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De visschers weten dat de zee gevaarlijk is, en de storm geducht, maar hebben nooit 

kunnen inzien dat de gevaren redenen waren om op 't strand te blijven kuieren. 

 

The fishermen know that the sea is dangerous and the storm terrible, but they have never 

found these dangers sufficient reason for remaining ashore. 

 

Vincent van Gogh, The Hague, 1882 
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THESIS ABSTRACT 

 

Involuntary weight loss in older people reflecting of a decline in appetite and energy, mainly 

protein, intake, is associated with the development of undernutrition and increased morbidity 

and mortality, and is termed the ‘anorexia of ageing’. A common strategy for management 

of undernutrition in older people is the use of nutritional supplements which are usually high-

energy drinks, rich in whey protein. 

In younger adults, whey protein, when compared to other proteins, is perceived as a ‘fast-

acting’ protein, with a rapid satiating effect. Given that protein is the most satiating 

macronutrient in younger people, and its substitution for other macronutrients is often 

advocated to promote weight loss, it is possible that the satiating effects of increased protein 

ingestion could counteract some, or all, of the positive effects of increased protein ingestion 

in older people on muscle mass and function. Despite the increasing use of protein-rich 

drinks by older people, information about their effects on energy intake, appetite and 

underlying gastrointestinal mechanisms in this age group is limited. The primary aim of this 

thesis was to determine the effects of dietary protein on energy intake, appetite and 

underlying gastrointestinal mechanisms, including antropyloroduodenal motility, gastric 

emptying and plasma gut hormone concentrations in healthy older when compared to 

younger adults. 

The studies produced clear-cut results - ingestion of whey protein was less suppressive of 

feeding behaviour in older than younger adults, so that there was an increase in total energy 

intake in the elderly. Younger adults showed suppression of perception of appetite after 

protein ingestion when compared to control, while older adults increased their appetite. 

Energy intake at a buffet meal was not affected by the timing of protein ingestion before the 

meal. Young women, in contrast to men, did not show suppression of ad libitum energy 
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intake after oral protein preloads. Older compared to younger adults, and women compared 

to men, had slower gastric emptying of whey protein drinks. Ageing appears especially to 

affect the initial phase of gastric emptying of protein. In older adults, plasma CCK and GIP 

concentrations after protein ingestion were higher compared to young adults. 

In conclusion, the regulation of appetite and energy intake is impaired in the elderly. In 

particular, the acute suppression of energy intake by whey protein is less in healthy older, 

than younger, adults, resulting in increased overall energy intake in the older adults. 
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OUR POPULATION IS AGEING 

The world population, including that of Australia, is ageing. The percentages of Australia’s 

population older than 65 increased from 9% in 1976 to 15% in 2016. By 2056, it is 

anticipated that these percentages will further increase to 22% of Australia’s population (1). 

Currently, Australian life expectancy is 82.1 years for men and women combined, which is 

the sixth highest among countries within the Organisation for Economic Co-operation and 

Development (OECD) (2). 

Much of the health expenditure and burdens of poor health in Australia and other developed 

countries relates to people over the age of 65 years (3), and health expenditure is expected 

to increase seven-fold for those aged over 65 years, and twelve-fold for those aged over 85 

years between 2010 and 2050 (4). Undernutrition in older people is associated with 

substantial reductions in functional independence and quality of life with increases in health 

care utilization. Optimising the health of older people is, therefore, important to limit 

increasing health care costs. 

 

 ENERGY INTAKE IN OLDER PEOPLE – THE ‘ANOREXIA OF 

AGEING’  

With healthy ageing, mean food and energy intake decrease (5), which has been termed the 

‘anorexia of ageing’ (6). For example, in a cross sectional study, older people aged 72 years 

(range: 65 - 94 years) old had a ~30% lower energy intake than younger adults aged 26 years 

(19-35 years) old (7). A longitudinal study of seven years follow up of 156 healthy older 

individuals reported a decrease in energy intake of 19 kcal/day/year in women and 25 

kcal/day/year in men (8). 
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CHANGES IN BODY WEIGHT AND COMPOSITION WITH AGEING 

– UNDERNUTRITION IN OLDER PEOPLE 

Weight loss is more common than weight gain in older people (9) and may lead to 

undernutrition (10, 11); between 20-85% (depending on the diagnostic method used) of the 

ageing population in nursing homes and acute hospital care and 5-20% of the community-

dwelling population, are undernourished (10, 12). Low body weight and weight loss, 

especially if involuntary, are strong predictors of poor outcomes in older people. Weight loss 

is associated with a 70% increase in mortality, whereas weight stability and weight gain are 

not associated with increased mortality (12). The adverse effects of being overweight and of 

obesity are also less in older than young people; a BMI of ~27-30 kg/m2 in older people is 

associated with maximum life expectancy compared to a BMI of 20-25 kg/m2 for young 

adults (13). A major factor contributing to the development of undernutrition and associated 

adverse effects is that weight loss in older people predominantly reflects loss of skeletal 

muscle (14), accounting for functional impairments including reduced grip strength and gait 

speed, greater rates and durations of hospitalisation, a higher number of individuals moving 

from home into supported accommodation and increased mortality (10). 

 

EFFECTS OF AGEING ON MUSCLE PROTEIN SYNTHESIS 

In older adults, insufficient protein intake facilitates muscle loss by limiting muscle 

anabolism (15). Furthermore, older people may experience ‘anabolic resistance’, which 

increases the threshold of protein ingestion that is needed to stimulate postprandial protein 

anabolism (16). Importantly, providing sufficient amounts of protein and essential amino 

acids are ingested [including free essential amino acids (17, 18), whey (19), casein (20) or 

meat protein (21)], ageing does appear to not impair the capacity for muscle protein 

synthesis, Muscle protein synthesis dose-dependently increases after ingestion of 2.5, 5 or 
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10 g of essential amino acids (22) and 10, 20 or 35 g of whey protein (23). The highest rate 

of muscle protein synthesis was reported after the highest loads; 10 g essential amino acid 

and 35 g whey protein. Whole-body muscle protein synthesis (synthesis minus breakdown) 

was reported to be increased in older adults after protein ingestion of 1.5 g/kg/day (~120 

g/day) compared to 0.8 g/kg/day (~70 g/day) (24). A consensus statement by the PROT-

AGE study group set up by European Union Geriatric Medicine Society, in cooperation with 

other scientific organisations, to review dietary protein needs with ageing, recommended 

that dietary protein intake in older people should be increased from 0.8-1.0 g/kg body 

weight (the recommendation for younger adults) to 1.2-1.5 g/kg for older adults (25). 

 

EFFECTS OF DIETARY PROTEIN ON MUSCLE MASS AND 

FUNCTION IN OLDER PEOPLE 

A Cochrane review of protein and energy supplementation studies in older people (n = 3,058) 

concluded that protein-energy supplementation resulted in a small weight gain and reduced 

mortality, but only when participants were undernourished, or when supplementation was ≥ 

400 kcal/day (26). No firm conclusions could be made regarding the potential benefits of 

protein-energy supplementation in a community population as the studies included differed 

substantially in design and the outcomes assessed. A systemic review of body composition 

measurements in older people (n = 1,287) concluded that nutritional supplementation has 

some protective, and beneficial, effects on muscle mass and strength, which are increased 

further when combined with physical exercise (27). In undernourished elderly, protein-rich 

supplementation after hospital discharge produced modest increases in handgrip strength (~1 

kg at 8 weeks) (28). In frail older people (n = 65), dietary protein supplementation (120 

kcal/day for 24 weeks) improved physical performance by 10-20% (29). In sarcopenic 

patients (n = 130), intake of a whey-protein supplement (20 g twice daily for 13 weeks) 
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compared to control resulted in a larger improvement in muscle mass (protein vs. control 

group: + 0.17 kg) and function (repeated chair stands; protein vs. control group: -1.01 s) 

(30). 

 

PROTEIN INTAKE IN OLDER PEOPLE 

Due to the increasing awareness of the major muscle loss that accompanies weight loss in 

older people, and its particular adverse effects, there has been a recent, and substantial, 

increase in the preferential administration of protein in these supplements in an attempt to 

preserve, or even increase, muscle mass and function (26, 27). A wide range of high-protein 

supplements, usually whey-protein, are being used increasingly frequently with the aim of 

increasing energy-protein intake in (undernourished) older people in both institutionalised 

and community-dwelling populations (26, 31).  

Whey is a milk protein and major protein source (in dairy) within the diet. It is a liquid by-

product of the cheese making process. Whey protein has a high essential amino acid content, 

particularly leucine. Protein metabolism appears to be dependent on the quantity of essential 

amino acids ingested – there was no difference in muscle synthesis after older people 

ingested either 18 g essential amino acids or 40 g balanced amino acids (18 g essential amino 

acids plus 22 g non-essential amino acids) (32). Leucine, in particular, may play an important 

role – muscle protein synthesis in older people was not increased after a 6.7 g essential amino 

acid mixture containing 26% of leucine, but increased when the leucine content was 

increased to 42% (33). Whey protein, compared to casein and casein hydrolysate (all 20 g), 

resulted in higher muscle protein synthesis in healthy older adults (19). In younger adults 

whey empties from the stomach relatively quickly when compared to casein (34), so that the 

absorption of amino acids into the circulation and the onset of satiety is rapid, but relatively 

short-lived (28). 
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EFFECTS OF DIETARY PROTEIN ON APPETITE, ENERGY INTAKE 

AND BODY WEIGHT IN YOUNG ADULTS 

There has been substantial interest in the mechanisms underlying the effects of protein 

ingestion on body weight and body composition in young adults, driven primarily by 

attempts of overweight young adults to lose weight, and evidence that high protein diets 

promote weight loss by increasing satiety (35). Short-term studies of the effect of oral 

preloads (36-39) in young adults have shown that protein is more satiating than carbohydrate 

and lipid, resulting in greater reduction of hunger and increase of fullness and in decreased 

energy intake after a protein preload compared to carbohydrate and fat preloads (36). The 

landmark study of Weigle et al. indicated that a diet containing 30% of protein was more 

satiating, associated with decreased energy intake and greater weight loss over time, than an 

iso-caloric diet containing 15% of protein (40). 

 

THE GAP IN KNOWLEDGE AND AIMS OF THE THESIS 

Given that protein is the most satiating macronutrient in young people, and its substitution 

for other macronutrients is often advocated to promote weight loss in overweight young 

adults, it is possible that the satiating effects of increased protein ingestion could counteract 

some, or all, of positive effects on muscle in older people. Yet, despite the increasing use of 

protein-rich drinks by older people, information about their effects on energy intake in this 

age group is lacking.  

The primary aim of this thesis was to determine the effects of dietary protein on energy 

intake, appetite and underlying gastrointestinal mechanisms, including antropyloroduodenal 

motility, gastric emptying and plasma gut hormone concentrations in healthy older when 

compared to younger adults. 
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OUTLINE OF THE THESIS 

The acute effects of dietary protein intake on energy intake are largely unknown. This thesis 

will explore the age-related physiological changes in energy intake and appetite and related 

gastrointestinal mechanisms after whey protein ingestion, with the aim of developing an 

optimal strategy for protein supplementation to increase energy intake and muscle mass and 

function in older people, particular those at risk of undernutrition. Chapter 2 summarises 

the current literature relating to the effects of ageing on antropyloroduodenal motility, gastric 

emptying and gut hormones associated with appetite and energy intake regulation. Chapter 

3 presents a meta-analysis aiming to determine the effect of ageing on appetite and energy 

intake. In chapter 4, the techniques used of the studies in this thesis are presented. Chapters 

5 and 6 describe the load effects of intraduodenally administered (thereby bypassing oro-

gastric effects) whey protein, on energy intake, antropyloroduodenal motility, perceptions 

of appetite and gastrointestinal symptoms, glucose, gut hormone and amino acid 

concentrations. Chapter 7 presents a study relating to the effects of oral whey protein loads 

on energy intake, gastric emptying, perceptions of appetite and gastrointestinal symptoms. 

Chapter 8 describes the effect of timing of whey protein intake before the meal on 

subsequent energy intake and perceptions of appetite and gastrointestinal symptoms. 

Chapters 9 and 10 present the gender effects of whey protein intake on energy intake, 

perceptions of appetite and gastrointestinal symptoms, gastric emptying, glucose and gut 

hormone concentrations after oral loads in younger and older adults. Chapter 11 examines 

the effects of ageing on blood glucose and plasma insulin, glucagon, ghrelin, CCK, GIP and 

GLP-1 in response to oral protein loads. Chapter 12 describes the effects of substitution, or 

addition, of carbohydrate and fat to whey protein on energy intake, perceptions of appetite 

and gastrointestinal symptoms, gastric emptying, glucose and gut hormone concentrations 
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in older men. Finally, this thesis concludes with a general discussion (Chapter 13) and 

summary of the results of the above-described studies. 



 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 2: EFFECT OF AGEING ON ENERGY 

INTAKE REGULATION – A LITERATURE REVIEW 
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INTRODUCTION 

The regulation of appetite and energy intake is complex, and influenced by the interaction 

of both central and peripheral mechanisms, all of which are potentially affected by ageing. 

The co-ordination between interrelated intragastric and small intestinal sensory and motor 

mechanisms is precise, and triggered by the interaction with ingested nutrients. Intragastric 

mechanisms include slowing of gastric emptying, increased antral area (distension of the 

distal stomach), and inhibition of plasma ghrelin concentrations. Small intestinal 

mechanisms include suppressed antral and duodenal motility and increased pyloric motility, 

which result in slowing of gastric emptying, and stimulated gut hormone secretion, i.e. 

cholecystokinin (CCK), glucagon-like-peptide-1 (GLP-1), peptide-tyrosine-tyrosine (PYY) 

and gastric-inhibitory-peptide (GIP). Blood glucose concentrations are mainly regulated 

through the secretion of insulin and glucagon in the post-prandial and post-absorptive phase. 

Intragastric, small intestinal, and blood glucose mechanisms are important factors in the 

regulation of appetite and subsequent energy intake. The age-related changes in the 

gastrointestinal mechanisms and glucose regulation influencing feeding are reviewed in this 

chapter. 

 

ENERGY INTAKE AND APPETITE IN YOUNG AND OLDER 

INDIVIDUALS 

It has been established clearly that there are differences in appetite and energy intake 

between young and older people. Fasting hunger ratings, measured by a visual analogue 

scale (VAS), are lower in healthy older when compared to young individuals (41-46), 

whereas fasting fullness ratings appear comparable between the age groups (42-44, 47-52). 

On average, daily energy intake in older individuals is less when compared to young 

individuals (42, 44, 45, 48, 53-56). Interestingly, there is evidence that, after a nutrient 
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preload, energy intake at a subsequent meal is less suppressed in older compared to young 

adults (42, 46, 48, 57), and there is a linear decrease in energy intake compensation with age 

of approximately 2.4% per year of increased age (58). When older individuals are given a 

nutritional supplement prior to a meal, energy intake at a subsequent meal is not significantly 

different from energy intake without a nutritional supplement (59-62). Also in longer-term 

studies, after 21 days of overfeeding or underfeeding, older individuals do not compensate 

as well as young individuals for the increase or decrease in energy intake during subsequent 

ad libitum diet periods, compared to their energy intake during the baseline weight 

maintenance period (56, 63). Young people compensate for their body weight gain, or loss, 

by reducing, or increasing their energy intake during the ad libitum period, whereas older 

people sustain a higher energy intake after an overfeeding period, and a lower energy intake 

after an energy restriction period compared to energy intake during a weight maintenance 

period (63). These observations indicate that there is a reduction in the effectiveness of 

homeostatic mechanisms controlling appetite and food intake in the ageing population.  

 

INTRAGASTRIC MECHANISMS IN YOUNG AND OLDER ADULTS 

Intragastric mechanisms of relevance to appetite control include gastric emptying, antral area 

and concentration and activity of the orexigenic hormone ghrelin.  

 

Gastric emptying and antral area  

Gastric emptying is a coordinated activity of the proximal and distal stomach, the pylorus 

and the upper small intestine (Figure 2.1). During meal intake, the proximal stomach relaxes 

in order to increase space for the meal (Figure 2.2). Solid foods are redistributed from the 

proximal to the distal stomach, and ground by the antrum to small particles, called ‘lag 

phase’, whereas emptying of liquids does not usually involve a lag phase.  
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Figure 2.1: Diagram of the stomach areas (64). 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Motor patterns associated with gastric emptying (65). 

 

The distal stomach, i.e. antrum, grinds the solid food into smaller particles (< 2 mm) to form 

a semifluid partly digested food mass, called ‘chyme’. The antrum and the pylorus regulate 

the amount and rate of chyme that is transported from the stomach into the duodenum. The 

contractions of the distal stomach and the pylorus are regulated by pacemaker cells called 

‘interstitial cells of Cajal’ (66). The antral area reflects an interplay of passive and active 

forces favouring distension by volume and gravity and resistance to distension occurring as 

a result of muscular contractions. Because of the active regulation, the antral area/pylorus is 
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the major determinant for the rate of gastric emptying (67), which typically ranges between 

1-4 kcal/min (68). Solid foods empty in an overall linear pattern after a lag phase and low 

energy liquids empty in an overall exponential pattern; the pattern becomes more linear as 

the energy content of the ingested material increases (69). Gastric emptying is related to 

feelings of fullness; a number of studies have shown a positive linear relationship between 

postprandial fullness and antral gastric distension, but not for proximal gastric distension 

and postprandial hunger (42, 70, 71). Antral content is relatively stable compared to the 

content of the proximal stomach; the proximal stomach progressively reduces its content 

after meal ingestion and releases the gastric distension faster than the antral stomach (42). 

The perception of fullness is triggered by gastric stretch receptors, located mainly in the 

distal stomach and activated by gastric distension (72). Because of the absence of a 

correlation between antral area, or distal stomach content and feelings of hunger, it has been 

suggested that hunger and fullness are regulated by different mechanisms (42, 70).  

Current evidence indicates that ageing is associated with a slowing, albeit modest, of gastric 

emptying, which may potentially contribute to reduced food intake in older people as a result 

of increased postprandial fullness (50). Older compared to young individuals, have been 

reported to have slower gastric emptying times after mixed nutrient (50, 51, 73-77), glucose 

(78) and lipid (79) preloads (solid or liquid) in some, but not all studies (42, 80, 81). One 

study reported no effect of ageing on gastric emptying of a solid mixed nutrient meal, but 

slower emptying in older, compared to young, adults for the gastric emptying of a glass of 

orange juice (82). Only one study reported an accelerating effect of ageing on gastric 

emptying (83). Cholecystokinin (CCK) plays an important role in the slowing of gastric 

emptying (see below), and fasting and postprandial concentrations are increased in older, 

compared to younger, adults (43, 48, 51, 53, 79). Gastric distribution of a meal may also be 

affected by ageing – increased retention in the distal stomach may result in increased antral 

distension, possibly as a result of autonomic dysfunction (50). Ageing is also associated with 
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diminished perception of gastric distension, which may contribute to the less precise control 

of food intake in older when compared to young people (84). The effect of ageing on gastric 

emptying of pure protein, and the relation between subsequent energy intake and gastric 

emptying in older people are unknown.  

 

Ghrelin  

Ghrelin is produced and released from the fundus of the stomach when the stomach is empty 

(Figure 2.3). It exerts its effect via the ‘growth hormone secretagogue’ receptor (GHS-R) 

and releases growth-hormone (85). GHS receptors are present in the hypothalamus, pituitary, 

adrenal, thyroid, pancreas, myocardium, spleen, ovary, enteric neurons and stomach tissue 

(86). Ghrelin stimulates food intake by increasing gastric acid production and gastric 

motility, and by inhibition of insulin via neuropeptide Y (NPY) and its production of agouti-

related peptide (AgRP), which stimulate appetite via central effects. Plasma ghrelin levels 

are decreased in people with obesity and increased in those with cachexia or anorexia, when 

compared to healthy individuals (87).  

The majority of studies have found that plasma active (acylated) ghrelin (52, 88) and total 

ghrelin (41, 48, 52, 88-90) concentrations during fasting are not affected by increasing age. 

However, Di Fransesco et al. and Rigamonti et al. reported that older, compared with young 

adults, had lower levels of plasma active (91) and total (92) ghrelin concentrations during 

fasting, providing another possible mechanism for the ageing-associated decline in appetite 

and food intake. 

In young adults, plasma total ghrelin concentrations have been reported to decrease after an 

oral nutrient preload (41, 52, 91) and to start to increase again approximately two hours after 

preload administration (41, 91), whereas at this time they remain similar to baseline in older 

participants (52). This suggests altered ghrelin production or sensitivity in older individuals. 
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Sturm et al., however, reported that the absolute decline in plasma total ghrelin 

concentrations after an oral mixed nutrient preload was comparable in both age groups (48).  

Higher plasma ghrelin concentrations have been observed in older compared to young 

individuals during an energy restricted period and a subsequent ad libitum period (55). 

Plasma total ghrelin concentrations were lower in young, than in older individuals after a 

two-week period of caloric restriction, but in both age groups there was an increase in plasma 

ghrelin concentrations during the ad libitum period compared to an energy balance period 

(55). These observations suggest that ghrelin sensitivity is decreased in this group i.e. higher 

levels may be required to achieve the same orexigenic effect as in young people. The effect 

of ageing on stimulation of ghrelin in response to protein is unknown. 

 

SMALL INTESTINAL MECHANISMS IN YOUNG AND OLDER 

ADULTS 

Small intestinal mechanisms include gut motility and concentrations and activity of the 

anorexigenic hormones.  

 

Gut motility 

Stomach and small intestinal motility consists of three phases which follow a pattern in the 

fasting state, called ‘the migrating motor complex (MMC)’; phase I, in which no motility is 

present (~40 min), phase II in which irregular contractions are present (~50 min) and phase 

III, which shows strong and regular contractions (~5-10 min) (93). The MMC is stimulated 

by different gut hormones and activation of the parasympathetic and enteric nervous system 

(94). Agents, including hormones, which induce phase III contractions with gastric origin 

include motilin (95), erythromycin (96), atropine (97) and ghrelin (98). Hormones that 
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induce phase III contractions with duodenal origin include somatostatin (99) and xenin 

(100).  

Serotonin has no effects on the MMC when administered intraduodenally, however, it 

increases the frequency and migration velocity of phase II contraction when administered 

intravenously (101, 102).  

Studies performed employing recording with a balloon kymograph showed that gastric 

motor activity is inhibited after truncal vagotomy (103) but phase III contractions were still 

present in the small intestine (104) suggesting that the vagus nerve is involved in gastric 

motility, but not the motility of the small intestine. The latter is now thought to be regulated 

primarily by the enteric nervous system. Contraction of the smooth muscle cells of the 

gastrointestinal tract is initiated by the release of excitatory neurotransmitters from motor 

neurons of the enteric nervous system at the same time as slow waves generated by the 

interstitial cells of Cajal (94). During phase I, slow waves are present, but there is no 

secretion of an excitatory stimulus from the enteric nerve system so that no contractions 

occur during phase I. During phase II and III, both slow waves and excitatory stimuli are 

present, leading to the generation of contractions (94).  

After meal consumption, fasting motility changes to postprandial motility in the segments 

where the chyme is present; characterised by irregular antral contractions to enable mixing 

and digestion of the food consumed (105). These contractions last ~1 hour for each 200 kcal 

ingested. In the segments where no chyme is present, fasting motility continues (106). The 

transportation of (unabsorbed) nutrients from the stomach to the small intestine via the 

pylorus is associated with gastric acid production (107), pancreatic secretion (108) and 

inhibition of gastric and jejunal motility (109, 110). The latter effect is known as the ‘ileal 

brake’ effect and is exerted by gastrointestinal hormones (111) (Figure 2.1). Intraduodenal 

infusion of lipids (112), carbohydrates (113) and hydrolysed-whey protein (114) in young 

adults, suppresses subsequent energy intake (114) by increasing neural and hormonal 
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feedback and stimulating increases in phasic (isolated pyloric pressure waves; IPPW’s) and 

tonic pressures of the pylorus, to regulate nutrient delivery to the intestine, resulting in 

slowing of the rate of gastric emptying. 

Healthy ageing is associated with increased small intestinal responses to nutrients, including 

greater stimulation of phasic pyloric pressure waves by intraduodenal lipid infusion (45), a 

greater satiating effect of intraduodenal glucose (44), and altered gut hormone responses (42, 

43, 48); all of these changes may contribute to the observed modest slowing in gastric 

emptying (53). The effect of ageing on small intestinal responses to intraduodenal protein 

has not been investigated. 

 

Anorexigenic hormones 

Another aspect of the small intestinal and gastrointestinal mechanisms influencing energy 

intake are the anorexigenic hormones [cholecystokinin (CCK), glucagon-like peptide 1 

(GLP-1), peptide tyrosine tyrosine 3-36 (PYY), gastric inhibitory polypeptide (GIP), insulin 

and glucagon] which are present in low concentrations in the peripheral blood during fasting 

conditions, with a substantial increase during and after meal intake associated with meal 

termination and suppression of subsequent energy intake (115). 

 

Cholecystokinin (CCK) 

CCK is released from L-cells in the mucosal epithelium of the duodenum in response to 

meals, particularly those containing fat or protein (Figure 2.3) (116-118). CCK is 

transported via the blood and has rapid, short-lived, effects (119) which effects are mediated 

by CCKA receptors, present in the pancreas and on the afferent vagus nerve and enteric 

neurons, and also CCKB receptors, present in the stomach and on the afferent vagus nerve 
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(120, 121). Receptor binding influences gastric emptying, gut motility, secretion of gastric 

acid, enzyme secretion of the pancreas and contraction of the gallbladder (116-118).  

Figure 2.3: Hormone production sites. Adapted from (122). 

 

CCK acts to reduce hunger and suppress food intake: infusions of CCK reduce food intake 

in young and older adults (43) while administration of CCK antagonists results in increased 

hunger and food intake, indicative of a physiological role for this inhibitory effect (123). 

Older people appear to have higher plasma CCK concentrations, on average, than young 

adults under all conditions studied: during fasting (43, 48, 51, 53), after ingestion of an oral 

nutrient preload (51), during ID infusion of lipids and glucose (53), and during intravenous 

infusion of saline and exogenous CCK (43). Only one study failed to find any differences in 

CCK concentrations between young and older people (41). Older people seem to retain their 

sensitivity to the satiating effects of CCK as the suppression of energy intake induced by 

intravenous infusion of CCK, compared to the control day, was higher in the older adults 

compared with the young adults (32% vs. 16%) (43). The effect of ageing on the CCK 

response to protein in unknown. 
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Gastric inhibitory protein (GIP) 

GIP is secreted by K-cells located in the duodenum and proximal jejunum mainly as a 

response to intake of carbohydrates and lipids (Figure 2.3) (124). GIP has a very short half-

life time of 5-7 min, before it is rapidly degraded by dipeptidyl peptidase-4 (DPP-IV) (125). 

The amino acid sequence of GIP is almost identical to GLP-1 (see below) (124). GIP exerts 

its effects via GIP receptors, which are located on the pancreatic islands, gut, adipose tissue, 

heart, pituitary, adrenal cortex and in several regions of the brain.  

The effect of GIP on energy intake is not clear (126). Potentially GIP exerts an anorexigenic 

effect by stimulating insulin secretion (127), promoting ß-cell proliferation (128) and 

regulating fat metabolism in adipocytes (129) (incorporation of fatty acid into triglycerides 

and stimulation of lipoprotein lipase activity and stimulation of fatty acid synthesis). GIP 

stimulates the secretion of glucagon in a dose-dependent matter (130) and one study reported 

a modest acceleration of gastric emptying by peripheral infusion of GIP (131). The 

physiology of GIP is poorly understood because of the absence of a specific GIP receptor 

antagonist suitable for human use.  

Older compared with young people, have similar plasma GIP concentrations during fasting 

(132-134). After oral ingestion of glucose (132, 134, 135) and during a 1 kcal/min 

intraduodenal glucose infusion (baseline to 60 min) (133), GIP levels have been reported to 

be higher in older compared to young subjects and to also return to baseline slower (132). 

Higher post-nutrient GIP levels in older than young adults may reflect reduced DPP-IV 

levels in older compared to young people and/or alterations in glucose-induced insulin 

secretion and the β-cell response, potentially resulting in increased feelings of satiety (135). 

The sensitivity to GIP in the ageing population has not been evaluated, and the effect of 

ageing on the GIP response to protein in unknown. 
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Glucagon-like peptide1 (GLP-1) 

GLP-1 is released from proglucagon L-cells located predominantly in the mucosal 

epithelium of the ileum and colon (Figure 2.3) (136). GLP-1 has a short half-life of 1-2 min 

as it is, like GIP, rapidly broken down by DPP-IV (137). GLP-1 exerts its effects primarily 

by the GLP-1 receptor, present on peripheral and neurons of the central nervous system 

(CNS), cells in the pancreatic islands, gastrointestinal tract, lungs, kidneys, and heart (138-

140).  

GLP-1 suppresses appetite and food intake probably in part by inhibiting gastrointestinal 

motility and thereby the transit of nutrients through the gastrointestinal tract, contributing to 

the ileal brake effect (141, 142), by glucose-dependent stimulatory and inhibitory effects on 

insulin and glucagon secretion, respectively (143). The physiological role of GLP-1 on 

gastric emptying was determined by a study using exendin 9-39 amide, a GLP-1 receptor 

antagonist. The study reported accelerated gastric emptying and increased postprandial 

glucose concentrations after a mixed nutrient preload during intravenous infusion of exendin 

9-39 amide compared to control. Exogenous infusion of GLP-1 slowed of gastric emptying 

and also reported decreased energy intake compared to a control saline infusion in young 

healthy men (144). 

In most studies, older and young adults have been reported to have comparable circulating 

plasma GLP-1 concentrations during fasting (48, 53, 133). However, Ranganath et al. 

reported higher concentrations in older compared with young females (132), while, in 

contrast, Trahair et al. found a trend towards lower fasting GLP-1 concentrations in older, 

compared to young, men and women (133). After a mixed nutrient oral preload (48) or 

during intraduodenal glucose or lipid infusion (53, 133) comparable GLP-1 plasma 

concentrations were observed in young and older individuals. In contrast, Ranganath et al. 

reported higher GLP-1 plasma concentrations in older compared with young people in 

response to oral carbohydrate (132). MacIntosh et al. reported an inverse relationship 
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between hunger ratings and GLP-1 levels in young, but not in older, subjects (53), consistent 

with the concept that older people are less sensitive to the satiating effects of GLP-1. The 

sensitivity to GLP-1 in the older population has not been evaluated, and the effect of ageing 

on the GLP-1 response to protein is unknown. 

 

Peptide tyrosine-tyrosine (PYY) 

PYY is released from endocrine L-cells in the mucosal epithelium of the ileum and colon 

(Figure 2.3) (145) as PYY(1-36) and metabolised in to PYY(3-36) by DPP-IV (146, 147). 

PYY exerts its effects by binding to the NPY receptor family, and neuropeptide Y2 receptors 

(148, 149). PYY probably has a major role in the ileal brake effect, which may contribute to 

its anorexigenic effect (150, 151). Plasma PYY concentrations during fasting appear to be 

largely unaffected by ageing (51, 53), although, after an oral mixed-nutrient preload, meal-

induced rises may be more prolonged in older people (51), which may contribute to increased 

feelings of satiety. However, during a two hour intraduodenal glucose or lipid infusion, PYY 

concentrations in both age groups were comparable (53). This may be because in this study 

the nutrients were infused into the duodenum, and would, accordingly, be expected to be 

absorbed higher in the gastrointestinal tract, i.e. since PYY is produced in the colon, it is not 

surprising that only a low PYY response (and no difference between age groups) was 

observed (53). No studies have evaluated the sensitivity to PYY in an ageing population 

have been conducted. The effect of ageing on the PYY response to protein is unknown. 

 

Glucose regulation in young and older adults 

Glucose is the main form of fuel for the body. In response to food intake, particularly 

carbohydrates, blood glucose concentrations increase, and insulin released from the pancreas 

to promote incorporation of glucose into fat, liver and skeletal muscle cells. Glucagon has 

the opposite effect – when glucose concentrations are low glucagon stimulates the liver to 
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convert glycogen intro glucose. Due to insulin resistance associated with ageing, older 

people have higher blood glucose concentrations compared to young adults (152).  

 

Insulin 

Insulin is released from ß-cells in the pancreas and is required for the transportation of 

glucose into the body cells (Figure 2.3) (153). Intranasal administration of insulin in young 

men (154) and women (155) suppressed subsequent energy intake, and increased insulin 

concentrations have been correlated with decreased food intake in various studies in young 

adults (156-159). Whey protein results in greater increases in insulin concentrations and 

more suppression of energy intake compared to other high-protein meals (tuna, egg and 

turkey) (160). Insulin may suppress energy intake via the stimulation of alpha-melanocyte-

stimulating hormone (αMSH) and cocaine- and amphetamine-regulated transcript (CART) 

neurons, by inhibiting NPY and AgRP production in the arcuate nucleus (161), and by 

decreasing ghrelin levels (162) (163) (164).  

Circulating insulin concentrations probably increase with increasing age. Plasma insulin 

concentrations in older compared to young individuals during fasting were higher in five 

studies (20, 48, 89, 133, 165), comparable in four studies (42, 44, 52, 132) and lower in one 

study (43). After oral mixed-nutrient preloads higher peak plasma insulin concentrations 

have been reported in older than young subjects (41, 89); a 9-fold increase in insulin 

concentrations was seen in the older group versus a 3-fold increase in the young group in 

one study (41). During intraduodenal glucose infusion, the rise in serum levels of insulin 

was reported to be greater in older than in young subjects (44). Two hours after an oral 

preload, higher insulin concentrations in older compared with young subjects were observed 

(52). Another study found increased insulin concentrations throughout a day in older than in 

young adults when subjects were given two standardised oral meals (166). However, four 

other studies found that after oral carbohydrate preloads, mixed nutrient preloads and during 
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intraduodenal glucose infusion, there was no difference in insulin levels between older and 

young participants (42, 48, 132, 133), although levels returned slower to baseline in older 

compared with young subjects (132). Insulin resistance in the ageing population may be 

explained by an increase in visceral fat mass, rather than by age per se – intra-abdominal fat 

mass correlates significantly with insulin resistance regardless of gender (167). Increased 

insulin concentrations in older people could possibly result in a decreased appetite as insulin 

stimulates leptin production, and inhibits ghrelin expression. The effect of ageing on the 

insulin response to protein is unknown. 

 

Glucagon 

Glucagon is secreted from α-cells in the pancreas and released in the portal vein in fasting 

conditions and in response to exercise (Figure 2.3). Glucagon acts on the liver to promote 

glycogenolysis and gluconeogenesis to increase blood glucose levels (69). Glucagon 

mediates its effects via the glucagon receptor, which is expressed mainly in the liver and 

kidneys, but is also found in the gut, adrenal glands, brain, heart, pancreas, spleen and 

adipocytes (168).  

Exogenous administration of glucagon was found to suppress hunger and energy intake in 

multiple old studies (169-171). A recent study confirmed these results and reported 

decreased energy intake in response to intravenous infusion of glucagon, either by itself or 

in combination with GLP-1, in healthy young men (144). Glucagon had no effect on gastric 

emptying or appetite scores, indicating that glucagon suppresses energy intake through in an 

alternative way. A possible mechanism is though increasing glucose concentrations and 

reducing hunger contractions (172) although another studies has found the suppressive 

capacities of glucagon independent of glucose concentrations (169).  

Fasting glucagon concentrations have been reported to be similar between young and older 

people (173, 174) (175). Glucagon concentrations after intravenous glucose and arginine 
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infusions (173), after 250 kcal, 500 kcal and 1000 kcal mixed nutrient meals (175), and 

during 2 hyperglycaemic clamps (basal plasma glucose + 5.4 mmol/L or basal plasma 

glucose + 12.8 mmol/L) (176), were also not different between younger and older age 

groups. One study found reduced glucagon responses after an oral glucose tolerance test in 

older compared to young men and women (134). The effect of ageing on the glucagon 

response to protein is unknown. 

 

CONCLUSIONS 

In conclusion, the literature suggests that ageing is associated with slower gastric emptying, 

greater stimulation of phasic pyloric pressure waves in response to intraduodenal infusion of 

lipid and glucose, and altered hormone responses, potentially contributing to increased 

satiety in the older population. The effect of ageing on the gastric emptying, 

antrapyloroduodenal motility, ghrelin, CCK, GLP-1, GIP, insulin, glucagon and glucose 

responses to protein are unknown.
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ABSTRACT 

Background and aims: It is not well recognised that in the elderly weight loss is more 

common than weight gain. The aim of this analysis was to determine the effect of ageing on 

appetite (hunger/fullness) and energy intake, after overnight fasting and in a postprandial 

state, by meta-analyses of trials that included at least two age groups (> 18 years). We 

hypothesised that appetite and energy intake would be less in healthy older compared with 

younger adults.  

Methods: Following a PubMed-database systematic search up to 30 June 2015, 59 studies 

were included in the random-effects-model meta-analyses. 

Results: Energy intake was 16%–20% lower in older (n = 3574/~70 years/~71 kg/~25 

kg/m2) than younger (n = 4111/~26 years/~69 kg/~23 kg/m2) adults [standardised mean 

difference: −0.77 (95% confidence interval −0.90 to −0.64)]. Hunger was 25% [after 

overnight fasting; weighted mean difference (WMD): −17 (−22 to −13) mm) to 39% (in a 

postprandial state; WMD: −14 (−19 to −9) mm] lower, and fullness 37% [after overnight 

fasting; WMD: 6 mm (95% CI: 1 to 11 mm)] greater in older than younger adults.  

Conclusions: In conclusion, appetite and energy intake are less in healthy older than 

younger adults, suggesting that ageing per se affects food intake. 
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INTRODUCTION 

The world population is ageing rapidly. For example, the proportion of the world's 

population over 60 years will double from 11% to 22% between 2000 and 2050. As 

healthcare costs are incurred largely by older people, this will have dramatic societal 

impacts, so that, largely as a result of population ageing, it is projected that government 

spending in Australia on health will increase tenfold per capita by 2055 (177). Reducing 

morbidity in the older population is, accordingly, a major public health goal. A very large 

proportion of the increases in healthcare costs are accounted for by increasing rates and 

duration of hospital admissions in older people. During hospitalisation nutritional status 

often declines in older patients, due to a lack of adequate energy intake (178). 

It is often not recognised that after age ~65 years weight loss, particularly lean tissue, is more 

common than weight gain - this has been well documented in cross-sectional and 

longitudinal studies (5, 8, 179-182). In the elderly, both low body weight and weight loss 

are strong predictors of poor outcomes (180, 183), including the development of pathological 

undernutrition and sarcopenia and reduced functional capacity and frailty (184). Data form 

animal studies suggest that caloric restriction, and probably more importantly diet 

composition, play a role in longevity by reducing the risk of developing type 2 diabetes, 

hypertension, cardiovascular disease and cancer which may be related to the body 

composition during life, i.e. less fat and more lean tissue (185, 186). The loss of body weight 

in older people is usually associated with disproportionate loss of lean body tissue, with 

average decreases of up to 3 kg of lean body mass, mainly skeletal muscle, per decade after 

the age of ~50 years (14). Furthermore, the adverse effects of overweight and obesity are 

much less in older than young adults, so that the body mass index (BMI) associated with 

maximum life expectancy increases with age; ~27-30 kg/m2 in people over 65 years 

compared to 20-25 kg/m2 in younger adults (13). There is no sound evidence that in people 
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over 70 years a BMI > 30 kg/m2 is associated with any reduction in life expectancy. 

Consistent with this, the lower end of the ‘optimum’ BMI range is higher in older than young 

adults at about 22 kg/m2 (187). 

Weight loss in older people occurs because there is a decrease in daily energy intake (188) 

which is greater than the decrease in energy expenditure (189). The decrease in energy 

intake, and the reduction in appetite which underlies it, has been called the ‘physiological 

anorexia of ageing’ (6, 190). The reduction in energy expenditure in the elderly is due to 

reduced physical exercise, loss of energy-demanding lean tissue, and decreased metabolic 

cost of metabolizing the smaller amount of consumed food (191-193). The American 

National Health and Nutrition Examination Survey (NHANES) III cross sectional studies 

reported a decline in energy intake, between the ages of 20-29 and 70-79 years, of 38% (1138 

kcal/day) in men and 27% (522 kcal/day) in women and energy intake measured with 24-h 

recall interviews (179). We recently showed that energy intake was 16% lower in older than 

younger men, when energy intake was measured with a more accurate technique: of a single 

ad libitum buffet-style meal at the research facility (194). 

An important strategy for maintaining good health in older people is the prevention and 

management of weight loss in the elderly. It is important, therefore, to accurately 

characterise this problem. Many of the studies in the area have used different methods to 

measure energy intake and included relatively few subjects, so there is benefit in combining 

these data. The aim of this analysis was to determine (i) the magnitude of decrease in energy 

intake and appetite by ageing; (ii) whether the age-effect on energy intake is present both 

after overnight fasting and in the postprandial state; (iii) whether the age-effect on energy 

intake is affected by the method of energy-intake measurement, by meta-analyses of studies 

which included two age groups of healthy (younger and older) adults. We hypothesised that 

appetite and energy intake would be ~20-25% less in healthy older when compared with 

younger adults. 
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MATERIALS AND METHODS 

Search strategy, study selection, data extraction and quality assessment 

We performed a search of English-language publications in the PubMed database for studies 

that reported original data of appetite and/or energy (food) intake in ‘healthy’ adults up to 

30 June 2015. We used ‘ageing/ageing’ in combination with ‘appetite’, ‘hunger’, ‘fullness’, 

and ‘food/energy intake’ as keywords (search terms: ("ageing"[MeSH Terms] OR 

"ageing"[All Fields] OR "ageing"[All Fields]) AND ("appetite"[MeSH Terms] OR 

"appetite"[All Fields]); ("ageing"[MeSH Terms] OR "ageing"[All Fields] OR "ageing"[All 

Fields]) AND ("hunger"[MeSH Terms] OR "hunger"[All Fields]);("ageing"[MeSH Terms] 

OR "ageing"[All Fields] OR "ageing"[All Fields]) AND fullness[All Fields]); 

("ageing"[MeSH Terms] OR "ageing"[All Fields] OR "ageing"[All Fields]) AND "energy 

intake"[All Fields]); ("ageing"[MeSH Terms] OR "ageing"[All Fields] OR "ageing"[All 

Fields]) AND "food intake"[All Fields]) with filters for animal and non-English publications. 

We searched for a broad and heterogeneous range of studies, and not only intervention 

studies, reporting data on appetite and energy intake in both younger and older adults. These 

data are often reported as ‘subject characteristics’ at baseline, particularly in the case of 

energy intake, and not as primary study outcomes. Two researchers (CG and SS) performed 

screening of studies by titles and abstracts and, subsequently, full texts. References from the 

retrieved publications and bibliographies of relevant reviews were checked to identify 

potential additional articles. Studies were included if they reported mean ± SD/SEM energy 

intake (kcal) and/or appetite (i.e., hunger and/or fullness) of at least two age groups - 

‘younger’ and ‘older’ adults. Study subjects were required to be ‘healthy’ and at least 18 

years old, without using age restrictions in defining the ‘younger’ and ‘older’ age groups. 

Usually the older groups were made up of people over 60-65 years. Animal studies and non-

English publications were excluded. Characteristics were extracted from the original reports 
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using a standardised data extraction form. When SD’s or SEM’s of appetite or energy intake 

were missing in the publication or it was stated that these data were measured but not given, 

the investigators were contacted by e-mail with a request to provide these data - requested 

and received twice regarding data of appetite and once requested but not received regarding 

data of energy intake. We recorded the study’s author(s), year of publication, study design, 

number and gender distribution of the participants, and mean ± SD: age (years), body weight 

(kg), body mass index (BMI, kg/m2) for both age groups (Table 3.1, Appendix 1). The usual 

quality filters for randomised trials or observational epidemiologic studies did not apply 

since the primary aim of this meta-analysis was to determine the magnitude of decrease in 

energy intake and appetite by ageing rather than to determine the effect of an intervention. 

We determined whether studies reported inclusion and exclusion criteria and data on 

attrition, and whether potential confounders were considered, for example whether the 

younger and older groups were matched for body weight and/or BMI. When data of 

interventions were used, we reported whether randomization of study conditions was used 

and whether the study subjects and research personnel were blinded. This meta-analysis is 

reported in accordance with the recommendations and criteria outlined in the Preferred 

Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) statement (195). 

 

Data analysis 

Meta-analyses were performed with REVMAN software (version 5.2; the Cochrane 

Collaboration Oxford, United Kingdom) using the DerSimonian and Laird random-effects 

model with a 95% confidence interval, to account for measurement variability among the 

included studies. For this analysis, the number of participants’ means and SD’s of energy 

intake and hunger and fullness were extracted for both age groups, i.e., younger and older 

adults. For all data, the SD’s were calculated, when necessary, from SE’s, and when data 

were not provided in numerical form they were estimated from the figures. Cochran’s test 
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for heterogeneity was used to determine whether the studies included in the meta-analysis 

were evaluating the same underlying sizes of effect. A threshold of P < 0.1 was used to 

decide whether heterogeneity (genuine variation in effect sizes) was present. I2, an estimate 

of the proportion of total observed variability that is due to genuine variation rather than 

random error within studies, was used to quantify the degree of inconsistency among studies; 

it was considered substantial when it was > 50% (196). Sensitivity analyses were performed 

on studies that may cause bias in the results. Differences in energy intake between younger 

and older adults were analysed using  

Standardised mean differences (SMD’s). The SMD is used when it is necessary to 

standardise the results of several studies to a uniform scale - when studies assess the same 

outcome (e.g., energy intake) but measure it in a variety of ways (e.g., kcal/meal or kcal/day 

for energy intake). The SMD expresses the size of the effect in each study relative to the 

variability observed in that study. The SMD is calculated by dividing the difference in mean 

outcome between groups (younger and older adults) by the SD of outcome among 

participants (196). Data relating to hunger and fullness were defined as mean difference 

between the younger and older adults. Percentage differences between the younger and older 

adults for the outcomes were calculated for each study and averaged. 

 

RESULTS 

The PubMed search identified 5044 potential articles. The review flow diagram is, following 

the recommendations of the PRISMA statement (195), depicted in Figure 3.1. We screened 

2703 titles or abstracts following exclusion of 2341 animal studies or non-English articles. 

We screened 88 publications in full text of which 59 studies fulfilled the inclusion criteria. 

There were 7 studies which included more than 2 age groups (197-203) - we extracted the 

data of energy intake and/or appetite of the youngest (≥ 18 years) and oldest age group for  
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Figure 3.1: Flow diagram for the selection of studies. 

 

each of these studies. There were 14 studies which presented data of multiple groups within 

the younger and older study groups (7, 200, 204-215), i.e., gender, country, and/or level of 

physical activity - we combined the male and female or country or level of physical activity 

groups by calculating their mean energy intake/ appetite score and pooling their SD’s to 

create a single pair-wise comparison.  

No studies were excluded based on quality of study, although many studies did not report 

sufficient information for a clear bias assessment. All studies, except 4 (205, 216-218), 

reported inclusion and/or exclusion criteria, and stated that the participants met these criteria. 

Of the studies measuring energy intake (49 studies), 18 studies matched the younger and 

older participants for body weight (48, 54, 55, 194, 197, 209, 216, 218-228) and 13 studies 

for BMI (42-45, 49, 54, 207, 216, 218, 219, 226, 228, 229) and 11 studies considered gender 
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as a confounder (7, 49, 200, 203-205, 208-210, 212, 214). No studies considered 

confounders for hunger or fullness. 

In crossover studies [17 studies (42-46, 48, 49, 57, 84, 194, 198, 201, 214, 215, 230-232)], 

selection bias and performance bias were possible sources of bias. Thirteen studies (42-46, 

48, 49, 84, 194, 201, 214, 215, 232) were randomised of which one (194) detailed a method 

through random numbers, in the other 6 randomization was not discussed. No studies 

reported the use of allocation concealment. Performance bias scored worse, 3 studies were 

double-blind (46, 49, 194) and 2 single-blind (44, 57), in the other 12 blinding was not 

discussed. In the studies measuring energy intake over a prolonged period of time, all studies, 

except 2 (63, 219), had a method to check compliance. 

 

Effect of age on energy intake 

Three different methods of measuring energy intake were distinguished: (i) energy intake of 

a single ad libitum buffet-style meal at the research facility after overnight fasting [during a 

‘control’ condition; e.g., no preload, water preload or saline intraduodenal infusion (43, 49, 

194)] and in a postprandial state after a nutrient preload [> 0 kcal; range 180 (194) - 729 

(201) kcal], administered orally or infused directly into the small intestine [i.e., 

intraduodenally (44, 194)] – all intervention crossover studies, (ii) energy intake of provided 

food items during a prolonged period (~4 days - 2 weeks) and, (iii) energy intake of weighed 

food records (~3-14 days), 24-hour food intake recalls, or food frequency questionnaires – 

we used the observational data for energy intake for the latter two categories. There were 3 

studies measuring energy intake of a buffet-style meal in a postprandial state which consisted 

of multiple nutrient-preload conditions (44, 46, 194) - we extracted the energy intake data of 

the condition which had the largest effect to suppress energy intake by the nutrient ingestion 

in the younger-subject group (i.e., the nutrient preload with the highest energy content). 
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Forty-nine unique studies presented data on energy intake; (i) 10 studies (311 subjects) 

reported energy intake of ‘a buffet-style meal’ after overnight fasting (42, 43, 46, 48, 49, 84, 

194, 201, 214, 215) and 9 studies (266 subjects) in a postprandial state (42, 44-46, 48, 57, 

194, 201, 214) – of which 6 studies (203 subjects) measured energy intake both after 

overnight fasting and in a postprandial state (42, 46, 48, 194, 201, 214); (ii) 7 studies (339 

subjects) reported energy intake ‘during a prolonged period’ (7, 54-56, 63, 192, 219) and; 

(iii) 37 studies (7035 subjects) reported energy intake of weighed-food records [30 studies 

(42-44, 48, 49, 53, 191, 200, 204-212, 214, 215, 217, 218, 220-225, 227, 228, 233)], 24-hour 

food intake recalls [6 studies (197, 202, 203, 216, 226, 229)], or food frequency 

questionnaires [1 study (199)] - of which 8 studies also reported energy intake of a buffet-

style meal (42-45, 48, 49, 214, 215). 

