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Abstract

To develop a comprehensive overview of copy number aberrations (CNAs) in stage-II/III colorectal cancer (CRC), we
characterized 302 tumors from the PETACC-3 clinical trial. Microsatellite-stable (MSS) samples (n = 269) had 66 minimal
common CNA regions, with frequent gains on 20 q (72.5%), 7 (41.8%), 8 q (33.1%) and 13 q (51.0%) and losses on 18
(58.6%), 4 q (26%) and 21 q (21.6%). MSS tumors have significantly more CNAs than microsatellite-instable (MSI) tumors:
within the MSI tumors a novel deletion of the tumor suppressor WWOX at 16 q23.1 was identified (p,0.01). Focal
aberrations identified by the GISTIC method confirmed amplifications of oncogenes including EGFR, ERBB2, CCND1, MET,
and MYC, and deletions of tumor suppressors including TP53, APC, and SMAD4, and gene expression was highly concordant
with copy number aberration for these genes. Novel amplicons included putative oncogenes such as WNK1 and HNF4A,
which also showed high concordance between copy number and expression. Survival analysis associated a specific patient
segment featured by chromosome 20 q gains to an improved overall survival, which might be due to higher expression of
genes such as EEF1B2 and PTK6. The CNA clustering also grouped tumors characterized by a poor prognosis BRAF-mutant-
like signature derived from mRNA data from this cohort. We further revealed non-random correlation between CNAs among
unlinked loci, including positive correlation between 20 q gain and 8 q gain, and 20 q gain and chromosome 18 loss,
consistent with co-selection of these CNAs. These results reinforce the non-random nature of somatic CNAs in stage-II/III
CRC and highlight loci and genes that may play an important role in driving the development and outcome of this disease.
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Introduction

Colorectal cancer (CRC) ranks second to lung cancer in both

incidence and mortality in developed countries [1]. It is

characterized by highly complex patterns of somatic genetic

alterations of oncogenes and tumor suppressors that drive

initiation and progression [2,3,4]. Understanding the cellular

and molecular mechanisms by which these genetic changes

facilitate colon cancer formation is critical for development of

targeted therapeutic strategies aimed at controlling disease

progression while minimizing toxic side effects.

One well-established genetic mechanism by which cancer cells

alter the activity of oncogenes and tumor suppressors is through

changes in gene dosage. Detailed characterization of DNA copy

number aberrations (CNAs) have helped identify important

oncogenes including ERBB2 and EGFR, as well as tumor

suppressors such as TP53 [5]. Numerous studies have documented

genome-wide somatic CNAs in CRC

[6,7,8,9,10,11,12,13,14,15,16,17,18], some of which have been

linked to clinical outcome or metastatic progression

[19,20,21,22,23,24]. However, many of these studies have been

limited by modest sample size, low resolution assays, or lack of

associated clinical annotation, particularly for early-stage (II/III)

colon cancer. Consequently, a comprehensive overview of CNAs

and their association with outcome in stage II/III colon cancer has

not been developed.

We surveyed somatic CNAs in a collection of 302 stage II/III

colon cancers derived from the Pan-European Trials in Adjuvant

Colon Cancer (PETACC)-3 trial, a large randomized phase III

assessment of the role of irinotecan added to fluorouracil (FU)/

leucovorin (FA) as adjuvant treatment for colon cancer [25]. The

results presented herein explore the relationship between CNA,

mRNA [26] and outcome, and contribute to a comprehensive

molecular overview of stage-II/III colon cancer, which is
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paramount for refining patient classification and effective treat-

ment.

Materials and Methods

Clinical and mRNA Data for PETACC-3 Patients
All stage II/III colon cancer patients included in this study were

derived from the PETACC-3 clinical trial [25], with at least 5

years of clinical follow-up for each patient. The age, gender, stage,

MSI (microsatellite-instable) as well as BRAF and KRAS mutation

status of the patient population are listed in Table S1. mRNA

expression data was generated on the ALMAC Colorectal Cancer

DSA platform (Craigavon, Northern Ireland), as reported

previously [26]. Patient and ethics approval for this study was

obtained from the PETACC-3 Translational Research Working

Party (PTRW).

