines
were fitted according to (6), and those containing more markers than
lines were fitted according to (1). Genomic predictions were calculated
according to (5), and correlated to GBLUP values from the full model
to determine prediction accuracy.

Data availability
File S1 specifies the breeding cohorts used for analysis. File S2 contains
geneticmap plots of eachmarker subset. File S3 specifies whichmarkers
were included in each subset, and the genetic map position of each
marker. File S4 contains all genetic marker data, and file S5 contains all
phenotype data. Supplemental material available at Figshare: https://
figshare.com/s/287c2c7f1623008487a5.

RESULTS

Impact of training set size on prediction accuracy
Figure 2 details the effect of training set size on genomic prediction
accuracy for the four traits analyzed. A similar trendwas observed at each

trait with accuracy increasing substantially from training set size of
250 to 2,000. A correlation with the maximal model of 0.95 was
achieved with training set sizes of between 3,950 and 7,650 (for traits
glaucousness and relative maturity respectively). Glaucousness was
the most accurate trait at all sizes, and maturity the least. The differ-
ence in accuracy between traits was more pronounced at smaller
training set sizes (0.59 to 0.79 at size 250, 0.96 to 0.98 at size 8,300).
Grain yield showed the most variation between replications of each
training set size (indicated by the shading of upper and lower quar-
tiles), and glaucousness the least.

Impact of population structure on prediction accuracy
Figure 3 details the structure of lines included in each of the population
structure analyses. Sub-plotsA andB display components one and two,
and one and three respectively from a PCA performed on the lines
included in the K-means cluster analysis. Sub-plots C and D represent
similar plots from a PCA performed on the lines included in the
breeding cohort analysis, where lines are colored according to their
cohort year. There is a clear distinction between the K-means clusters,
while the genetic dissimilarity between the breeding cohorts is less
pronounced.

Impact of underlying population structure: Figure 4 summarizes
prediction accuracies from the K-means clustering method of
assessing population structure impacts on prediction accuracy.
‘All clusters’ and ‘within cluster’ accuracies were similarly high for
glaucousness and grain size, whereas for grain yield ‘all clusters’ was
slightly higher and for relative maturity slightly lower. For all traits,
predicting between cluster with a broad training set was more accurate
than predicting between cluster with a narrow training set, but both
were significantly less accurate than ‘all clusters’ and ‘within cluster’.

Impact of breeding cohort: Figure 5 presents prediction accuracies
from the breeding cohort method of assessing the impact of population
structure on prediction accuracy. This shows that as more cohort
years were represented in the training set, prediction accuracy in-
creased significantly for grain yield, and slightly for relative maturity.
Glaucousness and TKW however, had relatively stable prediction
accuracy regardless of how many cohort years were represented in
the training set. Prediction accuracies were highest for TKW and
glaucousness, with relatively maturity being slightly lower and grain
yield lower again.

Impact of marker density on prediction accuracy
Table 1 summarizes each marker selection using the consensus map
to calculate unique positions, markers per map position and mean

n Table 1 Summary of the marker selections using the
consensus map

Number
of markers

Unique
map positions

Markers per
map position

Mean
intervala

Mean
MAFb

100 100 1.00 31.2 0.49
500 500 1.00 6.25 0.44
1000 1000 1.00 3.12 0.40
3000 3000 1.00 1.04 0.34
5000 4580 1.09 0.68 0.32
10000 4590 2.18 0.68 0.29
13639 4593 2.97 0.68 0.26
a
Mean interval (cM) between unique map positions.
b
Mean minor allele frequency across the full panel.
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interval. This shows only a slight increase in the number of map
positions at selections containing more than 5,000 markers. There-
fore, at the selections with more than 5,000 markers, the mean
position interval plateaus off and markers per map position in-
creases. The mean MAF of the markers at each selection starts very
high at 0.49 for the 100 marker selection, and steadily decreases to
0.26 for the 13,639 selection.

The effect of marker density on prediction accuracy was assessed
in the first instance through random five-fold cross validation, the results
of which are summarized in Figure 6. All four traits showed a sharp
increase in accuracy before reaching a plateau at approximately 5,000
markers, with only a marginal increase in prediction accuracy when
increasing from 5,000 to 17,181 markers. All traits showed the highest
prediction accuracy when all available markers were used. Glaucous-
ness, relative maturity and grain yield all had similar response curves,
but TKW had a more pronounced increase in accuracy with marker
number, particularly when increasing from 1,000 to 3,000 markers.

Effect of interaction Between marker density and
population structure on prediction accuracy
The K-means clustering analysis was repeated for each marker density
in order to investigate the interaction between population structure
and marker density (Figure 7). Similar to the five-fold cross validation
analysis, prediction accuracies increased sharply up to approximately
3,000 markers before plateauing. Similar responses were observed for
‘all clusters’ and ‘within cluster’ prediction structures across all traits.
Between cluster prediction saw greater response to increased marker
density, particularly with broad training when increasing from 100 to
1,000 markers. Relative maturity saw a slight decrease in prediction
accuracy when marker number was increased beyond 5,000.

DISCUSSION
If plant breeders are to effectively apply genomic selection in their
breeding programs, they require a sound understanding of factors
affecting prediction accuracy in large scale germplasm datasets. In
the present study we utilized a panel of 10,375 lines sourced from an
active breeding program to investigate the effect and interaction of

Figure 2 Genomic prediction accuracies from five-fold random cross-
validation with varying training set sizes. Shading represents upper
and lower quartiles. Prediction accuracy is defined as the correlation
between genomic predictions of the validation set and their corre-
sponding additive GBLUP values from the maximal model. TKW
represents thousand kernel weight.

Figure 3 Pairwise plots of com-
ponents from two principal com-
ponent analyses (PCA). A First and
second components of the PCA
performed on lines included in the
K-means clustering method, with
lines colored according to which
cluster they belonged. B First and
third components of the PCA
performed on lines included in
the K-means clustering method,
with lines colored according to
which cluster they belonged. C
First and second components of
the PCA performed on lines in-
cluded in the breeding cohort
method, with lines colored accord-
ing to which cohort they belonged.
D First and third components of
the PCA performed on lines in-
cluded in the breeding cohort
method, with lines colored accord-
ing to which cohort they belonged.
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training set size, population structure andmarker density on prediction
accuracy. The findings presented here will assist breeders in optimizing
their programs, allowing them to make the most effective and efficient
use of their resources when implementing genomic selection.

Effect of training set size on prediction accuracy
An important factor influencing genomic prediction accuracy is the size of
the training set used to develop the prediction calibration (Nakaya and
Isobe 2012). However, research questions pertaining to this have previ-
ously proven difficult to address, as the large number of lines required to
locate the point of diminishing returns has an often prohibitively high cost
of genotyping. The data set analyzed here provides a unique opportunity
to investigate the effect of population size on prediction accuracy in bread
wheat. Prediction accuracy increased substantially when the training set
size was increased from 250 lines to approximately 2,000, after which the
rate of increase slowed.While an acceptable prediction accuracy would be
determined by the breeder on a case by case basis, if we look at an accuracy
of 0.95 as an example, this is achieved at a training set size of 3,930 and
7,450 for glaucousness and relative maturity respectively. This result con-
firms previous findings from smaller populations (Heffner et al., 2011a, b;
Isidro et al., 2015), and extends the relationship to larger training sets
showing there is a point at which accuracy begins to plateau in response
to increased training set size. Plant breeders should take this result into

account when weighing up the benefit of including additional lines
in a training set. While there were differences between traits in the
level of accuracy achieved, the trend in response to training set size
was consistent for all traits despite their differences in genetic com-
plexity. This suggests that response in prediction accuracy to train-
ing set size is not dependent on the complexity and genetic
architecture of the trait.

