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SUMMARY

This thesis is concerned with the estimation of the frequency of a single sinusoid of fixed but
unknown frequency and which has been corrupted by errors in a quadrature hybrid, coherent
receiver system. The quadrature hybrid receiver has been employed to produce in-phase and
quadrature baseband signal components which can be sampled and undergo an analogue to
digital conversion. A simple, discrete frequency estimator is derived from the rate of change
of signal phase between successive sampling instants after analogue to digital conversion.
The statistical effects of the errors and imbalances, inherent in the quadrature hybrid, upon
the discrete frequency estimator are studied. This study has been carried out in four stages

forming the content of the four chapters : 2,3,4,5.

In chapter 2, an analytic study of the estimation of the frequency of a single sinusoid, which
has passed through a quadrature hybrid system, is carried out. This study is further subdi-
vided so that each of the quadrature hybrid errors is examined individually. A summary of

the results derived for each error case is provided, in tabular form, in appendix XII.

In chapter 3, the quadrature hybrid and input signal are modelled as a computer simulation.
This chapter is subdivided, as with chapter 2, so that each error case is simulated on an
individual basis. In each case the error or imbalance is varied and the frequency of the input
sinusoid is varied so that most of the possible error conditions and possible input frequencies
are studied. Simulation results are presented in graphical form and compared with a similar

graphical presentation of the theoretical results from chapter 2.

In chapter 4, a real quadrature hybrid, receiver system is examined and the inherent system
errors are measured. These measurements serve to support both the simulations and the

theory.

In chapter 5, techniques are derived in order to reduce the degradation of frequency estimation
caused by the quadrature hybrid system errors and both simulation results and a real example
are given. It is also demonstrated that the theoretical lower limit for frequency estimation
in the presence of normally distributed noise (the Cramér-Rao lower variance bound) can be

acheived for this system.
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Symbol

I or I(t)
Q or Q(t)
w=2rf
6 or 6(t)
A4(t)

y(t)

Ly(t)

f(t)

On

A6,

Lyn

fa
TRUNC|z]

Af

Var{z}

NOTATION

Explanation

The in-phase or REAL component of the analytic signal

The quadrature or IMAGINARY component of the analytic signal

Angular frequency measured in radians per second

The phase of the signal at time t

The difference in signal phase between time t and time (t-T)
where T is the sampling period

The analytic signal at time t, y(t) = I(t) + jQ(t)

The phase or argument of the analytic signal at time t

The frequency of the input sinusoid at time t, measured in Hz
The phase of the signal at sample point n

The difference in signal phase between point n and point (n-1)
The phase or argument of the analytic signal at point n

The frequency of the input sinusoid at point n

An operator which removes the fractional part of a real value x
leaving only the integer part

Expected value of phase difference taken over

N phase difference data points

Angle through which the complex signal vector rotates,

ie phase change of signal, between sample instants

DC offset in the I channel

DC offset in the Q channel

Relative amplitude gain error, -o;- =147

Quadrature phase error

The number of phase difference samples available

The signal-to-noise power ratio, p = ‘2—;

The error in the signal phase

The mean or expected value of variable x, E{z} = [ zp(z)dz
The probability density of x

The variance or mean square error in variable x,

Var{z} = E*{z - £} = E{z?} - E*{z}



Var{A6} The mean square error, or variance, in a single phase difference

data point

Var{&\ﬂ} The mean square error, or variance, in the expected value of
phase difference taken over N data points. We use mse{A#}
and Var{EO} in the figures as an aid to distinguish between
the two variables : Af and A8

o? The variance of the noise in the I channel

03 The variance of the noise in the Q channel

o2 Total variance due to the noise in the I and Q channels, 62 = o2 + 03
A The signal amplitude after passing through the quadrature hybrid
Oemaz The maximum phase error due to the system errors

R The amplitude of resultant complex vector ie signal plus error

Rinaz The maximum value of R when signal combined with error

Roin The minimum value of R when signal combined with error

z The amplitude of the complex noise vector

L The order of the adaptive filter

w The convergence parameter of the adaptive filter



1 INTRODUCTION

1.1 The quadrature hybrid receiver

In many signal processing based systems, for example modern sonar, radar and communi-
cation systems using digital signal processing, an analogue operation is performed which
produces an in-phase (I) and a quadrature (Q) component of a real input signal. In this case
the input signal is a single (one frequency component) narrowband signal of fixed frequency.
An intermediate frequency signal at frequency wg + w;, with an amplitude A, is split and
mixed with coherent I and Q reference sources given by coswpt and — sinwot, respectively.
After mixing the products are low-pass filtered to retain the difference frequency terms. This

results in the signal being split into in-phase and quadrature components, which are given by
I(t) = Acosw;t
Q(t) = Asinwgt. (1)

This pair of signals can then be treated as a complex signal

y(t) = I(t) + Q(t) = Aexp {jurt} . (2)
This ideal signal is obtained only if the gains of the I and Q paths are equal and if the phase
difference between channels is 90 degrees. The resulting pair of signals are then sampled and
quantised by matched analogue-to-digital (ADC) converters. This representation of digitised
signals by complex numbers has a certain mathematical convenience and allows us to resolve
positive and negative frequencies, relative to the reference frequency. From these complex
numbers we can derive information about the input signal such as amplitude, phase and
frequency at any given sample instant. Figure 1 shows the main components involved in a

receiver system employing a quadrature heterodyne process. These are :-

(a) Superhet receiver. The superhet has the ability to scan or sweep the radio frequency (RF)
spectrum of interest. The superhet converts these RF signals to an intermediate frequency
(IF) which can more easily be handled by IF analogue circuitry. Ideally a bandpass filter
is inserted at this stage to constrain the bandwidth of the IF signals to be within the A/D
sampling rate (Nyquist frequency). In the actual system we have relied upon the output

bandwidth of the receiver to act as a suitable bandpass filter.



input signal (RF)

mixer 2
IF | low pass |
superhet | | ower fitter A/D signal
—uplﬁer
recelver | .
| low pass processing
filter
reference
oscillator

Figure 1 Block diagram showing main components comprising the quadrature

heterodyne receiver and digital signal processing involved in this study.

(b) Quadrature mixing unit. In this frequency mixing stage the IF signal output from the
superhet receiver passes through a power splitter whereupon each output is mixed with : 1
a fixed frequency signal from a stable reference oscillator, 2 a fixed frequency signal from
the same reference oscillator but delayed by 90 degrees phase with respect to that of 1.
The output from mixer 1 contains frequency components involving the sum and difference
between the IF signal frequency and the reference oscillator signal frequency (in-phase or I
channel). The output from mixer 2 is the same as 1 but with the 90 degree relative phase
shift (quadrature or Q channel, this is strictly -Q since a phase delay has been incurred).
Low-pass filters follow each of the two mixers in order to remove the summation frequency
components prior to sampling. The output from mixer 1 is commonly referred to as the
REAL component of the IF signal and the output from mixer 2 is commonly referred to as

the IMAGINARY component of the IF signal.

(c) Digital sampling and recording. The I channel and Q channel are next sampled, in this case
a high speed digital sampling oscilloscope (DSO) is used to carry out the A/D conversion on
each channel. The DSO sampling rate for each channel is 400MHz, which implies a sampling
period of 2.5 nanoseconds. 8-bit A/D converters are employed thus dividing the amplitude

range into 256 levels.



1.2 Discrete frequency estimation

Having sampled and recorded waveforms of interest we can carry out the appropriate signal
processing methods in order to determine the IF signal frequency. The method applied here
is to calculate the.phase of the signal at each sampling instant in time, then calculate the

change in phase between each successive sampling instant

= Zu(t) = tan~" | 28
6(t) = Ly(t) = tan [I(t)] . (3)
The phase difference between successive sampling instants is calculated as

AG(t) =0(t) - 0(t - T) (4)
where T is the intersample period. Hence frequency is given by

1 [A6(2)
t)y=—|—1 -
0= 5 | 23] 5)

For our discrete sampling system we shall use n in place of t and normalise T to be unity,

hence

On = Lyn = tan™" Ii&l'] (6)
I,
and A8, =6, — 6,1 (7)
d fo = = [06,] (8)
and fn = o nl -

One problem which might be encountered in the above calculation of phase difference occurs
when the absolute value of phase difference between successive samples is greater than 7
radians. This problem may be overcome if the Nyquist criterion can be satisfied, namely that

the sampling rate should be at least twice the frequency of the highest-frequency component



of the signal. Alternatively we can avoid this condition by restricting the signal to be recorded
to be within the sampling bandwidth of the system. This is achieved through the use of low
pass filters before the A/D stage. For example, if the A/D sampling rate is 400MHz, then
each low pass filter should have a cut-off point at 200MHz. Thus, in our example, we sample
an input si«gna,l frequency range of £200MHz with an A/D sampling rate of 400MHz. We
note that in practical filter design the low pass filters may still pass some frequencies beyond
200MHz, though rapidly attenuated as frequency increases. If it is desired to filter out signal
frequencies above 2OOMHZ then the filters might have to be designed to have a lower pass

frequency eg 175MHz leading to a reduction in the input signal frequency range to £175MHz.

1.3 Applications of the quadrature hybrid reciever

The quadrature hybrid can be found in many radar and communications applications. For
examples of radar applications see Hovanessian [2], Tsui [3]. In [3] the quadrature hybrid is
used as part of a digital microwave receiver for electronic warfare purposes. In communicati-
ons systems the quadrature hybrid can be used as a frequency detector see Bellanger [4]. The
quadrature hybrid behaves as a Hilbert transformer which is described in most good books
on signal processing applications eg Papoulis [5]. In 1988, Naegeli and McHenry [6] presented

some applications of IQ vector modulation for signal simulation and analysis.

1.4 Aims of the thesis

In any practical quadrature heterodyne system there will be system errors and imbalances
which will inhibit the accuracy with which the signal parameters can be measured. In this
study we are particularly interested in obtaining an accurate estimate of the frequency of a
input sinusoid, of fixed but unknown frequency, using the very simple frequency estimator
described in section 1.2 and also the relatively simple frequency estimator developed by
Kay [7]. The effects of the main system errors : dc offsets, amplitude imbalance, phase error,
noise and quantisation, upon the statistics of the phase difference frequency estimator, are
studied both analytically and via computer simulations. The phase error is the error between
the intended phase difference of 90 degrees and the actual phase difference between the I and
Q signal paths. Real system errors have been measured and used to validate the analytic

results.



1.5 Previous work on quadrature hybrid systems

There are several articles which report work carried out on quadrature hybrid systems and
sampling of the I and Q waveforms. In 1974, Sinsky and Wang [8] looked at the output
signal distortion with phase and gain errors and derived the statistics of the output signal
voltage envelope. The following year, Persons [9] determined the ratio of the power in the
error frequency bands to the power in the signal {requency band, for any sampling frequency.
Brown [10], in 1979, introduced a quadrature sampling theorem and looked at ways of mini-
mising the sampling rate for quadrature sampling. In 1981, Churchill et al [11] described a
technique for correcting the gain, phase imbalances and bias errors of a quadrature system.
This technique requires an input test signal and the derivation of digital filter coeflicients.
The residual errors using this technique are derived from measurements of the output of an
image filter. Waters and Jarrett, in 1982, developed a method of using a single A/D converter
to digitise the input signal IF directly and producing I and Q components thus eliminating
baseband conversion. Though producing phase errors of the order of 2 degrees, this method
was designed to operate at low frequencies ie 2.5MHz. Rice and Wu [12] , in 1982, employed
a Hilbert transformer to produce quadrature outputs from an input bandpass signal and

developed a hardware implementation with a 60kHz bandwidth.

1.6 Main results

Much work has been previously carried out in investigating the effects of quadrature hybrid
system errors. These investigations are based on theoretical expressions or measurements of
the output frequency spectrum, in particular the image frequency components. The main
aim of this thesis is to derive expressions for the statistical accuracy obtainable in estimating
the frequency of an input sinusoid, of fixed but unknown frequency, and which is corrupted
by errors in a quadrature hybrid, coherent receiver system. These expressions are derived
analytically and computer simulations are carried out in order to support the theory. A
hardware implementation of the quadrature hybrid is also studied, measurements of the
inherent system errors are made and a comparison with the theoretical results for the variance

in the estimated are made.

The second aim of this thesis is to investigate methods for reducing the effects of the inherent

system errors, with a view to real time implementation.



1.7 Note on figure labelling

Due to a limitation in the in software package [13] used to plot the results, it is not possible

to correctly label the plots. To circumvent this problem we use the following representations

(i) mse or mse{pd} = Var{A8}.
(ii)  var or var{pd} = Var{A6}.

(iii) sn or snr =signal-to-noise ratio p.



2 ANALYTIC STUDY OF ERRORS

In this chapter we examine the mean value of the phase difference error, the variance in the
phase difference and the variance of the phase difference frequency estimator in the presence of
each of the quadrature heterodyne system errors. This is most readily achieved by considering
the effects upon the complex vector representing the IF signal. The detailed analyses for all

of the error cases can be found in the appendices.

2.1 Signal plus noise case

Figure 2 Complex signal vector - showing effect of additive complex noise vector.

We consider the case where each of the I and the Q channels are independently corrupted by
normally distributed white noise, shown as the complex vector z in figure 2. The two channel

waveforms may then be represented as

I = Acosf+n;

O
I

Asinf + ng (9)



where @ = w;t is the signal phase at sample instant t and A is the signal amplitude, n;
is the noise in the I channel and n, is the noise in the Q channel. We assume firstly that
the noise input to the receiver has come from a multiplicity of independent sources which
may have different probability distributions for the noise amplitude. Similarly sources of
noise within the receiver system itsel{ (mixer diodes, receiver components etc) are assumed
to be independent and their noise distributions may be different. We invoke the central limit
theorem which states that if different random variables are independent then the probability
density function of their sum tends to a normal curve as the number of sources tends to co. In
our receiver system we consider the number of noise sources to be sufficiently large that the

central limit theorem is approached. Hence n; and n, are treated as white Gaussian noise.

