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Abstract

The pion-nucleon sigma term is a measure of symmetry breaking in QCD. Despite the

general acceptance that its experimental value is 45 f 12 MeV, there is still some division

regarding the role of certain processes contributing to its theoretical value. In this thesis

we calculate and compare the pion nucleon sigma term with and without the contributions

arising from processes that involve decuplet baryons. Furthermore, we examine the wider

problem of the validity of SU(3) phenomenology, and its accuracy in treating processes involving

strangeness.
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Chapter 1

Introduction

1-.1- Introduction

Quantum Chromo-dynamics (QCD) is a theory of strong interactions. In the light of it's suc-

cesses, it is probably the theory of strong interactions. However, one cannot be certain, as

it is yet to be proven that it models strongly interacting particles in every way. Clearly, it is

worthwhile to analyse QCD as critically as possible.

The origins of QCD can be traced back to 1961, when Gell-Mann developed a model of

hadrons. Given the nature of the baryon spectrum, he proposed that hadrons were made up

of more fundamental particles with half-integer spin and fractional charge, quarks. The quarks

possessed an extra quantum number, flavour. Gell-Mann proposed that the baryons were made

up of three quarks, and the mesons composed of a quark/anti-quark pair. We can see how this

conclusion was arrived at if we consider an irreducible representation of 3 triplets,

3xBx3:10+8+8+1

8
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In other words, the coupling of three triplets wiil manifest itself physically as an octet, decuplet

or singlet. The singlet baryon has not been observed

The main problem with Gell-Mann's model of the hadrons was that certain hadron states,

such as the A++ resonance possessed bad symmetry. The A++ particle has a spin-flavour wave

function, lu t u I u t > which is clearly symmetric under an exchange of quarks. Real baryons

are fermions, and so the wave function should not be symmetric under such a transformation.

As a result a new quantum number was introduced, colour, which is carried by quarks and

gluons, hence the name Quantum Chromo-dynamics. The quarks came in three colours and

the hadrons were colourless.

Quantum electrodynamics(QED) has been very successful in describing electromagnetic

interactions. QED is a theory based on a locally gauge invariant Lagrangian, where the gauge

field is the photon. Similiarly in QCD the gauge field is associated with the messenger particles

between quarks, the gluons. The development of a locally gauge invariant theory with corre-

sponding non-Abelian Lie algebra had been done by Yang and Mills in 195a [1]. It was not

until 1971 that Gross and Wilczek [2] and Politzer [3] showed that a non-abelian gauge theory

exhibited asymptotic freedom, that is, the quarks behaved as free particles at high energies.

L.2 Origin of Mass

In the gauge theory of weak interactions, the quark masses are not fundamental constants of

nature, but are generated by the particle's motion through a scalar condensate resulting from

I



the spontaneous breaking of the symmetry of the Lagrangian. Various theories describing the

spontaneous breakdown of gauge symmetries have been developed, however it is not possible to

predict the quark masses using these theories. Our interest is in the treatment of these quark

masses, rather than their origins, so we will choose the QCD Lagrangian as the starting point

for our investigations.

The fact that QCD exhibits asymptotic freedom ai high energies (i.e. coupling becomes

small) means that we can apply perturbation theory in the usual way. At low energies the

coupling between quarks is large, so conventional perturbative techniques (as used successfully

in QED) do not work. The alternatives to a perturbative treatment are to use lattice theories,

or phenomenological models to describe QCD at low energies.

1-.3 Chiral Symmetry

We can define left and right handed Dirac flelds as

, l-'ts, l*'vs
lþt : 2 rlr ancl rþp: 2 þ, (1 .2)

where * ir the helicity projection operator (II*). Consider

,þ"rþ" : t¡tlI+II- t¡: : 0. (1.3)

10



Clearly then, a particle with definite handedness will be massless. The Lagrangian

L: irþr7 ,tt" * irþod ,þ*, (1.4)

is invariant under the transformations

U(L)":1þt - e'o"tþL (1.5)

U(I)":1þn -- e'"^tþR (1.6)

where o¿ and o¿ â,re global phases. These transformations are simply phase transformations.

The important feature of this is that the left handed and the right handed fields transform

independently. The Lagrangian (1.a) is invariant under these chiral transformations, and as a

result the Noether currents for transformations (1.5) and (1.6)

Jl, : ,þ"1'tþ7 and JH.: ,þa'Y'rþn (1.7)

are conserved

The QCD lagrangian is written

L: -iÐqrÐ o, -m¡,¡Q¡ - |r;,,o"" + gauge fixing and ghost terms
Í

(1.8)

where qy is the quark field for a quark with flavour,f - u,d,s. This Lagrangian is invariant

11



under the ^9U(3)2, S SU(3)Ã group of transformations (q- : Ç¡ and 8+ : qa)

Ç+--+ exp(- it.Ðn*

The corresponding conserved. Noether currents aret

JT' : Ð ø,çr¡^,' i,,,ff ø,, (*)
ll

which can be rewritten as Jl : VP I A',

wíth V"þ: D dtÀiylrqu(r),

(1.e)

( 1.10)

(1.11)
TI'

and A"þ(n) : t Q¡Àl¡,1P15q¿,. ( 1.12)
ut

The Lagrangian is still invariant under the U(1)r,AU(1)" group of transformations, so we still

have currents

The naive divergences of these currents are

Vdn':41'q'

Alo':|'l'%q'

}rVdo,:i(mq-rns,)qq'

ðrAIo, : i(mq I *o')41uq'

(1.13)

(1.14)

(1 . 15)

(1.16)

Thus we can see that the vector current is conserved in the limit that all quarks have equal
1ì1, is the relevant component of the particular Gell-Mann matrix.



mass. The axial current is conserved in the limit that all quarks are massless

Massless QCD is symmetric under the ^9[l(3)n x Stl(3)v xU (l)v group of transformations

t.4 The Sigma Term

We can rewrite (1.8) as

Lo -Ðmq48, (1 . 17)

where,Ce is invariant under the chiral transformations. As well as can be established, the mass

term in the Lagrangian is the only term that explicitly breaks chiral symmetry. There is no

theoretical reason why this should be so. Given this, the motivation for studying a measure

of symmetry breaking is twofold. Firstly, we can predict a theoretical value for this measure,

and draw a comparison with an experimental value, based on the assumption that -Dmq|q

is the only symmetry breaking term in .Cqco. The result will iell us whether this assumption

is correct (or not), and also provide information as to whether the treatment is correct. If

there is agreement between theory and experiment, we will conclude that it is likely our initial

assumption was correct, as was our treatment.

The measure of symmetry breaking that we will consider is the pion-nucleon sigma term,

13



formally defined as

3
1

5<o*x(t): t ¡/(p') ll8l, l8l,11ll l¡r(p) >,
i=!

( 1.18)

where t: -(p_ p')'and fI the strong interaction Hamiltonian. Early calculations of ø,,¡¡ gave

deviations from the experimental value (+f UeV) by - 50%. Many solutions to this problem

have been proposed, the most common a large strange quark content of the nucleon. More

recently it has been proposed that the current quark mass of the light quark is larger than

6 MeV la]. It is our contention that one important source of the discrepancy between the

experimental and theoretical values is the failure to include the decuplet processes in the one

loop corrections to on¡¡.

The sigma term has been calculated using QCD sum rules [5,61, however to date, it is

difficult to determine the accuracy of such calculations, as the final result depends upon quan-

tities such as the accuracy of kaon PCAC, and the value of < ss >o I < uu )o, for which there

is some uncertainty. Most importantly, to date no one has been able to provide an estimate of

the uncertainties associated with sum rules.

1-.5 An alternative to QCD

If one is willing to forgo the ideological 'elegance' of gauge field theory, phenomenological models

can be used with great success. A phenomenological model is based on the idea that physr-

cal systems can be decribed in terms of their observable propertiesl without recourse to the

1 Husserl's phenomenalism
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fundamental basis (in this case non-Abelian gauge invariance) of the system. These models

should respect the underiying symmetries and degrees of freedom of QCD, however they are

less fundamental in their formulation. One such model is the Cloudy Bag Model (CBM).

A persistent problem with all models for strongly interacting particles with quark degrees

of freedom is that they do not predict confinement. No free quarks have been observed, so it is

reasonable to assume, up to energy levels of TeV, quarks only exist in 3 quark states (baryons)

and quark-antiquark pairs (mesons). The main idea behind all bag models is that confinement

is provided by virtue of the quarks being massless inside some region in space (the bag) and pos-

sessing infinite mass outside the bag. The early bag models have been developed and improved.

The most successful to date is the CBM. The CBM is an improvement of one of the original bag

models, the MIT bag model, which described massless quarks moving freely inside a region of

space (the bag). 'l'he problem with the MIT bag model was that, although it was confining, it

violated chiral symmetry. The CBM corrected this by introducing a pseudo-scalar field, which

coupied to the quarks at the surface of the bag. This tied in nicely with the idea that the nu-

cleon was surrounded by a pion cloud. The CBM has been very successful in predicting many

properties of baryons [7] , and so is a reasonable starting point for the analysis of the sigma term.

This remainder of this report will be presented as follows. Firstly, we will discuss chiral

symmetry, chiral symmetry breaking and the link between the quark masses and symmetry

breaking. Secondly we will discuss a measure of chiral symmetry breaking, the pion-nucleon

sigma term. Following this, we will examine the model used to carry out all of our calculations,

the cloudy bag model. Finally, we devote a chapter to general observations regarding previous

studies of the pion-nucleon sigma term.
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Chapter 2

Chiral Symmetty

2.L Chiral symmetry

Chiral symmetry is the invariance of the Lagrangian under the chiral transformation. As

massless QCD is chirally symmetric, we choose this symmetry as a starting point for our inves-

tigations. Nature is nearly chirally symmetric, however the only exact symmetry of QCD is the

U(t)" group, that is, conservation of Baryon numberl. Chiral symmetry in QCD is broken in

2 ways. The quark masses explicitly break the symmetry of the Lagrangian, and irrespective

of the quark mass values, chiral symmetry is spontaneously broken by virtue of the symmetry

of the system not matching that of the vacuum.

When considering chiral symmetry, it is important to understand the largest symmetry

group involved, and the subgroups that are revealed as the symmetry is broken. The largest

symmetry group that we will consider is the SU(3)v Ø SU(3)d2. The Lagrangian is invariant

lIn the entire body of this report, colour is not a consideration
2We will confine ourselves to the study of the study of the three lightest quarks, as the masses of the heavier

quarks makes treatment of the theory as a perturbation about the exact symmetry limit unproductive.

17



under q --+ Uq where

which leads to the conserved currents

Uv(r): exp(iÀ ' o(t))

Ut("): exp(i?sl ' Ê(r)) (2.1)

vi: auf;ø (2.2)

and eight conserved axial currents

lo
(2.3)Aor: q''lP'ls

2
q

for ø : 1,2..8. QCD is invariant under the t/(l)v group of transformations (conservation of

Baryon number). There are (of course) axial charges associated with the conserved currents,

eo : | #xu{(r)

Qi: | ÊnA6,@) (2.4)

which satisfy their own Lie Algebra.

When the mass term, -Ðmo|q, is included in the QCD Lagrangian the symmetry is

explicitly broken. The current treatment of this is chiral perturbation theory (XPT), in which

the behaviour of the system is studied as the masses are turned on.

I,
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Historically, the main focus of investigations into chiral symmetry breaking has been the

path taken by the system as the various symmetry breaking processes are 'turned on'. Initially

there was no consideration given to the origin of chiral symmetry breaking (XSB)' simply the

properties of the symmetry breaking components in the Hamiltonian. Following the develop-

ment of the quark model, a more mechanical procedure was developed, whereby a perturbation

scheme was developed with the quark masses as the source of symmetry breaking, and therefore

the perturbation parameter. These various schemes had to take into account the divergences

that occurred within the theory as a result of the way chiral symmetry is realised. The resul-

tant techniques developed were known as chiral perturbation theories. We will examine chiral

symmetry and its treatment in more detail now.

z.L.L Realisations of Chiral Symmetry

Consider Coleman's theorem, that is

8'lo) :o*lQ",H):0, (2.5)

which means that the physical states of fI can be classified according to the irreducible repre-

sentations of the group generated by Q". Goldstone's theorem considers the possibility that a

symmetry of the system is not a symmetry of the vacuum. That is, ïrr'e can have either

lQ",Hl: o l 8"lo) :0, (2.6)

19



which is the converse of Coleman's theorem' or

1Q",, Hl: o but Q'lo) I o (2.7)

If the second case is true, then the symmetry associated with the charge that breaks the vacuum

symmetry has no bearing on the baryon spectrum'

If the charges satisfy the following algebra,

l8",Qul - ir"b'Q" lQ" ,Quul : ie"b"Q's lQi,8?l : ie"b"Ql, (2.8)

then we can consider Qî: Q" +Qg to illustrate the point. If lQi,Hl:0 and 8il0 >: 0

then we have what is known as the Wigner-Weyl realisation of the symmetry group. If the

group was the SU(z)v group then we would have a spectrum of iso-multiplets. However, if

8310 >: 0 then we would have iso-multipiets with parity partners (degenerate in mass, but

with opposite parity). The observed baryon spectrum supports the notion that Q'10 ): 0

but not 8gl0 >:0. Therefore, \,rr'e assume that Qf;l0 >+ 0, which is the Nambu-Goldstone

realisation of the symmetry associated with Qf;. Goldstone's theorem tells us ihat if the latter

is true, then the vacuum symmetry is broken by the transformation and there exists massless

Goldstone bosons. As 8310 >+ 0, there must exist a state 8gl0 > which has the same energy

eigenvalue as l0 >. Clearly this state wiil be a pseudoscalar, and we identify pions as pseudo-

scalar Goldstone bosorrs.

