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Abstract 

Endometriosis, the growth of ectopic endometrial tissue, affects 10% of reproductive-aged women. 

Although disease aetiology is enigmatic, aberrant immune responses within the peritoneal cavity have 

been implicated. Endometriotic lesion development is broadly classified into two phases; one mediated 

by a M1-like pro-inflammatory (tissue clearance; which inhibits disease) response and the other a M2-like 

anti-inflammatory (tissue remodelling; which promotes disease) response. Dysregulated expression 

of microRNA-155 (miR-155) in plasma samples from women with endometriosis is proposed to promote 

M1-like macrophage activity. Conversely, elevated miR-223 activity in endometriotic lesions is thought to 

promote M2-like macrophage activity. Hence, the aims of this doctoral thesis are to initially characterise 

endometriotic lesion development in an induced ‘menstrual’ mouse model of endometriosis, and to 

subsequently evaluate the impact of depleting either miR-155 or miR-223 on endometriotic-like lesion 

development and macrophage activity.  

 

Using the ‘menstrual’ mouse model of endometriosis, 40mg of decidualised donor endometrium was 

injected subcutaneously into recipient mice. Lesions that developed from syngeneic transfers (donor and 

recipient mice of the same genotype) and reciprocal transfers (between wildtype C57 mice and either 

miR-155-/- or miR-223-/- mice) were assessed by histochemical and immunohistochemical analysis for 

macrophage activity, angiogenesis and the extent of fibrosis at day (D)7, D14 and D21 after tissue 

transfer. To investigate effects on donor tissue gene expression, the differentially expressed genes 

(DEGs) and molecular pathways associated with the pathogenesis of endometriosis were defined by 

RNA-Sequencing of donor endometrium, as well as D7 and D14 lesions from syngeneic transfers using 

the Illumina Next-Seq500 platform at a depth of 50 million reads per samples. Differentially regulated 

genes were defined as those with a log fold change (log2FC) of 1 < log2FC <-1, and a false discovery rate 

(FDR) of 0.05.  

 

A reduction in lesion weight and size was seen over time in all groups. Effects of microRNA deficiency 

were seen on lesion tissue architecture, with an increase in glandular formation only evident in C57 to 

C57 and C57 to miR-155-/- transfers. Systemic deficiency of miR-155 acted to restrict M1-like macrophage 

activity and promoted the expression of M2-like macrophage markers. Importantly, blood vessel density 

increased in miR-155-/- to miR-155-/- lesions over time, supporting lesion establishment. In contrast, early 

influx of F4/80+ macrophages with increased MHC II and iNOS expression was seen in miR-223-/- to miR-

223-/- lesions, associated with the development of cystic-like lesions devoid of glands. Similarly, by D14, 

glands were absent in lesions from C57 to miR-223-/- transfers. RNA-Seq analysis identified DEGs in 
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several pathways associated with endometriosis, notably immune regulatory pathways, tissue 

remodelling, cellular differentiation and proliferation, and angiogenesis.  

 

In summary, this study has shown that microRNA modulation of macrophage polarisation impacts the 

development of endometriosis-like lesions in a mouse model, with deficiency in miR-155 increasing M2-

like macrophage activity, while deficiency in miR-223 promotes M1-like macrophage activity. Reciprocal 

transfer data suggest that microRNA-dependent signalling factors from both the donor tissue and recipient 

environment influence macrophage activity, and have effects on endometriotic lesion growth. Our findings 

add to emerging evidence that macrophage phenotype and function are important determinants of 

endometriosis, and identify miR-155 and miR-223 as key microRNAs that regulate macrophage capacity 

to impact disease establishment and progression. Further studies are now required to determine whether 

similar microRNA-mediated modulation of macrophages contributes to human disease. In a clinical 

setting, the targeting of these macrophage-regulating microRNAs may have therapeutic potential, and 

should be investigated further. 
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1.1. INTRODUCTION 

Endometriosis is characterised as a benign gynaecological condition in which endometrial cells from the 

lining of the uterus are found outside the uterine cavity, commonly presenting as lesions on the peritoneal 

wall or surface of the ovary (Giudice and Kao, 2004, Zondervan et al., 2018). Throughout the reproductive 

lifespan of a fertile woman, endometrial cells within the uterus undergo repeated cycles of hormone-

induced decidualisation, proliferation, shedding, and remodelling (Maruyama and Yoshimura, 2008). 

Ectopic endometrial cells are also influenced by hormonal fluctuations and undergo similar cellular 

responses, giving rise to the most common symptoms of endometriosis – dysmenorrhea, cyclic and 

acyclic pelvic pain, and dyspareunia (Vercellini, 1997, Ballweg, 2004, Dunselman et al., 2014, Vercellini 

et al., 2014, Zondervan et al., 2018). In addition to chronic pain, symptoms of endometriosis may include 

subfertility and irregular uterine bleeding (Giudice and Kao, 2004, Giudice, 2010, Oertelt-Prigione, 2012, 

Parazzini et al., 2012).  

 

Although endometriosis affects approximately 1 in 10 women of reproductive age, the varying 

manifestations and intensity of individual symptoms has not been found to be a successful indicator of 

disease severity (Giudice, 2010, Parazzini et al., 2012, Dunselman et al., 2014). In fact, it has been 

reported that on average, there is a delay of approximately 6 to 9 years from the early onset of symptoms 

to a definitive diagnosis of endometriosis (Giudice, 2010, Simoens et al., 2012, Soliman et al., 2017). 

From a socioeconomic perspective, endometriosis is estimated to cost the Australian healthcare system 

approximately $6 billion annually, and significantly affects the quality of life of women with the disorder 

(Bush et al., 2011, Commonwealth of Australia Department of Health, 2018). Symptomatic endometriosis 

is associated with productivity loss, reduced social interactions, mood swings, pain, and fatigue which 

may result in work or school absenteeism (Ballweg, 2004, Adamson, 2012, Simoens et al., 2012, Acien 

and Velasco, 2013, Mehedintu et al., 2014, Bush et al., 2017). A recent economic analysis performed by 

the EndoActive Society of Australia and New Zealand reported the total impact of endometriosis on the 

Australian economy for the 2018 financial year to be $7.4 billion, wherein $2.6 billion is derived from 

productivity losses and the reduction in the quality of life for women with endometriosis is valued at $4.04 

billion (EndoActive and Ernst & Young, 2019). 

 

The substantial physical, psychological, and financial burden of endometriosis on both an individual and 

the community underscores the importance of elucidating the aetiology of this disease. Further studies 

delineating the interactions between endometrial lesions and the ectopic implantation environment are 

essential for understanding the establishment and progression of this debilitating disease, as well as to 

develop targeted diagnostic and therapeutic interventions. 
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1.1.1 Clinical manifestation of endometriosis 

Surgery is essential to obtain a visual identification and diagnosis of endometriosis, with subsequent 

histological confirmation of disease (Falcone and Flyckt, 2018). The most widely used classification 

system to record the pathologic findings in endometriosis is the revised American Society for Reproductive 

Medicine (r-ASRM) classification (American Society for Reproductive Medicine, 1997). This scoring 

system characterises the stages of endometriosis (I to IV), and is used to quantify endometriosis 

manifestation and facilitate uniformity in patient care and treatment options (Figure 1.1).  Additional 

classification systems such as the Endometriosis Fertility Index (surgical findings are used to predict 

fertility outcomes) and the Enzian classification (evaluates the depth of deep infiltrating endometriosis) 

may also assist in reporting disease burden to better inform clinical management of endometriosis 

(Falcone and Flyckt, 2018).  

 

The most common sites for endometriosis are the ovaries, pelvic peritoneum, uterosacral ligaments, and 

uterus (Audebert et al., 2018). Lesions in the pelvic cavity are categorised as either superficial peritoneal 

lesions, ovarian lesions (endometrioma), or deeply infiltrating endometriosis (DIE) (Vercellini et al., 2014). 

Although the gross appearance of endometriotic implants are vastly variable at the time of surgery 

(Clement, 2007), microscopic evaluation of excised lesions share similarities with eutopic endometrial 

tissue, including endometrial glands and stroma. However, unlike the eutopic endometrium, ectopic 

endometrial lesions typically contain fibrous tissue, cysts, blood, pigmented histiocytes and hemosiderin-

laden macrophages (Schenken, 2018). 

  

Clinical presentation of endometriosis in women usually occurs during the reproductive years with 

classical symptoms including abdominopelvic pain, dysmenorrhea (painful menstruation), dyspareunia 

(painful sexual intercourse), infertility or the presence of an ovarian mass (Giudice and Kao, 2004, 

Vercellini et al., 2014). Additional symptoms include abnormal uterine bleeding, chronic fatigue, low back 

pain, and bowel and bladder dysfunction (Schenken, 2018). It is important to note that the observed 

severity or stage of endometriosis is not an accurate correlation to quality-of-life indicators and severity of 

symptoms experienced. Women with mild endometriosis may experience pain equal to or greater than 

women with severe endometriosis and conversely, women with extensive endometriosis may present with 

little or no pain. Therefore, obtaining an early diagnosis and receiving effective treatment options is critical 

to limit disease progression. 
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Figure 1.1 ASRM classification of the stages of endometriosis   

The revised American Society for Reproductive Medicine classifies endometriosis via a scoring, point based system 
which takes into account the size, location, severity and depth of the endometriotic growths. The four stages are: 
Stage I (minimal – isolated implants and no adhesions), Stage II (mild – superficial implants with less than 5cm in 
aggregate and no significant adhesions), Stage III (moderate – multiple superficial and/or deeply invasive implants 
with some evidence of adhesions) and Stage IV (severe – multiple superficial and deep implants with large ovarian 
endometriomas and presence of dense adhesions). Adapted from the American Society for Reproductive Medicine 
(1997). 
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1.1.2 Treatment options for endometriosis 

As women with endometriosis frequently experience severe pelvic pain and infertility, current treatment 

options aim to limit disease progression and relieve associated symptoms (Brown and Farquhar, 2015). 

Surgical intervention is the only option to obtain a definitive diagnosis of endometriosis and remains the 

‘gold standard’ in treatment of this disorder (Giudice, 2010). Laparoscopy is most commonly performed 

to remove ectopic endometrial lesions and peritoneal tissue from pelvic structures including the bladder, 

Pouch of Douglas, and pelvic sidewall (Abrão et al., 2012). When compared with open surgery, 

laparoscopy results in minimal scarring, less discomfort and earlier discharge from hospital. However, 

laparoscopy is not suitable in all cases, disease recurrence is as high as 18% in women 6 months post-

surgery, and up to 75% of women present with endometriomas between 2 to 5 years post-operation 

(Candiani et al., 1991, Kuohung et al., 2002, Seracchioli et al., 2009, Giudice, 2010, Diamond and Shavell, 

2012). To effectively manage pain, non-steroidal anti-inflammatory drugs including aspirin, ibuprofen, 

diclofenac, and naproxen are commonly prescribed (Seracchioli et al., 2014). Neural-modulating drugs, 

such as gabapentin and amitriptyline are also used as an analgesic to help manage chronic pain (Evans 

et al., 2007). Clinical trials utilising Botox injections to reduce associated cramping and assist with pelvic 

muscle spasms have proved effective in some women (Thomson et al., 2005). Additional therapies, 

including acupuncture and physiotherapy are also employed in an effort to reduce pain in endometriosis 

(Seracchioli et al., 2014). 

 

Although the aforementioned therapies help relieve menstrual cramping and pelvic pain, these drugs do 

not have a direct effect on disease progression, and are commonly used in conjunction with surgical 

therapy or alternate medical treatments (Johnson and Hummelshoj, 2013). Medical therapy for 

endometriosis relies on the ability of specific drugs to disrupt the normal cyclic hormone production by 

ovaries. An example is the mild androgen Danazol, which was the first drug designed specifically for the 

treatment of endometriosis (Razzi et al., 2007). Following 6-12 months treatment, alleviation of 

endometriosis-associated pelvic pain is seen in approximately 80% of women (Razzi et al., 2007). 

However, as its mechanism of action disrupts oestrogen production, side effects including significant bone 

density loss, oedema, voice deepening, and acne is seen in 75% of women taking this drug (Johnson, 

2012). Currently, multiple medications can be prescribed, including Gonadotropin-releasing hormone 

(GnRH) agonists, oral contraceptives, progesterone-only hormone supplements, and aromatase 

inhibitors.  
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GnRH agonists and antagonists suppress oestrogen release by inhibiting release of the menstrual cycle 

regulatory hormones FSH (Follicle-stimulating hormone) and LH (Luteinising hormone) (Bulun et al., 

2012, Platteeuw and D'Hooghe, 2014). In vitro studies of eutopic and ectopic endometrial cells treated 

with GnRH agonists showed a reduced level of proliferation, confirming the efficacy of this treatment 

(Khan et al., 2010). Similarly, a significant decrease was seen in inflammation and angiogenesis in 

endometrial tissue of women undergoing this treatment for 3-6 months prior to surgery was seen. GnRH 

agonist and antagonist treatment effectively mimics a menopausal state, however hypoestrogenic side 

effects usually limits its use to a six month treatment period (Johnson, 2012). Sustained low oestrogen 

levels can result in osteoporosis, mood swings, and irregular vaginal bleeding (Makita et al., 2005). ‘Add-

back’ therapy, which involves simultaneous administration of GnRH agonists and low doses of steroid 

hormones (e.g. oestrogen, progesterone and selective oestrogen receptor modulators), reduces the risk 

of osteoporosis, as seen in a clinical trial of the oral GnRH antagonist Elagolix (Surrey, 1999, Diamond et 

al., 2014).  

 

Oral contraceptives, a regulated mixture of oestrogen and progesterone, are often used to limit 

endometrial tissue growth by disrupting the menstrual cycle and the extent of endometrial tissue 

remodelling (Platteeuw and D'Hooghe, 2014). The oral contraceptive birth control pill is most commonly 

used, but in some women, progestins are used as a more potent form to alleviate the symptoms of pelvic 

pain. Progesterone-only medications (e.g. Dinogest, Norethindrone acetate, and Medroxyprogesterone 

acetate), can be prescribed to treat endometriosis as they prevent ovulation and subsequent endometrial 

tissue growth (Horne and Critchley, 2012). In addition, intrauterine devices such as the Mirena coil 

(levongorgestrel intrauterine system or LNG-IUS) and Implanon are increasingly administered for 

treatment of endometriosis, as they release low doses of progestogen, a progesterone-like substance, 

over several years (Ponpuckdee and Taneepanichskul, 2005, Horne and Critchley, 2012, Brown and 

Farquhar, 2015). However, these treatments do not cure endometriosis, and continuous use may result 

in weight gain, nausea, acne, and irregular uterine bleeding (Horne and Critchley, 2012).  

 

An alternative treatment option is aromatase inhibitors, which act to disrupt local oestrogen formation 

within endometriotic lesions (Bulun et al., 2012). The aromatase enzyme catalyses the conversion of 

adrostenedione to estrone, and testosterone to oestradiol in situ, and inhibition of this enzyme results in 

reduced oestrogen levels (Bulun et al., 2012). For example, the mode of action of the aromatase inhibitor 

Exemestane involves irreversible binding to aromatase enzymes, rendering them inactive (Mousa et al., 

2007). Alternatively, Letrozole and Anastrozole compete with androgens for aromatase binding sites and 

prevent the production of oestrogen (Mousa et al., 2007). Although this treatment is effective clinically, 
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the side-effects of aromatase inhibitors include hot flushes, arthralgia, and loss of bone mineral density, 

which limit their use (Bulun et al., 2012). 

 

In addition to taking prescribed medications, studies have shown that complementary treatments, 

including alternative medicine (Mira et al., 2018), herbal remedies (Zheng et al., 2018) and changes to 

diet (Moore et al., 2017), may influence disease progression. To help manage the debilitating chronic 

pain, mild exercise and/or yoga (Goncalves et al., 2016, Goncalves et al., 2017, Fisher et al., 2018), 

acupuncture (Wayne et al., 2008, Rubi-Klein et al., 2010), and physiotherapy to manage pelvic pain is 

beneficial in some patients (Evans et al., 2007, Evans, 2015). Some women with endometriosis also 

benefit from counselling and support from mental health professionals to alleviate symptoms of 

depression and low self-esteem associated with this disease (Culley et al., 2013, Facchin et al., 2017).  

 

As the current treatment options for endometriosis may affect individuals in varying ways, most women 

with endometriosis rely on polytherapy, and use a combination of therapies to manage their disease 

(Garmendia and De Sanctis, 2012). Furthermore, as the goal of commonly used hormonal therapies is 

menstrual suppression, with additional medications merely acting to reduce the severity of symptoms 

associated with endometriosis, the underlying cause of endometriosis is not addressed. Further research 

into the aetiology of ectopic endometrial tissue implantation is required to provide insights towards the 

development of a targeted, effective therapeutic intervention.
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1.2 THE AETIOLOGY OF ENDOMETRIOTIC LESION DEVELOPMENT 

The histological confirmation of endometrial stroma and glands outside the uterine cavity was first 

described in 1860 (Knapp, 1999). Multiples studies have since evaluated the biological features and 

molecular characteristics of endometriotic implants in comparison with eutopic endometrial tissue to 

understand the factors contributing to endometriosis.   

 

1.2.1 Theories of endometriosis establishment 

Although the exact mechanisms that give rise to the presence of ectopic endometrial implants remain 

enigmatic, multiple theories have been proposed to account for the development of endometriosis, 

including Sampson’s theory of retrograde menstruation, the Müllerian remnant theory, the coelomic 

metaplasia theory, and the theory of induction.   

 

1.2.1.1 Sampson’s theory of retrograde menstruation 

The most widely accepted theory for the pathogenesis of endometriosis is Sampson’s retrograde 

menstruation theory. Sampson proposed that the reflux of endometrial fragments through the fallopian 

tubes during menstruation, followed by implantation within the peritoneal cavity, gives rise to ectopic 

endometriotic lesions (Sampson, 1927). This theory is supported by the fact that approximately 90% of 

women experience retrograde menstruation, with viable endometrial epithelial cells and glandular 

structures being found in the menstrual effluent (Halme et al., 1984). In addition, a higher prevalence of 

basal endometrial fragments have been identified in the menstrual effluent from women with 

endometriosis compared to women without endometriosis, suggesting that peritoneal endometriosis may 

result from the trans-tubal dislocation of these fragments (Leyendecker et al., 2002). Furthermore, the site 

of endometriotic implant adhesion corresponds to the side of tubal reflux; i.e. higher incidence of 

endometriosis lesions on the left pelvic side in women with an occluded right fallopian tube (Jenkins et 

al., 1986).  

 

On the other hand, Sampson’s theory on its own is an inadequate explanation for the pathogenesis of 

endometriosis as only 10% of women with retrograde menstruation develop endometriosis and, 

endometriosis has been known to occur in the absence of menstruation (Schrodt et al., 1980, Halme et 

al., 1984, Martin and Hauck, 1985). Therefore, several additional theories for the development of 

endometriosis are based on the assumption that endometriosis develops in situ from local tissue in the 

peritoneal cavity. 
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1.2.1.2 Müllerian remnant theory 

The Müllerian remnant theory postulates that fragments of Müllerian embryonic tissues may undergo 

metaplastic transformation into endometrial tissues (Ugur et al., 1995). Following clinical examination of 

the peritoneal cavity in some adolescents and adults, tissue ‘pockets’ with and without endometriosis have 

been identified. The manifestation of these tissues were found to be associated with congenital tract 

malformations (Nap, 2012). This implies a link between endometriosis and embryological abnormalities, 

and may account for disease sometimes observed in pre-menarche females. However, the presence of 

this “developmentally misplaced endometrial tissue” defined as Müllerianosis, while histologically similar 

to endometriotic lesions (containing endometrial stroma and glands), is non-invasive and distinguishable 

from the classical presentation of endometriosis (Batt et al., 2007).  

  

1.2.1.3 Coelomic metaplasia theory 

An alternative theory proposes that the transformation of the ovarian germinal epithelium and/or the 

serosa of the peritoneum into endometrial cells via metaplasia can give rise to endometriosis (Vinatier et 

al., 2001, Nap, 2012, Benagiano et al., 2014). This coelomic metaplasia theory provides an explanation 

for the development of endometriotic lesions outside the pelvic area and, is independent of the process 

of retrograde menstruation. It also provides an explanation for the presence of endometriotic lesions 

reported in a small number of males (Schrodt et al., 1980, Martin and Hauck, 1985). 

 

1.2.1.4 Theory of induction 

Finally, the theory of induction provides a link between the coelomic metaplasia theory and Sampson’s 

theory of retrograde menstruation. It suggests that one or more endogenous immunological or 

biochemical factors released from retrograde menstrual fragments may contribute to the induction of 

endometrial differentiation in the mesothelial layer of the peritoneum (Vinatier et al., 2001, Nap, 2012).   

 

1.2.1.5 Limitations of in situ theories 

Several criticisms against the in situ theories for the pathogenesis of endometriosis exist. The low 

incidence of endometriosis seen in males does not support the assumption that peritoneal cells can easily 

undergo transformation into endometrial cells (Martin and Hauck, 1985). Also, as the frequency of 

metaplastic transformations increases with age (Vinatier et al., 2001), an increase in endometriosis in 

older women should be observed, but is not. Moreover, the non-uniform distribution of lesions within the 
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peritoneum, with a higher incidence around the pelvic organs, refutes the concept that the entire coelomic 

membrane is subject to metaplasia into endometrial tissue (Nap, 2012). In addition, the pathogenesis of 

endometriosis is postulated to arise from neonatal uterine bleeding. This bleeding represents decidual 

shedding, and is rich in endometrial stem/progenitor cells, which may implant in the peritoneal cavity, thus 

giving rise to early-onset (adolescent or premenarcheal) disease development (Gordts et al., 2017). 

Furthermore, following either caesarean or laparoscopic surgery, the development of subcutaneous 

endometriosis been observed at the scar site (Denton et al., 1990, Khammash et al., 2003, Hull et al., 

2006). The clinical development of subcutaneous endometriosis is believed to be a consequence of 

exposing endometrial tissue to a surgical site where it establishes ectopically (Liang et al., 1998, Gaunt 

et al., 2004, Hull et al., 2006). For example, during caesarean section, the transfer of eutopic endometrium 

to the abdominal wall may occur, giving rise to the development of scar endometriosis in the abdominal 

wall wound. Therefore, no single theory seems to fully encapsulate the processes leading to 

endometriosis.  

 

1.2.2 Additional factors contributing to the pathogenesis of endometriosis 

While an underlying biological mechanism appears to be the main determinant in developing 

endometriosis, several additional factors have been linked to disease progression. A growing body of 

evidence implicates a combination of hormonal (Bulun et al., 2012), genetic (Parazzini et al., 2012), 

environmental (Rier, 2002), and immunological factors (Klentzeris et al., 1995, Szyllo et al., 2003) in the 

development of endometriosis.  

 

1.2.2.1 Hormonal influence 

Endometriosis is well established as oestrogen-dependent disease, where most ectopic endometrial 

lesions develop in women of reproductive age and regress after menopause or oophorectomy 

(Winterhager, 2012). Majority of these lesions contain oestrogen and progesterone receptors as well as 

aromatase P450, an enzyme that catalyses the conversion of androstenedione and testosterone to 

oestrogenic compounds. As the expression pattern of these receptors in endometriotic lesions differs from 

eutopic endometrium, it has been proposed that local oestrogen production may stimulate lesion 

development. In addition, during endometriosis, activated macrophages in the peritoneal cavity secrete 

high concentrations of prostaglandins F2α and E2 (Ferrero et al., 2014). Prostaglandin E2 has been found 

to stimulate aromatase activity and sustain local oestrogen production, thus enhancing the survival of pre-

existing lesions or disease recurrence post-treatment (Ferrero et al., 2014).   
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In addition, a shorter menstrual cycle length (Cramer et al., 1986, Kuohung et al., 2002), earlier age at 

menarche (Signorello et al., 1997), and delayed childbearing either by choice or infertility (Missmer et al., 

2004) may contribute to dysregulated cyclic hormone fluctuations and increased levels of circulating 

oestradiol and oestrone (Dorgan et al., 1995), and are associated with and increased risk of developing 

endometriosis (Parasar et al., 2017).  On the other hand, current oral contraceptive use (Vercellini et al., 

2011), higher body mass index (Ferrero et al., 2005, Shah et al., 2013), and regular exercise (Bonocher 

et al., 2014) have an inverse association with the development of endometriosis, which may also be linked 

to hormonal differences and regulation of oestrogen (Parasar et al., 2017).  

 

1.2.2.2 Genetic predisposition 

Genetic polymorphisms affecting hormonal and immunological activity may also be risk factors for 

developing endometriosis (Parazzini et al., 2012). Over the years, large scale studies looking at gene 

polymorphisms associated with endometriosis have included oestrogen receptor β, vascular endothelial 

growth factor (VEGF) genes, and cytochrome genes (Montgomery et al., 2008, Zhao et al., 2011, Painter 

et al., 2014). In particular, cytochrome P450-associated gene, CYPC2C19 has been linked to an 

increased prevalence in developing endometriosis (Painter et al., 2014). In 2010, a genome wide 

association study (GWAS) identified an association between development of endometriosis and genetic 

variants in the CDKN2BAS locus (Uno et al., 2010) and the following year, GWAS conclusively linked a 

new locus on chromosome 7p15.2 and an increased risk of endometriosis (Painter et al., 2011). To date, 

while a total of 19 independent genomic regions that display genome-wide significance for endometriosis 

risk have been identified, with candidate genes associated with hormone regulation (oestrogen receptor 

1, follicle stimulating hormone beta subunit, and growth regulating oestrogen receptor binding 1), cell 

proliferation and migration (cyclin-dependent kinase inhibitor 2B antisense, cell division cycle 42 and 

kinase insert domain receptor), the majority of these studies have used samples from women with severe 

endometriosis (Stage  III/IV) (Uno et al., 2010, Painter et al., 2011, Nyholt et al., 2012, Rahmioglu et al., 

2014, Rahmioglu et al., 2015, Fung et al., 2015, Sapkota et al., 2015a, Sapkota et al., 2015b, Sapkota et 

al., 2017).  

 

Cancer-associated mutations have been identified in women with endometriosis in the absence of cancer 

or dysplasia, underscoring the potential for transformation of benign endometriotic lesions into malignant 

cancers (Anglesio et al., 2017, Suda et al., 2018). Through the use of laser microdissection and 

sequencing, Anglesio et al. examined samples of deep infiltrating endometriosis, whereas Suda et al. 

analysed samples of ovarian endometriosis and uterine endometrial epithelium. In these studies, 

nonsynonymous somatic mutations were identified, including polymorphisms in the cancer-driver genes 
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ARID1A, PIK3CA, KRAS and PPP2R1A (Anglesio et al., 2017, Suda et al., 2018). Interestingly, clonal 

expansion of epithelial cells harbouring these cancer-associated mutations was seen (Suda et al., 2018), 

suggesting that these mutations may confer a survival advantage to refluxed endometrial tissue in the 

peritoneal cavity.  

 

In addition, the recently proposed genetic/epigenetic theory highlights the importance of both genetic and 

epigenetic processes in the development of endometriosis (Koninckx et al., 2018). This theory postulates 

that an induction of genetic or epigenetic changes may potentially be caused by the increased oxidative 

stress observed in the uterus following menstruation and in the peritoneal cavity following retrograde 

menstruation (Koninckx et al., 1999, Scutiero et al., 2017, Koninckx et al., 2018). Furthermore, various 

cellular processes have functional redundancy which effectively masks the phenotypic effect of sequential 

mutations, and may explain the observation that the cumulative effect of these genetic and epigenetic 

changes may only become apparent when a ‘threshold/tipping-point’ is reached (Koninckx et al., 2018). 

Clinically, the effect of genetic and epigenetic changes result in lesion variations not only between women 

with endometriosis, but also within the same individual, which could result in variable treatment efficacy 

over time (Koninckx et al., 2018).  

 

1.2.2.3 Environmental toxin exposure 

The increase in global industrialisation and subsequent environmental contamination with man-made 

chemical compounds has resulted in the exposure and accumulation of these chemicals in both humans 

and animals. In particular, exposure to organochlorine environmental toxins including polychlorinated 

biphenyls and dioxins have been widely studied and are found to be associated with endometriosis (Rier 

et al., 1993, Cummings et al., 1996, Johnson et al., 1997, Cummings et al., 1999, Sofo et al., 2015, Shi 

et al., 2007).  

 

A study conducted in Rhesus monkeys implicated exposure to the environmental toxin 2, 3, 7, 8-

tetrachlorodibenzo-p-dioxin (TCDD or dioxin) with an increased prevalence and severity of endometriosis 

(Rier et al., 1993, Rier et al., 2001). Exposure to TCDD is also associated with the disruption of 

cannabinoid signalling pathways, which are utilised for the anti-inflammatory effect of progesterone in 

inhibiting ectopic endometrial tissue growth (Resuehr et al., 2012). The combination of estrogen and 

dioxin exposure was found to promote secretion of the chemokines chemokine (C-C motif) ligand 5 

(RANTES or CCL5) and macrophage inflammatory protein (MIP)-1α and proteolytic matrix 

metalloproteinase (MMP)-2 and MMP-9 which promoted the invasion of endometrial stromal cells (Yu et 

al., 2008).  
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The mechanism of dioxin action has been linked to disruption of steroid signalling pathways, cell cycle 

regulation, and immune cell activity (Sofo et al., 2015). Of particular interest is the potential role of dioxin 

in modulating immune responses via microRNAs, resulting in altered cytokine expression and aberrant 

mucosal immunity in the reproductive tract (Sofo et al., 2015). In endometriosis, dioxin may disrupt 

immune cell activity, predominantly by promoting macrophage tolerance towards ectopic endometrial 

tissue and effectively reducing its clearance from the peritoneal cavity (Rier, 2002). 

 

1.2.2.4 Immunological factors 

Endometriosis is classified as an oestrogen-dependent inflammatory disorder, with chronic dysregulation 

of immune function and vascular signalling (Kralickova et al., 2018, Riccio et al., 2018, Zhang et al., 2018). 

Research into the role of oestrogen has also shown its marked effect on peritoneal macrophages, 

whereby the production and secretion of VEGF by macrophages was found to be elevated in the presence 

of oestrogen (McLaren et al., 1996). In addition, activated macrophages in endometriosis patients were 

found to secrete Interleukin (IL)-1β (Lebovic et al., 2000) which stimulates endometrial stromal cells to 

upregulate the expression of the pro-angiogenic cytokine IL-8 (Rossi et al., 2005), which works in tandem 

with tumour necrosis factor (TNF)-α to promote VEGF-α release from neutrophils (Na et al., 2006). 

Therefore, the increased levels of VEGF may facilitate the attachment of refluxed endometrial fragments 

in the peritoneal cavity. 

 

A stage-dependent imbalance in T-helper (TH)1 and TH2 ratios has been observed in endometriosis, with 

a prevalence of TH1 cytokines present in the peritoneal fluid at Stage I and II, whereas a shift towards 

increased TH2 cytokines is noted in Stages III and IV (Andreoli et al., 2011). In endometriotic lesions, the 

presence of TH17 cells results in the release of IL-17A, which in turn increases the secretion of CCL20, a 

TH17 chemokine, from endometrial cells (Hirata et al., 2008, Hirata et al., 2010). CCL20 feeds-back to 

induce TH17 cell migration to endometrial tissue, further enhancing IL-17A activity, which functions 

synergistically with TNF-α to enhance the secretion of CCL20 and IL-8 (Hirata et al., 2008, Hirata et al., 

2010). 

 

Therefore, in endometriosis, significant changes in cellular immunity including elevated numbers and 

activation status of peritoneal macrophages, decreased natural killer (NK) cell cytotoxicity and 

dysregulated T cell levels could contribute to disease progression and persistence (Herington et al., 2011, 

Kralickova et al., 2018). Moreover, epidemiological data links endometriosis with several autoimmune 



Panir Chapter 1 36 

disorders, including multiple sclerosis, rheumatoid arthritis, and systemic lupus erythematosus (Parazzini 

et al., 2012), and the increased prevalence of autoantibodies in endometriosis patients (Nothnick, 2001, 

Matarese et al., 2003, Pathivada and D'Hooghe, 2012) suggests a probable link between autoimmunity 

and endometriosis. As multiple studies have implicated immune dysfunction as a likely mediator of 

endometriosis, the following section details the key role facilitated by the immune system during disease 

pathogenesis and lends support to the premise that an underlying immune aberration contributes to the 

development of endometriosis.  
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1.3 ECTOPIC ENDOMETRIAL TISSUE IMPLANTATION IN THE PERITONEAL CAVITY 

The peritoneum is the largest serous membrane in the body, comprising the mesothelium, basement 

membrane, and underlying connective tissue (Kyama et al., 2003, Klemmt and Starzinski-Powitz, 2012, 

Koninckx et al., 2012, de Arellano ML and Mechsner, 2014). Peritoneal mesothelial cells perform a vital 

function in maintaining the homeostasis within the peritoneal cavity (de Arellano ML and Mechsner, 2014). 

This cellular monolayer is joined via tight junctions, a complex association of membrane-bound proteins, 

and cytoplasmic vesicles which assist in regulating the transport of molecules across the mesothelium 

(Koninckx et al., 1998). These cells also assist in the peritoneal inflammatory response and attraction of 

macrophages and neutrophils by secreting multiple cytokines (i.e. granulocyte colony-stimulating factor 

(CSF), granulocyte-monocyte-CSF, macrophage-CSF, IL-1, and IL-6) (Lanfrancone et al., 1992, de 

Arellano ML and Mechsner, 2014). The basement membrane plays the dual role of anchoring mesothelial 

cells to the peritoneal membrane and creates a barrier for diffusion of large molecules through a complex 

network of connective tissue and aqueous channels (Hull et al., 2008).  

 

The peritoneal fluid, which is rich in immune cells and cytokines, provides a unique environment within 

the body. Made up of a combination of ovarian exudate, plasma transudate, tubal fluid, retrograde 

menstruation, and immune cell secretions, the peritoneal fluid from women with endometriosis has been 

shown to enhance eutopic and ectopic endometrial cell proliferation (Koninckx et al., 1998). Studies have 

shown that this increased proliferation is influenced by the presence of growth factors such as TNF-α, 

transforming growth factor (TGF)-β, and steroid hormones which circulate in the peritoneal fluid (Koninckx 

et al., 2012, Young et al., 2014a, Young et al., 2014b). In addition, the presence of soluble extracellular 

matrix (ECM) proteins including laminin, hyaluronan, and collagen type IV in the peritoneal fluid has been 

associated with an increase in the ability of endometrial cells to adhere to surfaces within the peritoneal 

cavity (e.g. the peritoneum, ovaries, bladder) (Debrock et al., 2002, Kyama et al., 2003, de Arellano ML 

and Mechsner, 2014). 

 

Research into the role of mesothelial cells during the pathogenesis of endometriosis has provided 

valuable information regarding the interaction between ectopic endometrial tissue and the site of 

implantation. From studies using endometrial cells cultured in vitro, the mesothelial layer has been 

implicated as the primary site of adhesion of endometrial fragments, as both endometrial epithelial and 

stromal cells bind to the mesothelium with high affinity (Dechaud et al., 2001). In 2001, Dunselman et al. 

found that an intact mesothelial layer prevents adhesion of ectopic endometrial tissue and, subsequently 

concluded that these endometrial fragments establish adhesion sites by exposing the underlying 

peritoneal ECM by damaging and remodelling the mesothelial layer (Dunselman et al., 2001). In addition, 
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early analysis of peritoneal fluid from endometriotic women have shown an elevation in several ECM-

related proteins including VEGF-A, cysteine-rich angiogenic inducer 61, urokinase plasminogen activator 

and MMP-3 (Iwabe and Harada, 2014). Although mesothelium reorganisation during attachment of 

endometrial tissue facilitates disease initiation, the reason behind this attachment and subsequent 

invasion of endometrial cells in some women and not in others remains unclear. 

 

1.3.1 Aberrant inflammatory response and evasion of immune surveillance 

Mounting evidence points towards an underlying immunological aberration that influences endometriotic 

lesion progression. A combination of factors including aberrant cytokine expression, impaired immune 

surveillance, and the innate resistance of endometrial tissue against clearance contribute to the 

pathogenesis of endometriosis (Aznaurova et al., 2014, Benagiano et al., 2014, Bouquet De Jolinière et 

al., 2014).  Multiple studies indicate that the development and maintenance of ectopic endometrial lesions 

is driven by a mechanism of local peritoneal inflammation, with an altered response or function of immune 

cells within the peritoneal cavity (Iwabe and Harada, 2014). An in vitro culture of primary endometrial cells 

demonstrated that the cellular component of retrograde menstrual effluent arriving at the peritoneal cavity 

is prone to necrosis and apoptosis, due to a lack of nutrients and oxygen (Debrock et al., 2002). These 

cells initiate a cascade of inflammatory responses, with an infiltration of neutrophils and monocytes which 

subsequently differentiate into macrophages (Janssen and Henson, 2012).  

 

Macrophages have been identified as key players in both the progression and resolution of an 

inflammatory response (Cao et al., 2004, Jantsch et al., 2014). Macrophages secrete a range of pro-

inflammatory cytokines including IL-1, IL-6, IL-12, and TNF which assist in the clearance of damaged 

tissues (Cao et al., 2004). However, during endometriosis, the phagocytosis of necrotic endometrial cells 

is associated with a decrease in the pro-inflammatory cytokines IL-1β and TNF-α, suggesting a resolution 

of inflammation occurs (Capobianco and Rovere-Querini, 2013). The lack of inflammatory 

chemoattractants may result in impaired immune cell recruitment into the peritoneal cavity, and potentially 

allow endometrial tissue fragments to attach ectopically (Capobianco and Rovere-Querini, 2013). 

Furthermore, peritoneal macrophages from women with endometriosis have a reduced ability to 

phagocytose, clear, and destroy endometriotic cells, thus encouraging ectopic tissue survival and lesion 

development within the peritoneal cavity (Capobianco and Rovere-Querini, 2013).   

 

Associated with this decrease in pro-inflammatory cytokines, TGF-β, a regulator of cell proliferation and 

differentiation, was found at elevated levels in peritoneal fluid (Janssen and Henson, 2012). Since TGF-

β is a key factor driving the generation of M2-like macrophages, this raises the possibility that during 
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endometriosis, a shift from pro-inflammatory to anti-inflammatory macrophage activity occurs, supporting 

disease progression. Further research highlighting the synergistic role of macrophages and TGF-β in 

endometriotic lesion development was carried out in TGF-β1-null mutant mice on a background of severe 

combined immunodeficiency (Hull et al., 2012). A reduction in ectopic endometrial lesion size was noted 

following xenotransplantation of human endometrial cells subcutaneously into these mice, indicating of 

the likely importance of TGF-β signalling pathways in disease establishment (Hull et al., 2012).  

 

In addition, supporting in vitro studies showed CD36-dependent phagocytosis of endometrial cells by 

peritoneal macrophages is inhibited by the inflammatory mediator prostaglandin E2, which is elevated in 

the peritoneal fluid of women with endometriosis (Chuang et al., 2010). Similarly, NK cell cytotoxicity 

towards endometrial tissue is aberrant in women with disease, possibly mediated by the production of 

intercellular adhesion molecule-1 by endometrial stromal cells (Oosterlynck et al., 1991). NK cell 

deficiency would reasonably cause a delay in the clearance of endometrial fragments from the peritoneal 

cavity which may allow ectopic tissue implantation and invasion into the mesothelium.  

 

Although peritoneal macrophages assist in the clearance of endometrial tissue, a vital step towards 

disease establishment is the innate ability of some of this menstrual effluent to evade immune surveillance 

and survive in the peritoneal cavity. For example, expression of IL-8 in females with endometriosis was 

found to enhance endometrial cell proliferation in vivo (Arici et al., 1998). Also, endometrial tissue of 

diseased women was found to have lower TUNEL-positive expression and reduced BAX expression, both 

markers of apoptosis. These innate anti-apoptotic mechanisms in endometrial tissue may increase their 

ability to evade immune clearance (Johnson et al., 2005). Interestingly, a predisposition towards 

endometriosis was also found to correlate to other autoimmune disorders (e.g. systemic lupus 

erythematosus, rheumatoid arthritis) and atopic disease (e.g. asthma, allergies, and eczema), lending 

support to the concept of a fundamentally altered or dysregulated immune system in women with this 

disease (Nothnick, 2001, Sundqvist et al., 2011, Pathivada and D'Hooghe, 2012). While targeting these 

immune mechanisms may ultimately prove to have therapeutic outcomes, significant work still remains to 

determine the precise underlying mechanisms involved in altered immune response seen in 

endometriosis. In addition, it remains critical not to discount the possibility that observed changes in 

immune cell and cytokine abundance in endometriosis could be a consequence of an exacerbated 

inflammatory response towards the presence of ectopic endometrial tissue, rather than the observed 

peritoneal inflammation being the cause of disease development.  
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1.3.2 Lesion maintenance through neurogenesis and angiogenesis 

Following the attachment of endometrial fragments to the mesothelium, endometriotic implants manage 

to thrive in the peritoneal cavity through the development of a vascular supply that provides the lesions 

with nutrients and oxygen (Giudice and Kao, 2004). Angiogenesis is frequently accompanied by formation 

of nerve fibres at the site of implantation, possibly contributing to the chronic pain associated with 

endometriosis (Hey-Cunningham et al., 2013). Importantly, peritoneal fluid from women with 

endometriosis is found to be more pro-angiogenic than peritoneal fluid from women without endometriosis 

(Oosterlynck et al., 1993, Groothuis, 2012).   A combination of cytokines including VEGF, TNF-α, and IL-

8 were found to be elevated in the peritoneal fluid from women with endometriosis compared to those 

without (McLaren et al., 1996, Maas et al., 2001, Cho et al., 2012). Both TNF-α and IL-8 promote 

adhesion, proliferation, and angiogenesis of endometrial cells, implying that an overexpression of these 

cytokines may result in localised vascularisation and remodelling of the mesothelium (Groothuis, 2012). 

VEGF, an important angiogenic factor, is found to be secreted by activated peritoneal macrophages and 

is abundantly expressed in the glandular compartment of endometriomas (Groothuis, 2012, Krikun, 2012). 

The expression of VEGF and its soluble receptor (sFlt-1) was found to be significantly higher in peritoneal 

endometriotic lesions compared to normal peritoneum biopsies from women without endometriosis (Cho 

et al., 2012). Interestingly, a comparison of eutopic endometrium from women with and without 

endometriosis showed a significant reduction in sFlt-1 expression in patients with this disease (Cho et al., 

2012). In a nude mouse model of endometriosis, suppression of ectopic endometrial tissue growth via 

antagonism of VEGF-A (administration of either the truncated sFlt-1 or an anti-VEGF-A antibody) was 

observed, signifying the crucial role VEGF plays in maintaining ectopic lesion survival (Hull et al., 2003). 

 

Although capillary recruitment to the relatively avascular peritoneal microenvironment initiates 

remodelling, growth, and survival of invading endometrial tissue, the mechanisms behind this process are 

poorly understood. A potential theory proposes that endometrial tissues may have progenitor endothelial 

cells which may form a vascular network in the peritoneal environment (Hull et al., 2003). Alternatively, 

blood vessels from the mesothelium may infiltrate the attached endometrial tissues, following signals 

received from the cocktail of cytokines in the peritoneal environment (Braza-Boils et al., 2013). 

Macrophages have also been implicated as mediators of vascular development, as they are potent 

sources of VEGF, and can secrete pro-angiogenic, anti-inflammatory factors such as IL-10 and MMP-9 

which may assist with vascularisation of the peritoneal surface, making it more prone to endometriotic 

lesion growth (Lin et al., 2006, Capobianco and Rovere-Querini, 2013, Zajac et al., 2013). Additional work 

delineating the multifactorial role of macrophages during endometriosis lesion attachment and 

proliferation is required; especially as targeting this immune cell may be beneficial in improving the 

understanding of endometriosis establishment, and thus ultimately in treating this disease.  
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1.4 MACROPHAGE ACTIVITY IN ENDOMETRIOSIS 

Macrophages are a heterogeneous population of functionally diverse hematopoietic cells (Gordon and 

Taylor, 2005). Macrophages differentiate from peripheral monocytes in response to immunological 

challenges, pathogens, antigenic stimuli, and exposure to cytokines (Gordon and Taylor, 2005). Antigen 

processing by macrophages and subsequent presentation of these molecules via the Class II Major 

Histocompatibility Complex (MHC II) to T cells allows for development of a host adaptive immune 

response (Jantsch et al., 2014). To maintain homeostasis, macrophages perform a vast array of functions 

including clearance of debris and pathogens, removal of dead cells, and matrix turnover (Wynn et al., 

2013). Associated with this functional plasticity is a continuum of macrophage polarisation states, with 

two extreme activation pathways at either end of this spectrum; classically activated (M1-like) 

macrophages and the alternatively activated (M2-like) macrophages (Figure 1.2) (Ma et al., 2003, 

Martinez et al., 2008, Mosser and Edwards, 2008, Italiani and Boraschi, 2014, Jantsch et al., 2014). 

 

Undifferentiated macrophages (M0) derived from bone marrow progenitors can be induced towards the 

“pro-inflammatory” M1-like macrophage subtype following exposure to IL-1β, TNF-α, Interferon (IFN)-γ or 

lipopolysaccharide, alone or in combination (Wynn and Barron, 2010, Wynn et al., 2013, Italiani and 

Boraschi, 2014, Jantsch et al., 2014, Martinez and Gordon, 2014). M1-like macrophages are 

characterised by their inflammatory cytokine secretion profile (e.g. IL-1β, IL-6, TNF-α and IFN-α) and 

surface marker expression, including CD40, CD86, and major histocompatibility complex II (MHC II) 

(Italiani and Boraschi, 2014). These M1-like macrophages are effector cells in the TH1 cellular immune 

response and assist in the clearance of pathogens via endocytosis, through the production of inducible 

nitric oxide synthase (iNOS), which results in oxidative damage (Brune et al., 2013). This helps initiate an 

antigen-specific TH1 and TH17 inflammatory response, and if uncontrolled, can lead to a chronic 

inflammatory state, which in turn can become pathogenic to the host (Liddiard et al., 2011).   

 

In contrast, M0 macrophages treated in vitro with a combination of M-CSF and IL-10 in mice or the TH2 

cytokine IL-4 in humans, produces an “anti-inflammatory” M2-like macrophage subtype (Wynn and 

Barron, 2010, Wynn et al., 2013, Italiani and Boraschi, 2014, Jantsch et al., 2014, Martinez and Gordon, 

2014). Through release of growth factors and cytokines, these macrophages help with pathogen 

clearance, reduce inflammation, and promote tissue remodelling and regrowth (Italiani and Boraschi, 

2014). M2-like macrophages express a range of extracellular markers, including arginase 1 (Arg-1), L-4 

receptor, mannose receptor (CD206), resistin-like molecule alpha 1 (Fizz1), and chitinase-like molecule 

(Ym1/Ym2) (Martinez and Gordon, 2014). Based on gene profiles, inducing agents, and cytokine 

expression, M2-like macrophages can be further characterised into subsets: M2a, M2b, and M2c. 
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Exposure to IL-4 or IL-13 elicits an M2a-like response, whereas IL-1R or exposure to LPS elicits an M2b-

like response, and M2c-like macrophages form from exposure to IL-10, TGF-β and glucocorticoid 

hormones (Martinez and Gordon, 2014). 

 

M1-like and M2-like macrophages both play an important role in the initiation and resolution of 

inflammation. In vitro studies have shown that M2-like macrophages are capable of complete 

repolarisation back to M1-like macrophages, and are able to switch back in response to subtle changes 

in the cytokine microenvironment (Wang et al., 2014a). The ability of macrophages to express distinct 

functional phenotypes has been associated with several non-pathogen driven diseases, such as 

osteoporosis, atherosclerosis, and uncontrolled tissue growth and remodelling, including cancer 

(Cassetta et al., 2011). During the female reproductive cycle, alterations in macrophage numbers and 

expression profiles in response to changes in reproductive hormone levels have been observed (Brown 

et al., 2014).  

 

In endometriosis, the presence of macrophages is a consistent feature of endometriotic lesions and 

appears to be a significant driving force in the establishment and persistence of disease (Capobianco and 

Rovere-Querini, 2013). In 1981, Haney et al. first described an increase in the number of peritoneal 

macrophages in women with endometriosis (Haney et al., 1981). Several studies have shown that in 

women with endometriosis, activated peritoneal macrophages had a reduced capacity to eliminate ectopic 

endometrial tissue (Kusume et al., 2005, Lee et al., 2005, Yamamoto et al., 2008). These macrophages 

also appeared to facilitate the survival and proliferation of endometrial cells in the peritoneal cavity, 

through the release of multiple growth and vascular remodelling factors, thereby contributing to the 

progression of endometriosis (Ahmad et al., 2014).
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Figure 1.2 Markers of M1-like and M2-like macrophages 

The stimulation of undifferentiated M0-like macrophages with M1-like stimuli [Interleukin-1β (IL-1β), 
lipopolysaccharide (LPS), tumour necrosis factor α (TNFα), interferon γ (IFNγ) and granulocyte-macrophage 
colony-stimulating factor (GM-CSF)] gives rise to pro-inflammatory M1-like macrophages [characterised by the 
expression of a range of markers including inducible nitric oxide synthase (iNOS) and major histocompatibility 
complex class II (MHC II)]. Conversely, the stimulation of M0-like macrophages with M2-like stimuli [IL-4, IL-10, 
transforming growth factor (TGF-β), and macrophage CSF (M-CSF)] gives rise to tissue healing M2-like 
macrophages [characterised by the expression of a range of markers including arginase 1 (Arg-1) and CD206. 
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1.4.1 Endometrial macrophages are elevated during menses   

Cyclical changes in hormone levels throughout the menstrual cycle regulate endometrial proliferation, 

culminating either in successful embryo implantation with associated vascular modifications or in the 

absence of pregnancy, the withdrawal of progesterone results in myometrial shedding. Multiple studies 

have demonstrated fluctuating immune cell populations throughout the menstrual cycle (reviewed in 

Oertelt-Prigione, 2012). Of particular interest is the influx of leukocytes during the secretory and menstrual 

phases of the cycle (Kamat and Isaacson, 1987, Poropatich et al., 1987), with an elevation in the numbers 

of tissue-resident endometrial macrophages during the secretory phase (Critchley et al., 2001). This 

suggests a key role for macrophages in the initiation of menstruation (Critchley et al., 2001) and in the 

resolution and subsequent repair of the myometrium (Garry et al., 2010, Maybin et al., 2012).  

 

Macrophages have a broad spectrum of activation states, and function as an important source of both 

pro- and anti-inflammatory mediators in the endometrium (Thiruchelvam et al., 2013). Throughout the 

menstrual cycle, a steady increase in the proportion of macrophages within the endometrium is observed, 

with macrophages comprising 6-15% of all endometrial cells following the withdrawal of progesterone 

(Salamonsen et al., 2002). This increase in macrophage numbers is believed to occur either by in situ 

proliferation within the endometrium or via chemotaxis of peripheral monocytes into the endometrium 

(Guo et al., 2011, Jenkins et al., 2011). In the context of endometriosis, it is important to consider the 

contribution of these immune cells and other cellular components present in the shed menstrual effluent 

on disease development. A combination of abnormal immune responses, augmented macrophage 

function, and epigenetic dysregulation throughout the menstrual cycle may facilitate the growth of 

endometriotic lesions, thus predisposing some women to endometriosis and potentially exacerbating this 

condition over multiple repeated menstrual cycles. 

 

1.4.2 The inflammatory response and the initiation of endometriosis 

Classically activated M1-like macrophages have been implicated in the adherence of endometrial cells in 

the peritoneal cavity and initial disease establishment (Capobianco and Rovere-Querini, 2013). In vivo 

mouse models of endometriosis have demonstrated that the presence of ectopic endometrial tissue 

triggers an inflammatory response, characterised by an influx of neutrophils and macrophages into the 

peritoneal cavity (Bacci et al., 2009). In addition, following intrapelvic injections of endometrial tissue into 

baboons, a surge in inflammatory mediators is seen, including increased numbers of leucocytes, T-

lymphocytes, and TNF-α+ cells, with an associated increase in the levels of MIP chemokine (D'Hooghe et 
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al., 2001). This implies that a large proportion of M1-like macrophages are initially recruited to the localised 

site of inflammation. 

 

However, as mentioned previously, macrophages from women with endometriosis have a reduced 

phagocytic ability. Therefore, rather than being efficient effector cells in clearing ectopic endometrial tissue 

fragments, these macrophages may in fact promote the persistence and survival of displaced endometrial 

tissue (Capobianco and Rovere-Querini, 2013). Furthermore, studies utilising both human and mouse 

tissues have shown that the persistence of ectopic endometrial tissue may itself be a driving force for a 

rapid influx of macrophages (Bacci et al., 2009, Capobianco et al., 2011, Capobianco and Rovere-Querini, 

2013, Ahmad et al., 2014). In a mouse model of endometriosis, the monocyte recruitment factor, 

monocyte chemotactic protein-1 (MCP-1), was significantly higher four hours following intraperitoneal 

injection of syngeneic endometrial tissue compared to control groups (Cao et al., 2004). The increase of 

MCP-1 at this time-point is indicative of the role of endometrial tissue exposure in release of this 

chemokine, and subsequent monocyte recruitment. The chemokine RANTES has also been implicated 

in the recruitment of M2-like macrophages to the site of lesion development (Hornung et al., 2001). In the 

peritoneal fluid of women with endometriosis, MCP-1 and RANTES (mediators of acute and chronic 

inflammation) were found to be present at increased levels, providing insight into the chemokine-driven 

mechanism behind the macrophage influx during disease initiation (Hornung et al., 2001, Cao et al., 2004, 

Ahmad et al., 2014). 

 

As extended periods of neutrophil action can result in cellular injury from the presence of reactive oxygen 

species, anti-inflammatory macrophages are likely to play an important role in limiting neutrophil activity 

(Hornung and von Wussow, 2012, Brune et al., 2013). In endometriosis, these macrophages assist in the 

rapid resolution of inflammation, which may contribute to the inefficient clearance of ectopic endometrial 

tissue (Hornung and von Wussow, 2012, Capobianco and Rovere-Querini, 2013). In a mouse model of 

tissue repair, it was observed that pro-inflammatory macrophages were present for up to forty eight hours-

post injury and were gradually replaced by increasing numbers of anti-inflammatory macrophages (Novak 

and Koh, 2013). These secondary cells expressed higher levels of TGF-β and IL-10 compared to the 

initially recruited macrophages, signifying a subtle change from M1-like to M2-like macrophage profile 

during tissue repair (Sica and Mantovani, 2012, Novak and Koh, 2013). 

 

1.4.3 Resolution of inflammation and tissue remodelling in endometriosis 

While M1-like macrophages elevate inflammatory activity in the peritoneal cavity, alternatively activated 

M2-like macrophages exhibit anti-inflammatory actions and may assist in the resolution of this 

inflammation, which, paradoxically, may exacerbate the development of endometriosis (Capobianco and 
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Rovere-Querini, 2013). In 2009, Bacci et al. developed a macrophage-depleted endometriosis mouse 

model to evaluate the contribution of differentially activated macrophages in lesion development (Bacci 

et al., 2009). In this system, mice were injected with M0, M1-like or M2-like macrophages cultured in vitro, 

and it was shown that M2-like macrophages strongly enhance lesion development. In the absence of M2-

like macrophages, ectopic endometrial lesions failed to grow following adherence to the peritoneal 

membrane. Interestingly, M2-like macrophage depletion resulted in attenuated lesion growth, with fewer 

blood vessels penetrating the core of the lesion, effectively disrupting its glandular and stromal 

architecture (Bacci et al., 2009). This indicates a vital role for alternatively activated M2-like macrophages 

in the neovascularisation and persistence of endometriotic lesions. 

 

M2-like macrophages are found in the peritoneal fluid of humans and experimental animals with 

endometriosis, indicating a role for these cells in sustaining the growth of ectopic endometrial tissue (Bacci 

et al., 2009, Capobianco et al., 2011, Capobianco and Rovere-Querini, 2013). Anti-inflammatory 

macrophages are involved in tissue remodelling and angiogenesis, two essential processes in disease 

progression (Italiani and Boraschi, 2014). Remodelling of the endometrium occurs naturally during the 

human menstrual cycle under the control of oestrogen and progesterone, and involves the degradation 

of the superficial layer of the endometrium and regeneration of a new layer without fibrosis (Oertelt-

Prigione, 2012, Hong and Choi, 2018). MMPs are the main tissue-remodelling enzyme family involved in 

this remodelling process, and in endometriosis, the ectopic endometrium has a higher capacity to produce 

MMP-2 and MMP-9, compared to eutopic tissues (Halme et al., 1984, Maybin et al., 2011, Guo, 2012, 

Oertelt-Prigione, 2012). The presence of these enzymes, typically secreted by M2-like macrophages, 

suggests that the tissue remodelling process may be a precursor which promotes attachment and invasion 

of ectopic endometrial tissue in the peritoneal cavity (McLaren et al., 1996, Bacci et al., 2009, Capobianco 

and Rovere-Querini, 2013). Moreover, macrophage infiltration into endometriotic lesions is a key event in 

disease progression, and M2-like macrophages further promote the vascularisation of these lesions via 

production of VEGF (McLaren et al., 1996). 

 

1.4.4 Macrophage plasticity in endometriosis  

Evidence from in vivo mouse and primate studies indicate that M1-like macrophages transform into M2-

like macrophages during the progression of endometriosis, but the mechanism behind this phenotype 

switch remains largely unknown (Figure 1.3) (Capobianco and Rovere-Querini, 2013). In a Rhesus model 

of endometriosis, macrophages expressing CD163, a M2-like macrophage scavenger receptor, was 

found to be significantly higher in endometriotic lesions compared to eutopic endometrium (Smith et al., 

2012). This data presents the possibility that signalling from the ectopic endometrial tissue or suppression 
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in the inflammatory cytokine environment may be responsible for macrophage phenotype skewing in 

endometriosis. 

 

In humans, studying macrophage plasticity during endometriosis is challenging as ectopic lesions are 

usually surgically removed and evaluated only once the disease is fully established (Bacci et al., 2009). 

Although Halme et al. suggested that recruited macrophages can differentiate into various phenotypes 

which assist lesion development, samples were analysed from a tissue bank and may not be 

representative of immunological changes throughout the various stages of disease (Halme et al., 1987). 

Moreover, macrophage abundance and phenotypes during endometriosis may be altered due to 

heterogeneity of lesions, disease severity, and hormone cues, which complicates the identification of 

specific immune cell subsets in these tissues (Capobianco and Rovere-Querini, 2013, Ahmad et al., 

2014). 

 

Evaluation of endometrial lesion biopsies has confirmed the presence of HLA-DR, a marker of antigen 

presenting cell activity (Oosterlynck et al., 1993). Furthermore, expression of M2-like macrophage 

markers CD206 and CD163 was upregulated in the peritoneum and in lesions during endometriosis 

compared to in disease-free peritoneum (Bacci et al., 2009). In addition, the M2-like macrophage marker 

peroxisome proliferator-activated receptor-γ (PPAR-γ) was also found in lesions, glandular epithelial, and 

stromal cells, implying that this marker is not exclusively expressed by macrophages, but may be 

indicative of a predominance of ‘anti-inflammatory’ activity (McKinnon et al., 2010). Collectively, as these 

studies failed to detect the presence of M1-like macrophage markers within endometriotic tissue samples, 

this suggests a predominant tissue healing, M2-like immune profile during lesion development.  

 

The evaluation of peritoneal fluid from individuals with endometriosis has helped to determine how the 

immune microenvironment affects macrophage plasticity. The M1-like macrophage cytokines IL-6 and IL-

8 were reported to be higher in women with endometriosis, compared to disease-free counterparts 

(Harada et al., 2001, Kalu et al., 2007). Expression of MCP-1 by macrophages was also found to be 

significantly higher in women with severe stage endometriosis, compared to women at a milder stage 

(Gmyrek et al., 2008). Interestingly, studies have shown that MCP-1 is secreted at a higher level by murine 

M2-like macrophages compared to M1-like macrophages (Lolmede et al., 2009). These observations are 

consistent with the proposed theory that M2-like macrophages are important mediators involved with 

lesion growth and maintenance in endometriosis.    

 

While the classification of M1-like and M2-like subsets simplifies the heterogeneity of macrophages in 

endometriosis, subtle changes in macrophage phenotype due to tissue signalling, the cytokine 

microenvironment, or hormone interactions may occur throughout the menstrual cycle (Ahmad et al., 
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2014). Macrophage activation is dependent on multiple signals and may dynamically alter throughout 

disease progression (Cassetta et al., 2011), and although functional testing of the impact of M1-like vs 

M2-like macrophages in the different stages of endometriosis has been done, activation pathways and 

markers over time has not been described. Importantly, the sequence of causal pathways linking 

macrophage phenotype with the development of endometriosis can only be thoroughly defined in animal 

models, where sequential changes in lesion establishment and immune profiles can be evaluated 

effectively. In addition, the role of epigenetic regulators, such as microRNAs, in regulating macrophage 

polarisation during endometriosis has yet to be investigated, and may provide valuable insight into the 

aetiology of this disease.  

 

 

 

 

Figure 1.3 View of macrophage plasticity during lesion development in endometriosis 

The immune system has a multi-faceted role in the pathogenesis of endometriosis, and macrophages in particular 
have been shown to be central arbiters of disease progression. Following retrograde menstruation, the presence 
of ectopic endometrial tissue elicits an influx of inflammatory macrophages in an attempt to clear these fragments. 
However, in endometriosis, it is believed that inefficient clearance occurs, resulting in endometrial cell survival and 
adhesion. A second influx of macrophages with anti-inflammatory tissue-healing properties promotes remodelling 
and lesion establishment. 
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1.5 ANIMAL MODELS OF ENDOMETRIOSIS 

Although peritoneal fluid and endometrial tissue samples are routinely collected from both healthy and 

affected individuals, this is not sufficient for investigating contributing factors in the establishment and 

progression of endometriosis. Developing and testing targeted pharmaceutical treatment options remains 

challenging, as this disease only occurs naturally in humans and some primates (Grümmer, 2006). Human 

samples can provide descriptive data regarding disease progression but functional studies can only be 

carried out in manipulable animal models. Using animal models allows for scientific evaluation into the 

properties of both intrinsic (i.e. genes) and extrinsic (i.e. environment) factors on pathology and 

progression of diseases. Therefore, over the last few decades, several animal models have been 

developed to assist in unravelling the enigma of this complex disease, from both pathophysiological and 

therapeutic aspects (Simitsidellis et al., 2018).  

 

1.5.1 Primate models 

The main advantage of studying the pathophysiology of endometriosis in primates is their physical and 

biological similarity to humans (Fazleabas, 2012). Research on endometriosis has been carried out in 

female Rhesus monkeys (Macaca mulatta), mandrills (Mandrillus sphinx), Kenyan baboons (Papio 

doguera), and cynomolgus monkeys (Macaca fascicularis). Unlike other animal models used for the study 

of reproductive disorders, nonhuman primates have endometrial physiology, morphology and undergo 

menstrual cycles resembling those of humans (Slayden, 2013). Spontaneous development of 

endometriotic lesions may be observed in animals which have been kept in captivity and are either 

prevented from mating or undergo controlled/restricted breeding, and similar to endometriosis in humans, 

nonhuman primates are rarely diagnosed with early-stage disease (Slayden, 2013, D'Hooghe et al., 

2009). Endometriosis can also be induced in primates through the intraperitoneal injection of menstrual 

effluent and endometrial tissue, allowing the progression of endometriosis to be researched for up to 15 

months, and examination of lesions in vivo to be carried out via laparoscopy (D'Hooghe et al., 2009).  

