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3.3 Tree diagram for b→ uūd decay via a W− boson, with some spectator

quark q. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 QCD penguin diagram for the decay b → dqq with some spectator

quark q′. Note that the top quark t is present in our model since this

gives access to the CKM matrix element Vtb. The significance of this

in the CP asymmetry will be discussed in chapter 4. . . . . . . . . . . 36

3.5 (Top) Electroweak penguin diagram for the decay b→ dqq with a Z

boson or photon radiated by the top quark. (Bottom) Electroweak

penguin diagram for the decay b → dqq with a Z boson or photon

radiated by the W boson. The q′ is just some spectator quark. . . . 38

4.1 Tree diagram for the decayB− → K+K−π−. The f0 can subsequently

decay to a K+K− pair. . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 QCD penguin diagram for the decay B− → K+K−π−. The φ can

subsequently decay to a K+K− pair. Note that the q̄q pair can be

u, d or s quarks although the φ is primarily composed of s̄s. . . . . . 45

4.3 Simplified tree diagram for B− → f0(980)π− → K+K−π−. The

decay progresses left to right. . . . . . . . . . . . . . . . . . . . . . . 46

4.4 Simplified penguin diagram for B− → φ(1020)π− → K+K−π−. The

decay progresses left to right. . . . . . . . . . . . . . . . . . . . . . . 46

5.1 Plot of the CP asymmetry against the two kaon invariant mass. The

Belle data is shown as well for comparison. . . . . . . . . . . . . . . . 59

6.1 Three body decay in the (a) lab frame, and (b) parent particle rest

frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.2 Dalitz plot for a general three-body decay, taken from [21]. The

dotted line shows all possible values of m2
23 for a given value of m2

12. 66

6.3 Plots of the integrated CP asymmetry for 50 bins over the range

2mK ≤ mKK ≤ 1.1 GeV/c2. The top (bottom) plot is for q2/m2
b =

0.3(0.5). Squares correspond to maximum values for ρ and η, while

triangles correspond to minimum values for ρ and η. The numbers of

effective colours correspond to the colours of the plots in the following

way: Nc = 0.98(0.94) is shown in orange, Nc = 2.01(1.95) is shown

in blue, Nc = 3.00(3.00) is shown in purple. . . . . . . . . . . . . . . . 70



List of Figures vii

6.4 Simplified tree diagram for B− → K+K−π− through a non-resonant

decay channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.5 Simplified penguin diagram for B− → f0(980)π− → K+K−π−. . . . . 72

6.6 Plot of the values for θ the angle between the kaons as a function of

pK , the magnitude of their momenta. This assumes the kaons have

the same magnitude for their momenta. . . . . . . . . . . . . . . . . . 73

6.7 Point-like (top left) and pole diagrams for the decay B− → K+K−.

The coloured circle denotes an insertion of the current ūγµ(1− γ5)b.
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Abstract

The matter-antimatter asymmetry observed in nature is one of the largest open

questions in particle physics and CP violation is a key requirement for such an

asymmetry to exist. Although measurements of CP violation are typically too small

to account for this asymmetry, in 2017 the Belle Collaboration reported a significant

CP violation of ACP = −0.90± 0.17± 0.03 in the 0.8 ≤ mKK ≤ 1.1 GeV/c2 region

of the K+K− invariant mass in B± → K+K−π± decays.

Direct CP violation in B meson decays arises through the interference of tree

and penguin amplitudes and can only occur if there are both strong and weak phase

differences between the diagrams. We present several models for tree and pen-

guin diagrams which proceed through a two stage decay process. These involve the

f0(980) and φ(1020) resonances, both with masses around 1 GeV/c2, and we also

test models involving non-resonant tree decay. Using these models, we calculate the

CP asymmetry ACP in an attempt to justify the Belle results. We use an effec-

tive Hamiltonian based on the four-fermion interaction and the Operator Product

Expansion to calculate the tree and penguin amplitudes, with Naive Factorisation

applied to the hadronic matrix elements. We take several form factor descriptions

of the factorised matrix elements, namely monopole and dipole dominance models.

We find evidence that there may be a significant asymmetry present in the case of

f0(980) tree interference with φ(1020) penguin intermediate states, although other

models involving non-resonant tree decays perform better when taking into account

the finite resolution of detectors. We present the following estimates of the CP

asymmetry; ACP = −0.0007 to −0.0554 for the case of a tree diagram involving the

f0(980) and a penguin involving the φ(1020); ACP = −0.0819 to −0.346 for the case

of a non-resonant tree diagram and a penguin involving the f0(980); ACP = −0.0196

to −0.101 for the case of a tree amplitude receiving both non-resonant and f0(980)

contributions, and a penguin involving the f0(980).

Future work could look to use QCD factorisation or Lattice QCD to compute

the hadronic matrix elements. If narrower constraints are placed on the properties

of the f0(980) and the CKM matrix parameters, a more definitive conclusion may

be reached on the influence of the f0(980) on the Belle result.
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Preface

CP violation is an exciting area of research in particle physics and the aim of this

work was to provide an explanation of the CP asymmetry results reported from

a recent Belle experiment. In chapter 1 we start with a brief introduction to the

Standard Model, including the key building blocks (the fermions and bosons) and

describe the interactions available to these particles (strong, weak and electromag-

netic). Chapter 2 introduces the important idea of discrete symmetries, in particular

the symmetries which arise due to parity and charge conjugation. We also discuss

the violation of these symmetries in weak interactions and the measurements of CP

violation made by Belle which motivated this work.

Chapters 3, 4 and 5 act as a discourse on our initial calculation of the CP

asymmetry. In chapter 3 we describe the four-fermion interaction formulation of

the weak interaction and apply the Operator Product Expansion to construct the

effective Hamiltonian used in later chapters. Importantly, we define the tree and

penguin processes which interfere in B meson decays to give rise to CP violation. In

chapter 4 we outline the general method for calculating CP asymmetries and propose

a model involving the f0(980) and φ(1020) resonances. We begin the calculation of

the CP asymmetry and as part of this one inevitably needs to calculate hadronic

matrix elements of B mesons transitioning through V − A currents to two particle

states. This is non-trivial and chapter 5 is entirely devoted to this. We use the Naive

Factorisation approximation to decompose each matrix element into two simpler

matrix elements which we then parametrise using form factors. Preliminary results

are also presented here.

In chapter 6 we discuss an extension of our method to account for the phase

space dependence of the tree and penguin amplitudes. We also propose two new

models involving non-resonant tree decays and compute the asymmetry for these.

The results and discussion therein lie in chapter 7. We summarise the work in

chapter 8 and present some final remarks on our results with comments on future

directions for this project.

Throughout this work we use normal text, such as p, to denote a scalar or 4-vector

while bold script, such as p, denotes 3-vectors. We use the Minkowski space-time

metric gµν = diag(+1,−1,−1,−1). Latin indices are understood to run from 1 to 3

unless otherwise stated, and Greek indices run from 0 to 3.

xvii





Chapter 1

Introduction

One of the longest scientific endeavours in human history has been the search for

the theory of the most fundamental building blocks of matter. The realm of these

particles is governed by the probabilistic interpretation of matter ascribed to quan-

tum mechanics, and the principles of special relativity. The unification of these two

regimes into relativistic quantum mechanics and quantum field theory underpins

our current understanding of the subatomic world. One of the early results of this

work was the Klein-Gordon (KG) equation, which describes the motion of spin-0

particles (bosons). Interestingly, this equation allows solutions which correspond to

particles with negative energies and give rise to negative probability densities in the

KG equation. For these reasons, the KG equation was quickly abandoned. Not long

later, Dirac proposed the Dirac equation for spin-1/2 particles (fermions). Although

the Dirac equation solves the issue of a negative probability density, it still allows

negative energy solutions. The question for physicists at the time was how should

these solutions be interpreted physically?

Dirac’s original explanation for these negative energy solutions was given in terms

of the electron. In his interpretation there is a sea of electrons, all with negative

charge. Negative energy solutions then correspond to a “hole” or the absence of

an electron. This hole is interpreted as a particle of positive charge, known as the

positron. The electron and positron were thus the first case of a particle-antiparticle

pair, and the positron was discovered in 1932 shortly after Dirac’s proposed expla-

nation [1].

Unfortunately, although the Dirac sea interpretation was perfectly valid for par-

ticles obeying the Dirac equation (fermions), it could not account for the negative

energy solutions of the KG equation (corresponding to bosons) since these aren’t

restricted by the Pauli Exclusion Principle. Furthermore, the idea of exciting an

electron from the Dirac sea and essentially creating an antiparticle seemed to vio-

late conservation of particle number. This was the catalyst for a new description

of matter in the form of quantum field theory and a new interpretation of the

particle-antiparticle dynamic. The physical interpretation which superseded that of

Dirac can be attributed to Feynman and saw positive energy antiparticle solutions

identified with negative 4-momentum particle solutions. This applies equally well

for both fermions and bosons and is fully compatible with the quantum field theo-

1



2 Introduction

retic description of matter, which allows for particle and antiparticle creation and

annihilation [1].

Although on the face of it there is no reason we should observe more matter

than antimatter, we in fact do, and it has been well known for decades that there

is a non-zero matter-antimatter asymmetry in the universe. The possible causes

for this asymmetry include the violation of CP invariance, a symmetry which sees

particles and antiparticles switched, with their momentum directions inverted. We

will go into more detail about this symmetry in the next chapter, but first we briefly

introduce the framework underpinning our currently most successful understanding

of particle physics, the Standard Model.

1.1 The Standard Model

The Standard Model (SM) is a gauge field theory combining the work of countless

particle physicists. From the building blocks of quantum field theory, the SM consists

of two classes of fields, fermionic and bosonic, and it is the excitation of these which

leads to the observation of the particles known as fermions and bosons.

The term “fermion” includes both particles and antiparticles with the key types

being quarks and anti-quarks (q and q̄), leptons and anti-leptons (l and l̄), and

neutrinos and anti-neutrinos (νl and ν̄l). Each of these classes of fermion comes in

various flavours, shown in Figure 1.1.

One of the most bizarre phenomena in particle physics is that to do with quark

confinement, which amounts to the fact that one can never observe a single quark.

Rather, quarks are only ever observed in q1q̄2 pairs known as mesons, q1q2q3 struc-

tures known as baryons, or possibly in more exotic structures such as q1q2q3q4q̄5

called pentaquarks. Collectively, these composite particles are known as hadrons,

with examples such as the proton and neutron (baryons) and the pions and kaons

(mesons). In this work we will only encounter mesons, and the list of relevant mesons

with associated properties is given in Appendix C.

The interactions which take place in the SM are facilitated by the gauge bosons

shown in Figure 1.1. Each corresponds to one of three forces in nature which arise

from gauge symmetries [1]. These are the electromagnetic force (mediated by the

photon γ), the weak nuclear force (mediated by the W bosons W± and Z boson Z0)

and the strong nuclear force (mediated by the gluon g). When the electromagnetic

force is married with quantum mechanics we obtain a theory known as quantum

electrodynamics (QED), with the strong force likewise being governed by quantum

chromodynamics (QCD). The weak nuclear force and QED arise from the unified

electroweak force [2–4]. The fourth force of nature, gravity, is as of yet non-conducive

with the SM. Nevertheless, the SM currently provides the most successful model of

particle physics. In this chapter we’ll briefly introduce the electroweak force and

QCD and outline how these allow the particles which exist in the SM (see Figure 1.1)

to interact. A more detailed look at the weak interactions between quarks will be

given in chapter 3.
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e-neutrino

νµ
µ-neutrino
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τ -neutrino
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gluon

W
W boson

Z
Z boson

γ
photon

H
Higgs boson

Figure 1.1: Table of the various elementary particles in the Standard Model arranged

into fermions and bosons.

1.1.1 The Electroweak Force

The electroweak interaction is defined by the symmetry group SU(2)L×U(1)Y where

the subscript L denotes left-handed chirality and Y denotes weak hypercharge [1].

