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Abstract

This paper studies the agency problem between a firm and its research employees in a dy-

namic optimal contracting setting. We implement the optimal contract by a risky security,

which can be created using the equity of the firm, and a sequence of performance-based hold-

ing requirements. This result provides a rationale for using performance-vested equity-based

compensation in R&D-intensive start-up firms.
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1 Introduction1

In high-tech start-up firms, equity-based compensations have become an important compen-2

sation scheme for research employees. Twitter, one of the most successful start-up firms in the3

last decade, went public in 2013. During the same year, it spent $380 million in equity-based4

compensation for its research employees, which accounted for 64% of its total R&D expenses.15

Equity-based compensation helps to provide incentives to research employees by providing a direct6

link between the employees’ compensation and the firm’s performance and is particularly attrac-7

tive for cash‐constrained firms. Regarding provision, equity-based compensations vest over time.8

Over the last two decades, a general trend observed in equity-based compensation practice is the9

shifting from traditional simple time-vesting provisions to performance-vesting provisions.2 Per-10

formance‐vesting, contrary to time‐vesting, helps with incentive provision when the firm’s growth11

depends crucially on the stochastic outcomes of its R&D projects, and hence is particularly useful12

in R&D-intensive start-up firms.13

This paper provides an example of an environment in which, under some conditions, perfor-14

mance‐vested equity‐based compensation arises as an optimal outcome. We use an optimal con-15

tracting approach to analyze the agency problem between a firm and its research employees. A16

major methodological contribution of this paper is the tractability of the contracting problem which17

has a closed-form solution. The key question is what kind of compensation scheme could implement18

the optimal contract, and how it is related to the performance‐vested equity-based compensation19

observed in practice. Our findings indicate that the optimal contract can be implemented by using20

a risky security with a sequence of holding requirements that will be relaxed once a performance21

target is achieved. Sharing the main features with performance-vested equity-based compensations,22

these results provide a motive for using performance-vested equity-based compensation in start-up23

1This calculation is based on Twitter’s Form 10-k for the fiscal year ended December 31, 2013. “Research and

development expenses consist primarily of personnel-related costs, including salaries, benefits and stock-based com-

pensation, for engineers and other employees engaged in the research and development of products and services”

(Twitter Form 10-k 2013).
2In a report by Salary.com, a leading consumer and enterprise resource for compensation data, Whittlesey (2007)

stated that the most notable change in equity-based compensation provisions for both executive grants and all-

employee programs is “the widespread introduction of performance-based plans with a wide variety of features.”

Bettis, Bizjak, Coles, and Kalpathy (2018) documented that “the usage of performance-vesting equity awards to top

executives in large U.S. companies has grown from 20 to 70 percent from 1998 to 2012.”
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firms that rely on R&D from the theoretical point of view.24

We set up the contracting problem using the model studied in Shan (2017). Briefly, a risk-25

neutral principal hires a risk-averse agent to perform a multi-stage R&D project. The multi-stage26

feature captures the observation that the performance of research employees is usually linked to the27

completion of a sequence of milestones rather than their day-to-day practice. At any point in time,28

the agent can choose whether to put in effort or shirk. Subject to the agent investing effort, the29

transition from one stage to the next is a Poisson process with a constant arrival rate. The progress30

of the innovation process is publicly observable, and the principal cannot monitor the agent’s31

action, which causes a dynamic moral-hazard problem. Shan (2017) characterized the optimal32

contract under the assumption that the principal has full control over the agent’s consumption.33

In the optimal contract, using a “carrot and stick” strategy, the principal punishes the agent by34

lowering his compensation over time in case of failure and rewards him by a discrete increase in the35

payment after each success.36

Using this model, the current paper provides an implementation of the optimal contract and37

discusses how it connects to existing compensation practice. We show that the optimal contract can38

be implemented by a state-contingent security that appreciates in case of success but depreciates39

in case of failure. At any point in time, besides the effort choice, the agent also chooses how40

much to consume and how much to invest in the security for savings subject to a sequence of41

holding requirements on the risky security. Different from the optimal contract, in which the42

principal controls the agent’s consumption directly, the agent chooses the consumption process in43

this implementation, which nonetheless generates the same effort and consumption process as the44

optimal contract. The key finding of the implementation results is how the design of the holding45

requirement depends on the agent’s performance. In the implementation, the principal requires the46

agent to meet a minimum holding requirement on the state-contingent security till the completion47

of the project and gradually relaxes the holding requirement as the project progresses. Our model48

shows that the principal uses the state-contingent security to compensate the agent to encourage49

him to bear some risks in return for incentives, and the holding requirement in the implementation50

guarantees the minimum amount of risks that the agent has to take for incentives. When the R&D51

project progresses, the uncertainty of the project reduces, and hence the holding requirement can52

be relaxed.53

In general, the payoff structure of the state-contingent security that implements the optimal54
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contract depends on the utility function of the agent. There may not exist a financial asset that55

has the exact payoff of the security. However, the firm can use its equity and other available56

financial assets to approximate the payoff of the security and use the performance-vesting provision57

to mimic the performance-based minimum holding requirements. We also consider an example in58

which, under some conditions, the state-contingent security can be directly linked to the firm’s59

equity. Assuming that the agent has a logarithmic utility function, the contracting model has a60

closed-form solution. In this case, the state-contingent security has the property that its value61

increases proportionally after each success, and hence it can be created by a portfolio of the firm’s62

equity and a risk-free asset if the firm’s value also grows proportionally after each breakthrough of63

its R&D project. In this example, the implementation becomes surprisingly simple. The principal64

only needs to adjust the fraction of equity in the compensation portfolio when the project progresses65

to the next stage and can leave all other decision problems to the agent. The proportionate growth66

assumption on the evolution of firm’s value is a key assumption to derive these results. In practice,67

most R&D-intensive start-up firms are backed by venture capital, and whether a firm can receive68

further rounds of financing depends crucially on the development of its main research project.69

We show that this proportionate growth assumption is consistent with the growth pattern of firm70

valuation at each financing round for firms that are backed by venture capital.371

Theoretically, the optimality of equity-based implementation requires that the firm’s value de-72

pends only on the progress of the R&D project and that the firm has an accurate prediction about73

how its value is affected by the project. In practice, however, the firm’s value is also affected by74

other factors, for example, market aggregate risks, or the performance of other R&D teams when75

several projects are performed simultaneously. In these cases, equity-based incentive compensa-76

tion exposes the agent to risks that are not related to his action and becomes less efficient. For77

these situations, we provide an alternative implementation of the optimal contract using a savings78

account plus performance-based bonuses after each success. In this implementation, the principal79

offers the agent a savings account with an initial balance. At any point in time, the agent can80

withdraw money from the savings account for consumption. The principal rewards the agent with81

a performance bonus and deposits it into the savings account after each success. Similar to the82

equity-based implementation, this implementation also generates the same effort and consumption83

3The proportionate growth property is also called Gibrat’s law which states that the proportional rate of growth

of a firm is independent of its absolute size.
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process as the optimal contract. Comparing these two implementations, the advantage of equity-84

based implementation is its simplicity for which the principal only needs to adjust the composition85

of the compensation portfolio according to the progress of the project. It is attractive to cash-86

constrained start-up firms because it allows them to spend cash in other important areas. However,87

it may expose the agent to the risks that are not related to his action. If the principal is able to use88

cash bonuses, the alternative implementation prevents the agent from bearing unnecessary risks,89

but it requires the principal to monitor the balance of the savings account because the agent is90

risk-averse and hence the size of bonus depends on the balance of the savings account.91

The rest of the paper is organized as follows. Section 2 provides a review of the related literature.92

Section 3 describes the benchmark model and the optimal contract. In Section 4, we present an93

implementation of the optimal dynamic contract and discuss how it relates to performance-vested94

equity-based compensation. Section 5 considers an example in which the agent has a logarith-95

mic utility function. We provide an alternative implementation via performance-based bonuses in96

Section 6. Section 7 presents the conclusions. Some extensions of the paper are discussed in the97

Appendix.98

2 Literature Review99

The CEO compensation literature provides extensive research on equity-based grants. Edmans,100

Gabaix, Sadzik, and Sannikov (2012) studied the optimal CEO compensation in a dynamic frame-101

work and provided an implementation of the optimal contract using a “Dynamic Incentive Account”102

that comprises cash and the firm’s equity. The main difference between their model and our model103

is the approach to model how the agent’s action affects his performance. Since CEO’s effort often104

has an important impact on the operation of the firm, in Edmans, Gabaix, Sadzik, and Sannikov105

(2012), the earnings of the firm in each period are determined by the CEO’s effort and a random106

noise. In continuous-time settings, this agency problem is usually modeled by the Brownian-motion107

process in which the agent’s unobserved effort controls the drift (for example He (2009)). For re-108

search employees’ incentive problem, since the effort invested in research today will not necessarily109

lead to a discovery tomorrow, we assume that the agent’s effort affects the probability of success110

and model the innovation process as a Poisson-type process. In both papers, the equity-based111

compensation features vesting which ensures that the agent has sufficient equity in the future to112
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induce effort, and the equity compensation fully vests at the time after which the agent’s action113

cannot affect the firm’s value anymore (when the agent retires in Edmans, Gabaix, Sadzik, and114

Sannikov (2012) and when the agent completes the whole project in our model). The difference115

in assumptions about how the agent’s unobservable actions affect the firm’s value also leads to116

different features in implementation regarding vesting. In Edmans, Gabaix, Sadzik, and Sannikov117

(2012), the vesting of equity-based compensation is time-based because the agent’s action affects118

the drift of the firm’s value. In our model, the agent’s action controls the arrival of a series of119

innovations, and hence the vesting is performance-based.120

With regard to researchers’ compensation, Anderson, Banker, and Ravindran (2000), Ittner,121

Lambert, and Larcker (2003), and Murphy (2003) have documented that executives and employ-122

ees in research intensive firms receive more equity-based compensation than their counterparts in123

traditional industries. Sesil, Kroumova, Blasi, and Kruse (2002) compared the performance of 229124

research intensive firms offering broad-based stock options with that of their non-stock option coun-125

terparts. They showed that the former have higher shareholder returns. For performance-vesting126

provisions, Bettis, Bizjak, Coles, and Kalpathy (2010), found that “performance-vesting provisions127

specify meaningful performance hurdles and provide significant incentives.” Also, “performance-128

vesting firms had significantly better subsequent operating performance than control firms.” Our129

paper contributes to this literature by establishing a specific role for performance-vesting provisions130

in the optimal contracting problem.131

In terms of methodology, this article follows the rich and growing literature on continuous-time132

dynamic contracting. Sannikov (2008) analyzed a continuous-time principal-agent model, in which133

the output is a Brownian-motion process with drift determined by the agent’s unobserved effort.134

A similar Brownian motion framework is often used to model agency problems in fields such as135

CEO compensation and corporate finance (DeMarzo and Sannikov (2006); He (2009); He (2011)).136

Recently, a few scholars have studied the dynamic moral hazard problem using a Poisson process,137

where the agent exerts unobservable effort that controls the arrival rate. In Biais, Mariotti, Rochet,138

and Villeneuve (2010) and Myerson (2015), bad events happen with higher Poisson arrival rate when139

agents do not put enough effort to prevent such events. In Sun and Tian (2017), the principal needs140

to provide the incentive for the agent to exert effort to raise the arrival rate of a Poisson process.141

Most of these studies have assumed that the agent is risk neutral. The risk-neutrality assumption142

implies that the agent does not receive any payment until the continuation utility reaches a payment143
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threshold (Biais, Mariotti, Rochet, and Villeneuve (2010); Myerson (2015)), or only receives bonuses144

upon arrivals (Sun and Tian (2017)). Shan (2017) studied a similar contracting problem in which the145

principal faces multiple risk-averse agents. With a risk-averse agent, besides providing the incentive146

to work, the optimal contract also needs to account for consumption smoothing. Therefore, the147

agent’s payment is contingent on the entire history and varies over time. In Shan (2017), the148

optimal contract is written in terms of the agent’s continuation utility, which is an abstract term.149

Also, the agent’s consumption is controlled by the principal, which is not realistic. Based on the150

theoretical model of Shan (2017), the current paper provides an implementation of the optimal151

contract in which the agent makes both effort and consumption decisions. The implementation152

uses the standard instruments that are available in practice and provides a justification for using153

performance-vested equity-based compensation.154

The implementation of the optimal contract overcomes the problem pointed out by Rogerson155