 

Several studies evaluating the role of the immune system in baboon models of endometriosis have been 

carried out, with current evidence suggesting that the observed peritoneal inflammation may be a 

consequence rather than a cause of endometriosis (Kyama et al., 2003). An increase in peritoneal fluid 

volume, concentration of leukocytes, and inflammatory cytokines was observed following both 

spontaneous retrograde menstruation (occurs in 83% of baboons (D'Hooghe et al., 1996a)) and induced 

endometriosis via intraperitoneal injection of donor endometrium (D'Hooghe et al., 1999, D'Hooghe et al., 

2001). This elevated inflammatory response appears transient, as it was observed within one month 

following induced endometriosis (D'Hooghe et al., 2001), however it was absent between 2 to 3 months 
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following disease establishment (D'Hooghe et al., 1996b). Increased proportions of macrophages and 

cytotoxic T cells were observed in the peritoneal fluid of baboons with induced endometriosis (D'Hooghe 

et al., 1996b). Interestingly, low numbers of uterine NK cells were observed in ectopic endometrial lesions 

from women and baboons, and this was coupled with low expression of NKp30, an activating receptor of 

uterine NK cells (Drury et al., 2018). If a correlation between low NKp30 expression and reduced uterine 

NK cell cytotoxicity is proven, this could represent a possible mechanism by which ectopic endometrial 

cells are able to evade immune clearance and persist in the peritoneal cavity (Drury et al., 2018). 

 

On the other hand, the efficacy of utilising non-human primates as an experimental model of 

endometriosis has been challenged (Dehoux et al., 2011). The prohibitive financial costs of colony 

maintenance, ethical considerations regarding primate research, and conservation issues must be taken 

into account. Furthermore, although spontaneous development of endometriosis does occur, it takes a 

considerably longer time to establish disease when compared to rodent models. Following induced 

endometriosis, lesion establishment can take up to 30 days, and has less than a 30% success rate for 

development of endometriosis in primates (D'Hooghe et al., 2001, Fazleabas, 2012). While slow lesion 

development implies that progression of endometriosis can be studied at various stages, the cost of 

housing these animals coupled with the low success rate of disease establishment and the requirement 

for high technical expertise precludes the use of primate models in most laboratories (Dehoux et al., 

2011).  

 

1.5.2 Chicken chorioallantoic membrane  

The chicken chorioallantoic membrane (CAM) is the highly vascularised membrane of a fertilised chicken 

egg that facilitates gas exchange within the developing embryo (Grümmer, 2006). During early 

development, the embryo does not have a competent immune system, and therefore, xenotransplantation 

of human tissue is possible. Between 6 to 11 days of incubation, a small portion of a fertilised egg shell is 

removed and tissue grafts are implanted into the CAM (Borges et al., 2003). In this manner, CAM has 

been used as an in vivo model of endometriosis to study the invasion of implanted endometrial tissue 

fragments and primary stromal cells (Nap et al., 2003). Utilising CAM as an experimental model is 

cheaper, and simpler to maintain and manipulate experimentally compared to primate and rodent models 

(Ribatti et al., 2001).  

 

Although the efficacy of this model in forming lesions from implanted endometrial tissue averages from 

68% to 83%, studying lesion growth in CAM is limited to a maximum incubation time of 10 days post-

implantation (Borges et al., 2003, Nap et al., 2003, Nap et al., 2005). While CAM has proven to be useful 
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for elucidating the initial processes involved in endometriosis lesion establishment, it must be noted that 

implanted tissues are usually placed on an already highly vascularised membrane. Studies in this model 

have shown that host-derived angiogenesis factors such as VEGF, CD54, and MMP- 1, -2 and -9 regulate 

the formation of endometriosis-like lesions, but identification of newly formed blood vessels are difficult to 

distinguish from pre-existing vessels (Borges et al., 2003).  

 

An additional limitation of CAM is its limited ability to support proliferation of endometrial tissue grafts. 

CAM may lack necessary growth factors to support implanted endometrial tissue growth, as at seventy 

two hours post-implantation, significantly reduced numbers of proliferative cells are seen (Nap et al., 

2003). Moreover, CAM elicits a non-specific inflammatory response following tissue transplantation, which 

may impede studies on the role of the immune system during endometriosis (Grümmer, 2012). 

Furthermore, avian immune systems are less widely studied and share less homology with humans 

compared to primates and rodents. Therefore, although CAM is applicable as a model for early invasion 

and establishment of endometriosis-like lesions, its ability to represent a complete and accurate model 

for the progression of endometriosis from an immunological perspective is limited.  

 

1.5.3 Rodent models 

Rodents are one of the most abundantly used animals in scientific research. As a disease model, rodents 

are ideal, in that they are abundant, cost-effective, easy-to-manipulate, and sufficiently mimic human 

disease (Grümmer, 2012, Bruner-Tran et al., 2018). By using established homologous, xenograft, and/or 

genetically-modified mouse models of endometriosis, dynamic changes in endometriotic-like lesion 

development can be evaluated. 

 

1.5.3.1 Homologous rodent models 

These models are characterised by tissue transplantation from a donor rodent into a genetically identical 

or syngeneic immunocompetent recipient animal (Grümmer, 2006). As these mice are immunocompetent, 

various aspects of the pathogenesis of endometriosis, including angiogenesis, implantation rate, 

localisation, and any elicited immune response during disease progression has been extensively studied 

(Bruner-Tran et al., 2012). In addition, the use of homologous rodent models is paving the way to 

understanding the complexity behind pain and infertility, the most common symptoms of endometriosis 

(Grümmer, 2012). Using this model, research has shown that reduced fecundity and pain nociception in 

endometriosis may be attributed to an increased number of luteinised un-ruptured ovarian follicles and/or 

the feedback effect of gene expression profiles in the eutopic endometrium following endometriotic lesion 
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formation (Moon et al., 1993). In rats, a subcutaneous model of endometriosis (suturing of 3 x 3 mm 

autologous uterus fragment to the gastrocnemius muscle), not only identified a strong role for peripheral 

mechanisms in endometriosis nociception, but also demonstrated the feasibility of using subcutaneous 

tissue implantation to model disease development in endometriosis (Alvarez et al., 2012). 

 

In addition, the significance of reduced histone deacetylase 3 (HDAC3) protein levels in the eutopic 

endometrium of infertile women with endometriosis compared to controls was recently evaluated in a 

mouse with conditional loss of Hdac3 (Kim et al., 2019). Mice with reduced HDAC3 expression had 

infertility due to decidualisation defects and implantation failure, suggesting a critical role for HDAC3 in 

decidualisation and endometrial receptivity (Kim et al., 2019). Furthermore, rodent models have also been 

widely used to evaluate therapeutic options for the treatment of endometriosis (Bruner-Tran et al., 2012). 

The effects of steroid hormones, exposure to environmental toxins, immune-modulating drugs, and anti-

inflammatory agents on endometriotic lesion establishment have also been investigated (Platteeuw and 

D'Hooghe, 2014, Seracchioli et al., 2014). 

 

As rodents do not menstruate, with the exception of the Spiny Mouse (Bellofiore et al., 2017), these 

models are limited in that they do not spontaneously develop endometriosis. The human menstrual cycle 

(Figure 1.4 A) contrasts significantly from the rodent oestrus cycle (Figure 1.4 B), with the natural 

decidualisation of stromal cells in murine endometrium transpiring in response to the presence of a 

blastocyst, whereas in the absence of fertilisation, remodelling of the uterus occurs without shedding of 

the endometrium (Tranguch et al., 2005). As such, endometrial tissue does not build up in large quantities 

along the uterus, resulting in a majority of endometriotic-like lesions being established through the 

transplantation of whole donor uterine fragments, which, unlike human endometriotic lesions, include the 

myometrium layer (Bruner-Tran et al., 2012, Taniguchi and Harada, 2014). Although this limitation can be 

overcome through the careful and highly technical procedure of scraping endometrial tissue from the 

myometrium, this additional step often results in tissue damage and subsequent clearance by phagocytic 

cells following transplantation (Hirata et al., 2005, Bruner-Tran et al., 2012). Furthermore, to increase the 

rate of tissue implantation, some studies rely upon suturing tissue fragments (Lin et al., 2006), using fibrin 

glue (Boztosun et al., 2012), or use media containing extracellular matrix components during 

transplantation (Cheng et al., 2011). These techniques to induce endometriosis in homologous models 

differ considerably from the proposed theory of retrograde menstruation, and do not accurately represent 

the formation of endometriotic lesions.  
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On the other hand, several steps can be taken to overcome some of these limitations and develop an 

effective homologous model of endometriosis. Rodents can be ovariectomised to negate the influence of 

endogenous reproductive hormones and effectively disrupt the oestrus cycle. A protocol outlining the use 

of scheduled hormone injections and subsequent artificial induction of endometrial stromal cell 

decidualisation in mice was first described in 1984 (Finn and Pope, 1984). In this model, decidualisation 

was induced via an injection of oil into the uterus, and following the cessation of a progesterone stimulus, 

features of the human menstrual cycle were mimicked, including immune cell infiltration and subsequent 

tissue degeneration (Finn and Pope, 1984). Cousins et al. (2014) further refined the timing of hormone 

delivery in this model (Figure 1.4 C), and at the time of progesterone withdrawal, histological assessment 

of the uterine lumen was consistent with a robust decidualisation response, as evidenced by the presence 

of a large decidual cell mass. Moreover, overt vaginal bleeding was observed between four and twenty 

four hours post-progesterone withdrawal, with portions of uterine stroma being denuded of overlying 

epithelium due to the shedding of this decidual mass (Cousins et al., 2014, Armstrong et al., 2017). 

 

The aforementioned technique has been used to establish a novel homologous “menstrual” mouse model 

of endometriosis (Cousins et al., 2014, Greaves et al., 2014). Following induction of “menstruation” in 

donor mice, the decidualised endometrial tissue was collected, and due to the larger quantity of 

endometrial tissue available following decidualisation, effective separation of the endometrium from the 

underlying myometrium was possible. To mimic spontaneous implantation in the peritoneal cavity and to 

reduce inflammation associated with suturing, an intraperitoneal injection of the donor endometrial tissue 

into a syngeneic ovariectomised recipient was carried out (Greaves et al., 2014). Three weeks post-

transplantation, endometriosis-like lesions were identified on the peritoneal wall covering the uterus, gut 

and intestines, and on adipose tissues surrounding the bladder and kidney (Greaves et al., 2014). These 

established lesions exhibited histological similarities with human endometriotic lesions, highlighting the 

efficacy of this “menstrual” mouse model in studying the development endometriosis (Greaves et al., 

2014).  

 

1.5.3.2 Xenograft rodent models 

To gain a more comprehensive understanding of the cellular mechanisms involved in in the ectopic 

implantation and survival of endometriotic lesions, xenograft mouse models have been developed 

wherein immunocompromised mice are transplanted with human endometrial tissue (Bruner-Tran et al., 

2018, Simitsidellis et al., 2018). Strains of immunocompromised mice which have been used as 

endometriosis models include severe combined immunodeficient (SCID) mice (Hull et al., 2012), 

athymic/nude mice (Bruner-Tran et al., 2002), and recombinant activating gene 2/common cytokine 



Panir Chapter 1 54 

receptor γ chain (γc) double null (Rag2 γ(c) mice (Greenberg and Slayden, 2004). As the humoral and 

cellular immunity is absent, the ability to avoid interspecies graft vs. host disease makes 

immunocompromised mice useful for examining many aspects of endometriosis. 

 

Both ectopic endometrial lesion tissues as well as eutopic endometrium from women with and without 

endometriosis have been successfully transplanted into immunocompromised mice (Grümmer, 2012). 

While the lack of adaptive immunity indicates that the immune response elicited is only an approximation 

of endometriosis, the lesions that develop in these mice retain characteristic endometrial traits (Zamah et 

al., 1984, Bruner-Tran et al., 2002, Greenberg and Slayden, 2004). Histological appearance and 

responsiveness to steroid hormones are maintained following transplantation and, the stage of the 

menstrual cycle during tissue collection does not appear to impact lesion development (Grümmer, 2006, 

Laschke and Menger, 2007).  In addition, one study using a simultaneous injection of immune cells and 

transplantation of endometrial tissue from the same human donor showed that the extent of lesion 

development in this model was limited by the presence of immune cells from disease-free women (Bruner-

Tran et al., 2010). 

 

Using this model, it was also noted that vascularisation of the xenografts was due to host vessel invasion, 

with a corresponding disappearance of native graft vessels (Grümmer et al., 2001, Hull et al., 2003, 

Eggermont et al., 2005). As angiogenesis is vital for implantation and survival of ectopic endometrial 

tissue, immunocompromised mouse models have been used extensively to analyse the effects of 

antiangiogenic compounds (Laschke and Menger, 2007). Moreover, this model has shown that ectopic 

lesions are inhibited by suppression of MMPs and presents a viable in vivo option for analysing biological 

mechanisms and evaluating the efficacy of therapeutic options on human endometrial tissue (Grümmer, 

2012).  

 

1.5.3.3 Genetically-modified rodent models 

A major advantage of homologous rodent models is the availability of utilising models with genetic 

modifications of specific target genes. Genetic manipulation remains the most conclusive method of 

determining the effect of overexpressed, reduced, or absent gene expression in an animal model 

(Grümmer, 2006). In endometriosis research, the use of genetically modified mouse models has proven 

essential in furthering the understanding of disease progression. For example, a ‘green-fluorescent 

protein’ (GFP)-expressing transgenic mouse model of endometriosis was developed which emphasised 

the intricate relationship between the hosts cellular response and lesion development, with particular 

emphasis on angiogenesis (Wilkosz et al., 2011, Machado et al., 2014). Furthermore, using donor GFP 
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tissue assists with the identification of induced lesions in non-fluorescent recipient animals. Similarly, a 

model of endometriosis in mice with green fluorescent-protein labelled macrophages has also been 

developed (Hull et al., 2012, Greaves et al., 2014). Reciprocal transfers with wildtype mice emphasised 

the importance of these immune cells in endometriosis, in which both donor and recipient macrophages 

were positively implicated in the inflammatory microenvironment of endometriotic lesion development 

(Greaves et al., 2014). 

 

A conditional knockout Cre/loxP transgenic mouse model of endometriosis has been used to observe the 

effect of regulated, cell-specific gene expression during disease establishment (Budiu et al., 2009). 

Experiments utilising this system have demonstrated the effect of knocking down mouse immune 

responses, with particular emphasis on reduced macrophage numbers and reduced inflammation 

outcomes (Budiu et al., 2009, Cheng et al., 2011). Interestingly, the Cre/loxP conditional activation of the 

K-ras oncogene in ovarian surface epithelial cells gave rise to the formation of non-cancerous peritoneal 

and ovarian lesions which shared histological features of human endometriosis, further demonstrating the 

efficacy of this system as a model for endometriosis (Dinulescu et al., 2005, Cheng et al., 2011, Dinulescu, 

2012). Not only can lesion development be analysed alongside changes in immune signalling and 

inflammatory responses, but further studies exploiting genetic deficiencies can also be easily carried out 

in rodent models. Using a mouse model with a specific gene mutation can provide substantial insight into 

disease pathology. For example mice homozygous for CSF1 mutation (CSF-1-/-) were found to develop 

significantly fewer endometriotic-like lesions when compared to syngeneic wildtype controls (CSF-1+/+) 

(Jensen et al., 2010).  

 

Through cross-transplantation of genetically deficient (gene knockout / null mutant) or wildtype 

endometrium into homologous mice, the response in the donor endometrium and/or the host can be 

evaluated (Bruner-Tran et al., 2012). This can give rise to a more replete understanding of the 

mechanisms involved in the implantation of endometriotic lesions, and their ensuing ability to thrive 

ectopically. An example of this is the development of a TGFβ1 xenograft mouse model of endometriosis 

(Hull et al., 2012). A reduction in endometriotic lesion size was noted in a host with a genetic deficiency 

in TGFβ1, highlighting the importance of TGFβ1 signalling in endometriosis (Hull et al., 2012). In addition, 

assessment of Krüppel-like factor 9 (KLF9), a progesterone receptor coregulatory in the uterus, was 

examined through the transplantation of endometrial fragments from wildtype (Klf9+/+) and Klf9 null  

(Klf9-/-) donor mice into wildtype recipient mice (Heard et al., 2014). In this study, a significant increase in 

lesion development coupled with a decreased systemic level of TNFα and IL-6 from Klf9-/--derived 

endometrium was observed, suggesting that the absence of Klf9 reduces the activation of a pro-

inflammatory immune response, consistent with the persistence of these lesions (Heard et al., 2014).  



Panir Chapter 1 56 

 

Recently, a microRNA null mutant model was used to study the effect of miR-451 on endometriosis 

disease progression (Nothnick et al., 2014). In women with endometriosis, miR-451 was found to be 

reduced in the eutopic endometrium, and is involved in cell proliferation, differentiation, and invasion 

(Graham et al., 2015). In this model, uterine fragments from mice deficient in miR-451 were used to induce 

endometriosis in genetically replete recipients. Fewer endometriosis-like lesions were observed from 

microRNA deficient implants compared to wildtype, suggesting a deficiency in miR-451 expression in 

endometrial tissue impairs the ability of this tissue to attach ectopically (Nothnick et al., 2014). This finding 

suggests an important role for microRNAs in the aetiology of endometriosis and, the ability to use 

microRNA-deficient mice for functional studies of disease progression currently remains unexploited.  
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Figure 1.4 Hormone fluctuations across the human menstrual cycle, mouse oestrus cycle and in 

the induced ‘menstrual’ mouse model  

The human menstrual cycle (A) is regulated by oestrogen (E2) and progesterone (P4), which functions in a negative 
feedback mechanism to regulate the proliferation of the functional layer of the endometrium.  The fall in P4 levels 
results in the breakdown of the functional layer, resulting in menstruation.  The oestrus cycle in mice (B) is similarly 
regulated by E2 and P4, however, unlike menstruation, the endometrial tissue is reabsorbed following the drop in 
P4. In the induced menstrual mouse model (C), subcutaneous (s.c) injections of E2 and provision of a P4 implant 
in an ovariectomised (OVX) mouse mimic the hormone changes seen in the human menstrual cycle. The 
intrauterine (i.u) insertion of oil into the uterus promotes decidualisation of the endometrial stromal cells which 
subsequently breakdown following the removal of the P4 implant. Within forty eight hours, full repair of the 
endometrium is observed in this model. Adapted from Armstrong et al. (2017) and Hong and Choi (2018). 
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1.6 THE ROLE OF MICRORNA IN ENDOMETRIOSIS 

MicroRNAs (miRNAs) are a family of highly conserved 19-22 nucleotide sequences that regulate gene 

expression at the post-transcriptional and translational level (Anglicheau et al., 2010, Bueno and 

Malumbres, 2011). First identified in Caenorhabditis elegans through a genetic screen for developmental 

transition defects, miRNAs are thought to regulate over 30% of the human genome (Bartel, 2004). In the 

21st release of miRBase, 28 645 hairpin miRNA precursors representing 35 853 mature miRNAs have 

been identified in 223 organism species (Kozomara and Griffiths-Jones, 2014). Functional experiments 

have shown that the diverse expression patterns exhibited by miRNAs area associated with complex 

regulatory pathways to control development and maintain homoeostasis (Bartel, 2009). 

 

miRNA genes exist within the genome as either distinct transcriptional units or clusters of polycistronic 

units containing the information for multiple miRNAs (Bartel, 2004, Fazi and Nervi, 2008). miRNAs are 

transcribed in the nucleus as primary miRNA, where they undergo maturation steps that utilise the 

endonucleases, Drosha and Dicer, to attain functional capacity. Briefly, primary miRNA transcripts (pri-

miRNA) are transcribed by RNA polymerases II or III and contain a cap structure with polyadenylation. In 

the nucleus, these pri-miRNA are processed by the Drosha complex to form the characteristic hairpin 

structured pre-miRNA with a double stranded stem. The Exportin-5/Ran-GTP complex translocates pre-

miRNAs to the cytoplasm for Dicer processing in which the pre-miRNA is cleaved near the terminal hairpin 

loop to from 19-24 nucleotide long miRNA duplexes. A single strand of the duplex is subsequently 

incorporated into a multiple-protein nuclease complex, the RNA-induced silencing complex, which acts 

on its target sequence to regulate protein synthesis by either translational repression or messenger RNA 

(mRNA) degradation (Bartel, 2009, Shukla et al., 2011). However, there have been reports of miRNA 

acting to enhance target mRNA expression (Bueno and Malumbres, 2011, Green et al., 2016). The 

precise molecular mechanisms that underpin the ability of miRNAs to modulate post transcriptional 

repression are still being elucidated, but are thought to be linked to the induction of target mRNA instability 

(Liu and Abraham, 2013). Importantly, miRNAs are able to simultaneously target several genes within 

similar or related pathways, where each miRNA may regulate up to 300 different mRNAs (Laffont and 

Rayner, 2017). Conversely, a single mRNA may contain over 40 binding sites for various miRNAs, which 

suggests a requirement for functional redundancy amongst miRNAs in maintaining biological homeostasis 

(Fischer et al., 2015, Laffont and Rayner, 2017).  

 

In addition to their activity within the local cellular environment, miRNAs can be transported across the 

cell membrane into the systemic blood circulation (Haider et al., 2014), where they can be incorporated 

into distant cells with functional consequences relevant to disease treatment (Bueno and Malumbres, 
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2011, Boon and Vickers, 2013). In addition, extracellular miRNAs associated with Argonaute proteins can 

be shielded from RNAse degradation, and are present at high concentrations in both blood plasma/serum 

and in tissue culture media (Arroyo et al., 2011, Turchinovich et al., 2011, Meister, 2013). The high stability 

of miRNAs in circulation and distinctive changes in their plasma profile depending on various disease 

conditions strongly suggests that they may be ideal biomarkers of disease (Hayes et al., 2014). 

 

Multiple studies have shown that miRNA expression is altered in eutopic endometrium (Toloubeydokhti 

et al., 2008, Burney et al., 2009, Ramon et al., 2011), in both ectopic and eutopic endometrial tissues 

(Toloubeydokhti et al., 2008, Ohlsson Teague et al., 2009, Filigheddu et al., 2010) and in circulating 

miRNAs in women with endometriosis compared to healthy women (Hull and Nisenblat, 2013, Jia et al., 

2013a, Wang et al., 2013b, Cho et al., 2015, Rekker et al., 2015). Furthermore, a range of functional 

studies, including the induction and modulation of miRNA expression levels and the use of luciferase 

assays in vitro (Hawkins et al., 2011, Petracco et al., 2011, Ramon et al., 2011, Lin et al., 2012, Abe et 

al., 2013), suggest that discrete miRNAs may be able to regulate the dialogue between cellular 

components within endometriotic lesions, thereby contributing to their persistence. There are several 

caveats for the design of functional miRNA studies in investigating endometriosis. These include the facts 

that in vitro experiments must be performed in cell lines that express the specified microRNA, that 

singleplex PCR estimations can be unreliable as they lack a standardised control for miRNA and that 

single cell cultures do not reflect the complex cellular interplay seen in ectopic tissues. Informative in vivo 

experiments require novel mouse strains or specialised miRNA delivery methodologies that are able to 

modulate miRNA expression levels, which should be carried out in tandem with in vitro functional studies 

to help comprehend the mechanisms behind the pathogenesis of endometriosis and to exploit the 

potential of miRNAs as biomarkers of disease progression. 

 

1.6.1 miRNA as biomarkers of endometriosis 

A main research priority for endometriosis is to develop a reliable non-invasive diagnostic test, and the 

concept of using miRNA as biomarkers of this disease is gaining popularity (Hull and Print, 2012, Wang 

et al., 2013b). Furthermore, the possibility of identifying circulating peripheral miRNA in women with 

endometriosis that differs significantly from disease-free women could provide valuable insight for both 

diagnostic and therapeutic options. The use of algorithms to predict target mRNA have uncovered a link 

between these sequences and a number of cellular events involved in the development of endometriosis, 

including inflammation, tissue repair and remodelling, hypoxia, DNA methylation, and cell cycle 

proliferation (Ohlsson Teague et al., 2009, Teague et al., 2010, Hawkins et al., 2011, Gilabert-Estelles et 

al., 2012, Hull and Nisenblat, 2013).   
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Although initial studies have identified various miRNAs with potential as circulating biomarkers for 

endometriosis (Gupta et al., 2016, Nisenblat et al., 2016a), there remains a need for larger transcriptomics 

studies involving more diverse patient cohorts (Rogers et al., 2016). Efforts have been made to ensure 

uniformity in specimen collection and processing (Nothnick et al., 2015, Nisenblat et al., 2016b, Gupta et 

al., 2016, Adamson and Johnson, 2018) and to encourage the deposition of genomic profiling data in 

repositories (Pereira et al., 2014, van Schaik et al., 2014). Ideally, a collaborative global database of 

miRNA and long noncoding RNA expression levels in tissues and blood of women with endometriosis and 

non-diseased controls would inform future biomarker initiatives. A patent was recently filed to utilise 

leucocyte miRNAs for the diagnosis and treatment of endometriosis (Nagarkatti et al., 2015), 

demonstrating progress and interest in the commercial development of non-invasive diagnostic tools for 

endometriosis.  

 

1.6.2 Eutopic endometrial tissue 

A number of studies suggest that miRNAs are altered in eutopic endometrial tissue from women with 

endometriosis (Burney et al., 2009, Aghajanova and Giudice, 2011, Ramon et al., 2011, Ruan et al., 2013, 

Braza-Boils et al., 2014, Zheng et al., 2014). Initially, six downregulated miRNAs from the miR-9 and miR-

34 families were identified when eutopic endometrium from women with endometriosis (n = 4) and without 

endometriosis (n = 3) were compared (Burney et al., 2009). Based on an in silico miRNA target analyses, 

miR-34 is thought to potentially regulate progesterone resistance and enhance proliferation and ectopic 

survival (Burney et al., 2009). Interestingly, miR-9 overexpression promotes breast cancer development 

(Gwak et al., 2014), increases cell migration and invasiveness in SW480 human colon adenocarcinoma 

cells (Park et al., 2016), and works in tandem with miR-124 to facilitate the conversion of human fibroblasts 

into neurons (Yoo et al., 2011), suggesting that miR-9 may have an important role in the persistence of 

endometriosis lesions and associated nociception.  

 

A larger study, contrasting implantation ‘window’ eutopic endometrium from women with (n = 36) and 

without (n = 44) endometriosis, found upregulation of miR-29c, miR-200a and miR-145 in endometriosis 

patients (Ruan et al., 2013). These miRNAs were postulated to contribute to implantation defects and 

endometriosis-associated subfertility. Additionally, comparison of mRNAs and miRNA profiles in eutopic 

endometrium from women with mild (n = 19) and severe (n = 44) endometriosis (Aghajanova and Giudice, 

2011) has demonstrated upregulation of miR-21 throughout the menstrual cycle in patients with severe 

endometriosis, suggesting its use as a potential biomarker for disease progression. There is little overlap 

in the differentially expressed miRNAs identified by each of these studies, indicating a need for larger 
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well-powered studies that adequately account for variation in clinical status and tissue biopsy composition 

to identify the candidate miRNAs that are most relevant for ongoing investigation. Given the lack of 

consensus amongst these studies, it is possible that further comparisons of eutopic tissue from women 

with and without endometriosis may demonstrate no substantial difference in miRNA expression patterns 

attributable to endometriosis. Furthermore, if differential expression of miRNAs in eutopic tissue was to 

be confirmed, it would be difficult to determine if it was an underlying causal factor driving initiation of 

disease or a consequence of altered eutopic tissue function that occurs secondary to lesion 

establishment. 

 

1.6.3 Eutopic vs ectopic microarray analyses 

Many research groups have used microarrays or next-generation sequencing techniques to compare 

miRNA transcripts uniquely expressed within ectopic lesions (ovarian, peritoneal and/or rectovaginal) with 

paired or unpaired eutopic tissues from women with endometriosis or healthy controls (Ohlsson Teague 

et al., 2009, Filigheddu et al., 2010, Hawkins et al., 2011, Ramon et al., 2011, Laudanski et al., 2013, 

Braza-Boils et al., 2014, Zheng et al., 2014). The miRNAs identified again show limited concordance 

between experiments, which is likely to reflect the considerable heterogeneity in patient selection, 

experimental design, normalisation methods and bioinformatic assessment of the studies. Additionally 

there is ongoing debate as to whether lesions at different locations represent different manifestations of 

the same disease process or distinct disease identities and heterogeneity between lesions from different 

locations could confound the molecular analyses (Borghese et al., 2017). Across these studies, a total of 

132 differentially expressed miRNAs were identified, with 23% of dysregulated miRNAs (31 miRNAs) 

being present in at least two of the studies (Ohlsson Teague et al., 2009, Filigheddu et al., 2010, Hawkins 

et al., 2011, Ramon et al., 2011, Laudanski et al., 2013, Braza-Boils et al., 2014, Zheng et al., 2014). 

Collectively these data suggest that distinct miRNA profiles do indeed exist between ectopic and eutopic 

tissue, with predicted targets of these miRNA having multi-faceted roles in tissue remodelling, cellular 

proliferation and angiogenesis (Wei et al., 2015). 

 

Amongst the differentially expressed miRNAs, miR-29c, miR-100 and miR-143 have emerged as 

consistently upregulated in ectopic endometrial tissues in four studies (Ohlsson Teague et al., 2009, 

Filigheddu et al., 2010, Hawkins et al., 2011, Zheng et al., 2014). miR-29c, which is known to regulate 

genes controlling endometrial cell proliferation, apoptosis and invasion (Ohlsson Teague et al., 2009, 

Filigheddu et al., 2010, Hawkins et al., 2011), targets c-Jun during the late secretory phase (Udou et al., 

2004, Long et al., 2015). This is postulated to upregulate anti-apoptotic mechanisms in stromal cells, 

thereby promoting cellular survival during disease establishment (Long et al., 2015). Upregulation of miR-
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100 has been found to inhibit cellular proliferation, migration and invasion in a cancer model, whereas 

downregulation promoted metastasis (Zhou et al., 2014). Similarly, miR-143 is associated with the 

development of endometrioid carcinomas (Wang et al., 2014b). The upregulation of miR-100 and miR-

143 in endometriotic tissues is hypothesised to confer protection from malignant change and promotion 

of a benign phenotype of endometriosis. 

 

1.6.4 Circulating microRNA in plasma samples 

The potential for utilising miRNAs as serum diagnostic markers of disease progression has prompted 

analysis of dysregulated miRNAs in blood of women with endometriosis. To date, eight studies have 

examined circulating miRNAs using high throughput assays in either serum (Wang et al., 2013b, Hsu et 

al., 2014, Cho et al., 2015, Cosar et al., 2016, Wang et al., 2016) or plasma samples (Jia et al., 2013a, 

Suryawanshi et al., 2013, Nisenblat et al., 2012, Nisenblat et al., 2019) taken from women with and without 

endometriosis. A further two papers have used singleplex RT-PCR assay methods to demonstrate 

downregulation of the miR-200 family in plasma (Rekker et al., 2015) and upregulation of miR-451a levels 

in women with endometriosis (Nothnick, 2017). The results generally show little consistency between 

these studies. Although several studies identify circulating miRNAs with sensitivities and specificities high 

enough to suggest utility as a diagnostic tool, the heterogeneity in experimental design, specimen 

collection, bioinformatic analysis and normalisation methods make the findings difficult to replicate. To 

date, only one group has evaluated and validated several circulating miRNAs in a large, independent test 

cohort of women with and without endometriosis (Nisenblat et al., 2019). 

 

Endometriosis has the potential to progress to endometriosis-associated ovarian cancer (EAOC), and 

plasma miRNAs may prove to be markers for malignant disease progression (Okada et al., 2010, 

Dinulescu, 2012, Viganò et al., 2012, Suryawanshi et al., 2013, Králíčková and Vetvicka, 2014, Zhao et 

al., 2014b). Several studies have correlated the progression of EAOC with endometriosis as a precursor 

stage, and underscores the possibility of using miRNA as a marker for the stage of disease development 

(Li et al., 2010, Okada et al., 2010, Dinulescu, 2012, Yan et al., 2014). For example, Suryawanshi et al. 

(2013) compared plasma miRNA levels from women with endometriosis to those with EAOC as well as 

healthy controls, and found a total of ten miRNAs that were differentially expressed between the three 

groups, all being higher in patients with endometriosis (Suryawanshi et al., 2013).  

 

Plasma levels of miR-200a and miR-141 were identified as potential biomarkers for endometriosis, but 

expression levels were found to be altered in response to the time of the day at which blood collection 

occurred (Rekker et al., 2015). It may be that the impact of circadian rhythms on plasma miRNA levels is 
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a key factor accounting for inconsistency between studies. Menstrual cycle phase has also been raised 

as a potential confounding factor, but on investigation, no significant variation in plasma miRNAs across 

the menstrual cycle was found in one study (Rekker et al., 2013). Notwithstanding, it seems prudent that 

standardisation of sampling practices and assays for assessment of plasma miRNAs in large cohorts is 

required to better progress development of informative diagnostic markers. 

 

1.6.5 Pathophysiological processes impacted by differentially expressed miRNAs 

The miRNAs identified as dysregulated in endometriosis appear to target mRNAs involved in a range of 

cellular and biological pathways, several of which are implicated in endometriotic lesion development 

(Figure 1.5). 

 

1.6.5.1 Hypoxic injury 

Hypoxia characterises the early phases of ectopic endometrial tissue survival and hypoxia induced factor 

(HIF)-1α gene expression is upregulated in endometriotic tissues (Chen et al., 2015c) and in early stage 

endometriosis-like lesions from mouse models. In endometriotic lesions, high levels of miR-20a prolong 

HIF-1α activation of extracellular-signal-regulated kinase (ERK) (Lin et al., 2012), inducing a signalling 

cascade which increases fibroblast growth factor (FGF)-9 expression. FGF-9 stimulates endothelial and 

endometrial stromal cell proliferation and angiogenesis, potentially contributing to ectopic lesion 

development (Tsai et al., 2002). Elevated miR-20a expression suppresses antiangiogenic Netrin-4 gene 

expression (Zhao et al., 2014a), potentially enhancing angiogenesis in ectopic endometrial lesions. 

Hypoxic conditions in endometriotic lesions also induce miR-148a and AU-rich element binding factor-1 

expression in vitro (Hsiao et al., 2015), leading to destabilised DNA methyltransferase 1 mRNA 

expression. This could account for the aberrant epigenetic methylation patterns seen in endometriosis 

patients. 

 

1.6.5.2 Inflammation 

Aberrant immune surveillance is thought to reduce the clearance of endometrial issue within the peritoneal 

cavity permitting attachment, progression and subsequent disease persistence (Herington et al., 2011, 

Králíčková and Vetvicka, 2015). The inflammatory mediators IL-1β (Milewski et al., 2008), TNFα (Keenan 

et al., 1995, Gmyrek et al., 2008) and cyclooxygenase (COX)-2 (Wu et al., 2002) are elevated in peritoneal 

fluid and ectopic lesions from women with endometriosis, and their inhibition suppresses endometriotic-

like lesion development in animal models (Dogan et al., 2004, Kyama et al., 2008). Interestingly, there 

are studies that suggest that these inflammatory mediators can be targeted by miRNAs in endometrial 
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tissue, which might then contribute to development of endometriosis. For example, Toloubeydokhti et al. 

(2008) discovered that miR-542-3p interacts with and downregulates COX-2 in ectopic endometrial 

tissues (Toloubeydokhti et al., 2008). Furthermore, IL-1B, COX-2 and TNF are indirectly targeted by miR-

302a in endometrial stromal cells (ESCs), where miR-302a suppression of chicken ovalbumin upstream 

promoter-transcription factor II results in induction of these inflammatory mediators (Lin et al., 2014). 

 

1.6.5.3 Steroidogenesis 

Aberrant oestrogen and progesterone biosynthesis, metabolism and sensitivity appear to contribute to the 

development of endometriosis (Bulun et al., 2012). For example, aromatase activity is upregulated in 

endometriotic lesions as part of a feed forward loop involving COX-2, increasing local oestrogen 

production and promoting endometriosis development. Increased miR-142-3p levels in primary ESCs 

reduced steroid sulfatase and IL-6 activity, suggesting a dual effect on steroidogenic and inflammatory 

pathways in endometriosis (Kastingschafer et al., 2015). 

 

Overexpression of miR-23a and miR-23b which target the NR5A1 gene, leads to the repression of 

steroidogenic factor-1, resulting in reduced levels of aromatase P450 and steroidogenic acute regulatory 

protein (Shen et al., 2013). Expression of these miRNAs expression is reduced in eutopic and ectopic 

endometrium from women with endometriosis (Shen et al., 2013), which is predicted to enhance 

oestrogen synthesis, promote proliferation in endometriotic tissues and delay endometrial transition from 

the proliferative to secretory phase, which manifests as progesterone resistance (Gilabert-Estelles et al., 

2012, Shen et al., 2013). Progesterone resistance may also be promoted by other miRNA which are 

increased in eutopic endometrium of endometriosis patients. miR-135a and miR-135b for example, both 

target the HOXA10 gene and are involved in uterine stromal cell responsiveness to progesterone 

(Petracco et al., 2011). 

 

1.6.5.4 Cell proliferation, survival and invasion 

Mouse models demonstrate that cellular proliferation is important for the survival and growth of 

endometrial fragments at ectopic sites (Bruner-Tran et al., 2012, Khanjani et al., 2012, Winterhager, 

2012), and miRNA regulation is important to this process. For instance, high expression of miR-210 in 

ESCs results in signal transducer and activator of transcription 3 (STAT3) activation and increased 

proliferation, angiogenesis and resistance to apoptosis (Okamoto et al., 2015), whereas upregulation of 

miR-202 modulates sex determining region Y-box 6 expression, increasing the proliferation and 

invasiveness of ESCs (Zhang et al., 2015). Suppression of miR-196b increases the proliferative capacity 
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and anti-apoptotic mechanisms of endometriotic cells in vitro (Abe et al., 2013). Further, the invasive 

potential of ESCs is enhanced by miR-183 suppression, which increases integrin β1 expression, a vital 

component of cell adhesion (Shi et al., 2014, Chen et al., 2015a). Similarly, miR-10b and miR-145 

increase ESC proliferation and invasiveness by targeting multiple cytoskeletal elements and 

metalloproteinases (Adammek et al., 2013, Schneider et al., 2013). 

 

In human endometriotic lesions, miR-451 expression was inversely correlated with the expression of 

macrophage migration inhibitory factor (MIF), which contributes to endometrial epithelial cell survival 

(Graham et al., 2015). Similarly, reduced expression of miR-451 in lesions from a baboon model of 

endometriosis (Joshi et al., 2015), corresponds to increases in expression of its predicted targets 

CDKN2D, GATAD2B and YWHAZ. A recent study also found a significant increase in miR-451a levels in 

serum from women with endometriosis, as well as in baboons with experimentally induced endometriosis 

(Nothnick et al., 2017). Tumour suppressor activity associated with miR-451, including regulation of 

NOTCH1-induced oncogenesis (Li et al., 2011) and the modulation of IKKβ (Li et al., 2013) and IL6R (Liu 

et al., 2014) gene expression, also likely contribute to the increased proliferation and anti-apoptotic 

responses seen in endometriotic lesions. This hypothesis was tested in the only in vivo functional miRNA 

study to date which has utilised a mouse model of endometriosis (Nothnick et al., 2014). Uterine fragments 

from miR-451 deficient mice were transplanted to induce endometriosis-like lesions in genetically normal 

recipients. Ectopic attachment and survival of lesions appeared to be impaired with fewer lesions 

observed in miR-451 deficient implants, confirming that miR-451 confers protection from host clearance 

mechanisms (Nothnick et al., 2014). 

 

1.6.5.5 Tissue repair, remodelling and angiogenesis 

Several factors that promote tissue repair, remodelling and angiogenesis appear to be targeted by 

miRNAs in endometriosis. VEGF is a critical angiogenic factor expressed in endometriotic tissues and 

peritoneal macrophages (Laschke and Menger, 2007, Groothuis, 2012, Krikun, 2012) and its inhibition in 

animal models of endometriosis suppresses lesion development (Hull et al., 2003, Nap et al., 2005). miR-

210 which is induced in ESC cultures, contributes to VEGF regulation as miR-210 transfection results in 

induction of VEGF-A and STAT3 (Okamoto et al., 2015), resulting in increased angiogenesis, cell 

proliferation and reduced apoptosis. 

 

miR-21 and miR-199a-5p also appear to contribute to VEGF regulation in endometriosis. miR-21 is 

expressed at high levels in exosomes released from primary ESCs, and its overexpression was found to 

upregulate VEGF leading to enhanced angiogenesis (Harp et al., 2016). Upregulation of miR-199a-5p 
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was shown to repress VEGF-A expression in endometrial mesenchymal stem cells, causing cell 

proliferation and angiogenesis to be inhibited (Hsu et al., 2014). Functional validation in a mouse model 

confirmed the pathophysiological relevance of this miRNA, with a reduction in endometriosis-like lesions 

following repeated delivery of pre-miR-199a (Hsu et al., 2014). 

 

There is evidence that MMPs, which are elevated in endometriosis lesions, are also regulated by miRNAs 

(Groothuis et al., 2005). These include miR-93, the expression of which is suppressed and inversely 

correlated to MMP-3 and VEGF-A bioactivity in eutopic endometrial cells from women with endometriosis 

(Lv et al., 2015). Furthermore, systematic evaluation of 17 single nucleotide polymorphisms (SNPs) in the 

MMP-2 gene identified an aberrant miR-520g binding site which is associated with endometriosis 

susceptibility (Tsai et al., 2013). It was postulated that this SNP predisposes to endometriosis by creating 

deficiency in the regulatory action of miR-520g on MMP-2 synthesis. In this scenario, unregulated levels 

of MMP-2 could act to enhance degradation of the extracellular matrix and facilitate anchoring of 

endometrial fragments to ectopic sites and subsequent tissue remodelling (Tsai et al., 2013). 
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Figure 1.5 A proportion of microRNAs implicated in the development of endometriosis 

Experimental validation of microRNAs in endometriosis have shown that multiple biological processes are regulated 
by miRNAs including survival and proliferation of ectopic endometrial tissue fragments, steroidogenesis, adhesion 
and invasion, inflammation, hypoxic injury and angiogenesis and extracellular matrix remodelling. Collectively these 
processes significantly impact lesion development and contribute to the pathophysiology of endometriosis.
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1.7 miRNA IN IMMUNE RESPONSE MODULATION AND MACROPHAGE POLARISATION 

The transcriptional regulation of macrophage polarisation has been the focus of multiple studies. Among 

the transcription factors found to promote TLR ligand induced M1-like macrophage activation are nuclear 

factor κβ (NF-κβ), activator protein-1 (AP-1), and CCAAT/enhancer-binding protein α, while STAT6, 

PPAR-γ, and KLF4 induce M2-like macrophage polarisation (Brune et al., 2013, Tugal et al., 2013, 

Jantsch et al., 2014, Wang et al., 2014a). miRNAs are also integral to the regulatory networks of both the 

innate and adaptive immune systems, and are able to modulate inflammatory responses, shifting between 

a pro- or anti- inflammatory state (O'Connell et al., 2012, Liu and Abraham, 2013). It has been proposed 

that specific miRNAs are able to target these important regulators in signalling networks, causing a shift 

between M1-like and M2-like macrophage phenotypes (Liu and Abraham, 2013). However, to date, only 

a few miRNAs were found to have a significant differential expression between M1-like and M2-like 

macrophage subtypes.  

 

1.7.1 Role of microRNA155 in M1-like macrophage polarisation and endometriosis 

The expression of miR-155 has a pivotal role in Akt kinase-driven polarisation of macrophages (Arranz et 

al., 2012). Isoforms of Akt kinase have been shown to regulate both pro- and anti-inflammatory immune 

responses, where an Akt1-deficiency resulted in a M1-like macrophage phenotype and conversely, an 

Akt2-deficiency resulted in a M2-like macrophage phenotype (Arranz et al., 2012). In both naïve and LPS-

stimulated Akt2-deficient macrophages, the expression of miR-155 is repressed (Arranz et al., 2012). 

Coinciding with this is the upregulation of C/EBPβ, a hallmark regulator of the M2-like macrophage-

associated Arg-1, suggesting a role for miR-155 in promoting a classical M1-like macrophage phenotype 

(Arranz et al., 2012). 

 

In vitro studies have also confirmed the ability of miR-155 to skew macrophages towards the M1-like 

phenotype (Worm et al., 2009, Martinez-Nunez et al., 2011, Gracias et al., 2013, Wang et al., 2013a). 

LPS, a classical M1-like inflammatory mediator was shown to upregulate miR-155 in THP-1 monocyte-

derived macrophage cell lines (Das et al., 2013, Gracias et al., 2013). When these cells were transfected 

with a miR-155 mimic, upregulation of the classical immune pathway transcripts was seen, confirming its 

role in the M1-like, pro-inflammatory immune response (Das et al., 2013). In addition, miR-155 is known 

to regulate macrophage polarisation though translational regulation of IL-13Rα1 gene (Martinez-Nunez et 

al., 2011). IL-13Rα1 is an important cytokine receptor expressed on monocytes, allowing for M2-like 

macrophage polarisation following stimulation with IL-13 (Martinez-Nunez et al., 2011). Overexpression 

of miR-155 suppresses IL-13Rα1 expression, thus preventing monocyte differentiation into M2-like 
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macrophages and effectively promoting production of M1-like macrophages. On the other hand, a miR-

155-deficiency enhances production of IL-13Rα1, thereby promoting M2-like macrophage activation 

(Martinez-Nunez et al., 2011). 

 

In endometriosis, a miRNA microarray analysis of plasma samples at different phases of the menstrual 

cycle identified miR-155-5p (miR-155) as being downregulated in women with endometriosis (n = 51) 

compared to healthy controls (n =27) (Nisenblat et al., 2019). This downregulation of miR-155 expression 

was further validated in a second cohort of patients, comprising 80 women with endometriosis and 39 

women without endometriosis (Nisenblat et al., 2019).  Collectively, these findings suggest that 

downregulation in miR-155 may contribute to the pathogenesis of endometriosis by promoting polarisation 

of M2-like macrophages, thus inducing a tissue healing and remodelling phenotype eventuating in disease 

exacerbation, and is discussed further in Chapter 4 of this thesis. 

 

1.7.2 Role of microRNA-223 in M2-like macrophage polarisation and endometriosis 

miR-223 regulates the M1-like vs M2-like immune response through targeting signalling components of 

the inflammatory pathway (Chen et al., 2012, Zhuang et al., 2012, Ismail et al., 2013). miR-223 represses 

the translation of the inhibitory kinase Iκκα; leading to the suppression of downstream signalling nuclear 

factor κβ (NFκβ) pathways which results in an enhanced alternative immune response (Jia et al., 2011, 

Haneklaus et al., 2013). On the other hand, in miR-223 deficient mice, NFκβ pathways are induced, 

resulting in an enhanced classical, M1-like immune response (Li et al., 2010). These observations were 

further validated in miR-233-deficient macrophages, which were hypersensitive to the classical immune 

pathway stimulant LPS (Zhuang et al., 2012). In these macrophages, levels of M1-like cytokines IL-1β, 

IL-6 and TNFα were higher than wildtype controls, indicative of an immune shift towards a pro-

inflammatory state. Conversely, miR-223-deficient macrophages exhibited delayed responses to the 

alternative immune pathway stimulant IL-4 compared to controls, and the level of M2-like associated Arg-

1 was reduced (Zhuang et al., 2012). 

 

In endometriosis, from a paired eutopic versus ectopic endometrial microarray analysis, miR-223-3p (miR-

223), a haematopoietic-specific miRNA, was found to be significantly upregulated by 1.72-fold in 

endometriotic tissues (n=8) (Ohlsson Teague et al., 2009). Based on predicted mRNA targets (including 

Nuclear Factor I/A, Myocyte Enhancer Factor 2C, and Leukaemia-Associated Phosphoprotein P18), miR-

223 is thought to play a role in cell differentiation, granulopoiesis and myogenesis (Jia et al., 2011, 

Haneklaus et al., 2013), and is a critical mediator of alternative M2-like macrophage activation (Ying et 

al., 2015). As miR-223 is upregulated in ectopic endometrial tissue, it is possible that an increased 
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abundance of M2-like macrophages may be present at the lesion site, and could promote lesion 

development by shifting the immune response towards a more anti-inflammatory, tissue remodelling state, 

and is discussed further in Chapter 5 of this thesis. 

 

1.7.3 Regulation of macrophage polarisation by microRNAs as an indicator of ectopic lesion 

development 

The production of new treatment options for endometriosis remains elusive due to the current lack of 

understanding of the pathophysiology of this disease. While macrophages have been identified as key 

immune cells influencing the ability of endometrial tissue to attach and thrive ectopically (Bacci et al., 

2009, Capobianco and Rovere-Querini, 2013, Ahmad et al., 2014), the underlying mechanisms of 

macrophage activation during endometriosis have not been thoroughly defined. Although a host of 

miRNAs have been identified as being dysregulated in endometriosis (Teague et al., 2010, Gilabert-

Estelles et al., 2012, Hull and Print, 2012, Hull and Nisenblat, 2013), the current understanding of miRNA 

pathways in macrophage polarisation combine with miRNA expression profiles obtained from women with 

endometriosis, leads us to propose that both miR-223 and miR-155 are likely to have critical roles in the 

progression of endometriosis. 

 

Hence, this study aims to evaluate the effect of miRNA-mediated macrophage activation as an indicator 

of ectopic lesion development in mouse models of endometriosis. Both miR-223 and miR-155 deficient 

mice models are currently used for immunological studies and are well characterised (Faraoni et al., 2009, 

Haneklaus et al., 2013). We aimed to develop an induced menstrual mouse model of endometriosis in 

miR-223 deficient and miR-155 deficient mice, following techniques descried previously (Greaves et al., 

2014). Once this model was established, we determined if a genetic deficiency in miR-223 or miR-155 

altered macrophage activity and endometriotic lesion development by immunohistochemical evaluation. 

Subsequently, using RNA-Sequencing, we evaluated the molecular pathways involved in lesion growth 

and establishment in the absence of either miR-155 or miR-223. Finally, we determined whether a miR-

223 or miR-155 deficiency only in the donor endometrium or only in the host response altered disease 

progression via the reciprocal transfer experiments with wildtype C57 mice.   

 

Therefore, by utilising these miRNA deficient mice as models of endometriosis, this project evaluated the 

hypothesis that a deficiency in miR-223 will suppress lesion growth via enhancement of pro-inflammatory 

M1 macrophage activity, and conversely, that a deficiency in miR-155 will enhance lesion development 

through upregulation of anti-inflammatory M2 macrophage activity. In turn, the research will inform 

development of strategies to alter the polarisation status of macrophages in the peritoneal cavity. Novel 
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therapeutic strategies targeting macrophage polarisation may ultimately improve the lives of women with 

this debilitating disease.  

 

1.8 HYPOTHESIS 

The experiments described in this thesis will address the following hypotheses: 

 Lesion development in a subcutaneous menstrual mouse model of endometriosis mimics human 

disease; 

 A miR-223 deficiency enhances pro-inflammatory M1-like macrophage activity, thereby suppressing 

endometriotic lesion development via increased ectopic tissue clearance; and conversely, 

 A miR-155 deficiency upregulates anti-inflammatory M2-like macrophage activity, thereby sustaining 

endometriotic lesion growth through increased remodelling and angiogenesis. 

 

1.9 RESEARCH AIMS 

The experiments described in this thesis will address the following experimental aims, in which a 

menstrual mouse model of endometriosis is used to: 

 Characterise the development of endometriotic-like lesions in genetically replete, wildtype mice. 

 Determine the effect of a miR-223 or miR-155 deficiency on lesion appearance and morphology. 

 Assess macrophage localisation and phenotype within lesions, and to evaluate lesion growth and 

establishment in the absence of either miR-223 or miR-155. 

 Investigate the significance of miR-223 and miR-155 on molecular signalling pathways contributing 

to the development of endometriosis. 

 Evaluate the contribution of donor endometrial tissue vs recipient environment on the development of 

endometriotic lesions.  
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Figure 1.6 Proposed working model of microRNA regulation of macrophage polarisation in 

endometriosis  

The presence of ectopic endometrial tissue in the peritoneal cavity results in an influx of immune cells, 
predominantly, the recruitment of macrophages. In the presence of miR-155, macrophages are preferentially 
polarised towards an M1-like, pro-inflammatory phenotype, characterised by an increased production of 
inflammatory mediators such as TNFα, iNOS and IL-1β. This increases inflammation and mediates tissue clearance 
and destruction, and may result in an inhibition of endometriosis. Conversely, high levels of miR-223 promote an 
M2-like, anti-inflammatory macrophage phenotype, characterised by elevated levels of TGFβ, Arg-1 and VEGF. 
This creates a tissue-healing niche and allows for remodelling and angiogenesis to occur, and may result in 
promoting the development of endometriosis. Adapted from Schjenken et al (2019). 
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Chapter 2  

 

Materials and methods 
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2.1. MICE STRAINS 

All mice used in this study were kept in same sex group housing and maintained under specific pathogen-

free conditions in the Laboratory Animal Services facility at the University of Adelaide, South Australia. 

Mice were maintained on a twelve hour light / twelve hour dark cycle with sterile breeder chow (10% fat) 

food (Teklad Diets, Envigo, Madison, WI, USA) and water available ad libitum. Sterile filter cages (GM500 

Tecniplast IVC Cages, Buguggiate, Italy) were cleaned and changed weekly, or immediately following 

operative procedures. All experimental mice were weighed and checked daily to monitor condition and 

healthy appearance. All animals were used according to the Australian Code of Practice for the Care and 

Use of Animals for Scientific Purposes (8th ed., 2013), with approval from the Animal Ethics Committee, 

The University of Adelaide (Ethics identifier: m-2015-040). Genetically Modified Organisms Dealing 

Authorisation was obtained from the Institutional Biosafety Committee, The University of Adelaide 

(Identifier number: 13354). 

 

2.1.1. C57BL/6JArc mice 

C57BL/6JArc (C57) mice were obtained from the Animal Resource Centre (Perth, WA, Australia). Prior to 

commencing experimental procedures, mice aged between six to eight weeks were given a minimum of 

one week to recover from transportation and to acclimatise to the facility. 

 

2.1.2. miR-155 null mutant mice 

B6.Cg-Mirn155tm1.1Rsky/J (miR-155-/-) mice were bred in-house at the University of Adelaide as 

homozygous breeding pairs. Founder colony mice were initially obtained from The Jackson Laboratory 

(Bar Harbor, Maine, USA; Stock Number: 007745 | bic/miR-155). Briefly, using a modified bacterial 

artificial chromosome (BAC) targeting vector, a 0.97 kb portion of exon 2 of the bic/miR-155 gene on 

Chromosome 16 was replaced with a β-galactosidase (lacZ) reporter gene with polyA sequence followed 

by a loxP-flanked neomycin resistance cassette. To establish mutant mice, this construct was 

electroporated into embryonic stem cells derived from C57:129 hybrid mice, and chimeras that developed 

were bred to C57 mice. To remove the loxP-flanked neomycin cassette, mice were bred with C57-

congenic Cre-deleter strain mice and the resulting bic/miR-155 mutant mice were subsequently 

backcrossed for at least five generations to C57 mice (The Jackson Laboratory). 
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2.1.3. miR-223 null mutant mice 

B6.Cg-PtprcaMir223tmFcam/J (miR-223-/-) mice were bred in-house at the University of Adelaide as 

homozygous breeding pairs. Founder colony mice were initially obtained from The Jackson Laboratory 

(Bar Harbor, Maine, USA; Stock Number: 013198 | miR-223). Briefly, the entire coding region of the miR-

223 gene (110bp locus on Chromosome X) was replaced with a targeting vector containing frt-flanked 

neomycin resistance cassette. This construct was electroporated into (C57 x 129S4Sv/Jae) F1-derived 

V6.ES cells. Appropriately targeted ES cells, which resulted in a complete loss of miR-223 function, were 

injected into C57 blastocysts. Resulting chimeric male mice were bred to C57 females to generate a 

colony of miR-223-/- mice, which were backcrossed for at least five generations to C57 mice (The Jackson 

Laboratory). 
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2.2. GENOTYPING 

2.2.1. DNA extraction 

Ear notch or tail snip samples were incubated at either 37°C overnight or 55°C for a minimum of four 

hours in digestion buffer (350µM Proteinase K (Sigma-Aldrich, St. Louis, USA), 20mM EDTA (Sigma-

Aldrich), 50mM Tris (Sigma-Aldrich), 120mM NaCl (Chem-Supply, SA, Australia), and 1% [w/v] SDS 

(Sigma-Aldrich), pH 8.0). To remove undigested material and cellular debris, 250µL of ammonium acetate 

(4M, pH 7.5; Chem-Supply) was added to the mixture and placed on a shaker for fifteen minutes at room 

temperature, followed by ten minutes without shaking at room temperature. Samples were centrifuged at 

14,000 x g for ten minutes and 400µL of the supernatant was collected. To precipitate the DNA, 800µL 

of 100% ethanol (Chem-Supply) was added to the supernatant and vortexed briefly. Samples were 

allowed to sit at room temperature for five minutes, prior to being centrifuged at 14,000 x g for eight 

minutes. The resulting DNA pellet was washed with 70% ethanol, resuspended in 20-50µL of milliQ water 

and stored at 4°C for up to two weeks, or at -20°C until required for analysis. 

 

2.2.2. Genotyping PCR 

Extracted DNA was amplified using polymerase chain reaction (PCR), following protocols and primers 

designed by The Jackson Laboratory (Maine, USA) (Table 2.1). All PCRs were run on the GeneAmp PCR 

System 9700 (Applied Biosystems, subsidiary of Thermo Fisher Scientific, Wilmington, DE, USA) and 

PCR products were stored at 4°C for up to two weeks prior to being analysed via gel electrophoresis. 

 

Briefly, to detect miR-155, 2µl of digested DNA was added to a PCR reaction mixture containing 0.8 X 

DNA polymerase reaction buffer, 2mM MgCl2, 0.3 U Taq polymerase (Thermo Fisher Scientific), 0.2µM 

dNTPs (Sigma-Aldrich), and 1µM of each primer (forward, reverse and mutant; GeneWorks Pty Ltd, 

Thebarton, SA, Australia) in a final volume of 12µL. The PCR was carried out with an initial denaturation 

step at 94°C for five minutes, followed by 35 amplification cycles at 94°C (thirty seconds), 61.8°C (one 

minute) and 72°C (one minute), and finishing with an elongation step at 72°C for two minutes.  

 

To detect the presence of miR-223, 2µl of digested DNA was added to a PCR reaction mixture made out 

of 1.3 X KAPA 2G HS polymerase reaction buffer, 2.6mM MgCl2, 0.3 U KAPA 2G HS Taq polymerase 

(Kapa Biosystems, subsidiary of Sigma-Aldrich), 0.26µM dNTPs (Sigma-Aldrich), 1µM of each primer 

(forward, reverse and mutant; GeneWorks Pty Ltd) and 6.5% glycerol (Sigma-Aldrich) in a final volume of 

12µL. The PCR was carried out with an initial denaturation step at 94°C for two minutes, 10 amplification 
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cycles of 94°C (twenty seconds), 65°C (fifteen seconds; with a 1.5°C decrease in temperature per cycle) 

and 68°C (ten seconds), followed by a further 28 amplification cycles at 94°C (fifteen seconds), 50°C 

(fifteen seconds) and 72°C (ten seconds), concluding with an elongation step at 72°C for two minutes. 

 

2.2.3. Gel electrophoresis 

PCR samples were run on 2% (w/v) agarose gel (Promega, WI, USA) with 1 X GelRed™ nucleic acid gel 

stain (Biotium, CA, America) in 1 X TBE buffer (45mM Tris base (Sigma-Aldrich), 45mM Boric acid (Chem-

Supply), 1mM EDTA (Sigma-Aldrich), pH 8.2) for fifty minutes at 80V alongside pUC19/HpaII molecular 

weight marker (GeneWorks Pty Ltd). Samples were pre-mixed with 1 X DNA Gel Loading Dye (Sigma-

Aldrich) before being loaded onto the gel. After electrophoresis, gels were visualised under UV light using 

the GelDoc™ EZ Imager (BioRad Laboratories Inc., Hercules, CA, USA) and images were taken for 

analysis (Figure 2.1 and 2.2). 

 

 

Table 2.1 PCR primers used to genotype miR-155-/- and miR-223-/- mice  
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Figure 2.1 Gel electrophoresis image of miR-155 genotyping 

Genotype of miR-155-/- mice was confirmed by PCR where a single band at 465bp denoted wild type (miR-155+/+), 
double bands at 465bp and 600bp denoted heterozygote mice (miR-155+/-), and a single band at 600bp denoted 
null mutants (miR-155-/-). The DNA ladder pUC19 DNA/Mspl (Hpall) Marker was used to determine band size. 
 
 
 
 
 
 

 

Figure 2.2 Gel electrophoresis image of miR-223 genotyping 

Genotype of miR-223-/- mice was confirmed by PCR where a single band at 392bp denoted wild type (miR-223+/+), 
double bands at 392bp and 500bp denoted heterozygote mice (miR-223+/-), and a single band at 500bp denoted 
null mutants (miR-223-/-). The DNA ladder pUC19 DNA/Mspl (Hpall) Marker was used to determine band size. 
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2.3. MENSTRUAL MOUSE MODEL OF ENDOMETRIOSIS 

To establish endometriosis in mice, a modified version of The Greaves Saunders Menstrual Mouse Model 

of Endometriosis (Greaves et al., 2014) was used (Figure 2.3).  

 

2.3.1. Ovariectomy 

Female mice aged between eight to ten weeks were ovariectomised under sterile conditions. Mice were 

anaesthetised under inhalation of 2.5% isoflourane (ISOTHESIA®, Henry Schein®, New York, USA) 

administered in conjunction with pure oxygen. Anaesthetised mice were placed in a ventral recumbent 

position and the dorsal mid-lumbar area was swabbed with 70% ethanol. A single surgical incision of 0.5 

to 1cm was made on the dorsal midline at the caudal edge of the ribcage, and using blunt forceps, the 

skin at each end of the cut was separated from the underlying muscle wall.  The left ovary, which was 

embedded in the fat pad, was visible underneath the muscle wall. A retoperitoneal incision of 

approximately 0.5cm was made on the muscle layer below the last rib, and both the ovary and associated 

fat pad were gently withdrawn from the peritoneal cavity. Using a surgical cauteriser (Bovie Medical, 

Clearwater, FL, USA), the entire ovary and oviduct were dissected from the uterine horn. The uterine horn 

was replaced into the peritoneal cavity, and the muscle wall was brought together. To remove the right 

ovary, a second incision was made on the opposite side, and the ovary was excised as described above. 

The skin incision was closed using 9mm stainless steel wound clips (BD Autoclip Wound Closing System, 

Thermo Fisher Scientific) and mice were injected subcutaneously with carprofen analgesia (Rimadyl; 

Pfizer, New York, USA) at 0.05mg/10g of body weight. Following anaesthesia, mice were placed into 

clean cages kept on a 37°C heat pad for a minimum of one hour to recover from surgery. A second dose 

of carprofen at 0.05mg/10g body weight was administered subcutaneously twenty four hours post-

ovariectomy. 

 

2.3.2. Collection of decidualised endometrial tissue from donor mice 

Following ovariectomy (day 0), donor mice were given seven days to recover prior to commencing the 

experimental protocol as illustrated in Figure 2.3A.  Briefly, donor mice were injected subcutaneously with 

100ng of oestradiol-17β (Sigma-Aldrich) in sesame oil (Sigma-Aldrich) for three consecutive days (days 

7 to 9). On day 13, a 140mm SILASTIC pellet (Dow Corning Corp, Midland, MI, USA) containing 

progesterone (Sigma-Aldrich) was inserted subcutaneously into donor mice (Figure 2.3B).  This pellet 

was made manually in-house, and releases approximately 1mg progesterone per twenty four hours. 
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Subsequently, mice were injected with 5ng of oestradiol-17β in sesame oil for three consecutive days 

(days 13 to 15).  