In previous studies eg [7] n; and n, are treated as real Gaussian random variables with zero
means and uncorrelated with each other. However the assumption that n; and n, are uncorre-
lated is dubious in this case and, almost certainly, the noise is not independent. The complex
noise vector formed from n; and n, will still have a zero mean and be uniformly distributed
in [0,27] for high enough signal-to-noise ratios. Hence our derivations are unaffected by the

correlation of n; and n,.

In figure 2 the amplitude of the input signal vector is A and 8 is the phase of the signal
vector. The complex vector due to the noise in each of the I and Q channels is shown as z.
The instantaneous phase error due to the error in each of the I and Q channels is given by

0.. The results are summarised in table XII.1. We note that :-

(a) the phase difference error is a random variable with zero mean
(b) Var{A6} is inversely proportional to the signal-to-noise ratio p
(c) for a set of N consecutive phase difference data points the variance

is also inversely proportional to N2.

2.2 Quantisation case

We consider the case where each of the I and the Q channels are independently quantised by

the A/D sampling process.



N |

\

Figure 3 Complex signal vector - showing discretisation due to A/D process.
The two channel waveforms may then be represented as

I = TRUNC[Acos6)

Q@ = TRUNC|[Asin§] (10)
where TRU N C is an operator which the truncates the waveform sample values to the nearest
integer value below the signal level. Hence the complex signal vector can only assume certain
discrete values in I and Q (see figure 3) and so discrete values of phase. This will have the
effect of producing a phase error at each sample instant which, in turn, will produce an error

in the phase difference estimator. The results are summarised in table XII.2. We note that :-

(a) the phase difference error is a zero mean process

(b) Var{A#8}, for a single phase difference data point is inversely
proportional to the square of the input signal amplitude A

(c) for a set of N consecutive phase difference data points the variance is also

inversely proportional to N2.



2.3 Phase error case

We consider the case where the Q channel is not exactly 90 degrees relative phase to the I
channel, leading to distortion of the signal complex circle as shown in figure 4. One source
of phase error is the path difference between the two reference oscillator channels. The 90
degree phase shift in the Q channel may be acheived by designing this channel to have a
path length one quarter wavelength longer than the I channel or by using a 90 degree hybrid
power splitter designed to operate at the reference oscillator frequency. In either case the
signal path lengths may not be correct leading to a fixed phase error. For example, if the
reference oscillator has a frequency of 1GHz and there is a path length error of lcm then
there will be a phase error of 12 degrees or 0.21 radians. Another source of phase error
is the difference between the low pass filters. Each filter will have a phase error which is
dependent on the signal frequency and, if the two filters are not properly matched, each filter

will have a different error versus frequency response. The two channel waveforms may then

b - Asin(@ +£)

N9 | [
_ - Acos o

Figure 4 Complex signal vector - showing distortion due to quadrature phase

error.

be represented as

= Acosé

Q = Asin(6+¢) (11)

10



where ¢ is the quadrature phase error. The error in the signal phase is given by

sin(6 + c)] ‘ (12)

6. =6 —tan™’
h o [ cosd

This is the error in phase for the signal vector in any of the four complex quadrants.

If we plot I versus Q, for each sample instant, then the quadrature phase error produces a
characteristic ellipse with its major axis tilted at an angle of 45 degrees to the I axis. The
lengths of the major and minor axes of the ellipse are determined by the quadrature phase
error. The signal phase angle and angles on the IQ plot are no longer the same. In fact the
signal phase angle § = 0 degrees now corresponds to an angle of § relative to the I axis. The

results are summarised in table XII.3. We note that :-

(2) the phase difference error is a deterministic function with zero mean
(b) Var{A8} depends upon both the maximum phase error femaz

and the signal frequency 6y
(c) for a set of N consecutive phase difference data points the variance also

depends upon the number of data points.

2.4 Amplitude imbalance case

We consider the case where the Q channel is not equal in amplitude to the I channel. With
this type of error the signal complex vector describes an ellipse with its major axis aligned
with the axis of highest relative gain, as shown in figure 5. The two channel waveforms may

then be represented as

I = Acosé
Q = A(Q+~7)siné. (13)
The error in the signal phase is given by
1 [(1 4 9)siné
f. = 0 — tan™’ @ +yjenil 14
an [ cos f (14)

This is the error in phase for the signal vector in any of the four complex quadrants. The

results are summarised in table XII.4. We note that :-

(a) the phase difference error is a deterministic function with zero mean

11



AC14Y)

A(l+y)sing

Figure 5 Complex signal vector - showing distortion due to amplitude imbalance

between I and Q channels.

(b) Var{A#} depends upon both the maximum phase error femq, and
the signal frequency 8;
(c) for a set of N consecutive phase difference data points the variance

depends upon the number of data points.

2.5 DC offset case

We consider the case where the Q channel and the I channel are offset from the origin. In
this case the origin of the signal complex vector is shifted (see figure 6) thus causing an
error in the calculated signal amplitude and phase. The two channel waveforms may then be

represented as

I = Acosf+6

Q = Asinf+4,. (15)

12



Figure 6 Complex signal vector - showing effect of dc offsets in I and Q channels.

The error in the signal phase is given by

0. — 0 — tan-1 [Asin0+6q}

Acosf + §; (16)

This is the error in phase for the signal vector in any of the four complex quadrants. The

results are summarised in table XII.5. We note that :-

(a) the phase difference error is a deterministic function with zero mean
(b) Var{A#f} depends upon both the maximum phase error femq, and

the signal frequency 6y
(c) for a set of N consecutive phase difference data points the variance also

depends upon the number of data points.

13



3 COMPUTER SIMULATIONS

Simulations were carried out in the following manner :-

(1) 400 point vectors for each of the REAL signal component and the IMAG signal component
were generated with the appropriate error incorporated in each vector. The initial phase for
the signal was randomly chosen using a Pascal function for uniformly distributed number

generation. The initial phase for the signal was therefore uniformly distributed in [0,27].

(ii) the signal phase at each sample point was calculated then the difference in phase between

successive sample points was calculated forming the phase difference vector.
(iii) the mean value of the phase difference vector was next calculated
(iv) the variance, Var{A6}, in the phase difference vector was calculated

(v) steps (i) to (iv) were repeated thirty times for each parameter change such as signal-to-
noise level or frequency, thus giving thirty values of mean phase difference. Following this

the variance in the mean value of the phase difference, Va'r{@}, could be calculated.

3.1 Signal plus noise case

Figure 7 shows the results from simulating a signal with various levels of normally distributed
random noise added to each of the two signal vector components. The routine used to generate
the Gaussian noise was based upon the Box-Muller method listed in Numerical Recipes [14]
(see also appendix VIII). The random noise was added independently to each of the signal
vector components. Shown also are the theoretical values for the mse or variance. Note that
the variance is a good fit even for low signal-to-noise ratios but the variance is a poor fit
below 6dB. The Cramer-Rao lower variance bound (CRLB) gives the smallest error variance
that can be attained by an unbiased estimator - an introduction to this can be found in
lesson 6 of the book by Mendel [15]. Rife and Boorstyn [16] have derived the CRLB for a
maximum-likelihood (ML) estimator of frequency in noise and Kay (7] has shown that his

phase difference estimator achieves the same CRLB at moderately high SNR. Kay [7] shows

14



that the phase difference values form a moving average (MA) process with coefficients 1 and
-1. Next the covariance matrix for the moving average process is formed and Kay derives an
estimator which minimises the variance for this matrix. The frequency estimator is equivalent
to a set of weights applied to the phase difference data vector. The Kay weighting function
has been applied to both the simulations and to the experimental results (see later). Figure 8
shows that the Cramer-Rao lower variance bound is indeed achieved for this simulation of

signal plus noise.

3.2 Quantisation case

Figure 9 shows the results from simulations of a fixed frequency signal which has had its REAL
and IMAG components quantised or truncated to the nearest integer values. The frequency of
the signal was 0.157 rads/sample interval (where frequency band is defined between —7 and
+7 rads per sample interval) or equivalently, for a sampling rate of 400MHz the frequency
is LOMHz. Both Var{A8} and Va'r{EH} are a good fit, even for low signal amplitude. The
Kay weighting function was applied in this case to study its effect, even though it was an
optimisation developed for the noise only case. In the simulations an improvement by a factor

of approximately ﬁ was obtained (figure 10).

3.3 Phase error case

Figures 11, 12, 15, 16 show the results of simulating a phase error in the 90 degree quadrature
hybrid. Comparing these plots with the theoretical values shown in figures 13, 14, 17, 18
we can see there is a very good match in both Var{A#} and Var{a\ﬁ}. The Kay weighting
function has also been applied in the simulations (figure 35), even though it is not appropriate
for this type of error. An improvement in the variance in the mean phase difference was .

achieved except at very low signal frequencies.

3.4 Amplitude imbalance case

Figures 19, 20, 23, 24 show the results of simulating an amplitude imbalance between the
REAL and IMAG signal vectors . Comparing these plots with the theoretical values shown in
figures 21, 22, 25, 26 we can see there is a very good match in both Var{A68} and Var{@}.

15



The Kay weighting function has also been applied in the simulations (figure 36), even though
it is not appropriate for this type of error. An improvement in the variance in the mean

phase difference was achieved except at very low signal frequencies.

3.5 DC offset case

Figures 27, 28, 31, 32 show the results of simulating a fixed dc offset in both the REAL and
IMAG signal vectors . Comparing these plots with the theoretical values shown in figures 29,
30, 33, 34 we can see there is a very good match in both the Var{A#} and Var{@}. The
Kay weighting function has also been applied in the simulations (figure 37), even though it
is not appropriate for this type of error. An improvement in the variance in the mean phase

difference was achieved except at very low signal frequencies.
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simulated signal plus noise
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Figure 7 Simulation results, signal plus noise case - showing Var{Af} and

Var{EB} compared with theoretical results.
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Figure 8 Simulation results, signal plus noise case with Kay weighting function

applied to obtain minimum variance estimate for AD - showing Va'r{@} compared

with CRLB.
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signal quantised
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Figure 9 Simulation results, signal quantised case - showing Var{Af#} and

Var{EG} compared with theoretical results.
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Figure 10 Simulation results, signal quantised case with Kay weighting function

applied - showing Var{Af} compared with T
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simulated phase error
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Figure 11 Simulation results, quadrature phase error case - showing Var{A#f} as

a function of signal frequency and phase error.
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Figure 12 Simulation results, quadrature phase error case - showing Var{A6} as

a function of signal frequency and phase error, plotted on a log scale.
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calculated phase error
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Figure 13 Theoretical results, quadrature phase error case - showing Var{Af}

as a function of signal frequency and phase error.
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Figure 14 Theoretical results, quadrature phase error case - showing Var{Af}

as a function of signal frequency and phase error, plotted on a log scale.
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simulated phase error
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Figure 15 Simulation results, quadrature phase error case - showing Var{KH} as

a function of signal frequency and phase error.
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Figure 16 Simulation results, quadrature phase error case - showing Var{@} as

a function of signal frequency and phase error, plotted on a log scale.
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Figure 17 Theoretical results, quadrature phase error case - showing Var{A§}

as a function of signal frequency and phase error.
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Figure 18 Theoretical results, quadrature phase error case - showing Var{gt-‘)}
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simulated imbalance
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Figure 19 Simulation results, IQ amplitude imbalance case - showing Var{A#6}

as a function of signal frequency and imbalance.

simulated imbalance

10°
1.9
101
I - e
=
< -3 1.08
—_— 10
S
— -a 1.02
= 10
S imbalance
=
a> 10-5
<>
[~ =]
—a.
-8
= 16
=3
= 107
-8
10 I I | ] l T I ] | ] I T

o 3o 60 90 120 150 180
normalised frequency (deg/sample interval)

Figure 20 Simulation results, IQ amplitude imbalance case - showing Var{A#f}

as a function of signal frequency and imbalance, plotted on a log scale.
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Figure 21 Theoretical results, IQ amplitude imbalance case - showing Var{A6§}

as a function of signal frequency and imbalance.
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Figure 22 Theoretical results, IQ amplitude imbalance case - showing Var{A#f}

as a function of signal frequency and imbalance, plotted on a log scale.
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simulated imbalance
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Figure 23 Simulation results, IQ amplitude imbalance case - showing Var{ge}

as a function of signal frequency and imbalance.
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Figure 24 Simulation results, IQ amplitude imbalance case - showing VaT{EH}

as a function of signal frequency and imbalance, plotted on a log scale.
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Figure 25 Theoretical results, IQ amplitude imbalance case - showing Var{gﬁ}

as a function of signal frequency and imbalance.
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Figure 26 Theoretical results, IQ amplitude imbalance case - showing Var{g\ﬁ}

as a function of signal frequency and imbalance, plotted on a log scale.
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simulated dc offset
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Figure 27 Simulation results, dc offset case - showing Var{Af} as a function of

signal frequency and dc offset.
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Figure 28 Simulation results, dc offset case - showing Var{A#f} as a function of

signal frequency and dc offset, plotted on a log scale.
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Figure 29 Theoretical results, dc offset case - showing Var{A#} as a function of

signal frequency and dc offset.
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Figure 30 Theoretical results, dc offset case - showing Var{Af} as a function of

signal frequency and dc offset, plotted on a log scale.
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simulated dc offset
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Figure 31 Simulation results, dc offset case - showing Var{EH} as a function of

signal frequency and dc offset.

simulated dc offset

1077 _
L I N B
-§ 10 — 2
B = 1
— . 7
Lo 10 2 = dc offset
et 3
r— =
a> -10 7]
= © =
-— 3
. =
= -
a> 10-11 Q
= E
= 3
a> =
E 10712
= =
< =
= .
10—13
T —I T I T { T ] T i T
o] 30 80 20 120 150 180

normalised frequency (deg/sample interval)

Figure 32 Simulation results, dc offset case - showing Var{&b} as a function of

signal frequency and dc offset, plotted on a log scale.
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Figure 33 Theoretical results, dc offset case - showing Var{@} as a function of

signal frequency and dc offset.
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Figure 34 Theoretical results, dc offset case - showing Var{EB} as a function of

signal frequency and dc offset, plotted on a log scale.
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simulated phase error
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Figure 35 Simulation results, phase error case with Kay weighting function

applied - showing Var{l\o} as a function of signal frequency and phase error.
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Figure 36 Simulation results, IQ amplitude imbalance case with Kay weigh-

ting function applied - showing Var{EB} as a function of signal frequency and

imbalance.
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Figure 37 Simulation results, dc offset case with Kay weighting function applied

- showing Va'r{EO} as a function of signal frequency and dc offset.
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4 MEASURING SYSTEM ERRORS

The errors in the real system were measured using the simple correlation methods suggested

by Harris [17] (see also appendix X) and were found to be of the order shown in table 1 below.

