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SUMMARY

This thesis is concerned with the estimation of the frequency of a single sinusoid of fixed but

unknown frequency and which has been corrupted by errors in a quadrature hybrid, coherent

receiver system. The quadrature hybrid receiver has been employed to produce in-phase and

quadrature baseband signal components which can be sampled and undergo an analogue to

digital conversion. A simple, discrete frequency estimator is derived from the rate of change

of signal phase between successive samplìng instants after analogue to digital conversion.

The statistical effects of the errors and imbalances, inherent in the quadrature hybrid, upon

the discrete frequency estimator are studied. This study has been carried out in four stages

forming the content of the four chapters : 2,3,4,5.

In chapter 2, an analytic study of the estimation of the frequency of a single sinusoid, which

has passed through a quadrature hybrid system, is carried out. This study is further subdi-

vided so that each of the quadrature hybrid errors is examined individually. A summary of

the results derived for each error case is provided, in tabular form, in appendix XII.

In chapter 3, the quadrature hybrid and input signal are modelled as a computer simulation.

This chapter is subdivided, as with chapter 2, so that each error case is simulated on an

individual basis. In each case the error or imbalance is varied and the frequency of the input

sinusoid is varied so that most of the possible error conditions and possible input frequencies

are studied. Simulation results are presented in graphical form and compared with a similar

graphical presentation of the theoretical results from chapter 2.

In chapter 4, a real quadrature hybrid, receiver system is examined and the inherent system

errors are measured. These measurements serve to suppolt both the simulations and the

theory.

In chapter 5, techniques are derived in order to reduce the degradation of frequency estimation

caused by the quadrature hybrid system errors and both simulation results and a real example

are given. It is also demonstrated that the theoretical lower limit for frequency estimation

in the presence of normally distributed noise (the Cramér-Rao lower variance bound) can be

acheived for this system.
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NOTATION

Explanation

The in-phase or REAL component of the analytic signal

The quadrature or IMAGINARY component of the analytic signal

Angular frequency measured in radians per second

The phase of the signal at time t

The difference in signal phase between time t and time (t-T)

where T is the sampling period

The analytic signal at time t, E(t) : I(t) + iQU)

The phase or argument of the analytic signal at time t

The frequency of the input sinusoid at time t, measured in Hz

The phase of the signal at sample point n

The difference in signal phase between point n and point (n-1)

The phase or argument of the analytic signal at point n

The frequency of the input sinusoid at point n

An operator which removes the fractional part of a real value x

leaving only the integer part

Expected value of phase difference taken over

N phase difference data points

Angle through which the complex signal vector rotates,

ie phase change of signal, between sample instants

DC offset in the I channel

DC offset in the Q channel

Relative amplitude gain error, ? = | +'l

Quadrature phase error

The number of phase difference samples available

The signal-to-noise power rat\o, p - 1
The error in the signal phase

The mean or expected value of variable x, E{x} = /å xp(x)dr

The probability density of x

The variance or mean square error in variable x,

Var{r\ = E2{r- ô} : E{r'} - E'{*}
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Var{Lî}

V ar{A,0}

The mean squa.re error, or variance, in a single phase difference

data point

The mean square error, or variance, in the expected value of

phase difference taken over N data points. We use mse{L,O}

and,Var{Ñ} in the figures as an aid to distinguish between

the two variables : Ad and &
The variance of the noise in the I channel

The variance of the noise in the Q channel

Total variance due to the noise in the I and Q channels, 02 : o! + o2o

The signal amplitude after passing through the quadrature hybrid

The maximum phase error due to the system errors

The amplitude of resultant complex vector ie signal plus error

The maximum value of R when signal combined with error

The minimum value of R when signal combined with error

The amplitude of the complex noise vector

The order of the adaptive filter

The convergence parameter of the adaptive filter

o!

ol

o2

A

0. o,

R

Wno,

Rt,;r,,

z

t
l.r
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1 INTRODUCTION

1.1 The quadrature hybrid receiver

In many signal processing based systems, for example modern sonar, radar and communi-

cation systems using digital signal processing, an analogue operation is performed which

produces an in-phase (I) and a quadrature (Q) component of a real input signal. In this case

the input signal is a single (one frequency component) narrowband signal of fixed frequency.

An intermediate frequency signal at frequency ao* ar1, with an amplitude A, is split and

mixed with coherent I and Q reference sources given by cosrrsl and -sina.r6l, respectively.

After mixing the products are low-pass frltered to retain the difference frequency terms. This

results in the signal being split into in-phase and quadrature components, which are given by

1(¿) = '4 cosolú

Q(t) = Asintrlr. (1)

This pair of signals can then be treated as a complex signal

vþ) :1(¿) + Q(t) = Aexp {ju1t} . (2)

This ideal signal is obtained only if the gains of the I and Q paths are equal and if the phase

difference between channels is 90 degrees. The resulting pair of signals are then sampled and

quantised by matched analogue-to-digital (ADC) converters. This representation of digitised

signals by complex numbers has a certain mathematical convenience and allows us to resolve

positive and negative frequencies, relative to the reference frequency. From these complex

numbers we can derive information about the input signal such as amplitude, phase and

frequency at any given sample instant. Figure 1 shows the main components involved in a

receiver system employing a quadrature heterodyne process. These are :-

(a) Superhet receiver. The superhet has the ability to scan or sweep the radio frequency (RF)

spectrum of interest. The superhet converts these RF signals to an intermediate frequency

(IF) which can more easily be handled by IF analogue circuitry. Ideally a bandpass filter

is inserted at this stage to constrain the bandwidth of the IF signals to be within the A/D

sampling rate (Nyquist frequency). In the actual system we have relied upon the output

bandwidth of the receiver to act as a suitable bandpass filter.

1



input signol (RF)

rn[xor 2
O
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reference
oscillotor

Figure 1 Block diagram showing main components comprising the quadrature

heterodyne receiver and digital signal processing involved in this study.

(b) Quadrature mixing unit. In this frequency mixing stage the IF signal output from the

superhet receiver passes through a power splitter whereupon each output is mixed with : 1

a fixed frequency signal from a stable reference oscillator, 2 a flxed frequency signal from

the same reference oscillator but delayed by 90 degrees phase with respect to that of 1.

The output from mixer 1 contains frequency components involving the sum and difference

between the IF signal frequency and the reference oscillator signal frequency (in-phase or I

channel). The output from mixer 2 is the same as 1 but with the g0 degree relative phase

shift (quadratu¡e or Q channel, this is strictly -Q since a phase delay has been incurred).

Low-pass filters follow each of the two mixers in order to remove the summation frequency

components prior to sampling. The output from mixer 1 is commonly referred to as the

REAL component of the IP signal and the output from mixer 2 is commonly referred to as

the IMAGINARY component of the IF signal.

(c) Digital sampling and recording. The I channel and Q channel are next sampled, in this case

a high speed digital sampling oscilloscope (DSO) is used to carry out the A/D conversion on

each channel" The DSO sampling rate for each channel is 400MHz, which implies a sampling

period of 2.5 nanoseconds. S-bit A/D converters a¡e employed thus dividing the amplitude

range into 256 levels.
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I.2 Discrete frequency estimation

Having sampled and recorded waveforms of interest we can carry out tlle appropriate signal

processing methods in order to determine the IF signal frequency. The method applied here

is to calculate the-phase of t\e signal ãt each"sampling instant in time, then calculate the

change in phase between each successive sampling instant

0(t) = Ly(t): tan-r Qþ)
1(¿)

(3)

(4)

The phase difference between successive sampling instants is calculated as

A0(ú) =0(t)-0(t-r)

where T is the intersample period. Hence frequency is given by

(5)

For our discrete sampling system we shall use n in place of t and normalise T to be unity,

hence

0n = LU,= ,t"-t [?]
(6)

(i)

and /, = |Wr,^l . (8)

One problem which might be encountered in the above calculation of phase difference occurs

when the absolute value of phase difference between successive samples is greater than r

radians. This problem may be overcome if the Nyquist criterion can be satisfied, namely that

the sampling rate should be at least twice the frequency of the highest-frequency component

f(t)=*try]

and Adr, = 0n - |n-t

3



of the signal. Alternatively we can avoid this condition by restricting the signal to be recorded

to be within the sampling bandwidth of the system. This is achieved through the use of low

pass filters before the A/D stage. For example, if the A/D sampling rate is 400MI{2, then

each low pass filter should have a cut-off point at 200MHz. Thus, in our example, we sample

an input signu.l frequency range of i200MHz with an A/D sampling rate of 400MHz. We

note that in practical filter design the low pass frlters may still pass some frequencies beyond

200MHz, though rapidly attenuated as frequency increases. If it is desired to frlter out signal

frequencies above 200MHz then the filters might have to be designed to have a lower pass

frequency eg 175MHz leading to a reduction in the input signal frequency range to a175MHz.

1.3 Applications of the quadrature hybrid reciever

The quadrature hybrid can be found in many radar and communications applications. For

examples of radar apptcations see Hovanessian [2], Tsui [3]. In [3] the quadrature hybrid is

used as part of a digital microwave receiver for electronic warfare purposes. In communicati-

ons systems the quadrature hybrid can be used as a frequency detector see Bellanger [4]. The

quadrature hybrid behaves as a Hilbert transformer which is described in most good books

on signal processing applications eg Papoulis [5]. In 1988, Naegeli and McHenry [6] presented

some applications of IQ vector modulation for signal simulation and analysis.

L.4 Aims of the thesis

In any practical quadrature heterodyne system there will be system ertors and imbalances

which will inhibit the accuracy with which the signal parameters can be measured. In this

study we are particularly interested in obtaining an accurate estimate of the frequency of a

input sinusoid, of fixed but unknown frequency, using the very simple frequency estimator

described in section 1.2 and also the relatively simple frequency estimator developed by

Kay [7]. The effects of the main system errors : dc offsets, amplitude imbalance, phase error,

noise and quantisation, upon the statistics of the phase difference frequency estimator, are

studied both analytically and via computer simulations. The phase error is the error between

the intended phase difference of 90 degrees and the actual phase difference between the I and

Q signal paths. Real system errors have been measured and used to validate the analytic

results.
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1.5 Previous work on quadrature hybrid systems

There are several articles which report work carried out on quadrature hybrid systems and

sampling of the I and Q waveforms. In 1974, Sinsky and Wang [8] looked at the output

signal distortion with phase and gain errors and derived the statistics of the output signal

voltage envelope. The following year, Persons [9] determined the ratio of the power in the

error frequency bands to the power in the signal frequency band, for any sampling frequency.

Brown [10], in 1979, introduced a quadrature samplìng theorem and looked at ways of mini-

mising the sampling rate for quadrature sampling. In 1981, Churchill et al [11] described a

technique for correcting the gain, phase imbalances and bias errors of a quadrature system.

This technique requires an input test signal and the derivation of digital fllter coefficients.

The residual errors using this technique are derived from measurements of the output of an

image filter. Waters and Jarrett, in 1982, developed a method of using a single A/D converter

to digitise the input signal IF directly and producing I and Q components thus eliminating

baseband conversion. Though producing phase er¡ors of the order of 2 degrees, this method

was designed to operate at low frequencies ie 2.5MHz. Rice and Wu [12] , in 1982, employed

a Hilbert transformer to produce quadrature outputs from an input bandpass signal and

developed a hardware implementation with a 60kHz bandwidth"

1.6 Main results

Much work has been previously carried out in investigating the effects of quadrature hybrid

system errors. These investigations are based on theoretical expressions or measurements of

the output frequency spectrum, in particular the image frequency components. The main

aim of this thesis is to derive expressions for the statistical accuracy obtainable in estimating

the frequency of an input sinusoid, of fixed but unknown frequency, and which is corrupted

by errors in a quadrature hybrid, coherent receiver system. These expressions are derived

analytically and computer simulations are carried out in order to support the theory. A

hardware implementation of the quadrature hybrid is also studied, measurements of the

inherent system errors are made and a comparison rvith the theoretical results for the variance

in the estimated are made.

The second aim of this thesis is to investigate methods for reducing the effects of the inherent

system errors, with a view to real time implementation.
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L.7 Note on figure labelling

Due to a limitation in the in software package [13] used to plot the results, it is not possible

to correctly label the plots. To circumvent this problem we use the following representations

(i)

(ii)

(iii)

mse or mse{pd} = Var{A'î}.

var or var{pd} -- var{Ñ}.
sn or snr =signal-to-noise ratio p

6



2 ANALYTIC STUDY OF ERRORS

In this chapter we examine the mean value of the phase difference error' the variance in the

phase difference and the variance of the phase difference frequency estimator in the presence of

each of the quadrature heterodyne system errors. This is most readily achieved by considering

the effects upon the complex vector representing the IF signal. The detailed analyses for all

of the error cases can be found in the appendices.

