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Abstract 
This paper proposes a novel adaptive nonlinear controller based on neural networks 
(NNs) for active suppression of airfoil flutter (ASAF) from the optimal control 
perspective. A new form of NN-based value function approximation (VFA) is proposed 
for solving the Hamilton-Jacobi-Bellman equation online. A systematic procedure based 
on linear matrix inequalities is further proposed for designing a scheduled parameter 
matrix to generalize the new VFA to globally nonlinear systems to suit ASAF 
applications. Closed-loop stability is examined through Lyapunov stability analysis. 
Comparisons drawn with a linear-parameter-varying optimal controller in wind-tunnel 
experiments confirms the effectiveness and validity of the proposed control scheme. 
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1. Introcution 

Aeroelastic systems are subjected to various nonlinearities and are generally prone to the 
instability known as “limit-cycle oscillation (LCO)”, which can cause serious damage to 
the airfoil. For active suppression of airfoil flutter (ASAF), practically feasible solutions 
primarily include embedded piezoelectric actuation (Song and Li, 2014; Fazelzadeh et al., 
2017) as well as proper deployment of the existing airfoil control surfaces. The latter is to 
be discussed in detail next. 



In terms of control algorithms for suppressing LCOs various methods apply 
(Chen et al., 2009; Saaed et al., 2017; Keyser et al., 2017). Due to the time-varying nature 
and nonlinear characteristics of an aeroelastic system (Nayfeh et al., 2012; Bichiou et al., 
2016; Vasconcellos et al., 2016) and the increasing demand on a wider operation range 
beyond the flutter boundary, advanced methods in adaptive, nonlinear, and robust control 
have received more attention in recent ASAF studies, although conventional frequency-
domain analysis remains a useful tool for control synthesis (Schmidt, 2016). These 
advanced methods include but are not limited to: online linear-quadratic-regulator (Pak et 
al., 1995), optimal control synthesized via time-domain finite elements method 
(Fazelzadeh et al., 2014), self-tuning regulator (Viswamurthy and Ganguli, 2008), linear-
parameter-varying techniques (Prime et al., 2010; Chen et al., 2012), feedback 
linearization (Strganac et al., 2000; Platanitis and Strganac, 2004), model reference 
adaptive control (Ko et al., 2002), back-stepping-based adaptive output feedback control 
(Singh and Wang, 2002), robust output feedback control (Zhang and Behal, 2016), 
modular adaptive control (Singh and Brenner, 2003; Rao et al., 2006), modified filtered-
X least-mean-square control (Carnahan and Richards, 2008),  adaptive control (Lee 

and Singh, 2013), sliding-mode control (Wang et al., 2015; Luo et al., 2016), finite-time 
 adaptive fault-tolerant control (Gao and Cai, 2016; Gao et al., 2016) and neural-

network-based adaptive control (Gujjula et al., 2005; Wang et al., 2011; Brillante and 
Mannarino, 2016), etc. 

However, optimal controllers among the aforementioned methods are susceptible 
to un-modeled dynamics. Though some other controllers are designed to be more 
adaptive to the changing environments and tolerant to un-modeled dynamics, these 
methods do not provide nonlinear optimal control. These two problems, although of 
significance to improving ASAF performance, have nevertheless not been addressed. 
This paper, thus, aims to reduce the impact of these problems by proposing an approach 
that synthesizes nonlinear optimal control in real time for ASAF according to online 
updated dynamics. 

Optimal control for nonlinear systems involves iteratively solving a nonlinear 
Hamilton-Jacobi-Bellman (HJB) equation for a neural network (NN) based value 
function approximation (VFA) via a Critic-Actor configuration. A review on recent 
developments in this field until 2015 can be found in Tang et al. (2015), with some 
associated limitations revealed. According to Tang et al. (2015), to guarantee closed-loop 
stability for unstable and marginally stable systems, the existing methods require an 
initial stabilizing control, a logic switching mechanism for the Critic NN, or an additional 
tuning loop for the Actor NN. These increase complexity, and can introduce more 
uncertainties into the system. Moreover, the logic-switch mechanism can also cause 
discontinuities in control. Despite advances since 2015 (Feng et al., 2015; Jiang and 
Jiang, 2015; Kiumarsi et al., 2015; Zhao et al., 2017; Cui et al., 2017), the limitations 
remain unsolved. 

