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A heritable subset of the core rumen microbiome 
dictates dairy cow productivity and emissions
R. John Wallace1*†, Goor Sasson2†, Philip C. Garnsworthy3, Ilma Tapio4, Emma Gregson3, 
Paolo Bani5, Pekka Huhtanen6, Ali R. Bayat4, Francesco Strozzi7‡, Filippo Biscarini7§,  
Timothy J. Snelling1, Neil Saunders3, Sarah L. Potterton3, James Craigon3, Andrea Minuti5, 
Erminio Trevisi5, Maria L. Callegari8||, Fiorenzo Piccioli Cappelli5, Edward H. Cabezas-Garcia6¶, 
Johanna Vilkki4, Cesar Pinares-Patino4, Kateřina O. Fliegerová9, Jakub Mrázek9, 
Hana Sechovcová9, Jan Kopečný9, Aurélie Bonin10, Frédéric Boyer10, Pierre Taberlet10, 
Fotini Kokou2, Eran Halperin11, John L. Williams7#**, Kevin J. Shingfield4**††, Itzhak Mizrahi2***

A 1000-cow study across four European countries was undertaken to understand to what extent ruminant microbi-
omes can be controlled by the host animal and to identify characteristics of the host rumen microbiome axis that 
determine productivity and methane emissions. A core rumen microbiome, phylogenetically linked and with a 
preserved hierarchical structure, was identified. A 39-member subset of the core formed hubs in co-occurrence 
networks linking microbiome structure to host genetics and phenotype (methane emissions, rumen and blood 
metabolites, and milk production efficiency). These phenotypes can be predicted from the core microbiome using 
machine learning algorithms. The heritable core microbes, therefore, present primary targets for rumen manipu-
lation toward sustainable and environmentally friendly agriculture.

INTRODUCTION
Hosting one of the most complex microbial communities known to 
man, the rumen has long attracted the keen interest of microbiolo-
gists. Physiologists and nutritionists also understand the pivotal role 
of the rumen in digesting fibrous feed and providing nutrients to 
the host animal. These activities enable ruminants to provide humans 
with foods, mainly milk and meat from nonhuman-edible plant 
material, including industrial by-products, and enable many rural 
communities worldwide to survive where arable agriculture is 
impossible. There is an environmental cost, however, in which rumi-
nants, via their ruminal microbiome, produce substantial amounts 
of the greenhouse gas, methane (1). Furthermore, production effi-

ciency is linked to the composition of the ruminal microbiome, as 
was previously shown by an association between microbiome com-
ponents and residual feed intake (2, 3). Characterizing, quantifying, 
and understanding the role of rumen microbiome are therefore of 
significant scientific, economic, and environmental interest.

The main members of the rumen microbiome are now well un-
derstood. Bacteria, which usually comprise most of the species rich-
ness, are widely persistent geographically across multiple ruminant 
species and individual animals (4), and many species can be considered 
symbiotic with ruminants, as they provide metabolic activities and 
products essential for the host (5). Ciliate protozoa, at up to about 
half the biomass, consist of species that occur uniquely in the rumen 
(6). Their community abundance and composition across ruminants 
are much more variable than bacteria, indeed, protozoa may be ab-
sent in some animals without detrimental effect to the host (4, 7). 
Anaerobic fungi are fewer in number but seem to play an important 
role in breaking down the toughest of plant cell walls (8). Archaea 
are key players in methane emissions (9).

Generally speaking, the relationship between members of the 
microbiome and rumen function is reasonably well understood 
(10). A host genetics microbiome axis of control has also been im-
plied in several studies (11–13), analogous to, but much less detailed 
than the remarkable advances in our understanding of the role of 
the heritability of the human gut microbiome and its role in health 
(14). In the present study, by applying network analysis to a com-
prehensive array of microbiome, phenotype, and genotype analysis, 
we have made a significant contribution in transforming the descrip-
tive understanding of the rumen microbiome to a predictive one, 
using an unprecedentedly large number of animals and measure-
ments. It emerges, as suggested by an earlier, much more restricted 
study (15) that rumen function and ruminant productivity can be 
predicted from the abundance of a small number of microorganisms 
that form part of the core community across geographical breed 
and dietary differences. As these microbes show significant herita-
bility estimates, e.g., their abundance is explained to a significant 

1The Rowett Institute, University of Aberdeen, Ashgrove Road West, Aberdeen 
AB25 2ZD, UK. 2Department of Life Sciences and the National Institute for Biotechnology 
in the Negev, Ben-Gurion University of the Negev, Be’er Sheva, Israel. 3University of 
Nottingham, School of Biosciences, Sutton Bonington Campus, Loughborough LE12 
5RD, UK. 4Production Systems, Natural Resources Institute Finland (Luke), 31600 
Jokioinen, Finland. 5Department of Animal Science, Food and Nutrition-DIANA, 
Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy. 6Swedish University of 
Agricultural Sciences, Department of Agriculture for Northern Sweden, S-90 183 
Umeå, Sweden. 7Parco Tecnologico Padano, Via Einstein, 26900 Lodi, Italy. 8Insti-
tute of Microbiology, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy. 
9Institute of Animal Physiology and Genetics, CAS, v.v.i., Vídeňská 1083, Prague 
14220, Czech Republic. 10Laboratoire d'Ecologie Alpine, Domaine Universitaire de 
St Martin d'Hères CNRS, 38041 Grenoble, France. 11Departments of Computer Science, 
Computational Medicine, Human Genetics, and Anesthesiology, University of California, 
Los Angeles, Los Angeles, CA 90095, USA.
*Corresponding author. Email: john.wallace@abdn.ac.uk (R.J.W.); imizrahi@bgu.ac.il (I.M.)
†Joint first authors.
‡Present address: Enterome Bioscience 94/96 Avenue Ledru-Rollin, 75011 Paris, France.
§Present address: National Research Council, Institute of Biology and Biotechnology 
in Agriculture (CNR-IBBA), Via Bassini 15, 20133 Milan, Italy.
||Present address: Department for Sustainable Food Process –DiSTAS, Università 
Cattolica del Sacro Cuore, Via E.Parmense 84, 29122 Piacenza, Italy.
¶Present address: Agri-Food and Biosciences Institute, AFBI Large Park, Hillsborough 
BT26 6DR Co. Down, UK.
#Present address: Davies Research Centre, School of Animal and Veterinary Sciences, 
Faculty of Sciences, University of Adelaide, Roseworthy, SA 5371, Australia.
**Joint last authors.
††Deceased.

