Design of an ATM Switch and gy
Implementation of Output Scheduler

Jun Fang, B.Sc.

Thesis submitted for the degree of
Master of Engineer Science
in the department of Electrical and Electronic Engineer
The University of Adelaide

Adelaide, Australia

15 March 1999

Contents

Abstract VII
Declaration VIII
Acknowledgments IX
List of Figures X
List of Tables XII
Chapter 1 Introduction 1
1.1 Trends in the development of telecommunication network.......... 1
1.2 Theadvantage Of ATMottt 1
1.3 ATM switching SYStemcooviirireereieia i iiiaaeanns 2
1.3.1 SWItCH At X . o ot ettt et i ettt se e 3
1.3, 2 POrt CONLIOLIOT & v v v oo e ettt er e a s 8
1.3.3 Multi-stage switchingt 9
1.4 A time scheduling ATM switch. ... 10

1.4.1 SUUCIULE & v von vavieisiase as smienin ais 53 &ia/sis s 506 o8 auais ale &/e Wals oo & e iesd &% e 10

1.4.2 Input port controller and header processorooiineneenaniains 12
1.4.3 Scheduler . . . sis w i sionniosin s waaies i seiwinn &4 samwies as soieiots 6 sis sise 12
1.5 Description of a Time scheduling Algorithm 13
1.5.1Basicalgorithmooouunn i 14
1.5.2Enhancement e i wamsess s sromwms s vio sanisiais i wames v soses 48 So 4 oRe0 & 18
1.5.2. 1 PHOMIY . . oot iviavuunsnnvrosesanasessessnsonesssassssassssss 18
1522 MUltiCaSting . . o oo v v vt ie e en i 19
1.6 SUMIMALY . . oo vvseeons e ceisesssnonsnnsssnsnsnsasssenssssesasas 19
Chapter 2 The Design of ATM switch 20
2.1 Overviewofthe ATM switch., 20
2.1.1 Design ObJectiVe.o o vvviiiiee i 20
2.1.2 SWitChing Process.ot ierinrerorneeerieearnsneneaaenes 21
2.13 Interface definition.ovviiniieennnieraensrenineiisiasanes 23
2.2 Switch MAatriX., osei i i seies o6 5 Sins i wedsss S vemen & ewenes i & 25
2.3 Design of the input port controller., 28
2.3.1 Overview of the input port controller.oooiiiiiiiiiiiin 28
2.3.2 The function of the header processor.vivevimeiiiiinenns 30
2.3.3 The operation of the buffers.coviiniiiiiiiiiiiiii v 30
2.3.3.1 Temporary buffers.oouiiniiiniiii i, 31
2.3.3.2 The structure of the mainbuffers. oiiintn 32

II

24

2.5

2.3.3.3 Operation of the mainbuffers.cooiiian 33

Design of the output scheduler.......... ...t 40
2.4.1 The structure of the output scheduler. oot 42
2.4.2 Operation of the output scheduler., 43

2.4.2.1 Data flow of the output scheduler. oot ...43

2.4.2.2 Structure analysiS. .« .« cvcvvetiirnrorat ot acnes st ts s enea e 50

2.4.2.3 Defeating unfairness.oovivuiiiiiin i 51

SUIMATY, 10 w0000 nis ormsois nin sy senonmin 458 i3 gl0/8 813 w5008 38 816 Walwas 455 wowes o 53

Chapter 3 Investigating Basic

Functional Blocks of the Output Scheduler 54

3.1 Elementary scheduler vu sivasee sa vosnwsn vevaasn s sames on eis umes oo 54
311 StUCIULE . v v e vt v e eeese v tsetasansnsonesnasssanasesnssastosonsanssnss 54
3.1.2 Operation of the comparison Unitooviiiieiiiiierirein .. 56
3.1.3 Modifications for Priority.ovuuiune it 58
3.1.4 Operation of the schedule register., 59
3.1.5 Input address generation.ouverrrunees covaiintieesiaes - 61
3.1.6 Circuit design of the comparison Unit.oovvviereineer e, 64

I

3.1.6.1 Generating the schedule. i 64

3.1.6.2 Updating the output Status.vvvunevevinrinrrnaeenneeaenns 67
3.1.6.3 Interfacing with subsequent units.oovviiiiiiniin i, 71
3.2 Input Status TEZISLr. o vttt 73
3.2.1 The structure of the input statusregister., 73
3.2.2 Operation of the input status register., 75
3.3 Output Statls TEZISLET. . o . i o i wovvuvvinnsn s saees su swson ia wsmanes vie s sseis 77
3.4 Clock Zenerator; . i; s i be seiss i gesivens i Sawes Ko s v s Sosals o s 77
3.5 SUMEIN < 57v5000.06 5 Woies 5 56 GoWes bb Pl CREa 05 SSRrEE SHRERET 55 590w » 82
Chapter 4
Physical Design of the Output Scheduler 83
4.1 The design methodology.oviieininiiiiiii i 83
4.2 Techniques for high performance digital design.86
4.2.1 Design Specification.ovoitiriteriiieeer i 86
422 Design reqUITEMENtS . . . v e v v s s oenanarvanessonsssisnesss sovsss 87

v

4.2.3 Design techniques for highspeed.ot 88

4.2.3.1 FloOrplanning. c «ccvseeesvunvuvnsoeas snaonansssnosons s 88
4.2.3.2 Clock distribution and skew.ot 91
4.2.3.3 Critical path analysis and optimisation.coovnn. 92
4.2.3.4General techniques to decrease delay 95
4.2.4 Design techniques for low power dissipation.o 101
4.2.4.1 Logic family selection.cooeiiniunrinennenn oo 101
4.2.4.2 Reducing the effective capacitance.o vunn 102
4.2.5 Techniques for reducing thearea. Fivie W e . 106
42.6T/O system DESIZN. . cvv v v cuvuennvennnesonsonenomansseseonensnsss 107
4.2.7 Power distribDUtION. . ivu s o veaiaian 5% saviass s o oiias somiain oin s aisios a3 o s 112
4.3 The simulation result of output scheduler., 114
4.3.1 Delay and power dissipation. 114
4.3.1.1 Simulation environment.vuiiiii i 114
4.3.1.2 Selection of the stimuli.covvne it 115
4.3.1.3 Simulation result.vv it ittt 116
4328izeand area5 cs ceweeen s sesaes Sae e st S6 SeeREEE S waes 118
4.4 SUMMALY. . opomns re aivsisls 55 G 500758 i WOHENSH DF s 55 e HEwE i swe i 118
Chapter 5 Discussion 120

5.1 SPEEd-UP tWO. .. o evve s v eiasssvnessn s saasihssass s somes vusaves 120

5.2 A possible way to improve the speed. ...t 124
5.3 Challenges on packaging..................ovieeien ounn R EnE A 127
5.4 SUMMATY o500 55 i emas 66 56 SOVER 6 9 HOEas &5 somaon 5 EOAFEES H6 Sewwis 50 o 129
Chapter 6 Conclusion 131
Rl e r eNCRL son 55 pmenmes i Frugea = wmwmn s s w o 133

VI

Abstract

ATM (Asynchronous Transfer Mode) is regarded as the solution for next generation
telecommunication network. ATM switches are the critical parts of an ATM network. In this
project, an experimental 16 x 16 input buffered ATM switch is developed, which employs a
time scheduling algorithm developed by Sarkies and Main. The ATM switch discussed in this
thesis contains four basic functional blocks: switch matrix, output scheduler, input port
controller and output port controller. The output scheduler is the key part of the project, which
is designed to the chip-level. The other parts of the switching system that interface with the
output scheduler are designed to the architecture level. The objective of this research project is
not only to design a high-speed output scheduler that can support the switch matrix working at
10Gb/s/channel, but also to design the output scheduler that can provide variable priority

threshold and multicast to improve the performance.

The output scheduler described in this thesis is designed with TSMC 0.25um CMOS
technology. The entire chip contains over 600,000 transistors. The simulation results show
that delay of the critical path is 20.8ns, which is much less than the design requirements, 40ns.
The estimated power dissipation of the circuits is 0.785w with a 2.5v power supply at 100°C.

The circuit area is 4.9 mm? and chip area is about 12mm? .

We demonstrate the output scheduler can coordinate with the other parts in the ATM switch to

provide high quality service.

VII

Declaration

This work contains no material which has been accepted for the award of any other degree or
diploma in any university or other tertiary institution and, to the best of my knowledge and
belief, contains no material previously published or written by another person, except where

due reference has been made in the test.

I give consent to this copy of my thesis made, when deposited in the University Library, being

available for loan and photocopying.

SIGNED: . DATE: .. 2527 0&/7 7

VII

Acknowledgments

I would like to express my appreciation to the people who made their contributions to the
completion of this research. First of all, I would like to thank my supervisor, Dr. Kenneth
Sarkies. He not only gave me invaluable guidance and continued support in the course of my
research, but also gave me many comments on the structure, contents and grammar of my
thesis. Secondly, I also wish to extend my sincere gratitude to Mr Kiet N. To. He patiently
taught me the usage of the CAD tools used in VLSI design. Last but not least my thanks go to
Mr Andrew Beaumont-Smith, Mr Said Al-Sarawi, Dr. Alireza Moini and Mr. Michael Liebelt

for many discussions in various stages of design.

IX

List of Figures

10

11

12

13

14

15

16

17

18

19

20

21

22

A general model for ATM switch oo, 3
Architecture of crosspoint switch developed by Lowe 5
Architecture of crosspoint switch developed by Savara and Turudic)
Structure of an input buffered ATM switch00t 11
Diagram to illustrate the time scheduling algorithm 15
Flow chart of operation switching process, 16
High-level architecture of an input buffered ATM switch 22
Architecture of crosspoint switch used in this ATM switch................. 26
Diagram of input port controller. 29
Structure of write controller.t 36
Operation of the write controller oo s 39
Structure of output schedulerl 41
Detailed structure of output schedulert 44
Flow chart of operation of output scheduler oo 45
Diagram of the elementary schedulero 55
A column of elementary schedulerot 62
Circuit of comparison unitooeuiiiiirriiiiiiaaniriinaans 65
Diagram of input status registeroovvievi ittt 74
Diagram of output status registerovuniiii i i 78
Diagram of clock generatorc.uiiuenner i 79
Timing diagram of signal generatorcovvviiiiiiiiiiinanas 81
Floorplan of elementary schedulero, 90

23 Structure of buffer distributionuiieiinii it 93

24 The critical path of output scheduler., 96
25 Circuit of an NAND ate oo vt iiivii i eiie i ierseesns 99
26 Avoid extensivebussharingccoiireiiiiiiiiiiiiiiiiiiiians 105
27 Placement of padscovuniiiiiiii i i s 108
28 Transientcurrentwave form...........ocovniiiiii i i 110
29 Simulation of critical path i 117
30 Architecture of an input buffered ATM switch with speed-uptwo...... 121
31 Diagram for an elementary scheduler groupooveiiieenionn. 123
32 Structure and circuit of elementary scheduler with lookahead 126

XI

List of Figure

1. Truth table of schedule generationcociiiiiiiinninnenenann 67
2. Truth table of output status updatingcvvviiii i 69

3. Truth table of generating fairnesssignalo 70
4. Truth table of generating interface signal 74

XI1

Chapter One Introduction

1.1 Trends in the Development of Telecommunication Network

Nowadays, computers have infiltrated all walks of life, such as the home, banks,
manufacturing industries and so on. Although stand-alone computers are still widely
used, in more and more instances they are networked. As a result, both computer and

telecommunication networks are developing rapidly.

Recently, the telecommunication network has acquired two new characteristics: one
is the need to support services of different characteristics, for example digitised
video and image; the other is the need to support all of these services on a single
network [1]. Hence, a new telecommunication network standard is being established,
namely B-ISDN (Broadband Integrated Services Digital Network). A great deal of
research work is taking place to find a solution for the B-ISDN. Eventually, ATM
(Asynchronous Transfer Mode) was agreed as the target transfer mode for

implementing a B-ISDN [2].

1.2 The Advantage of ATM

ATM is a type of packet switching system that operates at high speed. In an ATM
network, the information is transferred asynchronously in the form of cells, a type of

small, fixed length packet. Cells have a length of 53 octets and are comprised of two

parts: one is the header that contains the routing information, the other is the
information field that is the cell payload. On the sending end the information is
organised into cells, on the receiving end the information in the cells is recombined
together. Such a technique provides great flexibility, so that the ATM network is
very suitable for new high-bit-rate services. Real-time video is a typical example for
this kind of service, which is known as variable bit-rate (VBR) service. It i
intuitively obvious that the bit rate generated by a video picture of static scenery is
certainly different from that of a racing fox. When the scene switches from the
scenery to the fox, there is a large burst of information to be transferred. ATM can
allow this variable rate of information generation to be transferred effectively across
the network. Moreover, another inherent advantage of ATM network is multiplexing
of cells. Cells from different services can be transferred onto one link. That means
the network operator need only provide one connection to the customers and all
services can be provided over this link. Also, as described previously, a significant
characteristic of modern telecommunication networks is to support multimedia
services. ATM networks use a standard size of cell for all media, which means that
switching of the cell streams can be performed at very high rate and this simplifies
the design of the ATM switch considerably. Clearly, ATM offers great ease of
integration of sources. It was for this reason that ATM was selected as the transfer

mode for the new generation of high-speed telecommunication network.

1.3 ATM Switching system

Generally, an ATM switching system is comprised of three elements: switch matrix,

an input port controller (IPC) for each input port and an output port controller (OPC)

for each output port [3]. A diagram that shows these three modules is sketched in

figurel.

AN

IPC Switch Matrix OPC

Figure 1: A general model for ATM switch

1.3.1 Switch Matrix

Clearly, the switch matrix is the core of this switching system, in which the data path
is developed between any input-output-pair. Hence, matrix will significantly affect
the capability of the whole switch. The increasing traffic and multiple services in the
modern telecommunication network raise the requirement for high-capability
switches. High-performance switches should present such characteristics as very
high speed, versatility of switching mode (selective and broadcast), ease of control,
small loss, small delay, good signal integrity with little noise and so forth.
Furthermore, for the ATM network the capability of handling asynchronous data is
of importance. The crosspoint switch has proven to be a competent candidate to meet

these rigorous requirements.

In the past few years, much work has been done to implement the high-speed
crosspoint switches that can support ATM switch. We shall describe two different

architectures used in giga-bit crosspoint switches.

In 1997, Lowe reported a 10Gb/s/channel crosspoint switch {4], which employs a
multiplexer/decoder type of architecture. The architecture of this crosspoint switch is
shown in figure 2. As shown in the diagram, the switch consists of 16 selector slices.
In each selector, there is a 4-bit register for the input address, a 16:1 multiplexer and
an output buffer. The 4:16 decoder selects the desired output among the 16 selector
slices according to the output address. In each input port there are sixteen input data
buffers and input address buffers. They are used to drive the cells and addresses to

all the selector slices.

When a cell arrives at the switch, its input address and output address are sent to the
input address buffers and decoder respectively. According to the output address the
decoder selects one of the 16 outputs, namely one of 16 selector slices. Note that the
decoded output address is latched by a load pulse. That means that only when the
load pulse is asserted can the output address enter the selector slice. On the other
hand, the input address is buffered with low impedance amplifiers and driven to all
the slices. The cell is also broadcast to all the slices. Referring to the detailed
structure of each slice, we note that the input address is stored in a register and it will
not be sent to the multiplexer until it receives a clock signal from the decoder. When

the load pulse is asserted, the output address is loaded into each selector slice and the

4-bit

input .16 cell
address inputs
input
address ~<= S
"~ buffers data buffers
N ~N. 4
and
\'x// \“\..//
and
:|_> switched
; e NP cells
4-bit _> o and
output 8 =
address [o
o
(1]
=
i \/.
d
s Selector Slice
~
=
load pulse input ceie
| I address
a-bit |\ _ .
register | _ / 16:1 Multiplexer —buﬁer+—>

Figure 2 Architecture of crosspoint switch developed by Lowe

asserted bit will activate the register to send the input address to the multiplexer.
According to this address, the multiplexer connects one of the cells to the bufter.

Finally, the buffers drive the cell out of the switch.

This broadcast-and-select architecture needs a relatively simple structure, so it can be
implemented in one chip. This characteristic is significant as it improves the speed of
the switch and decreases the cost of production. However, this architecture also has
some disadvantages. This switch can set up only one data path at one time, $o it
needs 16 consecutive load pulse to fully reconfigure the whole switch. That means
in one time slot the switch must be programmed 16 times. This increases the

complexity of external control and the complexity of interactions with the data flow.

Savara and Turudic developed another architecture for a crosspoint switch in
1995[5] (see figure 3). As normal switch, it has input bufters, output buffers and a
crosspoint switch matrix. There are only sixteen 16:1 multiplexers in the switch
matrix and each multiplexer corresponds to one output port. A characteristic of this
switch is the utilisation of configuration latches and sixteen 4-bit shift registers to

deal with the input addresses.