Twenty-six studies were conducted in the United States (7, 46, 55, 56, 63, 191, 192, 200, 

204-206, 208, 211, 214, 215, 217, 219, 221-224, 226-230, 233), 10 in Europe (54, 57, 197, 

199, 201-203, 207, 212, 218), 8 in Australia (42-44, 48, 49, 53, 194), 2 in Asia (210, 216), 

2 in Canada (209, 220), and 1 in Chile (225). The oldest study was published in 1966 (217) 

and the most recent in 2014 (194). The largest study included 2685 subjects (229) and the 

smallest 10 subjects (84). The mean age of the youngest group within a study was 19 years 

(the older group in that study had a mean age of 55 years) (233) and of the oldest group 77 

years (the younger group in that study had a mean age of 22 years) (48). 

 

Energy intake in the total group 

In the total group of 7685 subjects, energy intake after overnight fasting was less in the older 

(n = 3574, ~70 years, body weight ~71 kg, BMI ~25 kg/m2) than the younger adults (n = 

4111, ~26 years, ~69 kg, ~23 kg/m2), with a SMD of -0.77 [95% CI: -0.90 to -0.64] (Figure 

3.2) and significant heterogeneity (I2 = 76%, P < 0.001). As a group, the older adults had on 

average 18 ± 9% (mean ± SD) lower energy intake than the younger adults. 
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Figure 3.2: Energy intake. Mean ± SD of energy intake (kcal) and a plot of the standardised 

mean difference (SMD; mm) of energy intake in older compared with younger subjects with 

the DerSimonian and Laird random-effect model. The horizontal lines denote the 95% 
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confidence interval; ▀ point estimates (the size of the square corresponds to its weight); ♦ 

the pooled estimate of age effect. Three different methods of measuring energy intake were 

distinguished: (i) energy intake of a single ad libitum buffet-style meal at the research facility 

after overnight fasting and in a postprandial state after a nutrient preload, administered orally 

or infused directly into the small intestine; (ii) energy intake of provided food items during 

a prolonged period; and (iii) energy intake of weighed food records, 24-h food intake recalls, 

or food frequency questionnaires. In the total group of 7685 subjects, energy intake was less 

(SMD: −0.77 (95% CI −0.90 to −0.64), I2 = 76%, p < 0.001) in the older than the younger 

adults. * P < 0.05 energy intake significantly less in older than younger adults within the 

study; # data were derived from a figure of the original publication. 

 

Heterogeneity was not affected by introducing a maximum age of the younger and a 

minimum age of the older age groups (I2 = 78%, n = 6620 subjects, P < 0.001); i.e., after 

excluding studies in which the mean age or the maximum age, when age was reported as a 

range, of the younger adult group was > 40 years old [studies excluded: mean age of 61 

(212); age range of 30-49 (210), 42-54 (202), 20-64 (200)] and after excluding studies in 

which the mean age or the minimum age, when age was reported as a range, of the older 

adult group was < 65 years old [studies excluded: mean age of 55 (233), 57 (207), 59 (218), 

62 (211), 63 (224) years; age range of 36-53 (204), 50-69 (210)]. In the studies included in 

this sensitivity analysis energy intake was less in the older than the younger adults with a 

SMD of -0.87 [95% CI: -1.03 to -0.72]. As a group, the older adults (n = 2992) had on 

average 19 ± 9% lower energy intake than the younger (n = 3628) adults. 

Heterogeneity was not affected by excluding the ‘small-intestinal’ studies, i.e., subjects were 

intubated with a catheter to deliver the nutrients directly into the small intestine [I2 = 77%, 

n = 7617, P < 0.001; 3 studies excluded (43, 49, 194)]. In the studies included in this 

sensitivity analysis energy intake was less in the older than the younger adults with a SMD 

of -0.77 [95% CI: -0.90 to -0.63]. As a group, the older adults (n = 3540) had on average 17 

± 9% lower energy intake than the younger (n = 4077) adults. 

Heterogeneity was not affected by excluding the ‘larger’ studies, i.e. with > 100 subjects per 

age group [I2 = 59%, n = 2432, P < 0.001; 4 studies excluded (57, 201, 210, 231)]. In the 
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studies included in this sensitivity analysis energy intake was less in the older than the 

younger adults with a SMD of -0.77 [95% CI: -0.92 to -0.63]. As a group, the older adults 

(n = 1212) had on average 18 ± 9% lower energy intake than the younger (n = 1220) adults. 

In 1555 females [17 studies (7, 48, 49, 199, 200, 203-205, 208-210, 212, 215, 218, 221, 223, 

233)], energy intake after overnight fasting was less in older (n = 763) than younger 

participants (n = 792), with a SMD of -0.70 [95% CI: -0.95 to -0.45] and significant 

heterogeneity (I2 = 73%, P < 0.001). As a group, the older females (1559 kcal) had on 

average 16 ± 9% lower energy intake than the younger females (1844 kcal). 

In 2030 males [28 studies (7, 44-46, 49, 54, 63, 84, 191, 194, 200, 202-212, 215, 217, 219, 

222, 224, 225)] energy intake after overnight fasting was less in older (n = 1045) than 

younger participants (n = 985), with a SMD of -0.95 [95% CI: -1.20 to -0.75] and significant 

heterogeneity (I2 = 73%, P < 0.001). As a group, the older males (2033 kcal) had on average 

18 ± 10% lower energy intake than the younger males (2486 kcal). 

Within an individual study, energy intake was significantly less in older than younger adults 

in 5 of 10 studies which determined energy intake of a single ad libitum buffet-style meal 

after overnight fasting at the research facility (43, 46, 49, 214, 215), 6 of 7 studies which 

determined energy intake by provided food items during a prolonged period (7, 54, 55, 63, 

192, 219), and 24 of 37 studies which determined energy intake by weighed-food records, 

24-hour food intake recalls, or food frequency questionnaires (42, 43, 45, 48, 49, 191, 197, 

199, 200, 202, 203, 205, 206, 208, 209, 211, 212, 216, 217, 220-223, 229) (Figure 3.2). 

There were no studies in which energy intake after overnight fasting was significantly higher 

in older than younger adults. 

 

Energy intake of a buffet-style meal 

In the subgroup of 311 subjects, in which energy intake was measured of a single ad libitum 

buffet-style meal at the research facility after overnight fasting (42, 43, 46, 48, 49, 84, 194, 
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201, 214, 215), energy intake was less in the older than the younger adults, with a SMD of -

0.89 [95% CI: -1.42 to -0.36] (Figure 3.2) and significant heterogeneity (I2 = 77%, P < 

0.001). As a group the older adults (n = 145, energy intake of 819 kcal/meal), had on average 

20 ± 15% (~218 kcal/meal) lower energy intake of a buffet-style meal after overnight fasting 

than the younger adults (n = 166, energy intake of 1037 kcal/meal). 

In the subgroup of 266 subjects, in which energy intake was measured of a buffet-style meal 

during postprandial conditions (42, 44-46, 48, 57, 194, 201, 214), energy intake was less in 

the older than the younger adults, with a SMD of -0.37 [95% CI: -0.65 to -0.10] (Figure 3.2) 

and no significant heterogeneity (I2 = 15%, P = 0.31). As a group the older adults (n = 126, 

energy intake of 691 kcal/meal) had on average 16 ± 20% (~122 kcal/meal) lower energy 

intake of a buffet-style meal in a postprandial state than the younger adults (n = 140, energy 

intake of 814 kcal/meal). 

In the subgroup of 203 subjects, in which energy intake was measured of a buffet-style meal 

both after overnight fasting and in a postprandial state (42, 46, 48, 194, 201, 214), energy 

intake decreased less in the older adults (decrease in energy intake of on average 10% or ~79 

kcal from 798 kcal after overnight fasting to 719 kcal in the postprandial state) than in the 

younger adults (decrease in energy intake of on average 21% or ~212 kcal from 1000 kcal 

after overnight fasting to 788 kcal in the postprandial state). 

 

Energy intake during a prolonged period 

In the subgroup of 339 subjects, in which energy intake from provided food items was 

measured during a prolonged period (~4 days - 2 weeks) (7, 54-56, 63, 192, 219), energy 

intake was less in the older than the younger adults, with a SMD of -1.09 [95% CI: -1.42 to 

-0.76] (Figure 3.2) and non-significant heterogeneity (I2 = 42%, P = 0.11). As a group the 

older adults (n = 163, energy intake of 2241 kcal/24 h) had on average 19 ± 6% (~546 kcal/24 
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h) lower energy intake during a prolonged period than the younger adults (n = 176, energy 

intake of 2787 kcal/24 h). 

 

Energy intake of weighed-food records, 24-hour food intake recalls, or food frequency 

questionnaires 

In the subgroup of 7035 subjects, in which energy intake was measured using weighed food 

records (42-44, 48, 49, 53, 191, 200, 204-212, 214, 215, 217, 218, 220-225, 227, 228, 233), 

24-hour food intake recall (197, 202, 203, 216, 226, 229), or food frequency questionnaires 

(199), energy intake was less in the older than the younger adults with a SMD of -0.69 [95% 

CI: -0.84 to -0.55] (Figure 3.2) and significant heterogeneity (I2 = 77%, P < 0.001). As a 

group the older adults (n = 3266, energy intake of 1969 kcal/24 h,) had on average 17 ± 8% 

(~407 kcal/24 h) lower energy intake than the younger adults (n = 3769, energy intake of 

2376 kcal/24 h). 

In the subgroup of 4311 subjects, in which energy intake was measured using weighed food 

records energy intake was less in the older than the younger adults with a SMD of -0.63 

[95% CI: -0.77 to -0.49] and significant heterogeneity (I2 = 49%, P = 0.001). In the subgroup 

of 2530 subjects, in which energy intake was measured using 24-hour food intake recalls 

energy intake was less in the older than the younger adults with a SMD of -0.63 [95% CI: -

0.77 to -0.49] and significant heterogeneity (I2 = 92%, P = 0.001). 

 

Effect of age on appetite  

Hunger 

Twenty studies (561 subjects) reported hunger after overnight fasting (41-46, 48-51, 84, 88-

90, 194, 198, 214, 215, 230, 231). Twelve of these studies (344 subjects) evaluated hunger 

also after nutrient ingestion (60 min after oral nutrient consumption/ start of the small 
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intestinal nutrient infusion; i.e., a time point which was reported in the majority of the studies 

(41, 42, 44, 48, 50, 51, 89, 90, 194, 231) - 2 studies did not measure appetite up to 60 min 

and, therefore, the data of 30 min (214) and 15 min (46) were included); 10 studies (98 

subjects) after oral mixed macronutrient (protein, carbohydrate and fat) consumption (41, 

42, 46, 48, 50, 51, 89, 90, 214, 231) and 2 studies (46 subjects) during intraduodenal infusion 

of protein (194) or fat (44). All studies reporting hunger were intervention studies, 14 

crossover (42-46, 48, 49, 84, 194, 198, 214, 215, 230, 231) and 6 non-controlled studies (41, 

50, 51, 88-90), 

Nine studies were conducted in Australia (42-45, 48-50, 84, 194), 6 in Europe (41, 51, 88-

90, 231), and 5 in the United States (46, 198, 214, 215, 230). The largest study included 54 

subjects (214) and the smallest 10 subjects (84). The mean age of the youngest group within 

a study was 22 years (the older group in that study had a mean age of 77 years) and the oldest 

group 81 years (the young group in that study had a mean age of 38 years) (90). 

Hunger, measured after overnight fasting (41-46, 48-51, 84, 88-90, 194, 198, 214, 215, 230, 

231), was less in the older (n = 285, 74 years, 72 kg, 25 kg/m2) than the younger adults (n = 

276, 27 years, 69 kg, 24 kg/m2), with a weighted mean difference (WMD) of -17 mm [95% 

CI: -22 to -13 mm] (Figure 3.3) and significant heterogeneity (I2 = 52%, P = 0.004). 

Heterogeneity was not significant when the ‘small-intestinal’ studies were excluded (43-45, 

49, 194) (I2 = 51 %, n = 444 subjects, P = 0.010). As a group the older adults (43 mm) had  
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Figure 3.3: Appetite. Mean ± SD of appetite [hunger and fullness; visual analogue scale 

(VAS; mm)] after overnight fasting and in a postprandial state and a plot of the weighted 

mean difference (WMD; mm) of appetite in older compared with younger subjects with the 

DerSimonian and Laird random-effect model. The horizontal lines denote the 95% 

confidence interval; ▀ point estimates (the size of the square corresponds to its weight); ♦ 

the pooled estimate of the age effect. Older compared to younger adults were less hungry 

(WMD: −17 mm (95% CI −22 to −13 mm), I2 = 52%, P = 0.004) and more full (WMD: 6 

mm 95% CI 1 to 11 mm, I2 = 76%, P < 0.001) after overnight fasting and less hungry (WMD: 

−14 mm (95% CI −19 to −9 mm), I2 = 53%, P = 0.01) in a postprandial state, whereas 

fullness was comparable (WMD: 6 mm (95% CI −2 to 14 mm), I2 = 54%, P = 0.02). * P < 

0.05 appetite (hunger/fullness) significantly different in older than younger adults within the 

study; # data were derived from a figure of the original publication; ^ data were provided by 

the investigators by e-mail upon request. 

 

on average 25 ± 24% (~16 ± 13 mm) lower hunger after overnight fasting than the younger 

adults (59 mm).  
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Hunger, measured in a postprandial state (41, 42, 44, 46, 48, 50, 51, 89, 90, 194, 214, 231), 

was less in the older than the younger adults, with a WMD of -14 mm [95% CI: -19 to -9 

mm] (Figure 3.3) and significant heterogeneity (I2 = 53%, P = 0.010). As a group the older 

adults had on average 39 ± 30% (~15 ± 11 mm) lower hunger in a postprandial state than 

the younger adults. In the group of 344 subjects, hunger was decreased by 26 mm from 66 

mm after overnight fasting to 40 mm in a postprandial state in the younger adults and by 20 

mm from 45 mm after overnight fasting to 25 mm in a postprandial state in the older adults. 

Within an individual study, hunger was significantly less in older than younger adults in 12 

(41, 43-46, 49, 51, 84, 89, 90, 214, 215) of 20 studies after overnight fasting and 8 (41, 42, 

44, 48, 50, 51, 89, 90) of 12 studies in a postprandial state. There were no studies in which 

hunger was significantly higher in older than younger adults. 

 

Fullness 

Sixteen studies (501 subjects) reported fullness after overnight fasting (42, 44-46, 48-51, 84, 

88, 89, 194, 198, 214, 215, 232). Ten of these studies (335 subjects) evaluated fullness also 

after nutrient ingestion; 8 studies after oral mixed macronutrient consumption (42, 46, 48, 

50, 51, 89, 214, 232) and 2 studies during intraduodenal infusion of protein (194) or fat (44). 

All studies reporting fullness were intervention studies, 12 crossover (42, 44-46, 48, 49, 84, 

194, 198, 214, 215, 232) and 4 non-controlled studies (50, 51, 88, 89). 

Eight studies were conducted in Australia (42, 44, 45, 48-50, 84, 194), 4 in the United States 

(46, 198, 214, 215), 3 in Europe (51, 88, 89), and 1 in Asia (232). The largest study included 

95 subjects (232) and the smallest 10 subjects (84). The mean age of the youngest group was 

22 years and 77 years of the oldest group (48). 

Fullness, measured after overnight fasting, was greater in the older (n = 254, 73 years, 71 

kg, 25 kg/m2) than the younger adults (n = 247, 26 years, 67 kg, 23 kg/m2), with a WMD of 

6 mm [95% CI: 1 to 11 mm] and significant heterogeneity (I2 = 76%, P < 0.001; Figure 3.3). 
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Heterogeneity was not affected by excluding the ‘small-intestinal’ studies (I2 =73%, n = 416 

subjects, P < 0.001; 4 studies excluded (44, 45, 49, 194). As a group the older adults (27 

mm) had on average 37 ± 73% (~8 ± 13 mm) higher fullness after overnight fasting than the 

younger adults (19 mm) adults. 

Fullness, measured in a postprandial state, was not significantly different between the older 

and the younger subjects with a WMD of 6 mm [95% CI: -2 to 14 mm] and significant 

heterogeneity (I2 = 54%, P = 0.020). In the group of 335 subjects, fullness was increased by 

23 mm from 18 mm after overnight fasting to 41 mm in a postprandial state in the younger 

adults and by 26 mm from 23 mm after overnight fasting to 49 mm in a postprandial state in 

the older adults. 

Heterogeneity decreased by introducing a maximum age of the younger and a minimum age 

of the older age groups (I2 = 0%, n = 240 subjects, P = 0.51); i.e., after excluding studies in 

which the mean age or the minimum age, when age was reported as a range, of the older 

adult group was < 65 years old [one study excluded: range of 50-59 (232)] - there were no 

studies in which the mean age or the maximum age, when age was reported as a range, of 

the younger adult group was > 40 years old. In the studies included in this sensitivity analysis 

fullness was significantly different between the older and the younger adults with a WMD 

of 9 mm [95% CI: 2 to 14]. As a group the older adults had on average 21 ± 32% (~9 ± 10 

mm) higher fullness in a postprandial state than the younger adults. 

Within an individual study, fullness was greater in older than younger adults in 6 (46, 49, 

88, 194, 215, 232) of 16 studies after overnight fasting. In contrast, fullness was less in older 

than younger adults in 1 (194) of 16 studies after overnight fasting and 1 (232) of 10 studies 

in a postprandial state. 
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DISCUSSION 

This meta-analysis examined the effect of ageing on appetite and energy intake in adults, 

including data from > 7500 subjects on energy intake and > 500 subjects on appetite derived 

from 59 studies. Energy intake was less in healthy older (~70 years) than younger (~26 years) 

adults. The calculated reduction fell into quite a narrow range at 16-20%, despite studies 

being done in the fasting and fed state, and energy intake being calculated by a variety of 

methods, including intake at an acute study meal, during prolonged periods or using weighed 

food records, 24-hour food intake recalls, and food frequency questionnaires, i.e., a robust 

finding regardless of the method of intake evaluation. The results of this analysis show that 

older people (~73 years) feel less hungry than younger adults (~26 years), both fasting (25%) 

and after they have consumed some food (39%), and also feel more full in the fasting state 

(37%). These age-related differences are substantial, and likely to be a major cause of the 

reduced energy intake by older people. 

Our results indicate a reduction in energy intake of approximately 20% between the ages of 

26 and 70 years, i.e. about 0.5% per year. This is consistent with previous reports of reduced 

energy intake of approximately 30% between the ages of 20 and 80 years (7, 179), and with 

the results of individual prospective studies. For example, a 7-year New Mexico longitudinal 

study of 156 persons aged 64-91 years, reported a decrease of 19 kcal/day/year in women 

and 25 kcal/day/year in men (8), while a Swedish longitudinal study of 98 people found an 

even greater decline of energy intake of 610 kcal/day in men and 440 kcal/day in women, 

between the ages of 70 and 76 years (5). A population-based study indicated that older people 

aged 60-74 years consume ~500-700 kcal/day less than their younger counterparts aged 20-

39 years (179). Our gender analyses indicated that energy intake was less in both older than 

younger males (18%) and females (16%), to a similar extent in both sexes. 
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The regulation of energy intake may be diminished in the elderly. Older subjects have a 

reduced suppression of energy intake after oral (46), or small intestinal nutrient (194), 

ingestion. In this meta-analysis in the subgroup of 203 subjects [6 studies (42, 46, 48, 194, 

201, 214)], in which energy intake was measured during a single ad libitum buffet-style meal 

at the research facility both after overnight fasting and in the postprandial state, energy intake 

decreased on average 11% less in the older than young adults. Older people do not show the 

ability to regulate food intake after prolonged over- or under-feeding as young individuals 

(56, 63). This indicates that after an anorectic insult (for example, major surgery), older 

people are likely to take longer than young adults to regain the weight lost, remain 

undernourished longer, and be more susceptible to subsequent superimposed illnesses, such 

as infections. 

Our results indicate a reduction in hunger of approximately 25% and increase in fullness of 

approximately 35% between the ages of 27 and 74 years, i.e. changes of about 0.5% per year 

for hunger and about 0.7% per year for fullness respectively. Scores for appetite are 

predictive of energy intake in both healthy young and older subjects (47). Appetite and 

energy intake are dependent on the precise co-ordination of interrelated intragastric (i.e., 

gastric emptying (68), antral area and motility (the distal stomach) (42, 68), and plasma 

ghrelin concentrations (48, 113, 234, 235) and ‘small intestinal’ mechanisms [pyloric 

motility (236) and gut hormone secretion including cholecystokinin (CCK) (235), glucagon-

like polypeptide-1 (GLP-1) (237), peptide tyrosine tyrosine (PYY) and gastric inhibitory 

polypeptide (GIP)]. These gastrointestinal mechanisms affecting appetite and energy intake 

are modulated by ageing (238). Healthy older people, as a group, have slightly slower gastric 

emptying (50) mediated by increased pyloric motility (42, 45, 48, 53), greater gastric antral 

area (42), decreased perception of gastric distension (84), lower plasma ghrelin (92) and 

higher CCK concentrations than young adults, differences that all favour reductions in 

appetite and energy intake. Ageing is associated with insulin resistance and impaired glucose 
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tolerance (239) which may be influenced by changes in small intestinal hormone (GLP-1, 

GIP) secretion (133). Also, thyroid hormone concentrations are known to change with 

ageing which may be regarded as a physiologic process that can affect appetite (240, 241). 

There may be a decrease in appetite-stimulating free thyroid hormones with increasing age 

in men (242). Serum thyroid stimulating hormone (TSH) concentrations may be higher and 

free thyroid hormones lower in older, when compared to younger, men (243).  Older people 

have an increased prevalence of both hypo- (up to 5%) and hyperthyroidism (0.5-3%) than 

younger patients. In the elderly the symptoms of both conditions can overlap with other age-

related diseases (e.g., unexplained, weight loss, anorexia, weakness, fatigue, depression, 

constipation) (243). The senses of smell and taste deteriorate with age (244), leading to a 

reduced capacity to enjoy food and develop sensory-specific satiety, (198) the normal 

decline in pleasantness of the taste of a particular food after it has been consumed, leading 

to a decrease in its consumption and a tendency to shift consumption to other food choices 

during a meal. Age-related reduction in sensory-specific satiety favours a less varied, more 

monotonous diet, and the development of micronutrient deficiencies.  

Physiological anorexia and seemingly minor weight loss predisposes to the development of 

pathological under-nutrition, cachexia and adverse effects (245) and is, accordingly, 

associated with increased morbidity and mortality. For example, in a large study of 

community-dwelling Americans aged 65 years or older, weight loss in excess of 5% body 

weight over 3 years occurred in 17% and was associated with a 70% increase in mortality, 

irrespective of the initial weight, whereas weight stability and weight gain were not 

associated with increased mortality (246). Not uncommonly, pathological anorexia and 

weight loss are superimposed on the ‘physiological anorexia of ageing’ (190). This can be 

the result of a variety of conditions that become more frequent with age, including acute and 

chronic medical conditions (gastrointestinal disease, malabsorption syndromes, infection, 

hypermetabolism, micronutrient deficiencies, increased energy requirements), medications 
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(which may cause malabsorption of nutrients, gastrointestinal symptoms, and loss of 

appetite), psychological factors (depression, dementia and Alzheimer’s disease, and 

bereavement), social factors (poverty, difficulties with shopping, meal preparation and self-

feeding, living alone, social isolation and loneliness) and physical factors (poor dentition 

leading to problems with chewing, immobility (stroke), Parkinson disease, and impaired 

vision). Because the majority of these factors are at least partly responsive to treatment, their 

recognition is important. For example, increased cytokine levels, due to the stress of ageing 

per se, or the amplified stressful effects of other pathologies, may provide an explanation for 

some of the decline in appetite and energy intake in older people (247). Increased cortisol 

and catecholamines stimulate the release of interleukin 6 and tumour necrosis factor alpha 

(248). 

Although only a limited number of studies have examined the effects of undernutrition on 

appetite and energy intake, there is evidence of substantial differences between 

undernourished and well-nourished older people, which may potentially result from being 

undernourished and/or contribute to the undernourished state (41, 48, 90). Undernourished 

older adults had significantly reduced hunger in the fasted state and in the postprandial state’ 

and significant greater fullness in the fasted state when compared to healthy older (90) and 

young adults (48, 90). In undernourished older women energy intake was not suppressed by 

a mixed-nutrient preload, unlike in well-nourished older and young women (48). In another 

study of undernourished older subjects, concentrations of CCK were higher than in well-

nourished older subjects (249), suggesting that increased CCK activity may be a cause of 

undernutrition in older people, and/or act to perpetuate it. 

Limitations of the meta-analysis are that we used a single database and that there is 

variability in study design and characteristics indicated by high heterogeneity - we 

performed a-priori determined meta-analyses depending on the method used to determine 
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energy intake and sensitivity analyses when possible, i.e. effect of sex and age, and observed 

that the effects of ageing on appetite and energy intake were comparable in these analyses. 

In summary, this meta-analysis of 59 studies supports previous reports that appetite and 

energy intake are reduced in healthy older compared with younger adults, with a 16-20% 

lower energy intake, 25-39% lower hunger and 37% more fullness in those aged on average 

70-74 years compared to 26-27 years, a robust finding regardless of the method of intake 

evaluation. These age-related differences in healthy adults are consistent with a reduction of 

food intake with ageing i.e., a physiological anorexia of ageing. The reduction in energy 

intake in this analysis equates to approximately 0.5% per year of increasing age, and is likely 

to contribute to loss of weight in older people and the development of pathological under-

nutrition in predisposed older people.
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INTRODUCTION 

This chapter provides an overview of the methodologies used in the data collection for the 

studies presented in chapters 5-12 of this thesis. All of the methodologies are well 

established, including measurements of ad libitum energy intake using a standardised buffet 

meal (250, 251), perception of appetite and gastrointestinal symptoms by visual analogue 

scales (47), antropyloroduodenal motility by manometry (252), gastric emptying by 3-

dimensional (3D) ultrasonography (68) and stable isotope breath testing (253, 254), blood 

glucose concentrations and plasma concentrations of gut hormones including insulin, 

glucagon, ghrelin, cholecystokinin (CCK), gastric inhibitory polypeptide (GIP), glucagon-

like peptide 1 (GLP-1) and peptide tyrosine tyrosine (PYY) by radioimmunoassay (251, 255) 

and amino acids by precolumn derivatization with 6-aminoquinolyl-N hydroxysuccmimidyl 

carbamate (256). 

 

ETHICAL APPROVAL 

All protocols for the studies described in this thesis were approved by the Royal Adelaide 

Hospital Human Research Ethics Committee. Each subject provided written, informed 

consent prior to their enrolment in the studies. All studies were conducted in accordance 

with the Declaration of Helsinki. Each study was registered on the Australia and New 

Zealand Clinical Trial Registry, and their registration numbers are provided in their 

respective chapters. 

 

SUBJECTS 

Subjects were recruited by advertisement on notice boards at the Royal Adelaide Hospital 

and the universities in Adelaide, through advertisement websites, and from an existing 

database of volunteers who had participated previously in research studies within our 
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department. Subject demographics and inclusion and exclusion criteria are provided in each 

chapter. All subjects were paid an honorarium of $18 per hour for their time spent at our 

clinical facilities. 

 

ENERGY INTAKE 

A buffet or cafeteria-style meal is commonly used to quantify ad libitum energy intake after 

preload ingestion (Chapters 5, 7, 8 -10, 12) (250, 251). A variety of food and drink items 

(Table 4.1, Figure 4.1) were presented to the subjects, in excess of what they were expected 

to consume. Subjects were instructed to consume food until they felt comfortably full in a 

room by themselves to limit external distractions (257).The amount of food eaten (g) was 

quantified by weighing each food item before and after consumption. Energy intake (kcal) 

and proportions of intake of protein, carbohydrate, and fat were calculated using 

commercially available software (Foodworks; Xyris Software Pty Ltd, Spring Hill, QLD, 

Australia). Energy intake (kcal) was calculated both as the intake at the meal and as the 

cumulative energy intake, defined as the sum of meal energy intake and preload/infusion 

energy content. Suppression of energy intake at the buffet meal by the preload/infusion was 

calculated as percentage (%) of energy intake of the control day. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: The ad libitum meal as presented to the study subjects. 
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Table 4.1: Composition of the buffet meal 

Food items 

 

Amount 

served 

(g) 

Energy 

content 

(kcal) 

Protein 

(g) 

Carbohydrate 

(g) 

Fat 

(g) 

Wholemeal bread, 4 slicesa 125   308 13.4 53.1   4.7 

White bread, 4 slicesa 125   304 10.8 59.5   2.6 

Cheese, slicedb  85   346 21.9   0.9 28.3 

Ham, slicedc 100     95 16.6   3.4   1.7 

Chicken, slicedd 100   104 18.8   3.6   1.6 

Margarinee  20   108   0.0   0.0 12.0 

Mayonnaisef  20   137   0.4   0.7 14.7 

Tomato, sliced 100     13   1.0   1.9   0.1 

Cucumber, sliced 100     11   0.5   1.9   0.1 

Lettuce 100       5   0.9   0.4   0.0 

Apple 170     89   0.5 21.3   0.2 

Banana 190   166   3.2 37.8   0.2 

Fruit saladg 140     81   0.4 17.1   1.3 

Strawberry yogurth 175   162   8.8 24.2   3.3 

Chocolate custardi 100   105   3.2 16.4   3.0 

Milkywayj  12     52   0.3   8.7   1.8 

Orange juice, unsweetenedk 300   117   1.8 21.9   2.6 

Iced coffeel 375   254 12.0 37.1   6.4 

Water 600       0   0.0   0.0   0.0 

Total 2937 2457 114.5 309.9 84.6 

aSunblest, Tiptop, George Weston Foods Ltd, Enfield, NSW, Australia; bCoon Tasty Cheese 

slices, Australian Cooperative Foods Ltd, Sydney Olympic Park, NSW, Australia; cKRC 

boneless leg ham, George Weston Foods Ltd, Enfield, NSW, Australia; dInghams chicken 
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breast, Inhams Enterprises Pty Ltd, Burton, SA, Australia; eVita-Lite canola, Peerless 

Holdings Pty Ltd, Braybook, VIC, Australia; fMasterFoods, Mars Food Australia, Berkeley 

Vale, NSW, Australia; gGoulburn Valley, SPC, Ardmona Operations Ltd, Shepparton, VIC, 

Australia; hYoplait, LD&D Foods Pty Ltd, Docklands, VIC, Australia; iYogo, LD&D Foods 

Pty Ltd, Docklands, VIC, Australia; jMars Chocolate Australia, Wendouree, VIC, Australia; 
kNippy’s Fruit juices Pty Ltd, Regency Park, SA, Australia ; lFarmers Union, LD&D Foods 

Pty Ltd, Docklands, VIC, Australia. 

 

PERCEPTION OF APPETITE AND GASTROINTESTINAL  

SYMPTOMS 

Validated visual analogue scales (Chapters 5, 7, 8 -10, 12) are the most commonly used 

tool to measure perceptions of appetite and gastrointestinal symptoms in research studies 

(47, 258). Hunger, fullness, desire to eat, prospective food consumption, nausea and bloating 

were measured by visual analogue scales at baseline and at 15 min intervals throughout the 

studies. The questionnaires consisted of 100 mm horizontal lines, where 0 represented that 

the sensation was ‘not felt at all’ and 100 represented that the sensation was ‘felt the 

greatest’. Subjects placed a vertical mark on each horizontal line to indicate the strength of 

each sensation felt at the specified time points and the distance from 0 mm was measured 

and recorded. 

 

ANTROPYLORODUODENAL MOTILITY 

Manometry (Chapters 5 and 6) is a well-established technique to measure motility in the 

antral area of the stomach, the pylorus and the proximal area of the duodenum (252, 259). 

Contractions are measured using a manometric catheter which is perfused with degassed 

water and saline through side holes. The water column of the catheter transmits the detected 

changes in pressures to external transducers, where they are digitalised and displayed as 

pressure waves on a computer screen. 
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Figure 4.2: Schematic representation of the manometric catheter used for intraduodenal 

protein infusion, incorporating six antral and seven duodenal side holes, spaced 1.5 cm apart, 

a pyloric sleeve sensor and an infusion port. 

 

The silicon rubber manometric catheter (Dentsleeve International, Mui Scientific, 

Mississauga, ON, Canada) has a total length of 1 m, a small-diameter of 3.5 mm and 16 side 

holes, each from a different channel, separated by 1.5 cm intervals. After correct positioning 

(Figure 4.2), the side holes of channels 1-6 are located in the antrum (stomach), a 4.5 cm  

sleeve sensor (channel 7) with channels 8 and 9 on the back of the sleeve are located across 

the pylorus, and channels 10-16 are located in the duodenum. The infusion port at the end  

of the catheter, an additional channel, is located in the proximal small intestine 14.5 cm from 

the pylorus and used for the administration of intraduodenal protein (114). 

Intubation was done via an anaesthetised nostril (Lignocaine 5%, Orion Laboratories Pty 

Ltd, Calcatta, WA, Australia) into the stomach, after which the catheter passed into the 

duodenum through peristalsis (260). The length of intubation was dependent on the height 

of the subject, but was not longer than 75 cm. Correct positioning of the catheter, with the 

sleeve sensor straddling the pylorus, was maintained by continuous measurement of the 

transmucosal potential difference (TMPD) between the most distal antral channel (channel 

6, ~-40 mV) and the most proximal duodenal channel (channel 10, ~0 mV) and a reference 
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electrode attached to an intravenous cannula filled with sterile saline positioned 

subcutaneously in the left forearm (261). All manometric channels were perfused with 

degassed, distilled water at a rate of 0.15 mL/min, except for the two transmucosal-potential-

difference channels, which were perfused with degassed 0.9% saline (260). Baseline motility 

was recorded for 10 min after the occurrence of a phase III of the migrating motor complex 

(MMC), upon which the intraduodenal protein infusion was commenced. The set-up of the 

study day is pictured in Figure 4.3.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: left: study set up with the infusion pump on the left and the manometry system 

on the right of the patient. Right top: the 3.5 mm silicone catheter; middle: a close up of the 

manometry system; bottom: a typical phase III of the migrating motor complex as displayed 

on the Flexisoft software. 

 

Antropyloroduodenal pressure waves were recorded continuously and digitised using a 

computer-based system that ran commercially available software (Flexisoft version 3; 

Oakfield Instruments Ltd, Eynsham, England) and were stored for subsequent analysis. Data 

were analysed for basal pyloric pressures, the number and amplitude of isolated pyloric 

pressure waves (IPPWs) and the number and amplitude of antral and duodenal pressure 
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waves. Basal pyloric pressure was calculated by subtracting the mean basal pressure (with 

phasic pressures excluded) recorded at the most distal antral channel from the mean basal 

pressure recorded at the sleeve with custom-written software (A. Smout, University Medical 

Centre, Amsterdam, the Netherlands) modified to our requirements (252). Pressure waves 

were defined by an amplitude of 10 mm Hg or more with a minimum time interval of 15 s 

between peaks for IPPWs and antral pressure waves and 3 s for duodenal pressure waves 

(262). Baseline fasting values were calculated from 10 min before to the start of  

intraduodenal infusion as the mean of the study days. 

 

GASTRIC EMPTYING 

Gastric emptying (Chapters 7, 9, 10 and 12) was measured with a LogiqTM 9 

ultrasonography system (GE Healthcare Technologies, Sydney, NSW, Australia) with 

TruScan Architecture (i.e. built-in magnetically sensed 3D positioning and orientation 

measurement) including a 3D sensor, attached to a 3.5C broad-spectrum 2.5-4-MHz convex 

transducer, and a transmitter placed at the level of the stomach immediately behind the 

subject (Figure 4.4).  

3D ultrasonography has a good correlation with the ‘gold standard’ technique of scintigraphy 

(r = 0.92, P < 0.001) (68). 

The stomach was scanned by a continuous translational movement along its long axis (~10 

s). As the transmitter produces a spatially varying magnetic field that is distorted by 

conductive metals, all metal objects were removed from the subjects to minimise 

interference during image acquisition. During each scan, subjects were instructed to sit still 

and hold their breath at the end of inspiration. If gastric contractions were observed, the 

acquisition was paused until the contraction wave had passed. The raw data (original scan  
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Figure 4.4: Set up of study subject and 3-D ultrasound machine. 

 

planes) were transferred for 3D reconstructions and volume estimation using EchoPAC-3D 

software (GE Vingmed Sound, Horten, Norway; Figure 4.5). Gastric retentions were 

calculated as total gastric volumes minus baseline ‘empty’ gastric volume at each time point 

expressed as a percentage of the maximal gastric volume (100%), i.e., volume of the ingested 

drink. When ultrasound images lacked sufficient clarity to determine the volume of the 

stomach, data were imputed by linear interpolation. The time at which 50% of the preload 

drink had emptied from the stomach (50% gastric emptying time; T50; min) and ‘complete’ 

emptying time (T100; min) of the drink, defined as the time when the residual volume of the 

drink in the stomach was ≤ 5%, were calculated (263). 
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Figure 4.5: A) Ultrasonic image of the stomach with highlighted region of interested, and 

B) 3D reconstructed volumetric image of the stomach (68). 

 

CONCENTRATIONS OF BLOOD GLUCOSE AND PLASMA INSULIN, 

GLUCAGON, GHRELIN, CCK, GIP, GLP-1, PYY AND AMINO ACIDS  

For frequent blood sampling (Chapters 6, 9-12), an intravenous cannula was inserted into 

an antecubital vein. Venous blood samples were collected in EDTA-coated tubes. No 

inhibitors were added (264). Blood glucose (millimoles per liter) was determined 

immediately after collection by the glucose oxidase method using a portable glucometer 

(Optium Xceed, Abbott Laboratories, Australia). 

Plasma was obtained by centrifugation for 15 min at 3200 rpm at 4°C and samples were 

stored at -80°C for further analysis of hormone concentrations. 

Total plasma insulin (milliunits per liter) was measured by enzyme-linked immunosorbent 

assay (ELISA) immunoassay (10-1113; Mercodia, Uppsala, Sweden).  

Radioimmunoassays were used to measure plasma concentrations of total glucagon 

(detection limit of 20 pg/mL), total ghrelin (detection limit of 40 pg/mL), CCK-8 (detection 

limit of 1 pmol/L), total GIP (detection limit of 2 pmol/L), total GLP-1 (detection limit of 3 

pmol/L) and total PYY (detection limit of 1.5 pmol/L). Samples from individual subjects 
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were measured in the same run. Intra- and inter-assay coefficients of variation are provided 

in chapters 6 and 9-12. 

Plasma concentrations (mmol/L) of free amino acids asparagine, aspartic acid, alanine, 

arginine, cysteine, glutamine, glutamic acid, glycine, histidine, isoleucine, leucine, lysine, 

methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, and valine, were 

measured (Chapter 6) using precolumn derivatization with 6-aminoquinolyl-N 

hydroxysuccmimidyl carbamate (AQC) performed at the Australian Proteome Analysis’s 

Facility established under the Australian Government’s National Collaborative Research 

Infrastructure Strategy (NCRIS). 
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ABSTRACT 

Background: Protein-rich supplements are used widely for the prevention and management 

of undernutrition in older people. The use of protein supplements in older people could, 

however, be counter-productive, by reducing appetite and overall energy intake. 

Objective: To determine whether ageing influences the effects of protein loads, 

administered directly into the small intestine, on energy intake, antropyloroduodenal motility 

and appetite. 

Design: Intraduodenal infusions (240 ml, 60 min) of saline (0 kcal/control) and (hydrolysed 

whey) protein loads of 30 kcal, 90 kcal and 180 kcal followed by ad libitum buffet meal in 

10 young (19-29 years) and 10 healthy older (68-81 years) men. Suppression of energy 

intake (kcal) at the meal by protein infusion compared to control was calculated. 

Results: In young subjects, there was dose-responsive suppression of energy intake at the 

buffet meal by protein (suppression at 30 kcal 7  8% P = 0.19; 90 kcal 17  8% P = 0.05; 

180 kcal 33  7% P = 0.002), whereas in older subjects there was suppression only after the 

180 kcal load (30 kcal 7  4% increase P = 0.13; 90 kcal 6  7% increase P = 0.29; 180 kcal 

176% suppression P = 0.016). Suppression of energy intake by protein was less in older 

than young subjects (P < 0.005). In young subjects total energy intake (meal + infusion) on 

the 180 kcal protein-infusion day was decreased compared to the control day (P = 0.041), 

whereas in older it was increased during the 30 kcal (P = 0.033) and 90 kcal (P = 0.016) 

days. 

Energy intake was inversely related to isolated pyloric pressure waves (r = -0.32 P = 0.013) 

and positively related to antral (r = 0.30 P = 0.021) and duodenal (r = 0.35 P = 0.006) 

pressure waves. Suppression of energy intake by protein was inversely related to the change 

in isolated pyloric pressure waves (r = -0.35 P = 0.027) and positively related to duodenal 

pressure waves (r = 0.32 P = 0.044). 
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Conclusions: Intraduodenal protein suppresses appetite and energy intake less in healthy 

older than young adults. In older subjects intraduodenal protein at low doses increased 

overall energy intake, supporting the use of protein supplements in undernourished older 

people. 
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INTRODUCTION 

As for young people, the number of older people who are overweight or obese increased 

substantially over recent decades (265). However, healthy ageing is associated with a 

reduction of appetite and energy, including protein, intake; the ‘anorexia of ageing’ (6, 7). 

These changes predispose older people to weight loss, particularly loss of skeletal muscle, 

and reduced functional capacity, and the development of pathological undernutrition, 

sarcopenia cachexia and frailty (6, 14, 180, 190, 266). The causes of the ‘anorexia of ageing’ 

are poorly defined, but likely to be multiple. Potential mechanisms include central and/or 

peripheral reductions in feeding drives and increased activity of central and/or peripheral 

satiety signals (267). Peripheral mechanisms, notably those related to the gastrointestinal 

tract, are important in regulating appetite and energy intake, particularly in the short-term 

after nutrient ingestion. They include interrelated ‘intragastric’ mechanisms, such as 

variations in the rate of gastric emptying and gastric distension (42, 50, 70, 74), and ‘small 

intestinal’ mechanisms, such as changes in antropyloroduodenal motility and the release of 

appetite-regulating hormones (70, 112-114, 234, 268). Changes in antropyloric motility in 

response to nutrient ingestion are independently related to subsequent energy intake in young 

subjects (269), and may therefore have a causative role. Compared to young adults, older 

people have a reduced perception of proximal gastric distension, and greater distension of 

the distal stomach, i.e. antral area, and slightly slower gastric emptying (42, 50, 74, 84), 

differences that would favour reductions in energy intake.  

A common strategy to increase energy intake and body weight in undernourished older 

people is the use of protein-enriched supplements, usually high-energy drinks rich in 

carbohydrates and whey protein (a major protein source in dairy). Despite the widespread 

use of such supplements by older people, evidence for their efficacy is limited, and their 

‘optimal’ composition unknown (26, 27, 31). The high satiating effects of dietary protein in 
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younger adults have been extensively studied, driven primarily by attempts by overweight 

younger adults to lose weight (270). The effects of dietary protein on energy intake and 

underlying gastrointestinal mechanisms in older people are, however, largely unknown, 

which is surprising given the potential for protein-enriched supplements given to older 

people - to increase body weight and muscle mass - could reduce subsequent energy intake, 

which could counteract any associated protein-induced beneficial effects on muscle mass 

(20, 271, 272). 

In this study we aimed to characterise the effect of ageing on powerful ‘subgastric’ small 

intestinal mechanisms, by infusing hydrolysed (resembling partially digested protein) whey 

protein directly into the duodenum, and so ‘bypassing’ orosensory and gastric factors. We 

hypothesised that small intestinal administration of protein at loads lower than (0.5 

kcal/min), similar to (1.5 kcal/min) and at the upper end (3 kcal/min) of normal gastric 

emptying rates [1-4 kcal/min (273)] would reduce energy intake, antropyloroduodenal 

motility, and perceptions of appetite in a load-related fashion and, that the acute suppression 

of energy intake at a buffet meal would be less in healthy older persons than in young adults. 

 

SUBJECTS AND METHODS 

Subjects 

The study included 10 healthy young men [age (mean ± SEM): 23 ± 1 years (range 19-29 

years), body weight: 73 ± 2 kg (62-87 kg), height: 1.82 ± 0.02 m, BMI: 22 ± 1 kg/m2] and 

10 healthy older men [age: 74 ± 1 years (68-81 years), body weight: 79 ± 2 kg (66-92 kg), 

height: 1.74 ± 0.02 m, BMI: 26 ± 1 kg/m2]. Body weight of the two groups did not differ 

significantly. The older subjects had a lower height and, accordingly, higher BMI than young 

subjects (P < 0.05). Subjects were recruited by advertisement. Based on our previous work 

(114) we calculated that 10 subjects per group would allow us to detect a minimum 
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suppression in energy intake after the higher protein preload (180 kcal over 60 min), 

compared to the control, infusion of 397 kcal, with α = 0.05 and power of 80%. Exclusion 

criteria were smoking, alcohol abuse, diabetes, gastrointestinal surgery (apart from 

uncomplicated appendectomy), significant gastrointestinal symptoms (pain, reflux, 

diarrhoea, or constipation) or use of medications known to potentially affect energy intake, 

appetite or gastrointestinal motor function, and for older people: impaired cognitive function 

[score < 25 on Mini Mental State (274)], depression [score > 11 on the Geriatric Depression 

Questionnaire (275)] and undernutrition [score < 24 on the Mini Nutritional Assessment 

(276)]. The Royal Adelaide Hospital Research Ethics Committee approved the study 

protocol, and the study was registered as a clinical trial with the Australia and New Zealand 

Clinical Trial Registry (www.anzctr.org.au, registration number 12612000906853). All 

subjects provided written informed consent prior to their inclusion in the study. 

 

Protocol 

Subjects were studied on 4 occasions, separated by at least 3 days, to determine the effects 

of three intraduodenal protein loads and a saline control, each infused for 60 min, on energy 

intake, antropyloroduodenal motility, perceptions of appetite and gastrointestinal symptoms 

in a randomised (by using the method of randomly permuted blocks; 

www.randomization.com), double-blind, crossover design. 

Protein solutions were prepared by dissolving whey protein hydrolysate powder (18.1% 

Hydrolysed Whey Protein 821, Fonterra Co-Operative Group Ltd., Palmerston North, New 

Zealand) in varying amounts of saline and water to achieve the desired loads; i.e. 0.5, 1.5 

and 3 kcal/min, which equated to 30, 90 and 180 kcal or 8, 24 and 48 g of protein or 0.11  

0.01 (range 0.09 – 0.13), 0.320.03 (0.26 – 0.39) and 0.63  0.06 (0.52 – 0.78) g of protein 

per kg body weight, and to ensure they were iso-osmotic (680 mOsmol/L). Infusions were 
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prepared on the morning of each study by a research officer who was not involved in the 

data analysis. The infusion apparatus was covered at all times, so both the investigator and 

the subject were blinded to the treatment. The infusions were administered at a rate of 4 

mL/min (240 mL over 60 min).  

Subjects were provided with a standardised evening meal [beef lasagne (McCain Foods Pty 

Ltd, Wendouree, VIC, Australia), ~591 kcal] to consume on the night before each study, and 

instructed to fast overnight from solids and liquids and to refrain from strenuous physical 

activity until they attended the laboratory at the University of Adelaide Discipline of 

Medicine, Royal Adelaide Hospital, at ~08.30 h. On arrival, a small-diameter (3.5 mm) 16-

channel (side holes spaced at 1.5 cm intervals with channels 1-6: in the antrum, channel 7: a 

4.5 cm sleeve sensor - including channels 8 and 9 on the back of the sleeve - across the 

pylorus, channels 10-16: in the duodenum) manometric catheter (total length: 100 cm, 

Dentsleeve International, Mui Scientific, Mississauga, ON, Canada) was inserted into the 

stomach through an anesthetised nostril and allowed to pass into the duodenum by 

peristalsis. The correct positioning of the catheter, with the sleeve sensor straddling the 

pylorus, was maintained by continuous measurement of the transmucosal potential 

difference between the most distal antral channel (channel 6, ~-40 mV) and the most 

proximal duodenal channel (channel 10, ~0 mV), and a reference electrode attached to an 

intravenous cannula filled with sterile saline positioned subcutaneously in the left forearm. 

The infusion port of the catheter was located in the proximal small intestine 14.5 cm from 

the pylorus. All manometric channels were perfused with degassed, distilled water, except 

for the two transmucosal-potential-difference channels, which were perfused with degassed 

0.9% saline, at a rate of 0.15 mL/min. 

Once the catheter was positioned, fasting motility was observed until phase III of the 

interdigestive migrating motor complex occurred. Immediately after cessation of phase III 

activity, during motor quiescence (phase I of the migrating motor complex), a visual 
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analogue scale (VAS) questionnaire to assess perceptions of appetite and gastrointestinal 

symptoms was completed and baseline antropyloroduodenal motility was measured for 15 

min upon which the intraduodenal infusion commenced. During the infusion, 

antropyloroduodenal motility was measured continuously, and VAS ratings were obtained 

at 15 min intervals. After 60 min the infusion was terminated and both the intraduodenal 

catheter and subcutaneous cannula were removed. Subjects were then presented with a 

standard, cold, buffet-style meal in excess of what they were expected to consume and 

instructed to eat freely for up to 30 min until comfortably full. The composition of the buffet 

meal is presented in Table 4.1. Immediately after completion of the meal (t = 90 min), final 

VAS was completed and the subject was allowed to leave the laboratory. 

 

Measurements 

Energy intake 

The amount eaten (g) was quantified by weighing the buffet meal before and after 

consumption. Energy intake (kcal) at the buffet meal and proportions of intake of protein, 

carbohydrate and fat were calculated using commercially available software (Foodworks; 

Xyris Software Pty Ltd, Spring Hill, QLD, Australia). Energy intake was calculated both as 

the intake at the buffet meal, and as total energy intake, defined as the sum of energy intake 

at the buffet meal and energy content of the intraduodenal infusion. Absolute and percentage 

suppression of energy intake (kcal) at the buffet meal by a given protein infusion compared 

to control was calculated. 