 

Decidualisation of the endometrium in one uterine horn was induced on day 15 using 50µL of sesame oil 

via the Non-Surgical Embryo Transfer (NSET; ParaTechs, Lexington, KU, USA) device. On day 19, donor 

mice were euthanised four hours following the withdrawal of progesterone (removal of the pellet). The 

uterine horns were dissected from the mouse, placed in a petri dish and opened longitudinally (Figure 

2.3C). The endometrial tissue from the decidualised uterine horn was scraped away from the myometrial 

layer using a sterile scalpel and resuspended in sterile Phosphate Buffered Saline (PBS - Calcium and 

Magnesium Free, Thermo Fisher Scientific), in preparation to be transferred into recipient mice. In 

addition, approximately 10mg of decidualised tissue was either fixed and processed for histological 

analysis or snap-frozen in liquid nitrogen for RNA extraction. 

 

2.3.3. Induction of endometriosis in recipient mice 

Recipient mice were ovariectomised at the same time as age-matched donor mice. Commencing on day 

15, recipient mice received twice weekly subcutaneous injections of 500ng oestradiol valerate (Sigma-

Aldrich) in sesame oil for the duration for the experiment (Greaves et al., 2014). On day 19, approximately 

40mg (±2mg) of decidualised donor endometrial tissue was finely diced, resuspended in 200µL 1 X PBS 

(Figure 2.3D) and passed once through a 19-gauge needle (Becton Dickinson, New Jersey, USA) to 

ensure smooth delivery into recipient mice. Anaesthetised recipient mice received a single subcutaneous 

injection of donor endometrial tissue on the right flank.   

 

2.3.4. Harvesting lesions from recipient mice 

Recipient mice were euthanised at one of three time-points (Figure 2.3E); 7 days (D7), 14 days (D14), or 

21 days post-induction of endometriosis (D21). Photographs of the subcutaneous lesions were taken, and 

the lesion was carefully dissected from the site of attachment, weighed and measured to determine lesion 

width, length and height (used to calculate lesion volume). Lesions were either fixed and processed for 

histological analysis or snap-frozen in liquid nitrogen and subsequently stored at -80°C for RNA 

extraction. 
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Figure 2.3 The Greaves-Saunders menstrual mouse model of endometriosis 

A: Schematic outlining the timeline of procedures performed on donor and recipient mice. B: Subcutaneous insertion of a P4 SILASTIC pellet released approximately 1mg of P4 daily for six 
days. C: Four hours following P4 withdrawal, the donor uteri was harvested. The decidualised uterine horn was selected and opened longitudinally. D: Decidualised donor endometrial tissue 
(40mg ± 2mg) was finely diced using a scalpel and resuspended in 200µl PBS, and injected subcutaneously into recipient mice. E: Lesions were dissected from recipient mice on either 7, 14 
or 21 days–post inoculation of donor endometrium.
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2.4. HISTOLOGY 

2.4.1. Tissue processing and slide preparation 

Decidualised donor endometrial tissue and D7, D14 and D21 lesions were collected and fixed in 4% 

neutral buffered formalin (Australian Biostain, VIC, Australia) for twenty four hours at 4°C. The tissues 

were then washed twice in 1 X PBS at 4°C for twenty four hours each, and subsequently transferred into 

a 70% ethanol solution at 4°C for temporary storage until tissue processing. The Leica TP1020 Tissue 

Processor (Leica Microsystems, Wetzlar, Germany) was used to process and embed the tissues utilising 

the following dehydration and embedding protocol: thirty minutes each in 75% ethanol, 80% ethanol, 85% 

ethanol, 90% ethanol, 95% ethanol and 100% ethanol; 2 x thirty minutes in 100% Xylene (Ajax Finechem, 

NSW, Australia); 2 x thirty minutes in paraffin wax (Ajax Finechem) under vacuum conditions. The 

processed tissue was immediately moulded into paraffin blocks and stored at room temperature prior to 

being sectioned on a Leica Rotary Microtome (Leica Microsystems). Sections were cut at 5µm and 

transferred onto SuperFrost Plus Advanced Adhesive Microscope Slides (Trajan, VIC, Australia) using a 

water bath at 45°C. Slides were either dried overnight at 37°C, or allowed to air-dry at room-temperature 

for a minimum of forty eight hours prior to staining. 

 

2.4.2. Dewaxing and rehydration of slides 

Immediately prior to carrying out staining protocols, all slides underwent dewaxing in two washes of 

Safsolv (Labchem, VIC, Australia) for five minutes each. Slides were then rehydrated in descending 

concentrations of ethanol, commencing with 2 X 100% ethanol (five minutes each), followed by three 

minute washes each in 90%, 70% and 50% ethanol. Slides were then placed in milliQ water for a minimum 

of two minutes to ensure full rehydration of the tissue sections. Staining was then carried out as described 

in section 2.4.3 to 2.4.5.  

 

2.4.3. Haematoxylin and eosin staining 

Haematoxylin and eosin (H&E) staining was carried out as per standard protocols. Briefly, slides were 

stained in Harris haematoxylin (Sigma-Aldrich) for three minutes, followed by a five minute rinse in tap 

water. Sections were differentiated in a five second wash of 0.5% ammonia (Sigma-Aldrich) in milliQ water 

and were rinsed in tap water for two minutes. Sections were placed in 1% hydrochloric acid (Chem-

Supply) in milliQ water for five seconds, rinsed in tap water for two minutes, and finally stained in eosin 

(Sigma-Aldrich) for one minute. Slides were then dehydrated and mounted as described in Section 2.4.6.  
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2.4.4. Masson’s trichrome staining 

Masson’s trichrome staining was carried out in accordance with standard methodology. Briefly, slides 

were stained in Weigert’s Haematoxylin (Sigma-Aldrich) for fifteen minutes, differentiated in 0.5% 

hydrochloric acid in 70% ethanol for twenty seconds, and stained in acid ponceau (Sigma-Aldrich) for 

thirty seconds. Slides were then placed in 1% phosphomolybdic acid aqueous solution (Sigma-Aldrich) 

for thirty seconds, counterstained in 1% methyl blue (Sigma-Aldrich) in 1% acetic acid (Ajax Finechem)  

for one minute, and finally washed twice for thirty seconds each in 1% acetic acid. Slides were then 

dehydrated and mounted as described in Section 2.4.6. 

 

2.4.5. Immunohistochemistry  

Immunohistochemistry was performed on dewaxed, rehydrated slides using the following primary 

antibodies: anti-α-smooth muscle actin (αSMA; Merck Millipore, Darmstadt, Germany), anti-F4/80 

(eBioscience, subsidiary of Thermo Fisher Scientific), anti-MHC Class II (MHC II; Abcam, Cambridge, 

United Kingdom), anti-liver arginase (Arg-1; Abcam), anti-mouse mannose receptor (CD206; R&D 

Systems, Minneapolis, USA), anti-inducible nitric oxide synthase (iNOS; Merck Millipore), and anti-von 

Willebrand Factor (vWF; Merck Millipore); with isotype-matched rat, goat or rabbit IgGs used as negative 

controls. The following biotinylated secondary antibodies were used: rabbit anti-rat IgG (Abcam), goat 

anti-rabbit IgG (Vector Laboratories, Burlingame, CA, USA), and rabbit anti-goat IgG (Vector 

Laboratories).   

 

Prior to staining, sections were incubated with 3% hydrogen peroxide (LabServ, Scoresby, VIC, Australia) 

in 50% methanol (Ajax Finechem) in milliQ water for fifteen minutes to inhibit endogenous peroxidase 

activity. Utilising serum from the secondary antibody host species (Sigma-Aldrich), sections underwent 

serum blocking (thirty minutes to an hour at room temperature using 10% host serum in PBS with 1% 

bovine serum albumin (Sigma-Aldrich)) to limit background and non-specific staining. Following 

incubation with the primary antibody (concentrations and durations listed in Table 2.2), slides were rinsed 

three times in PBS for five minutes each. The biotinylated secondary antibody (concentrations and 

durations listed in Table 2.3) was applied, followed by three PBS washes for five minutes each. Sections 

were incubated with streptavidin-conjugated horseradish peroxidase (HRP; Vectastain Elite ABC kit, 

Vector Laboratories) for thirty minutes at room temperature, and were washed three times in PBS for five 

minutes each. Detection of HRP activity was performed by applying 3,3’-Diaminobenzidine (DAB; Dako 

North America, Carpinteria, CA, USA) chromogen for five minutes at room temperature, following the 
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manufacturer’s protocol. Finally, sections were counterstained with haematoxylin for a maximum of ten 

seconds. Slides were then dehydrated and mounted as described in Section 2.4.6. 

 

2.4.6. Dehydration and mounting of slides 

Upon completion of staining (section 2.4.3 to 2.4.5), slides were dehydrated for two minutes in 90% 

ethanol followed by two washes in 100% ethanol for a minute each. Sides were cleared in three washes 

of Safsolv (Labchem) for five minutes each. Coverslips were mounted onto slides using DPX mounting 

medium (BDH Industries, Poole, England), and allowed to dry at room temperature for a minimum of 

twenty four hours prior to image acquisition.  

 

2.4.7. Image acquisition 

Slides were imaged using the Nanozoomer-XR Digital slide scanner (Hamamatsu Photonics, 

Hamamatsu, Japan) at 40 X magnification. Viewing and analysis of captured images was carried out on 

the NDP.view2 Viewing software (Hamamatsu Photonics), with additional analyses performed using 

Image J (FIJI software, Wayne Rasband, US National Institutes of Health) as detailed in section 2.4.8 and 

2.4.9. Immunohistochemistry staining controls (no primary antibody, no secondary antibody and isotype 

control) were also imaged (Appendix: Figure 7.1).   

 

2.4.8. Morphometric analyses 

A total of six non-serial H&E stained lesion sections per mouse were selected for morphometric analysis. 

Glandular areas within lesions were identified and measurements of the total area of the glands 

(encompassing the epithelium and lumen) was obtained (example shown in Figure 2.4). To determine the 

glandular fraction, the total area of the glands was divided by the total tissue area of the lesion. The 

average gland size per lesion was determined by dividing the sum total area of all glands with the number 

of glands present in that lesion. To determine the proportion of glandular epithelial cells within the lesion, 

the lumen size of individual glands was measured, and subtracted from the total gland area.  

 

2.4.9. Histochemical analysis 

To ensure uniformity with analysis, using the NDP.view2 Viewing software (Hamamatsu Photonics), a 

grid (individual squares measuring 0.25mm2 (0.5mm x 0.5mm)) was placed over the lesion at a 2.5X 
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magnification. To analyse the histochemistry of the entire lesion, each square containing a portion of the 

lesion was the magnified to 20X and an image of the corresponding area was captured and transferred 

to ImageJ software (FIJI). For each histochemical stain, a minimum of three non-serial lesion sections per 

mouse were analysed.  

 

To analyse Masson’s trichrome staining, the ‘Colour Deconvolution’ feature set to the vector ‘Masson 

Trichrome’ in ImageJ (FIJI) was used. The images of stained lesions were split into two colour streams - 

blue for collagen fibres and red for cytoplasm (example shown in Figure 2.5). The intensity of each colour 

stream was adjusted for precision using the threshold option and was measured. To quantify the density 

of fibrosis, the intensity of blue staining was divided by the intensity of red staining. 

 

To analyse the density of HRP-positive cells, the ‘Colour Deconvolution’ feature set to the vector ‘H DAB’ 

in ImageJ (FIJI) was used. This generated an image with Haematoxylin-only staining and an image with 

HRP-only staining (example shown in Figure 2.6). The intensity of each colour stream was adjusted for 

precision using the threshold option and was measured. To quantify the density of HRP-positive cells, the 

intensity of HRP-only staining was divided by the intensity of Haematoxylin-only staining. 

 

Further quantification of F4/80+ stained cells was carried out to evaluate differences in expression at the 

lesion periphery (100µM from the edge of the lesion) and at the centre of the lesion (within 500µM from 

the centre) using ImageJ (FIJI). Additional analysis of vWF staining was carried out, where the total 

number of vWF+ blood vessels was counted and the average size of vessels was determined by dividing 

the total area of vessels per lesion with the number of vessels present.  To determine the density of blood 

vessels, individual blood vessel were traced to obtain the area of vessels per field and this value was 

divided by the total stromal area in each field.
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Table 2.2 List of primary antibodies used for immunohistochemistry 

 

 

 

Table 2.3 List of biotinylated secondary antibodies used for immunohistochemistry  
 

 

 

Antigen Reactivity Isotype Concentration Duration Manufacturer 

αSMA Mouse / Human Rabbit IgG 0.5 µg/ml 30 minutes  Merck Millipore 

F4/80 Mouse Rat IgG2a 1 µg/ml Overnight eBioscience 

MHC II  Mouse Rabbit IgG 25 µg/ml 30 minutes Abcam 

Arg-1 Mouse Rabbit IgG 0.8 µg/ml 60 minutes Abcam 

CD206 Mouse Goat IgG 5 µg/ml Overnight R&D Systems 

iNOS Mouse / Human Rabbit IgG 2 µg/ml 60 minutes Abcam 

vWF Mouse / Human Rabbit IgG 1.5 µg/ml 60 minutes Chemicon 

Antigen isotype Reactivity Concentration Duration Manufacturer 

Rabbit IgG Rat IgG 4 µg/ml 40 minutes Abcam 

Goat IgG Rabbit IgG 3 µg/ml 60 minutes Vector Labs 

Rabbit IgG Goat IgG 3 µg/ml 60 minutes Vector Labs 
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Figure 2.4 Example of morphometric analysis of glandular fractions within lesions 

The total number of fully enclosed glands present within each lesion section was counted (A). The total area of 
individual glands (outlined in yellow), as well as the area encompassing the lumen (outlined in red) were measured 
(B). The proportion of epithelial cells within the lesion was determined by subtracting the area of the lumen from 
the total area of the gland. The average gland size per lesion was determined by dividing the sum total area of the 
glands with the total number of glands present in that lesion. The glandular fraction was calculated by dividing the 
total area of the glands with the total lesion area. 
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Figure 2.5 Example of Masson’s Trichrome quantification  

A grid was placed over Masson’s Trichrome-stained lesion images (A) at 2.5X magnification in NDP.view 2 software 
(Hamamatsu Photonics). Each square was magnified to 20X (B) and images were analysed using ImageJ (FIJI), 
where images were split into blue for identification of collagen fibres (C) or red for identification of cytoplasmic areas 
(D); and the intensity of each component of the individual stains were quantified.  
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Figure 2.6 Example of quantification of HRP-stained sections 

To quantify HRP-stained sections, a grid was placed over lesion images (A) at 2.5X magnification in NDP.view 2 
software (Hamamatsu Photonics). Each square was magnified to 20X (B), and images were analysed using ImageJ 
(FIJI). Images were split into a haematoxylin-only image (C) and a HRP-only image (D), which was subsequently 
analysed to determine the density of HRP-staining.  
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2.5. RNA EXTRACTION AND PROCESSING 

Total RNA from donor decidualised endometrial tissue, D7 and D14 lesions (4 biological replicates each 

from C57, miR-155-/- and miR-223-/- mice, totalling 36 samples) was extracted from snap-frozen lesions 

stored at -80°C. Each sample was homogenised in 700µl of QIAzol Lysis Reagent (Qiagen, Hilden, 

Germany) using the PowerLyzer 24 Homogenizer (Mo Bio Laboratories, subsidiary of Qiagen) at 3,500 

rpm for ten seconds. Following homogenisation, samples were incubated at room temperature for five 

minutes and total RNA was extracted using the miRNeasy® RNA extraction and purification kit (Qiagen) 

following the manufacturer’s protocol. Briefly, 140µl of chloroform was added to the sample and mixed 

thoroughly. Samples were incubated at room temperature for three minutes and then centrifuged at 

12,000 x g for fifteen minutes at 4°C. The upper aqueous phase was transferred into a fresh Eppendorf 

tube and 100% ethanol (one and a half times the transferred volume of the aqueous phase) was added 

and mixed thoroughly. The samples were spun in a miRNeasy® Mini column at 8,000 x g for fifteen 

seconds at room temperature, with the flow through discarded. The RNA attached to the columns was 

then washed by centrifugation at 8,000 x g at room temperature with 700µl Buffer RWT for fifteen seconds 

followed by 500µl Buffer RPE for fifteen seconds and finally with 500µl of Buffer RPE for two minutes, 

with all flow through discarded. RNA was eluted by adding 50µl RNase-free water into the column and 

centrifuging at 8,000 x g for one minute at room temperature.  

 

The concentration of extracted RNA was measured using the Nano-drop Spectrophotometer ND-1000 

(Thermo Fisher Scientific). Contaminating DNA was removed from the sample using commercially 

available DNase treatment TURBO DNA-free (Life Technologies, CA, USA) following the manufacturer's 

instructions. In brief, 5µg of RNA was incubated with 1X TURBO DNase Buffer and 2 units of TURBO 

DNase, and incubated for thirty minutes at 37°C. DNase activity was stopped by the addition of 0.1 volume 

of DNase Inactivation Reagent at room temperature for five minutes with regular flicking of the sample. 

Samples were again centrifuged at 10,000 x g for one and a half minutes, and the DNA-free RNA 

supernatant was collected. 

 

The final concentration of DNase-treated RNA was determined on the Nano-drop Spectrophotometer and, 

RNA integrity and purity was assessed on the RNA Agilent Bioanalyser (Agilent Technologies, Santa 

Clara, CA, USA). All RNA preparations had an RNA integrity number of seven or more, and were stored 

at -80°C until required.  
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2.5.1. RNA sequencing  

To assess the mRNA profile in donor endometrium and endometriosis-like lesions, 36 DNase-treated 

RNA samples were subjected to high-throughput RNA Sequencing (RNA-Seq) at the David Gunn 

Genomics Facility (South Australian Health and Medical Research Institute, SA, Australia). 

 

2.5.1.1. Library preparation 

Libraries for a total of 36 samples were made from 1ug total RNA, quantified by Qubit RNA Assay in a 

Qubit 2.0 Fluorometer (Life Technologies). Following the manufacturer’s protocol, the mRNA sequencing 

library was prepared using Illumina’s TruSeq RNA Sample Preparation Kit (Illumina, San Diego, CA, 

USA). The constructed library was assessed for quality using the Agilent Bioanalyser 2100 (Agilent 

Technologies). Sequencing of the library preparations was performed on the Illumina Next-Seq 500 

platform (Illumina) to obtain 2 x 100 base pair (bp) paired-end reads for mRNA expression at a depth of 

50 million reads per sample.  

 

2.5.1.2. De novo assembly, alignment and quantification 

Initial data analysis was performed by Dr Jimmy Breen from the Bioinformatics Facility at the Robinson 

Research Institute (Adelaide, SA, Australia). Briefly, the DESeq2 package in the R Statistical Software 

Suite (R Foundation for Statistical Computing, Vienna, Austria) was used to estimate sample quality and 

the expression level of transcripts, and to perform normalisation, variance estimation and differential 

expression of the raw reads. Briefly, paired-end sequence reads from all 36 libraries were pooled together 

according to genotype (12 samples each from C57, miR-155-/- and miR-223-/- mice) to generate a de novo 

transcriptome assembly. The raw FASTQ sequences generated from the Illumina Next-Seq 500 were 

processed for quality control using FastQC and to remove Illumina adapters and primers, redundant 

reads, poly-N and low quality reads using AdapterRemoval Version 2 (Schubert et al., 2016).  

 

Using the RNA mapping program HISAT2 (Kim et al., 2015), the trimmed RNA-Seq reads were aligned 

to the mouse reference genome (Genome Reference Consortium GRCm38; Release Name: mm10, The 

University of California, USA). Genome alignments were processed and sorted to removal optical 

duplicates using the sambamba and Picard MarkDuplicates method. To quantify the number of reads that 

overlap gene regions, FeatureCounts function was utilised (Liao et al., 2014), and pseudo-alignment RNA-

Seq quantification, where raw data was used to define isoform expression, was performed using Salmon.  
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2.5.2. Differential expression analyses 

The R/Bioconductor packages limma-voom and EdgeR were used to compute counts per million (CPM; 

defined as “read counts scaled by the number of sequenced fragments times one million” (Sha et al., 

2015)), and to carry out analysis of differential expression of genes (Smyth, 2005, Robinson et al., 2010, 

McCarthy et al., 2012, Ritchie et al., 2015, Law et al., 2016). The deduplicated data was filtered to remove 

low expressed genes (i.e. only include genes where the CPM was greater than 1 in more than 12 of the 

36 samples). Normalisation of the filtered data was carried out using the weighted trimmed mean of M-

values to rescale read counts in different samples to comparable levels (Appendix Figure 7.3). The final 

assembly was used as a reference for the further gene annotation and expression analysis. 

 

Differential isoform expression analyses were carried out using the packages Sleuth and Wasabi. Raw p-

values (p) were adjusted using the Benjamini-Hochberg false discovery rate method to yield an adjusted 

p (Benjamini and Hochberg, 1995). The criteria for significance of differentially regulated genes was 

established as having an adjusted p value ≤ 0.05 with a ≥ 2-fold change in expression. Differential 

expression of genes was assessed between the following 15 groups: 

 

1. C57 decidualised endometrium and C57 D7 lesions 

2. C57 decidualised endometrium and C57 D14 lesions 

3. C57 D7 lesions and C57 D14 lesions 

4. miR-155-/- decidualised endometrium and miR-155-/- D7 lesions 

5. miR-155-/- decidualised endometrium and miR-155-/- D14 lesions 

6. miR-155-/- D7 lesions and miR-155-/- D14 lesions 

7. miR-223-/- decidualised endometrium and miR-223-/- D7 lesions 

8. miR-223-/- decidualised endometrium and miR-223-/- D14 lesions 

9. miR-223-/- D7 lesions and miR-223-/- D14 lesions 

10. C57 decidualised endometrium and miR-155-/- decidualised endometrium 

11. C57 decidualised endometrium and miR-223-/- decidualised endometrium 

12. C57 D7 lesions and miR-155-/- D7 lesions 

13. C57 D7 lesions and miR-223-/- D7 lesions 

14. C57 D14 lesions and miR-155-/- D14 lesions 



Panir Chapter 2 93 

15. C57 D14 lesions and miR-223-/- D14 lesions 

 

The Ingenuity Pathway Analysis software (IPA 2018; QIAGEN Inc.) and the Database for Annotation, 

Visualization and Integrated Discovery (DAVID 6.8; http://david.ncifcrf.gov) were used to identify enriched 

cellular and molecular functions amongst differentially expressed gene transcripts, and to further classify 

these genes into functionally related groups.  

 

2.6. STATISTICAL ANALYSIS 

All statistical analyses (excluding RNA-Seq - Refer to Section 2.5.2) were conducted using GraphPad 

Prism version 8 for Windows (GraphPad Software, La Jolla CA, USA). Data obtained from histological 

analyses were averaged per section analysed, and further averaged to provide a single result for each 

lesion at each time-point. Following the D’Agostino & Pearson normality test, the distribution of data were 

found to be non-parametric. To determine statistical significance, data were analysed using either a non-

parametric Mann-Whitney U test when comparing between two groups, or a Kruskal-Wallis test followed 

by Dunn’s multiple comparisons test when comparing between three or more groups. To limit bias arising 

from the development of multiple subcutaneous lesions (≥ 2) in a recipient mouse, only data from mice 

which had a single endometriotic-like lesion has been included. Data are presented as median 

(interquartile range). Significance was inferred at p ≤ 0.05, and is annotated as follows: * (p <0.05), ** (p 

< 0.01), *** (p < 0.001), and **** (p < 0.0001). Any additional annotations used for specific comparisons 

are outlined in figure captions.  

 

A summary of the experimental approach taken in this thesis is shown in Figure 2.7. 
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Figure 2.7 Experimental plan schematic 

Morphological and histochemical analyses of D7, D14 and D21 subcutaneous lesions harvested from syngeneic 
and allogeneic mouse model of endometriosis were performed. RNA–Sequencing and analysis of differentially 
expressed genes (DEGs) was carried out on samples of donor endometrium, D7 and D14 lesions from the 
syngeneic model of endometriosis.
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3.1. INTRODUCTION 

Endometriosis is a complex, multifactorial reproductive disorder specific to humans and some 

menstruating primates (Giudice and Kao, 2004, Kyama et al., 2007). At the time of visual confirmation for 

the presence of endometriosis via laparoscopy, evaluation of disease severity is possible and can be 

classified into several stages (Al-Talib and Tulandi, 2012, Dunselman and Beets-Tan, 2012, Dunselman 

et al., 2014). Although endometriosis affects approximately 10% of reproductive aged women, the events 

surrounding disease initiation remains uncertain (Giudice, 2010, Parazzini et al., 2012, Dunselman et al., 

2014, Zondervan et al., 2018).  

 

Initial steps in endometriotic lesion development include an ability of ectopic endometrial tissue to evade 

the immune response, thereby allowing for adherence to surfaces in the peritoneal cavity. Subsequently, 

invasion of the mesothelial lining allows for further proliferation of ectopic endometrial tissue and this 

process, coupled with neovascularisation, is essential for endometriotic lesion survival (Hull et al., 2003). 

Impaired immune surveillance and aberrant cytokine expression contributes to the ability for ectopic 

endometrial cells to proliferate and thrive (Aznaurova et al., 2014, Benagiano et al., 2014, Bouquet De 

Jolinière et al., 2014). Higher concentrations of immune cells have been observed in the peritoneal fluid 

from women with endometriosis compared to women without endometriosis, and as macrophages 

comprise a majority of peritoneal immune cells, it has been postulated that macrophages are critical 

players in the pathogenesis of endometriosis (van Furth et al., 1979, Haney et al., 1981, Kyama et al., 

2003, Koninckx et al., 2012). Moreover, macrophages secrete high concentrations of prostaglandins F2α 

and E2 which maintain local oestrogen production and help sustain endometriotic lesion survival (Ferrero 

et al., 2014). 

 

Macrophages are mononuclear phagocytic cells derived from haematopoietic bone marrow stem cells, 

and function as immune effector cells (Italiani and Boraschi, 2014, Corliss et al., 2016, Gordon and 

Plüddemann, 2017). The phenotypic, functional, and metabolic plasticity of macrophages is dictated by 

their polarisation status (Gordon and Taylor, 2005, Barros et al., 2013, Martinez and Gordon, 2014, dos 

Anjos Cassado, 2017b). In response to immunological challenges, pathogens, antigenic stimuli, and 

exposure to cytokines, undifferentiated macrophages can be preferentially activated via distinct 

polarisation pathways, giving rise to two broad categories; classically activated (M1-like) macrophage 

phenotype and the alternatively activated (M2-like) macrophage phenotype (Ma et al., 2003, Martinez et 

al., 2008, Mosser and Edwards, 2008, Italiani and Boraschi, 2014, Jantsch et al., 2014). These two types 

of macrophages work in a biphasic manner, with the initial arrival of M1-like macrophages mediating a 

pro-inflammatory response at the site of tissue injury or challenge. The subsequent arrival of M2-like 
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macrophages elicits an anti-inflammatory response which modulates the extent of inflammation and 

initiates tissue healing. This critical balance between pro-inflammatory M1-like and anti-inflammatory M2-

like macrophage activity appears to be a significant determinant in the establishment and persistence of 

endometriosis (Bacci et al., 2009, Capobianco and Rovere-Querini, 2013). Therefore, in order to assess 

mechanisms surrounding the establishment of endometriosis, the use of in vivo animal models is essential 

(Grümmer, 2006, Kyama et al., 2007, D'Hooghe et al., 2009, Greaves et al., 2017). 

 

Rodent models of are excellent candidates for longitudinal studies of disease development including 

neurodegeneration (Corvino et al., 2011, Harvey et al., 2011), metabolic disorders (Davidson et al., 2014, 

Derrick-Roberts et al., 2016), orthopaedics (Haffner-Luntzer et al., 2016, Mele et al., 2016), and cancer 

(Hald et al., 2009, Taylor et al., 2009). However, in the context of endometriosis, few studies have looked 

at the changes in lesion development over time in vivo. Grummer et al. (2001) looked closely at events 

surrounding initial lesion establishment in a xenograft mouse model of endometriosis. In this model, 

adhesion of human endometrial fragments and ensuing angiogenesis was observed from 2 days post-

inoculation of endometrial tissue (Grümmer et al., 2001). Recently, a study using a homologous mouse 

model of endometriosis was able to assess the impact of an anti-platelet treatment on the development 

of lesions at weekly intervals over the course of 6 weeks (Zhang et al., 2017c). This research highlighted 

the gradual yet progressive development of endometriotic lesions, and suggested that varying the 

initiation time for a therapeutic intervention may yield entirely different results in resolving the progression 

of endometriosis (Zhang et al., 2017c). As endometriosis is characterised as an oestrogen-dependent 

chronic inflammatory disorder, wherein the immune system appears to be a central mediator in disease 

establishment and progression, studies in homologous mouse models allow for the cascade of 

inflammatory events associated with endometriosis to be evaluated (Bergqvist et al., 1993, Bacci et al., 

2009, Kralickova et al., 2018). 

 

Studies in homologous mouse models of endometriosis have shown a rapid infiltration of macrophages 

into endometriotic-like lesions within the first few days following disease induction (Lin et al., 2006). A shift 

in macrophage polarisation status from a predominantly M1-like phenotype to a M2-like phenotype has 

been shown to occur approximately ten days following disease establishment in mice (Johan et al., 2019). 

In addition, reciprocal transfers between mice with GFP-labelled macrophages and wildtype mice 

emphasise the importance of these immune cells in endometriosis, in which both donor and recipient 

macrophages were positively implicated in the inflammatory microenvironment of endometriotic lesion 

development (Greaves et al., 2014). Macrophages have also been implicated as mediators of vascular 

development, as they are potent sources of vascular endothelial growth factor (Capobianco and Rovere-
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Querini, 2013). Moreover, neovascularisation is a marker of successful lesion survival, as the 

development of blood vessels is critical to support lesion growth (Hull et al., 2003). In mice, the depletion 

of macrophages resulted in disruption of the vascularisation and growth of endometriosis-like lesions over 

time (Bacci et al., 2009). 

 

In summary, an important factor driving our understanding of endometriotic lesion establishment is the 

development and characterisation of animal models to mimic disease progression over time. In addition, 

the series of sequential events surrounding the initiation of endometriosis, beginning with an impaired 

clearance of ectopic endometrial fragments, followed by the commencement of tissue remodelling, and 

finally culminating in establishment of a well vascularised lesion, needs to be evaluated at each stage, 

ideally as a time-course study in an appropriate animal model. Therefore, the experiments in this chapter 

were devised to characterise the development of subcutaneous endometriotic-like lesions in a syngeneic 

menstrual mouse model of endometriosis (Refer to Figure 2.3 for protocol; rationale and validation of 

model discussed in Section 6.2). Donor decidualised endometrial tissue from wildtype C57 mice was 

injected subcutaneously into syngeneic C57 recipient mice, and resulting endometriosis-like lesions were 

harvested at either Day 7 (D7), Day 14 (D14) or Day 21 (D21) following disease induction. Lesions were 

across each of the three time-points for morphometric parameters representative of human endometriosis 

lesions, including the development of distinctive glandular and stromal areas. In addition, assessment of 

macrophage localisation via immunohistochemical staining of F4/80 (the F4/80 antibody recognises the 

EGF-TM7 G protein coupled receptor) was performed, with further identification of M1-like activity (MHC 

II and iNOS) and M2-like activity (CD206 and Arg-1). Evaluation of additional parameters of lesion 

establishment (i.e. blood vessel density, myofibroblast abundance and the extent of fibrosis) was 

performed using vWF and αSMA immunostaining, and Masson’s trichrome staining. Finally, RNA-

Sequencing (RNA-Seq) was performed on donor decidualised endometrium, D7 and D14 lesions to 

assess the differential expression of genes between time points, with particular emphasis on macrophage 

associated and immune related pathways. 
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3.2. RESULTS 

3.2.1. Endometriosis-like lesion development in C57 mice 

Previous studies evaluating endometriosis-like lesion development in immunocompetent mice often focus 

on a single time-point at which to assess disease outcomes. However, lesion development in 

endometriosis is known to be a dynamic process, characterised by remodelling and gland formation within 

ectopic endometrial tissue as disease progresses (Hull et al., 2008). Although the ‘menstrual’ mouse 

model of endometriosis was first established in 2014 (Greaves et al., 2014), the sequential changes 

associated with attachment, growth and subsequent maintenance of endometriosis-like lesions have not 

been described. Therefore, to evaluate the development of endometriosis-like lesions in wildtype, C57 

mice, 40mg of decidualised endometrium from ovariectomised C57 donor mice was injected 

subcutaneously into ovariectomised, oestrogen-supplemented C57 recipient mice. The size and weight 

of lesions were measured at D7, D14 and D21, and a histological analysis of lesions was carried out at 

each time-point.  

 

A total of 40 donor mice were required to generate sufficient decidualised endometrial tissue for injection 

into recipient mice at a ratio of 2 donors to 1.9 recipients (Table 3.1). Overall, 95% of C57 recipient mice 

had identifiable endometriotic-like lesions over the course of this experiment. At D7 and D14, 100% of 

recipient mice had lesions. At D21 however, the proportion of recipient mice that had lesions reduced 

slightly to 82%. A total of 4 mice had more than one lesion and have been excluded from subsequent 

analyses. 

 

Analysis of the lesions showed differing characteristics across the time course. At D7, lesions were 

opaque, raised from the skin, and were heme-laden/blood-filled (Figure 3.1 A), whereas by D14, lesions 

were slightly spread out over the attachment site, and appeared less heme-laden (Figure 3.1 B). By D21, 

lesions were remained spread out, with the appearance of vascularisation to surrounding areas (Figure 

3.1 C). Lesions that developed in C57 mice were 6-fold larger at D7 compared to D14 (15.0 (5.0 – 23.0) 

mm3 versus 2.5 (2.0 – 4.0) mm3 respectively, p = 0.0058; data presented as median (IQR)). Interestingly, 

lesion size increased by 2.8-fold from D14 to D21 (7.0 (4.3 – 8.0) mm3). Overall, lesions were 53% smaller 

at the end of the time course experiment when compared with D7 values (Figure 3.1 D). Median lesion 

weight at D7 was reduced by 68% at D14 (15.45 (7.23 – 25.60) mg versus 5.00 (3.35 – 12.40) mg 

respectively). A further reduction in lesion weight was noted at D21 (2.70 (1.55 – 4.08) mg) with lesions 

being 83% lighter than D7 lesions (p = 0.0022) (Figure 3.1 E). 
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H&E stained lesion sections were analysed for morphological parameters associated with lesion 

establishment (Figures 3.2 A-C). At D7, lesions were dense (Figure 3.2 A), whereas at both D14 (Figure 

3.2 B) and D21 (Figure 3.2 C), lesions appeared less compact, with visible gland formation. The median 

number of glands per lesion at D7 (0.5 (0 – 1.75) increased significantly at both D14 (5 (2.25 – 11.5), p = 

0.0177) and D21 (6.5 (6 – 8.5), p = 0.0006) (Figure 3.2 D). Average gland size, lumen area within glands, 

and epithelium area of glands was consistent across time points (Figure 3.2 E-G). The median percentage 

glandular epithelium of lesions increased at D14 (3.87 (0.23 – 23.70) %, p = 0.0315) and D21 (2.93 (1.75 

– 5.22) %, p = 0.0358) in comparison to D7 (0.08 (0.00 – 2.05) %) (Figure 3.2 H). However, no change in 

percentage stromal area was observed over time (Figure 3.2 I). Collectively, this data indicates that the 

C57 subcutaneous menstrual mouse model of endometriosis is able to mimic disease development, and 

is an appropriate model to evaluate the progression of lesion establishment over time. 

  

 

Table 3.1  Endometriosis-like lesion recovery in C57 mice  

Lesion collection time point D7 D14 D21 

Total number of donor mice used across all time points: 40 

Number of recipient mice 14 13 11 

Number of mice with lesions* 14 13 9 

Proportion of mice with lesions (%) 100 100 81.8 

* To reduce bias, mice with ≥2 lesions were excluded from subsequent analyses.  At D7 - 2 mice excluded; At D14 - 1 mouse 
excluded; At D21 – 1 mouse excluded.  
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Figure 3.1 Gross morphology of endometriosis-like lesion development in C57 mice 

Decidualised C57 donor endometrial tissue was injected subcutaneously into syngeneic recipient mice. Resulting 
lesions were harvested at either D7 (A), D14 (B) or D21 (C), with representative images shown; arrow indicates 
evidence of vascularisation. Lesion size was measured (D) and lesions were excised and weighed (E), with the 
dotted line indicating the initial weight of donor decidualised endometrial tissue inoculated into recipient mice. Data 
are presented as median (IQR), with each symbol representative of a single lesion in one mouse (n=12 at D7, n=12 
at D14, n=8 at D21). Analysis was done using the Kruskal-Wallis test followed by Dunn’s multiple comparison test, 
with significance denoted as ** (p < 0.01). 
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Figure 3.2 Assessment of morphological parameters in haematoxylin and eosin stained 

endometriosis-like lesions from C57 mice   

Haematoxylin and eosin stained sections from D7 (A), D14 (B), and D21 (C) lesions in C57 mice (representative 
images shown; arrows indicate glands) were assessed for the following characteristics: number of glands per lesion, 
(D), average gland size (E), lumen area (F), epithelium area (G), percentage glandular epithelium (H) and 
percentage stromal area (I). Data are presented as median (IQR), with each symbol representative of a single 
lesion in one mouse (n=12 at D7, n=12 at D14, n=8 at D21). Analysis was done using the Kruskal-Wallis test 
followed by Dunn’s multiple comparison test, with significance denoted as * (p < 0.05) and *** (p < 0.001).
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3.2.2. Macrophage localisation in endometriosis-like lesions from C57 mice 

The observed plasticity in macrophage polarisation during the development of endometriosis has been 

described in mouse models of this disease (Bacci et al., 2009, Johan et al., 2019). A predominant M1-like 

macrophage phenotype is associated with increased ectopic tissue clearance, and conversely, a 

predominant M2-like macrophage phenotype is associated with elevated tissue remodelling and lesion 

persistence (Bacci et al., 2009). To evaluate the contribution of M1-like and M2-like macrophages in lesion 

development, immunohistochemical analyses were performed. As a previous study noted discrepancies 

in F4/80+ macrophage distribution throughout lesions at different time points (Johan et al., 2019), 

quantification of total macrophage density, peripheral density (100µM from the edge of the lesion) and 

central density (within 500µM from the centre of the lesion) was also performed.  

 

Detection of macrophage phenotype in C57 lesions was performed via quantification of F4/80+ staining 

(Figure 3.3). Total macrophage density in lesions was unaltered between D7 (11.07 (6.64 – 18.55) %), 

D14 (17.09 (13.00 – 29.24) %), and D21 (17.84 (15.45 – 22.49) %) (Figure 3.3 G). Evaluation of 

macrophage density at the lesion periphery (Figure 3.3 A-C) and lesion centre (Figure 3.3 D-F) was also 

performed. Median peripheral F4/80 density was 39.79 (22.65 – 41.39) % at D7, 40.51 (29.35 – 54.70) % 

at D14, and decreased to 23.19 (15.29 – 27.76) % at D21 (p = 0.0426 for D14 vs D21) (Figure 3.3 H). 

Interestingly, F4/80 density at the lesion centre significantly increased from D7 (4.01 (2.50 – 6.38) %) to 

D14 (34.96 (23.72 – 47.83) %, p < 0.0001). This increase in central F4/80+ density was sustained at D21 

(31.85 (26.47 – 32.48) %, p = 0.0017 for D7 vs D21) (Figure 3.3 I).   

 

3.2.2.1. Expression of pro-inflammatory M1-like markers in C57 mice 

Quantification of iNOS density in C57 lesions (Figure 3.4 A-C) was unchanged across time points (23.50 

(18.96 – 35.99) %, 20.23 (15.31 – 25.27) %, and 16.99 (12.70 – 20.99) % at D7, D14 and D21 

respectively) (Figure 3.4 G). Peripheral iNOS density decreased significantly between D7 and D14 (18.83 

(17.26 – 22.01) % and 11.10 (6.99 – 15.20) % respectively, p < 0.0001), with a subsequent increase at 

D21 (17.69 (16.44 – 18.21) %, p = 0.0372 for D14 vs D21) (Figure 3.4 H). Central iNOS density was 

consistent at D7 (7.27 (6.30 – 8.74) %) and D14 (6.90 (5.75 – 8.40) %), with a significant increase seen 

at D21 (10.46 (7.85 – 11.82) %, p = 0.0205 for D7 vs D21 and p = 0.0067 for D14 vs D21) (Figure 3.4 I). 

 

A trend towards decreased MHC II density was observed between D7 (19.66 (12.49 – 23.27) %) and D14 

(12.37 (5.28 – 15.92) %), while a significant increase in MHC II density was seen between D14 and D21 
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(22.91 (15.94 – 31.90) %, p = 0.0105) (Figure 3.4 D-F, J). Peripheral MHC II density was unchanged at 

D7 (11.99 (9.55 – 16.37) %) and D14 (10.12 (8.58 – 11.46) %), with a significant increase seen at D21 

(21.99 (18.45 – 25.94) %, p = 0.0139 for D7 vs D21 and p < 0.0001 for D14 vs D21) (Figure 3.4 K). 

Likewise, central MCH II density was consistent between D7 (8.70 (6.53 – 10.49) %) and D14 (7.36 (6.27 

– 8.33) %), with an increase observed at D21 (11.06 (8.62 – 13.35) %, p = 0.0129) (Figure 3.4 L). 

 

3.2.2.2. Expression of alternatively activated M2-like markers in C57 mice 

CD206 immunostaining (Figure 3.5 A-C) was quantified across all time points (Figure 3.5 G). Interestingly, 

a steady increase in the total density of CD206+ cells was noted between D7 (7.43 (6.42 – 11.04) %), D14 

(18.75 (11.06 – 33.38) %, p = 0.0531), and was highest at D21 (39.70 (36.21 – 58.72) %, p < 0.0001 for 

D7 vs D14). Peripheral CD206 density increased significantly between D7 (2.54 (1.67 – 3.15) %), D14 

(5.99 (4.45 – 6.34) % p = 0.0106 for D7 vs D14) and D21 (15.79 (14.24 – 16.52) %, p < 0.0001 for D7 vs 

D21 and p = 0.0449 for D14 vs D21) (Figure 3.5 H). Central CD206 density was lowest at D7 (6.68 (4.89 

– 8.37) %) and increased significantly at D14 (22.01 (17.35 – 28.32) %, p = 0.0048) and D21 (46.24 (42.24 

– 53.20) %, p < 0.0001 for D7 vs D21) (Figure 3.5 I). 

 

Detection of total Arg-1 activity in C57 lesions (Figure 3.5 D-F) was not significantly different between D7, 

D14 or D21 (21.73 (17.17 – 24.62) %, 24.29 (21.08 – 28.34) %, and 24.49 (22.20 – 31.59) % respectively) 

(Figure 3.5 J). Peripheral Arg-1 density increased significantly between D7 (4.50 (3.89 – 6.35) %), D14 

(14.13 (11.46 – 15.69) % p = 0.0005 for D7 vs D14) and D21 (15.89 (13.75 – 20.37) %, p < 0.0001 for D7 

vs D21) (Figure 3.5 K). Central Arg-1 density followed a similar trend, with a significant increase between 

D7 (11.64 (8.81 – 16.27) %), D14 (19.72 (14.62 – 22.66) %, p = 0.0140 for D7 vs D14) and D21 (21.17 

(15.10 – 26.11) %, p =0.0040 for D7 vs D21) (Figure 3.5 L).    

 

3.2.3. Blood vessel density, myofibroblast abundance and fibrosis in endometriosis-like lesions 

from C57 mice 

Blood vessel density in lesions from C57 mice was assessed using vWF immunostaining (Figure 3.6 A-

C). vWF density was consistent between D7 (0.38 (0.00 – 0.50) %) and D14 (0.47 (0.03 – 0.77) %). A 

significant increase in vWF density was observed at D21 (1.17 (0.87 – 1.47) %, p = 0.0020 for D7 vs D21 

and p = 0.0208 for D14 vs D21) (Figure 3.6 D). The number of vWF+ blood vessels was lowest at D7 (5 

(0 – 11)), increased significantly at D14 (22 (19 – 33), p = 0.0018), and were sustained at D21 (25 (21 – 

32), p = 0.0014 for D7 vs D21) (Figure 3.6 E). Average vessel size remained consistent between time 
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points (0.0003 (0.0000 – 0.0005) mm2 at D7, 0.0004 (0.0003 – 0.0008) mm2 at D14, and 0.0005 (0.0004 

– 0.0009) mm2 at D21). 

 

The density of myofibroblasts in these lesions was visualised using αSMA immunostaining (Figure 3.7 A-

C). Median αSMA+ expression was similar at D7 and D14 (14.93 (11.90 – 21.46) % and 17.76 (11.62 – 

22.60) % respectively). Interestingly, by D21, a significant increase in αSMA density was observed (28.20 

(24.27 – 33.63) %, p = 0.0020 for D7 vs D21 and p = 0.0017 for D14 vs D21) (Figure 3.7 G). Assessment 

of the extent of fibrosis in C57 lesions was carried out using Masson’s trichrome staining (Figure 3.7 D-

F). Density of fibrosis was unchanged between D7 (24.25 (17.47 – 30.01) %) and D14 (26.16 (17.61 – 

29.84) %). An increase in lesion fibrosis was noted at D21 (30.80 (27.95 – 33.75) %, p = 0.0324 for D7 

vs D21) (Figure 3.7 H). 
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Figure 3.3 F4/80 immunostaining in endometriosis-like lesions from C57 mice   

Quantification of total F4/80 density was carried out in lesions from C57 mice (G). F4/80 density at the lesion 
periphery (100µM from the edge of the lesion) at D7 (A), D14 (B) and D21 (C) was evaluated (H). F4/80 density at 
the lesion centre (within 500µM from the centre) at D7 (D), D14 (E), and D21 (F) was also quantified (I). Data are 
presented as median (IQR), with each symbol representative of a single lesion in one mouse (n=12 at D7, n=12 at 
D14, n=8 at D21). Analysis was done using the Kruskal-Wallis test followed by Dunn’s multiple comparison test, 
with significance denoted as * (p < 0.05), ** (p < 0.001) and **** (p < 0.0001). 
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Figure 3.4 M1–like macrophage marker immunostaining in lesions from C57 mice   

The expression of inducible nitric oxide synthase (iNOS) at D7 (A), D14 (B), and D21 (C) was quantified in C57 
lesions (G). Further analysis was performed to determine peripheral (H) and central (I) iNOS density. Quantification 
of the Class II Major Histocompatibility Complex (MHC II) was done at D7 (D), D14 (E) and D21 (F) in these lesions 
(J), with peripheral (K) and central (L) MHC II density determined. Data are presented as median (IQR), with each 
symbol representative of a single lesion in one mouse (n=12 at D7, n=12 at D14, n=8 at D21). Analysis was done 
using the Kruskal-Wallis test followed by Dunn’s multiple comparison test, with significance denoted as * (p < 0.05), 
** (p < 0.001) and **** (p < 0.0001).
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Figure 3.5 M2–like macrophage marker immunostaining in lesions from C57 mice   

CD206 density at D7 (A), D14 (B), and D21 (C) was quantified in C57 lesions (G), with further analysis of peripheral 
(H) and central (I) CD206 density. Expression of Arginase-1 (Arg-1) was evaluated at D7 (D), D14 (E) and D21 (F) 
in these lesions (J), with peripheral (K) and central (L) Arg-1 density determined. Data are presented as median 
(IQR), with each symbol representative of a single lesion in one mouse (n=12 at D7, n=12 at D14, n=8 at D21). 
Analysis was done using the Kruskal-Wallis test followed by Dunn’s multiple comparison test, with significance 
denoted as * (p < 0.05), ** (p < 0.01), *** (p < 0.001) and **** (p < 0.0001). 
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Figure 3.6 Blood vessel localisation in endometriosis-like lesions from C57 mice  

Von Willebrand Factor (vWF) staining was used to localise blood vessels in lesions from C57 mice at D7 (A), D14 
(B), and D21 (C). The total density of vWF+ vessels was quantified (D). The number of vessels per lesion (E) and 
the average vessel size (F) was determined. Data are presented as median (IQR), with each symbol representative 
of a single lesion in one mouse (n=12 at D7, n=12 at D14, n=8 at D21). Analysis was done using the Kruskal-Wallis 
test followed by Dunn’s multiple comparison test, with significance denoted as * (p < 0.05) and ** (p < 0.01). 
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Figure 3.7 Evaluation of fibrosis in endometriosis-like lesions from C57 mice  

The density of myofibroblasts in C57 lesions at D7 (A), D14 (B), and D21 (C) was evaluated using alpha smooth 
muscle actin (αSMA) (G). Masson’s trichrome staining was used to evaluate the density of fibrosis (H) at D7 (D), 
D14 (E) and D21 (F) in these lesions. Data are presented as median (IQR), with each symbol representative of a 
single lesion in one mouse (n=12 at D7, n=12 at D14, n=8 at D21). Analysis was done using the Kruskal-Wallis test 
followed by Dunn’s multiple comparison test, with significance denoted as * (p < 0.05) and ** (p < 0.01). 
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3.2.4. RNA-Sequencing analysis of lesion progression in C57 mice 

To assess the molecular changes associated with lesion development in these mice, RNA-Sequencing 

(RNA-Seq) was performed on donor decidualised endometrial tissue, D7 and D14 lesions (See Appendix: 

Figure 7.2 and Figure 7.3 for RNA-Seq metrics). Following alignment to the mouse reference genome 

and filtering to remove low expressed genes, a total of 16,291 genes were identified from the RNA-Seq. 

Average gene expression was obtained (n = 4 samples per group of decidualised endometrium, D7 and 

D14 lesions), and the proportion of differentially expressed genes (DEGs) between groups was 

determined using a fold change in expression of ≥ 2 with FDR ≤ 0.05 as the cut-off (see attached 

Supplementary Materials: Table 1 to 3 for complete DEG list). Principal component analysis performed 

using normalised RNA-Seq data shows a clustering pattern of C57 decidualised endometrial tissue 

samples on the bottom left, with a distinct separation from both D7 and D14 lesions (Figure 3.8 A). 

Comparisons between decidualised endometrium and D7 lesions found an upregulation in 12% of 

detected genes, while 18% of detected genes were downregulated (Figure 3.8 B). Between decidualised 

endometrium and D14, a total of 14% of detected genes were upregulated while 20% of detected genes 

were downregulated (Figure 3.8 C). In contrast, between D7 and D14, very few detected genes were 

differentially expressed (1% upregulated and 1% downregulated) (Figure 3.8 D).  

 

A total of 6,167 genes were differentially expressed between one or more of the three comparisons (Figure 

3.8 E). Of this, 2.5% (154 genes) were differentially expressed across all comparisons. The majority of 

common DEGs were only between the Decidualised vs D7 and Decidualised vs D14 (4,110 genes) 

comparisons. A further division of DEGs between Decidualised vs D7 and Decidualised vs D14 groups 

into upregulated (2,538 genes) and downregulated (3,625 genes) was performed (Figure 3.8 F and G 

respectively). A total of 1,739 genes were consistently upregulated, while 2,525 genes were consistently 

downregulated in lesions at both D7 and D14 when compared to decidualised endometrium.  

 

The genes with the largest fold change in expression between the three samples were identified (Table 

3.2). When compared with decidualised endometrium, lesions at both D7 and D14 had an increased 

expression of prolactin family 3, subfamily c, member 1 (Prl3c1; involved in hormone activity, regulation 

of proliferation and decidual differentiation), tachykinin 2 (Tac2; involved in the regulation of blood 

pressure), prostate stem cell antigen (Psca; involved in regulation of neurotransmission), and beta-

carotene oxygenase 1 (Bco1; involved in beta-carotene metabolic process). Alternatively, the expression 

of C1q tumour necrosis factor related protein 3 (C1qtnf3; involved in gluconeogenesis and cell 

communication) and superoxide dismutase 3 (Sod3; involved in response to hypoxia) was significantly 
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downregulated at both D7 and D14 compared to decidualised endometrial tissue. Upregulated DEGs 

between D7 and D14 lesions included genes associated with cellular matrix reorganisation and adhesion 

(tintin (Tnn), serine peptidase inhibitor (Serpinb2), integrin binding sialoprotein (Ibsp), and mesothelin 

(Msln)), while downregulated genes were involved in immune system regulation (e.g. melan-A (Mlana), 

CD5 antigen-like (CD5l), interleukin 31 receptor A (Il31ra), and histocompatibility 2, M region locus 2 (H2-

M2)). 

 

Assessment of canonical pathways in both D7 and D14 lesions compared to decidualised endometrium 

showed a similar upregulation in multiple cholesterol biosynthesis pathways, antioxidant pathways, and 

inhibition of matrix metalloproteases (Table 3.3 and Table 3.4). In addition, an upregulation in the Wnt/β-

catenin signalling pathway was noted in D7 lesions compared to decidualised endometrium (p = 0.0480, 

ratio = 8%). A total of 50 similar downregulated canonical pathways were identified in both D7 and D14 

lesions compared to decidualised endometrium. The majority of these pathways were associated with 

immune regulation, including Fcγ receptor-mediated phagocytosis in macrophages and monocytes, NF-

κB signalling, and production of nitric oxide and reactive oxygen species in macrophages. Surprisingly, 

only two canonical pathways were differentially regulated between D7 and D14 lesions, with an 

upregulation in the inhibition of matrix metalloproteases (p = 0.0014) and a downregulation in G2/M DNA 

damage checkpoint regulation (p = 0.0040) in D14 lesions (Table 3.5). 
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Figure 3.8 Number of differentially expressed genes identified in tissues from C57 mice 

Principal component analysis (PCA) was performed using the normalised RNA-Seq data from C57 decidualised 
endometrium, D7 and D14 lesions (A). The proportion of upregulated and downregulated DEGs amongst detected 
genes between Decidualised vs D7 (B), Decidualised vs D14 (C), and D7 vs D14 (D) was determined. The Venn 
diagram displays the distribution and overlap of DEGs (both upregulated and downregulated) between each 
comparison (E). Additional Venn diagrams were generated to determine the number of upregulated (F) and 
downregulated (G) DEGs during lesion development compared to decidualised endometrial tissue.  All genes 
identified have a ≥ 2-fold change in expression with an adjusted p value < 0.05.
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Table 3.2 Top ten upregulated and downregulated DEGs in C57 mice during decidualisation and lesion development (FDR <0.05) 

 

Decidualised vs D7 
 

Decidualised vs D14 
 

D7 vs D14 

Gene log2FC FDR 
 

Gene log2FC FDR 
 

Gene log2FC FDR 

Prl3c1 + 9.58 2.33 x 10-4  Prl3c1 + 10.01 1.15 x 10-4  Nfe2l3 + 4.04 3.92 x 10-2 

Doxl2 + 8.87 6.34 x 10-6  Bco1 + 9.78 6.97 x 10-10  Tnn + 3.24 5.63 x 10-3 

Cdsn + 8.46 2.22 x 10-6  Psca + 9.58 1.08 x 10-8  Serpinb2 + 3.11 1.77 x 10-2 

Tac2 + 8.41 8.78 x 10-10  Krtdap + 9.17 4.31 x 10-5  Ska3 + 3.10 3.38 x 10-2 

Psca + 8.24 1.89 x 10-8  Cgn + 8.80 4.84 x 10-6  Exo1 + 2.75 2.64 x 10-2 

Bco1 + 8.20 1.97 x 10-10  Tac2 + 8.74 6.33 x 10-10  Ibsp + 2.75 4.08 x 10-2 

Dio3 + 8.12 1.11 x 10-8  Cdh4 + 8.54 6.43 x 10-8  Msln + 2.71 2.10 x 10-2 

Krt84 + 8.00 2.70 x 10-8  Tacstd2 + 8.44 4.54 x 10-5  Sez6l + 2.68 6.07 x 10-3 

Spink8 + 7.96 1.31 x 10-8  Enpp7 + 8.43 1.40 x 10-9  Arg1 + 2.63 5.40 x 10-3 

Hcn4 + 7.91 7.54 x 10-9  Gfy + 8.35 1.14 x 10-6  Erv3 + 2.58 3.67 x 10-3 

Myh4 - 11.08 3.68 x 10-3  Clec3b - 11.08 1.44 x 10-5  Mlana - 5.15 1.71 x 10-4 

C1qtnf3 - 11.05 5.57 x 10-5  Dpt - 10.78 1.97 x 10-4  Cd5l - 4.17 2.14 x 10-4 

Arg1 - 10.83 2.12 x 10-3  Sod3 - 10.21 3.22 x 10-7  Il31ra - 4.16 3.38 x 10-2 

Sod3 - 10.36 3.36 x 10-7  Mmp3 - 10.06 4.75 x 10-7  Mcoln3 - 4.01 2.09 x 10-3 

Tbx15 - 10.14 6.43 x 10-5  C1qtnf3 - 9.96 1.67 x 10-4  Plppr4 - 3.98 3.36 x 10-2 

Ckm - 10.11 1.79 x 10-2  Ptpn5 - 9.92 7.98 x 10-5  Gm14461 - 3.94 4.18 x 10-3 

Tnni2 - 10.07 3.91 x 10-2  Tbx15 - 9.87 7.29 x 10-5  H2-M2 - 3.56 8.59 x 10-3 

Lrrc15 - 10.01 1.06 x 10-5  Fap - 9.70 1.92 x 10-11  Adra1a - 3.54 3.69 x 10-2 

Tnnt3 - 9.92 1.17 x 10-2  Mmp12 - 9.58 2.22 x 10-6  4930512J16Rik - 3.41 6.80 x 10-3 

Ttn - 9.90 3.20 x 10-3  Wisp2 - 9.28 4.87 x 10-6  Dlgap1 - 3.40 2.54 x 10-2 
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Table 3.3 Canonical pathways identified by IPA in D7 lesions compared to decidualised 

endometrium from C57 mice (P < 0.05; -2 > Z score > 2) 

Canonical Pathway Z score Ratio P value 

Antioxidant Action of Vitamin C +3.528 33% 5.25 x 10-3 

Superpathway of Cholesterol Biosynthesis +2.887 44% 6.92 x 10-3 

Cyclins and Cell Cycle Regulation +2.683 32% 2.24 x 10-2 

Cholesterol Biosynthesis I +2.121 62% 2.19 x 10-3 

Cholesterol Biosynthesis II (via 24,25-dihydrolanosterol) +2.121 62% 2.19 x 10-3 

Cholesterol Biosynthesis III (via Desmosterol) +2.121 62% 2.19 x 10-3 

Wnt/β-catenin Signalling +2.082 27% 4.79 x 10-2 

Inhibition of Matrix Metalloproteases +2.065 57% 3.72 x 10-6 

Superpathway of Geranylgeranyldiphosphate Biosynthesis I (via 
Mevalonate) 

+2.000 25% 4.71 x 10-1 

Ceramide Biosynthesis +2.000 57% 4.47 x 10-2 

Dermatan Sulphate Biosynthesis -2.000 31% 8.32 x 10-2 

Superoxide Radicals Degradation -2.000 50% 7.41 x 10-2 

PAK Signalling -2.030 40% 1.74 x 10-5 

Macropinocytosis Signalling -2.041 40% 9.55 x 10-5 

GM-CSF Signalling -2.043 38% 5.25 x 10-4 

fMLP Signalling in Neutrophils -2.082 37% 1.05 x 10-4 

CREB Signalling in Neurons -2.101 37% 3.98 x 10-7 

RANK Signalling in Osteoclasts -2.121 35% 1.15 x 10-3 

Type I Diabetes Mellitus Signalling -2.132 34% 2.29 x 10-3 

Toll-like Receptor Signalling -2.132 40% 2.88 x 10-4 

Sperm Motility -2.197 33% 4.07 x 10-3 

Notch Signalling -2.236 24% 4.13 x 10-1 

Chondroitin and Dermatan Biosynthesis -2.236 83% 2.40 x 10-3 

GNRH Signalling -2.263 39% 3.63 x 10-7 

Eicosanoid Signalling -2.309 46% 1.02 x 10-5 

P2Y Purigenic Receptor Signalling Pathway -2.309 39% 2.57 x 10-6 

Synaptic Long Term Depression -2.324 34% 6.76 x 10-5 

GDNF Family Ligand-Receptor Interactions -2.353 37% 8.51 x 10-4 

NF-κB Activation by Viruses -2.401 38% 2.45 x 10-4 

Th2 Pathway -2.402 40% 8.13 x 10-7 

IL-7 Signalling Pathway -2.414 34% 5.37 x 10-3 

Calcium-induced T Lymphocyte Apoptosis -2.449 45% 7.24 x 10-5 

Apelin Cardiomyocyte Signalling Pathway -2.469 39% 2.45 x 10-5 

Renin-Angiotensin Signalling -2.469 38% 1.48 x 10-5 

CCR3 Signalling in Eosinophils -2.475 39% 1.05 x 10-5 

Apelin Liver Signalling Pathway -2.500 62% 1.32 x 10-5 

Dopamine-DARPP32 Feedback in cAMP Signalling -2.534 33% 8.71 x 10-4 

NGF Signalling -2.535 30% 1.86 x 10-2 

Lymphotoxin β Receptor Signalling -2.558 35% 7.08 x 10-3 

Adrenomedullin signalling pathway -2.566 36% 4.57 x 10-6 

Gαq Signalling -2.610 38% 3.02 x 10-6 
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Production of Nitric Oxide and Reactive Oxygen Species in 
Macrophages 

-2.626 34% 1.38 x 10-4 

Gluconeogenesis I -2.646 29% 2.53 x 10-1 

Glycolysis I -2.646 30% 2.18 x 10-1 

Colorectal Cancer Metastasis Signalling -2.650 37% 1.91 x 10-8 

Interferon Signalling -2.673 45% 3.09 x 10-3 

Phospholipase C Signalling -2.689 35% 3.72 x 10-6 

eNOS Signalling -2.774 38% 2.19 x 10-6 

Integrin Signalling -2.782 31% 1.66 x 10-3 

Tec Kinase Signalling -2.828 39% 1.95 x 10-7 

Fc Epsilon RI Signalling -2.846 36% 2.45 x 10-4 

B Cell Activating Factor Signalling -2.887 37% 2.14 x 10-2 

NF-κB Signalling -2.898 36% 5.37 x 10-6 

Cardiac Hypertrophy Signalling -2.926 34% 8.51 x 10-6 

p38 MAPK Signalling -2.959 31% 1.20 x 10-2 

GPCR-Mediated Nutrient Sensing in Enteroendocrine Cells -3.000 45% 7.41 x 10-8 

PEDF Signalling -3.024 33% 7.59 x 10-3 

PI3K Signalling in B Lymphocytes -3.111 41% 2.57 x 10-7 

Glutathione-mediated Detoxification -3.162 40% 3.02 x 10-2 

Inflammasome pathway -3.357 79% 1.74 x 10-7 

Th1 Pathway -3.395 44% 4.27 x 10-8 

CD28 Signalling in T Helper Cells -3.479 41% 1.51 x 10-6 

B Cell Receptor Signalling -3.500 38% 3.31 x 10-7 

iCOS-iCOSL Signalling in T Helper Cells -3.507 47% 1.62 x 10-1 

Leukocyte Extravasation Signalling -3.623 45% 6.31 x 10-14 

Role of NFAT in Cardiac Hypertrophy -3.755 41% 5.01 x 10-11 

Role of NFAT in Regulation of the Immune Response -3.810 40% 7.76 x 10-9 

Role of Pattern Recognition Receptors in Recognition of Bacteria and 
Viruses 

-3.904 45% 4.57 x 10-9 

Fcγ Receptor-mediated Phagocytosis in Macrophages and Monocytes -4.000 40% 6.76 x 10-5 

GP6 Signalling Pathway -4.154 55% 3.98 x 10-17 

PKCθ Signalling in T Lymphocytes -4.160 41% 5.01 x 10-8 

Calcium Signalling -4.341 36% 1.82 x 10-6 

Neuroinflammation Signalling Pathway -4.400 38% 1.00 x 10-10 

TREM1 Signalling -4.964 57% 3.24 x 10-10 

Dendritic Cell Maturation -5.336 43% 2.82 x 10-10 
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Table 3.4 Canonical pathways identified by IPA in D14 lesions compared to decidualised 

endometrium from C57 mice (P < 0.05; -2 > Z score > 2) 

Canonical Pathway Z score Ratio P value 

Superpathway of Cholesterol Biosynthesis +3.207 52% 2.00 x 10-3 

Antioxidant Action of Vitamin C +3.024 33% 3.24 x 10-2 

Inhibition of Matrix Metalloproteases +2.982 57% 2.75 x 10-5 

Mitotic Roles of Polo-Like Kinase +2.673 39% 6.92 x 10-3 

Cholesterol Biosynthesis I +2.121 62% 4.90 x 10-3 

Cholesterol Biosynthesis II (via 24,25-dihydrolanosterol) +2.121 62% 4.90 x 10-3 

Cholesterol Biosynthesis III (via Desmosterol) +2.121 62% 4.90 x 10-3 

Type II Diabetes Mellitus Signalling -2.000 42% 1.74 x 10-6 

Heme Degradation -2.000 100% 3.63 x 10-3 

Chondroitin and Dermatan Biosynthesis -2.000 67% 3.55 x 10-2 

FGF Signalling -2.058 38% 2.69 x 10-3 

CREB Signalling in Neurons -2.066 37% 4.79 x 10-5 

Production of Nitric Oxide and Reactive Oxygen Species in 
Macrophages 

-2.109 37% 6.92 x 10-5 

NF-κB Activation by Viruses -2.137 41% 2.75 x 10-4 

Apelin Liver Signalling Pathway -2.138 54% 1.23 x 10-3 

Noradrenaline and Adrenaline Degradation -2.138 45% 9.55 x 10-3 

Gα12/13 Signalling -2.188 36% 1.95 x 10-3 

Adrenomedullin signalling pathway -2.194 39% 1.74 x 10-6 

Superoxide Radicals Degradation -2.236 63% 2.51 x 10-2 

Colorectal Cancer Metastasis Signalling -2.251 39% 2.09 x 10-7 

CCR3 Signalling in Eosinophils -2.263 40% 6.61 x 10-5 

Cardiac Hypertrophy Signalling -2.278 39% 8.51 x 10-7 

Lymphotoxin β Receptor Signalling -2.294 37% 1.62 x 10-2 

eNOS Signalling -2.309 36% 4.07 x 10-4 

Synaptic Long Term Depression -2.324 35% 1.17 x 10-3 

Eicosanoid Signalling -2.333 42% 1.86 x 10-3 

Tec Kinase Signalling -2.335 41% 1.58 x 10-6 

NGF Signalling -2.343 35% 6.03 x 10-3 

Dopamine-DARPP32 Feedback in cAMP Signalling -2.359 33% 7.41 x 10-3 

Integrin Signalling -2.394 33% 3.55 x 10-3 

Sperm Motility -2.401 34% 1.10 x 10-2 

Fc Epsilon RI Signalling -2.402 35% 6.03 x 10-3 

GDNF Family Ligand-Receptor Interactions -2.414 41% 6.92 x 10-4 

Apelin Cardiomyocyte Signalling Pathway -2.534 42% 4.68 x 10-5 

Renin-Angiotensin Signalling -2.534 40% 8.71 x 10-5 

Gαq Signalling -2.540 42% 7.41 x 10-7 

Phospholipase C Signalling -2.566 37% 3.16 x 10-5 

Th2 Pathway -2.598 47% 1.23 x 10-8 

IL-7 Signalling Pathway -2.611 39% 1.32 x 10-3 

PEDF Signalling -2.694 36% 7.59 x 10-3 

Calcium-induced T Lymphocyte Apoptosis -2.746 48% 7.24 x 10-5 
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GPCR-Mediated Nutrient Sensing in Enteroendocrine Cells -2.771 43% 2.04 x 10-5 

p38 MAPK Signalling -2.795 35% 9.12 x 10-3 

Role of NFAT in Cardiac Hypertrophy -2.929 42% 1.41 x 10-8 

Leukocyte Extravasation Signalling -3.092 46% 5.01 x 10-12 

PI3K Signalling in B Lymphocytes -3.159 44% 1.05 x 10-6 

B Cell Receptor Signalling -3.299 40% 3.63 x 10-6 

NF-κB Signalling -3.349 37% 7.76 x 10-5 

Role of Pattern Recognition Receptors in Recognition of Bacteria and 
Viruses 

-3.429 49% 8.71 x 10-10 

Glutathione-mediated Detoxification -3.464 48% 9.12 x 10-3 

Fcγ Receptor-mediated Phagocytosis in Macrophages and Monocytes -3.550 39% 1.74 x 10-3 

CD28 Signalling in T Helper Cells -3.592 43% 4.57 x 10-6 

Inflammasome pathway -3.606 68% 6.61 x 10-5 

iCOS-iCOSL Signalling in T Helper Cells -3.833 50% 1.86 x 10-9 

Role of NFAT in Regulation of the Immune Response -4.032 43% 2.19 x 10-8 

Calcium Signalling -4.082 41% 5.50 x 10-7 

PKCθ Signalling in T Lymphocytes -4.106 43% 4.17 x 10-7 

Neuroinflammation Signalling Pathway -4.350 42% 6.31 x 10-11 

Th1 Pathway -4.429 48% 6.76 x 10-9 

GP6 Signalling Pathway -4.565 57% 2.00 x 10-15 

TREM1 Signalling -4.841 59% 6.92 x 10-10 

Dendritic Cell Maturation -5.498 42% 1.70 x 10-7 
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Table 3.5 Canonical pathways identified by IPA in D14 lesions compared to D7 lesions from C57 

mice (P < 0.05; -2 > Z score > 2) 

 

Canonical Pathway Z score Ratio P value 

Inhibition of Matrix Metalloproteases +2.000 11% 1.41 x 10-3 

Cell Cycle: G2/M DNA Damage Checkpoint Regulation -2.000 8% 3.98 x 10-3 
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3.3. DISCUSSION 

This is the first study to characterise the development of lesions over time in a subcutaneous menstrual 

mouse model of endometriosis. The experiments carried out in this chapter demonstrate that successful 

lesion establishment and morphological changes associated with lesion growth can be effectively 

characterised across the span of three weeks. The subcutaneous endometriosis-like lesions in C57 mice 

developed distinctive glandular and stromal areas, and were representative of human endometriosis 

lesions. Moreover, infiltration of F4/80+ macrophages into lesions, with an increase in M2-like macrophage 

markers was observed over time. Interestingly, from the RNA-Seq data, differential expression of genes 

was most apparent between the decidualised endometrium and endometriosis-like lesions, while very few 

DEGs were identified between D7 and D14 lesions, suggesting that the morphological and histological 

changes observed during lesion development may be predetermined by gene expression in the eutopic 

endometrium. 