The Lagrangian for the gauge fields arising through SU(2)L × U(1)Y symmetry

breaking is given by [1] as

L = (Dµφ)†(Dµφ) + µ2φ†φ− λ

4
(φ†φ)2 − 1

4
F µν · F µν − 1

4
GµνG

µν , (1.1)

where the covariant derivative is written

Dµφ =

(
∂µ + i

g

2
τ ·W µ + i

g′

2
Bµ

)
φ , (1.2)

and the terms proportional to µ2 and λ are for the Higgs potential. The field strength

tensor for the SU(2) symmetry is

F µν = ∂µW ν − ∂νW µ − gW µ ×W ν , (1.3)

while that for U(1) is

Gµν = ∂µBν − ∂νBµ . (1.4)
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The fields W µ = (W µ
1 ,W

µ
2 ,W

µ
3 ) and Bµ form the gauge bosons for the electromag-

netic and weak interactions through the following linear combinations. The physical

W bosons have fields given by

W µ
± ≡

1√
2

(W µ
1 ∓ iW

µ
2 ) , (1.5)

while for the Z boson and photon we take the orthogonal linear combinations

Zµ ≡ cos θWW
µ
3 − sin θWB

µ , (1.6)

Aµ ≡ sin θWW
µ
3 + cos θWB

µ . (1.7)

The mixing angle θW is known as the Weinberg angle, and takes the value such that

the electromagnetic charge e, the mass of the W bosons mW and Fermi’s constant

GF are related by

GF√
2

=
e2

8m2
W sin2(θW )

= 8.25× 10−6 GeV−2 . (1.8)

Fermi’s constant is an important indication of the strength of the weak interactions,

as we’ll come to see in chapter 3. The interactions mediated by the electroweak

bosons are depicted in Figures 1.2 and 1.3.

To round out our discussion of the electroweak interactions, we note that the

Higgs boson is the most recent of the gauge bosons to have been discovered, and is

responsible for the W and Z bosons gaining mass as well as the renormalizability of

the electroweak interactions [1].

νl, l

l, νl

W+,W−

u, d

d, u

W+,W−

W± W±

W± W±

Figure 1.2: Feynman diagrams showing the interaction vertices involving fermions and

the weak bosons W±. l denotes an electron, muon or tau lepton, with νl the correspond-

ing neutrino. u and d denote up- and down-type quarks respectively (u = u , c , t and

d = d , s , b).

1.1.2 Quantum Chromodynamics

Quantum Chromodynamics (QCD) is a gauge field theory under the SU(3) colour

symmetry [1]. We thus attribute a degree of freedom known as colour to the quarks

and this allows the force carrier for QCD, the gluons, to interact with the quarks.
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γ

q, l

q̄, l̄

W± Z, γ

W± Z, γ

Z

q, l, νl

q̄, l̄, ν̄l

Z

W±

W±

Figure 1.3: Feynman diagrams showing the interaction vertices involving the electroweak

bosons Z0 and γ. All the interactions shown are flavour conserving, so in this case q denotes

a single flavour of quark (likewise, the label l denotes a single flavour of lepton/neutrino).

Additionally, since the gluons themselves carry colour, they self interact. We can

see this from the full QCD Lagrangian

LQCD = −1

4
(∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν)(∂

µAaν − ∂νAaµ + gfadeAdµAeν)

− 1

2ξ
(∂µA

aµ)2 − η̄a∂µ(∂µδac − gfabcAbµ)ηc + ψ̄[iγµ(∂µ − igAaµT a)−m]ψ . (1.9)

Here, Aaµ are the gluon fields with colour index a, g is the gluon gauge coupling and

fabc are the structure constants for the SU(3)colour lie algebra. The first line comes

from the gauging of SU(3)colour and contains terms where the gluons self interact [5].

The term involving ξ is a gauge fixing term with, for example, ξ = 1 in Feynman

gauge. The term involving ηa describes the Faddeev-Popov interaction where the

gluons interact with the ghost field ηa [5]. The last term is of most interest to us as

it contains the interaction of the gluon field with that of a quark ψ. Here T a refers

to the generators of SU(3)colour. The various interactions mediated by the gluons

are depicted in Figure 1.4.

One of the defining qualities of QCD is to do with its coupling strength. This

is typically characterised by αS, which is related to the gluon coupling in the QCD

Lagrangian by αs = g2/4π. To be more precise, the coupling strength is written

as αS(Q2) where Q2 is the relevant momentum scale. In good agreement with

the theoretical prediction, the coupling strength is characteristically large at low

momenta and takes small values in high momenta regions. This then means we can

encounter QCD in two regimes; at high momenta (equivalently high energies) one
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g

q

q

g

g

g

g g

g g

Figure 1.4: Feynman diagrams showing the interaction vertices involving gluons. The left

diagram shows a gluon-quark-antiquark interaction, while the central and right diagrams

depict gluon self interactions.

can solve QCD perturbatively. Conversely, at low energies, one must rely on non-

perturbative methods such as Lattice QCD and factorisation in order to compute

QCD amplitudes and other measurable quantities [6]. The running of the coupling is

depicted in Figure 1.5. This behaviour of the strong nuclear force will be of particular

interest for us when we discuss the Operator Product Expansion in chapter 3.

Figure 1.5: Plot of the running of αS as a function of Q the momentum transfer. The

solid curves show the theoretical prediction from perturbation theory, with the various

data points taken from different experimental measurements. Figure taken from [6].

1.2 Chirality

To finish this chapter, we will briefly introduce the idea of “handedness” and chi-

rality. If we consider a particle which has a spin vector in some direction and a
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momentum vector in some (possibly different) direction, we can assign the particle

a helicity. The helicity operator is defined as

h(p) =


σ · p
|p|

0

0
σ · p
|p|

 , (1.10)

where σ are the Pauli spin matrices

σ1 =

(
0 1

1 0

)
, σ1 =

(
0 −i
i 0

)
, σ1 =

(
1 0

0 −1

)
. (1.11)

The eigenstates of the helicity operator have the physical interpretation of eigen-

states of the spin operator resolved along the direction of the particle momentum

p [1].

We can then connect this idea of helicity with the eigenstates of the Dirac equa-

tion. In the representation where γ5 =

(
1 0

0 −1

)
and the Dirac spinors are written

u =

(
φ

χ

)
, the two-component spinors φ and χ satisfy

(σ · p)φ = Eφ−mχ and (σ · p)χ = −Eχ+mφ . (1.12)

In the limit of massless particles (an often useful approximation for the masses of

the u and d quarks) E → |p| and the two component spinors of the Dirac equation

become helicity eigenstates with h(p)φ = +φ and h(p)χ = −χ. Typically, one then

defines the left and right projection operators

PR =
1 + γ5

2
, PL =

1− γ5

2
. (1.13)

These are so named since clearly

PR

(
φ

χ

)
=

(
φ

0

)
, PL

(
φ

χ

)
=

(
0

χ

)
, (1.14)

and so the operators project out those components with positive or negative helicity.

The names left- and right-handed originate from the right-hand rule for angular mo-

mentum and refer to the idea that a right-handed state has its spin and 3-momentum

completely aligned while a left-handed state has its spin and 3-momentum entirely

anti-aligned. In the theory of weak interactions, we’ll see that the W bosons only

connect quark spinors which are left-handed. We write these spinors as qL, with q

the flavour of the quark; conversely the right-handed spinors are written qR.





Chapter 2

CP Violation

With the brief introduction to the SM in the previous chapter, we move on to describ-

ing the idea of symmetry in the SM. Specifically, we discuss the charge conjugation

and parity symmetries individually before discussing the combined CP symmetry.

We do this from a formal standpoint with historical examples given of key exper-

imental results. In particular, we use typical examples of the first evidence of CP

violation in the kaon system. We then proceed with a summary of the decays of

B mesons and go on to describe the typical B-factory. The chapter closes with a

summary of a key result obtained at the Belle detector facility from recent years.

2.1 Symmetries

Symmetries play an integral role in physics, informing one about conserved quan-

tities and guiding the construction of new theories of the universe. We say that

a system or theory exhibits a particular symmetry when it remains invariant un-

der the corresponding transformation. Typically we consider two main classes of

symmetry; continuous and discrete. Continuous symmetries are observed under the

repeated application of infinitesimal transformations such as translations and rota-

tions. These examples lead to the famous conservation laws for linear and angular

momentum. The second class of symmetries are the discrete symmetries. Typical

examples of the discrete transformations giving rise to these symmetries are parity,

charge conjugation and time reversal. We elaborate on these below. Additionally,

here we introduce the notation that P , C and T refer to the parity, charge conju-

gation and time reversal transformations while P, C and T denote the associated

symmetries.

2.1.1 Parity

The parity transformation P is defined as

P : (t,x)→ (t,−x) , (2.1)

where we recognise that this really just means “reverse all the signs of the compo-

nents of a state’s position vector”. This is not the only way we can interpret P .

9
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When it acts on a coordinate system rather than a state, it changes a right handed

frame to a left handed frame and vice versa [7] and this has implications for allowed

processes. For our case we mainly consider P acting on states rather than coordinate

frames.

Clearly, if we act twice with P on a state, we should observe no change (P 2 = I)
and so, for the action of P on some real scalar field φ, we have

P : φ(t,x)→ ±φ(t,−x) . (2.2)

Generalising to complex scalar fields, we have

P : φ(t,x)→ ηφ(t,−x) , (2.3)

where η is a complex phase referred to as the intrinsic parity of a particle. A priori

there is no reason the intrinsic parity of a particle should take a particular value.

However, we can refine our definition of parity to give particular particles values of

+1 for their parity; the result of this is that others receive a −1.

Consider the following global symmetry for QED,

P̃ : φ→ eiαQφ (2.4)

for any α ∈ R and for Q the charge of the field φ. Then suppose P 2 is a subgroup

of this global symmetry. Since

P̃ 2 : φ(t,x)→ eiαQeiα
′Qφ(t,x) = eiβQφ(t,x)

for some β ∈ R, we observe η2 = eiβQ and so η = ±eiβ2Q. Now we are free to redefine

the parity operator to be P ′ = Pe−i
β
2
Q such that

P ′ : φ(t,x)→ Pe−i
β
2
Qφ(t,x) = ±e−i

β
2
Qei

β
2
Qφ(t,−x) = ±φ(t,−x) . (2.5)

Hence all elementary particles have an intrinsic parity of±1 under this new definition

of parity. We can go a step further by recognising two more global symmetries within

the Standard Model; lepton number L and baryon number B. In much the same

way as for the global symmetry due to electric charge, we have that, if P 2 is also a

subgroup of these other global symmetries, then

P 2 = ei(αB+βL+γQ) (2.6)

for some α , β and γ ∈ R. Redefining our parity operator once more to be

P ′ = Pe−
i
2

(αB+βL+γQ), we observe that now all SM particles, including hadrons,

have parity ±1.

It is a simple matter of convention now as to which particles have odd (η = −1)

or even (η = +1) parity. If we happened to assign odd parity to the proton for

instance, we could introduce another phase to set the intrinsic parity of the proton
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to be positive. Taking P ′′ = (−1)BP ′ then under this new definition of parity, the

proton has η = +1 (where we recognise that the proton has baryon number B = 1).

Similarly, one typically requires that the neutron and electron have even parity as

well, and these are set by choosing phases corresponding to L and Q. All other

baryons then have their intrinsic parities determined by this convention.

To assign intrinsic parities to the mesons, we can use the fact that Dirac bilin-

ears transform according to the associated label (vector, pseudovector/axial vector,

scalar, pseudoscalar and tensor) [8]. The forms of the bilinears are

ψ̄1(x)ψ2(x) Scalar S

ψ̄1(x)γµψ2(x) Vector V

ψ̄1(x)σµνψ2(x) Antisymmetric Tensor T

ψ̄1(x)iγµγ5ψ2(x) Axial Vector A

ψ̄1(x)γ5ψ2(x) Pseudoscalar P .

