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Abstract 

-secretase is an important protease complex responsible for the cleavage of over 100 substrates 

within their transmembrane domains. Among these substrates is the AMYLOID BETA (A4) 

PRECURSOR PROTEIN (APP), which is most well-known for its involvement in Alzheimer’s 

disease (AD) pathology and the p75 neurotrophin receptor (p75NTR). 

This thesis aimed to investigate γ-secretase and its substrates, p75NTR and APP, in a number of 

ways; Aim 1) to dissect the structural determinants contributing to selection of substrates by γ-

secretase using an assay-based system, Aim 2) to investigate the molecular effects of fAD-like and 

null mutations in zebrafish appa and appb, by generating mutations in endogenous genes with 

genome editing technologies, and Aim 3) to investigate the aggregation propensity of Aβ-42-like 

peptides of Appa and Appb using predictive software. 

How -secretase cleavage site specificity is determined is still unclear. A previous study 

investigating the proteolytic processing of p75NTR and its homolog NRH1 (neurotrophin receptor 

homolog 1) found that transmembrane cleavage of NRH1 was not sensitive to the -secretase 

inhibitor DAPT, suggesting that it is not processed by -secretase. We have previously identified 

zebrafish orthologues of the p75NTR and Nrh1 genes and have developed in-vivo assays to assess 

cleavage of the p75NTR and Nrh1 proteins.  

To address Aim 1, we first improved upon our previous assay system by switching out the internal 

reference standard mCherry for a second GFP sequence. A chimeric construct was then designed, 

in which the Nrh1 transmembrane domain was replaced with the transmembrane domain of 

p75NTR, to allow us to determine whether this domain can confer -secretase cleavage susceptibility 

to Nrh1. Our results indicate that the p75NTR transmembrane domain alone is not sufficient to 

confer γ-secretase susceptibility to Nrh1. 



5 
 

Missense mutations in the APP gene cause approximately 15% of dominantly inherited familial 

Alzheimer’s Disease (fAD). Currently 59 mutations are known and are listed on Alzforum 

(https://www.alzforum.org/mutations/app). The human APP gene has two co-orthologues in 

zebrafish, appa and appb. To address Aim 2, we attempted to utilise genome editing technology 

to generate fAD-like and null mutations in these zebrafish genes. Despite the various challenges 

associated with this project, a putative null mutation of the zebrafish appb gene was ultimately 

generated.  

Hypoxia is thought to be a risk factor for AD. A previous study in our laboratory measured the 

hypoxic response of 6-month-old zebrafish carrying fAD-like mutations in psen1 and observed an 

increased hypoxic response in these mutants under normoxia and a further increase under hypoxia. 

We measured the hypoxic response in our 6-month-old heterozygous appb putative null mutant 

zebrafish. However, there was no observable difference in the hypoxic response of our mutants 

compared to 6-month-old wildtypes. In future, our appb null mutation should serve to elucidate 

the role of this gene in neural function and its interactions with the other fAD genes.  

Aβ is proposed to be a key pathogenic molecule in AD. It is unknown whether APP genes in 

zebrafish form aggregation prone Aβ42-like peptides as occurs in the aging human brain. To 

address Aim 3 a bioinformatics approach was employed. Analyses using multiple software 

revealed that the predicted Aβ-42-like peptide of Appa zebrafish had similar aggregation 

propensity potential to that of human Aβ-42. The peptides we analysed consistently showed two 

domains of high aggregation propensity, one at the C-terminus and one in the middle of the peptide. 

Interestingly, the Aβ-42-like peptide of zebrafish Appb had comparable aggregation potential to 

human Aβ-42 in its C-terminal end but not in its mid-peptide region, suggesting that this peptide 

may not be as aggregation prone as human Aβ-42. 
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Chapter 1 – Literature Review 

1.1 γ-secretase is a protease complex that is responsible for the cleavage of many 

substrates 

γ-secretase is an important multi-subunit membrane-bound aspartyl protease complex that is 

responsible for the cleavage of more than 100 substrates, including; Amyloid Precursor Protein 

(APP), Notch and the p75 neurotrophin receptor (p75NTR) [reviewed in 1, 2]. γ-secretase is a 

member of the intramembrane cleaving protease family (I-CLiP), which cleave type 1 membrane 

proteins enzymatically via a process termed regulated intramembrane proteolysis (RIP) [reviewed 

in 1, 2].   

The most studied function of γ-secretase amongst the literature is its processing of APP. This is 

due to the seemingly critical role of APP in Alzheimer’s disease (AD) etiology. γ-secretase’s 

involvement in the sequential cleavage of APP can lead to increased Amyloid β-42 residue (Aβ-

42) deposition. Aβ-42 is a neurotoxic peptide that aggregates and eventually forms senile/neuritic 

plaques (extracellular deposits of Aβ) in the central nervous system (CNS) [3]. This intensive 

research into γ-secretase processing of APP has been performed in the hopes of devising a potential 

method of treatment for AD [1, 4].  

p75NTR, also known as the ‘low-affinity nerve growth factor receptor’ (LNGFR), is another of the 

many substrates that is subject to cleavage within its transmembrane domain by -secretase [5]. 

p75NTR is involved in development and maintenance of the nervous system through its interaction 

with the neurotrophins and Trk receptors [6, 7]. p75NTR has also been implicated in AD [8], where 

it is hypothesised to play a role in cholinergic neuron loss via the Aβ peptide, which acts as a ligand 

for p75NTR [8]. γ-secretase cleavage also has a crucial role in the processing of Notch. The Notch 
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receptor is a very well characterised signalling molecule. Notch signalling is vital for the 

determination of cell fate during embryogenesis and development [9, 10]. 

 

Components of the γ-secretase complex 

The structure and mechanism of proteolysis by γ-secretase is still not completely characterised 

[11]. The multi-subunit -secretase complex is comprised of four major components (Figure 1.1), 

originally identified in Caenorhabditis elegans [12, 13]. They include; PRESENILINs (either 

PSEN1 or PSEN2), Nicastrin (NCSTN), Anterior pharynx defective-1 (Aph-1a or Aph-1b) and 

Presenilin enhancer-2 (PSENEN or Pen-2). These integral membrane proteins provide the minimal 

requirement for a functional -secretase complex and exist in 1:1:1:1 stoichiometry [reviewed in 

1, 2, 11, 14]. Previous studies using Saccharomyces cerevisiae confirmed these four components 

to be necessary and sufficient for -secretase activity [reviewed in 2]. The γ-secretase complex can 

exist in at least eight different possible compositions, as both PSEN and APH-1 can exists in two 

forms (PSEN1 and PSEN2 and APH-1a and APH-1b) and Aph-1a is also able to generate two 

individual isoforms due to alternative splicing events (APH1aS and APH-1aL) [15]. These 

multiple compositions may have a number of different possible functions, including; substrate 

affinity, diversity in activities and/or implications for different subcellular localisations [2, 14].  

NCSTN is a type 1 membrane protein which has a large, heavily glycosylated extracellular 

domain. Originally, NCSTN was thought to recruit γ-secretase substrates through interaction 

between a conserved glutamate residue in its ectodomain and the N-terminal stub of the substrate 

[16]. However, experiments demonstrated that mutation of this glutamate residue does not result 

in loss of substrate attraction and binding by γ-secretase [17]. Also, a γ-secretase complex of 
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PSEN1/PSENEN/Aph1a was found to cleave APP and Notch in the absence of NCSTN [18]. Such 

findings suggest that while NCSTN may be involved in stabilisation of the complex, it is not 

indispensable for recognition of substrates. More recent findings suggest that NCSTN may operate 

as a gatekeeper for substrates of γ-secretase by sterically barring substrates that have not undergone 

ectodomain shedding from accessing the PRESENILIN active site [19] 

 

 

Figure 1.1. The multi-subunit γ-secretase complex. Presenilin provides catalytic activity of the complex. 

Presenilin, Nicastrin, APH-1 and PEN2 together are necessary and sufficient for γ–secretase activity 

[Adapted from 27]. 

 

PSENEN is a small (~12kDa) membrane protein with a hairpin-like structure. It is thought to be 

integral in stabilisation of the complex, which has been determined by mutagenesis studies [20, 

21]. PSENEN directly interacts with the fourth transmembrane domain (TMD4) of PSEN1 [22, 

23], and is also thought to assist PSENs in endoproteolysis [20, 24]. Aph-1 is a ~30kDa 
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transmembrane protein that associates with Nct and PSENs [12]. Aph-1 binds to immature Nct via 

its GxxxG motif and traffics this protein to the immature PSEN holoprotein [25]. Aph-1 is also 

thought to stabilise the γ-secretase complex [26].  

 

The role of PRESENILINS in γ-secretase activity 

The PSEN1 and PSEN2 proteins both undergo endoproteolysis to produce two fragments: a C-

Terminal fragment (CTF) and an N-terminal fragment (NTF). This self-cleavage of PSENs has 

been shown to be promoted by PSENEN [28]. The two PSEN fragments associate to form a 

functional heterodimer, the active form of PSEN [reviewed in 14]. This heterodimer exists in the 

γ-secretase complex and makes up the catalytic core of this membrane anchored protease [16, 29]. 

Research into the PSENs has a complex history and for many years there was doubt as to whether 

the PSENs were responsible for γ-secretase cleavage activity. Early investigations in the lower 

eukaryote Pichia pastoris revealed that a lack of PSENs does not impede γ-secretase-like 

proteolytic processing of APP, suggesting that PSENs were not necessary for this function [30]. A 

study involving the processing of another γ-secretase substrate Notch, suggested that while PSENs 

do play a role in Notch processing they are not necessarily responsible for the direct cleavage of 

this substrate [31]. Another study found that small changes in pH conditions of an in vitro assay 

for γ-secretase can result in changes in the ability to inhibit a γ-secretase-like cleavage of APP 

[32]. A paper published by Ahn et al (2010) demonstrated that PSEN1 does have γ-secretase 

catalytic function [28]. They demonstrated that recombinant PSEN (rPS) exhibits γ-secretase 

activity and that rPS mutants lacking the catalytic aspartate residues lose this activity [28]. 

Furthermore, rPS harbouring familial Alzheimer’s disease (fAD) causing mutations led to elevated 
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Aβ42-40 ratio produced from a wild type APP [28]. Supplementing this are PSEN1 knockout 

studies conducted in mice by De Strooper et al (1998), in which secretion of Aβ peptide was 

strongly inhibited. There was also accumulation of APP C-terminal fragments in PSEN1 deficient 

mouse neurons. Taken together, these findings provide a firm argument that PSEN is indeed 

responsible for the catalytic activity observed in γ-secretase [33]. Lending further support to this 

argument is the finding by Wolfe et al (1999), that two aspartate residues in PSENs are vital, both 

for endoproteolysis of PSEN and γ-secretase cleavage of substrates [34].  

 

The mystery of substrate recognition and selection by γ-secretase 

The specific nature of substrate selection by γ-secretase is still not clearly defined. γ-secretase 

substrates are typically derived from large precursor proteins that undergo a prerequisite removal 

of their ectodomain prior to γ-secretase cleavage, in a process termed “ectodomain shedding” [2]. 

Indeed, γ-secretase substrate recognition and cleavage are much more efficient for ectodomains 

with fewer than ~50 remaining amino acid residues [9]. In early studies, the only other observed 

prerequisite was that the substrate must be a type 1 membrane protein [16]. Later studies suggested 

that dimerization of substrates and/or the structure of substrate α-helices may regulate γ-secretase 

activity [35]. More recently, cryo-electron microscopy (cryo-EM) has been utilised to solve 

structures of the γ-secretase complex [36]. Unfortunately, the findings of this study did not reveal 

further details of how the γ-secretase complex interacts with its substrates. However, subsequent 

studies utilising cryo-EM improved the resolution of the human γ-secretase complex and revealed 

conformational flexibility upon substrate binding [37, 38]. Furthermore, a cryo-EM study by Bai 

et al (2015) seemingly supports that the previously mentioned glutamate residue (Glu333), along 

with a tyrosine residue (Try337), of NCSTN likely play a role in substrate recruitment [38, 39]. 
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Other recent findings suggested a mechanism whereby γ-secretase trims substrates within their 

transmembrane domains (TMD) from within three substrate binding pockets (S1′, S2′ and S3′). 

These three substrate binding pockets trim peptides in intervals of three amino acids [19]. Even 

more recently, there have been two studies published that utilised cryo-EM to resolve structures 

of the γ-secretase complex bound to either Notch or APP [40, 41]. Both studies reported similar 

confirmations in binding of their respective substrate, where, the initial two-thirds of the TMD 

formed a helical conformation and the final third was unwound into a β-strand to engage the active 

site. Moreover, specific TMDs of PRESENILIN changed conformationally in order to interact 

with both substrates [19]. These findings are a great step forward in our understanding of γ-

secretase substrate recognition, however, there remains much unknown about this process. 

 

1.2 The p75 neurotrophin receptor (p75NTR) 

The p75 neurotrophin receptor (p75NTR), also known as the ‘low-affinity nerve growth factor 

receptor’ (LNGFR), is one of the 100+ substrates that is subject to cleavage within its 

transmembrane domain by γ-secretase. p75NTR is a member of the tumour necrosis factor 

(TNF)/nerve growth factor (NGF) superfamily [5]. As its name suggests, p75NTR acts as a receptor 

for the neurotrophins (NT’s), both in their pro-NT (immature) and mature forms [reviewed in 6]. 

Neurotrophins are a family of protein growth factors, vital in the maintenance and development of 

the nervous system. The four neurotrophins are; 1. Nerve growth factor (NGF), 2. Brain derived 

neurotrophic factor (BDNF), 3. Neurotrophin-3 (NT-3) and 4. Neurotrophin-4 (NT-4) [reviewed 

in 6, 42, 43]. 
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P75NTR has an ECD (extracellular domain) containing a signal peptide and a cysteine-rich motif of 

four repeats. It has a transmembrane domain which is the site of γ-secretase cleavage and through 

which it has been found to form a homodimer at the cell surface [35]. This homodimer is thought 

to be involved in receptor-ligand interactions. It also has an ICD with a ‘death domain’ motif that 

shares similarity to the TNF (tumour necrosis factor) family of proteins. The ICD also contains a 

PEST sequence, an indicative character for proteins that undergo proteasome degradation [6, 35]. 

More recently, the p75ECD has been shown to be neuroprotective in mouse brain [44]. 

The ICD (intracellular domain) of p75NTR can promote both apoptosis and cell survival upon 

release into the cytosol [43]. There are several described protein interactions which alter the final 

product of p75NTR signalling. Promotion of neuronal survival is achieved through p75NTR binding 

with TrkA in the presence of NGF (Figure 1.2) [reviewed in 6, 42]. Another interaction is p75NTR 

with sortilin (SORT1) (Figure 1.2). Interaction of the p75NTR/SORT1 heterodimeric complex with 

proNGF or proBDNF leads to apoptosis [reviewed in 6, 43]. 

 

p75NTR proteolysis is carried out by α- and γ-secretases 

The proteolysis of p75NTR (Figure 1.3) is very similar to that of two of γ-secretase other substrates, 

APP and Notch. Initially p75NTR is subject to cleavage 15 amino acids N-terminal to the 

transmembrane domain by α-secretase, leaving a membrane-anchored CTF [45]. This α-secretase 

cleavage of p75NTR is mediated by a member of the ‘A Disintegrin and Metalloproteinase’ 

(ADAM) family [45]. Whether this cleavage is mediated by ADAM10 or ADAM17 has not been 

firmly established. Experiments by Kanning et al (2003) suggest that it is ADAM10 which 

provides the primary cleavage event [5]. However, evidence provided by Weskamp et al (2003) 
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and Forsyth et al (2014), suggests that ADAM17 that is responsible for ECD shedding [46, 47]. It 

is possible that both ADAM10 and ADAM17 can cleave p75NTR. Following the shedding of the 

p75NTR ectodomain there is a firmly established cleavage event by γ-secretase [5, 6]. This occurs 

within the transmembrane domain of p75NTR although the specific position has not been well 

defined. This cleavage releases the ICD into the cytoplasm, which is responsible for downstream 

signalling leading to either cell survival or apoptosis [42, 43]. The processing of p75NTR by γ-

secretase has been demonstrated as highly important in respect to its downstream signalling 

responsibilities [42]. 

 

 

Figure 1.2. p75NTRcan interact with both Sortilin and TrkA receptors to promote cell death or survival 

respectively. (Image from http://www.newmind-center.dk) 
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p75NTR has two homologues with distinct cleavage properties 

Our interest in the issue of γ-secretase-like cleavage activities was piqued by a paper published by 

Kanning et al (2003) investigating the proteolytic processing of p75NTR, along with what they 

described as the “neurotrophin receptor homologs” (NRH), NRH1 and NRH2 [5]. Database and 

EST searches have established that these two genes show greater sequence similarity to p75NTR 

than its previously known closest relative sequences. Kanning et al (2003) found that NRH 

subfamily members share approximately 30% identity in their ICD across species, whereas only 

13% identity is shared with the ICD of p75NTR next nearest known relative sequence, human 

TNFR1 [5]. p75NTR and the NRH genes are described as a subfamily of the nerve growth factor 

(NGF)/tumour necrosis factor (TNF) family. NRH2 exists only in mammals and NRH1 exists only 

in amphibians, fish and chickens. Alignment of p75NTR with both homologs revealed a high degree 

of similarity in ICD and transmembrane domains [5]. 

Experiments investigating the proteolytic processing of p75NTR confirmed its processing by α- and 

γ-secretase. Results from Western blot analysis of NRH1 and NRH2 indicated that they are both 

cleaved within the transmembrane domain [5]. Using proteasome inhibitors, particularly the 

commonly used γ-secretase inhibitor DAPT, Kanning et al (2003) observed that DAPT had no 

effect on the cleavage of NRH1 or NRH2, suggesting that transmembrane cleavage of these 

proteins is not by γ-secretase [5]. Inconsistencies within the literature pertaining to this conclusion 

do exist. For example, a paper published by Zampieri et al (2005) stated that NRH2 is a target of 

both α- and γ-secretase activities [45]. However, no references or experimental data were provided 

as evidence for this statement [45]. It is true that the presence or absence of α-secretase cleavage 

of both NRH1 and NRH2 was not clearly assessed by Kanning et al (2003) [5]. However, their 

experimental procedures and controls addressing γ-secretase cleavage were sound and convincing. 
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As such it is increasingly clear that this cleavage must arise from another, currently unknown 

processing event. It would be interesting to investigate further the events which are involved in the 

processing of NRH1 that eventually lead to the release of its ICD. 

 

 

Figure 1.3. Cleavage events of p75NTR and its homolog NRH1. Both p75NTR and NRH1 are cleaved first 

in the extracellular domain by α-secretase and then in the transmembrane domain. While p75NTR is 

cleaved in the TMD by γ-secretase, the enzyme that cleaves NRH1 at this position remains unknown. 

 

The p75NTR homolog of greatest interest to this thesis is NRH1, as this is the p75NTR homolog in 

zebrafish. We have previously observed that zebrafish NRH1 is not subject to γ-secretase-

dependent cleavage [48]. However, the nature of primary cleavage events, although potentially 

mediated by α-secretase, remains uncertain [5]. The high sequence and structural similarity 

between NRH1 and p75NTR [5] makes the lack of γ-secretase-dependent cleavage of NRH1 
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particularly intriguing, since the genes coding for these proteins must have arisen by duplication 

of a common ancestor. Further investigation of NRH1 processing events would be of interest, as 

this may give us some insight into; 1) the evolution of γ-secretase cleavage of p75NTR and 2) 

substrate selection by γ-secretase in general. 

 

1.3 Epidemiology, history and etiology of Alzheimer’s disease 

As previously mentioned, γ-secretase is most studied for its role in APP processing, through which 

production of the neurotoxic Aβ-42 peptide is thought to contribute to the observed 

neurodegeneration in AD. Alzheimer’s is the most common form of dementia, with 50-70% of all 

dementia cases in Australia diagnosed as AD. More than 413,000 Australians are living with some 

form of dementia and it has been estimated that, by 2050, 1,000,000 Australians will be living with 

dementia. There is currently no cure for AD, even though it is the second leading cause of death 

in Australia (https://alzheimers.com.au/about-alzheimers/). As there is currently no cure, there is 

an intense research effort into all aspects of AD biology to attempt to identify one. 

In 1901 at the Frankfurt Psychiatric Hospital, Alois Alzheimer began treating a 51 year old female 

patient, Auguste Deter. She had been admitted to hospital for symptoms that are associated with 

AD to this day; paranoia, sleep disorder, memory disturbance, aggressive behaviour and confusion 

[49]. After her death in 1906, Alzheimer performed post-mortem analysis on brain tissue from 

Auguste. His published observations described the presence of senile plaques and neurofibrillary 

tangles (NFT) within her cerebral cortex [50]. The presence of these two types of brain lesions has 

become widely accepted as the basis of characterisation of the disease. More than a century later, 

patients are still not confirmed as having had AD without displaying a similar brain pathology. 
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The characteristic senile plaques and NFT of AD are located in both the temporal neocortex and 

hippocampus [51, 52]. Plaques and NFT are a downstream effect of abnormal deposition of the 

Aβ peptide and hyperphosphorylated tau protein respectively. The deposition of these proteins 

results in neuronal loss and neurotoxicity by unknown mechanisms [53]. Aβ peptides are believed 

to be capable of triggering oxidative stress, which is extensively observed in AD [54, 55]. This 

stimulation can occur both directly and indirectly. Aβ peptides are able to produce hydrogen 

peroxide directly and also generate free radicals via the reduction of metal ions [56, 57]. Aβ 

peptides can also influence the generation of free radicals through binding Aβ-binding alcohol 

dehydrogenase (ABAD), which forms a direct link between Aβ and mitochondria [58]. 

Neuroinflammation is another mechanism through which Aβ peptides produce oxidative stress. 

Many studies have supported the implication of neuroinflammation’s role in AD pathogenesis 

[59]. The neuronal death observed in AD is, in part, accredited to microglial and astrocyte 

activation. Both of these brain cell types are involved in the inflammatory and immune response 

to deposition of Aβ, and both have neuroprotective and neurodegenerative roles [60]. Studies have 

indicated that astrocytes are able to degrade Aβ deposits both in vitro and in situ, which suggests 

they may be involved in the clearance of Aβ aggregates [61]. Clustering of astrocytes at amyloid 

deposition sites lends further support to this proposed role. When activated, both microglia and 

astrocytes are known to release pro-inflammatory molecules. Microglia in particular have been 

shown to release proteases, cytokines (chemokines) and reactive oxygen species (ROS) in response 

to activation by Aβ, all of which are potentially neurotoxic [62]. 

There are two recognised forms of AD. Familial AD (fAD) also known as ‘early onset’ AD 

(EOAD) occurs in patients between the ages of 40 and 65 years of age. fAD is thought to represent 

approximately 2% of all AD. Sporadic AD (SAD) or ‘late onset’ AD (LOAD) occurs in patients 
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over the age of 65 and accounts for the majority of AD cases. Approximately 10% of fAD cases 

present a clear autosomal dominant inheritance pattern [63]. However, a more complex pattern of 

inheritance is observed in most cases of both forms of AD [64]. 

 

Genes implicated in familial Alzheimer’s disease 

There are currently three loci for autosomal dominant mutations associated with the rare familial 

form of AD (fAD). The first of these loci to be identified was APP, which encodes the Aβ peptide 

that is accumulated into amyloid plaques. 59 fAD contributing mutations have been described for 

the APP gene (https://www.alzforum.org/mutations/app). The methods by which APP mutations 

contribute to fAD will be discussed in more detail later. Linkage analysis identified that the two 

related genes known as PSEN1 and PSEN2 are also associated with fAD [65]. Mutations in PSEN1 

are the major contributor to fAD, with 300+ fAD mutations in this gene currently described. There 

are approximately 45 fAD-causing mutations in the gene encoding PSEN2 

(https://www.alzforum.org/mutations).  

Most fAD causing mutations are found in the PSEN1 gene. PSEN1 mutations are spread 

throughout the open reading frame of the gene but are more concentrated in sequences coding for 

trans-membrane (TM) domains 1-6 [66]. Both in vitro and in vivo studies have shown that PSEN 

mutations increase Aβ-42 or decrease Aβ-40, which leads to an altered Aβ-42/Aβ-40 ratio [67-

69]. However, studies using cell culture systems, while confirming an increase in Aβ42/Aβ40, 

showed that this was due to a decrease in Aβ-40 peptide levels [70]. Furthermore, Cacquevel et al 

(2012) confirmed that fAD-linked pathogenic mutations in PSEN1 result in a loss of γ-secretase 

activity that reduces Aβ-40 levels, thereby increasing the Aβ-42/Aβ-40 ratio [71]. Another study 

showed that the cerebral spinal fluid (CSF) of PSEN1 mutation carriers had much lower levels of 



21 
 

Aβ-42 than sporadic early onset AD patients [72]. These observations and others suggest that 

PSEN1 mutations can result in the observed altered ratio of Aβ peptides in a wide variety of ways. 

One question that remains is what the increased Aβ-42/Aβ-40 ratio observed for these PSEN1 

mutations mean in the context of AD development. Interestingly, Sun et al (2016) used an in vitro 

method to measure the production of Aβ-40 and Aβ-42 peptides from γ-secretase variants, where 

each variant carried 1 of 138 individual PSEN1 AD mutations [69]. Their study aimed to address 

the question of whether the Aβ-42/Aβ-40 ratio resulting from these different PSEN1 mutations, 

correlated with the mean age of onset of AD observed for each mutation. While they observed no 

such correlation, they also observed that some of the PSEN1 mutations increased γ-secretase 

activity rather than decreasing it (as had been observed in the studies above), further complicating 

the question of the role of PSEN1 mutations in AD [69]. 

 

Genes implicated in Late Onset Alzheimer’s Disease 

The gene with the strongest confirmed association to LOAD is apolipoprotein E (APOE). The 

polymorphic APOE gene has three allelic variants; ε2, ε3 and ε4. These isoforms are defined by 

variations in the amino acid residues at two positions in the 299 amino acid residue APOE protein, 

(112 and 158) that can alter its structure; ε2 allele (112 Cys, 158 Cys), ε3 allele (112 Cys, 158 Arg) 

and ε4 allele (112 Arg, 158 Arg) [reviewed in 73]. While the ε4 allele contributes increased 

susceptibility to AD, it is not necessary nor sufficient to cause this disease [74]. There is, however, 

a gene dosage effect associated with ε4. Carriers who are homozygous for the ε4 allele develop 

AD earlier than those who are heterozygous at this locus and may also have a greater burden of 

Amyloid [75]. Interestingly, while the ε4 allele seems to promote AD pathology, the ε2 allele is 

thought to be neuroprotective [76].  
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Regarding APOE’s role in AD risk there are several observations to consider. Firstly, APOE has 

been described to have a direct interaction with Aβ protein in vitro [77]. Furthermore, stimulation 

of APP endocytosis and metabolism by the ε4 allele, both in vitro and in vivo, can potentially 

enhance Aβ production [78, 79] and APOE can also potentially modulate Aβ toxicity [80]. Finally, 

there is strong evidence suggesting that extracellular clearance of in Aβ the brain is regulated by 

APOE [81] and that the ε4 allele has a reduced ability to clear aggregated amyloid in plaques [82]. 

 

LOAD risk factors identified during the GWAS era 

GWAS studies have been successfully used in the past to identify risk factors associated with 

complex disorders such as diabetes and Macular degeneration [83]. Since 2009, several Genome-

wide association studies (GWAS) have identified more than 40 novel genetic loci associated with 

AD risk, including; CLU, PICALM, and SORL1 [84].  

Early GWAS identified variants of clusterin (CLU) and two polymorphisms in 

Phosphatidylinositol binding clathrin assembly protein (PICALM) associated with LOAD [85]. 

CLU is expressed in cerebrospinal fluid, amyloid plaques and is up regulated in the brains of AD 

affected patients [86]. Interaction of CLU with soluble Aβ has been implicated by studies in guinea 

pig, which suggest the complexes formed are able to cross the blood brain barrier [87]. The 

function of CLU binding to Aβ and chaperoning it across the blood brain barrier may be to prevent 

formation of Aβ oligomers and fibrils [83]. Furthermore, there is a potential role for CLU in 

protecting cells against apoptosis and oxidative stress [83]. PICALM is expressed ubiquitously in 

all tissue types but most prominently in neurons [85]. PICALM has also been implicated in 

endocytosis of APP and generation of Aβ and increased cleavage and aggregation of this peptide 
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may also result from underexpression of PICALM [88]. Recently, evidence from in vitro and in 

vivo studies has implicated PICALM in Aβ transcytosis and clearance at the BBB [89]. 

Other potential AD susceptibility genes identified by GWAS analyses can be found on the 

“AlzGene” database (http://www.alzgene.org) [90]. These genes have a range of roles in AD 

neuropathology progression through regulation of Aβ. Other roles related to AD pathology include 

suppression of Tau phosphorylation and NFT formation, involvement in lipid metabolism, 

impaired inflammation and other cellular pathways [83]. Other AD risk genes, such as TREM2, 

have also been identified by both next generation sequencing (NGS) and the Alzheimer’s disease 

sequencing project (ADSP) [84]. 

 

The SORL1 gene potentially associates with both forms of AD 

In the preceding sections we discussed genes known to associate specifically with either fAD or 

LOAD, however, SORL1 is associated with both forms of AD. SORL1 was first identified to have 

an association with AD through microarray screening of AD patient lymphoblasts [91]. Since then 

it has been implicated in both LOAD through GWAS analysis [92, 93] and fAD through exome 

sequencing [94]) and a candidate gene approach [95]. Rare missense variants of SORL1 have now 

been identified that co-segregate with autosomal dominantly inherited AD [96]. Interestingly, 

these rare variants SORL1 are also often observed to co-occur with an APOE ε4 homozygous 

genotype, suggesting that, in these families, the cause of AD might be oligogenic [96].  

SORL1 is thought to act as an AD risk factor through trafficking and processing of APP [97]. 

Studies of mutant SORL1 variants demonstrated its ability to bind and traffic APP in two ways 

that potentially impair Aβ production. One of SORL1’s normal functions is to retrogradely sort 
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APP into the retromer recycling pathway, shuttling it from endosomes to the trans-Golgi network 

(TGN) [98]. Consequently, overexpressing SORL1 has been confirmed to decrease Aβ production 

in cell lines [95]. Conversely, suppression of SORL1 increased the levels of Aβ with subsequent 

increase in senile plaques in AD mouse models [99]. This suggests a second role for SORL1 in 

moving APP anterogradely into the endosome, which is where APP is processed to release Aβ. 

From there SORL1 has also been shown to direct Aβ to lysosomes to be degraded, thereby 

potentially protecting the brain by reducing Aβ levels [97, 100]. Another possible explanation for 

Aβ accumulation in response to SORL1 suppression might be that SORL1 competes with APP as 

a substrate for γ-secretase. Bohm et al (2006) previously demonstrated that SORL1 is also a 

substrate of γ-secretase, therefore it’s possible that a reduction of SORL1 levels in the brain would 

lead to increased processing of APP, consequently increasing Aβ [101] 

 

The Amyloid cascade hypothesis is the prevailing hypothesis for AD 

A complete understanding of the etiology of AD continues to prove elusive. The most commonly 

accepted hypothesis for the development of AD pathology is the ‘Amyloid Cascade’, originally 

described by Hardy and Higgins in 1992 [102]. This hypothesis suggests that missense mutations 

in APP, PSEN1 or PSEN2 trigger Aβ plaque and neurofibrillary tangle formation, which eventually 

leads to neuronal cell death and dementia [102, 103]. The key factor in this hypothesis is the 

production of the Aβ peptide. Depending on the positions of cleavage by multiple enzymes 

associated with the processing of APP, Aβ peptides of between 39-42 amino acid residues in length 

can be generated. Soluble Aβ-40 peptide is the major species present in normal brain. The less 

soluble Aβ-42 isoform of the Aβ peptide is thought to be the most prone to aggregation in the 

brain. Aβ-42 has been implicated as the major component of senile/neuritic plaques which are 
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deposited in brain parenchyma. As previously mentioned, these plaques are considered to be a 

histological hallmark of AD [104]. 

 

Figure 1.4. The proteolytic processing of APP. APP can be cleaved by α-, β- and γ-secretases; the cleavage 

sites of these proteases are indicated in the full-length APP shown in the centre of the figure. 

Oligomerisation of Aβ is proposed to make up the senile/neuritic plaques in the brains of AD patients 

(reproduced without permission from [107]). 

 

Processing of APP to form aggregation-prone Aβ-42 peptide occurs in a sequential manner (Figure 

1.4). Firstly, there must be removal of the extracellular domain (ECD) of the protein, termed 

‘shedding’. This is required in order for it to be processed by γ-secretase [9]. There are two 

pathways in which APP can be processed. In the amyloidogenic pathway the APP ECD is shed by 

β-secretase (BACE1) before cleavage by γ-secretase to produce Aβ. In the non-amyloidogenic 
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pathway, shedding is performed by α-secretase (ADAM10 or ADAM17) and, after γ-secretase 

cleavage, produces the p3 peptide instead of Aβ [2, 10, 66]. Shedding initially leaves a membrane 

bound C-terminal fragment. Shedding via α-secretase leaves C83. Shedding via β-secretase leaves 

C99. The C99 fragment then undergoes subsequent cleavage by γ-secretase to release the 

neurotoxic Aβ-42 peptide [105, 106]. Downstream effects of the increased production of Aβ-42 

peptide and its subsequent deposition as diffuse plaques include the activation of microglia and 

astrocytes as discussed above. 

 

Alternative hypotheses for Alzheimer’s disease 

Although the Amyloid cascade hypothesis remains the most popular hypothesis for AD, there are 

many who doubt its veracity. There is a limit to which this hypothesis can accurately explain AD 

progression. Reviews by David Drachman and Jack de la Torre discuss this issue in detail [108, 

109]. Many AD sufferers never develop Aβ plaques and/or NFTs while many non-AD elderly 

individuals do exhibit these histological features. These among other observations call into 

question the ability of the amyloid cascade hypothesis to accurately describe AD pathogenesis. 

There are a great number of alternative hypotheses that attempt to describe the pathogenic nature 

of AD [reviewed in 110, 111]. Here I will discuss in detail a select few that are most relevant to 

this review’s theme. If the reader is interested in other alternative hypotheses not discussed in this 

review, such as; the cholinergic hypothesis, the cell cycle hypothesis, the aluminium hypothesis, 

the inflammatory hypothesis, or the calcium hypothesis, they might be interested in the following 

book chapter [111]. 
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The Presenilin hypothesis 

The presenilin hypothesis (Figure 1.5) posits that the many pathogenic missense mutations in 

PSEN that are distributed throughout the protein result in a loss of protein function, potentially due 

to destabilisation of its overall structure. It is well documented that not all cases of 

neurodegenerative dementias have amyloid pathology as is observed in AD (eg. FTD). There are 

also mouse models that overexpress mutant APP and in which there is overproduction of Aβ 

peptides and subsequent deposition of this peptide but no apparent neurodegeneration [112]. These 

two observations led Shen and Kelleher to challenge the Amyloid cascade hypothesis and present 

their own alternative hypothesis, “the presenilin hypothesis” [113]. As mentioned above, the 

presenilins are involved in the γ-secretase-mediated cleavage of many substrates. There is a 

substantial body of evidence supporting the opinion that mutations in PSEN that are pathogenic 

may cause partial impairment of PSEN function, disturbing both γ-secretase-independent and -

dependent actions. For example, the first study in a vertebrate system to show reduction of PSEN 

activity via pathogenic mutations, examined the effects of six FAD-linked PSEN mutations on 

generation of the Notch intracellular domain (NICD). All six mutations resulted in reduced 

proteolytic release of NICD [114]. PSENs are involved in γ-secretase-independent down-

regulation of the Wnt signalling pathway by interacting with and destabilising β-catenin [115]. 

FAD-linked PSEN mutations have been found to impair this function of PSENs, leading to 

increased β-catenin stability and β-catenin-dependent signalling [116, 117]. 

Shen and Kelleher proposed that loss of PSEN protein function occurs via a dominant negative 

mechanism, whereby mutant PSEN interferes with the function of wildtype PSEN. This is 

supported by the nature and distribution of these mutations [113]. In order to incorporate the 

observation that APP mutations alone are sufficient to cause AD into this “PSEN loss of function” 
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hypothesis, the effects of Aβ peptide on PSEN function must be considered. Shen and Kelleher 

suggest that Aβ-42 overproduction in both PSEN and APP FAD mutations may enhance the PSEN 

impairment observed by way of a “product-based negative feedback mechanism” [113]. As γ-

secretase has such a relaxed specificity for its substrates, longer forms of Aβ (42/43) containing 

potential cleavage sites (that would generate shorter forms), may fill the active site. It is probable 

that these Aβ species would be ineffective substrates for cleavage, as they lack downstream 

residues important for substrate-active site interactions. Due to this they would block the γ-

secretase active site, preventing it from cleaving its other important substrates. 

 

 

 

Figure 1.5. The Presenilin Hypothesis of AD. (Reproduced without permission from [113]). 

 

A combination of PSEN inactivation and increased Aβ result in reduced cAMP-response element 

(CRE)-dependent gene expression and number of synaptic NMDA receptors [113]. Furthermore, 
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expression of both the PSEN1 and PSENEN encoding genes are CRE-dependent [113]. When 

PSEN function in the adult mammalian brain is lost this results in a pathogenic cascade, which 

ultimately triggers widespread and progressive neuronal atrophy and death (aka neurodegeneration 

resembling AD neuropathology) [113].  

 

The vascular hypothesis of AD 

First and foremost, the vascular hypothesis of AD attempts to step away from the amyloid cascade 

hypothesis. This hypothesis postulates that Alzheimer’s is primarily a vascular disorder, and that 

the neurodegeneration observed in the ageing brain is a downstream effect of vascular dysfunction 

and subsequent cerebral hypoperfusion [118]. This hypothesis is supported by the discovery of 

vascular AD risk factors in the elderly, including; diabetes 2, hypertension, heart disease, smoking, 

obesity, atherosclerosis. These risk factors coupled with the ageing process can introduce a mild 

ischemia/hypoxia state that is sustained in the brain [118]. Hypoxia/ischemia refers to a state in 

which there is insufficient blood flow to a tissue and therefore insufficient oxygen supply. The cell 

responds to hypoxia by activating the transcriptional regulator, hypoxia-inducible factor 1-alpha 

(HIF-1α) [119]. HIF-1α has been demonstrated to activate both β-secretase (BACE1) and γ-

secretase (PSEN1), which leads to this increased production of Aβ in the brain and 

cerebrovasculature [120]. Furthermore, hypoxia also stimulates oxidative stress that can produce 

both reactive oxygen species (ROS) and reactive nitrogen species (RNS). Peroxynitrite, one of 

these RNS, promotes nitrotyrosination of PSEN1, consequently shifting production of Aβ to 

favour Aβ-42, thus increasing the Aβ-42/Aβ-40 ratio [reviewed in 121]. 
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1.4 The Amyloid Precursor Protein 

The γ-secretase substrate APP is a highly conserved type 1 transmembrane protein (Figure 1.6) 

encoded by a gene on chromosome 21 [122]. There are orthologues in all mammals that have been 

studied as well as some non-mammals, such as zebrafish and Drosophila. APP is a member of a 

large protein family, along with transmembrane and secreted proteins (APLP’s) [123]. 

 

Figure 1.6. The domain structure of APP family members is conserved across species. The domain 

structure of human (H. sapiens) APP and its homologs in the mouse (M. musculus), zebrafish (D. rerio), 

worm (C. elegans) and fruit fly (D. melanogaster) is shown. The extracellular region contains an E2 

domain, an acidic (Ac) domain, a copper-binding domain (CuBD) and a heparin-binding domain (HBD), 

all of which are conserved across species. A Kunitz protease inhibitor (KPI) domain, which is subject to 

alternative splicing, is also found in APP and APLP2. The intracellular domain shows the highest homology 

and contains the YENPTY motif that is conserved across homologs. The Aβ sequence is only present in APP 

(reproduced without permission from [107]). 
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The structure and heterogeneity of APP 

There are three major APP isoforms (Figure 1.7), which are the result of alternative splicing of 

exons 7 and 8 of the APP gene [124]. Both the 770 and 751 amino acid residue splice variants are 

expressed in non-neuronal and CNS tissues. The 695 residue splice variant is expressed almost 

exclusively in the CNS [123]. APP770 represents the full length protein. APP751 results from 

exclusion of exon 8. APP695 results from exclusion of both exons 7 and 8. Exon 7 encodes a 

Kunitz type serine protease inhibitor (KPI) homologous 56-amino acid domain [125]. Those APP 

isoforms with a KPI domain found in human platelets are involved in the coagulation cascade via 

inhibition of IXa, X and Xia factors [126]. Exon 8 encodes the 19aa OX-2 domain, the function of 

which is largely unknown [127]. Post-translational modifications of APP also contribute to its 

heterogeneity, such modifications include addition on sulfates, phosphates and N- and O-linked 

sugars [reviewed in 128]. 

 

Figure 1.7. Diagram representing three proteins from the APP family and their main domains. APP 

770 contains all domains, APP 751 carries only the KPI domain and APP 695 lacks both the KPI and 

OX2 domains (inspired by [127]). 

 



32 
 

Normal (non-pathogenic) functions of APP 

As mentioned previously, research involving APP has been heavily focussed on its association 

with AD, hence its normal functions are much less well understood. APP is ubiquitously expressed 

and is highly evolutionarily conserved [129]. APP is thought to play roles in neurogenesis, neurite 

outgrowth and guidance, axonal transport and synaptogenesis and morphogenesis [107, 130]. 