Copyright © 2019 
The Authors, some 
rights reserved; 
exclusive licensee 
American Association 
for the Advancement 
of Science. No claim to 
original U.S. Government 
Works. Distributed 
under a Creative 
Commons Attribution 
NonCommercial 
License 4.0 (CC BY-NC).

 on F
ebruary 13, 2020

http://advances.sciencem
ag.org/

D
ow

nloaded from
 

http://advances.sciencemag.org/


Wallace et al., Sci. Adv. 2019; 5 : eaav8391     3 July 2019

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

2 of 12

extent by host genetics, opportunities for breeding programs based 
on the microbiome now become possible.

RESULTS
Our study cohort consisted of 1016 animals, with 816 Holstein 
dairy cows from two U.K. and three Italian farms. In addition, 200 
Nordic Red dairy cows were sampled from Sweden and Finland. 
The Holsteins received a maize silage–based diet, while the Nordic 
Reds received a nutritionally equivalent diet based on grass silage as 
forage. Animals were genotyped using common single-nucleotide 
polymorphisms (SNPs) and measured for milk output and compo-
sition, feed intake and digestibility, plasma components, methane 
and CO2 emissions, and rumen microbiome based on ss rRNA gene 
analysis (data S1).

The abundance and richness of the bacterial, protozoal, fungal, 
and archaeal communities were mutually dependent on and cor-
related to multiple host phenotypes in ways that have become widely 
understood, including rumen metabolites, milk production indices, 
and plasma metabolites (see Supplementary Text and fig. S4). To focus 
down on host microbiome–phenotype relationships, we proceeded 

to investigate (i) how many and which species were common in our 
large animal cohorts; (ii) if a common, or core, group could be 
identified; (iii) if the core was influenced by the host genome; 
and (iv) how the core and noncore species determined phenotypic 
and production characteristics.

Taxonomic analysis revealed a core group of rumen microbes [512 
species-level microbial operation taxonomic units (OTUs), 454 
prokaryotes, 12 protozoa, and 46 fungi] present in at least 50% of 
animals within each of the seven farms studied (Fig. 1A). The group 
comprised 11 prokaryotic orders, 1 fungal order, and 2 protozoal 
orders that share some similarity with published core microbial 
communities (data S2 to S4) (6, 15). The core group was shared 
between Holstein and Nordic Red dairy breeds, and the results are 
particularly useful because they apply to the most popular and pro-
ductive milking cow breed used in developed countries, the Holstein, 
and the smaller breed used in northern European latitudes, the 
Nordic Red. The results demonstrate once again, however, that this 
microbial community is representative of ruminants in general, 
especially with respect to bacterial and protozoal species. This core 
community is significantly enriched in Bacteroidales, Spirochetales, 
and the WCHB1-41 order (Fig. 1B and data S5 to S7). The core 
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Fig. 1. A phylogenetically cohesive core rumen microbiome was found across farms with highly conserved hierarchical structure and tight association to over-
all microbiome composition. (A) Core microbes are highly represented within individual animals, as a high fraction of them (>50% of the core microbes) are present in 
>70% of the individuals. (B) The prokaryotic core (blue) was represented by 10 phyla of the 30 found in the overall microbiome (x axis; ochre), including 11 prokaryotic, 2 
fungal, and 1 protozoal orders, detected in >50% of the individuals in each farm. *The core microbiome was significantly enriched in Bacteroidetes (enrichment analysis, 
Fisher exact test, after Benjamini-Hochberg correction, P < 0.0005). SR1, candidate division sulphur river 1. Core prokaryotes (i) consisted of 454 microbes, mainly from the 
orders Bacteroidales (tree; green) and Clostridiales (tree; maroon). Core heritable taxa are presented as gray bar plots on the tree. (C) The core microbiome composed of 
a large fraction of the overall microbiome, ranging between three- and two-thirds of the relative abundance, depending on the farm (x axis). Bar plots represent the mean, 
and error bars represent the SE of the core relative abundance. (D) Core microbiome composition is highly correlated to noncore microbes, as shown by comparing the in-
teranimal dissimilarity (Bray-Curtis) matrix based on core microbes to that based on noncore microbes. Violin plots for each farm (x axis) show the correlation between 
the two dissimilarity matrices (core and noncore; Mantel R), where the violin (gray) describes the null model (permuted) Mantel R values, and red points depict the actual 
R. (E) The core microbiome exhibits a clear hierarchical structure, in terms of microbial abundance, which agrees between farms. (i) A highly consistent core microbiome 
abundance pattern (ranking) across farms (x axis) was revealed by an abundance-ranked color-coded heatmap, where species-level microbial OTUs are ordered by their 
mean relative abundance across all animals in the cohort (no further clustering or normalization was performed). Color coding reflects the rank abundance of a given OTU 
in a given individual. (ii) Heatmap showing the degree of correlation in relative abundance profiles between the farms. Color coding reflects the degree of correlation in 
relative abundance profiles (Spearman r; all P < 0.001). (F) Phylogenetic distances between the core microbes were smaller, showing that they are closer phylogenetically, 
but also distinct, compared to the overall microbiome, as it was shown by mean pairwise phylogenetic distance (x axis) calculation between core (blue) and 1000 random-
ly selected noncore microbes (ochre) from the rumen (y axis; P < 0.001).
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microbiome consists of less than 0.25% of the overall microbial species 
pool (512 of 250,000 OTUs), yet it is highly abundant, representing 
30 to 60% of the overall microbiome (Fig. 1C). The core group is 
also tightly associated with the overall microbiome, as reflected by 
high correlation between the beta diversity metrics of the identified 
core microbiome and the overall microbiome across farms (R value 
between 0.45 and 0.7; Fig. 1D), this strengthens the notion of strong 
connectivity between microbes in such a metabolically complex eco-
system where multiple microbial interactions are potentially facili-
tated. These core microbes show highly conserved abundance rank 
structure across geography, breed, and diet (Fig. 1E), where the species 
abundance order is kept almost identical across different individuals. 
Furthermore, core members are more closely related to each other 
than to noncore microbiome members, as indicated by differences 
in phylogenetic distances determined by the ss rRNA gene tree (Fig. 1F), 
thereby strengthening the findings from our previous study (15). 
Thus, this relatedness between the members of the rumen core 
microbiome could indicate that they are sharing a set of functional 
traits, integral to this environment and potentially compatible with 
host requirements as suggested for species relatedness in other eco-
systems (16). Although the rumen microbiome contains many hundreds 
of species, these core species generally belong to a rather narrow 
section of the whole bacterial phylome (17).