(1985) which is that, if the agent is allowed access to credit, he will adopt a joint deviation of156

shirking and saving some of his wages, because of a wedge between the agent’s Euler equation and157

the inverse Euler equation implied by the principal’s problem. In our implementation, however,158

the return on savings is state contingent. When the state-contingent rates of return are chosen159

appropriately, the agent’s Euler equation mimics the inverse Euler equation; put differently, the160

wedge between the Euler equation and the inverse Euler equation disappears. A similar problem161

arises in the dynamic optimal taxation problem studied by Kocherlakota (2005), in which the agents162

in the economy are privately informed about their skills. In Kocherlakota (2005), to prevent joint163

deviations, the return on savings is made to be stochastic by tailoring the tax rates on saving to the164

agent’s announcements of his private information, and hence the government needs to keep track of165

the entire history of the agent’s announcements to set the tax rates. In our model, the problem is166

much more tractable, especially for the logarithmic utility case in which the principal only needs to167

know the current stage level of the project because the holding requirement only varies with stage168

level.169

3 The benchmark model170

The benchmark model is similar to the single-agent model studied in Shan (2017), in which the171

principal has full control over the agent’s consumption. In this model, time is continuous. At time172
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0, a principal hires an agent to perform an R&D project. This project has N stages, which must be173

completed sequentially, i.e., to develop the stage n (0 < n ≤ N) innovation, the agent must have174

completed the innovations of stage n − 1. The transition from one stage to the next is modeled175

by a Poisson process, which is affected by the agent’s choice of effort. For simplicity, the agent is176

assumed to have only two effort choices: he can either put in effort or shirk. If the agent puts in177

effort, the arrival rate of completing an innovation is λ. If the agent chooses to shirk, he fails with178

probability 1, and the Poisson arrival rate is equal to zero.179

The agent’s action cannot be monitored by the principal. However, the principal can observe180

exactly when each stage of the R&D project is completed. Let Ht be the history of the agent’s181

performance up to time t. It records the number of stages completed and the time taken by the agent182

to complete each stage. By assumption, Ht is publicly observable, which is the only information183

that the principal can use to provide incentives to the agent.184

At time 0, the principal offers the agent a contract that specifies a flow of consumption ct(H
t)185

based on the principal’s observation of the agent’s performance. Let T denote the stochastic stop-186

ping time when the agent completes the last-stage innovation. After time T , the principal does187

not need to provide any incentive for the agent to work, and hence the agent receives a constant188

payment over time, which is equivalent to a lump-sum consumption transfer at time T .189

We assume that the agent’s utility function has a separable form U(c) − L(a), where U(c)190

is the utility from consumption, and L(a) is the disutility of exerting effort. We assume that191

U : [0,+∞) → [0,+∞) is an increasing, concave, and C2 function, and satisfies the Inada condition192

limc→+∞ U ′(c) = 0. The agent’s choice of effort is binary, indicated by a ∈ {0, 1}. a = 1 means193

that the agent chooses to put in effort, and a = 0 means that the agent chooses to shirk. Moreover,194

the disutility of putting in effort equals some l > 0, and the disutility of shirking equals zero, i.e.,195

L(1) = l and L(0) = 0.196

Given the contract, at any time t, the agent makes the effort choice based on the observation of197

Ht. The effort process is denoted as a = {at(Ht), 0 ≤ t < ∞}. The agent’s objective is to choose198

the effort process a to maximize the total expected utility. Thus, the agent’s problem is199

max
{at,0≤t<+∞}

E

[ ∫ T

0

re−rt(U(ct)− L(at))dt+ e−rTU(cT )

]
,

where r is the discount rate.4 Moreover, the agent has a reservation-utility v0. If the maximum200

4We normalize the flow term by multiplying it by the discount rate so that the total discounted utility equals the
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expected utility he can get from the contract is less than v0, then the agent will reject the principal’s201

offer.202

We assume that the agent and the principal have the same discount rate. Hence, the principal’s203

expected cost is given by204

E

[ ∫ T

0

re−rtctdt+ e−rT cT

]
.

We assume that the completion of R&D is quite valuable to the principal; therefore, he always205

wants to induce the agent to work.5 Hence, the principal’s objective is to minimize the expected cost206

by choosing an incentive-compatible payment scheme subject to delivering the agent the requisite207

initial value of expected utility v0. Therefore, the principal’s problem is208

min
{ct,0≤t<+∞}

E

[ ∫ T

0

re−rtctdt+ e−rT cT

]
s.t.209

E

[ ∫ T

0

re−rt(U(ct)− l)dt+ e−rTU(cT )

]
≥ v0.

Finally, to simplify the analysis, we could recast the problem as one where the principal directly210

transfers utility to the agent instead of consumption. In the transformed problem, the principal211

chooses a stream of utility transfers ut(H
t) (0 ≤ t < +∞) to minimize the expected cost of212

implementing positive effort. Then, the principal’s problem becomes213

min
{ut,0≤t<+∞}

E

[ ∫ T

0

re−rtS(ut)dt+ e−rTS(uT )

]
s.t.214

E

[ ∫ T

0

re−rt(ut − l)dt+ e−rTuT

]
≥ v0,

where S(u) = U−1(u), which is the principal’s cost of providing the agent with utility u. It can be215

shown that S(u) is an increasing and strictly convex function and limu→+∞ S′(u) = +∞.216

The contracting problem can be analyzed recursively using the agent’s continuation utility v,217

which is the total utility that the principal expects the agent to derive at a given point in time. At218

any moment in time, given the continuation utility, the contract specifies the agent’s utility flow u,219

utility flow when the flow is constant over time. Thus, the agent’s total discounted utility at time T equals U(cT ).
5By assumption, the project has finite number of stages. Moreover, the arrival rate of success when the agent

exerts effort is fixed. Hence, if the revenue of completing the project is sufficient high, it is always optimal to induce

the agent to work.
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the continuation utility v̄ if he completes an innovation, and the law of motion of the continuation220

utility if he fails.221

The details of the derivation of the recursive form can be found in Shan (2017). Intuitively,222

when the agent exerts effort, he raises the arrival rate of success from 0 to λ. After a success, his223

continuation utility changes from v to v̄. Hence his expected benefits of exerting effort is λ(v̄ − v).224

His costs of exerting effort is rl. To provide incentive to work, the contract should satisfy the225

following incentive-compatibility condition:226

λ(v̄ − v) ≥ rl.

Thus, in any incentive compatible contract, the agent’s continuation utility increases by at least rl
λ227

after each success. For the evolution the agent’s continuation utility in case of failure, since the228

continuation utility can be explained as the value that the principal owes the agent, when the agent229

exerts effort, his continuation utility grows at the discount rate r and falls because of the net flow230

of utility r(u− l) plus the gain of utility v̄− v at rate λ if the agent completes an innovation. Thus,231

his continuation utility in case of failure evolves according to232

dv

dt
= rv − r(u− l)− λ(v̄ − v).

Let Cn(v) be the principal’s minimum cost of delivering continuation utility v when the project233

is at stage n. Next, we characterize the evolution of the principal’s continuation value Cn(v). Since234

the principal discounts the future at rate r, his expected flow of value at a given point in time is235

given by236

rCn(v).

This must equals to sum of the expected instantaneous cash flows rS(u) and the expected rate of237

change in the continuation value. The later equals to the sum of the variation of the principal’s238

costs brought by the change in the agent’s continuation utility and the variation of costs when the239

project progresses to the next stage at rate λ. This yields240

rS(u) + C ′
n(v)

dv

dt
+ λ[Cn+1(v̄)− Cn(v)].

The principal controls u and v̄ to minimize his continuation value. In the recursive form, the241

principal’s problem is to solve the following Hamilton-Jacobi-Bellman (HJB) equation242

rCn(v) = min
u,v̄

rS(u) + C ′
n(v)

dv

dt
+ λ[Cn+1(v̄)− Cn(v)]
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s.t.243

dv

dt
= rv − r(u− l)− λ(v̄ − v),

λ(v̄ − v) ≥ rl.

As the agent is assumed to have limited liability, the continuation utility cannot be less than244

0, because the agent can guarantee a utility level of 0 by not putting in any effort. Therefore, a245

negative continuation utility is not viable.246

In the HJB equation, to solve cost function Cn, we need to know the functional form of Cn+1.247

Note that after the agent completes the final stage, he receives a lump-sum transfer, which implies248

that CN+1(v) = S(v). Then the whole problem can be solved by backward induction starting from249

the last stage-N problem. Shan (2017) uses a diagrammatic analysis to characterize the solution250

of the HJB equation. The main properties of the optimal contract are summarized in Proposition251

3.1.252

Proposition 3.1 The optimal contract has the following property:253

(i) The principal’s expected cost at any point is given by an increasing, convex and differentiable254

function Cn(v), which satisfies255

rCn(v) = rS(u∗(v)) + C ′
n(v)[r(v − u∗(v))] + λ[Cn+1(v̄)− Cn(v)],

and the boundary conditions: C ′
n(0) = S′(0) and Cn(0) =

λCn+1(
rl
λ )

r+λ . The cost function when256

the agent completes the last stage innovation is given by CN+1(v) = S(v).257

(ii) The instantaneous payment u∗(v) satisfies S′(u∗(v)) = C ′
n(v).258

(iii) When the agent completes an innovation, he enters the next stage and starts with the con-259

tinuation utility v̄, which satisfies v̄ = v + rl
λ .260

(iv) In case of failure, the continuation utility v smoothly decreases over time and stays at 0 when261

it reaches the lower bound 0.262

(v) The minimum-cost functions satisfy Cn(v) > Cn+1(v) and Cn(v) < Cn+1(v+
rl
λ ) for all v ≥ 0.263

Its derivative satisfies limv→+∞ C ′
n(v) = +∞.264
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Proposition 3.1 indicates that the optimal contract combines rewards and punishments. The265

principal rewards the agent by an upward adjustment in the compensation after each success and266

punishes the agent by cutting his compensation for unsatisfactory performance. Thus, the principal267

induces the risk-averse agent to bear some risks by introducing some uncertainties into his compen-268

sation. Otherwise, the agent lacks an incentive to work. Proposition 3.1 also shows that the costs269

of delivering the same level of continuation utility is higher at an earlier stage of the project (Figure270

1). This is because, at an earlier stage, the uncertainties about the future are higher. Hence, the271

cost of delivering the same level of continuation utility to a risk-averse agent is higher.272

0

M
in
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u
m

 C
o
s
ts

Figure 1: Cost functions.

4 Implementation of the optimal contract273

The optimal contract presented in the benchmark model relies entirely on the continuation util-274

ity, which is an abstract concept. Moreover, in the benchmark model, we make a strong assumption275

that the principal controls the agent’s consumption directly, i.e., the agent consumes all the pay-276

ments from the principal at any point in time. In this section, we present an implementation of the277

optimal contract, which uses monetary terms rather than the abstract continuation utility, and in278
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which the agent also makes consumption decisions besides choosing the effort. Yet, we show that279

the implementation generates the same consumption path as the original optimal contract. In this280

implementation, a primary component of the agent’s compensation is a state-contingent security281

that appreciates when the project succeeds and depreciates when it fails. The agent is required282

to meet a sequence of minimum holding requirements that is relaxed after each success until the283

whole project is completed. Capturing the main features of performance-vested equity-based com-284

pensation, the implementation results show that the principal can use this compensation scheme285

to mimic the theoretical optimal contract derived with the assumption that the principal has full286

control over the agent’s consumption, thereby providing a rationale for using performance-vested287

equity-based compensation from a theoretical point of view.288

The setup is the same as the benchmark model except that the consumption is decided by the289

agent rather than controlled by the principal. To implement the optimal contract, the principal290

designs a state-contingent security, whose return is higher in case of success than in case of failure.291

Before the project starts, the principal provides the agent with initial wealth y0, a part of which292

is paid in terms of the security. The agent can also invest in this security for saving purpose.6 At293

any point in time before the whole project is completed, the agent decides whether to exert effort294

or shirk, how much to consume, and how much to invest in this security subject to a minimum295

holding requirement y
n

which depends on the stage level n. The principal’s objective is to design296

the security and the minimum holding requirements properly so that the agent will always exert297

effort and, more importantly, choose the same consumption path as the one in the optimal contract298

derived in Section 3 that minimizes the principal’s costs.299

To describe the design of state-contingent security, we first explain how the value of the security300

changes over time across different states in a more intuitive discrete-time approximation of the301

continuous-time setting. In the discrete-time approximation, each period lasts ∆t. At the beginning302

of each period, the outcome of the project and the value of the security that the agent takes from303

the last period are realized. Then, the agent makes effort, consumption, and investment decisions304

based on his observation of the outcomes (Figure 2). If the agent exerts effort, the project succeeds305

with probability approximately λ∆t and fails with probability 1 − λ∆t, and the result will be306

realized at the beginning of the next period. If the agent shirks, the project fails with probability307

6We first assume that investing in this security is the only saving technology of the agent. A case with hidden

saving is studied in the appendix.
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The agent makes consumption, 

effort, and investment decisions

The agent makes consumption, 

effort, and investment decisions

The outcome of the project and the

 value of the security are realized

The outcome of the project and the

 value of the security are realized

Figure 2: The timeline

1. For the valuation of the security, suppose the project is at stage n in period t and that the308

agent holds in period t the amount of security that would be worth yt+1 in period t + 1 if the309

project fails. Denote by Yn+1(yt+1) the value of such a security in state of success. The value310

of this amount of securities in the current period t is determined by the fair-price rule assuming311

that the agent exerts effort, i.e., the value equals the expected present value, which is given by312

Pn(yt+1) = 1
1+r∆t [(1 − λ∆t)yt+1 + λ∆tYn+1(yt+1)] (Figure 3). For easier tracking of the agent’s

Figure 3: The design of the state-contingent security
313

wealth level, we write the value of the security in the current period and in the next period in314

case of success as functions of its value in the next period in case of failure. Given this design315

of state-contingent security, if the agent allocates Pn(yt+1) of his current wealth to the security,316

then in next period his wealth level equals yt+1 in case of failure and Yn+1(yt+1) in case of success.317

Letting yt denote the agent’s wealth in period t, his budget constraint in period t is318

rct∆t+ Pn(yt+1) = yt,
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where the first term on the left-hand side is his consumption in the current period, and the second319

term is his investment in the security if he wants a guaranteed wealth level of yt+1 in case of failure320

in the next period.7321

To derive the evolution of the agent’s wealth in continuous time, we first substitute the expression322

of Pn(yt+1) into the agent’s budget constraint323

rct∆t+
1

1 + r∆t
[(1− λ∆t)yt+1 + λ∆tYn+1(yt+1)] = yt.