Molecular Inversion Probe Data Generation
DNA extractions were performed on macrodissected formalin-

fixed, paraffin-embedded (FFPE) tumor tissue derived from a

single 5 uM slide from 835 patient samples. Tumor tissue within

each section was identified and labeled by a qualified pathologist

(F. Bosman). For normal controls, DNA was extracted from

samples with sufficient amounts of histopathologically normal

adjacent tissue well away from the tumor margins. DNA was

quantified using the picogreen assay. For samples that yielded less

than the recommended input DNA amount (75 ng), all DNA was

carried forward into the Molecular Inversion Probe (MIP)

amplification, labelling, and hybridization protocols using Affyme-

trix’s OncoScan V1.0 FFPE Express services (Affymetrix, CA).

Samples that failed PCR amplification or displayed a Median

Average Pairwise Difference (MAPD) .0.6 after hybridization

were removed from the final analysis, resulting in 302 tumor

samples along with 44 adjacent normal samples as the normal

baseline comparator. Typically samples below 20 ng of input

DNA failed the MIP amplification cutoff and were not carried

forward to array hybridization. Samples with at least 75 ng of

input DNA universally yielded high quality copy number data

(MAPD,0.6). Results varied for input DNA amounts of 20–

75 ng, where the MAPD.0.6 filter served to eliminate excessively

noisy samples.

Copy Number Data Analysis
Copy number data was analyzed with the Nexus Copy Number

6.0 software (Biodiscovery, Inc., CA, USA). The raw copy number

data for each probe provided by Affymetrix was smoothed by a

quadratic correction provided by NEXUS and centered using

diploid regions. CNA frequency comparisons amongst sample

groups (e.g. MSS versus MSI; stage-II versus stage-III) was

performed using NEXUS default thresholds of .15% difference

and significance p,0.01 (Fisher’s exact test). To generate copy

number segments and minimal common regions (MCRs), we

applied a modified version of the Circular Binary Segmentation

(CBS) algorithm [27] called ‘‘Rank Segmentation’’ in NEXUS.

The p-value cutoff for CBS was 1.0E–6, and segments were

assigned to 1 of 5 bins: amplified (.3.8 copies), gained (2.3 to 3.8

copies), unchanged (1.7 to 2.3 copies), deleted (0.5 to 1.7 copies) or

homozygously deleted (,0.5 copies). For MCR frequency

significance testing, we used a p-value cutoff of ,0.01 from the

statistical Significance Testing for Aberrant Copy number (STAC)

method [28]. Hierarchical clustering of CNA was performed in

NEXUS too (complete linkage, sex chromosomes ignored). To

detect focal amplifications, we applied GISTIC (Genomic

Identification of Significant Targets in Cancer) version 2.0 [29]

using a Q-value cutoff ,0.25. Genes reported in GISTIC2

amplification peaks were further examined if they are enriched in

any biological pathways. We used canonical pathway database

provided by MSigDB [30]. Pathway gene sets with less than 10

members or greater than 500 members were excluded. Fisher’s

exact test was used to access if those genes are over-represented.

FDR was calculated based on 100 permutations where random

sets of genes of same size were tested. We also used Fisher’s exact

test to see if frequencies of certain CNAs differ among patient

groups (stage II vs. III, MSI vs. MSS etc). Survival analysis was

performed using the Kaplan–Meier method with a p value (log-

rank test) cutoff of ,0.01. For analysis of CNA/CNA correlations,

the Pearson correlation was computed at the gene level for all pairs

of genes as described previously [31]. To derive gene level

summaries from the copy number data, we assigned the copy

number values from the segment(s) overlapping each gene: when

there were multiple segments within the gene boundary, we

averaged the copy numbers from those segments. All genome-

based data reported in this manuscript are based on NCBI build

36 (hg18) of the human genome.

