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Abstract

In this thesis we explore new methods of extrapolating lattice QCD results to the physical regime.
In particular, we extrapolate lattice results for octet baryon magnetic moments and electric
charge radii as a function of the pion mass, m,. The results are compared with experiment at the
physical pion mass. The extrapolation procedures developed here are guided by the predictions
of a successful phenomenological model for baryons — the Cloudy Bag Model (CBM). It has been
found that the predictions of the CBM for nucleon magnetic moments may be encapsulated by a,
simple extrapolation formula — the Padé approximant. This approximant enables us to build in
the correct asymptotic behaviour of the nucleon magnetic moments in both the chiral and heavy
quark limits. Here we extend the formalism to extrapolate lattice results for magnetic moments
of the entire baryon octet. Successful predictions are obtained for the nucleon and X baryon
magnetic moments. Motivated by this success we develop similar procedures to extrapolate lattice
calculations of octet baryon charge radii. These extrapolation formulae include the leading non-
analytic logarithmic terms predicted by chiral perturbation theory and respect the constraints
of heavy quark effective theory. Good agreement with experiment is obtained for the predicted
nucleon and £~ charge radii. Predictions for the remaining octet baryon charge radii are made
in anticipation of future experimental measurements.
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Chapter 1

Introduction

The currently accepted model of the strong interactions is the theory of Quantum Chromody-
namics (QCD). This theory was originally formulated in the 1960s and 70s. It began with the
proposal of Gell-Mann [1} and Zweig [2] that hadrons consisted of elementary particles known as
“quarks”. This idea was based on the realization that all low-mass hadrons could be classified
into low dimensional representations of SU(3) which suggested that hadrons consisted of more
elementary constituents — the quarks — belonging to the fundamental representation of SU(3).
The three types (or “flavours”) of quarks were named “up” (u}, “down” (d) and “strange” (s),
with each quark possessing spin % and fractional charge: —|—§ for w and —% for d and s (all charges
are in units of e = |e|). In terms of quarks, baryons could be constructed as quark triplets (gqq),
while mesons consisted of quark anti-quark pairs (¢g). Since the 1960s more hadrons have been
observed, necessitating the introduction of 3 more quark flavours: “charm” (¢) and “top” (t)
with charge +§, and “bottom” (b) with charge —%.

Soon after the introduction of the quark model, it was realized that there were observed hadrons
whose naive quark model description violated Fermi-Dirac statistics. For example. the quark
model description of the spin—% baryon, A**, is a bound state of 3 u quarks, with their spins
parallel, in the | = 0 angular momentum state. This description of the AT* clearly violates
Fermi-Dirac statistics, since the 3 quarks are in identical states. To rectify this problem an
additional quantum number, known as “colour”, was introduced. By allowing the quarks to
carry this quantum number the anti-symmetry of the A*+ wavefunction could be produced via
anti-symmetry in the colour part of the wavefunction. Thus it was postulated that quarks came
in 3 different colours (red, green and blue). More technically, quarks belong to the fundamental
representation of SU(3)colour- The introduction of colour was sufficient to overcome the major
problems with the quark model and it soon became widely accepted by the physics community.

With the quark model well established, interest soon turned to describing the dynamics of quarks.
Given the success of the Abelian gauge theory of Quantum Electrodynamics (QED), it was
postulated that a gauge principle could also be used to formulate a field theory for the quarks to
describe the strong interactions. This resulted in the birth of Quantum Chromodynamics (QCD)
- a non-Abelian gauge theory with gauge symmetry group SU(3)colour [3, 4]. The theory of QCD
is described by a Lagrangian (see Eq. (1.1) below) which is constructed to be invariant under local
SU(3)colour transformations. The gauge bosons of QCD, which mediate all strong interactions,
are known as “gluons”. In analogy to the gauge bosons of QED, the photons, which mediate
all electromagnetic interactions and couple to electrically charged particles, gluons couple to
fermions and bosons which carry a “colour charge”. Like photons, gluons are massless and have
spin 1. However unlike photons, which couple to electric charge but are electrically neutral,
gluons carry a colour charge themselves. This means that gluons interact with each other and
undergo self-interactions. Gluons belong to the adjoint representation of SU(3)colour and are
represented in the QCD Lagrangian by the fields A7, where a =1,...8.



The fact that QCD is a non-Abelian gauge theory leads to several fundamental differences be-
tween QCD and the Abelian gauge theory of QED. Firstly, it has been observed experimentally
that strong interactions become weaker at short distances — a phenomenon known as “asymp-
totic freedom”. This is in total contrast to QED, where the electromagnetic interactions grow
stronger at short distances. Historically it was the experimental evidence for asymptotic free-
dom which suggested that the theory of the strong interactions was non-Abelian, since it had
earlier been shown that non-Abelian gauge theories in 4 dimensions exhibit asymptotic freedom,
while Abelian theories do not. Asymptotic freedom allows perturbation theory to be used at
short distances (e.g. in high momentum transfer reactions). Perturbative calculations for decay
rates, cross sections and other observables in high momentum transfer reactions have been very
successful (e.g. Refs. [5, 6]). This success is a good indication that QCD is the correct theory of
the strong interactions.

The second major difference between QCD and QED is that in QCD the interaction does not
become weaker at large distances. This phenomenon is thought to produce the observed colour
confinement. It has been found experimentally that all observed particles are colour singlets, or
“colourless”. This is thought to be a fundamental property of QCD. If this is the case, then it is
easy to explain why free quarks are not observed in nature since quarks carry a colour quantum
number, and hence must be confined to colour singlet objects, such as baryons and mesons.
Despite the fact that free quarks have never been observed, there is very strong evidence to
support their existence.

The Lagrangian density of QCD has a particularly simple form. It is given by
e —
E—_——ZF;‘ Fw+q(-1D—rn)q , (1.1)

where the quark covariant derivative is given by
. L iy o A .
’llpq:l‘//'Duq:",“’ ‘la# -—g.4u7 q, (12)

A? are the gluon fields and A* are the 8 Gell-Mann matrices (given explicitly in Ref. [7]). We
use the same conventions as Ref. [7] for the v matrices. The quark mass matrix, m, is given by
m = diag(m,, m4, . . .), where m, is the mass of quark ¢g. The gluon field strength tensor is given
in components by

F2, = 8,AL — 0,A% — g [ AL AL, (1.3)

where g is the SU(3) gauge coupling parameter and fabe are the structure constants of SU(3).
In principle, one could extract all the properties of strongly interacting particles from the QCD
Lagrangian, Eq. (1.1). However, in practice this is very difficult to do in the low energy sector.
In the low energy sector, the observed participants in strong interactions are hadrons. Since the
QCD Lagrangian is formulated in terms of the more fundamental quarks and gluons, and the
mechanism of confinement is not fully understood, it is very difficult to make predictions about
hadronic observables from the QCD Lagrangian. In fact, so far it has been impossible to extract
non-perturbative information about hadronic observables from first principle, analytic studies of
the QCD Lagrangian. As a result, numerical methods must be used to calculate properties of
hadronic observables.

The most successful method of extracting the properties of hadrons from the theory of QCD
is via the numerical method of lattice QCD. In lattice QCD the 4-D space-time continuum
is discretized, and QCD is formulated on the space-time grid. Each quark field in the QCD
Lagrangian is specified at every grid-point on the lattice, while the gluon fields are defined on
the links between grid-points. The Feynman path integral approach is used to calculate physical



observables. For example, the expectation value of an observable O (where O is any combination
of operators, expressed as a time-ordered product of quark and gluon fields) is given by

(O) = %/DAupwpé O eiSlAnb Il | (1.4)

where the integral extends over all possible field configurations of ¢, ¥ and A,. The quantity
S[A,, ¥, 9] is the QCD action, given by

(w8 = [ % (~1FLPw 4 5319) = So+ SF (1)

where M = I)— m is the Dirac operator and Sg and Sp are the gauge field and fermion actions
respectively. The partition function, Z, which appears in the expectation value, Eq. (1.4), is
given explicitly by ;

Z = /DAuDv,sz[; e’ . (1.6)

To evaluate the expectation value (O) numerically, an analytic continuation to imaginary time
is performed, i.e., t = —¢7. Then (O) becomes

_ [DA, DYDY 05
~ [DA, DYDY e S

(0) (L.7)
where Sg is the Euclidean action. To evaluate such an expression on the lattice, the integral must
be discretized and the action expressed in terms of quantities defined on the lattice. The expres-
sion for (0), given in Eq. (1.7), closely resembles a correlation function in statistical mechanics.
Hence computational methods founded in statistical mechanics can be used to numerically sim-
ulate the path integrals.

In Euclidean space-time, the fermionic part of the partition function can be integrated out, to
obtain
Z = /DAH det M e~ Fur /4 (1.8)

In this form the entire fermionic contribution to the partition function is contained in the de-
terminant, det M. Setting det M to be constant is known as the quenched approzimation. It is
equivalent to removing vacuum polarization effects from the QCD vacuum. The lattice results
that we consider in this thesis are all obtained from quenched lattice QCD simulations. At this
point, full QCD simulations which include vacuum polarization effects (i.e. det M # const) are
in their infancy. Results for electromagnetic form factors are not vet available.

In the standard model there are several parameters which are not specified by the theory itself,
but must be determined from experiment. (It has been postulated that these parameters are
specified by a more fundamental theory, but this underlying theory has not yet been discovered.)
For QCD these parameters are the strong coupling constant, g, and the bare quark masses.
In any lattice simulation of QCD these independent parameters become input parameters of
the simulation. Clearly for the lattice results to match experimental measurements, the input
parameters must be fixed to their experimental values. However, they can also be explored
within the lattice simulation to establish the dependence of the physical observable on the input
parameters. Of particular interest in this thesis is establishing the dependence of hadronic
observables on the input quark mass. The reason for this is as follows. Computational limitations
force lattice simulations of hadronic observables to be performed at quark masses much larger
than their physical values. This means that results from lattice simulations cannot be directly
compared with experimental measurements, but must be extrapolated to the physical regime.
Although improvements in actions, algorithms and computer speed will allow lattice calculations



to be performed much closer to the physical regime, these improvements will proceed over many
years. In the meantime it is imperative to understand how to extrapolate lattice results from
the large quark masses where they are obtained to the physical regime.

In early lattice calculations the problem of extrapolating lattice results to the physical regime was
not given a high priority. In exploratory calculations, lattice results were usually extrapolated
as simple linear functions of the squared pion mass, m2. With the advent of chiral perturbation
theory, it was discovered that hadronic observables, such as electric charge radii and magnetic
moments, exhibit certain non-analytic behaviour in the quark mass, mq, near the chiral limit. As
we will see, this non-analytic behaviour can give rise to dramatic deviations from the predictions
of simple linear fits. The non-analytic behaviour in chiral expansions originates from Goldstone
boson loops, as we now explain.

The QCD Lagrangian exhibits (approximate) invariance under chiral transformations. However,
this symmetry of the theory is not realized in the conventional manner. In particular, chiral
symmetry is dynamically broken, resulting in the lormation of an octet of very light particles
known as (pseudo-) Goldstone bosons. This octet of Goldstone bosons corresponds to the ground
state pseudo-scalar meson octet, which contains the pions, kaons and 7g meson. Since Goldstone
bosons are very light compared to other hadrons in the spectrum, at low energies (< 1 GeV) these
particles are the most important dynamical degrees of freedom in strong interactions. Goldstone
boson loops are responsible for the non-analytic behaviour of hadronic observables. As we will
discuss in Chapter 2, an effective field theory — Chiral Perturbation Theory — can be formulated
to describe the system of light Goldstone bosons and the other (heavier) hadrons with which they
interact. Chiral perturbation theory can be used to predict the behaviour of hadronic observables
near the chiral limit. For example, the chiral expansion of the nucleon magnetic moment is given
as follows

LN = co + cymy + com?log(m2) + cami+ ..., (1.9)

where ¢; and ¢y are fully determined by chiral perturbation theory, whilst ¢o and c3 must be
determined phenomenologically. The leading non-analytic behaviour of yy is contained in the
c1m, term, since My X /My in the chiral limit. Since the coefficient ¢; is quite large (¢; =
T4.41 unyGeV ™) for N = p/n respectively), this non-analytic behaviour is significant near the
physical pion mass and must be taken into account in any extrapolation to the physical regime

(8] - [16].

Since chiral perturbation theory gives expansions of hadronic observables as a function of my, it
would be tempting to use these expansions directly to extrapolate lattice QCD results for the ob-
servable. However, since the radius of convergence of chiral perturbation theory is unknown and
lattice results are obtained far from the chiral limit, it would be inappropriate to use expansions
such as Eq. (1.9), which are valid in the chiral limit, to extrapolate the results. In fact, attempts
using the first four terms in the chiral expansion, Eq. (1.9), to extrapolate nucleon magnetic
moment lattice results have not been successful. The major problem is that the o m2 log(m2)
term dominates at large pion masses and prohibits contact with the lattice results. From this
we conclude that lattice results obtained at large pion masses simply cannot be accessed directly
via chiral perturbation theory expansions.

In order to access the heavy quark mass regime of the lattice results, we consider a successful
phenomenological model of baryons — the Cloudy Bag Model (CBM) [17, 18] — which includes
the underlying quark structure. The CBM builds in the phenomenon of pion emission in such a
way that the leading non-analytic behaviour predicted in chiral perturbation theory is contained
within the model. The reason for using the CBM to extrapolate lattice results is that this model
contains additional physics which is not present in chiral perturbation theory. For example, in
the CBM baryons have a finite size, in contrast to chiral perturbation theory where they are



considered point-like. As a result the non-analytic behaviour in chiral expansions in the CBM is
suppressed at large pion masses due to the presence of form factors which regulate the pion loops.
This gives a much more realistic description of hadronic observables at large pion masses. In
practice this means that the lattice results at large pion masses can be accessed in a convergent
way.

The CBM extrapolation procedure involves an algorithm which updates the properties of the
CBM as the pion mass is changed. However, as we will see, the predictions of the CBM for
the nucleon magnetic moments can be encapsulated in a simple analytic extrapolation formula.
This extrapolation formula agrees with chiral perturbation theory in the small m, limit, while it
maintains the expected Dirac moment behaviour in the heavy quark mass regime. In Chapter 5
this extrapolation formula will be applied to magnetic moment lattice data of the entire spin-1/2
octet. We will apply a similar extrapolation procedure to the electric charge radius lattice results
in Chapter 6.

The main aim of this thesis is to develop extrapolation schemes for lattice QCD results of hadronic
observables. Here we focus on extrapolating the results for the electric charge radii and mag-
netic moments of octet baryons. By extrapolating the lattice results, one may directly confront
experiment with the predictions of QCD, thereby testing the theory as a valid description of the
strong interactions. Therefore. wherever possible our predictions are compared with experimen-
tal results. We also hope that work of this type will lead to a better understanding of the theory
of QCD, so that it may be possible understand how the theory works in terms of simple ideas
and models.



Chapter 2

Chiral Perturbation Theory

In this thesis we are interested in the low energy sector of QCD (< 1 GeV) where the observed
particles which participate in the strong interactions are hadrons. As we have already remarked,
since the QCD Lagrangian, Eq. (1.1), is formulated in terms of quarks and gluons, it is very dif-
ficult to extract information about hadrons directly. Chiral perturbation theory is an alternative
means of making predictions for hadronic observables. In chiral perturbation theory one con-
structs an effective Lagrangian for the low energy sector which has hadronic degrees of freedom,
but respects the same symmetry properties as the original QCD Lagrangian. In particular, the
effective Lagrangian must be invariant under chiral transformations. In this chapter we construct
the chiral effective Lagrangian and use it to make predictions for various hadronic observables.
Eventually (in Chapters 3 — 5) we will use expansions from chiral perturbation theory to guide
extrapolations of lattice results to the physical regime.

2.1 Chiral symmetry in the QCD Lagrangian
Recall the QCD Lagrangian of Eq. (1.1):

1 .
L= —ZF;‘”Fﬁu+q(zD—m)q . (2.1)

This Lagrangian can be rewritten in terms of left- and right-handed quark wavefunctions, ¢z and
gRr, where

1 1
=5(-v)¢ ed  gr= 5 (1+7)a, (2.2)
to obtain 1
L= FF, + i+ GrilPgr — gL mqr — GrMyr, - (2.3)

Note that the left- and right-handed fields are mixed only in the terms proportional to the quark
mass matrix, m. Therefore in the case of massless quarks the Lagrangian is invariant under global
SU(N;)L®SU(Ny)r transformations, where Ny is the number of flavours being considered. That
is, the massless QCD Lagrangian is invariant under the following transformations

qo. > 9L q. and  GrR —9gRUR, (2.4)

where (gz,gr) is an element of the group SU(N;)L®SU(Ny)r. As an example we give the
general form of an element of this transformation group in the case Ny =2:

(91,97) = (e70™/2, 7R ™/%) € SU(2)18SU(2)r (2.5)

Here oy and ag are 3-vectors with constant entries and 7 = (11,72, 73) is the triplet of Pauli
matrices. The invariance of the massless Lagrangian under the transformations given in Eq. (2.4)



is known as chiral symmetry. In the physical case of non-zero quark masses, chiral symmetry
is an approximate symmetry of the QCD Lagrangian, provided that the quark masses are small.
This is certainly reasonable in 2-flavour QCD, since m, 4 << Aqcp. It is also common to use
3-flavour chiral symmetry to make SU(3) chiral expansions. However, these expansions must be
treated with caution since m; is comparable to Aqcp.

In 3-flavour QCD, chiral symmetry of the massless QCD Lagrangian gives rise to 16 conserved
Noether currents, namely

a
Jx' = v gax
where a = 1,...8 and X = L, R. Each current satisfies 8,J%" = 0. Alternatively, the currents
can be written in terms of the conserved vector and axial currents, Ji/* and J4*, where J;* =
JE® 4+ Jg" and J4* = J5* — J£®. There are 16 conserved charges, Q% and Q%, corresponding to
the conserved vector and axial currents. They are given by

QY = / dz J¥ and Q% = / >z J . (2.6)
These charges are the generators of the vector and axial symmetries of the QCD Lagrangian.

Since chiral symmetry is an approximate symmetry of the QCD Lagrangian, we expect that this
symmetry is replicated in the light quark sector of the hadronic spectrum. If chiral symmetry is
realized in the conventional way each observed hadron will have an opposite parity partner. For
example. if [NT) is an eigenstate of the QCD Hamiltonian with mass m we expect Q4 |N*) also
to be an eigenstate of the Hamiltonian with mass m since the axial charge, Q 4, commutes with
the Hamiltonian, i.e. [H,Q4] = 0 (since Q4 is a constant of the motion, §y@Q4 = 0). However,
experimentally opposite parity partners are not observed in the hadronic spectrum. For example,
there are no particles with the same mass as the proton but opposite parity.

The explanation for the lack of parity partners in the hadronic spectrum is that the vacuum is
not chirally symmetric — i.e. the state Q4 [0) is not identical to the vacuum state, |0), but it
contains an arbitrary number of massless pseudo-scalar particles known as Goldstone bosons. In
other words, the SU(Nys) ®SU(Ny)r symmetry of the QCD Lagrangian is dynamically broken
to SU(Ny)v by the vacuum state |0). This produces massless Goldstone bosons in accordance
with Goldstone’s theorem which states that for every spontaneously broken symmetry a massless
particle is produced. In the case Ny = 3 there are 16 generators of the chiral symmetry, 8 of
which are broken in the dynamical breaking to SU(3)y. Hence an octet of (almost) massless
pseudo-scalar Goldstone bosons appears (comprising the pions, kaons and 7s meson). These
eight particles are created by the axial currents, J4*, and obey the following relationship

(0]J5%(0)| ms (D)) = i frp® 3% (2.7)

where 7, is the a*® Goldstone boson field and f, is the pseudoscalar decay constant, which has
dimensions of mass. Experimentally fr is found to be 93 MeV [19].