Multiplying both sides by 1 + r∆t and rearranging the equation, we can get324

yt+1 − yt = r∆tyt − (1 + r∆t)rct∆t− λ∆t[Yn+1(yt+1)− yt+1].

Dividing both sides by ∆t and letting ∆t converge to 0, we can obtain the evolution of the agent’s325

wealth in case of failure326

dy

dt
= ry − rc− λ[Yn+1(y)− y].

Thus, when the project is at stage n, the agent’s wealth in case of failure grows at rate r and327

decreases because of consumption spending c and the loss on investment in security λ(Yn+1(y)−y).328

If the agent succeeds, his wealth raises to Yn+1(y).329

Now, the agent’s problem is to choose an effort process and a consumption plan to maximize330

his discounted expected utility. In the recursive form of the agent’s problem, the state variable331

becomes his wealth level y. Let Vn(y) be the maximum expected utility that the agent can get332

given wealth level y when the project is at stage n. The HJB equation of the agent’s problem is333

rVn(y) = max
a,c

r[U(c)− al] + V ′
n(y)

dy

dt
+ aλ[Vn+1(Yn+1(y))− Vn(y)]

s.t.334

dy

dt
= ry − rc− λ[Yn+1(y)− y],

y ≥ y
n
.

Different from the benchmark model, the agent now chooses both the action and consumption. If335

the agent decides to work (a = 1), he incurs the costs of exerting effort in exchange for a higher336

7The functional form of Yn+1(y) and Pn(y) depend on the agent’s utility function, and therefore they are nonlinear

for general risk-averse utility functions. In the next section, we will provide an example for a special case where both

Yn+1(y) and Pn(y) take a simple linear form.
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return on his securities when the project progresses to the next stage. If the agent shirks (a = 0),337

although he does not suffer any costs of working, he loses the chance to receive the higher return338

from his securities. In continuous time, the value of the agent’s investment in the security converges339

to his wealth level y at any point in time. Since the agent is required to meet a minimum holding340

requirement that he invests at least y
n

of his wealth in the security, it imposes a lower bound of341

the state variable y at y
n

when the project is at stage n.342

The next proposition shows that if the principal sets the initial wealth, the payoff in case343

of success, and the minimum holding requirement appropriately, this implementation is able to344

generate the same consumption path and effort choice as the original optimal contract. The proof345

is in the appendix.346

Proposition 4.1 Suppose the principal provides the agent with initial wealth y0347

y0 = C1(v
0),

and at stage n

Yn+1(y) =

Cn+1

(
C−1

n (y) + rl
λ

)
if y ≥ Cn(0),

Cn+1(
rl
λ )

Cn(0)
y if 0 ≤ y < Cn(0),

348
y
n
= Cn(0).

Then, given income y, the highest discounted expected utility the agent can achieve is349

Vn(y) = C−1
n (y),

and he chooses the same consumption process as the one in the optimal contract and always exerts350

effort until he completes the last-stage innovation. The minimum holding requirement satisfies351

y
n
> y

n+1
.352

For the payoff in case of success Yn+1(y), note that Cn+1(C
−1
n (y) + rl

λ ) is well defined for353

y ≥ Cn(0). When y ≥ Cn(0), we have Yn+1(y) is increasing in y, and Yn+1(y) = Cn+1(C
−1
n (y) +354

rl
λ ) > Cn(C

−1
n (y)) = y, which means the payoff of the security in case of success is higher than its355

payoff in case of failure. For y < Cn(0), intuitively, the payoff Yn+1(y) should satisfy the following356

conditions. Firstly, the payoff should be higher when the agent holds more security, which means357

Yn+1(y) is strictly increasing in y. Secondly, the payoff in case of success should be higher than the358
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payoff in case of failure, which requires that Yn+1(y) > y. Finally, the payoff should be zero when359

the agent does not hold any security, and hence Yn+1(y) = 0 when y = 0. In this “off equilibrium360

region”, we could choose any function that satisfies these conditions. In Proposition 4.1, we choose361

the simplest linear function that connects the origin and (Cn(0), Cn+1(
rl
λ )).362

The premise of this implementation lies in the fact that the agent’s utility maximization problem363

is the dual problem of the principal’s cost minimization problem in Section 3. Given continuation364

utility v, Cn(v) is the minimum expected cost to finance the incentive-compatible compensation365

scheme. From the dual perspective, given the expected wealth y = Cn(v), the maximum expected366

utility that the agent can achieve should equal v. Further, the consumption allocation should be367

the same. In this implementation, the agent invests in the risky security for saving purpose, and368

hence the return on savings is state contingent. When the state-dependent rates of return are369

chosen appropriately, the agent’s Euler equation mimics the inverse Euler equation implied by the370

principal’s problem. In other words, the wedge between the Euler equation and the inverse Euler371

equation, as stated in Rogerson (1985), disappears.372

In this implementation, the state-contingent security plays a key role in incentives. As discussed373

in Section 3, the principal has to let the agent bear some risks; otherwise, the agent will shirk his374

work. In the implementation, the risks are embedded in the state-contingent security. The gap375

between the value in case of success and in case of failure guarantees that the agent will exert376

effort. The minimum holding requirement arises because, by assumption, the agent has limited377

liability and hence can guarantee a utility level of 0. It is binding when the highest expected utility378

the agent can achieve reaches the lower bound 0. At this point, the principal has to make sure that379

the agent holds enough securities so that the payoff of these securities in case of success is sufficient380

to deliver the agent with continuation utility rl
λ , which is the lowest level in case of success for the381

agent to exert effort. Otherwise, the agent will not have any incentive to work. Hence, the minimum382

holding requirement ensures the lowest level of risk that can incentivize the agent to exert effort.383

Proposition 4.1 shows that the minimum holding requirement is relaxed after each innovation. This384

is because when the project progresses to the next stage, the uncertainty of the project reduces,385

and the minimum level of risks to be borne by the agent for incentive purposes also becomes less.386

The design of security depends on the agent’s attitude towards risk, which is determined by his387

utility function from consumption. In the next section, we explicitly show how to use the equity388

of the firm to create the security when the agent has logarithmic utility. For general cases, in the389
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financial market, there is no asset that has the exact same payoff structure as the state-contingent390

security used in this implementation. However, firms can still design equity-based compensation391

to approximate the security that implements the optimal contract. Since these firms rely heavily392

on R&D, the performance of the employees in the R&D units greatly influences the firms’ per-393

formance outcomes, which closely links employees’ performance and the return on firms’ equities.394

In particular, each breakthrough in R&D is followed by a notable increase in the firm’s equity395

price. The absence of such developments in a firm over a period generally leads to a drop in its396

equity price. Thus, among all available assets, the firm’s equity has the closest payoff-pattern to397

the state-contingent security. Another feature of this implementation is the sequence of decreasing398

minimum holding requirements that the agent has to meet until the completion of the project. In399

practice, this feature is mimicked by using performance-vesting provisions, under which a part of400

equity grants is vested when the research employee achieves a predetermined performance target.401

5 The optimality of equity‐based compensation under loga-402

rithmic utility403

In this section, we consider an example in which the agent has the logarithmic utility function.404

In this case, the contracting problem has a closed-form solution, which allows us to create the405

security that implements the optimal contract in Section 4 using the equity of a firm under some406

assumptions about how the development of the project affects the firm’s value.407

5.1 The optimal contract and equity-based implementation408

If the agent’s utility from consumption is U(c) = ln c, we can show that the principal’s minimum409

cost function takes a simple form—a constant times ev, where the constant only depends on the410

parameters of the model and the stage level of the project. The following proposition summarizes411

the property of the optimal contract.412

Proposition 5.1 When the agent’s utility from consumption is U(c) = ln c, the minimum cost of413

delivering continuation utility v when the project is at stage n is given by Cn(v) = pne
v, where the414

constant pn is determined recursively by415

pN+1 = 1,
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rpn ln pn + λpn = λpn+1e
rl
λ ,

and satisfies pn > pn+1. When the agent completes an innovation, he enters the next stage and416

starts with continuation utility v̄ which satisfies v̄ = v + rl
λ . In case of failure, the continuation417

utility v evolves according to dv
dt = −r ln pn < 0.418

The optimal contract for the logarithmic utility example is consistent with the results of Propo-419

sition 3.1: (1) the continuation utility decreases over time in case of failure and increases by rl
λ420

after each success; (2) pn > pn+1 implies that the cost of delivering the same level of continuation421

utility is higher when the project is at an earlier stage.422

The closed-form solution allows us to derive some comparative statics results regarding how423

the principal’s cost is affected by the agent’s cost of exerting effort and the difficulty of the R&D424

project, which are captured by l and λ respectively. The principal’s cost will be higher when the425

agent incurs a higher cost of exerting effort because the principal needs to compensate the agent426

more to cover his cost of effort. How the difficulty of the R&D project affects the principal’s cost427

is unclear. When the arrival rate of success λ is very small, which means the R&D project is very428

challenging, the principal needs to provide a stronger incentive for the agent to exert effort. On the429

one hand, the agent will receive a higher reward in case of success which increases the principal’s430

cost, but on the other hand, the principal will punish the agent harder when he fails by lowering431

his continuation utility quicker, which leads to a lower and more rapidly decreasing consumption432

path in case of failure. In other words, the principal provides a stronger incentive for the agent by433

making his consumption path more volatile. The following corollary shows that the net effect is to434

increase the principal’s cost.435

Corollary 5.2 The principal’s cost of delivering continuation utility v at any stage n is higher436

when the agent has a higher cost of exerting effort, or a lower chance of success, i.e.,437

∂pn
∂l

> 0 and ∂pn
∂λ

< 0.

To implement the optimal contract, we consider a security with the same payoff structure438

described in Section 4. As shown in Section 4, when the agent invests in this security for saving439

purpose, at stage n, the agent’s wealth in case of failure grows at rate r and decreases because of440

consumption spending c and the loss on investment in security λ(Yn+1(y)−y). Hence, the evolution441
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of the agent’s wealth in case of failure satisfies442

dy

dt
= ry − rc− λ[Yn+1(y)− y].

If the agent succeeds, his wealth raises to Yn+1(y). To replicate the consumption path of the optimal443

contract, based on the results of Proposition 4.1, the value of the risky security should increase from444

y to445

Yn+1(y) = Cn+1

(
C−1

n (y) +
rl

λ

)
=

pn+1

pn
e

rl
λ y =

(
r ln pn

λ
+ 1

)
y

in case of success, which is a linear function of y.8 The following proposition confirms that the446

implementation indeed replicates the optimal contract.447

Proposition 5.3 Suppose the principal provides the agent with initial wealth y0448

y0 = C1(v
0) = p1e

v0 ,

and at stage n449

Yn+1(y) =

(
r ln pn

λ
+ 1

)
y.

Then, given income y, the highest discounted expected utility the agent can achieve is450

Vn(y) = ln y − ln pn,

and he chooses the same consumption process as the one in the optimal contract and always exerts451

effort until he completes the last-stage innovation.452

From Proposition 5.3, the risky security that implements the optimal contract has a simple453

structure: (1) the value of the security increases proportionally by ( r ln pn

λ + 1) times when the454

project progresses from stage n to stage n+ 1; (2) by fair-pricing rule, in case of failure, the value455

of the security evolves according to456

dy

dt
= ry − λ(ȳ − y) = ry − λ

[(
r ln pn

λ
+ 1

)
y − y

]
= r(1− ln pn)y.