For completeness, the Dirac matrices γµ = (γ0,γ) are given by

γ0 = β , γ = βα , (2.7)

where the matrices β and αi are given by

β =

(
1 0

0 −1

)
, αi =

(
0 σi
σi 0

)
. (2.8)

We’ve written the matrices in 2 × 2 block form where 1 represents the 2 × 2 iden-

tity matrix and the σi are the Pauli spin matrices. Thus, for example, the parity

transformation acts on scalars and pseudoscalars as

P |S(t,x)〉 = + |S(t,−x)〉 , P |P (t,x)〉 = − |P (t,−x)〉 , (2.9)

and for vectors and axial vectors as

P |V (t,x)〉 = − |V (t,−x)〉 , P |A(t,x)〉 = + |A(t,−x)〉 . (2.10)

Then, the associated bilinear label for a meson tells us its action under parity.

Practically, one uses a convention to assign parities to some observable particles

and then measures parities of other particles relative to this convention. Typically,

the convention is

ηp = ηn = ηe ≡ +1 , ηK− = ηD− = ηB− ≡ −1 , (2.11)

where p and n denote the proton and neutron (baryons), e is the electron (lepton) and

K− , D− and B− are ūs , ūc and ūb mesons [9]. In order to relate parities between

different particles, one uses conservation of parity; this requires electromagnetic and
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strong processes only since, as we’ll come to see, weak interactions do not conserve

parity. Before we look at this though, we’ll briefly note a second type of symmetry.

2.1.2 Charge Conjugation

The other type of discrete transformation we are interested in is charge conjugation

C and this, like parity, was thought to produce an exact symmetry in all physical

systems. C is the operator which “interchanges particles with their antiparticles

without changing their positions or spins”. To describe this transformation formally,

we consider the Dirac equation, the equation of motion for all spin-1/2 particles.

Suppose we have some particle with electric charge e and spinor ψe. It obeys the

Dirac equation

(i /D −m)ψe = 0 (2.12)

where Dµ is the covariant derivative for QED, defined to be Dµ ≡ ∂µ + ieAµ where

Aµ is the electromagnetic 4-vector potential, and m is the mass of the particle.

Expanding out the covariant derivative, we obtain

(γµ(i∂µ − eAµ)−m)ψe = 0 . (2.13)

Now, consider an antiparticle with charge −e and antiparticle spinor ψ−e; it obeys

its own Dirac equation

(γµ(i∂µ + eAµ)−m)ψ−e = 0 . (2.14)

From here, we’d like to investigate whether or not we can introduce a transfor-

mation of the particle spinor ψe such that we obtain a new spinor which obeys

equation (2.14). If we can, then this transformation has exactly the property of

the C operator, that is, it interchanges particles and antiparticles! We start by

considering the gauge transformation

ψ → exp(ieφ)ψ . (2.15)

Taking the complex conjugate we obtain

ψ∗ → exp(−ieφ)ψ∗ = exp(i(−e)φ)ψ∗ . (2.16)

This implies that the complex conjugate of a particle spinor transforms as the an-

tiparticle spinor (opposite sign for the electric charge). This motivates us to consider

the complex conjugate of equation (2.13)

(−γµ∗(i∂µ + eAµ)−m)ψ∗e = 0 . (2.17)
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Then, we multiply on the left by some invertible matrix C and also multiply by the

identity C−1C = I to obtain

C(−γµ∗(i∂µ + eAµ)−m)C−1Cψ∗e = 0 ,

(−Cγµ∗C−1(i∂µ + eAµ)−m)Cψ∗e = 0 . (2.18)

At this point, if we can show that there exists some matrix C with −Cγµ∗C−1 = γµ

then Cψ∗e looks very much like it could be ψ−e. We state without proof that a

possible candidate for the charge conjugation operator is

C = −iγ2 (2.19)

where γ2 is one of the Dirac matrices given in equation (2.7). We can then write

the corresponding spinor transformation

C : ψe → −iγ2ψ
∗
e ≡ ψ−e (2.20)

and take the complex conjugate to get the transformation of ψ∗ under C

C : ψ∗e → (−iγ2ψ
∗
e)
∗ = +iγ∗2ψe = −iγ2ψe . (2.21)

Returning to equation (2.20) we can write the transformation for the antiparticle

spinor as

C : ψ−e = −iγ2ψ
∗
e → −iγ2Cψ

∗
e = −iγ2(−iγ2ψe) = +ψe . (2.22)

Hence we see that C is capable of interchanging particle and antiparticle spinors,

and it also has the important property that C2 = I.
In much the same way as for parity, one defines some intrinsic charge parities

for a selection of observable particles and then all others are determined relative to

these. Importantly, only particles which are their own antiparticles have intrinsic

charge-parities [9], for example the π0 and the φ(1020). These particles consist of qq̄

pairs exclusively and so C acts to just interchange the particles within each pair, so

the result is just the original particle. With an odd number of quarks, the baryons

cannot be eigenstates of C and so do not have intrinsic C-parities; only those mesons

which are their own antiparticles do.

2.2 C and P Violation

Over the previous two sections we’ve looked at how one typically defines the parity

and charge conjugation transformations. We will now look at the historical devel-

opments which led to our current understanding of CP violation, namely the work

pioneered by Lee, Yang and Wu, which led to the overthrow of the idea that parity

and charge conjugation were conserved quantities.
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2.2.1 Parity Violation in the Decays of 60Co Nuclei

Until the mid 1950s, parity conservation was taken for granted in every area of

particle physics, an assumption supported by an abundance of examples of parity

conservation in both electromagnetic and strong interactions. Even though there

was nothing to show it was a symmetry of the weak interaction, it wasn’t until

1956, when Lee and Yang first realised this, that P violation was seriously consid-

ered [10]. Motivated by the “θ − τ puzzle” (more on this later) and after realising

that weak interactions could be a source of P violation, Lee and Yang proposed the

now famous 60Co experiment which would later be conducted by Wu and her collab-

orators [11]. The experiment involved taking a sample of 60Co nuclei and aligning

their spins. This in and of itself presented many challenges, such as needing to lower

the temperature of the sample to 0.01K, so perhaps it isn’t so surprising that such

an experiment had not been performed prior to this! The sample then decayed via

the weak process
60Co→60 Ni + e− + ν̄e (2.23)

and the emission of the electrons was measured using an array of detectors. The

parity transformed system was then considered, as shown in Figure 2.1.

60Co

e−

P
60Co

e−

Figure 2.1: Cartoon of the action of P on the 60Co nuclei in Wu’s parity violation

experiment. The spin of the nucleus is shown as a solid red arrow, while the electron

momentum is depicted as a blue dashed arrow. The parity transformation reverses the

direction of the electron’s momentum without changing the direction of the nucleus’ spin.

The parity operator doesn’t alter the spin of the nuclei since angular momentum,

and thus spin, is a pseudovector (even under parity). On the other hand, parity

inverts the 3-momentum vectors of the emitted electrons, reversing the direction

of emission. The principle of the experiment conducted by Wu is that, assuming

parity is a perfect symmetry of the weak force, the electrons should have no preferred

direction to be emitted in. If there was some predilection for a particular direction of

emission, say in the same direction as the nuclear spin, then the parity transformed

process in which electrons are emitted in the opposite direction to nuclear spin

would be just as valid. In other words, if the weak interaction was invariant under

parity, then there should have been equal rates for both processes in Figure 2.1 and

so a uniform angular distribution of electron emission. But Wu observed that the
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electrons tended to be emitted in the direction opposite to the nuclear spin, giving

rise to the left-right asymmetry, and this was the first direct evidence of parity

violation!

2.2.2 Charge Conjugation Violation in the Decays of Pions

With the fall of parity as a symmetry of weak interactions, one might question

whether charge conjugation is similarly violated; it turns out that indeed it is. In a

letter accompanying that of Wu and her team [12], Garwin, Lederman and Weinrich

reported their findings in the two stage weak decay process

π+ → µ+ + νµ , µ+ → e+ + νe + ν̄µ . (2.24)

They found that the positrons were emitted predominantly in one direction and this

had immediate consequences for the polarisation of the muons [12]. Consider that

the π+ has spin-0 and decays at rest so the µ+ and νµ necessarily come out back-

to-back with opposite spin projections along the momentum axis. Hence they are

both either left- or right-handed. However, right-handed neutrinos and left-handed

anti-neutrinos don’t exist (or at least we haven’t been able to observe them so far)

and so the µ+ is necessarily left-handed to match its accompanying neutrino.

The µ+ goes on to decay to the positron, neutrino and anti-neutrino. Taking

the high energy, relativistic limit of this process, the neutrino and anti-neutrino

are emitted in the same direction, opposite to the positron [9]. Then, since the

neutrino and anti-neutrino have opposite handedness, their spin projections along

the momentum axis cancel. As a result, the positron must have the same compo-

nent of spin as the muon to conserve angular momentum. Finally, since relativistic

positrons are always right-handed (just as antineutrinos are always observed to be

right-handed) [9], the positron must be emitted in the same direction as the µ+ spin.

The exact same arguments hold for the charge conjugated process whereby the µ−

emits an electron in the direction opposite to its spin.

The simplest way to see that C and P are both violated in this overall process is

to perform the parity and charge conjugation transformations shown in Figure 2.2.

Clearly, starting from either of the two allowed cases and applying either C or P we

obtain a helicity forbidden emission, so both C and P are violated. This is in fact

what was observed experimentally; the positrons produced were preferentially emit-

ted in a particular direction with a noticeable suppression of the helicity forbidden

regime attained by the relativistic limit. This immediately meant that invariance

under parity was violated.

In concurrent work by Lee, Oehme and Yang, it was proven that for decays in

which the final states were incapable of interacting strongly (as is the case for the

purely leptonic final states in this decay chain), left-right asymmetries which give

rise to P violation are not possible if C is conserved [13]. So when Garwin et. al.

measured an asymmetry in the emission of the positrons in the final state, this

meant that not only was parity violated, but so too was charge conjugation [12].
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µ+

e+

µ+

e+

µ−

e−

µ−

e−

P

P

C
CCP

Figure 2.2: Flow chart showing the way C and P transform the decay of the muons.

The helicity allowed states are circled and connected by an overall CP transformation. C

acts to interchange particles with antiparticles (e+ ↔ e− and µ+ ↔ µ−) while P acts to

invert the 3-momentum of the emitted electron/positron (shown as a dashed blue line).

The spin direction of the muon/anti-muon (shown as a thick red arrow) is unaffected by

either transformation.

A final thing to note about Figure 2.2 is that the two observable emission pro-

cesses are connected by a CP transformation, that is, applying the two transfor-

mations C and P consecutively. This then is an example where the individual

symmetries C and P are violated, yet the system respects invariance under the CP

operator. So it seems that although these individual symmetries may break down

in weak interactions, this composite operator may still provide a valid symmetry. It

turns out though that CP symmetry is also violated in some weak processes.

2.2.3 Time Reversal and CPT

In addition to the parity and charge conjugation operators, we can also construct

the time reversal operator, which is defined by

T : (t,x)→ (−t,x) . (2.25)
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We won’t go into much more detail here, other than to say that one of the require-

ments of any theory in the SM is that it is CPT invariant [1,8,14]. This leads to the

equality of masses and the equal magnitude but opposite sign of charge for particles

and antiparticles, both of which have been rigorously tested [1]. All measurements

have been in strong agreement with CPT invariance.

As a result of CPT invariance and the violation of C and P, there are cases then

where T symmetry is also violated. In fact, one necessarily finds that the degree

to which T invariance is violated is equal but opposite to that of the combined CP

symmetry such that CPT remains invariant.

2.3 CP Violation

Although C and P symmetries are violated in weak processes, if one considers the

combined CP symmetry this is in many circumstances a stronger symmetry than

either C or P individually. However, one can find examples of CP violation as well,

typically in the decays of kaons, and more recently in those of B mesons and D

mesons.

2.3.1 CP Violation in Kaons

The first direct measurement of CP violation was made in the decays of neutral

kaons. The neutral kaons K0 and K̄0 are flavour eigenstates and not CP eigenstates

since the CP operator acts on them in the following way:

CP
∣∣K0(t,p)

〉
= −C

∣∣K0(t,−p)
〉

= −
∣∣K̄0(t,−p)

〉
, (2.26)

CP
∣∣K̄0(t,p)

〉
= −C

∣∣K̄0(t,−p)
〉

= −
∣∣K0(t,−p)

〉
. (2.27)

One typically forms CP eigenstates from the neutral kaons by defining

K1 ≡
K0 − K̄0

√
2

, K2 ≡
K0 + K̄0

√
2

. (2.28)

Clearly K1 is even under CP while K2 is odd. Then, if CP is an exact symmetry of

the SM, K1 should decay to a 2π state (which is also CP even) and K2 will decay to

a 3π state (which is CP odd) [9]. CP being an exact symmetry means there would

be no K1 → 3π or K2 → 2π decays. Since the allowed phase space is less for the 3π

final state compared to the 2π final state, we would then expect that K2 is longer

lived than K1.