Expression Data Analysis
Gene expression data from the PETACC-3 patients was

reported previously [26]. We matched it with gene level copy

number data by ENTREZ ID. Copy number and gene expression

data were simultaneously available for 213 of the 269 MSS

patients with available CNA data. To test cis-correlation between

a gene’s copy number and its own mRNA expression level across

tumors, we categorized patients according to their aberration

status (amplification, gain, no-change, loss or homozygous

deletion) associated to the expression values of probe sets mapping

to the same gene.

Results

Copy Number Aberrations and Microsatellite Instability
33 of the 302 samples in our analysis were microsatellite instable

(MSI): consistent with previous studies [19,32], the average

number of CNAs in MSI tumors (10.266.5) was significantly

smaller (p,0.01, two sample t-test) than the average number of

CNAs in microsatellite stable (MSS) tumors (33.2617.6). Never-

theless, two focal regions were deleted significantly more

frequently in MSI samples: chr16q23.1 (chr16:77,231,391–

77,261,567 bp) in 24.2% of MSI samples vs. 7.1% of MSS

samples (p,0.01), and chr20q11.1 (chr20:28,118,678–28,244,164)

in 24.4% of MSI samples vs. 8.9% in MSS samples (p,0.01).

Interestingly, the only gene contained within the 16 q23.1 locus is

the WWOX tumor suppressor, an inhibitor of the WNT/beta-

catenin pathway [33], which is frequently activated in colon

cancer.

Recurrent CNAs, Novel Oncogenes and Affected
Pathways

Given the relatively low CNA prevalence in MSI tumors, we

focused our analyses on the 269 MSS tumors. As has been

reported previously [7,8,9,10,11,12,13,14,15,16,17], the frequen-

cies of copy number gains and losses across the genome were not

randomly distributed (Figure 1A), with CNAs ranging from single

copy gains and losses of broad chromosomal regions, to focal

homozygous deletions and high-level amplifications (Figure 2).

The most frequent regions of gain encompassed chromosomal

regions 7 p, 8 q, 13 q, and 20 q, and the most frequent regions of

loss encompassed 8 p, 17 p, and 18 q (Figure 1A).

Copy Number Aberrations in Colorectal Cancer
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To gain further insight, we summarized recurrent chromosomal

gains and losses into Minimal Common Regions (MCRs) using

Significant Testing of Aberrant Copy Number (STAC) [28], and

GISTIC [29] to highlight candidate oncogenes in the MCRs

based on the focality and amplitude of copy number change. A

total of 66 MCRs were identified at frequencies above 10%

(Table S2): there were 25 MCRs of gain ranging from 251 Kb to

104 Mb, and 41 MCRs of loss ranging from 286 kb to 138 Mb.

GISTIC helped to refine the MCRs to loci and genes of particular

significance (Table S3). Many of the significant peaks identified

by GISTIC contained established oncogenes including CCND1,

CDX2, EGFR, ERBB2, MET, and MYC (Figure 1B), along

with tumor suppressors such as APC, SMAD4, and TP53. Several

of the oncogenic peaks were driven by high-amplitude focal events

in a subset of tumors (Figure 2), and these focal amplifications led

to significant increases in mRNA expression for several of these

genes. Highly significant GISTIC peaks not associated with well-

established oncogenes or tumor suppressors include 12 p13.33

(Figure 2E, F) and 20 q13.12 (Figure 2G, H), which had

recurrent high-magnitude focal amplifications, as well as

14 q32.31 which, although not highly amplified, had gains of

sufficient recurrence and focality as to render a highly significant

GISTIC Q-value (Figure 1B, Table S3). With the GISTIC

amplicon data, we summarize 114 candidate cancer drivers in

Table S4, which include twelve (10%) established oncogenes such

as MYC, KRAS, and MET. Putative oncogenes including WNK1

(Figure 3A) and HNF4A (Figure 3B) have Q-score, amplified

frequency, and cis-acting effects on mRNA that are comparable to

established oncogenes (Figure S1). Our analysis has narrowed

more than 6,000 genes from MCR regions of the genome to a

manageable number of about 100 for further experimental

validation.