20



2.L.2 Partially Conserved Axial Currents

We know that the pion decays via the axial current, i.e

< olAî,|"b(q) ): ifnqp6"b, (2.e)

where a,b are the iso-spin indices and /, is the pion decay constant3. In the chiral limit,

0rAr: 0 and therefore < 0opAi(0)l"o(q) 2: f*m2n6ob : 0. Thus, in the chiral limit, we

require either m7:0 or /* :0. Since Qil\ >+ 0, /,.. cannot be equal To zero, so in the chiral

limit rn] : g.

There is a link between the breaking of chiral symmetry and the conservation of the axial

current. If we consider the pion-nucleon-nucleon coupling

To
(2.10)< I/(p')lArlN(ù >: ¿(p')( )lt rt u g o(q') + q rt uh(q')]"(p),

2

where q: pt - p, g,q,(q2) and å(q2) are the axial and pseudoscalar form factors respectively, and

g"(0) : t.25 [S] If k is small, then, in the non-relativistic limit, we find

,lt"'ys + ã, and. qr15 -- -!jí,¿rnN
(2.1 1)

and hence (dropping isospin labels)

, ?_,l nlA lp ): g,4(q2)d -m, At]r,*l,l1

sEquation (2.9) is the definition of fn.

Jz
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Now, if the axial current is conserved, then

s^q2) - õ'd:oh(q')q'
2mN

(2.13)

Thus

2m
(2.t4)h(q') : N9A

q2

Since g¿(0) * go(q') for small q', h(q') must have a pole corresponding to the propagation of

a massless, exchanged particle. As A, is not conserved, it seems reasonable to rewrite h(q2) as

q2 )

(2.15)

However, when mn is equal to zero, comparing the explicit calculation of the pion pole diagram

we find [9,10,7] that

rnngA:2f ¡vNnln (2.16)

This is the Goldberger-Trieman relation, linking the weak and strong coupling constants. If we

do not have massless pions, the divergence of the axial current is

0'Ar: Í,rn2*ó) (2.r7)

I

I

:

ir

l:

I
F

u
ñ

il

i¿

fl

where / is the pion field. Eq. (2.15), is the defi.nition of the Partially Conserved Axial Current

Hypothesis (PCAC). That is, the transition from a massless pion to the massive pion should

22



be smooth. Unless this is the case, the axial current will be broken quite badly. As the pion

mass is small, the axial current is almost conserved.

The quantity A [9],

A-1- ÇArûn:0.08+0.02
ñf I
Ll NNr.l r

(2.18)

is a measure of the breaking of the SU(z) Ø SU(z) group. The quantities A and ïPAlrhave

the same dependence orr Tn.î) thus the GT relation is a consequence of, and a measure of, chiral

symmetry breaking.

2.2 Quark rnasses as perturbations

Nature is not exactly as described above, the iso-multiplets associated with the vector charge

are not degenerate in mass, and the pions are not massless. Both these disrepancies arise from

the fact that nature is not exactly chiraily symmetric, the symmetry is broken explicitly by the

quark masses.

2.2.L Breakdown of SU(3) ø SUla;

The 'pre-quark' theories developed to model the breakdown of chiral symmetry were based on

the assumption that the symmetry breaking component of the Hamiltonian transformed under

SU(3) in a certain way. It was generally accepted that if we generalise the group associated

23



with the vector charge to include strangeness, that is .9Il(3)v, where Q" @: 1,2...'8) satisfles

lQ",Qul : if oæQ",, (2.te)

then we could assume that the hadrons would be classifred according to the irreducible rep-

resentations of .9tl(3)y. There are many possible representations, but we rule out those that

predict fractional charge. We are left with the octet and decuplet baryons. The Glashow -

Weinberg (GW) model and the Gell-Mann - Oakes - Renner (GMOR) were the most widely

used tpre-quark' models.

It was assumed that the symmetry breaking part of the Hamiltonian has deflnite trans-

formation properties with respect to SU(3)v in a representation. Furthermore, it was assumed

fl,sn was a component of the simplest possible representation of SU(3)v, that is, the octet.

The Hamiltonian must still commute with iso-spin and hypercharge, as these quantities are

conserved. The only component with these transformation properties is the eighth component

of the octet, i.e.

H:Ho*eaua. (2.20)

If one treats €sus â,s the only source of explicit symmetry breaking, then we find

2(M* * ¡Wz) - (3Mn + M.") : O(rZ), (2.21)

the Gell-Mann Okubo mass formula, which has been shown to work well. In contrast, mass

It¡rrrrulae in other representations, such as 27 arc not accurate. This is known as octet enhance-

24



ment and works surprisingly well. Why this is so is a slightly more complex matter, and various

explanations are given in ref. [9].

The Glashow - Weinberg Model

The GW model starts with the symmetry breaking Hamiltonian given as

H:Ho*eozo*eaza (2.22)

where €s and €s âre the symmetry breaking parameters. The e¡ze has been added to flss

using the same arguments as for esu3. More generally, it was assumed the symmetry breaking

component of the Hamiltonian transformed like (3,3) + (3,3) : (8,1) + (1,S). The operators

uo and uo obey the following :

lQ¿,u"] : if¿otut,, lQ¿,r"] : if¿ouuu,

lQl,",] : -id¿ouuu, lSl,uof : -id'¿o6u6, (2.23)

for i : 1..8 and a,,b:0,1...8. f1o is invariant under the ^9tl(3) S Stl(3) group of transforma-

tions. The formalism that yields physical predictions for this model is based on the relevant

'Ward identities for the matrix elements for the SU(3) S Stl(3) currents, which are derived

from I{. The technique is not without its flaws, because certain assumptions have to be made

in evaluating the integral equations associated with the Ward identities, namely that they are

dominated by the pion polc (saturation), and that the integrals are slowly varying near the

25



pole (smoothness). In this respect XPT is a far more effective method. The model does, how-

ever, provide a good description of symmetry breaking, although the assumptions made during

evaluation of the integral equations lead to poor quantitive results'

The Gell-Man - Oakes - Renner Model

The difference between the GMOR model and the GW technique outlined in the previous

section is that the behaviour of nature in the chiral limit is given more consideration in the

GMOR model. The Hamiltonian is the same, however, the assumption is made that in the

chiral limit, that is €0,8 r 0, fI is S¿l(3) S Stl(3) invariant and while the corresonding vector

charges annihilate the vacuum, the the axial changes do not. Applying Coleman's theorem and

Goldstone's theorem, we find that the physical states are classified as a fundamental represen-

tation of ^9U(3)v and the pseudo-scalar mesons are Goldstone bosons with zero mass.

An alternative approach to the breaking of ^9tl(3) S Sy(3)

Another way of looking at the breakdown of chiral symmetry is to rewrite flss as

Hss-es(zsfczs) (2.24)

with c : esleo, initially set at -r/2 When c : -\/r, flss breaks .9U(3) S SU(3) 
-)

SU(2) Ø SU(2), the strange mesons acquire mass and the octet baryons are no longer degener-

ate. When c deviates frorn -t/2, SU(2) Ø SU(2) is broken and the pions acquire a mass. Using

XPT, c: -1.25 [11], reinforcing the notion that SU(2) ø SfflZ; is a very good symmetry of
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hadronic physics, second only to isospin

2.2.2 How sood is St/(3) s SU(3X

There are a number of ratios that can be extracted from the light meson masses to give an

indication of how 'good' a symmetry is. If we consider the first order meson mass formulae,

M]*:(*,+*o)B

M2ya:(*r+*")B

M26o:(*o+m")8, (2.25)

where B:1014q10 ), we can extract the following ratios [12]

m" :0.66,
rmd

m' - 20.r,
rmd

(2.26)
lTt s

2+.2

t.

Li
lr
It

f

rn

The charged. mesons are surrounded by a photon cloud, thus leading to corrections of Oþ2),

which alter the ratios slightly. However, the above ratios will be altered further when ¡PT is
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used to calculate all next to leading order contributions to the meson masses. The ratio, -R,

R: *" - ^ :43.5 +3.2 (2.27)
fTLd - TTlu

which measures the level of breaking of ^9tl(3)y relative to SU(z)v, can be extracted from the

values of. M, - Mn, Mz* - M2- arrd Mzo - Ms-. The most recent calculation of the mass

ratios is [12]

ffiu 
-0.b6+0.006,

Tmd

TrL" 
- 20 +2.0,

rmd
Y: :25.6 +2.0.
n'¿

(2.28)

These ratios are in agreement with eq. (2.27). The errors arise from the uncertainties in the

constants determined in ¡PT.

The exact values for the quark mass ratios are far from resolved, as any calculations

involving higher order corrections will possess some degree of model dependence. As a conse-

quence, one must examine as many constraints as possible. However, recent work suggests that

the above ratios are very close to the actual values [12].

We saw earlier th,at SU(2) ø SfflZ; was accurate to 7 %. Similiarly, 
"¡/e 

can derive the

ratio

rnd 
- 1.g+0.2.

n'¿u
(2.2e)

This ratio is a measure of isospin breaking. As it turns out, it is a rather poor estimate. For

a long while it was thought that strong interactions rvr¿ere exactly isospin symmetric, and that
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any mass differences in hadrons were due to electromagnetic effects. However, the sign of the

proton-neutron mass difference (amongst others) suggested otherwise. Isospin is broken be-

cause mu * m¿. The ratios (2.29) arrd (2.27) are not a good indication of the magnitude of

the symmetry breaking. This is because QCD disguises the current quark masses rather well,

and the actual contribution to the baryon mass from the current quark mass is quite small'

More sophisticated techniques are required to measure the exact level of symmetry breaking.

To determine whether or not we can treat a quark mass as a perturbation we can compare the

mass/mass differences involved with a given energy scale, say, Mo. It is clear that SU(2)v and

SU(2) Ø SU(2) are 'good' enough to treat the symmetry breaking in perturbation theory. It

wouid be worth considering how accurate the ,9U(3)y and Stl(3) S SY(3) symmetries are.

A slightly crude technique would be to look at the ratio

(2.30)

where f/js and f/j{ are the components of the Hamiltonian breakin g SU(3)v and ^9U(2) ØSU (2)

respectively. Neglecting isospin breaking terms, we would have

pr _ cBl'JB 9csus
'" - ñ,çuu + ãd) - t/i('/lro * ca)(va6z o + t/3u")2'

(2.31)

We know < ,n/lu3ll/ ): 166 + 10 [9], however < ,n/lzsl¡/ ) has not been determined. It is

reasonable to assume that the magnitude of breaking of .9U(3) S Stl(3) is of the same order as
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(2.32)

We also know ?: -1.25, thus we find
cO

lÄ'l :7'2+7.2. (2.33)

This is by no means an exact value, merely a guide to the difference in the level of breaking

that occurs between Sy(3) and ^9tl(2)

2.3 The Quark Model

Following the discovery of quarks, a new formalism for the treatment of chiral symmetry ensued

The challenge was to find a consistent mathematical treatment of the quark mass term in the

QCD Lagrangain, viz

L¡ : -lmuuu I m¿d,d, f rn"ss]. (2.34)

Equation (2.34) can be written

SU(3)v,, thus we can work with

L

< I/luol/ú >
< ,Vlzsl,nú > r

tryj#fu@u-r aa+ s,) *ry+@u - ¿d)

l,mulm¿
;(î - m')(nu+ dd- 2ss)1.

I

(2.35)
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If we define u;(r) : q(r)À¿q(r), for i : 0,1..8 with À¿ the Gell-Mann matrices, then equation

(2.35) is written

L7:-fcsus!cau3+c8u8] (2.36)

Clearly then, the pre-quark treatment was was close, in terms of the symmetry breaking com-

ponents of the Lagrangian (if quarks are the only source of chiral symmetry breaking). The

caz3 term is responsible for the breaking of charge symmetry. The caz3 term represents the

mass splitting between the light quarks, (i.e. ffiu: rnd + nz"), and the csus term is turned on

when any light quark mass is not zero. This fits in the historical view that zs, which transforms

as a singlet, breaks the,9U(3) S SY(3) group, and us breaks SU(3)v symmetry.

2.4 The Mass Formula

In the chiral limit, and in the absence of self-energy processes, the octet baryons are degenerate

in mass. The mass formulas are derived by treating the mass terms perturbatively, with

Ht: d3 n(muuu + m ddd -þ rn"ss), (2.37)

for the nucleon we have the resulting shift

6(M'*) : rrluBu I m¿Ba + m"B" I higher order terms
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where Bo: þldqlp). Similarly, we could produce a mass formula for the other octet baryons,

with new constants, Bl : (f lqrqlf ) for example. However, from a computationai point of view,

it would be prudent to express the baryon masses in terms of as few parameters as possible.