In 1964, Christenson et. al. observed that the longer lived K2 could decay to

the 2π final state, albeit only a minute fraction of the time [15]. Nevertheless, this

showed that CP was not conserved in the weak decays of kaons. One can quantify

the degree of CP violation by considering mass eigenstates. Consider that if CP was

conserved then the commutator of CP with the weak Hamiltonian would be zero

and K1 and K2 would be mass eigenstates as well as CP eigenstates. However, CP
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is not conserved and so the commutator is non-zero and the K1 and K2 states are

not mass eigenstates (they can mix with one another). The mass eigenstates are

instead written as small deviations from the states K1 and K2

KS = K1 + εK2 , KL = K2 − εK1 , (2.29)

read as “K-short” and “K-long” to denote the short and long lived states respectively.

Here ε measures the degree of CP violation (ε = 0 implies CP is conserved).

One type of CP violation we can assign to this example is that due to mixing;

the K1 and K2 CP eigenstates are capable of mixing through processes such as that

shown in Figure 2.3 to form the mass eigenstates KL and KS which then decay to

otherwise CP forbidden final states. However, there is another type of CP violation

which may occur whereby, say, the K2 can decay directly to the 2π final state without

first mixing with the K1. This is known as direct CP violation, and this is typically

characterised by a process and its CP conjugate process having different decay rates.

A third type of CP violation can occur through the interference between mixing

and direct decay [5, 8].

d s

s d

K0 K̄0

u, c, t

u, c, t

W+ W−

Figure 2.3: Feynman diagram showing the mixing between the neutral kaons.

The degree of violation measured for all three forms of CP violation in the kaon

system is non-zero though still quite small [8]. However, the decays of kaons aren’t

the only sources of CP violation in the SM; B mesons and D mesons afford another

avenue for sources of CP violation.

2.3.2 CP Violation in B Mesons

In analogy with the kaon mixing described above and shown in Figure 2.4, one

can analyse the decays of the neutral B mesons through the mixing of the CP

violating mass eigenstates BL and BH (L and H stand for “light” and “heavy”).

These particles have very nearly identical lifetimes of about 1.5 × 10−12s, which is

significantly shorter than those of the kaon equivalents KS and KL [9]. This short a

lifetime presents the biggest obstacle to B meson analyses for although it’s predicted

in the SM that the B mesons should be ideal laboratories for studying CP violation,

it was historically difficult to produce and maintain a steady beam of B mesons

without them decaying away too rapidly. This challenge was eventually solved by

using Beauty/Bottom Factories.
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As an aside, we’ve only addressed CP violation due to mixing in the B mesons.

However, just as for the kaon example, one can measure direct CP violation by

comparing the decay amplitudes for a B meson decaying to some final state as

compared to a B̄ meson decaying to the CP conjugate final state. We’re exclusively

interested in this type of CP violation and will explore it in more depth in chapter 4.

d b

b d

B0 B̄0

u, c, t

u, c, t

W+ W−

Figure 2.4: Feynman diagram showing the mixing between the neutral B mesons.

Beauty/Bottom Factories

In a naive experiment, one could have some source of B mesons but these would

typically decay before we could begin any measurement, owing to their extremely

short lifetimes. The novel realisation by physicists in the 1980’s which allowed for

the first detection of CP violation in B meson decays was to make use of the Υ(4S)

resonance [16]. This bb̄ state has the same quantum numbers as the photon so is

typically produced at e+e− colliders. Furthermore, this particular resonance has

a mass of 10.58 GeV, which is just at the threshold for B − B̄ production. The

result of all this is that the Υ(4S) is readily produced in e+e− colliders and decays

almost exclusively to B− B̄ pairs, with very little in the way of waste products. By

tuning the e+e− beams, one is able to produce a large number of B mesons; enough

that even though they decay rapidly, it is possible to maintain a steady beam of B

mesons.

When they were first conceived, there were several proposals put forward for po-

tential Beauty/Bottom factories (B-factories) and these were distilled to the current

facilities at KEKB and PEP-II. These two laboratories consist of asymmetric-energy,

circular e+e− colliders operating at the Υ(4S) resonance. The necessity of an asym-

metric energy for the e+e− beams is a result of the time profile of the decays and the

need for the Υ(4S) resonance to be produced not at rest in the laboratory frame [16].

The use of B-factories has allowed for a rich investigation into CP violation as

well as other areas of flavour physics. These kinds of experiments allow physicists

to explore some of the most complex and demanding questions in their field. The

most relevant of these to CP violation is the matter-antimatter asymmetry present

in the universe.
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2.4 Matter-antimatter Asymmetry

At first glance, it might seem that CP being violated is a problem; it is in fact quite

the opposite. It has been known for some time that there is an inherent predomi-

nance of matter over antimatter in the universe, although the exact reasons for this

are still an open question. The groundwork for this avenue of research was laid by

Sakharov when he postulated a model for baryogenesis, that is, the mechanism

by which matter and antimatter density in the universe can fluctuate. In his 1966

paper, Sakharov proposed his famous three conditions for baryogenesis [17,18]. As-

suming an initial baryon-symmetric universe, baryogenesis occurs for interactions

satisfying 1) baryon number B violation, 2) C and CP violation and 3) departure

from thermal equilibrium.

The necessity for the first condition is somewhat obvious. Supposing that just

after the Big Bang there was an equal number of baryons and anti-baryons (B = 0)

then, if at some later point in time, there was an imbalance in the baryonic density

(B 6= 0), there has clearly been a violation of baryon number along the way.

The violation of C in the second condition is necessary so that if there is a

process which generates an excess of baryons, it is not counterbalanced by an exactly

opposite process which generates the same excess of anti-baryons (which would leave

the total baryon number unchanged). CP violation is then necessary for the same

reasons but for left and right-handed baryons and anti-baryons.

The need for the third condition is not as immediately clear, although the proof

is somewhat trivial. Starting from the equilibrium average for the baryon number

operator at some temperature T = 1/β

〈B〉 = Tr(e−βHB)

= Tr((CPT )(CPT )−1e−βHB)

= Tr((CPT )−1e−βHB(CPT ))

= Tr(e−βH(CPT )−1B(CPT ))

= −Tr(e−βHB)

where we’ve used the cyclic property of the trace, [CPT,H] = [(CPT )−1, H] = 0

and also the fact that B is odd under CPT [7]. Clearly, by comparing the first

and second lines in the proof, the average baryon number is zero and so there is

no matter-antimatter asymmetry if the interactions occur in thermal equilibrium

(recall that thermal equilibrium was our initial assumption).

Although CP violation has been observed many times, in searches guided by the

SM, the degree of violation hasn’t been sufficient to fully account for Sakharov’s

second condition for baryogenesis [8]. This presents a real dilemma for physicists; if

the SM can’t predict large enough CP violations, then one may need to propose an

extension to the theory or even come up with some entirely alternative explanation

(such as dark matter). Fortunately, as we’ll come to see, the Belle Collaboration

had a recent measurement which reported an extremely large CP violation.
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2.5 Belle Results

In their 2017 paper “Measurement of branching fraction and direct CP asymmetry

in charmless B+ → K+K−π+ decays at Belle”, the Belle Collaboration reported

an exceptionally significant CP violation. The study consisted of analysing data

from the Belle detector at the KEKB collider, with 772 × 106 BB̄ pairs in the

data sample [19]. The Belle Collaboration reported their measurement of the CP

violation in terms of the CP asymmetry for B+ decays compared to B− decays.

This is quantified as

ACP =
N− −N+

N− +N+
(2.30)

where N± refers to the number of B± → K+K−π± decays. They found an asym-

metry of

ACP = −0.90± 0.17± 0.03 (2.31)

in the K+K− invariant mass region 0.8 ≤ mKK ≤ 1.1 GeV/c2 [19] where the

invariant mass is define by m2
KK ≡ (pK+ + pK−)2. This means there was an excess

of B+ decays compared with B− decays. This corresponds with the condition for

direct CP violation, that is that the amplitudes for the decays are different,

A(B+ → K+K−π+) 6= A(B− → K+K−π−) . (2.32)

The asymmetry is plotted in Figure 2.5 for various bins in mKK the K+K− invariant

mass, with the value quoted in equation (2.31) corresponding to the lowest mKK

bin. Clearly, an asymmetry of zero is indicative of CP conservation rather than

violation. However, in general the asymmetry can take extreme values of ±1, so the

result obtained by Belle is highly significant.

While the Belle Collaboration suggested further studies by Belle and LHCb in-

volving Dalitz analyses, we will investigate this ourselves, within the formalism of

CP asymmetries arising from so called tree and penguin diagrams. Our analysis

is guided by an effective Hamiltonian, to be discussed in the chapter immediately

following this. Our goal is to produce a theoretical result for the CP asymmetry

which is comparable to equation (2.31) and/or Figure 2.5.
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Figure 2.5: Plot of the CP violating asymmetry reported by Belle for five

bins across the K+K− invariant mass range 0.8 ≤ mKK ≤ 5.3 GeV/c2. The first

bin 0.8 ≤ mKK ≤ 1.1 GeV/c2 shows a significant CP asymmetry in the vicinity of

mKK ∼ 1 GeV/c2.



Chapter 3

Effective Hamiltonian

When calculating the CP asymmetry for a particular decay, one inevitably needs to

compute the amplitudes for two types of processes known as tree and penguin decays

and this is typically handled through an effective Hamiltonian approach. We begin

by introducing the CKM quark matrix and the theory of four-fermion interactions

and use these ideas, along with an Operator Product Expansion (OPE), to develop

an effective Hamiltonian to describe the weak interaction. As part of this, we define

the corresponding tree and penguin operators which appear in the Hamiltonian and

the relevant Feynman diagrams. We conclude the chapter with a discussion of the

Wilson coefficients in the OPE.

3.1 CKM Matrix

In the previous chapter we provided an overview of CP violation and the experiments

which verified it. We return now to a discussion of the SM; specifically, we’re

interested in how the SM incorporates CP violation. From the historical observations

of CP violation we know that it only occurs in weak interactions. As such, we’ll

delve exclusively into a discussion of this force.

In chapter 1 we introduced the three generations of quarks, and went on to

describe the weak force which allows interaction between the quarks and leptons

through the W and Z bosons. We also note that weak interactions are the only cases

of flavour changing interactions in the standard model. In particular, the mixing of

quark flavours through the W bosons is governed by a construction known as the

Cabibbo-Kobayashi-Maskawa (CKM) matrix. We will go through the derivation

of this matrix here, although we assume some prior familiarity with the relevant

quantum field theory (a more fundamental derivation would take too long and would

deviate from the intended scope of this work).

Starting from the mass terms in the Yukawa Lagrangian of the SM [8] we have

Lmass = −Y d
ijQ̄

iHdjR − Y
u
ij Q̄

iH̃ujR + h.c. , (3.1)

23
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where h.c. are higher order corrections, Y u and Y d are Yukawa matrices, i and j are

flavour indices, Qi are the quark SU(2) doublets given by

Qi =

(
uL
dL

)
,

(
cL
sL

)
,

(
tL
bL

)
, (3.2)

H is the Higgs multiplet (H̃ ≡ iσ2H where σ2 is the second Pauli matrix) and

uiR ≡ (uR, cR, tR) and likewise for diR. After spontaneous symmetry breaking, the

Higgs gains a vacuum expectation value (vev) and so the quark mass terms become

Lmass = − v√
2
Y d
ij d̄

i
Ld

j
R −

v√
2
Y u
ij ū

i
Lu

j
R + h.c. . (3.3)

Writing this in terms of matrices, we have

Lmass = − v√
2

(
d̄LYddR + ūLYuuR

)
+ h.c. . (3.4)

We can then introduce two diagonal mass matrices Mu and Md via the following ar-

guments. First, note that YdY
†
d and YuY

†
u are clearly both hermitian (Y Y † = (Y Y †)†).