 

3.3.1. Endometriosis-like lesions in C57 mice mimic human disease 

In wildtype C57 mice, we observed that lesion recovery rate averaged 95% over the course of three 

weeks, confirming the efficacy of this model. Distinct changes in the overt appearance of lesions over 

time highlights the dynamic nature of endometriosis progression. At D7, the observed red, blood-filled 

opaque lesions are suggestive of the deoxygenation of haemoglobin, which may contribute to the 

pathogenesis of endometriosis (Van Langendonckt et al., 2002a, Van Langendonckt et al., 2002b). 

Following the lysis of red blood cells, the presence of haemoglobin is implicated in the activation of cell 

adhesion molecules, which induce cell proliferation, cytokine production and initiate neovascularisation 

(Van Langendonckt et al., 2002a, Van Langendonckt et al., 2002b). Indeed, from D14 onwards, we 

observed colour changes within the lesions, coupled with the appearance of surrounding vasculature. 

This is indicative of the deoxygenation from haemoglobin to either methaemoglobin or hemosiderin (Khan 

et al., 2004), and suggests sequential changes from attachment of the ectopic tissue, to heme metabolism 

and vascularisation which assists in maintaining lesion development (Khan et al., 2014).  

 

Lesion weight and size are important clinical indicators of lesion development. The initial decrease in 

lesion size between D7 and D14 suggests an attempt to clear the ectopic tissue; however the increase 

seen in lesion size between D14 and D21 suggests a shift from clearance towards remodelling and 

establishment which may be driven by immune cell infiltration (Young et al., 2013, Králíčková and 

Vetvicka, 2015).  Endometrial glands are important sources of chemokines, including CCL16 and CCL21 

which are secreted by glandular epithelial cells (Chand et al., 2007). These chemokines and additional 
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associated cytokines, are involved in the regulation and infiltration of immune cells (Chand et al., 2007), 

and may be vital in supporting the growth of ectopic endometrial tissue. Sustained weight loss over time 

in C57 lesions was coupled with an inversely proportional increase in the number of glands, luminal and 

epithelial areas present, suggesting increased lesion remodelling and establishment, potentially mediated 

by immune cells.  

 

3.3.2. Macrophage activity correlates with lesion development in C57 mice 

The multi-faceted role of the immune system mediates the progression of endometriosis. In particular, the 

presence of macrophages is a consistent feature of endometriotic lesions and appears to be a significant 

driving force in the establishment and persistence of this disease (Capobianco and Rovere-Querini, 2013). 

In C57 mice, while total F4/80 macrophage density within lesions was unaltered over the course of the 

experiment, a significant increase in central F4/80 macrophage density was observed over time, coupled 

with a reduction in peripheral F4/80 expression. In concordance with previous work, this finding suggests 

that the presence of ectopic endometrial tissue attracts an influx of macrophages from the surrounding 

environment (D'Hooghe et al., 2001). Studies have shown that a range of cytokines, including IL-1, Il-17, 

TNFα, and IL-10–mediated-CCL5 (RANTES), are secreted by infiltrating macrophages, and have roles in 

both macrophage function as well as further recruitment of macrophages and monocytes (Mori et al., 

1992, Khorram et al., 1993, Richter et al., 2005, Barin et al., 2012).  

 

The RNA-Seq data further confirms this observation, with an increase in the IL-17 signalling pathway 

observed between D7 and D14 (Appendix: Figure 7.4 and Table 7.1 – Cluster 5). Macrophages are 

associated with IL-17-mediated signalling, wherein IL-17-differentiated macrophages produce 

inflammatory cytokines in the presence of oxidized low-density lipoprotein (Barin et al., 2012, de la Paz 

Sánchez-Martínez et al., 2017). During lesion development in this mouse model, the identification of 

multiple canonical pathways involving cholesterol biosynthesis suggests that the presence of oxidized 

low-density lipoprotein (or cholesterol) may be driving IL-17-mediated pro-inflammatory macrophage 

recruitment and activity during endometriosis. In addition, elevated IL-17 signalling is associated with the 

progression of cancer, autoimmune diseases, and a range of immuno-pathologies, including 

endometriosis (Ahn et al., 2015, Beringer et al., 2016). 
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3.3.2.1. Immune activation status remains dynamic throughout lesion development in C57 mice 

In endometriosis, macrophages may either promote lesion clearance or regulate endometriotic epithelial 

remodelling dependent on their activation status (Bacci et al., 2009). Moreover, dynamic changes in 

macrophage phenotype quantified via immunohistochemical localisation have also been observed in a 

MacGreen/SCID mouse model of endometriosis (Johan et al., 2019). In this C57 mouse model of 

endometriosis, the expression levels of the M1-like marker MHC II fluctuated over the three week period. 

Reduced expression of the MHC II–associated protein HLA-DR was seen in women with endometriosis 

compared to those without endometriosis (Kusume et al., 2005). In addition, the expression of HLA-DR 

in the macrophage cell line THP-1, was downregulated following a co-culture with peritoneal fluid from 

women with endometriosis (Lee et al., 2005). Further investigation has also uncovered roles for IL-10 and 

RANTES mediated suppression of MHC II expression in macrophages (Lee et al., 2005, Wang et al., 

2010). As levels of IL-10 and RANTES are elevated in peritoneal fluid from women with endometriosis 

(Wang et al., 2010), it is possible that the ectopic implantation environment restricts lesion clearance by 

reducing M1-like macrophage activity and hence, creates an immune-tolerant milieu that facilitates ectopic 

tissue survival. Therefore, the expression of MHC II may be an essential step in supporting the clearance 

of ectopic endometrial tissue and preventing initial disease development. In this study, the observed 

decline in MHC II expression between D7 and D14 suggests that a resolution of inflammation is occurring, 

which reduces tissue clearance and supports the survival of ectopic endometrial tissue. Although a 

subsequent increase in total, central and peripheral MHC II expression is observed between D14 and 

D21, the respite in immune-mediated clearance at D14 appears to have been sufficient in allowing lesions 

to become fully established.  

 

Throughout the duration of this study, the total density of the M1-like marker iNOS in lesions remained 

consistent between D7 and D21. In women, a study evaluating the expression of NO in endometriosis 

found significantly higher levels in ectopic tissue compared to paired eutopic endometrial samples (Wu et 

al., 2003). Furthermore, the same study showed elevated expression of NO in endometrial samples from 

women with endometriosis compared to those without. In addition, higher levels of iNOS were secreted 

from peritoneal macrophages derived from women with endometriosis compared to women without 

endometriosis, when stimulated with IFN-α in vitro (Osborn et al., 2002). This finding was linked with the 

observed subfertility seen in women with endometriosis, and is thought to contribute to inflammation and 

pain in the peritoneal cavity. Thus, macrophage-derived iNOS activity plays a role in the pathogenesis of 

endometriosis, and regulation of this M1-like immune mediator is critical in managing the symptoms 

associated with this disorder. Surprisingly, the results from this study contrasts with these findings, 

wherein a decrease in the canonical pathway ‘Production of Nitric Oxide and Reactive Oxygen Species 

in Macrophages’ was seen at both D7 and D14 compared to decidualised endometrium. Similarly, 
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Immunohistochemical analyses of central iNOS density within lesions was lowest at D7 and D14 and 

increased significantly at D21. As lesions developed subcutaneously rather than intraperitoneally, it is 

possible that the availability and/or secretion of iNOS from tissue-resident macrophages may differ from 

peritoneal macrophages, which may account for fluctuations in the peripheral iNOS density over time. In 

addition, it is possible that the elevation of NO and iNOS in women with endometriosis may be a 

consequence of the ectopic endometrial tissue load and chronic inflammation associated with this 

disease.  

 

A link between endometriosis and Arg-1 expressing M2-like macrophages is yet to be determined. In this 

study, the expression of total Arg-1 remained comparable at all time points when assessed via 

immunohistochemistry. In contrast, the RNA-Seq data showed a decrease in Arg-1 at D7 when compared 

to decidualised endometrium, while an elevation in Arg-1 was observed in D14 lesions compared to D7 

lesions, which was also observed in analyses of peripheral and central Arg-1 density. During both the 

proliferative and secretory phases of the human menstrual cycle, detection of ARG1 mRNA was localised 

in the epithelial layer of eutopic endometrium (Tajima et al., 2012). In a mouse model of endometriosis, 

elevated Arg-1 expression was observed in lesions compared to uterine tissue three days following 

disease initiation, however, Arg-1 levels were unchanged were not significantly different after 29 days 

(Pelch et al., 2010). In a SCID mouse model of endometriosis, analysis of lesions over four time points 

(day 4, 7, 10, and 14 – post disease induction) found significantly higher expression of Arg-1+ 

macrophages at day 7 compared to other time points (Johan et al., 2019). In addition, upregulation of Arg-

1 expression was observed in murine peritoneal macrophages exposed to hypoxic conditions (Louis et 

al., 1998), which is known to occur in endometriosis (Groothuis, 2012). Collectively, these findings suggest 

that Arg-1 expression may be critical to initiate tissue remodelling during the early stages of endometriotic 

lesion growth, however more research into the role of Arg-1 is required, particularly at later stages of 

lesion development.  

 

On the other hand, immunohistochemical quantification showed a significant increase in the expression 

of the M2-like marker CD206 over time. During disease development, CD206 was expressed at 

significantly higher levels in peritoneal macrophages from women with endometriosis compared to 

controls (Bacci et al., 2009). Moreover, immunohistochemical evaluation of endometriotic lesions and 

peritoneum biopsies from women with endometriosis showed elevated expression of CD206 compared 

to control peritoneum tissue (Bacci et al., 2009). In addition, the expression and cellular localisation of 

matrix metalloproteinase (MMP)-27 in ovarian and peritoneal endometriotic lesions was associated with 

CD206+ macrophages (Cominelli et al., 2014). As MMPs are implicated in tissue remodelling processes 

associated with invasion and metastasis in endometriosis and cancers (Osteen et al., 2003, Nagase et 
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al., 2006), elevated expression of M2-like macrophages may contribute significantly in disease 

pathogenesis and persistence. However, from the RNA-Seq dataset, it is intriguing to note that an 

elevation in the canonical pathway associated with inhibition of MMPs was observed throughout lesion 

development, suggesting that MMP-mediated remodelling of endometrial lesions may not be critical 

during early lesion establishment.  

 

3.3.3. Markers of lesion establishment are observed during disease development in C57 mice 

Aside from macrophage infiltration into endometriotic lesions, a study using a nude mouse model of 

endometriosis identified two additional events which had critical roles in the development of endometriosis 

(Hull et al., 2008). First, an increase in myofibroblast activity in endometriotic lesions was noted between 

day 7 and day 14, and second, the formation of blood vessels throughout the ectopic tissue was vital in 

supporting lesion vascularisation and survival (Hull et al., 2008). In the C57 ‘menstrual’ mouse model of 

endometriosis, elevation in αSMA as well as an increase in blood vessel formation was observed over 

time, with a greater extent of fibrosis at D21. In humans, αSMA, the marker used to detect myofibroblast 

activity, was more abundantly expressed in unaffected peritoneal biopsies from women with 

endometriosis compared to women without endometriosis (Barcena de Arellano et al., 2011). 

Furthermore, expression of ACTA2, the gene encoding αSMA, was elevated in peritoneal endometriotic 

lesions compared to paired eutopic endometrium (Sohler et al., 2013), suggesting an important role for 

myofibroblasts in endometriotic lesion remodelling.  

 

This observation is further supported by the elevation of the tissue remodelling gene Serpinb2 in lesions 

at D14 compared to D7. Serpinb2 has been shown to regulate fibroblast interaction with collagen, thus 

mediating stromal remodelling and local tissue invasion in a mouse model of pancreatic cancer (Harris et 

al., 2017). Moreover, following an inflammatory challenge, mice deficient in Serpinb2 had reduced 

expression of CCL2 and Arg-1, resulting in impaired macrophage infiltration and reduced M2-like 

macrophage activation (Zhao et al., 2013). Similarly, several studies have classified Serpinb2 as an M2-

like macrophage associated gene, whereby its expression is important in preventing premature 

macrophage apoptosis and has a role in inhibiting the early cessation of the innate immune response 

(Park et al., 2005, de las Casas-Engel et al., 2013, Zhao et al., 2013, Shea-Donohue et al., 2014).   

 

KEGG pathway analysis has shown an upregulation in genes associated with the VEGF signalling 

pathway at both D7 and D14 (Appendix: Figure 7.4 and Table 7.1 – Cluster 3). Macrophages are a potent 

source of VEGF, and have roles in vascular development (Capobianco and Rovere-Querini, 2013). 
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Depletion of macrophages in a mouse model of endometriosis resulted in smaller lesions with reduced 

vascularisation compared to control mice (Bacci et al., 2009), strongly implicating macrophages in the 

process of neovascularisation and lesion survival.  

 

Macrophages also contribute to the deposition of collagen and fibrous material. In a mouse wound-healing 

model, macrophage depletion resulted in reduced collagen intensity as measured by Masson’s trichrome 

staining (Mirza et al., 2009). Interestingly, an association between the time at which macrophages were 

depleted and their ability to mediate collagen deposition was observed (Mirza et al., 2009, Lucas et al., 

2010). In particular, early recruitment of macrophages (within forty eight hours) was essential in collagen 

synthesis at a later stage, as depletion of macrophages forty eight hours post-injury did not significantly 

affect tissue healing and remodelling (Lucas et al., 2010). At both D7 and D14, KEGG pathway analysis 

has shown an upregulation in genes associated with glycosaminoglycan biosynthesis, suggesting that 

collagen deposition and remodelling may be occurring during lesion development (Appendix: Figure 7.4 

and Table 7.1 – Cluster 3 and Cluster 5). 

 

To summarise, the findings from this chapter have shown that the development of glandular fractions 

occurs gradually in endometriosis-like lesions from C57 mice, corresponding with an increase in 

vascularisation and myofibroblast activity to support endometriotic lesion growth and survival. These 

findings have also demonstrated that the gene expression profile between D7 and D14 lesions was 

comparable, suggesting that subtle shifts in macrophage polarisation status may occur surreptitiously 

throughout lesion development in endometriosis which may not have been fully captured by the RNA-Seq 

analysis. Therefore, to better understand the roles of macrophages in endometriosis, it is important that 

characterisation of lesion progression is undertaken in models in which the impact of sustained expression 

of either M1-like (pro-inflammatory) or M2-like (anti-inflammatory) immune profiles can be evaluated 

throughout disease development. Thus, the impact of a systemic miR-155 or miR-223 deficiency on 

endometriotic lesion development in mice is investigated in Chapter 4 and Chapter 5 respectively.  
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Chapter 4  

 

Evaluating the effect of a miR-155 

deficiency on endometriotic lesion 

development 
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4.1. INTRODUCTION 

Due to the heterogeneous nature of endometriosis and endometriosis-associated symptoms, achieving 

an accurate differential diagnosis in the absence of laparoscopic surgery is challenging. The World 

Endometriosis Research Foundation has highlighted the importance of developing low-invasive tests and 

biomarkers for endometriosis as a research priority for endometriosis (Adamson and Johnson, 2018). To 

this extent, multiple studies analysing blood samples from women with and without endometriosis have 

identified aberrant expression of miRNAs (Suryawanshi et al., 2013, Wang et al., 2013b, Cho et al., 2015, 

Rekker et al., 2015, Cosar et al., 2016, Nisenblat et al., 2019). Amongst the miRNAs that are dysregulated 

in plasma from women with endometriosis is miR-155-5p (miR-155) (Nisenblat et al., 2012, Nisenblat et 

al., 2019). 

 

miR-155 is located within an exon of the B-cell Integration Cluster (BIC) ncRNA, present on chromosome 

21 (Lagos-Quintana et al., 2002). BIC is highly expressed in lymphoid organs, with a strong sequence 

homology among human, chicken, and mouse genomes, indicative of an evolutionary-conserved function 

(Faraoni et al., 2009). miR-155 plays important roles in haematopoietic lineage differentiation, vascular 

remodelling, and response to immunological challenges, and has been implicated in several pathologies 

including cardiovascular disease, cancer, and chronic autoimmune disorders such as rheumatoid arthritis, 

multiple sclerosis, and systemic lupus erythematosus (Faraoni et al., 2009, Leng et al., 2011). While miR-

155 is present in endothelial cells and smooth muscle cells (Zhu et al., 2011), the highest expression of 

this gene is within immune effector cells, including activated B and T cells, monocytes and macrophages 

(O'Connell et al., 2007, Turner and Vigorito, 2008, Faraoni et al., 2009).  

 

In macrophages, regulation of miR-155 is initiated via Toll-like receptor (TLR) signalling. TLR activation 

creates a feed-forward loop, in which the downstream activation of nuclear factor κB (NF-κB) upregulates 

miR-155 production, whereas the activation of protein kinase B (AKT1) by TLRs represses miR-155 

expression. In addition, miR-155 expression inhibits two phosphatases (suppressor of cytokine signalling 

1 (SOCS1) and SH2 domain-containing inositol 5′-phosphatase 1 (SHIP1)) which results in a positive 

feedback loop that increases pro-inflammatory TLR-NF-κB signalling (O'Neill et al., 2011, Mehta and 

Baltimore, 2016). miR-155 is upregulated following an inflammatory LPS challenge, and is also a common 

target of a range of pro-inflammatory mediators, including polyriboinosinic:polyribocytidylic (PI:PC) acid, 

IFN-β, and TNF-α. (O'Connell et al., 2007, O'Connell et al., 2012). 

 

Within the macrophage lineage, multiple studies have shown that miR-155 expression preferentially 

polarises macrophages towards an M1-like phenotype (Worm et al., 2009, Martinez-Nunez et al., 2011, 
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Arranz et al., 2012, Gracias et al., 2013, Wang et al., 2013a). The silencing of miR-155 results in increased 

levels of alternatively-activated M2-like macrophages, with a simultaneous decrease in M1-like 

macrophage numbers (Zhang et al., 2016c). The expression of miR-155 has a pivotal role in Akt kinase-

driven polarisation of macrophages, wherein an Akt1-deficiency results in a M1-like macrophage 

phenotype and conversely, an Akt2-deficiency results in a M2-like macrophage phenotype (Arranz et al., 

2012). miR-155 is repressed in Akt-2 deficient macrophages, with the simultaneous upregulation of the 

transcriptional co-repressor CCAAT/enhancer-binding protein-β (C/EBPβ), an important regulator of the 

M2-like macrophage-associated Arg-1, thus implying a role for miR-155 in promoting a classical M1-like 

macrophage phenotype (Arranz et al., 2012). In THP-1 monocyte-derived macrophage cell lines, the 

transfection of a miR-155 mimic resulted in the upregulation of transcripts associated with the classical 

M1-like immune response, highlighting the role of miR-155 in eliciting an M1-like, pro-inflammatory 

immune response (Das et al., 2013). The overexpression of miR-155 suppresses IL-13Rα1 (a cytokine 

receptor expressed on monocytes allowing for M2-like macrophage polarisation), thus inhibiting M2-like 

macrophage differentiation and effectively promoting M1-like macrophage polarisation. In contrast, a 

deficiency in miR-155 enhances the expression of IL-13Rα1, thereby facilitating M2-like macrophage 

activation (Martinez-Nunez et al., 2011).  

 

In the female reproductive system, the expression of miR-155 in human plasma is comparable across the 

menstrual cycle (Nisenblat et al., 2019) and miRNA arrays and qRT-PCR validation has demonstrated 

that oestradiol upregulates miR-155 in mouse uterine tissues (Nothnick and Healy, 2010). In addition, an 

upregulation of miR-155 expression correlates with a poorer prognosis in cervical cancer patients, with 

an increase in lymph node metastasis and vascular invasion (Fang et al., 2016). Studies have shown that 

miR-155 is also upregulated during endothelial to mesenchymal transition (EndoMT), and is further 

enhanced in hypoxic conditions, such as are present during endometriosis. In addition, miR-155 is also 

proposed to be involved in inflammation and fibrosis, and in vitro experiments have shown it to be a 

negative regulator of RhoA signalling in TGFβ-induced EndoMT (O'Connell et al., 2007, Faraoni et al., 

2009, Kurowska-Stolarska et al., 2011, Bijkerk et al., 2012, Koch et al., 2012).  

 

In the context of endometriosis, a significant downregulation of miR-155 expression is observed in two 

separate cohorts of plasma samples from women with (n = 131) and without (n = 66) endometriosis 

(Nisenblat et al., 2019). Moreover, in a subgroup analysis, expression of miR-155 remained differentially 

expressed during both mild (Stage I and II) and severe (Stage III and IV) disease (Nisenblat et al., 2019). 

Collectively, these findings suggest that a downregulation in miR-155 may contribute to the pathogenesis 

of endometriosis by promoting polarisation of M2-like macrophages, thus inducing a tissue healing and 
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remodelling phenotype eventuating in disease exacerbation. Therefore, in this chapter, to fully assess the 

impact of miR-155 downregulation in endometriosis, a miR-155-/- mouse model was utilised. 

 

The physiology of miR-155-/- mice has been well characterised, in which a deficiency in miR-155 does not 

impact the development and growth of naturally ageing mice (Zhang et al., 2017a). However, the 

immunological prolife of miR-155-/- mice differs from miR-155 replete mice. miR-155-/- mice exhibit 

reduced eosinophilic inflammation in response to a chronic allergen exposure, with reduced IL-33 

signalling (Johansson et al., 2017). A significant reduction in the inflammatory genes Inos, Il-1β, and Tnf-

α was observed in M1-like macrophages derived from miR-155-/- mice, while the expression of the M2-

like macrophage gene Arg1 was unchanged between miR-155 deficient and replete mice (Jablonski et 

al., 2016).  

 

Thus, to evaluate the contribution of miR-155 on macrophage activity during the development of 

endometriosis, a miR-155-/- menstrual mouse model of endometriosis was developed, in which 40mg of 

miR-155-/- donor decidualised endometrial tissue was injected subcutaneously into syngeneic recipient 

mice. Characterisation of endometriosis-like lesion size, weight, and glandular fractions was carried out 

at D7, D14 and D21. Immunohistochemical assessment of macrophage localisation (F4/80 staining), M1-

like markers (MHC II and iNOS) and M2-like markers (CD206 and Arg-1), blood vessel density (vWF), 

and myofibroblast abundance (αSMA) was performed with Masson’s trichrome staining to assess the 

extent of fibrosis. The differential expression of genes between donor decidualised endometrium, D7 and 

D14 lesions was assessed via RNA-Sequencing (RNA-Seq). Additional comparisons were made between 

miR-155-/- and C57 (wildtype control strain) data at corresponding time points, with the original C57 data 

presented in Chapter 3 of this thesis. Finally, reciprocal transfers between miR-155-/- mice and C57 mice 

were performed to determine whether a miR-155 deficiency only in the donor endometrium or only in the 

host response alters lesion development over the course of three weeks. 
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4.2. RESULTS 

4.2.1. Endometriosis-like lesion development in miR-155 deficient mice 

To assess the contribution of miR-155 during lesion development in endometriosis, a miR-155-/- menstrual 

mouse model of endometriosis was developed. In this model, 40mg of miR-155-/- decidualised donor 

endometrial tissue was subcutaneously injected into miR-155-/- recipient mice. To evaluate the extent of 

disease establishment, endometriosis-like lesions that developed at D7, D14 and D21 were analysed for 

size, weight, and glandular fractions. 

 

A total of 53 miR-155-/- donor mice were required to generate sufficient decidualised endometrial tissue 

for transfer into recipient mice at a ratio of 1 donor to 1 recipient. Overall, throughout the duration of this 

experiment, 91% of miR-155-/- recipient mice had identifiable endometriotic-like lesions (Table 4.1). At D7, 

90.0% of recipient mice had lesions, at D14, 94.4% of recipient mice had lesions, and at D21, 86.7% of 

recipient mice had lesions. One mouse had more than one lesion and has been excluded from subsequent 

analyses. 

 

Lesion morphology was assessed across the time course. At D7, lesions were large, raised from the site 

of attachment, and appeared white (Figure 4.1 A). At both D14 (Figure 4.1 B) and D21 (Figure 4.1 C), 

lesions were round, small and opaque, with a black/blood-filled appearance, and showed signs of 

vascularisation to the surrounding tissue. Lesion size decreased significantly between D7 and D14 (45 

(13 – 164) mm3 versus 6 (2.0 – 12.5) mm3 respectively, p = 0.0005), with no differences seen at D21 (12 

(8 – 12) mm3) (Figure 4.1 D). Lesion weight in miR-155-/- mice was 37.70 (24.10 – 58.35) mg at D7, and 

significantly decreased by 82% at D14 (6.90 (4.65 – 12.40) mg, p = 0.0014). At D21, lesions weighed 3.90 

(3.25 – 4.65) mg, 90% lighter than D7 lesions (p < 0.0001) (Figure 4.1 E). 

 

Analysis of morphological parameters from H&E stained lesion sections showed that at D7 (Figure 4.2 

A), D14 (Figure 4.2 B), and D21 (Figure 4.2 C), lesions appeared similar, with visible gland formation 

across all time points (indicated by arrows). No differences were observed in the median number of glands 

per lesion, gland size, lumen area within glands, epithelium area of glands, percentage glandular 

epithelium of lesions and the percentage stromal across all time points (Figure 4.2 D-I).  
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Table 4.1 Endometriosis-like lesion recovery in miR-155-/- mice 

Lesion collection time point D7 D14 D21 

Total number of donor mice used across all time points: 50 

Number of recipient mice 20 18 15 

Number of mice with lesions* 18 17 13 

Proportion of mice with lesions (%) 90.0 94.4 86.7 

* To reduce bias, mice with ≥2 lesions were excluded from subsequent analyses.  At D7 - 1 mouse excluded.  
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4.2.1.1. Comparison of endometriosis-like lesion progression between C57 mice and miR-155 

deficient mice 

Although the systemic depletion of miR-155 in mice resulted in a significant decrease in both lesion size 

and weight from D7 to D21, no significant alterations were observed in morphometric parameters within 

these endometriotic-like lesions. To further evaluate the effect of miR-155 on the development of 

endometriosis, a comparative analysis between miR-155 deficient lesions (miR-155-/-) and miR-155 

sufficient lesions (C57) was performed.    

  

Lesion size was significantly different between C57 and miR-155-/- mice (Figure 4.3 A) on D7, with lesions 

in miR-155-/- mice being 3-fold larger than C57 lesions (p = 0.0165). At D14, lesions reduced in size in 

both groups, and although miR-155-/- lesions were larger than C57 lesions, this was not significantly 

different. At D21, lesions from miR-155-/- mice were 1.7-fold larger than C57 lesions (p = 0.0469). Similarly, 

lesion weight (Figure 4.3 B) at D7 was significantly heavier in miR-155-/- mice compared to C57 mice 

(increase of 2.4-fold, p = 0.0011). At both D14 and D21, lesions in miR-155-/- mice were 1.4-fold heavier 

than C57 lesions at the same time point, however this did not reach significance (p = 0.5631 and p = 

0.0722 respectively). 

 

The median number of glands per lesion (Figure 4.3 C) remained consistent in miR-155-/- mice over the 

all three time points, however in C57 mice, values steadily increased. At D14, miR-155-/- lesions had 80% 

fewer glands than C57 lesions (p = 0.0103), and at D21, miR-155-/- lesions had 70% fewer glands than 

C57 lesions (p < 0.0001). The average gland size (Figure 4.3 D) was comparable between miR-155-/- and 

C57 lesions across all time points. Lumen area (Figure 4.3 E) and epithelium area measurements (Figure 

4.3 F) followed a similar trend, wherein at D21, miR-155-/- lesions had 90% less lumen area (p = 0.0194) 

and 87% less epithelial area within glands (p = 0.0009) compared to C57 lesions. The percentage 

glandular epithelium within lesions (Figure 4.3 G) was not significantly different between miR-155-/- and 

C57 lesions at D7 and D14, however, at D21, miR-155-/- lesions had 84% less glandular epithelium than 

C57 lesions (p = 0.0013). Correspondingly, measurements of percentage stromal area (Figure 4.3 H) was 

similar between miR-155-/- and C57 lesions across D7 and D14, whereas at D21, miR-155-/- lesions had 

1.02-fold more stromal area (p = 0.0059). These observations suggest that the development of 

endometriotic-like lesions in C57 and miR-155-/- mice may progress in a comparable manner as indicated 

by comparable morphometric parameters at D14. However, the noticeable difference in size and weight 

at D7 may be indicative of a delayed immune response which ultimately results in noticeable differences 

in lesion morphology at D21.  
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Figure 4.1 Gross morphology of endometriosis-like lesion development in miR-155-/- mice   

Decidualised miR-155-/- donor endometrial tissue was injected subcutaneously into syngeneic recipient mice. 
Resulting lesions were harvested at either D7 (A), D14 (B) or D21 (C), with representative images shown; arrow 
indicates evidence of vascularisation. Lesion size was measured (D) and lesions were excised and weighed (E), 
with the dotted line indicating the initial weight of donor decidualised endometrial tissue inoculated into recipient 
mice. Data are presented as median (IQR), with each symbol representative of a single lesion in one mouse (n=17 
at D7, n=17 at D14, n=13 at D21). Analysis was done using the Kruskal-Wallis test followed by Dunn’s multiple 
comparison test, with significance denoted as ** (p < 0.01), *** (p < 0.001), and **** (p < 0.0001). 
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Figure 4.2 Assessment of morphological parameters in haematoxylin and eosin stained 

endometriosis-like lesions from miR-155-/- mice   

Haematoxylin and eosin stained sections from D7 (A), D14 (B), and D21 (C) lesions in miR-155-/- mice 
(representative images shown; arrows indicate glands) were assessed for the following characteristics: number of 
glands per lesion (D), average gland size (E), lumen area (F), epithelium area (G), percentage glandular epithelium 
(H) and percentage stromal area (I). Data are presented as median (IQR), with each symbol representative of a 
single lesion in one mouse (n=17 at D7, n=17 at D14, n=13 at D21). Analysis was done using the Kruskal-Wallis 
test followed by Dunn’s multiple comparison test.  
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Figure 4.3 Comparative analysis of morphometric parameters between C57 and miR-155-/- 

endometriosis-like lesions 

Lesion size (A), weight (B), number of glands per lesion (C), average gland size (D), lumen area (E), epithelium 
area (F), glandular epithelium (G), and stromal area (H) were compared between C57 mice  ( ; n=12 at D7, 

n=12 at D14, n=8 at D21) and miR-155-/- mice  ( ; n=17 at D7, n=17 at D14, n=13 at D21).Data are presented 
as median (IQR). Analysis was done using the Mann Whitney U test, with significance denoted as * (p < 0.05), ** 
(p < 0.01), *** (p < 0.001) and **** (p < 0.0001).  
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4.2.2.  Macrophage localisation in endometriosis-like lesions from miR-155 deficient mice 

miR-155 is a crucial regulator of M1-like inflammatory macrophage activity (Faraoni et al., 2009, 

Kurowska-Stolarska et al., 2011, Tili et al., 2011, Jablonski et al., 2016). Depletion of miR-155 in 

macrophages resulted in an increased repolarisation of macrophages from the M1-like phenotype to the 

M2-like phenotype (Cai et al., 2012). In endometriosis, a predominance of M2-like macrophages supports 

lesion growth by restricting tissue clearance and increasing tissue healing and remodelling (Bacci et al., 

2009). Thus, in this section, macrophage activity and remodelling of endometriosis-like lesions in miR-

155-/- mice was evaluated. 

 

F4/80 immunostaining was used to detect the presence of macrophages in miR-155-/- lesions (Figure 4.4). 

Density of F4/80+ cells across the entire lesion was similar at D7 (8.37 (6.53 – 9.83) %) and D14 (9.51 

(6.63 – 14.58) %). A significant increase in F4/80 expression as seen at D21 (16.41 (11.99 – 24.34) %, p 

= 0.0001 for D7 vs D21 and p = 0.0111 for D14 vs D21) (Figure 4.4 G). There was a trend towards 

increased peripheral F4/80 density, with a median of 14.36 (12.46 – 21.97) % at D7, 14.47 (13.06 – 24.78) 

% at D14 and 20.13 (16.36 – 26.13) % at D21, however this was not significant (Figure 4.4 A-C, H). 

Central F4/80 density in miR-155-/- lesions was lowest at D7 (3.26 (1.75 – 4.35) %), and was similar to 

D14 values (5.28 (2.61 – 20.53) %). A significant increase in the central distribution of F4/80+ cells was 

seen at D21 (29.67 (22.47 – 41.61) %, p < 0.0001 for D7 vs D21 and p = 0.0034 for D14 vs D21).  

 

4.2.2.1. Expression of pro-inflammatory M1-like markers in miR-155 deficient mice 

M1-like activity in miR-155-/- lesions was evaluated immunohistochemically with antibodies to detect iNOS 

(Figure 4.5 A-C) and MHC II (Figure 4.5 D-F) expression. The median density of iNOS was similar at D7 

and D14 (15.06 (12.46 – 16.87) % and 18.34 (15.03 – 34.34) % respectively), while iNOS density was 

highest at D21 (27.22 (19.73 – 34.34) %, p = 0.0005 for D7 vs D21) (Figure 4.5 G). Peripheral iNOS 

density followed a similar trend, with similar values at D7 and D14 (14.49 (12.74 – 17.83) % and 17.32 

(15.81 – 20.09) % respectively), and a significant increase at D21 (24.26 (18.81 – 25.64) %, p < 0.0001 

for D7 vs D21) (Figure 4.5 H). Likewise, central iNOS density was consistent at D7 and D14 (9.64 (8.36 

– 14.18) % and 11.26 (9.36 – 15.95) % respectively), with a significant increase at D21 (44.00 (39.05 – 

50.63) %, p < 0.0001 for D7 vs D21 and p < 0.0001 for D14 vs D21) (Figure 4.5 I).  

 

Interestingly, in miR-155-/- lesions, MHC II density increased significantly between D7 and D14 (1.74 (1.46 

– 3.52) % and 5.53 (4.40 – 7.46) %, respectively, p < 0.0001). However, at D21, median MHC II density 
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reduced to 3.50 (2.58 – 5.84) %, and was not significantly different from either D7 or D14 values (Figure 

4.5 J). Peripheral MHC II density was significantly higher at D14 (5.51 (4.29 – 6.23) %) compared to D7 

(2.83 (2.19 – 3.53) %, p < 0.0001) and D21 (3.73 (3.13 – 4.60) %, p = 0.0472) (Figure 4.5 K).Central MHC 

II density followed a similar trend, with significantly higher D14 values (6.26 (5.35 – 6.83) %) compared to 

both D7 (4.24 (3.24 – 4.24) %, p = 0.0111) and D21 (3.85 (2.99 – 4.49) %, p = 0.0010) (Figure 4.5 L). 

 

4.2.2.2. Expression of alternatively activated M2-like markers in miR-155 deficient mice 

Detection of M2-like activity in miR-155-/- lesions was performed with antibodies against CD206 (Figure 

4.6 A-C) and Arg-1 (Figure 4.6 D-F). CD206 density increased between D7 and D14 (22.14 (17.61 – 

27.88) % and 32.48 (20.21 – 42.72) % respectively, p = 0.0371). At D21, the density of CD206 was 34.77 

(32.51 – 44.50) % which was significantly higher than D7 (p = 0.0002), but was similar to D14 (Figure 4.6 

G). Peripheral CD206 density was lowest at D7 (9.45 (5.55 – 13.30) %) and significantly increased at D14 

(28.90 (26.29 – 33.26) %, p < 0.0001) and D21 (28.25 (22.16 – 34.84) %, p < 0.0001 for D7 vs D21) 

(Figure 4.6 H). Likewise, central CD206 density was lowest at D7 (9.01 (5.96 – 11.02) %) and significantly 

increased at D14 (27.26 (22.85 – 31.14) %, p < 0.0001) and D21 (32.13 (26.32 – 36.39) %, p < 0.0001 

for D7 vs D21) (Figure 4.6 I). 

 

On the other hand, Arg-1 density was similar at D7 and D14 (37.78 (32.19 – 46.93) % and 44.43 (31.96 

– 54.59) % respectively), but increased at D21 (48.77 (40.93 – 62.44) %, p = 0.0061 for D7 vs D21) 

(Figure 4.6 J). Peripheral Arg-1 density was consistent at D7 and D14 (39.04 (31.61 – 42.62) % and 38.07 

(34.53 – 43.21) % respectively), with a significant increase at D21 (45.26 (38.14 – 48.65) %, p = 0.0220 

for D7 vs D21 and p = 0.0475 for D14 vs D21) (Figure 4.6 K). Central Arg-1 density increased between 

D7 (36.23 (33.25 – 46.12) %), D14 (44.89 (40.85 – 51.09) %) and D21 (48.65 (45.19 – 58.10) %, p = 

0.0013 for D7 vs D21) (Figure 4.6 L). 

 

4.2.3. Blood vessel density, myofibroblast abundance and fibrosis in endometriosis-like lesions 

from miR-155 deficient mice 

Using vWF immunostaining (Figure 4.7 A-C), the total density of blood vessels in miR-155-/- lesions was 

similar across all time points (0.73 (0.53 – 0.90) % at D7, 0.83 (0.59 – 0.91) % at D14, and 0.85 (0.74 – 

1.28) % at D21) (Figure 4.7 D). A gradual increase in the number of blood vessels per lesion was observed 

between D7 (12 (9 – 14)), D14 (15 (12 – 18)), and D21 (21 (15 – 23), p < 0.0001 for D7 vs D21) (Figure 

4.7 E). Surprisingly, an opposite trend was observed in measurements of average vessel size, which 



Panir Chapter 4 138 

steadily reduced over time (0.0030 (0.0023 – 0.0070) mm2 at D7, 0.0019 (0.0014 – 0.0024) mm2 at D14, 

and 0.0004 (0.0004 – 0.0014) mm2 at D21; p < 0.0001 for D7 vs D21 and p = 0.0101 for D14 vs D21) 

(Figure 4.7 F). 

 

The expression of αSMA (Figure 4.8 A-C) strongly localised to blood vessels within lesions, and was 

unchanged across D7 (22.63 (18.34 – 29.45) %), D14 (27.44 (21.55 – 44.27) %) and D21 (30.92 (25.24 

– 51.53) %) (Figure 4.8 G). From the Masson’s trichrome staining (Figure 4.8 D-F), there was no 

discernible difference in the density of fibrosis across all time points (17.63 (16.40 – 18.98) % at D7, 15.41 

(14.19 – 19.03) % at D14, and 17.65 (15.56 – 19.57) % at D21) (Figure 4.8 H).  
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4.2.3.1. Comparison of macrophage localisation and cellular parameters between C57 mice and 

miR-155 deficient mice  

The systemic depletion of miR-155 resulted in an increase in F4/80 positive cells between D7 and D21, 

coupled with an increase in M2-like macrophage markers. To further understand the effect of miR-155 

depletion on macrophage phenotype in the development of endometriosis, a comparative analysis 

between miR-155 deficient lesions (miR-155-/-) and miR-155 sufficient lesions (C57) was performed 

(Figure 4.9 and 4.10).    

 

At D7 and D21, total F4/80 density in endometriotic-like lesions was similar in both miR-155-/- and C57 

mice (Figure 4.9 A). Interestingly, at D14, total F4/80 density was 44% lower in miR-155-/- lesions 

compared to C57 lesions (p = 0.0007). Peripheral F4/80 density at both D7 and D14 was significantly 

lower in miR-155-/- lesions compared to C57 lesions (64% decrease, p = 0.0002 and 64% decrease, p = 

0.0002 respectively), but no differences were observed at D21 (Figure 4.9 B). Central F4/80 expression 

was similar between strains at D7 and D21, however miR-155-/- lesions had 85% less central F4/80 

expression at D21 (p =0.0002) (Figure 4.9 C). 

 

Quantification of M1-like expression showed 36% fewer cells expressing iNOS in miR-155-/- lesions 

compared to C57 lesions at D7 (p = 0.0009) (Figure 4.9 D). At D14, iNOS density remained consistent 

between both groups, whereas, a 1.6-fold increase in iNOS expression was seen in miR-155-/- lesions 

compared to C57 lesions at D21 (p = 0.0077). Peripheral iNOS density was 23% lower in miR-155-/- 

lesions compared to C57 lesions at D7 (p = 0.0037), however at D14 and D21, miR-155-/- lesions had 

significantly more peripheral iNOS compared to C57 lesions (1.6-fold increase, p < 0.0001 and 1.4-fold 

increase, p = 0.0126) (Figure 4.9 E). Central iNOS density remained significantly higher in miR-155-/- 

lesions compared to C57 lesions across all time points (1.3-fold increase, p = 0.0011 at D7, 1.6-fold 

increase, p < 0.0001 at D14, and 4.2-fold increase, p < 0.0001 at D21) (Figure 4.9 F).  

 

When compared with miR-155-/- lesions, MHC II density was significantly lower in miR-155-/- lesions 

compared to C57 lesions at all time points (91% decrease, p < 0.0001 at D7, 55% decrease, p = 0.0208 

at D14, and 85% decrease, p < 0.0001 at D21) (Figure 4.9 G). Peripheral MHC II density was significantly 

lower in miR-155-/- lesions compared to C57 lesions at all three time points (76% decrease, p < 0.0001 at 

D7; 46% decrease, p < 0.0001 at D14; and 83% decrease, p < 0.0001 at D21) (Figure 4.9 H). Similarly, 

central MHC II density was significantly lower in miR-155-/- lesions compared to C57 lesions at all three 
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time points (51% decrease, p < 0.0001 at D7; 15% decrease, p = 0.0243 at D14; and 65% decrease, p < 

0.0001 at D21) (Figure 4.9 I). 

 

Expression of the M2-like marker CD206 was 3-fold higher in miR-155-/- lesions compared to C57 lesions 

at D7 (p < 0.0001), and 1.7-fold higher at D14 (p = 0.0426), however no differences in CD206 density was 

observed at D21 (Figure 4.9 J). Peripheral CD206 density was significantly higher in miR-155-/- lesions 

compared to C57 lesions across all time points (3.7-fold increase, p < 0.0001 at D7; 4.8-fold increase, p 

< 0.0001 at D14; and, 1.8-fold increase, p = 0.0003 at D21) (Figure 4.9 K). Central CD206 density was 

consistent between strains at D7 and D14, however, a 30% decrease was observed in miR-155-/- lesions 

compared to C57 lesions at D21 (p = 0.0004) (Figure 4.9 L). 

 

Arg-1 density was significantly higher in miR-155-/- lesions compared to C57 lesions across all time points 

(1.7-fold increase, p < 0.0001 at D7; 2-fold increase, p < 0.0001 at D14; and, 2-fold increase, p < 0.0001 

at D21) (Figure 4.9 M). Similarly, peripheral Arg-1 density was significantly higher in miR-155-/- lesions 

compared to C57 lesions across all time points (8.7-fold increase, p < 0.0001 at D7; 2.7-fold increase, p 

< 0.0001 at D14; and, 2.8-fold increase, p < 0.0001 at D21) (Figure 4.9 N). Likewise, central Arg-1 density 

was significantly higher in miR-155-/- lesions compared to C57 lesions across all time points (3.1-fold 

increase, p < 0.0001 at D7; 2.3-fold increase, p < 0.0001 at D14; and, 2.3-fold increase, p < 0.0001 at 

D21) (Figure 4.9 O). 

 

vWF density was 1.9-fold higher in miR-155-/- lesions compared to C57 lesions at D7 (p = 0.0007), and 

1.8-fold higher at D14 (p = 0.0106), whereas similar vWF expression was observed between strains at 

D21 (Figure 4.10 A). The number of blood vessels per lesion in miR-155-/- mice was 2.4-fold higher at D7 

(p = 0104), 30% lower at D14 (p = 0.0007) and unchanged at D21 when compared to lesions from C57 

mice (Figure 4.10 B). Average vWF+ blood vessel size remained significantly higher in miR-155-/- lesions 

compared to C57 lesions at both D7 and D14 (8.6-fold increase, p < 0.0001 and 4.6-fold increase, p < 

0.0001 respectively), but was similar at D21 (Figure 4.10 C). The density of αSMA was higher in miR-155-

/- lesions compared to C57 lesions at all time points, however this was only significant at D7 (1.5-fold 

increase, p = 0.0380) and D14 (1.5-fold increase, p = 0.0002) (Figure 4.10 D). Interestingly, the extent of 

fibrosis as quantified using Masson’s trichrome staining was significantly lower in miR-155-/- lesions 

compared to C57 lesions at all three time points (27% decrease, p = 0.0141 at D7; 41% decrease, p = 

0.0037 at D14; and 43% decrease, p < 0.0001 at D21) (Figure 4.10 E). 
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Figure 4.4 F4/80 immunostaining in endometriosis-like lesions from miR-155-/- mice   

Quantification of total F4/80 density was carried out in lesions from miR-155-/- mice (G). F4/80 density at the lesion 
periphery (100µM from the edge of the lesion) at D7 (A), D14 (B) and D21 (C) was evaluated (H). F4/80 density at 
the lesion centre (within 500µM from the centre) at D7 (D), D14 (E), and D21 (F) was also quantified (I). Data are 
presented as median (IQR), with each symbol representative of a single lesion in one mouse (n=17 at D7, n=17 at 
D14, n=13 at D21). Analysis was done using the Kruskal-Wallis test followed by Dunn’s multiple comparison test, 
with significance denoted as * (p < 0.05), *** (p < 0.001) and **** (p < 0.0001). 
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Figure 4.5 M1–like macrophage marker immunostaining in lesions from miR-155-/- mice   

The expression of inducible nitric oxide synthase (iNOS) at D7 (A), D14 (B), and D21 (C) was quantified in miR-
155-/- lesions (G). Further analysis was performed to determine peripheral (H) and central (I) iNOS density. 
Quantification of the Class II Major Histocompatibility Complex (MHC II) was done at D7 (D), D14 (E) and D21 (F) 
in these lesions (J), with peripheral (K) and central (L) MHC II density determined.  Data are presented as median 
(IQR), with each symbol representative of a single lesion in one mouse (n=17 at D7, n=17 at D14, n=13 at D21). 
Analysis was done using the Kruskal-Wallis test followed by Dunn’s multiple comparison test, with significance 
denoted as * (p < 0.05), ** (p < 0.001), *** (p < 0.001) and **** (p < 0.0001). 
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Figure 4.6 M2–like macrophage marker immunostaining in lesions from miR-155-/- mice   

CD206 density at D7 (A), D14 (B), and D21 (C) was quantified in miR-155-/- lesions (G), with further analysis of 
peripheral (H) and central (I) CD206 density. Expression of Arginase-1 (Arg-1) was evaluated at D7 (D), D14 (E) 
and D21 (F) in these lesions (J), with peripheral (K) and central (L) Arg-1 density determined. Data are presented 
as median (IQR), with each symbol representative of a single lesion in one mouse (n=17 at D7, n=17 at D14, n=13 
at D21). Analysis was done using the Kruskal-Wallis test followed by Dunn’s multiple comparison test, with 
significance denoted as * (p < 0.05), ** (p < 0.01), *** (p < 0.001) and **** (p < 0.0001). 
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Figure 4.7 Blood vessel localisation in endometriosis-like lesions from miR-155-/- mice  

Von Willebrand Factor (vWF) staining was used to localise blood vessels in lesions from miR-155-/- mice at D7 (A), 
D14 (B), and D21 (C). The total density of vWF+ vessels was quantified (D). The number of vessels per lesion (E) 
and the average vessel size (F) was determined. Data are presented as median (IQR), with each symbol 
representative of a single lesion in one mouse (n=17 at D7, n=17 at D14, n=13 at D21). Analysis was done using 
the Kruskal-Wallis test followed by Dunn’s multiple comparison test, with significance denoted as * (p < 0.05) and 
**** (p < 0.0001). 
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Figure 4.8 Evaluation of fibrosis in endometriosis-like lesions from miR-155-/- mice  

The density of myofibroblasts in miR-155-/- lesions at D7 (A), D14 (B), and D21 (C) was evaluated using alpha 
smooth muscle actin (αSMA) (G). Masson’s trichrome staining was used to evaluate the density of fibrosis (H) at 
D7 (D), D14 (E) and D21 (F) in these lesions. Data are presented as median (IQR), with each symbol representative 
of a single lesion in one mouse (n=17 at D7, n=17 at D14, n=13 at D21). Analysis was done using the Kruskal-
Wallis test followed by Dunn’s multiple comparison test. 
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Figure 4.9 Comparative analysis of the expression of macrophage markers between C57 and miR-

155-/- endometriosis-like lesions 

Total (A), peripheral (B), and central (C) F4/80 density were compared between C57 mice ( ; n=12 at D7, 

n=12 at D14, n=8 at D21) and miR-155-/- mice ( ; n=17 at D7, n=17 at D14, n=13 at D21). Comparisons between 
the M1-like macrophage markers inducible nitric oxide synthase (iNOS; total (D), peripheral (E), and central (F)) 
and Class II Major Histocompatibility Complex (MHC II; total (G), peripheral (H), and central (I)) were also 
performed. The density of the M2-like macrophage markers CD206 (total (J), peripheral (K), and central (L)) and 
Arginase-1 (Arg-1; total (M), peripheral (N), and central (O)) were also compared between strains. Data are 
presented as median (IQR). Analysis was done using the Mann Whitney U test, with significance denoted as * (p < 
0.05), ** (p < 0.01), *** (p < 0.001), and **** (p < 0.0001).
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Figure 4.9 (A-H) Comparative analysis of the expression of macrophage markers between C57 and miR-

155-/- endometriosis-like lesions 
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Figure 4.9 (I-O) Comparative analysis of the expression of macrophage markers between C57 and miR-

155-/- endometriosis-like lesions 
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Figure 4.10 Comparative analysis of blood vessel and fibrosis markers between C57 and miR-155-/- 

endometriosis-like lesions 

Total blood vessel density (A), number of vWF+ vessels per lesion (B), and average vessel size (C), density of 
myofibroblasts (D) and extent of fibrosis as measured by Masson’s trichrome (E) were compared between C57 

mice ( ; n=12 at D7, n=12 at D14, n=8 at D21) and miR-155-/- mice ( ; n=17 at D7, n=17 at D14, n=13 at 
D21). Data are presented as median (IQR). Analysis was done using the Mann Whitney U test, with significance 
denoted as * (p < 0.05), ** (p < 0.01), *** (p < 0.001), and **** (p < 0.0001). 
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4.2.4. RNA-Sequencing analysis of lesion progression in miR-155 deficient mice 

To evaluate the molecular changes in lesion development arising from a deficiency in miR-155, RNA-

Sequencing (RNA-Seq) was performed on donor decidualised endometrial tissue, D7 and D14 lesions 

(See Appendix: Figure 7.2 and Figure 7.3 for RNA-Seq metrics). The RNA-Seq dataset was filtered to 

remove genes with a low expression, resulting in 16,291 genes being identified and analysed. The 

average gene expression of decidualised endometrium, D7 and D14 lesions (n = 4 per group) was 

obtained, and the proportion of DEGs between groups was determined (fold change in expression of ≥ 2 

and FDR ≤ 0.05) (see attached Supplementary Materials: Table 4 to 6 for complete DEG list). Principal 

component analysis performed using normalised RNA-Seq data shows a clustering pattern of miR-155-/- 

decidualised endometrial tissue samples on the bottom left, with a distinct separation from both D7 and 

D14 lesions (Figure 4.11 A). Comparisons between decidualised endometrium and D7 lesions found 10% 

of detected genes upregulated, while 15% of detected genes were downregulated (Figure 4.11 B). 

Between decidualised endometrium and D14, a total of 13% of detected genes were upregulated whereas 

17% of detected genes were downregulated (Figure 4.11 C). In contrast, between D7 and D14, only 2% 

of detected genes were upregulated, and 2% of detected genes were downregulated (Figure 4.11 D). 

 

A total of 5,608 genes were differentially expressed between one of more of the three comparisons (Figure 

4.11 E), with 3.6% (202 genes) differentially expressed in all three groups. The greatest overlap of DEGs 

(56.2%) was noted between Decidualised vs D7 and Decidualised vs D14 (3,149 genes). DEGs between 

Decidualised vs D7 and Decidualised vs D14 were further categorised into upregulated (2,303 genes) 

and downregulated (3,271 genes) genes (Figure 4.11 F and G respectively). At both D7 and D14, a 

consistent upregulation of 1,350 genes and a consistent downregulation of 1,999 genes was observed 

when compared to decidualised endometrium.  

 

The top genes with the largest fold change in expression between the three samples were identified (Table 

4.2). Lesions at D7 and D14 had an increased expression of prolactin family 3, subfamily c, member 1 

(Prl3c1; involved in hormone activity, regulation of proliferation and decidual differentiation), prostate stem 

cell antigen (Psca; involved in regulation of neurotransmission), wingless-type MMTV integration site 

family, member 10A (Wnt10a; involved in regulation of gene expression during development and 

implicated in oncogenesis), and keratinocyte differentiation associated protein (Krtdap; involved in 

regulation of keratinocyte differentiation and maintenance of stratified epithelia) when compared to 

decidualised endometrium. A downregulation of genes involved in the regulation of muscle activity 

including ATPase, Ca2+ transporting, cardiac muscle, fast twitch 1 (Atp2a1) and myosin, heavy 
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polypeptide 4, skeletal muscle (Myh4), as well as genes involved in organ development including gremlin 

1 DAN family BMP antagonist (Grem1) and tintin (Ttn), were observed in both D7 and D14 lesions 

compared to decidualised endometrium.  

 

Comparison of DEGs between D7 and D14 lesions showed an upregulation of small proline-rich protein 

2B (Sprr2b) and osteoclast stimulatory transmembrane protein (Ocstamp) at D14, both of which are 

associated with the cellular response to oestrogen (Table 4.2). An upregulation of genes involved in cell 

regulation, organisation, and development such as kinesin family member 14 (Kif14), Scl/Tal1 interrupting 

locus (Stil), shugoshin 1 (Sgo1), kinetochore scaffold 1 (Knl1), and wingless-type MMTV integration site 

family, member 2B (Wnt2b) was also observed in D14 lesions. In contrast, genes involved in inflammation 

(melan-A (Mlana), histocompatibility 2, M region locus 2 (H2-M2), immunoglobulin joining chain (Jchain), 

and CD5 antigen-like (Cd5l)) were down regulated in lesions at D14. 

 

Assessment of upregulated canonical pathways during lesion development showed an increase in 

multiple cholesterol biosynthesis pathways at D7 compared to decidualised endometrium (Table 4.3) At 

D14, not only was there an increase in a cholesterol biosynthesis super-pathway, but an upregulation in 

pathways associated with cell cycle regulation and inhibition of matrix metalloproteases was also 

observed when compared to decidualised endometrium (Table 4.4). Assessment of downregulated 

canonical pathways identified 37 similar pathways in D7 and D14 lesions compared to decidualised 

endometrium. These pathways were almost exclusively associated with immune regulation, including B 

cell signalling, T helper cell signalling, dendritic cell maturation, toll-like receptor signalling, NF-κB 

signalling, Fcγ receptor-mediated phagocytosis in macrophages and monocytes, and production of nitric 

oxide and reactive oxygen species in macrophages. Among the five canonical pathways identified in D14 

lesions compared to D7 lesions, cyclins and cell cycle regulation pathway was upregulated (p = 0.0012), 

while the G2/M DNA damage checkpoint was downregulated (p < 0.0001) at D14 (Table 4.5).  
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4.2.4.1. Comparison of RNA-Sequencing data between C57 mice and miR-155 deficient mice 

To determine the proportion of DEGs arising from a deficiency in miR-155, RNA-Seq data of decidualised 

endometrium, D7 and D14 lesions in C57 mice and miR-155-/- mice were compared, wherein a total of 79 

genes were identified (Figure 4.12A). Surprisingly, only four genes (B cell translocation gene 3 (Btg3), 

recombination signal binding protein for immunoglobulin kappa J region (Rbpj), recombination signal 

binding protein for immunoglobulin kappa J region, pseudogene 3 (Rbpsuh-rs3), and ATPase, class V, 

type 10D (Atp10d)) were consistently dysregulated between C57 and miR-155-/- mice across all samples.  

 

The majority of DEGs were expressed only within the decidualised endometrium, with an upregulation of 

genes involved in ATP binding activity (heat shock protein 1A and 1B (Hspa1a and Hspa1b) and tubulin 

tyrosine ligase-like family, member 11 (Ttll11)) (Table 4.6). Interestingly, several of the DEGs identified 

are classified as either pseudogenes (Rbpsuh-rs3), protein-coding genes with an unclassified function 

(Gm43039 and Prr16), or non-coding RNA genes (Gm28373, 0610040F04Rik, and 2600006K01Rik) (see 

attached Supplementary Materials: Table 7 for complete DEG list).  

