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Abstract
Electromagnetic Form Factors of Hadrons in the Space-Like Region

by Robert J. Perry

The theory of the strong force is unique amongst the known forces of nature in that the
strength of its interactions grow with distance. It is postulated that this leads to the empirically
observed colour confinement hypothesis. This hypothesis states that quarks and gluons, the
fundamental degrees of freedom in the strong force form together into complex bound states
called hadrons, rather than appearing as free particles. Thus the study of the strong force
becomes the study of hadrons and their structure. One way we may study the structure of
these composite bound states is through their electromagnetic interactions. In particular,
information may be drawn about the structure of these hadrons from their elastic scattering
data in the form of the hadron’s electromagnetic form factors.

In this thesis, predictions are made of the nucleon and hyperon electromagnetic form factors
by utilizing a non-perturbative quark model dressed by a pion cloud. Constraints from chiral
symmetry arguments lead us to propose performing these chiral loop effects at the hadron
level which leads to an improvement in a number of low energy observables related to the
electromagnetic form factors.

The extraction of the pion form factor from pion electroproduction is also studied in detail.
Constraints from gauge invariance are used to argue that the current model used to extract
the pion form factor may be too simplistic. We study the model dependence in the context of
a simple toy model, and find that the possible errors associated with this approximation could
be as large as ten percent. We then proceed to perform a more in-depth calculation with a
more sophisticated model, and show that the qualitative effects are the same. Together, these
two studies imply that current measurements of the pion form factor are overestimated.
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1

Introduction

The Standard Model stands alone as the greatest achievement of modern theoretical particle
physics. It is the culmination of over one hundred years of theoretical research, and describes
our understanding of three of the four known fundamental forces in one unified framework.
Of these three forces, the most complex is the strong force. The uninspired name is nothing if
not descriptive. In fact, it is an empirical fact that the force is so strong that the fundamental
objects which participate in strong interactions are confined, and thus only composite bound
states may be observed. In the Standard Model, the strong force is described by a non-Abelian
gauge field theory called Quantum Chromodynamics (QCD). The theory of QCD comprises
fermionic quarks, which interact via exchange of bosonic gluons. The strength of the strong
force interactions is partially determined by the coupling constant αS = g2/(4π) and is of the
order one at low energy. This is to be contrasted with the coupling strength for quantum
electrodynamics α = e2/(4π) = 1/137. The ‘traditional’ approach to analyzing interacting
quantum field theories is perturbation theory. In order to utilize this approach, it is necessary
to split the Hamiltonian H into two parts; H0 and Hint, where H0 is exactly solvable and
Hint provides small corrections. In the case of quantum electrodynamics, the corrections
are proportional to the coupling α. Due to the smallness of this coupling, the expansion in
powers of α is well controlled, and the resulting predictions are impressively accurate. Indeed,
the anomalous magnetic moment of the electron, first calculated by Schwinger in 1948 has
now been calculated to order α5, agreeing within errors with the experimentally measured
value to more than ten significant figures, making the magnetic moment of the electron the
most accurately verified prediction in the history of physics. Application of a perturbative
expansion in the coupling to QCD at low energies fails due to the largeness of the coupling
strength. In this domain, other approaches must be pursued. In spite of these challenges
(or perhaps because of them), much work has been done in making predictions in QCD. At
this low energy scale, the only ab-inito way to perform calculations is via lattice QCD, where
space-time is quantized on a four dimensional lattice, and numerical results are obtained with
the aid of supercomputers. While it is undeniable that this method works, the results of a
lattice calculation are often rather opaque in a way that analytic calculations almost never
are.

While a perturbative expansion in the strong coupling is not a viable solution, it is not correct
to say that perturbation theory is unsuitable for analysis of the strong force. The key is to
recognize that while the fundamental degrees of freedom of the strong force are quarks and

1
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gluons, the degrees of freedom relevant for studies of low energy QCD are composite baryons
and mesons. By starting from a Lagrangian written in terms of these fields, it is possible to
formulate a field theory which may be analysed with the conventional perturbative techniques.
This approach is referred to as chiral effective field theory, and forms the basic tool of this
thesis.

Since the low energy excitations of the strong force are composite bound states, it is of interest
to understand their structure. Arguably the first measurement of hadron structure comes
from Otto Stern, who measured the magnetic moment of the proton in 1933, and found it to
be approximately three times the size of that predicted by the Dirac equation, which describes
point-like fermions. Further evidence for the extended structure of the hadron appeared in
elastic electron-proton scattering experiments of the the fifties. Again, these experiments
demonstrated deviations in the cross sections from the behaviour expected from point-like
hadrons. While quarks are believed to be confined inside hadrons, indirect evidence of their
existence may be inferred from scattering data. For example, the quarks are electromagnetically
charged particles, with the up-type quarks having charge 2/3, and the down-type quarks having
charge −1/3 in units of the electron charge. The quark’s electromagnetic charge manifests
itself at the level of hadrons as the net charge of the hadron. The electromagnetic charge
of quarks thus gives us an indirect window into the dynamics of the strong force. In elastic
scattering, the objects one may measure in this way are the hadron’s electromagnetic form
factors. These may be related to the charge distribution of the particular hadron, and thus
the underlying quark distribution. As a result, the investigation of these electromagnetic form
factors is of fundamental interest from both an experimental and theoretical perspective.

The electromagnetic form factors measured in elastic electron-hadron scattering are dependent
on the invariant mass of the exchanged virtual photon, which we conventionally denote q2.
In elastic electron-hadron scattering, the photon’s virtuality is strictly less than zero. We
refer to the electromagnetic form factors measured in this region as space-like form factors.
This interaction is related to electron-positron annihilation to hadrons via a crossing relation
where the photon virtuality is strictly greater than zero, and thus the measured form factors
are known as the time-like form factors. There is much to be learnt about the structure of
hadrons from both the space-like and time-like regions. However, in this thesis, we focus our
attention on the space-like electromagnetic form factors.

We begin the thesis with a discussion the main concepts and underlying theory governing
the strong force. In particular, we discuss the characteristic properties of QCD: asymptotic
freedom and colour confinement. We then introduce chiral effective field theory which we shall
utilize throughout the rest of the thesis. Finally, we discuss the formalism of electromagnetic
form factors, and the constraints one can use from gauge invariance to constrain their form.

Having established the formalism and key concepts of the thesis, we make predictions for
the electromagnetic form factors of the nucleon and sigma hyperons, where we incorporate
corrections from chiral effective field theory. In particular, we demonstrate the importance of re-
specting the chiral symmetry when calculating the low energy behaviour of the electromagnetic
form factors.

We then proceed to analyze current measurements of the pion’s electromagnetic form factor.
We examine in the context of a simple model, whether the current measurements of the
pion form factor suffer from uncontrolled systematic errors. While the model examined is
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not complex enough to make quantitative statements, we are able to conclude that it is
likely that the current pion form factor is systematically overestimated. This stimulates the
examination of this question within a more complex model. We again observe that the pion
form factor extracted from the current approach employed in the experimental analysis leads
to an overestimation of the underlying form factor.





2

Quantum Chromodynamics

The theory of the strong force is quantum chromodynamics (QCD). In this chapter we discuss
the development of the theory from Yukawa’s proposal of a meson to bind protons and neutrons
together in the atom, to the promotion of the colour quantum number to a gauge symmetry
and subsequent derivation of the QCD Lagrangian. We then discuss characteristic features of
QCD: asymptotic freedom and colour confinement and discuss the ways in which perturbative
and non-perturbative methods allow for investigation of these effects. In particular, we
explain the development of chiral effective field theory and its utility as a low energy effective
description of the strong force.

2.1 The Development of QCD

The development of the study of the strong force arguably began with the realization that a
nuclear force was required to bind protons and neutrons in the atom together. In particular,
the protons in the nucleus experience a repulsive force due to the electromagnetic interaction,
and thus another force is required to overcome this. Yukawa, in 1934, published a theoretical
work postulating the existence of a new particle with a mass of about 100 MeV [1] to explain
the binding of nucleons in the nucleus . By choosing a potential of the form

V (r) = −g2 e
−mπr

r
, (2.1)

Yukawa’s meson is constrained to only act over short distances, with the effective range of the
interaction being proportional to the exchange of a massive boson. Importantly, as a result of
the minus sign, this force is attractive. Thus the binding of nucleons in the nucleus could be
understood as the result of the exchange of a massive boson, which came to be known as the
pion. Initially the muon, having a mass of 105 MeV, was incorrectly identified as the meson
of Yukawa’s theory. However the muon did not decay as was expected for a particle which
could mediate the strong force. Yukawa’s pion was eventually discovered in 1947 leading to
Yukawa receiving the Nobel Prize in Physics for 1949 for “his prediction of the existence of
mesons on the basis of theoretical work on nuclear forces” [2]. As will be seen in much later
work, Yukawa’s particle has become an integral component of the modern understanding of
QCD via chiral symmetry arguments (see Refs. [3–5]).

5
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Table 2.1: Pre-Eightfold Way classification of hadrons. Note that these examples all obey
the Gell-Mann–Nishijima formula Q = I3 + 1

2 (B + S).

Hadron Isospin (I3) Baryon No. (B) Strangeness (S) Charge (Q)

π+ 1 0 0 1
p 1/2 1 0 1
n −1/2 1 0 0

Σ− −1 1 −1 −1

Although the success of Yukawa’s theory was undeniable, further development of the theory of
the strong force was slow. This was in part due to the discovery of many hadronic resonances
during the fifties and sixties, which were difficult to explain in terms of a theory of the
nucleon and the pion. More generally though there were concerns about the consistency of
quantum field theories, and in particular the divergences which appeared in loop calculations.
These were exemplified in the prototypical example of a quantum field theory, Quantum
Electrodynamics (QED). Originally discussed by Dirac in 1927 [6], it was only after the Second
World War, when contributions from Kramers, Bethe [7], Schwinger [8–10], Feynman [11, 12],
Tomonaga [13–17] and Dyson [18, 19] led to a coherent approach to perturbative calculations
beyond tree-level though the theory of renormalisation. The success of this approach, gave
a measure of confidence that quantum field theories may describe other forces of nature.
For example, Yang and Mills, in 1955, approached the strong force by requiring local gauge
invariance for the SU(2) isospin group, in analogy with the local gauge invariance for the U(1)
gauge group in QED [20]. While the theory proposed by Yang and Mills failed to correctly
describe the strong force, the term Yang-Mills theory is now taken to have a wider meaning
as any gauge field theory based on the SU(N) gauge group, of which the original theory
proposed by Yang and Mills and the eventual theory of QCD are examples. Thus although
the details were wrong, the theory due to Yang and Mills was a step in the right direction.

Attempts were made during the fifties and sixties to discover the reason behind the spectrum
of hadronic particles. One particular relation noticed by Nishijima and Nakano [21] and later
by Gell-Mann [22], relates the charge Q of the hadron to its isospin I3, baryon number B and
strangeness S, and is known as the Gell-Mann–Nishijima formula:

Q = I3 +
1

2
(B + S). (2.2)

This pattern can be seen in Table 2.1. An early work of interest is that of Sakata, who in
1956 proposed a model in which the proton (p), neutron (n) and Lambda (Λ) baryons were
elementary particles [23], from which other particles were composed. Although it turned out
that Sakata was wrong to propose these particles as elementary, his approach motivated others
including Gell-Mann who were able to provide a better explanation.

In 1961 and 1962 respectively, Ne’eman and Gell-Mann independently proposed a classification
system for both the mesons and baryons [24, 25], based on the group structure of SU(3).
Gell-Mann, who coined the name ‘the Eightfold Way’, used the classification scheme to predict
the existence of both a meson, the η [25], and a baryon, the Ω− [26], which were later found
in collider experiments (see for example [27]). Gell-Mann also noted, along with Zweig [28],
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that the spectrum of particles could be understood, at least qualitatively by assuming that
mesons and baryons were composite particles composed of two or three constituent particles,
respectively, which Gell-Mann termed quarks [29]. Initially though, Gell-Mann was reluctant
to consider the newly proposed quarks physical particles, since the quarks would require
fractional electric charge. Further, in analogy with nuclear physics, where the proton and
neutron are fairly weakly bound, one could imagine the nucleon’s mass mN = 3mq +Ebinding,
where Ebinding is small. Then the lightest quark would be stable and we would expect to
observe that quark in particle detectors easily. But no bare quark was ever observed, and so
Gell-Mann suggested that the quarks were purely formal mathematical objects; useful for
bookkeeping, but nothing more.

It was a long time, relatively speaking, before quarks gained widespread acceptance as truly
physical particles. Today, the non-observance of quarks is interpreted as evidence for the
colour confinement hypothesis. As we shall see, theoretical evidence seems to suggest that this
empirical fact occurs as a result of the dynamics of QCD. Nevertheless, a mathematical proof
of confinement is still an unsolved problem. Quarks may be observed indirectly, however, by
studying high energy hadronic processes.

In 1969, Bjorken, on the basis of infinite momentum dispersion relations, showed that the
structure functions found in inelastic electron-proton scattering obeyed so-called ‘Bjorken
Scaling’ [30]. One may parameterise inelastic scattering by two variables: the virtuality of the
exchanged photon, Q2 = −q2 and x = Q2/(2q · p), the so-called momentum fraction. As a
result, one may define W1(Q2, x) and W2(Q2, x), the inelastic structure functions, the analogs
of F1(Q2) and F2(Q2), the structure functions of elastic scattering. In the limit that Q2 is
large but x is kept fixed, Bjorken predicted that these structure functions would scale as

lim
Q2→∞,x fixed

W1(Q2, x)→ g1(x) (2.3)

lim
Q2→∞,x fixed

q · pW2(Q2, x)→ g2(x) (2.4)

π+

ud

K+

us
K0

ds

π−

ud

K−

su
K

0

ds

π0

uu/dd
η

uu/dd
/ss

Σ+

uus

p
uud

n
udd

Σ−

dds

Ξ−

dss
Ξ0

uss

Λ
uds

Σ0

uds

Figure 2.1: The baryon octet, showing the arrangement of spin-half baryons, as required by
Nee’man and Gell-Mann’s Eightfold Way.
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where g1 and g2 are two functions dependent only on the momentum fraction x. In inelastic
electron-proton scattering, the momenta of the exchanged virtual photon may be considered
as the resolving power. Thus this scaling behaviour implied that the proton looked the same
at all distance scales, in stark contrast to the elastic scattering data, which showed that
the elastic structure of the proton was strongly dependent on the resolving power of the
exchanged photon. Experiments performed at the Stanford Linear Accelerator (SLAC) in the
late sixties and early seventies observed exactly this scaling behaviour [31]. Thus Bjorken’s
prediction of scaling was verified, but the underlying reason for this behaviour was unknown.
The explanation came originally from Feynman, who had for a while been considering a
model he termed the ‘parton model’. In it, the proton was comprised of a number of massless
point-like constituents. This hypothesis explained the scaling behaviour observed in the deep
inelastic scattering experiments at SLAC, although it seemed at odds with the established
understanding of the proton at lower energies. As a result of the apparent contradictions,
Feynman’s only paper on the subject from this era explicitly avoids mentioning partons at
all [32]. Interestingly, some of the first explicit calculations in the ‘parton model’ appear to
come from Bjorken [33]. In this paper, Bjorken showed that indeed the structure functions
predicted in the parton model obeyed the scaling behaviour he had previously predicted on the
basis of dispersion relations. Other theorists were quick to equate the partons of Feynman’s
model with the quarks Gell-Mann had introduced to classify the hadronic states. In a talk
given by Gell-Mann, in association with Fritzsch titled ‘Current Algebra: Quarks and What
Else?’ [34], Gell-Mann considered promoting the global colour symmetry to a local gauge
symmetry, by analogy with the electromagnetic and weak forces. As it turned out, this was
the correct way to proceed and led to the formulation of Quantum Chromodynamics or QCD,
named after the colour gauge group on which the theory was based. We shall examine this
theory of the strong force in the next section.

2.2 The Theory of QCD

In the Standard Model, the Strong Force is described by QCD, a non-abelian gauge field
theory, based on promoting the global SU(3)c colour symmetry to a local one. The Lagrangian
is given by

LQCD(x) =
∑

f=u,d,c,s,t,b

[
qfc (x)(i /Dcd+δcdm

f )qfd (x)

]
− 1

4

8∑
i=1

Gµνi (x)Gi,µν(x)+LGF+LFP, (2.5)

where we have explicitly included the fermion flavour labels (latin superscripts) and the colour

labels (latin subscripts). qfc (x) are the colour c = r, g, b quark fields with flavour f . The
covariant derivative is given as

Dµ
cd = δcd∂

µ − igAµcd(x), (2.6)

where the gauge fields Aµcd(x) are given as
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Aµcd(x) =
8∑
i=1

Aµi (x)ticd, (2.7)

where Aµi (x) are real valued fields and ti are the generators of SU(3) (in this case, ti = λi/2,
where λi written in the fundamental representation are the Gell-Mann matrices, given in
Appendix A). The masses of the quarks are given by mf , and Gµνi is the gluon field strength
tensor:

Gµνi (x) = ∂µAνi (x)− ∂νAµi (x) + gfijkA
µ
j (x)Aνk(x). (2.8)

The third term is the result of the non-Abelian nature of the theory, and is believed to be a
key feature which leads to confinement and asymptotic freedom–the characteristic properties
of QCD [35]. The QCD Lagrangian is invariant under local SU(3) field transformations of
the form

q(x)→ q′(x) = Ω(x)q(x), (2.9)

Aµ(x)→ A′µ(x) = Ω(x)Aµ(x)Ω†(x) +
i

g
(∂µΩ(x))Ω†(x), (2.10)

where Ω(x) is a general SU(3) matrix given by

Ω(x) = exp

(
iαa(x)

λa
2

)
, (2.11)

and λa are again the Gell-Mann matrices given explicitly in Appendix A.

Finally, LGF contains the gauge fixing terms, and LFP contains the contribution from the
so-called Faddeev-Popov ghost fields c(x), introduced to prevent the over counting of states;

LGF = − 1

2ξ

8∑
i=1

(
∂µA

µ
i (x)

)(
∂µA

µ
i (x)

)
, (2.12)

LFP =
∑
ij

ci(x)(−∂µDµ
ij)c

j(x). (2.13)

In this thesis, we will primarily be concerned with models of QCD, rather than directly
analyzing this Lagrangian, so we will say no more about these two terms.

While we have now written the QCD Lagrangian, it is not immediately clear how this theory
reproduces the behaviour of the strong force observed in nature. In order to be consistent
with the scaling behaviour of inelastic scattering originally observed at SLAC, the quarks
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must behave as approximately free particles at short distances, while at large distances the
quarks are not observed at all. Today these empirical facts are believed to be explained by
asymptotic freedom and colour confinement respectively.

2.2.1 Asymptotic Freedom

One development in the theory of the strong force which we have not yet mentioned is the
discovery by Gross and Wilczek [36], as well as independently by Politzer [37] of Asymptotic
Freedom. The importance of this finding was recognized in 2004, with the three jointly
receiving the Nobel Prize for physics [38]. In simple terms, Asymptotic Freedom expresses the
property that a class of Yang-Mills theories (of which QCD is one example) are well defined in
the ultraviolet. As we shall see, prior theories of nature contained a pathology which led many
to conclude that quantum field theories were not self-consistent. Thus although we mention
Asymptotic Freedom as one of the characteristic features of QCD, it has also been studied as
a way to produce other theories which are self-consistent at all energy scales. This is the basic
idea behind such beyond the standard model (BSM) theories such as Technicolor [39, 40].
Beyond ensuring the theory is well defined, the property of asymptotic freedom predicts that
perturbation theory will become more accurate as the energy of the interaction increases.

The discussion of Asymptotic Freedom is based on analysis of the renormalisation group
equations, which are beyond the scope of this thesis. Here we simply cite the main facts
relevant to our discussion. For a more extended discussion of renormalisation group, see
Refs. [41]. The prototypical quantum field theory is Quantum Electrodynamics. It is possible
to define a renormalised effective charge which at one-loop order is given by

α(Q2;µ2) =
α

1− α
(

1
3π

)
ln
(
Q2

µ2

) (2.14)

where conventionally we choose the renormalisation scale µ ∝ m2
e, the mass of the electron.

This effective coupling is interpreted as due to the polarisation of the vacuum. The charge
of the bare electron polarises virtual electron-positron pairs, leading to an observed charge
which is momentum dependent. Importantly though, when we examine the effective coupling,
we observe that for a finite value of Q2, the effective coupling becomes infinite. This behavior
was first observed by Landau [42], and thus is known as the Landau Pole. The observation
that the coupling was infinite at a finite momentum scale appeared to pose serious questions
about the self consistency of Quantum Electrodynamics and Quantum Field Theories more
generally. At the time there were no known theories which did not posses this same pathology.

It should be noted that the arguments provided by Landau are not watertight. Note that the
derivation of the running coupling is based on a one-loop calculation, but this was used to
make statements about the large coupling limit, exactly when one would expect the one-loop
calculation to break down anyway. The renormalisation group provides a systematic way to
study the behaviour of the coupling strength. In particular, that there exist three possibilities
for the behaviour of the effective coupling strength; the coupling may diverge at a finite
momentum value, as predicted by Landau, the coupling may not vary at all with momentum
scale, or the coupling may run to small values at high momenta. It is theories of this third
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Figure 2.2: Running of the strong coupling. Note that unlike QED, the QCD coupling runs
to zero at high energies without encountering a Landau Pole. Figure taken from PDG2018 [43].

kind which are referred to as asymptotically free. It is possible to show that for an SU(Nc)
gauge field theory with nf quark flavours, the effective charge is given by [41]

αS(Q2;µ2) =
αS

1 + αS
4π

(
11
3 Nc − 2

3nf

)
ln
(
Q2

µ2

) . (2.15)

The second term in the brackets has the same sign as for QED. In a sense, this is the ‘Abelian’
part of the theory. The first term is the result of the tree-level gluonic self interaction and in
the case of QCD leads to asymptotic freedom. In QCD, Nc = 3 and nf = 6, and thus the
coefficient of the logarithm is positive in Eq. (2.15). This has dramatic ramifications for the
running of the coupling, as the Landau pole we hypothesized in QED cannot appear here. As
a result, QCD is well defined in the ultraviolet. This running of the coupling is an expression
of asymptotic freedom; at high energies (or short distances) the interaction strength goes to
zero and so the quarks behave approximately as free particles, as anticipated in Feynman’s
parton model.

2.2.2 Colour Confinement

The running of the strong coupling αs(Q
2;µ2) also implies that perturbation theory will

become less accurate as the energy scale of the process is lowered. It should be noted that
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Figure 2.3: Static quark potential determined from a lattice QCD simulation in the
‘quenched’ approximation, where dynamical fermions are excluded. This data has been
extrapolated to the continuum limit (roughly speaking corresponding to the lattice spacing
a→ 0 limit). Note that the data is well described by the simple form V (r) = A/r +B + Cr.
In particular, note that at large distances, the potential between two static quarks grows
linearly. This linearly rising potential has been seen as evidence for confinement. Data taken
from Ref. [46].

since the equation for the running coupling arises from a calculation in perturbation theory,
it is only valid when perturbation theory is valid. Thus we cannot use this result to make
conclusions about the infrared behaviour of the coupling. Models of QCD seem to suggest that
this coupling saturates at a finite value [44, 45]. In any case, this large coupling invalidates
perturbation theory at O(1 GeV).

In the low energy regime we must pursue different avenues of analysis if we are to gain some
understanding of colour confinement. Lattice QCD and the Schwinger-Dyson equations for
QCD both use the QCD path integral as the basis for their studies. In lattice QCD one
numerically evaluates the path integral by discretization. This is done by introducing a smallest
length a, called the lattice spacing, which acts as an ultraviolet regulator for the theory. In
order to enable numerical evaluation, the physics is placed in a finite sized space-time box
with length L = na. After doing this all terms in the theory are finite, and a numerical
calculation of properties is possible. One important early result in this field is the calculation
of the potential V (r) between two static (infinitely heavy) quarks. It turns out that one may
describe the potential with the general form
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V (r) =
A

r
+B + Cr. (2.16)

Thus at high energies (or short ranges), the potential appears to be approximately Coulombic.
However, the long distance behavior of the force is completely different from QED. Instead of
decreasing with separation distance, the potential instead rises linearly, resulting in a confining
potential at large distances. These simulations are performed in the ‘quenched’ approximation,
where the vacuum is prevented from containing quark anti-quark pairs. In a more realistic
calculation, it is expected that as the separation of the quarks and thus the potential energy
increases, the system reaches a point where it is more energetically favorable to produce an
extra quark-antiquark pair than increasing the distance between the quarks. In this case, the
result would be the production of two colourless mesons.

Another example of the emergent nature of QCD is the occurrence of dynamical mass
generation. This is the process by which a bound state of three quarks with approximate
mass mq ≈ 5 MeV produces a nucleon with a mass mN ≈ 1 GeV. Although the empirical
fact is well accepted, the underlying mechanism was less clear. One advantage of a numerical
simulation of the path integral of QCD is that the effects may be studied in a systematic way.
In particular, recent work has shown that topological objects called center vortices are mainly
responsible for the dynamical generation of mass [47, 48].

To reduce the whole field of Lattice QCD to a few paragraphs and a single figure is simplistic
in the extreme. Today the field of Lattice QCD is a mature one, making contributions to
hadronic spectroscopy, the QCD phase diagram and hadronic structure functions, to name a
few. As a result of algorithmic improvements, as well as the increase in computational power,
cutting edge lattice calculations are now contributing to precision calculations of Standard
Model processes, including hadronic corrections to the anomalous magnetic moment of the
muon [49, 50] and meson decay constants which allow CKM matrix elements to be further
constrained [51]. Indeed, various studies have even been performed simulating the physics of
gauge groups other than SU(3) [52, 53].

While lattice QCD attempts a numerical simulation of the path integral, the Schwinger-Dyson
equations attempt an analytical one. In principle, the Schwinger-Dyson equations constitute
a complete formal solution to the quantum field theory. However, without simplification, their
form is completely intractable; they comprise an infinite tower of coupled integral equations.
Thus the approach pursued in the field has been to perform a number of simplifications,
which reduce the infinite number of coupled integral equations to a small number, which
are then solved. By building in the asymptotic behaviour of the approximated correlation
functions and respecting the symmetries of the theory, modern Schwinger-Dyson approaches
have been able to make impressive predictions about the hadronic spectrum [54] and structure
functions [55, 56].

Importantly, the analytic nature of Schwinger-Dyson equations allows for more transparent
studies of the origin of observed effects. In particular, we have already discussed the static
quark potential calculated in lattice QCD as evidence of colour confinement. Schwinger-Dyson
equations provide further evidence of this confinement, and also suggest a possible mechanism
by which confinement occurs. An on-shell particle appears as a pole of the full propagator.
Thus it has been suggested that colour confinement may manifest itself as the lack of a pole
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in the full propagator of coloured objects. It is possible to show that the tree-level propagator
for a gluon (valid in the large momentum range) is

G
(0)µν
Fab (q) =

−i
q2 + iε

(
gµν − (1− ξ)q

µqν

q2

)
δab (2.17)

where ξ is the gauge fixing parameter, conventionally chosen to be ξ = 1 (Feynman gauge),
and δab acts in the colour gauge group space. If we were to use this propagator in the low
energy regime (where perturbation theory breaks down), we would find a pole corresponding
to the propagation of an on-shell gluon. However, solving the Schwinger-Dyson for the gluon
propagator leads to the conclusion that the gluon’s mass function varies in such a way that
the perturbative pole is avoided.1 Thus the colour confinement hypothesis may be interpreted
as due to the lack of a single particle singularity in the two point correlation function, which
arises from the non-perturbative dynamics of the theory.

As with lattice QCD, our discussion of the method of Schwinger-Dyson equations is necessarily
limited. Along with lattice QCD, we shall use some results based on this non-perturbative
technique but our primary avenue of investigation will employ chiral effective field theory. It
is to this theoretical approach that we now turn.

2.3 Chiral Effective Field Theory

As we have seen, direct analysis of the QCD Lagrangian is possible if one chooses to use non-
perturbative methods. These methods are technically challenging, and sometimes the physical
mechanism underlying the final result remains opaque. In contrast to these approaches, which
attempt to perform calculations on the underlying QCD Lagrangian, one can formulate a
description - valid at low energies - in terms of the relevant degrees of freedom active in this
energy range; that is, in terms of meson and baryon fields. This is the approach pursued
in chiral effective field theory. In the following sections, we examine the approximate chiral
symmetry of QCD, and describe how this symmetry may be used to build a low energy theory
of QCD.

1The astute reader may be confused on this point: generally speaking gauge bosons are required from
acquiring a mass in order to be consistent with gauge invariance. This requirement is certainly respected for
the gluon. In Feynman Gauge, the most general form of the gluon propagator is

GµνFab(q) =
−igµν

[q2 + iε][1−Π(q2)]
δab =

−igµν

q2 −m2
G(q2) + iε

δab

where we have made the identification m2
G(q2) = q2Π(q2). This allows us to write the gluon propagator in

a form which appears similar to that of a massive boson, but note that the mass parameter is a function of
q2. In general, we must distinguish between the mass function m2

G(q2), which in general is renormalisation
scheme dependent, and thus not observable, and the pole mass, which would correspond to the propagation of
an on-shell gluon. In the case of the gluon, Schwinger-Dyson studies show that the gluon mass function varies
in such a way that the no low momentum pole appears in the propagator [57]. This behaviour is particular to
strongly coupled theories.
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2.3.1 The Accidental Chiral Symmetry of QCD

When attempting to make simplifications of a quantum field theory, symmetries are important
to preserve. As we have previously discussed, QCD is a gauge field theory, based on a local
SU(3) gauge symmetry. Like all relativistic quantum field theories, it exhibits Poincaré
symmetry and is also invariant under the combination of charge, parity and time reversal (C,
P and T symmetry). There are also other symmetries which are approximately respected by
the QCD Lagrangian. It turns out that it is possible to build a picture of low energy QCD by
considering the approximate chiral symmetry of the Lagrangian. To see this, note that the
current quark masses may be divided into two categories based on their mass; often referred to
in the literature as the light and heavy quarks. This division is depicted in Table 2.2, below.

Table 2.2: Comparison of ‘light’ and ‘heavy;’ current quark masses in the QCD Lagrangian.
Due to colour confinement, free quarks have not been observed. The quark mass parameters
do not constitute observables and are renormalisation scheme dependent. These masses are
the result of MS at µ = 2 GeV [58].