Then clearly these matrices are also normal, that is, they commute with their hermi-

tian conjugates. This is enough then to say that it is possible to diagonalise them by

two different unitary similarity transformations [20]. We write these transformations

as

U †dYdY
†
d Ud = M2

d , U †uYuY
†
uUu = M2

u , (3.5)

and we note that the diagonal mass matrices Md and Mu introduced here are squared

only for convenience; clearly if M is diagonal then so too is M2. Then, using the

unitarity of Ud and Uu, we rewrite equations (3.5) as

YdY
†
d = UdM

2
dU
†
d , YuY

†
u = UuM

2
uU
†
u . (3.6)

We then write the Yukawa matrices explicitly as

Yd = UdMdK
†
d , Yu = UuMuK

†
u , (3.7)

where we’ve introduced two new unitary matrices Kd and Ku. Clearly these defini-

tions satisfy equation (3.6). Finally then, we can substitute these definitions for the

Yukawa matrices into equation (3.4) and we get

Lmass = − v√
2

(
d̄LUdMdK

†
ddR + ūLUuMuK

†
uuR

)
+ h.c. . (3.8)
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At this point we perform a change of basis (to the mass basis) for each of the quark

spinors

dR → KddR , uR → KuuR , (3.9)

dL → UddL , uL → UuuL . (3.10)

Substituting these in to our Lagrangian and leaving out the higher order terms for

now, we get

Lmass = − v√
2

(
d†Lγ

0UdMdK
†
ddR + u†Lγ

0UuMuK
†
uuR

)
→ − v√

2

(
(UddL)†γ0UdMdK

†
dKddR + (UuuL)†γ0UuMuK

†
uKuuR

)
= − v√

2

(
d̄LU

†
dUdMdK

†
dKddR + ūLU

†
uUuMuK

†
uKuuR

)
= − v√

2

(
d̄LMddR + ūLMuuR

)
.

where we’ve made use of the definition of the “bar” notation as well as the unitarity

of both U and K. This allows us to then write the mass terms in the mass basis as

Lmass = −md
i d̄
i
Ld

i
R −mu

i ū
i
Lu

i
R + h.c. , (3.11)

where mu
i are the diagonal elements of Mu and md

i are the diagonal elements of Md.

In other words

Mu =

√
2

v

mu 0 0

0 mc 0

0 0 mt

 , Md =

√
2

v

md 0 0

0 ms 0

0 0 mb

 . (3.12)

So far, we’ve exclusively considered the mass terms in the electroweak Lagrangian,

but there are also kinetic terms which may be altered under the change of basis

we’ve imposed. Writing the full Lagrangian in the old flavour basis we have [8]

Lflavour =
(
ūL d̄L

)i [
i/∂ + γµ

(
g′

6
Bµ + g

2
W 3
µ

g√
2
W+
µ

g√
2
W−
µ

g′

6
Bµ − g

2
W 3
µ

)](
uL
dL

)i
+ ūiR

(
i/∂ + g′

2

3
/B

)
uiR + d̄iR

(
i/∂ − g′1

3
/B

)
diR

− v√
2

[
d̄iL

(
UdMdK

†
d

)ij
djR + ūiL

(
UuMuK

†
u

)ij
ujR + h.c.

]
. (3.13)

Here, i, j are flavour indices; g, g′ are couplings in the electroweak theory; Bµ,W
3
µ ,W

±
µ

are the gauge fields corresponding to the weak bosons. The last line above consists

of the mass terms we saw previously and we already know how these will transform

under the change of basis to the mass basis. Now we just need to determine if and
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how the kinetic terms (all the other terms) change under the same change of basis.

In the second line of equation (3.13) we have the terms

ūiR

(
i/∂ +

2

3
g′ /B

)
uiR + d̄iR

(
i/∂ − 1

3
g′ /B

)
diR . (3.14)

Under the change of basis to the mass basis, consider the transformations in equa-

tions (3.9) and (3.10). These can be written with their explicit indices as

uiR → Kij
u u

j
R , ūiR → ūkR(K†u)

ki ,

diR → Kij
d d

j
R , d̄iR → d̄kR(K†d)

ki ,

where we’ve used the property (AB)† = B†A† to derive the transformations for ūR
and d̄R. Substituting these transformations into expression (3.14), we notice that

all the terms in brackets will commute with the K’s (since the K’s are constant and

aren’t affected by either /∂ or /B) and so we can commute the K’s through. We also

note that the unitarity of Ku and Kd implies that

(K†u)
kiKij

u = δkj = (K†d)
kiKij

d . (3.15)

Putting this all together, the second line of equation (3.13) transforms in the fol-

lowing way when we change to the mass basis:

ūiR

(
i/∂ + g′

2

3
/B

)
uiR + d̄iR

(
i/∂ − g′1

3
/B

)
diR

→ ūkR(K†u)
kiKij

u

(
i/∂ +

2

3
g′ /B

)
ujR + d̄kR(K†d)

kiKij
d

(
i/∂ − 1

3
g′ /B

)
djR

= ūjR

(
i/∂ + g′

2

3
/B

)
ujR + d̄jR

(
i/∂ − g′1

3
/B

)
djR . (3.16)

Hence the second line in equation (3.13) is invariant under the change of basis.

Turning our attention to the first line of equation (3.13) we can quickly see which

pieces will be invariant. When we perform the change of basis for the left-handed

quark spinors, the Bµ and W 3
µ couplings don’t change since these fields only couple

two left quark spinors of the same handedness and up/down-type flavour. However,

the couplings to W±
µ are affected by the change of basis. We thus write the first line

of the Lagrangian (in the mass basis) as

e√
2 sin θW

[
W+
µ ū

i
Lγ

µ(V )ijdjL +W−
µ d̄

i
Lγ

µ(V †)ijujL
]
, (3.17)

where we’ve defined V ≡ U †uUd and used g = e
sin θW

where e is the charge of an

electron and θW is the weak mixing angle [8]. The matrix V has a special name, the

Cabibbo-Kobayashi-Maskawa (CKM) matrix, named after the three physi-

cists who discovered it. As we’ll see shortly, the CKM matrix is required to be a
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3× 3 unitary matrix (so it explicitly requires three generations of quarks) in order

to incorporate CP violation into the SM. The CKM matrix has the following form

V =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 . (3.18)

The CKM matrix is a 3×3 complex matrix. From the outset it has nine elements,

each with a real and imaginary part, so a total of 18 potential degrees of freedom.

However, the fact that it is unitary means that half of these are eliminated straight

away. We see this by noting that the unitarity condition V †V = I leads to two types

of equations; we’ll denote these by diagonal equations, and off-diagonal equations.

The three diagonal equations are of the same form, for example

V ∗udVud + V ∗cdVcd + V ∗tdVtd = 1 . (3.19)

These are clearly real equations so give us just three constraints. The six off-diagonal

equations are of a different form, for example

V ∗udVus + V ∗cdVcs + V ∗tdVts = 0 . (3.20)

Of note though, is another of these equations

V ∗usVud + V ∗csVcd + V ∗tsVtd = 0 . (3.21)

This is just the complex conjugate of equation (3.20) and so we don’t get any new

information. In fact, writing out all six off-diagonal equations one finds that they

all come in pairs such as this and so we really only have three equations to work

with. Clearly, these are complex equations and so we can solve each for a real and

imaginary part. Hence, each of these three equations gives two equations, one for

the real part, one for the imaginary part. Putting all this together, we see that the

unitarity condition accounts for 3 + 3(2) = 9 constraints and so the total number of

degrees of freedom of V is reduced to nine.

We can go a step further though; we can take

djL → eiαjdjL , djR → eiαjdjR , ujL → eiβjujL , ujR → eiβjujR , (3.22)

where j = 1, 2, 3, without affecting terms in the mass basis. Thus there is a global

U(1)6 symmetry within the definitions of our quark spinors. Under these phase

transformations, V will transform in some way. However, if one sets all the phases

to be equal (αj = βj = θ, j = 1, 2, 3) then V will remain invariant. Clearly then, we

can absorb five of these phases into the quark spinors, leaving a single overall phase

in the CKM matrix, along with three as of yet unaccounted for degrees of freedom.

We recognise these final three parameters as rotation angles by noting that if V was

real, it would be an orthogonal matrix with three rotation angles.
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In the standard parametrisation [8] one considers the rotation angles to de-

scribe rotations in the ij-flavour planes and we write θ12 , θ23 and θ13 to denote these.

The single phase of the CKM matrix is written as δ. Introducing the shorthand

cij ≡ cos θij and sij ≡ sin θij one writes

V =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 , (3.23)

where θ12 = 13.02◦ ± 0.04◦, θ23 = 2.36◦ ± 0.08◦, θ13 = 0.20◦ ± 0.02◦, δ = 69◦±5◦ [8].

Since all three rotation angles are quite small, the mass and flavour bases are only

separated by a small degree. This leads to the CKM matrix having an almost diag-

onal structure. Additionally, since both θ23 and θ13 are far smaller than θ12, one can

redefine the matrix in terms of λ ≡ sin θ12 using the Wolfenstein parametrisa-

tion. In this parametrisation the degrees of freedom are described by the parameters

λ ,A , ρ and η. The matrix is written 1− 1
2
λ2 λ Aλ3(ρ− iη)

−λ 1− 1
2
λ2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4) , (3.24)

where the new parameters are related to the old by

s12 = λ , s23 = Aλ2 , s13e
−iδ = Aλ3(ρ− iη) . (3.25)

The current estimates of the Wolfenstein parameters, taken from [21] are

λ = 0.22506± 0.00050 , (3.26)

A = 0.811± 0.026 , (3.27)

ρ = 0.124+0.019
−0.018 , (3.28)

η = 0.356± 0.011 . (3.29)

The Wolfenstein parametrisation will be used later when we start calculating the

CP violating asymmetry. In particular, note that the parameter δ in the standard

parametrisation is referred to as the CP violating phase (the same role is played by η

in the Wolfenstein parametrisation). This phase is the single source of CP violation

in the SM and the requirement of incorporating CP violation in the SM in a gauge

invariant way was what prompted Kobayashi and Maskawa to posit the existence

of a third generation of quarks, extending the work done by Cabibbo. CP violation

arises through the Jarlskog constant which is defined as

J = Im(VudVtbV
∗
tdV

∗
ub) (3.30)

with CP violation occurring for J 6= 0. Current measurements place the value of J

at (3.18± 0.15)× 10−5 [21].
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The CKM matrix provides one of the most promising avenues of research into

physics beyond the Standard Model. For instance, were the universe to have a fourth

generation of quarks available to it, then the CKM matrix would not be unitary [8].

Hence, by measuring the elements of the CKM matrix, one can test for unitarity and

thus test the SM. The current best measurements for these elements are, according

to [8],

|V | =

|Vud| |Vus| |Vub||Vcd| |Vcs| |Vcb|
|Vtd| |Vts| |Vtb|


=

 0.97± 0.0001 0.22± 0.001 0.0039± 0.0004

0.23± 0.01 1.02± 0.04 0.0041± 0.001

0.0084± 0.0006 0.039± 0.002 0.88± 0.07

 . (3.31)

3.2 Four Fermion Interactions

We’ve already come across a description of the weak interaction in equation (3.17)

in our derivation of the CKM matrix. Now we’ll try to develop a description we can

use in our calculations of the CP asymmetry. Our approach is based on four-fermion

interactions.

Early Forms

Four-fermion interactions were first proposed by Enrico Fermi in 1933 to describe

nuclear β decay through the weak force [22]. When Fermi first put forward his

description of the weak interaction, he framed it as

Hint(x) = G{ψ̄1(x)γµψ2(x)}{ψ̄3(x)γµψ4(x)} , (3.32)

with some overall interaction strength G. We interpret this as a four-fermion theory

where each of the ψ’s denotes a fermion field and they interact at the point x.

Hence the theory is inherently local and encapsulates the short range of the weak

interaction.