2.L Signal plus noise case

o

rìq

ni

Figure 2 Complex signal vector - showing effect of additive complex noise vector.

'We consider the case where each of the I and the Q channels are independently corrupted by

normally distributed white noise, shown as the complex vector z in figure 2. The two channel

waveforms may then be represented as

I = Acosî * n;

= Aslnfl ¡ no (e)a

7



where 0 : LDtl is the signal phase at sample instant t and A is the signal amplitude, n;

is the noise in the I channel and no is the noise in the Q channel. We assume lirstly that

the noise input to the receiver has come from a multiplicity of independent sources which

may have different probability distributions for the noise amplitude. Similarly sources of

noise within the receiver system itself (mixer diodes, receiver components etc) are assumed

to be independent and their noise distributions may be different. We invoke the central Limit

theorem which states that if different random variables are independent then the probability

density function of their sum tends to a normal curve as the number of sources tends to oo. In

our receiver system we consider the number of noise sources to be sufficiently large that the

central limit theorem is approached. Hence n; and nq are treated as white Gaussian noise.

In previous studies eg [7] n; and nq are treated as real Gaussian random variables with zero

means and uncorrelated with each other. However the assumption that rz¿ and nq ate uncorre-

lated is dubious in this case and, almost certainly, the noise is not independent. The complex

noise vector formed from n; and no will still have a zero mean and be uniformly distributed

in [0,22r] for high enough signal-to-noise ratios" Hence our derivations are unaffected by the

correlation of n; and no.

In figure 2 the amplitude of the input signal vector is A and 0 is the phase of the signal

vector. The complex vector due to the noise in each of the I and Q channels is shown as z"

The instantaneous phase error due to the error in each of the I and Q channels is given by

0". The results are summarised in table XII.I. We note that :-

(a) the phase difference e¡ror is a random variable with zero mean

(b) Var{Ad} is inversely proportional to the signal-to-noise ratio p

(c) for a set of N consecutive phase difference data points the variance

is also inversely proportional to N2.

2.2 Quantisation case

We consider the case where each of the I and the Q channels are independently quantised by

the A/D sampling process.

8
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o

__J¿o

Figure 3 Complex signal vector - showing discretisation due to y'^ID process.

The two channel waveforms may then be represented as

I = TRUNC[Acos0]

a: TRUNC[Asind] (10)

where T RU N C is an operator which the truncates the waveform sample values to the nearest

integer value below the signal level. Hence the complex signal vector can only assume certain

discrete values in I and Q (see figure 3) and so discrete values of phase. This will have the

effect of producing a phase error at each sample instant which, in turn, will produce an error

in the phase difference estimator. The results are summarised in table XII.2. We note that :-

(a) the phase difference error is a zeto mean process

(b) Vør{Ad}, for a single phase difference data point is inversely

proportional to the square of the input signal amplitude A

(c) for a set of N consecutive phase difference data points the variance is also

inversely proportional to N2.
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2.3 Phase error case

We consider the case where the Q channel is not exactly 90 degrees relative phase to the I

channel, Ieading to distortion of the signal complex circle as shown in figure 4. One source

of phase error is the path difference between the two reference oscillator channels. The 90

degree phase shift in the Q channel may bg acheived by designing this channel to have a

path length one quarter wavelength longer than the I channel or by using a 90 degree hybrid

power splitter designed to operate at the reference oscillator frequency. [n either case the

signal path lengths may not be correct leading to a flxed phase error. For example, if the

reference oscillator has a frequency of lGHz and there is a path length error of lcm then

there will be a phase error of 12 degrees or 0.21 radians" Another source of phase error

is the difference between the low pass fllters. Each filter will have a phase error which is

dependent on the signal frequency and, if the two filters are not properly matched, each filter

will have a different error versus frequency response. The two channel waveforms may then

o =i-à

Asin(0 +e )

Acos 0

Figure 4 Complex signal vector - showing distortion due to quadrature phase

error.

= Acosî

= Asin(d1e) (11)

o

9
o

0

I

a

be represented as

i0



where e is the quadrature phase error. The error in the signal phase is given by

( r2)

This is the error in phase for the signal vector in any of the four complex quadrants

If we plot I versus Q, for each sample instant, then the quadrature phase error produces a

characteristic ellipse with its major axis tilted at an angle of 45 degrees to the I axis. The

lengths of the major and minor axes of the ellipse are determined by the quadrature phase

error. The signal phase angle and angles on the IQ plot are no longer the same. In fact the

signal phase angle d = 0 degrees now corresponds to an angle of ! relative to the I axis. The

results are summarised in table XII.3. We note that :-

(a) the phase difference error is a deterministic function with zero mean

(b) Var{40} depends upon both the maximum phase etrot 0.*o,

and the signal frequency d¡

(c) for a set of N consecutive phase diference data points the variance also

depends upon the number of data points.

2.4 Amplitude imbalance case

We consider the case where the Q channel is not equal in amplitude to the I channel. With

this type of error the signal complex vector describes an ellipse with its major axis aligned

with the axis of highest relative gain, as shown in flgure 5. The two channel waveforms may

then be represented as

I = Acosî

A = ,4(1+7)sind. (13)

The error in the signal phase is given by

o"=o-tan-rWP)

0.=0-tan-l ( 14)

This is the error in phase for the signal vector in any of the four complex quadrants. The

results are summarised in table XII.4. We note that :-

(a) the phase difference error is a deterministic function with zero mean

11



o
A( l+y

+T )sin e

Figure 5 Complex signal vector - showing distortion due to amplitude imbalance

between I and Q channels.

(b) Vør{40} depends upon both the ma>cimum phase error d"-o, and

the signal frequency 0¡

(c) for a set of N consecutive phase difference data points the variance

depends upon the number of data points.

2.6 DC offset case

We consider the case where the Q channel and the I channel are offset from the origin. In

this case the origin of the signal complex vector is shifted (see figure 6) thus causing an

error in the calculated signal amplitude and phase. The two channel waveforms may then be

represented as

I - Acos9*6;

A = ,4sind+6n. (15)

AAcos0

t2



o

Figure 6 Complex signal vector - showing effect of dc offsets in I and Q channels

The error in the signal phase is given by

g'=0-tan-l (16)

This is the error in phase for the signal vector in any of the four complex quadrants. The

results are summarised in table XII.5" We note that :-

(a) the phase difference error is a deterministic function with zero mean

(b) Var{Ad} depends upon both the maximum phase error d"-o, and

the signal frequency 0¡

(c) for a set of N consecutive phase difference data points the variance also

depends upon the number of data points.

[Asin 0 + 6ql

LÁ...0 Tã.1

13



3 COMPUTER SIMULATIONS

Simulations r¡/ere carried out in the following manner :-

(i) 400 point vecto¡s for each of the REAL signal component ¿nd the IMAG signal component

were generated with the appropriate error incorporated in each vector. The initial phase for

the signal was randomly chosen using a Pascal function for uniformly distributed number

generation. The initial phase for the signal was therefore uniformly distributed in [0,22r].

(ii) the signal phase at each sample point was calculated then the difference in phase between

successive sample points was calculated forming the phase diffe¡ence vector.

(iii) the mean value of the phase difference vector was next calculated

(iv) the variance, Vù,r{ô.0}, in the phase difference vector was calculated

(v) steps (i) to (iv) were repeated thirty times for each parameter change such as signal-to-

noise level or frequency, thus giving thirty values of mean phase difference" Following this

tlre variance in the mean value of the phase difference, Var{Ñ},could be calculated.

3.1 Signal plus norse case

Figure 7 shows the results from simulating a signal with various levels of normally distributed

random noise added to each of the two signal vector components. The routine used to generate

the Gaussian noise was based upon the Box-Muller method listed in Nurnerical Recipes lI4)
(see also appendix VIII). The random noise was added independently to each of the signal

vector components. Shown also are the theoretical values for the mse or variance. Note that

the variance is a good fit even for low signal-to-noise ratios but the variance is a poor fit

below 6dB. The Cramer-Ra,o lower variance bound (CRIB) gives the smallest error variance

that can be attained by an unbiased estimator - an introduction to this can be found in

lesson 6 of the book by Mendel [15]. Rife and Boorstyn [16] have derived the CRLB for a

maximum-likelihood (ML) estimator of frequency in noise and Kay [7] has shown that his

phase difference estimator achieves the same CRLB at moderately high SNR. Kay [7] shows

l4



that the phase difference values form a moving average (MA) process with coefficients I and

-1. Next the covariance matrix for the moving average process is formed and Kay derives an

estimator which minimises the variance for this matrix. The frequency estimator is equivalent

to a set of weights applied to the phase difference data vector. The Kay weighting function

has been applied to both the simulations and to the experimental results (see later). Figure 8

shows that the Cramer-Rao lower variance bound is indeed achieved for this simulation of

signal plus noise.

3.2 Quantisation case

Figure 9 shows the results from simulations of a flxed frequency signal which has had its REAL

and IMAG components quantised or truncated to the nearest integer values. The frequency of

the signal was 0.157 rads/sample interval (where frequency band is defined between -zr and

f zr rads per sample interval) or equivalently, for a sampling rate of 400MHz the frequency

is l0MHz. Both Var{Ad} and Var{Ñ} are a good fi.t, even for low signal amplitude. The

Kay weighting function was applied in this case to study its effect, even though it was an

optimisation developed for the noise only case. In the simulations an improvement by a factor

of approximately # was obtained (flgure 10).

3.3 Phase error case

Figures IJ.,12,15, 16 show the results of simulating a phase error in the g0 degree quadrature

hybrid. Comparing these plots with the theoretical values shown in figures 13, 14, 17, 18

we can see there is a very good match in both Var{A,0) and.Var{Ñ}. The Kay weighting

function has also been applied in the simulations (figure 35), even though it is not appropriate

for this type of error. An improvement in the variance in the mean phase difference was

achieved except at very low signal frequencies.

3.4 Amplitude imbalance case

Figures 19, 20, 23, 24 show the results of simulating an amplitude imbalance between the

REAL and IMAG signal vectors . Comparing these plots with the theoretical values shown in

figures 2L,22,,25,26 we can see there is a very good match in both Var{L,0} andVar{Ñ}.
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The Kay weighting function has also been applied in the simulations (figure 36), even though

it is not appropriate for this type of error. An improvement in the variance in the mean

phase difference was achieved except at very low signal frequencies.

3.5 DC offset case

Figures 27,28,31,32 show the results of simulating a frxed dc offset in both the REAL and

IMAG signal vectors . Comparing these plots with the theoretical values shown in flgures 29,

30, 33, 34 we can see there is a very good match in both the Var{Ad} and Vør{Á}}. fhe

Kay weighting function has also been applied in the simulations (figure 37), even though it

is not appropriate for this type of error. An improvement in the variance in the mean phase

difference was achieved except at very low signal frequencies.
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4 MEA.SURING SYSTEM ERRORS

The errors in the real system were measured using the simple correlation methods suggested

by Harris [17] (see also appendix X) and we¡e found to be of the order shown in table 1 below.

Table 1 Real system results - measured quadrature hybrid errors

dc offset I channel 1 unit

dc offset Q channel 1 unit

amplitude imbalance $ 1.1

quadrature phase error -2 degrees

where 1 unit = 1 least signifrcant bit (LSB) in the A/D conversion.

Measurements were made with a fixed frequency signal (0.157 rads/sample interval or, equi-

valently, l0MHz) and various levels of signal-to-noise ratio and the results are shown in

flgure 38. In the real system a digital sampling rate of 400MHz was used hence the figure

0.157 rads per intersample period corresponds to a signal frequency of 10MHz. The Kay

weighting function has been applied and figure 39 shows that the lower variance bound can

be achieved for moderate to high SNR" These figures show that the theory fits well with

experiment for the signal plus noise case. Note that the variance of all other system errors

are include in this experimental case but these produce values much less than those due to

the noise alone.
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Recordings were also made of various levels of signal amplìtude, with minimal noise present in

ordertostudythequantisationeffects. Figure40sh.owstheresultsobtained,whereVar{L0}

and,Var{Ñ} without the weighting function are quite a reasonable fit. However application

of the weighting function (see frgure 41) has not provided the same scale of improvement as for

the simulations. In this case the variances due to the phase error, amplitude imbalance and

dc offsets are sufficient (even with the weighting function applied) to prevent the combined

measu¡ed variance from dropping below the bounds obtained (ie approximately 1e-9 to le-10)

and hence the theoretical lower limit for the pure quantisation case cannot be obtained f¡om

this experiment.