Furthermore, the full length APP holoprotein has been proposed to have roles in cell-cell 

interactions [131] and neuronal precursor migration during brain development [132]. The many 

other suggested roles of APP are attributed to its cleavage products. APP has two well described 

processing fates, amyloidogenic and non-amyloidogenic. There are three fragments that can be 

generated by non-amyloidogenic processing of APP. Initial cleavage by α-secretase generates the 

soluble sAPPα fragment and a membrane bound C-terminal fragment (CTF). This CTF then 

undergoes cleavage by γ-secretase to release the p3 peptide and the APP intracellular domain 

(AICD) [2]. Each of these fragments have suggested roles in the brain. 

 

sAPPα is both neurotrophic and neuroprotective 

sAPPα is both neurotrophic and neuroprotective [129]. sAPPα carries a cysteine-rich domain 

resembling that of other growth factor domains, which suggests a function for sAPPα as a growth 

factor receptor ligand [107, 133]. Furthermore, sAPPα has more recently been found to inhibit 

collapse of the growth cone [130]. Early studies demonstrated stimulation of neural stem cells 

(NSCs) by sAPPα in rat [107]. Others found that a reduction of NSC proliferation in the brains of 

adult mice could be rescued by infusion of sAPPα [134]. Supplementing this was a study that 

showed inhibition of α-secretase decreased NSC proliferation in vitro, which was rescued by 
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adding sAPPα to the culture medium [135]. This same study found that sAPPα regulates 

proliferation of not only NSCs but also mesenchymal stem cells (MSCs) and human decidua 

parietalis placenta stem cells (hdpPSCs) [135]. Combined evidence suggests that sAPPα is a 

necessary proliferation factor for non-neural and neural adult stem cells. Findings of Hartl et al 

also support a role of sAPPα in regulating CDK5 signalling [136]. sAPPα was able to reduce the 

expression and activity of CDK5, which is a known inducer of neurodegeneration. Interestingly, 

SORL1 is a known sAPPα receptor. Hartl et al demonstrated that, in SORL1 deficient neurons, 

sAPPα was no longer able to regulate CDK5 [136]. This combined evidence suggests that sAPPα 

functions as a neuroprotective factor. 

 

APP has also been shown to be neuroprotective in the immediate period following traumatic brain 

injury (TBI) [137]. The sAPPα fragment of the APP695 isoform has four domains. One of these 

domains, D1, spans residues APP96-110 and has been shown to be involved in recovery from TBI 

[138]. The D1 domain is a growth factor like domain that contains heparin binding sites (HSBs). 

These sites in APP96-110 confer ability to bind heparin sulphate proteoglycans (HSPGs). Binding 

of HSBs to HSPGs promotes neurite outgrowth, a neurotrophic property. Corrigan et al (2014) 

demonstrated that the neuroprotective activity of APP96-110 is exerted via its heparin binding 

properties [138]. 

 

The APP AICD is involved in nuclear signalling 

Aside from a proposed role of the AICD in AD neurodegeneration this fragment is thought to play 

a role in nuclear signalling. Von-Rotz et al (2004) identified transactivation activity for AICD 

using a yeast GAL4 transcription factor fused to both APP and AICD independently [139]. This 
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was dependent on Fe65, an APP-adaptor protein [140] and the Fe65-binding nuclear histone 

acetylase, Tip60 [7]. It has been shown that Fe65 can stabilise AICD, which localises to the nucleus 

with Fe65 [141].  

Fe65 contains a WW domain along with two phosphotyrosine interaction domains (PID) [142]. 

Only PID2 in Fe65 is involved in binding APP, leaving PID1 and the WW domain free for other 

binding partners [142]. AICD can also be bound by the XII protein though its PID [142]. XII has 

been shown to regulate APP by slowing cellular APP processing and reducing secretion of Aβ-40 

and Aβ-42 [143] by preventing translocation of APP into β- and γ-secretase-rich lipid rafts [144].  

Fe65 and XII may compete for binding, as they both bind to the same motif of AICD. Many lines 

of evidence suggest that it is important for APP regulation (and possibly function) that there is a 

functional balance between Fe65 and XII [142]. A third APP binding protein, mDAB1, also binds 

to the same region as Fe65 and XII. Fe65 and mDAB1 interact with mammalian Ena (mEna) [145], 

which is found in areas of actin remodelling. mEna’s interaction with APP through its binding 

proteins forms a potential molecular link between APP and the cytoskeleton [146]. This link to 

mEna may also explain the proposed functions of APP in cell adhesion, growth cone outgrowth 

and axon guidance [146]. The interaction with mEna has been implicated in a role for AICD 

signalling, in synaptic plasticity and memory [147]. 

 

The non-amyloidogenic APP pathway product p3 

There is little known of the normal functional role of the non-amyloidogenic APP pathway product 

p3. It has, however, recently been demonstrated by one group to be neuroprotective [148]. Han et 

al compared the proteolytic products of APP and phenotypes between two mouse models, BACE1-
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deficient and PSENs conditional double knockout (cDKO). Their findings suggest that p3 may be 

a neurotrophic factor deficient in cDKO mice and may play a neuroprotective role [148]. 

 

APP is also processed by lesser known secretases 

Although most research into APP proteolysis focuses on the well-established processing by α-, β- 

and γ-secretases (and on the fragments generated by these cleavages), several other secretases have 

been discovered that process APP [reviewed in 149]. Aparagine endopeptidase or δ-secretase 

cleaves APP within its ectodomain at two positions, N373-E374 and N585-I586, to produce three 

different fragments that can then be further processed by β- and γ-secretases (Figure 1.8). Of the 

three possible fragments sAPP1-373 alone was observed to be toxic to primary cultured neurons. 

Interestingly, when knocking out AED in AD mouse models, a reduced amount of Aβ was 

deposited along with a reduction of other AD features [reviewed in 149]. 

Another lesser-known APP processing secretase is the matrix metalloproteinase MT5-MMP aka 

η-secretase. η-secretase cleaves APP between position N504-M505, resulting in a ~80–95 kDa 

soluble fragment and a membrane bound CTFη. This CTFη fragment is further processed by either 

α- or β-secretase to release two additional fragments, termed Aη-α and Aη-β. These two fragments 

have been identified in mouse brain and human CSF at levels 5 times that of Aβ. Furthermore, 

knockout of MT5-MMP in AD mouse models reduces Aβ deposition within the brain [reviewed 

in 149]. Discovery of these additional secretase activities, along with our emerging understanding 

of other APP fragments (discussed above), further highlights the need for a greater understanding 

of the complex processing of APP. 
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Figure 1.8. APP proteolysis by three distinct proteases. A) both amyloidogenic and non-amyloidogenic γ-

secretase processing of APP, B) δ-secretase processing of APP, and C) η-secretase processing of APP. 

Each of the fragments generated by these cleavage processes are presented in the right-hand section of the 

figure (reproduced without permission from [149]). 

 

 

Mutations in the APP gene contribute to fAD 

APP has a proposed role in AD through its cleavage to form the Aβ peptide. Missense mutations 

in the APP gene can lead to dominantly inherited fAD. Currently 59 mutations are known and are 
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listed on Alzforum (https://www.alzforum.org/mutations/app). These mutations alter amino acid 

residues predominantly clustered around the Aβ peptide region of APP and are thought to cause 

approximately 15% of all cases of fAD. Furthermore, mutations in the APP gene are generally 

associated with an observed increase in the total levels of both Aβ-40 and Aβ-42, as well as an 

increase in the Aβ-42/Aβ-40 ratio. These factors lead to increased accumulation of the insoluble 

form of the Aβ peptide and, as a result, increased aggregation and formation of neurotoxic Aβ 

protofibrils. Generally, APP mutations are known to enhance AD pathology and cause a very early 

age of AD onset. In the next few sections we will discuss in detail mutations that are relevant to 

this thesis. 

 

 The Austrian mutation 

One mutation of APP with an onset age as young as 36 years, is the “Austrian” mutation T714I. 

Kumar-Singh et al (2000) originally described an Austrian family with an autosomal dominant 

early-onset AD inheritance pattern [150]. The mutation exists in exon 17 of APP (T714I, according 

to APP770 isoform numbering) at the site of Aβ-42 cleavage. Analysis of brain sections of the 

proband revealed a huge load of non-neuritic/diffuse cotton-wool plaques (like patients with 

PSEN1 Δ9 causing mutations that present with both AD and spastic paraparesis [151]), with N-

truncated Aβ-42 composition [150]. Accumulation of hyperphosphorylated tau was also observed 

in neurites and there was a close association between blood vessels and fibrillar amyloid deposits 

[150]. Patients with this mutation presented with an early age of onset (approximately 36 years), 

rapid disease progression and early death (approximately 42 years), like PSEN1 AD mutations. 

Experiments found that Hek293T cells transiently transfected with T714I APP cDNA showed 

increased Aβ42 (3.5 fold) and decreased Aβ40 (68%) leading to a (10.8 fold) increase in the overall 
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ratio compared to wild type. Patient plasma had a 2.5 fold increase in ratio compared to the 

unaffected father and 1.7 fold compared to controls [150]. 

 

The Leuven mutation 

The “Leuven” APP mutation was discovered in a Belgian patient presenting with early onset AD. 

This mutation (E682K), within exon 16 of the APP transcript, affects the alternative BACE1 

cleavage site, β’-secretase [152]. BACE1 cleaves at both the β-secretase (Met671-Asp672) and β’-

secretase (Tyr681-Glu682) sites in human APP [153], the latter of which is much less well-

characterised. Cleavage at the β’-secretase site produces a C89 fragment which, when processed 

by the subsequent γ-secretase steps, generates truncated Aβ species [152]. Zhou et al (2011) found 

that the Aβ42/40 ratio was significantly increased in both mouse primary neurons and CHO cells 

harbouring this mutation [152]. Also, overall levels of both Aβ40 and Aβ42 were increased 2-3 

fold. The E682K mutation prevents generation of Aβ40/Aβ42 species from the β’ site, instead 

enhancing generation of these species from the β site [152]. Previous studies have indicated that 

low BACE1 levels result in an increase in cleavage at the β-site, whereas, at high BACE1 levels, 

cleavage at the β’-site becomes more predominant [154, 155]. Supplementing this is the finding 

that BACE1 has a much higher enzymatic efficiency towards peptides containing the β site than 

the β’ site [156]. It is interesting to note that cleavage of endogenous APP at the β’ site in rodents 

does not result in spontaneous development of amyloid plaques [152]. This may suggest that APP 

processing at the β’ site may be important for normal APP metabolism [152]. Furthermore, these 

data suggest that processing of the β’ site is anti-amyloidogenic, impeding amyloidogenic β site 

cleavage of APP. Processing of APP by BACE1 is disrupted when the β’ cleavage site is blocked, 

which leads to increased generation of full length Aβ [152]. 
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The Arctic mutation 

The “Arctic” Alzheimer mutation, E693G, affects exon 17 of the APP open reading frame. 

Nilsberth et al (2001) found a decrease of 22-33% in the Aβ42/Aβ40 ratio in HEK293 cells 

transiently transfected with APP carrying the Arctic mutation [157]. In an Arctic mutation mouse 

model, enhanced accumulation of Aβ was observed inside neurons, strongly facilitating 

extracellular amyloid plaque deposition with age progression. Arctic Aβ peptides were observed 

to more easily form soluble protofibrils in vitro, leading to enhanced Aβ protofibril formation 

[158]. Experiments in HEK293 cells assessing the effects of the Arctic mutation on α-secretase 

cleavage revealed a reduction of APP abundance at the cell surface [157]. α-secretase cleavage is 

believed to occur at the cell surface but also in the trans-Golgi network [159, 160]. Hence, this 

mutation probably results in an inability of α-secretase to cleave APP, rather than representing a 

reduction in the enzymatic efficiency of APP processing by α-secretase. Due to reduced levels of 

fragments from α-secretase, there is a shift towards β-secretase cleavage, resulting in increased Aβ 

production [161]. β-secretase (BACE1) cleavage is thought to occur in acidified vesicles, primarily 

in the trans-Golgi network and in endosomal pathways [162]. 

 

1.5 Animal models of AD and related genes 

The use of model organisms in experimental biology is an immensely informative research 

strategy. Model organisms provide effective in vivo systems in which the cellular biology involved 

in many complex diseases can be investigated. This is opposed to in vitro studies that are limited 

in their reproducibility of complex cellular system environments. In the following sections we will 

review the use of model animals specifically for AD research. 



40 
 

Invertebrate models of AD 

Drosophila and C.elegans are well established model systems that have also been employed as 

tools for investigating AD neuropathology. Both model systems have orthologues of the presenilin 

gene [163]. Drosophila and C.elegans also have an APP-like protein (APPL) which has conserved 

function with vertebrate APP family members but lacks the Aβ domain [164]. 

As mentioned earlier C.elegans was instrumental in the identification of two of the γ-secretase 

components, APH-1 and PSENEN. C.elegans also contains three human presenilin orthologues, 

sel-12, hop-1 and spe-4 [165-167]. Human PSEN1 and PSEN2 are able to substitute for SEL-12 

activity in C.elegans, suggesting SEL-12 protein has complete presenilin function [166]. As 

C.elegans APPL does not have an Aβ region, Link et al developed a transgenic model that 

expresses human Aβ (hAβ) in muscle cells of C.elegans [168]. Larvae of the hAβ transgenics 

presented with a muscle paralysis phenotype, which is likely due to increased toxicity in muscle 

cells [168]. Although Aβ expression is limited to muscle cells in this model, it can still be used to 

establish a link between Aβ expression and toxicity. Another study, using transgenic C.elegans 

lines, found that substituting Leu at position 17 for Pro and Met at positon 35 for Cys of Aβ resulted 

in no amyloid deposition, suggesting the importance of these single residues in the formation of 

amyloid [169]. C.elegans have also been used to confirm that the oxidative stress induced by Aβ 

(through generation of reactive oxygen species (ROS)) is related to Aβ toxicity [170].  

Drosophila possess APPL (a member of the large family that includes APP and the APLP’s (Figure 

1.6)) and orthologues for all the major γ-secretase components [171]. Larval brains of transgenic 

Drosophila, expressing either wildtype (WT) or mutant human APP (hAPP), showed increased 

cell death [172]. Both Aβ and AICD of APP were required to induce this toxicity [172]. Crowther 

et al applied a more direct approach to look at Aβ-42 toxicity using Drosophila [173]. They found 
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that Aβ-42 expressed neuronally resulted in a reduced lifespan, locomotion defects and 

neurotoxicity [173]. Finelli et al generated Drosophila lines that express Aβ peptides. 

Overexpression of Aβ-40 and Aβ-42 was induced in neuronal cells of these lines [174]. Using 

similar transgenic Drosophila lines, Iijima et al, demonstrated that age-dependent learning 

deficiency, diffuse amyloid deposits and neurodegeneration were caused by Aβ-42 expression 

[175]. Similar learning deficits, without amyloid aggregation and neurodegeneration, were caused 

by Aβ-40 induction [175]. Furthermore, when PSEN mutations were introduced into Drosophila 

PSEN, the differences in activity in Drosophila of the mutant presenilins correlated with the age 

of onset of AD in humans [176]. Drosophila are also useful for screening potential AD drugs, such 

as γ-secretase inhibitors. In particular, the binding site of the γ-secretase inhibitor DAPT is 

conserved in Drosophila [177]. There have been numerous other studies utilising Drosophila to 

investigate the effects of Aβ in the context of AD. For a more comprehensive review of this topic 

please see the following book chapter [178].  

 

Mouse models of AD 

The mouse is the most commonly used animal model for the research into human 

neurodegenerative disease. Being a mammal, the mouse is more closely related to humans than 

invertebrate models. There are many transgenic mice that have been developed to model AD-

related phenotypes [179]. Transgenic mice that express hAPP are some of the oldest and most 

widely used models. Transgenic hAPP mouse lines generally present with amyloid pathology and 

deficiency in memory [179]. These models of AD are complicated by the many factors that must 

be considered when using APP. One example of this is that hAPP lines can have different 

promoters to drive expression. There also are many hAPP isoforms, which further complicates 
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comparative analysis [179]. The different hAPP transgenic lines also express different AD 

associated mutations. A few lines have mutations that model those at the γ-secretase site. However, 

a majority of the mouse lines currently used express the Swedish double mutation 

(K670N/M671L) which exists at the β-secretase cleavage site [179]. Other lines either combine a 

γ-secretase cleavage site mutation with the Swedish mutation or add a mutation within the Aβ 

sequence (such as the E693G Arctic mutation discussed earlier). 

Mouse models based on the FAD PSEN mutations have also been used for AD research. PSEN 

mutant transgenic mice show an increase in Aβ-42 levels, while Aβ-40 is unaffected [179]. 

However, these mice do not develop cognitive defects or AD pathology. This is probably due to 

the Aβ region in mouse APP (mAPP) being different to that of hAPP. Cleavage of mouse Aβ gives 

a shorter product than human Aβ and mouse Aβ peptides are much less efficient at aggregation 

[179]. It appears that development of AD phenotypes in mice requires human Aβ expression [179]. 

To test this, PSEN mutant mice were crossed to mice with either transgenic hAPP or mAPP [179]. 

When crossed to a mouse line overexpressing mAPP offspring have no AD pathology or cognitive 

deficits. When crossed to a hAPP transgenic mouse line offspring have extensive plaque deposition 

and behavioural deficits [179]. The hAPP/PSEN1 lines that are more commonly used today are 

generated via co-injection of PSEN and hAPP transgenes. A line containing the Swedish mutation 

and PSEN1 harbouring the ΔE9 mutation (APPswe/PS1ΔE9 mice) develops behavioural deficits 

and amyloid plaques at approximately 6-7 months of age. The 5XFAD line combines multiple 

FAD mutations, 2 in PSEN1 and 3 in APP. These mice express Aβ-42 at high levels, develop 

amyloid plaques and cognitive deficits at around 4 months. 5XFAD mice also develop neuron loss, 

which most other hAPP/PSEN1 and hAPP models do not [179]. Contrary to the mouse models 

overexpressing hAPP described above, Saito et al developed simple models that overproduce Aβ-
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42 without overexpressing hAPP [180]. One of these mouse lines, carrying a combination of the 

Arctic, Swedish and Beyreuther/Iberian mutations, displayed aggressive Aβ amyloidosis in an 

age-dependent manner [180]. The amyloid deposition pattern of these mice was consistent with 

human Arctic mutation carrier pathology. These mice should provide an interesting tool for 

investigating select features of AD biology. 

For a more extensive review of AD mouse models please see the following reference [178]. It is 

also worth mentioning here that, while transgenic mouse models have been useful in investigating 

certain aspects of the disease, the transcriptomic profiles of these mouse models are not consistent 

with those of human AD [181]. This observation suggests that these transgenic mouse models are 

not necessarily the best way to model AD moving forward. 

 

Zebrafish as a model for AD 

Danio rerio, commonly known as Zebrafish, are a useful model for the study of genetic 

diseases/conditions as they contain orthologues of many human genes. Zebrafish embryos can be 

readily manipulated, allowing for knockdown of gene expression with morpholino 

oligonucleotides (MO) or overexpression of genes by injection of sense RNA [182]. Zebrafish are 

also genetically malleable, allowing for more precise genome manipulations by employing 

genome engineering technologies, which will be discussed in more detail in below. Furthermore, 

the zebrafish genome has been sequenced completely, which makes it very accessible for genetic 

screens. In addition to this, short generation times and large numbers of offspring enable 

significantly larger screens over time frames much shorter than could be accomplished using 

rodent models. Zebrafish provide an additional benefit over mice due to low maintenance costs, as 
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well as the potential to visualise developmental processes through their transparent embryos. Most 

importantly, as a vertebrate, they provide many of the benefits of invertebrate models such as C. 

elegans (worm) and D. melanogaster (fruit fly) while maintaining much greater homology to 

humans. 

Zebrafish contain orthologues of many of the human genes implicated in AD pathogenesis. 

Orthologues of Human PSEN1 and PSEN2 orthologues identified in zebrafish are psen1 [183] and 

psen2 [184] respectively. An orthologue of human SORL1 also exists in zebrafish, sorl1 [185]. 

Zebrafish form a part of the Teleost infraclass of bony fishes and as such their genomes contain 

many duplicated genes [186]. The human APP gene has two co-orthologues in zebrafish, appa and 

appb [187]. Zebrafish appa is more closely related to longer isoforms of APP (770 and 752), while 

appb is closer to APP695 [187]. Zebrafish Appa and Appb have approximately 70% identity to 

human APP695 at the amino acid level, with 80% identity to the Aβ region and 95% identity within 

the transmembrane domain [187]. Orthologues of the other key components of γ-secretase also 

exist in the zebrafish genome; PSENEN (psenen) [13], NCTN (ncstn) [188, 189] and APH1b 

(aph1b) [16]. β-secretase orthologues have also been found in zebrafish, bace1 [190] and bace2 

[191].  

Zebrafish have been used extensively as a model for research into fAD and other 

neurodegenerative diseases [178, 192]. The two PSEN gene orthologues in zebrafish are expressed 

ubiquitously during embryo development [183, 184]. The residues that give PSEN1 catalytic 

function are also conserved in zebrafish [193]. Studies conducted in vitro demonstrated that psen1 

is able to functionally replace PSEN1 and produces Aβ-42 from fAD Swedish mutant APP in an 

efficient manner [183]. A study in which a psen1 translation-blocking MO was injected into 

fertilised embryos, revealed a reduction in the Notch target gene hairy-related 1 (her1). This 
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indicated that loss of psen1 caused a reduction of Notch signalling [193]. Hence zebrafish psen1 

shows conserved function with human PSEN1. Having only recently been identified as a genetic 

risk factor for fAD, sorl1 has not been as extensively investigated using zebrafish. However, Lee 

et al (2017) found that zebrafish Sorl1 protein is highly conserved with human SORL1 [185]. They 

also placed sorl1 expression in neural tissue in 72 hours post fertilisation (hpf) zebrafish [185]. 

Zebrafish orthologues of the other γ-secretase components have not been thoroughly analysed. 

However, Campbell et al (2006) demonstrated that blocking translation of both psenen and aph1b 

in zebrafish produced loss of Notch signalling phenotypes. Blockage of psenen also destabilised 

Psen1 protein and increased apoptotic induction [194]. Furthermore, Lim et al (2015) observed 

ncstn in the developing embryo and found it to be expressed most highly in ventricular cells of the 

developing brain at 24hpf [189]. 

Zebrafish co-orthologues of APP, appa and appb, are both widely expressed in the developing 

embryo from the mid-gastrulation stage [187]. 24 hour old embryos express both genes in the 

developing forebrain and elsewhere, appb alone is expressed in the spinal cord [187]. The function 

of Appa and Appb proteins have also been investigated using translation-blocking MOs [195]. 

Inhibition of Appb conferred a defect in convergent extension movements and reduced body 

length. This could be rescued by injection of mRNA encoding human APP into Appb deficient 

embryos [195]. Defective neural development including defective axonal outgrowth and synapse 

formation have also been demonstrated by loss of Appb activity [196]. Such studies as described 

above demonstrate the usefulness of zebrafish embryos in analysing different fAD genes.  

Finally, while both brain-derived neurotrophic factor (BDNF) and TrkB have been analysed using 

zebrafish [197], studies investigating p75NTR in the zebrafish are limited to a handful of papers 

where it has been utilised to investigate Nogo/Nogo receptor complex signalling [198, 199]. We 
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could find no studies to suggest that zebrafish NRH1 has been investigated previously using this 

animal model. 

Our laboratory is the leading group using zebrafish to model AD. We have previously investigated 

extensively the roles of the zebrafish orthologues of PSEN1 and PSEN2 in various biological 

processes. The laboratory’s current goal is to generate a catalogue of fAD-like and non-fAD 

mutations in the zebrafish psen1, psen2, appa, appb and sorl1 genes for transcriptomic analyses 

in the hopes of identifying a molecular “signature” of AD. Thus far, mutations have been generated 

in psen1, psen2 and sorl1 (published [200-202] and unpublished) and some early analyses have 

revealed interesting effects on the hypoxic response and brain energy production in these model 

fish. In order to contribute to this wider laboratory project, the work presented in this thesis aimed 

to generate both fAD-like and null mutations in zebrafish appa and appb. This was attempted 

through generating mutations in endogenous zebrafish appa and appb genes with genome editing 

technologies, which will be introduced in the following section. 

 

1.6 Techniques for genome engineering in the zebrafish 

As we have just discussed, zebrafish are a useful genetic tool for studying molecular mechanisms 

and disease pathogenesis. Zebrafish embryos are easy to manipulate by injection with a variety of 

genome engineering tools. Morpholinos can be used for antisense gene knockdown [192] or to 

interfere with intron splicing [203] resulting in aberrant protein products. Conversely, direct 

injection of sense mRNA allows for overexpression of a gene of interest. While these two methods 

are successful in interfering with regular expression of a gene, their effects only persist for a short 

time. Targeted induced local lesions in genomes (TILLING) was the first approach for reverse 

genetic engineering in zebrafish that was successful in generating germline mutations in a specific 
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gene [204]. TILLING enabled the recovery of rare genomic mutations that can be analysed 

phenotypically at a later date [204]. Transposons are another useful reverse genetic approach. The 

Tol2 transposon system is used to generate transgenic zebrafish with germline mutations via 

transposition. A cell-type specific enhancer/promoter placed upstream of green fluorescence 

protein (gfp) on a Tol2 construct allows for the insertion of genes that can be visualised by 

expression of GFP in a cell-type specific manner [205]. The GAL4-UAS and Cre/loxP systems 

can be used to generate conditionally expressed transgenic zebrafish lines [204]. Both systems use 

a bipartite approach, in which two separate transgenic lines are generated and must be crossed in 

order to elicit the transgenes event. GAL4 can be driven in a temperature inducible manner using 

the heat shock protein 70 (hsp70) in zebrafish [204]. Research using zebrafish originally applied 

the Cre/LoxP system for the conditional expression of oncogenes. The system also used hsp70 

promoter to induce Cre expression. Additionally, the temporal activity of Cre can be controlled 

through its fusion with a modified estrogen receptor that binds tamoxifen [204]. Early use of 

zebrafish for transgenic analyses was at a disadvantage relative to mice, due to the inability to 

generate targeted mutations. Recently, three techniques for targeted modification of genomes have 

been established. 

 

Zinc finger nucleases (ZFNs) and Transcription activator-like effector nucleases (TALENs) 

ZFNs and TALENs are both comprised of a nonspecific DNA cleavage segment and 

programmable, sequence-specific DNA-binding units [206]. The ZFNs and TALENs cause the 

targeted induction of double-stranded breaks (DSBs) that stimulate cellular DNA repair 

mechanisms such as Non Homologous End Joining (NHEJ) and Homology Directed Repair 

(HDR) [206]. ZFNs and TALENS are useful tools for the generation of targeted mutations. They 
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are both versatile due to the ability to engineer the DNA binding domains, which can be customised 

for the recognition of practically any sequence [206]. 

ZNFs are a chimeric fusion of a Cys2His2 zinc finger array and a Fok1 endonuclease cleavage 

domain [204]. The Cys2His2 array of a zinc finger contributes specificity for the DNA site of 

interest [204]. The target sites of ZFNs are comprised of two zinc finger binding sites separated 

by a 5-7bp spacer sequence, which is recognised by Fok1 for cleavage [206]. A pair of ZFNs is 

required, due to the necessity of Fok1 of dimerise in order to exert its cleavage ability [204, 206]. 

A pair of ZFNs must bind correctly to their target sequence in order to generate a DSB [204]. A 

ZFN normally has 3-6 fingers and each finger recognises 3bp of DNA. When combined, a pair of 

ZFNs can recognise 18-36bp of DNA sequence, which is dependent on the number of fingers. This 

large recognition site length means a ZFN has specificity within 68billion bp of DNA [204, 206]. 

Occasionally introduction of unwanted indels at the cleavage site occurs, due to repair by NHEJ. 

There can also be off target effects. ZFNs are limited by their inability to generate DNA changes 

with high in vivo activity [204]. 

Transcription activator-like effector nucleases (TALENs) have more recently been used as an 

alternative to ZFNs for editing genomes by the induction of DSBs. Like ZFNs, TALENs consist 

of a non-specific FokI endonuclease domain, which is fused to a customisable and site-specific 

DNA-binding transcription activator-like effector (TALE) domain from the plant pathogenic 

bacterial species Xanthomonas [207]. This TALE domain is made up of a sequence of TALE 

repeats that each recognise one specific nucleotide of DNA [208]. Each highly conserved repeat 

is 32-35 amino acids long, with residues 12 and 13 (known as repeat variable di-residues or RVDs) 

enabling the TALEN to specifically bind a single DNA nucleotide [206-208]. Due to the nature of 

TALE proteins, a 5’ T immediately upstream of the binding site is required for function [207, 209]. 
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TALE repeat RVDs have been identified that can recognise each of the four DNA nucleotides. 

These can be assembled in such a way that virtually any DNA sequence that starts with a 5’ T can 

be targeted and bound by TALENs [207]. Similarly to ZFNs, a pair of customised TALENs is 

needed to cleave a target site due to the dimerization requirements of Fok1. An optimal spacer 

length is required between a pair of TALENs so that Fok1 is in the correct position to dimerise 

and facilitate cleavage [208]. Spacer lengths for TALENs can vary between 12-20bp [206]. Hwang 

et al (2014) have found that spacer lengths of 16-18bps are effective in zebrafish [208]. Reyon et 

al suggest that TALENs comprised of 14.5-16.5-repeat arrays are most likely to be effective [210]. 

This length array would recognise 16-18 nucleotides in total (including the 5’ T). 

 

Compared to ZFNs, the method of target recognition and binding of TALENs is much simpler and 

more predictable, making it a good alternative to ZFNs [209]. TALENs have been used previously 

to successfully induce disruption of different zebrafish genes in a targeted manner [207]. However, 

there was only germline transmission for two of the genes [207]. Hwang et al (2014) managed to 

successfully mutate their target sites in zebrafish more than 80% of the time [208]. Somatic cells 

were found to be mutated by TALENs at rates of as high as 76%. Furthermore, they also found 

that TALENs efficiently induced heritable mutations in zebrafish [208]. 

  

Better sequence targeting specificity could be achieved by constructing TALENs that target more 

than 12bp of DNA. However, the highly repetitive nature of TALE repeats makes this practically 

impossible [209]. TALENs and ZFNs function in a similar way in that they both can induce indel 

mutations in the spacer region between binding sites. However, while ZFNs and TALENs can 

cleave DNA with similar efficiency when directed to the same target, TALENs usually have a 
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higher targeting efficiency and fewer off-target effects [209]. A study by Bedell et al (2012) used 

TALENs in conjunction with a short single stranded oligonucleotide donor to precisely insert a 

mutation into the genome of zebrafish [211]. TALENs are simple to design, have robust activity 

and are nearly limitless in their targeting range making them a very attractive platform for genome 

editing [207]. 

 

Clustered regulatory interspersed short palindromic repeats (CRISPRs) 

A recently identified whole genome editing technique has also been adopted for use in the 

zebrafish, mouse, maize, drosophila and many others as an alternative to ZFNs and TALENS. This 

technique makes use of the CRISPR and CRISPR associated (Cas) proteins, which originally 

functioned as a form of protection for bacteria and archaea against invading viruses and plasmids 

[212]. In these organisms the CRISPR system acts as a form of “genetic memory” of the viral 

infection, allowing them to recognise and remove viruses that have attacked in the past [212]. Six 

different CRISPR–Cas types and at least 29 subtypes have now been discovered [213]. The type 

II CRISPR/Cas system is most commonly used for genome editing and consists of 4 cas genes 

originally identified in Streptococcus pyogenes [212]. The most heavily utilised of these, Cas9, is 

commonly employed to cleave the DNA target sequence [214, 215]. 

CRISPR RNA (crRNA) is an array of repeats interspaced by short variable sequences 

(protospacers) (Figure 1.9, 1). In bacteria and archaea, the first stage of the CRISPR process 

involves the acquisition of virus DNA and these “protospacers” represent short segments of DNA 

from the invading virus or plasmid [212]. It is thought that the protospacer adjacent motif (PAM) 

may be involved in protospacer acquisition, which results in PAM flanking the protospacers on 

the 3’ side of this ‘foreign DNA’ within the crRNA in this type II system [212, 216]. PAM is 
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required for Cas9 activity, although the specific mechanism behind this remains unknown [215]. 

Due to the positioning of PAM (3’ of each protospacer) it is possible that it’s function is to help 

Cas9 determine the spacer orientation within the crRNA, providing a “polarity” for Cas9 to 

recognise substrates for cleavage (Figure 1.9, 4) [212]. 

The adapted crRNA that is used for genome editing encodes a single 20bp guide RNA (gRNA) 

sequence to direct Cas9 to a 20bp target site [214]. This gRNA immediately precedes the (type II) 

PAM sequence NGG [217]. Deep sequencing of RNA from the (type II) bacteria S.pyogenes 

crRNA revealed the presence of trans-acting antisense RNA (tracrRNA) [212]. This tracrRNA 

serves two functions in the type II CRISPR system; tracrRNA forms a duplex with pre-crRNA and 

recruits RNAse III an enzyme which processes the tracrRNA/pre-crRNA duplex to form mature 

crRNA (Figure 1.9, 2). tracrRNA also recruits Cas9 to the site of interest allowing for the invading 

virus/plasmid to be cleaved and degraded [215]. In the zebrafish editing system the tracrRNA is 

included with the gRNA in a single transcript which is given the abbreviation “sgRNA” [217]. 

sgRNA is already in the form of a mature crRNA and can direct cas9-mediated cleavage of target 

DNA [217]. 

Cas9 cleavage functions by generating double-stranded breaks (DSBs) (Figure 1.9, 6) [218]. These 

DSBs are repaired by either error prone non-homologous end-joining (NHEJ) resulting in 

insertions or deletions (indels) or, alternatively, homologous recombination (HR) [218]. Repair by 

HR requires co-injection of a single strand oligonucleotide (SSO) as a donor template, which 

encodes the desired mutation [218].  
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Figure 1.9. Summary of the bacterial type II CRISPR system. 1) generation of the pre-crRNA, 2) 

tracrRNA recruits RNase III and Cas9 to process pre-crRNA into crRNA, 3) tracrRNA:Cas9:crRNA 

complexes are formed, 4) tracrRNA, as a part of the crRNA:tracrRNA:Cas9 complex, directs Cas9 to the 

DNA region complementary to the crRNA, only when there is a directly adjacent PAM (3’ of the crRNA 

binding site), 5&6) Induction of a DSB by Cas9. (reproduced without permission from 

https://www.addgene.org/crispr/history/). 

 

Using genome engineering tools to generate mutations of interest  

There are both advantages and disadvantages for the use of CRISPR’s over ZFN’s and TALEN’s 

for genome modifications. One such advantage is that a single customised gRNA is required to 

target a specific sequence, compared to the need to design and assemble two TALENs or ZFNs 

for each site [217]. One disadvantage is that there are additional constraints when designing and 

using CRISPRs. For successful utilisation of the Cas9 to recognise target sequence, a protospacer 
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adjacent motif (PAM) sequence is required 3’ of the gRNA and upstream of the crRNA binding 

region [217]. Also, the use of the T7 promoter to make gRNAs means that GG is required at the 

5’ end of the transcript, which reduces the range of targetable sequences [217]. Taken together 

these constraints would mean that any sequence of the form 5’ GG-N(18)-NGG 3’ is available for 

targeting by CRISPR/Cas9, occurring once in every 128bps of random DNA sequence [217]. 

However, a later study by Hwang et al (2013) found that this targeting range could be expanded 

to once in every 8bps by relaxing the T7 promoter rule [219]. This was accomplished by the 

addition of GG to the 5’ end of the 20nt gRNA sequence that were not complimentary to the 

genomic DNA target sequence [219]. Another common problem with the current system (and 

ZFNs and TALENs) is the occurrence and frequency of possible off target effects, due to binding 

at sites of less than complete homology [220]. Shen et al (2014) looked at the potential for using 

Cas9 nickase rather than endonuclease to reduce the prevalence of these off target effects in vivo 

using mouse embryos [221]. Nickase creates a “nick” in a single strand of the genomic DNA which 

allows it to be corrected by the endogenous base-excision repair pathway [221]. 

Many studies have attested to the usefulness and adaptability of CRISPRs as a genetic tool. 

Genome editing with CRISPR/Cas9 in two separate studies demonstrated that multiplex gene 

knockouts can be performed both simultaneously and highly efficiently in a single step using stem 

cells and mice [222, 223]. In this single step process, co-injection of two sgRNAs is performed 

into a target cell. Both of these studies resulted in biallelic gene conversions or inactivation’s [222, 

223]. Results presented by Wang et al (2013) suggest that injection with a single sgRNA results 

in up to 95% of mice carrying biallelic mutations in the targeted gene, whereas co-injection of two 

different sgRNAs, results in up to 80% of mice carrying biallelic mutations in both target genes 

[222]. Jao et al (2013) showed that mutations could be efficiently transmitted through the germline 
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into the F1 generation of zebrafish [223]. Another study, by Yang et al (2013), also demonstrated 

one step generation of mutants at multiple gene loci using mouse embryos [224]. Hruscha et al 

(2013) adapted the CRISPR protocol to synthesise gRNA without cloning and demonstrated 

efficient mutagenesis, knock-in (KI), and transmission to the germline that was comparable to ZFN 

and TALEN approaches [225]. They also provided evidence that off-target effects were limited, 

and that KI was efficient, particularly when they pre-selected founder fish [225]. 

One interesting utilisation of the CRISPR system in mice demonstrated CRISPR/Cas9-mediated 

correction of Fah mutation in hepatocytes in an adult mouse model of the human disease hereditary 

tyrosinemia (HTI) [226]. Adult FAHmut/mut mice were given hydrodynamic tail vein injections with 

ssDNA oligonucleotide, plus a pX330 vector expressing Cas9 and one of three individually cloned 

sgRNA’s (FAH1-3) targeting the Fah locus. This study demonstrated that CRISPR/Cas9 could 

functionally rescue the Fah deficiency-induced liver damage in mice, demonstrating a potential 

for this system to correct disease genes in vivo in adult mouse liver using a CRISPR-Cas9 system 

[226]. Transient expression of Cas9, sgRNA and a co-injected ssDNA by non-viral hydrodynamic 

injection was sufficient to restore the weight loss of a mouse model of HTI [226]. This study 

demonstrated a previously unrealised potential of the CRISPR system to correct mutant gene 

phenotypes in adult specimens. 

The discovery and application of CRISPR-Cas9 has transformed the field of genome engineering 

and further development of this technology is rapidly progressing. A recent review highlights 

further advances in the technology [213]. Some of these advances that can be applied to genome 

engineering in the zebrafish will be discussed further in subsequent chapters of this thesis. 
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1.7 Conclusion 

γ-secretase is a protease complex that is important for the processing of more than 100 substrates. 

Processing of APP by γ-secretase is thought to be a critical component of AD pathogenesis. 

Although much research has been undertaken to identify the effects of γ-secretase in AD, the 

specific mechanism through which it recognises and selects its substrates remains elusive. The 

similar sequence and structure, but distinct transmembrane cleavage events, of p75NTR and its 

homolog NRH1 may allow us to further investigate this mechanism. Furthermore, 59 mutations in 

APP have been identified that are thought to cause fAD. However, the mechanism through which 

AD develops and progresses remains incompletely understood and there is still no single 

hypothesis that accurately predicts disease susceptibility. The zebrafish is an excellent model for 

us to further investigate the molecular effects of fAD-like mutations, in the hopes of better 

understanding what specific factors inevitably results in AD. 
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Chapter 2 – Developing in vivo assays for investigating p75NTR and NRH1 

transmembrane cleavage events using zebrafish embryos 

2.0 Declaration 

Within this chapter a portion of the results described in 2.2, namely, 1) the tblastn searches 

described in paragraph 1, below subheading Identification of p75NTR and NRH1gene orthologues 

in zebrafish, 2) the mCherry construct designs described in paragraphs 2, 3 and 5, below 

subheading Design of p75NTR and Nrh1 γ-secretase cleavage assay constructs, 3) microinjections 

through to western immunoblots of mCherry constructs described in paragraph 6, below 

subheading Design of p75NTR and Nrh1 γ-secretase cleavage assay constructs, and 4) DAPT 

treatments and western immunoblots described in paragraph 1, below the subheading Investigating 

differential cleavage properties of zebrafish p75NTF and Nrh1 and presented in Figure 2.3, are from 

work that was previously completed and submitted by myself within a thesis for the Honours 

Degree of Bachelor of Science at the University of Adelaide. 

As this chapter has been written with the intention to submit to a journal for publication, it was 

necessary to include the results and analysis of this previously described work to provide a 

complete narrative. 

 

2.1 Introduction 

γ-secretase is a multi-subunit membrane-bound aspartyl protease complex responsible for cleavage 

of over 100 substrates including Amyloid Precursor Protein (APP), Notch and the p75 

neurotrophin receptor (p75NTR) [1]. γ-secretase has been identified as a member of the 

intramembrane cleaving protease family (I-CLiP). I-CLiPs cleave type 1 membrane proteins 
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enzymatically via a process termed regulated intramembrane proteolysis (RIP) [2, 3]. The most 

studied function of γ-secretase is processing of APP. This is due to the seemingly critical role of 

APP in Alzheimer’s disease (AD) etiology. Although numerous publications have discussed the 

perceived role of γ-secretase in AD, the specific nature of substrate selection by this protease is 

still not clearly defined.  