Table 1 Real system results - measured quadrature hybrid errors.

dc offset I channel 1 unit
dc offset Q channel 1 unit
amplitude imbalance ?— 1.1

quadrature phase error | -2 degrees

where 1 unit = 1 least significant bit (LSB) in the A/D conversion.

Measurements were made with a fixed frequency signal (0.157 rads/sample interval or, equi-
valently, 10MHz) and various levels of signal-to-noise ratio and the results are shown in
figure 38. In the real system a digital sampling rate of 400MHz was used hence the figure
0.157 rads per intersample period corresponds to a signal frequency of 10MHz. The Kay
weighting function has been applied and figure 39 shows that the lower variance bound can
be achieved for moderate to high SNR. These figures show that the theory fits well with
experiment for the signal plus noise case. Note that the variance of all other system errors
are include in this experimental case but these produce values much less than those due to

the noise alone.
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Recordings were also made of various levels of signal amplitude, with minimal noise present in
order to study the quantisation effects. Figure 40 shows the results obtained, where Var{A6}
and Var{ge} without the weighting function are quite a reasonable fit. However application
of the weighting function (see figure 41) has not provided the same scale of improvement as for
the simulations. In this case the variances due to the phase error, amplitude imbalance and
dc offsets are sufficient (even with the weighting function applied) to prevent the combined
measured variance from dropping below the bounds obtained (ie approximately le-9 to le-10)
and hence the theoretical lower limit for the pure quantisation case cannot be obtained from

this experiment.

In the experimental setup it proved impracticable to carry out measurements of phase error,
amplitude imbalance and dc offsets in the real system with the precision required, however the
results obtained from the analytical study and from simulations are believed to be satisfactory

for the purposes of this study.
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Figure 38 Experimental results, signal plus noise case - showing Var{A#} and

Var{g\ﬁ} compared with theoretical results.
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Figure 40 Experimental results, signal quantised case - showing Var{Af} and

Var{EO} compared with theoretical results.
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5 TECHNIQUES TO REDUCE SYSTEM ERRORS

Using the auto correlations and the cross correlations of the two signal sample vectors (see ap-
pendix X and XI) it has been shown that a good estimate can be obtained for the quadrature
hybrid errors : phase error, amplitude imbalance, dc offsets. Clearly we require a number of
sample points to be able to carry out the correlations and the more points that are available
the better the estimates will be. Hence we must consider some form of block processing for
real time applications. To reduce the noise level a form of linear predictive filter haé been
selected which also has the ability to adapt to a signal which has a time varying frequency.

This filter has the added benefit that it reduces the quantisation noise.

5.1 Removing dc offset and channel imbalance

Removing the channel imbalance and dc offsets is straightforward but readjusting the phase
error is more complicated - the methods are detailed in appendix XI. Figures 42,43 show the
effects on Var{A6} and Var{EB} respectively of simulations with a phase error followed by
correction for phase error. Both Var{A#} and Var{@} have been reduced. Figures 44,45
show the effects on the Var{A#} and Var{EO} respectively of simulations with an amplitude
imbalance followed by correction for amplitude imbalance. Both Var{A6} and Var{zS\O} have
been reduced. Figures 46,47 show the effects on Var{Af} and Var{EO} of simulations with
a fixed dc offset in each channel followed by dc offset correction. Var{@} has been greatly
reduced and Var{A68} has been reduced though not to the same extent as for the phase and

amplitude cases.
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Figure 42 Simulation results, quadrature phase error case - showing Var{A#6},

after correction applied, as a function of signal frequency and phase error.
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Figure 43 Simulation results, quadrature phase error case - showing Var{&?},

after correction applied, as a function of signal frequency and phase error.
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10-19 simulated imbalance (corrected)
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Figure 44 Simulation results, IQ amplitude imbalance case - showing Var{A#},

after correction applied, as a function of signal frequency and imbalance.
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Figure 45 Simulation results, IQ amplitude imbalance case - showing Var{gﬂ},

after correction applied, as a function of signal frequency and imbalance.

39



-4 simulated dc offset (corrected)
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Figure 46 Simulation results, dc offset case - showing Var{A#}, after correction

applied, as a function of signal frequency and dc offset.
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Figure 47 Simulation results, dc offset case - showing Var{a\@}, after correction

applied, as a function of signal frequency and dc offset.
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5.2 Reducing the noise
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Figure 48 Block diagram for selected method of adaptive line enhancement.

An adaptive line enhancement type filter (a block diagram of which is shown in figure 48) was
selected from the book by Stearns and David [18] with filter coefficient updating based upon
minimising the mean square signal error by the method of steepest descent. By applying a
filter of this type in each of the REAL and IMAG channels of the quadrature hybrid we can
enhance the signal output ie improve the snr. The adaptive filter was applied with the filter
order (L) set to 16 and the convergence parameter (1) equal to 0.1 and various levels of snr
simulated. In the simulations a delay of 10 times the filter order was imposed before samples
were used to calculate phase etc - this was done in order to allow the filter coefficients time
to adapt sufficiently. Figure 49 shows the results of these simulations for a fixed frequency
signal (0.157 rads/sample interval or, equivalently, 10MHz) plus Gaussian noise. In figure 49
we see that Var{Af} has been reduced by approximately 10dB except for snr less than
OdB.Var{KQ} has been improved by approximately 5dB except for snr less than 0dB. With
the Kay weighting function applied after the adaptive filter we still obtain the Cramer-Rao
lower variance bound (see figure 50). The advantage in using the filter is that it acts upon
the signal waveform in each channel and reduces the snr. This then reduces any problems
encountered in calculating the signal phase and phase difference ie the phase unwrapping

problem is reduced and the effective signal input bandwidth can be maintained.

The same filter as above was applied in simulations involving a quantised signal for various

signal amplitudes with the results as shown in figure 51. Again Var{A6} has been improved
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by approximately 10dB and Var{g\ﬂ} by about the same except for low SNR.

Simulations were performed with all types of error incorporated with error correction for each

type of error (see table 2 below).

Table 2 Summary of errors incorporated in system simulations.

signal frequency | 0.157 rads/sample interval or 10MHz

90 degree phase error 5 degrees
amplitude imbalance (%) 1.3
dc offset in I channel 5 units = 5LSB

dc offset in Q channel 5 units = 5LSB
SNR 0 to 60dB

Error correction was applied in the following manner :-
(i) dc offsets calculated for each channel waveform then subtracted.
(ii) adaptive filter applied to reduce the mse in each waveform.

(iii) amplitude imbalance calculated and corrected in the Q channel.
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(iv) relative phase error calculated and corrected for in the Q channel.
Figure 52 shows the results when the filter adaptation coefficient is 0.01.
Figure 53 shows the results when the filter adaptation coefficient is 0.05.
Figure 54 shows the results when the filter adaptation coefficient is 0.1.

A low value of x (0.01) means that the filter coefficients adapt more slowly but should yield
better results. A high value of g (0.1) allows the filter coefficients to adapt more quickly but

yield less of an improvement in the results.
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simulated signal plus noise (filtered)
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Figure 49 Simulation results, signal plus noise case - showing Var{Af} and

Var{a\f)}, after filtering applied, compared with theoretical results.
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Figure 50 Simulation results, signal plus noise case with Kay weighting function

applied - showing Var{EO}, after filtering applied, compared with CRLB.
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-1 simulated signal quantised (filtered)
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Figure 51 Simulation results, signal quantised case - showing Var{A6} and

Var{&?}, after filtering applied, compared with theoretical results.
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Figure 52 Simulation results, all error types incorporated case - showing Var{A#6}

and Var{gﬁ}, after filtering applied (1 = 0.01), compared with theoretical results.
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error correction + filter (u = 0.05)
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Figure 53 Simulation results, all error types incorporated case - showing Var{A8}

and Var{gﬂ}, after filtering applied (z = 0.05), compared with theoretical results.
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Figure 54 Simulation results, all error types incorporated case - showing Var{A6}

and Var{@}, after filtering applied (u = 0.1), compared with theoretical results.
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To demonstrate the usefulness of the techniques developed herein, real signals have been
collected by a real system and studied. In the following example a 1.5us pulsed waveform
has been downconverted from the microwave frequency range 8-12GHz to an IF of 1GHz,
passed through the quadrature hybrid stage and sampled by a high speed DSO. In figure 55
the signal power, as a function of time, has been calculated as the square of the signal
amplitude A at each sample instant. Note the large amount of ripple or variance due to the
system errors. Figure 56 shows the signal power after passing though the error correction
algorithms. Here we see that the adaptive filter, in adapting the coefficients, has caused
an increase in the pulse rise time and has smoothed the overall plot. Figure 57 shows the
Discrete Fourier Transform of the original signal data. Note the spikes at 0Hz (ie dc) and at
other image components due to the system errors. Figure 58 shows the DFT after correcting
the signal waveform for errors. The plot is now much ‘cleaner’ ie the signal frequency is now
more obvious with the image frequencies, noise etc reduced. Figure 59 shows a plot of phase
difference versus time for the example pulse. In this case the signal IF frequency was offset
from the reference oscillator frequency by almost 200MHz equivalent to += rads per sample
period. Ripple is evident and, where the noise has caused the signal vector to cross the 4
boundary, spikes have appeared close to the —m boundary. This crossing of the +7 boundaries
can be considered as a phase difference unwrapping problem and is more likely to occur as the
errors in the system increase thus restricting the input signal bandwidth. Figure 60 shows the
same signal after error correction. Again start-up effects, due to the adaptive filter, are clear
at the beginning of the pulse. The remainder of the phase difference plot is much smoother
with no problems encountered with being close to the +r phase difference boundary. Hence

the signal input bandwidth can be maintained even for quite severe system errors.
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Figure 55 Real signal results, original pulse data - showing signal power versus

time.
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Figure 56 Real signal results, corrected pulse data - showing signal power versus

time.
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Figure 57 Real signal results, original pulse data - showing signal spectral con-
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Figure 58 Real signal results, corrected pulse data - showing signal spectral

content.
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Figure 59 Real signal results, original pulse data - showing signal Af versus time.
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Figure 60 Real signal results, corrected pulse data - showing signal Af versus

time.
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6 CONCLUSIONS

In the analytic parts of this study we derived equations which related the mean square error
in the phase difference values and the variance in the mean phase difference, for a number of
points, to each of the major errors which might occur in a quadrature hybrid process. Of the
five error types considered the signal plus noise case involved random noise whilst the other
four cases were deterministic (for fixed errors or imbalances). In order to validate the analytic
results a large number of computer simulations were carried out and the resulting means,
mean square errors and variances recorded. These results have been plotted graphically and
compare well with the theoretically derived results in all cases. Some work by Kay [7] has
been incorporated in that his method for deriving the phase difference frequency estimator
via a parabolic weighting function has been used. It has been shown, in both the computer
simulations and experiment, that this method for frequency estimation performs efficiently
(attains the Cramer-Rao lower variance bound) at signal-to-noise levels above approximately
5dB. Although developed for the signal-to-noise case, the effect of the weighting function on
the other error classes has been examined. With knowledge of the effects of the errors, the
next stage was to develop techniques for reducing these and some work on measuring these
Harris [17] proved useful. The actual errors in the real system were measured which were in
agreement with the mean square error and variance results from the system. The dc offset
and amplitude imbalance cases are corrected very simply and the phase error correction is
straightforward. The noise level has been effectively reduced by application of an adaptive
linear predictive filter in each of the I and Q signal channels. The adaptive filter has the
added benefit that it reduces the quantisation error also. We could of course have used many
other methods for frequency estimation since many of these have been in existence for many
years but the phase difference frequency estimator is simple to implement and is ideal for
digital signal processing systems. Since we have corrected the errors in the I and Q signal
waveforms before carrying out any processing, all the information about the signal is still
available and has been enhanced. With many other techniques for frequency estimation the
algorithms have been optimised for frequency only and any other information contained in
the signal is lost. A simple example of a real signal - a single pulse from a pulsed radar system

also demonstrates the value of the algorithms developed in this study which can now be used
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to process real signals and eventually process these in real time digital receiver systems.
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APPENDIX I

SIGNAL + NOISE CALCULATIONS

We consider first the case where each of the I and Q channels are independently corrupted
by normally distributed white noise with the variance of the noise in each channel being the
2 2 .

o 2
same and given by : 0 = oy = %-. The two channel waveforms are represented by

I = Acosf+ n;
Q

Asinf + ng . - (17)

where § = w;t is the signal phase at sample instant t and A is the signal amplitude. From
figure 2 the instantaneous phase error due to the noise is given by é.. For large snr (4 > o),

we may approximate 6. as

08 ~ Z (18)

where r = |z| cos 3. |z| and cos 8 are independent and, from figure 2

a+f4+v = = (19)
T
- ==
] 5 (20)
hence g = §2l—a—0. (21)
. 1 [ 3r
The expected value of cosf is : E{cosff} = 2_7r/ cos | o —a— 6)da=0. (22)
0
The expected value of r is : E{r} =|z|E{cosB} = 0. (23)
2 1 1
The expected value of cos? 8 is: E{cos’ f} = %/ [5 + cos (31 — 2 — 26) da] =5
0
(24)
and E{z|*} = E{n}}+ E{ng} =o? (25)
2
E{r*} = E{|2|*}E{cosf*} = % ‘ (26)
: : E{r}
The expected value of the instantaneous phase error is : E{6.} = Y 0 (27)
2 2
and the variance in the phase error is : Var {8.} = E{6%} = EI{; } = 20? . (28)

We now consider the value of the phase difference estimator as the mean value taken over all
data points, .