The incoming cells are stored in the input butfers, and the 4-bit input addresses are
sent to the address registers. Each address register corresponds to one multiplexer.
The addresses are shifted into registers serially. When all the sixteen 4-bit binary
numbers are stored into the shift registers, the switch control centre sends a signal to

turn on the configuration latch. Each shift register loads the input address into the

switched cells

T

Buffers

T
Siels 1\

SWITCH
MATRIX

Cells

~__
siayng

L

saxaldiyiniy 1:91

L L

/(7\1 6x4
control

signal

_— Configuration Latch

4-bit
shift
register

T

Input addresses

Figure 3 Architecture of crosspoint switch developed by Savara and Turudic

multiplexer in parallel. With the input addresses, the multiplexer will select one of
the 16 inputs and connect it to the output. Thus, 16 nonblocking data paths are

established at the same time in the switch matrix.

Clearly this architecture is more efficient than the last one, as the cells that
asynchronously arrive at the 16 input ports within one time slot are transferred
through the switch simultaneously. The switch is configured only once per time slot,
which makes its control easy. Hence, this architecture presents a significant

advantage when used in an ATM network.

1.3.2 Port Controller

In order to avoid excessive cell loss in the case of internal collisions, buffers have to
be provided in the switching system. Basically, there are two possibilities for the
butfer location:

e located in the output port controllers

e located in the input port controllers.

Different buffer location of buffers results in different performance.

For the output buffered ATM switch, if the switch matrix can not work fast enough
contention may occur. In this case several cells are requesting the same output port
simultaneously. In order to achieve collision free switch, the speed-up factor of N
must be reached for an N x N switch matrix. That is, it must be possible for each

output to pass N cells simultaneously to the buffers. Thus very high speed buffers are

needed. This characteristic makes the output buffered ATM switch undesirable from

a performance viewpoint.

The input buffered switch would not suffer from the speed limitations of the output
buffered switch, but it has its own problems as well. When first-in-first-out buffers
are used in the input port controller, a collision occurs when two or more head-of-
the-line cells compete for the same output simultaneously. If so, one cell passes and
the others are blocked. All cells in the blocked queues will be blocked, even if they
are requesting other possibly unused outputs. Consequently the throughput of the
input buffered switch is comparatively low. In order to overcome this disadvantage,
some controller module or scheduler must be employed to manage the input queues

intelligently. Thus, the input buffered switch is more practical but harder to control.

1.3.3 Multi-stage Switching

For a large switching system, a single stage switch can not provide enough inputs
and outputs, so a multi-stage network is used. A multi-stage network is built of
several stages which are interconnected by internal links in such a way that any
output can be reached tfrom any input. According to the number of paths which are
available for a cell to reach a destination output from a given input, these networks
can be subdivided into two groups: single-path and multiple-path networks. For the
single-path network, due to the fact that only one path exists from an input to an
output, routing is very simple. The disadvantage is that when an internal link is used
by two inputs simultaneously internal blocking is inevitable. For the multi-path

network, due to the existence of alternative paths for reaching the destination output

from a given input, internal blocking can be reduced or avoided. However, the
possibility exist for cell streams to arrive at the outputs with cells placed out of

sequence.

1.4 A Time Scheduling ATM Switch

In this thesis, we will discuss an input buffered ATM switch using a time scheduling

algorithm.

1.4.1 Structure

As stated above, for a high-performance input buffered ATM switch, a controller or
scheduler should be employed to manage the quening. As shown in the figure 4, such

an ATM switch consists of these four parts:

1 The switch matrix is the core of a switch. The data path between the input and
output is set up in it;

2 The scheduler selects a suitable time slot in which both the input and output are
available to send the cells so that no conflict could occur within the switch
matrix;

3 The input port controller is the interface between the switch matrix and thc
scheduler. The controller should coordinate with the scheduler to manage the cell
flow. For an input buffered switch, the data buffers are used here to store the

incoming cell temporarily;

I

Cells from\

network /,

L L

1
]
\|lr—
]

input port
controller

Switch Matrix j

Cells to
netwrok

[l

— —— input addresses

l |

request/schedules

Output Scheduler

output port
controller

Figure 4 Structure of an input buffered ATM switch

1.5.1 Basic Algorithm

A block diagram is shown in figure 5 to illustrate this algorithm. The basic idea of
this algorithm is that in the input port controller and output port controller an input
status array and an output status array are maintained and updated respectively.
These indicate the usage of the input ports and output ports in successive time slots.
Specifically, a status array records which time slots have been scheduled to send a
cell for this port and which slots are available for new cell. Referring to figure 5,
here we take 7 time slots as an example. Both the input status array and the output
status array are maintained in the form of binary number array. In these arrays, /
represents a time slot that has been scheduled out, while 0 represents a time slot that
is available for scheduling. When a cell is to be switched from an input to an output,

the corresponding input and output port controller will send the status arrays to the
scheduler. The scheduler compares these two status arrays so as to find the first time
slot that both input port and output port are available. Finally, the scheduler sends
the scheduling results to the input port controller and output port controller,

respectively.

14

Input port controller Output port controller

| 0 [0 1 | 0 0 | 1 I 1 I l 0 | 0 l 1] 0 | 1 I 0 1 I
Input status array output status array
RS Scheduler 4
AY /
'
\

’ s

b 5 B
Comparator

| I

0011011 |0001101

Updated input status array Updated output status array

~_

0001000

Schedule

Figure 5 Diagram to illustrate the time scheduling algorithm

15

We can use a flow chart (Figure) to describe this algorithm.

IPC teceive a cell from network and stores it temporarily;
at the same time, IPC carries out header processing to
generate the scheduling request.

Scheduler makes a schedule and generates input
addresses for switch matrix on the base of request and
input and output status array.

The schedule is sent to the relavant IPC and OFC ta
update the input and output status array. The cell is
arranged in the input buffer to depart at its scheduled time.

(PC sends each cell to the switch matrix when its
scheduled time of transmission arrives.

Figure 6 Flow chart of operation of switching process.

To make this a bit clearer, let us study such two arrays shown in the diagram. The

input status array is "0010011" and the output status array is "0000101". We assume

that the least-significant bits of these arrays represent the first time slot. When this

input-output pair is requested by a cell, these two arrays are sent to the comparator in

the scheduler. The comparator compares the two arrays starting from the first time

16

slot until a schedule is found. For the first bit, both of the arrays are I which means
neither of them is available for a schedule. Then the scheduler compares the second
bit, for this bit the input port has been allocated, so no schedule can be made. For the
3" time slot, although the input port is available the output will be busy, so there is
still no schedule. For the 4™ one, both ports are available, so a schedule is made.
Since the purpose of the comparator is to find the first time slot available for

switching, the comparator stops as soon as a schedule is found.

The comparator generates a schedule result and sends the updated input status array
to the input port controller. As show in the diagram, the schedule result is an array of
binary numbers, in which the binary / represents the schedule. Also, the 4 bit of the
input status array is updated to /. In addition, the comparator sends an updated
output status array to the output port controller. In a similar way 1o the input status
array, the 4™ bit of the output status array is changed to / which means that this time
slot has been scheduled out. This new output status array will be stored in the output
port controller. After this time slot, both the input and output status arrays are shifted
by one bit so that the second time slot becomes the first and so on. The bit
corresponding to the 1% time slot is used to guide the input port controller to send the
cell to the switch matrix. The bit corresponding to the 16" time slot is fed a 0 that

means a new time slot is available.

This scheduling algorithm can effectively avoid conflict among cells that may
otherwise use the same output port at the same time slot. This can decrease the loss
rate and improve the delay performance significantly. Sarkies and Main [6] showed

that this algorithm makes a throughput of greater than 90% achicvable, when the

status length is sufficiently large. Therefore, this time scheduling algorithm can

ensure high performance of the switch.

1.5.2 Enhancement

The algorithm can be enhanced by adding priority and multicasting.

1.5.2.1 Priority

Basically, there are two types of priority algorithm, namely delay priority and discard
priority. For the first case, the cell with a low priority may suffer more delay, because
the network always serves the high-priority cell first. Discard priority means that a
cell with lower priority will be more likely to be discarded when compared with a
high-priority cell. Usually, the discard priority is very simple and is easily

implemented. The priority used by this algorithm is discard priority.

Specifically, for this algorithm a priority threshold is associated with each time slot.
The high priority cell can use any time slot for scheduling, while the low priority cell
can only be scheduled within the time slots that occur before the threshold. It a cell
with a low priority can not make a schedule within the time slots permitted for 1t, the

cell will be discarded.

Clearly, this approach is very simple to implement, but the penalty for it is less
flexibility. In different ATM networks the threshold for the priority may need to be

set to a different value. Theretore, to achieve the best flexibility and simplicity, the

18

scheduler should be designed to be able to support a variable threshold. In other
words, the threshold value can be set to any point and this value is decided by the

priority level.

1.5.2.2 Multicasting

The algorithm also supports multicasting. Multicasting means a cell from one input
can be switched through a number of outputs simultancous. In order to support
multicast, the switch matrix should broadcast a cell to all the 16 outputs. Then input
addresses are sent to their corresponding output ports, which select and connect one
of the inputs to the output. Clearly, if a number of selector slices select the same
input, the cell from this input will be multicast. We will discuss the crosspoint

switch architecture that supports multicast in a later section.

1.6 Summary

In this chapter, we introduced the basic structure of an ATM switch. The switch
matrix is the core of the ATM switching system. Therefore, we reviewed the
crosspoint switch architecture. Then, we discussed particularly the structure of an
input buffered ATM switch with a time scheduling algorithm. Finally, the time

scheduling algorithm employed by this ATM switch is discussed.

In the next chapter, we take up these basic concepts and carry out the design of an

ATM switch scheduler and its interfaces to the rest of the switch.

19

(44

output
addresses
and Priority
Information

Cells from
network
AN
. :> INPUT
PORT
Schedules CONTROLLERS
T
v/ y - - - \/
=3
> rd
NV NY oA
My
N)
A P
input Switched
B cells
SCHEDULER SWITCH MATRIX
\\./V \\ 7, \\/
\\
J g

OUTPUT

PORT

CONTROLLERS

:meion 7 Uinh_laval architantuire of an innut buffered ATM switch

Cells to
network

2.1.3 Interface Definition

The simulation results [6] of the time scheduling algorithm used in this switch show
that the switch can achieve adequate throughput when 16 time slots are used for
scheduling. Therefore, the scheduler discussed in this thesis is designed for

scheduling within the 16 subsequent time slots.

Before we can discuss the detailed design of each functional block, we should be
clear in what format each functional block interfaces with the others, because it will

affect the structure of the basic tunctional blocks.

e The Format of the Output Address

As stated above, to make a schedule for a cell, the schedule needs a copy of the
output address of this cell. In what form should we use to describe this output
address? Recall that one of the design objectives of this ATM switch is to support
multicast. Multicast means a cell from an input may be switched to a number of
outputs simultaneously. Therefore, we need an array of binary number that can select
any number of outputs. Towards that end, for an ATM switch with 16 output ports,
we need a 16-bit binary number to describe the output address. In this binary array,
we use / to represent a selected output port and 0 to represent a port not selected. In
order to minimise the pin count for the scheduler, this 16-bit array is shifted into the
scheduler in series. Therefore, the scheduler should have 16 inputs for the output

addresses, each of the addresses coming from a different input port controller.

23

e The Format of the Priority Information

As we have discussed in the first chapter, for such a scheduler with 16 time slots for
scheduling, we need a 16-bit array to describe the threshold value for priority. Note
that we can also use a four-bit binary number to describe such a 16-bit array, and
then the 4-bit binary number can be decoded into the 16-bit array. As will be shown
in the later chapter, the scheduler should shift in and out the information at a very
high speed, from a point of view of power saving it is advantageous to use the 4-bit
addresses instead of 16-bit. Also, for this scheduler we assume that a cell to be
multicast to the different outputs would have identical priority for all the outputs,
because it would be very difficult to distinguish different priorities for different
outputs of a multicast cell. Therefore, only one bit of priority information is required
for any cell. Therefore, the scheduler has 16 inputs for priority information, and each

one is connected to one input port controller.

* The Format of the Input Address

We have mentioned that the scheduler should generate the input addresses for each
selector slice in the switch matrix to set up the data path. As with the output address,
a question may be raised regarding the format of this input address. Since in one time
slot one output port can only handle one cell, we should use such an array that can
select one input from sixteen inputs. In order to minimise the hardware of the
scheduler, we use a 16-bit array with one asserted bit to select an input. The input

address is shifted out of the scheduler to the switch matrix in series.

24

e The Format of the Schedule

As we know, the scheduler should return a schedule for each input port controller as
the result of request processing. This array of schedules informs the input port
controller in which time slot the cell is to be scheduled. For the multicast case, a cell
may be scheduled into a number of time slots to be switched out through different
outputs. If this is the case, we have to use a 16-bit array (o describe which time slots
the cell is scheduled to. Therefore, the scheduler has 16 outputs for shifting the 16-

bit schedule array back to the input port controllers.

2.2 Switch Matrix

As described above, the core of the ATM switch is a switch matrix, in which the data
paths are developed between the input and output ports at the request of the cell. In
the first chapter, we have reviewed some possible architectures. In this section, we
will discuss the crosspoint switch architecture that meets the requirement of the
particular scheduler discussed in this thesis. According to the above discussion, we
note that the crosspoint switch suitable for this ATM switch should have the
following characteristics:

o high speed;

e supporting multicast;

o interfaces perfectly with the other parts of the ATM switch.

25

CELLS INPUTS

BUFFERS

— _____‘,‘) SELECTOR SLICE —
>

CELLS OUTPUTS

by ot

-—-i;, SELECTOR SLICE ':)

antieftes
~NA N A N
— |
—I——nN SELECTOR SLICE >
~N \VL \L L~
——:>\ SELECTOR SLICE _‘:;
7 L S
A N
Ve LN
CELLS
[11 |
L) L) L) Lr
i 16:1 MULTIPLEXER j Rl
/‘\ : : F . /I\ ’l\ ’]\ Butters
CONFIGURATION LATCHES J
adthiks i T T 7T
:__/ SHIFT REGISTER

Figure 8 Architecture of crosspoint switch used in this ATM switch

26

Figure 8 shows a crosspoint switch architecture, which employs a broadcast and
select architecture. This crosspoint switch consists of 16 cell inputs, 16 cell outputs

and 16 address inputs. The switch is comprised of 16 selector slices, each of which
corresponds to an output. The incoming cells are driven by the buffers and
broadcasted to all the selector slices. Each selector slice receives an input address

that informs the selector to select one of the cell inputs and connect it to the output.

The structure of the selector slice is shown at the bottom of the figure 5. The selector
includes four parts: a 16-bit shift register, a configuration latch, a 16:1 multiplexer
and a buffer. The input address is shifted into the shift register in series. When all the
addresses are ready, the configuration latch is turned on, and the input address is
loaded into the multiplexer in parallel. The asserted bit in the address will select one
of the cell inputs and send it to the buffers. The bufters drive cells to the output port

controller.

On the one hand, the broadcast and select architecture ensures that the switch can
support multicasting and the simple structure makes very-high-speed switching
possible. On the other hand, each selector slice receives a particular input address for
its corresponding output port simultaneously, which means that the switch need only
set up once per time slot. It simplifies the external control significantly. Moreover,
we employ a 16-bit shift register to receive the 16-bit input address generated from
the output scheduler, to ensure that the switch matrix can interface with output

scheduler perfectly.

27

Currently, the GaAs crosspoint switch as described in the literature can offer the
capability of up to 16 input and output ports at 10Gb/s for each [4], so the design of
the scheduler and input port controller should be able to support such very-high-

speed switch matrix.

2.3 Design of the Input Port Controller

In the ATM switching system, the input port controllers which act as the interface
between the switch matrix and the output scheduler play a significant role in the data
flow control. Now let us look at how an input port controller works. The input port
controllers should coordinate with the output scheduler and switching fabrics to
provide not only the basic cell control capability but also the advanced functions

such as multicast and variable threshold for priorities.

2.3.1 Overview of the Input Port Controller

As we have discussed, the input port controller is the interface between the network
and switch. On the one hand, the controller processes the cell header and deduces the
necessary routing information for switching. On the other hand, the input port
controller coordinates with the scheduler to manage the cell flow. To realise these
two functions, the input port controller consists of two basic functional blocks: the
header processor and the buffers. A diagram of the input port controller is shown in

figure 9.

28

Celis
From
Network

6¢

INPUT PORT CONTROLLER

} ~_ Output Address
|_ “} : S Priority Information
BU#FERS Schedule A gchedule
= = - = - - e _—-—_ = = = = = rom
I 1 \ l Scheduler
i \[/ Write Controller \I/ \l/ \]/ !
I| #6 shift register #3 #2 # |
eader Cell |
rocessor HJ-=- = - = = = = ——= = == = =
T
Write
N |
1D % Enable \%
I
43 | #16 memory #3 #2 #1
/(T\ L o B
NN ! “\/l/ cell buses ' Cells
N #2 N #4 To
| - /) awitch
atrix
, ﬂ \ -
Read tempora
5 #1 | Enable buffer i
7 - = IR [N [
Cells) !
| | #16 shift register #3 #2 #1 |
|
| Read Controller |
AT e el =T
TEMPORARY '
BUFFERS | MAIN BUFFERS
!

Figure 9 Diagram of input port controller

2.3.2 The Function of Header Processor

When a cell arrives at an input port controller, first of all, it goes through a header
processor. Recall that in each ATM cell there is a header that consists of the
properties and the routing information of the cell. The header processor analyses the
header of the cell so as to determine the type of the cell. It the idle cell that is
inserted by the physical layer and contains no user information is detected, this cell is
discarded immediately. However, for the user cell the header processor generates the
necessary information for switching the cell. The routing information is updated and

the cell is passed to the buffers.

