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Abstract

In this thesis we explore new methods of extrapolating lattice QCD results to the physical regime'

In particular, tve extrapolate lattice results for octet baryon magnetic moments and electric

charge radii as a function of the pion mass, m,. The results are compared with experiment at the

physical pion mass. The extrapolation procedures developed here are guided by the predictions

of a successful phenomenological model for bar,r'ons - the Cloudy Bag Model (CBM). It has been

found that the predictions of the CBIVI for nucleon magnetic moments may be encapsulated by a,

simple extrapolation formula - the Padé approximant. This approximant enables us to build in

the correct asymptotic behaviour of the nucleon magnetic moments in both the chiral and heavy

quark limits. Here we extend the formalism to extrapolate lattice results for magnetic moments

of the entire baryon octet. Successful predictions are obtained for the nucleon and X baryon

magnetic moments. Motivated by this success rve develop similar procedures to extlapolate lattice

calculations of octet baryon charge radii. These extrapolation formulae include the leading non-

analytic logarithmic terms predicted by chiral perturbation theory and respect the constraints

of heavy quark effective theory.'. Good agreement l'ith experiment is obtained for the predicted

nucleon and Ð- charge radii. Predictions for tire remaining octet baryon charge radii are made

in anticipation of future experimental measurements.
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Chapter 1

Introduction

The currently accepted model of the strong interactions is the theory of Quantum Chromody-
namics (QCD).This theory rvas originally formulated in the 1960s and 70s. It began',vith the
proposal of Gell-Nlann [1] and Zweig [2] that hadrons consisted of elementary particles knorvn as

"quarks". This idea was based on the realization that all lorv-mass hadrons could be classified
into lorv dimensional representations of SU(3) rvhich suggested that hadrons consisted of more
elementary constituents - the quarks - belonging to the fundamental representation of SU(3).
The three types (or "flavours") of quarks lvere named "up" (u), "dorvn" (d) and "strange" (s),
rvith each quark possessing spin I and fractionalcharge: f t for z and -| for d and -s (all charges
areinunitsof ":le). Intermsof quarks,baryonscouldbeconstructedasquarktriplets (qqq),
rvhile mesons consisted of quark anti-quark paiLs (qq). Since the 1960s more hadrons have been
observed, necessitating the introduction of 3 more quark flavours: "charnl" (c) and "top'' (ú)

rvith charg" +2", and "botto-" (ô) rvith charge -|.
Soon after the introduction of the quark model, it rvas realized that there rvere observed hadrons
rvhose naive quark model description violated Fermi-Dirac statistics. For example. the quark
model description of the spin-$ baryon, A++, is a bound state of 3 z quarks, u'ith their spins
parallel, in the / : 0 angular momentum state. This description of the A++ ciearly violates
Fermi-Dirac statistics, since the 3 quarks are in identical states. To rectify this problen-ì an

additional quantum number, knorvn as "colour", was introduced. By aliorving the quarks to
carry this quantum number the anti-symmetry of the A** '¡'avefunction could be produced via
anti-symmetry in the colour part of the wavefunction. Thus it rvas postulated that quarks came
in 3 different colours (red, green and blue). ìvlore technically, quarks belong to the fundamental
representation of SU(3)"oro.,". The introduction of colour was sufficient to overcome the major
problems with the quark model and it soon became rvidely accepted by the physics community.

With the quark model well established, interest soon turned to describing the dynamics of quarks.
Given the success of the Abelian gauge theory of Quantum Blectrodynamics (QED), it rvas
postulated that a gauge principle could also be used to formulate a field theory for the quarks to
describe the strong interactions. This resulted in the birth of Quantum Chromodynamics (QCD)
- a non-Abelian gauge theory with gauge symrnetry group SU(3)"oro'" [3, 4]. The theory of QCD
is described by a Lagrangian (see Eq. (1.1) below) rvhich is constructed to be invariant under local
SU(3)"o¡o.," transformations. The gauge bosons of QCD, which mediate all strong interactions,
are knorvn as "gluons". In analogy to the gauge bosons of QED, the photons, rvhich mediate
all electromagnetic interactions and couple to electrically charged particles, gluons couple to
fermions and bosons which carry a "colour charge". Like photons, gluons are massless and have
spin 1. Horvever unlike photons, which couple to electric charge but are electrically neutral,
gluons carry a colour charge themselves. This meaus that gluons interact with each other and
undergo self-interactions. Gluons belong to the adjoint representation of SU(3).o¡o,r, and are
represented in the QCD Lagrangian by the fields Á[, rvhere ¿: 1,...8.
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The fact that QCD is a non-Abelian gauge theory leads to several fundamental differences be-

tr,r'een QCD and the Abelian gauge theory of QtrD. Firstly, it has been observed experimentally
that strong interactions become *'eaker at short distances - a pheuomenon knorvn as "asymp-
totic freedom". This is in total contrast to QED, lvhere the electromagnetic interactions grow

stronger at short distances. Historically it rvas the experimental evidence for asymptotic free-

dom which suggested that the theory of the strong interactions lvas non-Abelian, since it had

earlier been shorvn that non-Abelian gauge theories in 4 dimensions exhibit asymptotic freedom,

rvhile Abelian theories do not. Asymptotic freedom allorvs perturbation theory to be used at

short distances (e.g. in high nÌomentum transfer reactions). Perturbative calculations for decay

rates, cross sections and other observables in high momentum transfer reactions have been very

successful (e.g. Refs. [5, 6]). This success is a good indication that QCD is the correct theory of
the strong interactions.

The second major diference betrveen QCD and QED is that in QCD the intelaction does not
become rveaker at large distances. This phenomenon is thought to produce the observed colour

confinement. It has been found experimentally that all observed particles are colour singlets, or

"colourless". This is thought to be afundamental property of QCD. If this is the case, then it is
easy to explain why free quarks are not observed in nature since quarks carry a colour quantum

number, and hence must be confined to colour singlet objects, such as baryous and mesons.

Despite the fact that free quarks have never been observed, there is very strong evidence to
support their existence.

The Lagrangian density of QCD has a particularly simple form. It is given by

1L- -¡ri'ri,+q\P- n)(t, (1.1)

rvhere the quark covariant derivative is given by

iQq:i^/"Dru:^tP i0, - gAi(
À¿

) Q, (1.2)
2

Af, arc the gluon fields and Ào are the 8 Gell-Vlann matrices (given explicitly in Ref' [Z]). We

use the same conventions as Ref. [Zl for the 7 matrices. The quark mass matrix' m' is given by

m-diag(rnutrndt...),r,vheremnisthemassof quarkq. Thegluonfieldstrengthtensorisgiven
in components by

Fl,: ðrAï- õ,Aî- g f"b"AbrA",, (1.3)

rvhere g is the SU(3) gauge coupling parameter and /oö" are the structure constants of SU(3)'

In principle, oue could ext,ract all the properties of strongly interacting particles from the QCD

Lagrangian, Eq. (1.1). Horvever, in practice this is very difficull. to do in the low energy sector.

tn ihe low energy.".tor, the observed participants in strong interactions are hadrons. Since the

QCD Lagrangian is formulated in terms of the more fundamental quarks and gluons, and the

mechanism of confinement is not fully understood, it is very difficult to make predictions about

hadronic observables from the QCD Lagrangian. In fact, so far it has been impossible to extract

non-perturbative information about hadronic observables from first principle, analytic studies of

the QCD Lagrangian. As a result, numerical methods must be used to calculate properties of

hadronic observables.

The most successful method of extracting the properties of hadrons from the theory of QCD
is via the numerical method of lattice QCD. In lattice QCD the 4-D space-time continuum

is discretized, and QCD is formulated on the space-time grid. Each quark field in the QCD

Lagrangian is specifiLd at every grid-point on the lattice, u'hile the gluon fields are defined on

the links between grid-points. The Feynman path integral approaclt is used to calculate physical
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observables. For example, the expectation value of an observable O (rvhere (? is any combination
of operators, expressed as a tine-ordered product of quark and gluon fields) is given by

(0): I IrorDþDJ; oeis[Aþ'Ú'¿'] . (1.4)
¿.1

rvhere the integral extends over all possible field configurations of t,, tþ and Ar. The quantity
SLA*, rþ, rþl i" the QCD action, given by

slA,,,þ,rþl: I o^, (-lr,,r,' + úMrþ): sc * sr , (1.5)

rvhere M : Q - m is the Dirac operator and ,96 and 5r are the gauge freld and fermion actions
respectively. The partition function, Z, which appears in the expectation value, Eq. (1.4), is
given explicitly by

z= [DA,,D1|D,!,e;s
J * (1.6)

To evaluate the expectation value ((?) numerically, an analytic continuation to imaginary time
is performed, i.e., t -+ -ir. Then ((?) becomes

(0): IDA"D'þDç Oe-s"

ffi' (1.7)

n'here ,5¿; is the Euclidean action. To evaluate such an expression on the lattice, the integral must
be discretized and the action expressed in telms of quantities defined on the lattice. The expres-
sion for ((2), given in Eq. (1.7), closely resembles a correlation function in statistical mechanics.
Hence computational methods founded in statistical mechanics can be used to numericallv sim-
ulate the path integrals.

In Euclidean space-time, the fermionic part of the partition function can be integrated out, to
obtain

z : I DArdet ¡¡ ,-F¡"FF" /1 (1.8)
J

In this form the entire fermionic contribution to the partition function is contained in the de-
terminant, det M. Setting det M to be constant is knorvn as the quenched approximation. It is
equivalent to removing vacuum polarization efects from the QCD vacuum. The lattice results
that rve consider in this thesis are all obtained from quenched lattice QCD simulations. At this
point, full QCD simulations which include vacuum polarization effects (i.e. det À1 f const) are
in their infäncy. Results for electromagnetic form factors are not ¡'et available.

In the standard model there are several parameters rr'hich are not specified by the theory itself,
but must be determined from experiment. (It has been postulated that these parameters are
specified by a more fundamental theory, but this underlying theor¡. has not ¡'et been discovered.)
For QCD these parameters are the strong coupling constant, g, and the bare quark masses.
In any lattice simulation of QCD these independent parameters become input parameters of
the simulation. Clearly for the lattice results to match experimental measurements, the input
parameters must be fixed to their experimental values. However, they can also be explored
within the lattice simulation to establish the dependence of the ph;'sical observable on the input
paranreters. Of particular interest in this thesis is establishing the dependence of hadronic
observables on the input quark mass. The reason for this is as follorvs. Computational limitations
force lattice simulations of hadronic observables to be performed at quark masses much larger
than their physical values. This means that results from lattice simulations cannot be directly
compared rvith experimental measurements, but must be extrapolated to the physical regime.
Although improvements in actions, algorithms and computer speed rvill allorv lattice calculations
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to be performed much closer to the physical regime, these implovements s'ill proceed over man)'
years. In the meantime it is imperative to understand horv to extrapolate lattice results from
the large quark masses rvhere they are obtained to the physical regime.

In early lattice calculations the problem of extrapolating lattice results to the physical regime was

not given a high priority. In exploratory calculations, lattice results lvere usually extrapolated
as simple linear functions of the squared pion mass, m]. Wittr the advent of chiral perturbation
theory, it .¡'as discovered that hadronic observables, such as electric charge radii and magnetic
moments, exhibit certain non-analytic behaviour in the quark ITìâss1 ?'r2s; near the chiral limit. As

lve rvill see, this non-analytic behaviour can give rise to dramatic deviations from the predictions

of simple linear fits. The non-analytic behaviour in chiral expansions originates from Goldstone
boson loops, as rve now explain.

The QCD Lagrangian exhibits (approximate) invariance under chiral transformations. However,

this symmetry of the theory is not realized in the conventional manner. In particular, chiral
symmetry is dynamically broken, resulting in [he foluraticru of an octet of very light particles

knolvn as (pseudo-) Goldstone bosons. This octet of Goldstone bosons corresponds to the ground

state pseudo-scalar meson octet, lvhich contains the pions, kaons and 4s meson. Since Goldstone

bosons are very light compared to other hadrons in the spectrum, at low energies (l 1 GeV) these

particles are the most important dynaniical degrees of freedom in strong interactions. Goldstone

boson loops are responsible for the non-analytic behaviour of hadronic observables. As we will
discuss in Chapter 2, an effective field theory - Chiral Perturbation Theory - can be formulated
to describe the system of light Goldstone bosons and the other (heavier) hadrons rvith'which they

interact. Chiral perturbation theory can be used to predict the behaviour of hadronic observables

near the chiral limit. For example, the chiral expansion of the nucleon magrletic moment is given

as follows
l-rN : c6 ! clmn -f c2mz,log(ml) ¡ ,t*2* + '-- , (1'9)

where c1 and c2 à1e fully determined by chiral perturbation theory, rvhilst cs and ca must be

determined phenomenologicall¡', The leading non-analytic behaviour of p¡ is contained in the

crm,r term, since ,rnlt 6. {ntn in the chiral limit. Since the coefficient c1 is quite large (c1 :
+4.4I ¡.t.¡¡GeV-r for l{ : pln respectively), this non-analytic behaviour is significant near the

physicai pion mass and must be *uaken into accounr"\n tny extrapclaticn to the physical regime

[8] - [16].

Since chiral perturbation theory gives expansions of hadronic observables as a function of. mn'it
rvould be tempting to use these expansions directly to extrapolate lattice QCD results for the ob-

servable. Holvever, since the radius of convergence of chiral perturbation theory is unknown and

Iattice results are obtained far from the chiral limit, it rvoulrl be inappropriate to use expansions

such as Eq. (1.9), which are valid in the chiral limit, to extrapolate the results. In fact, attempts

using the first four terms in the chiral expansion, Eq. (t.9), to extrapolate nucleon magnetic

moment lattice results have not been successful. The major problem is that the c2 m2" log(m2")

term dominates at large pion masses and prohibits contact with the lattice results. From this

we conclude that lattice results obtained at large pion masses simply cannot be accessed directly

via chiral perturbation theory expansions'

In order to access the heavy quark mass regime of the lattice results, we consider a successful

phenomenological model of baryons - the Cloudy Bag lVlodel (CBM) [17, 18] - which includes

ihe underlying quark structure. The CBM builds in the phenomenon of pion emission in such a

way that the leading non-analytic behaviour predicted in chiral perturbation theory is contaïned

within the model. Th" ,"rron for using the CBM to extrapolate lattice results is that this model

contains additional physics rvhich is not present in chiral perturbation theory. For example, in

the CBM baryons have a finite size, in contrast to chiral perturbation theory rvhere they are

6



considered point-like. As a result the non-analytic behaviour in chiral expansions in the CBN,I is
suppressed at large pion masses due to the presence of form factors l'hich regulate the pion loops.
This gives a much more realistic description of hadronic observables at large pion masses. In
practice this means that the lattice results at large pion masses can be accessed in a convergent
lvay.

The CBN{ extrapolation procedure involves an algorithm rvhich updates the properties of the
CBM as the pion mass is changed. However, as we will see. the predictions of the CBVI for
the nucleon magnetic moments can be encapsulated in a simple analytic extrapolation formula.
This extrapolation formula agrees rvith chiral perturbation theory in the small rn,, limit, while it
maintains the expected Dirac moment behaviour in the heavy quark mass regime. In Chapter 5

this extrapolation formula rvill be applied to magnetic moment lattice data of the entire spin-7/2
octet. lVe will apply a similar extrapolation procedure to the electric charge radius lattice results
in Chapter 6. .-.

The main aim of this thesis is to develop extrapolation schemes for lattice QCD results of hadronic
observables. Here rve focus on extrapolating the results for the electric charge radii and mag-
netic moments of octet baryons. By extrapolating the lattice results, one may directly confront
experiment with the predictions of QCD, thereby' testing the theory' as a valid description of the
strong interactions. Therefore. rvherever possible our predictions are compared with experimen-
tal results. lVe also hope that rvork of this type rvill lead to a better understanding of the theory
of QCD, so that it may be possible understand horv the theory rvorks in terms of simple ideas
and models.
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Chapter 2

Chiral Perturbation Theory

In this thesis we are interested in the lo'w energy sector of QCD (< 1 GeV) rvhere the observed

particles which participate in the strong interactions are hadrons. As we have alread¡' remarked,

since the QCD Lagrangian, Eq. (1.1), is formulated in terms of quarks and gluons, it is very dif-

ficult to extract information about hadrons directly. Chiral perturbation theory is an alternative

means of making predictions for hadronic observables. In chiral perturbation theorl' one con-

structs an effective Lagrangian for the lorv energy sector which has hadronic degrees of freedom,

but respects the same symmetry properties as the original QCD Lagrangian. In particular, the

effective Lagrangian must be invariant under chiral transformations. In this chapter rve construct

the chiral effective Lagrangian and use it to make predictions for various hadronic observables.

Eventually (in Chapters 3 - 5) rve rvill use expansions frorn chiral perturbation theor¡' to guide

extrapolations of lattice results to the physical regime'

2.L Chiral symmetry in the QCD Lagrangian

Recall the QCD Lagrangian of Ec1. (1.1):

L - -Lp!, ri,, + qUQ- m)s . (2.1)þ-4

This La.grangian can be rervritten in terms of left- and right-handed quark lvavefunctions' q¿ and

qn,where 
1 r,-qt: ;(1 - z;)q and s^: ;(1 * r;) rr , Q2)

to obtain
1 (2.3)L
4

F:'' Fi, * 4riVqt t TniVqn - 4rrnqR - qRrnqL

Note that the left- and right-handed fields are mixed only in the terms proportional to the quark

mass matrix, m. Therefoie in the case of massless quarks the Lagrangian is invariant under global

SU(^'i)¿gSU(lYl)n transformations, rvhere lü¡ is the number of flavours being considered' That

is, the-massless QCD Lagrangian is invariant under the following transformations

qL -+ gL qL and 8n ) 9n Qn , e'4)

rvhere (g¡,,5n) is an element of the group SU(N¡)¿6SU(IVi)R. As an example rve give the

general form of an element of this transformation group in the case -fl¡ : 2 ;

(sr,gn): ("-oor'"/2,r-iaa'r/,) e Su(z)r,ØSU(2)p. (2.5)

Here a¿ and a¡ are 3-vectors with constant entries and r : (rr, -21-3) is the triplet of Pauli

matrices. The invariance of the massless Lagrangian under the transformations given in Eq' (2' )
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is known as chiral symmetry. In the ph1'sical case of non-zero quark masses, chiral s¡.'ntmetry'
is an approximate symmetry of the QCD Lagrangian, provided that the quark masses are small.
This is certainly reasonable in 2-flavour QCD, since rnr,¿ (( Äqco. It is also common to use

3-flavour chiral symmetry to make SLI(3) chiral expansions. Horr,'ever, these expansions must be

treated rçith caution since nr" is comparable to Âqco.

In 3-flavour QCD, chiral symmetry of the massless QCD Lagrangian gives rise to 16 conserr.ed

Noether cun'ents, namely

\a

JL'; : Qxtr|-øx ,

rvhere o.: !,...8 and X : L,.8. Each current satisfies 7rJf :0. Alternatively, the currents
can be rr,ritten in terms of the conserved vector and axial currents, Jf" and Jl", wherc J(r" :
Jl" +Jfi" and JA" : Jfr" - Jf". There are 16 conserved charges, Qþ and Q|, corresponding to
the conserved vector and axial currents. They are given by

d3r Jlf and (2.6)

These charges are the generators of the vector and axial symmetries of the QCD Lagrangian.

Since chiral symmetry is an approximate symmetry of the QCD Lagrangian, we expect that this
symmetrJ* is replicated in the light quark sector of the hadronic spectrum. If chiral symmetr¡. is
realized in the conventional u,ay each observed hadron rvill have an opposite parity partner. For
example. if lÀr+¡ is an eigenstate of the QCD Hamiltonian r¡'ith mass rn rve expect Q¿ lÀ +) also
to be an eigenstate of the Hamiltonian with mass m since the axial charge, QA, commutes rvith
the Hamiltonian, i.e. [,F1, Q¿.]:0 (since Q¿, is a constant of the motion, 1oQ¿ :0). How.ever,
experimentall¡,' opposite parit.v partners are not observed in the hadronic spectrum. For example,
there are no particles r,vith tlie same mass as the proton but opposite parity.

