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Abstract

Influenza-like illness exhibits a strong seasonal cycle in temperate climates, with a peak

of varying intensity appearing each winter. However, the driving force of this seasonal

cycle remains poorly understood. We develop stochastic epidemic models and a model

selection framework to understand influenza-like illness seasonality, with the basic re-

production number R
0

being dependent on climate. We test four Functional Forms

of transmissibility based on three di↵erent climate variables and select the best Func-

tional Form for climate-dependent transmissibility via modern Bayesian machine learning

model selection methods. By analysing a unique dataset comprising ten years of Gen-

eral Practitioner-reported influenza-like illness surveillance data from Adelaide, Brisbane,

Perth and Sydney, Australia, we explore the relationship between influenza-like illness

transmission and weather across Mediterranean and subtropical climate zones. We find

that absolute humidity has the strongest impact on seasonal influenza-like illness, with

two di↵erent Functional Forms both based on absolute humidity best describing influenza-

like illness in Mediterranean and subtropical climates. Finally, we consider the problem of

forecasting the timing of peak influenza-like illness using ensemble modelling techniques.

We employ two score metrics and four techniques for calculating ensemble weights in a

prototype ensemble forecasting framework. By implementing this method to predict the

peak week of influenza-like illness in 2014 in each of the four di↵erent locations, we find

that forecasting peak week from the start of the year is a challenging exercise provid-

ing mixed conclusions on the best training methods, with two approaches – traditional

and prototype – producing comparable results. We find again that absolute humidity

appears to be a strong factor in the seasonality of influenza-like illness, and find that

random forests are a useful tool in informing ensemble forecast weights.
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Chapter 1

Introduction

1.1 Influenza and influenza-like illness

Influenza is a virus that causes an acute infectious respiratory disease, commonly known

as ‘the flu’. It circulates globally in seasonal epidemics and has a significant economic

impact, with a reduction in worker productivity and an increase in medical costs during

influenza epidemics [3]. Annual influenza epidemics occur invariably in all major cities

in Australia [4] during the winter season in temperate [5] climates, and during the wet

season in tropical climates. However, the exact cause of this seasonality seen in influenza

epidemics is not fully understood. This thesis will explore potential climate drivers of

influenza in order to increase our understanding of factors contributing to the patterns

of seasonal influenza epidemics.

Seasonal influenza epidemics place a significant burden on healthcare providers and

hospital wards. In particular, certain groups of people such as the elderly, the very young,

and people with chronic health conditions like diabetes and AIDS are at risk of serious

complications requiring hospitalisation, including pneumonia or death. Approximately

3,500 individuals die each year in Australia due to influenza and complications caused by

influenza [6]. In 2014, approximately 68,000 confirmed cases of influenza were reported

in Australia with more than 18,000 hospitalisations occurring as a result. The ability to

predict the behaviour of an annual influenza epidemic would enable healthcare workers to

more e↵ectively assign resources, and potentially provide early warnings for abnormally

severe epidemic seasons.

As well as the burden of seasonal influenza epidemics on health care systems around

1



2 Chapter 1. Introduction

the world, there are also irregular influenza pandemics. An influenza pandemic is an

epidemic of influenza that spreads worldwide and a↵ects a large proportion of the global

population [7]. Whilst there have been only 9 influenza pandemics in the last 300 years,

each caused very high levels of mortality and had a lasting worldwide impact [8]. As such,

it is important to be able to forecast the course not only of annual seasonal epidemics, but

also of influenza pandemics that strike on a global scale. To accurately forecast influenza

epidemics and pandemics, further understanding of the driving forces and the underlying

seasonal activity of influenza is required.

The symptoms of influenza are often similar to that of the common cold, but tend

to be more severe and longer-lasting. Symptoms usually start 1–3 days after exposure

to the influenza virus, with fever, dry cough, headache, exhaustion, sore throat and joint

pains being the most common symptoms [9]. Most major symptoms usually resolve

within a week, though exhaustion and coughing may persist for much longer. Antiviral

medication is available for severe cases of influenza, but is most e↵ective if taken shortly

after the symptoms appear [10]. Annual vaccinations for influenza are also available, but

studies show that only approximately 45% of Australians are vaccinated each year [7].

As well as this, vaccines do not necessarily grant total immunity and do not necessarily

cover all strains of influenza seen that year [11], leaving a large portion of the population

susceptible.

Influenza shares similar symptoms to a number of other respiratory viruses. Influenza-

like illness (ILI) is a ‘catch-all’ phrase used to describe individuals presenting with a set

of symptoms common to influenza and other similar viral illnesses including rhinovirus

and human respiratory syncytial virus (HRSV) [12, 13]. Symptoms include fever, chills,

fatigue, cough and body aches, and may vary in severity from mildly uncomfortable to

life-threatening. ILI is very common, with adults su↵ering 2–4 colds per year on average

[14]. Most cases of ILI are mild and self-limiting, with no long-term e↵ects.

Whilst ILI is a term that includes influenza, it is not possible to conclusively dis-

tinguish influenza from other respiratory diseases without the use of laboratory testing.

Laboratory testing for influenza can be performed with a variety of methods, including

polymerase chain reaction (PCR). PCR detects the presence of viral ribonucleic acid

(RNA) in swab samples. It can identify strains of influenza and other respiratory viruses,

and is fast and accurate. However, PCR testing tends to be costly, reducing the number
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of samples sent to be tested for the presence of influenza [15].

Due to the expense and time involved in testing samples from patients with ILI, only

a proportion of patients diagnosed with ILI are tested for influenza. The exact number of

tests performed is generally not known, as only the samples testing positive for influenza

are routinely reported. This leads to few notifications of confirmed influenza, and so it is

sometimes preferable to use ILI data in the place of true influenza data, as influenza and

ILI generally follow similar seasonal patterns.

Being able to accurately forecast the timing and severity of seasonal ILI will allow

health care providers to better allocate resources, and help public health o�cials plan

vaccination schedules and campaigns. Improving the ability to prepare for, and manage,

seasonal influenza and ILI outbreaks is an important factor in reducing the mortality and

economic impact caused by these annual winter-time epidemics.

1.2 Seasonality in influenza-like illness

Figure 1.1 shows the total number of ILI cases reported in Australia to the Australian

Sentinel Research Practises Network (ASPREN) [16] each week. It shows that ILI in

Australia displays a very clear seasonal pattern, with large peaks occurring each winter

and few cases occurring in summer.

Figure 1.1: Total number of ILI cases reported weekly to ASPREN per week in Australia

in the period 2006 – 2016, clearly showing defined epidemic peaks during winter months.

Di↵erent areas around the world see di↵erent seasonal patterns in ILI incidence. In
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temperate areas, ILI epidemics tend to begin early winter, peak mid-winter and taper

o↵ as spring begins. In tropical areas, however, influenza and ILI can occur year-round,

often with two or more peaks during the rainy season and a decrease in cases during the

dry season. The exact cause of this seasonal behaviour is not fully understood, but is

likely to be influenced by di↵erences in large-scale and regional climate [17, 18, 19, 20].

Suggested factors include temperature, absolute humidity or relative humidity [21, 22, 23],

which may a↵ect the survival of viral particles between hosts or influence host behaviour.

Other potential climate drivers could include rainfall or UV index [24, 25]. Influenza and

ILI have more irregular annual periodicity than other seasonal infectious diseases [19],

suggesting that there may be a complicated relationship between climate drivers, social

factors, and viral strains.

Figure 1.2: Influenza-like illness cases in Sydney over the period 2010-2012, with a com-

parison to the average daily temperature, absolute humidity and relative humidity over

the same period.

Figure 1.2 shows a comparison between the number of ILI cases reported to ASPREN

by participating doctors in the 2010 – 2012 period, and the temperature, absolute hu-

midity and relative humidity in Sydney over that same time period. There appears to

be a relationship between these climate variables and ILI, with the number of ILI cases

generally increasing when temperature and relative humidity decrease [26], and absolute

humidity increases. This thesis further explores the relationship between ILI, tempera-

ture, absolute humidity and relative humidity in four locations around Australia. We aim

to determine a Functional Form governing the mechanistic relationship between climate

and ILI, instead of a statistical association between variables which has been commonly
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investigated to date.

In order to obtain a better understanding of ILI and how it spreads, we utilise math-

ematical models of ILI epidemics. The use of mathematical modelling for infectious dis-

eases dates back to the 1800’s, where it was used to model the e↵ectiveness of smallpox

inoculation [27]. Modern mathematical epidemiology research uses both deterministic

and stochastic models to attempt to capture the details of infectious disease dynamics

while remaining computationally feasible [28]. This thesis explores the use of a family

of stochastic compartmental epidemic models to simulate ILI in four locations around

Australia: Adelaide, Brisbane, Perth and Sydney.

Previous studies have explored the link between ILI, influenza, and climate variables;

however, there is no consensus in the literature as to the exact driver of ILI seasonality.

Experimental studies in a guinea pig model show evidence that relative humidity a↵ects

the transmission of influenza [22, 29], which may be explained by the e↵ect of humidity

on the between-host survival rates of influenza viral particles [30].

Similarly, studies from Israel have instead found a link between relative humidity

and influenza in humans [31, 32]. These studies used a susceptible-infectious-recovered-

susceptible (SIRS) compartmental model driven by both relative humidity and tempera-

ture, finding that the seasonality of ILI outbreaks can be explained by a combination of

these climate drivers and antigenic drift leading to waning immunity.

However, recent mathematical studies based in the United States have found a link

between absolute humidity and ILI [23, 33, 34]. These studies utilised a humidity-driven

susceptible-infectious-recovered-susceptible (SIRS) compartmental model to explore the

dynamics of ILI across multiple states in the U.S. They found that, compared to previous

studies based on the same data [22, 29], absolute humidity has a stronger e↵ect on ILI

transmission than relative humidity.

A 2018 study found no significant di↵erence in prediction when using temperature as

a climate driver compared to specific humidity, a scaled form of absolute humidity [35]. A

U.S. study of over 600 cities found that the key environmental driver was change in spe-

cific humidity, but that urbanisation also led to di↵erences between cities not explained

by climate variances [17]. A study in the Asia-Pacific region [36] found that particular

climate drivers had di↵erent impact in di↵erent locations, with specific humidity posi-

tively associated with ILI in some places and negatively associated in others. Studies
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on Australian data have also found a complicated relationship between climate and ILI,

with relative humidity and temperature seemingly playing an important role [37, 38].

Other studies analysing the di↵erent methods currently used to model seasonal ILI

[19, 39] found that forecasting ILI is considerably more challenging than for other infec-

tious diseases. They found that ILI does not have the same seasonal predictability as

other periodic infectious diseases (such as measles), and that the irregular periodicity of

ILI epidemics presents a unique and di�cult challenge for researchers looking to under-

stand the drivers of ILI. Expanding on this, a study [40] found that di↵erent approaches

and methods need to be explored, especially in long-term disease forecasting due to the

predicted influence of climate change in the coming years.

The conflicting conclusions from current literature reinforce the need for further re-

search in the area of ILI seasonality to increase understanding of the driving force behind

seasonal ILI outbreaks. In this thesis, we use a stochastic compartmental epidemic model

along with statistical and machine learning techniques to further explore the relationship

between seasonal climate drivers and ILI in Australia. Faced with a range of di↵erent

potential climate drivers, Functional Forms, and climate regions, we use Bayesian model

selection techniques to find the best combination of factors explaining ILI seasonality.

1.3 Data

1.3.1 Influenza-like illness data

The Australian Sentinel Research Practises Network (ASPREN) [16] is a database of gen-

eral practitioners (GPs), also known as ‘family physicians’ in the U.S., that provide weekly

surveillance reports on ILI and influenza. These GPs are distributed across metropolitan

and regional areas of Australia, with a target coverage of one GP per 200,000 people in

metropolitan areas and one per 50,000 people in rural and regional areas. Participating

GPs are also asked to take swab samples from 20 – 25% of ILI patients to be tested for

influenza using PCR methods [41]. However, in reality not all GPs take swab samples,

and so due to the sparsity of swab testing, we use influenza-like illness (ILI) as an ap-

proximation for influenza in this thesis. The incidence of ILI is highly correlated with

the number of confirmed influenza cases [42] and so it is appropriate to use ILI as an

approximate for influenza, rather than using only confirmed cases of influenza. ASPREN
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and other influenza and ILI surveillance programs are used to understand and predict

seasonal influenza, to aid public health o�cials in preparing for the yearly ILI epidemic.

An Australian Influenza Surveillance Report (AISR)1 is published fortnightly with data

on the reported number of confirmed influenza cases.

1.3.2 Climate data

Within Australia, climate data is collected nationally by the Bureau of Meteorology2

(BOM). There are weather stations throughout Australia, in both rural and metropolitan

regions. For this analysis we select the weather station closest to the city centre for each

of the cities studied: Adelaide Airport (Adelaide), Archerfield Airport (Brisbane), Perth

Airport (Perth), and Observatory Hill (Sydney).

The BOM data provides us with readings of temperature (�C) and relative humidity

(%) taken every three hours [43]. We also use absolute humidity in our comparisons, which

we calculate from the temperature and relative humidity measurements. This calculation

process is explained in Section 2.6. Absolute humidity measures the total amount of water

vapour in the air in g/m3, independent of the air temperature. However, as warmer air

can hold more water than cold air, relative humidity is used to measure the total amount

of water vapour in the air as a function of the theoretical maximum amount of water

vapour the air could hold at that temperature. Relative humidity is also a↵ected by air

pressure; however, all four Australian cities studied are very close to sea level, and so we

assume a constant atmospheric pressure, P = 10.1 N/cm2, for ease of calculation.

1.4 Thesis outline

The aim of this thesis is to further understand which climate factors drive seasonal ILI

outbreaks using new Bayesian machine learning model selection methods. We use the

novel, high-quality influenza-like illness dataset provided by ASPREN in four locations

around Australia: Adelaide, Brisbane, Perth and Sydney. In Chapter 2, we introduce the

mathematical methods that we will be using.

In Chapter 3, we develop four Functional Forms of transmissibility based on the

1
http://www.health.gov.au/flureport

2
http://www.bom.gov.au/climate/data-services
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basic reproduction number R
0

as a function of climate. These Functional Forms are

dependent on three di↵erent climate variables – temperature, absolute humidity, and

relative humidity. We then use the Functional Forms of R
0

within a stochastic SEIR-

type epidemic model framework, where three new compartments are added to allow us

to simulate an hierarchical observation process where not all infected individuals will be

observed. This model is then used to simulate ILI epidemics over 10 years in each of the

four locations.

Using these simulated ILI epidemics, we apply a Bayesian model selection method

using Random Forests (RFs) to select which Functional Form of R
0

within the SEIR-type

model best fits the known ILI data in each location. We then fit the top two Functional

Forms in each location, as selected by the RF, to the ILI data using approximate Bayesian

computation (ABC), allowing us to analyse the relationship between model fit and the

RF model selection method.

In all locations, we find that absolute humidity is selected as the most important

climate variable. However, the Functional Form selected varies depending on the climate

zone. Fitting the top two Functional Forms in each location using ABC shows that

the Functional Forms are able to fit well in all locations apart from Sydney, with the

Functional Forms selected first by the RF showing more seasonality in theirR
0

realisations

than the Functional Forms selected second. In Sydney, the Functional Form selected by

the RF method fits more closely to the data than the other fitted Functional Form, but

neither Form is able to accurately fit the data.

We find that the RF model selection algorithm appears able to tell the Functional

Forms apart with a high level of accuracy, and that the Functional Form selected most

commonly in subtropical areas (Brisbane, Sydney) is di↵erent to the Functional Form

most commonly selected in Mediterranean areas (Adelaide, Perth). However, absolute

humidity is selected as the most ‘important’ climate variable in all four locations, adding

further support to findings in the literature. We also find that the RF model selection

method was accurate in selecting the Functional Form with the best fit in each location

when comparing to the results of the ABC, suggesting that a RF is a reliable model

selection tool for infectious disease modelling. These results, conclusions and discussions

are summarised in Chapter 5.

In Chapter 4 we turn to the problem of forecasting ILI in Australian cities. We
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consider a variety of methods to fit a weighted ensemble of Functional Forms to forecast

the 2014 ILI season with a varying number of historical training years. We then analyse

how the ensemble methods di↵er, and determine which ensemble of Functional Forms is

best in each location.

We find in Chapter 4 that forecasting an ILI season from the start of the year is a

challenging exercise, and that adding more years of training data does not necessarily

lead to a more accurate forecast. There is no clear conclusion as to which training

method is most appropriate for this forecasting process, but we find that random forests

are again useful in this application and that Functional Forms using absolute humidity

generally perform well compared to Functional Forms using other climate variables. We

also find that the ‘best’ Functional Forms found in Chapter 3 are not necessarily useful

for forecasting.
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Chapter 2

Background

In this chapter, we introduce the methods and technical background used in this thesis.

We introduce the methods used to develop our model for ILI, as well as the methods we

use to develop our model selection process.

2.1 Epidemic models

In Chapters 3 and 4, we use a stochastic epidemic model (based on the mathematical

models presented in this section) to simulate ILI datasets to use within a Bayesian model

selection framework.

2.1.1 Basic reproductive number, R
0

The basic reproductive number, R
0

, is the expected number of individuals infected by a

primary infectious individual over the course of their infectious period, in an otherwise

fully susceptible population. It is commonly used to measure the transmissibility of a

disease [44]. This helps to determine if an infectious disease is likely to spread through a

non-trivial proportion of the population, or if it is likely to die out reasonably quickly. It

also helps to inform how rapidly a disease will spread.

In general, if

R
0

 1

the disease will fail to invade, while if

R
0

> 1

11
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the infection may invade, and may spread through the population, with each infectious

individual infecting on average more than one other individual [45].

In reality, a population will rarely be composed of totally susceptible individuals. This

leads to an e↵ective reproduction rate, which is the expected number of secondary infec-

tions generated by one primary infection in a population accounting for both susceptible

and non-susceptible individuals [46]. Non-susceptible individuals include both vaccinated

and immune individuals.