The difference in prediction accuracy between traits was more pro-
nounced at smaller training set sizes. This was also driven by the genetic
complexity of the trait, as more lines are needed to provide the high
number of allelic observations required to accurately predict small effect
QTL (Gilmour 2007). Prediction accuracies in this analysis varied more
within the smaller training set sizes than the large, particularly for grain
yield. This indicates population structure was present and the variation in
accuracy was likely caused by the presence or absence of highly related
lines across training and validation sets. (Poland et al., 2012). In the next
section we investigate how the relatedness between training and
validation sets affects the resultant accuracy.

Effect of population structure on prediction accuracy
K-means clustering produced five genetically distinct clusters, which
is demonstrated in Figure 3. Prediction accuracy within and between

Figure 4 Boxplots showing pre-
diction accuracies from the
K-means clustering method for
each category of training and
validation set combinations, de-
tailed in section 2.5.1. Prediction
accuracy was calculated by cor-
relating predictions of the vali-
dation set to the corresponding
additive GBLUP values from the
full model with all lines included.
TKW represents thousand kernel
weight.
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clusters was tested using structured cross-validation with training sets
containing 1,000 lines and validation sets containing 500 lines. The
breeding cohorts were less distinct as they were all sourced from the
southern breeding program. The accuracy of predicting one cohort
using a training set sourced from one, two or three prior cohorts was
tested using training and validation sets of the same size as those in
the K-means clustering method. This unique assessment is represen-
tative of how genomic prediction would be applied in a commercial
breeding program.

In the K-means cluster method, ‘all clusters’ and ‘within cluster’
prediction accuracies were similar for glaucousness and TKW. The
training sets of both prediction structures directly represent the
clusters in their respective validation set, the only difference being
that ‘all clusters’ uses all five clusters whereas ‘within cluster’ uses just
one. This result therefore suggests the broadness of the training and
validation sets has little effect on prediction accuracy when the train-
ing set contains at least some lines that are highly representative of
those being predicted. For relative maturity however, ‘within cluster’
prediction accuracy was slightly higher than ‘all clusters’, and the reverse
was observed for grain yield. There are several large effect photope-
riod and vernalisation genes that control maturity (Snape et al., 2001;

Cane et al., 2013), and the predominating genes differ between clusters
(data not shown). The higher accuracy when predicting maturity
within cluster was therefore likely to be caused by the key large effect
genes having greater representation in the training set. For grain yield
on the other hand, the increased diversity was beneficial as ‘all clusters’
showed higher prediction accuracy than ‘within cluster’. This is because
there was more and comparable phenotypic diversity represented
within both the training and validation sets for ‘all clusters’.

For all traits, predicting a single cluster using a broad training set
produced higher accuracies than predicting with narrow training, but
was substantially less accurate than ‘within cluster’ and ‘all clusters’.
This shows that prediction accuracy is significantly higher when
the training set contains close relatives of lines in the validation
set, but accuracy can also be increased by including more genetic
diversity in the training set. Breeders should therefore design
genetically diverse training sets that are highly related to the
prediction set in order to maximize genetic response to genomic
selection. This is corroborated by the results of the breeding cohort
cross-validation, where prediction accuracy was improved for
grain yield and relative maturity by including more cohort years
(and therefore more diversity) in the training set. With increased

Figure 5 Boxplots summarizing
the prediction accuracies from
the breeding cohort method, as
detailed in section 2.5.2. At each
trait the first boxplot represents
one cohort year used as a train-
ing set to predict the subsequent
cohort year (validation set). The
second represents two consec-
utive cohort years used as train-
ing to predict the subsequent
cohort year, and third represents
three consecutive cohort years
used to predict the subsequent.
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genetic diversity and high SNP density, the training set can better
capture short haplotype effects that are relevant to the validation
set. This type of calibration is based on short haplotype effects and
linkage disequilibrium information, and is suggested by Hickey
et al. (2014) to be less susceptible to breaking down after multiple
breeding cycles.

The breeding cohort analysis is the most representative of how
genomic selection would be applied in a breeding program, predicting
the current cohort using previous cohorts. The increase in prediction
accuracywithmore cohorts in the training set wasmost pronounced for
grain yield, and supports previous findings in rye (Auinger et al., 2016).
Muir (2007) observed through simulation of animal breeding that con-
tinued selection over multiple generations eventually reduced predic-
tion accuracy. The difference between that study and the present is the
longer generation intervals of wheat breeding and consequently the
fewer number of generations represented. The results presented here
show that incorporating more breeding cohorts in the training set is
beneficial in a conventional breeding program with a long generation
interval. A recent study by Gorjanc et al. (2018) investigates the re-
sponse in a rapid cycling program which uses genomic selection to
quickly identify parents.

While grain yield undergoes continual and intense selection within
the breeding program, relative maturity and TKW are threshold traits
and therefore change less over time, which results in them benefiting
less from the inclusion of additional cohort years in the training set.
Glaucousnessundergoesnodirect selectionmeaning genetic changewill
only occur through correlated response, and it therefore sees littlebenefit
from adding more cohort years to the training set.

Marker density
The effect of marker density on prediction accuracy was assessed with
a random five-fold cross validation analysis performed with various
marker densities. All traits experienced a strong response to increases in
marker density up to 5,000markers, showing that this was sufficient for
generating a relatively accurate prediction calibration within this panel.
This number is significantly higher than the plateau point of previous

Figure 6 Plot showing the effect of marker density on prediction
accuracy for each trait. Prediction accuracy was assessed by perform-
ing random five-fold cross-validation for each selection of markers,
and correlating predictions of the validation set to the corresponding
additive GBLUP values from the full model with all lines included.
Marker subsets were selected to be evenly distributed over the
genome and to have high minor allele frequency.

Figure 7 Plots showing the in-
teractive response of predic-
tion accuracy to marker density
and population structure. The
K-means clustering method de-
tailed in section 2.5.1 was re-
peated for each selection of
markers. Marker subsets were
selected to be evenly distrib-
uted over the genome and to
have high minor allele frequency.
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studies in smaller populations (Heffner et al., 2011b), as high marker
densities only facilitate finer resolution and more accurate estimates of
QTL effects when combined with large population size and low link-
age disequilibrium (Huang et al., 2012). TKW benefited from increased
marker density more than the other traits, which could be explained
by its quantitative genetic nature requiring more markers to accurately
estimate itsmany small QTL effects (Zhang et al., 2015). However, grain
yield is also a highly quantitative trait and it saw a similar response curve
to the more qualitative traits glaucousness and relative maturity.

The interactive effect of marker density and population structure
on prediction accuracy was assessed by repeating the K-means cluster
analysis with various marker densities. The density at which prediction
accuracy plateaued was slightly lower than that observed in the random
five-fold cross validation. This is consistent with previous studies using
smaller data sets where additional markers benefited prediction accu-
racy more when larger training sets were used (Heffner et al., 2011a,b).
Prediction accuracy respondedmore to increased marker density when
predicting between clusters, particularly when there was more genetic
diversity in the training set. This is consistent with the findings of Hickey
et al. (2014), where in a simulated maize data set the required marker
density was lower when closely related material was shared between
training and validation sets. The study also showed there was greater
response to increased marker density when the training set contained
more diversity, which corroborates our findings. The slight decrease in
prediction accuracy at high marker densities for relative maturity is
likely due to excess markers overfitting the model (Heslot et al.,
2012). A similar result was seen in Heffner et al. (2011a), where higher
marker densities resulted in lower prediction accuracy in bi-parental
wheat populations.