In the experimental setup it proved impracticable to carry out measurements of phase error,

ampl-itude imbalance and dc offsets in the real system with the precision required, however the

results obtained from the analytical study and from simulations are believed to be satisfactory

for the purposes of this study.
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5 TECHNIQUES TO REDUCE SYSTEM ERRORS

Using the auto correlations and the cross correlations of the two signal sample vectors (see ap-

pendix X and XI) it has been shown that a good estimate can be obtained for the quadrature

hybrid errors : phase error, amplitude imbalance, dc offsets. Clearly we require a number of

sample points to be able to carry out the correlations and the more points that are available

the better the estimates will be. Hence we must consider some form of block processing for

real time applications. To reduce the noise level a form of linear predictive filter has been

selected which also has the ability to adapt to a signal which has a time varying frequency.

This filte¡ has the added benefit that it reduces the quantisation noise.

5.1 Removing dc offset and channel imbalance

Removing the channel imbalance and dc offsets is straightforward but readjusting the phase

error is more complicated - the methods are detailed in appendix XI. Figures 42,43 show the

effects on Vør{Aá} and Var{Ñ} respectively of simulations with a phase error followed by

correction for phase error. Both Vør{Ad} and Var{ÑJ have been reduced. Figures 44,45

show the efiects on the Var{L.0} and.Var{Ñ} respectively of simulations with an amplitude

imbalance followed by correction for amplitude imbalance. Both V ar{L,0} and, V ar{Ñ} have

been reduced. Figures 46,47 show the efiects onVar{Al} and Var{Ñ} of simulations with

a fixed dc offset in each channel followed by dc offset correction. Var{Ñ) has been greatly

reduced and Vor{Âd} has been reduced though not to the same extent as for the phase and

amplitude cases.
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5.2 Reducing the noise
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Figure 48 Block diagram for selected method of adaptive line enhancement.

An adaptive line enhancement type fllter (a block diagram of which is shown in figure 48) was

selected from the book by Stearns and David [18] with filter coefÊcient updating based upon

minimising the mean square signal error by the method of steepest descent. By applying a

filter of this type in each of the REAL and IMAG channels of the quadrature hybrid we can

enhance the signal output ie improve the snr. The adaptive filter was applied with the filter

order (L) set to 16 and the convergence parameter (p) equal to 0.1 and vârious levels of snr

simulated. In the simulations a delay of 10 times the filter order was imposed before samples

were used to calculate phase etc - this was done in order to allow the filter coefficients time

to adapt sufficiently. Figure 49 shows the results of these simulations for a fixed frequency

signal (0.157 rads/sample interval or, equivalently, 10MHz) plus Gaussian noise. In figure 49

we see that Vør{Ad} has been reduced by approximately 10dB except for snr less than

OdB.Vør{Á}} has been improved by approximately 5dB except for snr less than OdB" With

the Kay weighting function applied after the adaptive fllter we still obtain the Cramer-Rao

lower va¡iance bound (see frgure 50). The advantage in using the filter is that it acts upon

the signal waveform in each channel and reduces the snr. This then reduces any problems

encountered in calculating the signal phase and phase difference ie the phase unwrapping

problem is reduced and the effective signal input bandwidth can be maintained.

The same fllter as above was applied in simulations involving a quantised signal for various

signal amplitudes with the results as shown in figure 51. Again Var{L,0} has been improved
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by approximately 10dB and Var{Â'9} by about the same except for low SNR.

Simulations were performed with all types of error incorporated with error correction for each

type of error (see table 2 below).

Table 2 Summary of errors incorporated in system simulations.

signal frequency 0.157 rads/sample interval or l0MHz

90 degree phase error 5 degrees

amplitude i*U"ru".e ($) 1.3

dc offset in I channel 5 units : SLSB

dc offset in Q channel 5 units = SLSB

SNR 0 to 60dB

Error correction rvas applied in the following manner :-

(i) dc offsets calculated for each channel waveform then subtracted.

(ii) adaptive filter applied to reduce the mse in each waveform

(iii) amplitude imbalance calculated and corrected in the Q channel.
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(iv) relative phase error calculated and corrected for in the Q channel

Figure 52 shows the results when the filter adaptation coefficient is 0.01.

Figure 53 shows the results when the filter adaptation coeffi.cient is 0.05.

Figure 54 shows the results when the filter adaptation coeffi.cient is 0.1.

A low value of p (0.01) means that the filter coefÊcients adapt more slowly but should yield

better results. A high value of p (0.1) allows the filter coefficients to adapt more quickly but

yield less of an improvement in the results.
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To demonstrate the usefulness of the techniques developed herein, real signals have been

collected by a real system and studied. In the following example a I-5¡rs pulsed waveform

has been downconverted from the microwave frequency range 8-l2GHz to an IF of lGHz,

passed through the quadrature hybrid stage and sampled by a high speed DSO. In figure 55

the signal power, as a function of time, has been calculated as the square of the signal

amplitude A at each sample instant. Note the large amount of ripple or variance due to the

system errors. Figure 56 shows the signal power after passing though the error correction

algorithms. Here we see that the adaptive fi.lter, in adapting the coefficients, has caused

an increase in the pulse rise time and has smoothed the overall plot. Figure 57 shows the

Discrete Fourier Transform of the original signal data. Note the spikes at }Hz (ie dc) and at

other image components due to the system errors. Figure 58 shows the DFT after correcting

the signal waveform for erro¡s. The plot is now much 'cleaner' ie the signal frequency is now

more obvious with the image frequencies, noise etc reduced. Figure 59 shows a plot of phase

difference versus time for the example pulse" In this case the signal IF frequency was offset

from the reference oscillator frequency by almost 200MHz equivalent to *r¡ rads per sample

period. Ripple is evident and, where the noise has caused the signal vector to cross the *zr

boundary, spikes have appeared close to the -rr boundary. This crossing of the *r boundaries

can be considered as a phase diffe¡ence unwrapping problem and is more likely to occur as the

errors in the system increase thus restricting the input signal bandwidth. Figure 60 shows the

same signal after error correction. Again start-up effects, due to the adaptive filter, are clear

at the beginning of the pulse. The remainder of the phase difference plot is much smoother

with no problems encountered with being close to the *n phase difference boundary. Hence

the signal input bandwidth can be maintained even for quite severe system errors.
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6 CONCLUSIONS

In the analytic parts of this study we derived equations which related the mean square ertor

in the phase difference values and the variance in the mean phase difference, for a number of

points, to each of the major errors which might occur in a quadrature hybrid process. Of the

five e¡ror types considered the signal plus noise case involved random noise whilst the other

four cases were deterministic (for flxed errors or imbalances). In order to validate the analytic

results a large number of computer simulations were carried out and the resulting means,

mean square errors and variances recorded. These results have been plotted graphically and

compare well with the theoretically derived results in all cases. Some work by Kay [7] has

been incorporated in that his method for deriving the phase difference frequency estimator

via a parabolic weighting function has been used. It has been shown, in both the computer

simulations and experiment, that this rnethod for frequency estimation performs efficiently

(attains the Cramer-Rao lower variance bound) at signal-to-noise levels above approximately

5dB. Although developed for the signal-to-noise case, the effect of the weighting function on

the other error classes has been examined. With knowledge of the effects of the errors, the

next stage was to develop techniques for reducing these and some work on measuring these

Harris [17] proved useful. The actual errors in the real system were measured which were in

agreement with the mean square error and variance results from the system. The dc offset

and amplitude imbalance cases are corrected very simply and the phase error correction is

straightforward. The noise level has been effectively reduced by application of an adaptive

linear predictive filter in each of the I and Q signal channels. The adaptive fiIter has the

added beneflt that it reduces the quantisation error also. We could of course have used many

other methods for frequency estimation since many of these have been in existence for many

years but the phase difference frequency estimator is simple to implement and is ideal for

digital signal processing systems. Since we have corrected the errors in the I and Q signal

waveforms before carrying out any processing, all the information about the signal is still

available and has been enhanced. With many other techniques for frequency estimation the

algorithms have been optimised for frequency only and any other information contained in

the signal is lost. A simple example of a real signal - a single pulse from a pulsed radar system

also demonstrates the value of the algorithms developed in this study which can now be used
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to process real signals and eventually process these in real time digital receiver systerns
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APPENDIX I

SIGNAL + NOISE CALCULATIONS

We consider first the case where each of the I and Q channels are independently corrupted

by normally distributed white noise with the vaiiance of the noise in each channel being the

same and given by : o? - "? = *. The two channel waveforms are represented by

I - AcosîIn;

A = .Asind*nq. (17)

whe¡e 0 = utt is the signal phase at sample instant t and A is the signal amplitude. From

figure 2 the instantaneous phase error due to the noise is given by d,. For large snr (A> o),

we may approximate d" as

0
r

"=Ã
where ,:l"lcosB. lzl and cosB are independent and, from figure 2

( 18)

d+p+7 =

1=

p=
0

7f

2

( 1e)

(20)

(21)hence

The expected value of cos B is

and

\_o_e
2

E{cosB} = * l"*.", (T - a - e) a" = 0 . (22)

(25)

(26)

The expected value of r is : E{r} = lzlE{cosÉ} = 0 .

The expected value of cos2 B is : E{cos2 P} = * I"* l;* 
cos (Jzr - 2a - 2E drll

(23

1

=-
2

(24 )

The expected value of the instantaneous phase error is : E{0,¡ : ff = O QT)

and the variance in the phase error is : Var {0"} : E{02} - "+ = #. (28)

We now consider the value of the phase difference estimator as the mean value taken over all

data points, 
^ ., ,!I 

r&="Ðor,= f [e"ru -r-.s]*o¡ (2e)
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where dy is the value of the signal phase difference between successive data points

{ ñVar )
I

1

N2 lV ar {0"¡'¡) - V ar {d"o }l

l2V ar {0.}\N2
I

(39 )pN2

¡z
where p = ozL = the signal to noise ratio
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APPENDIX II

QUANTISATION CALCULATIONS

We consider the case where each of the I and Q channels are independently quantised by the

A/D sampling process. The two channel waveforms may then be represented as

I : TRUNC[,4cosd]

A = TnUNC[.4sind] . (31)

where r = A,I2 + LQz:2L,2

(32)

(33 )

The phase error will be zero mean due to the symmetry around the complex circle, see fig.3.

Hence we may write

E{0.}=E}=0. (34)

For large signal amplitudes (,4> 1 LSB), we may approximate9.'as: 0

Using the well known result for A/D quantisation noise we obtain, with q-1

T

'= Ã

E{r'}=28{l2}=2 I
6

Hence the variance in the phase error is given by :

The variance in the phase diffe¡ence error is then :

The value of the phase difference estimator is : Ñ

The variance in the phase difference estimate is

(35)

var {0.} = þnY'¡ = #
(36)

var {a,0.) = #. (37)

# 
"Ë 

Lu^¡ =f t'"" ¡ o"slr o¡

(38)

v", {ñ\ = #urolil} = #*
(3e)

q2

T2

where 0¡ is the value of the signal phase difference between successive data points
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APPENDIX III

QUADRATURE PHASE ERROR CALCULATIONS

We consider the case where the Q channel is not exactly 90 degrees relative to the I channel.

The two channel waveforms may then be represented as

I = Acos9

A = Asin(dt.). (40)

The amplitude of the complex vector is : R = A cos2 0 * sin2 (0 + e). (4r)

In order to find the maximum and minimum amplitude we look for the turning points in the

function for R,
dR
d0

-2cos 0sin0 * 2sin (0 + e) cos(d 1e)
(å)

cos2 d + sin (d+e)

For min and max R", #:0, hence : - 2cosîsind +2sin(d * e)cos(d + e) = O

or: - sin(2d) fsin(2d* 2e) = g.

This reduces to : cos(20 * e) sin e = 0

Which is satisfied when : 0,!.nr

(42)

(43)

(44)

(45)

€

0
nlf €J-_ _ _-4 2

or

Substituting for phase angle 0 back into the equation for R we find

n odd (46)

(48)

(4e)

R*o" =

R^in =

A 1*sine whend=
7r€
42

(47)

We obtain the maximum error in the signal phase by finding the turning points in the function

for the phase error, where the signal phase error is given by

A\Æ? when0- lr-:42

0.=0-tan-r fsin (d + e)l

L .o'á l
Now let c = "i:!e-*') and substitute into the phase error function thus

cos d

0"=0-tan-l[r]
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Using the standard identity for the derivative of tan-r ø we get

d0" I I drlã:t-¡''læl
which becomes, after substituting lor x2 and, ffi

sin dsin (0 + e) { cos0cos (0+€)d0"

d0 coszdlsin2(0+e)

d0-

# = 0 when sindsin(d+ e)* cosdcos(d *.) - co"2 0 + sin2 (0 + e)

which reduces to : - ,"" (;) = sin (2d * e)

Hence the maximum phase error occuts when the signal phase

0 :;lrir,-' (- t.n-' ;) - 4 = + for small phase errors .