R
0

is influenced by many di↵erent factors [47], and may not be the same in two

di↵erent outbreaks of a disease. These factors include the duration of the infectious

period, rate of contact between infectious and susceptible individuals in a population,

and the probability of transmission occurring during contact between two individuals.

The rate of contact and probability of transmission occurring during contact may be

influenced by temperature or humidity, which can a↵ect the survival of infectious viral

particles as they are transferred between hosts.

2.1.2 Markov chains

In this section, we define both discrete and continuous-time Markov chains and introduce

the types of Markov chains used in this thesis.

In the most basic terms, a Markov chain is a stochastic process which possesses the

Markov property – meaning that, given the present, the future is independent of the past

[48]. Mathematically, a collection of random variables {Xt}t2I defined on some countable

state space S, for some index set I 2 R+ is a Markov chain if it satisfies the property

P (Xt 2 A|Xr, Xs) = P (Xt 2 A|Xs),

for all r, s, t 2 I with r  s  t and A ✓ S. There are two types of Markov chains,

called discrete time and continuous time. A Markov chain {Xt}t2I is a discrete time

Markov chain (DTMC) if the index set I is countable, and a continuous time Markov

chain (CTMC) if the index set I is uncountable.

In this thesis, the model we use is a DTMC. However, it is originally formulated as a

CTMC, as disease transmission is a continuous-time process, and is then approximated

in discrete time using 12 hour time-steps to facilitate more e�cient simulation.

Within a DTMC, the probability of transitioning from some state i to state j in one
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discrete time step is given by

Pi,j = P (Xt+1

= j|Xt = i),

where

X

j2S

Pi,j = 1.

Within a CTMC, on the other hand, transitions between states are described in terms

of infinitesimal transition rates. Infinitesimal transition rates describe the rate at which

transitions between states occur, instead of the probability of transitioning between states

as in a DTMC. The rate of transition from some state i to another state j, with i 6= j, is

given by

qi,j = limh!0

+

P (Xt+h = j|Xt = i)

h
,

with

qi,i = �
X

j 6=i

qi,j.

We also define an absorbing state as one where, once the chain has entered the state,

the probability or rate of leaving the state is zero. Absorbing states are seen in both

DTMCs and CTMCs.

2.1.3 Stochastic compartmental epidemic models

Compartmental epidemiological models are used to simplify infectious disease modelling

by dividing the population into compartments, where every individual in each compart-

ment is assumed to have the same characteristics. They can be analysed deterministically,

such as through ordinary di↵erential equations (ODEs), or stochastically. Stochastic ver-

sions of compartmental epidemic models are more ‘realistic’ than their deterministic

counterparts in the sense that they attempt to capture the randomness in true disease

spread, but are more challenging to analyse. For suitably large populations, deterministic

models are typically a highly accurate approximation to stochastic models [28]. However,

capturing the stochastic variability in transmission is important for smaller populations

where individual events have an impact on the overall epidemic outcome [49, 50]. In this

thesis, we use a stochastic compartmental epidemic model.
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In this section, we introduce an example stochastic compartmental epidemic model

and describe it in terms of the underlying Markov chain.

SEIR model

One basic stochastic compartmental epidemic model is the ‘SEIR’ model [51]. This model

describes a population of size N , where each individual is in one of four states at any

time: Susceptible, Exposed, Infected, or Recovered. The Exposed state is also known as the

latent state, where an individual has been exposed to the illness but is not yet infectious.

Individuals can move between these states at certain rates. In an SEIR model, once an

individual has entered the Recovered state they cannot leave. This e↵ectively means that

the individual has gained immunity from the disease. The standard SEIR model does

not include population dynamics such as births or deaths, and is a fully mixed model,

meaning that any individual in the population can interact with any other individual

equally.

We define the parameter � as the e↵ective transmission rate parameter, � as the rate

of exposed individuals becoming infectious, and the parameter � as the per-capita rate

of recovery. Then, the basic reproductive number is given by

R
0

=
�

�
.

Let S be the number of susceptible individuals, E the number of exposed individuals,

I be the number of infected individuals and R be the number of recovered individuals.

Then, in a continuous-time Markov chain (CTMC) with state space

S = {(S,E, I, R)|S,E, I, R 2 [0, N ] such that S + E + I +R = N},

we have the following transition rates between the population compartments:

q
(S,E,I,R),(S�1,E+1,I,R)

=
�SI

N � 1

q
(S,E,I,R),(S,E�1,I+1,R)

= �E,

q
(S,E,I,R),(S,E,I�1,R+1)

= �I,

(2.1)

where q
(S,E,I,R),(S�1,E+1,I,R)

is the rate at which susceptible individuals are exposed, q
(S,E,I,R),(S,E�1,I+1,R)

is the rate at which exposed individuals become infectious, and q
(S,E,I,R),(S,E,I�1,R+1)

is the

rate at which infectious individuals recover from their illness. In this case, the recovered
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state R is an absorbing state, so that once individuals have recovered from their illness

they cannot be reinfected. No other state transitions are possible in this model. This

model is summarised in Table 2.1.

State change Event Rate

(S,E, I, R) ! (S � 1, E + 1, I, R) Exposure �SI
N�1

(S,E, I, R) ! (S,E � 1, I + 1, R) Infectiousness �E

(S,E, I, R) ! (S,E, I � 1, R + 1) Recovery �I

Table 2.1: The state transition events that can occur in an SEIR model.

2.2 Approximate Bayesian computation

Approximate Bayesian computation (ABC) is a computational approach to Bayesian

inference that does not require evaluation of the likelihood. For this reason, it is used

when the likelihood function is di�cult or infeasible to calculate. We use this ABC

technique in Chapter 3, where it is used to fit selected Functional Forms within an ILI

epidemic modelling framework.

Bayesian inference involves Bayes’ Theorem,

p(✓|D) =
p(D|✓)p(✓)

p(D)
, (2.2)

which relates the probability of seeing a dataset D given a parameter ✓ – the likelihood

– to the conditional probability of seeing ✓ given D – the posterior distribution; p(✓)

denotes the prior distribution and p(D) denotes the prior predictive probability of the

data, which is also known as the normalising constant. The likelihood function p(D|✓),

which expresses the probability of seeing the observed data from a specific model with

parameter(s) ✓, can be computationally expensive or infeasible to calculate in many

applications. To circumvent this issue, we utilise a method called approximate Bayesian

computation (ABC). In this thesis, the method used is the ABC rejection algorithm.

ABC methods share a common goal of approximating the likelihood function p(D|✓)

[52]. In the ABC rejection algorithm, a large number of parameter values ✓̂ are sampled

from a prior distribution p(✓). Then, each sampled parameter point ✓̂i is used to simulate
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a dataset D̂i under a chosen statistical model M specified by the parameter set ✓̂i. The

simulated dataset D̂i is then compared to the observed data D using a distance measure

⇢(D̂i, D).

The raw data, or a summary statistic, are compared with the true data D via a distance

measure. The simulated dataset D̂i is accepted if, for a chosen tolerance ✏,

⇢(D̂i, D)  ✏.

Otherwise, the simulated dataset D̂i is discarded and the process starts again. This

continues until a pre-determined number of simulated datasets have been accepted. The

parameter values ✓̂i that generated the accepted simulations D̂i then form the posterior

distribution of ✓. This process is described in Algorithm 1.

Input data D and prior distribution to draw ✓̂ values;

Input the underlying model and choose a tolerance ✏;

Choose a large j, the number of ✓̂ to accept;

while # accepted < j do

Sample a parameter set ✓̂;

Simulate a data set D̂ from the underlying model

with parameters ✓̂;

Calculate distance ⇢(D̂,D);

if ⇢(D̂,D)  ✏ then

Accept ✓̂;

else

Discard ✓̂;

end

end

Output the accepted values of ✓̂.

Algorithm 1: The ABC rejection algorithm.

Figure 2.1 shows the ABC rejection algorithm process, with a uniform prior being used

to determine the posterior distribution of the parameter ✓ given a set of observational
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data. Simulations that are ‘close enough’ to the observed data are accepted, and the

parameters which generated those simulations form part of the posterior distribution.

Figure 2.1: Credit: Sunnaker et al. [1]. A diagram showing an approximate Bayesian

computation rejection algorithm.

The summary statistic that we use within the ABC rejection algorithm in this thesis

is the weighted root mean squared error (WRMSE),

⇢(D̂,D) =

vuut 1

N

NX

i=1

p
Di + 1⇥ (Di � D̂i)2, (2.3)

where D is the true ILI data, D̂ is the simulated dataset, and N is the number of data

points.
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The WRMSE is a measure of accuracy similar to the root mean squared error (RMSE)

[53], and is used in this context to determine the error between the true values and the

predicted values with an increased emphasis on within-season observations rather than

observations between seasons; the WRMSE metric gives larger observations a heavier

weight than smaller observations.

2.3 Bayesian model selection

We use the Bayesian model selection techniques presented in this Section in Chapter 3

of this thesis, to select between Functional Forms of ILI transmission.

Model selection is the process of selecting the ‘best’ model out of a set of candidate

models for a particular dataset. It is not only a problem of selecting which model best

fits the given data, but also what metric or summary statistics are used to determine

the ‘best fit’ [54]. There are a number of di↵erent approaches to model selection, from

frequentist to Bayesian to machine learning techniques [1]. In this thesis, we focus on

Bayesian model selection in conjunction with machine learning techniques.

Bayesian model selection involves comparing the likelihood of each candidate model

to determine which model has the most support on the data, using one of a number of

possible criteria [58]. The two most common criteria for model selection in a Bayesian

framework are the Bayes factor (BF) and the Bayesian information criterion (BIC).

The BF is the ratio of the likelihood probabilities of two competing candidate models,

whereas BIC is a criterion that takes into account the likelihood probabilities, number

of parameters, and the number of data points for a finite number of candidate models

[55, 56]. In particular, BIC penalises models with a large number of parameters in order

to reduce overfitting [57]. Once these criteria are used to select the ‘best’ model, the

posterior distributions of model parameters are used to make inferences about the data.

In this thesis, the likelihood is unable to be calculated directly and so ABC is used,

as described in Section 2.2 [52, 59]. However, there are several limitations when using

ABC for model selection directly. In order for the Bayesian model selection to be valid,

the number of simulations n must be much larger than the number of parameters k [60].

This causes an issue in cases where there is a very large number of parameters, meaning

that an extremely large number of simulations must be produced. This leads to issues
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with computational time and expense. ABC methods also depend on the selection of

summary statistics and initial prior distributions for each parameter in the candidate

models. Incorrect calibration of these summary statistics or prior distributions can lead

to incorrect or misleading results [61].

In 2015, a new technique for Bayesian model selection was proposed by Pudlo et al.

[62]. This technique uses ABC in conjunction with random forests (RF), as described

in Section 2.4, to circumvent these limitations. They propose using RF classification for

model selection, instead of choosing particular summary statistics. This avoids the issue

of needing to select an appropriate set of summary statistics. They further use a second

RF within an ABC framework to estimate the posterior probability of the chosen model.

This new technique is particularly useful in situations where a sizeable number of

model parameters require the use of an inconveniently large set of simulations. In the

thesis, we utilise the first part of this technique by using RFs as a classification tool in

model selection. We then use a traditional ABC framework as a comparison to analyse

the performance of this new technique within a mathematical epidemiology application.

2.4 Random forests

This section introduces classification and regression trees (CARTs), and a method of

utilising them called random forests (RFs). RFs are used in Chapters 3 and 4. In

Chapter 3 they are used to select between multiple Functional Forms, and in Chapter 4

they are used to inform model weights in an ensemble forecasting framework.

CARTs, also known as decision trees, are a component of decision making algorithms

in predictive modelling [63, 64], and are commonly used in machine learning applications

[62, 65]. There are two types of CART: classification decision trees, and regression de-

cision trees. Classification decision trees are used to classify data into one of a discrete

number of outcome classes, whereas regression decision trees are used to predict a contin-

uous outcome value. In this thesis we use classification decision trees to classify simulated

datasets into one of a discrete number of candidate models.

A classification decision tree is a structure based on a tree graph, consisting of nodes

and directed edges with no cycles, where each node has exactly one edge entering and two

edges leaving. Each internal node represents a test on an attribute of the object being
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Figure 2.2: The process of using a random forest to classify data. In this diagram,

the red circles represent the path the data takes as it is classified through each of the

decision trees. The terminal node shape represents two di↵erent candidate models or

classifications.

analysed, and each edge represents a decision, or the outcome of the test. The terminal

nodes represent each of the possible classifications. The object is first tested at the top

node, and then follows a path downwards along the edges until it reaches a terminal

node, which represents the final classification given to the object. For example, if we are

considering the outcome of a number of coin flips, we may look at the first coin flip in

the initial decision node; if the coin is heads, we go left, if it is tails, we go right. We can

continue this through all of the decision nodes to arrive at the classification, which is the

number of heads and tails in a sequence of coin tosses.

RFs are a machine learning technique that use decision trees as basic building blocks

[66]. RFs work by training an ensemble of decision trees on a set of data, and using the

modal output of those trees to decide on the final classification. This is illustrated in

Figure 2.2, which shows the progress of an object as it is classified by each of n decision

trees. Each of these trees can cast a ‘vote’ as to which classification it belongs to, and

the final classification of the object is the class with the majority of the votes.
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The training algorithm for RFs involves the use of bootstrap aggregating, or ‘bagging’.

Bootstrap aggregating [67] involves taking a large number of random samples from the

training dataset, with replacement, and training a decision tree on each sample. As well

as this, the RF algorithm uses feature bagging, where at each proposed split (or node)

in the decision tree, a random subset of the features is taken [68]. This means that the

RF trains on a greater number of features than if feature bagging were not used, and

so increases the accuracy of classification and reduces overfitting [69]. This is especially

true in cases where the data has a large number of features to consider at each split.

Generate N simulations from m models, where each

simulation is from a di↵erent set of parameters ✓̂i

sampled from a prior distribution;

for s = 1 to Ntree do

select a sample from the simulations, with

replacement;

grow a randomized CART Ts;

end

Determine the predicted vote from each Ts for the real

dataset;

Assign the model according to the majority vote among

the CARTs.

Algorithm 2: Random forest algorithm for selecting R
0

Functional Form.

The RF algorithm is useful in data science because, provided there is a su�cient

number of trees, it is unlikely to over-fit to the data. It is also straightforward and easy

to use, with a number of software packages available. However, in applications with a

very large amount of data, the RF algorithm can be slow and ine�cient.

Classification random forests can be used for model selection, where the classes are

candidate models and the decision nodes are variables within the data being classified.

Algorithm 2 shows the algorithm used to train a RF for model selection. In this case, the

training set consists of N simulations generated from m candidate models, where each

simulation is labelled with the model from which it was generated. From this training
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set, a number of random samples are drawn with replacement. The number of samples is

equal to the number of decision trees in the final random forest, N
tree

. A single decision

tree is trained on each of the random samples. To use this RF to classify an object, each

decision tree is used to individually classify the object as coming from one of m models.

Then, the final classification is equal to the mode of the individual classifications.

Throughout the thesis, all random forests are computed using the randomForest

package in the statistical computing environment R [66].

2.5 Kernel density estimation

Kernel density estimation is presented in this Section, and is used in Chapter 4 to esti-

mate the posterior distribution of the 2014 ILI peak week from a variety of forecasting

techniques.

Kernel density estimation is a non-parametric method to estimate the probability

distribution of a random variable based on a sample of data. It is used to estimate a

probability density function (PDF) for the data sample, called a kernel density estimate

[70]. Kernel density estimates (KDEs) are similar in concept to histograms, in that

they aim to estimate the probability of each point over the range of the data; however,

histogram estimates rely heavily on the choice of bin width and can be unreliable due to

this [71].

To form a KDE, a kernel is formed around each data point. A kernel is a PDF that

is symmetrical around the centre point, in this case the data point. Kernels are most

commonly formed using triangular, uniform or Gaussian distributions [72]. The kernel at

each data point is identical, but kernels are closer to or further from each other depending

on the distribution of the data.

The KDE is determined by the average sum of the kernels across the dataset. This is

calculated using the equation

f(x) =
1

nh

nX

i=1

K

✓
x� xi

h

◆
,

where n is the number of data points, h is the smoothing parameter, K is the chosen

kernel PDF, and xi is the ith data point [73]. The smoothing parameter h determines

the width of the kernel around each data point, where a larger h value results in a wider
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distribution around each xi. In general, a small h value should be chosen for large datasets

and a large h value for small datasets [74].

The primary limitations of KDEs relate to the selection of the bandwidth and dis-

tribution limits. If a Gaussian kernel K is chosen, then the final KDE will have infinite

support. This is an issue when the data points are from a positive-only measure, such

as human height or number of individuals with an illness. This can be solved by more

appropriate selection of the kernel PDF [75]. As well as this, the choice of bandwidth

h plays a significant role in the shape of the final PDF. A bandwidth that is too large

will produce an overly smoothed PDF, while an inappropriately small h will produce a

very bumpy PDF over the same data. However, there are a number of techniques that

can be utilised to select the optimal bandwidth. Many common statistical packages for

implementing KDEs contain built-in bandwidth selection [73].

In this thesis, we utilise the kde function from the ks package in the statistical software

R [76]. Within this package, we use the default bandwidth selector which is based on the

methods presented by Sheather et al. [75]. The default kernel PDF is Gaussian, adjusted

to ensure that the KDE has support only over the possible data values, i.e. weeks 1–52

of a year.

2.6 Relationship between types of humidity

In this thesis, we focus on Functional Forms of transmissibility based on climate variables

including both absolute and relative humidity. The di↵erent types of humidity and the

following calculations presented in this Section are used in both Chapters 3 and 4 of this

thesis as part of the Functional Forms of ILI transmission.

Humidity is a quantity representing the amount of water vapour in the air. It is

commonly described using one of three measures: absolute, relative or specific humidity.

Absolute humidity (g/m3) is the total amount of water vapour in the air, without con-

sidering the air temperature. Relative humidity (%) is the amount of water vapour in

the air relative to the maximum possible amount of water vapour; this maximum amount

depends on the temperature and pressure of the air [77]. Specific humidity is the ratio of

the total water mass to the total air mass, and is a measure of absolute humidity.