Perceptions of appetite and gastrointestinal function 

Perceptions of hunger, desire to eat, prospective consumption, and fullness, as well as nausea 

and bloating, were rated by using validated VAS questionnaires. These questionnaires 

consisted of 100 mm horizontal lines, where 0 represented that the sensation was ‘not felt at 
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all’ and 100 represented that the sensation was ‘felt the greatest’. Subjects placed a vertical 

mark on each horizontal line to indicate the strength of each sensation felt at the specified 

time points. Baseline fasting ratings were calculated as mean of the four study days. Protein 

overall ratings were calculated as mean of the three protein-infusion study days. 

 

Antropyloroduodenal motility 

Antropyloroduodenal pressure waves were recorded continuously and digitised by using a 

computer-based system that ran commercially available software (Flexisoft v3; Oakfield 

Instruments, GS Hebbard) and stored for subsequent analysis. Data were analysed for basal 

pyloric pressures (BPPs) and number and amplitude of isolated pyloric pressure waves 

(IPPWs) and antral and duodenal pressure waves. BPP was calculated by subtracting the 

mean basal pressure (with phasic pressures excluded) recorded at the most distal antral 

channel from the mean basal pressure recorded at the sleeve with custom-written software 

modified to our requirements (272). Pressure waves were defined by an amplitude > 10 

mmHg with a minimum time interval of 15 sec between peaks for IPPWS and antral pressure 

waves and 3 sec for duodenal pressure waves. Baseline fasting values were calculated from 

10 min before to start of intraduodenal infusion as mean of the four study days. 

 

Data analysis 

Statistical analyses were performed using SPSS software (version 21, IBM). Between-

subject effects were determined by using ANOVA. Within-subject and interaction effects 

were determined by using repeated-measures ANOVA. Post-hoc comparisons, adjusted for 

multiple comparisons using Bonferroni's correction, were performed when ANOVAs 

revealed significant effects. Relations of energy intake with AUCs (which were calculated 

by using the trapezoidal rule) for antropyloroduodenal pressures and appetite were evaluated 
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by between- and within-subject correlations (277, 278). Statistical significance was accepted 

at P < 0.05. All data are presented as mean ± SEM. 

 

RESULTS 

The study protocol was well tolerated by all subjects. 

 

Energy and macronutrient intakes 

Energy intake at the buffet meal 

 

Energy intake at the buffet meal after the intraduodenal infusions of saline (0 kcal, control) 

and protein loads of 30, 90 and 180 kcal was: 1270  150 kcal, 1123  151 kcal, 1028  163 

kcal and 851  161 kcal in young subjects and; 1068  93 kcal, 1129  91 kcal, 1123  98 

kcal and 899  103 kcal in older subjects. The lower (~16%) energy intake at the buffet meal 

during the control day in older compared with young subjects was not statistically significant 

(P = 0.27). The interaction effect of age x protein-load for energy intake at the buffet meal 

was significant (P = 0.039). Energy intake was dose-responsively suppressed by protein in 

the young subjects (suppression at 30 kcal 7  8% P = 0.19; 90 kcal 17  8% P = 0.05; 180 

kcal 33  8% P = 0.002, Figure 5.1); whereas there was suppression in the older subjects 

only with the 180 kcal infusion (30 kcal 7  4% increase in intake P = 0.13; 90 kcal 6  7% 

increase in intake P = 0.29; 180 kcal 17  6% suppression P = 0.016). Suppression of energy 

intake at the buffet meal by the protein loads was less in older than young subjects (P < 0.05, 

Figure 5.2). 
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Figure 5.1: Data are means  SEMs. Energy intake (kcal) in young  (n = 10) and older 

 (n = 10) subjects after intraduodenal infusions  of saline (0 kcal, control) and whey 

protein loads of 30, 90 and 180 kcal for 60 min at 4 mL/min. In young subjects there was a 

dose-responsive suppression of energy intake at the buffet meal by protein compared to 

control, whereas in older subjects there was suppression only with the 180 kcal infusion. 

Between-subject effects were determined by using ANOVA. Within-subject and interaction 

effects were determined by using repeated-measures ANOVA. 

There was a significant age x protein-load interaction for energy intake at a buffet meal (P 

= 0.039) and total energy intake (buffet meal + infusion) (P = 0.039). 

* P < 0.05 Within age-group, lower energy intake at a buffet meal after protein-load infusion 

of 180 kcal compared to control in young and in older subjects. 
& P < 0.05 Within age-group, lower energy intake at a buffet meal after protein infusion of 

180 kcal compared to 30 kcal load in young and in older subjects. 
^ P < 0.05 Within age-group, lower energy intake at a buffet meal after protein infusion of 

180 kcal compared to 90 kcal load in older subjects. 
$ P < 0.05 Within age-group, lower total energy intake (energy intake at the buffet meal plus 

energy content of the infusion) during 180 kcal protein-load infusion day compared to 

control day in young subjects. 

# P < 0.05 Within age-group, higher total energy intake during 30 and 90 kcal protein-load 

infusion day compared to control day in older subjects. 
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Figure 5.2: Data are means  SEMs. Suppression of energy intake (kcal) at the buffet meal 

in young  (n = 10) and older  (n = 10) subjects after intraduodenal infusions of whey 

protein loads of 30, 90 and 180 kcal compared to after intraduodenal infusion of saline (0 

kcal, control) for 60 min at 4 mL/min. Suppression of energy intake at the buffet meal by 

protein was less in older than young subjects. Main age and protein-load effects and 

interaction effects were determined by using repeated-measures ANOVA. The interaction 

age x protein-load was not significant (P = 0.57). Main effects of age (P < 0.05) and protein-

load (P < 0.001) were significant. 

 

Macronutrient intake 

Proportions of intake of protein, carbohydrate and fat at the buffet meal during the control 

day were not significantly different (P > 0.05) between young and older subjects (Table 5.1). 

The young subjects increased their proportion of carbohydrates and decreased their 

proportion of fat intake after the intraduodenal protein infusions reaching level of 

significance after the 180 kcal load when compared to control (P = 0.006 and P = 0.036). 

The interaction effect of age x protein-load for proportions of intake of protein (P = 0.23), 

carbohydrate (P = 0.07) and fat (P = 0.07) was not significant. 

 

Total energy intake 

In young subjects total energy intake (i.e. energy intake at the buffet meal plus energy 

content of the infusion) on the 30 kcal (1153  151 kcal, ↓~9% P = 0.29) and 90 kcal (1118 
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Table 5.1: Proportions of intake of protein, carbohydrate and fat at a buffet meal after 

intraduodenal protein infusions in young and older men 

 Young men (n = 10) Older men (n = 10) 

 0 kcal 30 kcal 90 kcal 180 kcal 0 kcal 30 kcal 90 kcal 180 kcal 

Protein (%) 201 211 201 181 211 201 201 201 

Carbohydrate (%) 443 472 493 5331 493 493 493 483 

Fat (%) 364 322 312 2931 302 312 312 322 

1 P < 0.05 Significantly different intake of carbohydrate and fat compared to control in young 

subjects. 

Intake of protein was not significantly different between protein loads (P > 0.05). 

Proportions of intake of protein, carbohydrate and fat at the buffet meal during the control 

day were not significantly different between age groups (P > 0.05). 

The interaction effect of age x protein-load for proportions of intake of protein (P = 0.23), 

carbohydrate (P = 0.07) and fat (P = 0.07) was not significant. 

 

 163 kcal, ↓~12% P = 0.20) protein-infusion days was non-significantly less than, total 

energy intake on the control day (1270  150 kcal), and significantly less on the 180 kcal 

day (1031  153 kcal, ↓~19% P = 0.041, Figure 5.1). In contrast, in older subjects total 

energy intake was significantly increased on the 30 kcal, (1159  91 kcal, ↑~9% P = 0.033) 

and 90 kcal (1213  98 kcal, ↑~14%, P = 0.016) protein-infusion days when compared to 

the control day (1068  88 kcal) and not significantly different on the 180 kcal day compared 

to the control day (1079  103 kcal, ↑~1%, P = 0.86). The interaction effect of age x protein-

load for total energy intake was significant (P = 0.039). 

 

Antropyloroduodenal motility 

Baseline isolated pyloric pressure wave (IPPW) number (young vs. old: 2  1vs. 6  1 per 

60 min, P = 0.024) and amplitude (young vs. old: 7  2 vs. 21  3 mmHg, P = 0.001) were 

higher in older than young subjects, while fasting basal pyloric pressures and, number and 
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amplitude of IPPWs and antral and duodenal pressure waves were not significantly different 

between study days in both age groups (P > 0.05). 

In young and older subjects IPPW number was increased and antral and duodenal pressure 

wave number was decreased by the 180 kcal protein load compared to control (P < 0.05). 

Basal pyloric pressures of the protein loads were not different from control in both age 

groups (P > 0.05). Antral pressure wave amplitude was higher during the 30 kcal infusion in 

older than young subjects (P < 0.05, Table 5.2). Duodenal pressure wave amplitude was 

lower during the 180 kcal infusion in older than young subjects (P < 0.05). 

 

Perceptions of appetite and gastrointestinal symptoms 

Appetite 

Baseline ratings of hunger (young vs. old: 67  5mm vs. 45  9mm P = 0.042), desire to eat 

(young vs. old: 69  4mm vs. 37  8mm P < 0.002) and prospective food consumption 

(young vs. old: 70  4mm vs. 47  6mm P = 0.005) were lower in older than young subjects; 

fullness was not significantly different between the age groups (young vs. old: 11  3mm vs. 

6  2mm, P = 0.20). Ratings of hunger, desire to eat, prospective food consumption and 

fullness were not different from baseline during the infusions (t = 0-60 min) in both age 

groups (P > 0.05), with the exception of ratings of prospective food consumption (P = 0.020) 

being decreased by the 30 kcal infusion in young subjects (Figure 5.3). 

The age x protein-load interaction for hunger (P = 0.38), desire to eat (P = 0.51), prospective 

food consumption (P = 0.07) and fullness (P = 0.91) was not significant. Ratings of hunger, 

desire to eat and fullness during the intraduodenal infusions were not significantly different 

between age groups or protein loads (P > 0.05). 

Ratings of prospective food consumption (change AUC from baseline to 60 min) of the 30 

kcal protein load (372  192mm vs. 19  189mm P = 0.017) were significantly higher than 
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Table 5.2: Number and amplitude of IPPWs and antral and duodenal pressure waves and 

basal pyloric pressures during 60 min intraduodenal protein infusions in young and older 

men 

 Young men (n = 10) Older men (n = 10)  

Protein 0 kcal 30 kcal 90 kcal 180 kcal 0 kcal 30 kcal 90 kcal 180 kcal P1 

IPPWs          

Number/60 min   4110   429   6512   76122   4411   5018  758   85142 0.980 

Amplitude 

(mmHg) 

  305   324   385   393   347   386  384   478 0.884 

BPP (mmHg)     12     12   -12     32      15     12   -11    -11 0.640 

Antral pressure waves       

Number/60 min   9317 10241   6721   35152  7326 11240   186    1762 0.604 

Amplitude   118   1275     83     06   286   76162,5   28123    1122,3 0.003 

Duodenal pressure waves      

Number/60 min 64181 565125 46162 380752 46785 54672 37672  223462 0.708 

Amplitude 

(mmHg) 

  2525   281   261   2525   3865   313   272    1622,3,4,5 0.005 

Data are mean  SEM. Intraduodenal infusions consisted of saline (0 kcal, control) and whey 

protein loads of 30, 90 and 180 kcal for 60 min at 4 mL/min. IPPWs, isolated pyloric pressure 

waves. BPP, basal pyloric pressure. Between-subject effects were determined by using 

ANOVA. Within-subject and interaction effects were determined by using repeated-

measures ANOVA. 
1 P age x protein-load interaction. 
2 P < 0.05 Significantly different from control. 
3 P < 0.05 Significantly different from 30 kcal protein load. 
4 P < 0.05 Significantly different from 90 kcal protein load. 
5 P < 0.05 Significantly different between young men and older men. 

 

control in older subjects; whereas ratings of prospective food consumption of the 30 kcal 

protein load were significantly lower than control in young subjects (-503  238 mm vs. -59 
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 201 mm P = 0.007). Furthermore, in the older subjects mean prospective food consumption 

(change AUC from baseline to 60 min of the three protein loads vs. control: 230  215 mm 

vs. 19  189 mm P = 0.019) was increased by the protein loads compared to control; whereas 

in the young mean prospective food consumption decreased by the protein loads compared 

to control (protein vs. control: -326  213 mm vs. -59  201mm P = 0.020). 

Ratings of prospective food consumption (change AUC from baseline to 60 min) of the 30 

kcal protein load (young vs. older -503  238 mm vs. 372  192 mm P = 0.010) were 

significantly higher in older when compared with young subjects. Change in mean ratings 

of prospective food consumption (AUC young vs. old: -267  94 mm vs. 211  74 mm P = 

0.001) by the protein loads when compared with control was significantly less in older than 

young subjects. 

 

Nausea and bloating 

Ratings of nausea and bloating during the intraduodenal infusions were not significantly 

different between age groups or protein loads (P > 0.05, Table 5.3). The interaction effect 

of age x protein-load for ratings of nausea (P = 0.65) and bloating (P = 0.33) was not 

significant. Ratings of nausea and bloating were not different from baseline in both age 

groups (P > 0.05). 
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Table 5.3: Ratings (AUC) of nausea and bloating during 60 min intraduodenal protein 

infusions in young and older men 

 Young men (n = 10) Older men (n = 10) 

 0 kcal 30 kcal 90 kcal 180 kcal 0 kcal 30 kcal 90 kcal 180 kcal 

Nausea (mm) 657227 773300 559178 922329 19661 18461 15145 24471 

Bloating (mm) 626187 803203 726203 546214 457168 470166 786292 641317 

Ratings of nausea (P = 0.06) and bloating (P = 0.79) were not significantly different between 

age groups. 

Ratings of nausea (P = 0.33) and bloating (P = 0.56) were not significantly different between 

protein-loads. 

The interaction effect of age x protein-load for ratings of nausea (P = 0.65) and bloating (P 

= 0.33) was not significant. 

 

Relations between antropyloroduodenal motility and perceptions of 

appetite with energy intake 

Energy intake at the buffet meal was, within-subjects, inversely related to IPPW number 

(r = -0.32 P = 0.013) and positively related to antral pressure wave number (r = 0.30 

P = 0.021) and duodenal pressure wave number (r = 0.35 P = 0.006) and, between-subjects, 

positively related to ratings of desire to eat (r = 0.47 P = 0.037) and prospective food 

consumption (r = 0.57 P = 0.008). 

Suppression of energy intake at the buffet meal by protein compared to control was, within-

subjects, inversely related to the change in IPPW number (r = -0.35 P = 0.027) and positively 

related to change in duodenal pressure wave number (r = 0.32 P = 0.044) and amplitude (r 

= 0.48 P = 0.002) by protein from control. 
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Figure 5.3: Data are means  SEMs. Change from fasting, baseline (t = 0 min) visual 

analogue scores (mm) of prospective food consumption (A and B) and fullness (C and D) 

in young (n = 10) and older (n = 10) subjects during intraduodenal infusions of saline (0 

kcal, control) and whey protein loads of 30, 90 and 180 kcal for 60 min and after the ad 

libitum buffet meal (t = 90 min). Between-subject effects were determined by using 

ANOVA. Within-subject, main age and protein-load effects and interaction effects were 

determined by using repeated-measures ANOVA. 

The age x protein-load interaction for prospective food consumption (P = 0.07) and fullness 

(P = 0.91) was not significant. 

Fullness was not significantly different between age groups (P = 0.63) or protein loads (P = 

0.42). 

# P < 0.05 Time effect (t = 0-60 min) for prospective food consumption. 

^ P < 0.05 Protein-load effect compared to control for prospective food consumption. 

* P < 0.05 Age effect (AUC t = 0-60 min) for prospective food consumption. 

 

DISCUSSION 

This study examined the influence of ageing on the effects of intraduodenal protein 

administration on appetite and subsequent ad libitum energy intake. The protein infusion 

rates (0.5, 1.5 and 3 kcal/min) were lower than, similar to, and at the upper end of normal 

gastric emptying rates, 1-4 kcal/min (273). Consistent with previous studies, older subjects 

were less hungry at baseline and ate less, 201 kcal or ~16%, on the control day than younger 

subjects (6). The major finding of our study was that protein-induced suppression of energy 

intake was significantly less in older than young subjects. In particular, while total energy 

intake (at buffet meal plus infusion) was suppressed by the intraduodenal protein infusions 

in young subjects, there was no suppression at any dose in older subjects, who actually had 

increased total energy intake. 

These results are consistent with previous results indicating a reduced responsiveness in 

older people to the suppressive effects of nutrients on appetite and energy intake (46, 63). In 

the fasting state healthy older people exhibit lower hunger and higher fullness ratings than 

young adults (41-46, 49, 88, 214, 215, 279). As in younger people, those hunger ratings are 

related positively and fullness ratings negatively to subsequent ad libitum energy intake 

(279). In response to oral or gastric nutrient administration, the reductions in hunger ratings 
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and subsequent energy intake are less in older than young adults (46, 48). We have shown 

that in older people the suppression of hunger ratings by intraduodenal infusions of fat and 

carbohydrate are less than in young adults (45) and the current results which show less 

suppression of hunger ratings and subsequent energy intake by protein infusions are, 

accordingly, not surprising. As in previous studies appetite ratings were positively related to 

subsequent energy intake and, consistent with the effect of protein on energy intake, 

decreased less during the protein infusions in older than young subjects. Thus, while older 

people are less hungry and eat less than younger adults, they appear to be less susceptible to 

further suppression of appetite and eating behaviour by ingestion of energy and nutrients, 

including protein. This is consistent with the attenuated homeostatic mechanisms in older 

people as evidenced by an impaired ability to compensate for modifications in diet (63). 

The finding of an age-related reduction in the satiating effects of protein is important. In 

young adults protein is the most satiating macronutrient in young adults when orally ingested 

(280), and at least as satiating as fat when infused intraduodenally (112), and there is good 

evidence that high protein diets promote satiety and aid deliberate weight loss in overweight 

younger adults (281). While beneficial in those circumstances, protein-enriched nutritional 

supplements given to older people for management of undernutrition, could have unintended 

adverse effects if satiating effects are undiminished (or increased) by age, by increasing 

satiety and reducing ad libitum energy intake. The use of high protein supplements by older 

people for this purpose is widespread, and increasing, in response to greater awareness of 

the prevalence of undernutrition and sarcopenia in older people, and evidence that protein 

supplementation may increase muscle mass and function (20, 271). 

The reduction in suppression of appetite and feeding responses to protein in older people 

seen in the present study may, therefore, point to a beneficial effect of ageing. If timing and 

preparation are optimised, it may be possible to give enough protein to older people to 

preserve, or increase muscle mass and function, without suppressing energy intake. Indeed 
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our observations suggest that optimal protein administration may increase overall energy 

intake in older people. All protein doses had a suppressive effect on total energy intake 

during the study (total of energy in the infusion plus that in the buffet meal) in young 

subjects, with a substantial 19% suppression at the highest dose. In contrast, total energy 

intake was not suppressed by any protein dose in the older subjects, and significantly 

increased with the 30 kcal (9%) and 90 kcal (14%) protein doses; 90 kcal of protein (22.5 g) 

increased total energy intake by ~145 kcal, and similar amounts of protein could reasonably 

be given as protein supplements several times during the day. This raises the intriguing 

possibility that appropriately designed protein supplements administered in divided doses, 

might act to increase energy intake in undernourished people by meaningful amounts (> 200-

300 kcal/day), without the need to encourage and supervise additional energy intake. 

We assessed antropyloroduodenal motility to examine potential mechanisms responsible for 

protein-induced suppression of feeding behaviour and potential age-related differences in 

that suppression. Gastrointestinal mechanisms involved in satiation are numerous and 

include variations in gastric distension (70), gastric emptying (261) - neither a factor in this 

intraduodenal infusion study - gut hormone secretion (e.g. cholecystokinin, glucagon-like 

peptide-1, peptide tyrosine tyrosine and gastric inhibitory peptide, ghrelin) (114), pancreatic 

signals (e.g. insulin) (39), plasma amino acid concentrations (e.g. branched-chain amino 

acids) (282), diet induced thermogenesis (283), and gluconeogenesis (284). Our group has 

shown that pyloric motility, particularly as reflected in the number of IPPWs, is an 

independent negative predictor of subsequent energy intake in young subjects (269). In the 

present study, pyloric motility (IPPWs) was modestly greater, in the short time period of the 

fasting state in the older than young subjects. In both age groups IPPW number increased 

and antral and duodenal pressure number decreased by the highest (180 kcal) protein load 

when compared with control. Furthermore in the combined subject group there was an 

inverse relationship between IPPW and energy intake, and a positive relationship between 
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antral and duodenal pressures and energy intake, providing further support for a relation 

between antropyloroduodenal motor activity and feeding behaviour. 

This study has several limitations, which reduce our ability to draw stronger conclusions. 

The subject numbers were relatively small. Nevertheless the findings were clear-cut. In the 

current study protein was infused directly into the duodenum, to allow exploration of small 

intestinal effects by bypassing higher neural, oral and gastric mechanisms that may affect 

energy intake, including variations in nutrient taste, gastric distension and gastric emptying 

rate. It seems that the older men had a somewhat better tolerance to the intraduodenal protein 

infusion that the young men, i.e. lower ratings of nausea and bloating however not 

statistically significant. We studied only men, as they appear to have the greatest ability to 

regulate energy intake in response to energy manipulation (46), and in women particularly 

the menstrual cycle may have a confounding effect on appetite and energy intake. The results 

do not, therefore, necessarily apply to the effects of ageing in women. Further studies are 

needed to determine if this age-related reduction in protein’s satiating effect is also present 

in women, and when the protein is administered orally and as part of a mixed macronutrient 

supplement, with the ultimate aim of developing the most effective form of 

protein/nutritional supplement for older people, which combines the greatest anabolic effect 

on muscle with the least suppression of appetite and energy intake. Nevertheless, our 

findings provide support for the use of protein supplements in undernourished and/or 

sarcopenic older people, as they provide no evidence that they suppress feeding behaviour 

and counteract attempts to increase body weight. 

In summary, older men had less suppression of appetite and subsequent ad libitum energy 

intake by intraduodenal protein infusions than young men, associated with 

antropyloroduodenal motility. At lower doses protein administration to older people even 

increased overall energy intake. Future studies are needed to characterise the effects of 

different oral protein loads in direct comparison to saline and carbohydrate controls in older 
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healthy and malnourished men and women compared with young subjects and, thereby, 

provide comprehensive insights into the underlying mechanisms. This should lead to 

improved, evidence-based, strategies for the use, i.e. type, dose and timing, of pure oral 

protein supplements, to increase energy intake in older undernourished individuals or to 

decrease energy intake as part of a weight loss diet strategy in older obese people. 
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ABSTRACT 

Background: Protein-rich supplements are used widely for the prevention and management 

of malnutrition in older people. We have reported that healthy older, compared to younger, 

adults have less suppression of energy intake by whey-protein - effects on appetite-related 

hormones are unknown.  

Objective: To determine the effects of intraduodenally administered whey-protein on 

glucose, gut hormone and amino acid concentrations, and their relation to subsequent ad 

libitum energy intake at a buffet meal, in healthy older and younger men. 

Design: Hydrolysed whey-protein (30kcal, 90kcal and 180kcal) and a saline control (~0kcal) 

were infused intraduodenally for 60min in 10 younger (19-29y, 73±2kg, 22±1kg/m2) and 10 

older (68-81y, 79±2kg, 26±1kg/m2) healthy men in a randomised, double-blind fashion. 

Results: Plasma insulin, glucagon, gastric inhibitory peptide (GIP), glucagon-like peptide-

1 (GLP-1), peptide tyrosine-tyrosine (PYY) and amino acid concentrations, but not blood 

glucose, increased, while ghrelin decreased during the whey-protein infusions. Only plasma 

GIP concentrations were greater in older than younger men. Energy intake correlated 

positively with ghrelin and negatively with insulin, glucagon GIP, GLP-1, PYY and amino 

acids concentrations (all P <0.05).  

Conclusions: In conclusion, intraduodenal whey-protein infusions showed comparable 

load-dependent responses in plasma gut hormone and amino acid concentrations in healthy 

older and younger men, which correlated to subsequent energy intake. 
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INTRODUCTION 

A growing awareness of the extent and adverse effects of aging-related muscle loss, 

including reduced functional capacity and decreased quality of life (6, 190, 285), has 

stimulated the development of nutritional strategies designed specifically to preserve and/or 

restore skeletal muscle mass and function. A ‘common’ nutritional strategy for management 

of malnutrition in older people is the use of nutritional supplements, which are usually high-

energy drinks rich in whey protein (e.g., 10-30 g protein) (26, 27, 286). In younger as well 

as older adults higher postprandial plasma amino acid concentrations induce greater muscle 

protein synthesis (17, 19, 23), which provides a rationale to increase protein intake in older 

people. Whey, when compared to casein or soy, protein results in greater muscle protein 

synthesis in young and older men (19). On the other hand, weight loss and under-nutrition 

are common in older adults, often associated with and/or caused by reduced appetite and 

food intake, termed the ‘anorexia of aging’ (6, 190), and associated with serious adverse 

effects. Given that protein is the most satiating macronutrient in young people, and its 

substitution for other macronutrients is often advocated to promote weight loss in overweight 

young adults (270, 287), the satiating and weight loss promoting effects of increased protein 

ingestion could potentially counteract some or all of the muscle benefits of increased protein 

ingestion in older people. Yet, despite the increasing use of protein-rich drinks by older 

people, information about their effects on appetite related gastrointestinal mechanisms in 

this age group is lacking. 

Potential mechanisms involved in the regulation of energy intake include variations in gut 

hormone release and action [e.g., ghrelin, glucose-dependent insulinotropic polypeptide/ 

gastric inhibiting polypeptide (GIP), glucagon-like polypeptide-1 (GLP-1) and peptide 

tyrosine tyrosine (PYY)], as well as plasma amino acid concentrations (112, 114, 288). We 

have recently shown that in young men there is a dose-dependent effect of intraduodenal 
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whey protein infusion on plasma gut hormones (114) and amino acid concentrations (289). 

Older, compared to younger, adults had greater responses in plasma concentrations of insulin 

[in response to intraduodenal glucose infusions (44)], GIP [after oral glucose intake (132, 

135)] and GLP-1 [after oral glucose (132)] and mixed macronutrient intakes (231)], but not 

PYY [in response to intraduodenal infusions of glucose or lipid (53)]. Effects of aging on 

ghrelin after oral mixed macronutrient intakes were inconsistent (48, 52, 88, 89, 91). 

Healthy aging is associated with a reduced responsiveness to the suppressive effects of 

nutrients, including protein, on appetite and energy intake (46, 63). Consistent with this, we 

have recently demonstrated that suppression of energy intake by protein ingested either 

orally [30 g (120 kcal), 70 g (280 kcal) whey-protein loads (263)] or infused directly into 

the small intestine at rates encompassing the normal rate of gastric emptying of nutrients 

[0.5 kcal/min (7.5 g, 30 kcal), 1.5 kcal/min (22.5 g, 90 kcal), 3.0 kcal/min (45 g, 180 kcal) 

(194)], and thereby bypassing ‘oral’ and ‘gastric’ effects, is less in older than younger men. 

The aim of the study was to further characterise the effects of intraduodenal whey protein 

loads on blood glucose and plasma insulin, glucagon, ghrelin, GIP, GLP-1, PYY and amino 

acid concentrations and, their relationships including those with subsequent ad libitum 

energy intake, in older and younger men. We hypothesised that intraduodenally administered 

whey protein would result in load-related responses, related to subsequent energy intake, of 

glucose, gut hormones and amino acids, and that these responses would be greater in older 

than younger men. 

 

SUBJECTS AND METHODS 

Subjects 

Our original study characterised the effect of aging on energy intake, perceptions of appetite 

and gastrointestinal symptoms, and antropyloroduodenal motility in response to infusion of 
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hydrolysed whey protein directly into the duodenum (thereby bypassing orosensory and 

gastric factors) at loads lower than (0.5 kcal/min), similar to (1.5 kcal/min) and at the upper 

end (3 kcal/min) of normal gastric emptying rates (1 – 4 kcal/min), and a saline control, at a 

rate of 4 mL/min for 60 min [previously published (194)]. We have now further characterised 

effects on blood glucose and plasma insulin, glucagon, ghrelin, GIP, GLP-1, PYY and amino 

acid concentrations and, their relationships, including those with subsequent energy intake. 

The Royal Adelaide Hospital Research Ethics Committee approved the study protocol 

(approval ID: 120504, approval date: 1 May 2012), and the study was registered as a clinical 

trial with the Australia and New Zealand Clinical Trial Registry (www.anzctr.org.au, 

ACTRN12612000906853). All subjects provided written informed consent prior to their 

inclusion in the study. 

 

Protocol 

Each subject was studied on 4 occasions, separated by 7 – 14 days, in randomised order. The 

protocol was described in detail previously (194). 

Subjects were provided with a standardised evening meal [beef lasagna (McCain Foods, 

Wendouree, VIC, Ausrtalia), ~591 kcal] to consume on the night before each study, and 

were instructed to fast overnight from solids and liquids and to refrain from strenuous 

physical activity until they attended the laboratory at the University of Adelaide, Discipline 

of Medicine, Royal Adelaide Hospital, at ~0830 am. On arrival, a small-diameter (3.5 mm) 

catheter (total length: 100 cm, Dentsleeve International, Mui Scientific) was inserted into 

the stomach through an anesthetised nostril and allowed to pass into the duodenum by 

peristalsis. The infusion port of the catheter was located in the proximal small intestine 14.5 

cm from the pylorus (194). 
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The protein solutions were prepared by dissolving whey protein hydrolysate powder (18.1% 

Hydrolysed Whey Protein 821, Fonterra Co-Operative Group Ltd., Palmerston North, New 

Zealand) in varying amounts of saline and water to achieve the desired loads [i.e., 0.5, 1.5, 

and 3 kcal/min, which equates to 30, 90, and 180 kcal or 8, 24, and 48 g protein] and to 

ensure that they were iso-osmotic (640-680 mOsmol/L). The infusions were administered at 

a rate of 4 mL/min (240 mL over 60 min). The amino acid content of the hydrolysed 

(resembling partially digested protein) whey protein is presented in Figure 6.1. 

Immediately before and at 15-min intervals during the intraduodenal infusion, blood samples 

(an intravenous cannula was positioned intravenously in the right forearm) for measurement 

of glucose, insulin, glucagon, ghrelin, GIP, GLP-1, PYY and amino acids were taken (0, 15, 

30, 45 and 60 min). Blood samples were collected into ice-chilled ethylenediaminetetraacetic 

acid (EDTA) coated tubes. Plasma was obtained by centrifugation for 15 min at 3200 rpm 

at 4°C and stored at -80°C for further analysis. 

 

 

 
Figure 6.1: Amino acid composition of the intraduodenally infused whey protein 

hydrolysate (A) and increase of amino acid concentrations at 60 min during the 180-kcal 
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whey protein infusion as a percentage of baseline in healthy younger [n = 10 (n = 9 for 

histidine); black bars] and older (n = 10; grey bars) men (B), ranked in order of high to low 

amino acid content (g/100 g). Essential amino acids: histidine, isoleucine, leucine, lysine, 

methionine, phenylalanine, threonine, tryptophan and valine. Branched-chain amino acids: 

isoleucine, leucine and valine. 

Differences between older and younger men were determined using an independent sample 

t-test. Statistical significance was accepted at P < 0.05. 

* P < 0.05 older compared to younger men. 

 

Measurements of blood glucose and plasma gut hormone and amino acid 

concentrations 

Blood glucose (millimoles per liter) was determined immediately after collection by the 

glucose oxidase method using a portable glucometer (Optium Xceed, Abbott Laboratories, 

Doncaster, VIC, Australia). 

Total plasma insulin (milliunits per liter) was measured by Enzyme-linked immunosorbent 

assay (ELISA) immunoassay (10-1113; Mercodia, Uppsala, Sweden). The minimum 

detectable limit was 1.0 mU/L. Intra- and inter-assay coefficients of variation were 3.1 and 

9.4%. Homeostatic model assessment (HOMA) index at baseline was calculated according 

to the following formula: insulin concentration (microunits per liter) x glucose concentration 

(nanomoles per liter) / 22.5 (290). 

Total plasma glucagon (picograms per milliliter) was measured by RIA (GL-32K; Millipore, 

Billerica, MA, USA). The minimum detectable limit was 20 pg/mL. The intra- and inter-

assay coefficients of variation were 4.4 and 6.3%. The ratio of insulin to glucagon was 

calculated for each time point in each subject (291). 

Plasma total ghrelin (picograms per milliliter) was measured using a radioimmunoassay 

(RIA) with modifications to the previously published method (292). The radiolabel was 

supplied by Perkin Elmer (NEX388; Boston, MA, USA). The standard and samples were 

incubated with the antibody and radiolabel for 3-4 days at 4oC. The detection limit was 40 

pg/mL. Intra- and inter-assay coefficients of variation were 5.0 and 12.8%. 
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Total plasma GIP (picomoles per liter) was measured by RIA with modifications to a 

previously published method (293). The standard curve was prepared in buffer rather than 

extracted charcoal stripped serum and the radio-iodinated label was supplied by Perkin 

Elmer (Boston, MA, USA). The minimum detectable limit was 2 pmol/L. The intra- and 

inter-assay coefficients of variance were 5.2 and 8.8%. GIP data are not available for one of 

the younger men. 

Total plasma GLP-1 (picomoles per liter) was measured by RIA (GLPIT-36HK; Millipore, 

Billerica, MA, USA). The detection limit was 3 pmol/L. Intra - and inter -assay coefficients 

of variance were 6.4 and 9.5%. 

Plasma total PYY (picomoles per liter) was measured using RIA (kindly donated by Dr. B 

Otto, Medizinische Klinik, Klinikum Innenstadt, University of Munich, Munich, Germany) 

against human peptide YY (1-36) (Sigma-Aldrich, St Lois, MO, USA) and raised in rabbits. 

This antisera showed < 0.001% cross reactivity with human pancreatic polypeptide and 

0.0025% cross reactivity with human neuropeptide Y. Standards (1.6-50 fmol/tube) or 

samples (200 µL plasma) were incubated in 200 µL assay buffer (50 mM NaPO4, 10 mM 

EDTA, 2 g/L gelatin, 0.1 g/L Na-Azide, pH = 7.4) and a 1/12000 dilution of antisera for 24 

hours. The standards and samples were further incubated with 10000 counts per minute 

tracer [Perkin Elmer (NEX3410; Boston, MA, USA)] for 24 hours. Separation of the 

antibody bound tracer from free tracer was by second antibody precipitation (i.e., 500 µL of 

1/100 dilution of sheep anti-rabbit immunoglobulin in wash buffer comprising 50 mM Tris-

base, 150 mM NaCl, 8% Polyethylene Glycol 6000, pH = 8.0 (Merck KGaA, Darmstadt, 

Germany), and 50 µL of normal rabbit serum diluted 1/50 in wash buffer), incubated 2 hours 

at room temperature then spun at 4000 rpm at 4˚C for at least 20 minutes, supernatants 

poured off and pellets counted in a gamma counter. The detection limit was 1.5 pmol/L. 

Intra- and inter-assay coefficients of variations were 8.4 and 13.7%. 
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Plasma free amino acid concentrations (mmol/L) of asparagine, aspartic acid, alanine, 

arginine, cysteine, glutamine, glutamic acid, glycine, histidine, isoleucine, leucine, lysine, 

methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, and valine, were 

analysed using precolumn derivatization with 6-aminoquinolyl-N hydroxysuccmimidyl 

carbamate (AQC) performed at the Australian Proteome Analysis’s Facility established 

under the Australian Government’s National Collaborative Research Infrastructure Strategy 

(NCRIS). The maximum increase in plasma amino acid concentration of the highest protein 

load (180 kcal; 3 kcal/min for 60 min) at 60 min was calculated as a percentage of the average 

baseline concentration. The derivatives were separated and quantified by reversed-phase 

high-performance liquid chromatography (HPLC). The amino acids (with the exception of 

tryptophan) were detected by fluorescence, whereas tryptophan required UV detection. 

Before derivatization, 100 μL of plasma samples were diluted 1:1 with internal standard 

solution (Norvaline) and deproteinised by ultra-filtration through a membrane with 10 kDa 

nominal molecular weight cutoff (Ultrfree MC with PL-10 membrane, Millipore, MA, 

USA). Amino acids contained in the filtrate (100 μL) were labeled using the Waters 

AccQTag™ chemistry and analysed using a Waters Acquity™ UPLC system (Waters 

Corporation, MA, USA) (21). Histidine data are not available for one of the younger men. 

 

Data analysis 

Statistical analyses were performed using SPSS software (version 21; IBM, Armonk, NY, 

USA. Main effects of protein load and age, and their interaction effects on blood glucose 

and plasma hormone concentrations and plasma amino acid concentrations at baseline 

(fasting; 0 min), 15 min after starting the infusion, immediately before the meal (60 min), 

and net area under the curve (AUC; calculated from baseline to 60 min using the trapezoidal 

rule), were determined using a repeated-measures mixed-effect model, with protein load as 
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the within-subject factor and age as the between-subject factor, including baseline values at 

each treatment visit as a covariate. Post-hoc comparisons, adjusted for multiple comparisons 

using Bonferroni's correction, were performed when there were significant main or 

interaction effects. Within-subject correlations between energy intake [published previously 

(194)] and glucose, gut hormones and amino acid concentrations were determined by using 

a general linear model with fixed slope and random intercept (277). Assumptions of 

normality were verified for all outcomes before statistical analysis. 

The original study (194) was powered to detect a suppression in energy intake by protein 

compared to control in 10 subjects per group. We calculated that 10 subjects per group would 

allow detection of differences in area under the curve (AUC) of the orexigenic hormone 

ghrelin and the anorexigenic hormone GLP-1 (294) within-subjects (protein compared to 

control) of 400 pg/mL and 9.1 pmol/L and between age groups (older compared to younger) 

of 1408 pg/mL and 20.5 pmol/L, respectively, with power equal to 0.8, alpha equal to 0.05 

and 10% dropouts. Statistical significance was accepted at P < 0.05. Data are presented as 

mean ± SEM unless otherwise stated. 

 

RESULTS 

The study protocol was well tolerated by all subjects. Fasting concentrations of blood 

glucose (P = 0.67), and plasma insulin (P = 0.50), glucagon (P = 0.61), ratio of insulin to 

glucagon (P = 0.29), HOMA-IR (P = 0.55), ghrelin (P = 0.68), GIP (P = 0.15), GLP-1 (P = 

0.41) and PYY (P = 0.07) were comparable in healthy younger and older men. 
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Glucose 

15-min and AUC (0-60 min) glucose concentrations were not affected by protein load (15 

min, AUC: P = 0.62, P = 0.60), age (P = 0.64, P = 0.07), or interaction of protein load by 

age (P = 0.95, P = 0.23; Figure 6.2). 

Glucose concentrations at 60 min, immediately before the buffet meal, were higher in older 

than younger men (mean 60-min concentration: younger: 5.0 ± 0.1 mmol/L, older: 5.4 ± 0.1 

mmol/L; effect of protein load: P = 0.19, effect of age: P = 0.031, interaction effect of protein 

load by age: P = 0.003). Interaction-effect post-hoc analyses revealed that 60-min glucose 

concentrations were lower after the 90-kcal and 180-kcal protein infusions compared to 

control in younger (P = 0.036 and P = 0.037) but not older men (P > 0.05) and, higher in 

older than younger men after the 90-kcal protein infusion (P = 0.001). 

 

Insulin 

Plasma insulin concentrations at 15 min were lower in older than younger men (mean 15-

min concentration: younger: 9 ± 1 mU/L, older: 5 ± 1 mU/L; effect of protein load: P < 

0.001, effect of age: P = 0.003, interaction effect of protein load by age: P = 0.08). Protein- 

load post-hoc analyses revealed that 15-min insulin concentrations were higher during all 

protein infusions compared to control (30 kcal: P = 0.003, 90 and 180 kcal: both P < 0.001). 

60-min and AUC insulin concentrations protein-load dependently increased in younger and 

older men (mean 60 min concentration: younger: 13 ± 2 mU/L, older: 12 ± 2 mU/L; 60 min, 

AUC: effect of protein load: both P < 0.001; effect of age: P = 0.97, P =0.26; interaction 

effect of protein load by age: both P = 0.71; Figure 6.2). Protein-load post-hoc analyses 

revealed that 60-min and AUC insulin concentrations were higher during the 90-kcal (60 

min, AUC: both P < 0.001) and 180-kcal (both P < 0.001) protein infusions compared to 

control. 
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  Area under the curve 
(0-60 min) 

Young Older          Young            Older 

   

  

 

  

 

   
Figure 6.2: Mean ( SEM) and area under the curve concentrations of blood glucose (A), 

plasma insulin (B), glucagon (C), and ratio of insulin to glucagon (D) in healthy younger (n 

= 10) and older (n = 10) men during intraduodenal infusions of saline (control; solid line 

with closed circles) and whey-protein loads of 30 kcal (7.5 g protein; dashed line with closed 

circles), 90 kcal (22.5 g protein; dashed line with open circles) and 180 kcal (45 g protein; 

dotted line with open circles). Effect of protein load, age and interaction effect of protein 

load by age were determined using a mixed-effect model with baseline concentrations as a 

covariate and post-hoc Bonferroni correction. Statistical significance was accepted at P < 

0.05. 

+ P < 0.05 Effect of protein load. Post-hoc tests: higher glucagon during 30 kcal protein 

infusion compared to control (P = 0.004); higher insulin, glucagon and ratio of insulin to 

glucagon during 90 kcal and 180 kcal protein infusions compared to control (insulin: both P 

< 0.001, glucagon: both P < 0.001, ratio of insulin to glucagon: P < 0.001 and P = 0.002). 

# P < 0.05 Effect of age. 

& P < 0.05 Interaction effect of protein load by age. a,b,c,d P < 0.05 Interaction effect post-

hoc tests: a different letter indicates a difference between protein loads (AUC 0-60 min); 

higher glucose in older than younger men at 60 min during 90-kcal protein infusion (P = 

0.001); lower glucagon in older than younger men at 15 min during 90- and 180-kcal protein 

infusions (P = 0.048 and P = 0.008); in younger and older men higher glucagon (AUC and 

60 min) during 180-kcal protein infusion compared to 90-kcal (younger: both P < 0.001, 

C 

B 

A 

D 
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older: P = 0.037, P = 0.020), 30-kcal (younger: both P < 0.001, older: P = 0.006, P = 0.001) 

and control infusions (younger: both P < 0.001, older: both P = 0.001), and 90-kcal protein 

infusion compared to 30 kcal (younger: P = 0.008, P = 0.004, older: P = 0.022, P = 0.001) 

and control infusions (younger: both P < 0.001, older: both P < 0.001); in younger, but not 

older, men higher glucagon (AUC and 60 min) during 30-kcal protein infusion compared to 

control (younger: P = 0.006, P = 0.028).  

 

Glucagon 

Plasma glucagon concentrations at 15 min were lower in older than younger men (mean 15-

min concentration: younger: 94 ± 12 pg/mL, older: 79 ± 4 pg/mL; effect of protein load: P 

< 0.001, effect of age: P = 0.023, interaction effect of protein load by age: P = 0.021). 

Interaction-effect post-hoc analyses revealed that 15-min glucagon concentrations were 

lower in older than younger men during the 90-kcal (P = 0.048) and 180-kcal (P = 0.008) 

protein infusions. In younger men, 15-min glucagon concentrations were higher during all 

protein infusions compared to control (30 kcal: P = 0.001, 90 and 180 kcal: both P < 0.001); 

in older men during the 30-kcal protein infusion (P = 0.003). 

60-min and AUC glucagon concentrations protein-load dependently increased in younger 

and older men (mean 60-min concentration: younger 133 ± 14 pg/mL, older 119 ± 7 pg/mL; 

60 min, AUC: effect of protein load: both P < 0.001, effect of age: P = 0.42, P = 0.21, 

interaction effect of protein load by age P = 0.007, P = 0.030; Figure 6.2). Interaction-effect 

post-hoc analyses revealed that 60-min and AUC glucagon concentrations were higher 

during all protein infusions compared to control in younger men (60-min, AUC: 30 kcal: P 

= 0.028, P = 0.006, 90 kcal: both P < 0.001, 180 kcal: both P < 0.001), and in older men 

during the 90-kcal and 180-kcal protein infusions compared to control (60-min, AUC: 30 

kcal: P = 0.47, P = 1.0, 90 kcal: both P < 0.001, 180 kcal: both P < 0.001). 
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Ratio of insulin to glucagon 

The ratio of insulin to glucagon at 15 min was lower in older than younger men (mean 15-

min ratio: younger: 0.09 ± 0.01, older: 0.06 ± 0.01; effect of protein load: P = 0.001, effect 

of age: P = 0.045, interaction effect of protein load by age: P = 0.39). Protein-load post-hoc 

analyses revealed that the 15-min insulin to glucagon ratio was higher during all protein 

infusions compared to control (30 kcal: P = 0.021, 90 and 180 kcal: both P = 0.003). 

The 60-min and AUC ratio of insulin to glucagon protein-load dependently increased in 

younger and older men (mean 60-min ratio: younger: 0.10 ± 0.02, older: 0.08 ± 0.01; 60 min, 

AUC: effect of protein load: both P < 0.001, effect of age: P = 0.73, P = 0.55, interaction 

effect of protein load by age: P = 0.14, P = 0.69; Figure 6.2). Protein-load post-hoc analyses 

revealed that the 60-min and AUC ratios of insulin to glucagon were higher during the 90-

kcal (60-min, AUC: both P = 0.001) and 180-kcal (P < 0.001, P = 0.002) protein infusions 

compared to control. 

 

Ghrelin 

60-min ghrelin concentrations were higher in older than younger men (mean 60-min 

concentration: younger: 1235 ± 130 pg/mL, older: 1313 ± 156 pg/mL; 15 min, 60 min, AUC: 

effect of protein load: P = 0.047, P < 0.001, P < 0.001, effect of age: P = 0.97, P = 0.029, P 

= 0.98, interaction effect of protein load by age: P = 0.84, P = 0.57, P = 0.41; Figure 6.3). 

Protein-load post-hoc analyses revealed that 60-min and AUC ghrelin concentrations were 

lower during the 90-kcal (60 min, AUC: P < 0.001, P = 0.006) and 180-kcal (P = 0.015, P 

= 0.002) protein infusions compared to control. 
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GIP 

15-min, 60-min and AUC GIP concentrations protein-load dependently increased in younger 

and older men (mean 60-min concentration: younger: 23 ± 1 pmol/L, older: 34 ± 3 pmol/L; 

15 min, 60 min, AUC: effect of protein load all P < 0.001, effect of age P = 0.59, P = 0.002, 

P = 0.011, interaction effect of protein load by age P = 0.20, P = 0.007, P = 0.06; Figure 

6.3). Interaction effect post-hoc tests revealed that 60-min GIP concentrations were higher 

in older than younger men during the 90-kcal (P < 0.001) and 180-kcal (P = 0.013) protein 

infusions. Protein-load post-hoc analyses revealed that 15-min, 60-min and AUC GIP 

concentrations were higher during all protein infusions compared to control (all P < 0.001). 

 

GLP-1 

15-min, 60-min and AUC GLP-1 concentrations protein-load dependently increased in 

younger and older men (mean 60-min concentration: younger: 37 ± 3 pmol/L, older: 31 ± 4 

pmol/L; 15 min, 60 min, AUC: effect of protein load: P = 0.013, P < 0.001, P < 0.001, effect 

of age: P = 0.30, P = 0.34, P = 0.38, interaction effect of protein load by age: P = 0.27, P = 

0.41, P = 0.41; Figure 6.3). Protein-load post-hoc analyses revealed that 15-min GLP-1  

 

PYY 

Plasma PYY concentrations at 15 min were lower in older than younger men (mean 15-min 

concentration: younger: 37 ± 4 pmol/L, older: 26 ± 1 pmol/L; effect of protein load: P = 

0.005, effect of age: P = 0.009, interaction effect of protein load by age: P = 0.49). Protein-

load post-hoc analyses revealed that 15-min PYY concentrations were higher during the 90-

kcal protein infusion compared to control (P = 0.005). 

60-min and AUC PYY concentrations protein-load dependently increased in younger and 

older men (mean 60-min concentration: younger: 41 ± 5 pmol/L, older: 36 ± 3 pmol/L; 60 
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min, AUC: effect of protein load: P = 0.018, P = 0.042, effect of age: both P = 0.59, 

interaction effect of protein load by age: P = 0.49, P = 0.45; Figure 6.3). 

 

  Area under the curve 
(0-60 min) 

Young Older          Young            Older 

  

 

  

 

  

 

   
Figure 6.3: Mean ( SEM) and area under the curve concentrations of plasma ghrelin (A), 

GIP (B), GLP-1 (C) and PYY (D) in healthy younger (n = 10 for ghrelin and PYY; n = 9 for 

GIP and GLP-1) and older (n = 10) men during intraduodenal infusions of saline (control; 

solid line with closed circles) and whey protein loads of 30 kcal (7.5 g protein; dashed line 

with closed circles), 90 kcal (22.5 g protein; dashed line with open circles) or 180 kcal (45 

g protein; dotted line with open circles). Effect of protein load, age and interaction effect of 

protein load by age were determined using a mixed-effect model with baseline 

concentrations as a covariate and post-hoc Bonferroni correction; statistical significance was 

accepted at P < 0.05. 

+ P < 0.05 Effect of protein load. Post-hoc tests: higher GIP (AUC 0-60 min) during 30-

kcal protein infusion compared to control (P < 0.001); higher GIP during 30-kcal protein 

infusion compared to control (P < 0.001); lower ghrelin and higher GIP and GLP-1 during 

90-kcal and 180-kcal protein infusions compared to control (ghrelin: P = 0.006, P = 0.002, 

GIP: both P < 0.001, GLP-1: P = 0.034, P = 0.005). 

A 

B 

C 

D 
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# P < 0.05 Effect of age. 

& P < 0.05 Interaction effect of protein load by age. Post-hoc tests: higher GIP in older than 

young at 60 min during 90- and 180-kcal protein infusions (P < 0.001, P = 0.013).  

concentrations were higher during the 180-kcal protein infusions compared to control (P = 

0.014) and 60-min and AUC GLP-1 concentrations were higher during the 90-kcal (60-min, 

AUC: P = 0.05, P = 0.034) and 180-kcal (P < 0.001, P = 0.005) protein infusions compared 

to control. 

