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A B S T R A C T

Repeated exposure to a stimulus leads to reduced responses of stimulus-selective sensory neurons, an effect
known as repetition suppression or stimulus-specific adaptation. Several influential models have been proposed
to explain repetition suppression within hierarchically-organised sensory systems, with each specifying different
mechanisms underlying repetition effects. We manipulated temporal expectations within a face repetition ex-
periment to test a critical prediction of the predictive coding model of repetition suppression: that repetition
effects will be larger following stimuli that appear at expected times compared to stimuli that appear at un-
expected times. We recorded event-related potentials from 18 participants and mapped the spatiotemporal
progression of repetition effects using mass univariate analyses. We then assessed whether the magnitudes of
observed face image repetition effects were influenced by temporal expectations. In each trial participants saw
an adapter face, followed by a 500ms or 1000ms interstimulus interval (ISI), and then a test face, which was the
same or a different face identity to the adapter. Participants’ expectations for whether the test face would appear
after a 500ms ISI were cued by the sex of the adapter face. Our analyses revealed multiple repetition effects with
distinct scalp topographies, extending until at least 800ms from stimulus onset. An early (158–203ms) re-
petition effect was larger for stimuli following surprising, rather than expected, 500ms ISI durations, contrary to
the model predictions of the predictive coding model of repetition suppression. During this time window tem-
poral expectation effects were larger for alternating, compared to repeated, test stimuli. Statistically significant
temporal expectation by stimulus repetition interactions were not found for later (230–609ms) time windows.
Our results provide further evidence that repetition suppression can reduce neural effects of expectation and
surprise, indicating that there are multiple interactive mechanisms supporting sensory predictions within the
visual hierarchy.

1. Introduction

Living organisms exhibit a remarkable ability to exploit statistical
regularities and recurring patterns that occur within sensory environ-
ments. Many vertebrate and invertebrate species can rapidly form
predictions based on recurring sequences of stimuli, allowing them to
anticipate the identities, locations and timing of upcoming events (e.g.,
Posner, 1980; Turk-Browne et al., 2009; Meyer and Olson, 2011;
Hogendoorn and Burkitt, 2018; Nobre and van Ede, 2018). Responses of
sensory neurons are also shaped by recent stimulus exposure. Repeated
presentation of a stimulus typically leads to reductions in responses of
stimulus-selective cortical and subcortical neurons, known as repetition
suppression or stimulus-specific adaptation (Desimone, 1996; Movshon
and Lennie, 1979).

Repetition suppression (RS) refers to a reduction in a recorded
signal of neuronal activity (e.g. firing rate, local field potential ampli-
tude, fMRI BOLD signal change) to repeated compared to unrepeated
stimuli (Henson et al., 2004; De Baene and Vogels, 2010; for reviews
see Grill-Spector et al., 2006; Kohn, 2007; Vogels, 2016; Larsson et al.,
2016). RS is not strictly stimulus-specific, but is typically dependent on
the physical or perceptual overlap between concurrently-presented
stimuli (e.g., Verhoef et al., 2008). Repetition effects have also been
reported when recording EEG/MEG (e.g., Caharel et al., 2015;
Feuerriegel et al., 2018a). These effects are widely believed to index RS,
due to almost ubiquitous findings of suppression (rather than en-
hancement) of neural responses when using similar experimental de-
signs combined with different recording modalities (e.g., single unit
firing rates: Sawamura et al., 2006; local field potentials: De Baene and
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Vogels, 2010; fMRI BOLD signals: Grill-Spector et al., 1999). Char-
acterising the neural mechanisms that underlie RS is critical for un-
derstanding how we detect rare or novel events in our environment
(Nelken, 2014; Solomon and Kohn, 2014), and what occurs when this
process functions abnormally in neurological and psychiatric disorders
(e.g., Naatanen et al., 2014, Kremlacek et al., 2016). Here we will focus
on immediate stimulus repetition, as opposed to delayed repetition (i.e.,
when several intervening stimuli are presented between the first and
repeated presentations of a stimulus – see Henson, 2016).

Several conceptual and computational models have been proposed
to explain RS. Early models described local mechanisms that influence
the rate, duration, and stimulus selectivity of neural responses
(Desimone, 1996; Wiggs and Martin, 1998; reviewed in Grill-Spector
et al., 2006). More recent models acknowledge that RS operates within
hierarchically organised sensory systems, such as the visual system.
These newer models emphasize that repetition effects occur within
local, recurrently-connected neural networks, and can be propagated
across brain regions. There are currently two dominant models of RS,
which both focus on response modulations of stimulus-selective ex-
citatory neurons, such as cortical pyramidal neurons which contribute
to scalp-recorded EEG.

Normalisation models (Dhruv et al., 2011; Solomon and Kohn,
2014; Kaliukhovich and Vogels, 2016; Whitmire and Stanley, 2016)
describe responses of stimulus-selective neurons according to the in-
terplay between excitatory (i.e., driving afferent) input, corresponding
to stimulation within classical receptive fields, and divisive normalising
inhibitory input from other neurons within the same network. These are
similar networks to those specified in normalisation models of attention
(e.g., Reynolds and Heeger, 2009). The nature of the divisive normal-
ising input differs by brain region (reviewed in Carrandini and Heeger,
2012), for example expressed as inhibitory ‘surround’ effects in V1
(Wissig and Kohn, 2012a, 2012b) or competitive interactions between
feature-selective neurons in extrastriate visual areas, possibly acting via
GABAergic interneurons (e.g., Chelazzi et al., 1998; Kaliukhovich and
Vogels, 2016). Importantly, the effects of both excitatory and inhibitory
inputs can be reduced by stimulus exposure in these models, for ex-
ample due to spike frequency adaptation, afterhyperpolarisation or
rapid synaptic plasticity (Zucker and Regehr, 2002; Fioravante and
Regehr, 2011; reviewed in Whitmire and Stanley, 2016; Vogels, 2016).
RS can also propagate across visual areas in a feedforward or feedback
manner, due to downstream visual areas receiving altered input from
adapted neural populations (e.g., Kohn, and Movshon, 2003; Drhuv and
Carrandini, 2014). Such models postulate that a primary function of RS
is to increase the salience of novel stimuli by enhancing responses to
novel stimuli compared to those seen in the recent past.

Another dominant model of RS is derived from theories of percep-
tion based on predictive coding (e.g., Rao and Ballard, 1999; Friston,
2005) and is described in detail in Auksztulewicz and Friston (2016).
Predictive coding models describe RS as a reduction of prediction error
signals, due to fulfilled perceptual expectations that are weighted to-
ward recently-encountered stimuli. In this model reductions in re-
sponses of superficial pyramidal neurons (which signal prediction er-
rors) occur via inhibitory lateral and feedback connections (Friston,
2005), for example via GABAergic inhibitory interneurons (Chu et al.,
2003; Wozny and Williams, 2011). A critical component of this model is
sensory precision, which reflects the confidence that a system holds
regarding its sensory predictions (Feldman and Friston, 2010). Ac-
cordingly, prediction errors are weighted by the sensory precision of
predictions. Sensory precision can be manipulated by exogenous fac-
tors, such as stimulus signal-to-noise ratio, or endogenous factors, such
as focused attention, or the expectation that a certain stimulus will
appear (Feldman and Friston, 2010; Auksztulewicz and Friston, 2016).
According to the predictive coding model of RS, contexts associated
with high sensory precision (i.e., attended and/or expected stimuli) are
predicted to lead to larger RS, compared with contexts associated with
lower precision (i.e., unattended and/or surprising stimuli).