Conclusions
Here we used a wheat panel of unprecedented size to investigate several
key factors affecting genomic prediction accuracy that previously have
not been explored at this scale. We showed there is a point at which
prediction accuracy begins to plateau in response to training set size,
and that this response is independent from the genetic complexity of the
trait. The population structure analyses showed that relatedness between
training and validation sets has a large effect on prediction accuracy,
but importantly when relatedness is low, as is often the case when
applying genomic selection, prediction accuracy can be increased by
increasing diversity in the training set. We also found that traits under
higher selection pressure can be more accurately predicted by in-
cluding several previous breeding cohorts in the training set. This was
shown for up to three previous cohorts, but further work should be
done to explore how stable this trend is across different breeding
programs and more cohorts. By assessing the interaction between
marker density and population structure, we showed the response to
increasedmarker density is largerwhenusing a diverse training set and
predicting frompoorly related training sets.Theworkpresentedherein
provides a framework for pragmatic plant breeders to optimally design
their genomic selection training strategy to achieve high selection
accuracy and subsequent rates of genetic gain.
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Chapter 4

Increasing response to genomic

selection through concurrent use of

low and high density genotyping

platforms

4.1 Exegetical statement

Implementing GS in a large scale breeding programme comes with a considerable geno-

typing cost, which is often prohibitively high. Even in a case where the programme can

afford the cost, more genetic gain could be made if genotyping were cheaper as it would

enable selection within larger breeding populations. Low density genotyping platforms

are available at prices lower than the high density platforms commonly used for GS, but

training a GS model with less markers results in a significant decrease in prediction accu-

racy. An opportunity presents itself here to utilise the genetic position of markers along

with high density parental data and low density progeny data to exploit identity by de-

scent and improve the accuracy of cost effective, low density genotyping platforms. This

paper presents two novel methodologies which achieve this. The first imputes missing

markers on low density genotyped lines up to high density, and the second incorporates

genetic position, low density progeny data, high density parental data, and high density

marker effects in a single prediction step without any imputation being performed. The

accuracy of each method is assessed, and the resultant response to selection is compared

to single platform strategies under varying cost scenarios.
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4.3 Abstract

Genomic selection has been established as a highly valuable breeding tool through two

decades of extensive research. However, its application incurs a significant additive geno-

typing cost, which can be prohibitively high when implementing at a commercial scale.

Solutions which lower the cost of application are therefore required, and an obvious po-

tential solution is a low cost, low density genotyping platform. While such platforms are

appropriately priced for large scale implementation, they come with a considerable sac-

rifice in prediction accuracy. Here we present two methodologies for effectively utilising

a low density genotyping platform by incorporating high density parental data. We as-

sessed the resultant genomic prediction accuracy and showed both methods to be highly

accurate. We also investigated the response to selection achieved under each strategy and

showed that with the same genotyping expenditure, using a low density genotyping plat-

form containing 1000 markers at 20% the cost of a high density platform, the imputation

method resulted in a 45% increase in response to selection over only using a high density

platform. This work demonstrates that the methods presented here can be used by plant

breeders to more efficiently increase the rate of genetic gain achieved in their programme.

4.4 Introduction

Over the past two decades extensive research has been carried out establishing, and im-

proving, the methods of genomic selection in numerous species (Meuwissen et al., 2001;

Nakaya & Isobe, 2012). It has been shown that genomic selection represents a valuable

tool with which wheat breeders can significantly increase the rate of genetic gain in their

programmes (based on theory and simulation studies) (Nakaya & Isobe, 2012; Gaynor

et al., 2017). For the potential of genomic selection to be fully realised in an applied set-

ting, large numbers of individuals must be genotyped at high density. This is due to the

positive relationships between prediction accuracy and training set size, and between pre-

diction accuracy and relatedness (Heffner et al., 2011; Isidro et al., 2015; Norman et al.,

2018). The training set should therefore be large and updated regularly with germplasm

that is closely related to the current breeding populations. In addition, breeders aim to

maximise the size of their breeding populations as this enables higher selection intensity
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and therefore genetic gain. New breeding populations are generated in each breeding cy-

cle and must be genotyped if genomic selection is to be carried out. The cost of genotyping

this large number of individuals at sufficient density is often prohibitively high. Even in

the case where a programme can afford the genotyping cost, more genetic gain could be

made if genotyping were cheaper as it would permit larger breeding populations to be

genotyped, which in turn allows a higher selection intensity. The positive effect that se-

lection accuracy and selection intensity have on genetic gain is given by the well known

breeders equation R = ih2σ where R is response to selection, i is selection intensity, h2 is

narrow sense heritability (selection accuracy), and σ represents the standard deviation of

the trait (i.e. phenotypic trait variation) (Wricke & Weber, 1986).

A simple approach one could take to reduce the cost of genotyping is to use a platform

with fewer markers. While this would result in a significant decrease in prediction ac-

curacy due to short haplotype effects not being captured in the prediction calibration

(Heffner et al., 2011; Hickey et al., 2014; Norman et al., 2018), it could still result in higher

rates of genetic gain if the decrease in cost enables a sufficient increase in selection inten-

sity. The concept of incorporating the genetic position of markers into quantitative trait

loci (QTL) analysis has been widely applied in interval mapping methods (Lander & Bot-

stein, 1989; Haley & Knott, 1992; Zeng, 1994). A logical and obvious extension of this

inheritance inference process is to apply it to genomic selection to impute the inheritance

of missing marker data. Consequently the relationship between parents and progeny can

be used to infer the inheritance of marker alleles that may not actually have been assayed.

In other words, marker position and parent-progeny relatedness can be used to impute

from a low density platform (LDP) platform to a high density platform (HDP) by utilis-

ing LDP data on the progeny alongside HDP parental data. A less obvious approach to

utilising LDP data is to incorporate the same linkage and relationship information into

a single prediction step where progeny are predicted using LDP data along with HDP

parental data and HDP marker effects. This approach has not been presented previously

and may be more or less accurate than traditional imputation. If either of these approaches

can be carried out with sufficient accuracy they could be used to improve the overall im-

pact achieved with genomic selection (Gorjanc et al., 2017). Methodology and software is

readily available for imputation in animal and human genetics (Kong et al., 2008; Howie
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et al., 2009; Hickey et al., 2011; Antolı́n et al., 2017) where the population structure is differ-

ent from inbred plant species, and the target is often imputing sequence data (Van Raden

et al., 2015). In plant species such as wheat however, identity by descent information can

be utilised by tracing chromosome segments of the two parents to the progeny, which

can be very powerful in imputation. Guo & Beavis (2011) showed accurate imputation to

be possible in a maize nested association mapping population, but until very recently no

imputation methodology had been designed to utilise the structure of bi-parental popula-

tions, and many methods faced issues with computation time (Hickey et al., 2015). Gonen

et al. (2018) recently published methodology and software for phasing and imputing SNP

array data in diploid plant species, which accurately imputed simulated bi-parental pop-

ulations.

Here we present two methods for using an LDP in conjunction with HDP parental data,

and compare the resultant genomic prediction accuracies with those from using only a

HDP, and those using only an LDP. The first method iterates over intervals of LDP skeletal

markers and imputes alleles at the missing HDP markers in the progeny using linkage

information. The second method utilises HDP parental data in the process of calculating

genomic predictions on the progeny, which have only LDP data. This is done by load-

ing the prediction calibration onto the LDP markers at each parent based on their linkage

phase, then predicting the individuals based on the likelihood of inheritance from each

parent. Predictions are therefore calculated without imputing any alleles at missing mark-

ers. The rate of genetic gain was then calculated for various costs and accuracies in order

to establish the value of using such approaches.