Besides the limitations discussed, the existing methods for online synthesis of 
nonlinear optimal control are also confined to locally nonlinear systems, which are a sub-
class of globally nonlinear scenarios. Aeroelastic systems are nonlinear at a constant 
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freestream airspeed (i.e. locally nonlinear), and the dynamics also vary nonlinearly with 
the airspeed (i.e. globally nonlinear). This makes all these existing methods inapplicable 
to ASAF without modification and improvement. 

Therefore, the study in this paper focuses on solving the aforementioned problems 
and delivers the following contributions: 

(i) A new form of NN-based value function approximation (VFA) is proposed to 
eliminate the need for an initial stabilizing control, a logic-switch mechanism for the 
Critic NN, or a tuning loop for the Actor NN. This contributes to a compact NN 
controller configuration suitable for real-time implementation without jeopardizing 
closed-loop stability.  
(ii) A systematic procedure based on linear matrix inequalities is further purposed for 
the design of a scheduled parameter matrix for the new form of NN-based VFA to 
generalize the proposed method to globally nonlinear cases, so that the proposed NN 
controller suits ASAF applications. 
(iii) The proposed method successfully solves the dilemma in ASAF controller design, 
and wind-tunnel experiments were conducted to validate the proposed algorithm. To the 
best of our knowledge, it is the first experimentally validated approach in this regard. 

2. Aeroelastic system 

A typical rigid airfoil section featuring two-dimensional vibration modes (i.e. the first 
plunge/pitch-mode oscillations) is considered for its well-established theory basis and 
experimental validation (O'Neil and Strganac, 1998; Strganac et al., 2000; Ko et al., 
2002; Platanitis and Strganac, 2004; Prime et al., 2010; Prime, 2010). Leading- and 
trailing-edge control surfaces are used to actively suppress flutter. Specifically in terms of 
the analytical model for control synthesis, a four-degrees-of-freedom (4-DOF) aeroelastic 
system as in Prime (2010) is considered, which includes not only the plunge and pitch 
DOFs but also the deflection angle of the leading- and trailing-edge control surfaces as 
another two DOFs. It models the lift and moment that act on the airfoil elastic axis using 
quasi-steady aerodynamics (Fung, 1955; Strganac et al., 2000), describes the coupled 
dynamics of the plunge and pitch DOFs, incorporates the inertial coupling of the leading- 
and trailing-edge control surfaces to the airfoil rigid-body dynamics, and also takes into 
account servo motors dynamics to capture control delay. This 4-DOF aeroelastic model is 
derived by the Lagrangian energy method, verified with a different modeling technique -- 
the Newton-Euler iteration, and validated in wind-tunnel experiments using the Nonlinear 
Aeroelastic Test Apparatus (NATA) at Texas A&M University. The model was proven 
accurate for low Strouhal numbers, which primarily accounts for cases in subsonic flow 
conditions. Nonlinear translational and torsional stiffness is introduced in a polynomial 
form up to second order, and all the trigonometric terms are retained. A schematic 
illustration of the 4-DOF aeroelastic system is shown in Figure 1. 



 

Figure 1. Schematic figure of the 4-DOF aeroelastic system (“LE”: leading edge; “TE”: 
trailing edge; “c.g.” center of gravity) 

The equation of motion of the 4-DOF aeroelastic system is: 
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where ,  and  are mass of the airfoil (without control surfaces), trailing and 

leading edges; ,  and  are moment inertia of the wing without control surfaces 

(about the elastic axis), and trailing/leading edges (about their respective pivot); , , 

, , , ,  and are the stiffness and damping coefficients associated with each 

DOF;  is the air density;  is the airfoil planform area; ,  

and , with  being the lift coefficient of the airfoil section; 

,  and , with  being 

moment coefficient of the airfoil section at quarter-chord. 

The aeroelastic system can be mathematically expressed in a state-space control-
affine form as: 
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where  denotes  system states;  refers to  control inputs; 

 describes system internal dynamics that are dependent on the 

freestream airflow velocity ;  represents control input dynamics. 