To test and extend normalisation and predictive coding models of
RS researchers have assessed whether RS is modulated by attention and
expectation. Studies manipulating attention within immediate repeti-
tion designs have reported larger fMRI BOLD RS for stimuli of attended
(compared to unattended) spatial locations and stimulus categories
(Murray and Wojciulik, 2004; Eger et al., 2004; Yi et al., 2006). The
N250r ERP face identity repetition effect was also reduced when at-
tention was diverted towards a distractor face (Neumann and
Schweinberger, 2009). These effects of attention are congruent with
predictive coding accounts of RS, and signify that normalisation models
could be extended to describe interactions between attention and RS.

There is also a substantial literature on RS and perceptual ex-
pectations (e.g., expectations based on the contextual likelihood that a
given stimulus will appear). Summerfield and colleagues (2008) pre-
sented pairs of repeated (i.e., AA) or alternating (i.e., AB) faces in each
trial, and manipulated across blocks the proportions of trials with face
repetitions (60% vs. 20%). They reported larger face identity BOLD RS
in the fusiform face area (FFA; Kanwisher et al., 1997) in blocks with
higher proportions of repetition trials compared to those with lower
proportions. These findings have been replicated several times using
fMRI (e.g., Kovács et al., 2012, 2013; de Gardelle et al., 2013; Grotheer
and Kovács, 2014; Choi et al., 2017), and have been widely interpreted
as increased RS resulting from higher sensory precision in contexts
whereby repetitions were expected to occur. However, the analyses
used in these experiments confounded additive and interactive effects
of RS and expectation (discussed in Grotheer and Kovács, 2015;
Feuerriegel et al., 2018a). Other experiments independently manipu-
lated stimulus repetition and expectation using fMRI and electro-
physiological recordings, and observed independent expectation and RS
effects (Todorovic and de Lange, 2012; Grotheer and Kovács, 2015;
Feuerriegel et al., 2018a). Others reported no effects of expectation on
firing rates or local field potential amplitudes of Macaque inferior
temporal neurons (Kaliukhovich and Vogels, 2011, 2014), including
when attended, task-relevant face stimuli were presented and when
expectations influenced behaviour (Vinken et al., 2018). Another study
instead observed larger RS for surprising, rather than expected, stimuli
(Amado et al., 2016); this pattern of effects is also visible in many of the
Summerfield et al. replications (Kovács et al., 2012; de Gardelle et al.,
2013; Larsson and Smith, 2012; Grotheer and Kovács, 2014; Choi et al.,
2017; reviewed in Kovács and Vogels, 2014). Findings of larger RS for
surprising (rather than expected) stimuli are the opposite pattern to
that hypothesized by the predictive coding model (Auksztulewicz and
Friston, 2016). However, these findings could potentially be accom-
modated by assuming interactions between local or feedforward me-
chanisms of RS (e.g., inherited adaptation or synaptic fatigue) and ex-
pectation effects on the same stimulus-selective neurons. If perceptual
expectations modulate the gain of neural responses, similar to effects of
attention (e.g., Larsson and Smith, 2012), then reduced stimulus-driven
input due to RS would attenuate the influence of surprise-related re-
sponse gain increases. This would lead to smaller expectation/surprise
response differences for repeated stimuli (e.g., Feuerriegel et al.,
2018b). Such an effect would be analogous to RS decreasing the sal-
ience (i.e., sensory precision) of stimulus-evoked responses within
predictive coding models (Solomon and Kohn, 2014; Vogels, 2016).

In the current study we designed a different test of the precision-
based modulation hypothesis; we manipulated expectations regarding
when an upcoming stimulus would appear (i.e., temporal expectations,
Nobre et al., 2007; Nobre and van Ede, 2018). There appear to be
multiple, widespread effects of temporal expectation in the brain (re-
viewed in Nobre and van Ede, 2018). In primate visual cortex temporal
expectations can increase firing rates and local field potential ampli-
tudes to expected stimuli in V4 and inferior temporal cortex (Ghose and
Maunsell, 2002; Anderson and Sheinberg, 2008), and drive increased
gamma band oscillations and suppressed alpha-band activity in V1
(Lima et al., 2011), similar to effects of spatial attention (Fries et al.,
2008). Temporal expectations can also modulate visual stimulus evoked
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potentials and amplify the effects of spatial attention on scalp-recorded
ERPs (Doherty et al., 2005; Correa et al., 2006). According to predictive
coding models of RS, stimuli that appear at expected times are linked to
higher sensory precision, and such stimuli should show larger RS than
those which appear at unexpected/surprising times (Auksztulewicz and
Friston, 2016).

It is currently unclear whether temporal expectations influence
stimulus repetition effects in the visual system. Differences in ERP re-
petition effect magnitudes have been reported for auditory stimuli in
oddball designs, which presented streams of stimuli separated by iso-
chronous or random interstimulus intervals (Costa-Faidella et al., 2011;
Schwartze et al., 2013; but see experiments 1 and 2 in Tavano et al.,
2014). In these experiments repetition effects were operationalised as
the additive effects of stimulus repetition and stimulus feature ex-
pectations; repeated stimulus tones were expected, whereas unrepeated
tones were surprising. Consequently, it is unclear whether temporal
expectations modulated RS-specific processes or effects of stimulus
feature expectations (e.g. Tavano et al., 2014), which would lead to
similar patterns of effects on recorded ERPs.

To provide a more specific test of temporal expectation effects on
RS, we presented pairs of repeated and alternating (unrepeated) faces
separated by 500ms and 1000ms interstimulus intervals (ISIs). We
adapted the design of Grotheer and Kovács (2015) to cue participants’
expectations for a 500ms or 1000ms ISI, depending on the sex of the

first face presented in each trial. Unlike previous studies we also ba-
lanced expectations for specific stimulus identities, and temporal ex-
pectations, across repeated and alternating stimuli. By recording ERPs
evoked by repeated and alternating faces we tested whether the N250r
repetition effect, which is influenced by feature-based attention
(Neumann and Schweinberger, 2009), could also be modulated by
temporal expectations. Using mass univariate analyses we could also
map the complex spatiotemporal progression of repetition effects (e.g.,
Feuerriegel et al., 2018a), and test whether earlier or later effects are
modulated by temporal expectations. Predictive coding models (e.g.
Auksztulewicz and Friston, 2016) hypothesise larger repetition effects
for stimuli with expected onset times due to increased precision of
sensory predictions.