We found the core microbiome to be significantly correlated with 
host genetics as revealed by canonical correlation analysis (CCA), 
which was calculated for each farm separately (Fig. 2A). Subse-
quently, a stringent heritability analysis was applied to all members 
of the core microbiome for each breed separately, taking into account 
farms and dietary components as a confounding effect (farm encom-
passes other confounding effects such as location and husbandry 
regime; see further explanation in Supplementary Materials and 
Methods). Moreover, we removed one Holstein farm (UK2) from 
the analysis as it showed a different genetic background (UK2; fig. S2). 
Our heritability analysis specifically quantifies narrow sense, unlike 
twin-based studies where the type of heritability is not strictly de-
fined (14). This is especially true for bovines where the twin rate is 
low, and these individuals are often born unwell, rendering them 
unfit for these studies. Within the Holstein-Friesian breed (n = 650, 
excluding 166), 39 heritable core microbial OTUs were identified, 
which were evenly distributed on the rank abundance curve, therefore 
pointing out that low-abundance species could also be connected to 
host genome and suggesting relevance to its requirements (fig. S1). 
These not only mainly belong to Bacteroidales and Clostridiales 
orders but also include representatives from five other bacterial phyla 
and two fungi of the genus Neocallimastix (Fig. 2B and data S8 and S10). 
Ruminococcus and Fibrobacter are among the core heritable bacteria, 
consistent with their key role in cellulolysis, as is Succinovibrionaceae, 
which seems to be a key determinant in between animal differences 
in methane emissions (18). These heritable microbial OTUs showed 
significant heritability estimates ranging from 0.2 to 0.6 [false dis-
covery rate (FDR), P < 0.05] and revealed a twofold increase in 
numbers of microbial heritable species in a previous study (15) that 
included a smaller animal cohort. Furthermore, these highly robust 
findings also reinforce our previous results in relation to heritable 
bovine rumen microbes, which are composed of similar taxa. More-
over, on the basis of the genetic relatedness matrix (GRM), the herita-
bility confidence interval lower limit of all but one microbe was 
greater than 0.1. Only three bacteria, all with affiliations to Prevotel-
laceae, were identified as highly heritable within the smaller Nordic 

Red cohort. In summary, we identified almost 10 times more heritable 
species-level microbial OTUs than in a comparable human study 
(14), further substantiating the deep interaction between the bovine 
host and its resident rumen microbiome, presumably reflecting the 
greater dependence of the bovine on its gut microbiome than humans.

Overall, when microbial co-occurrence networks were inferred 
within individual farms (fig. S3, A to D), it became evident that heritable 
microbes are significantly more connected than nonheritable mi-
crobes, consistent with the central positions of heritable microbes 
in the rumen co-occurrence networks (Fig. 2C).

The demonstration here of heritable, interacting microbes raises 
possibilities of breeding animals for particular microbiomes and 
thus phenotypic and production properties on the condition that 
the core can be shown to control these properties. We further inves-
tigated co-occurrence networks for the core abundances relation to 
phenotypic outcomes.

The associations found here are hugely complex (Fig. 3A), with 
not only 339 microbes, mostly prokaryotes, but also a handful of 
protozoa and fungi, associated with rumen metabolism and various 
host phenotypes (see also data S7). The resulting network (Fig. 3A) 
only included reoccurring significant correlations with the same di-
rectionality (FDR < 0.05) within at least four farms when analyzed 
independently. As would be expected from the nutritional depen-
dence of ruminants on volatile fatty acids (VFA) generated by rumen 
fermentation, large numbers of core microbiome members were 
found to be associated with traits such as ruminal acetate and pro-
pionate concentration, with fewer correlated to production traits such 
as milk production and methane emission (204, 254, 23, and 7, re-
spectively; Fig. 3B). Among those linked to methane emissions are 
Succinovibrionaceae, confirming what has been found previously 
in beef cattle (18). Compared to the overall rumen microbiome, 
prokaryotic members of the core microbiome are highly enriched 
with trait-associated microbes [odds ratio (OR), 388; P < 2.2 × 10−16, 
Fisher exact test between 332 trait-related and 454 prokaryotic core 
members; Fig. 3C], stressing the importance and central role that 
the core microbiome plays in host function and microbiome metabo-
lism. Two distinctive machine learning algorithms were applied to 
predict rumen metabolism diet and host traits, based on core micro-
biome composition, Ridge regression (19, 20) and random forest 
(RF) (21, 22), using linear regression and decision tree–based ap-
proaches, respectively. This allowed us to investigate the degree of 
agreement (r2) between predicted and actual values (Fig. 3D and fig. S5). 
These tools highlighted the core microbiome as highly explanatory 
for dietary components and rumen metabolites, with propionate 
approaching an agreement of r2 = 0.9 in some farms. Methane emissions 
could also be explained, based on rumen microbiome composition, 
with values reaching r2 = 0.4 in some farms. Moreover, although 
having lower explainability, many of the host traits, including host 
plasma metabolites and milk composition, could be explained to an 
extent by the core microbiome composition (Fig. 3D). Our findings 
also show that core microbiome has higher prediction power than 
host animals’ genotype (based on the GRM), as has dietary compo-
sition (fig. S5). Overall, in both machine learning algorithms, the 
heritable microbes exhibited, on average, a significantly higher 
explanatory power for host phenotypes and other experimental 
variables compared to other core microbes (P < 0.005, Wilcoxon 
paired rank-sum test; figs. S6 and S7), further underlining the central 
role of heritable microbes within rumen microbial ecology and to 
the host. The great majority of these microbes show stability in 
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time, and only a small portion of them (39, 3 heritable and 1 trait 
associated) showed seasonality, and of those, most do so solely in 
one of the farms (fig. S8 and data S9).

DISCUSSION AND CONCLUSIONS
Here, we have shown that a small number of host-determined, herita-
ble microbes make higher contribution to explaining experimental 
variables and host phenotypes (fig. S6) and propose microbiome-led 
breeding/genetic programs to provide a sustainable solution to in-
crease efficiency and lower emissions from ruminant livestock. On 
the basis of the genetic determinants of the heritable microbes, it 
should be possible to optimize their abundance through selective 
breeding programs. A different, and perhaps more immediate, 
application of our data could be to modify early-life colonization, a 
factor that has been shown to drive microbiome composition and 
activity in later life (23–25). Inoculating key core species associated 

with feed efficiency or methane emissions as precision probiotics 
approach could be considered as likely to complement the heritable 
microbiome toward optimized rumen function.