4.5 Materials and Methods

4.5.1 Data simulation

Initially, ten fixed wheat genotype lines with varying relatedness were extracted from the

genetic map and marker data published in Norman et al (2017). Allelic information for

the lines was restricted to markers only present in the consensus map. The lines were

then used to simulate genetic marker data for four cross types including straight cross (A
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x B), backcross (AB x A), top cross (AB x C), and four-way cross (AB x CD). 5000 recom-

binant inbred lines (five selfing generations) were simulated for each cross type using the

R package simcross (Broman, 2016) available in the R Statistical Computing Environment

(R Core Team, 2018). To enable imputation and prediction methods to be assessed in the

scenario where we have HDP marker data for parents and LDP data for the lines of in-

terest, the marker subsets from Norman et al. (2018) (100, 500, 1000, 3000, 5000, 10000)

were used as the LDP marker sets, and the 13639 markers on the consensus map formed

the HDP marker set. The LDP marker sets were selected with the criteria of being evenly

positioned on the genome, and having high minor allele frequency. For each marker sub-

set, markers present on both the HDP and LDP sets acted as the skeletal markers, and

those present on only the HDP set were treated as missing data at the lines of interest.

Genetic marker effects for grain yield were estimated for all 13639 markers by repeating

the genomic analysis of the field trial from (Norman et al., 2017) using only these markers.

These genetic marker effects were used with the full marker data to calculate the “true”

additive genetic values of the simulated lines.

4.5.2 Prediction methods

This section details two novel methodologies for calculating genomic predictions for lines

of interest with LDP marker data by utilising HDP marker data on their parents. The

imputation method involves imputing the alleles of the HDP markers on the lines of inter-

est, then using the imputed marker data set to calculate genomic predictions. The direct

prediction method directly calculates genomic predictions without imputing any allelic

values.

The simulated lines detailed in section 4.5.1 were predicted using each method, and the

accuracy of the prediction was calculated as the correlation coefficient (r) between the pre-

dictions and the “true” additive genetic values. Accuracy of the imputation method was

also assessed by the correlation coefficient (r) between the true and imputed genotypes

(Calus et al., 2014).
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Imputation method

The imputation approach described here allows missing markers to be imputed for a line

with LDP data using the HDP data of parents. It is suited for biallelic markers and requires

alleles to be coded in −1 and 1 format. Figure 4.1 notates the information required to

impute Z, the allelic value of the high density marker at the line of interest.

FIGURE 4.1: Notation used in the imputation method equations for parents
a and b, and progeny p. mh and mj denote the allelic values of the left and
right skeletal flanks respectively. mi represents the parental allelic values at
the high density marker to be imputed, and Z denotes the imputed allelic
value of the progeny at this high density marker. w represents the cM dis-
tance between the high density marker to be imputed and the left skeletal

flank, and v denotes the cM distance to the right skeletal flank.

For parents a and b, sa and sb represent the proportional similarity at the loci of interest

between the line of interest and each parent, and are respectively defined by

sa = 1−
|mph −mah|+ |mpj −maj|

|mph −mah|+ |mpj −maj|+ |mph −mbh|+ |mpj −mbj|
(4.1)
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sb = 1−
|mph −mbh|+ |mpj −mbj|

|mph −mah|+ |mpj −maj|+ |mph −mbh|+ |mpj −mbj|

This equation will not work appropriately when |mph−mah|+ |mpj−maj|+ |mph−mbh|+

|mpj −mbj| = 0, as this infers that the progeny has zero similarity with either parent thus

indicating an error in the data. In this case sa = sb = 0.5.

The imputed allele Z is then defined by

Z = (2(1− θwθv)− 1)z (4.2)

where

z = maisa(1− (γ|mph −mah|+ β|mpj −maj|))

+mbisb(1− (γ|mph −mbh|+ β|mpj −mbj|))
(4.3)

with γ = 1− (w/(w + v)) and β = 1− (v/(w + v)). Here, if w + v = 0 (markers are

co-located), we reassign the denominator with 1. In (4.2) θw = 1
2 tanh( w

50 ) is the recom-

bination probability calculated using the Kosambi genetic distance mapping function for

the left flanking interval distance w. θv follows similarly. The use of these probabilities in

this context is to adjust for potential double recombinations or interference between the

marker being imputed and the skeletal marker.

The GEBVs of a set of lines can then be calculated by

GEBV = Mu

where M is a marker matrix containing all individuals to be predicted with complete al-

lelic information (imputed or otherwise) on the full set of markers, and u is a vector of

marker effects for the trait being predicted.
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Direct prediction method

The direct prediction method enables GEBVs to be calculated without imputing any miss-

ing alleles. Imputation methodologies are subject to patent claims in some countries (Hayes

& Goddard, 2007), whereas the direct prediction method is not. Similar to the imputation

method it is suited to biallelic markers and requires alleles to be coded in−1 and 1 format.

Figure 4.2 describes the notation used in the equations where the skeletal marker j is

flanked by ni HDP markers in the left interval and nk HDP markers in the right inter-

val. Markers have allelic values m, and known marker effects e.

FIGURE 4.2: Notation used in the direct prediction equations to describe al-
lelic values m at parents a and b and progeny p for the skeletal marker j,
which is flanked by ni HDP markers in the left interval and nk HDP mark-
ers in the right interval. Marker effects are shown by e, and intervals (cM

distance) are given wi, vi, wk and vk.
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Kaj and Kbj represent the allelic similarity at the jth skeletal marker between the line of

interest and parents a and b respectively, and are defined by

Kaj =
(majmpj) + 1

2
(4.4)

Kbj =
(mbjmpj) + 1

2

The HDP marker effects are consolidated onto the skeletal markers by splitting each effect

value and loading it onto its two flanking markers. The effect value is split according to its

proportional distance to each flank. Let Eaj and Ebj represent the consolidated allelic effect

at the jth skeletal marker for parents a and b respectively. For ni HDP markers in the left

interval and nk HDP markers in the right interval, Eaj and Ebj are respectively defined by

Eaj = ejmaj +
ni

∑
i=1

eimai

(
1− vi

wi + vi

)
+

nk

∑
k=1

ekmak

(
1− wk

wk + vk

)
(4.5)

Ebj = ejmbj +
ni

∑
i=1

eimbi

(
1− vi

wi + vi

)
+

nk

∑
k=1

ekmbk

(
1− wk

wk + vk

)

The consolidated effects E from (4.5) are then used with the allelic similarities K from (4.4)

to directly calculate the predicted GEBVs. For n skeletal markers, the GEBV of the line of

interest is defined by

GEBV =
n

∑
j=1

(
Kaj

Kaj + Kbj
Eaj +

Kbj

Kaj + Kbj
Ebj

)
(4.6)

In the case where one or both parents are a heterozygous F1, (4.4), (4.5) and (4.6) are ex-

panded back to the four grandparents. If one parent is fixed then its parents are repre-

sented by two clones of itself.
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LDP-GBLUP method

With the LDP-GBLUP method genomic prediction calibrations were recalculated for each

marker density using the methodology described in Norman et al. (2018). Each LDP

calibration was then used to calculate genomic predictions by multiplying the matrix of

marker effects by the LDP genotype data.

Computations

All analyses were carried out in the R Statistical Computing Environment (R Core Team,

2018). Both the imputation and direct prediction methods were wrapped into R functions.

The imputation function took 13 minutes to impute 5000 individuals, while the direct pre-

diction approach was faster, taking just 10 seconds to predict 5000 individuals for one

trait (Windows PC with a 4.00Ghz processor). Linear mixed models for the LDP-GBLUP

method were fitted using the ASReml-R software (Butler et al., 2009), which is available as

an R package and downloadable from www.vsni.co.uk/software/asreml.

4.5.3 Response to selection

A theoretical analysis of response to selection was conducted to investigate the relative

rates of genetic gain between low and high density genomic selection strategies. Assuming

normal distribution of the trait (which for grain yield is a reasonable assumption when the

population has not been truncated (Kuchel et al., 2007), as was the case in this population

(Norman et al., 2017)), relative genetic gain was calculated under varying genotyping cost

ratios (LDP/HDP) and relative LDP prediction accuracies. This was done by increasing

the population size in the LDP strategy relative to the genotyping cost ratio, and decreas-

ing the LDP selection proportion to achieve the same resultant population size following

selection using each strategy.