The explanation for the lack of parity partners in the hadronic spectrum is that the r.acuum is
not chirally symmetric - i.e. the state Q¡10) is not identical to the vacuum state, lO), but it
contains an arbitrarv number of massless pseudo-scalar particles knolvn as Goldstone bosons. In
other words, the SU(N¡)¿S SU(Nf)R symmetry of the QCD Lagrangian is dynamically broken
to.Stl(ü)y b¡.the vacuum state l0). This produces massless Goldstone bosons in acco¡dance
lvith Goldstone's theorem which states that for every spontaneously broken symmetry a massless
particle is produced. In the case Ài : 3 there are 16 generators of the chiral symmetry, 8 of
rvhich are broken in the dynamical breaking to 5U(3)y. Hence an octet of (almost) massless
pseudo-scalar Goldstone bosons appears (comprising the pions, kaons and 46 meson). These
eight particles are created by the axial currents, Jf,", and obey the following relationship

(olt'"" (o) 
I "¿þl) - if*p\õf , (2.7)

rvhere ro is the ¿th Goldstone boson field and /r, is the pseudoscalar decay constant, lvhich has
dimensio¡rs of mass. Experimentally /" is found to be g3 MeV [19].

The Golclstone bosons produced by chiral symmetry breaking would be completely massless if
chiral svinmetry was an exact symmetry of the QCD Lagrangian - i.e, if quarks were massless.
The reaiity of small quark masses means that the eight pseudo-Goldstone bosons acquire small
masses. i [orvever, there is a gap of À = 0.5 GeV between the Goldstone boson masses and all
other haclron masses. This means that at energies small compared to A the Goldstone bosons
are the main dynamical degrees of freedom in the system. This allows an effective field theory
- Chiral Perturbation Theory - to be formulated for the lorv energy sector. We will see this
formulation in the follorving sections. (Excellent accounts of chiral perturbation theory and the

ei: I o', tyAi: I
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construction of chiral effective Lagrangians can be found in Refs. 120] - [23].) Hou'ever, before rve

construct the chiral perturbation theory Lagrangian, rve consider a simple model, the ø-model, to
demonstrate the process of spontaneous chiral symmetry breaking and the associated production
of Goldstone bosons.

2.2 The ø-model and spontaneous chiral syrlr.metry breaking

The a-model is a simple model describing a s,v-stem of nucleons and pions. It is formulated in
terms of a fermion field, ,þ: (p,n)T, a pion triplet, 7r, and a scalar field, ø. The Lagrangian
of the ø-model is chirally symmetric. As lve will demonstrate, masses for the nucleons and

ø particle arise through spontaneous chiral symmetry breaking. The o-model rvill be helpful
in understanding the nature of meson-baryon interactions before \\'e move to the more general

formalism of chiral perturbation theory. lvloreover, it motivates chiral quark models such as the

Cloudy Bag Model (see Chapter 3) rvhere the underlying quark structure of baryons is included.

The Lagrangian of the o-model is given by

_11-
L : tþi4þ + rlrn 

. Iptr t rlroluo - g.þ (o - ir . tr^ts) p + Ç {"' + z2) - } ø' + rr2)2 12.e1

The first three terms are kinetic energy terms for the nucleon. pion and ø fields respectively. The
fourth term contains the pseudoscalar nucleon-pion interaction and the Yukawa coupling of the

nucleons lvith the o-field. The last trvo terms form a poteritial energy term, V(o,r), lvhere

t\

v(o,zr) : -+ @2 + 12) + ) @" + nt)' (2.-e)

The above Lagrangian can be written in a number of diffelent forms. One particularly useful

form of the Lagrangian is obtained rvhen the pion and scalar fields are combinecl in a matrix, X,

u'here
D: o -l ir .r (2'10)

This matrix has the property that

1rr(rTr) :o2+t2 (2.11)
2

rvhich is easily proved using the Pauli matrix identities. This allorvs the o-model Lagrangian,

Eq. (2.8), to be written in the follorving way

L : ,þri\rþr i tþniØt'n* 1t' (arrta'r) - a (-',:rru'n + crnxtd'¿)

+fr,1rtr) -+lr,1rtr)]', Q-r2)

rvhere g¡ aú, þp are the left and right handed fermion fields, as defined in Eq. (2'2)' In this

form it is clear that the ø-model Lagrangian is invariant under the chiral transformations

,þt -> "-iar"r/2 ç" (2.13)

,þn -+ 
"-iaa'r/2 ç^ (2.74)

provided that the matrix X transforms as

Ð _+ e_iot,.,l2 Ð 
"ian.r/2 

. (2.15)

Since the ø-model Lagrangian is chirally symmetric, it is clearÌ1' also invariant under isospin
r-^---r^-..^^!:^-^ -.-L^-^ - :- F^. /Ð 11\ - /t 1(\Llii,ll5luf.llr¿Ll\Jlròr lvltcrç uL 

- 
sH rrr lYo, \L.LÚ)
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The o-model Lagrangian exhibits spontaneous chiral symmetrl' breaking. This can be seen by'

considering the potential energy term, l/(a,a'). Stationary points of Il(o,zr) occur al (o,r) :
(0, 0) and when (ø, zr) satisfies

(2.16)

Since thefield configuration (o,n) - (0,0) is an unstable ctitical point, rve cannot consider quan-
tum fluctuations about this point. Horvever, the degenerate ground states satisfying Eq. (2.t6)
are stable critical points, and the potential energy is minimized on the surface formed by these
points. \\¡e now consider fluctuations about a particular degenerate ground state on the surface;
(o,n)o - (r,0), rvhere u: (p,21).)1/2. Fluctuations about (o,t)o are denoted by (a,zr), rvhere
o : o - u. Rewriting Eq. (2.8) in terms of the fluctuations we see that the Lagrangian becomes

L : rþ(iø - su)ú+|luruu'u -zp"a'l +|ar^' |pr - srþ(o'- ir' r15)ú

-Àuo (a2 + n2) - ìlf* + n2)' - un) . (2.rT)

Therefore the nucleon acquires a mass of gt:, the o field acquires a nrass of J2p and the pions
are massless. The pions are the massless Goldstone bosons corresponding to the 3 broken axial
generators, i.e. they arise from the spontaneous breaking of SLrQ)tØSU(2)Rb SAQ)v.

The a-model Lagrangian no longer looks chirally symmetric in Eq. (2.LT). For example. the
fermion field norv has an explicit mass term, rvhich does not suggest chiral symmetry. Horvever,
the Noether currents of the original ø-model Lagrangian are still conserved [i8]. In particular,
the axial current remains conserved. Thus the symmetry of the original Lagrangian has been
"hidden" by the field transformation o -+ o. Horvever, some of the original symmetry has
been broken, since mo * rnn in Eq. (2.17), ',vhereas these masses lvere the sarne in the original
Lagrangian, Eq. (2.8).

We nou' consider adding a small symmetr¡' breaking term to the o-model Lagrangian. This
addition is motivated by the fact that the original QCD Lagrangian contains rìon-zero quark
mass terms which explicitly break chiral symmetry. We add the follorçing term to the ø-model
Lagrangian,

L"b: oo : |trqD + xi) . (2.18)

This term is not invariant under chiral transformations. Nloreover, the addition of this term
shifts the position of the ground state, (r,0), to (u',0), where

'uu'-'['!-- o':VT*1F. (2.1e)

By considering fluctuations about this nerv ground state, r,ve flnd that the pions acquire a mass

(2.20)

This reduces to our previous result in the limit ø -+ 0 because clearly ffi, -) 0 in this case. Note
that by' adding this symmetry breaking term we have explicitly broken the 5tl(2)r,ØSU(Z)^
symmetry of the ø-model Lagrangian, but ^SU(2)v remains an exact symmetry.

There is a third form of the o-model Lagrangian which will be useful in $ 2.4.1, rvhen rve consider
including baryon fields in chiral perturbation theory. Consider rvriting the matrix Ð in the
follorving way

Ð:olir-T=(u+S)U, (2.21)

p2

À
o2 ¡t2:

a,

ul
*2"
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lvhere the scalar field, 5', is defined by the folloiving relationship

(5+u)2:o2+7r2, (2.22)

where ,: (p'lÀ)rl2 as before. In this form the scalar field, S, takes over the role of the ø field
and the matrix [/ replaces D. The matrix U is unitary since

(S +u)2UIU: (o -ir.r)(o-lir.r):o2 ln': (S *u)2 , (2.23)

and hence UÌU:1. Taking the determinant on both sides of Eq. (2.2I) we see that U has unit
determinant, and thus [/ e SU(2). In fact, using Eq. (2.21) we find that [/ can be rvritten as

¡¡-"rr.zr'/u, (2.24)

rvhere rr': (t -i+$+...) ,r.na o -- o -u. Under chiral transformationsthe matrix U

transforms in the same way as D, given in Eq. (2.15). Rervriting the Lagrangian in terms of (/
and ^5 we obtain

r. : lrltr,tl' - zp's'1. g+ry T(¿,(JðP(Jr¡ - Àu53 - )s'
+'úiø,þ-s(1)+S)(1þLuún+,l,aUtrþr). Q'25)

Compared to the form of the Lagrangian gir-en in Eq. (2.12), here rve have reintroduced a scalar

field into the Lagrangian rvhile retaining the matrix formulation. The scalar field, S, is heavy

compared to the Goldstone bosons. The advantage of rvriting the Lagrangian in terms of .9 and

I/ is that at low energies we can integrate out the heavy 5 field and obtain an effective theory-

for the lorv energy sector in terns of the matrix U 1231. \\'e rvill discr-rss this in the next section.

The o-model is clearly a very useful model for demonstrating spontaneous chiral symmetrl'

breaking. Hor,vever, there is a more s1'stematic apploach for constructing chiralll'- invariant La-

grangians, namely chiral perturbation theory. In the follorving sections lve rvill discuss this

systematic approach appliecl to the meson and baryon octets. \\'e will refer to the results of this

section frequently in the construction of the chiral perturbation theor¡' Lagrangian.

2.3 The effective chiral Lagrangian for Goldstone bosons

In this section we n'ish to construct an eflèctive Lagrangian for the low energy sector which

describes the interactions of Goldstone bosons. To do this rve introduce an SU(3) matrix, [/,
rvhich contains the Goldstone boson fields. This is analogous to the SU(2) matrix. U, introduced

for the ø-model in Eq. (2.24). The matri* [/ is defined b1'

L-eiolJ, (2.26)

where / is a constant rvith dimensions of mass and

ro t r18

n-r T6
T If+

1(0rotfla
\/2 ' ,/6(Þ:Àozro:\n 7l (2.27)

I\ Ii-0 2ne_G

Here Ào are the Gell-lvlann matrices and no are the 8 Goldstone boson fields (ø - 1,...8). Under

a chiral transformation of the fermion fields

'þr -+ "-ia 
t'\12'¡" 

'

'þn -> "-io 
*'\/2'þR 

'
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(here a¿ and a¡ are constant vectors'ivith S components) ne require that the matrix [i trans-
forms in the follorving rvay

II _+ e_ioL.),/2¿¡"iaa.),/2 , (2.2g)

analogous to the transformation property of the SU(2) matrix, [/, in the ø-model.

lVe norv construct the most general, chirally symmetric Lagrangian in terms of the matrix tI.
Since there are infinitely many possible terms consistent rvith chiral symmetry, this Lagrangian
must be constructed in a systematic way. We use an expansion in porvers of derivatives of U.
This is equivalent to an expansion in powers of the meson momenta. Lorentz invariance requires
that only terms with an even number of derivatives are allou'ed in the Lagrangian. Therefore
the effective Lagrangian can be expressed as follorvs

Len: r.L? + rLt + rL? + ... , (2.2s)

w'here ,C!p contains terms with n derivatives. The term with zero derivatives is not needecl in
the expansion since it would comprise terms proportional to [rtU : 1. The first term in this
expansion is given by

LL?:(rrp,ua,Lit), (2.80)
4'-'"t"'""/1

where the coefficient has been chosen so that the kinetic energy terms for the Goldstone boson
fields are properly normalized. This term is similar to the kinetic term for the Goldstone bosons
in the ø-model (see Eq. (2.25)), except that here the heavy scalar field, 5, does not appear. This
is because rve are considering a lorv energy effective field theor.v, rvhere heavy fields such as .S are

integrated out of the action. The ¿!? term in the expansion of 4"6 is given by

LL| : L; 
lr,O,ua,u\l' * 

t;r,çaLva"Lt\rr(aL,u0,ut) 
(2.31)

tvhere Z1 and L2 are independent constants u'hich need to be determined phenontenologicall,r,.
Terms such as

Tr(7p(/t0ruA'utA,U) and Tr(7put0,uAputA'Li) (2.92)

are not included in ¿!? since they can be re-rvritten as linear combinations of the terms in
Eq. (2.31).

The advantage of expanding .C"6 in po\\'ers of derivatives is that at lolv enough energies only a
few orders of the expansion are needed. From dimensional analysis the coefficient of a term with
n derivatives behaves as .4.4-', rvhere Â has dimensions of energy and is of the order 1 GeV.
Hence an æ-derivative vertex is of order qnÌ\4-n, where q is the momentum scale. Therefore, at
energies small compared to.A., matrix elements involving terms rvith a large number of derivatives
rvill be very small. Loop effects do not change this general conclusion [23]. Thus the expansion
of the effective Lagrangian , Eq. (2.29), is ver\- convenient for calculating matrix elements at low
energies.

In parallel with our discussion of the ø-model, rve norv consider the effect of adding explicit chiral
symmetry breaking terms to L.ç. Here rve only shorv the effect of adding such a term to seconcl
order in the effective Lagrangian. Horvever, symmetry breaking terms should be included at
each order in the expansion to produce the most general effective Lagrangian for the Goldstone
bosons. The symmetry breaking term is added b L!:ì in the following way

Çrrça,u ausl¡ * B, t'trt rtu + u\) ,L!?

13
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rvhere B is a constant and rn is the quark mass matrix. As rve u'ill see. the matrix m is of
order m2n and hence the symmetry breaking term has the right dimensiotts for the second order

effective Lagrangian. We can determine the constant B if rve consider Eq. (2'33) in the 2-flavour

case. In that case
U(r): rizr(r)'rlJ (2.34)

and Eq. (2.33) can be expanded in the follo,r'ing rvay

Lt:ì *ur* 
. 0p¡ * þU^ 

.ðrn)þr -}px) - (tr 'r)(ð,,r ' ð'n)l

*(*, + m¿)Blt' - T^' ^ + #(^' ^ff i 0þ16) . (2.35)

This allows us to make the follorving identification immediately

(*,+*o)B:rn2*. (2.36)

There is also a constant vacuum contribution to the second order Lagrangian, Eq. (2.35), namely

(*, + nxòB f2 . (2.37)

This can be identified rvith the the constant \¡acuun contribution to the (2-flavour) QCD La-

grangian, -(*u I m¿) < 4q >. Hence

L)_ mz" <Qq>,: 
-,+3^o= -Öt-. (2'38)

\\re can also compute the (2-flavour) vector and axial t'ector currents fto* f!t1 to find

Ji : e"b"rb\pr" + ... (2.39)

Jt;" : -f0Pr"1... (2.40)

Thus, using Eq. (2.7), rve see that / can be identified rvith the pseudo-scalar deca.u* constant, /',
and Eq. (2.38) reproduces the Gell lvlann - Oakes - Renner (GOR) relation'

2.4 Including the barYons

The effective Lagrangian which lvas constructed in the previous section describes the interactions

between Goldstone bosons alone. The next step is to incorporate the spin-1/2 baryon octet in the

efective Lagrangian. These particles are not light compared to the QCD scale. Heavy particles

exist in vectorial flavour multiplets. We rvill see that this vectorial flavour symmetry is important

lvhen constructing an effective Lagrangian which includes the baryon fields. Holvet'er, first rve

consicler holv baryons enter the o-model as motivation'

2.4.1 Fermions in the ø-model

In terms of the matrix U and scalar field 5, the fermionic sector of the ø-model Lagrangian is

given by
Lr :1þiøú- (Àfo + eS) (rf rUrþr+ úaut'¡'r) , Q'4t)

where lli[s:gp is the fermion mass. At low energies the heavy scalar field, ,5, can be integrated

out of the action to produce an effective Lagrangian for the low energy sector' To lorvest order

this integration corresponds to setting.g:0 in the Eq. (2.+f) [23]' (To obtain higher order
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effective Lagrangians one must perform the integration explicitl¡'.) Thus w'e consider the follorving

Lagrangian for the fermionic sector of the o-model at lorv energies

L¡ : t¡¡t\þr + rlniØrþn- lvlo (rltUr¡t^+ tþRUt\l)L) . Q'42)

This Lagrangian is invariant under the follorving chiral transformations,

úr, -+ Lúr ún -+ R þn U -+ LURI , (2'43)

where L, R €. SU(2)L,R respectively. We norv make a change of variables:

U : €€ Nt: €trþt lf¡ : ({rP (2'44)

rvhere {- ¿izr'r/z/" to agree rvith the definition of U given in Eq. (2.34). Physically, this change

of variables corresponds to 'dressing' the bare nucleon field, f', with a meson cloud lvhich is

contained in the matrix {. The fermionic Lagrangian,Eq. (2.a2), then becomes

L¡:ñ(¡p-fuu-*o)*, (2.45)

rvhere N : À'¿ + ly' and D rN -- (ð, + |VL)N . In terms of the matrix {, the vector field, Vp is

given by

\i,: _|(etaæ+€a,€r) , e.46)

and the axial fleld, .{r,, is defined as

Ã, : - | (l a,t- €4,(r) Q.4T)

\\'e norv consider the chiral behaviour of the new' fields. Under the chiral transformations given

in Eq. (2.43), the matrix { is defined to transform as follows

€ -+ L€Vt --V{r-r, (2.48)

where V is an SU(2) matrix defined implicitly by Eq.(2.48) 1. Clearly this transformation rule

ensures that (I - {{ transforms correctly as in Eq. (2.43). Using the transformation rule given for'

{, together rvith the transformation rules for the original fields, Eq' (2.43), we find the follorving

transformation rules for all quantities in the Lagrangian, 4¡,

Àr¿,¡ --* V Nt ,n Vr -+ V lY, - 4Arvt¡v)vt
Ã, + v ÃL,vt DrN -+vDpN (2.49)

Under purely vectorial transformations, where L: R, it can be seen from Eqs. (2.43), (2.48)

and (Z.iO) that Iz : L : Ë. Otherwise the explicit form of V is much more complicated. In

gen".al l¡ is a function of zr(ø). Thus the transformation .ff -+ VN explicitly mixes nucleons

rvith states consisting of nucieon, and pions. This mixing is expected from spontaneous chiral

symmetry Ûieaking. F.o* Eq. (2.a9) rve see that unlike the undressed fermion fields, the left-

una ,ig¡i-ttanded ãressed fermion fields, l/¿ and -fü¡, transform in exactly the same way under

chiral transformations, i.e. both transform via the SU(z) matrix V. The covariant derivative for

the dressed nucleon field also transforms in this simple vectorial manner' This is a manifestation

of the vectorial flavour symmetry of baryons, which is made explicit by this parameterization of

the fields.
rThe unitary natu¡e of V may be shorvn by noting that

has unit determinant.
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From this example we can see horv bar5.ons should be added to chiral effective Lagrangians in
general. First one assumes that the baryon multiplet transforms via the SU(n) matrix V, as in
Eq. (2.a9). The covariant derivative is then constructed for the barl'on multiplet so that it also

transforms under I/. In general, this covariant derivative rr,'ill include the { matrix. Pion coupling
terms are included in the effective Lagrangian by constructing chirallS' invariant quantities rvhich

involve the ( and U matrix fields. For example, the term tY,/,75À' in Eq. (2.4í,) is invariant under

the chiral transformations Eqs. (2.4S) - (2.49). In general, each pion coupling term rvill have

a coefficient r,¡hich rnust be determined by ex-periment, Finally, one maf include explicit chiral
symmetry breaking terms in the effective Lagrangian if the original theory contains terms of this
nature.

2.4.2 Generalization to Stl(3)8St/(3)

In this section we construct an effective Lagrangian to describe the interactions of the spin-1/2

baryon octet with the Goldstone boson octet. lVe will use the results of the previous section,

$2.4.1, as motivation. The main difference between this section and the last is that the dressed

nucleon field, I{, of the ø-model is generalized to a matrix, V3, in this case. This means that
products such as Ñlü become Tr(ü6ú6) in this generalization. Here u'e rvill also consider the

effect of including explicit chiral symmetry breaking terms in the effective Lagrangian. These

terms correspond to the cluark mass terms in the original QCD Lagrangiau.