Light Quarks

mu 0.0022+0.6
−0.4 GeV

md 0.0047+0.4
−0.5 GeV

ms 0.096+8
−4 GeV

Heavy Quarks

mc 1.28± 0.03 GeV

mb 4.180.04
−0.03 GeV

mt ∼ 170 GeV

This hierachy of masses suggests a simplification where we take the light quark masses to zero
and the heavy quark masses to infinity so that they decouple from the theory. Recall the
QCD Lagrangian we previously wrote:

LQCD(x) =
∑

f=u,d,c,s,t,b

[
qfc (x)(i /Dcd + δcdm

f )qfd (x)

]
− 1

4

8∑
i=1

Gµνi (x)Gi,µν(x) + LGF + LFP,

(2.18)

To emphasize the symmetry we are about to explore, we will suppress colour indices, and
define a flavour triplet field ψ, given by

ψ(x) =

qu(x)
qd(x)
qs(x)

 . (2.19)

In the massless limit, where we have integrated out the heavy flavours, the Lagrangian becomes
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L(0)
QCD = ψ(x)i /Dψ(x)− 1

4

8∑
i=1

Gµνi (x)Gi,µν(x). (2.20)

In this approximation, the QCD Lagrangian possesses another symmetry: chiral symmetry.
To see this, we define the usual chiral projection operators

PR =
1

2
(1 + γ5)If , (2.21)

PL =
1

2
(1− γ5)If . (2.22)

These operators project out the left and right handed components of the quark fields. We have
explicitly included the flavour space identity matrix If to emphasize that we are projecting
out the chirality of each field in the flavour triplet. We therefore define ψR and ψL by

ψR = PRψ =
1

2
(1 + γ5)ψ =

quR(x)
qdR(x)
qsR(x)

 , (2.23)

ψL = PLψ =
1

2
(1− γ5)ψ =

quL(x)
qdL(x)
qsL(x)

 , (2.24)

where ψL + ψR = ψ. Using this definition, we may decompose the massless Lagrangian into
its left and right chiral quark fields:

L(0)
QCD = (ψL + ψR)†γ0i /D(ψL + ψR)− 1

4

8∑
i=1

Gµνi (x)Gi,µν(x). (2.25)

Noting that the projection operator is Hermitian (γ†5 = γ5), it is possible to see that the cross
terms vanish, and we are left with

L(0)
QCD = ψLi /DψL + ψRi /DψR −

1

4

8∑
i=1

Gµνi (x)Gi,µν(x). (2.26)

Thus in the massless limit of QCD, the left handed and right handed fields decouple. Note
that it is possible to show that the addition of a mass term spoils this symmetry. Now consider
two unitary matrices UL and UR. We are free to perform transformations on the quark fields
individually:
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quLqdL
qsL

→
qu′Lqd′L
qs′L

 = UL

quLqdL
qsL

 , (2.27)

and similarly

quRqdR
qsR

→
qu′Rqd′R
qs′R

 = UR

quRqdR
qsR

 . (2.28)

Thus, the massless classical QCD Lagrangian possesses a global U(3)L × U(3)R symmetry.
Note here that we emphasize the classical nature of our theory: we are yet to promote the fields
to operators and impose commutation relations. Naively, one would expect these symmetries
to persist in the quantum mechanical theory, but as we shall see this is not the case.

We can write a general unitary matrix as

U = exp

(
i

9∑
i=1

αi
λi
2

)
(2.29)

where λ1, . . . λ8 are the usual Gell-Mann identities and λ9 = 2If , where we emphasize again
that we are performing these transformations in flavour space. Noether’s theorem implies that
for every continuous symmetry of the system, there exists a corresponding quantity whose
value is conserved in time. We writes the conserved current as

Jµ =
∂L

∂(∂µψ)
δψ (2.30)

where δψ is the infinitesimal variation in the field, and ∂µJ
µ = 0. We find

JµL,i = ψLγ
µλi

2
ψL, i = 1, . . . , 8, (2.31)

JµR,i = ψRγ
µλi

2
ψR, i = 1, . . . , 8, (2.32)

JµL = ψLγ
µIfψL, (2.33)

JµR = ψRγ
µIfψR. (2.34)

There are thus 18 conserved currents in the classical theory. It is convenient to consider the
linear combinations of these currents:
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JµV,i = JµL,i + JµR,i = ψγµ
λi
2
ψ, i = 1, . . . , 8, (2.35)

JµA,i = JµL,i − J
µ
R,i = ψγ5γ

µλi
2
ψ, i = 1, . . . , 8, (2.36)

JµV = JµL + JµR = ψγµIfψ, (2.37)

JµA = JµL − J
µ
R = ψγ5γ

µIfψ, (2.38)

which transform under the parity operator as vector and axial-vector current densities,
respectively, and we therefore label them accordingly. As it turns out, the singlet axial current
is only conserved in the classical theory; in the process of quantizing the theory, extra terms
appear which spoil the symmetry. The lack of conservation of a current which is conserved in
the classical theory is referred to as an anomaly. Rather than vanishing, one may show that
the divergence of the current is

∂µJ
µ
A =

3g2

2(4π)2
εµναβ

8∑
i=1

Gµνi Gαβi , (2.39)

where Gµνa is the gluonic field strength tensor. Thus, after quantization the massless QCD
Lagrangian is invariant under SU(3)V × SU(3)A × U(1)V .

2.3.2 Conserved Charges

From each of the conserved currents defined above, we may define a corresponding charge
operator Q. In general, one may find determine the charge operator for a particular conserved
current ∂µj

µ(x) = 0 via

Q =

∫
d3xj0(x). (2.40)

Importantly, the charge operator is a constant of motion:

d

dt
Q =

∫
d3x∂0j

0(x)

=

∫
d3x∇ · j(x) = 0,

(2.41)

where we have assumed that the current is suitably well behaved at infinity. It is possible to
show that this implies that the charge operator commutes with the Hamiltonian:

[H,Q] = 0. (2.42)
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We may construct conserved charges for the vector JµV and the chiral JµV,i, J
µ
A,i currents. For

example, consider the vector current JµV,i. The corresponding charges are

QV,i =

∫
d3xj0

V,i(x). (2.43)

The axial vector charges are

QA,i =

∫
d3xj0

A,i(x). (2.44)

Consider the eigenstate of the QCD Hamiltonian |N+〉, the positive parity nucleon:

H
∣∣N+

〉
= EN

∣∣N+
〉
. (2.45)

The action of the axial charge operator QA,i is to transform a positive parity state into a
negative parity state. That is

QA,i
∣∣N+

〉
=
∣∣N−〉 . (2.46)

Noting that the Hamiltonian commutes with this charge operator, we have that

H
∣∣N−〉 = HQA,i

∣∣N+
〉

= QA,iH
∣∣N+

〉
= EN

∣∣N−〉 . (2.47)

In other words, we expect there to exist a degenerate mass parity partner of the nucleon.
This is not observed in nature, with the the lowest mass excitation of the nucleon with the
correct quantum numbers being over 500 MeV heavier! Thus while the axial vector current is
a symmetry of the Hamiltonian, the spectrum does not exhibit this symmetry.

2.3.3 Realisations of a Symmetry

To understand the apparent contradiction between the symmetries of the Hamiltonian, and
the observed symmetries described at the end of the last section, we must make a distinction
between a Lagrangian symmetry, and a vacuum symmetry [59]. As we shall see, symmetry
of the Lagrangian does not necessarily imply invariance of the vacuum. It is this fact which
we will employ to explain the lack of parity doublets we discussed in the last section. A
Lagrangian symmetry implies that

[H,Q] = 0, (2.48)
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and thus Q corresponds to a conserved current jµ. A vacuum symmetry implies that the
vacuum is invariant under unitary transformations of the conserved charge:

exp(iαQ) |0〉 = |0〉 . (2.49)

This implies that the conserved charge Q annihilates the vacuum:

Q |0〉 = 0. (2.50)

Coleman’s Theorem [60–62] states that if a charge Q annihilates the vacuum, then it is a
constant of motion. That is

Q |0〉 = 0 =⇒ [H,Q] = 0. (2.51)

In other words, if one observes a symmetry in the spectrum, this symmetry must be present
in the Lagrangian. This is known as the Wigner-Weyl realisation of the Lagrangian symmetry.
Note that this implication is one way. The converse of this is Goldstone’s theorem. Consider
the case where we have a symmetry of our Lagrangian and thus

[H,Q] = 0, (2.52)

that is, Q is a constant of motion associated with a conserved current jµ. Then there are two
possibilities. Either

Q |0〉 = 0, (2.53)

in which case we have again the Wigner-Weyl realisation of the symmetry, and so the
Lagrangian symmetry is expressed in the spectrum, or we have

Q |0〉 6= 0. (2.54)

The case that the charge does not annihilate the vacuum is covered by Goldstone’s Theorem.
In this case, the Lagrangian symmetry of the system does not manifest itself as a symmetry of
the spectrum. Instead, the non-annihilation of the vacuum implies the emergence of massless
bosons; so-called Nambu-Goldstone bosons In particular, for each charge which does not
annihilate the vacuum, there exists a corresponding massless excitation.

Recall that we begun this discussion by noting that while the axial vector current is conserved
(∂µj

µ
A,i = 0), the spectrum does not exhibit parity doublets. Thus we must conclude that the

axial vector charge does not annihilate the vacuum,

QA,i |0〉 6= 0 (2.55)
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Figure 2.4: Mass hierarchy of hadronic states. Note that the pion is extremely light, when
compared to the other members of the pseudoscalar octet, and to the other hadronic states.
In the modern understanding, the pion is a pseudo Nambu-Goldstone boson, the result of
a dynamical chiral symmetry breaking event. In the limit of massless quarks, the pion is
expected to become a true massless Nambu-Goldstone boson.

and the Goldstone realization of the symmetry occurs. In SU(3)V × SU(3)A chiral symmetry,
there are eight charges which we expect do not annihilate the vacuum, and thus we anticipate
eight Nambu-Goldstone bosons. If the chiral symmetry was an exact symmetry of the QCD
Lagrangian, then we would expect massless hadrons to appear in the spectrum. However,
recall that the quark mass term

Lmass = mqq (2.56)

mixes left and right handed fields and thus spoils the exact chiral symmetry. We say that chiral
symmetry is explicitly broken by the quark masses. Thus instead of true Nambu-Goldstone
bosons, we anticipate the appearance of unnaturally light hadronic states. In either case, the
assumption that the conserved axial vector charge does not annihilate the vacuum requires
that the generated Nambu-Goldstone bosons share the conserved current’s quantum numbers.
In SU(2)V × SU(2)A chiral symmetry, the bosons correspond to the pion triplet, while in
SU(3)V × SU(3)A chiral symmetry, the bosons correspond to the entire pseudoscalar octet.
Note from Fig. 2.4 that these states are indeed the lightest hadronic states observed.

While ‘proofs’ of Goldstone’s theorem may be found in a number of places, many of these fail
to rigorously prove the theorem [63]. Goldstone’s theorem has been proved [64, 65], but the
arguments are rather involved, and beyond the scope of this discussion. In lieu of a proof,
we shall provide a simple example, the Sigma Model, originally proposed by Gell-Mann and
Lévy [66] as a model which incorporates the constraints of SU(2)L×SU(2)R chiral symmetry,
and exhibits the spontaneously broken symmetry and emergence of massless excitations, in
agreement with Goldstone’s Theorem.

2.3.4 The Sigma Model

Let us review the theoretical arguments which brought us to this point. We began from the
QCD Lagrangian and derived the conserved currents. We then noted that the axial vector
charges QA,i did not correspond to a symmetry of the spectrum and concluded that the
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symmetry occurred in the Goldstone realisation. Historically though, the Sigma Model was
introduced prior to the discovery of the QCD Lagrangian. From this perspective, it is not clear
why one would wish to write down a Lagrangian consistent with a symmetry not observed in
nature. The answer is the so-called Partially Conserved Axial Current (PCAC) hypothesis,
which requires that the divergence of the axial current jµA,i(x) is ‘small’. To place this in more
concrete terms, we write the π-to-vacuum matrix element:

〈πj(q)| jµA,i(x) |0〉 = −iδijfπqµeiq·x (2.57)

where 〈πj(q)| is a physical pion state, and fπ is the pion decay constant. Taking the divergence
of this matrix element, we have that

〈πj(q)| ∂µjµA,i(x) |0〉 = δijfπq
2eiq·x = δijfπm

2
πe
iq·x (2.58)

where for an on-shell pion, q2 = m2
π. Thus the divergence of this matrix element is non-zero.

But noting the pion’s characteristically light mass, Nambu proposed that one assume the
operator relation to be approximately conserved:

∂µj
µ
A,i(x) ≈ 0 (2.59)

Based on the approximation that the axial current is approximately conserved, it is possible
to formulate so-called ‘soft-pion theorems’, which give good agreement with data. Thus
the PCAC hypothesis is the reason for the requirement that the axial current should be a
conserved current of any low energy theory of QCD. Armed with this knowledge, we proceed
to analyse the Sigma model. We wish to write a model for low energy QCD. Consider the free
nucleon Lagrangian:

L = ΨN (i/∂ −mN )ΨN , (2.60)

where

Ψ =

[
ψp
ψn

]
. (2.61)

We want our final Lagrangian to be invariant under SU(2)V ×SU(2)A. Clearly the Lagrangian
is invariant under SU(2)V transformations:

ΨN → Ψ′N = exp
(
iθi
τi
2

)
ΨN , (2.62)

ΨN → Ψ
′
N = ΨN exp

(
iθi
τi
2

)
. (2.63)
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But as with the QCD Lagrangian, the nucleon mass term spoils invariance under the SU(2)A
transformation

ΨN → Ψ′N = exp
(
iγ5θi

τi
2

)
ΨN , (2.64)

ΨN → Ψ
′
N = ΨN exp

(
iγ5θi

τi
2

)
. (2.65)

As with electromagnetic gauge invariance, the non-interacting Lagrangian is not consistent
with the desired symmetry. We must introduce new fields to compensate for this non-
conservation. In particular, we introduce the isospin singlet field σ and the pseudoscalar
isospin triplet π = (π1, π2, π3) and replace the chiral symmetry spoiling mass term mNΨNΨN

with gΨN (σ + iγ5τ · π)ΨN , where we require that this combination should transform as

(σ + iγ5τ · π)→ (σ′ + iγ5τ · π′) = exp
(
−iγ5θi

τi
2

)
(σ + iγ5τ · π) exp

(
−iγ5θi

τi
2

)
. (2.66)

While we have suggestively named our new fields σ and π, we shall refrain from referring to
them as the sigma and pion for now. It is possible to show that the most general renormalisable
Lagrangian of the nucleon σ and π is

L = ΨN i/∂ΨN + gΨN (σ+ iγ5τ ·π)ΨN +
1

2
(∂µσ)2 +

1

2
(∂µπ)2− λ2

4

(
(σ2 +π2)− v2

)2

, (2.67)

where λ2 and v are undetermined constants. As we have stressed, by construction this La-
grangian is invariant under SU(2)V ×SU(2)A transformations. Thus we have the corresponding
currents

jµV,i = ΨNγ
µ τi

2
ΨN + εijkπj∂

µπk, (2.68)

jµA,i = ΨNγ
µγ5

τi
2

ΨN − πi∂µσ + σ∂µπi, (2.69)

which are conserved:

∂µj
µ
V,i = 0, (2.70)

∂µj
µ
A,i = 0. (2.71)

Let us examine the last term in our model more closely closely. We may extract the potential
by noting that V = −Lint
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σ

V[σ,π = 0]

Figure 2.5: Wigner-Weyl realisation of symmetry in the sigma model. For simplicity, we
choose the slice π = 0. The minimum of the potential exists at σ0 = 0

V[σ,π] =
λ2

4

(
(σ2 + π2)− v2

)2

=
λ2

4
(σ2 + π2)2 − λ2v2

2
(σ2 + π2) +

λ2v4

4
.

(2.72)

In order to ensure that the system is stable, we require that λ2 > 0. Note however that there
is no constraint on the sign of v2. Thus there are two possibilities. First consider v2 ≤ 0. In
this case, the second term gives a mass term for the σ and π fields, and the potential in this
case has its minimum at σ0 = π0 = 0 (see Fig. 2.5). In this case, both the sigma and pion
have the same degenerate mass

m2 = m2
σ = m2

π =
λ2v2

2
, (2.73)

while the nucleon remains massless. In this case, the π and σ are degenerate parity partners.
This is exactly the Wigner-Weyl realisation of symmetry we have discussed. In other words,
the symmetry of the Lagrangian manifests as a symmetry of the spectrum. As we have
explained, this is not the realisation we observe in nature, so let us examine the case that
v2 > 0. Then we note that the potential no longer has a minimum at σ = π = 0. Rather,
the potential now exhibits the so-called ‘Mexican hat’ potential, and the point σ = π = 0
corresponds to a local maximum (see Fig. 2.6). In this case, this point is no longer stable.
Instead, the minimum of the potential occurs at

(σ2 + π2)− v2 = 0. (2.74)

This equation defines a surface in our abstract coordinates, and thus constitutes an infinite
number of ground states. A sensible perturbation may be obtained around the vacuum state
σ0 = v, the vacuum expectation value. Thus we perform the change of variables
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Figure 2.6: Goldstone realisation of symmetry in the sigma model. For simplicity, we choose
the slice π = 0. Note that a minimum of the potential no longer exists at σ = 0.

σ → σ0 + σ. (2.75)

Performing this substitution in the original Lagrangian, we find

L = ΨN (i/∂ + gv)ΨN + gΨN (σ + iγ5τ · π)ΨN +
1

2
(∂µσ)2 − 1

2
(2λ2v2)σ2 +

1

2
(∂µπ)2

− λ2

4
(σ2 + π2)2 − vλ2σ(σ2 + π2).

(2.76)

We see that this process has produced a nucleon mass term

mN = −gσ0, (2.77)

and also a mass for the σ field

m2
σ = 2λ2σ2

0, (2.78)

but has left the triplet π field massless! That is

m2
π = 0. (2.79)

This is the prediction of Goldstone’s Theorem. We may now drop the pretense, and identify
the isospin triplet field π as the pion field, since the field transforms as a pseudoscalar, and
by deliberate construction, the theory possesses chiral symmetry and a massless pion. To
describe this process as symmetry breaking is quite misleading. We emphasize again that the
chiral symmetry which was explicit in the initial Lagrangian still exists as a conserved current:
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∂µj
µ
V,i = 0, (2.80)

∂µj
µ
A,i = 0, (2.81)

but now this Lagrangian symmetry does not appear as a symmetry of our predicted spectrum.
A better description would be that the symmetry has been hidden.

Note that thus far, we have spoken about massless pions. Recall that chiral symmetry is
also explicitly broken by the small but non-zero quark mass terms. Thus we expect the pion
to be a Pseudo-Goldstone Boson, rather than an exactly massless boson. In order to make
contact with reality, we add an explicit symmetry breaking term LSB = cσ. This leads to
non-conservation of the axial vector current, as required by PCAC.

Much more may be said about the Sigma Model, but for our purposes, this will suffice. Let us
recall the main facts which led us here. We began by noting that while the massless QCD
Lagrangian is invariant under SU(3)V ×SU(3)A, the spectrum is only invariant under SU(3)V .
We discussed the Wigner-Weyl and Goldstone realisations of a Lagrangian symmetry, and
produce exactly the symmetry pattern we desired. We also noted that as a consequence of
the Goldstone realisation, massless excitations, called Nambu-Goldstone bosons would appear
in our spectrum. We then considered the Sigma Model as an explicit example of symmetry
breaking, and the emergence of Nambu-Goldstone bosons, which after adding an explicit
symmetry breaking term we were able to identify as the characteristically light pions.

2.3.5 Effective Field Theories

The Sigma Model is an example of a class of theories generally referred to as effective field
theories. Effective field theories are integral to our understanding of nature. In particular,
they allow us to neglect physics which occurs at energy scales Λ far higher than the energy
scale of the experiment energy scale p (in other words, when p/Λ � 1), and thus focus on
the physics relevant to the situation. This premise is rather intuitive and even perhaps self
evident on reflection. It is the basis upon which the dynamics of non-relativistic objects may
be predicted using Newtonian mechanics alone, without recourse to General Relativity. The
same logic applies to quantum mechanical systems. Recall in the calculation of the energy
levels of the Hydrogen atom that the Hamiltonian in the center of momentum frame is given
by

H =
p2

2µ
− α

r
, (2.82)

where µ is the reduced mass of the electron. The predicted energy levels

En = −1

2

µα2

n2
=
−13.6 eV

n2
, (2.83)
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Figure 2.7: Diagrams which contribute to proton-electron bound state.

agree remarkably well with the experimental data. Note that a ‘more complete’ model of
this process would describe the proton as a complicated QCD bound state where hadronic
corrections to the electromagnetic interactions would also be calculated (see Fig. 2.7). Why
then does our relatively simple quantum mechanical model of the hydrogen atom lead to such
good predictions? We may understand this by considering the relative momentum scales in
the problem. The natural energy scale for the exchanged photon is of the order of the electron
mass, whereas the contribution from the hadronic vacuum polarisation diagram leads to a
correction of the order

δEqq ∝
m2
e

m2
q

. 0.01. (2.84)

In other words, this correction from quarks is very small, and ‘explains’ why our original
predictions which neglected these effects gave such accurate results. The same argument can
be used to explain why a description of the proton (with a mass of approximately 1 GeV) as
a structureless object is valid. In other words, an effective field theoretic approach emphasizes
the physically relevant degrees of freedom.

2.3.5.1 Understanding Divergences

Previously, we discussed the Sigma Model, as an example of a field theory which exhibits chiral
symmetry breaking. One of the constraints which we used in writing down our Lagrangian
was the requirement of renormalisability. While certainly important, a modern understanding
of renormalisation leads us to the conclusion that the constraint of renormalisability on a
quantum field theory has reduced importance. This section will motivate the form of the
Lagrangian for chiral effective field theory.

As we have previously mentioned, the divergences one usually encounters when calculating
loop corrections to amplitudes in quantum field theories were for a long time a source of
confusion and concern. Even after the formal renormalisation procedure was developed much
confusion existed about the procedure’s consistency. Notable amongst the doubters was
Feynman, who was awarded the Nobel prize in part for his work in developing renormalisation
and the cancellation of these divergences [11, 12]. In these calculations, the divergences
are ‘tamed’ by modifying the loop integral to introduce a cutoff Λ at high momenta. In
renormalisable theories, after the process of renormalisation is performed, resulting observables
are independent of the cutoff, and one is free to ‘take Λ to infinity’. As we shall explain, the
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modern interpretation due to Wilson [41] reinterprets the cutoff Λ as a physically meaningful
energy scale at which the theory is expected to break down, rather than a mathematical trick
used to ‘hide’ the divergences of the theory. To begin, we note that we conventionally define
the action for a general field theory as

S =

∫
d4xL (2.85)

where the important point is that we require the integration over all space. Taken literally, the
above relation asserts that the field theory is well defined at all distances. There are reasons
to believe that this is overconfident. Consider a description of QCD in terms of baryons and
mesons. We expect that this theory can only be correct up to some energy scale where the
internal effects of quarks and gluons can no longer be neglected. Let this energy scale be Λ.
In the case of chiral effective field theory, it is not hard to imagine that the distance scale 1/Λ
should be related to the size of the hadrons described in the theory. For distances much larger
than this distance, we expect that an effective description should be valid, while for distances
approaching our characteristic distance scale 1/Λ, the probability of interactions between
quarks and gluons in the hadrons becomes non-negligible and our description breaks down.
Clearly, we should ‘cut off’ the theory at this energy scale. Importantly, we note that in the
case of chiral effective field theory, the cutoff is physically motivated. While we have presented
this argument for chiral effective field theory, Wilson [41] proposes that we understand this as
a general requirement for field theories. In order to make this statement concrete, we modify
our definition of the action to indicate that we should only integrate over the distance scales
where we believe the theory to be well defined. We write

S → SΛ =

∫
1/Λ

d4xL, (2.86)

where we again emphasize that in general, the cutoff Λ should be related to some physical
restriction on the theory. This redefinition of our action has important consequences for the
matrix elements we calculate and our understanding of renormalisation. The full implications
of this redefinition of the action are beyond the scope of this discussion, but some important
facts can be stated which will help to explain the development of chiral effective field theory
discussed in the next section.

We first note that the modification to include a cutoff in the theory has the effect of rendering
all matrix elements finite. Even within renormalisable field theories, infinities appeared, which
were absorbed into the definitions of couplings and masses in the process of renormalisation.
While this process led to predictions which were in agreement with experimental data,
practitioners were concerned that the infinite corrections implied that the theory was not
internally consistent. With Wilson’s modification, these divergences are now large but finite,
and their mathematical manipulations are better behaved.

The finite cutoff Λ has further benefits. Wilson showed that if one considered the most general
Lagrangian consistent with the symmetries (including the infinite number of non-renormalisable
interactions):
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L =
∞∑
i=0

giLiint, (2.87)

and considered a calculation at a momentum scale p far lower than the theory’s cutoff
Λ (p � Λ), that non-renormalisable interactions were proportional to positive powers of
(p/Λ), and were thus suppressed, leaving only renormalisable interactions. In other words,
Wilson’s analysis explains the requirement of renormalisable interactions [41]. As long as
the momentum scale is sufficiently low when compared to the cutoff scale of the theory, only
renormalisable interactions will be present in the low energy effective field theory. Historically,
the renormalisation procedure was completed by ‘taking Λ→∞’, at the end of the calculation.
Since in a renormalisable theory all observables are independent of the cutoff Λ, this has no
effect on the predictions. In the Wilsonian understanding of renormalisation, we understand
that the lack of dependence on Λ in physical quantities is a manifestation of the intuitive
argument presented at the beginning of the section on effective field theories; namely that
low energy processes (of energy scale p � Λ) are independent on the physics which occurs
at a much higher energy scale Λ. In chiral effective field theory it turns out that the energy
scales we wish to evaluate processes at are close to the cutoff scale Λ. As a result, we obtain
contributions from so-called non-renormalisable interactions.

2.3.6 Constructing the Effective Lagrangian

We begin this section by quoting a postulate due to Weinberg [67]:

Quantum Field Theory has no content besides unitarity, analyticity, cluster de-
composition and symmetries.

In general, there will be an infinite number of terms which satisfy these requirements, with
most of these being traditionally regarded as non-renormalisable and thus ‘bad’. As we have
argued in the last section, in the context of effective field theories, these terms may be handled
consistently, and after renormalisation, the theory will enable finite predictions. Following the
theorem of Weinberg, we write

L =

∞∑
i=0

giLiint, (2.88)

where each term in this sum is consistent with the symmetries of the theory. Obviously, in
order to make predictions, we must only retain a finite number of terms. In chiral effective
field theory, we are interested in describing the low energy behavior of QCD. Thus we choose
to arrange our interactions in terms of powers of momenta, or equivalently in position space,
in powers of the derivative ∂µ. In the following section, we construct the SU(2)L × SU(2)R
chiral Lagrangian.
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2.3.6.1 Pseudo-Scalar Pion Nucleon Theory

In this thesis, we shall mention two different pion-nucelon Lagrangians motivated by chiral
symmetry. These two Lagrangians are known as the pseudo-scalar (PS) and pseudo-vector
(PV) interactions, due to the form of the pion-nucleon coupling. As we shall explain, these
two representations of the theory are equivalent, and lead to the same predictions for matrix
elements. However the pseudo-scalar Lagrangian is unwieldy to use, as it requires a delicate
cancellation of contributions from the pion and sigma fields to obtain the correct predictions.

We recall the Sigma Model we discussed previously:

L = ΨN (i/∂ +mN )ΨN − gπNΨN (σ + iγ5τ · π)ΨN +
1

2
(∂µσ)2 − 1

2
m2
σσ

2 +
1

2
(∂µπ)2

− λ2

4
(σ2 + π2)2 − vλ2σ(σ2 + π2),

(2.89)

where we have made the identifications mN = gπNv and m2
σ = 2λ2v2. We introduce a mass

term for the pion which explicitly breaks the chiral symmetry

LSB = −1

2
m2
ππ

2. (2.90)

Thus to lowest order in the derivatives of the pion field, the Lagrangian is

L = ΨN (i/∂ +mN )ΨN − gπNΨN (σ + iγ5τ · π)ΨN +
1

2
(∂µσ)2 − 1

2
m2
σσ

2

+
1

2
(∂µπ)2 − 1

2
m2
ππ

2 − λ2

4
(σ2 + π2)2 − vλ2σ(σ2 + π2).

(2.91)

Due to the difficulty with identifying the sigma meson, it was conventional to drop the sigma
field, although this breaks the chiral symmetry. Nevertheless, this is the Lagrangian we refer
to when we discuss the pseudo-scalar interaction:

LPS = ΨN (i/∂ +mN )ΨN − gπNΨN iγ5τ · πΨN +
1

2
(∂µπ)2 − 1

2
m2
ππ

2. (2.92)

2.3.6.2 Pseudo-Vector Pion Nucleon Theory

Prior to neglecting the sigma field, the Sigma Model is chirally symmetric. However, it
is unwieldy to deal with and modern implementations of chiral symmetry use a different
Lagrangian. A result initially due to Haag [68] states that if two fields are non-linearly related
the S-matrix elements and thus the physical predictions are equivalent. Thus we are free to
perform non-linear transformations on our fields. Following Ref. [69], it is possible to perform
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a non-linear transformation on the nucleon, pion and sigma fields which leaves the Lagrangian
invariant under chiral SU(2)V × SU(2)A, which leads to

LPV = ΨN (i/∂ +mN )ΨN +
gA
2fπ

ΨNγ
µγ5τ · ∂µπΨN −

1

2f2
π

ΨNγ
µτ · (π × ∂µπ)ΨN +

1

2
(∂µπ)2

−1

2
m2
ππ

2,

(2.93)

where we have also used the Goldberger-Treiman relation

gA
fπ

=
gπN
mN

. (2.94)

Note that we have removed reference to the sigma field. This is because after we perform
the change of variables, the sigma field becomes irrelevant to the chiral symmetry, and it is
possible to remove it without spoiling this symmetry. This is in contrast with the pseudo-scalar
Lagrangian, where retention of the sigma field was necessary to preserve the chiral symmetry
of the Lagrangian.

2.4 Conclusion

This concludes our discussion of quantum chromodynamics. We began by recalling the
historical developments which culminated in the writing of the QCD Lagrangian. We then
discussed the general properties of the Lagrangian formulation. In particular we saw how
the non-Abelian nature of the theory led to differences in the gluonic field strength tensor
when compared with the Abelian field strength tensor of Quantum Electrodynamics. This
discussion of the differences between QCD and other field theories motivated a discussion of
the characteristic features of QCD: asymptotic freedom and confinement. We emphasized that
due to asymptotic freedom, QCD was a member of a class of physical theories which were well
defined in the ultraviolet. This enabled us to make perturbative calculations at high energy,
but invalidated this approach at low energy. We explained that in this energy regime, there
is much evidence that QCD is confining, and we presented some of this evidence including
the static quark potential calculated from lattice QCD. This explains the non-observation of
quarks at low energy. Instead, low energy QCD is the study of hadrons; the composite bound
states which appear due to the dynamics of QCD. This motivated the development of a low
energy effective description in terms of these low energy excitations. We concluded by writing
both the psudoscalar and pseudovector forms of chiral effective field theory. These will be
used in the following chapters.





3

The Electromagnetic Structure of Hadrons

How do we learn about more about the strong force? As we have seen, the strong force acts
over short distances to ‘hide’ the fundamental degrees of freedom - the quarks and gluons - in
colourless hadrons. This process is non-perturbative and, even today, is not well understood.
Thus the objects we have at our disposal are the composite bound states of QCD. Note that
while these particles are colour singlets, the quarks in QCD are also charged under the U(1)
of electromagnetism, and thus the bound states may also be electrically charged. Since QED
is well understood and in particular perturbative, the use of electromagnetic probes gives us a
way to precisely and cleanly study the structure of hadrons.

These electromagnetic interactions may be divided into two categories based on the final state
of the hadron. The more complicated of these processes is so-called deep inelastic scattering
where the final state of the hadron is not detected. As we have discussed, the deep inelastic
structure functions carry a wealth of information about the dynamics of QCD. In comparison
with deep inelastic scattering, elastic scattering requires that the initial and final hadron are
the same. Some of the most well studied processes in this field are ep→ ep and eπ → eπ. In
this chapter, we will discuss the structure functions available to us through these processes,
and the current measurements of physical observables associated with these structure functions.
We will then examine the form factors from a more theoretical perspective and show how the
measured form factors arise from quantum field theory.