Figure 1. Summary of copy number aberrations detected in 269 MSS stage II/III colon cancer samples. (A) Frequencies of copy number
gain (above axis, blue) and copy number loss (below axis, red) across the human genome. (B) Significance of focal amplifications detected by GISTIC
2.0. Chromosome positions were indicated along the y axis with centromere positions indicated by dotted lines. The ten most significant GISTIC
peaks are shown in red text. Additional GISTIC peaks encoding established oncogenes are in black text. Details for all GISTIC peaks are provided in
Table S3.
doi:10.1371/journal.pone.0042001.g001

Copy Number Aberrations in Colorectal Cancer
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To further search for patterns of affected pathway alterations,

we mapped the list of genes amplified in CRC (Table S4) onto

canonical molecular signaling pathways and cellular processes.

Table 1 shows top canonical pathways possibly affected by the

amplified genes. Cell cycle is one of the most enriched pathways

affected by somatic CNA involving genes such as CCND1, MYC,

TFDP1 and YWHAZ. KEGG ‘‘Pathways in Cancer’’ underlies

the broad spectrum effect of somatic CNAs in targeting multiple

key pathways in cancer simultaneously. More specifically, we also

identified individual cancer-related pathways that are significantly

over-represented among cis-acting genes driven by somatic CNAs,

including ERBB signaling pathway and MAPK kinase signaling

pathway. Taken together, these results suggest that these somatic

CNAs encode novel oncogenic driver genes and potential

therapeutic targets in colon cancer.

CNA Clustering and Non-random CNA Correlations in
CRC

We performed unsupervised hierarchical clustering of the global

CNA data and identified three major clusters. Though we didn’t

find significant associations to age, gender, stage or KRAS

mutation status, we observed that BRAF wild type tumors were

significantly enriched in the largest cluster and BRAF mutants in

one of the smaller clusters (p,0.01). Previously we [26] developed

a BRAF-mutant gene expression signature from the PETACC-3

cohort and studied its prognostic implications. Among 213 MSS

patients with mRNA expression data available, the signature

identified 37 ‘‘BRAFm-like’’ samples (including 8 BRAF mutants)

as well as 176 ‘‘non-BRAFm-like’’ samples. We re-ran clustering

analysis on those 213 samples (Figure 4A), and found very

significant enrichment of ‘‘non-BRAFm-like’’ samples (p,0.01) in

the largest cluster (cluster 2) and ‘‘BRAFm-like’’ samples in cluster

1 (P,0.01, Table 2). Compared to cluster 2, cluster 1 shows

much lower frequencies of amplification/deletion events, especial-

ly on chr13 q, 14 q, 18 q and 20 q (Figure 4B). A closer look

reveals that cluster 1 is completely depleted from CNAs at chr20

while 95% of cluster 2 samples had chr20 amplified. These results

corroborate with the observation of relative lower expression of

chr20 genes in BRAFm-like with respect to the rest of the BRAFwt

samples [26].