Note that, in case of failure, the value of the risky security also changes proportionally, and its return457

equals r(1− ln pn). Since the logarithmic utility function is unbounded from below, the minimum458

holding requirement in Proposition 4.1 no-longer exists. In the logarithmic utility example, to459

8The last equality is due to rpn ln pn + λpn = λpn+1e
rl
λ from Proposition 5.1.
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provide incentive, the value of the security increases proportionally by r ln pn

λ + 1 times in case of460

success and depreciates at rate r ln pn in case of failure. Since pn > pn+1, Proposition 5.3 implies461

the security is more volatile at an earlier stage. The intuition behind this result is again that the462

principal needs the agent to bear some risks in order to provide an incentive to work. When the463

project progresses to the next stage, the uncertainty of the project reduces, and hence the risk that464

the agent needs to take for incentive purpose also reduces.465

Proposition 5.3 shows that the value of the risky security that implements the optimal contract466

increases proportionally after each success. If the firm’s value changes in a similar pattern, then we467

might be able to create the security using the firm’s equity. It requires that: 1) the firm’s value is468

only affected by the performance of the project; 2) the firm’s value increases proportionally when469

the project progresses to the next stage. This pattern is consistent with the development of R&D-470

intensive start-up firms because the development of these firms usually starts with one main research471

project and the firms’ value depends crucially on the performance of the project. Regarding how472

the performance of the project changes the firm’s value, although it is difficult to find data about473

how a specific project affects the value of the firm, most R&D-intensive start-up firms are backed by474

venture capital, and the valuation of the firms at each financing round is publicly available. Since475

whether a start-up firm can receive further rounds of financing depends on the development of its476

main project, an alternative approach to examine how the development of its main project affects477

the firm’s value is to look at the change of the valuation of the firm at each financing round. From478

2007 to 2011, Twitter received seven rounds of financing, and its valuation increased roughly three479

times at each financing round. A similar proportionate growth pattern is documented in Venture480

Pulse Report published quarterly by KPMG.481

If the firm’s value increases proportionally by Rn times when its project progresses from stage482

n to stage n+ 1. We first assume that Rn is certain and discuss how the uncertainty of Rn affects483

the results in the next subsection. Let k be the value of the firm. Under this assumption, the firm’s484

value in case of failure evolves according to485

dk

dt
= rk − λ(Rnk − k) = [r − λ(Rn − 1)]k,

which implies that the return of the firm’s equity in case of failure equals [r−λ(Rn − 1)]. Consider486

the following portfolio of the firm’s equity and a risk-free asset with interest rate r, in which the487
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fraction of equity in the portfolio αn satisfies488

αn · [r − λ(Rn − 1)] + (1− αn) · r = r(1− ln pn),

or equivalently489

αn =
r ln pn

λ(Rn − 1)
.

By construction, the return of the portfolio in case of failure equals to r(1− ln pn), and the value of490

the portfolio increases by αn ·Rn +(1−αn) · 1 = r ln pn

λ +1 times when the project progresses from491

stage n to stage n + 1.9 Thus, the payoff of the portfolio matches exactly with the payoff of the492

risky security that implements the optimal contract. The construction of the portfolio also requires493

that Rn ≥ r ln pn

λ + 1 so that αn ∈ [0, 1] for any n. It means that the growth rate of the firm’s494

value in case of success is higher than the required return of the security in case of success, which495

is also a sufficient condition on the return of the project so that it is always optimal to implement496

the positive effort. The following proposition summarizes these results.497

Proposition 5.4 Suppose the value of the firm increases by Rn times when the project progresses498

from stage n to stage n + 1. If Rn ≥ r ln pn

λ + 1 for all n, then the risky security that implements499

the optimal contract can be created by a portfolio of the firm’s equity and a risk-free asset with500

interest rate r. The fraction of equity, αn, satisfies501

αn =
r ln pn

λ(Rn − 1)
.

Proposition 5.4 shows that the fraction of equity in the portfolio depends only on the stage level502

of the project and the parameters of the model. To implement the optimal contract, the principal503

can offer the agent a wealth level of p1e
v0 before the project starts, let him have access to the504

portfolio for investment for future consumption, and adjust the fraction of equity in the portfolio505

according to the stage level of the project. The agent makes all the remaining decisions, including506

consumption, investment, and effort choices. Proposition 5.3 shows that the agent will choose the507

same consumption path as the one in the optimal contract and always exerts effort. This result508

again shows that the composition of the equity-based incentive compensation should depend on the509

agent’s performance. From the determination of the fraction of equity in Proposition 5.4, if the510

9Since the value of the risk-free asset dons not depend on the outcome of the project, the fraction of the risk-free

asset 1− αn is multiplied by 1.
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firm’s value increases by the same proportion after each success, then the fraction of equity in the511

compensation portfolio decreases when the project progresses to a higher stage and a fraction of512

equity vests after each success.513

A direct implication of Corollary 5.2 is how the share of equity in the optimal portfolio changes514

with the cost of exerting effort, the difficulty of innovation, as well as the impact of innovation on515

the firm’s value Rn.516

Corollary 5.5 The share of equity in the optimal portfolio is higher when the agent has a higher517

cost of exerting effort, a lower chance of success, or a lower growth rate of firm value in case of518

success, i.e.,519

∂αn

∂l
> 0,

∂αn

∂λ
< 0, and ∂αn

∂Rn
< 0.

The intuition of these comparative statics results is straightforward. When the agent has a higher520

cost of exerting effort or a lower chance of success, the principal needs to provide stronger incentive521

for the agent to work, and hence the optimal compensation portfolio should include more of the522

firm’s equity. Holding everything else constant, when the firm’s value is very sensitive to the523

development of the R&D project, a small share of equity is enough to ensure incentive. Some testable524

implications of these results are that research employees receive more equity-based compensation525

when each breakthrough of the project takes longer time on average, or when the variation of equity526

price is smaller when any news of the development of the project is revealed.527

5.2 The limitation of equity-based compensation528

In this subsection, we briefly discuss the limitations of the equity implementation results. In the529

previous subsection, we assumed that the firm’s value grow by a certain proportion when the project530

progresses from one stage to the next. In reality, however, the firm’s value faces two important types531

of uncertainty. Firstly, the firm faces the aggregate uncertainty of the market which will also affect532

its equity price. Secondly, the valuation of the firm’s R&D project may also be uncertain, i.e., the533

growing proportion of the firm’s value in case of success, Rn, is uncertain. For these situations, using534

equity-based incentive compensation lets the agent face the uncertainties that he can not control,535

and as a result, the principal needs to compensate the agent more for bearing the unnecessary risks.536

It implies that the second-best consumption allocation of the optimal contract cannot be achieved537

by using equity-based incentive compensation when these two types of uncertainty exist. When the538
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firm is cash constrained and chooses to use equity-based incentive compensation for its research539

employee, to increase efficiency, the firm should try to reduce the unnecessary risks faced by its540

employees as much as possible. For aggregate uncertainty, one approach is to add a short position541

of a market portfolio (for example a short position of index future) in the compensation portfolio to542

hedge the aggregate risk so that the research employees are effectively paid according to the firm’s543

performance relative to a benchmark. The approach of using the relative-performance evaluation544

scheme to remove the market aggregate risk inherent in equity-based incentive compensation has545

been extensively discussed in executive compensation literature since the theoretical prediction546

in Holmstrom (1982), which suggests that “the market component of a firm’s returns should be547

removed from the compensation package since executives cannot affect the overall market by their548

actions and it is costly for executives to bear the related risks.” For the uncertainty of valuation of549

the firm’s research project, however, it is difficult to find a financial tool to hedge the risk. Next,550

we use a two-period model to explain how it affects the efficiency of equity-based compensation.551

Now, suppose a research project lasts for two periods. In period 0, the agent decides whether to552

exert effort or shirk. Conditional on exerting effort, the agent succeeds with probability µ in period553

1. If he chooses to shirk, he fails with probability 1. The agent consumes in both period, and the554

utility function from consumption equals U(c) = ln c. The agent’s initial requisite utility equals v0.555

Let l be the disutility of exerting effort and β be the discount rate. As to how the performance of556

the project affects the firm’s value, in general, the firm’s value equals to its real value plus a random557

noise. Specifically, the firm’s period-1 value equals k + σ in case of failure, and its value equals to558

R̃k+σ in case of success, where the random variable R̃ captures the uncertainty of the valuation of559

the project and random variable σ captures the aggregate uncertainty. Since we want to focus on560

the effect of the uncertainty of the valuation of the project, we consider an extreme case in which561

the firm can hedge the aggregate uncertainty perfectly, and the only uncertainty comes from the562

firm’s value when the project succeeds. In this case, for a certain amount of the firm’s equity, its563

period-1 value in case of success equals R̃ times its value in case of failure. We also assume that the564

return of the project is sufficient high, which satisfies E(ln R̃) > l
βµ , so that it is optimal to induce565

positive effort. We have the following result.566

Proposition 5.6 If R̃ is certain and equals R̄, then the second-best outcome (the optimal contract)567

can be implemented by a portfolio of the firm’s equity and a risk-free asset. If R̃ is a random variable568

with mean R̄, then the firm still can use a portfolio of the firm’s equity and a risk-free asset to569
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induce incentive, but incurs higher costs of delivering the same level of initial requisite utility v0 to570

the agent than the second-best outcome. The efficiency loss is lower when the distribution of R̃ is571

more concentrated around its mean R̄.572

The implication of Proposition 5.6 is that if the firm can make an more accurate prediction of the573

valuation of its project, then it can achieve very close to the optimal contract by using equity-based574

compensation.575

6 An implementation via performance‐based bonuses576

Equity-based compensation is attractive to cash-constrained start-up firms because it can in-577

centivize their research employees without spending their precious cash. However, it also has some578

limitations as discussed in the previous section. In firms with enough cash flow, performance-579

based bonus is another commonly used compensation scheme to provide incentive for research580

employees. In this section, we provide an alternative implementation of the optimal contract via581

performance‐based bonuses for situations in which equity-based compensation becomes less efficient.582

We keep the assumption that the agent has logarithmic utility function. Before the project583

starts, the principal offers a savings account to the agent with an initial balance of y0. When the584

project is at stage n, the principal sets the return on this account at rn in case of failure. In case of585

success, the principal rewards the agent with a performance bonus and deposits it into the savings586

account to increase its balance from y to Yn+1(y). Note that the size of the bonus depends on the587

balance of the savings account and the progress of the project. At any point in time, the agent588

can withdraw money from the savings account for consumption subject to the constraint that the589

balance of the savings account is nonnegative. Then, the balance of the savings account in case of590

failure evolves according to591

dy

dt
= rny − rc.

In case of success, the balance of the account increases from y to Yn+1(y). Similar to Proposition592

5.3, we can show that if the principal chooses y0, rn, and Yn+1(y) appropriately, the agent will593

always exert effort and choose the exact same consumption allocation as the optimal contract.594

Proposition 6.1 Suppose the principal provides the agent with initial balance595

y0 = p1e
v0 ,
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and sets596

rn = r(1− ln pn),
597

Yn+1(y) =

(
r ln pn

λ
+ 1

)
y.

Then, the agent chooses the same consumption process as the one in the optimal contract and598

always exerts effort until he completes the last-stage innovation.599

The balance of the savings account y in this implementation plays a similar role to the agent’s600

wealth level y in the equity-based implementation in Subsection 5.1. Both of them capture the601

agent’s expected income from the contract and serve as the state variable in the agent’s utility602

maximization problem. Therefore, if the evolutions of y are the same, then both implementations603

generate the same consumption allocation as in the optimal contract. The main difference between604

these two implementations is the approach to control the evolution of y. In equity-based implemen-605

tation, the principal adjusts the fraction of equity in the compensation portfolio according to the606

stage level, and then the equity-based compensation scheme automatically determines the evolu-607

tion of the agent’s wealth y. In performance-bonus implementation, the principal manually controls608

the evolution of the balance of the savings account y through the bonus for success. Comparing609

these two implementations, the advantage of using performance-based bonuses is that the agent610

does not bear any unnecessary risks brought by equity-based incentive compensation. However,611

the principal needs to monitor the balance of the account since the agent is risk-averse and hence612

the size of the bonus for success depends on the balance. The advantage of equity-based incentive613

compensation lies in its simplicity for which the principal only needs to adjust the faction of equity614

in the compensation portfolio depending on the development of the project and can leave all other615

decision problems to the agent.616

7 Conclusion617

To examine the optimality of the equity-based compensation scheme that is widely used by R&D-618

intensive start-up firms for their research employees, we study a dynamic contracting problem in619

which a principal hires an agent to perform a multi-stage R&D project. The R&D process is modeled620

by a Poisson process. In the optimal contract, the principal provides incentive to the agents in two621

ways: (1) the agent’s compensation increases to a higher level when he completes an innovation622
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(reward); (2) if the agent fails to complete the innovation, his compensation decreases continuously623

over time (punishment). We show that the optimal contract could be implemented using a risky624

security that appreciates when the project succeeds and depreciates when it fails. Until the agent625

completes the whole project, he is required to meet a sequence of holding requirements which are626

relaxed each time when the project progresses to the next stage. In this implementation, instead627

of the principal directly controlling the agent’s consumption as in the optimal contract, the agent628

chooses both consumption level and effort level. We show that this implementation yields the same629

consumption allocation as the one in the optimal contract. We also provide an example in which630

the contracting problem has a closed-form solution and explicitly describe how to use the equity631

of the firm to implement the optimal contract. This implementation suggests that the structure of632

equity-based compensation should relate to the research employees’ performance, and it provides633

a rationale for using the performance-vested equity-based compensation in R&D-intensive start-up634

firms from the theoretical point of view.635

Appendix A: Proofs636

Proof of Proposition 3.1637

The proof of Proposition 3.1 in Shan (2017) proves points (i) to (iv). Cn(v) > Cn+1(v) for all638

v is by Corollary 3.2 in Shan (2017). Proposition 3.1 in Shan (2017) shows that the derivative of639

the cost function Cn(v) satisfies S′(v) < C ′
n(v) < C ′

n+1(v + rl
λ ). Since the utility function U(c)640

satisfies the Inada condition limc→+∞ U ′(c) = 0, we have limv→+∞ S′(v) = +∞, which implies that641

limv→+∞ C ′
n(v) = +∞. Since C ′

n(v) < Cn+1(v + rl
λ ) for all v and Cn(0) =

λCn+1(
rl
λ )

r+λ < Cn+1(
rl
λ ),642

it follows that Cn(v) < Cn+1(v +
rl
λ ) for all v.643

How to replicate the inverse Euler equitation in a two-period model644

Before proving Proposition 4.1, we first illustrate the principle of the implementation in a two-645

period model in which the agent chooses action and consumption in the first period and the outcome646

of the project is realized in the second period. If the agent works in the first period, the project647

succeeds with probability µ. If he shirks, it fails with probability 1. In the first period, the agent’s648

chooses the consumption c and security holding y given initial wealth level y subject to the following649
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budget constraint650

c+ P (y) = y.