The predictions of RS models specifying local or feedforward me-
chanisms (such as inherited adaptation or synaptic fatigue) differ de-
pending on assumptions regarding the relationship between RS and
temporal expectation effects in this design. If temporal expectation ef-
fects are independent of RS mechanisms, and modulate firing rates of
all neurons selective for repeated or alternating test stimulus images,
then such models (e.g., the normalisation model, Kaliukhovich and
Vogels, 2016) will predict larger repetition effects for stimuli with ex-
pected onset times. However, if local or inherited RS serves to reduce
the magnitude of expectation effects (as in Feuerriegel et al., 2018b)
then we would expect to see larger repetition effects for stimuli with

Fig. 1. Trial diagram and experimental
block types. A) In each trial adapter
and test stimuli were presented, sepa-
rated by either a 500ms or 1000ms
ISI. Test stimuli were 20% larger than
adapters. An example of an alternating
trial is displayed, in which adapter and
test faces are different identities. B)
Examples of stimuli presented in re-
petition, alternation and target trials.
C) Trial structures for each block type.
In balanced blocks the probability of a
500ms or 1000ms ISI duration was
50% each. In cued blocks the prob-
ability of a 500ms or 1000ms ISI
duration varied by the sex of the
adapter face. In this example a female
adapter face cues a high (75%) prob-
ability of a 500ms ISI, whereas the
male adapter face cues a low (25%)
probability of a 500ms ISI. Rep and Alt
stand for repeated and alternating (i.e.,
unrepeated) test stimuli. D) Block
order in the experiment. Two balanced
blocks were presented before 6 cued
blocks.
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surprising onset times, due to a reduction in surprise-related responses
for repeated stimuli.

2. Methods

2.1. Participants

Eighteen people (4 males) participated in this experiment (age
range 18–32 years, mean age 23.6 ± 4.9). This sample size was de-
termined to be similar to previous ERP studies that have identified
temporal attention and face repetition effects (e.g., Correa et al., 2006;
Neumann and Schweinberger, 2009; Neumann et al., 2011). All parti-
cipants were native English speakers and had normal or corrected-to-
normal vision, no history of psychiatric or neurological disorders or
substance abuse, no history of unconsciousness for greater than 1min,
and had not taken recreational drugs within the last 6 months. All
participants were right-handed as assessed by the Flinders Handedness
Survey (Nicholls et al., 2013). This study was approved by the Human
Research Ethics committee of the University of South Australia.

2.2. Stimuli

We took 49 frontal images of faces (24 male, 25 female) from the
Karolinska Directed Emotional Faces database (Lundqvist et al., 1998).
Examples of stimuli are shown in Fig. 1A. Selected faces were of neutral
expression with no facial piercings or hair that occluded the face. We
then converted all images to greyscale, and cropped, resized and
aligned them, so that the nose was in the horizontal center of the image.
We then vertically aligned the eyes of each face, and resized the images
so that at a viewing distance of 60 cm stimuli subtended approximately
3.15° × 3.72° of visual angle (134×156 pixels). We created test sti-
muli to be 20% larger than adapter stimuli to minimise low-level or
retinal adaptation. We used the SHINE toolbox (Willenbockel et al.,
2010) to equate mean pixel intensity, contrast and Fourier amplitude
spectra across the images (Mean normalised pixel intensity= 0.52,
RMS contrast= 0.16). Stimuli were presented against a grey back-
ground (normalised pixel intensity= 0.52).

2.3. Procedure

Participants sat in a well-lit testing room 60 cm in front of an LED
monitor (refresh rate 60 Hz). We presented stimuli via custom scripts
written in MATLAB r2014a (The Mathworks, USA) using functions from
PsychToolbox v3.0.11 (Brainard, 1997; Kleiner et al., 2007). Beha-
vioural responses were recorded using a one-button response box.

In each trial faces were presented as adapter stimuli (500ms) and
test stimuli (200ms) separated by either a 500ms or 1000ms ISI
(Fig. 1A). Adapters were preceded by a fixation cross for 500ms. The
intertrial interval (including the fixation cross duration) varied pseu-
dorandomly between 1100 and 1300ms (mean duration = 1200ms).
In each block we presented 4 non-target faces (2 male and 2 female)
and one target face (either male or female). In non-target trials the
adapter stimulus could be any of the four non-target faces, and the test
stimulus could either be a repetition of the same face image (repetition
trial) or the other face identity of the same gender (alternation trial; see
Fig. 1B). The proportion of trials with face repetitions stayed constant at
37.5%. To prevent across-trial immediate repetition effects the adapter
face in one trial could not be the same identity as the test face in the
previous trial. Each non-target face appeared equally as adapters and
tests, and as repetition and alternating trial stimuli.

There were eight experimental blocks in the experiment. Within the
experiment we manipulated the probability that the test face would
appear after a 500ms or 1000ms ISI (see Fig. 1C). In the first two
blocks the test face appeared after a 500ms or 1000ms ISI with equal
(50%) probability (neutral expectation conditions). These were labelled
as ‘balanced’ blocks. In the remaining six blocks the probability of a

500ms or 1000ms ISI was cued by the sex of the adapter face. For
example, for one participant a female adapter face cued a 75% prob-
ability of a 500ms ISI (expected 500ms ISI condition) and a 25%
probability of a 1000ms ISI (surprising 1000ms ISI condition), whereas
a male adapter face instead cued a 25% probability of a 500ms ISI.
These blocks are accordingly labelled as ‘cued’ blocks. Block order if
illustrated in Fig. 1D. We counterbalanced the adapter face sex used to
cue each ISI probability across participants. When questioned after
testing no participants reported awareness of this cued ISI probability
manipulation.

In target trials (25% of all trials) the target face was presented as the
test stimulus. We displayed target faces onscreen during the break be-
fore each block for participants to memorise. Target faces allocated to
each block were counterbalanced across participants. We instructed
participants to press a button with their index finger as quickly as
possible after seeing the target face (response hands counterbalanced
across participants). We considered responses between 200 and
1000ms from test stimulus onset as correct responses. The number of
male and female target faces was equated within balanced and cued
block types. Participants completed a short practice block (24 trials)
before the main experiment. We presented a separate set of 5 face
images during the practice block, which did not appear in the main
experiment.

There were 1600 non-target trials in total: 80 trials for each neutral/
balanced (50% probability) and surprising (25% probability) ISI con-
dition, and 240 trials for each expected (75% probability) ISI condition.
There were 540 target trials: 54 trials for each neutral and surprising ISI
target, and 162 trials for each expected ISI target. Participants were
allowed self-paced breaks between blocks. The total time required to
complete the experiment (excluding breaks) was 94.5min.

2.4. EEG recording and data processing

We recorded EEG from 128 active electrodes using a Biosemi Active
Two system (Biosemi, the Netherlands). Recordings were grounded
using common mode sense and driven right leg electrodes (http://
www.biosemi.com/faq/cms&drl.htm). We added 8 additional channels:
two electrodes placed 1 cm from the outer canthi of each eye, four
electrodes; one placed above and below the center of each eye, and two
electrodes; one placed on each of the left and right mastoids. EEG was
sampled at 1024 Hz (DC-coupled with an anti-aliasing filter, −3 dB at
204 Hz). Electrode offsets were kept within± 50 µV.