 

γ-secretase substrates are typically derived from large precursor proteins that undergo a 

prerequisite removal of their ectodomain/lumenal domain prior to γ-secretase cleavage [3] Early 

research suggested that the only other prerequisite was that the substrate must be a type 1 

transmembrane protein [4]. Further studies have now shown that additional factors may guide 

substrate selection by γ-secretase. It has previously been suggested that dimerisation of substrates 

and/or the structure of substrate α-helices may regulate γ-secretase activity [5]. γ-secretase 

substrate recognition and cleavage is also much more efficient for ectodomains with fewer than 

~50 remaining amino acid residues [6]. Previous studies have attempted to elucidate Notch and 

APP residues that are required for γ-secretase cleavage [7]. However, a distinct cleavage site for 

γ-secretase within the transmembrane domains of its target proteins has not been defined [2].  

p75NTR, also known as the ‘low-affinity nerve growth factor receptor’ (LNGFR), is one of the 

many substrates of γ-secretase subject to cleavage within its transmembrane domain [8]. p75NTR 

has been implicated in neuronal survival, myelination and neurite outgrowth among other 

pathways during vertebrate nervous system development, through its interactions with 

neurotrophins and Trk receptors [9]. Also, the Aβ peptide can act as a ligand for p75NTR and is 

proposed to play a role in cholinergic neuron loss, implicating this protein in AD [10, 11]. Kanning 

et al (2003) investigated the proteolytic processing of p75NTR, along with what they described as 
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the “neurotrophin receptor homologs” (NRH), NRH1 and NRH2 [8]. Database and EST searches 

have established that these two genes show greater sequence similarity to p75NTR than any other 

homologous genes [8]. Experiments by Kanning et al (2003) confirmed processing of p75NTR by 

α-secretase (ADAM10) and γ-secretase. Western blot analysis of NRH1 and NRH2 indicated that 

these are both cleaved within their transmembrane domains [8]. However, Kanning et al (2003) 

observed that the commonly used inhibitor of γ-secretase activity, DAPT, had no effect on the 

cleavage of NRH1 or NRH2, suggesting that transmembrane cleavage of these proteins is not by 

γ-secretase [8].  

 

The possible lack of sensitivity to γ-secretase inhibitors of the p75NTR homologs NRH1 and NRH2 

may have interesting applications. p75NTR and its homologs share high sequence similarity in their 

transmembrane domain, where γ-secretase cleavage occurs [8] and comparison of the 

transmembrane domains of p75NTR and NRH1 might allow definition of transmembrane domain 

characteristics critical to permit cleavage by γ-secretase. We have developed an in vivo zebrafish 

assay that can be used to investigate the structural differences in the transmembrane domains of 

these two proteins that cause their differential sensitivity to γ-secretase. 

 

2.2 Results and Discussion 

Identification of p75NTR and NRH1gene orthologues in zebrafish 

Of the two NRH genes, NRH1 has coding sequences more similar in length to p75NTR and is the 

only know NRH gene with a putative orthologue in zebrafish. To investigate p75NTR and NRH1 

cleavage in vivo using zebrafish, we previously validated the orthology of these genes [12]. A 

tblastn search performed against the zebrafish genome using the entire putative protein sequence 



69 
 

of human p75NTR, constrained to “RefSeq_RNA”, returned candidate orthologues of the human 

p75NTR gene on zebrafish chromosomes 3, 12 and 16. At the time of the original analysis 

chromosome 12 appeared to hold two almost identical copies of the gene at different loci 

(supplementary file S1, Figure S1) which we suspected was due to a recent duplication event. The 

position of the duplicate appears to have been revised to chromosome 3 in the latest genome build 

(GRCz11) (supplementary file S1, Figure S2). The top tblastn hit, nerve growth factor receptor b 

(ngfrb), on chromosome 12, has the greatest query cover (percentage of the sequence aligned to a 

sequence in GenBank) to human p75NTR (93%) (supplementary file S1, Figure S2), so we 

tentatively named this “zebrafish p75”. A tblastn search performed against the zebrafish genome 

using NRH1 from Xenopus laevis (GenBank accession AF131890.1) returned the computer 

predicted sequence for neurotrophin receptor associated death domain (nradd) on chromosome 

16 (also returned as a best hit in the human p75NTR tblastn search described above) with 100% 

query coverage to Xenopus NRH1. The only other strong zebrafish Nrh1 candidate returned was 

ngfrb, which we had already established most likely represents p75NTR in zebrafish. Therefore, we 

predict that nradd is most likely a Nrh1 orthologous gene in zebrafish.  

 

NRH1 belongs to a subfamily of vertebrate p75NTR-related proteins which also contains NRH2. 

NRH2 exists only in mammals while NRH1 exists only in amphibians, fish and birds [8]. The 

return of the predicted sequence nradd when searching for NRH1 within the zebrafish genome is 

consistent with previous knowledge that NRH2 is also known as NRADD in mouse and rat (mouse 

NCBI Gene ID: 67169, rat NCBI Gene ID: 246143). Therefore, we eliminated nradd as a zebrafish 

p75NTR candidate gene and propose that it is the Nrh1 orthologous gene in zebrafish. 
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To confirm our identification of zebrafish p75NTR and Nrh1 orthologues we next conducted 

phylogenetic analyses using the Geneious software suite [13]. Zebrafish p75NTR and Nrh1 

candidate amino acid sequences along with p75NTR amino acid sequences from Xenopus laevis, 

Gallus gallus (chicken), mouse and human and NRH1 amino acid sequences from Xenopus 

tropicalis, Xenopus laevis and chicken were aligned using the Geneious alignment tool, and trees 

were built using both Bayesian and Maximum likelihood methods. We included the amino acid 

sequences of NRH2 from mouse and human in these analyses as these are the mammalian 

equivalents of NRH1 [8]. Accession numbers for all sequences used can be found in supplementary 

data File S2, Table S1. Branchiostoma floridae (lancelet) was used as an out-group as this was the 

most distant relative to zebrafish that returned a result when conducting tblastn searches using 

human p75NTR and X. laevis NRH1. Interestingly, tblastn searches of the lancelet genome using 

both p75NTR and NRH1 returned the same gene in lancelet (supplementary data File S2, Table S1). 

As the chicken genome contains both p75NTR and NRH1-like sequences, tblastn searches of the 

lancelet genome using both full-length chicken sequences were performed to confirm the 

preliminary findings. These searches returned results identical to those using human p75NTR and 

X. laevis NRH1. This supports that there is only a single p75NTR- and NRH1-like gene in this basal 

chordate and that p75NTR and NRH1 arose from a gene duplication event early in vertebrate 

evolution. A dendrogram modelling the phylogenetic relationships of p75NTR and its homologs 

demonstrated p75NTR proteins clustering together and NRH1 proteins clustering together in 

separate clades (Figure 2.1). This supports that the sequence nradd on chromosome 16 of zebrafish 

is indeed the orthologue of Nrh1. 
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Figure 2.1. Phylogenetic tree of p75NTR and NRH1 proteins. This tree was generated using the Geneious 

software suite to perform Bayesian analysis (MrBayes). Numbers represent the aLRT branch-support 

values. 

 

It was difficult to discern which of the remaining three possible zebrafish p75NTR protein sequences 

was most likely to represent the true p75NTR in zebrafish from the phylogenetic analyses, although 

the sequence that we designated zebrafish p75-like-chr3 appeared to be marginally more similar 

to human p75NTR (Figure 2.1). The sequence we designated zebrafish p75, known as ngfrb in the 

NCBI database, is the only gene with a coding sequence not derived by computer-prediction from 



72 
 

genomic DNA sequence. It was thereby judged to be the most likely to be accurate and was 

selected for construction of an assay. 

 

Design of p75NTR and Nrh1 γ-secretase cleavage assay constructs 

In order to be recognised as a cleavage substrate by γ-secretase, proteins must first undergo 

truncation of the extracellular domain [6]. This preliminary shedding of large extracellular 

domains by α- or β-secretase may be rate-limiting, creating problems for an in vivo assay as the 

rate of cleavage may be dependent on these events rather than γ-secretase itself. To overcome this 

in our assay, we proposed to produce artificially truncated forms of both proteins similar to a 

strategy we had adopted previously for zebrafish APP in another γ-secretase assay [14]. 

 

To truncate p75NTR and Nrh1 to mimic approximately α-secretase-cleaved forms of these proteins, 

we first needed to identify the transmembrane domains of both p75NTR and Nrh1. As the 

transmembrane domains of zebrafish p75NTR and Nrh1 genes had not yet been defined, we had 

previously employed online prediction programs “TMHMM server, v. 2.0” 

(http://www.cbs.dtu.dk/services/TMHMM/) [15], “TMpred Server” (https://embnet.vital-

it.ch/software/TMPRED_form.html) and “DAS” (https://tmdas.bioinfo.se/DAS/index.html, [15]) 

to determine the location of the transmembrane region within each protein (supplementary data 

File S3, Figure S3) [12]. The success of this approach was confirmed by comparing our predicted 

transmembrane domains to the defined transmembrane domain of human p75NTR [5]. It has 

previously been established that γ-secretase cleavage of p75NTR is dependent on shedding of the 

N-terminal extracellular domain by the α-secretase, A DISINTEGRIN AND 

METALLOPROTEINASE DOMAIN 17 (ADAM17). A previous study of p75NTR suggested that 
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this cleavage occurs five amino acids before the N-terminal of the transmembrane [5]. Another 

study found that a large deletion of 15 amino acid residues within the juxtamembrane domain 

(before the N-terminal of the transmembrane) of p75NTR led to substantial decrease in shedding, 

while a third study found that a stub of 15 amino acids N-terminal to the transmembrane domain 

was sufficient for γ-secretase cleavage [17, 18]. We elected to remove most of the extracellular 

domain, leaving only 15 amino acids immediately adjacent the N-terminal end of the membrane. 

The C-terminal intracellular domain was left at its original length as it has not been found to affect 

cleavage [17]. When attempting to visualise cleaved and uncleaved protein fragments on a western 

blot this small 15 residue N-terminal stub may have posed a problem. Post γ-secretase cleavage 

we would be left with a very short N-terminal fragment and a much larger C-terminal fragment, 

which would presumably be difficult to resolve on the same western immunoblot. 

 

To overcome this, previous work in our laboratory fused 3 FLAG tags [19] in tandem to the N-

terminals of both p75NTR and Nrh1 [12]. The efficiency of processing by γ-secretase is not reduced 

unless the number of amino acids in the extracellular domain exceeds 50, so processing and 

cleavage should not be affected by the FLAG tags [6]. Single, silent, point mutations were 

introduced into both the second and third tandem FLAG tag repeats to inhibit recombination in 

bacteria during cloning [20]. The fourth codon in the second repeat was altered from GAT to GAC, 

and the sixth codon in the third from GAC to GAT respectively. The highly active HMM+38 

secretory signal sequence was added N-terminal to the FLAG repeats to ensure insertion of the 

p75NTR and Nrh1 proteins into lipid bilayers [21]. This signal sequence is cleaved off upon reaching 

the target site and is not involved in the metabolism of the final translated protein, hence does not 

alter the mature protein structure [21]. Destabilised green fluorescent protein (dGFP) was included 
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at the C-terminus of p75NTR and Nrh1 to allow for visualisation of expression in vivo and via 

western immunoblot analysis. As these constructs contain a truncated, C-terminal fragment of the 

original p75NTR and Nrh1 proteins we describe them as ssFLAG-p75NTRC201-dGFP and ssFLAG-

Nrh1C191-dGFP respectively.  

 

Injection of transposon-based vector DNA into fertilised zebrafish eggs can give variable results 

in terms of the amount of DNA delivered and the subsequent degree of transposition and transgene 

expression. Therefore, when examining the stability of a protein expressed from an injected 

transgene, it can be useful to have an internal reference standard against which the quantity of the 

protein can be compared. In a previous study assaying γ-secretase activity by monitoring cleavage 

of zebrafish Appa fused to dGFP (also expressed from the Tol2 transgene vector, 

pT2AL200R150G), we co-injected a similar Tol2 vector expressing free GFP, as an internal 

reference standard [14]. However, this strategy might still be somewhat subject to variability as 

the free GFP vector might not transpose into the genome at a constant rate relative to the Appa 

construct.  

 

The viral 2A (v2A) peptide ribosomal-skip mechanism allows for expression of two different 

proteins independently of one another. The skip mechanism occurs within the v2A sequence when 

a peptide bond fails to form between the penultimate (glycine) and final (proline) residue. 

Translation continues despite this failure, and tandem protein products are produced in a 

stoichiometric manner [22]. In order to express truncated p75NTR or Nrh1 simultaneously with 

an internal reference standard from the same expression vector, we previously included a v2a 

sequence at the C-terminal of ssFLAG-p75NTRC201-dGFP and ssFLAG-Nrh1C201-dGFP 



75 
 

followed by coding sequence for the red fluorescence protein, mCherry [12]. We describe these 

Tol2-based expression constructs as pT2ALssFLAG-p75NTFC201-dGFP-v2a-mCherry and 

pT2ALssFLAG-Nrh1C191-dGFP-v2a-mCherry (Figure 2.2, 1). For simplicity, we will henceforth 

refer to them as p75NTFC201-dGFP and Nrh1C191-dGFP respectively. This design enables 

stoichiometric production of p75NTFC201-dGFP or Nrh1C191-dGFP simultaneously with 

mCherry, allowing for normalisation of protein expression between successive batches of injected 

embryos. 

 

Previous work in our laboratory investigating γ-secretase cleavage of both p75NTFC201-dGFP and 

NRH1C191-dGFP, saw each expression vector co-injected with transposase mRNA into single-

cell stage zebrafish embryos [12]. At 24 hours post fertilisation (hpf) embryos displaying GFP 

fluorescence under UV light were selected, their yolks removed, and protein extracted by lysis in 

SDS buffer. Protein lysates were separated by SDS polyacrylamide gel electrophoresis and then 

subjected to western immunoblotting to detect GFP. Uncleaved p75NTFC201-dGFP and 

Nrh1C191-dGFP proteins were visible as bands of ~61kDa and ~57kDa respectively and could be 

assessed by densitometry, while their intra-membrane domain cleavage products could not be 

observed (presumably due to their instability, data not shown). Stripping and probing of the blot 

to detect mCherry followed by densitometry allowed normalisation of the GFP signals to facilitate 

comparison of p75NTFC201-dGFP and Nrh1C191-dGFP stability between samples. 
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Figure 2.2 Overview of all construct designs and assay process. 1) Overview of pT2ALssFLAG-

p75NTFC201-dGFP-v2a-mCherry and pT2ALssFLAG-Nrh1C191-dGFP-v2a-mCherry constructs. 2) 

pT2ALssFLAG-p75NTFC201-dGFP-v2a-GFP and pT2ALssFLAG-Nrh1C191-dGFP-v2a-GFP. 3) 

Overview of pT2ALssFLAG-A2C-dGFP-v2a-GFP. 4) Anticipated assay process. A) the position and 

mechanism of the ribosomal skip is indicated by arrows, B) TMD cleavage of constructs is represented by 

scissors. In all figures ECD = extracellular domain, TMD = transmembrane domain and ICD = 

intracellular domain. 
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Investigating differential cleavage properties of zebrafish p75NTF and Nrh1 

Previous experiments performed by Kanning et al (2003) indicated that both the p75NTR and NRH1 

proteins are cleaved within their transmembrane domains. However, treatment with the known γ-

secretase inhibitor DAPT had no effect on NRH1 cleavage, suggesting that NRH1 is not processed 

by γ-secretase [8]. To test whether p75NTFC201-dGFP and Nrh1C191-dGFP cleavage displayed 

differential sensitivity to inhibition of γ-secretase activity in vivo, batches of injected embryos were 

divided into two groups. Half of a batch injected with either p75NTFC201-dGFP or Nrh1C191-

dGFP was treated with 100μM of the γ-secretase inhibitor DAPT from 4hpf until 24hpf (as was 

previously optimised [14]), while the other half was left untreated. DAPT is a potent γ-secretase 

cleavage inhibitor, hence we expected that treatment with DAPT would result in an accumulation 

of uncleaved substrates of γ-secretase [18]. This was observed on p75NTFC201-dGFP-injected 

embryos treated with DAPT (Figure 2.3, A), suggesting that zebrafish p75NTR is, indeed, processed 

by γ-secretase. However, when this was normalised to mCherry across three replicates, the p-value 

(0.1697) of this observed increase did not support the likelihood that uncleaved zebrafish p75NTR 

is consistently accumulated when treated with DAPT (Figure 2.3, B). This accumulation of 

substrate was not observed when Nrh1C191-dGFP was subjected to DAPT treatment (Figure 2.3, 

A), suggesting that zebrafish Nrh1 is not sensitive to the γ-secretase inhibitor DAPT. This result 

supports the observation made by Kanning et al (2003) that NRH1 is not a substrate of γ-secretase 

[8]. 

 

As was previously observed in a similar γ-secretase assay, both p75NTFC201-dGFP and Nrh1C191-

dGFP appeared to induce developmental abnormalities in embryos [14]. When injected, embryos 

displayed increased mortality (~46% vs. ~5-10% in uninjected controls) and a range of 
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developmental abnormalities, which were increased by DAPT treatment (~57% mortality) (data 

not shown). This toxicity may be due to excessive generation of p75NTF and Nrh1 intracellular 

domains (ICDs), both of which carry a death domain [5, 8]. This increase in ICD carrying death 

domains may result in premature embryo death. p75NTF is also known to form a heterodimer with 

the protein SORTILIN which then interacts with proNGF or proBDNF proteins leading to 

apoptosis [23, 24]. Treatment of embryos with DAPT may inadvertently facilitate this interaction 

by causing accumulation of uncleaved p75NTR. Another factor to consider is the nature of the 

vectors used to express the assay constructs. Tol2 is a transposase vector that inserts randomly into 

the genome. If the Tol2-based constructs were to disrupt essential/housekeeping genes this would 

also affect the survival of embryos [25].  

 

Zebrafish caspase 3 plays an important role in apoptosis signalling [26]. To overcome the toxicity 

of assay construct expression, we treated zebrafish embryos with 100μM of the caspase 3 inhibitor 

Z-DEVD-FMK (as was shown in a PhD dissertation [27]). However, treatment with this inhibitor 

did not reduce the degree of lethality observed (data not shown). Therefore, to overcome the 

problem of the lethality, an increased number of embryos were injected in each batch with only 

the most phenotypically normal embryos being selected for western blot analysis (after 

confirmation that they were expressing observable GFP). 
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Figure 2.3. Western immunoblot analysis of p75NTFC201-dGFP and Nrh1C191-dGFP. A) Western 

immunoblots from p75NTFC201-dGFP and Nrh1C191-dGFP injected embryos at 24hpf with and without 

DAPT treatment. + indicates embryos were treated with DAPT. The additional band observed below the 

bands indicated by arrows are most likely degradation products. B) Ratios of p75NTFC201-dGFP/free 

mCherry in p75NTFC201-dGFP injected embryos at 24hpf, with (+) (n = 3) or without (-) (n = 3) DAPT 

treatment. C) Ratios of Nrh1C191-dGFP /free mCherry in Nrh1C191-dGFP injected embryos at 24hpf, 

with (+) (n = 4) or without (-) (n = 4) DAPT treatment. 
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Replacing mCherry with GFP reduces variability in the western immunoblot analyses 

An apparent trend of accumulation of p75NTFC201-dGFP due to γ-secretase inhibition was 

observed by western immunoblotting. However, statistical analysis of the densitometry 

measurements did not indicate significance due to the considerable variability between samples 

(Figure 2.3, B and C). A contributor to this variability may have been the necessity to strip and re-

probe the western blot with the anti-mCherry antibody. To overcome this, the red fluorescence 

gene mCherry was excised from the constructs and replaced with a second GFP gene downstream 

of the C-terminal of v2a, producing vectors pT2ALssFLAG-p75NTFC201-dGFP-v2a-GFP and 

pT2ALssFLAG-Nrh1C191-dGFP-v2a-GFP (Figure 2.2, 2).  For simplicity, we will henceforth 

refer to them as p75NTFC201-dGFPx2 and Nrh1C191-dGFPx2 respectively. This minor adjustment 

in construct design allows for the internal expression standard to be visualised using the same anti-

GFP antibody as detects the p75NTFC201-dGFP and Nrh1C191-dGFP fusions. 

 

To evaluate the effectiveness of the modified assay constructs we performed injections on 

numerous batches of embryos and then ran protein samples on multiple western blots. Analysis 

using the new assay constructs consistently displayed an increase in accumulation of the 

p75NTFC201-dGFPx2 substrate when treated with the γ-secretase inhibitor DAPT. This result was 

confirmed statistically by combining band intensity data from across all western blots and 

performing a two-tailed t-test assuming unequal variances, resulting in a p value of 0.0047 (figure 

2.4, A). 
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Figure 2.4. Western immunoblot analysis of p75NTFC201-dGFPx2 and Nrh1C191-dGFPx2. Ratios from 

western immunoblots of p75NTFC201-dGFPx2/free GFP in p75NTFC201-dGFPx2 injected embryos at 24hpf, 

with (+) (n = 8) or without (-) (n = 8) DAPT treatment. C) Ratios of Nrh1C191-dGFPx2 /free GFP in 

Nrh1C191-dGFPx2 injected embryos at 24hpf, with (+) (n = 8) or without (-) (n = 8) DAPT treatment. 

p value was calculated using an unpaired, two-tailed t-test. 

 

Conversely, there was no observed increase in Nrh1C191-dGFP substrate accumulation in 

response to DAPT treatment. Statistical analysis found no significant difference between the 

treated and untreated samples (p =0.9037) (Figure 2.4, B). Although the p75NTR western 

immunoblot data was similar across numerous blots there was a high degree in variability in the 



82 
 

normalised values across Nrh1 immunoblots. This variability was unexpected and seems to be due 

to variation in the amount of free GFP on each blot. It is possible that GFP stability may play a 

role in this. Regardless of this we are confident that Nrh1 is not responsive to DAPT, as when 

looking at each blot individually there was consistently no accumulation in response to this 

inhibitor among replicates (data not shown).  

 

γ-secretase cleavage is not conferred to Nrh1 by the p75NTF transmembrane domain 

The sequence similarity of p75NTR and its homolog Nrh1 imply that these two genes share a 

relatively recent evolutionary origin through duplication of an ancestral p75NTR/Nrh1-like gene. 

Therefore, if p75NTR is a substrate of γ-secretase, then Nrh1 would most probably also be cleaved 

by it. The observed lack of γ-secretase-dependent cleavage of zebrafish Nrh1 in our assay is 

consistent with the results of Kanning et al (2003) [8]. The existence of this pair of closely related 

genes/proteins, one of which is cleaved by γ-secretase and one of which is not, presents us with a 

unique opportunity to dissect the structural basis of γ-secretase cleavage substrate specificity. 

 

To begin dissection of γ-secretase cleavage substrate specificity using our assay, we designed a 

chimaeric construct in which Nrh1’s transmembrane domain was replaced with the transmembrane 

domain from p75NTR. The new construct, termed pT2ALssFLAG-A2C-dGFP-v2a-GFP (Figure 

2.2 3), simplified to A2C-dGFPx2, was injected into one cell stage embryos which were 

subsequently treated as previously with or without DAPT. Protein samples were then collected at 

24 hpf for analysis by western immunoblot. This did not reveal an accumulation of substrate when 

γ-secretase was inhibited (Figure 2.5). This suggests that the p75NTR transmembrane domain alone 

is not sufficient to confer γ-secretase susceptibility and that structures outside of this domain are 
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also required. It is possible that altering the protein by swapping entire domains may disrupt its 

ability to form homo- or heterodimers, which have previously been found to be important for γ-

secretase cleavage [5]. A detailed further analysis replacing Nrh1 amino acid residues with those 

not shared by p75NTR in this chimaeric construct should allow definition of the structures critical 

to conferring γ-secretase susceptibility. 

 

 

Figure 2.5. Western immunoblot analysis of A2C-dGFPx2. Ratios from western immunoblots of A2C-

dGFPx2 /free GFP in A2C-dGFPx2 injected embryos at 24hpf, with (+) (n = 5) or without (-) (n = 5) 

DAPT treatment. 

 

Further analysis of p75NTR and Nrh1 transmembrane domains 

Recent studies have shown that the α-helices of γ-secretase substrates Notch and APP unwind 

when they interact with the active site of PRESENILIN (the catalytic core of γ-secretase) [28-30]. 

A study investigating the conformation of the rhomboid substrate Gurken during cleavage by the 

archaeal homologue of PRESENILIN, MCMJR1, found that Gurken underwent a conformational 

change into a β-strand when interacting with MCMJR1 [31]. Proline residues have previously been 

found to disrupt transmembrane helices. Therefore, Brown et al (2018) altered the Pro252 TMD 
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residue of Gurken and found that it was no longer a substrate of MCMJR1. They suggested that 

the proline residue, through its perturbation of the α-helical conformation, effectively allows for 

this helix to unwind into the β-strand conformation that is preferred by MCMJR1 [31]. They also 

observed that so called “noncleavable” variants (i.e. those that cannot enter a β-strand 

conformation) could still bind to MCMJR1 with equal affinity to the cleavable substrates.  

 

We aligned the TMDs of zebrafish p75NTR and Nrh1 to investigate whether either of these 

sequences contain a proline residue that would allow them to unwind from an α-helix to a β-strand, 

as was observed for Gurken. Interestingly, while the TMD of zebrafish p75NTR contains a proline 

close to the N-terminal end, zebrafish Nrh1 does not contain a proline within its TMD (Figure 2.6). 

 

 

Figure 2.6. Alignment of the zebrafish p75NTR and Nrh1 transmembrane domains. Red box indicates the 

proline residue in p75NTR that is absent in Nrh1. 

 

2.3 Conclusions and Future directions 

In this study we identified the p75NTR and Nrh1 orthologues in zebrafish suitable for design of an 

assay system in which to test γ-secretase cleavage of these proteins in vivo. We observed that, 

while cleavage of zebrafish p75NTR by γ-secretase is sensitive to DAPT, zebrafish Nrh1 is not 

sensitive to this γ-secretase inhibitor. This finding is consistent with a previous study in which 

human p75NTR and Xenopus NRH1 were investigated in vitro [8]. Furthermore, our analysis of a 

chimeric Nrh1 protein in which the Nrh1 transmembrane domain is replaced by that of p75NTR 

revealed that this domain alone is not sufficient to confer γ-secretase cleavage susceptibility. This 
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is not completely unexpected as there is evidence to suggest that other factors are crucial for 

selection/cleavage by the γ-secretase complex [5]. A greater understanding of the specificity of γ-

secretase substrate selection might be reached by extending the chimaeric approach by exchanging 

each of the domains of these proteins. Indeed, a study (that we discovered while writing this 

manuscript) using a similar domain swap approach but with two unrelated type 1 transmembrane 

proteins (the non γ-secretase substrate Itgβ1 and γ-secretase substrate vasorin) found that both a 

permissive transmembrane and a permissive intracellular domain were required for γ-secretase 

cleavage, confirming our findings [32]. 

 

Other than the prerequisites of being a type 1 membrane protein and of shedding the ectodomain 

it has previously been suggested that dimerisation of substrates and/or the structure of substrate α-

helices may regulate γ-secretase activity [5]. This was not investigated in this study but is 

something that should be considered for future experiments using this assay system. Previous 

studies of the p75NTR dimerisation domain AxxxGxxA found that, while this domain is not 

essential for dimerisation, altering its structure to LxxxLxxA via mutational analyses reduces γ-

secretase cleavage [5, 33]. It was thought that this might be due to a stabilisation of the α-helix, 

inhibiting γ-secretase access by preventing unravelling of the transmembrane domain [5]. 

Zebrafish p75NTF also contains the AxxxGxxA domain. However, in zebrafish Nrh1 the second 

alanine is replaced by leucine (AxxxGxxL) and we suggest this may have a similar effect to the 

LxxxLxxA mutant. It would be interesting to perform site directed mutagenesis on the L256 

residue of the zebrafish Nrh1 dimerisation domain to assess whether this is a key feature preventing 

its cleavage by γ-secretase.  
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Another question that can potentially be addressed using this assay is the identity of the enzyme 

performing intramembranous cleavage of Nrh1. Since Kanning et al (2003) established that NRH1 

does in fact produce cleavage products when treated with the PKC activator, PMA, a deeper 

investigation into what cleaves this protein may offer insights into alternative cleavage pathways 

for such substrates [8]. There are four main classes of proteases that perform intramembrane 

proteolysis. The first encompasses the aspartic proteases, including Presenilins (PSENs, the active 

subunit of γ-secretase), signal peptide peptidases (SPPs) and SPP-like proteases [34-36]. While γ-

secretase cleaves proteins with type 1 membrane topology (C-termini towards the cytosol), the 

SPP and SPP-like proteases cleave proteins with type 2 membrane topology (N-termini towards 

the cytosol). Another class of I-CliPs consists of the Site-2 protease (S2P) and S2P-like proteases 

[37]. These are members of the metalloprotease family and cleave type 2 transmembrane proteases. 

Finally, there are the Rhomboid proteases, which are serine proteases [38]. Rhomboid proteases 

are highly specific in their substrate selection. The substrates selected are mostly type 1 

transmembrane proteins, although there is also evidence to suggest they may cleave type 2 and 

multi pass membrane proteins in some cases [39, 40]. If we assume that NRH1 is a type 1 

transmembrane protein like its homologue p75NTR, then we can reasonably exclude two of the 

above classes of membrane cleaving proteases as candidates, namely, SPP (and SPP-like) and S2P 

(including S2P-like). However, the orientation of NRH1 within the membrane has not yet been 

investigated. Our assay could be used to test a range of protease inhibitors to identify which 

enzyme(s) cleave Nrh1. 

 

The question of the effect of the α-helix structure of p75NTR or NRH1 TMD on their cleavage 

susceptibility has not yet been investigated. Previous observations from a study of the effects of 
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the TMD of Gurken found that a β-sheet conformation was required for cleavage by the archaeal 

PRESENILIN homologue, MCMJR1. This raised the question of whether NRH1 can interact with 

PRESENILIN, but perhaps due to its TMD being in an α-helical conformation, cannot be cleaved 

by it. A simple amino acid sequence alignment of the zebrafish p75NTR and Nrh1 TMDs (Figure 

2.6) revealed that, while the p75NTR TMD carries a proline residue that would supposedly allow it 

flexibility to conformationally change between an α-helix and β-sheet, the Nrh1 TMD lacks this 

residue. Interestingly, it has previously been observed that insertion of a single proline into the 

TMD can trigger cleavage of normally un-cleavable TMD’s [31]. It may therefore be of interest 

in future to either insert or substitute a proline residue into the Nrh1 TMD to investigate its ensuing 

γ-secretase cleavage susceptibility. The results of such an experiment using our established assay 

might provide an answer for why Nrh1 is not naturally a γ-secretase substrate, while also 

contributing to the understanding of γ-secretase cleavage susceptibility. Regarding the previously 

observed cleavage of Xenopus NRH1 within its TMD and the question of what protease might be 

responsible for this cleavage, it has been observed that all intramembrane cleaving proteases 

(iCLIPs) prefer to cleave TMDs in their β-strand conformation [41]. If NRH1 is unable to enter 

this conformation, perhaps there is some other unknown enzyme responsible for this cleavage. If 

we wish to understand the cleavage properties of NRH1 it would be important to further investigate 

the conformational state of its TMD. 

 

 

 

 



88 
 

2.4 Materials and Methods 

Ethics 

This work was conducted under the auspices of the Animal Ethics Committee of the University of 

Adelaide and in accordance with EC Directive 86/609/EEC for animal experiments and the 

Uniform Requirements for manuscripts submitted to Biomedical journals. 

 

Gene orthologue identification 

Alignments and tree building were conducted using the Geneious software suite, version 5.6.7 

(http://www.geneious.com, [13]). Alignments were performed with the following constraints; Cost 

matrix: Identity, Gap open penalty: 10, Gap extension penalty: 3, Alignment: Global. Bayesian 

trees were produced using the “Mr Bayes” program with the following constraints; Substitution 

model: GTR, Outgroup: Lancelet p75NTR, and the rest as default. 

 

Constructs 

ssFLAG-p75NTFC201-dGFP-v2a-mCherry, ssFLAG-Nrh1C191-dGFP-v2a-mCherry and 

ssFLAG-A2C-dGFP-v2a-mCherry DNA sequences were produced by Biomatik (complete DNA 

sequences are provided in supplemental file S4). These DNA sequences in the pBMH vector 

(provided by Biomaitk) were digested using BamHI and ClaI in independent reactions and ligated 

into pT2AL200R150G between the BamHI and ClaI sites. 

 

Replacement of mCherry coding sequence by GFP coding sequence 

GFP was amplified by polymerase chain reaction (PCR) using the following primers; Forward: 5’-

GCTCTAGAATGGTGAGCAAGGGAGAGGA-3’ and Reverse: 
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5’CCATCGATCTACTTGTACAGCTCGTCCATTCC-3’. The thermal cycling parameters were 

as follows: 98°C for 30 s, 15 cycles of 98°C for 10 s, 61°C for 30 s and 72°C for 30 s, followed by 

72°C for 10 mins. mCherry was excised from pT2AL200R150GssFLAG-p75NTFC201-dGFP-v2a-

mCherry, pT2AL200R150G ssFLAG-Nrh1C191-dGFP-v2a-mCherry and pT2ALssFLAG-A2C-

dGFP-v2a-mCherry by restriction digest with Xba1 and Cla1. The amplified GFP was then cloned 

between the Xba1 and Cla1 sites of pT2AL200R150GssFLAG-p75NTFC201-dGFP-v2a-mCherry, 

pT2AL200R150G ssFLAG-Nrh1C191-dGFP-v2a-mCherry and pT2ALssFLAG-A2C-dGFP-v2a-

mCherry. 

 

DNA microinjection of zebrafish embryos and treatment with DAPT. 

Tol2 transposase plasmid (pCS-TP) was linearised using Not1 (NEB) and mRNA was transcribed 

in vitro using the mMESSAGE mMACHINE SP6 Kit (Ambion Inc.). Fertilised embryos were 

injected with a solution containing 100ng/µl plasmid DNA and approximately 50ng/µl Tol2 

transposase mRNA at the one cell stage. ~50 embryos injected with the injection solution above 

were placed into 35mm x 10mm petri dishes with 2ml E3 medium (15mM NaCl, 0.5mM KCl, 

1mM MgSO4, 0.15mM KH2PO4, 0.05mM Na2HPO4, 1mM CaCl2, 0.7mM NaHCO3). At 4hpf 

embryos were treated with 100µM DAPT (In solutionTM γ-secretase inhibitor IX, Calbiochem, San 

Diego, CA, USA) in 1% DMSO in E3 medium. Embryos were maintained at 28°C in a humid 

incubator. At 24hpf embryos were visualised under UV light for GFP expression. Embryos 

expressing GFP were selected for protein extraction.  
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Treatment of zebrafish embryos with Z-DEVD-FMK 

Injected embryos were placed into 35mm x 10mm petri dishes with 2mL E3 medium (15mM NaCl, 

0.5mM KCl, 1mM MgSO4, 0.15mM KH2PO4, 0.05mM Na2HPO4, 1mM CaCl2, 0.7mM 

NaHCO3). At 6hpf embryos were treated with 100µM Z-DEVD-FMK (ApexBio Technology 

LLC, Houston, TX, USA) in E3 medium. Embryos were maintained in standard temperature 

conditions in a humid incubator and checked for survival at 24hpf. 

 

Western Immunoblot analyses 

Dechorioned and de-yolked embryos were lysed by placement in sample buffer (2% sodium 

dodecyl sulfate (SDS), 5% β-mercaptoethanol, 25% v/v glycerol, 0.0625 M Tris-HCl (pH 6.8), 

and bromophenol blue) followed immediately by heating to 95°C for 10 min, before storage at -

80°C prior to protein separation on 4-12% SDS polyacrylamide gels. Proteins were transferred to 

nitrocellulose membrane in buffer (25mM Tris, 192mM glycine, 0.1% sodium lauryl sulfate, 20% 

methanol in MilliQ H2O) at 10V for 1hr. When immunoblotting, all membranes were blocked with 

5% Western Blocking Reagent (Roche, Indianapolis, IN, USA) in TBST, incubated with primary 

antibodies in TBST containing 0.5% Western Blocking Reagent (Roche, Indianapolis, IN, USA), 

washed in TBST, and incubated in secondary antibody. Following secondary antibody incubations, 

all membranes were washed three times for 10 minutes in TBST and visualised with luminol 

reagents (Amresco, Ohio, USA or Thermo Scientific, Rockford, USA) by the ChemiDocTM MP 

imaging system (Bio-Rad, Hercules, CA, USA). The p75NTFC201-dGFPx2, Nrh1C191-dGFPx2 

and A2C-dGFPx2 protein bands were visualised at ~61kDa, 57kDa and 57kDa respectively (data 

not shown). Using Image Lab software (Bio-Rad), densitometry analyses were performed on the 

protein bands in each lane of the western immunoblot for each sample and free GFP internal 
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reference. An average value was obtained for the free GFP for each membrane. Each sample value 

was then normalised to the average free GFP value. 

 

GFP immunoblots were incubated in a 1/5,000 dilution of anti-GFP antibodies (Rockland 

Immunochemicals Inc., Gilbertsville, PA, USA) and a 1/10,000 dilution of donkey anti-Goat IgG 

(Rockland Immunochemicals Inc., Gilbertsville, PA, USA). 

mCherry immunoblots were incubated in a dilution of 1/2,000 of anti-mCherry antibody (Abcam, 

Cambridge, UK) and a 1/5,000 dilution of anti-Mouse IgG secondary antibodies (Rockland 

Immunochemicals Inc., Gilbertsville, PA, USA). 
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2.6 Supplementary information 

This section is included in the thesis as information supplementary to Chapter 2. It contains 

additional information not included in the main text of the manuscript. 

 

File S1. Screenshots of results from tblastn searches using the NCBI database 

 The amino acid sequence of human p75NTR was used in a tblastn search of the zebrafish 

genome (constrained to RefSeq_RNA). 

 

Figure S1. Duplication of the p75NTR gene on chromosome 12 of Danio rerio. Red box indicates duplicate 

genes. 
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Figure S2. Duplication of p75NTR gene on chromosome 3 of Danio rerio, as of GRCz11. The two returned 

genes (indicated by the red box) represent the revised position of the p75NTR duplicate gene on chromosome 

3. 
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File S2. Supporting table for phylogenetic analyses 

Table S1. Names, NCBI gene names and NCBI accession numbers of all genes used in 

phylogenetic studies 

Organism and gene name NCBI name NCBI Accession nucleotide 

Zebrafish p75NTR ngfr-l NM_001198660.1 

Zebrafish p75NTR like 12 TNF 16-like XM_003199576.1 

Zebrafish p75NTR like 3 ngfr-a XM_003198085.3 

Zebrafish Nrh1 ngfr XM_695893.4 

Xenopus tropicalis NRH1 ngfr NM_001007998.2 

Xenopus p75NTR p75 NTR a NM_001088466.1 

Xenopus laevis NRH1 ngfr NM_001091773.1 

Mouse p75NTR Ngfr NM_033217.3 

Mouse NRH2 Nradd NM_026012.2 

Chicken p75NTR NGFR NM_001146133.1 

Chicken NRH1 TNFR 16-like XM_418509.3 

Human p75NTR TNFR superfamily 16 NM_002507.3 

Human NRH2 NRADDP NR_024046 

Lancelet p75NTR Branchiostoma floridae hypothetical protein XM_002588230.1 

Drosophila p75NTR like 

Drosophila melanogaster rumpelstiltskin 

(rump), transcript variant A NM_141642.3 

Human p75NTR like TNFRSF11B NM_002546.3 
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File S3. Transmembrane domain predictions for p75NTR and Nrh1 

 

Figure S3. Transmembrane domain predictions for Nrh1 and p75NTR using TMHMM. Plot of 

probabilities generated by TMHMM 2.0. A) p75NTR TMD prediction B) Nrh1 TMD prediction. “outside” 

refers to the prediction that the sequence sits on the cytosolic side of the membrane and “inside” refers to 

the prediction that the sequence sits on the non-cytosolic (lumenal) side of the membrane. 