 

Amino Acids 

Fasting plasma total (P = 0.97) and essential amino acid (P = 0.54) concentrations were 

similar in older and younger men. Concentrations of cysteine (P < 0.001) and tryptophan (P 

= 0.005) were higher and of aspartic acid (P < 0.001), glutamic acid (P = 0.001) and serine 

(P = 0.033) lower in older than younger men. 

15-min, 60-min and AUC plasma concentrations of total amino acids protein-load 

dependently increased during the infusions in younger and older men (15 min, 60 min, AUC: 

effect of protein load: all P < 0.001, effect of age: P = 0.13, P = 0.37, P = 0.27, interaction 

effect of protein load by age: P = 0.024, P = 0.007, P = 0.016). Essential amino acid  

concentrations at 15 min were lower in older than younger men (mean essential amino acid 

concentrations: younger: 1.0 ± 0.04, older: 0.8 ± 0.02; effect of protein load: both P < 0.001, 

effect of age: P = 0.049, interaction effect of protein load by age: P = 0.024). Post-hoc tests 

revealed that AUC concentrations of total (P = 0.022) and essential (P = 0.014) amino acids 

were lower during the 180-kcal protein infusion in older than younger men (Figure 6.4). 
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Figure 6.4: Mean ( SEM) and area under the curve concentrations of plasma total amino 

acids, essential amino acids (histidine, isoleucine, leucine, lysine, methionine, 

phenylalanine, threonine, tryptophan and valine), branched chain amino acids (isoleucine, 

leucine and valine) and individual amino acids ranked in order of highest to lowest 

prevalence of amino acids in the whey protein hydrolysate, in healthy younger (n = 10; n = 

9 for histidine) and older (n = 10) men during intraduodenal infusions of saline (control; 

solid line with closed circles) and whey protein loads of 30 kcal (dashed line with closed 

circles), 90 kcal (dashed line with open circles) or 180 kcal (dotted line with open circles). 
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Main effect of protein load, age and interaction effects were determined using a mixed-effect 

model with baseline concentrations as a covariate and post-hoc Bonferroni correction; 

statistical significance was accepted at P < 0.05.  

+ P < 0.05 Effect of protein load. 

# P < 0.05 Effect of age. 

& P < 0.05 Interaction effect of protein load by age.  

* P < 0.05 Interaction effect post-hoc tests: older compared to younger men (AUC 0-60 

min); a,b,c,d P < 0.05 a different letter indicates a difference between protein loads (AUC 0-

60 min); at 15 min during 180-kcal protein infusion, older compared to younger men: lower 

total (P = 0.022), essential (P = 0.014), branched chain amino acids (P = 0.017), leucine (P 

= 0.018), asparagine (P = 0.019), lysine (P = 0.011), isoleucine (P =0.019), valine (P = 

0.018), threonine (P = 0.023), tyrosine (P = 0.026), phenylalanine (P = 0.028), asparagine 

(P =0.019), serine (P = 0.018) and methionine (P = 0.028); at 60 min: lower glutamine (P = 

0.013), lysine (P = 0.038), arginine (P = 0.029), and higher phenylalanine (P = 0.014) and 

aspartic acid (P = 0.011) during 90-kcal protein infusion, and cysteine during 30-kcal protein 

(P = 0.010) and control (P = 0.003) infusion. 

 

Relationships of energy intake, gut hormones and amino acids 

Energy intake (published previously (194); younger men: control: 1270 ± 150 kcal, 30 kcal: 

1123 ± 151 kcal, 90 kcal: 1028 ± 163 kcal, and 180 kcal: 851 ± 161 kcal; older men: control: 

1068 ± 93 kcal, 30 kcal: 1129 ± 91 kcal, 90 kcal: 1123 ± 98 kcal and 180 kcal: 899 ± 103 

kcal) was positively related to plasma concentrations of ghrelin, and negatively related to 

insulin, glucagon, GIP, GLP-1, PYY (Figure 6.5) and amino acids (Figure 6.6). AUC 

concentrations of amino acids correlated positively with AUC concentrations of insulin, 

glucagon, ghrelin, GIP, GLP-1 and PYY, and negatively with ghrelin (Table 6.1).  

GIP was, within subjects, related to GLP-1 (r = 0.68 P < 0.001); i.e. the greater the increase 

in plasma GIP concentrations the greater the increase in GLP-1. Ghrelin was, within subjects, 

inversely related to insulin (r = -0.33, P = 0.010); i.e. the greater the increase in plasma 

insulin concentrations the greater the inhibition of ghrelin production. 
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Figure 6.5: Within-subject relationships between energy intake [results of suppression of ad 

libitum energy intake after the intraduodenally infused whey protein loads have been 

published previously (194)] and area under the curve (AUC 0-60 min) of glucose, insulin, 

glucagon, ghrelin, GIP, GLP-1 and PYY concentrations in healthy older and younger men 

combined (n = 20; n = 19 for GIP and GLP-1), younger men (n = 10; n = 9 for GIP and GLP-

1) and older men (n = 10). Within subject correlations were determined using a general linear 

model with fixed slope and random intercept. Statistical significance was accepted at P < 

0.05.  

* P < 0.05, ** P < 0.005, *** P < 0.001. 
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Figure 6.6: Within-subject relationships between energy intake [results of suppression of ad 

libitum energy intake after the intraduodenally infused whey protein loads have been 

published previously (194)] and area under the curve (AUC 0-60 min) of total, essential 

amino acids (histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, 

tryptophan and valine), branched chain amino acids (isoleucine, leucine and valine) and 

individual amino acids in healthy older and younger men combined (n = 20; n = 19 for 

histidine), younger men (n = 10; n = 9 for histidine) and older men (n = 10), ranked in order 

of the strongest to weakest R square in the combined group. Within subject correlations were 

determined using a general linear model with fixed slope and random intercept. Statistical 

significance was accepted at P < 0.05.  

* P < 0.05, ** P < 0.005, *** P < 0.001 
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Table 6.1: Within-subject correlations between concentrations of total amino acids and 

glucose, insulin, glucagon, ghrelin, GIP, GLP-1 and PYY  

     r     P 

Glucose (mmol/L) -0.12   0.35 

Insulin (mU/L)  0.80 <0.001 

Glucagon (pg/mL)  0.84 <0.001 

Ghrelin (pg/mL) -0.32   0.013 

GIP (pmol/L)  0.82 <0.001 

GLP-1 (pmol/L)  0.62 <0.001 

PYY (pmol/L)  0.45 <0.001 

r and P values of within-subject correlations between plasma concentrations of total amino 

acids (mmol/L; AUC) and concentrations (AUC) of blood glucose and plasma insulin, 

glucagon, ghrelin, GIP, GLP-1 and PYY in younger and older men. Within-subject 

correlations were determined by using a general linear model with fixed slope and random 

intercept. n = 20 (n = 19 for plasma concentrations of GIP and GLP-1). 

 

DISCUSSION 

The intraduodenal whey protein infusion, at rates lower than (0.5 kcal/min), comparable to 

(1.5 kcal/min), and at the upper end (3.0 kcal/min), of normal gastric energy emptying (273), 

dose-dependently suppressed plasma concentrations of ghrelin and stimulated 

concentrations of insulin, glucagon, GIP, GLP-1, PYY and amino acids in younger, as well 

as older, men. Plasma concentrations of the hormones insulin, glucagon, GLP-1 and PYY, 

which are secreted by the small intestine in response to the presence of nutrients, and largely 

act to suppress appetite and food intake, were increased to a comparable degree by protein 

infusions in younger and older men. GIP responses were greater in older than younger men. 

Consistent with their effects on appetite, these gut hormone concentrations were negatively 

correlated with energy intake at the subsequent ad libitum meal. Briefly, there was a dose-

dependent suppression of energy intake by protein infusion (0, 30, 90, 180 kcal) in the 
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younger men and this was greater than the suppression in older men, which was only 

significant after the 180 kcal protein infusion (194). In contrast, plasma concentrations of 

ghrelin, which is mainly secreted by the stomach and acts to stimulate appetite and food 

intake (238) were suppressed by the protein infusions to a comparable degree in both age 

groups and were positively correlated to subsequent energy intake. Plasma concentrations of 

amino acids correlated negatively with energy intake at the ad libitum meal [published 

previously (194)], with tryptophan and tyrosine having the highest R square in younger men 

and lower R squares in older (range: 0.0 – 0.24) than younger men (range: 0.01 – 0.38). 

While the younger and older men had comparable glucose, insulin and glucagon 

concentrations during the 60 min protein infusions, as assessed by the area under the curve 

method, insulin and glucagon concentrations increased more slowly in older than younger 

men (e.g., significantly lower concentrations at 15 min) and glucose concentrations 

immediately before the buffet meal (60 min) were lower during the ‘higher’ protein-load 

infusions (90 and 180 kcal) compared to control in young, but not older, men. We have 

reported that blood glucose and insulin concentrations were higher during intraduodenal 

glucose infusions in healthy older than younger men (44), which is likely related to reduced 

insulin sensitivity with aging. The slightly different responses in healthy older compared to 

younger men after whey protein administered directly into the small intestine confirms the 

effects of ageing on postprandial glycaemia in absence of insulin resistance or known 

glucose intolerance; both age groups had comparable HOMA-IR. 

Healthy older and younger men had comparable AUC ghrelin concentrations during the 

protein infusions, consistent with responses to mixed-nutrient intake in some (88, 89) but 

not all previous studies (48, 52, 91). It has been suggested that aging-related changes in body 

composition (i.e., a decrease in lean mass and increase in fat mass) may act to decrease 

fasting (92) and postprandial (48) ghrelin concentrations, as body fat is negatively correlated 

to ghrelin concentrations (295) and tends to increase with aging. Other studies however have 
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found higher postprandial and fasting ghrelin concentrations in older than younger adults 

and impaired suppression of ghrelin after consumption of a mixed-nutrient meal in older 

than younger subjects (52, 91). The results of this study, where protein was infused directly 

into the small intestine, thereby bypassing and eliminating variations in the rate of gastric 

emptying, support the latter findings; plasma ghrelin levels were higher at the end of the 

protein infusions, immediately before the buffet meal, in older than younger men. 

Plasma GIP concentrations increased rapidly during the protein infusions and these were 

higher in older than younger men, which may be related to differences in small intestinal 

transit of the whey protein. Previously, orally ingested (132, 135), but not intraduodenally 

infused (133), glucose evoked greater GIP responses in older than younger adults. 

GLP-1 and PYY are mainly expressed more distally in the gastrointestinal tract (i.e., ileum 

and colon) and, when compared to GIP (expressed mainly in the duodenum and jejunum), 

had slower increases in plasma concentrations during the protein infusions. PYY 

concentrations particularly increased during the 180-kcal protein load, largely from 30 min 

onwards and more convincingly in the older men. Nevertheless older and younger men had 

comparable plasma AUC GLP-1 and PYY concentrations during the protein infusions, 

which is consistent with responses during intraduodenal infusions of lipid and glucose (53). 

Oral glucose (132) and mixed macronutrient (231) ingestion however are reported to 

increase GLP-1 concentrations more in older than younger women, again highlighting the 

age-related differences in hormone responses to nutrients depending on their route of 

delivery - older compared to younger adults have slightly slower gastric emptying (263). 

The older compared to younger men had a slower increase in essential amino acids (lower 

concentrations at 15 min after starting the whey-protein infusions), particularly leucine, 

isoleucine and lysine, and lower AUC concentrations of total and essential amino acids were 

during the highest 180-kcal protein infusion. Our findings are consistent with previous 

reports that plasma amino acid concentrations peak later and remain elevated longer after 
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amino acid ingestion in older than younger adults, with AUC concentrations similar between 

age groups (17). The infused whey protein contained 12% leucine and 2.4% glycine, 

essential amino acids which are thought to play an important role in the modulation of 

skeletal muscle metabolism (296-298). The maximum increase in plasma amino acid 

concentration at the end of the protein infusion, compared to baseline, was comparable in 

younger and older men for most amino acids (with the exception that older men had higher 

maximum increase in aspartic acid and lower increases in alanine and glutamine than 

younger men). This is an important finding as elevated amino acid concentrations are a major 

determinant of muscle protein synthesis (23) and, due to suboptimal protein intake, may not 

always be high enough to have an optimal effect in older people. Studies utilizing stable 

isotope-labelled amino acids have shown that older adults have a reduced sensitivity of 

muscle protein synthesis to the ingestion of relatively small amounts (≤ 20 g) of whey protein 

compared to younger adults (23). These postprandial differences between the younger and 

old were however not evident after consumption of ample amounts of dietary protein (> 

20g).  

Plasma amino acids concentrations correlated positively with plasma concentrations of 

insulin, glucagon, GIP, GLP-1 and PYY and negatively with those of ghrelin. Interaction of 

dietary amino acids, oligopeptides and proteins in the gut induce the so-called ileal brake 

mechanism, including inhibition of proximal gastrointestinal motility, which stimulate the 

vagus nerve afferents to convey information to the nucleus of the solitary tract in the 

brainstem and thereby restrict food intake in the short term (299).  

This study has several limitations, including the relatively small subject numbers. We 

studied only men, as they appear to have the greatest ability to respond to energy 

manipulation (46), so the findings warrant confirmation in women. Although the total loads 

of hydrolysed whey protein delivered (i.e., 8, 24 and 48 g) are representative of a snack or 

main meal, the observed findings may be different for other protein sources. 
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In summary, intraduodenal whey protein infusions resulted in load-dependent changes in gut 

hormones and amino acids in younger and older men, and these responses were related to 

subsequent ad libitum energy intake. Plasma concentrations of insulin, glucagon, GLP-1 and 

PYY were increased and ghrelin decreased to a comparable degree by the infusions in both 

age groups, while GIP responses were greater in older than younger men. 
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ABSTRACT 

Background: Protein-rich supplements are used widely for the management of malnutrition 

in young and older people. Protein is the most satiating of the macronutrients in young. It is 

not known how the effects of oral protein ingestion on energy intake, appetite and gastric 

emptying are modified by age.  

Objective: The aim of the study was to determine the suppression of energy intake by 

protein compared with control and underlying gastric-emptying and appetite responses of 

oral whey protein drinks in 8 healthy older men (69-80 years) compared to 8 young male 

controls (18-34 years).  

Design: Subjects were studied on 3 occasions to determine the effects of protein loads of 30 

g/120 kcal and 70 g/280 kcal compared to a flavoured water control-drink (0 g whey-protein) 

on energy intake (ad libitum buffet-meal), and gastric emptying (3D-ultrasonography) and 

appetite (0-180 min) in a randomised, double-blind, cross-over design.  

Results: Energy intake was suppressed by the protein compared with control (P = 0.034). 

Suppression of energy intake by protein was less in older men (1 ± 5%) than young controls 

(15 ± 2%; P = 0.008). Cumulative energy intake (meal + drink) during the protein days 

compared with the control day increased more in older (18 ± 6%) men than young (1 ± 3%) 

controls (P = 0.008). Gastric emptying of all three drinks was slower in older men (50% 

gastric-emptying time: 68  5 min) than young controls (36  5 min; P = 0.007). Appetite 

decreased in young, whilst it increased in older (P < 0.05).  

Conclusions: In summary, despite having slower gastric emptying, elderly men exhibited 

blunted protein-induced suppression of energy intake by whey protein compared with young 

controls, so that in the elderly protein ingestion increased overall energy intake more. 
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INTRODUCTION 

The prevalence of malnutrition, both underweight/undernutrition and overweight/ 

overnutrition, has increased over recent decades in older adults (285). Both forms of 

malnutrition are associated with, and lead to, reduced functional capacity and decreased 

quality of life in the ageing population (6, 180, 190, 285). Healthy ageing is associated with 

a reduction of appetite and energy intake, termed ‘the physiological anorexia of ageing’ (6, 

7). Low intake of energy, and protein, predisposes older people to weight loss, particularly 

loss of skeletal muscle (6, 190). A growing awareness of the prevalence and adverse effects 

of the major muscle loss that occurs during ageing, irrespective of body mass index (BMI), 

has led to the development of nutritional strategies designed specifically to preserve and/or 

restore skeletal muscle. Insufficient protein intake in the elderly is likely to exacerbate 

muscle loss by limiting muscle anabolism (300). When severe, muscle loss leads to 

sarcopenia in underweight and obese older individuals, which is strongly associated with 

adverse outcomes (184). Strategies designed to achieve an increase in muscle mass and 

function include exercise programs, especially resistance exercise. However, many older 

adults have co-morbidities and physical limitations that hamper their capacity to fully 

achieve the levels of exercise sufficient to fully protect the loss of muscle mass (301). As 

such, a ‘common’ strategy to (i) increase energy intake and body weight/lean mass in 

undernourished elderly (26, 27, 286), as well as to (ii) limit energy intake and preserve lean 

mass and promote fat loss during energy restriction in overweight and obese older adults 

(35), is the use of protein-enriched supplements. These supplements are usually high-energy 

drinks rich in protein. In particular whey protein, a major dairy protein source, which is rich 

in essential amino acids is often used. Despite the widespread use of such supplements by 

older people, information about their effects on energy intake is limited, and their ‘optimal’ 

composition unknown. 
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The rationale for using protein supplements in undernourished or obese sarcopenic older 

people is strengthened by evidence that ageing has only minimal inhibitory effects on the 

capacity to synthesise muscle protein acutely after protein ingestion (17, 21, 271). A recent 

consensus recommendation by the PROT-AGE study group (25) stated that dietary protein 

intake needs to be increased from 0.8-1.0 g/kg body weight per day to 1.2-1.5g/kg in older 

people (e.g., 90-112.5 g for 75 kg body weight) including a minimum of 25-30 g protein 

intake per meal. Older people however may have a significant protein portion waste of their 

meals (~23-68%) resulting in low protein intakes (~40-64 g/day) and, therefore, may require 

supplementation of up to 70 g protein/day (25, 302, 303). In young adults a protein intake of 

up to ~70 g is representative of intakes during a single meal (~ 250 g serving of lean steak). 

Accordingly, if older people can ingest sufficient protein throughout the day, it is likely to 

have positive anabolic effects. Protein, however, is also the most satiating of the 

macronutrients in young people, and high-protein energy restricted diets are used to promote 

weight loss in obese young adults (280). 

In older, undernourished adults, the aim is, of course, to increase, rather than reduce, overall 

energy intake. The effects of dietary protein on energy intake and underlying gastrointestinal 

mechanisms in older people are largely unknown. We have recently demonstrated that 

administration of 30-kcal (7.5 g), 90-kcal (22.5 g) and 180-kcal (45 g) whey-protein loads 

directly into the small intestine suppressed subsequent energy intake less in older men than 

young controls (194). In addition, whereas cumulative energy intake (protein load plus ad 

libitum intake at subsequent buffet meal) was reduced by the intraduodenal protein infusions 

in young subjects, in the older subjects there was an increase in cumulative energy intake. 

Variations in the rate of gastric emptying and gastric distension are important in the 

regulation of appetite and energy intake, particularly in the short-term after nutrient ingestion 

(42, 50, 70, 74). Gastric emptying is regulated primarily as a result of nutrient-mediated 

inhibitory feedback arising from the small intestine. Compared to young adults, in healthy 
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older people the perception of proximal gastric distension is reduced, and distension of the 

distal stomach, i.e., antral area, greater. Gastric emptying is probably slightly slower in older 

than young, particularly that of meals rich in carbohydrate and fat (42, 50, 74, 84). These 

differences would favour reductions in energy intake. 

Older adults are less hungry and eat less than younger adults (41, 42, 44-46, 88, 190) and, 

due to lower body weights with disproportionally lower lean mass, require less energy to 

maintain their body weight (189). Therefore, a control condition containing no protein or 

energy is required to determine if young and older subjects differ in their susceptibility to 

further suppression of energy intake by ingestion of nutrients. 

In this study we aimed to characterise the impact of ageing on feeding and gastric responses 

to orally ingested whey protein loads similar to (30 g), and higher than (70 g) the suggested 

protein intake per meal (25, 303) within a period of time (180 min) where these loads were 

expected to empty ‘completely’ from the stomach (50), compared with a control drink (0 g 

whey protein). We hypothesised that orally administered whey protein would slow gastric 

emptying and reduce voluntary energy intake and perceptions of appetite, in a load-related 

fashion, and these suppressive effects would be less in healthy older men than young 

controls. 

 

SUBJECTS AND METHODS 

Subjects 

The study included 8 healthy young men [age (mean ± SEM): 25 ± 2 years (range: 18–34 

years); body weight: 72 ± 3 kg (62–86 kg); height: 1.79 ± 0.02 m, BMI (in kg/m2): 23 ± 1] 

and 8 healthy older men [age: 73 ± 1 years (69–80 years); body weight: 77 ± 4 kg (59–92 

kg); height: 1.73 ± 0.02 m; BMI: 26 ± 1] who were recruited by advertisement. The body 

weight of the 2 groups did not differ significantly (P = 0.29). Height was less and, 
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accordingly, BMI higher in older men than young controls (P = 0.045). On the basis of our 

previous work (194), we calculated that 8 subjects per group would allow us to detect a 

difference in the suppression of energy intake by protein of 395 kcal with SD’s of 316 kcal 

(young subjects) and 180 kcal (older subjects) (194) and in the 50% gastric emptying time 

of 80 min with SD’s of 38 min (young subjects) and 63 min (older subjects) (50, 74, 82), 

between young and older subjects, with α = 0.05 and power of 80%. Exclusion criteria were 

smoking, alcohol abuse, diabetes, gastrointestinal surgery (apart from uncomplicated 

appendectomy), significant gastrointestinal symptoms (pain, reflux, diarrhoea, or 

constipation) and use of medications known to potentially affect energy intake, appetite or 

gastrointestinal motor function. For older people, additional exclusion criteria were impaired 

cognitive function [score < 25 on Mini Mental State (274)], depression [score ≥ 11 on the 

Geriatric Depression Questionnaire (275)] and undernutrition [score < 24 on the Mini 

Nutritional Assessment (276)]. The Royal Adelaide Hospital Human Research Ethics 

Committee approved the study protocol. The study was registered as a clinical trial with the 

Australian New Zealand Clinical Trial Registry (www.anzctr.org.au, registration number 

ACTRN12612000941864). All subjects provided written informed consent prior to their 

inclusion in the study. 

 

Protocol 

Subjects were studied on 3 occasions, separated by ≥ 3 days, to determine the effects of 2 

oral whey protein loads (30 g / 120 kcal and 70 g / 280 kcal) and a flavoured water control-

drink (~0 g whey protein / ~2 kcal) on energy intake, gastric emptying, perceptions of 

appetite and gastrointestinal symptoms in a randomised (using the method of randomly 

permuted blocks; www.randomization.com), double-blind, cross-over design. 



Oral protein and energy intake   Chapter 7 

 

 

148 

Protein drinks (~450 mL) were prepared by dissolving whey protein isolate (Fonterra Co-

Operative Group Ltd., Palmerston North, New Zealand) in varying volumes of 

demineralised water and diet lime cordial (Bickford’s Australia Pty Ltd, South Australia) to 

achieve the desired loads. Drinks were prepared on the morning of each study by a research 

officer (PF) who was not involved in the data analysis. The drinks were served in a covered 

cup, so both the investigator and the subject were blinded to the treatment. 

Subjects were provided with a standardised evening meal [beef lasagne (McCain Foods Pty 

Ltd, Wendouree, VIC, Australia), ~591 kcal] to consume on the night before each study day 

at ~19.00 h. They were instructed to fast overnight from solids and liquids and to refrain 

from strenuous physical activity until they attended the laboratory at the Discipline of 

Medicine, the University of Adelaide, Royal Adelaide Hospital, at ~08.30 h. 

On arrival, subjects were seated in an upright position on a wooden chair, where they 

remained for the duration of the study. In each subject measurements of total gastric volume 

and perceptions of appetite and gastrointestinal symptoms were performed immediately 

before (during fasting; -5 min), and immediately after ingestion of the drink, and at 15-min 

intervals until 180 min, Subjects were instructed to consume the drink within 2 min. Gastric 

volume was acquired by 3-dimensional (3D) ultrasound images. Perceptions of appetite and 

gastrointestinal symptoms were assessed using validated visual analogue scales (VAS). At 

180 min, subjects were presented with a standard, cold, buffet-style meal in excess of what 

they were expected to consume and instructed to eat freely for up to 30 min until comfortably 

full (180–210 min) (250, 251). The composition of the buffet-style meal is provided in Table 

4.1. 
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Measurements 

Energy intake 

The amount eaten (g) was quantified by weighing the buffet meal before and after 

consumption. Energy intake (kcal) at the buffet meal and proportions of intake of protein, 

carbohydrate and fat were calculated using commercially available software (Foodworks; 

Xyris Software Pty Ltd, Spring Hill, QLD, Australia). Energy intake was calculated both as 

the intake at the buffet meal and as the cumulative energy intake, defined as the sum of 

energy intake at the buffet meal and the energy content of the preload drink. Absolute (kcal) 

and percentage suppression/change (expressed as % of energy intake of the control day) of 

energy intake at the buffet meal by a given protein load compared to control was calculated. 

 

Gastric emptying 

Total gastric volume was assessed by 3D ultrasonography, a method that has been validated 

against the ‘gold standard’ scintigraphy for measurement of the emptying of liquids from the 

stomach (68). A Logiq™ 9 ultrasound system (GE Healthcare Technologies, Australia) with 

TruScan Architecture [built-in magnetically sensored 3D positioning and orientation 

measurement (POM)] including a 3D sensor, attached to a 3.5C broad spectrum 2.5-4 MHz 

convex transducer, and a transmitter, placed at the level of the stomach immediately behind 

the subject were used. As the transmitter produces a spatially varying magnetic field that is 

distorted by conductive metals, all metal objects were removed from the patient to minimise 

interference during image acquisition. The stomach was scanned by a continuous 

translational movement along its long axis (~10 s). During each scan subjects were instructed 

to sit still and hold their breath at the end of inspiration. If gastric contractions were observed, 

the acquisition was paused until the contraction wave had passed. The raw data (original 

scan planes) were transferred for 3D reconstructions and volume estimation using EchoPAC 
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- 3D software (GE Vingmed Sound, Horten, Norway). Gastric retentions were calculated as 

total gastric volumes minus baseline ‘empty’ gastric volume at each time point expressed as 

percentage of the maximal gastric volume (100%), ie, ~450 mL volume of the ingested drink. 

When ultrasound images lacked sufficient clarity to determine the volume of the stomach, 

data were imputed by linear interpolation. The quality of ultrasound stomach images was 

insufficient to determine gastric emptying in all three conditions in one older subject, and 

this subject was, therefore, excluded from the analysis. The time at which 50% of the preload 

drink had emptied from the stomach (50% gastric emptying time; T50; min) and ‘complete’ 

emptying time (T100; min) of the drink, defined as the time when the residual volume of the 

drink in the stomach was ≤ 5%, was calculated for all conditions. Complete emptying time 

was set to 180 min when the residual volume at 180 min was ≤ 5%. Rate of gastric emptying 

was calculated as mean of rates of emptying during each 15-min interval respectively of the 

early (0-45 min) and late (45-180 min) phase and total (0-180 min) time period. 

 

Perceptions of appetite and gastrointestinal symptoms 

Perceptions of hunger, desire to eat, prospective consumption, fullness, nausea and bloating 

were rated using a visual analogue scale (VAS) questionnaire (47). The questionnaire 

consisted of 100-mm horizontal lines, where 0 represented that the sensation was ‘not felt at 

all’ and 100 represented that the sensation was ‘felt the greatest’. Subjects placed a vertical 

mark on each horizontal line to indicate the strength of each sensation at the specified time 

points. Baseline fasting ratings were calculated as mean of the three study days. One young 

and one older subject did not comply with the guidelines of the VAS questionnaires on one 

or more study days and were excluded from the analyses. 
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Data analysis 

Statistical analyses were performed using SPSS software (version 21; IBM, Armonk, NY, 

USA). Main age and protein-load effects and interaction effects were determined by using 

repeated-measures ANOVA. Relations of energy intake with the rate of gastric emptying 

(kcal/min) and appetite were evaluated by between- and within-subject correlations (277, 

278). Statistical significance was accepted at P < 0.05. All data are presented as means ± 

SEMs. 

 

RESULTS 

The study protocol was well tolerated by all subjects. 

Energy intake 

Energy intake at the buffet meal was suppressed by whey protein compared with control 

(mean of young and older: there was a decrease in energy intake of 134  38 kcal after the 

30 g (120 kcal) and 105  49 kcal after the 70 g (280 kcal) protein load; main effect of 

protein-load P = 0.034; Figure 7.1). The main effect of age (P = 0.27) and the interaction 

effect of age x protein-load (P = 0.06) were not significant. 

Suppression of energy intake by whey protein compared to control was less in older men 

than young controls (young compared with older: 15  2% compared with 1  5%; main 

effect of age; P = 0.008; in young men 17 ± 3% by the 120-kcal and 12 ± 3% by the 280-

kcal protein load compared to control [P < 0.05] and in older men 2 ± 5% and 0 ± 8% [P > 

0.05]; Figure 7.2). The main effect of protein-load (P = 0.61) and the interaction effect of 

age x protein-load (P = 0.68) were not significant. 

Cumulative energy intake during the protein days compared with the control day increased 

more in older men than young controls (young compared with older: 1  3% compared with 

18  6%; main effect of age P = 0.008) and increased more during the 70 g than the 30 g 
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protein day (30 compared with 70 g protein load: 1  4% compared with 19  6%; main 

effect of protein-load P = 0.011). The interaction age x protein-load was not significant (P 

= 0.68). 

Macronutrient proportions at the buffet meal did not differ between the age groups at 

baseline, nor on any of the other study days, and were not affected by either of the protein 

treatments (P > 0.05). 

Cumulative energy intake (i.e. energy intake at the buffet meal plus energy content of the 

drink) during the protein day compared with the control day was age and protein-load 

dependent. The main effects of age (P = 0.008) and protein-load (P = 0.011) for cumulative 

energy intake during the protein days compared with the control day were significant; the 

interaction age x protein-load was not significant (P = 0.68). 

 

 

Figure 7.1: Mean ( SEM) energy intake (kcal) in young (grey shading; n = 8) and older 

(black shading; n = 8) subjects after drinks (open bars) containing water (control) and whey 

protein loads of 30 g and 70 g. Main age and protein-load effects and interaction effects were 

determined by using repeated-measures ANOVA. 

The protein-drinks suppressed subsequent energy intake at the buffet meal compared with 

control. The main effect of protein-load for energy intake was significant (P = 0.034); the 

main effect of age (P = 0.27) and the interaction effect of age x protein-load (P = 0.06) were 

not significant. 
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Figure 7.2: Mean ( SEM) suppression of energy intake at the buffet meal (kcal) in young 

(grey shading; n = 8) and older (black shading; n = 8) subjects after whey protein loads of 

30 g and 70 g compared to after control (0 g whey protein). Main age and protein-load effects 

and interaction effects were determined by using repeated-measures ANOVA. 

Suppression of energy intake by protein was less in older than young subjects. The main 

effect of age for suppression of energy intake was significant (P = 0.008); the main effect of 

protein-load (P = 0.61) and the interaction effect of age x protein-load (P = 0.68) were not 

significant. 

 

Gastric emptying 

Gastric emptying parameters are detailed in Table 7.1. Baseline gastric volumes were not 

different between young and older men (31  6 mL compared with 39  3 mL; P = 0.28). 

The control drink (water) emptied in a non-linear pattern, whereas the pattern of the 280-

kcal protein drink was more linear, particularly in the older men - age appears to affect the 

initial rate of gastric emptying (Figure 7.3). After ingestion of all 3 study drinks gastric 

emptying was slower in older men than young controls, with T50 times (mean of 3 study 

days young compared with older of 36  5 min compared with 68  5 min; main effect of 

age P = 0.007), equating to an emptying rate of energy of (1.0  0.0 kcal/min in the young 

subjects compared to 0.8  0.0 kcal/min in the older subjects on the two protein days (effect 

of age P = 0.022), and higher measures of gastric retention (main effect of age P = 0.003).  
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Figure 7.3: Mean ( SEM) gastric retention (%) in young (n = 8) and older (n = 7) subjects 

after drinks containing water (control) and whey protein loads of 30 g or 70 g. Main age and 

protein-load effects and interaction effects were determined by using repeated-measures 

ANOVA. 

Gastric emptying of the water and protein drinks was slower in older than young men. The 

main effects of age and protein-load for the 50% gastric emptying time (T50; min; P = 0.007; 

P < 0.001) and gastric retention (%; area under the curve; P = 0.003; P < 0.001) were 

significant; the age x protein-load interactions for T50 (P = 0.08) and gastric retention (P = 

0.22) were not significant. 

 

Ingestion of the protein drinks resulted in a dose-dependent slowing of gastric emptying, of 

comparable magnitude in both age groups, with T50 more than a doubling from the control 

to the 120-kcal day (mean of all men; 17  2 to 41  5 min), with a further similar increase 

from the 120-kcal to the 180-kcal day (mean of all men; 41  5 to 96  11 min; main effect 

of protein-load; P < 0.001). Consequently rates of energy emptying (kcal/min) did not differ 
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between the 120-kcal and 280-kcal days. The age x protein-load interactions for T50 (P = 

0.08) and gastric retention (P = 0.22) were not significant. 

 

Table 7.1: Gastric emptying rate, T50, T100 and gastric retention (area under the curve; 0-

180 min) of water (control) and protein drinks in young and older men1 

 Young men (n = 8) Older men (n = 7) 

 0 g 30 g 70 g 0 g 30 g 70 g 

T50 (min)2,3   1214,5    2544,5 72134,5   2334,5    5954,5 123134

,5 

T100 (min)2,6   6074,5 126144,5 17165 109134,5 17464,5 1746 

Amount emptied at 180 min 

(%)7 

1000 981 865 990 892  705 

       

Gastric retention (%)3 17310 33731  59145  27124 54432  80739  

       

Rate of gastric emptying (0-180 

min; kcal/min)7 

  0.70.0 1.30.1   0.60.0   1.10.1 

Early phase of rate of gastric 

emptying (0-45 min; 

kcal/min)6,7 

  1.80.34,5 2.60.24,5  1.20.04  

1.40.14 

Late phase of rate of gastric 

emptying (45-180 min; 

kcal/min)7,8 

  0.30.0  0.90.1   0.40.0   1.00.1 

1All values are means  SEMs. Main age and protein-load effects and interaction effects 

were determined by using repeated-measures ANOVA. 
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250% emptying time (T50; min). Complete emptying time (T100; min) of the drink was 

defined as the time when the residual volume of the drink in the stomach was ≤ 5% and T100 

was set to 180 min when the residual volume at 180 min was ≥ 5%. 
3The main effects of age and protein-load for gastric retention (AUC from baseline to 180 

min; P = 0.003; P < 0.001) and T50 (P = 0.007; P < 0.001) were significant. The age (young, 

older) x protein-load (0, 120, 280 kcal) interaction for gastric retention (AUC from baseline 

to 180 min; P = 0.22) and T50 (P = 0.08) was not significant. 
4P < 0.05; between age groups 
5P < 0.05; between protein conditions 
6The age x protein-load interaction and main effects of age and protein-load for T100 (P = 

0.048, P = 0.027; P < 0.001) and early phase rate of gastric emptying (0-45 min; P = 0.003, 

P = 0.001; P = 0.001) were significant. 
7Rate of gastric emptying was calculated as mean of rates of emptying during each 15-min 

interval respectively of the early (0-45 min) and late (45-180 min) phase and total (0-180 

min) time period. 
8The main effect of protein-load for the amount emptied at 180 min (%; P < 0.001), rate of 

gastric emptying (0-180min; P < 0.001) and late phase of rate of gastric emptying (45-180 

min; P < 0.001) were significant. The age x protein-load interaction and main effect of age 

for the amount emptied at 180 min (%; P = 0.17; P = 0.06), rate of gastric emptying (0-180 

min; P = 0.14; P = 0.08) and late phase of rate of gastric emptying (45-180 min; P = 0.87; P 

= 0.23) were not significant. 

 

Perceptions of appetite and gastrointestinal symptoms 

Appetite 

Baseline ratings of desire to eat (young compared with older; 49  8 compared with 32  6 

mm; P = 0.11), prospective food consumption (54  8 compared with 43  5 mm; P = 0.25), 

hunger (43  8 compared with 34  6 mm; P = 0.37) and fullness (17  4 compared with 7 

 3 mm; P = 0.09) were not statistically different between young and older men. Ratings of 

desire to eat, prospective food consumption, and hunger differed from baseline over time (0-

180 min) during all study days in both age groups (P < 0.05); fullness increased from 

baseline in young (P < 0.05), but not in older (P > 0.05), subjects (Figure 7.4). 

The main effect of age for AUC ratings of desire to eat (mean of 3 study days; young: a 

decrease of 647  910 mm from baseline; older: an increase of 1027  458 mm from baseline; 

P = 0.024) and prospective food consumption (mean of 3 study days; young: a decrease of 

1616  706 mmm from baseline; older: an increase of 119  370 mm from baseline; P = 
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0.021) was significant, while the main effect of age for ratings of hunger (P = 0.48) and 

fullness (P = 0. 59) was not. The main effect of protein-load and the age x protein-load 

interaction for ratings of desire to eat, prospective food consumption, hunger and fullness 

were not significant (Table 7.2). 

 

Figure 7.4: Mean ( SEM) visual analogue scores (mm; 0-180 min) of desire to eat (A and 

B) and fullness (C and D) in young (n = 7) and older (n = 7) subjects after whey protein 

loads of 30 g and 70 g and a control drink (water), and after the ad libitum buffet meal (210 

min). Time (0-180 min) effects were determined by using repeated-measures ANOVA. 

Ratings of desire to eat changed from baseline during all study days in both age groups (P < 

0.05); fullness was increased from baseline in young (P < 0.05), but not in older (P > 0.05), 

subjects. 

 

Nausea and bloating 

Baseline ratings of nausea (young compared with older; 13  4 compared with 3  1 mm, P 

= 0.040) were lower in older men than young controls, while ratings of bloating were not (8 

 4 compared with 3  1 mm, P = 0.29). Ratings of bloating increased in young (P < 0.05), 

but not in older (P > 0.05), subjects (Figure 7.5). The main effects of age and protein-load 

and age x protein-load interaction for ratings of nausea and bloating were not significant 

(Table 7.2). 
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Figure 7.5: Mean ( SEM) visual analogue scores (0-180 min; mm) of nausea (A and B) 

and bloating (C and D) in young (n = 7) and older (n = 7) subjects after whey protein loads 

of 30 g and 70 g and a control drink (water), and after the ad libitum buffet meal (210 min). 

Time effects (0-180 min) were determined by using repeated-measures ANOVA. 

Ratings of nausea were not different from baseline in either age group (P > 0.05); ratings of 

bloating were increased from baseline in young (P < 0.05), but not in older (P > 0.05), 

subjects. 

 

Relations between energy intake with gastric emptying and perceptions of 

appetite 

Energy intake (kcal) at the buffet meal was, within subjects, inversely related to gastric 

retention (AUC from baseline to 180 min; %) in young (r = -0.54, P = 0.026), but not older 

(r = -0.16, P = 0.57), men (all men; r = -0.35, P = 0.05); i.e., the slower the study drink 

emptied from the stomach (0-180 min) within a young subject - 70 g < 30 g < 0 g - the lower 

the subsequent energy intake (180-210 min).

 

Figure 5 
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Table 7.2: Hunger, desire to eat, prospective food consumption, fullness, nausea and bloating (area under the curve) after water (control) and protein 

drinks (0-180 min) in young and older men1 

 Young men 

(n = 7) 

   Older men 

(n = 7) 

    

 0 g 30 g 70 g Mean change by 

protein compared 

with control 

0 g 30 g 70 g Mean change by 

protein compared 

with control 

P2 

Desire to eat (mm)3 -86485 186835 -15341181 -588860 933678 -4001311 2454690 94421 0.490 

Prospective food 

consumption (mm)3 

231876 -14221082 -18111228 -1848643 257638 -793846 10301095 -138921 0.154 

Hunger (mm) 1376945 28582 -5531168 -16381065 167719 -1731804 20301405 761862 0.105 

Fullness (mm) 14531756 1521602 23661086 4901502 1670697 2751525 1655790 -7051007 0.521 

Nausea (mm) 10211093 2741717 20591160 1451210 334308 175181 204126 -145209 0.817 

Bloating (mm) 21861328 13112023 15811331 -739913 342376 618475 595366 265166 0.301 

1All values are means  SEMs. Main age and protein-load effects and interaction effects were determined by using repeated-measures ANOVA. 
2 Age effect of mean change by protein (30 g and 70 g) compared with control (0 g) (ANOVA). 



 

 

3 The main effect of age for ratings of desire to eat (P = 0.024) and prospective food consumption (P = 0.021) was significant. The age (young, older) x 

protein-load (0, 120, 280 kcal) interaction for ratings of desire to eat (P = 0.10), prospective food consumption (P = 0.60), hunger (P = 0.33), fullness (P 

= 0.83), nausea (P = 0.47) and bloating (P = 0.34) was not significant. The main effect of age for ratings of hunger (P = 0.48), fullness (P = 0. 59), nausea 

(P = 0.19) and bloating (P = 0.34) was not significant. The main effect of protein-load for ratings of desire to eat (P = 0.46), prospective food consumption 

(P = 0.42), hunger (P = 0.74), fullness (P = 0. 64), nausea (P = 0.67) and bloating (P = 0.54) was not significant. 
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Suppression of energy intake at the buffet meal by protein compared to control was, between 

subjects, directly related to suppression of prospective food consumption by protein 

compared to control (r = 0.60, P = 0.024) in all men. There was no association between 

fullness ratings at 180 min (i.e., just before the buffet meal) and energy intake, in the young 

(r = 0.04, P = 0.92), older (r = 0.35, P = 0.40) or combined subjects (r = 0.18, P = 0.50). 

Suppression of energy intake by protein was, irrespective of age, directly related to energy 

intake during the control day (young: r = 0.88, P = 0.004; older: r = 0.71, P = 0.048; 

combined subjects: r = 0.82, P < 0.001). The age effect on the suppression of energy intake 

at the buffet meal by protein was still significant (P = 0.001) taking energy intake during the 

control day into account as a covariate. 

 

DISCUSSION 

This study examined the influence of ageing on the acute effects of oral whey protein 

consumption on suppression of energy intake, appetite and gastric emptying. The major 

finding was that suppression of energy by protein was less in healthy older men (1%) than 

young controls (15%), so that the cumulative energy intake (buffet meal plus preload drink) 

was increased more by the protein ingestion in older men (18%) than young controls (1%). 

These observations are consistent with our recent finding that the suppression of subsequent 

energy intake by intraduodenal infusions of whey protein was less in healthy older men 

(~1%) than young controls (~19%) (194). They are also consistent with reports of reduced 

responsiveness in older people to the suppressive effects of oral mixed macronutrient meals 

on energy intake (46, 63), and extend these to show that these age differences also apply 

when protein is ingested on its own. 

The oral whey protein consumptions decreased the ratings of desire to eat and prospective 

food consumption when compared to the baseline, after overnight fasting, ratings in young, 
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whilst they were increased in the healthy older males. The ratings of prospective food 

consumption reflected subsequent energy intake in both age groups. The greater the 

reduction in these ratings after protein consumption the greater the reduction in subsequent 

energy intake. Thus, while older people are less hungry and eat less than younger adults (41, 

42, 44-46, 88, 190), they appear to also be less susceptible to further suppression of appetite 

and eating behaviour by ingestion of energy and nutrients, including protein. 

The finding of an age-related reduction in the satiating effects of protein is potentially 

important. In young adults protein is the most satiating macronutrient when ingested orally 

(280), and there is evidence that high protein diets promote satiety and facilitate deliberate 

weight loss during energy restriction diets in overweight, younger adults (281). While 

beneficial in those circumstances, protein-enriched nutritional supplements given to older 

people for management of undernutrition, could have unintended adverse effects, if the 

satiating effects of protein are undiminished, or increased, by age. The use of high-protein 

supplements by older people for this purpose is widespread and increasing. This is partly in 

response to greater awareness of the prevalence of undernutrition and sarcopenia in older 

people, and evidence that protein supplementation may increase both muscle mass and 

function (20, 271). The age-related reduction in suppression of appetite and feeding 

responses to oral protein, and to protein directly infused into the small intestine (194), 

suggest that if timing and preparation are optimised, it may be possible to give sufficient 

protein to older people to preserve, or increase muscle mass and function, without 

suppressing energy intake. The optimum composition for nutritional supplements for 

management of undernutrition in older people is not known. The nutritional supplements are 

probably best given in liquid form between meals (60) as suppression of energy intake by 

energy-containing beverages are less when compared to iso-energetic solid loads (304). 

In the young men, suppression of energy intake by the 70 g whey protein was comparable 

with the 30 g, suggesting that there may be a threshold of maximum suppression in energy 
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intake. This observation is consistent with comparable suppression of energy intake by 

protein rich meals 3 hours after whey protein ingestion of 15 and 30 g (305) and 4 hours 

after oral protein intakes of 24, 44 and 80 g (306). 

Cumulative energy intake was increased most by the highest protein dose (70 g); a 

substantial increase of 19% or 175 kcal. Although only a limited number of studies have 

examined the effects of state of nutrition in older people on the regulation of appetite, there 

is persuasive evidence of substantial differences between undernourished and healthy older 

people, which may potentially be an outcome of and/or contribute to the undernourished 

state. In particular, suppression of energy intake by a mixed nutrient preload was less in 

undernourished older women when compared to healthy older women (48). These findings 

raises the possibility that appropriately designed protein supplements might even act to 

increase overall energy intake in undernourished people by meaningful amounts. 

The regulation of appetite and energy intake is dependent on the precise co-ordination of 

interrelated ‘intragastric’ and ‘small intestinal’ sensory and motor mechanisms, including 

variations in gastric emptying (on average 1-4 kcal/min) (261) and gastric distension (70). 

Gastric emptying of ingested nutrients results in a relatively constant rate of energy delivery 

of the ingested nutrient load from the stomach to the duodenum. Slower gastric emptying 

results in greater distension of the stomach at a given time after food ingestion. This can, in 

turn, lead to greater fullness and a consequent reduction in subsequent energy intake. The 

suppressive effect of gastric distension on energy intake has led to successful attempts to 

reduce energy intake and induce weight loss in obese people by implanting gastric balloons 

(307). While slower gastric emptying prolongs retention of food in the stomach favouring 

satiation, it also delays the onset of powerful satiety signals initiated by the interaction of 

nutrients with the small intestine (295). 

In the present study, gastric emptying of the water and both protein drinks was slower in 

older men than young controls, consistent with results of previous studies (74, 78, 82). The 
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water drink emptied slower in older men than young controls, which implies an intragastric 

etiology. There was dose-dependent slowing of gastric emptying by protein to a similar 

degree in both age groups, with 50% gastric emptying time more than doubling from the 

control to the 30 g protein day, and from the 30 g to the 70 g day. The older subjects had a 

slower gastric emptying of the protein drinks than the young subjects (0.8 kcal compared 

with 1.0 kcal/min on average over 180 min), especially during the initial phase of emptying. 

Therefore the older men had greater intragastric volumes at all time points between protein 

ingestion and the buffet meal than the young men, despite the latter, fullness increased from 

baseline in young but not in older and the protein-induced suppression of subsequent energy 

intake was less in the older men compared with the young controls. This finding, and the 

lack of an association between fullness ratings at the start of the buffet meal and energy 

intake at that meal, suggests that age-related slowing of gastric emptying rate is not a major 

mediator of the age-related differences in protein-induced satiety at three hours after 

ingestion. It should, however, be recognised that to evaluate intragastric factors, the buffet 

meal has to be given much earlier. At the start of the meal, more than 85% of all drinks had 

emptied from the stomach, except the 70 g protein drink in the older subjects. Also all drinks, 

except the 70 g protein drink in the older subjects, emptied in a non-linear pattern, so once 

gastric emptying has started both intragastric volume and small-intestinal feedback were 

relevant. In older people, however, the perception of proximal gastric distension is 

diminished (84), which may explain why their slower gastric emptying had little if any 

suppressive effect on subsequent energy intake in this study. More likely, age-related 

differences in the satiating effects of orally ingested protein are mediated predominantly by 

mechanisms activated after the protein passes into the small intestine, e.g., gut hormone 

secretion (cholecystokinin, glucagon-like peptide-1, peptide tyrosine tyrosine and gastric 

inhibitory peptide) (114) and gut motility (269), rather than intragastric mechanisms, or by 

central mechanisms of amino acids, e.g., leucine, which is abundant in whey acts directly in 
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the central nervous system, to reduce intake. This is consistent with our previous finding of 

greater suppression of energy intake by protein in young than older men when protein is 

infused directly into the small intestine, thus removing any influence of differences in gastric 

emptying (194), implying that both intragastric and small intestinal mechanisms act to 

suppress energy intake are attenuated in healthy elderly. Further studies are needed to 

determine the nature of these mechanisms. 

This study has several limitations. The subject numbers were relatively small. We studied 

only men, as they appear to have the greatest ability to regulate energy intake in response to 

energy manipulation (46). The results do not, therefore, necessarily apply to the effects of 

ageing in women. Further studies are needed to determine this, and also the effects of protein 

when administered as part of a mixed macronutrient supplement in both undernourished and 

obese older people. Nevertheless, our findings support the use of protein supplements to 

increase energy intake in older people. 

The significant finding was that despite having slower gastric emptying, older men exhibited 

blunted protein-induced suppression of energy intake by oral whey protein compared with 

young controls, so that in the older men compared with the young controls protein ingestion 

increased overall energy intake more. The observations support the use of protein 

supplements in undernourished older people, but suggest that their use as a strategy to 

decrease energy intake in older obese individuals may not be effective. Future studies are 

needed to characterise the effects of protein and carbohydrate and fat in isolation and as a 

mixture, both in a liquid and solid form, in malnourished, i.e., underweight and obese, elderly 

and, thereby, provide comprehensive insights into the underlying mechanisms, and lead to 

improved, evidence-based, strategies for the use of supplements to increase energy intake in 

older undernourished individuals or to decrease energy intake as part of a weight-loss diet 

strategy in obese elderly. 
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ABSTRACT 

Background: Protein-rich supplements are used widely to prevent and manage malnutrition 

in older adults. We previously showed that 30 g whey-protein ingestion, three hours before 

a buffet meal, suppressed energy intake in young, but not in older, men. Information about 

the impact of the timing of ingestion of protein drinks on the suppression of energy intake 

in older adults is lacking. 