The maximum phase error wilì be

(50)

(51)

(54)

(52)

(53)

0"*o" -3e i

- 
- tan-r

4

-3e r

- 
_ tan-r

4

-3e

- 
- tan-r

4

-3e__tan
4

cosfcosi-sinisin¡
sin i

tan 9
4

sin i;;T
sln e

4

and so O"r'"o, = -e for small phase errors.

e

4 cosf,-2sin2fcosf

(55)

o:+nn-T n=0,1,2, (56)

n odd (57)

-l
2e

4

sln21

sln41

The maximum phase etror occurs when

Zero phase error occurs when : g=Y
2
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A PPENDIX IV

AMPLITUDE IMBALANCE CALCULATIONS

We consider the case where the Q channel is not equal in amplitude to the I channel. The

two channel wavefo¡ms may then be represented as

I - Acosï

a = A(1+7)sind. (58)

The amplitude of the complex vector is

cos2 d + (1 + 7)2 sin2 0n= A

A

(5e)

(60 )I + (21 ¡ 12)2 sin2 0

Differentiating to find the maximum and minimum amplitudes

dR
d0

A (zt * 72) sin 0 cos0

I + (21 + t\" sin2 0

thus ff = 0 when sin gcos 0 = 0" Hence we get minimum or maximum R when

0=T n=0, I,2,...

d0-

ñ=o

(61)

(62)

(63)

(64)

(65)

(66)

(67)

(68)

(6e )

As expected from flgure 4 we get i R*o" =

R^in =

The signal phase error is given by ; 0, = 0 - tan-r

The maximum phase error will be obtained when S :0 ie

d"0- d.::: r _ * (tan-r [(1 + ?) tan d])dg '- m'

1+(1 +1)2tan20
1tr

(1 + ?) sec2 0

Á(1 +7)

A.

1
1

1
1 + (1 * 7)2 tan2 0 cos2 0

Hence

occurs when: (1 +?) - 1+(1 +7)2 tan20cos20
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which is satisfied when t : (2j * 12) s\nz o (70)

(72)

I
or sind = t 2+-l (7r)

For small amplitude imbalance 7, the maximum phase error occurs at 0 = {. The maximum

phase error is found by substituting back into the equation for the phase error as

0"^o"

0

7f

--tan4

tan- I

-' 
ltt + 7) tan 

ä]

OT emar

f,-t.n-'(1+1)
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APPENDIX V

DC OFFSET CALCULATIONS

We consider the case where the Q and the I channel are offset from the origin

channel waveforms may be represented as

I - Acosî*6¡

A = ,4sind*ó0"

The amplitude of the resultant complex vector is

R= 12+Q2

sin d
6q

Therefore the amplitude R, in terms of A,óo and ó; is

A2+24f .d 
I

6;

A2 +2A 6?+

67+63

The two

(73 )

4z ¡ 2A[sin dóo f cos dó;] + 6? + 6?

We obtain the minimum and maximum amplitudes from

d,R 2Alcos d6n - sin dó;]

7d = . (76)

# = 0 when cosgóo - sin 06;: Q and this condition is satisfied by

tan0=&=tun(0+n) (77)

which we then substitute back into the equation for R to get

R2: A2 t2Altan06o*6;)cos0* a? +ü. (28)

We make the observation that the maximum R occurs when the signal phase equals the angle

formed by the dc offsets (see fig.V.1) therefore we may make the following substitutions

cos 0
ó;

(7e)
6?+63

6?+6?

(74)

(75 )

(80 )

(81)

(82)

(83 )

(84)

60

+6?

6?+6?+6?
2

6?¡

n2

A+

+a!+02,



A

A
û,

A

Figure V.l DC offset construction - showing position of maximum phase error

Thus R*o"

R^in

A+

A_ 6?+63.

0.=0-tan-l

6?+63

tan-r (87)

(88)

(8e)

(e0)

(85)

(e3)

The er¡or in the signal phase is given by IAsin0+6qf
1,4.*7 + ó;l

(86)

Hence we shall obtain a zero phase error when : d

tan0

tanîlAcosd 1ó;]

tan0

ie zero phase error occurs when : 0 = ,r"-t [f] 
(91)

So we see that zero phase error occurs at the same angle as for the mæiimum and minimum

amplitude. To find the maximum phase error we differentiate the expression for phase error

and equate to zero, thus

o":o-ran-l t+*ffi] tnrr

u

a

Asind+óo
I

Acosd*ó¡

making the following substitutions :
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du

d0
du

d0

Acos0

Asin0

(e4)

(e7 )

[Acos O + 6;12

d0.
d0

1
we obtain I

.4sin0+ ].4sin 0 + [Acosd 1 ó;] A cos 0
( e5)

[Acos 0 * 6;) * [,4 sin 0 + 6n]

and so #î = }when : - (¿Í + 6?) =A(cosdó; * sin06o) (e6)

1

or lryl =..,06;!sin,l;o.

Making the following substitutions : 6

cosc =

srna :

6;

1
6q

6

6?+63 (e8)

(ee)

(100)

(101)

(102)

( i03)

Hence we have *sin0
6q

6 6

= ó{cosdcosa * sindsin a]

= ócos(d-o).

[..'
6¡

06

We now let cos f = * whichgives: -cosB = cos(0-o) (104)

or : cos (B + ?r) = cos (d - o) (105)

and so the maximum phase error occurs when 0 = a+ P + r. Using the substitution which

have been made we can form figure V.l and also deduce that

¡ç1 (106)
A

sin 0"-o" = LO=
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APPENDIX VI

APPROXIMATE FUNCTIONAL FORMS FOR THB PH,A.SE ERROR

In order to support the phase error calculations performed in appendices IlI, IV and V we

can carry out small angle approximations as follows :-

for small phase errors , *tanl : "".'eff. (107)

Let y - tan9,therefore : Ly

L,0 sec2 0

and so : tan (0 + L0)

- L,0 = 0" = 0 - tan-l

Now for small e, cos € A, 1 and sin e = e so we get

= tan (0 + Ad) - tar.9

= tan (d + A0) - tanî

= A0 sec2 0 + tanî

(1oB)

( loe)

(110)

\/I.1 Quadrature phase error case

For the quadrature phase error case the phase error is given by

sin (d I e)

cos d
(11i)

-L0 æ d-tan-l

d-tan-l ltan0+e]

0 + L0 = ran-l [tan 0 + e) (114)

tan[d+Ad] = tan0*e . (115)

Fromaboveweget: L,0s".20*tan0:tanî*e (116)

andso: L,0=*"rrg=€cos20 (ll7)

thus the functional form of the phase error is : 0" = -e cos2 0 (118)

We note that the maximum phase error is -€ as derived earlier in appendix III and this

occurs when d 1n7(t in close agreement with appendix III calculations.

(112)

(113)
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I/l.2 A.rnplitude imt¡alance case

For the amplìtude imbalance case the phase error is given by

-L0=0.=0-tan-r

e + L0 = tan-r [(1 + 7) tan d] .

Using the smafl angle approximation we get

at an angle given by : sin 0 : *

VI.3 DC offset case

For the dc offset case the phase error is given by

2*t

(i1e)

(120)

(121)

(r22)

( 123)

(r24)

(126)

(127)

( 128)

(12e)

(130)

(131)

Adsec2 d + tan 0 = tanî * 1 tanî

Lo =''ltu:! - Tsin ocoso
sec" d

and so : L.0 - 1 sin (20) .
2

The func.tional form of the phase error is i 0" = -l sin (2d)"2

The maximum phase error is -] which will occur when d = T n odd. Compare this with

the exact calculation in appendix IV where the maximum phase error is given by

o"*o,=t*-'l+] tt,tl

1

and making the small angle approximation

A0sec2 0 *tan0:

-Lr=0"=o-ran-l t#ffi]
ran(d+^d)= [#ffi]

I sinî * 6ol

L..dTEl

[Adsec2 d + tand] [cos 0 + 6;l- sin d * óoof

thus : AL,0 x ôo cos 0 - ó; sin d
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'We now make the following substitutions

which leads to

The functionil form for the phase error is thus

6- 6?+63

ALï = ósinacos0- ócosasind

= ósin(a-0).

( 132)

( 133)
6;cosû = I

. 6osrn0 = i

( 134)

(135)

0. = -/r0 -- -isin (a - á)

o"=_try] sin(a_d)

We see that the maximum phase error will be : 0i. o" = -lU: 
n

A

(136)

(137)

(138)

at angles of 0 = f . Compare this with the results from the exact calculations in appendix

V where
6?+6?

(13e)sin delnaÍ - - A

at signal phase angles of 0 = a* þ f n where, for small phase errors, B approaches f
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APPENDIX VII

VARIANCE CALCULATIONS

We wish to calculate the statistics : mean error in phase difference and variance in the phase

difference, for a single phase difference data point and also for a number' N, of consecutive

phase difference data points.

VII.I Quadrature phase error case

From appendix III we may write the functional form for the phase error as

0. = -0. o, cos2 (, - i) = -0f- [, 
*.o, (r, - i)]

and so the error in the phase difference between any two consecutive data points is

z.g.: -tî" [, 
*.o. (rt *i) - 1- cos (rt *i -*,))

where 0¡ is the angle traversed by the signal vector during one sample period.

rhus : Lo. = -ry þ* (r, 
- i) - .o. (r, +i - "t)]

The phase difference error becomes

L,o. =d"-", [.io (rt +i - t,)ri" o/]

(140)

(i41)

(r42)

(143)

(r47)

from which we see that the mean value of phase difference is

nLeo.n{,'" (r, *i -rr)} = o (144)

or: ,E{Ad"}=O. (145)

The mean square error in the phase difference, or Var{40} is

ms{L'0.}:t+sin20¡ (146)

Consider now N consecutive data samples. The mean phase difference taken over the N

Íot +
1

N
0

^

i=Nt
i=1

i=Nt
i=l

samples is

^0;=1
L0.;
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Since Áþ depends only on Ad"1 and Ad"¡¿ then

Ñ : f t"r, */r/..N*ad"rl

e, + itad.¡v * ad"rl -

The error in the initial phase difference is

Lo.1= o"^o, 
þ'' (rr, *T -ar) ,i" ar]

and the error in the final phase difference will be

L0.¡¡ - 0"*"" 
[.ir, (rt, 

*) * fr* - ¡lai) ,i. or] .

Hence the combined phase difference error will be

¿rl.n* ao"r :o.^o,þt" (rr, + (2N -r)0¡- i) +,i,, (za' *i -ar)] ,i"er

( 148)

( 14e)

LL.N - L.0"1 = 20.*o,,in ar 
þio (rt, *(1v - 2) t, *+)cos ([N - 1]d/)] (153)

and so the mean value of the combined phase difference error is

(t ìrnean{¡{Or""*Ad"r)} = o. (154)

The mean square of the combined phase difference error or V ar{Ñ} ,taken over N consecutive

phase difference data points is

-'{+ (ad"rv + 
^á"1)} 

=l+lsin2 0¡.o,21[N - t)0¡). (155)

In general the variance of the phase difference error will depend on the initial and final signal

phase values. However there are some special cases which we shall now consider :-

which becomes

(i) If ¡fOJ = 2/cr then

(150)

(151)

(152)

(156)

(157)

( 158)

(15e)

*i*"{Ld"ru * A0"r} = l+lsm2o¡cosz,.¡
: 

l%lsin2(zo¡).
(ii) rf (N - 1) o¡ : \ then

(iii) If (¡ù - 1) 0t = Icr then

;"*"{ad"¡v*ad"r}:g

1

ñIns {Ad"rv *Ad"r, =l+l ,in'1ay¡
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VII.2 Arnplitude imbalance case

From appendix IV we may write the functional form for th.e phase etrot as

' o": -o. o"sin(2d) (160)

and so the error in the phase diffe.ence between any two consecutive data points is

L0. - d,-o" [sin (20) - sin (2d - 20 ¡)l (161)

where d¡ is the angle traversed by the signal vector during one sample period.