The SU(3) matrix, Ü6, rvhich contains the octet baryon fields, is given b¡'

s'*
1v6(ø) : È

\/'2 ^",þ"8:
t t\

,/ò
E0
,/t

t0
\/2+1\

,/a
p

n. I
)=0

2¡
\/6

rvhere úþ are the 8 baryon fields and À" are the Gell-N'Iann matrices. The free field Lagrangian

for the baryon fields ìs a simple generalization of the Dirac Lagrangian, namel¡'

L : Tr lV B(t1rÔp - NI¡)V Bl (2'50)

rvhere /¿10 is the degeneiate baryon mass in the chiral SU(3) limit. To include interactions u'ith

Goldstone bosons we generalize the results of the ø-model, Eq. (2.a5), identif¡'ing the dressed

n¡cleon fielcl, N, with the matrix field, ü6. This gives rise to the follorving leading order effective

Lagrangian for the baryon-meson sector

¿"Srà : Tr [ù3 (4rD' - Mo)v n] -¡ FTr (ú ¡7rtrllp, ü¡l) * DTr (V"rrlr{¿u. v¡}) , (2'51)

rvhere F and D are coupling constants rvhich can be determined from neutron and hyperon beta

decays. lVe use the one-loáp corrected values F :0.4 and D: 0.61 in this thesis [2a]. The

covariant derivative for the baryon fields is given by

Drúe:ðtúe+ilvl"vï]. (2.52)

The vector and axial fields, V, and A, are given in Eq' (2.a6). (N.B'The matrix{ must now

be generalized to three flavours in the definitions of V, and A, - i'e,

F _ Piaþ)|2f" (2.53)

rvhere Õ(r) is given in Eq. (2.22).)

Explicit chiral symmetry breaking terms, corresponding to the quark mass terms in the QCD
Lalrangian. are added to the effective Lagrangian at second order. These terms involve the
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quark mass matrix, rn. For example, there ri'ill be terms proportional to Tr(itr¡[m, ìIis]) ancl
to Tr(V¡if*€ + €t*€t, V6]) in the symmetr¡. breaking piece of the second order effective La-
grangian. Once the symmetry breaking terms have been included in the Lagrangian, the baryon
masses ç'ill be shifted and split so that the1. are no longer degenerate. This can be seen in
Ref. [23] rvhere the full second order Lagrangian for the meson-baryon sector is given and the
mass splittings are discussed.

One can also construct higher order effective Lagrangians for the meson-baryon sector. Since
only the lorv order Lagrangians are needed for calculations at lorv energies rve will not give the
explicit forms for these Lagrangians here. Horvever, the full chiral perturbation theory expansion
is given schematically as follows

r.n:¿Í1,à+¿11) +¿Í,?l+¿[|à+... , (2.b4)

where ''\'fB" and "M" stand for meson-baryon sector and meson sector respectively. Explicit
expressions for ^Cfjà and f[]) are given in Eqs. (2.51) and (2.33).

Electromagnetic interactions can be included in the effective Lagrangian by modifying all partial
derivatives so that they include couplings to the photon field. "4p. For example, the fermion
covariant derivative rvould be modified as follorvs

Duú B : 0rú B + i llþVr] * 0rú e - ieArlQ,,ú B) l[o, apo], ü¿l+ .. (2.55)
1_L_

' gÍ':

rvhere the matrix Õ is defined in Eq. (2.27) and

(2.56)

Similarl¡' for the meson sector, electromagnetic interactions are introduced by making the fol-
lowing substitution: )rU -+ DrU : ôpU + ieArlQ,¿r]. Once the electromagnetic interactions
have been includecl in the effective Lagrangian one can detelmine the associatecl conserved elec-
tromagnetic current by calculating

rP - - 
?L"nrn=-ãGÐ. e.57)

This expression for the current can clearly be decomposed into a sum of contributions from each
term in Eq. (2.5a).

2.5 Electromagnetic form factors in chiral perturbation theory
In this section lve shorv horv the chiral perturbation theory Lagrangian can be used to make chiral
expansions of electric charge radii and magnetic moments for octet baryons. Here n'e simply give
a general overvierv of the method used to obtain these expansions, but do not include all the
details. Precise details of the calculations can be found in Refs. 124) - [26]. The basic quantities
rve must compute for each baryon are the Sachs electric and magnetic form factors, G¿(q2) and
G¡ú(q'). The 4-vector g is the momentum transfer vector; the difference in momentum of the
outgoing and ingoing baryon state. This corresponds to the momentum brought into the vertex
by the (i'irtual) photon. In the Breit frame, rvhere the momentum transfer 4-vector, g, satisfies
go:0, tl,e Sachs form factors are related to the spatial electromagnetic current, Jt"(r1, in the
follorving rvay

(a po 141 a) : * [ d"q c r(sz¡"-iø'''- , (2.58)
\zTi )' J

(8,"¡l i141a,sp¡ : =y- [ #oGnn(o') ("" lõxdsa)e-iq-''' ,, (2.bg)(2"P I 
w ttvtw\u )

a:(í + s,)
\o o -å

t7



Barl,on '1") "l^) gy) p!^)

n å+å(t+F)' -å-ålp-F)' (D+F)2 -@-F)'
Ao$rro2DF

s.+ t S (D2 r n2\ I 5¡n r nr2 2t-'¡2 ¡ç2 /n L E\2¿ -5-5\3 -, / -6-d(D+F)" -'àn'-2F2 -@+F)2
¡oo-åDr'o-2Dt'
D- å*å(T*r') å+åt¿-F)' !o2+zr2 (D-F)'
=0 -å-å(D-F), å+åtp+F)2 -(D-F), (D+F)2

=- å+åtr-F)' I + F') (D - F)2 7n2 + zr25+

Table 2.1: Table of coefÊcients for the chiral expansions Eqs. (2.62) and (2.63) in terms of the
axial vector coupling constants F and D.

Fn: eGu(o)(utø:o'),"r1 ulut¡:o-),"r) (2'61)

These relations are easily proven from the definitions

,'z' : (u,u: urll 0", ,'iou(ùl u,o: u,)

FB : (u,u= 0'), "¡ li I 0", rxin(ûl u,u= o-), "") ,

and using Eqs. (2.58) and (2.59) also.

Therefore, to determine the charge radius and magnetic moment chiral expansions, one must

first compute the electromagnetic current from the effective Lagrangian. This involves computing

0L"6/fl(eA,,) as in Eq. (2.57). Realistically, one would use the first fe'rv terms in the expansion of

.C"R, Ee. (2.54), since this is agood approximation at lorv energies. Next one would compute the

left hand sides of Eqs. (2.58) and (2.59) and hence determine Gn(q') and Gv(q2). Details of these

calculations can be found in Refs. 124,27 ,28]. Once the Sachs form factors have been determined,

it is then simple to compute the squared charge radius and magnetic moment expansion for each

octet baryon using Eqs (2.60) and (2.61). One finds the follorving SU(3) chiral expansions,

(,,') 'u*"4*##'"(i )+
^,. t \- a('X) !!^,n * ,4 

^.13ì-'' 
* fmx +

(2.62)

þ;
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Figure 2.1: The lowest order processes contributing to the charge radius and magnetic moment
expansions for an octet baryon, B. The shaded diagram on the left-hand side of the equation
represents the sum of contributing diagrams. Unspecified internal fermion lines are intermediate
baryon states, which do not necessarily have the same quantum numbers as B.
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Figure 2.2: The Goldstone boson loop rvhich produces the leading order non-analytic term in
the expansions of baryon magnetic moments. The momenta are indicated.

where"i" labels the octet baryon, À is the scale of the dimensional regularization, rn¡ is the
nucleon mass, the coeffici"nt. "jx) rnd Bjx) are listed in Table 2.1 and the values for ð; and 7;
are given in Refs. L24, 251. The terms ô; and ji ale constant and thus are analytic functions of
the quark mass, mn. lt can be shown 127,291that all coefficients of analytic terms are model
dependent (they depend on the cutoffvalue), u'hile coefficients of non-analytic terms are model
independent. Therefore rve will not be interested in the values of the coefficients d; and 7;. since

they depend on the cutoffvalue. However, the coefficient, ofx) und Bjx) are model independent,

since the terms ln(nt ¡ /À) and m-ry are non-analytic in the quark mass. (Recall that mn o ,,tol'
and m¡ç x (mq+^")'/'.) For this reason rve rvill be interested in the values of these coefûcients.
Eventually (in Chapters 3 - 5) we will use the non-analytic terms together with their coefficients
in extrapolation formulae for electric charge radii and magnetic moments.

We have seen that the electric charge radius and magnetic moment expansions contain both
analytic and non-analytic terms as a function of the quark mass, mn. To see horv each term arises
one must calculate the relevant Feynman diagram. The lorvest order processes contributing to
the magnetic moment and electric charge radius expansions for an octet baryon, B, are shorvn in
Fig.2.1. The 3'd diagram in this expansion (which is enlarged in Fig. 2.2,where the momentum
conventions are chosen) gives rise to the leading non-analytic term in the magnetic moment chiral
expansion rvhen the intermecliate baryon state has the same quantum numbers as the external
state, B. In the following paragraphs we rvill explicitly show how this leading non-analytic term
arises from the process shown in Fig. 2.2. However, first rve discuss the expected form of the
amplitude for the "full" process (i.e. the sum of all contributing processes), depicted b1'the
shaded diagram on the left-hand side of Fig. 2.1.

The amplitude for the full process in Fig. 2.1 can be written asu(pt)erlru(p), rvhere ep: ep(q)
is the polarization vector for the incoming photon, lp contains a sum of contributing processes
and u (p) and A(p') are the Dirac spinors for the baryon, where p' : p + q is the outgoing baryon
momentum. Note that the amplitude will also include a factor involving the isospin components

+
p
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of the Dirac spinors. Holvever, the isospin part of the amplitude can be calculated separately
because it factors out from the full expression, and can be recovered at the end of the calculation.
Using general properties, such as Lorentz invariance and the Ward identity, it can be shou-n [7]
that fP must take the form

fp : Fr (q\t* + Fz(qz)# , Q.64)

where rn is the mass of the baryon and F1(q2) and Fzkl') are real functions. Ft(qt) and F2(q2)

are reiated to the Sachs form factors, defined in Eqs. (2.58) arrd (2.59), in the follow-ing n'ay

Gs(q') : pr(q2) - n*ørrr{o\ ,

Gu(q') : Fr(rt\ + Fz(qz) .

We l'ill now sketch the calculation of the leading non-analytic contribution to the nucleon mag-

netic moment from the process shown in Fig. 2.2. This contribution is labelled ðfp.

The Feynman rules for fermions and pseudoscalar particles allo'w us to write down the follorving
expression for the amplitude of the process shown in Fig. 2.2in the case where the intermediate
state has the same quantum numbers as the external nucleon,

.2
z" 2kl+qr)(þ-þ+*

+ ie)

(2.65)

(2.66)

] t-or,l
(2.67)

er6l.: s?¡r r, I #(i?r) [ (k'-*'"+ze)((p-À) - m2 + ie)((k + q)z - m1i

The factor of 2kp * qp : ¡u ¡ (ku * qp) comes from the photon coupling to the pion. The

factors of i g,¡¡ 7s arise from the vertices rvhere the pion is emitted and absorb"d (9'¡- is the
pion-nucleon coupling). Using the tact that {75, ^i'} :0, epSp: 0 and fu(p) : znz(p), this

amplitude can be lvritten

d4k k4ßÀ
(2.68)e,õf P: -2iS?Nrrl¡ | (2")^ (lt" - *'n + ze)((p - k)'- m2 ¡ ie)((k + q)2 - m2^ + ie)

Working in the Breit frame, rvhere q0 : 0, this amplitude becomes

,t t^ J Qr)a 1ç¡ro¡z - nl + ie)(À'2 - 2po¡c

rvhere uf;: 1Ë¡z + *?. Taking the heavy baryon limit, *,her e po : tIÑTæ >> lpl l3:9f
and p0 * rn, the following factor in the denominator can be simplified,

k2 -2poko +2i'Ë+¡r-+ -2p0(k0 -ie iO(tlm))x -2m(ko -ie l0(t /m)) , (2.70)

and the O(llm) term can be disregarded. Using this simplification, the denominator can be

fully factorised as follows

d4k hpk^
e ,6lP - i97Nep'ys

(2n)n m(ko - ie )(,to - un * ie ) (ko * u* - ie)(Äto-t^t¡..,.'*ie)( lco¡a¡r¡n-ie)
(2.7t)

\Me now perform the ko integral by contour integration, closing the contour in the lower half of

the ko .o-pl"x plane so that only the poles in this half plane contribute. The integration over

ko produce. u n,rrnb"r of terms. The term rvhich gives rise to the leading non-analytic behaviour

in the chiral expansions has À''kr in the numerator (i,i:1,2,3), i'e' the term,

#,n1i | Êk k;kilqrå-qã+ffi1, e7z)
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rvhere the first term in square brackets is the residue from the pole at ko : uk- ie and the second
term is the residue at k0 : "uk+c ie. There u'ill be other terms arising from the ,t0 integration
invoh'ing ,k0 in the numerator, but lve are not interested in these terms here since they do not
give rise to the leading non-analytic behaviour. Norv simplifying the above term gives

#'ntilo"nffi Q'Ts)

Since the leading non-analytic cbntribution to the magnetic moment arises from the anomalous
part of the magnetic moment we use the Gordon identity, namely

t(p)t,u(p): u(p')lt#.'#lu(p) , (2.74)

to replace 7¡ in Eq. (2.73) by o¡¡"Qp (As before, ',ve neglect other terms rvhich do not contribute
to the leading non-analytic piece.) to obtain

_ nT*,= ie¿ojpq, Id"k f^ok: e.75)2m(2r)3 2m J-"'l"r+o
This substitution allor¡'s f to be set to zero in the denominator since the leading non-analytic
piece comes from the term linear in q. With q- set to zero in the denominator, the symmetry
properties of the integrand then allorv k'lct to be replaced rvith ôiilËl'/3 and rve obtain

g7N ie¡ oJPq,

6m(2r)3 2m

Therefore, using Eqs. (2.64) and (2.66), the contribution to {}¡¿(0) is

(2.76)

(2.77)

performing the trivial angular integration. lVriting af, : 1k2 + ^'")' 
: (k + im*)2(k - imn)2

allorvs the rnodel independent part of this expression to be extracted by contour integration. One
obtains

s?ry-! . e.TB)l6nrn
If we norv include the factor arising from the isospin part of the amplitude this will give an extra
factorof 2 in the numeratorfor each of the processesp -f nn* -+ p and n -+ pîi- -+ n which are
relevant here. There rvill also be a factor of t 1 due to the respective charges of the pion in these
processes. Using the Goldberger-Treiman relation , i.e, gnN : gAn/ln, where gA : (F * D) is

the axial-vector coupling constant, one then arrives at the following leading non-analytic term,

+
(F + D)zrn

(2.7e)

,lk \
/c

8zr
îtI

1f

lvhich contributes to the chiral expansions for the magnetic moments of the proton and neutron
respectively. This agrees exactly rvith the leading non-analytic term in Eq. (2.63) for the proton
and neutron. Similar calculations may be performed for the entire baryon octet to obtain the
leading non-analytic term in each magnetic moment expansion. A similar calculation could also

be used to derive the leading non-analytic logarithmic terms which are present in electric charge
radius expansions. The leading non-analytic terms in both the magnetic moment and charge
radius expansions lvill be important in the remaining chapters, because we lvill use these terms
in designing functions to extrapolate lattice results to the physical regime.
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Chapter 3

The Cloudy B.g Model

In Chapter 2 lve sarv that chiral perturbation theory could be used to make expansions of hadronic
observables. Our goal in this thesis is to extrapolate lattice results of hadronic observables
obtained at large pion masses to the physical regime. It rvould be ideal to use chiral perturbation
theory expansions directly to extrapolate the lattice results. However, the lattice results are

obtained at large pion masses where chiral perturbation theory is not applicable. Thus these

chiral expansions cannot be used directly. We must therefore find an alternative means to access

the results obtained at large quark masses.

This leads us to consider a successful phenomenological model ,:f baryons - the Cloudy Bag
N{odel (CBM) [17, 18]. The CBM is a relativistic quark model of baryons which builds in the
phenomena of quark confinement and pion emission. It is an extension of a simpler model, the
\'IIT bag model, rvhich describes baryons in terms of a system of relativistic quarks confined to
a volume knorvn as a "bag". The CBM Lagrangian consists of the N'IIT bag model Lagrangian
coupled to a pion field in such a way that the resulting Lagrangian is invariant under chiral
transformations. Unlike chiral perturbation theory, r,vhere baryons are considered as elementarl'',

both the CB\f and N,IIT bag model build in the underlying quark structure of barl'ons. This
allorvs important considerations such as the finite size of baryons to be included in calculations.

The CBM can be used to explore the quark mass dependence of physical observables. One finds
that the pion loop contributions to physical observables predicted in the CBM match those given

by chiral perturbation theory in the chiral limit. This is expected since both models are based on

chiral symmetry. Horvever, in the CBM Lhese corrtlibutit-rrìs at'e suppressed at large pion masscs

by the form factors associated with the finite size of the hadron under study. Thus the CB\"I
might be expected to provide a good guide to the behaviour of physical observables over a wide

range of pion masses. This is a major improvement on chiral perturbation theorv, rvhich is onl¡'
applicable near the chiral limit. In chiral perturbation theory the form factor suppression of pion

loop contributions does not occur since the hadrons are treated as pointlike in canonical field

theory. In practice the suppression of pion loop corrections in the CBIVI allo'ws lattice results at

large pion masses to be accessed in a convergent rvay. We rvill see this in $ 3.4.

Our first task in this chapter is to introduce the MIT bag model and discuss its properties.

The CBM will then be introduced and we will show how it improves on the \{IT bag model.

Since the CBM will eventually be used to extrapolate lattice results for magnetic moments, lve

rvill then discuss the electromagnetic properties of the CBIVI. Next rve will show how lattice
results for nucleon magnetic moments can be extrapolated within the CBM. Finally a simple

extrapolation formula will be proposed for the nucleon magnetic moments which encompasses the

CBIvI predictions, as well as agreeing with chiral perturbation theory and heavy quark effective

theory in the appropriate limits. Eventually (in Chapter 4) this simple extrapolation formula
will be extended to extrapolate lattice results for magnetic moments of the entire baryon octet.
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3.L The MIT bag rnodel

The MIT bag model was one of the first attempts to model hadrons in terms of their underlying
quark structure. This model builds in the observed quark confinement by permanently confining
the quarks to a bag (a volume denoted by l/). !\'e nol'construct the IvIIT bag model Lagrangian
and discuss the consequences and limitations of this model.

Conside¡ a system of 3 massless, relativistic quarks moving freely in a volume, V. Inside this
confining volume the quarks rvill move according to the Dirac equation. Hence, rve consider the
follorving Lagrangian 

3

L(x):Ð¿o'|r-)øo;@)0, (3.1)
i=1

where ø;(r) is the ith quark field and

0v: {
1 inside V
0 outside V

(3.2)

is the step function for the confining region, V. From now on rve use the Einstein summation
convention, lvhere repeated indices (such as "i" in Eq. (3.1)) are summed over. This Lagrangian
is simply the Dirac Lagrangian for the quark fields, restricted to the volume l/. In addition,
there must be a boundary condition to ensure that there is no current florv through the surface
of the confining region, 5. We require that æ ' j = n'jr: 0 on 5, rvhere jp : |flPq; is the
electromagnetic current and np are the components of the unit vector normal to the confining
region. In the \IIT bag model this boundary condition is imposed via the follorving linear
boundary condition

i'y -n q;: ijqnu qi: qi (3.3)

rvhich must be satisfied on 5. Taking the Hermitian conjugate of Eq. (3.3), rve see that

Q¡ : -i 8; ^/ -n (3.4)

on S also. Hence
in'i - in'qflrq¿: 4¿q¡: -4¿q;:0 (3.5)

on 5 as required. where rve have used Eqs. (3.3) and (3.a). Therefore we see that Q¡q¡:0 on the
surface of the confining region also.