Using the well known response to selection equation R = ih2σ (Wricke & Weber, 1986)

and a given HDP selection proportion α, the response to selection under the HDP strategy
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is given by

RHDP =
f (Φ−1(1− α))

α
h2σp (4.7)

where Φ−1(p) represents the quantile function and f (Φ−1(p)) gives the density. The HDP

genomic prediction accuracy is given by p, and represents the correlation between the pre-

diction and the “true” additive genetic value.

For a given LDP/HDP cost ratio c, and prediction accuracy relative to the HDP predic-

tion r, the response to selection under the LDP strategy is given by

RLDP =
f (Φ−1(1− αc))

αc
h2σpr (4.8)

Genetic gains were calculated for cost ratios ranging from 0.05 to 0.90, relative LDP pre-

diction accuracies between 0.50 and 1.00, and an initial selection proportion of 0.20. It is

important to note that for the imputation and direct prediction methods the cost ratio must

include the cost of HDP parental data. This will vary between breeding programmes as

population sizes vary, but would have only a small impact on cost. A breeding popula-

tion of 5000 individuals may commonly have between 50 and 150 parents. Narrow sense

heritability and standard deviation values were obtained from the grain yield analysis by

Norman et al. (2017) (h2 = 0.45, σ = 429.88). A HDP genomic prediction accuracy of 0.92

was used. This was based on the genomic prediction accuracy of grain yield from Norman

et al. (2018) with a training set size of 4000 individuals. Statistical analyses were carried out

in the R Statistical Computing Environment (R Core, 2017). The quantile function qnorm()

and the density function dnorm() were used.

4.5.4 Data availability

Supplemental files are available at FigShare. File S1 contains all genetic marker data of the

original parents and all simulated individuals. File S2 contains the pedigree information

used in simulation, imputation and direct prediction. File S3 specifies which markers were

included in each subset, and the genetic map position of each marker. File S4 contains
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the genetic markers effects used to calculate the “true” additive genetic values, and the

genomic predictions.

4.6 Results

4.6.1 Prediction method accuracy

The prediction methods were assessed by predicting the simulated lines of each cross type.

Accuracy was calculated as the correlation between predicted and “true” additive genetic

values. The imputation method was further assessed by correlating the imputed and true

genotype data.

Figure 4.3 shows the accuracy of imputing high density markers with the imputation

method for the different cross types and marker densities. Of the cross types, straight

is clearly the most accurate to impute while backcross is slightly better than top cross, and

four-way is significantly less accurate. Straight and top cross showed a similar response to

marker density, increasing in accuracy very sharply from 100 to 500 markers, then moder-

ately from 500 to 1000. In contrast, backcross increased at a more linear rate, with the rate

of increase only slowing slightly after 1000 markers. The proportion of markers that were

polymorphic was higher for the more complex cross types. Straight crosses had on aver-

age 40.1% polymorphic markers, backcross 39.4%, top cross 54.9%, and four-way 65.9%.

Genomic predictions of the simulated progeny were calculated using the three LDP pre-

diction methods, and their accuracy was measured as the correlation coefficient (r) against

the “true” additive genetic values. Figure 4.4 details the prediction accuracies obtained

with each method in each cross type. The imputation method was most accurate across all

cross types, with direct prediction being slightly less accurate. The difference between im-

putation and direct prediction was largest in the four-way cross. The LDP-GBLUP method

was significantly less accurate than imputation and direct prediction in all cross types for

marker numbers less than 3000, but was comparable at marker numbers greater than 3000.

Of the three methods, LDP-GBLUP showed the strongest response to marker density with

an average increase of 0.22 from 100 to 1000 markers, and 0.08 from 1000 to 3000. When

comparing the accuracy of each cross type, backcross is marginally more accurate than
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FIGURE 4.3: Imputation accuracy of the four simulated cross types calcu-
lated as the correlation coefficient (r) between an individual’s imputed and
actual allele scores. Low density marker numbers ranged from 100 to 10000.

top cross while straight cross is less accurate than both at marker numbers up to 1000, but

more accurate thereafter. Four-way was the least accurate for all methods at all marker

densities.

4.6.2 Response to selection

Figure 4.5 demonstrates the response to selection achievable when using HDP and LDP

genomic selection strategies. In this example the HDP strategy increased the population

mean by 249kg/ha. The increase using the LDP strategy ranged from 259 to 474kg/ha

when the prediction accuracy relative to the HDP strategy was 1.00, and from 130 to

237kg/ha when the relative accuracy was 0.50. If the cost ratio is 0.80, a relative pre-

diction accuracy of at least 0.92 is required for the LDP strategy to be more effective than

HDP, and if the ratio is 0.20 the required accuracy is 0.65. If we use the relative prediction
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FIGURE 4.4: Accuracy of the three low density prediction methods rela-
tive to high density prediction values. Four cross types were simulated and
tested with low density marker numbers ranging from 100 to 10000. Accu-
racy was calculated as the correlation coefficient (r) between an individual’s

prediction for grain yield and its true additive genetic value.

accuracies achieved with each LDP method in the scenario where a LDP genotyping plat-

form contains 1000 markers and costs 20% of the HDP, then the imputation method would

produce a 45% increase in response to selection over the HDP method, direct prediction a

42% increase, and LDP-GBLUP a 32% increase.

4.7 Discussion

It has repeatedly been shown that genomic selection has considerable potential as a breed-

ing tool as it can significantly increase the rate of genetic gain achieved by a breeding

programme (Meuwissen et al., 2001; Gaynor et al., 2017). However, large breeding popula-

tions must be genotyped if genetic gain is to be maximised, both for training the prediction

calibration and selecting within a target population. The cost of genotyping is therefore
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FIGURE 4.5: Response to selection (in kg/ha) achieved by high density plat-
form (HDP) and low density platform (LDP) genomic selection strategies.
Multiple LDP scenarios are shown with varying relative genotyping cost
and relative prediction accuracies. Genotyping expenditure was the same
under each strategy and initial population size was increased according to

the genotyping cost ratio.

critical as larger populations can be genotyped if the cost is lower. Larger breeding popu-

lations facilitate higher selection intensity which in turn increases the rate of genetic gain.

Here we present two methodologies for utilising an LDP along with HDP parental data,

and assess their accuracy against only using an LDP and only using a HDP. We also inves-

tigated how the relative cost and accuracy of an LDP/HDP strategy interact to affect the

rate of genetic gain.

Accuracy of the imputation method was first assessed by comparing the imputed allele

values to the actual and then by using the resultant genomic predictions, thus enabling a

comparison to the other methods. The imputation accuracies observed for each cross type

highlight the importance of clear identity by descent, which is more accurately traced



Chapter 4. Concurrent use of low and high density genotyping platforms 79

when both parents are homozygous. Straight cross was therefore the most accurately im-

puted as both parents are homozygous, followed by back and top cross where one parent

is homozygous and the other is a heterozygous F1. Four-way crosses proved difficult to

impute with high accuracy as the probability of both F1 parents being homozygous at a

given allele is significantly lower, in which case the descent of that allele is more ambigu-

ous. The difference in accuracy achieved is also influenced by the proportion of poly-

morphic markers within a cross, as monomorphic markers are easily imputed as the fixed

allele. Backcrosses had more monomorphic markers than top crosses so while both have

one homozygous and one heterozygous parent, backcross was more easily imputed. Also,

it further explains the low accuracy of the four-way cross type as it had the highest propor-

tion of polymorphic markers. In regards to number of markers used, imputation accuracy

drops away significantly at marker numbers less than 500. The average interval was 6.2cM

at 500 markers, and 31cM at 100 markers. When imputing a centrally positioned marker

this translates to a 0.002 probability of a double recombination at 500 markers, and 0.05

at 100 markers. This increased probability explains the steep decline in accuracy at low

marker density.