— 1 1
Af; = N [fen — Be0] + 65 (29)
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where ) is the value of the signal phase difference between successive data points.

= i
Var {88} = —(Var{fn) - Var {6.0}]
1
= N2 [2Var {6.}]
1
= o
2
where p = — = the signal to noise ratio .
o

(39)
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APPENDIX II

QUANTISATION CALCULATIONS

We consider the case where each of the I and Q channels are independently quantised by the

A /D sampling process. The two channel waveforms may then be represented as

= TRUNC [Acos¥]
Q@ = TRUNC|[Asiné)] . (31)
For large signal amplitudes (A > 1 LS B), we may approximate 6.-as : 6. = L (32)

A
where r = AI? + AQ? = 2A?  (33)

The phase error will be zero mean due to the symmetry around the complex circle, see fig.3.
Hence we may write

sy =H0 _o. (34)

Using the well known result for A/D quantisation noise we obtain, with q=1

: 1
E{r¥} =2E{a%} =2 |L | = 2.
() =2p(an =2| L] = ¢ (35)
- - . ) 1 2 1
Hence the variance in the phase error is given by : Var{6.} = -EE{’I‘ } = 6AT
(36)
The variance in the phase difference error is then : Var {Ab.} = ﬁ . (37)
-~ 11X 1
The value of the phase difference estimator is : Af = i 'z—: Af; = N [Ben + be0] + 65
(38)
where 6 is the value of the signal phase difference between successive data points.
The variance in the phase difference estimate is : Var ABY = iE' INRE -
N? € 3AZN?
(39)
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APPENDIX III

QUADRATURE PHASE ERROR CALCULATIONS

We consider the case where the Q channel is not exactly 90 degrees relative to the I channel.

The two channel waveforms may then be represented as

= Acosf
Q = Asn(f+e¢) . (40)
The amplitude of the complex vectoris : R = A\/cos2 6 +sin? (6 + ¢€) . (41)

In order to find the maximum and minimum amplitude we look for the turning points in the

function for R,

él_i_ (é) —2cosBsin 6 + 2sin (8 + €) cos (8 + €) (42)

g~ \ 2 V/cos? 6 + sin? (6 + €) '
For min and max R, & = 0, hence: —2cosfsin6 +2sin(f + €)cos(f +¢€) =0 (43)
or: —sin (260) +sin (20 + 2¢) =0 . (44)
This reduces to : cos (20 + €)sine = 0 (45)

Which is satisfied when : € = 0,xnm
nr €
: 0 = o 4
or * 1 3 n odd (46)
Substituting for phase angle § back into the equation for R we find
Rmez = AVI+sine when= 7 - %

Roypin = AvV1-—sine whenO:%—g. (47)

We obtain the maximum error in the signal phase by finding the turning points in the function

for the phase error, where the signal phase error is given by

_1 [sin(8 +¢)
6. =60 —-tan ! |————=| . 4
o [ cos @ ] (48)
Now let = = ﬂ:o%l and substitute into the phase error function thus
. =6 — tan"![z] . (49)
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Using the standard identity for the derivative of tan~! z we get

d. _ 1 [dz
40~ 1+az2|do

which becomes, after substituting for z? and %

df. : sin @ sin (6 + €) + cos 0 cos (0 + €)
do cos? 8 + sin? (6 + ¢)

dé.
do

which reduces to : - tan (%) =sin (260 + ¢)

Hence the maximum phase error occurs when the signal phase

1 -3
0= — [sin"1 (— tan™! %) — e} ~ € for small phase errors .

4

The maximum phase error will be

—3e .| sin £
Oemaz = —— —tan ! ;c
4 cos F
-3¢ . sin £
- T4 tan™" cos £ cos & —4sin fsin £
LCO5 3 4 2 Sy
M €
. —3e — tan-! sin
4 (1—2sin7' £)cosi—-2sin2icos£
| 1 4 1 4
—3¢ _ tan &
= -t e
1—4sin” 3
and so @¢mar =~ —¢ for small phase errors.
) €
The maximum phase error occurs when : 0 =+nr — m B 0,1,2,...
nw
Zero phase error occurs when : 0= -5 n odd .

=0 when sinfsin (0 + €) + cos 8 cos (6 + €) = cos? 8 + sin® (6 + ¢)

(50)

(52)

(53)

(54)

(55)

(56)

(57)
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APPENDIX IV

AMPLITUDE IMBALANCE CALCULATIONS

We consider the case where the Q channel is not equal in amplitude to the I channel. The

two channel waveforms may then be represented as

I = Acos#
Q

I}

A(l+47)sin6 .

The amplitude of the complex vector is

R = Ay/cos?20+ (1+7)*sin?8

A\/l + (27 4+ 7?)%sin?4 .

Differentiating to find the maximum and minimum amplitudes
dR  A(2y+7?)sinfcosd
dé \/1 + (27 + 72)%sin? 6

thus % = 0 when sin #cos @ = 0. Hence we get minimum or maximum R when

azfg n=0,1,2,...

As expected from figure 4 weget : Rper = A(147)

Rnin = A.

T . . . : —f— -1
he signal phase error is given by e =0 — tan [ s 0

The maximum phase error will be obtained when % =01e

dae _ d -1
Pl 1- p7) (tan™' [(1 + v) tan 6])
1
= 1- 14 7v)sec?8
[1+(1+7)2tan20] (1+7)
B 1_[ 147 ]
1+(1+7)2tan20cos20 ’
0
Hence : % =0
occurs when : (1+79)=1+Q+7)*tan?6 cos*

(14 v)sin 9] .

(58)

(59)
(60)

(61)

(62)

(63)

(64)

(65)

(66)

(67)

(68)

(69)
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which is satisfied when : v=(27+ 72) sin? @ (70)
1

or : sinf =t/ ——. (71)
2+

For small amplitude imbalance =y, the maximum phase error occurs at § ~ Z. The maximum
Y 4

phase error is found by substituting back into the equation for the phase error as

Oemar = % — tan™! [(1 + ) tan %]
= LI tan~! (1+7)
- =
or : Oemar = tan™!|——]| . 72
[2 + 7] (72)
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APPENDIX V

DC OFFSET CALCULATIONS

We consider the case where the Q and the I channel are offset from the origin.

channel waveforms may be represented as
I = Acosf+ 6
Q = Asinf44,.
The amplitude of the resultant complex vector is

R = VTG

VA2 + 2A [sin 68, + cos 06;] + 82 + 67

I

We obtain the minimum and maximum amplitudes from
dR _ 2A [cos 06, — sin 66;)
0\ JAZ + 2A[sin 08, + cos 6] + 6 + 67

4B — 0 when cos 68, — sin 86; = 0 and this condition is satisfied by

6
tanf = 6—? = tan(d + )

which we then substitute back into the equation for R to get

R? = A® + 2A[tan 06, + 6;) cos 0 + 67 + 62 .

The two

(76)

(77)

(78)

We make the observation that the maximum R occurs when the signal phase equals the angle

formed by the dc offsets (see fig.V.1) therefore we may make the following substitutions

cosf = 5—'
2

\/ 67 + 82
sinfd = 5

NGETE

Therefore the amplitude R, in terms of A, and é; is

6(]2 5.
R? = A2+2A[—+5,-] — | 1 §2 4 §2
o; /62 + §2 ! g
1 q

A%+ 2A,/6% + 62 + 67 + 6}
2
4+ /62 + 2]

(82)

(83)

(84)
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Figure V.1 DC offset construction - showing position of maximum phase error.

Thus : Rpuzr = A+1/6?+63 (85)
Rmin = A—\M?-}-(Sg

. . Asinf + 6
. . ) —pn_ -1 q
The error in the signal phase is given by : 6, = 8 — tan [———A o0 1 6;] (86)
Asiné
Hence we shall obtain a zero phase error when : 6 = tan™’ Asind 18 (87)
Acosf + 6,'
Asinf + 6
0 = |—
= [A cos0 + ai] (88)
tanf[Acosf+ 6] = Asinf+ 6§, (89)
tanf = ‘;—‘* (90)
. -1 {9
ie zero phase error occurs when : 6 = tan 5 (91)

So we see that zero phase error occurs at the same angle as for the maximum and minimum
amplitude. To find the maximum phase error we differentiate the expression for phase error

and equate to zero, thus

Asind + 6
0. =6 —tan™! |——1 2
€ . [Acos0+6,-] (82)
making the following substitutions : u = Asinf 4+ §, (93)
o = 1
" Acosf + 6
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du

7 Acosb (94)
dv Asiné
d6  [Acosf + 6]’
i Asin i 050
<o Bl5tai B b _ - 1 . [[ sin +(5q,]As;n{9+ A cos }
dé 14 {Ai:loj-s::] [Acosb + &) Acosf + &,
_ [[Asin6 + 6,] Asin 6 + [A cos 8 + 6] Acos 6 (95)
B [Acos® + 6)° + [Asin 8 + 6,]°
and so ¢ = 0 when : — (6% + 82) = A(cos 05; + sin 65,) (96)
8 + 67 .
or : — =g | =cos 06; + sin 66, . (97)
Making the following substitutions : 6 = /6% + 82 (98)
6;
cosa = - (99)
. b,
sina = . (100)
52 6 . 0,
Hence we have : —|=| = &|cosf— +sinf- (101)
A ) )
= &{cosf cosa + sindsin o] (102)
= dcos(f— o) . (103)
We now let cosff = % which gives : —cosf3 = cos (0 — a) (104)
or: cos (B + 1) = cos (6 — a) (105)

and so the maximum phase error occurs when = a + 8 + 7. Using the substitution which
have been made we can form figure V.1 and also deduce that

\/6% + 62

sin oema,; = Z = -_/I_ . (106)

n
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APPENDIX VI

APPROXIMATE FUNCTIONAL FORMS FOR THE PHASE ERROR

In order to support the phase error calculations performed in appendices III, IV and V we

can carry out small angle approximations as follows :-

dé
for small phase errors : In tanf = sec? HE .

Let y = tan @, therefore : Ay

tan (8 + Af) — tan
Afsec’d = tan(f+ AG) —tand

and so : tan (8 + A6) Afsec® 6 + tan

1

VI.1 Quadrature phase error case

For the quadrature phase error case the phase error is given by

sin (6 + ¢€)

—A§=6,=60—tan™! [
cos d

Now for small €, cose =~ 1 and sin € = € so we get

A8 ~ 6 tan-l sinf + ecos 8
~ cos @

= 0 —tan"![tan + ¢]

6+A8 = tan~![tanf + ¢

tan[6 + Af] = tanf+e€.
From above we get : Afsec?d +tanf = tanf + ¢
d so : 0= = 20
and so A g €cos
thus the functional form of the phase error is : 6, = —ccos’ 8 .

(107)

(108)
(109)

(110)

(111)

(112)

(113)

(114)
(115)
(116)
(117)

(118)

We note that the maximum phase error is —¢ as derived earlier in appendix III and this

occurs when § = nw, in close agreement with appendix III calculations.
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VI.2 Amplitude imbalance case

For the amplitude imbalance case the phase error is given by

~ A0 =6, =0—tan"! [w] (119)
cosf
0+ A = tan"'[(1 +)tand] . (120)

Using the small angle approximation we get

Afsec’f + tanf = tané + ytané (121)
~vtané )
Af = Sec—20:73m0c050 (122)
and so : Al = %sin (26) . (123)
The functional form of the phase erroris : 6, = —% sin (26) (124)

The maximum phase error is —% which will occur when § = % n odd. Compare this with

the exact calculation in appendix [V where the maximum phase error is given by

0emar = tan'l [—7 ] 125
at an angle given b sinf = + 1 (126)
an : =
ge g y 247

V1.3 DC offset case

For the dc offset case the phase error is given by

inf + 6

—A0=0.=0-tan"?! e A ] 2

A e = 6 — tan [cos(9+6,- (127)
sinf + 4,

t = |———F 2

an (0 + Af) [c050+6,-] (128)
and making the small angle approximation
inf + 6

24 _ [sin q 9
Afsec’§ + tand [—c030+ 3. (129)
or: [A6sec? 6 + tan 6] [cos 6 + 6;] = sin 6 + &, (130)
thus : AAO ~ 6, cosf — b;sinf . (131)
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We now make the following substitutions

6= \[62 42 (132)

b;
cosa = - (133)

. bq

sina =
which leads to : AAG = §sinacos — bcosasinb -+ (134)
= §sin(a—90). (135)

The functional form for the phase error is thus
o .
6. =-A8= ~ St (a—-6) (136)
V82 + 62
o =— | +——|sin(a—20) . (137)
A
_ 62 + 62

We see that the maximum phase error will be :  fepazr = — 1 (138)

at angles of § = Z*. Compare this with the results from the exact calculations in appendix

2
V6463
y' 7 (139)

A

V where

sin Opmazr = —

at signal phase angles of @ = a + § + 7 where, for small phase errors, 8 approaches 3.
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APPENDIX VII

VARIANCE CALCULATIONS

We wish to calculate the statistics : mean error in phase difference and variance in the phase
difference, for a single phase difference data point and also for a number, N, of consecutive
phase difference data points.