 

At both D7 and D14, only 8 DEGs were identified between C57 and miR-155-/- samples (Figure 4.12). Of 

these, two genes (Btg3 and Rbpj) were consistently upregulated and two genes (Rbpsuh-rs3 and Atp10d) 

were consistently downregulated in in miR-155-/- lesions (Table 4.6). At D7, an increase in 5830416I19Rik, 

a long non-coding RNA was observed, while a downregulation in WD repeat and FYVE domain containing 

1 (Wdfy1; involved in the positive regulation of toll-like receptor 3 and 4 signalling pathways) was observed 

in miR-155-/- lesions. At D14, an upregulation of leucine rich repeat and fibronectin type III, extracellular 

1 (Elfn1; protein phosphatase inhibitor activity and involved in synapse organization) and toll-like receptor 

1 (Tlr1; involved in the regulation of IL-6 biosynthetic process and TNF biosynthetic process) was 

observed in miR-155-/- lesions. 
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Figure 4.11 Number of differentially expressed genes identified in tissues from miR-155-/- mice 

Principal component analysis (PCA) was performed using the normalised RNA-Seq data from miR-155-/- 
decidualised endometrium, D7 and D14 lesions (A). The proportion of upregulated and downregulated DEGs 
amongst detected genes between Decidualised vs D7 (B), Decidualised vs D14 (C), and D7 vs D14 (D) was 
determined. The Venn diagram displays the distribution and overlap of DEGs (both upregulated and 
downregulated) between each comparison (E). Additional Venn diagrams were generated to determine the number 
of upregulated (F) and downregulated (G) DEGs during lesion development compared to decidualised endometrial 
tissue.  All genes identified have a ≥ 2-fold change in expression with an adjusted p value < 0.05. 
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Table 4.2 Top ten upregulated and downregulated DEGs in miR-155-/- mice during decidualisation and lesion development (FDR <0.05) 

 

Decidualised vs D7 
 

Decidualised vs D14 
 

D7 vs D14 

Gene log2FC FDR 
 

Gene log2FC FDR 
 

Gene log2FC FDR 

Tac2 + 9.72 6.39 x 10-9  Psca + 10.45 9.00 x 10-9  Kif14 + 5.18 2.68 x 10-3 

Doxl2 + 9.42 4.10 x 10-6  Bco1 + 9.74 1.39 x 10-8  Klra2 + 4.73 5.82 x 10-3 

Krtdap + 9.35 8.23 x 10-5  Cbln1 + 9.46 1.13 x 10-7  Stil + 4.46 4.18 x 10-4 

Psca + 9.31 9.73 x 10-8  Wnt10a + 9.13 1.08 x 10-10  Sprr2b + 4.24 2.28 x 10-2 

Spink8 + 9.07 1.94 x 10-9  Prl3c1 + 9.04 2.21 x 10-4  Gm26788 + 4.06 4.37 x 10-3 

Notum + 8.72 1.40 x 10-6  Cyp11b1 + 8.80 4.70 x 10-5  Slc9b2 + 3.90 2.54 x 10-2 

Prl3c1 + 8.60 9.90 x 10-5  Klk7 + 8.77 5.78 x 10-4  Sgo1 + 3.89 6.70 x 10-3 

Cdsn + 8.08 1.79 x 10-5  Krtdap + 8.54 1.96 x 10-4  Knl1 + 3.89 6.48 x 10-3 

Kcnd3 + 8.04 1.05 x 10-5  Cdh4 + 8.53 5.94 x 10-7  Ocstamp + 3.86 3.50 x 10-2 

Wnt10a + 7.97 2.17 x 10-9  Tac2 + 8.46 1.62 x 10-9  Wnt2b + 3.86 8.00 x 10-3 

Myh4 - 10.91 1.55 x 10-2  Mmp12 - 10.72 2.03 x 10-4  Mlana - 5.38 1.62 x 10-5 

Atp2a1 - 10.01 6.32 x 10-3  Myh4 - 9.78 2.55 x 10-2  Slc18a3 - 5.35 3.38 x 10-2 

Ttn - 9.88 1.99 x 10-2  Atp2a1 - 9.52 7.64 x 10-3  H2-M2 - 5.14 3.15 x 10-5 

Arg1 - 9.42 1.31 x 10-2  Wisp2 - 8.84 1.71 x 10-4  Myocos - 4.76 2.14 x 10-3 

Ano5 - 9.22 2.66 x 10-2  Mmp13 - 8.69 1.72 x 10-4  Jchain - 4.67 2.69 x 10-2 

Grem1 - 8.99 4.86 x 10-6  Cd5l - 8.55 1.87 x 10-7  Gm14461 - 4.44 5.07 x 10-4 

Rbfox1 - 8.88 3.97 x 10-2  Ttn - 8.47 3.99 x 10-2  Gm6939 - 4.22 1.56 x 10-3 

Mybpc2 - 8.83 4.03 x 10-2  Grem1 - 8.27 1.36 x 10-5  Cd5l - 4.04 8.29 x 10-6 

Myl1 - 8.67 4.44 x 10-2  Gm43909 - 7.84 2.57 x 10-8  Hc - 3.68 9.13 x 10-3 

Neb - 8.65 3.26 x 10-2  Tnnt3 - 7.60 1.34 x 10-2  Ptgds - 3.64 2.19 x 10-3 
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Table 4.3 Canonical pathways identified by IPA in D7 lesions compared to decidualised 

endometrium from miR-155-/- mice (P < 0.05; -2 > Z score > 2) 

Canonical Pathway Z score Ratio P value 

Antioxidant Action of Vitamin C + 2.887 31% 1.12 x 10-3 

Superpathway of Cholesterol Biosynthesis + 2.530 37% 1.66 x 10-2 

Wnt/β-catenin Signalling + 2.333 25% 1.74 x 10-2 

PPAR Signalling + 2.268 28% 9.33 x 10-3 

Cholesterol Biosynthesis I + 2.121 62% 6.46 x 10-4 

Cholesterol Biosynthesis II (via 24,25-dihydrolanosterol) + 2.121 62% 6.46 x 10-4 

Cholesterol Biosynthesis III (via Desmosterol) + 2.121 62% 6.46 x 10-4 

Ceramide Biosynthesis + 2.000 57% 2.40 x 10-2 

Dopamine-DARPP32 Feedback in cAMP Signalling - 2.000 27% 3.80 x 10-3 

Chondroitin and Dermatan Biosynthesis - 2.000 67% 1.20 x 10-2 

Antiproliferative Role of Somatostatin Receptor 2 - 2.000 28% 2.04 x 10-2 

Superoxide Radicals Degradation - 2.000 50% 4.17 x 10-2 

Renal Cell Carcinoma Signalling - 2.065 29% 9.33 x 10-3 

IL-1 Signalling - 2.111 27% 2.69 x 10-2 

Glioma Invasiveness Signalling - 2.117 36% 1.26 x 10-4 

PDGF Signalling - 2.117 29% 7.94 x 10-3 

NRF2-mediated Oxidative Stress Response - 2.132 23% 4.07 x 10-2 

GPCR-Mediated Nutrient Sensing in Enteroendocrine Cells - 2.160 38% 6.61 x 10-7 

HGF Signalling - 2.191 28% 6.03 x 10-3 

FcγRIIB Signalling in B Lymphocytes - 2.200 40% 1.32 x 10-6 

P2Y Purigenic Receptor Signalling Pathway - 2.214 32% 7.41 x 10-5 

Oestrogen-Dependent Breast Cancer Signalling - 2.236 28% 1.78 x 10-2 

Glioma Signalling - 2.263 34% 2.75 x 10-5 

Type II Diabetes Mellitus Signalling - 2.268 33% 5.25 x 10-6 

CCR3 Signalling in Eosinophils - 2.268 32% 1.70 x 10-4 

IL-2 Signalling - 2.294 33% 1.55 x 10-3 

FGF Signalling - 2.294 26% 3.89 x 10-2 

IL-9 Signalling - 2.324 38% 9.77 x 10-4 

Type I Diabetes Mellitus Signalling - 2.324 30% 1.95 x 10-3 

fMLP Signalling in Neutrophils - 2.333 33% 3.39 x 10-5 

Eicosanoid Signalling - 2.333 37% 2.82 x 10-4 

GNRH Signalling - 2.333 27% 2.29 x 10-3 

Acute Phase Response Signalling - 2.335 24% 2.88 x 10-2 

SPINK1 General Cancer Pathway - 2.357 28% 3.72 x 10-2 

GM-CSF Signalling - 2.449 32% 1.86 x 10-3 

Th2 Pathway - 2.466 38% 4.07 x 10-8 

CXCR4 Signalling - 2.469 30% 1.05 x 10-4 

Adrenomedullin Signalling Pathway - 2.474 31% 6.46 x 10-6 

SAPK/JNK Signalling - 2.502 26% 2.95 x 10-2 

Toll-like Receptor Signalling - 2.524 35% 6.31 x 10-4 

     



Panir Chapter 4 156 

Fc Epsilon RI Signalling - 2.535 32% 2.14 x 10-4 

Chemokine Signalling - 2.600 35% 6.31 x 10-4 

LPS-stimulated MAPK Signalling - 2.600 29% 7.24 x 10-3 

IL-8 Signalling - 2.626 32% 4.68 x 10-6 

Colorectal Cancer Metastasis Signalling - 2.630 31% 5.13 x 10-7 

April Mediated Signalling - 2.673 36% 6.76 x 10-3 

Interferon Signalling - 2.714 36% 1.70 x 10-2 

Renin-Angiotensin Signalling - 2.722 34% 2.24 x 10-5 

IL-7 Signalling Pathway - 2.746 32% 1.45 x 10-3 

Cholecystokinin/Gastrin-mediated Signalling - 2.785 28% 8.71 x 10-3 

NGF Signalling - 2.828 27% 1.15 x 10-2 

GDNF Family Ligand-Receptor Interactions - 2.837 31% 2.69 x 10-3 

PEDF Signalling - 2.858 29% 8.51 x 10-3 

NF-κB Activation by Viruses - 2.874 39% 1.70 x 10-6 

Integrin Signalling - 2.887 25% 5.75 x 10-3 

Calcium-induced T Lymphocyte Apoptosis - 2.982 35% 2.34 x 10-3 

Lymphotoxin β Receptor Signalling - 2.982 31% 7.94 x 10-3 

Phospholipase C Signalling - 3.000 28% 1.41 x 10-4 

IL-6 Signalling - 3.042 32% 1.38 x 10-4 

Gαq Signalling - 3.130 32% 1.74 x 10-5 

RANK Signalling in Osteoclasts - 3.138 29% 3.89 x 10-3 

Cardiac Hypertrophy Signalling - 3.151 28% 2.29 x 10-4 

p38 MAPK Signalling - 3.157 28% 8.91 x 10-3 

Apelin Liver Signalling Pathway - 3.207 54% 4.57 x 10-5 

PI3K Signalling in B Lymphocytes - 3.317 36% 7.59 x 10-7 

Role of NFAT in Cardiac Hypertrophy - 3.349 33% 1.86 x 10-7 

Tec Kinase Signalling - 3.395 33% 2.29 x 10-6 

HMGB1 Signalling - 3.430 26% 1.45 x 10-2 

B Cell Activating Factor Signalling - 3.464 34% 1.12 x 10-2 

Leukocyte Extravasation Signalling - 3.491 40% 3.98 x 10-13 

Fcγ Receptor-mediated Phagocytosis in Macrophages and Monocytes - 3.536 36% 7.08 x 10-5 

Inflammasome pathway - 3.606 68% 2.19 x 10-6 

Calcium Signalling - 3.781 27%  1.26 x 10-3 

NF-κB Signalling - 3.939 34% 6.46 x 10-7 

Role of Pattern Recognition Receptors in Recognition of Bacteria and 
Viruses 

- 4.003 43% 3.98 x 10-11 

GP6 Signalling Pathway - 4.032 52% 1.00 x 10-18 

iCOS-iCOSL Signalling in T Helper Cells - 4.110 41% 1.02 x 10-8 

Production of Nitric Oxide and Reactive Oxygen Species in 
Macrophages 

- 4.128 27% 1.95 x 10-3 

CD28 Signalling in T Helper Cells - 4.333 38% 1.17 x 10-7 

B Cell Receptor Signalling - 4.533 32% 4.07 x 10-6 

Th1 Pathway - 4.644 39% 6.61 x 10-8 

Role of NFAT in Regulation of the Immune Response - 4.901 37% 2.75 x 10-9 

PKCθ Signalling in T Lymphocytes - 4.919 34% 1.82 x 10-6 

TREM1 Signalling - 5.096 54% 3.98 x 10-11 
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Neuroinflammation Signalling Pathway - 5.253 33% 3.80 x 10-10 

Dendritic Cell Maturation - 5.506 38% 1.07 x 10-9 
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Table 4.4 Canonical pathways identified by IPA in D14 lesions compared to decidualised 

endometrium from miR-155-/- mice (P < 0.05; -2 > Z score > 2) 

Canonical Pathway Z score Ratio P- value 

Superpathway of Cholesterol Biosynthesis + 2.887 44% 6.31 x 10-3 

Antioxidant Action of Vitamin C + 2.785 35% 1.10 x 10-3 

Mitotic Roles of Polo-Like Kinase + 2.668 38% 2.45 x 10-3 

Inhibition of Matrix Metalloproteases + 2.183 49% 2.24 x 10-4 

Oestrogen-mediated S-phase Entry + 2.111 42% 1.35 x 10-2 

Cyclins and Cell Cycle Regulation + 2.065 31% 3.47 x 10-2 

Ceramide Biosynthesis + 2.000 57% 4.27 x 10-2 

Heme Degradation - 2.000 100% 2.14 x 10-3 

Chondroitin and Dermatan Biosynthesis - 2.000 67% 2.19 x 10-2 

Tec Kinase Signalling - 2.021 50% 1.58 x 10-6 

RANK Signalling in Osteoclasts - 2.043 38% 6.92 x 10-3 

Cardiac Hypertrophy Signalling - 2.109 31% 5.89 x 10-4 

GDNF Family Ligand-Receptor Interactions - 2.117 39% 2.88 x 10-4 

Type I Diabetes Mellitus Signalling - 2.132 36% 4.17 x 10-4 

April Mediated Signalling - 2.138 36% 2.75 x 10-2 

IL-6 Signalling - 2.188 38% 1.51 x 10-5 

SAPK/JNK Signalling - 2.191 29% 4.57 x 10-2 

Cholecystokinin/Gastrin-mediated Signalling - 2.197 34% 2.24 x 10-3 

HMGB1 Signalling - 2.236 35% 1.91 x 10-4 

PEDF Signalling - 2.263 38% 1.45 x 10-4 

Leukocyte Extravasation Signalling - 2.265 43% 2.51 x 10-12 

Phospholipase C Signalling - 2.324 33% 3.24 x 10-5 

Eicosanoid Signalling - 2.333 39% 1.32 x 10-3 

Role of Pattern Recognition Receptors in Recognition of Bacteria and 
Viruses 

- 2.412 45% 9.12 x 10-10 

Calcium-induced T Lymphocyte Apoptosis - 2.449 45% 5.75 x 10-5 

Calcium Signalling - 2.466 28% 1.51 x 10-2 

Apelin Liver Signalling Pathway - 2.496 50% 1.20 x 10-3 

Complement System - 2.530 49% 5.25 x 10-4 

iCOS-iCOSL Signalling in T Helper Cells - 2.777 27% 1.00 x 10-9 

Toll-like Receptor Signalling - 2.837 47% 5.75 x 10-4 

Glutathione-mediated Detoxification - 2.887 39% 2.88 x 10-3 

B Cell Activating Factor Signalling - 2.887 34% 4.17 x 10-2 

PI3K Signalling in B Lymphocytes - 2.949 38% 6.61 x 10-6 

GP6 Signalling Pathway - 2.954 52% 2.51 x 10-14 

FcÎ³ Receptor-mediated Phagocytosis in Macrophages and 
Monocytes 

- 3.000 40% 5.13 x 10-5 

NF-κB Signalling - 3.048 36% 7.41 x 10-6 

B Cell Receptor Signalling - 3.098 36% 4.79 x 10-6 

Inflammasome pathway - 3.464 63% 1.02 x 10-4 

Production of Nitric Oxide and Reactive Oxygen Species in 
Macrophages 

- 3.474 32% 3.31 x 10-4 

CD28 Signalling in T Helper Cells - 3.479 42% 1.45 x 10-7 
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p38 MAPK Signalling - 3.773 33% 2.95 x 10-3 

Role of NFAT in Regulation of the Immune Response - 4.000 42% 6.46 x 10-10 

Th1 Pathway - 4.025 44% 2.69 x 10-8 

Neuroinflammation Signalling Pathway - 4.243 38% 2.34 x 10-10 

PKCÎ¸ Signalling in T Lymphocytes - 4.258 37% 5.50 x 10-6 

TREM1 Signalling - 4.439 54% 4.57 x 10-9 

Dendritic Cell Maturation - 4.765 42% 1.17 x 10-9 
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Table 4.5 Canonical pathways identified by IPA in D14 lesions compared to D7 lesions from miR-

155-/- mice (P < 0.05; -2 > Z score > 2) 

 

Canonical Pathway Z score Ratio P value 

Cyclins and Cell Cycle Regulation + 2.121 10% 1.17 x 10-3 

Mitotic Roles of Polo-Like Kinase + 2.111 20% 1.26 x 10-8 

LPS/IL-1 Mediated Inhibition of RXR Function + 2.000 5% 4.90 x 10-2 

Glutathione-mediated Detoxification - 2.000 16% 4.17 x 10-3 

Cell Cycle: G2/M DNA Damage Checkpoint Regulation - 2.111 22% 5.62 x 10-8 
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Figure 4.12 Number of differentially expressed genes identified between miR-155-/- and C57 mice   

RNA-Seq data from decidualised endometrium, D7 and D14 lesions in miR-155-/- and C57 mice were compared to 
determine the proportion of DEGs amongst detected genes. The top Venn diagram displays the distribution and 
overlap of DEGs (both upregulated and downregulated) between each sample type (A). Additional Venn diagrams 
were generated to determine the number of upregulated (B) and downregulated (C) DEGs between D7 and D14 
lesions.  All genes identified have a ≥ 2-fold change in expression with an adjusted p value < 0.05. 
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Table 4.6 Top DEGs genes during decidualisation and lesion development in miR-155-/- mice compared to C57 mice (FDR <0.05) 

 

Decidualised endometrium 
 

D7 lesions 
 

D14 lesions 

Gene log2FC FDR 
 

Gene log2FC FDR 
 

Gene log2FC FDR 

Hspa1a + 3.63 1.21 x 10-2  5830416I19Rik + 4.80 2.20 x 10-3  Elfn1 + 5.00 2.20 x 10-2 

Btg3 + 3.61 9.52 x 10-3  Btg3 + 3.77 8.07 x 10-3  Btg3 + 4.32 8.09 x 10-3 

Ttll11 + 3.45 1.01 x 10-2  Rbpj + 1.28 1.49 x 10-3  Tlr1 + 2.15 2.19 x 10-2 

Tmem267 + 2.99 4.44 x 10-2  Rbpsuh-rs3 - 3.44 1.49 x 10-3  Rbpj + 1.63 8.54 x 10-5 

Tom1 + 2.79 1.61 x 10-2  Atp10d - 1.55 8.75 x 10-3  Rbpsuh-rs3 - 4.54 1.45 x 10-3 

Hspa1b + 2.63 1.91 x 10-2  Wdfy1 - 1.10 3.52 x 10-3  Atp10d - 1.31 2.19 x 10-2 

Gm43039 + 2.54 4.46 x 10-2         

Apold1 + 2.18 2.79 x 10-4         

Gm28373 + 2.11 4.39 x 10-3         

0610040F04Rik + 2.03 1.30 x 10-2         

Optc - 5.39 4.68 x 10-2         

Rbpsuh-rs3 - 4.67 2.75 x 10-5         

Sgms2 - 3.40 3.59 x 10-2         

2600006K01Rik - 3.30 2.06 x 10-2         

Sfrp1 - 3.21 2.95 x 10-2         

Prr16 - 2.99 4.23 x 10-2         

Myl9 - 2.80 2.47 x 10-2         

Acta2 - 2.58 3.55 x 10-2         

Lpl - 2.24 3.41 x 10-2         

Penk - 2.22 1.12 x 10-2         
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4.2.5. Evaluating the impact of miR-155 depletion from either the recipient environment or donor 

endometrium  

In a clinical setting, miR-155 expression is downregulated in plasma from women with endometriosis 

(Nisenblat et al., 2019). To date, no study has found evidence of dysregulated miR-155 activity in eutopic 

vs ectopic endometrial tissue. In sections 4.2.1 to 4.2.4 of this thesis, the impact of a systemic depletion 

of miR-155 (i.e. both donor and recipient mice were miR-155 deficient) on lesion development was 

evaluated. Thus, to evaluate the contribution of the donor endometrium vs recipient environment on the 

development of endometriosis and expression of M1-like and M2-like markers, this section will evaluate 

the impact of reciprocal transfers between wildtype mice and mice deficient in miR-155 (Figure 4.13). To 

determine the contribution of the recipient environment on the development of endometriosis, miR-155 

sufficient (C57) donor endometrium was transferred into a miR-155 deficient (miR-155-/-) recipient (C57 

 miR-155-/-). Conversely, the transfer of miR-155 deficient (miR-155-/-) donor endometrium into a replete 

miR-155 (C57) recipient (miR-155-/-  C57) was performed to determine the contribution of donor 

endometrial tissue in the pathogenesis of endometriosis.  

 

 

 

Figure 4.13 Reciprocal transfers between miR-155-/- and C57 mice   

Utilising the Greaves-Saunders menstrual mouse model of endometriosis (Greaves et al., 2014), 40mg donor 
decidualised endometrial tissue was injected subcutaneously into an allogeneic recipient. Resulting endometriosis-
like lesions from these reciprocal transfers were harvested at either day 7, 14, or 21 post-induction of disease. 
Refer to Figure 2.3 for the protocol to induce endometriosis in recipient mice. 
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4.2.5.1. Endometriosis-like lesion development in C57 donor to miR-155-/- recipient transfers 

A total of 36 C57 donor mice were used to generate sufficient decidualised endometrial tissue for injection 

into miR-155-/- recipient mice (C57  miR-155-/-) at a ratio of 2 donors to 1.7 recipients (Table 4.7). 

Overall, 93% of miR-155-/- recipient mice had identifiable lesions over the course of this experiment. At 

D7, lesions were recovered from 100% of miR-155-/- recipient mice. At D14 and D21 however, the 

proportion of miR-155-/- recipient mice that had lesions from C57 donor tissue reduced slightly to 90%.  

 

Endometriosis-like lesions that developed from a C57  miR-155-/- transfer were large, spread out over 

the attachment site, and blood-filled at D7 (Figure 4.14 A). At D14, lesions remained blood filled, but were 

small and raised from the attachment site (Figure 4.14 B), while at D21, lesions were small and white 

(Figure 4.14 C). Lesion size (Figure 4.14 D) was highest at D7 (32 (18 – 36) mm3), and significantly 

reduced at D14 (6 (4 – 8) mm3, p = 0.0006), and remained consistent at D21 (4 (4 – 11) mm3, p = 0.0008 

for D7 vs D21). Lesion weight (Figure 4.14 E) followed a similar trend, with values highest at D7 (26.65 

(20.45 – 31.15) mg), and significantly reducing at D14 (9.10 (7.95 – 10.10) mg, p = 0.0014) and D21 (7.60 

(6.75 – 10.15) mg, p =0.003 for D7 vs D21). To assess morphological parameters associated with lesion 

development in C57  miR-155-/- endometriotic-like lesions, analysis of H&E stained sections was 

performed (Figure 4.15 A-C). Over the three week time period, no significant differences were observed 

in the number of glands per lesion (Figure 4.15 D), average gland size (Figure 4.15 E), lumen area (Figure 

4.15 F), epithelium area (Figure 4.15 G), percentage glandular epithelium (Figure 4.15 H) or percentage 

stromal area (Figure 4.15 I).  

 

Quantification of total F4/80 density in lesions steadily increased over time (Figure 4.16 G). At D7, 4.03 

(1.04 – 5.48) % of cells were F4/80+, which significantly increased at D14 (12.53 (9.37 – 20.77) %; p = 

0.0189) and further increased at D21 (24.37 (18.66 – 27.36) %; p < 0.0001 for D7 vs D21). F4/80 

expression at the periphery of C57  miR-155-/- lesions was unchanged over time (Figure 4.16 A-C, H). 

In contrast, the central F4/80 density in C57  miR-155-/- lesions followed a similar trend to the total 

expression of F4/80 in these lesions, with a significant increase between D7 and D14 (4.10 (2.26 – 6.44) 

% and 14.69 (10.03 – 21.23) %; p = 0.0214), and a further increase at D21 (38.12 (31.82 – 43.52) %; p < 

0.0001 for D7 vs D21) (Figure 4.16 D-F, I). 

 

A gradual increase in the density of M1-like marker iNOS occurred across the time points (8.55 (6.67 – 

13.37) % at D7, 16.67 (12.46 – 23.78) % at D14, and 30.46 (25.88 – 36.74) % at D21; p < 0.0001 for D7 

vs D21) (Figure 4.17 A-C, M). Similarly, expression of the M1-like marker MHC II in C57  miR-155-/- 
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lesions was lowest at D7 (8.89 (6.67 – 10.46) %), increased slightly at D14 (12.65 (9.24 – 15.74) %), and 

was highest at D21 (15.27 (10.97 – 21.19) %; p = 0.0033 for D7 vs D21) (Figure 4.17 D-F, N). Over the 

course of three weeks, the density of the M2-like marker CD206 increased slightly from D7 to D14 (11.90 

(10.64 – 12.73) % and 16.91 (14.26 – 24.89) % respectively), and reached maximum expression at D21 

(28.96 (25.20 – 31.79) %; p < 0.0001 for D7 vs D21) (Figure 4.17 G-I, O). In contrast, while the density of 

the M2-like marker Arg-1 was consistent at D7 and D14 (48.62 (44.58 – 54.35) % and 52.36 (43.94 – 

69.17) % respectively), a small but significant decrease in Arg-1 expression was observed between D14 

and D21 (39.77 (35.55 – 47.12) %; p = 0.0274) (Figure 4.17 J-L, P). 

 

 
Table 4.7 Endometriosis-like lesion recovery in C57  miR-155-/- mice 

Lesion collection time point D7 D14 D21 

Total number of C57 donor mice used across all time points: 36 

Number of miR-155-/- recipient mice 10 10 10 

Number of mice with lesions 10 9 9 

Proportion of mice with lesions (%) 100 90 90 
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Figure 4.14 Gross morphology of endometriosis-like lesion development in a transfer from C57 

donor to miR-155-/- recipient mice 

Decidualised C57 donor endometrial tissue was injected subcutaneously into miR-155-/- recipient mice. Resulting 
lesions were harvested at either D7 (A), D14 (B) or D21 (C), with representative images shown. Lesion size was 
measured (D) and lesions were excised and weighed (E), with the dotted line indicating the initial weight of donor 
decidualised endometrial tissue inoculated into recipient mice. Data are presented as median (IQR), with each 
symbol representative of a single lesion in one mouse (n=10 at D7, n=9 at D14, n=9 at D21). Analysis was done 
using the Kruskal-Wallis test followed by Dunn’s multiple comparison test, with significance denoted as ** (p < 0.01) 
and *** (p < 0.001). 
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Figure 4.15 Assessment of morphological parameters in haematoxylin and eosin stained 

endometriosis-like lesions from C57 donor to miR-155-/- recipient mice   

Haematoxylin and eosin stained sections from D7 (A), D14 (B), and D21 (C) lesions (representative images shown; 
arrows indicate glands) were assessed for the following characteristics: number of glands per lesion (D), average 
gland size (E), lumen area (F), epithelium area (G), percentage glandular epithelium (H) and percentage stromal 
area (I). Data are presented as media (IQR), with each symbol representative of a single lesion in one mouse (n=10 
at D7, n=9 at D14, n=9 at D21). Analysis was done using the Kruskal-Wallis test followed by Dunn’s multiple 
comparison test.   
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Figure 4.16 F4/80 immunostaining in endometriosis-like lesions from C57 donor to miR-155-/- 

recipient mice   

Quantification of total F4/80 density was carried out in lesions from C57 donor to miR-155-/- recipient mice (G). 
F4/80 density at the lesion periphery (100µM from the edge of the lesion) at D7 (A), D14 (B) and D21 (C) was 
evaluated (H). F4/80 density at the lesion centre (within 500µM from the centre) at D7 (D), D14 (E), and D21 (F) 
was also quantified (I). Data are presented as median (IQR), with each symbol representative of a single lesion in 
one mouse (n=10 at D7, n=9 at D14, n=9 at D21). Analysis was done using the Kruskal-Wallis test followed by 
Dunn’s multiple comparison test, with significance denoted as * (p < 0.05) and **** (p < 0.0001). 
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Figure 4.17 M1-like (iNOS and MHCII) and M2–like (CD206 and Arg-1) immunostaining in 

endometriosis-like lesions from C57 donor to miR-155-/- recipient mice   

The expression of inducible nitric oxide synthase (iNOS) at D7 (A), D14 (B), and D21 (C) was quantified (M) in 
endometriosis-like lesions. Quantification of the Class II Major Histocompatibility Complex (MHC II) (N) was done 
at D7 (D), D14 (E) and D21 (F) in these lesions. CD206 density at D7 (G), D14 (H), and D21 (I) was quantified (O) 
in endometriosis-like lesions. Expression of Arginase-1 (Arg-1) (P) was evaluated at D7 (J), D14 (K) and D21 (L) 
in these lesions. Data are presented as median (IQR), with each symbol representative of a single lesion in one 
mouse (n=10 at D7, n=9 at D14, n=9 at D21). Analysis was done using the Kruskal-Wallis test followed by Dunn’s 
multiple comparison test, with significance denoted as * (p < 0.05), ** (p < 0.01) and **** (p <0.0001). 
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4.2.5.2. Endometriosis-like lesion development in miR-155-/- donor to C57 recipient transfers 

Thirty two miR-155-/- donor mice were required to collect sufficient decidualised endometrial tissue for 

transfer into C57 recipient mice (miR-155-/-  C57) at a ratio of 1 donor to 0.95 recipients (Table 4.8). 

Overall, 83% of recipient mice developed identifiable lesions. Evaluation of mice at D7, and D14 showed 

successful lesion recovery in 80% of recipient mice, and at D21, lesions were recovered from 90% of 

recipient mice. A single mouse had more than one lesion and has been excluded from subsequent 

analyses. 

 

Lesion appearance from miR-155-/-  C57 transfers was similar across all three time points, with a 

circular blood-filled appearance (Figure 4.18 A-C). Lesions gradually decreased in size over time (D7 (24 

(14 – 35) mm3); D14 (6 (2 – 16) mm3); D21 (3 (2 – 4) mm3, p = 0.0145 for D7 vs D21)) (Figure 4.18 D). 

Although a corresponding decrease in lesion weight was observed, this was not significant between time 

points (Figure 4.18 E). 

 

H&E staining was performed to assess morphological parameters associated with lesion development in 

miR-155-/-  C57 mice (Figure 4.19 A-C). The number of glands per lesion (Figure 4.19 D), lumen area 

(Figure 4.20 F), epithelium area (Figure 4.19 G), glandular epithelium (Figure 4.19 H) and stromal area 

(Figure 4.20 I) was similar across all time points. In contrast, the average gland size per lesion reduced 

slightly between D7 and D14 (0.004 (0.000 – 0.006) mm2 and 0.001 (0.000 – 0.002) mm2); however, at 

D21, average gland size increased significantly to 0.007 (0.001 – 0.012) mm2 (p = 0.0331 for D14 vs D21) 

(Figure 4.19 E).  

 

F4/80 immunostaining was performed to localise macrophage density in miR-155-/- C57 lesions (Figure 

4.20). Total macrophage density gradually increased over the three week time course (3.84 (2.40 – 4.55) 

% at D7, 12.61 (11.39 – 16.68) % at D14, and 29.51 (21.84 – 41.37) % at D21; p < 0.0001 for D7 vs D21) 

(Figure 4.20 G). Peripheral F4/80 density (Figure 4.20 A-C) followed a similar trend between D7, D14 and 

D21 (12.21 (8.74 – 13.45) %, 16.35 (7.93 – 23.14) %, and 27.55 (20.72 – 39.12) % respectively; p = 

0.0016 for D7 vs D21) (Figure 4.20 H). Central F4/80+ density (Figure 4.20 D-F) was lowest at D7 (4.91 

(2.91 – 10.84) %) and significantly increased at both D14 and D21 (18.32 (16.38 – 30.72) % and 42.99 

(31.81 – 52.41) % respectively; p = 0.0441 for D7 vs D41 and p < 0.0001 for D7 vs D21) (Figure 4.20 I). 
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Expression of the M1-like marker iNOS increased significantly over time (4.11 (1.99 – 8.51) % at D7, 

16.15 (11.37 – 28.22) % at D14; p = 0.0486 for D7 vs D14, and 31.45 (28.96 – 35.02) % at D21; p < 

0.0001 for D7 vs D21) (Figure 4.21 A-C, M). Density of the M1-like marker MHC II also gradually increased 

between D7, D14 and D21 (2.72 (1.13 – 5.69) %, 13.80 (11.47 – 15.02) %, and 21.22 (17.27 – 32.21) % 

respectively; p < 0.0001 for D7 vs D21) (Figure 4.21 D-F, N). Expression of the M2-like macrophage 

marker CD206 gradually increased across the three time points (21.12 (12.45 – 29.02) % at D7, 34.82 

(25.97 – 38.43) % at D14, 44.32 (38.46 – 49.80) % at D21; p = 0.0003 for D7 vs D21) (Figure 4.21 G-I, 

O). Alternatively the expression of Arg-1 was consistent across all time points (Figure 4.21 J-L, P). 

 

 

Table 4.8 Endometriosis-like lesion recovery in miR-155-/-  C57 mice 

Lesion collection time point D7 D14 D21 

Total number of miR-155-/- donor mice used across all time points: 32 

Number of C57 recipient mice 10 10 10 

Number of mice with lesions* 8 8 9 

Proportion of mice with lesions (%) 80 80 90 

* To reduce bias, mice with ≥2 lesions were excluded from subsequent analyses.  At D21 - 1 mouse excluded.  
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Figure 4.18 Gross morphology of endometriosis-like lesion development in a transfer from miR-155-

/- donor to C57 recipient mice 

Decidualised miR-155-/- donor endometrial tissue was injected subcutaneously into C57 recipient mice. Resulting 
lesions were harvested at either D7 (A), D14 (B) or D21 (C), with representative images shown. Lesion size was 
measured (D) and lesions were excised and weighed (E), with the dotted line indicating the initial weight of donor 
decidualised endometrial tissue inoculated into recipient mice (n=8 at D7, n=8 at D14, n=8 at D21). Data are 
presented as median (IQR), with each symbol representative of a single lesion in one mouse. Analysis was done 
using the Kruskal-Wallis test followed by Dunn’s multiple comparison test, with significance denoted as * (p < 0.05). 
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Figure 4.19 Assessment of morphological parameters in haematoxylin and eosin stained 

endometriosis-like lesions from miR-155-/- donor to C57 recipient mice   

Haematoxylin and eosin stained sections from D7 (A), D14 (B), and D21 (C) lesions (representative images shown; 
arrows indicate glands) were assessed for the following characteristics: number of glands per lesion (D), average 
gland size (E), lumen area (F), epithelium area (G), percentage glandular epithelium (H) and percentage stromal 
area (I). Data are presented as median (IQR), with each symbol representative of a single lesion in one mouse. 
Analysis was done using the Kruskal-Wallis test followed by Dunn’s multiple comparison test, with significance 
denoted as * (p < 0.05). 
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Figure 4.20 F4/80 immunostaining in endometriosis-like lesions from miR-155-/- donor to C57 

recipient mice   

Quantification of total F4/80 density was carried out in lesions from miR-155-/- donor to C57 recipient mice (G). 
F4/80 density at the lesion periphery (100µM from the edge of the lesion) at D7 (A), D14 (B) and D21 (C) was 
evaluated (H). F4/80 density at the lesion centre (within 500µM from the centre) at D7 (D), D14 (E), and D21 (F) 
was also quantified (I). Data are presented as median (IQR), with each symbol representative of a single lesion in 
one mouse (n=8 at D7, n=8 at D14, n=8 at D21). Analysis was done using the Kruskal-Wallis test followed by 
Dunn’s multiple comparison test, with significance denoted as * (p < 0.05), ** (p < 0.01) and **** (p < 0.0001). 
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Figure 4.21 M1-like (iNOS and MHCII) and M2–like (CD206 and Arg-1) immunostaining in 

endometriosis-like lesions from miR-155-/- donor to C57 recipient mice   

The expression of inducible nitric oxide synthase (iNOS) at D7 (A), D14 (B), and D21 (C) was quantified (M) in 
endometriosis-like lesions. Quantification of the Class II Major Histocompatibility Complex (MHC II) (N) was done 
at D7 (D), D14 (E) and D21 (F) in these lesions. CD206 density at D7 (G), D14 (H), and D21 (I) was quantified (O) 
in endometriosis-like lesions. Expression of Arginase-1 (Arg-1) (P) was evaluated at D7 (J), D14 (K) and D21 (L) 
in these lesions. Data are presented as median (IQR), with each symbol representative of a single lesion in one 
mouse (n=8 at D7, n=8 at D14, n=8 at D21). Analysis was done using the Kruskal-Wallis test followed by Dunn’s 
multiple comparison test, with significance denoted as * (p < 0.05), *** (p < 0.001) and **** (p <0.0001). 
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4.2.5.3. Comparison of lesion development in miR-155-/- ↔ C57 reciprocal transfer mice with 

syngeneic C57 and syngeneic miR-155-/- mice 

To evaluate the effect of a miR-155 deficiency present either in the recipient environment (C57  miR-

155-/- transfer) or in the donor endometrial tissue (miR-155-/-  C57 transfer), comparisons of 

morphometric and immunohistochemical results in these reciprocal transfer models were made against 

corresponding results from the syngeneic C57 (C57  C57 transfer) and the syngeneic miR-155-/- (miR-

155-/-  miR-155-/- transfer) models.  

 

4.2.5.3.1. C57  miR-155-/- lesion development vs C57  C57 lesion development  

While lesion size was similar across time points, C57  miR-155-/- lesions were 2.8-fold larger than C57 

 C57 lesions at D21 (p = 0.0014) (Figure 4.22 A, B). The number of glands was significantly lower in 

C57  miR-155-/- lesions compared to C57  C57 lesions at D14 (100% lower, p = 0.0023) and D21 

(69% lower, p < 0.0001) (Figure 4.22 C). Average gland size was 100% lower in C57  miR-155-/- lesions 

compared to C57  C57 lesions at D14 (p = 0.0032) but was comparable at other time points (Figure 

4.22 D). Lumen area was significantly lower in C57  miR-155-/- lesions compared to C57  C57 lesions 

at D14 (100% lower, p =0.0072) and D21 (95% lower, p = 0.0006) (Figure 4.22 E). Epithelium area was 

significantly lower in C57  miR-155-/- lesions compared to C57  C57 lesions at D14 (100% lower, p 

=0.0013) and D21 (73% lower, p = 0.0073) (Figure 4.22 F). Likewise, glandular epithelium was 

significantly lower in C57  miR-155-/- lesions compared to C57  C57 lesions at D14 (100% lower, p 

=0.0032) and D21 (98% lower, p = 0.0006) (Figure 4.22 G). In contrast, stromal area was significantly 

higher in C57  miR-155-/- lesions compared to C57  C57 lesions at D14 (1.02-fold higher, p =0.0032) 

and D21 (1.02-fold higher, p = 0.0003) (Figure 4.22 H).    

 

At D7, total F4/80 density was 64% lower in C57  miR-155-/- lesions compared to C57  C57 lesions 

(p = 0.0008) (Figure 4.23 A). Peripheral F4/80 expression was unchanged between C57  miR-155-/- 

lesions and C57  C57 lesions over the three weeks (Figure 4.23 B). Central F4/80 expression was 58% 

lower in C57  miR-155-/- lesions compared to C57  C57 lesions at D14 (p = 0.0056), but similar at all 

other time points (Figure 4.23 C). The total density of iNOS was 64% lower in C57  miR-155-/- lesions 

compared to C57  C57 lesions at D7 (p < 0.0001), whereas by D21, iNOS expression was 1.8-fold 

higher in C57  miR-155-/- lesions (p =  0.0010) (Figure 4.23 D). Total MHC II density was 55% lower in 

C57  miR-155-/- lesions compared to C57  C57 lesions at D7 (p = 0.0056) (Figure 4.23 E). Total 

CD206 expression was 27% lower C57  miR-155-/- lesions compared to C57  C57 lesions at D21 (p 

< 0.0001) (Figure 4.23 F). In contrast, Arg-1 expression was 2.2-fold higher at D7 (p < 0.0001) and 2.2-
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fold higher at D14 (p < 0.0001) and 1.6-fold higher at D21 (p = 0.0079) in C57  miR-155-/- lesions 

compared to C57  C57 lesions (Figure 4.23 G).  

 

4.2.5.3.2. C57  miR-155-/- lesion development vs miR-155-/-  miR-155-/- lesion development  

Lesion development in C57  miR-155-/- and miR-155-/-  miR-155-/- were comparable across all 

morphometric parameters, except for lesion weight, wherein lesions were 1.9-fold heavier in C57  miR-

155-/- at D21 (p = 0.0014) (Figure 4.22). There was a 52% reduction in total F4/80 density between C57 

 miR-155-/- lesions and miR-155-/-  miR-155-/- lesions at D7 (p < 0.0001) (Figure 4.23 A). While 

peripheral F4/80 density in C57  miR-155-/- lesions was 1.7-fold higher at D7 (p = 0.0056) and 21.-fold 

higher at D14 (p = 0.0053) compared to miR-155-/-  miR-155-/- lesions, no differences were observed 

in central F4/80 density (Figure 4.23 B,C). Total iNOS density was 43% lower in C57  miR-155-/- lesions 

compared to miR-155-/-  miR-155-/- lesions at D7 (p = 0.0093) (Figure 4.23 D). MHC II density was 

significantly elevated in C57  miR-155-/- lesions compared to miR-155-/-  miR-155-/- lesions at D7, 

D14 and D21 (5.1-fold higher, p < 0.0001, 2.3-fold higher, p < 0.0001, and 4.4-fold higher, p < 0.0001 

respectively) (Figure 4.23 E). In contrast, CD206 density was significantly lower in C57  miR-155-/- 

lesions compared to miR-155-/-  miR-155-/- lesions at D7, D14 and D21 (46% lower, p < 0.0001, 48% 

lower, p = 0.0029, and 17% lower, p = 0.0019 respectively) (Figure 4.23 F). Arg-1 expression 1.3-fold 

higher in C57  miR-155-/- lesions compared to miR-155-/-  miR-155-/- lesions at D7 (p = 0.0047) 

(Figure 4.23 G). 

 

4.2.5.3.3. miR-155-/-  C57 lesion development vs C57  C57 lesion development  

At D21, although lesions were 57% smaller (p = 0.0016) in miR-155-/-  C57 mice, lesions were 2.9-fold 

heavier (p = 0.0002) compared to C57  C57 mice (Figure 4.22 A, B). The number of glands per lesion 

in miR-155-/-  C57 mice was 90% lower at D14 (p = 0.0042) and 85% lower at D21 (p = 0.0002) 

compared to C57  C57 mice (Figure 4.22 C). Average gland size was 94% smaller in miR-155-/-  

C57 mice compared to C57  C57 mice at D14 (p = 0.0107) (Figure 4.22 D). Epithelium area was 97% 

less at D14 (p = 0.0046) in miR-155-/-  C57 mice compared to C57  C57 mice (Figure 4.22 F). 

Percentage stromal area was 1.03-fold higher in miR-155-/-  C57 mice compared to C57  C57 mice 

at D21 (p = 0.0047) (Figure 4.22 H). No differences were observed in lumen area or percentage glandular 

epithelium between groups (Figure 4.22 E, G).  

 

Total F4/80 density was 65% lower in miR-155-/-  C57 lesions compared to C57  C57 lesions at D7 

(p = 0.0030), however, by D21, miR-155-/-  C57 lesions hand 1.7-fold more total F4/80 expression (p = 
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0.0047) (Figure 4.23 A). While peripheral F4/80 density was 69% lower at D7 (p < 0.0001) and 60% lower 

at D14 (p = 0.0007) in miR-155-/-  C57 lesions, no differences were observed in central F4/80 density 

(Figure 4.23 B, C). Total iNOS density was 83% lower at D7 (p < 0.0001) in miR-155-/-  C57 lesions 

compared to C57  C57 lesions, whereas by D21, iNOS density was 1.9-fold higher in miR-155-/-  

C57 lesions (p = 0.0003) (Figure 4.23 D). Total MHC II expression was 86% lower in miR-155-/-  C57 

lesions at D7 (p = 0.0005) (Figure 4.23 E). In contrast, total CD206 expression was 2.8-fold higher in miR-

155-/-  C57 lesions compared to C57  C57 lesions at D7 (p = 0.0011), while Arg-1 density increased 

2-fold at D7 (p < 0.0001) (Figure 4.23 F,G). 

  

4.2.5.3.4. miR-155-/-  C57 lesion development vs miR-155-/-  miR-155-/- lesion development  

Lesions were 75% smaller (p < 0.0001) in miR-155-/-  C57 mice compared to miR-155-/-  miR-155-/- 

mice at D21 (Figure 4.22 A). Although lesion weight in both groups reduced over time, lesions remained 

2-fold larger in miR-155-/-  C57 mice at D21 (p < 0.0001) (Figure 4.22 B). No differences were observed 

in the number of glands, average gland size, lumen area, epithelium area, percentage glandular 

epithelium or percentage stromal area between groups (Figure 4.22 C-H).  

 

Total F4/80 density was reduced by 54% in miR-155-/-  C57 lesions compared to miR-155-/-  miR-

155-/- lesions at D7 (p < 0.0001), however, no differences were observed in either peripheral or central 

F4/80 density (Figure 4.23 A-C). A 73% reduction in total iNOS expression was noted in miR-155-/-  

C57 lesions compared to miR-155-/-  miR-155-/- lesions at D7 (p = 0.0002), whereas total MHC II density 

was 2.5-fold higher at D14 (p < 0.0001) and 6.1-fold higher at D21 (p < 0.0001) (Figure 4.23 D,E). No 

differences were observed in either total CD206 or total Arg-1 density (Figure 4.23 F, G). 
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Figure 4.22 Comparative analysis of morphometric parameters between syngeneic C57 and miR-155-

/- models with reciprocal miR-155-/- cross transfer models    

Comparisons of lesion size (A), weight (B), number of glands per lesion (C), average gland size (D), lumen area 

(E), epithelium area (F), glandular epithelium (G), and stromal area (H) between C57  C57 mice ( ; n=12 at 

D7, n=12 at D14, n=8 at D21) and miR-155-/-  miR-155-/- mice ( ; n=17 at D7, n=17 at D14, n=13 at D21)) 

against either C57  miR-155-/- mice ( ; n=10 at D7, n=9 at D14, n=9 at D21) or miR-155-/-  C57 mice (
; n=8 at D7, n=8 at D14, n=8 at D21) was performed. Data are presented as median (IQR). Analysis was done 
using the Kruskal-Wallis test followed by Bonferroni-Dunn’s multiple comparison test, with significance inferred at 
p < 0.0125. * indicates significance between C57  C57 and C57  miR-155-/-; # indicates significance between 
miR-155-/-  miR-155-/- and C57  miR-155-/-; § indicates significance between C57  C57 and miR-155-/-  
C57; ^ indicates significance between miR-155-/-  miR-155-/- and miR-155-/- C57.
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Figure 4.23 Comparative analysis of macrophage markers between syngeneic C57 and miR-155-/- 

models with reciprocal miR-155-/- cross transfer models    

Total (A), peripheral (B), and central (C) F4/80 density were compared between C57  C57 mice ( ; n=12 at 

D7, n=12 at D14, n=8 at D21) and miR-155-/-  miR-155-/- mice ( ; n=17 at D7, n=17 at D14, n=13 at D21)) 

against either C57  miR-155-/- mice ( ; n=10 at D7, n=9 at D14, n=9 at D21) or miR-155-/-  C57 mice (
; n=8 at D7, n=8 at D14, n=8 at D21). Comparisons between the M1-like macrophage markers iNOS (D) and MHC 
II (E), and the M2-like macrophage markers CD206 (F) and Arg-1 (G) were also performed. Data are presented as 
median (IQR). Analysis was done using the Kruskal-Wallis test followed by Bonferroni-Dunn’s multiple comparison 
test, with significance inferred at p < 0.0125. * indicates significance between C57  C57 and C57  miR-155-/-; 
# indicates significance between miR-155-/-  miR-155-/- and C57  miR-155-/-; § indicates significance between 
C57  C57 and miR-155-/-  C57; ^ indicates significance between miR-155-/-  miR-155-/- and miR-155-/- 
C57.
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4.3. DISCUSSION 

This study was undertaken to investigate the role of miR-155 in the establishment and progression of 

endometriotic-like lesions in a subcutaneous menstrual mouse model of endometriosis. miR-155 is 

expressed in a range of haematopoietic cells, including stem cells, monocytes, granulocytes, T-cells and 

B-cells, and has roles in the regulation of myelopoiesis and erythropoiesis (Georgantas et al., 2007, 

Landgraf et al., 2007, Masaki et al., 2007). The expression of miR-155 is induced by the presence of 

inflammatory stimuli, including IL-1α, IL-1β, TNF-α, pathogen-associated molecular patterns and damage-

associated molecular patterns (O'Connell et al., 2007, Kurowska-Stolarska et al., 2017), and hypoxic 

conditions (Bruning et al., 2011). In contrast, the presence of anti-inflammatory cytokines such as TGFβ 

and IL-10 decrease the expression of miR-155 (Kong et al., 2008, Quinn et al., 2014).  

 

Following an inflammatory challenge, miR-155 is induced in monocytes and macrophages, and 

contributes to the upregulation of an M1-like pro-inflammatory response (Jablonski et al., 2016). 

Moreover, miR-155 inhibits the polarisation of M2-like macrophages through the regulation of the TGFβ 

signalling pathway, in which Smad2 signalling in macrophages is impeded, thereby preventing the 

expression of IL-4Rα and subsequent development of tissue remodelling macrophages (Louafi et al., 

2010). In addition, miR-155 inhibits the development of STAT6-driven anti-inflammatory macrophages 

through targeting multiple molecules in the IL-13/IL-4 signalling pathway (He et al., 2009, Martinez-Nunez 

et al., 2011). 

 

4.3.1. A systemic deficiency of miR-155 results in endometriosis-like lesions reminiscent of C57 

lesions 

Approximately 92% of miR-155-/- mice had endometriosis-like lesion development, supporting the use of 

this model to study disease development. In the absence of miR-155, developing lesions had 

characteristic features of endometriosis, however, despite the significant decrease in lesion size and 

weight between D7 to D21, morphometric analyses did not uncover differences in glandular fractions over 

time. The overall pattern of lesion development in these mice was consistent with C57 mice at D7 and 

D14, however differences in gland formation was apparent at D21, with miR-155-/- lesions having a lower 

number of glands present and a lower percentage glandular epithelium. An important observation 

however, is that the number of glands did not change from D7 to D21 in miR-155-/- lesions, and that 

average gland size remained similar between C57 and miR-155-/- lesions over time. In addition, lesions 

from miR-155-/- mice remained dark and opaque throughout this study compared to C57 lesions, which 

suggests potential differences at a cellular or molecular level. 
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Clinical evaluation in women with true black opaque endometriotic lesions found reduced concentrations 

of VEGF, IL-6, MCP-1 and hepatocyte growth factor in the peritoneal fluid, suggesting that these lesions 

display altered cellular activity and immune activation compared to non-opaque or red lesions (Khan et 

al., 2004). From the RNA-Seq pathway analysis of miR-155-/- lesions, a downregulation of IL-6 signalling 

was observed at both D7 and D14 compared to the decidualised endometrium. This suggests that the 

absence of overt changes in gland formation in miR-155-/- mice may not be the only indicator of lesion 

establishment, and could indicate that development of miR-155-/- lesions may be progressing at slower 

rate compared to C57 lesions, as all other parameters were comparable. Therefore, in a clinical setting 

wherein miR-155 is downregulated in plasma from women with endometriosis (Nisenblat et al., 2019), it 

is possible that miR-155 expression may be an indicator of the type of predominant lesion type (e.g. red 

opaque vs true black) that is present in these women.  

 

In a clinical setting, the Wnt/β-catenin signalling pathway is aberrantly activated in women with 

endometriosis compared to healthy controls (Pazhohan et al., 2018). Moreover, in mice, endometrial 

gland formation is linked to the expression of lymphoid enhancing factor 1 (Lef1), a known target of the 

Wnt/β-catenin signalling cascade (Shelton et al., 2012, Zhang et al., 2013). The RNA-Seq data from this 

study supports this observation, as the canonical Wnt/β-catenin signalling pathway is upregulated in D7 

lesions compared to decidualised endometrium, with KEGG pathway analysis showing a consistent 

increase in the Wnt pathway over time (Appendix: Figure 7.5 and Table 7.2 – Cluster 7). In addition, in 

the absence of miR-155, the expression of Lef1 is upregulated in D7 lesions (log2FC = 3.893; FDR < 

0.0001) and D14 lesions (log2FC = 3.617; FDR < 0.0001) compared to decidualised endometrium 

(Supplementary material Table 4 and 5). Surprisingly, in contrast with these observations, an in vitro study 

demonstrated that the overexpression of miR-155 activates the Wnt/β-catenin signalling cascade (Zhang 

et al., 2013). This discrepancy may be due to miRNA network redundancy (Luck et al., 2015) or a miRNA 

compensatory mechanism (El-Brolosy et al., 2019), as in addition to miR-155 regulation of the Wnt/β-

catenin signalling pathway, miR-410 (Zhang et al., 2016b) and miR-374a (Cai et al., 2013) positively 

regulate this pathway, while miR-200a (Su et al., 2012) and miR-34 (Kim et al., 2011) downregulate this 

pathway. Therefore, while it is possible that endometrial gland development in the absence of miR-155 

may be a consequence of elevated Wnt/ β-catenin signalling, additional epigenetic regulators are likely to 

be involved in the progression of endometriotic lesions. 
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4.3.2. The absence of miR-155 promotes M2-like immune activity in endometriotic lesions 

miR-155 is involved in the polarisation of monocytes into M1-like, pro-inflammatory macrophages 

(Jablonski et al., 2016, O'Connell et al., 2007, Wang et al., 2013a), and in the context of endometriosis, 

elevated M1-like activity is associated with decreased lesion growth and survival (Bacci et al., 2009). In 

these mice, systemic depletion of miR-155 shifts the immune system towards an anti-inflammatory 

response, with increased levels of M2-like macrophages (He et al., 2015). Previous work has shown that 

high levels of M2-like macrophages promotes tissue remodelling in endometriosis (Bacci et al., 2009), 

and thus, could account for the observed survival and growth of endometriosis-like lesions in miR-155-/- 

mice. Therefore, to help understand why gland formation is arrested in miR-155 lesions, it is important to 

evaluate the presence and activation status of macrophages in these lesions.  

 

In the miR-155-/- mouse model of endometriosis, an increase in total F4/80+ macrophages was seen over 

time, coupled with an influx of macrophages into the centre of the lesion. A study looking at the impact of 

miR-155 in monocyte chemokine and chemokine receptor expression found that miR-155-/- bone marrow 

monocytes exhibited downregulated CCR7 and upregulated CCR2 expression (Elmesmari et al., 2016). 

CCR7 has an important role in lymphocyte recruitment and homing of immune cells, and a CCR7 

deficiency has been shown to restrict the migration of dendritic cells (Förster et al., 2008). Similarly, CCR2 

harbours a receptor for monocyte chemoattractant protein- 1 (MCP-1), which mediates monocyte 

chemotaxis and infiltration (Mak and Uetrecht, 2019). Therefore, in this study, the lower macrophage 

numbers in miR-155-/- lesions compared to C57 lesions at D7 may be attributed to a reduced lymphocyte 

recruitment capacity as a result of downregulated CCR7 (miR-155-/- decidualised endometrium vs D7 

lesions, log2FC = -2.876; FDR = 0.0167) (Supplementary material Table 4). However, by D21, total 

macrophage numbers are significantly higher in miR-155-/- lesions compared to C57 lesions, suggesting 

a delayed infiltration of macrophages, which may potentially be mediated by the upregulation of CCR2. 

This is further supported by the increased expression of CCR2 observed in miR-155-/- lesions at D14 

compared to D7 (log2FC = 1.191; FDR = 0.0055) (Supplementary material Table 6). 

 

Following LPS stimulation in mice, miR-155-/- bone marrow-derived macrophages exhibited a decrease 

in the expression of the pro-inflammatory cytokines TNF-α and IL-1β (Kurowska-Stolarska et al., 2011). 

Moreover, in a miR-155-/- model of induced colitis, a decrease in M1-like genes (IL-1β, IL-6, IL-12 and 

TNF-α) was observed, while expression of M2-like genes (Arg-1, IL-10, Fizz1 and Mrc1) were upregulated 

(Li et al., 2018). As a deficiency in miR-155 results in the suppression of M1-like macrophage activity, it 

was unsurprising to note that levels of both M2-like markers, CD206 and Arg-1, increased significantly 
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over time, with a higher expression of both markers observed in miR-155-/- lesions compared to C57 

lesions at D7. Data from the miR-155-/- RNA-Seq analysis confirms this observation, with a decrease in 

Arg-1 seen at D7 compared to decidualised endometrium (log2FC = -9.418; FDR = 0.0131) 

(Supplementary material Table 4), and an increase of Arg-1 expression observed between D7 and D14 

lesions (log2FC = 2.902; FDR = 0.0040) (Supplementary material Table 6).  

 

While the density of the M1-like macrophage marker MHC II remained significantly lower in miR-155-/- 

lesions compared to C57 lesions, the gradual increase in iNOS expression over the three weeks of lesion 

development was unexpected, as Ɩ-arginine is a common substrate for both arginase and NO synthase 

(Lee et al., 2017). In contrast to previous work, this study did not observe an inverse relationship between 

Arg-1 and iNOS expression due to competition for their common substrate Ɩ-arginine (McLarren et al., 

2011). Nonetheless, information surrounding the role of miR-155 in regulation of the Arg-1/iNOS balance 

is conflicting. An upregulation of Arg-1 and Arg-2 in miR-155 deficient mice has been observed, with a 

corresponding reduction in iNOS activity (Arranz et al., 2012, Dunand-Sauthier et al., 2014). In contrast, 

in myeloid-derived suppressor cells, depletion of miR-155 resulted in the reduction of both Arg-1 and 

iNOS (Chen et al., 2015b). However, in the context of endometriosis, immunohistochemical analysis of 

lesions from a mouse model demonstrated an overlap of Arg-1 expression with the inflammatory markers 

iNOS and MHC II (Johan et al., 2019). This finding suggests a subtle shift between M1-like and M2-like 

immune activity may occur throughout the development of endometriosis.  

 

At D21, data from this study showed comparable numbers of blood vessels per lesion, average blood 

vessel size, and αSMA density. Alternatively, the density of fibrosis remained significantly lower in miR-

155-/- lesions compared to C57 lesions at all time points. This finding is surprising, as a deficiency of miR-

155 has been shown to exacerbate fibrosis, as demonstrated in a pulmonary fibrosis mouse model 

(Kurowska-Stolarska et al., 2017). Emerging evidence suggests that macrophage-derived exosomes are 

able to regulate the function of adjacent cells, including fibroblasts (Wang et al., 2017, Alivernini et al., 

2017, Sun et al., 2018, Schjenken et al., 2019). In particular, following cardiac injury, cardiac fibroblasts 

absorb miR-155-enriched exosomes secreted by macrophages, resulting in the elevated production of 

inflammatory mediators with a reduction in SOCS-1 mediated fibroblast proliferation (Wang et al., 2017). 

Indeed, the results from this chapter show significantly elevated αSMA+ myofibroblast activity at D14 in 

miR-155-/- lesions compared to C57 lesions, confirming a role for miR-155 in the regulation of fibroblast 

proliferation in the progression of endometriosis. However, the overall lack of fibrosis despite the observed 

increase in M2-like immune remodelling activity warrants further investigation.  
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Although chronic pain is a common and debilitating symptom of endometriosis, there remains a poor 

correlation between symptom severity and lesion load or distribution (Morotti et al., 2017, Coxon et al., 

2018). A recent study in a mouse model of endometriosis found that central glial adaptations mediated by 

changes in microglial CD11b and astrocytic glial fibrillary acidic protein expression occurs in association 

with endometriosis-like lesions (Dodds et al., 2019). In miR-155-/- lesions, a consistent increase in KEGG 

pathways associated with axon guidance, neuroactive ligand-receptor interaction, and synaptic vesicle 

cycle was observed over time (Appendix: Figure 7.5 and Table 7.2 – Cluster 7). A study looking at axon 

regeneration following spinal cord injury in mice demonstrated that a miR-155 deletion reduced 

macrophage-mediated inflammation and neuron toxicity, and promoted macrophage-elicited 

spontaneous axon growth from neurons (Gaudet et al., 2016). Interestingly, studies in rat models of 

chronic constriction injury have shown that miR-155 is significantly upregulated in microglia following 

neuropathic pain (Yin et al., 2017), and the suppression of miR-155 attenuates this pain (Liu et al., 2015a, 

Tan et al., 2015). Taken together, this suggests that the decrease in circulating miR-155 seen in women 

with endometriosis may initially assist in limiting or masking the pain associated with this disease. 

However, this could eventually be detrimental, as neuron growth appears to be accelerated in the absence 

of miR-155, and may be a contributing factor to the generation and maintenance of pain in endometriosis.  

 

4.3.3. Depletion of miR-155 from either donor or recipient environment restricts M1-like immune 

activity in lesions 

Total, peripheral and central F4/80 expression increased in both reciprocal transfer groups over time, 

following a similar expression pattern to miR-155-/-  miR-155-/- lesions while contrasting with C57  

C57 lesions. This implies that the absence of miR-155, whether in the donor endometrium or in the 

recipient environment, impacts macrophage recruitment to the lesion site. Indeed, a downregulation of 

the lymphocyte recruitment chemokine CCR7 was noted in miR-155-/- bone marrow monocytes 

(Elmesmari et al., 2016), supporting this observation. A recent review describing the various processes 

involved in endometrial cell signalling highlights the importance of the Wnt signalling pathway in the 

regulation of endometrial cell cycling and communication with adjacent cells (Makieva et al., 2018). As 

mentioned previously, miR-155 is implicated in regulation of the Wnt signalling pathway, and as the 

presence of circulating miR-155 is not sufficient to restore F4/80+ macrophage trafficking in miR-155-/-  

C57 lesions, this observation strongly suggests that innate signals from the ectopic endometrial tissue 

itself may regulate macrophage chemotaxis. 

 

The expression of the M1-like markers iNOS and MHC II increased gradually over time in both reciprocal 

transfer groups. In contrast, MHC II expression in miR-155-/-  miR-155-/- lesions remained significantly 
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lower across the duration of the experiment. A series of gain- and loss-of function studies in RAW264.7 

cells demonstrated that miR-155 induced the expression of several surface markers, including MHC II in 

these cells (Ma et al., 2015). Interestingly, this study also showed that the overexpression of miR-155 

resulted in the morphological and phenotypical transformation of RAW264.7 macrophage-like cells into 

dendritic-like cells. In women with endometriosis, an increase in dendritic cell numbers has been observed 

in peritoneal endometriotic lesions compared to paired eutopic endometrium (Schulke et al., 2009). 

Therefore, the observed increase in MHC II expression in the reciprocal transfer model is likely due to an 

increase in dendritic cells within these lesions as a consequence of miR-155 expression, however this 

remains to be evaluated. This assumption also reconciles the observation of similar levels of F4/80+ 

macrophages observed in both reciprocal transfer lesions and miR-155-/-  miR-155-/- lesions. 

 

While the expression of Arg-1 in both reciprocal transfers was similar to miR-155-/-  miR-155-/- lesions, 

the expression pattern of CD206 differed between miR-155-/-  C57 lesions and C57  miR-155-/- 

lesions, suggesting that CD206 expression is regulated by signals from the donor endometrial tissue. In 

the C57  C57 lesions and C57  miR-155-/- lesions, infiltration of CD206+ cells occurs late in lesion 

development, suggesting the activation of a phenotypic switch from a M1-like pro-inflammatory immune 

response to a M2-like anti-inflammatory response. This is further supported by the significant increase in 

the number of blood vessels per lesion seen between D7 and D21. In a study using a rat model of spinal 

cord repair, an association between CD206+ macrophages and improved vascularity was observed, with 

a further correlation to VEGF expression at the site of injury (Bartus et al., 2014). In the context of 

endometriosis, VEGF-driven neovascularisation promotes the survival and proliferation of endometriotic 

lesions (Cho et al., 2012). In addition, an upregulation of CD206, M2-like macrophage polarisation, and 

increased immunoregulatory activity is associated with tissue preservation and neuroprotection (Boven et 

al., 2006, Bartus et al., 2014). Therefore, it is possible that neurogenesis in endometriosis could be 

mediated by CD206+ cells, and may contribute to the chronic pelvic pain associated with lesion 

development in this disease. 