When comparing the prediction accuracy achieved with each method imputation was the

most accurate, showing a slight improvement over direct prediction and a significant im-

provement over LDP-GBLUP. The imputation method iterates over skeletal marker inter-

vals and therefore tracks the phase using two skeletal markers, where the direct predic-

tion method iterates over each skeletal marker and loads marker effects onto each skeletal

marker based on the relative probability of recombination. The imputation approach of

utilising interval information is more effective at tracing identity by descent, and is also

better equipped to deal with the more complex four-way crosses. Both the imputation

and direct prediction methods use the marker effects from the HDP training model for

all marker densities, whereas the LDP-GBLUP method uses marker effects from a train-

ing model with only the LDP markers. This means the LDP-GBLUP method has coarser

resolution and less ability to identify short haplotype effects and accurately predict after

genetic recombination has separated the training and prediction sets (Hickey et al., 2014;

Norman et al., 2018). This also explains why the LDP-GBLUP method showed greater re-

sponse to marker density than imputation and direct prediction, as at low marker density
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(100 to 1000 markers) the training model is only able to capture long haplotype effects, of

which there are few in a quantitative trait such as grain yield (Kuchel et al., 2007; Bennett

et al., 2012; Maphosa et al., 2014).

The difference in prediction accuracy between straight, back and top crosses was much

smaller than that of imputation accuracy. Despite this, an order was observed where back-

crosses were most accurate and closely followed by top and straight. Similar to imputation

accuracy the four-way cross type showed much lower accuracy. This follows the order of

genetic diversity between the cross types. Despite there being fewer polymorphic markers

identified, a straight cross is in fact more diverse than a top cross. When the heterozy-

gous F1 is crossed to the homozygous parent in the top cross the resulting individuals

are more closely related to the final parent, whereas individuals from the straight cross

segregate equally toward each parent. The decrease in prediction accuracy at very low

marker densities was therefore more pronounced in the straight cross than top and back-

cross. Shrinkage in the prediction calculations at very low densities proved advantageous,

and thus contributed to the differences observed between cross types. Here, the predic-

tions are shrunk more when the chance of double recombination is high, or when there is

more heterozygosity in the parents. At low marker densities the back and top crosses are

therefore shrunk more than the straight crosses as they have heterozygous parents as well

as a higher chance of double recombination, where in the straight cross the calculation is

more extreme in its prediction and therefore more wrong when a double recombination

occurs. In the four-way cross the imputation and direct prediction methods are less able

to trace identity by descent when both parents are heterozygous F1s. This explains why

these methods perform more similar to the LDP-GBLUP method in the four-way corsses

than in the other cross types, and the high level of genetic diversity in the four-way cross

explains why the prediction accuracy of this cross type is lower across all three methods.

The response to selection analysis uses the HDP strategy as the base line, and shows how

a LDP strategy compares under various cost and accuracy scenarios. The HDP strategy

was calculated to increase the population mean by 249kg/ha, while that of the LDP strat-

egy ranged from 130 to 474kg/ha depending on the scenario. The response to selection
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of the LDP strategy varies significantly with the relative cost and accuracy, and it is there-

fore important to apply realistic figures when interpreting the potential gains. We used

the example of a 1000 marker genotyping platform with 20% the cost of the HDP, and ap-

plied the mean accuracy for each LDP method to calculate the response to selection of each

method. These results showed imputation and direct prediction to both significantly out-

perform the LDP-GBLUP method, which highlights the benefit of methods which utilise

LDP data in conjunction with HDP parental data. Even at the lowest marker density the

relative accuracies reported here are comfortably sufficient for the imputation and direct

prediction methods to give higher response to selection than the HDP strategy. The anal-

ysis also showed that even using the inferior LDP without imputation or direct predic-

tion (LDP-GBLUP) still resulted a significant improvement in genetic gain over HDP. This

demonstrates the importance of increasing the initial population size and selection inten-

sity of a breeding programme, and shows that it outweighs the prediction accuracy trade

off identified in this study.

The cost of genotyping sufficiently large populations to deploy genomic selection in a

breeding programme is often prohibitively high. While the discussion around utilising a

lower cost LDP strategy has thus far focused on the improved response to selection that

can be achieved with the same genotyping expenditure, it is also useful to interpret the

results in terms of how much cost can be saved without sacrificing genetic gain. Using

the previously described scenario of a 1000 marker LDP that is 20% of the cost of a HDP,

it was calculated that the response to selection achieved under the HDP strategy can be

equalled using the imputation method with a saving in genotyping expenditure of 76.5%.

For many breeding programmes the cost of implementing genomic selection using a HDP

would be prohibitively high, and this result demonstrates that the methods presented here

represent an opportunity to overcome that cost barrier.

The objective of this work was to provide two novel methodologies of concurrently util-

ising low and high density genotyping platforms, and assess their efficacy relative to us-

ing each density platform individually. The findings show that the imputation method

produced the highest accuracy, which was followed very closely by the direct prediction

method. With the same genotyping expenditure both methods achieved significantly more
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genetic gain than individual use of either genotype density platform. Alternatively, both

methods could also be used to significantly decrease the cost of implementing a genomic

selection strategy without sacrificing the genetic gain achieved. Methods such as these

can be employed by plant breeders to more efficiently achieve high rates of genetic gain in

their programmes. With recent progress in sequencing the wheat genome (Rimbert et al.,

2018) this work could be extended to incorporate sequence information.
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Chapter 5

General discussion

This project was established in response to a knowledge gap regarding the application of

GS in wheat breeding. At the time the project was conceived GS was well understood

from a theoretical perspective and a number of studies had demonstrated its potential in

small research populations. However, there was a significant lack of information on how

GS should best be implemented in a wheat breeding programme. Therefore, the intended

research outcomes of this project were to: i) establish the achievable accuracy of genomic

prediction in a large breeding population, ii) identify criteria for the optimal design of a

GS training strategy, and iii) formulate methods for reducing the cost of implementing GS.

5.1 Potential efficacy of genomic prediction

In addressing the first research objective of establishing the achievable accuracy of ge-

nomic prediction, three major conclusions were drawn:

1. The high genomic prediction accuracies observed in this study demonstrate signif-

icant potential for GS to improve wheat breeding. This was shown using a novel

approach for assessing prediction accuracy where genomic predictions were corre-

lated to additive genetic value. This method revealed that prediction accuracies did

not vary substantially across traits, but the proportion of genetic variance that is ad-

ditive did.

2. Genomic prediction was significantly more accurate than QTL-based prediction for

all traits tested. This shows that even for qualitative traits under simple genetic

control, GS is more accurate than marker assisted selection. While marker assisted
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selection may remain preferable in certain situations due to the immediate cost ad-

vantage, the price of genotyping for GS can be shared across all predictions made on

a line during its selection lifetime, which will significantly influence which strategy

should be chosen.

3. Incorporating genomic relationship information in the analysis of phenotype data

significantly improves the linear mixed model accuracy. This translates to a more ac-

curate assessment of individuals, and allows both performance and breeding values

to be calculated. Response to selection can therefore be increased as selections are

made based on the appropriate value (performance value for commercial selection,

breeding value for parent selection).

These results confirm the significant potential of GS, and justify further investigation into

how it can be applied in a way that optimises genetic gain by balancing accuracy and cost

effectiveness.