We processed EEG data using EEGLab V.13.4.4b (Delorme and
Makeig, 2004) and ERPLab V.4.0.3.1 (Lopez-Calderon and Luck, 2014)
running in MATLAB r2015a. We first downsampled EEG data to 512 Hz
offline. We used a photosensor to measure the timing delay of the video
system (10ms) and shifted stimulus event codes offline to account for
this delay. We identified 50 Hz line noise using Cleanline (Mullen,
2012) using a separate 1 Hz high-pass filtered dataset (EEGLab Basic
FIR Filter New, zero-phase, finite impulse response, −6 dB cutoff fre-
quency 0.5 Hz, transition bandwidth 1 Hz). We then subtracted the
identified line noise from the unfiltered dataset (as recommended by
Bigdely-Shamlo et al., 2015). We identified excessively noisy channels
by visual inspection (median noisy channels by participant = 1, range
0–4) and excluded these from average referencing and independent
components analysis (ICA) procedures. We then re-referenced the data
to the average of the 128 scalp channels. We additionally removed one
channel (FCz) to correct for the data rank deficiency caused by average
referencing. A separate dataset was processed in the same way, except a
1 Hz high-pass filter was applied (filter settings as above) to improve
stationarity for the ICA. We then performed ICA on the 1 Hz high-pass
filtered dataset (RunICA extended algorithm, Jung et al., 2000) and
transferred the resulting independent component information to the
unfiltered dataset. We identified and removed independent components
associated with ocular and muscle activity, according to guidelines in
Chaumon et al. (2015). Following ICA, we interpolated any noisy

D. Feuerriegel et al. Neuropsychologia 122 (2019) 76–87

79

http://www.biosemi.com/faq/cms&drl.htm
http://www.biosemi.com/faq/cms&drl.htm


channels and FCz using the cleaned data (spherical spline interpola-
tion). We then low-pass filtered the EEG data at 30 Hz (EEGLab Basic
Finite Impulse Response Filter New, zero-phase, −6 dB cutoff fre-
quency 33.75 Hz, transition band width 7.5 Hz). Data were epoched
from -100–800ms from test stimulus onset and baseline-corrected using
the prestimulus interval. We excluded from analyses epochs con-
taining± 100μV deviations from baseline, as well as non-target trials
containing button press responses.

2.5. Statistical analyses

2.5.1. Behavioural data
We compared mean accuracy percentages and reaction times for

targets after expected and surprising 500ms ISIs at the group level,
using 20% trimmed means of the within-subject expected/surprise
difference scores and 95% confidence intervals derived from the per-
centile bootstrap method (10,000 bootstrap samples; Efron and
Tibshirani, 1994; Wilcox, 2012). For each bootstrap sample the 20%
trimmed mean of the difference scores was calculated. From this dis-
tribution the values of the 2.5th and 97.5th percentiles were chosen as
the edges of the two-tailed 95% confidence interval. This method gives
more accurate probability coverage compared to tests based on the
arithmetic mean, and is more robust against problems caused by skew
and outliers (Wilcox and Keselman, 2003; Wilcox, 2012). Responses to
targets following 1000ms ISIs were not compared across expectation
conditions, as even when participants expected a 500ms ISI, if the
target did not appear by 500ms then it could always be expected to
appear after 1000ms (see Nobre et al., 2007).

2.5.2. Mass univariate ERP analyses of stimulus repetition effects
To characterise the spatiotemporal pattern of face image repetition

effects we compared ERPs evoked by all repeated and alternating faces
(pooled across temporal expectation and ISI conditions) using paired-
samples mass-univariate analyses, with cluster-based permutation tests
to correct for multiple comparisons, implemented in the LIMO EEG
toolbox V1.4 (Pernet et al., 2011). These cluster-based multiple com-
parisons corrections were used because they provide control over the
weak family-wise error rate while maintaining high sensitivity to detect
broadly-distributed effects (Maris and Oostenveld, 2007; Groppe et al.,
2011). Paired-samples tests were performed at all time points between
-100 and 800 s at all 128 scalp electrodes (59,008 comparisons) using
the paired samples version of Yuen's t-test (Yuen, 1974). Corrections for
multiple comparisons were performed using spatiotemporal cluster
corrections based on the cluster mass statistic (Bullmore et al., 1999;
Maris and Oostenveld, 2007). Paired-samples t-tests were performed
using the original data and 1000 bootstrap samples. For each bootstrap
sample data from both conditions were mean-centred, pooled and then
sampled with replacement and randomly allocated to each condition
(bootstrap-t method). For each bootstrap sample all t statistics corre-
sponding to uncorrected p-values of< 0.05 were formed into clusters
with any neighbouring such t statistics. Channels considered spatial
neighbours were defined using the 128-channel Biosemi channel
neighbourhood matrix in the LIMO EEG toolbox (Pernet et al., 2011,
2015). Adjacent time points were considered temporal neighbours. The
sum of the t statistics in each cluster is the ‘mass’ of that cluster. We
used the most extreme cluster masses in each of the 1000 bootstrap
samples to estimate the distribution of the null hypothesis. We com-
pared the cluster masses of each cluster identified in the original dataset
to the null distribution; the percentile ranking of each cluster relative to
the null distribution was used to derive its p-value. We assigned the p-
value of each cluster to all members of that cluster. Electrode/timepoint
combinations not included in any statistically significant cluster were
assigned a p-value of 1.

2.5.3. Mass univariate ERP analyses of stimulus repetition effects (localiser
dataset)

A second mass univariate analysis was conducted on ERPs to test
stimuli in balanced blocks (with 50% probability of a 500ms ISI); this
was our localiser dataset to define regions of interest (ROIs) for ana-
lysing interactions between stimulus repetition and temporal expecta-
tions in the cued blocks. Repeated and alternating stimuli (pooled
across 500ms and 1000ms ISIs) were compared using cluster-based
permutation tests as described above. We used clusters of statistically-
significant repetition effects identified using data from the balanced
blocks to define ROIs for testing for expectation by repetition interac-
tions for responses to expected and surprising stimuli in cued blocks.

While others have used mass univariate analyses of repetition ef-
fects to derive ROIs for notionally orthogonal expectation x repetition
interaction effects within the same dataset (e.g., Summerfield et al.,
2011) we instead chose to use an independent localiser dataset. This is
because unequal group-level variances across conditions (e.g., when
trial numbers are not balanced across expected and surprising condi-
tions) can lead to inflated false positive rates when defining ROIs using
orthogonal contrasts (see Brooks et al., 2017; Kriegeskorte et al., 2009).