“transmembrane” refers to predicted transmembrane helices in the sequence. 
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File S4. Construct overviews and full sequences 

(A)  Sequence design for the pT2ALssFLAG-p75NTFC201-dGFP-v2a-mCherry construct 

Different regions of the sequence are indicated with colours corresponding to the legend below: 

 BamHI-Kozak-START-SS-FlagTag1-FlagTag2-FlagTag3-p75(CTF)-eGFP-BspEI-

MODCPEST-BspEI-v2a-Xba1-mCherry-Xba1-STOP-NotI-ClaI 

 Capitalised C in FlagTag2 = silent mutation, Capitalised T in FlagTag3 = silent mutation 

Sequence of pT2ALssFLAG-p75NTFC201-dGFP-v2a-mCherry construct: 

5’-
cgggatccgccaccatgtggtggcgcctgtggtggctgctgctgctgctgctgctgctgtggcc
catggtgtgggccgattacaaggatgacgacgataaggattacaaggaCgacgacgataaggat
tacaaggatgacgaTgataagaccacgactgaccctgggcaaaagagactacatgggcttagcg
acaacctcattcccatctacacctccatactggctgcggtgctgttgggcctggtggccttcat
catatttaaacggtggaacagttgtaagcagaataagcaagccaataaccgagcgtgcagcgca
aaccccagtcagactccttctcctgagggagagaaactccacagtgacagcggcatctcagtgg
acagtcagagcctgcaggacggccaggggcctccacatacagtggtcaagatagatggaggttc
ggctctgtctttgcccttacacacacgggaggaggtggagaaactgctaaatcgtaccaatgaa
ggagaggagtcagcagccaatgaggagaccgactggtgcagcctagccgggctacttggataca
aagaagaacacattgctaatttcaagcaggaggaacggcccatccaggcacttctgtcgcactg
ggcgagccaggattcggctaacattgatacgctttgcacagctctgaagaagatcaacagagag
gatattgcgcaaagcatcattgtcaaaccaactgccacatctgccgtaatggtgagcaagggcg
aggagctgttcaccggggtggtgcccatcctggtcgagctggacggcgacgtaaacggccacaa
gttcagcgtgtccggcgagggcgagggcgatgccacctacggcaagctgaccctgaagttcatc
tgcaccaccggcaagctgcccgtgccctggcccaccctcgtgaccaccctgacctacggcgtgc
agtgcttcagccgctaccccgaccacatgaagcagcacgacttcttcaagtccgccatgcccga
aggctacgtccaggagcgcaccatcttcttcaaggacgacggcaactacaagacccgcgccgag
gtgaagttcgagggcgacaccctggtgaaccgcatcgagctgaagggcatcgacttcaaggagg
acggcaacatcctggggcacaagctggagtacaactacaacagccacaacgtctatatcatggc
cgacaagcagaagaacggcatcaaggtgaacttcaagatccgccacaacatcgaggacggcagc
gtgcagctcgccgaccactaccagcagaacacccccatcggcgacggccccgtgctgctgcccg
acaaccactacctgagcacccagtccgccctgagcaaagaccccaacgagaagcgcgatcacat
ggtcctgctggagttcgtgaccgccgccgggatcactctcggcatggacgagctgtacaagggc
tccggacatggcttcccgccggcggtggcggcgcaggatgatggcacgctgcccatgtcttgtg
cccaggagagcgggatggaccgtcaccctgcagcctgtgcttctgctaggatcaatgtgggctc
cggagctacaaatttctctctgttgaaacaggctggtgacgtcgaggagaatcctggcccatct
agaatggtttccaaaggagaggaggacaatatggcaatcatcaaagagttcatgcgttttaaag
ttcacatggaaggcagtgttaacggacatgaatttgagatagagggcgagggggagggcagacc
gtacgaaggaacacagaccgcaaaactgaaagtgaccaagggaggaccattgcctttcgcctgg
gatattctgtcaccacaattcatgtatggttcaaaagcctacgtcaagcacccggctgacatac
cggattatctgaagctaagctttcccgagggatttaaatgggagcgcgtgatgaatttcgaaga
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tggcggcgtagtgaccgtgacacaggatagctctcttcaagatggggaatttatttacaaggtc
aagttacgcggcactaacttcccttctgatggaccagtgatgcagaaaaaaacaatgggttggg
aagctagctccgagaggatgtacccggaggacggtgcgcttaaaggtgagatcaagcaacgatt
gaaattgaaagacggcgggcattatgacgcagaggttaagaccacatacaaagccaagaagccc
gtccagcttcccggagcctataacgtcaacatcaaacttgatattacttctcacaacgaggatt
acaccatagttgagcagtacgaaagagcagagggcaggcattccaccggggggatggacgagct
gtacaagtctagataggcggccgcatcgatgg-3’ 
 
 
(B)  Sequence design for the pT2ALssFLAG-Nrh1C191-dGFP-v2a-mCherry construct 

Different regions of the sequence are indicated with colours corresponding to the legend below: 

 BamHI-Kozak-START-SS-FlagTag1-FlagTag2-FlagTag3-Nrh1(CTF)-eGFP-BspEI-

MODCPEST-BspEI-v2a-Xba1-mCherry-Xba1-STOP-NotI-ClaI 

 Capitalised C in FlagTag2 = silent mutation, Capitalised T in FlagTag3 = silent mutation 

Sequence of pT2ALssFLAG-Nrh1C191-dGFP-v2a-mCherry construct: 

5’-
cgggatccgccaccatgtggtggcgcctgtggtggctgctgctgctgctgctgctgctgtggcc
catggtgtgggccgattacaaggatgacgacgataaggattacaaggaCgacgacgataaggat
tacaaggatgacgaTgataagggctctggagcccctagactcacaccacaggaccaaggtggaa
acaacaacatcttggtgtatgtgtctgttttggctgctgtggtgcttggcctgctgctctacgt
tgcctacaaatgctggaaatcatgtcagcagaagcaggctctggtgaaggcccgggtcggagag
ctgaataatgcaggggaaggagagaaactgcacagcgacagtggtgttttcctggactctcaca
gccttcaggaaagccagcctagcaaaggcagtaaacgggacagcaaacaggatacacggctcta
cataaacctgcctccgcacagacaggaggaggtagagggacttctggctgaggggggcaatcga
agctggaaacagctagccgctacactaggctacgaacaggagcgcgtggacgtctttggacggg
gccaggaccccatccacaccctcatgaccgattggtcccagcaggaaggctccacattgggttt
gttgtgttcagctctgactcgcatcgagcgaccagacatcatcactgctctgaccgccccaacg
caaggagtatcagtggtcatggtgagcaagggcgaggagctgttcaccggggtggtgcccatcc
tggtcgagctggacggcgacgtaaacggccacaagttcagcgtgtccggcgagggcgagggcga
tgccacctacggcaagctgaccctgaagttcatctgcaccaccggcaagctgcccgtgccctgg
cccaccctcgtgaccaccctgacctacggcgtgcagtgcttcagccgctaccccgaccacatga
agcagcacgacttcttcaagtccgccatgcccgaaggctacgtccaggagcgcaccatcttctt
caaggacgacggcaactacaagacccgcgccgaggtgaagttcgagggcgacaccctggtgaac
cgcatcgagctgaagggcatcgacttcaaggaggacggcaacatcctggggcacaagctggagt
acaactacaacagccacaacgtctatatcatggccgacaagcagaagaacggcatcaaggtgaa
cttcaagatccgccacaacatcgaggacggcagcgtgcagctcgccgaccactaccagcagaac
acccccatcggcgacggccccgtgctgctgcccgacaaccactacctgagcacccagtccgccc
tgagcaaagaccccaacgagaagcgcgatcacatggtcctgctggagttcgtgaccgccgccgg
gatcactctcggcatggacgagctgtacaagggctccggacatggcttcccgccggcggtggcg
gcgcaggatgatggcacgctgcccatgtcttgtgcccaggagagcgggatggaccgtcaccctg
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cagcctgtgcttctgctaggatcaatgtgggctccggagctacaaatttctctctgttgaaaca
ggctggtgacgtcgaggagaatcctggcccatctagaatggtttccaaaggagaggaggacaat
atggcaatcatcaaagagttcatgcgttttaaagttcacatggaaggcagtgttaacggacatg
aatttgagatagagggcgagggggagggcagaccgtacgaaggaacacagaccgcaaaactgaa
agtgaccaagggaggaccattgcctttcgcctgggatattctgtcaccacaattcatgtatggt
tcaaaagcctacgtcaagcacccggctgacataccggattatctgaagctaagctttcccgagg
gatttaaatgggagcgcgtgatgaatttcgaagatggcggcgtagtgaccgtgacacaggatag
ctctcttcaagatggggaatttatttacaaggtcaagttacgcggcactaacttcccttctgat
ggaccagtgatgcagaaaaaaacaatgggttgggaagctagctccgagaggatgtacccggagg
acggtgcgcttaaaggtgagatcaagcaacgattgaaattgaaagacggcgggcattatgacgc
agaggttaagaccacatacaaagccaagaagcccgtccagcttcccggagcctataacgtcaac
atcaaacttgatattacttctcacaacgaggattacaccatagttgagcagtacgaaagagcag
agggcaggcattccaccggggggatggacgagctgtacaagtctagataggcggccgcatcgat
gg-3’ 
 
 
(C)  Sequence design for the pT2ALssFLAG-A2C-dGFP-v2a-mCherry construct 

Different regions of the sequence are indicated with colours corresponding to the legend below: 

 BamHI-Kozak-START-SS-FlagTag1-FlagTag2-FlagTag3- NRH1 ECD- P75 TMD- 

NRH1 ICD-eGFP-BspEI-MODCPEST-BspEI-v2a-Xba1-mCherry-Xba1-STOP-NotI-

ClaI 

 Capitalised C in FlagTag2 = silent mutation, Capitalised T in FlagTag3 = silent mutation 

Sequence of pT2ALssFLAG-A2C-dGFP-v2a-mCherry construct: 

5’-
cgggatccgccaccatgtggtggcgcctgtggtggctgctgctgctgctgctgctgctgtggcc
catggtgtgggccgattacaaggatgacgacgataaggattacaaggaCgacgacgataaggat
tacaaggatgacgaTgataagggctctggagcccctagactcacaccacaggaccaaggtggaa
acaacctcattcccatctacacctccatactggctgcggtgctgttgggcctggtggccttcat
catatttaaatgctggaaatcatgtcagcagaagcaggctctggtgaaggcccgggtcggagag
ctgaataatgcaggggaaggagagaaactgcacagcgacagtggtgttttcctggactctcaca
gccttcaggaaagccagcctagcaaaggcagtaaacgggacagcaaacaggatacacggctcta
cataaacctgcctccgcacagacaggaggaggtagagggacttctggctgaggggggcaatcga
agctggaaacagctagccgctacactaggctacgaacaggagcgcgtggacgtctttggacggg
gccaggaccccatccacaccctcatgaccgattggtcccagcaggaaggctccacattgggttt
gttgtgttcagctctgactcgcatcgagcgaccagacatcatcactgctctgaccgccccaacg
caaggagtatcagtggtcatggtgagcaagggcgaggagctgttcaccggggtggtgcccatcc
tggtcgagctggacggcgacgtaaacggccacaagttcagcgtgtccggcgagggcgagggcga
tgccacctacggcaagctgaccctgaagttcatctgcaccaccggcaagctgcccgtgccctgg
cccaccctcgtgaccaccctgacctacggcgtgcagtgcttcagccgctaccccgaccacatga
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agcagcacgacttcttcaagtccgccatgcccgaaggctacgtccaggagcgcaccatcttctt
caaggacgacggcaactacaagacccgcgccgaggtgaagttcgagggcgacaccctggtgaac
cgcatcgagctgaagggcatcgacttcaaggaggacggcaacatcctggggcacaagctggagt
acaactacaacagccacaacgtctatatcatggccgacaagcagaagaacggcatcaaggtgaa
cttcaagatccgccacaacatcgaggacggcagcgtgcagctcgccgaccactaccagcagaac
acccccatcggcgacggccccgtgctgctgcccgacaaccactacctgagcacccagtccgccc
tgagcaaagaccccaacgagaagcgcgatcacatggtcctgctggagttcgtgaccgccgccgg
gatcactctcggcatggacgagctgtacaagggctccggacatggcttcccgccggcggtggcg
gcgcaggatgatggcacgctgcccatgtcttgtgcccaggagagcgggatggaccgtcaccctg
cagcctgtgcttctgctaggatcaatgtgggctccggagctacaaatttctctctgttgaaaca
ggctggtgacgtcgaggagaatcctggcccatctagaatggtttccaaaggagaggaggacaat
atggcaatcatcaaagagttcatgcgttttaaagttcacatggaaggcagtgttaacggacatg
aatttgagatagagggcgagggggagggcagaccgtacgaaggaacacagaccgcaaaactgaa
agtgaccaagggaggaccattgcctttcgcctgggatattctgtcaccacaattcatgtatggt
tcaaaagcctacgtcaagcacccggctgacataccggattatctgaagctaagctttcccgagg
gatttaaatgggagcgcgtgatgaatttcgaagatggcggcgtagtgaccgtgacacaggatag
ctctcttcaagatggggaatttatttacaaggtcaagttacgcggcactaacttcccttctgat
ggaccagtgatgcagaaaaaaacaatgggttgggaagctagctccgagaggatgtacccggagg
acggtgcgcttaaaggtgagatcaagcaacgattgaaattgaaagacggcgggcattatgacgc
agaggttaagaccacatacaaagccaagaagcccgtccagcttcccggagcctataacgtcaac
atcaaacttgatattacttctcacaacgaggattacaccatagttgagcagtacgaaagagcag
agggcaggcattccaccggggggatggacgagctgtacaagtctagataggcggccgcatcgat
gg-3’ 
 

(4) Sequence of GFP that was PCR amplified and sub-cloned into constructs 

5’-
atggtgagcaagggagaggagctgttcacaggagtggtgcctatcctggtggagctggacggag
acgtgaacggacacaagttcagcgtgagcggagagggagagggagacgctacatacggaaagct
gacactgaagttcatctgtacaacaggaaagctgcctgtgccttggcctacactggtgacaaca
ctgacatacggagtgcagtgtttcagcagataccctgaccacatgaagcagcacgacttcttca
agagcgctatgcctgagggatacgtgcaggagagaacaatcttcttcaaggacgacggaaacta
caagacaagagctgaggtgaagttcgagggagacacactggtgaacagaatcgagctgaaggga
atcgacttcaaggaggacggaaacatcctgggacacaagctggagtacaactacaacagccaca
acgtgtacatcatggctgacaagcagaagaacggaatcaaggtgaacttcaagatcagacacaa
catcgaggacggaagcgtgcagctggctgaccactaccagcagaacacacctatcggagacgga
cctgtgctgctgcctgacaaccactacctgagcacacagagcgctctgagcaaggaccctaacg
agaagagagaccacatggtgctgctggagttcgtgacagctgctggaatcacactgggaatgga
cgagctgtacaag-3’ 
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File S5. Supporting tables for western blot analyses 
 
Table S2. Intensity ratios from western immunoblots for Figure 2.3 

p75NTFC201-dGFP injected, without treatment and collected at 24hpf 

p75NTFC201-dGFP  free mCherry p75NTFC201-dGFP/free 

mCherry 

3355616 2776536 1.208562 

1361151 2087967 0.651903 

2030385 2921364 0.695013 

p75NTFC201-dGFP injected, with DAPT treatment and collected at 24hpf 

p75NTFC201-dGFP  free mCherry p75NTFC201-dGFP/free 

mCherry 

8523834 4229267 2.01544 

10723713 3184398 3.367579 

2570365 2241720 1.146604 

Nrh1C191-dGFP injected, without treatment and collected at 24hpf 

Nrh1C191-dGFP free mCherry Nrh1C191-dGFP/free 

mCherry 

4786670 2897640 1.65192 

5352372 3658428 1.463025 

2862144 4299228 0.665734 

2482850 4824342 0.51465 

Nrh1C191-dGFP injected, with DAPT treatment and collected at 24hpf 
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Nrh1C191-dGFP free mCherry Nrh1C191-dGFP/free 

mCherry 

3344274 2456604 1.36134 

4696055 5235246 0.897008 

3129192 3895992 0.803182 

1659636 4562604 0.363748 

 

 

Table S3. Intensity ratios from western immunoblots for Figure 2.4 

p75NTFC201-dGFPx2 injected, without treatment and collected at 24hpf 

p75NTFC201-dGFPx2  free GFP p75NTFC201-dGFPx2/free GFP 

4099260 21408354 0.191479457 

2265235 18651920 0.121447819 

2760660 13464144 0.205037914 

4012008 31961958 0.125524475 

3141090 24936450 0.1259638 

1371942 7807518 0.175720632 

1161584 6491984 0.178925888 

784560 5346448 0.146744156 

p75NTFC201-dGFPx2 injected, with DAPT treatment and collected at 24hpf 

p75NTFC201-dGFPx2  free GFP p75NTFC201-dGFPx2/free GFP 

9307074 19496964 0.477360167 

11522280 15773135 0.73050031 
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9746802 19327971 0.504284801 

2743486 27871788 0.098432365 

8096400 15898455 0.509257032 

3262120 5782000 0.564185403 

1073216 5489744 0.195494726 

3258768 5566128 0.585464078 

Nrh1C191-dGFPx2 injected, without treatment and collected at 24hpf 

Nrh1C191-dGFPx2 free GFP Nrh1C191-dGFPx2/free GFP 

1491240 259845 5.738959764 

3290364 445676 7.382861092 

3774136 1123326 3.359786918 

14486528 27954624 0.518215806 

9071304 16119450 0.562755181 

2069262 2441270 0.847617019 

7176832 3022704 2.374308566 

4717200 2825728 1.669375113 

Nrh1C191-dGFPx2 injected, with DAPT treatment and collected at 24hpf 

Nrh1C191-dGFPx2 free GFP Nrh1C191-dGFPx2/free GFP 

2157554 286594 7.528259489 

2754024 563472 4.887596899 

1687808 386528 4.366586638 

16519654 30580320 0.5402054 

15641976 20213136 0.773852014 
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6142512 3632768 1.690862725 

4824704 3712496 1.299584969 

6105872 2351728 2.59633427 

 

Table S4. Intensity ratios from western immunoblots for Figure 2.5 

A2C -dGFPx2 injected without treatment and collected at 24hpf 

A2C -dGFPx2 free GFP A2C -dGFPx2/free GFP 

5968380 4111428 1.451656213 

3976478 2930257 1.357040696 

3134032 1885752 1.661953428 

2948385 2764267 1.066606446 

5134025 5889052 0.871791419 

A2C -dGFPx2 injected with DAPT treatment and collected at 24hpf 

A2C -dGFPx2 free GFP A2C -dGFPx2/free GFP 

4955500 2678104 1.850376236 

2455871 1668183 1.472183208 

3267396 3427666 0.953242235 

3248465 2896872 1.121369878 

4519932 4193688 1.077794056 
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Chapter 3 – Development and testing of genome editing tools for 

generation of fAD and null mutations in zebrafish appa and appb 

3.1 Introduction 

Missense mutations in the amyloid precursor protein (APP) can lead to an inheritable form of 

Alzheimer’s disease known as familial Alzheimer’s disease (fAD). The proposed mechanism 

through which mutations in APP lead to Alzheimer’s disease involves its processing by the γ-

secretase complex. APP is cleaved sequentially in one of two pathways. In the pathway that leads 

to the formation of the amyloid beta peptide, APP is first cleaved by β-secretase, then γ-secretase. 

fAD mutations in APP are mostly clustered around β- and γ-secretase cleavage sites. There are 

currently 59 known APP mutations involved in fAD (https://www.alzforum.org/mutations/app).  

There are two co-orthologues of the human APP gene in zebrafish, appa and appb [1]. The 

zebrafish has been used previously to study the functions of appa and appb [2]. A search of the 

literature reveals only one paper describing an Alzheimer’s disease zebrafish transgenic model of 

APP. Pu et al’s (2017) approach was to knock in mutant human APP driven by the zebrafish appb 

promoter [3]. This model was used to observe behaviour under mutant APP conditions as well as 

associated histopathology [3]. Other work on the zebrafish app genes has focused on investigating 

its roles in traumatic brain injury and development [4]. 

Although many previous attempts to study AD in mice have focussed on creating transgenic 

models of fAD genes, Hargis and Blalock (2017) observed inconsistent modelling of established 

transcriptomics-based changes detected in human AD in many of these models [5]. Considering 

this, we propose that the best approach to model the disease, and perform meaningful 
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transcriptomics analysis on these models, is to recreate (to the best of our ability) known fAD 

mutations in the equivalent endogenous zebrafish gene, via genome editing. 

In recent years it has become possible to generate targeted mutations in the zebrafish genome. Two 

systems adapted for accomplishing this are: transcription activator-like effector nucleases 

(TALENs) and the clustered regulatory interspaced short palindromic repeats (CRISPR)/CRISPR-

associated (Cas) system. While both systems function by generating double-stranded breaks 

(DSB’s) in the DNA, there are differences in their targeting mechanics and composition. TALENs 

initiate DNA cleavage through the binding of a pair of customisable DNA binding domains, both 

of which are fused to a non-specific Fok1 endonuclease domain, thus allowing Fok1 to dimerise 

and generate DSBs [6]. When used in zebrafish, the type II CRISPR/Cas9 system initiates cleavage 

through a single transcript called “sgRNA”. This sgRNA is a combination of the single 20bp guide 

RNA (gRNA) and tracrRNA used in other systems and is responsible for recruiting the Cas9 

enzyme to the site of interest for DNA cleavage [7].  

DSBs generated by either the TALEN or CRISPR/Cas9 system result in the activation of one of 

two inherent cellular DNA repair mechanisms. Non-homologous end joining (NHEJ), which 

repairs DNA breaks by re-joining the cleaved ends, is known to randomly introduce insertions or 

deletions (indels) and is often exploited for gene editing [8]. Alternatively, homology directed 

repair (HDR) is a process where the cell repairs breaks in DNA using a template with homology 

to the original DNA sequence. This form of repair can be utilised to insert precise mutations using 

an oligonucleotide coding for the desired mutation [9, 10]. By utilising the cell’s HDR machinery, 

both TALENs and CRISPRs can be used to engineer endogenous zebrafish genes to incorporate 

specific single nucleotide mutations. The mutations to be engineered into the zebrafish genome in 
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this study are human fAD APP missense mutations, as well as null mutations in zebrafish appa 

and appb, discussed in more detail below. 

In this study, we designed and analysed sgRNAs targeting 3 fAD missense mutation sites from 

human APP in the equivalent positions of zebrafish appa and appb: the Austrian mutation (human 

APP T714I), found at the γ-secretase cleavage site, which presents with classic AD histopathology 

and increased Aβ-42:Aβ-40 ratio [11]; the Leuven mutation (human APP E682K), found at the 

(lesser known) β’-secretase cleavage site, reduces processing by this anti-amyloidogenic secretase 

and results in increased processing by β-secretase [12]; and the Arctic mutation (human APP 

E693G), occurring close to the α-secretase cleavage site, sees reduced levels of α-secretase 

processing thought to be due to altered APP localisation, with a subsequent shift to processing by 

β-secretase [13]. At the time of this study, we failed to design a sgRNA to target the most 

extensively studied fAD mutation at the γ-secretase cleavage position, the London mutation 

(human APP V717I) [14]. Fortunately, due to different design constraints, we were able to order 

a TALEN to target this residue’s codon. We also designed sgRNAs to target near the start codons 

of both zebrafish appa and appb with the intention of generating null mutations. We found that, 

of the 7 sgRNAs and 1 TALEN tested, only 3 were able to induce DSBs. Unfortunately, with our 

knowledge at the time this study was being undertaken, we were unable to introduce fAD missense 

mutations through HDR. However, we have identified two sgRNAs that can be used to introduce 

fAD mutations, and we discuss ways in which this could be achieved in future studies. Finally, we 

identified a sgRNA that was able to generate DSBs near the start site of appb. This sgRNA was 

used successfully to generate a putative null mutation of appb and is discussed in detail in Chapter 

4. 
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Figure 3.1 Overview of the CRISPR/TALEN mutational strategy employed in the work described in this 

chapter. A) Protein alignment of the Aβ peptide region of human APP (isoform hs APP695), zebrafish Appa 

(dr Appa) and zebrafish Appb (dr Appb). Secretase cleavage positions are indicated above the alignment. 

Red text indicates amino acid residues that are not conserved where there is a consensus of two between 

any two sequences. B) Overview of fAD mutations discussed in Chapter 3. Yellow highlighting indicates 

conserved residues. i) Names of potential mutation sites to be targeted by genome editing technology, ii) 

overview of mutational strategy for zebrafish Appa (dr Appa) and iii) zebrafish Appb (dr Appb). Specific 

genome editing technology used in this study to target each mutation position is indicated in text. Successful 

or unsuccessful generation of a DSB at each of the targeted positions is indicated by a green tick or a red 

cross respectively. C) Sequence and representation of TALEN arms designed by ZGeneBio targeting the 

London mutation equivalent position in zebrafish Appb. D) Example of CRISPR design using sgRNA 

targeting near the appb start codon. Grey labelled boxes under the sequence indicate the first Exon, with 

the pale grey box indicating specifically the 5’UTR. The green box indicates the start codon. Yellow and 

red boxes indicate the sgRNA binding site and PAM site respectively. Blue ovals indicate positioning of the 

Cas9 protein and yellow strand indicates the sgRNA position during DSB induction. 

 

3.2 Results and Discussion 

Assessment and selection of APP fAD mutations to target 

The zebrafish has been used comprehensively as a model for human disease research [as reviewed 

in 15]. We aimed to generate several mutations in the zebrafish appa and appb genes, including 

null mutations and fAD-like mutations. We hoped to observe their effects on molecular/signalling 

events and to investigate whether fAD-like mutations in the zebrafish are appropriate models of 

the analogous mutations in humans. We intended to compare the effects of the appa and appb 

fAD-like mutations with the effects of fAD-like mutations in zebrafish psen1, psen2 and sorl1. 
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We also intended to compare the null mutants with the effects of fAD-like mutations in zebrafish 

psen1, psen2, appa, appb and sorl1. Closer inspection of the protein alignment between zebrafish 

Appa, Appb and human APP revealed residues that are conserved within the α-, β- and γ-secretase 

cleavage regions (Figure 3.1, A). A selection of residues that are mutated in fAD have been 

highlighted and relevant cleavage positions marked. 

When selecting human APP fAD mutations to be introduced, three criteria were considered. 

Firstly, the selected mutations should give an even coverage across the length of the Aβ peptide 

region of the APP protein. Secondly, the mutations should be at one of each of the α, β and γ-

secretase cleavage positions within the Aβ peptide region (Figure 3.1, A). Lastly, in order to make 

use of the zebrafish system, the human APP fAD mutant amino acid residues needed to be 

conserved in the equivalent zebrafish App protein sequence. Following these criteria, the Arctic, 

Leuven, Austrian and London human APP fAD mutations were selected for introduction into the 

zebrafish genome by genome editing technologies (Figure 3.1, B). 

The “Swedish” mutation is the most well characterised human APP fAD mutation. An initial 

alignment of the zebrafish Appa and Appb amino acid sequences against human APP revealed a 

lack of conservation of the residues affected by the “Swedish” mutation at the β-secretase sites of 

these proteins (Figure 3.1, B). Therefore, we decided to model the Leuven human APP fAD 

mutation at the alternative β’-secretase site, the equivalent residue of which only occurs in 

zebrafish Appa [12]. The APP fAD mutation at the γ-secretase cleavage position that has been 

most extensively studied is the “London” mutation, hence this is a good candidate [16]. The 

“Austrian” mutation occurs three residues upstream of the “London” mutation and has been quite 

intensively studied due to its effects on Aβ peptide production [11]. Of the reported fAD human 

APP mutations (Alzforum mutations database, https://www.alzforum.org/mutations/app) no 
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pathogenic mutations existed directly at the α-secretase cleavage site. The “Arctic” mutation was 

selected as the closest human APP fAD mutation to the α-secretase site that was also conserved in 

both zebrafish Appa and Appb (Figure 3.2). Later it was discovered that a mutation at the α-

secretase cleavage site (K16N) does exist and is potentially pathogenic [17], however, this 

mutation is only conserved in Appa, hence we proceeded with the “Arctic” mutation (Figure 3.1, 

B). 

Although this mutation is not directly positioned at the site of α-secretase cleavage it does affect 

this cleavage event [18]. It is thought to affect cleavage by reducing the abundance of APP at the 

cell surface, thereby reducing its availability for cleavage by α-secretase. Instead it is cleaved by 

the alternative β-secretase pathway [18]. The relative positions of each mutation of interest can be 

found in Table 3.1 A complete list of APP mutations can be found online at 

https://www.alzforum.org/mutations/app.  

 

Table 3.1 The fAD mutations of the human APP gene to be edited into the zebrafish genome 

using CRISPR/Cas9 technology and TALENs 

Human 

APP 

mutation 

Equivalent 

zebrafish 

Appa 

mutation 

Equivalent 

zebrafish 

Appb 

mutation 

Description and reference 

(https://www.alzforum.org/mutations/app) 

System used 

to generate 

mutation 

T714I 

Austrian 

T682I T638I Single AA substitution at γ-sec cleavage 

site. MOA = 36.3yrs. Increased A42/40 

CRISPR 

and 

TALEN 
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Design of CRISPR sgRNAs for analysis 

Transcription activator-like effector nucleases (TALENs) are a popular tool used for editing 

genomes by the induction of DSBs. Recently, the CRISPR/Cas9 system has grown in popularity 

for its ability to easily generate mutations of interest in many organisms. One disadvantage with 

ratio in HEK293 cells, mouse primary 

neurons and Plasma [11, 19]. 

E693G 

Arctic 

E661G E617G Single AA substitution between α-sec and 

γ-sec cleavage sites, closer to the α-sec 

site. MOA = 59.7yrs. Decreased A42/40 

ratio in HEK293 cells [13]. 

CRISPR 

E682K 

Leuven 

E650K N/A Single AA substitution at the B’-sec 

cleavage site. MOA = 61yrs.  

Increased A42/40 ratio in CHO cells and 

mouse primary neurons [12]. 

CRISPR 

V717I 

London 

V685I V641I Single AA substitution at γ-sec cleavage 

site. MOA = 53.2yrs. Increased A42/40 

ratio in Chinese hampster ovary cells, 

HEK293 cells and mouse primary neurons 

[11, 19, 20]. 

TALEN 

Notes - TM = transmembrane domain, MOA = mean onset age of fAD. AA = amino acid. yrs = years. All 

work will be done with the Tuebingen (TU) strain of fish since this was the strain used to generate the 

zebrafish genome sequence. 
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this system is the additional constraints when designing and using CRISPRs. For Cas9 to 

successfully recognise a target sequence, a protospacer adjacent motif (PAM) sequence is required 

3’ of the sgRNA and upstream of the crRNA binding region [7]. The use of the T7 promoter to 

transcribe gRNAs means that the sequence “GG” is required at the 5’ end of the transcript, which 

reduces the range of targetable sequences [7]. Taken together these constraints would mean that 

any sequence of the form 5’ GG-N(18)-NGG 3’ is available for targeting by CRISPR/Cas9, 

occurring once in every 128bps of random DNA sequence [7]. However, a study by Hwang et al 

(2013) found that this targeting range could be expanded to once in every 8bps by relaxing the T7 

promoter rule [21]. There are currently extensive options for designing and preparing CRISPR 

sgRNAs for generating mutations. During our design phase, we found a method described by 

Hwang et al (2013) which boasted a greater than 10% somatic mutation rate in the zebrafish [7]. 

The online “ZiFit targeter” tool was used to identify potential CRISPR/Cas target sites for each of 

the selected mutations (http://zifit.partners.org/ZiFiT/ChoiceMenu.aspx) [22, 23]. This targeting 

software was originally developed by the Zinc Finger Consortium for Zinc Finger engineering and 

was later updated to identify sequences that fit the standard CRISPR/Cas9 constraints discussed 

above. When using the “CRISPR/Cas9 nuclease” link of the software, the length (in nucleotides) 

of target site of “20” and “T7 promoter” options were selected. A region of approximately 2,000 

nucleotides was run through the software to identify target sites close to the codon of interest 

(supplementary data file S1). 

ZiFit identified oligonucleotides to generate an Arctic-like mutation in Appb but could not identify 

oligos for generating an Austrian-like mutation in Appb or a Leuven-like mutation in Appa. The 

previously mentioned study by Hwang et al (2013) discussed and demonstrated a method to 

overcome the 5’ requirement of the software. Induction of site specific mutations was 
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accomplished by the addition of two guanines (“GG”) to the 5’ end of sgRNA sequences that are 

not complementary to genomic DNA target sequences [21]. This method was adopted when 

designing the Austrian-like Appb and Leuven-like Appa sgRNAs (supplementary data file S2, 

Table S1). 

When designing the initial CRISPR sgRNAs in 2014, there was a limited number of published 

studies using this technology in the zebrafish. As a result, we failed in our attempts to design an 

sgRNA to target the fAD “London” missense mutation in appb. To overcome this, the London 

mutation position was targeted using TALEN technology, which has different targeting 

constraints. Approximately 200 nucleotides up- and down-stream of the London appb TALEN 

target sequence was supplied to ZGeneBio, who designed and constructed appropriate TALEN 

arms (Figure 1, C) (http://www.zgenebio.com/). 

To corroborate the sgRNA target sites suggested by the “ZiFit” targeting software, sequences 

around the sgRNA sites were analysed using the online CRISPRscan software 

[http://www.crisprscan.org/ [24]]. CRISPRscan generates a score calculated using a mathematical 

model that predicts mutagenic activity based on the sgRNA target sequence [24]. Sequences 

containing approximately 50 nucleotides either side of the already designed sgRNAs 

(supplementary data file S2, Table S1) were submitted to the online software. Moreno-Mateos et 

al (2015) found that sgRNAs with a CRISPRscan score above 55 were able to efficiently cleave 

the DNA at the position of interest whereas sgRNAs that scored above 70 were highly efficient 

[24]. CRISPRscan returned sgRNA sequences that matched our previous designs and the scores 

of these are presented in supplementary data file S2, Table S1. Arctic appb sgRNA returned a 

score of 61, suggesting this should cleave efficiently. The appa and appb start site sgRNAs were 

also identified using CRISPRscan. The former returned a score of 70 suggesting it should be highly 
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efficient, while the latter returned a score of 66 suggesting it should also efficiently cleave the 

DNA. The Austrian appb sgRNA was not identified using CRISPRscan. This is perhaps 

unsurprising as this sgRNA required the addition of 5’GG in order to meet design requirements. 

Multiple attempts were made to identify the predicted Austrian sgRNA, including using 50 

nucleotides of genomic DNA sequence either side of the sgRNA sequence without 5’GG, sgRNA 

sequence with additional 5’GG and also using 50 nucleotides of cDNA (exons only) either side of 

the sgRNA sequence equivalent from the NCBI database (one nucleotide difference). None of the 

attempts successfully identified the Austrian sgRNA as an option. Similarly, CRISPRscan was 

unable to identify the Leuven appa sgRNA designed through ZiFit. However, the program did 

return an sgRNA that closely resembled ours, with a score of 34, suggesting cleavage by this 

similar sgRNA would be inefficient. 

The sgRNAs discussed above were designed to be constructed and transcribed via a method 

previously described in zebrafish (The “ADDGene method”) [7]. We also designed an additional 

appa start site sgRNA, Austrian appb sgRNA and an sgRNA to target the Austrian mutation 

position in appa, to be constructed via an adapted “PCR method”, rather than the method 

mentioned above [25] (supplementary data file S2, Table S2). When analysed with CRISPRscan, 

the appa start site sgRNA returned a score of 81 and the Austrian appa sgRNA returned a score 

of 66. Unlike the Austrian appb sgRNA designed for the first method [7], the Austrian appb 

designed at an alternative position returned a score of 79, suggesting it should be highly efficient 

in cleaving the DNA. 
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Identifying successful NHEJ events induced by CRISPR/TALENs 

In order to generate mutations by non-homologous end joining (NHEJ) or to engineer mutations 

at a specific site by HDR, there must first be induction of a double-stranded break in the DNA at 

the position of interest. The cell has two major mechanisms for repairing DSBs, NHEJ and HDR. 

NHEJ re-connects DNA breaks, with nucleotides around the break point gained or lost as a part of 

this process. This often results in frameshifts that introduce a premature stop codon around the 

target site [8]. Therefore, NHEJ is often exploited in genome editing as a means of destroying gene 

function. In contrast, HDR allows for precise changes to be made using a template DNA sequence 

that is homologous to the sequence around the DSB [9]. 

 

Table 3.2 Successful or unsuccessful generation of mutations by CRISPRs or TALENs 

App 

isoform 

Technology Intended mutation sgRNA construction 

method 

Mutations 

detected 

appb TALEN London/Austrian Addgene - 

appa CRISPR Leuven Addgene - 

appb CRISPR Arctic Addgene + 

appb CRISPR start site (Geneart) Addgene +  

appa CRISPR start site (Geneart) Addgene - 

appa CRISPR start site (PCR) PCR - 

appa CRISPR Austrian (PCR) PCR + 

appb CRISPR Austrian (PCR) PCR - 
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Each of the sgRNAs (presented in supplementary data file S2, Tables S1 and S2) along with the 

TALEN pair were first tested for whether they could successfully introduce a mutation via NHEJ. 

Mutations induced by injected CRISPR and TALENs were detected using a T7 endonuclease-

based assay and gel electrophoresis. DNA strands of a region approximately 500-1000bp 

(spanning the sites of interest) containing either; 1) insertions or deletions (indels) from NHEJ 

following successful cleavage by CRISPR/Cas9 or TALENs, or, 2) uncleaved WT strands, were 

denatured and re-annealed at random. Non-perfectly matched (i.e. heteroduplex) DNA was 

cleaved by T7 endonuclease and visualised (Figure 3.2)  

Analyses using PCR and T7 endonuclease revealed that the TALEN pair designed to target the 

Austrian and London mutation positions in zebrafish appb was unable to generate a mutation. 

Similarly, sgRNAs designed to target the Leuven mutation equivalent site in appa, Austrian 

mutation equivalent site in appb and the start codon of appa were unable to introduce mutations. 

sgRNAs designed to target the Arctic mutation equivalent site in appb, the Austrian mutation 

equivalent site in appa and the start codon of appb were successful in generating mutations. This 

data is summarised in Table 3.2. 

Note: + indicates successful double-stranded break induction, - indicates that genome editing 

technology was unsuccessful in generating a double-stranded break. The “sgRNA construction 

method” refers to the methods used to generate sgRNAs for microinjection. 
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Figure 3.2 Schematic depiction of the T7 endonuclease I mutation detection assay. (A) 500-1000bp of the 

genomic DNA surrounding the TALEN/CRSIPR target site is amplified via PCR. (B) The PCR amplified 

fragments are denatured and allowed to reanneal slowly, resulting in both homoduplex and heteroduplex 

formation. (C) T7 endonuclease 1 enzyme is applied, cleaving heteroduplexes and leaving homoduplexes 

uncleaved. (D) The T7 treated mix is separated on agarose gel. In this example, two sgRNAs have been 

tested for their ability to generate double-stranded breaks. An identical banding pattern is observed for 

both untreated and T7 endonuclease treated fragments for the example sgRNA 1, suggesting no cleavage 

(all homoduplexes). The * next to the T7 + lane of sgRNA2 represent alternative bands resulting from 

heteroduplex cleavage (suggesting a possible mutation). From top of ladder lane (in descending order), 

ladder sizes for each visible band are 500bp, 400bp, 300bp, 200bp and 100bp. 
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Sequencing the APPa 5’UTR region 

In order to test the efficacy of the sgRNA targeting just downstream of the start codon of appa, 

primers that could detect DSBs at this site needed to be designed. However, the 5’UTR region 

identified from database entries (ENSEMBL, NCBI and USCS), was incomplete. When searching 

through the available sequence for appropriate primer sites, highly repetitive regions and blocks 

of undetermined sequence were observed. Therefore, we needed to characterise the genomic 

sequence upstream of the start codon in order to be able to design primers that would bind in this 

region.  

Using the available sequence, primers were first designed to amplify ~1000bp upstream of the start 

codon (supplementary data file S2, Table S3). PCR amplification of the region upstream of the 

start codon was performed on multiple Tübingen-strain fish from different families in order to 

identify common polymorphisms. The PCR-amplified strands were sent for Sanger sequencing 

(Australian Genome Research Facility, SA, AUS). The multiple sequences were combined to 

generate a consensus sequence. The sequence of genomic DNA upstream of the start codon (also 

including Exon 1 and part of Intron 1) can be found in supplementary data file S3. 

 

Attempting to engineer precise fAD mutations into appa and appb 

To engineer a specific mutation using genome editing technologies the appropriate system can be 

co-injected with an oligonucleotide template encoding the desired mutation [21]. The sequence of 

this single-stranded oligonucleotide (ssON) template can then be repaired into the genome via 

HDR. In human APP, the Austrian fAD mutation results from a single substitution of ACA to 

ATA [11]. As can be observed on the Aβ peptide region alignment (Figure 3.1, B, Austrian 
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residue), the Threonine (T) residue at position 714 in human APP695 is conserved in zebrafish 

Appa, while its nucleotide sequence at the equivalent codon is ACC. We designed a custom ssON, 

where the zebrafish appa nucleotide sequence was substituted from ACC to ATA, to emulate the 

substitution that occurs in the human APP Austrian fAD mutant nucleotide sequence 

(supplementary data file S2, Table S4). In order to increase the likelihood of detecting successful 

incorporation of the Austrian-like Appa mutation, silent substitutions were made in some codons 

so that mutation specific primers would be less likely to bind to wildtype sequence (supplementary 

data file S2, Table S4). The Arctic fAD mutation results from substitution of GAA to GGA in 

human APP [26]. The glutamic acid (E) residue at position 693 in human APP695 is conserved in 

zebrafish Appb (Figure 3.1, B). However, the nucleotide sequence corresponding to the Arctic 

residue in zebrafish appb (GAG) is not conserved with human APP (GAA). Therefore, we 

designed a custom ssON where the zebrafish appb nucleotide sequence was substituted from GAG 

to GGA, to emulate the substitution that occurs in the human APP Arctic fAD mutant nucleotide 

sequence (supplementary data file S2, Table S4). 

Oligonucleotides coding the Austrian-like appa and Arctic-like appb fAD missense mutations 

were co-injected with the corresponding sgRNA that had been shown to successfully induce 

mutations via NHEJ. PCR was performed on groups of 10 embryos at 24hpf, using primers that 

had been designed to bind specifically DNA sequences containing the incorporated 

oligonucleotides (supplementary data file S2, Table S5). Neither the Austrian-like appa nor Arctic-

like appb oligonucleotides were detected via PCR, suggesting they were not incorporated by HDR. 
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3.3 Conclusion and Future Directions 

In this study, we designed and tested CRISPR/Cas9 sgRNAs and a TALEN for their ability to 

successfully generate mutations in the zebrafish app genes. The single TALEN designed to target 

the Austrian/London mutation positions in appb was unsuccessful. However, 1 of the 4 sgRNAs 

designed to target sites within appa (Austrian) and 2 of the 3 sgRNAs designed to target sites 

within appb (start codon and Arctic) were able to successfully generate DSBs. Single-stranded 

oligonucleotides coding for the Arctic-like and Austrian-like fAD missense mutations were co-

injected with the successful sgRNAs. However, we could not detect incorporation of the 

oligonucleotides into the appa or appb genes by PCR. Therefore, we were unable to introduce the 

Artic-like and Austrian-like fAD missense mutations into the zebrafish genome. 