3.1 Baryon Electromagnetic Form Factors

Historically, the first hints of hadron structure go back to Otto Stern, who measured the
magnetic moment of the proton in 1933 [70, 71]. While the Dirac equation predicts a magnetic
moment of

µN =
e

2mp
, (3.1)

where mp is the proton mass, Stern and colleagues observed a much larger magnetic moment.
Precise measurements today cite the magnetic moment as [43]

33
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Figure 3.1: Elastic electron-proton scattering in the one-photon-exchange approximation.
The momentum of the exchanged virtual photon is q.

µp = 2.7928473446± 0.0000000008µN . (3.2)

In other words, it is almost three times as large! Further evidence for the internal structure
was observed in elastic electron-proton scattering experiments in 1953 [72–74], where it was
shown that in order to model the experimental data, a form factor which described the
extended charge density was required. It is this particular approach which we will focus on in
this thesis. Since the electron does not participate in strong interactions, this process leads to
a clean measurement of the strong force dynamics. The lowest order QED contribution to this
process is termed the one-photon-exchange approximation and the corresponding diagram is
shown in Fig. 3.1. At this level of approximation (good to about one percent), electron-proton
scattering may be understood to be mediated by a single virtual photon with four-momentum
q. Momentum conservation requires that q = p2− p1 = k1− k2. Note that it is simple to show
that in this process the photon is always space-like (q2 < 0). Modern discussions of these form
factors often define the invariant Q2, which is related to the photon virtuality q2 via

Q2 = −q2, (3.3)

so that space-like data will correspond to positive Q2. We shall also follow this convention.
Although this study used only one form factor, in principle there exist two independent form
factors for the proton. This is related to the two spin states of the proton. A particular
parameterisation of these two structure functions is

〈N(p2)| Jµ(q) |N(p1)〉 = u(p2)

[
γµF1(Q2) +

iσµνqν
2mN

F2(Q2)

]
u(p1), (3.4)

where the two form factors F1(Q2) and F2(Q2) are sometimes known as the Dirac and Pauli
form factors respectively. This leads to a cross section of the form [75]
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dσ

dΩ
=

(
dσ

dΩ

)
Mott

(
F 2

1 (Q2) +
Q2

(2mN )2

[
F 2

2 (Q2) + 2(F1(Q2) + F2(Q2))2 tan2 θ

2

])
, (3.5)

where the Mott differential cross section is the predicted cross section for the scattering of a
relativistic electron on spinless point-like particles. An elementary Dirac particle has

F1(Q2) = 1, (3.6)

F2(Q2) = 0. (3.7)

Often, the Sachs form factors are used. These are a re-parameterisation of the Dirac and
Pauli form factors and are related by

GE(Q2) = F1(Q2)− Q2

4m2
N

F2(Q2), (3.8)

GM (Q2) = F1(Q2) + F2(Q2), (3.9)

which allow for a simple extraction of GE and GM using the so-called Rosenbluth method. GE
and GM are also known as the electric and magnetic form factors, since in the non-relativistic
limit, they may be related to the Fourier transform of the electric and magnetic charge
distributions. Note that modern experiments utilize a different technique, which utilizes
polarization observables since it has been found that this method allows for a more sensitive
extraction of the ratio of GE/GM [94]. Apart from the electromagnetic form factors themselves,
there are several observables of interest which may be extracted from form factor data. We
have already mentioned the magnetic moment, µB, of a baryon B. This may extracted from
the magnetic form factor evaluated at Q2 = 0. More specifically, the ratio of the baryon’s
magnetic moment to the nuclear magneton, µN (defined above) is given by

µB
µN

= GBM (0). (3.10)

For completeness the proton and neutron magnetic moments are [43]:

µp = 2.7928473446± 0.0000000008µN , (3.11)

µn = −1.9130427± 0.0000005µN . (3.12)

The electric charge radius may also be extracted from form factor data. In particular, the
square of the charge radius for a charged baryon is given by
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Figure 3.2: Electromagnetic form factors of the nucleon in the time-like region. Experimental
data for the electric and magnetic form factors taken from the global analysis of Ref. [76].
Data for the electric form factor of the neutron is compiled from Refs. [77–85], while the
magnetic form factor data is compiled from Refs. [86–92]. A simple empirical parameterization
of the experimental data from Ref. [93] is also shown to guide the eye.

〈
r2
i

〉
B

= − 6

GBi (0)

dGBi (Q2)

dQ2

∣∣∣∣
Q2=0

, (3.13)

where i = E,M . The electric charge radius for neutral particles may be found by replacing
the factor GBi (0) with unity. The electric charge radii for the proton and neutron are (note
that we have taken the square root):

〈
r2
E

〉1/2

p
= 0.84087± 0.00039 fm, (3.14)〈

r2
E

〉1/2

p
= 0.8751± 0.0061 fm, (3.15)〈

r2
E

〉1/2

n
= 0.864± 0.009 fm. (3.16)

These results are taken from Ref. [43]. Note that we have included two values for the proton
charge radius. The first comes from spectroscopic measurements of muonic hydrogen, while
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the second comes from low energy electron-proton elastic scattering. At the time of writing,
these two measurements disagree by over 7σ [43].

3.2 The Pion’s Electromagnetic Form Factor

The pion is a spin zero meson. Thus unlike the nucleon, the pion only has one electromagnetic
form factor. In analogy with the above discussion for the nucleon, the electromagnetic structure
of the pion may be probed by performing electron-pion elastic scattering. This is shown in
Fig. 3.3. Again, we label the momentum of the virtual photon q. The pion form factor is
defined as

〈π(k2)| Jµ(q) |π(k1)〉 = (k1 + k2)µFπ(Q2), (3.17)

where k1 and k2 are the initial and final four-momentum vectors of the pion, respectively. The
electric charge radius of the pion is defined by

〈
r2
E

〉
π

= −6
dFπ(Q2)

dQ2
. (3.18)

Experimentally, this is measured to be [95]:

〈
r2
E

〉1/2

π
= 0.672± 0.008 fm. (3.19)

So far our discussion has focused on the experimental observables we may obtain from studying
the electromagnetic form factors. Having now appreciated the importance of the measurement
of these structure functions, we now consider these functions from a theoretical perspective. In
particular, we show how these form factors emerge from quantum field theory by considering
the gauge symmetry of the electromagnetic interaction.

q

π(p1)

e(k1)

π(p2)

e(k2)

Figure 3.3: Elastic electron-proton scattering in the one-photon-exchange approximation.
The momentum of the exchanged virtual photon is q.
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Figure 3.4: Electromagnetic form factor for the pion in the space-like region. Experimental
data has been taken from Refs. [96, 97] and a simple monopole fit has been included to guide
the eye.

3.3 Gauge Invariance and the Ward-Takahashi Identities

While our earlier discussion of the electromagnetic form factors was based on the experimental
observables, we now take a theoretical point of view, and derive the most general form of the
matrix element for electromagnetic interactions with hadrons. By applying certain limits, we
see how this matrix element reduces to the forms discussed in the previous sections. Of the
symmetries used, the gauge symmetry of Quantum Electrodynamics is particularly important,
and we pause our discussion of electromagnetic form factors to explore this concept in more
detail.

3.3.1 Classical Electromagnetic Gauge Invariance

We begin our discussion of electromagnetic gauge invariance with classical electromagnetism.
There, we define the four-vector Aµ as

Aµ = (V,A), (3.20)
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where V is the scalar potential and A is the vector potential. This decision is motivated by a
desire to produce a covariant formulation of electromagnetism. One defines the field strength
tensor Fµν as

Fµν = ∂µAν − ∂νAµ. (3.21)

This enables us to write the Lagrangian density for electromagnetism as

L = −1

4
FµνF

µν . (3.22)

Applying the Euler-Lagrange equations yields the classical equations of motion for the photon.

∂µF
µν = ∂2Aν − ∂µ∂νAµ = 0. (3.23)

The issue of gauge invariance arises because there are transformations of the Aµ field which leave
the equations of motion unchanged; performing the field redefinition Aµ → A′µ = Aµ + ∂µχ
leads to the same Lagrangian and thus the same equations of motion. This will lead to an
overcounting of physically distinct states. Physically, we may understand this complication by
noting that electromagnetic waves have two possible polarization states but the Lagrangian
currently has four independent degrees of freedom. Thus we have two redundant degrees of
freedom, and we must apply two constraints to fully define the field equations. We call these
conditions gauge fixing conditions. The first of these conditions is

∂µA
µ = 0. (3.24)

This reduces the number of independent degrees of freedom of the Aµ field from four to three.
In the classical theory of electromagnetism, this condition is known as the Lorenz Condition;
in the quantized theory, it corresponds to Feynman gauge. In any case, with this condition,
the equation of motion for the electromagnetic field becomes

∂2Aν = 0. (3.25)

Note that the aforementioned gauge freedom has been removed. Since we are still dealing
with the classical field, we may immediately solve this differential equation to yield the plane
wave solutions for Aµ:

Aµ = Nεµe−ik·x, (3.26)

where εµ is the so-called polarization tensor. As a result of the equation of motion, we have
the constraint that k2 = 0. Physically, this is a result of the photon being massless. The
gauge fixing condition leads to the further constraint on the polarization tensor that
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k · ε = 0. (3.27)

There is still one residual gauge degree of freedom. Consider the transformation Aµ → A′µ =
Aµ + ∂µφ, where we require that additionally, φ is a solution to the massless Klein-Gordon
Equation:

∂2φ = 0. (3.28)

With this extra constraint, the gauge fixed equation of motion still exhibits gauge freedom.
This symmetry in Aµ corresponds to the property that ε′µ is also a valid polarization tensor
provided it is related to εµ via

ε′µ = εµ + βkµ, (3.29)

since

k · ε′ = k · ε+ βk2 = 0, (3.30)

where the physical photon is massless. We can further gauge fix by choosing β such that the
time component of the polarization vector vanishes. Thus we take

β = − ε
0

k0
. (3.31)

As a result of this choice, we have the two constraints

ε0 = 0, (3.32)

k · ε = 0. (3.33)

Thus our two constraints reduce the four polarization states to two, as anticipated. Having
now studied the classical theory, we move to the quantum theory, where there arise some
extra difficulties from the quantization of the theory. Although we will discuss briefly these
complications, and their solution, we mention QED mainly to examine the Ward-Takahashi
Identities which are applicable to QCD, and our study of hadronic form factors.

3.3.2 Quantum Electrodynamics

The prototypical quantum field theory is Quantum Electrodynamics. Importantly, from a
modern standpoint, the electromagnetic interactions may be understood as a result of the
gauge principle. The Lagrangian density is given as
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Gauge fixed
solution

Aµ1

Aµ2

Aµ3

Aµ4

Aµ1
A′µ1 = Aµ1 + ∂µχ

Figure 3.5: In calculating physical processes, we would like to count each physically
distinct state only once. However, before gauge fixing there exist an infinite number of valid
configurations for Aµ, A′µ, A′′µ, . . . related by the gauge transformation Aµ → A′µ = Aµ+∂µχ
which correspond to the same physical state. These ‘lines of constant physics’ are depicted as
dashed lines. The gauge transformation propagates us along this line. Each of the physically
distinct states is denoted with a subscript. By gauge fixing, we pick out a subspace, which
chooses from each line of constant physics, exactly one configuration. Thus the gauge fixed
solution may be depicted as a curve which intercepts each gauge orbit exactly once.

LQED = ψ(i/∂ −m)ψ − 1

4
FµνF

µν + ψ /Aψ. (3.34)

This Lagrangian posseses the same gauge symmetries as the classical theory, and it can
be shown that these gauge symmetries lead to difficulties when the photon propagator is
calculated. The problem with these gauge symmetries is most easily understood in the path
integral formalism but the full development of this idea is beyond the scope of this discussion.
Note however that in the path integral formalism heuristically we ‘sum over all possible field
configurations’. In this summation, we include an infinite number of states related by a gauge
transformation which correspond to the same physical state. Thus clearly we must gauge fix
to prevent the over counting of physical states (see Fig. 3.5). Since we now interpret Aµ(x)
as an operator, we cannot implement the Lorenz condition ∂µA

µ = 0. Instead, it is possible
to show that one may implement the gauge fixing condition by modifying the Lagrangian to
incorporate the term

LGF = − 1

2ξ
(∂µA

µ)2. (3.35)

The (formal) equation of motion is now

∂µF
µν = ∂2Aν −

(
1− 1

ξ

)
∂µ∂

νAµ = 0. (3.36)

For ξ = 1, we obtain the equivalent of the Lorenz gauge fixing condition. Thus the gauge
fixed QED Lagrangian is
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LQED = ψ(i/∂ −m)ψ − 1

4
FµνF

µν + ψ /Aψ − 1

2ξ
(∂µA

µ)2. (3.37)

As with the classical theory, even after gauge fixing, this theory still exhibits residual gauge
symmetry. The Lagrangian is invariant under the simultaneous gauge transformations

ψ → ψ′ = eiχ(x)ψ, (3.38)

Aµ → A′µ = Aµ + ∂µχ(x), (3.39)

provided ∂2χ(x) = 0. As with the classical theory, we further restrict the polarization vector
for physical photons by requiring that ε0 = 0. Thus the polarization vector is the same as the
classical case.

ε0 = 0, (3.40)

k · ε = 0. (3.41)

From Noether’s Theorem, we expect this symmetry to produce a conserved current jµ(x).
As we have seen in the previous chapter, classical symmetries do not necessarily survive the
quantization procedure. In the case of the gauge symmetry, this is not the case, although
quantization does modify the form of this conserved current. In particular, for physical
external photons, the conserved current is exactly as in the classical theory. However, for
matrix elements with virtual photons which are off their mass shell, there are modifications to
the classical result. One may understand why this must be so by considering the second gauge
invariance of the classical theory. Recall that the residual degree of freedom arose because we
were able to define a new polarization tensor ε′µ via

ε′µ = εµ + βkµ, (3.42)

since the physical photon was massless, and thus satisfied a massless dispersion relation k2 = 0.
In quantum field theory, photons which are off their mass shell will not have k2 = 0, and thus
in this case, there is no additional symmetry. In the quantum field theory, the conservation
of this current is expressed in momentum space by the so-called Ward-Takahashi Identities,
which we shall now derive explicitly.

While this discussion is based on electrodynamics, we note that Nishijima has shown that
even in the absence of the explicit form of the Lagrangian, the gauge symmetry will lead
to a conserved current, and corresponding Ward-Takahashi Identities [98]. Thus although
our discussion of gauge invariance and current conservation has focused on QED, the general
principles are also applicable to the electromagnetic interactions in QCD.
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3.3.3 The Ward-Takahashi Identity

We begin our discussion of the Ward-Takahashi Identity by first determining the result from
the classical theory. It is possible to show that Noether’s Theorem implies that the current

jµclas.(x) = q(x)γµq(x) (3.43)

is conserved. The Ward-Takahashi Identities are usually written in momentum space. We
may convert this relation to momentum space by using the Fourier transform:

∂µj
µ
clas.(x) = 0 = ∂µ

∫
d4k

(2π)4
e−ik·xΓµclas.(k)

=

∫
d4k

(2π)4
e−ik·x(−ikµ)Γµclas.(k),

(3.44)

where we have defined the Fourier transform of the conserved current jµclas.(x) as Γµclas.(k).
Thus in our classical theory, we have

− ikµΓµclas.(k) = 0. (3.45)

In this section, we shall derive the quantum mechanical version of this relation. As we have
alluded to, the virtual particles modify the classical result, resulting in

− ikµΓµ(k; p1, p
′
1) = S−1

F (p′1)− S−1
F (p1). (3.46)

We will see that in the limit that all the particles go on-shell, we recover the classical result.
This more general result is also known as one of the Ward-Takahashi Identities. These
identities are true order-by-order, and so it suffices to prove them for a diagram of arbitrary
order. This proof is partially diagrammatic, so for completeness, we recall the Feynman Rules
for QED. We write the fermionic propagator as:

p
= SF (p) =

i(/p+m)

p2 −m2
, (3.47)

the photon (in Feynman gauge) as:

k
µ ν =

−igµν

k2
, (3.48)
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Figure 3.6: An electromagnetic process involving n fermions and m photons. Inital states
have ingoing momentum, and final states have outgoing momentum, so that conservation of
momentem gives

∑
pi +

∑
qj =

∑
p′i +

∑
q′j .

and the interaction as

= −ieγµ. (3.49)

Consider a diagram which contributes at order O(αn) to the process involving n fermions
and m photons, where the momenta of the individual particles is shown in Fig. 3.6. We may
calculate the related process where there are m+ 1 photons by attaching this photon in all
possible ways to all diagrams which contribute to the amplitude containing m photons. We
denote one contribution to this amplitude as δM0. From the Feynman Rules it is trivial to
see that the photon may only couple to the fermion field (there is no tree level photon self
interaction). In any diagram, fermion lines are either external legs, which pass through the
diagram, or internal loops. Thus when attaching a photon to the graph δM0 one may only
attach it to an external fermion line, or to an internal fermion loop. In order to attach a
photon in all possible ways, both cases must be considered.

3.3.3.1 Coupling Photon to External Line

Consider first the case where the photon connects to an external line. Prior to the insertion,
the relevant part of the graph δM0 will be given by

δM0 ∝
p

q1 q2 qn−1 qn

p1 . . . pn−1 p′

. (3.50)
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Using the Feynman Rules, it is possible to write this part of the diagram as

δM0 ∝ SF (p′)(−ieγνn)SF (pn−1)(−ieγνn−1) . . . (−ieγν1)SF (p). (3.51)

Consider attaching the photon after the ith internal photon exchange. This new digram will
contribute to Mµ(k).

δMµ
i (k) ∝

p

q1 qi qi+1 qn

k

. . . pi pi + k . . . p′

. (3.52)

As before, one may write the amplitude for this diagram as

δMµ
i ∝ SF (p′ + k)(−ieγνn)SF (pn−1 + k)(−ieγνn−1) . . . SF (pi + k)

× (−ieγµ)SF (pi) . . . (−ieγν1)SF (p).
(3.53)

Consider contracting this amplitude with kµ. We can write

SF (pi + k)(−ie/k)SF (pi) = eSF (pi + k)[−i(/k + /pi −m) + i(/pi −m)]SF (pi)

= eSF (pi + k)[S−1
F (k + pi)− S−1

F (pi)]SF (pi)

= e[SF (pi)− SF (pi + k)].

(3.54)

Inserting this in the above expression leads to

kµδMµ
i ∝ SF (p′ + k)(−ieγνn)SF (pn−1 + k)(−ieγνn−1) . . .

×e[SF (pi)− SF (pi + k)] . . . (−ieγν1)SF (p).
(3.55)

Consider now inserting the photon one place further to the left. This will lead to

kµδMµ
i−1 ∝ SF (p′ + k)(−ieγνn)SF (pn−1 + k)(−ieγνn−1) . . .

×e[SF (pi−1)− SF (pi−1 + k)] . . . (−ieγν1)SF (p).
(3.56)
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Adding these two expressions (since in general one wishes to sum over i), leads to cancellation
between the second term of (3.55) and the first term of (3.56). It is easy to see that this
pattern will continue between adjacent sites, and so after summing up all possible insertions,
the external ends of this sum will be the only surviving terms. That is

∑
insertions

kµδMµ
i ∝ e

[
SF (p′)(−ieγνn)SF (pn−1)(−ieγνn−1) . . . (−ieγν1)SF (p)

−SF (p′ + k)(−ieγνn)SF (pn−1 + k)(−ieγνn−1) . . . (−ieγν1)SF (p+ k)

]
.

(3.57)

Pictorially one may write this relation as

∑
insertions

kµδMµ
i ∝ e


p

q1 qn

p′

−
p+ k

q1 qn

p′ + k

 . (3.58)

Note that so far, we have only considered coupling photons to external fermion lines. We
must now consider the coupling of photons to internal loops.

3.3.3.2 Attaching Photon to Internal Loops

Consider a general fermion loop, again with n photon insertions. Since this will also contribute
to M0, one has

δM0 ∝

qi

q2

qi+1

qn

q1

(3.59)

As before, it is simple to write down the contribution to the amplitude from this fermion loop.
One finds

δM0 ∝
∫

d4p1

(2π)4
(−1) Tr

[
SF (pn)(−ieγνn) . . . (−ieγν2)SF (p1)(−ieγν1)

]
. (3.60)



Chapter 3. The Electromagnetic Structure of Hadrons 47

Consider attaching a photon between the ith and (i+ 1)th photon insertions. This will lead to
a rather similar situation to the above case of an external fermion line. One may represent
this as

δMµ(k) ∝

qi

q2

qi+1

qn

k

q1

(3.61)

and so

δMµ(k) ∝
∫

d4p1

(2π)4
(−1) Tr

[
SF (pn + k)(−ieγνn) . . . SF (pi+1 + k)(−ieγµ)SF (pi) . . .

×(−ieγν2)SF (p1)(−ieγν1)

]
.

(3.62)

Contracting against kµ again leads to

kµδMµ ∝
∫

d4p1

(2π)4
(−1) Tr

[
SF (pn + k)(−ieγνn) . . . e[SF (pi)− SF (pi + k)] . . .

. . . (−ieγν2)SF (p1)(−ieγν1)

]
.

(3.63)

In exactly the same way as for the external fermion line, summing over all possible photon
insertions leads to cancellation between adjacent terms, and only the initial and final terms
survive.

∑
insertions

kµδMµ ∝
∫

d4p1

(2π)4
(−1) Tr

[
SF (pn)(−ieγνn) . . . (−ieγν2)SF (p1)(−ieγν1)

]
−
∫

d4p1

(2π)4
(−1) Tr

[
SF (pn + k)(−ieγνn) . . . (−ieγν2)SF (p1 + k)(−ieγν1)

]
.

(3.64)

Note however that since p1 is a dummy variable which is integrated over, we may shift the
integration variable p1 → p1 + k and so these two terms cancel as well. Thus diagrams in
which a photon couples to an internal loop sum to zero:
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∑
insertions

kµδMµ = 0. (3.65)

As a result, the only contributions to the object kµMµ originate from coupling a photon to
an external fermion line. For each external line, we obtain a contribution of the form (3.57),
and so summing over all contributing diagrams leads to the final Ward-Takahashi Identity

kµMµ(k; p1, . . . , pn, p
′
1, . . . , p

′
n) = e

n∑
i=1

[
M0(p1, . . . , pn, p

′
1, . . . , (p

′
i − k), . . . , p′n)

−M0(p1, . . . , (pi + k), . . . , pn, p
′
1, . . . , p

′
n)

]
,

(3.66)

where we recall that the initial matrix element is

M0(p1, . . . , pn, p
′
1, . . . , p

′
n) =

p′1

p′n

q′1

q′m

p1

pn

q1

qm

(3.67)

and the matrix element which contains an extra photon is

Mµ(k; p1, . . . , pn, p
′
1, . . . , p

′
n) =

p′1

p′n

q′1

q′m

p1

pn

q1

qm k

(3.68)

The most well known of these Ward-Takahashi Identities relates the fermion propagator with
the electromagnetic vertex. Using the relation we have proved, we have

kµMµ(k; p1, p
′
1) = e[M0(p1)−M0(p′1)]. (3.69)

The quantities on the right hand side are simply the fully dressed fermion propagators evaluated
at p1 and p′1, respectively. The full three point amplitude is a product of the fully dressed
fermion propagators times the amputated scattering diagram. In this case, this is just the
vertex function Γµ(k; p1, p

′
1). Thus we have

SF (p′1)[−iekµΓµ(k; p1, p
′
1)]SF (p1) = e[SF (p1)− SF (p′1)]. (3.70)
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A simple manipulation of this expression leads to the well known result:

− ikµΓµ(k; p1, p
′
1) = S−1

F (p′1)− S−1
F (p1). (3.71)

It is this relation which we will use to constrain the form of the electromagnetic interactions.
Note that in the limit that the initial and final fermions are physical, this relation reduces to

kµΓµ(k; p1, p
′
1) = 0. (3.72)

Thus ensuring that for physical matrix elements the current is conserved, as we would expect
from the classical theory. Having now discussed in detail the Ward-Takahashi Identity, we
are now in a position to understand the theoretical basis for the electromagnetic form factors
of hadrons we described at the beginning of the chapter. We begin this analysis with the
spin-zero system.

3.4 The Spin-Zero System

In order to constrain the most general form of the electromagnetic vertex, we note that the
electromagnetic field Aµ(x) transforms as a vector under Lorentz boosts. To form a Lorentz
scalar suitable for an interaction term in the Lagrangian, we conclude that we must contract
Aµ(x) with a current which also transforms as a vector. That is,

Lint = Jµ(x)Aµ(x), (3.73)

where the current Jµ(x) is a product of fields. We define the most general form of the electro-
magnetic vertex Γµ which we require to transform as a vector under Lorentz transformations.
We can further decompose this function by considering its momentum dependence. We denote
the spin-zero hadron’s initial momentum by k1 and its final momentum k2. Conservation of
momentum requires that the photon have momentum q = k2 − k1. In general, the vertex
function will be dependent on all three of these variables and so

q

k1 k2

Figure 3.7: Electromagnetic vertex for spin-zero hadron. We denote the initial hadron
momentum as k1, the final hadron momentum as k2 and the photon momentum as q. The
flow of momentum is fixed by the condition k2 = k1 + q
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Γµ = Γµ(k1, k2; q). (3.74)

Pictorially, we represent the dressed vertex as shown in Fig. 3.7. Since the vertex function
transforms as a vector, so must all the terms which comprise it. Only the external four-
momenta of the particles have the correct transformation properties. We note that since the
three momenta are constrained by momentum conservation (k2 = k1 + q), there are only two
degrees of freedom. Thus we only need two vectors to span the space. A particular choice
gives

Γµ(k1, k2; q) = f1(k2
1, k

2
2; q2)(k1 + k2)µ + f2(k2

1, k
2
2; q2)(k1 − k2)µ, (3.75)

where f1 and f2 must be Lorentz invariant scalar functions.

3.4.1 On-Shell Vertex

Finally, we may use the Ward-Takahashi identity to further constrain the form factors. We
note that the relevant Ward-Takahashi identity is

− iqµΓµ(k1, k2; q) = D−1
F (k2)−D−1

F (k1), (3.76)

where DF is the most general form of the corresponding Feynman propagator for a spin-zero
field:

DF (k1) =
i

k2
1 −m2 − Σ(k2

1)
. (3.77)

We define Σ(k2
1) as the self-energy, which may be obtained as the sum of one-particle-irreducible

(1PI) graphs. Note that in the limit where k2
1 = k2

2 = m2, the Ward Takahashi Identity
reduces to

qµΓµ(k1, k2; q) = 0. (3.78)

Thus in this limit, the Ward Takahashi provides a further constraint on the form of the
electromagnetic form factors for the spin-zero system. We note that

q · (k1 + k2) = k2
2 − k2

1 = 0 (3.79)

in the on-shell limit. Thus the Ward-Takahashi identity reduces to

qµΓµ(k1, k2; q) = 0 = f2(m2,m2; q2)q2. (3.80)
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Since we have no further constraints, this relation must be true at arbitrary photon momentum.
Thus we must conclude that

Γµ(k1, k2; q) = f1(m2,m2; q2)(k1 + k2)µ. (3.81)

Comparing this with our earlier discussion of the pion form factor, we may make the identifi-
cation

Fπ(q2) = f1(m2,m2; q2). (3.82)

3.5 The Spin-Half System

We now move to the electromagnetic vertex function for the spin-half system, and repeat the
arguments we used for the spin-zero system. Free spin-half particles of mass m obey the Dirac
Equation

(iγµ∂µ −m)ψ(x) = 0. (3.83)

Thus we note that the gamma matrix γµ is required to correctly describe spin-half particles
and so we must add γµ to our list of available four-vectors. We may write

Γµ(p1, p2; q) = A(p2
1, p

2
2; q2)γµ +B(p2

1, p
2
2; q2)pµ1 + C(p2

1, p
2
2; q2)qµ. (3.84)

Note however, the functions A, B and C may have extra gamma matrix structure of the form

/p1
and /q. We may explicitly write the most general form of the electromagnetic vertex as

Γµ(p1, p2; q) = γµf1(p2
1, p

2
2; q2) + pµ1f2(p2

1, p
2
2; q2) + qµf3(p2

1, p
2
2; q2)

+γµ/p1
f4(p2

1, p
2
2; q2) + pµ1/p1

f5(p2
1, p

2
2; q2) + qµ/p1

f6(p2
1, p

2
2; q2)

+/qγ
µf7(p2

1, p
2
2; q2) + /qp

µ
1f8(p2

1, p
2
2; q2) + /qq

µf9(p2
1, p

2
2; q2)

+/qγ
µ
/p1
f10(p2

1, p
2
2; q2) + /qp

µ
1/p1

f11(p2
1, p

2
2; q2) + /qq

µ
/p1
f12(p2

1, p
2
2; q2),

(3.85)

where f1, . . . , f12 are Lorentz invariant scalar functions of p2
1, p2

2 and q2. We may relate these
form factors to the Dirac and Pauli form factors discussed previously by considering the
on-shell limit.

3.5.1 The On-Shell Vertex

While this is the simplest form for extracting form factors from loop calculations, as before,
there is a more physical decomposition. We again consider the case that the spin-half system
is on-shell. Then this vertex will sit between Dirac spinors:
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u(p2)Γµ(p1, p2; q)u(p1). (3.86)

The Dirac Equation allows us to use the relations /pu(p) = mu(p) and u(p)/p = u(p)m. Thus
the on-shell case amounts to the replacements /p1

, /p2
→ m. Doing this leads to

Γµ(p1, p2; q)|/p1=/p2=m = (f1 +mf4 + 2mf7 + 2m2f10)γµ

+(f2 +mf5 − 2f7 − 2mf10)pµ1
+(f3 +mf6)qµ,

(3.87)

where we have used the fact that u(p2)/qu(p1) = 0. It is possible to transform this representation
to

Γµ(p1, p2; q)|/p1=/p2=m = g1γ
µ + g2(p1 + p2)µ + g3(p1 − p2)µ, (3.88)

where one may relate the two representations as

g1 = f1 +mf4 + 2mf7 + 2m2f10 (3.89)

g2 =
1

2

(
f2 +mf5 − 2f7 − 2mf10

)
(3.90)

g3 =
1

2

(
f2 − 2f3 +mf5 − 2mf6 − 2f7 − 2mf10

)
. (3.91)

The Ward Takahashi Identity in this limit requires that

qµΓµ(p1, p2; q)|/p1=/p2=m = 0 = g3(m2,m2; q2)q2, (3.92)

and so we must have that g3(m2,m2; q2) = 0. Thus the on-shell vertex function reduces to a
sum of two Lorentz invariant scalar functions g1 and g2. Note that we may use the Gordon
Identity

u(p2)(p1 + p2)µu(p1) = u(p2)(2mγµ)u(p1)− u(p2)(2m)
iσµνqν

2m
u(p), (3.93)

to rewrite this vertex as

Γµ(p1, p2; q)|/p1=/p2=m = γµF1(q2) +
iσµνqν

2m
F2(q2), (3.94)

where F1 and F2 are the well known Dirac and Pauli form factors. It is straightforward to
show that
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F1(q2) = g1(m2,m2, q2) + (2m)g2(m2,m2, q2) (3.95)

F2(q2) = −(2m)g2(m2,m2, q2). (3.96)

3.6 Conclusion

This completes our development of the formalism surrounding the electromagnetic form factors.
We began by discussing the experimental data for the nucleon and pion electromagnetic form
factors. We explained how the low energy data enabled measurements of the charge radius and
the magnetic moments of the nucleon. We then paused our discussion of electromagnetic form
factors to develop our understanding of gauge invariance, and the Ward Takahashi Identity.
With this result, we showed how one could relate the experimental form factors to the most
general form of the electromagnetic vertex.