2.5.4. Repetition effect ROI mean amplitude analyses
For each positive-going and negative-going repetition effect identi-

fied using the localiser dataset, we calculated cluster mean ERP am-
plitudes for repeated and alternating stimuli, following expected and
surprising 500ms ISIs. Cluster mean amplitudes were calculated as the
20% trimmed mean of all channel/timepoint combinations included
within each cluster. Trimmed means were used to minimise effects of
skewed distributions and outliers within ROIs, which can influence
ROI-averaged measures of neuroimaging data (Friston et al., 2006).
Cluster mean amplitudes for each alternating stimulus condition were
subtracted from their corresponding expectation-matched repeated
stimulus condition, to derive a cluster mean amplitude repetition effect
measure.

Repetition effects for stimuli following expected and surprising
500ms ISIs were then compared using the percentile bootstrap method
with 20% trimmed means (Wilcox, 2012). In this analysis framework
statistically significant differences in the magnitude of repetition effects
for stimuli following expected compared to surprising ISIs are equiva-
lent to a temporal expectation by repetition interaction. The Holm-
Bonferroni method (Holm, 1979) was used to correct for multiple
comparisons across ROIs. Please note that the calculations for adjusting
p-values within this method can produce multiple adjusted p-values
that are identical, as in the case of our results below. This ROI mean
amplitude-based approach allowed us to reduce the number of statis-
tical comparisons as compared to mass univariate analyses, and identify
attention or expectation effects that may slightly differ in latency from
test stimulus onset across individuals (as done by Summerfield et al.,
2011). In a separate control analysis we assessed repetition effects in
the same way for stimuli following 1000ms ISIs. The timing of these
stimuli could always be expected once the ISI extended beyond 500ms
(see Nobre et al., 2007). Differences in repetition effects by ISI duration
cue in these analyses would indicate that differences in responses to the
adapter cue stimuli, rather than fulfilled or violated temporal ex-
pectations, are responsible for repetition by expectations interactions in
our experiment.

In addition to clusters identified using the localiser data, an addi-
tional ROI was added, spanning 230–347ms at bilateral occipio-
temporal electrodes P7/8, P9/10, PO7/8, and PO9/10, corresponding
to the N250r ERP face repetition effect (Schweinberger et al., 2002).
This ROI was defined based on the time window during which repeated
faces evoked more negative-going waveforms compared to unrepeated
faces at these channels in the localiser data grand-averaged ERPs. This
N250r effect is a robust face repetition effect, and is of high interest in
our study as it was found to be modulated by attention (Neumann and
Schweinberger, 2009). The time range and electrodes selected for
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N250r analyses are consistent with those of previous studies (e.g.
Neumann and Schweinberger, 2009).

We also performed a 3-way expectation by repetition by ROI re-
peated measures ANOVA using JASP v0.9.1 (JASP Team, https://jasp-
stats.org/) to assess whether the observed expectation by repetition
interaction effects differed across ROIs (i.e., across electrode clusters or
time windows). We did not test for the other main effects and 2-way
interactions, as these were not of interest in our study (as opposed to
exploratory analyses, see Cramer et al., 2016). Greenhouse-Geisser
corrections were applied to correct for violations of sphericity. For this
analysis the mean amplitudes for negative repetition effect ROIs were
multiplied by -1 to make the observed repetition effects consistent in
polarity across ROIs. This was done so that similar expectation-related
modulations of repetition effects across ROIs (i.e., more positive re-
petition-alternation differences in positive repetition effect ROIs, and
more negative differences in negative repetition effect ROIs) would not
lead to spurious 3-way interaction effects.

2.5.5. Mass univariate ERP analyses of adapter stimuli in cued blocks
In our design there is the possibility that differences in repetition

effects by temporal expectation status could be driven by differences in
response to the adapter stimuli. For example, if stimuli which cue a
500ms ISI evoke different visual responses to those that cue 1000ms
ISIs, then this may lead to different repetition effects across expectation
conditions. To investigate this, we processed and epoched EEG re-
sponses to adapter stimuli in cued blocks in the same way as done for
test stimuli. We then included these epochs in a mass univariate ana-
lysis, with parameters and multiple comparisons corrections as de-
scribed above, to compare ERPs evoked by adapters that cue 500ms
compared to 1000ms ISIs. To maximise our ability to detect effects all
adapter stimuli in the cued blocks were included, regardless of whether
they were followed by a repetition, alternation or target stimulus.

3. Results

3.1. Task performance

We first assessed whether participants were performing the task
correctly, and whether the ISI expectation manipulation affected be-
havioural responses to target trials. Accuracy for detecting and re-
sponding to targets, collapsed across conditions, was near ceiling (20%
trimmed mean=99% range 93–100%). Accuracy did not differ for
targets following expected compared to surprising ISIs (trimmed mean
accuracy scores ranged between 98% and 100% across conditions). The
trimmed mean reaction time to target faces, collapsed across condi-
tions, was 479ms (range 371–642ms across participants). There were
no statistically significant differences in reaction times to targets after
expected compared to surprising ISIs, for targets after 500ms and
1000ms ISIs (trimmed mean difference for 500ms ISI=−3ms, 95%
CI = [-10.7, 3.5], p= .20; difference for 1000ms ISI = 1.6ms, CI= [-
6.6, 8.8], p= .34).

3.2. Mass univariate analyses of face image repetition effects

3.2.1. Analyses using all non-target trials
To characterise the spatiotemporal pattern of face image repetition

effects we conducted mass univariate analyses of ERPs comparing re-
sponses to repeated and alternating test stimuli. These analyses re-
vealed four time periods with distinct topographical patterns of sti-
mulus repetition effects (shown in Fig. 2A-C). The earliest repetition
effect (labelled as Cluster 1) spanned 162–211ms from test stimulus
onset, during which repeated stimuli evoked more positive waveforms
at bilateral occipitotemporal channels and more negative waveforms at
frontocentral channels. A later effect (Cluster 2) spanned 228–369ms,
during which waveforms to repeated stimuli were more negative at left
occipitotemporal channels and more positive at frontal sites. Cluster 3

spanned 371–619ms and consisted of more negative-going waveforms
to repeated stimuli at bilateral posterior sites centred around Pz (but
extending to PO7 and PO8), accompanied by more positive-going wa-
veforms at frontal channels. The last cluster (Cluster 4) spanned
720–800ms, and had a similar topography to the first cluster, with
more positive-going waveforms at occipitotemporal channels to re-
peated stimuli, and more negative-going waveforms at central channels.

An earlier repetition effect could also be observed in the group-
averaged and single-subject ERPs at electrodes PO7/8, during the time
window of the P1 component (100–120ms; Fig. 2C). Although this
repetition effect was not statistically significant, the topography of this
effect (depicted in Fig. 2B) was highly similar to that found in our re-
cent study (Feuerriegel et al., 2018a).