Equation (3.32) is in fact a specific case of a much more general interaction

involving four fermions. Motivated by the form of the electromagnetic force, we’ve

implicitly assumed that only vector currents contribute to the interaction, but these

are only one of the five types of Dirac bilinears available to us. More generally, a

four fermion interaction could be comprised of any of the five Dirac bilinears seen

previously (S, P, V,A or T ). Then, generalising equation (3.32) to include all such

bilinears and requiring that the Hamiltonian remains Lorentz invariant, we obtain

H(1)
int(x) =

∑
i

Ci(ψ̄1Γiψ2)(ψ̄3Γiψ4) + h.c. , (3.33)
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where Γi is one of the Dirac bilinear forms (i = S, P, V,A or T ) and the Ci are

possibly complex coupling constants [23]. This is known as the general four-fermion

interaction; however, it is still not as general as it could be. If we simply require the

Hamiltonian to be invariant under the proper orthochronous Lorentz group, we can

include the following interactions in our Hamiltonian

H(2)
int(x) =

∑
i

C ′i(ψ̄1Γiψ2)(ψ̄3Γiγ5ψ4) + h.c. . (3.34)

Then our four-fermion interaction Hamiltonian is just

Hint(x) = H(1)
int(x) +H(2)

int(x) . (3.35)

In the case of the weak interactions, we construct our effective Hamiltonian subject

to the constraints that it must allow for both C and P violation separately (re-

member, we are trying to produce a theory of the weak interactions which we know

violate both C and P). In particular, by considering chiral symmetry, we are led to

the structures [
ψ̄1γµ(1± γ5)ψ2

][
ψ̄3γµ(1± γ5)ψ4

]
. (3.36)

The γµ(1 ± γ5) structure is composed of a vector and axial vector current in equal

proportions and is known as a V ±A current. This is the most general combination

of Dirac bilinears which correspond to the exchange of spin-1 bosons (the W and

Z bosons) and which also allows for C and P violation [23]. The experimental

measurements of parity and charge conjugation violation were pivotal in determining

the form of the weak interaction in that they indicated a V − A structure in order

to account for symmetry violating effects1. In the following section, we’ll use a

quantum field theoretic approach to arrive at the same form, although we’ll place

more emphasis on the coupling constants.

Quantum Field Theory

The weak interactions are mediated by the W± and Z bosons (for our purposes,

we’re just interested in the flavour changes effected by the W± bosons). The W±

couple to the following left handed currents

J+
µ = ν̄eLγ

µeL + ν̄µLγ
µµL + ν̄τLγ

µτL + Vijū
i
Lγ

µdjL , (3.37)

J−µ = ēLγ
µνeL + µ̄Lγ

µνµL + τ̄Lγ
µντL + V †ij d̄

i
Lγ

µujL , (3.38)

where we can clearly see the contributions from the three generations of leptons

and neutrinos, as well as the up-type quark and down-type quark interaction which

enters with an additional coupling due to the Vij elements of the CKM quark mixing

matrix [8]. The coupling between these currents and the W± is described by the

1One can show that other combinations, such as just V or A individually, can’t give rise to C and
P violation. This is the basis for CP conservation in QED and QCD.



3.2 Four Fermion Interactions 31

interaction Lagrangian

L =
e√

2 sin θw
(W µ

+J
+
µ +W µ

−J
−
µ ) . (3.39)

Equation (3.39) should look familar since it is the same as equation (3.17), we’ve

just bundled all the quark and lepton currents into the currents J±µ . We can then

read off the Feynman diagrams and we obtain the vertices shown in Figure 3.1.

νl, l

l, νl

W+,W−

u, d

d, u

W+,W−

Figure 3.1: Feynman diagrams showing the interaction vertices involving fermions and

the weak bosons W±. l denotes an electron, muon or tau lepton, with νl the correspond-

ing neutrino. u and d denote up- and down-type quarks respectively (u = u , c , t and

d = d , s , b). Both vertices get a factor of e√
2 sin θw

, although the quark vertex gets an extra

factor of either Vij or V ∗ij .

Since we are just interested in the B± → K+K−π± decays observed by Belle,

and these have purely hadronic final states, we can disregard the contributions from

the lepton and neutrino vertices and write the quark currents as

J+
µ ∼ Vijū

i
Lγ

µdjL , J−µ ∼ V †ij d̄
i
Lγ

µujL . (3.40)

For our investigation of weak decays, we’ll be interested in transitions such as

b → uūd. We write the matrix element for this decay as

iM =

(
ie√

2 sin θw

)2(
V ∗udd̄Lγ

µuL
)−i

(
gµν − pµpν

m2
W

)
p2 −m2

W

(VubūLγ
νbL) .

Note that we’ve used the full propagator for the W boson where p is its 4-momentum.

Taking the limit that p2 � m2
W we see that the second term in the propagator is

negligible once we pull out a gµν . This then gives

iM =

(
ie√

2 sin θw

)2

(V ∗udVub)
(
d̄Lγ

µuL
)(−igµν
−m2

W

)
(ūLγ

νbL)

=
−ie2

2m2
W sin2 θw

(V ∗udVub)
(
d̄Lγ

µuL
)
gµν(ūLγ

νbL) .
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Writing the left chiral projection operators explicitly (PL = 1
2
(1− γ5)) we obtain

iM =
−ie2

2m2
W sin2 θw

(V ∗udVub)

(
d̄
γµ(1− γ5)

2
u

)
gµν

(
ū
γν(1− γ5)

2
b

)
=

−ie2

2m2
W sin2 θw

(V ∗udVub)

(
d̄
γµ(1− γ5)

2
u

)(
ū
γµ(1− γ5)

2
b

)
.

Finally, including Fermi’s constant GF via the replacement

4GF√
2
≡ e2

2m2
W sin2(θw)

, (3.41)

allows us to write this particular interaction as

L4F = −4GF√
2

(V ∗udVub)

(
d̄
γµ(1− γ5)

2
u

)(
ū
γµ(1− γ5)

2
b

)
= −GF√

2
(V ∗udVub)

(
d̄γµ(1− γ5)u

)
(ūγµ(1− γ5)b) . (3.42)

This is the fundamental basis for the four-fermion interaction. This type of interac-

tion is often thought of as having “shrunk down” to a single vertex; the idea is that

when we take the limit of small momenta for the W boson, the propagator collapses

down to a point. This effective vertex is of the same form as seen in equation (3.36).

We’ve thus retrieved Fermi’s four-fermion interaction from a quantum field theory

approach. Importantly, we’ve included the CKM matrix elements in the coupling.

Writing equation (3.42) for some generic quarks, we have the Feynman diagram

shown in Figure 3.2 and thus the interaction Lagrangian is written as

L = −GF√
2

(
V (∗)
q1q2

V (∗)
q3q4

)
(q̄2γ

µ(1− γ5)q1)(q̄3γµ(1− γ5)q4) (3.43)

where

V (∗)
qiqj

=

{
Vqiqj if qi is up-type and qj is down type

V ∗qjqi if qj is up-type and qi is down type
. (3.44)

q1

q2

q3

q4

W

q1

q2

q3

q4

Figure 3.2: Feynman diagram showing a general four-fermion interaction in the limit

that p2
W � m2

W .



3.3 Operator Product Expansion 33

3.3 Operator Product Expansion

Now that we’ve constructed a description of the weak interaction at low momenta

using four-fermion interactions, there is one more thing we need before we can

construct our effective Hamiltonian for these weak decays. The last ingredient is

the Operator Product Exansion (OPE) [14]. We’ll discuss this from an abstract

perspective first and then relate the OPE back to the weak effective Hamiltonian.

Typically one extracts information such as the amplitude for a decay from the

corresponding Green’s function. Consider a case where we have two operators O1

and O2 separated by some distance x, and with some additional fields φ(yi) with

the yi far away from the origin at 0. The corresponding Green’s function is then

G12(x; y1, . . . , ym) = 〈O1(x)O2(0)φ(y1) . . . φ(ym)〉 . (3.45)

Now consider the operator product O1(x)O2(0) with x small (corresponding to high

energies); this composite operator could be the source for any general disturbance

at 0. However, any such disturbance in general could be induced by a single lo-

cal operator at 0 and this local operator must, by necessity, have the same global

symmetry quantum numbers (baryon number, lepton number and electric charge)

as the composite operator O1(x)O2(0) [14]. We can write this general operator as a

linear combination of a basis of operators, where the complex coefficients in the lin-

ear combination are functions of the separation x [14]. Putting all these statements

together, one arrives at the formal proposal of the OPE put forward by Wilson in

1969

O1(x)O2(0)→
∑
n

Cn
12(x)O′n(0) , (3.46)

where all the separation dependence has been placed in the complex valued Wilson

coefficients Cn
12(x) and the O′n are a basis of composite local operators. This trivially

means we can rewrite the Green’s function in equation (3.45) as

G12(x; y1, . . . , ym) =
∑
n

Cn
12(x)〈O′n(0)φ(y1) . . . φ(ym)〉 (3.47)

so now all the x dependence is in the Wilson coefficients, rather than the Green’s

functions. The real crux of the OPE lies in the separation x (or equivalently the

energy scale used). For high energy processes, QCD exhibits asymptotic freedom

since the running coupling αs(Q
2) tends to decrease for higher and higher ener-

gies [1, 6]. In weak processes involving the W boson the separation of currents

goes like x ∼ 1/mW and is thus small. This corresponds to a region where QCD is

asymptotically free and so the Wilson coefficients which appear in the OPE of weak

currents can be calculated in QCD perturbation theory. The coefficients can then

be evolved to the required scale using the renormalisation group equation [24]. As

a note, there may be some scale dependence µ which needs to be accounted for.
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When we apply the OPE to the weak interaction we write the product of currents

as

lim
x→0
Oi(x)Oj(0) =

∑
n

Cn
ij(x)O′n(0) (3.48)

where the local currents Oi and Oj are just the V − A quark terms which appear

in the weak current. The composite operators O′n are of two different forms, either

tree or penguin operators. We discuss these in more detail below.

As a final remark, we can interpret the limit x → 0 in two equivalent ways.

We can view this as the separation approaching zero just as for the four-fermion

interaction interpretation of the weak interaction, or we can say that the energy/-

momentum transfer between the currents approaches infinity (becomes large).

3.4 Tree and Penguin Operators

The following section is one of the most important points of reference for the re-

mainder of the thesis. We’ll come to find that we need processes constructed from

the following operators to observe any CP violating asymmetry.

3.4.1 Tree Operators

For our work involving the decays B± → K+K−π± we are interested in the quark

decays b → duū in so called tree diagrams, and b → dqq (with q = u, d, s) in

penguin diagrams [19]. Starting with the tree operators, consider Figure 3.3 which

shows an example of the kinds of decays we’ll be considering. In this case, we have

two local currents

O1 = d̄γµ(1− γ5)u (3.49)

O2 = ūγµ(1− γ5)b (3.50)

interacting in some large energy process. The composite operator describing their

interaction is then

O′1 = d̄γµ(1− γ5)uūγµ(1− γ5)b . (3.51)

However, there are really two possible ways of writing this since there is some am-

biguity over how we contract colour indices on the fermion spinors. Including the

colour indices α and β explicitly, we have

O′1 = d̄αγµ(1− γ5)uβūβγ
µ(1− γ5)bα , (3.52)

O′2 = d̄αγµ(1− γ5)uαūβγ
µ(1− γ5)bβ . (3.53)
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Relabelling the composite operators without primes for convenience, we write

Tree Operators (i = 1, 2)

O1 = d̄αγµ(1− γ5)uβūβγ
µ(1− γ5)bα , (3.54)

O2 = d̄αγµ(1− γ5)uαūβγ
µ(1− γ5)bβ . (3.55)

b
Vub

u

q q

V ∗ud
u

dW−

Figure 3.3: Tree diagram for b→ uūd decay via a W− boson, with some spectator quark

q.