Specifically, 
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where 

  

and 

  

3. Proposed controller 

3.1 Continuous-time HJB equation 

For a constant velocity , equation (2) is reduced to: 

  (3) 

which can be written in a compact form: 

  (4) 

where  is any valid value of . 

For convenience in discussion, the dynamics associated with a constant velocity 
 is hereafter written in a simpler form by omitting the notation of . 

Assumption 1: The initial state of the system internal dynamics ; The 

system as in (4) is Lipschitz continuous on a set  with the origin included, and 
can be stabilized by  that are admissible. 
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Assumption 2:  and , where constants  

and . 

The control problem is to determine a control law  to minimize the following 
performance index (cost function): 

  (5) 

with  and  being positive-definite functions, in which 

 is a positive-definite weighting matrix. 

Differentiating (5) yields its infinitesimal version that is a nonlinear Lyapunov 
equation (LE) (Abu-Khalaf and Lewis, 2005), written as: 

  (6) 

Let  denote the optimal (minimal) cost function, named as the “value 

function”, and let . Then the corresponding optimal control is: 

  (7) 

which satisfies the following Hamilton-Jacobi-Bellman (HJB) equation based on (6): 

  (8) 

By solving (8) for , the optimal control law can then be obtained as in (7). 

3.2 NN-based value function approximation 

The HJB equation is nonlinear and solving for  in a direct way is difficult. Instead, 
it can be solved recursively through a policy-iteration approach. To implement policy 
iteration, an appropriately structured representation of  is necessary, which can be 
a neural-network (NN) approximation. Different from existing methods, we propose a 
new form of value function approximation (VFA) as: 

  (9) 

where  contains  hidden-layer neurons, each of 

which is a nonlinear activation function;  is a vector of ideal NN weights; 
 is a diagonal positive-definite matrix;  is the approximation error. 
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Remark 1: The new NN-based formula proposed for VFA in this study is different 
from all the existing methods in that it has an auxiliary term featuring a quadratic 
function of  in addition to the commonly adopted standard structure of a double-layer 
NN. This new NN-based VFA allows individual control of the coefficients for the second-
order regressors in a determinate manner. That is,  in the second part of (9) is to be 
determined via an online tuning algorithm, while  is a pre-selected parameter matrix 
not affected by online tuning. The advantages of using this new NN-based VFA are given 
in Theorem 1 in details. 

Remark 2: The NN used in (9) is linear in its weights while the activation 
functions are of explicit nonlinear forms with respect to the NN inputs. This type of NN is 
generally known as a linear-in-the-parameters (LIP) NN (Lewis et al., 2003). The 
linearity in weights facilitates tuning while the activation functions can provide firm 
approximation results for specified accuracy, given that the functions are selected as a 
suitable basis. A systematic way to nominate the activation functions utilizes the high-
order Weierstrass approximation theorem (Finlayson, 1972), which renders a power 
series of the NN inputs up to the specified order. A simpler formulation can take the form 
with the centers of the series being zero. 

In regard to (9), the derivative of  with respect to  is: 

  (10) 

where  and . 

Assumption 3: There exist constants  and  such that the 

inequalities  and  hold. 

The associated optimal control law under the proposed approximation scheme is: 

  (11) 

This results in: 
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where  is the difference caused by the approximation error  in (9). 

Let  be the estimate of the ideal weights. In this case, 
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and 

  (14) 

The resulting nonlinear LE then becomes: 

  (15) 

where  is the error of weights estimation during a tuning process. 

The proposed algorithm is based on the synchronous policy-iteration framework 
(Vamvoudakis and Lewis, 2010) and basically involves two steps -- policy evaluation 
(using (13) and (15) as a “Critic”) and policy improvement (using (14) as an “Actor”). 
Starting with , the algorithm proceeds by minimizing  at every infinitesimal 

time step until convergence is reached at  and  or their close proximity. 

For uniform convergence of  to the ideal  so that  is minimized, an 
extended Kalman filter (EKF) is used, and (15) can be rearranged as: 
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where  is a null matrix,  and  are artificial white-noise inputs with covariance 
matrix  and  , respectively. 

Introducing an EKF into the system described by (16) yields: 
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with 

  (19) 

and 

  (20) 

where  is defined as in (19) and  is a symmetrical positive-definite 
matrix with initial state . 