 

In conclusion, the findings from this chapter indicate that the development of glandular fractions occurs 

progressively in miR-155-/-  miR-155-/- endometriosis-like lesions, albeit not to the same extent as seen 

in wildtype mice. Interestingly, the development of glands in C57  miR-155-/- lesions was similar to 

glandular formation in C57  C57 lesions, suggesting that the absence of circulating miR-155 observed 

clinically (Nisenblat et al., 2019) may contribute to increased lesion establishment. High levels of M2-like 

immune activity was sustained in lesions across D7 to D21, and low expression of the M1-like marker 

MHC II was observed, confirming that a deficiency in miR-155 results in the preferential increase in M2-
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like immune activity over M1-like immune activity. The RNA-Seq data highlighted the importance of the 

Wnt/β-catenin signalling pathway in the development of endometriosis, suggesting that the observed 

systemic downregulation of miR-155 in women with endometriosis may promote glandular development 

and hence, the survival and proliferation of ectopic endometrial tissue. Having assessed the progression 

of endometriosis-like lesions in an immune sufficient mouse model (Chapter 3) and in the presence of a 

sustained M2-like immune environment, the next chapter (Chapter 5) assess the impact of a miR-223-/- 

deficiency (sustained M1-like immune environment) on lesion development. 
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5.1. INTRODUCTION 

According to Sampson’s theory of retrograde menstruation, the reflux of endometrial tissue into the 

peritoneal cavity gives rise to the formation of endometriotic lesions (Sampson, 1927). As demonstrated 

in the previous chapters and in multiple independent studies, the infiltration and activation of macrophages 

are a consistent feature of endometriotic lesions (Lebovic et al., 2001, Zhang et al., 2006, Lawson et al., 

2007, Lousse et al., 2008, Capobianco and Rovere-Querini, 2013). In addition, dysfunctional immune 

responses, including impaired immune surveillance and aberrant cytokine expression contribute to 

disease pathogenesis (Aznaurova et al., 2014, Benagiano et al., 2014, Bouquet De Jolinière et al., 2014). 

The contribution of the peritoneal environment in the development of endometriosis has been well studied. 

The presence of ectopic endometrial tissue in the peritoneal cavity mediates the recruitment of leukocytes, 

which exhibit a range of functions, broadly characterised as either pro-inflammatory tissue destruction or 

anti-inflammatory tissue remodelling. A cocktail of cytokines, chemokines and growth factors within the 

peritoneal cavity facilitates the predominance of either pro-inflammatory or anti-inflammatory immune 

roles, and is believed to be a determining factor in the clearance or perseverance of ectopic endometrial 

tissue (Vercellini et al., 1993, Khorram et al., 1993, Koninckx et al., 1998, Kalu et al., 2007, Hull et al., 

2008, Riccio et al., 2018). 

 

While the peritoneal environment contributes to the pathogenesis of endometriosis, it is important to 

consider that changes in immune responses in the peritoneal fluid may be a result of inflammation towards 

the presence of ectopic endometrial tissue, rather than peritoneal inflammation driving disease 

establishment. To this extent, it is apparent that eutopic endometrial tissue from women with 

endometriosis differs from women without endometriosis. Although ectopic endometrial lesions share 

similar histological features with eutopic endometrium, significant biochemical inconsistencies and 

differential gene expression profiles between paired eutopic and ectopic samples as well as between 

eutopic samples from women with and without endometriosis exists (Sha et al., 2007, Filigheddu et al., 

2010, Meola et al., 2010, Klemmt and Starzinski-Powitz, 2012, Drury et al., 2018). More recently, several 

studies have identified nonsynonymous somatic mutations of cancer-driver genes in eutopic endometrial 

tissue which may provide a survival advantage to refluxed endometrial fragments (Anglesio et al., 2017, 

Suda et al., 2018). In addition, multiple studies have identified aberrant miRNA profiles between paired 

eutopic and ectopic endometrial samples from women with endometriosis (reviewed in Panir et al., 2018). 

Amongst the miRNAs that are dysregulated in endometriotic lesions compared to eutopic endometrium is 

miR-223-3p (miR-223) (Ohlsson Teague et al., 2009, Nisenblat et al., 2019).  
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miR-223 is located within the q12 locus of the X chromosome, and is regulated by an independent 

promoter unrelated to other gene products (Johnnidis et al., 2008, Rodríguez et al., 2012). Both the 

primary and secondary structure of miR-223 precursors are homologous across 42 vertebrate species, 

including humans, zebrafish, mice, horses and gorillas, indicative of an evolutionary-conserved function 

(Roberto et al., 2015). Dysregulated miR-223 expression is associated with multiple pathologies, including 

cardiovascular disorders, cancer, type II diabetes, hepatic ischemia, inflammatory bowel disease, and 

rheumatoid arthritis (Wong et al., 2008, Stamatopoulos et al., 2009, Fulci et al., 2010, Haneklaus et al., 

2013, Taibi et al., 2014, Kim et al., 2016, Mangat et al., 2018, Ye et al., 2018). Within the bone marrow, 

miR-223 is abundantly expressed in the myeloid compartment, and modulates the differentiation of 

haematopoietic lineages (Johnnidis et al., 2008, Shi et al., 2015). In particular, miR-223 is essential for 

osteoclast and erythrocyte differentiation, and myeloid cell differentiation including granulopoiesis and 

monocyte/macrophage differentiation and maturation (Johnnidis et al., 2008, Sugatani and Hruska, 2009, 

Haneklaus et al., 2013, Cantoni et al., 2017). 

 

miR-223 expression is induced by the myeloid transcription factors PU.1 and CAAT/enhancer-binding 

protein-β (C/EBPβ) (Fazi et al., 2005, Fukao et al., 2007). In contrast, low expression of miR-223 is 

maintained by nuclear factor I-A (NFI-A), which is able to stabilise undifferentiated myeloid precursor cells 

(Fazi et al., 2005). These cells subsequently compete for binding with C/EBPα, an additional inducer of 

miR-223 transcription (Eyholzer et al., 2010). Hence, both NFI-A and C/EBPβ are able to regulate miR-

223 expression, forming a negative feedback loop (Haneklaus et al., 2013). miR-223 is involved in the 

repression of IκB kinase subunit-α (IKKα), which regulates the differentiation, polarisation, and activation 

of macrophages. Suppression of miR-223 induces IKKα, resulting in the repression of nuclear factor κB 

(NFκB) pathways (Li et al., 2010). miR-223 mediated regulation of NFκB results in the decreased 

expression of IL-1β, IL-6, TNFα, and IL-12p40 in U937 macrophage cells (Liu et al., 2015b). Importantly, 

to attenuate a pro-inflammatory response, miR-223 targets NLR Family Pyrin Domain Containing 3 

(NLRP3), an inflammasome sensor, thus repressing inflammation (Bauernfeind et al., 2012, Yang et al., 

2015, Neudecker et al., 2017). In addition, miR-223 targets PBX/Knotted 1 Homeobox 1 (Pknox1), 

promoting the polarisation of macrophages towards an M2-like anti-inflammatory phenotype (Zhuang et 

al., 2012, Wang et al., 2014a, Yuan et al., 2018).  

 

In tandem with its function in promoting the activation of M2-like macrophages, miR-223 also reduces 

macrophage inflammatory responses to Toll-like receptor (TLR) ligand stimulation. Lipopolysaccharide 

(LPS) and poly (I:C) activation via TLR3 and TLR4 reduced miR-223 expression in macrophages, 

accompanied with an increase in signal transducer and activator of transcription 3 (STAT3) (Chen et al., 

2012). An increase in STAT3 is accompanied by the production of the pro-inflammatory cytokines IL-1β 
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and IL-6, with the expression of the IL-6 classical signalling pathway forming a positive feedback loop to 

simultaneously decrease miR-223 expression and amplify the pro-inflammatory response (Chen et al., 

2012). In addition, upon exposure to LPS, the downregulation of miR-223 in macrophages leads to an 

increase in the expression of Ras homolog gene family member B (RhoB), a target of miR-223. This 

results in the induction of the MAPK and NFκB signalling pathways, promoting the production of IL-1β, IL-

6, and TNFα (Zhang et al., 2017b). Collectively, these observations highlight the role miR-223 plays in 

regulating the balance between M1-like and M2-like inflammatory responses in macrophages, with 

elevated expression of miR-223 promoting M2-like macrophage polarisation, whereas decreased miR-

223 expression promotes M1-like macrophage activity (Sica and Mantovani, 2012, Ying et al., 2015, 

Zhang et al., 2017b).  

 

In the context of endometriosis, a microarray analysis of paired samples of eutopic and ectopic 

endometrial tissue identified miR-223 as significantly upregulated by 1.72-fold in endometriotic tissues 

(n=8) (Ohlsson Teague et al., 2009). From this study, an analysis of predicted mRNA targets (including 

Nuclear Factor I/A, Myocyte Enhancer Factor 2C, and Leukaemia-Associated Phosphoprotein P18) 

identified a roles for miR-223 in cell differentiation, granulopoiesis and myogenesis during lesion 

development. Additional studies have implicated aberrant miR-223 expression in as both an indicator and 

a contributing factor in patients with endometrial cancer (Jia et al., 2013b, Montagnana et al., 2017). 

Hence, as the expression of miR-223 is upregulated in ectopic endometrial tissue during endometriosis, 

this may be linked to the increased abundance of M2-like macrophages observed at the lesion site (Bacci 

et al., 2009). This could facilitate lesion development by shifting the immune response towards a more 

anti-inflammatory, tissue remodelling state, and may be indicative of a predisposition towards developing 

endometrioid endometrial cancer. Therefore in this chapter, to fully evaluate the contribution of miR-223 

on lesion development and macrophage recruitment in endometriosis, a miR-223-/- mouse model was 

utilised. 

 

The loss of miR-223 results in mice with an increased number of granulocyte progenitors, leading to an 

expanded granulocytic compartment (Johnnidis et al., 2008). In addition, miR-223-/- granulocytes are 

hypersensitive towards activating stimuli and consequently, spontaneously develop inflammatory lung 

pathology and exhibit exaggerated tissue destruction after an endotoxin challenge (Johnnidis et al., 2008). 

A knockout of miR-223 further results in an expansion of myeloid progenitors, but had no discernible 

effects on haematopoietic stem cell quiescence, self-renewal capacity, or long-term repopulating activity 

(Trissal et al., 2015). miR-223-/- mice exhibit significantly enhanced inflammation following high-fat diet 

feeding, coupled with elevated M1-like macrophage activation and impaired M2-like macrophage function 

(Zhuang et al., 2012). To assess the development of endometriosis-like lesions in the absence of miR-
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223, a miR-223-/- menstrual mouse model of endometriosis was developed, wherein 40mg of miR-223-/- 

donor decidualised endometrial tissue was subcutaneously injected into syngeneic recipient mice. At D7, 

D14 and D21- post tissue transfer, characterisation of endometriosis-like lesion size, weight, and 

glandular fractions was carried out. To assess macrophage localisation and M1-like vs M2-like 

abundance, immunohistochemical assessment of macrophages (F4/80 staining), M1-like markers (MHC 

II and iNOS) and M2-like markers (CD206 and Arg-1) was performed. Further characterisation of 

endometriosis-like lesions, including blood vessel density (vWF immunostaining), myofibroblast 

abundance (αSMA immunostaining) and fibrosis (Masson’s trichrome staining) was undertaken. RNA-

Sequencing (RNA-Seq) was utilised to determine the differential expression of genes between 

decidualised donor endometrium, D7 and D14 lesions. Additional comparisons were made between miR-

223-/- and C57 (wildtype control strain) data at corresponding time points, with the original C57 data 

presented in Chapter 3 of this thesis. Finally, reciprocal transfers between miR-223-/- mice and C57 mice 

were performed to determine whether a miR-223 deficiency only in the donor endometrium or only in the 

host response alters endometriotic-like lesion progression over the course of three weeks. 
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5.2. RESULTS 

5.2.1. Endometriosis-like lesion development in miR-223 deficient mice 

To evaluate the contribution of miR-223 in the development of endometriosis, a miR-223-/- menstrual 

mouse model of endometriosis was developed. In this model, 40mg of miR-223-/- decidualised donor 

endometrial tissue was subcutaneously injected into miR-223-/- recipient mice. To evaluate the extent of 

disease establishment, endometriosis-like lesions that developed at D7, D14 and D21 were analysed for 

size, weight, and glandular fractions.  

 

In order to collect sufficient decidualised endometrium in this experiment, a total of 55 miR-223-/- donor 

mice were used, at a ratio of 1 donor to 1 recipient. In total, throughout this study, 78% of miR-223-/- 

recipient mice had lesions (Table 5.1). At D7, 100% of recipient mice had lesions. The proportion of 

recipient mice that had detectable lesions was reduced to 70% at D14, and further reduced to 60% at 

D21.  A total of 4 mice had more than one lesion and have been excluded from subsequent analyses. 

 

Morphometric analysis of the lesions was performed over the time course. At D7, lesions were large, 

raised from the skin, and consisted of both blood and pus-filled areas (Figure 5.1 A). At D14, lesions were 

circular and appeared cystic and fluid-filled (Figure 5.1 B). By D21, lesions were small, opaque and white 

(Figure 5.1 C). miR-223-/- lesions were largest at D7 (45 (19 – 72) mm3), and underwent a 73% reduction 

in size by D14 (12 (10 – 21) mm3, p = 0.0260), which further reduced at D21 (9 (6 – 12) mm3; p = 0.0009 

for D7 vs D21) (Figure 5.1 D). Median lesion weight at D7 was 31.80 (25.40 – 66.85) mg, which reduced 

by 70% at D14 (9.60 (8.20 – 13.55) mg, p = 0.0002). A further 42% reduction in lesion weight was 

observed between D14 and D21 (5.55 (4.15 – 9.55) mg), with lesions at D21 being 83% lighter than D7 

lesions (p < 0.0001) (Figure 5.1 E). 

 

H&E stained lesion sections were analysed across the three time points. D7, lesions were large, with the 

presence of several glands (Figure 5.2 A). However, by D14, large cystic spaces were seen within the 

lesions (Figure 5.2 B) and by D21, lesions were small and dense, with no visible glands (Figure 5.2 C). 

The median number of glands per lesion was comparable at D7 (1 (0 – 2)) and D14 (1 (0 – 1)) and was 

completely absent at D21 (0 (0 – 0), p = 0.0366 for D7 vs D21) (Figure 5.2 D). Average gland size was 

not significantly different between D7 (0.003 (0.000 – 0.024) mm2) and D14 (0.000 (0.000 – 0.003) mm2) 

(Figure 5.2 E). At D21, due to an absence of glands, a significant reduction was noted between this time 

point and D7 values (p = 0.0164). Between D7 and D14, no differences in the median measurements of 
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lumen area within glands was observed (0.0004 (0.0000 – 0.02453) mm2 and 0.0004 (0.0000 – 0.0005) 

mm2 respectively) (Figure 5.2 F). A significant difference in lumen area was noted between D7 and D21 

values (p = 0.0132), as no glands were present at D21.  

 

Similarly, the median epithelium area of glands at D7 was 0.0023 (0.0000 – 0.0168) mm2 which reduced 

to 0.0001 (0.0000 – 0.0016) mm2 at D14, and was not present at D21 due to the lack of glands (p = 0.0058 

for D7 vs D21) (Figure 5.2 G). The percentage glandular epithelium of lesions was highest at D7 (0.04 

(0.00 – 1.42) %) when compared to both D14 (0.04 (0.00 – 0.06) %) and D21 (0.00 (0.00 – 0.00) %, p = 

0.0168) (Figure 5.2 H). Conversely, the percentage stromal area was highest at D21 (100 (100 – 100) %) 

compared to D7 (99.95 (99.89 – 100.00) %, p = 0.0071) and D14 (99.95 (99.89 – 100.00) %) (Figure 5.2 

I). 

 

 

Table 5.1 Endometriosis-like lesion recovery in miR-223-/- mice 

Lesion collection time point D7 D14 D21 

Total number of donor mice used across all time points: 55 

Number of recipient mice 20 20 15 

Number of mice with lesions* 20 14 9 

Proportion of mice with lesions (%) 100 70 60 

* To reduce bias, mice with ≥2 lesions were excluded from subsequent analyses.  At D7 – 3 mice excluded; At D14 -1 mouse 
excluded.
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5.2.1.1. Comparison of endometriosis-like lesion progression between C57 mice and miR-223 

deficient mice 

 

Endometriotic-like lesions that developed in mice with a systemic loss of miR-223 resulted in lesions that 

had not successfully established, indicated by the reduction in lesion size, coupled with the lack of gland 

formation at D21. To further delineate the impact of miR-223 on the progression of endometriosis, a 

comparative analysis between miR-223 deficient lesions (miR-223-/-) and miR-223 sufficient lesions (C57) 

was performed.    

 

At D7, lesions in miR-223-/- mice were 2.4-fold larger than C57 lesions (p =0.0072) (Figure 5.3 A). At D14, 

lesions in miR-223-/- mice were 4.8-fold larger then C57 lesions (p = 0.0002), however by D21, lesions 

were similar in size. Lesion weight was 2.1-fold heavier in the miR-223-/- mice (p = 0.0003) at D7, but by 

D14, lesions did not significantly differ in weight between strains (Figure 5.3 B). On D21, lesions were 2.1-

fold heavier in miR-223-/- mice compared to C57 mice (p= 0.0044). 

 

Interestingly, while the number of glands per lesion steadily increased in C57 mice, an opposite trend was 

observed in miR-223-/- mice (Figure 5.3 C). At D7, the number of glands present in both miR-223-/- and 

C57 lesions were comparable, however, at D14, there were 80% fewer glands in miR-223-/- lesions (p = 

0.0006). At D21, C57 mice had a median of seven glands per lesion, whereas a significant lack of glands 

was observed in miR-223-/- lesions (p < 0.0001). The average gland size per lesion was similar between 

miR-223-/- and C57 lesions at D7, however gland size was significantly smaller in  

miR-223-/- lesions at D14 (p = 0.00037) (Figure 5.3 D). At D21, although a reduction in gland size was 

observed in C57 lesions, the total absence of glands in miR-223-/- lesions led to a significant difference 

between the time points (p < 0.0001).   

 

At D7, lumen area (Figure 5.3 E) and epithelium area (Figure 5.3 F) measurements were similar between 

strains. At D14, lumen area in miR-223-/- lesions was 99% smaller than C57 lesions (p = 0.0016), while 

the epithelium area was 99% smaller in miR-223-/- lesions compared to C57 lesions (p = 0.0004). Although 

both the lumen and epithelium area was reduced at D21 in C57 lesions, measurements remained 

significantly higher than miR-223-/- lesion values (p < 0.0001 for both parameters). 

 

The percentage glandular epithelium was similar at D7, however, at D14, miR-223-/- lesions had 99% less 

glandular epithelium compared to C57 lesions (p = 0.0011), and at D21, the percentage glandular 
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epithelium in C57 lesions remained significantly higher than miR-223-/- lesions (p < 0.0001), as no glands 

were present in miR-223-/- lesions (Figure 5.3 G). The percentage stromal area was comparable between 

strains at D7, whereas by D14, miR-223-/- lesions contained 1.01-fold greater stromal area than C57 

lesions (p = 0.0016) (Figure 5.3 H). miR-223-/- lesions comprised entirely of stromal area at D21, which 

was significantly higher than the proportion of stromal area observed in C57 lesions (p < 0.0001). These 

findings indicate that the development of endometriotic-like lesions in miR-223-/- mice does not progress 

in a similar manner to C57 mice, and suggests that miR-223 may play an important role in supporting 

lesion establishment. 
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Figure 5.1 Gross morphology of endometriosis-like lesion development in miR-223-/- mice   

Decidualised miR-223-/- donor endometrial tissue was injected subcutaneously into syngeneic recipient mice. 
Resulting lesions were harvested at either D7 (A), D14 (B) or D21 (C), with representative images shown. Lesion 
size was measured (D) and lesions were excised and weighed (E), with the dotted line indicating the initial weight 
of donor decidualised endometrial tissue inoculated into recipient mice. Data are presented as median (IQR), with 
each symbol representative of a single lesion in one mouse (n=17 at D7, n=13 at D14, n=9 at D21). Analysis was 
done using the Kruskal-Wallis test followed by Dunn’s multiple comparison test, with significance denoted as * (p < 
0.05), *** (p < 0.001), and **** (p < 0.0001). 
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Figure 5.2 Assessment of morphological parameters in haematoxylin and eosin stained 

endometriosis-like lesions from miR-223-/- mice   

Haematoxylin and eosin stained sections from D7 (A), D14 (B), and D21 (C) lesions in miR-223-/- mice 
(representative images shown; arrows indicate glands; S represents cystic space) were assessed for the following 
characteristics: number of glands per lesion (D), average gland size (E), lumen area (F), epithelium area (G), 
percentage glandular epithelium (H) and percentage stromal area (I). Data are presented as median (IQR), with 
each symbol representative of a single lesion in one mouse (n=17 at D7, n=13 at D14, n=9 at D21). Analysis was 
done using the Kruskal-Wallis test followed by Dunn’s multiple comparison test, with significance denoted as * (p < 
0.05). 
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Figure 5.3 Comparative analysis of morphometric parameters between C57 and miR-223-/- 

endometriosis-like lesions 

Lesion size (A), weight (B), number of glands per lesion (C), average gland size (D), lumen area (E), epithelium 

area (F), glandular epithelium (G), and stromal area (H) were compared between C57 mice ( ; n=12 at D7, 

n=12 at D14, n=8 at D21) and miR-223-/- mice ( ; n=17 at D7, n=13 at D14, n=9 at D21). Data are presented 
as median (IQR). Analysis was done using the Mann Whitney U test, with significance denoted as ** (p < 0.01), *** 
(p < 0.001) and **** (p < 0.0001).  
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5.2.2. Macrophage localisation in endometriosis-like lesions from miR-223 deficient mice 

miR-223 is involved in the suppression of classic M1-like pro-inflammatory macrophage activation and 

promotes the polarisation of alternative M2-like anti-inflammatory macrophages (Zhuang et al., 2012, 

Haneklaus et al., 2013, Ying et al., 2015). In endometriosis, elevation of M1-like macrophage activity 

inhibits disease development by increasing ectopic tissue clearance (Bacci et al., 2009). Therefore, in this 

section the impact of a systemic depletion of miR-223-/- on macrophage activity and remodelling of 

endometriosis-like lesions was evaluated.  

 

Quantification of F4/80 immunostaining was used to determine macrophage density in miR-223-/- lesions 

(Figure 5.4). Total F4/80 density in lesions was consistent across all time points (19.73 (16.00 – 24.68) % 

at D7, 16.15 (7.814 – 24.39) % at D14, and 24.17 (21.30 – 30.40) % at D21) (Figure 5.4G). F4/80 

expression at the periphery of miR-223-/- lesions (Figure 5.4 A-C) was similar at D7 and D14 (42.00 (37.5 

– 47.45) % and 32.76 (20.18 – 43.11) % respectively). However, at D21, peripheral F4/80 expression was 

46.5 (44.81 – 60.05) %, 1.4-fold higher than D14 (p = 0.0015) (Figure 5.4 H). The expression of F4/80 at 

the centre of miR-223-/- lesions remained consistent at D7 and D14 (28.76 (22.77 – 33.54) % and 19.05 

(6.58 – 26.03) % respectively), and in a similar manner to peripheral F4/80 density, a significant increase 

in F4/80+ cells was observed between D14 and D21 (33.31 (25.64 – 42.91) %, p = 0.0046) (Figure 5.4 I). 

 

5.2.2.1. Expression of pro-inflammatory M1-like markers in miR-223 deficient mice 

Detection of iNOS (Figure 5.5 A-C) and MHC II (Figure 5.5 D-F) expression was used to evaluate the 

extent of M1-like immune activity in miR-223-/- lesions. Total iNOS density was unchanged between D7 

and D14 (30.61 (27.42 – 32.36) % and 34.53 (31.05 – 38.04) % respectively). Unexpectedly, a reduction 

in iNOS expression was seen at D21 (20.56 (15.54 – 25.47) %, p = 0.0002 for D14 vs D21) (Figure 5.5 

G). Peripheral iNOS density was consistent between D7 (28.54 (24.24 – 31.91) %) and D14 (33.32 (30.02 

– 40.69) %), however a significant decrease was seen at D21 (15.43 (12.47 – 16.56) %, p = 0.0018 for 

D7 vs D21 and p < 0.0001 for D14 vs D21) (Figure 5.5 H). Similarly, central iNOS density was consistent 

between D7 (30.84 (24.42 – 33.29) %) and D14 (31.35 (28.34 – 34.00) %), with a significant decrease 

was seen at D21 (20.62 (16.85 – 22.14) %, p = 0.0013 for D7 vs D21 and p = 0.0001 for D14 vs D21) 

(Figure 5.5 I).  

 

On the other hand, expression of MHC II steadily increased between D7 (21.32 (18.89 – 30.85) %), D14 

(27.14 (23.02 – 36.71) %) and D21 (35.72 (23.02 – 36.71) %, p = 0.0033 for D7 vs D21) (Figure 5.5 J). 
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Peripheral MHC II density significantly increased between D7 (21.34 (19.41 – 22.71 %) and D14 (32.58 

(28.80 – 36.09) %, p < 0.0001), however no differences were seen at D21 (25.54 (23.74 – 28.77) %) 

(Figure 5.5 K). Central MHC II density was significantly lower at D14 (23.23 (20.22 – 26.75) %) when 

compared to D7 (28.46 (26.69 – 31.44) %, p = 0.0051) and D21 (30.87 (28.36 – 33.13) %, p = 0.0003) 

values (Figure 5.5 L). 

 

5.2.2.2. Expression of alternatively activated M2-like markers in miR-223 deficient mice 

Immunostaining for CD206 (Figure 5.6 A-C) and Arg-1 (Figure 5.6 D-F) allowed for quantification of M2-

like activity in miR-223-/- lesions. Surprisingly, total CD206 density increased significantly between all 

three time points, with an initial value of 6.66 (4.23 – 8.86) % at D7, rising to 17.11 (12.76 – 21.78) % at 

D14 (p = 0.0022), and finally reaching a peak of 32.44 (24.45 – 35.62) % at D21 (p < 0.0001 for D7 vs 

D21 and p = 0.0396 for D14 vs D21) (Figure 5.6 G). Peripheral CD206 increased significantly between 

D7 (8.54 (6.90 – 9.52) %) and D14 (15.14 (11.75 – 16.68) %, p = 0.0007), reaching a 21.56 (19.49 – 

26.54) % at D21 (p < 0.0001 for D7 vs D21) (Figure 5.6 H). Similarly, central CD206 expression increased 

significantly between D7 (8.25 (6.47 – 9.76) %), D14 (12.72 (9.46 – 14.38) %, p = 0.0207), and D21 (13.69 

(10.14 – 16.35) %, p = 0.0063 for D7 vs D21) (Figure 5.6 I). 

 

The total density of Arg-1 in these lesions increased in a similar pattern (23.38 (18.02 – 26.46) % at D7, 

29.39 (26.36 – 31.67) % at D14, and 41.76 (35.95 – 47.02) % at D21), however a significant increase was 

only seen between D7 and D21 (p < 0.0001) (Figure 5.6 J). Peripheral Arg-1 increased significantly 

between D7 (21.12 (18.66 – 23.98) %) and D14 (29.57 (25.31 – 32.78) %, p = 0.0014), reaching a 32.25 

(28.56 – 35.64) % at D21 (p = 0.0001 for D7 vs D21) (Figure 5.6 K). Similarly, central Arg-1 expression 

increased significantly between D7 (10.35 (7.85 – 13.67) %), D14 (16.24 (14.25 – 19.46) %, p = 0.0055), 

and D21 (22.14 (19.22 – 26.64), p < 0.0001 for D7 vs D21) (Figure 5.6 L). 

 

5.2.3.  Blood vessel density, myofibroblast abundance and fibrosis in endometriosis-like lesions 

from miR-223 deficient mice 

Immunolocalisation of blood vessels in miR-223-/- lesions, performed with an antibody against vWF, 

(Figure 5.7 A-C) showed significant changes in total blood vessel density (Figure 5.7 D), number of blood 

vessels per lesion (Figure 5.7 E), and average vessel size (Figure 5.7 F) across time points. Between D7 

and D14, vWF density decreased non-significantly from 0.64 (0.46 – 0.97) % to 0.39 (0.28 – 0.85) %, 

however at D21, a substantial reduction in vWF density was observed (0.00 (0.00 – 0.003) %, p < 0.0001 

for D7 vs D21 and p = 0.0028 for D14 vs D21). The number of blood vessels per lesion followed a similar 
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trend, with comparable D7 and D14 values (17 (12 – 33) and 27 (10 – 34) respectively), followed by a 

significant decrease at D21 (2 (0 – 3), p = 0.0002 for D7 vs D21 and p = 0.0002 for D14 vs D21). Average 

vessel size also decreased over the course of miR-223-/- lesion development (0.0013 (0.0008 – 0.0024) 

% at D7, 0.0006 (0.0004 – 0.0008) % at D14, and 0.0002 (0.0000 – 0.0010) % at D21), however this was 

only significant between D7 and D21 (p = 0.0100). 

 

To evaluate the extent of fibrosis in miR-223-/- lesions, αSMA immunostaining (Figure 5.8 A-C) and 

Masson’s trichrome histochemistry (Figure 5.8 D-F) was performed. Expression of αSMA was consistent 

across D7, D14 and D21 (19.25 (7.11 – 24.56) %, 22.21 (17.87 – 29.49) %, and 22.85 (17.96 – 30.07) % 

respectively) (Figure 5.8 G).  Likewise, the density of fibrosis was unaltered between D7, D14, and D21 

(16.8 (12.60 – 19.32) %, 14.46 (12.88 – 23.56) %, and 15.94 (14.32 – 20.75) % respectively) (Figure 5.8 

H). 
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5.2.4. Comparison of macrophage localisation and cellular parameters between C57 mice and 

miR-223 deficient mice  

Although the systemic depletion of miR-223 resulted in an unexpected increase in M2-like macrophage 

markers between D7 and D21, deposition of fibrotic material was not apparent over time. Thus, to better 

comprehend the impact of miR-223 depletion on macrophage polarisation in disease pathogenesis, a 

comparative analysis between miR-223 deficient lesions (miR-223-/-) and miR-223 sufficient lesions (C57) 

was performed (Figure 5.9 and 5.10).    

 

Total F4/80 density in miR-223-/- and C57 lesions was similar at D14, however a 1.8-fold increase was 

seen at D7 (p = 0.0031) and a 1.4-fold increase at D21 (p = 0.0206) was seen in miR-223-/- lesions 

compared to C57 lesions (Figure 5.9 A). Interestingly, although peripheral F4/80 density in miR-223-/- and 

C57 lesions was comparable at D7 and D14, miR-223-/- lesions had 2-fold higher peripheral F4/80 

expression (p = 0.0002) (Figure 5.9 B). Conversely, the central expression of F4/80 in miR-223-/- lesions 

was 7.2-fold higher at D7 (p < 0.0001) compared to C57 lesions, whereas at D14, miR-223-/- lesions had 

46% less central F4/80 expression (p = 0.0055) (Figure 5.9 C). At D21, F4/80 density at the centre of 

lesions from both strains were similar. 

 

Total expression of the M1-like marker iNOS remained higher in miR-223-/- lesions compared to C57 

lesions, however this was only significant at D14 (1.7-fold increase in miR-223-/-, p = 0.0006) (Figure 5.9 

D). Peripheral iNOS density in miR-223-/- lesions was significantly higher than C57 lesions at D7 (1.5-fold 

increase, p < 0.0001) and D14 (3-fold increase, p < 0.0001), however a 13% reduction of peripheral iNOS 

expression was observed in miR-223-/- lesions at D21 (p = 0.0464) (Figure 5.9 E). Central iNOS density 

was consistently higher in miR-223-/- lesions than C57 lesions at D7 (4.2-fold increase, p < 0.0001), D14 

(4.5-fold increase, p < 0.0001), and D21 (2-fold increase, p = 0.0055) (Figure 5.9 F).  

 

The total density of MHC II, the second M1-like marker used, remained higher in miR-223-/- lesions 

compared to C57 lesions at all time points; in particular, at D14, miR-223-/- lesions had 2.2-fold higher 

expression of MHC II (p < 0.0001), and at D21, miR-223-/- lesions had 1.6-fold higher expression of MHC 

II (p = 0.0111) compared to C57 values (Figure 5.9 G). Peripheral MHC II density in miR-223-/- lesions 

was significantly higher than C57 lesions at D7 (1.8-fold increase, p < 0.0001) and D14 (3.2-fold increase, 

p < 0.0001) (Figure 5.9 H). Central MHC II density was consistently higher miR-223-/- lesions compared 

to C57 lesions at D7 (3.3-fold increase, p < 0.0001), D14 (3.2-fold increase, p < 0.0001), and D21 (2.8-

fold increase, p < 0.0001) (Figure 5.9 I). 
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On the other hand, the total density of the M2-like macrophage marker CD206, was consistently lower in 

miR-223-/- lesions, with a significant decrease of 41% in expression levels at D21 when compared to C57 

lesions (p = 0.0006) (Figure 5.9 J). Interestingly, while peripheral CD206 expression was consistently 

higher miR-223-/- lesions compared to C57 lesions at D7 (3.4-fold increase, p < 0.0001), D14 (2.5-fold 

increase, p < 0.0001), and D21 (1.4-fold increase, p = 0.0079), central CD206 expression was significantly 

lower in miR-223-/- lesions compared to C57 lesions at D14 (42% lower, p < 0.0001) and D21 (70% lower, 

p < 0.0001) (Figure 5.9 K,L). 

 

Surprisingly, the depletion of miR-223 resulted in an increase in total Arg-1 expression in lesions, which 

was significantly higher than C57 lesions at D14 (1.4-fold increase, p < 0.0001) and D21 (1.7-fold 

increase, p = 0.0016) (Figure 5.9 G). While peripheral Arg-1 expression was consistently higher miR-223-

/- lesions compared to C57 lesions at D7 (4.9-fold increase, p < 0.0001), D14 (2.1-fold increase, p < 

0.0001), and D21 (2-fold increase, p < 0.0001), central Arg-1 expression was consistent between strains 

(Figure 5.9 N, O).  

 

While vWF expression in miR-223-/- lesions decreased over time, an inverse expression pattern was seen 

in C57 lesions (Figure 5.10 A). At D7, total vWF density was 1.7-fold higher in miR-223-/- lesions compared 

to C57 lesions (p = 0.0042, however by D21, miR-223-/- lesions had 99.9% lower vWF expression 

compared to C57 lesions (p < 0.0001). A corresponding trend was observed in the number of blood 

vessels per lesion, with miR-223-/- lesions having 3.4-fold more blood vessels at D7 (p = 0.0004) but at 

D21, miR-223-/- lesions had 92% fewer blood vessels (p < 0.0001) when compared to C57 lesions (Figure 

5.10 B). The average blood vessel size was 3.8-fold higher in miR-223-/- lesions compared to C57 lesions 

at D7 (p < 0.0001), however no differences were seen between the groups at either D14 or D21 (Figure 

5.10 C). αSMA density was comparable between both groups across all time points (Figure 5.10 D). 

Notably, the density of fibrosis remained significantly lower in miR-223-/- lesions compared to C57 lesions 

across all time points (31% lower at D7, p = 0.0031; 45% lower at D14, p = 0.0188; and 48% lower at 

D21, p < 0.0001) (Figure 5.10 E). 
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Figure 5.4 F4/80 immunostaining in endometriosis-like lesions from miR-223-/- mice   

Quantification of total F4/80 density was carried out in lesions from miR-223-/- mice (G). F4/80 density at the lesion 
periphery (100µM from the edge of the lesion) at D7 (A), D14 (B) and D21 (C) was evaluated (H). F4/80 density at 
the lesion centre (within 500µM from the centre) at D7 (D), D14 (E), and D21 (F) was also quantified (I). Data are 
presented as median (IQR), with each symbol representative of a single lesion in one mouse (n=17 at D7, n=13 at 
D14, n=9 at D21). Analysis was done using the Kruskal-Wallis test followed by Dunn’s multiple comparison test, 
with significance denoted as ** (p < 0.01). 
 



Panir Chapter 5 206 

 
 
Figure 5.5 M1–like macrophage marker immunostaining in lesions from miR-223-/- mice   

The expression of inducible nitric oxide synthase (iNOS) at D7 (A), D14 (B), and D21 (C) was quantified in miR-
223-/- lesions (G). Further analysis was performed to determine peripheral (H) and central (I) iNOS density. 
Quantification of the Class II Major Histocompatibility Complex (MHC II) was done at D7 (D), D14 (E) and D21 (F) 
in these lesions (J), with peripheral (K) and central (L) MHC II density determined.  Data are presented as median 
(IQR), with each symbol representative of a single lesion in one mouse (n=17 at D7, n=13 at D14, n=9 at D21). 
Analysis was done using the Kruskal-Wallis test followed by Dunn’s multiple comparison test, with significance 
denoted as ** (p < 0.001), *** (p < 0.001) and **** (p < 0.0001). 
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Figure 5.6 M2–like macrophage marker immunostaining in lesions from miR-223-/- mice   

CD206 density at D7 (A), D14 (B), and D21 (C) was quantified in miR-223-/- lesions (G), with further analysis of 
peripheral (H) and central (I) CD206 density. Expression of Arginase-1 (Arg-1) was evaluated at D7 (D), D14 (E) 
and D21 (F) in these lesions (J), with peripheral (K) and central (L) Arg-1 density determined. Data are presented 
as median (IQR), with each symbol representative of a single lesion in one mouse (n=17 at D7, n=13 at D14, n=9 
at D21). Analysis was done using the Kruskal-Wallis test followed by Dunn’s multiple comparison test, with 
significance denoted as * (p < 0.05), ** (p < 0.01), *** (p < 0.001) and **** (p < 0.0001). 
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Figure 5.7 Blood vessel localisation in endometriosis-like lesions from miR-223-/- mice  

Von Willebrand Factor (vWF) staining was used to localise blood vessels in lesions from miR-223-/- mice at D7 (A), 
D14 (B), and D21 (C). The total density of vWF+ vessels was quantified (D). The number of vessels per lesion (E) 
and the average vessel size (F) was determined. Data are presented as median (IQR), with each symbol 
representative of a single lesion in one mouse (n=17 at D7, n=13 at D14, n=9 at D21). Analysis was done using 
the Kruskal-Wallis test followed by Dunn’s multiple comparison test, with significance denoted as * (p < 0.05), ** (p 
< 0.01), *** (p < 0.001) and **** (p < 0.0001). 
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Figure 5.8 Evaluation of fibrosis in endometriosis-like lesions from miR-223-/- mice  

The density of myofibroblasts in miR-223-/- lesions at D7 (A), D14 (B), and D21 (C) was evaluated using alpha 
smooth muscle actin (αSMA) (G). Masson’s trichrome staining was used to evaluate the density of fibrosis (H) at 
D7 (D), D14 (E) and D21 (F) in these lesions. Data are presented as median (IQR), with each symbol representative 
of a single lesion in one mouse (n=17 at D7, n=13 at D14, n=9 at D21). Analysis was done using the Kruskal-Wallis 
test followed by Dunn’s multiple comparison test. 
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Figure 5.9 Comparative analysis of the expression of macrophage markers between C57 and miR-

223-/- endometriosis-like lesions 

Total (A), peripheral (B), and central (C) F4/80 density were compared between C57 mice ( ; n=12 at D7, 

n=12 at D14, n=8 at D21) and miR-223-/- mice ( ; n=17 at D7, n=13 at D14, n=9 at D21). Comparisons between 
the M1-like macrophage markers inducible nitric oxide synthase (iNOS; total (D), peripheral (E), and central (F)) 
and Class II Major Histocompatibility Complex (MHC II; total (G), peripheral (H), and central (I)) were also 
performed. The density of the M2-like macrophage markers CD206 (total (J), peripheral (K), and central (L)) and 
Arginase-1 (Arg-1; total (M), peripheral (N), and central (O)) were also compared between strains. Data are 
presented as median (IQR). Analysis was done using the Mann Whitney U test, with significance denoted as * (p < 
0.05), ** (p < 0.01), *** (p < 0.001), and **** (p < 0.0001).



Panir Chapter 5 211 

 
 

 

Figure 5.9 (A-H) Comparative analysis of the expression of macrophage markers between C57 and miR-

223-/- endometriosis-like lesions 
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Figure 5.9 (I-O) Comparative analysis of the expression of macrophage markers between C57 and miR-

223-/- endometriosis-like lesions 
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Figure 5.10 Comparative analysis of blood vessel and fibrosis markers between C57 and miR-223-/- 

endometriosis-like lesions 

Total blood vessel density (A), number of vWF+ vessels per lesion (B), and average vessel size (C), density of 
myofibroblasts (D) and extent of fibrosis as measured by Masson’s trichrome (E) were compared between C57 

mice ( ; n=12 at D7, n=12 at D14, n=8 at D21) and miR-223-/- mice ( ; n=17 at D7, n=13 at D14, n=9 at 
D21). Data are presented as median (IQR). Analysis was done using the Mann Whitney U test, with significance 
denoted as * (p < 0.05), ** (p < 0.01), *** (p < 0.001), and **** (p < 0.0001). 
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5.2.5. RNA-Sequencing analysis of lesion progression in miR-223 deficient mice 

To determine the molecular changes associated with lesion development in the absence of miR-223, 

RNA-Sequencing (RNA-Seq) was performed on donor decidualised endometrial tissue, D7 and D14 

lesions (See Appendix: Figure 7.2 and Figure 7.3 for RNA-Seq metrics). Post filtering to remove low 

expressed genes, a total of 16,291 genes were identified and analysed from the RNA-Seq dataset. The 

average gene expression was obtained from samples of decidualised endometrium, D7 and D14 lesions 

(n =4 per group), and the number of DEGs amongst detected genes between groups was assessed (FDR 

≤ 0.05 and a ≥ 2-fold change in expression) (see attached Supplementary Materials: Table 8 to 10 for 

complete DEG list). Principal component analysis performed using normalised RNA-Seq data showed a 

clustering pattern of miR-223-/- decidualised endometrial tissue samples on the left, with a distinct 

separation from both D7 and D14 lesions (Figure 5.11 A). Comparisons between decidualised 

endometrium and D7 lesions found 10% of detected genes upregulated, whereas 15% of detected genes 

were downregulated (Figure 5.11 B). Between decidualised endometrium and D14, a total of 12% of 

detected genes were upregulated while 18% of detected genes were downregulated (Figure 5.11 C). In 

contrast, between D7 and D14, only 2% of detected genes were upregulated, and 2% of detected genes 

were downregulated (Figure 5.11 D). 

 

A total of 5,522 genes were differentially expressed between one or more of the three comparisons, 

wherein 3.4% (190 genes) were differentially expressed in all three groups (Figure 5.11 E). An overlap of 

58.4% (3,225 genes) was observed between Decidualised vs D7 and Decidualised vs D14. These genes 

were further classified into genes that were upregulated (2,198 genes) and downregulated (3,271 genes) 

in the dataset (Figure 5.11 F and G respectively). At both D7 and D14, 1330 genes were consistently 

upregulated while 2083 genes were consistently downregulated when compared to decidualised 

endometrium.  

 

The genes with the largest fold change in expression between the three samples were identified (Table 

5.2). At both D7 and D14, when compared to decidualised endometrium, lesions had an increased 

expression of prostate stem cell antigen (Psca; involved in regulation of neurotransmission), prolactin 

family 3, subfamily c, member 1 (Prl3c1; involved in hormone activity, regulation of proliferation and 

decidual differentiation), tachykinin 2 (Tac2; involved in the regulation of blood pressure), and serine 

peptidase inhibitor, Kazal type 8 (Spink8; involved in the regulation of peptidase activity). Alternatively, a 

downregulation in the expression of myosin, heavy polypeptide 1 (Myh1; involved in actin filament and 

calmodulin binding), myosin, heavy polypeptide 4 (Myh4; involved in response to muscle activity), tintin 

(Ttn; involved in ankyrin binding, actomyosin structure organisation and organ development), creatine 
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kinase (Ckm; involved in phosphocreatine biosynthetic processes), ATPase, Ca2+ transporting, cardiac 

muscle, fast twitch 1 (Atp2a1; involved in cellular calcium ion homeostasis and regulation of muscle 

contraction), and A930016O22Rik (an antisense long noncoding RNA) was observed in lesions at both 

D7 and D14 compared to decidualised endometrium. 

 

Amongst the DEGs between D7 and D14 lesions, an upregulation in oxidized low density lipoprotein 

(lectin-like) receptor 1 (Olr1; involved in cell death, inflammatory response, and leukocyte cell adhesion), 

non-specific cytotoxic cell receptor protein 1 homolog (Nccrp1; involved in regulation of cell proliferation), 

and small proline-rich protein 2G (Sprr2g; involved in keratinocyte differentiation and peptide cross-

linking) was observed as lesions progressed in miR-223-/- mice (Table 5.2).  In contrast, a downregulation 

in two antisense long noncoding RNA (Gm16559 and Efhd1os) and genes associated with immune 

function (histocompatibility 2, M region locus 2 (H2-M2), SH3-domain GRB2-like 2 (Sh3gl2), and melan-

a (Mlana)) was observed during lesion progression. 

 

Assessment of canonical pathways in both D7 and D14 lesions compared to decidualised endometrium 

shared an upregulation in multiple cholesterol biosynthesis pathways, including zymosterol and ceramide, 

as well as an upregulation in an antioxidant pathway (Table 5.3 and Table 5.4). In addition when compared 

against decidualised endometrium, an upregulation in Wnt/β-catenin signalling (p = 0.0120, ratio = 26%) 

was observed at D7, whereas an upregulation in pathways associated with cell cycle regulation (p = 

0.0355, ratio = 31%) and inhibition of matrix metalloproteases (p < 0.0001, ratio = 60%) was observed at 

D14. In contrast, a total of 37 downregulated canonical pathways were similar in D7 and D14 lesions 

compared to decidualised endometrium (Table 5.3 and Table 5.4). The majority of these pathways were 

associated with immune regulation, including IL-6 and IL-7 signalling, production of nitric oxide and 

reactive oxygen species in macrophages, NF-κB signalling, Th1 signalling, dendritic cell maturation, and 

Fcγ receptor-mediated phagocytosis in macrophages and monocytes. Comparisons between D7 and D14 

lesions showed an upregulation in four canonical pathways, including inhibition of matrix metalloproteases 

(p < 0.0001, ratio = 24%), and a downregulation in two canonical pathways, including fibroblast signalling 

(p = 0.0032, ratio = 18%) at D14 (Table 5.5).  
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5.2.5.1. Comparison of RNA-Sequencing data between C57 mice and miR-223 deficient mice 

To determine the impact of a miR-223 deficiency on gene expression during the development of 

endometriosis, RNA-Seq data from decidualised endometrium, D7 and D14 lesions in C57 mice and miR-

223-/- mice were compared. A total of 240 DEGs were identified (Figure 5.12A), with a consistent 

dysregulation of ten genes (ATPase, H+ transporting, lysosomal V0 subunit C (Atp6v0c), protein tyrosine 

phosphatase receptor type f polypeptide, interacting protein alpha 4 (Ppfia4), cathepsin E (Ctse), 

nicotinamide nucleotide transhydrogenase (Nnt), and several pseudogenes (Tmem181b-ps, Gm9825, 

Rps2-ps13, Gm13443, Gm15487, and Gm37333)) between C57 and miR-223-/- mice across all samples 

 

The majority of DEGs were expressed within the decidualised endometrium, with a dysregulation of genes 

involved in ATP binding activity (heat shock protein 1A and 1B (Hspa1a and Hspa1b)), immune activity 

(Ctse), signalling pathways (Tspan11 and Adgrd1), non-coding RNA genes (4931413K12Rik and 

Gm28373), and genes with unclassified or unknown functions (Gm20481, Tmem267, Fndc9, and 

1810041L15Rik) (Table 5.6) (see attached Supplementary Materials: Table 11 for complete DEG list).  

 

At D7, 18 genes were differentially expressed between C57 and miR-223-/- mice, with five upregulated 

genes and 13 downregulated genes (Figure 5.12). Alternatively, at D14, 22 DEGs were identified between 

C57 and miR-223-/- mice, with six upregulated genes and 16 downregulated genes (Figure 5.12). An 

upregulation of three genes (Ppfia4, Atp6v0c, and ribonuclease T2B (Rnaset2b)) and a downregulation 

of nine genes (Ctse, Nnt, Gm9825, Gm13443, Gm13443, Rps2-ps13, Gm15487, Gm37333, Tmem181b-

ps, and Hmga1-rs1) was consistent in miR-223-/- lesions at both D7 and D14. In addition, at D14, an 

upregulation in Mmp11 (involved in collagen fibril organisation) and cytotoxic T lymphocyte-associated 

protein 2 alpha (Ctla2a; involved in regulation of inflammatory response and T cell differentiation) was 

observed, whereas a downregulation of chitinase-like 1 (Chil1; involved in IL-8 secretion) and pleckstrin 

homology domain containing, family A member 6 (Plekha6; interacts with 17β-oestradiol) was observed 

in miR-223-/- lesions (Table 5.6). 
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Figure 5.11 Number of differentially expressed genes identified in tissues from miR-223-/- mice   

Principal component analysis (PCA) was performed using the normalised RNA-Seq data from miR-223-/- 
decidualised endometrium, D7 and D14 lesions (A). The proportion of upregulated and downregulated DEGs 
amongst detected genes between Decidualised vs D7 (B), Decidualised vs D14 (C), and D7 vs D14 (D) was 
determined. The Venn diagram displays the distribution and overlap of DEGs (both upregulated and 
downregulated) between each comparison (E). Additional Venn diagrams were generated to determine the number 
of upregulated (F) and downregulated (G) DEGs during lesion development compared to decidualised endometrial 
tissue.  All genes identified have a ≥ 2-fold change in expression with an adjusted p value < 0.05. 
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Table 5.2 Top ten upregulated and downregulated DEGs in miR-223-/- mice during decidualisation and lesion development (FDR <0.05) 

 

Decidualised vs D7 
 

Decidualised vs D14 
 

D7 vs D14 

Gene log2FC FDR 
 

Gene log2FC FDR 
 

Gene log2FC FDR 

Psca + 10.31 1.40 x 10-8  Tac2 + 10.98 5.90 x 10-9  Sez6l + 4.98 1.07 x 10-3 

Prl3c1 + 9.67 2.17 x 10-4  Psca + 10.84 4.11 x 10-9  Klk15 + 4.97 1.25 x 10-2 

Tac2 + 9.10 3.92 x 10-9  Sprr2g + 10.32 8.70 x 10-8  Gm44756 + 4.79 9.87 x 10-3 

Hsd3b6 + 8.88 9.72 x 10-6  Bco1 + 10.19 2.89 x 10-9  Nccrp1 + 4.70 6.89 x 10-4 

Spink8 + 8.82 2.99 x 10-9  Prl3c1 + 10.05 1.88 x 10-4  Sprr2g + 4.52 4.16 x 10-2 

Notum + 8.41 9.73 x 10-7  Nccrp1 + 9.66 1.51 x 10-11  Olr1 + 4.32 3.42 x 10-3 

Wnt10a + 8.10 7.91 x 10-10  Cbln1 + 9.36 9.17 x 10-8  Igfn1 + 4.23 4.15 x 10-2 

Atp7b + 8.04 4.04 x 10-8  Spink8 + 9.34 7.06 x 10-10  Otogl + 4.08 4.41 x 10-2 

4932415M13Rik + 7.84 2.33 x 10-9  Doxl2 + 9.30 3.74 x 10-6  Htr1b + 4.02 4.83 x 10-3 

Brinp2 + 7.65 6.13 x 10-6  Sprr2h + 9.22 3.88 x 10-5  Ceacam18 + 3.90 4.90 x 10-2 

Myh4 - 11.01 4.00 x 10-4  Myh4 - 11.32 2.39 x 10-4  Asic2 - 6.26 1.71 x 10-3 

Ttn - 10.95 8.03 x 10-3  Myh1 - 11.06 2.88 x 10-2  H2-M2 - 4.08 1.77 x 10-3 

Myh1 - 10.54 4.23 x 10-2  Ttn - 10.92 6.94 x 10-3  Ano4 - 3.94 1.19 x 10-2 

Ryr1 - 10.45 3.70 x 10-2  A930016O22Rik - 10.80 3.06 x 10-2  Mmrn1 - 3.87 1.24 x 10-2 

Ckm - 10.16 9.65 x 10-3  Ckm - 10.80 5.18 x 10-3  Gm16559 - 3.78 1.28 x 10-2 

A930016O22Rik - 10.14 4.83 x 10-2  Tnnc2 - 10.69 3.89 x 10-2  Adh1 - 3.65 1.01 x 10-2 

Gm44646 - 9.94 4.17 x 10-2  Ampd1 - 10.53 4.56 x 10-2  Sh3gl2 - 3.62 1.64 x 10-2 

Atp2a1 - 9.94 9.23 x 10-5  Atp2a1 - 10.50 3.64 x 10-5  Efhd1os - 3.51 1.53 x 10-2 

Ppp1r3a - 9.84 3.46 x 10-2  Myhas - 10.47 4.87 x 10-2  Myrip - 3.45 6.79 x 10-3 

Eef1a2 - 9.53 3.79 x 10-2  Smyd1 - 10.42 4.79 x 10-2  Mlana - 3.43 4.81 x 10-3 



Panir Chapter 5 219 

Table 5.3 Canonical pathways identified by IPA in D7 lesions compared to decidualised 

endometrium from miR-223-/- mice (P < 0.05; -2 > Z score > 2) 

Canonical Pathway Z score Ratio P value 

Superpathway of Cholesterol Biosynthesis 3.606 48% 3.72 x 10-4 

Antioxidant Action of Vitamin C 3.272 32% 5.01 x 10-4 

Cholesterol Biosynthesis I 2.646 54% 4.07 x 10-3 

Cholesterol Biosynthesis II (via 24,25-dihydrolanosterol) 2.646 54% 4.07 x 10-3 

Cholesterol Biosynthesis III (via Desmosterol) 2.646 54% 4.07 x 10-3 

Wnt/β-catenin Signalling 2.137 26% 1.07 x 10-2 

Zymosterol Biosynthesis 2.000 67% 1.20 x 10-2 

Ceramide Biosynthesis 2.000 57% 2.40 x 10-2 

Chondroitin and Dermatan Biosynthesis -2.000 67% 1.20 x 10-2 

P2Y Purigenic Receptor Signalling Pathway -2.030 33% 3.31 x 10-5 

Colorectal Cancer Metastasis Signalling -2.038 34% 7.76 x 10-10 

GM-CSF Signalling -2.041 32% 1.82 x 10-3 

LPS-stimulated MAPK Signalling -2.041 28% 1.35 x 10-2 

Gαq Signalling -2.064 32% 1.70 x 10-5 

NF-κB Activation by Viruses -2.117 31% 2.45 x 10-3 

Renin-Angiotensin Signalling -2.137 34% 9.12 x 10-6 

Apelin Liver Signalling Pathway -2.138 54% 4.57 x 10-5 

Type I Diabetes Mellitus Signalling -2.138 28% 7.41 x 10-3 

Toll-like Receptor Signalling -2.183 32% 3.47 x 10-3 

Integrin Signalling -2.188 24% 1.38 x 10-2 

IL-7 Signalling Pathway -2.200 28% 1.17 x 10-2 

HMGB1 Signalling -2.263 25% 2.40 x 10-2 

CCR3 Signalling in Eosinophils -2.268 32% 1.66 x 10-4 

GNRH Signalling -2.271 30% 1.82 x 10-4 

IL-6 Signalling -2.271 31% 2.82 x 10-4 

Calcium-induced T Lymphocyte Apoptosis -2.294 41% 3.39 x 10-5 

Phospholipase C Signalling -2.335 30% 5.25 x 10-6 

GDNF Family Ligand-Receptor Interactions -2.400 31% 2.69 x 10-3 

Production of Nitric Oxide and Reactive Oxygen Species in 
Macrophages 

-2.429 28% 6.03 x 10-4 

Chemokine Signalling -2.502 38% 8.91 x 10-5 

Tec Kinase Signalling -2.530 31% 5.13 x 10-5 

PI3K Signalling in B Lymphocytes -2.592 35% 4.79 x 10-6 

Role of NFAT in Cardiac Hypertrophy -2.630 34% 6.17 x 10-9 

Eicosanoid Signalling -2.714 43% 3.02 x 10-6 

Fc Epsilon RI Signalling -2.744 30% 9.12 x 10-4 

NF-κB Signalling -2.832 32% 7.24 x 10-6 

Calcium Signalling -3.015 31% 6.61 x 10-6 

Role of Pattern Recognition Receptors in Recognition of Bacteria and 
Viruses 

-3.124 41% 1.58 x 10-9 

iCOS-iCOSL Signalling in T Helper Cells -3.124 41% 1.00 x 10-8 
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GP6 Signalling Pathway -3.250 50% 1.00 x 10-16 

Leukocyte Extravasation Signalling -3.250 40% 3.98 x 10-13 

p38 MAPK Signalling -3.272 26% 2.69 x 10-2 

CD28 Signalling in T Helper Cells -3.307 36% 2.24 x 10-6 

Inflammasome pathway -3.464 63% 1.82 x 10-5 

B Cell Receptor Signalling -3.501 31% 1.82 x 10-5 

Th1 Pathway -3.773 35% 8.91 x 10-6 

Fcγ Receptor-mediated Phagocytosis in Macrophages and Monocytes -3.773 38% 9.55 x 10-6 

Role of NFAT in Regulation of the Immune Response -3.810 34% 1.12 x 10-7 

PKCθ Signalling in T Lymphocytes -4.117 33% 4.17 x 10-6 

Neuroinflammation Signalling Pathway -4.364 32% 4.17 x 10-9 

Dendritic Cell Maturation -4.989 36% 5.25 x 10-8 

TREM1 Signalling -5.000 52% 1.86 x 10-10 
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Table 5.4 Canonical pathways identified by IPA in D14 lesions compared to decidualised 

endometrium from miR-223-/- mice (P < 0.05; -2 > Z score > 2) 

Canonical Pathway Z score Ratio P value 

Superpathway of Cholesterol Biosynthesis 3.051 48% 1.91 x 10-3 

Antioxidant Action of Vitamin C 3.024 34% 2.29 x 10-3 

Mitotic Roles of Polo-Like Kinase 2.324 39% 1.05 x 10-3 

Inhibition of Matrix Metalloproteases 2.236 60% 5.89 x 10-7 

Cholesterol Biosynthesis I 2.121 62% 2.04 x 10-3 

Cholesterol Biosynthesis II (via 24,25-dihydrolanosterol) 2.121 62% 2.04 x 10-3 

Cholesterol Biosynthesis III (via Desmosterol) 2.121 62% 2.04 x 10-3 

Cyclins and Cell Cycle Regulation 2.065 31% 3.55 x 10-2 

Zymosterol Biosynthesis 2.000 67% 2.19 x 10-2 

Ceramide Biosynthesis 2.000 57% 4.27 x 10-2 

IL-9 Signalling -2.000 40% 2.57 x 10-3 

Chondroitin and Dermatan Biosynthesis -2.000 67% 2.19 x 10-2 

IL-2 Signalling -2.041 35% 6.61 x 10-3 

NF-κB Activation by Viruses -2.058 38% 1.91 x 10-4 

Lymphotoxin β Receptor Signalling -2.065 32% 2.45 x 10-2 

P2Y Purigenic Receptor Signalling Pathway -2.111 35% 2.14 x 10-4 

Chemokine Signalling -2.117 38% 1.38 x 10-3 

Gα12/13 Signalling -2.137 29% 2.88 x 10-2 

Coagulation System -2.138 40% 1.00 x 10-2 

Gαq Signalling -2.143 34% 1.82 x 10-4 

Colorectal Cancer Metastasis Signalling -2.165 35% 4.57 x 10-7 

CCR3 Signalling in Eosinophils -2.191 34% 7.41 x 10-4 

Toll-like Receptor Signalling -2.236 36% 3.09 x 10-3 

IL-7 Signalling Pathway -2.268 34% 4.57 x 10-3 

IL-6 Signalling -2.287 35% 3.31 x 10-4 

Production of Nitric Oxide and Reactive Oxygen Species in 
Macrophages 

-2.292 32% 6.17 x 10-4 

Cardiac Hypertrophy Signalling -2.357 30% 1.66 x 10-3 

HMGB1 Signalling -2.402 31% 8.51 x 10-3 

GPCR-Mediated Nutrient Sensing in Enteroendocrine Cells -2.469 38% 4.79 x 10-5 

Th2 Pathway -2.480 45% 4.17 x 10-10 

Eicosanoid Signalling -2.530 45% 2.51 x 10-5 

Renin-Angiotensin Signalling -2.530 36% 1.20 x 10-4 

Tec Kinase Signalling -2.654 35% 3.55 x 10-5 

GDNF Family Ligand-Receptor Interactions -2.711 34% 6.61 x 10-3 

Calcium-induced T Lymphocyte Apoptosis -2.858 45% 5.89 x 10-5 

p38 MAPK Signalling -2.874 33% 3.02 x 10-3 

Fc Epsilon RI Signalling -2.874 32% 5.25 x 10-3 

Complement System -2.887 55% 3.24 x 10-5 

Glycolysis I -3.000 39% 4.17 x 10-2 

    

Role of NFAT in Cardiac Hypertrophy -3.064 36% 7.24 x 10-7 
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Glutathione-mediated Detoxification -3.317 44% 9.77 x 10-3 

PI3K Signalling in B Lymphocytes -3.429 37% 3.55 x 10-5 

Inflammasome pathway -3.464 63% 1.05 x 10-4 

Leukocyte Extravasation Signalling -3.487 42% 5.01 x 10-11 

Calcium Signalling -3.507 34% 4.17 x 10-5 

Role of Pattern Recognition Receptors in Recognition of Bacteria and 
Viruses 

-3.592 45% 9.55 x 10-10 

NF-κB Signalling -3.615 35% 3.24 x 10-5 

GP6 Signalling Pathway -3.693 52% 2.51 x 10-14 

CD28 Signalling in T Helper Cells -3.795 42% 1.51 x 10-7 

B Cell Receptor Signalling -3.810 33% 2.88 x 10-4 

Fcγ Receptor-mediated Phagocytosis in Macrophages and Monocytes -3.889 36% 1.51 x 10-3 

iCOS-iCOSL Signalling in T Helper Cells -3.920 48% 1.00 x 10-10 

Neuroinflammation Signalling Pathway -4.170 36% 2.63 x 10-8 

Role of NFAT in Regulation of the Immune Response -4.202 38% 3.80 x 10-7 

Th1 Pathway -4.808 49% 7.94 x 10-12 

PKCθ Signalling in T Lymphocytes -4.907 36% 2.69 x 10-5 

TREM1 Signalling -5.096 54% 4.79 x 10-9 

Dendritic Cell Maturation -5.333 41% 3.31 x 10-9 
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Table 5.5 Canonical pathways identified by IPA in D14 lesions compared to D7 lesions from miR-

223-/- mice (P < 0.05; -2 > Z score > 2) 

Canonical Pathway Z score Ratio P value 

Inhibition of Matrix Metalloproteases 2.333 24% 7.41 x 10-7 

Mitotic Roles of Polo-Like Kinase 2.121 14% 8.13 x 10-5 

Chondroitin Sulphate Biosynthesis (Late Stages) 2.000 10% 3.16 x 10-2 

Cdc42 Signalling 2.000 6% 4.07 x 10-2 

Apelin Cardiac Fibroblast Signalling Pathway -2.000 18% 3.24 x 10-3 

Neuregulin Signalling -2.000 7% 4.90 x 10-2 
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Figure 5.12 Number of differentially expressed genes identified between miR-223-/- and C57 mice   

RNA-Seq data from decidualised endometrium, D7 and D14 lesions in miR-223-/- and C57 mice were compared to 
determine the proportion of DEGs amongst detected genes. The top Venn diagram displays the distribution and 
overlap of DEGs (both upregulated and downregulated) between each sample type (A). Additional Venn diagrams 
were generated to determine the number of upregulated (B) and downregulated (C) DEGs between D7 and D14 
lesions.  All genes identified have a ≥ 2-fold change in expression with an adjusted p value < 0.05. 
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Table 5.6  Top DEGs genes during decidualisation and lesion development in miR-223-/- mice compared to C57 mice (FDR <0.05) 

 

Decidualised endometrium 
 

D7 lesions 
 

D14 lesions 

Gene log2FC FDR 
 

Gene log2FC FDR 
 

Gene log2FC FDR 

4931413K12Rik + 3.63 4.84 x 10-2  Ppfia4 + 2.17 6.52 x 10-3  Ppfia4 + 2.01 5.47 x 10-4 

Gm20481 + 3.50 2.46 x 10-2  Rnaset2b + 2.12 8.66 x 10-3  Ctla2a + 1.90 1.18 x 10-2 

Hspa1a + 3.03 8.07 x 10-4  Atp6v0c + 1.75 9.23 x 10-7  Rnaset2b + 1.71 1.96 x 10-3 

Tmem267 + 2.87 1.11 x 10-2  Rnps1 + 1.50 5.95 x 10-5  Gdf3 + 1.65 1.47 x 10-2 

Fndc9 + 2.63 2.89 x 10-2  Rps2 + 1.41 3.35 x 10-9  Mmp11 + 1.28 4.12 x 10-2 

Grm4 + 2.28 5.84 x 10-3  Gm9825 - 5.14 4.91 x 10-4  Atp6v0c + 1.19 3.02 x 10-4 

Gm28373 + 2.25 2.17 x 10-4  Ctse - 4.91 1.02 x 10-5  Chil1 - 4.84 9.47 x 10-3 

Hspa1b + 2.15 5.05 x 10-3  Gm13443 - 4.69 3.37 x 10-3  Ctse - 4.65 7.03 x 10-7 

Apold1 + 1.73 1.02 x 10-4  Rps2-ps13 - 4.57 5.05 x 10-4  Hmga1-rs1 - 4.24 3.15 x 10-3 

Gad1 + 1.61 2.15 x 10-3  Tpsab1 - 4.45 3.08 x 10-2  Asic2 - 3.92 1.69 x 10-2 

Syndig1 - 5.95 2.72 x 10-2  Hmga1-rs1 - 4.31 2.19 x 10-3  Gm13443 - 3.69 2.60 x 10-3 

1810041L15Rik - 5.85 2.03 x 10-2  Gm15487 - 3.22 4.25 x 10-3  Gm37333 - 3.67 2.60 x 10-3 

Tspan11 - 5.76 1.59 x 10-2  Gm37333 - 3.20 2.71 x 10-2  Gm9825 - 3.58 7.12 x 10-3 

Ctse - 5.62 1.46 x 10-3  Tmem181b-ps - 2.47 9.23 x 10-7  Gm15487 - 3.48 1.65 x 10-3 

Npy - 5.59 1.56 x 10-2  Ptprv - 1.60 2.94 x 10-3  Gm26892 - 3.33 3.06 x 10-2 

Lyz1 - 5.50 7.12 x 10-3  Nnt - 1.55 4.93 x 10-5  Plekha6 - 3.06 1.46 x 10-2 

Myh11 - 5.07 2.09 x 10-2  Dynlt1-ps1 - 1.46 1.15 x 10-2  Rps2-ps13 - 2.96 9.47 x 10-3 

Myo5c - 4.87 4.40 x 10-2  Wdfy1 - 1.42 1.91 x 10-5  Tmem181b-ps - 1.94 8.21 x 10-6 

Nptx2 - 4.84 2.89 x 10-2      Nnt - 1.88 7.03 x 10-7 

Adgrd1 - 4.47 4.79 x 10-2      Acss2 - 1.42 3.95 x 10-2 

        Me1 - 1.39 4.35 x 10-2 

        Rab3ip - 1.25 4.35 x 10-2 
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5.2.6. Evaluating the impact of miR-223 depletion from either the recipient environment or donor 

endometrium  

In a clinical setting, miR-223 expression is upregulated in ectopic endometrial tissue compared to eutopic 

endometrial tissue (Ohlsson Teague et al., 2009). To date, correlations between an elevation in serum 

levels of miR-223 and endometriosis have been inconclusive. In sections 5.2.1 to 5.2.4 of this thesis, the 

impact of a systemic depletion of miR-223 (i.e. deficiency of miR-223 in both donor and recipient mice) 

on lesion development was evaluated. Thus, to evaluate the contribution of the donor endometrium vs 

recipient environment on the development of endometriosis and expression of M1-like and M2-like 

markers, this section will evaluate the impact of reciprocal transfers between wildtype mice and mice 

deficient in miR-223 (Figure 5.13). To determine the contribution of the recipient environment on the 

development of endometriosis, miR-223 sufficient (C57) donor endometrium was transferred into a miR-

223 deficient (miR-223-/-) recipient (C57  miR-223-/-). Conversely, the transfer of miR-223 deficient 

(miR-223-/-) donor endometrium into a replete miR-223 (C57) recipient (miR-223-/-  C57) was performed 

to determine the contribution of donor endometrial tissue in the pathogenesis of endometriosis. 