The Australian Bureau of Meteorology (BOM) provides humidity measurements in
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terms of relative humidity. Relative humidity depends on the absolute amount of water

vapour in the air, the air temperature, and the air pressure. In Australia, the major

cities are very close to sea-level and so we assume constant atmospheric air pressure of P

= 10.1 N/cm2. The BOM also provides measurements of temperature (�C) taken at the

same time and location as the relative humidity measurements. By using this, we can

use the formula,

AH =
6.1120⇥ e

17.670⇥T
T+243.50 ⇥RH ⇥ 2.1674

273.15 + T
,

where AH is absolute humidity, RH is relative humidity, and T is temperature, to convert

relative humidity measurements into absolute humidity [78]. This formula is accurate to

0.1% within the temperature range -30�C to +35�C. In Australia, temperatures do exceed

35�C during the summer. However, in this thesis we are primarily focussed on the climate

during winter months where the temperature has never been recorded to be outside of

this range in any of the cities under consideration: Adelaide, Brisbane, Perth and Sydney

[43].

2.7 Conclusion

Now that we have established the necessary mathematical background and methods re-

quired for the remainder of this thesis, in the next Chapter we explore modelling ILI

with a variety of Functional Forms for transmissibility. We then consider the problem

of reliably selecting between these Functional Forms, and analyse our method by using

ABC to compare the fit to true ILI data between these Functional Forms.
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Model selection via random forests

In this chapter, we explore the impact of climate variables on the incidence of seasonal

influenza-like illness in Australia over the period 2006–2016. We use a modern Bayesian

model selection technique to select between four seasonally-oscillating Functional Forms

for R
0

; three climate-dependent and one sinusoidal. We use a stochastic SEIR-type com-

partmental epidemic model (described in Section 3.3.2) with these four Functional Forms

of R
0

to generate simulations of 10 years of influenza-like illness data for Adelaide, Bris-

bane, Perth and Sydney, sampling model parameters from specified prior distributions.

Using these simulations to train a random forest model selection method, we determine

which Functional Form and climate variable best fits observed historical influenza-like

illness data in each location.

3.1 Introduction

Seasonal influenza epidemics exhibit significant inter-annual variation in the timing and

severity of epidemic peaks, the true cause of which is not fully understood but can be at

least partially explained by the seasonal climate cycle [5]. These seasonal epidemics place

a significant burden on healthcare providers and hospital wards, with approximately 3,500

deaths each year in Australia due to influenza and complications caused by influenza

[6]. The ability to predict the behaviour of a yearly influenza epidemic would enable

healthcare workers to more e↵ectively assign resources, as well to provide early warning

for abnormally severe epidemic seasons.

Environmental factors can contribute to the transmission of ILI, and hence the value

25
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of R
0

, either by altering the e↵ectiveness of disease transmission or the disease survival

within and between hosts. Experimental studies have found complicated relationships

between ILI and climate variables, most commonly temperature, relative humidity, and

absolute humidity [22, 23, 31, 79]. Here we explore the impact of environmental drivers of

R
0

over ten influenza-like illness seasons, comparing the results to a novel influenza-like

illness surveillance data set across four di↵erent locations around Australia: Adelaide,

Brisbane, Perth, and Sydney. We use modern Bayesian model selection to select between

Functional Forms for R
0

within a stochastic compartmental SEIR-type model.

3.2 Data

We use a high-quality influenza-like illness dataset provided by the Australian Sentinel

Research Practises Network (ASPREN) [16], as described in Section 1.3.1. We focus on

four major cities in di↵erent regions of Australia, selecting only ILI reports from these

metropolitan areas (Adelaide, Brisbane, Perth and Sydney).

Since Australia is geographically vast, rural areas within the same state may have

significant variation in climate leading to issues regarding the daily weather in the loca-

tions where influenza-like illness was reported. We chose to focus on the metropolitan

areas to avoid issues with variation in weather. Since the majority of notifications come

from GPs based in metropolitan areas, we are still able to retain most of the data when

focussing on these areas. We do not consider the gender or age group associated with

each ILI notification as we assume homogeneous mixing within the population.

We use 20 years of historical climate data, from 1996–2016, obtained from the Aus-

tralian Bureau of Meteorology (BOM) (introduced in Section 1.3.2). There are a large

number of weather stations throughout Australia; we select the weather station closest

to the city centre for each of the cities studied: Adelaide Airport (Adelaide), Archerfield

Airport (Brisbane), Perth Airport (Perth), and Observatory Hill (Sydney).

Population dynamics are not included in our model to avoid increased complexity.

We use a fixed population size based on the June 2016 census by the Australian Bureau

of Statistics, with 1.2 million people in Adelaide, 2 million in Brisbane, 1.6 million in

Perth and 5 million in Sydney.
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3.3 Method

3.3.1 Functional Forms of R
0

We choose four candidate Functional Forms of R
0

to represent the seasonal change in the

transmissibility of ILI. Three of these Functional Forms are dependent on climate data;

the remaining form is independent of climate but displays seasonal variation throughout

a year. The four Functional Forms are:

Linear: R
0

(t) = R̄
0

(1� �ixi(t)� �
3

x
3

(t)) i = 1, 2, (3.1)

Exponential: R
0

(t) = Rmin

0

+ (Rmax

0

�Rmin

0

)eaixi(t) i = 1, 2, 3, (3.2)

Step: R
0

(t) = 1{xi(t)�s}R
base

0

+ 1{xi(t)<s}R
elev

0

i = 1, 2, 3, (3.3)

Sinusoidal: R
0

(t) = �Acos
��

2⇡
730

�
(t+ v)

�
+ R̄

0

, (3.4)

where i indexes the climate variables (absolute humidity (i = 1), relative humidity (i = 2),

and temperature (i = 3)); xi(t) represents the climate measurement of variable i at time

t, each scaled to the interval [�1, 1]; the coe�cient s represents the threshold at which R
0

switches from the base value, Rbase

0

, to the elevated value, Relev

0

; A is the amplitude of the

sine function of R
0

; and v is the number of time steps the sine function is shifted. Figure

3.1 shows an example of each type of Functional Form, showing a distinct di↵erence in

shape between the four.

The model parameters used in the Functional Forms, R̄
0

, �i, Rmin

0

, Rmax

0

, ai, s, Rbase

0

,

Relev

0

, A and v, are sampled from prior distributions for model selection, as described in

Section 3.3.4.

Linear Functional Form

The linear Functional Form (3.1) is based on Yaari et al. [31] and Axelsen et al. [32]. Both

used this Functional Form of R
0

within an SIRS model to explore seasonal influenza in Tel

Aviv, Israel. This Functional Form uses a linear combination of temperature with either

absolute humidity or relative humidity, each with some weighting parameter �i. There is

also a parameter R̄
0

which represents the value of R
0

in the absence of seasonality. The
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values of these parameters are explained in Section 3.3.4.

Exponential Functional Form

The exponential Functional Form (3.2) is based on Shaman et al. [79]. From Shaman

et al., we take a generalised version of the R
0

Functional Form where we replace the

-180 exponential coe�cient with a variable, a. This is to allow more flexibility in the

fit of the parameters of R
0

to the data. Shaman et al. use this Functional Form with

specific humidity (a scaled form of absolute humidity) within a deterministic SIRS model

framework to consider the impact of humidity in forecasting seasonal influenza in New

York City. Within this Functional Form, the parameters are the minimum and maximum

values of R
0

, and the variable a which determines the impact of the climate variable on

the value of R
0

.

Step Functional Form

We introduce a step Functional Form (3.3) on the premise that there is a base value for

R
0

when transmission rates are low, such as when temperatures are above some threshold

s, as well as an elevated value of R
0

when transmission rates are higher, such as when

temperatures drop below that threshold. When the value of the climate variable is higher

than this threshold, the value of R
0

is at the base level, Rbase

0

, and when the climate value

drops below the threshold the value of R
0

switches to the elevated value, Relev

0

. This

Functional Form usually correlates with season, so that R
0

values are higher in winter

and drop in summer. Figure 3.1 gives an example of the step Functional Form, showing

the sharp switch between the base and elevated R
0

values. We do not require that the

value of Rbase

0

be smaller than the value of Relev

0

when the values are sampled from their

respective prior distributions, to ensure flexibility in shape within the Functional Form.

This also takes into account that correlation between climate and transmissibility may be

positive or negative, depending on the climate variable. In Section 3.3.4, we describe the

validation method for generating simulations that prevents out-of-sync epidemic seasons

from being produced.
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Sinusoidal Functional Form

The sinusoidal Functional Form (3.4), based on a cosine function, is dependent only on

time and not on any climate variable; this was included as a form of experimental control,

to assess that the final selected model was informative. It has three coe�cients: A, v and

R̄
0

. The coe�cient R̄
0

is the mean R
0

value over a year. The coe�cient A describes the

amplitude of the sine function, while the coe�cient v represents how much the function

is shifted in terms of time steps. When v is zero, the Functional Form aligns so that the

minimum R
0

value occurs at January 1st and the maximum value aligns with exactly six

months later, the middle of the year. The stochastic epidemic model uses two time-steps

per day, leading to 730 time steps per year; this is represented in the periodicity of the

cosine function.

Figure 3.1: An illustration of each of the four types of Functional Forms over two years

to compare shape.

3.3.2 The stochastic epidemic model

To model the influenza-like illness dynamics within each population over ten years, we

used a stochastic compartmental epidemiological model. It is known that when people

become infected with influenza or ILI, there is an exposed period prior to the stage where

symptoms become apparent and the individual becomes infectious. As well as this, we

know that not everyone who becomes infected will seek medical attention, and not all
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those who seek medical attention will do so with an ASPREN participating GP. As such,

we choose an SEIR-type model, with an observation process [35]. In this model, we include

a waning immunity rate, ⌘, which allows individuals to transition from the recovered state

back to the susceptible state. The transitions between classes are stochastic. We use two

consecutive infectious and observed states to produce an Erlang-2 infectious period.

Figure 3.2 describes the underlying ILI model being used. In this model, susceptible

(S) individuals transition to an exposed (E) state when infected by an infectious indi-

vidual; from the exposed state the individual moves to the first infectious state (I
1

), and

may choose to seek treatment from an ASPREN doctor. If they seek treatment then

they transition to the first observed state (O
1

), otherwise they transition into the second

infected state (I
2

). From here they can either be observed (O
2

) or transition to the recov-

ered state (R). From the first observed state (O
1

) the individual transitions to the second

observed state (O
2

), and then to the recovered state (R). When in the recovered state (R),

the individual cannot be reinfected. Over time the immunity wanes and the individual

then transitions back to the susceptible state (S), allowing them to be reinfected. These

transitions with the increments used are described in Table 3.1.

Figure 3.2: A diagram of the compartmental epidemic model.

The transition rates are based on quantities with physical meaning: P
obs

, T
inf

, T
lat

, and

T
imm

. We utilise a hierarchical observation process for this model, where each infected

individual has a certain probability P
obs

of being observed by an ASPREN-reporting
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Transitions

St+1

= St +�Rt ��St

Et+1

= Et +�St ��Et

I
1,t+1

= I
1,t +�Et ��II

1,t ��IO
1,t

I
2,t+1

= I
2,t +�II

1,t ��IR
2,t ��IO

2,t

O
1,t+1

= O
1,t +�IO

1,t ��O
1,t

O
2,t+1

= O
2,t +�IO

2,t +�O
1,t ��O

2,t

Rt+1

= Rt +�IR
2,t +�O

2,t ��Rt

Increments

�St= Binomial(St, 1� exp(�(� (I
1

+I
2

+O
1

+O
2

)

N�1

+ ✏)))

�Et= Binomial(Et, 1� exp(��))

(�II
1,t,�IO

1,t)= Multinomial(I
1,t,

2�
2�+�

(1� exp(�(2� + �))), �
2�+�

(1� exp(�(2� + �)))

(�IR
2,t,�IO

2,t)= Multinomial(I
2,t,

2�
2�+�

(1� exp(�(2� + �))), �
2�+�

(1� exp(�(2� + �)))

�O
1,t= Binomial(O

1,t, 1� exp(�2↵))

�O
2,t= Binomial(O

2,t, 1� exp(�2↵))

�Rt= Binomial(Rt, 1� exp(�⌘))

Table 3.1: Transitions and corresponding stochastic increments used in the SEIIOOR

model.
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doctor. The probability of being observed is the same in each of the infected stages. The

time that an individual spends infected is denoted T
inf

, while the time an individual is

immune after recovery from ILI is denoted T
imm

. Finally, the latent period between when

an individual is exposed and when they experience symptoms of infection is denoted

T
lat

. The relationship between the rates used in the model and these physical quantities

is given in Table 3.2, using two time steps per day. Section 3.3.4 describes the prior

distributions used to select the values of these physical quantities. These transition rates

are derived in Appendix A.

Model parameter Physical quantities

� R
0

(2�+�)
2

� 1

2T
lat

�
p
1�P

obs

2T
inf

� 2�2

p
1�P

obs

2T
inf

↵ 3� + �

⌘ 1

2T
imm

Table 3.2: The transition rates given in terms of physical quantities.

3.3.3 Model selection by random forests

To perform Bayesian model selection we use random forests (RF), in the manner proposed

by Pudlo et al. [62, 80]. The RF algorithm is an ensemble approach, where a ‘forest’ of

binary decision trees is built to classify the data based on the output of the candidate

models [54]. Decision trees, when used individually, have a tendency to overfit on the

training data. By using an ensemble of decision trees, this reduces overfitting and variance

by aggregating the information from multiple decision trees. RFs were introduced in

Section 2.4.

At the core of the RF process is the classification and regression tree (CART) algo-

rithm. We only consider classification for this application; in this case, the algorithm

works by producing a decision tree which classifies a data entry – a simulation of 10

years of ILI notifications – as one of m candidate models. At each of the branches in this
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decision tree, rules are allocated to determine which side of the branch the current entry

falls on. The terminal nodes of the decision tree determine which candidate model the

data entry is classified to.

The RF algorithm used in this study is presented in Section 2.4. We usem = 9 models

for each city, where each Functional Form of R
0

with each climate variable is classed as a

di↵erent model. We generate the N simulations from the SEIIOOR model described in

Section 3.3.2, and the parameter sets ✓̂i are sampled from priors as described in Section

3.3.4.

Using the stochastic epidemic model, we simulate 10,000 simulations of 10 years of

ILI data for each of the Functional Forms of R
0

to use as RF training data, using prior

distributions as described in Section 3.3.4. We repeat this for each of the four locations.

When generating the simulations, we simulate 20 years, of which the first 10 years is

discarded as burn-in. We use the 2016 Australian Bureau of Statistics (BOM) estimate

for the populations in Adelaide, Brisbane, Sydney and Perth; and we assume that at the

start of the simulation, 75% of the population is susceptible to ILI. The prior distributions

of parameters and the conditions on the accepted simulations are described in Section

3.3.4.

We used two di↵erent approaches for RF model selection: one we call the ‘tournament’

approach, and the other the ‘all-in’ approach. The tournament approach first selects the

di↵erent climate variables within each Functional Form, and then selects between the

Functional Forms. For comparison, we also use the all-in approach which selects between

all Functional Forms and all climate variables in a single step. Both of these approaches

were implemented in R using the package randomForest [66]. We analyse the four cities

separately, i.e. we do not consider correlations or interactions between cities.

The tournament approach was chosen as we felt that it was the more careful ap-

proach, providing further information about the relationship between climate variables

and Functional Forms. By training a random forest on each Functional Form, we are

able to gain insight into which climate variable within that Functional Form fits best,

rather than in the all-in approach where we are only able to discern which combination

of climate variable and Functional Form is most suitable. Comparison showed that the

tournament approach produces very similar overall results to the all-in approach, whilst

providing additional information through the individual stages.
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Tournament approach

The tournament selection process is illustrated in Figure 3.3. In this approach, we use

four di↵erent random forests in a tournament-style competition. We do this to consider

the Functional Form and the associated climate variable separately. Having separate

rounds for each Functional Form allows us to see the impact that a particular climate

variable has within that Functional Form, and to select the climate variable which best

represents influenza-like illness using that Functional Form. In the initial step, we select

the best climate variable within each Functional Form by training a random forest on data

from each climate variable in a Functional Form. The climate variable in each Functional

Form which receives the highest proportion of votes based on the fit with ASPREN data

is moved through to the final.

Figure 3.3: A depiction of the tournament-style random forest model selection process.

For the final round, we use a random forest to select between the three winning models

from the penultimate round; the best climate variable from each of the three Functional

Forms. As well as this, the sinusoidal Functional Form (3.4) is also included in the final

round. For this final round, a random forest is again built using 10,000 simulations from

each of the four candidate forms; the random forest then assigns votes to each of these

forms based on the fit with ASPREN data. The form with the highest proportion of
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votes is then chosen as the Functional Form best fitting the ILI data. For each random

forest generated in this process, we use 500 decision trees.

All-in approach

For the all-in approach, we build a data set consisting of a training set of 10,000 sim-

ulations from each of the 9 Functional Forms; this results in a total data set of 90,000

simulations. The simulations are each labelled with which Functional Form they derive

from. We then train a random forest on this large data set, using a forest of 500 decision

trees. Once the forest has been trained, we use the ASPREN data from the city being

considered and use the random forest to predict which model best fits this data. The

output of this is a proportion of votes towards each model, revealing which model best

fits to the data.

3.3.4 Selecting the priors

Within this Bayesian model selection framework, we take care with selecting the prior

distributions. For the model selection method to accurately allocate the classification

tree votes, there are several factors which must be kept consistent between the simulated

influenza epidemics for the di↵erent Functional Forms. We ensure that model parameters

are selected to represent physical quantities, and that the quantities are drawn from the

same prior distribution across all of the models. We also perform conditioning to ensure

that we compare between simulations that see an outbreak of ILI in each winter season

over the ten years.

To ensure the parameters are capable of consistently producing ILI activity each year,

we use a five-simulation validation process. Since we know that an epidemic invariably

occurs each year, we only accept parameters which generate a simulation where there is

a winter ILI outbreak in each of the 10 years. We define an ILI outbreak as at least one

ILI infection occurring per day, where the peak ILI occurs between May and September.