Remark 3:  is shown to be bounded ( ) regardless of the 

VFA forms and tuning methods (Vamvoudakis and Lewis, 2010; Tang et al., 2015). 
However, this boundedness does not guarantee closed-loop stability during transient 
response in tuning (Tang et al., 2015), which necessitates a separate analysis on closed-
loop stability. 

Theorem 1: Given Assumptions 1 to 3 and the EFK estimation scheme provided 

by (17) to (20), there exists a scalar  and a matrix  for (9) such that  

and the nonlinear system as in (4) remains asymptotically stable during online tuning 
with the control law given by (14). 
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As , we have  for constants . Based 

on Assumptions 2 and 3, there exist constants  such that 

  

and 

  

Let . Since , then (33) can be upper bounded as: 
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  (34) 

where 

  

and 

  (35) 

Equation (34) shows that  is negative as long as 

  (36) 

It can be easily derived that the second-order derivative of  with respect to time 

is a function of  and , i.e., . Since  and  are both bounded, 

 is also bounded. Therefore, it can be concluded that the system states  are 

asymptotically stable. This completes the proof. 

Remark 4: Under the new form of NN-based VFA, this proposed control scheme 
maintains the stability of the closed-loop system during online tuning without the 
necessity of providing an initial stabilizing control, adding a stabilizing logic-switch 
mechanism to the Critic NN, or adding an additional stabilizing tuning loop to the Actor 
NN. This is one of the major differences of our approach from other existing methods. 
Moreover, to the best of our knowledge, the proposed algorithm is the first among the 
available methods to provide proven asymptotic stability rather than the relatively 
weaker UUB stability to the states of nonlinear systems as in (3) during online tuning. As 
shown by Theorem 1, the proposed new form of VFA shows significant advantages over 
the existing methods, and hence builds an important contribution of this paper. 
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3.3 Generalization of the new form of NN-based value function 
approximation} 

Note that the discussion in Subsections 3.1 and 3.2 are confined to locally nonlinear 
systems, with the parameter matrix  being constant, which is not suitable for a wider 
flight envelop with varying traveling speed  beyond the flutter boundary. As a second 

contribution in this paper, a systematic approach is proposed in the following for the 
selection of  to cope with  dependent dynamics as in (2), generalizing the new NN-

based VFA to globally nonlinear cases so that it suits ASAF applications. 

Linearizing (2) about  gives: 

  (37) 

where 

  

  

and  is unit white-noise input. 

With performance output  considered, there is: 

  (38) 

where  for full-state feedback, , and . 

Let  be a scheduled matrix which varies with the freestream airspeed . 

According to Theorem 1, a stable closed-loop system under the dynamically tuned 
control law as in (14) requires  where the value of the scalar  depends 

on the system dynamics. In the case of ASAF,  is not constant but varies with . 

That is,  for any practical airspeed , where  is a generalized 

function. To find  that satisfies the condition of , a Lyapunov 

matrix  and an auxiliary parameter-dependent performance variable 

 are introduced to form the following linear matrix inequalities (LMIs): 
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  (39) 

  (40) 

and 

  (41) 

where 

  

  

and  is a performance index. 

Let , , . Then (39) and 

(40) can be transformed into: 

  (42) 

  (43) 

In light of (1),  can be structured as: 

  (44) 

Therefore,  and  take the same structure as:  
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and 

  (46) 

Solving for  and  through (41), (42) and (43) gives 

 in the form of: 

  (47) 

T

0,c c


  
  

X A X XA X

X I

&
p

T

0,cz

cz

 
 
 

X C

C Z
f

Tr( ) ,Z

1 T1
( ) ( ),

2c p p pU U
 A A B R B P@

1 T1
( ),

2cz z z p U
C C E R B P@



1 T1

2c p p
B B R B@ 1( ) ( ) ( )U U U

  G P X 1( ) ( )U U
 Y X

T T T 0,p p c c    Y A Y YA B G G B& p

T( )
0.z z

z z

 
  

Y C Y E G

C Y E G Z
f

( )UA

2
1 2 3( ) .U U U    A A A A

( )UY ( )UG

2
1 2 3( ) ,U U U    Y Y Y Y

2
1 2 3( ) .U U U    G G G G

( )UY ( )UG
*( ) ( )PU m U P ǁ

1( ) ( ) ( ).U U U
  P G Y



with  implicitly embedded in the LMIs derived. 