During our sgRNA design stage, Hwang et al (2013) tested the efficiency of sgRNAs in zebrafish 

and reported successful generation of mutations in 8 of 10 sgRNAs (targeting 10 different 

endogenous genes) tested, with those 8 successful sgRNAs having high mutational frequencies 

[7]. However, our rate of successful double-stranded break induction in the appa and appb genes 

in zebrafish was much lower than that. Only 3 of the 7 CRISPR sgRNAs tested in this study were 

able to generate mutations sufficiently to be detected by our methods. Recent studies suggest that 

local chromatin structure may have an effect on the efficiency of genome editing by CRISPR/Cas, 

as there may be limited access to certain sites in the genome that are more tightly packaged when 

editing is attempted [6, 27, 28]. It is also possible that this limited activity may result from the 

differences between eukaryotic chromatin structures and DNA packaging in the prokaryotes, from 

which the CRSIPR system was originally adapted, as Cas9 was derived from a prokaryotic enzyme 

[28]. In a study investigating the effects of chromatin on efficient Cas9 mutagenesis, Uusi-Mäkelä 

et al (2018) observed that, while a lack of chromatin openness reduced the efficiency of DSB 
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induction, lower gene expression levels were also associated with the inability of CRISPR/Cas9 

to effect mutagenesis [28]. Interestingly, their findings also suggested that genes that become 

active at the maternal to zygotic transition (MZT) are more accessible for Cas9 and therefore 

undergo more efficient mutagenesis. In the zebrafish embryo, MZT spans the period of just after 

fertilisation to the shield stage of gastrulation (i.e 6hpf) [29]. When looking at the expression levels 

of both appa and appb during early developmental stages using the EMBL-EBI “Expression atlas” 

(https://www.ebi.ac.uk/gxa/home, [30]) we observed that both genes had low expression during 

the recorded stages of early development aligning with MZT (blastula 128-cell to gastrula shield) 

(supplementary data file S4, Figure S1). This low expression during MZT may explain our limited 

success in targeting these genes with CRISPR sgRNAs. 

Although two of the CRISPR sgRNAs targeting fAD missense mutation equivalent sites in 

zebrafish appa and appb in our study appeared to generate mutations (and, hence, could generate 

DSBs), sequences from the corresponding oligonucleotide template donor DNAs carrying the 

mutations of interest were unable to be incorporated. This could be due to several factors. One 

such factor is the nature of the HDR process, which has been observed to be inefficient in the 

zebrafish, averaging only 3-4% success when attempting to incorporate specific mutations by 

providing an ssON template [31]. Instead, cells generally prefer to repair breaks in their DNA by 

NHEJ, perhaps dues to the increased activity of NHEJ over HDR in the developing zebrafish 

embryo [32]. Options for overcoming these factors include inhibiting NHEJ and stimulating HDR, 

both of which are discussed in more detail below. Another factor is the optimal length of the HDR 

template molecule, which is still debated, as is the effect of this on HDR efficiency [31, 33]. 
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Enhancing DSB formation 

While CRISPR/Cas9 mediated genome editing has many benefits over alternative methods, there 

are also challenges. Site-specific genome editing can be restricted in some cases due to the absence 

of an NGG (PAM) at the precise position being targeted. When attempting to precisely engineer a 

mutation via HDR, the most efficient position at which to generate the DSB is within 10-20bp of 

the desired change. One group has recently attempted to overcome these challenges by engineering 

Cas9 PAMs with novel specificities [34]. A previous attempt to change the PAM recognition site 

had varying results. Anders et al (2014) mutated the two residues that contact the guanine 

nucleotides of the NGG to R1333Q/R1335Q respectively. However, this mutant Cas9 was unable 

to cleave a site at the newly expected NAA PAM in vitro [35]. It was later confirmed by Kleinstiver 

et al (2015) that this variant is unable to cleave NAA target sites efficiently [34]. They also tested 

both variants separately. However, the expected NAG and NGA PAM’s were also ineffective [34]. 

They investigated the efficiency of two smaller Cas9 orthologues from different bacteria, termed 

St1Cas9 and SaCas9, which have alternative PAM specificities1 with some success [34]. Feng et 

al (2016) have now shown that both SaCas9 and its variant, KKH SaCas9 (that recognises a relaxed 

NNNRRT PAM) can be utilised in zebrafish with a mutational frequency of up to 90% [36]. Such 

studies highlight the potential for finding alternatives for targeting challenging sites in zebrafish 

in the future. 

Another recent development in the field of genome editing is the Cpf1-containing class 2 CRISPR 

system (recently renamed Cas12a [37]), which has been identified as a potential alternative to the 

commonly used type II CRISPR/Cas9 systems [38]. Some of the advantages of this new system 

 
1 Alternate PAM specificities are NNAGAA, NNGGAA, NNAGGA, NNAGCA, NNACCA, NNATAA, NNAAAA, 
NNGGGA (i.e. NNRRRA) for St1Cas9 and NNGGGT, NNGAAT, NNGAGT (i.e. NNGRRT) for SaCas9 
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are as follows: 1) being a single crRNA-guided endonuclease, Cas12a does not require tracrRNA 

to processes crRNA, potentially simplifying design and delivery of this system. 2) DSBs generated 

by Cas12a result in a staggered 5’ overhang. This is advantageous compared to the blunt ends 

generated by Cas9 as it enables the design of DNA templates that can be inserted directionally by 

NHEJ rather than via HDR mechanisms. 3) The PAM site for Cas12a is T rich (5’-TTN) as 

opposed to the G rich Cas9 PAM (5’-GGN). This opens possibilities for targeting regions of the 

genome that are richer in A/T. These are only a few of the many potential advantages of this system 

[38]. Two Cas12a protein variants have been successfully used in mammals previously for genome 

editing, AsCas12a and LbCas12a [39]. One of the benefits of these variants observed thus far has 

been the extension of target recognition to T-rich sequences such as non-coding RNAs, 5’UTR 

and 3’UTR etc (PAM 5’ TTTV), among other things [40]. Despite the benefits of CRISPR-Cas12a, 

previous studies reported reduced activity in Drosophila and plants [41-44]. Moreno-Mateos et al 

(2017) performed a study in which they characterised and optimised CRISPR-Cas12a for zebrafish 

and Xenopus tropicalis [39]. Their study found that the amount of Cas12a activity both in vitro 

and in vivo was temperature sensitive, which could help to explain the previously reported 

reduction of activity in some organisms [41, 44]. Interestingly, they found that incubating injected 

embryos at 34°C for up to 48hpf increases the mutagenic activity of Cas12a [39]. More 

importantly, their study also found that co-injection of CRISPR-LbCas12a along with single 

stranded donor DNA significantly increased the efficiency of homology directed repair (HDR) in 

zebrafish [39]. A recent study by Liu et al (2019) further investigated the use of Cas12a in the 

zebrafish by modifying crRNA in the direct repeat region and stem loop [45]. In the case of 

standard pre-crRNA processing, mature crRNAs are produced with a shorter Direct Repeat (DR) 

sequence. Liu et al (2019) explored the effects of modifying crRNA to have the pre-processing 
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full-length Direct Repeat (DRf-crRNA) and observed higher editing efficiency compared to 

mature crRNA produced by the native system. Interestingly, when they further modified DRf-

crRNA by substituting two of the A:U pairs to G:C within the stem loop region of the DR (DRf-

GC@13-crRNA) they found an even higher editing efficiency than DRf-crRNA [45]. Their study 

also investigated the use of another Cas12a variant, FnoCas12a, which has most recently been 

adapted for use in mammalian cells. FnoCas12a recognises a TTN PAM, which differs from the 

TTTV PAM of the previously discussed LbCas12a and AsCas12a. Their successful use of 

FnoCas12a in the zebrafish adds yet another option for gene editing, offering greater targeting 

flexibility and making it an attractive option for future studies. Cas12a opens new possibilities for 

targeting the zebrafish appa and appb sites that were unsuccessfully targeted in this study. 

 

Enhancing HDR 

While successful incorporation of the single stranded oligonucleotide template DNA carrying the 

mutation of interest was not achieved by co-injection in this study, it is now possible to suppress 

the NHEJ pathway by treating zebrafish embryos with the NHEJ inhibitor SCR7 [19]. Zhang et al 

(2018) saw a significant improvement in HDR mutation incorporation efficiency in zebrafish when 

treating with SCR7 [19]. Very recently, Askoy et al (2019) investigated a different NHEJ inhibitor, 

NU7441. They found that NU7441 improved their CRISPR-mediated genome editing rate by up 

to 13.4-fold [46]. Interestingly (and conversely to the study by Zhang et al), they saw minimal or 

no increase in HDR efficiency with SCR7. They suggested several possible explanations for this 

observation and ultimately concluded that successful HDR stimulation using SCR7 is likely 

context-specific [46]. 
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The HDR pathway can also be stimulated by treatment with RS-1 [46]. Zhang et al (2018) also 

tested RS-1 in the zebrafish and, as with SCR7, found significant improvement in HDR efficiency 

[19]. Most importantly, their study found that a combination of these treatments greatly increases 

the efficiency of HDR, in the case of their target mutation, to around 74% [19]. Applying this 

combination of treatments to the sgRNAs tested in this study may enable successful generation of 

zebrafish carrying the human APP fAD Arctic mutation equivalent in appb and/or the human APP 

fAD Austrian mutation equivalent in appa. 

Finally, other research attempting to improve HDR efficiency used an sgRNA targeting exon 6 of 

the zebrafish albino gene to attempt to revert the mutation. They then tested donor DNA templates 

of various lengths for HDR, finding that only the larger DNA fragments (between 986 bp and 3.8 

kb) gave efficient sequence incorporation [20]. In order to overcome the toxicity sometimes 

observed when co-injecting large linear DNA fragments, they designed circular plasmid donor 

DNAs. These circular donors comprised the linear template DNA fragment flanked by two 

CRISPR target sites that allow the plasmid to be linearised within cells [20]. By employing this 

strategy, they achieved 46% efficiency in detection of reversion in mosaic fish, although only 10% 

of 3-day-old larvae reached adulthood. In this study the linear donor DNA templates tested were 

only 50 bp in length. At the time of design of our study there was no consensus on the most 

appropriate template length for HDR repair. The large circular donor DNA method could easily 

be adapted to carry the Arctic-like appb and Austrian-like appa mutations for delivery into the 

zebrafish in hopes of improving the chance of successful incorporation. 
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Conclusions 

Generating APP fAD mutations in endogenous zebrafish appa and appb is an important step 

towards allowing us to make more meaningful transcriptomic analyses of fAD mutations in the 

APP gene. This study has identified and tested sgRNAs targeting a variety of APP fAD mutation 

loci for their ability generate DSBs. Of the 7 sgRNAs tested, 4 were unable to cleave the DNA at 

their target loci. Similarly, the single TALEN tested in this study failed to generate a DSB at the 

Austrian/London position in zebrafish appb. 3 sgRNAs with the ability to generate DSBs were 

also identified. However, introduction of the desired mutation through HDR was not achieved for 

the 2 sgRNAs targeting fAD APP mutation sites, namely the fAD Arctic (appb) and Austrian 

(appa) mutations. The combined use of SCR7 (or NU7441) and RS-1 treatments, after co-injection 

of sgRNAs and oligonucleotide templates, may allow us to successfully inhibit NHEJ, stimulate 

the HDR machinery and inevitably introduce these fAD APP mutations. The third successful 

sgRNA, targeting the appb start site, was used to generate an appb null mutation which will be 

discussed in detail in the following chapter (Chapter 4).  

Future attempts to generate DSBs at the Austrian/London sites in appb as well as the Leuven site 

in appa should make use of the recently improved understanding of site accessibility and should 

be attempted with new technology, such as Cas12a. The collection of APP fAD mutation models 

produced would be an immensely valuable resource for further research on APP activities. 
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3.4 Methods 

Ethics 

This work was conducted under the auspices of the Animal Ethics Committee of the University of 

Adelaide and in accordance with EC Directive 86/609/EEC for animal experiments and the 

Uniform Requirements for manuscripts submitted to Biomedical journals. 

 

Generation of TALEN coding sequences 

TALEN coding sequences were designed by, and purchased from, Zgenebio 

(http://www.zgenebio.com/). The DNA binding sites for the TALEN pair targeting the London 

mutation equivalent site within exon 16 of zebrafish appb were (5’ to 3’): left, 

GGGGGGCGTGGTCATCG and right, GAGCATAACCAGAGTGA (Figure 3.3). 

 

Generation of sgRNA coding sequences 

Oligonucleotide templates for each sgRNA to be constructed (supplementary data file S2, Table 

S1) were provided by SIGMA Aldrich Australia (Castle Hill, NSW). Due to the rapid development 

of CRISPR technology, two different methods were used to construct sgRNAs. In the first method 

(“ADDGene”), oligonucleotides encoding sgRNAs from initial designs (supplementary data file 

S2, Table S1) were cloned into the pDR274 plasmid (https://www.addgene.org/42250/) as 

previously described in [7]. In the second “PCR” based method (adapted from a method developed 

for Drosophila), forward primers for the template synthesis PCR consisted of target sites for 

sgRNAs (that were selected based on their CRISPRscan score) flanked by a T7 polymerase 

binding site and a region complementary to a common reverse primer [25]. These primers, 



130 
 

presented in supplementary data file S2, Table S2, were annealed to the common reverse primer 

with sequence: 5’-

AAAAGCACCGACTCGGTGCCACTTTTTCAAGTTGATAACGGACTAGCCTTATTTTAA

CTTGCTATTTCTAGCTCTAAAAC-3’, and amplified via PCR using Phusion HF DNA 

polymerase (New England BioLabs, Ipswich, MA, USA) with the following cycling conditions; 

98°C for 30 seconds, 34 rounds of 98°C for 10 sec, 60°C for 30 sec, 72°C for 15 sec, then 72°C 

for 10 mins. The resulting template was purified using the Wizard® SV Gel and PCR Clean-Up 

System (Promega, Madison, Wisconsin, USA, A9281). 

 

In-vitro mRNA synthesis 

The coding sequences of the TALENs were provided in the pZGB4 vector for in-vitro mRNA 

synthesis. TALEN-containing plasmids were linearised with Not I and purified using the Wizard® 

SV Gel and PCR Clean-Up System (Promega, Madison, Wisconsin, USA, A9281). Purified 

linearised DNA was used as a template for in-vitro mRNA synthesis using the mMESSAGE 

mMACHINE T7 transcription kit (Thermo Fisher, Waltham, USA) as per the manufacturer’s 

instructions. 

The sgRNA-containing pDR274 plasmid was linearised with HindIII and purified using the 

Wizard® SV Gel and PCR Clean-Up System (Promega, Madison, Wisconsin, USA, A9281). 

Purified linearised DNA or purified PCR reaction product was used as a template for in-vitro 

mRNA synthesis using the HiScribe™ T7 High Yield RNA Synthesis Kit (New England BioLabs, 

Ipswich, MA, USA) as per the manufacturer’s instructions. The mRNA was precipitated using 
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ammonium acetate as described in the “MAXIscript” kit procedure (Thermo Fisher, Waltham, 

USA). 

 

Microinjection of zebrafish embryos 

sgRNA and Cas9 mRNA or Cas9 nuclease (protein) were co-injected into one-cell stage zebrafish 

embryos. Cas9 mRNA was synthesised using the mMESSAGE mMACHINE T7 transcription kit 

(Thermo Fisher, Waltham, USA) as per manufactures instructions. Cas9 protein was purchased 

from ToolGen (ToolGen, Geumcheon-gu, Seoul, South Korea). 

In the first attempt to generate the Arctic, Leuven and Austrian mutations, each embryo was 

microinjected with a ~3 nl solution containing 12.5ng/µl of sgRNA and 300ng/µl of Cas9 mRNA 

or 12.5ng/µl of sgRNA and 500ng/µl of Cas9 nuclease (protein). If a single-stranded 

oligonucleotide was also co-injected with sgRNA and Cas9 (Arctic), it was at a final concentration 

of 50ng/µl. In the second attempt, embryos co-injected with approximately 3 nl of a solution 

containing 200ng/µl of sgRNA and 1.5µg/µl of Cas9 nuclease (protein) (Invitrogen, Carlsbad, 

California, USA). For TALEN injections, embryos were microinjected with an approximately 3 nl 

mixture of 100ng/µl of left and right TALEN mRNA. Embryos were inspected using a light 

microscope at 24 hpf and only embryos that had developed normally were selected for analysis of 

genome editing.  
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Genomic DNA extraction from zebrafish embryos and tail clips 

A random selection of 10-25 injected embryos was collected at 24 hpf. Once grown into adults (~3 

months old), a small section of the dorsal fin (~3 mm) was removed with a sterile scalpel blade 

under anaesthesia (Tricaine solution, 1.68 μg/mL). 

Embryos or tail fin tissue were placed in 50µl of a 17mg/ml solution of Proteinase K (Roche, 

Basel, Switzerland) with 1XTE and then incubated at 55-65°C until digestion was complete (2-4 

hours). The solution was then placed at 95°C for 5 mins to inactivate the Proteinase K. This was 

then centrifuged at maximum speed for 2 mins to sediment cellular debris. The supernatant was 

transferred into a clean microfuge tube ready for subsequent PCR [47]. 

 

Mutation detection assays 

Mutation due to NHEJ of double-stranded DNA breaks was detected by either the GeneArt 

Genomic Cleavage Detection Kit or the T7 endonuclease I method adapted from Reyon et al 

(2012) [48]. Targeted genomic loci were amplified from the pooled genomic DNA of ten injected 

embryos using primers designed to anneal ~500 base pairs upstream and downstream from the 

expected cut site using the GeneArt Kit (Thermo Fisher, Waltham, USA) as per manufacturer’s 

instructions. In the T7 endonuclease I method, loci were amplified with GoTaq polymerase (New 

England Biolabs, Ipswich, Massachusetts, USA) and the resulting DNA was re-annealed under the 

following conditions; 95°C for 5 mins then ramped down from 95°C-85°C at a rate of -2°C/sec, 

followed by ramping down from 85°C-25°C at a rate of -0.1°C/sec. After reannealing, 1µl of T7 

endonuclease I (New England Biolabs, Ipswich, Massachusetts, USA) was added to the PCR 



133 
 

products and the entire mixture was incubated at 37°C for 15 mins. The mixture was then analysed 

by electrophoresis on a 2% agarose gel that was run at 90V for 1hr. 

 

Sanger sequencing 

The genomic region surrounding the Arctic mutation sgRNA target site was PCR amplified using 

“Arctic and Austrian appb F” and “Arctic and Austrian appb R” primers (supplementary data file 

S2, Table S5). The purified appb Arctic genomic DNA fragments were then used for Sanger 

sequencing with the “Arctic appa” sequencing primer (supplementary data file S2, Table S5) 

(Australian Genome Research Facility, SA, AUS).  The genomic region surrounding the appa 

5’UTR/Exon 1 region was PCR amplified using appa 5’UTR amplification forward and reverse 

primers (supplementary data file S2, Table S3). The appa 5’UTR PCR fragments were cloned into 

pGEM-T Easy (Promega, Madison, Wisconsin, USA) and sequenced with M13 forward and 

reverse primers (Australian Genome Research Facility, SA, AUS). 

 

Multiple sequence alignment to identify an appa consensus sequence upstream of the start codon 

The appa nucleotide sequences generated by Sanger sequencing were aligned to each other along 

with the appa genomic DNA sequence from the zebrafish SANGER database (SSS10789, 

https://www.sanger.ac.uk/) using the online tool “MUSCLE” 

(https://www.ebi.ac.uk/Tools/msa/muscle/). Differences between the Tübingen fish sequenced for 

this study and the available database sequence were identified by eye and a consensus sequence 

was compiled (supplementary data file S3). 
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2.3 Supplementary Information 

This section is included in the thesis as information supplementary to Chapter 3. It contains 

additional information not included in the main text of the manuscript. 

 

File S1. Sequences run through Zifit targeter software to identify sgRNA sequences 

(A)  The ~2000bp of the zebrafish appb sequence that was used to identify sgRNA sequences 

to target the fAD “Arctic” mutation is included below: 

 Yellow highlight and brackets indicate the specific residue we wished to mutate 

5’- 

ATGGGTATAGACCGCACGGTATTCCTGCTGTTAATGCTGACGACTTTGTCCCTCGCCATCGA

GGTGCCGTCGGATGACTCGGTGGGCTTGTTGGCGGAGCCTCAGGTGGCCATGTTCTGTGGGA

AACTCAACATGCATATCAACGTCCAGAGTGGCAAGTGGGAGCCTGATCCAACTGGCACCAA

GAGCTGCATCAGCACCAAAGAGGGCATCCTTAAATACTGCCAAGAGGTATACCCAGACCTC

CAGATCACTAATGTAGTGGAGGCCAACCAGCCTGTCAGCATCCAGAACTGGTGCAAAATGG

GTCGCCGCCAGTGCCGCAGTCACACGCACATTGTTGTTCCCTACCGTTGCCTGGTTGGGGAG

TTTGTCAGCGATGCCCTCCTCGTCCCAGATAAGTGCAAGTTCTTGCACCAGGAGCGAATGGA

CATGTGCGAGAGTCATCTACACTGGCATACAGTGGCCAAAGAGTCCTGTGGTGATCGCTCCA

TGAATCTGCATGATTATGGTATGCTGTTGCCGTGTGGAATCGACCGTTTCCGGGGCGTGGAG

TTTGTGTGCTGCCCAATGGAGGAGCAGAAAGACTTGGACAGTGAGGAGCAGGAGGAGGCTA

ACTCTGACGTGTGGTGGGGCGGTGCTGAGACTGAGTACACTGACGCCAGCGTGCTGAAAGA

ACAGGTCACAGCCAAGCCTGATCCTGCAGTGACTGAGGATGATGAGGATCTCAACAATGAG

GAAGAGGAAGTCTGGGACAACGATGAAGACGGTGACGGTGAAGATGATGAAGATGAGGAG

GACGATGATGAAGATATAATCGATGAGCAAGACACCAGTGAACAGACCTCCAACATTGCAA

TGACGACCACCACCACAACCACAACAGAGTCCATAGAGGAGGTTGTGCGAGTGCCAACCAT
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GGCCCCGAGCCCTGCTGATGCGGTGGATCGTTACCTGGAAGCTCCAGGAGATATGAACGAA

CACATGCGCTTCCAGAAGGCAAAGGAGAGCCTGGAGGCCAAACACCGAGAGAAAATGTCA

GAGGTGATGAGGGAATGGGAGGAGGCCGAGAGACAGGCCAAGAACCTTCCTCGTGCTGATA

AGAAGACCATAATTCAGCGCTTCCAGGAGAAGGTGGAGTCGCTGGAGAAGGAAGCGGCTGG

AGAGAGACAGCAGCTGGTGGAAACGCACATGGCTCGAGTGGAGGCCCTACTGAATGACCGC

CGCCGTCAGGCTCTGGAAAGCTACCTGAGCTCCCTTCAGTCTGACCAGCCTCGGCCTCGGCA

GGTGCTGAATCTGTTGAAGAAGTATATCCGTGCGGAGCAGAAGGACCGTCAGCACACTCTC

AAACACTTTGAACACGTGCGAGAGGTCGATCCCAAGAAGGCTTCACAGATTCGGCCATTTGT

GATGACCCACCTACGTGTGATTGAGGAACGCATGAACCAGTCTTTGGGTTATCTCTATAAAG

TGCCTCAAGTGGCTAATGATATCCAGGATCAAGTGGCGGTGCTGGTTCAGCGTGATCAGGCT

GAGGTGACGCAGCAGCTGTCGTCTCTTCAGAGTAAGATGAGGGTCAGTTATGGGAATGATG

CCCTGATGCCGGATCTGCCCGACAGCACCACACCACTGGACAACCTTCCTCCAGAGCAGGAC

GGCCTGGGCTTCATCCATCCCGAGAGCTTTAACCAGGCCAACACTGACAACCACGTTGAACC

TGTAGATGCCCGTCCAATTCCCGAAAGGGGTTTGCCTACGAGACCCGAGATCCCAAAGGTTC

GGCTGGACATTGAGGAAAGGCACAACGCTGGCTATGATGTTCGTGACAAGAGACTGATGTT

CCTCGCGG[A]GGACATGGGCTCTAATAAGGGTGCGATCATTGGGCTGATGGTGGGGGGCGT

GGTCATCGCTACTGTCATCGTAATCACTCTGGTTATGCTCAGGAAGAAGCAGTACACCTCTA

TTCATCATGGAGTTATTGAGGTGGATGCGGCAGTGACTCCTGAAGAACGTCATCTGGCAAAG

ATGCAGCAGAATGGCTATGAAAACCCCACCTACAAGTTCTTTGAGCAAATGCAGAACTAA -

3’ 
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(B)  The ~2000bp of the zebrafish appb sequence that was used to identify sgRNA sequences 

to target the fAD “Austrian” mutation is included below: 

 Yellow highlight and brackets indicate the specific residue we wished to mutate 

5’- 

ATGGGTATAGACCGCACGGTATTCCTGCTGTTAATGCTGACGACTTTGTCCCTCGCCATCGA

GGTGCCGTCGGATGACTCGGTGGGCTTGTTGGCGGAGCCTCAGGTGGCCATGTTCTGTGGGA

AACTCAACATGCATATCAACGTCCAGAGTGGCAAGTGGGAGCCTGATCCAACTGGCACCAA

GAGCTGCATCAGCACCAAAGAGGGCATCCTTAAATACTGCCAAGAGGTATACCCAGACCTC

CAGATCACTAATGTAGTGGAGGCCAACCAGCCTGTCAGCATCCAGAACTGGTGCAAAATGG

GTCGCCGCCAGTGCCGCAGTCACACGCACATTGTTGTTCCCTACCGTTGCCTGGTTGGGGAG

TTTGTCAGCGATGCCCTCCTCGTCCCAGATAAGTGCAAGTTCTTGCACCAGGAGCGAATGGA

CATGTGCGAGAGTCATCTACACTGGCATACAGTGGCCAAAGAGTCCTGTGGTGATCGCTCCA

TGAATCTGCATGATTATGGTATGCTGTTGCCGTGTGGAATCGACCGTTTCCGGGGCGTGGAG

TTTGTGTGCTGCCCAATGGAGGAGCAGAAAGACTTGGACAGTGAGGAGCAGGAGGAGGCTA

ACTCTGACGTGTGGTGGGGCGGTGCTGAGACTGAGTACACTGACGCCAGCGTGCTGAAAGA

ACAGGTCACAGCCAAGCCTGATCCTGCAGTGACTGAGGATGATGAGGATCTCAACAATGAG

GAAGAGGAAGTCTGGGACAACGATGAAGACGGTGACGGTGAAGATGATGAAGATGAGGAG

GACGATGATGAAGATATAATCGATGAGCAAGACACCAGTGAACAGACCTCCAACATTGCAA

TGACGACCACCACCACAACCACAACAGAGTCCATAGAGGAGGTTGTGCGAGTGCCAACCAT

GGCCCCGAGCCCTGCTGATGCGGTGGATCGTTACCTGGAAGCTCCAGGAGATATGAACGAA

CACATGCGCTTCCAGAAGGCAAAGGAGAGCCTGGAGGCCAAACACCGAGAGAAAATGTCA

GAGGTGATGAGGGAATGGGAGGAGGCCGAGAGACAGGCCAAGAACCTTCCTCGTGCTGATA

AGAAGACCATAATTCAGCGCTTCCAGGAGAAGGTGGAGTCGCTGGAGAAGGAAGCGGCTGG

AGAGAGACAGCAGCTGGTGGAAACGCACATGGCTCGAGTGGAGGCCCTACTGAATGACCGC

CGCCGTCAGGCTCTGGAAAGCTACCTGAGCTCCCTTCAGTCTGACCAGCCTCGGCCTCGGCA
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GGTGCTGAATCTGTTGAAGAAGTATATCCGTGCGGAGCAGAAGGACCGTCAGCACACTCTC

AAACACTTTGAACACGTGCGAGAGGTCGATCCCAAGAAGGCTTCACAGATTCGGCCATTTGT

GATGACCCACCTACGTGTGATTGAGGAACGCATGAACCAGTCTTTGGGTTATCTCTATAAAG

TGCCTCAAGTGGCTAATGATATCCAGGATCAAGTGGCGGTGCTGGTTCAGCGTGATCAGGCT

GAGGTGACGCAGCAGCTGTCGTCTCTTCAGAGTAAGATGAGGGTCAGTTATGGGAATGATG

CCCTGATGCCGGATCTGCCCGACAGCACCACACCACTGGACAACCTTCCTCCAGAGCAGGAC

GGCCTGGGCTTCATCCATCCCGAGAGCTTTAACCAGGCCAACACTGACAACCACGTTGAACC

TGTAGATGCCCGTCCAATTCCCGAAAGGGGTTTGCCTACGAGACCCGAGATCCCAAAGGTTC

GGCTGGACATTGAGGAAAGGCACAACGCTGGCTATGATGTTCGTGACAAGAGACTGATGTT

CCTCGCGGAGGACATGGGCTCTAATAAGGGTGCGATCATTGGGCTGATGGTGGGGGGCGTG

GTCATCGCTA[C]TGTCATCGTAATCACTCTGGTTATGCTCAGGAAGAAGCAGTACACCTCTA

TTCATCATGGAGTTATTGAGGTGGATGCGGCAGTGACTCCTGAAGAACGTCATCTGGCAAAG

ATGCAGCAGAATGGCTATGAAAACCCCACCTACAAGTTCTTTGAGCAAATGCAGAACTAA -

3’ 
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(C) The ~2000bp of the zebrafish appa sequence that was used to identify sgRNA sequences 

to target the fAD “Leuven” mutation is included below: 

 Yellow highlight and brackets indicate the specific residue we wished to mutate 

5’-

ATGCGGTCGAGGGAGCTCTTCATATTACTGATGGCCGTCGCGTCGACGCTCGCGGTGGAGGT

GCCGTCAGACTCCGGGACGGGGCTTCTGGCCGAGCCACAGATCGCCATGTTCTGCGGGAAA

CTCAACATGCACATCAACATCCAGAGCGGGAAATGGGAGCCGGATCCGTCCGGAAGCAAGA

GCTGCATCGGGAATAAAGAGGGAATCCTGCAGTACTGCCAGGAGGTGTATCCGGAGCTGCA

GATCACCAATGTGGTGGAGGCCAATCAGCCGGTCAGCATCTGGGACTGGTGTAAGAAGAGC

CGCAAGCAGTGCCGCAGTCACATGCACATCGTAGTGCCGTACCGCTGCCTGGTTGGGGAGTT

TGTCAGCGATGCTCTGCTGGTTCCTGATAAGTGTAAGTTCCTGCATCAGGAGCGCATGGACA

TGTGTGAGAGTCACCTGCACTGGCACACCGTCGCCAAAGAGTCGTGTGGTGACCGCAGCATG

AATCTGCATGATTATGGGATGCTGTTGCCGTGTGGAATTGACCGTTTCCGGGGTGTGGAGTT

CGTGTGCTGTCCTGCAGACGCGGGTAAAGAGTCTGAGAGCGCCGCTGTGGAGGAGGACGAT

TCAGACGTGTGGTGGGGCGGAGCGGAGGCTGATTACACCGAGAACAGCATGACTCGTGATG

CCGCAGCGGAGCCGGCGGTGCTGGAGGATGATGAGGATGCGGACGAGGAAGAGGACGAGG

ATCAGGATGGAGATGGAGATCGGGACGAGAAGATAGAGGAAGAGGAGGAGGAGGAGGAG

CGCACCCAGAGCACCAGCGCAGCCCTGACCTCCACCACCACCACCACCACTGAGTCTGTAGA

GGAGGTGGTGCGAGAGGTGTGTTTTGCGAGTGCAGAGACGGGTCCCTGTAGGGCCATGTTGT

CCCGCTGGTATTATGTGCGTGAGGAGCGCCGCTGTGCGCCCTTCATCTACGGCGGCTGCGGA

GGAAACCGTAATAACTTTGAGTCGGAGGAATACTGTCTGTCCGTCTGCAGCGGTGTGTTGCC

GACTCCATCCTCCAGCCCTCCGGATGCAGTGGACCGATATCTGGAGACGCCGGCGGACGAG

AACGAACACGCTCACTTTCTACAGGCCAAAGAAAGTTTGGAGACCAAACACCGCGAGCGCA

TGTCTCAGGTGATGAGGGAATGGGAAGAGGCCGAGAGACAGGCCAAGAGTTTACCACGCAA

CGACAAGAAGGCCGTGATCCAGCACTTCCAGGAGAAGGTGGAGGCTCTGGAGCAGGAGTCG
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GCCAGCGAGCGTCAGCAGCTGGTCGAGACACACATGGCACGGGTGGAGGCTCTGCTGAACG

ACCGCCGCCGCCTCGCCCTCGAGAGCTACCTGTCTGCCCTGCAGGCCGATCCACCACGGCCT

CGTCATGTGTTCAGCCTGCTGAAGAAGTATGTACGGGCCGAGCAGAAGGACCGTCAACACA

CACTCAAACACTTCGAACACGTGCGCATGGTGGACCCCAAGAAAGCAGCACAGATACGGCC

TCAGGTGTTGACGCATCTGCGTGTGATCGAGGAGCGCATGAACCAGTCTCTCGGCCTGCTGT

ACAAAGTGCCCGGCGTTGCTGACGACATCCAGGACCAAGTCGAGCTGCTGCAGCGTGAGCA

GCAGGAGATGTCCGCTCAGTTGGCGAATCTGCAGAGTGACGCGCGTGTGAGTTATGGGAAC

GATGCGCTGATGCCCGACAGCACCGCCGGCCTGGAGCTGCTGCCCGCCGAGGACACACAGG

GGTTCGGCTTCATACACCCCGAGAGCTTCAACCAGCCCAACACACACAACCAGGTTGAGCCT

GTCGATGCCCGACCTGTTCCAGACCTAGACCTGGCAACCCGACCAGTGTCTGGACTGAAGCC

TGATGACATTCCTGAGCTGCGGATGGAAGCTGAAGAGAGACACAGTG[A]AGTCTACCACCA

GAAGCTGGTTTTCTTTGCGGAGGACGTGAGCTCCAATAAAGGAGCTATTATTGGCCTGATGG

TCGGAGGCGTCGTCATAGCAACCATCATCGTCATCACGCTGGTGATGCTGAGGAAGAAGCA

GTACACGTCCATCCACCACGGCATCATCGAGGTGGACGCGGCCGTGACTCCAGAGGAGCGT

CATCTGTCTAAGATGCAGCAGAACGGCTATGAAAACCCCACCTACAAGTTCTTTGAGCAGAT

GCACAACTGA-3’ 
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(D)  The ~1300bp of the zebrafish appa sequence that was used to identify sgRNA sequences 

to target the start codon is included below: 

 Yellow highlight and brackets indicate the specific residue we wished to mutate 

5’-

ACTAAATAATTTATATATTATACCTTATAACGAACACATCCCTGACTGAAAAGTTAAATATT

AATTAATTAACATTTAATAGATAATTAAAATGTATACTATTTCTTTTTTATTATAACATCAAT

TAGATCATTATTGTGTTTAACTATTACATTTCTATAAAATAGATAACTTATAAATGATATTTT

AAAAAGTAGATGCCTGACTATAGACTTAAATATTTGATTGTTTTTCTCAATATAAAATATATA

CGTTTTCTTTTTTTATTATTATATAAAATATGTATTCGATCACAATTATATTTGTTTGTACTTTT

TGTCAAATACGTTTTTAAAAATATAAAAAACAGATGCTTGTATCAGATCATAGTTGATTTATT

TATTATATTAAATAATTTATATATTATAAAATATAATAAACACATCCCTGCCCGAAAAAAAT

ATATCTTATTTTTCTAAAATTATGATATATACCTTTCATTTTATTTTTATTATTAATTTATTTTT

TATTTCTCACAGCACATTATGTAAATAAGCTCCTTCCTTGATCATTGATTGGCGTGTTCTCCG

TTTGCTCCTCCCCCTACCGTGACGTACGGCTCTGATTCTCACCGCAGGCGCATCGCGTTCTTC

ACAGAGCCACAAACACATCGACATTCATTCACAGCGAACGGATAAATCTAAATACAACCAA

AAACACAGAAGGAAAGGCGAAATAAAGAGGAGCAGAAGC[ATG]CGGTCGAGGGAGCTCTT

CATATTACTGATGGCCGTCGCGTCGACGCTCGCGGTGGAGGTAAGAAAACGACAAAAGATA

ACGTTACGTTTGATCTCTGAGGTAAAACATATTCACAACTGACGATTATTCCTATAGAGTCCT

ATTGAGCCTTGATATTTAATGTTTTGAGGCGTGTAAATGTTAGATGTGTTATCATTTCATCTG

CTGGTGTGGATTATTCGGTGAAGATGTTCGCTGGACGGGCGGAATGTGTAGCGGGATCAGCC

GCGTTACATCAGCGTTACATTTAAAACATCGATGATTAATTCATACTGTACACTGTAACGCA

TCTGCTTATTAATATTAATAAACAAACTGACGCGCTAAAAATACCGCGAGTGTCGGTGGTGG

TAAACGCGTTTATAACATTCACTGCGTTACATGTTCACATTCTGTTGATTTGTATTGATTCAA

TGGACAAATGTTGTGTTTATAGTGGTTTTTAGTCGATGTTTAACCTTAGACGATGGTTTAATA

TCGAATAATAAGGCTTCCACGAATAATATGGCTCCCAGTGTTGTGGTTGTGAAATATGATTT
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AATATTCCCTCGAGCTATGCTGGTGTCAGTGGGTGTGTAGGGAGGGAACTTGATTTTATGAC

GCTC-3’ 

 

 

(E)  The ~450bp of the zebrafish appb sequence that was used to identify sgRNA sequences 

to target the start codon is included below: 

 Yellow highlight and brackets indicate the specific residue we wished to mutate 

5’-

CACACGATAGGGGCACACGGAGCAGAAAATCGCGACAGAAAAACCCTGATCCGCTCAGGAT

ATATATTCACCAGGACGTGCTGCGCTTGGGAACACAGCC[ATG]GGTATGGACCGCACGGTAT

TCCTGCTGTTAATGCTGACGACTTTGTCCCTCGCCATCGAGGTAAGAATGATTGTGTAATGG

AGAAGGAGCTTGGTTCTCCTCCATACTTTAAAGGGCGGCCTGGGAGTGAAGGGAAAACGCA

TGACACGGATGCAGACAGACATTTTGGGCGCTGCATGATTGGCATTTGCAAGATGATCGTTT

TTTATAATGCAATATATATGTTTATATTTGGGACGTGCGAGTTTTAAATCGGTTAGTGTTGGG

TGGAGGCTTCTGGTGCAGGCTGCTTTACACTAATAGTATCAGGCGTAGTGTAGCGCGTGAAA

GTGATACACATCACTGAA-3’ 
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File S2. Supporting tables. 

Table S1. sgRNAs designed for the ADDGene method using Zfit targeter, with respective 

CRISPRscan scores. 

 N/A indicates that an sgRNA was not identified via CRISPRscan software.  

 All sequences are 5’-3’. 

 

 

  

Gene- 

mutation 

Target site Oligo 1 Oligo 2 CRISPRscan 

score 

Appb-

Arctic 

GGAGGACATGG

GCTCTAATA 

TAGGAGGACATG

GGCTCTAATA 

AAACTATTAGAGC

CCATGTCCT 

61 

Appb-

Austrian 

GGTACTGTCATC

GTAATCACTC 

TAGGTACTGTCAT

CGTAATCACTC 

AAACGAGTGATTA

CGATGACAGTA 

N/A 

Appa-

Leuven 

GGTGAAGTCTAC

CACCAGAAGC 

TAGGTGAAGTCTA

CCACCAGAAGC 

AAACGCTTCTGGT

GGTAGACTTCA 

N/A 

Appa- start 

codon 

GGAGCAGAAGC

ATGCGGTCG 

TAGGAGCAGAAG

CATGCGGTCG 

AAACCGACCGCAT

GCTTCTGCT 

70 

Appb- start 

codon 

GGCCATGGGTAT

GGACCGCA 

TAGGCCATGGGTA

TGGACCGCA 

AAACTGCGGTCCA

TACCCATGG 

66 
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Table S2. sgRNA primers designed for the PCR method using CRISPRscan software. 

 Red text highlights guanine nucleotides artificially inserted to fit CRISPR/Cas9 

requirements.  

 Blue text indicates the identified sgRNA target sites 

 

 

Table S3. Primers used for appa 5’UTR amplification and sequencing 

 F = forward, R = reverse 

Primer name Use Direction Primer Sequence (5’-3’) 

appa 5’UTR Amplification F ATAACGAACACATCCCTGACTGA 

appa 5’UTR Amplification R CCCACTGACACCAGCATAGC 

M13 F Sequencing F GTAAAACGACGGCCAGT 

M13 R Sequencing R AACAGCTATGACCATG 

 

Gene- 

mutation 

Backbone + sgRNA design (5’-3’) CRISPR 

scan score 

Appa- start 

codon 

GAAATTAATACGACTCACTATAGG[G]GCGTCGACGCTCGCG

GTGGGTTTTAGAGCTAGAAATAGC 

81 

Appa- Austrian GAAATTAATACGACTCACTATAGG[G]GGGCTGATGGTGGGG

GGCGGTTTTAGAGCTAGAAATAGC 

66 

Appb- Austrian GAAATTAATACGACTCACTATAGGCACCAGCGTGATGACGA

TGAGTTTTAGAGCTAGAAATAGC 

79 
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Table S4. Single-stranded donor DNA oligonucleotide templates for homology-directed 

repair 

 The codon incorporating the mutation is underlined. 

 Bold lettering indicates nucleotides that were substituted from the original genomic DNA 

sequence to give the desired mutation upon incorporation via HDR.  

 Bold red text indicates silent substitutions that were made to aid specific binding of the 

primer. 

Gene-mutation name Oligonucleotide sequence (5’-3’) 

appb-Arctic TGTTGAATCAGATGTTCCTCGCGGGAGACATGGGCTCTAAT

AAGGGTGCG 

appa-Austrian ATGGTCGGAGGCGTCGTCATAGCGATAATCATCGTCATCA

CCTTGGTGAT 

 

 

Table S5. Primers used to identify double-stranded breaks induced by TALEN/CRISPR and 

to detect successful incorporation of ssONs carrying the mutation of interest. 