Thus : L0" = 20.*o, [cos(2á - 20¡) sin (d¡)] (162)

from which we see that the mean value of phase difference is

n'¿ean{A'0'1 =g (163)

orE{Ad.}=o (164)

The mean square of the phase difference error, or Vør{Ad} is

ms {L,0.} :202*o"sin2 0¡ " (165)

Consider now N consecutive data samples" The mean phase difference taken over the N phase

difference samples is 
r i=N . i=N

e= +Ðor, = #t [o¡+l'',.;l (106)
i-f ¡=l

ñ jwt,* ad"ry * ad"rl

e,+*ltd"ru*ad"r]

(167)

(168)

since Vør{Ad} depends only on Ad"1 and 4d"1. The error in the initial phase difference is

LÎ"t - 20,,^o" [cos (2d1 - 0¡)sin0¡] (169)

and the error in the final phase difference will be

L,0"¡¡ - 20" o, [cos (2d1 + [2¡Í - 3]0¡) sin 0y] . (170)

Hence the combined phase difference error will be

Lî"N + Ad"r = 20.^o" [cos(2d1 +l2N -310¡) * cos(2d1 - 0¡)ls\n0¡

: 20"^o"2 cos (201 + Uf - 2]0¡) cos (t¡f - 1] 01) sin dy

( 171)
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and so the mean value of the combined phase difference error ls

( t .ì
meo'n 

{¡ tor.^ f Ad"r )} : o . (172)

The mean sqlare of the combined phase difference error, taken over N consecutive phase

difference data points is

-" {+ (ad"rv + 
^0",)} 

= tl+il .o,'(tN - r)0¡)s\n2 0¡ ' (173)

In general the mean square of the phase difference error will depend on the initial and final

signal phase values. However there are some special cases which we shall now consider :-

(i) If Ndl = /c:r then

I
¡¡zms {Ad"rv t Ad"r} cosz0¡sin20¡

sin2 2o ¡ .

o'. o,

*ã*"{Ad"ru*Âá"1}=g'

'I
,I

2/r

(ii) If (N - 1) 0t : T k odd,then

(iii) If (N - 1) 0! = lcr then

(r74)

(175)

(1i6)
*"*"{40"ru * ad,r} = rlful ,io'a¡ .
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VII.3 DC offset case

We consider here the case where the dc offset in the Q channel is equal to the dc offset in the

I channel. Hence we have

,"^-'f9l =+ eTT)Ló;l 4

From appendix V we may write the functional form for the phase error as

o. = -0"*o" sin (o - d)

o. o,sin (i - t)

and so the e¡ror in the phase difference between any two consecutive data points is

( 178)

(17e)

L0" -0.*o"

and the error in the final phase difference will be

""(i -i,)-"'(ä-
.",(ä - Ð,', (?)

, _ ,,)) ( 180)

-20.*o, ( 181)

where d¡ is the angle traversed by the signal vector during one sample period. We see that

the mean value of phase difference is

rneo,n{1a"1 =g (182)

orE{Ad"}=O. (183)

The mean square erro¡ in the phase difference, or Vør{Ad} is

ms{a,o"} =202*o,,r, (?) (184)

Consider now N consecutive data samples. The mean phase difference taken over the N

samples is

(185)

L0 fiwt,+ ad"N * Âd"rl

e,+*[ad"r*ad"r]

L,0.¡ = -20. o, cos ( 188)

, i-N
e= +Dor,

i=1
l0¡ * L0";)

i=N

D
i=1

1

N

0r
2((î-"-+)

(186)

( 187)

(18e)

since Ad depends only on Ad¿1 and 4d"1. The error in the initial phase difference is

(î-t,-tN- tto¡-?) 
"^(

SIN

0¡
2

Á.î.N = -ZflemorCoS
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Hence the combined phase difference error will be

L.0.¡¡ t L0,1 -20"^o,

-40"r^"r 
ao" (î - e, -i*) ..'(

)]"," (?)cos(î -', -+) .cos
7f

--04

iv-r
2

and so the mean value of the combined phase difference error is

(| ìrnean{¡(Âd"" lLÉ"t),i =0. (191)

The mean square of the combined phase difference error, taken over N consecutive phase

difference data points is

","{+(a'"ru+aa",¡} 
:rlfu-l .o,'(t?] ai) ,in'(+) (1e2)

In general the mean square of the phase difference error will depend on the initial and final

signal phase values. However there are some special cases which we shall now consider :-

(ie0)

( 1e3)

( 1e4)

( 1s5)

(i) If ¡fOJ = 2,tr then

1

¡¡2ms

(ii) If try#] o¡ : I k odd,rhen

(iii) If t#] 0Í = kr then

1

¡¡zms

{40"ru -r Ao"r} = rlW-] ,i,,'ay

1

Nzms {Ad"tv*4d"1}:g

{Ad"lv*Ad"t}=3 (2srn
0¡

2 )
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APPENDIX VIII

GAUSSIAN NOISB GBNERATION

Extract from 'Numerical Recipes

202 Chapter 7. Random Numbcrs

Normal (Gaussiaa) Deviates

Ttansformatioo metbods geoeralize to more tha¡ ooe dimeasioo ll t 1 , z2 ,

... a¡e random deviates witb a joint probability distributioo p(z¡,12, )

dz¡dt2.... a¡d if Vr,V:,--. a¡e each fu¡ctions of all the z's (same number o[
y's as z's), theo the joint probability distributioo of tbe y's is

p(yt,yz, - - -)dyrdy, .. - : p(zr,tz.. . .l dyrdyt (7 2 8)

where lð( VA( )l is the Jacobia¡ determioaot of tbe ¡'s with respect to
the y's (or reciprocal of the Jacobia¡ determina¡t o[ the y's witb respect l-o
the r's).

An -rmportant e:<ample of tbe use of (7-2.8) 'rs tbe Bo¡-Mullcr oethod for

teDerating random deviates with a uormal (Gaussian) distribution,

p(v)dc: -v' la dy (7 2.s)

ð(r¡, 12,. . .) |

ôfu. v'-) |

-C
J2*

Coasider t[q !¡¡nqf6noation beÈween two uniform deviaLes oo (0,1), r¡,22
and two quaotities y¡,3r2,

v, = ,/-2lr.trcos2rz2

w: JÃisin2rz2

z¡ : €xP

t
[. ]trl 

* ,;t]
9z

(7.2. ¡0)

(7 2.n)

Equivalently we ca¡ write

22 = ;-a¡Ctå¡¿T V¡

Now the Jacobia¡ detersrina¡t can readily be ca.lcul¿ted (try it!)

(7 2.t2)

Since tbis is tbe product of a fu¡ction of y2 a.lone a¡d a ft¡nction ol y, alone,
we sce that eacl y is independcotly distributed according to the normal dis-
tribution (7-2.9).

One furthcr tricl is uscful 'rn applying (7.2.10). Supposc that. rnstcad o[
picking uniform dcviates z¡ and z2 in the unit squarc. we insLead picl v¡ md

# ;åt 
: -1ft'".''l [#'-""'l

a( t")

ð(yt, y:)
7
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u¡ as tbe ordinate aod abecissa of a raodom point '"ide the unit circlc a¡ouod

tbe origin. Then tbe sum of their squares, R : vi + ur? is a uniform dcviaæ'

wbicb ca¡ be uscd for z¡, while tbe angle tbat (u¡,u2) de6¡es witb rcspcct to

tbe u¡ axis cao serve as lhe ra¡dom angle2rz2' What's tbe adva¡t¿ge? It's

that the cæine a¡d sine in (7-2.f0) car now be wricLeo *su1 /JR ^od 
wlfr'

obviaLiug the trigooometric hmction calls!
We thus bave

Ft t cf rox c¡sDEf (rDrrx)
R(urns ¡ ltm¿lly dtsrrlÞu(cd d€vl¿te wlth 160 re¡n ¡nd unlt v¿d¡rcQ' uslño B'ull ( IDsx)

¡s the 5&rcc of unlfqm <tevl¡t6
Dlfl I6ET./O/
I¡ (ISEr .E!-O) TD( E @'¡ ñ¡w ¡d ãã &È(c ñ¡út þ

tt-2-.¡¡tt(Itxrx)-r-
Y2-2..rr¡r(IDUX)-r-
t-v1..2.!r2..2
rF(r-cE-1-)co m r
Flc-sqBr (-2.'Loc (r) /B)
csEr-r1.F^C
C^SDEI-12.f^C
ISET-I

E.SE
c¡'sDEl<SEl
ISET{

E(l)IT
8.ETlr8.r
gI)

p¡<k ¡Ë 6lm ñuÈ h tE A@.. ddlæ l@ I (o +r ñ

.s okb.
* I tñq ¡R lñ (& udt c@
¡d lf tkt :ñ rcq try ¡0¡h
NÈ @Þ tf od-Mlfu øn¡lreto
to ß tE .r@l e@t¿ R6ñ æ ¡ú !¡{ tÀ. o(F rq lg

5.¡ î¡9
W ÞE ¡d @ eiÞ(. ñ¡út

¡ú uñ< lk û4
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Knuth. Ooneló E. 1981. Señlaumeric¿I Atgodthms' znd ed" vol- 2 of f¡¡e
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D0. 1161f-
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FUÈCTIOx .xfú.v(ytr ldu: rÃr.ú.r) r..Ì_
8¡¡ r li

.q¿.' - -ìj(r^Ã3(rdu) )
EXD:

fljllcflot 6ud.r(tu lóu: lD!.6Gr): r.rì.
(- Proprrt ùt¡¿ C SDEY ru.r d.clu- rh. rüt.bt..
Y l-t

fl1..t: 1¡t.6.r: 6lú..r: r.rl:
tD !b. ¡rl¡ Þqt1D. ¡¡d iq.r 1ô!1rll¿.611..r to

Í11..t :- O: -)
Yl.R.

f^c.r.yl,12: r.d:
BECIX

Ir (¡l!¡¡t - o) TaEr BECIì.
r.PE f

vl :- 2-O.rr¡3(1dú)-t-O: v2 :- 2 O.r.¡3(1du)-l O:
r:- rqr(vl).rqr(v2):

UITIL (r < 1.O):
l¡< :- .gE(-2,O.1¡(r)./r): f,ì.3..t :- vl.f¡<: 6r.d.r :- 12.f¡c.
úll..t :- I Eq)

E-6E BE'T¡
6erdev :- ltg..t: úLt..t :- O Eû)

Ð{D:

-1 2

Figure VIII.I Simulated Gaussian noise , histogram of 1000 values generated

by computer program (Gaussdev.pas'.

Orrtput frorn gaussdev-pas
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APPENDIX IX

THB KAY PHASE DIFFERENCE FRBQUENCY ESTIMATOR

tEÉ.E TRANSACTIONS oN 
^COUSTICS 

sPEÊcH AND sIGNAL PRocÉsslNc vol J? NO l2 DÊCÊf,tBER l98e t98l

0.t

*ro

F¡g l- 
^n 

cxamplc of *cìghring functions lor /v = l. n = 16

l\,ltt'lt.:\t
lr.$)

Fig. 4. CCF's for n - I

A Fas( and Accurate Singlc Frequctìc)' Es(imator

STEVFN KAY

Abstrdca-A ncw frcqucncJ Gstim¡tor for ¡ s¡ñßle (omplcr linusoid
¡n complcr whitc G¡ussi¡n noisc is proposcd. Thc csl¡me(or ¡s mort
compu(at¡onally cmc¡cn( ah¡n lhe oP(¡mrl mexinrum likclihood tsti'
ñ¡(or )ct ett¿¡ns ¡s gmd pcrformznct et modcr¡tcly hiEh siBnel-lo-

no¡sc r¿(¡os. 
^ls, 

thc 6(im¡(or is shoen lo bc rcl¡tcd ro th. l¡near

p.cdicl¡on cs(¡m¡(or. This rclztionship ¡s cxplo¡(cd to rtv€¡l vht th€

liocâr pradiction cst¡mator dæs no( ¡(fåin thc Cr¡mcr-Reo bound cven

¡( high signal-to-noi$ .¿l¡os.

l- lñtn0oucr¡or
Thc cstimation of rhe frcquency of a singlc complcr stnusoid rn

whitc Gaussian noisc is a problcm in signal processing which has

rcccivcd much a(ten(ion Scc [ ] for a summary Thc optimal max-

imum likclihood 6(¡mator (MLE) is wcll known to bc given by the

lmrion of thc pcak oI a pcriodogmm. This cstimator attains the

Cnmcr-Rao lower bound on variancc for a high-cnough signal-to-
noisc ntio (SNR). In many in3tanccs, howcvcr. the computation is

prohibitivc cvcn with an FFT implcmcnta(ion. and so simplcr
mcthods arc dcsiablc- ln this corcspondcncc wc Prcscn( an aP-

pmach which is stmngly motivatcd by thc rcccnt work o[ Trctter
(21. lt is shown that thc proposcd cs(imator is comPuta(ionålly much
simpler than the pcriodogmm. yct attains thc Cmmcr-Rao bound
for modcarcly high SNR's.