Remark 5: As discussed in Section 1, existing methods capable of synthesizing 
optimal control laws for nonlinear systems are all limited to locally nonlinear cases and 
hence not suitable for direct implementation for ASAF without modification and 
improvements. The proposed procedure for designing the parameter matrix  yields 

 across  of interest, satisfying the condition of  in 

Theorem 1, and thus generalizes Theorem 1 to a more general scenario, the globally 
nonlinear case, with nonlinear dynamics described in (2). This makes the proposed 
method suitable for ASAF, and forms the second contribution of this paper. 

3.4 Online system identification 

Note that the knowledge of  and  is required for real-time synthesis of 
nonlinear optimal control laws. Although  and  is analytically available, the 
presence of un-modeled dynamics or uncertainties can degrade controller performance as 
discussed in Section 1. To mitigate this problem, an NN-based identifier is proposed in 
the following form: 

  (48) 

where  and  are the ideal weights and nonlinear activation 

functions of the NN, respectively. 

Motivated by Modares et al. (2013), the system states  can be expressed as: 

  (49) 

with 

  (50) 

and 

  (51) 

where  and  are auxiliary regressors,  with , 

and  

  

Denote the estimate of  by . For fast estimation of  towards , the EKF 

is considered for online tuning. In this study, multiple single-input-single-output (SISO) 
EKFs in a parallel configuration are employed to reduce the computational expense. On 
this basis, we have: 
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  (52) 

where  is the EKF gain and subscript  restricts the parameters to the  

decoupled EKF. 

Each EKF gain vector  can be computed using: 

  (53) 

  (54) 

  (55) 

where  and  are defined the same as  and . 

The input dynamics  can then be obtained as: 

  (56) 

That is, 

  (57) 

Remark 6: The known analytical model is embedded into the Identifier NN in the 
form of the initial values of  obtained via pre-training the NN using the model. For 

the case of ASAF, as the on-board controller is normally switched on prior to the 
airspeed reaching the flutter boundary, pre-training the Identifier NN offline using known 
dynamics at this airspeed suffices. When the airspeed increases, un-modeled and 
mismatching dynamics can be captured, with the pre-trained NN updated in real time 
accordingly. 

4 Wind-Tunnel Experiments 

Experiments were performed in a temperature regulated closed-loop wind tunnel at the 
University of Adelaide, Australia, with the setup shown in Figure 2. The wind tunnel has 
a 0.5 0.5 m testing duct, and can generate up to 30 m/s smooth airflow. A virtual-spring-
damper system (VSDS) was used to introduce custom stiffness and damping setting. The 
parameters of the overall aeroelastic system used in experiments are listed in Table 1, and 
the system has a flutter boundary around 14.6 m/s. 
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Figure 1. Wind tunnel experiment setup (1, pressure transducer connected to a Pitot tube; 
2, airfoil section; 3, wind tunnel test duct; 4, custom I/O board; 5, dSPACE® DS1104 
R&D controller board; 6, virtual spring-damper system; 7, controller PC; 8, power 
supply). 

 

Table 1: Parameters of the Experimental Aeroelastic System 

Parameters Values Parameters Values 

       

      

      

     

      

      

     

     

      

     

a 0.5685
hc 14 kg/s

b 0.0753 m c
2kg0.0  s4 m2 /

m
0.851 kg c

4 24.231 10  kg m /s 

m
0.030 kg c

4 24.327 10  kg m /s 

m
0.058 kg

hk 250 300  N/mh

s 0.26 m k
20.3 30  Nm/rad

 31.225 kg/m k
34.57 10  Nm/rad

r 0.0329 m k
34.70 10  Nm/rad

r
21.019 10  m I

3 22.431 10 m kg 

r
34.401 10  m I

6 22.307 10 m kg 



      

       

      

       

      

 

NN are prepared as Remark 3, with key information summarized in Table 2. 
 and  were designed using the parameters in Table 1 for the airspeed 

range from 14.6 m/s to 20 m/s with a gridding of 50 evenly spaced points.  was 

calculated in real time using (47).  in (5) was structured as , with  and other 
parameters listed in Table 3. 