 F = forward, R = reverse 

Primer name Use Direction Primer sequence (5’-3’) 

Arctic and Austrian 

appb F 

T7 assays F GAACCTGTAGATGCCCGTCCAA 

Arctic and Austrian 

appb R 

T7 assays R CGCTGCTCAGTAGGTATTCACTTGC 
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Arctic appa Sequencing F CCGTCCAATTCCCGAAAG 

London appb F T7 assays F CCTGTAGATGCCCGTCCAA 

London appb R T7 assays R GCTGCTCAGTAGGTATTCACTTGC 

Leuven appa F T7 assays F CAGTGTCTGGACTGAAGCCTG 

Leuven appa R T7 assays R TTTCCCTCACACAACCACAG 

appa start codon F T7 assays F GGCTCTGATTCTCACCGCA 

appa start codon R T7 assays R CTTCACCGAATAATCCACACCAG 

appb start codon F T7 assays F CTCCAACCTCCGAGTCCATTCT 

appb start codon R T7 assays R TGCGTTTTCCCTTCACTCCC 

Arctic appb F ssON detection F AATCAGATGTTCCTCGCGGGAG 

Arctic appb R ssON and WT 

detection 

R CGCTGCTCAGTAGGTATTCACTTGC 

Arctic appb WT F WT detection 

(ssON expt) 

F AATCAGATGTTCCTCGCGGAGG 

Austrian appa F ssON detection F GATAATCATCGTCATCACCTTGG 

Austrian appa R ssON detection R CATTTCTGACCGTGATCTGGC 

Austrian appa WT F WT detection 

(ssON expt) 

F GCAACCATCATCGTCATCAC 

Austrian appa WT R WT detection 

(ssON expt) 

R CTCCCCGAACCCTCCTCA 
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File S3. Sequence containing the region of genomic DNA just upstream of the start codon of 

appa generated by Sanger sequencing 

 Blue text indicates exon 1 sequence.  

 Start codon is indicated in bold blue text. 

 

5’-

ATAACGAACACATCCCTGACTGAAGTTAAATATTAAATAATTAACATTTAGTAGATAATTAA

AATGTATACTATTTATTTTTTATTATAACATCAATTAGATCATTATTGTGTTTAACTATTACAT

TTCTATAAAATAGATAACTTATAAATGATATTTTAAAAAGTAGATGCCTGACTATAGACTTA

AATATTTGATTGTTTTTCTCAATATAAAATATATACGTTTTCTTTTTTTATTATTATATAAAAT

ATGTATTCGATCACAATTATATTTGTTTGTACTTTTTGTCAAATACGTTTTTAAAAATATAAA

AAAACAGATGCTTGTATCAGATCATAGTTGATTTATTATATTAAATAATTTATATATTATAAA

ATATAATAAACATATCCCTGCCCGAAAAAATATATCTTATTTTTCTAAAATTATGATATATAC

CTTTCATTTTATTTTTATTATTAATTTATTTTTTATTTCTCACAGCACATTATGTAAATAAGCT

CCATTCCTTGATCATTGATTGGCGTGTTCTCCGTTTGCTCCTCCCCCTACCGTGACGCGCGGC

TCTGATTCTCACCGCAGGCGCATCGCGTTCTTCACAGAGCCACAAACACATCGACATTCATT

CACAGCGAACGGATAAATCTAAATATAACCAAAAACACAGAAGGAAAGGCGAAATAAAGA

GGAGCAGAAGCATGCGGTCGAGGGAGCTCTTCATATTACTGATGGCCGTCGCGTCGACGCT

CGCGGTGGAGGTAAGAAAACGACAAAAGATAACGTTACGTTTGATCTCTGAGGTAAAACAT

ATTCACAACTGACGATTATTCCTATAGAGTCGCATTGAGCCTTGATATTTAATGTTTTGAGGC

GTGTAAATGTTAGATGTGTTATCATTTCATCTGCTGGTGTGGATTATTCGGTGAAGATGTTCG

CTGGACGGGCGGAATGTGTAGCGGGATCAGCCGCGTTACATCAGCGTTACATTTAAAACATC

GATGATTAATTCATACTGTACACTGTAACGCATCTGCTTATTAATATTAATAAACAAACTGA

CGCGCTAAAAATACCGCGAGTGTCGGTGGTGGTAAACGCGTATATAACATTCACTGCGTTAC

ATGTTCACATTCTGTTGATTTGTATTGATTCAATGGACAAATGTTGTGTTTATGGTGGTTTTTA
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GTCGATGTTTAACCTTAGACGATGGTTTAATATTGAATAATAAGGCTTCCACGAATAATATG

GCTCCCAGTGTTGTGGTTGTGAAATATGATTTAATATTCCCTCGAGCTATGCTGGTGTCAGTG

GG-3’ 
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File S4. Expression levels of appa and appb during early development 

  

Figure S1. Screen shots from the EMBL-EBI “Expression atlas” showing expression levels of appa and 

appb during early developmental stages. Legend at the bottom of the figure indicates expression level by 

colour. 
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Chapter 4 – Preliminary analysis of a putative null mutation in zebrafish 

appb 

4.1 Introduction 

γ-secretase is an important protease complex due to its cleavage of over 100 substrates within their 

transmembrane domains [1, 2]. γ-secretase plays a role in Alzheimer’s disease (AD) through its 

processing of APP to produce the aggregation-prone Aβ peptide [3]. Sequential processing of APP 

that produces the Aβ peptide is thought to be a major mechanism affected in AD disease 

progression, as described by the amyloid cascade hypothesis [4]. In this hypothesis, when APP is 

processed by β-secretase (BACE1) followed by γ-secretase, the Aβ peptide is released. This is in 

contrast to the processing of APP by α-secretase followed by γ-secretase, which releases the non-

amyloidogenic P3 peptide [5]. However, as mentioned previously, although Aβ accumulation into 

plaques is evident in the disease, there is no quantitative relationship between this and other factors 

of the disease [6]. There are many alternative hypotheses that attempt to explain this disparate 

relationship between Aβ plaques and other factors. One such hypothesis is the Hypoxia/Ischemia 

hypothesis. 

 

Local hypoxia refers to a state in which part of the body lacks adequate oxygen supply to tissue. 

Ischemia is one of the more common causes of hypoxia and refers to times where there is 

insufficient blood flow to a tissue. Interestingly, ischemia has been observed in the brains of 

individuals experiencing Mild Cognitive Impairment (MCI), which is a condition considered a 

precursor to dementia [7]. APP, β-secretase (BACE1) and γ-secretase expression have all 

previously been found to be increased during hypoxia while α-secretase expression is decreased 

[7, 8]. It is presumably this shift that results in an observed increase in Aβ production under 
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hypoxic stress. Some studies have also suggested that oxidative stress, induced by acute hypoxia, 

may increase APP cleavage by γ-secretase [8]. Furthermore, stimulation of oxidative stress due to 

accumulation of Aβ peptides has also been found to occur, which would create a positive feedback 

loop potentially accelerating brain aging [8]. Hypoxia-inducible factor 1 (HIF-1) is considered the 

master transcriptional regulator of the cell’s responses to hypoxia. HIF-1 is a transcription factor 

consisting of both an oxygen-regulated α subunit and a constitutively expressed β subunit. The 

oxygen-regulated HIF1-α subunit is degraded under normal oxygen conditions (normoxia), 

whereas, under hypoxia this subunit is stabilised and translocated to the nucleus. Once in the 

nucleus, HIF1-α and HIF1-β dimerise and can induce expression of hypoxia-regulated genes 

[reviewed in 9]. During hypoxia, HIF-1 induces transcription of over 70 HIF-1 responsive genes 

(HRGs) including IGFBP3 and EDN1 [10]. These HRGs can be used to measure the hypoxic 

response in genetically modified organisms. 

 

Zebrafish are widely used to study genetic influences on diseases as their genome is approximately 

70% conserved with humans [11]. A study by Moussavi Nik et al (2012) found that transcription 

of zebrafish genes encoding Bace1 and Appa and Appb, along with Psen1 and Psen2 (the active 

components of γ-secretase), are also induced by hypoxia [12]. This finding suggests that regulation 

of these genes by hypoxia is conserved in the zebrafish, making it a good model for studying the 

mechanisms by which hypoxia/ischemia might lead to AD. Recently, observations by Newman et 

al (2019) revealed an interesting response to hypoxia in the brains of zebrafish carrying fAD-like 

mutations in the psen1 gene [13]. When measuring HRGs, they saw an acceleration of normal age-

dependent changes in the brains of their mutant zebrafish. This supports the idea that age is one of 

the major risk factors for AD. Further investigation of the hypoxic response of fAD-like mutations 
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in other fAD mutant genes (psen2, appa, appb and sorl1), may provide further support to the notion 

that, not only is age a risk factor for AD, but AD is actually an inevitable consequence of aging. 

In Chapter 3, it was established that sgRNAs designed to target the Arctic mutation in appb, the 

Austrian mutation in appa and the start site of appb were successful in generating double-stranded 

breaks (DSBs). The purpose of targeting the start site of appb was to generate a null mutation. One 

original aim for this project was to generate zebrafish null models both for appa and appb, so that 

the effects of complete loss of these proteins could be compared to the effects of fAD-like 

mutations in zebrafish psen1, psen2, appa, appb and sorl1 using transcriptomic analyses. A long-

term goal of the laboratory is to perform these analyses in the hopes of identifying common 

molecular changes between fAD-like mutations, to assist in our understanding of the molecular 

progression into AD. 

 

In this study, the identification of a null mutation of appb will be outlined, along with some 

preliminary experiments conducted to investigate whether loss of appb expression, and therefore 

a loss of Appb protein, affects the response to acute hypoxia in zebrafish brain. Furthermore, 

successful breeding of the putative appb null to produce homozygous mutant fish was achieved. 

These fish can now be utilised in future transcriptomic analyses to contribute to the wider 

laboratory program, to identify the molecular “signature” of AD. 

 

4.2 Results and Discussion 

Screening F0 founders for potential null mutations 

The appb start site sgRNA, that was shown to induce DSBs in Chapter 3, was co-injected with 

Cas9 protein into fertilised one cell stage embryos. Embryos injected with appb sgRNA were 
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raised to adulthood and will henceforth be referred to as “F0” or “founder” fish. At ~3 months of 

age, founder fish were screened across the 5’UTR/Exon 1 region for potential mutations that would 

prevent translation of Appb protein. Screening was performed using primers amplifying a 345bp 

fragment spanning the 5’UTR/Exon 1 region of the appb gene, ~216bp upstream and ~129bp 

downstream of the PAM site (Figure 4.1). 

 

Figure 4.1 appb start site, sgRNA binding site, and primer design. – a) region of 5’UTR and exon 1 

sequence within which primers were designed to amplify genomic DNA for T7 cleavage assays. The appb 

start site sgRNA binding site is represented by the black bar, the PAM by the red bar. The green box 

highlights the start codon in exon 1 of appb. The forward primer sequence is highlighted in blue and the 

reverse primer binding site is highlighted in yellow. Lowercase letters represent 5’UTR sequence, while 

uppercase represent sequence from exon 1. The sequence in this figure reads 5’-3’. 

 

Of the 15 adult fish that were biopsied by tail clipping in the initial founder screen, T7 

endonuclease 1 assays identified 11 individuals that were positive for what could potentially be an 

appb null mutation (Figure 4.2 B). As CRISPR/Cas9 can generate DSBs continuously as the 

embryo develops, zebrafish founders injected with the CRISPR/Cas9 system are generally mosaic 

for mutations [14]. Therefore, founders that were positive for mutations were outcrossed to wild 

type, Tübingen (TU), fish and the progeny of these crosses (F1) were screened for germline-

transmitted mutations. 
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3 of the 11 founder fish were selected to be outcrossed to wildtype for mutation screening. Fish 

F0-1, F0-3, F0-6, F0-7, F0-10 and F0-13 displayed a banding pattern corresponding to the cleavage 

fragment sizes predicted from the DSB test (figure 4.2 B). Fish F0-3 and F0-6 from this cohort 

were initially selected for further breeding and analysis. Interestingly, our screen also revealed a 

single band above the larger of the predicted (216bp) cleavage fragments in fish F0-5, F0-12 and 

F0-13 (figure 4.2 B). It was suspected that this discrepancy may be indicative of a larger 

deletion/insertion introduced through NHEJ. Fish F0-5, displaying this unexpected banding pattern 

was therefore selected for further breeding and analysis. Fish F0-11, F0-14 and F0-15 also 

displayed aberrant banding patterns to those described above, that were not present in the wildtype 

and did not correspond to the predicted fragments but were not selected for further analysis. 

 

 

Figure. 4.2. Analysis of F0 founder fish generated from appb start site sgRNA injections – a) appb start 

site sgRNA binding site at the boundary of 5’UTR and exon 1 (Ex1). The sgRNA sequence is indicated in 

blue text and is underlined. The 3bp PAM sequence is indicated in red text; b) T7 endonuclease I assay of 
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F0 founders. Each label number above the gel image represents an arbitrarily numbered adult zebrafish 

and the wildtype control is labelled WT; c) the sequence of zebrafish appb around the sgRNA binding site 

for founder fish F0-3, F0-5 and F0-6 (from the gel images in b), above). Dashes indicate deleted 

nucleotides; red and lowercase text indicates an inserted nucleotide. 

 

 

Attempting to identify appb mutations in F0-5 and F0-6 founder fish 

In order to identify potential mutations in our selected founder fish, a random pool of 10 embryos 

from the separate outcrossing of wildtype to F0-5 or F0-6 were first screened to confirm germline 

transmission (supplementary data file S1, Figure S2). A further screen of 6 adult F1 progeny from 

fish F0-5 revealed that approximately 67% (4/6) were positive for the same banding pattern that 

was observed in Figure 4.2 B, indicating that these fish are transmitting a mutation (supplementary 

data file S1, Figure S3). These positive F1 progeny (F1-5.2, F1-5.3, F1-5.4 and F1-5.6) of F0-5 

outcrossed to wildtype were sequenced using the Sanger method to identify any mutations present 

near the start codon. Unfortunately, Sanger sequencing did not reveal any mutations at or around 

the start codon (supplementary data file S2, Figure S6). The absence of a mutation at the start 

codon in these F1 fish suggests that potential mutations observed from tail clippings of F0-5 fish 

do not exist in both tail fin cells and the germline. However, it is also possible that only a few of 

the embryos in the original random pool that was used for screening carried the detected mutant 

genotype. Therefore, as individual adult F1 generation zebrafish were selected for sequencing 

randomly, it could be purely chance that this genotype was not represented in the sequencing. This 

result could be due to the mutation not being carried through to all cells in the germline of the F0 

fish. Another possibility to explain this result may be the presence of a natural polymorphism 

within the 5’UTR and exon 1 region that was used for screening. 
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Screening of 39 adult F1 progeny from fish F0-6 crossed with wildtype, revealed that 

approximately 8% (3/39) carry a banding pattern identical to that of the founder fish, which aligns 

with the predicted fragments expected from DSB induction by this sgRNA (Figure 4.2 B). 

Interestingly, some fish showed faint bands that do not align with the original cleavage pattern as 

seen in Figure 4.2 B (supplementary data file S1, Figure S4). Sanger sequencing of F1 fish 6-13, 

that carries the same banding pattern as F0-6, revealed a 3bp deletion within the 5’UTR/Ex1 region 

(Figure 4.2 C, supplementary data file S2, Figure S7). Unfortunately, the 3bp deletion isolated in 

this mutant fish would not result in the appb transcript being read out of frame hence an (almost) 

full length Appb protein would be generated (supplementary data file S2, figure S9). Since neither 

of the F0-5 or F0-6 lines carried a mutation that would result in an Appb null protein they were 

not included in further analyses. 

 

Identification of a putative appb null mutation in founder fish F0-3 

A pool of 10 randomly selected embryos from the outcrossing of F0-3 to a wildtype fish was also 

screened, confirming germline transmission (supplementary data file S1, Figure S5 a). Further 

screening of 20 adult F1 fish from this mating by T7 endonuclease 1 assay, showed that 10% (2/20) 

of these F1 progeny carry the same banding pattern as F0-3 as shown in Figure 4.2 B 

(supplementary data file S1, Figure S5 b-e). Sanger sequencing performed on F1 fish F1-3.8 of 

this mating identified a single C-insertion mutation at position 13 in the 5th codon (supplementary 

data file S2, Figure S8). In silico translation of cDNA containing the C-insertion using the ExPASy 

software [15] revealed a frameshift, resulting in replacement of the arginine for proline at position 

5 in the amino acid sequence, followed by replacements of all amino acids up until the premature 
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stop codon (PTC) at position 26 in the amino acid sequence. Therefore, the appb C-insertion 

mutant will henceforth be referred to as appbR5PfsTer26 (Figure 4.3).  

 

Figure 4.3. Outline of appbR5PfsTer26 mutation. Red star indicates position of the single C insertion that 

shifts the protein out of frame, resulting in an early stop codon, indicated by black box and star. 

 

Prediction of alternative start site priming for this mutant using the NetStart 1.0 prediction software 

[16], suggests that the start site that gives the truncated protein is preferred (supplementary data 

file S3, Figure S10). An additional search for alternative methionine (start codons) within the first 

and second exons of zebrafish appb that could re-initiate translation, as displayed on the Ensembl 

genome browser (https://asia.ensembl.org/index.html), revealed that there are no alternative start 

codons in either of these exons. Also, translation of appbR5PfsTer26 obtained from the ExPASy 

software (supplementary data file S3, Figure S11) showed that there are no alternative start codons 

for the correct reading frame downstream of the PTC. 

 

 

Breeding the appb null mutant to generate families of WT, heterozygous and homozygous fish for 

analysis of mutational effects 

103 F1 fish from the mating of F0-3 x TU were screened for the appbR5PfsTer26 mutation. The initial 

20 fish were screened by T7 endonuclease 1 assay, while the remainder were screened using 

mutation-detecting primers. Designing primers to detect the single base pair change of the 
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appbR5PfsTer26 mutation was challenging. The appbR5PfsTer26 mutation consists of three consecutive 

cytosines, where previously there were only two. Therefore, a mutation-detecting primer was 

designed that placed the triple cytosine as close to the 3’ end of the primer as possible, as DNA 

polymerase can only synthesis in the 5’-3’direction and thus will first bind strongly to the 3’ end 

to commence replication. Approximately 13% of the 103 F1 fish screened positive for germline 

transmission of the mutation (13/103, as shown in supplementary data file S4, Table S2). Fish F1-

3.30, that was genotyped as heterozygous for the null mutation using mutation detecting primers, 

was confirmed by Sanger sequencing to carry appbR5PfsTer26. In order to minimise off target 

mutations carried through to further experiments, fish F1-3.08 (that had been confirmed by Sanger 

sequencing to carry appbR5PfsTer26) was outcrossed to a wildtype fish from a different family to 

generate an F2 family. Approximately 36% of the 33 (12/33) F2 fish that were tested, screened 

positive for a heterozygous mutation. 

 

In zebrafish, appb has previously been observed to play a role in convergent extension movements, 

development of body length and neural development [17, 18]. Involvement in these processes 

suggests a key role for appb in zebrafish development. Interestingly, we observed no obvious 

developmental abnormalities in zebrafish heterozygous for the appb null mutation. The lack of an 

observable phenotype in individuals heterozygous for this putative null mutation (as had 

previously been observed with morpholino knockdown) is perhaps not surprising, as previous 

studies have shown that phenotypes caused by morpholino knockdown are most often different to 

those observed from genetic mutations that have produced null alleles in the same gene [19]. 
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Generating homozygous appb nulls for phenotypic analysis and future transcriptomic analyses 

Further breeding of appbR5PfsTer26 mutant zebrafish was conducted in order to; 1) investigate the 

potential of generating zebrafish that were homozygous viable for appbR5PfsTer26, and 2) generate 

families containing a combination of heterozygous, homozygous and wildtype genotypes for 

multiple three-way comparisons (i.e. pairwise comparisons between heterozygous/homozygous, 

heterozygous/wildtype and homozygous/wildtype for later transcriptomic and other analyses). 

Therefore, a pair of heterozygous appbR5PfsTer26 fish were mated to produce an F2 generation family 

that should contain a combination of heterozygous, homozygous and wildtype in a 2:1:1 ratio. The 

progeny of this original mating were raised to 5dpf, at which point we observed their phenotype 

to look for any changes that might be associated with homozygous siblings. 

 

Since we previously observed no phenotype in heterozygous individuals, we were surprised to 

observe phenotypic changes from this mating. We classified larvae from this mating into 3 

phenotypic groups (supplementary data file S5, Figures S12, S13 and S14): severe (with 

phenotypic traits ranging from: tail curved down, edema, short tail and up curved fish [20]), 

mild/moderate (up curved tail, down curved fish (mild) [20] and under-developed swim bladder) 

and wildtype (normal). These larvae were then harvested for genomic DNA and genotyped to 

determine whether genotypes correlated with the observed phenotype groups. Unexpectedly, 

genotypes did not align with our predictions from the observed phenotypes. We expected larvae 

displaying severe phenotypes to be homozygous for appbR5PfsTer26, whereas mild/moderate 

phenotypes might be homozygous or heterozygous and normal phenotypes might be heterozygous 

or wildtype. However, we observed no correlation between genotype and phenotype. Of the 21 

larvae genotyped, ~33% (7/21) were heterozygous, ~38% (8/21) were homozygous mutant and 
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~29% (6/21) were wildtype. Interestingly, no obvious phenotype was observed in the F2 offspring 

from additional mating’s of two alternative zebrafish heterozygous for the appb null mutation. 

Since the progeny of only a single pair mating was observed in this analysis, the phenotypical 

differences observed in the F2 family may have been due to individual fish variability or genetic 

impacts at genome editing other than generation of appbR5PfsTer26. For example, an off-target 

mutation may unintentionally have been created during the process of generating this mutant fish 

line. Alternatively, our laboratory has previously observed poor quality embryos produced from 

the pairing of two non-mutant TU fish. This may be due to homozygosity for deleterious recessive 

mutations present in this inbred fish line. The observation of the F2 offspring from additional 

mating’s of two alternative zebrafish heterozygous for the appb null mutation having no 

observable phenotype better fits what we would expect from the genetic compensation response. 

 

Investigating the hypoxic response of young appbR5PfsTer26 mutant zebrafish by examining HRGs  

Zebrafish are a versatile model for the genetic analysis of the response to acute hypoxia [12]. A 

previous study in our laboratory used digital real-time polymerase chain reactions (dqPCRs) to 

compare transcript levels of five HIF-1 responsive genes (HRGs) in 6-month-old zebrafish brains, 

carrying two different fAD-like mutations in psen1, after treatment with normoxia or acute 

hypoxia [13]. In the study, an expected increase in expression of HRGs was observed in wildtype 

zebrafish after treatment with acute hypoxia. Interestingly, the expression of HRGs in psen1 fAD-

like mutant zebrafish under normoxia was raised to levels similar to that of the wildtype hypoxia-

treated zebrafish, suggesting hypoxic-like stress in the young mutant brain [13]. Treatment of 6-

month-old psen1 fAD-like mutant zebrafish with acute hypoxia further exacerbated the observed 

increase in HRGs expression [13]. 
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A study using mouse embryonic fibroblasts (MEFs) suggested that the APP intracellular domain 

(AICD), generated by cleavage of the APP protein by PSEN1/2, can induce Hif1a gene expression 

and HIF-1α protein stability [21]. Furthermore, it has also been demonstrated that hypoxia 

upregulates both APP mRNA and protein expression, resulting in accumulation of Aβ [reviewed 

in 22]. If APP plays an integral role in the hypoxic response through generation of its AICD, one 

would expect that knocking out APP would reduce the brain’s ability to respond to hypoxia. Our 

study also utilised dqPCR to establish the effects that our appb putative null allele asserts on the 

HIF-1 hypoxic response, by comparing transcript levels from two HRGs: edn1 and igfbp3 [23], in 

6-month-old zebrafish brains that had been exposed to either normoxia or acute hypoxia. Unlike 

the study with psen1 fAD-like mutant zebrafish, we did not observe increased levels of HRGs in 

the normoxia treated heterozygous appb putative null mutation fish, nor did we observe the 

decrease in hypoxic response we would expect from loss of the Appb AICD. However, expression 

of both HRGs was raised under acute hypoxia in the 6-month-old brains of both wildtype and appb 

putative null zebrafish (although there was an upwards trend observed, edn1 did not reach 

significance in the wildtype) (Figure 4.4).  

 

The human APP protein has been identified in three different isoforms that occur due to alternative 

splicing of exons 7 and 8 of APP transcripts [24], the full-length isoform APP770, isoform APP751 

lacking exon 8, and isoform APP695 which lacks both exon 7 and exon 8. In zebrafish there are 

two co-orthologues of the human APP gene, appa and appb [25]. The appa orthologue shares 

greater identity to APP770 and APP751, while the appb orthologue is more closely related in 

structure to APP695. The human APP695 isoform is nearly exclusively expressed in the CNS (the 

site of increased hypoxia in AD), while APP770 and APP751 are expressed elsewhere [26]. 
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Although, structurally, appb resembles more closely the human APP695 isoform, while appa is 

closer to the APP751 and APP770 isoforms, physiologically these zebrafish genes are both 

expressed widely throughout the developing embryo. A study by Kaiser et al (2012) found that 

appa and appb were mostly redundant during zebrafish development, where messenger RNA 

(mRNA) of appa rescued the phenotype induced by Appb morpholino knockdown, and vice versa 

[27]. Hence, the observed lack of decrease of the hypoxic response in our heterozygous appb 

putative null mutants is perhaps not unexpected, as in zebrafish two healthy copies of the appa 

allele may be able to compensate for loss of the Appb AICD. Another possibility is that a single 

wildtype copy of the appb allele may be enough to sufficiently respond to hypoxia. Zebrafish 

homozygous for the appb putative null mutation should therefore be tested to investigate whether 

knocking out both copies of appb is sufficient to decrease the hypoxic response. Furthermore, the 

lack of statistical significance in induction of the hypoxic response observed when measuring edn1 

in our wildtype zebrafish brains is consistent with what has previously been observed in our 

laboratory, where recent experiments have shown that edn1 expression is only increased under 

very severe acute hypoxia (unpublished data). This variability suggests that edn1 is perhaps not 

the best marker to measure the hypoxic response in our zebrafish. 
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Figure 4.4. Hypoxia response gene expression in 6-month-old zebrafish brains under normoxia and 

hypoxia. Data points on the graph indicate relative transcript levels of edn1 (●) and igfbp3 (■) in 50ng of 

cDNA generated from a single zebrafish brain RNA sample. The genotype of each sample is indicated at 

the bottom of the graph. Normoxia treated samples are indicated with “N”, while hypoxia treated samples 

are indicated with “H” on the x-axis. 

 

4.3 Conclusions and Future Directions 

In this study, we utilised the appb start site sgRNA that was demonstrated to generate DSBs in 

Chapter 3 in an attempt to isolate appb null mutations. Three zebrafish founders were screened for 

potential appb null mutations. Of these founders, F0-5 and F0-6 did not carry a null mutation. 

Therefore, neither of these fish were selected for further breeding and analysis. However, we 

successfully identified a founder carrying a putative null mutation in appb when sequencing F1 

progeny from the F0-3 founder fish crossed with TU. This appbR5PfsTer26 mutation was carried 

through to the germline and successfully bred to produce heterozygous and homozygous families. 

In future, western blot analyses could be performed on these homozygous fish, to confirm that our 
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putative appb null leads to loss of Appb protein. A study by Kaiser et al (2012) previously used 

the 22C11 APP antibody to detect changes in the amount of zebrafish Appa or Appb protein after 

morpholino knockdown [27]. They demonstrated that the 22C11 antibody binds both Appa and 

Appb in zebrafish. Unfortunately, preliminary western blot analyses we performed using this 

antibody to detect protein changes in response to our putative appb null mutation were 

unsuccessful (data not shown). In their paper, Kaiser et al (2012) did not provide details of their 

methods using the 22C11 antibody with zebrafish protein material, hence our preliminary tests 

utilised conditions that had previously been used in mouse studies. Further testing and adaptation 

of antibody conditions in zebrafish may lead to more successful identification of the effect of 

appbR5PfsTer26 on Appb protein levels. 

 

Nonsense mediated decay (NMD) is a mechanism through which mRNAs harbouring PTCs are 

rapidly degraded [28]. The single cytosine insertion in the appbR5PfsTer26 mutant creates a PTC at 

amino acid position 26, therefore we expect that this transcript would be down-regulated by NMD. 

To measure the effect of NMD on the appbR5PfsTer26 transcript, dqPCR could be employed. Allele-

specific primers that amplify either mutant or wildtype would be utilised to directly compare 

transcript expression levels in cDNA synthesised from total RNA extracted from wildtype, 

heterozygous and homozygous mutant fish brains. If appbR5PfsTer26 is a true null, we would expect 

to see decreased, or complete loss of, expression of this allele in heterozygous and homozygous 

mutants due to NMD of the mutant transcripts. Unfortunately, preliminary attempts to design 

allele-specific dqPCR primers that could differentiate between our mutant appb fish carrying a 

single cytosine insertion and wildtype were unsuccessful (data not shown). In future, further 
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primers may be designed and conditions tested in attempts to better differentiate between these 

two very similar sequences. 

 

Previous experiments in zebrafish that used morpholinos to block appb expression resulted in 

several developmental phenotypes [17, 18]. Despite this, we observed no obvious phenotypical 

difference in our appbR5PfsTer26 putative null mutants (heterozygous or homozygous) compared to 

wildtype. However, the observed lack of phenotype in our mutant versus the developmental 

phenotypes observed for the previously studied morphants was not unexpected, as this 

phenomenon has now been observed for many genes. Rossi et al (2015) showed that phenotypic 

differences that are now commonly observed between morphants and mutants are due to the 

phenomenon of “genetic compensation” [19]. In their experiments, genetic compensation was only 

observed in zebrafish when a loss of protein function was achieved by mutation, not morpholino 

knockdown. Therefore, it is probable that the lack of phenotype observed in our appbR5PfsTer26 

heterozygous and homozygous fish is due to genetic compensation, most likely by the appb co-

orthologue appa, but also possibly by another member of the large APP family of genes such as 

aplp1 or aplp2 [29]. 

 

6-month-old wildtype and heterozygous siblings from an F2 family generated by outcrossing a 

zebrafish heterozygous for appbR5PfsTer26 to TU, were treated with either normoxia or hypoxia and 

their hypoxic response measured by dqPCRs detecting the levels of two HRGs (edn1 and igfbp3). 

We observed an increase in the transcript levels of both HRGs under hypoxia to the same extent 

as observed for wildtype fish at the same age. However, we did not observe an increase in the 

transcript levels of HRGs in the normoxia treated appb null mutants, as had been observed 
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previously for two psen1 mutants in our laboratory at the same age point [13]. In their study, 

Newman et al (2019) measured the hypoxic response in both wildtype and psen1 fAD-like mutant 

zebrafish brains at 24-months-old (which we consider to be an aged brain in zebrafish as the fish 

are no longer fertile) with some interesting findings. At 6-months-old, their mutant fish showed 

increased HRG expression under normoxia like that of 24-month-old wildtypes, suggesting that 

this psen1 fAD-like mutation accelerates brain aging. Under hypoxia, HRG transcript levels in 

wildtype fish are increased twofold relative to that of fish remaining under normoxia, while the 

HRGs of normoxic 24-month-old psen1 fAD-like mutants are expressed at very similar levels to 

HRGs in the hypoxia-treated wildtype brains. If 24-month-old psen1 fAD-like mutant brains are 

already under hypoxic stress prior to hypoxia treatment, it would be interesting to observe the 

effect our appb putative null on brain aging. As previously mentioned, the APP AICD can directly 

upregulate HIF-1α [21]. If this interaction is important for the cells ability to respond to hypoxia, 

we would expect our appb putative null zebrafish to have a decreased hypoxic response. Although 

we did not observe the expected decrease in our experiments presented in this study, the 

importance of this interaction cannot be discounted for a number of reasons. Firstly, as we 

measured the hypoxic response in zebrafish brains heterozygous for appbR5PfsTer26, there may be 

enough AICD generated by the second wildtype appb allele to sufficiently respond to hypoxia in 

these brains. This could be further investigated by measuring the hypoxic response in zebrafish 

brains homozygous for appbR5PfsTer26. Secondly, zebrafish have two co-orthologues of the APP 

gene, appa and appb. Therefore, it is possible that in our appbR5PfsTer26 zebrafish, the AICD of 

Appa can compensate for loss of Appb. Indeed, AICD is highly conserved between human, mouse 

and both zebrafish APP’s, supporting this suggestion. Analysis of the hypoxic response in a double 

knockout model of zebrafish appa and appb might be able to resolve this question. 
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In a previous mouse study, Koike et al (2012) observed a higher mortality rate when APP knockout 

mice were subjected to hypoxia. They suggested that loss of APP, or one of its cleavage fragments, 

may have increased mortality in these animals by increasing their vulnerability to hypoxia [30]. In 

their case, complete knockout of APP would mean a complete loss of the AICD, hence 

observations from their study may provide support to the idea that the interaction between AICD 

and HIF1-α is critical for the cell to respond to hypoxia. Alternatively, BACE1 expression is also 

upregulated in response to hypoxia [ref], so it is also possible that one or more β-secretase-specific 

APP cleavage fragments (such as sAPPβ or even Aβ) play an important role in the hypoxic 

response. Expression of APP in the vasculature has been observed experimentally [reviewed in 

31] and vascular dysfunction in the aging brain has been suggested to be a major risk factor for 

AD [32]. Although APPs role in the vasculature remains incompletely understood, hypoxia (in the 

form of ischemia) has been shown to upregulate both the mRNA and protein levels of APP, with 

subsequent Aβ accumulation [reviewed in 22]. It is therefore possible that APP can act as a stress 

response protein that protects the brain against hypoxia, although further investigation is needed 

to confirm this. 

 

Finally, transcriptomic analyses should eventually be performed to identify changes that are 

specific to an appb null mutation and can be excluded from our developing understanding of 

transcriptomic changes caused by fAD mutations. This will be discussed further in Chapter 6. 
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4.4 Methods 

Ethics 

This work was conducted under the auspices of the Animal Ethics Committee of the University of 

Adelaide and in accordance with EC Directive 86/609/EEC for animal experiments and the 

Uniform Requirements for manuscripts submitted to Biomedical journals. 

 

Genomic DNA extraction from zebrafish embryos and tail fin clips 

A small section of the dorsal fin (~3 mm) of adult fish was removed with a sterile scalpel blade 

under anaesthesia (Tricaine solution, 1.68 μg/mL). 

Embryos, or, tail fin tissue, were placed in 50µl of a 17mg/ml Proteinase K (Roche, Basel, 

Switzerland), 1XTE solution and then incubated at 55-65°C until dissolved (2-4 hours). The lysis 

buffer was then placed at 95°C for 5 mins to inactivate the Proteinase K. Either mixture was then 

centrifuged at 12,000 rpm for 2 mins to pellet cellular debris. The supernatant was transferred into 

a clean microfuge tube ready for subsequent PCR [33]. 

 

Mutation detection assays 

Mutations generated by CRISPR or TALEN were detected by the T7 endonuclease 1 method 

adapted from Reyon et al (2012) [34]. In the T7 endonuclease 1 method, loci were amplified using 

primers presented in supplementary data file S4, Table S1, with GoTaq polymerase (New England 

Biolabs, Ipswich, Massachusetts, USA) and the resulting DNA was re-annealed under the 

following conditions; 95°C for 5 mins then ramped down from 95°C-85°C at a rate of -2°C/sec, 

followed by ramping down from 85°C-25°C at a rate of -0.1°C/sec. After reannealing, 1μl of T7 
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endonuclease I (New England Biolabs, Ipswich, Massachusetts, USA) was added and the entire 

mixture was incubated at 37°C for 15 mins. 

 

Sanger sequencing 

The genomic region surrounding the appb start site sgRNA target site was PCR amplified using 

appb Ex1 forward and reverse primers (supplementary data file S4, Table S1). The purified appb 

5’UTR/Exon1 genomic DNA fragments were then used for Sanger sequencing with the appb Ex1 

sequencing F primer (supplementary data file S4, Table S1) (Australian Genome Research 

Facility, SA, AUS). 

 

Detecting appbR5PfsTer26 mutations via PCR 

We identified a single base pair insertion that resulted in a frameshift at nucleotide position 14 in 

exon 1 of appb (Figure 4.3#). PCR primer pairs were designed to detect either the appbR5PfsTer26 

allele or wildtype allele at this position (supplementary data file S4, Table S1). Loci were amplified 

with GoTaq polymerase (New England Biolabs, Ipswich, Massachusetts, USA) with PCR 

conditions varying between primer pairs: The PCR conditions for wildtype-specific (WTF2-R1) 

detection were 95°C, 2min; 30 cycles of [95°C, 30 s; 64°C, 30 s; and 72°C 40s]; 72°C, 5 min and 

the anticipated length of the PCR product was 326 bp. The PCR conditions for mutant-specific 

(F4R2) detection were 95°C, 2min; 30 cycles of [95°C, 30 s; 60°C, 30 s; and 72°C 40s]; 72°C, 5 

min and the anticipated length of the PCR product was 618 bp. 
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Hypoxia treatment and whole brain removal 

Oxygen-depleted water was first generated by bubbling nitrogen into recirculated tank water. 6-

month-old zebrafish were treated in low oxygen levels (0.9 ± 0.5mg/L of oxygen) or normal 

oxygen levels (6.6 ±0.5 mg/L of oxygen) by placing them inside a 500ml bottle of the respective 

water conditions for approximately 3 hours. Directly following hypoxia or normoxia treatment, 6-

month-old zebrafish were euthanised in an ice water slurry for ~30 seconds and the brain 

subsequently removed for immediate RNA extraction.  

 

RNA extraction from whole adult zebrafish brain and cDNA synthesis  

Total RNA was isolated from mutant and WT siblings using the mirVana miRNA isolation kit 

(Thermo Fisher, Waltham, Massachusetts, USA). RNA isolation was performed according to the 

manufacturer’s protocol. First the brain is lysed in a denaturing lysis solution. The lysate is then 

extracted once with acid-phenol:chloroform leaving a semi-pure RNA sample. A glass-fiber filter 

is utilised to further purify the sample and return total RNA.  

cDNA was generated from 500ng of 6-month-old zebrafish brain RNA using random primers 

following the First-Strand cDNA Synthesis protocol (Invitrogen, Life Technologies, Carlsbad, 

CA, USA). After inactivation the cDNA was treated with RNase H (New England Biolabs, 

Ipswich, Massachusetts, USA) and incubated at 37°C for 30 minutes, the RNase H was then 

inactivated by heating at 65°C for 20 minutes. 

 

Assaying the hypoxia response by digital PCR 

Primers for dqPCR of known hypoxia response genes, including a forward and reverse primer 

(supplementary data file S4, Table S3) detecting the igfbp3 gene (NM_205751), and a forward and 
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reverse primer (supplementary data file S4, Table S3) detecting the edn1 gene (NM_131519), were 

previously designed for analysis of these genes in response to hypoxia in the presence of fAD-like 

mutations. HRG gene transcript levels were measured using the QuantStudio™ 3D Digital PCR 

System (Life Sciences, Waltham, MA, USA) with the QuantStudio™ 3D Digital PCR 20K Chip 

Kit v2 and Master Mix (Life Sciences, Waltham, MA, USA, A26317) and SYBR™ Green I 

Nucleic Acid Gel Stain (Life Sciences, Waltham, MA, USA, S7563). The dqPCR conditions for 

assays of edn1 or igfbp3 expression in response to hypoxia were 96°C, 10 min; 49 cycles of [62°C, 

2 min; 98°C, 30 s]; 62°C, 2 min. 50ng of total cDNA from each sample was loaded into one chip 

for the dqPCR. Chips were read using QuantStudio™ 3D AnalysisSuite Cloud Software (Life 

Sciences, Waltham, MA, USA). 
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4.6 Supplementary Information 

This section is included in the thesis as information supplementary to Chapter 4. It contains 

additional information not included in the main text of the manuscript. 

 

File S1. Mutation screening 

 

Figure S1. Confirmation of the ability of the appb start site sgRNA to generate mutations. Image shows 

T7 endonuclease treated genomic DNA from appb sgRNA microinjected zebrafish. Primers were used to 

amplify a region of 345bp with the predicted cleavage site (PAM) positioned so that cleavage products of 

~200bp and ~100bp would be generated that could be separated using gel electrophoresis. Fragments 

observed with sizes of approximately 200pb and 100 bps (black arrows) indicate that the sgRNA was 

successful in generating mutations at the site of interest. 
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Figure S2. Screening for germline transmission of mutations in the embryos produced from of an 

outcross of fish F0-5 to wildtype and an outcross of fish F0-6 to wildtype. The 3 arrows on the right 

indicate cleavage products from a T7 endonuclease assay on DNA amplified across the cleavage site of the 

appb sgRNA in embryos from F0-6 outcrossed to wildtype. The single arrow on the left indicates the 

cleavage product from a T7 assay on DNA amplified across the cleavage site of the appb sgRNA in embryos 

from F0-5 outcrossed to wildtype. 

 

 

Figure S3. Screening for mutations in the adult progeny of an outcross of fish F0-5 to wildtype. Fish F1-

5.2, F1-5.3, F1-5.4 and F1-5.6 carry a potential germline mutation indicated by arrow. Fish F1-5.1 and 

F1-5.5 are wildtype. 
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Figure S4. Screening for mutations in the adult progeny of an outcross of fish F0-6 to wildtype. Fish F0-

6.13 (a), F0-6.37 and F0-6.38 (h) carry a potential germline mutation indicated by arrows, while the 

remaining fish are wildtype. 
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Figure S5. Screening for mutations in the adult progeny of an outcross of fish F0-3 to wildtype. Fish F0-

3.8 (c) and F0-3.17 (d) carry a potential germline mutation (indicated by black arrows), while the 

remaining fish are wildtype. Black star (fish F0-3.4, b) indicates a faint band that suggests the fish may 

carry a mutation, but this is inconclusive.  
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File S2. Raw sequencing data files 

 

Figure S6. Sanger sequencing of a single adult from the progeny of an outcross of fish F0-5 to wildtype 

– Single peaks observed throughout the sequence suggest that both strands are wildtype. This same 

observation was made for sequencing of fish F0-5.2 (this image), F0-5.3, F0-5.4 and F0-5.6 from 

supplementary data file S1, Figure S3. 