 

 

 

Figure 5.13 Reciprocal transfers between miR-223-/- and C57 mice   

Utilising the Greaves-Saunders menstrual mouse model of endometriosis (Greaves et al., 2014), 40mg donor 
decidualised endometrial tissue was injected subcutaneously into an allogeneic recipient. Resulting endometriosis-
like lesions from these reciprocal transfers were harvested at either day 7, 14, or 21 post-induction of disease. 
Refer to Figure 2.3 for the protocol to induce endometriosis in recipient mice. 
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5.2.6.1. Endometriosis-like lesion development in C57 donor to miR-223-/- recipient transfers 

A total of 38 C57 donor mice were required to generate enough decidualised endometrial tissue for 

injection into miR-223-/- recipient mice (C57  miR-223-/-) at a ratio of 2 donors to 1.8 recipients (Table 

5.7). Over the course of the experiment, a total of 97% of miR-223-/- recipient mice had identifiable lesions. 

At both D7 and D14, 100% of miR-223-/- recipient mice had lesions, whereas at D21, 83% of miR-223-/- 

recipient mice had lesions. A total of 2 mice had more than one lesion and have been excluded from 

subsequent analyses. 

 

Endometriosis-like lesions that developed from a C57  miR-223-/- transfer were large, spread out over 

the attachment site, with a blood and pus-filled appearance at D7 (Figure 5.14 A). At both D14 and D21, 

lesions appeared small and circular, however still retained a blood and pus-filled appearance (Figure 5.14 

B, C). Lesions were significantly larger at D7 (76 (37 – 96) mm3) compared to both D14 (6 (4 – 8) mm3, p 

= 0.0013) and D21 (5 (3 – 7, p = 0.0001 for D7 vs D21) (Figure 5.14 D). A similar trend was noted in 

lesion weight, with heaviest lesions present at D7 (44.65 (36.30 – 48.75) mg), followed by significant 

reductions in weight at D14 (6.65 (4.75 – 9.43) mg, p = 0.0010) and at D21 (5.40 (4.50 – 7.33) mg, p = 

0.0002 for D7 vs D21) (Figure 5.14 E). 

 

Assessment of morphological parameters was done in H&E stained lesion sections from C57  miR-

223-/- mice (Figure 5.15 A-C).  Average gland size per lesion reduced significantly between D7 (0.015 

(0.000 – 0.099) mm2) and D21 (0.000 (0.000 – 0.001) mm2; p = 0.0443) (Figure 5.15 E). Similarly, lumen 

area was largest at D7 (0.009 (0.000 – 0.016) mm2) and reduced significantly at D21 (0.000 (0.000 – 

0.000) mm2, p = 0.0443) (Figure 5.15 F). A corresponding trend was observed in measurements of 

epithelium area within glands, with a reduction seen between D7 (0.016 (0.000 – 0.037) mm2) and D21 

(0.000 (0.000 – 0.000) mm2; p = 0.0378) (Figure 5.15 G). Over the three week time period, no significant 

differences were observed in the number of glands per lesion (Figure 5.15 D), percentage glandular 

epithelium (Figure 5.15 H) or percentage stromal area (Figure 5.15 I).  

 
 

Total F4/80+ density was lowest at D7 (16.06 (13.78 – 21.44) %) and significantly increased at both D14 

and D21 (25.14 (22.29 – 34.63) % and 33.58 (24.44 – 39.09) % respectively; p = 0.0475 for D7 vs D14 

and p = 0.0029 for D7 vs D21) (Figure 5.16 G). Peripheral F4/80+ density was consistent over all time 

points (Figure 5.16 A-C, H). Conversely, central expression of F4/80 in these lesions significantly 

increased between D14 (23.57 (15.69 – 29.98) %) and D21 (47.49 (37.08 – 54.66) %; p = 0.0089) (Figure 

5.16 D-F, I). 
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Expression of the M1-like marker iNOS showed a  gradual increase in iNOS+ density was across the time 

points (18.37 (15.62 – 20.71) % at D7, 24.88 (16.03 – 43.76) % at D14, and 38.17 (34.52 – 43.21) % at 

D21; p = 0.0006 for D7 vs D21) (Figure 5.17 A-C, M). Similarly, expression of the M1-like marker MHC II 

in C57  miR-223-/- lesions increased significantly over the time course (3.28 (1.83 – 3.99) % at D7, 

16.26 (10.79 – 19.63) % at D14, and 23.65 (21.15 – 35.42) % at D21; p = 0.0230 for D7 vs D14 and p < 

0.0001 for D7 vs D21) (Figure 5.17 D-F, N). The density of the M2-like marker CD206 increased over the 

three weeks (8.10 (5.59 – 8.90) % at D7, 23.33 (16.00 – 34.86) % at D14, and 24.88 (22.48 – 30.67) % 

at D21; p = 0.0012 for D7 vs D14 and p = 0.0002 for D7 vs D21). In contrast, the expression of Arg-1 was 

similar at D7 and D14 (31.66 (26.67 – 40.98) % and 39.58 (33.40 – 43.22) % respectively), with a 

significant increase observed at D21 (55.82 (49.29 – 66.08) %; p = 0.0003 for D7 vs D21 and p = 0.0123 

for D14 vs D21) (Figure 5.17 J-L, P).  

 

Table 5.7 Endometriosis-like lesion recovery in C57  miR-223-/- mice 

Lesion collection time point D7 D14 D21 

Total number of C57 donor mice used across all time points: 38 

Number of miR-223-/- recipient mice 11 11 12 

Number of mice with lesions* 11 11 10 

Proportion of mice with lesions (%) 100 100 83 

* To reduce bias, mice with ≥2 lesions were excluded from subsequent analyses.  At D7 - 1 mouse excluded; At D14 – 1 
mouse excluded.
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Figure 5.14 Gross morphology of endometriosis-like lesion development in a transfer from C57 

donor to miR-223-/- recipient mice 

Decidualised C57 donor endometrial tissue was injected subcutaneously into miR-223-/- recipient mice. Resulting 
lesions were harvested at either D7 (A), D14 (B) or D21 (C), with representative images shown. Lesion size was 
measured (D) and lesions were excised and weighed (E), with the dotted line indicating the initial weight of donor 
decidualised endometrial tissue inoculated into recipient mice. Data are presented as median (IQR), with each 
symbol representative of a single lesion in one mouse (n=10 at D7, n=10 at D14, n=10 at D21). Analysis was done 
using the Kruskal-Wallis test followed by Dunn’s multiple comparison test, with significance denoted as ** (p < 0.01) 
and *** (p < 0.001).
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Figure 5.15 Assessment of morphological parameters in haematoxylin and eosin stained 

endometriosis-like lesions from C57 donor to miR-223-/- recipient mice   

Haematoxylin and eosin stained sections from D7 (A), D14 (B), and D21 (C) lesions (representative images shown; 
arrows indicate glands) were assessed for the following characteristics: number of glands per lesion (D), average 
gland size (E), lumen area (F), epithelium area (G), percentage glandular epithelium (H) and percentage stromal 
area (I). Data are presented as median (IQR), with each symbol representative of a single lesion in one mouse 
(n=10 at D7, n=10 at D14, n=10 at D21). Analysis was done using the Kruskal-Wallis test followed by Dunn’s 
multiple comparison test, with significance denoted as * (p < 0.05).
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Figure 5.16 F4/80 immunostaining in endometriosis-like lesions from C57 donor to miR-223-/- 

recipient mice   

Quantification of total F4/80 density was carried out in lesions from C57 donor to miR-223-/- recipient mice (G). 
F4/80 density at the lesion periphery (100µM from the edge of the lesion) at D7 (A), D14 (B) and D21 (C) was 
evaluated (H). F4/80 density at the lesion centre (within 500µM from the centre) at D7 (D), D14 (E), and D21 (F) 
was also quantified (I). Data are presented as median (IQR), with each symbol representative of a single lesion in 
one mouse (n=10 at D7, n=10 at D14, n=10 at D21). Analysis was done using the Kruskal-Wallis test followed by 
Dunn’s multiple comparison test, with significance denoted as * (p < 0.05) and ** (p < 0.01). 
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Figure 5.17 M1-like (iNOS and MHCII) and M2–like (CD206 and Arg-1) immunostaining in 

endometriosis-like lesions from C57 donor to miR-223-/- recipient mice   

The expression of inducible nitric oxide synthase (iNOS) at D7 (A), D14 (B), and D21 (C) was quantified (M) in 
endometriosis-like lesions. Quantification of the Class II Major Histocompatibility Complex (MHC II) (N) was done 
at D7 (D), D14 (E) and D21 (F) in these lesions. CD206 density at D7 (G), D14 (H), and D21 (I) was quantified (O) 
in endometriosis-like lesions. Expression of Arginase-1 (Arg-1) (P) was evaluated at D7 (J), D14 (K) and D21 (L) 
in these lesions. Data are presented as median (IQR), with each symbol representative of a single lesion in one 
mouse (n=10 at D7, n=10 at D14, n=10 at D21). Analysis was done using the Kruskal-Wallis test followed by Dunn’s 
multiple comparison test, with significance denoted as * (p < 0.05), ** (p < 0.01), *** (p < 0.001), and **** (p <0.0001). 
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5.2.6.2. Endometriosis-like lesion development in miR-223-/- donor to C57 recipient transfers 

A total of 35 miR-223-/- donor mice were used to generate sufficient decidualised endometrium for transfer 

into C57 recipient mice (miR-223-/-  C57) at a ratio of 2 donors to 1.9 recipients (Table 5.8). Over the 

course of this experiment, 74% of C57 recipient mice had lesions. At D7, 80% of C57 recipient mice had 

lesions, which reduced to 73% at D14, and further reduced to 67% by D21. One mouse had more than 

one lesion and has been excluded from subsequent analyses. 

 

Following the miR-223-/-  C57 transfer, endometriosis-like lesions that developed at D7 were large, 

spread out over the attachment site, and blood-filled (Figure 5.18 A). At D14, lesions remained spread 

out over the attachment site, and maintained a blood-filled appearance (Figure 5.18 B), while by D21, 

lesions were small and white (Figure 5.18 C). Lesion size was consistent at D7 and D14 (85 (56 – 115) 

mm3 and 48 (36 – 84) mm3 respectively), however by D21, a significant reduction was noted (4 (2 – 6) 

mm3; p = 0.0002 for D7 vs D21 and p = 0.0143 for D14 vs D21) (Figure 5.18 D). Correspondingly, lesion 

weight was similar at D7 and D14 (71.10 (60.53 – 102.70) mg and 59.80 (45.98 – 72.00) mg respectively), 

while a significant decrease was observed at D21 (6.00 (5.15 – 7.70) mg; p = 0.0002 for D7 vs D21 and 

p = 0.0133 for D14 vs D21) (Figure 5.18 E). 

 

Morphological parameters in endometriosis-like lesions from a miR-223-/-  C57 transfer were assessed 

using H&E staining (Figure 5.19 A-C). The number of glands per lesion was not significantly different 

between D7, D14 and D21 (1 (0 – 2), 2 (0 – 6), and 2 (1 – 2) respectively) (Figure 5.19 D). Average gland 

size increased significantly between D7 and D14 (0.002 (0.000 – 0.003) mm2 and 0.064 (0.006 – 0.274) 

mm2 respectively; p = 0.0063), however no difference was observed at D21 (0.003 (0.002 – 0.003) mm2) 

(Figure 5.19 E). Measurements of lumen area within glands followed a similar trend with a significant 

increase between D7 and D14 (0.0004 (0.0000 – 0.0007) mm2 and 0.0064 (0.0033 – 1.1500) mm2 

respectively; p = 0.0107) with no differences observed at D21 (0.0006 (0.0003 – 0.0007) mm2) (Figure 

5.19 F). Likewise, the epithelium area within glands increased significantly between D7 and D14 (0.001 

(0.000 – 0.004) mm2 and 0.093 (0.005 – 0.424) mm2 respectively, p = 0.0134), however was unaltered at 

D21 (0.003 (0.002 – 0.004) mm2) (Figure 5.19 G). Percentage glandular epithelium also increased 

significantly between D7 and D14 (0.02 (0.00 – 0.04) % and 0.74 (0.35 – 12.44) % respectively; p = 

0.0010), whereas values at D21 were not significantly different from either D7 or D14 (0.16 (0.09 – 0.20) 

%) (Figure 5.19 H). Corresponding measurements of percentage stromal area was highest at D7 (99.97 

(99.55 – 100.00) %), and decreased significantly at D14 (98.64 (87.56 – 99.61) %, p = 0.0188), but was 

unaltered at D21 (99.86 (99.81 – 99.94) %) (Figure 5.19 I).  
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To determine macrophage density in miR-223-/- C57 lesions, quantification of F4/80 immunostaining 

was performed (Figure 5.20). Total F4/80+ density increased significantly from D7 to D14, with sustained 

expression at D21 (7.61 (5.03 – 8.84) %, 21.17 (12.01 – 29.19) %, and 18.59 (13.22 – 21.94) % 

respectively; p = 0.0030 for D7 vs D14 and p = 0.0089 for D7 vs D21) (Figure 5.20 G). Peripheral 

expression of F4/80 was consistent at all time points (Figure 5.20 A-C, H). In contrast, central F4/80 

expression (Figure 5.20 D-F) was lowest at D7 (7.27 (4.06 – 12.40) %) and significantly increased over 

time (29.70 (20.44 – 41.77) % at D14 and 32.19 (22.66 – 47.56) % at D21; p = 0.0044 for D7 vs D14 and 

p = 0.0009 for D7 vs D21) (Figure 5.20 I). 

 

Expression of the M1-like marker iNOS was unchanged across the time course (Figure 5.21 A-C, M). In 

contrast, density of the M1-like marker MHC II remained low at D7 and D14 (7.79 (5.87 – 10.32) % and 

9.45 (6.07 – 12.32) % respectively), a significant increase was observed at D21 (35.84 (27.45 – 39.78) 

%; p = 0.0008 for D7 vs D21 and p = 0.0071 for D14 vs D21) (Figure 5.21 D-F, N). A steady increase in 

the density of the M2-like marker CD206 was observed over the course of the experiment (7.62 (6.10 – 

9.30) % at D7, 11.83 (8.70 – 18.10) % at D14, and 21.33 (13.29 – 24.97) % at D21; p = 0.0005 for D7 vs 

D21) (Figure 5.21 D-F, N). Alternatively, the expression of Arg-1 was consistent across all time points 

(Figure 5.21 J-L, P). 

 

Table 5.8 Endometriosis-like lesion recovery in miR-223-/-  C57 mice 

Lesion collection time point D7 D14 D21 

Total number of miR-223-/- donor mice used across all time points: 32 

Number of C57 recipient mice 10 12 12 

Number of mice with lesions* 8 9 8 

Proportion of mice with lesions (%) 80 75 67 

* To reduce bias, mice with ≥2 lesions were excluded from subsequent analyses.  At D14 - 1 mouse excluded.  
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Figure 5.18 Gross morphology of endometriosis-like lesion development in a transfer from miR-223-

/- donor to C57 recipient mice 

Decidualised miR-223-/- donor endometrial tissue was injected subcutaneously into C57 recipient mice. Resulting 
lesions were harvested at either D7 (A), D14 (B) or D21 (C), with representative images shown. Lesion size was 
measured (D) and lesions were excised and weighed (E), with the dotted line indicating the initial weight of donor 
decidualised endometrial tissue inoculated into recipient mice. Data are presented as median (IQR), with each 
symbol representative of a single lesion in one mouse (n=8 at D7, n=8 at D14, n=8 at D21). Analysis was done 
using the Kruskal-Wallis test followed by Dunn’s multiple comparison test, with significance denoted as * (p < 0.05) 
and *** (p < 0.001). 
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Figure 5.19 Assessment of morphological parameters in haematoxylin and eosin stained 

endometriosis-like lesions from miR-223-/- donor to C57 recipient mice   

Haematoxylin and eosin stained sections from D7 (A), D14 (B), and D21 (C) lesions (representative images shown; 
arrows indicate glands) were assessed for the following characteristics: number of glands per lesion (D), average 
gland size (E), lumen area (F), epithelium area (G), percentage glandular epithelium (H) and percentage stromal 
area (I). Data are presented as median (IQR), with each symbol representative of a single lesion in one mouse 
(n=8 at D7, n=8 at D14, n=8 at D21). Analysis was done using the Kruskal-Wallis test followed by Dunn’s multiple 
comparison test, with significance denoted as * (p < 0.05) and ** (p <0.01). 
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Figure 5.20 F4/80 immunostaining in endometriosis-like lesions from miR-223-/- donor to C57 

recipient mice   

Quantification of total F4/80 density was carried out in lesions from miR-155-/- donor to C57 recipient mice (G). 
F4/80 density at the lesion periphery (100µM from the edge of the lesion) at D7 (A), D14 (B) and D21 (C) was 
evaluated (H). F4/80 density at the lesion centre (within 500µM from the centre) at D7 (D), D14 (E), and D21 (F) 
was also quantified (I). Data are presented as median (IQR), with each symbol representative of a single lesion in 
one mouse (n=8 at D7, n=8 at D14, n=8 at D21). Analysis was done using the Kruskal-Wallis test followed by 
Dunn’s multiple comparison test, with significance denoted as ** (p < 0.01) and *** (p < 0.001). 
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Figure 5.21 M1-like (iNOS and MHCII) and M2–like (CD206 and Arg-1) immunostaining in 

endometriosis-like lesions from miR-223-/- donor to C57 recipient mice   

The expression of inducible nitric oxide synthase (iNOS) at D7 (A), D14 (B), and D21 (C) was quantified (M) in 
endometriosis-like lesions. Quantification of the Class II Major Histocompatibility Complex (MHC II) (N) was done 
at D7 (D), D14 (E) and D21 (F) in these lesions. CD206 density at D7 (G), D14 (H), and D21 (I) was quantified (O) 
in endometriosis-like lesions. Expression of Arginase-1 (Arg-1) (P) was evaluated at D7 (J), D14 (K) and D21 (L) 
in these lesions. Data are presented as median (IQR), with each symbol representative of a single lesion in one 
mouse (n=8 at D7, n=8 at D14, n=8 at D21). Analysis was done using the Kruskal-Wallis test followed by Dunn’s 
multiple comparison test, with significance denoted as ** (p < 0.01), and *** (p < 0.001).
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5.2.6.3. Comparison of lesion development in miR-223-/- ↔ C57 reciprocal transfer mice with 

syngeneic C57 and syngeneic miR-223-/- mice 

To assess the impact of a miR-223 deficiency present either in the recipient environment (C57  miR-

223-/- transfer) or in the donor endometrial tissue (miR-223-/-  C57 transfer), comparisons of 

morphometric and immunohistochemical results in these reciprocal transfer models were made against 

corresponding results from the syngeneic C57 (C57  C57 transfer) and the syngeneic miR-223-/- (miR-

223-/-  miR-223-/- transfer) models.   

 

5.2.6.3.1. C57  miR-223-/- lesion development vs C57  C57 lesion development  

At D7, lesion size in C57  miR-223-/- mice was 5-fold larger at D7 (p < 0.0001) compared to lesions 

from C57  C57 mice (Figure 5.22 A), with a corresponding 2.9-fold increase in lesion weight (p < 0.0001) 

(Figure 5.22 B). C57  miR-223-/- lesions remained 2-fold heavier at D21 (p = 0.0008) compared to C57 

 C57 lesions. As no glands were present in C57  miR-223-/- lesions at both D14 and D21, this was 

significantly lower than values from C57 C57 lesions (p = 0.0013 and p < 0.0001 respectively) (Figure 

5.22 C). Due to this absence of glands, average gland size was significantly lower in C57  miR-223-/- 

lesions at D21 (p = 0.0012) (Figure 5.22 D). Lumen area was significantly lower at D14 (p = 0.0034) and 

D21 (p = 0.0001), as were measurements of epithelium area (p = 0.0056 at D14 and p < 0.0001 at D21) 

and percentage glandular epithelium (p = 0.0044 at D14 and p < 0.0001 at D21) (Figure 5.22 E-G). 

Corresponding measurements of stromal area showed a 1.02-fold increase at D14 (p = 0.0089) and a 

1.03-fold increase at D21 (p < 0.0001) in C57  miR-223-/- lesions compared to C57  C57 lesions 

(Figure 5.22 H). 

 

At D21, C57  miR-223-/- lesions had 1.9-fold more total F4/80 density (p = 0.0117), with a 2.1 fold 

increase in peripheral F4/80 density (p = 0.0031) compared to C57  C57 lesions (Figure 5.23 A, B). 

Central F4/80 density was 7.7-fold higher in C57  miR-223-/- lesions compared to C57  C57 lesions 

at D7 (p <0.0001), and 1.5-fold higher at D21 (p = 0.0003) (Figure 5.23 C). At D21, iNOS density was 2.2-

fold higher in C57  miR-223-/- lesions (p < 0.0001) compared to C57  C57 lesions (Figure 5.23 D). 

MHC II density was reduced by 83% in C57  miR-223-/- lesions compared to C57  C57 lesions at D7 

(p < 0.0001), however expression levels were similar at D14 and D21 (Figure 5.23 E). CD206 expression 

was 37% lower in C57  miR-223-/- lesions compared to C57  C57 lesions at D21 (p < 0.0001) (Figure 

5.23 F). Arg-1 expression was consistently elevated in C57  miR-223-/- lesions compared to C57  

C57 lesions across all time points (1.5-fold increase at D7, p = 0.0033; 1.8-fold increase at D14, p < 

0.0001; 2.3-fold increase at D21, p < 0.0001).  
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5.2.6.3.2. C57  miR-223-/- lesion development vs miR-223-/-  miR-223-/- lesion development  

Lesion development in C57  miR-223-/- and miR-223-/-  miR-223-/- were comparable across all 

morphometric parameters, except for lesion size, wherein C57  miR-223-/- lesions were 50% smaller at 

D14 (p = 0.0023) and 41% smaller at D21 (p = 0.0341) compared to miR-223-/-  miR-223-/- lesions 

(Figure 5.22). Likewise, total, peripheral and central F4/80 density was consistent at between strains 

across time points (Figure 5.23 A-C). C57  miR-223-/- lesions had 40% less iNOS expression at D7 (p 

< 0.0001) however by D21, lesions expressed 1.9-fold more iNOS (p < 0.0001) (Figure 5.23 D). MHC II 

expression in C57  miR-223-/- lesions was reduced at both D7 and D14 (85% reduction, p < 0.0001; 

40% reduction, p < 0.0001 respectively) (Figure 5.23 E). Although expression of CD206 was consistent 

between groups, Arg-1 expression was consistently elevated in C57  miR-223-/- lesions compared to 

miR-223-/-  miR-223-/- lesions at D7 (1.4-fold increase, p = 0.0032), D14 (1.3-fold increase, p = 0.0025) 

and D21 (1.3-fold increase, p = 0.0041) (Figure 5.23 F,G).  

 

5.2.6.3.3. miR-223-/-  C57 lesion development vs C57  C57 lesion development  

Lesions in miR-223-/-  C57 mice were 5.7 fold larger at D7 (p < 0.0001) and 19.2-fold larger at D14 (p 

< 0.0001), while lesion weight was significantly heavier across all time points (4.6-fold increase at D7, p 

< 0.0001; 12-fold increase at D14, p < 0.0001; 2.2-fold increase at D21, p = 0.0005) compared to lesions 

from C57  C57 mice (Figure 5.22 A, B). At D21, when compared with C57  C57 lesions, miR-223-/- 

 C57 lesions had 69% less number of glands (p = 0.0002), 97% less lumen area (p = 0.0006), 86% 

less epithelium area (p = 0.0003), 95% less glandular epithelium (p = 0.0002) and 1.03-fold more stromal 

area (p = 0.0006) (Figure 5.22 C, E-H). No differences were observed in average gland size (Figure 5.22 

D). 

 

Total, peripheral and central F4/80 density was comparable between groups across all time points (Figure 

5.23 A-C). iNOS density was 1.4-fold higher at D14 (p = 0.0073) and 1.7-fold higher at D21 (p = 0.0006) 

in miR-223-/-  C57 lesions compared to C57  C57 lesions (Figure 5.23 D). At D7, the expression of 

MHC II in miR-223-/-  C57 lesions was reduced by 60% (p = 0.0096) (Figure 5.23 E). CD206 density 

was 46% lower in miR-223-/-  C57 lesions compared to C57  C57 lesions at D21 (p = 0.0002) (Figure 

5.23 F). Arg-1 expression was consistently elevated in miR-223-/-  C57 lesions compared to C57  

C57 lesions (1.4-fold increase at D7, p = 0.0030; 1.7-fold increase at D14, p = 0.0124; 1.5-fold increase 

at D21, p = 0.0104) (Figure 5.23 G).  

 



Panir Chapter 5 241 

5.2.6.3.4. miR-223-/-  C57 lesion development vs miR-223-/-  miR-223-/- lesion development  

Lesions in miR-223-/-  C57 mice were 4-fold larger (p < 0.0001) at D14, while at D21, lesions were 59% 

smaller compared to the syngeneic miR-223-/- transfer (p = 0.0106) (Figure 5.22 A). Lesions from miR-

223-/-  C57 mice were 2.2-fold heavier at D7 (p = 0.0039) and 6.2-fold heavier at D14 (p < 0.0001) 

(Figure 5.22 B). Due to the lack of glands in miR-223-/-  miR-223-/- lesions, there were significantly more 

glands in miR-223-/-  C57 lesions at D21 (p = 0.0004). Average gland size was significantly higher in 

miR-223-/-  C57 lesions at D14 (p = 0.0010) and D21 (p = 0.0004) compared to lesions from miR-223-

/-  miR-223-/- mice (Figure 5.22 D). Likewise, lumen area was significantly higher in miR-223-/-  C57 

lesions at D14 (p = 0.0011) and D21 (p = 0.0004) compared to miR-223-/-  miR-223-/- lesions (Figure 

5.22 E). Epithelium area followed a similar trend, with significantly higher measurements in miR-223-/-  

C57 lesions at D14 (p = 0.0006) and D21 (p = 0.0004) compared to miR-223-/-  miR-223-/- lesions 

(Figure 5.22 F). Percentage glandular area was significantly higher in miR-223-/-  C57 lesions at D14 

(p = 0.0013) and D21 (p = 0.0004) compared to miR-223-/-  miR-223-/- lesions (Figure 5.22 G). 

Percentage stromal area in miR-223-/-  C57 lesions was 1.3% lower at D14 (p = 0.0021) and 0.15% 

lower at D21 (p = 0.0004) compared to miR-223-/-  miR-223-/- lesions (Figure 5.22 H). 

 

Total F4/80 density was 61% lower (p < 0.0001) in miR-223-/-  C57 lesions at D7, with a corresponding 

75% decrease in central F4/80 density at D7 (p < 0.0001) compared to miR-223-/-  miR-223-/- lesions 

(Figure 5.23 A,C). At D21, an 18% decrease of peripheral F4/80 density was observed  (p = 0.0079) in 

miR-223-/-  C57 lesions compared to miR-223-/-  miR-223-/- lesions (Figure 5.2B). miR-223-/-  C57 

lesions had 1.4-fold more iNOS expression at D21 (p = 0.0037), while MHC II density was reduced by 

63% at D7 (p < 0.0001) and 65% at D14 (p < 0.0001) compared to miR-223-/-  miR-223-/- lesions (Figure 

5.23 D,E). No differences were observed in CD206 or Arg-1 density between strains across all time points 

(Figure 5.23 F, G). 
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Figure 5.22 Comparative analysis of morphometric parameters between syngeneic C57 and miR-223-

/- models with reciprocal miR-223-/- cross transfer models    

Comparisons of lesion size (A), weight (B), number of glands per lesion (C), average gland size (D), lumen area 

(E), epithelium area (F), glandular epithelium (G), and stromal area (H) between C57  C57 mice ( ; n=12 at 

D7, n=12 at D14, n=8 at D21) and miR-223-/-  miR-223-/- mice ( ; n=17 at D7, n=13 at D14, n=9 at D21) 

against either C57  miR-223-/- mice ( ; n=10 at D7, n=10 at D14, n=10 at D21) or miR-223-/-  C57 mice (

; n=8 at D7, n=8 at D14, n=8 at D21) was performed. Data are presented as median (IQR). Analysis was done 
using the Kruskal-Wallis test followed by Bonferroni-Dunn’s multiple comparison test, with significance inferred at 
p < 0.0125. * indicates significance between C57  C57 and C57  miR-223-/-; # indicates significance between 
miR-223-/-  miR-223-/- and C57  miR-223-/-; § indicates significance between C57  C57 and miR-223-/-  
C57; ^ indicates significance between miR-223-/-  miR-223-/- and miR-223-/- C57.
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Figure 5.23 Comparative analysis of macrophage markers between syngeneic C57 and miR-223-/- 

models with reciprocal miR-223-/- cross transfer models    

Total (A), peripheral (B), and central (C) F4/80 density were compared between C57  C57 mice ( ; n=12 at 

D7, n=12 at D14, n=8 at D21) and miR-223-/-  miR-223-/- mice ( ; n=17 at D7, n=13 at D14, n=9 at D21) 

against either C57  miR-223-/- mice ( ; n=10 at D7, n=10 at D14, n=10 at D21) or miR-223-/-  C57 mice (

; n=8 at D7, n=8 at D14, n=8 at D21). Comparisons between the M1-like macrophage markers iNOS (D) and 
MHC II (E), and the M2-like macrophage markers CD206 (F) and Arg-1 (G) were also performed. Data are 
presented as median (IQR). Analysis was done using the Kruskal-Wallis test followed by Bonferroni-Dunn’s multiple 
comparison test, with significance inferred at p < 0.0125. * indicates significance between C57  C57 and C57  
miR-223-/-; # indicates significance between miR-223-/-  miR-223-/- and C57  miR-223-/-; § indicates significance 
between C57  C57 and miR-223-/-  C57; ^ indicates significance between miR-223-/-  miR-223-/- and miR-
223-/- C57.
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5.3. DISCUSSION 

This study was performed to evaluate the development of endometriotic-like lesions over time in the 

absence of miR-223. miR-223 has roles in the regulation of haematopoietic differentiation (Johnnidis et 

al., 2008), osteoclastogenesis (Chen et al., 2004), human embryonic stem cell differentiation (Yu et al., 

2013), and hepatocyte apoptosis and chromosomal stability (Ye et al., 2018). Moreover, the expression 

of miR-223 influences immune cell activation and function, especially macrophage polarisation, NF-κB 

signalling and inflammasome activity (Zhuang et al., 2012, Haneklaus et al., 2013). miR-223 targets 

Pknox1, an essential regulator of macrophage polarisation, effectively “re-programming” M1-like 

macrophages towards an M2-like activation profile (Zhuang et al., 2012). In addition, by regulating IKK-α 

expression, miR-223 modulates the NF-κB signalling pathway, thus inhibiting macrophage 

hyperactivation and preventing IL-1β production from the inflammasome (Li et al., 2010). The 

downregulation of miR-223 results in the activation of its target, STAT3, thus promoting production of M1-

like cytokines IL-6 and IL-1β (Chen et al., 2012). In women with endometriosis, an increase in the 

expression of miR-223 was observed in ectopic endometrial tissue when compared against paired 

samples of eutopic endometrium (Ohlsson Teague et al., 2009), and may contribute towards disease 

persistence.  

 

5.3.1. A deficiency in miRNA-223 restricts endometriosis-like lesion development  

By depleting miR-223 systemically, the development of endometriosis-like lesions was impeded in mice, 

with a significant reduction in lesion size and weight over time. The physical appearance of lesions 

correlated with H&E morphological observations, in which the large, red lesions at D7 were dense and 

had glandular areas. At D14, large fluid filled lesions were observed, which could account for the 

significant loss in lesion weight that was observed, as lesions primarily consisted of large cystic spaces. 

The small, white opaque lesions seen at D21 were dense with stromal cells and had no visible glands, 

suggesting the lesions consisted primarily of non-actively proliferating cells or fibrotic tissue. Interestingly, 

while the subcutaneous lesions in C57 mice appeared to become more established throughout the 

duration of the experiment, lesions from miR-223-/- mice showed signs of regression, evidenced by the 

gradual loss of glandular areas over time. Collectively, this suggests that inhibition of ectopic endometrial 

tissue survival occurs within 21 days in the absence of miR-223. Furthermore, lesion recovery from miR-

223-/- mice was progressively worse over time, supporting the hypothesis that a miR-223 deficiency 

inhibits the development of endometriosis.  



Panir Chapter 5 245 

A consistent decrease in the expression of Nnt was observed across all samples in miR-223-/- mice 

compared to samples from C57 mice. Nnt is localised to the inner mitochondrial membrane, and functions 

to maintain mitochondrial membrane potential via proton pumping and as a catalyst to generate 

nicotinamide adenine dinucleotide (NADH) from nicotinamide adenine dinucleotide phosphate (NADP+) 

(Hoek and Rydström, 1988, Albracht et al., 2011, Jackson et al., 2015). Cells deficient in NNT have a 

limited capacity to maintain NAD+ and NADPH levels, resulting in aberrant mitochondrial physiology and 

increased oxidative phosphorylation (Ho et al., 2017). As a consequence, a decrease in HIF-1α and 

HDAC1 expression is observed, culminating in a reduction of cellular proliferation and tumourigenicity (Ho 

et al., 2017). To date, no study has looked at the effect of inhibiting Nnt on the development of 

endometriotic lesions, or the effect of miR-223 on the expression of Nnt. From this chapter, the findings 

suggest that the absence of miR-223 results in decreased levels of Nnt, which may contribute to the 

perceived inhibition of endometriotic lesion proliferation, and warrants further investigation. 

 

5.3.2. Elevated M1-like activity in miR-223-/- mice may impede endometriotic lesion growth 

In this study, lesions deficient in miR-223 had a significantly higher central density of F4/80+ macrophages 

compared to C57 lesions at D7. In addition, at D21, total F4/80 density, as well as peripheral F4/80 

density, was significantly higher in miR-223-/- lesions compared to C57 lesions. Furthermore, as predicted, 

the expression of the M1-like markers iNOS and MHC II was higher in miR-223-/- lesions compared to 

C57 lesions at all time points. The elevation in pro-inflammatory, M1-like macrophage markers fits well 

with the current understanding of miR-223 function. In miR-223-/- mice, increased levels of granulocyte 

progenitors in bone marrow, as well as a hypersensitive and hypermature circulating neutrophil population 

further contributes to an elevated M1-like immune environment, with enhanced tissue destruction 

following LPS challenge (Johnnidis et al., 2008). This finding suggests that a predominance of M1-like 

macrophage infiltration during the initial stages of endometriotic lesion development, coupled with the 

elevation of additional pro-inflammatory immune cells, could account for the cystic, pus-filled appearance 

of miR-223-/- lesions. Moreover, the overt lack of glandular remodelling observed in miR-223-/- lesions 

supports the observation of sustained ectopic tissue clearance mediated by M1-like immune activity.  

 

While the total and central expression of the M2-like marker CD206 remained significantly lower in miR-

223-/- lesions compared to C57 lesions at D21, the opposite was seen in Arg-1 expression. From the RNA-

Seq data, Arg-1 decreased in both D7 lesions (log2FC = -8.104; FDR = 0.0005) and D14 lesions (log2FC 

= -5.796; FDR = 0.0087) compared to decidualised endometrium (Supplementary material Table 8 and 

9). However, in concordance with the immunohistochemical staining, there was an increase in Arg-1 

between D7 and D14 (log2FC = -8.104; FDR = 0.0005) (Supplementary material Table 10). As mentioned 
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previously, Arg-1 and iNOS compete for the same substrate, Ɩ-arginine (McLarren et al., 2011), and in 

these miR-223-/- lesions, the observed increase in Arg-1 density was coupled with a significant decrease 

in iNOS density. Studies have shown that immunosuppression mediated by myeloid-derived suppressor 

cells require depletion of Ɩ-arginine via Arg-1, and the production of NO by iNOS (Peranzoni et al., 2010, 

Parekh et al., 2013). In addition, the expansion of myeloid-derived suppressor cells in cancer is driven by 

the expression of STAT3, a known target of miR-223 which also functions in the regulation of Arg-1 activity 

(Gabrilovich et al., 2012, Vasquez-Dunddel et al., 2013).  

 

In a miR-223-/- mouse model of experimental autoimmune encephalomyelitis, monocytic myeloid-derived 

suppressor cells demonstrated an increase in the expression of Arg-1 and Stat3, with a simultaneous 

increase in suppressive function on T-cell proliferation and cytokine production (Cantoni et al., 2017). In 

this chapter, miR-223-/- endometriotic-like lesions exhibited a consistent decrease in KEGG pathways 

associated with Th1, Th2 and Th17 cell differentiation over time (Appendix: Figure 7.6 and Table 7.3 – 

Cluster 5). Therefore, the observed increase in Arg-1 density in miR-223-/- endometriotic-like lesions over 

time may be attributed to suppression of T cell mediated immunity. Interestingly, studies have linked 

elevated regulatory T cell activity with endometriosis (de Barros et al., 2017), and it is possible that 

suppression of T cell function driven by miR-223 depletion may contribute to reduced lesion development 

in this model. 

 

At D7, average vessel size and number of vessels per lesion was significantly higher in miR-223-/- lesions 

compared to C57 lesions, whereas by D21, blood vessel density was significantly higher in C57 lesions. 

From the RNA-Seq data, an upregulation of Vegfa was observed whereas a downregulation of Vegfb was 

noted in both D7 and D14 lesions compared to donor decidualised endometrium (Supplementary material 

Table 8 and 9). miR-223 overexpression is known to antagonise angiogenesis via inhibition of VEGF and 

basic fibroblast growth factor (bFGF) induced phosphorylation of their receptors (VEGFR2 and FRFR1 

respectively) (Shi et al., 2013). Therefore, in the absence of miR-223, it is possible that an early induction 

of VEGF and bFGF may occur, accounting for the D7 observations in lesion vasculature. However, as 

there was a significant increase in M1-like markers over subsequent weeks, it is likely that the expression 

of pro-angiogenic factors were downregulated, as studies have shown inhibition of VEGF in the presence 

of pro-inflammatory signals such as TNF-α (Patterson et al., 1996). In addition, a downregulation in the 

canonical apelin cardiac fibroblast signalling pathway was observed in D14 lesions compared to D7 

lesions, which may contribute to the reduced myofibroblast activity and fibrosis seen in miR-223-/- lesions 

compared to C57 lesions. 
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During lesion development, the remodelling of ectopic endometrial tissue is important for lesion 

establishment and persistence. The activation of a range of MMPs assist with ectopic tissue invasion and 

facilitate disease progression (Osteen et al., 2003, Yang et al., 2016). Endometriosis-like lesions which 

developed in the absence of miR-223 had a reduced expression of Mmp3, Mmp12, and Mmp27 in D14 

lesions compared to D7 lesions (Supplementary material Table 10). Elevated MMP3 protein levels have 

been observed in greater than 50% of ectopic endometrial tissue samples (Lv et al., 2015), and allelic 

polymorphisms in MMP3 are associated with the development of genital endometriosis (Yarmolinskaya 

et al., 2014). Increased expression of MMP12 is associated with the invasion and differentiation of 

endometrial adenocarcinoma cells (Yang et al., 2007), with genetic polymorphisms in MMP12 may have 

a potential role in the progression of superficial endometriosis (Borghese et al., 2008). Similarly, MMP27 

is detected in ovarian an peritoneal endometriotic lesions, and importantly, is expressed in 

CD163+/CD206+ M2-like endometrial macrophages (Cominelli et al., 2014). Collectively, this data 

suggests that the lack of lesion establishment and fibrosis over time in miR-223-/- mice could be a 

consequence of the reduced expression of MMPs, which may potentially be mediated by the deficiency 

in M2-like macrophages in this model.  

 

5.3.3. Depletion of miR-223 from the recipient environment restricts endometriotic lesion growth 

miR-223 suppresses the canonical NF-κB pathway to restrict the magnitude of inflammation (Haneklaus 

et al., 2013). However, in the absence of miR-223, an increase in granulopoiesis coupled with an elevation 

in hyper-mature and hyper-responsive neutrophils was observed in mice (Johnnidis et al., 2008). Women 

with endometriosis have an increased number of neutrophils in the peritoneal fluid (Tariverdian et al., 

2009, Milewski et al., 2011), as well as an increased neutrophil-to-lymphocyte ratio in the blood (Cho et 

al., 2008). In a mouse model of endometriosis, antibody mediated depletion of neutrophils during early 

stage disease development resulted in a significant reduction in the weight and total number of lesions 

formed (Takamura et al., 2016). The findings from our study support this, as miR-223-/-  C57 lesions 

were significantly heavier and larger at D7 and D14, and had increased glandular formation at D14 

compared to both C57 and miR-223-/- syngeneic lesions. In contrast, although C57  miR-223-/- lesions 

were large at D7, by D14 lesions had reduced significantly in size, and an absence of glandular formation 

was noted. Although this study did not assess the presence of neutrophils, our findings suggests that 

elevated neutrophil activity in itself is insufficient to maintain lesion growth and survival over time. 

 

Lesions from miR-223-/-  C57 mice exhibited a gradual increase in total and central F4/80 expression 

over time, however, it is surprising to note that MHC II expression remained low at D7 and D14. The 

increase in MHC II expression appears to correlate with a decrease in lesion weight and size at D21, 
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suggesting that the recruitment of M1-like macrophages in these lesions is delayed, thereby preventing 

the clearance of ectopic tissue. Importantly, following M1-like macrophage and neutrophil-mediated tissue 

degradation and clearance, the presence of M2-like macrophages is required to restore homeostasis and 

initiate tissue regeneration (Prame Kumar et al., 2018). It was interesting that the expression of both M2-

like markers remained consistently low in miR-223-/-  C57 lesions.  

 

In a mouse model of endometriosis, the infiltration of VEGF-secreting neutrophils and macrophages was 

observed within 5 days following disease induction, subsequently promoting lesion development, 

neoangiogenesis and ectopic tissue survival (Lin et al., 2006). During macrophage polarisation, a 

deficiency of miR-223 expression induces IKK-α, resulting in the suppression of NF-κB pathways, 

preventing the induction of an M2-like response (Li et al., 2010). Thus, the inability to recruit M2-like tissue-

remodelling macrophages early during miR-223-/-  C57 lesion development impacts the ability for 

sustained lesion growth and survival, despite the possible increase in neutrophil numbers. Our findings 

imply that signals from the donor endometrium may govern the recruitment and polarisation of 

macrophages within the lesion. Therefore, regardless of the availability of M2-like macrophages from the 

recipient environment, a deficiency of miR-223 results in a lack of M2-like macrophage activity within the 

lesion. This observation supports clinical findings, as elevated miR-223 expression is observed in 

endometriotic lesions, and suggests that repression of miR-223 within these lesions may hold potential in 

reducing the extent of tissue remodelling and lesion growth.  

 

Alternatively, in C57  miR-223-/- lesions, similar proportions of F4/80+ cells were observed at lesion 

periphery and centre at D7 and D14, with low expression of both M1-like markers iNOS and Arg-1 at D7. 

This finding was surprising as it contrasted with observations from both the syngeneic C57  C57 lesions 

and miR-223-/-  miR-223-/- lesions, and similarly, does not conform to the idea that a predominance of 

M1-like macrophages are present early in lesion growth (Bacci et al., 2009). A possible explanation is that 

following transfer into a miR-223-/- pro-inflammatory recipient environment, signals from the donor replete 

endometrium attempt to restrict the extent of M1-like activity. This may account for the high lesion weight 

and size observed at D7, which may be indicative of reduced tissue clearance at this time point, as the 

replete ectopic tissue is attempting to evade clearance and survive. However, lesions are unable to 

maintain glandular areas in the sustained M1-like pro-inflammatory environment, and ultimately regress. 
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In conclusion, the findings from this chapter indicate that a deficiency in miR-223 significantly attenuates 

lesion progression in a menstrual mouse model of endometriosis. miR-223 is involved in promoting an 

anti-inflammatory, tissue healing immune environment by polarising monocytes into M2-like macrophages 

(Chen et al., 2012, Ismail et al., 2013, Ying et al., 2015). Bacci et al. (2009) showed that increased tissue 

remodelling mediated by M2-like macrophages promotes the development of endometriosis lesions. In 

these mice, systemic depletion of miR-223 results in an elevated pro-inflammatory immune response, 

with increased levels of M1-like macrophages (Zhuang et al., 2012), which could account for the rapid 

lesion clearance seen in the menstrual mouse model of endometriosis used in this chapter. In a clinical 

setting, miR-223 is upregulated in ectopic endometrial lesions compared to paired eutopic endometrial 

biopsies, suggesting that elevated levels of this microRNA supports lesion survival (Ohlsson Teague et 

al., 2009). Furthermore, a sustained elevation in the expression of miR-223 has harmful physiological 

effects. In the RL95-2 human endometrial carcinoma cell line, overexpression of miR-223 was found to 

significantly inhibit cell proliferation and cell cycle progress via regulation of the insulin-like growth factor 

1 receptor (IGF-1R) (Huang et al., 2014). IGF-1R signalling has been implicated in various cancers, and 

is often associated with an increased resistance to conventional treatments (Jones et al., 2004, 

Warshamana-Greene et al., 2005, Vella and Malaguarnera, 2018). As cancer-associated mutations have 

been identified in both eutopic and ectopic endometrium of women with endometriosis in the absence of 

cancer or dysplasia (Anglesio et al., 2017, Suda et al., 2018), it is possible that miR-223 expression may 

have a role in inhibition of the transformation of benign endometriotic lesions into malignant carcinomas. 

Hence, the apparent paradoxical role of miR-223 in the progression of endometriosis should be analysed 

further. It is possible that a therapeutic strategy to inhibit miR-223 expression could result in a reduction 

in endometriotic lesion growth as seen in this mouse model, and characterisation of the long term effects 

of miR-223 suppression on endometriotic lesion development should be performed.  
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General discussion and conclusion 
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6.1. INTRODUCTION 

Endometriosis, the ectopic growth of endometrial tissue outside the uterine cavity, afflicts 10% of 

reproductive-aged women, and remains a complex, chronic and debilitating disorder (Giudice, 2010, 

Zondervan et al., 2018). The exact mechanisms governing the development of this disease are still 

uncertain, but have been linked to dysregulated immune responses within the peritoneal cavity 

(Capobianco and Rovere-Querini, 2013). From an immunological standpoint, lesion development in 

endometriosis can be broadly classified into two stages which are governed by either a pro-inflammatory 

(M1-like) response or a tissue remodelling (M2-like) response. An imbalance in the M1/M2 response may 

result in the survival, attachment and proliferation of ectopic endometrial tissue in the peritoneal cavity, 

when normally this tissue would be actively cleared by host immune cells. 

 

Macrophages have been implicated as central arbiters and enablers of disease progression, as an 

increased number of these immune cells are present within the peritoneal cavity of women with 

endometriosis compared to healthy controls (Haney et al., 1981, Capobianco and Rovere-Querini, 2013). 

Macrophages are key players in both the progression and resolution of inflammatory responses (Cao et 

al., 2004, Jantsch et al., 2014). In endometriotic lesion development, in vivo studies have demonstrated 

that a predominance of M1-like macrophages results in inhibition of lesion growth via increased tissue 

clearance, while an increase in M2-like macrophages supports lesion survival, remodelling and 

establishment (Bacci et al., 2009). Thus, the regulatory mechanisms driving macrophage polarisation in 

endometriosis should be evaluated in vivo to better understand the impact of an M1/M2 imbalance during 

disease development.  

 

MicroRNAs, a subset of epigenetic regulators, play a physiological role in regulating and mediating the 

polarisation of macrophages (O'Connell et al., 2012, Liu and Abraham, 2013). For example, miR-155 is 

important in facilitating pro-inflammatory M1-like macrophage polarisation (Worm et al., 2009, Martinez-

Nunez et al., 2011, Arranz et al., 2012, Gracias et al., 2013, Wang et al., 2013a), whereas the 

haematopoietic-specific microRNA miR-223 is crucial in the programming of anti-inflammatory, tissue 

healing M2-like macrophages (Zhuang et al., 2012, Wang et al., 2014a, Yuan et al., 2018). Moreover, 

multiple studies have demonstrated an aberrant microRNA expression profile in women with 

endometriosis. The expression of miR-155 is downregulated in the plasma of women with endometriosis 

compared to disease-free controls, suggesting disease progression is associated with reduced M1-like 

immune activity (Nisenblat et al., 2019). Additional studies have demonstrated an upregulation of miR-

223 in ectopic endometrial tissue compared to paired eutopic samples, further implicating an M2-like 

immune environment in the pathogenesis of endometriosis (Ohlsson Teague et al., 2009).  
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Therefore, the experiments described in this thesis were undertaken to investigate the establishment and 

progression of endometriotic-like lesions in a subcutaneous menstrual mouse model of endometriosis in 

the absence of either miR-155 or miR-223, with the hypotheses that a deficiency in miR-155 will enhance 

lesion development through upregulation of anti-inflammatory M2-like immune activity, and conversely, 

that a deficiency in miR-223 will suppress lesion growth via enhancement of pro-inflammatory M1-like 

immune activity. Collectively, this data contributes to the growing evidence implicating a shift in the M1/M2 

macrophage phenotype balance as an important determinant of endometriotic lesion establishment and 

survival (Figure 6.1). 
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Figure 6.1 Summary of the impact of a systemic miR-155 or miR-223 knockout on macrophage 

activity in endometriotic-like lesion development     

In wildtype (C57) mice, a replete immune system results in an initial M1-like response at the lesion periphery, 
followed by macrophage (MΦ) infiltration and neovascularisation at day 14. By day 21, lesions have elevated M2-
like MΦ activity, along with the presence of numerous glands and extensive vascularisation, indicative of successful 
lesion survival and establishment. The systemic absence of miR-155 promotes an M2-like immune response, 
characterised by low MΦ activity in lesions at day 7. However, at day 14, high M2-like immune activity is observed 
with blood vessel development, and although lesions at day 21 have increased M1-like activity, the presence of 
glands and high levels of vascularisation indicates successful lesion survival. In contrast, in the absence of miR-
223 facilitates an elevated pro-inflammatory immune response, and early MΦ infiltration into endometriotic-like 
lesions is coupled with high M1-like immune activity. At day 14, lesions appear cystic and high M1-like immune 
activity is sustained. At day 21, M2-like immune activity is increased, however as low vascularisation and no 
glandular formation is evident, lesions are unable to establish successfully, suggesting disease regression.  
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6.2. RATIONALE AND VALIDATION OF MODEL 

As it is challenging to understand the significance of M1/M2 macrophage phenotype in the pathogenesis 

of endometriosis from human clinical studies alone, animal models are useful to demonstrate correlations, 

causalities, and consequences of skewing immune polarisation on disease development. The main 

criticism of using rodents to mimic endometriosis is the absence of a menstrual cycle in these animals. 

Multiple studies in both autologous and homologous mouse models of endometriosis often require uterine 

fragments to be sutured onto the peritoneal wall or intestinal mesentery, as endometrial scrapings alone 

rarely formed quantifiable lesions (Grümmer et al., 2001, Lin et al., 2006, Cheng et al., 2011). To 

overcome this limitation, we used an induced menstrual mouse model of endometriosis, in which 

decidualised endometrial fragments readily adhere to the peritoneal surface (Greaves et al., 2014). In this 

model, insertion of oil into the uterine lumen, in conjunction with hormone manipulation to mimic the 

hormonal environment of early pregnancy in donor mice, allowed induction of an extensive and sustained 

decidual response. Within four hours of progesterone withdrawal, large numbers of proliferating cells were 

observed in the basal stroma and luminal epithelium of donor mice, and the expression profile of epithelial 

and junctional proteins mimicked features of human menstruation (Cousins et al., 2014). Therefore, the 

transfer of donor decidualised endometrium into a recipient mouse simulates the process of retrograde 

menstruation which gives rise to the development of endometriosis. In addition, we found that the loss of 

either miR-155 or miR-223 did not impede the induced decidualisation of stromal cells in donor mice, as 

evidenced by the respective donor:recipient ratios. Moreover, previous studies have shown that a 

minimum of 40mg of donor endometrial tissue is sufficient for development of endometriotic-like lesions 

in a homologous mouse model (Greaves et al., 2014, Dodds et al., 2019).   

 

A further challenge faced in modelling endometriosis in rodents is that intraperitoneal inoculation of 

endometrial tissues may not successfully attach within the peritoneal cavity, resulting in non-vascularised, 

necrotic fragments devoid of proliferating cells (Burns et al., 2012), coupled with a low lesion recovery 

rate of approximately 33-66% (Grümmer et al., 2001). In a clinical setting, subcutaneous endometriosis 

may occur following either caesarean or laparoscopic surgery (Denton et al., 1990, Khammash et al., 

2003, Hull et al., 2006). Subcutaneous endometriosis, or scar endometriosis, is believed to arise from the 

exposure and subsequent transfer of either eutopic endometrium (during caesarean section) or pre-

existing ectopic endometrial tissue to the surgical site, where it incorporates into the abdominal wall wound 

(Liang et al., 1998, Gaunt et al., 2004, Hull et al., 2006). Therefore, when modelling endometriosis in 

rodents, subcutaneous inoculation of endometrial fragments effectively mimics disease development. 

Moreover, this approach allows for encapsulation of these fragments between the skin and peritoneal 
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layer, increasing the lesion recovery rate to 63-100% (Hull et al., 2012) and allowing for a more accurate 

correlation between the amount of tissue injected and the size of the resulting lesion. 

 

 

In addition, to increase the rate of tissue implantation, several studies have relied upon suturing 

endometrial fragments to the peritoneal wall (Lin et al., 2006), using fibrin glue (Boztosun et al., 2012), or 

injecting tissue in conjunction with extracellular matrix-enriched media such as Matrigel (Cheng et al., 

2011). Although these approaches increase ectopic tissue attachment frequencies, the supplementation 

of enriched media and the artificial adherence of these fragments are likely to confound the evaluation of 

innate mechanisms upregulated during the establishment of endometriosis (e.g. effectiveness of immune-

mediated clearance; MMP expression). Thus, to overcome the influence of growth-stimulating or 

enhancing factors which may compromise the validity of endometriotic-like lesion development, the use 

of PBS, saline, or ECM-free media as the injection diluent is critical (Capobianco et al., 2011, Greaves et 

al., 2014).  

 

Therefore, to ensure adequate lesion recovery in this study, we used a menstrual mouse model of 

endometriosis in which 40mg of decidualised donor endometrial tissue in PBS was injected 

subcutaneously into recipient mice. Following this method, we obtained an overall lesion recovery rate of 

87% (94% in C57 mice; 92% in miR-155-/- mice; 78% in miR-223-/- mice), confirming the efficacy of this 

method in modelling endometriotic disease progression. Furthermore, the endometriotic-like lesions 

which developed over the course of three weeks post-induction of disease in this model displayed typical 

endometriotic histomorphology, characterised by the formation of quantifiable glandular and stromal 

areas.  
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6.3. KEY FINDINGS AND SIGNIFICANCE OF STUDY 

This is the first study to characterise the development of lesions over time in a menstrual mouse model 

of endometriosis. Collectively, the experiments carried out in this thesis demonstrate that successful 

lesion establishment, morphological, immunological, and molecular changes associated with 

endometriotic-like lesion development can be effectively investigated in this model. Importantly, we have 

shown that miRNA-mediated epigenetic regulation of the immune system impacts the development of 

endometriosis, highlighting the potential of miRNA-mediated or miRNA-targeting therapeutics in 

managing this disease. 

 

Endometrial glands are important sources of chemokines and cytokines, which collectively monitor and 

regulate the infiltration of immune cells into endometrial tissue (Chand et al., 2007). In women with 

endometriosis, spontaneous apoptosis of endometrial glands was decreased in the late secretory and 

early proliferative phases of the menstrual cycle compared to disease-free women (Dmowski et al., 2001). 

The development of glands in ectopic endometrial tissue is a hallmark of successful lesion survival and 

establishment, and an inverse correlation between endometrial gland apoptosis and severity/stage of 

endometriosis has been observed (Dmowski et al., 2001). Although the complex physiological events 

underlying the development of uterine glands are not well delineated, a sustained activation of TGF-β 

signalling is associated with endometrial dysfunction (Ni et al., 2018). TGF-β, an inducer of M2-like 

macrophage polarisation (Zhang et al., 2016a), promotes tumour cell invasion and metastasis by inducing 

epithelial-mesenchymal transition (Johansson et al., 2013), and is associated with the survival and 

establishment of ectopic endometrial tissue (Hull et al., 2012, Dela Cruz and Reis, 2015, Young et al., 

2017). As demonstrated by Bacci et al. (2009), a dysfunction of macrophage activity and an imbalance in 

macrophage polarisation can result in exacerbation of endometriosis, with M2-like macrophage activity 

promoting lesion development. 

 

In women with endometriosis, a downregulation of circulating miR-155 levels is observed (Nisenblat et 

al., 2019). In our mouse model of endometriosis, a systemic deficiency of miR-155 resulted in a significant 

increase in the expression of two M2-like immune markers, CD206 and Arg-1, in endometriotic lesions 

between D7 and D21. miR-155 targets the transcription factor SMAD5, disrupting TGF-β activity via the 

non-canonical TGF-β1/SMAD5 signalling pathway (Rai et al., 2010). Thus, during the pathogenesis of 

endometriosis, reduced miR-155 expression may result in elevated TGF-β activity, with a corresponding 

increase in M2-like immune activity, likely caused by the increase in TGF-β. However, it is important to 

note that the number of glands per lesion in these mice did not alter across the time course. This may in 

part be due to a reduced lymphocyte recruitment capacity, as miR-155-/- bone marrow monocytes exhibit 
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downregulated CCR7 expression, which is important in lymphocyte recruitment (Elmesmari et al., 2016). 

Thus, despite an increase in the levels of M2-like tissue remodelling activity, impaired lymphocyte 

recruitment may impede the sustained influx M2-like macrophages, suggesting that a miR-155 deficiency 

is in itself insufficient to promote the formation of endometrial glands.  

 

From the plethora of circulating lymphocytes, an elevation of M2-like macrophage activity in miR-155-/- 

mice has been noted (He et al., 2015). M2-like macrophages are implicated as mediators of vascular 

development, as they are potent sources of VEGF (Capobianco and Rovere-Querini, 2013). VEGF, an 

important angiogenic factor, is found to be secreted by activated peritoneal macrophages and is 

abundantly expressed in the glandular compartment of endometriomas (Groothuis, 2012, Krikun, 2012). 

In endometriosis, neovascularisation is an additional marker of successful lesion survival, as the 

development of blood vessels is critical to support lesion growth (Lebovic et al., 2000, Hull et al., 2003). 