4

Chiral Corrections to Electromagnetic
Form Factors in the Nambu–Jona-Lasinio

Model

As discussed extensively in the previous chapters, the theory of the strong force is resistant to
direct analysis of its Lagrangian in the low energy regime due to the strong coupling strength
and non-Abelian dynamics. One solution to this difficulty is to utilize simplified models of
QCD. The following chapter considers this approach to calculate electromagnetic form factors
for the nucleon and a number of hyperons using the Nambu–Jona-Lasinio (NJL) Model, a
relativistic quark model. In particular, this work focuses on the implementation of the pionic
contributions motivated by chiral symmetry arguments. These effects may be incorporated at
one of two scales; at the quark level or at the hadron level. The exact meaning of these two
terms will be defined later in this chapter.

From our previous discussion of chiral effective field theory, we know that one may build up a
systematic picture of the low energy behaviour of hadronic systems as a power series in mπ. In
particular, the non-analytic terms in chiral effective field theory constitute model independent
predictions, which are also respected in QCD. These constraints on the amplitude may be
used to guide the building of models of QCD. In the following chapter, these constraints are
used to inform the implementation of pion loop effects on the nucleon and strangeness −1
hyperons.

As a result of ensuring the correct leading non-analytic behaviour of the hadronic observables,
a particular parameter set is determined which yields a good description of low energy nucleon
properties, and also leads to an improvement for the Σ− magnetic moment when compared to
a previous calculation by others where the chiral corrections were implemented at the quark
level. This demonstrates in a practical way the importance of correctly implementing these
chiral corrections. The results of this chapter are published in Refs. [99, 100].

4.1 Baryon Electromagnetic Form Factors in the NJL Model

Although the main point of this work is the implementation of chiral symmetry, we begin
this chapter with a summary of the calculation of electromagnetic form factors in the NJL

55
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Model [101, 102]. Previously, theoretical studies of these form factors were based on quark
models, ranging from constituent quark models [103, 104] to the MIT bag model [105], with
more recent studies employing the Schwinger-Dyson based approaches [106] utilising the
Nambu–Jona-Lasinio (NJL) model [107, 108]. The calculation reported on here is based on
earlier work in Refs. [109, 110], where the electromagnetic form factors of the nucleon and
sigma hyperons are calculated. Here, we review the calculation of the electromagnetic form
factors in the NJL Model. The Lagrangian density for the SU(3)F flavour NJL Model, in its
Fierz symmetric form is given as [110]:

L = ψ(i/∂ − m̂)ψ +
1

2
Gπ
[
(ψλiψ)2 − (ψγ5λiψ)2

]
− 1

2
Gρ
[
(ψγµλiψ)2 + (ψγµγ5λiψ)2

]
, (4.1)

where m̂ = diag(mu,md,ms) and λi are the eight generators of SU(3) in the Gell-Mann
representation (see Appendix A), plus λ0 =

√
2/3I.

In the NJL Model, interactions are described by effective four-point fermion contact interactions
which are non-renormalisable. Thus the model is only fully in the context of a particular
regularisation presciption to render the resulting interactions finite. The NJL Model used as
the basis for this work uses the proper-time regularisation prescription [111] (see Appendix E
for details), with an ultraviolet cutoff ΛUV . One of the drawbacks in the NJL Model is that the
model lacks the property of colour confinement; coloured quark states are free to propagate,
rather than begin confined in hadrons. It is possible to repair this pathology by introducing an
infrared cutoff ΛIR, which (if suitably chosen) removes the singularities due to the propagation
of colored states. In the following explaination of the calculation of electromagnetic form
factors in the NJL model, all momentum integrals should be understood to be regularised
using this prescription.

4.1.1 Quark Propagators and Dynamical Mass Generation

In the NJL Model, hadrons are described as bound states of quarks. Thus we begin our
discussion of the calculation with an examination of the quark propagator in the NJL Model.

The free-field quark propagator S
(0)
F (p) is given as usual by

S
(0)
F (p) =

i

/p−mf,0
, (4.2)

where f is the quark flavour. Note that in this work, we shall take the isospin symmetric
limit mu,0 = md,0. In a non-perturbative calculation, we require the dressed version of this
propagator, rather than the bare propagator. We may relate the two via

SF (p) =
i

/p−m(0)
f − Σ(p)

, (4.3)

where Σ(p) is the sum of all one-particle-irreducible (1PI) diagrams. In order to proceed,
the self energy, Σ(p) must be determined. In order to make the equation more tractable,
the so-called Hartree-Fock approximation is used [109, 112, 113]. One can understand this
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approximation in the following way. Consider perturbatively expanding the propagator
diagrammatically:

SF (p) = = + + + · · ·+ + . . . , (4.4)

where lines with a blob denote the full propagator, and solid lines denote the bare propagator.
In the Hartree-Fock approximation, we assume that it is sufficient to only consider a subclass
of diagrams; the so-called bubble diagrams. In other words, the self energy is given as

− iΣ(p) = + + . . . . (4.5)

This is known as the Random Phase Approximation. Thus one may understand the Hartree-
Fock approximation as a resummation of a certain subclass of diagrams. One obtains:

SF (p) = = + , (4.6)

where we note that the propagator which now appears in the loop is the dressed propagator,
consistent with the approximation of the self energy we have just discussed. We may explicitly
write the above diagrammatic relation as

S−1
F (p) = S

(0)−1
F (p)−

∑
Ω

KΩ

∫
d4k

(2π)4
Tr
[
ΩSF (k)

]
. (4.7)

Note that since the dressed propagator appears on both sides of the equation, this must be
solved self-consistently. It is possible to show, that for sufficiently strong coupling Gπ > Gcritical

a dynamically generated quark mass appears. As a result, we may write the dressed quark
propagator as

SF (p) =
i

/p−mf
, (4.8)

where mf is now the dressed quark mass, and is related to the bare quark mass via
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mf = m
(0)
f + 12Gπ

∫
d4k

(2π)4
TrD[SF (k)] . (4.9)

We see that the act of resumming the bubble diagrams has led to a constituent quark with

dressed mass mf , which will survive even in the chiral limit (m
(0)
f → 0). Thus the NJL Model

exhibits dynamical chiral symmetry breaking, and dynamical mass generation, two features
which we understand to occur in QCD.

4.1.2 Mesons in the NJL Model

In the NJL Model, the hadron is modeled as a quark-diquark bound state. In order to describe
the diquark (a quark-quark bound state), it will be useful to understand the calculation
of mesons (quark-antiquark bound states) in the NJL Model. The starting point for a
non-perturbative description of a bound state is the Bethe-Salpeter Equation:

T (q) = K +

∫
d4k

(2π)4
KSF (k + q)T (q)SF (k) . (4.10)

It is possible to show that the solution to the Bethe-Salpeter Equation in the qq channel with
the quantum numbers of the pion has the form

T παβ,γ,δ(q) = (γ5τi)αβtπ(q)(γ5τi)γδ , (4.11)

where tπ(q) takes the form

tπ(q) =
−2iGπ

1 + 2GπΠPP (q2)
, (4.12)

and ΠPP is the single bubble diagram:

ΠPP (q2) = . (4.13)

The form of tπ(q2) originates from resumming the infinite series of bubble diagrams in a
geometric series, as is done for the self energy:

= + + + . . . . (4.14)
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Near the pion pole, the T -matrix solution behaves as a pion pole would. Expanding around
q2 = m2

π, and equating it with the pole form gives

T παβ,γ,δ(q) = (γ5τi)αβ
−2iGπ

1 + 2GπΠPP (m2
π) + 2Gπ

∂
∂q2

Π(q2)
∣∣
q2=m2

π
(q2 −m2

π)
(γ5τi)γδ =

Γi(q)Γi(q)

q2 −m2
π

,

(4.15)

where Γi(q) is the Bethe-Salpeter vertex function, which describes the hadronisation of the two
constituent quarks into a bound state (in this case, the pion). Comparing the two expressions
gives

1 + 2GπΠPP (m2
π) = 0 , (4.16)

With these identities, it is possible to conclude that the Bethe-Salpeter vertex function Γi(q)
in this approximation is constant, and is given by

Γi(q) =
√
Zπγ5τi , (4.17)

where

Z−1
π = − ∂

∂q2
ΠPP (q2)

∣∣∣∣
q2=m2

π

. (4.18)

This concludes our discussion of mesons in the NJL Model. This procedure, of calculating the
T -matrix using the Bethe-Salpeter Equation and then performing the pole approximation to
simplify this expression is repeated for the calculation of diquark bound states, except for
a number of small differences. Thus we move directly to a description of the calculation of
Baryon electromagnetic form factors in the NJL Model.

4.1.3 Calculating Electromagnetic Form Factors in the NJL Model

Recall that baryons in this framework are described as quark-diquark bound states. One may
write the baryon electromagnetic vertex as the sum of diagrams where the photon couples to
the quark, and diagrams where the photon couples to the diquark:

ΓNJL,µ
H (q; p, p′) = + . (4.19)
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Thus, in order to calculate baryon electromagnetic form factors one must understand how the
photon couples to the quark and diquark structures. To begin with, the quark photon vertex
Γµγq(q; p, p′) is determined by solving the inhomogeneous Bethe-Salpeter Equation:

Γµγq(q; p, p
′) = γµ

(
1

6
+
τ3

2

)
+ i
∑

Ω

KΩΩ

∫
d4k

(2π)4
Tr
[
ΩSF (k + q)Γµγq(q; p, p

′)SF (k)
]
. (4.20)

From this, the diquark vertex function Γµγqq(q; p, p′) is calculated as the sum of two Feynman
Diagrams:

Γµγqq(q; p, p
′) = + . (4.21)

With both the quark and diquark vertex functions in hand, the baryon electromangetic form
factors may be calculated.

Effects of the virtual pion cloud are included in the calculation of baryon electromagnetic
form factors in two places. Firstly, the incorporation of pions leads to an extra contribution to
the mass of the full quark propagator, and secondly the virtual pion cloud also modifies the
calculated quark form factors, as shown in Fig. 4.1. It is important to note that these effects
are implemented at the quark level. The implications of this approach will be discussed later
in this chapter.

This concludes the discussion of the NJL Model component of this calculation. We began by
examining the NJL Model Lagrangian, and noted that since the model is non-renormalisable,
a regularisation prescription is required to fully define the model. We then discussed the quark
propagator, and showed that resumming a subclass of diagrams led naturally to the dynamical
generation of mass, and thus dynamical chiral symmetry breaking. We explained that mesons
are described as quark-antiquark bound states in the NJL Model. We summarised how the
baryon electromagnetic form factors are built up from quark and diquark electromagnetic
vertices, and finally, explained how pion loops are incorporated at the quark level. It is these
chiral loop effects which we now turn to. In particular, we shall show why the implementation
of chiral loops just described is inconsistent with chiral perturbation theory, and then improve
the model calculation by correctly implementing the chiral loop effects.



Chapter 4. Chiral Corrections to Electromagnetic Form Factors in the NJL Model 61

Γµγq

(a)

Γµγq

(b)

Γµπ

(c)

Figure 4.1: Pion loop corrections to the quark-photon vertex. The strength of the quark-pion
vertex is given by the Bethe-Salpeter vertex function Γi(q) =

√
Zπγ5τi, and the pion-photon

coupling Γπ(q; k, k′) is approximated by its on-shell form Γπ(q; k, k′) = (k+k′)µFπ(q2), where
the pion form factor Fπ(q2) is also calculated in the NJL Model.

4.2 Constraints from Chiral Effective Field Theory

Let us now directly investigate the constraints on the hadronic observable from chiral effective
field theory. In particular, we wish to examine the modification of the free nucleon mass
due to the presence of the pion cloud. Recall that these effects will occur due to self energy
corrections, which lead to a dressed mass of the form

mN = m
(0)
N + Σ(/p = mN ) . (4.22)

In particular, we seek terms which are non-analytic in the quark mass parameter, since these
terms are model independent, relying only on the symmetries built into the effective field
theory. We may write the chiral expansion of the nucleon mass mN as

mN = {a0 + a2m
2
π + a4m

4
π + . . . }+ {χπNIπN (mπ) + χπ∆Iπ∆(mπ) + . . . } . (4.23)

Recall that the pion mass is related to the quark mass via mπ ∝
√
mq. In other words, odd

powers of the pion mass will lead to terms non-analytic in mq. Thus we have separated this
expansion as

mN = {terms analytic in mq}+ {chiral loop corrections} . (4.24)

The lowest order chiral loop correction is the single pion contribution to the nucleon self
energy. This diagram is shown below in Fig. 4.2. Using the Feynman Rules discussed in
Appendix B, we may write the amplitude for this process as

Figure 4.2: Virtual one-pion contribution to nucleon mass.
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− iΣ(/p) =

∫
d4k

(2π)4

gA
2fπ

γ5/kS
N
F (p− k)

gA
2fπ

γ5/kS
π
F (k) + neutral pion contribution , (4.25)

where we have not written the explicit expression for the neutral pion. The only difference
between the diagrams is the size of the coupling, which is a factor of 2 smaller. One thus finds
for the sum of the two diagrams

− iΣ(/p) =
3g2
A

4f2
π

∫
d4k

(2π)4
γ5/k

(/p− /k +mN )

(p− k)2 −m2
N

γ5/k
1

k2 −m2
π

. (4.26)

It is possible to show (see Ref. [114]), that the Leading Non-Analytic term due to this
expression is

Σ(mN ) =
LNA

χπNm
3
π = −

3g2
A

32πf2
π

m3
π . (4.27)

The chiral expansion takes the form

mN = c0 + c2m
2
π + χπNm

3
π + c4m

4
π + . . . , (4.28)

and thus the leading non-analytic term appears at O(m3
π). As has been previously stressed,

this term constitutes a model independent constraint which must be respected if the theory
is to be consistent which chiral symmetry and its pattern of breaking. Similar leading non-
analytic terms appear in the calculation of baryon magnetic moments [115]. Following the
same arguments as above, we may write the chiral expansion for the magnetic moment as

µB = {d0 + d2m
2
π + d4m

4
π + . . . }+ {χπNIπN (mπ) + χπ∆Iπ∆(mπ) + . . . } . (4.29)

In the case of the magnetic moment, it is possible to show that the Leading Non-Analytic
term is [115]

µLNA
B = χπNmπ =

mN

8πf2
π

βπBmπ , (4.30)

where βπB are the pion-baryon couplings. In other words, unlike the nucleon mass, the leading
non-analytic term appears at O(mπ):

µB = µ0
B + χπNmπ + . . . . (4.31)

Although the LNA term does not necessarily dominate the physics of hadronic properties, in
the case of the magnetic moment, it is of practical importance, because this term appears
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at first order in the Taylor series, and has been found to be numerically large [115]. Recall
that the magnetic moment may be extracted from the vertical intercept of the magnetic form
factor GM (0). Thus the low energy behaviour of the magnetic form factor will be particularly
sensitive to the implementation of chiral symmetry.

4.3 Implementations of Chiral Symmetry: A Comparison of Quark Level
and Hadron Level Approaches

While the importance of chiral symmetry, especially for low energy hadron properties, was
first recognised more than fifty years ago in the context of soft pion theorems [116], its modern
realisation as we have seen - is based upon the chiral symmetry of QCD itself. While chiral
effective field theory demonstrates the importance in including the pion as an explicit degree of
freedom in calculations of hadronic properties, there have been a number of different approaches
to the implementation of the chiral loop corrections in the literature which broadly speaking
may be divided into two categories; quark level calculations and hadron level calculations.

A simple quantum mechanical argument will help to elucidate the way the pion effects must
be incorporated. The so-called time-energy uncertainty relation is

∆E∆t ≥ 1/2, (4.32)

where ∆E is the uncertainty in the energy of the state, and ∆t is the lifetime of the state.
Let us consider the ‘best case’ scenario where ∆E∆t = 1/2. A simple rearrangement gives

∆t =
1

2∆E
. (4.33)

Consider the transition A→ Bπ. The initial energy is Ei =
√
m2
A + p2, and the final energy

is Ef =
√
m2
B + (p− k)2 +

√
m2
π + k2, where we integrate over all k. We have

∆E = Ef − Ei =
√
m2
B + (p− k)2 +

√
m2
π + k2 −

√
m2
A + p2 . (4.34)

We may place a lower bound on the uncertainty in the states by considering the nucleon rest
frame. Then we can show that

∆E ≥ δm+mπ , (4.35)

where δm = mB −mA. In the chiral limit (mπ → 0), the lifetime of the virtual state is limited
by the mass difference

∆t ≤ 1

2δm
. (4.36)
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In the case that the source mass does not change, for example in the process N → Nπ the
lifetime of the state is unbounded (∆t ≤ ∞). This result has important implications for a
calculation of the electric charge radius. Let us examine the implications for hadron level and
quark level approaches.

4.3.1 The Hadron Level Approach

Firstly, consider a hadron level approach. As we have seen, when the source mass does not
change, the virtual pion may travel infinitely far from the source. Thus for the process
p→ nπ+, shown in Fig. 4.3a, the charge of the proton may be carried by the pion an infinite
distance from the source. In other words, the contribution to the proton charge radius from
this diagram will become infinite in the chiral limit. Compare this with the contribution
from the process p→ ∆0π+, shown in Fig. 4.3b. In the chiral limit, the Delta-nucleon mass
difference is δm = m∆ −mN . Due to the non-zero mass difference between the nucleon and
delta baryons, the range of the virtual pion is therefore limited to the range 1/δm.

4.3.2 The Quark Level Approach

In a quark level approach, first introduced by Georgi and Manohar [117], the pion loops are
evaluated on individual quarks rather than the hadron as a whole. This approach, while simple,
unfortunately yields the wrong infrared behaviour. To see this, consider the contribution to
the charge radius from the process u→ dπ+. Since the u and d are mass degenerate, the pion
may travel an infinite distance from the source. Imagine placing this quark inside a proton.
Then for the process p→ nπ+ this contribution will indeed match that predicted from the
hadron level approach. Note however that the range of the pion in the process p→ ∆0π+ in
this quark level approach will also be infinite, rather than being limited to the mass difference
δm. In other words, the prediction of the contribution to the charge radius from the ∆π state
will be incorrect. The reason for this is that although the ∆0 has the same valence quark
content, it is in a different spin state (3

2 versus 1
2). However, in a quark level approach, the

individual quark does not know which of the baryon spin states it is part of. As a result, the
long distance behaviour for the pion cloud for these two processes is not respected. In such
a quark level implementation, there is no way of keeping track of these differences. Thus in
order to ensure the correct chiral behaviour of certain observables, we must perform the chiral
loop corrections at the hadron level.

(a) (b)

Figure 4.3: Contributions to proton charge radius from the process p→ nπ+ (4.3a) and
p→ ∆0π+ (4.3b). Since the mass difference between the proton and neutron is zero, in the
chiral limit, this off-shell pion may carry the charge an infinite distance from the source, and
thus the contribution to the charge radius from this process is infinite.
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4.3.3 Implementing Chiral Symmetry in Quark Models

It must be noted that it is possible to incorporate these chiral loop effects in a quark model
and also respect the constraints of chiral symmetry. The key step is to project the quark
space Hamiltonian onto the space of colourless baryons. This process has been performed (for
example) in the Cloudy Bag Model [3]. In that formalism, the nucleon self energy due to the
pion loop may be calculated as [3]

Σ(mN ) = − 3

π

f2
πN

(4π)m2
π

∫ ∞
0

dk
k4u2(k)

k2 +m2
π

, (4.37)

where u(k) arises naturally as the result of the confined quarks, and may be interpreted as
a hadronic form factor, which describes the finite size of the baryon. Using the Goldberger-
Treiman relation and further relating the pseudovector and pseudoscalar couplings as is done
in Ref. [118] using

fπN
mπ

=
gA
2fπ

, (4.38)

the self energy may be brought to the form

Σ(mN ) = −
3g2
A

32πf2
π

2

π

∫ ∞
0

dk
k4u2(k)

k2 +m2
π

, (4.39)

which is in exact agreement with a calculation of this quantity in Heavy Baryon Effective
Field Theory [119], except that in the effective field theory, there is no ultraviolet regulator,
and the theory is formally divergent. The form factor u(k) which ensures convergence is one of
the benefits of starting from a microscopic picture of the hadron. Since we are only interested
in the infrared behaviour of the integral, we are free to choose an ultraviolet regulator. Here,
we use a simple dipole regulator, rather than the regulator obtained consistently from the
Cloudy Bag Model. That is, we take

u(k) =

(
1 +

k2

Λ2

)−2

. (4.40)

Doing this leads to an integrated self energy of the form:

Σ(mN ,Λ) = −
3g2
A

32πf2
π

1

16

Λ5(m2
π + 4mπΛ + Λ2)

(mπ + Λ)4
, (4.41)

from which a chiral expansion yields the leading non-analytic term:

χπNm
3
π = −

3g2
A

32πf2
π

m3
π , (4.42)
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which is indeed in agreement with the leading non-analytic behaviour calculated in chiral
effective field theory. In other words, projecting the quark Hamiltonian onto the space of
colourless hadrons leads to a chiral effective field theory where the convergence of the theory is
naturally ensured by the existence of the form factor u(k) which is the result of the finite size
of the hadron. Thus we may perform chiral loop corrections on quark model results by first
calculating the quark model observables, and then performing the chiral loop corrections in a
chiral effective field theory, where the convergence of the model is ensured by the inclusion of
a form factor which describes the finite size of the baryon.

4.4 Implementing the Chiral Corrections

For this work we choose to use the psudoscalar pion nucleon coupling1 (see Appendix B for
details). The interaction term in the Lagrangian is

LπN = −gπNψN iγ5τ · πψN . (4.43)

Introducing the electromagnetic interaction, (see Appendix B), leads to an electromagnetic
coupling to the hadrons. As a result, one obtains three diagrams at first loop order. These
three diagrams are shown below in Fig. 4.4. Taking guidance from the methodology of the
Cloudy Bag Model, we shall replace the electromagnetic vertex due to the point-like nucleon

Γ
(0)µ
N (q; p, p′) = γµ, with the dressed quark model vertex ΓNJL,µ

N (q; p, p′), which in general
should take its most general form (see Chapter 3 for more details). For this study, we choose
to approximate both the nucleon and pion electromagnetic vertices by their on-shell versions.
That is, we choose

ΓNJL,µ
N (q; p, p′) = γµFNJL

1 (q2) +
iσµνqν
2mN

FNJL
2 (q2) , (4.44)

ΓNJL,µ
π (q; k, k′) = (k + k′)µFNJL

π (q2) . (4.45)

This simplification is consistent with the Ward-Takahashi identity:

u(p′)

[
qµΓµH(q; p.p′)

]
u(p) = 0 , (4.46)

1 The choice of pseudoscalar coupling follows the choice of Miller in the light-cone cloudy bag model [120, 121].
It also matches the choice made for the quark-pion coupling in the NJL Model with which we compare. However,
it is known that using the pseudoscalar pion-nucleon coupling and neglecting the sigma field - as we do here -
leads to different predictions for the leading non-analytic behaviour [122], which are inconsistent with chiral
symmetry. The pseudovector form of the pion nucleon coupling, described in Appendix B ensures the correct
chiral behaviour. It would have been preferable to choose a pseudovector pion-nucleon coupling in both cases.



Chapter 4. Chiral Corrections to Electromagnetic Form Factors in the NJL Model 67

ΓNJL,µ
H

(a)

ΓNJL,µ
H

(b)

ΓNJL,µ
π

(c)

ΓNJL,µ
H

(d)

ΓNJL,µ
H

(e)

Figure 4.4: Diagrams which contribute to the calculation of electromagnetic form factors.
Note that contributions from ∆ intermediate states are not considered in this calculation.
Note that diagrams 4.4d and 4.4e do not modify the vertex function, but will be essential in
renormalising this amplitude, so we include them here.

and thus respects current conservation2. This calculation was carried out by Miller in
Refs. [120, 121], and we simply repeat the results here. The first diagram (Fig. 4.4a) is
the quark model result, while the chiral corrections to these form factors are provided by
the diagrams shown in Figs. 4.4b and 4.4c. The electromagnetic vertex obtained from this
amplitude is

ΓµH(q; p, p′) = Γa,µH (q; p, p′) + Γb,µ
H (q; p, p′) + Γc,µ

H (q; p, p′) , (4.47)

from which one may extract the contributions to F1,H and F2,H as [121]:

Fi,H(q2) = ZH
[
F ai,H(q2) + F bi,H(q2) + F ci,H(q2)

]
, (4.48)

where i = 1, 2, H is the hadron in question, a, b and c refer to diagrams 4.4a, 4.4b and 4.4c,
respectively, and ZH is hadron wave function renormalisation constant which ensures that
that the charge of the proton is unity. More will be said about ZH in Sec. 4.4.1. The
(unrenormalised) contributions from diagram 4.4b to the Dirac and Pauli form factors are

F b1,H(Q2) =
g

(0)2
πN

(4π)

∫ 1

0
dxx

∫
d2L

(2π)2

F1(Q2)
(
L2 + x2m2

N −
1
4x

2Q2
)
−F2(Q2)

(x2Q2

2

)
D(L 2

+ , x)D(L 2
− , x)

, (4.49)

F b2,H(Q2) = −
g

(0)2
πN

(4π)

∫ 1

0
dxx

∫
d2L

(2π)2

F1(Q2)
(
2x2m2

N

)
+ F2(Q2)

(
L2 + x2m2

N −
1
4x

2Q2
)

D(L 2
+ , x)D(L 2

− , x)
.

(4.50)

In the course of renormalisation, we will replace the unrenormalised coupling g
(0)
πN with its

renormalised version gπN (see Sec. 4.4.1). F1 and F2 are combinations of the quark model

2While it is true that the approximation preserves current conservation in the case where the initial and
final nucleon legs are on their respective mass shells, it should be noted that this approximation does not lead
to a vertex which respects the Ward Takahashi Identity for the case where either or both of the legs are off
their mass shells. Further discussion on this point may be found in Chapter 3
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form factors and are given as

Fi =

{
2F ai,n + F ai,p, for the proton

2F ai,p + F ai,n, for the neutron
, (4.51)

The factors of two in the above expression arise from the different isospin couplings for the
charged and neutral pions. The denominator D(l⊥, x) may be written explicitly as

D(l⊥, x) = l2⊥ + x2m2
N + (1− x)m2

π, (4.52)

where L± = L⊥ ± 1
2xq⊥. Similarly, one may write the contributions from diagram (c) as

F c1,H =
g

(0)2
πN

(4π)
IτF

NJL
π (Q2)

∫ 1

0
dxx

∫
d2K

(2π)2

K2 + x2m2
N −

1
4(1− x)2Q2

D(K 2
+ , x)D(K 2

− , x)
, (4.53)

F c1,H =
g

(0)2
πN

(4π)
Iτ (2m2

N )FNJL
π (Q2)

∫ 1

0
dxx2(1− x)

∫
d2K

(2π)2

1

D(K 2
+ , x)DN (K 2

− , x)
. (4.54)

The denominator D(l⊥, x) is the same as before, but here, K± = K⊥ ± 1
2(1− x)q⊥. Finally,

the pion-nucleon isospin coefficient Iτ is given as

Iτ =

{
2, for the proton

−2, for the neutron
. (4.55)

The minus sign for the neutron arises from the fact that the positively charged pion cloud in
the proton becomes a negatively charged pion cloud in the neutron, and thus the couping of
the photon to the charged pion changes sign.

Diagrams 4.4d and 4.4e are self energy contributions which contribute to the wave function
renormalisation, and also to the modification of the hadron mass, as has been previously
explained. These diagrams have also been previously calculated, and the result may be stated
as [123]

Σ(/p = mN ) =
g

(0)2
NNπ

(4π)2

Iτ
4mN

∫ ∞
0

dt
t

(t+m2
π)

(
t

m2
N

−

√
t2

m4
N

+
4t

m2
N

)
. (4.56)

The self energy is logarithmically divergent, and requires a regularisation prescription to be
explicitly evaluated. In this work, we use a form factor regularisation prescription, the details
of which we shall now explain.

4.4.1 Regularization and Renormalisation

As with any loop calculation in a quantum field theory, the free field parameters (masses,
couplings and the overall normalizations) are modified. In order to ensure that these parameters
coincide with their physical values, we must renormalise the amplitude. Here we summarize
the procedure used in this work. Before renormalising, we must first regularise the above
integrals. As we have emphasized previously, this ultra-violet regulator leaves the infra-red
behaviour of the integral unchanged, and thus preserves the non-analytic behaviour. Motivated
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by our discussion of the Cloudy Bag Model, we will use a momentum dependent form factor to
regulate the high energy behaviour of the integral. In this work, we choose to use a t-dependent
form factor (with Λ the regulator mass parameter), given as

F (l⊥, x) = exp

[
−
D(l2⊥, x)

(1− x)Λ2

]
. (4.57)

where, as before, the factor D(l2⊥, x) is given by

D(l⊥, x) = l2⊥ + x2m2
N + (1− x)m2

π. (4.58)

This particular choice corresponds to the preferred form of regulator in a recent study [124] of
the origin of the d̄− ū asymmetry in the proton arising from chiral effects [125, 126]. After
regularising the integrals, we next must renormalise the calculation. We have two constraints
on the form of the nucleon propagator which we will use to fix the values of the wave function

renormalisation constant ZH and the nucleon mass m
(0)
N . We find that to ensure the same

behaviour near the pole, we must require that

mN = m
(0)
N + Σ(mN ) , (4.59)

Z−1
H = 1− d

d/p
Σ(/p)

∣∣∣∣
/p=mN

. (4.60)

These two conditions allow us to relate the bare mass m
(0)
N to its physical value, and the bare

coupling g0
πN to its physical value. Since we have regularised the loop integrals, the self energy

becomes dependent on the cutoff Λ:

mN = m
(0)
N (Λ) + Σ(mN ,Λ) , (4.61)

Z−1
H (Λ) = 1− d

d/p
Σ(/p,Λ)

∣∣∣∣
/p=mN

. (4.62)

We perform the renormalisation of the amplitude by taking

ZH(Λ)g
(0)2
πN (Λ) = g2

πN , (4.63)

where the renormalised coupling takes its physical value: g2
πN/(4π) = 13.5.

4.4.2 Finite Range Regularisation

For this work, we choose to use a Finite Range Regularisation, which is discussed in Ref. [127].
The essential difference between the ‘conventional’ approach to regularisation and the approach
employed in Finite Range Regularisation is that the choice of cutoff parameter Λ remains finite.
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As we have explained, the Non-Analytic behaviour of the integral is preserved, with the only
downside being that our model will contain an additional parameter, the regulator mass Λ.
All that remains is to determine the explicit value of this regulator. Numerous studies within
the cloudy bag model [128], Dyson-Schwinger equations [129] and lattice motivated studies
of the ∆−N mass difference as a function of quark mass [130], suggest that the self-energy
contribution from the process N → Nπ is of the order 100-150 MeV. As an illustration, we
choose the regulator mass to fix this self-energy at 130 MeV (so Λ = 0.72 GeV).