Table 2: Summary of the NNs used in the proposed controller. 

 Input Order 
Neurons 

Number 
Weights Initialization 

Identifier NN   
simulation-based training 

for 14.6 m/s airspeed 

Critic NN    zeros 

 

Table 3: Other parameters of the proposed NN controller. 

Parameters Values 

   

   

   

  

lC  6.573 I
6 24.791 10 m kg 

lC  3.472 L 0.0875 m

lC  0.1453 L 0.01 m

mC  0
mC  0.0983

mC  0.6307
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Tests were conducted at two different airspeeds, and flutter was allowed to 
develop to reach LCO before the controller under testing was turned on. To ensure 
consistent initial conditions  throughout all tests under the same settings, where  

is the time when the controller is switched on, the controller was configured to be 
triggered when  crossed zero immediately after 15 seconds. This means  s. 

As discussed in Section 1 and throughout the paper, there is no existing policy-
iteration algorithm suitable for ASAF without modification and improvement. Therefore, 
no suitable NN-based optimal controller counterparts can be compared in experiments. In 
order to evaluate the ASAF performance improvement gained by using the proposed 
controller, a linear-parameter-varying (LPV) controller in the form of linear-quadratic-
regulator (LQR) synthesized by means of LMIs (Prime, 2010) was reconstructed for the 
4-DOF model as in (1) with the parameters in Table 1 and the weighting  and  same 
as those used by the proposed NN controller. 

Plunge and pitch responses as well as control surfaces deflections of the airfoil 
section in the wind-tunnel tests under the proposed NN controller and the LPV-LQR 
controller at different airspeeds are plotted in Figure 3 for 14.8 m/s and Figure 5 for 
18m/s. Higher airspeeds were not tested due to the torque output limit of the VSDS 
motors. The trajectories of NN weights are presented in Figures 4 and 6. 
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Figure 3. Suppressing developed flutter at 14.8 m/s airflow speed. 

 

 

Figure 4. Convergence trajectories of the Critic and Identifier NN weights of the 
proposed controller at 14.8 m/s airflow speed. 

 



 

Figure 5. Suppressing developed flutter at 18 m/s airflow speed. 

 

 

Figure 6. Convergence trajectories of the Critic and Identifier NN weights of the 
proposed controller at 18 m/s airflow speed. 

At 14.8 m/s, the flutter was effectively suppressed within 1.5 seconds under the 
proposed NN controller, with only mild demands on the deflection of control surfaces. 
By comparing Figures 3 and 4, it can be seen the Identifier NN has higher rate of 
convergence than that of the Critic NN, which means the latter is able to access updated 
and more accurate system dynamics for control law improvement. The Critic NN also 
settles 1 second before the flutter is fully suppressed, indicating satisfactory parameter 



convergence. This validates the selection of the activation functions sets for both the 
Identifier NN and the Critic NN, and also indicates that optimal control was obtained 
under experiment conditions. In comparison, it takes longer for the LPV-LQR controller 
to fully suppress the flutter. Similar phenomena can be observed for 18 m/s, as shown in 
Figures 5 and 6, where however, relatively larger differences between the responses 
under the two controllers can be observed. 

To better capture the performance differences between the two controllers, 
performance cost is evaluated for  according to (5) using the experiment data 
with discrete approximation. Costs are each calculated and averaged from 4 tests under 
the same settings to ensure data consistency, and are listed in Table 4. It can be concluded 
from Table 4 that the proposed NN control suppresses the flutter better with lower cost at 
both airspeeds, compared with the LPV-LQR control. 

Table 4: Performance costs calculated from experiment data. 

Airspeed LPV-LQR Proposed NN Controller

     

     

 

5. CONCLUSIONS 

The proposed novel form of VFA for synchronous policy iteration contributes to a 
simplified and compact controller without jeopardizing the closed-loop stability. The 
proposed procedure based on LMIs for designing a scheduled parameter matrix further 
generalizes the new VFA for globally nonlinear systems to suit ASAF applications. As 
validated in the wind-tunnel experiments, the proposed controller successfully improves 
ASAF from the optimal control perspective, with the impact of modeling uncertainties 
mitigated. 
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