VII.1 Quadrature phase error case

From appendix III we may write the functional form for the phase error as

de ) eemaz 3
0, = —Opmaz cos® { 0 + =) P 14+ cos |20+ b (140)
4 2 2
and so the error in the phase difference between any two consecutive data points is
06171,0.17
Af, = = [1+cos (29+%> —1— cos (20+3§—20f>] (141)

where 6; is the angle traversed by the signal vector during one sample period.
0ema:t:
Thus : Af. = = [cos (20 + 3—;) — cos (29 + % - 20f)] . (142)

The phase difference error becomes

A8, = Oernaz [sin (20 + %E - Of) sin ()f] (143)

from which we see that the mean value of phase difference is

mean {sin (20+ %—Bf)} =0 (144)

or: E{A6.}=0. (145)

The mean square error in the phase difference, or Var{A#} is
02
ms {Ab.} = % sin® 6 (146)
Consider now N consecutive data samples. The mean phase difference taken over the N

samples is

1
Z

Al = —
N

g

=N
1
A = — S [0, + Ab] 4
1 N ;ﬂ:[ f+ D8] (147)

i
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Since A8 depends only on A6, and Af.n then

——

Al

1
v [VO5 + Bbey + A (148)

1
0+ (B0 + A6, (149)
The error in the initial phase difference is
i 3e )
Ab.y = bemaz [sm (201 + 5 0f) sin 6'f] (150)
and the error in the final phase difference will be
3
Abey = Oernas [sin (201 + é + (2N - 3)0f) sin 0,] . (151)
Hence the combined phase difference error will be
. 3e } 3e )
Aben + Abey = Oemax [sm (201 + (2N -3)6; + ?) + sin (201 + o Bj)] sinf; (152)
which becomes
Ab.n — Al = 200z sin by [sin (201 +(N-2)6; + %) cos ([N — 1] 0;)] (153)
and so the mean value of the combined phase difference error is
1
mean {N (Abn + Aﬂel)} =0. (154)

The mean square of the combined phase difference error or Var{[k\O} , taken over N consecutive

phase difference data points is

1 202z | .
ms {N (Afen + Aﬂel)} N [%] sin” 8y cos” ([N ~ 1] ;) . (155)

In general the variance of the phase difference error will depend on the initial and final signal

phase values. However there are some special cases which we shall now consider :-

i) If N§; = 2kn then
f

262
-j%ms {AbeN + A1} = [%] sin? s cos? 0s (156)
ezma:c 2
= |5z |Sin (26¢) . (157)
(ii) If (N —1)8; = X* then
1
Nms {AO.n + A1} =0 (158)
(iii) If (N — 1)8; = kr then
1 203ma:¢: -2
Nz {Aben + Abe1 } = —Nz | sin (6y) . (159)
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VII.2 Amplitude imbalance case

From appendix IV we may write the functional form for the phase error as
Oc = —0Oemaz sin (26)

and so the error in the phase differer;ce between any two consecutive data points is
Al = oy [sin (20) — sin (26 — 26))
where 6 is the angle traversed by the signal vector during one sample period.
Thus : Al = 200z [cos (26 — 264) sin (84))
from which we see that the mean value of phase difference is
mean {Af6.} =0
or E{A6.} =0
The mean square of the phase difference error, or Var{A#} is

ms {8} = 262

emaxr

sin? 0y .

(160)

(161)

(162)

(163)

(164)

(165)

Consider now N consecutive data samples. The mean phase difference taken over the N phase

difference samples is

. 1 i=N 1 i=N
Af = N;AG": N;[0,+Aae,~]

——

Af

1
N [N9f + AaeN + Aoel]

1
= ef + F [AoeN + A0:31]

(166)

(167)

(168)

since Var{[l"@} depends only on A#f.; and A#f,;. The error in the initial phase difference is

Abey = 20,0 [cOs (20, — 0f)sin O]
and the error in the final phase difference will be
Ab.N = 20emaz [cos (26, + [2N — 3] 05)sin ] .
Hence the combined phase difference error will be

Al + DOy = 20emaz [cos(26; + [2N — 3] 05) + cos (26, — 0¢)]sin by

20emaz2 cos (261 + [N — 2]65) cos ([N — 1) 6y)sin by

(169)

(170)

(171)
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and so the mean value of the combined phase difference error is
1
mean {—1\7 (Ab.n + Aoel)} =0. (172)

The mean square of the combined phase difference error, taken over N consecutive phase
difference data points is
ms {i (Abn + A0el)} = [0'2""“] cos? ([N — 1]8;)sin? 6 . (173)
N N2
In general the mean square of the phase difference error will depend on the initial and final

signal phase values. However there are some special cases which we shall now consider :-

(i) If Ny = kr then

1 92
Tv—zms {AO.n + Ab} = 8 [ '}'V";I] cos? 0y sin? 6y
0?2
= 2 [ ﬂ;;z] sin® 20 . (174)
(ii) If (N — 1)8; = & k odd,then
1
—N—zms {ABn + Aber} = 0. (175)
(iii) If (N — 1) 85 = kx then
1 OZma:v
Fzms {Ab.N + A1} =8 Nz sin 6y . (176)
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VII.3 DC offset case

We consider here the case where the dc offset in the Q channel is equal to the dc offset in the

I channel. Hence we have
T
tan™! | 2| = — 1
an [5i] 7 (177)
From appendix V we may write the functional form for the phase error as
6. = —~0Ocmorsin(a—0) (178)

= —0Ocmaqz Sin (% - 0) (179)

and so the error in the phase difference between any two consecutive data points is

I

A, = —bemas [sin (% - o) — sin (% . 0f)] (180)

T . ¢
—20crmaz COS (Z - 0) sin (7) (181)

where 6; is the angle traversed by the signal vector during one sample period. We see that

the mean value of phase difference is
mean {A8.} =0 (182)

or E{A6.} =0. (183)

The mean square error in the phase difference, or Var{A#} is

0
ms {AG.} = 262 sin’ (é) (184)
Consider now N consecutive data samples. The mean phase difference taken over the N
samples is
. 1 1=N 1 =N
A = N;AB; = N;[GI+A06;] (185)
— 1
Al = N [NO; + Dby + Aber) (186)
1
= 07+ 5 [Aben + Abe] (187)

since Af depends only on Af.; and Af,;. The error in the initial phase difference is

T O¢\ . 0y
0e1 = ~20emax - = — —
Ab,, cos(4 0, 2)sm(2) (188)
and the error in the final phase difference will be
g 0
AoeN = —2oemar cos (% - 01 . [N . 1]0_[ = ?f) sin (—2£> . (189)
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Hence the combined phase difference error will be

™ 9/ T 1 ) 0f
Ay + D07 = —20emax [cos (Z — 6, — 7) + cos (Z -6, - {N = E} 9;)] sin (;)
™ N N -1 0y
T _p -2 I
1 6, 5 0;) cos ([ > ] ]) sin ( 5 ) (190)

and so the mean value of the combined phase difference error is

i
|
S
=)
[1]
3
Q
8
o
Q
@
N

1
mean{F(AHeN-i-Aoel)} =0. (191)

The mean square of the combined phase difference error, taken over N consecutive phase

difference data points is

ms {% (Afen + Aeel)} =8 [-0%’\[”—;’”] cos? ([N—;—l] f> sin’ (%’) : (192)

In general the mean square of the phase difference error will depend on the initial and final

signal phase values. However there are some special cases which we shall now consider :-

(i) If N8; = 2k then

—;—2ms {DOcn + Dby} =2 [02—;53] sin? @ . (193)
(i) I [252] 65 = %% k odd,then
~ms (B + A0} = 0. (194)
(iii) If [%52] 8 = kx then
]—Vlims {A8.n + A8} =8 [%‘T] sin? (%) . (195)
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APPENDIX VIII

GAUSSIAN NOISE GENERATION

Extract from ‘Numerical Recipes

r’202 [ Chapter 7. Random Numbers :—_j

Normal (Gaussian) Deviates

Transformation methods generalize to more than one dimensioo. If 1y, 1,

. are random deviates with a joint probability distribution p(z,z,, ..)

dz,dzy..., and if y;,y2,--. are each functions of all the z's (same number of
y's as 1's), then the joint probability distribution of the y's is

6(1,_1;_.. )

y2...)dydysy ... = T TR ey Y
plvi.ya.---Jdyidya p(z1, 72 )la(yn.y:.---)

ldyxdyz (7.2.8)

where |3( )/3( )| is the Jacobian determinant of the 1's with respect to
the y's {or reciprocal of the Jacobian determinant of the y's with respect to
the z's).

An important example of the use of (7.2.8) is the Boz-Muller method for
generating random deviates with a normal (Gaussian) distribution,

1 _.a
Py = —=c™ dy (7.2.9)

Consider the transformation between two uniformo deviates on (0,1), 1,22,
and two quantities y;, ya,

vi = V—2Ilnz, cos2rz,

(7.2.10)
v =V —2lnz,sin2xz,

Equivalently we can write

(1.2.11)
I =

|
:
;

Now the Jacobian determinant can readily be calculated {try it!)

3zy,ma) _ |5 B __[; -y:n] [; -v:n]
_?(th)_ g—’,ﬁ gﬁ = \/2_;6 \/‘EC (7.2.12)

Since this is the product of a function of y; alone and a function of y, alone,
we sce that each y is independently distributed according to the normal dis-
tribution (7.2.9).

One further trick is useful in applying (7.2.10). Suppose that, instead of
picking uniforn deviates 2, and 14 in the unit square, we instead pick vy and
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7.3 Rejection Method: Gamma, Poisson, Binomial Deviates 1 203 l

v, as the ordinate and abscissa of 2 random point ipside the unit circle around
the origin. Then the sum of their squares, R = v} + v] is 2 uniform deviate,
which can be used for z;, while the angle that (v,,v;) defines with respect to
the v, axis can serve as the random angle 2xzy. What's the advantage? It's
that the cosine and sine in {7.2.10) can now be writlen as v /VR and w/VR,
obviating the trigonometric function calls!

We thus bave

FUNCTION CASDEY(IDUN)
Returns 2 normaliy distributed deviate with zero mean and unlt variance, using RAR1 (IDON)
as the source of uniform devlates

DATA ISET/O/

IF (ISET.EQ.O) THEX Ve Gont have 30 &3 deviate handy, IO
¥1=2_ RANI(IDUK) -1. Pick Two uNHOM nuMbers ln the sQuare extending from -1 0 +1 =
¥2=2.+RAR1(IDUN) -1 . each dwection,
R=Viee2eY2ee] see I they are In the unit ClTie
IF(R.CE.1.)CO TO 1 and If they are not, Try 3g3in
FAC=SQRT(-2.°LDC(R)/R) Now make the Box-Mulier transformation
CSET=VY1=-FAC 10 g€t Two nOrMal deviates Return one 3nd save Lhe Other for nex
CASDEV=V2+FAC Ume
ISET=1 Set fag
St WWe have an exlra devldte handy,
CASDEV~CSET so retum i,
ISET=0 and untet the flag
ENDIF
RETURN
|2.10]

REFERENCES AND FURTHER READING:

Kauth, Don3ld E. 1981, Semlaumerical Algorithms, 2nd ed.. vol. 2 of The
Art of Computer Programming (Reading, Mass.: Addlison-Wesley).
pp. 116M.
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Transformation Method: Exponential and Normal Deviates

FUNCTION axpdev(VAR fdum: tnteger) real.
BECIN

axpdev ‘= -1n(ran3(idua))
END; .

FUHCTIOE gasdev(ViR 1dum: integer): real.
(- Programs uaing CASDEV must declare the variablas
ViR
gliset: integer: glgmet: real:
io the maln routine and must intlalize gliset to

gliset := O -)
VAR
fac,r v1,v2: real;
BECIN
IF (gliset = O) THEN BECIN
REPEAT

vl := 2.0*ren3(idua)-1.0; v2 := 2 O<ran3(idus)-1 O:
r := eqr{vi)seqr(v2);
WTIL (r < 1.0);
fac := oqrt(-2.0+1ln(r)/r); glgeat := viefac; gasdev = v2sfac.
gliset := 1 END
ELSE BECIN
gasdev = glgaet; gliset := O END

EXD;
Output from gaussdev.pas
50
40 —
<>
<> .
<>
=
<>
=1 30 —
<>
<>
[ = g _
L e
S 20 —
-
=
e
—_— =]
10 —
<
o T I T I T l L]
-2 -1 o 1 2

Figure VIII.1 Simulated Gaussian noise , histogram of 1000 values generated

by computer program ‘Gaussdev.pas’.
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APPENDIX IX

THE KAY PHASE DIFFERENCE FREQUENCY ESTIMATOR

{EEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING. VOL 7. NO. 12, DECEMBER 1989

0.s

"™ lll ll lllL I

-05 ’ I * ”l“l i
'Wz"f [
ol [ [T
" L
a8} UT [ [T T4

Fig. 3. An example of wcighting functions for N = 3.n = 16.