3.2.2. Analyses using the localiser dataset
We also ran the same face image repetition effect analyses using

data only from the balanced blocks, in order to derive ROIs for analyses
of temporal expectation by repetition interactions in the cued blocks.
We identified 2 statistically significant clusters (displayed in Fig. 3A, C).
An early repetition effect (Localiser Cluster 1) was observed spanning
158–203ms, during which repeated stimuli evoked more positive wa-
veforms at bilateral occipitotemporal channels and more negative wa-
veforms at frontocentral channels (similar to Cluster 1 in Fig. 2B). A
later repetition effect (Localiser Cluster 2) spanned 345–609ms and
consisted of more negative-going waveforms to repeated stimuli at
posterior sites (centred around Pz) accompanied by more positive-going
waveforms at frontal channels (similar to Cluster 3 in Fig. 2B).

3.3. ROI mean amplitude analyses

After deriving ROIs using the localiser dataset we then assessed
whether repetition effects captured by these ROIs were modulated by
temporal expectations. Grand-average ERPs displaying repetition ef-
fects for stimuli following expected and surprising 500ms ISIs are
displayed in Fig. 3B. Estimates of ROI-averaged repetition effects for
stimuli following expected and surprising 500ms ISIs are displayed in
Fig. 4.

3.3.1. Localiser cluster 1 (158–203 ms)
For the positive-going repetition effects in Localiser Cluster 1, re-

petition effects were larger for faces after surprising 500ms ISIs
(trimmed mean repetition effect= 0.83 µV, CI = [0.34, 1.30]) com-
pared to expected ISIs (trimmed mean repetition effect= 0.19 µV, CI =
[-0.01, 0.41]), trimmed mean [expected - surprising] difference
= -0.60 µV, CI of the difference = [-1.09, -0.15], p= .006, Holm-
Bonferroni adjusted p= .032 Fig. 4 top left panel). To further probe
this significant interaction, we compared the magnitudes of temporal
expectation effects (i.e., expected – surprising differences) for repeated
and alternating stimuli separately. Expectation effects on responses to
repeated stimuli (trimmed mean expectation effect = −0.18 µV, CI =
[-0.44, 0.15]) were smaller than those for alternating stimuli (trimmed
mean expectation effect = 0.46 µV, CI = [0.06, 0.87], trimmed mean
[repeated – alternating] difference = −0.60 µV, CI = [-1.10, -0.16],
p= .008, adjunct section of top left panel in Fig. 4).

For negative-going repetition effects, we did not find significant
differences between repetition effects following expected (trimmed
mean repetition effect = −0.09 µV, CI = [-0.38, 0.16]) compared to
surprising ISIs (trimmed mean repetition effect = −0.33 µV, CI =
[-0.58, -0.10], [expected – surprising] difference = 0.18 µV, CI of the
difference = [-0.18, 0.56], p= .313, Holm-Bonferroni adjusted
p= .534, bottom left panel of Fig. 4).

In the control analyses of stimuli following 1000ms ISIs, we did not
find differences in repetition effect magnitudes for positive-going re-
petition effects (trimmed mean [expected – surprising] difference =
0.13 µV, CI = [-0.32, 0.50], p= .560, Holm-Bonferroni adjusted p= 1)
or negative-going repetition effects (trimmed mean [expected –
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surprising] difference = −0.27 µV, CI = [-0.63, 0.09], p= .146,
Holm-Bonferroni adjusted p= .730).

3.3.2. N250r effect (230–347ms)
During the N250r time window negative-going repetition effects

were larger for faces after expected 500ms ISIs (trimmed mean re-
petition effect = −0.50 µV, CI = [-0.88, -0.16]) compared to sur-
prising 500ms ISIs (trimmed mean repetition effect = −0.19 µV, CI =
[-0.58, 0.27], trimmed mean [expected – surprising] difference =
−0.34 µV, CI of the difference = [-0.74, -0.01]; Fig. 4 bottom center
panel). However this effect was not statistically significant after cor-
rection for multiple comparisons (p= .039, Holm-Bonferroni adjusted
p= .156).

Analyses of responses to stimuli following 1000ms ISIs did not find
differences in repetition effect magnitudes by temporal expectation
(trimmed mean [expected – surprising] difference = 0.04 µV, CI =
[-0.30, 0.43], p= .738, Holm-Bonferroni adjusted p=1).

3.3.3. Localiser cluster 2 (345–609ms)
For positive-going repetition effects in Localiser Cluster 2 there were

no statistically significant differences in magnitudes of repetition effects
following expected 500ms ISIs (trimmed mean repetition effect =
0.40 µV, CI = [0.17, 0.58]) when compared with surprising 500ms ISIs
(trimmed mean repetition effect = 0.04 µV, CI = [-0.33, 0.43],

trimmed mean [expected – surprising] difference = 0.30 µV, CI of the
difference = [-0.14, 0.74], p= .178, Holm-Bonferroni adjusted
p= .534; Fig. 4 top right panel). There were also no statistically sig-
nificant differences between negative-going repetition effects for ex-
pected (trimmed mean repetition effect = −0.34 µV, CI = [-0.63,
-0.10]) compared to surprising 500ms ISIs (trimmed mean repetition
effect = −0.05 µV, CI = [-0.41, 0.36], trimmed mean [expected –
surprising] difference = −0.30 µV, CI of the difference = [-0.81,
0.16], p= .210, Holm-Bonferroni adjusted p= .534; Fig. 4 bottom
right panel).

Control analyses of stimuli following 1000ms ISIs did not reveal
significant differences in repetition effect magnitudes for the positive
cluster (trimmed mean [expected – surprising] difference = 0.03 µV, CI
of the difference = [-0.23, 0.32], p= .948, Holm-Bonferroni adjusted
p=1) or for the negative cluster (trimmed mean [expected – sur-
prising] difference = −0.13 µV, CI of the difference = [-0.63, 0.30],
p= .527, Holm-Bonferroni adjusted p=1).

3.3.4. Repetition by expectation by ROI ANOVA results
To assess whether the repetition by expectation interaction effects

differed across ROIs, a 3-way repetition by expectation by ROI repeated
measures ANOVA was performed. The 3-way interaction was statisti-
cally significant (F(1.65, 28.1)= 46.02, p < .001), showing that the
interaction effects were not consistent across ROIs (i.e., across electrode

Fig. 2. Results of mass univariate analyses of repetition effects (i.e., repetition minus alternation differences). A) Spatiotemporal map of statistically significant
repetition effects. Yuen's t is plotted for each channel/timepoint combination, thresholded by cluster-level statistical significance. B) Scalp maps are displayed for
each of 4 identified time windows showing distinct topographies of repetition effects. The top row displays the mean Yuen's t value over the time window of each
cluster. The bottom row shows the [repetition – alternation] average amplitude differences over each time window. The repetition effect during the visual P1 time
window was not statistically significant, but was plotted for comparison with Feuerriegel et al. (2018a). C) Grand-averaged ERPs to repeated and alternating stimuli
(top row) and grand-average and single-subject repetition-alternation difference waveforms (bottom row). Blue shaded areas denote time windows of statistically
significant clusters within which the plotted channel was included.
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clusters and time windows). Combined with our ROI-specific analysis
results, this suggests that the observed larger repetition effects for
surprising stimuli may be particular to the early (158–203ms) positive
repetition effect ROI.