This concludes our discussion of the chiral corrections to the bare NJL Model result. We
began by describing the Lagrangian used to perform the chiral corrections, before explicitly
describing the contributions to the amplitude. We further discussed the regularisation
prescription and renormalisation conditions, and in particular, noted that we used the Finite
Range Regularisation Prescription, where the characteristic property of the prescription is
that rather than taking the cutoff mass to infinity, it is kept finite, and instead fit to data.
With the model fully defined, we proceed to determine the numerical results for the baryon
electromagnetic form factors.

4.5 Nucleon Results

The bare NJL Model used in this study was calculated using the parameters in Table 4.1.
This set was obtained by fitting the predicted baryon masses for the nucleon and Ξ to their
experimental values. The resulting octet masses are shown in Table 4.2, Although the predicted
values of the Λ and Σ masses differ slightly from the experimental values, as a result of an
underestimate of the spin-spin interaction in the NJL model, the hierarchy of states is correct,
that is, mN < mΛ < mΣ < mΞ.

This choice of parameters leads to a relatively good agreement between the predicted nucleon
electromagnetic form factors and the empirical parameterization of Ref. [93], shown in Fig. 4.5.
In particular, it is certainly of comparable quality to the previous NJL calculation, where the
pion corrections were calculated at the quark level (coloured blue in plots).

We may examine the effects of the pion loops in a more concrete way by considering the
predicted charge radius and in particular the magnetic moments, since this observable is
particularly sensitive to the implementation of chiral symmetry. These observables are explicitly
shown in Fig. 4.6, and numerical values are given in Appendix C. While a comparison of the
two calculations suggests that the quark level approach appears to lead to slightly better
values, it seems that the nucleon is rather insensitive to the implementation of chiral symmetry.

Table 4.1: Chosen NJL model parameters, where all masses and regularization parameters
are given in units of GeV, and the Lagrangian couplings in units of GeV−2.

ΛIR ΛUV ml ms Gπ Gρ Gs Ga
0.24 0.67 0.35 0.52 14.53 8.12 4.11 3.14
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Table 4.2: Calculated baryon octet masses, compared with the experimental values (all in
units of GeV).

mN mΛ mΣ mΞ

NJL−Σ 0.940 1.176 1.217 1.318
Experiment 0.940 1.116 1.193 1.318
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Figure 4.5: Predicted electromagnetic form factors for the nucleon calculated using the NJL
Model, with chiral loop corrections calculated either at the quark level (blue line) or at the
hadron level (orange line). The dashed line is taken from an empirical parameterisation of
experimental data from Ref. [93] and data points are lattice data taken from Refs. [131, 132].

4.6 Chiral Corrections to Hyperon Form Factors

As explained earlier, we examine not only the chiral corrections to nucleon form factors but
also to the Σ hyperons. The motivation for this lies in the work of Carrillo-Serrano et al. [110],
which extended the earlier calculation of the nucleon electromagnetic form factors [109] to the
baryon octet. Following the work of de Swart [133], under the assumption of SU(3)F flavour
symmetry, we have various relationships between the couplings of the baryons. The couplings
relevant to this work are

gΛΣπ =
2√
3

(1− α)gNNπ, (4.64)

gΣΣπ = 2αgNNπ , (4.65)
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Figure 4.6: Comparison of predicted nucleon charge radii and magnetic moments with
experimental results taken from Ref [43].

where we set α = 2/5. We may calculate chiral corrections to hyperon electromagnetic form
factors by making the following substitutions to equations (4.49) - (4.53):

mN → mH , (4.66)

Fi = 4

[
(1− α)2

3
FΛ
i,a + α2FΣ0

i,a + α2FΣ−
i,a

]
, (4.67)

Iτ = 4

[
(1− α)2

3
+ α2

]
. (4.68)

Note that we take the Σ0 and Λ to be mass degenerate in the calculation of loop diagrams.
With these simple modifications, we may immediately incorporate pion loop effects on the
quark model form factor calculation for the charged sigma hyperons.

4.7 Hyperon Results

The predicted form factors for the charged sigma hyperons are shown below in Fig. 4.7. Due
to their shorter lifetimes, the form factors of the hyperons are experimentally undetermined,
although some data exists for the charge radii and magnetic moments. Instead of experimental
data, we compare our predicted form factors to form factors calculated in Lattice QCD in
Refs. [131, 132]. From the comparison with this lattice data, it appears that the implementation
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Figure 4.7: (Colour online) Electromagnetic form factors for the Σ− and Σ+. Points with
error bars correspond to lattice results from [131, 132]. Note that the previous NJL calculation
of the Σ− magnetic moment gives a value of -1.58 µN , while the method employed in this
work yields a value of -1.17 µN . The experimental value is quoted as −1.16µN .

of chiral symmetry at the hadron level leads to a superior prediction of the form factors up to
1 GeV2.

Comparing the predicted and experimental magnetic moments in Fig. 4.6, we see that the
proton magnetic moment agrees with the experimental value, while the predicted neutron
magnetic magnetic moment is slightly worse than the previous NJL Model prediction. The Σ+

magnetic moment shows a comparable level of agreement with experiment as the previous NJL
model. However, it is for the Σ− magnetic moment that one finds a remarkable difference when
the chiral corrections are implemented correctly. Whereas evaluating the loops on individual
quarks leads to µΣ− = −1.58, far larger than the empirical value (µExp

Σ− = −1.160±0.025 [43]),
when implemented correctly at the hadronic level one finds µΣ− = −1.17, which is in good
agreement with experiment.

The reason for the overestimate in the Σ− case is that the pion cloud on a d-quark dramatically
increases its magnetic moment. The relative increase for a u-quark is also significant and all
three quarks give a negative correction to the Σ− as the valence u-quark has spin down. Thus
the present calculation produces an overall description of the nucleon and Σ− charge radii of
a similar quality to those generated in the earlier, parton level model. For the Σ+ we stress
that the lattice QCD result for the charge radius still suffers some systematic uncertainties, as
discussed in the original work [131, 132].
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Figure 4.8: Comparison of predicted hyperon charge radii and magnetic moments with
experimental results taken fom Ref. [43].

4.8 Conclusion

In this chapter, we began by explaining how baryon electromagnetic form factors are cal-
culated in the NJL Model, before discussing the constraints on hadronic amplitudes from
the approximate chiral symmetry using the formalism of chiral effective field theory. We
explained that the leading non-analytic behaviour of observables was an important check of
the model’s implementation of chiral symmetry, and explained why the previous calculation’s
implementation of the pion field was not consistent with chiral symmetry. To examine the
empirical importance of this fact, we investigated the electromagnetic form factors of the
nucleons and Sigma hyperons. The NJL model was used to evaluate the form factors of the
underlying quark structure, while the pion loop corrections were evaluated at the baryon
level using chiral effective field theory. The results were compared with experimental data
where available, or with the results of a recent lattice QCD simulation if no experimental
value existed.

For the proton and neutron, there was little practical difference between the results of
implementing the chiral corrections at the hadron or parton level. On the other hand, for
the magnetic form factor of the Σ−, there was an improvement when the pion corrections
were evaluated correctly. In particular, the Σ− magnetic moment was reduced by roughly
30% compared with an evaluation at the individual quark level, with the new result now in
agreement with experiment.
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In summary, while it is convenient to evaluate pion loop corrections on individual quarks,
independent of the hadronic environment, the results reported here illustrate very clearly that
such an approach can deliver (at least for the hyperons studied) inaccurate results. Worse,
there seems to be no obvious way to predict ahead of time whether or not the calculated
values may be expected to be reliable. Hence, it is clear that a theoretically consistent, reliable
result may only be obtained by performing the chiral corrections at the hadron level.





5

Investigating the Model Dependence of the
Pion Electromagnetic Form Factor in a

Scalar Field Theory

We have seen from our study of nucleon and hyperon electromagnetic form factors that pionic
contributions play an important role, especially in the low energy regime. It should be clear
from this study, as well as the previous discussion of chiral effective field theory more generally
(see Chap. 2), that the pion is integral for understanding the low energy behaviour of QCD.
While the treatment of the pion in chiral effective field theory as a fundamental field is
certainly valid when the momentum scales small enough to neglect the internal structure,
this description fails around 4πfπ. Owing to asymptotic freedom arising from the running of
the strong coupling αS(Q2;µ2), QCD becomes perturbative at large energies. In this high
energy regime, a different picture of the pion emerges as a bound state of two valence quarks,
mediated by gluon exchange. Based on this simple picture, predictions may be made about
the pion’s high energy properties, including it’s electromagnetic form factor. As a result of
these predictions, a number of experimental searches have been conducted in an attempt to
observe this expected behaviour, but these have so far been unsuccessful. The latest of these
searches was conducted in 2008 at the Jefferson Laboratory, where measurements of the pion
form factor were extracted from pion electroproduction data [97, 134]. The measured values
for the pion form factor obtained from the 2008 analysis are model dependent, and require the
use of the Vanderhaeghen, Guidal and Laget (VGL) Regge Model for their extraction. As we
shall see, the extracted values of the pion form factor are yet to show any signs of deviation
from the Vector Meson Dominance monopole prediction. As with any model dependent
analysis, questions may be raised about the validity and applicability of the chosen model. By
understanding the fundamental constraint of gauge invariance leads to the conclusion that the
implementation of gauge invariance in the VGL Model is unnatural.

Using a simple model of pion electroproduction, we simulate the electroproduction cross
section, and attempt to extract the pion form factor using a VGL-like Model, mirroring the
approximation currently used by the Fπ collaboration. We conclude that the reconstructed
model form factor is a reasonable representation of the true model form factor for the kinematics
chosen, although we note that the extracted form factor is larger than the true form factor.
This suggests that current extracted values of the pion form factor may be overestimated. We
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begin this chapter with a discussion of the pion form factor at high energies. The results of
this chapter are published in Ref. [135].

5.1 Exclusive Processes in Perturbative Quantum Chromodynamics

The pion is an excellent testing ground for theoretical predictions since its relatively simple
valence structure readily lends itself to analysis. In 1979 Farrar and Jackson used the light
cone Bethe-Salpeter equation to make a prediction about the asymptotic form of the pion’s
electromagnetic form factor [136]. For (space-like) momenta Q2 greater than some large mass
scale µ2, they showed that

Q2Fπ(Q2)→ 16πf2
παs(Q

2;µ2), (5.1)

where fπ ≈ 0.132 GeV is the pion decay constant, and αS(Q2;µ2) is the renormalised strong
coupling constant, which to one-loop order is given by

αS(Q2;µ2) =
αS

1 + αS
4π

(
11
3 Nc − 2

3nf

)
ln
(
Q2

µ2

) . (5.2)

A generalization of this result was given by Lepage and Brodsky, who used a different approach
to show that the pion form factor is given by [137, 138]:

Q2Fπ(Q2) = 16πf2
παs(Q

2;µ2)ω2(µ2) +O(α2
s(µ

2)). (5.3)

The factor ω(µ2) is given by

ω(µ2) =
1

3

∫ 1

0
dx

1

x
φπ(x, µ2), (5.4)

where φπ(x, µ2) is known as the pion’s light cone distribution amplitude, and is interpreted
as the probability amplitude of converting a pion into a qq pair where one of the partons
has longitudinal momentum fraction x and the other has longitudinal momentum fraction
(1− x). This is shown in Fig. 5.1. In light-cone gauge, φ is related to the so-called hadronic
wave function, ψ, which is the positive energy projection of the Bethe-Salpeter wave function
evaluated at light-front time z+ = z0 + z3 = 0 [138].

Each quark may carry a fraction of momentum between zero and one, and so the light cone
distribution amplitude is defined on x ∈ [0, 1]. It is possible to write a decomposition of φ in
terms of a complete, orthonormal set of basis functions on [0, 1]. One common choice is to

use the Gegenbauer polynomials, C
3/2
j (2x− 1). This leads to the following expression for the

distribution amplitude
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φπ(x;µ2) = 6x(1− x)

[
1 +

∞∑
j=2,4,...

a
3/2
j (µ2)C

3/2
j (2x− 1)

]
, (5.5)

where it is important to note that the coefficients a
3/2
j (µ2) are dependent on the renormal-

ization mass scale µ2. In the limit that µ2 is asymptotically large, these coefficients vanish
logarithmically, leading to the so-called asymptotic form of the pion’s light cone distribution
amplitude which is given as

φπ(x;∞) = 6x(1− x). (5.6)

If one uses the asymptotic form of the light cone distribution amplitude in the definition of
ω(µ2), it is possible to show that this term reduces to unity, and thus one obtains the original
prediction of Farrar and Jackson as a limiting case of Lepage and Brodsky’s result. While the
use of the asymptotic form of the pion light cone amplitude leads to a simpler form of the
expression, it is not clear that the currently reachable energy scales are consistent with this
mass scale. In other words, it is not clear that µ2 ≈ Q2 ≈ ∞. As we shall see, it appears that
the current experimental scale is not consistent with this asymptotic renormalisation scale.
Current measurements of the pion form factor disagree with predictions using the asymptotic
form of the pion light cone distribution amplitude by about a factor of four.

While it may not be possible to observe the asymptotic behavior of the pion form factor
predicted by Farrar and Jackson, modern analyses which use inputs from Schwinger-Dyson
studies suggest that it may still be possible to verify the relation proposed by Lepage and
Brodsky by choosing the renormalisation mass scale µ2 to better reflect the scales present in
current day experiments. For example, the authors of Ref. [139] use a Schwinger-Dyson based
approach to calculate the pion’s light cone distribution amplitude at µ2 = 4 GeV2 as

φπ(x;µ2 = 4 GeV2) =
Γ(2(p+ 1))

Γ(p+ 1)2
xp(1− x)p, (5.7)

where p = 0.3. The comparison between these two predictions is shown in Fig. 5.2. Using
a more suitable mass scale leads to an improved prediction even with the inclusion of the
non-asymptotic form of the pion light cone distribution amplitude, but a disparity still exists
between theory and experimental data.

The highest energy data for the pion’s electromagnetic form factor comes from pion electro-
production measurements, and compared with lower energy data has larger errors. One source
of uncertainty in the current high energy measurements of the pion form factor arises due
to the model dependence of the extraction process. This model uncertainty is particularly
important here if it leads to a systematically larger extracted value than the ‘true’ form factor.
In other words, unnatural simplifications used in the extraction model could contribute to the
observed discrepancy between the theory and the data. It is this hypothesis which we attempt
to examine in this chapter. Before moving to a discussion of the particular model used in
the current extraction of the pion electromagnetic form factor, we must first understand the
reason a model dependent analysis is employed. To this end, we begin by explaining the
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π
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(1− x)k

φ(x, µ2)

Figure 5.1: The pion’s light cone distribution amplitude gives the probability amplitude
of converting a pion into a qq pair, where one of the quarks carries longitudinal momentum
fraction x. Momentum conservation requires that the second quark must have longitudinal
momentum fraction 1− x so that the two fractions sum to one.

measurement of the pion form factor, and in particular, the reason pion electroproduction is
used.

5.2 Measurements of the Pion Form Factor

In principle, the pion’s electromagnetic form factor may be measured by elastic eπ scattering.
In the one photon exchange approximation, this process results in a cross section proportional
to the square of the pion electromagnetic form factor, and is given by [96]:

dσ

dq2
=

k

q4

(
1− q2

q2
max

)
|Fπ(q2)|2, (5.8)

where q2
max is the maximum four-momentum which may be exchanged between the electron

and the pion. In the center of mass frame, this corresponds to backwards scattering. With
a 300 GeV pion beam, q2

max reaches a value of q2
max = 0.288 GeV2. Thus measurements

of the pion form factor directly through elastic scattering are virtuality-limited due to the
difficulties in creating high energy pion beams. Nevertheless, measurements of this process
have been performed at Fermilab [140, 141], and at CERN SPS [96, 142], and enable an
accurate measurement of the pion charge radius which we remind the reader, may be extracted
from the slope of the form factor at Q2 = 0. Results from the CERN SPS experiment are
shown in Fig. 5.2. The highest energy measurement in this dataset is Q2 = 0.25 GeV2, clearly
far below the scales at which QCD is expected to be perturbative, and thus below the scale at
which the Lepage-Brodsky prediction becomes applicable. If this prediction is to be tested,
another method must be used to extract the pion form factor. One such method is via an
analysis of the related process pion electroproduction. This is the process which we shall now
focus on.

5.2.1 The Pion’s Electromagnetic Form Factor at Intermediate Photon Virtual-
ity

As we have seen, kinematic limitations of pion beams and unfavorable momentum transfer
at intermediate energies [143] mean that a direct measurement of the pion form factor using
elastic eπ+ scattering becomes prohibitively difficult, and thus will not allow us to study
the Lepage-Brodsky result. The current approach is to extract the pion form factor from
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Figure 5.2: The pion electromagnetic form factor Fπ scaled by photon virtuality Q2. Low
energy data (below 0.3 GeV2) is obtained from elastic eπ scattering. To probe the intermediate
energy regime, pion electroproduction has been used. Superimposed on top of the data is a
monopole parameterisation of the data based on vector meson dominance (VMD) arguments.
Predictions using Farrar and Jackson’s asymptotic prediciton and Lepage and Brodsky’s
generalised relation are shown. Currently there is no agreement between the perturbative
predition and experimental data.

electroproduction of pions on the proton. The physical nucleon may be thought of as the
result of dressing a bare nucleon with a pion cloud. With this in mind, it is clear that the
measurement of the pion form factor from ep→ enπ+ is at least possible in principle. However,
complications abound over the direct measurement of the form factor at low momentum
transfer. As we shall discuss, the kinematics of pion elecproproduction do not allow for a
direct measurement of the pion’s electromagnetic form factor; an extrapolation to unphysical
kinematics must be performed. Secondly, unlike eπ elastic scattering, there are processes
which contribute to the measured cross section which do not contribute to the pion form
factor. Thus the dependence of the pion form factor on the cross section is more complicated.

5.2.1.1 Preliminaries and Kinematics

For a coincidence experiment in which the scattered electron and pion are detected, and the
initial electron and proton four-momenta are known, it is possible to fully reconstruct the
kinematics of the system. Importantly, the measured unpolarized differential cross section
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e(l1)

e(l2)

π(pπ)

n(p′)

φ

θπθe

Figure 5.3: Pion Electroproduction in the lab frame. Electrons from the CEBAF accelerator
are scattered off a liquid hydrogen target. The recoiling electron and produced charged pion
are measured. Although the neutron is not measured, its momentum may be inferred by
ensuring conservation of momentum.

may be separated according to the polarization states of the virtual photon into transverse
(T ), longitudinal (L) polarizations as well as two interference terms (LT and TT ) [134]

(2π)
d2σ

dtdφ
=
dσT
dt

+ ε
dσL
dt

+
√

2ε(ε+ 1)
dσLT
dt

cosφ+ ε
dσTT
dt

cos 2φ, (5.9)

where ε is a measure of the virtual photon polarization, and is related to experimental

quantities via ε = (1 + 2|q|2
Q2 tan2 θe

2 )−1, q is the three-momentum of the virtual photon, φ is
the angle between the lepton scattering plane and the hadron decay plane and θe is the angle
between the initial and final electron three-momenta, all measured in the lab frame. The
experimental setup is shown diagramatically in Fig. 5.3

We label the initial proton momentum p, the final proton momentum p′, the virtual photon
momentum q, and the pion momentum pπ. This is shown in Fig. 5.4. It will be useful to
define the Mandelstam variables

p

q

p′

pπ

time

Figure 5.4: Hadronic component on pion electro-production in the one-photon exchange
approximation (o.p.e.a.). Overall conservation of momentum gives p+ q = p′ + pπ. This sets
the direction of the external momenta.
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ps = p+ q = p′ + pπ, (5.10)

pt = p− p′ = pπ − q, (5.11)

pu = p− pπ = p′ − q, (5.12)

where total momentum conservation requires that p+ q = p′ + pπ. This sets the directions of
the four momenta, which flow into diagrams. Experimentally, the cross section was described
in terms of three scalar variables; Q2, W and t. These are given explicitly as

Q2 = −q2, (5.13)

W 2 = s = (p+ q)2, (5.14)

t = (pπ − q)2. (5.15)

More details about the kinematic variables and their relation to the cross section are given in
Appendix D.

Having discussed the conventions for kinematical variables, we next discuss possible approaches
to the extraction of the pion form factor. In the next suggestion, we examine the Chew-Low
Method, which in principle allows for a model independent extraction of the pion form factor.
However, as we shall see, the model is not able to suitably constrain the form factor. We
conclude that a model dependent approach is required, and describe the approach used to
extract the pion form factor with the aid of a hadronic model.

5.2.1.2 A Model Independent Extraction: The Chew-Low Extraction Method

Originally proposed as a possible method to measure the pion form factor by Frazer in
1959 [144], the Chew-Low extraction method uses a kinematic extrapolation to the pion pole,
where it is possible to show that the cross section is proportional to the pion form factor. At
the pion pole the only term which can contribute is due to an on-shell pion. It is well known
that the t channel diagram dominates the longitudinal differential cross section dσL/dt [145],
so it suffices to only study this structure function. Actor et al. provide an expression for the
longitudinal differential cross section at the pion pole as:

dσL
dt

=
α

2N

[
g2
πN

−tQ2

(t−mπ)2
F 2
π (Q2)

]
, (5.16)

where gπN is the pion-nucleon form factor and α is the fine structure constant. This result
comes from only considering the t-channel diagram. Away from the pion pole, this result is
not gauge invariant, but since it will be used to extrapolate to the pion pole, this property is
irrelevant. The normalisation N is given by
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N = (W 2 −m2
N )
√

(W 2 −m2
N )2 +Q4 + 2Q2(W 2 −m2

N ). (5.17)

Rearranging this expression to solve for the pion form factor Fπ gives:

t

m2
π

F 2
π (Q2) = − 1

m2
π

2N

α

(t−m2
π)2

g2
πN

1

Q2

dσL
dt

. (5.18)

Note that we have divided both sides by a factor of the mass squared, so that at t = m2
π, the

left hand side is exactly the pion form factor. We define the right hand side F 2(t):

F 2(t) = − 1

m2
π

2N

α

(t−m2
π)2

g2
πN

1

Q2

dσL
dt

, (5.19)

so that we have

F 2(t) =
t

m2
π

F 2
π (Q2). (5.20)

In electroproduction, t is kinematically constrained to be less than zero (see Fig. 5.5). Thus in
order to measure the pion form factor from electroproduction, we must perform an extrapolation
of F 2(t) in t from the last experimental point to the pion pole, where we know this quantity
is equal to the pion form factor squared. Note that the t dependence is not fixed between the
experimental results, and at the pion pole. The linear dependence in the above relations is
the result of the chosen model. We expect the deviations from the linear dependence to be
small, and as a result, consider the difference in extracted form factor using linear, quadratic
and cubic extrapolations. Unfortunately, even with the most accurate data, it was found that
quadratic and higher order polynomials fits provided indistinguishable descriptions of the data
in the physical region, but resulted in an extrapolated value for the pion form factor which
differed by as much as 15% from the ‘true’ value [97]. For an example of this, see Fig. 5.6.
Today, the accepted consensus is that, even with current precision of the measurements of the
differential cross section, the Chew-Low extrapolation technique is too imprecise to produce a
realistic pion from factor. Indeed, the members of the Jefferson Lab Fπ Collaboration stated
that the Chew-Low Extraction method ‘. . . cannot be used to reliably determine the pion form
factor from a realistic σL data set’ [97].

The key failing of the Chew-Low extrapolation method is that the behaviour of the amplitude
away from the pion pole is not determined, and must be parameterised as a polynomial in t.
While this leads to a model independent approach, the extrapolation distance is too large for
the Chew-Low approach to be feasible. In the context of a particular model however, this t
dependence is entirely determined, and, as we shall see, allows the extraction of the pion form
factor in a model dependent approach.
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Figure 5.5: In pion electroproduction, t is constrained to be less than zero. The exact
kinematic range of t may be determined for fixed Q2 and W . Kinematic ranges for a number of
different choices of W are stacked on top of each other. Note that as W increases, the allowed
kinematic range in t becomes larger, and in particular, this allows one to reach smaller absolute
values of t. Also displayed on the plot is the line t = m2

π. In a Chew-Low extrapolation, the
distance between the smallest absolute value of t and t = m2

π is the extrapolation distance.

5.3 A Model Dependent Extraction: The VGL Model

In 2008, the Fπ Collaboration released results for the pion form factor measured from pion
electroproduction [97, 134]. In order to perform the extraction, they found as we have shown
that a model independent analysis failed to sufficiently constrain the pion form factor and they
were forced to use a model dependent analysis. In this analysis, an effective field theoretic
model called the Vanderhaeghen Guidal and Laget (VGL) Model was used to extract the pion
form factor by fitting the differential cross section data. While the use of a model is necessary
in the case of pion electroproduction, care must be taken to ensure that assumptions and
simplifications made in the development of the model do not drastically effect the extracted
values of the pion form factor and lead to undetermined systematic errors. Unfortunately,
there is no simple way of ensuring that the simplifications made lead to negligible systematic
errors. However, it is possible to identify possible sources of error by examining theoretical
constraints on the amplitude. In particular, we shall examine the implementation of the gauge
symmetry of QED and argue that this implementation may lead to a model which overextracts
the pion form factor. We shall begin our discussion of the VGL Model by examining the Born
Term Model upon which it is based.
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Figure 5.6: Attempting to perform the Chew-Low extrapolation method on simulated high
precision pion electroproduction cross section data for the kinematic point Q2 = 1.59 GeV2,
W = 2.21 GeV. Pseudodata is generated using the Vanderhaeghen Guidal and Laget Model,
and is represented here with black circles. It is known that the pion form factor Fπ may be
extracted from this plot by extrapolating to the pion mass t = m2

π, although it is unknown
what the functional form of this extrapolation is. To examine the viability of this approach
linear, quadratic and cubic fits were performed on the data. While each fit agreed reasonably
well in the physical region, differences were observed in the extrapolated pion form factor.
This plot has been adapted from Ref. [97].

5.3.1 Introduction to the Born Term Model

Before understanding how to incorporate electromagnetic form factors, it is useful to understand
the Born Term Model from which the VGL model is derived. Let us begin our discussion by
isolating the part of the electroproduction amplitude which we wish to calculate. We will
work to O(αQED), where αQED = e2/(4π) ≈ 1/137. This is called the one photon exchange
approximation, and leads to diagrams of the form shown in Fig. 5.7. The tree level pion
electroproduction amplitude may be written as

iM = u(k′)(ie)γµu(k)
(−igµν)

q2
eMν

= lµMµ,

(5.21)
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Figure 5.7: In the One Photon Exchange Approximation, the electromagnetic and hadronic
parts of the matrix element may be factorised. This factorisation allows us to focus on the
part of the amplitude which is unknown.

where

lµ =
e2

q2
u(k′)γµu(k) (5.22)

is the leptonic component of the matrix element and Mµ is the hadronic matrix element.
Recall that the differential cross section dσ is proportional to the matrix element squared.
Thus

dσ ∝
∑
spins

|iM|2

∝ 2e4

q4
LµνM

µν ,

(5.23)

where we define

Lµν =
1

4

∑
spins

lµl
†
ν (5.24)

Mµν =
1

2

∑
spins

MµMν†. (5.25)

The physics of QED is well understood, and may be analysed using perturbative techniques.
A standard calculation leads to1:

Lµν = kµk
′
ν + k′µkν +

1

2
gµνq

2. (5.26)

1See for example, Ref. [41], pp. 131-135.
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ps
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Figure 5.8: Tree level diagrams which contribute to the Born Term Model. The contact
term is also known as the Kroll-Ruderman term and is the result of using a pseudovector
pion-nucleon coupling. The final diagram is due to the exchange of a rho meson, which we
exclude from our discussion.

This ‘factorisation’ of the amplitude is extremely useful, as it allows us to focus on the hadronic
matrix element. It is the evaluation of this hadronic matrix element to which we now turn.
The starting point for an effective field theoretic description of pion electroproduction is a
chiral effective field theory of pions and nucleons with a pseudo-vector pion-nucleon interaction
of the form

LπN =
gA
2fπ

ΨNγ
µγ5τ · ∂µπΨN −

1

(2fπ)2
ΨNγ

µτ · (π × ∂µ)ΨN , (5.27)

where fπ = 0.093 GeV is the pion decay constant, and gA = 1.267 is the nucleon axial
vector charge. ΨN = (ψp, ψn) is the nucleon doublet, and π = (π+, π−, π0) is the pion
triplet. Electromagnetic interactions are introduced to ensure invariance under U(1) gauge
transformations (see Appendix B for details). This leads to electromagnetic interactions of
the form

LγπN = −ΨNγ
µQ̂ΨNAµ + i(∂µπ) · (Q̂π)Aµ +

igA
2fπ

ΨNγ
µγ5τ · Q̂πΨNAµ

− i

(2fπ)2
ΨNγ

µτ · (π × Q̂π)ΨNAµ.
(5.28)

This approach treats the pion and nucleon fields as elementary. That is to say, that the particles
have no structure. As we have explained, this description of hadronic particles as elementary
fields is good when the characteristic momentum scale of the problem is considerably less
than the size of the hadrons involved. The resulting tree level diagrams which contribute to
the process p(p) + γ(q)→ n(p′) + π+(pπ) are shown in Fig. 5.8. Ignoring the rho meson, we
have three contributions to the Born Term Model. They are:
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iMµ
s =

gA√
2fπ

uN (p′)γ5/pπSF (ps)(−ieγµ)uN (p), (5.29)

iMµ
t =

gA√
2fπ

uN (p′)γ5/ptuN (p)DF (pt)(−ie)(pt + pπ)µ, (5.30)

iMµ
K.R. = − gAe√

2fπ
uN (p′)γ5γ

µuN (p). (5.31)

Note that in Fig. 5.8 we also have a t-channel diagram due to the exchange of a ρ meson.
While this diagram is also included in the VGL Model, its inclusion here adds nothing to
the discussion of gauge invariance, and so we ignore it. Thus the Born Term Model hadronic
matrix element is

iMµ
BTM =

gA√
2fπ

uN (p′)γ5

[
/pπSF (ps)(−ieγµ) + /ptDF (pt)(−ie)(pt + pπ)µ − γµ

]
uN (p). (5.32)

Note that one may show that this amplitude satisfies the Ward-Takahashi Identity which in
this case amounts to qµMµ = 0. Contracting qµ into the hadronic amplitude gives

iqµMµ =
gAe√
2fπ

uN (p′)γ5

[
/pπ

(/ps +mN )

s−m2
N

/q + /pt
q · (pt + pπ)

t−m2
π

− /q
]
uN (p). (5.33)

Using the relations for the Mandelstam Variables described in previously, we have

/q = /ps − /p, (5.34)

q = −pt + pπ. (5.35)

Noting that the Dirac equation gives /puN (p) = mNu(p), we have

iqµMµ =
gAe√
2fπ

uN (p′)γ5

[
/pπ

(/ps +mN )(/ps −mN )

s−m2
N

−/pt
(pt − pπ) · (pt + pπ)

t−m2
π

−/q
]
uN (p). (5.36)

Expanding the brackets allows us to cancel the denominators and the expression reduces to

iqµMµ =
gAe√
2fπ

uN (p′)γ5

[
/pπ − /pπ + /q − /q

]
uN (p) = 0, (5.37)

where we have used pt = pπ − q. Thus the hadronic current is conserved. Note that this is
true even at q2 6= 0, as it must be. Importantly though, tracing the origins of the terms back,
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it is possible to see that a precise cancellation occurs between the t, s and Kroll-Ruderman
terms. While the simplicity of this model is extremely attractive, the simple Born Term
Model is unsuitable to describe pion electroproduction data. Away from the photoproduction
point q2 = 0, this model overpredicts the cross section. This is because the model does not
incorporate the extended structure of the pion and nucleon.