The price of security are given by the discounted expected value of the security651

P (y) = β[(µY (y) + (1− µ)y)],

where y is the payoff of the security in case of failure, Y (y) is the payoff in case of success, and β652

is the discount factor. Thus, the agent’s problem is653

max
c,a

U(c)− al + β[aµU(Y (y)) + (1− µa)U(y)]

s.t.654

c+ β[(µY (y) + (1− µ)y)] = y.

If the principal set Y (y) = U−1(U(y) + l
βµ ), consider the agent’s choice of effort, we have655

−l + β[µU(Y (y)) + (1− µ)U(y)] = βU(y).

It implies that the agent is indifferent between working and shirking no matter what consumption656

level he chooses. For the consumption choice, if the agent decides to save one unit consumption657

and invest it in the security in the first period, then in the second period658

∆y =
1

β[µY ′(y) + (1− µ)]
, and ∆Y (y) =

Y ′(y)

β[µY ′(y) + (1− µ)]
,

When the agent chooses to shirk a = 0, the optimal consumption choice satisfies the following Euler659

equation660

U ′(c) =
U ′(y)

µY ′(y) + (1− µ)
.

When the agent chooses to work a = 1, the Euler equation becomes661

U ′(c) =
µY ′(y)U ′(Y (y))

µY ′(y) + (1− µ)
+

(1− µ)U ′(y)

µY ′(y) + (1− µ)
.

Note that Y (y) = U−1(U(y) + l
βµ ). Hence, Y ′(y) =

U ′(y)

U ′(Y (y)) , which implies that662

µY ′(y)U ′(Y (y))

µY ′(y) + (1− µ)
+

(1− µ)U ′(y)

µY ′(y) + (1− µ)
=

U ′(y)

µY ′(y) + (1− µ)
.

Thus, for both actions the agent chooses the same consumption level because they satisfy the same663

Euler equation664

U ′(c) =
U ′(y)

µY ′(y) + (1− µ)
.
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Thus, if the principal set Y (y) = U−1(U(y) + l
βµ ), the agent is willing to exert effort, and the joint665

deviation strategy of shirking and saving can be ruled out. Finally, taking the reciprocal of both666

sides of the Euler equation, we have667

1

U ′(c)
=

1

U ′(y)
[µY ′(y) + (1− µ)].

Note that668

1

U ′(y)
[µY ′(y) + (1− µ)] =

1

U ′(y)
[µ

U ′(y)

U ′(Y (y))
+ (1− µ)] =

µ

U ′(Y (y))
+

1− µ

U ′(y)
.

Then, the Euler equation of the agent’s consumption choice problem becomes669

1

U ′(c)
=

µ

U ′(Y (y))
+

1− µ

U ′(y)
,

which is exactly the inverse Euler equation implied by the principal’s problem. This result confirms670

that the implementation rules out the joint-deviation strategy.671

Proof of Proposition 4.1672

Since Cn is a strictly increasing and differentiable function by Proposition 3.1, C−1
n exists and673

is also differentiable. We first show that Vn(y), which is the maximum expected utility that the674

agent can achieve given the expected wealth y, equals C−1
n (y) for any n (0 < n ≤ N + 1). This is675

obviously true when the agent completes the last stage and receives a lump-sum transfer, because676

VN+1(y) = U(y) = S−1(y) = C−1
N+1(y). Next, for any stage n, taking Vn+1(y) = C−1

n+1(y) as a known677

function, we verify that Vn(y) = C−1
n (y) is one solution to the value function of the following HJB678

equation for the agent’s problem under the conditions of Proposition 4.1,679

rVn(y) = max
a,c

r[U(c)− al] + V ′
n(y)

dy

dt
+ aλ[C−1

n+1(Yn+1(y))− Vn(y)]

s.t.680

dy

dt
= ry − rc− λ[Yn+1(y)− y],

y ≥ y
n
.

Next, we show that Vn(y) = C−1
n (y) is the true value function for the agent’s utility maximization681

problem in stage n, and hence the consumption path implied by the value function is a true solution682

29



to the agent’s problem. If this is true, then we can show that Vn(y) = C−1
n (y) is the true value683

function for the agent’s problem for any n (0 < n ≤ N + 1) by backward induction.684

Step 1: Verify that Vn(y) = C−1
n (y) is one solution to the HJB equation.685

To verify that Vn(y) = C−1
n (y) satisfies the HJB equation, we plug Vn(y) = C−1

n (y) and its686

derivative V ′
n(y) =

1
C′

n(C
−1
n (y))

into both sides of the HJB equation and show that the equation holds.687

For the right-hand side, we first consider the agent’s decision for action a. Letting Vn(y) = C−1
n (y),688

we have689

λ[C−1
n+1(Yn+1(y))− Vn(y)]− rl = λ[C−1

n+1(Cn+1(C
−1
n (y) +

rl

λ
))− C−1

n (y)]− rl

= λ[C−1
n (y) +

rl

λ
− C−1

n (y)]− rl

= 0.

Then, for either choice of action a, the right-hand side of the HJB equation becomes690

RHS = max
c

rU(c) + V ′
n(y){ry − rc− λ[Yn+1(y)− y]}.

Taking V ′
n(y) =

1
C′

n(C
−1
n (y))

and Yn+1(y) = Cn+1(C
−1
n (y) + rl

λ ) into the expression above, we have691

RHS = max
c

rU(c) +
ry − rc− λ[Cn+1(C

−1
n (y) + rl

λ )− y]

C ′
n(C

−1
n (y))

,

= rU(c∗(y)) +
(r + λ)y − rc∗(y)− λCn+1(C

−1
n (y) + rl

λ )

C ′
n(C

−1
n (y))

,

where c∗(y) is the optimal choice of consumption which is determined by the first-order condition692

U ′(c∗(y)) = 1
C′

n(C
−1
n (y))

.693

The next step is to find the expression for 1
C′

n(C
−1
n (y))

. Since, from principal’s problem, Cn(v)694

satisfies the following differential equation695

(r + λ)Cn(v) = rS(u∗(v)) + C ′
n(v)[r(v − u∗(v))] + λCn+1(v +

rl

λ
),

where u∗(v) is the optimal choice of utility flow and satisfies S′(u∗(v)) = C ′
n(v). Then we have696

1

C ′
n(v)

=
r(v − u∗(v))

(r + λ)Cn(v)− rS(u∗(v))− λCn+1(v +
rl
λ )

.

Letting the continuation utility v equal C−1
n (y) in the equation above, we can get697

1

C ′
n(C

−1
n (y))

=
r[C−1

n (y)− u∗(C−1
n (y))]

(r + λ)Cn(C
−1
n (y))− rS(u∗(C−1

n (y))− λCn+1(C
−1
n (y) + rl

λ )

=
r[C−1

n (y)− u∗(C−1
n (y))]

(r + λ)y − rS(u∗(C−1
n (y)))− λCn+1(C

−1
n (y) + rl

λ )
,
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and u∗(C−1
n (y)) satisfies S′(u∗(C−1

n (y))) = C ′
n(C

−1
n (y)). Note that S(u) = U−1(u), it implies that698

S′(u) = 1
U ′(S(u)) . Then we have C ′

n(C
−1
n (y)) = S′(u∗(C−1

n (y))) = 1
U ′(S(u∗(C−1

n (y))))
. Since c∗(y)699

satisfies U ′(c∗(y)) = 1
C′

n(C
−1
n (y))

, it follows that U ′(S(u∗(C−1
n (y)))) = U ′(c∗(y)). Because the utility700

function U is strictly concave, we then have S(u∗(C−1
n (y))) = c∗(y), and hence u∗(C−1

n (y)) =701

U(c∗(y)). This result shows that c∗(y) = S(u∗(C−1
n (y))) because they satisfy the same first-order702

condition. Therefore,703

1

C ′
n(C

−1
n (y))

=
r[C−1

n (y)− U(c∗(y))]

(r + λ)y − rc∗(y)− λCn+1(C
−1
n (y) + rl

λ )
.

Taking this expression for 1
C′

n(C
−1
n (y))

into the right-hand side of the HJB equation, we have704

RHS = rU(c∗(y)) +
(r + λ)y − rc∗(y)− λCn+1(C

−1
n (y) + rl

λ )

C ′
n(C

−1
n (y))

= rU(c∗(y)) + r[C−1
n (y)− U(c∗(y))]

= rC−1
n (y)

For the left-hand side, we have705

LHS = rVn(y) = rC−1
n (y).

Thus, Vn(y) = C−1
n (y) is one solution to the HJB equation of the agent’s problem.706

Step 2: Check that the path of wealth y (or security holding) implied by the HJB equation given707

value function Vn(y) = C−1
n (y) does not violate the minimum holding requirement y ≥ y

n
.708

Since the payoff of the security in case of success is strictly increasing in y, if the agent invests709

less than y
n

in the security, by the design of the security, the payoff in case of success is less than710

Cn+1(
rl
λ ), and hence the expected utility that the agent can derive from this amount of wealth when711

he enters stage n+1 is less than C−1
n+1(Cn+1(

rl
λ )) =

rl
λ . To induce incentive, the agent’s continuation712

utility needs to increase by at least rl
λ . Since in stage n the agent can always guarantee 0 utility by713

doing noting, if he knows that the highest utility he can receive in case of success is less than rl
λ ,714

he will not have any incentive to work. Intuitively, the minimum holding requirement ensures that715

the agent has sufficient equity in the future to induce effort. The minimum holding requirement716

imposes a condition at the lower bound of y that dy
dt ≥ 0 when y reaches the lower bound y

n
because717

y cannot decrease any further when it hits the lower bound. Our next task is to check this condition718

is satisfied given Vn(y) = C−1
n (y). Since y

n
= Cn(0), we have719

Yn+1(yn) = Cn+1(C
−1
n (y

n
) +

rl

λ
) = Cn+1(

rl

λ
).
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When y reaches the lower bound y
n
, the agent’s choice of consumption satisfies720

c∗(y
n
) = S(u∗(C−1

n (y
n
))) = S(u∗(0)) = S(0),

where u∗(0) = 0 is because from Proposition 3.1 we have S′(u∗(0)) = C ′
n(0) and the boundary721

condition C ′
n(0) = S′(0) = 0 when the continuation utility reaches the lower bound 0 in the722

principal’s problem. Then, at y = y
n
,723

dy

dt
= ry

n
− rc∗(y

n
)− λ[Yn+1(yn)− y

n
] = rCn(0)− λ[Cn+1(

rl

λ
)− Cn(0)] = 0,

where the last equality is because Cn(0) =
λCn+1(

rl
λ )

r+λ from Proposition 3.1. Therefore, the boundary724

condition for y is satisfied.725

Step 3: Verify that Vn(y) = C−1
n (y) is the true value function of the agent’s maximization726

problem and the consumption path implied by the HJB equation given value function Vn(y) = C−1
n (y)727

is the same as the consumption path of the optimal contract.728

Let the time when the stage n problem starts be 0 and let y0 be the wealth at the beginning of729

stage n. When the project remains in stage n, the state variable yt evolves according to730

dy

dt
= ry − rc− λ[Yn+1(y)− y].

Since Cn(v) < Cn+1(v + rl
λ ), we have Yn+1(y) = Cn+1(C

−1
n (y) + rl

λ ) > Cn(C
−1
n (y)) = y, which731

implies that732

dy

dt
= ry − rc− λ[Yn+1(y)− y] ≤ ry.