As we have discussed in the previous section, for this ATM switch the information
required to switch a cell is the output address that indicates to which outputs the cell
is to be switched, and the priority information that describes how many scheduling
resources can be used by the cell. Recall that because of the need of multicast, the
output address should be in the form of an array of 16-bit binary numbers. Each bit
of this array corresponds to an output and an asserted bit represents an output for the
cell to be switched out. The priority information should be a 4-bit binary number,
which will be decoded to a 16-bit array in the scheduler. The header processor sends

them to the output scheduler respectively.

2.3.3 The Operation of the Buffers

The buffers in the input port controller not only store the cells but also control the

cell flow. The diagram of the buffers is also shown in figure 9. From the diagram we

stored in the #1 buffer, the cell stored in the #1 bufter is forwarded into the #2
buffer. Similarly, at the beginning of the 3 time slot, the cells in the #1 and #2
buffers are forwarded into the #2 and #3 buffers respectively and a new incoming
cell is stored in the #1 buffer. At the end of the 3rd time slot, the schedule is
received, and the cell in the #3 buffer is written into the main buffer under the

guidance of the schedule result.

2.3.3.2 The Structure of the Main Buffers

The block diagram of the main buffers is shown in figure 9. The main buffer consists

of two basic blocks: one is the memory, the other is the read-write controller.

The memory is comprised of 16 memory units. Each unit can store a cell. The
capability of the main buffer is determined by the scheduling capability of the output
scheduler. Recall that this output scheduler is designed to be able to make a schedule
within the subsequent 16 time slots. As we will see later, storing a cell into the main
butfer is dependent on the schedule for it. If no schedule is made for a cell, this cell
will not be written into the main buffer at all. The cell that fails to enter the main
buffer will be discarded. Therefore, the number of the memory units in the main
buffer is identical to the maximum number of the cells that can be scheduled. In
addition to 16 memory units, there is a temporary buffer in the main buffers, which
receives the cell from the cell buses and sends it to the switch matrix after one time

slot. The necessity of this temporary buffer will become evident shortly.

Associated with the memory, there are two shift registers, which are the write
controller and read controller respectively (see figure 9). Each bit of the shift register

is connected to a memory unit so as to control the write and read process.

2.3.33 Operation of the Main buffer

In the last subsection, we mentioned that the operation of the main buffer relies on
the schedule results. Therefore, we can associate the position of the memory unit
with the time slot. Specifically, each memory unit corresponds to a time slot. Thus,

we can identify the memory address with the time slot.

We shall now discuss the operation of the main buffer. Similar to other memory

devices, it includes two processes: read and write.

* Reading Process

As we know, the cells are scheduled into the subsequent 16 time slots. When a cell 1s
sent out, the subsequent cell becomes the leading cell in the new time slot.
Therefore, when a cell is saved in a memory unit, the time slot o which this memory
unit corresponds will change with the time. For example, at one moment, the #]
memory corresponds to the first time slot. The #2 memory corresponds to the second
time slot (refer to tigure 9). In the next time slot, the time slot that the #1 memory
corresponds to becomes the current time slot and the cells in #1 memory 18 sent out.
At the same time, the #2 memory corresponds to the 1™ time slot and all the other

groups now correspond to its subsequent time slot. After this time slot, the cell in the

#2 memory will be sent out and #3 memory will correspond to the I* time slot.
Therefore, we need a pointer that can indicate which memory corresponds to the

current time slot and activates it to send the cell out.

In order to select the cell to be sent out, we need a read controller. Indeed, this
controller is a circular 16-bit shift register with the input of the first bit connected to
output of the last bit (see tigure 9). Thus, the state of this shift register can be rotated
around the register. Each bit of this 16-bit shift register is connected to the "read

enable" input of a memory.

When the controller is initialised with an array of states such as
"0000_0000_0000_0001". The shift register is designed to shift the state in it in a
counterclockwise direction, namely, the state in each bit is moved to the bit on its
left and the left-most bit is shifted into the right-most bit. The shift register is driven
by a signal that is asserted at the beginning of each time slot. Clearly, the state / will
be moved around one bit per time slot. We can regard the state [in the shift register

as a pointer.

As stated above, each memory unit corresponds to one of 16 subsequent time slots,
so the memory unit that has just sent the cells out should correspond to the 16™ time
slot, a new time slot for scheduling. Therefore, we conclude that the pointer is

always pointing to the memory unit that corresponds to the 16™ time slot.

34

Since the pointer is always moved counterclockwise, the memory unit on the left of
the pointed one should correspond to the 1** time slot. These properties are very

important for the operation of write controller. We will come back to this point later.

If we have been clear about the properties of this pointer, it is very easy to
understand the operation of the reading process. The pointer is moved around the
register one bit per time slot. The memory pointed by a pointer will send the cell to
temporary buffer #4 the cell buses (refer to figure 9). After one time slot, the cell in
buffer #4 is forwarded into the switch matrix. Then a read process is finished. We

will explain the reason of using this buffer #4 in a later section.

* Writing process

The write process is o save the cell held in the #3 temporary buffer into the main
buffers. The memory in which the cell is written is controlled by the write controller.
As shown in figure 9, the write controller is also a 16-bit shift register with the input
of the ftirst bit connected to the output of the last bit. The shift register receives the
schedule in series and sends them out in parallel. Each bit of this shift register is
connected to the "write enable" input of a memory unit. This shift register is
somewhat different from a common series-in-parallel-out register. We note that the
schedule input is directed to all the 16 bits of the register. That means any bit of the
register can be selected as the entry-point for shifting in the schedule array, but only
one is selected at any one moment. The entry-point of the register is decided by the

pointer.

35

RISV

WRITE CONTROLLER

from pointer

from pointer

Figure 10 Structure of write controller

#16 #3 #2 #1
I
/
\ schedule
/N N /N
#16 #15 #3 #2 #1
READ CONTROLLER
™\
—>— 0|\ : >— 0 :
> Flip-flop Flip-flop - >
1 \
A1 d /1
< NS
/
\ schedule
/N /N

Part of this shift register is shown at the bottom of figure 10. Note that there is a 2:1
multiplexer between each flip-flop. The control signal of this multiplexer comes
from the pointer. When the pointer is 7, the input of the flip-flop is connected to the
schedule, so the tlip-flop pointed by the pointer becomes the entry-bit and the
schedule shifts into the shift register. At the same time, the multiplexer blocks the
signal from the preceding flip-flop. On the other hand, those tlip-flops that are not
pointed to by the pointer will receive the signal from its preceding stage, whose
operation is identical to an ordinary shift register. The reason for using such a

structure will become evident shortly.

Note that the output of the #3 temporary buffer is connected to the input of all the 16
memory units in the main buffer. That means the cell can be sent into any number of
enabled memory units simultaneously. This is due to the need for multicast, in which
the cell from one input may be scheduled to a number of different time slots. Since
we associate the memory place with the time slot, it makes a good sense to save the
cell into the memory unit that corresponds to the time slots scheduled by the cell. For
example, if a multicast cell is scheduled into both the 1 and 2™ time slots, we
should save the cell into the group that currently corresponds to the 1** and 2" time
slot. Clearly, due to this association relationship, we can use the schedule array to
select the memory units and write the cell into them. Specifically, the asserted bits 1n
the schedule array represent schedules. The asserted bits will turn on the "write

enable” of certain memory units and the cell is written in.

If we use the schedule array as the write address of the main buffers, we have to

make sure that each memory unit and its received schedule correspond to the same

37

time slot. The time slot to which each memory unit corresponds is always changing,
which is under control of the pointer. Therefore, a write controller is necessary (o

select the entry-point of the schedule.

The write controller is a shift register with variable shift-in bit. Here we assume that
the schedule array is always shifted into the register counterclockwise. For example,
the schedule result in #2 bit register is shifted to #3 bit; the schedule result in #3 bit
is shifted to #4 bit; the schedule result in #16 bit is shifted to the #1 bit. In addition,
we assume that the most-signiticant bit of the schedule array is shifted into the

register first, and the least-significant bit is shifted in last.

On the basis of the above assumption, we note that no matter from which bit the
schedule array is shifted in, the final result will follow such regularity: the schedule
resuit that corresponds to the first time slot (least-significant bit) is always stored in
the entry-bit register; the schedule result that corresponds to the 2™ time slot is
stored in the register to the left of the entry-bit; the schedule resuit corresponding to
the 16" time slot (most-significant bit) is stored in the register to the right of the
entry-bit. An example is shown in figure 10. The diagram shows the entry-point,
shifting direction and the final result. For this example the entry-point is the #3
register. When all the bits are shifted in, the bit corresponding to the first time slot is
stored in the #3 register. The bit corresponding to the 2™ time slot is in the left of the
entry-point, #4 register, and the bit corresponding to the 16™ time slot is in the right

of the entry bit, #2 register.

T write controller

#16 #4 #3 #2 #1
/ Y ¢
N N
14 2 1 16 15
first sixteenth

time slot time slot

Figure 11 Operation of the write controller

39

We have concluded that the time slot to which a memory unit corresponds is decided
by the pointer in the read controller. The memory unit referenced by the pointer
always corresponds to the 16™ time slot and its left one corresponds to the first time
slot. Therefore, we can simply use the read controller to select the entry-point of the
schedule in the write controller. A diagram is shown on the top of figure 10. We note
that each output of the read control is connected to a tristate buffer. The tristate
buffer that is turned on will develop a path for the schedule to the write controller
and the register connected to this buffer will become an entry-point. We note that the
#N bit of the read controller is connected to the #(N+1) bit of the write controller. In
other words, when the pointer of the read controller is pointing (o the #N bit, the

#(N+1) bit in the write controller will be selected as the entry-point for the schedule.

The writing operation is very straightforward. The pointer in the read controller turns
on a tristate buffer. The schedule is shifted into the write controller irom the selected
entry-point. At the end of the time slot, all the schedules are ready in the write
controller and they are loaded into the memories. The cell from the temporary #3

buffer is written into the selected memory units. The write process is accomplished.

2.4 The Design of the Output Scheduler

As discussed in the first chapter, the most advantageous features of this ATM switch

are due to the time scheduling algorithm, and this algorithm is realised by the output

scheduler.

40

|47

lgps‘t'viféw rrle\g?rlx

y M i

OUTPUT SCHEDULER
rlor] |mormr?tln
rOI po
|
= - —
==} 4 L
T P g;E“tl agtdpr%sr?
Schedyle controller
i put C ==
-ggnrﬁmller v —
P - C .
- =
/(__
- E
INPUT 16 x 16 ELEMENTARY SCHEDULER ARRAY
STATUS
REGISTER
* elementary scheduler
7
. =
PULSE - OUTPUT STATUS REGISTER
GENERATOR

Figure 12 Structure of output scheduler

2.4.1 The Structure of the Output Scheduler

A functional block diagram of the output scheduler is shown in figure 12. The
example output scheduler shown in the diagram, has 32 input ports and 32 output
ports. The inputs include 16 output addresses and 16 priority information codes. All

of this input information comes from the input port controller. There are 16 output
ports connected to the 16 input port controllers, which send the schedules to the
controllers. The other 16 output ports are connected to the switch matrix. Each of
these ports passes to the switch outputs, the input address to which the switch output

is to be connected.

Basically, this output scheduler is composed of four main functional blocks: the
elementary scheduler, the input status register, the output status register and the
clock generator. As shown in the diagram, the scheduler consists of a 16x16 array of
elementary schedulers. Each row of the elementary schedulers corresponds to an
input, and each column of the elementary schedulers corresponds to an output. Each
elementary scheduler corresponds to an input-output pair. The function of the

elementary scheduler is to compare the input status array with the output status array.

To minimise the amount of information to be exchanged between the output
scheduler and outside, we can simply maintain the input status array and output
status array within the output scheduler. The input status array and output status
arrays are stored in the input status register and output status register respectively
(see figure 12). In addition to storing and updating the input status array, the input

status register is in charge of sending the schedules out to the input port controller.

42

Moreover, a 4:16 decoder and a 16-bit address register are also integrated into the
input status register, although they have a separate function. Another part of this
output scheduler is a clock generator. This generator receives the clock signal from
outside and it buffers and distributes it every clocked circuit on the chip. It also
generates the assertion pulses which are needed both by the status register and the

elementary schedulers.

2.4.2 Operation of the Output Scheduler

A more detailed diagram of this output scheduler is given in figure 13, which shows
dataflow among each functional block. The aim of this section is to illustrate how
each functional block interfaces and coordinates with others. The detailed design

within each functional block will be discussed in the next section.

2.4.2.1 Data flow of the Output Scheduler

In this section we will discuss how the output scheduler works. Before we step into
the detailed discussion of operation, a flow chart (see figure 14) can help us to

understand the basic function of scheduler.

The operation of an output scheduler can be divided into three steps and each step
takes one time slot. The first step is to import the request from the input status
register; the second step is to compare the status arrays; the last step is to send the

scheduling result out. Clearly, in order to achieve the best etficiency, shifting in the

1ajnpayos Indino jo ainjonyis pajielaqd g ainbi4

Fi
XIHLYW HOLIMS OL
SISSIHAAY LNl

U
A g
:

1]
g—7v 7Y)
wnams T
— AUYINGEE AHVINSEH ug
- Snivis
nau
1T 1¢ AN
1 I
- e T
------ 1
e A Ea Lr.f
NGB8 =
- yvENTa — AHYLERITE
= N » snivis
1nam
o= 1T i1t
Tl 1 1
183
e b
T I]
...... Tt % oAy S uind
-4 2]
T LTS
BTINaHOS wnamos 1404 Lnd 0L
|| L] sy TS
DY auvinaes - AuvINTE P
o AT inaa
p I : " Ao
2 Ao
LS
indino

44

output addresses and priority information, comparing the status arrays and sending

the input addresses and schedules out are all carried out in a pipelined manner.

Shift the input requests containing the destination
putput address into the output scheduler

finput and output status arrays and scheduling requests
are sent to the elementary schedulers to make
schedules. When two or more inputs requests demand
the same output, the scheduler at that output makes
several scheduling decisions.

Scheduling results are sent back to update the input
and output status registers.

Figurel4 Flow chart of operation of output scheduler

45

e Importing the Request

As mentioned above, the function of the output scheduler is to compare the input and
output status arrays so as to find the first time slot available for both the requested
input and output. The status arrays are compared within the elementary scheduler

that corresponds to the requested input-output pair, so we need some information to
find the particular elementary scheduler. Moreover, any schedule is made on the
basis of the priority information, so some circuits must be provided in the output

scheduler to handle this priority information.

Recall that each row of the elementary schedulers corresponds to an input and each
elementary scheduler within this row corresponds to an output. Therefore, we can
use an output address to select particular elementary schedulers and activate them to
compare the status arrays. At the beginning of this chapter, we have stated that in
order to support multicast (in which an input can select a number of outputs
simultaneously), a 16-bit array is used to describe the output address. Referring to
figure 13, in each row of the elementary schedulers, there is a 16-bit shift register
that receives the output address from the input port controller in series and sends 1t to
cach elementary scheduler in this row in parallel. Each bit of this shift register is
connected to the "enable” input of an elementary scheduler. The asserted bit in the
address will activate the corresponding elementary scheduler to perform the

comparison of the status array.

Let us study an example. If a cell requests to be switched to the outputs labelled #1

and #16 (see figure 13), its output address will be an array of bits such as

46

"1000_0000_0000_0001". Tt takes one time slot to shift it into the shift register. At
the beginning of the next time slot, the address is sent out in parallel. Each bit of this
array is sent to the corresponding elementary scheduler. In this example, the
elementary schedulers corresponding to the first and last output receive a logical 1,
so they are turned on and will compare the input and output status array. In contrast,
the other elementary schedulers that receive 0 are turned oft. In other words, when
the status arrays flow through them they perform no operation and keep the status

arrays intact.

Referring to figure 13, we note that we have provided a decoder with each row of the
elementary schedulers. This decoder is utilised here 1o turn the 4-bit binary number
that describes the priority information into a 16-bit array. As defined at the beginning
of the chapter, we use a 4-bit array to describe the priority information, which is
shifted into the output scheduier in series. This priority information describes the
threshold value of the time slot that a cell can use. As shown in a later section, the
elementary scheduler needs a 16-bit array to be used conveniently. Hence, we should

turn this 4-bit binary number into a 16-bit array. This is done by the 4:16 decoder.

As we have discussed, in this output scheduler we assume that a cell to be multicast

should possess the identical priority information. Therefore, we can simply send the

decoded priority information for a multicast cell to all the 16 elementary schedulers

in a row (see figure 13).

e Comparing Status Arrays

47

When both the output addresses and priority information is available, the output
scheduler is ready for the next step which is request processing. This step is the
essential step for the operation of the output scheduler. We discuss its basic

operation first, then we will analyse its drawbacks and improve it.

At the beginning of the next time slot, both the output address and the decoded
priority information are sent to the clementary schedulers. Simultaneously, the input
status registers load the status arrays into all the elementary schedulers in its
corresponding row. The output status registers send the output status arrays to one of
elementary schedulers in its column (refer to figure 13). The output status array will
go through all the elementary scheduler in this column one by one and the output

status array is compared with the input status array in the activated schedulers.