While the Born Term Model is unsuitable to describe pion electroproduction, its simplicity is
attractive. In the next section, we discuss a modification of the Born Term Model proposed
by Vanderhaeghen Guidal and Laget, which attempts to include the structure of the hadrons
and thus improve the description of electroproduction data. As we shall see, constraints from
gauge invariance restrict the way structure may be incorporated within the Born Term Model,
and ultimately lead to a factorization which we will argue is unnatural.

5.3.2 Incorporating Structure in the Born Term Model

From our discussion of electromagnetic form factors from Chap. 3, we know that the most
general form of the electromagnetic vertex for the nucleon contains twelve independent form
factors. In the limit that the two nucleon legs are on their mass-shells, this reduces to three
form factors. Requiring that this vertex satisfies the Ward-Takahashi Identity provides a
further constraint which reduces the degrees of freedom from three to two. We thus arrive at

ΓµN (p1, p2; q) = γµF1(q2) +
iσµνqν
2mN

F2(q2). (5.38)

A similar argument for the pion (which has spin-zero) leads to

Γµπ(k1, k2; q) = (k1 + k2)µFπ(q2). (5.39)

In the context of pion electroproduction, it is tempting to use the on-shell forms of these vertex
functions, in place of the vertices one obtains from perturbation theory. That is, making the
replacements

γµ → γµF1(q2) +
iσµνqν
2mN

F2(q2), (5.40)

(pt + pπ)µ → (pt + pπ)µFπ(q2), (5.41)

in the Born Term Model matrix elements. Since the pion electroproduction measurements are
made at small |t|, it may be argued that the approximation of the on-shell pion electromagnetic
vertex is acceptable. Further, since measurements are made at W = 1.95 GeV and W = 2.2
GeV, s ≥ 3.8 GeV2, although the on-shell nucleon vertex function may be a poor approximation
for the s-channel diagram, these contributions will be suppressed by a factor

1

s2 −m2
N

≈ 0.3, (5.42)
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so these contributions may be small. As it turns out, while these arguments may suggest
that a simple modification of the Born Term Model could lead to a model which incorporates
electromagnetic structure, fundamental constraints on the amplitude from gauge invariance
invalidate this approach. Let us examine this argument now. Consider the minimal case where
electromagnetic structure is incorporated. The minimal Born Term Model in which structure
has been incorporated at the electromagnetic vertices is given below.

iMµ
struc. =

gAe√
2fπ

uN (p′)

[
γ5/pπ

(/ps +mN )

s−m2
N

γµF p1 (q2) + γ5/pπ
(/ps +mN )

s−m2
N

iσµνqν
2mN

F2(q2)

+ γ5/pt
(pt + pπ)µ

t−m2
π

Fπ(q2)− γ5γ
µg(q2)

]
uN (p).

(5.43)

We have ignored the contribution from the neutron, which would in principle enter as a
u-channel diagram. The neutron electric form factor is rather small and, as we shall see,
the Pauli form factors are irrelevant to our discussion of gauge invariance. To keep the
discussion as general as possible, we have chosen to incorporate a form factor g(q2) on the
Kroll-Ruderman contact interaction. One may recover the structureless result by setting g = 1.
We now consider the constraint on the amplitude due to the Ward Takahashi Identity. Since
external hadronic legs are on their respective mass shells, the relation reduces to

qµMµ
struc. = 0. (5.44)

Contracting this ‘generalized amplitude’ with qµ gives

iqµMµ
struc. =

gAe√
2fπ

uN (p′)

[
γ5/pπ

(/ps +mN )

s−m2
N

/qF
p
1 (q2)+γ5/pt

q · (pt + pπ)

t−m2
π

Fπ(q2)−γ5/qg(q2)

]
uN (p).

(5.45)

Note that as advertised, the terms proportional to the Pauli Form Factor vanish, since
qµσ

µνqν = 0. Except for the different functions of q2 which multiply each of the diagrams,
this matrix element is identical for the Born Term Model. Thus we may use the above results
here to immediately find

iqµMµ
struc. =

gAe√
2fπ

uN (p′)γ5

[
/pπF1(q2) + (−/pπ + /q)Fπ(q2)− /qg(q2)

]
uN (p). (5.46)

If this amplitude is to be consistent with the Ward-Takahashi Identity, we must have that

F1(q2) = Fπ(q2), (5.47)

Fπ(q2) = g(q2). (5.48)
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Applying these constraints, one arrives at

Mµ
struc. = Fπ(q2)Mµ

BTM. (5.49)

In other words, the only way to modify the Born Term Model and retain gauge invariance
is by multiplying the amplitude by an overall factor. Given that as we have argued, only
the t-channel diagram should know anything about the pion form factor, this factorization
appears to be a rather unnatural implementation of gauge invariance.

We may understand the above constraint on the amplitude by considering the requirements
of gauge invariance. Recall that as consequence of gauge invariance, the propagator and the
vertex function are related via the Ward-Takahashi Identity:

− iqµΓµ(p, p′; q) = S−1
F (p′)− S−1

F (p), (5.50)

where SF (p) is the dressed propagator and Γµ is the corresponding dressed vertex function.
The Born Term Model is defined by calculating the cross section at tree level, and thus
amounts to the approximations

Γµ(p, p′; q) = γµ, (5.51)

SF (p) =
i

/p−mN
. (5.52)

Since the Ward-Takahashi identity is true order-by-order, it is possible to see that the vertex
and propagator are consistent with gauge invariance. The left hand side of the Ward Takahashi
Identity is

− iqµΓµ(p, p′; q) = −i/q, (5.53)

while the right hand side is

S−1
F (p′)− S−1

F (p) = −i(/p′ −mN − /p+mN ) = −i/q, (5.54)

where we have noted that q = p′ − p, and so the Born Term Model electromagnetic vertex
and propagator are certainly consistent. Note that a modification of the vertex function to

Γµ(p, p′; q) = γµF1(q2) +
iσµνqν
2mN

F2(q2), (5.55)

without a corresponding change in the propagator will lead to contradictions. This is the
essential reason one cannot modify the vertex function and retain the same propagator in a
gauge invariant way.
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5.3.3 Transforming the Born Term Model to the VGL Model

Originally developed by Vanderhaeghen Guidal and Laget as a model of pion photoproduc-
tion [146], it was quickly realized that the generalization to electroproduction was straight-
forward, leading to the so-called VGL Model [147]. The VGL Model is based on the Born
Term Model we have discussed, and implements hadronic structure in consistently with gauge
invariance by utilizing the ‘factorization’ we discussed in the previous section. However, when
applied to electroproduction data, it was found that the model still overpredicted the measured
cross section.

In order to improve agreement over the Born Terms alone, the pion propagator in the VGL
approach is Reggeized, which amounts to replacing the pion propagator Dπ(t) with the Regge
version DR

π (t), given by

DR
π (s, t) = i

(s/s0)απ(t)

sin(παπ(t))

πα′

Γ(1 + α(t))
, (5.56)

where s0 = 1 GeV2 sets the mass scale of the trajectory, s = W 2 and the so-called Regge
Trajectory is απ(t) = α′π(t−m2

π), and α′π = 0.7 GeV−2. A Taylor series around t = m2
π gives

DR
π (s, t) =

t→m2
π

i

t−m2
π

+ finite parts. (5.57)

Given our previous discussion of gauge invariance, the astute reader may be wondering about
the damage done to gauge invariance by replacing the propagator for the t-channel only.
Indeed their concern would be well founded. The solution proposed by Vanderhaeghen Guidal
and Laget is to also perform the same transformation on the other diagrams. To understand
this, consider defining a function g(s, t) given by

g(s, t) =
DR
π (s, t)

Dπ(t)
. (5.58)

Then the VGL prescription for Reggeizing the amplitude in a gauge invariant way is to take
the structured Born Term Model, and multiply it by this overall function. Thus

Mµ
VGL = g(s, t)Mµ

struc. = [g(s, t)Fπ(q2)]Mµ
BTM. (5.59)

Written this way, it is clear that the incorporation of structure, as well as the Reggeization
of the trajectory both utilize the same approach to preserve the gauge invariance of the
amplitude. Thus the Reggeization of this amplitude must be viewed with the same caution as
the introduction of gauge invariance. Of course, any hadronic model will contain a number of
simplifications. In order to truly determine the effects of particular approximations on the
considered model, comparisons must be made with experimental data. In the next section,
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we describe this process for the VGL Model, and thus discuss how the pion form factor is
extracted from pion electroproduction.

5.3.4 Using the VGL Model to Determine the Electromagnetic Form Factor of
the Pion

We can now summarize the procedure used by the Fπ Collaboration to fit the VGL Model to
experimental data. The functional form of the pion form factor is taken to be the monopole
form:

Fπ(Q2) =
1

1 +Q2/Λ2
π

, (5.60)

and the transition form factor for the ρ is assumed to have the same functional form:

Fγρπ(Q2) =
1

1 +Q2/Λ2
ρ

, (5.61)

where Λ2
π and Λ2

ρ are the only free parameters in the model. As mentioned previously, the
longitudinal cross section is insensitive to the rho meson, so effectively only Λ2

π must be fit to
obtain the longitudinal cross section.

For some points it sufficed to fit the differential cross section measured fixed Q2 and W values
for small |t| values by varying the value of Λ2

π value. In this case, the extracted pion form
factor corresponds to the best fit value of Λ2

π. However, for a number of kinematic points, this
procedure was not sufficient to extract the pion form factor well. An example of this is shown
in the first plot of Fig. 5.9. Here, the VGL Model fails to completely describe the t-dependence
of the data. In this case each data point was fitted to the corresponding measured differential
cross section point individually. Thus for each data point, there is a corresponding extracted
Λ2
π. This is shown in the second plot of Fig. 5.9. Note that in general, data points measured

at smaller values of t tend to result in larger values of Λ2
π, and thus larger values of Fπ(Q2).

It has been suggested that this is due to interfering backgrounds not included in the VGL
model [97]. In practice, an extrapolation of Λ2

π to the minimum experimentally allowed t
value for the chosen Q2 and W values is performed and it is this value of Λ2

π which is taken
to correspond to the best estimate of Fπ(Q2). These values are shown in Fig. 5.2.

While the agreement between the VGL Model and data is quite good, as we have shown, there
is room to improve the implementation of gauge invariance. We aim to understand whether it
is worth improving the implementation of gauge invariance, by studying whether the current
approach can successfully extract the form factor in a toy model. It is this question we now
attempt to answer.

5.3.5 Model Dependence of the Pion Form Factor

As with any model dependent extraction, it is possible to highlight possible failings of the
model. In the previous sections, this is what we have endeavoured to do. Of course, one may
argue that the only measure of the model’s validity is its ability to describe the experimental
cross section data and indeed, in this case, the VGL Model appears to be rather successful.
We take a more cautious outlook. As we have shown, the model’s incorporation of the pion
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Figure 5.9: Plots adapted from the Fπ Collaboration’s extraction of the pion form factor
(Ref. [97], Fig. 2, Fig. 5). The left plot shows the fitted longitudinal cross section, compared to
experimental data. Note that the theory curve for the longitudinal cross section is plotted for
a single value of Λ2

π to demonstrate the general agreement of the VGL Model with data. As
explained, when performing the extraction, the model is fit to each data point independently.
The right plot shows the corresponding extracted values of Λ2

π. The best fit value for Λ2
π for

this set of kinematics is Λ2
π = 0.458± 0.031+0.255

−0.068 GeV2 [97].

form factor is constrained by the requirement of gauge invariance. This leads to an unnatural
‘factorisation’ of the pion form factor from the matrix element.

While the consistency of this approach has been checked at low photon virtuality where
pion form factor may also be measured directly using elastic electron pion scattering, this
consistency check only ensures that the model dependence is small at low photon virtuality ; it
says nothing about systematic model dependence as Q2 increases. This point is particularly
important, since as we have seen, one main motivation for measuring the pion form factor to
higher Q2 is the attempt to observe the transition to perturbative behaviour, predicted by
Brodsky and Lepage in Ref. [137]. While modern predictions have brought the theory and
current experimental data closer, the current consensus is that higher energy data is required
to observe the transition to perturbative QCD. However, as we shall show, this interpretation
may be too pessimistic: by studying the extraction of the pion form factor in a simple model
of pion electroproduction, where it is possible to explicitly calculate the form factors, a direct
comparison of the calculated and extracted form factors allows us to make more concrete
statements about the model dependence of the currently extracted pion form factor.

5.4 Scalar Pion Electroproduction Hadronic Matrix Element

We have now seen how the VGL Model preserves gauge invariance. In order to determine
the consequences for the extracted pion form factor, we will examine how well the approach
works in a simple toy model where we can calculate the form factor and cross section exactly.
Our criteria for a suitable model are twofold; it must be gauge invariant and the nucleon and
pion must have different (calculable) form factors.

A suitable model for this is Miller’s simple model of the nucleon’s electromagnetic form factors,
described in Ref. [148]. In this simple model, we consider a quantum field theory describing
the interaction of a scalar ‘nucleon’ and scalar ‘pion’. To be clear, we define a scalar ‘nucleon’
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doublet ΨN

ΨN =

[
ψp
ψn

]
, (5.62)

and a scalar ‘pion’ triplet π

π =

π+

π−

π0

 , (5.63)

where π+ = (π1 − iπ2)/
√

2 and π− = (π1 + iπ2)/
√

2. We may write the Lagrangian as

L =
1

2
(∂µΨN )2 − 1

2
m2
NΨ2

N +
1

2
(∂µπ)2 − 1

2
m2
ππ

2 − gπNΨ†Nτ · πΨN , (5.64)

where τ is the isospin vector. Gauging the Lagrangian leads to electromagnetic interactions
between the charged particles in the theory. We are interested in (scalar) γ∗ + p→ π+ + n.
In order to preserve gauge invariance, we calculate one-loop corrections to the tree level
cross section. Since gauge invariance is preserved order-by-order in perturbation theory, the
resulting theory will certainly be gauge invariant. At one loop, we have 13 diagrams we must
evaluate, plus 6 counter terms. We show these diagrams in Fig. 5.10.

Explicit expressions for these diagrams are given in Appendix F. Since we are calculating this
model at one loop order, divergences appear which we must absorb into the definitions of our
couplings and masses. We use the on-shell renormalisation scheme:

Σ(p2)
∣∣
p2=m2 = 0, (5.65)

d

dp2
Σ(p2)

∣∣∣∣
p2=m2

= 0, (5.66)

lim
q→0

(−ie)Γµ(p, p′) = (−ie)2pµ. (5.67)

Amaldi, Fubini and Furlan in Ref. [149] provide the details of the relationship between
the hadronic matrix element and the differential cross section, decomposed in terms of
the longitudinal, transverse and interference terms. We include some of this discussion
of Appendix D. We use the Mathematica package FeynCalc [150, 151] to determine our
final expression for these structure functions, and then perform the loop integrals using
QCDLoop [152].

5.4.1 VGL-like Model

The VGL-like model arising from scalar pion electroproduction is simply the sum of the s-
and t-channel tree level diagrams already calculated above. These are

iM(0a)µ = (−i
√

2gπN )DN
F (ps)(−ie)(p+ ps)

µ, (5.68)

iM(0b)µ = (−i
√

2gπN )Dπ
F (pt)(−ie)(pt + pπ)µ, (5.69)

where ps = p+ q, and pt = pπ − q. The resulting Born Term Model is thus
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Figure 5.10: Diagrams included in the calculation of the γ∗ + p→ πn amplitude. Note that
diagrams 1c and 1d correspond to exchange of π+ and π0, respectively. Since the neutron is
a neutral field in this theory, the photon does not couple to it at tree level. The neutron’s
form factor is generated purely by loop corrections.

iMµ
BTM = iM(0a)µ + iM(0b)µ. (5.70)

We can show that this model satisfies the Ward Takahashi Identity qµMµ = 0. Using the
relations

q.(p+ ps) = p2
s −mN2 = −iDN−1

F (ps), (5.71)

q.(pt + pπ) = −(p2
t −m2

π) = iDπ−1
F (pt), (5.72)

we have

qµM(0)µ = (−i
√

2gπN )(−ie)
[
DN
F (ps)q.(p+ ps) +Dπ

F (pt)q.(pt + pπ)

]
= 0. (5.73)
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Importantly, the gauge invariance in this model also requires a cancellation between the s-
and t-channel terms, as occurs in the VGL Model. Thus if one wishes to modify this matrix
element to incorporate the structure of the pion, the same constraints apply. We define the
VGL-like Model as

iMµ
VGL-like = iMµ

BTMFπ(q2). (5.74)

Before proceeding to extract the pion form factor from our model of pion electroproduction,
we must first calculate the ‘true’ pion form factor in this model. With this in hand, it will
then be able to make a direct comparison between the ‘true’ form factor and the extracted
pion form factor.

5.4.2 Form Factors in the Toy Model

By considering only the diagrams which contribute to the nucleon and pion electromagnetic
vertices, we may directly calculate the form factors predicted by this model. Because our
model is perturbative in nature, the corrections to the form factors generated by the inclusion
of the loop diagrams are quite small and since we are requiring the one-loop diagrams to
contribute all the Q2 behavior, this is problematic. In order to rectify this, we have chosen to
change the coupling which controls the strength of the loop corrections, as well as the masses
of the particles propagating in the loops. In other words, we take mN → m′N , mπ → m′π and
gπN → g′πN in the loop integrals only. One may understand this as modeling the scalar pion
and nucleon as bound states of two different particles with masses m′N and m′π. If we were to
correctly incorporate spin, this model could be understood as a quark-diquark picture of the
nucleon.

Our chosen parameters are given in Table 5.1. We select these parameters to ensure a
reasonable separation between Fp and Fπ and also so that Fπ falls off slower than Fp, as
occurs in nature. Since we wish to describe the pion form factor with a monopole form factor,
it is important to check that this is a good approximation. We find that the model form factor
is well described for a monopole mass parameter of Λ2

π = 5.56 GeV2. This fit is shown in
Fig. 5.11.

With the free parameters in our model chosen, we may proceed to calculate the cross section
and attempt to extract the model pion form factor.

Table 5.1: Tree level and loop parameters used in this study. All parameters are in units of
GeV.

gπN mN mπ g′πN m′N m′π
1.4 0.94 0.14 20 0.7 0.71
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Figure 5.11: Comparison of predicted electromagnetic form factors with parameterizations
of the pion and nucleon form factors from data. In principal, there is also a neutron form
factor, but due to the chosen mass parameters (m′N ≈ m′π), the neutron form factor is
approximately zero (see Appendix F for details). We show the fitted monopole form factor.
The agreement between the true pion form factor and a monopole form is excellent.

5.5 Extraction of the Pion Form Factor

The Fπ Collaboration reports the pion electromagnetic form factor for eight kinematic points,
so in our first analysis, we attempt to extract those same points. We follow a simplified version
of their analysis outlined above in Sec. 5.3.4. We outline the steps of the analysis here:

1. We calculate the loop corrected cross section, with the form factors described in previous
section. This cross section is called pseudodata in the following step.

2. We generate pseudodata for a range of t values for fixed Q2 and W (dashed green line
in Fig. 5.13). As with the Fπ Collaboration, we choose the range of t to start near
the minimum allowed value for the chosen kinematics. Specifically, the cross section is
calculated between the minimum and maximum values of t measured (see Ref. [134] for
explicit values).

3. We define our model to be the tree level matrix element, and incorporate the pion form
factor as a multiplicative factor to the amplitude. This mirrors the approach in the
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Figure 5.12: Fitting simplified model of cross section to model cross section for low Q2

data. Both the pseudodata (dashed green) and simplified model (blue) sit over one another.
The extracted Λ2

π is related to the extracted pion from factor via Fπ(Q2) = (1 +Q2/Λ2
π)−1.

VGL Model. Thus our model matrix element is

iMµ = iMµ
BTMFπ(Q2). (5.75)

4. We fit our model to the pseudodata to obtain a best fit for the parameter Λ2
π. This

value of Λ2
π corresponds to the extracted pion form factor (solid blue line in Fig. 5.13).

5. We plot the resulting extracted pion form factors (see Figs. 5.14, 5.15).

5.6 Discussion of the Results

Examining the fitted model cross sections shown in Figs. 5.12, 5.13, we can see that the level of
agreement of the fitted model cross section when compared with pseudodata decreases slightly
as we go to larger Q2. We note however, that with the exception of the (Q2,W ) = (1.6, 1.95)
and (2.45, 2.22) kinematics, the disagreement between the model and pseudodata is less than
ten percent (see Fig. 5.15). Given that the current experimental uncertainties are of this order,
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Figure 5.13: Fitting simplified model of cross section to model cross section for high Q2

data. Both the pseudodata (dashed green) and simplified model (blue) sit over one another.
The extracted Λ2

π is related to the extracted pion from factor via Fπ(Q2) = (1 +Q2/Λ2
π)−1.

we conclude that the VGL model implementaion of gauge invariance should model the cross
section reasonably well over the kinematic range examined. This conclusion is borne out by
the experimental data in Ref [97].

At low momentum transfer, we find that our extracted form factor is in good agreement with
the true form factor in the toy model, although in general we find a better agreement for
data points extracted at larger W . As the momentum transfer increases, the extracted form
factor tends to become a slightly worse representation of the true form factor. In particular,
we note from Fig. 5.16, that the extracted form factor appears to trend away from the true
form factor. As noted in Ref. [134], the smallest kinematically allowed absolute value of t,
denoted |tmin| may be reduced by measuring at larger W , or at smaller Q2. This is important,
as this reduces the distance that one has to extrapolate to in order to reach the pion pole. In
other words, for smaller absolute value of t, the pion photon interaction which occurs in the
t-channel looks more like the pion electromagnetic form factor measured in elastic e− + π+

scattering.

To verify our explanation, we extracted the model form factor at W = 1.95 GeV and W = 2.2
GeV, for a range of Q2 between 0 and 3 GeV2, using the method outline above. The
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Figure 5.15: Percentage difference between our extracted form factor and the true model
form factor. Note that a positive difference corresponds to an overestimation of Fπ. Thus for
the kinematic points surveyed, the extracted form factor is overestimated.
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Figure 5.16: Extracting the pion form factor near the minimum kinematically allowed t
value. Note that the agreement between the true form factor and the extracted form factor
worsens sooner for the W = 1.95 GeV data, because |tmin| is larger. Thus the pion photon
interaction looks less like the on-shell pion electromagnetic form factor.

experimental data approximately spans the first five percent of the allowed t range. We
therefore attempt to fit our model cross section to the pseudodata over the first five percent
of the allowed t kinematic range for the chosen Q2 and W .

The results of this process are shown in Fig 5.16. As predicted, the agreement between the
extracted form factor and the model form factor are good for a larger range of Q2 when the
W = 2.2 GeV data is used. This data clearly shows the way the model form factor is being
systematically overestimated for increasing Q2.

It is interesting to speculate about the way this result could carry over to the extraction of the
real pion form factor from real data. Indeed, if the relation between the extracted and true pion
form factor remained quantitatively the same, this would suggest (experimental uncertainties
notwithstanding) that the extracted pion form factor values are currently overestimated. This
effect - if observed - would imply that the ‘true’ pion form factor was smaller, bringing the
extracted pion form factor a little closer to the asymptotic limit predicted by perturbative
QCD.
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5.7 Conclusion

We began by discussing the theoretical drawbacks with the implementation of gauge invariance
in the VGL Model. In particular, we discussed the unnatural factorization of the pion form
factor from the matrix element. We proposed a simple toy model which was used to generate
pseudodata for pion electro-production. We followed the Fπ Collaboration’s approach to
extract the toy model’s pion form factor. The extracted pion form factor was compared to the
true form factor, and it was found that our extracted form factor was in all cases larger than
the true form factor. If this result were to hold in the extraction of the experimental pion
form factor, it would suggest that the extracted pion form factor is currently overestimated.



6

Investigating the Model Dependence of the
Pion Electromagnetic Form Factor in

Chiral Effective Field Theory

In the previous chapter, we observed in the context of a simple toy model that the pion form
factor extracted from pion electroproduction may be overestimated. In that analysis, the spin
of the nucleon involved was neglected. Thus in order to ensure the validity of results determined
in that study, we seek to perform the calculation in a theory which correctly implements
the nucleon’s spin. For this work, we choose a pseudoscalar pion-nucleon interaction, and
perform a similar analysis to the previous chapter. We show that inclusion of the spin degrees
of freedom leads to qualitatively similar conclusions.

6.1 Fermionic Pion-Nucleon Theory

We now consider a more physical model of the pion-nucleon interaction, where the spin of
the nucleon is correctly implemented, and the pion and nucleon interact via a pseudoscalar
interaction motivated by chiral symmetry (see Chap. 2 and Appendix B). We recall the
essential details here. We define a nucleon doublet ΨN

ΨN =

[
ψp
ψn

]
, (6.1)

and a pion triplet π

π =

π+

π−
π0

 , (6.2)

we may write the effective Lagrangian as

L = ΨN (i/∂ +mN )ΨN +
1

2
(∂µπ)2 − 1

2
m2
Nπ

2 − gπNΨN iγ5τ · πΨN . (6.3)

105
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Figure 6.1: Lowest order nucleon mass splitting contribution. While this diagram would
be present in the case of the proton, it is absent for the neutron, which has no tree level
electromagnetic coupling. In our mixed coupling expansion, we only expand to leading order
in the electromagnetic couping, so this diagram is not present.

After incorporating the electromagnetic interaction via the principle of minimal substitution,
we obtain

L = ΨN (i/∂ +mN )ΨN +
1

2
(∂µπ)2 − 1

2
m2
ππ

2 − 1

4
FµνFµν − gπNΨN iγ5τ · πΨN

−eΨN Q̂γ
µΨNAµ + ie(∂µπ) · (Q̂π)Aµ,

(6.4)

where Q̂ is the charge operator which gives the electric charge of the particle it acts on. Since
we wish to calculate this amplitude to one loop order, we must perform renormalisation. With
this in mind, we interpret the above expression for the Lagrangian as the unrenormalised
Lagrangian. To denote this we add noughts to our fields and couplings to make it clear that
we are talking about unrenormalised quantities. We will use renormalised perturbation theory.
Thus the first step is to perform a field redefinition Φ0 →

√
ZΦΦ to allow for wave function

renormalisations.

Note that while QCD possesses an approximate global SU(2) isospin symmetry, the electro-
magnetic interaction breaks this approximate symmetry. As a result, the wave function and
charge counter terms are no longer degenerate between the proton and neutron. In general,
the mass renormalisation will also differ between the proton and neutron. Note however, that
we are performing a mixed expansion in the electromagnetic and strong couplings. We are
only expanding to lowest order in the electromagnetic coupling, and thus this diagram is not
present (see Fig. 6.1). We define the renormalised masses and charges as

ZpmN0 = mN + δmN , (6.5)

Zπm
2
π0 = m2

π + δm2
π
, (6.6)

gπN0Zp
√
Zπ = gπNZgπN , (6.7)

gπN0Zn
√
Zπ = gπNZgπN , (6.8)

e0Zp
√
ZA = eZep , (6.9)

e0Zπ
√
ZA = eZeπ , (6.10)

where we write the multiplicative renormalisation terms as
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Zp = 1 + δp, (6.11)

Zn = 1 + δn, (6.12)

Zπ = 1 + δπ, (6.13)

ZA = 1 + δA, (6.14)

ZgπN = 1 + δgπN , (6.15)

Zep = 1 + δep , (6.16)

Zeπ = 1 + δeπ . (6.17)

We note that a counter term only appears when there is a corresponding elementary vertex
in the Lagrangian. Since there is no electromagnetic interaction for the neutron, no charge
counter term appears. At one loop, the neutron obtains a non-trivial form factor. It is a
consequence of the Ward-Takahashi identity that the charge of the neutron is neutral to all
orders in perturbation theory. The cancellation of the two loop diagrams which comprise the
neutron form factor in the limit q2 → 0 is one cross-check of the validity of the calculation.
This result may be seen in Fig. 6.3.

6.1.1 The Born Term Model

It is possible to derive the Feynman Rules for the Lagrangian discussed. These are summarized
in Appendix B. At tree level, there are two diagrams we must calculate. The s-channel diagram
is

iM(0a)µ = u(p′)(
√

2gπN )γ5S
(0)
F (ps)(−ie)γµu(p), (6.18)

where ps = p+ q. The tree level t-channel diagram is

iM(0b)µ = u(p′)(
√

2gπN )γ5u(p)D
(0)
F (pt)(−ie)(pt + pπ)µu(p), (6.19)

where pt = pπ − q, and the propagators S
(0)
F (ps) and D

(0)
F (pt) take their perturbative forms

given in Appendix B. These two diagrams define the Born Term Model:

iMµ
BTM = iM(0a)µ + iM(0b)µ. (6.20)

It is a simple exercise to show that this model satisfies gauge invariance, as it must.

6.1.2 One-Loop Model

We may decompose the general structure of the matrix element based on the pole structure.
Either the diagram is the result of a single particle exchange, or it is not. We write these
contributions separately as
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Figure 6.2: Decomposing the amplitude based on the singularity structure of the diagrams.
Single particle exchange may arise through the s- t- or u-channel diagrams. We collect all
contributions which cannot be described as the result of single particle exchange in a single
‘generalized contact term’.

iMµ =
∑

iMµ
s +

∑
iMµ

t +
∑

iMµ
u +

∑
iMcontact. (6.21)

This is shown diagrammatically in Fig. 6.2. In our model, the explicit terms are given as

iMµ
s = u(p′)(

√
2gπN )Γ5(ps, pπ, p

′)SF (ps)(−ie)Γµp (p, q, ps)u(p), (6.22)

iMµ
t = u(p′)(

√
2gπN )Γ5(p, pt, p

′)u(p)DF (pt)(−ie)Γµπ(pt, q, pπ)u(p), (6.23)

iMµ
u = u(p′)(−ie)Γµn(pu, q, p

′)SF (pu)(
√

2gπN )Γ5(p, pπ, pu)u(p), (6.24)

where now

SF (p) =
i

/p−mN − Σ(/p)
, (6.25)

and

DF (p) =
i

p2 −m2
π − Σ(p2)

, (6.26)

where Σ(/ps) and Σ(t) are the particles respective self energies. In each case, we approximate
the structure functions with their approximation at one loop order. For example, the
electromagnetic vertex is

Γµp (p, q, ps) = γµ + δΓµp (p, q, ps) +O(g4
πN ). (6.27)

Further details on the specific loop contributions are given in Appendix G.
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6.2 Algebraic Reduction and Numerical Calculation

Going beyond tree level requires the calculation of eleven loop diagrams. These are shown
in Appendix G. We utilize the Passarino-Veltman reduction to reduce the general one-loop
integrals to a basis in terms of four scalar loop functions [153]. In our conventions, they are
given as

A0(m2
1) =

∫
d4k

(2π)2

1

[k2 −m2
1]
, (6.28)

B0(q2
1;m2

1,m
2
2) =

∫
d4k

(2π)4

1

[k2 −m2
1]

1

[(k + q1)2 −m2
2]
, (6.29)

C0(q2
1, q

2
2, (q1 + q2)2;m2

1,m
2
2,m

2
3) =

∫
d4k

(2π)4

1

[k2 −m2
1]

1

[(k + q1)2 −m2
2]

1

[(k + q2)2 −m2
3]
,

(6.30)

D0(q2
1, q

2
2, q

2
3, q

2
4,(q1 + q2)2, (q2 + q3)2,m2

1,m
2
2,m

2
3,m

2
4)

=

∫
d4k

(2π)4

1

[k2 −m2
1]

1

[(k + q1)2 −m2
2]

1

[(k + q2)2 −m2
3]

1

[(k + q3)2 −m2
2]
.