Our study focused on two bovine dairy breeds, but the results are 
likely to be applicable to beef animals and other ruminant species. 
Given the high importance of diet in performance and the compo-
sition of the rumen microbiome, these programs should take special 
cognizance of likely feeding regimes. Within that context, following 
the overall predictive impact of identified trait-associated heritable 
microbes on production indices should result in a more efficient 
and more environmentally friendly ruminant livestock industry.

MATERIALS AND METHODS
Experimental design and subject details
The primary objective of this research was to relate the animal 
genome to the rumen microbiome, feed efficiency, and methane 
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Fig. 2. Host genetics explains core microbiome composition with heritable microbes serving as hubs within the microbial interaction networks. The core micro-
biome is associated with animal genetics as (A) the variance in the core microbiome (y axis) was significantly explained by host genetics. CCA was performed between the 
matrix of the first 30 microbial (OTU table) principal component scores and host genotype principal component scores based on a common SNP. The analysis was accom-
plished for the largest Holstein farms in this study (x axis). (B) Heritability analysis based on the genetic relatedness matrix (GRM) showed 39 microbes (x axis) significantly 
correlating with the animal genotype. Heritability estimate—h2 (y axis; bar plots show mean estimate per microbe), and P values were calculated using genetics complex 
trait analysis (GCTA) software, followed by a multiple testing correction with Benjamini-Hochberg method. Confidence intervals (CIs; 95%) were estimated on the basis of 
heritability estimates and the GRM with Fast Confidence IntErvals using Stochastic Approximation (FIESTA) software. (C) Heritable microbes are central to the microbial 
interaction network, as revealed by the higher mean connectivity (y axis) of these microbes compared to the nonheritable ones. The interaction network was built using 
Sparse InversE Covariance estimation for Ecological Association and Statistical Inference (SpiecEasi). Results are presented as mean number of microbial interactions with 
SE. Indicated P values, *P < 0.05, **P < 0.005, ***P < 0.0005.
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Fig. 3. Core rumen microbiome composition is linked to host traits and could significantly predict those traits. (A) Association analysis between microbes and host traits 
revealed 339 microbes associated with at least one trait. For a microbe to be associated with a given trait, it had to significantly and unidirectionally correlate with a trait 
within each of at least four farms (after Benjamini-Hochberg multiple testing correction) with no farm showing a significant correlation in the opposing direction. (B) Most 
of the trait-associated microbes are associated with rumen propionate and acetate. (C) Enrichment analysis, using Fisher exact test, showed that the core microbes are 
much more present (enriched) within trait-associated microbes compared to the noncore microbiome (P < 2.2 × 10−16). (D) Explained variation (r2) of different host 
traits as function of core microbiome composition. r2 estimates were derived from a machine learning approach where a trait value was predicted for a given animal using 
the Ridge regression that was constructed from other animals in the farm (leave-one-out k-fold regression). Thereafter, prediction r2 value was calculated between the 
vectors of observed and predicted trait values. Indicated host traits were significantly explained (via prediction) by core microbe (OTU) abundance profiles. Dots stand for 
individual farms’ prediction r2, while bar heights represent mean of individual farms’ r2. DMI, dry matter intake; ECM, energy-corrected milk; NDF, neutral-detergent fiber; 
DM, dry matter; BHB, -hydroxybutyrate.
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emissions in lactating dairy cows. The following research questions 
were specified at the outset: Does host genetics have a significant 
effect on the overall microbiome composition and to what extent? 
How consistent is the rumen microbiome across geographic loca-
tions, breeds, and diets? On discovery of a heritable core rumen 
microbiome, the following additional research questions arose: Do 
heritable rumen microbes interact with the rest of the core rumen 
microbes? How do heritable microbes integrate in the overall microbe 
host phenotype interaction network?

The objectives were addressed in an observational study involving 
collection of phenotypic data describing animal metabolism, diges-
tion efficiency, and emissions of methane and nitrogen. Samples of 
rumen digesta and blood were collected for molecular analysis and 
subsequent statistical analysis to identify correlations and genetic 
associations. Precise power calculations to determine the size of study 
population necessary were difficult, as for this new area of research, 
the size and architecture of the genetic effect were unknown. In addi-
tion, variations during life cycle, e.g., age and stage of lactation, 
together with nutrition environmental factors would play a role in 
overall variations. After considering levels of variation encountered 
in similar studies, we considered that, with 1000 individuals, using 
standardized measurements and keeping them under standardized 
conditions, it would certainly be possible to identify major genetic 
loci affecting the target traits from a genome-wide association study. 
The final population sampled was 1016 cows to allow a small margin 
in case any individuals or samples had to be excluded.

Prospective inclusion criteria for animal selection were that cows 
must be between 10 and 40 weeks postpartum, had received the 
standard diet for at least 14 days, and had no health issue in the 
current lactation. Prospective data exclusion criteria were missing 
samples (e.g., milk, blood, rumen, and feces), sample processing 
issues (e.g., inadequate DNA yield, assay problems, and laboratory 
mishaps), and implausible outliers. Statistical outliers were defined 
as values greater than three SDs from the mean. All statistical outliers 
were investigated, calculations were corrected, or assays were repeated 
where appropriate. Otherwise, outliers were retained for data analy-
sis unless they were implausible. Data for any excluded sample were 
omitted, but the remaining data for the individual were retained.

Six milk samples were missing due to a faulty sampling device, 
and one blood sample was missing from a cow that could not be 
sampled. Two rumen fluid samples were lost during laboratory 
analysis. Two estimates of feed intake were considered implausible 
(200% of expected) due to abnormal fecal alkane values.

Animal work was conducted by four research teams in the United 
Kingdom (UK), Italy (IT), Sweden (SE), and Finland (FI). Ethical 
approval was granted by the relevant local and national authorities 
and committees before sampling commenced at each center (permit 
numbers: FI, ESAVI/8182/04.10.03/2012; IT, 25906/13; SE, A143-12; 
UK, 40/3324 and 30/3201). In total, 1016 cows on seven farms were 
sampled, and associated data were collected. The UK sampled 409 cows 
on two farms (UK1, N = 243; UK2, N = 164); IT sampled 409 cows 
on three farms (IT1, N = 185; IT2, N = 176; IT3, N = 48); SE sampled 
100 cows on one farm (SE1); and FI sampled 100 cows on one farm (FI1).