Note that the operation of each column of the elementary schedulers is identical, so
let us study the operation of one column, which is sutficient to mirror the operation
of the whole output scheduler. For simplicity, we assume that the output status array
is loaded into the elementary scheduler in the first row. We will have a more general

discussion on this topic in later section.

For example, if the first elementary scheduler in a column is activated, the output
and input status is compared in it. If there is a schedule made, the elementary
scheduler would update the output status array and send an updated copy of the
output status array to its subsequent elementary scheduler, the one in the second row.

In tigure 13 the updated output status array-is labelled X/. Simultaneously, the

48

elementary scheduler generates a schedule array (labelled e in the diagram) in which
I represents a schedule and 0 means no schedule. This schedule array will coordinate
with other schedule arrays generated by the other elementary schedulers in this row

to produce a final schedule array for the input status re gister.

The updated output status array X/ is sent to the elementary scheduler in the second
row. If this elementary scheduler is also turned on, the output status array will be
compared with the input status array that is stored there. Assume that in this
comparison no schedule is made, so the output status array will be kept intact and go
to the next elementary scheduler. At the same time, the elementary scheduler outputs

a schedule array. Since no schedule is made, it is just an array of zeros.

Subsequently, assume that no other elementary schedulers in this column are turned
on, then the output status array will tlow through each of them and return to the
output status register with a value that is identical to the value of X/. Since no
schedule can be made in a disabled elementary scheduler, the schedule outputs of

elementary schedulers are all arrays of zeros.

At the end of this time slot, the input status registers fetch the value from the e_bus.
Indeed, the value on the e_bus is the logical OR of all the schedule results
corresponding to the same time slot and different output. We will explain later why a
logical OR should be used. The input status register uses the scheduling results to
modify the input status arrays stored in them. On the other hand, the output status

register stores the new output status array in it.

49

¢ Exporting the Scheduling Results

As we know, the input port controller needs the schedule array to place the cell into
the buffer and the switch matrix needs the input address to switch the cell. We have
discussed the generation of the schedule result. We will discuss the generation of the
input address in a later section. The third step is to send them out. At the end of the

3" time slot, the output scheduler processes a request.

2.4.2.2 Structure Analysis

In the last section, we discussed how the output scheduler works. In this section, to
gain insight into the operation of the switch, we will discuss why it is appropriate tor

the schedule to operate in this way..

One question may be why the input status array is sent (o all the elementary
schedulers in a row, while the output status arrays are fed to one scheduler and it

ripples through the whole column.

As the name “output scheduler” implies, all the schedules made in this scheduler
correspond to the output ports. In other words, what is scheduled is the operation of
the output port. One output port can only handle one cell at one time slot, so it
demands the output scheduler to schedule only one cell into a time slot. In the output
scheduler, the output status arrays are employed to indicate the state of the output

ports. I there were a schedule made the output status would be updated to /

50

immediately. The 7 in the output status array represents a time slot that has been
scheduled out. Therefore, this / will give its subsequent elementary scheduler no
chance to make further schedules into that time slot. Thus, this structure ensures that
only one cell is scheduled to a time slot, in other words, no conflict may occur on the

output port.

On the other hand, consider the input status arrays. As we know, this switch should
provide the multicast function, so it is not surprising for one input port to send a cell
to a few output ports simultaneously. In the section discussing the operation of the
switch matrix, we have seen that in the crosspoint switch the inputs just broadcast
the cells to all the outputs, and the output will select one of them according to the
input address that comes from the output scheduler. This architecture implies that
from the point of view of the input port of the switch matrix there is no ditference
between switching the cell to one output or to sixteen outputs. Therefore, we just
send the input status array to all the elementary schedulers in a row simultaneously.
Each elementary scheduler in this row will generate an array of schedule results.
Therefore, we use a logical OR of all the corresponding bits of the 16 arrays as the
final schedule result and send it to the input status register. This explains why the

final schedule result should be the logical OR of all the individual results.

2.4.2.3 Defeating Unfairness

Now we have understood the necessity of rippling the output status array through the
column of elementary schedulers, another question related to it will appear: since

each clementary scheduler-can-only receive-the-updated-o utput-status-array-from-its

51

upper one, the upper clementary scheduler has a greater chance to make schedules as
it receives the output array earlier. In other words, there is unfairness between each
clementary scheduler in a column. In order to solve this problem, we have to change
the entry-scheduler of the output status array frequently and regularly so that each
elementary scheduler in a column has an equal opportunity on average to achieve the

best service as well as the worst service.

Towards that end, the scheduler is designed to be able to load the status array into
any one of the elementary schedulers in one column and consequently, the updated
output status array can be returned from any elementary scheduler (see figure 13).
Clearly, in one time slot only one of them should be turned on to receive and return
the status array. Therefore, we need a signal to select it. We employ a 16-bit shift
register to act as a pointer in the signal generator. We have discussed the operation of
a pointer in the previous section. Each bit of this register is connected to a row of
elementary scheduler. When the pointer is pointing to a row, the row below the
pointed row would be the entry scheduler of the output status arrays for this time
slot. Thus, it receives the output status array from the output status register directly.
The other ones will receive the status array from its upper scheduler. When the
output status array goes through all the 16 elementary schedulers in a column, it is
returned to the output status register through the scheduler in the row pointed to. The
entry elementary scheduler is changed in each time slot, so that after 16 time slots,
each elementary scheduler in a column achieves the identical average chance for

service.

52

2 R -

2.5 Summary

In this chapter, we discussed the operation of the ATM switch at the highest level.
Four basic functional blocks are introduced and their coordination with each other is
demonstrated. Then, we discussed the structure and operation of the input port
controller. From the discussion of the input port controller, we understand how the
controller generates the request and manages the cell flow according to the schedule
results. Subsequently, we discussed the architectural design of the output scheduler,
from which we understand the basic scheduling process. With a good understanding
of the high-level operation, we will now investigate the detailed design in a lower

level.

53

Chapter Three
Investigating Basic Functional Blocks

of the Output Scheduler

Now that we have discussed the architecture of this output scheduler and studied
how each module coordinates with others, we are ready 1o have a close look at the

operation of each functional block.

3.1 Elementary Scheduler

3.1.1 Structure

First of all, let us study the interface of an elementary scheduler with the outside
world. The block diagram of an elementary scheduler is shown in figure 15. Since
the basic function of an elementary scheduler is to compare the input status array and
output status array, each elementary scheduler has two 16-bit inputs for the input and
output status array respectively. As we have mentioned, the priority information also
takes part in the comparison, S0 a 16-bit input for priority information that 1is
decoded from a 4-bit binary number is needed. The elementary scheduler also needs
an "enable" input which is controlled by the output address. In addition, in order to
defeat unfairness, each elementary scheduler is designed to be able to receive the

output status array directly, so a 16-bit input for the output status array and a pointer

54

P16 X16 116 P3X3I13 P2X212 P1XiN

blocking blocking blocking blocking f
circuit circuit circuit circuit
/ output
* . * ” N address
nabie
Comparison torfave Comparison Comparison Comparison
unit16 N * x unit3 unit2 unit1 signal for defeating
/ — / / Y unfalrness
N > > > from output status register
< - T N N N N N g output status reglster
; 4 7 4 address
; : 17__ . b,_ register
hedule
N * * * N N N Input address
4 /7 / /| toother register
YregisterY’ VregisterY’ Yregister VregisterY’ \
et /
Status register ::;:t::r:;cpm /N
Input address
from other register

Figure 15 Diagram of the elementary scheduler

55

input are necessary. Each elementary scheduler has a schedule array output and two
output status array outputs one of which is connected to the subsequent elementary
scheduler and the other is connected to the output status register. Moreover, each

elementary scheduler has a one-bit input and a one-bit output for the input address.

Secondly, let us consider the internal structure of an elementary scheduler. The
elementary scheduler consists of two main parts: the comparators and the schedule
registers. As shown in figure 15, there are 16 comparison units and each unit
corresponds to one time slot. For each unit, there are four inputs: input status, output
status, priority information and the interfacing signal. Note that associated with each
comparison unit there is a blocking circuit, which generates the interface signal to its
subsequent unit. As we know, the scheduler is only concerned with the first time slot
in which both input and output port are available. The blocking circuit is employed
to keep other schedules from being reached once the first one is found. For the first
unit, the interface signal comes from the output address, which determines whether
to enable this elementary scheduler. In addition, each scheduler outputs a schedule
array and an output status array. The schedule result has two branches of outputs, as
shown in figure 15. One of them is sent back to the input status register. The other is
fed into a 16-bit schedule register, whose function will be discussed later. Moreover,
as shown in the diagram, there is a separate one-bit register, which is used for the

generation of input addresses.

3.1.2 Operation of the Comparison Units

56

Whether an elementary scheduler will operate or not is decided by the "enable”
signal, which is connected to one bit of the output address. It the output to which the
elementary scheduler corresponds is not requested, a logical 0 will be sent to it. Then
this signal is rippled down to each comparison unit through the blocking circuit and
disables them. Alternatively, a logical / will activate this elementary scheduler. At
the beginning of each time slot, the input status array and the priority information are
sent to each elementary scheduler, while the output status register will not be
available until it ripples to the elementary scheduler. When all these three sets of
inputs appear on an elementary scheduler, the scheduler is activated. What we are
interested in is the first time slot that is available for both input and output, so the
comparison operation begins from the unit corresponding to the first ime slot and
passes along to the one corresponding to the last time slot. In other words, no
decision can be reached for a comparison unit until it receives the interfacing signal

from its preceding unit.

Now let us study a simple scheduling example without consideration of priority
information. Assuming that an input status array, 0000_0000_0111_1101, and an
output status array 1111_0000_0000_1111 appears on the input of an activated
elementary scheduler. Here we regard the least significant bit as the first time slot.
The first bit of each array is / which means that in this time slot both input and
output are busy. Then the first unit's blocking circuit sends a logical 0 to the
following unit to inform it that no schedule is yet found. With this signal, the second
comparison unit is activated and begins to compare the second bit of the arrays.

However, there is still no schedule found, so similar to the first one it passes the

57

responsibility to its next unit. Thus, the comparison is carried out one by one until a
schedule is found. For these two arrays, in the 8" time slot both arrays are 0 that
means both input and output are available. The 8™ comparison unit generates a
logical I as the schedule result and updates the 8" bit of the output status array into
1. Simultaneously, its blocking circuit sends a / to its subsequent unit and this signal
will be passed through all its subsequent units. This signal prevents the subsequent
units from making any schedules, although both ports are available in the 9" to 12"

time slots.

3.1.3 Modifications for Priority

From the last example we are clear about the basic operation of the comparator. Now
let us look at how the priority information affects scheduling. In the last example, we
did not consider the effect from the priority mformation. We can regard this situation
as that each cell has high priority, in which case the cell can be scheduled into any
one of the 16 time slots. In this case, the priority information should be
"1000_0000_0000_0000". As assumed above, the most significant bit corresponds to
the 16" time slot, so this priority information means the cell can not use the time

slots after the 16™. Thus all the 16 time slots are available for it.

A cell with a low priority can only use some of the time slots, which is decided by
the threshold value set by the priority information. Let us still consider the two arrays
in the last example to study how the priority information affects the scheduling
results. For convenience, we write it here again, the input status array:

0000_0000_0111_1101, and output status array: 111 1 0000_0000_1111. First, we

58

consider the priority information "0000_1000_0000_0000". This array means the
cell can use the first 12 time slots. As we have discussed above, the cell would be
scheduled into the 8" time slot, so this cell obtains a schedule within the limit of
resources. The priority information would have no affect on the schedule results. On
the other hand, if the elementary scheduler receives such an array of priority
information as "0000_0000_0100_0000", the result will be different. This priority
information limits the time slots available to the cell to the first seven, while there 18
no schedule for it until the 8" (ime slot. Thus, even though there are plenty of
schedule resources are available from the 8" to 12" time slots, the cell is still going

to be discarded because its low priority prevents it from using them.

3.1.4 Operation of the Schedule Register

As mentioned above, the output scheduler should generate an input address for each
output of the switch matrix to set up a data path for the cell. In order to generate the
input address, we need a copy of schedules. Towards that end, one copy of the
schedule results are sent to the input status register, which contributes to update the
input status arrays stored in both the input status register and input port controller.
The other copy of the schedule array is directed to a sixteen-bit schedule register.
Each bit of the register corresponds to a time slot. Since each bit of this register
obtains the schedule state from a comparison unit, the contents of this register unit

should correspond to the same time slot as the comparison.

The schedule register is used here to record the schedule history of the elementary

scheduler. In other words, it indicates which time slots have been scheduled by this

59

elementary scheduler. As we have mentioned, each elementary scheduler
corresponds to one input-output pair. When a schedule is made in an elementary
scheduler, it means that a cell is scheduled to be switched between this input-output
pair. Indeed, the states in this schedule register indicate in which time slot this input-

output pair will switch a cell.

Clearly, the schedule array is the accumulation of the results of the schedule array
that come from the comparison units. We should use the schedule array to update the
states in the schedule register. Towards that end, an OR gate is used. What is written
into the schedule register is the logical OR of schedule array and the previous state in
the schedule register. Since the new state always relies on its previous state, all the
states in the schedule register should be set to 0 when the scheduler is powered up,
which means no schedule has been made. When a new schedule, a logical /, appears
in the schedule array, it will modify the state in the corresponding bit of the register.

If no schedule comes in, the states in the schedule register are kept intact.

Furthermore, as stated above, the shift register is adopted to indicate the scheduling
history of the following 16 time slots, so the binary array stored in the register should
be shifted one bit per time slot so that the state in the register can correspond to the
proper time slot. Hence, the shift register is shifted one bit per time slot. The last bit
which corresponds to the 16™ time slot is loaded with a 0, and the state stored in the
first bit of the register is loaded into another shift register, as shown in figure 15.
This register is also a parallel-in-series-out shift register, whose function is to shift

the input address out of the output scheduler.

60

3.1.5 Input Address Generation

As mentioned above, the purpose of keeping a copy of schedule array in the
scheduler register is to generate the input address to be passed to the switch at the
correct time when a cell is to be switched. In this section, we will discuss how to
generate the input address from the schedule arrays. To solve this problem, we
should put the elementary scheduler into a column of elementary schedulers, which
is sketched in figure 16. Each elementary scheduler in this column includes a shift
register unit and they are connected together into a 16-bit shift register. This shift
register achieves the schedule result from the first bit of the schedule register in the
elementary scheduler in parallel and shifts them out to the switch matrix. What 18
loaded into this shift register is just the input address for the cell to be switched in
the current time slot. This address is sent to the corresponding output port of the

switch matrix to select the input.

Recall that each column of elementary schedulers corresponds to an output, and each
row of elementary schedulers corresponds to an input. Also, in the elementary
scheduler each comparison unit corresponds to a time slot. Now let us consider the
16 comparison units from different rows, which correspond to the same time slot,
say the first time slot. They are highlighted in figure 16 by a box. In this module
there are sixteen single-bit shift registers, which indicate whether there is a schedule
made for its corresponding input port. Thus, if we associate this array of schedules
together, it just indicates which input port is scheduled to send the cell to this output
port. For example, such an array as "0000_0000_0001_0000" is stored in these 16

registers corresponding to the first time slot. This array shows that there is-a

61

Input address

VAR
|
i
Comparator :
1
Scheduie Register]\
i ~
i address
reglster
1
I
1
Comparator I i
|
I
Schedule Register
|
1
I
LN
Comparator |
I
|
Schedule Register

Comparator

Schedule Register

1
|
|
L
1
|
1
I
|
|
|
I
1
|
I
|
|
1
I
1
|
I
1
)
I
i
I
|
I
I
|
|
I
|
!
|
1
1
I
|
1
|
|
T
|

Figure 16 A column of elementary scheduler

62

schedule made for the 9™ input port, so consequently the input port controller
corresponding to the gt input port would send the cell to the switch matrix at the
beginning of next time slot. The array of schedules provide switch matrix
information to the output port, which then uses this information to select the
appropriate cell from the input port. The array of schedules etfectively provides an

input address to the output port of the switch matrix.

Some words are worthwhile to explain that a cell and its corresponding input address
always arrive at the switch matrix in the same time slot. As mentioned above, the
input address is generated according to the schedule. When a schedule is generated it
is written into one bit of the schedule register that corresponds to the scheduled time
slot. Recall that the other copy of schedule result is sent to the input port controller,
which helps to write the cell into a memory unit that corresponds to the scheduled
time slot. After cach time slot, the state in the schedule register is shifted by one bit
s0 that each bit corresponds to its preceding time slot. Similarly, the pointer in the
main buffers shifts one bit after each time slot and all the cells stored in main bufters
correspond to their preceding time slot. When the scheduled time slot becomes the
current time slot, the schedule result stored in the schedule register is loaded into the
shift register, which acts as the input address. At the same time, the pointer in the
main buffers moves to the memory unit that stores the corresponding cell of this

schedule and the cell written into a temporary buftfer.

As it takes one time slot to shift the input address in series into the switch matrix, the
cell from the main buffers have to be stored in the temporary buffers #4 for one time

slot. At the beginning of next time slot, the input address is ready in the selector slice

63

of the switch matrix and they are loaded into the multiplexer. Simultaneously, the
cell is sent to the switch matrix. Therefore, a cell and its corresponding input address

always arrive at the switch matrix in the same time slot.