Objective: The aim of the study was to determine the effect of the timing of whey-protein 

ingestion on appetite and subsequent ad libitum energy intake in healthy older men. 

Design: In a single blind, randomised design, sixteen older men were studied on five 

occasions, on which they consumed a whey-protein drink (30 g/ 120 kcal, 140 mL) three, 

two, one hour(s), or immediately before a buffet meal, from which ad libitum energy intake 

was quantified, and iso-palatable non-caloric drinks (~1 kcal) at the remaining time-points. 

On the control day, non-caloric drinks were ingested at all time points. Perceptions of 

appetite and gastrointestinal symptoms were determined, by visual analogue scales, 

throughout the study days. 

Results: There was no effect of the timing of protein ingestion on perceptions of appetite 

and gastrointestinal symptoms (P > 0.05) or energy intake at the buffet meal (3 h: 888 ± 49 

kcal, 2 h: 879 ± 56 kcal, 1 h: 909 ± 47 kcal, 0 h: 892 ± 51 kcal, control: 930 ± 49 kcal, P = 

0.94). Total energy intake (i.e., preload + test meal) was higher on the protein days compared 

to control (82 ± 24 kcal increase, P = 0.003). 

Conclusions: In older men ingestion of 30 g protein increased total energy intake, 

irrespective of the time of intake in relation to the meal. These observations support the use 

of ‘pure’ whey-protein drinks to increase overall protein and energy intake in older adults at 

risk of undernutrition. 
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INTRODUCTION 

The prevalence of undernutrition in the ageing population, which is associated with reduced 

functional capacity and decreased quality of life, has increased over recent decades (6, 180, 

190, 285). A growing awareness of the prevalence, and substantial adverse effects, of the 

major muscle loss that occurs during ageing has stimulated the development of nutritional 

strategies designed specifically to preserve and/or restore skeletal muscle mass and function. 

A ‘common’ strategy is the use of supplements, which are usually high-energy drinks rich 

in whey protein (26, 27, 35, 286). Older people ingest protein in the range of ~40-66 g/day, 

less than the recommended minimum of 30 g protein intake per meal (i.e., ≥ 90 g/day)(25, 

308). Despite the widespread use of protein-rich drinks, information about their effects on 

energy intake in older adults is largely lacking. 

In young adults protein is the most satiating of the macronutrients(280) and the timing of 

intake affects the suppression of subsequent energy intake. For example, in young women 

less food is consumed during an ad libitum meal when a preload is administered 30 min, 

compared to intakes at 60 or 120 min, before a meal(309). Also a recent systematic review 

indicated that, in young and middle-aged adults (18-65 years), i) ad libitum energy intake at 

a meal is suppressed most when a mixed-macronutrient preload is given no more than 30 

min before the meal, ii) whereas an inter-meal interval of 30-120 min suppresses energy 

intake modestly and, iii) an inter-meal interval of 120 min or more is likely to increase total 

energy intake (i.e., preload + test meal), compared to a control day(310). 

To our knowledge only one study has evaluated the effect of the timing of supplements on 

appetite (i.e., inter-meal interval) and subsequent ad libitum energy intake in older 

individuals. Wilson et al. reported that total energy intake was higher when a mixed 

macronutrient preload (300 kcal) was consumed 60 min or more before a meal, compared to 

when the preload was given directly before, the meal in a group of younger (23-35 years, 
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BMI: 20-25 kg/m2) and older adults (70-85 years, BMI: 21-24 kg/m2) combined(60). A 

limitation of this study was that the potential effect of the timing of supplement intake could 

only be analysed as main time-effect (younger and older adults combined) due to the 

specificity of the study design [i.e., three-factor interaction between age, preload-type 

(water, high-protein, high-fat, high-carbohydrate) and time (≥ 60 min compared to directly 

before the meal)](60). Accordingly, whether the timing of ingestion of a protein supplement 

influences energy intake in older subjects is not known. Despite this; based on the above 

findings, recommendations have been made that supplements are best given between meals 

with a substantial time gap between the supplement and the next meal, to maximise overall 

protein and energy intake (60, 311-314). We recently reported that administration of both a 

30 g- and 70 g-protein drink (~450 mL) three hours before a subsequent buffet meal, 

suppressed ad libitum energy intake substantially in younger (25 ± 2 years; suppression of 

energy intake after a protein load of 30 g compared to control: 17 ± 3%; 70 g: 12 ± 3%), but 

not in older (73 ± 1 years; 30 g: 2 ± 5%; 70 g: 0 ± 8%), men (263). These marked differences 

in suppression of energy intake by protein is not surprising in view of the ‘anorexia of 

ageing’ (6) - healthy ageing is associated with a reduction in appetite and food intake (315). 

The aim of this study was to determine the effects of the timing of whey-protein intake on 

appetite and energy intake in healthy older men. Given the lesser suppression of energy 

intake by protein in older than younger people, we hypothesised that the timing of protein-

supplement administration can be much more liberal in older adults so that they can be given 

closer to meals without a substantial suppressive effect on subsequent ad libitum energy 

intake. 
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SUBJECTS AND METHODS 

Subjects 

The study included 16 Caucasian older men [age: Mean ± SEM: 76 ± 1 years (range: 66 – 

85 years); body weight: 81 ± 2 kg (67 – 94 kg); height: 1.75 ± 0.01 m (1.65 – 1.85 m); body 

mass index (BMI): 27 ± 1 kg/m2 (22 – 31 kg/m2)] who were recruited by advertisement. 

Exclusion criteria were smoking, consuming > 10 alcoholic drinks per week, diabetes, 

gastrointestinal surgery (apart from uncomplicated appendectomy), significant 

gastrointestinal symptoms (abdominal pain, gastro-oesophageal reflux, diarrhoea, or 

constipation), use of medications known to potentially affect appetite, food intake, or 

gastrointestinal motor function, impaired cognitive function [score < 25 on Mini Mental 

State(274)], depression [score ≥ 11 on the Geriatric Depression Questionnaire(275)] and 

undernutrition [score < 24 on the Mini Nutritional Assessment(276)]. 

The Royal Adelaide Hospital Human Research Ethics Committee approved the study 

protocol and the study was conducted in accordance with the Declaration of Helsinki. The 

study was registered as a clinical trial with the Australian New Zealand Clinical Trial 

Registry (www.anzctr.org.au, registration number ACTRN12615000070538). All subjects 

provided written informed consent prior to their inclusion. 

 

Protocol 

In randomised order (using the method of randomly permuted blocks; 

www.randomization.com), each subject was studied on five occasions, each separated by 3-

14 days. On the protein study days an oral whey-protein load (30 g/ 120 kcal) was ingested 

at either three (P3), two (P2), one (P1) hour(s), or immediately before (P0) a buffet meal, 

and iso-palatable, non-caloric drinks (~1 kcal) were consumed at the remaining time points. 

On the remaining control day, non-caloric drinks were ingested at all time points; i.e., at 
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three, two, one hour(s), and immediately before the meal. Subjects were blinded to the 

treatment order. Drinks were served in a covered cup and matched for taste by using diet 

lime cordial, as per our previous protocol (263). Protein drinks (30 g/ 120 kcal, 140 mL) 

were prepared by dissolving whey-protein isolate (Fonterra Co-Operative Group Ltd., 

Palmerston North, New Zealand) in 70 mL of water and 50 mL of diet lime cordial 

(Bickford’s Australia Pty Ltd, Salisbury South, SA, Australia). Control drinks were made up 

of 90 mL of water and 50 mL of diet lime cordial. 

Subjects were provided with a standardised evening meal [beef lasagne (McCain Foods Pty 

Ltd, Wendouree, VIC, Australia), ~591 kcal] to consume on the night before each study day 

at 07.00 pm. They were instructed to fast overnight from solids and liquids and to refrain 

from strenuous physical activity and alcohol for the 24 hours before they attended the 

laboratory at the Discipline of Medicine, the University of Adelaide, Royal Adelaide 

Hospital, at 08.30 am. 

Perceptions of appetite and gastrointestinal symptoms were determined immediately before 

(during fasting; 0 min), after ingestion of each drink (+5 min), and at 30-min intervals until 

180 min by validated visual analogue scales (VAS), i.e., 0, 5, 30, 60, 65, 90, 120, 125, 150, 

180, 185 min (47). Subjects were instructed to consume each drink within ~2 min. At 185 

min, subjects were presented with a standard, cold, buffet meal, in excess of what they were 

expected to consume, and instructed to eat freely for up to 30 min until comfortably full 

(185-215 min; ~12.00-12.30 pm)(263). The composition of the buffet meal is presented in 

Table 4.1. 
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Measurements 

Energy intake 

The amount eaten (g) was quantified by weighing the buffet meal before and after 

consumption. Energy intake (kcal) at the buffet meal and proportions of protein, 

carbohydrate and fat (energy-percent) were calculated using commercially available 

software (Foodworks; Xyris Software Pty Ltd, Spring Hill, QLD, Australia). Energy intake 

was calculated both as intake at the buffet meal and as the total energy intake; defined as the 

sum of energy intake at the buffet meal and the energy content of the whey-protein preload 

drink (263). Absolute (kcal) and percentage suppression of energy intake at the buffet meal 

(expressed as % of energy intake of the control day) for a given time of protein consumption 

compared to control were calculated. 

Habitual energy intake was assessed after the initial screening visit by a food diary 

maintained for three successive days, either three weekdays or two weekdays and a weekend 

day, and was calculated using commercially available software (Foodworks; Xyris Software 

Pty Ltd, Spring Hill, QLD, Australia). 

 

Perceptions of appetite and gastrointestinal symptoms 

Perceptions of hunger, desire to eat, prospective consumption, fullness, nausea and bloating 

were rated using a visual analogue scale (47). The questionnaire consisted of 100-mm 

horizontal lines, where 0 represented that the sensation was ‘not felt at all’ and 100 

represented that the sensation was ‘felt the greatest’. Subjects placed a vertical mark on each 

horizontal line to indicate the strength of each sensation at the specified time points. 
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Data analysis 

Statistical analyses were performed using SPSS software (version 21; IBM, Armonk, NY, 

USA). On the basis of our previous work (194, 263) we calculated that 16 subjects would 

allow for a detectable difference of 169 kcal of suppression of energy intake compared with 

control between the timing conditions of the whey-protein ingestions, i.e., at three, two, one 

hour(s) or immediately before the buffet-style meal. Main time effects were determined by 

using repeated-measures ANOVA and post-hoc Bonferroni corrections. Time effects of 

perceptions of appetite and gastrointestinal symptoms were determined with repeated 

measures ANOVA. Comparisons of perceptions of appetite and gastrointestinal function 

between baseline and 185 min, and before and after drink consumption, were determined 

with paired two-tailed student t-tests. Relations of energy intake with perceptions of appetite 

were evaluated by within-subject correlations(277). Statistical significance was accepted at 

P < 0.05. Area under the curves (AUCs) were calculated by using the trapezoidal rule. All 

data are presented as means ± SEMs. 

 

RESULTS 

The study protocol was well tolerated by all subjects. Habitual energy intake, assessed by 3-

day food diaries, was 2,406 ± 177 kcal, with proportions of protein, carbohydrate and fat of 

18 ± 1, 41 ± 2 and 35 ± 1 energy-percent. Habitual energy intake correlated positively with 

energy intake during the control day (r = 0.608; P = 0.012). 

 

Energy intake 

Energy intake at the buffet meal (Figure 8.1) did not differ between study days (protein load 

at three, two, one hour(s), or just before the meal and control day; P3: 888 ± 49 kcal, P2: 879 

± 56 kcal, P1: 909 ± 47 kcal, P0: 892 ± 51 kcal, control: 930 ± 49 kcal; P = 0.73). Total 
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energy intake during the four protein days was greater compared with the control day 

(average increase of 82 ± 24 kcal ad libitum energy intake after protein drink compared to 

control, 10 ± 3%; P = 0.004). 

 

Figure 8.1: Mean ( SEM) ad libitum energy intake (kcal) in older men (n = 16) after drinks 

(open bars) during a control study day (no protein) and on protein study days with 

administration of a 30 g whey-protein drink three (P3), two (P2), one (P1) hour(s), or 

immediately before (P0) a buffet meal. 

The time effect was determined by repeated-measures ANOVA (P > 0.05, energy intake). 
* P = 0.004 Mean total (preload plus test meal) energy intake protein days compared to 

control day (ANOVA). 

 

Perceptions of appetite and gastrointestinal symptoms 

Baseline and AUC perceptions of hunger (48 ± 8 mm; 8546 ± 1336 mm), desire to eat (41 ± 

7 mm; 8083 ± 1149 mm), prospective food consumption (47 ± 6 mm; 9048 ± 1046 mm), 

fullness (6 ± 2 mm; 2458 ± 630 mm), nausea (6 ± 2 mm; 1252 ± 319 mm) and bloating (5 ± 

2 mm; 1520 ± 335 mm) were not different between study days (P > 0.05). 

Perceptions of hunger (P = 0.035), desire to eat (P = 0.002), prospective food consumption 

(P = 0.040), fullness (P = 0.001) and bloating (P = 0.010), but not nausea (all P = 0.22), 

changed over time from baseline (Figure 8.2). Perceptions of desire to eat (10 ± 5 mm; P = 

0.047), fullness (14 ± 4 mm; P = 0.005) and bloating (7 ± 2 mm; P = 0.009), but not hunger 

(4 ± 5 mm; P = 0.43), prospective food consumption (7 ± 4 mm; P = 0.13) and nausea (2 ±  
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Figure 8.2: Mean ( SEM) visual analogue score (VAS) rating of hunger, desire to eat, 

prospective food consumption, fullness, nausea and bloating in older men (n = 16) during 

the control study day (black line) and during the protein study days with consumption of a 

30 g whey-protein drink three (P3), two (P2), one (P1) hour(s), or just before (P0) a buffet 

meal. The time points of protein administration are indicated with a larger round open marker 

(). The time effect was determined by repeated-measures ANOVA (P > 0.05, area under 

the curve for hunger, desire to eat, prospective food consumption, fullness, nausea and 

bloating). 

 

2 mm; P = 0.16), were higher after the final drink immediately before the meal (185 min) 

compared to baseline. Both drinks; the 30 g whey-protein and the iso-palatable control drink, 

induced comparable reductions, 5 min post compared to pre drink ingestion, in hunger 

(protein drink: 3 ± 1 mm reduction, P = 0.030; control drink: 3 ± 1 mm reduction, P = 0.038; 
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protein drink compared to control drink P = 0.60), and increases in fullness (protein: 5 ± 2 

mm increase, P = 0.015; control: 5 ± 1 mm increase, P = 0.001; protein compared to control 

P = 0.99) and bloating (protein: 2 ± 1 mm increase, P = 0.024; control: 2 ± 1 mm increase, 

P = 0.029; protein compared to control P = 0.99). There were no changes, in desire to eat 

(protein: 2 ± 2 mm reduction, P = 0.23; control: 2 ± 1 mm reduction, P = 0.17; protein 

compared to control P = 0.46), prospective food consumption (protein: 1 ± 1 mm reduction, 

P = 0.26; control: 1 ± 1 mm reduction, P = 0.20; protein compared to control P = 0.97) or 

nausea (protein 1 ± 1 mm increase, P = 0.63; control 0 ± 0 mm, P = 0.84; protein compared 

to control P = 0.61). 

 

DISCUSSION 

This study evaluated the acute effects of the timing of consumption of a 30 g whey-protein 

preload on energy intake, appetite and gastrointestinal symptoms in healthy older men. The 

protein drink did not suppress ad libitum energy intake when administered three, two, one 

hour(s), or just before a meal. However, there was a comparable effect of the whey-protein 

preload to increase total (i.e., preload plus test meal) energy intake by ~10% compared to 

the control study day in the older men, irrespective of the timing of its ingestion. These 

observations support the use of ‘pure’ whey protein to increase overall protein and energy 

intake in older adults at risk of undernutrition. 

We have previously shown that an identical 30 g whey-protein drink suppresses energy 

intake in young people when it is given 180 min before a meal (263). The lack of suppression 

of energy intake in older adults is likely to be associated with a reduced responsiveness to 

the suppressive effects of nutrients on appetite and energy intake (46, 63, 194, 263). 

The 30 g protein dose used in this study has the capacity to increase body weight, particularly 

when ingested several times per day. It is also, in the range reported to have favourable 
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effects on muscle mass (23) and, therefore, often recommended as an appropriate dose for 

supplementation in older people (25, 316). Lower amounts of protein may not reach the 

threshold for postprandial muscle protein accretion (23, 25). Our observations support the 

use of protein supplements in older people to preserve or increase skeletal muscle mass and 

function without suppressing energy intake at the following meal. Accordingly the timing of 

ingestion of protein or protein-rich supplements by older people relative to usual meals may 

not be important, as previously proposed (60, 311, 312), so that they can even be taken just 

before the usual meal without suppressing subsequent food intake. 

Studies have shown that frail, older people who performed resistance exercise and consumed 

supplemental dietary protein for 24 weeks had significant muscle gain, together with 

increased muscle strength and performance (317). In older people, administration of protein 

immediately after (resistance) exercise results in increased muscle hypertrophy compared to 

administration of protein two hours after completion of the training bout (318). Given the 

outcomes of this study it is likely that timing of protein supplements related to physical 

exercise is much more important than the timing related to food intake. 

This study has limitations which should be appreciated. The subject numbers were relatively 

small, although the results seem to be clear-cut. Only one dose (30 g/ 120 kcal) of whey 

protein was used, and the effect may not apply to other macronutrients (i.e., fat and 

carbohydrate). The timing of the whey-protein drink varied in relation to the buffet meal 

(three, two, one hour(s), or immediately before the meal), but timing of assessment of ad 

libitum energy intake from ingestion of the first drink was identical in all study days, i.e., 

three hours thereafter. Also a consequence of the study design, the protein study days (i.e., 

30 g whey-protein drinks of 140 mL administered three, two, one hour(s), or just before the 

meal) contained three control study drinks for blinding the timing of protein ingestion (total 

volume of 560 mL in both control and protein study days), therefore, the volume effect of 

the drinks should be appreciated. In older people, however, the perception of proximal 
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gastric distension is diminished (84). Also we did not determine gastrointestinal mechanisms 

(e.g., gastric emptying and gut hormones). 

In conclusion, in healthy older subjects, a 30 g whey-protein supplement has no suppressive 

effect on ad libitum energy intake within three hours of administration, and increases total 

energy intake (preload plus test meal), irrespective of the time of intake before the meal. This 

supports the use of ‘pure’ whey supplements to increase overall protein and energy intake in 

older adults at risk of undernutrition. 
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ABSTRACT 

Background: Protein- and energy-rich supplements are used widely for the management of 

malnutrition in the elderly. Information about the effects of protein on energy intake and 

related gastrointestinal mechanisms and whether these differ between men and women is 

limited. 

Objective: The aim of the study was to determine the effects of whey protein on energy 

intake, appetite, gastric emptying and gut hormones in healthy older men and women. 

Design: Eight older women and eight older men (mean ± SEM; age 72 ± 1years and BMI 

25 ± 1 kg/m2) were studied on three occasions in which they received protein loads of 30 g 

(120 kcal) or 70 g (280 kcal), or a flavoured-water control-drink (0 kcal). At regular intervals 

over 180 min, appetite (visual analogue scales), gastric emptying (3D-ultrasonography), 

blood glucose and plasma gut hormone concentrations (insulin, glucagon, ghrelin, CCK, 

GIP, GLP-1 and PYY) were measured and ad libitum energy intake was quantified from a 

buffet meal (180-210 min - energy intake, appetite and gastric emptying in the men have 

been published previously). 

Results: Energy intake at the buffet meal was ~80% higher in older men than older women 

(P < 0.001). Energy intake was not suppressed by protein compared to control in men or 

women (P > 0.05). There was no effect of gender on gastric emptying, appetite and 

gastrointestinal symptoms, glucose or gut hormones (P > 0.05). There was a protein load-

dependent slowing of gastric emptying, increase in concentrations of insulin, glucagon, 

CCK, GIP, GLP-1 and PYY, and increase in total energy intake (drink + meal, 12% increase 

with 30 g, 32% increase with 70 g, P < 0.001). Energy intake at the buffet meal was inversely 

related to stomach volume and the area under the curve of hormone concentrations (P < 

0.05). 
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Conclusions: In older men and women whey protein drinks, compared to control, load-

dependently slowed gastric emptying, and altered gut hormone secretion, but had no 

suppressive effect on subsequent ad libitum energy intake. 
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INTRODUCTION 

Over recent decades, the prevalence of malnutrition, both under-nutrition and obesity, has 

increased in older men and women (285, 319). A growing awareness of the prevalence and 

adverse effects of the major muscle loss that occurs during ageing, irrespective of body mass 

index (BMI, kg/m2), e.g. reduced functional capacity and decreased quality of life (6, 190, 

285), has led to the development of nutritional strategies designed specifically to preserve 

and/or restore skeletal muscle mass and function. A ‘common’ strategy is the use of 

supplements which are usually high-energy drinks rich in whey protein (26, 27, 35, 286, 

320). 

Despite this increasing use of protein-rich drinks, information about their effects on energy 

intake and underlying gastrointestinal mechanisms in older men and, particularly, older 

women, is lacking. In young adults protein is the most satiating of the three macronutrients 

(280). After a mixed macronutrient preload young women, when compared to young men, 

appear to compensate less in the subsequent meal resulting in a higher total (i.e. meal plus 

preload) energy intake (321, 322). Variations in gut hormone secretion and/or action [e.g., 

ghrelin, cholecystokinin (CCK), glucose-dependent insulinotropic polypeptide/ gastric 

inhibiting polypeptide (GIP), glucagon-like polypeptide-1 (GLP-1) and peptide tyrosine 

tyrosine (PYY)], as well as the rate of gastric emptying and gastric distension are likely to 

play a role in the regulation of appetite and energy intake in younger adults, particularly in 

the short-term after nutrient ingestion (70, 112-114, 234, 237, 288). 

Compared to young adults healthy older people exhibit decreased taste and food palatability, 

are less hungry and more full during fasting and postprandial states, and consume less food 

and energy, including protein (315). This has been termed ‘the physiological anorexia of 

ageing’ (6, 190). Healthy ageing is associated with a reduced responsiveness to the 

suppressive effects of nutrients on appetite and energy intake (46, 63, 194, 263). We have 
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recently demonstrated that acute administration of 30 g (120 kcal), and 70 g (280 kcal) oral 

whey protein loads suppressed subsequent energy intake by 12-17% in young, without 

suppression in healthy older, men (263). Accordingly, protein ingestion increased total 

energy intake (protein plus subsequent ad libitum energy intake) compared to control in older 

men more than in the young men. 

In this study we aimed to further characterise the feeding and gut (hormone) responses to 

orally ingested whey protein loads in older people, by studying older women as well as men. 

We hypothesised that orally administered whey protein would have a load-related effects on 

gastric emptying and plasma gut hormone concentrations (insulin, glucagon, ghrelin, CCK, 

GIP, GLP-1, PYY) in healthy older men and women, suppress of subsequent ad libitum 

energy intake less and, therefore, result in a greater increase in overall energy intake (protein 

drink plus meal intake) compared to control in older women than older men (previously 

published data of energy intake, appetite and gastric emptying). 

 

SUBJECTS AND METHODS 

Subjects 

The study included 8 older men [age: Mean ± SEM: 73 ± 1 years; body weight: 77 ± 4 kg; 

height: 1.73 ± 0.02 m; BMI: 26 ± 1 kg/m2; the men were included in our previous study 

comparing energy intake, appetite and gastric emptying between young and older men (263)] 

and 8 older women (70 ± 1 years; 63 ± 2 kg; 1.58 ± 0.02 m; 25 ± 1 kg/m2) who were recruited 

by advertisement. There were no differences in either age (P = 0.14) or BMI (P = 0.70) 

between the males and females. On the basis of our previous work (194), with an observed 

within-subjects SD of 181 kcal and upper 60% confidence limit of 234 kcal, we calculated 

that 8 subjects per group would allow detection of a within-groups difference between 

treatments of 271 kcal (n = 8 older women), and a between genders difference of 353 kcal 
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(n = 8 older women compared with n = 8 older men), with power equal to 0.8 and alpha 

equal to 0.05.  

Exclusion criteria were smoking, alcohol abuse, use of illicit substances, diabetes, 

gallbladder or pancreatic disease, gastrointestinal surgery (apart from uncomplicated 

appendectomy), gastrointestinal symptoms (abdominal pain, gastro-oesophageal reflux, 

diarrhoea, or constipation), use of medications known to potentially affect energy intake, 

appetite or gastrointestinal motor function, impaired cognitive function [score < 25 on Mini 

Mental State (274)], depression [score ≥ 11 on the Geriatric Depression Questionnaire (275)] 

and undernutrition [score < 24 on the Mini Nutritional Assessment (276)], being lactose 

intolerant or having food allergies, low ferritin levels or blood donation in the 12 weeks prior 

to the study days, and failing to comprehend the study protocol. The Royal Adelaide Hospital 

Human Research Ethics Committee approved the study protocol and the study was 

conducted in accordance with the Declaration of Helsinki. The study was registered as a 

clinical trial with the Australian New Zealand Clinical Trial Registry (www.anzctr.org.au, 

registration number ACTRN12612000941864). All subjects provided written informed 

consent prior to their inclusion. 

 

Protocol 

The protocol was identical to that of our previous study comparing young and older men and 

the results (i.e. energy intake, appetite and gastric emptying) in the older men have been 

published previously (263). Each subject was studied on 3 occasions, separated by 3-14 days, 

to determine the effects of two oral whey protein loads (30 g/ 120 kcal and 70 g/ 280 kcal) 

and a flavoured water control-drink (~0 g protein) on energy intake, gastric emptying, 

perceptions of appetite and gastrointestinal symptoms, in a randomised [using the method of 
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randomly permuted blocks; www.randomization.com (16 subjects randomised in 1 block 

with random permutations)], double-blind, cross-over design. 

Protein drinks were served in a covered cup and prepared by dissolving whey protein isolate 

(Fonterra Co-Operative Group Ltd., Palmerston North, New Zealand) in varying volumes of 

demineralised water and diet lime cordial (Bickford’s Australia Pty Ltd, Salisbury South, 

SA, Australia) to achieve the desired loads [i.e. 30 g whey protein (volume of the powder: 

19 mL) in 335 mL distilled water and 85 mL cordial (2.5 kcal/100mL), 70 g whey protein 

(volume of the powder: 45 mL) in 280 mL water and 100 mL cordial, the control drink 

consisted of 359 mL distilled water and 90 mL cordial]. Sodium chloride in the amount of 

0.3 g and 1.2 g was added to the 30 g and control drinks, respectively, to match the osmolality 

(88 mOsm/L) with the 70 g drink. To ensure that all ingredients were dissolved evenly 

throughout and to minimise the layer of foam on top of the solution, the drinks were stirred 

continuously at low speed on a stirring plate. The volume of each drink was measured before 

serving and the recorded volumes differed modestly (i.e. control: 450 mL; 30 g protein: 439 

mL; and 70 g protein: 425 mL). All drinks were provided to participants in a covered cup, 

so that both the investigator conducting the data collection and the participants were blinded 

to the test drinks. The drinks were prepared by a research assistant who was not involved in 

data analysis of the study results. 

Subjects were provided with a standardised evening meal [beef lasagne (McCain Foods Pty 

Ltd, Wendouree, VIC, Australia), ~591 kcal] to consume on the night before each study day 

at ~19.00 h. They were instructed to fast overnight from solids and liquids and to refrain 

from strenuous physical activity until they attended the laboratory at the Discipline of 

Medicine, The University of Adelaide, Royal Adelaide Hospital, at ~08.30 h. 

On arrival, subjects were seated in an upright position on a wooden chair, where they 

remained for the duration of the study, and an intravenous cannula for blood taking was 

inserted. In each subject, measurements of total gastric volume and perceptions of appetite 
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and gastrointestinal symptoms were performed immediately before (during fasting; 0 min), 

and immediately after, ingestion of the drink, and at 15-min intervals until 180 min. Subjects 

were instructed to consume the drink within 2 min. Gastric volume was measured by 3-

dimensional (3D) ultrasonography (263). Perceptions of appetite and gastrointestinal 

symptoms were assessed using validated visual analogue scales (VAS) and blood samples 

were collected for the measurements of gut hormones. At 180 min, each subject was 

presented with a standard, cold, buffet-style meal in excess of what they were expected to 

consume (total energy content of 2,457 kcal; 19% protein, 50% carbohydrates, 31% fat) for 

30 min (180-210 min) until comfortably full, in a room by themselves to limit external 

distractions (257). The buffet-style meal consisted of palatable food items including sliced 

bread, cheese, ham and chicken, fruits, yoghurt, custard, margarine, mayonnaise, iced coffee, 

orange juice, fruit salad and water (263). The composition of the buffet meal is presented in 

Table 4.1. 

 

Measurements 

Energy intake 

The amount eaten at the buffet meal (g) was quantified by weighing the food before and after 

consumption. Energy intake (kcal) at the buffet meal and proportions of protein, 

carbohydrate and fat were calculated using commercially available software (Foodworks 

version 8; Xyris Software Pty Ltd, Spring Hill, QLD, Australia). Energy intake was 

calculated both as intake at the buffet meal and as the cumulative energy intake, defined as 

the sum of energy intake at the buffet meal and the energy content of the preload drink. 

Absolute (kcal) and percentage suppression/ change energy intake at the buffet meal 

(expressed as % of energy intake of the control day) by a given protein load compared to 

control were calculated. 
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Perceptions of appetite and gastrointestinal symptoms 

Perceptions of hunger, desire to eat, prospective consumption, fullness, nausea and bloating 

were rated using a visual analogue scale (VAS) questionnaire at 0, 5, 15, 30, 45, 60, 75, 90, 

105, 120, 135, 150, 165, 180, 210 min (47). The questionnaire consisted of 100-mm 

horizontal lines, where 0 represented that the sensation was ‘not felt at all’ and 100 

represented that the sensation was ‘felt the greatest’. Subjects placed a vertical mark on each 

horizontal line to indicate the strength of each sensation at the specified time points.  

 

Gastric emptying 

Total gastric volume was measured by a Logiq™ 9 ultrasound system (GE Healthcare 

Technologies, Australia) with TruScan Architecture [built-in magnetically sensored 3D 

positioning and orientation measurement (POM)] including a 3D sensor, attached to a 3.5C 

broad spectrum 2.5-4 MHz convex transducer, and a transmitter, placed at the level of the 

stomach immediately behind the subject at 0, 5, 15, 30, 45, 60, 75, 90, 105, 120, 135, 150, 

165, 180 min (68). As the transmitter produces a spatially varying magnetic field that is 

distorted by conductive metals, all metal objects were removed from the subject to minimise 

interference during image acquisition. The stomach was scanned by a continuous 

translational movement along its long axis (~10 s). During each scan the subject was 

instructed to sit still and hold their breath at the end of inspiration. If gastric contractions 

were observed, the acquisition was paused until the contraction wave had passed. The raw 

data (original scan planes) were transferred for 3D reconstructions and volume estimation 

using EchoPAC - 3D software (GE Vingmed Sound, Horten, Norway). Gastric retention was 

calculated as total gastric volume minus baseline ‘fasting’ gastric volume at each time point 

expressed as percentage of the maximal gastric volume (100%), i.e. volume of the ingested 

drink. When ultrasound images lacked sufficient clarity to determine the volume of the 

stomach, data were imputed by linear interpolation. In one male subject the quality of 
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ultrasound stomach images was insufficient to determine gastric emptying in all three 

conditions, and data of gastric emptying data of this subject were, therefore, excluded from 

the analysis. The time at which 50% of the preload drink had emptied from the stomach 

(50% gastric emptying time; T50; min) was calculated for all conditions. Rate of gastric 

emptying was calculated as the mean of rates of emptying (kcal/min) during each 15-min 

interval respectively of the early (0-60 min) and late (60-180 min) phase and total (0-180 

min) time period. 

 

Blood glucose and plasma insulin, glucagon, ghrelin, CCK, GIP, GLP-1 and PYY 

Blood samples were collected, at 0, 5, 15, 30, 45, 60, 90, 120, 150, 180 min, into ice-chilled, 

EDTA-coated tubes. No inhibitors were added (264). Plasma was obtained by centrifugation 

for 15 min at 3200 rpm at 4°C and samples were stored at -80°C for further analysis of 

hormone concentrations. 

Blood glucose (millimoles per liter) was determined immediately after collection by the 

glucose oxidase method using a portable glucometer (Optium Xceed, Abbott Laboratories, 

Australia). Intra- and inter-assay coefficients of variation were 3.2% and 10.8%, 

respectively. 

Total plasma insulin (milliunits per liter) was measured by enzyme-linked immunosorbent 

assay (ELISA) immunoassay (10-1113; Mercodia, Uppsala, Sweden). The minimum 

detectable limit was 1.0 mU/L. Intra- and inter-assay coefficients of variation were 3.0% and 

8.7%, respectively.  

Total plasma glucagon (picograms per milliliter) was measured by radioimmunoassay (RIA) 

(GL-32K; Millipore, Billerica, MA, USA). The minimum detectable limit was 20 pg/mL. 

The intra- and inter-assay coefficients of variance were 4.3 and 7.1%. The ratio of insulin to 

glucagon was calculated for each time point in each subject. Homeostatic model assessment 

(HOMA) index at baseline was calculated according to the following formula: insulin 
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concentration (microunits per liter) x glucose concentration (nanomoles per liter) / 22.5 

(290). 

Total plasma ghrelin (picograms per milliliter) was measured using a RIA with some 

modifications to a published method (323). The radiolabel was supplied by Perkin Elmer 

(Boston, MA, USA; NEX388). The standard and samples were incubated with the antibody 

and radiolabel for 3-4 days at 4oC. The detection limit was 40 pg/mL. Intra- and inter-assay 

coefficients of variation were 6.7 and 12.1%, respectively. 

Plasma CCK-8 (picomoles per liter) was measured by RIA using an adaption of a previous 

method (324). Samples were extracted in 66% ethanol; extracts were dried down and re-

suspended in assay buffer (50 mmol phosphate/L phosphate, 10 mmol EDTA/L, 2 g 

gelatin/L, pH = 7.4). Standards were prepared using synthetic sulphated CCK-8 (Sigma 

Chemical, St Louis, MO, USA), antibody (C2581, Lot 105H4852, Sigma Chemical) was 

added at a working dilution of 1/17,500 and sulphated CCK-8 125I-labeled with Bolton and 

Hunter reagent (Perkin Elmer, Boston, MA, USA) was used as tracer. Incubation was for 7 

days at 4˚C. The antibody bound fraction was separated by the addition of dextran-coated 

charcoal containing gelatin (0.015 g gelatin, 0.09 g dextran, 0.15 g charcoal in 30 mL assay 

buffer) and the radioactivity determined in the supernatants following centrifugation. The 

detection limit was 1 pmol/L. The intra- and inter-assay coefficients of variation were 5.4% 

and 13.9%, respectively. 

Total plasma GIP (picomoles per liter) was measured by RIA (293). The standard curve was 

prepared in buffer, rather than extracted charcoal stripped serum and the radio-iodinated 

label was supplied by Perkin Elmer (Boston, MA, USA). The minimum detectable limit was 

2 pmol/L. The intra- and inter-assay coefficients of variation were 3.9% and 9%, 

respectively. 
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Total plasma GLP-1 (picomoles per liter) was measured by RIA (GLPIT-36HK; Millipore, 

Billerica, MA, USA). The detection limit was 3 pmol/L. Intra - and inter -assay coefficients 

of variation were 6.3% and 10.3%, respectively. 

Total plasma PYY (picomoles per liter) was measured using RIA using antisera (kindly 

donated by Dr. B Otto, Medizinische Klinik, Klinikum Innenstadt, University of Munich, 

Munich, Germany) against human peptide YY (1-36) (Sigma-Aldrich, St Lois, MO, USA) 

and raised in rabbits. This antisera showed < 0.001% cross reactivity with human pancreatic 

polypeptide or sulphated CCK-8 and 0.0025% cross reactivity with human neuropeptide Y. 

Standards (1.6-50 fmol/tube) or samples (200 µL plasma) were incubated in 200 µL assay 

buffer (50 mM NaPO4, 10 mM EDTA, 2 g/L gelatin, 0.1 g/L Na-Azide, pH = 7.4) and a 

1/12000 dilution of antisera for 24 hours. The standards and samples were further incubated 

with 10000 counts/min tracer [Perkin Elmer (Boston, MA, USA; NEX3410)] for 24 hours. 

Separation of the antibody bound tracer from free tracer was by second antibody 

precipitation (i.e. 500 µL of 1/100 dilution of sheep anti-rabbit immunoglobulin in wash 

buffer comprising 50 mM Tris-base, 150 mM NaCl, 8% polyethylene glycol 6000 pH = 8.0 

and 50 µL of normal rabbit serum diluted 1/50 in wash buffer), incubated 2 hours at room 

temperature centrifuged at 4000 x g for at least 20 min at 4˚C, supernatants poured off and 

pellets counted in a gamma counter. The detection limit was 1.5 pmol/L. Intra- and inter-

assay coefficients of variations were 8.7% and 18.2%, respectively. 

 

Data analysis 

Statistical analyses were performed using SPSS software (version 21; IBM, Armonk, NY, 

USA). Main effects of gender and protein load, and their interaction effects on energy intake 

and gastric emptying were determined using repeated measures ANOVA, with protein load 

as the within-subject factor, and gender as the between-subject factor. Main effects of gender 
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and protein load and their interaction effects on perceptions of appetite and gastrointestinal 

symptoms, blood glucose and plasma hormone concentrations, were determined using a 

repeated measures mixed-effect model, with protein load as the within-subject factor and 

gender as the between-subject factor, including baseline values at each treatment visit as a 

covariate. Post-hoc comparisons, adjusted for multiple comparisons using Bonferroni's 

correction, were performed when there were significant main or interaction effects. 

Within-subject correlations were determined by using a general linear model with fixed slope 

and random intercept (277). Areas under the curve (AUC) were calculated from baseline to 

180 min, using the trapezoidal rule. Assumptions of normality were verified for all outcomes 

before statistical analysis. Statistical significance was accepted at P < 0.05. All data are 

presented as means ± SEMs. 

 

RESULTS 

The study protocol was well tolerated by all subjects. 

 

Energy intake 

Energy intake at the buffet meal (Figure 9.1) was approximately 80% higher in older men 

than older women (mean energy intake of 3 study days in men: 1042 ± 69 kcal and women: 

584 ± 61 kcal; main effect of gender P < 0.001, main effect of protein load P = 0.34, 

interaction effect of gender by protein load P = 0.81). Energy intake at the buffet meal did 

not differ between study days [preload drink containing 0 g (control), 30 g or 70 g protein], 

with no significant suppression of energy intake compared to that on the control day by either 

protein load [mean suppression of 45 ± 23 kcal or 5 ± 3% after the 30 g (120 kcal) or 70 g 

(280 kcal) protein drinks compared to control; main effect of gender P = 0.62, main effect 

of protein load P = 0.83, interaction effect of gender by protein load P = 0.67]. There was a 
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dose-dependent effect of the protein load on total (preload drink + meal) energy intake [mean 

total energy intake of men and women control: 843 ± 77 kcal, 30 g protein: 923 ± 75 kcal 

(12% increase), 70 g protein: 1073 ± 78 kcal (32% increase), mean total energy intake of 3 

study days in men: 1175 ± 69 kcal and women: 717 ± 61 kcal; main effect of gender P < 

0.001, main effect of protein load P < 0.001, interaction effect of gender by protein load P 

= 0.81]. Macronutrient preferences during the buffet meal did not differ between either men 

or women, or study visits (mean macronutrient composition of the buffet meal; protein: 20 

± 1%, fat: 28 ± 1%, carbohydrates 53 ± 1%; P > 0.05). 

 

 

 

 

 

 

 

Figure 9.1: Mean ( SEM) energy intake at the buffet meal (kcal) in older men (energy 

intake at the buffet meal in grey shading; n = 8) and women (energy intake at the buffet meal 

in black shading; n = 8) after drinks (energy intake of the drink as the white part of each bar) 

containing flavoured water (control) and whey protein loads of 30 g (120 kcal) and 70 g (280 

kcal). Main gender and protein load effects and interaction effects were determined by using 

repeated-measures ANOVA and post-hoc Bonferroni correction. 
# P < 0.001 Main effect of gender: energy intake at the buffet meal was higher in older men 

than older women (main effect of protein load P = 0.34, interaction effect of gender by 

protein load P = 0.81). 

* P < 0.001 Main effects of gender and protein load: total energy intake (preload drink + 

meal) was higher in older men than older women, and total energy intake was higher after 

the 30 g (9.5% increase) and 70 g (27% increase) protein load compared to control 

(interaction effect of gender by protein load P = 0.81). 

Suppression of energy intake by protein (30 g and 70 g) compared to control (main effect of 

gender P = 0.62, main effect of protein load P = 0.83, interaction effect of gender by protein 

load P = 0.67). 

    * 
    * 

    * 
    * 

    # 
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Perceptions of appetite and gastrointestinal symptoms 

Baseline perceptions of hunger, desire to eat, prospective food consumption, fullness, nausea 

and bloating were not different between men and women or study days (P > 0.05, Figure 

9.2). There was an interaction effect of gender by protein load for prospective food 

consumption (effect of gender P = 0.50, effect of protein load P = 0.10, interaction effect of 

gender by protein load P = 0.015) - the post-hoc analysis revealed that women have higher 

perceptions of prospective food consumption during control compared to the 70 g protein 

condition (P = 0.018). The main effects of gender and protein load and the interaction effect 

of gender by protein load for hunger, desire to eat, fullness, nausea and bloating (AUC 0-

180 min), as well as the gender and treatment effect of prospective food consumption were 

not significant (P > 0.05). 

 

Gastric emptying 

Gastric emptying parameters are detailed in Table 9.1. Baseline gastric volumes were not 

different between men and women (39  3 mL and 34  5 mL, P = 0.45) or study days (P = 

0.76). The control drink (water), as well as the 30 g protein drink, emptied in an overall non-

linear pattern, whereas the pattern of emptying of the 70 g protein drink was linear (Figure 

9.3). 

There was a dose-dependent effect of the whey protein load to slow gastric emptying [T50 

for mean of men and women control: 23  2 min, 30 g: 65  7 min, 70 g: 130  10 min; 

effect of gender T50 P = 0.41, effect of protein load T50 P < 0.001, interaction effect of 

gender by protein load T50 P = 0.77; effect of gender AUC 0-180 min P = 0.22 AUC 0-60 

min (early phase) P = 0.27 AUC 60-180 min (late phase) P = 0.24, effect of protein load 

AUC 0-180 min P < 0.001 AUC 0-60 min P < 0.001 AUC 60-180 min P < 0.001, interaction 

effect of gender by protein load AUC 0-180 min P = 0.58 AUC 0-60 min P = 0.43 AUC 60- 
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Figure 9.2: Mean ( SEM) visual analogue score (VAS) of hunger, desire to eat, prospective 

food consumption, fullness, nausea and bloating in older men (n = 8) and women (n = 8) 

after drinks containing flavoured water (control; dotted line with open circles) and whey 

protein loads of 30 g (dashed line with closed circles) or 70 g (solid line with closed circles). 

Main effect of gender and protein load and interaction effects were determined using a 
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mixed-effect model with baseline concentrations as a covariate and post-hoc Bonferroni 

correction.  

P > 0.05 main effect of gender and protein load and interaction effect of gender by protein 

load for visual analogue scales of hunger, desire to eat, prospective food consumption, 

fullness, nausea and bloating (AUC 0-180 min). 
& P < 0.05 Interaction effect of gender by protein load  

* P < 0.05 70 g protein compared with the control (in women, perceptions of prospective 

food consumption were higher after the 70 g protein drink compared to control). 

 

  

Figure 9.3: Mean ( SEM) gastric retention (%) in older men (n = 7; closed circles) and 

women (n = 8; open circles) after drinks containing flavoured water (control; dotted line) 

and whey protein loads of 30 g (dashed line) or 70 g (solid line). Main gender and protein 

load effects and interaction effects were determined by using repeated-measures ANOVA. 

* P < 0.001 main effect of protein load for 50% gastric-emptying time (main effect of gender 

P = 0.41; interaction effect of gender by protein load P = 0.77). 
# P < 0.001 main effect of protein load AUC 0-180 min, 0-60 min (early phase) and 60-180 

min (late phase) (main effect of gender AUC 0-180 min P = 0.22 AUC 0-60 min P = 0.27 

AUC 60-180 min P = 0.24, interaction effect of gender by protein load AUC 0-180 min P = 

0.58 AUC 0-60 min P = 0.43 AUC 60-180 min P = 0.46). 

 

180 min P = 0.46], with no difference in rate of gastric emptying between men and women 

[mean rate of gastric emptying of men and women total phase 0-180 min: 30 g: 0.6 ± 0.02 

kcal/min, (range: 0.4 - 0.7 kcal/min); 70 g: 1.0 ± 0.07 kcal/min (range: 0.5 - 1.4 kcal/min); 

early phase 0-60 min (when drinks were still emptying): 30 g: 1.0 ± 0.09 kcal/min, (range: 

0.2 - 1.5 kcal/min); 70 g: 1.2 ± 0.1 kcal/min (range: 0.2 - 2.2 kcal/min); late phase 60-180 

min: 30 g: 0.4 ± 0.03 kcal/min (range: 0.3 - 0.8kcal/min); 70 g: 0.9 ± 0.07 kcal/min (range: 

0.3 - 1.3 kcal/min); effect of gender P = 0.29, effect of protein load P < 0.001, interaction 
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Table 9.1: Gastric emptying of water (control) and protein drinks in older men and women. 

 Older men (n = 7) Older women (n = 8) P value 

    0 g    30 g    70 g    0 g    30 g    70 g protein load gender interaction 

50% emptying time (T50; min)   233      595   12313   233      7013 13616 < 0.001 0.41 0.77 

Rate of gastric emptying (kcal/min) 1   0.60.0  1.10.1   0.60.0  0.90.1 < 0.001 0.29 0.25 

Early phase rate of gastric emptying   1.10.1.  1.30.1   0.90.2  1.10.2     0.08 0.25 0.86 

                           (0-60 min; kcal/min) 1          

Late phase rate of gastric emptying   0.40.0  1.00.1   0.50.1  0.80.1 < 0.001 0.67 0.12 

                       (60-180 min; kcal/min) 1          

Amount emptied at 60 min (%)   842   543   283   825   438   235 < 0.001 0.19 0.67 

Amount emptied at 180 min (%)   990   892   705   991   874   596 < 0.001 0.29 0.29 

All values are mean  SEM. Main gender and protein load effects and interaction effects were determined by using repeated-measures ANOVA. 
1Rate of gastric emptying was calculated as mean of rates of emptying during each 15-min interval respectively of the early (0-60 min) and late (60-180 

min) phase and total (0-180 min) time period
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effect of gender by protein load P = 0.25]. By 180 min, the 30 g protein drink had ‘complete’ 

gastric emptying (90% or more) in seven subjects, a further seven subjects showed emptying 

of ~85% and one subject of ~60%; whilst the 70 g protein was emptied from the stomach by 

~85% or more in only three subjects. 

 

Glucose and gut hormones 

Baseline concentrations of blood glucose and plasma insulin, glucagon, ghrelin, CCK, GIP, 

GLP-1, PYY, as well as HOMA-IR and the ratio of insulin to glucagon were not significantly 

different between men and women or study visits (P > 0.05, Figures 9.4 and 9.5).  

The main effect of gender was not significant for concentrations (AUC 0-180 min) of 

glucose (P = 0.70) glucagon (P = 0.94), ghrelin (P = 0.35), CCK (P = 0.16), GIP (P = 0.18), 

or GLP-1 (P = 0.55). Older women showed higher plasma concentrations of insulin (main 

effect of gender; P = 0.040) and PYY (P = 0.037) and an increased ratio of insulin to 

glucagon (P = 0.008) compared to older men. 

The main effect of protein load was significant for concentrations (AUC 0-180 min) of 

insulin, glucagon, ghrelin, CCK, GIP, GLP-1, PYY, and ratio of insulin to glucagon (all P < 

0.001), but not significant for glucose (P = 0.36). 

The interaction effect of gender by protein load was significant for concentrations (AUC 0-

180 min) of ratio of insulin to glucagon (P = 0.018), but not significant for glucose (P = 

0.44), insulin (P = 0.081), glucagon (P = 0.45), ghrelin (P = 0.26), CCK (P = 0.18), GLP-1 

(P = 0.60) and PYY (P = 0.45). Post-hoc analyses revealed that the ratio of insulin to 

glucagon was higher in women than men after the 30 g (P = 0.034) and 70 g (P = 0.006) 

protein drink. 
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Figure 9.4: Mean ( SEM) concentrations (AUC 0-180 min) of blood glucose and plasma 

insulin and glucagon and ratio of insulin to glucagon in older men (n = 8) and women (n = 

8) after drinks containing flavoured water (control; dotted line with open circles) and whey 

protein loads of 30 g (dashed line with closed circles) or 70 g (solid line with closed circles). 

Main effect of gender and protein load and interaction effects were determined using a 

mixed-effect model with baseline concentrations as a covariate and post-hoc Bonferroni 

correction.  
# P = 0.034 Main effect of gender (plasma insulin and the ratio of insulin to glucagon 

concentrations were higher in older women than older men). 
+ P < 0.001 Main effect of protein load (plasma insulin, glucagon and the ratio of insulin to 

glucagon concentrations were protein load dependent). 
& P < 0.05 Interaction effect of gender by protein load (Post-hoc tests: $ P < 0.05 plasma 

insulin and the ratio of insulin to glucagon concentrations were higher in women than men 

after both the 30 g and 70 g protein load; * P < 0.05 in women the ratio of insulin to glucagon 
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was higher after both the 30 g and 70 g protein load compared control, in men the ratio of 

insulin to glucagon was higher after the 30 g protein drink compared to control). 

 

In women, the ratio of insulin to glucagon was higher after both the 70 g and 30 g protein 

drink compared to control (all P < 0.001). In men, the ratio of insulin to glucagon was higher 

after the 70 g protein drink compared to control (P = 0.002). 

In many cases the protein load-effects were time dependent. The difference (earlier return to 

baseline after 30 g vs. 70 g protein intake) in late phase responses (> ~90-120 min) of ghrelin 

in men, CCK in women, and glucagon and GIP in men and women between both protein 

loads (Figures 9.4 and 9.5) may be related to gastric emptying being completed earlier after 

the 30 g than 70 g protein load (Figure 9.3 and Table 9.1). 