In panicular. considcr thc rcccivcd dau ¡o consisr oI a singlc
complcx sinusoid in complex whitc Gaussian noisc. or

\=A¿td+.t +zt r-0.1,2,....N- t_ (t)

Thc amplitude l. frcqucncy oe, and phasc 0 arc dcteministic but

unknown constants. lt is thc frcqucncy uo (ha( wc are intercstcd in

cstimating. Thc amplitudc and phasc arc considcrcd to bc nuisancc
pammcters. Thc nois¿ z, is assumcd to bc a zcm mcan complcx
whirc Gaussian pmcss with zt : zt, + j¿t,- zr,,:!, arc cach real

Gaussian nndom variablcs wirh zcro mcins, uarianccs of o.!/2
(o.¡ is thc variance of z,) and uncorclatcd with c¡ch othcr. Wc now
asiumc that thc SNR. which is,1:/o:!, is largc. allowing thc data

modcl of (l) ro bc rcptaccd by an approximatc modcl which will
fom thc basis for thc prcposcd csrimator- This appmximatc model
is [21

,. - A¿14..+q' (z)

whcæ u, is zcro mcan whirc Gaussian noisc with vzriancc è/7Àt
Dcnoting thc phasc ol r,by zx,. wc havc ñnally

¿\=.\it+0+c,' r=0,1'2."'.N- l' (3)

Having obtained (3), Trcncr suggcstcd cstimating oe and 0 using a

lost squarcs cstirutor which is cquivalcnt to an M LE H is ap'
proach prcvidcs thc insightful rcsult that frcqucncy and phasc cs-

tim(ion is equivalcnt to linear regrcssion o[ rhc phasc data Thc

only difficulty is that lhc phase nccds to bc unwnppcd in comput-
ing thcsc cslimatcs- This unwnpping. bcsidcs adding to thc com-
puur(ion, may pFovc to bc d¡fficutt at lowcr SNR's- [n thc next

scction, wc show how to avoid phasc unwapping but still attain
thc Cnmcr-Rao bound. Also, thc ProPoscd cstimator i¡ shown to

bc an imprcvcd vcnion of a corclation or linc¿r prcdiction cst¡-

mator prcviously studicd.

Manu;cript rcccivcd Junc 2J. 198?: rcvilcd Novcmbcr la. l988 This
work w¡s ¡upponcd by S.ndcE AssGi¡tcs. Nålhu.- NH. ¡nd by thc Officc
of N¡v¡l Rcr¡rch undcr Contnc( N0@l'l-8?'K-0221

Thc ¡uthor is with (hc Dcgrnmcnt of Elcctrical Êngrnccring. ll¡¡vcnity
of Rhodc ltl¡nd. Kingtton. Rl 0288 I

IEEE Log Numbcr 891 I fól

o.5

o

o5

to

Iu
U

h{

a x N wcight elcmcnts arc ¡hc smc absolutc valuc Z/1. ena tnc

otÀcs.2/V(N - I ) wcight clcmcnc with a valuc of 0. nccd not bc

implcmcntcd in rhc wcìghtcd adders and do not havc an cffcct on

rhc amptitude distribution. Thcrcforc. úe implcmcnution of the N
ñhcrs is vcry asy, and thc amplitudc distribution of cvcry nndom
signal r.(27 ) is bat approximarcd to a nomål from thc vicwpoinr
of kunosis.

Fig. 3 is an cxamplc of thc pmposed wcighting functions for /V

= 3. a - 16- Thc CCF's of Endom siSnals Scncnlcd by thcsc

wcighting func¡ions arc gìven in Fig. 4 whcn m = l. Sincc all
CCÈ's arc zcro at t : 6i (i = 0' tl. 12. " ')' thrcc mndom
:ignals arc madc uncorclarcd by sampling ¡(i) cvery 6 s[ift
pulscs.

IV. Co¡cuustors
A sct of N wcighting func¡ioß for N digital filtcs has bccn pro-

poscd based on an cvcn-shift onhosoml scqucocc- Thc ñltcr can
gcncntc /V uncorclatcd nndom sigmls fom a singlc binary an-
dom signal. All distribut¡on functions of thc gencntcd andom sig-
Mls bccomc thc same nomal distribution. The gcncation specd is

¡ function of /V and dæs not dcpcnd on ¡- Hcncc. ¡hc fastcr gcn-
cntion of thc Bndom signals could bc obtaincd. Morcovcr. thc
implcmcntation of thc ñltcs is vcry casy bccause all a x .lV wcight
clcmcnts and input signal arc binary.

REFERENcES

[ll R Zimmcm¡n ¡nd D L Hunt. "MulliPlc-inPut c¡çit¡(ion usin8, bÙ6t
nndom for mod¡l tcil¡nt." Sou¡d ond Vib¡o¡ion' pp' l2-21' Ocr

1985.
[2] J. U. Src*". "Gcncnting uncoæl.tcd nndoñ ou(Puc by nonlinc¡r
' pccssing of r singlc noisc sou¡cc." IEEE TroN. APPI. I^dutry' vol
,' 81. pp.408-410. Nov. l9óa.
l¡ì T. liumi, "A mclhod of gcncnting mult¡-dimcnsionel nomelly di:'
: l.ibu(cd nndom signals." Tron¡' JoPon Sæ' lnttm' Contr' Eag"

vol. ll. pp- 517-522.1917.
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"F.s gcncnrion of ¡ wh¡tc ¡nd nom¡l andom rign:|." IEE€

I Tro¡¡- la¡trum Mcos. vol l?. Pp- lló-118. Junc 1988
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ll De¡rv¡rror oç EsfrMAToR

Assuming that we wish ro cst¡matc only thc frequcncy. wc can
avo¡d phasc unwmpping by considering thc diffcrcnced phasc data

L, = Lt,.t - zx, (4)

for r = 0.-1.._- --. , ¡r' - 2. which bccomcs. frcm (3),

^, 
= oro + üt.t - ut- (5)

It is clcr frcm (5) that thc prcblcm now is lo cs(ima(e thc mcan.
oq. ol a colorcd Gaussian norsc præcss, Thc pmcss is actually a

meving avcngc with cæfficicnts I and - I . Thc MLE of oe. which
is cquivalcnt ro the minimum variancc unbiascd cstimator for thc

lincar modcl of (5). is found by minimizing (41

./ : (Á - .6t¡rC-'(a - .¡r¡ (6)

whcrcA:[Ao Á, ---^d-]tr. I=u 1..- llr,andCis
lhc(N - l) x (/V - l) covariancc ma(rix olA,- Thcsolution to
this prcblcm is wcll known and is

Irc -ra
'b = lE:ri (7)

Also. it cen bc shown rhal thc variancc o[ th¡s cstimator is

var (ot) = #=ì (8)

It rcmains only to cxplicitly cvaluatc c\ and Var (rfo) Notc that
ô5 is unbiascd (lcr Á : oel + ? in (?), whcrc Lrl, = u,. t - u,

forr : 0. l.2, "',w - 2). and thatft isa Gaussian nndom
variable, bcing a linær funcrion of thc datå. To cvaluatc C-r. ñst
notc rhat Â, is a ral moving avcngc pmas with driving noise
vanancco!/2A1 and cæfficicntsåo : I, ó¡ = -l- Thccovariancc
funcrion is thus

'.o!,Ql=h1ai+ai¡=ft
o! olc(l):c(-tl:frbo4: -ù

¿(t)=0 ltl=2'
Thc covariancc mtrix rakcs on ¡hc rridiagonal fom

tEÊE IRANSACTIONS ON AcoUsIlcs SPEECH AND SlcN^L PROCÉSSIN(ì vOL l7 NO rl DICr,M0f:R re¡a

Thc invcsc is wcll known with (hc ( t, j ) elcment of thc ( /V - I )
x (/V - l) matrir bcing given by [5]

Hcncc. wc havc lrom (-7) that

N-'' D *,,¡,-o = ,-o

No(c rhal El-lI rr, = I sincc ri¡ is an unbiascd cstrmaror (ar lcasr
at high SNR)- Thc frcqucncy cstimator may lunher bc wrirrcn by
using thc cquivalcnce

L,= ¿r,.1- zr,: ztix,-, (10)

as

d-ì

4: t w,zxix,., {ll),-o

with variancc which follows from (8) as

6
var(r\) =T - 

(12)

r N(N', - t)

But (t2) is idcntical ro Ihc Camcr-Rao bound [6] Additronally.
thc ldst squarcs or MLE cstimaror o[ Trcttcr has also been shown
to atuin thc Cmmer-Rao bound- It is cler thcn that rio as givcn
by (l l) and Trcttcr's cstimator must bc idcntical ln pøcticc. how-
cvcr. (l l) is to bc prcfcned sincc it avoids phasc unwrappîn¿ 1o
vcrify rhis cquivalcncc dircctly. wc may rcwritc (l l) using (10) as

t2:'6:'ó":--:--i- L tzt, - 

- 

L .t, (li)- N(N'- l),.0 N(,v + l)'-o

which is identical to thc linar rcSrcssion estimator of Trcttc¡ That
( t I ) ånd ( I l) mus( bc rhc samc cstimator is also guamntccd by thc

thcorcm thât ifan cfficicnt cstimalor cris(s (i-c-. it arrains rhc Cn'
mcq-Rao bound). rhcn it must bc uniquc [?1.

Thc fom of thc dtimtor givcn by (l l) is simila¡ to that of a

prcviously prcposcd estimalor as will bc discusscd in Scction III-
I is of inrercst to notc hcrc that w, is a window which is symmctric
abour thc point t = N /2 - l- Somc cxamplcs of this window are

givcn in Fig. l - As will bc discusscd shonly, ¡( is rhis window
which is rcsponsible for ôo attaining thc Cnmcr-Rao bound. lf 

'u,

= | / N - I wcrc choscn. for cxamplc, lhcn ôo would bc rhc sam'

plc man of lhc mæsurcmcnts zrfx,.r. t = 0. l. '" . N - 2

This choicc would ncglcct thc colorcd noisc of (5). which led to

thc nccd for C-r in (6) and ultinatcly produccd w, in (l l). ln fact.
îor w, = 1 ¡¡¡ - I, thc cstimator bccomes

- I 
N-7

ôo = FJ ,D^ 
zxlx,.,

I "-,
= 
"i 'E^ "''' - "'

I
= 

" 
_l (zxp-1 - zxa\

which although unbiascd fscc (3)l can bc cxpcctcd lo cxhib¡t a lar3c

variancc due ro thc lack oI avcmging. It is casily vcrificd that for

no windowing

var(r\) = );V (r4)
(lv - l)' 

_r-

which follows by using (l). Thc ntio of ""¡"n.., is found frcm

(12) and (la) as

Va r( c-r )

2 -l
-l 2

0

00

00
00

0t2

-t7

7À'

rcr,, =#[-," t'';l - 1] r<i.jsrv-l (9)

whcrc min (i. i ) dcnorcs thc minimum of i and j. Af¡cr somc al-
gcba. wc havc rhat

whcrc

IrC-t I =

Irc-'^ =

lN

N(N': - I ),,t¡
6o.'

{.:l*"d'_ío*,o,

'- (i - ') _ N(N + l) _ N

6(N-l) óll
(t5)

Var (o.t)

, For largc dau rccords. this loss in pcrfomancc can bc substantlll
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APPÉNDlx

INTERCHANGE oF ANCLE AND SuMMATIoN Operetoes

Considcr thc cstimalo6

t-¡
4$,,=,t- n,¿rlr,.,

dt'=r l,*,rix,r,
,-o

whcrc Dl-lr w, - l-
wa *¡tiatto* rhat for high SNR' thcsc two cs(imatoß ¿rc ¡dcn

tical- .{t hiSh SNR using (4) and (5)

zxlxt.t: 
^, 

= u\ + u,

whcrc z, = !' + | - !' so (hat

'it,'t: 
f ¿^

x-t il-2

,:rÁ'l- D -,(uro+u,)=o6+,tr w'u'
' r-o ' -

Now consider thc sccond cstimator

N-7

¿[!)= z ,Io 
*,(ctsl^)

:¿cF+¿L*,C"
,-O

: ø\ + L ,L^ 
n,C"

o-lo 20 fo ao

sNR (da)

Fig L FrcqucncY cstirulor windoq

ill REL^TloNsHlP wrrH LTNEAR PeeolcrloN EsrtM^TÉs

Thc frcqucncy cstimales considcrcd in Scction II wcrc

d-¡

¿,": ,-t" w,ztlr,.¡ (16)

whcrc

and

I

"'o-N-l

t-2
Z zxlr,.,.
t-0

tt is oossiblc to find lwo additional frcquc

cqui;alcnt lo (16) and (17) ar high SNR

t-¡
4 - ¿ ,Ðow,rlx,-1

(t?)

ncy cstimatoß which arc

Thcsc arc. rcsPccrivclY'

( r8)

and

' üh = . -)- I ¡i¡,.,. (19)
' iV - I ¡-o

lV. CoMPUTER Sluuurtlo¡s
Pcrfor-
(16) as

c avcf-
(19) as

nts was

M€AÑ SOUARF ERNOA

CRAMER-FAO
6OUND

MLÉ

WW€6dTEO LNEAR
PREDrcTOR (EO.IO)

(49-oo¡
2t

PHAS€
(EO r6'

WWÉGHI€O PRASE

^VER^O€R 
(€O.r 7 )
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Assumrng lr, I << l.