3.1.6 Circuit Design of the Comparison Unit

In order to understand the operation of the comparison unit, we have to step to a

lower level, namely, circuit level, to see how the status arrays are compared.

The circuit of the comparison unit and its blocking circuit are shown in figure 17.
From the point of view of the inputs i (input status) and x (output status), there are
three paths and each path takes charge of a particular function. Specifically, path 1
will compare the input and output status and generates the schedule result; path 2
will compare the input and output status and update the output status array
conditionally; path 3 takes charge of generating the interface signal to the subsequent

unit.

3.1.6.1 Generating the Schedule

The path labelled 1 is to generate the schedule. The operation can be readily

described with the following equations:

e =i NORx

e_tmp = e AND up’

64

- p it P
_____ = path 3 al
| } < i x
|
| | ' path 2
[T
| z o |
N
l [
| 1 path 1
| 4 | EWi
| I
1 _ |
| g 3 |
| |
' l
down A
|
S Y
Priority Circult
_ x_tmp

——] 1 (from output status reglster)

A

to schedule

—] faimess

Xout - L t (to output status reglster)

Figure 17 Circuit of comparison unit

65

The purpose of the first equation is to compare i and x. Specifically, when both the
input status / and output status x are 0, which means both input and output port are
available, the result ¢ (schedule candidate) will be /. That means this time slot is
suitable to make a schedule. However, it is only a candidate, whether it can become a
real schedule or not is dependent on whether this comparison unit is activated. As we
discussed above, for the first comparison unit, the enable signal comes from the
output address and for the other units the enable signal comes from the interface
signal of the upper unit. We employ a logical AND between the e and up (interface
signal from upper unit) and their result is a real schedule result. For example, when
the up is I that means this comparison unit is disabled, the e_tmp will definitely be 0,
no matter what the signal e is. When the up is 0, then e_tmp would follow the value
of e. Therefore, if up is I, a schedule candidate (e=1) will become a schedule. Note
that the signal e_tmp has two branches: one is connected to the schedule register and
ine other directs to an NMOS transistor. For the first case, we have described the
reason of why we should store this schedule result. Now let us study the other

branch.

In the previous section we have explained that what the input status register receives
is the result of a logical OR of sixteen schedule results that correspond to the same
time slot but different output ports. This transistor is used here to realise the wired
OR. Note that the "gate" of this N-transistor is connected to the schedule signal; the
source” is connected to the Vdd; the "drain", E_out, is connected to a bus. This bus
connects the input of the input status register with 16 schedule result outputs
corresponding to the same time slot and different output ports. When the e_tmp is a

logical /. the transistor is turned on. The "source™ Vdd will charge the bus through

66

the transistor and pull it up to /; on the other hand, if the e_tmp is a 0, the transistor
will be turned off and output a high impendence that does not affect the state of the
bus. In order to realise a logical OR of these 16 schedule results, we should
discharge the bus to logical 0 at the beginning of each time slot. If one or more
schedule results connected to this bus is 7, they will pull the bus up and the input of
the input status register would be a . Alternatively, when none of these 16 schedule
results are 7, all of them will output high impedance and the bus will keep the state

0. Thus the input status register will achieve a 0.

We can also use truth table to explain the operation:

1 X up e_tmp e_out
- - 1 0 Z
0 0 0 1 1
0 1 0 0 Z
1 0 0 0 Z
1 1 0 0 Z

Where Z represents high impedance, and *‘represents “dont care”.

Table 1 Truth table of schedule generation

3.1.6.2 Updating the Output Status

Since we have understood how the schedule result is made, let us go on to study the

second path, which is to compare the input status and output status and update the

67

output status, if a schedule is made. The operation of this path can be described with

the following equation:

x_tmp =(i'AND up') OR x

Where i’ represents the inverted i, up’ means inverted up and x_tmp represents the
new output status. This equation informs us that when the enable signal up 18 a
logical /, in other words, this comparison unit is not requested to work, the result of
(i’ AND up’) would certainly be 0. Consequently, x_tmp will follow the previous
value of output status x. In contrast, if this elementary scheduler is activated, namely,

up=0, then last equation can be rewritten like this:

x_tmp=1i"ORx

The reason is that when up=0, the result of (i" AND up) will always be decided by
the value of i’. When i is equal to I, this means the input port has been scheduled by
another cell, so no schedule can be made and x_tmp will follow the previous x. If this
time slot for this input has not been scheduled out, the signal i would be 0. In this
case, x_tmp is equal to /, which means a schedule will be made and the output status

is updated to 1.

The function described above can also be described with a truth table.

68

{i

up i X X_tmp

- - 1 1
0 0 0 1
0 1 0 0
1 0 0 0
1 1 0 0

Where ‘represent ‘dont care”.

Table 2 Truth table of output status updating.

Here we have achieved the updated output status, x_tmp, next we discuss how this
signal is distributed. Recall that in order to defeat unfairness, the output status arrays
are loaded into the different elementary scheduler in each time slot and consequently
the updated output status arrays are returned to the output status register from
different elementary schedulers in each time slot. This distribution circuit 18

employed here just for realising these functions.

As shown in figure 17, the distribution circuit is a combination of a 2:l
demultiplexer and a 1:2 multiplexer. The signal x_fmp has two branches of output:
one is Xout and the other is ¢. Clearly, we need a demultiplexer here to decide which
branch the signal should be directed. On the other hand, as we sec in the circuit
diagram, the signal Xout is driven by two sources: one is from the x_tmp and the

other is the output status from the output status register, f. In order to select one of

69

them we need a multiplexer here. Both the multiplexer and the demultiplexer are
controlled by the signal labelled fairness, because all of these operations are (o defeat

unfairness.

When a row of elementary schedulers receives a logical I from signal fairness, (see
figure 17) that means the next row of elementary schedulers will act as the entry-
scheduler for the output status array. For this case, the output Xout should be
connected to the output status from the output status register. The other source of the
Xout trom x_tmp should be laiched. The output status goes through all the
elementary scheduler in a column will go back to the output status register from the
entry-point. Hence, the signal x_tmp is connected to the output that directs to the
output status register. From the tigure 17 we find that when the signal fairness is a
logical 1, it will turn on the pass transistor between the fand the Xout and the pass

transistor between x_tmp to t.

Also, we can describe it with a truth table.

fairness Xout t
0 X_tmp Z
1 f X_tmp

Where Z’represents high impedance.

Table 3 Truth table of generating fairness signal.

70

On the other hand, for the common case the elementary scheduler does not act as the
entry-scheduler, so it just receives the output status array from its upper elementary
scheduler, and sends it to its next one. It is not aware of the existence of the output
status register. For this occasion, the signal fairness is a logical 0 and it develops a
path between the x_tmp and Xout (see figure 17). At the same time, this signal
latches the signal from the output status register and output high impedance to the
output status, which makes this elementary scheduler neither modity the states of the
output status array, nor be affected by the status array. This completes the description

of how the output status array takes part in comparison and how it is distributed.

3.1.6.3 Interfacing with Subsequent Unit

Finally, let us analyse the blocking circuit that interfaces with the comparison unit
corresponding to the next time slot. The blocking circuit takes charge of informing
its subsequent unit whether they are requested to compare the status array. It the
interface signal down is a 0, its subsequent unit is enabled to compare the status
array. In contrast, if down is a I, the subsequent units will be disabled. There are
three factors that may affect the value of the interface signal, that is up, p and the
comparison result of i and x. Therefore, the blocking circuit needs these signals as

inputs. (see figure 17)

The operation of the blocking circuit can be described with the following equation:

down = (i NORx) OR p OR up

71

where up’ represents the inverted up.

This equation shows the contribution from these three factors clearly. If this
elementary scheduler is disabled, namely, up=0 then signal up’ will be /. No matter
what is the comparison result of i and x, signal down will certainly be /. Then the
subsequently unit will be disabled. If the signal up is a I, the interface signal down 1s
decided by the other factors. If the signal p is a I, which means the priority
information prevents the cell from using the subsequent time slot, the signal down
will also be /. Thus, the subsequent unit will be disabled. If both p and up’ are 0, the
signal down is decided by the comparison result of i and x. When both of them are 0,
this time slot will be scheduled. Since a schedule has been found, it is not necessary
for the subsequent unit to do anything. Therefore, signal down passes a [to the
subsequent unit to disable it. On the other hand, if no schedule is achieved in this
comparison unit, namely (i NOR x) is equal to 0, then the signal down will be 0. It

informs its subsequent unit to go on comparing the input and output status arrays.

The functionality of this part of circuit can also be described by the truth table.

72

i X p up down

% e - 1 1
” - 1 0 1
0 0 0 0 1
0 1 0 0 0
1 0 0 0 0
1 1 0 0 0

Where < ‘represent “dont care”.

Table 4 Truth table of Generating interface signal.

3.2 Input Status Register

In the output scheduler, the input status arrays are maintained and updated in the
input status register. We have discussed the basic function of the input status register
in the previous section. In this section the structure and operation of the input status

register will be discussed in more details.

3.2.1 The Structure of Input Status Register

Figure 18 shows the diagram of an input status register. The input status register has

16 inputs which receive the schedule array from the elementary schedulers. There are

16 outputs that send the input status array to the elementary schedulers.

Schedules
from
Elementary

Scheduler -

Input Status Register Unit1

AN

-

A

A

7

INPUT STATUS REGISTER

Unit2 D
ZAN A Input
Status
Unit3 > Ay
Elementary
Scheduler

/:>

input status

Unit16 >\

/ Schedule input status

to preceding to preceding

time slot time slot

Register e Flegistey >
Y
OR > 2
new_|
Schedule } hd
i
Schedule Input status
from subsequent
from subsequent
unit
unit

Figure 18 Diagram of input status register

74

The input status register is comprised of 16 input status register units. Each unit
corresponds to a fixed time slot. Recall that in the main buffer, each memory unit
corresponds to a floating time slot. Here, each input status register corresponds to a
particular time slot. For example, the 1* unit corresponds to the first time slot, the 3
unit corresponds to the third time slot and so forth. As shown in the diagram, each

unit receives a schedule bit and outputs an input status bit.

The diagram of an input status register unit is shown at the bottom of figure 18.
Basically, each input status register unit contains two parts: one is the schedule status
shift register, the other is the input status register. The schedule status register in
each unit is connected in series into a 16-bit shift register. The input status register is
comprised of an OR gate and a register. The OR gate is used to change the schedule
status into the input status, as explained below. The register is employed to store and

shift the input status array.

3.2.2 Operation of the Input Status Register

First of all, let us look at the operation of the schedule status shift register. This 16-
bit shift register stores the 16-bit schedule array in parallel at the beginning of a time
slot. This 16-bit wide array is shifted out to the input port controller in series. This
schedule array is used to place the cells into the buffers in the input port controller as

explained in a previous section.

Secondly, we will concentrate on the discussion of input status register. Refer to the

diagram of the input status register unit shown at the bottom of figure 18.

75

From the diagram, we note that the register in each unit is connected one by one.
They comprise a 16-bit shift register. The shift register forwards the state in it one bit
per time slot, namely the state in the 16™ unit is loaded into the 15™ unit, the state in
the 3 unit is loaded into 2" unit and so on. The reason for this operation is
straightforward. As mentioned above, each unit of the input status register
corresponds to a fix time slot. After each time slot, each bit of the input status array
should correspond to a new time slot. Therefore, in order to keep each bit of the
input status array always corresponds to the correct time slot, they should be moved
into the register units that correspond to the appropriate time slot. In this input status
register, the top unit is designed to correspond to the first time slot, and the bottom
one corresponds to the 16™ time slot. After a time slot, each bit of the input status
array should correspond to its preceding time slot. Therefore at the beginning of a
time slot, each bit of the input status array is shifted into the upper unit. And the 16"

bit is fed a 0 that represents a new time slot to be scheduled (see figure 18).

Note that besides the state loaded into the register, there are another two branches for
the input status. One of them is sent out of the input status register. This copy of
input status is sent to the elementary schedulers and will be compared with the

output status.

The other copy is sent to an OR gate. Recall that the input status register receives the
schedule array, but maintains and sends out the input status array. Therefore, we
should change the schedule status into the input status before it is stored in the

register. This OR gate is used to change the schedule status into input status. If the

76

previous state of the input status is the logical 0 and a schedule is made for this time
slot, namely a logical I is received, then the logical OR of these two states is /. This
state is written into the register, which updates the previous state in the register. If
the previous status is the logical 0 and no schedule is made for this time slot, namely
a logical 0 is received, the input status will keep its previous value, logical 0. If the
previous value of the input status is logical 7, which means this time slot has been
scheduled out, it is impossible to make a further schedule. Therefore the schedule

should be 0 and the input status is still /.

3.3 Output Status Register

As the name implies, the out status register is used to maintain and drive the output
status array. A diagram of the output status register with the detailed structure of the
register unit is show in figure 19. Indeed, the output status register is a simplified
version of the input status register. The output status register needs not shift anything
out, so there is no shifter register for shifting the schedule array out. Moreover, the
output status register receives and stores the output status array and maintains the
output status array, so the output status is written into the register directly. Except for
the above difference, the operation of the output status register is identical to that of

input status register.

3.4 Clock Generator

The clock generator acts as the generator of all necessary signals for the operation of

the clementary schedulers and the status registers. A diagram is shown in figure 20.

77

Output Status Register Unit1 ¢>

A
Output :> Unit2 :> Output

Status Status
:\rray /r }\ Array
rom to
El tary El ta
S:I::::lel’ :> Unit3 :> S:r:;z:Ie:y
OUTPUT STATUS REGISTER

AN
D> Unit16 b

Output status

/ to preceding \
time slot

12

Register

updated 7 Output status

output status

L

U

#2

m

Suieut St sare™

Figure 19 Diagram of output status register

78

Clock input

pulses
for

defeating SHIFT SHIFT

unfairness

REGISTERZ REGISTER1

pulses for chip

Figure 20 Diagram of clock generator

79

Basically, it is comprised of two identical 16-bit shift registers. Both of them are set
to such a state as "0000_0000_0000_0001" when the chip is powered on. Moreover,
the first bit and the last bit of either register are connected so that the states in it can
be rotated round and round. Indeed, both of them operate like a pointer used in the

read controller of input port controller.

The shift register #1 is used to generate the assertion pulse, which is necessary in the
operation of the input status register and elementary scheduler. For example, the
input status register needs an assertion signal at the beginning of each time slot so
that the input status array is forwarded one step. This signal can be realised using the
shift register #1. This register is driven by the clock signal, which asserts 16 times
per time slot (we will define the clock frequency in the later section). At the
beginning of a time slot, the first bit of the shift register #1 is set to 1; all other bits
are set to 0. The output of the first bit of the shift register #1 will be the assertion
signal that we need. Using this register, we can achieve any assertion pulse that we

need.

A timing diagram of the signal generator is shown in figure 21. The shift register #1
is driven by the clock signal, so the set bit shifts once every clock cycle. We use the
output of the shift register #1 to control operation of the whole scheduler. In
addition, the signal A1(1" bit of shift registerl) is used to drive the shift register #2,
which generates a signal for defeating unfairness. As shown in the diagram, Al is
asserted at the beginning of each time slot. When Al is asseried, it drives the shift

register2 to shift one bit.

80

Ny

16 clock cycles TG cfocK cycles

16 clock cycles

Clock signal

[[1

1°' bit of shift registert. (signal A1)

I [] [

2" pit of shift registerl. (signal A2)

_] [] 1

3" bit of shift register. (signal A3)

1* bit of shift register2. (signal B1)

| |

2" bit of shift register2. (Signal B2)

3 bit of shift register2. (Signal B3)

Figure21 Timing diagram of signal generator.

81

Chapter Four

Physical Design of the Output Scheduler

In the previous chapters, we discussed the operation of the output scheduler in detail.
As we mentioned in the first chapter, this output scheduler is designed to the circuit
level, so this chapter we will discuss some VLSI (Very Large Scale Integrated circuit

design) circuit design issues.

We will discuss three topics in this chapter. First of all, the design methodology 18
illustrated, which shows the design flow of this output scheduler. Secondly, we will
discuss some techniques used in the VLSI design to achieve high speed,
comparatively low power dissipation and reasonably compact area. Then, we will

give the simulation results of this output scheduler.

4.1 The Design Methodology

The design of this output scheduler follows a top-down methodology, which is
widely used in modern ASIC (Application Specified Integrated Circuit) design [8]

[9]. Specifically, it includes the following steps:

e High-level design specification and partition: According to the role of the
output scheduler to be played in an ATM switching system and the time
scheduling algorithm, we specify the function of the output scheduler. Then this

function is divided into a few basic functional blocks to realise it. As stated

83

above, the output scheduler is divided into 4 basic functional blocks, namely
elementary scheduler, input status register, output status register and clock
generator.

Develop and validate functional models: In this design, the models of the
output scheduler are developed with VHDL (Very high speed integrated circuit
Hardware Description Language). We use VHDL to describe the behaviour of
cach basic functional block and combine them together according to the
architecture defined in the last step. The models are simulated to make sure that
they can realise the functions that we expect. Basically, modelling has three
functions: firstly, it can verify the correctness of the design specification at high-
level abstraction; secondly, the models can be used as the source for synthesis;
thirdly, the stimuli that will be used for functional verification can be generated
from the models.