The energy momentum tensor for the above Lagrangian, Eq. (3.1), is given by

Tt"'-iQ¡1q0'r1¡0y. (3.6)

Energy momentum conservation requires that 0rTp' : 0. However, this is not satisfied here
since

0rT" - iq¿'tp0'q¿0t"0v : iht'y 'rl'qrAs : -|a' [4;q;]As , (g.7)

where A5 is the surface delta function defined by 0r0y : np\s. Therefore, clearly 0rTþ' is

non-zero on ^9, and lve do not have energy momentum conservation. This problem can be avoided
if the Lagrangian contains an extra term as follorvs

L(x) : (iq¿(x)Qq¿@) - B) 0v , (3.8)

B: -*r.atq'(z)q¿(z)l L

where B is a constant given by
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The term -Bîv is a phenomenological term describing the difference in the energy density of
the vacuum inside and outside the bag. It is an assumption of the NIIT bag model that B is
the same constant for each hadron (B is known as the bag constant). The full ìvIIT bag model
Lagrangian is given by

L*trc(x): iq¡(r)Qqiþ)Ov - B\t,-|4,@),to(*)ts , (3.10)

rvhere the final term is a Lagrange multiplier which ensures thaf Q;þ)q,(z) :0 on the surface
of the confining region, ,5. The equations of motion of the MIT Lagrangian are generated by
demanding that the MIT action, S*rrc: I darLmrc(x), is stationary under arbitrary variations
of the fields and bag surface. As expected we recover the massless Dirac equation

iflq;(t):g Vx€V' (3'11)

as well as the linear boundary condition, Eq. (3.3), and the bag stabilitl'condition (or non-linear
bounclary conclition), Eq. (3.9).

In the case of a static, spherical confining region of radius A, exact solutions of the MIT bag

model equations can be found. The exact solution for the case / : 0 is given by

4;(r) :,v
js (u;r I R)

io'îj1(u;rlR) biî(R - r) , (3.12)

rvhere N¿ is a normalization constant, b¿ contains the spin and isospin information for the wave-

funclion and j¡(z) are spherical Bessel functions. (Since the non-linear boundary condition of
Eq. (3.9) is angle independent, onl¡'quark rvar¡efunctions rvith i :712 can satisfy this condition.
Hence only / : 0,1 are allorved.) The quark frequenc"u-, r^r;, for the solution Eq. (3.12) can be

found from the linear boundary condition, Eq. (3.3), rvhich amounts to

io(o¡): jr (a,¿)

Solving this condition gives a ground state frequency of uo : 2.04

quark) ground state is given by

E
us 2.04

R R

(3.13)

The energy of this (single

(3.14)

is given b¡.'

(3.15)

Thus the total mass of a baryon rvith all qrra,rks in the ground state

Àr(B) : f *
where the second term arises from the phenomenological energy density l,errrt irl the MIT La-

grangian and the last term is the zero point energy contribution, arising from quantization (Zsis a

constant phenomenological parameter). It can be shown that the non-linear boundary condition,

Bq. (3.9), is equivalent to requiring that

AM"i* =, . (3.16)

This condition, together with Eq. (3.15), allows the bag radius to be calculated as a function of

the ground state frequ€rc!, u6, and phenomenological parameters, Zs anð' B, as follows

p+ 3us - Zs (3.17)
4rB

Note that the full mass formula should also include a contribution from the one-gluon exchange

lVe have neglected this term for simplicity, but it is easily included.

!"n"n - 
z;
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Clearly the approximation of massless quarks in the \IIT bag model Lagrangian leads to de-
generate masses for all members of the baryon octet. This situation can be rectified by adding
explicit quark mass terms to the MIT Lagrangian. That is, one adds the term m;Q¿@)q¡(r) to
Eq. (3.10). The analysis u'ith non-zero quark masses proceeds in exactly the same way as the
massless case, rvith exact solutions for the spherical, static case given by

(3.18)

where

E¡(m;, R) : +.[r? + (*,R)']'/' (3.re)

Since our examples deal primarily with nucleon wavefunctions (and nucleons are made up of
light quarks), we will neglect this subtlety in the follorving and use the massless MIT Lagrangian,
Eq. (3.10), and its solutions, Eq. (3.12), for simplicity.

Notice that so far rve have not mentioned the colour degree of freedom in this discussion of the
1\{IT bag model. To introduce colour interactions betrveen quarks rve rvould modify the NIIT
Lagrangian by making the following substitution: iþq + iQq, rvhere ipq inchtdes couplings to
the gluon fields. One would also need to include a kinetic energy term for the gluon fields,
Fi,Fl', in the modified Lagrangian. The details of making these substitutions can be found in
Ref. [17]. By considering the conserved charges associated with the modified Lagrangian, it can
be shown [17] that all finite energy solutions of the N,IIT bag model equations are colour singlets.
This shorvs that the MIT bag model produces the observed confinement of colour.

Historically, one of the most important successes of the N'IIT bag model r.,.as the prediction of the
axial coupling constant, 9¡. The MIT bag model predicts g¿ : 1.27 (including centre of mass
corrections) [18], compared rvith the experimental value g¡: I.26. The model also provides a
much improved prediction for the proton magnetic moment compared to the naive quark model
expectation. Horvever, the MIT bag model produces disappointing results for the neutron charge
radius; it predicts that the neutron mean square charge radius is exactly zero [18], in contrast
to the experimental value of -0.113(4) fm2 [30]. Also the model does not describe interactions
betrveen hadrons, and therefore is not useful for nuclear ph5'sics problems. These problems t'ith
the MIT bag model originate from the lack of chiral s¡.'mmetr¡' in the model.

The MIT bag model Lagrangian is not invariant under chiral transformations. This is due to the
|qLs term in Eq. (3.t0) which is not chirally invariant. This violation of chiral symmetrycan be
illustrated by the schematic diagram in Fig. 3.1 together r,vith the following explanation. Because
of confinement, all quarks impinging on the interior bag surface must be reflected. Horvever, since
the N'IIT Lagrangian does not contain a spin-flipping mechanism. the quark's spin is not affected
by this reflection, even though it norv travels in the opposite direction. This means that the
quark ha'. changed its chirality by striking the boundar-"-. Hence chiral symmetry is violated.

Lack of cltiral symmetry means that the axial current of the NIIT Lagrangian is not conserved.
This conflicts with strong experimental evidence to support the partially conserved axial current
(PCAC) hypothesis in the strong interactions. Moreover, as discussed in $ 2.1, chiral symmetry
is a fundamental property of QCD, anrl is expected in any reasonable model of the strong
interactions.

We now present a bag model for baryons, the Cloudy Bag Model (CBM), rvhich incorporates the
MIT bag model, but improves on it by building in chiral symmetry. This involves the introduction
of pions into the model and thus provides a mechanism by which baryons can interact.

t12' js (u¡r / R)

io.ñj1(a¡r/R)
bi0(R - ") ,
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Figure 3.1: Schematic illustration of chiral symmetry breaking in the t\11'I' bag mociel. In (a)

the quark travels torvards the bag surface. The upper arrolv indicates the quark's spin. In (b)
the quark is reflected from the bag u'all without changing its spin. Clearly the chirality (or

"handedness") of the quark is changed in this interaction. Hence chiral symmetry is broken.

3.2 The Cloudy B^g Model

The linearized Lagrangian of the Cloudy Bag Model (CBM) is given very simply by

Lcpsr(r): 4vrn(ø) -l L"(r) * f,¡,,¡(r) ,

n,here.Cl,lrr is given in Eq. (3.10) . L, is given by

(3.20)

1
1:- 

2
L (0*n)' - m 7f

1

t 22 (3.21)
li

and,C¡n¡, which describes the pseudoscalar interactions of nucleons and pions, is given by

Lint: -l¡A^,r, 'TQL¿ . (3'22)

Note that u'ithout this interaction term, the theory rvould describe free pions and stable IvIIT
bag configurations. Thus the linearized CBI\,I Lagrangian is given explicitly by

Lcntt: (idØq - B)0r,-!ønor+!r{orn)'-l:*'-^'- l¡o^,r,'¡rQLs ' (3'23)

Notice that although the CBN4 includes the constituent cluark structure of baryons, it does not

include the underlying quark structure of the pions, i.e. the pion is treated as an elementary

field. This is an assumption of the model. In the CBM a long wavelength approximation is made

such that the internal structure of the pion can be neglected. It has been shown in Refs. [17, 18]

that this is a good approximation in many situations involving lorv momentum transfer.

A further simplification is made rvhen calculating physical observables in the CBM. One assumes

that the quark r,vavefunction is unperturbed by the presence of the pion field, i.e., one takes

the first order approximation for the quark rvavefunctions. This allorvs the exact MIT bag

modelsolutions,Eqs.(3.12) and(3.18),tobeusedincalculationsof physicalobservables. Afinal
assumption made in CBN{ calculations is that the linearized Lagrangian, Eq. (3.23)' is a sufficient

approximation to the full, non-linear CBM Lagrangian. (We do not show the full, non-linear

CBIvI Lagrangian here, but it can be found in Refs. [17' 18].)

The CBIvI Lagrangian is invariant under chiral symmetry [17, 18]. It also includes pions which

mediate the interactions of the baryons. Thus the CBM overcomes the major problems of the

ivIIT bag model. It also retains the good features of the MIT bag model. For example, the axial

coupling constant prediction in the CBM i. g¿ - 1.27 (with centre of mass corrections)[17, 18]'

just as in the ìvIIT bag model (and in very good agreement with the experimental value).

26



'' \'-- +
N

+N N

Figure 3.2: The first terms in the expansion of the nucleon state lN) in Eq. (3.30), where the
unspecified internal lines are either .ô/ or A.

The CBI\'I Hamiltoniaî, H, is obtained from the CBìvI Lagrangian in the canonical rvay: I/ :
I d3xTflo"*r(r), where fäL*, is the energy-momentum tensor corresponding to the (linearized)
CBM Lagrangian, Eq. (3.23). This Hamiltonian can be decomposed as

H:Ho*f/i,t, (3.24)

rvhere the bare Hamiltonian, fl6, describes free pions and stable MIT bag configurations and the
interaction Hamiltonian, .FI¡,r¡, describes the quark-pion interactions. The explicit expressions for
fle and f/¡¡¡ can be found in Ref. [17, 18]. There are two types of baryonic eigenstates for the
bare Hamiltonian, IIs. Firstly there are eigenstates rvhich are simply bare MIT bag states (i.e.
no pions);for example, the bare nucleon state, lÀe). The second type consists of bare bag states
with n pions, such as the state lt\, r) (rvhere In) represents the state rvith n pions). These states
are obtained from the bare bag states by repeated applications of the pion creation operators.
From this point we restrict the discussion to non-strange bar¡.ons for simplicity.

The physical nucleon state, lÀ'), is an eigenstate of the full CBM Hamiltonian, ã. That is,
HIN) - E¡¡ lN). \Ve norv rvish to express l,nf) in terms of eigenstates of the bare Hamiltonian,
Hs. It is clear that lN) can be u'ritten in the form

l \') : z{ çn*¡tlz l¡{0) + À lrr-) , (s.25)

where Z{ @*) is the probabiiit¡' of the physical nucleon state being bare and r\. is a projection
operator lvhich projects out ail components of lN) containing at least one pion. A is given
explicitly by

Â:1- t lBo)(Bol (3.26)
B=N, A

where the sum extends only over N and A since we harre restricted to non-strange baryons and
the lowest mass intermediate states. Now since [^, ¡10] : 0 (this can be seen easily from the
explicit expression for f16, see Refs. [17, 18]) we are free to rvrite

^lÀ):(Ex-¡10)-t^(E¡¡-¡¡o) l^'), (3.27)

and hence

l¡r) : z{ çø*¡r/z l¡ro) + Gs(E^i)LHi", lN) , (3.28)

where
Go(E¡v): (E¡r - Ho)-t (9.29)

is the bare bag propagator. Using this recursive expression for lN) we find

lrv) : zy (EN)r/2(1 + Go(E¡,.)AËli", * Go(E¡,')Â Hi^¡Gs(EN)Â11i", + ...) l¡ro) (g.30)

This relation for llV) can be conveniently expressed as a sum of diagrams, shown in Fig. (3.2).
Note that the solid lines represent the baryon and dashed lines denote the pion. The complete
set of rules and conventions for these diagrams can be found in Ref. [tZ].
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3.3 Eleciromagnetic Properties of Baryons in tire CBM
In this section \\'e use the CB\,I to make predictions for the electric charge radìi and magnetic
moments of bar¡'ons. To do this we must first derive formal expressions for the Sachs electric and
magnetic form factor", Gø(q2) ard G¡¡(q2), rvhich rvere introcluced in $ 2.5. The electric charge
radius and magnetic moment of the baryon can then be extracted from these form factors using
the relations given in Eqs. (2.60) and (2.61). Recall from $ 2.5 that in the Breit frarne, rvhere the
momentum transfer 4-vector satisfies q0:0, the Sachs form factors for a baryon, B, are related
to the spatial electrornagnetic current, Jt"(Ð, b

(a l"ro14 | r)

a,'"1,i(tl 
", "')

LcBu(r)

ief_t
(2")'l

J1

Ðqoo(Ø + ie¿ Ã) q;ov - aev - 2i:r

,13q Gø(q')e-ií'''

,Itq Gv(q") (salôxrlsB) ¿-ií'r-

Iqtq¿r"

eI
Q"f J

(3.31)

(3.32)(

where all quantities are defined in $ 2.5. Thus the first step in the derivation of the CBM Sachs

form factors is calculating the electromagnetic current.

Electromagnetic interactions are introduced into the CBÀ/I Lagrangian in the standard rvay: the
substitution 0r -+ 0r l iøAu is made, where q is the charge of the field that the derivative acts

on in each case. The following Lagrangian is obtained (e : lel everyrvhere)

i=r
.J

-;f;Ðu," 'øÇ; À" + |{{tt,'")' - *?n3)

+l@' t i e Ap) ntl . l@, - i e A ¡,) rl - m2,rt, - !F,,, r'" (3.33)

lvhere

r(r) : 
rtf"r(r) +izi2(z)l (3.34)

is the charged pion field. After quantization of the fields, the r operator ri'ill destroy z¡-- and create
zr+ particles. The Lagrangian in Eq. (3.33) is invariant uuder the follo'wing local infinitesimal
transformations

,r;@) -) q;(r) - i e; e(x)q¡(x) , (3.35)

"(r) -+ zr(¿) - ie{x)r(r) , (3'36)

A' (*) -) Au (r) - ! a, ,@) . (3 .37 )

The conserved current associated with these transformations is the electromagnetic current,
Jr(*),',vhich is given by

Jr(r):¡r(a)(r) * ¡u(")çr) (3.38)

where

3

jp(a)(r) : Dr,n,@)rrq¡(*)0v (3.39)

i-r
¡u6) @) : -;e(trt þ)Trn(*) - r(x)Tprt (x)) (3.40)

Since the total electromagnetic current can be decomposed into a sum of contributions from the

quark core and pion cloud, it can be seen from Eqs. (3.31) and (3.32) that the Sachs form factors
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Figure 3.3: Lorvest order time-ordered diagrams contributing to the pion part of the electro-
magnetic form factors for the nucleon. Double lines represent the A resonance and rviggl¡' lines
denote the photon. The complete set of rules for these diagrams can be found in Ref. [12].

also undergo this decomposition, i.e., Gx(q'): Cp)k\ +G9) (q2), where X : E,Àf. Thus
we determine the Sachs form factors by calculating the quark core and pion cloud contributions
separately.

First rve calculate the pion cloud contribution to the form factors. This involves calculating
the expectation value (nl¡,t")(ÐlB), rvhere the classical pion current, ¡u(")@). is gir.en in
Eq. (3.40). Thus rve begin by quantizing the pion fields, ?riì as follo'w's

r;(i,t-0):Ia:kffi{nt1Ë¡"iËr+o[1Ë¡,_tÊ.r}(3.41)

rvhere the operators a;([') ana øj1ff¡ obe¡.the usual bosonic commutation relations:

f .- - 1 f + - ¡ _ l

Lor(l'),oj(k,)): Lnj(t'),aj(4,)l 
:0, (2.42)

Ino(^-). 
.t,tË,ll : to,d@1Ë - frr) . (s.48)

In terms of creation and annihilation operators, the pion current is given by

¡u(ù14 = -iÐ"," I #ffikP s*(Ë¿'k'¡;tò..t1Ê-Ë'¡'" (3'44)
i,i

where
s,(Ê¿,Ë,¡; tò: lo,(-Ë) + 't,tt1lll",fÐ - s*,,o}eË)l tr.nrl

, and there is no sum over p, in guu (recall that g00: 1 and gií : -I in our conventions).

Now that the pion part of the electromagnetic current has been expressed in terms of operators,
Eqs. (3.4a) - (3.45), we can calculate the expectation value (Al¡røl (rllA). This allorvs the
pion contribution to the form facto.r, Gll) þt), to be determined via Eqs. (3.31) and (3.32).
Here rve shorv the steps in this calculation for the nucleon. The calculation is analogous for
other barl'ons. Firstly, the physical nucleon state, llV), must be written in terms of bare bag
states as in Eq. (3.30). Secondly, one inserts a complete set of the bare eigenstates betrveen each
operator in the expectation value. After making these substitutions, it can be seen [17, 18] that
the lorvest order processes contributing to the pion part of the form factors are the processes
depicted in Fig. 3.3. Evaluating the diagrams Fig. 3.3(a)-(c) leads to the follorving expressions
for the processes where the intermediate baryon is a nucleon,

cg)k,;w) : #(#¡' ¡ ænffiffi(Nlr3l.n/) (846)
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cf,) k'; N) (#) pou(kR)u(k'R)GxË)2 (t, l1-3l À ) (s.47),, o-- 
,r**

2mN
36n3

rvlrere l;t : l; t i, ,t" - k2 + m7, þ : I39 lvIeV is the ph5'sical pion mass, / NN i" th"
renormalized ¡/¡l coupling constant [12] and u(kR):3jt(kR)lkR. Similar expressions are

obtained for Gf) (s';A) 
""d 

Gfr) (q';^), rvhere A is the intermediate barl,on state (Fig. 3.3(cl)-
(f)). The explicit expressions fo, G$) (q';A) and Gf¡) G';L) can be found in Refs. [17,31].

The pion contribution to the form factors gives rise to non-analytic behar.iour in the expansions
of electric charge radii and magnetic moments. As an example n'e consider the one-loop pion

contribution to the nucleon magnetic form factor. As we rvill see. this contribution produces
the leading non-analytic term in the nucleon magnetic moment expansion. Recall that the pion

contribution to the nucleon magnetic moment is given tv Glir)(0;Àt) + Gf,) (o;A). It can be

shorvn [32] that the leading non-analytic behaviour in the nucleon magnetic moment expansion

originates from the C9 Q;N) piece of the pion form factor, rvhere the intermediate baryon is a
nucleon. From Eq. (3.47) this contribution can be u'ritten as

c,l])10;r'r¡
,MN

L8r2

TMN

The remaining integral can be evaluated using residue methods, since z(li.R) = 1 ut lc : tim,
by definition. One finds that the leading non-analytic contribution from Gf;;)(O'l/) is given by

{æ(#)'('r"r"'}-" (348)

The coefficient in braces agrees rvith the coefficient of the O(*,) term in the magnetic moment
clriral expansion, Eq. (2.63),',vhich is given bV +(F +D)2mr,¡l('B"f) for À :pln.This can be

seen by numerically evaluating each coefficient (using .fNN = 3.03 and (F + D) : 9A:1.26).
Thus the one-loop pion contribution to the magnetic momeut produces the leading non-analytic

term predicted in chiral perturbation theory.

We now briefly consider the quark contribution to the form factors. This contribution is not

as interesting as the pion contribution, since it is the pion contribution rvhich gives rise to the

leading non-analytic behaviour in the chiral expansions. In terms of creation and annihilation
operators the quark contribution to thc current is obtained by substituting the 1\'IIT bag modeì

rvavefunctions, given in Eq. (3.12), into the expression for ju@)(.r), given in Eq. (3.39). The

follorving expressions are obtained

¡o{o)14 : È,,,V þ; (#) + i? (#)] ala, e{n - ,") (3 4e)

n;'

itot11 : DrøN?,¡io(3r-.r)i,(i) ulaxtu¿ (3.50)

i=l

The calculation of C("A)(n\ is very simple. It involves calculating the follorving expectation value

(rvhere the sum over i is implicit)

(n li'tortol") : [r; (i) + i? (T)] ,rt - r) (rv l"'ala'1ru) (3 51)

I

7812

(#)'("r',r ., l: dosin

(#)'l,*r",r¡/) Io* 
or
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Thisissimpletocalculatesincetheoperator e;b[b¿simplycountsthequarkchargeof thebar.i,on
state. The explicit expression for CIA)(q2) can then be obtained by inverting Eq. (3.31). This
expression is given in Ref. [17]. The calculation of the quark contribution to the magnetic form
factor, Clul)Q"), is very similar to the calculation of Gf¡) (q2) described above. Horr,-ever, since it
is mainly the pionic contribution that we are interested in, rve will not go through this calculation.
The full calculation can be found in Ref. [17].