The Goldstone bosons produced by chiral symmetry breaking would be completely massless if
chiral symmetry was an exact symmetry of the QCD Lagrangian - i.e, if quarks were massless.
The reality of small quark masses means that the eight pseudo-Goldstone bosons acquire small
masses. !lowever, there is a gap of A =& 0.5 GeV between the Goldstone boson masses and all
other hadron masses. This means that at energies small compared to A the Goldstone bosons
are the main dynamical degrees of freedom in the system. This allows an effective field theory
— Chiral Perturbation Theory — to be formulated for the low energy sector. We will see this
formulation in the following sections. (Excellent accounts of chiral perturbation theory and the



construction of chiral effective Lagrangians can be found in Refs. [20] — [23].) However, before we
construct the chiral perturbation theory Lagrangian, we consider a simple model, the o-model, to

demonstrate the process of spontaneous chiral symmetry breaking and the associated production
of Goldstone bosons.

2.2 The o-model and spontaneous chiral symmetry breaking

The o-model is a simple model describing a system of nucleons and pions. It is formulated in
terms of a fermion field, ¥ = (p,n)T, a pion triplet, m, and a scalar fleld, 0. The Lagrangian
of the o-model is chirally symmetric. As we will demonstrate, masses for the nucleons and
o particle arise through spontaneous chiral symmetry breaking. The o-model will be helpful
in understanding the nature of meson-baryon interactions before we move to the more general
formalism of chiral perturbation theory. Moreover, it motivates chiral quark models such as the
Cloudy Bag Model (see Chapter 3) where the underlying quark structure of baryons is included.

The Lagrangian of the o-model is given by

K (02 + 71'2) — % (02 + 71'2)2 (2.8)

- 1 1 _
L=vPigp+ 53,171' oM+ 5@,03“0 ~g¥(oc—tT - 7ys) ¥+ s

The first three terms are kinetic energy terms for the nucleon, pion and o fields respectively. The
fourth term contains the pseudoscalar nucleon-pion interaction and the Yukawa coupling of the
nucleons with the o-field. The last two terms form a potential energy term, V (o, ), where

2

Ao 2
V(a,ﬂ—):—% (02+7r2)+z(0‘+7r2)) . (2.9)

The above Lagrangian can be written in a number of different forms. One particularly useful
form of the Lagrangian is obtained when the pion and scalar fields are combined in a matrix, 2,
where

Y=0+ir -m. (2.10)

This matrix has the property that
%Tr(ETE) =0’ 4 x? (2.11)

which is easily proved using the Pauli matrix identities. This allows the o-model Lagrangian,
Eq. (2.8), to be written in the following way

L = ¢LZ§WJL + YRiPYR + - Tr (@; Ta“‘“) -9 (dLSUR + ¥R EW’L)
A 2
B sty - A (st 2.12
+£ Tr(zts) = [Tr(Y‘ o) (2.12)

where 1, and ®¥g are the left and right handed fermion fields, as defined in Eq. (2.2). In this
form it is clear that the o-model Lagrangian is invariant under the chiral transformations

v o e T2y - (213)
Yp — e~iORT/2 y R ('2.14)

provided that the matrix 3 transforms as
3 e-—iaL-T/2 ) AR T/ (2.15)

Since the o-model Lagrangian is chirally symmetric, it is clearly also invariant under isospin

transformations, where o = ag in Egs. (2.13) ~ (2.15).

10



The o-model Lagrangian exhibits spontaneous chiral symmetry breaking. This can be seen by
considering the potential energy term, V (o, 7). Stationary points of V (o, ) occur at (o, 7) =
(0,0) and when (o, ) satisfies
2
o’ +n?= 'UT . (2.16)

Since the field configuration (¢, w) = (0, 0) is an unstable critical point, we cannot consider quan-
tum fluctuations about this point. However, the degenerate ground states satisfying Eq. (2.16)
are stable critical points, and the potential energy is minimized on the surface formed by these
points. We now consider fluctuations about a particular degenerate ground state on the surface;
(o, 7)o = (v,0), where v = (u2/X)1/2. Fluctuations about (g, 7), are denoted by (&, ), where
& = o — v. Rewriting Eq. (2.8) in terms of the fluctuations we see that the Lagrangian becomes

_ 1 _
L = ¢(if-gv)p+ % (0,505 — 2p°5°] + S0y - 0% — g (5= iT - 70y5) W

A
e (6% +7?) - i [(&2 +72)? - v4] : (2.17)
Therefore the nucleon acquires a mass of gv, the o field acquires a mass of v/2p and the pions
are massless. The pions are the massless Goldstone bosons corresponding to the 3 broken axial
generators, i.e. they arise from the spontaneous breaking of SU(2),@SU(2)r to SU(2)y.

The o-model Lagrangian no longer looks chirally symmetric in Eq. (2.17). For example, the
fermion field now has an explicit mass term, which does not suggest chiral symmetry. However,
the Noether currents of the original o-model Lagrangian are still conserved [18]. In particular,
the axial current remains conserved. Thus the symmetry of the original Lagrangian has been
“hidden” by the field transformation ¢ — &. However, some of the original symmetry has
been broken, since m, # m, in Eq. (2.17), whereas these masses were the same in the original
Lagrangian, Eq. (2.8).

We now consider adding a small symmetry breaking term to the o-model Lagrangian. This
addition is motivated by the fact that the original QCD Lagrangian contains non-zero quark
mass terms which explicitly break chiral symmetry. We add the following term to the ¢-model
Lagrangian,

Lop=a0 = Z—Tr(E +xh. (2.18)

This term is not invariant under chiral transformations. Moreover, the addition of this term
shifts the position of the ground state, (v, 0), to (¢, 0), where

-
o JE L 2 :
V=T 52 (2.19)

By considering fluctuations about this new ground state, we find that the pions acquire a mass

a
m2 = o (2.20)
This reduces to our previous result in the limit @ — 0 because clearly m, — 0 in this case. Note
that by adding this symmetry breaking term we have explicitly broken the SU(2),@SU(2)r

symmetry of the o-model Lagrangian, but SU(2)v remains an exact symmetry.

There is a third form of the o-model Lagrangian which will be useful in § 2.4.1, when we consider
including baryon fields in chiral perturbation theory. Consider writing the matrix ¥ in the
following way :

Y=o+it-m=(v+S)U, (2.21)

11



where the scalar field, S, is defined by the following relationship
(S+v)? =0+ x?, (2.22)

where v = (u2/X)'/? as before. In this form the scalar field, S, takes over the role of the o field
and the matrix U replaces 2. The matrix U is unitary since

(S+0)2UU = (0 —iT-m)(o+ir-m) =’ + 7 = (S+v)?, (2.23)

and hence UTU = 1. Taking the determinant on both sides of Eq. (2.21) we see that U has unit
determinant, and thus U € SU(2). In fact, using Eq. (2.21) we find that U can be written as

U=emm/v, (2.24)

where 7/ = (1 — % + ‘Z—: + .. ) m and & = ¢ — v. Under chiral transformations the matrix U

transforms in the same way as X, given in Eq. (2.15). Rewriting the Lagrangian in terms of U
and S we obtain

% [(8,9)% — 24257 + WSy

+Pidp — g(v+ ) (YLUvr + $rUEL) - (2.25)

L = d,U*UY) — AvS® — 254

Compared to the form of the Lagrangian given in Eq. (2.12), here we have reintroduced a scalar
field into the Lagrangian while retaining the matrix formulation. The scalar field, .S, is heavy
compared to the Goldstone bosons. The advantage of writing the Lagrangian in terms of S and
U is that at low energies we can integrate out the heavy S field and obtain an effective theory
for the low energy sector in terms of the matrix U [23]. We will discuss this in the next section.

The o-model is clearly a very useful model for demonstrating spontaneous chiral symmetry
breaking. However, there is a more systematic approach for constructing chirally invariant La-
grangians, namely chiral perturbation theory. In the following sections we will discuss this
systematic approach applied to the meson and baryon octets. We will refer to the results of this
section frequently in the construction of the chiral perturbation theory Lagrangian.

2.3 The effective chiral Lagrangian for Goldstone bosons

In this section we wish to construct an effective Lagrangian for the low energy sector which
describes the interactions of Goldstone bosons. To do this we introduce an SU(3) matrix, U,
which contains the Goldstone boson fields. This is analogous to the SU(2) matrix, U, introduced
for the o-model in Eq. (2.24). The matrix U is defined by

U=¢%f, (2.26)

where f is a constant with dimensions of mass and

\"'/% + & ot Kt
&= A7, = V2 o -Dt I KO (2.27)
K- K 278

Here )\, are the Gell-Mann matrices and 7, are the 8 Goldstone boson fields (a = 1, ...8). Under
a chiral transformation of the fermion fields

b - e Mipp
—iag-A/2
Y — e erM2yp
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(here af, and ag are constant vectors with 8 components) we require that the matrix U/ trans-

forms in the following way
U — emiorA2yeiarA/z (2.28)

analogous to the transformation property of the SU(2) matrix, U, in the o-model.

We now construct the most general, chirally symmetric Lagrangian in terms of the matrix U.
Since there are infinitely many possible terms consistent with chiral symmetry, this Lagrangian
must be constructed in a systematic way. We use an expansion in powers of derivatives of U.
This is equivalent to an expansion in powers of the meson momenta. Lorentz invariance requires
that only terms with an even number of derivatives are allowed in the Lagrangian. Therefore
the effective Lagrangian can be expressed as follows

Lag=LD 4+ 4+8+.. (2.29)
where ES&) contains terms with n derivatives. The term with zero derivatives is not needed in
the expansion since it would comprise terms proportional to U/TU = 1. The first term in this
expansion is given by

2
£ = T IeE.UUY (2.30)

where the coefficient has been chosen so that the kinetic energy terms for the Goldstone boson
fields are properly normalized. This term is similar to the kinetic term for the Goldstone bosons
in the o-model (see Eq. (2.25)), except that here the heavy scalar field, S, does not appear. This
is because we are considering a low energy effective field theory, where heavy fields such as S are

integrated out of the action. The E,(;;f) term in the expansion of L is given by

2
L = % Te(9,U04Uh)| + %Tf(a“Ua”U*)Tr(auUc’)uU*) (2.31)

where L; and L, are independent constants which need to be determined phenomenologically.
Terms such as

Tr(0*U0,U0*U8,U)  and  Tr(d*U'9,U8,U'8"U) (2.32)

are not included in Eg}‘f{) since they can be re-written as linear combinations of the terms in
Eq. (2.31).

The advantage of expanding L.g in powers of derivatives is that at low enough energies only a
few orders of the expansion are needed. From dimensional analysis the coefficient of a term with
n derivatives behaves as A*~™, where A has dimensions of energy and is of the order 1' GeV.
Hence an n-derivative vertex is of order ¢"A*~", where ¢ is the momentum scale. Therefore, at
energies small compared to A, matrix elements involving terms with a large number of derivatives
will be very small. Loop effects do not change this general conclusion [23]. Thus the expansion
of the effective Lagrangian, Eq. (2.29), is very convenient for calculating matrix elements at low
energies.

In parallel with our discussion of the o-model, we now consider the effect of adding explicit chiral
symmetry breaking terms to L.g. Here we only show the effect of adding such a term to second
order in the effective Lagrangian. However, symmetry breaking terms should be included at
each order in the expansion to produce the most general effective Lagrangian for the Goldstone

bosons. The symmetry breaking term is added to [,((jf) in the following way

£® — Lo voroty + B por U+ ut 2.33
@ = L1(0,00*U") + 5 P Tefm(U + U], (2.33)
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where B is a constant and m is the quark mass matrix. As we will see, the matrix m is of
order m2 and hence the symmetry breaking term has the right dimensions for the second order
effective Lagrangian. We can determine the constant B if we consider Eq. (2.33) in the 2-flavour
case. In that case

U(z) = e~ @) 7/S (2.34)
and Eq. (2.33) can be expanded in the following way
(2) 1 7 1 :
Lg = 5(%77 - O*m + 57 [(7 - 0,m) (- §*x) — (7 - ) (7 - " )]
1 1
+(my +ma)B | f* = gmem+ Tz (7 m)2| +O(x%) . (2.35)

This allows us to make the following identification immediately
(M +mg)B = mk . (2.36)
There is also a constant vacuum contribution to the second order Lagrangian, Eq. (2.35), namely
(my +mqg)Bf? . (2.37)

This can be identified with the the constant vacuum contribution to the (2-flavour) QCD La-
grangian, —(m, + mq) < gq >. Hence

2 -
o my_ <49> .
i 72 (2.38)
We can also compute the (2-flavour) vector and axial vector currents from Efjf) to find
e = ebenborpe 4 L. (2.39)
Jit = ~fotrt+ ... (2.40)

Thus, using Eq. (2.7), we see that f can be identified with the pseudo-scalar decay constant, fr,
and Eq. (2.38) reproduces the Gell Mann — Oakes — Renner (GOR) relation.

2.4 Including the baryons

The effective Lagrangian which was constructed in the previous section describes the interactions
between Goldstone bosons alone. The next step is to incorporate the spin-1/2 baryon octet in the
effective Lagrangian. These particles are not light compared to the QCD scale. Heavy particles
exist in vectorial flavour multiplets. We will see that this vectorial flavour symmetry is important
when constructing an effective Lagrangian which includes the baryon fields. However, first we
consider how baryons enter the o-model as motivation.

2.4.1 Fermions in the c-model

In terms of the matrix U and scalar field S, the fermionic sector of the o-model Lagrangian is
given by

Ly = ¥igy — (Mo + g5) (J’LUQ.Z’R + &RUWJL) , (2.41)

where My = gv is the fermion mass. At low energies the heavy scalar field, S, can be integrated
out of the action to produce an effective Lagrangian for the low energy sector. To lowest order
this integration corresponds to setting S = 0 in the Eq. (2.41) [23]. (To obtain higher order
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effective Lagrangians one must perform the integration explicitly.) Thus we consider the following
Lagrangian for the fermionic sector of the o-model at low energies

Ly = PLidpr + Yridbr — Mo (J)LUwR + JJRUTL/JL) . (2.42)
This Lagrangian is invariant under the following chiral transformations,
Y — Ly,  Yr—RYr U —LUR', (2.43)
where L, R € SU(2)L g respectively. We now make a change of variables:
U=¢ Np=¢&Wr  Nr=¢EVr (2.44)

where & = ¢ T/2f= to agree with the definition of U given in Eq. (2.34). Physically, this change
of variables corresponds to ‘dressing’ the bare nucleon field, ¥, with a meson cloud which is
contained in the matrix &. The fermionic Lagrangian, Eq. (2.42), then becomes

Li=N(iD- fys — Mo) N, (2.45)

where N = N + Ng and D,N = (9, + iV,)N. In terms of the matrix &, the vector field, V,, is
given by

— i

7, =~ (€06 +€0,€T) | (2.46)
and the axial field, A,, is defined as

. ) =

Au = _5 (ETaME =& ufT) - (2.4{)

We now consider the chiral behaviour of the new fields. Under the chiral transformations given
in Eq. (2.43), the matrix £ is defined to transform as follows

¢ — LeV = VERT (2.48)

where V is an SU(2) matrix defined implicitly by Eq. (2.48) 1. Clearly this transformation rule
ensures that U = &€ transforms correctly as in Eq. (2.43). Using the transformation rule given for
€, together with the transformation rules for the original fields, Eq. (2.43), we find the following
transformation rules for all quantities in the Lagrangian, Ly,

Npr—+VNLR V.=V |V, - z'((')uV’f)V] vt
A, - VAVT D,N = VD,N (2.49)

Under purely vectorial transformations, where L = R, it can be seen from Eqs. (2.43), (2.48)
and (2.49) that V = L = R. Otherwise the explicit form of V' is much more complicated. In
general V is a function of w(z). Thus the transformation N — VN explicitly mixes nucleons
with states consisting of nucleons and pions. This mixing is expected from spontaneous chiral
symmetry breaking. From Eq. (2.49) we see that unlike the undressed fermion fields, the left-
and right-handed dressed fermion fields, Nz and Np, transform in exactly the same way under
chiral transformations, i.e. both transform via the SU(2) matrix V. The covariant derivative for
the dressed nucleon field also transforms in this simple vectorial manner. This is a manifestation
of the vectorial flavour symmetry of baryons, which is made explicit by this parameterization of
the fields.

IThe unitary nature of V may be shown by noting that LeV = VER! must also be unitary. Obviously V' also
has unit determinant.
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From this example we can see how baryons should be added to chiral effective Lagrangians in
general. First one assumes that the baryon multiplet transforms via the SU(n) matrix V, as in
Eq. (2.49). The covariant derivative is then constructed for the baryon multiplet so that it also
transforms under V. In general, this covariant derivative will include the £ matrix. Pion coupling
terms are included in the effective Lagrangian by constructing chirally invariant quantities which
involve the £ and U matrix fields. For example, the term N AysN in Eq. (2.45) is invariant under
the chiral transformations Egs. (2.48) ~ (2.49). In general, each pion coupling term will have
a coefficient which must be determined by experiment. Finally, one may include explicit chiral
symmetry breaking terms in the effective Lagrangian if the original theory contains terms of this
nature.

2.4.2 Generalization to SU(3)QSU(3)

In this section we construct an effective Lagrangian to describe the interactions of the spin-1/2
baryon octet with the Goldstone boson octet. We will use the results of the previous section,
§2.4.1, as motivation. The main difference between this section and the last is that the dressed
nucleon field, N, of the o-model is generalized to a matrix, ¥y, in this case. This means that
products such as NN become Tr(¥p¥p) in this generalization. Here we will also consider the
effect of including explicit chiral symmetry breaking terms in the effective Lagrangian. These
terms correspond to the quark mass terms in the original QCD Lagrangian.

The SU(3) matrix, ¥p, which contains the octet baryon fields, is given by

A 20 v+
(2) = \/§+\/§ \_J 0 !
Up(z) = —=X¥p = o B S n
\/5 v =— \/G:Oﬁ _%/\
= = =

where 1% are the 8 baryon fields and A® are the Gell-Mann matrices. The free field Lagrangian
for the baryon fields is a simple generalization of the Dirac Lagrangian, namely

£ =Tt [¥p(iv.0" — Mo)¥p] (2.50)

where Mg is the degenerate baryon mass in the chiral SU(3) limit. To include interactions with
Goldstone bosons we generalize the results of the o-model, Eq. (2.45), identifying the dressed
nucleon field, NV, with the matrix field, Up. This gives rise to the following leading order effective
Lagrangian for the baryon-meson sector

E&% =Tr [\IIB(i'yuD“ - Mo)lIlB] + FTr (\IIB’yu*/s[A”, \I’B]) + DTr (@57“75{.4“, EDB}) , (2.51)

where F and D are coupling constants which can be determined from neutron and hyperon beta
decays. We use the one-loop corrected values F' = 0.4 and D = 0.61 in this thesis [24]. The
covariant derivative for the baryon fields is given by

D,Up =8,¥p +1[V,, ¥Us] . (2.52)

The vector and axial fields, V,, and A, are given in Eq. (2.46). (N.B. The matrix & must now
be generalized to three flavours in the definitions of V}, and A, — i.e,

£ = ¥V 2 (2.53)
where ®(z) is given in Eq. (2.27).)

Explicit chiral symmetry breaking terms, corresponding to the quark mass terms in the QCD
Lagrangian, are added to the effective Lagrangian at second order. These terms involve the
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quark mass matrix, m. For example, there will be terms proportional to Tr(¥g[m, ¥g]) and
to Tr(Ve'¢mé + £'méT, Ugl) in the symmetry breaking piece of the second order effective La-
grangian. Once the symmetry breaking terms have been included in the Lagrangian, the baryon
masses will be shifted and split so that they are no longer degenerate. This can be seen in
Ref. [23] where the full second order Lagrangian for the meson-baryon sector is given and the
mass splittings are discussed.

One can also construct higher order effective Lagrangians for the meson-baryon sector. Since
only the low order Lagrangians are needed for calculations at low energies we will not give the
explicit forms for these Lagrangians here. However, the full chiral perturbation theory expansion
is given schematically as follows

Loa =L, + L8+l +8 +... (2.54)
where “MB” and “M” stand for meson-baryon sector and meson sector respectively. Explicit

expressions for £§,1[¥3 and Ef\i) are given in Egs. (2.51) and (2.33).