For a parameter set to be accepted, the first five simulations using that parameter set

must have an outbreak each year. Otherwise, we discard the parameters. This allows

us to keep only the parameter sets from the prior distributions which are most likely to

generate an influenza outbreak each year. This means that, in e↵ect, our Bayesian model

selection operates on the prior conditioned on epidemic survival, rather than the initial
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‘naive’ prior.

The value of the quantities used to determine rates in the SEIIOOR model are selected

to have physical meaning, as given in Table 3.3. Each of these physical quantities has been

assigned a prior distribution. At the start of each simulation, a value for each quantity

is drawn from the prior distribution and kept constant throughout the simulation. The

prior distributions for each quantity are listed in Table 3.3. Note that we select only

a single value for each coe�cient for a simulation; the value of the coe�cients change

between simulations but remain constant within any one simulation. The coe�cients

used for a simulation are referred to as the ‘parameter set’.

Physical quantity Prior distribution

Duration of infection, T
inf

(days) Uniform(0.5, 5)

Treatment seeking probability, P
obs

Uniform(0.00005,0.005)

Mean basic reproduction number, R̄
0

Uniform(1,2)

Immune duration, T
imm

(days) Uniform(0.5,500)

Latent period, T
lat

(days) Uniform(0.5, 2)

Rate of imported infections, ✏ (infections/day) Exponential(109)

Table 3.3: Prior distributions of the physical quantities used.

The prior distribution on the mean R
0

value, R̄
0

, is Uniform(1,2). This prior is kept

consistent across the Functional Forms; however, each Functional Form has a di↵erent

set of coe�cients. The value of these coe�cients determines R̄
0

. Determining the correct

value of these coe�cients to maintain a given R̄
0

is non-trivial for the three climate-

dependent Functional Forms, (3.1), (3.2) and (3.3). For the sine Functional Form (3.4),

it is su�cient to simply set R̄
0

equal to the mean R
0

value drawn from the prior, and

sample a value of v to shift the Functional Form so that the maximum R
0

can happen

any time between the 24th and 34th week, when ILI peaks historically occur.

To determine the correct value of these coe�cients to maintain a given R̄
0

, we first

set very wide limits on the value of each of the coe�cients in the Functional Forms. We

then sample 1,000,000 di↵erent combinations of the parameters for each Functional Form

in a 100⇥ 100⇥ 100 grid, equally-spaced over the parameter distributions given in Table

3.4. We then calculate the mean R
0

corresponding to each combination of parameters,
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and accept all combinations resulting in mean R
0

within the interval [1,2]. Table 3.4

shows the prior distribution used for each variable in each Functional Form, where the

distribution is the same between all four cities.

To create a reference table of coe�cient values for each Functional Form, we uniformly

draw 10,000 values of R̄
0

from the prior in Table 3.3. For each of these R̄
0

values, we select

the combination of coe�cients which produce a mean R
0

value closest to the R̄
0

value. We

repeat this process for each of the 10,000 values and each of the linear (3.1), exponential

(3.2) and step (3.3) Functional Forms. This results in a reference table of 10,000 values

of R̄
0

and the corresponding coe�cient combination for each of the Functional Forms,

with the resulting prior remaining uniform in R̄
0

. To produce a simulation, when a value

of R̄
0

is drawn, the reference table is used to determine the combination of coe�cients to

use for the Functional Form of R
0

for that simulation.

Functional Form Model parameter Prior Distribution

Rmin

0

Uniform(0,2)

Exponential Rmax

0

Uniform(0,10)

a Log-Uniform(-5,0)

R⇤
0

Uniform(0,12)

Linear �i, where i = 1, 2 Uniform(-1,1)

�
3

Uniform(0,2)

s Uniform(0,1)

Step Relev

0

Uniform(0,12)

Rbase

0

Uniform(0,12)

v (weeks) Uniform(24,34)

Sine A Uniform(0,R̄
0

)

Table 3.4: Prior distribution for all variables used in the Functional Forms of R
0

, where

i = 1 corresponds to absolute humidity, i = 2 corresponds to relative humidity, and i = 3

corresponds to temperature. The distributions are identical between the four cities.
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3.3.5 Approximate Bayesian computation

To better understand the output of the Bayesian model selection process, we use ap-

proximate Bayesian computation (ABC) [1] to fit the best two Functional Forms to the

ILI data in each of the four locations. We computed a weighted error score for each

simulation used in the RF training. The score function

S :=

vuut 1

#weeks

#weeksX

i=1

p
Di + 1⇥ (Di � D̂i)2 (3.5)

is the weighted root mean squared error (WRMSE) introduced in Section 2.2, where Di is

the observed number of cases in the ith week of ASPREN ILI data and D̂i is the number

of observed cases in the ith week of the simulated ILI data.

We use this score function in an ABC framework to fit the Functional Form chosen

by the RF process to our ASPREN data. To define a threshold that is consistent for each

Functional Form and city, we calculate the score for each of the 20,000 simulations from

the top two Functional Forms used in the RF process. We then choose the threshold to

include the best 5% of these scores. In this case, the same threshold is used across both

Functional Forms in each city, but scores are independent between cities. We then gen-

erate simulations from that Functional Form and accept those which meet the previously

described acceptance criteria, and whose score value is better than the 5% threshold.

We continue to generate these simulations until we have 1,000 simulations meeting these

conditions. The parameter values which generated these 1,000 simulations then form the

posterior distributions of the parameters [52].

3.4 Results

3.4.1 Random forest results

The results of the RF tournament showed that overall, absolute humidity was the best

climate variable, selected in all cities across both climates. In Sydney and Brisbane,

both subtropical climates, the step Functional Form, with absolute humidity (i = 1)

as the climate variable, best represented the pattern of influenza-like illness. On the

other hand, Adelaide and Perth, both Mediterranean climates, were best represented by

the exponential Functional Form, also with absolute humidity (i = 1). The all-in RF
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approach gave the same results, with minimal di↵erences in the proportion of votes; see

Tables 3.5 – 3.12 for further details. Figure 3.4 shows the proportion of votes for each

Functional Form in each location, with a clear di↵erence between the Functional Form

preferences in Adelaide and Perth, compared with Brisbane and Sydney. Also in Figure

3.4, a climate map of Australia shows the proportion of votes given to each Functional

Form in the final round of the RF process in each location, showing the Mediterranean

climate of Adelaide and Perth presenting di↵erent results to the subtropical climate in

Brisbane and Sydney. The rankings of Functional Forms in each stage of the tournament

were consistent within each climate but di↵erent between climates.

We also analyse the RF results to determine how accurately the process can di↵er-

entiate between the Functional Forms and climate variables. Tables 3.5 - 3.12 show the

confusion matrices for each RF used. The confusion matrix is a table used to assess

the performance of the RF, where the body of each table shows the number of simu-

lations classified correctly and incorrectly, and the overall classification error for each

Functional Form and RF. We find that each round of the tournament RF process has

less than 10% misclassification error in each city, suggesting that the RF is proficient

at distinguishing between the di↵erent Functional Forms and climate variables. We also

find that the di↵erent Functional Forms had di↵erent rates of misclassification within

cities, showing that some Functional Forms are more similar between climate variables

than other Forms. For example, in row one of Table 3.5a, 9,994 simulations generated

using the Linear Functional Form with climate variable absolute humidity were classified

correctly, while 4 were erroneously classified as being from the Linear Functional Form

with relative humidity, and 2 from the Linear Functional Form with temperature. This

leads to an error for the Linear Functional Form with absolute humidity of 0.0006, or

0.06%. From the same table, the overall misclassification error for the Linear Functional

Form RF round in Adelaide is 1.46%. From this data, we determine that the RF is able

to accurately distinguish between the Functional Forms and climate variables. The most

common misclassification across all cities is within the step Functional Form, between

those using relative humidity and temperature. In subtropical locations, there is also

notable misclassification of the sinusoidal Functional Form, most commonly misclassified

as step Functional Form using relative humidity or temperature.
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Figure 3.4: The resulting votes for each Functional Form in Adelaide, Brisbane, Perth

and Sydney. The corresponding climate variable used in the final stage of the tournament

model selection process is shown above each Functional Form in the histogram, with a

modified Köppen climate map demonstrating the di↵erent climate zones around Australia

[2].
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The overall misclassification error is the out-of-bag (OOB) error. This is determined

once the RF has been fully trained on the data. Out-of-bag samples are drawn from the

set of training simulations and classified by the RF. The OOB error is the percentage of

these samples which are incorrectly classified [66]. This method is explained in Section

2.4.

We can see that across all cities, the step Round of the RF tournament had a higher

overall misclassification error than the other rounds, with the linear round producing the

lowest error. This suggests that the di↵erent climate variables within the step Functional

form may produce simulated epidemics with similar behaviour, leading to di�cultly in

correctly classifying each simulation.

The misclassification error is higher in Adelaide and Perth compared to Brisbane and

Sydney for the all-in RF process; but this di↵erence is not consistent in the tournament

RF process, where the misclassification error is similar between all cities except for in the

final round, where the error in Adelaide is higher than the other cities. As expected, the

all-in process had a higher misclassification error than any of the individual rounds of the

tournament process, due to the all-in RF process comparing all nine Functional Forms

at once. However, the all-in process produces similar results to the tournament process.
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Table 3.5: Confusion matrices for each round of the random forest tournament process in Adelaide.

(a) Exponential Round

predicted modelz }| {

AH RH T Error

tr
u
e
m
od

el

8
>>>>>>>>>><

>>>>>>>>>>:

AH 9994 4 2 0.0006

RH 12 9715 273 0.0285

T 20 127 9853 0.0147

Overall OOB Error: 1.46%

(b) Step Round

predicted modelz }| {

AH RH T Error

tr
u
e
m
od

el

8
>>>>>>>>>><

>>>>>>>>>>:

AH 9158 518 324 0.0842

RH 360 9448 192 0.0552

T 719 673 8608 0.1392

Overall OOB Error: 9.26%

(c) Linear Round

predicted modelz }| {

AH RH Error

tr
u
e
m
od

el

8
>>>><

>>>>:

AH 9982 18 0.0018

RH 61 9939 0.0061

Overall OOB Error: 0.4%

(d) Final Round

predicted modelz }| {
Exp AH Lin AH Step RH Sine Error

tr
u
e
m
od

el

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

Exp AH 9997 0 3 0 0.0003

Lin AH 6 9646 289 59 0.0354

Step RH 24 137 9818 21 0.0182

Sine 17 166 260 9557 0.0443

Overall OOB Error: 2.46%
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Table 3.6: Confusion matrix for the all-in RF in Adelaide.

predicted modelz }| {
Exp AH Exp RH Exp T Lin AH Lin RH Step AH StepRH Step T Sine Error

tr
u
e
m
od

el
8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

Exp AH 9995 0 2 0 0 0 0 3 0 0.0005

Exp RH 9 9244 256 14 1 14 179 199 84 0.0756

Exp T 17 157 9323 20 5 5 188 215 70 0.0677

Lin AH 5 52 698 8917 8 84 88 115 33 0.1083

Lin RH 1 133 31 12 9483 2 118 121 99 0.0517

Step AH 17 33 431 157 11 9112 110 89 40 0.0888

Step RH 29 359 284 26 22 5 7709 1085 481 0.2291

Step T 20 363 335 19 19 7 775 8233 229 0.1767

Sine 11 368 242 48 10 17 1203 1181 6920 0.3080

Overall OOB Error: 12.29%
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Table 3.7: Confusion matrices for each round of the random forest tournament process in Brisbane.

(a) Exponential Round

predicted modelz }| {

AH RH T Error

tr
u
e
m
od

el

8
>>>>>>>>>><

>>>>>>>>>>:

AH 9891 65 44 0.0109

RH 33 9934 33 0.0066

T 25 117 9858 0.0142

Overall OOB Error: 1.06%

(b) Step Round

predicted modelz }| {

AH RH T Error

tr
u
e
m
od

el

8
>>>>>>>>>><

>>>>>>>>>>:

AH 9414 333 253 0.0586

RH 458 9054 488 0.0946

T 440 374 9816 0.0814

Overall OOB Error: 7.82%

(c) Linear Round

predicted modelz }| {

AH RH Error

tr
u
e
m
od

el

8
>>>><

>>>>:

AH 9942 58 0.0058

RH 148 9852 0.0148

Overall OOB Error: 1.03%

(d) Final Round

predicted modelz }| {
Exp RH Lin AH Step AH Sine Error

tr
u
e
m
od

el

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

Exp RH 9450 18 531 1 0.0550

Lin AH 106 9350 413 131 0.0650

Step AH 11 25 9962 2 0.0038

Sine 99 101 225 9575 0.0425

Overall OOB Error: 4.16%
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Table 3.8: Confusion matrix for the all-in RF in Brisbane.

predicted modelz }| {
Exp AH Exp RH Exp T Lin AH Lin RH Step AH StepRH Step T Sine Error

tr
u
e
m
od

el
8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

Exp AH 9837 25 35 19 0 6 36 12 30 0.0163

Exp RH 39 9271 17 19 0 1 299 153 201 0.0729

Exp T 56 14 9394 3 0 10 210 146 167 0.0606

Lin AH 88 59 365 8925 7 138 183 134 101 0.1075

Lin RH 1 67 0 31 9423 11 160 152 155 0.0577

Step AH 63 60 53 77 4 9492 103 72 76 0.0508

Step RH 8 94 27 5 0 2 8939 440 485 0.1061

Step T 8 152 51 8 5 4 914 8087 771 0.1913

Sine 11 147 47 13 8 15 1040 701 8081 0.1982

Overall OOB Error: 9.57%
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Table 3.9: Confusion matrices for each round of the random forest tournament process in Perth.

(a) Exponential Round

predicted modelz }| {

AH RH T Error

tr
u
e
m
od

el

8
>>>>>>>>>><

>>>>>>>>>>:

AH 9957 1 42 0.0043

RH 34 9647 319 0.0353

T 40 74 9886 0.0114

Overall OOB Error: 1.7%

(b) Step Round

predicted modelz }| {

AH RH T Error

tr
u
e
m
od

el

8
>>>>>>>>>><

>>>>>>>>>>:

AH 8666 682 652 0.1334

RH 117 9610 213 0.0390

T 597 568 8835 0.1165

Overall OOB Error: 9.63%

(c) Linear Round

predicted modelz }| {

AH RH Error

tr
u
e
m
od

el

8
>>>><

>>>>:

AH 9976 24 0.0024

RH 95 9905 0.0095

Overall OOB Error: 0.6%

(d) Final Round

predicted modelz }| {
Exp AH Lin AH Step RH Sine Error

tr
u
e
m
od

el

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

Exp AH 9929 0 71 0 0.0071

Lin AH 19 9482 294 205 0.0518

Step RH 2 6 9991 1 0.0009

Sine 8 116 369 9507 0.0493

Overall OOB Error: 2.73%
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Table 3.10: Confusion matrix for the all-in RF in Perth.

predicted modelz }| {
Exp AH Exp RH Exp T Lin AH Lin RH Step AH StepRH Step T Sine Error

tr
u
e
m
od

el
8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

Exp AH 9969 0 4 0 0 0 1 25 1 0.0031

Exp RH 5 9033 238 18 2 29 144 400 131 0.0967

Exp T 30 108 9164 12 4 6 113 442 121 0.0836

Lin AH 14 18 498 9013 13 220 50 124 50 0.0987

Lin RH 0 82 36 10 9584 1 87 119 81 0.0416

Step AH 3 18 444 146 2 9022 93 213 59 0.0978

Step RH 1 208 103 16 11 15 7321 1100 1225 0.2679

Step T 0 48 193 4 9 1 316 9113 316 0.0887

Sine 0 200 135 13 15 8 970 1110 7549 0.2451

Overall OOB Error: 11.37%
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Table 3.11: Confusion matrices for each round of the random forest tournament process in Sydney.

(a) Exponential Round

predicted modelz }| {

AH RH T Error

tr
u
e
m
od

el

8
>>>>>>>>>><

>>>>>>>>>>:

AH 9830 35 135 0.0170

RH 0 9999 1 0.0001

T 22 168 9810 0.0190

Overall OOB Error: 1.2%

(b) Step Round

predicted modelz }| {

AH RH T Error

tr
u
e
m
od

el

8
>>>>>>>>>><

>>>>>>>>>>:

AH 9029 346 245 0.0614

RH 445 8822 393 0.0867

T 783 669 8108 0.1519

Overall OOB Error: 9.99%

(c) Linear Round

predicted modelz }| {

AH RH Error

tr
u
e
m
od

el

8
>>>><

>>>>:

AH 9992 8 0.0008

RH 105 9895 0.0105

Overall OOB Error: 0.56%

(d) Final Round

predicted modelz }| {
Exp RH Lin AH Step AH Sine Error

tr
u
e
m
od

el

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

Exp RH 9902 0 98 0 0.0098

Lin AH 21 9547 401 31 0.0453

Step AH 5 15 9976 4 0.0025

Sine 29 170 296 9505 0.0495

Overall OOB Error: 2.7%
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Table 3.12: Confusion matrix for the all-in RF in Sydney.

predicted modelz }| {
Exp AH Exp RH Exp T Lin AH Lin RH Step AH StepRH Step T Sine Error

tr
u
e
m
od

el
8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

Exp AH 9756 25 102 37 1 10 42 16 11 0.0244

Exp RH 0 9923 0 0 0 0 46 13 18 0.0077

Exp T 28 27 9037 48 1 11 454 208 186 0.0963

Lin AH 136 26 571 8815 5 29 230 93 95 0.1185

Lin RH 3 19 6 9 9644 2 154 80 83 0.0356

Step AH 99 19 233 144 10 9186 127 90 92 0.0814

Step RH 0 12 1 3 1 0 9273 459 251 0.0727

Step T 0 27 7 0 9 0 1004 8509 444 0.1491

Sine 2 25 33 7 14 1 931 888 8099 0.1901

Overall OOB Error: 8.62%
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By analysing the WRMSE scores for the simulations used for each Functional Form,

we are able to gain further insight and additional context to the RF model selection

process. The scores assist with interpreting the RF results, as due to the ‘black-box’

nature of RFs it is di�cult to understand the individual decisions behind this model

selection process. Tables 3.13 - 3.16 show a summary of the WRMSE score distribution

over the 10,000 simulations used for each Functional Form in each city. Highlighted in

bold are the Functional Forms selected by the RF process. In three of the four cities,

the RF process appears to be selecting the Functional Form with the most positive

skew, suggesting that the ‘best’ scoring realisations of each Functional Form may have a

significant impact on the RF selection process. In Adelaide (Table 3.13) the exponential

Functional Form with absolute humidity is selected as best, and this is the Functional

Form with the lowest minimum, median, mean and maximum score. We observe similar

results in Brisbane, with the lowest median and mean occurring in the step Functional

Form with absolute humidity. In Perth, the exponential Functional Form with absolute

humidity has the lowest minimum, mean and maximum values but not the lowest median

value. In contrast, in Sydney the step Functional Form with absolute humidity does not

appear to have the lowest score in any of these summary statistics.