5.2 Application and optimisation of genomic selection

The second research objective, identifying criteria for the optimal design of a GS training

strategy, resulted in seven key conclusions which fall under four categories:

1. Training set size

a. Accuracy was always higher with a larger training set, but the rate of accuracy

increase slowed at larger sizes. This confirms that training sets significantly

larger than those previously studied are required if the efficacy of GS is to be

maximised in a breeding programme. While increasing the size of the training

set continued to improve prediction accuracy up to the largest sizes tested, the

smaller response observed at large training sizes could be exploited in traits

that are expensive to phenotype as breeders can use these results to calculate

if the value gained by increasing the training size outweighs the expense of

phenotyping additional lines.

b. The response of accuracy to training set size was independent of the genetic

complexity of the trait.
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2. Germplasm relatedness

a. Prediction accuracy is improved when the relatedness between training and

validation sets is higher.

b. Prediction accuracy can be increased with additional genetic diversity in the

training set. This was particularly true when there was lower relatedness be-

tween training and validation sets.

3. Including more breeding cohorts

a. Traits under heavy selection pressure can be more accurately predicted by train-

ing with additional previous breeding cohorts.

4. Marker density

a. Response to marker density is higher when the training set is more diverse.

b. The required marker density is higher when predicting more distant breeding

generations.

The conclusions drawn from the second research objective inform plant breeders on how

they can optimise their GS training strategies. They highlight that the optimal marker den-

sity fluctuates under different scenarios. The genotyping platform used in a programme

is a long-term decision that cannot be frequently changed without substantial cost. The

most demanding requirements of a breeding programme must therefore be considered

when selecting a genotyping platform, in addition to other criteria such as cost. Methods

for reducing the overall cost of genotyping are explored in the third research objective.

5.3 Maximising genetic gain per unit cost

The third research objective focused on reducing the cost of implementing an accurate GS

strategy. Two novel methodologies for utilising both a low and high density genotyping

platform were developed and tested, allowing three conclusions to be made:

1. Imputation from a low density genotyping platform to high density genotype data

was the most accurate method of utilising a low density platform. In some pro-

grammes this cost reduction would enable GS to be applied where it otherwise
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would not be financially possible. In programmes that have stronger financial re-

sources this cost reduction can be used to increase population size and thus genetic

gain. The direct prediction method developed in this study was slightly less ac-

curate, but is an effective alternative that is not subject to patent claims (Hayes &

Goddard, 2007).

2. Imputation and direct prediction strategies both achieve substantially higher re-

sponse to selection over a single platform strategy at the same cost.

3. Using only a low density platform achieved higher response to selection than using

a more expensive HD platform. This is an example of genetic gain being increased

by sacrificing prediction accuracy in favour of population size. While the loss in

accuracy could be greater in certain scenarios which could affect the final outcome,

this result should serve as a reminder to remain focussed on achieving genetic gain,

and not solely on prediction accuracy.

5.4 Utilising genomic selection in a breeding programme

Research studies such as this have been required in order to characterise the overall po-

tential of GS and to understand the intricacies involved in its application. This specific

knowledge of GS in wheat is now sufficient for breeding programmes to leverage the

technology. The knowledge we have gained in this study can be used to identify the

most effective and efficient strategies of deploying GS. By implementing GS effectively,

breeding programmes can be improved in three ways: increasing population size, earlier

selection for economically important traits, and increasing selection accuracy. This section

discusses these points in the context of improving a fixed line wheat breeding programme

by implementing GS with a low density/high density genotyping strategy via imputa-

tion or direct prediction. Not considered here are other major alterations such as doubled

haploid, rapid generation cycling, and shuttle breeding.

5.4.1 Earlier selection for economically important traits

A conventional wheat breeding programme consists of a cascade of correlated tests due to

the staggered availability of phenotype data. Initially breeders select for highly heritable
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traits that are easy to measure on single plants such as plant height, phenology, and foliar

disease resistance. Complex traits and those expensive or less accurate to assess are left

until fixed line seed has been multiplied, with phenotyping and selection being carried

out sequentially over several years (Bernardo, 2002; Collard & Mackill, 2008). Tandem

selection such as this is necessary in a conventional programme due to the phenotyping

timeline, but it is well understood that the method is ineffective when selecting for nega-

tively correlated traits (Yan & Frégeau-Reid, 2008). Additionally, tandem selection is most

effective when selecting in order of trait importance (Pešek & Baker, 1969), which is not

possible when selecting visually in the population stage before any yield testing can be

carried out. Hazel & Lush (1942) showed index selection to be more effective than tandem

selection and independent culling. However, selection indices require data for all traits

undergoing selection, which is not feasible when using standard phenotyping at the early

stages of a breeding programme. Genomic predictions are valuable here as they are simul-

taneously available for all traits of interest (providing a prediction calibration is available),

thus enabling index selection to be carried out from early in the breeding programme be-

fore the population is truncated. Therefore, implementing GS provides earlier selection

for economically important traits, and allows the most effective selection method to be

utilised.

The selection indices employed should recognise the difference between threshold traits

(end use quality, physical grain quality) and those requiring continual improvement (grain

yield) (Goddard, 1983; Itoh & Yamada, 1988; Groen et al., 1994; Byrne et al., 2016), and also

differentiate breeding value from commercial value (Yan & Frégeau-Reid, 2008; Muñoz

et al., 2014; Crossa et al., 2017). Thresholds should be set according to known control va-

rieties in order to provide context to the trait predictions and index values. For scenarios

where phenotype data is available for multiple traits, models which incorporate this and

account for trait correlations could be utilised (Scutari et al., 2014).

5.4.2 Increasing population size

Population size is a key factor influencing genetic gain as it facilitates higher selection in-

tensity and genetic variance (Bernardo, 2002; Witcombe & Virk, 2001). The simplest means
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of increasing population size is by increasing the scale of the breeding programme. How-

ever, this requires a corresponding increase in the operating budget to match phenotyping

capacity to phenotyping demand, and is therefore not a desirable solution. Implement-

ing GS at the point where fixed lines are derived (spike or plant selection) can achieve

larger population size through deriving additional fixed lines that are then selected with

GS prior to preliminary yield testing. The cost of genotyping the additional lines could

be partially offset by reducing the number of individuals in the initial yield testing stage.

By selecting for multiple traits at this point (via selection indices), the effective population

size is further increased as the number of lines that will fail to meet economic thresholds

during advanced testing will be reduced.

5.4.3 Increasing selection accuracy

By implementing genomic selection, breeding programmes have dense marker data avail-

able on their breeding lines. The findings in Chapter 2, which are supported by Van Raden

(2008); de Los Campos et al. (2009); Hayes et al. (2009), show that this marker data can also

be utilised to improve the accuracy of breeding trial analyses. In this case, historical phe-

notype data can also be incorporated into the analysis as the marker based relationship

matrix provides a means of linking the historical and current datasets. This concept can

be employed for traits that are first phenotyped during advanced trials, which would in-

crease confidence in the small amount of direct phenotype data available (Hayes et al.,

2009). Partially replicated trials are an effective means of maximising the number of in-

dividuals that can be phenotypically tested relative to the number of plots sown (Cullis

et al., 2006). By incorporating marker based relationship into these analyses, the level

of replication can be reduced dramatically allowing for either more individuals or more

environments to be tested for the same resources. In a traditional breeding programme,

replication in preliminary yield trials grown at three locations may result in a plot to entry

ratio of six (i.e. two replicates at three sites) (Bernardo, 2002). In contrast, within a GS

context a considerably more sparse approach could be used, and with the aid of genomic

assisted design and analysis it may be possible to achieve similar selection accuracy with

plot to entry ratios approaching one (Hill & Weir, 2012; Cowling et al., 2015). This con-

ceptual framework can be utilised during initial yield testing where increasing population
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FIGURE 5.1: Selection stage 0 represents individuals or populations imme-
diately prior to yield testing, and stages 1-4 represent the subsequent rounds
of phenotyping and selection. The current breeding year contains the breed-
ing cohorts of interest that are to be selected, with previous years showing
the historical data used for training prediction calibrations. Training sets for
grain yield and end use quality would consist of previous breeding cohorts
that have been phenotyped. The training set for grain yield may or may not
include the current breeding cohorts depending on whether the prediction
calibration was built before or after harvest. Current breeding cohorts can

then be predicted.

size is more beneficial than increasing accuracy due to the wide genetic variance being

assessed and the relatively low selection intensity being performed.