Experimental protocols for measuring animal phenotypes were 
agreed before sampling commenced. Recordings and collection of 
biological samples were performed over a 5-day period for each cow 
that had received the standard diet for at least 14 days. To reach 
1016 cows, sampling was conducted over a period of 26 months in 
78 sessions between 1 and 40 cows per session. At time of recording 

and sampling, all cows were in established lactation (between 10 and 
40 weeks postpartum) when energy balance is close to zero and 
methane output is relatively stable (26). Implementation of methodology 
varied between centers due to facilities available on different farms. 
In each case, we chose the most accurate method appropriate for the 
circumstances while ensuring that methods produced comparable 
results across all farms.

Method details
Housing and feeding systems
Cows on all farms were group-housed in loose housing barns, 
except in FI where cows were housed in individual standings during 
the sampling period. To minimize environmental variation, all cows 
were offered diets that were standardized within farms, i.e., all cows 
on a farm were fed on the same diet at any sampling period, and any 
changes to diet formulation when batches of forage changed were 
made at least 14 days before sampling commenced. Diets were based 
on maize silage, grass silage or grass hay, and concentrates in the 
UK and IT and were based on grass silage and concentrates in SE 
and FI (table S1). Diets were fed as ad libitum total-mixed rations 
(TMRs) in IT, SE, and FI and as ad libitum partial-mixed rations 
(PMRs) plus concentrates during robotic milking in the UK. The 
PMRs and TMRs were delivered along feed fences in the UK and IT, 
and TMRs were delivered into individual feed bins in SE and FI.
Milk and body weight recording
Milk yield was recorded at every milking, and daily mean was calcu-
lated for each cow. Cows were milked twice daily in herringbone 
parlors in IT and SE, twice daily at their individual standings in FI, 
and in automatic milking stations (Lely Astronaut A3, Lely UK Ltd., 
St. Neots, UK), on average, 2.85 times per day, in the UK.

Milk samples were collected from each cow at four milkings during 
the sampling period, preserved with Broad Spectrum MicroTabs II 
containing bronopol and natamycin (D & F Control Systems Inc., 
San Ramon, CA) or bronopol (Valio Ltd., Finland) and stored at 
4°C until analyzed. Milk samples were analyzed for fat, protein, lactose, 
and urea concentrations using mid-infrared instruments [FOSS 
MilkoScan (FOSS, Denmark) or similar]. Mean concentrations of 
milk components were calculated by weighting concentrations propor-
tionally to respective milk yields from evening and morning milkings.

Body weight was recorded three (SE) or two (IT and FI) times 
during each sampling period and automatically at each milking in 
the UK. Mean body weight was calculated for each cow.
Feed intake measurement and estimation
Feed intake was recorded individually on a daily basis throughout 
each sampling period using roughage intake control (RIC) feeders 
(Insentec B.V., Marknesse, the Netherlands) in SE and manually in 
FI. Feed intake was estimated using indigestible markers (alkanes) 
in feed and feces (27) in the UK and IT. Alkanes (C30 and C32) 
were administered via concentrates fed during milking in the UK 
and via a bolus gun, while cows were restrained in locking head 
yokes during feeding in IT. Validation of the alkane method for 
estimating feed intake was provided by concurrent direct measure-
ment of individual feed intake in 50 cows in the UK via RIC feeders 
(Fullwood Ltd., Ellesmere, UK) and by applying the method to 
individually fed cows in a research herd in IT (28).
Collection of rumen samples
The method of sampling rumen fluid was standardized at all centers 
and involved using a ruminal probe specially designed for cattle 
(ruminator; profs-products.com). The probe comprises a perforated 
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brass cylinder attached to a reinforced flexible pipe, a suction pump, 
and a collection vessel. The brass cylinder was pushed gently to the 
back of a cow’s mouth, and gentle pressure was applied until the 
device was swallowed as far as a ring on the pipe that indicates correct 
positioning in the rumen. The first liter of rumen fluid was discarded 
to avoid saliva contamination, and the next 0.5 liters was retained 
for sampling. The device was flushed thoroughly with tap water be-
tween cows.

Rumen fluid samples were collected on day 1 during the sam-
pling period between 2 and 5 hours after feed was delivered to cows 
in the morning. For all samples, pH of rumen fluid was recorded 
immediately. After swirling, four aliquots of 1 ml each were pipetted 
into freeze-resistant tubes (2-ml capacity), immediately frozen in 
liquid nitrogen or dry ice, stored at −80°C, and freeze-dried within 
1 month from the sampling date. Four additional aliquots of 2.5 ml 
were pipetted into centrifuge tubes with 0.5 ml of 25% metaphos-
phoric acid for VFA and ammonia-N analysis, centrifuged at 1000g 
for 3 min, and the supernatant was transferred to fresh tubes. Tubes 
were sealed and frozen at −20°C until laboratory analysis.
Rumen VFA measurement
VFA concentrations were determined by gas chromatography using 
the method of Playne (29). Ammonia-N concentration was deter-
mined by a photometric test with a Clinical Chemistry Autoanalyzer 
using an enzymatic ultraviolet method (e.g., Randox Laboratories 
Ltd., Crumlin, UK).
DNA extraction
Total genomic DNA was isolated from 1 ml of freeze-dried rumen 
samples according to Yu and Morrison (30). This method combines 
bead beating with the column filtration steps of the QIAamp DNA 
Stool Mini Kit (Qiagen, Hilden, Germany).
Amplicon sequencing
Primers for polymerase chain reaction (PCR) amplification of bacte-
rial and archaeal 16S rRNA genes, ciliate protozoal 18S rRNA genes, 
and fungal ITS1 genes were designed in silico using ecoPrimers 
(31), the OBITools software suite (32), and a database created from 
sequences stored in GenBank (table S2). For each sample, PCR 
amplifications were performed in duplicate. An 8-nucleotide tag 
unique to each PCR duplicate was attached to the primer sequence 
to enable the pooling of all PCR products for sequencing and the 
subsequent assignation of sequence reads to their respective samples. 
PCR amplicons were combined in equal volumes and purified using 
a QIAquick PCR purification kit (Qiagen, Germany). After library 
preparation using a standard protocol with only five PCR cycles, 
amplicons were sequenced using the MiSeq technology from Illumina 
(Fasteris, SA, Geneva, Switzerland), which produced 250–base-paired 
end reads for all markers, except for the archaeal marker, which was 
sequenced with the HiSeq technology from Illumina, generating 
100–base-paired end reads.
Methane and CO2 emission measurement
Methane was measured using breath sampling either during milk-
ing in the UK (33) or when cows visited a bait station in IT and SE 
(GreenFeed) (34). Methane was measured in FI by housing cows in 
respiration chambers for 5 days (35). Carbon dioxide was measured 
simultaneously with methane in IT, SE, and FI.
Blood sampling and analysis
Blood samples were collected at the same time as rumen sampling 
using jugular venipuncture and collection into evacuated tubes 
(Vacutainer). One tube containing lithium heparin or Na-EDTA as 
anticoagulant was collected for metabolic parameters, and two tubes 