Schematic design and simulation: In order to achieve the best performance, the
schematic of the scheduler is designed manually, instead of being synthesised
from the VHDL code. The schematic is simulated to the switch level to ensure
the correctness of its function. The schematic design can not provide such
information as the RC delay due to the contacts and wires, so we can not achieve
any accurate simulation result. Therefore, switch level simulation is carried out,
which ignores the non-linear effects of the transistor. It only shows the functional
validity. We can use the stimuli generated from VHDL models to simulate the
circuit automatically.

Layout design and simulation: The layout is also drawn manually to achieve
high-speed, low power and small area. The layout is designed on the basis of the

schematic that is developed and validated in the last step. Since the layout has

84

included all the delay information, we use Hspice to conduct full-analog
simulation, from which we can achieve accurate delay and power dissipation
estimates. As Hspice considers the non-linear effects in the operation of the
transistor, it is very accurate but expensive in calculation time. Therefore, it is
not feasible to simulate the whole chip or very large-scale circuit. Usually,
Hspice is used to analyse and simulate the critical path of the circuit.

e Functional Verification: In order to guarantee that the circuit can realise the
functions we expect, we use the switch-level simulator again to verify the
function of the circuits. Similarly, we can use the stimuli generated from the
VHDL codes to verify the function.

e Layout Verification: Layout verification includes two steps: LVS (Layout Vs
Schematic) and DRC (Design Rule Check). Since the layout is designed on the
basis of the schematic, it makes sense that they have identical netlists. Therefore,
we should compare the layout and the schematic. As we know, the final
fabrication of the circuit on the water relies on the layout of the circuit. For each
technology, there are some specific electronic rules for the circuit layout. If some
rules are violated, it may cause some malfunctions of the circuits. Hence, a DRC

of the overall circuit is necessary.

Compared with the bottom-up design methodology, the most significant advantage
of top-down design is earlier error detection. As stated above, the design begins with
the high-level abstract modelling from which we can detect errors before any
detailed design is beg'un‘ After we make sure that the models are correct, we step to
the lower level, schematic design. Similarly, the layout design is not carried out until

the schematic is proved to be correct. Thus, when the circuit is finally sent to

85

fabrication, the probability of error will be very low. Earlier error detection results in

the reduction of the development costs and increases the chance of first pass success.

In this section, we introduced the methodology of ASIC design. With a general
understanding of ASIC design flow, we will discuss some specific design topics in

the next section.

4.2 Techniques for High Performance Digital Design

In the second chapter, we discussed the operation of the output scheduler in the
domain of functional description. Referring to the design flow introduced in the last
section, we have finished the schematic design. In the next few sections, we will
discuss some issues on layout design, because the layout will decide the final

performance of the chip.

4.2.1 Design Specification

Before we start to discuss the particular design issues, we should specify some

parameters.

The scheduler is driven by a clock whose frequency is 400 MHz. In other words, the
period of each clock cycle is 2.5 ns. This value is decided according to the design
objective. Recall that the output scheduler should be designed to support a
10Gb/s/Channel switch matrix. For each ATM cell, there are 53 octets, namely 424

bits. For the switch matrix that can support 10Gb/s/Channel, it takes 42.4 ns to

86

switch an ATM cell. In order to support such a high-speed switch matrix, the
scheduler has to finish one scheduling process within 42.4 ns. We have defined the
time for switching one cell as one time slot. Therefore, for convenience we specify
each time slot 1o be 40 ns. As defined in the last chapter, the 16-bit output address,
schedule array and input address should be shifted into or out of the scheduler in
series within one time slot. Clearly, each time slot should include 16 clock cycles.
Therefore, the period of each clock cycle should be 2.5 ns. In order to simplify the

design, the scheduler is driven by a single-phase clock signal.

The target process technology of the output scheduler is 0.25um TSMC CMOS

technology with 5 metal layers and single poly. The power supply is 2.5 V.

4.2.2 Design Requirements

Basically, the quality of a VLSI chip is decided by three factors, namely speed,
power dissipation and area. Just like many other engineering fields, it is impossible
to achieve the best performance on every factor, because some factors always
conflict with others. Therefore, an optimal design is a compromise between those

factors.

For example, suppose we are designing the CPU for a PC. For a PC, we need not be
too concerned about low power and we can install a fan to cool down the processor.
Moreover, we have sufficient room for a processor. Therefore, we can trade the

power dissipation and area for the speed. On the other hand, if we are designing a

87

CPU for a portable computer, whose power supply comes from-the battery, we-have—————

to minimise the power dissipation of the processor so as to increase the lifetime of
the battery. In addition, portability requirements dictate that the processor be
designed as compactly as possible. Hence, the power dissipation and area are the key

tactors to be satisfied.

As mentioned above, the objective of this design is to support the switch matrix that
works at a speed of 10Gb/s/Channel. Consequently, the scheduler should finish a
scheduling process within 40 ns. In each scheduling process, the output status array
should ripple through all the 16 elementary schedulers in one column. It is really a
challenge! Therefore, the speed should be a key factor to be considered in the design
process. On the premise of a satisfactory speed, we can (ry to minimise the power
dissipation and area. Therefore, all the design decisions are based on this basic

principle.

4.2.3 Design for High Speed

As stated above, the output scheduler should finish one scheduling process within

40ns and the requests and the scheduling results have to be shifted into or out of the

scheduler within one time slot. All of these require that the circuit must be designed

with much care. In this section, we will discuss some techniques used in the layout

design of the scheduler.

4.2.3.1 Floorplanning

88

Floorplanning is the exercise of arranging blocks of layout within a chip so as to
minimise the area and/or maximise the speed. Many detailed design decisions are
closely related to the high-level topology of the functional blocks, so we discuss the
floorplan of the scheduler first. A diagram of the scheduler floorplan is shown in
tigure 22. In the centre of the scheduler is the clock generator. There is one input
status register in each row of elementary schedulers and the register lies in the
middle of this row. The shift register for output addresses and the decoder for
priority information are integrated into the input status register. There is one output
status register in each column of elementary schedulers and the registers are placed
in the middle of each column. As shown in the diagram, the input status registers and
output status registers comprise a cross that divides the 16x16 elementary scheduler

array into four parts. Each part consists of an 8x8 array of elementary schedulers.

That the input status registers and the output status registers are placed in the middle
of the row or column where they lic makes the structure of the output scheduler more
symmetric. Since the input status register and output status register should exchange
information with the elementary schedulers frequently, this symmetric structure
helps to reduce the RC delay from the wiring. Also, it is advantageous for power

conservation (we will come back to this point later).

The reason for putting the clock generator in the centre of the output scheduler 1s to

simplify the clock distribution. As stated above, the clock generator takes charge of

buffering the clock signal and generates the assertion pulse. Each

89

/unit

ES

ES

ES

Do

gté't?}“

egister

ES

ES

ES

ES

input
status
register

input
status
register

clock

generatof

input
status
register

input
status
register

ES

ES

ES

ES

Hier

Rir

ES

ES

ES

ES

Figure 22 Floorplan of elementary scheduler

50

functional block needs some assertion pulses or clock signals and all of these signals
come from the clock generator. Clearly, when we put the clock generator in the
centre of the chip, the assertion pulses and clock signals can reach each functional
block with the minimum distance and best symmetry. Also, it is helpful to minimise

the skew. We will discuss this topic in the next section.

4.2.3.2 Clock Distribution and Skew

In the output scheduler, both the input and output status registers are sequential
circuits. They consist of a large number of registers and latches. All of them should
be driven by the clock signal or assertion pulse. This huge fan out acts as a large
capacitive load on the clock signals and assertion pulses. The load is further
increased by the capacitance from the wire itself, which is distributed from the clock
generator to each comer of the chip. Therefore, we need sufficient butfers to amplity

the signals and drive them into functional blocks.

A closely related problem is skew. Some wires for clock distribution may reach a
length of centimetres. Such long clock wires introduce a substantial series resistance,
even if we use the metal layer. A clock line thus behaves as a distributed RC line. As
the delay of an RC line is a function of the length, the flip-flop connected to the same
clock signal may observe different transition times due to their different distance
from the driver. This effect is clock skew [9]. Skew can severely affect the
performance of the sequential circuit. In the actual design, it is very difficult to make

the skew zero. The most important issue is to limit the skew to that which the circuit

91

can tolerant. As the output scheduler works at a very high speed, this makes it very

sensitive to the skew. Therefore, we have to try to minimise the skew.

A practical way to solve the skew problem is to route the clock signal carefully and
use a hierarchical clock-buffering scheme. Figure 23 shows the structure of a bufter
tree that is used in the output scheduler. Note that the clock signal is driven by the
buffers stage by stage from the signal source to final circuit. Specifically, the signal
is amplified to drive the buffers in each column. The buffers in each column drive
the signal to the buffers in each eclementary scheduler. The buffers in each
elementary scheduler drive the signal to each flip-flop. Clearly, this approach does
not result in a zero skew, but it decreases the skew substantially. The reason is that
the intermediate buffers isolate the local clock nets from upstream load impedances
and amplify the clock signals degraded by the RC network. Therefore, the skew is

decreased and the signal slope is kept steep.

4.2.3.3 Critical Path Analysis and Optimisation

In a circuit, there are a large number of paths and each path has a characteristic
delay. When we talk about the delay of a circuit, what we refer to should be the
maximum delay from all these paths. The path with the maximum delay is called the
critical path. The critical path will determine the speed of the whole circuit.
Therefore, we should analyse the circuit to find the critical path and optimise it to

achieve the minimum delay.

92

AN

Y
=
Y

S%‘ﬁtgéﬁler

Clock
Generator

<>

—HD>

<HD>

—<H>

—H>

< > < >
< > < >
< > < >

Figure 23 Structure of buffer distribution

93

e Identifying the Critical Path

In the last chapter, we have noted that in the scheduling process the output status
array ripples through 16 elementary scheduler in a column and is compared with the
16 input status arrays. The input status arrays and the priority information are sent to
each elementary scheduler at the beginning of each time slot, while the output status
array goes through each elementary scheduler one by one. This implies that the input
status arrays and the priority information will not bring any delay, as they are always
waiting for the output status array. Thus, we should only analyse the flow of the
output status array to look for the critical path. After the status arrays are compared
in an elementary scheduler, the elementary scheduler generates a schedule array and
an updated output status array. The generated schedule array is logical ORed with
other schedule arrays that are generated by the elementary schedulers in the same
row to produce a final schedule array, then the operation in this path is finished.
However, the updated output status array will be compared with other input status
arrays in the subsequent elementary schedulers of this column. Clearly, the critical

path will be one of the paths in the flow of output status array.

A column of elementary schedulers is shown in figure 24. We assume that the
comparison begins from the top elementary scheduler and finishes at the bottom
elementary scheduler. As we have discussed, in each elementary scheduler the input
and output status arrays are compared from the #1 unit to the #16 unit. In the
column, the output status array is compared with the input status arrays trom the top
elementary scheduler to the bottom elementary scheduler as shown in the diagram.

Therefore, the maximum delay for scheduling should be the delay from the moment

94

that the status arrays appear on the #1 unit of the top elementary scheduler to the
moment that the #16 unit in the bottom elementary scheduler outputs the output

status.

Now let us study the delay quantitatively. Each comparison unit receives the output
status from the unit corresponding to the same time slot in the upper elementary
scheduler. The unit compares the received output status array with the waiting input
status array, then sends the updated output status array to the subsequent unit. We
define this delay as t1. Each unit receives the interface signal from the unit in the
same elementary scheduler corresponding to the preceding time slot. The unit
modifies this interface signal and passes it to its subsequent unit. This delay 18
defined as t2. Referring to figure 24, we note that there are a large number of paths
from the #1 unit in the top elementary scheduler to the #16 unit in the bottom
elementary scheduler. With a careful analysis, we find that the delay is identical for
all paths. The total delay is
Delay=15xtl + 15 x (2

For example, in the Path 1 the delay is 15 x t1 + 15 x {2; in the Path 2 the delay is 2
Xxt2+15xtl +13 xt2; in the Path 3 the delay is 15 xt2 + 15 x tl. All of these
paths result in the same delay. Therefore, we can conclude that any path between the
#] unit in the top elementary scheduler and the #16 unit in the bottom elementary
scheduler can be the critical path. The final delay is decided by the delay from each

unit, t1 and 2.

95

Dela
pathy

Delay path

<
™~
g
<
=
E16 #3| | #2| | #1
| i 1 ., schedule
/ array
EIG #3| | #2| | #1
Ew #3| | #2| | #1
N NV \V NV
path 3 path 2 path 1
%16 #3| | #2| | #1
=
™~

Figure 24 The critical path of output scheduler

96

* Optimising the Critical Path

Basically, we have two ways to optimise the critical path: one is to use lookahead
among the comparison units in the elementary scheduler so as to minimise the delay;
the other is by caretul layout design. In this section, we focus on the layout design

techniques, so we leave the first way to be discussed in a later section.

According to the analysis in the last section, the delay of the critical path is
determined by the delay from updating output status (t1) and the delay from the
interface circuit (12). As the total delay is 15 times t1+t2, any small decrement on tl

or 12 will have a significant reduction on the total delay.

Design Priority

Recall that in each comparison unit, there are three paths: interfacing with the
subsequent unit, updating output status and generating the schedule result. The
former two paths are in the critical path, so we should give them a better priority in
the layout design to minimise their delay and leave the path of generating the
schedule array to suffer more delay. This idea is mainly represented in the placement

of layout and the selection of the layers to be used for interconnection.

For example, we want to connect two gates that are in the critical path, but there are
some other gates physically between them and the layout of these gate is not “metal
transparent”. As we know, the metal layer has a very small resistance, so it is the

most suitable layer for connection. However, as in this case the metal can not go

97

through the circuit between two gates, we can not use it. But the poly layer can do
that. Compared with the metal layer the poly layer has a very large resistance and
consequently it will cause a large RC delay. On such occasions, we should move the
gates between the two gates to somewhere else and place these two gates in the
critical path as close as possible to each other so that they can be connected to the

metal layer. It may result in more delay forthose gates that were displaced.

Distinguishing the fast gate and slow gate

Usually, for a logical gate with a number of fan-ins, the signal will not appear on the
inputs simultaneously. Some signals appear carlier and some appear later. We can
take a two-input NAND gate as an example, which is shown in figure 25. Note that
there are two n-transistors connected together in series. Assume that both inputs are
initialised to 0. It input in0 receives a logical / first, it will turn on the n-transistor
connected to it. At this moment, the in/ is still 0, so no path to GND is developed
and out is still 7. At some moment, the inl receives a /, then its connected n-
transistor is turned on. Since two n-transistors are all turned on, the out is discharged
to 0. For this case, the current should go through two n-transistors to discharge the
out when the in/ receives a I. If the input inl receives the / first, it turns on its
connected n-transistor. Note that as soon as this transistor is turned on, it will
discharge the point a to 0. Thus, when the input in0 receives a / and turns on the
second n-transistor, the current only goes through one transistor to discharge the out
node. It is certainly faster than the first case. Theretore, we define the in0 as the fast

gate, and the in/ as the slow gate.

98

vdd vdﬂ_

— ™ out
in0 H Lo
a
‘ WN [1
in1 O— .—\I ‘n
F [1
gnd

Figure 25 Circuit of an NAND gate

99

The signals in the critical path usually arrive later than the other signals in the same
logic gate. Therefore, we always connect the signals in the critical path to the fast
gates. Although the improvement from each gate is very small, it still contributes to

reduce delay.

4.2.3.4 General Techniques to decrease delay

Some other techniques are widely used in the layout design of the outputscheduler.

e Carefully sizing the transistor

As stated above, this output scheduler is designed manually. A significant advantage
of custom design is that the size of the transistor can be selected flexibly according
to its fan-out. Thus, we can use large transistors to drive large loads, so as to achieve

high speed.

* Stage Ratio

In some case, the buffers have to drive a very large capacitance, such as a bus or an
off-chip capacitive load. A small buffer will take more time to charge it, so a large
buffer is needed. In order to achieve the best speed, we can use a chain of inverters
where each successive inverter is made larger than the previous one until the last
inverter in the chain drives the large load. The ratio by which each stage is increased

in size is called the stage ratio. It has been shown that when the stage ratio is in the

100

PMOS transistor, its voltage rises from 0 to Vdd, and a certain amount of energy 1is
drawn from the power supply. During the high-to-low transition, the capacitor is
discharged, and the stored energy is dissipated in the NMOS transistor. We can
compare it with dynamic logic. The power consumption in a dynamic network is
solely determined by the signal-value probabilities, not by the transition
probabilities. In other words, in the dynamic logic we should always precharge the
gates no matter if there is a transition or not. Consequently, the dynamic logic will

sink more power than the static CMOS[9].

4.2.4.2 Reducing the Effective Capacitance

The dynamic consumption of the static CMOS can be expressed with the following

equation

p=cv'f

where ¢ represents the load capacitance, v represents the voltage of the power supply
and f means the frequency of a gate to be switched. For a particular technology, the
voltage of the power supply is fixed and decreasing the voltage may aftect the noise
margin and affect the circuit speed. With the advance of technology, smaller
propagation delays are becoming achievable. Consequently the switching frequency f
is increasing. In order to reach very high speed, we can not reduce the frequency f to
lower the power consumption. Therefore, the most effective way to reduce power

dissipation is by reducing the capacitance.