 

Relationships between energy intake, appetite, gastric emptying and gut 

hormones 

Energy intake (kcal) at the buffet meal was, within subjects, inversely related to gastric 

emptying (T50 and gastric retention AUC 0-180 min, early phase AUC 0-60 min and late 

phase AUC 60-180 min) and gastric volume at 180 min in women (Table 9.2); i.e. the slower 

the drink emptied from the stomach within a subject – 70 g < 30 g < 0 g – the lower the 

subsequent energy intake (180-210 min). 

Energy intake (kcal) at the buffet meal was, within subjects, positively related to plasma 

concentrations (AUC 0-180 min) of ghrelin and inversely related to plasma concentrations 

of PYY in older men and women combined and to insulin, glucagon, CCK, GIP and PYY in 

older women (e.g. the greater the increase in plasma concentrations of insulin, glucagon, 

CCK GIP and PYY within a subject – 70 g > 30 g > 0 g – the lower the subsequent energy  
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Figure 9.5: Mean ( SEM) plasma concentrations (AUC 0-180 min) of ghrelin, CCK, GIP, 

GLP-1 and PYY in older men (n = 8) and women (n = 8) after drinks containing flavoured 

water (control; dotted line with open circles) and whey protein loads of 30 g (dashed line 

with closed circles) or 70 g (solid line with closed circles). Main effects of gender and protein 

load and interaction effects were determined using a mixed-effect model with baseline 
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concentrations as a covariate. Main effects of gender and interaction effects of gender by 

protein load of the gut hormones were not significant. 
+ P < 0.001 Main effect of protein load. 

 

intake. Energy intake was also, within subjects, related to plasma hormone concentrations 

before the meal (180 min) in older women (insulin r = -0.50 P = 0.041, ghrelin r = 0.65 P = 

0.005, CCK r = -0.54 P = 0.025, GIP r = -0.49 P = 0.048, PYY r = -0.73 P = 0.001). 

Gastric emptying (gastric retention AUC 0-180 min) was, within subjects, related to plasma 

insulin, glucagon, CCK, GIP, GLP-1 and PPY concentrations (AUC 0-180 min) and 

inversely related to ghrelin concentrations as well as perceptions of appetite and 

gastrointestinal symptoms (Table 9.3); i.e. the higher the plasma hormone concentrations of 

insulin, glucagon, CCK, GIP, GLP-1 and PPY the slower the rate of gastric emptying within 

a subject and the lower the concentrations of ghrelin and feelings of hunger. 

Hunger and prospective food consumption were, within subjects, inversely related to CCK 

concentrations and desire to eat was inversely related with CCK and GIP concentrations. 

Fullness correlated positively to CCK concentrations and nausea correlated positively with 

glucose and negatively to ghrelin concentrations (Table 9.4). 

GIP was, within subjects, related to GLP-1 (r = 0.52 P = 0.002); i.e. the greater the increase 

in plasma GIP concentrations the greater the increase in GLP-1. Ghrelin was, within subjects, 

inversely related to insulin (r = -0.59, P < 0.001); i.e. the greater the increase in plasma 

insulin concentrations the greater the inhibition of ghrelin production. 

 

DISCUSSION 

This study examined the acute effects of oral whey protein consumption on energy intake, 

appetite, gastric emptying and plasma gut hormone concentrations in older women, as well 

as men. The protein drinks did not suppress subsequent ad libitum food intake in either 

gender. Consequently, there was a dose-dependent effect of the whey protein drinks (30, 70 
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Table 9.2: Within-subject correlations between energy intake at the buffet meal and 

perceptions of appetite and gastrointestinal symptoms, gastric emptying and concentrations 

of blood glucose and plasma gut hormones in older men and women. 

 Within-subject correlations 

 Older men (n = 

8)1 

Older women (n 

= 8) 

   Combined 

     r     P     r       P     r     P 

Hunger  0.43  0.11  0.29  0.30  0.35  0.06 

Desire to eat  0.23  0.42 -0.43  0.11 -0.07  0.71 

Prospective food consumption  0.11  0.70  0.22  0.43  0.14  0.47 

Fullness  0.10  0.72  0.29  0.29  0.16  0.42 

Nausea  0.14  0.62 -0.40  0.14 -0.09  0.66 

Bloating -0.05  0.85  0.00  1.00 -0.01  0.94 

       

50% emptying time (T50) -0.10  0.71 -0.66  0.004 -0.29  0.11 

Gastric retention AUC 0-180 -0.15  0.59 -0.61  0.01 -0.30  0.10 

Gastric retention AUC 0-60 -0.16  0.57 -0.59  0.01 -0.30  0.10 

Gastric retention AUC 60-180 -0.15  0.60 -0.59  0.01 -0.29  0.11 

Gastric retention at 180 min  -0.36  0.19 -0.62  0.008 -0.41  0.021 

(before buffet meal)       

       

Glucose -0.10  0.71  0.26  0.31  0.04  0.84 

Insulin -0.10  0.70 -0.64  0.006 -0.29  0.10 

Glucagon -0.10  0.70 -0.57  0.016 -0.24  0.17 

Ghrelin  0.33  0.19  0.43  0.08  0.35  0.045 
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CCK -0.11  0.66 -0.52  0.031 -0.25  0.16 

GIP -0.18  0.49 -0.54  0.027 -0.28  0.11 

GLP-1 -0.42  0.10  0.13  0.63 -0.05  0.77 

PYY -0.43  0.08 -0.69  0.002 -0.45  0.009 

r and P values of within-subject correlations between energy intake at the buffet meal (kcal) 

and visual analogue scale (mm; AUC 0-180 min) perceptions of hunger, desire to eat, 

prospective consumption, fullness, nausea and bloating (mm; AUC 0-180 min), gastric 

emptying half time (T50), gastric retention (%; AUC 0-180 min), gastric retention at 180 

min and concentrations (AUC 0-180 min) of blood glucose (mmol/L) and plasma insulin 

(mU/L), glucagon (pg/mL), ghrelin (pg/mL), CCK (pmol/L), GIP (pmol/L), GLP-1 (pmol/L) 

and PYY (pmol/L) in older men and women. Within-subject correlations were determined 

by using a general linear model with fixed slope and random intercept. 1n = 7 for gastric 

retention in the older men. 

 

g protein) to increase total energy intake (preload drink + meal) compared to the control 

drink in both men and women. In both genders, protein caused a load-dependent slowing of 

gastric emptying, and increase in plasma concentrations of insulin, glucagon, ghrelin, CCK, 

GIP, GLP-1 and PYY. As the protein doses used are in the range reported to have favourable 

effects on muscle mass (13), our observations of comparable effects of protein on appetite 

and underlying gastrointestinal mechanisms in men and women, support the use of protein 

supplements in older people to preserve, or increase skeletal muscle mass and function 

without suppressing energy intake. 

Total energy intake was increased most by the highest protein dose [70 g (280 kcal)] 

compared to the control day; a substantial increase of 32% or 230 kcal, compared with an 

increase of 12% or 80 kcal after the 30 g (120 kcal) protein load. These observations are 

consistent with evidence of reduced suppression of energy intake by nutrient ingestion in 

older, compared with young, men (46, 63, 194, 263), and extend these findings to older 

women. Importantly, these observations indicate that doses of protein that have been shown 

to be sufficient to cause dietary protein muscle deposition, can be ingested by both older 

women and men, without suppressing appetite or overall energy intake. In older, when 
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compared to younger adults, the sensitivity of muscle protein synthesis to the ingestion of 

small amounts (≤ 20 g) of whey protein may be reduced (23). However, these postprandial 

differences between the young and old are, not evident after consumption of ample amounts 

of dietary protein (> ~35 g). Moreover, administration of protein supplements in older people 

may increase total energy intake (supplement plus subsequent meal), as was observed in this 

study. This contrasts to the effects of protein in younger adults - identical whey drinks given 

according to the same study protocol produced a significant ~15% suppression of ad libitum 

food intake compared to control in our previous study (263). It should be appreciated that 

the long-term effects of protein supplements on energy intake in older adults are unknown 

and reported effects on muscle mass and function are inconsistent (325-328). 

Appetite and energy intake are dependent on the precise co-ordination of interrelated 

‘gastric’ and ‘small intestinal’ mechanisms triggered by the interaction with the nutrients 

ingested. We, and others, have shown that healthy ageing is associated with modest slowing 

of gastric emptying of both solids and liquids, although the rate of emptying generally 

remains within the normal range for young subjects (i.e. ~1 – 4 kcal/min) (50, 74, 82, 263). 

Slower gastric emptying results in greater distension of the stomach at any given time after 

ingestion of a meal. This can, in turn, lead to greater fullness and, at least in young adults, a 

consequent reduction in subsequent energy intake. In the present study there was a marked, 

dose-dependent, slowing of gastric emptying by the protein drinks, with the 50% gastric 

emptying time more than doubling from control to 30 g protein day, and again from the 30 

g to 70 g protein day. The rate of gastric emptying of the protein drinks in both men and 

women (~1 kcal/min) was apparently at the lower end of the normal range. Gastric emptying 

of the 30 g protein drink slowed further after the early phase (~0.5 kcal/min) when on average 

~48% of the drink was emptied after 60 min; whereas the 70 g protein drink continued being 

emptied at ~1 kcal/min after ~25% had emptied on average after 60 min.  
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There was no significant difference between emptying rates in older men and women. 

Controversy exists regarding the gender-related difference in gastric emptying. Previously 

gastric emptying, determined by scintigraphy, has been found to be modestly slower in 

young and middle aged lean, but not obese (329), women than men (83, 330, 331), but not 

in all studies (80). Bennink et al. also observed slower gastric emptying of a solid, but not 

liquid, test meal in lean healthy young women compared to men (332). We have reported 

that energy intake at a buffet meal is associated negatively (r = -0.90, P < 0.001) with antral 

area (distal stomach) immediately before the meal in young and older subjects who received 

mixed macronutrient drinks (0, 250, and 750 kcal) (42). Although the negative association 

between gastric retention and energy intake in the female (but not male) subjects in this study 

is consistent with some suppression of energy intake by gastric distension, the finding that 

the marked protein-induced slowing of gastric emptying after ingestion of the protein drinks 

was not associated with suppression of subsequent energy intake, suggests that this effect, if 

present, is probably minor in elderly people. This would be consistent with the finding of 

Rayner et al. that the perception of gastric distension is diminished in healthy older people 

(84). 

Gastric emptying was, within subjects, related to plasma gut hormone concentrations –higher 

plasma concentrations of insulin, glucagon, CCK, GIP, GLP-1 and PYY correlated with 

lower plasma ghrelin concentrations and perceptions of hunger, and slower gastric emptying 

of the protein drink (70 g < 30 g < 0 g). There was an immediate load-dependent increase in 

the plasma hormone concentrations of CCK and GIP (both mainly produced in the 

duodenum and proximal jejunum) reaching a plateau from 15-30 min onwards, whereas the 

hormones that are produced more distally in the gut; GLP-1 and PYY (GLP-1 mainly 

produced in the ileum and PYY in the ileum and colon) showed a more constant increase. 

Gastric emptying was completed earlier after the 30 g than the 70 g protein load, which 

resulted in a time-dependent response (earlier return to baseline after 30 g vs. 70 g protein 
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intake) in plasma concentrations of CCK in women, and glucagon and GIP in men and 

women after 30 g vs. 70 g protein load. Healthy older, when compared to young people, 

have higher postprandial concentrations of CCK, GIP, GLP-1 and PYY, which may 

contribute to slowing of gastric emptying (42, 48, 52, 132). The latter may in part be related 

to impairment of clearance, including GIP and GLP-1 inactivation by dipeptidyl peptidase 

IV (DPP-IV) and renal processes (132). 

Healthy ageing is characterised by impaired glucose tolerance or insulin resistance (132, 

239). The latter may reflect increased adiposity and reduction in the secretion of, or 

pancreatic beta cell sensitivity to (176), the incretins GLP-1 and GIP (132, 134). Insulin 

peaked between 30 and 60 min and returned to baseline after 180 min, and this effect was 

greater in older women than older men. Glucagon increased almost concurrently in older 

men and women, before decreasing again after 90 min after the 30 g, whereas it stayed 

elevated after the 70 g protein load. 

Our study has several limitations which should be recognised. The number of subjects was 

relatively small and, therefore, the study may be underpowered for secondary outcomes, 

including perceptions of appetite and gastrointestinal symptoms and the change in gastric 

emptying after the 70 g whey protein load in older women than older men. Energy intake 

was assessed three hours after protein intakes at a buffet meal, and not during the remainder 

of the day - accordingly, potential compensating changes in energy intake after lunch were 

not evaluated. While the drinks were matched for taste and osmolality, we did not assess the 

subject’s perceptions of taste, pleasantness and/or palatability of the drinks. As a 

consequence of the study design the protein preload drinks were iso-caloric for both older 

men and women. Older women are expected to have lower energy requirements when 

compared to the older men, and the drinks given to female group in this study could therefore 

be judged to be ‘larger’ than those given to the male group when considered in relation to 

energy requirements. Blood glucose was measured by a glucometer, and blood samples of 
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glucagon and GLP-1 were collected without protease inhibitors, which could be considered 

to be less than optimal, however, the results appeared clear-cut with significant changes in 

both glucagon and GLP-1 in response to the protein loads in the direction expected.  

In summary, ingestion of protein drinks at doses previously shown to suppress energy intake 

in young men, had no effect on ad libitum energy intake in either older women or men, three 

hours after consumption. Consequently, consumption of protein drinks lead to an increase 

in the total energy intake. 
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Table 9.3: Within-subject correlations between gastric retention and perceptions of appetite 

and gastrointestinal symptoms and concentrations of blood glucose and plasma gut 

hormones in older men and women.  

 Older men (n = 7) Older women (n = 8)    Combined 

     r     P     r       P     r     P 

Hunger  0.00   0.99 -0.44   0.08 -0.63   0.12 

Desire to eat -0.09   0.76 -0.52   0.031 -0.36   0.044 

Prospective food consumption  0.14   0.62 -0.65   0.005 -0.34   0.06 

Fullness -0.45   0.09  0.51   0.004  0.20   0.29 

Nausea  0.11   0.70  0.14   0.58  0.12   0.54 

Bloating  0.21   0.46  0.07   0.79  0.09   0.63 

       

Glucose -0.55   0.033 -0.23   0.38 -0.35   0.053 

Insulin  0.90 <0.001  0.89 <0.001  0.87 <0.001 

Glucagon  0.94 <0.001  0.96 <0.001  0.94 <0.001 

Ghrelin -0.73   0.020 -0.57   0.017 -0.64 <0.001 

CCK  0.78   0.001  0.92 <0.001  0.87 <0.001 

GIP  0.92 <0.001  0.85 <0.001  0.87 <0.001 

GLP-1  0.76   0.001  0.75   0.001  0.75 <0.001 

PYY  0.72   0.002  0.85 <0.001  0.80 <0.001 

r and P values of within-subject correlations between gastric retention (%; AUC 0-180 min) 

and visual analogue scale (mm, AUC 0-180 min) perceptions of hunger, desire to eat, 

prospective consumption, fullness, nausea and bloating, and concentrations (AUC 0-180) of 

blood glucose (mmol/L) and plasma insulin (mU/L), glucagon (pg/mL) ghrelin (pg/mL), 

CCK (pmol/L), GIP (pmol/L), GLP-1 (pmol/L) and PYY (pmol/L) in older men and women. 

Within-subject correlations were determined by using a general linear model with fixed slope 

and random intercept.



 

 

Table 9.4: Within-subject correlations between perceptions of hunger, desire to eat, prospective food consumption, fullness, nausea and bloating, and 

concentrations of blood glucose and plasma gut hormones in older men and women (n = 16).  

 Hunger Desire to eat Prospective food 

consumption 

Fullness Nausea Bloating 

     r     P     r     P     r     P     r     P     r     P     r     P 

Glucose  0.09 0.63  0.01 0.97 -0.09 0.63  0.14 0.44  0.37 0.047 -0.22 0.23 

Insulin -0.31 0.09 -0.35  0.06 -0.36 0.05  0.29 0.12  0.09 0.63  0.09 0.63 

Glucagon -0.27 0.14 -0.32  0.09 -0.30 0.10 -0.06 0.75  0.10 0.58  0.10 0.59 

Ghrelin  0.18 0.33  0.12  0.50  0.10 0.57 -0.14 0.44 -0.37 0.048 -0.02 0.90 

CCK -0.41 0.029 -0.50  0.009 -0.56 0.004  0.38 0.043  0.18 0.32  0.11 0.56 

GIP -0.35 0.06 -0.37  0.047 -0.34 0.07  0.21 0.25  0.13 0.46  0.08 0.68 

GLP-1 -0.22 0.23 -0.27  0.149 -0.25 0.17  0.04 0.83  0.05 0.77  0.06 0.75 

PYY -0.12 0.53 -0.19  0.30 -0.30 0.10  0.15 0.40  0.04 0.83  0.16 0.39 

r and P values of within-subject correlations between perceptions of appetite and gastrointestinal symptoms (AUC 0-180 min) and concentrations (AUC 

0-180 min) of blood glucose (mmol/L) and plasma insulin (mU/L), glucagon (pg/mL), ghrelin (pg/mL), CCK (pmol/L), GIP (pmol/L), GLP-1 (pmol/L) 

and PYY (pmol/L) in older men and women. Within-subject correlations were determined by using a general linear model with fixed slope and random 

intercept. 
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ABSTRACT 

Background: Protein supplements, usually drinks rich in whey protein, are used widely for 

weight loss purposes in overweight adults. Information comparing the effects of whey 

protein on appetite and energy intake in men and women is limited. 

Objective: To compare the acute effects of whey-protein intake on energy intake, appetite, 

gastric emptying and gut hormones in healthy young men and women. 

Design: Gastric emptying (3D-ultrasonography), blood glucose and plasma insulin, 

glucagon, ghrelin, cholecystokinin (CCK), gastric inhibitory polypeptide (GIP) and 

glucagon-like peptide-1 (GLP-1) concentrations (0-180min), appetite (visual analogue 

scales), and ad libitum energy intake from a buffet meal (180-210min) were determined after 

ingestion of 30 g (120 kcal) or 70 g (280 kcal) whey protein, or a flavoured-water control 

drink (~2 kcal) in 8 healthy young men (25 ± 2y, 72 ± 3kg, 23 ± 1 kg/m2) and 8 women (23 

± 1y, 64 ± 2kg, 24 ± 0.4 kg/m2). 

Results: There was a protein-load effect on gastric emptying, blood glucose, plasma insulin, 

glucagon, ghrelin, CCK, GIP and GLP-1 concentrations, and perceptions of hunger, desire 

to eat and prospective food consumption (P < 0.05). Ad libitum energy intake (average 

decrease of 206 ± 39kcal [15 + 2%] for men and of 46 ± 54kcal [0 + 26%] for women for 

the mean of the intakes after the 30 g and 70 g whey-protein loads) and hunger were 

suppressed more by the whey-protein ingestion compared to control in men than women (P 

< 0.05). Consequently, total energy intake (from protein drink plus buffet meal) was greater 

in women than men (P < 0.05). The drinks emptied more slowly, and plasma glucagon, CCK 

and GLP-1 responses were less, in women than men (P < 0.05). 

Conclusion: The acute effects of whey protein ingestion on appetite, energy intake, gastric 

emptying and gut hormone responses are influenced by gender in healthy young adults. 
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INTRODUCTION 

Supplements and diets high in protein content, particularly whey protein, are used frequently 

for weight loss purposes, in both men and women, based on the rationale that ingestion of 

protein has a  muscle sparing effect and greater satiating effects than dietary carbohydrate 

and fat (287, 333). As such, many high protein diets have been developed and recommended 

to aid weight loss; well-known versions include the Atkins Diet, South Beach Diet, Zone 

Diet and Stillman Diet. Our recent studies in healthy young men have shown that whey 

protein, ingested either orally, or infused intraduodenally, suppresses ad libitum energy 

intake at a subsequent meal, in excess of the caloric content of the protein load, so that total 

energy intake (protein plus meal) is less after intake of protein than after a non-caloric control 

(114, 334). When infused intraduodenally, whey protein increases pyloric and decreases 

antral and duodenal motility, factors important in the regulation of gastric emptying (114, 

334). Oral whey protein ingestion load-dependently slows gastric emptying and increases 

plasma insulin, glucagon, ghrelin, cholecystokinin (CCK), gastric inhibitory polypeptide 

(GIP) and glucagon-like peptide-1 (GLP-1) concentrations in healthy young men (334). 

These effects on gastrointestinal mechanisms are associated with the suppression of appetite 

and energy intake (114, 334). 

It has been reported that women, when compared to men, exhibit lower compensation of 

energy intake, but comparable perceptions of appetite, after ingestion of liquid and semi-

liquid caloric preloads (321, 322). For example, after a milk or fruit drink preload, women 

compared to men compensate less in subsequent energy intake i.e. on average 50% in women 

versus 107% in men when compared to a control day, resulting in an increase in total energy 

intake (drink plus meal) in women (322). It has also been reported that after mixed-nutrient 

meals women compared to men have slower gastric emptying (83, 330-332) and lower 

plasma glucagon (335), CCK (336) and GLP-1 concentrations (335). It is not known whether 
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gender modulates the acute effects of whey protein, administered in loads representative of 

a small to large meal (30–70 g, e.g. ~100–250 g serving of lean steak), to suppress energy 

intake and, if so, what the underlying gastrointestinal mechanisms are. 

The aim of the study was to determine the comparative load-dependent effects of 30 g and 

70 g whey protein intake on ad libitum energy intake at a buffet meal, as well as perceptions 

of appetite and gastrointestinal symptoms, gastric emptying, blood glucose and plasma 

insulin, glucagon, ghrelin, CCK, GIP and GLP-1 concentrations in healthy young men and 

women. We hypothesised that women compared to men would have less suppression of 

energy intake, slower gastric emptying and lower gut hormone responses after whey protein 

ingestion. 

 

SUBJECTS AND METHODS 

Subjects 

Participants were recruited by advertisement. The study included 8 young men [mean ± 

SEM: age: 25 ± 2 years; body weight: 72 ± 3 kg; height: 1.79 ± 0.02 m; body mass index 

(BMI): 23 ± 1 kg/m2 - the men were included in our previous study relating to energy intake, 

gastric emptying and perceptions of appetite and gastrointestinal symptoms in healthy older 

compared to younger men (263)] and 8 young age- (P = 0.60) and BMI-matched (P = 0.24) 

women [23 ± 1 years; 64 ± 2 kg; 1.64 ± 0.02 m; 24 ± 0.4 kg/m2]. 

All participants were non-smokers, unrestrained eaters [score ≤ 12 on the eating restraint 

component of the Three-Factor Eating Questionnaire (337)]. Further exclusion criteria were 

gastrointestinal surgery (apart from uncomplicated appendectomy), gastrointestinal 

symptoms (abdominal pain, gastro-esophageal reflux, diarrhea, or constipation), use of 

medications known to potentially affect energy intake, appetite or gastrointestinal motor 

function, diabetes, gallbladder or pancreatic disease, lactose intolerance or food allergies, 
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consumption of a vegetarian diet, alcohol abuse, use of illicit substances, low ferritin levels 

or blood donation in the 12 weeks prior to the study, failure to comprehend the study protocol 

and, in women, lactation, pregnancy or the use of hormonal contraceptives. The Royal 

Adelaide Hospital Human Research Ethics Committee approved the study protocol. The 

study was conducted in accordance with the Declaration of Helsinki and registered as a 

clinical trial with the Australian New Zealand Clinical Trial Registry (www.anzctr.org.au, 

registration number ACTRN12611000706976). All participants provided written informed 

consent prior to their inclusion. 

 

Protocol 

Subjects were studied on 3 occasions, separated by 3-14 days, to determine the 

comparative effects of two oral whey protein loads; 30 g (120 kcal) and 70 g (280 kcal), 

and a flavoured water control-drink (~2 kcal) on energy intake, perceptions of appetite and 

gastrointestinal symptoms, gastric emptying, blood glucose and plasma gut hormone 

concentrations in a randomised [www.randomization.com (16 subjects with random 

permutations)], double-blind, cross-over design. In women, study days were scheduled 

during the follicular phase of their menstrual cycle (i.e. the first 13 days of the cycle) to 

minimise the potential effect of fluctuations in hormones on gastric emptying and energy 

intake at the buffet meal (338). 

Protein drinks were prepared by dissolving whey protein isolate (Fonterra Co-Operative 

Group Ltd., Palmerston North, New Zealand) in varying volumes of demineralised water 

and diet lime cordial (Bickford’s Australia Pty Ltd, Salisbury South, SA, Australia) to 

achieve the desired loads [i.e. 30 g whey protein (volume of the powder: 19 mL) in 335 

mL distilled water and 85 mL cordial (2.5 kcal/100 mL), 70 g whey protein (volume of the 

powder: 45 mL) in 280 mL water and 100 mL cordial, the control drink consisted of 359 
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mL distilled water and 90 mL cordial]. Sodium chloride in the amount of 0.3 g and 1.2 g 

was added to the 30 g and control drinks, respectively, to match the osmolarity (88 

mOsm/L) with the 70 g drink. To ensure that all ingredients were dissolved evenly 

throughout and to minimise the layer of foam on top of the solution, the drinks were all 

stirred continuously at low speed on a stirring plate. The volume of each drink was 

measured before serving and the recorded volumes differed modestly (i.e. control: 450 mL; 

30 g protein: 439 mL; and 70 g protein: 425 mL). All drinks were provided to subjects in a 

covered cup, so that both the investigator conducting the data collection and the subject 

were blinded to the test drinks. The drinks were prepared by a research assistant who was 

not involved in analysis of the study results. 

Subjects were provided with a standardised evening meal [beef lasagna (McCain Foods Pty 

Ltd, Wendouree, VIC, Australia), ~591 kcal] to consume on the night before each study 

day at ~19.00 h. They were instructed to fast overnight from solids and liquids and refrain 

from strenuous physical activity until they attended the laboratory at ~08.30h. 

On arrival, subjects were seated in an upright position on a wooden chair, where they 

remained for the duration of the study, and an intravenous cannula for blood sampling was 

inserted. In each subject, measurements of total gastric volume and perceptions of appetite 

and gastrointestinal symptoms were performed before (during fasting; 0 min) and 

immediately after ingestion of the drink, and at 15-min intervals until 180 min (47). 

Subjects were instructed to consume the drink within 2 minutes. Gastric volume was 

measured by 3-dimensional (3D) ultrasonography (263). Perceptions of appetite and 

gastrointestinal symptoms were assessed using validated visual analogue scales (VAS) and 

blood samples were collected for the measurement of blood glucose and plasma gut 

hormone concentrations. At 180 min, subjects were presented, in a room by themselves to 

limit external distractions, with a standard, cold, buffet meal in excess of what they are 

expected to consume (total energy content of 2,457 kcal; 19% protein, 50% carbohydrates, 
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31% fat) over 30 min (257). The buffet meal consisted of palatable food items including 

sliced bread, cheese, ham and chicken, fruits, yoghurt, custard, margarine, mayonnaise, 

iced coffee, orange juice, fruit salad and water (263).  

 

Measurements 

Energy intake 

The amount eaten at the buffet meal (g) was quantified by weighing the food before and after 

consumption. Energy intake (kcal) at the buffet meal and proportions of protein, 

carbohydrate and fat were calculated using commercially available software (Foodworks 

version 8; Xyris Software Pty Ltd, Spring Hill, QLD, Australia). Energy intake was 

calculated both as intake at the buffet meal and as total energy intake, defined as the sum of 

energy intake at the buffet meal and the energy content of the drink. Absolute change (kcal) 

and percentage suppression (expressed as % of energy intake of the control day) of energy 

intake at the buffet meal by a given protein load compared to control were calculated (263). 

 

Perceptions of appetite and gastrointestinal symptoms 

Perceptions of hunger, desire to eat, prospective consumption, fullness, nausea and bloating 

were rated using a visual analogue scale (VAS) questionnaire at 0, 5, 15, 30, 45, 60, 75, 90, 

105, 120, 135, 150, 165, 180, 210 min (47). The questionnaire consisted of 100-mm 

horizontal lines, where 0 represented that the sensation was ‘not felt at all’ and 100 

represented that the sensation was ‘felt the greatest’. Subjects placed a vertical mark on each 

horizontal line to indicate the strength of each sensation. 
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Gastric emptying 

Total gastric volume was measured by a Logiq™ 9 ultrasound system (GE Healthcare 

Technologies, Sydney, NSW, Australia) with TruScan Architecture [built-in magnetically 

sensored 3D positioning and orientation measurement (POM)] including a 3D sensor, 

attached to a 3.5C broad spectrum 2.5-4 MHz convex transducer, and a transmitter, placed 

at the level of the stomach immediately behind the subject at 0, 5, 15, 30, 45, 60, 75, 90, 105, 

120, 135, 150, 165, 180 min (263). As the transmitter produces a spatially varying magnetic 

field that is distorted by conductive metals, all metal objects were removed from the subject 

to minimise interference during image acquisition. The stomach was scanned by a 

continuous translational movement along its long axis (~10 s). During each scan the subject 

was instructed to sit still and hold their breath at the end of inspiration. If gastric contractions 

were observed, the acquisition was paused until the contraction wave had passed. The raw 

data (original scan planes) were transferred for 3D reconstructions and volume estimation 

using EchoPAC - 3D software (GE Vingmed Sound, Horten, Norway). Gastric retention 

(early phase: 0-60 min and late phase: 60-180 min; %) was calculated as total gastric volume 

minus baseline ‘fasting’ gastric volume at each time point expressed as percentage of the 

maximal gastric volume (100%), i.e. volume of the ingested drink. When ultrasound images 

lacked sufficient clarity to determine the volume of the stomach, data were imputed by linear 

interpolation. The time at which 50% of the preload drink had emptied from the stomach 

(50% gastric emptying time; T50; min) and ‘complete’ gastric emptying time (100% gastric 

emptying time; T100; min), defined as the time when the residual volume of the drink in the 

stomach was ≤5%, was calculated for all conditions. Complete emptying time was set to 180 

min when the residual volume at 180 min was >5% (263). The overall rate of gastric 

emptying was calculated as the mean of rates of emptying (kcal/min) during each 15-min 

interval respectively of the early phase (0-60 min), late phase (60 min until complete 
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emptying time per individual) and total time period (0 min until complete emptying time per 

individual). 

 

Blood glucose and plasma insulin, glucagon, ghrelin, CCK, GIP, GLP-1 and PYY 

Blood samples were collected, at 0, 5, 15, 30, 45, 60, 90, 120, 150, 180 min, into ice-chilled, 

ethylenediaminetetraacetic acid (EDTA) coated tubes. No inhibitors were added (264). 

Blood glucose concentrations (millimoles per liter) were determined immediately after 

collection by the glucose oxidase method using a portable glucometer (Optium Xceed, 

Abbott Laboratories, Doncaster, VIC, Australia). Plasma was obtained by centrifugation for 

15 min at 3200 rpm at 4°C and samples were stored at -80°C for further analysis of hormone 

concentrations (339). 

Plasma total insulin concentrations (milliunits per liter) were determined by enzyme-linked 

immunosorbent assay (ELISA) immunoassay (10-1113; Mercodia, Uppsala, Sweden). The 

detection limit was 1.0 milliunits per liter. Intra- and inter-assay coefficients of variation 

were 3.0 and 8.7%. Homeostatic model assessment (HOMA) index was calculated according 

to the following formula: insulin concentration at baseline (microunits per liter) x glucose 

concentration at baseline (nanomoles per liter) / 22.5 (290). 

Plasma total glucagon concentrations (picograms per milliliter) were determined by 

radioimmunoassay (RIA; GL-32K; Millipore, Billerica, MA, USA). The detection limit was 

20 picograms per milliliter. Intra- and inter-assay coefficients of variance were 4.3% and 

7.1%.  

Plasma total ghrelin concentrations (picograms per milliliter) were determined by RIA 

(Perkin Elmer, Boston, MA, USA; NEX388) (292, 340, 341). The standard and samples 

were incubated with the antibody and radiolabel for 3-4 days at 4oC. The detection limit was 

40 pg/mL. Intra- and inter-assay coefficients of variation were 6.7% and 12.1%. 



Effects of gender – young adults   Chapter 10 

 

 

227 

Plasma CCK-8 (picomoles per liter) were determined by RIA (324, 341). Samples were 

extracted in 66% ethanol, extracts were dried down and re-suspended in assay buffer (50 

mM phosphate, 10 mM EDTA, 2 g/L gelatin, pH = 7.4). Standards were prepared using 

synthetic sulphated CCK-8 (Sigma Chemical, St Louis, MO, USA) and an antibody (C2581, 

Lot 105H4852, Sigma Chemical) was added at a working dilution of 1/17,500 and sulphated 

CCK-8 125I-labeled with Bolton and Hunter reagent (Perkin Elmer, Boston, MA, USA). 

Incubation was for 7 days at 4˚C. The antibody bound fraction was separated by the addition 

of dextran-coated charcoal containing gelatin (0.015 g gelatin, 0.09 g dextran, 0.15 g 

charcoal in 30 mL assay buffer). The radioactivity was determined in the supernatants 

following centrifugation with a detection limit of 1 picomoles per liter. Intra- and inter-assay 

coefficients of variation were 5.4% and 13.9%. 

Plasma total GIP concentrations (picomoles per liter) were measured by RIA (Perkin Elmer, 

Boston, MA, USA) (293). The standard curve was prepared in buffer, rather than extracted 

charcoal stripped serum. The detection limit was 2 picomoles per liter. Intra- and inter-assay 

coefficients of variance were 3.9% and 9%. 

Plasma total GLP-1 concentrations (picomoles per liter) were measured by RIA (GLPIT-

36HK; Millipore, Billerica, MA, USA). The detection limit was 3 pmol/L. Intra - and inter 

-assay coefficients of variance were 6.3% and 10.3%. 

 

Data analysis 

On the basis of our previous work (194), with an observed within-subjects standard deviation 

(SD) of 181 kcal, we estimated an SD using the upper 60% confidence limit of 234 kcal and 

calculated that 8 subjects per group would allow detection of a within-groups (n = 8) 

difference between treatments of 271 kcal and a between groups difference of 353 kcal (n = 

8 women compared with n = 8 men), with power equal to 0.8 and alpha equal to 0.05. 
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Statistical analyses were performed using SPSS Statistics software (version 21, IBM, 

Armonk, NY, USA). Effects of gender, protein load and their interaction effect on energy 

intake and gastric emptying were determined using repeated measures ANOVA, with protein 

load as the within-subject factor, and gender as the between-subject factor. To adjust for 

baseline values at each visit as a covariate, a repeated measures mixed effect model, with 

protein load as the within-subject factor and gender as the between-subject factor was used 

to test for effects of gender and protein load and their interaction effect on perceptions of 

appetite and gastrointestinal symptoms, blood glucose and plasma hormone concentrations. 

Post-hoc comparisons, adjusted for multiple comparisons using Bonferroni's correction, 

were performed when there were significant main or interaction effects. Within-subject 

correlations were determined by using a general linear model with fixed slope and random 

intercept (277). Areas under the curve (AUC) were calculated using the trapezoidal rule. 

Assumptions of normality were verified for all outcomes before statistical analysis. 

Statistical significance was accepted at P < 0.05. All data are presented as mean values ± 

SEMs. 

 

RESULTS 

The study protocol was well tolerated by all subjects and there were no untoward effects. 

 

Energy intake 

Energy intake at the buffet meal was less in women than men (gender effect P = 0.010). On 

the control day energy intake was 34% lower in women than men (791 ± 87 kcal vs. 1205 ± 

109 kcal, P = 0.010). 

Energy intake at the buffet meal was suppressed by protein compared to control in men, but 

not women (protein-load effect P = 0.008, interaction-effect of gender by protein-load P = 
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0.046; Figure 10.1). The mean suppression of the 30 g and 70 g protein loads compared to 

control was 206 ± 39 kcal or 15 ± 2% for men, while it was 46 ± 54 kcal or 0 ± 26% for 

women (gender-effect P = 0.032, protein-load effect P = 0.75, interaction-effect P = 0.19). 

There was a protein-load effect (P = 0.002) on total energy intake (drink plus buffet meal), 

which was higher in women than men (gender-effect P = 0.010, interaction-effect P = 0.046). 

Compared to the total energy intake on the control day, total energy intake on the 30 g and 

70 g protein days increased 22 ± 13% and 35 ± 15% respectively in women, and decreased 

8 ± 3% and increase 10 ± 5%, respectively, in men. Total energy intake was higher after the 

70 g compared to the 30 g protein load in men (P = 0.021), and after the 70 g protein drink 

compared to control in women (P = 0.033). 

 

Macronutrient intakes at the buffet meal 

At the buffet meal women consumed a higher percentage of their energy intake as protein 

than men (average of all three study days: women: 24 ± 1%, men: 20 ± 1%; gender-effect P 

= 0.023, protein-load effect P = 0.31, interaction-effect, P = 0.60) and fat (women: 36 ± 1%, 

men: 28 ± 1%; gender-effect P = 0.006, protein-load effect P = 0.09, interaction-effect P = 

0.85), and less as carbohydrate (women: 41 ± 3%, men: 52 ± 2%; gender-effect P = 0.001, 

protein-load effect P = 0.13, interaction-effect P = 0.98). 

 

 

 

# 
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Figure 10.1: Mean ( SEM) energy intake at the buffet meal (kcal; energy intake in closed 

bars) in healthy young men (gray shading; n = 8) and women (black shading; n = 8) after 

intake of drinks (energy content in open bars) containing flavored water (control) and 

whey protein loads of 30 g (120 kcal) and 70 g (280 kcal). Effects of gender and protein-

load and interaction effects were determined by using repeated-measures ANOVA. 

Interaction effect of gender by protein-load energy intake at the buffet meal P = 0.046 and 

total energy intake (drink + buffet meal) P = 0.046. 
# Effect of gender: energy intake P = 0.010 and total energy intake P = 0.010 were higher 

in men than women. 

Effect of protein load: energy intake P = 0.008 and total energy intake P = 0.002. * Post 

hoc effects: energy intake was lower after the 30 g (P = 0.001) and 70 g (P = 0.049) 

protein drink compared to control in men. ^ Post hoc effects: total energy intake was higher 

after the 70 g compared to the 30 g protein drink in men (P = 0.021); $ Post hoc effects: 

total energy was higher after the 70 g protein drink compared to control in women (P = 

0.033). 

 

Perceptions of appetite and gastrointestinal symptoms 

Baseline hunger, desire to eat, prospective food consumption, fullness, nausea and bloating 

were comparable in men and women (all P > 0.05). Protein drink ingestion was associated 

with a load-dependent decrease in perceptions (AUC and ratings immediately before the 

buffet meal at 180 min) of hunger (P = 0.002 and P = 0.002), desire to eat (P = 0.001 and P 

< 0.001) and prospective food consumption (P = 0.001 and P = 0.005). 

Hunger ratings were lower in women than men during the control day, and decreased in men, 

but not women, after both 30 g (P = 0.004) and 70 g (P < 0.001) protein loads compared to 

control day values (gender-effect P = 0.08, interaction-effect of gender by protein-load P = 

0.014; Figure 10.2). 
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Figure 10.2: Mean ( SEM) Visual analogue score (VAS, mm) of hunger, desire to eat, 

prospective food consumption, fullness, nausea and bloating in healthy young men (n = 8) 

and women (n = 8) after drinks containing flavoured water (control; dotted line with open 

circles) and whey protein loads of 30 g (dashed line with closed circles) or 70 g (solid line 

with closed circles). Effects of gender and protein-load and interaction effects were 

determined by using repeated-measures ANOVA including baseline values at each treatment 

visit as a covariate. 
+ P < 0.005 Effect of protein load: perceptions (area under the curve; AUC) of hunger (P = 

0.002), desire to eat (P = 0.001) and prospective food consumption (P = 0.001) protein-load 

dependently increased after drink ingestion. 
$ P = 0.0016 Interaction effect of gender by protein-load: perceptions of hunger were lower 

in women than men after the control drink. 

* P < 0.005 Interaction effect of gender by protein-load: in men hunger was suppressed after 

both 30 g (Post-hoc P = 0.004) and 70 g (Post-hoc P < 0.001) protein loads compared to 

control. 

 

Gastric emptying 

Gastric emptying parameters are detailed in Table 10.1. Baseline gastric volumes were 

comparable in men (31  6 mL) and women (34  4 mL, P = 0.69) and between study days 

(P = 0.41). The control (water) and the 30 g protein drinks emptied in an overall non-linear 

pattern, whereas the pattern of the 70 g protein drink was linear (Figure 10.3). Gastric 

retention (AUC % decrease in stomach volume compared to directly after drink ingestion, P 

< 0.001), gastric emptying halftime (T50, P < 0.001), complete emptying time (T100, P < 

0.001) and the rate of gastric emptying (kcal/min, P < 0.001) protein-load dependently 

increased after drink ingestion. The drinks emptied slower in women than men; gastric 

retentions were higher in women compared to men (gender-effect P = 0.021, interaction-

effect of gender by protein-load P = 0.34). 

 

Glucose and gut hormones 

Baseline concentrations of blood glucose (5.4 ± 0.1 mmol/L) and plasma insulin (5.3 ± 0.6 

mU/L), glucagon (68 ± 4 pg/mL), ghrelin (1507 ± 207 pg/mL), CCK (3.3 ± 0.4 pmol/L) and 

GIP (16 ± 2 pmol/L), and HOMA index (1.3 ± 0.1) were comparable in men and women (P 
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> 0.05) while plasma GLP-1 concentrations were marginally lower in women (16.5  0.9 

pmol/L) than men (20.6  2.0 pmol/L, P < 0.001). 

AUC blood glucose and plasma ghrelin decreased, and plasma insulin, glucagon, CCK, 

GIP, GLP-1 concentrations increased in a protein-load dependent fashion (all P < 0.01; 

Figure 10.4). 60 min and 180 min plasma ghrelin decreased and plasma insulin, glucagon, 

CCK, GIP and GLP-1 concentrations increased in a protein-load dependent fashion (all P < 

0.05; Table 10.2). AUC blood glucose concentrations were lower after the 30 g protein drink 

compared to control. 60-min plasma ghrelin concentrations were lower after both protein 

drinks compared to control (all P < 0.05). AUC plasma ghrelin concentrations were lower 

after the 70 g protein drink compared to the 30 g protein and control drinks. 60-min and 

AUC plasma insulin, glucagon, CCK, GIP and GLP-1 concentrations were higher after both 

protein drinks compared to control, and 180-min and AUC concentrations after the 70 g 

compared to the 30 g protein drink (all P < 0.05). 60-min plasma GLP-1 concentrations were 

higher after 70 g compared to 30 g protein (P = 0.036). 

Women compared to men had higher 60-min and AUC blood glucose concentrations (P 

< 0.05), and lower 60-min, 180-min and AUC plasma glucagon, CCK and GLP-1 

concentrations (all P < 0.05). Women compared to men had higher 60-min and AUC plasma 

glucagon concentrations, lower 60-min and AUC plasma GLP-1 and 180-min and AUC GIP 

concentrations (gender by protein-load interactions all P < 0.05). 
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Figure 10.3: Mean ( SEM) gastric retention (%) in healthy young men (n = 8; closed 

circles) and women (n = 8; open circles) after drinks containing flavoured water (control; 

dotted line) and whey protein loads of 30 g (dashed line) or 70 g (solid line). Effects of 

gender and protein-load and interaction effects were determined by using repeated-measures 

ANOVA. 

* P < 0.05 50% gastric emptying time (T50): effect of gender and protein-load (interaction 

effect of gender by protein-load P = 0.17) 
# P < 0.05 area under the curve (AUC): effect of gender and protein-load (interaction effect 

of gender by protein-load P = 0.34). 
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Figure 10.4: Mean ( SEM) blood glucose and plasma insulin, glucagon, ghrelin, CCK, GIP 

and GLP-1 concentrations in healthy young men (n = 8, n = 7 for GIP and GLP-1) and 

women (n = 8) after drinks containing flavoured water (control; dotted line with open circles) 

and whey protein loads of 30 g (dashed line with closed circles) or 70 g (solid line with 

closed circles). Effects of gender and protein-load and interaction effects were determined 

by using repeated-measures ANOVA including baseline values at each treatment visit as a 

covariate and post-hoc Bonferroni corrections. 
# P < 0.05 Effect of gender; $ P < 0.05 Post-hoc: plasma glucagon and GLP-1 concentrations 

were lower in women than men after all drinks 
+ P < 0.001 Effect of protein load; * P < 0.05 Post-hoc: plasma glucagon, GIP and GLP-1 

concentrations were higher after both protein drinks compared control in men and women 
& P < 0.05 Interaction effect of gender by protein-load; ^ P < 0.05 Post-hoc: plasma glucagon 

and GLP-1 - and GIP only in men - concentrations were higher after the 70 g protein drink 

compared to the 30 g protein drink in men and women. 

 

Relationships between energy intake, appetite, gastric emptying and gut 

hormones 

Energy intake at the buffet meal was, within subjects, related to 180-min plasma insulin, 

(r = -0.37, P = 0.032), CCK (r = -0.36, P = 0.041), GIP (r = -0.37, P = 0.033) and GLP-1 (r 

= -0.37, P = 0.001) concentrations, and perceptions of hunger (r = 0.37, P = 0.032), desire 

to eat (r = -0.53, P = 0.002) and prospective food consumption (r = 0.40, P = 0.022). GIP 

was related to GLP-1 (r = 0.78 P < 0.001) while ghrelin was inversely related to insulin (r = 

-0.63 P < 0.001).



 

 

Table 10.1: Gastric emptying parameters of whey protein (30 g and 70 g) and control drinks in healthy young men and women 

 Men (n = 8) Women (n = 8) 

    0 g    30 g 

(120kcal) 

   70 g  

(280kcal) 

   0 g    30 g 

(120kcal) 

   70 g 

(280kcal) 

50% emptying time (T50; min) +   121     254    7213  191     395  9814 

100% emptying time (100, min) +   607 12614 1716  8115 1764 1800 

Rate of gastric emptying (kcal/min) 1, +   1.00.1  1.50.1   0.90.0  1.20.0 

Early phase rate of gastric emptying 1 +   1.40.1.  2.30.1   1.30.1  1.70.3 

Late phase rate of gastric emptying 1 +   0.30.1  1.00.2   0.50.1  1.00.1 

Amount emptied at 60 min (%) +  951  724  493  933  656  376 

Amount emptied at 180 min (%) +, *  1000a  981a  865b  991a 1000a  753b 

All values are mean  SEM. Effects of gender and protein-load and interaction effects were determined by repeated-measures ANOVA. 
1 Rate of gastric emptying was calculated as mean of rates of emptying during each 15-min interval respectively of the early phase (i.e. 0-60 min), the 

late phase (i.e. 60 min until 100% emptying time per individual) and total time period (i.e. 0 min until 100% emptying time per individual). + P < 0.001 

Effect of protein load. P ≤ 0.1. * P < 0.005 Interaction effect of gender by protein-load: amount emptied at 180 min 
a,b P < 0.05, post hoc test: different letter indicates significant difference between drink-conditions.
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Table 10.2: Concentrations of glucose, insulin, glucagon, ghrelin, cholecystokinin (CCK), gastric inhibitory polypeptide (GIP) and glucagon-like 

peptide-1 (GLP-1) 

A Gender effect  B Protein-load effect 

 Men Women Average  Control 30g protein 70g protein Average 

60 min         

   Glucose 4.9 ± 0.1 5.3 ± 0.1   5.5 ± 0.1a 4.8 ± 0.2b 5.0 ± 0.1b  

   Insulin   14.4 ± 1.5  4.0 ± 0.5a 18.3 ± 2.3b 20.9 ± 2.3b  

   Glucagon  132 ± 12 96 ± 6   62 ± 3a 134± 11b 145 ± 12b  

   Ghrelin   1319 ± 180  1563 ± 236a 1230 ± 179b 1165 ± 130b  

   CCK 6.3 ± 0.7 3.8 ± 0.3   3.5 ± 0.4a 5.4 ± 0.6b 6.2 ± 0.7b  

   GIP   24.2 ± 1.3  10 ± 1a 31 ± 2b 31 ± 2b  

   GLP-1 32.4 ± 3.1 21.4 ± 1.2   20 ± 2a 29 ± 3b 32 ± 2c  

180 min         

   Glucose 5.0 ± 0.1 5.6 ± 0.2      5.3 ± 0.1 

   Insulin 5.1 ± 1.2 7.6 ± 0.7   3.6 ± 0.4a 3.5 ± 0.4a 11.9 ± 1.6b  

   Glucagon  99 ± 6 84 ± 6   59 ± 3a 71 ± 7b 145 ±10c  

   Ghrelin   1477 ± 253  1713 ± 294a 1633 ±281a 1085 ± 194b  

   CCK 4.8 ± 0.5 3.1 ± 0.2   3.1 ± 0.3a 3.4 ± 0.4a 5.3 ± 0.4b  

   GIP   19.2 ± 1.2  7 ± 1a 19 ± 1b 31 ± 2c  

   GLP-1 35 ± 3 23 ± 1   20 ± 2a 28 ± 2b 38 ± 3c  

         

       

C Interaction effect 

 Men Women 

 Control 30 g protein 70 g protein Control 30 g protein 70 g protein 

60 min       

   Glucagon 65±5*,a 154±18*,b 177±15*,c 58±4a 115±10b 114±11b 

   GLP-1 23.0±2.4a 35.0±4.2b 39.1±3.0*,b 17.2±1.3a 22.5±1.4,b 24.7±1.4b 

180 min       
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   GIP 7.6±1.7*,a 19.6±1.8*,b 31.8±3.7c 5.9±1.9a 21.4±2.2b 32.9±3.9c 

Main gender (A) and protein-load effects (B), and interaction effects (C) of gender by protein-load for mean ( SEM) 60-min and 180-min concentrations 

of blood glucose (mmol/L) and plasma insulin (mU/L), glucagon (pg/mL), ghrelin (pg/mL), cholecystokinin (CCK; pmol/L), gastric inhibitory 

polypeptide (GIP; pmol/L) and glucagon-like peptide-1 (GLP-1; pmol/L) in healthy young men (n = 8, n = 7 for GIP and GLP-1) and women (n = 8) 

after control (~2 kcal) and 30 g (120 kcal) or 70 g (280 kcal) protein loads. Results are presented separately for gender or protein-load if the main effect 

was significant, in case of non-significance the average was presented. Interaction effects of gender by protein-load are given if the effect was significant. 