3.4 Using the CBM to extrápolate magnetic moments

In this section rve shorv how the CBM can be used to extrapolate lattice QCD results for physical
observables. In particular, lve consider extrapolating lattice results for nucleon magnetic moments
within the CBM. This extrapolation rvas first performed in Ref. [11]. Here rve give a general
overview of the extrapolation procedure used in Ref. [11]. In this section rve will not discuss
how the lattice results were obtained, but simply consider the results as "data" for the nucleon
rnagnetic moments at 6 rather heavy pion masses. Details of the lattice calculations can be found
in Ref. [11] and also in Refs. [33] and [34], where the results were originally published.

The aim here is to calculate nucleon magnetic moments in the CBM over a range of different
pion masses. As we will see, there are 3 input parameters in this calculation rvhich can be
tuned to best accommodate the lattice results. The experimental value (¡.ro :2.713 lLN, lrr:
-1.913 p¡¡) rvill also be included in the data set in each extrapolation. This rvill make it
possible to determine rvhether the lattice results at large rnr are consistent rvith experimental
measurements. Historically the inclusion of the experimental point in the extrapolations is
important since previous extrapolations (lvhich used either simple linear fits as a function of m2n

or chiral perturbation theorv expansions directly) had been unable to make contact rçith both the
lattice results at large rn,, and the experimental point at the physical pion mass, ¡r : 139 \te\I.

Recall that the nucleon maguetic moment is given b¡'

þN : clu? G': o) * clî fo": o) , (8.52)

where the full expressions for the one-loop contributions can be found in Refs. [i7,31]. (In
Eq. (3.a7) the one-loop pion contribution is given for thc case rvhere the intermediate state
is a nucleon. As discussed in $ 3.3, the fult Gff,) kt - O) includes terms arising from the A
also.) Note that the magnitude of each contribution in Eq. (3.52) is related to the bag radius, .R.

lVhen the bag radius is large the contribution from the quark core is enhanced and the pion cloud
contributio", Gfr) (0), is suppressed..In this extrapolation \\.e use the follorving phenomenological
form for the form factor, z(Æ):

u(k):ffi (3.5s)

where ¡l is the physical pion mass, ,t is the loop momentum and Â is a (constant) cut-off l.alue.
¡\. is one of the input parameters of this extrapolation and can be adjusted to fit the data.

Before extrapolating the lattice data a number of relationships betrveen parameters of the CBIvI
must be established. In particular, all parameters of the CBM (e.g. the bag radius, .R, the
grourtd state frequ€îc/, &/s, the bag constant, B, etc.) must be expressed in terms of the input
parameters and/or the changing pion mass. The first relationship to establish is the connection
betrveen the quark mass, m* and the pion mass, rnn. In the CBNI the pion is considered as an
elementary field and its underlying quark structure is not included in the model (long wavelength
approximation). In particular, this means that the pion mass, mn,is not directly related to the
quark mass, rno, inside the bag. However, since we are extrapolating lattice results within the
CBM as a function of n'¿r, a relationship betrveen mn and mo is essential. In the range of
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pion masses considered in this extrapolation, current lattice simulations inclicate lltat m2n x mo

Therefore, lve lvrite
2

*ro) , (3.54)

tan c"r :

-,: (T)
where ¡r is the physical pion mass and m[0) is an input parameter rvhich can be tuned to best fit
the results. -[o) .orr"rponds to the current quark mass at the physical pion mass. It should lie
in the range = 5 - 7 MeV to be consistent rvith perturbative QCD results.

lVe nolv consider flnding a relationship between the radius of the confining region, .R, and the
changing pion mass, rn,.. The authors of Ref. [11] used the following relation, Eq. (3.17), to
determine the radius of the bagr 

oa _ zwo _ zsn-: *E- , (3.55)

lvhere the ground state frequ€ncf, crrs, is given by the smallest positive solution of

a
(3.56)1- mnR - la2 + (mnB)2|/z

Thus we see that the quantities .R and ue âr€ intimately connected and both change as the pion
(or quark) mass is changed. Therefore the ground state MIT bag model solutions, Eqs. (3.12)

and (3.18), depend on the changing pion mass, m,., through their dependence on,R and uro. This
means that the Sachs form factors, rvhich are evaluated using the NIIT bag model solutions, are

also dependent on mr.

At the physical pion mass the ground state frequ"n.y, ,[o), may be evaluated iu terms of input
parameters as follou's

tan t[o) : '-, ?=Á:'- 
1 - *Lo) no- [(,,[o)¡z t- @[o) no¡z1t¡z ' 

(3'57)

where -Rs is the bag radius at the physical pion mass. By substituting the value obtai.,ed for r[0)
from Eq. (3.57) into Eq. (3.55), u.e produce the follor,ving linear equation relating the parameters

B and 26, rvhich are both assumed to be independent of m,n,

4rAlB :srf) - Zo (3.58)

To fully determine Zs and B rve must find a second equation relating these two quantities.
Equating the physical nucleon mass, mN :940 lvleV, with the M(Ro) from Eq. (3.15), gives

such a relation. Thus B and Zo can be full.v determined'

Since B and, Zs can be expressed in terms of the input parameters, it follorvs from Eqs. (3'55) and

(3.56) that the radius of the bag, R, and ground state frequeûcj, {rrs, can be evaluated numerically

at each pion mass considered in the extrapolation. This allows the magnetic moments to be

determined rvithin the CBIvI over the range of pion masses. By tuning the input parameters

one can fit the lattice data and experimental point rvith the CBM predictions and obtain the

extrapolations shorvn in Figs. 3.4 and 3.5.

From Figs. 3.4 and 3.5 it is clear that the CBM can accommodate both the lattice results and

experimental measurements for the nucleon magnetic moments in smooth extrapolation curves'

The reasonable values obtained for the input parameters (see Table 3.4) support the assumptions

rA small correction arising from the dependence of cuo on .R rvas later found to ihis relation in Ref. [fZ], Uut it
did not significantly affect the results.
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Figure 3.4: Fits of magnetic moment lattice data for the proton using the Cloudy Bag lvlodel
(CBM). The input parameters used for the CBlv{ extrapolation are given in Table 3.4. The lattice
results fi'on Ref. [33] (LDW) are indicated by circles and the results from Ref. [3a] (!VDL) by
squares. The solid line indicates the CB\I fit to the data and the dashed line represents the MIT
bag model, where the pion cloud is omitted. The dot-dashed line is the fit using the encapsulating
formula, Eq. (3.6t). The experimental point is included in each fit.
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Figure 3.5: Fits of magnetic moment lattice data for the neutron using the Cloudy Bag Model
(CBM). The input parameters for the CBìv{ extrapolation are given in Table 3.4. Symbols and
line types are defined in the caption of Fig. 3.4 and in the key.
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^,"ir.,

Nucleon ,Rs (fnl) ,4. (CìeV) (\IeV)
p
n

1.0
1.0

0.68

0.59

4.8
4.8

Table 3.1: Input parameters for the CBVI extrapolations shorvn in Figs. 3.4 and 3.5

used in the extrapolation procedure (".g. B was assumed to be indepcndcnt of mn). Comparing
the CBM extrapolation curves with the corresponding l,{lT bag model extrapolations, one can
clearly see that the neson cloud is verv important and accounts for the significant curvature
in the fits in the small rn,. regime. This indicates that the notion of using chiral expansions
to extrapolate the results is not completel¡,' unreasonable, since these expansions focus on the
meson cloud effects. Holvever, it is simply not appropriate to use chiral expansions to extrapolate
lattice results obtained at large pion masses far from the chiral limit. Thus the CBM, which
respects chiral symmetry while building in good phenomenology, is a much more suitable tool
for extrapolating the results. We now consider encapsulating the CBM extrapolation curves in
an analytic formula rvhich may be regarded as an analytic continuation of chiral perturbation
theory.

3.5 Encapsulating formula

In $ 3.4 rve saw that lattice results for nucleon magnetic moments could be smoothly extrapolated
to the experimental value u'ithin the CB\'I. Holvever, as r,ve have seen, the algorithm for this
extrapolation procedure is very complicated. In this section rve rvish to encapsulate the CB\'I
extrapolation curves. shorvn in Figs. 3.4 and 3.5, in a simpler, analytic continuation of chiral
perturbation theor¡'.

To construct an anal¡'tic extrapolation formula lve first note the qualitative features of the CB\{
fits. In both extrapolations the magnetic moment falls off at largc valucs of m* This indicates
that an encapsulating formula might take the form m,', for some integer n, in the heavy pion
mass regime. In fact rve expect that at heavy quark (or pion) masses the magnetic moment
should fall off as the Dirac moment:

(3.5e)

lVe also require that the encapsulating formula matches the CBIvI predictions in the small zn'
regime. In the chiral limit the CBM calculations reproduce predictions from chiral perturbation
theory ([ol exarnple in $ 3.3 rve saw that the one-loop CBM calculations for nucleon magnetic
moments contain the leading non-analytic behaviour predicted in chiral perturbation theory) and

thus we expect that a satisfactory encapsulating formula would agree with chiral perturbation
theory in the limit nr- -+ 0. Recall from Eq. (2.63) that the chiral expansion for the magnetic

moment of an octet baryon is of the form

lr: ''l t amn * brnx *

*. ".0"., that the chiral ,r-r, :: 
jl

where 7, a and b are constant coeffi.cients (see S 2.5)

encapsulating form reproduces this expansion.

Since rn¡¡ ) TTL¡¡ one might conclude that the kaon loop contribution is the dominant term in the

magnetic moment expansion, Eq. (3.60). Horvever, kaon loop contributions can be neglected for
the following reasons. The CBM calculations (see Eq. (3.47)) indicate that at large pseudoscalar

masses the pseudoscalar contribution to the magnetic moment is suppressed by form factors

c(l.r
eq

2*n
1

"A
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Nucleon [Lo X c

p
n

3.31

-2.39
-4.54
4.42

0.452
0.27r

Table 3.2: Fit parametersfor extrapolations using the encapsulating form, Eq. (3.61), show'n in
Figs. 3.4 and 3.5 by the dot-dashed curves. The units for the fit parameters are as follorvs: ¡r,y
for pe, l¿¡,' .GeV-l for ¡ and GeV-2 for c.

Nucleon Encapsulatingform

X

Chiral Perturbation Theory

p
n

-4.54
4.42

-4.47
4.4L

Table 3.3: Values of the fit parameter, y, for the encapsulating form extrapolations showu in
Figs. (3.4)-(3.5). It is compared t'ith the predicted coefficient from chiral perturbation theory.

rvhich describe the finite size of the baryon. In the case of the pion, this means that the pion
loop contributions are suppressed at large pion masses. For the kaon, rvhich has a much larger
mass than the pion, this means that kaon loop effects are almost negligible. Despite the model-
dependence associated lvith the form factors, the lattice results themselves do not shorv a rapid
variation ',vith m¡¡. Thus kaon loop effects are expected to be relativel¡.' small and slorvly varying
as a function of *n 2 . They can therefore be absorbed in the fit parameters. On the other
hand, the rapid variation of mn u,ith m, means that the leading non-analytic behaviour in m,
must be treated explicitly. Therefore we require the encapsulating form to reproduce the chiral
expansion, Eq. (3.60), only to O(^") in the chiral limit.

A natural choice for the encapsulating formula, ivhich builds in the requirements specified above,

is given by
pv(mn): l-to (3.6 1 )t-h*"+crnT '

rvhere ¡ts, y and c are constants chosen to best fit the CBM results. This formula clearly gives

the expected Dirac moment behaviour in the heavy pion mass regime. Expanding Eq. (3.61)
about TTt.n :0 we find

rrN:ttotXmn.(f -rr") ,n?+... , (8.62)

which clearly agrees with the requirements from chiral perturbation theory. Therefore the en-

capsulating form, Eq. (3.61), is rvell motivated in the both the chiral limit and heavy quark mass

regime.

The results from fitting the CBN,I extrapolation curves rvith the encapsulating formula, Eq. (3.61),
are shown in Figs.3.4 and 3.5 by the dot-dashed lines (these fits rvere published in Ref. [11]).
The fit parameters for these curves are given in Table 3.2. In both cases the encapsulating form
provides a very good approximation to the CBM results.

To establish the ability of the encapsulating form to match the CBN{ predictions, lve compare
the value of X found by the fitting routine with the value predicted by chiral perturbation
theory (given in Eq. (2.63)). This is shorvn in Table 3.3. In both extrapolations the value of

2Note that rn21ç ø-rns { rno and here rn" is fixed and large
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X chosen to best fit the data is remarkably close to the value predicted b¡' chiral perturbation
theory. This similarity suggests that the value of X can indeed be fixed to the value predicted by
chiral perturbation theory in the fitting formula, Eq. (3.61), so that the SU(2) chiral expansion is
reproduced in full to leading non-analytic order. A two parameter fit can then be performed with
the resulting extrapolation formula. !\¡e will see the results for two parameter fits of magnetic
moment lattice results in Chapter 4, rvhere the formalism will be extended to the entire baryon
octet.

,_,-,

¡-t
.-l

l
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Chapter 4

Mrgnetic Moments

In this chapter rve build on the ideas of $ 3.S to propose a simple extrapolation scheme for octet
baryon magnetic moments as a function of mn. In particular, r¡/e use a tlvo parameter fitting func-
tion, similar to the encapsulating form, Eq. (3.6t), to extrapolate the magnetic moment lattice
results of Ref. [33]. The results from these extrapolations will be compared with experimental
measurements at the physical pion mass. The method and results discussed in this chapter have
been published in Ref. [15].

4.L Extrapolating function

In $ 3.5 we saw that the function

lr¡,t(r,' /¿o

""):T_L;+"*z (1.1)

with ¡, ¡16 and c chosen to best fit the data, could successfully encapsulate the CB\,I extrapola-
tions of the nucleon magnetic moment lattice results. In each case rve saw that the value obtained
for the fit parameter X agreed u'ell with the value predicted b¡' chiral perturbation theory (see

Table 3.3). In this chapter rve explore the possibility of fixing the value of X in Eq. (a.t) to the
chiral perturbation theory prediction and then performing a trvo parameter fit rvith the resulting
formula. For example, in the case of the proton we rvould set ¡ : -4.4I and use the following
tlvo parameter formula to extrapolate the lattice results

t;p(mnt - Fo 
e.2)') - lt#**-fcmzn'

rvhere rn' is in GeV and ¡,lp is in nuclear magnetons (¡r¡r). In the small rn,.limit, this extrapolation
formula reproduces the chiral expansion to 0(m") and the leading non-analytic term has the
correct (model-independent) coefficient. (As in $ 3.5, we neglect kaon loop contributions.) As
before, the extrapolation formula also maintains the expected Dirac moment behaviour in the
heavy pion mass regime.

In Ref. [11] the trvo parameter fit function described above was used to extrapolate lattice results
for the proton and neutron magnetic moments. The extrapolated values obtained at the physical
pion mass rvere found to agree very well with experiment. The following results rvere obtained
(where the experimental value is indicated in parentheses): ¡ro :2.85(22)p,¡¡ {2.793¡¿rv} and

F,, = -1.90(15)p¡' {-1.913¡r¡¡}.

Given the sucess of the proton and neutron extrapolations, we now extend the trvo parameter
extrapolation formula to the entire baryon octet. For each baryon "i" we extrapolate the results
using the Padé approximant,

Fi(m t (4.3)r)- 7-#***cmzn'
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rvhere ¡¿ is fixed to the value predicted by chiral perturbation theory and the fit parame-
ters, ¡16 and c, are optimized for each baryon. From Eq. (2.63), X; is given explicitly by

Xi:(P[")nt¡¡)/(8rf])andtheone-loopcorrectedestimates of P[') and¡¿aregiveninTable4.l.
The Padé approximant gives a simple r,va¡r of connecting magnetic moment lattice results obtained
at large pion masses with the physical world. This extrapolation procedure is clearly well moti-
vated by the excellent phenomenology of the CB\I. It also agrees u'ith chiral perturbation theory
and heavy quark effective theory in the small and large m- limits respectively.

4.2 Lattice Calculations

The magnetic moment results used here are extracted from the lattice QCD calculations of
Ref. [33]. While these results are now quite old, they continue to be the only lattice estimates
of the spin-712 baryon octet magnetic moments available at the moment. These simulations
rvere performed on a 24 x 72 x 12 x 24 periodic lattice using standard lVilson actions at P -
5.9. Dirichlet boundary conditions were used for fermions in the time direction. Twenty-eight
quenched gauge configurations were generated by the Cabibbo-lvlarinari [35] pseudo-heat-bath
method. The conserved electromagnetic current u'as derived from the lVilson fermion action via
the Noether procedure. The associated lattice \\¡ard identity protects this vector current from
renormalization. The magnetic moments u'ere obtained from the form factors at 0.16 GeV2 by
assuming equivalent q2 dependences for the electric and magnetic form factors. For each octet
baryon, the magnetic moment rvascalculated at 3 different quark masses, corresponding to rather
heavy pion masses, all above 600 N{eV. Statistical uncertainties in the results lvere calculated in
a third-order, single elimination jackknife [36,37]. Furthel details ma1.'be found in Ref. [33].

Since the lattice calculations of Ref. [33] s-ere obtained using the quenched approximation, there
are expected to be errors in the results arising from the cluark loops neglected in the simulation.
A quantitatìve procedure for eliminating these elrols is uot knon'n. Ho\t'ever, as explained in
Ref. [1f], the errors due to quenching are expected to be on the scale of the statistical errors.
Hence rve rvill assume that the results of Ref. [33] are a fair representation of the full QCD
results. Nevertheless, an ideal extrapolation of magnetic rnoments rvould use full QCD lattice
results r,vhich are unavailable at the moment.

4.3 Results

In the following graphs, Figs. 4.1-4.4, Iattice calculations of the baryon magnetic moments are

fittecl as a function of mn, a,ccorrling to the Padé approximant, Eq. (a.3), with coefficients, ¡;,
from Table 4.1. In each case the solid lines are Paclé approximant fits to the magnetic moment
lattice results. Experimental measurements are indicated at the ph1'sical pion mass by an asterisk

(*). The magnetic moment predictions from the Padé approximant extrapolations are compared

with experimental values in Table 4.1. The flt parameters, lts and c, for the solid lines are also

indicated in Table 4.1.

In the case of the nucleon, the fits given here (Figs.4.1 and 4.2) are slightly different from those

given in Ref. [11], as the second set of lattice results have been omitted in order to produce a

consistent set of graphs for the entire baryon octet. (The second set of results were extracted

from Ref. [34] which dealt with the nucleon onl¡.'.) Horvever, the nucleon extrapolations shown

here still give excellent agreement lvith the experimental measurements. The magnetic moment

predictions for the X* and Ð- (see Table 4.1 and Figs. 4.2 - 4.3) ale also in good agreement

with experiment.
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r)Baryon
p

Xi

-4.4r
4.4r

0

-2.46
0

2.46

-0.19
0.19

lto
3.46

_') te

-0.38
2.7r

0.54

- 1.64

-0.80

-0.46

0.68

0.11

0.005

0.40

0.44

1.35

0.29

-0.38

-1.7e(2r)

-0.38(3)
2.3e (16)

0.53(5)

- 1.33 (8)

-0.82(4)

-0.44(2)

2.53(18)

0.58(7)

- 1.35(15)

-0.ee(10)

-0.67(8)

C Lattice Aver Lattice Experiment
2.90 20 2.793

- 1.913

-0.613(4)
2.42(5)

0.63(4)l

-r.157 (25)

- 1.2õ0 (14)

-0.69 4

n

-(F + D)

(F + D)2

0

-3o" -2F2
0

tn2 + zr2

-(D - F)'

,^.

¡+
¡o
x-
=0

D_ 2

Table 4.1: Magnetic moments of the octet baryons (in nuclear magnetons) predicted by lattice

QCD compared rvith experiment. The one-loop corrected estimates of B?) and X¿ are also
reported. The fit parameters fr¡ and c of the Padé approximant are indicated in units of ,u¡r
and GeV-2 respectively. The column entitled "Averaged Lattice" reports magnetic moment
predictions from extrapolations of lattice calculations averaged to better describe the strange
quark mass, as discussed in the text.