Electromagnetic interactions can be included in the effective Lagrangian by modifying all partial
derivatives so that they include couplings to the photon field, A#. For example, the fermion
covariant derivative would be modified as follows

. : ! .
D,Wp =08,Vp+i[V,, ¥g] =8,V —ieA,[Q,¥s] + W[[@,a‘ ), Up]+... , (2.55)
where the matrix @ is defined in Eq. (2.27) and
$ 0 0
Q=10 -3 0 (2.56)
0 0 -3

Similarly for the meson sector, electromagnetic interactions are introduced by making the fol-
lowing substitution: 9,U — D,U = 9,U + ieA,[@,U]. Once the electromagnetic interactions
have been included in the effective Lagrangian one can determine the associated conserved elec-
tromagnetic current by calculating

OLest
T O(eA,)
This expression for the current can clearly be decomposed into a sum of contributions from each
term in Eq. (2.54).

JH =

(2.57)

2.5 Electromagnetic form factors in chiral perturbation theory

In this section we show how the chiral perturbation theory Lagrangian can be used to make chiral
expansions of electric charge radii and magnetic moments for octet baryons. Here we simply give
a general overview of the method used to obtain these expansions, but do not include all the
details. Precise details of the calculations can be found in Refs. [24] — [26]. The basic quantities
we must compute for each baryon are the Sachs electric and magnetic form factors, Gg(q?) and
G (g?). The 4-vector ¢ is the momentum transfer vector; the difference in momentum of the
outgoing and ingoing baryon state. This corresponds to the momentum brought into the vertex
by the (virtual) photon. In the Breit frame, where the momentum transfer 4-vector, ¢, satisfies
¢° = 0, the Sachs form factors are related to the spatial electromagnetic current, J*(7), in the
following way

(BI'JO(F)IB> = (2:.)3/d3‘]GE’(q2)e—ii.Fv (2.58)
(B, 55l () 1B,s5) = 555 [ #aGu(e?) (sn 7x 1 sm) ™77 (2:59)
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Baryon agw) aEK) ,BEF) ﬂZ(K)
D -1-§D+F)? -L1-3(2+F) —(D+F)? -iD?-2F?
n s+HE(D+F)? —5-3D-F)? (D+F)?  —(D-F)
A 0 EDF 0 2DF
o+ —%—%(%2—+F2) ~1_3D+F)? -1D*-2F' —(D+F)?
x0 0 —2DF 0 ~2DF
5= 3+3(B+F)  (+3D-F)?  ED'+2F?  (D-F)
=° ~i-3(D-F?* }{+3D+F? -(D-F)? (D+F)?
== i+iD-F? i+3E4F)  (D-F)P AD+4 2

Table 2.1: Table of coefficients for the chiral expansions Eqs. (2.62) and (2.63) in terms of the
axial vector coupling constants F' and D.

where |sg) contains the spin information of the baryon state |B). The Breit frame is chosen
because in this frame the expressions relating Gg(¢?) and Gar(¢?) to the electromagnetic current
are decoupled, with G'g(q?) related to the time component of the current and G (g?) related
to the spatial components. This significantly simplifies the calculation of the Sachs form factors.
Physically, the Sachs form factors measure the interaction of the baryon B with weak, static
electric and magnetic fields. The electric charge radius and magnetic moment of baryon B can
be extracted from the Sachs form factors as follows

dGE(q°)
2 —6 2.60
"B dg® =0 (2:50)
fis = eGu(0) (B(F=10),55|5|B(7=0)s5) (2.61)

These relations are easily proven from the definitions

= (B@=0|[ @B pe=0) .

_ L = 1 -

i = <B(p:0),sB E/de’r 7x 3B (F) B(p:O),sB> ,

and using Eqgs. (2.58) and (2.59) also.

Therefore, to determine the charge radius and magnetic moment chiral expansions, one must
first compute the electromagnetic current from the effective Lagrangian. This involves computing
OLeg/(eA,) asin Eq. (2.57). Realistically, one would use the first few terms in the expansion of
Leq, Eq. (2.54), since this is a good approximation at low energies. Next one would compute the
left hand sides of Egs. (2.58) and (2.59) and hence determine G£(¢?) and Gar(g?). Details of these
calculations can be found in Refs. [24, 27, 28]. Once the Sachs form factors have been determined,
it is then simple to compute the squared charge radius and magnetic moment expansion for each
octet baryon using Eqs (2.60) and (2.61). One finds the following SU(3) chiral expansions,

(X)

b6 mxy
2y = 5 i _ln (X)) fonsy 2.62
{ri®) e 2 (5F) (2.62)
po= vt ) ﬂ,(X)S%N—meJr..., (2.63)



Figure 2.1: The lowest order processes contributing to the charge radius and magnetic moment
expansions for an octet baryon, B. The shaded diagram on the left-hand side of the equation
represents the sum of contributing diagrams. Unspecified internal fermion lines are intermediate
baryon states, which do not necessarily have the same quantum numbers as B.

Elq
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7’ N
q+k
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Figure 2.2: The Goldstone boson loop which produces the leading order non-analytic term in
the expansions of baryon magnetic moments. The momenta are indicated.

where“” labels the octet baryon, A is the scale of the dimensional regularization, my is the
nucleon mass, the coefficients al(-X) and ﬂfh) are listed in Table 2.1 and the values for §; and +;
are given in Refs. [24, 25]. The terms §; and 4; are constan* and thus are analytic functions of
the quark mass, m,. It can be shown [27, 29] that all coefficients of analytic terms are model
dependent (they depend on the cutoff value), while coefficients of non-analytic terms are model
independent. Therefore we will not be interested in the values of the coefficients §; and ;. since
they depend on the cutoff value. However, the coefficients a,(»X) and ﬂ}X) are model independent,
since the terms In(myx/A) and my are non-analytic in the quark mass. (Recall that m, m;/z
and mg o< (mg +ms)1/2.) For this reason we will be interested in the values of these coefficients.
Eventually (in Chapters 3 — 5) we will use the non-analytic terms together with their coefficients

in extrapolation formulae for electric charge radii and magnetic moments.

We have seen that the electric charge radius and magnetic moment expansions contain both
analytic and non-analytic terms as a function of the quark mass, m,. To see how each term arises
one must calculate the relevant Feynman diagram. The lowest order processes contributing to
the magnetic moment and electric charge radius expansions for an octet baryon, B, are shown in
Fig. 2.1. The 3 diagram in this expansion (which is enlarged in Fig. 2.2, where the momentum
conventions are chosen) gives rise to the leading non-analytic term in the magnetic moment chiral
expansion when the intermediate baryon state has the same quantum numbers as the external
state, B. In the following paragraphs we will explicitly show how this leading non-analytic term
arises from the process shown in Fig. 2.2. However, first we discuss the expected form of the
amplitude for the “full” process (i.e. the sum of all contributing processes), depicted by the
shaded diagram on the left-hand side of Fig. 2.1.

The amplitude for the full process in Fig. 2.1 can be written as @(p')e, I'*u(p), where ¢, = €,(q)
is the polarization vector for the incoming photon, U'# contains a sum of contributing processes
and u(p) and @(p’) are the Dirac spinors for the baryon, where p’ = p+ ¢ is the outgoing baryon
momentum. Note that the amplitude will also include a factor involving the isospin components
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of the Dirac spinors. However, the isospin part of the amplitude can be calculated separately
because it factors out from the full expression, and can be recovered at the end of the calculation.
Using general properties, such as Lorentz invariance and the Ward identity, it can be shown [7]
that I'# must take the form

to*q,

I'* = Fy(¢*)v* + Fa(¢%) ==

(2.64)

where m is the mass of the baryon and F}(¢?) and Fy(¢?) are real functions. Fi(¢?) and F2(¢?)
are related to the Sachs form factors, defined in Egs. (2.58) and (2.59), in the following way

2
Ge(¢®) = Fl(qz)—%f“z(qg), (2.65)
Gu(d®) = F(P)+F(d) . (2.66)

We will now sketch the calculation of the leading non-analytic contribution to the nucleon mag-
netic moment from the process shown in Fig. 2.2. This contribution is labelled 6I'*.

The Feynman rules for fermions and pseudoscalar particles allow us to write down the following
expression for the amplitude of the process shown in Fig. 2.2 in the case where the intermediate
state has the same quantum numbers as the external nucleon,

b 2 k. *(2k* + ¢*)(p— f+m) .
0 = g o [ s 09) | TG Rt g )

(2.67)
The factor of 2k* + ¢* = k* + (k* + ¢*) comes from the photon coupling to the pion. The
factors of i g-n s arise from the vertices where the pion is emitted and absorbed (grn is the
pion-nucleon coupling). Using the fact that {ys,7*} = 0, €,¢* = 0 and pu(p) = mu(p), this
amplitude can be written

d'k kg
5m)3 (K2 = mZ + 36)(p — k)2 — m2 + ie) ((k + )2 — mZ + )

€,0T* = —2i g2y qm/( . (2.68)

Working in the Breit frame, where ¢° = 0, this amplitude becomes

d*k k# ke

2m)* (k)2 — w2 +i€) (k2 — 2p0k0 + 25 - k + i€) (k)2 — w},  + i€)
(2.69)

where w? = |k|? + m2. Taking the heavy baryon limit, where ° = /|92 + m? >> |pl, kO ||

and p° & m, the following factor in the denominator can be simplified,

?

€. 0T* = —2igly fu‘m/ (

k2 — 2p%k0 + 25 k + i€ — —2p°(k° — e + O(1/m)) = —2m(k° — ie + O(1/m)) , (2.70)

and the O(1/m) term can be disregarded. Using this simplification, the denominator can be
fully factorised as follows

g2 d*k k# kA
€uol™ = igny 6“”/ () m (kO — 6) (K0 — wg + i€) (KO + wp, — 1€) (K® — Wi + 1€) (K + wk(+q ;)ie) '
2.7
We now perform the k° integral by contour integration, closing the contour in the lower half of
the k° complex plane so that only the poles in this half plane contribute. The integration over
kO produces a number of terms. The term which gives rise to the leading non-analytic behaviour
in the chiral expansions has kk7 in the numerator (3,7 = 1,2, 3), i.e. the term,

2
g‘rrN / 31. 1.11.7 1 1 B
InN e | Bk kiR +- , (2.72)
(2r)3 L [Qwﬁm(wz - wgﬂ) 2w,%+qm(w;€+q — w})
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where the first term in square brackets is the residue from the pole at k% = wj;, —i¢ and the second
term is the residue at k® = wy4, — te. There will be other terms arising from the £° integration
involving k° in the numerator, but we are not interested in these terms here since they do not
give rise to the leading non-analytic behaviour. Now simplifying the above term gives

g7rN k Kkt 'Z”J 9.7
T 2m(2r)3 € ’)’J/ wkwk+q (2.73)

Since the leading non-analytic contribution to the magnetic moment arises from the anomalous
part of the magnetic moment we use the Gordon identity, namely

i L Py
pH+pt  iotg
"J u(p) ,

5 2m (2.74)

a(p') v u(p) = 4(p) [

to replace v; in Eq. (2.73) by 0;.¢* (As before, we neglect other terms which do not contribute
to the leading non-analytic piece.) to obtain

2 SIE I 1.7

gﬂ"N 1€ 05,9 k k‘

- 5 - /d3k‘ 53 (2.75)
2m(2r) 2m wWiwE .

This substitution allows ¢ to be set to zero in the denominator since the leading non-analytic
piece comes from the term linear in ¢g. With ¢ set to zero in the denominator, the symmetry
properties of the integrand then allow &%k’ to be replaced with §*1%|?/3 and we obtain

2
9N zeJ ol q# pen _
; 2.
6m(27)3 f e0)

Therefore, using Egs. (2.64) and (2.66), the contribution to Gas(0) is

2 o0 4
[N k
—EL dk — .
3??1('2?)2[) wi (2.77)

performing the trivial angular integration. Writing wjj = (k% + m2)2 = (k + im,)%(k — im,)?
allows the model independent part of this expression to be extracted by contour integration. One
obtains

(2.78)

If we now include the factor arising from the isospin part of the amplitude this will give an extra
factor of 2 in the numerator for each of the processes p — nr* — p and n — pr~ — n which are
relevant here. There will also be a factor of £1 due to the respective charges of the pion in these
processes. Using the Goldberger-Treiman relation, i.e. gy = gam/fr, where g4 = (F + D) is
the axial-vector coupling constant, one then arrives at the following leading non-analytic term,

(F + D)?’m

:F—8-7-T—F-—-m,, : (279)

which contributes to the chiral expansions for the magnetic moments of the proton and neutron
respectively. This agrees exactly with the leading non-analytic term in Eq. (2.63) for the proton
and neutron. Similar calculations may be performed for the entire baryon octet to obtain the
leading non-analytic term in each magnetic moment expansion. A similar calculation could also
be used to derive the leading non-analytic logarithmic terms which are present in electric charge
radius expansions. The leading non-analytic terms in both the magnetic moment and charge
radius expansions will be important in the remaining chapters, because we will use these terms
in designing functions to extrapolate lattice results to the physical regime.

21



Chapter 3

The Cloudy Bag Model

In Chapter 2 we saw that chiral perturbation theory could be used to make expansions of hadronic
observables. Our goal in this thesis is to extrapolate lattice results of hadronic observables
obtained at large pion masses to the physical regime. It would be ideal to use chiral perturbation
theory expansions directly to extrapolate the lattice results. However, the lattice results are
obtained at large pion masses where chiral perturbation theory is not applicable. Thus these
chiral expansions cannot be used directly. We must therefore find an alternative means to access
the results obtained at large quark masses.

This leads us to consider a successful phenomenological model of baryons — the Cloudy Bag
Model (CBM) [17, 18]. The CBM is a relativistic quark model of baryons which builds in the
phenomena of quark confinement and pion emission. It is an extension of a simpler model, the
MIT bag model, which describes baryons in terms of a system of relativistic quarks confined to
a volume known as a “bag”. The CBM Lagrangian consists of the MIT bag model Lagrangian
coupled to a pion field in such a way that the resulting Lagrangian is invariant under chiral
transformations. Unlike chiral perturbation theory, where baryons are considered as elementary,
both the CBM and MIT bag model build in the underlying quark structure of baryons. This
allows important considerations such as the finite size of baryons to be included in calculations.

The CBM can be used to explore the quark mass dependence of physical observables. One finds
that the pion loop contributions to physical observables predicted in the CBM match those given
by chiral perturbation theory in the chiral limit. This is expected since both models are based on
chiral symmetry. However, in the CBM these coutributions are suppressed at large pion masses
by the form factors associated with the finite size of the hadron under study. Thus the CBM
might be expected to provide a good guide to the behaviour of physical observables over a wide
range of pion masses. This is a major improvement on chiral perturbation theory, which is only
applicable near the chiral limit. In chiral perturbation theory the form factor suppression of pion
loop contributions does not occur since the hadrons are treated as pointlike in canonical field
theory. In practice the suppression of pion loop corrections in the CBM allows lattice results at
large pion masses to be accessed in a convergent way. We will see this in § 3.4.

Our first task in this chapter is to introduce the MIT bag model and discuss its properties.
The CBM will then be introduced and we will show how it improves on the MIT bag model.
Since the CBM will eventually be used to extrapolate lattice results for magnetic moments, we
will then discuss the electromagnetic properties of the CBM. Next we will show how lattice
results for nucleon magnetic moments can be extrapolated within the CBM. Finally a simple
extrapolation formula will be proposed for the nucleon magnetic moments which encompasses the
CBM predictions, as well as agreeing with chiral perturbation theory and heavy quark effective
theory in the appropriate limits. Eventually (in Chapter 4) this simple extrapolation formula
will be extended to extrapolate lattice results for magnetic moments of the entire baryon octet.

22



3.1 The MIT bag model

The MIT bag model was one of the first attempts to model hadrons in terms of their underlying
quark structure. This model builds in the observed quark confinement by permanently confining
the quarks to a bag (a volume denoted by V). We now construct the MIT bag model Lagrangian
and discuss the consequences and limitations of this model.

Consider a system of 3 massless, relativistic quarks moving freely in a volume, V. Inside this
confining volume the quarks will move according to the Dirac equation. Hence, we consider the

following Lagrangian
3
Z 2)Pgi(x (3.1)

where ¢;(z) is the i*" quark field and

1 inside V
by = {0 outside V (3-2)
is the step function for the confining region, V. From now on we use the Einstein summation
convention, where repeated indices (such as “i” in Eq. (3.1)) are summed over. This Lagrangian
is simply the Dirac Lagrangian for the quark fields, restricted to the volume V. In addition,
there must be a boundary condition to ensure that there is no current flow through the surface
of the confining region, S. We require that n-j = n*j, = 0 on S, where j# = g;y*¢; is the
electromagnetic current and n* are the components of the unit vector normal to the confining
region. In the MIT bag model this boundary condition is imposed via the following linear
boundary condition
en g =i, =g (3.3)

which must be satisfied on S. Taking the Hermitian conjugate of Eq. (3.3), we see that
Gi=—tqv-n (3.4)

on S also. Hence

in-j=in"qvug = g = —Gigi =0 (3.5)
on S as required, where we have used Eqgs. (3.3) and (3.4). Therefore we see that §;¢; = 0 on the
surface of the confining region also.

The energy momentum tensor for the above Lagrangian, Eq. (3.1), is given by
T = iQ‘,-'y“E)”qi 0V . (36)

Energy momentum conservation requires that 0,7 = 0. However, this is not satisfied here
since

. v - v 1 Via
0,T" =1iqv"0"q: 0.0y = iGiy - n0"q; As = —’2‘3 [g:g:] As (3.7)

where Ag is the surface delta function defined by 9,0y = n,Ag. Therefore, clearly 9,T"" is
non-zero on S, and we do not have energy momentum conservation. This problem can be avoided
if the Lagrangian contains an extra term as follows

L(z) = (iq:(x)Pgi(z) — B) by , (3-8)

where B is a constant given by

B=—zn-0[a()a()]|, (3.9)
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The term —B#fy is a phenomenological term describing the difference in the energy density of
the vacuum inside and outside the bag. It is an assumption of the MIT bag model that B is

the same constant for each hadron (B is known as the bag constant). The full MIT bag model
Lagrangian is given by

Lasrrlz) = ig:(a)Pg:(2)6y — BOy — 50:(2)ai(@)s (3.10)

where the final term is a Lagrange multiplier which ensures that g;(z)gi(z) = 0 on the surface
of the confining region, S. The equations of motion of the MIT Lagrangian are generated by
demanding that the MIT action, Syrrr = f d*zLpr7(2), is stationary under arbitrary variations
of the fields and bag surface. As expected we recover the massless Dirac equation

iPgi () =0 Ve eV, (3.11)

as well as the linear boundary condition, Eq. (3.3), and the bag stability condition (or non-linear
boundary condition), Eq. (3.9).

In the case of a static, spherical confining region of radius R, exact solutions of the MIT bag
model equations can be found. The exact solution for the case I = 0 is given by

AL jO (wir/R) i
¢ (r) = N; e Bl ) b;O(R—r), (3.12)
where N; is a normalization constant, b; contains the spin and isospin information for the wave-
function and j;(z) are spherical Bessel functions. (Since the non-linear boundary condition of
Eq. (3.9) is angle independent, only quark wavefunctions with j = 1/2 can satisfy this condition.
Hence only / = 0,1 are allowed.) The quark frequency, w;, for the solution Eq. (3.12) can be
found from the linear boundary condition, Eq. (3.3), which amounts to

Jo(wi) = fi(wi) - (3.13)
Solving this condition gives a ground state frequency of wg = 2.04. The energy of this (single

quark) ground state is given by
wo _ 2.04

= 3.14
E=w=—F (3.14)
Thus the total mass of a baryon with all quarks in the ground state is given by
30.)0 4 3 Zo
. — = B- = 3.15
M(R) ==+ gmR = (3.15)

where the second term arises from the phenomenological energy density term in the MIT La-
grangian and the last term is the zero point energy contribution, arising from quantization (Zpisa
constant phenomenological parameter). It can be shown that the non-linear boundary condition,
Eq. (3.9), is equivalent to requiring that

oM

OR
This condition, together with Eq. (3.15), allows the bag radius to be calculated as a function of
the ground state frequency, wo, and phenomenological parameters, Zo and B, as follows

0. (3.16)

. 30)0—20

4
# 4w B

(3.17)

Note that the full mass formula should also include a contribution from the one-gluon exchange.
We have neglected this term for simplicity, but it is easily included.
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Clearly the approximation of massless quarks in the MIT bag model Lagrangian leads to de-
generate masses for all members of the baryon octet. This situation can be rectified by adding
explicit quark mass terms to the MIT Lagrangian. That is, one adds the term m;g;(2)g;(2) to
Eq. (3.10). The analysis with non-zero quark masses proceeds in exactly the same way as the
massless case, with exact solutions for the spherical, static case given by

oo N1/2
(m jo (wir/R)

4i(r) = N; = ol biO(R —r) , (3.18)
(Bgzi) " io - #1 (wir/R)
where
19 2711/2
E;(m;, R) = = [wi + (miR) ] . (3.19)

R

Since our examples deal primarily with nucleon wavefunctions (and nucleons are made up of
light quarks), we will neglect this subtlety in the following and use the massless MIT Lagrangian,
Eq. (3.10), and its solutions, Eq. (3.12), for simplicity.