Fig. 4. CCF'sform = 1.

n x N weight elements are the same absolute value 2/~/;. And the
others, 2N (N — 1) weight elements with a value of 0, need not be
implemented in the weighted adders and do not have an effect on
the amplitude distribution. Therefore, the implementation of the N
filters is very casy, and the amplitude distribution of every random
signal x, (mj ) is best approximated to 2 normal from the viewpoint
of kurtosis.

Fig. 3 is an example of the proposcd weighting functions for N
=3, n = 16. The CCF's of random signals generated by these
weighting functions arc given in Fig. 4 when m = 1. Sincc all
CCF's arc zero at k = 65 (j = 0, £1. £2, - - -), three random
signals are made uncorrelated by sampling r(j) every 6 shift
pulses.

IV. CoNCLUSIONS

A sct of N weighting functions for N digital filters has been pro-
posed based on an even-shift orthogonal sequence. The filter can
generate N uncorrelated random signals from a single binary ran-
dom signal. All distribution functions of the gencrated random sig-
nals become the same normal distribution. The generation speed is
a function of N and does not depend on n. Hence, the faster gen-
eration of the random signals could be obtained. Moreover, the
implementation of the filters is very casy because all n X N weight
tlements and input signal are binary.

REFERENCES

1) R, Zimmerman and D. L. Hunt, "*Multiplc-input excitation using burst
random for modal testing.”” Sound and Vibration, pp. 12-21. Oct.
1985.

] J. L. Brown, “*Generating uncomelated random outputs by nonlincar
processing of a singlc noisc source,”” JEEE Trans. Appl. Industry, vol.
83, pp. 408-410, Nov. 1964.

13) T. 1zumi. *"A mcthod of generating multi-dimensional normally dis-

*  iributed random signals,”* Trans. Japan Soc. Instrum. Conir. Eng..
vol. 13, pp. 517-522, 1977.

4] — . **Fast gencration of a whitc and normal random signal.”” /EEE

Y Trans. Instrum. Meas., vol. 37, pp. 316-318, June 1988
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A Fast and Accurate Single Frequency Estimator

STEVEN KAY

Abstract—A new [requency estimator for a single complex sinusoid
in complex white Gaussian noise is proposed. The estimator is more
camputationally efficient than the optimal maximum likelihood esti-
mator yet attains as good performance at moderately high signal-to-
noise ratios. Also, the estimator is shown 1o be related to the linear
prediction estimator. This relatioaship is exploited to reveal why the
linear prediction estimator does not attain the Cramer-Rao bound even
at high signal-to-noise ratios.

I. INTRODUCTION

The estimation of the frequency of a single complex sinusoid 1n
white Gaussian noise is 2 problem in signal processing which has
received much attention. See [1] for a summary. The optimal max-
imum likelihood estimator (MLE) is well known 1o be given by the
location of the peak of a periodogram. This estimator attains the
Cramer-Rao lower bound on variance for a high-enough signal-to-
noise ratio (SNR). In many instances, however, the computation is
prohibitive even with an FFT implementation, and so simpler
methods are desirable. In this correspondence we present an ap-
proach which is strongly motivated by the recent work of Tretier
(2]. It is shown that the proposed estimator is computationally much
simpler than the periodogram, yet attains the Cramer-Rao bound
for moderately high SNR's.

In particular. consider the received data 1o consist of a single
complex sinusoid in complex white Gaussian noise. or

5, =AY 4 1=0,1.2,---  N-L (1)

The amplitude A, frequency wg, and phase § are deterministic but
unknown constants. It is the frequency wq that we are interested in
estimating. The amplitude and phase are considered to be nuisance
parameters. The noise z, is assumed 10 be a zero mean complex
white Gaussian process with z, = z, + jZy. 2y, 2y are each real
Gaussian random variables with zero means, variances of ol /2
(o} is the variance of z,) and uncorrelated with each other. We now
assume that the SNR, which is A4*/o?, is large. allowing the data
model of (1) 1o be replaced by an approximate model which will
form the basis for the proposed estimator. This approximate model
is (2]

x, = A(i(uv‘lh«b (2)

where u, is zero mean white Gaussian noise with variance /24!
Denoting the phase of x, by «x,. we have finally

£x, = wyf + 0 + u, r=0,1,2 --- N-1 (3)

Having obtained (3), Tretter suggested estimating wo and 6 using a
least squares estimator which is equivalent 1o an MLE. His ap-
proach provides the insightful result that frequency and phase es-
timation is equivalent to linear regression of the phase data. The
only difficulty is that the phase needs to be unwrapped in comput-
ing these estimates. This unwrapping, besides adding to the com-
putation, may prove to be difficult at lower SNR's. In the next
section, we show how to avoid phase unwrapping but still attain
the Cramer-Rao bound. Also, the proposed estimator is shown 10
be an improved version of a corrclation or lincar prediction esti-
mator previously studied.

Manuscript received Junc 25, 1987; revised November 4. 1988, This
work was supported by Sanders Associates, Nashua. NH. and by the Office
of Naval Research under Contract NOOQ14-87-K-0221

The author is with the Depariment of Electrical Engineering. University
of Rhode Island. Kingston, R1 02881

1EEE Log Number 8931363
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[1. DerivaTiON OF ESTIMATOR

Assuming that we wish 10 estimate only the frequency, we can
avoid phase unwrapping by considering the differenced phase data

A, = 2Lx,., — 4x, (4)
fort = 0,41, -7 , N — 2. which becomes, from (3),
A, = wy + U, —ou. (s)

It is clear from (5) that the problem now is 10 estimate the mean,
wo. Of a colored Gaussian noise process. The process is actually a
moving average with cocfficients | and — 1. The MLE of wq. which
is equivalent 1o the minimum variance unbiased estimator for the
lincar mode! of (5). is found by minimizing {4)

7= (8 - wl)'CT'(8 — wl) (6)
where A = (8y Ay ~-- Ap_,) 1 =(1 1 1})7.and Cis
the (N — 1) x (N — 1) covaniance matrix of 4,. The solution 10
this problem is well known and is

1’c™'a
m _EETE 7
& = ey (7)
Als0, it ¢an be shown that the variance of this estimator is
Var () = <= (8)
ar = Tra_.-
“ T e

It remains only to explicitly evaluate ¢ and Var (&g). Note that
& is unbiased (let A = wol + win (7), where (U], = &, — 4,
forr =0.1,2,---,N —2), and that & is a Gaussian random
variable, being a linear function of the data. To evaluate C ™', first
note that 4, is a rcal moving average process with driving noise
variance a}/2A1 and cocfficients by = 1, b, = —1. The covariance
function is thus

A !
c(0) = ;i(bcl)‘* b)) =3
o} o}
c(1) = c(—1) =i7b°b' = —-7_—;,
c(k)=0 |k =2

The covariance matrix takes on the tridiagonal form

2 -1 0 0 T ]

2 -1 2 -1 0 LT 1)
c=15

0 o -+ 0 -1 2

The inverse is well known with the (i, j) element of the (N — 1)
X (N — 1) matrix being given by (5]
24! ij
[c],,=—z[min(.'.j) —2] IsijsN-1 (9)
o} N

where min (i, j) denotes the minimum of i and j. After some al-
gebra, we have that
NN - A

60}

N(N? - A "5
6o! 1=0

r'e'r =
1'c'a = w,A,

where

pS
|
NTES
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Hence, we have from (7) that
~N-2
Gp = 2 w,A,

+=0

Note that E,N_'oz w, = | since @y 1S an unbiased estimator (at least
at high SNR). The frequency estimator may further be writien by
using the equivalence

8,= 5.~ 2x, = x5, (10)
as
N-2
Go= B wexin., an
with variance which follows from (8) as
R 6
Var (ag) = — - (12)
A 2
FN(N - 1)

But (12) is identical to the Cramer-Rao bound {6). Additionally,
the least squares or MLE estimator of Tretier has also been shown
to atlain the Cramer-Rao bound. It is clear then that @ as given
by (11) and Tretter's estimator must be identical. In practice. how-
ever, (11) is 10 be preferred since ir avoids phase unwrapping To
venify this equivalence directly, we may rewrite (11) using (10) as

6 N
PINPES

"TON(N + 1) /0 e

which is identical 10 the linear regression estimator of Tretter. That
(11) and (13) must be the same estimator is also guaranteed by the
theorem that if an efficient estimator exists (i.e.. it auains the Cra-
mer-Rao bound), then it must be unique (7].

The form of the estimator given by (11) is similar to that of a
previously proposed estimator as will be discussed in Section Il
It is of interest to note here that w, is 2 window which is symmeinc
about the point t = N/2 — 1. Some examples of this window are
given in Fig. 1. As will be discussed shonly, it is this window
which is responsible for &, attaining the Cramer-Rao bound. If w,
= 1/N — 1 were chosen, for example, then &g would be the sam-
ple mean of the measurements 2%’ %, t = 0.1, - - . N — 2.
This choice would neglect the colored noise of (5), which led to
the need for € ™' in (6) and ultimately produced w, in (11). In fact.
forw, = 1 /N — 1, the estimator becomes

i N-1
o Sy o
N-2
i
= — LX, .y — LZ,
N-—-1.0
=N_l(44"N-| - cx)

which although unbiased [sece (3)) can be expected to exhibit a large
variance due 1o the lack of averaging. It is casily verified that for
no windowing

Var (&g) = (14)

Qll
9] ¥}

(N -1

which follows by using (3). The ratio of variances is found from
(12) and (14) as

Var(@o) | s NN+ 1) N
e

= = (15)
Var ()], .. 6N - 1)

For large data records, this loss in performance can be substantial
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Fig 1. Frequency estimator window

[Il. RELATIONSHIP WITH LINEAR PREDICTION ESTIMATES

The frequency cstimates considered in Section Il were

N=-2
Do = L WXLy (16)
=0
where
¥\
W "~ \2
wo=—— | -
PN = N
2
and
1 N=2
G =3 '?o VS o8 S (7

It is possible to find two additional frequency estimators which are
equivalent to (16) and (17) at high SNR. These are. respectively,

N-2
Go = £ L Wik K (18)
and
1 N=2
&= <y Ex.'x,.p (19)

To form these new estimators, we have interchanged the operations
of taking the angle and summation. At high SNR, the performance
of (18) is identical to (16), and that of (19) is identical to (17) as
shown in the Appendix. It is interesting to note that (19) has been
proposed by Lank, Reed, and Pollon [3] and later studied by Jack-
<on and Tufis (8] and by Kay (9] as a linear prediction estimator.
The variance of (19) is given in [3] and is identical to (14). Our
results show that a windowed linear prediction estimator as given
by (18) is optimal in that it achicves the Cramer-Rao bound at high
SNR. At lower SNR. (16) and (18) are diffcrent estimators having
distinctly different performance. The same can be said about (17)
and (19). Computer simulations which will be described in Section
IV show. however, that (16) provides the best overall performance.

IV. COMPUTER SIMULATIONS

A computer simulation was performed to compare the perfor-
mance of the four estimators given in (16)-(19). We term (16) as
the weighted phase averager, (17) as the unweighted phase aver-
ager, (18) as the weighted lincar prediction estimator, and (19) as
the linear prediction estimator. A data record of N = 24 points was

SPEECH AND SIGNAL PROCESSING VOL

317 NO 1} DECEMUER 1959

1989
100 —r e . _
. (L E-T— ' =
MEAN SOUARE ERAOR /_‘
"
15 -4

CRAMER-RAO
BOUND

50 WEMATED L{élg-fi’

1

PREDMCTOR )
UNWEIGHTED LINEAR
PREDICTOR (EQ.19)
WEIGHTED PHASE
AVERAGER (EQ 16)
25t
UNWEIGHTED PHASE
AVERAGER (EQ.17)

Wo
T =005
o i . i i
-10 ] L1+ 20 30 40
SNR(aB) -

Fig. 2. Performancy of frequency csumalors

used, and the mein square error versus SNR (both in decibels) de

ermined. As a basis for comparison, the Cramer-Rao bound, which
assumes an unbiased estimator, is plotied, and the performance of
the MLE or location of the peak of a periodogram was also deter

mined. The results are shown in Fig. 2 for wof2x = 0.05. As
predicted by theory for high enough SNR, the MLE as well as the
weighted phase averager and weighted fincar prediction estimator
autain the Cramer-Rao bound. The threshold for the MLE is about
~ 1 dB, while that for the weighted phase averager is 6 dB. The
weighted linear predictor does not appear 19 cxhibit a sharp thresh-
old but gradually detenorates in performance with decreasing SNR

The unweighted phase averager and linear predictor exhibit the
same performance st high SNR which as predicted from (15) 15
about 10 logg N/6 = 6 dB below the Cramer-Rao bound. The
threshold for the unweighted phase averager is about 6 dB. while
for the linear predictor no threshold is apparent.