3.4.2 Penguin Operators

In much the same way as for the tree operators, we can define a set of penguin oper-

ators corresponding to either a QCD or Electroweak penguin diagram (Figures 3.4

and 3.5 respectively). It should be noted that (V − A)(V + A) transitions are al-

lowed now owing to the presence of a gluon, Z boson or photon. Additionally, these

operators include sums over quark flavours since the newly introduced bosons are

capable of creating quark anti-quark pairs. For the penguins involving gluons, we

have

QCD Penguin Operators (i = 3, ..., 6)

O3 = d̄γµ(1− γ5)b
∑
q

q̄γµ(1− γ5)q , (3.56)

O4 = d̄αγµ(1− γ5)bβ
∑
q

q̄βγ
µ(1− γ5)qα , (3.57)

O5 = d̄γµ(1− γ5)b
∑
q

q̄γµ(1 + γ5)q , (3.58)

O6 = d̄αγµ(1− γ5)bβ
∑
q

q̄βγ
µ(1 + γ5)qα , (3.59)
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where α and β are colour indices, µ is a Lorentz index, and q = u , d , s are the

quarks available for the penguin processes.

b
Vtb V ∗td

d

q′ q′

q

q

t t

W−

g

Figure 3.4: QCD penguin diagram for the decay b → dqq with some spectator quark

q′. Note that the top quark t is present in our model since this gives access to the CKM

matrix element Vtb. The significance of this in the CP asymmetry will be discussed in

chapter 4.

Turning our attention to the final set of operators, we consider that now we could

have the same W loop with a Z boson or photon being emitted through either of

the cases depicted in Figure 3.5. In this case we need to include the charge eq of the

various quark spinors produced by the Z, γ. The overall factor of 3/2 is introduced

as a convention [25].

Electroweak Penguin Operators (i = 7, ..., 10)

O7 =
3

2
d̄γµ(1− γ5)b

∑
q

eq q̄γ
µ(1 + γ5)q , (3.60)

O8 =
3

2
d̄αγµ(1− γ5)bβ

∑
q

eq q̄βγ
µ(1 + γ5)qα , (3.61)

O9 =
3

2
d̄γµ(1− γ5)b

∑
q

eq q̄γ
µ(1− γ5)q , (3.62)

O10 =
3

2
d̄αγµ(1− γ5)bβ

∑
q

eq q̄βγ
µ(1− γ5)qα , (3.63)

3.5 Effective Hamiltonian

To recap what we’ve done so far, we’ve realised that the decays of interest to us

happen at high energies, since the mass of the decaying b quark is so large. This

limits the range of the interaction and so we argued that we could approximate the

weak interaction with a four-fermion interaction. We then wrote down an effective
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Lagrangian for the interactions in our system. Then we applied an Operator Product

Expansion on the terms in this effective Lagrangian by carrying through the limit

of small separation to the product of currents. This allowed us to write the terms in

our Lagrangian with all the long range (hadronic) physics in the Wilson coefficients,

which are calculable in perturbation theory, and the short range (weak) physics in

the operators O′i(0).

Combining all these pieces together, and using the fact that Lint = −Hint, we

obtain the effective Hamiltonian for charmless hadronic decays of B mesons via the

weak force,

Heff =
GF√

2

{
VubV

∗
uq(c1O1 + c2O2)− VtbV ∗tq

10∑
i=3

ciOi

}
,

where the operators Oi now denote the tree and penguin operators in equations

(3.54) to (3.63). The ci are Wilson coefficients evaluated at some scale µ, the Vij are

entries from the CKM matrix appearing at the vertices in either the tree or penguin

diagrams. Finally, GF is the Fermi constant. With this key structure in place, we

can finally begin to calculate the CP asymmetry of interest to us.

3.6 Wilson Coefficients

With our effective Hamiltonian constructed, there is one subtlety we’ve ignored thus

far. When we calculate the Wilson coefficients and scale them as desired, this incurs

a corresponding scaling of the matrix elements which is renormalisation scheme

dependent. Hence, we should really have written our final effective Hamiltonian with

some explicit scale dependences. However, we’d rather keep our matrix elements as

simple as possible so one tends to define a collection of effective Wilson coefficients

c′i [5, 26] satisfying

ci〈Oi(mb)〉 = c′i〈Oi〉tree , (3.64)

where 〈Oi(mb)〉 is the matrix element for the operator Oi evaluated at the scale

µ = mb (the mass of the b quark). 〈Oi〉tree is the matrix element for the operator

Oi at tree level and so all the scale dependence is kept within these new effective

Wilson coefficients.

The effective Wilson coefficients are calculated from known Wilson coefficients

by the relations [5, 26]

c′1 = c1 , c′2 = c2 ,

c′3 = c3 − Ps/3 , c′4 = c4 + Ps ,

c′5 = c5 − Ps/3 , c′6 = c6 + Ps ,

c′7 = c7 + Pe , c′8 = c8 ,

c′9 = c9 + Pe , c′10 = c10 ,
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b
Vtb V ∗td

d

q′ q′

q

q

t t

W−

Z, γ

b
Vtb V ∗td

d

q′ q′

q

qW

t t

Z, γ

Figure 3.5: (Top) Electroweak penguin diagram for the decay b→ dqq with a Z boson or

photon radiated by the top quark. (Bottom) Electroweak penguin diagram for the decay

b→ dqq with a Z boson or photon radiated by the W boson. The q′ is just some spectator

quark.

where

Ps =
(αs

8π

)
c2

(
10

9
+G(mc, µ, q

2)

)
, (3.65)

Pe =
(αem

9π

)
(3c1 + c2)

(
10

9
+G(mc, µ, q

2)

)
, (3.66)

and

G(mc, µ, q
2) = 4

∫ 1

0

x(x− 1) ln
m2
c − x(1− x)q2

µ2
dx . (3.67)

In G(mc, µ, q
2), mc is the mass of the charm quark, µ is the scale set at µ = mb

where mb is the mass of the bottom quark, and q2 is the momentum transfer of

the intermediate gluon, photon or Z boson in the penguin diagram. G(mc, µ, q
2) is
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complex, having real and imaginary parts

ReG =
2

3

ln

(
m2
c

µ2

)
− 5

3
− 4

m2
c

q2
+

(
1 + 2

m2
c

q2

)√
1− 4

m2
c

q2
ln

1 +
√

1− 4m
2
c

q2

1−
√

1− 4m
2
c

q2

 ,

(3.68)

ImG = −2

3

(
1 + 2

m2
c

q2

)√
1− 4

m2
c

q2
. (3.69)

All the quantities in these last two equations are known, except the momentum

transfer q2. Simple quark level arguments2 allow us to choose values for q2 in the

range 0.3 < q2/m2
b < 0.5. The effective Wilson coefficients are then calculable,

given some initial Wilson coefficients; the effective Wilson coefficients are given in

Table 3.1 and reproduced in Appendix C for easy reference, along with a table of

the initial Wilson coefficients.

c′i q2/m2
b = 0.3 q2/m2

b = 0.5

c′1 −0.3125 −0.3125

c′2 1.1502 1.1502

c′3 2.433× 10−2 + 1.543× 10−3i 2.120× 10−2 + 2.174× 10−3i

c′4 −5.808× 10−2 − 4.628× 10−3i −4.869× 10−2 − 1.552× 10−2i

c′5 1.733× 10−2 + 1.543× 10−3i 1.420× 10−2 + 5.174× 10−3i

c′6 −6.668× 10−2 − 4.628× 10−3i −5.729× 10−2 − 1.552× 10−2i

c′7 −1.435× 10−4 − 2.963× 10−5i −8.340× 10−5 − 9.938× 10−5i

c′8 3.839× 10−4 3.839× 10−4

c′9 −1.023× 10−2 − 2.963× 10−5i −1.017× 10−2 − 9.938× 10−5i

c′10 1.959× 10−3 1.959× 10−3

Table 3.1: Table of effective Wilson coefficients calculated at the kinematic endpoints

q2/m2
b = 0.3 and q2/m2

b = 0.5 [5, 26].

2See Appendix A for details.





Chapter 4

CP Asymmetry

At the end of chapter 2 we introduced the idea of a CP violating asymmetry. This

was done very much in an ad hoc manner but now we develop this concept more

formally. Throughout this chapter we work under the framework of the effective

Hamiltonian established in chapter 3. We start by considering the most general

case for B decays where the B meson decays to some final state F . Then we work

through the more specific case of the CP asymmetry in the B± → K+K−π± case.

The rest of the chapter is devoted to prescribing relevant decay processes with which

we hope to replicate the CP asymmetry result from Belle, and then describing the

initial calculation of the relevant Feynman diagrams.

4.1 Formalism

Recall the definition of direct CP violation given in chapter 2b was that the decay

amplitudes for a particle decay differs from that of the CP conjugate decay. This is

typically quantified in terms of the decay rates Γ as a CP asymmetry,

ACP ≡
Γ(B → F )− Γ(B̄ → F̄ )

Γ(B → F ) + Γ(B̄ → F̄ )
. (4.1)

We then recognise that the decay rate is equal to the mod square of the amplitude up

to some phase space factors and additional constants [8]. Assuming the additional

factors are the same and that the amplitudes are approximately constant across the

entire region of phase space1, one typically rewrites this as

ACP =
|A(B → F )|2 −

∣∣Ā(B̄ → F̄ )
∣∣2

|A(B → F )|2 +
∣∣Ā(B̄ → F̄ )

∣∣2 , (4.2)

where A(B → F ) is the amplitude for the decay of a meson B to some final state

F . Ā(B̄ → F̄ ) is just the amplitude for the conjugate decay of the antiparticle B̄ to

the final state F̄ .

1This is possibly an oversimplification. We will investigate the full integration across the phase
space in chapter 6, after having performed this simpler calculation.

41
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General B Meson Decay

We write the amplitude for the weak decay B → F as

A(B → F ) = 〈F |H|B〉 ,

and for the corresponding antiparticle process

Ā(B̄ → F̄ ) =
〈
F̄
∣∣H∣∣B̄〉 ,

where H is the effective Hamiltonian developed in chapter 3. We can also separate

the individual amplitudes into their different contributions. We write

A(B → F ) = |A1|eiδ1+iφ1 + |A2|eiδ2+iφ2 , (4.3)

where the two terms correspond to a particular (set of) Feynman diagram(s). The

φi are weak phases which change sign under the action of CP, and the δi are strong

phases which do not change sign under CP.

Making note of the change of sign of the weak phase when writing Ā and using

trigonometric addition formulae and the identity eiθ = cos θ + i sin θ, we substitute

for A and Ā in equation (4.2) and obtain

ACP = − 2|A1||A2| sin(δ1 − δ2) sin(φ1 − φ2)

|A1|2 + |A2|2 + 2|A1||A2| cos(δ1 − δ2) cos(φ1 − φ2)
. (4.4)

The derivation of ACP for our specific decay process is explored in more detail below.

CP asymmetry in B± → K+K−π± decays

We start by recognising that the contributions of interest come from the previously

introduced tree and penguin diagrams. The amplitude for B− → K+K−π− decays

is then given by

A =
〈
K+K−π−

∣∣HT
∣∣B−〉+

〈
K+K−π−

∣∣HP
∣∣B−〉 (4.5)

where HT and HP are tree and penguin Hamiltonians respectively. Note that this is

just a specific case of the form given in equation (4.3). We define r as the magnitude

of the ratio of the tree and penguin diagrams, and we define as well δ the strong

phase difference and φ the weak phase difference between the tree and penguin

amplitudes. The formal definition is then

reiδeiφ ≡ 〈K
+K−π−|HP |B−〉

〈K+K−π−|HT |B−〉
. (4.6)
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Comparing this with the work in the previous section, this is equivalent to the

mappings

|A1|
|A2|

→ r , (δ1 − δ2)→ δ , (φ1 − φ2)→ φ .

We can now rewrite equation (4.5) as

A =
〈
K+K−π−

∣∣HT
∣∣B−〉 [1 + reiδeiφ] (4.7)

and similarly for the CP conjugate decay

Ā =
〈
K+K−π+

∣∣HT
∣∣B+

〉
[1 + reiδe−iφ]. (4.8)

The CP asymmetry is calculated by

ACP =
|A|2 −

∣∣Ā∣∣2
|A|2 +

∣∣Ā∣∣2 (4.9)

where

|A|2 =
∣∣ 〈K+K−π−

∣∣HT
∣∣B−〉∣∣2[1 + reiδeiφ][1 + re−iδe−iφ]

=
∣∣ 〈K+K−π−

∣∣HT
∣∣B−〉∣∣2[1 + 2r cos δ cosφ− 2r sin δ sinφ+ r2]

and ∣∣Ā∣∣2 =
∣∣ 〈K+K−π+

∣∣HT
∣∣B+

〉∣∣2[1 + reiδe−iφ][1 + re−iδeiφ]

=
∣∣ 〈K+K−π+

∣∣HT
∣∣B+

〉∣∣2[1 + 2r cos δ cosφ+ 2r sin δ sinφ+ r2] .