Notice that so far we have not mentioned the colour degree of freedom in this discussion of the
MIT bag model. To introduce colour interactions between quarks we would modify the MIT
Lagrangian by making the following substitution: i@q — iIpq, where ¢I)g includes couplings to
the gluon fields. One would also need to include a kinetic energy term for the gluon fields,
F2 Fg”, in the modified Lagrangian. The details of making these substitutions can be found in
Ref. [17]. By considering the conserved charges associated with the modified Lagrangian, it can
be shown [17] that all finite energy solutions of the MIT bag model equations are colour singlets.
This shows that the MIT bag model produces the observed confinement of colour.

Historically, one of the most important successes of the MIT bag model was the prediction of the
axial coupling constant, ga. The MIT bag model predicts g4 = 1.27 (including centre of mass
corrections) [18], compared with the experimental value g4 = 1.26. The model also provides a
much improved prediction for the proton magnetic moment compared to the naive quark model
expectation. However, the MIT bag model produces disappointing results for the neutron charge
radius; it predicts that the neutron mean square charge radius is exactly zero [18], in contrast
to the experimental value of —0.113(4) fm® [30]. Also the model does not describe interactions
between hadrons, and therefore is not useful for nuclear physics problems. These problems with
the MIT bag model originate from the lack of chiral symmetry in the model.

The MIT bag model Lagrangian is not invariant under chiral transformations. This is due to the
gqAgs term in Eq. (3.10) which is not chirally invariant. This violation of chiral symmetry can be
illustrated by the schematic diagram in Fig. 3.1 together with the following explanation. Because
of confinement, all quarks impinging on the interior bag surface must be reflected. However, since
the MIT Lagrangian does not contain a spin-flipping mechanism, the quark’s spin is not affected
by this reflection, even though it now travels in the opposite direction. This means that the
quark has changed its chirality by striking the boundary. Hence chiral symmetry is violated.

Lack of chiral symmetry means that the axial current of the MIT Lagrangian is not conserved.
This conflicts with strong experimental evidence to support the partially conserved axial current
(PCAC) hypothesis in the strong interactions. Moreover, as discussed in § 2.1, chiral symmetry
is a fundamental property of QCD, and is expected in any reasonable model of the strong
interactions.

We now present a bag model for baryons, the Cloudy Bag Model (CBM), which incorporates the
MIT bag model, but improves on it by building in chiral symmetry. This involves the introduction
of pions into the model and thus provides a mechanism by which baryons can interact.

25



") Bag ") Bag

oo ool Wall ot Wall

(a) (b)

Figure 3.1: Schematic illustration of chiral symmetry breaking in the MIT bag model. In (a)
the quark travels towards the bag surface. The upper arrow indicates the quark’s spin. In (b)
the quark is reflected from the bag wall without changing its spin. Clearly the chirality (or
“handedness”) of the quark is changed in this interaction. Hence chiral symmetry is broken.

3.2 The Cloudy Bag Model

The linearized Lagrangian of the Cloudy Bag Model (CBM) is given very simply by

Lepar(z) = Lyvrr(2) + L (z) + Line(z) (3.20)
where Ly is given in Eq. (3.10), £, is given by

1
Lo=72

2((9“71')2 — _lmz_Tr2 ) (3.21)

2

and Lin, which describes the pseudoscalar interactions of nucleons and pions, is given by

t_
Liny = ~op DT mqAs . (3.22)

Note that without this interaction term, the theory would describe free pions and stable MIT
bag configurations. Thus the linearized CBM Lagrangian is given explicitly by

ECBA[ =] (anq — B)@V — %qqﬁs -+ %(8#702 — %m;‘:ﬂj — Q_lf,r
Notice that although the CBM includes the constituent quark structure of baryons, it does not
include the underlying quark structure of the pions, i.e. the pion is treated as an elementary
field. This is an assumption of the model. In the CBM a long wavelength approximation is made
such that the internal structure of the pion can be neglected. It has been shown in Refs. {17, 18]
that this is a good approximation in many situations involving low momentum transfer.

qvsT - wqAs . (3.23)

A further simplification is made when calculating physical observables in the CBM. One assumes
that the quark wavefunction is unperturbed by the presence of the pion field, i.e., one takes
the first order approximation for the quark wavefunctions. This allows the exact MIT bag
model solutions, Eqs.(3.12) and (3.18), to be used in calculations of physical observables. A final
assumption made in CBM calculations is that the linearized Lagrangian, Eq. (3.23), is a sufficient
approximation to the full, non-linear CBM Lagrangian. (We do not show the full, non-linear
CBM Lagrangian here, but it can be found in Refs. [17, 18].)

The CBM Lagrangian is invariant under chiral symmetry [17, 18]. It also includes pions which
mediate the interactions of the baryons. Thus the CBM overcomes the major problems of the
MIT bag model. It also retains the good features of the MIT bag model. For example, the axial
coupling constant prediction in the CBM is g4 = 1.27 (with centre of mass corrections){17, 18],
just as in the MIT bag model (and in very good agreement with the experimental value).
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Figure 3.2: The first terms in the expansion of the nucleon state |N) in Eq. (3.30), where the
unspecified internal lines are either IV or A.

The CBM Hamiltonian, H, is obtained from the CBM Lagrangian in the canonical way: H =
J aT% (), where TS, is the energy-momentum tensor corresponding to the (linearized)
CBM Lagrangian, Eq. (3.23). This Hamiltonian can be decomposed as

H = Ho + Hin (3.24)

where the bare Hamiltonian, Hg, describes free pions and stable MIT bag configurations and the
interaction Hamiltonian, Hj,, describes the quark-pion interactions. The explicit expressions for
Hjp and Hjye can be found in Ref. [17, 18]. There are two types of baryonic eigenstates for the
bare Hamiltonian, Hy. Firstly there are eigenstates which are simply bare MIT bag states (i.e.
no pions); for example, the bare nucleon state, |Ng). The second type consists of bare bag states
with n pions, such as the state | Ny, n) (where |n) represents the state with n pions). These states
are obtained from the bare bag states by repeated applications of the pion creation operators.
From this point we restrict the discussion to non-strange baryons for simplicity.

The physical nucleon state, |/\'), is an eigenstate of the full CBM Hamiltonian, H. That is,
H|N)= Eyn|N). We now wish to express |[N) in terms of eigenstates of the bare Hamiltonian,
Hy. It is clear that [/V) can be written in the form

|N) = Z) (En)'? [No) + A|N) (3.25)

where Z¥ (Ey) is the probability of the physical nucleon state being bare and A is a projection
operator which projects out all components of |[N) containing at least one pion. A is given
explicitly by

A=1- > |Bo)(Bo (3.26)

B=N, A

where the sum extends only over N and A since we have restricted to non-strange baryons and
the lowest mass intermediate states. Now since [A, Ho] = 0 (this can be seen easily from the
explicit expression for Hp, see Refs. [17, 18]) we are free to write

A|NY = (En — Ho)—lA(EN — Hp) [N) , (3.27)
- and hence
INY = ZN(En)Y?|No) + Go(En)AHine |N) | (3.28)
where
Go(EN) = (En — Hp)™! (3.29)

is the bare bag propagator. Using this recursive expression for |N) we find
IN) = Z) (En)*(1 + Go(EN)AHine + Go(EN)AHintGo(EN)AHis + . . ) | No) (3.30)

This relation for |IV) can be conveniently expressed as a sum of diagrams, shown in Fig. (3.2).
Note that the solid lines represent the baryon and dashed lines denote the pion. The complete
set of rules and conventions for these diagrams can be found in Ref. [17].
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3.3 Electromagnetic Properties of Baryons in the CBM

In this section we use the CBM to make predictions for the electric charge radii and magnetic
moments of baryons. To do this we must first derive formal expressions for the Sachs electric and
magnetic form factors, Gg(¢?) and Gpr(g?), which were introduced in § 2.5. The electric charge
radius and magnetic moment of the baryon can then be extracted from these form factors using
the relations given in Eqs. (2.60) and (2.61). Recall from § 2.5 that in the Breit frame, where the
momentum transfer 4-vector satisfies ¢° = 0, the Sachs form factors for a baryon, B, are related
to the spatial electromagnetic current, J#(7), by

(B|7°(M] B) = (2;)3/‘134 G(q?)e " (3.31)
(Bss| 70| Bisn) = G55 [ €0 Oule) (on19xdlsm) =7 (3.32)

where all quantities are defined in § 2.5. Thus the first step in the derivation of the CBM Sachs
form factors is calculating the electromagnetic current.

Electromagnetic interactions are introduced into the CBM Lagrangian in the standard way: the
substitution 8, — 9, + igA, is made, where ¢ is the charge of the field that the derivative acts
on in each case. The following Lagrangian is obtained (e = |e| everywhere)

3
1 N
i (@ +ie; A) i v — Bby — 521‘(]'

3
Lepar(z Z A
i=1 =1
;3
_F vql‘r g N + ((C) 7'.3)2 - m?ﬁﬂ'g)
1
+[(0" + ieA“) wl) [0, — ieA,) 7] — mirtm — ZFWFW (3.33)
where .
7(z) = —=[r1(z) + ima(2)] (3.34)

V2
is the charged pion field. After quantization of the fields, the = operator will destroy =~ and create

7+ particles. The Lagrangian in Eq. (3.33) is invariant under the following local infinitesimal
transformations

a(z) = qi(z) —teie(z)q(z), (3.35)
m(z) — w(2)—iee(z)m(z), (3.36)
AE(z) = A*(z) - éa“e(a:) . (3.37)

The conserved current associated with these transformations is the electromagnetic current,
J#(z), which is given by

JH (@) = 4 V(2) + 47(=) (3.38)

where
ju(Q)(‘T) = Zeth z)y q:(z) Ov (3-39)
() = ——ze(7r Hz) 0 (2) — w(z) 07 (2)) (3.40)

Since the total electromagnetic current can be decomposed into a sum of contributions from the
quark core and pion cloud, it can be seen from Egs. (3.31) and (3.32) that the Sachs form factors
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Figure 3.3: Lowest order time-ordered diagrams contributing to the pion part of the electro-
magnetic form factors for the nucleon. Double lines represent the A resonance and wiggly lines
denote the photon. The complete set of rules for these diagrams can be found in Ref. [17].

also undergo this decomposition, i.e., Gx(g%) = Gg?)(qQ) + Gg}r)(qz), where X = E,M. Thus
we determine the Sachs form factors by calculating the quark core and pion cloud contributions
separately.

First we calculate the pion cloud contribution to the form factors. This involves calculating
the expectation value (B Ij“(”)(f‘)‘ B), where the classical pion current, (™) (2), is given in
Eq. (3.40). Thus we begin by quantizing the pion fields, 7;, as follows

1 = T o
7‘_i(7—"1t = 0) = /dskW {(Li(k’)eik'r + a;r(k)e—zk'r} (3.41)

where the operators a;(k) and a:f(l:) obey the usual bosonic commutation relations:

[ai(E),aj(k"f)] - [aj(E),a}(A?')] —0, (3.42)
[a,-(/::), a}(/&)] = §;60(k ~F) . (3.43)
In terms of creation and annihilation operators, the pion current is given by
7D () = —% sz: 6ij3/ (%ﬁ(iiii)l/z K Sy (i, K3 1) e F=F)7 (3.44)
where
Sa (i, Ky ) = [a5(= ) + a} ()] [ai(F) — gal (~F)] (3.45)
and there is no sum over g in g** (recall that ¢°° =1 and g% = —1 in our conventions).

Now that the pion part of the electromagnetic current has been expressed in terms of operators,
Eqgs. (3.44) - (3.45), we can calculate the expectation value (B |j“(”)(f‘), B). This allows the

pion contribution to the form factors, Gg?)(qz), to be determined via Eqgs. (3.31) and (3.32).
Here we show the steps in this calculation for the nucleon. The calculation is analogous for
other baryons. Firstly, the physical nucleon state, |[V), must be written in terms of bare bag
states as in Eq. (3.30). Secondly, one inserts a complete set of the bare eigenstates between each
operator in the expectation value. After making these substitutions, it can be seen [17, 18] that
the lowest order processes contributing to the pion part of the form factors are the processes
depicted in Fig. 3.3. Evaluating the diagrams Fig. 3.3(a)—(c) leads to the following expressions
for the processes where the intermediate baryon is a nucleon,

2 - —
(r), 2. B 1 fNN / 3, U(kR)u(K'R)k - k'
G (¢ N) = 3 (——” Pk oty VIl V) (3.46)

29



(r my [ FVNN? uw(kR)u(k' R)(§xE)? ]
G (5 N) = 36rr3< p ) /dSk ( )(w(kwk’))gq SOEY (3.47)

where k' = k + §, wp = Vk?+m2, p = 139 MeV is the physical pion mass, fN¥V is the
renormalized NN coupling constant {17] and u(kR) = 3j;(kR)/kR. Similar expressions are
obtained for Gg)(qg; A) and Gf\?(qz; A), where A is the intermediate baryon state (Fig. 3.3(d)-
(f)). The explicit expressions for Gg)(q2; A) and Gg\:})(q2; A) can be found in Refs. [17, 31].

The pion contribution to the form factors gives rise to non-analytic behaviour in the expansions
of electric charge radii and magnetic moments. As an example we consider the one-loop pion
contribution to the nucleon magnetic form factor. As we will see, this contribution produces
the leading non-analytic term in the nucleon magnetic moment expansion. Recall that the pion
contribution to the nucleon magnetic moment is given by GE\Z)(O; N)+ G_(,G)(O; A). It can be
shown [32] that the leading non-analytic behaviour in the nucleon magnetic moment expansion
originates from the G]((,;)(O; N) piece of the pion form factor, where the intermediate baryon is a
nucleon. From Eq. (3.47) this contribution can be written as

. NN 2 ™ '20 4,2
M Ny = (L r/ i3 / A D)
G (0; N) 1877 ( . ) (N |r3| N) A dfsin 9. ] dk o
my [ FYN\? 4 /°° k*u?(kR)
187r2< i) 3Rl e

The remaining integral can be evaluated using residue methods, since u(kR) = 1 at k = *im,
by definition. One finds that the leading non-analytic contribution from Gf\'})(o; N) is given by

e NN\ 2
{—18—\_ (fT) (N |T3|N>}mw . (3.48)

The coefficient in braces agrees with the coefficient of the O(m;) term in the magnetic moment
chiral expansion, Eq. (2.63), which is given by F(F + D)%my /(8 f2) for N = p/n. This can be
seen by numerically evaluating each coefficient (using fNV ~ 3.03 and (F + D) = g4 = 1.26).
Thus the one-loop pion contribution to the magnetic moment produces the leading non-analytic
term predicted in chiral perturbation theory.

We now briefly consider the quark contribution to the form factors. This contribution is not
as interesting as the pion contribution, since it is the pion contribution which gives rise to the
leading non-analytic behaviour in the chiral expansions. In terms of creation and annihilation
operators the quark contribution to the current is obtained by substituting the MIT bag model
wavefunctions, given in Eq. (3.12), into the expression for 4@ (2), given in Eq. (3.39). The
following expressions are obtained

@G = 23:61. N2 [jg (‘%) 442 (%)] blbO(R — 1) (3.49)
=1
7@ = g%iNEwijo (55) u (5 ) bloxrb: (3:50)

The calculation of G%Q)(q2) is very simple. It involves calculating the following expectation value
(where the sum over ¢ is implicit)

(NP M) = [ (55) +32 (%) | 0 - 1) (N |estlbi| ) (3.51)
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This is simple to calculate since the operator ¢; blT b; simply counts the quark charge of the baryon

state. The explicit expression for G%Q)(qz) can then be obtained by inverting Eq. (3.31). This
expression is given in Ref. [17]. The calculation of the quark contribution to the magnetic form
factor, Ggg)(qz), is very similar to the calculation of Gg)(qQ) described above. However, since it
is mainly the pionic contribution that we are interested in, we will not go through this calculation.

The full calculation can be found in Ref. [17].

3.4 Using the CBM to extrapolate magnetic moments

In this section we show how the CBM can be used to extrapolate lattice QCD results for physical
observables. In particular, we consider extrapolating lattice results for nucleon magnetic moments
within the CBM. This extrapolation was first performed in Ref. [11]. Here we give a general
overview of the extrapolation procedure used in Ref. [11]. In this section we will not discuss
how the lattice results were obtained, but simply consider the results as “data” for the nucleon
magnetic moments at 6 rather heavy pion masses. Details of the lattice calculations can be found
in Ref. [11] and also in Refs. [33] and [34], where the results were originally published.

The aim here is to calculate nucleon magnetic moments in the CBM over a range of different
pion masses. As we will see, there are 3 input parameters in this calculation which can be
tuned to best accommodate the lattice results. The experimental value (u, = 2.713 un, pn =
—1.913 ppn) will also be included in the data set in each extrapolation. This will make it
possible to determine whether the lattice results at large m, are consistent with experimental
measurements. Historically the inclusion of the experimental point in the extrapolations is
important since previous extrapolations (which used either simple linear fits as a function of m?2
or chiral perturbation theory expansions directly) had been unable to make contact with both the
lattice results at large m, and the experimental point at the physical pion mass, g = 139 MeV.

Recall that the nucleon magnetic moment is given by
py =GP =0)+ G =0), (3.52)

where the full expressions for the one-loop contributions can be found in Refs. [17, 31]. (In
Eq. (3.47) the one-loop pion contribution is given for the case where the intermediate state
is a nucleon. As discussed in § 3.3, the full GI(‘:;)(QQ = 0) includes terms arising from the A
also.) Note that the magnitude of each contribution in Eq. (3.52) is related to the bag radius, R.
When the bag radius is large the contribution from the quark core is enhanced and the pion cloud
contribution, GE(,;)(O), is suppressed. In this extrapolation we use the following phenomenological
form for the form factor, u(k):

A2 — #2
ATER
where p is the physical pion mass, k is the loop momentum and A is a (constant) cut-off value.
A is one of the input parameters of this extrapolation and can be adjusted to fit the data.

u(k) = (3.53)

Before extrapolating the lattice data a number of relationships between parameters of the CBM
must be established. In particular, all parameters of the CBM (e.g. the bag radius, R, the
ground state frequency, wp, the bag constant, B, etc.) must be expressed in terms of the input
parameters and/or the changing pion mass. The first relationship to establish is the connection
between the quark mass, mg, and the pion mass, m,.. In the CBM the pion is considered as an
elementary field and its underlying quark structure is not included in the model (long wavelength
approximation). In particular, this means that the pion mass, my, is not directly related to the
quark mass, m,, inside the bag. However, since we are extrapolating lattice results within the
CBM as a function of m,, a relationship between m, and m, is essential. In the range of
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pion masses considered in this extrapolation, current lattice simulations indicate that m2 o my.

Therefore, we write
2
m
= (T (9)
Mg < p ) my’ (3.54)

where p is the physical pion mass and mgo) is an input parameter which can be tuned to best fit
(0)

the results. my ' corresponds to the current quark mass at the physical pion mass. It should lie
in the range ~ 5 — 7 MeV to be consistent with perturbative QCD results.