Table 3.13: Adelaide score statistics. Highlighted in bold are the Functional Forms

selected by the RF process.

Functional Form Min. Median Mean Max.

Exponential AH 18.51 26.63 29.08 1338.30

Exponential RH 19.07 32.36 61.73 2398.01

Exponential T 18.89 30.51 59.98 3511.34

Linear AH 19.51 33.14 80.30 3944.41

Linear RH 22.60 41.93 106.75 4473.30

Step AH 22.57 29.79 72.61 2665.14

Step RH 22.60 28.95 68.33 3362.39

Step T 22.73 30.09 78.56 4120.53

Sine 19.23 36.65 88.78 2540.08
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Table 3.14: Brisbane score statistics. Highlighted in bold are the Functional Forms

selected by the RF process.

Functional Form Min. Median Mean Max.

Exponential AH 18.68 30.60 59.47 2346.06

Exponential RH 17.49 26.23 55.54 2408.21

Exponential T 17.72 27.55 57.82 2388.89

Linear AH 17.79 33.84 75.18 2040.55

Linear RH 20.79 34.28 87.15 3468.22

Step AH 20.59 25.48 54.51 2083.06

Step RH 20.53 25.94 60.53 3452.29

Step T 20.63 26.18 62.52 4106.06

Sine 15.48 37.59 86.80 2594.66

Table 3.15: Perth score statistics. Highlighted in bold are the Functional Forms selected

by the RF process.

Functional Form Min. Median Mean Max.

Exponential AH 57.54 98.16 100.16 1028.21

Exponential RH 69.66 107.65 127.17 2535.72

Exponential T 59.95 102.70 118.73 2463.24

Linear AH 58.84 105.39 141.48 3427.41

Linear RH 78.56 104.28 164.70 3848.54

Step AH 78.10 96.02 134.31 3858.03

Step RH 77.56 100.54 120.77 3539.42

Step T 78.50 97.10 133.10 3763.61

Sine 58.95 104.74 140.85 3175.08
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Table 3.16: Sydney score statistics. Highlighted in bold are the Functional Forms selected

by the RF process.

Functional Form Min. Median Mean Max.

Exponential AH 68.92 117.82 139.87 3875.03

Exponential RH 75.83 120.73 130.88 2586.47

Exponential T 67.82 119.15 133.91 2165.85

Linear AH 70.65 121.56 145.60 2971.36

Linear RH 77.2 112.3 166.5 4226.5

Step AH 77.26 120.90 137.50 4462.83

Step RH 76.99 116.62 139.80 5112.55

Step T 76.84 111.41 146.00 4372.59

Sine 68.41 122.38 157.30 2840.50

3.4.2 ABC results

Figures 3.5 – 3.16 describe the results from the ABC section of this chapter. They show

model fits and R
0

values over time for each of the four cities, as well as pair plots showing

the distribution of parameters between Functional Forms.
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Adelaide

In Adelaide, the RF model selection process selected the exponential Functional Form

using absolute humidity as the most suitable, followed by the step Functional Form with

relative humidity. Figure 3.5 shows a fan chart of the 1,000 accepted simulations from

each Functional Form in Adelaide, with the true ILI data shown for reference. Both

Functional Forms appear to fit well at this 5% threshold, however neither Functional

Form accurately fit the extremely large ILI peaks seen in 2009 and 2015. However, in

general both Functional Forms appear to accurately estimate the size and timing of ILI

in most of the years.

To further explore why the random forest selected the exponential Functional Form

using absolute humidity, we construct a fan chart with the realisations of R
0

that gen-

erated each of the 1,000 accepted simulations, shown in Figure 3.6. There is a clearly

defined seasonal trend in R
0

, which matches the seasonal behaviour of ILI. The di↵er-

ence between the two Functional Forms is more noticeable here, with the R
0

from the

exponential Functional Form generally following a more distinct seasonal pattern than

that of the step Functional Form. The exponential Functional Form also does not reach

the very large values of R
0

that are seen in the outlying values of the step Functional

Form. The step Functional Form overall takes a greater range of values of R
0

than the

exponential Functional Form. We can see that the R
0

values in the step Functional Form

range between 0–5 throughout the years, whilst the R
0

for the exponential Functional

Form ranges between 0.5–3. Individual realisations of R
0

for the ten best scoring simu-

lations of each Functional Form can be found in Appendix B, Figure B.1, showing the

large amount of diversity in the R
0

realisations.

Figure 3.7 shows a pair plot of the posterior model parameter values from the accepted

simulations from the two Functional Forms. We can see in this plot that generally, the

distributions of the parameters are similar between the Functional Forms. The exception

to this is the value of mean R
0

, R̄
0

. We can see from the plots in the left-most column

that the values of mean R
0

generally are higher for the exponential Functional Form

when compared with the step Functional Form. This may contribute in some way to the

random forest selecting the exponential Functional Form.
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Figure 3.5: Fan charts showing the 1,000 simulated ILI datasets accepted by the ABC

process over the years 2006–2016 for the top two Functional Forms as selected by the

RF process in Adelaide, with the interval showing quartile ranges. The true ILI data is

overlaid for comparison.
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Figure 3.6: Fan charts showing the realisations of R
0

that generated the accepted sim-

ulations for the two selected Functional Forms in Adelaide, with the interval showing

quartile ranges.
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Figure 3.7: A pair plot comparing the posterior model parameters for accepted simula-

tions from both Functional Forms in Adelaide. The parameter ‘mean R0’ is the mean

value of R
0

over all seasons, R̄
0

; ‘T inf’ is the time infectious; ‘P obs’ is the probability

of observation by an ASPREN doctor; ‘Imm dur’ is the duration of immunity after re-

covery from ILI; ‘Lat period’ is the latent period between exposure and infectiousness;

‘Eps’ is the number of external ILI cases introduced into the population; and ‘FF’ is the

Functional Form, where ‘exp’ is exponential using absolute humidity and ‘step’ is step

using relative humidity. The bottom right plot shows an equal number of particles from

each Functional Form were used.
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Brisbane

In Brisbane, the step Functional Form using absolute humidity was selected by the RF

model selection process, followed by the exponential Functional Form using relative hu-

midity. In Figure 3.8 we present a fan chart of the 1,000 accepted simulations from the

two best Functional Forms. While the fit is not as good as that seen in Adelaide, the two

Functional Forms are both able to fit the true ILI data quite accurately. Unlike Adelaide,

Brisbane can have multiple ILI outbreaks per year, such as in 2010. As we saw in the

Adelaide results, neither of these Functional Forms are able to correctly fit to the very

large peak; in Brisbane, this very large ILI peak occurs in 2012. We can also see from

these plots that simulations from both Functional Forms appear to have two peaks of ILI

in some years, most notably in 2009, 2011 and 2012. This trend is more pronounced in

the simulations from the step Functional Form, and is not seen as distinctly in the true

ILI data.

Figure 3.9 presents a fan chart of the realisations of R
0

that generated the 1,000 ac-

cepted simulations from each Functional Form. The R
0

realisations are very di↵erent

between the two Functional Forms. When compared to Figure 3.6, we can see that the

realisations of R
0

are substantially more di↵erent between Functional Forms in Brisbane

than in Adelaide. In Brisbane, the exponential Functional Form appears quite flat, with

very large outliers. The seasonality of R
0

is visible but not well defined. The step Func-

tional Form, however, shows the seasonality of ILI transmission much more noticeably.

The realisations of R
0

generally follow a di↵erent pattern between Functional Forms, with

the exponential Functional Form generally showing large upward peaks from a baseline

while the step Functional Form showing deep troughs below the baseline. Individual

realisations of R
0

for the ten best scoring simulations of each Functional Form can be

found in Appendix B, Figure B.2.

Figure 3.10 shows a posterior pair plot for the parameter values from the simulations

from both Functional Forms. In this Figure, we can see some noticeable di↵erences be-

tween the Functional Forms. Like in Adelaide, the mean R
0

values tend to be lower

in the step Functional Form and higher in the exponential Functional Form. Unlike in

Adelaide however, this pattern is also seen in the values of P
obs

and immDur - the prob-

ability of observation by ASPREN doctors and the duration of immunity after recovery,

respectively.
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Figure 3.8: Fan charts showing the 1,000 simulated ILI datasets accepted by the ABC

process over the years 2006–2016 for the top two Functional Forms as selected by the

RF process in Brisbane, with the interval showing quartile ranges. The true ILI data is

overlaid for comparison.
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Figure 3.9: Fan charts showing the realisations of R
0

that generated the accepted sim-

ulations for the two selected Functional Forms in Brisbane, with the interval showing

quartile ranges.
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Figure 3.10: A pair plot comparing the posterior model parameters for accepted simu-

lations from both Functional Forms in Brisbane. The parameter ‘mean R0’ is the mean

value of R
0

over all seasons, R̄
0

; ‘T inf’ is the time infectious; ‘P obs’ is the probability of

observation by an ASPREN doctor; ‘Imm dur’ is the duration of immunity after recovery

from ILI; ‘Lat period’ is the latent period between exposure and infectiousness; ‘Eps’ is

the number of external ILI cases introduced into the population; and ‘FF’ is the Func-

tional Form, where ‘exp’ is exponential using relative humidity and ‘step’ is step using

absolute humidity. The bottom right plot shows an equal number of particles from each

Functional Form were used.
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Perth

In Perth, the RF model selection process selected the exponential Functional Form with

absolute humidity as the most suitable, followed by the step Functional Form with relative

humidity. Figure 3.11 shows a fan chart of the 1,000 accepted simulations from each

Functional Form in Perth, with the true ILI data shown for reference. We can see

from this Figure that the results of the ABC fitting are quite good. The exponential

Functional Form appears to fit the true ILI data slightly better than the step Functional

Form. However, as with previous cities, the simulations from both Functional Forms

struggle to accurately fit the very large peaks seen in 2007, 2009 and 2012 in Perth.

We constructed a fan chart with the realisations of R
0

that generated each of the 1,000

simulations, shown in Figure 3.12. There is a notable di↵erence between the Functional

Forms when considering the R
0

realisations. The exponential Functional Form appears

to follow the same patterns as seasonal ILI, with a distinct peak in each year. The

step Functional Form, on the other hand, appears to remain flat for most of the year,

exhibiting large peaks during the ILI season and dropping back to the baseline level quite

quickly. An interesting feature of the exponential Functional Form is a very large peak

in R
0

during the 2010 ILI season. This large peak is not seen in the resulting simulations

or the true ILI data. Individual realisations of R
0

for the ten best scoring simulations of

each Functional Form can be found in Appendix B, Figure B.3.

Figure 3.13 shows a pair plot of the model parameter values from each of the ac-

cepted simulations from the two Functional Forms. In general, the parameter values are

distributed very similarly between Functional Forms. This is di↵erent to what has been

seen in previous cities, where the mean R
0

distribution usually varied between Functional

Forms.
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Figure 3.11: Fan charts showing the 1,000 simulated ILI datasets accepted by the ABC

process over the years 2006–2016 for the top two Functional Forms as selected by the RF

process in Perth, with the interval showing quartile ranges. The true ILI data is overlaid

for comparison.
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Figure 3.12: Fan charts showing the realisations of R
0

that generated the accepted simu-

lations for the two selected Functional Forms in Perth, with the interval showing quartile

ranges.
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Figure 3.13: A pair plot comparing the posterior model parameters for accepted simula-

tions from both Functional Forms in Perth. The parameter ‘mean R0’ is the mean value

of R
0

over all seasons, R̄
0

; ‘T inf’ is the time infectious; ‘P obs’ is the probability of

observation by an ASPREN doctor; ‘Imm dur’ is the duration of immunity after recovery

from ILI; ‘Lat period’ is the latent period between exposure and infectiousness; ‘Eps’ is

the number of external ILI cases introduced into the population; and ‘FF’ is the Func-

tional Form, where ‘exp’ is exponential using absolute humidity and ‘step’ is step using

relative humidity. The bottom right plot shows an equal number of particles from each

Functional Form were used.
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Sydney

In Sydney, the RF model selection process selected the step Functional Form with absolute

humidity, followed by the exponential Functional Form with relative humidity. In Figure

3.14 we present a fan chart of these 1,000 accepted simulations from each of the two

selected Functional Forms. We can see that, in comparison to the previous cities, the fit

of the ABC simulations is not very accurate. In particular, in the exponential Functional

Form, the model does not appear to fit to a defined peak in each year. In the preferenced

step Functional Form, simulations do form a single peak during the ILI seasons and track

the true ILI data, but with some bias.

We can also see when looking at Figure 3.14 that the true ILI data in Sydney shows

more between-season ILI activity than in the other cities. There are many more fluctua-

tions throughout each year in Sydney than other locations, as well as three distinctly large

peaks occurring in the 2013–2015 seasons with an unusually large number of between-

season cases.

Figure 3.15 shows a fan chart of the realisations of R
0

that generated the 1,000 ac-

cepted simulations from each Functional Form. The R
0

realisations are di↵erent between

Functional Forms, but not as distinctly di↵erent as in previous cities. Individual realisa-

tions of R
0

for the ten best scoring simulations of each Functional Form can be found in

Appendix B, Figure B.4.

Figure 3.16 shows a pair plot for the parameter values from the simulations from both

Functional Forms. In this Figure, we can see that the distributions of model parameters

are generally quite similar between Functional Forms. There is again a di↵erence in the

mean R
0

distribution, with the step Functional Form generally producing lower values

and the exponential Functional Form generally producing higher values. However, this

di↵erence in mean R
0

distribution is not as distinct as it is in Adelaide and Brisbane.

There is also an unusual distribution of the observation probability parameter (‘P obs’)

in the exponential Functional Form, with two distinct peaks.
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Figure 3.14: Fan charts showing the 1,000 simulated ILI datasets accepted by the ABC

process over the years 2006–2016 for the top two Functional Forms as selected by the

RF process in Sydney, with the interval showing quartile ranges. The true ILI data is

overlaid for comparison.
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Figure 3.15: Fan charts showing the realisations of R
0

that generated the accepted simu-

lations for the two selected Functional Forms in Sydney, with the interval showing quartile

ranges.
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Figure 3.16: A pair plot comparing the posterior model parameters for accepted simu-

lations from both Functional Forms in Sydney. The parameter ‘mean R0’ is the mean

value of R
0

over all seasons, R̄
0

; ‘T inf’ is the time infectious; ‘P obs’ is the probability of

observation by an ASPREN doctor; ‘Imm dur’ is the duration of immunity after recovery

from ILI; ‘Lat period’ is the latent period between exposure and infectiousness; ‘Eps’ is

the number of external ILI cases introduced into the population; and ‘FF’ is the Func-

tional Form, where ‘exp’ is exponential using relative humidity and ‘step’ is step using

absolute humidity. The bottom right plot shows an equal number of particles from each

Functional Form were used.
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3.5 Discussion

3.5.1 Summary

The exact reason for seasonal ILI outbreaks is not fully understood, with experimental

models often showing conflicting evidence as to which climate variables may be driving

ILI – suggesting a complicated relationship between ILI virus transmission and climate

variables [21, 26, 35, 79]. In this chapter, we used a novel, high-quality ILI dataset in four

locations around Australia coupled with a modern Bayesian model selection technique

to gain further insight into the climate drivers behind ILI, and found absolute humidity

to be the most important factor in the development and prediction of winter-time ILI

outbreaks.

We developed four Functional Forms of transmissibility, based on the basic repro-

duction number R
0

as a function of climate. These Functional Forms are dependent on

three di↵erent climate variables – temperature, absolute humidity, and relative humidity.

We then used the Functional Forms of R
0

within a stochastic SEIR-type epidemic model

framework, where three new compartments were added to allow us to simulate an hier-

archical observation process where not all infected individuals will be observed. These

Functional Forms were then used within a Bayesian model selection framework, utilising

random forests (RFs) to decide between the models in each location.

The results of this process showed that the exponential Functional Form with absolute

humidity best describes ILI in Mediterranean regions (Adelaide, Perth), while the step

Functional Form with absolute humidity best fits observed ILI patterns in subtropical

areas (Brisbane, Sydney). This suggests a complicated relationship between ILI and

climate, where absolute humidity is an important but not sole influencing factor in the

behaviour of seasonal ILI in Australia. We found that there is limited di↵erence between

the all-in and tournament RF model selection methods, suggesting that it does not matter

which method is used. However, the all-in process reduced the computational time by

approximately half.

In the Mediterranean regions where the exponential Functional Form was selected as

the best fit, the step Functional Form was selected as the second best fit; and vice versa

in subtropical regions where the step Functional Form was selected as the best fit.

By considering the out-of-bag (OOB) and misclassification error for each RF round,
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we saw that the RF process was able to reliably identify the underlying Functional Form

given simulations from multiple Functional Forms. Each round of the tournament RF

process had an overall OOB error of less than 10%, while the all-in rounds all had OOB

errors less than 13%. However, the selection between climate variables within Functional

Forms had varying levels of error, with the step Functional Form being the most similar

between climate variables and thus the hardest to correctly classify.

We then used ABC to fit simulations from the top two Functional Forms chosen

by the RF process in each location. We determined the WRMSE score of each of the

10,000 training simulations from each Functional Form and each location and determined

the best 5% score threshold. Using this, we generated simulations from the two chosen

Functional Forms until we had a set of 1,000 simulations from each Functional Form with

WRMSE score below that threshold.