In the chiral limit the octet baryons are degenerate in mass, hence the value of Mo will be the

same for all baryons. The ^9U(3) symmetry allows us to relate the matrix elements of 4q for all

octet baryons to those of the nucleon. In the absence of higher order corrections we have

Mh : ¡w3 + ñ'(8" + Bo) + nx"B"

MZ : M3 + rh(Bo+ B") + nx"B"

M'n: M3 + ?r"" + 4Bd + B") + ff{za" - Bd + 28")

M3: M3 + ñ'(8" + Bo) + nx"B" (2.3e)

Some terms of higher order in the expansions are non-analytic in the quark masses. For

example, the next term in the quark mass expansion is O(ñe/z¡, not O(rî22) [14], as determined

by improved chiral perturbation theory (ICPT). ICPT also suggests that the the leading non-

analytic term (corresponding to the one loop process) dominates the higher order terms. The

assumption that we are making is that the term in the quark mass expansion is the same as

for the one-loop process in an effective Lagrangian (e.g. using the CBM). Finally there are the

kinematic contributions to the mass formula, terms of order rà2. Ignoring terms of order mf,

we have

Mk : M3 + ñ'(8" + Bo) + n'¿"8" + 6A['zN

32



MZ : M3 + ñ'(Bo + B") + n't "8" + 6M3

M'n : u3 +Tr"" + 4Bo+ B") +ff{za" - Bo + 2r,") + 6M2^

M3, : M3 + ñ'(8" + Bo) + mù"8" + 6M3 (2.40)

where 6MB -- 2Ms6Ms, 6MN is the difference between the loop corrections with massive

mesons and. the loop corrections in the chiral limita.

Unfortunately, the quark masses cannot be extracted from the baryon mass formula. In-

deed only 4 pieces of information can be gleaned from these equations. As we shall see later, the

treatment of the non-analytic corrections requires further assumptions regarding the properties

of. B" al'd Bd in order to determiue Ms.

We are working with the CBM to determine the numerical value of the leading non-

analytic contributions to the baryon mass. Our interest iies in the analytic structure of the

loop corrections to the baryon mass. The pion loop correction to the nucleon mass, 6M¡¡ as

a function of rî¿ is shown on figure (2.I). One contentious issue is the role played by decuplet

baryons in the loop corrections. For this reason the octet and decuplet contributions are shown

seperately. The expression used to calculate 6Mw is found in section (4.5).

aln chapter 4, 6Mp refers to the loop correction to baryon B for massive mesons. In the remainder of this
report, this correction is denoted L,Mp, and 6Mp is as defined in section (2.4).
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Figure 2.1: The analytic behaviour of the pion loop corrections to the nucleon mass.

2.5 The Quark Masses

The ratios in eq. (2.26) do not provide sufficient information to derive the actual values of the

quark masses. Using sum rules, the non-strange quark mass can be determined - for example

we cite two values , ñ :5.4 MeV [13] and ñ, :7 t 2 MeV [14]. If the sigma term is determined

correctly, it should provide information regarding the accuracy of our value for ñt,. We will use

ñ, :5.512, and rn" : 130 + 50. (2.4r)
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2.6 Chiral Lagrangians

One of the principal justifications for the use of effective field theories is that it is an easy

method of examining low energy physics. The need for doing so will come about either bec4use

Octet Contribution

Decuplet Contribution
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the underlying model is not known or is inappropriate for the given energy levels. The starting

point is the Chiral Lagrangian, that is, the Lagrangian that contains all terms allowed by chiral

symmetry. The resulting theory is non-renormalisable, however, as it is a low energy theory, this

is not a problem. Or, more to the point, the problems which result from non-renormalisability

do not occur at the energy levels considered.

The Standard Model (SM) is thought to contain the correct description of strongly in-

teracting particles. However, thus far, no one has been able to show analytically, that the

SM predicts quark confinement (an observed property). Furthermore, a description of many

nucleon systems using quark degrees of freedom would be far too complex, anaiytically at least.

Because of the above mentioned problems it is, and has been, a profitable method of examining

hadronic interaction problems using effective fleld theory. The Chiral Lagrangian is the best

starting point, because it is likely that, if treated correctly, it incorporates all of the tèatures of

the SM. The complete theory incorporates a more complete perturbative treatment, Chiral Per-

turbation Theory (XPT). ¡PT involves the expansion in terms of the momenta and the meson

masses. What makes ¡PT such a complete theory is that is incorporates the idea that pions

are Goldstone bosons, and that their interactions are momentum dependent. XPT includes

the chiral anomaly, PCAC and the chiral Ward identities. The problem with ¡PT is that the

expansion of the Lagrangian possesses constants, which are not controlled by the underlying

symmetries of the system. These constants need to be determined from the phenomenology of

related systems.

The global symmetry of the QCD Lagrangian is Stl(3)2, S SU(3)n I y(1)y I U(1)¿. The

U(I)v symmetry is simply the conservation of baryon number, and the U(l)o symmetry is
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only an exact symmetry at the classical level. As a result, the starting point for the Chiral

Lagrangian is the SU(3)r S ^9U(3)n symmetry group, with the t/(1) symmetries being treated

seperately. A model independent Chiral Lagrangian for the meson field (to lowest order) is

given as [15]

f2rL:î<ïrut)pu), (2.42)

where u(o) is a parameterisation of the Goldstone boson fi.elds, viz

u(o) : expþJlalf). (2.+3)

Õ(r) is the meson field matrix, and is given as

no :_JL
,/, ' ,/6

T+

ro t 'Ìl

,/z ' ,/a
(2.44)

I{+

Ko

.tn
- \/6K- 7f

We can expand t/(O) in terms of O to obtain meson-meson interaction terms, and all values can

be expressed in terms of /. Next we introduce external fields, by generalising the Lagrangian

in the presence of external sources, i.e.

L -- + < n,rtI nt'u + ul p + el u >, (2.45)

p :ZBo(s + ip),

where
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and

D¡"U - ïrU -irrU +iUl,

1r¿l
Dpul : ïpUt ¡ irrUt - iUt Ip (2.46)

with r, /, s and p external fields. We then obtain the Green functions as functional derivatives

of

expliZl: DU(A)expi d3rLI t (2.47)

At lowest order, it is straightforward to extract predictions from this Lagrangian. Many such

results are shown in reference [15] . At O(pa) the most general Lagrangian has 10 coupling

constants that cannot be determined by symmetry. In principle, these constants can be deter-

mined from various processes. When calculating loop effects, the resultant chiral logarithms

are a function of f ,ffinrm, and nz6 only [15].

It has become clear that higher order processes in yPT give non-trivial contributions to

certain processes. The anaiytic structure of these higher order contributions has not yet been

determined. We are not using chirai perturbation theory, so as well as calculating the level of

chiral symmetry breaking with the CBM, we will examine the analytic behaviour of our results

to gain a better idea of the validity of our phenomenology. There are numerous reviews on this

subject and we mention [15,9,16,12,11] as reasonable starting points for further investigation.
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Chapter 3

The Sigma Terrn

3.1- The Sigma Term

There are two considerations when studying the pion-nucleon sigma term. Firstly there is the

challenge of relating a pion-nucleon scattering amplitude to the 'experimental'value lor on¡¡.

The second is to provide an independent estimate of øÍ¡vr using a particular model. The latter

consideration is the area that is least agreed upon, and is the focus of our investigations.

The pion-nucleon sigma term, a measure of chiral symmetry breaking in QCD, is defined

as follows

o*N(t): åå < r,r(p') ltgl,lei,rrlll¡rl(p) >, (3. 1)

where fI is the strong interaction Hamiltonian,

H:HolHsn
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with f1s3 the part of the Hamiltonian that breaks chiral symmetry, and lI/(p) > it the nucleon

wave function, with normalisation scheme

< ¡f(p)l¡/(p') 2: (2n)32po6"(p' - p) (3.3)

If we take the view that the only source of chiral symmetry breaking is the quark masses,

then fls¡ is

IHsn - d3 rlmuuu + maãd f rn"ss].

as was discussed in the previous chapter. Using

lQl,"¡]: -id¿j*ut , lSl,ujl: id¿¡xut

(3.4)

We could, of course, choose another measure of chiral symmetry breaking to work with, how-

ever orN can be associated with an experimental vaiue derived from pion-nucleon scattering.

Furthermore, as fls commutes with Ql, o,¡v depends only on the symmetry breaking part of

the Hamiitonian, which is good as it requires less assumptions than an expression requiring a

knowiedge of Hs.

For the purpose of evaluatirB onN we could ignore iso-spin breaking effects and write

Hss - csus!csus, (3.5)
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we find

lQl,l8l,øse]] : cold¿otd¿u I d¿ozd¿z¡ ! d'¿ssd'¿s¡)u¡

! csfd,¡sd,¿1t * d¿azd¿u ! d,¿ssil¿s¡lu¡. (3.7)

Summing over all contracted indices for i : I,2,3 we have

lQl,lSuo,f/s¡ll :'/i(t/z"s J cs)(uu + ãd). (3.8)

Given the values for ca and cs,

1
(3.e)Cg

'/6
(2ñ, * m")

and

1
(3.10)Cg

rß
(ñ - *")

we are left with

arN : ñ' < Nluu + ddlN >, (3.11)

where 6 - 
(m"!'na). There are various schemes to calculate a numerical value for this expres-

sion, and we consider them next.

r
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3.2 Calculating orN

We know

couo I cs'tts N
/m"*m¿\\z ) (autdd)+n1,"ss, (3.12)

which is the symmetry breaking component (of the Hamiltonian) in QCD. Given our under-

standing of the nucleon, we can assume that the strange quark content of the nucleon is very

small relative to the non-strange quark content, i.e.

a (Nlau + aall) x a (wlnu + ãd - 2ssl.n/) , (3.13)

thus

orN N ñ, < Nluu + dd - 2ssllú >

: ß^ < t/lcauslrú >
Cg

3ñ: t¡t < l/lcazsl.nú >
n1 - n1,s

(3.14)

(3.15)

(3.16)

(3.1 7)

To evaluate (3.16), we write [17]

::

t.

I
l,
li

lr

li

fl

I

,i

ii

rl

ü

F

l'
L

l

í

l¡

lBlcauslB) : aTr(BusB) * BT r(B Bus)
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where

OT

olN(O) :
3(m, t m¿

(M¡, - Mz)

(3.18)

(3.1e)

(3.20)

Eo,^
-+-,/z ' ,/6

t+

B- x- ^0æ
t0
,/z I

E0

p

n

Ê
q_L

and noting that (BlcaualBl is the mass shift from,9tl(3) breaking for baryon B,we can deter-

mine o and B, giving us [18]

mulm¿-2m"

Mz- Mt
ørN(0) : 3 m"fñ-l

This gives a value for ø"7y(0) of 26.5 MeV

As we have neglected the nùu - m¿ tercn, this expression measures the level of symmetry

breaking when the up and down quarks acquire the same non-zero mass. In deriving equation

(3.20), we have assumed that the strange quark content of the nucleon is very small. Consider

the quantity y which is a measure of the strange quark content of the nucleon,

< ,núlssl,nú >
(3.21)

Instead of writing (3.13) we write

orN : ñ' < Nluu + dd - 2ssllú >
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This is an exact equation. If we do not assume y is zero, then we find

ørN(O) :3 (1 + 2a). (3.23)

If the value for o,¡¡(0) is compared with its experimental value of 45 MeV, then y equals 0.4.

This value seems very large, however we have not yet considered the non-analytic contributions

to the sigma term. We shall see that when these terms are included, the sigma term can be

understood without appealing to a large strange quark content of the nucleon.

3.3 The experimental value of on¡v

We will use a more sophisticated technique for determininEonN. Before we do this, we shall

consider the 'experimental'value with which our theoretical estimate will be compared.

Consider the pion-nucleon scattering process

( tw= - M¡\
I 

-t

\m"lñ, - t )

The S-rnatrix for this process is

¡ú(p) + no(q) - ¡ú(p') +n¡(q')

exp(-iq' . z) < p'lT(ó¡(r)d¿(0))lp >

(3.24)

s : I - i(2r)46(p + q - p' - q')(q' - *'^)(q'' - *'")

I (3.25)

- I - i(2tr)a6(p + q - p' - q')T¡¿(r,t; q',q''),
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with¿: (p- pt)z and

Using PCAC,

T¡{u,tiq',q'') : (q' - *?) (q'' - n'")

Í"*? f"m'" I anze*p(-iq' . ,) < p'lT(ôrAl(z)ô,AiQ)lp > .

Evaluating (3.28) we have

T¡,;(u,t; q",q'') :

'Using

we see that

(q' - *?") (q'' - *7)
f"m? f"*?

1 p' lq rq,T lAi Q),¿Î ( o )l * * i q',6 (zs)lAl þ),Ai (0) l

- 6(zo)lAl Q), ð,Al (o)l lp > .

ð"AiQ): -ilQl,/1(o)1,

I

1

T¡r(0,0, 0, 0) : -; < p'llQl,[8j, ø10¡11¡o tJ; 
_ _ r"ry(o)

T2Jr

t
il

fl

where X"7v(0) is the sigma term.
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T¡¿ can be determined from experiment. However, it wiil not correspond to T¡;(0,0,0,0)

as this is an off mass-shell amplitude. Various schemes can be used to relate T¡¿(0,0,0,0) to a

physical value and we will mention some of them now.