We now consider finding a relationship between the radius of the confining region, R, and the
changing pion mass, m,. The authors of Ref. [11] used the following relation, Eq. (3.17), to

determine the radius of the bag!
_ 3w0 . Zo

R* .
4r B ' (3-55)
where the ground state frequency, wp, is given by the smallest positive solution of
tanw = = § (3.56)

1—myR — [w? + (mqR)?]1/?

Thus we see that the quantities R and wq are intimately connected and both change as the pion
(or quark) mass is changed. Therefore the ground state MIT bag model solutions, Egs. (3.12)
and (3.18), depend on the changing pion mass, m,, through their dependence on R and wp. This
means that the Sachs form factors, which are evaluated using the MIT bag model solutions, are
also dependent on m..
At the physical pion mass the ground state frequency, w(()o)’ may be evaluated in terms of input
parameters as follows
(0) w(()O) ( )
tanwy, ' = , 3.57
1= m{" Ry = ()2 + (mg” Ro)?]1/2

where Ry is the bag radius at the physical pion mass. By substituting the value obtained for wéo)

from Eq. (3.57) into Eq. (3.55), we produce the following linear equation relating the parameters
B and Z,, which are both assumed to be independent of m,,

4r RSB = 31" - Z, (3.58)

To fully determine Zy and B we must find a second equation relating these two quantities.
Equating the physical nucleon mass, my = 940 MeV, with the M(Ro) from Eq. (3.15), gives
such a relation. Thus B and Zy can be fully determined.

Since B and Zg can be expressed in terms of the input parameters, it follows from Eqs. (3.55) and
(3.56) that the radius of the bag, R, and ground state frequency, wo, can be evaluated numerically
at each pion mass considered in the extrapolation. This allows the magnetic moments to be
determined within the CBM over the range of pion masses. By tuning the input parameters
one can fit the lattice data and experimental point with the CBM predictions and obtain the
extrapolations shown in Figs. 3.4 and 3.5.

From Figs. 3.4 and 3.5 it is clear that the CBM can accommodate both the lattice results and
experimental measurements for the nucleon magnetic moments in smooth extrapolation curves.
The reasonable values obtained for the input parameters (see Table 3.4) support the assumptions

1A small correction arising from the dependence of wo on R was later found to this relation in Ref. [12], but it
did not significantly affect the results.
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Figure 3.4: Fits of magnetic moment lattice data for the proton using the Cloudy Bag Model
(CBM). The input parameters used for the CBM extrapolation are given in Table 3.4. The lattice
results from Ref. [33] (LDW) are indicated by circles and the results from Ref. [34] (WDL) by
squares. The solid line indicates the CBM fit to the data and the dashed line represents the MIT
bag model, where the pion cloud is omitted. The dot-dashed line is the fit using the encapsulating
formula, Eq. (3.61). The experimental point is included in each fit.

0.0 = T -~ T ™ T T
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Figure 3.5: Fits of magnetic moment lattice data for the neutron using the Cloudy Bag Model

(CBM). The input parameters for the CBM extrapolation are given in Table 3.4. Symbols and
line types are defined in the caption of Fig. 3.4 and in the key.
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T

)
for
A fove’

g

Nucleon Rq (fm) A (GeV) mi” (MeV)
P 1.0 0.68 4.8
n 1.0 0.59 4.8

Table 3.1: Input parameters for the CBM extrapolations shown in Figs. 3.4 and 3.5.

used in the extrapolation procedure (e.g. B was assumed to be independent of m,). Comparing
the CBM extrapolation curves with the corresponding MIT bag model extrapolations, one can
clearly see that the meson cloud is very important and accounts for the significant curvature
in the fits in the small m, regime. This indicates that the notion of using chiral expansions
to extrapolate the results is not completely unreasonable, since these expansions focus on the
meson cloud effects. However, it is simply not appropriate to use chiral expansions to extrapolate
lattice results obtained at large pion masses far from the chiral limit. Thus the CBM, which
respects chiral symmetry while building in good phenomenology, is a much more suitable tool
for extrapolating the results. We now consider encapsulating the CBM extrapolation curves in
an analytic formula which may be regarded as an analytic continuation of chiral perturbation
theory.

3.5 Encapsulating formula

In § 3.4 we saw that lattice results for nucleon magnetic moments could be smoothly extrapolated
to the experimental value within the CBM. However, as we have seen, the algorithm for this
extrapolation procedure is very complicated. In this section we wish to encapsulate the CBM
extrapolation curves. shown in Figs. 3.4 and 3.5, in a simpler, analytic continuation of chiral
perturbation theory.

To construct an analytic extrapolation formula we first note the qualitative features of the CBM
fits. In both extrapolations the magnetic moment falls off at large valucs of m,. This indicates
that an encapsulating formula might take the form m;", for some integer n, in the heavy pion
mass regime. In fact we expect that at heavy quark (or pion) masses the magnetic moment
should fall off as the Dirac moment:

€q 1

p= X —5 . (3.59)

2m, i

We also require that the encapsulating formula matches the CBM predictions in the small mr
regime. In the chiral limit the CBM calculations reproduce predictions from chiral perturbation
theory (for example in § 3.3 we saw that the one-loop CBM calculations for nucleon magnetic
moments contain the leading non-analytic behaviour predicted in chiral perturbation theory) and
thus we expect that a satisfactory encapsulating formula would agree with chiral perturbation
theory in the limit m, — 0. Recall from Eq. (2.63) that the chiral expansion for the magnetic
moment of an octet baryon is of the form

p=v-+ams+bmg+... , (3.60)

where v, a and b are constant coefficients (see § 2.5). We expect that the chiral limit of the
encapsulating form reproduces this expansion.

Since mg > m;, one might conclude that the kaon loop contribution is the dominant term in the
magnetic moment expansion, Eq. (3.60). However, kaon loop contributions can be neglected for
the following reasons. The CBM calculations (see Eq. (3.47)) indicate that at large pseudoscalar
masses the pseudoscalar contribution to the magnetic moment is suppressed by form factors
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Nucleon Lo X c
D 3.31 —4.54 0.452
n —-2.39 442 0.271

Table 3.2: Fit parameters for extrapolations using the encapsulating form, Eq. (3.61), shown in
Figs. 3.4 and 3.5 by the dot-dashed curves. The units for the fit parameters are as follows: py
for po, pn - GeV™! for x and GeV~2 for c.

Nucleon Encapsulating form Chiral Perturbation Theory

(F+D ma
X ‘-‘F -i‘sﬂ.}r N
p —452 441
n 4.42 4.41

Table 3.3: Values of the fit parameter, x, for the encapsulating form extrapolations shown in
Figs. (3.4)—(3.5). It is compared with the predicted coefficient from chiral perturbation theory.

which describe the finite size of the baryon. In the case of the pion, this means that the pion
loop contributions are suppressed at large pion masses. For the kaon, which has a much larger
mass than the pion, this means that kaon loop effects are almost negligible. Despite the model-
dependence associated with the form factors, the lattice results themselves do not show a rapid
variation with my. Thus kaon loop effects are expected to be relatively small and slowly varying
as a function of my 2. They can therefore be absorbed in the fit parameters. On the other
hand, the rapid variation of m, with m, means that the leading non-analytic behaviour in m,
must be treated explicitly. Therefore we require the encapsulating form to reproduce the chiral
expansion, Eq. (3.60), only to O(m) in the chiral limit.

A natural choice for the encapsulating formula, which builds in the requirements specified above,
is given by

Ho
x(m,) = , 3.61
N (m:) 1— _uxo_mﬂ_ T szr ( )
where po, x and ¢ are constants chosen to best fit the CBM results. This formula clearly gives
the expected Dirac moment behaviour in the heavy pion mass regime. Expanding Eq. (3.61)
about m, = 0 we find

2
KN = fo + XM + <;— - ,UOC) mi+... (3.62)
0
which clearly agrees with the requirements from chiral perturbation theory. Therefore the en-
capsulating form, Eq. (3.61), is well motivated in the both the chiral limit and heavy quark mass
regime.

The results from fitting the CBM extrapolation curves with the encapsulating formula, Eq. (3.61),
are shown in Figs. 3.4 and 3.5 by the dot-dashed lines (these fits were published in Ref. [11}).
The fit parameters for these curves are given in Table 3.2. In both cases the encapsulating form
provides a very good approximation to the CBM results.

To establish the ability of the encapsulating form to match the CBM predictions, we compare
the value of x found by the fitting routine with the value predicted by chiral perturbation
theory (given in Eq. (2.63)). This is shown in Table 3.3. In both extrapolations the value of

2Note that m%- x m, + m, and here m, is fixed and large
q
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x chosen to best fit the data is remarkably close to the value predicted by chiral perturbation
theory. This similarity suggests that the value of x can indeed be fixed to the value predicted by
chiral perturbation theory in the fitting formula, Eq. (3.61), so that the SU(2) chiral expansion is
reproduced in full to leading non-analytic order. A two parameter fit can then be performed with
the resulting extrapolation formula. We will see the results for two parameter fits of magnetic
moment lattice results in Chapter 4, where the formalism will be extended to the entire baryon
octet.
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Chapter 4

Magnetic Moments

In this chapter we build on the ideas of § 3.5 to propose a simple extrapolation scheme for octet
baryon magnetic moments as a function of m,. In particular, we use a two parameter fitting func-
tion, similar to the encapsulating form, Eq. (3.61), to extrapolate the magnetic moment lattice
results of Ref. [33]. The results from these extrapolations will be compared with experimental
measurements at the physical pion mass. The method and results discussed in this chapter have
been published in Ref. [15].

4.1 Extrapolating function

In § 3.5 we saw that the function

Ho
= 4.1
# () 1- ;‘—Om,, + em? (+.1)

with x, po and ¢ chosen to best fit the data, could successfully encapsulate the CBM extrapola-
tions of the nucleon magnetic moment lattice results. In each case we saw that the value obtained
for the fit parameter x agreed well with the value predicted by chiral perturbation theory (see
Table 3.3). In this chapter we explore the possibility of fixing the value of x in Eq. (4.1) to the
chiral perturbation theory prediction and then performing a two parameter fit with the resulting

formula. For example, in the case of the proton we would set x = —4.41 and use the following
two parameter formula to extrapolate the lattice results
Ho
po(ms) = (42)

b
1+ %m,‘.-}—cm%

where m, is in GeV and p,, is in nuclear magnetons (). In the small m, limit, this extrapolation
formula reproduces the chiral expansion to O(m,) and the leading non-analytic term has the
correct (model-independent) coefficient. (As in § 3.5, we neglect kaon loop contributions.) As
before, the extrapolation formula also maintains the expected Dirac moment behaviour in the
heavy pion mass regime.

In Ref. [11] the two parameter fit function described above was used to extrapolate lattice results
for the proton and neutron magnetic moments. The extrapolated values obtained at the physical
pion mass were found to agree very well with experiment. The following results were obtained
(where the experimental value is indicated in parentheses): p, = 2.85(22) uy {2.793 uy} and

pn = —1.90(15) uny {—1.913 un}.

Given the sucess of the proton and neutron extrapolations, we now extend the two parameter
extrapolation formula to the entire baryon octet. For each baryon “i” we extrapolate the results
using the Padé approximant,

Ho
pi(ms) = 1— X, +cm2 ' (4.3)
Lo T
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where x; is fixed to the value predicted by chiral perturbation theory and the fit parame-
ters, no and c, are optimized for each baryon. From Eq. (2.63), x; is given explicitly by
Xi = (BZ(TF)mN)/(SWf,%) and the one-loop corrected estimates of ,B}r) and x; are given in Table 4.1.
The Padé approximant gives a simple way of connecting magnetic moment lattice results obtained
at large pion masses with the physical world. This extrapolation procedure is clearly well moti-
vated by the excellent phenomenology of the CBM. It also agrees with chiral perturbation theory
and heavy quark effective theory in the small and large m, limits respectively.

4.2 Lattice Calculations

The magnetic moment results used here are extracted from the lattice QCD calculations of
Ref. [33]. While these results are now quite old, they continue to be the only lattice estimates
of the spin-1/2 baryon octet magnetic moments available at the moment. These simulations
were performed on a 24 x 12 x 12 x 24 periodic lattice using standard Wilson actions at 8 =
5.9. Dirichlet boundary conditions were used for fermions in the time direction. Twenty-eight
quenched gauge configurations were generated by the Cabibbo-Marinari [35] pseudo-heat-bath
method. The conserved electromagnetic current was derived from the Wilson fermion action via
the Noether procedure. The associated lattice Ward identity protects this vector current from
renormalization. The magnetic moments were obtained from the form factors at 0.16 GeV? by
assuming equivalent ¢? dependences for the electric and magnetic form factors. For each octet
baryon, the magnetic moment was calculated at 3 different quark masses, corresponding to rather
heavy pion masses, all above 600 MeV. Statistical uncertainties in the results were calculated in
a third-order, single elimination jackknife [36, 37]. Further details may be found in Ref. [33].

Since the lattice calculations of Ref. [33] were obtained using the quenched approximation, there
are expected to be errors in the results arising from the quark loops neglected in the simulation.
A quantitative procedure for eliminating these errors is not known. However, as explained in
Ref. [11], the errors due to quenching are expected to be on the scale of the statistical errors.
Hence we will assume that the results of Ref. [33] are a fair representation of the full QCD
results. Nevertheless, an ideal extrapolation of magnetic moments would use full QCD lattice
results which are unavailable at the moment.

4.3 Results

In the following graphs, Figs. 4.1-4.4, lattice calculations of the baryon magnetic moments are
fitted as a function of m,, according to the Padé approximant, Eq. (4.3), with coefficients, xi,
from Table 4.1. In each case the solid lines are Padé approximant fits to the magnetic moment
lattice results. Experimental measirements are indicated at the physical pion mass by an asterisk
(x). The magnetic moment predictions from the Padé approximant extrapolations are compared
with experimental values in Table 4.1. The fit parameters, po and c, for the solid lines are also
indicated in Table 4.1.

In the case of the nucleon, the fits given here (Figs. 4.1 and 4.2) are slightly different from those
given in Ref. [11], as the second set of lattice results have been omitted in order to produce a
consistent set of graphs for the entire baryon octet. (The second set of results were extracted
from Ref. [34] which dealt with the nucleon only.) However, the nucleon extrapolations shown
here still give excellent agreement with the experimental measurements. The magnetic moment
predictions for the £+ and 5~ (see Table 4.1 and Figs. 4.2 — 4.3) are also in good agreement
with experiment.
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Baryon ,Bfr) Xi 1o c Lattice  Averaged Lattice Experiment

P —(F+ D) —441 346 0.68  2.90(20) 2.793

n (F + D)? 441 -2.28 0.11 —1.79(21) -1.913
A 0 0 -0.38 0.005 —0.38(3) ~0.613(4)
i —2D? —2F? -246 271 040  2.39(16) 2.53(18) 2.42(5)
0 0 0 0.54 044  0.53(5) 0.58(7) 0.63(4)!
a 2D*+2F? 246 -1.64 135 —1.33(8) —1.35(15) —1.157(25)
=0 —-(D-F)* -0.19 -0.80 0.29 —0.82(4) —0.99(10) —1.250(14)
== (D-F) 019 —0.46 —0.38 —0.44(2) —~0.67(8) —0.69(4)

Table 4.1: Magnetic moments of the octet baryons (in nuclear magnetons) predicted by lattice
QCD compared with experiment. The one-loop corrected estimates of 51(”) and y; are also
reported. The fit parameters g and ¢ of the Padé approximant are indicated in units of upy
and GeV~? respectively. The column entitled “Averaged Lattice” reports magnetic moment
predictions from extrapolations of lattice calculations averaged to better describe the strange
quark mass, as discussed in the text.

Using magnetic moment values predicted by the Padé approximant we can calculate the ratio of
the =~ and A magnetic moments. The simple quark model predicts that this ratio is given by

== 1 fhd
Hy o3 ( us> (44

w1 4_ s (4.5)
JIEN 3 mq

if we take each quark magnetic moment to be given by the Dirac moment of its constituent
mass. In this case the ratio is less than 1 for m, > m4. This disagrees with the experimentally
measured value of 1.13(7). However, using the predictions of the Padé approximant, we obtain a
value of 1.15 for this ratio, which is in excellent agreement with the experimental result. This is
a good indication that meson cloud effects must be included in extrapolations of lattice results
to the physical regime.

which becomes

The lattice calculations of Ref. [33] were made with a strange quark mass of approximately
250 MeV. This is much heavier than the physical mass of the strange quark of 115+ 8 MeV at a
scale 2 GeV, taken from a careful analysis of QCD sum rules for 7 decay [38]. The contribution
of the strange quark to the ¥ baryon magnetic moments is very small. Lattice QCD calculations
indicate that the contribution of a singly represented quark in a baryon is half that anticipated by
SU(6) spin-flavour symmetry [13]. Hence the heavy strange quark mass will have a subtle effect
on the ¥ moments. By contrast, the strange quarks dominate the A and = magnetic moments.
Thus the heavy strange quark produces a large error in the lattice results for these baryons,
which has not yet been taken into account. This is reflected in the predictions of the A , Z° and
=~ magnetic moments which are smaller in magnitude than the experimental measurements in
all cases.

!The experimental value for £° is taken from the average of £% and =~ experimental results, which is valid in
the limit of isospin symmetry.
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Figure 4.1: Fits to lattice results of the proton magnetic moment. The physical value predicted
by the fit is also indicated, as is the experimental value, denoted Ly an asterisk.
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Figure 4.2: Fits to lattice results of the neutron, A and X~ magnetic moments. The physical
values predicted by the fits are indicated, as are the experimental values, which are denoted by
asterisks.
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Figure 4.3: Fits to lattice calculations of the £t and £° moments. Physical values predicted
by the fits are indicated, as are the experimental values which are denoted by asterisks. (The
experimental value for X° is obtained from the isospin average of the £* and £~ measurements.)

In an attempt to correct for the effect of the large strange quark mass considered in the lattice
calculations, we average the magnetic moment lattice results of each S # 0 baryon with magnetic
moment results of a light-quark equivalent baryon 2. This procedure interpolates between mag-
netic moment lattice results produced with heavy strange quarks and those produced with zero
strange quark mass. These averaged results have an effective strange quark mass closer to the
physical strange quark mass. The Padé approximant is then used to extrapolate these averaged
results. The effect on the ¥ moments is subtle (see Table 4.1). However, in the case of =7,
this method is sufficient to reproduce the empirical =~ moment (as shown by the dashed line in
Fig. 4.4). There is a remaining discrepancy in the value predicted for the =°. Clearly the present
estimate of the correction for the heavy strange quark mass is somewhat crude. It is therefore
very important to have new simulation data with a realistic strange quark mass. At that stage
it may also be necessary to include kaon loop effects, because the transition Z° — £t 4+ K~ is
energetically favoured, and will make a negative contribution to the =° magnetic moment.

4.4 Sumimary

We have seen that the Padé approximant can be used to extrapolate magnetic moment lattice
results of the spin-1/2 baryon octet to the physical regime. The magnetic moment values pre-
dicted by the fits for the p, n, ¥t and £~ compare well with experimental measurements. As
a first estimate of the correction to be expected if a more realistic strange quark mass were
used, the lattice results for the S # 0 baryons were averaged with the magnetic moments of
the corresponding light-quark equivalent baryons. In the case of =, the averaging procedure
produced good agreement with experiment. Including kaon loop contributions is expected to
further improve the = moments, and hopefully reduce the discrepancy in the =° result. However,
first it is important to apply the Padé approximant to more precise lattice results, calculated
with a realistic strange quark mass.

2Lattice calculations of a light-quark equivalent A are not available.
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Figure 4.4: Fits to lattice calculations of the =° and =~ magnetic moments. The upper two
lines are fits for =~ results and the lower two lines for =° results. Solid lines represent fits to the
original magnetic moment results of Ref. [33], while the dashed lines represent fits to averaged
resulls (denoted by open symbols which are offset for clarity), as described in the text. The
physical values predicted by the fits are indicated, as are the experimental values, which are
denoted by asterisks.
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Chapter 5

Electric Charge Radii

In the previous chapter we found that the Padé approximant, which was an extrapolation formula
designed to agree with chiral perturbation theory and heavy quark effective theory in the appro-
priate limits, gave successful predictions for the octet baryon magnetic moments (see Table 4.1).
In this chapter we wish to find an analogous procedure for extrapolating lattice results for octet
baryon charge radii. Chiral expansions of electric charge radii contain non-analytic behaviour in
the form of logarithmic terms in m, (see § 2.5). In this chapter we develop extrapolation schemes
for octet baryon charge radii which include these logarithmic terms. A similar approach [8] has
been successful in explaining why lattice calculations of pion and proton charge radii are similar
in size, while experimental measurements reveal a significant difference. In Ref. [8] it was found
that dramatic differences in the chiral behaviour of the pion and proton charge radii account
for the similarity of the lattice results at moderately heavy pion masses, while allowing good
agreement with experiment at the physical pion mass. In this chapter we improve the formalism
of the chiral extrapolations used in Ref. [8] by incorporating both chiral symmetry and heavy
quark effective theory in our extrapolation formulae. The results given in this chapter have been
published in Ref. [16].