The results of this showed that in Adelaide, Brisbane and Perth, the simulations

generated using ABC generally fit the true ILI data very well, but failed to accurately

model unusually large ILI peaks. In Sydney, neither Functional Form modelled the true

ILI data as accurately as in the other cities. However, when considering the realisations

of R
0

that generated the simulations, we saw in all cities that the Functional Form

selected by the random forest had R
0

realisations that generally showed the most distinct

seasonality similar in shape to the true ILI data.

3.5.2 Discussion of findings

Our results are in line with other experimental studies. Shaman et al. [79] found that

absolute humidity was the strongest driving factor in seasonal influenza, and the expo-

nential Functional Form, which was selected in subtropical climates, was first proposed by

these authors. However, other research indicates that relative humidity or temperature

also strongly influence ILI patterns [22]. Further, there is limited literature regarding the

step Functional Form with which to compare results, suggesting that more research in

this area is needed. In particular, further experiments to understand the e↵ect of humid-

ity and temperature on influenza and ILI transmission are needed to fully understand

the cause of ILI seasonality and how it changes by climate and location.

Within the RF model selection method, we chose prior distributions for each of the

parameters involved. These prior distributions were chosen in line with physical values
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where possible. In cases where the parameters did not represent physical values, the prior

distributions were chosen to be very wide, and uniform, to allow a wide range of values.

However, di↵erent prior distributions could be chosen and may have lead to a di↵erent

outcome in the RF model selection method. For example, the range of values of R
0

for

ILI, in the absence of seasonality, is debated in current literature and so other ranges are

possible [35].

We used the results of a RF to select the Functional Form with the highest proportion

of votes. However, this means that some information is discarded by not considering

the proportion of votes towards other Functional Forms. In Chapter 4, we will explore

ensemble methods to maximise the information from the RF that is used in our analysis.

As well as this, before simulations are used to train a RF, they undergo a validation

process. A parameter set is accepted if the first five simulations from a parameter set

show a persisting epidemic across all 10 years, with peaks occurring between May and

September (the winter months in Australia) each year. This e↵ectively conditions on the

parameter sets producing ‘realistic’ epidemics. There are other conditions that could be

placed on the simulations to ensure that the parameter sets are more consistent with

what we see in the data; however, over-conditioning can lead to over-fitting during the

ABC stage and so we chose to limit the conditions to only those two.

Interpreting the results from RF model selection method is challenging. There is

limited information about the decisions and tested variables leading to the development

of each individual tree in the RF, leading to di�culties in understanding why one model

was selected over another in each location. To aid in interpretation of the RF method

results, we considered the WRMSE scores and ABC fitting of the best two Functional

Forms in each location.

In terms of understanding why the RF method selected the particular Functional

Forms, we consider the shape of the R
0

realisations that generated the simulations ac-

cepted by the ABC method. In doing this, there is a noticeable pattern where the Func-

tional Form with R
0

realisations that have the strongest seasonal shape are the Functional

Forms selected by the RF process. This may contribute to why those Functional Forms

were selected.

Further, we can see that in general the mean R
0

values in the simulations accepted by

the ABC method were higher for the exponential Functional Form and lower for the step
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Functional Form. The exponential Functional Form was selected by the RF method in

the two Mediterranean locations (Adelaide and Perth), while the step Functional Form

was selected by the RF method in subtropical locations (Brisbane and Sydney). This

suggests that there may be some underlying relationship between the general climate of

an area and the transmissibility of ILI in the area.

Figures B.5 – B.7 in Appendix B show a comparison of temperature, absolute humid-

ity and relative humidity between the four locations over the years 2011–2013. Whilst

the climate variables follow a mostly similar pattern between locations, there are some

di↵erences. In particular, the absolute humidity seen in Brisbane and Sydney is more

varied than that seen in Adelaide and Perth. This may help to explain the di↵erent Func-

tional Forms selected in Adelaide and Perth (exponential Functional Form) compared to

Brisbane and Sydney (step Functional Form).

3.5.3 Assumptions and limitations

In future, it would be advantageous to perform this ABC fitting for all nine of the

Functional Forms in each city. It would also be more informative to use a greater number

of simulations within the ABC framework. However, due to computational and time

constraints this was outside the scope of the thesis.

Whilst the RF method appears to accurately select between Functional Forms and

climate variables, the choice of prior distributions for model parameters play a significant

role in the model selection process. It is therefore important that the prior distributions

are selected to have physical meaning, to ensure that the model selection process is

accurate to true ILI transmission. The assumptions we place on the prior distributions

are a limitation on the model, as inappropriate prior distributions may a↵ect the accuracy

of results. As well as this, the ASPREN data provides only a subset of actual ILI cases,

and so this provides only an estimate of the number of ILI cases in the real population.

This means that the accuracy of the RF model selection process depends on the accuracy

of the data. In some areas of Australia, such as Darwin or Hobart, there is very limited

ASPREN notification data and so it is not feasible to perform this method to analyse

the behaviour of ILI. As such, the results could be improved by finding a more complete

source of data.

The primary limitations in this model is the fact that we consider ILI as one illness
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with a single value of R̄
0

; in reality, ILI is a mixture of a large number of illnesses with

each having distinct characteristics. However, it is di�cult to determine between the

di↵erent ILI-contributing illnesses in a clinical setting, and so ILI is used due to the lack

of data on each individual virus. We also do not consider the evolution of viral strains

between years, which can cause a significant di↵erence in the value of R̄
0

each year [31].

Other limitations in the SEIR-type model that we use include that we do not consider

population dynamics, we assume that a fixed proportion of the population is susceptible,

and we utilise a fully-mixed model. We also do not use consider an age structure, which

may be significant due to the di↵erences in immunity and susceptibility between di↵erent

age groups. Further, we assume a static population size in each city and consider each

city independently, while in reality there is significant travel and migration between cities.

A limitation of the RF model selection process is that it can be a ‘black box’ – in other

words, we see only the input and the output of the RF, but we are not able to observe the

variables and decisions used to generate each tree [81]. This means that it can be di�cult

to analyse why the particular model is selected as best, and can mean that issues and

undesirable e↵ects may go unnoticed. However, utilising ABC with the same model and

prior distributions and comparing the results allows us to further understand whether

the RF model is e↵ective at selecting the ‘best’ Functional Form. Analysing variable

importance in the RF may also help to improve understanding and interpretation of

the model selection results. As well as this, the true relationship between climate and

ILI is likely to be far more complicated than any of our individual Functional Forms,

meaning that the RF model selection process is being performed without a true model

as a candidate.

Finally, a limitation within the ABC model fitting is the visualisation of the results.

In Section 3.4.2, fan charts are shown to give an idea of the average behaviour of the

accepted ILI datasets and realisations of R
0

. However, as we see in the plots in Appendix

B (Figures B.1 – B.4), the individual realisations of R
0

are very diverse. This means that

it is challenging to accurately interpret and visualise the ABC results.

3.5.4 Future work

Possible further extensions to this model include adding an age structure, a household

structure, or including human movement within the population. This would allow us
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to better understand how ILI spreads in human populations that are not fully mixed.

Adding in other possible factors such as school holiday dates or antigenic drift may also

refine results and increase understanding of the exact drivers of ILI. However, further

experimental models play a significant part of this understanding, as they allow us to

study how the viral capsule and resulting transmission is a↵ected by di↵ering temperature

and humidity which can then be applied to population-level studies.

The goal of understanding the impact of climate variables on annual ILI epidemics is

to be able to forecast the start and peak of the ILI season, allowing healthcare workers

and the public health system to e↵ectively manage resources. In the following chapter,

we explore using these results within an ensemble framework to forecast ILI, and further

understand which climate variables may be a↵ecting the spread of seasonal ILI.



Chapter 4

Ensemble forecasting

In this chapter, we consider the problem of forecasting the peak timing of ILI incidence

in Australia using between one and seven years of historical data. We explore the use of

ensemble forecasting with the nine Functional Forms introduced in Chapter 3 to predict

the peak week of ILI in 2014 in each of the four Australian cities: Adelaide, Brisbane,

Perth and Sydney. We compare two di↵erent score metrics to select top posterior forecasts

from each of the nine Functional Forms, and four di↵erent techniques for calculating

ensemble weights. Finally, we compare the forecast skill of the resulting ensemble forecasts

to determine whether one method is most e↵ective at forecasting the peak timing of ILI.

4.1 Introduction

The e↵ective management of seasonal influenza and ILI requires careful resource alloca-

tion by health care services, and to e↵ectively manage resources it is important to know

when the ILI season is likely to reach a peak [82]. However, the problem of forecasting

ILI is challenging due to complex interactions between the large number of factors that

a↵ect disease transmissibility. As well as this, the range of diseases comprising ILI, the

seasonal and geographic variation in transmissibility, and the irregularity of seasonal ILI

epidemic timing make forecasting ILI a formidable undertaking [19, 39].

Due to the complexity of seasonal ILI, it is unlikely that there exists any one model

to fully explain the behaviour and characteristics of ILI across multiple seasons. Instead,

some models will accurately capture distinct features and fail to capture others. By

combining multiple models via an ensemble, we may increase the likelihood of accurately

75
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representing multiple features of ILI behaviour [83, 84].

In this chapter, we present the framework for ILI forecasting using ensemble fore-

casting techniques along with approximate Bayesian computation and machine learning

model selection. This work builds on the research presented in Chapter 3, with a focus

on forecasting future ILI seasons using historical ILI data. We present an example of this

prototype forecasting technique using 10,000 simulated ILI datasets from candidate mod-

els, and forecast the full 2014 ILI season from the end of 2013. Performing ILI forecasts

6 months in advance is of course impractical. We apply our proposed method in this

context for consistency with the previous chapter, and for simplicity of implementation.

We expect the method to be able to capture general features of seasonal ILI such as the

overall shape of the season, but should not expect highly accurate forecasts. Nonetheless,

as we will show, the method performs well as a proof-of-concept.

There are many aspects of seasonal ILI epidemics that can a↵ect the allocation of

health care resources in public health systems, including the number of people infected,

the peak of the epidemic, and the severity of particular strains of ILI. Here, we focus

on forecasting the peak week of the epidemic – the week with the greatest number of

individuals su↵ering from ILI symptoms. We use a variety of ensemble methods to

forecast the timing of the 2014 peak of seasonal ILI, in Adelaide, Brisbane, Perth and

Sydney. We compare two di↵erent score metrics for constructing component forecasts,

and four techniques for generating the model weights.

4.2 Method summary

Recall that in Chapter 3 we introduced nine Functional Forms of transmissibility,

Linear: R
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0
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3

x
3

(t)) i = 1, 2, (4.1)

Exponential: R
0

(t) = Rmin

0

+ (Rmax

0

�Rmin

0

)eaixi(t) i = 1, 2, 3, (4.2)

Step: R
0

(t) = 1{xi(t)�s}R
base

0

+ 1{xi(t)<s}R
elev

0

i = 1, 2, 3, (4.3)

Sinusoidal: R
0

(t) = �Acos(( 2⇡
730

)(t+ v)) + R̄
0

, (4.4)

where i indexes the climate variables (absolute humidity (i = 1), relative humidity (i = 2),

and temperature (i = 3)), and xi(t) represents the climate measurement of variable i at
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time t, each scaled to the interval [�1, 1]. Section 3.3.1 describes the Functional Forms

in detail.

These Functional Forms each approximate disease transmission in a di↵erent way, and

are used in an SEIR-type stochastic compartmental model described in Section 3.3.2. In

Chapter 3 we used a random forest model selection process to determine which Functional

Form best represented ILI transmission in the four di↵erent locations around Australia.

We found that no single Functional Form was best everywhere; in Adelaide and Perth

the exponential Functional Form using absolute humidity was the selected model, whilst

ILI in Brisbane and Sydney was best described by the step Functional Form, also using

absolute humidity. This di↵erence suggests that while some Functional Forms are good,

none of them are an ideal representation of ILI transmission.

To improve the approximation of ILI in a forecasting framework, we consider ensem-

bles of forecasts from these Functional Forms. Ensemble modelling works by combining

forecasts from multiple di↵erent models to improve predictions. Since there is no single

correct model for describing ILI, it is often advantageous to combine forecasts, because

di↵erent models are potentially predictive in di↵erent ways. Ensembles of forecasts also

allows for uncertainty in model choice [85], and as such they are often used in meteoro-

logical applications for forecasting weather. In this chapter, we develop ensembles using

a weighted sum of the nine Functional Form forecasts, comparing four di↵erent methods

of selecting the ensemble weights.

We choose to test our approach to forecasting the peak week of ILI using between 1 and

7 years of training data, to understand how forecast skill may be a↵ected by the amount

of available historical ILI data. With this goal, we perform our forecast with multiple sets

of training years: 2013 alone, 2012–2013, 2011–2013, 2010–2013, 2009–2013, 2008–2013,

and 2007–2013, all used to predict the peak week of ILI in 2014. We choose to predict

the peak week in 2014 as this is the latest year for which we have full ILI notification

data in all cities, allowing us to use the maximum possible number of training years.

For each Functional Form and range of training data, we construct a posterior forecast

using each of the ABC score metrics described in Sections 4.3.1 and 4.3.2. In practise,

this forecast consisted of 100 simulations. We call this set of 100 simulations the ‘forecast

set’. From the simulations, we can then construct a probabilistic forecast of peak week

using Kernel Density Estimates (KDEs) as described in Section 2.5, to estimate the
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distribution of peak weeks from the individual simulations. Then we use four di↵erent

methods, described in Section 4.5, to determine the model weightings used to form the

ensembles. The ensemble forecast is then the weighted sum of the forecasts from each of

the nine Functional Forms, where the model weightings sum to 1.

This process is repeated for each set of training years, for each score metric, and each

method of selecting model weightings. By generating a forecast for the peak week in 2014

from each of these methods, we can compare the skill and determine which method is

most appropriate for this application.

This ensemble forecasting method is summarised in Algorithm 3, where we utilise

m = 9 Functional Forms, 1  t  7 training years, and select our threshold ✏ to be the

99th percentile of simulation scores. We always test our predictions on the year 2014 to

maintain consistency between cities.

Generate N simulations from m models, over t training years;

for s = 1 to t do

calculate score D for each simulation of each model;

end

Sum the scores for each simulation over the t training years;

Select the simulations with the lowest scores up to a chosen

threshold ✏ to form set of forecasting simulations Sm;

Calculate the Kernel Density Estimate of peak week for the

following year for each model m using the set of simulations Sm;

Determine the ensemble model weightings;

Calculate the weighted sum of m Kernel Density Estimates using

these model weightings, to form the ensemble forecast of the

peak week of the following year;

Use this ensemble KDE to predict the peak week of the following

year.

Algorithm 3: KDE-based ensemble forecasting method.
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4.3 Training methods

To forecast future ILI epidemics, we use an ABC-style forecasting framework, producing

a forecast consisting of posterior simulations, from each of 9 di↵erent Functional Forms.

From each Functional Form, we start with 10,000 simulated 10-year ILI epidemics from

the prior distributions described in Section 3.3.4. These simulations are not fitted in

any way and so may vary wildly from the true ILI observations. To obtain the set of

posterior simulations, we choose those simulations that are most similar to the true ILI

observations. We do this by calculating a score for each simulation, and accepting only

simulations with a score better than the threshold ✏ over the set of training years.

Specifically, for each simulation, we calculate a score Dt for every training year t by

two di↵erent methods, detailed below. Then simulations are accepted if the sum of these

annual scores is below the threshold ✏, i.e:

NX

t=1

Dt  ✏,

where N is the number of years used for training. The resulting set of posterior simula-

tions are then simulated forward to forecast the following year. In our case, we choose

our threshold ✏ to keep the best-fitting 1% of simulations, or the 99th percentile, with

each Functional Form having a di↵erent threshold.

There are a number of possible score metrics that could be chosen. In this chapter,

we consider two di↵erent score metrics - one training only on the peak week of historical

ILI seasons (Section 4.3.1), and another which uses a weighted root mean squared error

(WRMSE) to take into account all ILI observations in the training years (Section 4.3.2).

4.3.1 Peak week

The first score metric that we consider is dependent only on the timing of historical ILI

peaks. We consider this score metric as it is the same metric that we are trying to predict

through our forecasts. In this score metric, Dt is given by the di↵erence between the week

number of the peak week of ILI in the simulated data and in the true data. The weeks

in a year are numbered from 1–52, where week 1 is the week starting on the 1st Monday

of the year. We use the function
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Dt = |i
true

� i
candidate

|,

where i
true

is the number of the peak week of ILI in the true data for training year

t, and i
candidate

is the number of the peak ILI week in the simulated data over the same

year t. The absolute value of this is taken as we consider only the di↵erence in peak week

in the simulated ILI and the true ILI data, not whether the simulated ILI peak occurred

before or after the true peak.

4.3.2 Weighted root mean squared error

Our second approach is to instead fit to the full season of ILI data. We choose the

weighted root mean squared error (WRMSE), introduced in Section 2.2:

Dt =

vuut 1

n

nX

i=1

p
truei + 1⇥ (truei � candidatei)2.

We calculate the score Dt over each of the training years t individually, where n = 52

weeks, and for each week i, truei is the number of infectious individuals recorded in the

true ILI data, and candidatei is the number of infectious individuals in the simulated

data in that week.

Using this WRMSE score metric has the advantage that the score can be updated each

week; this allows the forecast to take into account new observations during the season to

improve the forecast as the year progresses. By using only peak week, it is not possible

to update progressively as the entire year of observations is needed to determine the peak

week timing. However, in this chapter we focus solely on producing peak week forecasts

at the beginning of the year.

4.4 Developing forecasts and assessing skill

The ensemble model is a weighted sum of the probabilistic forecasts from the nine Func-

tional Forms, calculated under the chosen training method, and with model weights de-

termined using the chosen weighting method. We determine the probabilistic forecast for

the 2014 peak week using each Functional Form individually and calculate the weighted

sum of those forecasts. This process is illustrated in Figure 4.1, showing an example
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Figure 4.1: A conceptual diagram showing the process of creating an ensemble forecast

from individual model forecasts.

of two individual model forecasts being combined into a single probabilistic ensemble

forecast with weights w
1

and w
2

.