In the syngeneic miR-155-/- mouse model, we observed an increase in blood vessel formation between 

D7 and D21, suggesting that the observed elevation of M2-like immune markers promotes the 

vascularisation and survival of endometriotic-like lesions in these mice. However, this finding contrasts 

with published literature, in which a down-regulation of miR-155 reduced VEGF-induced proliferation, 

migration and tube formation abilities of human retinal microvascular endothelial cells via the PI3K/Akt 

pathway (Zhuang et al., 2015). To reconcile this observation, it is important to consider the unique 

conditions in which endometriotic lesions become established, with particular focus on the hypoxic 

environment that facilitates the attachment, proliferation and progression of ectopic endometrial tissue.  

 

Under hypoxic conditions, ectopic endometrial cells undergo complex gene regulation and epigenetic 

modulation, evoking a range of survival mechanisms, including metabolic switching, steroidogenesis, and 

angiogenesis (Wu et al., 2019). During prolonged hypoxia, miR-155 promotes resolution of HIF-1α activity 

in an isoform-specific negative feedback loop (Bruning et al., 2011). Thus, in a clinical setting, the 

downregulation of miR-155 may promote a hypoxic environment in women with endometriosis via HIF-1α 

activation. In addition, HIF-1α activation of ERK induces a signalling cascade which increased FGF-9 

expression (Lin et al., 2012). FGF-9 stimulates endothelial and endometrial stromal cell proliferation and 

angiogenesis, potentially contributing to ectopic lesion development (Tsai et al., 2002). Indeed, when 

compared to C57 lesions, the results from this thesis show elevated αSMA+ myofibroblast activity in miR-

155-/-  miR-155-/- lesions, as well as in both miR-155-/-/C57 reciprocal transfer groups, confirming a role 

for miR-155 in the regulation of fibroblast proliferation in the progression of endometriosis. Moreover, 

immunohistochemical analysis these lesions showed a large extent of vasculature present, further 

supporting the role of neoangiogenesis in lesion establishment and progression. In addition, the existence 

of functional redundancy amongst miRNAs is essential to maintain biological homeostasis (Fischer et al., 
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2015, Laffont and Rayner, 2017). For example, both miR-148a and miR-155 are found to be upregulated 

in acute viral myocarditis with both miRs directly targeting RelA, a subunit of NF-κB. Hypoxic conditions 

in endometriotic lesions induce miR-148a, leading to destabilised DNA methyltransferase 1 mRNA 

expression in vitro (Hsiao et al., 2015). Therefore, in the absence of miR-155, it possible that miR-148a 

and/or additional miRNAs may be induced following hypoxia, contributing to increased angiogenesis and 

survival of endometriotic lesions in hostile ectopic environments. Thus, clinical evaluation of dysregulated 

epigenetic modulators within endometriotic lesions may provide further insights into mechanisms driving 

disease establishment. It remains imperative to understand the contribution of these factors which may in 

turn be harnessed therapeutically to limit disease progression.  

 

To this extent, the expression of the epigenetic regulator miR-223 is upregulated in ectopic endometrial 

lesions compared to paired eutopic samples (Ohlsson Teague et al., 2009). miR-223 modulates the 

differentiation of haematopoietic lineages, and attenuates pro-inflammatory immune responses while 

concurrently promoting the polarisation of M2-like macrophages (Zhuang et al., 2012, Ying et al., 2015, 

Yuan et al., 2018). Hence, the observed upregulation of miR-223 may result in an increased abundance 

of M2-like macrophages within endometriotic lesions, thus facilitating lesion development though the 

release of tissue remodelling and pro-angiogenic factors (Bacci et al., 2009). In mice, the loss of miR-223 

results in an increase of M1-like pro-inflammatory immune activity (Johnnidis et al., 2008, Sica and 

Mantovani, 2012, Trissal et al., 2015, Ying et al., 2015), and using a miR-223 deficient mouse model of 

endometriosis allowed us to assess the effect of a sustained M1-like immune response on lesion 

development. 

 

Syngeneic lesions from miR-223-/- mice showed signs of regression, evidenced by the gradual loss of 

glandular areas over time. These lesions consisted of large cystic spaces at D14, and by D21, a large 

proportion these lesions were fibrotic, with a complete absence of glandular formation. Previous work has 

shown that the presence of ectopic endometrial tissue attracts an influx of macrophages from the 

surrounding environment (D'Hooghe et al., 2001). In these mice, F4/80+ macrophages were dispersed 

throughout lesions at D7, and both peripheral and central F4/80 density remained significantly higher in 

D21 lesions from miR-223-/- mice compared to C57 mice. The observed infiltration of F4/80+ macrophages 

in miR-223-/- endometriotic-like lesions corresponds with an increase in the expression of the M1-like 

immune markers iNOS and MHC II over time. This observation concurs with previous work showing that 

miR-223 deficient mice have an increased M1-like, hypersensitive pro-inflammatory immune response 

(Johnnidis et al., 2008). This finding further suggests that an early infiltration of macrophages may impact 

lesion development, particularly when coupled with a sustained M1-like immune environment. This 

prolonged M1-like status could account for the cystic, pus-filled appearance and the overt lack of glandular 
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remodelling observed in miR-223-/- lesions, strongly suggesting that early macrophage infiltration with an 

elevation in M1-like immune responses restricts ectopic endometrial tissue growth. 

 

As mentioned previously, hypoxic conditions contributes to the induction of survival-associated gene 

networks to promote the development of endometriosis (Wu et al., 2019). The overexpression of miR-223 

is able to antagonize the hypoxic effects seen in pulmonary arterial smooth muscle cells (Zeng et al., 

2016). In addition, the upregulation of miR-223 in vivo results in the reversal of pulmonary arterial 

hypertension, including beneficial effects on vascular remodelling (Meloche et al., 2015). In our mouse 

model of endometriosis, we observed a regression in the number of blood vessels in miR-223-/- lesions, 

further impeding the survival ability of these lesions. Collectively, this suggests that the observed 

upregulation of miR-223 clinically may attenuate hypoxia within the endometriotic lesion 

microenvironment while simultaneously inducing angiogenesis to promote lesion survival.  

 

While analyses from the systemic miR-223-/- mouse model highlights the significance of reducing miR-

223 expression to limit the development of endometriosis, the most compelling data to support this 

inference comes from the reciprocal transfer model in which miR-223 sufficient donor endometrium was 

transferred into a miR-223 deficient recipient (C57  miR-223-/-). The absence of glands in C57  miR-

223-/- lesions from D14 onwards has significant clinical implications. In women with endometriosis, 

elevated miR-223 expression is noted in the ectopic endometrial tissue, but not in the eutopic 

endometrium (Ohlsson Teague et al., 2009). Our study shows that the lack of miR-223 in the recipient 

environment following lesion transfer impedes the survival and progression of endometriosis, suggesting 

that a knockdown of miR-223 activity in the peritoneal cavity of women with endometriosis may assist in 

lesion clearance. These findings provide credence to an epigenetic-mediated approach in treating 

endometriosis, with particular emphasis on utilising miRNA-antagonists to manipulate the immune 

response towards ectopic endometrial tissue.  

 

Multiple research groups are exploring the applicability and clinical translation of RNA-based therapeutics. 

Technological advances in the development of efficient, targeted drug delivery systems involving 

liposomes and nanoparticles, have facilitated human clinical trials of antagomirs, miRNA sponges, miRNA 

masking, and miRNA mimics (Baumann and Winkler, 2014, Christopher et al., 2016, Chakraborty et al., 

2018). The first group to demonstrate efficient miRNA-mediated silencing utilised intravenous delivery of 

a locked nucleic acid modified oligonucleotide (LNA-antimiR) to antagonise hepatic miR-122 activity in 

non-human primates (Elmen et al., 2008). Not only did this therapeutic approach reversibly decrease 
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plasma cholesterol levels, but crucially, there were not toxic side effects of histopathological changes 

observed in vivo.  

 

In the context of endometriosis, the inhibition of mature microRNA which promote disease progression 

may have therapeutic utility. Moreover, the experiments in this thesis identified a role for miR-223 

downregulation in limiting endometriotic lesion development via modulation of the immune response. 

Clinically, the targeted delivery of miR-223 antagomirs to the site of lesion growth may simultaneously 

decrease M2-like tissue remodelling while increasing the recruitment of M1-like pro-inflammatory 

mediators to assist with lesion regression and clearance. The recently developed LODER™ (Local Drug 

EluteR manufactured by Silenseed©) cancer drug delivery platform enables direct insertion of RNA-based 

therapeutics into tumour cores to ensure therapeutic release over the course of several months (Shemi 

et al., 2015). A similar approach could be used for delivery of miRNA-based therapeutics in endometriosis, 

to allow for the sustained treatment of this recurrent, chronic disease. Thus, strategies to modulate the 

inflammatory response associated with endometriosis should consider targeting epigenetic regulators, 

and additional studies looking at dysregulations in non-coding RNA pathways which impact activation 

profiles of macrophages, lymphocytes or related immune cell subsets may be a useful avenue in the 

treatment of endometriosis.  
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6.4. IMPLICATIONS AND CLINICAL RELEVANCE 

Altered immune parameters observed in women with endometriosis allude to an ineffective immune 

response as the underlying causal pathway in disease development. Mounting evidence from animal 

studies implicate infiltrating macrophages in endometriotic lesion establishment and underscores the 

importance of an appropriate M1/M2 macrophage phenotype response in exacerbating or reducing 

disease burden (Bacci et al., 2009, Capobianco et al., 2011, Greaves et al., 2014, Johan et al., 2019). In 

a mouse model of endometriosis, adoptive transfer of pro-inflammatory M1-like macrophages and 

alternatively activated M2-like macrophages resulted in impaired or enhanced establishment of 

endometriotic lesions respectively (Bacci et al., 2009). Thus, the manipulation of the M1/M2 macrophage 

phenotype balance contributes significantly to endometriosis disease outcome, suggesting a correlation 

between aberrant macrophage polarisation and lesion survival.  

 

These observations are clinically relevant as they suggest that the susceptibility to developing 

endometriosis as well as the diverse manifestation of endometriotic lesion presentation could be in part 

attributed to an imbalance in the M1/M2 macrophage phenotype. Our findings support this assumption, 

and further indicate that the lesion-implantation environment controls macrophage polarisation potential, 

wherein a predominance of M2-like macrophages enhanced lesion growth and vascularisation while an 

abundance of M1-like macrophages impaired lesion establishment. However, although animal studies 

have demonstrated an association between M1/M2 macrophage imbalance and endometriosis, it is 

important to consider human heterogeneity, specifically with regard to the immune system.  

 

The ontogeny of the immune system is influenced by genetic and epigenetic variations between 

individuals, with physiological, environmental and lifestyle factors affecting immune response modulation. 

It is possible that different women are more or less predisposed to endometriosis by genetic and/or 

environmental factors affecting their M1/M2 balance, but it is also possible that changes in their balance 

are a consequence, not a cause of disease. That is, the complexity of discrete individual responses 

towards inflammatory challenge gives rise to the possibility that observed changes in M1/M2 macrophage 

phenotype abundance in women with endometriosis may arise as a consequence of an exacerbated 

inflammatory response towards ectopic endometrial tissue, rather than an M1/M2 macrophage imbalance 

being causal in disease pathogenesis. Similarly, it remains challenging to conclude if differential 

expression of immune regulatory miRNAs in women with endometriosis is an underlying causal factor 

driving initiation of disease or a consequence of altered hormonal or immune function that occurs following 

lesion establishment.  
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To this extent, while multiple studies have investigated correlations between endometriosis and 

autoimmune diseases (Shigesi et al., 2019), there is insufficient understanding of the aetiology of 

endometriosis to account for increased comorbidities associated with endometriosis. It is probable that 

the convergence of genetic, environmental, physiological, and lifestyle factors influence the propensity to 

develop endometriosis via the M1/M2 immune response, which may similarly contribute to the 

development of additional immune-associated diseases. For example, the worldwide increase in the 

incidence of many chronic inflammatory diseases is postulated to be due, in part, to a significant reduction 

of bacterial microbiome diversity associated with a metropolitan environment (Blaser and Falkow, 2009, 

Hand et al., 2016). Likewise, urban lifestyles are linked with reduced exposure to parasites, microbes and 

other pathogens, and as described elegantly in the ‘hygiene hypothesis’, early exposure to antigens may 

be crucial in priming the immune system to respond to inflammatory challenges in later life (Alexandre-

Silva et al., 2018, Beenhouwer, 2018). In addition, exposure to endocrine disruptor compounds, 

commonly found in plastics, solvents and pesticides, affects macrophage phagocytosis via an oestrogen 

receptor dependent pathway (Couleau et al., 2015), and may contribute to a M1/M2 macrophage 

phenotype imbalance. Therefore, although aberrant macrophage function is implicated in the 

pathogenesis of endometriosis, pinpointing the exact mechanisms driving this shift in immune function 

remains challenging in affected women. 

 

Whilst acknowledging that the presence of a chronic disease like endometriosis necessitates that the 

immune system remains in a constant state of flux, strategies which shift the M1/M2 balance may prove 

therapeutic by inhibiting the reparative function of M2-like macrophages which promotes disease 

progression. As mentioned previously, RNA-based therapeutics have potential in modulating macrophage 

phenotype balance, and additional macrophage-based clinical interventions for endometriosis should be 

investigated. Macrophage-associated therapeutic strategies employed in pathologies with characteristic 

macrophage-driven inflammatory responses, such as type 2 diabetes, atherosclerosis, and cancer (Parisi 

et al., 2018), should be further researched to determine suitability for clinical translation in endometriosis. 

For example, parallels between the heterogeneous tumour microenvironment in cancer and endometriotic 

lesions comprising similarly diverse cell populations suggests that pharmacological approaches targeting 

macrophages within the tumour microenvironment (i.e. manipulating macrophage recruitment, 

macrophage depletion, and macrophage reprograming (Poh and Ernst, 2018)) may be beneficial in 

treating endometriosis.  

 

Despite the significant contribution of macrophages in endometriosis, it is important to consider the 

multifactorial nature of this disease. Although studies in animal models have demonstrated correlations 

between macrophage polarisation imbalances and lesion development, it is yet unknown if manipulation 
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of the M1/M2 macrophage balance would be sufficient to reverse established disease, and should be 

evaluated. Hence, to achieve the best clinical outcome for women with endometriosis, multi-targeted 

approaches to regulate macrophage activity should be employed in conjunction with current therapeutic 

strategies such as excision of pre-existing lesions and hormone manipulation. In addition, considering the 

multitude of factors regulated by the immune system, studies looking at the long-term impact of 

macrophage modulation on physiological and neurological outcomes should also be undertaken. 
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6.5. LIMITATIONS AND FUTURE DIRECTIONS 

While the findings from this thesis highlight the important role of specific miRNAs in immune modulation 

during the progression of endometriosis, several caveats and limitations exist, necessitating further 

experimentation to validate these observations. Although subcutaneous rodent models are frequently 

utilised to study the pathogenesis of endometriosis, we do acknowledge that this is not an entirely 

accurate representation of the disease in humans as it does not encapsulate the peritoneal environment. 

However, a pilot study using an intraperitoneal menstrual mouse model of endometriosis in miR-223-/- 

mice found that D7 lesions were predominantly cystic, whereas D14 lesions were fibrotic and devoid of 

both cysts and glands (Unpublished data). These early observations from the intraperitoneal model concur 

with the findings presented in this thesis, indicating that the data gathered from the subcutaneous model 

remains valid in modelling early endometriotic-like lesion development. An additional caveat regarding 

this model is that there was no continuous monitoring of individual lesions over time, as is possible in 

large primate models. However, the approach undertaken in this thesis allowed for histochemical 

assessment to be performed at each time point, which has provided valuable information regarding 

endometriotic lesion development.   

 

In addition to the aforementioned limitation is the methodological approach used to identify macrophages 

and their M1-like and M2-like immune activation status. In particular, the expression of the M1-like (iNOS 

and MHC II) and M2-like (CD206 and Arg-1) immune markers investigated are not limited to 

macrophages. Fluorescent-mediated dual-labelling studies in murine models of endometriosis have 

demonstrated that in addition to macrophages and immune cells, iNOS is co-expressed by epithelial cells; 

MHC II is co-expressed by dendritic cells; and Arg-1 is co-expressed by fibroblasts (Johan et al., 2019). 

In this thesis, endometriotic-like lesions were stored in formalin and processed for paraffin embedding 

and sectioning. During immunohistochemical optimisation trials, the formalin-paraffin crosslinking 

imparted a high level of non-specific background staining, thus impacting our ability to perform fluorescent 

dual-labelling. However, the single labelling approach and quantification of staining performed in this 

thesis indicated differences in the abundance of cells expressing each marker, suggesting that the 

expression of these markers may impart a potential functional consequence on the progression of 

endometriosis.  

 

Similarly, the use of a single marker (F4/80) to identify the entire macrophage population is an additional 

limitation of this thesis. Although multiple peer-reviewed studies have only utilised F4/80 as a macrophage 

marker, it is important to note that macrophages express a range of different markers at varying 

concentrations throughout their development, polarisation, and activation (Hume, 2006). Furthermore, 
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emerging evidence suggests that F4/80 may not be constitutively expressed by all macrophage 

populations (Dos Anjos Cassado, 2017a). Hence, the discrepancy between the total density of F4/80 

positive cells and cells expressing M1-like and M2-like markers should be recognised, as some 

macrophages within these endometriotic-like lesions may be positive for the examined markers, but 

negative for F4/80 expression. An alternative approach to immunohistochemical assessment for 

macrophages and M1-like vs M2-like immune activity would be to perform fluorescence activated cell 

sorting (Flow cytometry/FACS). While FACS allows for superior isolation and quantification of cell 

populations within endometriotic lesions, the critical advantage imparted by immunohistochemistry is that 

the localisation of cellular subsets and interactions within a tissue sample can be visualised. For example, 

in this thesis, the influx of macrophages from the periphery into the centre of the lesion would not be 

detectable via FACS. Thus, future work in this model should utilise FACS as a complementary method to 

quantify additional immune subsets within these endometriotic-like lesions. 

 

The final limitation of this study centres on the presence of artefacts within the RNA-Seq data, wherein all 

samples had more than 70% clonal duplication (Appendix Figure 7.2). The read duplication rate is affected 

by the sequencing depth, read length, transcript abundance, and most commonly by artificial generation 

as a result of PCR amplification. A consequence of over 50% duplicated sequences suggests a bias in 

the sequencing library, and may be indicative of a failure to randomly sample the target sequence (Li et 

al., 2015). To overcome this limitation, we have applied the Picard MarkDuplicates method to remove 

optical duplicates, and subsequently filtered and normalised the dataset (Appendix Figure 7.3). 

Importantly, irrespective of mouse genotype, we observed that all samples of decidualised endometrium 

clustered together while all lesion samples grouped in a similar position in both the multi dimension scaling 

plot and individual principal component analyses plots. This key observation indicates that ectopic 

endometrial tissue undergoes significant molecular changes to facilitate its survival outside the uterus, 

and is confirmed by the large number of DEGs present between decidualised endometrial samples and 

D7/D14 lesions.  

 

It was surprising to note that the low number of canonical pathways identified between D7 and D14 lesions 

within each genotype, given the vast differences observed morphometrically and histochemically. 

Likewise, very few DEGs were identified between C57 mice and miR-deficient mice at either D7 or D14. 

It is possible that the depletion of these microRNAs may result in subtle changes in the molecular profile 

of endometriotic-like lesions over time, however genes with a low but potentially significant expression 

level may have been masked in this dataset. It is also possible that changes occurring at an epigenetic 

level do not necessarily translate to observable differences at a transcript level. Alternatively, it is possible 

that changes in gene expression may be fluctuating over the course of lesion development, and might 
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have been more readily apparent at a different sampling time point (e.g. D5 or D10). Importantly, as we 

observed the greatest number of DEGs between the donor decidualised endometrial tissue and the 

resulting lesions at both D7 and D14, the contribution of genes from the donor endometrial tissue may be 

considered as a major factor in determining the capacity for endometrial tissue to survive ectopically. 

 

The high number of clonal duplications also suggests the possibility that genes with a low but potentially 

significant expression level may have been masked in the dataset. For example, there are noticeable 

differences in the histology of lesions between D7 and D14, however the RNA-Seq dataset does not 

identify many DEGs between these time points. It is further possible that alternate compensatory 

epigenetic mechanisms may be driving these observed changes in lesion development. Future work 

should utilise the option of laser microdissection to isolate glandular fractions from stromal fractions prior 

to sequencing, as both tissue compartments may have a unique expression profile which could be masked 

during the sequencing of the total endometriotic-like lesion. An alternative approach would be to perform 

single cell RNA-Seq (scRNA-Seq). Although scRNA-Seq is associated with several duplication issues, 

this approach is advantageous over conventional RNA-Seq, as it allows for the identification of new, 

complex or rare cell populations or subsets and allows for regulatory relationships between genes to be 

discovered (Hwang et al., 2018). Finally, it would be advantageous not only to sequence endometriotic-

like lesions at D21, but the gene expression profile in lesions derived from the reciprocal transfers should 

also be assessed to better understand the relative importance of the donor endometrium vs the recipient 

environment in disease development.  
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6.6. SUMMARY AND CONCLUSION 

The complex, heterogeneous manifestation and symptoms of endometriosis contributes to the challenge 

of understanding the aetiology of this disease. This thesis has shown that the development of 

endometriotic-like lesions can be evaluated effectively over three weeks in a subcutaneous ‘menstrual’ 

mouse model of endometriosis. RNA-Seq analysis identified DEGs in several pathways associated with 

endometriosis, notably immune regulatory pathways, tissue remodelling, cellular differentiation and 

proliferation, and angiogenesis. 

 

In addition, the contribution of the epigenetic regulators miR-155 and miR-223 was assessed in knockout 

mice, indicating the efficacy of rodent models in understanding the significance of microRNA influence on 

the pathogenesis of endometriosis. A reduction in lesion weight and size was seen over time in all groups, 

however glandular formation only increased in C57 mice. Systemic depletion of miR-155-/- restricted M1-

like immune activity and promoted the expression of M2-like immune markers, with an increase in blood 

vessel density over time, further supporting lesion establishment. In contrast, early influx of 

F4/80+ macrophages with an increase in MHC II and iNOS expression was seen in miR-223-/- lesions, 

resulting in cystic-like lesions devoid of glands.  

 

Significantly, we have demonstrated the critical role of miR-223 in promoting endometriotic glandular 

development, suggesting that silencing of miR-223 is a therapeutic approach that has potential to 

suppress lesion growth in women with endometriosis. Therefore, future experiments should be tailored to 

better understand the impact of depleting miR-223 in human ectopic endometrial tissue, both in vitro and 

in vivo via xenograft models. As our comprehension on the role of epigenetic regulators increases, the 

clinical applicability of utilising these factors in the diagnosis and treatment of endometriosis will ideally 

become an increasingly appropriate and realistic outcome.  
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Figure 7.1 Control sections from immunohistochemistry staining 

The specificity of each primary antibody (1° Ab) used for immunohistochemical staining was assessed by 
substituting the primary antibody with a serum-only control (no 1° Ab) or an isotype-matched control (Isotype 
Control). To assess the specificity of the secondary antibody (2° Ab), the secondary antibody was substituted with 
a serum-only control (no 2° Ab).  
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Figure 7.2 RNA-Sequencing library size  

Donor decidualised endometrial tissue, D7 and D14 lesions (4 biological replicates each from C57, miR-155-/- and miR-223-/- mice) were sequenced on the Illumina Next-Seq 500 platform to 
obtain paired-end reads for mRNA expression. Green bars represent the total library size following alignment to the mouse reference genome. Black bars represent the library size following 
deduplication (removal of optical duplicates). Numbers above bars represent the percentage of clonal duplication within each sample.  
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Figure 7.3 Filtering and normalisation of RNA-Seq data  

The deduplicated RNA-Seq dataset was filtered to remove low expressed genes (CPM >1 in more than 12 samples) (A). Box plots show normalisation of the filtered data, which was carried 
out using the weighted trimmed mean of M-values to rescale read counts in different samples to comparable levels (B). A multi dimension scaling plot (MDS) was created to observe data 
clustering patterns among the different samples, wherein decidualised endometrial tissue samples cluster independently of lesion samples (C). 
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Figure 7.4 Patterns of gene clustering during lesion development in C57 mice  

Computational analyses detected nine clusters of gene expression profiles in C57 samples from the RNA-Seq 
dataset. Further analysis of each gene cluster was performed to identify KEGG pathways associated with each 
expression pattern (Table 7.1).The total of number of genes assessed was 16, 291 genes. 
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Table 7.1 Top 25 KEGG Pathways identified from nine gene expression clusters during lesion development in C57 mice  

C57 Cluster 1    C57 Cluster 2    C57 Cluster 3  

KEGG Pathway P Value   KEGG Pathway P Value   KEGG Pathway P Value 

Ribosome 5.04 x 10-7   Osteoclast differentiation 2.02 x 10-9   Lysosome 3.70 x 10-10 

Nucleotide excision repair 3.02 x 10-6   Phagosome 1.15 x 10-8   Metabolic pathways 7.21 x 10-5 

Basal transcription factors 1.69 x 10-5   Cytokine-cytokine receptor interaction 1.49 x 10-8   SNARE interactions in vesicular transport 1.05 x 10-4 

Protein processing in endoplasmic reticulum 1.59 x 10-4   Chemokine signalling pathway 6.60 x 10-8   Glycosaminoglycan degradation 2.98 x 10-4 

Ubiquitin mediated proteolysis 1.60 x 10-4   Focal adhesion 1.09 x 10-7   Notch signalling pathway 1.77 x 10-3 

RNA degradation 1.63 x 10-4   Malaria 7.65 x 10-7   Inositol phosphate metabolism 1.77 x 10-3 

Spliceosome 1.91 x 10-4   HTLV-I infection 1.05 x 10-6   Endocytosis 1.79 x 10-3 

mRNA surveillance pathway 3.38 x 10-4   Antigen processing and presentation 1.75 x 10-6   Phosphatidylinositol signalling system 1.95 x 10-3 

Endocytosis 4.09 x 10-4   Kaposi's sarcoma-associated herpesvirus infection 2.51 x 10-6   Synaptic vesicle cycle 2.18 x 10-3 

Autophagy – animal 9.11 x 10-4   Viral myocarditis 4.47 x 10-6   
Glycosylphosphatidylinositol (GPI)-anchor 
biosynthesis 

5.31 x 10-3 

RNA transport 9.82 x 10-4   TNF signalling pathway 6.63 x 10-6   Folate biosynthesis 6.33 x 10-3 

Cell cycle 1.22 x 10-3   Natural killer cell mediated cytotoxicity 7.50 x 10-6   Sphingolipid metabolism 6.46 x 10-3 

RNA polymerase 1.54 x 10-3   ECM-receptor interaction 8.07 x 10-6   Fatty acid metabolism 1.00 x 10-2 

RIG-I-like receptor signalling pathway 1.83 x 10-3   Human papillomavirus infection 1.62 x 10-5   Regulation of actin cytoskeleton 1.12 x 10-2 

Mitophagy – animal 2.80 x 10-3   PI3K-Akt signalling pathway 2.29 x 10-5   Ferroptosis 1.12 x 10-2 

SNARE interactions in vesicular transport 2.97 x 10-3   cGMP-PKG signalling pathway 2.72 x 10-5   Sphingolipid signalling pathway 1.14 x 10-2 

Adherens junction 3.11 x 10-3   Graft-versus-host disease 2.80 x 10-5   mTOR signalling pathway 1.21 x 10-2 

Homologous recombination 3.43 x 10-3   Rheumatoid arthritis 3.30 x 10-5   
Glycosaminoglycan biosynthesis – chondroitin 
sulphate / dermatan sulphate 

1.25 x 10-2 

Pancreatic cancer 4.48 x 10-3   Melanoma 4.35 x 10-5   Valine, leucine and isoleucine degradation 1.48 x 10-2 

NOD-like receptor signalling pathway 4.93 x 10-3   NF-kappa B signalling pathway 4.93 x 10-5   VEGF signalling pathway 1.77 x 10-2 

Circadian rhythm 8.11 x 10-3   Platelet activation 5.44 x 10-5   Pentose and glucoronate interconversions 1.97 x 10-2 

Ras signalling pathway 8.69 x 10-3   Cellular senescence 5.68 x 10-5   Amino sugar and nucleotide sugar metabolism 2.56 x 10-2 

Cytosolic DNA-sensing pathway 9.18 x 10-3   Type I diabetes mellitus 6.69 x 10-5   Cholesterol metabolism 2.56 x 10-2 

Autophagy – other 9.71 x 10-3   NOD-like receptor signalling pathway 7.69 x 10-5   Fatty acid degradation 2.80 x 10-2 

Apoptosis – multiple species 9.71 x 10-3   Cell adhesion molecules (CAMs) 8.46 x 10-5   Biosynthesis of unsaturated fatty acids 3.96 x 10-2 

 

Table 7.1 continued 
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C57 Cluster 4   C57 Cluster 5   C57 Cluster 6  

KEGG Pathway P Value   KEGG Pathway P Value   KEGG Pathway P Value 

Adrenergic signalling in cardiomyocytes 2.28 x 10-9   Ribosome 2.32 x 10-10   Protein processing in endoplasmic reticulum 1.35 x 10-19 

Cardiac muscle contraction 6.03 x 10-9   Vasopressin-regulated water reabsorption 6.84 x 10-6   RNA transport 4.52 x 10-12 

Hypertrophic cardiomyopathy (HCM) 1.98 x 10-8   Neurotrophin signalling pathway 1.24 x 10-4   Spliceosome 4.31 x 10-10 

Calcium signalling pathway 1.81 x 10-7   Lysosome 4.08 x 10-3   Proteasome 6.50 x 10-9 

Dilated cardiomyopathy (DCM) 2.95 x 10-7   Bacterial invasion of epithelial cells 4.92 x 10-3   RNA degradation 9.67 x 10-7 

Tight junction 8.08 x 10-6   Autophagy – other 4.92 x 10-3   Terpenoid backbone biosynthesis 1.83 x 10-6 

Glucagon signalling pathway 9.45 x 10-6   Endocytosis 5.38 x 10-3   Ribosome biogenesis in eukaryotes 1.44 x 10-5 

Oxytocin signalling pathway 2.94 x 10-5   SNARE interactions in vesicular transport 5.76 x 10-3   Endometrial cancer 4.61 x 10-5 

Apelin signalling pathway 2.96 x 10-5   Glycosphingolipid biosynthesis – ganglio series 5.77 x 10-3   Breast cancer 2.44 x 10-4 

Glycolysis / Gluconeogenesis 5.27 x 10-5   Sulphur relay system 6.05 x 10-3   N-Glycan biosynthesis 3.59 x 10-4 

Malaria 1.03 x 10-4   Autophagy – animal 6.22 x 10-3   Hepatocellular carcinoma 8.02 x 10-4 

Arrhythmogenic right ventricular cardiomyopathy 1.04 x 10-4   Lipoic acid metabolism 7.50 x 10-3   Cell cycle 8.48 x 10-4 

Insulin signalling pathway 1.26 x 10-4   Purine metabolism 9.07 x 10-3   Protein export 1.11 x 10-3 

Proximal tubule bicarbonate reclamation 1.55 x 10-4   Peroxisome 9.93 x 10-3   Thyroid cancer 1.46 x 10-3 

AMPK signalling pathway 4.11 x 10-4   Amino sugar and nucleotide sugar metabolism 1.14 x 10-2   ErbB signalling pathway 1.68 x 10-3 

Adipocytokine signalling pathway 4.22 x 10-4   Other glycan degradation 1.15 x 10-2   Gastric cancer 1.71 x 10-3 

African trypanosomiasis 4.26 x 10-4   Pancreatic cancer 1.34 x 10-2   Chronic myeloid leukaemia 1.72 x 10-3 

PPAR signalling pathway 4.65 x 10-4   Salmonella infection 1.71 x 10-2   Ubiquitin mediated proteolysis 2.05 x 10-3 

Proteoglycans in cancer 4.67 x 10-4   Chronic myeloid leukaemia 1.71 x 10-2   Homologous recombination 3.34 x 10-3 

Starch and sucrose metabolism 1.60 x 10-3   Small cell lung cancer 1.81 x 10-2   Autophagy – animal 3.64 x 10-3 

Fatty acid biosynthesis 1.72 x 10-3   RIG-I-like receptor signalling pathway 2.15 x 10-2   Amino sugar and nucleotide sugar metabolism 4.26 x 10-3 

Insulin secretion 1.76 x 10-3   Pathways in cancer 2.26 x 10-2   Notch signalling pathway 4.26 x 10-3 

Fructose and mannose metabolism 2.19 x 10-3   mTOR signalling pathway 2.37 x 10-2   Valine, leucine and isoleucine degradation 4.33 x 10-3 

cGMP-PKG signalling pathway 2.50 x 10-3   
Glycosaminoglycan biosynthesis – heparan 
sulphate / heparin 

3.13 x 10-2   Endocrine resistance 4.51 x 10-3 

IL-17 signalling pathway 2.94 x 10-3   Pyrimidine metabolism 3.24 x 10-2   Glioma 4.77 x 10-3 

 

 

Table 7.1 continued 

C57 Cluster 7   C57 Cluster 8   C57 Cluster 9  
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KEGG Pathway P Value   KEGG Pathway P Value   KEGG Pathway P Value 

Lysosome 2.63 x 10-10   Spliceosome 2.03 x 10-14   Metabolic pathways 3.15 x 10-21 

Intestinal immune network for IgA production 9.18 x 10-9   mRNA surveillance pathway 4.49 x 10-8   Oxidative phosphorylation 1.99 x 10-20 

Pathways in cancer 2.52 x 10-8   Ubiquitin mediated proteolysis 4.75 x 10-8   Parkinson's disease 1.89 x 10-19 

Staphylococcus aureus infection 3.91 x 10-8   AMPK signalling pathway 1.45 x 10-5   Alzheimer's disease 5.38 x 10-19 

Cytokine-cytokine receptor interaction 7.19 x 10-8   Protein processing in endoplasmic reticulum 6.07 x 10-5   Huntington's disease 7.51 x 10-16 

Hematopoietic cell lineage 2.18 x 10-7   Autophagy – animal 7.24 x 10-5   Carbon metabolism 3.66 x 10-15 

Pertussis 3.83 x 10-6   Herpes simplex infection 7.64 x 10-5   Citrate cycle (TCA cycle) 1.02 x 10-13 

NOD-like receptor signalling pathway 6.56 x 10-6   Oocyte meiosis 7.77 x 10-5   Non-alcoholic fatty liver disease (NAFLD) 4.06 x 10-11 

Inflammatory bowel disease (IBD) 8.67 x 10-6   Cell cycle 8.65 x 10-5   Pyruvate metabolism 4.86 x 10-7 

Phospholipase D signalling pathway 9.83 x 10-6   HTLV-I infection 8.85 x 10-5   Biosynthesis of amino acids 6.07 x 10-7 

Leishmaniosis 1.21 x 10-5   Ribosome 8.88 x 10-5   Cell cycle 3.20 x 10-6 

Rheumatoid arthritis 1.87 x 10-5   Mitophagy – animal 9.88 x 10-5   DNA replication 5.29 x 10-6 

Tuberculosis 2.19 x 10-5   Endocytosis 1.33 x 10-4   2-Oxocarboxylic acid metabolism 6.16 x 10-6 

Chemokine signalling pathway 2.21 x 10-5   RNA polymerase 1.82 x 10-4   Retrograde endocannabinoid signalling 7.13 x 10-5 

Th17 cell differentiation 3.82 x 10-5   Hippo signalling pathway 2.19 x 10-4   Fanconi anaemia pathway 1.64 x 10-4 

Primary immunodeficiency 6.76 x 10-5   Basal transcription factors 3.56 x 10-4   Propanoate metabolism 1.96 x 10-4 

Relaxin signalling pathway 8.07 x 10-5   Hedgehog signalling pathway 3.56 x 10-4   Mismatch repair 2.17 x 10-4 

AGE-RAGE signalling pathway in diabetic 
complications 

8.94 x 10-5   RNA transport 3.82 x 10-4   Pyrimidine metabolism 2.67 x 10-4 

Chagas disease (American trypanosomiasis) 1.03 x 10-4   Sphingolipid signalling pathway 1.12 x 10-3   Glycosylate and dicarboxylate metabolism 4.99 x 10-4 

Osteoclast differentiation 1.53 x 10-4   Epstein-Barr virus infection 1.13 x 10-3   Cysteine and methionine metabolism 1.05 x 10-3 

Morphine addiction 2.65 x 10-4   Nucleotide excision repair 1.37 x 10-3   HIF-1 signalling pathway 1.36 x 10-3 

Influenza A 2.94 x 10-4   Autophagy – other 1.52 x 10-3   Amoebiasis 3.15 x 10-3 

Natural killer cell mediated cytotoxicity 3.36 x 10-4   Adherens junction 1.54 x 10-3   MAPK signalling pathway 3.58 x 10-3 

NF-kappa B signalling pathway 4.53 x 10-4   Lysine degradation 1.83 x 10-3   Alanine, aspartate and glutamate metabolism 3.97 x 10-3 

Viral myocarditis 4.56 x 10-4   Longevity regulating pathway 2.39 x 10-3   Oocyte meiosis 4.44 x 10-3 
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Figure 7.5 Patterns of gene clustering during lesion development in miR-155-/- mice  

Computational analyses detected nine clusters of gene expression profiles in miR-155-/- samples from the RNA-
Seq dataset. Further analysis of each gene cluster was performed to identify KEGG pathways associated with each 
expression pattern (Table 7.2).The total of number of genes assessed was 16, 291 genes. 
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Table 7.2 Top 25 KEGG Pathways identified from nine gene expression clusters during lesion development in miR-155-/- mice  

miR-155-/- Cluster 1     miR-155-/- Cluster 2     miR-155-/- Cluster 3   
Pathway P Value   Pathway P Value   Pathway P Value 

Endocytosis 1.14 x 10-8   Lysosome 6.51 x 10-16   Spliceosome 8.93 x 10-10 

Lysosome 2.42 x 10-8   Other glycan degradation 5.11 x 10-5   Proteasome 3.41 x 10-9 

Fc gamma R-mediated phagocytosis 4.19 x 10-8   Natural killer cell mediated cytotoxicity 7.85 x 10-5   Citrate cycle (TCA cycle) 6.58 x 10-8 

Phospholipase D signalling pathway 4.03 x 10-7   Th17 cell differentiation 1.20 x 10-4   Cell cycle 7.68 x 10-7 

HTLV-I infection 2.02 x 10-6   Ferroptosis 1.24 x 10-4   RNA degradation 2.27 x 10-6 

Longevity regulating pathway 5.73 x 10-6   Glycosaminoglycan degradation 1.59 x 10-4   RNA transport 2.62 x 10-6 

B cell receptor signalling pathway 9.56 x 10-6   Staphylococcus aureus infection 2.27 x 10-4   Metabolic pathways 1.06 x 10-5 

Chemokine signalling pathway 1.05 x 10-5   Thyroid cancer 1.39 x 10-3   Carbon metabolism 1.76 x 10-5 

Antigen processing and presentation 2.46 x 10-5   Hepatocellular carcinoma 1.40 x 10-3   Protein processing in endoplasmic reticulum 5.56 x 10-5 

Tuberculosis 2.63 x 10-5   Transcriptional misregulation in cancer 1.55 x 10-3   Aminoacyl-tRNA biosynthesis 1.19 x 10-4 

Phagosome 4.11 x 10-5   Leishmaniosis 2.12 x 10-3   Protein export 1.21 x 10-4 

Bacterial invasion of epithelial cells 7.83 x 10-5   Cholesterol metabolism 2.39 x 10-3   Epstein-Barr virus infection 2.09 x 10-4 

Autophagy - animal 8.23 x 10-5   Malaria 2.39 x 10-3   Cellular senescence 3.69 x 10-4 

Viral myocarditis 1.66 x 10-4   Adherens junction 3.79 x 10-3   Purine metabolism 4.43 x 10-4 

Herpes simplex infection 1.91 x 10-4   Rheumatoid arthritis 4.05 x 10-3   Basal transcription factors 6.21 x 10-4 

Pathways in cancer 2.13 x 10-4   Mitophagy – animal 4.28 x 10-3   Huntington's disease 7.11 x 10-4 

Rheumatoid arthritis 2.46 x 10-4   Focal adhesion 4.43 x 10-3   Ribosome biogenesis in eukaryotes 8.50 x 10-4 

Choline metabolism in cancer 2.65 x 10-4   Osteoclast differentiation 4.44 x 10-3   Fanconi anaemia pathway 2.07 x 10-3 

Intestinal immune network for IgA production 4.20 x 10-4   Hematopoietic cell lineage 4.60 x 10-3   mRNA surveillance pathway 2.09 x 10-3 

Allograft rejection 4.22 x 10-4   Autophagy – animal 5.17 x 10-3   RNA polymerase 3.47 x 10-3 

Glycosylphosphatidylinositol (GPI)-anchor 
biosynthesis 

5.07 x 10-4 
  

Pertussis 5.21 x 10-3 
  

Alzheimer's disease 4.00 x 10-3 

Apelin signalling pathway 6.05 x 10-4   Gastric cancer 5.42 x 10-3   Colorectal cancer 4.15 x 10-3 

Colorectal cancer 6.31 x 10-4   Phosphatidylinositol signalling system 6.00 x 10-3   Oocyte meiosis 5.44 x 10-3 

Leishmaniosis 6.90 x 10-4   Pathways in cancer 6.11 x 10-3   Homologous recombination 5.87 x 10-3 

Platelet activation 7.55 x 10-4   Chronic myeloid leukaemia 7.03 x 10-3   Pyrimidine metabolism 8.62 x 10-3 
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Table 7.2 continued 

miR-155-/- Cluster 4     miR-155-/- Cluster 5     miR-155-/- Cluster 6   
Pathway P Value   Pathway P Value   Pathway P Value 

TNF signalling pathway 5.63 x 10-8   Oxidative phosphorylation 3.03 x 10-10   Ribosome 9.93 x 10-8 

Neurotrophin signalling pathway 7.29 x 10-7   Huntington's disease 5.38 x 10-10   Insulin signalling pathway 2.28 x 10-5 

Osteoclast differentiation 2.42 x 10-6   Parkinson's disease 8.36 x 10-9   Non-alcoholic fatty liver disease (NAFLD) 3.17 x 10-5 

Kaposi's sarcoma-associated herpesvirus 
infection 

5.22 x 10-6 
  

Alzheimer's disease 2.43 x 10-7 
  

Alzheimer's disease 3.49 x 10-5 

Rap1 signalling pathway 2.01 x 10-5   Ribosome 3.16 x 10-7   Glucagon signalling pathway 4.62 x 10-5 

Other types of O-glycan biosynthesis 4.05 x 10-5   Ubiquitin mediated proteolysis 3.09 x 10-6   Measles 8.71 x 10-5 

Ras signalling pathway 4.32 x 10-5   Non-alcoholic fatty liver disease (NAFLD) 3.97 x 10-6   Fructose and mannose metabolism 1.14 x 10-4 

NOD-like receptor signalling pathway 7.19 x 10-5   Protein processing in endoplasmic reticulum 2.30 x 10-5   NOD-like receptor signalling pathway 2.30 x 10-4 

Salmonella infection 7.25 x 10-5   RNA transport 7.12 x 10-5   Parkinson's disease 2.30 x 10-4 

T cell receptor signalling pathway 1.28 x 10-4   RNA polymerase 8.11 x 10-5   Hypertrophic cardiomyopathy (HCM) 2.43 x 10-4 

GnRH signalling pathway 1.41 x 10-4   Metabolic pathways 2.27 x 10-4   Huntington's disease 2.64 x 10-4 

Toll-like receptor signalling pathway 2.11 x 10-4   Cell cycle 3.82 x 10-4   Cardiac muscle contraction 2.90 x 10-4 

Tuberculosis 2.11 x 10-4   Epstein-Barr virus infection 4.58 x 10-4   Dilated cardiomyopathy (DCM) 5.13 x 10-4 

Sphingolipid signalling pathway 2.16 x 10-4   Renal cell carcinoma 1.47 x 10-3   Influenza A 5.29 x 10-4 

Insulin resistance 2.95 x 10-4   Spliceosome 2.33 x 10-3   Ubiquitin mediated proteolysis 8.60 x 10-4 

Fc gamma R-mediated phagocytosis 3.17 x 10-4   Pyruvate metabolism 2.61 x 10-3   Hepatitis C 1.07 x 10-3 

Endocytosis 3.57 x 10-4   Cysteine and methionine metabolism 3.33 x 10-3   Pentose phosphate pathway 1.18 x 10-3 

Pathways in cancer 4.58 x 10-4   Pyrimidine metabolism 5.54 x 10-3   Glycolysis / Gluconeogenesis 1.51 x 10-3 

MAPK signalling pathway 5.19 x 10-4   Cardiac muscle contraction 1.16 x 10-2   Herpes simplex infection 1.62 x 10-3 

Autophagy - animal 5.60 x 10-4   Malaria 1.29 x 10-2   Apelin signalling pathway 1.78 x 10-3 

Small cell lung cancer 6.45 x 10-4   Homologous recombination 1.54 x 10-2   Peroxisome 2.00 x 10-3 

AGE-RAGE signalling pathway in diabetic 
complications 

6.75 x 10-4 
  

Ribosome biogenesis in eukaryotes 1.80 x 10-2 
  

Transcriptional misregulation in cancer 2.05 x 10-3 

Phagosome 6.98 x 10-4   Oocyte meiosis 1.80 x 10-2   MAPK signalling pathway 2.41 x 10-3 

Dopaminergic synapse 8.67 x 10-4   Nucleotide excision repair 2.22 x 10-2   Oxidative phosphorylation 2.46 x 10-3 

Glycosaminoglycan biosynthesis - chondroitin 
sulphate / dermatan sulphate 

9.14 x 10-4 
  

Biosynthesis of amino acids 2.68 x 10-2 
  

cGMP-PKG signalling pathway 2.47 x 10-3 
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Table 7.2 continued 

miR-155-/- Cluster 7     miR-155-/- Cluster 8     miR-155-/- Cluster 9   
Pathway P Value   Pathway P Value   Pathway P Value 

cGMP-PKG signalling pathway 1.59 x 10-4   RNA transport 2.89 x 10-12   Tight junction 1.31 x 10-5 

Basal cell carcinoma 4.83 x 10-4   DNA replication 3.47 x 10-10   Basal cell carcinoma 1.61 x 10-5 

Rheumatoid arthritis 9.45 x 10-4   Cell cycle 1.26 x 10-9   Hippo signalling pathway 4.63 x 10-5 

Vascular smooth muscle contraction 2.97 x 10-3   Spliceosome 1.15 x 10-7   Axon guidance 8.61 x 10-5 

cAMP signalling pathway 6.50 x 10-3   Protein processing in endoplasmic reticulum 1.27 x 10-7   Rap1 signalling pathway 3.24 x 10-4 

Base excision repair 8.88 x 10-3   Fanconi anaemia pathway 7.17 x 10-6   Pathways in cancer 4.29 x 10-4 

Neuroactive ligand-receptor interaction 9.64 x 10-3 
  

Protein export 2.31 x 10-5 
  

Signalling pathways regulating pluripotency of 
stem cells 

6.24 x 10-4 

Amphetamine addiction 1.27 x 10-2   Pyrimidine metabolism 6.64 x 10-5   Steroid biosynthesis 7.05 x 10-4 

Axon guidance 1.32 x 10-2   Mismatch repair 7.63 x 10-5   Proteoglycans in cancer 7.80 x 10-4 

Glycosaminoglycan biosynthesis - keratin 
sulphate 

1.36 x 10-2 
  

Homologous recombination 8.70 x 10-5 
  

Melanogenesis 8.18 x 10-4 

Fluid shear stress and atherosclerosis 1.64 x 10-2   Terpenoid backbone biosynthesis 1.10 x 10-4   Histidine metabolism 8.65 x 10-4 

TNF signalling pathway 1.87 x 10-2   Nucleotide excision repair 1.74 x 10-4   EGFR tyrosine kinase inhibitor resistance 3.21 x 10-3 

IL-17 signalling pathway 1.94 x 10-2   Ribosome biogenesis in eukaryotes 4.37 x 10-4   Endocytosis 3.24 x 10-3 

Wnt signalling pathway 1.98 x 10-2   N-Glycan biosynthesis 4.79 x 10-4   PI3K-Akt signalling pathway 3.39 x 10-3 

Hepatocellular carcinoma 2.43 x 10-2   mRNA surveillance pathway 1.00 x 10-3   Wnt signalling pathway 3.41 x 10-3 

Long-term depression 2.50 x 10-2   Propanoate metabolism 1.07 x 10-3   Protein digestion and absorption 4.14 x 10-3 

Synaptic vesicle cycle 2.69 x 10-2   Oocyte meiosis 1.18 x 10-3   Human papillomavirus infection 4.33 x 10-3 

Hippo signalling pathway 2.81 x 10-2   Prostate cancer 3.05 x 10-3   Regulation of actin cytoskeleton 5.49 x 10-3 

ABC transporters 2.93 x 10-2   Adherens junction 4.14 x 10-3   TGF-beta signalling pathway 5.80 x 10-3 

Sphingolipid metabolism 3.18 x 10-2   Valine, leucine and isoleucine degradation 5.19 x 10-3   cAMP signalling pathway 1.09 x 10-2 

AGE-RAGE signalling pathway in diabetic 
complications 

3.21 x 10-2 
  

Carbon metabolism 9.78 x 10-3 
  

ECM-receptor interaction 1.12 x 10-2 

HTLV-I infection 3.33 x 10-2   Base excision repair 9.88 x 10-3   Glycerolipid metabolism 1.45 x 10-2 

Prion diseases 3.60 x 10-2   Metabolic pathways 1.18 x 10-2   Complement and coagulation cascades 1.67 x 10-2 

NF-kappa B signalling pathway 3.92 x 10-2   RNA degradation 1.29 x 10-2   Glycine, serine and threonine metabolism 1.94 x 10-2 

Platelet activation 4.09 x 10-2   Glycosylate and dicarboxylate metabolism 1.40 x 10-2   MAPK signalling pathway 1.96 x 10-2 
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Figure 7.6 Patterns of gene clustering during lesion development in miR-223-/- mice  

Computational analyses detected nine clusters of gene expression profiles in miR-223-/- samples from the RNA-
Seq dataset. Further analysis of each gene cluster was performed to identify KEGG pathways associated with each 
expression pattern (Table 7.3).The total of number of genes assessed was 16, 291 genes. 
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Table 7.3 Top 25 KEGG Pathways identified from nine gene expression clusters during lesion development in miR-223-/- mice  

miR-223-/- Cluster 1     miR-223-/- Cluster 2     miR-223-/- Cluster 3   
Pathway P Value   Pathway P Value   Pathway P Value 

Cell cycle 8.53 x 10-16   Dilated cardiomyopathy (DCM) 6.92 x 10-8   Lysosome 6.13 x 10-6 

Protein processing in endoplasmic reticulum 7.26 x 10-14   Chemokine signalling pathway 1.82 x 10-7   Hepatocellular carcinoma 5.89 x 10-5 

Ubiquitin mediated proteolysis 1.89 x 10-11   Oxytocin signalling pathway 3.42 x 10-7   Metabolic pathways 3.13 x 10-4 

Spliceosome 1.25 x 10-10   Adrenergic signalling in cardiomyocytes 6.69 x 10-7   Glutathione metabolism 5.76 x 10-4 

RNA transport 3.76 x 10-7   Cytokine-cytokine receptor interaction 1.66 x 10-6   Pathways in cancer 1.00 x 10-3 

Ribosome 8.99 x 10-7   NOD-like receptor signalling pathway 1.85 x 10-6   mTOR signalling pathway 1.01 x 10-3 

DNA replication 2.28 x 10-6   Platelet activation 1.09 x 10-5   Fatty acid elongation 1.47 x 10-3 

Protein export 7.33 x 10-6   Apelin signalling pathway 1.50 x 10-5   Basal cell carcinoma 2.90 x 10-3 

Pyrimidine metabolism 2.27 x 10-5   Hypertrophic cardiomyopathy (HCM) 2.14 x 10-5   Fatty acid metabolism 3.07 x 10-3 

Nucleotide excision repair 7.40 x 10-5   Cardiac muscle contraction 4.22 x 10-5   Sulphur relay system 5.12 x 10-3 

Small cell lung cancer 7.99 x 10-5   Osteoclast differentiation 6.14 x 10-5   Biotin metabolism 6.66 x 10-3 

TGF-beta signalling pathway 1.51 x 10-4   Staphylococcus aureus infection 9.39 x 10-5   Biosynthesis of unsaturated fatty acids 9.75 x 10-3 

Mismatch repair 2.02 x 10-4   Fc gamma R-mediated phagocytosis 1.35 x 10-4   Platinum drug resistance 1.01 x 10-2 

Hippo signalling pathway - multiple species 2.12 x 10-4   HTLV-I infection 1.83 x 10-4   Insulin resistance 1.51 x 10-2 

p53 signalling pathway 2.33 x 10-4   Gastric acid secretion 4.60 x 10-4   Gastric cancer 1.57 x 10-2 

Base excision repair 2.73 x 10-4   Phagosome 5.76 x 10-4   Glycosaminoglycan degradation 1.63 x 10-2 

Huntington's disease 2.76 x 10-4   cGMP-PKG signalling pathway 5.87 x 10-4   Valine, leucine and isoleucine degradation 1.69 x 10-2 

Oocyte meiosis 3.37 x 10-4   Intestinal immune network for IgA production 5.98 x 10-4   Insulin signalling pathway 1.76 x 10-2 

Homologous recombination 4.41 x 10-4   Relaxin signalling pathway 8.35 x 10-4   Peroxisome 1.87 x 10-2 

Adherens junction 6.61 x 10-4   Legionellosis 1.09 x 10-3   beta-Alanine metabolism 1.94 x 10-2 

RNA degradation 7.33 x 10-4   Rheumatoid arthritis 1.23 x 10-3   Vascular smooth muscle contraction 2.07 x 10-2 

Cellular senescence 8.40 x 10-4   Malaria 1.47 x 10-3   B cell receptor signalling pathway 2.13 x 10-2 

Fanconi anaemia pathway 1.62 x 10-3   Calcium signalling pathway 1.59 x 10-3   ABC transporters 2.38 x 10-2 

Ribosome biogenesis in eukaryotes 1.70 x 10-3   Toll-like receptor signalling pathway 1.66 x 10-3   Cysteine and methionine metabolism 2.62 x 10-2 

Progesterone-mediated oocyte maturation 2.30 x 10-3   Cell adhesion molecules (CAMs) 1.67 x 10-3   Carbon metabolism 2.87 x 10-2 
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Table 7.3 continued 

miR-223-/- Cluster 4     miR-223-/- Cluster 5     miR-223-/- Cluster 6   
Pathway P Value   Pathway P Value   Pathway P Value 

Other glycan degradation 1.58 x 10-5   Antigen processing and presentation 3.66 x 10-13   Pathways in cancer 1.41 x 10-5 

Lysosome 2.04 x 10-4   Viral myocarditis 1.13 x 10-12   Proteoglycans in cancer 4.34 x 10-4 

Glycosaminoglycan degradation 4.85 x 10-4   Lysosome 1.82 x 10-10   Small cell lung cancer 4.65 x 10-4 

Phosphatidylinositol signalling system 1.35 x 10-3   Graft-versus-host disease 2.13 x 10-10   
Signalling pathways regulating pluripotency of 
stem cells 

6.49 x 10-4 

Fluid shear stress and atherosclerosis 2.40 x 10-3   Natural killer cell mediated cytotoxicity 2.82 x 10-10   Hippo signalling pathway 2.15 x 10-3 

Pertussis 3.06 x 10-3   Cell adhesion molecules (CAMs) 1.11 x 10-9   Ras signalling pathway 2.46 x 10-3 

Propanoate metabolism 3.10 x 10-3   Allograft rejection 1.20 x 10-9   Regulation of actin cytoskeleton 4.12 x 10-3 

Glutathione metabolism 3.64 x 10-3   Hematopoietic cell lineage 1.87 x 10-9   PI3K-Akt signalling pathway 4.33 x 10-3 

Inositol phosphate metabolism 9.08 x 10-3   Cytokine-cytokine receptor interaction 5.83 x 10-9   Breast cancer 4.66 x 10-3 

Pathways in cancer 9.55 x 10-3   Type I diabetes mellitus 6.38 x 10-9   Fanconi anaemia pathway 5.31 x 10-3 

Porphyrin and chlorophyll metabolism 1.05 x 10-2   Staphylococcus aureus infection 1.41 x 10-8   Cell cycle 6.09 x 10-3 

Inflammatory bowel disease (IBD) 1.24 x 10-2   Phagosome 1.02 x 10-7   Ubiquitin mediated proteolysis 6.22 x 10-3 

Focal adhesion 1.39 x 10-2   Leishmaniosis 1.20 x 10-7   MAPK signalling pathway 6.31 x 10-3 

Glycosylate and dicarboxylate metabolism 1.41 x 10-2   Th1 and Th2 cell differentiation 2.84 x 10-7   p53 signalling pathway 6.98 x 10-3 

Glycerolipid metabolism 1.45 x 10-2   Autoimmune thyroid disease 2.98 x 10-7   Leishmaniosis 6.98 x 10-3 

ECM-receptor interaction 1.89 x 10-2   Primary immunodeficiency 3.51 x 10-7   Hypertrophic cardiomyopathy (HCM) 8.78 x 10-3 

Metabolism of xenobiotics by cytochrome P450 1.94 x 10-2   Intestinal immune network for IgA production 4.13 x 10-7   Focal adhesion 1.01 x 10-2 

NF-kappa B signalling pathway 2.07 x 10-2   Rheumatoid arthritis 6.55 x 10-7   Arrhythmogenic right ventricular cardiomyopathy 1.07 x 10-2 

Metabolic pathways 2.20 x 10-2   Tuberculosis 7.36 x 10-7   Mineral absorption 1.11 x 10-2 

Aldosterone synthesis and secretion 2.25 x 10-2   Th17 cell differentiation 8.75 x 10-7   Dilated cardiomyopathy (DCM) 1.26 x 10-2 

PI3K-Akt signalling pathway 2.43 x 10-2   Chemokine signalling pathway 1.53 x 10-6   Base excision repair 1.50 x 10-2 

Amyotrophic lateral sclerosis (ALS) 2.72 x 10-2   Toxoplasmosis 2.25 x 10-6   Endocrine resistance 1.65 x 10-2 

Renin secretion 3.04 x 10-2   Herpes simplex infection 3.90 x 10-6   Chronic myeloid leukaemia 1.68 x 10-2 

MAPK signalling pathway 3.16 x 10-2   Asthma 5.15 x 10-6   
Glycosylphosphatidylinositol (GPI)-anchor 
biosynthesis 

1.97 x 10-2 

Thyroid cancer 3.21 x 10-2   Osteoclast differentiation 9.32 x 10-6   Non-small cell lung cancer 2.09 x 10-2 
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Table 7.3 continued 

miR-223-/- Cluster 7     miR-223-/- Cluster 8     miR-223-/- Cluster 9   
Pathway P Value   Pathway P Value   Pathway P Value 

Autophagy - animal 6.55 x 10-9   Malaria 4.90 x 10-8   Spliceosome 1.14 x 10-14 

Metabolic pathways 1.36 x 10-7   Focal adhesion 7.70 x 10-7   Protein processing in endoplasmic reticulum 7.87 x 10-11 

Peroxisome 1.87 x 10-7   Proteoglycans in cancer 1.39 x 10-6   RNA transport 9.65 x 10-10 

Autophagy - other 1.56 x 10-6   ECM-receptor interaction 3.34 x 10-6   mRNA surveillance pathway 3.42 x 10-7 

Non-alcoholic fatty liver disease (NAFLD) 8.88 x 10-6   Hypertrophic cardiomyopathy (HCM) 2.10 x 10-5   Endocytosis 3.54 x 10-7 

Parkinson's disease 9.66 x 10-4   Gap junction 2.68 x 10-5   Metabolic pathways 4.65 x 10-7 

mTOR signalling pathway 1.07 x 10-3   Dilated cardiomyopathy (DCM) 3.80 x 10-5   Oxidative phosphorylation 3.56 x 10-6 

Mitophagy – animal 1.15 x 10-3   TNF signalling pathway 6.13 x 10-5   Basal transcription factors 4.75 x 10-6 

Oxidative phosphorylation 1.77 x 10-3   Human papillomavirus infection 1.12 x 10-4   Ribosome 1.49 x 10-5 

Alzheimer's disease 1.81 x 10-3   African trypanosomiasis 1.61 x 10-4   Nucleotide excision repair 2.04 x 10-5 

SNARE interactions in vesicular transport 1.95 x 10-3   Protein digestion and absorption 1.97 x 10-4   Alzheimer's disease 2.32 x 10-5 

RIG-I-like receptor signalling pathway 2.49 x 10-3   PI3K-Akt signalling pathway 3.48 x 10-4   Proteasome 4.33 x 10-5 

Toll-like receptor signalling pathway 2.84 x 10-3   Cholinergic synapse 3.87 x 10-4   Citrate cycle (TCA cycle) 4.74 x 10-5 

Thyroid hormone signalling pathway 2.94 x 10-3   Adrenergic signalling in cardiomyocytes 4.03 x 10-4   Huntington's disease 5.15 x 10-5 

Endocytosis 3.44 x 10-3   
Glycosaminoglycan biosynthesis - chondroitin 
sulphate / dermatan sulphate 

4.21 x 10-4   Terpenoid backbone biosynthesis 7.40 x 10-5 

Amino sugar and nucleotide sugar metabolism 3.49 x 10-3   Arrhythmogenic right ventricular cardiomyopathy 6.33 x 10-4   RNA degradation 1.75 x 10-4 

Adipocytokine signalling pathway 3.78 x 10-3   cAMP signalling pathway 9.37 x 10-4   RNA polymerase 4.00 x 10-4 

Vasopressin-regulated water reabsorption 4.02 x 10-3   Osteoclast differentiation 1.19 x 10-3   Mitophagy – animal 6.22 x 10-4 

NOD-like receptor signalling pathway 4.13 x 10-3   Wnt signalling pathway 1.21 x 10-3   Lysine degradation 6.52 x 10-4 

Glycosylphosphatidylinositol (GPI)-anchor 
biosynthesis 

5.24 x 10-3   Calcium signalling pathway 1.23 x 10-3   Pyrimidine metabolism 1.06 x 10-3 

Fatty acid metabolism 5.65 x 10-3   Amphetamine addiction 1.88 x 10-3   Parkinson's disease 1.17 x 10-3 

HIF-1 signalling pathway 6.01 x 10-3   MAPK signalling pathway 1.98 x 10-3   Neurotrophin signalling pathway 1.32 x 10-3 

Phosphatidylinositol signalling system 6.02 x 10-3   Mucin type O-glycan biosynthesis 2.14 x 10-3   Non-alcoholic fatty liver disease (NAFLD) 1.56 x 10-3 

FoxO signalling pathway 6.85 x 10-3   Glucagon signalling pathway 2.16 x 10-3   Pyruvate metabolism 1.67 x 10-3 

Insulin signalling pathway 7.22 x 10-3   Apelin signalling pathway 2.41 x 10-3   Tight junction 1.84 x 10-3 
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The additional supplementary material listed below can be found in the attached Microsoft Excel 

spreadsheet. 

SM Table 1: List of DEGs between decidualised endometrium and D7 lesions in C57 mice 

SM Table 2: List of DEGs between decidualised endometrium and D14 lesions in C57 mice 

SM Table 3: List of DEGs between D7 and D14 lesions in C57 mice 

SM Table 4: List of DEGs between decidualised endometrium and D7 lesions in miR-155-/- mice 

SM Table 5: List of DEGs between decidualised endometrium and D14 lesions in miR-155-/- mice 

SM Table 6: List of DEGs between D7 and D14 lesions in miR-155-/- mice 

SM Table 7: List of DEGs in decidualised endometrium between C57 mice and miR-155-/- mice 

SM Table 8: List of DEGs between decidualised endometrium and D7 lesions in miR-223-/- mice 

SM Table 9: List of DEGs between decidualised endometrium and D14 lesions in miR-223-/- mice 

SM Table 10: List of DEGs between D7 and D14 lesions in miR-223-/- mice 

SM Table 11: List of DEGs in decidualised endometrium between C57 mice and miR-223-/- mice 
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