 

 

Figure S7. Sanger sequencing of a single adult from the progeny of an outcross of fish F0-6 to wildtype 

– Single peaks indicate wildtype sequence. Sequence with double peaks indicates a difference in the 

composition of the two strands (purple and black). Red arrow indicates mutation position. This same 
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observation was made for sequencing of fish F0-6.13 (this image), F0-6.37 and F0-6.38 from 

supplementary data file S1, Figure S4. 

 

 

Figure S8. Sanger sequencing of a single adult from the progeny of an outcross of fish F0-3 to wildtype 

– Single peaks indicate wildtype sequence. Scrambled sequence with double peaks indicates a difference in 

the composition of the two strands (purple and black). Red arrow indicates mutation position. This same 

observation was made for sequencing of fish F0-3.8 (this image) and F0-3.17 from supplementary data file 

S1, Figure S5. 

 

 

Figure S9. Outline of appb 3bp deletion mutation identified in progeny of an outcross of fish F0-6 to 

wildtype. 3 dashes indicate the 3 nucleotides that are deleted. 
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File S3. Investigation of translation and start codons for appbR5PfsTer26 

 

Figure S10. Netstart 1.0 prediction (screenshots) for alternative start codons in R5PfsTer26 mutant. a) 

sequence run through software, output is below sequence with start codon (methionine) positions indicated 

by “i” if initiation is possible and “N” if not. b) individual scores given to each start codon that could 

potentially initiate translation. 

 



182 
 

 

Figure S11. ExPASy translations for primary reading frame of a) wildtype and b) R5PfsTer26 mutant 

respectively. Red highlight indicates open reading frame. 

  



183 
 

File S4. Supporting tables. 

Table S1. Primers used in sequencing and mutation detection. 

 F = forward, R= reverse 

Primer name 
 

Primer sequence (5’-3’) 

Appb Ex1 Sequencing F 
 

CTCCAACCTCCGAGTC 

Appb Ex1 F CTCCAACCTCCGAGTCCATTCT 

Appb Ex1 R TGCGTTTTCCCTTCACTCCC 

C insertion F4 CAGGAATACCGTGCGGG 

C insertion R2 TATTTGGGTCTCAGGAGGATAA 

Appb Ex1 WT F2 CATGGGTATGGACCGCA 

C insertion R1 (used with WT F2) CGCTACACTACGCCTGATACT 

 

 

Table S2. Mutations detected in the progeny of an outcross of fish F0-3 to wildtype via 

genotyping PCR  

 Fish were genotyped with T7E1 assay up to F1-3.20, then genotyped with the C insertion 

detecting primers up to F1-3.103. 

 Orange shading indicates no mutation, Green shading indicates positive signal for a 

mutation and Yellow indicates faint bands that might be a signal 

F1-3.1 F1-3.2 F1-3.3 F1-3.4 F1-3.5 F1-3.6 F1-3.7 F1-3.8  F1-3.9 

F1-3.10 F1-3.11 F1-3.12 F1-3.13 F1-3.14 F1-3.15 F1-3.16 F1-3.17  F1-3.18 

F1-3.19 F1-3.20 F1-3.21 F1-3.22 F1-3.23 F1-3.24 F1-3.25 F1-3.26  F1-3.27 
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F1-3.28 F1-3.29 F1-3.30 F1-3.31 F1-3.32 F1-3.33 F1-3.34 F1-3.35  F1-3.36 

F1-3.37 F1-3.38 F1-3.39 F1-3.40 F1-3.41 F1-3.42 F1-3.43 F1-3.44  F1-3.45 

F1-3.46 F1-3.47 F1-3.48 F1-3.49 F1-3.50 F1-3.51 F1-3.52 F1-3.53 F1-3.54 

F1-3.55 F1-3.56 F1-3.57 F1-3.58 F1-3.59 F1-3.60 F1-3.61 F1-3.62 F1-3.63 

F1-3.64 F1-3.65 F1-3.66 F1-3.67 F1-3.68 F1-3.69 F1-3.70 F1-3.71 F1-3.72 

F1-3.73 F1-3.74 F1-3.75 F1-3.76 F1-3.77 F1-3.78 F1-3.79 F1-3.80 F1-3.81 

F1-3.82 F1-3.83 F1-3.84 F1-3.85 F1-3.86 F1-3.87 F1-3.88 F1-3.89 F1-3.90 

F1-3.91 F1-3.92 F1-3.93 F1-3.94 F1-3.95 F1-3.96 F1-3.97 F1-3.98 F1-3.99 

F1-

3.100 

F1-

3.101 

F1-

3.102 

F1-

3.103 

     

 

 

Table S3. Primers used for digital PCR 

 

 

 

 

 

Gene Accession  Forward primer 5’-3’ Reverse primer 5’-3’ 

edn1 NM_13151

9 

WT CGTTACAGTTTAAAGC

AGCGTCA 

TGTGTTTGCATTGCTTCC

CAG 

igfbp

3 

NM_20575

1 

WT AGTGCAGTCCATCCATC

CAAAGGC 

GTCTCCATGTTATAGCA

GTGGACCT 
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Table S4. Expression levels of edn1 in 50ng total 6-month-old adult brain cDNA. (Assuming 

complete reverse transcription of total brain RNA). 

edn1 

+/+ fish under normoxia (copies/μL) APPbR5PfsTer26/+ fish under normoxia 

(copies/μL) 

402.97 304.18 

449.94 460.66 

465.88 347.28 

534.26 365.84 

+/+ fish under hypoxia (copies/μL) APPbR5PfsTer26/+ fish under hypoxia 

(copies/μL) 

449.36 704.68 

505.65 522.94 

732.53 908.35 

940.17 1185.3 

 

 

Table S5. Expression levels of igfbp3 in 50ng total 6-month-old adult brain cDNA. (Assuming 

complete reverse transcription of total brain RNA). 

igfp3 

+/+ fish under normoxia (copies/μL) APPbR5PfsTer26/+ fish under normoxia 

(copies/μL) 

735.81 711.64 
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717.35 725.71 

766.96 538.4 

809.11 713.48 

+/+ fish under hypoxia (copies/μL) APPbR5PfsTer26/+ fish under hypoxia 

(copies/μL) 

1072.9 1592.8 

971.37 1162.2 

1094.8 1169.4 

1417.2 1376.6 
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File S5. Classification of F2 generation larvae, from a pair mating of heterozygous F1 

appbR5PfsTer26 fish, into 3 phenotypic groups (wildtype, mild/moderate and severe). 

 

Figure S12. F2 progeny from a pair mating of two heterozygous F1 appbR5PfsTer26 fish with the wildtype 

phenotype. Larvae were subsequently genotyped, and their genotypes are included below each image as 

follows: +/+ wildtype, +/mut heterozygous and mut/mut homozygous for appbR5PfsTer26. 
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Figure S13.  F2 progeny from a pair mating of two heterozygous F1 appbR5PfsTer26 fish with the 

mild/moderate phenotype. Larvae were subsequently genotyped, and their genotypes are included below 

each image as follows: +/+ wildtype, +/mut heterozygous and mut/mut homozygous for appbR5PfsTer26. 
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Figure S14. F2 progeny from a pair mating of two heterozygous F1 appbR5PfsTer26 fish with the severe 

phenotype. Larvae were subsequently genotyped, and their genotypes are included below each image as 

follows: +/+ wildtype, +/mut heterozygous and mut/mut homozygous for appbR5PfsTer26. 
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Chapter 5 – Analysing the aggregation propensity of putative zebrafish 

APPa and APPb Aβ-42-like peptides 

5.1 Introduction 

The aggregation of proteins or peptides into β-sheets (i.e amyloid fibrils) occurs in several human 

diseases, such as: Alzheimer’s disease (AD) and Parkinson’s disease [1]. The amyloid precursor 

peptide (APP) has a diverse range of functions [2] but is perhaps most well-known for its predicted 

role in AD neuropathogenesis. APP is processed sequentially by the metalloprotease BACE (aka 

β-secretase) followed by the γ-secretase complex to release amyloid beta (Aβ) peptide [3]. The Aβ 

peptide varies in length between 38-43 amino acids, depending on the proteolysis by γ-secretase 

[4]. The two predominant Aβ species observed in the human brain are the soluble Aβ-40 peptide 

and the less soluble, more aggregation prone variant, Aβ-42, that is often observed in increased 

concentrations in AD brains. The Aβ-42 variant is concentrated in the senile/neuritic plaque 

deposits observed in AD patient’s brain parenchyma [reviewed in 5]. Furthermore, mutations 

within the transmembrane domain of human APP that cause the rare, genetic form of AD, familial 

AD (fAD), have been demonstrated to increase the Aβ-42 to Aβ-40 ratio, which is thought to be a 

cause of neuronal cell death in the disease [4]. Both the Aβ-40 and Aβ-42 peptides have been 

shown to aggregate into amyloid fibrils [6] – which have also previously been defined as “fibrillar 

polypeptide aggregates that consist of a cross-β structure” [7].  

 

In our laboratory, we have used the zebrafish as a model to study genetic and biochemical 

processes involved in fAD, such as: hypoxia, autophagy and APP processing. The zebrafish is an 

excellent model for studying these processes for several reasons. Firstly, genes that carry mutations 

in humans that are implicated in fAD pathogenesis are conserved in the zebrafish (human PSEN1 
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and PSEN2 orthologs psen1 and psen2, APP co-orthologs appa and appb, and SORL1 ortholog 

sorl1) along with other genes involved in the Aβ cascade (other γ-secretase complex component 

genes psenen, ncstn and aph1b, and β-secretase orthologs, bace1 and bace2) [reviewed in 8]. 

Zebrafish are also genetically manipulable through microinjection with a range of technologies, 

including: morpholinos, mRNA, transgenes and genome engineering tools, such as TALENs and 

CRISPR/Cas. Furthermore, zebrafish have neuroanatomical similarity with the human brain, fAD 

behavioural similarity with humans, and pathophysiological resemblance to fAD [reviewed in 9].  

Previous research has investigated the Aβ peptide in zebrafish in a variety of ways. Donnini et al 

(2010) administered human-derived Aβ peptides directly to the water containing developing 

zebrafish embryos to examine toxicity [10]. Cameron et al (2012) treated zebrafish embryos with 

monomeric human Aβ and observed induced branching in cerebrovascular blood vessels in the 

zebrafish hind brain [11]. Newman et al (2010) fused the sequence of human Aβ-42 to the mitfa 

gene promoter and utilised this to generate a zebrafish transgenic toxicity model of Aβ [12]. 

Bhattarai et al (2016) generated an Aβ-42 toxicity model in zebrafish by injecting human Aβ-42 

linked or unlinked to two peptides with the ability to penetrate cells, transportan and poly-arginine 

[13]. Sivaji et al (2019) injected human Aβ-42 peptide into the midbrain region of 24 hour old 

zebrafish, to study the relationship between Aβ and osteogenesis over Sox9a expression during 

early development [14]. 

 

To our knowledge there are no published studies that have investigated aggregation of endogenous 

Aβ peptides that would theoretically be produced from sequential processing of Appa or Appb in 

zebrafish. The Aβ peptide region, along with the secretases that produce Aβ from APP, are 

conserved in zebrafish. Also, it has previously been demonstrated that zebrafish psen1 (γ-
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secretase) is capable of processing human APP to secrete the Aβ-42 peptide, suggesting that this 

role of psen1 (γ-secretase) is conserved in the zebrafish [15]. Despite this, there has not yet been 

identification of a zebrafish-specific Aβ peptide, nor has it been established whether the zebrafish 

equivalent β-secretase and γ-secretase enzymes process endogenous appa or appb as they do 

human APP [16]. One study performed sequence alignments of APP across all animal taxa and 

observed that the “normal” β-secretase cleavage site (EVKMDAE) is not completely conserved in 

zebrafish Appa or Appb [17]. However, this does not necessarily mean that zebrafish Appa and 

Appb will not be cleaved by β-secretase as; 1) the amino acid residues in zebrafish Appa and Appb 

that do not share conservation with the human APP sequence are still highly similar in chemical 

structure, and 2) it has previously been demonstrated that mutation of the β-secretase site in a 

Swedish fAD family (from EVKMDAE to EVNLDAE [18]) creates a peptide sequence that is 

actually preferentially cleaved by β-secretase [19]. One gap in the knowledge of presenilin 

function in zebrafish, in the context of generating fAD-like mutations in the equivalent endogenous 

zebrafish genes, is our lack of understanding of (or knowledge of the existence of) zebrafish-

specific Aβ peptides. In order to utilise our existing fAD-like mutant zebrafish to study aggregation 

in response to these mutations, we first need to investigate a) whether zebrafish-specific Aβ 

peptides are released, and b) whether these peptides aggregate in a similar manner to human Aβ 

peptides. 

 

In this study, we aimed to determine whether the putative Aβ-42 equivalent peptides from 

zebrafish Appa and Appb would aggregate with a similar propensity to that of human Aβ-42. We 

first predicted Aβ-42-like peptides for zebrafish Appa and Appb. We then analysed these Aβ-42-

like peptides using three forms of different aggregation/fibril formation propensity predicting 
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software: TANGO, Zyggregator and Zipper DB. During these analyses, we observed two distinct 

regions of the human Aβ-42 peptide that are prone to fibril formation, one in the mid-peptide 

region and another at the C-terminal end of the peptide sequence. When comparing the predicted 

Aβ-42-like peptides of zebrafish Appa and Appb to the human Aβ-42 peptide, our analyses 

revealed similar aggregation propensities in the C-terminal ends across all peptides. However, we 

observed that the predicted Aβ-42 equivalent peptide of zebrafish Appb had distinctly lower, or 

even non-existent, aggregation propensity in the mid-peptide region. In contrast, the predicted Aβ-

42 equivalent peptide of zebrafish Appa showed an aggregation propensity in this mid-peptide 

region similar to that of human Aβ-42. These findings suggest that both the Aβ-42-like peptides 

of zebrafish Appa and Appb have similar aggregation potentials to human Aβ-42. However, further 

investigation is required 1) to determine whether the lack of aggregation potential observed in the 

mid-peptide region of the predicted Aβ-42-like peptide of zebrafish Appb prevents it from forming 

amyloid fibrils, and 2) to demonstrate that the Aβ-42-like peptide of Appa does aggregate as 

predicted by the analyses in this chapter. 

 

5.2 Results and Discussion 

Determining Aβ-42-like peptide equivalents in zebrafish Appa and Appb 

To investigate the amyloidogenic propensity of zebrafish-equivalent Aβ-42 peptides, we first 

identified Aβ-42 equivalents by performing a protein sequence alignment with human and mouse 

APP. Alignment of zebrafish Appa and Appb with human and mouse APP revealed the equivalent 

Aβ-42 peptide regions in these genes (Figure 5.1). While the Aβ-42-like peptide in zebrafish Appb 

maintained the same length as mouse and human Aβ-42, the zebrafish Appa peptide is only 39 

amino acids in length due to three missing amino acids near the N-terminal end of the polypeptide 
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chain. The predicted amyloidogenic propensities of the identified zebrafish Appa and Appb Aβ-

42-like peptides were then investigated using a variety of software tools, whose algorithms employ 

different methods to identify aggregation prone peptide regions, namely: TANGO, Zyggregator 

and ZipperDB. 

 

 

Figure 5.1. Alignment of Aβ-42 peptides of human and mouse and Aβ-42-like peptides of zebrafish Appa 

and Appb used in aggregation analyses. Green boxes indicate regions of sequences that are identical 

across all peptides. The three amino acid residues that are different between mouse and human (and the 

equivalent amino acid residues in zebrafish Appa and Appb) are indicated by red boxes.   

 

Investigating amyloidogenic propensity of zebrafish Aβ-40 and Aβ-42 using TANGO 

The TANGO algorithm tests whether residues in a peptide sequence of interest occupy a β-

aggregation conformation. One of the definitions of amyloid fibrils is that they consist of a cross-

β structure [7], hence this method should give an indication of the propensity to form these fibrils. 

Only sections of five or more consecutive amino acid residues in the β-aggregation conformation 

are included in TANGO’s analysis. TANGO has previously been used to predict the β-sheet 

aggregation propensity of Alzheimer's Aβ-40 and Aβ-42 variants [20]. TANGO identified two 

aggregation prone regions for both peptides: one region comprised of residues 17-21 in the middle 

of the peptide and a second region towards the C-terminus of the peptide containing residues 31-

36 of Aβ-40 and residues 30-42 of Aβ-42. Interestingly, they found that Aβ-42 had a much higher 
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propensity to aggregate between residues 30-42 than Aβ-40 between residues 31-36 [20]. They 

also compared in vivo experimentally determined values of Aβ aggregation for four fAD mutations 

(Arctic, Dutch, Italian and Flemish) to predictions of β-sheet aggregation propensity using 

TANGO and found that three of the four predictions closely resembled the experimentally derived 

data thereby validating their algorithm [20]. 

 

Table 5.1. Combinations of physio-chemical conditions input into TANGO software 

Experiment pH Temperature (K) Ionic Strength Concentration 

1 7.2 310.15 0.3 9x10-12 

2 7 298.15 0.3 9x10-12 

5 7.2 310.15 0.2 9x10-12 

6 7 298.15 0.2 9x10-12 

9 7.44 298.15 0.2 9x10-12 

10 7.44 298.15 0.3 9x10-12 

Notes: The experiments presented here are a subset of the experiments conducted. For a 

complete table and raw data tables from all experiments see supplementary data file S1, 

Table S1. 

 

 

In the zebrafish, APP exists as two co-orthologs, appa and appb [8], whereas in humans and mice 

there is only a single APP gene. We therefore analysed our predicted Aβ-42-like peptides for both 

zebrafish Appa and Appb, along with human and mouse Aβ-42, using the TANGO software under 

varying conditions. TANGO allows for input variations in pH, temperature, ionic strength and 
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concentration. Each of these parameters have been shown to affect protein folding or misfolding 

[20] and, therefore, their effect on these processes has been accounted for in TANGO’s algorithm. 

The Aβ-42 peptides were each run through the TANGO software program using conditions laid 

out in Table 5.1. pH, ionic strength and concentration values for human and zebrafish were 

identified from the literature. For human pH conditions, we wished to use the pH of the brain as 

this is where the Aβ-42 peptide’s function in fAD is predominantly studied. Orlowski et al (2011) 

stated the pH of human brain to be 7.2, hence we used this value in our analyses [21]. The in vivo 

pH for the brain ventricle of 5-day-old zebrafish larvae has previously been reported as ~7.0-7.44, 

hence we compared both the upper and lower limit of this range in our analysis [22]. For the 

temperature settings, we used values known to represent the standard in vivo temperature for 

humans (310.15K, 37°C) and zebrafish (298.15K, 25°C). The concentration value was derived 

from a study by Wang et al (1999), that measured Aβ-42 levels in pathological aging brain at 9 

pmol/g wet tissue [23]. Animals maintain an intracellular ionic strength of 200-300 nM, therefore, 

we used the upper and lower limits of these values in our analyses [24]. The specific combinations 

of conditions presented in Table 5.1 were selected since we wanted to understand: a) whether each 

peptide would aggregate (and if these values would differ) with zebrafish or human-specific 

temperatures and pH, and b) whether the aggregation propensity would change with differing 

intracellular ionic strengths. 
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Figure 5.2. TANGO predictions of the aggregation propensity of Aβ-42 peptides for human, mouse, 

zebrafish Appa and zebrafish Appb under each set of experimental conditions (presented in Table 5.1). 

The blue line indicating aggregation propensity of human Aβ-42 is obscured by the mouse Aβ-42 line 

(orange) as they have highly similar values. Both human and mouse Aβ-42 lines are obscured in most 

sections by the zebrafish Appb line (green). Numbers corresponding to positions of the amino acid residues 

in each Aβ-42 peptide are on the x-axis. 
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During our analyses of the four Aβ-42 peptides using TANGO, we observed two regions of high 

β-aggregation propensity in each (Figure 5.2). As with the Aβ-40 and Aβ-42 study described 

above, the first region encompassed residues 17-21, and the second residues 30-41 for the Aβ-42 

peptides of human APP, mouse APP and zebrafish Appb. For the shorter, zebrafish Appa Aβ-42-

like peptide, the first region was comprised of residues 14-18, while the second region was 

composed of residues 27-38. Interestingly, while the Aβ-42 peptides of human, mouse and 

zebrafish Appa all returned highly similar β-aggregation scores in the mid-peptide region, the Aβ-

42 peptide of zebrafish Appb returned distinctly lower scores in this region for all experimental 

conditions tested. Despite this, all four peptides returned highly similar scores in the C-terminal 

region across all conditions investigated. Finally, each of the peptides run through the varying 

conditions gave what the TANGO authors term an “Agg” score. Agg is a parameter indicating β-

sheet aggregation propensity of the whole peptide being analysed, rather than at each section of 5 

amino acids [20]. For each of the conditions tested, the Aβ-42-like peptide of zebrafish Appb had 

a lower Agg score than that of human, mouse or zebrafish Appa Aβ-42 equivalents (supplementary 

data file S1, Table S8). Taken together, the results of our TANGO analysis suggest that, while 

zebrafish Appa is three amino acids shorter than the human or mouse Aβ-42 peptide, it has a much 

more similar β-aggregation propensity than that of zebrafish Appb. 

 

Investigating amyloidogenic propensity of zebrafish Aβ-40 and Aβ-42 using Zyggregator 

To confirm the observations made using the TANGO software, we decided to utilise a similar 

aggregation predicting software, Zyggregator [1]. While TANGO predicts the β-aggregation 

propensity of peptides, Zyggregator calculates a Zi
agg score at each position of the peptide sequence 

from each specific amino acid’s physio-chemical properties. This can be otherwise described as a 
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prediction of the most important peptide sequence regions for promotion of aggregation and 

amyloid fibril formation [25]. The three physio-chemical properties Zyggregator calculates as a 

part of its algorithm are: hydrophobicity, charge, and the propensity to adopt α-helical or β-sheet 

structures [1]. Importantly, if a Zi
agg score of 0 is recorded this suggests that the aggregation 

propensity at that position equals that of a random sequence (i.e. not likely to aggregate), whereas, 

if a score of 1 is recorded it is considered aggregation prone. 

 

Tartaglia and Vendruscolo (2008) previously used their Zyggregator algorithm to predict the 

aggregation propensity of the human Aβ-42 peptide [1]. Similar to what was observed using the 

TANGO algorithm, Zyggregator revealed two regions with a high propensity to aggregate 

(identified by Zi
agg values of >1, Figure 5.3). Also like the TANGO study, one region was identified 

in the middle of the peptide between residues 18-22 and another at the C-terminal end of the 

peptide between residues 32-42. Our analysis of human Aβ-42 using the Zyggregator algorithm 

complemented the Tartaglia and Vendruscolo study. We also analysed mouse Aβ-42 and the 

predicted Aβ-42-like peptides for zebrafish Appa and Appb. While the zebrafish Appa Aβ-42-like 

peptide is shorter than the others, the Zi
agg profile of this peptide closely resembled that of human 

Aβ-42, with two regions identified: one at position 15-19 and the other at position 29-39 (Figure 

5.3). Worthy of note is that the mouse Aβ-42 Zi
agg profile is less similar to the human Aβ-42 profile 

than zebrafish Appa, with an additional aggregation prone residue close to the N-terminus (which 

is not represented in any other profile) and a slight shift in the positions of amino acid residues 

with high aggregation propensity in the mid peptide region (Figure 5.3). As was previously 

observed for the zebrafish Appb Aβ-42 peptide using the TANGO algorithm, its Zi
agg profile 

showed only one region, at position 32-42, predicted to have high aggregation (Figure 5.3). 
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Figure 5.3. Aggregation propensity profiles of human, mouse, zebrafish Appa and zebrafish Appb Aβ-

42 equivalent peptides. Vertical lines show the intrinsic aggregation propensity profile, Zi
agg. The horizontal 

dashed line indicates the threshold which the Zi
agg score must reach for the amino acid residue at that 

position to be considered to have high aggregation propensity. 

 

Investigating amyloidogenic propensity of zebrafish Aβ-40 and Aβ-42 using Zipper DB 

While the previously discussed algorithms, TANGO and Zyggregator, both rely purely on 

sequence-based information to calculate aggregation/fibril formation potential, Zipper DB utilises 

structural information to assess the possibility that a peptide will form fibrils. The Zipper DB 

algorithm focuses on the factors that permit a protein to convert to the amyloid state, by attempting 

to identify “steric zipper” forming segments [25]. In a study investigating their newly developed 

method, Goldschmidt et al (2009) validated their approach using pancreatic ribonuclease A 

(RNase A) as a model system [25]. The Zipper DB algorithm measures fibril formation potential 
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based on the RosettaDesign potential energy function, with low Rosetta energy numbers indicating 

high fibril forming propensity. 

 

The authors established what they termed an “energetic threshold for high fibrillation propensity” 

(HP), where high fibrillisation potential is predicted for Rosetta energies of less than -23 kcal/mol. 

In our study, we used Zipper DB to assess the amyloid fibril forming propensity of human and 

mouse Aβ-42 along with our predicted Aβ-42-like peptides in zebrafish Appa and Appb. The 

Rosetta energies predicted for hexapeptides in each of these peptide sequences are presented in 

supplementary data file S3, Table S10. 

 

Zipper DB analysis of the predicted zebrafish Appa and Appb Aβ-42 peptide equivalents revealed 

fibrillisation propensity profiles similar to the established aggregation prone human Aβ-42 peptide. 

Once again, Zipper DB identified two regions that appear to have high aggregation propensity, as 

was observed for TANGO and Zyggregator. For human, mouse and zebrafish Appa Aβ-42 

sequences, the regions that are predicted to have high fibrillation propensity are mostly at the C-

terminus of the peptide (hexapeptides 27-31, 33 and 35-37 for human and mouse, and hexapeptide 

24-28, 30 and 32-34 for zebrafish Appa). Complementary to our findings from the analyses with 

TANGO and Zyggregator, the profile for the zebrafish Appa Aβ-42-like peptide most closely 

resembled that of human Aβ-42, even though its shorter length of 39 amino acids resulted in less 

hexapeptides analysed in this region. Also complementary to our previous two analyses, while the 

fibrillisation propensity profile of zebrafish Appb resembles human Aβ-42 at the 25th-37th 

hexapeptide positions, it lacks the aggregation prone hexapeptide that exists at position 15 in 

human and mouse profiles and position 12 in zebrafish Appa (Figure 5.4, Table S10). This 
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difference in its fibrillisation propensity profile may suggest that the zebrafish Appb Aβ-42-like 

peptide is less likely to aggregate. Interestingly, a separate analysis of the human APP Aβ-40 

peptide with Zipper Db revealed a similar fibrillisation propensity to human, mouse and zebrafish 

Appa Aβ-42 in the mid-peptide (15th hexapeptide). However, due to it being two peptides shorter 

at the C-terminal end, it is missing the hexapeptides with high aggregation propensity at positions 

36 and 37 (supplementary data file S4, Figure S1). Also worth noting is that, while there are several 

hexapeptides that are close to reaching the -23 kcal/mol threshold in the N-terminal region of both 

the human Aβ-42 peptide and zebrafish Appa Aβ-42-like peptide, the mouse Aβ-42 peptide 

hexapeptides have much higher energies in this region (and thus have less aggregation potential). 

 

 

Figure 5.4. Zipper DB fibrillation propensity profiles of Aβ-42 peptide regions. – A) human Aβ-42 peptide, 

B) mouse Aβ-42 peptide, C) zebrafish Appa predicted Aβ-42 peptide and D) zebrafish Appb predicted Aβ-

42 peptide. Red histogram bars correspond to hexapeptides with energy < −23 kcal⁄mol and are predicted 

to form fibrils. 
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5.3 Conclusions and future directions 

In this study, we have predicted the Aβ-42-like peptides for the zebrafish co-orthologs, Appa and 

Appb. We performed aggregation analyses of these peptides using several software programs, 

namely; TANGO, Zyggregator and Zipper DB. Our analyses demonstrate that the zebrafish Appa 

Aβ-42 equivalent has a very similar aggregation propensity to that of the known aggregation-prone 

human Aβ-42 peptide. Interestingly, while the zebrafish Appb Aβ-42 equivalent peptide was 

observed to have comparable aggregation potential at its C-terminal end, each of the analyses 

suggested that the middle of this peptide did not have the same aggregation propensity as that of 

human and mouse Aβ-42, or the predicted Appa zebrafish Aβ-42-like peptide. In our TANGO 

analysis, this mid-peptide region had a much lower β-aggregation score, suggesting it was less 

likely to aggregate, whereas the analyses with Zyggregator and Zipper DB showed no aggregation 

propensity in this region. Although a region of high aggregation propensity appears to be missing 

in the zebrafish Appb Aβ-42-like peptide, it is still possible that it may form similar aggregates to 

the human Aβ-42 peptide. Further testing using in vitro analyses could confirm this. Another 

interesting observation from the Zipper DB analysis is that of the high fibrillisation propensity 

profile for human Aβ-40, similar to that of human Aβ-42, with the exception of the final two amino 

acid residues. Human Aβ-40 has long been thought to be less aggregation prone than the longer 

Aβ-42 variant, although more recent studies have demonstrated that Aβ-40 fibrils have common 

structural principles to Aβ-42 fibrils [6]. However, numerous other studies have demonstrated that 

the difference in the C-terminal regions of Aβ-40 or Aβ-42 results in variable aggregation 

mechanisms, suggesting that this C-terminal region is important in the dimer formation process of 

aggregation [26]. Considering this, we can speculate that perhaps the mid-peptide region, which is 

conserved between human Aβ-42, mouse Aβ-42 and Appa Aβ-42-like peptides, also has some 
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important (currently unknown) role to play in the aggregation process, making it possible that the 

Aβ-42-like peptide of Appb would not aggregate in the same way as the other Aβ-42 peptides. It 

is also worth noting that, while our TANGO analyses were performed using ionic strength values 

reflecting the zebrafish intracellular environment (200-300nM), peptide aggregation can also occur 

in the extracellular space where ionic strengths are typically in the mM range [27, 28]. In future, 

additional TANGO analyses could be conducted utilising ionic strength values representative of 

the extracellular environment. This should allow us to determine whether the aggregation 

propensities of these peptides in extracellular conditions remain consistent with the results of our 

analyses. The TANGO analysis could also potentially be improved by utilising a scrambled Aβ-

42 peptide sequence to investigate whether random peptides with equivalent sequence composition 

are equally as aggregation prone. 

 

Another interesting observation from our analysis was the differences between Mouse Aβ-42 

profiles and human Aβ-42 profiles in the early-mid peptide region for both the Zyggregator and 

Zipper DB software analyses. Interestingly, zebrafish Appa Aβ-42-like peptide profiles were 

actually more similar to human Aβ-42 profiles than those of mouse Aβ-42. This is consistent with 

existing observations in vitro and in vivo, that mouse Aβ does not have as high an aggregation 

propensity as human Aβ, nor do mouse brains form Amyloid plaques [29, 30]. Interestingly, the 

altered aggregation propensity of mouse Aβ has previously been attributed to the three amino 

residues that differ in the mouse peptide (5, 10, and 13) (Figure 5.1) and the involvement of these 

residues in binding of metal ions [31]. When comparing these residues to those of the equivalent 

residues in the zebrafish Appa and Appb Aβ-42-like peptides, zebrafish Appa Aβ-42-like peptide 

shows no conservation with the equivalent human or mouse residues, while zebrafish Appb Aβ-
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42-like peptide is conserved with human Aβ-42 at residues 5 and 10, but not 13 (it is instead 

conserved with mouse Aβ-42 at this position) (Figure 5.1). What does this mean regarding the 

aggregation propensities of these two putative zebrafish peptides? Further investigation of both 

zebrafish Aβ-42-like peptides is likely needed to address this observation. It is also worth noting 

that other studies have reported that residues 6 and 13 are most important for binding metal ions 

[32]. If these alternative studies are correct, and mouse Aβ-42 shares the same residue at position 

6 as human Aβ-42, does this suggest that the residue at position 13 alone is critical for aggregation 

propensity? Further research is needed to address this question, although, if this is in fact the case 

then all three of mouse Aβ-42, zebrafish Appa Aβ-42-like and zebrafish Appb Aβ-42-like are not 

conserved at this residue, which may suggest that none of these peptides have the same aggregation 

propensity as the human Aβ-42 peptide. 

 

Although human Aβ-40 also forms fibrils, these aggregates are considerably less toxic in AD. It 

follows that the toxicity of both zebrafish Aβ-42-like peptides should also be analysed. Regarding 

the observation by Moore et al (2014) of a lack of conservation in the putative β-secretase cleavage 

sites of zebrafish Appa and Appb and what this might mean for production of Aβ from these 

proteins, a study in our laboratory is currently investigating this using tagged forms of Appa and 

Appb. To confirm the observations made in this study, the Aβ-42 equivalent peptides that we have 

predicted for zebrafish Appa and Appb should be produced and used in in vitro aggregations 

studies. Future work should also include further investigation of these peptides in vivo. In order to 

confirm the existence of endogenous Aβ in the zebrafish brain, immunoprecipitation of Aβ peptide 

from the zebrafish brain should be attempted using existing Aβ antibodies. Zebrafish whole brain 

lysates could be incubated with the well documented 4G8 antibody. Aβ peptides could then be 
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sequestered from the lysates using protein A sepharose (or protein G sepharose) beads. The 

purified Aβ peptides would then be examined by western immunoblot. If these peptides could be 

isolated successfully from the zebrafish brain, we could investigate further the effects of our fAD-

like mutation model zebrafish on Aβ aggregation. 

 

5.4 Methods 

Protein sequence alignments 

Alignments were conducted using the Geneious software suite, version 5.6.7 

(http://www.geneious.com, [29]) Alignments were performed with the following constraints; Cost 

matrix: Identity, Gap open penalty: 10, Gap extension penalty: 3, Alignment: Global. 

 

Predicting β-aggregation propensity with TANGO 

The β-aggregation propensities of human and mouse Aβ-42, along with our predicted Aβ-42 

peptides for zebrafish Appa and Appb (Figure 5.1), were assessed with TANGO [20] using pH, 

temperature, ionic strength and concentration conditions presented in Table 5.1 and default 

parameters for Nterm and Cterm.  

 

Predicting amyloidogenic regions with other software 

The amino acid sequences of human and mouse Aβ-42, along with our predicted Aβ-42 peptides 

for zebrafish Appa and Appb were entered into the input windows of Zyggregator [1] and Zipper 

DB [25] to predict aggregation-prone regions of these peptides. When using Zyggregator, the pH 

was set to 7 as the input only allows for whole numbers and 7 is the closest to the pH of human 

brain (7.2) and zebrafish cytosol (7-7.44). 
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5.6 Supplementary information 

This section is included in the thesis as information supplementary to Chapter 5. It contains 

additional information not included in the main text of the manuscript. 

 

File S1. Supplementary tables for TANGO analyses 

Table S1. Combinations of physio-chemical conditions input into TANGO software 

 Highlighted cells indicate experiments not included in the final analysis. 

Experiment pH Temperature (K) Ionic Strength Concentration 

1 7.2 310.15 0.3 9x10-12 

2 7 298.15 0.3 9x10-12 

3 7.2 298.15 0.3 9x10-12 

4 7 310.15 0.3 9x10-12 

5 7.2 310.15 0.2 9x10-12 

6 7 298.15 0.2 9x10-12 

7 7.2 298.15 0.2 9x10-12 

8 7 310.15 0.2 9x10-12 

9 7.44 298.15 0.2 9x10-12 

10 7.44 298.15 0.3 9x10-12 

11 7.44 310.15 0.2 9x10-12 

12 7.44 310.15 0.3 9x10-12 
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Table S2. Experiment 1 - β-aggregation (β-agg) values at each amino acid residue position of 

the Aβ-42 peptides as generated by the TANGO software 

 Human Mouse Zebrafish Appa Zebrafish Appb 
Position Amino 

acid 
β-agg Amino 

acid 
β-agg Amino 

acid 
β-agg Amino 

acid 
β-agg 

1 D 0 D 0 E 0 D 0 
2 A 0 A 0 A 0 I 0 
3 E 0 E 0 E 0 E 0 
4 F 0 F 0 E 0 E 0 
5 R 0 G 0 R 0 R 0 
6 H 0 H 0 H 0 H 0 
7 D 0 D 0 S 0 N 0 
8 S 0 S 0 E 0 A 0 
9 G 0 G 0 V 0 G 0 
10 Y 0 F 0 Y 0 Y 0 
11 E 0 E 0 H 0 D 0 
12 V 0 V 0 Q 0 V 0 
13 H 0 R 0 K 0 R 0 
14 H 0 H 0 L 77.261 D 0 
15 Q 0 Q 0 V 77.261 K 0 
16 K 0 K 0 F 77.261 R 0 
17 L 77.204 L 77.157 F 77.261 L 31.515 
18 V 77.204 V 77.157 A 77.261 M 31.515 
19 F 77.204 F 77.157 E 0 F 31.515 
20 F 77.204 F 77.157 D 0 L 31.515 
21 A 77.204 A 77.157 V 0 A 31.515 
22 E 0 E 0 S 0 E 0 
23 D 0 D 0 S 0 D 0 
24 V 0 V 0 N 0 M 0 
25 G 0 G 0 K 0 G 0 
26 S 0 S 0 G 5.481 S 0 
27 N 0 N 0 A 66.588 N 0 
28 K 0 K 0 I 89.595 K 0 
29 G 5.482 G 5.481 I 91.842 G 5.500 
30 A 66.644 A 66.630 G 92.047 A 66.782 
31 I 89.623 I 89.607 L 94.336 I 89.776 
32 I 91.867 I 91.852 M 94.731 I 92.020 
33 G 92.072 G 92.057 V 94.988 G 92.225 
34 L 94.360 L 94.345 G 92.814 L 94.509 
35 M 94.755 M 94.741 G 92.620 M 94.903 
36 V 95.012 V 94.998 V 92.609 V 95.159 
37 G 92.836 G 92.821 V 92.397 G 92.990 
38 G 92.642 G 92.627 I 88.996 G 92.796 
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39 V 92.631 V 92.615 A 0 V 92.785 
40 V 92.420 V 92.404   V 92.574 
41 I 89.016 I 89.001   I 89.168 
42 A 0 A 0   A 0 

 

 

Table S3. Experiment 2 - β-aggregation (β-agg) values at each amino acid residue position of 

the Aβ-42 peptides as generated by the TANGO software 

 Human Mouse Zebrafish Appa Zebrafish Appb 
Position Amino 

acid 
β-agg Amino 

acid 
β-agg Amino 

acid 
β-agg Amino 

acid 
β-agg 

1 D 0 D 0 E 0 D 0 
2 A 0 A 0 A 0 I 0 
3 E 0 E 0 E 0 E 0 
4 F 0 F 0 E 0 E 0 
5 R 0 G 0 R 0 R 0 
6 H 0 H 0 H 0 H 0 
7 D 0 D 0 S 0 N 0 
8 S 0 S 0 E 0 A 0 
9 G 0 G 0 V 0 G 0 
10 Y 0 F 0 Y 0 Y 0 
11 E 0 E 0 H 0 D 0 
12 V 0 V 0 Q 0 V 0 
13 H 0 R 0 K 0.042 R 0 
14 H 0 H 0 L 86.290 D 0 
15 Q 0 Q 0 V 86.290 K 0 
16 K 0.042 K 0.042 F 86.290 R 0 
17 L 86.238 L 86.191 F 86.290 L 47.333 
18 V 86.238 V 86.191 A 86.290 M 47.333 
19 F 86.238 F 86.191 E 0.042 F 47.333 
20 F 86.238 F 86.191 D 0 L 47.333 
21 A 86.238 A 86.191 V 0 A 47.333 
22 E 0.042 E 0.042 S 0 E 0 
23 D 0 D 0 S 0 D 0 
24 V 0 V 0 N 0 M 0 
25 G 0 G 0 K 0 G 0 
26 S 0 S 0 G 5.728 S 0 
27 N 0 N 0 A 69.168 N 0 
28 K 0 K 0 I 93.371 K 0 
29 G 5.729 G 5.727 I 95.463 G 5.740 
30 A 69.212 A 69.202 G 95.635 A 69.278 
31 I 93.388 I 93.378 L 97.541 I 93.449 
32 I 95.478 I 95.469 M 97.832 I 95.537 
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33 G 95.649 G 95.640 V 97.957 G 95.708 
34 L 97.555 L 97.547 G 96.138 L 97.609 
35 M 97.846 M 97.837 G 95.971 M 97.899 
36 V 97.970 V 97.962 V 95.958 V 98.023 
37 G 96.150 G 96.141 V 95.766 G 96.209 
38 G 95.984 G 95.974 I 92.544 G 96.043 
39 V 95.970 V 95.961 A 0.010 V 96.030 
40 V 95.779 V 95.769   V 95.838 
41 I 92.555 I 92.545   I 92.616 
42 A 0.010 A 0.010   A 0.010 

 

 