To produce an estimate of the distribution of the predictions of the 2014 peak ILI week

from each Functional Form, we use Kernel Density Estimation (KDEs), as described in

Section 2.5. Each Functional Form has a forecasting set that has been determined using

the training data. From these forecasting sets, we determine the peak week of ILI in

2014 in each of the 100 simulations, and construct a KDE. We can then directly calculate

the weighted sum of these forecasts, to produce a single probabilistic forecast that is the

weighted ensemble of the forecasts of the nine Functional Forms.

To assess the performance of each ensemble technique, we consider the forecast skill

[86]. Forecast skill is a common measure of the accuracy of a forecast. In this case, we

consider the forecast skill to be the probability that the ensemble method predicts that

the 2014 peak ILI week correctly. For example, in Figure 4.2, if the true peak week was

week 36, then the model would have a forecast skill of 0.11. It is also possible to reduce

the rigidity of the forecast skill assessment by considering peak weeks within ±1 week of

true peak week to be ‘correct’ [33].

4.5 Ensemble weighting methods

To develop weighted ensemble forecasts, we need to calculate the weighting given to

each model. There are many possible methods of calculating model weights. Here, we
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Figure 4.2: An example probabilistic forecast determined using a Kernel Density Estimate

(KDE) for the peak week of ILI in 2014, showing the probability of the peak week

occurring in each week between weeks 25 and 45. The red lines show the calculated skill,

assuming that the true peak week occurred in week 36.

explore three di↵erent methods of calculating the model weights within our ensemble as

well as considering a single Functional Form in each location as selected in Chapter 3.

Specifically, we select the Functional Form that was voted as best by the random forest in

each location: exponential (Equation 4.2) using absolute humidity in Adelaide and Perth,

and step (Equation 4.3) using absolute humidity in Brisbane and Sydney. We do this to

assess whether the forecasting is improved by using ensemble techniques rather than a

single model. We calculate forecast skill (described in Section 4.4) for each ensemble as

well as the best Functional Form by location.

4.5.1 Equal weighting

To act as a baseline against which to compare other ensemble weighting techniques, we

consider an ensemble with equal weightings between models. This allows us to determine

if the ensemble weighting techniques are improving the forecast skill.

4.5.2 Optimised weighting

Another method to determine the weights of the ensemble is to optimise model weightings

over the training years. This maximises forecast skill of the ensemble model over the
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historical ILI training years, with the aim of producing the best forecast. This method

is equivalent to calculating the maximum likelihood over the ensemble weights.

This method uses the probabilistic forecast for each Functional Form, determined

using one of the two training methods described in Section 4.3. We then consider each

of the training years individually, using this forecast. First, we determine the true peak

week of ILI in each of the training years. Then, we calculate p(t)j as the proportion of

simulations in the forecasting set for model j and year t that peak in exactly the correct

year. This means that p(t)j is the proportion of the top 1% of simulations from model j

that hit exactly the correct peak week in year t.

We aim to determine weightings on the Functional Forms that maximises the forecast

skill of the ensemble over the training data. We define w as the vector of weightings on

the Functional Forms, and maximise the forecast skill over the training years with the

objective equation,

max
w

X

t

ln

 
X

j

wjp
(t)
j

!
,

subject to

0  wj  1

and

X

j

wj = 1,

where t is the year and j is the model, and wj is the weighting given to model j. The sum
P

j wjp
(t)
j is the ensemble probability of the correct peak week. The initial weightings w

are taken to be equal across all Functional Forms.

We evaluate the solution to this objective equation using the R function optim, from

the R package stats [87], to produce the vector of optimal weights w, for each combi-

nation of ILI training years and individual forecast fitting method.

4.5.3 Random forest weighting

We propose a method to choose ensemble weights based on the output of a RF. We utilise

a RF framework based on Chapter 3 of this thesis, where random forests are used to select
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between the 9 Functional Forms given in Equations (4.1)–(4.4). Using the RF framework

provides an alternative method to the traditional optimisation, and may potentially be

able to provide accurate solutions using less data than other methods [88].

Using this method, a random forest is trained on the 10,000 simulated ILI datasets

from each of the Functional Forms across the training years. The random forests produce

an output where a proportion of decision tree votes are assigned to each of the Functional

Forms, so that the nine proportions sum to 1. We can therefore use these vote proportions

directly as model weightings.

4.6 Results

Figures 4.3–4.10 show the results of the ensemble forecasting of peak week using the

di↵erent methods of training and determining weights in each city. Figures 4.3, 4.5, 4.7

and 4.9 show results trained using peak week, while Figures 4.4, 4.6, 4.8 and 4.10 show

WRMSE. In each figure, Plot (A) shows the training data, Plot (B) shows the forecast

from the optimised and random forest ensembles, Plot (C) shows the forecast of each

individual Functional Form, and Plot (D) shows the evolution of forecast skill over time

for each weighting method
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Adelaide

The results in Adelaide are given in Figures 4.3 and 4.4. From the Plot (D) in each

of these Figures, we can see that the random forest method consistently produces the

highest skill when compared to the optimisation method. However, the skill of the ex-

ponential Functional Form using absolute humidity is slightly higher than the random

forest, suggesting that in Adelaide (in 2014), an ensemble of Functional Forms does not

necessarily improve forecast skill over having only the Functional Form voted best by the

random forest; this is likely because the best Functional Form produces a very accurate

forecast in this case, as seen in both figures’ Plot (C). We can see from the Plots (B)

in both of these figures that the forecast generally improves once three or more years of

training data are added, with the plots becoming more tightly centred around the true

peak week, for both weighting methods. Plots (A) show that the 2014 ILI season appears

to peak at a relatively similar time to the previous years of ILI, which contributes to the

forecast skill improving as more training years are added.

Considering Plot (D) in Figure 4.3, we can see that initially adding more training

years improves the forecast skill when using the peak week training method. However,

when more than three training years are considered the forecast does not improve further.

For the random forest and the exponential Functional Form using absolute humidity, fore-

cast skill decreases slightly as more training years are added. The optimisation forecast

method shows a very inconsistent forecast skill, improving with some added years and

worsening with others. Plot (D) in Figure 4.4 shows no major changes in forecast skill

when more training years are added using the WRMSE training method.

Plots (C) show the peak week prediction of each of the individual Functional Forms.

The linear Functional Form using relative humidity shows a distinct spikiness; this is due

to a small number of weeks being forecast as peak week with a high level of certainty

across the 100 simulations. We can see in both Figures that the exponential Functional

Form using absolute humidity has the highest value at the correct peak week, further

reinforcing this Functional Form as being the most appropriate for Adelaide. When

comparing between the peak week and WRMSE methods in Plots (D), we can see that

the peak week method (Figure 4.3) results in higher skill scores than the WRMSE method

(Figure 4.4). This is intuitive, as we are training only on the feature that we wish to

predict.
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Figure 4.3: The probabilistic forecast results in Adelaide, where the forecasting set is

trained using the peak week method. Plot (A) shows the peak week of each year from

2007–2014. Plot (B) compares the forecast of ensembles developed using the optimisation

and random forest methods for model weighting, and shows how these results evolve as

more years of training data are included. Plot (C) compares the forecast of each individual

Functional Form, with seven years of training data. Finally, Plot (D) compares the

forecast skill of the four di↵erent weighting methods: optimisation, random forests, equal

weighting and exponential Functional Form using absolute humidity. The vertical line in

Plots (B) and (D) represents the true ILI peak week in 2014.
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Figure 4.4: The probabilistic forecast results in Adelaide, where the forecasting set is

trained using the WRMSE method. Plot (A) shows the true ILI observations for each

year from 2007–2014. Plot (B) compares the forecast of ensembles developed using the

optimisation and random forest methods for model weighting, and shows how these results

evolve as more years of training data are included. Plot (C) compares the forecast of each

individual Functional Form, with seven years of training data. Finally, Plot (D) compares

the forecast skill of the four di↵erent weighting methods: optimisation, random forests,

equal weighting and exponential Functional Form using absolute humidity. The vertical

line in Plots (B) and (D) represents the true ILI peak week in 2014.
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Brisbane

Figures 4.5 and 4.6 present the results from the ensemble forecasting in Brisbane. Unlike

in Adelaide, in Brisbane Plots (D) show that, with both training methods, the optimi-

sation weighting tends to perform better than the random forest weighting. The general

trends in skill are the same for both training methods: optimisation weighting is the best,

followed by random forest weighting, then equal weights, then the step Functional Form.

Plot (D) in Figures 4.5 and 4.6 show quite similar results. The forecast skill for

the random forest method, equal weights, and the step Functional Form using absolute

humidity generally stays fairly constant regardless of how many training years are added.

The optimisation method, however, at first increases forecast skill as more training years

are added. When more than three training years are added, the forecast skill of the

optimisation method decreases. This is likely due to di↵erent combinations of Functional

Forms being selected by the optimisation method. In particular, Plot (D) in Figure 4.6

shows a very distinct drop in forecast skill when the fourth training year is added. This

inconsistency in forecast skill over the training years is likely because the peak week of

2014 is unusually early, as seen in Plot (A) of both figures.

The random forest weighting technique, combined with the peak week training method,

generally outperforms both the individual Functional Form and the equal weighting. The

step Functional Form is outperformed by all of the other methods, as shown in Plot (D)

of both figures. In Plot (B) in both figures, we can see that the forecast does not gen-

erally improve as more training data is added, with the optimisation forecast predicting

a later peak week and the RF forecast predicting an earlier peak week compared to the

true ILI peak. In Plot (C) in both figures, the KDE of the step Functional Form does

not have a single strong peak, for any climate variable. This means that the simulations

that fit well to previous years of ILI do not predict the same peak week, suggesting that

a di↵erent training method may be more e↵ective or that the model is overfitting to the

earlier training years. Finally, when comparing between the peak week and WRMSE

training methods using Plot (D) from both figures, we can see that using the peak week

method consistently produces a forecast with higher skill.



4.6. Results 89

Figure 4.5: The probabilistic forecast results in Brisbane, where the forecasting set is

trained using the peak week method. Plot (A) shows the peak week of each year from

2007–2014. Plot (B) compares the forecast of ensembles developed using the optimisation

and random forest methods for model weighting, and shows how these results evolve as

more years of training data are included. Plot (C) compares the forecast of each individual

Functional Form, with seven years of training data. Finally, Plot (D) compares the

forecast skill of the four di↵erent weighting methods: optimisation, random forests, equal

weighting and step Functional Form using absolute humidity. The vertical line in Plots

(B) and (D) represents the true ILI peak week in 2014.
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Figure 4.6: The probabilistic forecast results in Brisbane, where the forecasting set is

trained using the WRMSE method. Plot (A) shows the true ILI observations for each

year from 2007–2014. Plot (B) compares the forecast of ensembles developed using the

optimisation and random forest methods for model weighting, and shows how these results

evolve as more years of training data are included. Plot (C) compares the forecast of each

individual Functional Form, with seven years of training data. Finally, Plot (D) compares

the forecast skill of the four di↵erent weighting methods: optimisation, random forests,

equal weighting and step Functional Form using absolute humidity. The vertical line in

Plots (B) and (D) represents the true ILI peak week in 2014.
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Perth

The results in Perth are given in Figures 4.7 and 4.8. From Plot (D) in Figure 4.7, we can

see that the exponential Functional Form using absolute humidity has the highest forecast

skill when using the peak week, closely followed by the optimised method. However, there

is not a large di↵erence between methods, and generally all methods had a low forecast

skill regardless of the number of training years. When using the peak week method,

the random forest method performs nearly as well as the optimisation method and the

exponential Functional Form using absolute humidity; however, when using the WRMSE

method it does not perform as well. The equal weighting method performed similarly to

the other three weighting methods regardless of the training method used.

Plot (D) in Figures 4.7 and 4.8 shows the forecast skill decreasing as more training

years are included. We can see in Figure 4.7 that in general, as more training years are

added, the forecast skill decreases quite significantly. This is likely due to the unusually

early timing of the peak week in 2014, as shown in Plot (A). When the second training

year (2012) is added, the forecast improves slightly. Plot (A) shows that the 2012 peak

week occurred at a similar time to 2014, but that the other years generally peaked much

later. This helps to explain why the forecast skill drops significantly when the next

training years are added. Plot (D) in Figure 4.8 shows a slightly di↵erent pattern, with

the forecast skill changing a lot with the addition of more training years but with no

visible long-term trends.

In Plot (B) in both figures, we can see that the forecast appears to improve slightly

as more training years are added, but that it consistently predicts a later peak week than

the true peak using the WRMSE method. This can be explained by looking at Plot (A)

in Figure 4.7, which shows the peak week in 2014 occurring earlier than in most of the

previous years. In Plot (C) in Figure 4.7, we can see that the exponential Functional Form

using absolute humidity appears to perform better than the other Functional Forms when

using the peak week training method. However, this is not true when using the WRMSE

training method as seen in Plot (C) of Figure 4.8, where the exponential Functional Form

using absolute humidity shows a distinct spikiness, due to certain weeks being predicted

as peak week across the 100 simulations with a high level of certainty. Finally, when

comparing the peak week and WRMSE training methods, the WRMSE method appears

to outperform the peak week method, producing predictions with higher skill than the
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peak week method.
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Figure 4.7: The probabilistic forecast results in Perth, where the forecasting set is trained

using the peak week method. Plot (A) shows the peak week of each year from 2007–2014.

Plot (B) compares the forecast of ensembles developed using the optimisation and random

forest methods for model weighting, and shows how these results evolve as more years of

training data are included. Plot (C) compares the forecast of each individual Functional

Form, with seven years of training data. Finally, Plot (D) compares the forecast skill of

the four di↵erent weighting methods: optimisation, random forests, equal weighting and

exponential Functional Form using absolute humidity. The vertical line in Plots (B) and

(D) represents the true ILI peak week in 2014.
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Figure 4.8: The probabilistic forecast results in Perth, where the forecasting set is trained

using the WRMSE method. Plot (A) shows the true ILI observations for each year from

2007–2014. Plot (B) compares the forecast of ensembles developed using the optimisation

and random forest methods for model weighting, and shows how these results evolve as

more years of training data are included. Plot (C) compares the forecast of each individual

Functional Form, with seven years of training data. Finally, Plot (D) compares the

forecast skill of the four di↵erent weighting methods: optimisation, random forests, equal

weighting and exponential Functional Form using absolute humidity. The vertical line in

Plots (B) and (D) represents the true ILI peak week in 2014.
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Sydney

Figures 4.9 and 4.10 show the forecasting analysis results in Sydney. From Plot (A) in

both figures, we can see that the peak week in 2014 occurs later than in any previous

training year; this explains the results in Plot (B) of both figures, which shows that both

the random forest and optimisation weighting methods predict the peak week to fall

earlier than the true peak week. This forecast does not improve as more training years

are added, suggesting that the 2014 peak week occurs unusually late.

Plot (D) in both of these figures shows that the random forest weighting performs

better than the optimisation weighting, regardless of the training method used. The step

Functional Form using absolute humidity also performs well, outperforming all other

weighting methods when using the WRMSE training method. The pattern of forecast

skill is distinct between the peak week and WRMSE methods as more years of training

data are added. Plot (D) of Figure 4.9 shows that for the equal and RF weighting

methods, the forecast skill is fairly consistent regardless of the number of training years.

The exponential Functional Form with absolute humidity improves slightly as more years

are added. The optimisation method, however, initially decreases as more years are

added. However, once four training years are used, the forecast skill begins to improve.

This is likely related to the timing of ILI peaks seen in Plot (A). In Plot (D) in Figure

4.10, we can see that when more than three training years are added using the WRMSE

method, the forecast skill of all weighting techniques remains fairly consistent.

Plot (C) in both figures shows that the step Functional Form with absolute humidity

is not accurate in predicting the peak week; this again suggests that a di↵erent training

method should be implemented. Finally, when comparing performance of the peak week

and WRMSE training methods, we see that the peak week training method produces

considerably higher forecast skill than the WRMSE method.

Overall, we saw across all four cities that generally the forecast skill did not improve

as more training years were added. We also found that in all locations apart from Perth,

that the peak week training method produced a higher forecast skill than the WRMSE

method. There were mixed conclusions about the best technique of selecting ensemble

weights, with the random forest method outperforming the optimisation in some locations

but not others.
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Figure 4.9: The probabilistic forecast results in Sydney, where the forecasting set is

trained using the peak week method. Plot (A) shows the peak week of each year from

2007–2014. Plot (B) compares the forecast of ensembles developed using the optimisation

and random forest methods for model weighting, and shows how these results evolve as

more years of training data are included. Plot (C) compares the forecast of each individual

Functional Form, with seven years of training data. Finally, Plot (D) compares the

forecast skill of the four di↵erent weighting methods: optimisation, random forests, equal

weighting and step Functional Form using absolute humidity. The vertical line in Plots

(B) and (D) represents the true ILI peak week in 2014.
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Figure 4.10: The probabilistic forecast results in Sydney, where the forecasting set is

trained using the WRMSE method. Plot (A) shows the true ILI observations for each

year from 2007–2014. Plot (B) compares the forecast of ensembles developed using the

optimisation and random forest methods for model weighting, and shows how these results

evolve as more years of training data are included. Plot (C) compares the forecast of each

individual Functional Form, with seven years of training data. Finally, Plot (D) compares

the forecast skill of the four di↵erent weighting methods: optimisation, random forests,

equal weighting and step Functional Form using absolute humidity. The vertical line in

Plots (B) and (D) represents the true ILI peak week in 2014.
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4.7 Discussion

4.7.1 Summary

A goal of understanding the impact of climate variables on annual ILI epidemics is to be

able to forecast the start and peak of the ILI season, allowing healthcare workers and the

public health system to e↵ectively manage resources. In this chapter, we have introduced

a method to forecast the peak week of ILI infection using an ensemble of models based on

the nine Functional Forms for climate-driven transmission introduced in Chapter 3. We

have explored two di↵erent training methods, and four techniques for selecting ensemble

model weightings. We have also used a number of years of historical ILI data to explore

the e↵ect of changing the amount of training data using these techniques.