We previously reported that in cell lines CNAs at unlinked loci

were frequently correlated to each other and that such correlations

were likely the result of selection [31]. To assess whether a similar

phenomenon was evident in clinical stage II/III MSS colon

cancer, we conducted pair-wise correlations of copy number for all

genes (,22 k) across the genome. As expected, adjacent (linked)

genes were highly correlated (Figure 5A, close to diagonal). At a

higher level some chromosome arms became unlinked (e.g. chr1p

vs. 1 q, 10p vs. 10 q) or anti-correlated (e.g. chr8 p vs. 8 q). In

addition, there were numerous correlations between unlinked loci

(Figure 5A, off-diagonal), suggesting co-selection of these genomic

regions. For example, chromosome 8 p losses were correlated to

Figure 2. Focal amplification of genomic loci in selected stage II/III colon cancer samples. (A–H) Copy number plots for the entire
genome arranged in chromosomal order from the short arm of chromosome 1 (1pter) to the long arm of chromosome X (Xqter) for 8 independent
tumor samples. Amplicons of particular interest are highlighted with arrows, along with established oncogenes. Details regarding all amplicons and
GISTIC peaks are in Table S3.
doi:10.1371/journal.pone.0042001.g002
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losses of chromosomes 17 p and 18, along with gain of

chromosome 20 q. Chromosome 13 gains were correlated to

chromosome 14 losses. The distribution of gene-gene associations

was significantly different than a randomization of the CNV data

(Figure 5B). Similar to what was found in other cancer settings

[31,34] there was a scale-free structure where a few genes were

highly correlated to many other genes, while most genes correlated

to only a few genes. This suggests that a small number of DNA loci

act as hubs in a highly nonrandom hierarchical structure.

Relationship of CNA to Stage and Outcome
To identify individual CNAs that associate with tumor stage, we

compared CNA frequencies between stage II (n = 30) and stage III

MSS samples (n = 239). While both groups had similar patterns of

CNA, a deletion on chromosome 3p14.2 had significantly

(p,0.01) higher frequency in stage III tumors (24.3%) compared

to stage II tumors (3.3%). This locus encodes FHIT, a candidate

tumor suppressor and apoptotic regulator in colorectal cancer

[35], and the higher frequency of deletion in stage III tumors

suggests that loss of FHIT function may contribute to the

progression of colon cancer from a lower to higher stage disease.

The large set of stage II/III MSS colon cancer samples with

associated time-to-relapse, recurrence-free-survival (RFS) and

overall survival (OS) afforded a unique opportunity to identify

CNAs associated with outcome. Using Kaplan-Meier analysis, we

first investigated whether the ch20q amplification revealed by

sample clustering described previously lead to statistically signif-

icant differences in survival probability. A gained MCR on

chromosome 20 q11.21-q13.33 (chr20:29,297,270–

62,435,964 bp) was significantly associated with improved OS in

stage III tumors (p,0.01). GISTIC identified one amplicon in this

MCR on 20q13.33 (chr20:61,440,621–61,778,204 bp) which was

Figure 3. Boxplots for WNK1 (A) and HNF4A’s (B) mRNA expression grouped by CNA status. Tumor samples were categorized by their
CNA status (deletion, loss, normal, gain, amplification) for the indicated gene. The panels show the expression level by category for each probeset
from the ALMAC platform (see Materials and Methods) representing the specific gene. The values were centered for each probeset; categories are
plotted if there was at least one sample in it.
doi:10.1371/journal.pone.0042001.g003

Table 1. Top canonical pathways possibly affected by the amplified genes.

Term P-value FDR* Fold enrichment % tumor amplified

KEGG_ADHERENS_JUNCTION 1.79E-04 4.50E-03 14.37 11.2%

KEGG_CELL_CYCLE 1.35E-03 2.01E-02 8.42 10.4%

KEGG_PATHWAYS_IN_CANCER 1.44E-03 2.32E-02 4.93 9.7%

KEGG_ERBB_SIGNALING_PATHWAY 3.16E-04 5.83E-03 12.39 8.2%

SIG_PIP3_SIGNALING_IN_CARDIAC_MYOCTES 1.68E-03 2.42E-02 12.83 6.3%

BIOCARTA_TEL_PATHWAY 3.90E-05 2.13E-03 44.90 5.6%

KEGG_AXON_GUIDANCE 1.24E-02 7.48E-02 6.27 5.6%

KEGG_MAPK_SIGNALING_PATHWAY 1.77E-02 8.82E-02 4.04 5.6%

*FDR is based on was calculated based on 100 permutations where random sets of genes of same size were tested.
doi:10.1371/journal.pone.0042001.t001
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also significantly associated with improved OS. This region of