3.4. Mass univariate analyses of adapter ERPS in cued blocks

To investigate whether any observed differences in repetition effects

were due to differences in adapter-evoked ERPs across expectation
conditions, a mass univariate analysis was performed on ERPs evoked
by adapter stimuli in the cued blocks. No statistically significant dif-
ferences were found between adapters that cued 500ms compared to
1000ms ISIs.

Fig. 3. Repetition effect clusters derived from the localiser data, and estimates of repetition effects for stimuli with expected and surprising onset times. A) Repetition
effects from mass univariate analyses on the localiser dataset. Yuen's t is plotted for each channel/timepoint combination, thresholded by cluster-level statistical
significance. B) Grand-average ERPs to repeated and alternating stimuli for expected and surprising 500ms ISI conditions. Blue shaded areas denote ROI time
windows selected for analysis based on localiser data repetition effects and the N250r ROI definition. C) Topographies of localiser-derived ROIs (left column) and
mean amplitudes of repetition effects during ROI time windows for expected and surprising stimuli (center and right columns). In maps of localiser ROIs Electrodes
included within a positive repetition effect cluster are coloured red, electrodes included in a negative repetition effect cluster are coloured blue.
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4. Discussion

We comprehensively investigated the spatiotemporal dynamics of
temporal expectation effects on RS in the visual system using ERPs. This
permitted us to test a core hypothesis of the predictive coding model of
RS: that RS will be larger for stimuli with expected, rather than sur-
prising, stimulus onset times (Auksztulewicz and Friston, 2016). We
instead found that repetition effects during an early (158–203ms) time
window were larger for stimuli with surprising temporal onsets, pro-
viding evidence against this model. Our findings resemble those of
previous experiments investigating face identity expectations (e.g.,
Amado et al., 2016; Feuerriegel et al., 2018b) demonstrating that ex-
pectation and surprise effects are reduced by RS. Taken together, these
findings suggest that RS, acting via local or feedforward mechanisms
(e.g., reduced input or synaptic fatigue), may interact with a variety of
expectation effects that influence responses of the same feature-selec-
tive neurons within local excitatory-inhibitory circuits. Such cumula-
tive effects over many stimulus-selective neurons would lead to large-
scale modulations of neural activity, as measured using EEG and fMRI
(e.g., Amado et al., 2016).

We also replicated the complex progression of ERP face image re-
petition effects reported in our previous study (Feuerriegel et al.,
2018a), providing further evidence for a diverse range of RS effects
which extend at least until 800ms from stimulus onset.

4.1. Effects of temporal expectation on repetition suppression

We identified an early (158–203ms) time window during which
temporal expectations modulated RS. During this early time window
ERP repetition effects were larger for stimuli with surprising (rather
than expected) onset times. Follow-up analyses revealed that temporal
expectation effects in this ROI were smaller for repeated compared to
alternating stimuli. These results are incompatible with the predictive
coding model of RS (Auksztulewicz and Friston, 2016) which predicts
larger repetition effects following expected onset times due to increased
sensory precision. Our results are also similar to findings from studies
which manipulated expectations about the identity of upcoming sti-
muli, which found larger BOLD repetition effects for surprising stimuli
in the FFA, the occipital face area and lateral occipital cortex (e.g.,
Amado et al., 2016; Kovács et al., 2012; Choi et al., 2017). Interactions
between expectation effects and RS have not been explicitly described
within normalisation models. One hypothesis compatible with the
above findings is that RS, resulting from local or feedforward me-
chanisms as described in normalisation models, reduces effects of per-
ceptual expectation and surprise. This could be achieved through re-
ductions in stimulus-driven input to excitatory neurons (e.g., via
inherited adaptation: Larsson et al., 2016; Feuerriegel, 2016), which
may also reduce effects of subsequent inhibitory inputs to stimulus-
selective neurons during recurrent network activity, (e.g., those of in-
hibitory interneurons: Auksztulewicz and Friston, 2016), which are
associated with prediction error minimisation and perceptual

Fig. 4. Estimates of repetition effect magnitudes by temporal expectation status in the ROI-based analyses. Results for positive repetition effect ROIs are shown in the
top row. Results for negative repetition effect ROIs are shown in the bottom row. Expectation effects (expected – surprise differences) are displayed for repeated and
alternating stimuli for the positive repetition effect ROI in Localiser Cluster 1, where there was a significant repetition by expectation interaction. Red lines denote
20% trimmed means. Error bars denote 95% confidence intervals. Dots adjacent to error bars represent individual data points for each condition. P-values are
displayed for temporal expectation by repetition interaction tests, both uncorrected for multiple comparisons and corrected using the Holm-Bonferroni method.
Please note that repetition effect estimates for the neutral expectation conditions may be inflated, as the same data were used to define the ROIs used for estimation of
repetition effects (see Kriegeskorte et al., 2009).
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expectation. For alternating (i.e., unrepeated) stimuli, feature-selective
excitatory neurons may even be disinhibited (e.g., Kaliukhovich and
Vogels, 2016) and expectation effects on neural response gain would
then be amplified. This would be equivalent to RS modulating salience
or sensory precision within predictive coding models (Solomon and
Kohn, 2014; Feuerriegel et al., 2018b). Predictive coding mechanisms
could potentially utilise locally-generated RS (e.g., via after-
hyerpolarisation or synaptic fatigue) in this way, so to implement a
default expectation for recently-seen stimuli, enabling expectation and
surprise effects to preferentially signify important changes in the en-
vironment.

The finding of larger repetition effects for surprising stimuli in our
experiment may suggest a role of repetition effects to minimise the
effects of surprise on behaviour. Surprising stimuli elicit slower re-
sponses relative to expected stimuli (Summerfield and de Lange, 2014;
Gold and Stocker, 2017), and lead to slower responses to subsequent
stimuli (Wessel, 2017; Wessel and Aron, 2017). If repetition effects
preferentially reduce effects of surprise (e.g., as in Amado et al., 2016)
then this may serve to avoid surprise-related performance deficits. If
this is the case, then one would expect to see less response slowing for
stimuli following a surprising repeated stimulus, compared to following
a surprising unrepeated stimulus. Such modulations of sequential ef-
fects could be tested in future behavioural experiments.