APPENDIX
INTERCHANGE OF ANGLE AND SUMMATION OPERATORS

Consider the estimators

N-2
‘:’3” = Z w141:110|
=0
N-2
o= o Tl
=

where Tt w, = 1.
We will show that for high SNR, these two estimators arc iden-
tical. At high SNR using (4) and (5)

24X % =0, = w t U

where v, = u,,, — 4 5o that
x., = "
N-2 N-1
o = Zo wlwy + 1) = w + Zo w, U,
- ‘-

Now consider the sccond estimator

N-=2

< ?n w (e ™)

-11)
&g

N-1

L™+ 2 L owe”

N1
wy + < Z we"
(=0
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Assuming |u, | << |,

ogt = wo t o< 2 w.(l + ju)
=0

0
&
+

it

wy +

= &
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Performance Analysis of ESPRIT and TAM in
Determining the Direction of Arrival of Plane
Waves in Noise

BHASKAR D. RAO anp K V. S HARI

Abstract—In this correspondence, two sub g based methaods, ES-

PRIT and the Toeplitz Approximation Method (TAM), for estimating
the direction of arrival (DOA) of plane waves in white noise in ihe case
of a linear equispaced sensor array are evaluated. It is shown that the
least squares version of ESPRIT snd TAM result in the same estimate,
and are statistically equivalent. 1t is shown that, asymptotically, the
estimates obtsined using Least Squares ESPRIT and Total Least
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Squares ESPRIT have the same mean squared error. Expressions for
the asymptotic mean squared error in the estimates of the direclion of
arrival are derived for fhe methods. Simple closed-form expressions
are derived for the one and 1we source case 10 get furthee insight. Com.
puter simulations are provided (o tubstantiate the analysis.

[ InTRODUCTION

Subspace based methads for estimating the Direction of Arrival
(DOA) of plane waves in noise have been developed and Studied
by a number of rescarchers 11}-14]. In this correspondence, we
analyze the performance of two of these methods, ESPRIT {1] ang
the Toeplitz Approximation Mcthod (TAM) 3]

MUSIC was the first method that showed the benehits of using »
subspace based approach (4], Due 10 length and technical consid.
crations, an evaluation of MUSIC snd a comparison 10 the above
methods is the subject of [3]. Some thearetical results comparing
MUSIC and the Minimum-Nom method can be found in |6] and
[7) where a characierization of the methods was donc by examining
the null spectrum. Our work, motivated by these papers, charac-
tenizes the error in the estimate of the direction of amval directly
Some comparisons of MUSIC 10 ESPRIT can be found in [9)
ESPRIT is, like MUSIC, 2 general approach, and was developed
to overcome some of the computation and prior information re-
quircments of MUSIC (1], (8], [9]. Here we only consider is per
formance in the context of a lincar equispaced sensor array. The
use of TAM for DOA estimation was first suggested in [3]. A key
feature of the method is that it is based on a state space model In
fact, it will be shown that for the linear cquispaced sensor array
case, ESPRIT can also be deseribed using this formulation

The organization of the correspondence is as follows. First, TAM
and ESPRIT are briefly reviewed and their relationship 15 estab-
lished. It is shown that the least squares version of ESPRIT and
TAM are statistically equivalent. It is then shown thar, asymptot-
ically, the estimates obtained using Least Squares ESPRIT and To-
tal Least Squares ESPRIT have the same mean squared error.
Expressions for the asympiotic mean squared error in the cstimates
of the DOA are then derived, The results are specialized for the
onc and two source case leading 1o interesting nsights, Simulation
results are presented and they suppon the analysis.

II. ProsLEM FormuLaTiONn

The problem of estimating the direction of arrival of A inco-
herent planc waves incident on a linear cquispaced armay of L sen-
sors is considered in this correspondence. For the kth observation
peniod (snapshor), the spatial samples of the signal plus noise ate

given by =
YE= oyt Ly

M

=| X p" Z.

=] i-

M
pitle™ ... T plleitt-nu | NT(1)
=)

where w, = 2x(d/)\) sin 0. d being the scparation between sen-
sors, \ the wavelength of the incident signal. and 6, the dircction
of amival. It is assumed that N, is 3 mean zero Gaussian random
vector with independent elements., e E[NNJ = oll. The noige
is assumed independent of the complex signal amplitdes p!'' which
are also modeled as being jointly Gaussian. The covariance matriz
P of the amplitudes whose clements are Py. where P; =
E(p:“p,"“’] is assumed 1o be of rank M and has distinct cigenval-
ves. In this cormespondence, E{-] and the overbar ** =" will be
used interchangeably 1o denote the expectation operator.’

'In this comrespondence. 7 is used to denote ranspose. ® 1o denote com-
plex conjugate. H 10 denote complex conjugale transpose. Also ” is used (o
denote estimates. and the subscript 5 10 denole parameters associated with
the signal alone.
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APPENDIX X

MEASURING AND REMOVING QUADRATURE HYBRID ERRORS

ON HMCASURING THE GAIN AND PHASL UNBALANCE ARD OC OFFSCTS OF
QUADRATURE A-TO-0 CONVERTERS WITH AN ADAPTIVE CANCLLLING FILTCR

fred harris

€lectrical And Computer Engincering Department
College of Engineering
San Diego State University
San Diego, California 92182

ABSTRACT

In many signal processing based systems, a time
sequence corresponding to the complex envelope of
an  input signal is formed by in-phase and quadra-
ture (I4Q) heterodynes followed by a pair of ana-
log-to-digital converters (ADC) . In order to obtain
3 specified minimum attenuation of signal artifact,
the gain and phase matching between these quadra-
ture channels (as well as the OC offsets of the
converters) must be held to acceptable tolerance
levels. The standard method of obtaining these
desired tolerances is to estimate the value of g
specific mismatch by measurement of the appropriate
artifacts and then perform adjustments to improve
the match. MWe describe here a novel technique to
accurately measure the phase and gain unbalance as
well as the DC offsets by use of a sequence of
adaptive cancelling filters.

INTROOUCTION

Hany signal processing algorithms are designed to
operate on the time series obtained from the com-
plex envelope of the signal being processed. Many
examples of such processing can be found in sonar,
radar, and communication systems. In many of these
systems, the complex envelope is formed by an ana-
log operation cons{sting of an in-phase and quadra-
ture (I14Q) heterodyne of a real sfignal (with an
arbitrary center frequency) followed by a pair of
matched lowpass filters. The resulting palr of
signals are then sampled and quantized by matched
analog-to-digital converters. The standard block
diagram of such a process is shown in figure 1.

2 COS(uot)

Low
PASS —/\]’—-— ADC
FILTER |
x(t}) x(n

y([) y(n)

2 SlN(wot)

FIGURE 1. BLOCK DIAGRAM OF [-Q HETERODYNE

The operation of g4 quadrature h

eterodyne for
sinusoidal

input signal is presented in (1)-(9).

a(t) -ACOS[(mO‘mS)l] (1)

xm(t) = 2A COS[(mo‘wS)t) COS(uOL] (20)
N A{COS[mSL]‘COS[(ZwO‘mS)I]) (2b)
ym(t) = -2A COS[(uO*uS)_[] S]leo[] (36)
= A(SIN[wSt]—SlN[(Zwo‘mS)I]) (3b)

x(t) <A COS[uSl] (4a)
y(t) = A SlN[uSl) (Qb)
x(1) + yy(t) - A{COS {w ] « ISINw_t]) (sa)
= A ejugt (sb)

The spectra of x(t), y(t), Jy(t), and x(t) + jy(t)
are presented 1n figure 2. Note in particular that
the addition of the resl and imaginary signals
(fe., x+ Jy) results in exact cancellation of their
negative frequency components. The cancellation is

€xact because the spectral terms are of equal and
opposite size.

3 Y{w) We

e
" X(w) * §Y(w)

FIGURS 2. SPECTYRA AT QUTPUT Of 1-Q HETERODYNE

TWENTY FIRST ANNUAL ASTLOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS
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Due o component tolerances of the analog
and their low pass Tilters, (nhe coaversion gain of
the two channels are not precisely equal  and  the
phase  shift  between Lhe Lvwo channels may not be
exactly 90 degrees. For case of discussion, wo
arbitrarily attribute all of the mismavch terms to
one of the mixers. We do so by assuming that the
Conversion gain of .the cosine and sine heterodynes
are 1.0 and (1.0+¢c) respectively and that the
phase shift between the cosine and (nominal) sine
ts (90-a) degreec. MWe further assume Lhat the two
errors (c and a) can be of either polarity. Equa-
tions (6)-(10) present the operation of the 1 - Q
heterodyne incorporating the galn and phase errors.

myxgrs

d(t) = A cos((woms)u (6)
xm(t) = 2A cos[(moms)t] cos [wol] (7a)

= A(COS[uSt]+ cos[(zuoms)t]) (7b)
ym(t) = 22(1+¢)A COS[(moﬂus)t] SlN(uot-a] (Ba)

= A(l+c)($lN(mSt +al- SIN[(ZmO*wS)t -al) (8b)
x(t)

AC%U%H (92)

y(t) A(lﬂ:):SIN[wSt*u] (9b)

x(t) + 3y(t) = A(COSlmStl*J(1+c)sm[usuc]) (10a)

Ja jwst ~ja —just
= A{(1+(14g)e Je + {1-(1+¢)e e } (10b)

These equations offer little insight into the ef-
fects of thegain and phase unbalance execept we
note the existance of the negative frequency compo-
nent which did not appear when the unbalance terms
were absent. Figure 3. presents the spectra of
x(t), y(t), jy(t), and x(t)+ Jy(t) for the unbal-
anced mixers, We see here that the primary effect
of the gain and phase unbalance has been the fail-
ure to achieve exact cancellation of the negative
frequency components. These residual negative fre-
quency components are usually referred to as spec-
tral images or ghosts.

3w
Xw) + g Y(w) ®

3w

FIGURE 3 . SPECTRA AT OUTPUT OF J-Q HETERODYNE
EXHIBITING GAIN AND PHASE UNBALANCE

fhe parameters requlved
Lerms are

Lo correct

these unbia g nc e
nommally determined durin \

9 ¢ calilr

) atior
cycle by processing the 140 components 0hlaln¢;
willh a known stnusoidal npul test signgl In  the
absence of other signals,  the pair of samp) ¢ avto
correlation terms and the sample cross torrelatign
for the 180 channels would result 0 he expree.
srons shown In (11) i
2
"
!‘(0) R (113)
Z 2
R (0) = A(14¢
- ) ( ) (11p)
2
xy(O) = A" (l+¢) SIN(q) (11¢)

He can easily compute the unbalance term
¢s well as the signal level A, from the paramaters
Hsted in (11). We note, however, that the measyre-
ment and processing techniques required to form the
terms of (11) are affected by the ADC imperfections
such as deviations from linearitly and by quantiza-
tion noise as well as by leakage effects related to
the measurement of the low level {image and offset)

signals in the presence of the high leve!
signal._

S € and q,

(primary)

He thus present an alternate technique to dete
the desired offset terms by use of a set of adap-
live, one tap, cancelling filters. These cancelling
filters whiten the output signal Dby successively
estimatling and removing Lhe known spectral  compo-
nents at the positive and negative frequency (as
well as the ADC DC offsets). By whitening the out-
put signal | one component at a time, each succeed-
ing estimation and whitening task is simplified by
nol having to contend with the leakage terms asso-
Ciated with the previously removed signal compo-
nents. Further, the sfgnal remaining after the par-
tial whitening can be used as a quality measurement
of the ADC sfnce il contains the remaining effects
of the ADC non-linearities and quantizing noise.

rming

ONE-TAP, ADAPTIVE  CANCELLING FILTER

Figure 4. presents the block diagram of a

one-tap,
complex weight, adaptive cancelling filter.
a C
s(n) e(n)
4
uln)
w(n) W(n+1) e
: A o &
4
d(n)

FIGURE 4. BLOCK DIAGRAM OF A ONE-TAP, COMPLEX
WEIGHT, ADAPTIVE CANCELLING FILTER.
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The cquations describing this filter are presented
in (12). Depending on the struclture of the parama-
meter y{n), this filter can be viewed and derived
from a number of perspectives. These Include the
Steepest Descent (SD), Least Mean Square (LMS), and
Recursive Least Square (RLS).

W(as1) = W(n) + u(n)-e (n)-d(n) (12a)
e(n)

"

s(n) - W (n)-d(n) (12b)

Under reasonable assumptions of first and second
order statistics, the filter weight W(n) converges
to- the steady state solution *W* which minimizes
the mean square prediction error shown in (13).

3Ha) = Efe(n)-e (n)) (13a)
< £{(M (n)-d(n)-s(a) I (M(n)-d (n)-s (a)1)  (13b)

For the application we are describing here, the
signals are ergodic so we may replace the ensemble
average with a time(index) average.

The optimal welght W of course satisfies the (sin-
gle weight) Wiener-Hopf equation shown in (14).

E{d(n)-d (n)}-¥ = €{d(a)-s (n)) (14)

Let us assume that the desired signal d{n) and the
input signal s(n) are of the form show in (15).
jeon
d(n) = e (1Sa)
je jen
s{n) = Re e + c{n) (15b)
Me require that d(n) and c(n) are orthogonal as
indicated in (16).

E{d(n)-c (n)) = O (16)

It {s easy to demonstrate (by substitution and by
use of the constraint in (16)) that for the indi-
cated d(n) and for 0< lu(n) <2 the expected steady
state solution for W(n) in (12) is given in (17).

J¢
€{d(n)} = W = Ae (17)

The transient time to achieve this expected weight
is related to the sfze of u(na). 1f ul(n) is re-
placed by a constant yu, the transient time constant
is approximately 1/]u|. He see then, that if y is
small, the transient time (4/|u]) is large and we
might be tempted to select a large u to realize a2
short transient time.