5.4.4 Model training strategy

Many of these implementations of genomic selection are enabled by the existence of global

prediction calibrations. The training set for these calibrations (Figure 5.1) should consist of

previous breeding cohorts and associated data, and should be updated each season when

new phenotype data is generated in order to maximise relatedness between the training

set and current breeding cohorts (Jannink et al., 2010).

In order to maintain allelic representation in the training set, a small number of lines with

poor predictions should be carried forward from fixed line derivation to be phenotyped

and included in the training set (Hickey et al., 2014). In scenarios where insufficient his-

toric data exists (young breeding programme, new breeding objective) an alternative ap-

proach to global calibrations could be live training where a subset of the current breeding

cohort is phenotyped and used as the training set, allowing the remainder of the cohort to

then be predicted. As found in Chapter 3, high prediction accuracies can be achieved with
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small training sets if relatedness between training and prediction sets is very high. In this

case each family would be directly represented in the training set through full siblings,

which achieves a very high degree of relatedness.

5.5 Future work and opportunities

5.5.1 Multiple environment datasets

The work carried out here was done using data from a single environment trial in or-

der to remove the confounding effect of genotype-by-environment interaction, and thus

enable an accurate assessment of each test variable. This improved our ability to assess

prediction accuracies, as poorly correlating environments would deleteriously affect the

measurement of predictive ability. In practice, breeding programmes must make selec-

tions for their target environment which often consists of a wide range of contrasting

environment types. Therefore, to improve the relevance of this work to applied plant

breeding, future work should focus on extending the research questions addressed here to

a multi-environment dataset. Ideally this would be done in a single stage analysis (Oakey

et al., 2016), but this remains a computational challenge when working with large datasets

(Schulz-Streeck et al., 2013). Further developments in analysis tools which address this

challenge would therefore assist researchers in extending this work.

5.5.2 Rapid generation cycle genomic selection

The main application of the work presented here is selection within a population of fixed

lines early in the breeding programme, but another application of GS with high potential

is in rapid cycle crossing (Bernardo, 2010; Gaynor et al., 2017). Here complex F1 lines are

genotyped immediately after being produced and GS is performed to select parents for

direct use in the next crossing block. This practice would reduce generation interval from

approximately five years to three months or lower (Zheng et al., 2013), and thus has sig-

nificant potential to increase the rate of genetic gain. Challenges of this approach include:

i) high risk involved with crossing lines based only on a genomic prediction and no phe-

notype data (due to potentially inaccurate genomic predictions), ii) prediction calibrations

are required for all traits, as no phenotypic selection is used to assist in selecting parents,
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iii) difficulties in genotyping, and predicting heterozygous individuals, iv) erosion of ge-

nomic prediction accuracy caused by the decay of linkage disequilibrium between mark-

ers and QTL, and v) logistical challenges associated with the short timeframes required

for genotype data production and selection. If these issues can be addressed, rapid cycle

crossing with GS could revolutionise early generation plant breeding.

5.6 Conclusion

Genomic selection is a promising emerging technology that offers much, but requires con-

siderable research for its potential to be realised. It is this need which motivated the stud-

ies encompassed in this thesis. Herein research is presented which considers several po-

tentially derailing issues, and how plant breeders can implement a GS programme most

optimally. This was broken down into three intended research outcomes; to establish the

achievable accuracy of GS, identify optimal training criteria, and reduce the cost of imple-

menting GS.

In the first component of this study we confirmed the significant potential of GS by predict-

ing breeding germplasm with very high accuracy, and also showed that incorporating the

genomic relationship matrix into phenotypic analysis improves model accuracy substan-

tially. With the high potential confirmed, the second and third components would focus

on enabling this potential to be realised. The findings of the second component highlight

to breeders how important an appropriate training strategy is, as large differences in accu-

racy were observed when varying the training set size, relatedness, variance, and genetic

diversity. Breeders can refer to these findings to assist them in designing an effective train-

ing strategy which suits their programme. In the third component we provide two novel

methodologies for accurately utilising a low density genotyping platform which can be

used to reduce the cost of implementing GS. These approaches can be used either to lower

the cost of GS application without sacrificing genetic gain, or to significantly increase the

rate of genetic gain with equal cost.

In summary, this body of work contributes knowledge which plant breeders can use when
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designing and implementing GS within their breeding programmes. The findings clar-

ify previous uncertainties and overcome several key constraints in the application of GS,

and can therefore be applied to enable increased rates of genetic in wheat breeding pro-

grammes around the world.
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The marker data used in this study was made available via the electronic version of this

article 12 months after the publication date.

A.1 Supplementary material 1

Plant material. Summary of the genetic material used in the study.

https://goo.gl/Tzzs4J

A.2 Supplementary material 2

Phenotype distribution plots. Distribution plots of raw phenotype data from the Rose-

worthy field trial. Germplasm is displayed in groups of AYT-South, AYT-Other, and PYT-

South.

https://goo.gl/wd6Edr

A.3 Supplementary material 3

Phenotype data. Raw phenotype data from the Roseworthy field trial.

https://goo.gl/BEUs89

A.4 Supplementary material 4

Genetic map. Genetic map positions for all markers. Includes all nine bi-parental maps,

the consensus map, and the unscaled map.

https://goo.gl/RtZmAL

A.5 Supplementary material 5

Trait QTL summary. Table summarising the markers used in multiple linear regression

for each trait.

https://goo.gl/DJnmvZ

https://goo.gl/Tzzs4J
https://goo.gl/wd6Edr
https://goo.gl/BEUs89
https://goo.gl/RtZmAL
https://goo.gl/DJnmvZ
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All material is available online via Figshare at: https://goo.gl/HdJy7f

B.1 Supplementary material 1

Clusters and breeding cohorts. Specifies which breeding lines belong to each cluster and

breeding cohort.

B.2 Supplementary material 2

Genetic map plots. Genetic map plots of each marker subset used. These consisted of 100,

500, 1000, 3000, 5000, 10000 and 13639 markers.

B.3 Supplementary material 3

Marker subsets. Specifies which markers were included in each subset, and the genetic

map position of each marker.

B.4 Supplementary material 4

Genetic marker data. Full marker data of the 10,375 individuals and 17,181 markers.

B.5 Supplementary material 5

Phenotype data. Phenotype data for the four traits from the 2014 field experiment con-

ducted at Roseworthy, South Australia.

https://goo.gl/HdJy7f
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All material is available online via Figshare at: https://goo.gl/PvJtEz

C.1 Supplementary material 1

Genetic marker data. Full marker data of the original parents and all simulated individu-

als.

C.2 Supplementary material 2

Pedigrees. Pedigree information used in simulation, imputation and direct prediction.

C.3 Supplementary material 3

Genetic map and marker subsets. Specifies which markers were included in each subset,

and the genetic map position of each marker.

C.4 Supplementary material 4

Marker effects. The genetic marker effects used to calculate the “true” additive genetic

values, and the genomic predictions.

https://goo.gl/PvJtEz
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ZHANG, X., DREISIGACKER, S., BABU, R., LI, Y., BONNETT, D., & MATHEWS, K. (2014).

Genomic prediction in CIMMYT maize and wheat breeding programs. Heredity 112, 48–

60.
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MUÑOZ, P., RESENDE, M., GEZAN, S., RESENDE, M., DE LOS CAMPOS, G., KIRST, M.,

HUBER, D., & PETER, G. (2014). Unraveling additive from nonadditive effects using

genomic relationship matrices. Genetics 198, 1759–1768.

NAKAYA, A. & ISOBE, S. (2012). Will genomic selection be a practical method for plant

breeding? Annals of botany 110, 1303–1316.
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