ô[¡'=u¡+¿

:öol ¿

reEE lR^NS^CrloNs oN ACOUSTTCS S'EECH 
^ND 

SrCñ^L'ROCESSTNC voL r7 NO rr o[cEM8f:R ie89

I ".1r-0
+ Jr',1

. ..ror. Exprrls¡ons for. atrs of fhr d¡rection otI oscd_form crpr¡55is,,5
r I furrt¡cr insigh¡. Comt hc ¡nalvsist+jZ".,t',(

tr-2
= oo + arctan t w,u,

,-o
tr-!

= ',o + 
,Io w,u,

:4"
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Perforrnance Anatysis of ESPRIT and TAII{ ¡n
Determining the Direction of Arrival of plane

Waves in Noise
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whcrc o. : 2Í(d/\,) sin e¡,
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vcctor wirh indcpcndcnr clcmc
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-- "'

. 'ln th¡5 corcspondcncc. f i¡ uscd to dcnotc tansposc. . to dcnotc com_

llcr coniug:rc. ll ro dcnorc complcr con¡ugarc lEnspos. Also - il uscd toocnolc csttmltcs. ¡nd thc subrcrip(, ro dcnolc p¡Emclcß ¡ssæiatcd withrhc sißnâl ¡lonc.
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APPENDIX X

MBASURING AND REMOVING QUADRATURE HYBRID ERRORS

0N HIASURING IrtI G^tN AND pHASt UNBAL^NCt 
^110 

0C 0rrStTS 0r
QUAORAIURT A-I0-0 CONVtRItRS utTl.t 

^N 
AD^pttvt c^NctLt trrG f tt-ltn

fred h¿rris

Ilectrlc¿ì And-Conputer Ingincerf n9 0ep¿rtment
- Colì¿9a of In9i.eerin9
San g¡"no St¿te Unirersity
5an 0i¡96. C¿ì iforni¿ 92ìIíZ

AESTRAC T

II{TROOUCTIO¡{

Hany signaì processing aìgorittms òre destgned tooperÀte on the tlms is¡¡ç5 obt¿lned frorn the com_pìex envelope of the sfgnaì belng p.o."ir.j- Hðñyexa.mpìes of such proceislng can-bä roun¿-in sonar.radar. ðnd comnunlcàtion systerus- ln mòny of thesesystems. the cornplex enveìope is formed Ly on ona_ìog operatlon conslstlng of in in_ptur"-onå quòdrò_tu:: (ttq¡ heterodyne of à re¿t itgnit- iritr, ònarbitrary center frequency) folloveã by ¿ p¿lr ofnr¿tched lovpass filters- The resuìtlng palr ofsignaìs are then sampled and quantize¿ úy mòtchedanaìog-to-dlgitaì converters - The st¿nd¿rd blockdiagram of such ¿ process is shown in figure l-

the oper¿tion of ¿ qu¿dr¿ture heterodyne for ¿sinusoìdat input signar i, o."r"nùì i^'iil_tsl 
-

d(t)=Ac0s[(.o".r)tl 
t,l)

'.(t) = 2A COSf(.o..r)tì COS(uot) (Z¿)

= A(cOslort] - ¡65f(2oo..r)rì] (zb)

vm(t) = -24 cOs[(.o.ur)t] stNloorl (tu¡
. A(SI¡t[os¡ì _ SIN[(2oo*or)rì) (]b)

x(t)-AC0Slorrì (q.)
y(t)=ASlt[orrl (4b)

x(t) * Jy(t) - A(cos[ost] { JSIN[ostl) (5a)

= A ejost (s¡)

The specrrô or x(t), y(t). Jy(t), and r(t) + jy(r)òre presented ln figure 2- Note in p¿rtfcuiðr thðtthe ðddltion of the re¿ì and imaginary sì9naìs(fe..-x. Jy) resuìts in exòct .un.állution of theirnegòtive frequency coñponents- The c¿nceìì¿tion isexòct- becàuse the spectr¿l terns ¿re of eouaì andopposi te s i ze -

RL

x(-)

RL

J Y(-) -s
x(o) + JY(o)

RL

2 r)

s

¡H IH

U
s

Y (.r)

d(r) x (tm'
x(

Yn(t) y( n)

2 SIH(oot)

FtGURE l- SLoCK DIAGRAX 0F t-Q HtTtRooyNt

x( t)

y( t)
Rt

IH

I

TVENTY FIRST ANNUAL ASILOT1AR CONFIRTNCT ON SIGNALS. SYSTIHS
NoV[H0[R 2-4. t9B7

FIGURS 2. SPECTRA AT OUTPUT OF I-Q HETERODYIIT

ADC

A0c
L0u
PASS

FI LT€R

L0u
PASS

ANf} COHPUTIRS
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one o f thc mi xcrs . l{e do so by a ssumi ng Ur¿ I t lr¡
conversion gain of.the cosine ¿nd sini À¿¡¿¡6¿rn",
¿re l -0 ¿nd ( I -O * c) respectiveìy ðnd th¿t ttìc
phàsc shif t between the cosf nc ¿nd (nornina'ì ) s.incts (90 = o) dcgrec- uc further ôssumc th¿t thc twoerrors (c ¿nd c) càn be of either polarity- [qua_tions (6)-(10) present the opcration of ir,e ¡ _ Qheterodyne lncorpora ting thq ga ln and phase errors -

d(t)=ACos((oo+6r)¡l (6)

x"(t) = 2A cos[(oo+or)tì COs[ootl (7¿)

= A{COS[ort] + COs[(2oo+or)tl) (7b)

ym(t) = -2(t+e)A CoS[(oo+or)rì SIN[uot - ol (Ba)

= A(l*e)(sIN[orr + oì - sIN[(2oo+or)t - oì) (sb)

(0)

(0)

(0)

(u¿)

(lìb)

(l lc )

vv

xY

ONT-TAP, ADAPTIVI . CANCELL¡¡{G FILTIR

^?
R

R

az(t..)2

aZ( I *c) StH(o)

lJe c¿n easiìy coflputc the unb¿l¿ncc tems c ¿nd o.¿s veì | ð5_the signaì leveì A. from thq pu.u*aa.,
ì fsted in ( I I ) _ ue note. however, th¿t th; mcàsure_men[ ðnd processing tcchnlques requlred to form thctems of (ll ) ¿re òffccted by the AOC imperfectìons
such ¿s devi¿tions f.o{D ììne¿rity ònd by qu¿ntl¿¿_tion noise ¿s veìì as by ìe¿k¿ge effecti...Jlu,"d ,othe me¿surement of thc I ov I euãl ( t*a9e anJ offset )slgnaìs in the Þresence of the high ìãveì (prinary)
s i gna I -

(sa¡

( su)

x(t) { jy(t) = A(coslorr.] + J(l+€)SINfort + o)) (ro¿)

Jo Jür-t -Jc -jo t
= e((t+(l+c)e ìe ' + [t-(l+¡)s le s 1 (r0b)

These equations offer ìì ttì¿ i¡ejg¡1 lnto the ef_fects of the galn and phase unb¿i¿nce execept He
note the existance of the negative frequency compo_
nent vhich did not appeðr Hhen the unb¿lance lems
vere absent- Flgure 3- gr€sents the spectra of
x(t), y(t), jv(t), and x(t)*Jy(t) ror i¡e unb¿ì-
anced oixers. l{e see liere that the prim¿ry effect
of the galn and phase unb¿ìance h¿s been the fafì_
ure to achleve exact cancelì¿tion of the ne9¿tìve
frequenty cornponents. These residuaì neg¿tfve fre-
.quency cooponents ¡re usualìy referred to à, spec_traì lnages or ghosts-

x(t) = A COS[orr.ì

y(t) = A(l+6¡.SIN[ort+ o]

RL

IH

x(r)

RL

Ffgure 4- presents the bìock dfagram of a one_tðp
co<npìex veight. ¿dàptlve c¡nceììing flìter-

RL

{
s

ô

IH

ùJ
s

o
s

Y (,)
6

s
o s(n)

d( n)

FIGURT 4

o e(n)

RL

IH IH
,-

J Y(.) x(o) + J y(o)

FIGURE 3 . SPECTRA AT OUTPUI OF I-Q HETEROOYNI
EXHIBITING GAIN AND PKASE UNBALANCI

o6
BLOCK D¡AGRÂh OF A ONt-TAP. CS{PLIX

UCIGHT. AOAPTIVI CANCILLING FILTIR.

u(n)
v(nrl)v(")
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Tlrc ¡Ouul. ions dcscrl bing tlris fi I tcr ¿rc prcscntcd
i n ( I 2 ) - 0cpcndi ng on t[ìc ltructurc of (hc [)dr¿mò -
mcLer u(n), tlris fiìtcr c¿n bc vieved ¿nd dcrivcd
from ¿ number of perspectives. Tlìcsc lncludc lhc
Steepcst Desccnt (50), Le¿st Hean Squarc (tHS). ònd
Recursive Lcèst Squ¿re (RLS)-

u(n+l) = u(n) + u(n)-e (.).¿(.) (lZ¿)

e(n) = s(n) - n (n)-¿(n) (tzb)

Under re¿son¿bìe assumptlons of first ¿nd sccond
ordcr statlstics. the fiìter veight H(n) converges
to the steòdy stòte soìution 't{' shlch mlniml ¿es
the meàn squòre prediction error shoHn in (13) -

J(n) = E(e(n)-"'(n)) (ì3¿)

= t(fu (n)-d(n)-s(n)ìtu(n)-¿ (n)-r'(n)l) (i¡u)

For the appìlcatlon He are describing here, the
signals are ergodic so He may repìace the ensembìe
àverðge vlth a time(index) ðverðge-

The optimaì we{ght l{ of course satlsfies the (sin-
9ìe wefght) lJiener-Hopf equation shom in (14)-

e(¿(n)-¿t(n))-u = E(d(n)-r*(n)) (rr¡

Let us àssune thðt the desired slgnal d(n) ànd the
input signàl s(n) are of the form shov iî (15)-

jo
d(n) = "

J

n
o

'J*t^ (¡ r l¡(n)12 n2Ít,J. 1,,,rÂ2ll (luc)

J.i. f l. lr,(n)l 'ntì (roo¡

Tlrus slri ì c thc wc i9ht V(n) 
_convcrgcs in 1¡r¡ mc¿n tothe optimum 't{" (¿s ln (.l7)) ttc raun rquu." 

".,o.exhibits ¿n cxccss component proportion¿ì to lrt"¡l;lierc wc scc th¿ t l n order to control Lhe cxces smc¿n squòrc crror. He requirc ¡r(n) to vcry sm¿ì ì -

lJe ¿re f¿ccd xlth confl lcttng rcquircynents on tr(n),
from one consfder¿tlon. He H¿nt ¡(n) to be ìargq 1.reduce the trànslent time to òchieve steòdy stète(i n thc mean) ¿nd f rorn ¿nother cons.iderat,lqn qs
want y(n) to be sm¿ìì to controì the cxces\ meòn
squòre error- l.le respond to these duaì requircnents
by scheduìin9 y(n) to be ìô19e carìy fn thq ¿óàp_
tion process and then sn¿ìì ì¿te in the sàme pro_
cess- As ìong òs the scheduìed changcs proceed ¿tr¿tes sìower than the lnstàntôneous ¿dòptjon time
constant, both a rapid trònsient ¿nd ¿ sm¿ìl eXcess
meàn squðre error còn be ¿chieved.