Using magnetic moment values predicted b¡' the Padé approximant we can calculate the ratio of
the F- and Â magnetic moments. The simple quark model predicts that this ratio is given by

,,_:*l*_&) 
e.4)/r.l 3\ þ"/

rvhich becomes ,'.-:*l*-e) (4.b)
It¿,\ 3\ m¿/

if u'e take each quark magnetic moment to be given by the Dirac moment of its constituent
mass. In this case the ratio is less than 1 for rn" ) m¿. This disagrees with the experimentall¡,'
measured value of i.13(7). Holer,'er, using the predictions c'f the Padé approximant, rve obtain a
value of 1.15 for this ratio, which is in excellent agreement with the experimental result. This is
a good indication that meson cloud effects must be included in extrapolations of lattice results
to the physical regime.

The lattice calculations of Ref. [33] rvere made rvith a strange quark mass of approximately
250 NIeV. This is much heavier than the physical mass of the strange quark of 115t 8 NIeV at a
scale 2 GeV, taken from a careful anall.'sis of QCD sum rules for r decay [38]. The contribution
of the strange quark to the E baryon magnetic moments is very small. Lattice QCD calculations
indicate that the contribution of a singly represented quark in a baryon is half that anticipated by
SU(6) spin-flavour symmetry [13]. Hence the heavy strange quark mass lvill have a subtle effect
on the D moments. By contrast, the strange quarks dominate the .4. and 3 magnetic moments.
Thus the heavy strange quark produces a large error in the lattice results for these baryons,
which has not yet been taken into account. This is reflected in the predictions of the Â , E0 and
E- magnetic moments tvhich are smaller in magnitude than the experimental measurements in
all cases.

lThe experimental value for D0 is taken from the average of X+ and D- experimental resulbs, rvhich is valid in
the limit of isospin symmetry.
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Figure 4.1: Fits to lattice results of the proton magnetic moment. The physical value prediçted

by the fit is also indicated, as is the experimental value, denoted Ly an asterisk.
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Figure 4.3: Fits to lattice calculations of the D+ and !0 moments. Physical values predicted
by the fits are indicated, as are the experimental values which are denoted by asterisks. (The
experimental value for D0 is obtained from the isospin average of the Ð* and D- measurements.)

In an attempt to correct for the effect of the large strange quark mass considered in the lattice
calculations, we average the magnetic moment lattice results of each S + 0 baryon u.ith magnetic
moment results of a light-quark equivalent barvon 2. This procedure interpolates betr.een mag-
netic moment lattice results produced rvith heavy strange quarks and those produced rvith zero
strange quark mass. These averaged results have an effective strange quark mass closer to the
physical strange quark mass. The Padé approximant is then used to extrapolate these averaged
results. The effect on the X moments is subtle (see Table 4.1). Horvever, in the case of =-,
this method is sufficient to reproduce the empirical 3- moment (as shown by the dashed line in
Fig.  .a). There is a remaining discrepancy in the value predicted for the ¡0. Clearly the present
estimate of the correction for the heavy strange quark mass is somervhat crude. It is therefore
very important to have nerv simulation data lvith a realistic strange quark mass. At that stage
it may also be necessary to include kaon loop efects, because the transition E0 -+ D+ * 1(- is
energetically favoured, and rvill make a negative contribution to the I0 magnetic moment.

4.4 Sumrnary

lVe have seen that the Padé approximant can be used to extrapolate magnetic moment lattice
results of the spin-7/2 baryon octet to the physical regime. The magnetic moment values pre-

dicted by the fits for the p, n, Ð* and E- compare well with experimental measurements. As
a first estimate of the correction to be expected if a more realistic strange quark mass l\'ere
used, the lattice results for the S + 0 baryons were averaged rvith the magnetic moments of
the corresponding light-quark equivalent baryons. In the case of 3-, the averaging procedure
produced good agreement with experiment. Including kaon loop contributions is expected to
further improve the E moments, and hopefully reduce the discrepancy in the 30 result. Holever,
first it is important to apply the Padé approximant to more precise lattice results, calculated
rvith a realistic strange quark mass.

2Latïi.. calculations of a lighi-quark equivalent A are nob available
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Chapter 5

Electric Charge Radii

In the previous chapter we found that the Padé approximant, which lr'as an extrapolation formula
designed to agree rvith chiral perturbation theory and heavy quark effective theory in the appro-
priate limits, gave successful predictions for the octet baryon magnetic moments (see Table 4.1).
In this chapter we rvish to find an analogous procedure for extrapolating lattice results for octet
baryon charge radii. Chiral expansions of electric charge radii contain non-analytic behaviour in
the form of logarithmic terms in mn (see $ 2.5). In this chapter we develop extrapolation schemes

for octet baryon charge radii which include these logarithmic terms. -\ similar approach [8] has

been successful in explaining why lattice calculations of pion and proton charge radii are similar
in size, while experimental measurements reveal a significant difelence. In Ref. [8] it was found
that dramatic differences in the chiral behaviour of the pion and proton charge radii account

for the similarity of the lattice results at moderately heavy pion masses, rvhile allowing good

agreement with experiment at the ph.vsical pion mass. In this chapter rve improve the formalism
of the chiral extrapolations used in Ref. [8] bV incorporating both chiral s.vmmetrl' and heavy
quark effective theory in our extrapolation formulae. The results given in this chapter have been

published in Ref. [16].

5. 1 Extrap olations

Recall from $ 2.5 that the chiral expansion for the squared electric charge radius, (r¿2), of a
spin-If 2 octet baryon (labelled by i) is given by

(,,,):ro*,Ð,*#'.*(T) * , (5.1)

where all quantities are defined in $ 2.5. The leading non-analytic terms in this expansion are the
logarithmic terms rvhich are non-analytic functions of the quark mass, rno1. Thus these terms
have model independent coefficients. The logarithmic terms are analogous to the 0(*x) terms
in the magnetic moment chiral expansions, Eq. (2.63). At in the nagnetic moment case (see

S 3.5), we rvill not explicitly include kaon loop effects in our extrapolation formulae, since kaon

contributions are expected to be strongly suppressed by form factors describing the finite size of
the baryon.

To extrapolate the electric charge radius lattice results, we consider two distinct fitting pro-

cedures. Like the Padé approximant for magnetic moments, both the extrapolation schemes

considered here for charge radii satisfy the constraints of chiral perturbation theory and heavy
quark effective theory. The first extrapolation procedure we investigate is given simply by the

lRecall that m2, o< mo and m2¡¡ x. nto + r¡¿s over a wide range of quark masses.
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formula

('o') ctlX¡ln(m"llt)
(5.2)

(5.5)

I I czmT

rvhere (rn2) are the lattice QCD results (at severalvalues of m,) extracted from Ref. [33], c1 and
c2 are fit parameters which are optimized for each baryon, Xr (corresponding to the ith baryon)
is fixed (model-independently) b¡' chiral perturbation theory and À, rvhich is directly correlated
rvith c1, is fixed at 1 GeV. Note that the lattice results used here were produced by fitting the
electric form factor to a dipole form. (ln the original paper, Ref. [33], the electric form factor
rvas also fit to a monopole form. Horvever, it is known from experiment that the dipole form
is more suitable for parameterizing the electric form factor. Thus we consider only the dipole
results here.) Further details of the lattice results may be found in Ref. [33] and also in g 4.2.
The extrapolation procedure given in Eq. (5.2) is not feasible for the neutral baryons because in
this case (ro') - 0 as rnr. becomes large and thus sensitivity to the c2 fit parameter is lost. In
order to extrapolate the neutral baryon charge radii results we consider a second extrapolation
procedure, focusing on individual quark "sector" (or flavour) contributions, as discussed belorv.

Clearly the extrapolation formula given in Bq. (5.2) builds in the correct chiral behaviour, since

in the limit m," -+ 0 it can be expanded as follorvs

(ro'):q*X;ln(rn") -cú2m7+... (5.3)

(Recall that the scale Â, in Eq. (5.2), has been set to 1GeV. This choice is also implicit in
Eqr. (5.6)-(õ.10), belorv, rvhere nz, in the logarithm must be in GeV.) This agrees rvith the
chiral SU(2) expansion of the squared electric charge radius (see Eq. (5.1)), providedl,ve fix the

coefficient y; to 6al") / @n f,)t . The one loop corrected estimates of the coefficients of') .n,l ¡;
are given in Table 5.1.

In the large nzn limit, the quarks are expected to behave non-relativistically, and hence the
squared charge radius should fall off as m;2, as in uon-relativistic quantum mechanics. In the
region where nzn is very large, mq x n1r, and hence lve require that

/t\1(rn')o*?, (5.4)

as m* becomes extremely large. This is clearly satisfied by the first extrapolation formula,
Eq. (o.2), since the logarithm is very slou'ly varying.

In the second extrapolation procedure the individual quark sector contributions to the baryon

charge radii are dealt lvith individually. For example, in the case of the nucleons, we extrapolate
the up and dorvn sector contributions sepalately. For the hyperons the strange and light sector

results are extrapolated individually. This avoids the problem encountered with the neutral

baryons which was mentioned previousl¡.', because now all the quantities being extrapolated are

charged, even if the overall charge on the baryon is zero. This separation is valid since the

squared electric charge radius can be decomposed as

('o'): t eq

q=u,d,,s

(
(q) z

)r

where 1r(nl'¡ is the contribution from the qth quark sector and eo is the charge of this quark
\' /

sector. 'Th"rãfor", provided that the extrapolation formulae from each sector add so that the

chiral and heavy quark limits of the sum are in agreement with Eqs. (5.1) and (5.a) respectively',

this method contains the same physics as the first method, but simply makes use of the extra
information contained in the individual quark sector results. Not only does this second extrapo-
lation procedure solve the neutral baryon extrapolation difficulty, it also provides predictions for
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Figure 5.1: Schematic illustration of the pion loop ivhich produces the leading non-analytic
contribution to the proton charge radius.

individual quark sector radii,lvhich s'ill be resolved at Jefferson Lab for the nucleon [39], and

perhaps future accelerator facilities for hyperons.

Isolation of the individual quark sector contributions to the charge radii is relatively straightfor-
ward from the theoretical point of vierv. For example, to isolate the u-sector contribution to the
charge radius of the proton one simpl¡' sets the d-quark charge to zero and calculates the proton
charge radius as if only the z quark carried charge. In the chiral expansion of the proton charge

radius, the coefficient of the logarittt-, X["), originates from the pion loop, p -+ nf r+ (see

Fig. 5.1), and includes the charge of the pion cloud. (For clarity, we employ (zr) superscripts on

the chiral coefficients.) Therefore, to extrapolate the u-sector contribution to the proton charge

radius, the appropriate coefficient of the logarith- ir JXf"), since the pion now carries charge

+2/3. Thus lve extrapolate the z-sector results of the proton according to

ctl 2 yl")ln(rn")
(5.6)l*cz

where x[") i. the full chiral coefficient of the proton, gir.en in Table 5.1 and ("t'") is the squared

charge radius of a single z-quark of unit charge. Similarl"v-, the d-sector results are extrapolated
according to

"o (,f\'¡ ::!:-ÈÚ)!-1, (b 7)

where the factor o1713 originates from the d contribution to the pion cloud. Clearly adding the
left hancl sides of Eqs. (5.6) and (5.7) )'ields the full expression for (r!). In the chiral limit the
right hand sides add so that the correct chiral form for (r!), given in Eq. (5.3), is retained. The
sum of Eqs. (5.6) and (5.7) also obeys the correct heavy quark behaviour, given in Eq. (5.a). Since

the parameters c2 and c2l are not necessarily the same, the individual quark sector extrapolation
formulae (Eqs. (5.6) and (5.7)) cannot be added directly to give Eq. (5.2). Therefore, in general
we do not expect the two extrapolation procedures to give exactly the same results. For the
charged baryons this may be used to help quantify the systematic error of the approach. For the
neutron, the analogous extrapolation functions are given by

,' (,'Yt'¡ _ cr t JxÍ;') tn1-"¡
(5.8)

7 * czm?

for the z-quark sector, and

p

z u, (r[")2) =

2e¿

for the d-quark sector results, rvhere xÍ;') it given in Table 5.1.

/,.(¿)z\ - "'' + trxf) h(**)
Vn / I+c2'rn?
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\\te now consider extrapolating the hyperon radii using the seconcl extrapolation procedure, i.e.,
extrapolating the strange and light quark sector results separately. In extrapolating the strange
quark sector the charges of the light quarks are set to zero. Since the logarithmic term considered
here originates from pionic corrections to the charge radius (and pions do not contain strange
quarks), the coefficient of the logarithm in the strange sector extrapolation rvill be zero. Similarly,
for the light sector extrapolation, strange quarks do not carry charge and hence the coefficient of
the logarithm in this extrapolation rvill be the full coeffici"nt, ¡j"). This results in the follorving
extrapolation formulae for the hyperon quark sector contributions

,, (rl,)r) _ e t ¡f ") tn1--;
(5.10)

7 | c2n*n

and

"" (,Í",r): __:!_, (5.11)

rvhcre i runs over the hyperons only, and / corresponds to the light-quark (u andfor d) sector.
Since the strange quark mass is held fixed in the light quark mass extrapolation, any variation
in the strange quark sector is purely an environment efect from the surrounding light quarks.
As such, the functional form for the strange quark sector is constrained by neither leading order
chiral perturbation theory nor heavv quark effective theory. As lve shall see, c2 / is small and
negative for each hyperon, which suggests that a simple linear ansatz for the strange quark sector
extrapolation could also have been used.

Note that the extrapolation procedure of separating the strange and light sector contributions
is distinct from the z-d separation u'hich rve perform for the nucleon. For example, in the
strange-light separation of Ð+, r,ve extrapolate the sectors according to Eqs. (5.10) and (a.1i).
Holvever, if we rvere to make a further separation into z ¿nd d sectors, then the light-quark
sector results rvould be extrapolated as z sector results. with chiral coeffi.cient 3Xr*. The rJ-

cluark sector contribution (rvhich is purely a sea contribution) could then be inferred fi'om the
difference between light and z quark sector extrapolations.

5.2 Results

The extrapolations of the charge radius lattice results of the spin-L12 baryon octet are shorvn in
Figs. 5.2 - 5.9. Extrapolations of baryon radii perfbrmed according to !fq. (5.2), are indicated by
the solid lines, s'here the full circles (o) represent the baryon charge radii from lattice QCD and
the extrapolated value at n'¿r: 139 NIeV. The individual quark sector extrapolations are shorvn
by the dashed and dot-dashed lines, and the baryon charge radius predicted by this method
is indicated by a full square(r) in each case. Experimental measurements are indicated at the
physical pion mass by an asterisk (*). Note that for the charged baryons, two extrapolation
schemes and tu'o corresponding predicted physical values are shown, whereas (for the reasons
given in section 5.1) only one extrapolation procedure is shown for each neutral barJ'on.

In the case of the proton, the two extrapolated values agree very well with the experimental
measurement. It can be seen that a traditional linear extrapolationin m2* ',vould significantly
underestimate the experimental result. Similarly the predicted charge radius for the neutron
(produced by separate extrapolations of the z- and d-sector results) agrees with the experimen-
tal measurement significantly better than would a prediction from a simple linear extrapolation
in m2*. Finally both predicted values for Ð- agree very lvell with the tlvo experimental measure-
ments. These baryons are currently the only baryorrs of the spin-l12 octet rvhose electric charge
radius has been measured.
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Table 5.1: Baryon electric charge radii and the quark sector contributions. The latter are defined

on the left hand sides of Eqs. (5.6)-(5.11). One-loop corrected estimates of o\") and ¡¿ for each

octet baryon are indicated. For each extrapolation, the fit parameters, c1 and c2, and the
predicted value of (r2) at the ph,vsical pion mass are reported. Asterisks denote the squared

charge radii reconstructed from the sum of separate quark sector extrapolations. (The units are

such that the pion mass is in GeY and the squared charge radius is in fm2.)
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Figure 5.2: Fits to electric charge radius lattice results of the proton. Fits to the individual quark
sector results are also shorvn. The z-quark sector results are indicated by open triangles and the
d-quark sector results by open squares. Physical values predicted by the fits are indicated at the
physical pion mass, where the full circle denotes the result predicted from the first extrapolation
procedure and the full square denotes the baryon radius reconstructed from the quark sector
extrapolations (see text). (N.8. The latter values are actually so close as to be indistinguishable
on the graph.) The experimental value is denoted by an asterisk.

From simple quark model arguments [33], rvhere the heavier strange quark has a smaller distri-
bution than the light quarks, we expect the hierarchy of eiectric charge radii of charged octet
baryons to be given as follorvs

l('3-)l > l(";)l > l('3-)l > l("å-)l (',.12)

From Table 5.1 it is clear that the results of our extrapolations are in qualitative agreement lvith
this expectation. Indeed, in the regime of the actual lattice data (rn,, > 600 MeV) the argument
is even quantitative. Horvever, as the chiral limit (and physical pion mass) is approached, the
simple quark model description is no longer adequate and chiral physics gives rise to dramatic
effects. For example, in the extrapolation of the d-quark sector of the proton (Fig. 5.2), chiral
effects mean that the d-quark sector can actually make a positiue contribution to the charge

radius, via the 7 contribution in zr* - even though the total contribution is negative at the
physical pion mass. This behaviour is not anticipated by the simple quark model.

As discussed in $ 5.1, it is possible to perform a further separation of the light quark sector

results for the hyperons into z and d sectors. The u and d sector results can then be extrapolated
separately. For the Ð+ (zzs) this separation invoh'es extrapolating the light quark sector results

rvith chiral coefficient åXt* . From this procedure rve find that the d-quark sector contribution
to the Ð+ is 0.04 fm2,i.e. small and positive. This indicates that the d quark in the pion loop,

E+ -+ ?î+ + Eo^, makes a more significant contribution to the D+ radius than the d quark in
the ÐoÂ. This is expected because the n* occurs at larger radius. It is encouraging that the

r/-quark sector contribution is small, as a large result lvould indicate that the quark loops which

are omitted from the lattice simulations produce a significant contribution to the radius.

For the neutral baryons the sign of the squared charge radius is important. In the neutron, the

trvo r/ quarks are most likely to be found in a spin 1 configuration, rvhere they rvill undergo

hyperfine repulsion. This leads to a small, negative charge radius. Ho'"vever, as one approaches

ÈI¡-

\
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Figure 5.3: Fits to lattice results for the quark sector contributious to the squared electric charge
radius of the neutron. All symbols are defined in the caption below Fig. 5.2.

the chiral limit, spontaneous chiral symmetry breaking, in particular the process n -+ pr-,
rvhich carries d-quarks to larger radii and screens the u-quark conlribution via the Z in the r-,
leads to ¿rn enhancement of the negative charge radius. The remaining neutral baryons. t0, 

^and 30, have a positive squared charge radius. This is because in each case the strange quark
distribution is nrore localized than the light quark charge distribution (due to the larger mass of
the strange quark). Therefore on average the light quark charge distribution occurs at a larger
radius, resulting in a positive charge radius (since the light quark charge is positive in each case).

As rve remarked in Chapter 4, the lattice results used here ri'ere calculated rvith a large strange
quark mass (approximately 250 MeV, compared rvith the physical strange quark mass of 115 +
8 XIe\¡). In the magnetic moment case, lve found that the heavv strange quark had a significant
effect on the predictions of the E moments. Here we expect that the heavy strange quark rvill
also have some effect on the F charge radii. lVith a strange quark mass closer to the physical
mass the strange quark contribution rvould be increased. This 'n'ould result in a lorver predicted
charge radius for the 30 and a larger (in magnitude) charge radius for the F-. In the absence
of experimental measurements rve will not attempt to correct for the effect of the strange quark
mass here.

As rve see from Table 5.1, the extrapolated mean square charge radii obtained from both extrap-
olation procedures agree quite rvell for each charged octet baryon. For the proton, E- and F-
the reconstructed values completely cover the result from the original extrapolations of Eq. (5.2).
In the case of the X+ the two values overlap only on the error bars. This is due to the small
variation in the strange quark contribution (which is caused by an environment effect). When
this environment effect is included in the baryon charge radius, the magnitude of the slope is
increasecl. resulting in a larger charge radius after extrapolation.

In turning the dimensionless masses calculated on the lattice to physical units, the lattice spacing,
ø, was set in the traditional manner by fixing the nucleon mass, obtained by a naive linear
extrapolation in m|, equal to the observed mass. Of course, such a linear extrapolation is knolvn

[12] to be inconsistent with chiral symmetry. Applving a more consistent chiral extrapolation
would systematically lorver values of (r2) obtained for the charged octet by of the order !5%o.