5.1 Extrapolations

Recall from § 2.5 that the chiral expansion for the squared electric charge radius, <ri2>, of a
spin-1/2 octet baryon (labelled by ¢) is given by

(r:2) =7 + Z 47_;) O(ni\x)er’ (5.1)

where all quantities are defined in § 2.5. The leading non-analytic terms in this expansion are the
logarithmic terms which are non-analytic functions of the quark mass, m,!. Thus these terms
have model independent coefficients. The logarithmic terms are analogous to the O(mx) terms
in the magnetic moment chiral expansions, Eq. (2.63). As in the magnetic moment case (see
§ 3.5), we will not explicitly include kaon loop effects in our extrapolation formulae, since kaon
contributions are expected to be strongly suppressed by form factors describing the finite size of
the baryon.

To extrapolate the electric charge radius lattice results, we consider two distinct fitting pro-
cedures. Like the Padé approximant for magnetic moments, both the extrapolation schemes
considered here for charge radii satisfy the constraints of chiral perturbation theory and heavy
quark effective theory. The first extrapolation procedure we investigate is given simply by the

1Recall that m2 o mq and m%- « m, + m, over a wide range of quark masses.
q K q

43



formula

(r.2) = X I/ )
‘ 1+ ¢cam?2
where (r;%) are the lattice QCD results (at several values of m;) extracted from Ref. 33], ¢; and
¢, are fit parameters which are optimized for each baryon, x; (corresponding to the i*® baryon)
is fixed (model-independently) by chiral perturbation theory and A, which is directly correlated
with €1, is fixed at 1 GeV. Note that the lattice results used here were produced by fitting the
electric form factor to a dipole form. (In the original paper, Ref. [33], the electric form factor
was also fit to a monopole form. However, it is known from experiment that the dipole form
is more suitable for parameterizing the electric form factor. Thus we consider only the dipole
results here.) Further details of the lattice results may be found in Ref. [33] and also in § 4.2.
The extrapolation procedure given in Eq. (5.2) is not feasible for the neutral baryons because in
this case (r;?) — 0 as m, becomes large and thus sensitivity to the c; fit parameter is lost. In
order to extrapolate the neutral baryon charge radii results we consider a second extrapolation
procedure, focusing on individual quark “sector” (or flavour) contributions, as discussed below.

, (5.2)

Clearly the extrapolation formula given in Eq. (5.2) builds in the correct chiral behaviour, since
in the limit m, — 0 it can be expanded as follows

(7’1‘2> =c1 + xiln(mg) — cream? 4 ... (5.3)

(Recall that the scale A, in Eq. (5.2), has been set to 1 GeV. This choice is also implicit in
Egs. (5.6)-(5.10), below, where m;, in the logarithm must be in GeV.) This agrees with the
chiral SU(2) expansion of the squared electric charge radius (see Eq. (5.1)), provided we fix the

coeflicient x; to 60(2(.7'?)/ (47rf,.-)2. The one loop corrected estimates of the coefficients agr) and x;
are given in Table 5.1.

In the large m, limit, the quarks are expected to behave non-relativistically, and hence the
squared charge radius should fall off as mq‘z, as in non-relativistic quantum mechanics. In the
region where my is very large, m, x m, and hence we require that

1
2
<T‘1' > [0 —TTZ_,’Q\_ y (54)
as m, becomes extremely large. This is clearly satisfied by the first extrapolation formula,
Eq. (5.2), since the logarithm is very slowly varying.

In the second extrapolation procedure the individual quark sector contributions to the baryon
charge radii are dealt with individually. For example, in the case of the nucleons, we extrapolate
the up and down sector contributions separately. For the hyperons the strange and light sector
results are extrapolated individually. This avoids the problem encountered with the neutral
baryons which was mentioned previously, because now all the quantities being extrapolated are
charged, even if the overall charge on the baryon is zero. This separation is valid since the
squared electric charge radius can be decomposed as

r®= Y e (rl??) (5.5)

g=u,d,s

where <r§Q)2> is the contribution from the ¢*® quark sector and e, is the charge of this quark
sector. Therefore, provided that the extrapolation formulae from each sector add so that the
chiral and heavy quark limits of the sum are in agreement with Egs. (5.1) and (5.4) respectively,
this method contains the same physics as the first method, but simply makes use of the extra
information contained in the individual quark sector results. Not only does this second extrapo-

lation procedure solve the neutral baryon extrapolation difficulty, it also provides predictions for
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Figure 5.1: Schematic illustration of the pion loop which produces the leading non-analytic
contribution to the proton charge radius.

individual quark sector radii, which will be resolved at Jefferson Lab for the nucleon [39], and
perhaps future accelerator facilities for hyperons.

Isolation of the individual quark sector contributions to the charge radii is relatively straightfor-
ward from the theoretical point of view. For example, to isolate the u-sector contribution to the
charge radius of the proton one simply sets the d-quark charge to zero and calculates the proton
charge radius as if only the u quark carried charge. In the chiral expansion of the proton charge
radius, the coefficient of the logarithm, Xgr), originates from the pion loop, p — n + mt (see
Fig. 5.1), and includes the charge of the pion cloud. (For clarity, we employ (7) superscripts on

the chiral coefficients.) Therefore, to extrapolate the u-sector contribution to the proton charge

()

radius, the appropriate coefficient of the logarithm is %Xpﬁ , since the pion now carries charge
+2/3. Thus we extrapolate the u-sector results of the proton according to

2.,(7)

1 -- czm,?, ! (06)

where Xﬁ,") is the full chiral coefficient of the proton, given in Table 5.1 and <r§,“)2

> is the squared
charge radius of a single u-quark of unit charge. Similarly, the d-sector results are extrapolated

according to

(7)
ci'+ txp In(my) i
e <r;d)z> = (5.7)

where the factor of 1/3 originates from the d contribution to the pion cloud. Clearly adding the
left hand sides of Eqgs. (5.6) and (5.7) yields the full expression for (rZ). In the chiral limit the
right hand sides add so that the correct chiral form for <r12,>, given in Eq. (5.3), is retained. The
sum of Egs. (5.6) and (5.7) also obeys the correct heavy quark behaviour, given in Eq. (5.4). Since
the parameters c; and c;’ are not necessarily the same, the individual quark sector extrapolation
formulae (Egs. (5.6) and (5.7)) cannot be added directly to give Eq. (5.2). Therefore, in general
we do not expect the two extrapolation procedures to give exactly the same results. For the
charged baryons this may be used to help quantify the systematic error of the approach. For the
neutron, the analogous extrapolation functions are given by

2..(7)
w2\ _ & + 5Xn 1n(mr)
Cu <7" > - 14 ¢com?2 (5.8)
for the u-quark sector, and
! 1..(7)
(d)2\ _ ¢+ 3Xn ln(m‘zr)
2eq4 <1£L ) > = T+ cyim? (5.9)

for the d-quark sector results, where ,\'ﬁl’r) is given in Table 5.1.
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We now consider extrapolating the hyperon radii using the second extrapolation procedure, i.e.,
extrapolating the strange and light quark sector results separately. In extrapolating the strange
quark sector the charges of the light quarks are set to zero. Since the logarithmic term considered
here originates from pionic corrections to the charge radius (and pions do not contain strange
quarks), the coefficient of the logarithm in the strange sector extrapolation will be zero. Similarly,
for the light sector extrapolation, strange quarks do not carry charge and hence the coefficient of
the logarithm in this extrapolation will be the full coefficient, Xz(w). This results in the following
extrapolation formulae for the hyperon quark sector contributions

(r)
2\ _ a+x; In(mg)
= <ri > - 1+ com?2 (5.10)
and )
(s)2\ _ C1
e (1) = T — e (5.11)

where ¢ Tuns over the hyperons only, and [ corresponds to the light-quark (u and/or d) sector.
Since the strange quark mass is held fixed in the light quark mass extrapolation, any variation
in the strange quark sector is purely an environment effect from the surrounding light quarks.
As such, the functional form for the strange quark sector is constrained by neither leading order
chiral perturbation theory nor heavy quark effective theory. As we shall see, ¢y’ is small and
negative for each hyperon, which suggests that a simple linear ansatz for the strange quark sector
extrapolation could also have been used.

Note that the extrapolation procedure of separating the strange and light sector contributions
is distinct from the u-d separation which we perform for the nucleon. For example, in the
strange-light separation of ¥+, we extrapolate the sectors according to Eqs. (5.10) and (5.11).
However, if we were to make a further separation into u and d sectors, then the light-quark
sector results would be extrapolated as u sector results, with chiral coefficient %X2+. The d-
quark sector contribution (which is purely a sea contribution) could then be inferred from the
difference between light and u quark sector extrapolations.

5.2 Results

The extrapolations of the charge radius lattice results of the spin-1/2 baryon octet are shown in
Figs. 5.2 - 5.9. Extrapolations of baryon radii performed according to Eq. (5.2), are indicated by
the solid lines, where the full circles (o) represent the baryon charge radii from lattice QCD and
the extrapolated value at m, = 139 MeV. The individual quark sector extrapolations are shown
by the dashed and dot-dashed lines, and the baryon charge radius predicted by this method
is indicated by a full square(m) in each case. Experimental measurements are indicated at the
physical pion mass by an asterisk (x). Note that for the charged baryons, two extrapolation
schemes and two corresponding predicted physical values are shown, whereas (for the reasons
given in section 5.1) only one extrapolation procedure is shown for each neutral baryon.

In the case of the proton, the two extrapolated values agree very well with the experimental
measurement. It can be seen that a traditional linear extrapolation in m2 would significantly
underestimate the experimental result. Similarly the predicted charge radius for the neutron
(produced by separate extrapolations of the u- and d-sector results) agrees with the experimen-
tal measurement significantly better than would a prediction from a simple linear extrapolation
in m2. Finally both predicted values for £~ agree very well with the two experimental measure-
ments. These baryons are currently the only baryons of the spin-1/2 octet whose electric charge

radius has been measured.
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Baryon or Quark Sector nf-ﬂ} Xi ¢ Co <r2) Experiment
P ~I-2(D+F)* -0174 0.34 050 0.68(8) 0.740(15)[40]
Uy 25— 3(D+F)?] -0116 052 073 0.74(11)
dy % [-g ~2(D+F)? -0.058 -0.18 138 —0.06(5)

*p 0.68(10)  0.740(15)[40]
n :+2(D+F)* 0.174
Un 2 % +3(D+ F)ZJ 0116 035 138  0.12(10)
dn tls+3D+F)? 0058 -026 073 —0.37(6)
*n —0.25(8) —0.113(4)[30]
A 0 0
Ia 0 0 0.15 097  0.14(3)
sA 0 0  -0.07 -0.10 -0.07(1)
*A 0.07(3)
ot ~1-3(2P 1 F?) _0.138 0.68 203 0.92(11)
Is+ ~L_3 (D2 F?) _0.138 058 093  0.83(8)
Sp+ 0 0  -0.06 —0.17 -0.06(1)
*5+ 0.77(8)
39 0 0
Iso 0 0 0.19 148  0.18(2)
Sxo 0 0 ~0.06 —0.17 —0.06(1)
D1 0.12(2)
D 5+3 (%3 + F2) 0.138 —0.25 0.8 —0.52(3) —0.60(16)[41]
-0.91(72)[42]
Is- L4 E(Z4F?) 0138 -021 037 -0.47(3)
S5 0 0  -0.06 -0.17 -0.06(1)
*3- ~0.54(3) —0.60(16)[41]
-0.91(72)[42]
=" -5 —2(D-F)*  -0.035
I=o —g -2(D-F)* -0.035 029 097 0.35(5)
50 0 0  -0.15 -0.05 -0.15(1)
= 0.20(5)
=5 £+ 2(D-F)? 0.035 —0.24 0.07 -0.32(2)
I=— 2 + 2(D - F)? 0.035 —0.12 0.70 -0.19(2)
Sz- 0 0  -0.15 -0.05 -0.15(1)
= —0.34(2)

Table 5.1: Baryon electric charge radii and the quark sector contributions. The latter are defined
on the left hand sides of Egs. (5.6)-(5.11). One-loop corrected estimates of af-’r) and x; for each
octet baryon are indicated. For each extrapolation, the fit parameters, ¢; and co, and the
predicted value of (,,2) at the physical pion mass are reported. Asterisks denote the squared
charge radii reconstructed from the sum of separate quark sector extrapolations. (The units are
such that the pion mass is in GeV and the squared charge radius is in fm?.)
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1.0 i

Proton <r *> (fm®)

Figure 5.2: Fits to electric charge radius lattice results of the proton. Fits to the individual quark
sector results are also shown. The u-quark sector results are indicated by open triangles and the
d-quark sector results by open squares. Physical values predicted by the fits are indicated at the
physical pion mass, where the full circle denotes the result predicted from the first extrapolation
procedure and the full square denotes the baryon radius reconstructed from the quark sector
extrapolations (see text). (N.B. The latter values are actually so close as to be indistinguishable
on the graph.) The experimental value is denoted by an asterisk.

From simple quark model arguments [33], where the heavier strange quark has a smaller distri-
bution than the light quarks, we expect the hierarchy of electric charge radii of charged octet
baryons to be given as follows

[Pzl > ()] 2 [(rg-)| = [(r2-)] - (5.12)

From Table 5.1 it is clear that the results of our extrapolations are in qualitative agreement with
this expectation. Indeed, in the regime of the actual lattice data (m, > 600 MeV) the argument
is even quantitative. However, as the chiral limit (and physical pion mass) is approached, the
simple quark model description is no longer adequate and chiral physics gives rise to dramatic
effects. For example, in the extrapolation of the d-quark sector of the proton (Fig. 5.2), chiral
effects mean that the d-quark sector can actually make a positive contribution to the charge
radius, via the d contribution in 7+ — even though the total contribution is negative at the
physical pion mass. This behaviour is not anticipated by the simple quark model.

As discussed in § 5.1, it is possible to perform a further separation of the light quark sector
results for the hyperons into u and d sectors. The u and d sector results can then be extrapolated
separately. For the £t (uus) this separation involves extrapolating the light quark sector results
with chiral coefficient %X3+. From this procedure we find that the d—qllark sector contribution
to the =% is 0.04 fm?, i.e. small and positive. This indicates that the d quark in the pion loop,
»+ — 7t 4+ 2°A, makes a more significant contribution to the £* radius than the d quark in
the X°A. This is expected because the nt occurs at larger radius. It is encouraging that the
d-quark sector contribution is small, as a large result would indicate that the quark loops which
are omitted from the lattice simulations produce a significant contribution to the radius.

For the neutral baryons the sign of the squared charge radius is important. In the neutron, the
two d quarks are most likely to be found in a spin 1 configuration, where they will undergo
hyperfine repulsion. This leads to a small, negative charge radius. However, as one approaches
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Figure 5.3: Fits to lattice results for the quark sector contributions to the squared electric charge
radius of the neutron. All symbols are defined in the caption below Fig. 5.2.

the chiral limit, spontaneous chiral symmetry breaking, in particular the process n — p7~,
which carries d-quarks to larger radii and screens the u-quark contribution via the @ in the 77,
leads to an enhancement of the negative charge radius. The remaining neutral baryons. °, A
and Z°, have a positive squared charge radius. This is because in each case the strange quark
distribution is more localized than the light quark charge distribution (due to the larger mass of
the strange quark). Therefore on average the light quark charge distribution occurs at a larger
radius, resulting in a positive charge radius (since the light quark charge is positive in each case).

As we remarked in Chapter 4, the lattice results used here were calculated with a large strange
quark mass (approximately 250 MeV, compared with the physical strange quark mass of 115+
8 MeV). In the magnetic moment case, we found that the heavy strange quark had a significant
effect on the predictions of the = moments. Here we expect that the heavy strange quark will
also have some effect on the = charge radii. With a strange quark mass closer to the physical
mass the strange quark contribution would be increased. This would result in a lower predicted
charge radius for the =% and a larger (in magnitude) charge radius for the Z~. In the absence
of experimental measurements we will not attempt to correct for the effect of the strange quark
mass here.

As we see from Table 5.1, the extrapolated mean square charge radii obtained from both extrap-
olation procedures agree quite well for each charged octet baryon. For the proton, ¥~ and =~
the reconstructed values completely cover the result from the original extrapolations of Eq. (5.2).
In the case of the &t the two values overlap only on the error bars. This is due to the small
variation in the strange quark contribution (which is caused by an environment effect). When
this environment effect is included in the baryon charge radius, the magnitude of the slope is
increased. resulting in a larger charge radius after extrapolation.

In turning the dimensionless masses calculated on the lattice to physical units, the lattice spacing,
a, was set in the traditional manner by fixing the nucleon mass, obtained by a naive linear
extrapolation in m2, equal to the observed mass. Of course, such a linear extrapolation is known
[12] to be inconsistent with chiral symmetry. Applving a more consistent chiral extrapolation
would systematically lower values of <r2> obtained for the charged octet by of the order 15%.
(The effect on neutral baryons is much smaller.) On the other hand, the data which we are forced
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Figure 5.4: Fits to lattice results for the quark sector contributions to the squared electric charge
radius of the A. The strange quark sector results are indicated by open diamonds. All other
symbols are defined in the caption below Fig. 5.2.
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Figure 5.5: Fits to lattice results of the squared electric charge radius of the XF. Fits to the
individual quark sector results are also shown. All symbols are defined in the captions below
Figs. 5.2 and 5.4.
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Figure 5.6: Fits to lattice results for the quark sector contributions to the squared electric charge
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Figure 5.7: Fits to lattice results of the squared electric charge radius of the X~. Fits to the
individual quark sector results are also shown. All symbols are defined in the captions below
Figs. 5.2 and 5.4.
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Figure 5.9: Fits to lattice results of the squared electric charge radius of the =Z~. Fits to the
individual quark sector results are also shown. All symbols are defined in the captions below
Figs. 5.2 and 5.4.
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to use is quenched data which omits some pion corrections. Although these are expected to be
suppressed at the large values of m2 for which the data is available (c.f. Ref.[11]), the associated
systematic error would tend to increase the calculated values of <r2>, perhaps by 5-10%. Rather
than attempt to repair these deficiencies in the present data, it is more reasonable to simply accept
that there is an additional systematic error of the order 15% associated with the extrapolated
values shown in Table 5.1. Adding this systematic in quadrature means that the values in
Table 5.1 would become, for example, <r3p> = 0.68 &+ 0.14 fm?, <7‘EE_> = —0.54 £+ 0.09 fm?,
<r32+> = 0.77 £ 0.14 fm?. It will be interesting to repeat the analysis in this chapter with
unquenched data at lower quark mass when these results become available. In the meantime, we
await further experimental measurements of baryon charge radii to test our predictions.
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Chapter 6

Conclusion

In this thesis we have explored methods of extrapolating lattice QCD results to the physical
regime. In particular, we have considered the extrapolation of lattice results for octet baryon
magnetic moments and electric charge radii as functions of the pion mass, m,. At this point the
only available lattice results for these observables are obtained at quite large pion masses, all
above 600 MeV. Since chiral perturbation theory is not applicable in this regime, chiral expansions
cannot be used directly to extrapolate the lattice results. However, the chiral expansions contain
important non-analytic terms arising from Goldstone boson loops which must be included in
extrapolations to the physical regime.