approximately 300 kb contains one interesting genes such as

EEF1A2 and PTK6. Anand et al. reported [36] EEF1A2’s over-

expression in about 30% of ovarian tumors and some established

ovarian cancer cells. However, high EEF1A2 protein expression

was associated with significantly increased 20-year survival

probability in women with serous ovarian tumors [37], or in

primary breast tumors, and this protective effect is thought to be

due to EEF1A2’s high expression in reducing the aggressiveness

[38]. PTK6 was also reported [39] as positive associated to

metastases-free survival in breast cancer; and shows strong cis

CN/mRNA correlation in our analysis (Table S4). Here the CNA

data suggest that amplification of the 20 q13.33 locus could be a

significant prognostic marker of CRC cancer.

Besides chr20q amplification, we applied Kaplan-Meier analysis

to assess the relationship of all other MCRs and GISTIC peaks

with RFS and OS. There were no significant associations between

MCRs or GISTIC peaks versus OS or RFS for stage II tumors,

possibly reflecting the limited number of samples in this group

(n = 30). However, a deletion on chromosome 10 p (Chr10:0–

10,743,764 bp) was significantly associated with poor RFS in stage

III tumors alone (p,0.01) or stage II/III tumors combined

(p,0.01), as well as poor OS in stage II/III tumors combined

(p,0.01). Similarly, a deleted MCR on 19 p13.12

(chr19:14,425,490–15,580,441 bp) was significantly associated

with OS (p,0.01) in stage II/III tumors combined (Figure S2).

Discussion

The main goals of this study were to develop a comprehensive

overview of copy number aberrations (CNAs) and their associated

Figure 4. Unsupervised hierarchical clustering analysis based of genome-wide copy number data. (A) Three major clusters. The right-
hand annotation indicates, in order, the BRAFm (in yellow, BRAF mutants; in blue, BRAF wild-types), KRASm (mutants in green), and BRAFm-like (in
green, BRAFm-like; in red, non-BRAFm-like). Purple color indicates missing values. (B) Genome-wide frequency plot of copy number gain (above axis,
blue) and copy number loss (below axis, red) across three major clusters.
doi:10.1371/journal.pone.0042001.g004

Table 2. Unsupervised hierarchical clustering indentified
three major CNA clusters.

Cluster samples
BRAFm-
like

non-
BRAF-likeBRAFm BRAFwt missing

1 34 16* 18 4* 27 3

2 153 12 141* 2 144* 7

3 26 9 17 2 22 2

Subtotal 213 37 176 8 193 12

*indicates significant over-representation in the category.
doi:10.1371/journal.pone.0042001.t002
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genes in stage II/III colon cancer, to elucidate the underlying

biology, and to associate CNAs with outcome. Regions of

recurrent and focal CNA identified in these tumors highlight

genomic regions most likely to encode oncogenes and tumor

suppressors. Established oncogenes identified in this study that

represent positive controls include MYC, CDX2, EGFR, MET,

ERBB2, and CCND1.