Cheng and Dashen considered the isospin even amplitude, T+ to arrive at

?*(0, 2m2*,m2*,*?) : -T(o,o, 1¡, o) + o(n'¿I)

E"7¡(zmf;)
(3.31)

Ín,

which is an unphysical point. We can extrapolate back to this point from the observed amplitude

by using a broad area subtraction relation, with the result

1|*(0, 2m2,,m2*,,*'*) : (L.2 + o.l)m^t (3.32)

which gives E"¡¡(2m2*) :77 16 MeV

More general schemes have been considered, with a more general ansatz for the amplitude,

and more precise extrapolation techniques. The latest value of E*¡¡(2m]) is 60 MeV. This value

is not in agreement with any credible estimates of ø,¡¡(0). This is not surprising as there is

no reason to assume the ú dependence of o"¡¡(t) would be weak. If we consider the dispersion

relation [19]

t [* ,,;I^Im[a(r')].J+*"*t'(tt-t-ie)a(t) - o(0)
1t
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In the region 4*7 < t < l6m2*,

Imlo(t)l : !, 
*lw*f _ ,t

. 4*'*
t ), (3.34)

where f;(ú) :< no(p')lñ,(au + dd)|"(p) >. The energy dependence of f"(r) is determined in

ref. [20]. If we use the Omnes function

Ao(t) : ó3(¿',)
(3.35)tt-t-ie'

where á3(¿) is the IJ : 00 zr - zr phase shift, then \rye can find ff(t) by considering

t rh dtt_t
r J+*"* t'

(3.36)

which can be determined by using a dispersion relation. As t is varied, various processes will

become important, such as rit --r IúI[, clearly giving ó$ a significant energy dependence. When

ó$ is determined from zr - zr scattering data, we find

Lo : o(zM]) - ø(o) : r5.2 t 0.4 MeV (3.37)

The.uncertainties for Ao arise from the calculation of ó$

It can be shown using current algebra [21] that

f:A*(0,2m2*): o"7¡(2m2*) f higher order corrections.
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Comparing this with the analysis o1l22l

A*(o,z*?):"--P (3.3e)

we can see

A¿ has been calculated using XPT, and was found to be 0.35 MeV [23]. Given this, the latest

value of ar.¡y is

Ð"¡'¡ (2m2,) : onx (2m?) + n".

o"r(0) : 45 *.l2MeV.

3.4 Non-analytic contributions to the sigma term

The Feynman-Hellman theorem [14] gives us

õ^¡ ^ aMk
ztulNorN:* 

Añ.
(3.42)

We can determine the LNAC to the sigma term by evaluating equation (3.42) with and without

the loop corrections included in the mass formulafor Mfu.

The first order mass formula was derived in chapter 2 by considering the lowest order

i,-
b
T

L1

t,
it
t-J

fr
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perturbation from

IHt: Jd3r(m,uu+nxddd*zn"ss). 
(3.43)

If we apply the Feynman-Hellman theorem to Mfu, as described by the first order mass formula,

and use eq. (2.39) to determine Bu and Bd, we would find

However, there are higher order corrections that appear in the second order mass formula,

resulting from loop processes. Using the Feynman-Hellman theorem wit'h Mfu described by the

second order mass formula, we have

2MNonN : ih(B* + Bo) + nfidui. (3.45)

We note that if we applied the Feynman-Hellman theorem using the first order nucleon

mass formula we would have

2M¡to*x(o): ,ñ-]klM'* +i#atM|- Mi) - M\l

2M¡¡ o*7¡(0) : ñ,(8" + Bo)

(3.44)

(3.46)

(3.47)

Equations (3.46) and (3.a5) are the same formula, however the meaning of the term Bq rs

slightly different in each case. In the first order mass formula for the nucleon,

Mk:M3+ñ'(Bi+BÐ+m"Bå
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can be used to express the nucleon mass in terms of Bff,B$, and 'Bj. When the non-analytic

terms are considered in the expansion of the mass formula, rrr'e can- consider adding the LNAC

outright, or consider new values lor Bq, viz

B3: Bs + 6Bq, (3.48)

hence 6Mk : fn(68" + 6Bd), with similiar expressions for the other baryons

Using the second order baryon mass formulae to solve for Bu and Bd we have

2M¡¡on¡¡(0) : fiL^ * *"1,M'* +i#AfM|- M'n) - M\l

- #t-^ * * 
"16 

M'* - i #ã@ M z. - 6 Mi)l

+!ffivuna ra
+M?l + (3.4e)

aM] 2 aMk

Comparing (3.aa) and (3.49), we can identify the third part of equation (3.49) as the LNAC to

the Sigma Term. Chiral perturbation theory tells us

M1 :Brh+h.o.t, (3.50)

SO

M:
oM"*
aM:' (3.51)

However, the light quark also appears in the mass formula for the K and r¡ mesons as well, thus

aM,*
añ

n'ù
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we have

(3.52)

which is the third component in (3.49)

Historically, equation (3.49) was evaluated with 6Mp determined using chiral perturbation

theory. The LNAC from XPT actually decreased the value of. on¡¡. This was because the

corrections to the nucleon were too large to treat in such a way. To avoid this problem we use

the CBM, which has been very successful in calculating baryonic properties in the past. The

value o1 6MB refers to the difference between corrections to Ms for the real pion mass, and

corrections in the chiral limit. We can see this by considering :

in the chirai limit Mo : Mb*"+ LMfr, (3.53)

with finite quark masses Mx: Mbu,"+ÐbnqqI LMN, (3.54)

^W- 
: M:(#1 .'r& + !firt un,

q

where LMx and AOM¡¡ are the meson loop contributions to the nucleon mass for massive and

massless mesons repectivelyrbo: Bqf2MN and Ma*. is the nucleon mass in the absence of

quark mass and meson corrections. The difference between equations (3.53) and (3.54) gives

the linear version of the nucleon mass formula.

In static approximation for the baryons, the loop corrections to the nucleon mass are
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given as 124,71

(3.55)

Therefore, including for the moment only the pionic contribution, the LNAC is found to be 1

. ì î 3f'*N* /- kau2(k)dk
-,,.1y : t 

-

Trn? Jo ux(M¡v - ux - M¡v)
, 4fk*- [- kau2(k)dk-n*?Jo@

#. o | :&r4* (k n)1ffi + ffi . ffi)

oi¡,,(o) :+ I o'* < Nló1¡t/ > .

(3.56)

The first two terms in (3.a9) are the valence quark contribution (VQC) to the pion-nucleon

sigma term. The only unknown parameter in the VQC is the value of the baryon bare mass,

Ms, and that is easily determined.

Expression (3.56) is identical to the corrected version of the LNAC to the sigma term

determinedin [18]. The correctedversion appeared in [25] and was found by evaluating

(3.57)

t.frua' = 2f ¿.¡vn
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3.5 The Baryon Bare Mass

If we are to use expression (3.49) to calculate the sigma term, then a procedure needs to be

found to determine Mo. In the work of Gasser and Leutwyler [16], two approaches are men-

tioned as possibilities. One is to consider a range of values of Ms,, and the other is to appeal

to independent evaluations of yo, which is a measure of the strangeness content of the proton.

Either method will determine a)frr, although we feel neither method is satisfactory.

Using our notation, \4/e have the first term in equation (3.49),

(3.58)

(3.5e)

(3.60)

(3.61)

which can be re-written

with

Fe
1:-
2

28"
Uo: 

"u 
* 

"¿t(ñ-*")(8"-8"),

and

1
De (ñ-*")(8"+8"-28\.

2

For various values of Uo, equation (3.59) can be determined.
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Gasser and Leutwyler do not commit themselves to the method for determining Ms, or

!s, and write in ref. [16] (on the disrepancy between the theoretical and experimental value of

onN)2

We do not intend to argue about the possible aalue ol Mo or yo. Instead we

determined those aalues of on¡¡ which are cornpatible wi,th the meson and baryon

spectrum, leauing open the actual aalue of Ms or Ao. ...

They then go on to conclude that the bare mass must be less than a certain value for the sigma

term to be compatable with data. This will be discussed more later.

This method is unsatisfactory, not least because it is not self consistent. More importantly,

if one is restricted to determining onx by a fitting procedure with empirical values, then one

cannot gain a good measure of the accuracy of one's treatment. The method we will use to

determine Ms (hence the valence quark contribution to ø,.¡¡, ø|frr) involves two assumptions

1. The higher order corrections to the baryon mass formulae are dominated by the loop

corrections, as described by the Cloudy Bag Model,

2. The up quark content of the proton is twice that of the down quark content (8" :

2Bo).

This method is far more self consistent, and allows us to examine more critically the role of

decuplet baryons in value of the sigma term.

2In 
[16] they use y to denote the term we label y6
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We can rewrite the mass formulae for the I/, E and Â, baryons with B" - 2 Bd , giving

Mk : ¡W3 + ñ\Bd + nx,B' t 2MN6Mv

MZ : ¡w3 + ñ.(Bo + B") t Zm,Bd * 2Mz6Mz

M"n: M3 +!t "'+ 
4Bd + B") +ff{zad - Bd +2r,) +2M¡,6Mt (3.63)

This is no\M a simple set of linear equations. Solving lor Ms, B" and Bd we have

66MzMzñ, - ñ-I86M^fnMt+9fnM2^ * l06Mwñ,M¡¡ - \fnM'?N

-ñ, + m"

66MeMzm" - 3MZm" - 726MrMñn" -16M2¡m" + S|MNMNTv. - 4M2*m"

t

M3

(3.64)
-ñ. * m,

The motivation for this work, which will be discussed in greater detail later, was that the

effect of including certain processes in the calculation of the LNAC was not certain. The two

dominant contributions to 6Mn, hence the LNAC to o,7¡ are shown on fig. (3.1). It has been

remarked that within the framework of chiral perturbation theory, contributions to ø,,¡¡ from

process (b) in fig. (3.1) are absorbed into a redeflnition of B" and Bd and have no effect on

the value of on¡¡. We compare the values of 4,..¡y with and without process (b) in the following

section.

Our final expression for the valence quark contribution to the sigma term is then

3 nx
l3M'^ - M3 - zMk +DO

o"¡V
2M¡¡ m" - ñz
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Figure 3.1: Loop processes that contribute to LNAC to ø,.¡v.

6M3+ 26M'?N - 36M'z^]. (3.65)

The second half of equation (3.65) should have a small component with non-analytic structure.

This is a consequence of our method to deterrnine Mo and should be quite small, and for the

moment warrants no further investigation.

3.6 Results

The details of the loop corrections to the octet baryons are discussed in the next chapter. Using

the CBM to determine 6M¡¡, 6Mz, 6M¡r, (the discussion of this is found in section (4.5)), and

the CBM to determine the LNAC to the sigma term, we found for the CBM radius [0.6, 1.2]

fm the results shown in table (3.1), with

o¡N:"1**+oI*!*,, (3.66)

with aj" being given by equation (3.65), and oI^!¡¡ the third component of eq. (3.49). The sigma

term will consist of both analytic and non-analytic terms. øjr has been considered analytic in

the quark masses, and is known as the valence quark contribution to the sigma term.
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Quantity wi Dec Without Decuplet
6M¡'t 55.3, 18.5 [34.5,12.8]
6M¡ 129.4,8.6 1t2.7,4.21
6Mz 7.4,2.31 [1.4,0.5]
olrc [19.5,18.4] [20.6,18.7
o71v 47.9,13.71 29.1,,9.r

CrN 67.4,32.t [49.7,27.7)

Table 3.1: Results for pion loop processes oniy.

3.6.1 Pion Loops

BO

60

20

a)

u)

E
L_
C)
F
o
E

'?(n

+o

0

U. t) 0.8 1.0 1.2
BcA Rodius (fm)

Figure 3.2: A comparison of ø,.¡¡ with and without decuplet contributions(pion loops only)

A comparison of ø,¡¡ with and without decuplet baryons is shown on figure (3.2).

The error associated with the value for ø,.¡¡ as a result of the uncertainty in the values

for ñ' and m" was about 14 MeV. Regardless of the errors, clearly the including the decuplet

processes in 6Mn and ol,fu improves the value of on¡¡. The sigma term with errors is represented

graphically on fig. (3.3).

Decuplets included
Octets only
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Figure 3.3: Pion-Nucleon Sigma Term with errors.

Quantity With Decuplet Without Decuplet
6Mrv [111.9,29.1] [73.3,20.3]
6M¡ 303.3,75.51 1249.8,64.31
6Mz 354.0,87.21 125t.2,67.9)
olrv [-30.8,5.5] -34.1,4.8
o+!N 49.1,13.8] 129.9,9.21
orN 18.3,19.31 -4.9,L4.0]

Table 3.2: Results for all meson loop processes.

3.6.2 Inclusion of all light mesons

The inclusion of the K, K and ? mesons decreases the value of oI*y¡ quite significantly. The

results are shown on table (3.2).

A comparison of the pion nucleon sigma term with and without decuplet baryons, for

processes involving all pseudo-scalar mesons is shown on figure (3.4).

It is apparent that the inclusion of all SU(3) mesons destroys the accuracy of the method

Ðt



used to determine the sigma term. However, it is also clear that the theoretical value for ø,.¡¡ ts

closer to the experimental value when decuplet processes are included in the calculation. This

will be discussed later.