(6.31)

Further details about this procedure may be found in Ref. [153]. In practice, we utilize the
Mathematica package FeynCalc [150, 151] to implement this method. Importantly, the
increased complexity of these diagrams leads to large expressions which in turn makes the
algebraic manipulation of these equations timely. To address this, the calculation is split into
a number of steps. For completeness, we summarize these here. We begin by decomposing
the matrix element for pion electroproduction into its most general form where we explicitly
factorize the Dirac structure.

iMµ = A1(s, t, u)γµγ5 +A2(s, t, u)pµγ5 +A3(s, t, u)p′µγ5 +A4(s, t, u)qµγ5

+A5(s, t, u)/qγ
µγ5 +A6(s, t, u)/qp

µγ5 +A7(s, t, u)/qp
′µγ5 +A8(s, t, u)/qq

µγ5.
(6.32)

Using this general matrix element, we calculate the L, T TT and LT structure functions.
Details about this may be found in Appendix D. Next, we calculate the pion electroproduction
matrix element for our specific model. Using FeynCalc, we extract the contributions to each
of the eight scalar functions Ai from the matrix element. By separating the calculation into
several steps, we ensure that the equations produced are suitable for numerical evaluation.
We use the implementation of the scalar loop integrals provided by QCDLoop [152].
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Table 6.1: Renormalised coupling constants and masses in our chiral effective field theory

g2
πN/(4π) mN (GeV) mπ (GeV)

14.3 0.94 0.14

6.2.1 Electromagnetic Form Factors in the Fermionic Model

We use the parameters given in Table. 6.1 for the numerical evaluation. As with our previous
calculation in the scalar field theory, we begin our analysis of this model by examining the
predicted electromagnetic form factors. These are shown in Fig. 6.3. For comparison, we
include the empirical parameterisation of experimental data due to Ref. [93]. A summary of
the predicted electric charge radii and magnetic moments are given in Table 6.2. We can see
from these observables, and from the general shape of the form factors that our model can
only yield a crude description of the physical nucleon form factors. This is acceptable for our
present purposes where we explore the effects of ensuring gauge invariance with different form
factors. Clearly a quantitative extraction of the pion form factor from data would require a
more sophisticated model.

We also calculate the pion’s electromagnetic form factor. The resulting form factor is shown
in Fig. 6.3. As with the predicted nucleon form factors, the overall prediction of the pion
form factor is rather poor. Since our primary interest in this study is to examine the self
consistency of the extraction process, the poor representation of the physical form factors is
acceptable.

6.3 Extraction of the Pion Form Factor

We seek to understand whether the VGL Model’s implementation of gauge invariance allows
one to successfully extract the pion form factor. To be clear, we define the VGL matrix
element as

iMµ
VGL = Fπ(Q2)iMµ

BTM, (6.33)

where iMµ
BTM is the sum of the two tree-level diagrams described above. We emphasize that

we do not Reggeize the amplitude as is done in the original VGL Model.

Table 6.2: Comparison of the predicted magnetic moments to experimental results for the
proton and neutron. Experimental results are taken from Refs. [93, 154]. Magnetic moments
are in units of nuclear magnetons (µN = e/2mN ).

〈
r2
〉 1

2 (fm) µ (µN )
p n p n

This Work 0.56 0.56 1.50 -3.7

Exp. 0.84 0.335 2.793 -1.913
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Figure 6.3: The predicted nucleon and pion form factors in the simple fermionic model.
Note that while the broad behaviour of the form factors is matched, the agreement between
the model and the parameterisation of data is poor. In the case of the nucleon, we use the
emprical parameterisation from Ref. [93]. For the pion, we use a monopole parameterisation
fit to the pion form factor extracted from low energy electron pion elastic scattering data.
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Due to our choice of renormalisation point, the strong gπN coupling has changed sufficiently
to require a refitting of this parameter in the VGL Model. In order to do this, we fit the low
Q2 cross section data, where we expect the contribution from the pion form factor to be close
to unity. We find the effective gπN coupling to be gπN = 19.3. With this parameter fit, we
proceed to extract the pion form factor from the pseudodata. We choose a monopole form of
the pion form factor

Fπ(Q2) =
1

1 + Q2

Λ2
π

. (6.34)

We fit Λ2
π to the pseudodata calculated from our one-loop model and aim to determine

whether the effects observed in the scalar field theory study carry over in a model with the
correct implementation of the nucleon’s spin. In particular, we wish to verify that the form
factor may be more accurately extracted for larger W . We also seek to understand whether
there are any systematic errors incurred by using the VGL extraction method. Thus instead
of recreating the Fπ data points, we choose to scan over Q2 for two different values of W .
Fits of the VGL Model to the pseudodata for the two values of W are shown in Fig. 6.4
and Fig. 6.5, respectively. Going to higher Q2 values for both W values examined leads to
a poorer overall fit to the pseudodata. In particular, the simple model overestimates the
t-dependence. Interestingly, this failure of the VGL model to fully recreate the t-dependence
of the cross section is also observed at comparable kinematic points in the 2008 analysis of real
electroproduction data (see Fig. 5, Ref. [97]). As we have explained previously, the approach
employed by the Fπ Collaboration was to fit the model to each data point individually and
perform an extrapolation of Λπ to the smallest |t| value kinematically allowed. We will return
to this point after we have examined the extracted values of the pion form factor.

6.4 Discussion of Results

The resulting extracted pion form factor values and their comparison to the form factor
calculated to one-loop are shown in Fig. 6.6. Interestingly, unlike the last chapter, the
extracted pion form factor has the wrong slope. We also note that, as with the scalar toy
model, we see that the W = 2.22 GeV data provides a slightly better extraction of the pion
form factor. This again demonstrates the importance of choosing the kinematics wisely. As
we have explained previously, larger values allow one to approach closer to the physical pion
pole, and thus improve the sensitivity of the cross section to the pion form factor.

In the previous study of the extraction of the pion form factor in a scalar field theory, we
observed that all extracted values of the pion form factor were overestimated. When considering
the percentage difference between the extracted pion form factor and the analytically calculated
form factor in this model, we see that this behaviour carries over. We mentioned then that in
order to improve the fits to data in the high virtuality region, the Fπ collaboration fit each
data point individually and that in the context of our data, this would lead to a smaller value
of the pion form factor.

By varying the t range fit to the VGL Model, we can determine the dependence of the extracted
pion form factor on kinematics chosen. By reducing the fit window by a factor of four, we
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Figure 6.4: Fitting the model to pseudodata for a range of Q2 values at fixed W = 1.95
GeV. For higher photon virtuality, the fit becomes worse.

obtain values for the pion form factor which are smaller by about five percent at Q2 = 1
GeV2. Thus while it is possible to obtain a slightly smaller pion form factor, the approach
used in the Fπ Collaboration’s analysis of the pion form factor is insufficient to remove the
disagreement between the extracted pion form factor, and the true form factor, which are of
the order 80-100 percent at these photon virtualities (see Fig. 6.7).

It is also interesting to note that in this model, the pion’s electromagnetic form factor and
the proton’s Dirac form factor are approximately equal. In fact, they agree to within four
percent for a photon virtuality less than 0.6 GeV2. Thus while we argued that the physical
pion and proton Dirac form factors should not be approximated as equal, in this model the
approximation is much better. Thus to a good approximation

F p1 (Q2) ≈ Fπ(Q2). (6.35)

Since this approximation is more applicable than the physical theory, we would expect the
results to be a best case scenario. Note that even with this approximation, we still obtain a
measurement which is dependent on the invariant mass W , and generally leads to an extracted
value which is larger than the physical value. Thus it would appear that the approximation
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Figure 6.5: Fitting the model to pseudodata for a range of Q2 values at fixed W = 2.2 GeV.
For higher photon virtuality, the fit becomes worse.

where one replaces the s-channel electromagnetic interaction with on-shell elastic form factors
is too simplistic, and will lead to systematically incorrect results.

6.5 Conclusion

In this work, we have attempted to understand within a simple fermionic model of pion
electroproduction whether the currently extracted pion form factor constitutes a reliable
measurement of the physical form factor. Previously we studied this in the context of a simple
scalar model, and found that over a range of Q2 values, the extracted value of the pion form
factor was consistent with true form factor, but that higher W data allowed one to approach
closer to the physical pion pole and thus obtain a better extraction. In our more complicated
model, we observed that performing the measurement at larger pion-photon invariant mass
led to a slighter better extraction of the pion form factor. Unlike the previous study, there
was no region of Q2 where the pion form factor was accurately extracted. Instead, the slope
of the pion form factor was underestimated, leading to extracted values of the pion form
factor disagreeing by 100 percent at Q2 = 1 GeV2. Importantly, this over extraction of the
pion form factor could not be ‘repaired’ using the method employed by the Fπ Collaboration,



Chapter 6. Model Dependence of the Pion Form Factor in Chiral Effective Field Theory 115

0.0 0.2 0.4 0.6 0.8 1.0

Q 2 (GeV2)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
F
π
(Q

2
)

Analytic Fπ(Q 2)

Fπ(Q
2) = 1

Extracted Fπ(Q 2), W= 1. 95 GeV

Extracted Fπ(Q 2), W= 2. 2 GeV

Figure 6.6: Comparison of extracted values of Fπ using the VGL Model approach with the
true form factor. Note that the pion form factor is systematically overextracted.

where the fit window was modified to extrapolate the extracted values of Fπ to the minimum
kinematically allowed value of |t|.

Together, the two studies of the measurement of the pion’s electromagnetic form factor raise
questions about the validity of the current quoted values. In particular, we are led to conclude
that the current measurements of the pion form factor are overestimated.

Unfortunately, the electromagnetic form factors predicted in this model are clearly too course
to attempt to use the model to extract the physical pion form factor. Nevertheless, this model
has clearly shown how the VGL model is likely failing. By being able to explicitly calculate
the electromagnetic form factors, our fermionic model is the perfect test for more sophisticated
models. By successfully extracting the pion’s electromagnetic form factor in this model, one
would be able to gain confidence that when applied to real data, the resulting measured form
factor is a good representation of the underlying form factor.
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7

Summary and Outlook

Over ninety years after the first observations of the anomalous magnetic moment of the proton
by Otto Stern in 1933, the understanding of hadronic structure is still incomplete. One window
into the structure of hadrons are their electromagnetic form factors, which may be related to
the electric and magnetic charge densities. This thesis has been primarily concerned with the
prediction and extraction of these quantities.

We began this thesis with a discussion of the characteristic features of the strong force:
asymptotic freedom, and confinement. These features - unique to QCD - lead to a rich and
complex phenomenology which result in the baryons and mesons observed in nature. The
empirical absence of free quarks and gluons at low energy motivated a description of QCD in
terms of the baryon and meson degrees of freedom. This concept was made concrete with
the formalism of chiral effective field theory which we developed by noting the approximate
chiral symmetry of the light quarks of QCD. This approach formed the primary technique of
analysis in this thesis.

We introduced the electromagnetic interaction as a way of probing the electric charge dis-
tribution of the quarks inside hadrons. Importantly the electromagnetic interaction is a
consequence of the gauge symmetry of QED. This places a further constraint on the form
of the electromagnetic form factors present in nature. In particular, we showed how the
most general form of the electromagnetic vertex reduced to the well-known experimental
parameterizations.

With the formalisms established, we introduced the first original research conducted for this
thesis, Chiral Corrections to Electromagnetic Form Factors in the Nambu–Jona-Lasinio Model.
Here we made predictions for the nucleon and Sigma hyperon electromagnetic form factors,
where we paid particular attention to the implementation of chiral symmetry. In particular,
we showed that while nucleon was insensitive to the method by which chiral corrections were
implemented, the correct implementation of chiral symmetry was essential to reproduce the
magnetic moment of the Σ−. This finding is in agreement with earlier work which suggested
that the magnetic moment was particularly sensitive to the implementation due to the large
non-analytic term.

As we have established, the pion is central to our understanding of low energy QCD. Importantly
though there exist predictions of the pion form factor at high photon virtuality derived in
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the context of perturbative QCD. This theoretical result has motivated the measurement of
the pion form factor at increasingly high Q2 values in search for this posited behaviour. To
date, this behaviour has not been observed. This motivated the second work, Investigating
the Model Dependence of the Pion Electromagnetic Form Factor in a Scalar Field Theory. In
this work, we examined the model used in the extraction of the pion form factor from pion
electroproduction, and showed that the implementation of gauge invariance was unnatural.
Based on this result, we examined the possibility that the pion form factor was incorrectly
extracted from experimental data with the aid of a simple scalar model. In the context of this
model, we found that the extracted values of the pion form factor were systematically large
when compared with the true form factor calculated at one loop within the scalar field theory.
Importantly, we showed that the disagreement worsened with increasing Q2, and also with
decreasing W . We concluded that the primary origin of this result was due to the kinematics.
By measuring at higher W one would be able to approach closer to the pion pole, and thus
achieve a better estimation of the pion form factor.

Motivated by this finding we considered the question of model dependence in a more compli-
cated fermionic model. In this third original work, Investigating the Model Dependence of the
Pion Electromagnetic Form Factor Using Chiral Effective Field Theory, we again observed
the systematic over extraction of the pion form factor as well as the importance in making
the measurement at the largest available W , in ensuring an accurate extraction.

Combined, the results of these two studies suggest that while the current measurements of
the pion form factor are likely to be accurate, at least at low photon virtuality, it is clear
that the measurements obtained from VGL Model are likely overestimates of the pion form
factor. Given the original motivation for the measurement of the pion form factor at large
photon virtuality stems from the desire to observe the transition to perturbative QCD, a
model which fails at higher momentum is clearly not desirable. It is thus of importance to
develop alternative models of the pion electroproduction cross section, which also allow the
extraction of the pion form factor, and which do not suffer from this problem. The approach
developed here has the advantage of allowing one to rigorously maintain gauge invariance
while having different form factors at every vertex in the problem. It will certainly be possible
to generalize the simple models constructed here to build both an accurate description of
the nucleon form factors, while having sufficient flexibility in the pion form factor to fit the
experimental electroproduction data. Importantly, while the models presented here are not
sophisticated enough for a direct extraction of the physical form factor, we propose that they
should serve as an important cross check for any new proposed model: before attempting
to extract the form factor from real data, any proposed model should first be tested on our
simplified model. In this way, one would able to confidently conclude that the extracted pion
form factor is a true representation of the underlying form factor.



A

Conventions and Useful Identities

Unless explicitly stated otherwise, the following conventions are followed in the thesis. Ex-
pressions in this thesis are given in ‘natural units’, where

~ = 1 = c. (A.1)

The Minkowski metric for flat space-time is taken to be the ‘mostly negative’

gµν = diag(1,−1,−1,−1). (A.2)

The gamma matrices form a Clifford algebra, and are defined by their commutator relation

{γµ, γν} = 2gµν . (A.3)

We emphasize that this definition is consistent with our sign convention for the metric.

A.1 The Group Structure of Isospin

The Pauli Matrices are defined as

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (A.4)

These three matrices may be related to the Lie algebra su(2), and thus the Lie Group SU(2).
In particular, one may show that the Lie Algebra su(2) is given as

su(2) = span

{
iσ1

2
,
iσ2

2
,
iσ3

2

}
, (A.5)
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In other words, iσj are the generators for the group SU(2). Elements of SU(2) may be
obtained via exponentiation. Thus the most general form of an element of the group SU(2)
may be written

U = exp

i 3∑
j=1

θj
σj
2

, (A.6)

where θj are real constants.

A.2 The Group Structure of Colour

The eight Gell-Mann matrices are given as

λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0

 , λ3 =

1 0 0
0 −1 0
0 0 0

 ,

λ4 =

0 0 1
0 0 0
1 0 0

 , λ5 =

0 0 −i
0 0 0
i 0 0

 , λ6 =

0 0 0
0 0 1
0 1 0

 ,

λ7 =

0 0 0
0 0 −i
0 i 0

 , λ8 = 1√
3

1 0 0
0 1 0
0 0 −2

 .

(A.7)

As with the Pauli matrices, the Gell-Mann matrices are a representation of the Lie Algebra
su(3). The Lie Algebra su(3) is given as

su(3) = span

{
iλ1

2
,
iλ2

2
, . . . ,

iλ8

2

}
, (A.8)

where iλj are the generators for the group SU(3). Elements of SU(3) may be obtained from
exponentiation. Thus the most general form of an element of the group SU(3) may be written

U = exp

i 8∑
j=1

αj
λj
2

, (A.9)

where αj are real constants.



B

Pion Nucleon Feynman Rules

B.1 Pseudo-Scalar Pion Nucleon Effective Theory

The unrenormalised pseudoscalar pion nucleon theory is given as

LPS
πN = ΨN (i/∂ +mN0)ΨN +

1

2
(∂µπ)2 − 1

2
m2
π0π

2 − gπN0ΨN iγ5τ · πΨN , (B.1)

where ΨN is the nucleon doublet

ΨN =

[
ψp
ψn

]
, (B.2)

where ψp and ψn are the proton and neutron field operators, respectively. π is a triplet of
real scalar fields given by

π = (π1, π2, π3), (B.3)

and τ is the isospin operator in nucleon isospin space, which is related to the Pauli matrices
defined in Appendix A via

τ =
1

2
σ. (B.4)

It is useful to perform a field redefinition of the pion fields to make contact with the physical
charged pions. We write

π = (π+, π−, π0), (B.5)

where these fields are related to the three scalar fields via π± = (π1 ∓ iπ2)/
√

2 and π0 = π3.
Note that π∗+ = π− and π∗− = π+. In this basis, the isospin operator takes the form
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τ = (τ+, τ−, τ0), (B.6)

where τ± = (τ1 ± iτ2)/
√

2. We use the gauge principle to incorporate electromagnetic
interactions. This amounts to the replacement ∂µ → Dµ = ∂µ + ie0Aµ

LPS
πN = ΨN (i/∂ +mN0)ΨN +

1

2
(∂µπ)2 − 1

2
m2
π0π

2 − gπN0ΨN iγ5τ · πΨN

−e0ΨNγ
µQ̂NΨNAµ + ie0(∂µπ) · (Q̂π)Aµ.

(B.7)

The corresponding Feynman Rules are

Nucleon:
p

SF (p) =
i

/p−mN
(B.8)

Pion:
k

Sπ(k) =
i

k2 −m2
π

(B.9)

γp→ p −iQNeγµ (B.10)

γπ → π
k k′

−iQπe(k + k′)µ (B.11)

p(n)→ π0p(n)

p(n)→ π+(π−)p(n)

k
+1(−1)gπNγ5
√

2gπNγ5/k
(B.12)
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B.2 Pseudo-Vector Pion Nucleon Effective Theory

The pseudo-vector realization of pion-nucleon effective field theory to lowest order in derivatives
of the pion field is

LPV
πN = ΨN (i/∂ +mN )ΨN +

1

2
(∂µπ)2 − 1

2
m2
ππ

2

+
gA
2fπ

ΨNγ
µγ5π · ∂µπΨN −

1

(2fπ)2
ΨNγ

µτ · (π × ∂µπ)ΨN .
(B.13)

We introduce the electromagnetic interaction via the principle of minimal substitution. This
leads to electromagnetic interactions of the form

LPV
γπN = −ΨNγ

µQ̂NΨNAµ + i(∂µπ) · (Q̂π)Aµ +
igA
2fπ

ΨNγ
µγ5τ · Q̂πΨNAµ

− i

(2fπ)2
ΨNγ

µτ · (π × Q̂ππ)ΨNAµ,
(B.14)

where gA is the nucleon axial vector charge (gA ≈ 1.26), and fπ is the pion decay constant.
There exist in the literature a number of different conventions for fπ. In our case, fπ = 0.093
GeV. Q̂N and Q̂π are the charge operators for the nucleon and pion, respectively. The
Feynman Rules are [155]:
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Nucleon:
p

SF (p) =
i

/p−mN
(B.15)

Pion:
k

Sπ(k) =
i

k2 −m2
π

(B.16)

γp→ p −iQNeγµ (B.17)

γπ → π
k k′

−iQπe(k + k′)µ (B.18)

p(n)→ π0p(n)

p(n)→ π+(π−)p(n)

k +1(−1)
gA
2fπ

γ5/k

gA√
2fπ

γ5/k
(B.19)

γp(n)→ π+(π−)n(p) −1(+1)e
gA√
2fπ

γ5γ
µ (B.20)



C

Hadronic Charge Radii and Magnetic
Moments

In Chapter 3, we calculated chiral corrections to baryon electromagnetic form factors. In
order to better display the charge radii and magnetic moments, we plotted the predicted
observables against their experimental values. For completeness, we include the numerical
values in tablular form.

Table C.1: Comparison of the predicted electric charge radii to experimental results for
the proton, neutron, Σ− and Σ+ baryons. Experimental results are taken from [93, 95, 154],
except for the Σ+ charge radius, for which there is currently no experimental value. In this
case, a recent lattice QCD result [131, 132] is given instead. This value is denoted with an
asterisk. Charge radii are quoted in femtometres.

〈
r2
〉 1

2

p n Σ− Σ+

Prev. NJL
Calc.

0.87 0.38 0.86 0.97

This Work 0.89 0.41 0.78 0.88

Exp. 0.84 0.335 0.780 0.61(8)∗

Table C.2: Comparison of the predicted magnetic moments to experimental results for the
proton, neutron, Σ− and Σ+ baryons. Experimental results are taken from [93, 95]. Magnetic
moments are in units of nuclear magnetons (µN = e/2mN ).

µ
p n Σ− Σ+

Prev. NJL
Calc.

2.78 -1.81 -1.58 2.60

This Work 2.78 -1.71 -1.17 2.33

Exp. 2.793 -1.913 -1.160(25) 2.458(10)
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D

Derivation of the Pion Electroproduction
Cross Section

This appendix contains the definitions of kinematic variables and a derivation of the relation
between the hadronic matrix elements and the structure functions which are of interest in
studies of the pion’s electromagnetic form factor. We begin this appendix with a discussion of
kinematic variables and reference frames of particular interest.

D.1 Kinematic Variables and Reference Frames

In introducing the pion electroproduction cross section, we must choose labels to represent
the initial and final four-momenta of the particles involved in the interaction. Momenta are
chosen as shown in Fig. D.1.

q

k k′

p p′

pπ

Figure D.1: External four-momenta labels used in the description of pion electroproduction.
The virtual photon is defined as flowing into the hadronic matrix element.

Initial particles are defined to have ingoing momentum and final particles are defined to have
outgoing momentum. We define the direction of the exchanged virtual photon via q = k − k′.
Thus overall conservation of momentum k + p = k′ + p′ + pπ leads to p+ q = p′ + pπ.
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D.1.1 Kinematic Variables

In the following work, Mandelstam variables are used extensively. While the Mandelstam
variables themselves are scalars it is also useful to define the four-vectors which produce these
invariants. We define the ‘Mandelstam four-vectors’ as

pµs = (p+ q)µ = (p′ + pπ)µ, (D.1)

pµt = (pπ − q)µ = (p− p′)µ, (D.2)

pµu = (p′ − q)µ = (p− pπ)µ. (D.3)

The squares of these four-vectors give the conventional Mandelstam variables. They are
defined as

s = p2
s = W 2 = (p+ q), (D.4)

t = p2
t = (pπ − q)2, (D.5)

u = p2
u = (p′ − q)2. (D.6)

We note that we have introduced the invariant mass of the proton-photon system W . We
shall use W rather than s. This decision follows the convention for the discussion of this cross
section in Chapter 5. It is possible to show that the sum of the Mandelstam Variables leads to

s+ t+ u = p2 + q2 + p′2 + p2
π

= 2m2
N +m2

π −Q2,
(D.7)

and thus we may exchange the u dependence for the photon’s virtuality Q2. In what follows,
we shall describe the cross section with the variables (Q2,W, t). Amaldi Fubini and Furlan
in Ref. [149] show that the evaluation of the cross section, is most easily completed in the
pγ∗ centre of momentum frame. As a result, it is of interest to determine the four-vectors of
external particles in this frame.

D.1.2 pγ∗ Centre of Momentum Frame

We denote energies and three-momenta evaluated in the pγ∗ centre of momentum frame with
the tilde (∼) symbol. This frame is defined by the relations

p̃ = −q̃, (D.8)

p̃′ = −p̃π. (D.9)
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q̃ p̃

p̃′

p̃π

θ̃
z

x

Figure D.2: Kinematics in the pγ∗ centre of momentum frame. We choose the x-z plane as
the interaction plane, and further define the z axis to be the direction of the initial photon.
The angle between the initial and final nucleons is θ̃.

In this frame, the Mandelstam four-vector takes the simple form

pµs = (p+ q)µ = (p′ + pπ)µ

= (Ep̃ + Eq̃, 0, 0, 0) = (Ep̃′ + Ep̃π , 0, 0, 0).
(D.10)

The corresponding invariant mass W takes the particularly simple form W = Ep̃ +Eq̃. Using
this relation allows other relations to be derived. Momentum conservation gives us

q2 = (p′ + pπ − p)2

= W 2 +m2
N − 2ps · p

= W 2 +m2
N − 2WEp̃,

(D.11)

and thus

Ep̃ =
W 2 +m2

N +Q2

2W
. (D.12)

By isolating different four-vectors, we can determine the energies for each of the four particles
in terms of Lorentz invariant quantities. We can show
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Ep̃ =
W 2 +m2

N +Q2

2W
, (D.13)

Eq̃ =
W 2 −m2

N −Q2

2W
, (D.14)

Ep̃′ =
W 2 −m2

π +m2
N

2W
, (D.15)

Ep̃π =
W 2 +m2

π −m2
N

2W
. (D.16)

Note that it is east to see that W = Ep̃ + Eq̃ = Ep̃π + Ep̃′ . The magnitudes of the three-
momenta may be determined by noting that p2 = E2

p − p2. Thus

p̃2 =

(
W 2 +m2

N +Q2

2W

)2

−m2
N , (D.17)

q̃2 =

(
W 2 −m2

N −Q2

2W

)
+Q2, (D.18)

p̃′2 =

(
W 2 −m2

π +m2
N

2W

)
−m2

N , (D.19)

p̃2
π =

(
W 2 +m2

π −m2
N

2W

)
−m2

π. (D.20)

We may relate the angle θ̃ to Lorentz invariants via

t = (p− p′)2

= 2m2
N − 2p · p′

= 2m2
N − 2Ep̃Ep̃′ + 2|p̃||p̃′| cos θ̃,

(D.21)

and thus

cos θ̃ =
t− 2m2

N + 2Ep̃Ep̃′

2|p̃||p̃′|
. (D.22)

As a result, we may write down the full four-vectors as
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pµ = (Ep̃, 0, 0,−|q̃|), (D.23)

qµ = (Eq̃, 0, 0, |q̃|), (D.24)

p′µ = (Ep̃′ ,−|p̃π| sin θ̃, 0,−|p̃π| cos θ̃), (D.25)

pµπ = (Ep̃π , |p̃π| sin θ̃, 0, |p̃π| cos θ̃), (D.26)

where we again emphasize that these expressions have been written in terms of Lorentz
invariants only.