(The effect on neutral baryons is much smaller.) On the other hand, the data rvhich lve are forced

T___rT
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to use is quenched data rvhich omits some pion corrections. Although these are expected to be

suppressed at the large values of m2, for rvhich the data is available (c.f. Ref.[11]), the associated
systematic error rvould tend to increase the calculated values of (r2), perhaps by 5-10%. Rather
than attempt to repair these deficiencies in the present data, it is more reasonable to simply accept
that there is an additional systematic en'or of the otder 15% associated rr'ith the extrapolated
values shorvn in Table 5.1. Adding this systematic in quadrature means that the values in
Table 5.1 rvould become, for example, (r3o) : 0.68 + 0.14 fm2, (rlr-) = -0.S+ -t 0.09 fm2,

("?"*) :0.77 * 0.14 fm2. It will be interesting to repeat the analysis in this chapter with
unquenched data at lolver quark mass when these results become available. In the meantime, we

an'ait further experimental measurements of baryon charge radii to test our predictions.
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Chapter 6

Conclusron

In this thesis rve have explored methods of extrapolating lattice QCD results to the physical
regime. In particular, rve have considered the extrapolation of lattice results for octet baryon
magnetic moments and electric charge radii as functions of the pion mass, m,. At this point the
only available lattice results for these observables are obtained at quite large pion masses, all
above 600 MeV. Since chiral perturbation theory is not applicable in this regime, chiral expansions
cannot be used directly to extrapolate the lattice results. Horvever. the chiral expansions contain
important non-analytic terms arising from Goldstone boson loops rvhich must be included in
extrapolations to the physical regime.

To guide extrapolations of the lattice results rve first considered the predictions of a successful
chiral quark model, the Cloudy Bag i\,Iodel (CB\,'I). The CBIvI is a relativistic quark model of
barS'ons rvhich builds in the phenomena of quark confinement and pion emission. The pion loop
contributions to observables calculated in the CB\'I match the leading rìon-anal¡'tic behaviour
predicted by chiral perturbation theory in the chiral limit. Holever, as larger pion masses

are approached, these non-analytic terms are suppressed by form factors u'hich regulate the pion
loops. Therefore, by extrapolating the results using the CBVI, the leading non-anal¡'tic behaviour
at small m, is included, while the expected behaviour at large m" is also maintained. CB\I
extrapolations lvele performed forthe magnetic moment lattice results of the proton and neutron

[11]. It rvas found that the CBM extrapolations could be reproduced by a simple extrapolation
formula, the Padé approximant. This approximant manifestly builds in the leading non-analvtic
chiral behaviour at small rn.,. and the expected Dirac moment behaviour at large nz". The Padé

approximant lvas used to extrapolate the magnetic moment lattice t'esults of the entire baryon
octet.

The Padé approximant extrapolations of the magnetic moment lattice results of Ref. [33] pro-

duced some very successful predictions. In particular, lve obtained the follotving results for the

nucleons ancl X bar.n-ons (rvhere experimental measulements are indicated in the square brack-

ets and all magnetic moments are in units of nuclear magnetons, ¡t¡¡): ¡Lr: 2.90(20) 12.793),

trn: -L.79(21) [-1.913], ¡r¡+ :2.39(16) 12.42(5)), tlÐo :0'53(5) [0.63(4)1] and ¡r¡- : -1'33(8)
l-I.157(25)]. The predictions for the 3 baryon magnetic moments did not agree so ç'ell with
experiment. However, this problem is thought to originate from the lattice results themselves.

The lattice results we were forced to use rvere produced lvith a very large strange quark mass'

rvhich has the greatest effect in the doubly strange E baryon results. By averaging the Î results

rvith light quark equivalent lattice results rve were able to reduce the effect of the heav.v strange

quark, and obtain better results. Horvever, the best solution to this problem is to repeat the

analysis with lattice results produced rvith a more realistic strange quark mass lvhen these results

become available.
rThe experimental value for the Ðo magnetic moment is taken from the isospin average of X+ and Ð- experi-

mental results.
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The success of the Padé approximant extrapolations motivated the proposal of similar extrap-
olation procedures for the electric charge radius results. Like the magnetic moment case, our
extrapolation formulae for the charge radii rvere designed to reproduce the leading non-analytic
logarithmic terms predicted by chiral perturbation theory in the chiral limit while nraintaining
the correct heavy quark behaviour. lVe obtained the follorving predictions for the charge radii of
the nucleons and the E- (n'here experimental measurements are indicated in square brackets and

all charge radii are in units of fm2): (r3):0.68(10) [0.740(15)], (rt") : -0.25(8) l-0.113(a)land
(r"r->: -0.54(3) [-0.60(16), -0.91(72)]. Predictions v'lete also made for the remaining octet
baîyon charge radii, which have not yet been measured experimentally (see Table 5.1). There is

an additional systematic error of the order 15% in the charge radii predictions. This error arises

from problems in setting the lattice spacing and from the fact that the lattice simulations are

quenched. To remove this systematic error the best solution is to repeat the extrapolations with
lattice data produced at lorver quark masses in full QCD.

In the future rve hope to apply both extrapolation procedures to more accurate lattice data,
produced rvith a more realistic strange quark mass. It rvill be interesting to resolve the extent
to lvhich further refinements are required. For example, it may be necessary to include kaon

loop contributions in the extrapolation formulae. However, these contributions are expected to
produce a fairly subtle effect due to the form factor suppression of the kaon loops. The effect

is most likely to be observed for the doubly strange 3 baryons which couple most strongly to
kaons. \\'e defer this treatment until more accurate lattice results are available. \\¡e also arvait

future experimental measurements, particularly for the charge radii of the spin-1/2 barl''on octet.
so that our predictions can be compared with experiment.
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Abstract

We explore methods of extrapolating lattice calculations of hadronic observables to the physical regime , while respecting
the constraints of chiral symmetry and heavy quark effective theory. In particular, rve extrapolate lattice results formagnetic
moments of the spin-l/2 baryon octet to the physical pion mass and compare with experimental measurements. The success
previously reported for extrapolations of the nucleon magnetic moments carries over to the > baryons. A study of the
residual discrepancies in the ã baryon moments suggests that it is imporlant to have new simulation data with a more
realistic strange quark mass. O 2000 Elsevier Science B.V. All rights reserved.

1. Introduction A difficult problem encountered in calculating
hadronic obsen ables at heavy quark masses on the
lattice is that chiral perlurbation theory is not appli-
cable in this heavy quark mass regime. Nevertheless,
chiral symmetry does require certain model-indepen-
dent, non-analytic behaviour as a function of the
quark mass, m, (or equivalently of m2r, as moøm2o
in this range). This non-analytic behaviour must be
taken into account in any extrapolation to the physi-
cal regime. In our earlier work we studied the quark
mass dependence of the nucleon magnetic moments
within a particular chiral quark model which guaran-
teed the correct leading and next-to-leading non-ana-
l¡ic behavior in mo ll1. It turned out that the

complete dependence on m q could be described very
well by a simple Padé approximant (cf. Eq. (1)

below), even though the usual perturbative chiral
expansion deviated quite badly from the Padé for
pion masses less than twice the physical pion mass -
well below any existing lattice data.

0370-2693/00,/$ - see front matter @2000 Elsevier Science B.V. All rights reserved.
PII: S0370-2693(00)00899-6

One of the key goals of lattice QCD is to confront
experimental data with the predictions of QCD.
However, computational limitations mean that
hadronic observables, such as masses and magnetic
moments, are calculated at quark masses much larger
than their physical values. Although improvements
in algorithms and computer speed will allow lattice
calculations of hadronic observables to be performed
much closer to the physical regime, these improve-
ments will proceed over many years. In the mean-
time it is imperative that one has an understanding of
how to extrapolate lattice results, obtained at large
quark masses, to the physical world.

E-mail addresses: ehackett@physics.adelaide.edu.au (E.J.

HacketrJones), dleinweb@physics.adelaide.edu.au (D.8. Leinwe-
ber), athomas@physics.adelaide.edu.au (4.W. Thomas).
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In view of these earlier results, our extrapolations
here will also be based on Padé approximants which
ensure the correct leading non-anal¡ic behavior as

well as the correct heavy quark behaviour. In the
case of the nucleon, this extrapolation procedure led
to very reasonable values for the proton and neutron
magnetic moments at the physical pion mass, l.¿/:
2.85Q2) p"* and þ,: - 1.90(15)Á¿¡¿ (see Figure 5
of Ref. [1]). tnese values agree well with the experi-
mental measurements, namely pp:2.793 ¡r," and

þ,: -1.913 p.r. Here we explore the application of
this procedure to octet baryons in general.

The magnetic moment results used here are ex-
tracted from the lattice QCD calculations of Ref. [2].
While the results are nolv quite old, they continue to
be the only lattice estimates of the spin-I /2 baryon
octet magnetic moments available at the moment.
These ¡esults were all obtained at pion masses above
600 MeV. We extrapolate these results as functions
of the pion mass, mn, to the physical pion mass of
140MeV, to obtain the physical magnetic moment
predictions. Because the lattice calculations are
quenched, we expect that there are errors in the
lattice data which we have been unable to take into
account. However, as explained in Ref. [1], these

errors are expected to be on the scale of the statisti-
cal errors. Nevertheless, an ideal extrapolation of
magnetic moments would use fulI QCD lattice re-
sults which are unavailable at the moment.

2. Extrapolations

To extrapolate the lattice calculations of the mag-
netic moments we use the Padé approximant:

p,(m,): þo (t)
| - 

X' *n+ cm2,
l-to

where X,, conesponding to the fù baryon, is fixed
model-independently by chiral perturbation theory
and ¡ro and c are allowed to vary to best fit the data

[1]. This formula builds in the chiral behaviour at

small rz., governed by X,, as well as the correct
heavy quark behaviour, as discussed in the follow-
ing.

E.J. HacketçJones et al. / Physics Lerters B 489 (2000 I 43- I 47

tt¡:7¡* D BÍ
X: r,K

The Goldstone boson loops resulting from dynam-
ical chiral symmetry breaking mean that the baryon
magnetic moments exhibit certain model indepen-
dent, non-analytic behaviour in the quark masses.
Using an expansion about the chiral SU(3) limit, one
finds that the magnetic moments of the octet baryons
(in nuclear magnetons, Á¿¡¿) are given by

m^,x\ ," mxl (2)
8nf'

where the ellipses represent higher order terms, in-
cluding logarithms [¡]. Uere / is the pion decay
constant in the chiral limit (93 MeV) and z" is the

nucleon mass. For our purposes, namely extrapolat-
ing lattice data at fixed strange quark mass (rn,) as a

function of the light quark mass (mr), it is preferable
to expand about the SU(2) chiral limit. The cloudy
bag calculations in Ref. [1] showed that Goldstone
boson loops are suppressed like m*a at large m*
(comparable to mr). Although this result is model
dependent, the lattice simulations themselves do not
show a rapid variation with m* at values of order
mK or higher, thus supporting the general conclu-
sion. One therefore expects that the kaon loops
should be relatively small and slowly varying as a

function <,f mtq.They can therefore be absorbed in
the fit parameters ¡,r,0 and c. On the other hand, the

rapid variation of mn with m, means that the lead-
ing non-analytic behaviout' iu rn. must be treated
explicitly.

It is simple to see that the Padé approximant, Eq.
(1), guarantees the correct behaviour of the magnetic
moments in the chiral SU(2) timit. Expanding Eq.
(1) about mn:0 we frnd

lr¡: tto* y,mn* X1

- - ltoc
lto

*I+ ... (3)

In order to reproduce the leading non-anal¡ic be-

haviour of the chiral expansion in our fit we ftx y,
to the value B!')(mr/8rf2) for the _iù octet

baryon. The oneJooþ corrected estimates [3] of the

coefficients B!') and X¡ arc given in Table 1.

I Recall that m2r d. ms+ mo and m, is fixed and large'
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Table I
One-loop corrected estimates of BÍ") (in Eq. (2)) and ¡,: p!')(mN/8Tf2)
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P n A:+ .'0 -t-
ß!"',
p!")
X¡

-(F + D)2

- 1.02

- 4.4t

(F + D)2
t.02
4.41

- loz - 2pz

- 0.57

-2.46

-(D - F)1

- 0.04

- l.9r

(D - F)2
0.04
l.9l

0

0

0

0

0

0

1o'
0.51
2.46

+ 2F2

The Padé approximant, Eq. (1), also builds in the
expected behaviour at large mn. AT heavy quark
masses we expect that the magnetic moment should
fall off as the Dirac moment

e- Ip:;+ d. -1 Ø)lffio m;

as mÌr becomes moderately large. This is clearly the
case in the Padé approximant. Therefore, the Padé
approximant has been chosen to reproduce physical
phenomena at the small and large rz, scales. It also
succinctly describes the excellent phenomenology of
the Cloudy Bag Model [t,4]. 1-tre Padé approximant
has already been used successfully in the extrapola-
tion of lattice results of magnetic moments of the
nucleon, which we include here for completeness [1].

3. Results

In the following graphs, Figs. 1, 2, 3, 4, lattice
calculations of the baryon magnetic moments are

o.o o.2 0.6
GeVz)

o.8 1.0

fitted as a function of mn, according to the Padé

approximant given in Eq. (l), wittr coeffrcients, ¡¡,
from Table 1. In each case the solid lines are Padé

approximant fits to the magnetic moment lattice
results. Experimental measurements are indicated at

the physical pion mass by an asterisk (*). The
magnetic moment predictions of the Padé approxi-
mant are compared with experimental values in Table
2. The fit parameters, po and c, for the solid lines
are also indicated.

In the case of the nucleon, the fits given here
(Figs. 1 and 2) are stightly different from those given
in Ref. [1], as we omit the second set of lattice
results (these were extracted from Ref. [6] which
dealt with the nucleon only) in order to produce a

consistent set of graphs for the entire baryon octet.
However, the nucleon fits shown here still give
excellent agreement with experimental data. The
physical magnetic moment predictions for the -I+
and -Ð- are also in good agreement with experiment.

Using magnetic moment values predicted by the
Padé approximant we can calculate the ratio of the

o.o o.2 o.4 
7n 2 0.6 0.8 1.0

Fig.2. Fits to lattice results of the neutron, ¡1 and )- magnetic

moments. The physical values predicted by the fits are indicated,

as are the experimental values, which are denoted by asterisks.
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Fig. L Fits to lattice results of the proton magnetic moment. The
physical value predicted by the fit is also indicated, as is the
experimental value, denoted by an asterisk.
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3.0

o.o o.2 o.4 
nL 2 0.6 o.8 1.0

Fig.3. Fits to lattice calculations oi,n. .:* and .I0 magnetic
moments. The physical values predicted by the fits are indicated,
as are the experimental values (see text), which are denoted by
asterisks.

- 1.4
o.o o.2 0.4 0.6 0.8 1.0

zn,z (Gevz)

Fig.4. Fits to lattice calculations of the .ã0 and E- magnetic
moments. The upper two lines are fits for ã- results and the

lower two lines for ã0 results. Solid lines represent fits to the

magnetic moment results, whereas dashed lines represent fits to
averaged results (denoted by open symbols which are offset for
clarity), as described in the text. The physical values predicted by
the fits are indicated, as are the experimental values, which are

denoted by asterisks.

Table 2

Magnetic moments of the octet baryons (in nuclea¡ magnetons)
predicted by lattice QCD compared with experiment. (The experi-
mental value for f0 is taken from the average of .Ð- and )-
experimental results, which is valid in the limit of isospin symme-
try.) The fit parameters ¡r,o and c of the Padé approximant are

also indicated in units of ¡r," and GeV-2 respectively. The
column entitled 'Averaged Lattice' reports magnetic moments
from extrapolations of lattice calculations averaged to better de-
scribe the strange quark mass, as discussed in the text

Baryon ¡lo Lattice Averaged Experiment
Lattice

.5

.0

.ã

.0

.õ

.o

2

2

1

1

0

0
c

E- and A magnetic moments. The simple quark
model predicts that this ratio is given by

tt=- _!(^_*o\;:;t*-;i (5)

which becomes

t!=- 1l m-\

;:t\o-a) (6)

if we take each quark magnetic moment to be given
by the Dirac moment of its constituent mass. In this

p
n

A
s.+

s0
s-

3.46 0.68

-2.28 0.11

- 0.38 0.005
2.71 0.40
0,54 0.44

- t.64 1.35

- 0.80 0.29

- 0.46 - 0.38

2.90(20)

-1.79Q1)
- 0.38(3)

2.3e(16) 2.53(18)
0.53(5) 0.58(7)

- 1.33(8) - l.3s(15)

-0.82(4) -0.e9(10)
-0.44(Ð - 0.67(8)

2.793

- 1.913

- 0.ó13(4)
2.42ß)
0.63ø)

- |.ts725)
- 1.250(14)

- 0.69(4)

case the ratio is less than 7 for mr) m¿. This
disagrees with the experimentally measured value of
1.13(7). However, using the predictions of the Padé
approximant, we obtain a value of 1.15 for this ratio,
which is in excellent agreement u'ith the experimen-
tal data. This is a good indication that meson cloud
effects must be included in an extrapolation of lattice
results to the physical regime.

The lattice calculations of baryon ma-øretic mo-
ments used in this letter were made with a strange
quark mass of approximately 250 tvfev [2]. This is

much heavier than the physical mass of the strange
quark of 115 + 8 MeV at a scale 2 GeV, taken from
a careful analysis of QCD sum rules for r decay [5].
The contribution of the strange quark to the E
baryon magnetic moments is very small. Lattice

QCD calculations indicate that the contribution of a

singly represented quark in a baryon is half that
anticipated by SU(6) spin-flavour symmetry [71.

Hence the heavy strange quark mass rvill have a

subtle effect on the I moments. By contrast, the

strange quarks dominate the zl and ã magnetic

moments. Thus the heavy strange quark produces a

large error in the lattice data for these baryons,

which so far we have not taken into account. This is
reflected in the predictions of the A, E 0 and E-
magnetic moments which are smaller in magnitude
than the experimental measurements in all cases.

-0.6

-0.8

- 1.O

t2

q

o
E

I

FI
€
A
d

l¡¡

0.o

-o.2

-0.4

-0
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In an attempt to correct for the effect of the large
strange quark mass considered in the lattice calcula-
tions, we average the magnetic moment lattice re-
sults of each S * 0 baryon with magnetic moment
results of a lighrquark equivalent baryon2. This
procedure interpolates between magnetic moment
lattice results produced with heavy strange quarks
and those produced with zero strange quark mass.
These averaged results have an effective strange
quark mass closer to the physical strange quark
mass. We have also used the Padé approximant to
extrapolate the averaged results. The effect on the .5
moments is subtle (see Table 2). However, in the
case of ,ã-, this method is sufficient to reproduce
the empirical E- moment (as shown by the dashed
line in Fig. a). There is a remaining discrepancy in
the value predicted for the E 0. Clearly the present
estimate of the correction for the heaqy strange
quark mass is somervhat crude. We therefore regard
it as very important to have new simulation data with
a realistic strange quark mass. At that stage it may
also be necessary to include kaon loop effects, be-
cause the transition E o --t -5* + K- is energetically
favoured, and will make a negative contribution to
the Eo magneticmoment.

4. Conclusion

We have shown that the Padé approximant which
was introduced to extrapolate lattice results for the
magnetic moments of the nucleon, is also successful
in predicting magnetic moments for the spin-L /2
baryon octet. The magnetic moment values predicted

2 Lattice calculations of a lighrquark equivalent zl are not
available.
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by the fits for the p, n, 2* and -5- compare well
with experimental data. As a first estimate of the
correction to be expected if a more realistic strange
quark mass were used, we averaged lattice results for
the 

^S 
* 0 baryons with the magnetic moments of the

corresponding light-quark baryons. This had a small
effect on the predictions for the ) baryon magnetic
moments, but significantly improved the E baryon
results. In the case of E-, the averaging procedure
produced good agreement with the experimental re-
sults. In the future we hope to perform a similar
extrapolation procedure using more precise magnetic
moment lattice data, calculated with realistic strange
quark masses. At that stage it may also be necessary
to include the kaon loop corrections, especially for
the doubly strange ,ã hyperons.
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Abstract

We extrapolate lattice calculations of electric charge radii of the spin-l12 baryon octet to the physical regime. The
extrapolation procedure incorporates chiral perturbation theory and heavy quark effective theory in the appropriate limits. In
particular, this procedure includes the non-analytic, logarithmic terms from pion loops. The electric charge radii of the nucleons
and .Ð- obtained from the chiral extrapolations agree rvell with experimental data. We make predictions for the charge radii of
the remaining baryons in anticipation of future experimental measurements. @ 1000 Elsevier Science B.V. All rights reserved.