Alternatively, our results could also be explained by interactions
between repetition suppression and attention-related neural response
gain changes. During the early time window, mean amplitudes were
more positive for expected compared to surprising alternating stimuli,
which may reflect an increase in the visual P2 component evoked by
stimuli appearing at expected (and attended) times. However, such
modulations were smaller or absent for repeated stimuli. This suggests
that increases in firing rates and local field potentials for stimuli ap-
pearing at expected times (e.g., Ghose and Maunsell, 2002; Anderson
and Sheinberg, 2008; Lima et al., 2011) may have been reduced by RS.
This could conceivably occur if stimulus repetition minimizes input to
stimulus-selective neurons (e.g., via synaptic depression or inherited
adaptation), analogous to decreasing visual stimulus contrast (e.g., in
Williford and Maunsell, 2006). Reduced input to stimulus-selective
neurons would then render the responses of these neurons less affected
by attention-related response gain changes (e.g., Lee and Maunsell,
2009; Reynolds and Heeger, 2009). However, we are hesitant to ascribe
the observed ROI-averaged amplitude differences to an expectation-
related increase of visual P2 component, given that our ROI pre-
dominantly sits between the peaks of the visual N170 and P2 compo-
nents. These ROI-averaged effects could instead reflect a reduction of
negative-going potentials during the time period of the N170, as found
for expected (compared to surprising) stimulus identifies (Johnston
et al., 2016)

Modulations of RS by temporal expectations were not found during
the later time windows (spanning 230–609ms). Although it appeared
that the N250r repetition effect was larger for stimuli with expected
temporal onsets, this interaction did not survive correction for multiple
comparisons. It is possible that the small sample size (n=18) in our
study prevented us from detecting this interaction effect. However any
conclusions remain speculative until this interaction effect can be re-
plicated using a larger independent sample.

4.2. Face image repetition effects

Using mass univariate analyses of ERPs we also identified a complex
progression of repetition effects spanning 158–800ms from stimulus
onset, with differing topographies across separate time windows (dis-
played in Fig. 2). We replicated repetition effects reported in our pre-
vious study (Feuerriegel et al., 2018a) with regard to the polarity, la-
tency, scalp topography and approximate magnitude of each effect.

Our results provide further evidence for multiple, distinct RS effects
that occur over a wide time range following stimulus onset. Many of

these effects were detected at electrodes over visual cortex, indicating
that RS as measured by fMRI BOLD in the visual system reflects a
mixture of early and late effects. If this is the case, it is unclear whether
the effects of attention and expectation on BOLD RS (e.g., Eger et al.,
2004; Summerfield et al., 2008) reflect early or late modulations of
stimulus-evoked responses. Electrophysiological recordings with higher
temporal precision (e.g., Todorovic and de Lange, 2012; Neumann and
Schweinberger, 2009) will be needed to characterise the timing of these
effects. Such timing data will be critical to identify different mechan-
isms underlying RS, including the relative timing of contributions by
each mechanism. Notably, repetition effects in our study also extended
beyond the time range of repetition suppression measured from firing
rates and local field potential amplitudes in Macaques (typically lasting
until 300–400ms from stimulus onset, e.g., Liu et al., 2009; De Baene
and Vogels, 2010; Kaliukhovich and Vogels, 2011). While we are not
sure of the reason behind this discrepancy, it could suggest that later
repetition effects in our experiment reflect activity of distinct popula-
tions of neurons compared to earlier effects, and that these populations
are separated enough to avoid detection by microelectrodes used in the
above nonhuman primate studies.

The earliest (162–211ms) statistically significant repetition effect
resembled reductions of N170 component amplitudes as reported in
previous studies (Caharel et al., 2011, 2015). In Caharel et al. (2015)
this effect was found only with identical image repetitions or small
viewpoint differences between adapter and test faces, and so is likely to
index repetition of low-level image features or stimulus shape. We also
identified the N250r face identity repetition effect (Schweinberger
et al., 2002) spanning 228–369ms from test stimulus onset. As in our
previous study, we identified a mid-latency repetition effect spanning
371–619ms from stimulus onset. The latency and broad scalp topo-
graphy across posterior electrodes suggests widespread secondary ef-
fects of RS on recurrent local network activity (e.g., Kaliukhovich and
Vogels, 2016; Patterson et al., 2013) or consequences of feedforward
and feedback interactions across visual areas (e.g., Ewbank et al.,
2011). We also replicated a late repetition effect from 720ms until the
end of the 800ms epoch. Such a late effect is unlikely to result from
changes in stimulus-driven afferent input, and may index feedback
input into visual areas from frontal regions (Grotheer and Kovács,
2016).

One difference in results compared to our previous study is that we
did not find a very early repetition effect (~ 100ms, around the time of
the visual P1 component) to be statistically significant. However, we
did find a similar topography of effects when averaging ERPs over the
time window of the P1 in our experiment (Fig. 2B). It is likely that our
smaller sample size (n= 18 vs. n= 36) prevented us from detecting
this short-duration effect using a cluster-based permutation test (see
Groppe et al., 2011).

4.3. Caveats

Our research should be interpreted with the following points kept in
mind. Firstly, it is important to note that the repetition effects reported
here reflect face image repetition rather than face identity repetition.
Early repetition effects, due to repetition of low-level features, may
have caused later repetition effects, or enhanced their magnitudes via
compounding inherited RS effects across brain regions (reviewed in
Larsson et al., 2016; Feuerriegel et al., 2016). Studies aiming to isolate
identity repetition effects should use different image sizes (Dzhelyova
and Rossion, 2014), or different images with minimal overlap of local
features (Schweinberger and Neumann, 2016).

Also, it is likely that the late (720–800ms) repetition effect de-
scribed here extends beyond 800ms after stimulus onset. In both the
current experiment and our previous study we could not extend our
analysis epochs beyond 800ms from stimulus onset due to paradigm
design (as epochs would overlap with the earliest onset times of the
fixation cross in the subsequent trial). Future experiments should use
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longer intertrial intervals to assess whether immediate stimulus re-
petition effects extend even further in time than described here.

In our study we could not determine whether the modulations of
repetition effects in our experiment are due to temporal attention or
expectation. Previous studies of temporal attention have also manipu-
lated expectations regarding the temporal onset of task-relevant stimuli
(e.g. Miniussi et al., 1999; Griffin et al., 2002) and so far not many
experiments have separately manipulated temporal expectation and
attention (but see Schwartze et al., 2011, 2013; Paris et al., 2015).
While either effect (temporal attention or temporal expectation) yields
the same hypotheses according to the predictive coding model of RS,
the distinction between expectation and attention will likely be im-
portant when developing mechanistic models of RS effects within local
neural networks. Future work that orthogonally manipulates temporal
attention and expectation will be able to distinguish between these
effects.

In addition, because we used the neutral conditions as a localiser
dataset, we could not determine whether the temporal expectation ef-
fects on ERPs were predominantly due to fulfilled expectations or sur-
prise. Recent work on stimulus identity expectations that included
neutral conditions has shown that surprise effects are larger than those
of fulfilled expectations (Amado et al., 2016; see Kovacs and Vogels,
2014). Future work should include neutral expectation conditions, and
avoid possible confounds of block order effects which are present in our
experiment.

4.4. Conclusions

The research reported here shows that temporal expectations
modulate RS at short latencies (158–203ms) from stimulus onset, and
that RS is larger for stimuli with surprising onset times, at least during
the early period of the stimulus evoked response. Our findings provide
evidence against the predictive coding model of RS, and support the
idea that expectation and surprise effects are reduced by RS in the vi-
sual system. Our results suggest that there are multiple, interactive
mechanisms which support sensory predictions within the visual hier-
archy.
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