D.1.3 Cross Section Reduction

Much of what is discussed in the following may be found in Ref. [149]. It is well known that
the expression for the differential cross section dσ for a general 2→ 3 process is given by

d9σ =
1

4
√

(p · k)2 −m2
em

2
N

d3k′

(2π)3

d3p′

(2π)3

d3pπ
(2π)3

1

2Ek′

1

2Ep′

1

2Epπ

∑
|M|2(2π)4δ(p+k−p′−k′−pπ),

(D.27)

where as always q = k−k′ is the four-momentum transferred from the electron to the hadronic
system and

∑
is a general sum over all the spin states in the final and initial states. The

electron mass is given by me, and in the following, we approximate the electron as massless,
so me ≈ 0. In the one-photon-exchange approximation, the matrix element for this process is

iM =
e2

q2
ue(k

′, r′)γµue(k, r)×
〈
p′, pπ

∣∣V µ |p〉

= −e
2

q2
lµiMµ,

(D.28)

where lµ = ue(k
′, r′)γµu(k, r) contains the leptonic component, and iMµ = 〈p′, pπ|V µ |p〉

contains the hadronic component. Note that in the above expression for the differential cross
section, one requires the modulus squared of the matrix element iM, where for unpolarized
beams, the spin states of the ingoing and outgoing particles must be averaged and summed
over, respectively. Thus one obtains

∑
|M|2 =

1

4

∑
s,s′,r,r′

e4

q4
l†µlνMµ†Mν , (D.29)

where for simplicity, it is possible to define
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Lµν =
1

4

∑
r,r′

l†µlν , (D.30)

Mµν =
1

2

∑
s,s′

Mµ†Mν , (D.31)

so that the equation is simplified to

∑
|M|2 =

2e4

q4
LµνMµν . (D.32)

Substituting this into the above expression for the differential cross section leads to

d9σ =
1

(2π)5

1

4p · k
2e4

q4
LµνMµν d

3k′

2Ek′

d3p′

2Ep′

d3pπ
2Epπ

δ(p+ k − p′ − k′ − pπ). (D.33)

Now recall that α = e2/4π, and Q2 = −q2. Using these two identities leads to

d9σ =
α2

4π3

1

p.k

1

Q4
LµνMµν d

3k′

2Ek′

d3p′

2Ep′

d3pπ
2Epπ

δ(p+ k − p′ − k′ − pπ). (D.34)

We may reduce this ninefold differential cross section by integrating over the final neutron
three-momentum p′, with the aide of the delta function. This enforces conservation of
three-momentum:

p + k = p′ + k′ + pπ, (D.35)

and results in the sixfold differential cross section

d6σ =
α2

4π3

1

p · k
1

Q4
LµνMµν d

3k′

2Ek′

d3pπ
2Epπ

1

2Ep′
δ(Ep + Ek − Ep′ − Ek′ − Epπ). (D.36)

The asymptotic states are on-shell, and so obey relativistic energy-momentum relations:

Ep =
√

p2 +m2
N , (D.37)

Ek = |k|, (D.38)

Ep′ =
√

p′2 +m2
N , (D.39)

Ek′ = |k′|, (D.40)

Epπ =
√

p2
π +m2

π. (D.41)
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To further reduce the differential cross section, we choose to work in the pγ∗ centre of
momentum frame. In this frame, the above energy-momentum relations for the final states
may be simplified to

Ep̃′ =
√

p̃2
π +m2

N , (D.42)

Ek̃′ = |k̃ ′|, (D.43)

Ep̃π =
√

p̃2
π +m2

π. (D.44)

Where we use the tilde again to denote that these relations are true in the pγ∗ centre of
momentum. Note that overall momentum conservation (obtained from the three-momentum
delta function) reduces to the constraint in the pγ∗ centre of momentum frame

k̃′ = p̃ + k̃, (D.45)

and so we may write Ek̃′ = |p̃ + k̃|. Thus the remaining one-dimensional delta function is
dependent only on |p̃π|. After transforming to spherical coordinates, the differential cross
section becomes

d6σ =
α2

4π3

1

p · k
1

Q4
LµνMµν d

3k′

2Ek′

p̃2
πdp̃πdΩ̃π

2Ep̃π

1

2Ep̃′
δ(Ep̃ + Ek̃ − Ep̃′ − Ek̃′ − Ep̃π). (D.46)

We have the identity

δ(f(p)) =
δ(p− p′)∣∣f ′(p′)∣∣ , (D.47)

where f(p′) = 0. After making the identification f(p̃π) = Ep̃ + Ek̃ − Ep̃′ − Ek̃′ − Ep̃π , one
may show that

δ(f(p̃π)) =
δ(p̃π − |p̃π|)∣∣∣∣− |p̃π|( 1

Ep̃π
+ 1

Ep̃′

)∣∣∣∣ , (D.48)

and so evaluation of the delta function gives

d5σ =
α2

42π3

1

p · k
1

Q4
LµνMµν |p̃π|

Ep̃π + Ep̃′

d3k′

2Ek′
dΩπ (D.49)

Now recall from the above energy relations, that Ek′ = |k′|. Changing variables is thus trivial,
and one obtains
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d5σ

dEk̃′dΩ′dΩπ
=

α2

2.42π3

1

p · k
1

Q4

|p̃π|Ek′

Ep̃π + Ep̃′
LµνMµν . (D.50)

Finally, note that p · k, being a Lorentz invariant, may be evaluated in any frame. Choosing
the hadron rest frame gives p.k = mNEk, which leads to

d5σ

dEk̃′dΩ′dΩπ
=

α2

32π3

1

mNW

1

Q4
|p̃π|

Ek′

Ek
LµνMµν . (D.51)

A further factorization exists in the literature, where the differential cross section is written as

d5σ

dEk̃′dΩ′dΩπ
=

α

2π2

Ek′

Ek

1

Q2

kL
1− ε

dσ

dΩπ
, (D.52)

where

dσ

dΩπ
=

α

16π

|p̃π|
kL

1

mNW

1− ε
Q2

LµνMµν . (D.53)

In the above, kL is termed the photon equivalent energy

kL =
W 2 −m2

N

2mN
, (D.54)

and ε is the photon polarization parameter. Commonly, experiment differential cross sections
are given in terms of the Lorentz invariant t mandelstam variable instead of θ. The above
differential cross section is easily transformed by noting that in the center of mass frame, the
differentials may be related by dt = 2|p̃||p̃′|d cos θ̃, which leads to

dσ

dtdφ
=

α

32π

1

|q̃|
1

kLmNW

1− ε
Q2

LµνMµν . (D.55)

Finally, it is conventional to normalize the differential cross section by a factor of 2π, to cancel
the factor obtained from doing the angular integral:

(2π)
dσ

dtdφ
=

α

16

1

|q̃|
1

kLmNW

1− ε
Q2

LµνMµν . (D.56)

These kinematical factors are of course model independent; all the model dependent physics
may be found in the term LµνMµν .
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D.1.4 Evaluating LµνMµν

One may show (see Ref. [149]) for details) that

LµνMµν =
Q2

1− ε

[
1

2

(
M̃11 + M̃22

)
+ εLM̃33 +

1

2

(
M̃11 − M̃22

)
ε cos(2φ)

+
1

2

(
M̃13 + M̃31

)√
2εL(ε+ 1) cos(φ)

]
,

(D.57)

where

εL =

(
Q2

E2
q̃

)
ε. (D.58)

D.1.5 Decomposing the Experimental Cross Section

It is well known that the unpolarized π+ electroproduction cross section may be decomposed
into four response functions1:

(2π)
d2σ

dtdφ
=
dσT
dt

+ ε
dσL
dt

+
√

2ε(ε+ 1)
dσLT
dt

cosφ+ ε
dσTT
dt

cos 2φ. (D.59)

Using the identity derived in the previous section for the squared matrix element LµνMµν ,
one may write the derived cross section as

(2π)
dσ

dtdφ
=

α

16

1

|q̃|
1

kLmNW

[
1

2
(M11 +M22) + εM33

(
Q2

E2
q̃

)

+
√

2ε(ε+ 1)
1

2
(M31 + M̃13)

√
Q2

E2
q̃

cosφ+
1

2
(M11 −M22)ε cos 2φ

]
,

(D.60)

which allows an immediate identification of the individual response functions as

1Note the sign of the fourth response function, as some authors choose a negative sign, ie dσTT /dt →
−dσTT /dt. This work follows the ‘all positive’ convention of Ref. [134].
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dσT
dt

= A×
[

1

2
(M̃11 + M̃22)

]
, (D.61)

dσL
dt

= A×
(
Q2

E2
q̃

)[
M̃33

]
, (D.62)

dσLT
dt

= A×
√
Q2

E2
q̃

[
1

2
(M̃31 +M13)

]
, (D.63)

dσTT
dt

= A×
[

1

2
(M̃11 − M̃22)

]
, (D.64)

where

A =
α

16

1

|q̃|
1

kLmNW
. (D.65)



E

Regularisation Prescriptions

This thesis has been primarily concerned with calculating perturbative corrections to tree level
results. These loop diagrams often contain ultraviolet divergences which must be systematically
regularized before they are absorbed in the process of renormalization. In this appendix, we
discuss the regularisation prescriptions used in this thesis.

E.1 Some Loop Integrals Diverge

It is possible to show that a general one-loop Feynman diagram may be reduced to an integral
of the form

I0(∆, n) =

∫
d4l

(2π)4

1

[l2 −∆ + iε]n
. (E.1)

Note that for n ≥ 3, this integral converges. We can see this by simple dimensional analysis.
In order for the integral to converge, we require that as l → ∞, the integrand is suitably
suppressed. In this limit, the factor of ∆ becomes irrelevant, and our integrand becomes

d4l

(2π)4

1

l2n
. (E.2)

Note that our four dimensional volume element d4l = dl0dl1dl2dl3 contributes four units of
momentum. Thus for n = 3, this combination goes like

d4l

(2π)4

1

l6
∼

large l

1

l2
→ 0, (E.3)

so this integral will converge. Note however that for n = 2, the integrand is no longer suitably
suppressed:

137
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d4l

(2π)4

1

l4
∼

large l
1. (E.4)

Thus for the case of n = 2, I0(∆, n) is divergent. Obviously for n = 1, there is less momentum
suppression, and the integral will also be divergent.

Stated simply, a regularization prescription amounts to a modification of the above integral
I0(∆, n) which allows us to control the divergences. There are many ways one may modify
the integrand to soften the ultraviolet behaviour of the integral, and in principle, any such
prescription is suitable. However, many of these modifications break symmetries of the theory,
and are thus undesirable. In this appendix, we shall discuss two different regularization
prescriptions used in this thesis.

E.2 The Wick Rotation

Prior to the regularization of integrals of the above form, it is highly convenient to perform a
so-called Wick rotation. While not part of the regularization procedure per se, it is a step we
will perform identically in each of the regularization prescriptions we discuss. Consider again
the basic integral obtained in one-loop calculations

I0(∆, n) =

∫
d4l

(2π)4

1

[l2 −∆ + iε]n

=

∫
d3l

(2π)3

∫ ∞
−∞

dl0
(2π)

1

[l20 − l2 −∆ + iε]n

=

∫
d3l

(2π)3

∫ ∞
−∞

dl0
(2π)

1

[(l0 −
√

l2 + ∆− iε)(l0 +
√

l2 + ∆− iε)]n
.

(E.5)

Written this way, it is possible to see that if we analytically continue the loop energy, we will
encounter poles at ±

√
l2 + ∆− iε. We define a contour as shown in Fig. E.1. Since there are

no poles inside this contour, from the residue theorem we immediately have that

∮
dl0

(2π)

1

[l20 − l2 −∆ + iε]n
= 0. (E.6)

It is possible to show that the contributions from the arc lengths vanish. Thus the integral
along the real axis is related to the integral along the complex axis via

∫ ∞
−∞

dl0
(2π)

1

[l20 − l2 −∆ + iε]n
= −

∫ −∞
∞

idl0,E
(2π)

1

[−l20,E − l2 −∆ + iε]n
. (E.7)

Where in the second integral we have made the transformation l0 = il0,E so that l0,E is
purely real. For consistency of notation, we also perform the transformation l = lE . This
transformation is known as the Wick Rotation. To summarize, we have
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Im{l0}

Re{l0}

√
l2 + ∆− iε

−
√

l2 + ∆ + iε

Figure E.1: Performing the Wick Rotation of the one-loop loop integral. We analytically
continue l0 to the complex plane, and relate the integral over the real axis to the integral
over the complex axis.

l0 = il0,E , (E.8)

l = lE . (E.9)

The result of the Wick Rotation is thus

I0(∆, n) = i(−1)n
∫

d4lE
(2π)4

1

[l2E + ∆− iε]n
, (E.10)

where we emphasize the factor of i in the numerator comes from the Jacobian, and l2E = l20,E+l2E .

E.3 Proper Time Regularisation

We begin our discussion of regularization prescriptions with the Proper Time Regularization
prescription. This is based on the identity

1

Xn
=

1

Γ(n)

∫ ∞
0

dττn−1e−τX , (E.11)

and thus

I0(∆, n) =
i(−1)n

Γ(n)

∫
d4lE
(2π)4

∫ ∞
0

dττn−1e−τ(l2E+∆−iε). (E.12)
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Interchanging the order of integration gives

I0(∆, n) =
i(−1)n

Γ(n)

∫ ∞
0

dττn−1e−τ(∆−iε)
∫

d4lE
(2π)4

e−τl
2
E . (E.13)

Now note that l2E = l20,E + l2E , so these integrals are now factorisable. Using the identity

∫
dx

(2π)
e−τx

2
=

1

2π

√
π

τ

=
1√
4πτ

.

(E.14)

We may perform the momentum integral to obtain

I0(∆, n) =
i(−1)n

Γ(n)

∫ ∞
0

dττn−1e−τ(∆−iε)
(

1√
4πτ

)4

=
i(−1)n

(4π)2

1

Γ(n)

∫ ∞
0

dττn−3e−τ(∆−iε).

(E.15)

Note that for n ≥ 3, the integral will be well behaved at τ = 0. We can see this explicitly by
performing the change of variables t = τ(∆− iε). This gives

I0(∆, n) =
i(−1)n

(4π)2

1

Γ(n)

1

[∆− iε]n−3

∫ ∞
0

dttn−3e−t. (E.16)

Note the definition of the gamma function

Γ(n) =

∫ ∞
0

dttn−1e−t. (E.17)

Thus we have

I0(∆, n) =
i(−1)n

(4π)2

Γ(n− 2)

Γ(n)

1

[∆− iε]n−3
. (E.18)

Using the identity Γ(n) = (n− 1)Γ(n− 1), we obtain

I0(∆, n) =
i(−1)n

(4π)2

1

(n− 2)(n− 1)

1

[∆− iε]n−3
. (E.19)
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In this way, we see the divergences appearing as poles in n for n = 1 and n = 2. Note that at
this stage, the divergences have not been controlled. In proper time regularization, we replace
the lower bound of the integral with a ‘short time’ cutoff. We can write this as

τshort =
1

Λ2
UV

, (E.20)

where through dimensional analysis, ΛUV has units of (energy)2. Using this prescription, we
have

I0(∆, n) =
i(−1)n

(4π)2

1

Γ(n)

∫ ∞
τshort

dττn−3e−τ(∆−iε), (E.21)

where we emphasize that the effect of this short time cutoff has been to remove the divergence
associated with this integral. This particular regularization prescription is used in Chap. 4
to regularize the loop integrals due to the NJL Model. As described in the main text,
this regularization prescription has the advantage that in the context of the NJL Model,
confinement may be simulated by imposing an infrared cutoff τlong of the scale 1/ΛQCD. That
is

τlong =
1

ΛIR
∼ 1

ΛQCD
. (E.22)

This further modification leads to

I0(∆, n) =
i(−1)n

(4π)2

1

Γ(n)

∫ τlong

τshort

dττn−3e−τ(∆−iε). (E.23)

E.4 Dimensional Regularization

One may also regularize loop integrals by Dimensional Regularization [156]. Let us return to
our basic integral I0(∆, n):

I0(∆, n) =

∫
d4l

(2π)4

1

[l2 −∆ + iε]n
. (E.24)

The important step in dimensional regularization is to realize that it is the interplay between
the number of units of momentum in the numerator due to the volume element and the
number of units of momentum in the denominator due to the number of propagators which
determines whether the integral will converge or not. To be clear, let us define

I0(∆, n, d) =

∫
ddl

(2π)d
1

[l2 −∆ + iε]n
, (E.25)
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where now d denotes the number of space-time dimensions over which we are integrating.
Following our dimensional analysis arguments discussed previously, the combination of terms
we must consider is

ddl

(2π)d
1

l2n
. (E.26)

If we had formulated our theory in three space-time dimensions, we would have d = 3. Let us
consider the n = 2 integral again. Then,

d3l

(2π)3

1

l4
∼

large l

1

l
→ 0, (E.27)

and so the integral converges. The effect of manipulating the dimension d on the convergence
properties of our basic integral I0(∆, n) are depicted below in Table E.1.

Table E.1: Numerical results of calculating basic integral in d dimensions, were we have set
∆ = 1 for simplicity. Note that as we expected, the cases corresponding to n = 1 and n = 2
are divergent in four space-time dimensions.

d
3 4 5

1 0.080 ∞ -0.004
n 2 0.040 ∞ -0.006

3 -0.010 -0.003 -0.001

Put simply, in order to utilize dimensional regularization, we calculate this integral for arbitrary
d, and then set d → 4 at the end of the calculation. Note that, as with any regularisation
prescription, we must be careful with this last step; simply setting d = 4 will yield these
divergences, as it must. We will discuss the exact way this step is to be performed after we
have derived the formal result. Let us now explicitly perform the integration.

E.4.1 Dimensional Analysis

Formally, dimensional regularisation is constructed at the level of the action. Recall that the
usual action is given by

S =

∫
d4xL. (E.28)

We note that while the Lagrangian and the metric are dimensionful:

[d4x] = M−4, (E.29)
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and

[L] = M4, (E.30)

their product is dimensionless. Consider the case of φ4 theory. The Lagrangian is given by

L =
1

2
(∂µφ)(∂µφ)− 1

2
m2
φφ

2 − λ4φ
4, (E.31)

where, for reasons which will become obvious, we define λ4 to be the value of the coupling in
four space-time dimensions. Clearly,

[φ] = M, (E.32)

and

[λ4] = 1. (E.33)

In other words, scalar fields have mass dimesion 1 (M1), and the interaction parameter λ has
mass dimension 0 (M0). As we modify the dimensionality of the space we are integrating, we
must compensate by varying the mass dimension of the fields and constants to ensure that the
action remains dimensionless. To be clear, we define the dimensionally regularized action by

Sd =

∫
ddxLd. (E.34)

Note that now we have

[ddx] = M−d. (E.35)

It is desirable to keep masses in the same mass dimension. Thus we require that

[m2
π] = M2. (E.36)

Thus by looking at the mass term, we can show that the scalar field’s mass dimension must
transform as

[φ] = Md/2−1. (E.37)

We may use these results to determine how the dimensionality of the coupling varies as we
change the dimensionality of the integral. We have
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[λdφ
4] = Md = [λd].M

2d−4. (E.38)

Rearranging this expression, we find that we must have

[λd] = M4−d. (E.39)

It is convenient to separate the extra mass dimensions of the coupling by defining

λd = µ4−dλ4, (E.40)

where µ is an arbitrary parameter of mass dimension 1. Note that this parameter is not
physical, and will vanish in all physical quantities. With this definition, we may write the
d-dimensional Lagrangian as

Ld =
1

2
(∂µφ)(∂µφ)− 1

2
m2
φφ

2 − µ4−dλ4φ
4. (E.41)

Note that a general loop integral with n interactions will also have n propagators, and thus
lead to an integral of the form

I0(∆, n, d) = (µn)4−d
∫

ddl

(2π)d
1

[l2 −∆ + iε]n
. (E.42)

This is the starting point for evaluation of dimensionally regulated integrals.

E.4.2 Performing the Integration

As previously discussed, we perform a Wick Rotation, which leads to

I0(∆, n, d) = i(−1)n(µn)4−d
∫

ddlE
(2π)d

1

[l2E + ∆̃− iε]n
. (E.43)

We may convert this to d dimensional spherical coordinates:

I0(∆, n, d)i(−1)n(µn)4−d
∫

dΩd

(2π)d

∫ ∞
0

dl
ld−1

[l2 + ∆− iε]n
, (E.44)

Where dΩd is the d dimensional solid angle. We may determine an expression for this by
noting that

√
π =

∫
dxe−x

2
. (E.45)
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Raising both sides to the dth power gives

(
√
π)d =

(∫
dxe−x

2

)d
=

∫
dx1dx2 . . . dxd exp

(
−

d∑
i=1

x2
i

)

=

∫
dΩd

∫ ∞
0

dxxd−1e−x
2

=
1

2

∫
dΩdΓ(d/2).

(E.46)

Rearranging this expression, and dividing by (2π)d gives

∫
dΩd

(2π)d
=

2

(4π)
d
2

1

Γ(d/2)
. (E.47)

Let us now consider the radial part of the integral. We may perform a variable transformation
dl2 = 2ldl and thus write

∫ ∞
0

dl
ld−1

[l2 + ∆− iε]n
=

1

2

∫ ∞
0

dl2
(l2)

d
2
−1

[l2 + ∆− iε]n
. (E.48)

We perform a second transformation x = (∆− iε)/(l2 + ∆− iε) to obtain

∫ ∞
0

dl
ld−1

[l2 + ∆− iε]n
=

1

2

(
1

∆− iε

)n− d
2
∫ 1

0
dxxn−1− d

2 (1− x)
d
2
−1. (E.49)

This integral is now of the form of a beta function:

B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)
=

∫ 1

0
dxxα−1(1− x)β−1, (E.50)

and so we find

∫ ∞
0

dl
ld−1

[l2 + ∆− iε]n
=

1

2

(
1

∆− iε

)n− d
2 Γ(n− d/2)Γ(d/2)

Γ(n)
. (E.51)

Putting the two parts of our equation together, we find
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1.0
−
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=
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)
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Figure E.2: Analytic continuation of the basic integral I0(∆, n, d) to non integer space-time
dimensions allows one to plot the values of the integral along the real d axis. Note that in four
dimensions, I0(∆, n = 1, 4) and I0(∆, n = 2, 4) diverge, while I0(∆, n ≥ 3, 4) converge. The
energy scale µ has been set to 1. It is interesting to note that in odd space-time dimension,
these integrals are all finite.

I0(∆, n, d) =
i(−1)n(µn)4−d

(4π)
d
2

Γ(n− d/2)

Γ(n)

(
1

∆− iε

)n− d
2

. (E.52)

E.4.3 Analytic Continuation

The formally calculated basic integral is still divergent for n = 1, and n = 2. We can see
this by setting d = 4. We would like to instead consider the limit as d → 4. But d is the
dimensionality of the integral, so it clearly only makes sense as an integer. Note however that
our expression for I0 is in fact well defined for non integer values of d. It turns out that our
definition I0(∆, n, d) is valid for non-integer d. In order to completely rigorously define the
dimensionally regularized integral, we must analytically continue d into the complex plane.
Technical details about this process may be found in Ref. [157]. This concept is demonstrated
in Fig. E.2. Note that our expression is correct for integer d, but now allows us to perform an
expansion around d = 4. We write

d = 4− 2ε, (E.53)



Appendix E. Regularisation Prescriptions 147

and Taylor Expand functions for small ε. Note that the factor of 2 is simply a choice, but
must be made consistently everywhere in the calculation. It should be noted that this ε differs
from the ε used to ensure the time-ordering of the propagator.

E.4.4 d-Dimensional Dirac Algebra

In d-dimensions, we must modify our identities for Dirac Algebra. The Dirac gamma matrices
are defined by the equation

{γµ, γν} = 2gµν . (E.54)

We require this defining relation to be true in d dimensions. Written explicitly, γµ is

γµ = (γ0, γ1, . . . , γd). (E.55)

Tracing over the metric tensor gµν gives the dimensionality. Thus

gµνgµν = d. (E.56)

With these two points, we can derive results for our d-dimensional Dirac Algebra. For example,

γµγµ =
1

2

(
γµγµ + γµγ

µ

)
=

1

2

(
γµγν + γνγµ

)
gµν

= gµνgµν

= d,

(E.57)

and

γµγνγµ = (2gµν − γνγµ)γµ

= (2− d)γν .
(E.58)

Other relations may be derived as required.

E.4.5 Trace Identities for d-Dimensional Dirac Algebra

Note that as the dimensionality increases, one must choose a new explicit representation of the
gamma matrices, to ensure that the defining relation (eq. E.54) remains true. The standard
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representation of these matrixs has dimension 2
d
2 [157]. In four dimensions, tr[I4] = 4. Thus in

general, as we vary the dimensionality of the integral, this trace should change. Mathematically,
we have

tr[Id] = f(d). (E.59)

Following our above argument then,

f(d) = 2
d
2 . (E.60)

It turns out that this argument, while correct, is needlessly complicated. Since we are only
interested in dimensional regularization from the point of view of regularizing loop integrals,
we are free to set

tr[Id] = f(d0), (E.61)

where d0 is the dimension in which the integrals diverge. Thus it is most convinient to work
with the definition that

tr[Id] = f(d0 = 4) = 4. (E.62)

Whenever fermion loops appear in Feynman Diagrams, we must take a trace. The trace of a
matrix M = aA+ bB, where A and B are matrices, and a and b are numbers is linear:

tr(aA+ bB) = a tr(A) + b tr(B), (E.63)

and is cyclic:

tr(ABC) = tr(CAB). (E.64)

For d = 4, we have the result

tr(γµγν) = 4gµν . (E.65)

We can show that that natural generalization exists in d-dimensions. Consider

tr(γµγν) = tr(γνγµ)

= tr(2gµν − γµγν)

2 tr(γµγν) = 2gµν tr(Id),
(E.66)
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and so we find

tr(γµγν) = 4gµν . (E.67)

Consistent with our usual four dimensional definition. We can show that in d-dimensions,
tr(γµ) = 0. Note that

tr(γµ) =
1

2− d
tr(γαγµγα)

=
1

2− d
tr(γµγαγ

α)

=
d

2− d
tr(γµ).

(E.68)

Thus we find

2(1− d) tr(γµ) = 0. (E.69)

Thus for d 6= 1, we have tr(γµ) = 0.

E.4.6 Chiral Theories in Dimensional Regularization

While dimensional regularization has a number of attractive properties, difficulties are encoun-
tered in chiral theories, and in particular, in the definition of γ5 in d-dimensions. To see how
problems arise, recall the definition of γ5

γ5 = iγ0γ1γ2γ3. (E.70)

How shall we interpret this in d-dimensions? There are a number of different ways of
generalizing γ5 to d-dimensions existing in the literature. For example, in Ref. [156], the
authors suggest a scheme where the d-dimensional version of γ5 anticommutes with µ = 0, 1, 2, 3,
and commutes with other values of µ. To make this explicit, we write

lµ = lµ‖ + lµ⊥, (E.71)

where

lµ‖ = (l0, l1, l2, l3, 0, . . . , 0) (E.72)

lµ⊥ = (0, 0, 0, 0, l4, l5, . . . , ld). (E.73)
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Then we may commute /lγ5 as

/lγ5 = /l‖γ5 + /l⊥γ5

= −γ5/l‖ + γ5/l⊥

= γ5(−/l‖ + /l⊥).

(E.74)



F

Loop Diagrams for Scalar Pion
Electroproduction

Here we collect the contributions from the individual diagrams shown in Fig. 5.10. We note
that the propagators for the scalar nucleon and pion are given as

DN
F (p) =

i

p2 −m2
N + iε

, (F.1)

Dπ
F (p) =

i

p2 −m2
π + iε

, (F.2)

respectively.

F.1 One Loop Diagrams

Two diagrams correct the nucleon’s electromagnetic vertex. The first may be written

iM(1a)µ = (−i
√

2gπN )DN
F (ps)

×
[ ∫

d4k

(2π)4
(−igπN )DN

F (ps − k)(−ie)(p+ ps − 2k)µDN
F (p− k)(−igπN )Dπ

F (k)

]
,

(F.3)

the second electromagnetic vertex correction may be written
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iM(1b)µ = (−i
√

2gπN )DN
F (ps)

×
[ ∫

d4k

(2π)4
(−i
√

2gπN )Dπ
F (ps − k)(−ie)(p+ ps − 2k)µ

×Dπ
F (p− k)(−i

√
2gπN )DN

F (k)

]
.

(F.4)

The first self energy correction corresponding to the exchange of a charged pion is

iM(1c)µ = (−i
√

2gπN )DN
F (ps)

[ ∫
d4k

(2π)4
(−i
√

2gπN )DN
F (k)Dπ

F (ps − k)(−i
√

2gπN )

]
DN
F (ps)

×(−ie)(p+ ps)
µ.

(F.5)

The second self energy diagram due the exchange of a neutral pion is

iM(1d)µ = (−i
√

2gπN )DN
F (ps)

[ ∫
d4k

(2π)4
(−igπN )DN

F (k)Dπ
F (ps − k)(−igπN )

]
DN
F (ps)

×(−ie)(p+ ps)
µ.

(F.6)

The strong vertex loop correction is

iM(1e)µ =

[ ∫
d4k

(2π)4
(−igπN )DN

F (ps − k)SNN (p′ − k)(−igπN )Dπ
F (k)

]
(−i
√

2gπN )DN
F (ps)

(−ie)(p+ ps)
µ.

(F.7)

The pion electromagnetic vertex correction is

iM(1f)µ = (−i
√

2gπN )Dπ
F (pt)

×
[ ∫

d4k

(2π)2
(−i
√

2gπN )DN
F (pt − k)(−ie)(pt + pπ − 2k)µ

×DN
F (pπ − k)(−i

√
2gπN )DN

F (k)

]
.

(F.8)

The pion self energy diagram is
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iM(1g)µ = (−i
√

2gπN )Dπ
F (pt)

[ ∫
d4k

(2π)4
(−i
√

2gπN )DN
F (k)(−i

√
2gπN )DN

F (pt − k)

]
Dπ
F (pt)

(−ie)(pt + pπ)µ.

(F.9)

The strong vertex loop correction is

iM(1h)µ =

[ ∫
d4k

(2π)4
(−igπN )DN

F (p′ − k)DN
F (p− k)(−igπN )Dπ

F (k)

]
. (F.10)

At tree-level, there are no u-channel diagrams, since the neutron is neutral. However, quantum
corrections modify the tree-level result. There are two corrections to the electromagnetic
vertex:

iM(i)µ = (−ie)
[ ∫

d4k

(2π)4
(−i
√

2gπN )DN
F (p− k)(pu + p′ − 2k)µDN

F (pu − k)(−i
√

2gπN )Dπ
F (k)

]
×DN

F (pu)(−i
√

2gπN ),

(F.11)

and

iM(j)µ = −(−ie)
[ ∫

d4k

(2π)4
(−i
√

2gπN )Dπ
F (p− k)(pu + p′ − 2k)µDπ

F (pu − k)(−i
√

2gπN )DN
F (k)

]
×DN

F (pu)(−i
√

2gπN ).

(F.12)

Note that these come in with the opposite sign. Since we choose m′π = 0.7 GeV and m′N = 0.71
GeV, these two terms have approximately the same magnitude, but opposite sign. Thus the
neutron’s effect on the cross section is negligible. The box diagram is

iM(1k)µ =

∫
d4k

(2π)2
(−igπN )DN

F (p+ q − pπ − k)(−i
√

2gπN )DN
F (p+ q − k)(−ie)(2p+ q − 2k)µ

×DN
F (p− k)(−igπN )Dπ

F (k).

(F.13)





G

Loop Diagrams for Fermionic Pion
Electroproduction

We use the Feynman Rules outlined in Appendix B for the pseudoscalar (PS) interaction. We
note that

G.1 s-Channel Electromagnetic Vertex

We define the proton’s electromagnetic vertex as

Γµp (p, q, ps) = γµ + δΓµp (p, q, ps), (G.1)

where γµ is the contribution from the tree level diagram, and δe is the proton charge counter
term. There are two diagrams which contribute to the vertex function. We write

δΓµp (p, q, ps) = δΓµp,a(p, q, ps) + δΓµp,b(p, q, ps), (G.2)

where the individual contributions are

δΓµp,a(p, q, ps) =

∫
d4k

(2π)4
gπNγ5SF (k + ps)γ

µSF (k + p)gπNγ5DF (k), (G.3)

δΓµp,a(p, q, ps) =

∫
d4k

(2π)4

√
2gπNγ5SF (k + ps)γ

µSF (k + p)
√

2gπNγ5DF (k). (G.4)

G.2 s-Channel Self Energy

We obtain two self energy corrections; the first from the emission of a neutron pion and the
second from the emission of a positive pion. These two terms only differ by a simple isospin
factor. Thus we may sum these two terms to obtain
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−iΣN (ps) =

∫
d4k

(2π)4

√
2gπNγ5SF (k + ps)

√
2gπNγ5DF (k)

+

∫
d4k

(2π)4
gπNγ5SF (k + ps)gπNγ5DF (k).

(G.5)

We emphasize that by explicitly factorizing a factor of −i in the definition of the self energy,
a positive value of Σ(ps) corresponds to a positive mass correction.

G.3 s-Channel Strong Vertex

We define the s-channel strong vertex as

Γ5(ps, pπ, p
′) = γ5 + δΓ5(ps, pπ, p

′), (G.6)

where we define

δΓπN (ps, pπ, p
′) =

∫
d4k

(2π)4
gπNSF (k + ps − pπ)

√
2gπNγ5SF (k + ps)gπNγ5DF (k). (G.7)

G.4 t-Channel Electromagnetic Vertex

We define the t-channel electromagnetic vertex as

Γµπ(pt, q, pπ) = (pt + pπ)µ + δΓµπ(pt, q, pπ), (G.8)

where we define

δΓµπ(pt, q, pπ) =

∫
d4k

(2π)4
(−1) Tr

[√
2gπNγ5SF (k + pt + q)γµSF (k + pt)

√
2gπNγ5SF (k)

]
.

(G.9)

G.5 t-Channel Self Energy

The pion self energy is given by a single diagram:

− iΣ(pt) =

∫
d4k

(2π)4
(−1) Tr

[√
2gπNγ5SF (k + pt)

√
2gπNγ5SF (k)

]
. (G.10)
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G.6 t-Channel Strong Vertex

We define the t-channel Strong Vertex as

Γ5(p, pt, p
′) = γ5 + δΓ5(p, pt, p

′), (G.11)

where δΓ5(p, pt, p
′) is given by

δΓ5(p, pt, p
′) =

∫
d4k

(2π)4
gπNγ5SF (k + p− pt)

√
2gπNγ5SF (k + p)gπNγ5DF (k). (G.12)

G.7 u-Channel Electromagnetic Vertex

We define the u-channel electroamgnetic vertex as

Γµn(p, q, ps) = 0 + δΓµn(p, q, ps), (G.13)

where the factor of 0 arises because the neutron is neutral at tree level; the non-trivial form
factor arises purely from the one-loop contributions. There are two contributions at one-loop
order:

δΓµn(p, q, ps) = δΓµn,a(p, q, ps) + δΓµn,b(p, q, ps), (G.14)

which are given by

δΓµn,a(p, q, ps) =

∫
d4k

(2π)4

√
2gπNγ5SF (k + ps)γ

µSF (k + p)
√

2gπNγ5DF (k), (G.15)

δΓµn,a(p, q, ps) =

∫
d4k

(2π)4

√
2gπNγ5SF (k + ps)γ

µSF (k + p)
√

2gπNγ5DF (k). (G.16)

G.8 Box Diagram

We have a single box diagram contribution, given by

D(p) =

∫
d4k

(2π)4
gπNγ5SF (k + p+ q − pπ)

√
2gπNγ5SF (k + p+ q)γµSF (k + p)gπNγ5DF (k).

(G.17)
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