102

e Carefully sizing the transistors

In the previous section we have discussed how the transistor size alfects the
switching speed. Since each switching operation of the combinational static CMOS
is actually charging or discharging a capacitor, it is clear that the smaller the
capacitor charged, the less power is consumed. Toward that end, each gate in the
output scheduler is carefully sized to be as small as possible. When all the transistors
are designed to be the minimum size, the power dissipation is minimised. However,
that will affect the speed of the circuit. Therefore, when a gate is required to drive a

large capacitance, the transistor must be sized up.

* Carefully sizing the wires

As we know, in CMOS technology, delay is basically caused by charging or
discharging capacitance. In addition to the capacitance comes from transistors, long
wire is another major source of capacitance. We should carefully size the width of
long wires or wires connected to a large load. We seek to make the wire to be as
narrow as possible. However, if the wire is connected to a large capacitor load or the
wire itself is very long, we need a large bufter to drive it to achieve high speed. A
large buffer implies a large current. The metal has a limitation on current density
(usually it is 0.4 mA/um to 1.0 mA/um). If the current density of a current-carrying
conductor exceeds the threshold value, the conductor atom will move in the direction
of the current flow, and the conductor may eventually like a fuse. If we simply select

a very wide metal as the wire, it will become a large capacitor and sink a lot of

103

power. Therefore, we should estimate the current needed for charging the capacitor

and decide the width of the metal accordingly.

* Avoid the extensive sharing of the bus

Another approach to reducing the physical capacitance is to avoid the extensive
sharing of the bus. In order to illustrate this point, let us analyse an example. Recall
that in each row of elementary schedulers we use the discharged buses to realise the
logical OR of the sixteen schedule arrays from elementary schedulers; and the final
result is sent to the input status register. Clearly, this bus should be as long as the
width of the output scheduler so as to connect all the sixteen elementary schedulers.
No matter which elementary scheduler makes a schedule, it has to charge the whole
bus so that the input status register can sense a /. The diagram is shown on the top of

tigure 26. To charge such a long bus it not only takes time, but also wastes power.

In order to avoid this drawback, we can divide the bus into two parts and each of
them is connected to an OR gate (refer to the diagram in the bottom of figure 26).
Each bus is still discharged to act as the logical OR of schedule arrays from its
connected elementary scheduler. Indeed, we used this divided bus to realise a logical
OR of the result of two buses that is the logical OR of 8 schedule arrays. Clearly, the
divided buses have identical function to that ot a signal bus, but each buffer should
only drive a load half the load of the previous bus case. Therefore, this approach

reduces the power dissipation.

104

Figure 26 Avoid extensive bus sharing

105

elemental
schedule::y
input
ataFt'ua buffers
register /
Single Bus
input
staF;us
register elementary
scheduler
4\ buffers
/ = \ /
Divided Bus

4.2.5 Techniques for reducing the area

Usually, the area is the last factor to be considered for high performance circuit
design and we often trade area for high speed and low power dissipation, but

we can also reduce the area by careful layout. Clearly, optimally sizing the transistors
is an effective way to achieve small area. In addition to that, some other techniques

are used.

One approach is to carefully design the wires. In the modern CMOS technology
multiple metal layers are employed so that the wires can be routed above the circuits,
which helps to reduce the area. In very complex or very compact design, sometimes
the available metal layers are not enough to route all the wires above the circuit; in
this case, we have to place the wires in the spare places, which will take more area.
In the layout design of the output scheduler, we need many wires to connect the
subcells. For example, we need wires to connect the elementary schedulers in a
column for the output status array; we need wires between the elementary schedulers
and the input status register for priority information, input status array and scheduler
array. In order to minimise the area, we hope to place these wires above the circuit
layout. Towards that end, the width of the wires are calculated according to their
current load, the space between wires is minimised and the placement and direction
of the wires are well organised. All of these techniques ensure that most of the wires

in the output scheduler are routed above the circuits.

Another approach is to divide the large buffer into a number of smaller parallel

bulfers. In the output scheduler. we often need some large buffers to drive the large

106

capacitive load. Referring to figure 22, we note that all of the layout is organised into
many slices. The width of the slice may not be sufficient to place a very large bufter,
so we divide the large buffer into a number of smaller buffers whose size is suitable
for the height of the slice. Thus, no matter how large are the buffers, they can always
be placed into the required dimension. Clearly, dividing large buffers into smaller
ones can not reduce its absolute area, but it makes the subcell of the layout very
regular. The cells with regular dimension and similar size are helptul to minimise the

area.

4.2.6 I/O System Design

In this subsection, we will discuss another factor that signiticantly affects integrated

circuit performance, 1/O system.

Pads are the interfaces between the chip and the outside world. In the output
scheduler four types of pads are used, namely, input pads, output pads, power pads
and pad ring pads. The input and output pads are employed to exchange signals with
other chips; the power pads are used to provide the power supply for the circuits; the

pad ring pads are used to supply the power for the input and output pads.

Figure 27 shows the topology of the pads for the output scheduler. As we have
mentioned above, there are 32 inputs and 32 outputs. Therefore, we needs 32 input
pads and 32 output pads. On the top of the chip, there are 16 output pads for input
addresses; the input pads for priority information and output addresses are placed on

the left and right side of the chip respectively: the output pads for schedules are put

107

output pads
for InptR l&mul

= MIMMXXXXKCIXNXXXKXXIX =
E . //// // //// ////// //////'////// //// ::l/// // // // // // ‘;/// / E
=il =
/ /| /| 1/
B0 Y ==
%; / A/ %
) / / /] V]
1}y N1 X
=il 1=
%/ / i %
/ / CHIP / /
==l A==
==l AV BT =
il 5
==\l A==
BBV ==
X/ /| 1 Y D<)
==l WE=
==l e
X /V/
EE‘/ / /1 EE
==/l A==
X\/ / pad rings / /E
EE; T T 7T T 7 I Z I I T ZZ 7T I S
(S RN © MAMAMNGT
& output pad m power pad, VDD
BE input pad

E EI pad ring pad M power pad, GND

Figure 27 Placement of pads

108

£

evenly on the right and left side as well (see tigure 27). In addition to those pads, an
input pad is used for the clock input, which is placed at the bottom of the chip. There
are eight power pads for VDD and eight power pads for GND. Moreover, we note
that at each corner and in the centre of the top of the chip there are five pad ring

pads. Each pad ring pad includes both the VDD pad and GND pad.

Note that between the circuits and the pads, there are two pad rings. These two rings
are two metal rings to provide the power for all the input and output pads. One of the
pad rings is connected to VDD, and the other is connected to GND. All the input and
output pads are powerd from the pad rings. The pad rings are connected to the pad
ring pads. The reason for using a separate power supply for the pads is to reduce the
noise. As we know, the output pads are required to drive large capacitors, and
provide high current dive for short periods. It may cause power bounce. If we use the
same power supply as the circuits, these currents may flow through internal circuitry
causing power and ground bounce. Moreover, note that one pad ring pad is put in the
centre of the top of the chip. The output pads need a high current capability to drive
the off chip capacitance. Typically, every pad ring pad used in this output scheduler
can only provide enough power for eight output pads, so one pad ring pad is put
there. On the left and right sides, there are only eight output pads and sixteen input
pads that need only drive a small capacitance and sink little power, so the pad ring

pads on the corner are enough to provide them power.

Note that we use eight pads for VDD and eight pads for GND. The number of the
power pads is determined by two factors: the maximum current of the chip and the

transicnt change of the current. Figure 28 shows the transient current curve of one

109

ort1

Wave
D0:AO:i(vdd)

Symboﬂ

Currents (lin)

-10m

-20m

-30m

-40m

-50m

-60m

-70m

-80m

-90m

-100m

-110m

-120m

-130m

|][i|1jl
it ||, R l.
!

i |
L} I 1}
! | I'l"':“'] an
| ! -' LIy llj.llh“lh i
1 |l’| | I":‘i' |”u ||I
. -l‘{i|l|‘l._l‘r1||,l\lllil:lk .’.'ul 'I,: \h, i H
I R L ls, \§
l\“l“‘i""‘"'” [heky
AR G B
| '\PmM"-J"Hurﬂ I
Co) ¢ :
ISy : t
R ! .
iy ! ')
] .]
)
13 \ ']] I
4 R ! '.
L '. : I
o ; !
/Ni' : : :
1! ' 1 I
it | 1 i
o 4 - ! i
il i | '
! i \ I
il i i i
i1 I '
il ' |
it | |]
IlI i '
(:I' 1 i]
= i i
+ Current X-1 329»09 :
'Currenl Y=-7.80e-02
- 'I Derwatlve—z 32e+08 4
l . :
i i b i
I |)
ol i ‘
i 1]
I) \ i
o ' | i
,l: i -] i
4] Z 1 :
o ' | !
) | ¥ 1 i
il Y | .
|‘ V 1 i
l| i | I
i L}]]
ST Yy ;
L] 1] 1}
¥ L) i '
L 1] i]
(] | b L]
'. : l \
LIS A I A I
0 10n 20n 30n

|
i
|
'
i

ty

|
1!
Iyl al
1
L ‘Irl'lll‘(llll\
l|I

1 1|" [

| N
if ﬂ, [

(AT
"" ;:\ |} \: ": i:uil ,nl
TRNES L
il{w'.;'“'q
IR
Ill'IH \ ‘nJ.
‘l‘fr:| S A
o
|E'|l: il
A
i :
‘}i:: '
| I
.‘JI':]
III" 1
Vi \
it
I‘i 1
l: [}

i L}

1 1
[] I
]]

i]

i i
| L

40n 50n

circuit

Time (lin) (TIME)

] ' Ll i
| L [} 1] L] I
|])] !
L}] L] ' L] . [}
1} L}] 1] L]] [}
' ' L} L} L] 1} i
L) L 1 i] L]]
) i 8) i) 1]
]] ' 1} 1]
i 1 | . 1
""““””/“\”"“l‘u"lh‘ gt I‘|"l"ifll| LN |1“'l|"h”.|l ;
AV A g '."‘ l"] I”‘II :“..'-J'1 ,u:*:‘lr'n'l'l“.n‘: 'IH:‘.'l :
R T R e R TR AT TR | i Yy gy g gty
Sy e R R R A R
R .'&:"-»,e?;w-foﬁ'*f":m:w -
[y fugty v:"u"l‘n‘ ,1"'\\":1.!,1 -‘:'i" ORI
i iw‘““lklll '“ il "\‘\" |.1i| 1\1I||f1 l!:;l\‘l i
l'(,. 1"||‘| l'l' \ ”Iﬂlll"-' Vi gl i |
(T Y T S T Ot O AR LI B
! | i ' i | B L 1 |]
i i | u'l,'” 1 1 | i
i] I.Ii" 1 I] i
] -'lz i | ' |
Iy i
; ‘ iyl i . Z j
: . :‘\" i 1 l 1
-I | tl'l:) | 0 i
i Ll .lH]ll ,l I»] I_
|] Illr" 1 : i :
] 1] 1)
b b :'l: | 1 ' 1
| I ' | i i |
1l] IE:: ~ 1 I _ [} o
] i i |]]
| L]] ! I | L])
1 '] I 1 L] i
| ' i i 1 i I
e i =1 = - - o
i] 1] |] |
] (]) i i it I
i L)] | 1 I 1
1] | I i I i
“ i 1 o Tt i 0T
| L] 1 I i 1 1
] i I i i I 1
1 i I (i b i
| I) i L 1 0.
1 (] I I I | I
i i I I 1 ' 1
] 1 } | I i 1
1 L] 1 i | 1 |
| I 1= 1 =i l e
+ i 1 1] i i
b] 1 I 1 i l
I]] 1 1 I i
il i 1 i i 1 ,I
] ' |) 4] 1
| L] b 1 Il 1 1
] i i 1 t ¥ I
1 ' 1 i I 1 [
[N i 1 1 [- R
I i I i 1 | |
1 i | |] i 1
1 i 1 I L] I 1
(i 1 1 i | 1
| | 3 | ! | o
I I ' i i 1 [
I ' L} I I I 1
I I ' 4] | |
1]] 4 i] _ _I.
L I i 1 i N PR |
]]) 1 1] i
| L 1) 1 I]
| L i 1 i])
t] L) 1 i b 1
] [}) I] i L]
]])] ‘ 1]
| L L)] L} I]
I L]] I L] i I
T ' i e R A L E R AR B
60n 70n 80n 90n 100n 110n 120n

Figure 28
Transient currer
waveform

column of elementary schedulers. Note that the maximum current is about 125mA.
The overall circuit includes seventeen such units, so the overall maximum current
drawn from VDD is about 2.125A. The maximum current that each power pad used
here can provide is about 0.5A. Thus, we need only five power pads to provide

sufficient power for the chip.

However, we note that such a large current is drawn from the power supply within a
very short period. The change of voltage caused by the inductance of the bond wire
is
Dv= L di/dt

where di/dt is the rate of current change with respect to time. A rapid change of
current results in a large voltage change possibly enough to cause the state of the
circuits to be changed. In order to avoid that, we have to provide enough power pads
to share the large current so that in each pad the di/dt can be reduced and the voltage

change limited to a tolerable range.

The number of pad can be calculated according to the transient current wave 1in
figure 28. The maximum di/dt for the simulated part of the circuit is about 2.3 X 10°
A/s and a typical value for inductance of a bond wire is about InH. Thus, the voltage
change can be estimated from the above equation as 0.23v. That means if we use one
pad to provide the power to this part of the circuit, there is a maximum voltage
swing of 0.23v. Since we are using a 2.5v power supply and complementary logic
with a gate threshold around 1.25v, the permissible maximum ground an power
bounce is (.5v. Hence we can use a single pad to provide power for up to twice the

amount of circuitry simulated in this example. The whole circuit is comprised of

111

seventeen such parts, so we use eight power pads to provide the power to the total
circuit and so ensure that the ground power bounce is not more 0.5v. That is the

reason why we use eight VDD pads and eight GND pads.

4.2.7 Power distribution

Finally, we will discuss power distribution in the output scheduler. In the design of
the power distribution system of the output scheduler, two main factors are

considered: one is IR voltage drop and the other is noise.

As shown above, the output scheduler requires high instantaneous power handling
capability at the beginning of each time slot, so IR voltage drops along the power
lines should be considered. The IR voltage drops degrade the circuits noise margin
and make the circuit less reliable. This becomes worse when the supply voltage is
scaled down, because the magnitude of the voltage drops that can be tolerated are
even smaller. An effective way to reduce the IR voltage drop is to reduce the
resistance of the power line. In the design of output scheduler, we use the topmost
and thickest metal level (Metal 5) which has a smaller sheet resistance compared
with other metal layers to distribute the power. In addition, since this layer is used
solely for power distribution, we can make it wide enough to reduce the resistance to

an acceptable level.

Another factor that may affect the performance of the circuit is the noise on the
power supply. We have illustrated that in order to reduce the noise on power supply

we use cight power pads to share the high current. In addition, we use a separate

power supply for the pads so that no power or ground bounce caused by the pads can

flow into the internal circuits.

As we have discussed, each input status register should shift the schedule out of the
chip with a frequency of 400MHz, which is power hungry. In addition, each input
status register should drive the output address, priority information and input status
array into all the elementary scheduler in a row, so there are a number of large
buffers in it. Therefore, the input status register will sink much more power than an
elementary scheduler. Moreover, most of the power is drawn within a very short
period, such as at the beginning of each time slot, so large power and ground bounce
may happen. In order to reduce that, we provide sufficient capacitance between the
power line and the substrate. When a power or ground bounce occurs, the connected
bypass capacitor will be charged or discharged, which reduces the magnitude of
power and ground bounce. The capacitors are placed close to the large bufters so that
charging and discharging may be carried out effectively. Thus, the noise on the

power supply is reduced significantly.

In this section, we mentioned that in order to improve the performance, many design
parameters are selected on the basis of estimation. All the subcells of the circuits
were simulated with Hspice to verify the correctness of estimation. If the estimated

parameter is not good enough, it will be modified according to the simulation results.

113

4.3 The Simulation Result of the Output Scheduler

In the last few sections, we have addressed the techniques used to improve the

performance of the chip. In this section, we give the simulation results for the circuit.

4.3.1 Delay and Power Dissipation

As we have discussed above, because the speed of a circuit is decided by its critical
path, we should only simulate the delay of the critical path. According to the
previous explanation, we note that the delay of the critical path is between the
moment that the output status register sends the output status array to the moment

that the updated output status array appears on the input of the output status register.

4.3.1.1 Simulation Environiment

The delay of this critical path is simulated with Hspice. As we have mentioned,
Hspice is suitable for accurate simulation of small circuits. We can not simulate this
critical path in the environment of the whole output scheduler. Therefore, only a
column of the elementary scheduler is simulated. Fortunately, it is enough to reflect
the delay of the output scheduler. The entire power dissipation of the output

scheduler can be estimated from the simulated part of the circuit.