To guide extrapolations of the lattice results we first considered the predictions of a successful
chiral quark model, the Cloudy Bag Model (CBM). The CBM is a relativistic quark model of
baryons which builds in the phenomena of quark confinement and pion emission. The pion loop
contributions to observables calculated in the CBM match the leading non-analytic behaviour
predicted by chiral perturbation theory in the chiral limit. However, as larger pion masses
are approached, these non-analytic terms are suppressed by form factors which regulate the pion
loops. Therefore, by extrapolating the results using the CBM, the leading non-analytic behaviour
at small m, is included, while the expected behaviour at large m- is also maintained. CBM
extrapolations were performed for the magnetic moment lattice results of the proton and neutron
[11]. It was found that the CBM extrapolations could be reproduced by a simple extrapolation
formula, the Padé approximant. This approximant manifestly builds in the leading non-analytic
chiral behaviour at small m, and the expected Dirac moment behaviour at large m,. The Padé
approximant was used to extrapolate the magnetic moment lattice results of the entire baryon
octet.

The Padé approximant extrapolations of the magnetic moment lattice results of Ref. [33] pro-
duced some very successful predictions. In particular, we obtained the following results for the
nucleons and ¥ baryons (where experimental measurements are indicated in the square brack-
ets and all magnetic moments are in units of nuclear magnetons, un): pp, = 2.90(20) [2.793],
fn = —1.79(21) [—1.913], pux+ = 2.39(16) [2.42(5)], uxgo = 0.53(5) [0.63(4)!] and pg- = —1.33(8)
[-1.157(25)]. The predictions for the = baryon magnetic moments did not agree so well with
experiment. However, this problem is thought to originate from the lattice results themselves.
The lattice results we were forced to use were produced with a very large strange quark mass,
which has the greatest effect in the doubly strange = baryon results. By averaging the = results
with light quark equivalent lattice results we were able to reduce the effect of the heavy strange
quark, and obtain better results. However, the best solution to this problem is to repeat the
analysis with lattice results produced with a more realistic strange quark mass when these results
become available.

!The experimental value for the £° magnetic moment is taken from the isospin average of rt and &~ experi-
mental results.
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The success of the Padé approximant extrapolations motivated the proposal of similar extrap-
olation procedures for the electric charge radius results. Like the magnetic moment case, our
extrapolation formulae for the charge radii were designed to reproduce the leading non-analytic
logarithmic terms predicted by chiral perturbation theory in the chiral limit while maintaining
the correct heavy quark behaviour. We obtained the following predictions for the charge radii of
the nucleons and the £~ (where experimental measurements are indicated in square brackets and
all charge radii are in units of fm?): (r2) = 0.68(10) [0.740(15)], (rZ) = —0.25(8) [-0.113(4)] and
(rZ_) = —0.54(3) [-0.60(16), —0.91(72)]. Predictions were also made for the remaining octet
baryon charge radii, which have not yet been measured experimentally (see Table 5.1). There is
an additional systematic error of the order 15% in the charge radii predictions. This error arises
from problems in setting the lattice spacing and from the fact that the lattice simulations are
quenched. To remove this systematic error the best solution is to repeat the extrapolations with
lattice data produced at lower quark masses in full QCD.

In the future we hope to apply both extrapolation procedures to more accurate lattice data,
produced with a more realistic strange quark mass. It will be interesting to resolve the extent
to which further refinements are required. For example, it may be necessary to include kaon
loop contributions in the extrapolation formulae. However, these contributions are expected to
produce a fairly subtle effect due to the form factor suppression of the kaon loops. The effect
is most likely to be observed for the doubly strange = baryons which couple most strongly to
kaons. We defer this treatment until more accurate lattice results are available. We also await
future experimental measurements, particularly for the charge radii of the spin-1/2 baryon octet,
so that our predictions can be compared with experiment.
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Abstract

We explore methods of extrapolating lattice calculations of hadronic observables to the physical regime, while respecting
the constraints of chiral symmetry and heavy quark effective theory. In particular, we extrapolate lattice results for magnetic
moments of the spin-1,/2 baryon octet to the physical pion mass and compare with experimental measurements. The success
previously reported for extrapolations of the nucleon magnetic moments carries over to the X baryons. A study of the

—

residual discrepancies in the Z baryon moments suggests that it is impo:rtant to have new simulation data with a more
realistic strange quark mass. © 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

One of the key goals of lattice QCD is to confront
experimental data with the predictions of QCD.
However, computational limitations mean that
hadronic observables, such as masses and magnetic
moments, are calculated at quark masses much larger
than their physical values. Although improvements
in algorithms and computer speed will allow lattice
calculations of hadronic observables to be performed
much closer to the physical regime, these improve-
ments will proceed over many years. In the mean-
time it is imperative that one has an understanding of
how to extrapolate lattice results, obtained at large
quark masses, to the physical world.

E-mail addresses: ehackett@physics.adelaide.edu.au (E.J.
Hackett-Jones), dleinweb@physics.adelaide.edu.au (D.B. Leinwe-
ber), athomas@physics.adelaide.edu.au (A.W. Thomas).

A difficult problem encountered in calculating
hadronic observables at heavy quark masses on the
lattice is that chiral perturbation theory is not appli-
cable in this heavy quark mass regime. Nevertheless,
chiral symmetry does require certain model-indepen-
dent, non-analytic behaviour as a function of the
quark mass, m, (or equivalently of mf__, as m, &« mf,
in this range). This non-analytic behaviour must be
taken into account in any extrapolation to the physi-
cal regime. In our earlier work we studied the quark
mass dependence of the nucleon magnetic moments
within a particular chiral quark model which guaran-
teed the correct leading and next-to-leading non-ana-
lytic behavior in m, [1]. It turned out that the
complete dependence on m, could be described very
well by a simple Padé approximant (cf. Eq. (1)
below), even though the usual perturbative chiral
expansion deviated quite badly from the Padé for
pion masses less than twice the physical pion mass —
well below any existing lattice data.
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In view of these earlier results, our extrapolations
here will also be based on Padé approximants which
ensure the correct leading non-analytic behavior as
well as the correct heavy quark behaviour. In the
case of the nucleon, this extrapolation procedure led
to very reasonable values for the proton and neutron
magnetic moments at the physical pion mass, pu, =
2.85(22) py and u, = —1.90(15) u, (see Figure 5
of Ref. [1]). These values agree well with the experi-
mental measurements, namely w,=2.793 u,, and
u, = —1.913 u, . Here we explore the application of
this procedure to octet baryons in general.

The magnetic moment results used here are ex-
tracted from the lattice QCD calculations of Ref. [2].
While the results are now quite old, they continue to
be the only lattice estimates of the spin-1/2 baryon
octet magnetic moments available at the moment.
These results were all obtained at pion masses above
600 MeV. We extrapolate these results as functions
of the pion mass, m_, to the physical pion mass of
140 MeV, to obtain the physical magnetic moment
predictions. Because the lattice calculations are
quenched, we expect that there are errors in the
lattice data which we have been unable to take into
account. However, as explained in Ref. [1], these
errors are expected to be on the scale of the statisti-
cal errors. Nevertheless, an ideal extrapolation of
magnetic moments would use full QCD lattice re-
sults which are unavailable at the moment.

2. Extrapolations

To extrapolate the lattice calculations of the mag-
netic moments we use the Padé approximant:

Mo
pi(my) = —x (1)
1——m_+cm?
Ho

where x;, corresponding to the i™ baryon, is fixed
model-independently by chiral perturbation theory
and p, and c are allowed to vary to best fit the data
[1]. This formula builds in the chiral behaviour at
small m_, governed by y;, as well as the correct
heavy quark behaviour, as discussed in the follow-
ing.

The Goldstone boson loops resulting from dynam-
ical chiral symmetry breaking mean that the baryon
magnetic moments exhibit certain model indepen-
dent, non-analytic behaviour in the quark masses.
Using an expansion about the chiral SU(3) limit, one
finds that the magnetic moments of the octet baryons
(in nuclear magnetons, ) are given by

my

p=vt Z Bi(X)

my +iis (2)
X=7K 8 f? X

where the ellipses represent higher order terms, in-
cluding logarithms [3]. Here f is the pion decay
constant in the chiral limit (93 MeV) and my, is the
nucleon mass. For our purposes, namely extrapolat-
ing lattice data at fixed strange quark mass (m,) as a
function of the light quark mass (m q), it is preferable
to expand about the SU(2) chiral limit. The cloudy
bag calculations in Ref. [1] showed that Goldstone
boson loops are suppressed like my* at large m,
(comparable to m). Although this result is model
dependent, the lattice simulations themselves do not
show a rapid variation with m, at values of order
my or higher, thus supporting the general conclu-
sion. One therefore expects that the kaon loops
should be relatively small and slowly varying as a
function of m;. They can therefore be absorbed in
the fit parameters u, and c. On the other hand, the
rapid variation of m, with m 6 means that the lead-
ing non-analytic behaviour in m, must be treated
explicitly.

It is simple to see that the Pad¢é approximant, Eq.
(1), guarantees the correct behaviour of the magnetic
moments in the chiral SU(2) limit. Expanding Eq.
(1) about m, =0 we find
Xi2
— 7 M€
Mo

mi+... (3)

M= Mo T X;myt+

In order to reproduce the leading non-analytic be-
haviour of the chiral expansion in our fit we fix y;
to the value B{™(my/8mf?) for the i"™ octet
baryon. The one-loop corrected estimates [3] of the
coefficients 8{™ and y; are given in Table 1.

! Recall that m% o m, + m, and m, is fixed and large.
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Table 1
One-loop corrected estimates of 8™ (in Eq. (2)) and x; = B{™(my/87f?)
P n A 3* 30 3 E° E-
Bm —(F+ D) (F+ D) 0 —ip?—2F? 0 ip?+2F? —(D-F)? (D-F)?
B,-“‘-) —-1.02 1.02 0 —0.57 0 0.57 —0.04 0.04
Xi —4.41 441 0 —2.46 0 2.46 —1.91 1.91

The Padé approximant, Eq. (1), also builds in the
expected behaviour at large m,. At heavy quark
masses we expect that the magnetic moment should
fall off as the Dirac moment

e, 1

o — (4)

2
2m, my

0 ’L =

as m, becomes moderately large. This is clearly the
case in the Padé approximant. Therefore, the Padé
approximant has been chosen to reproduce physical
phenomena at the small and large m_ scales. It also
succinctly describes the excellent phenomenology of
the Cloudy Bag Model [1,4]. The Padé approximant
has already been used successfully in the extrapola-
tion of lattice results of magnetic moments of the
nucleon, which we include here for completeness [1].

3. Results

In the following graphs, Figs. 1, 2, 3, 4, lattice
calculations of the baryon magnetic moments are
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Fig.1. Fits to lattice results of the proton magnetic moment. The
physical value predicted by the fit is also indicated, as is the
experimental value, denoted by an asterisk.

fitted as a function of m,_, according to the Padé
approximant given in Eq. (1), with coefficients, x;,
from Table 1. In each case the solid lines are Padé
approximant fits to the magnetic moment lattice
results. Experimental measurements are indicated at
the physical pion mass by an asterisk (%). The
magnetic moment predictions of the Padé approxi-
mant are compared with experimental values in Table
2. The fit parameters, p, and c, for the solid lines
are also indicated.

In the case of the nucleon, the fits given here
(Figs. 1 and 2) are slightly different from those given
in Ref. [1], as we omit the second set of lattice
results (these were extracted from Ref. [6] which
dealt with the nucleon only) in order to produce a
consistent set of graphs for the entire baryon octet.
However, the nucleon fits shown here still give
excellent agreement with experimental data. The
physical magnetic moment predictions for the 3*
and 3~ are also in good agreement with experiment.

Using magnetic moment values predicted by the
Padé approximant we can calculate the ratio of the
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Fig.2. Fits to lattice results of the neutron, A and 3~ magnetic
moments. The physical values predicted by the fits are indicated,
as are the experimental values, which are denoted by asterisks.
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Fig.3. Fits to lattice calculations of the 3+ and X° magnetic
moments. The physical values predicted by the fits are indicated,
as are the experimental values (see text), which are denoted by
asterisks.

E~ and A magnetic moments. The simple quark

model predicts that this ratio is given by

M=- 1 M

LR R (5)
Ma 3 Mg

which becomes
H=- 1 m;

e (©)
X 3 my

if we take each quark magnetic moment to be given
by the Dirac moment of its constituent mass. In this
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Fig.4. Fits to lattice calculations of the Z° and =~
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magnetic
moments. The upper two lines are fits for 5~ results and the
lower two lines for 5% results. Solid lines represent fits to the
magnetic moment results, whereas dashed lines represent fits to
averaged results (denoted by open symbols which are offset for
clarity), as described in the text. The physical values predicted by
the fits are indicated, as are the experimental values, which are
denoted by asterisks.

Table2

Magnetic moments of the octet baryons (in nuclear magnetons)
predicted by lattice QCD compared with experiment. (The experi-
mental value for 50 is taken from the average of 5* and 3~
experimental results, which is valid in the limit of isospin symme-
try.) The fit parameters u, and ¢ of the Padé approximant are
also indicated in units of u, and GeV ™2 respectively. The
column entitled ‘Averaged Lattice’ reports magnetic moments
from extrapolations of lattice calculations averaged to better de-
scribe the strange quark mass, as discussed in the text

Baryon p,

c Lattice

Averaged Experiment
Lattice

P 346  0.68 2.90(20) 2.793

n —-228 0.11 —1.791) -1.913

A —038  0.005 —0.38(3) —0.613(4)
3t 271 040 2.39(16)  2.53(18)  2.42(5)
I 0.54 044 0.53(5) 0.58(7) 0.63(4)
3 -164 135 -—133(8) —1.35(15) —1.157(25)
g0 —0.80 029 —0.82(4) -—0.95(10) —1.250(14)
= —046 —038 —044(2) -—0.67(8) —0.6%4)

case the ratio is less than 1 for m, > m,. This
disagrees with the experimentally measured value of
1.13(7). However, using the predictions of the Padé
approximant, we obtain a value of 1.15 for this ratio,
which is in excellent agreement with the experimen-
tal data. This is a good indication that meson cloud
effects must be included in an extrapolation of lattice
results to the physical regime.

The lattice calculations of baryon magnetic mo-
ments used in this letter were made with a strange
quark mass of approximately 250 MeV [2]. This is
much heavier than the physical mass of the strange
quark of 115 + 8 MeV at a scale 2 GeV, taken from
a careful analysis of QCD sum rules for 7 decay [5].
The contribution of the strange quark to the X
baryon magnetic moments is very small. Lattice
QCD calculations indicate that the contribution of a
singly represented quark in a baryon is half that
anticipated by SU(6) spin-flavour symmetry [7}
Hence the heavy strange quark mass will have a
subtle effect on the 3 moments. By contrast, the
strange quarks dominate the A and = magnetic
moments. Thus the heavy strange quark produces a
large error in the lattice data for these baryons,
which so far we have not taken into account. This is
reflected in the predictions of the A, £° and &~
magnetic moments which are smaller in magnitude
than the experimental measurements in all cases.
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In an attempt to correct for the effect of the large
strange quark mass considered in the lattice calcula-
tions, we average the magnetic moment lattice re-
sults of each S+ 0 baryon with magnetic moment
results of a light-quark equivalent baryon?. This
procedure interpolates between magnetic moment
lattice results produced with heavy strange quarks
and those produced with zero strange quark mass.
These averaged results have an effective strange
quark mass closer to the physical strange quark
mass. We have also used the Padé approximant to
extrapolate the averaged results. The effect on the 3
moments is subtle (see Table 2). However, in the
case of =7, this method is sufficient to reproduce
the empirical 5~ moment (as shown by the dashed
line in Fig. 4). There is a remaining discrepancy in
the value predicted for the & °. Clearly the present
estimate of the correction for the heavy strange
quark mass is somewhat crude. We therefore regard
it as very important to have new simulation data with
a realistic strange quark mass. At that stage it may
also be necessary to include kaon loop effects, be-
cause the transition Z°— I*+ K~ is energetically
favoured, and will make a negative contribution to
the 5 ° magnetic moment.

4. Conclusion

We have shown that the Padé approximant which
was introduced to extrapolate lattice results for the
magnetic moments of the nucleon, is also successful
in predicting magnetic moments for the spin-1/2
baryon octet. The magnetic moment values predicted

? Lattice calculations of a light-quark equivalent A are not
available.

by the fits for the p, n, 3* and 3~ compare well
with experimental data. As a first estimate of the
correction to be expected if a more realistic strange
quark mass were used, we averaged lattice results for
the S # 0 baryons with the magnetic moments of the
corresponding light-quark baryons. This had a small
effect on the predictions for the 3 baryon magnetic
moments, but significantly improved the 5 baryon
results. In the case of 57, the averaging procedure
produced good agreement with the experimental re-
sults. In the future we hope to perform a similar
extrapolation procedure using more precise magnetic
moment lattice data, calculated with realistic strange
quark masses. At that stage it may also be necessary
to include the kaon loop corrections, especially for

—

the doubly strange = hyperons.
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Abstract

We extrapolate lattice calculations of electric charge radii of the spin-1/2 baryon octet to the physical regime. The
extrapolation procedure incorporates chiral perturbation theory and heavy quark effective theory in the appropriate limits. In
particular, this procedure includes the non-analytic, logarithmic terms from pion loops. The electric charge radii of the nucleons
and X'~ obtained from the chiral extrapolations agree well with experimental data. We make predictions for the charge radii of
the remaining baryons in anticipation of future experimental measurements. © 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

Lattice QCD is so far the most successful method
of calculating hadronic observables from the theory
of QCD. However, computational limitations mean
that hadronic observables are calculated on the lat-
tice at quark masses larger than their physical val-
ues. Hence results from lattice simulations cannot be
directly compared with experimental data. Although,
with improvements in actions, algorithms and com-
puter speed, future lattice calculations will be per-
formed much closer to the physical regime, these im-
provements will proceed over many years. Therefore,
to make sense of any lattice results produced to date,
and to compare them with experiment, one must un-

: Corresponding author.

E-mail addresses: ehackett@physics.adelaide.edu.au
(E.J. Hackett-Jones), dleinweb@physics.adelaide.edu.au
(D.B. Leinweber), athomas@physics.adelaide.edu.au
(A.W. Thomas).

derstand how to extrapolate lattice results, obtained at
large quark masses, to the physical world.

One of the difficulties with calculating hadronic ob-
servables at heavy quark masses on the lattice is that
chiral perturbation theory cannot be applied in this
quark mass regime. However, chiral expansions of
hadronic observables contain important non-analytic
terms as a function of the quark mass, m4 (or equiva-
lently of m% , @S My X m;"'r in this range). It is vital that
this non-analytic behaviour is included in any extrap-
olation to the physical regime [1-8].

The chiral expansion of the squared electric charge
radius of a spin-1/2 octet baryon includes non-analytic
behaviour in the form of logarithmic terms in my
(or mg). To extrapolate the lattice results for electric
charge radii we incorporate these logarithmic terms
in our extrapolation formulae, while ensuring that
the correct heavy quark behaviour is also maintained.
A similar approach [1] has been successful in explain-
ing why lattice simulations of pion and proton charge
radii are similar in size, while experimental measure-

0370-2693/00/$ — see front matter © 2000 Elsevier Science B.V. All rights reserved.
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ments reveal a significant difference. The dramatic dif-
ferences in the chiral behaviour of the pion and proton
charge radii account for the similarity of the lattice re-
sults at moderately heavy pion masses, while allowing
good agreement with experiment at the physical pion
mass. This illustrates the importance of including me-
son cloud effects in extrapolations of lattice results to
the physical regime. In this paper, we improve the for-
malism of chiral extrapolations by incorporating both
chiral symmetry and heavy quark effective theory.

Our lattice “data” for the electric charge radii is
taken from the calculations of Ref. [9]. The contribu-
tions to the charge radii from individual quark flavours
are also given there. These results are the only avail-
able lattice calculations of the electric charge radii of
spin-1/2 octet baryons. For each baryon, the electric
charge radius was calculated at three different quark
masses, corresponding to rather heavy pion masses (all
exceeding 600 MeV). Here we extrapolate these re-
sults as functions of the squared pion mass, mfr, to
obtain predictions for the charge radii at the physi-
cal pion mass (139 MeV). Because the lattice calcu-
lations are quenched, we expect that there are errors
in the lattice data which we have been unable to take
into account. However, we expect that errors from the
quenching approximation will be rather small. At the
quark masses considered on the lattice, the dominant
effect is a simple renormalization of the strong cou-
pling constant, accounted for in setting the lattice spac-
ing scale. When results from unquenched simulations
become available, the formalism presented here may
be readily applied.