Table S4. Experiment 5 - β-aggregation (β-agg) values at each amino acid residue position of 

the Aβ-42 peptides as generated by the TANGO software 

 Human Mouse Zebrafish Appa Zebrafish Appb 
Position Amino 

acid 
β-agg Amino 

acid 
β-agg Amino 

acid 
β-agg Amino 

acid 
β-agg 

1 D 0 D 0 E 0 D 0 
2 A 0 A 0 A 0 I 0 
3 E 0 E 0 E 0 E 0 
4 F 0 F 0 E 0 E 0 
5 R 0 G 0 R 0 R 0 
6 H 0 H 0 H 0 H 0 
7 D 0 D 0 S 0 N 0 
8 S 0 S 0 E 0 A 0 
9 G 0 G 0 V 0 G 0 
10 Y 0 F 0 Y 0 Y 0 
11 E 0 E 0 H 0 D 0 
12 V 0 V 0 Q 0 V 0 
13 H 0 R 0 K 0.043 R 0 
14 H 0 H 0 L 77.436 D 0 
15 Q 0 Q 0 V 77.436 K 0 
16 K 0.043 K 0.043 F 77.436 R 0 
17 L 77.376 L 77.321 F 77.436 L 36.469 
18 V 77.376 V 77.321 A 77.436 M 36.469 
19 F 77.376 F 77.321 E 0.043 F 36.469 
20 F 77.376 F 77.321 D 0 L 36.469 
21 A 77.376 A 77.321 V 0 A 36.469 
22 E 0.043 E 0.043 S 0 E 0 
23 D 0 D 0 S 0 D 0 
24 V 0 V 0 N 0 M 0 
25 G 0 G 0 K 0 G 0 
26 S 0 S 0 G 5.81 S 0 
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27 N 0 N 0 A 70.513 N 0 
28 K 0 K 0 I 90.602 K 0 
29 G 5.811 G 5.809 I 92.562 G 5.831 
30 A 70.57 A 70.554 G 92.733 A 70.724 
31 I 90.629 I 90.612 L 94.714 I 90.793 
32 I 92.586 I 92.569 M 95.055 I 92.749 
33 G 92.757 G 92.74 V 95.266 G 92.926 
34 L 94.737 L 94.72 G 93.244 L 94.901 
35 M 95.079 M 95.062 G 93.064 M 95.242 
36 V 95.289 V 95.273 V 93.053 V 95.452 
37 G 93.266 G 93.249 V 92.856 G 93.436 
38 G 93.085 G 93.068 I 89.445 G 93.256 
39 V 93.074 V 93.057 A 0 V 93.245 
40 V 92.877 V 92.86   V 93.048 
41 I 89.464 I 89.447   I 89.627 
42 A 0 A 0   A 0 

 

 

Table S5. Experiment 6 - β-aggregation (β-agg) values at each amino acid residue position of 

the Aβ-42 peptides as generated by the TANGO software 

 Human Mouse Zebrafish Appa Zebrafish Appb 
Position Amino 

acid 
β-agg Amino 

acid 
β-agg Amino 

acid 
β-agg Amino 

acid 
β-agg 

1 D 0 D 0 E 0 D 0 
2 A 0 A 0 A 0 I 0 
3 E 0 E 0 E 0 E 0 
4 F 0 F 0 E 0 E 0 
5 R 0 G 0 R 0 R 0 
6 H 0 H 0 H 0 H 0 
7 D 0 D 0 S 0 N 0 
8 S 0 S 0 E 0 A 0 
9 G 0 G 0 V 0 G 0 
10 Y 0 F 0 Y 0 Y 0 
11 E 0 E 0 H 0 D 0 
12 V 0 V 0 Q 0 V 0 
13 H 0 R 0 K 0.056 R 0 
14 H 0 H 0 L 86.411 D 0 
15 Q 0 Q 0 V 86.411 K 0 
16 K 0.056 K 0.056 F 86.411 R 0 
17 L 86.357 L 86.302 F 86.411 L 52.898 
18 V 86.357 V 86.302 A 86.411 M 52.898 
19 F 86.357 F 86.302 E 0.056 F 52.898 
20 F 86.357 F 86.302 D 0 L 52.898 
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21 A 86.357 A 86.302 V 0 A 52.898 
22 E 0.056 E 0.056 S 0 E 0 
23 D 0 D 0 S 0 D 0 
24 V 0 V 0 N 0 M 0 
25 G 0 G 0 K 0 G 0 
26 S 0 S 0 G 6.052 S 0 
27 N 0 N 0 A 73.051 N 0 
28 K 0 K 0 I 94.114 K 0 
29 G 6.053 G 6.051 I 95.934 G 6.066 
30 A 73.097 A 73.085 G 96.082 A 73.172 
31 I 94.131 I 94.12 L 97.729 I 94.198 
32 I 95.948 I 95.938 M 97.98 I 96.012 
33 G 96.096 G 96.086 V 98.079 G 96.16 
34 L 97.743 L 97.733 G 96.393 L 97.802 
35 M 97.993 M 97.984 G 96.239 M 98.052 
36 V 98.092 V 98.083 V 96.226 V 98.15 
37 G 96.405 G 96.395 V 96.048 G 96.47 
38 G 96.251 G 96.241 I 92.818 G 96.317 
39 V 96.238 V 96.228 A 0.002 V 96.304 
40 V 96.061 V 96.05   V 96.127 
41 I 92.829 I 92.818   I 92.896 
42 A 0.002 A 0.002   A 0.002 

 

 

Table S6. Experiment 9 - β-aggregation (β-agg) values at each amino acid residue position of 

the Aβ-42 peptides as generated by the TANGO software 

 Human Mouse Zebrafish Appa Zebrafish Appb 
Position Amino 

acid 
β-agg Amino 

acid 
β-agg Amino 

acid 
β-agg Amino 

acid 
β-agg 

1 D 0 D 0 E 0 D 0 
2 A 0 A 0 A 0 I 0 
3 E 0 E 0 E 0 E 0 
4 F 0 F 0 E 0 E 0 
5 R 0 G 0 R 0 R 0 
6 H 0 H 0 H 0 H 0 
7 D 0 D 0 S 0 N 0 
8 S 0 S 0 E 0 A 0 
9 G 0 G 0 V 0 G 0 
10 Y 0 F 0 Y 0 Y 0 
11 E 0 E 0 H 0 D 0 
12 V 0 V 0 Q 0 V 0 
13 H 0 R 0 K 0.047 R 0 
14 H 0 H 0 L 86.271 D 0 
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15 Q 0 Q 0 V 86.271 K 0 
16 K 0.047 K 0.047 F 86.271 R 0 
17 L 86.220 L 86.195 F 86.271 L 52.840 
18 V 86.220 V 86.195 A 86.271 M 52.840 
19 F 86.220 F 86.195 E 0.047 F 52.840 
20 F 86.220 F 86.195 D 0 L 52.840 
21 A 86.220 A 86.195 V 0 A 52.840 
22 E 0.047 E 0.047 S 0 E 0 
23 D 0 D 0 S 0 D 0 
24 V 0 V 0 N 0 M 0 
25 G 0 G 0 K 0 G 0 
26 S 0 S 0 G 6.048 S 0 
27 N 0 N 0 A 73.027 N 0 
28 K 0 K 0 I 94.092 K 0 
29 G 6.049 G 6.048 I 95.913 G 6.064 
30 A 73.071 A 73.066 G 96.061 A 73.160 
31 I 94.106 I 94.102 L 97.71 I 94.186 
32 I 95.925 I 95.920 M 97.961 I 96.001 
33 G 96.073 G 96.068 V 98.06 G 96.149 
34 L 97.721 L 97.717 G 96.371 L 97.792 
35 M 97.972 M 97.968 G 96.217 M 98.041 
36 V 98.071 V 98.067 V 96.204 V 98.140 
37 G 96.381 G 96.376 V 96.026 G 96.458 
38 G 96.227 G 96.222 I 92.795 G 96.305 
39 V 96.214 V 96.209 A 0.002 V 96.292 
40 V 96.036 V 96.031   V 96.115 
41 I 92.803 I 92.799   I 92.883 
42 A 0.002 A 0.002   A 0.002 

 

 

Table S7. Experiment 10 - β-aggregation (β-agg) values at each amino acid residue position 

of the Aβ-42 peptides as generated by the TANGO software 

 Human Mouse Zebrafish Appa Zebrafish Appb 
Position Amino 

acid 
β-agg Amino 

acid 
β-agg Amino 

acid 
β-agg Amino 

acid 
β-agg 

1 D 0 D 0 E 0 D 0 
2 A 0 A 0 A 0 I 0 
3 E 0 E 0 E 0 E 0 
4 F 0 F 0 E 0 E 0 
5 R 0 G 0 R 0 R 0 
6 H 0 H 0 H 0 H 0 
7 D 0 D 0 S 0 N 0 
8 S 0 S 0 E 0 A 0 
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9 G 0 G 0 V 0 G 0 
10 Y 0 F 0 Y 0 Y 0 
11 E 0 E 0 H 0 D 0 
12 V 0 V 0 Q 0 V 0 
13 H 0 R 0 K 0.036 R 0 
14 H 0 H 0 L 86.167 D 0 
15 Q 0 Q 0 V 86.167 K 0 
16 K 0.036 K 0.036 F 86.167 R 0 
17 L 86.135 L 86.099 F 86.167 L 47.283 
18 V 86.135 V 86.099 A 86.167 M 47.283 
19 F 86.135 F 86.099 E 0.036 F 47.283 
20 F 86.135 F 86.099 D 0 L 47.283 
21 A 86.135 A 86.099 V 0 A 47.283 
22 E 0.036 E 0.036 S 0 E 0 
23 D 0 D 0 S 0 D 0 
24 V 0 V 0 N 0 M 0 
25 G 0 G 0 K 0 G 0 
26 S 0 S 0 G 5.724 S 0 
27 N 0 N 0 A 69.146 N 0 
28 K 0 K 0 I 93.351 K 0 
29 G 5.725 G 5.724 I 95.444 G 5.738 
30 A 69.189 A 69.184 G 95.616 A 69.268 
31 I 93.366 I 93.361 L 97.524 I 93.438 
32 I 95.457 I 95.453 M 97.815 I 95.526 
33 G 95.628 G 95.624 V 97.94 G 95.697 
34 L 97.536 L 97.532 G 96.118 L 97.6 
35 M 97.826 M 97.823 G 95.951 M 97.889 
36 V 97.951 V 97.948 V 95.938 V 98.014 
37 G 96.128 G 96.124 V 95.746 G 96.198 
38 G 95.962 G 95.958 I 92.524 G 96.032 
39 V 95.948 V 95.944 A 0.01 V 96.019 
40 V 95.756 V 95.752   V 95.827 
41 I 92.533 I 92.528   I 92.605 
42 A 0.01 A 0.01   A 0.01 
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Table S8. Agg scores for all TANGO experiments 

Experiment Human Mouse Zf Appa Zf Appb 
1 1475.38 1474.96 1475.35 1248.76 
2 1560.55 1560.20 1560.62 1366.66 
5 1486.19 1485.71 1486.18 1283.58 
6 1568.84 1568.44 1568.91 1402.22 
9 1567.84 1567.67 1567.93 1401.79 
10 1559.76 1559.53 1559.75 1366.28 
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File S2. Supplementary tables for Zyggregator analyses 

Table S9. Raw Zygg residue score data output from Zyggregator 

 Human Aβ-42 Mouse Aβ-42 

equivalent 

Zebrafish Appb 

Aβ-42 equivalent 

Zebrafish Appa Aβ-

42 equivalent 

Position Amino 

Acid 

Zygg 

residue 

score 

Amino 

Acid 

Zygg 

residue 

score 

Amino 

Acid 

Zygg 

residue 

score 

Amino 

Acid 

Zygg residue 

score 

1 D 0.0619504 D 0.06195 D -0.588424 E -1.29325 

2 A -0.437954 A 0.223669 I -1.11194 A -1.84235 

3 E -0.303041 E 0.205307 E -0.820887 E -1.38209 

4 F -0.494487 F 0.094332 E -0.964486 E -1.64632 

5 R -0.335666 G 0.253154 R -0.880837 R -1.64632 

6 H -0.16945 H 0.41937 H -1.04779 H -1.2646 

7 D 0.693793 D 1.38153 N -0.184546 S -0.401354 

8 S -0.268368 S 0.41937 A 0.163942 E 0.0878349 

9 G 0.564591 G 0.634872 G 0.996902 V 0.48241 

10 Y 0.564591 F 0.126579 Y 0.488608 Y 0.0939694 

11 E 0.705292 E 0.267279 D 0.329613 H 0.173497 

12 V 0.283972 V -0.1254 V -0.10356 Q 0.510175 

13 H -0.401329 R -0.8107 R -0.908714 K 0.658481 

14 H -0.490038 H -0.99833 D -0.997422 L 0.945095 

15 Q 0.323818 Q -0.18448 K -0.508714 V 1.26344 

16 K 0.284427 K -0.03617 R -0.548104 F 0.700269 

17 L 0.757399 L 0.945095 L 0.0578379 F 0.948009 

18 V 1.07574 V 1.26344 M 0.329183 A 1.17503 
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19 F 0.700269 F 0.887965 F 0.228435 E 1.05618 

20 F 0.948009 F 1.1357 L 0.596027 D 0.601327 

21 A 1.17503 A 1.36272 A 0.65869 V 0.146649 

22 E 1.14722 E 0.959523 E 0.419846 S -0.18474 

23 D 0.692369 D 0.504673 D -0.0350047 S 0.413613 

24 V 0.237692 V 0.237692 M 0.0733369 N 0.309566 

25 G -0.0936972 G -0.0937 G -0.445748 K 0.261015 

26 S 0.504656 S 0.504656 S 0.340301 G 0.51901 

27 N 0.400608 N 0.400608 N 0.236253 A 0.610052 

28 K 0.352058 K 0.352058 K 0.352058 I 0.689407 

29 G 0.51901 G 0.51901 G 0.51901 I 1.23816 

30 A 0.610052 A 0.610052 A 0.610052 G 1.64136 

31 I 0.689407 I 0.689407 I 0.689407 L 1.80757 

32 I 1.23816 I 1.23816 I 1.23816 M 1.64062 

33 G 1.64136 G 1.64136 G 1.64136 V 1.68917 

34 L 1.80757 L 1.80757 L 1.80757 G 1.90467 

35 M 1.64062 M 1.64062 M 1.64062 G 2.08314 

36 V 1.68917 V 1.68917 V 1.68917 V 1.86578 

37 G 1.90467 G 1.90467 G 1.90467 V 1.18629 

38 G 2.08314 G 2.08314 G 2.08314 I 1.38345 

39 V 1.86578 V 1.86578 V 1.86578 A 1.18111 

40 V 1.18629 V 1.18629 V 1.18629   

41 I 1.38345 I 1.38345 I 1.38345   

42 A 1.18111 A 1.18111 A 1.18111   
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File S3. Supplementary tables for Zipper DB analyses 

Table S10. Rosetta energies (Re) of all possible hexapeptides within the Aβ-42 peptide regions 

of human APP, mouse APP and zebrafish Appa and Appb proteins. 

 Yellow highlight indicates positions that are likely to aggregate (based on Re < -23 

kcal/mol) 

 H.sapiens APP M.musculus APP D.rerio Appa D.rerio Appb 

Position Sequence Re Sequence Re Sequence Re Sequence Re 

1 DAEFRH -12.5 DAEFGH -14.7 EAEERH -14.4 DIEERH -16.3 

2 AEFRHD -17.5 AEFGHD -17.9 AEERHS -17.8 IEERHN -15.3 

3 EFRHDS -14.6 EFGHDS -17.4 EERHSE -16.8 EERHNA -19.8 

4 FRHDSG -15.5 FGHDSG -17.9 ERHSEV -17.7 ERHNAG -17.2 

5 RHDSGY -17 GHDSGF -19.2 RHSEVY -19.8 RHNAGY -18 

6 HDSGYE -19.9 HDSGFE -18.8 HSEVYH -22 HNAGYD -18.8 

7 DSGYEV -17.2 DSGFEV -14.4 SEVYHQ -21.9 NAGYDV -18.4 

8 SGYEVH -20.5 SGFEVR -17.5 EVYHQK -22.7 AGYDVR -15.5 

9 GYEVHH -22.2 GFEVRH -17.9 VYHQKL -21.3 GYDVRD -15.5 

10 YEVHHQ -21.1 FEVRHQ -19.4 YHQKLV -21.3 YDVRDK -14 

11 EVHHQK -21.6 EVRHQK -18.7 HQKLVF -22.6 DVRDKR -12.1 

12 VHHQKL -19.9 VRHQKL -16.5 QKLVFF -24 VRDKRL -12.9 

13 HHQKLV -21.1 RHQKLV -17.6 KLVFFA -22.2 RDKRLM -10.5 

14 HQKLVF -22.6 HQKLVF -22.6 LVFFAE -7.5 DKRLMF -18.7 

15 QKLVFF -24 QKLVFF -24 VFFAED -18.7 KRLMFL -18.4 

16 KLVFFA -22.2 KLVFFA -22.2 FFAEDV -19.3 RLMFLA -12.8 

17 LVFFAE -7.5 LVFFAE -7.5 FAEDVS -18.2 LMFLAE -21.4 
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18 VFFAED -18.7 VFFAED -18.7 AEDVSS -20.9 MFLAED -18.1 

19 FFAEDV -19.3 FFAEDV -19.3 EDVSSN -18.8 FLAEDM -19.3 

20 FAEDVG -18 FAEDVG -18 DVSSNK -21.2 LAEDMG -16.9 

21 AEDVGS -20.4 AEDVGS -20.4 VSSNKG -20.9 AEDMGS -18.6 

22 EDVGSN -17.9 EDVGSN -17.9 SSNKGA -22.3 EDMGSN -17.5 

23 DVGSNK -22 DVGSNK -22 SNKGAI -22.4 DMGSNK -20.6 

24 VGSNKG -19.9 VGSNKG -19.9 NKGAII -23.5 MGSNKG -21.3 

25 GSNKGA -22.3 GSNKGA -22.3 KGAIIG -23.3 GSNKGA -22.3 

26 SNKGAI -22.4 SNKGAI -22.4 GAIIGL -26 SNKGAI -22.4 

27 NKGAII -23.5 NKGAII -23.5 AIIGLM -25.7 NKGAII -23.5 

28 KGAIIG -23.3 KGAIIG -23.3 IIGLMV -23 KGAIIG -23.3 

29 GAIIGL -26 GAIIGL -26 IGLMVG -21.9 GAIIGL -26 

30 AIIGLM -25.7 AIIGLM -25.7 GLMVGG -23.1 AIIGLM -25.7 

31 IIGLMV -23 IIGLMV -23 LMVGGV -21.7 IIGLMV -23 

32 IGLMVG -21.9 IGLMVG -21.9 MVGGVV -23.4 IGLMVG -21.9 

33 GLMVGG -23.1 GLMVGG -23.1 VGGVVI -25.1 GLMVGG -23.1 

34 LMVGGV -21.7 LMVGGV -21.7 GGVVIA -27.8 LMVGGV -21.7 

35 MVGGVV -23.4 MVGGVV -23.4   MVGGVV -23.4 

36 VGGVVI -25.1 VGGVVI -25.1   VGGVVI -25.1 

37 GGVVIA -27.8 GGVVIA -27.8   GGVVIA -27.8 
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File S4. Supplementary figures for Zipper DB analyses 

 

Figure S1. Zipper DB fibrillation propensity profile of human Aβ-40 peptide. – Red histogram bars 

correspond to hexapeptides (6 amino acid residues, starting from the residue directly above the bar and 

read C-terminally, i.e. the hexapeptide for the first red bar would be GAIIGL) with energy < −23 kcal⁄mol 

and are predicted to form fibrils.  
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Chapter 6 - Further Discussion, Conclusions and Future directions 

6.1 Introduction 

γ-secretase is an important protease complex as it is responsible for the cleavage of over 100 

substrates within their transmembrane domains [1, 2]. Although many substrates of γ-secretase are 

known, the specificity by which γ-secretase selects its substrates remains a mystery. γ-secretase 

plays a role in Alzheimer’s disease (AD) through its processing of APP to produce the aggregation-

prone Aβ peptide [3]. This sequential processing of APP that produces the Aβ peptide is considered 

a major pathological event in AD disease progression, as described by the amyloid cascade 

hypothesis [4]. Other than its role in AD disease, γ-secretase also has numerous roles in 

development and adulthood through regulating many cellular events, including axon guidance and 

formation, neurite outgrowth, cell fate determination and maintenance of synapses. Due to its 

involvement in this wide array of important physiological processes, defects in γ-secretase 

mediated signalling pathways can lead to numerous pathologies, such as: Neurodegeneration in 

AD, Acne inversa, Autoimmune disease, Breast cancer and Dilated cardiomyopathy [reviewed in 

5]. Thus, it is important to gain a better understanding of substrate selection by γ-secretase, to 

facilitate more efficient drug design that allows for targeting only the specific substrate involved 

in each disease. 

 

In this thesis we aimed to investigate γ-secretase and two of its substrates, p75NTR and APP, on 

three different fronts; 1) selection of substrates by γ-secretase using an assay-based system, 2) the 

molecular effects of fAD-like and null mutations in zebrafish appa and appb, by generating 

mutations in endogenous genes with genome editing technologies, and 3) the predicted aggregation 

propensity of Aβ-42-like peptides of Appa and Appb using predictive software. 
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6.2 How does γ-secretase select specific substrates? 

The amyloid cascade hypothesis continues to dominate the field of AD research, mostly due to the 

observation of plaques composed of oligomerised Aβ peptide in the brains of AD sufferers. γ-

secretase is a key component of this hypothesis, due to its processing of APP to release the Aβ 

peptide. The observation that γ-secretase-cleavage of APP results in the release of Aβ peptides, 

led many researchers to develop inhibitory drugs targeting this protease in the hopes of preventing 

Aβ aggregation into plaques [6]. Our current knowledge suggests that γ-secretase is responsible 

for cleaving more than 100 substrates (including APP and Notch), so it should come as no surprise 

that drugs designed to inhibit this protease cause severe side effects [7]. A better understanding of 

substrate selection by γ-secretase may assist in the design of drugs to target more specifically its 

processing of select substrates.  

 

As there is still no clear answer to the question of substrate selection by γ-secretase, we sought to 

investigate this using the known γ-secretase substrate, p75NTR, and its homolog NRH1. We 

leveraged the structural and sequence similarities (especially in the transmembrane domain 

(TMD)) of these two homologues to design an assay system with which we could attempt to 

elucidate structural determinants that enable p75NTR to be cleaved by γ-secretase while NRH1 is 

not. Our assay determined that the TMD of p75NTR alone was insufficient to confer γ-secretase 

cleavage to its homolog Nrh1. Therefore, we posited that there must be structures other than the 

TMD that are also required for cleavage by γ-secretase. Interestingly, another study employing a 

similar strategy to ours, found that γ-secretase cleavage of their substrate required both a 

permissive transmembrane and a permissive intracellular domain (ICD) [8]. Suggesting that the 

ICD is just as important as the TMD to confer γ-secretase cleavage. Furthermore, a study by Sykes 
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et al (2012) suggested that dimerisation of substrates or the structure of substrate α-helices may 

regulate γ-secretase cleavage [9]. While zebrafish Nrh1 has a different dimerisation domain to that 

of p75NTR, replacing the Nrh1 dimerisation domain by the swapping its TMD with the p75NTR 

TMD in our study, did not confer γ-secretase cleavage. This suggests that the p75NTR dimerisation 

domain alone is also not sufficient to confer γ-secretase cleavage.  

 

In Chapter 2 we discussed some options for investigating the question of which enzyme is 

responsible for cleavage of the TMD of Nrh1. We suggested that a range of protease inhibitors 

could be employed to identify the class of iCLIP responsible. Investigation into what causes the 

previously observed cleavage within the Nrh1 TMD could be further extended as follows: 

 

(1) Site directed mutagenesis could be used to alter Leucine (Figure 6.1) to Proline in the TMD of 

our existing Nrh1 assay construct, as this residue supposedly assists the TMD of p75 in 

changing confirmation from an α-helix to a β-sheet, thereby allowing γ-secretase access for 

proteolysis. The altered construct could then be injected into single cell embryos and DAPT 

inhibitor applied to assess whether cleavage by γ-secretase is conferred, thereby confirming 

whether this residue contributes to proteolysis through allowing relaxation of the α-helix into 

β-sheet for better access for γ-secretase. 

 

(2) Antisense morpholino oligonucleotides (MOs) could be used to block psen1 and psen2 

expression to confirm that Nrh1 cleavage is presenilin-independent. MOs are a type of 

oligomer molecule that can be injected into zebrafish embryos to block expression of proteins 

through binding to mRNAs [10]. Previous work in our laboratory has involved inhibition of 
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Psen1 and Psen2 translation with MOs that bind over the start codons of their mRNA 

transcripts. These existing MOs could be co-injected with the previously described Nrh1 assay 

construct at the 1-cell-stage and western immunoblot analysis could then be performed on 

embryos at 24hpf to determine the effect of presenilin inhibition.  

 

(3) Subcellular localisation of both NRH1 and p75NTR cleavage events could also be investigated. 

Combined evidence suggests the principal sites of γ-secretase cleavage to be endosomes, TGN 

and at the plasma membrane [reviewed in 3, 11], so it is reasonable to assume that p75NTR 

cleavage may occur in one or all of these compartments. However, the subcellular localisation 

of NRH1 and whichever enzyme is responsible for its proteolysis is more of a mystery. With 

a current lack of open source software that can accurately predict the subcellular localisation 

of proteins in the zebrafish, more traditional methods could be employed to investigate the 

location of p75NTR and Nrh1. Fluorescence microscopy might be employed by synthesising 

GFP labelled recombinant p75NTR and Nrh1 zebrafish proteins, injecting them at the 1-cell-

stage, and monitoring their localisation at different time points. Alternatively, subcellular 

fractionation followed by western immunoblotting with p75NTR- and Nrh1-specific antibodies 

could also be attempted. Knowledge of the respective subcellular cleavage locations of Nrh1 

and p75NTR may also assist in identifying the enzyme responsible for the non-γ-secretase 

cleavage event of Nrh1. 

 

(4) Another extension of this project could be a deeper investigation of the evolution of γ-secretase 

dependence or independence of proteins. Kanning et al (2003) proposed an evolutionary model 

for the existence of the p75NTR and NRH1 homologues [12]. Their hypothesis was that a gene 
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duplication event within a common ancestral sequence led to formation of the p75NTR and 

NRH1 sequences. NRH2 lacks the ECD motif observed in both p75NTR and NRH1, hence it 

may have arisen by a deletion mutation around the time that the avian and mammalian lineages 

diverged [12, 13]. Considering this, one can assume the existence of a common ancestral 

sequence encoding a protein either cleaved or not by γ-secretase and from which a γ-secretase 

dependence or independence evolved (Figure 6.2). Therefore, identification of a common 

ancestral sequence that gave rise to p75NTR and NRH1 through additional phylogenetic 

analyses would allow us to develop an assay specifically to test whether this ancestor is cleaved 

by γ-secretase. This could give us insight into whether p75NTR’s dependence on γ-secretase is 

a characteristic that has evolved recently. 

 

Understanding the basis for γ-secretase substrate selection is important for understanding disease 

processes, such as those involved in Alzheimer’s disease, and for rational drug design. A specific 

recognition and/or cleavage site for γ-secretase-mediated proteolysis has not yet been established. 

This makes designing drugs to prevent, specifically, proteolysis of APP and release of Amyloid 

beta particularly challenging and may contribute to the explanation of why so many drugs targeting 

this mechanism in attempts to alleviate and/or slow the progression of Alzheimer’s Disease 

symptoms have failed. We do not yet understand what makes a γ-secretase substrate unique for 

selection/targeting for proteolysis by this protease complex. As it stands there are many substrates 

of this protease with varied roles in cell biology which makes targeted drug design even more 

important as widespread disruption of these processes would be expected to have deleterious 

effects. The unique design of our assay system may allow us to gain a deeper understanding to the 

question of what structures define a γ-secretase substrate. Information gleaned from the 
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experiments proposed in the discussions above could be used to design new drugs that target 

specifically γ-secretase’s ability to cleave specific substrates. 

 

 

Figure 6.2 Suggested evolutionary development of p75NTR and NRH genes. The high degree of 

conservation between the sequences of p75NTR and NRH1 suggests that these two sequences arose via 

a gene duplication event in an ancestral sequence. As mammalian NRH2 lacks an extracellular domain 

(ECD) motif, it may have arisen by a deletion mutation after the divergence of avian and mammalian 

lineages 
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6.3 What are the molecular effects of fAD-like and null mutations in zebrafish appa and 

appb? 

The overarching goal of the ADGL laboratory is to develop a catalogue of fAD-like mutations and 

null mutations in each of the fAD gene equivalents in zebrafish to identify the molecular changes-

in-common that contribute to AD pathology. One key question to be answered from this larger 

project is, what are the effects of APP fAD mutations on key molecular processes in the brain that 

eventually lead to AD? We originally aimed to generate several fAD-like mutations spanning the 

Aβ peptide region of human APP at equivalent residues in the zebrafish appa and appb genes, 

along with null mutations in both genes, to contribute to this larger project.  

 

In Chapter 3, we utilised current genome editing techniques and attempted to generate a suite of 

fAD-like and null mutations in appa and appb with limited success. While we were able to achieve 

double-stranded break generation with an sgRNA targeting a fAD mutation site in appa (Austrian 

mutation site) and one fAD mutation site in appb (Arctic mutation site), introduction of mutations 

of interest using engineering oligonucleotides was not achieved. We also discussed how future 

work should utilise recent developments in CRISPR technologies to successfully generate these 

fAD-like mutations in appa and appb.  

 

In Chapter 4, successful generation of a putative null mutation in zebrafish appb using an sgRNA 

that successfully generated a DSB near the start codon was described (appbR5PfsTer26) and 

preliminary analyses of the hypoxic response to this mutation performed. We observed no 

phenotype in our heterozygous appbR5PfsTer26 putative null mutants and proposed that this is 

possibly due to the phenomenon of “genetic compensation”.  
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Previous studies using MEFs have shown that the AICD induces Hif1a gene expression and HIF-

1α protein stability [14]. Along with this, hypoxic conditions have been shown to upregulate 

mRNA and protein expression of APP [15]. This may indicate a possible positive feedback loop, 

whereby increased production of APP under hypoxic conditions results in increased AICD release, 

which in turn results in an increased hypoxia response through increased Hif1a expression. 

Therefore, we proposed that loss of appb in our putative null mutant should have resulted in a 

reduction in the hypoxia response. 

 

APP is also connected to the hypoxia response through its involvement in cellular iron homeostasis 

[16]. Interestingly, both APP and its cleavage product, sAPPα, have been shown to bind 

FERROPORTIN 1 (FPN1) to improve the process by which neurons export excess iron (Fe2+). 

HIF is stabilised under hypoxia and degraded under normoxia. During normoxia, Fe2+ (together 

with oxygen and other factors) is needed to hydroxylate HIF1α to target it for degradation. In 

Chapter 4 we discussed how loss of the AICD from Appb in our putative null mutant would be 

expected to reduce the hypoxia response by potentially reducing expression of the Hif1a gene. As 

APP is also involved in the movement of Fe2+ out of the cytosol, we would expect that the cytosol 

of our appbR5PfsTer26 putative null mutants would accumulate excess Fe2+. This excess of available 

Fe2+ may result in increased destabilisation or degradation of HIF1α, thereby decreasing the 

hypoxia response. Therefore, we would also expect to observe decreased induction of HRG 

expression in hypoxia treated appbR5PfsTer26 putative null mutants compared to wildtype, due to 

APPs role in iron homeostasis.  
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Previous experiments in the ADGL measuring the hypoxic response of a fAD-like mutation in 

psen1, saw increased expression of HRGs in 6-month-old psen1 mutant brains under normoxia. 

PSEN1 plays an important role in the acidification of lysosomes through chaperoning a protein 

whose eventual role is lysosomal acidification [16]. Interestingly, fAD mutations in PSEN1 have 

previously been observed to decrease the acidity of lysosomes [17]. If lysosomes are not acidified 

(as may be the case in psen1 fAD-like mutants [18]) iron cannot be recycled from its ferric form 

(Fe3+) into its ferrous form (Fe2+) for release into the cytosol. A lack of cytosolic Fe2+ in psen1 

fAD-like mutants could explain the observed increase in HRG expression as HIF1α would not be 

degraded but stabilised to induce the expression of hypoxia response genes. If we crossed the 

existing psen1 fAD-like mutant with our appb putative null mutant we might expect this to 

alleviate the increased hypoxic response, as Appb would no longer be available to bind FPN1 to 

increase export of Fe2+ out of the cytosol of neurons. If we observed HRG expression levels in 

psen1 fAD-like/appbR5PfsTer26 mutants like that of wildtype fish, this would further confirm the 

critical roles of both Psen1 and Appb in the hypoxia response pathway through their involvement 

in iron homeostasis. 

 

There is also significant other work that could be performed to further explore the biological effects 

of our appbR5PfsTer26 putative null mutation, including: 

 

(1) In Chapter 4 we observed no obvious phenotype in either heterozygous or homozygous 

appbR5PfsTer26 mutants. Whereas, previous studies of appb in the zebrafish using morpholinos 

to knockdown gene function reported developmental phenotypes [19, 20]. We suggested that 

this discrepancy in phenotype is most likely due to the phenomenon of “genetic 
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compensation”. In order to confirm this assumption, primers detecting wildtype appa, aplp1 

and aplp2 could be designed and dqPCR performed to measure their transcript levels in 

heterozygous and homozygous appbR5PfsTer26 mutants. If one or all of these genes from the 

larger APP family are compensating for loss of appb in our mutants, we would expect to see 

increased expression of these transcripts. RNA sequencing of our appb null mutants could also 

be used to identify other genes that may be compensating for loss of appb. 

 

(2) INTERLEUKIN 1 (IL1) is a pro-inflammatory cytokine that stimulates APP translation, 

possibly so that it can participate in the inflammatory response by assisting in iron export from 

the cytosol [16]. This coupled with the observation that APP transcription is upregulated by 

oxidative stress (hypoxia), suggests that APP plays an important role in regulation of iron 

during these states of stress. If APP’s role in iron homeostasis and the hypoxic response is 

critical as we suspect, then we might also expect to observe increased transcription of appa in 

our appbR5PfsTer26 putative null mutants, as appa may compensate for loss of appb during 

hypoxic stress. This anticipated increase in appa transcription in our appbR5PfsTer26 putative null 

mutants could be measured in samples previously treated with hypoxia via dqPCR. 

 
 

(3) Transcriptomics allows for a detailed analysis of the molecular phenotype of cells or tissues. 

Previous work in our laboratory has analysed the transcriptome of zebrafish brains that carry 

fAD-like mutations in the psen1 gene [21]. Our current goal is to extend this approach to 

compare the molecular changes observed by transcriptomic analyses of fAD-like mutations in 

psen1, psen2, appa, appb and sorl1 and to exclude changes shared with null mutations in each 
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of these genes. Therefore, RNA sequencing (RNA-seq) should be performed on both normal 

zebrafish adult brains and adult zebrafish brains heterozygous for the appb null mutation, to 

allow comparison of their transcriptomes. RNA-seq would be performed on brains of 

heterozygous mutant zebrafish at 6-months-old and 24-months-old. This would be followed 

by gene interaction network analysis, gene ontology analysis, and promoter analysis to identify 

the time/sex/mutation-dependent changes in cell biology caused by the null mutation in appb. 

This would contribute to the identification of the signature molecular changes in AD by 

allowing us to exclude those molecular changes that are shared between fAD-like mutations 

and null mutation (Figure 6.2). 

 

 

Figure 6.3. Simplified Venn diagram of the approach to identify a molecular signature of AD. 
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Confirming that appbR5PfsTer26 is a true loss-of-function mutation as discussed in Chapter 4 is 

important, as this will allow us to compare the effects of appbR5PfsTer26 to fAD-like mutations in 

appa and appb generated in the future. Such comparisons may allow us to identify whether fAD-

like mutations in appa and appb are gain- or loss-of-function. Our appbR5PfsTer26 putative null 

mutant may also prove useful in gaining new insights into the function of Appb in the zebrafish, 

and perhaps APP in general, as we could use this mutant to further investigate the molecular 

pathways/mechanisms that are affected by loss of Appb in the zebrafish. The transcriptomic 

analyses of appbR5PfsTer26 suggested above should allow for exclusion of the non-fAD-causative 

effects caused by loss of Appb, thereby allowing us to discover the changes in future fAD-like 

mutants that are unique to those mutations. Finally, the latest techniques in genome editing, as 

discussed in Chapter 3, have significantly improved our ability to generate specific mutations into 

the zebrafish genome. Thus, it is highly feasible for the suggested future work discussed both here 

and in Chapter 4 to be completed. 

 

6.4 Do the Aβ-42-equivalent peptides that would be generated from zebrafish Appa and 

Appb have the same aggregation propensity as human Aβ-42? 

One of the key concepts that has persisted in the field of AD research is that the Aβ-42 peptide 

produced by sequential processing of APP is neurotoxic. This is mostly due to the observations 

that 1) mutations causing fAD are mostly in genes that are important for amyloid production, 2) 

many fAD mutations in APP increase production of Aβ-42 over the more soluble Aβ-40 variant 

and 3) senile/neuritic plaques (one of the histological hallmarks of AD) containf aggregated Aβ-

42 fibrils. There are currently no studies that have investigated the aggregation of endogenous Aβ-

42-equivalent peptides that would be generated by the same processing of Appa or Appb in the 
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zebrafish. We therefore performed analyses using a range of software to investigate the possible 

aggregation properties of theoretical Aβ-42-like peptides for both Appa and Appb. We observed 

extremely similar aggregation propensity in the C-terminal regions of both Aβ-42-like peptides of 

Appa and Appb. Interestingly, the Aβ-42-like peptide of Appb did not have the same level of 

aggregation propensity in its mid-peptide region as was observed for human, mouse and Appa. It 

is therefore possible that the Aβ-42-like peptide of Appb does not aggregate in the same way that 

is observed for human Aβ-42. Furthermore, we also observed some minor differences in the N-

terminal and mid-peptide regions of mouse Aβ-42 in both the Zyggregator and Zipper DB 

analyses. In Chapter 5 we discussed how this is consistent with studies that have observed lower 

aggregation propensity for mouse Aβ compared to human Aβ both in vitro and in vivo [22, 23]. 

 

Some further questions to address regarding the Aβ-42-like peptides of Appa and Appb would be;  

 

(1) Do the Aβ-42-like peptides of Appa and Appb aggregate in vitro?  

To address this, overexpression constructs harbouring the putative zebrafish Appa and Appb 

Aβ-40-like and Aβ-42-like peptides could be designed and synthesised. These constructs could 

then be transfected into cells, where each respective peptide would be overexpressed, and its 

aggregation propensity then measured in vitro. We could also potentially utilise this system to 

observe toxicity of the Aβ-42-like peptides of Appa and Appb. 

 

(2) Are zebrafish-specific Aβ peptides generated from Appa and Appb in vivo?  

A current Honours project in the ADGL has included the design of DNA constructs that encode 

Appa and Appb, human APP and BACE1 that will be used to determine if BACE1 cleaves 
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zebrafish Apps. The constructs will be injected into zebrafish embryos at the single cell stage 

and protein will be collected from these embryos at 24hpf to investigate whether β-CTF-

equivalent peptides are produced. The results of this study should allow us to answer the 

question of whether zebrafish Appa And Appb produce peptides that resemble Aβ since we 

know that Appa and Appb can be cleaved by γ-secretase [24].  

 

Confirmation of whether Aβ is produced from zebrafish Appa and Appb and whether these 

peptides have aggregation potential and/or toxicity similar to that of human Aβ will be important 

for future analyses of our fAD-like mutants of each of the fAD genes (psen1, psen2, appa, appb 

and sorl1). If Aβ equivalent peptides are not found to be produced from zebrafish Appa and Appb, 

this would suggest that the molecular changes we observe in our fAD-like mutants are occurring 

in an Aβ independent manner. We may actually be able to utilise such an observation to 

confirm/deny involvement of this peptide in certain AD-like molecular phenotypes, and in doing 

so, gain a deeper understanding of Aβ-independent contributions to AD. 

 

6.5 Concluding remarks 

The phenomenon known as “population aging” is currently shifting the distribution of the world’s 

populations to a more elderly composition, with predictions suggesting that more than 100 million 

individuals will develop AD by 2050 [6]. Despite this, the AD research community still has not 

reached a consensus on the underlying pathological mechanism(s) that leads to the development 

and progression of AD.  
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While γ-secretase processing of APP has been the major focus of research efforts surrounding this 

protease, processing of more than 100 other substrates by this protease highlights its involvement 

in many other important roles in development and other processes, that are still poorly understood. 

There remains a vast gap in our knowledge of γ-secretase biology, physiology, and structural 

biology [25]. A greater understanding of substrate selection specificity by γ-secretase would allow 

for more precise investigation of the importance of the 100+ known substrates in biological 

processes. It should also increase the potential for designing new drugs to treat the various disease 

processes that have been linked to defects in γ-secretase-mediated signalling pathways, by 

ensuring that only γ-secretase processing of the specific substrate involved is inhibited. Further 

research into many aspects of γ-secretase will be paramount if researchers wish to further pursue 

this protease as an option for treating AD. 

 

There are currently numerous hypotheses that attempt to explain the development of AD, some of 

which have been discussed in detail in this thesis. Both the validity and importance of these 

hypotheses in explaining the progression into AD remain in question. Furthermore, the lingering 

question of how or whether some or all of these hypotheses might fit together to form a single, 

unifying hypothesis remains. A unifying hypothesis will not be reached unless we can garner a 

better understanding of the larger picture regarding the early and late changes that occur in the 

brain as it transitions into AD. The generation of an appb putative null mutation as described in 

this thesis, coupled with suggested future work and current work in the ADGL, should allow us to 

address these issues, by identifying common changes between zebrafish carrying fAD-like 

mutations in each of the early onset fAD causing genes. 
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While Aβ-42 (through its aggregation and deposition into amyloid plaques) is thought to contribute 

to neurodegeneration in AD, many of the other hypotheses discussed throughout this thesis place 

its proposed role as the major underlying cause of neurodegeneration in dementia in doubt. By 

further investigating whether Aβ peptides are produced from zebrafish Appa and Appb as 

suggested in this thesis, we may be able to leverage the result to gain more insight into the role of 

this peptide in the aging or fAD mutant brain. 

 

Finally, applying our existing zebrafish fAD-like mutation models in psen1, psen2 and sorl1, along 

with the appa and appb fAD-like mutants proposed as future works continued from this thesis, to 

these questions may help us to identify new information regarding the molecular changes caused 

by such mutations. With the information gathered from such analyses, we might bring together the 

many individual hypotheses surrounding AD and gain greater insight into the complex molecular 

changes that underpin the disease. 
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