containing sodium citrate were collected for genotyping. Tubes were 
gently inverted 8 to 10 times following collection to ensure optimal 
additive activity and prevent clotting. Tubes were chilled at 2° to 8°C 
immediately after collection by placing in chilled water in a fridge 
or in a mixture of ice and water. Tubes collected for metabolic pa-
rameters were centrifuged for 10 to 15 min (3500g at 4°C), and the 
plasma obtained was divided into four aliquots. Blood samples col-
lected for genotyping were not centrifuged. All samples were stored 
at −20°C until analyzed.

Plasma non-esterified fatty acids, -hydroxybutyrate, glucose, 
albumin, cholesterol, urea, and creatinine were analyzed at each center 
using commercial kits (Instrumentation Laboratory, Bedford, MA, 
USA; Wako Chemicals GmbH, Neuss, Germany; and Randox Labo-
ratories Ltd., Crumlin, UK). Blood samples from each center were 
sent to IT for haptoglobulin determination, according to the method 
of Skinner et al. (36).
Quantitative PCR of 16S and 18S rRNA genes
DNA was diluted to 0.1 ng/l in herring sperm DNA (5 g/ml) for 
amplification with universal bacterial primers UniF (GTGSTG-
CAYGGYYGTCGTCA) and UniR (ACGTCRTCCMCNCCTTCCTC) 
(37) and 1 ng/l in herring sperm DNA (5 g/ml) for amplification 
of other groups (38). Quantitative PCR was carried out using a 
BioRad CFX96 as described by Ramirez-Farias et al. (39). Amplifi-
cation of archaeal 16S RNA genes was carried out using the primers 
Met630f (GGATTAGATACCCSGGTAGT) and Met803r (GTT-
GARTCCAATTAAACCGCA) as described by Hook et al. (40) and 
calibrated using DNA extracted from Methanobrevibacter smithii 
PS, a gift from M. P. Bryant (University of Illinois). For total bacteria 
amplification, efficiency was evaluated using template DNA from 
Roseburia hominis A2-183 (DSM 16839T). Amplification of protozoal 
18S rRNA gene was carried out using primers 316f (GCTTTCGWT-
GGTAGTGTATT) and 539r (CTTGCCCTCYAATCGTWCT) (41) 
and calibrated using DNA amplified from bovine rumen digesta with 
primers 54f and 1747r (41). Bacterial abundance was calculated from 
quadruplicate Ct values using the universal bacterial calibration equation.
Bovine genotyping
From blood samples, genomic DNA was extracted and quantified 
for SNP genotyping. All animals were genotyped on the Bovine 
GGP HD (GeneSeek Genomic Profilers). The 200 cows coming 
from FI and SE were genotyped using the Bovine GGP HD chip v1 
(80K) that included 76.883 SNPs, while the 800 samples from the 
UK and IT were genotyped using the Bovine GGP HD chip v2 
(150K) that included 138.892 SNPs, as the v1 of the chip was no 
longer available from the manufacturer. The v2 of the chip includes 
all the SNPs that were present in the previous v1 of the chip, while, 
at the same time, providing more markers for the same final pro-
cessing cost. The Neogen Corporation performed the DNA hybrid-
ization, image scanning, and data acquisition of the genotyping 
chips according to the manufacturer’s protocols (Illumina Inc.) All 
individuals had a call rate higher than 0.90 (93.5% of individuals 
with call rate higher than 0.99). More than 99% of SNPs had a call 
rate higher than 0.99 (93.2% of SNPs with call rate higher than 0.99). 
Minor allele frequency (MAF) distribution evidences more than 90% 
of markers with a MAF > 5% and nearly 4% of monomorphic SNPs.

Quantification and statistical analysis
Statistical methods and software used are detailed in subsequent 
sections, figure legends, and Results. Statistical significance was de-
clared at P < 0.05, P < 0.01, and P < 0.001, as appropriate.
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Utilization of primer sets derived microbiome data  
in the statistical analysis
Associations of microbial domain richness were based on amplicon 
sequencing data from the following primer sets: Bact (bacteria), 
Arch (archaea), Neoc (fungi), and Cili (protozoa). Associations of 
individual microbes (as species-level OTUs) were based on amplicon 
sequencing data from the following primer sets: ProkA (bacteria 
and archaea), Neoc (fungi), Cili (protozoa).

Converting OBITools intermediate fasta files  
to QIIME ready format
Amplicon sequences were initially processed with OBITools (32), 
which removed barcodes and split each sample from each of the two 
sequencing rounds into an individual FASTQ file. Within each 
domain’s amplicon sequences, individual sample sequences from both 
rounds were then pooled together into a single FASTQ file in the 
format required for further processing in QIIME (quantitative in-
sights into microbial ecology) (42) for picking an OTU. In detail, 
the header of each FASTQ entry was appended with a prefix fol-
lowing the format [round_id] [sample_id][running_number] [space].

Clustering of microbial marker gene amplicon sequences 
and picking representative de novo species OTU
The marker gene sequences coming from each domain’s primer set 
(Archaea, Bacteria, Prokaryote, Ciliate, protozoa, and Fungi) were 
clustered using the 97% nucleotide sequence similarity threshold, 
using the UCLUST algorithm (43), following the QIIME command: 
pick_otus.py -m uclust -s 0.97). Representative OTUs for each OTU 
cluster were chosen with QIIME command pick_rep_set.py -m most_
abundant.

Assigning taxonomy to OTU
The OTU within each domain was assigned taxonomy using the 
Ribosomal Database Project classifier (44), following the QIIME 
command assign_taxonomy.py -m rdp. The OTUs from the ampli-
con domains of Prokaryotic, Archaea, and Bacteria were assigned 
taxonomy according to Greengenes database (45). The OTUs from 
Ciliate protozoa were assigned taxonomy according to the SILVA data-
base; release 123 (46). Fungal OTUs were assigned taxonomy according 
to a Neocallimastigomycota ITS1 database from Koetschan et al. (47).