2. Extrapolations

Dynamical breaking of chiral symmetry in the QCD
lagrangian results in the formation of an octet of
(pseudo-) Goldstone bosons. Goldstone boson loops
give rise to significant non-analytic behaviour in
hadronic observables, such as (r,-2) and magnetic mo-
ments, as a function of the quark mass, my. Using
an expansion about the chiral SU(3) limit gives the
following expression for the squared electric charge
radius, (r‘?'), of a spin-1/2 octet baryon (labelled

by i) [10]

(X)
P=vi+ Y L,ln<m—x)+---. (1)
X=m.K (4r fr)* A

Here f; is the pion decay constant (93 MeV) and X is
the scale of the dimensional regularization. (The value
of y; is clearly correlated with the choice of A.) Un-
like SU(2)-flavour symmetry, SU(3) is significantly
broken in the physical world, with the strange quark
mass the same order of magnitude as Agcp for low-
energy phenomenology. The squared kaon mass ex-
ceeds the squared pion mass by over an order of mag-
nitude. Given that the source of the meson cloud asso-
ciated with a baryon is of a finite size, one might antic-
ipate that the role of the kaon cloud will be suppressed
away from the SU(3) chiral limit [11]. The form fac-
tor describing the finite size of the kaon source will
act to suppress kaon loop effects like m;“' atlarge my
(comparable to m g ). This was demonstrated within a
particular chiral quark model for the nucleon magnetic
moments in Ref. [4]. Despite the model-dependence
associated with the form factors, the lattice results
themselves are very slowly varying functions of mx
at values of the order mg or higher, thus support-
ing the general conclusion. Therefore kaon loop ef-
fects are expected to be small and slowly varying as
a function of m,. Hence we do not explicitly include
kaon contributions in our extrapolation formulae. Con-
versely, since my varies rapidly with mg, the leading
non-analytic behaviour in m, must be included explic-
itly in an extrapolation to the chiral regime.

To extrapolate the lattice calculations of the electric
charge radii of the spin-1/2 octet baryons, we consider
two distinct fitting procedures. Both these extrapola-
tion schemes satisfy the constraints of chiral perturba-
tion theory and heavy quark effective theory. The first
extrapolation procedure we investigate is given simply
by the formula

(r;) _ c1+ xiln(mg /A)

1+ sz%
where (rl.z) are the lattice QCD results (at several
values of mj) extracted from Ref. [9], c; and c2
are fit parameters chosen to best fit these results, x;
(corresponding to the ith baryon) is fixed (model-
independently) by chiral perturbation theory and A,

which is directly correlated with ¢y, is fixed at 1 GeV.

@
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This extrapolation procedure is not feasible for the
neutral baryons because (rl.z) — 0 as my, becomes
large and thus sensitivity to the ¢y fit parameter
is lost. In order to extrapolate the neutral baryon
charge radii results we consider a second extrapolation
procedure, focusing on individual quark “sector” (or
quark flavour) contributions, as discussed below.

Clearly the extrapolation formula given in Eq. (2)
builds in the correct chiral behaviour in the SU(2)
limit, since in the limit m; — 0 it can be expanded
as follows

(I‘,'z)=cl+Xiln(mﬂ)—czm72r+...‘ 3)

(Recall that the scale A, in Eq. (2), has been set to
1 GeV. This choice is also implicit in Egs. (6)—(10),
below, where m, in the logarithm must be in GeV.)
This agrees with the chiral SU(2) expansion of the
squared electric charge radius (see Eq. (1)), provided

we fix the coefficient x; to 6015”)/(47rf,r)2 for the
()

ith baryon. The coefficients ;" and x; are given in
Table 1.

In the large m, limit, we expect that the quarks
behave non-relativistically, and the squared charge
radius falls off as m;{z, as it does in non-relativistic
quanturn mechanics. In the region where m, is very

large, my o my, and hence we require that

1
2) o —
o g @

as my, becomes extremely large. This is clearly satis-
fied by our first extrapolation formula, Eq. (2), since
the logarithm is very slowly varying.

In the second extrapolation procedure we deal sep-
arately with the individual quark sector contributions
to the baryon charge radii. For example, in the case of
the nucleons, we extrapolate the up and down sector
contributions separately. For the hyperons the strange
and light sector results are extrapolated separately.
This avoids the problem encountered with the neu-
tral baryons which was mentioned previously, because
now all the quantities being extrapolated are charged,
even if the overall charge on the baryon is zero. This
separation is valid because the squared electric charge
radius can be decomposed as

(rf)= Z eq(’i(q)z)’ (5)

q=u.d,s

where (ri(q)z) is the contribution from the gth quark

sector and ¢, is the charge of this quark sector. There-
fore, provided that the extrapolation tormulae from
each sector add so that the chiral and heavy quark lim-
its of the sum are in agreement with Egs. (1) and (4),
respectively, this method contains the same physics as
the first method, but simply makes use of the extra in-
formation contained in the individual quark sector re-
sults. Not only does this second extrapolation proce-
dure solve the neutral baryon extrapolation difficulty,
it also provides predictions for individual quark sector
radii, which will be resolved at Jefferson Lab for the
nucleon [12], and perhaps future accelerator facilities
for hyperons,

Isolation of the individual quark sector contribu-
tions to the charge radii is relatively straightforward
from the theoretical point of view. For example, to iso-
late the u-sector contribution to the charge radius of
the proton one simply sets the d-quark charge to zero
and calculates the proton charge radius as if only the
u quark carried charge. In the chiral expansion of the
proton charge radius, the coefficient of the logarithm,
Xf,” ), originates from the pionloop, p — n+ ™ (see
Fig. 1), and includes the charge of the pion cloud.
Therefore, to extrapolate the u-sector contribution to
the proton charge radius, the appropriate coefficient
of the logarithm is % x,(,"), since the pion now carries
charge +2/3. Thus we extrapolate the u-sector results
of the proton according to

e+ %x}fr’ In(my)
1+ com?

(6)

261:()‘1(7”)2) ]

where x(” ) is the full chiral coefficient of the proton,

P
given in Table 1 and (r,(,")z) is the squared charge

P I P

Fig. 1. Schematic illustration of the pion loop which produces the
leading non-analytic contribution to the proton charge radius.
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radius of a single i-quark of unit charge. Similarly,
the d-sector results are extrapolated according to

@2 c + %x,,ln(m,,)
ed<rp )_ )
1+ cymz

; ™

where the factor of 1/3 originates from the d contri-
bution to the pion cloud. Clearly adding the left-hand
sides of Eqs. (6) and (7) yields the full expression for
(r;). In the chiral limit the right-hand sides add so
that the correct chiral form for (rf,), given in Eq. (3),
is retained. The sum of Eqs. (6) and (7) also obeys
the correct heavy quark behaviour, given in Eq. (4).
Since the parameters ¢ and ¢} are not necessarily the
same, the individual quark sector extrapolation formu-
lae (Eqs. (6) and (7)) cannot be added directly to give
Eq. (2). Therefore, in general we do not expect the
two extrapolation procedures to give exactly the same
results. For the charged baryons this may be used to
help quantify the systematic error of the approach. For
the neutron, the analogous extrapolation functions are
given by

o1+ 3x4" In(mz)

(1)2y _
= .
for the u-quark sector, and
¢+ 1% In(m
2ed(r,(,d)2) _aT3 Xn ( n)! ©)

72
1-+-c2m7T

for the d-quark sector results, where X,E" ) is given in
Table 1.

We now consider extrapolating the hyperon charge
radii results using the second extrapolation procedure,
i.e., extrapolating the strange and light quark sector
results separately. In extrapolating the strange quark
sector the charges of the light quarks are set to zero.
Since the logarithmic term considered here originates
from pionic corrections to the charge radius (and pi-
ons do not contain strange quarks), the coefficient of
the logarithm in the strange sector extrapolation will
be zero. Similarly, for the light sector extrapolation,
strange quarks do not carry charge and hence the coef-
ficient of the logarithm in this extrapolation will be the
full coefficient, Xi(”). This results in the following ex-
trapolation formulae for the hyperon quark sector con-
tributions

i1
e;(r,.(”z) _atx n(mz)

10
1+com2 (1)

cl
T (11)

es(r;”") = ,
o 1+ cym2

i
where i runs over the hyperons only, and [ corresponds
to the light-quark (1 and/or d) sector. Since the strange
quark mass is held fixed in the light quark mass ex-
trapolation, any variation in the strange quark sector
is purely an environment effect from the surround-
ing light quarks. As such, the functional form for the
strange quark sector is constrained by neither leading
order chiral perturbation theory nor heavy quark effec-
tive theory. As we shall see, ¢ is small and negative
for each hyperon, which suggests that a simple linear
ansatz for the strange quark sector extrapolation could
also have been used.

3. Results

The lattice QCD simulations were performed on
a 24 x 12 x 12 x 24 periodic lattice using standard
Wilson actions at 8 = 5.9. Dirichlet boundary con-
ditions were used for fermions in the time direction.
Twenty-eight quenched gauge configurations were
generated by the Cabibbo—Marinari [18] pseudo-heat-
bath method. The conserved vector current was de-
rived from the Wilson fermion action via the Noether
procedure. The associated lattice Ward identity pro-
tects this vector current from renormalization. The
radii were produced by fitting the electric form fac-
tor to dipole and monopole forms, allowing a charge
radius to be extracted in each case. Since it is known
from experiment that the dipole form is more suitable
for parameterizing the electric form factor, we con-
sider only the dipole results here. Statistical uncertain-
ties in the lattice simulation results are calculated in a
third-order, single elimination jackknife [19,20]. Fur-
ther details may be found in Ref. [9].

The extrapolations of lattice calculations for the
charge radii of the spin-1/2 baryon octet are shown
in Figs. 2-7. Extrapolations of baryon charge radii
results, performed according to Eq. (2), are indicated
by the solid lines, where the full circles (o) represent
the baryon charge radii from lattice QCD and the
extrapolated value at m, = 139 MeV. The individual
quark sector extrapolations are shown by the dashed
and dot-dashed lines, and the baryon charge radius
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Baryon electric charge radii and the quark sector contributions. The latter are defined on the left-hand sides of Eqgs. (6)(11). One-loop corrected
estimates of af”) (in Eq. (1)) and x; (in units of fm2) for each octet baryon are indicated. For each extrapolation, the fit parameters, c| and ¢y,

and the predicted value of (r?) at the physical pion mass are reported. Asterisks denote the squared charge radii reconstructed from the sum of
separate quark sector extrapolations. (The units are such that the pion mass is in GeV and the squared charge radius in fm?)

Baryon or quark sector otf") Xi ] c2 (r2) Experiment

p -3 -23D+F) ~0.174 0.34 0.50 0.68(8) 0.740(15) [14]

up %[—% -2+ F)Z] —0.116 0.52 0.73 0.74(11)

dp J[-4-2@+F7] —0.058  -0.18 138 —0.06(5)

*p 0.68(10) 0.740(15) [14]

n t+3(D+F)? 0.174

tn [} +30+F7] 0.116 035 1.38 0.12(10)

dn 3}[3‘; +2(D+ F)Z] 0.058 —0.26 0.73 ~0.37(6)

*n ~0.25(8) ~0.113(4) 15}

A 0 0

la 0 0 0.15 0.97 0.14(3)

sa 0 0 —0.07 -0.10 ~0.07(1)

‘4 0.07(3)

1_35(D, g2
T+ -1 -3(5 +F?) ~0.138 0.68 2.03 0.92(11)
2

Is+ ~4-3(&F+F) ~0.138 0.58 0.93 0.83(8)

G 0 0 -0.06 -0.17 ~0.06(1)

_— 0.77(8)

x0 0 0

I50 0 0 0.19 1.48 0.18(2)

S50 0 0 ~0.06 —0.17 —0.06(1)

.50 0.12(2)

- 3+ §(%3 + F?) 0.138 ~0.25 0.08 —0.52(3) —0.60(16) [16]
—0.91(72) [17)

2

Ig- b+3(5+F2) 0.133  —021 037 —0.4703)

S 0 0 ~0.06 -0.17 —0.06(1)

s ~0.54(3) ~0.60(16) (16]

=0.91(72) [17]

(continued on next page)
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Table 1 (contintied)

Baryon or quark sector af") Xi €l €2 ) Experiment
=0 -3-3(D-F)? —0.035

I=o0 -3 -3(D-F)? —0.035 0.29 0.97 0.35(5)

520 0 0 -0.15 —0.05 —0.15(1)

v 50 0.20(5)

E- $+3(D-F)? 0.035 ~0.24 0.07 ~0.32(2)

= t+3(D-F)? 0.035 —0.12 0.70 —0.19(2)

SEE 0 0 —0.15 —0.05 —0.15(1)

R —0.34(2)

predicted by this method is indicated by a full square
(w). Experimental measurements are indicated at the
physical pion mass by an asterisk (»). Note that for the
charged baryons, two extrapolation schemes and two
corresponding predicted physical values are shown,
whereas (for the reasons explained in Section 2) only
one extrapolation procedure is shown for each neutral
baryon.

In the case of the proton, the two extrapolated re-
sults agree very well with the experimental measure-
ment. It can be seen that a traditional linear extrap-
olation in m;-’, would significantly underestimate the
experimental result. Similarly the predicted charge ra-
dius for the neutron (produced by separate extrapola-
tions of the - and d-sector results) agrees with the ex-
perimental data significantly better than the prediction
from a conventional linear extrapolation in m2. Both
predicted values for X'~ also agree very well with the
two experimental measurements. These baryons are
currently the only baryons of the spin-1/2 octet whose
electric charge radius has been measured.

From simple quark model arguments [9], where the
heavier strange quark has a smaller distribution than
the light quarks, we expect the hierarchy of electric
charge radii of charged octet baryons to be given as
follows

frga )l 2 162l = =) > -l (12)
Clearly the results of the lattice extrapolations shown
in Table 1 are in qualitative agreement with this ex-

pectation. Indeed, in the regime of the actual lattice
data (m, > 600 MeV) the argument is even quantita-

tive. However, as the chiral limit (and physical pion
mass) is approached, the simple quark model descrip-
tion is no longer adequate and chiral physics gives rise
to dramatic effects. For example, in the extrapolation
of the d-quark sector of the proton (Fig. 2), chiral ef-
fects mean that the d-quark sector can actually make
a positive contribution to the charge radius, via the d
contribution in 7 — even though the total contribu-
tion is negative at the physical pion mass. This behav-
iour is not anticipated by the simple quark model.

For the neutral baryons the sign of the squared
charge radius is important. In the neutron, the two d
quarks are most likely to be found in a spin-1 config-
uration, where they will undergo hyperfine repulsion.
This leads to a small, negative charge radius squared.
However, as one approaches the chiral limit, spon-
taneous chiral symmetry breaking, in parlicular the
process n — pm~, which carries d-quarks to larger
radii and screens the u-quark contribution via the u
in the 7, leads to an enhancement of the negative
charge radius. The remaining neutral baryons, X 0A
and 59, have a positive squared charge radius. This is
because in each case the strange quark distribution is
more localized than the light quark charge distribution
(due to the larger mass of the strange quark). There-
fore on average the light quark charge distribution oc-
curs at a larger radius, resulting in a positive charge
radius (since the light quark charge is positive in each
case).

The lattice results used here were calculated with
a strange quark mass of approximately 250 MeV [9].
This is much larger than the physical strange quark
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Fig. 2. Fits to lattice results for the squared electric charge radius of the proton. Fits to the individual quark sector results are also shown. The
u-quark sector results are indicated by open triangles and the d-quark sector results by open squares. Physical values predicted by the fits are
indicated at the physical pion mass, where the full circle denotes the result predicted from the first extrapolation procedure and the full square
denotes the baryon radius reconstructed from the quark sector extrapolations (see text). (N.B. The latter values are actually so close as to be
indistinguishable on the graph.) The experimental value is denoted by an asterisk.
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Fig. 3. Fits to lattice results for the quark sector contributions to the squared electric charge radius of the neutron. All symbols are defined in

the caption of Fig. 2.
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Fig. 4. Fits to lattice results of the squared electric charge radius of the X+, Fits to the individual quark sector results are also shown. The
strange quark sector results are indicated by open diamonds. All other symbols are defined in the caption of Fig. 2.
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Fig. 5. Fits to lattice results of the squared electric charge radius of the X ™. Fits to the individual quark sector results are also shown. All
symbols are defined in the captions of Figs. 2 and 4.
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Fig. 6. Fits to lattice results for the quark sector contributions to the squared electric charge radius of the 59, All symbols are defined in the
captions of Figs. 2 and 4.
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Fig. 7. Fits to lattice results of the squared electric charge radius of the &~ Fits to the individual quark sector results are also shown. All
symbols are defined in the captions below Figs. 2 and 4.
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mass of 115+ 8 MeV at a scale 2 GeV, taken from
a careful analvsis of QCD sum rules for v decay
[13]. In an earlier study of lattice results for octet
baryon magnetic moments [8] (where the results were
extracted from the same lattice simulation [9]), it was
found that the heavy strange quark had a significant
effect on the predictions of the & moments. Here we
expect that the heavy strange quark should also have
some effect on the & charge radii. With a strange
quark mass closer to the physical mass the strange
quark contribution would be increased. This would
result in a lower predicted charge radius for the =°
and a larger (in magnitude) charge radius for the = .
In the absence of experimental measurements we will
not attempt to correct for the effect of the strange quark
mass here.

As we see from Table 1, the extrapolated mean
square charge radii obtained from both extrapolation
procedures agree quite well for each charged octet
baryon. For the proton, ¥~ and &~ the reconstructed
values completely cover the result from the original
extrapolations of Eq. (2). In the case of the ¥ the
two values overlap only on the error bars. This is due
to the small variation in the strange quark contribution
(which is caused by an environment effect). When
this environment effect is included in the baryon
charge radius, the magnitude of the slope is increased,
resulting in a larger charge radius after extrapolation.

In turning the dimensionless masses calculated on
the lattice to physical units, the lattice spacing, a, was
set in the traditional manner by fixing the nucleon
mass, obtained by a naive linear extrapolation in m,zr,
equal to the observed mass. Of course, such a linear
extrapolation is known [5] to be inconsistent with chi-
ral symmetry. We have checked that applying a more
consistent chiral extrapolation would systematically
lower values of (r?) obtained for the charged octet
by of the order 15%. (The effect on neutral baryons
is much smaller.) On the other hand, the data which
we are forced to use is quenched data which omits
some pion corrections. Although these are expected to
be suppressed at the large values of m2 for which the
data is available (cf. Ref. [4]), the associated system-
atic error would tend to increase the calculated values
of (r?), perhaps by 5-10%. Rather than attempt to re-
pair these deficiencies in the present data, we feel it
would be more reasonable to simply accept that there
is an additional systematic error of the order 15% asso-

ciated with the extrapolated values shown in Table 1.
Adding this systematic in quadrature means that the
values in Table 1 would become, for example, (rfp) =

0.68 + 0.14 fm?, (rf_) = —0.54 + 0.09 fm?, (rf+ ) =

z

x
0.77 £ 0.14 fm?. We look forward to repeating our
analysis with unquenched data at lower quark mass,
which is the best way to overcome these problems.

4., Conclusion

In this Letter we have investigated two methods of
extrapolating lattice results for the electric charge radii
of octet baryons to the physical regime. These proce-
dures build in the correct leading non-analytic behav-
iour of the electric charge radii in the chiral limit, as
well as the correct heavy quark behaviour. Both ex-
trapolation procedures were performed for the charged
octet barvons, with the predicted values agreeing very
well. The extrapolation formulae seem to be very suc-
cessful, as good agreement with experiment was ob-
tained for the nucleons and the X ~. We await further
experimental measurements of the baryon charge radii
in order to test our predictions. In the future we hope
to perform similar exirapolations of electric charge
radius lattice results calculated with a more realistic
strange quark mass and eventually with lighter, dy-
namical u- and d-quarks.
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