O

U)

E
t-
C)

t--
o
E

'u)

BO

60

40

20

-20

0

0.6 0.8 1.0 1.2
Bog Rcdius (t-)

Figure 3.4: Sigma Terms with all meson loop processes included.

3.7 Conclusron

Our analysis of the sigma term has produced the following

o The LNAC to the sigma term increases when processes involving decuplet baryons are

included in the calculation.

o When processes only invoiving pions are consiclerecl, the theoretical value is very close to

the experimental value, although because of the uncertainties involved, including decuplet

processes is not crucial to reconcile theory with experiment.

Decuolets included
Octet's only
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o The inclusion of processes involving all SU(3) mesons increased the value of oI"!¡¡ slightly.

There \/as a rather substantial decrease in the value of oln¡¡, resulting in the total value

for the sigma term falling well beiow that of the experimental value. The inclusion of

processes involving decuplet baryons produced a value closer to the experimental value,

however this value (1S.5 MeV) is far too small to be considered satisfactory. It is iikely

that when perturbing about ffis:0, truncating the expansion after the 6M2" terrn is not

sufficient. This is currently under investigation.

o As we have seen, an evaluation of the ø,.¡¿ term within the constraints of the CBM gives

a different value with and without the decuplet baryons. This is in disagreement with the

work of Gasser and Leutwyler 1271. Their contention is that the inclusion of the decuplet

baryons will be absorbed into the redefinition of the constants -B., and B¿, as the contri-

bution will be linear in the quark mass. This will be discussed more later.
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Chapter 4

The Cloudy B.g Model

4.L Introduction

While QCD has had many successes, most notably in the use of QCD sum rules [26], and in

lattice calculations, it still yet to be shown that QCD predicts the confinement of colour. In

many situations, it is acceptable to use effective theories to model strongly interacting parti-

cles. While these theories may not be useful for all situations, they are easier to work with,

and readily yield testable results.

4.2 The MIT B"g Model

The first bag model was developed by Boglioubov in 1967. In this model, the quarks are assumed

to be massless particles inside the bag, and infinitelymassive particles outside it i.e. [7],

w(r) - -ffi, r1R
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W(r):9, rlR (4.1)

where W(r) is the scalar potential and -R is the bag radius. In the limit rn --+ ag we achieve

confinement. Solving the Dirac equation for the potential (4.1), and imposing the boundary

condition that the quark current should vanish at r : -R, leads to the quark wave function [7]

IÞ*,-t(fl: N,",_l

Øù+

j"(i)

iõ.î j1(i)
X

LL

1-
2

(4.2)

This wave function can be used to calculate various properties of the model. The problems

with this model were numerous, however it was never intended to be a serious attempt to

model baryons, rather a starting point for further investigations. The MIT bag model modified

Boglioubov's model by introducing more consistent boundary conditions, thus confining the

quarks in a Lorentz invariant way. Boglioubov left .R as a free parameter, to be determined

by a comparison with empirical values. In contrast, the MIT bag model's constraint upon the

value of -R came about as a result of an additional term in the Lagrangian (or the energy-stress

tensor). That is,

T#in: gË:" I Bgr")@v (4.3)

Now, if we demand conservation of energy, (ôrT#ío: 0), then it is straight forward to show

that B represents a pressure term which stabilises the system, and that the radius is determined

as a consequence of the value of B. The value of B is assumed to be the same for all baryons

- an untested assumption. However, in light of the successes of more sophisticated bag models

based on the MIT version, it is reasonable to assume that this is a good approximation.
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The Lagrangian density is given as

f 3 í e
Évrrr(r) : lt ;qo I qo -

Li=t z
m¿4¿8¿

1
Oy - B@v

2 i=l

where

Oy : 1 insidebag

Oy :0 outside bag

and the surface delta function, 45, satisfi.es

0þØv : nP LS. (4.6)

The MIT bag model is mentioned here as an historical prelude to the chiral bag models. A

more detailed discussion can be found in references [7,28-30].

4.3 Chiral Symmetry and the Bag model

A fatal problem with the MIT bag model is that it does not possess chiral symmetry. If we

consider the infinitesimal chiral transformations

q+ q-i(r.elzh5q (4.7)

t¡
F
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4- 4-iqtu(r-.c|z)

Lwrt --+ 4vur * rrøh', 
tul*d rï nov * |4r-.exø6 r.

Lo : |Oart'- qú(o t ir .ytu)rþ +Lr{ar")' +r1{arr)' - u(o,t) + "o

u(o,r) : ìro' 
-t r') * *ø' + n').

(4.8)

Obviously the MIT bag model is not chirally symmetric, which is a problem given that one of

the features of massless QCD is chiral symmetry. For the moment we will restrict ourselves to

the SU(z)x SU(2) group, which has 3 corresponding Goldstone Bosons, the pion iso-multiplet.

The obvious starting point for the development of a chiral bag model is the sigma model. The

Lagrangian for the sigma model is

we frnd

or

(4.e)

(4.10)

Lo:Ls-U(o,r)+co. (4.11)

(o,t_) are the boson flelds, t/ is the nucleon iso-doublet. U(o,r') is a the potential, and is given

AS

(4.r2)

Lo - U(o, n) is invariant under a chiral transformation. A detailed discussion of the sigma

model is given in ref. [31]. It describes the symmetry features of hadron physics, but is not
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goo{ enough to be a serious candidate for a model of low energy physics. Fatally, it predicts the

existence of a massive scalar meson, which has not been observed. This problem was corrected

in the non-linear sigma model, where the boson freids are defined (making use of 02 + T2 : f|)

6,: /,cos(óll")

r : f*$sin(./lf")

gú(o r ir .rtuY(- -gf*tþexpfiftù,t'

LcsNr: Ltvtrc * Ln * Lt,

(4.13)

The term in which we are interested (for the purposes of a chiral bag model), is the nucleon-

boson interaction term. Under the above substitution we get

(4.14)

4.4 The Cloudy Bag Model

It was the coupling term given in equation (a.1a) that resolved the problem of chiral symmetry

breaking in the MIT bag model. After a low order expansion in powers of the pion field, the

Lagrangian for the Cloudy Bag Model (CBM) is given as

(4.15)

'

I

l

tr
l:
l¡

E

H

ljI
e
þ
I

Ê

li

l,
tr
l(
t-
,

t:
1ì

il
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where

L,,'r : fiøÞ q - B)@v - 'rooor, (4.16)

Ln:'¡{ar*)" -T^?n',

tr: aOøt-.LtseLs.

and (4.t7)

'We can think of the cloudy bag model describing the nucleon as a bag containing 3 confined

quarks, surrounded by a pion cloud. The pions are 'allowed' to enter the bag, however the only

interaction between quarks and pions is at the bag surface. It is the surface term (4.18) that

restores chiral symmetry. In deriving the CBM Lagrangian, we have to assume that the pion

freld,, Slf* is relatively small, so expanding exp(ifts) to frrst order is a good approximation.

Furthermore, rffe have to assume that the quark wave function is not perturbed to any signif-

icant degree by the pion field so the CBM quark wave function is the same as the MIT quark

wave function.

The equations of motion are found to be [32]

i lq :0 inside the bag,

(4.18)

(4.1e)

ilrn'q: e,

;

i'

t
:l
il
F

t:

Ê
h.
tí

È

ti
i!
ir.

I
t1

l{
ir

H
Ë
i!

I
ri
f,

t

bô

(4.20)



" 
: -.I,.ô[qq] and

(ð" + *?)r(") : 
finru,nn r.

(4.2t)

(4.23)

(4.22)

The first three equations are the equation of motion and boundary conditions for the MIT bag

model. Equation (4.22) is the Klein-Gordon equation in the presence of an external source

This is a general summary of the CBM. A more rigorous and complete discussion can be

found in [7, 32-34,,24]. It is not our intention to eniarge on the achievements of the CBM. Our

interest lies in using it to model the contributions to baryons masses from loop processes. 
'We

will examine this in more detail now

4.5 Loop Corrections

4.5.L The Hamiltonian Formulation

The easiest way to examine the CBM treatment of one-loop processes is to use a Hamiltonian

formulation. We know

IH- d3rT$fly¡(r)
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where

and we can show

L,: 
hqt.þtsqLs

(4.24)

(4.26)

räÄ*(*) : ffiu, - sp, Lcllr(").

We can quantise the pion field

with ø(Ë), rf 1Ë¡ satisfying

Substituting

into (4.24) we get llcs1d. ,C¡ is given as

ó ¡ (í, t) : I øf-L-- lo 
¡ çË¡ "0Ê' 

+ .! çÉ¡ e-'t'']

lu ¡(É), o ¡, (Ë,)l - ¡"j 1Ê¡, "1,(Ðl: o and

lú",,_r,Þ^,-t(fl: , '1$r); X
I'L

1
2iê.îi{i)

r.

'1

l
fl

qítuq: ,t Q"rÇl )xo )îjt
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Noting that the Bessel functions are real, and that '/5 and 7e in the Pauli-Dirac representation

are

1s: and 'ys - (4.31)

we get

We now have

where

Strictly speaking, flurr is found to be

H:Ht¡rtlHn*Ht

fÄ,rrr:toIM,o.

)(
ur
E JoHt )õ .ir . þxt x.

ur
E(

Oy

(4.32)

flMtt : d3u Q?it' v)q * -B +I 1

,
8

D
ø=7

E3 _ BÐ](

i

I
!

t:
lr
il
I

However, as the non-exotic bag states, c, should be eigenstates of fÄ,lrr we use expression
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(4.34). The pionic hamiltonian is, as expected,

and

where (in a spherically symmetric bag)

P is the projection operator onto non-exotic states,

Hn -+ I d,3ku(k)ai1É¡,-,çÉ¡

P HrP : Ð* ffirf: BI aø¡¿ -l hermitian conjugate)

(4.3s),fï : #@# | a"*.*p(tÉ.t¡a1,-,R) < þlv,o%qlo> .

t lo >< ol.
all non-exotic states

1 f)

Given (4.32), and

we get

P-

¡¡z

- 2f* (2u¡,)tlz
d3r6(x - A) < plõ .fr¿la >

1110

- arB3j3(0)0_1

I47tR3 çI - | (4.4t)
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Now,

and

we get

exp(iã ' ã) : a"D\t ¡tç*a)Yth9' , ó')v,^çe, 6¡ (4.42)

(4.43)

(4.45)

(4.44)

Im,

,[ + +"t)r" 
o -,Y ¡"(o', ó' )

I onu;rt' , ó')y,^,(o' , ó') : 6y¡6,n,,n,

I ana .ra¡(É)expþË . Ð : 4ri{kr¡a .îeaçÉ¡.

o.r:

where (0',ó') are the angles for r,-8, while (0,ó) are co-ordinates associated with â. Using

equations (4.43,4.42,4.47, 4.40), we have

r-
J ana .îa¡(É)exp(iË. É) :

I onn" { ! | t ¡,çc n)y,h(|', ó')y^(0 d) t ( - 1 ) 
p 

o -,yv r(0', þ' )

Making use of

'.
I

;

i!
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Multiplying equation (4.4I) by k lk we have

and

sY"

we have

Now, it is straightforward to show that for pionic transitions

3r
< tú"-¡lÐ,À"0õ".Êlw"-, t:; < ¡úlÀid.Ël¡r t

o,=1

where the s - / subscript denotes the baryon spin-flavour r¡¡ave function. Thus, by writing

(4.47)

(4.48)

(4.4e)

(4.50)
5ç¿

-9f)-1'

(4.51)

We do this in order to compare the CBM with other baryon-meson theories, such a static

,{n* : øfuffi"qn¡,,a.Ë

lr
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(4.52)

where u(k) is a simple "ad hoc" form factor. This illustrates the beauty of the CBM - the form

factor is a consequence of the phenomenology

4.6 The General Baryon Vertex

We have the general-baryon baryon vertex

interaction

which can be simplified by defining

and

',if &): i'/ tr
Ët"u 

.Ër'B 
, (4.53)

S: Ë s|)s;, (4.54)

o

m=-7
+1:to

m=-L
+1

r=-t

+1

(1)
o,n1, ^*öm¡ (4.55)

(4.56)

(4.57)

? : )- T!o)î1..

À' : I ¡o.(a)in*,
r=-1
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with f; and 3; unit vectors in a spherical basis and ø the quark label.

The various meson transitions are represented by the various Gell-Mann matrices, viz

I (Àt+i^2),h for p-1,
t/,

1 1
(Àn f i)u), + (ÀutiÀ7) for p:I12,

r/, J'

and

Àl:)r for p:9.

1

where

ìl:+ (4.5s)

(4.5e)ÀI:+

(4.60)

The values of p : l,ll2,0 correspond to pion, kaon (and anti-kaon) and eta meson transitions

respectively. For the kaon transitions, the operators in equations (4.56) and (a.57) will be

defined in terms of two unit vecto.r, fii, and for the eta transitions, these operators will be

defined in terms of one unit vector, í3*.