If we define Jnin 35 the minimum mean square error
of (13), due to the signal components orthogonal to
the desfired signal d(n?. we can determine that the
steady state mean square error of {13) {s approxi-
mated by (18). The second term {n (18} is called
the excess mean square error and 1s due to the ad-
aption process.

3n) = g *+ 1oM(R) [ -1s(n) |2 (18a)

2 2
= Imin * fula) ™ JninfA” « Jninl (18b)

. 2 2
“min el AT Jmin/ﬂgll (18¢)

Jmin (1 |U(“)I2 AZ] (IBd)
Thus while the weight W(n) converges in ()¢ mean 1

the optimum “W" {as {n (17)) the mean SIQUATED Crro?
exhibits an excess component proportional lOlu(n)V
Here we see that {n order to control (he CXCQS;
mean square error, we require u{n) o very smaly

He are faced with conflicting requirements gn u{n)
from one consideration, we want u{n) to be large i
reduce the transient time to achieve steady state
(in the mean) and from another consideration we
want p{(n) to be small to control the excess mean
square error. We respond to these dual requirements
by scheduling u{n) to be large early in the
tion process and then small late in the same pro-
cess. As Tong as the scheduled changes proceed at
rates slower than the instantaneous adaption time
constant, both a rapid transient and a small excecs
mean square error can be achieved,

adap-

One easily generated scheduling technique is 10 use
the exponential decay of a single pole filter as
the u(n) fuaction. Speed of the adaption process
then becomes dependent upon the initial u(0) and
its exponential rate of decay while the final ex-
cess mean square error becomes dependent on the in-

put to the filter. This scheduling techanique 1s the
one shown in figure 4.

APPLYING THE ONE-TAP ADAPTIVE CANCELLING FILTER

An input signal with a known frequency offset (from
the quadrature mixing frequency) 1is applied to the
1-Q heterodyne, filters, and ADC chain. The output
time series will contain a spectral component at
the expected offset frequency as well as an image
component due to the gain and phase unbalances of
the heterodyne process. A cascade pair of adaptive
filters can estimate and cancel both components by
using a single complex reference sfignal of wunit
amplitude at the known offset frequency. Relative
phasing between the reference and the components
being cancelled is not important.

The filters are staged so that the primary signal,
being the largest, 1is processed and cancelled
first. The output of the first canceller is passed
to the second filter which estimates and cancels
the image component. The reference signal to the
image canceller 1{s the conjugate of the reference
signal used by the first stage.

The DC offsets of the ADC are also spectral compo-
nents in the output time series which can be esti-
mated and cancelled by a third adaptive filter
following.the fixed tone cancellers., This filter
uses a (real) unit amplitude constant as its refer-

ence signal. Figure 5. shows the form of the three
cascade cancellers.

The three stage canceller can be operated in twO
distinct modes. In the first mode, the three fil-
ters adapt and cancel concurrently (or simulta-
neously). The error signal from each filter s
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FIGURE S. THREE STAGE CANCELLING FILTER

processed by the following fflter even during fts
adaption and convergence .process. In the second
mode, the filters adapt and cancel then freeze and
cancel one stage at a time. After each filter
achieves f{ts Steady state response,  its weight is
frozen at the value obtained by averaging over at
least a period of the input signal. The filter then
operates as a canceller (with a frozen weight)
while the next stage performs its adaption  and

cancellation task in preparation for {ts freeze and
cancel mode.

The steady state output time serfes response is the
same for the two modes of operation. This is rea-
sonable and, in view of the robustness of adaptive
systems, 1s expected. What {s surprizing, at first
glance, is that. the steady state value of the

filter weights obtained from the two modes are not
the same. :

The difference in welghts can be easily explained
by examiring the performance of the first stage
filter. We note that during adaption the filter
weight is not a constant. In fact, by virtue of the
additive correction of that wefght, the weight g
modulated with a scaled version of the input refer-
ence signal. The product of this time varying
weight with the reference signal results fna DC
component (the difference frequency) which is added
to the fnput‘s DC component. Consequently, when the
OC canceller operates on this error signal  and
successfully cancels the DC delivered to it, 1t is
not the same level of DC brought fn with the input
sfgnal. Hence the cancelling weights will differ.

The wefght modulation is easfly seen in Figures 6.
This figure shows the estimates of galn and phase
unbalance obtained when operating in the concurrent
mode. The true gafn and phase unbalance terms for
this example were 0.909 and 10 degrees respectively
3s indfcated by the "truth™ lines on the curves,
The oscillatfon of the estimates about the true
level is due to the modulation of the weights
during sfmultaneous adaption,

For the wunbalance described in (10) and for the
reference (input signal) leading the primary signal
component 1n s{n) by ¢, the welights of the first
two stages converge to the terms in (19).

W1 = A1+(14€)] IO ¢ (192)

W2 = A[1-(1+€)] ¢ JO 16 (19b)

As shown in (20), by simple manipulation of (19) we

can determine the magnitude and phase unbalance

terms |
VI = w2 = 2n el (20a)
Ml o+ w2 = 2on eJ® (1ucyda ( 200)
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FIGURE 6. ESTIMATES Of GAIN AND PHASE UNBALANCE
HEIGHTS FORMED DURING SIMULTANEQUS CANCELLING
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EXAMPLE OF CANCEELING TECHHIQUC

To demonstrate the effectiveness of this technique
w¢ have simulated a signal cquivalent to that ob-
tained from an I -Q heterodyne exhibiting a +101
9a1n unbalance, a +10 degree phase mismatch, a -40
dB third harmonic distortion, a +10% and +5% DC ad-
ditive blas for the 14Q channels respectively, and
a -60 dB additive noise to simulate ADC quantizing
noise. This signal was processed in a ‘three stage
converge and freeze mode cancelling filter.

The unbalance terms estimated bf the canceller for
the conditions decsribed above are presented in
Table 1. for two levels of quantizing noise.

ACTUAL cé=0-ooo 0?=0.001
1/Q GAIN RATIO  0.90909 0.90909 0.91553
1-Q PHASE ERROR 10,0000 9.9998 9.9394
T-CHAN DC BIAS 0.1000 0.1000 0.0989
Q-CHAN DC BIAS 0.0500 0.0500 0.0520
TABLE 1. PERFORMANCE COMPARISON FOR UNBALANCE
TERMS OBTATNED BY ADAPTIVE CANCELLERS

Figure 7. presents .the tnstantaneous power for this
composite signal (top curve) as well as the instan-
taneous power tor the signals at the output of each
successive canceller. The second curve presents the
power after cancelling the primary signal, the
third curve is the power after cancelling the image
signal, and the last curve is the remaining power
after cancelling the DC.
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FIGURE 7. INSTANTANEQUS POWER AT INPUT AND OUTPUT
Of EACH STAGE OF A CONVERGE AND FREEZE CANCELLER

Figure 8, geaphs the windowed POWCr S pECT G

composfie input sigazl {dashed 1ine) and the ﬂf‘}nc
dowed power spectrum of the stcady sqape au:“)“.
signal from the three stage canceller. Note t:-"'
the three selected signal components have been ca?[
celled down to the additive levels and Lhat thn‘l
additive terms consisting of hird harmo he

d nic and the
additive noise are essentially untouched
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FIGURE 8. POWER SPECTRA FOR INPUT AND QUTPUT OF
A THREE STAGE CONVERGE AND FREEZE CANCELLER

CONCLUSIONS

He have reviewed the requirements for balanced gain
and phase in the quadrature channels of an | . 0
mixer, We then described a novel technique
sure the artifacts caused by the unbalance
Knowing the complex amplitude of the artifact
are able to compute the unbalnce terms .
alque uses & tandem set of single Ltap
cancelling filters to obtain measures of the arti-
facts as side information during  the cancelling
process. This technique is not sensitive to the
presence of secondary signals such as harmonic dis-
tortion, additive noise, or DC biases.

to mea-
terms.
S, we
This tech-
adaptive
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APPENDIX XI

ERROR CORRECTION CALCULATIONS

The following calculations are listed to show how the corrections for dc offset, amplitude

imbalance and phase error have been derived for implementation in the computer programs.

We shall consider the amplitude and phase errors to both be in the Q channel and a different

dc offset in each of the I and Q channels as follows

I, = Acos(wt)+dc;
Q

(14 ) Asin (wt + €) + dcg . (196)

XI1.1 DC offset correction

The mean dc offsets in each channel can be calculated independently as

1 i=N
mean {dc;} = I E I;
1=1
1 =N
mean {dc,} = N Z Qi . (197)
=1

To remove the dc offsets then it is simply a matter of subtracting de; and dc,; from the I

signal vector and the Q signal vector respectively.

XI.2 Amplitude imbalance correction

If we perform an autocorrelation, with zero shift, on each channel we obtain

A2
Ry1(0) = m.s. {Acos(wt)} = 5 (198)
and
Rgq(0) = mus.{(1+7)Asin(wt+ ¢€)} (199)
2 2
- %‘lﬂ) (200)
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and the cross correlation between the I and Q channels gives

Rig(0) = ms. {(1+7) A? sin (wt + €) cos (wi)} (201)

A?(1
—(il) sin € . (202)

Therefore we may estimate the amplitude imbalance from

Rgq
=4/ 52 -1 203
¥ i) (203)

and we may estimate the quadrature phase error from

sine = Rig [ﬁm] : (204)

XI.3 Phase error correction

We require
= Acosf (205)
Q = Asind.
we have
i = Acosf=1 (206)

g = Asin(6+e¢) .
If we expand out q we obtain

g = Asinfcose+ Acosfsine (207)

= Qcose+ Isine.

Hence

i } 1 o1
% (208)

sine cose Q

[ I ] 1 [ cose 0 ] 1 ]
= — . (209)
Q COS€ | _sine 1 q
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APPENDIX XII

TABLES OF RESULTS

The variables used in tables XII.1 to XII.5 are defined as follows :-

——

A® = expected value of phase difference difference taken over the N phase difference data points
6; = angle through which the complex signal vector rotates

ie phase change of signal between sample instants
§; = dc offset in the I channel

§, = dc offset in the Q channel

4 = relative amplitude gain error

€ = quadrature phase error

N = the number of phase difference samples
p = f—g—: the signal-to-noise power ratio

Table XII.1 Summary of results - signal plus noise case.

Var {A8}

o =

Var {EG} —

E{Aa6} | 0
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Table XII.2 Summary of results - quantisation case.

Var {A6} T

Var {8\0} ﬂﬁlTVT

E{A6.} 0




Table XII.3

Summary of results - quadrature phase error case.

min and max R when

H:i(’;—"—é) n odd

Roin A+/1 —sin(¢)
Rmaz A'\)‘ 1 -+ sin(e)

max phase error when

0 =+nr — [34—‘] n=20,1,2,...

max phase error Bemar = —€

zero phase error when 6 = —ecos? 6
form of phase error 0, = —ecos? b
E{A8.} 0

Var {A6} [g:'-'g-“—] sin? 6

Var {5\0} [E%ﬂ&ﬂl] sin? 0y cos? (N — 1)fy)
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Table XI1I1.4

Summary of results - amplitude imbalance case.

min and max R when 6 =" nodd
Romin A
Rz A(l+7)
max phase error when sinf = £ ﬁ

max phase error

zero phase error when

form of phase error

8 = — [%] sin(26)

E{A6.} 0
Var {A6} 202 .. sin’8;
Var {Ke} 8 [‘ﬁﬁ,«z] cos? (N — 1)8;)sin 6
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Table XII.5

Summary of results - dc offset case.

min and max R when

tanf = %% = tan(6 + )

Rmin A_\H6,2+63
Ruaz A+ /6% + 62
max phase error when f=atfxtr

62 462
where cos 8 = 3:45

6.

and cosa =
62462

max phase error

A

sin femazr = (%) ==

zero phase error when

form of phase error

E{A6.} 0
Var {A6} 20¢maz sin® (22!_)
Var {&9} 8 [—%‘f‘] cos? [(N - 1)2’2!'] sin’ (%)
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(210)
(211)
(212)
(213)
(214)
(215)
(216)
(217)
(218)
(219)
(220)
(221)
(222)
(223)
(224)
(225)
(226)
(227)
(228)
(229)
(230)
(231)
(232)
(233)
(234)
(235)

APPENDIX XIII

TRIGONOMETRIC IDENTITIES

sin(—0) = — sin(6)

cos(—8) = cos(8)

tan(—60) = — tan(0)

sin(§ + 0) = cos(8)

cos( 5 + 8) = —sin(6)

tan(3 + 8) = — cot(0)

sin(w + ) = —sin(6)

cos(m + 6) = — cos(8)

tan(r + 8) = tan(8)

cos(A + B) = cos Acos B —sin Asin B
cos(A — B) = cos Acos B + sin Asin B
sin(A 4+ B) = sin A cos B 4 cos Asin B
sin(A — B) = sin Acos B — cos Asin B
cos A + cos B = 2cos(i'2LB) cos(A—;—E)
cos A — cos B = 2sin( 42 ) sin( £54)

sin A + sin B = 2sin(2$2) cos(452)
sinA —sin B = 2cos(i2LB) sin(452)
2cos Acos B = cos(A + B) + cos(A — B)
2cos Asin B = sin(A + B) —sin(A — B)
2sin A cos B = sin(A + B) + sin(A — B)
2sin Asin B = cos(A — B) — cos(A + B)
c0s20 = 2cos?0 —1=1—2sin2f = cos?§ — sin%
sin 260 = 2sinf cos §

cos 30 = 4cos® 0 — 3 cos b

sin36 = 3sin 6 — 4sin® 4

Acos@ + Bsinf = \/mcos(o —tan~! %)
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