Effects of gender and protein-load and interaction effects were determined by using repeated-measures ANOVA including baseline values at each 

treatment visit as a covariate and post hoc Bonferroni corrections. Post hoc effects: * P < 0.05: men vs. women; a,b,c P < 0.05: a different letter indicates 

a significant difference between drink-conditions within subject group.
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DISCUSSION 

This study examined the acute effects of oral whey protein ingestion on energy intake, 

perceptions of appetite and gastrointestinal symptoms, gastric emptying, blood glucose and 

plasma gut hormone concentrations in women and men. The current study is the first study 

we are aware of to compare the effect of gender on these parameters after pure protein intake. 

There was a load-dependent suppressive effect of protein on perceptions of hunger, desire 

to eat, prospective food consumption, and blood glucose and plasma ghrelin concentrations, 

slowing of gastric emptying, and increase of plasma insulin, glucagon, CCK, GIP and GLP-

1 concentrations. Hunger and energy intake were less in women than men. The major finding 

was that hunger and ad libitum energy intake were suppressed by the whey protein ingestion 

in men, but not women. Men had a 15% reduction in food intake at the buffet meal after the 

protein drinks, whereas there was no suppression in women. The suppression in men 

represented almost 100% compensation for the energy content of the protein drinks (206kcal 

reduction vs 200kcal mean energy content of the two protein drinks), whereas there was no 

compensation in women. Consequently, compared to intake on the control day, total energy 

intake (protein drink plus buffet test meal) was increased by the protein drinks in women 

(150 kcal [30%]), with no effect on total intake in men. The drinks emptied from the 

stomach more slowly and plasma glucagon, CCK and GLP-1 concentrations were less in 

women than men. 

There is evidence that protein has greater satiating effects than the other macronutrients 

(carbohydrate and fat (36-39)) and that enhanced protein diets can facilitate weight loss (40, 

287); protein diets are widely used for this purpose by both men and women trying to lose 

weight. There is also evidence, however, that men lose weight more easily than women on 

energy-restricted diets (342), and that women, when compared to men compensate less for 

energy intake after mixed macronutrient drinks (322) and semi-liquid (yoghurt) preloads 



Effects of gender – young adults   Chapter 10 

 

 

241 

(321). This may be due, at least in part, to the lower satiating effect of protein in young 

women than men we have demonstrated in the present study. The outcomes of this study 

may therefore have important implications for the types of dietary modifications 

recommended to promote weight loss in those trying to lose weight. Less emphasis on 

protein enrichment in women may be appropriate. 

Appetite and energy intake are dependent on the precise co-ordination of interrelated 

‘gastric’ and ‘small intestinal’ mechanisms triggered by the interaction with the nutrients 

ingested. Gastric emptying has an important role in mediating gut hormone release in 

response to protein, fat and carbohydrates (114, 273, 343, 344), and emptying of food content 

from the stomach itself is slowed by feedback mechanisms in the small intestine including 

the release of CCK and GLP-1 (345, 346). Gastric emptying was markedly and dose-

dependently slowed by the whey protein in this study, with the 50% gastric emptying time 

more than doubling from control to the 30 g protein day, and doubling again from the 30 g 

to 70 g protein day. Gastric emptying was completed earlier after the 30 g than the 70 g whey 

protein load, which resulted in a time-dependent response (earlier return to baseline after 30 

g vs. 70 g protein intake) in plasma concentrations of insulin, glucagon, ghrelin and CCK in 

men and women after 30 g vs. 70 g protein load. There was an immediate increase in plasma 

CCK and GIP concentrations, both mainly produced in the duodenum and proximal jejunum, 

reaching a plateau from 15-30 min onwards, while GLP-1, produced in the ileum more 

distally in the gut, showed a more constant increase. Rates of gastric emptying of the protein 

drinks were at the lower end of the normal range of gastric emptying i.e., 1-4 kcal/min (24, 

41-43), with faster gastric emptying rates during the 70 g compared to the 30 g protein loads. 

Our findings that gastric emptying was slower in women compared to men were similar to 

the results of most (83, 330-332), but not all, previous studies (80, 332). 

The findings of lower glucagon, CCK and GLP-1 concentrations after protein in women 

compared to men are consistent with previous reports that women have lower plasma 



Effects of gender – young adults   Chapter 10 

 

 

242 

concentrations of glucagon and GLP-1 after a mixed-nutrient liquid meal (335), but not after 

glucose (347), and of CCK after mixed-nutrient drinks (336), but not after corn oil (348), 

than men. Both CCK and GLP-1 suppress appetite and food intake (288), so the reduced 

response of these hormones to protein in women than men provides one possible explanation 

for the observed, reduced satiating effect of whey protein in women than men. In the present 

study  plasma insulin, ghrelin and GIP concentrations were comparable in men and women, 

consistent with most previous reports; for insulin after oral glucose (347, 349), insulin and 

ghrelin after mixed-nutrient ingestion (350), and insulin and GIP during intravenous glucose 

administration (349). Ghrelin concentrations have, however, also been reported to be higher 

in women than men after oral loads of glucose and lipids (351).  

It has been suggested that sex hormones may affect food intake (352). Pre-menopausal 

women are reported to have slower gastric emptying and lower appetite, food intake and 

plasma GLP-1 concentrations during the follicular than luteal phase, without changes in 

CCK concentrations (338). The young adult, pre-menopausal women in the present study 

were investigated during the follicular phase of the menstrual cycle, so it is possible that 

some of the differences between women and men observed (e.g. slower gastric emptying, 

lower GLP-1 concentrations) would have been less marked or absent if the women were 

examined during the luteal phase of their cycles. Similarly, we do not know if the reduced 

suppression of appetite and food intake by protein observed in this study in women compared 

to men persists into the luteal phase.  

Energy intake at the buffet meal was related to perceptions of appetite and plasma gut 

hormone concentrations immediately before the meal. Also energy intake at the buffet meal 

and perceptions of appetite were related to the rate of emptying of the whey protein drink 

from the stomach and plasma gut hormone responses, which were interrelated; the greater 

the increase in plasma insulin, glucagon, CCK, GIP and GLP-1 and decrease in ghrelin 

concentrations, the slower the drink emptied from the stomach within a subject – 70 g < 30 
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g < 0 g – the lower the perceptions of appetite, and the lower the subsequent energy intake 

at the buffet meal. GIP was related to GLP-1 (r = 0.78, P < 0.001) while ghrelin (AUC 0-

180 min) was inversely related to insulin (r = -0.63, P < 0.001). 

Although our study has several limitations, including the relatively small number of subjects, 

the results appear clear-cut. The protein preload drinks were selected to be iso-caloric for 

both men and women. Women are expected to have lower energy requirements when 

compared to men, and the drinks given to female group in this study could, therefore, be 

considered to be ‘larger’ than those given to the male group when considered in relation to 

energy requirements. While the drinks were matched for taste, we did not assess the subject’s 

perceptions of taste, pleasantness and/or palatability of the drinks. Women were studied 

during the follicular phase of their menstrual cycle, and it is unsure whether the results can 

be translated to the luteal phase. Blood glucose was measured by a glucometer, which is less 

than optimal, however, the results appear to be clear-cut. 

In summary, in young healthy women, when compared to men, whey protein drinks emptied 

slower from the stomach, and plasma glucagon, CCK and GLP-1 concentrations were lower 

associated with less suppression of energy intake and hunger by whey. These findings have 

potential implications for the efficacy of ingesting whey or other proteins to decrease overall 

food intake and achieve voluntary weight loss in women. Further studies are needed to 

determine how broadly these findings apply to other settings, including the use of other 

proteins, while longer-term studies will be needed to determine the effects of ingesting whey 

or other proteins on chronic changes in food intake, body weight and body composition.  

. 



 

 

Table 10.3: Within-subject correlations between perceptions of appetite and gastrointestinal symptoms, gastric retention and blood glucose and plasma 

gut hormone concentrations after intake of whey protein (30 g and 70 g) and control drinks in healthy young men and women 

 Hunger Desire to eat Prospective food 

consumption 

Fullness Nausea Bloating 

     r     P     r     P     r     P     r     P     r     P     r     P 

Gastric retention -0.39   0.024 -0.57  <0.001 -0.55   0.001 0.27   0.13  0.12   0.51  0.16   0.36 

Glucose -0.07 0.71 -0.17 0.35 -0.06 0.72  0.12 0.51  0.32 0.07  0.17 0.35 

Insulin -0.40 0.022 -0.51  0.003 -0.46 0.006  0.28 0.11  0.12 0.52  0.22 0.21 

Glucagon -0.41 0.017 -0.50  0.003 -0.49 0.003  0.30 0.08  0.12 0.49  0.16 0.39 

Ghrelin  0.44 0.011  0.50 0.003  0.46 0.008 -0.15 0.39 -0.10 0.59  0.00 1.00 

CCK -0.35 0.047 -0.40 0.021  -0.47 0.006  0.23 0.20  0.14 0.43  0.29  0.12 

GIP -0.39 0.025 -0.47 0.006 -0.48 0.004  0.18 0.32  0.01 0.94  0.11 0.55 

GLP-1 -0.51 0.002 -0.55  0.001 -0.51 0.002  0.32 0.07  0.24 0.18  0.23 0.19 

r and P values of within-subject correlations, determined by using a general linear model with fixed slope and random intercept, between perceptions of 

hunger, desire to eat, prospective food consumption, fullness, nausea, bloating [area under the curve (AUC 0-180 min) and blood glucose (mmol/L) and 

plasma insulin (mU/L), glucagon (pg/mL), ghrelin (pg/mL), CCK (pmol/L), GIP (pmol/L) and GLP-1 (pmol/L) concentrations (AUC 0-180 min) in 

healthy young men and women. 
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ABSTRACT 

Background: Protein-rich supplements are used widely to prevent and manage undernutrition 

in older people. We have previously shown that healthy older, compared to younger, adults 

have less suppression of energy intake by whey protein—although the effects of age on 

appetite-related gut hormones are largely unknown. 

Objective: To determine and compare the acute effects of whey protein loads on blood 

glucose and plasma gut hormone concentrations in older and younger adults. 

Design: Sixteen healthy older (eight men, eight women; mean ± SEM: age: 72 ± 1 years; body 

mass index: 25 ± 1 kg/m2) and 16 younger (eight men, eight women; 24 ± 1 years; 23 ± 0.4 

kg/m2) adults were studied on three occasions in which they ingested 30 g (120 kcal) or 70 g 

(280 kcal) whey protein, or a flavoured-water control drink (~2 kcal). At regular intervals over 

180 min, blood glucose and plasma insulin, glucagon, ghrelin, cholecystokinin (CCK), gastric 

inhibitory peptide (GIP), and glucagon-like peptide-1 (GLP-1) concentrations were measured. 

Results: Plasma ghrelin was dose-dependently suppressed and insulin, glucagon, CCK, GIP, 

and GLP-1 concentrations were dose-dependently increased by the whey protein ingestion, 

while blood glucose concentrations were comparable during all study days. The stimulation of 

plasma CCK and GIP concentrations was greater in older than younger adults. 

Conclusions: In conclusion, orally ingested whey protein resulted in load-dependent gut 

hormone responses, which were greater for plasma CCK and GIP in older compared to 

younger adults. 
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INTRODUCTION 

Despite the well-recognised major adverse impact of nutritional impairment on the health of 

the elderly, including ageing-related muscle loss (190), and related increase in the use of 

high-energy drinks, usually rich in whey protein, few nutritional studies have involved older 

people. We have recently reported that healthy older, compared to younger, adults have less 

suppression of energy intake by whey protein, ether ingested orally (263) or infused directly 

into the proximal small intestine (194). 

Appetite, energy intake, and blood glucose regulation are likely to be dependent on 

gastrointestinal mechanisms triggered by the interaction with the nutrients ingested. 

Mechanisms which reduce energy intake in younger adults include the stimulation of gut 

hormone secretion, e.g., cholecystokinin (CCK) and glucagon-like peptide (GLP-1), and the 

suppression of ghrelin. The incretin hormones gastric inhibitory polypeptide (GIP) and GLP-

1 play major roles in the control of plasma insulin, glucagon, and blood glucose 

concentrations in response to nutrient ingestion (353). We, and others, have reported that age 

affects gut hormone responses; healthy older, compared to younger, adults had higher CCK 

concentrations after overnight fasting, after mixed nutrient intake (42, 48), and during 

intraduodenal glucose and lipid infusions (53), in addition to higher insulin in response to 

intraduodenal glucose infusion (44), higher GIP after glucose ingestion (132, 135), and 

higher GLP-1 after an overnight fast (89, 132, 231) as well as after glucose (132) and mixed 

macronutrient intakes (231), while the reported effects of age on fasting and postprandial 

ghrelin after mixed macronutrient intakes are inconsistent (48, 52, 88, 89, 91). 

The aims of the study were to further determine the effects of oral whey protein loads on 

blood glucose and plasma insulin, glucagon, ghrelin, CCK, GIP, and GLP-1 concentrations 

in older as well as younger adults. We hypothesised that orally administered whey protein 
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would result in load-related responses of glucose and gut hormones, and that these responses 

to whey protein would be greater in older than younger subjects. 

 

SUBJECTS AND METHODS 

Subjects 

Sixteen older adults (eight men and eight women, age: mean ± standard error of the mean 

(SEM): 72 ± 1 years; body weight: 70 ± 3 kg; height: 1.66 ± 0.02 m; body mass index (BMI): 

25 ± 1 kg/m2) and 16 younger adults (eight men and eight women, 24 ± 1 years; 68 ± 2 kg; 

1.71 ± 0.02 m; 23 ± 0.4 kg/m2) were included. The study protocol was approved by the Royal 

Adelaide Hospital Research Ethics Committee, and subjects provided written informed 

consent (clinical trial registration: ACTRN12612000941864). 

 

Protocol 

The protocol was identical to that of our previous studies comparing younger and older men 

(263), and older men and women (339) - results of blood glucose and plasma gut hormone 

concentrations in the healthy older women compared to men are published (339). The study 

had a randomised (using the method of randomly permuted blocks; 

www.randomization.com [16 subjects randomised in one block with random permutations)] 

double-blind cross-over design including three study days, separated by three to 14 days. 

Subjects consumed a standardised evening meal (beef lasagna (McCain Foods Pty Ltd., 

Wendouree, VIC, Australia), ~591 kcal) before the study days at ~19.00 h. They were 

instructed to fast overnight from solids and liquids thereafter and to refrain from strenuous 

physical activity. On the study day, subjects attended the laboratory at ~08.30 h and were 

seated in an upright position (263, 339). 
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Subjects ingested drinks containing 30 g (120 kcal) or 70 g (280 kcal) whey protein or a 

control drink (~2 kcal) (263, 339). The drinks were prepared by a research assistant who was 

not involved in the data analysis of the study results, flavoured with diet lime cordial 

(Bickford’s Australia Pty Ltd., Salisbury South, SA, Australia), and served in a covered cup. 

 

Measurements 

Blood samples were collected, using an intravenous cannula, at 0, 5, 15, 30, 45, 60, 90, 120, 

150, and 180 min, into ice-chilled ethylenediaminetetraacetic acid (EDTA) coated tubes. No 

inhibitors were added (264). Plasma was obtained by centrifugation for 15 min at 3200 rpm 

at 4 °C and samples were stored at −80 °C. Ad libitum energy intake (kcal) was determined 

from a buffet-style meal (180–210 min) (263). Gastric emptying was determined from total 

gastric volume measurements by three-dimensional (3D) ultrasonography (Logiq™ 9 

ultrasound system, GE Healthcare Technologies, Sydney, NSW, Australia) (263). 

Blood glucose (millimoles per liter) was determined immediately after collection by the glucose 

oxidase method using a portable glucometer (Optium Xceed, Abbott Laboratories, Doncaster, 

VIC Australia). Intra- and inter-assay coefficients of variation were 3.2 and 10.8%. Plasma total 

insulin [milliunits per liter (mU/L)] was measured by enzyme-linked immunosorbent assay 

(ELISA) immunoassay (10-1113; Mercodia, Uppsala, Sweden). The minimum detectable limit 

was 1.0 mU/L. Intra- and inter-assay coefficients of variation were 3.0% and 8.7%. Plasma total 

glucagon [picogram per milliliter (pg/mL)], ghrelin (pg/mL), CCK-8 [picomoles per liter 

(pmol/L)], GIP (pmol/L), and GLP-1 (pmol/L) were measured by radioimmunoassay (RIA) 

(339). Minimum detectable limits were 20 pg/mL, 40 pg/mL, 1 pmol/L, 2 pmol/L, and 3 pmol/L. 

Intra- and inter-assay coefficients of variance were: insulin: 3.0% and 8.7%, glucagon: 4.3% and 

7.1%, ghrelin: 6.7% and 12.1%, CCK: 5.4% and 13.9%, GIP: 3.9% and 9%, GLP-1: 6.3% and 

10.3%. 
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Data and Statistical Analysis 

Sixteen subjects per age group would allow detection of differences in the area under the 

curve (AUC) of the primary outcomes of 25,920 pg/mL.min ghrelin, 198 pmol/L.min CCK, 

and 1080 pmol/L.min GLP-1 between groups with power equal to 0.8 and alpha to 0.05. 

Statistical analyses were performed using SPSS software (version 22; IBM, Armonk, NY, 

USA). Effects of age and protein load and their interaction effect were determined using a 

repeated measures mixed-effect model, including baseline values as a covariate and 

Bonferroni’s post hoc correction. AUC was calculated from baseline to 180 min using the 

trapezoidal rule and peak/nadir as the largest change from baseline. Statistical significance 

was accepted at p < 0.05. All data are presented as means ± SEMs. 

 

RESULTS 

Baseline concentrations after an overnight fast of blood glucose (mean ± SEM; older and 

younger: 5.4 ± 0.1 and 5.4 ± 0.1 mmol/L), plasma glucagon (64 ± 4 and 68 ± 4 pg/mL), 

ghrelin (1438 ± 156 and 1507 ± 207 pg/mL), and GIP (13 ± 2 vs. 16 ± 2 pmol/L) were 

comparable between age groups (P > 0.05), while insulin was lower (older vs. younger: 3.3 

± 0.4 vs. 5.3 ± 0.6 mU/L, P = 0.006) and CCK (4.8 ± 0.6 vs. 3.3 ± 0.4 pmol/L, P = 0.033) 

and GLP-1 (32 ± 4 vs. 22 ± 2 pmol/L, P = 0.041) were higher in healthy older compared to 

younger adults. AUC ghrelin dose-dependently decreased and insulin, glucagon, CCK, GIP, 

and GLP-1 dose-dependently increased (Figure 11.1, post hoc effects: 30 g and 70 g vs. control, 

70 g vs. 30 g protein drink, all P < 0.01). Nadir glucose was lower (P = 0.005), and peak 

glucagon (P = 0.001) and GLP-1 (P = 0.001) were higher after 70 g compared to 30 g whey 

protein ingestion. Time to peak of glucagon was higher after 70 g compared to 30 g whey protein 

ingestion (P < 0.001). Plasma gut hormone concentrations were related (ghrelin positively, and 

insulin, glucagon, CCK, GIP, and GLP-1 negatively) to energy intake (energy intake after 0 g, 
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30 g, and 70 g whey protein intake: younger: 1082 ± 106 kcal, 963 ± 79 kcal, 948 ± 82 kcal; 

older: 843 ± 77 kcal, 803 ± 75 kcal, 793 ± 78 kcal) and gastric emptying (younger and older men 

(263) and older men and women (339) published previously; Table 11.1). 

Older compared to younger adults had higher AUC and peak concentrations and time to peak 

of CCK (AUC: P = 0.031; older vs. younger: peak: 5.0 ± 0.7 pmol/L vs. 3.3 ± 0.3 pmol/L, 

P = 0.007; time to peak: 95 ± 12 min vs. 65 ± 8 min, P = 0.046) and GIP (AUC: P = 0.036; 

peak: 17.8 ± 2.7 pmol/L vs. 16.6 ± 1.4 pmol/L, P = 0.028; time to peak: 132 ± 11 min vs. 

101 ± 9 min, P = 0.037). AUC interaction effects of age by protein load were not significant. 

 

Table 11.1: Correlations between gut hormones, energy intake and gastric emptying 

 Energy intake Gastric emptying (T50) 

 r P r P 

Insulin -0.41 0.001 0.80 <0.001 

Glucagon -0.34 0.005 0.81 <0.001 

Ghrelin 0.36 0.003 -0.53 <0.001 

CCK -0.33 0.008 0.77 <0.001 

GIP -0.32 0.008 0.75 <0.001 

GLP-1 -0.31 0.011 0.68 <0.001 

r and P values of within-subject correlations between energy intake [control (~2kcal), 30 g 

(120 kcal) and 70 g (280 kcal) whey protein intake: younger n = 16: 1082 ± 106 kcal, 963 ± 

79 kcal, 948 ± 82 kcal; older n = 16: 843 ± 77 kcal, 803 ± 75 kcal, 793 ± 78 kcal), gastric 

empting half time [T50; control, 30 and 70 g whey protein intake: younger n = 16: 16 ± 1 

min, 32 ± 3 min, 85 ± 10 min; older n = 15: 23 ± 2 min, 65 ± 7 min, 130 ± 10 min] and 

concentrations (AUC 0-180 min) of blood glucose (mmol/L) and plasma insulin (mU/L), 

glucagon (pg/mL), ghrelin (pg/mL), CCK (pmol/L), GIP (pmol/L) and GLP-1 (pmol/L) in 

younger and older adults. Within-subject correlations were determined by using a general 

linear model with fixed slope and random intercept. 
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Younger adults Older adults Area under the curve 
(0-180 min) 

  Glucose* 

 
 

 

  Insulin* 

   
  Glucagon* 

   
  Ghrelin* 

   
  CCK*# 

   
  GIP*# 

   
  GLP-1* 

   

Figure 11.1: Mean and area under the curve ( SEM) values of blood glucose and plasma 

insulin, glucagon, ghrelin, CCK, GIP and GLP-1 concentrations in younger (n = 16) and 

older (n = 16) adults after 30 g (120 kcal; dashed line with closed circles) or 70 g (280 kcal; 

solid line with closed circles) whey-protein ingestion or control (~2 kcal; dashed line with 
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open circles). Main effects of age and protein load and the interaction effect of age by protein 

load were determined using a mixed-effect model with baseline concentrations as a 

covariate. 

* P ≤ 0.005, protein load effect: AUC blood glucose and plasma ghrelin dose-dependently 

decreased and plasma insulin, glucagon, CCK, GIP and GLP-1 dose-dependently increased 

after whey protein ingestion. 

# P < 0.05, age effect: older compared to younger adults had higher AUC CCK and GIP 

concentrations. 

 

DISCUSSION 

This study examined the influence of age on the acute effects of orally ingested whey protein 

on blood glucose and plasma gut hormone concentrations in healthy adults. Plasma ghrelin 

was dose-dependently suppressed, while insulin, glucagon, CCK, GIP and GLP-1 

concentrations were dose-dependently increased by the whey protein ingestion. Our 

observations extend the previously reported data of the acute effects of orally ingested whey 

protein on plasma insulin, glucagon, ghrelin, CCK, GIP, and GLP-1 concentrations in young 

adults (334, 354). The protein load effects were particularly evident after ~60 min, when the 

majority of the dose of 30 g whey protein had emptied from the stomach (339); plasma 

concentrations returned to baseline after 30 g, while they remained at their maximal 

increase/decrease after 70 g whey protein intake. 

Our findings confirmed earlier reports that older, when compared to younger, adults have 

higher plasma CCK (42, 48, 53) and GLP-1 (132, 231) concentrations after an overnight fast, 

while fasting insulin concentrations were reduced in our study in healthy adults. Age also 

affected CCK and GIP, but not insulin, responses following whey protein ingestion; as 

previously reported after mixed macronutrient ingestion for CCK (42, 48) and oral, but not 

intraduodenally infused (133), glucose ingestion for GIP (132, 135), glucose, and insulin 

(44, 133), postprandial concentrations were greater. The higher plasma CCK and GIP 

concentrations in older rather than younger adults may be related to differences in the small 

intestinal transit of the whey protein, and clearance including GIP inactivation by dipeptidyl 
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peptidase IV (DPP-IV) and renal processes (132). The higher incretin hormone GIP response 

following whey protein ingestion in older compared to younger adults is likely to be 

beneficial for glycemic control in older people. 

The causes of the age-related reduction in the suppression of energy intake by nutrients 

observed in this and other studies must include altered responses to the presence of nutrients 

in the small intestine, because the reduced suppression is observed after intraduodenal (194) 

as well as oral nutrient administration (46, 48, 263). CCK is a anorexigenic hormone and acts 

to suppress hunger and food intake (355). We have reported previously that older, when 

compared to younger, age in healthy subjects is associated with at least preserved, and possibly 

even increased, sensitivity to the satiating effects of exogenously administered CCK (43). 

Because plasma fasting and post-protein CCK concentrations were higher in older compared 

to young subjects in the present and previous studies, it is perhaps surprising that these higher 

concentrations were associated with reduced, not increased, protein-induced suppression of 

energy intake in the healthy older compared to young adult subjects (194, 263). It is possible 

that the test meal may have been given too late at 3 hours to assess the full effect of CCK 

changes, as plasma concentrations had returned to baseline by then after all but the highest 

whey protein load. Nevertheless, these findings are consistent with our previous finding that 

under-nourished older people have higher fasting and post-nutrient CCK concentrations in 

comparison to well-nourished older people, but reduced nutrient-induced suppression of food 

intake compared to well-nourished older people (48). Together, these findings suggest that 

age-related changes in CCK (circulating concentrations and/or action) are unlikely to 

contribute much, if anything, to the age-related reduction in food intake after the ingestion of 

protein and other nutrients. 

The findings of this study do not exclude a role for GLP-1 or GIP in the lesser suppression 

of food intake by whey protein in healthy older subjects. Baseline circulating concentrations 

of the anorexigenic hormone GLP-1 were significantly higher in older compared to younger 
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subjects, with no difference between age groups in the subsequent whey protein-induced 

rise, consistent with responses during intraduodenal infusions of lipid and glucose (53). The 

higher baseline GLP-1 levels may have acted to further inhibit the suppression of appetite 

and thus food intake after whey protein ingestion. GLP-1 is mainly secreted more distally in 

the gastrointestinal tract (i.e., ileum and colon) than CCK and GIP (expressed mainly in the 

duodenum and jejunum), and the GLP-1 concentrations following whey protein ingestion 

increased more slowly than CCK and GIP concentrations. The emptying of food content 

from the stomach is slowed down by feedback mechanisms in the intestines including the 

release of CCK and GLP-1 (345, 346); indeed, gastric emptying of the whey protein was 

slower in the older compared to younger adults (263). Although the effect of GIP on human 

appetite and food intake, if any, is not clear, there is limited animal evidence to suggest it 

may act to stimulate food intake; GIP receptor-deficient mice are resistant to diet-induced 

obesity (356). The greater increase in circulating GIP concentrations after whey protein in 

healthy older compared to younger subjects might therefore act to reduce the protein-induced 

suppression of food intake. More studies will be required to investigate the role of these 

hormones in age-related feeding changes. Also, psychological factors, including increased 

dietary restraint, particularly in women (357), may affect the short-term energy intake 

regulation of older adults. 

Healthy older and younger adults had comparable plasma ghrelin concentrations following 

whey protein ingestion, consistent with responses to mixed-nutrient intake in some (88, 89) 

but not all previous studies (48, 52, 91). It has been suggested that aging-related changes in 

body composition (i.e., a decrease in lean mass and increase in fat mass) may act to decrease 

fasting (92) and postprandial (48) ghrelin concentrations, as body fat is negatively correlated 

to ghrelin concentrations (295) and tends to increase with older age. Other studies, however, 

have found higher postprandial and fasting ghrelin concentrations in older adults than those in 
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younger adults and impaired suppression of ghrelin after the consumption of a mixed-nutrient 

meal in older compared to younger subjects (52, 91). 

This study has several limitations, including the relatively small subject numbers. Total 

ghrelin instead of active ghrelin was measured, which could be considered to be less than 

optimal; however, the results appeared to be clear-cut, with significant dose-dependent 

suppressive effects of the protein loads on ghrelin in the direction expected. 

The finding that plasma gut hormone responses to whey protein are not blunted in healthy 

older compared to younger men is likely to have implications to the composition of dietary 

supplements for older people, and warrants further research to their relation to food intake 

and glycemic control in older people. 
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ABSTRACT 

Background Protein-rich supplements are used widely for the management of malnutrition 

in the elderly. We reported previously that the suppression of energy intake by whey protein 

is less in older than younger adults.  

Objective: To determine the effects of substitution, and adding of carbohydrate and fat to 

whey protein, on ad libitum energy intake from a buffet meal (180–210 min), gastric 

emptying (3D-ultrasonography), plasma gut hormone concentrations (0–180 min) and 

appetite (visual analogue scales), in healthy older men. 

Design In a randomised, double-blind order, 13 older men (75 ± 2 years) ingested drinks 

(~450 mL) containing: (i) 70 g whey protein (280 kcal; ‘P280’); (ii) 14 g protein, 28 g 

carbohydrate, 12.4 g fat (280 kcal; ‘M280’); (iii) 70 g protein, 28 g carbohydrate, 12.4 g fat 

(504 kcal; ‘M504’); or (iv) control (~2 kcal).  

Results: The caloric drinks, compared to a control, did not suppress appetite or energy 

intake; there was an increase in total energy intake (drink + meal, p < 0.05), which was 

increased most by the M504-drink. P280- and M504-drink ingestion were associated with 

slower a gastric-emptying time (n = 9), lower ghrelin, and higher cholecystokinin (CCK) 

and glucagon-like peptide-1 (GLP-1) than M280 (P < 0.05). Glucose and insulin were 

increased most by the mixed-macronutrient drinks (P < 0.05).  

Conclusions: In conclusion, energy intake was not suppressed, compared to a control, and 

particularly whey protein, affected gastric emptying and gut hormone responses. 
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INTRODUCTION 

Over recent decades, the prevalence of malnutrition, both under-nutrition and obesity, has 

increased in older men and women in Western societies (285, 319). A growing awareness of 

the prevalence and adverse effects of the major muscle loss that occurs during aging, 

irrespective of body mass index (BMI, kg/m2) - e.g., reduced functional capacity and 

decreased quality of life (190, 285, 358)- has led to the development of nutritional strategies 

designed specifically to preserve and/or restore skeletal muscle mass and function. A 

‘common’ strategy is the use of supplements, which are usually high-energy drinks rich in 

whey protein (26, 27, 35, 286, 320). 

Despite this increasing use of protein-rich drinks, information about their effects on energy 

intake and underlying gastrointestinal mechanisms in older people is limited. In younger 

adults, preloads high in protein suppress appetite and energy intake (36, 359-363) more than 

iso-caloric preloads high in fat or carbohydrate. In young adults, variations in gut hormone 

secretion and/or action [e.g., ghrelin, cholecystokinin (CCK) and glucagon-like polypeptide-

1 (GLP-1)], as well as gastric emptying, are likely to regulate energy intake (70, 112-114, 

234, 237, 288). 

Compared to younger adults, healthy older people exhibit decreased taste and food 

palatability, are less hungry and fuller during the fasting and postprandial states, and 

consume less food and energy (315). This has been termed the ‘anorexia of aging’ (190, 

358). Healthy aging is also associated with reduced responsiveness to the suppressive effects 

of nutrients on appetite and energy intake (46, 63, 194, 263). We have recently demonstrated 

that acute administration of 30 g (120 kcal), and 70 g (280 kcal) whey protein drinks, 180 

min before a meal, suppressed subsequent energy intake by 12–17% in young, but without 

suppression in healthy older, men (263) so that in older men protein ingestion increased total 

energy intake (drink plus energy intake) compared to a control (~0 kcal) to a greater extent 
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than in the young men. Gastric emptying of the whey protein drink was shown to be slower 

in older than younger men (263). In young adults, gastric emptying of 500 mL of protein 

(375 kcal) has been reported to be comparable to carbohydrate (400 kcal) or fat (375 kcal), 

when expressed as the rate of emptying in mL/min (364), as well as slower when ingested 

as a mixed macronutrient dairy breakfast (high-protein compared to high-carbohydrate; 

~400 kcal) (365). The high-protein dairy breakfast had higher plasma CCK and GLP-1 

responses - gut hormones known to slow gastric emptying (365). 

The aim of this study was to determine the effects of substitution and addition of 

carbohydrate and fat to whey protein on ad libitum energy intake at a buffet meal, gastric 

emptying, gut hormones and perceptions of appetite and gastrointestinal symptoms, in 

healthy older men. We hypothesised that the replacement of protein by carbohydrate and fat 

would result in less suppression of subsequent energy intake, more rapid gastric emptying, 

more pronounced changes in plasma gut hormone concentrations (insulin, ghrelin, CCK, 

GLP-1), and that the addition of carbohydrate and fat would result in greater suppression of 

subsequent energy intake, slower gastric emptying, more pronounced changes in plasma gut 

hormone concentrations and decreased perceptions of appetite, compared to a ‘pure’ whey—

protein drink. 

 

SUBJECTS AND METHODS 

Subjects 

Thirteen older healthy men, 65 years or older [mean ± standard error of the mean (SEM); 

age: 75 ± 2 years; body weight: 79 ± 2 kg; height: 1.75 ± 0.01 m; BMI: 26 ± 1 kg/m2], were 

recruited by advertisement. Subjects were excluded if they failed to comprehend the study 

protocol, had donated blood in the 12 weeks prior to the study days, had known lactose 

intolerance or food allergies, or were undernourished [score < 24 on the Mini Nutritional 
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Assessment (276)]. Further exclusion criteria were low plasma ferritin levels, diabetes, 

gallbladder or pancreatic disease, significant gastrointestinal symptoms (abdominal pain, 

gastro-esophageal reflux, diarrhea, or constipation) or surgery, depression [score ≥ 11 on the 

Geriatric Depression Questionnaire (275)], alcohol abuse, smoking, use of illicit substances 

or medications known to potentially affect energy intake, or had impaired cognitive function 

[score < 25 on Mini Mental State (274)]. The Royal Adelaide Hospital Human Research 

Ethics Committee approved the study protocol and the study was conducted in accordance 

with the Declaration of Helsinki. The study is a sub-analysis of a larger study, which is 

registered as a clinical trial with the Australian New Zealand Clinical Trial Registry 

(www.anzctr.org.au; ACTRN12614000846628). All subjects provided written informed 

consent prior to their inclusion. 

 

Protocol 

Subjects were studied on 4 occasions, separated by 3–14 days, to determine the effects of 

drinks (~450 mL) containing either: (i) 70 g whey protein (280 kcal; ‘P280’); (ii) 14 g whey 

protein, 28 g carbohydrate, 12.4 g fat (280 kcal; ‘M280’); (iii) 70 g protein, 28 g carbohydrate, 

12.4 g fat (504 kcal; ‘M504’); or (iv) an iso-palatable control drink (~2 kcal; ‘control’) on 

energy intake, gastric emptying, gut hormones, and perceptions of appetite and 

gastrointestinal symptoms, in a randomised (using the method of randomly permuted blocks; 

www.randomization.com), double-blind, cross-over design. 

Drinks were prepared on the morning of the study day, by homogenizing olive oil (Bertolli 

Australia Pty Ltd., Unilever Australasia, Sydney, NSW, Australia) and dissolving whey 

protein isolate (Fonterra Co-Operative Group Ltd., Palmerston North, New Zealand) and 

dextrose, in varying volumes of demineralised water and diet lime cordial (Bickford’s 

Australia Pty Ltd., Salisbury South, SA, Australia), to achieve the desired composition, by a 
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research officer (SH) who was not involved in the data analysis. Both the investigator and 

the subject were blinded to the treatment. The drinks were matched for taste and served in a 

covered cup. 

Before each study day, subjects consumed a standardised meal [beef lasagne (McCain Foods 

Pty Ltd., Wendouree, VIC, Australia), containing ~591 kcal], at ~19:00 p.m. Thereafter, 

subjects fasted overnight from solids and liquids until they attended the laboratory at ~08:30 

a.m. Subjects refrained from strenuous physical activity for 24 h before the study day. 

Subjects removed all metal objects and were seated in an upright position on a wooden chair. 

An intravenous cannula was inserted for blood sampling and subsequent measurement of 

glucose and gut hormones. In each subject, blood samples and ultrasound measurements of 

gastric volume, and perceptions of appetite and gastrointestinal symptoms were performed 

before (during fasting) and after ingestion of the drink, until 180 min. Subjects were 

instructed to consume the drink within 2 min. At 180 min, each subject was presented with 

a standard, cold, buffet-style meal, in excess of what they were expected to consume (total 

energy content of 2.457 kcal; 19% protein, 50% carbohydrates, 31% fat), in a room by 

themselves to limit external distractions, and were allowed to eat for 30 min (180–210 min) 

until comfortably full. 

 

Measurements 

Energy intake 

The buffet-style meal consisted of bread, chicken, ham, cheese, margarine, mayonnaise, 

yoghurt, custard, fruit, fruit salad, orange juice, iced coffee and water (263). The amount 

eaten at the meal (g) was quantified by weighing the food before and after consumption. 

Energy intake (kcal), as intake at the buffet meal, and as the cumulative energy intake, 

defined as the sum of energy intake at the buffet meal and the energy content of the preload 
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drink, proportions of protein, carbohydrate and fat (Foodworks version 8; Xyris Software 

Pty Ltd., Spring Hill, QLD, Australia), and change in energy intake at the buffet meal 

(expressed as % of energy intake of the control day) by a given protein load, compared to 

the control, were calculated. 

 

Gastric emptying 

Total gastric volume was measured by a Logiq™ 9 ultrasound system (GE Healthcare 

Technologies, Sydney, NSW, Australia) with TruScan Architecture [built-in magnetically-

sensored 3D positioning and orientation measurement (POM)], including a 3D sensor, 

attached to a 3.5C broad spectrum 2.5–4 MHz convex transducer, and a transmitter, placed 

at the level of the stomach, immediately behind the subject, at 0, 5, 15, 30, 45, 60, 75, 90, 

105, 120, 135, 150, 165 and 180 min (264). The stomach was scanned along its longitudinal 

axis, whilst the subject was holding their breath and sitting still. Stomach volumes were 

calculated using EchoPAC-3Dsoftware (GE Vingmed Sound, Horten, Norway). Intragastric 

retentions were calculated as total gastric volume minus fasting gastric volume (baseline) at 

each time point, and expressed as percentage of the maximal gastric volume (100%). Data 

were imput by linear interpolation when ultrasound images lacked sufficient clarity (263). 

The rate of gastric emptying was calculated during each 15-min interval in the early phase 

(i.e., 0–60 min), and the late phase (i.e., 60 min until 100% emptying time per individual). 

Fifty percent of the gastric emptying time (T50; min) and ‘complete’ (residual volume of the 

drink in the stomach was ≤5%) gastric emptying time (100% gastric emptying time; T100; 

min) were calculated (263). 
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Blood Glucose and Plasma Insulin, Ghrelin, Cholecystokinin (CCK) and Glucagon-

Like Peptide-1 (GLP-1) Concentrations 

Blood samples were collected, at 0, 5, 15, 30, 45, 60, 90, 120, 150, 180 min, into ice-chilled, 

EDTA-coated tubes. No inhibitors were added (264). Plasma was obtained by centrifugation 

for 15 min, at 3200 rpm, at 4 °C, and samples were stored at −80 °C for further analysis of 

hormone concentrations. 

Blood glucose (millimoles per liter) was determined immediately after collection, by the 

glucose oxidase method, using a portable glucometer (Optium Xceed, Abbott Laboratories, 

Sydney, NSW, Australia). Intra- and inter-assay coefficients of variation were 2.6% and 

15.2%. 

Total plasma insulin (milliunits per liter) was measured by enzyme-linked immunosorbent 

assay (ELISA) immunoassay (10-1113; Mercodia, Uppsala, Sweden). The minimum 

detectable limit was 1.0 mU/L. Intra- and inter-assay coefficients of variation were 3.0% and 

6.8%. 

Total plasma ghrelin (picograms per milliliter) was measured using a radioimmunoassay 

(RIA) with some modifications to a published method (323). The radiolabel was supplied by 

Perkin Elmer (NEX388, Boston, MA, USA). The standard and samples were incubated with 

the antibody and radiolabel for 3–4 days, at 4 °C. The detection limit was 40 pg/mL. Intra- 

and inter-assay coefficients of variation were 5.1% and 10.1%. 

Plasma CCK-8 (picomoles per liter) was measured by RIA, using an adaption of a previous 

method (324). Samples were extracted in 66% ethanol; extracts were dried down and re-

suspended in assay buffer (50 mM phosphate, 10 mM EDTA, 2 g/L gelatin, pH = 7.4). 

Standards were prepared using synthetic sulphated CCK-8 (Sigma Chemical, St Louis, MO, 

USA), antibody (C2581, Lot 105H4852, Sigma Chemical) was added at a working dilution 

of 1/17,500 and sulphated CCK-8 125I-labeled with Bolton and Hunter reagent (Perkin 

Elmer, Boston, MA, USA) was used as tracer. Incubation was for 7 days at 4 °C. The 
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antibody bound fraction was separated by the addition of dextran-coated charcoal containing 

gelatin (0.015 g gelatin, 0.09 g dextran, 0.15 g charcoal in 30 mL assay buffer), and the 

radioactivity was determined in the supernatants following centrifugation. The detection 

limit was 1 pmol/L. The intra- and inter-assay coefficients of variation were 8.1% and 

11.5%. 

Total plasma GLP-1 (picomoles per liter) was measured by RIA (GLPIT-36HK; Millipore, 

Billerica, MA, USA), with a detection limit of 3 pmol/L. Intra - and inter -assay coefficients 

of variation were 2.7% and 7.1%. 

Peak/nadir and time to peak/nadir concentrations for glucose, insulin, ghrelin, CCK and 

GLP-1 were calculated for the caloric drink conditions. 

 

Perceptions of appetite and gastrointestinal symptoms 

Perceptions of hunger, desire to eat, prospective consumption, fullness, nausea and bloating 

were rated using a visual analogue scale (VAS) questionnaire at 0, 5, 15, 30, 45, 60, 75, 90, 

105, 120, 135, 150, 165, 180, 210 min (47). The questionnaire consisted of 100-mm 

horizontal lines, where 0 represented that the sensation was ‘not felt at all’ and 100 

represented that the sensation was ‘felt the greatest’. Subjects placed a vertical mark on each 

horizontal line to indicate the strength of each sensation at the specified time points.  

 

Data analysis 

On the basis of our previous work, with an observed within-subject standard deviation (SD) 

of 267 kcal for suppression of energy intake by whey protein, and 31 min for gastric 

emptying half time (263), we calculated that 13 subjects would allow detection of a within-

group difference between treatments for suppression in energy intake of 272 kcal and T50 

of 35 min, with power equal to 0.8 and alpha equal to 0.05. 
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Statistical analyses were performed using SPSS software (version 22; IBM, Armonk, NY, 

USA). Differences between study conditions for energy intake, gastric emptying, 

perceptions of appetite and gastrointestinal symptoms (visual analogue scores) and glucose 

and hormone concentrations were determined using one-way repeated-measures ANOVA, 

with the treatment as the within-subject factor. Post hoc comparisons were adjusted with the 

Bonferroni method. Interaction effects of time by treatment, for concentrations of blood 

glucose and plasma insulin, ghrelin, CCK and GLP-1, and perceptions of hunger, desire to 

eat, prospective food consumption, fullness, nausea and bloating, were determined using a 

two-way repeated measures ANOVA, with treatment and time as the within-subject factors. 

Within-subject correlations were determined using a general linear model with fixed slope 

and random intercept (277). Areas under the curve (AUC) for gastric emptying, perceptions 

of appetite and gastrointestinal symptoms, and concentrations of glucose, insulin, ghrelin, 

CCK and GLP-1, were calculated from baseline to 60 min (i.e., ‘early’ phase of gastric 

emptying) and 60 to 180 min (i.e., ‘late’ phase of gastric emptying), using the trapezoidal 

rule. Peak/nadir and time to peak/nadir perceptions of hunger, desire to eat, prospective food 

consumption, fullness, nausea and bloating were calculated for the all conditions. 

Assumptions of normality were verified for all outcomes before the statistical analysis. 

Statistical significance was accepted at p < 0.05. All data are presented as mean values ± 

SEMs. 

 

RESULTS 

The study protocol was well-tolerated by all subjects. Baseline gastric volumes (mean ± 

SEM of four study days: 33  4 mL), blood glucose (5.7 ± 0.1 mmol/L), plasma insulin (5.1 ± 

1.8 mU/L), ghrelin (1659 ± 165 pg/mL), CCK (2.0 ± 0.2 pmol/L) and GLP-1 concentrations (15 

± 1 pmol/L), and perceptions of hunger (31 ± 13 mm), desire to eat (30 ± 12 mm), prospective 
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food consumption (46 ± 14 mm), fullness (2 ± 1 mm), nausea (3 ± 1 mm) and bloating (3 ± 

1 mm), were not different between study days. 

 

Energy intake 

Ad libitum energy intake at the buffet meal (Figure 12.1) and energy percentages of protein, 

carbohydrate and fat were not different between study days (mean of four study days: energy 

intake: 994 ± 76 kcal, P = 0.53; protein: 20 ± 0.4%, P = 0.60; carbohydrate: 52 ± 1%, P = 

0.25; fat: 30 ± 1% P = 0.83). There was no suppression of energy intake by the caloric drinks, 

compared to the control (P > 0.05). Total energy intake (drink plus meal) was higher after 

all caloric drinks, compared to the control (P < 0.001; post hoc tests versus control (972  

87 kcal): P280 (1300  95kcal) P < 0.001; M280 (1306  76 kcal) P = 0.003; M504 (1461  76 

kcal) P < 0.001). 

  

 

Figure 12.1: Left: mean [ standard error of the mean (SEM)] energy intake at the buffet 

meal (kcal) in healthy older men (n = 13) after drinks (~450 mL; energy content of the drink 

as the striped part of each bar) containing either: (i) 70 g whey protein (280 kcal; ‘P280’); (ii) 

14 g protein, 28 g carbohydrate, 12.4 g fat (280 kcal; ‘M280’); (iii) 70 g protein, 28 g 

carbohydrate, 12.4 g fat (504 kcal; ‘M504’); or (iv) an iso-palatable control drink (~2 kcal; 

‘control’). Right: mean (SEM) suppression of energy intake after caloric drinks (P280, M280 

and M504) compared to control. a,b p < 0.05 Total energy intakes (meal plus drink) for P280, 

M280 and M504 (b) were higher compared to the control (a). 

 

Gastric emptying 

In four subjects, the quality of ultrasound stomach images was insufficient to determine 

gastric emptying in one or more conditions, and all data related to gastric emptying in these 
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subjects were, therefore, excluded from the analysis. The control and the M280 drink 

emptied in an overall non-linear pattern, whereas the pattern of emptying of P280 and M504 

was linear (Figure 12.2). Gastric emptying of P280 and M504 was slower (P < 0.001), and 

gastric retention greater (P < 0.001), than M280, with 50% gastric emptying times being 

~three-fold higher (P < 0.001, Table 12.1). 

 

 

Figure 12.2: Mean (  SEM) gastric retention (%) in healthy older men (n = 9), after 

drinks containing either: (i) 70 g whey protein (280 kcal; ‘P280’; dashed line with open 

circles); (ii) 14 g protein, 28 g carbohydrate, 12.4 g fat (280 kcal; ‘M280’; solid line with 

open circles); (iii) 70 g protein, 28 g carbohydrate, 12.4 g fat (504 kcal; ‘M504’; solid line 

with closed circles); or (iv) an iso-palatable control drink (~2 kcal; ‘control’; dotted line). 

Gastric emptying half time (T50) was higher after P280 and M504, compared to M280 and 

control (*P < 0.05). 

 

Table 12.1: Gastric emptying parameters after drink ingestion in healthy older men 

Gastric emptying parameters Control P280 M280 M504 

50% emptying time (T50; min) 12  2 a 78  11 b 26  2 a 93  13 b 

100% emptying time (T100; 

min) 
58  7 a 180  0 b 120  8 c 170  7 b 

Gastric retention (%)     

     AUC0-60min 1546  200 a 4666  222 b 2979  83 c 4871  240 b 

     AUC60-180min 94  42 a 3907  559 b 552  122 c 4331  771 b 

Rate of gastric emptying (kcal/min) 1 

     Early phase  2.0  0.3 a 3.7  0.1 b 3.1  0.6 b 

     Late phase  1.1  0.1a 1.3  0.3 a 2.2  0.3 b 

Amount emptied (%) 

     at 60 min 98  1 a 61  11 b 86  4 a 56  12 b 

     at 180 min 100  0 a 89  3 b 100  0 a 85  5 b 

** * * 
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Mean ( SEM) 50% and 100% emptying time (min), gastric retention (%), rate of gastric 

emptying (kcal/min) and amount emptied (%) at 60 and 180 min in healthy older men (n = 

9), after drinks containing either: (i) 70 g whey protein (280 kcal; ‘P280’); (ii) 14 g protein, 

28 g carbohydrate, 12.4 g fat (280 kcal; ‘M280’); (iii) 70 g protein, 28 g carbohydrate, 12.4 

g fat (504 kcal; ‘M504’); or (iv) an iso-palatable control drink (~2 kcal; ‘control’). 1 The rate 

of gastric emptying was calculated as the mean of rates of emptying during each 15-min 

interval, respectively, in the early phase (i.e., 0–60 min) and late phase (i.e., 60 min until 

100% emptying time per individual). Different letters indicate a significant difference (P < 

0.05) between drink conditions; gastric emptying time and retention and amount emptied 

were higher after P280 and M504 (
b) than M280 (

a,c) and control (a), rate of gastric emptying 

was higher after M504 (
b) and M280 (

a,b) than P280 (
a). 

 

Glucose 

Blood glucose concentrations increased after M280 and M504, returned to baseline ~60 min, 

and stayed below baseline until the buffet meal (interaction effect of time by drink condition: 

P < 0.001). Peak glucose concentrations were higher after M280 and M504, compared to P280 

(P = 0.001, Table 12.2). Early phase AUC0–60 min glucose concentrations were higher after 

M280 and M504, compared to the control, and after M280, compared to P280 (P < 0.001, Figure 

12.3). Late phase AUC60–180 min glucose concentrations were lower after M280 than the control 

(drink condition effect: P < 0.001). Glucose concentrations at 180 min were lower after M280 

compared to control and M504 (P = 0.003). 