Creation of OTU tables and sample subsetting  
and subsampling
Amplicon domain OTU tables were created from the representative 
OTU set counts in each sample along with their assigned taxonomy, 
using QIIME command make_otu_table.py. Each OTU table was then 
subsetted to include only the sample from each animal (of the two 
samples sequenced in two different sequencing rounds) that gained 
the highest sequence depth. Furthermore, amplicon domain OTU 
tables were subsampled to a 7000-read depth for all analyses, with 
the following exceptions: domain richness (8000 reads) and microbe 
abundance to trait association (8000 reads) and interdomain micro-
bial interaction analysis, where no subsampling was taking place.

Correlating microbial domain cell count
The quantitative PCR–derived microbial counts in each domain were 
correlated to each other using Spearman r correlation using R (48) cor 
function. The P values for all interdomain correlations within each 
farm were corrected using Bonferroni-Hochberg (BH) (49) procedure.

Correlating microbial domain cell counts  
to experimental variables
Within each farm, each experimental variable was correlated to 
each microbial domain’s cell count (Spearman r). Next, the analysis 
proceeded only with experimental variable—domain count pairs 
whose correlation direction was identical in all farms. Subsequently, 
P values for the correlation of the selected experimental variable—
domain cell count pairs from within each farm were combined by 
meta-analysis using the weighted sum of z procedure (50, 51), 
weighted by the farm size. Meta-analysis was carried by using R 
package metap (52). Last, combined P values were corrected using 
the BH procedure.

Correlating microbial domain richness  
to experimental variables
Separately within farms, each experimental variable was correlated 
to each microbial domain’s richness, as observed species count 
(Spearman r), using domain-specific primers. Next, the analysis 
proceeded only with experimental variable—domain richness pairs 
whose correlation direction was identical in all farms. Subsequently, 
P values for the correlation of the selected experimental variable—
domain richness pairs from within each farm were combined by 
meta-analysis using the weighted sum of z procedure, weighted by 
the number of cows on each farm.

Meta-analysis was carried by R package metap (52). Last, combined 
P values were corrected using the BH procedure.

Prediction of phenotypes and other experimental  
variables by core microbiome
The abundances of the core microbes within each farm were used as 
features fed into a Ridge regression (19) to predict each of the traits 
(separately). Our approach followed a k-fold cross-validation method-
ology (k = 10), where each fold was omitted once from the entire set 
and the model built from all the other folds (training set) was used 
to predict the trait value of the excluded samples (animal). This was 
implemented using the function cv.glmnet ( = 0, k = 10) from the 
GLMNET R package (20). Then, the overall prediction r2 was calcu-
lated using R code 1- model_fit$cvm[which(model_fit$glmnet.
fit$lambda == model_fit$lambda.min)] / var(exp_covar). Cross- 
validation procedure was repeated 100 times, and R2 measurements 
were averaged.

Prediction of phenotypes by core microbiome  
while correcting for diet
To estimate the phenotypic variability explained by core microbes 
with omission of diet components effect, we repeated the analysis 
above with one difference. That is, before running the regression, 
both phenotypic values and microbial OTU counts were corrected 
for diet. In detail, a Ridge regression (19) was used on the basis of 
diet components as independent variables and the phenotype or 
OTU as the dependent variable. Thereafter, the phenotype residuals 
(diet predicted phenotype − actual phenotype) and OTU residuals 
(diet predicted OTU count − actual OTU count) were used to feed 
the GLMNET function (20).

Prediction of phenotypes by diet components
Diet components within each farm were used as features fed into a 
Ridge regression (19) to predict each of the phenotypes (separately). 
Our approach followed a k-fold cross-validation methodology (k = 10), 
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where each fold was omitted once from the entire set and the model 
built from all the other folds (training set) was used to predict the 
trait value of the excluded samples (animal). This was implemented 
using the function cv.glmnet ( = 0, k = 10) from the GLMNET R 
package (20). Then, the overall prediction r2 was calculated using R 
code 1- model_fit$cvm[which(model_fit$glmnet.fit$lambda == model_
fit$lambda.min)] / var(exp_covar). Cross-validation procedure was 
repeated 100 times, and R2 measurements were averaged.

Prediction of phenotypes and other experimental  
variables by core microbiome using RF
As an additional analysis to further verify our findings of core 
microbiome explainability (by prediction) of host phenotypes and 
experimental variables, we repeated that analysis using RF regression.

The abundances of the core microbes within each farm were used 
as features fed into a RF regression model (21, 22) to predict each 
of the traits (separately). Our approach followed a leave-one-out 
cross-validation methodology where, in each iteration, one sample 
(animal) was omitted from the entire set, and the model built from 
all the other animals (training set) was used to predict the trait value 
of the excluded sample (animal). Thereafter, the prediction R2 value 
between vector of actual and predicted values was calculated using 
R CARET package function R2.

Bovine genotype quality control
Genotypes of the two breed types were processed independently. 
Genotypes were first subjected to quality control (QC) filtering 
including 5% minor frequency allele, 5% genotype missingness, 
and 5% individual missingness, following PLINK (53) command 
plink --noweb --cow --maf 0.05 --geno 0.05 --mind 0.05. The QC for the 
genotypes used for association/heritability analysis (Holstein excluding 
farm UK2) resulted with 5377 SNPs failed missingness, 14,119 SNPs 
failed frequency, and 48 of 635 individuals were removed for low 
genotyping, resulting with 587 individuals and 121,066 remaining.

Testing association of the global rumen prokaryotic  
core with host genetics
Within each farm, the first 30 principal components (PCs) for core 
OTU were extracted (R prcomp). In addition, first genotype PCs 
were extracted using R snpgdsPCA (54). Then, CCA (55) was per-
formed between the matrices of OTU PCs and genotype PCs, and 
total fraction of OTU variance accounted for genotype variables 
through all canonical variates were calculated. This actual value was 
than compared to that of 1000 random permutations, where the 
order of phenotype PCs was shuffled.

Creation of genetic relationship matrix
A genetic relatedness matrix (GRM) was created including all 
Holstein animals except farm UK2, (56), using the command 
gcta64 --make-grm-bin --make-bed --autosome- num 29 --autosome.

Heritability estimation
For estimating OTU heritability, the core microbe counts were 
quantile-normalized and were then provided to genetics complex 
trait analysis (GCTA) to estimate phenotypic variance explained by 
all SNPs with genome-based restricted maximum likelihood (GREML) 
method (56, 57), with farms as qualitative covariates and the first 
five GRM PCs and diet components as quantitative covariates, follow-
ing the GCTA command gcta64 --reml –pheno [phenotype_file] –

mpheno [phneotype_index] --grm --autosome-num 29 –covar [farms_
covars_file] --qcovar [quant_covariates_file].