€(d(n)-.'(r,)) = o (16)

It ls easy to defnonstràte (by substltutlon and by
use of the constràlnt fn (f6)) that for the indi-
cated d(n) and for o. lu(n)l < 2 ttre expected steðdy
stðte soìutlon for t¡(n) in (tZ) is glven in (17) -

JO
€(u(n))-H.Ae (rl1

The tr¿nsient tlme to achleve thls expected velght
is reì¿ted to the sl¿e of u(n)- If u(n) ls re-
gìàced by à constànt y, the tr¿nslent time constant
is approxlmately l/lul. ue see then. that if v is
srî¿ì1. the transfent time (a/lul) is ìarge and He

mlght be tenpted to seìect a ìarge y to reaìize ò

short translent time-

If ve deflne J¡¡l¡ ò5 the mfnimurn meàn squôre error
of (13). due to the sfgnàì coíiPonents orthogonaì to
the desfred slgnaì d(n). Ye càn detecmfne thòt the
ste¿dy ståte meàn square error of (13) ls approxi-
m¿ted by (18)- The second ternr ln (18) ls c¿ììed
the excess meàn squðre error and ls due to the ad-
òptlon process -

Iou(n) ¡2 - ls(n) l2

lu(n) l2 J.infA2 * J*tnl

0ne e¿sììy generated scheduì ing tÉchnique is to use
the exponentiaì decay of a singìe poìe liìter ¿s
the u(n) functlon- Speed of the adaption process
then becomes dependent upon the initiòl u(0) ¿nd
i ts exponentì¿ì ròte of decay whì ìe the fi n¿ì ex-
cess meðn squòre error becomes dependent on the in_
put to the fììter- This scheduì lng technique ls the
one shown in figure 4-

APPLYING THT ONE-IAP ADAPTIVT CANCTL LING FI LTtR

An input slgnaì with ¿ knovn frequency offset (from
the quðdrðture mìxin9 frequency) is ¿ppìied to the
l-Q heterodyne. fiìters, ònd ADC chain- The output
time serles viìì cont¿in a spectròì component ¿t
the expected offset frequency ¿s velì as an image
cofl¡ponent du€ to the galn and phase unb¿ì¿nces of
the heterodyne process- A c¿scade palr of adaptlve
fiìters can estin¿te ¿nó c¿nceì both components by
u:lng a singìe co<npìex reference slgnaì of uni t
ampìitude ¡t the known offset frequency. Reìative
phaslng betveen the reference ànd the components
belng canceììed ls not lnport¿nt-

lhe flìters are stðged so that the prlnary signaì.
being the ìargest. is processed and c¿nceìled
first- The output of the first c¡ncelìer is pàssed
to the second flìter vhich estlmates and cànceìs
the lmage component. The reference signaì to the
inage canceììer fs the conjugôte of the reference
signaì used by the flrst stðge"

0
e

c(n) àre

(tsa¡

* c(n) (l5b)

orthogonaì ¿s

J 8on
- s(n)

Ve require that d(n)
indicàted in (f6)-

J(n) ' Jmtn +

= Jmln +

.Ae

¿nd

The DC offsets of the AOC ¿re ðìso spectr¿ì
nents fn the output tine serles which c¿n be
m¿ted and canceììeó by à third ¿d¿ptive
folìovln9-the fl¡ed tone cancelìers. This
uses ¿ (re¿l) unit ampì1tude constànt ðs lts
ence slgnaì- Figure 5- shoxs the fom of the
c¿sc¿de c¿nceì ì ers -

compo-
es t I -

filter
f i ì ter
refer-
three

(lea¡

( r8b)

The three stage cancelìer c¿n be operàted ln teo
distinct nodes. In the flrst node. the three flì-
ters ôdòpt ¿nd c¿nceì concurrentìy (or slmul t¿ -
neousìy)- The error signal from each fiìter is
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s(")

d(n)

er(n) cr(n)

2ø qO Gß Bú

2øcUr!Æ86

ut -- v2 = 2,e "iþ
ut + uZ = ZA ejÓ (l.c¡"Jo

vt ' Hz- = (ì.c¡"jo
Hl-v2

CAIN l¡iBtì-tu{t ùJet^ú eOæilON

c,(n)

I _o
FIGURI 5. II{RII SI^Gt CANCTLLING TILIIE

te ms

For the unbaìance described ln (lO) ônd for thereference (.tnput sfgnaì) ìeadfn9 tÀ"-ó.ìri-.y rrgn.rcomponent fn s(n) by O. ttre x-etgnti-of-the firsttrro stàges converge to the teñns ú figÍ- 
'

Hl = A[t+(l+c)] ejc ejó (lSa)

t{2 - Atl-(l+c¡¡ 
"-Jo "-J0 (l9b)

As shown tn (20), by simpì¿ nanlpulatlon of (19) Hec¿n deternioe the magnltude anj ptoià -r"uulun..

(zo¿)

( 20b)

(zoc)
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To dcmonstr¿te thc cffectlvencss of this tcchniquesc h¿ve simuì¿tcd a sìgnaì cquivaìcnt to ihat ob_[¿ìncd from ¿n I - Q heterodync exhibiting ¿ +l0f
9¿rn unb¿ì¿nce, ¿ rl0 degree phase mism¿tãh, ¿ _40
dB thi.d h¿r¡non1c dlstoriìon. ¿ +l0f ¿nd +5f OC ðd_ditive bl¿s for the I[Q channeìs respcctiveìy, ¿nd¿ -60 dB addltive noise to sìmuì¿te ADC quantizingnoisc- This signaì w¿5 processed in ¿ three stòge
converge ¿ nd frecze mode cànceì ì I nq fl ì ter -

tx^HPLt OF CÂNCILLI NG TICI{l{ f QU¿

The unb¿ì¿nce terms estimòted Uy tne c¿ncelìer

:o

¡gryGñ te¡ ùO ûJteur O/ (ù((((t€

the condl t-lons decsribed ¿bove òre
T¿bìe l. for tvo leveìs of quànti2i

for
tnpresented

ng notse-

| 60
rcCû/< r

FIGURI B- POTJIR SPTCIRA FOR INPIIT AND OUTPUT OFA THRTT STAGT cONvTRGI ANO FRTtzr c¡HcILiiR

CONCLUS I ON S

5

Figure 7. presents.the fnstantaneous power for this
cornposite signaì (top curve) ¿s veìì ¿s the inst¿n_
t¿neous pover tor the signals at the output of eòch
successive cancelìer- The second cr.rre þ.esents the
poHer ðfter c¿nceì ì in9 the primary signaì . thethird curye is the pover ¿fter canteììlã9 the imaçe
slgnaì, and the ìàst curve is the remalnlng pover
àfter cðnceìllng the DC-

:J

:^
q

presence of second¿ry sfgnaìs such ¿s h¿mon.ic dis-tortion. additive noise, or DC bi¿ses-

5¡Or\ Pt<e reùr tf({ 5rnc{ ù¡tÉ rumilù¿

l'(.1 I 
¡

R t FtRftict S

I - Sinon Haykin, -Adòptive Fi I 1s¡ T¡eo.r. . ( l986) .Prentice-Haìì . Ingìer.ood Cì i ffs, X-J_

2.8ernie Vidrov ¿nd S. D- Ste¿rns. -Adaptive SiS_naì Processinl'.(1985). prentice_Halì, tngìe,.oódCliffs. t{-J-820{0646e rgo
I lr(

t'¿C lco tG$ I 80 2eO

F¡GURT 7. II{STA¡{TANEOUS POI{ER AT INPUI ANO OUTPUT
OF EACH ST^GE OF A CONVERGE ANO FRETZE CANCELLIR

ACTUAL {1-*o
I/Q GAIN RATr0 0_90909 0-90909 0.91553

I-Q PHASI ERROR tn-oo0o 9 - 9998 9 - 939¿

I-CHA¡I DC SIAS O.IOOO o-1000 0 .0989

DC B¡AS 0-0500 0.0500 0 - 0520

TAELI I. PERFORHA¡.ICT COflPARISOI{ FOR UNEALAHCT
TERHS OETA]¡{TO BY ADAPTIVT CANCELLTRS

lc,("1t2 fc.(")lr

lcr(") ¡2
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APPENDIX XI

ERROR CORRECTION CALCULATIONS

The following calculations are listed to show how the corrections for dc offset, amplitude

imbalance and phase error have been derived for implementation in the computer programs.

We shall consider the amplitude and phase errors to both be in the Q channel and a different

dc offset in each of the I and Q channels as follows

It = Acos(ut) * d,c;

= (1 +7)Asin(arú * e) + dcoQ, (1e6)

XI.l DC offset correction

The mean dc offsets in each channel can be calculated independently as

mean {d,c;} \
1:
N

1

]V

i=Nt
i=l
i=Nt
i=1

mean {d,co} Q;" (1e7)

(lee)

(20o)

To remove the dc offsets then it is simply a matter of subtracting dc; and dc, from the I

signal vector and the Q signal vector respectively.

XI.2 Amplitude imbalance correction

If we perform an autocorrelation, with zero shift, on each channel we obtain

¡2
( 1e8)Ë¡¡(0) = m.s. {Acos(øú)} t

and

rn.s. {(1 + 1) Asin (c,,'r 1 e)}

t2 (t + t2)
2

Ãqo (o)
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and the cross correlation between the I and Q channels gives

À¡o (0) : rn.s. {(t + 'ù A2 sin (arf * e) cos (c..'ú)}

¡z 1+ 7) srn€.

(201)

(202)

(203)

(204)

(205)

(206)

(207)

(208)

(2oe)

2

Therefore we may estimate the amplitude imbalance from

7-

and we may estimate the quadrature phase error from

sine = -,rlå-Ðl

XI.3 Phase error correction

We require

we have

If we expand out q we obtain

Hence

I = Acos9

A = ,4sin0"

i - Acosî=I

q - ásin(0*e)

q - Asindcose *.4cos0sine

= Qcose *.Isine .

10
sin e cos € ll;l

It;l
I I cos€ 0

-sine 1a COS €
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APPENDIX XII

TABLES OF RESULTS

The variables used in tables xII.l to XII.5 are defined as follows :-

ñ : expected value of phase difference diference taken over the N phase diffe¡ence data points

0 ¡ = angle through which the complex signal vector rotates

ie phase change of signal between sample instants

6¿ : dc offset in the I channel

6q : dc offset in the Q channel

^l : relative amplitude gain error

€ = quadrature phase error

N = the number of phase difference samples

p = {r: the signal-to-noise power ratio

Table XII.I Summary of results - signal plus noise case'

Vør {L,0} !
p

Var ñ I
ñ

E {Af.} 0
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Table XII.2 Summary of results - quantisation case-

Vør {L,0}
1

3at

Var L0 1

lÃ2ñz

E {Lr.} 0
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Table XII.3 Summary of results - quadrature phase error case.

min and max R when 0=L(T-Ð nodd.

R*in A 1-sin €

R^o, A 1 * sin(e)

max phase error when 0= tnr - ti] n=0,1,2,.

max phase error 9emor = -€

zero phase error when 0 : -ecos2 0

form of phase error 0e = -e cosz 0

E {^'p.} 0

Var {L,0) l+ls\n2o¡

¡/_ì
var \A0| lt%'lsin2 d¡ cos2 ((Iü - r)0¡)
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TaL¡le XII.4 Summary of results - amplitude imbalance case'

min and max R when g=ï nodd

R^in A

R^o" A(1+ ?)

max phase error when sind: +Vl-+

max phase error 0. o,x -tan-l I
-t

2+1

zero phase error when 0:T n 0 t 1
7
2 ,

form of phase error 0.: - []] sin(ze)

E {Lp"} 0

Var {L,0} 202^o, sinz 0 ¡

v* {ñ\ t [+*] cos2 ((N - t)o¡)si# o¡
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Table XII.5 Summary of results - dc offset case.

min and max R when taná:þ=tan(dazr)

R^ín A_ 6? +63

R^o" A+ 6?+6?

max phase error when 0:a!þIr

where cos1 - ry

and cos a: 7fu,

max phase error sinr,.^o"= (*) = ry

zero phase error when d = r,"-' [*]

form of phase error o"=-lrylsin(a-o)

E {L0"} 0

Var {A0} 202*o,.t.'(?)

v* {ñ} t [+*] .o" [{rr - \+].i"'(?)
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(210)

(211)

(212)

(213)

(2t4)

(215)

(216)

(2r7)

(218)

(21e)

(220)

(221)

(222)

(223)

(224)

(225)

(226)

(227)

(228)

(22s)

(230)

(231)

(232)

(233)

(234)

(235)

APPENDIX XIII

TRIGONOMETRIC IDENTITIBS

sin(-d) : - sin(d)

cos(-d) : cos(d)

tan(-d) = - tan(d)

sin(f*0)=cos(d)

cos(f +0): -sin(d)
tan(f +0)= -cot(d)
sin(z'{0)=-sin(d)

cos(a-f0):-cos(d)

tan(zr +0)= tan(0)

cos(A + .B) = cos A cos.B - sin A sin B

cos(A - B) : cos A cos B * sin Asin B

sin(,4 + B) = sin A cos B + cos,4 sin -B

sin(r4, - B) = sin ..4. cos B - cos A sin.B

cos A * cos B = 2 cos(ff)cos(f)
cos ,4 - cos B = 2 sin(a{å) sin(f )

sin .4 * sin.B = zsin(ff)cos(få)
sinA - sinB = 2cos(ff)sin($a)
2cos Acos B = cos(A + B) + cos(,A - B)

2cos AsinB = sin(A + B) -sin(A - B)

2sinAcosB = sin(.A * B) + sin(,A - A)

2 sin .4 sin B : cos(,4. - B) - cos(A 1 B)

cos20 = 2cos2 0 - I = 1 - 2sin2 d = cos2 0 - sin2 0

sin20=2sin0cos0

cos30 = 4cos3d - 3cos0

sin3d=3sin0-4sin30

A cosî * B sin 0 = JWEFcos(d - tan-r f;)
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