Now, the Wigner-Eckart Theorem states [35] that the matrix elements of an irreducible

tensor, T!u) 6"t*"en two states, lóYi > and l$l| > is written (in the notation of ref. [3b])

< ó';lr!ùlófr >: D (ïlf) < pzllyllt , >.,, (4.61)

(r:tr,) (4.62)
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is the Wigner 3j symbol and the reduced matrix element depends only on the representation

involved, i.e. is independent of the azimuthal quantum numbers. The reduced matrix element

does not need to be evaluated explicitly. Given

and

(f:lf') : (-1)un+vz-2ttt (2pr-, I r)-t/zg"l"r!í"^,,

for the a/óp coupling we can write

s# :<.9,s" l.9S) ls Bs B ):1s, I lsÍl) I IsB > c"{rT;: tffi)u'

v@)'Þ :< T.t,lTÍo)lTBtB ):( r,llrln)1lTB > t4;;;-f# ul','

If we write the reduced matrix element as Coþr , then we have

1 S o s oT ot .,lTn S 
^l 

S B s BT Bt B > : C" P C "sfuT;: CF;;; 
"

\Me can now see that

3"B . ÉriB : D \c"o cfiT;:c\;;;"(fi. . e¡)gi . É)

(4.63)

(4.64)

(4.65)

(4.66)

(4.67)
TfI, T

lCoP incorporates the factor of (ffi)rl2
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Comparing baryon-baryon vertex using quark and baryon degrees of freedom, we find

and if we define the aB$, coupling constant to be

foþ, : C"þ fo,

and use the symmetry properties of the spin flavour wave function of the baryon, then

#r"o 
t"f,T;: cle;;;. : # 1 0"- ÍlD, 

^i*, 
6" 1o"-, t å,

foþ':rnrn^Wl,
) {els:uiu,ri. o

(4.68)

where gr: #.We have calculated the ratio gf"Pi l\(g¡ga) using mathematica, and the results

appear on tables (+.t) to (4.4). If we compare equation's (4.51) and (a.52), we can see that

2r"
g¡: t/ tr f N¡vn.

(4.6e)

(4.70)

(4.71)
Mn

'We can now relate all coupling constants to the value of /,¿y¡¡,, i.e.

ep 1 d"-Í1"{},1;øl lþ"-¡ >
loþo :3\/41t

9n t13p'¡msd ¡ltBrtaw SBrSo wTBpTo

The value for /¡¡1y, has been determinedto be f?u**:0.031 [7].

^3
"flrll' U

(4.72)
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4.6.L The Baryon Self Energy

We now have the simplified vertex function

,,if :,# 
Ðtf;;;.t",r,Tå: 

f¡; . Ë)U;.' "i) "(k)
(2øo(k)(2r)3)1/2

Given the vertex function, we can calculate the loop correction to the baryon mass,

6M"(8"), where

16M"(8") :1 alHt HTla ),

(4.73)

(4.74)
(E' - Ho)

where fI¡ is written

Using the commutation properties of f/o, we find

Ht: ?? I o"rlU{b"o{h + hermitian conjugate] (4.75)

I6M"(8"): t Ð d3lc < alv¡(k)
1

Eo-Hs-ur(k) vj (k)lo >f (4.76)
PJ

Using DBl| >< Pl: 1 and ,îþ :< 
"lUlP ), we have

6M,(8,): t D
aß t aßr,"u¡ \u¡')

Eo-MB-rr(k)' (4.77)I d3lc

JB

If we substitute eq. (a.73) into eq. (4.77) we will have

f ott'

ffip I6r3ao(k)(Eo - M B - rr(k))
u2(k)ka

a

6M*(8.): 
? ++ l*r(
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'where

and

i.e. [36]

where

we can write

o : 
n,Ð I dnc"{Bi:s.c!Ë(.'" (3h, .ôG^ 'É)

a :Ðt t c:¡;;;"cie;;n(ü, . 

")(L 
. 

"¡)

(4.7e)

(4.s0)

(4.81)

rrr'to i

Given that an arbitary function can be expanded into a series of spherical harmonics,

l(0,ó): t am\u-(0,ó),
I=0

ûtm: 
lo"" 

of 
lo" "inovi*f @,ó),

3h' î,, : r[+ D?v "h-,tt,(o, 4¡

(4.s2)

(4.83)
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which can be simplfied by using [36]

\Me now have

(4.s5)

and

which gives A : +. Now, if we consider

u¡e can use (4.86), (a.87) and

s :li,tBÐc!¡;:;"c\r,¿(îi . e¡)(î,, . e¡),
T rTl

dQYi,,,(0, óWm(O,, ó) : 6u,6*^,,

c "rrr1;: c "{rT;: : lc'{uTi.:l' 6 
^,*,,

Ðî;.e¡î, .e¡ : t,

I

Jtf

togiveB:1.
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ratio ¡rr t
^

A Ð* f)

N 5 0 0 0 4 \/2 0 0 0

t 0 4 \/613 2 0 0 0 -4 \/Jlz 0

^
0 2 \/3 0 0 0 0 2{a 0

0 0 0 -1 0 -2 \/2 0 0

where foþ, i, the aBp coupling constant as defined in eq.(a.70). For the nucleon self energy

corresponding to the process shown in fig. (3.1) we would have

Table 4.1: Unrenomalised T d. P coupling constants.

We now have a simplified form for the baryon self energy, at Eo: Mo,

kau2 k dk
6M¡¡ : 

gf'*'!-" 
[*Tmi Jo

, 323fkN* f* kau2(k)dk- :b"*?Jo@

(4.e0)

(4.e1)

(4.e2)

a*(MN-an-MN)

which is in agreement with the expression for 6M¡¡ given in ref. [7]

Equation (4.70) allows us to relate the couplings for all SU(3) mesons to the nucleon-

nucleon-pion coupling constant. The ratio given in eq. (4.70) for the 4 mesonic transitions

is given on tables (4.1), (4.2), (a.3) and (4.4). Given this, we can find the seif energy for all

baryon-pseudoscalar loops. The mass correction corresponding to the proccess shown in figure

(a.1) is found to be

6Miu
I l"1

)' f* kau2(k)dk

lo o,r(k)(tt[N - o,Ák) - MN)'3r 25 t,

with arr(k) : k2 + mfl. The contribution, for this case, is clearly negligible when compared

with thc pionic corrcctions
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n

/ \t

N N'
Figure 4.I: NNr¡ self energy process

Table 4.2: Unrenomalised q a P coupling constants.

Table 4.3: Unrenomalised K o þ coupling constants

IJnrenomalised 1( o B coupling constants

N

ratio ¡\/ x
^

A f1* f¿

N 1 0 0 0 0 0 0 0

x 0 2 0 0 0 -2 \/2 0 0

1\ 0 0 -2 0 0 0 0 0

0 0 0 -3 0 0 -2\/2 0

ratio ¡t/ t
^

A t* f-)

N 0 1 -3 0 0 0 -2\/2 0

x 0 0 0 -b \/6lB 0 +l ls 0 0

^
0 0 0 -{z 0 -4 0 0

0 0 0 0 0 0 0 4

ratio ¡r/ x 1\ A t* f-¿

N 0 0 0 0 0 0 0 0

x -\1213 0 0 0 8l'/3 0 0 0

A 3\/2 0 0 0 0 0 0 0

0 5 1 0 0 2rt 0 0

TabIe 4.4
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Chapter 5

Checks of calculation

5.1- Overview

There are a number of known quantities that can be used as a check of our results. The Fortran

program that we used to calculate our theoretical values involved coupling constants that were

determined by a Mathematica program. The expression for the self energy of the nucleon as a

result of pion loops has been derived many times, however the treatment of processes involving

Sy(3) transitions is slightly more complex. To check this we reformulated the anti-kaon loop

processes into SU(2) (V-spin) transitions, to gain a comparison.

5,2 Couplittg Constants

In section (4.6) we derived an expression for the general baryon-baryon-meson coupling. We

compared the coupling constants derived with those derived from an OBE potential for baryon-
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a p p f.{le lMp(x 10-r) e,Bl(M. + MB)(x10-r)
¡'r ¡t/ 2.t2 r.97

^
t t.47 7.46

E t 1f 1.39 1.40

¡t/ ¡'/ rl 0.80 0.96

x t rl 1.68 1.87

^
¡t/ K 4.33 r.94

x
^¡

K 0.84 0.57

Tabie 5.1: Comparison of results derived using the SU(3) quark model and those derived from
hyperon-hyperon scattering in the OBE model.

baryon interactions. The interaction is characterised by the Hamiltonian density

717Þn - iCtþ1r15$ðPS, (5.1)

where rþ and S are the baryon and meson fields and C is the coupling constant, which can be

written ¡"Þnf Mn or g^Bf (M,+ Mò. foþ, can be determinedfrom equation (4.70) and goB is

reproduced from [37]. A comparison is shown on table (5.l)t.

5.3 Kaon Transitions

Using the method outlined in chapter 4, we would have

6M#:X1.ftt")r![ dkkau2(k) 3,-f¡uru,..r9 f dkk4u2(lc\
'* ,th,, ß J ux(MN - M|- ro) + ;lT)" * J ;;@;if -;õ' 

(5'2)

The procedure used to evaluate 6Me using SU(2) is well documented. The treatment of loop

corrections with SU(3), as is done in this report, is not. Of course, the loop corrections will be

the same, but it is not unreasonable to compare.

llt is likely that the OBE coupling constantst gqþt are constrained by SU(3) reìations. The discrepancy
between the two coìumns is a consequence of using real baryon masses in columì 3 i*n.n would have different
values in a theoretical "SU(3)-symmetric world',).
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Just as the octet baryons can be considered a super multiplet consisting of 2 isosprn

doublets ((",p) and (E-,Eo)) an isospin triplet (Ð-,Xo,X+) and the isosinglet (4.), it can also

be thought of as a super multiplet of V-spin multiplets. The V-spin multiplets are as follows

(X-, n), (Eo, X*) V - spin 1/2

(E-, Xo,p) V - spin 1

^ 
V-spin 0 (5.3)

Using the V-spin SU(2) subgroup we can then calculate the relative coupling constants of the

baryon-baryon-kaon vertex, providing a useful check for the method used in chapter 3.

The operators for the SU(2) subgroup can be written in terms of the Gell-Mann matrices,

V+:+()4+?À5)

Vs: -( Às
4

3I-'8rt
1

À'). (5.4)

(5.5)

More simply we can see that

I/+ls >-- -1, >,

V-lu >+ ls >,,

11
V3lu >: il", and l/3ls >: -;ls > .
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Using the same methods we used for the pion transitions, \4/e can relate all baryon-baryon-

kaon coupling to a particular coupling constant. The advantage of using SU(2) subgroups to

do this is that the working is simplified somewhat.

It is not our intention to evaluate every kaon loop correction. We will look at the coupling

for the .ô[ -r A,K --+ I[ and N --+ ÐK + I[ processes.

\Me know

rÀ/N i Q
,1, : 

--

-tex 2r"n-l
t

< I["-¡ lDr"oõ". ãl¡¡"-r tj'(kR)
KR

(5.6)

(5.8)

(5.e)

o,=7

(5.7)

where rff is the Su(2)v-spin Pauli matrix. Using the spin-flavour wave functions for Iú and X,

equation (5.7) is found to be

u k

o,H' : ##t#< N"-¡ li,|a".ãlt"-r t,

orH':o\h

Similarly, we will have

Using

(2w6(k)(2tr)3)1 úL

Ð . Nlrlnlx >: 3,

k.oa
I

I

{
¡

I
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we find the contribution to the nucleon mass from the lK loop process is

6Mff,:ifirffrr )'
k)

a6(k)(M¡¡ - Mx-rx(k))I (5.10)

(5.11)

(5.12)

which is in agreement with our term derived in chapter 4

We could use the above method to find

Using

K,,N^ - JJ3 gouki 5 2rx (2uy(k)(2r)3) 2

t < Nlr:lt t- 1,
x

we would have the same expression as is given in equation (5.2).

i.

{i
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Chapter 6

Discussion

6.1- Introduction

There are several areas that require discussion.

o The original motivation for this work was the role by the decuplet baryons in determining

the value of the sigma term. We are comparing our value, determined by using the CBM,

with a value determined using chirai perturbation theory. It is unlikely that this is the

source of discrepancy between the two sets of results, however the relative complexities

of the two methods suggests that the conciusion is not a closed case.

o The consequences of including all meson loop processes in the calculation highlights the

problems with Gasser and Leutwyler's expression for the sigma term (eq. (3.49)). If we

are to produce a credible estimate for the valence quark contribution to the sigma term

then we must develop a new expression. If one is to use the octet baryon mass formula

to estimate B" and Bd, then one must consider perturbing about TrL" :0. This presents

serious problems.
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6.2 The role of the decuplet baryons

The challenge of Chiral Perturbation Theory is to provide a model of QCD, which yields phys-

ical predictions by treating QCD as an expansion in the masses of the 3 light quarks. The

formalism for a given perturbation theory depends on the choice of expansion pa ameter, and

as a result there are various perturbation schemes. The role of the decuplet baryons in the

treatment of hadronic physics is not yet clear. Certainly there is a contribution, but it is not

yet certain as to whether it is significant. The role of the decuplet baryons in the various forms

of xPT is far from resolved.

In this section we review previous work involving the role of decuplet baryons in chiral

perturbation theory. We conclude that there are reasonable grounds to assert that the pro-

cesses involving decuplet baryons do contribute significantly to the pion-nucleon sigma term.