Hence, for any feasible path of the state variable {yt}t≥0, we have yt ≤ erty0. Since Cn(v) is733

a strictly increasing function and satisfies limv→+∞ C ′
n(v) = +∞, we have Vn(y) = C−1

n (y) is734

a strictly increasing function and satisfies and limy→+∞ V ′
n(y) = 0. Since Vn(yn) = 0, we have735

Vn(y) ≥ 0 for all y ≥ y
n
. It follows that for all feasible paths of the state variable {yt}t≥0,736

0 ≤ lim
t→+∞

e−rtVn(yt) ≤ lim
t→+∞

Vn(e
rty0)

ert
= lim

t→+∞

V ′
n(e

rty0)y0re
rt

rert
= 0,

where the first equality is by L’Hôpital’s rule. It shows that Vn(y) = C−1
n (y) satisfies the transver-737

sality condition limt→+∞ e−rtVn(yt) = 0 for any feasible path of the state variable {yt}t≥0.10738

10This condition is the continuous-time version of the condition in Theorem 4.3 in Stokey and Lucas (1989). In

the supplement of this paper, we provide a proof that if a function is one solution to the HJB equation and satisfies

the transversality condition, then the function is the true value function.
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Therefore, Vn(y) = C−1
n (y) is the true value function of the agent’s maximization problem, and the739

consumption path implied by the HJB equation given value function Vn(y) = C−1
n (y) is the true740

solution to the agent’s problem.741

Our next task is to show that the consumption path chosen by the agent is the same as the742

consumption path of the optimal contract. We can interpret Vn(y) as the agent’s “continuation743

utility” given wealth y. In case of success, the agent’s “continuation utility” changes from Vn(y) to744

C−1
n+1(Yn+1(y)), which satisfies745

C−1
n+1(Yn+1(y)) = C−1

n+1

(
Cn+1

(
C−1

n (y) +
rl

λ

))
= C−1

n (y) +
rl

λ
= Vn(y) +

rl

λ
.

Thus, if Yn+1(y) = Cn+1(C
−1
n (y) + rl

λ ) then the agent is always indifferent between working and746

shirking no matter what his consumption choice is. Moreover, the agent’s optimal choices of con-747

sumption for the two actions are the same because they satisfy the same first-order condition748

U ′(c) = V ′
n(y). Thus, the agent is always willing to exert effort and cannot achieve higher utility749

through the joint-deviation strategy by shirking and saving. In case of failure, his “continuation750

utility” changes smoothly and evolves according to751

dVn(y)

dt
= V ′

n(y)
dy

dt
= rVn(y)− rU(c∗(y)),

where c∗(y) is the optimal choice of consumption given y and satisfies U ′(c∗(y)) = V ′
n(y), and the752

last equality is derived from the agent’s HJB equation. From the principal’s problem in Section 3,753

since the incentive-compatibility condition is always binding so that v̄ = v + rl
λ , in case of failure,754

the continuation utility evolves according to755

dv

dt
= rv − ru∗(v),

where u∗(v) is the optimal choice of utility flow and satisfies S′(u∗(v)) = C ′
n(v). The previous proof756

has shown that if v = Vn(y) = C−1
n (y) then u∗(v) = u∗(C−1

n (y)) = U(c∗(y)), which means that the757

optimal utility flow given continuation utility level C−1
n (y) in the principal’s problem equals the758

agent’s utility from the optimal consumption choice given wealth level y in the agent’s problem.759

Therefore, given the same continuation utility, the agent chooses the same level of consumption as760

the optimal contract, which further induces the same dynamics of the continuation utility. Thus,761

the optimal consumption path for the agent’s problem is the same as the consumption path of the762

optimal contract.763
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Finally, since we have verified that VN+1(y) = C−1
N+1(y), we can show that Vn(y) = C−1

n (y) is764

the true value function for the agent’s problem for any n (0 < n ≤ N + 1) by backward induction.765

Therefore, given the same continuation utility, the implementation and the optimal contract766

choose the same consumption level, which further induces the same dynamics of the continuation767

utility. Yn+1(y) = Cn+1(C
−1
n (y) + rl

λ ) guarantees that the agent is always indifferent between768

working and shirking. The initial condition that y0 = C1(v
0) guarantees that the agent starts with769

initial continuation-utility v0. Thus, the implementation and the optimal contract generate the770

same consumption path under all possible realization of the agent’s performance and the agent is771

always willing to exert effort.772

For the value of the minimum holding requirements, since y
n
= Cn(0) and Cn(0) > Cn+1(0) by773

Proposition 3.1, it follows that the minimum holding requirement satisfies y
n
> y

n+1
.774

Proof of Proposition 5.1775

For logarithmic utility function U(c) = ln(c), the cost of delivering u is S(u) = eu, and the cost776

of delivering the one-time transfer when the project is completed is CN+1(v) = ev. Suppose the777

stage n+ 1 cost function is Cn+1(v) = pn+1e
v, where pn+1 is a constant. We first use a guess-and-778

verify method to show that the solution to the stage n HJB equation Cn(v) also takes the form of779

pne
v—a constant times ev.780

Taking Cn+1(v) = pn+1e
v and the guess Cn(v) = pne

v into the HJB equation, the left-hand781

becomes rpne
v. If we can show that the right-hand side also takes the form of a constant times782

ev, then we can pin down the constant pn from the HJB equation, and the guess is verified. The783

right-hand side of the HJB equation is given by784

RHS = min
u,v̄

reu + pne
v dv

dt
+ λ(pn+1e

v̄ − pne
v)

s.t.785

dv

dt
= rv − r(u− l)− λ(v̄ − v),

λ(v̄ − v) ≥ rl.

Utility-flow u satisfies the first-order condition S′(u) = C ′
n(v). Therefore,786

eu = pne
v,
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which implies that u = v + ln pn.787

The incentive compatibility constraint must be binding, otherwise the principal can lower costs788

by offering a lower v̄. Hence, v̄ = v + rl
λ , which implies that dv

dt = rv − ru = −r ln pn. Taking the789

solution for u and v̄ into the right-hand side of the HJB equation, it becomes790

RHS = rpne
v + pne

v(−r ln pn) + λ(pn+1e
v+ rl

λ − pne
v)

= (rpn − rpn ln pn + λpn+1e
rl
λ − λpn)e

v,

which also takes the form of a constant times ev. Finally, letting the left-hand side of the HJB791

equation equal the right-hand side, we have792

rpne
v = (rpn − rpn ln pn + λpn+1e

rl
λ − λpn)e

v,

which implies that793

rpn ln pn + λpn = λpn+1e
rl
λ .

Therefore, if Cn+1(v) = pn+1e
v, then Cn(v) also takes the form of pnev, where the constant pn is794

determined by the above equation given pn+1. When the agent completes the project, the principal’s795

cost of delivering the one-time transfer is CN+1(v) = ev, and hence pN+1 = 1. Then, by backward796

induction, the cost function at any stage n equals Cn(v) = pne
v, where pn is determined recursively797

starting from pN+1 = 1.798

Next, we show that the constants satisfy pn > pn+1 by backward induction. Since pN+1 = 1,799

pN satisfies800

rpN ln pN + λpN = λe
rl
λ .

If pN = 1, then we have801

rpN ln pN + λpN = r ln 1 + λ = λ < λe
rl
λ .

Since rpN ln pN + λpN is an increasing function of pN , it implies that pN > 1 = pN+1.802

For any 0 < n ≤ N , we have803

rpn ln pn + λpn = λpn+1e
rl
λ ,

804

rpn−1 ln pn−1 + λpn−1 = λpne
rl
λ .

Thus, pn > pn+1 implies that pn−1 > pn. We have shown that pN > pN+1. Applying backward805

induction, we can show that pn > pn+1 for all 0 < n ≤ N .806
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Proof of Corollary 5.2807

Since pn is determined recursively by808

rpn ln pn + λpn = λpn+1e
rl
λ .

By Implicit Function Theorem, we have809

∂pn
∂l

=
rpn+1e

rl
λ + λe

rl
λ

∂pn+1

∂l

r ln pn + r + λ

Since pn ≥ 1 and pn+1 ≥ 1, it implies that if ∂pn+1

∂l ≥ 0, then ∂pn

∂l > 0. Note that pN+1 = 1 and810

hence ∂pN+1

∂l = 0. Then, ∂pn

∂l > 0 for all n by backward induction.811

Similarly, by Implicit Function Theorem, we have812

∂pn
∂λ

= −
pn + ( rlλ − 1)e

rl
λ pn+1 − λe

rl
λ

∂pn+1

∂λ

r ln pn + r + λ
< −

pn − pn+1 − λe
rl
λ

∂pn+1

∂λ

r ln pn + r + λ
,

where the last step is because ( rlλ − 1)e
rl
λ > −1.11 Since pn > pn+1 by Proposition 5.1, it implies813

that if ∂pn+1

∂λ ≤ 0, then ∂pn

∂λ < 0. Once again, we can show that ∂pn

∂λ < 0 for all n by backward814

induction starting from the fact that ∂pN+1

∂λ = 0.815

Proof of Proposition 5.3816

The proof is similar to the proof of Proposition 4.1. When the agent completes the last stage,817

his utility from the lump-sum payment equals VN+1(y) = ln y − ln pN+1, where pN+1 = 1. Next,818

given Vn+1(y) = ln y − ln pn+1 and Yn+1(y) = ( r ln pn

λ + 1)y, we verify that Vn(y) = ln y − ln pn is819

the solution to the value function of the following HJB equation for the agent’s problem,820

rVn(y) = max
a,c

r[ln c− al] + V ′
n(y)

dy

dt
+ aλ{[ln(Yn+1(y))− ln pn+1]− Vn(y)}

s.t.821

dy

dt
= (r − r ln pn)y − rc.

If this is true, then we can show that Vn(y) = ln y − ln pn for any n (0 < n ≤ N + 1) by backward822

induction.823

11Let f(x) = (x− 1)ex + 1. We have f(0) = 0 and f ′(x) = xex > 0 for all x > 0. Hence, f(x) = (x− 1)ex + 1 > 0

for all x > 0. This implies that ( rl
λ

− 1)e
rl
λ > −1.
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To verify Vn(y) = ln y − ln pn is the solution of the HJB equation, we plug Vn(y) = ln y − ln pn824

and its derivative V ′
n(y) =

1
y into both sides and show that they are equal. For the right-hand side,825

we first consider the agent’s decision for action a. Letting Vn(y) = ln y − ln pn, we have826

λ{[ln(Yn+1(y))− ln pn+1]− Vn(y)} − rl = λ{[ln(r ln pn
λ

+ 1)y − ln pn+1]− (ln y − ln pn)} − rl

= λ{[ln(r ln pn
λ

+ 1) + ln y − ln pn+1]− (ln y − ln pn)} − rl

= λ ln(
rpn ln pn + λpn

λpn+1
)− rl

= λ ln e
rl
λ − rl

= 0,

where the forth equality is because pn satisfies827

rpn ln pn + λpn = λpn+1e
rl
λ .

Then, for either choice of action a, the right-hand side of the HJB equation becomes828

RHS = max
c

r ln c+ V ′
n(y)[(r − r ln pn)y − rc].

Taking V ′
n(y) =

1
y into the above expression, we have829

RHS = r ln y +
1

y
[(r − r ln pn)y − rc].

The optimal choice of consumption satisfies the first-order condition r
c∗(y) =

r
y , and hence c∗(y) = y.830

Then,831

RHS = r ln y +
1

y
[(r − r ln pn)y − ry] = r(ln y − ln pn).

For the left-hand side, we have832

LHS = rVn(y) = r(ln y − ln pn).

Thus, Vn(y) = ln y − ln pn is one solution to the HJB equation of the agent’s problem.833

For the dynamics of state variable y, we have834

dy

dt
= [(r − r ln pn)y − rc∗(y)] = (−r ln pn)y.

Thus, suppose the stage n problem starts at time 0 with wealthy level y0. If the project remains835

in stage n till time t, the wealth implied by the first-order condition of the HJB equation is y∗t =836
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e−r ln pnty0. Given value function Vn(y) = ln y − ln pn, on the path of wealth {y∗t }t≥0, we have837

lim
t→+∞

e−rtV ′
n(y

∗
t )y

∗
t = lim

t→+∞
e−rt 1

e−r ln pnty0
e−r ln pnty0 = 0.