 

Insulin 

Plasma insulin concentrations increased after all caloric drinks (P280, M280 and M504; 

interaction effect of time by drink condition: P = 0.038). The mixed-macronutrient drinks 

evoked a rapid increase in insulin, insulin peak concentrations were higher after M280 and 

M504 compared to P280 (P < 0.001, Table 12.2), and the drinks containing 70 g of whey 

protein (P280 and M504) remained elevated (Figure 12.3). Early phase AUC0–60 min insulin 

concentrations were higher after M504, compared to P280 (P = 0.008). 
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 Area under the curve  

(0–60 min) 

Area under the curve 

(60–180 min) 

 

  

 

  

 

 
 

 

 
 

 

 

 

Figure 12.3: Mean ( SEM) concentrations of blood glucose and plasma insulin, ghrelin, 

cholecystokinin (CCK) and glucagon-like peptide-1 (GLP-1) in healthy older men (n = 13), 

after drinks containing either: (i) 70 g whey protein (280 kcal; ‘P280’; dashed line with open 

circles); (ii) 14 g protein, 28 g carbohydrate, 12.4 g fat (280 kcal; ‘M280’; solid line with open 

circles); (iii) 70 g protein, 28 g carbohydrate, 12.4 g fat (504 kcal; ‘M504’; solid line with 

closed circles); or (iv) an iso-palatable control drink (~2 kcal; ‘control’; dotted line). There 

was an interaction effect of time by drink condition for concentrations of blood glucose (P 

< 0.001), insulin (P = 0.038), ghrelin (P < 0.001), CCK (P < 0.001) and GLP-1 (P < 0.001). 

Different letters indicates significant difference (P < 0.05) in area under the curves (0–60 or 

60–180 min) between drink-conditions: control vs. P280 vs. M280 vs. M504. 
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Ghrelin 

Plasma ghrelin concentrations decreased after all caloric drinks (P280, M280 and M504; 

interaction effect of time by drink condition: P < 0.001). Nadir ghrelin concentrations were 

lower after P280 and M504, compared to M280, (P = 0.001, Table 12.2), and remained 

suppressed after P280 and M504 (Figure 12.3). Late phase AUC60–180 min ghrelin 

concentrations were lower after all caloric drinks, compared to the control, and after P280 

and M504, compared to M280 (P < 0.001). Ghrelin concentrations at 180 min were lower 

after M504 and P280, compared to the control and M280 (P < 0.001). 

 

CCK 

Plasma CCK concentrations increased after all caloric drinks (P280, M280 and M504; 

interaction effect of time by drink condition: P < 0.001). Peak CCK concentrations were 

higher after P280 and M504, compared to M280 (P < 0.001, Table 12.2), and remained elevated 

after P280 and M504 (Figure 12.3). Early phase AUC0–60 min CCK concentrations were higher 

after the caloric drinks, compared to the control (P < 0.001). Late phase AUC60–180 min CCK 

concentrations were higher after the caloric drinks, compared to the control, and after P280 

and M504, compared to M280 (P < 0.001). CCK concentrations at 180 min were higher after 

P280 and M504, compared to the control and M280 (P < 0.001). 

 

GLP-1 

Plasma GLP-1 concentrations increased after all caloric drinks (P280, M280 and M504; 

interaction effect of time by drink condition: P < 0.001, Figure 12.3). Early phase AUC0–60 

min GLP-1 concentrations were higher after P280 and M504, compared to the control and M280 

(P < 0.001). Late phase AUC60–180 min GLP-1 concentrations were higher after all caloric 

drinks, compared to the control, and after P280 and M504, compared to M280 (P < 0.001). GLP-



Macronutrient composition   Chapter 12 

 

 

277 

1 concentrations at 180 min were higher after the caloric drinks, compared to the control, 

and after P280 and M504, compared to M280 (P < 0.001). 

 

Perceptions of appetite and gastrointestinal symptoms 

Early phase AUC0–60 min and late phase AUC60–180 min perceptions of hunger, desire to eat, 

prospective food consumption, fullness, nausea, and bloating were not different between 

study days (P > 0.05, Figure 12.4). Hunger (mean decrease over four study visits: 9 ± 2 mm, 

time to nadir: 29 ± 7 min, time effect: P < 0.001), desire to eat (9 ± 1 mm, 21 ± 5 min, P < 

0.001) and prospective food consumption (11 ± 2 mm, 35 ± 7 min, P < 0.001) initially 

decreased after drink ingestion and increased thereafter to ratings higher than baseline, 

immediately before the buffet meal (180 min). Fullness (mean increase over four study days: 

16 ± 5 mm, time to peak: 38 ± 8 min, P = 0.001) increased after the drink to return to baseline 

thereafter. Nausea and bloating did not change over time (nausea: P = 0.51, bloating: P = 

0.10). 

 

Correlations between gastric retention and hormones  

Plasma insulin (AUC 0–180 min; r = 0.41 P = 0.029) ghrelin (r = −0.70 P < 0.001), CCK (r 

= 0.76 P < 0.001) and GLP-1 (r = 0.78 P < 0.001) concentrations were, within subjects, 

related to gastric emptying (AUC 0–180 min). 
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Table 12.2: Glucose, insulin, ghrelin, CCK and GLP-1 after drink ingestion in healthy 

older men 

 Control Protein280kcal Mixed280kcal Mixed504kcal 

Peak/nadir concentration     

     Glucose 5.9±0.1a 6.1±0.1a,b 7.4±0.3b 7.2±0.3b 

     Insulin 7±3a 39±17a,b 56±18a,b 67±18b 

     Ghrelin 2171±240a 1855±183a 2194±251b 1862±198b 

     CCK 2.7±0.2a 3.9±0.3b 3.1±0.3a,b 3.9±0.3b 

     GLP-1 19±1a 39±3b 25±2a 36±3b 

Time to peak/nadir     

     Glucose 42±13 20±5 29±3 22±2 

     Insulin 15±3a 53±7b 39±3b 44±7b 

     Ghrelin 44±13a 126±14b 58±7a 114±18b 

     CCK 39±15a 87±16a,b 45±12a,b 99±16b 

     GLP-1 87±22a 138±13a,b 98±18a,b 155±7b 

180-min concentration     

     Glucose 5.5±0.1a 5.3±0.4a 4.9±0.4b 5.5±0.4a 

     Insulin 3.9±1.9 21±13 3.8±1.6 32±9 

     Ghrelin 2069±257a 1302±137a,b 2091±259a 1254±117b 

     CCK 1.8±0.1a 3.0±0.2b 1.9±0.2a 3.0±0.3b 

     GLP-1 16±1a 35±2b 21±2a 33±3b 

Mean ( SEM) peak/nadir concentrations, time to peak/nadir (min) and 180-min 

concentrations of blood glucose and plasma insulin, ghrelin, CCK and GLP-1 in healthy 

older men (n = 13), after drinks containing either: (i) 70 g whey protein (280 kcal; ‘P280’), 

(ii) 14 g protein, 28g carbohydrate, 12.4 g fat (280 kcal; ‘M280’), (iii) 70 g protein, 28 g 

carbohydrate, 12.4 g fat (504 kcal; ‘M504’), or (iv) an iso-palatable control drink (~2 kcal; 

‘control’). a,b,c,d P < 0.05, post hoc test: different letter indicates significant difference 

between drink-conditions: control vs. P280 vs. M280 vs. M504. 
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Figure 12.4: Mean ( SEM) visual analogue score (VAS, mm) of hunger, desire to eat, 

prospective food consumption, fullness, nausea and bloating in healthy older men (n = 13), 

after drinks containing either: (i) 70 g whey protein (280 kcal; ‘P280’; dashed line with open 

circles), (ii) 14 g protein, 28 g carbohydrate, 12.4 g fat (280 kcal; ‘M280’; solid line with open 

circles), (iii) 70 g protein, 28 g carbohydrate, 12.4 g fat (504 kcal; ‘M504’; solid line with 

closed circles), or (iv) an iso-palatable control drink (~2 kcal; ‘control’; dotted line). Effects 

of time were significant for hunger (P < 0.001), desire to eat (P < 0.001), prospective food 

consumption (P < 0.001) and fullness (P = 0.001). 

 

DISCUSSION 

This study examined the effects of substituting fat and protein for, or adding them to, whey 

protein, on energy intake, gastric emptying, blood glucose and plasma gut hormone 

concentrations, perceptions of appetite and gastrointestinal symptoms in healthy older men. 

The major novel observation is that ingestion of a whey protein drink of 280 kcal (P280: 70 

g protein) or a mixed macronutrient drink of 504 kcal (M504: 70 g protein, 28 g carbohydrate, 

12.4 g fat,) was associated with slower gastric emptying, lower ghrelin, and higher CCK and 

GLP-1 concentrations than an iso-caloric mixed-macronutrient drink (M280: 14 g protein, 28 

g carbohydrate, 12.4 g fat: 280 kcal). There was no suppression of energy intake or appetite 

by the caloric drinks, compared to the control. 

The use of high protein supplements by older people is widespread, and increasing, in 

response to greater awareness of the prevalence of undernutrition and sarcopenia in older 

people [38] and evidence that protein supplementation may increase muscle mass and 
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function (20, 271). If timing and preparation are optimised, it may be possible to give 

sufficient protein [probably at least 35 g (23)] to older people, to preserve, or increase muscle 

mass and function, without suppressing energy intake. Indeed, our observations suggest that 

optimal protein administration may increase overall energy intake in older people. None of 

the caloric drinks suppressed subsequent ad libitum energy intake at a buffet meal, compared 

to a non-caloric control, and consequently, there was an increase in total energy intake. This 

observation is consistent with our recent finding that the suppression of subsequent energy 

intake by oral ingestion and intraduodenal infusions of whey protein is less in healthy older 

men (~1%) than in young controls (~15–19%) (194, 263). Total energy intake (drink plus 

meal) was predictably increased most by the drink with the highest energy content (504 kcal) 

- a substantial increase of ~50% or 490 kcal, compared with an increase of ~34% or ~330 

kcal after both 280 kcal drinks. Comparable amounts of protein could reasonably be given 

as protein supplements several times during the day. We have reported that variation in the 

timing of protein ingestion does not affect energy intake at a subsequent meal in healthy 

older people, and that total energy intake is higher on the protein days compared to a control 

(366). These findings raise the intriguing possibility that appropriately designed protein 

supplements, administered in divided doses, might increase energy intake in undernourished 

people by meaningful amounts (>300–500 kcal/day), without the need to encourage and 

supervise additional energy intake. 

We, and others, have shown that healthy aging is associated with modest slowing of gastric 

emptying of both solids and liquids, although the rate of emptying generally remains within 

the relatively wide normal range for young subjects (i.e., ~1–4 kcal/min) (50, 74, 82, 263). 

In healthy older men, the addition of 28 g carbohydrate and 12.4 g fat to the 70 g (280 kcal) 

whey protein did not affect gastric emptying time; both P280 and M504 had comparable T50 

and T100 and therefore, the rate of gastric emptying was higher for M504 than P280 (e.g., 

initial rates of gastric emptying of ~3 and 2 kcal/min, respectively). Iso-caloric substitution 
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of 56 g (224 kcal) protein with carbohydrate and fat resulted in faster gastric emptying; M280 

compared to P280 had lower T50 and T100 and thus a faster rate of gastric emptying (~4 vs. 

2 kcal/min). 

The M280 drink had emptied completely, and P280 and M504 were ~90% emptied immediately 

before the meal. It should be appreciated that, as the subjects were seated, it is possible that, 

despite being mixed for ~45 min prior to, until immediately before, consumption, the fat 

(olive oil) separated from the protein/carbohydrate solution, and emptied from the stomach 

slower than the aqueous phase, by ‘layering’ on the denser aqueous components (367). 

The hormones, insulin, ghrelin, GLP-1 and PYY, are secreted by the gastrointestinal tract, 

in response to the ingested nutrients. Plasma gut hormone concentrations were, within 

subjects, related to gastric retention; lower ghrelin, and higher insulin, CCK and GLP-1 

concentrations correlated with slower gastric emptying. Both drinks containing 70 g protein 

(P280 and M504) had comparable gut hormone responses, which were greater than the 

responses evoked by the M280 drink. These observations suggest that in healthy older men, 

gastric emptying and plasma gut hormone concentrations were more likely dependent on the 

amount of protein, rather than the energy content of the drink. 

In young subjects, the addition of protein to a glucose meal increases the insulin response 

(368-370). It has been reported that whey protein, which has a high content of insulinotropic 

amino acids (371), resulted, when compared to casein protein, in a higher increase of plasma 

insulin concentrations (372). In our study, both mixed-macronutrient drinks evoked a rapid 

increase in plasma insulin concentrations, while insulin remained elevated for longer in the 

drinks containing 70 g of whey protein. Glucose concentrations immediately before the meal 

were lower after M280 than M504, which is likely related to the M504 drink still being emptied 

from the stomach. 

In young people, it has been reported previously that effects were larger and more sustained 

after high compared to low protein on ghrelin concentrations (39, 365, 373-375), protein 
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compared to glucose (39, 365), but not fat (376), on CCK concentrations, and protein 

compared to carbohydrate (235, 365, 377, 378) or fat (377-379) - in several studies but not 

all studies (380-382) - on GLP-1 concentrations. In our study, the drinks containing 70 g of 

protein resulted in a comparably more sustained lower decrease in ghrelin concentrations 

and higher increases in CCK and GLP-1 than M280, which is likely to be related to the 

potency of the higher content of whey protein, and for the M504 drink, an additional caloric 

content. 

Our study has several limitations. The subject numbers were relatively small. This applies 

particularly to the gastric emptying measurements (n = 9). Nevertheless, the findings were 

clear-cut. We studied only men, as they appear to have the greatest ability to regulate energy 

intake in response to energy manipulation (46) and in women, particularly the menstrual 

cycle may have a confounding effect on appetite and energy intake. We have also recently 

reported that there is no effect of gender on gastric emptying, concentrations of glucose or 

gut hormones, perceptions of appetite and gastrointestinal symptoms in older people (339). 

Energy intake at the buffet meal was assessed three hours after drink ingestion, to allow for 

complete emptying of the drinks from the stomach, and not during the remainder of the 

day—accordingly, potential compensatory changes in energy intake after lunch were not 

evaluated. While the drinks were palatable and matched for taste, we did not assess the 

subjects’ perceptions of taste and/or pleasantness of the drinks. Blood glucose was measured 

by a glucometer, which is less than optimal; however, the results appeared clear-cut. 

A drink containing 70 g whey-protein (280 kcal), and a mixed-macronutrient drink 

containing 70 g protein, 28 g carbohydrate and 12.4 g fat (504 kcal), were associated with 

slower gastric emptying time, lower ghrelin, and higher CCK and GLP-1 concentrations than 

a mixed-macronutrient drink containing 14 g protein, 28 g carbohydrate and 12.4 g fat (280 

kcal). The caloric drinks did not suppress energy intake, compared to the non-caloric control 

and, consequently, there was an increase in total energy intake, particularly with the mixed-
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macronutrient drink with the highest caloric content. Our findings are likely to have 

implications for the composition of protein-rich supplements, for both undernourished and 

obese older people as well as for targeting gastric emptying and gut hormone responses by 

preload intakes, in relation to, for example, glycemic control in older people. 

 

.
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The studies included in this thesis provide novel insights into the acute effects of dietary 

whey protein ingestion on energy intake, perceptions of appetite and gastrointestinal 

symptoms, gastric emptying, blood glucose and plasma gut hormone concentrations (i.e. 

insulin, glucagon, ghrelin, CCK, GIP, GLP-1 and PYY) in healthy older and younger men 

and women. 

 

Collectively, the studies described in this thesis have produced clear-cut and exciting results 

– whey protein ingestion is less suppressive of feeding behaviour in healthy older than 

younger adults, and may even increase overall energy intake in the elderly. These findings 

will aid the development of ways to effectively increase energy and protein intake in older 

adults at risk of undernutrition. 

 

Suppression of energy intake by whey protein, compared to control, was shown to be less in 

healthy older than younger men after 60-min intraduodenal infusions (bypassing 

‘orosensory’ and ‘intragastric’ factors) of partly-hydrolysed whey protein at loads lower than 

(0.5 kcal/min, 30 kcal, 8 g), similar to (1.5 kcal/min, 90 kcal, 24 g) and at the upper end (3 

kcal/min, 180 kcal, 48 g) of normal gastric emptying rates (i.e. 1-4 kcal/min; Chapter 5), 

and 3 hours after oral isolate whey protein ingestion [30 g (120 kcal) and 70 g (280 kcal), 

Chapters 7, 9 and 10]. Suppression of hunger during the intraduodenal protein infusions 

and of desire to eat and prospective food consumption after oral protein ingestion was less 

in the healthy older, compared to younger, men. Whey protein did not induce adverse 

gastrointestinal symptoms - nausea and bloating were not different after protein 

ingestion/infusion compared to control in older adults. 

 

The timing of protein ingestion did not affect energy intake in healthy older men; ad libitum 

energy intake at the buffet meal did not differ from control when 70 g whey protein was 
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ingested orally either 3, 2 or 1 hour(s), or just before the meal (Chapter 8). Furthermore, 

substitution carbohydrates and fat for whey-protein or adding them to whey protein did not 

affect energy intake in older men; there was no suppression of energy intake by the caloric 

drinks compared to control (Chapter 12). 

 

Energy intake was dose-responsively suppressed by whey protein infusions (30, 90, 180 

kcal) compared to saline control infusion in younger men (7%, 17% and 33% suppression), 

whereas in healthy older men suppression was observed only with the highest protein-load 

infusion (7% and 6% increase and 17% suppression Chapter 5). Suppression of energy 

intake by 30 g and 70 g oral whey protein ingestion compared to a non-caloric control drink 

was 17% and 12% in younger men, whereas there was no suppression in older men and 

younger and older women (Chapters 7, 9 and 10). The lack of suppression of energy intake 

in healthy older adults is concordant with the concept of reduced responsiveness to the 

suppressive effects of nutrients on appetite and energy intake. 

 

Total energy intake (infusion/drink plus meal) was suppressed by protein compared to 

control in the younger men, while, in contrast, the older men and women exhibited dose-

dependent increases in total energy intakes (~10% and ~30% after 30 g and 70 g protein 

compared to control Chapters 7, 9 and 10). The protein doses used in these studies are 

likely to have the capacity to increase body weight, particularly when ingested several times 

per day. 

 

Gastrointestinal mechanisms are likely to play a role in the regulation of energy intake, 

particularly in the short-term after nutrient ingestion in younger, but not older, adults. 

Isolated pyloric, antral and duodenal pressure waves (Chapter 5), gastric emptying 

(Chapters 7, 9 and 10) and gut hormones (Chapters 6, 9-12) were dependent on the protein 
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load in younger and older men. Older men (Chapter 7) and younger women (Chapter 10) 

had slightly slower gastric emptying than younger men, while gastric emptying was 

comparable in older men and women (Chapter 9). Plasma GIP concentrations were higher 

in healthy older compared to younger men after the intraduodenal protein infusions, while 

blood glucose, plasma ghrelin, CCK, GLP-1 and PYY concentrations were comparable 

between the age groups and the release of plasma insulin, glucagon and amino acid 

concentrations were delayed in the older compared to younger men (Chapter 6). After oral 

protein administration, plasma CCK and GIP were higher in older compared to young adults 

(Chapter 11). Older men and women had comparable plasma gut hormone concentrations 

after oral whey protein ingestion (Chapter 9), while younger women had higher blood 

glucose and lower plasma glucagon, CCK and GLP-1 concentrations than younger men 

(Chapter 10). The drink containing 70 g whey-protein was associated with lower ghrelin, 

and higher CCK and GLP-1 concentrations than an iso-caloric (280 kcal) mixed-

macronutrient drink containing 14 g protein, 28 g carbohydrate, 14 g fat, but comparable gut 

hormone responses compared to a drink containing 70 g protein, 28 g carbohydrate, 14 g fat 

(504 kcal; Chapter 12). 

 

From the results of the studies in the thesis, we can conclude that although older people are 

less hungry and eat less than younger adults (Chapter 3), they appear to be less susceptible 

to further suppression of appetite and eating behaviour by ingestion of energy and nutrients, 

including whey protein. Protein is the most satiating macronutrient in younger people, and 

high-protein diets promote and facilitate deliberate weight loss during energy restricting 

diets in younger adults. The demonstrated lack of suppression of energy intake and appetite 

by whey protein ingestion (3 hours to immediately before the meal) in older adults is an 

important finding, given that it alleviates concerns that administration of protein-enriched 

nutritional supplements could be counter-productive in older people, particularly those with, 
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or at risk of under-nutrition, by suppressing subsequent food intake. Accordingly, 

administration of whey protein in doses sufficient to stimulate muscle protein synthesis (≥ 

~30 g), may be beneficial to preserve or increase muscle mass and function without 

decreasing appetite or energy intake. The finding that plasma gut hormone responses to whey 

protein are not blunted during healthy ageing is likely to have implications to the 

composition of dietary supplements for older people, and could potentially play an important 

role in the glycaemic control of older people. The observation of comparable gastrointestinal 

hormone response to protein in older people without suppression of energy intake, suggests 

that older people may experience less sensitivity to the anorexigenic effects of these 

hormones. 

 

The studies presented in this thesis have several strengths and limitations. The subject 

numbers were relatively small, and most studies included only men, however, we did not 

find any effects of gender on suppression of energy intake by whey protein in healthy older 

people (Chapter 9). We determined the effects of whey protein ingestion a protein source 

which is frequently used in high energy supplements due to its high leucine content and 

‘rapid’ digestion, when compared to other proteins such as casein. It has to be determined 

whether our observations apply to other proteins. It is also unknown whether suppression of 

protein ingestion occurs beyond 3 hours after intake, e.g., during the remainder of the day or 

during the next day, in healthy older adults. The main strength of the studies was their 

randomised cross over design in which the participants acted as their own control.  

 

The effect of ageing on the acute effect of suppression of energy intake by whey protein is a 

novel, and important, contribution to the current knowledge of energy intake regulation in 

older people. The outcomes from the studies dictate the need for future research, including 

determining the effects of long-term intake of whey protein supplements on 24-hour energy 
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intake in older people. Also, although the results in this thesis support the use of protein 

supplements in older people at risk of undernutrition, the lack of suppression of energy intake 

suggests that the use of such supplements as a strategy to decrease energy intake in older 

obese individuals may not be effective; this warrants further investigation. Older people may 

be less sensitive to the orexigenic effects of ghrelin, and anorexigenic effects of insulin CCK, 

GLP-1 and PYY, however, except for CCK, there are no studies which have assessed the 

effects of ageing on the sensitivity to these hormones. There is evidence that diet induced 

thermogenesis is higher after high-protein compared to low-protein intake in younger adults; 

effects of protein intake on postprandial energy expenditure in older adults are poorly 

characterised, and this information is of major relevance to the understanding of postprandial 

protein metabolism in the ageing population. 

 

In conclusion, the main finding of this thesis was that the suppression of energy intake by 

whey protein was less in healthy older than younger adults, so that in the older adults 

compared with the younger controls whey protein ingestion increased overall energy intake 

more which support the use of ‘pure’ whey protein supplements in older people at risk of 

undernutrition. 

 



  Glossary 

 

 

290 

GLOSSARY 

 

AgPR; Agouti-related peptide 

ANOVA; Analysis of variance 

AUC; Area under the curve 

BBP; Basal pyloric pressures 

BMI; Body mass index  

CCK; Cholecystokinin 

DPP-IV; dipeptyl peptidase-4 

EDTA; ethylenediaminetetraacetic acid 

ELISA, enzyme-linked immunosorbent assay 

GHS; Growth hormone secretagogue 

GIP; gastric inhibitory polypeptide/glucose-dependent insulinotropic peptide  

GLP-1; Glucagon-like peptide-1 

HOMA-IR; Homeostatic model assessment of insulin resistance 

ID; Intraduodenal 

IPPW; Isolated pyloric pressure wave 

MMC; migrating motor complex 

NPY; neuropeptide Y 

PRISMA; Preferred reporting items for systematic reviews and meta-analysis 

PYY; Peptide tyrosine tyrosine 

RIA, radioimmunoassay 

SD; Standard deviation 

SEM; Standard error of the mean 

SMD; Standard mean differences 
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T50, 50% gastric emptying time 

TMPD; Transmucosal potential difference 

VAS, visual analogue scale 

WMD; weighted mean difference 
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Holst JJ, Rehfeld JF, Hellström PM, et al. Ghrelin stimulates gastric emptying and hunger 

in normal-weight humans. J Clin Endocrinol Metab 2006;91(9):3296-302. 

347. Kim B-J, Carlson OD, Jang H-J, Elahi D, Berry C, Egan JM. Peptide YY is secreted 

after oral glucose administration in a gender-specific manner. J Clin Endocrinol Metab 

2005;90(12):6665-71. 

348. Fried GM, Ogden WD, Fagan CJ, Wiener I, Inoue K, Greeley GH, Jr., Thompson 

JC. Comparison of cholecystokinin release and gallbladder emptying in men and in women 

at estrogen and progesterone phases of the menstrual cycle. Surgery 1984;95(3):284-9. 

349. Shuster LT, Go VLW, Rizza RA, O'Brien PC, Service FJ. Incretin effect due to 

increased secretion and decreased clearance of insulin in normal humans. Diabetes 

1988;37(2):200-3. 

350. Carroll JF, Kaiser KA, Franks SF, Deere C, Caffrey JL. Influence of BMI and Gender 

on Postprandial Hormone Responses. Obesity 2007;15(12):2974-83. 



  References 

 

 

331 

351. Greenman Y, Golani N, Gilad S, Yaron M, Limor R, Stern N. Ghrelin secretion is 

modulated in a nutrient- and gender-specific manner. Clin Endocrinol (Oxf) 2004;60(3):382-

8. 

352. Buffenstein R, Poppitt SD, McDevitt RM, Prentice AM. Food intake and the 

menstrual cycle: a retrospective analysis, with implications for appetite research. Physiol 

Behav 1995;58(6):1067-77. 

353. Wren AM, Bloom SR. Gut hormones and appetite control. Gastroenterology 

2007;132(6):2116-30. 

354. Adams RL, Broughton KS. Insulinotropic effects of whey: mechanisms of action, 

recent clinical trials, and clinical applications. Ann Nutr Metab 2016;69(1):56-63. 

355. Murphy KG, Bloom SR. Gut hormones in the control of appetite. Experimental 

Physiology 2004;89(5):507-16. 

356. Miyawaki K, Yamada Y, Ban N, Ihara Y, Tsukiyama K, Zhou H, Fujimoto S, Oku 

A, Tsuda K, Toyokuni S, et al. Inhibition of gastric inhibitory polypeptide signaling prevents 

obesity. Nat Med 2002;8(7):738-42. 

357. Rolls BJ, Fedoroff IC, Guthrie JF. Gender differences in eating behavior and body 

weight regulation. Health Psychol 1991;10(2):133-42. 

358. Morley JE, Silver AJ, Miller DK, Rubenstein LZ. The anorexia of the elderly. Ann 

N Y Acad Sci 1989;575:50-8; discussion 8-9. 

359. Dougkas A, Östman E. Protein-enriched liquid preloads varying in macronutrient 

content modulate appetite and appetite-regulating hormones in healthy adults. J Nutr 

2016;146(3):637-45. 

360. Tolan E, Drummond S. An investigation into the satiating effects of differing 

quantities of protein consumed at breakfast. Proc Nutr Soc 2015;74(OCE1). 

361. Veldhorst MA, Nieuwenhuizen AG, Hochstenbach-Waelen A, Westerterp KR, 

Engelen MP, Brummer RJ, Deutz NE, Westerterp-Plantenga MS. Effects of high and normal 



  References 

 

 

332 

soyprotein breakfasts on satiety and subsequent energy intake, including amino acid and 

'satiety' hormone responses. Eur J Nutr 2009;48(2):92-100. 

362. Latner JD, Schwartz M. The effects of a high-carbohydrate, high-protein or balanced 

lunch upon later food intake and hunger ratings. Appetite 1999;33(1):119-28. 

363. Porrini M, Crovetti R, Testolin G, Silva S. Evaluation of satiety sensations and food 

intake after different preloads. Appetite 1995;25(1):17-30. 

364. Goetze O, Steingoetter A, Menne D, van der Voort IR, Kwiatek MA, Boesiger P, 

Weishaupt D, Thumshirn M, Fried M, Schwizer W. The effect of macronutrients on gastric 

volume responses and gastric emptying in humans: a magnetic resonance imaging study. 

Am J Physiol Gastrointest Liver Physiol 2007;292(1):G11-G7. 

365. Blom WA, Lluch A, Stafleu A, Vinoy S, Holst JJ, Schaafsma G, Hendriks HF. Effect 

of a high-protein breakfast on the postprandial ghrelin response. Am J Clin Nutr 

2006;83(2):211-20. 

366. Giezenaar C, Coudert Z, Baqeri A, Jensen C, Hausken T, Horowitz M, Chapman I, 

Soenen S. Effects of timing of whey protein intake on appetite and energy intake in healthy 

older men. J Am Med Dir Assoc 2017. 

367. Horowitz M, Jones K, Edelbroek MAL, Smout AJPM, Read NW. The effect of 

posture on gastric emptying and intragastric distribution of oil and aqueous meal components 

and appetite. Gastroenterology 1993;105(2):382-90. 

368. El Khoury D, Brown P, Smith G, Berengut S, Panahi S, Kubant R, Anderson GH. 

Increasing the protein to carbohydrate ratio in yogurts consumed as a snack reduces post-

consumption glycemia independent of insulin. Clin Nutr 2014;33(1):29-38. 

369. Siddhu A, Sud S, Bijlani RL, Karmarkar MG, Nayar U. Nutrient interaction in 

relation to glycaemic response in isocarbohydrate and isocaloric meals. Indian J Physiol 

Pharmacol 1990;34(3):171-8. 



  References 

 

 

333 

370. Simpson RW, McDonald J, Wahlqvist ML, Atley L, Outch K. Macronutrients have 

different metabolic effects in nondiabetics and diabetics. Am J Clin Nutr 1985;42(3):449-

53. 

371. Nilsson M, Holst JJ, Björck IM. Metabolic effects of amino acid mixtures and whey 

protein in healthy subjects: studies using glucose-equivalent drinks. Am J Clin Nutr 

2007;85(4):996-1004. 

372. Dangin M, Boirie Y, Garcia-Rodenas C, Gachon P, Fauquant J, Callier P, Ballèvre 

O, Beaufrère B. The digestion rate of protein is an independent regulating factor of 

postprandial protein retention. Am J Physiol Endocrinol Metab 2001;280(2):E340-E8. 

373. Foster-Schubert KE, Overduin J, Prudom CE, Liu J, Callahan HS, Gaylinn BD, 

Thorner MO, Cummings DE. Acyl and total ghrelin are suppressed strongly by ingested 

proteins, weakly by lipids, and biphasically by carbohydrates. J Clin Endocrinol Metab 

2008;93(5):1971-9. 

374. Tannous dit El Khoury D, Obeid O, Azar ST, Hwalla N. Variations in postprandial 

ghrelin status following ingestion of high-carbohydrate, high-fat, and high-protein meals in 

males. Ann Nutr Metab 2006;50(3):260-9. 

375. Al Awar R, Obeid O, Hwalla N, Azar S. Postprandial acylated ghrelin status 

following fat and protein manipulation of meals in healthy young women. Clin Sci (Lond) 

2005;109(4):405-11. 

376. Hopman WPM, Jansen JBMJ, Lamers CBHW. Comparative study of the effects of 

equal amounts of fat, protein, and starch on plasma cholecystokinin in man. Scand J 

Gastroenterol 1985;20(7):843-7. 

377. van der Klaauw AA, Keogh JM, Henning E, Trowse VM, Dhillo WS, Ghatei MA, 

Farooqi IS. High protein intake stimulates postprandial GLP1 and PYY release. Obesity 

2013;21(8):1602-7. 



  References 

 

 

334 

378. Raben A, Agerholm-Larsen L, Flint A, Holst JJ, Astrup A. Meals with similar energy 

densities but rich in protein, fat, carbohydrate, or alcohol have different effects on energy 

expenditure and substrate metabolism but not on appetite and energy intake. Am J Clin Nutr 

2003;77(1):91-100. 

379. Wikarek T, Chudek J, Owczarek A, Olszanecka-Glinianowicz M. Effect of dietary 

macronutrients on postprandial incretin hormone release and satiety in obese and normal-

weight women. Br J Nutr 2013;111(2):236-46. 

380. Carr RD, Larsen MO, Winzell MS, Jelic K, Lindgren O, Deacon CF, Ahrén B. 

Incretin and islet hormonal responses to fat and protein ingestion in healthy men. Am J 

Physiol Endocrinol Metab 2008;295(4):E779-E84. 

381. Karamanlis A, Chaikomin R, Doran S, Bellon M, Bartholomeusz FD, Wishart JM, 

Jones KL, Horowitz M, Rayner CK. Effects of protein on glycemic and incretin responses 

and gastric emptying after oral glucose in healthy subjects. Am J Clin Nutr 2007;86(5):1364-

8. 

382. Elliott RM, Morgan LM, Tredger JA, Deacon S, Wright J, Marks V. Glucagon-like 

peptide-1(7–36)amide and glucose-dependent insulinotropic polypeptide secretion in 

response to nutrient ingestion in man: acute post-prandial and 24-h secretion patterns. J 

Endocrinol 1993;138(1):159-66. 



   

 

APPENDIX 1 

Table 3.1: Studies included in the meta-analysis. 

Study (No in 

References) 

N  

Young/Older 

Age (Years)  

Young/Older 

Mean Body 

Mass (kg)  

Young/Older 

Mean BMI 

(kg/m2)  

Young/Older 

Outcomes Used for Meta-Analysis 

Alam et al. 2012  131/526 34 ± 9/69 ± 6 
62.4 ± 13.5/63.5 

± 10.2 † 

23.2 ± 2.2/22.3 

± 1.7 † 

Energy intake of 24-h food intake 

recalls 

Apolzan et al. 2009  24/32 25 ± 5/71 ± 6 
75.5 ± 21.1/74.1 

± 18.7 † 

25.2 ± 3.9/26.0 

± 5.1 † 

Energy intake of 24-h food intake 

recalls 

Arciero et al. 2009  
0 M; 10 F/0 M; 

10 F 
19 ± 2/55 ± 5 

62.5 ± 7.3/72.1 

± 9.4 * 
 

Energy intake of 3-day weighed food 

records 

Bell et al. 2003  
7 M; 5 F/12 M; 9 

F 
23 ± 3/68 ± 5 

70.4 ± 11.8/77.2 

± 13.7 † 

23.7 ± 2.4/26.6 

± 3.7 * 

Energy intake of 4-day weighed food 

records 

Cheng et al. 1978  8 M; 0 F/7 M; 0 F 26 ± 3/67 ± 5 
66.5 ± 7.2/61.6 

± 11.3 † 
 Energy intake of weighed food records 

Church et al. 1984  7 M; 8 F/6 M; 8 F 20-35/36-53 
45.0-95.3/52.6-

85.4 
 Energy intake of weighed food records 

Clarkston et al. 1997 

] 

10 M; 9 F/5 M; 9 

F 

30 ± 35/76 ± 

19 
 

25.3 ± 3.4/25.2 

± 1.7 † 

Hunger/fullness during fasting and 

postprandial (456 kcal oral mixed 

nutrient preload) conditions 

Cook et al. 1997,  

MacIntosh et al. 

1999 # 

7 M; 0 F/8 M; 0 F 
27 (20–34)/70 

(65–75) 
 

26.8 (24.4–

31.8)/25.8 

(18.2–30) † 

- Energy intake of 5-day weighed food 

records  

- Energy intake during postprandial 

conditions ‡ (348 kcal intraduodenal 

lipid infusion)  

- Hunger/fullness during fasting 

conditions 



   

 

Davy et al. 2001  6 M; 0 F/5 M; 0 F 25 ± 2/63 ± 7 
79.0 ± 7.3/82.0 

± 8.9 † 
 

Energy intake of 4-day weighed food 

records 

Di Francesco et al. 

2010  
6 M; 6 F/5 M; 7 F 28 ± 2/75 ± 6  

18.9–26.5/21.1–

28.3 † 

Hunger during fasting and postprandial 

(800 kcal oral mixed nutrient preload) 

conditions ^ 

Di Francesco et al. 

2006  
4 M; 4 F/4 M; 4 F 30 ± 3/78 ± 3  

22.7–25.7/22.1–

29.4 † 

Hunger/fullness during fasting and 

postprandial (800 kcal oral mixed 

nutrient preload) conditions 

Di Francesco et al. 

2005  
5 M; 4 F/5 M; 5 F 32 ± 8/77 ± 3  

22.7–28.1/23.5–

29.3 

Hunger/fullness during fasting and 

postprandial ‡ (800 kcal oral mixed 

nutrient preload) conditions 

Drewnowski et al. 

1996  

12 M; 12 F/12 M; 

12 F 
23 ± 1/67 ± 2  

22.7 ± 1.0/24.5 

± 1.2 

Energy intake of 14-day weighed food 

records 

Flint et al. 2008  
16 M; 14 F/16 M; 

14 F 
25 ± 4/68 ± 5 

71.0 ± 10.4/73.8 

± 17.0 † 

24.6 ± 2.2/24.7 

± 2.2 † 

Energy intake of 4-day weighed food 

records 

Fukagawa et al. 

1990  
6 M; 0 F/6 M; 0 F 21 ± 2/72 ± 7   Energy intake of 14-day dietary recalls 

Giada et al. 1995  
24 M; 0 F/24 M; 

0 F 
24 ± 4/57 ± 6  

23.7 ± 2.4/26.8 

± 2.5 † 

Energy intake of 7-day weighed food 

records 

Howarth et al. 2007  
1021 M; 771 

F/491 M; 402 F 

39 ± 17/71 ± 

12 
 

25.2 ± 4.2/25.4 

± 6.0 † 

Energy intake of 24-h food intake 

recalls 

Ishikawa et al. 1999  
53 M; 16 F/50 M; 

32 F 
30-49/50-69 

69.2 ± 10.4/62.9 

± 8.6 

25.2 ± 3.0/25.0 

± 2.7 

Energy intake of 2-day weighed food 

records 

Keene et al. 1998  7 M; 5 F/4 M; 6 F 25/75   

Energy intake during postprandial 

conditions ‡ (447 kcal oral mixed 

nutrient preload) 

Kos et al. 1996  
0 M; 38 F/0 M; 

17 F 
29 ± 3/59 ± 4 

61.6 ± 9.7/57.4 

± 8.3 † 

21.7 ± 3.1/21.8 

± 2.8 † 

Energy intake of 4-day weighed food 

records 

Lieberman et al. 

1989  

21 M; 20 F/21 M; 

24 F 

26 (20–35)/73 

(65–95) 
  

Energy intake of 4-day weighed food 

records 



   

 

Macintosh et al. 

2001  
5 M; 7 F/5 M; 7 F 

23 (20-26)/72 

(65-84) 
 

24.7 ± 2.4/25.0 

± 1.7 † 

- Energy intake during fasting 

conditions ‡  

- Energy intake of 3-day weighed food 

records  

- Hunger/fullness during fasting 

conditions 

Macintosh et al. 

2001  
6 M; 6 F/6 M; 6 F 23 ± 4/71 ± 5  

23.5 ± 2.8/24.1 

± 2.4 † 

- Energy intake during fasting 

conditions ‡  

- Energy intake of 3-day weighed food 

records  

- Hunger during fasting conditions 

Macintosh et al. 

2001  

13 M; 0 F/13 M; 

0 F 
24 ± 5/72 ± 6  

23.9 ± 2.2/23.5 

± 3.6 † 

- Energy intake during postprandial 

conditions ‡ (347 kcal intraduodenal 

lipid infusion)  

- Energy intake of 3-day weighed food 

records  

- Hunger/fullness during postprandial 

conditions ‡ (347 kcal intraduodenal 

lipid preload) 

McGandy et al. 1966  
13 M; 0 F/37 M; 

0 F 
20-34/75-99 

74.5 ± 1.2/70.9 

± 1.0 
 

Energy intake of 7-day weighed food 

records 

Morais et al. 2000  4 M; 3 F/3 M; 5 F 28 ± 5/72 ± 3 
63.5 ± 10.6/64.2 

± 10.2 † 

21.4 ± 2.1/24.8 

± 3.1 * 

Energy intake of 6-day weighed food 

records 

Morais et al. 1997  8 M; 7 F/8 M; 8 F 28 ± 5/73 ± 5 
62.6 ± 7.4/64.1 

± 8.7 † 

21.2 ± 1.8/23.8 

± 3.2 * 

Energy intake of 6-day weighed food 

records 

Moriguti et al. 2000  5 M; 6 F/9 M; 9 F 26 ± 3/68 ± 3 
65.6 ± 9.6/80.0 

± 14.9 * 

23.2 ± 1.6/27.5 

± 3.4 * 

Energy intake of provided food items (7 

days) 

Nagengast et al. 

1988  
5 M; 6 F/6 M; 5 F 22 ± 6/67 ± 5 

67.6 ± 5.0/69.1 

± 12.3 † 
 Food intake recalls 

Poehlman et al. 1990  
42 M; 0 F/26 M; 

0 F 
25 ± 5/67 ± 5 

75.5 ± 10.7/78.4 

± 7.6 † 
 

Energy intake of 3-day weighed food 

records 



   

 

Polito et al. 2005  
48 M; 47 F/103 

M; 96 F 
61 ± 4/74 ± 4 

71.5 ± 8.1/67.9 

± 9.0 

26.1 ± 2.4/25.3 

± 2.7 

Energy intake of 4-day weighed food 

records 

Rayner et al. 2000  5 M; 0 F/5 M; 0 F 
23 (22–27)/71 

(68–73) 
 

24.4 (20.7–

31.2)/25.6 

(22.4–30.7) 

- Energy intake during fasting 

conditions ‡  

- Hunger/fullness during fasting 

conditions ^ 

Roberts et al. 1996  7 M; 0 F/9 M; 0 F 24 ± 1/70 ± 7 
76.2 ± 12.4/72.9 

± 9.3 † 

23.9 ± 3.4/23.4 

± 3.3 † 

Energy intake of provided food items 

(10 days) 

Roberts et al. 1994;  

1995 # 

17 M; 0 F/18 M; 

0 F 
23 ± 2/68 ± 6 

71.6 ± 11.1/78.8 

± 12.6 

23.4 ± 2.6/25.2 

± 3.6 

Energy intake of provided food items (7 

days) 

Rolls et al. 1995  
16 M; 0 F/16 M; 

0 F 
24 ± 5/69 ± 6 

74.0 ± 7.2/84.3 

± 12.8 * 

22.7 ± 2.0/26.2 

± 3.6 * 

- Energy intake during fasting and 

postprandial (510 kcal oral mixed 

nutrient preload) conditions  

- Hunger/fullness during fasting and 

postprandial ‡ (510 kcal oral mixed 

nutrient preload) conditions 

Rolls et al. 1991  
12 M; 12 F/12 M; 

12 F 
26 ± 4/75 ± 5 

68.9 ± 3.0/66.0 

± 3.2 

23.5 ± 3.0/24.1 

± 2.8 

Hunger/fullness during fasting 

conditions 

Sawaya et al. 2001  
9 M; 0 F/10 M; 0 

F 
23 ± 1/69 ± 1 

72.9 ± 2.7/74.7 

± 3.4 † 

22.7 ± 0.5/24.4 

± 0.9 † 
Hunger during fasting conditions 

Sawaya et al. 1996  
0 M; 10 F/0 M; 

10 F 
25 ± 4/74 ± 4 

54.8 ± 4.1/58.7 

± 9.8 † 

20.9 ± 1.9/24.1 

± 2.8 * 

Energy intake of 7-day weighed food 

records 

Schneider et al. 2008  5 M; 5 F/3 M; 6 F 34 ± 8/76 ± 9  
22.5 ± 2.9/23.6 

± 1.8 † 

Hunger/fullness during fasting 

conditions ‡ 

Serra-Prat et al. 

2013  

7 M; 12 F/13 M;7 

F 
38 ± 11/81 ± 8 

67.3 ± 9.0/72.6 

± 16.2 

23.7 ± 2.8/27.9 

± 4.9 † 

- Hunger during fasting and 

postprandial ‡ (400 kcal oral mixed 

nutrient preload) conditions  

Serra-Prat et al. 

2009 [66] 

7 M; 10 F/6 M; 4 

F 
40 ± 10/80 ± 8  

25.2 ± 3.3/26.7 

± 3.0 † 

- Hunger during fasting and 

postprandial ‡ (380 kcal oral mixed 

nutrient preload) conditions 



   

 

Soenen et al. 2014  
10 M; 0 F/10 M; 

0 F 
23 ± 4/74 ± 4 73 ± 7/79 ± 7 † 22 ± 2/26 ± 2 * 

- Energy intake during fasting and 

postprandial (180 kcal intraduodenal 

protein infusion)  

- Hunger/fullness during fasting and 

postprandial (180 kcal intraduodenal 

protein infusion) conditions 

Stafleu et al. 1994  
0 M; 97 F/0 M; 

97 F 
25 ± 3/76 ± 6 

64.2 ± 10.6/70.5 

± 10.7 

22.5 ± 3.5/26.8 

± 4.1 

Energy intake of food frequency 

questionnaires 

Sturm et al. 2004  6 M; 6 F/6 M; 6 F 24 ± 1/74 ± 1  
23.2 ± 2.1/24.1 

± 3.5 † 

- Energy intake during fasting and 

postprandial ‡ (750 kcal oral mixed 

nutrient preload) conditions  

- Energy intake of 3-day weighed food 

records  

- Hunger/fullness during fasting and 

postprandial ‡ (750 kcal oral mixed 

nutrient preload) conditions 

Sturm et al. 2003 0 M; 8 F/0 M; 8 F 22 ± 4/77 ± 3 
57.5 ± 5.4/58.0 

± 5.9 † 

20.5 ± 1.1/23.7 

± 2.3 * 

- Energy intake during fasting and 

postprandial (280 kcal oral mixed 

nutrient preload) conditions  

- Energy intake of 3-day weighed food 

records  

- Hunger/fullness during fasting and 

postprandial (280 kcal oral mixed 

nutrient preload) conditions ‡ 

Surrao et al. 1998  
0 M; 10 F/0 M; 

10 F 
25 ± 4/74 ± 4 

54.8 ± 4.1/58.7 

± 9.8 † 

20.9 ± 1.9/24.1 

± 2.5 * 

Energy intake of a 7-day weighed food 

record 

Temme et al. 2010  
413 M; 460 F/389 

M; 355 F 
   

Energy intakes of 24-h food intake 

recalls and food frequency 

questionnaires 

Toth et al. 1996  
18 M; 0 F/30 M; 

0 F 
23 ± 4/69 ± 5 79 ± 8/75 ± 5 †  

Energy intake of 3-day weighed food 

records 



   

 

Van Pelt et al. 2001  
71 M; 0 F/66 M; 

0 F 
27 ± 8/62 ± 8 

75.1 ± 16.0/77.4 

± 16.2 

23.4 ± 4.7/25.1 

± 4.4 

Energy intake of 4-day weighed food 

records 

Van Walleghen et al.  

2007  

14 M; 15 F/11 M; 

10 F 
25 ± 5/69 ± 9 

67.9 ± 1.7/70.8 

± 2.9 

23.3 ± 3.7/24.7 

± 3.2 

- Energy intake during fasting 

conditions ‡  

- Energy intake of 4-day weighed food 

records  

- Hunger/fullness during fasting 

conditions 

Van Walleghen et al.  

2007  

14 M; 15 F/13 M; 

12 F 
24 ± 5/68 ± 10 

67.6 ± 15.5/71.1 

± 16.5 

23.3 ± 4.3/24.6 

± 3.8 

- Energy intake during fasting and 

postprandial (476 kcal for males and 

360 kcal for females oral mixed nutrient 

preloads) conditions  

- Energy intake of 4-day weighed food 

records  

- Hunger/fullness during fasting and 

postprandial (476 kcal for males and 

360 kcal for females oral mixed nutrient 

preload) conditions ‡  

- Hunger/fullness during fasting 

conditions 

Vaughan et al. 1991  
33 M; 31 F/17 M; 

21 F 
24 ± 4/71 ± 6 

84.5 ± 23.1/71.2 

± 13.5 * 
 

Energy intake of provided food items (1 

day) 

Winkels et al. 2010  
15 M; 0 F/17 M; 

0 F 

24 (20–

34)/68(64–85) 

75.8 ± 11.3/75.8 

± 7.6 

23.0 ± 2.3/24.5 

± 1.9 

Energy intake of provided food items 

(14 days) 

Wolk et al. 2004  
72 M; 0 F/94 M; 

0 F 
42–54/65–76  

25.6 ± 2.7/26.5 

± 3.7 

Energy intake of 24-h food intake 

recalls 

Wright et al. 1995  
41 M; 42 F/28 M; 

43 F 
20–64/74–90 

70.1 ± 10.4/64.8 

± 10.1 
 

Energy intake of 7-day weighed food 

records 

Wurtman et al. 1988  
21 M; 20 F/21 M; 

24 F 

26 (19–35)/72 

(65–94) 
 

 Energy intake of provided food items (5 

days) 



   

 

Yukawa et al. 2006  
8 M; 13 F/7 M; 

11 F 
25 ± 5/75 ± 4 

72.9 ± 12.4/73.6 

± 12.7 † 

24.7 ± 3.0/26.9 

± 3.0 * 

Energy intake of provided food items 

(14 days) 

Zandstra et al. 2000 
5 M; 28 F/6 M; 

18 F 
22 ± 2/76 ± 5 

71.0 ± 9.6/72.4 

± 8.9 

23.3 ± 2.3/26.6 

± 3.5 

Energy intake during fasting and 

postprandial (502 kcal for young 

subjects) or 430 kcal for older subjects 

oral mixed nutrient preload) conditions 

‡ 

Zhou et al. 2013 
49 M; 10 F/15 M; 

21 F 
20–29/50–59 

59.0 ± 10.8/69.0 

± 12.3 

21.7 ± 3.0/24.6 

± 3.1 

Fullness during fasting and postprandial 

(896 kcal oral mixed nutrient preload) 

conditions 

 

 

 

 

 