Furthermore, this contribution should be observed when ¡PT is used, and should not be a relic

of the phenomenology.

6.2.L The 'Work of Gasser and Leutwyler

The original motivation for this work v/as comments made by Gasser, Leutwyler and Sainio [19]

Their contention was that the A-resonance does not alter the value of the sigma term at order

q2 in yPT. If we define

onN:E¿*A

where A: A¿ - Lo - A¿
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and Xr.¡,¡ : X¿ * A¿.

X,iy is the experimental value of the pion-nucleon sigma term, with

Ðd: f|@to+2p'dt)

(6.1)

(6.2)

determined by considering the amplitude

-fD'(t): dln+tdto (6.3)

In [19] it was written

the constants d[o and d[1 must account for aII analytic terrns of order q2. In

particular they include the contributi,ons of order q2 generated by the singularity .. .

What the chiral representation forD* (t) at fi,rst non-lead,ing ord,er d,oes not account

for is only what rernains of the L.-term after the piece of order q2 'is remoued . ..

In [38] it is argued that the first observable effects of the intermediate decuplet states

appears at order qa, and that a closer look at higher order contributions is required.

While the comments in [19] may have been correct for order q2 (indeed, it is shown that

decuplet contributions are linear in rî¿ for order q'?in [3S]), it has become clear that treating

XPT to this order is not sufficient.

Generally, the whole question of whether it is productive to perturb about ,Stl(3)v sym-

metry remains unanswered.
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6.2.2 Further Studies of the Decuplet Contributions

When considering the octet baryon mass formula, and the role piayed by intermediate decu-

plet states in the loop corrections [38], there are many higher order terms that give non-trivial

contributions to the baryon mass. It is generally accepted that for a comprehensive analysis

of the role of decuplet baryons in XPT, a calculation of higher order terms in the expansion is

needed.

There is no doubt the decuplets play a crucial role in a complete treatment of ¡PT. For

example, in [39], it was found that if a heavy particle effective Lagrangian is used, the LNAC to

the baryon axial form factors is of the order of 100%. That is, the .9Il(3) breaking corrections to

the axial charge are approximately 100 7, of the total value. This is much larger than expected,

and it is found that the corrections are largely cancelled by including contributions from the

decuplet baryons [40].

The role of decuplets in calculating corrections to the Gell-Mann - Okubo (GMO) mass

formula, the Coleman - Glashow relation (CG) and the X equal spacing rule was investigated

in reference [a1]. It was found that including a decuplet term in the Chiral Lagrangian with

a non-zero mass difference (between octet states) did improve the CG relation. The inclusion

was insignificant in the calculation of the Ð equal spacing rule (as are all loop corrections), and

did not provide information regarding the GMO mass formula as any results would have been

model dependent.
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In the entire body of this report, we have used the Cloudy Bag Modei to evaluate the

effect of loop processes on the value of the sigma term. The CBM is a highly successful, albeit

simple, model of baryons at low energies. Gasser and Leutwyler use Chiral Perturbation Theory

in all of their work [19, 27,I4]. Chiral perturbation theory is superior in that when all processes

involved in the chiral expansion are considered, it should model Nature exactly (it should be

noted that ¡PT does not yield readily to analysis for anything but the simplest of perturbation

parameters). However, it is unlikely that the difference in models used is a satisfactory expla-

nation for the difference between our results and those of Gasser and Leutwyler.

In an explicit calculation, Rawlinson et al [25] frnd that when the CBM is used to deter-

mine the loop corrections to the sigma term, 47 per cent of the total contribution by processes

involving decuplet baryons is from the non-analytic component. Given that the sigma term, as

described by the CBM, exhibits the same analytic structure as expected fiom XPT, we can be

confident that the difference between our work and the work of Gasser and Leutwyler is not

the result of using different techniques.

6.3 Meson Loop Corrections

As we saw in the last chapter, the inclusion of íhe K, I{ and ? mesons loops destroyed the

accuracy of the expression used to determine ø,,¡¡. If one is to use equation (3.49), then all

pseduo-scalar meson loops must be considered in the evaluation of 6MB, where 6MB is the dif-

ference between the value of loop corrections for massive and massless mesons. As the masses

of the K,K and 17 are quite large, (æ 500 MeV), the size of the loop corrections are quite large,
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therefore equation (3.49) of little use to evaluate ø,ry. The problem lies in the use of the mass

formula to express Bq in terms of the octet baryon masses. As was mentioned in chapter 1, the

mass formulae are constructed by using the fact that Bq for q - u,d,s obey SU(3) relations

For this to be the case, the interaction Hamiltonian must contain rn"Ss

The size of the strange quark mass makes it unproductive to use the point ffis :0 in a

perturbation scheme. This does not present an insurmountable problem, as what we are inter-

ested in is evaluating the mass shift to the nucleon when the up and down quarks are given mass

One of the problems with using equation (3.49) is that the value of Ms is not directly

obtainable from empirical data (without further assumptions). After an extensive examination,

Gasser and Leutwyler state that for the sigma term to be compatible with data, we must have

Mo 1600 MeV, or y ) 0.3. This might be correct, however it is hardly a satisfactory conclusion

It should be noted that at the time of writing [16], it was generally believed that the experi-

mental value of the sigma term was 60 MeV. Furthermore, Gasser and Leutwyler were working

with a LNAC determined to be roughly 10 MeV. If Gasser and Leutwyler were working with

an experimental value for the sigma term of 45 MeV, then they would demand Mo < 1200 MeV.

WehavedeterminedMsLo illustratetheproblemwithusingeq. (3.a9) toevaluate orN.

When all relevant processes are considered, we frnd Mo > 1200 MeV and is therefore not com-

patible with the experimental value for on¡¡ of 45 MeV. The problem lies not with our treatment

of the loop corrections, rather the reliance on the mass formula to determine ñ,(8" + Bd). The

values fior Ms when various loop processes are considered are shown on table (6.1).
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Processes Octets only Decuplets Included
Pions Only 057.5,1085 [1066.3,1087.6]
All Mesons [1475.7,1196.0 [1330.7,1164.61

Table 6.1: Value of the baryon bare mass for various loop processes

A more straightforward demonstration of the inadequacy of Gasser and Leutwyler's for-

mula is to simply consider the value of Mo. For B" : 0 we have

M'* : ¡w3 + 2M¡¡oiqr,{ -l2Mv6MN (6.4)

Obviously ffi should be less than M¡¡. The fact that it is not is the result of. Ms being

determined by a series of expressions which are incomplete. The only way in which the baryon

mass formula, produced by considerin1 Ht : -(ñ(au + dd) { rn"Ss), can be of use is if the

expansion includes terms higher than those corresponding to one loop processes.

The fact that Mo is greater lhan Mw is a relic of trying to determine M¡ from an incom-

plete set of equations. Solving the octet baryon mass formulae gives m"B" I (M2¡¡) x -I 12 when

only pionic processes are considered and a slighily larger negative value when all pseudoscalar

meson loop contributions are included.

Using equation (6.4), we can see that Mo should be about 890 MeV

6.4 Remark : The GMO Mass Relation

If we truncate the expansion of the baryon mass after one loop then,

3 Mi M3 (MK+M3):LGM)?

1
6M3

1
I_'4

3:4ô

1

-,
1+-
4

4

Mi
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or, using the linear mass formula,

M¡
1

+43

4

1
Mx (M¡v -f Me): LGMO

2

: 
]a 

un + 
rua u, - 

t 
ru *- + 6 ME). (6.6)

This is the Gell-Mann Okubo mass relation. At flrst glance it appears that it may be a

decent test of our phenomenology. However, the GMO does not depend on the loop corrections

to the 4 octet baryons in the chiral limit, that is

(6.7)

where LMB is the correction to the baryon bare mass from massless meson loops. As the

contribution from kaon and eta mesons to the total loop correction for massive mesons (LMu)

is quite small compared with the contribution from just pion loops, the GMO mass relation

will hold regardless of the size of the contribution from kaon and eta meson loops. Put more

simply, LGMO will be small, regardless of the value of 6Ms, where

6MB:LMn-LoMa. (6.8)

The values of. L,GMO lor various loop processes are shown on table (6.2).

This section is included as a comment, and is not directly relevant to the study of the

sigrna terrn. IL is worth noting for interests sake, as well as explaining why the inclusion of kaon

^MN

3

4

1
+4 -t1to*X* aMS) : s,

^M9
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Processes LGMO (MeV
octets only, pions only -,b. r)

decuplets inc. pions only -3.4

octets only, all mesons inc. 12.7

decuplets inc. all mesons -3.6

experimental value 7.4

Table 6.2: A,GMO f.or various loop processes.

and eta mesons destroys the accuracy of expression (3.49), but not the accuracy of the GMO

mass relation. Eq. (3.49) depends on the value of loop processes in the chiral limit

6.5 A new expression for olqN

Ideally, we should look for a method to evaluate the valence quark contribution to the sigma

term that does not involve using the strange quark mass as a perturbation parameter. When

the strange quark mass is used as such, it is relatively straightforward to express ,i"(8" + Bd)

in terms of the E,ly' and À baryon masses. In the absence of strange quark masses, a similar

technique (as was used previously) would not be feasible as the bare mass, Mo, thut is, the mass

of the nucleon in the limit rî¿ : 0 (rn" l0), would not be the same for the E and Ä baryons.

However, the A and I[ baryons have the same quark content, thus one might expect

M¡t : Mo * ot,N i 6MN t o,\,h M (6.e)

and

Mt N Mo -l lSonx + 6M^ l1L,h M,
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where (a\,hM -1Lt'M) is the mass difference between the I/ and A resulting from the respec-

tive spin-spin interactions. Of course, it is no longer a simple matter of using H t : rîz(au + dd).

Using the quark model, one can paramaterise the octet-decuplet baryon mass splittings. One

such method is covered in great detail by Murpurgo [42,43]. The problem with using such a

parameterisation is that in order to obtain enough data to fit the unknown constants to, one

must parameterise the E and Â baryon masses, which was just what we were trying to avoid.

For example, if we modify Murpurgo's parameterisation to include non-strange quarks, we have

Mn - MMo' +Bt P: +CD@o.on)+ DÐ("o.ok)(p: + p;)+ E D @¿.o¡)pf -r
i>k i>k i+j+k, i>k

rÐrrf + P!) + G\(o¿. ok)(Pi + el + pi + el¡ + n D @¿. o¡)(pf + pl|iç.tt)
i>k i+j+k, i>k

where Pf is the projection operator for quark number i (q : u,d,,s). My'-'and B, C...H

are unknowns and need to be fitted to the baryon mass spectrum. It is reasonable to put

BIF: DIG: EIH:rn"lñ,, which gives us 5 unknowns. If we consider the 1/,E,Â,4 and

E* masses, then oÏo¡rr : 24.5 MeV. Still, this is really no more satisfactory than the method

used in the previous chapter, and is only mentioned to illustrate that even if one is to consider

the decuplet baryon mass formulae, it is still not possible to extract of,q* from the baryon mass

spectrum in a model independent way.

Clearly the expressions for M¡¡ and M6, given in (6.9) and (6.10), do not provide us

with enough information to evaluate oTlrr. The term LLM is the spin-spin splitting between

the quarks in the baryon, and can be calculated for the various baryons using the MIT Bag

model [7]. A discussion of the hyperfine splitting is found in ref. [29]. There may also be similar

processes that need to be considered, all of which could ultimately provide enough data to
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determine oi1* frorn equations (6.9) and (6.10). However, if one is going to use the MIT bag

model to calculate the effect of turning on the light quark masses, it would be much simpler to

evaluate ñ, < Nluu + ddlN ), where l,n/ > is the nucleon MIT bag model state. Jameson et al

have done this and find [45]

oÏq^r:17.5+9 MeV (6.12)

When this value is used to determine oil* (: oI*ò, we find that at fi : 0.84, orN : 44.5+I4

MeV (when only pion loop processes are considered to determine 
"1"Ð. 

When decuplet pro-

cesses are omitted, onv: 34.6 t 13 MeV.

The inclusion of the K,,1{ and ? meson loop processes increases d?rry by 0.6 MeV, giving

a remarkable agreement between theory and experiment.

This method is not entirely satisfactory because of the large size of the error. However,

as rvve saw earlier in this section, it is simply not possible to extract oily from data when the

baryon mass formulae are used to one loop or less

6.6 Conclusron

In this chapter we have discussed our calculation of the sigma term, with particular emphasis

on a comparison with the work of Gasser and Leutwyler. We have found that their technique

to determine ø|!y is unworkable, when treated completely. That is, when the loop terms in the

mass formulae include K, K and 4 processes. We have also observed that their treatment of ol-fu
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was incomplete, and made references to other work that reinforced this notion. Finally, when

we consider a method to determine olqr,{ that does not involve the strange quark, and evaluate

ø{f, with decuplet processes included, we find orN :45.1 MeV, in excellent agreement with

experiment.

One final note, in the body of this report, there have been a number of papers of which,

while they have not been directly cited, were extremely useful. These publications, ref. num-

bers [46-61] are listed merely as a guide to the interested reader.

97



Chapter 7

Conclusion

In this thesis we have examined previous attempts to calculate the pion nucleon sigma term.