This transversality condition implies that {y∗t }t≥0 is the true solution of the agent’s maximization838

problem, and hence Vn(y) = ln y − ln pn is the true value function of the agent’s maximization839

problem.12840

Next, we show that the implementation generates the same consumption path as the optimal841

contract. As in the proof of Proposition 4.1, we can interpret Vn(y) as the agent’s “continuation842

utility” given wealth y. We have shown that the agent is always indifferent between working843

and shirking because his “continuation utility” increases by rl
λ after each success. Hence, the844

agent is always willing to exert effort. Given wealth level y, the optimal choice of consumption845

satisfies c∗(y) = y. Given “continuation utility” Vn(y), the utility flow from consumption equals846

r ln c∗(y) = r ln y = Vn(y) + ln pn. In case of failure, his “continuation utility” changes smoothly847

and evolves according to848

dVn(y)

dt
= V ′

n(y)
dy

dt
= rVn(y)− rU(c∗(y)) = r(ln y − ln pn)− r ln y = −r ln pn,

where c∗(y) is the optimal choice of consumption given y and satisfies c∗(y) = y. For the principal’s849

problem, Proposition 5.1 shows that given continuation utility v, the optimal choice of utility flow850

equals v + ln pn and, in case of failure, the continuation utility evolves according to851

dv

dt
= −r ln pn,

Therefore, given the same continuation utility, the agent chooses the same level of consumption as852

the optimal contract, which further induces the same dynamics of the continuation utility. The853

initial condition that y0 = C1(v
0) guarantees that the agent starts with initial continuation-utility854

v0. Thus, the implementation and the optimal contract generate the same consumption path under855

all possible realization of the agent’s performance, and the agent is always willing to exert effort.856

Proof of Proposition 5.6857

To implement the optimal contract, the proof of a two-period implementation problem before the858

proof of Proposition 4.1 shows that the optimal contract can be implemented by a risky security that859

12We provide a proof that the transversality condition plus the first-order conditions are sufficient in the supplement

of this paper.
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satisfies the following property: 1) if the payoff of a certain amount of the security in case of failure860

equals y, then its payoff in case of success equals Y (y) = U−1(U(y) + l
βµ ) = e

l
βµ y; 2) the period-0861

price of this amount of security is determined by fair-pricing rule and equals β(µY (y)+ (1−µ)y) =862

β[µe
l

βµ + (1 − µ)]y. We first consider the case in which R̃ is certain and equals R̄. For a certain863

amount of the firm’s equity, if its value equals y in case of failure, then its value equals R̄y in case864

of success. In this case, the risky security can be created by a portfolio of the firm’s equity and a865

risk-free asset where the fraction of equity α satisfies αR̄+ (1− α) = e
l

βµ . Therefore, if there is no866

uncertainty about the value of the project, the optimal contract (the second-best allocation) can be867

implemented by the equity of the firm. Given this portfolio, the agent is always indifferent between868

working and shirking. If his initial wealth is y0, the highest expected utility he can achieve is the869

solution to the following optimization problem870

V̄ (y0) = max
c

ln c+ β ln(y)

s.t.871

c+ β{[µ[αR̄+ (1− α)] + (1− µ)}y = y0.

Next, we study the case in which the value of the project is uncertain so that R̃ is random and872

calculate the third-best outcome when the principal can only use the firm’s equity and a risk-free873

asset to compensate the agent. Consider a portfolio of the firm’s equity and a risk-free asset where874

the fraction of equity equals α′. Then, if the value of the portfolio in case of failure equals y its875

value in case of success equals [α′R̃+ (1− α′)]y. The period-0 cost of this portfolio equals876

βE{µ[α′R̃+ (1− α′)]y + (1− µ)y} = β{µ[α′R̄+ (1− α′)] + (1− µ)}y.

If the agent exerts effort in period 0, his expected utility in period 1 equals E{µ ln[α′R̃+(1−α′)]y+877

(1 − µ) ln y}. If he chooses to shirk, his utility in period 1 equals ln y. Thus, to provide incentive878

for working, the portfolio needs to satisfies the following IC constraint879

β
{
E{µ ln[α′R̃+ (1− α′)]y + (1− µ) ln y} − ln y

}
≥ l,

which implies that880

E{ln[α′R̃+ (1− α′)]} ≥ l

βµ
.

To minimize the cost, the IC constraint must be binding, and hence the principal should choose a881

α′ that satisfies E{ln[α′R̃+ (1− α′)]} = l
βµ . Since logarithmic function is concave, we have882

E{ln[α′R̃+ (1− α′)]} < ln{E[α′R̃+ (1− α′)]} = ln[α′R̄+ (1− α′)].
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Note that ln[αR̄ + (1 − α)] = l
βµ . Then, we have ln[α′R̄ + (1 − α′)] > ln[αR̄ + (1 − α)], which883

implies that α′ > α. The difference between α and α′ depends on the distribution of R̃, which884

becomes smaller when the distribution of R̃ is more concentrated around its mean R̄. Similar to885

the certainty case, given this portfolio, the agent is always indifferent between working and shirking.886

The highest expected utility that he can achieve with initial wealth y0 is the solution to the following887

optimization problem888

Ṽ (y0) = max
c

ln c+ β ln(y)

s.t.889

c+ β{[µ[α′R̄+ (1− α′)] + (1− µ)}y = y0.

Comparing the above problem with the agent’s maximization problem when R̃ is certain, the only890

difference is the “price” of the portfolio, which is higher when R̃ is random because α′ > α. Hence,891

we have Ṽ (y0) < V̄ (y0).892

To summarize, given the same initial wealth y0, the agent can achieve higher expected utility893

when the firm’s value in case of success is certain than when the firm’s value is random. In other894

words, when the firm’s value is random, the principal needs to compensate the agent more to deliver895

the same level of promised utility. The efficiency loss is caused by letting the agent bear risks that896

are not affected by his action. The proof shows that the efficiency loss depends on the difference897

between α′ and α, which further depends on the distribution of R̃. When the distribution of R̃ is898

more concentrated around its mean, the efficiency loss of equity-based compensation compared to899

the optimal contract is less.900

Appendix B: Extensions901

A multi-agent model902

So far, we have assumed that the principal faces a single agent, while in practice a research903

project is usually performed by multiple agents in research teams. In this subsection, using the904

“team-performance case” studied in Shan (2017), we extend the benchmark model to a multi-agent905

model. In this multi-agent model, the research project is performed by a research team that consists906

I > 2 research agents, and the principal can only observe the progress of the project. The objective907

of the principal is to design an incentive-compatible contract for each agent so that every agent is908
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willing to exert effort, i.e., exerting effort is a Nash equilibrium strategy played by all the agents909

at any point in time. For simplicity, we assume that all these agents in the research team have the910

same utility function U(c)− L(a), which satisfies the same assumptions in Section 3. Let λ be the911

arrival rate of success if all agents exert effort and λ−i be the arrival rate if all agent except agent912

i exert effort. Consider the contracting problem for agent i. Conditional on all other agents exert913

effort, agent i increases the arrival rate of success of the team from λ−i to λ if he chooses to exert914

effort. Hence, his benefit for exerting effort is (λ − λ−i)(v̄ − v), and his costs of exerting effort is915

rl. Then, the Nash-incentive-compatibility condition is given by916

(λ− λ−i)(v̄ − v) ≥ rl.

Let Ci,n(v) be the principal’s minimum cost of delivering continuation utility v to agent i when the917

project is at stage n. The cost function satisfies the following HJB equation918

rCi,n(v) = min
u,v̄

rS(u) + C ′
i,n(v)

dv

dt
+ λ[Ci,n+1(v̄)− Ci,n(v)]

s.t.919

dv

dt
= rv − r(u− l)− λ(v̄ − v),

(λ− λ−i)(v̄ − v) ≥ rl.

The properties of the optimal contract are summarized in the following proposition.920

Proposition B.1 The principal’s expected cost at any point is given by an increasing and convex921

function Ci,n(v) that satisfies922

rCi,n(v) = rS(u∗(v)) + C ′
i,n(v)[rv − ru∗(v)− λ−i(v̄ − v)] + λ[Ci,n+1(v̄)− Ci,n(v)],

and the boundary condition923

Ci,n

(
λ−il

λ− λ−i

)
=

λCi,n+1

(
(r+λ−i)l
λ−λ−i

)
r + λ

.

The cost function when the team completes the last stage innovation is given by Ci,N+1(v) = S(v).924

The instantaneous payment u∗(v) satisfies S′(u∗(v)) = C ′
i,n(v). When the team completes an925

innovation, agent i’s continuation utility increases to v̄, which satisfies v̄ = v + rl
λ−λ−i

. In case of926

failure, the continuation utility v decreases over time and stays at λ−il
λ−λ−i

when it reaches the lower927

bound λ−il
λ−λ−i

. The instantaneous payment u has the same dynamics as the continuation utility v.928
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The only main difference between this case and the single-agent case is the positive lower bound929

on the implementable continuation utility λ−il
λ−λ−i

. To provide an incentive, the principal should930

reward agent i by raising his continuation utility by rl
λ−λ−i

after success. Thus, even if agent i931

shirks, he still can receive the reward by free-riding on his coworkers’ work and guarantee a positive932

expected utility of λ−il
λ−λ−i

.13933

Since including multiple agents only affects the lower bound on the implementable continuation

utility and the minimum reward in the incentive-compatibility condition, for the implementation

results, the only two modifications are the payoff in case of success and the minimum holding

requirement, which are given below:

Yi,n+1(y) =


Ci,n+1

(
C−1

i,n (y) +
rl

λ−λ−i

)
if y ≥ Ci,n

( λ−il
λ−λ−i

)
,

Ci,n+1

(
λ−il

λ−λ−i
+ rl

λ−λ−i

)
Ci,n

(
λ−il

λ−λ−i

) y if 0 ≤ y < Ci,n

( λ−il
λ−λ−i

)
,

y
i,n

= Ci,n

(
λ−il

λ− λ−i

)
.

All other results go through.934

For general utility functions, the principal needs an individually-designed security for each agent,935

which seems unrealistic. Like the single-agent problem, if the agents’ utility function from consump-936

tion is logarithmic, we can obtain a closed-form solution and provide a practical implementation937

using the equity of the firm. The agents’ compensation packages differ only in the holding require-938

ment (the required fraction of equity) depending on how an agent’s action affects the performance939

of the team. The results of the optimal contract and the implementation for the logarithmic case940

are summarized in the following proposition.941

Proposition B.2 In the multi-agent model, if the agents’ utility from consumption is U(c) = ln c:942

• The minimum cost of delivering continuation utility v to agent i when the project is at stage943

n is given by Ci,n(v) = qi,ne
v, where the constant qi,n is determined recursively by944

qi,N+1 = 1 and rqi,n ln qi,n +

(
λ−irl

λ− λ−i
+ λ

)
qi,n = λqi,n+1e

rl
λ ,

and satisfies qi,n > qi,n+1. When the project progresses to the next stage, agent i’s continu-945

ation utility increases from v to v̄ = v + rl
λ−λ−i

. In case of failure, the continuation utility v946

evolves according to dv
dt = −r ln qi,n − λ−irl

λ−λ−i
< 0.947

13The derivation of the lower bound on the implementable continuation utility can be found in Shan (2017).
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• Suppose the value of the firm increases by Rn times when the project progresses from stage n948

to stage n+1. If Rn ≥ r ln qi,n
λ + λ−irl

λ(λ−λ−i)
+1 for all n, then the risky security that implements949

the optimal contract can be created by a portfolio of the firm’s equity and a risk-free asset950

with interest rate r. The fraction of equity βi,n depends on the stage level and satisfies951

βi,n =
r ln qi,n + λ−irl

λ−λ−i

(Rn − 1)λ
.

Proof of Proposition B.2: Similar to the proof of Proposition 5.1, we first use a guess-and-952

verify method to show that the solution to the stage n HJB equation Ci,n(v) takes the form of953

qi,ne
v given Ci,n+1(v) = qi,n+1e

v.954

Taking Cn(v) = qne
v and Ci,n+1(v) = qi,n+1e

v into the HJB equation, we have955

RHS = min
u,v̄

reu + qi,ne
v dv

dt
+ λ(qi,n+1e

v̄ − qi,ne
v)

s.t.956

dv

dt
= rv − r(u− l)− λ(v̄ − v),

(λ− λ−i)(v̄ − v) ≥ rl.

Utility-flow u satisfies the first-order condition S′(u) = C ′
i,n(v). Therefore,957

eu = qi,ne
v,

which implies u = v + ln qi,n. The binding incentive compatibility constraint implies that v̄ =958

v + rl
λ−λ−i

, which implies that dv
dt = rv − ru− λ−irl

λ−λ−i
= −r ln qi,n − λ−irl

λ−λ−i
. Taking the solution for959

u and v̄ into the right-hand side of the HJB equation, it becomes960

RHS = rqi,ne
v + qi,ne

v(−r ln qi,n − λ−irl

λ− λ−i
) + λ(qi,n+1e

v+ rl
λ−λ−i − qi,ne

v)

= (rqi,n − rqi,n ln qi,n − λ−irl

λ− λ−i
qi,n + λqi,n+1e

rl
λ−λ−i − λqi,n)e

v.

which also takes the form of a constant times ev. Finally, letting the left-hand side of the HJB961

equation equal the right-hand side, we have962

rqi,ne
v = (rqi,n − rqi,n ln qi,n − λ−irl

λ− λ−i
qi,n + λqi,n+1e

rl
λ−λ−i − λqi,n)e

v,

which implies that963

rqi,n ln qi,n +

(
λ−irl

λ− λ−i
+ λ

)
qi,n = λqi,n+1e

rl
λ−λ−i .
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Hence, we have verified that if Ci,n+1(v) = qi,n+1e
v, then Cn+1(v) also takes the form of a constant964

qi,n times ev, where qi,n is determined by the equation above. Finally, since qi,N+1 = 1, by back-965

ward induction, the cost function at any stage n equals Ci,n(v) = qi,ne
v, where qi,n is determined966

recursively by967

rqi,n ln qi,n +

(
λ−irl

λ− λ−i
+ λ

)
qi,n = λqi,n+1e

rl
λ−λ−i .