1. Introduction

Lattice QCD is so far the most successful method
of calculating hadronic observables from the theory
of QCD. However, computational limitations mean
that hadronic observables are calculated on the lat-
tice at quark masses larger than their physical val-
ues. Hence results from lattice simulations cannot be
directly compared with experimental data. Although,
with improvements in actions, algorithms and com-
puter speed, future lattice calculations will be per-
formed much closer to the physical regime, these im-
provements will proceed over many years. Therefore,
to make sense of any lattice results produced to date,
and to compare them with experiment, one must un-
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derstand horv to extrapolate lattice results, obtained at

large quark masses, to the physical world.
One of the difficulties with calculating hadronic ob-

servables at heavy quark masses on the lattice is that
chiral perrurbation theory cannot be applied in this
quark mass regime. However, chiral expansions of
hadronic observables contain important non-anal¡ic
terms as a function of the quark mass, Ín 4 (or equiva-
lently of m2n, as mq u ^f, inthis range). Iì is vital that
this non-anal¡ic behaviour is include d in any extrap-
olation to the physical regime [1-8].

The chiral expansion ofthe squared electric charge
radius of a spin- I /2 octet baryon includes non-analytic
behaviour in the form of logarithmic terms in ru,'
(or mq). To extrapolate the lattice results for electric
charge radii we incorporate these logarithmic terms
in our extrapolation formulae, while ensuring that
the correct healy quark behaviour is also maintained.
A similar approach [1] has been successful in explain-
ing why lattice simulations of pion and proton charge
radii are similar in size, while experimental measure-
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ments reveal a significant difference. The dramatic dif-
ferences in the chiral behaviour ofthe pion and proton
charge radii account for the similarity of the lattice re-
sults at moderately heavy pion masses, while allorving
good agreement with experiment at the physical pion
mass. This illustrates the importance of including me-
son cloud effects in extrapolations oflattice results to
the physical regime. In this paper, we improve the for-
malism of chiral extrapolations by incorporating both
chiral symmetry and heavy quark effective theory.

Our lattice "data" for the electric charge radii is
taken from the calculations of Ref. [9]. The contribu-
tions to the charge radii from individual quark flavours
are also given there. These results are the only avail-
able lattice calculations of the electric charge radii of
spin-l/2 octet baryons. For each baryon, the electric
charge radius was calculated at three different quark
masses, corresponding to rather heavy pion masses (all
exceeding 600 MeV). Here we extrapolate these re-
sults as functions of the squared pion mass, ,n2r, to
obtain predictions for the charge radii at the physi-
cal pion mass (139 MeV). Because the lattice calcu-
lations are quenched, we expect that there are erors
in the lattice data rvhich we have been unable to take
into account. However, we expect that errors from the
quenching approximation will be rather small. At the
quark masses considered on the lattice, the dominant
effect is a simple renormalization of the stron_e cou-
pling constant, accounted for in setting the lattice spac-
ing scale. When results from unquenched simulations
become available, the formalism presented here may
be readily applied.

2. Extrapolations

Dynamical breaking of chiral symmetry in the QCD
lagrangian results in the formation of an octet of
þseudo-) Goldstone bosons. Goldstone boson loops
give rise to significant non-anal¡ic behaviour in
hadronic observables, such as (r,?) and magnetic mo-
ments, as a function of the quark mass, mo. Using
an expansion about the chiral SU(3) limit gives the
following expression for the squared electric charge
radius, (r,?), of a spin-l/2 octet baryon (labelled

by t) [10]

t?t:v,*"ì* #''(i) + (r)

Here /, is the pion decay constant (93 MeV) and À is

the scale of the dimensional regularization. (The value
of ¡ is clearly correlated with the choice of .1..) Un-
like SU(2)-flavour symmetry, SU(3) is significantly
broken in the physical world, with the strange quark
mass the same order of magnitude as ulqco for low-
energy phenomenology. The squared kaon mass ex-
ceeds the squared pion mass by over an order of mag-
nitude. Given that the source of the meson cloud asso-

ciated with a baryon is of a finite size, one might antic-
ipate that the role of the kaon cloud will be suppressed
arvay from the SU(3) chiral limit [11]. The form fac-
tor describing the finite size of the kaon source will
act to suppress kaon loop effects llke m *a atlarge my
(comparable to my). This was demonstrated within a

particular chiral quark model for the nucleon magnetic
moments in Ref. [4]. Despite the model-r(lependence
associated with the form factors, the lattice results
themselves are very slowly varying functions of my
at values of the order my or higher, thus support-
ing the general conclusion. Therefore kaon loop ef-
fects are expected to be small and slolvly varying as

a function of mo. Hence we do not explicitly include
kaon contributions in our extrapolation formulae. Con-
versely, since m,. varies rapidly wíth mq, the leading
non-anal¡ic behaviour in rn r. must be included explic-
itly in an extrapolation to the chiral regime.

To extrapolate the lattice calculations of the electric
charge radii of the spin- 1 /2 octetbaryons, we consider
two distinct fitting procedures. Both these extrapola-
tion schemes satisfy the constraints of chiral perturba-
tion theory and heavy quark effective theory. The first
extrapolation procedure we investigate is given simply
by the formula

t )\ ct + xiln(m, /A)
\,;t- . ' 

(2)
| + c2mît

where V!) are the lattice QCD results (at several

values of mv) extracted from Ref. [9], cr and c2

are fit parameters chosen to best fit these results, X;
(corresponding to the ith baryon) is fixed (model-
independently) by chiral perturbation theory and A,
which is directly correlated with c1, is fixed at I GeV.



This extrapolation procedure is not feasible for the
neutral baryons because (11 --, 0 as mn becomes
large and thus sensitivily to the c2 fit parameter
is lost. In order to extrapolate the neutral baryon
charge radii results we consider a second extrapolation
procedure, focusing on individual quark "sector" (or
quark flavour) contributions, as discussed below.

Clearly the extrapolation formula given in Eq. (2)
builds in the correct chiral behaviour in the SU(2)
limit, since in the limit mn -+ 0 it can be expanded
as follows

(rl):c1t- pln(mr)-c2m2o+'... (3)

(Recall that the scale 21, in Eq. (2), has been set to
1 GeV. This choice is also implicit in Eqs. (6)-(10),
below, where mn in the logarithm must be in GeV.)
This agrees rvith the chiral SU(2) expansion of the
squared electric charge radius (see Eq. (1)), provided
we fix the coefficient x¡ to eo!") /{+nfr)2 for the

i th baryon. The coeffici.nt. o,f") and x¡ are given in
Table 1.

In the large mn limit, we expect that the quarks
behave non-relativistically, and the squared charge
radius falls off as m;2, as it does in non-relativistic
quantum mechanics. In the region where mo is very
latge, mn q. ntÍ, and hence we require that

I(rf)u ,, (4)
m;

as løo becomes extremely large. This is clearly satis-
fied by our first extrapolation formula, Eq. (2), since
the logarithm is very slowly varying.

In the second extrapolation procedure we deal sep-
arately with the individual quark sector contributions
to the baryon charge radii. For example, in the case of
the nucleons, 'ù/e extrapolate the up and down sector
contributions separately. For the hyperons the strange
and light sector results are extrapolated separately.
This avoids the problem encountered with the neu-
tral baryons which was mentioned previously, because
now all the quantities being extrapolated are charged,
even if the overall charge on the baryon is zero. This
separation is valid because the squared electric charge
radius can be decomposed as

WI: I "oþ0"1, (s)

Q=u,d's

ze,,\rf;')2) (6)

where x f;) l. the full chiral coefficient of the proton,

given in Table 1 and lrf')z) is the squared charge

n p

Fig. l. Schematic illustration of the pion loop which produces the

leading non-analytic contribution to the proton charge radius.
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where V[0") is the contribution from the 4th quark
sector and en is the charge ofthis quark sector. There-
fore, provided that the extrapolation tbrmulae fiom
each sector add so that the chiral and healy quark lim-
its of the sum are in agreement with Eqs. (l) and (4),
respectively, this method contains the same physics as

the fust method, but simply makes use of the extra in-
formation contained in the individual quark sector re-
sults. Not only does this second extrapolation proce-
dure solve the neutral baryon extrapolation difficulty,
it also provides predictions for individual quark sector
radii, which will be resolved at Jefferson Lab for the
nucleon [2], and perhaps frrture accelerator facilities
for hyperons.

Isolation of the individual quark sector contribu-
tions to the charge radii is relatively straightforward
from the theoretical point of view. For example, to iso-
late the ¡r-sector contribution to the charge radius of
the proton one simply sets the d-quark charge to zero
and calculates the proton charge radius as if only the
r quark carried charge. In the chiral expansion ofthe
proton charge radius, the coefficient of the logarithm,

xf;), originates from the pion loop, p --> n *n+ (see

Fig. l), and includes the charge of the pion cloud.
Therefore, to extrapolate the ¿¿-sector contribution to
the proton charge radius, the appropriate coeffrcient

of the logarithm is 4rf ' , 
since the pion now carries

char-qe +213. Thus we extrapolate the ¿l-sector results
of the proton according to

É

ã
!

IC',

I
I
I

\
t
I

p
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radius of a single ,,-quark of unit charge. Similarly,
the d-sector results are extrapolated according to

. ,t.G)2\ - 
ci + ixpln(mÐed\r;"'):--Tïæ:, (7)

where the factor of I/3 originates from the d contri-
bution to the pion cloud. Clearly adding the left-hand
sides of Eqs. (6) and (7) yields the full expression for
VlI. tn the chiral limit the right-hand sides add so

that the correct chiral form tor þ|1, given in Eq.(3),
is retained. The sum of Eqs. (6) and (7) also obeys
the correct heary quark behaviour, given in Eq. (a).
Since the parameters c2 and ct, arenot necessarily the
same, the individual quark sector extrapolation formu-
lae (Eqs. (6) and (7)) cannot be added directly to give
Eq. (2). Therefore, in general we do not expect the
two extrapolation procedures to give exactly the same
¡esults. For the charged baryons this may be used to
help quantify the systematic error of the approach. For
the neutron, the analogous extrapolation functions are
given by

eu(rl,,tz¡ - 
ct + -ixl") 

tn-(m^), 
(8)--t'r ' l|c2m2, '

for the u-quark sector, and

ze¿lrld)21:tw, (e)

for the d-quark sector results, where xj") ir given in
Table l.

We now consider extrapolating the hyperon charge
radii results using the second extrapolation procedure,
i.e., extrapolating the strange and light quark sector
results separately. In extrapolating the strange quark
sector the charges of the light quarks are set to zero.

Since the logarithmic term considered here originates
from pionic corrections to the charge radius (and pi-
ons do not contain strange quarks), the coefficient of
the logarithm in the strange sector extrapolation will
be zero. Similarly, for the light sector extrapolation,
strange quarks do not carry charge and hence the coef-
ficient of the logarithm in this extrapolationwill be the

full coefficien , x,'"' . This results in the following ex-
trapolation formulae for the hyperon quark sector con-
tributions

",(r!')'\- 
cr t x¡ ln(?") 

(10)-,\'¡ t- l*c2m2n

and

- t.ß)2\ - 
c're,\rì''-): t+æ, (ll)

where i runs over the hlperons only, and / corresponds
to the light-quark (rr and/or d) sector. Since the strange
quark mass is held fixed in the light quark mass ex-
trapolation, any variation in the strange quark sector
is purely an environment effect from the surround-
ing light quarks. As such, the functional form for the
strange quark sector is constrained by neither leading
order chiral perturbation theory nor heavy quark effec-
tive theory. As we shall see, c! is small and negative
for each hyperon, which suggests that a simple linear
ansatz for the strange quark sector extrapolation could
also have been used.

3. Results

The lattice QCD simulations were performed on
a 24 x 12 x 12 x 24 periodic lattice using standard
Wilson actions at þ - 5.9. Dirichlet boundary con-
ditions were used for fermions in the time direction.
Twenty-eight quenched gauge configurations were
generated by the Cabibbo--Marinari [18] pseudo-heat-
bath method. The conserved vector current was <1e-

rived from the Wilson fermion action via the Noether
procedure. The associated lattice Ward identity pro-
tects this vector current from renormalization. The
radii were produced by fitting the electric form fac-
tor to dipole and monopole forms, allowing a charge

radius to be extracted in each case. Sincc it is known
from experiment that the dipole form is more suitable
for parameteizing the electric form factor, we con-
sider only the dipole results here. Statistical uncertain-
ties in the lattice simulation results are calculated in a

third-order, single elimination jackknife [19,20]. Fur-
ther details may be found in Ref. [9].

The extrapolations of lattice calculations for the

charge radii of the spin-l/2 baryon octet are shown
in Figs. 2-7. Extrapolations of baryon charge radii
results, performed according to Eq. (2), are indicated
by the solid lines, where the full circles (o) represent
the baryon charge radii from lattice QCD and the

exhapolated value at rrt'¡ :139 MeV. The individual
quark sector extrapolations are shown by the dashed

and dot-dashed lines, and the baryon charge radius
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Table I
Baryon electric charge radii and the quark sector contributions. The latter are defined on the left-hand sides of Eqs. (6Hl l). OneJoop corrected
estimates of o,l") (in Eq. (l )) and ¡¡ (in units of fm2 ) for each octet baryon are indicated. For each extrapolation, the fit parameters, cl and c2,

and the Predicted value of (r2) at the physical pion mass are reported. Asterisks denote the squared charge radii reconstructed from the sum of
separate quark sector exhapolations. (The units are such that the pion mass is in GeV and the squared charge radius in fm2)

Baryon or quark sector
":") xi cl c2 (r2'r Experiment

p

,ap

dp

*p

n

-à-ZP+r>z
3[-¿ - lo+ r>z)

+ [-å - l<o + rfl

l+l<o+r¡2
?là*2rr+Ð2f
iiå+åt"+F)2f
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0.08
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lln
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Table I (continued)

Baryon or quark sector hl
d:

I xi cl C) \r- ) Experiment

^0

I=o

Jgo

r ^0

-à-2<o-r¡'
-¿-2@-Ð2

0

[+lo- rf
[+]<o- r¡2

0

-0.03s

-0.035

0

0.035

0.03 5

0

0.29

-0.l5

-0.24

-0.r2

-0.15

0.97

-0.0s

0.07

0.70

-0.05

0.35(5)

-0.r5(l)
0.20(5)

-0.32(2)

-0.19(2)

-0.15(1)

-0.34(2)

l=-
S 1-

predicted by this method is indicated by a full square
(r). Experimental measurements are indicated at the
physical pion mass by an asterisk (*). Note that for the
cJrarged baryons, two extrapolation schemes and two
corresponding predicted physical values are shown,
whereas (for the reasons explained in Section 2) only
one extrapolation procedu¡e is shown for each neutral
baryon.

In the case of the proton, the two extrapolated re-
sults agree very well with the experimental measure-
ment. It can be seen that a traditional linear extrap-
olation in m2o would significantly underestimate the
experimental result. Similarly the predicted charge ra-
dius for the neutron þroduced by separate extrapola-
tions of thc- u- and d-sector results) agrees with the ex-
perimentai data signiflcantly better than the prediction
from a co¡n'entional linear extrapolationin mzn. Both
predicted values for .D- also agree very well rvith the
trvo experimental measurements. These baryons are

currently the only baryons of the spin-1/2 octet whose
electric charge radius has been measured.

From simple quark model arguments [9], where the
heavier strange quark has a smaller distribution than
the light quarks, we expect the hierarchy of electric
charge radii of charged octet baryons to be given as

follows

l('3.)l >-l\3ll>l!T-)l>-ll'2,-\l' oz)
Clearly the results of the lattice extrapolations shown
in Table I are in qualitative agreement with this ex-
pectation. Indeed, in the regime of the aclual lattice
data (mn > 600 MeV) the argument is even quantita-

tive. Horvever, as the chiral limit (and physical pion
mass) is approached, the simple quark model descrip-
tion is no longer adequate and chiral physics gives rise
to dramatic effects. For example, in the extrapolation
of the d-quark sector of the proton (Fig. 2), chiral ef-
fects mean that the r/-quark sector can actually make
a positìt'e contribution to the charge radius, via the d
contributio:: in ¡r+ - even though the total contribu-
tion is negative at the physical pion mass. This behav-
iour is not anticipated by the simple quark model.

For the neutral baryons the sign of the squarecl

charge radius is important. In the neutron, the two r/
quarks are most likely to be found in a spin-l config-
uration, rvhere they rvill undergo hyperfine repulsion.
This leads to a small, negative charge radius squared.
Holever, as one approaches the chiral limit, spon-

taneous chiral symmetry breaking, in particular the

process n --> pz-, which carries d-quarks to larger
radii and screens the u-quark contribution via the ¿J

in the n-, leads to an enhancement of the negative
charge radius. The remaining neutral baryons, t0 , A
and 50, have a positive squared charge radius. This is
because in each case the strange quark distribution is

more localized than the light quark charge distribution
(due to the larger mass of the strange quark). There-

fore on average the light quark charge distribution oc-

curs at a larger radius, resulting in a positive charge

radius (since the light quark charge is positive in each

case).

The lattice results used here were calculated with
a strange quark mass of approximately 250 MeV [9].
This is much larger than the physical strange quark
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mass of ll5 + 8 MeV at a scale 2 GeY, taken from
a careful anal)'sis of QCD sum rules for r decay

[13]. In an earlier study of lattice results for octet
baryon magnetic moments [8] (where the results were
extracted from the same lattice simulation [9]), it was
found that the heavy strange quark had a significant
effect on the predictions of the ^9 moments. Here we
expect that the heavy strange quark should also have

some effect on the ,? charge radii. With a strange
quark mass closer to the physical mass the strange
quark contribution would be increased. This would
result in a lower predicted charge radius for the .?0

and a larger (in magnitude) charge radius for the ^?-.
In the absence of experimental measurements we will
not attempt to conect for the effect of the strange quark
mass here.

As we see from Table 1, the extrapolated mean

square charge radii obtained from both extrapolation
procedures agtee quite well for each charged octet
baryon. For the proton, ,Ð- and ^?- the reconstructed
values completely cover the result from the original
extrapolations of Eq. (2). In the case of the .Ð+ the
two values overlap only on the error bars. This is due

to the small variation in the strange quark contribution
(which is caused by an environment effect). When
this environment effect is included in the baryon
charge radius, the magnitude of the slope is increased,
resulting in a larger charge ¡adius after extrapolation.

In turning the dimensionless masses calculated on
the lattice to physical units, the lattice spacing, d, was

set in the traditional manner by fixing the nucleon
mass, obtained by a naive linear extrapolatio n in mzn,

equal to the obser,ved mass. Of course, such a linear
extrapolation is knorvn [5] to be inconsistent with chi-
ral symmetry. We have checked that applying a more
consistent chiral extrapolation would systematically
lorver values of (r2) obtained for the charged octet
by of the order 15%. (The effect on neutral baryons

is much smaller.) On the other hand, the data which
we are forced to use is quenched data which omits
some pion corrections. Although these are expected to

be suppressed at the large values of m2n for which the

data is available (cf. Ref. [4]), the associated system-
atic error would tend to increase the calculated values
of (r2), perhaps by 5-10%. Rather than attempt to re-
pair these deficiencies in the present data, we feel it
would be more ¡easonable to simply accept that there
is an additional systematic error of the order l5% asso-

ciated with the extrapolated values shown in Table 1.

Adding this systematic in quadrature means that the
values in Table I would become, for example , \r3) :
0.68 + 0.14 fm2, (r2-) : -0.54 + 0.09 fmz, 1r2*¡ :'u *b
0.77 +.0.14 fmz. We look forward to repeating our
analysis with unquenched data at lower quark mass,
rvhich is the best way to overcome these problems.

4. Conclusion

In this Letter we have investigated two methods of
extrapolating lattice results for the electric charge radii
of octet baryons to the physical regime. These proce-
dures build in the correct leading non-anal¡ic behav-
iour of the electric charge radii in the chiral limit, as

well as the correct heavy quark behaviour. Both ex-

trapolation procedures were performed for the charged
octet baryons, with the predicted values agreeing very
well. The extrapolation formulae seem to be very suc-

cessful, as good agreement with experiment was ob-
tained fol the uucleons and the .D-. We await further
experimental measurements of the baryon charge radii
in order to test our predictions. In the future we hope
to perform similar extrapolations of electric charge

radius lattice results calculated with a more realistic
strange quark mass and eventually with lighter, dy-
namical a- and c/-quarks.
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