Another point that should be mentioned is the selection of simulation parameters.
e Simulation model: As we know, the circuit will be fabricated on a wafer. The

physical properties of the wafer may vary according to the position. Therefore,

114

YL

we use a ditferent model to simulate it. Basically, this consists of using models
such astypical model, fast NMOS and fast PMOS, fast NMOS and slow PMOS,
slow NMOS and fast PMOS, and finally slow NMOS and slow PMOS. Since
we are simulating static digital circuit that is not very sensitive to the
environment, the simulation is simply carried out with the typical model.

e Temperature: Usually, we have three choice for the temperature, namely 25°C,
75°C or 100°C, in which 25°C is the best case, 75°C is typical and 100°C is the
worst cast. The scheduler is simulated in the environment of 100°C.

e Processing Technology: The technology for fabricating this scheduler is TSMC

0.25um technology.

4.3.1.2 Selection of the Stimuli

Recall that for each elementary scheduler to work it needs such signals as the input
status array, priority information, an enable signal and the output status array. Since
our purpose of this simulation is to find out the maximum delay of the critical path,
the stimuli must be selected carefully so as to achieve the worst delay of the

scheduling.

The input status array and output status array are selected as
"0000_0000_0000_0000". This value ensures that the elementary schedulers have
sufficient scheduling resources. The priority information is set to
"0000_0000_0000_0000" and all the 16 elementary schedulers in the column are
enabled. These values make sure that each comparison unit in this column will take

part in the scheduling. Therefore, we can achieve the worst delay from these stimuli.

115

4.3.1.3 Simulation Result

The delay of the critical path can be deduced from figure 29. The figure shows the
two voltage curves: enable signal (dotted line) and 16™ bit of the updated output
status array (real line) that is the critical path delay. As shown in the figure, from Ons
to 40ns, the enable signal is /, that means in the first time slot all the e¢lementary
schedulers are enabled. The real line shows that the 16" bit of the updated output
status array is turned to / after 20.8ns. That means the output scheduler can finish
one time scheduling process within only half of the time needed to support
10Gb/s/Channel. This ensures that the scheduler can potentially support the switch

matrix with even higher speed.

As stated above, the critical path delay consists of two parts: one comes from the
blocking circuits in the elementary scheduler, the other is the delay between each
elementary scheduler. From figure 29, we can tind how much each delay is. At 40ns,
the enable signal turns to 0, which will turn off the elementary scheduler. Since the
scheduler is turned off, the last bit of the output status array should be its previous
value 0, instead of being updated. Therefore, the 16" bit of the output status array
will turn to O after the enable signal turns to 0. The enable signal will go through all
the blocking circuits in an elementary scheduler and finally reach the 16™ unit. The
figure shows that the delay between response of the 16" bit of the output status array

and the change of the enable signal is 7.8ns, which is just the delay caused by the

116

Figure 29
ulation result
critical path

.title column circuit

o

1 .25§+00
-1.61e+09

f‘

i Derivative:

Clirrent X=4.78-08

Current Y

1.256+00
1.17e+09

208e-0B"
' Cument Y
Derivative=1.

|
|

“ | Current X

o @ © < o -
L ol - -~ ~—

2.6

24

2.2
800m
600m
400m .’ !
200m

-200m

(un) sabeyop

Symbol

{0;

Wave

DO:A0:v(test)
D0:AQ:v(decode)

40n 50n 60n 70n 80n

Time (fin) (TIME)

20n

117

blocking circuit. The time that the output status array takes to ripple through all the

16 elementary schedulers should then be 13.0ns.

The overall power dissipation of the output scheduler can be achieved by the
following equation:

P=I*V
Where [is the average current of the output scheduler and the V'is the voltage of the
power supply. The current is 314mA and V is equal to 2.5v. Therefore, the estimated
power dissipation is 0.785w. The estimated power dissipation of the pads is about
0.1w. Clearly, this power dissipation is reasonably small, and it should not cause any

trouble in packaging.

4.3.2 Size and Area

The whole output scheduler consists of about 600,000 transistors. The dimension of
the circuit that does not include the pins is 2.8 lmm x 1.75mm. The area of the circuit
is 4.9mm?”. Given the size of the circuit, this is a very compact design. The area of
the chip that includes the pads can be calculated from figure26. According to current
technology, the minimum centre to centre distance between each pad is about 150u
m. Vertically, there are 27 pads and horizontally there are 20 pads. Thus, its

dimension is 4.05mm x 3.00mm and the area is about 12.15 mm®.

4.4 Summary

118

Chapter Five Discussion

In this section, we will discuss three approaches that can further improve the

performance of this ATM switch.

5.1 Speed-up Two

At the architectural level, Sarkies and Main [6] showed that the switch performance
is improved if the switch has an internal speed-up of two. With a speed-up ot two,
each time slot can be scheduled with two cells and two cells are switched out
simultaneously through the switch. This makes the switch work more like an ideal

output buffered switch with all its advantages.

The diagram of an ATM switch with a speed-up of two is shown in Figure 30. Note
that each input port controller (IPC) sends two cells to the switch matrix at the same
time. Therefore, a 16 x 16 switch matrix should be used for a 8 x 8 ATM switch.
Similar to the switch without speed-up two, each input port controller sends an
output address and priority information to the output scheduler. However, since two
cell can be scheduled in one time slot, the scheduler needs two schedules to describe
the scheduling results for each input port controller (see figure 30). In addition, the

output schedule generate eight pairs of output addresses for the switch matrix.

120

IPC

OPC

L

J

8 output ports

%

16 x 16
CROSSPOINT
SWITCH
8 input ports
two input
addresses
two schedules Output
Scheduler

output address

riorit

information

Figure 30 Architecture of an input buffered ATM switch with speed-up two

121

In order to support the speed-up, the internal structure of the output scheduler should
also be changed accordingly. Since speed-up two permits two cells to be scheduled
into one time slot, we need two input status arrays (A and B) and two output status

arrays (A and B) to describe the states of the input and output ports. Clearly, for each
time slot there are four possible combinations of scheduling status, namely AA, AB,
BA, BB. Therefore, we need four elementary schedulers for each input-output pair to
make a schedule for it. We can define it as an elementary scheduler group. A
diagram of an elementary scheduler group and its corresponding input and output
status registers are shown in figure 3 1. The comparison unit and the schedule register
in each elementary scheduler are identical to that described in the previous chapters.
Each elementary scheduler in a group still receives the input status array directly
from the input status register. Each elementary scheduler also receives the output
status array from its upper elementary scheduler. The input status register collects a

logical OR of the schedule arrays from each elementary scheculer.

The difference is that each elementary scheduler employs a signal to interface with
other elementary scheduler in the group (see figure 31). This signal is used to prevent
that one cell being scheduled into the same time slot multiple times. For example, if
the input status and output status are all 00, both elementary scheduler AB and AA
may make a schedule. It this happens, the cell is scheduled twice into the same time
slot. It wastes the scheduling resource and may cause a problem in switching.
Therefore, we need some interface signals to make sure that only one of the four
elementary schedulers is enabled in each time slot. In other words, the scheduling
process in a scheduler group should be carried out one by one. The interface signal is

generated by the logical OR of each bit of schedule results. In other words, it a

122

output status register

output status register

B
AB /
enable[\
input
status Elementary
register Scheduler
A ; AB
>
input BB
stgtus enable
register Elementary
4\\ Scheduler
S BB

A
grou
enable
Elementary
Scheduler
AA
Z
N
Elementary BA
Scheduler enable
BA

Figure 31 Diagram for an elementary scheduler group

123

schedule is found in an elementary scheduler, it will disable all its subsequent
elementary schedulers. If not, it will inform its subsequent elementary scheduler to
g0 on scheduling. Such a sequence is arbitrarily selected: AA, BA, AB and BB. The
enable signal of elementary scheduler AA is connected to the group enable. That
means, if this group is selected, the elementary scheduler AA will be enabled and the
status in input status register A and output status register A will be compared within
elementary scheduler AA. If no schedule is made in AA, BA is enabled, then AB is
turned on and so on. If a schedule is made in AA, all the subsequent elementary

schedulers will remain disabled.

Besides the addition of the interface signals, another difference from the scheduler
without speed-up two is that only the first row of elementary schedulers in ecach
group can receive the output status array directly from the output status register,

which is used to defeat unfairness.

Moreover, due to speed-up two, an output scheduler with an array of 16x16
elementary schedulers, 16 input status registers and 16 output status registers
becomes an output scheduler that has only 8 x 8 elementary scheduler groups, with
eight input and output status register pairs. Therefore, such an output scheduler can

only support an 8x8 ATM switch.

5.2 A Possible Way to Improve the Speed

Although the current circuit is fast enough to satisty the design objective, we still

hope it to be faster. The speed can be further improved when we use some lookahead

124

in the elementary scheduler. From the discussion in chapter two, we note that each
comparison unit only interfaces with its immediately subsequent unit and the
interface signal ripples through all the 16 units one by one. In other words, each unit
only passes its scheduling result to its immediately subsequent unit. Referring to
figure 17, we note that each blocking circuit results in two gate-delays. That means

the overall delay from the blocking circuit is thirty gate-delays.

If we use some lookahead among the comparison units, the delay caused by the
blocking circuits can be reduced. In this case, each comparison unit should interface
with all its subsequent units, instead of its immediately subsequent one. In other
words, each unit informs all its subsequent units of the comparison result. A diagram
that illustrates this approach is shown in the figure 32. Note that the first comparison
unit sends the interface signals to all of the subsequent 15 units, unit2 sends the
interface signal to its subsequent 14 units and so on. Part of the circuits with
lookahead is shown at the bottom of the figure. The tigure shows the circuits of four
comparison units. Note that the circuits of unitl are identical to that without
lookahead. The difference is that its interface signal (downl) is sent to all its fifteen
subsequent units. Similarly, the unit2 sends its interface signal (down2) to all its
fourteen units. Now let us study how each unit interfaces with its preceding units.
Since unit2 should only interface with one preceding unit, unitl, its interface signal,
up2, is connected to the signal down! directly. Unit3 should receive the interface
signal from both unitl and unit2. Therefore, its interface signal up3 receives the
logical OR of downl and down2. For the same reason, unitl6 should use a 15-input

OR gate to interface with all its preceding units (see figure 32). From the circuit

125

9C1

unitié

— A A
< S .
|
unita < unit3 unit2
: z -
- |

=M
)

Figure32 Structure and circuit of elementary scheduler with lookahead

uniti

shown in figure 32, we can estimate the delay for this approach. The critical path
should begin at the enable signal and end at x/6. Note that this path includes seven

gates. According to our previous discussion, we know that there are about 30 gate-
delays introduced by the blocking circuits. Clearly, lookahead can reduce delay from

the blocking circuits significantly.

Nevertheless, what we pay for the high speed is greater area and design etfort. With
the lookahead, each unit should interface with a few units, so each unit should add an
OR gate to collect the interface signals. This takes more room. Since the output
scheduler includes 256 elementary schedulers, any addition of each elementary
scheduler's area will aftect the whole circuit very much. Moreover, we note that each
unit's circuit will be somewhat different, which implies that each unit should be
designed separately. In addition, lookahead results in a more complicated layout

design for the comparison unit.

In the design of this output scheduler, we have comfortably satistied the
requirements of the speed, so we did not employ lookahead. However, if the speed
requirement is very strict, it is worthwhile to trade area, power dissipation and other

factors for speed.

5.3 Challenges on packaging

Packaging is as important as, and often even more critical than, transistors in
determining the overall performance of a system. As we have mentioned above, the

output scheduler should exchange the information with other chips at very high

127

frequency. In order to support such high frequency, packaging technology should be

selected carefully.

In traditional packaging technologies, the circuit is fabricated on a silicon die and the
die is put into a chip carrier, then the chip carrier is placed on a print circuit board
and interfaces with other chips. [10]. The large parasitic inductance of the bonding
wires and the transmission lines will cause noise on the signals. The reason can also
be illustrated from the following equation:
dV = L di/dt

The current used to charge and discharge bond wire and transmission line may
change with high frequency, so di/dt would be substantially high. Due to the large
inductance, L, from the bonding wires and transmission lines, the signal voltage
signal will be changed and this is a source of noise. On the other hand, the
capacitance of the bond wire and transmission line is quite large. The output pads
take more time to charge or discharge such a large capacitor to exchange information
with other chips. Therefore, it increases the delay of the chip and limits the highest

frequency that the pads can reach.

In order to reduce the noise on the signal and improve the speed, an effective way is
to minimise the inductance and capacitance from the bonding wire and transmission
lines. Multichip Module (MCM) technology is a solution. In MCM, a number of
chips are placed on one substrate, which provides smaller inductance and
capacitance electrical connections among the dice than that provided by traditional

single-chip carriers and PCB.

128

There are a number of alternatives of MCM. The one that is appropriate for
packaging this ATM switch is silicon-on-silicon hybrid [10]. A silicon substrate is
used as an interconnection medium to hold multiple chips. Thin film
interconnections are fabricated on a wafer, and separately processed dice are
mounted on this silicon substrate. A signiticant advantage is that chips fabricated in
different technologies (CMOS, bipolar or GaAs) can be placed on the same hybrid
package. The silicon substrate can also potentially contain active devices that serve

as chip-to-chip driver, and bus and I/O multiplexers.

The ATM switch discussed in this thesis may contain chips fabricated with difterent
technologies. For example, the scheduler is designed with CMOS and the switch
matrix is most likely fabricated with GaAs. This is one reason that this packaging

technology is suitable for this ATM switch.

Here we only present a basic idea on the selection of packaging technology, there are
many topics should be further researched to make each chip communicates with

other chips pertectly at high frequency.

5.4 Summary

In this chapter we discussed three topics: speed-up two, lookahead, and packaging.
We discussed the speed-up two and the corresponding modification of the
scheduler's structure to support speed-up two. Then, we discussed a possible way to

reduce the delay caused by the blocking circuits. Its drawback is also analysed. The

129

packaging is a critical part that will affect the performance of the chip. Since the
output scheduler works at a very high speed, a high quality package is necessary to
ensure the high performance of the chip. A possible Multi-chip Module technology
is discussed in this chapter. We mentioned some advantage over conventional

packaging technologies.

130

Chapter Six Conclusion

In this thesis, we discussed the design of an input-buffered high-performance ATM
switching system, which employs a time scheduling algorithm developed by Sarkies

and Main [6]. This research has achieved the following design objectives:

e the architectural of an input-buffered ATM switch. The switch includes four
major parts, the input port controller, switch matrix, scheduler and output port
controller. The scheduler is a key part of this project, so it is designed to the
circuit level. The input port controller and switch matrix that interface with the
scheduler is designed to the architecture level. We demonstrated that each part of

the switch can coordinate with others perfectly.

e demonstrate that the input port controller can not only realise such basic
functions as generating the scheduling request and processing the scheduling
result, but also offer some advanced functions such as variable priority threshold

and multicasting that is an enhancement to the algorithm.

e According to the time scheduling algorithm and the design requirement of this
ATM switch, the architecture of the output scheduler is designed. Subsequently,

we design the VHDL models, schematics and layout of the scheduler.

e The simulation results of the layout show that the maximum delay of a

scheduling process is about 21ns. Clearly, it is fast enough to satisty our design

objective, 40ns. The whole output scheduler includes 600,000 transistors. The
estimated power dissipation of the circuitry is about 0.785 watts and the power
dissipation for the pads is about 0.1w. Given such a big circuit that works at very
high speed, this power dissipation is reasonably low. The dimension of the
circuit that doesn't include the pads is 4.9mm’. The overall area that includes the

pads is about 12mm?,

e Finally, we discussed the speed-up two that improves the performance of the
algorithm and the corresponding modification of the structure due to the speed-
up two is analysed; the circuit with lookahead is discussed to improve the speed

of the output schedule; a possible way to package the circuit is discussed;

The design satisfies all the objective of the project and the circuit of the output

scheduler can potentially support even an higher speed switch matrix.

132

Reference:

1. F.Halsall, "Data communication, Computer Networks and Open systems":

ADDISON-WESLEY, 1992.

2. L.G.Cuthbert, "ATM: the broadband telecommunication solution": Institute of

Electrical Engineering, 1990.

3. R.Handel, M.N. Huber, "Integrated Broadband networks": ADDISON-

WESLEY, 1991.

4. K.S.Lowe, "A GaAs HBT 16x16 bit 10-Gb/s/sChannel Crosspoint Switch", In

IEEE Journal of Solid-State Circuits, VLO32, No.8, August 1997.

5. R.Savara, A.Turudic, "A 2.5 Gb/s 16 x 16 Bit Crosspoint Switch with Fast

Programming", IEEE GaAs IC Symposium, 1995, pp. 47-48.

6. J.Main and K.Sarkies, "Cell Scheduling Using Status Arrays in Input Buffered

ATM Switches", IEEE BSS'95, Poznan, April 19-21, 1995, pp.333-339.

7. N.McKeown, M.Izzard, "The Tiny Tera: A packet Switch Core" IEEE Micro pp

26-33 January 1996.

133

8. N.H.E. Weste, K Eshraghian, "Principles of CMOS VLSI Design: A systems

Perspective", ADDISON WESLEY, 1993.

9. J. M. Rabaey, "Digital Integrated Circuits: A Design Perspective", PRENTICE

HALL, 1996.

10. H.B.Bakoglu, "Circuits, Interconnections, and Packaging for VLSI", ADDISON-

WESLEY, 1990.

134