Next, we show that the constants satisfy qi,n > qi,n+1 by backward induction. Since qi,N+1 = 1,968

qi,N satisfies969

rqi,N ln qi,N +

(
λ−irl

λ− λ−i
+ λ

)
qi,N = λe

rl
λ−λ−i .

If qi,N = 1, then970

rqi,N ln qi,N+

(
λ−irl

λ− λ−i
+λ

)
qi,N = r ln 1+

λ−irl

λ− λ−i
+λ <

λrl

λ− λ−i
+λ = λ

(
1+

rl

λ− λ−i

)
< λe

rl
λ−λ−i .

Since the left-hand side is an increasing function of qi,N , it implies that qi,N > 1 = qi,N+1.971

For any n, we have972

rqi,n ln qi,n +

(
λ−irl

λ− λ−i
+ λ

)
qi,n = λqi,n+1e

rl
λ−λ−i .

973

rqi,n−1 ln qi,n−1 +

(
λ−irl

λ− λ−i
+ λ

)
qi,n−1 = λqi,ne

rl
λ−λ−i .

Then, qi,n > qi,n+1 implies that qi,n−1 > qi,n. We have shown that qi,N > qi,N+1. By backward974

induction, we can proof that qi,n > qi,n+1 for all n.975

When the agents have the logarithmic utility function, we have976

Ci,n(v) = qi,ne
v and Vi,n(y) = C−1

i,n (y) = ln y − ln qi,n.

In case of success, the value of the risky security that can implement the agent i’s contract increases977

from y to978

Yi,n+1(y) = Ci,n+1

(
C−1

i,n (y) +
rl

λ− λ−i

)
=

qi,n+1

qi,n
e

rl
λ−λ−i y =

(
r ln qi,n

λ
+

λ−irl

λ(λ− λ−i)
+ 1

)
y,

which is a linear function of y. Hence, the value of risky security rises by r ln qi,n
λ + λ−irl

λ(λ−λ−i)
+ 1979

times when the project progresses from stage n to stage n+1. We could replicate the payoff of the980

security using a portfolio of the firm’s equity and a risk-free asset with interest rate r, in which the981

fraction of equity in the portfolio βi,n satisfies982

βi,n ·Rn + (1− βi,n) · 1 =
r ln qi,n

λ
+

λ−irl

λ(λ− λ−i)
+ 1,
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or equivalently983

βi,n =
r ln qi,n + λ−irl

λ−λ−i

(Rn − 1)λ
.

Finally, Rn ≥ r ln qi,n
λ + λ−irl

λ(λ−λ−i)
+ 1 guarantees that the security can always be created by the984

firm’s equity.985

Q.E.D.986

As the single-agent case, the risky security can be created by a portfolio of the equity of a987

firm and a risk-free asset, where the fraction of equity, βi,n, only depends on the stage level and988

exogenous parameters of the model. To implement the optimal contract, the principal requires that989

agent i invests βi,n fraction of his wealth in firm’s equity when the project is at stage n.990

Hidden saving991

In the main body of the paper, we assume that the agent cannot engage in hidden saving.992

In the benchmark model, the contract determines a consumption path contingent on the agent’s993

performance. At any point in time, the agent consumes all the payments from the principal and994

cannot save or borrow. In Section 4 and Section 5, although the agent chooses how much to995

consume, he can only invest in the state-contingent security for saving purpose. An important996

feature of the optimal contract in Section 3 is that the principal punishes the agent by cutting997

his consumption in case of unsatisfactory performance. A well-known result, first documented by998

Rogerson (1985), shows that the optimal contract is impracticable if the agent can save secretly due999

to a precautionary saving incentive.14 Aware of the risk of lower compensation in case of failure,1000

a risk-averse agent would save some of his income for consumption smoothing purpose. In some1001

cases, the agent may adopt a double-deviation strategy by shirking to avoid the costs of working1002

and saving secretly to smooth consumption, which makes the problem even more complicated for1003

the principal.1004

To see how hidden saving affects the optimal contract derived in the main body of the paper, we1005

first examine the case when the agent can save secretly at the same rate of return r as the principal.1006

For illustration, consider the following one-period deviation in the discrete-time approximation.1007

Suppose from time t to t +∆t, instead of working and consuming all the payments received from1008

14This problem only arises when the agent can save secretly. If the principal can monitor the agent’s saving, then

the principal can offer a contract contingent on the agent’s saving.
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the principal, the agent shirks and saves some of the payments at time t and consumes the saving1009

at t +∆t. Because of shirking, the agent will fail. The marginal effect of shifting consumption in1010

this way is1011

−ru′(ct)∆t+
1

1 + r∆t
[ru′(ct+∆t)∆t](1 + r∆t) = r∆t[u′(ct+∆t)− u′(ct)] > 0.

The inequality is due to the result that the principal cuts the agent’s compensation in case of1012

failure so that ct+∆t < ct and the assumption that the agent is risk averse. This result suggests1013

that if the agent shirks then he could receive higher utility through hidden saving. Under the1014

consumption allocation of the optimal contract, the agent is indifferent to working or shirking1015

because the incentive-compatibility condition is always binding. It further implies that if the agent1016

shirks and shifts some consumption from the current period to the next period, his deviation payoff1017

is higher than the payoff on the equilibrium path. Therefore, if the agent can save secretly at the1018

same rate as the principal, the principal cannot punish the agent by cutting his compensation for1019

unsatisfactory performance. Otherwise, the agent will adopt a double-deviation strategy, and the1020

optimal contract becomes invalid. This result is similar to the observation in He (2012).1021

However, if the agent incurs a cost on account of hiding his saving, then the low return on hidden1022

saving will mitigate the agent’s precautionary saving incentive. If the return is considerable low, it1023

may restore the optimality of the contract derived in the previous sections. Note that the agent’s1024

saving incentive depends on his marginal utility of consumption. To simplify the notation, we use1025

mt, where mt = U ′(ct), to denote the agent’s marginal utility of consumption at any time t given1026

the contract. Suppose the agent can save secretly at rate r′. The following proposition provides1027

sufficient condition under which the agent has no incentive to save.1028

Proposition B.3 Given contract {ct(Ht), 0 < t < +∞}, if in case of failure the agent’s marginal1029

utility of consumption satisfies1030

d lnmt

dt
≤ −(r′ − r),

then the agent has no incentive to conduct hidden saving. At any point in time, he consumes all1031

the payments from the principal and exerts efforts until the project is completed.1032

Proof of Proposition B.3: We show that under the condition in Proposition B.3 the agent1033

will not engage in hidden saving by checking the agent’s precautionary saving incentive at any1034

time t. Since the contract punishes the agent by cutting his consumption in case of unsatisfactory1035
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performance, the lowest consumption path from time t to t′ that the agent may receive is the one1036

when he fails to complete any innovation during this period time. Since the agent’s utility function1037

is concave, he has the strongest incentive to save when he receives this “worst” consumption path.1038

Thus, if we can show that the agent has no incentive to save even on this “worst” consumption path,1039

then it implies that the agent has no incentive to save on any other consumption paths. The marginal1040

cost of saving at time t equals mt. Since the rate of return on hidden saving is r′, the marginal1041

benefit of saving at time t and consuming it at t′(t′ > t) is e−r(t′−t)er
′(t′−t)mt′ = e(r

′−r)(t′−t)mt′ .1042

If in case of failure the agent’s marginal utility of consumption satisfies1043

d lnmt

dt
≤ −(r′ − r),

then on this “worst” consumption path1044

lnmt′ − lnmt ≤ −(r′ − r)(t′ − t).

It implies that1045

lnmt ≥ lnmt′ + (r′ − r)(t′ − t).

Taking exponential to both sides, it becomes1046

mt ≥ e(r
′−r)(t′−t)mt′ .

Thus, the marginal cost of saving exceeds the marginal benefit, which implies that the agent has no1047

incentive to save on the “worst” consumption path. It further implies that the agent has no incentive1048

to saving on any other consumption paths. Therefore, if d lnmt

dt ≤ −(r′ − r) in case of failure, the1049

hidden saving problem can be ignored. If the agent will not deviate from the consumption path1050

offered by the principal, the incentive compatibility condition then guarantees that the agent will1051

always exert effort. Q.E.D.1052

Proposition B.3 indicates that if the return on hidden saving is very low so that r′ ≤ r− d lnmt

dt1053

for all {ct(Ht), 0 < t < +∞}, then the optimal contract in Section 3 is still optimal as the agent1054

will not deviate from the consumption path suggested by the principal and always put effort at1055

work. In a general setting, this sufficient condition is difficult to ascertain because it has to be held1056

at any time t on all possible consumption paths. However, note that1057

d lnmt

dt
=

d lnU ′(ct)

dt
=

U ′′(ct)

U ′(ct)

dct
dt

.
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If the agent utility function has CARA form, then U ′′(ct)
U ′(ct)

is a constant number. It can be shown1058

that dct
dt is bounded.15 Therefore, for CARA utility function, there exists an upper bound of r′ such1059

that the sufficient condition in Proposition B.3 is satisfied.1060

For logarithmic utility, we are able to derive a closed-form upper bound of r′ that satisfies the1061

sufficient condition in Proposition B.3.1062

Proposition B.4 If the agent has logarithmic utility, the agent has no incentive to conduct hidden1063

saving if save the rate on hidden saving is not higher than r(1 − ln p1) for the single-agent case1064

(r′ ≤ r(1 − ln qi,1) − λ−irl
λ−λ−i

for all i for the multi-agent case), and hence he will not deviate from1065

the consumption path offered by the principal.1066

Proof of Proposition B.4: For logarithmic utility function, the marginal utility from1067

consumption satisfies1068

m = U ′(c) =
1

c
=

1

eu
= e−u.

Hence, d lnm
dt = −du

dt , and the no saving condition in Proposition B.3 becomes that du
dt ≥ r′ − r.1069

For the single-agent case, when the project is at stage n, we have u = v + ln pn, which implies1070

that1071

du

dt
=

dv

dt
= −r ln pn.

Thus, the no-saving condition becomes −r ln pn ≥ r′ − r, which implies r′ ≤ r(1 − ln pn). Since1072

p1 > pn for any 1 < n ≤ N , r′ ≤ r(1 − ln p1) guarantees that r′ ≤ r(1 − ln pn) for all n. Hence,1073

the agent has no incentive to conduct hidden saving if the rate on hidden saving is not higher than1074

r(1− ln p1), and hence he will not deviate from the consumption path offered by the principal.1075

For the multi-agent case, we have1076

du

dt
=

dv

dt
= −r ln qi,n − λ−irl

λ− λ−i
.

Hence, the no-saving condition becomes that r′ ≤ r(1 − ln qi,n) − λ−irl
λ−λ−i

. Similarly, r′ ≤ r(1 −1077

ln qi,1)− λ−irl
λ−λ−i

guarantees that r′ ≤ r(1− ln qi,n)− λ−irl
λ−λ−i

for all n. Hence, agent i has no incentive1078

15Note that ct = S(ut) and ut is determined by S′(ut) = C′(vt). Hence, ct is a continuous function of the

continuation utility vt. Proposition 3.1 shows that dvt
dt

= r(vt − ut). Therefore, dvt
dt

is also a continuous function

of vt. The highest level of continuation utility that the agent can achieve is v0 + Nrl
λ

when the agent completes all

N innovations instantly. Therefore, dvt
dt

is bounded. This implies that dct
dt

is bounded because ct is a continuous

function of vt.
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to conduct hidden saving if the rate on hidden saving is not higher than r(1 − ln qi,1) − λ−irl
λ−λ−i

.1079

Q.E.D.1080

This result is easier to observe from the aspect of implementation. For the single-agent case,1081

the value of the security raises r ln pn

λ + 1 times when the project progresses from stage n to stage1082

n+ 1, and its return in case of failure equals r(1− ln pn). Then, it is obvious that if the return on1083

hidden saving is not higher than the lowest return on the security in case of failure, r(1 − ln p1),1084

then the agent will not have any incentive to engage in hidden saving and deviate from the optimal1085

consumption path. A similar analysis applies to the multi-agent case. The interpretation of this1086

result is that when the firm adopts equity-based compensation and the return on equity-based1087

compensation is higher than the return on hidden saving, then the employees prefer to hold the1088

equities for saving instead of saving secretly. Thus, the firms can almost mimic the optimal contract1089

even if they cannot monitor their employees’ hidden saving levels.1090
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