Heritability confidence interval estimation
Heritability confidence intervals at 95% were estimated on the basis 
of the heritability estimates and the GRM using the GRM eigenvalues 
and farms as covariates with the program FIESTA (Fast Confidence 
IntErvals using Stochastic Approximation) (58). The command used 
was fiesta.py --kinship_eigenvalues [GRM_eigenvalues_file] --kinship_
eigenvectors [GRM_eigenvectors_file] --estimates_filename [heritability_
estimates_file] --covariates [farms_covariate_file] --confidence 0.95 --iterations 
100 --output_filename [otu_file].

Bovine genome SNPs—Microbe association effort
Microbial species-level OTU phenotypes within the Holstein subset 
(excluding the UK2 cohort that showed a different genetic makeup 
by genotype principal components analysis and ADMIXTURE 
ancestral background analysis) relative abundance data were trans-
formed using quantile normalization. Moreover, the top five genotype 
PCs and the farm identity were used as a continuous and categorical 
covariate, respectively. The analysis was performed with the 
mixed linear model option (mlma) where the SNP under inspection 
was accounted as fixed effect along with the covariates and GRM 
effect as random. No association P value surpassed the Bonferroni 
corrected significance threshold (9.076876 × 10−10) for the number 
of phenotypes (455) and the number of SNPs included in the asso-
ciation analysis (121,066).

Estimating kinship matrix
Farm wise animal genetic kinship matrices as estimated on the basis 
of genomic relatedness were inferred from common SNPs that were 
filtered in after the above quality control procedure. The tool used 
for the estimation was EMMA expedited (EMMAX)(59), with the 
following command line: emmax-kin-intel64 -v -M 10 farm_genotypes_
tped_file -o farm.hBN.kinf.

Genomic prediction
Genomic prediction was performed on the basis of each farm’s kinship 
matrix. The genome association and prediction integrated tool (GAPIT) 
(60) tool was used to predict phenotypic values, with the function 
GAPIT (parameters PCA.total=3, SNP.test=FALSE). creareFolds com-
mand from R caret package (61) was used to create three folds, where, 
in each one, fold observations are omitted and are predicted by the 
model built from the remaining two folds. R2 is estimated between the 
observed, and predicted trait values were then correlated using caret 
R2 function. The process was repeated 10 times for a given trait in 
a given farm, and mean of all measurements was then calculated.

Associating microbes’ abundance with  
experimental variables
Separately for each farm and domain, OTUs occupying more than 
10% of the animals in that farm were pairwise-correlated (Spearman) 
to each of the experimental variables. Following that, all P values re-
sulted from correlation tests within a given domain and farm were 
subjected to multiple testing correction using the BH procedure. Last, 
an OTU that showed a significant correlation (corrected P < 0.05) to 
a certain experimental variable in most (>3) of the farms with same r 
coefficient sign and no significant correlation with opposite r sign in 
the remaining farms was identified as associated with that variable.
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Inference of microbial interaction network within domains
Within each domain and farm, an OTU table with a subset of samples 
(animals) that contain a depth of at least 5000 reads was created, 
followed by removal of OTUs present in <50% of animals. The 
raw counts in the OTU table were fed into the R SpiecEasi (Sparse 
InversE Covariance estimation for Ecological Association and 
Statistical Inference) (62) framework, and edges were identified 
using spiec.easi function (“mb” method). Edges were given weights 
using symBeta function as suggested by the package authors. 
Thereafter, the resulting network was filtered to include only 
edges whose absolute weight was greater than 0.2. Last, all individual 
farms within a certain domain were merged, and edges connecting 
nodes (microbes) with the same taxonomic annotation were re-
moved.

Inference of interdomain microbial network
Within each farm, OTUs from different domains were correlated to 
each other using Spearman correlation, followed by BH correction 
for all the correlations examined at the farm and filtering in correla-
tions with corrected P < 0.05. Then, significant correlations were 
aggregated from all farms. Last, correlations with correlation coeffi-
cient r < 0.5 were removed.

Comparing phylogenetic relatedness of core prokaryotic 
microbes to random sampling
Multiple sequence alignment between all core prokaryotic microbes 
was calculated using multiple alignment using fast fourier transform 
(MAFFT) (63, 64) with default parameters. A phylogenetic tree–based 
distance matrix was obtained from aligned sequences using FastTree 
(65, 66), following the command fasttree -nt -makematrix. Thereafter, 
the median phylogenetic between core microbes was calculated.

Next, random sets (n = 100) of OTU sequences were subjected to the 
same procedure. The P value was calculated as P = [I(mcsd > mrsd) 
+1]/101, where mcsd represents median core phylogenetic distance 
and mrsd represents a vector of median phylogenetic distances cal-
culated for the randomly sampled set.

Examining core and trait-related microbiome  
for taxonomic enrichment
The OR of each prokaryotic order appearing in the examined group 
(either core microbiome or trait-related microbiome), between the 
examined group and the whole prokaryotic microbiome catalog, was 
calculated. Next, orders showing an OR > 1 (higher in the examined 
group) were filtered in. Last, the OR P value was calculated (Fisher 
exact test, two-tailed) and corrected using the BH procedure.

Comparing heritable microbes to other core miocrobes’ 
ability to explain experimental variables
To compare the ability of heritable microbes versus other core 
microbes to explain the experimental variables, we used Ridge 
regression to fit the heritable microbes as independent variables 
and the experimental variable as the predictable variable. We 
then contrasted this R2 value with other 100 R2 values achieved 
from random samples of nonheritable core microbes of same 
size (39 random microbes). Ridge regression was performed by 
the R glmnet package. We then compared the R2 of heritable 
microbes to the mean R2 of nonheritable core microbes for all 
the experimental variables altogether, using a paired Wilcoxon 
rank-sum test.

Seasonality test
In each farm, core microbes were corrected for diet. Thereafter, the 
samples in the farm were partitioned into two groups, winter (fall 
equinox to spring equinox) and summer (spring equinox to fall 
equinox). Then, each microbial OTU abundance was compared using 
Wilcoxon rank-sum test that was used to test for the difference 
between the abundance of the given OTU between the two seasons, 
followed by a multiple comparison correction using the Bonferroni 
method. Core microbial OTUs with corrected P < 0.05 in at least 
one farm were considered as showing a seasonal association.
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