We found that the attention given to the processes involving decuplet baryons and all SU(3)

mesons has not been sufficient in the past. As a result we examined a method to calculate ø,..¡y

that did not involve strange mesons and found that the inclusion of processes involving the

decuplet baryon gave a significant improvement to the theoretical value of on¡¡.
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Appendix A

Fortran Program

This is the original version of the Fortran program used to evaluate the sigma term. Modifica-

tions were made to evaluate the rà dependence. When calculating the sigma term for certain

processes, the relevant couplings were removed.

c

c

c

c

c

c

c

c

CONSTANTS

nb(i) - Mass of baryon i. mm(i) - Mass of meson i

fm(i) - Decay constant of meson i,

rad - RADIUS 0F BAG mpi - nass of pion

fff(I,j,o) - coupling constant between baryon I and j, meson o

N Number of points sampled for each integration.

ALL MASSES ARE GIVEN IN INVERSE FERMI ' S AND ANSI'¡ER IS GIVEN

IN MeV.

PR0GRAM final
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c Define constants

implicit double precision (a-h,o-z)

d.ouble precision ff(4,8,8) kc,h2

double precision wt, i,mb(a),totg,97,mbare

double precision rnpi,rad,uPP,factor(4),I,e1

double precision k,ep(4),h,fm(4),o, e,g4, sum4,sumS

double precision suml ,run(4) , c, d, sum2 , sum3 ,92 ,93 ,g4,zz

double precision tot1,tot2,tot3,tot4(4),totb (4),totO,tot7

d.ouble precision mhat,mstr, sigma,totg(4),totO,mz,dz

double precision p4,mn,mI,mc,dn,dI,dc,sig1,sig2

double precision sam2, sam3, sam4,tat1,tat0,tat2,tat3,tat4(4)

double precision tats(4),tat6,ta1'-7,tat9(4),h1,bs1,bd1

real nrpp

C Assign Values

n = 1000

nP1 734.9739/t97 .3

mm(t) 134.9739/197 .3

nm(2) = 548 .8/197.3

nm(3) = 493.646/!97.3

mm(a) = 493.646/197.3

fm(1) = 93/!97.3

fm(2) = !t7/!97.3

fm(3) = t25/197.3
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f¡n(a) = t25/197.3

factor(l) = 1

factor(2) = 0.333333

factor(3) = 0.5

factor(4) = 0.5

mhat = 5.5/1.97.3

¡astr a t30/797,3

mb(l) = 938 .4/197.3

nb(2) = 1314.9/197.3

mb(3) = 1115 .6/197.3

mb(a) = 1189 .41197.3

mb(s) = t232.0/197.3

rnb (6) = 1530/197 .3

mb(7) = 1385/197.3

mb(8) = 7672.4/197.3

C Coupling constants. Certain processes removed by removing

C relavent coupling constant, hence giving contribution equal to zero.

ff(1,1,1) = 0.081*3

ft(1,1,5) = (72*0.087/25)*4/3

ff (2,1, 1) = (1r,0. 0s1'r.3/25){.(fm(1) /fn(Z))**Z

il
l:

;:

il

H
a
!l

ri
r{

I
it
u

F
li
il

c
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c ff (3, ! ,4) = ( t'*o . 081*3/25) ,¡ (fm( 1) /fn(3) ) *,F2

c f f (3, 1 ,3) = (g*o . os1*3/25) *.(frn(1) /r¡n(e) ) *xz

c ff (3, !,7) = (8'rO. O8L*3/25)*(tm(1)/tm(S))**Z

ff (1, 4,4) = 48'1.0. 081t'3/(3"'25)

ff (1,4,3) = 4*0.081,ß3/25

ff. (! ,4 ,7) = 16*o . o8t*3/ ç3*25)

c ff (2,4,4) = (+xO. O8t*3/25),¡(fm( tr rt^ç2¡)**2

c ff (2,4,7) = (e,r,o. o8t*3/25) x(fm( 7) /fn(2))*>k2

ff (1,3,4) = !2*O .08I*3/25

ff (1, 3,7) = 24*0 .081*3/25

c ff (2,3,3) = (+,¡0. 081*3/25)*(fm(1) /tn(Z))**Z

c ff (3, 3 ,2) = (z*o .0s1*3/3) * (fm(1) /tn(s))*,Fz

ff (3,3,6) = (t0*,0 .08L*3/25)*(frn(1)/rrn(s))xxz

ff (4,3, 1) = (ta,*o .087*3/25)x(fm(tr7t*13¡ )x'*2

ff (1,2,6) = 8,k0.081*3/25

ff (2,2,2) = (g*.0. 087*3/25) *(fm( t, ¡t^ç2))**2

ff (2,2,6) = (4x0.081,k3l25)*(fn(t, ¡t^ç2¡)*x2

ff (3, 2,8) = (t0,¡o .087*3/25)x(fn(t, 7t*13¡ )*x2

ff (4,2,4) = 1*0. 081*3*(f¡n(1)/t¡n(e) )**Z

ff (4,2,3) = (1*0. 08t*3/25)*(fn(r)/rm(3) )**Z

c Îf (4 ,2 ,6) = (ex O . 08L*3/ 25) * (fm ( 1) /tm (S) ) ,F* Z

c

c

ff (1, 2,2) = 1*0.081t 3/25

c

c

c

c

c

pi = 3.141592653858

102



c

c

Open data files for output, rnodify narnes as required for

considering certain Processes.

open(1,

open(2,

open (4,

open(6,

open(7,

open(8,

open(9,

file='dinl . dat')

file= ' dín2. dat ')

file='din4. dat ')

file='din6.dat')

file='din7. dat ' )

file='din8. dat ')

file='din9. dat')

C Start loop for a range of values of rad.

do 35 zz = !,31

rad=0.6+ (zz-t)*0.02

sigma = 0

p4=0

C Start loop for each baryon considered.

do 20 I = t,4

totS(1) = 9

tot4(1) = I

tat5 (1) = 0
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C Start loop for each ¡neson considered.

do17o=1r4

totO = 0

totl = 0

tot2 = 0

tot3 = 0

totT = 0

totg(o) = I

tat6 = 0

tat7 = 0

tatS = 0

tatg (o) = I

C Start loop for each transítion baryon

do15j=1,8

sum4 = 0

san4 = 0

c Begin Integration.

do10i=1,n-1

C Define Gaussian Quadrature
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pp = -1 + z*(í) ln

if ((mod(i ,2)) .eq.0) then

ut=2

else

wt=4

endif

if ((i.eq . (n/2)) .or. (i.eq.n-1)) then

wt=1

endif

C For the massless pion processes, the principle value will need to

taken to allow the integral to be evaluated numerically.

The point upp represents the half way point in the integration

range. If the principle value integration is not required, the

midpoint is chosen to be 10 inverse ferrni.

kc=¡nb(I¡ -rnb(j)

if (¡nb(1) .gt.nb(j )) ttren

upp = kc

else

upp = 10

c

c

c

c

ì1

I
E

!i

I

fr

It

endif
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c

c

c

Notes on integration z g2,g3,g4 represent the tr¡o LNAC',s to the

sigrna term and the toop corrections to the baryon mass for ¡nassive

mesons respectivelY.

l¡ = (upp*(1+pp)/(t-pp))

h = 9* ( ( ( (sin(k*rad) ) *xZ) /(k*,kxrad*'r6) )- (2* (cos(k*rad)*

& sin(k*rad))/(k*radx,r,s)) + (((cos(kxrad))x*Z)7çt.¿*x+)))

ep(o) = sqrt(t<,¡t< + mm(o)'¡¡nm(o))

h1 = 9*( ( ( (sin(txrad) ) **Z)/ (t<*,kxrad'¡'¡6)) - (2*(cos(k*'rad)*

& sin(k*rad))/(k*radx*S)) + (((cos(t<xrad))x*z)/(rad*xa)))

c = 2*(ep(o),r,ep(o)x((¡nb(1) - ¡nb(j) - 
"p1o¡¡*'r2))

d. = 2*(ep(o)**3)*(nb(l) - nb(j) - ep(o))

e = ep(o)*(nb(I) - ¡nb(j) -ep(o))

g2 = (z*upp/ ((1-pp) x¡r2))*h/c

g3 = (2*upp/((t-pp)**z))*h/d

g4 = (z*upp/ ( (l-pp),¡*2) ) xh/e

tùhen the loop corrections are evaluated with massless mesons,

some processes require the integral to be evaluated using the

principle value method, as follows.

c

c

c

kc=¡nb(I)-mb(j)

if (mb(1) .gt.rnb(j)) trren
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C The above determines whether PVI is needed or not. If yes then -

8t

upp = kc

h1 = 9* ( ( ( ( sin (k*rad) ) x*Z) / (k*k,r,rad*,r6) ) - (2't' (cos (k*rad)'t'

sin(k*rad¡)/(l<xrad**s)) + (((cos(k'¡rad))*xz)/(radx*a)))

h2 = 9* ( ( ( (sin(kc*rad) )**Z) /(kcxkc*rad*x6)) -(Z'¡(cos(kc*rad)x

& sin(kcxrad))/(kc*radxx5)) + (((cos(kcxrad))*xZ)/(rad**4)))

e1 = kx(mb(I) - mb(j) -k)

if(k.eq.kc) then

g7 0

else

g7 = (zxupp/((t-pp)'*'+2))x(h1le1 + 2*h2/(k**2 - kc**2))

endif

C EIse, if the PVI is not needed, the integral is numerically evaluated

C as normal.

else

hl = 9*( ( ( (sin(k*rad) )x*Z) /(k,rk,trad*,F6) )-(2x(cos(k*rad)*.

&, sin(kxrad))/(k*ra¿*,kS)) + (((cos(t*rad))xxZ)/(rad*'*4)))

e1 = k*(mb(I) - mb(j) -k)

g7 = (z*upp/ ( ( l-pp) *,¡2) ) xht/ et

endif
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sum2 = sum2 + \tt*(g2)*2/rL

sum3 = sum3 + $rt{,(g3){.2/n

sum4 = Eum4 + vt*(g[)*2/rL

sam4=sam4+s¡,Fg7*2/n

10 continue

c

tot2 = su¡n2/3

tot3 = sum3/3

totO = ff (o,1, j)* (totz - tot3)/(mrn(t),rrnn(1)xpi)

tott = (toto)*197.3

C The following line sums over all ¡neson processes for the LNAC

to sigrna tern, the factors are included as required by expression

in report.

tot4(I) = tot4(1) + factor(e),rtot1

C The following evaluates the loop corrections with ¡nassless and massive

mesons, summing over all meson loops for given baryons.

totT = (su¡n4/3)xff (o,1,j )/(pi*mm(1)xmm(l))

c

c

totg(o) = totg(o) + (tot7)
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c

c

c

tat7 = (sarn4/3),¡ff (o, 1, j ) /(pi*nm(r)'rmrn(l) )

tatg(o) = tatg(o) + (tat7)

15 continue

totb(1) = totb(I) + totg(o)

tat5(I) = tatb(t) + tatg(o)

sigrna = m¡n(1),t¡n¡n(1) *tot4(1)

t7 continue

20 continue

mn, ml, mc and nz refer to the masses of the nucleon, lambda and

sigma baryons, thetrdrrpreceding each term refers to the total

contribution from loop processes.

ml = mb(3)

mc = nb(2)

mz = ¡nb (4)

dn=totb(1)-tarb(1)

dr=tot5(3)-tat5(3)

dc=tots(2)-tat5(2)

dz=tatS(+)-tat5(4)

bd1 = (2*dc,trnc - mc**2 - 6*dlxml + 3*n1¡**2 +

mn = ¡nb(1)

I.
I

t..

E
r!
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& 4*dnx¡rn - 2*mrL**2)/(-¡ntrat + ¡nstr)

c sigl one is equal to the valence quark contribuion to the signa term.

sigl = 3*nhat*bdf/(2,¡mn)

c output to files.

write(1,*) rad, sigma

write(2,x) rad, 197.3,t (sigl)

write(4,x) rad, signa + 197.3*(sig1)

write(6,x) rad, dn*197.3

write(7,*) rad, dI*197.3

write(8,x) rad, dc*197.3

write (9 , *) rad, 197 .3* (O .75,f,d1 + O .25*dz - 0 . 5* (dn+dc) )

35 continue

close(l, status = 'keep')

close(2, status ='keep')

close(4, status = 'keep')

close(6, status = 'keep')

close(7, status = )keep')

close(8, status = 'keep')

I
i:

:

-

n'

i,!

F

fl

close(9, status = 'keep')
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stoP

end
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Addendum

This section is included on the advice from one of the moderators for this thesis. The

moderator recommended that the thesis be accepted without further modification, but felt the

attention payed to the Goldberger Treiman relation (Sec. 2.7.2) was not sufficient.

The usual form of the Goldberger-Treiman relation is

gnNNÏn:|AffiN¡ (A.1)

where grNN is the pion-nucleon coupling constant , f, i" the pion decay constant, g¿ is t;he axial '

charge and rn¡¡ is the nucleon mass. This corresponds to the use of pseudo-scalar coupling with

coupling constant grNN.Alternativelywe mayuse (as in Sec. 2.1.2), pseudo vector coupling,

with

(A.2)

where the coupling constant must have dimensions Eer) and usually written in terms of the

physics pion mass. One could use any other quantity with the same dimensions and the rn,.

used in this expression does not approach zero in the chiral limit.
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