The most prominent novel amplicons identified in this study

include 12 p13.33 and multiple loci on 20 q (20 q11.21,

20 q13.12, 20 q13.31). The 12 p13.33 amplicon encodes the

intriguing candidate WNK1, a member of the WNK family of

serine/threonine kinases which affect MAPK signaling and a

variety of cancer hallmarks including cell cycle progression,

evasion of apoptosis, invasion and metastasis, and metabolic

adaptation [40]. The complex pattern of gains and amplification

on chromosome 20 q suggest multiple oncogenic drivers on this

chromosome arm, consistent with observations in breast tumors

[41]and other cancer types. The 20 q13.12 amplicon, which was

observed in multiple tumors (Figure 2G, 2H) and is the most

significant GISTIC peak on 20 q, encodes 11 genes, none of

which have been unequivocally described as oncogenic drivers in

colon cancer. Nonetheless, the reported functions of some of these

genes suggest that further investigation is warranted. For example,

the transcription factor HNF4A controls epithelial cell polarity and

promotes gut neoplasia in mice [42]. WISP2 (WNT1 Inducible

Signaling Pathway protein 2/CCN5) regulates the activity of the

transforming growth factor â (TGFâ) signaling pathway and

expression of genes associated with the epithelial-to-mesenchymal

transition [43]. The peak at 20 q13.31 encodes BMP7, a member

of the TGFâ superfamily of proteins whose overexpression in

colorectal cancer significantly correlates with markers of patho-

logical aggressiveness such as liver metastasis and is an indepen-

dent prognostic factor of overall survival [44]. Functional

characterization of these and other candidate oncogenes in colon

cancer cell culture, patient-derived xenografts, or genetically

engineered mouse models will help elucidate potential functional

implications. Pathway analysis presented previously provides not

only a better understanding of the possible biological context of

candidate CNA drivers but also help to infer other genes on the

altered pathway for which therapeutic options may be available.

On the other hand, survival analysis shows improved overall

survival for the sample segment with chr20 q13.33 amplification.

This association contrasts with findings of another group who

reported amplification of 20 q13 is indicating worse overall

survival in sporadic colorectal cancers [45]. The exact basis for

this discrepancy with our findings for is not clear, although the

analyses of Aust et al. were on a substantially smaller cohort (120

samples).

Our analyses of associations between CNA and outcome in this

set of stage II/III colon cancers revealed three loci that were

significantly associated with overall survival (OS) or recurrence

free survival (RFS). Deletion of the distal tip of chromosome 10 p

(10 p15.3-p14) was associated with poor OS and RFS, while an

interstitial deletion of chromosome 19 p (19 p13.12) was associ-

ated with poor OS, and gain of 20 q was associated with

significantly better OS in stage III tumors. While 10 p deletions,

19 p deletions, and 20 q gains have been previously reported in

stage II/III colon cancers [16], none of these loci have been

previously linked to outcome in these tumors. Conversely, we did

not observe significant associations of outcome to previously

reported CNAs such as deletion of 16 p13.2 in stage II/III colon

cancer [46], or deletion of 5 q34 and gain of 13 q22.1 in stage II

tumors [17]. One potential explanation for these apparent

discrepancies may relate to the limited power of the respective

studies. For stage III MSS tumors, our results represent analyses of

markedly higher sample numbers (n = 239) compared to published

work (for e.g. 31 stage III tumors in [46]). For stage II MSS

tumors, our sample set is underpowered, representing 30 samples

compared to 41 [46] and 39 [17] tumors in earlier studies. These

results emphasize the need for comprehensive analyses of large

collections of clinically annotated tumor samples such as the stage

III MSS tumor set described in this work.

We also reported here a significant non-random correlation of

unlinked DNA loci with a scale-free structure in stage II/III colon

cancer. These highly connected structures suggest a cycle of

random changes in copy number followed by selection of a subset

of changes that confer a selective advantage to tumor initiation

and progression. While this is a long standing idea in cancer,

correlation between unlinked loci suggests that highly ordered

structures can emerge, potentially focused around biological

functions of importance to the tumor. Future analyses could assess

the effect of unlinked copy number correlations on gene

expression, including enrichment of pathways and networks, and

determining if the mRNA controlled by a pair of correlated loci

overlap, where an independent effect of each loci was observable.

This would identify pathways that were selectively altered during

tumorigenesis and which therefore may represent new targetable

functions.
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