We tested the forecasting skill for each ensemble, and analysed how the ensemble

methods di↵er to determine which ensemble of Functional Forms is most suitable in each

location.

We introduced two training methods to determine which simulations from each Func-

tional Form to use in the forecast. One training method was based only on the timing of

the peak week in previous years, while the other training method was the weighted root

mean squared error (WRMSE) which uses more information from past ILI data.

We also considered four di↵erent methods to determine the weighting on each Func-

tional Form within the ensemble: optimisation, random forest, equal weights, and best

Functional Form. The optimisation method maximised the proportion of simulations

that correctly predict the peak week in the training data. The random forest weighting

used the same random forest technique as used in Chapter 3, and used the proportion of

votes from the random forest as the weightings on the model. The equal weights method

is simply equal weights given to each model, and used as a control. Finally, we also tested

using only one Functional Form rather than an ensemble of all nine. The Functional Form

was chosen as the one voted as best by the random forest in each location in Chapter 3:

exponential Functional Form using absolute humidity in Adelaide and Perth, and step

Functional Form using absolute humidity in Brisbane and Sydney.

We also used a varying number of training years to assess how the forecast skill

changes as the amount of data used in training is increased. Finally, we assessed the

performance of the ensembles by calculating the skill; that is, the probability that the



4.7. Discussion 99

ensemble predicted the correct peak week of ILI in 2014.

4.7.2 Discussion of findings and limitations

It is important to note that this chapter is presented as a prototype of a new method for

developing ILI forecasts. If this were to be done in practice, it would be advantageous

to include many more simulations and to update the forecast weekly; unfortunately, this

is outside the scope of this thesis due to computational and time constraints. In this

chapter, we use the top 1% of simulations from the training set of 10,000 simulations.

This means that each forecast is made up of only 100 simulations from each Functional

Form. If the number of simulations were increased significantly, the forecast skill may

improve.

As well as this, we forecast the peak week only from the start of 2014. In practice, we

would update the forecast weekly as new ILI data is received. This should significantly

improve the forecasts. As it is, by forecasting only from the start of the year we have no

information about the ILI cases at the start of the season. This makes it very di�cult

to accurately predict the peak week, especially if the 2014 peak week occurs unusually

early or late. We believe that the forecast would be greatly improved if the number

of simulations was increased and the forecast updated weekly. It would also be more

informative to consider the forecast for multiple di↵erent individual seasons. If the 2014

ILI peak week occurs at an unusual time in a location, then the results would be influenced

according to that. If we instead consider the forecasts in multiple individual years, then

we would gain more insight into the true behaviour and accuracy of the forecasts.

Surprisingly, we found overall that increasing the number of years of historical ILI

training data is not necessarily advantageous. This is especially the case when the ILI

season being predicted has an unusually early or late peak. In Adelaide, the forecast skill

improved as more training years were added, but this was not true in the other locations

being considered. This is likely because the 2014 peak ILI week in Adelaide occurred at

a similar time to previous years, which again was not true in the other locations. We also

see that the skill of the forecast depends on the specific training years being added; when

a training year is added that has a very di↵erent peak to the 2014 peak, the forecast skill

drops, and vice-versa. This suggests that testing the method on a single season is not

ideal. Due to time constraints we were only able to test the method on one forecasting



100 Chapter 4. Ensemble forecasting

year, and chose to predict the peak week in 2014 as it was the latest year for which we

had full ILI notification data in all cities.

In Sydney and Brisbane, the step Functional Form using absolute humidity is selected

as best by the random forest. However, we can see that the estimate of peak week in 2014

has no distinct peak in either of these locations; meaning that the simulations selected

by both training methods appear to predict the peak to occur at any time between week

25 and 45. It is surprising that the step Functional Form is not good at forecasting, as

Chapter 3 saw the step Functional Form fitting well to ILI in most locations following

ABC fitting. This may be partially due to the step Functional Form being highly sensitive

to parameter choice. It also suggests that neither the peak week nor the WRMSE training

method is particularly appropriate. This is an area that may be improved on with further

research.

As well as this, considering other scoring metrics alongside forecast skill may provide

further insight into the performance of the ensemble techniques. We also saw no strong

conclusion as to the best method of selecting weights, with the RF method outperforming

the optimisation method in some locations but not others.

We saw that in Adelaide, Brisbane and Sydney, the peak week training method per-

formed better than the WRMSE method; while the WRMSE method outperformed the

peak week method only in Perth. This suggests that using the peak week is the most

appropriate training method for this application, meaning that we train the ensembles

only on the factor that we are trying to predict: peak week. However, this is only the

case when predicting the ILI season from the start of the year. In situations where it is

possible to include weekly surveillance data in the forecast, the WRMSE method would

be most appropriate as it can be updated as more data is received. The peak week

method can only be updated with a full year of ILI data.

Overall, we saw that there is no clear best weighting method, with the random forest

performing better than the optimisation method in some locations but not in others.

However, we see that in general the Functional Form selected as best by the random

forest appears to fit well, reinforcing the idea that the random forest is a useful technique

in epidemic model selection and could be used to inform ensemble weights. We also

saw that in most cases, the ensemble forecast showed improved skill over using a single

Functional Form.
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We recommend that model ensembles be used for forecasting, with the RF technique

for informing model weights over the optimisation technique. The RF ensembles showed

more stability in forecast skill, while the optimisation ensembles varied considerably be-

tween years. However, further testing would provide greater insight to which ensemble

technique is most e↵ective.
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Chapter 5

Conclusions and further research

5.1 Summary

Influenza-like illness (ILI) describes a syndrome characterised by a set of symptoms com-

mon to influenza and other similar viral illnesses. These symptoms are generally mild,

but can occasionally lead to serious illness or death, especially in patients with compro-

mised immunity, such as newborn babies or individuals su↵ering from chronic illnesses.

In Mediterranean and subtropical climates, such as in Australia, ILI outbreaks occur each

winter leading to significant pressure on healthcare systems. The exact reason for the

seasonality of these outbreaks is not fully understood, with animal and human models

showing conflicting evidence as to which climate variables may be driving ILI – suggesting

a complicated relationship between ILI transmission and climate variables.

The aim of this thesis was to further understand what climate factors drive these

seasonal ILI outbreaks by using new Bayesian machine learning model selection meth-

ods. We utilised a high-quality influenza-like illness dataset provided by the Australian

Sentinel Research Practises Network (ASPREN), and considered four locations around

Australia.

In Chapter 3, we developed four Functional Forms of transmissibility, based on the

basic reproduction number R
0

as a function of climate. These Functional Forms are

dependent on three di↵erent climate variables – temperature, absolute humidity, and

relative humidity. We then used these Functional Forms of R
0

within a stochastic SEIR-

type epidemic model framework, where three new compartments are added to allow us

to simulate an hierarchical observation process where not all infected individuals will be

103
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observed. This model was then used to simulate ILI epidemics over 10 years in each of

the four locations.

Using these simulated ILI epidemics, we applied a random forest (RF) model selection

method to select which Functional Form of R
0

within the SEIR-type model best fits the

known ILI data in each location. We then fit the top two Functional Forms in each

location, as selected by the RF, to the ILI data using approximate Bayesian computation

(ABC), allowing us to analyse the relationship between model fit and the RF model

selection method.

We found that the RF model selection framework was able to select Functional Forms

in each location with a low out-of-bag error, indicating that the results were meaningful.

In Adelaide and Perth, both Mediterranean climates, the exponential Functional Form

using absolute humidity was selected first by the RF, followed by the step Functional

Form using relative humidity. In Brisbane and Sydney, both subtropical climates, the step

Functional Form using absolute humidity was selected first, followed by the exponential

Functional Form using relative humidity. This indicates that while the overall climate

plays a part in the behaviour of seasonal ILI, absolute humidity appears to be the most

significant climate factor.

The Functional Forms selected first and second by the RF were then fitted to the true

ILI data using our ABC framework. We found that in all locations apart from Sydney,

both Functional Forms were able to accurately fit to the true data. In Sydney, the fit was

not as accurate as the other locations. We also found, when looking at the realisations of

R
0

that generated the accepted simulations in each location, that the Functional Forms

selected as best by the RF method were the ones with R
0

realisations that most closely

followed the pattern of the true ILI data.

Interpreting RF results in this type of framework is challenging. We chose to use ABC

to fit the first and second best Functional Form in each city, as voted by the RF method,

as a way of testing and validating our interpretation. We found that the Functional Form

voted best in each location seemed to fit slightly better than the Functional Form voted

second. This supports our interpretation of the RF model selection results. However,

correct interpretation of the RF remains a challenging task.

In Chapter 4, we turned to the problem of forecasting seasonal ILI using historical

data. We focussed on forecasting the timing of the peak week of ILI in 2014, using
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a variety of training year sets. We considered a variety of methods to fit a weighted

ensemble of forecasts from each of the Functional Forms, and tested the forecasting skill

for each ensemble. We then analysed how the ensemble methods di↵er to determine which

ensemble of Functional Forms is most suitable in each location and overall.

We used two di↵erent training methods to determine the set of simulations from each

Functional Form to use in the forecast. One training method was based only on the timing

of the peak week in previous years, while the other training method was the weighted

root mean squared error (WRMSE).

As well as the two methods of selecting simulations, we also considered four methods

of determining the weights on each Functional Form within the ensemble: equal weights,

optimisation, random forest, and best Functional Form. The equal weights method as-

signs equal weights to each model, and used as a control. The optimisation method is a

method traditionally used in ensemble modelling [83]. We used the optimisation method

to maximise the proportion of simulations that correctly predict the peak week in the

training data. The random forest weighting used the proportion of votes from the random

forest as the weights on each Functional Form, following the same technique as used in

Chapter 3. Finally, the best Functional Form method used a single Functional Form. The

Functional Form was chosen as the one selected by the random forest in each location in

Chapter 3: exponential Functional Form using absolute humidity in Adelaide and Perth,

and step Functional Form using absolute humidity in Brisbane and Sydney.

We found that increasing the number of years of historical ILI training data used to

train the forecast is not necessarily advantageous, especially in cases where the 2014 ILI

season has an unusually early or late peak. We found that in Adelaide, the forecast skill

improved as more training years were added. However, this was not consistent in the

other locations considered. We also saw that the forecast skill depends on the specific

training years being added; when a training year is added that has a very di↵erent peak

to the 2014 peak, the forecast skill drops, and vice-versa. However, the task of forecasting

an entire ILI season from the start of the year is challenging, and so the variability in

forecast score is not necessarily a reflection of the method, but of the di�culty of the

task itself.

In Adelaide, Brisbane and Sydney, using peak week to train the forecast outperformed

forecasts trained using the WRMSE method; while in Perth, the WRMSE method out-
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performed the peak week method. We also saw that the step Functional Form did not

produce very high prediction confidence, with the estimated distribution of predicted

peak week being much wider than that of the other Functional Forms. We also saw

that there did not appear to be a clear best weighting method, with the random forest

performing better than the optimisation method in some locations but not in others.

5.2 Discussion

The aim of this thesis was to increase our understanding of what climate factors drive

these seasonal ILI outbreaks. We found that absolute humidity appears to be the most

significant climate factor in driving seasonal ILI in Australia. In Chapter 3, the RF

model selection process selected Functional Forms using absolute humidity in all cities.

In Chapter 4, the forecasts using these selected absolute humidity-based Functional Forms

performed well in all cities except Brisbane. This suggests that the results are robust,

with absolute humidity playing an important role in seasonal ILI transmission.

The methods presented here are quite sensitive to the true ILI data. The ILI data

in Sydney is much noisier than that in the other cities, with more between-season ILI

activity. The forecast skill in Sydney is lower than the other cities, and the ABC fit

of both selected Functional Forms in Sydney is not as accurate as in the other cities.

This may be due to the noisiness of the ILI data in Sydney, suggesting that these results

may be improved if some level of data smoothing were to be implemented. There is also

uncertainty in interpreting the RF, raising the question of to what degree the results

are influenced by the data itself rather than the underlying climate-dependency of ILI

transmission.

We found throughout the thesis that the RF technique was informative for both

model selection and ensemble modelling applications. We found in Chapter 3 that the

RF model selection framework was able to select a Functional Form with a low out-of-

bag error. In Chapter 4, we saw that in general, the RF method for informing ensemble

model weights performed as well as, or better than, the traditional optimisation method.

Further refining the techniques presented in Chapter 4 would give further insight into the

di↵erence in forecast skill between the RF and optimisation methods. As well as this,

the black-box nature of RFs mean that results are challenging to interpret, leading to
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further uncertainty. However, in general, random forests appear to be a useful technique

for model classification in an infectious disease modelling framework.

Throughout this thesis, we focussed on nine climate-dependent Functional Forms for

transmissibility. We found that the exponential and step Functional Forms with absolute

humidity were selected by the RF method in Chapter 3. However, in Chapter 4, the step

Functional Form was unable to predict a particular peak week of ILI with a high degree

of certainty. This suggests that the step Functional Form is highly sensitive to parameter

choice, while the exponential Functional Form may be more robust. This also calls into

question the choice of score parameter. The WRMSE score weights within-season fit

more strongly than between-season fit. However, the step Functional Form does not

show distinct seasonality if unsuitable parameters are chosen; due to the nature of the

WRMSE score function, these realisations may still receive a good score due to their fit

within-season, despite not showing seasonality. Further refinement of the step Functional

Form and consideration to parameter prior distribution choice and score function would

likely increase the performance of the step Functional Form in the forecasting framework.

5.3 Further research and outlook

In Chapter 3, we use a modified SEIR-type stochastic compartmental epidemic model.

Possible further extensions to this model include adding an age structure, household

structure, or including human movement within the population. This would allow us

to better understand how ILI spreads in human populations that are not fully-mixed.

Adding in other possible factors such as school holiday dates or antigenic drift may also

refine results and increase understanding of the exact drivers of ILI. However, further

experimental models play a significant part of this understanding, as they allow us to

study how the viral capsule and resulting transmission is a↵ected by di↵ering temper-

ature and humidity which can then be applied to population-level studies. We could

also consider other Functional Forms for ILI transmission, and other machine learning

techniques alongside random forests.

For Chapter 4, there are many possible extensions that would be interesting to explore.

These extensions include considering more ensemble techniques; di↵erent methods of

training and model weighting; and considering di↵erent score metrics to gain further
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insight into model fit. It would also be interesting to consider the challenge of forecasting

other details of future ILI seasons, such as the size of the ILI peak as well or the length of

the ILI season. Testing the ensemble forecasting technique over more ILI seasons, rather

than only the 2014 season, may also provide further insight into the e↵ectiveness of the

method.

Another significant extension to Chapter 4 is to utilise this method in a framework

where the ensemble forecast can be updated as weekly ILI notifications are added. This

would increase the accuracy and usefulness of the technique. As well as this, it is im-

portant to implement this method with a large number of simulations. We used 10,000

simulations in this method, but ideally the use of 1,000,000 simulations should increase

the accuracy and reliability of the method. It would also be informative to consider other

techniques of choosing the set of simulations to be used in the forecast.

Another aspect that may be informative is to consider the geographic location of ILI

notifications to post-code level rather than simply state level, which may provide further

insight on the interactions between climate variables and ILI. It will also allow more

information to be gathered about the socio-economic factors in each location, which is

likely to be another factor relating to ILI transmission. If access to a large dataset of

confirmed influenza cases were available, it would be of great interest to repeat many of

these models and techniques for confirmed influenza. This would allow greater insight

into the transmission and spread of true influenza.
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In this Appendix, we present the derivation of the transition rates given in Table 3.2.

In deriving these equations, we ensure that the mean time to recovery is identical

regardless of the path taken through the system shown in Figure 3.2.

First, we see that the time to recovery when not observed is

T
not observed

=
2

2� + �
,

and the time to recovery when observed at some stage is

T
observed

= P (observed first stage)T
observed first

+ P (observed second stage)T
observed second

,

where T
not observed

denotes the time until recoveryT
observed first

denotes the time to recovery

when observed at the first stage, and T
observed second

denotes the time to recovery when

observed at the second stage. Therefore, by substituting in the values from Figure 3.2,

we get

T
observed

= P (observed first stage)

✓
1

2� + �
+

2

↵

◆
+P (observed second stage)

✓
2

2� + �
+

1

↵

◆
.

We can then consider the probabilities separately, with

P (observed first stage) =
�

2�+�

�(2�+�)+2��
(2�+�)2

=
2� + �

4� + �

and

P (observed second stage) =

2��
(2�+�)2

�(2�+�)+2��
(2�+�)2

=
2�

4� + �
.

Substituting these values into the above equation shows that

T
observed

=
2

2� + �
= T

not observed

,
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which can then be rearranged to show that

↵ = 3� + �,

as given in Table 3.2. The remaining values in Table 3.2 are simply derived from this and

from the values in Figure 3.2, taking into account that there are two time-steps per day

within this model.
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Appendix B

Figure B.1: Individual realisations of R
0

over the years 2011–2013 from the 10 top scoring

simulations from each Functional Form in Adelaide. The two Functional Forms, expo-

nential using absolute humidity and step using relative humidity, are the first and second

best as voted by the random forest model selection in Chapter 3.
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Figure B.2: Individual realisations of R
0

over the years 2011–2013 from the 10 top scoring

simulations from each Functional Form in Brisbane. The two Functional Forms, step using

absolute humidity and exponential using relative humidity, are the first and second best

as voted by the random forest model selection in Chapter 3.
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Figure B.3: Individual realisations of R
0

over the years 2011–2013 from the 10 top scoring

simulations from each Functional Form in Perth. The two Functional Forms, exponential

using absolute humidity and step using relative humidity, are the first and second best

as voted by the random forest model selection in Chapter 3.
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Figure B.4: Individual realisations of R
0

over the years 2011–2013 from the 10 top scoring

simulations from each Functional Form in Sydney. The two Functional Forms, step using

absolute humidity and exponential using relative humidity, are the first and second best

as voted by the random forest model selection in Chapter 3.
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Figure B.5: A comparison of temperature between locations over the years 2011–2013

with weekly averages.
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Figure B.6: A comparison of absolute humidity between locations over the years 2011–

2013 with weekly averages.
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Figure B.7: A comparison of relative humidity between locations over the years 2011–2013

with weekly averages.
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