For our purposes, the only form of CP violation we are considering is direct and this

arises only through the interference of the tree and penguin diagram phases [5,19,26].

Hence, the tree amplitude taken on its own is CP invariant and we have∣∣ 〈K+K−π−
∣∣HT

∣∣B−〉∣∣2 =
∣∣ 〈K+K−π+

∣∣HT
∣∣B+

〉∣∣2 .
Therefore, we can write equation (4.9) as

ACP =
−4r sin δ sinφ

2 + 4r cos δ cosφ+ 2r2
,

∴ ACP = − 2r sin δ sinφ

1 + 2r cos δ cosφ+ r2
. (4.10)

We recognise that this is equivalent to equation (4.4) under the transformations

introduced at the beginning of this subsection. One of the key features of the

asymmetry is that it shows maximal CP violation when it is either 1 or −1. This
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can only occur when r , sin δ , sinφ are all close to 1. As such, we’ll end up choosing

specific decay processes which we suspect satisfy these conditions for a large CP

asymmetry, and then proceed with calculating the resultant CP asymmetry. In

particular, the values of r and sin δ are the main sources of uncertainty in the

calculation, and will require the most work to determine.

4.2 Choice of Diagrams

In order to calculate the CP asymmetry as given in equation (4.10), we require

the parameters r, δ and φ (the ratio of the amplitudes, the strong phase difference

and the weak phase difference between two tree and penguin diagrams). Recall

equation (4.6)

reiδeiφ ≡ 〈K
+K−π−|HP |B−〉

〈K+K−π−|HT |B−〉
.

We need to evaluate this quantity if we are to find the CP asymmetry. To

begin, we’ll digress to a discussion of the two matrix elements; one for the tree

Hamiltonian and one for the penguin Hamiltonian. Consider the tree and penguin

processes for which the proposed Feynman diagrams are given in Figures 4.1 and

4.2. The motivation for these particular diagrams is as follows.

b
Vub

u

u u

V ∗ud
u

dW−

f0

π−

B−

Figure 4.1: Tree diagram for the decay B− → K+K−π−. The f0 can subsequently decay

to a K+K− pair.

First, the region of interest for us is the K+K− invariant mass range

0.8 ≤ mKK ≤ 1.1 GeV2. This is where the large CP asymmetry was reported by

Belle and so we consider the following two-step decay processes involving K+K−

resonances at around 1 GeV:

B− → f0(980)π− → K+K−π− B− → φ(1020)π− → K+K−π− . (4.11)

2This is the bin used by Belle. However, the lower bound is unphysical since mKK ≥ 0.986 (twice
the mass of the charged kaons). We comment on the physical realisation of this bin later.
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b
Vtb V ∗td

d

u u

q

q

t t

W−

g

π−

φ

B−

Figure 4.2: QCD penguin diagram for the decay B− → K+K−π−. The φ can subse-

quently decay to a K+K− pair. Note that the q̄q pair can be u, d or s quarks although

the φ is primarily composed of s̄s.

In naive quark models the f0(980) scalar meson is composed of combinations of

up, down and strange qq̄ pairs although the exact structure, as with many of the

scalar mesons below 1 GeV, is not well understood [27]. In our model, we propose

that the f0 can couple to the tree diagram through the uū pair shown in Figure 4.1.

Having a mass of about 980 MeV, the f0 resonance is just below threshold for K+K−

production. However, the decay width is estimated to be 10− 100 MeV [21], more

than enough to allow for a heavier f0 to produce the kaon pair.

Turning our attention to the penguin diagram, shown in Figure 4.2, we initially

explore the contribution of the φ(1020) vector meson in this process. It would do

so through the emission of the ss̄ pair from the gluon (see Appendix B). The φ

meson has a narrow width of about 4 MeV centred at 1020 MeV, right within the

mKK region in which Belle reported the large CP violation. However, the narrow

width of the φ means the amplitude for the decay may fall off quickly and so only

be significant over a small range of invariant mass. This will be something to keep

in mind as we proceed with our analysis.

The bottom to top quark flavour change in the penguin, which is Cabibbo

favoured, provides the mechanism for a large CP violation through the CKM matrix

element Vtb. Also, the electroweak penguin diagrams are excluded and we take them

to be background contributions in accordance with [19].

We also note that in constructing the relevant Feynman diagrams, we need dif-

ferent intermediate states for the tree and penguin processes since there would be

no phase differences otherwise, and thus no CP violation. Finally, as noted from

equation (4.10), a large CP asymmetry occurs for large r and sin δ close to unity.

This further justifies our choice of processes since the chosen diagrams enhance the

magnitude of the penguin process relative to the tree (typically the penguin am-

plitude is much smaller compared to the tree). One can see this by comparing the

magnitudes of the CKM matrix elements Vtb , Vtd , Vub and Vud in equation (3.31)
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or by recalling that the CKM matrix is near diagonal. Finally, the strong phase

difference between the two resonances varies rapidly and passes through 900.

To explain our calculations more explicitly, we simplify the full Feynman dia-

grams in Figures 4.1 and 4.2 to those in Figures 4.3 and 4.4. This allows us to

write 〈
K+K−π−

∣∣HT
∣∣B−〉 =

gf
sf
tf (4.12)

where gf is the f0 → K+K− coupling, tf is the amplitude to produce an f0 through

a tree diagram in which a π− is also produced, and sf is the inverse propagator for

the f0 meson

sf = s−m2
f + imfΓf (4.13)

where
√
s = mKK is the invariant mass of the K+K− pair, mf is the mass of the f0

meson and Γf is the decay width of the f0 meson. Further discussion of propagators

for unstable particles is given in Appendix A.

π−

B−

K+

K−

tf f0

gf

Figure 4.3: Simplified tree diagram for B− → f0(980)π− → K+K−π−. The decay

progresses left to right.

φ

π−

B−

K+

K−

pφ

gφ

Figure 4.4: Simplified penguin diagram for B− → φ(1020)π− → K+K−π−. The decay

progresses left to right.
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Similarly, one can show that for the simplified penguin diagram in Figure 4.4,

the corresponding matrix element can be written as〈
K+K−π−

∣∣HP
∣∣B−〉 =

gφ
sφ
pφ (4.14)

where the quantities are analogous to those in the tree amplitude. We can then take

the ratio of equations (4.12) and (4.14) and write

reiδeiφ =
gφpφsf
gf tfsφ

. (4.15)

Then, in the vein of similar studies [26] we make the following substitution. Define

the ratio

r′ei(δq+φ) ≡ pφ
tf

(4.16)

where δq is a strong phase and φ the weak phase between the penguin and tree

diagrams as previously defined. Then, substituting this into equation (4.15), we

obtain

reiδeiφ =
gφsf
gfsφ

(
pφ
tf

)
= r′eiδqeiφ

gφsf
gfsφ

, (4.17)

and hence

reiδ = r′eiδq
gφsf
gfsφ

. (4.18)

We now have an expression for the ratio r and the strong phase difference δ. This

will require the calculation of the tree and penguin amplitudes, covered in the next

section. The final piece is just that due to the weak phase difference φ. We use the

following parametrisation

sinφ =
η√

[ρ(1− ρ)− η2]2 + η2
, cosφ =

ρ(1− ρ)− η2√
[ρ(1− ρ)− η2]2 + η2

, (4.19)

where ρ and η are parameters in the Wolfenstein parametrisation of the CKM matrix.

We use the values given in chapter 3 which we recall are

λ = 0.22506± 0.00050 , (4.20)

A = 0.811± 0.026 , (4.21)

ρ = 0.124+0.019
−0.018 , (4.22)

η = 0.356± 0.011 , (4.23)

and these allow us to compute the contributions to the CP asymmetry from the

weak phase φ.
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4.3 Tree and Penguin Amplitudes

At the end of the previous section we were able to fully account for the weak phase

contribution to the CP asymmetry. We now continue with our calculation of the

contributions due to r and δ, keeping equations (4.16) and (4.18) in mind. The

amplitude for a given B meson decay to the final state F is generally written as [5]

A(B → F ) =
GF√

2

10∑
i=1

V T,Pai 〈F |Oi|B〉 , (4.24)

where GF is the Fermi constant and V T,P are combinations of CKM matrix

elements given by

V T = |VubV ∗ud| for i = 1, 2 , V P = |VtbV ∗td| for i = 3, . . . , 10 .

Note that in taking the ratio of penguin and tree diagrams, we need to calculate

the quantity ∣∣∣∣ VtbV ∗tdVubV ∗ud

∣∣∣∣ .
Using the Wolfenstein parameterisation, one can show that∣∣∣∣ VtbV ∗tdVubV ∗ud

∣∣∣∣ =

√
(1− ρ)2 + η2

(1− λ2/2)
√
ρ2 + η2

, (4.25)

where the values of the various parameters in the Wolfenstein parametrisation are

given at the end of the previous section. The ai’s in equation (4.24) are combinations

of effective Wilson coefficients given by

a2j = c′2j +
1

Nc

c′2j−1 , a2j−1 = c′2j−1 +
1

Nc

c′2j , j = 1, ..., 5 .

The Oi’s are the operators given in the OPE. More explicitly, we implement our

proposed mechanism for the interaction of the two Feynman diagrams given in Fig-

ure 4.2 by writing

tf ≡ A(B−
tree−−→ f0π

−) =
GF√

2

2∑
i=1

V Tai
〈
f0π

−∣∣Oi∣∣B−〉 (4.26)

pφ ≡ A(B−
penguin−−−−→ φπ−) = −GF√

2

6∑
i=3

V Pai
〈
φπ−

∣∣Oi∣∣B−〉 . (4.27)

Then, in order to calculate the last pieces for the asymmetry, those due to r and

δ, equations (4.16) and (4.18) tell us that we simply need to compute the tree and

penguin amplitudes in equations (4.26) and (4.27). The method we will use for this

is that of a factorisation approximation, to be discussed in the next chapter.



Chapter 5

Hadronic Matrix Elements

The matrix elements identified at the end of the previous chapter are historically

non-trivial to calculate since they involve QCD. Several schemes exist for carrying

out the calculation, namely factorisation approaches and Lattice QCD. We use the

approach of Naive Factorisation for its simplicity. This entails the use of Fierz

identities and form factors, and we conclude the chapter with an initial result for

the CP asymmetry.

5.1 Naive Factorisation

Naive Factorisation is a technique used to simplify hadronic matrix elements in the

case of heavy meson decays. To justify this approximation, consider that the b quark

decays are highly energetic, since the b quark has mb ≈ 5 GeV� mu. This means

any final state particles produced by the highly localised weak interaction move away

very quickly and so become isolated. Hadronisation of the quark-antiquark pair then

occurs at some sufficiently distant point so that the meson can be factorised out.

The approximation itself is as follows [5]; for a B meson decaying to a final state

consisting of mesons M1 and M2 through some current operator Oi, we can factorise

the matrix elements

〈M1M2|Oi|B〉 = 〈M2|J2i|0〉 〈M1|J1i|B〉 , (5.1)

or 〈M1M2|Oi|B〉 = 〈M1|J4i|0〉 〈M2|J3i|B〉 , (5.2)

where the Jki are transition currents. Hence, we are able to approximate such

matrix elements as products of simpler matrix elements. In general, the first factor

corresponds to one of the final state particles being formed from the vacuum, while

the second represents the other final state particle being produced from the B meson.

Up to this point there is no reason we couldn’t take one combination over the other,

however in our calculations the choice of factorisation is determined by the flavours

of the spinors in the transition currents. We require, for example, that the vacuum

can only form a π− through a d̄γµ(1− γ5)u current, since the π− has quark content

ūd. This means there is no ambiguity in how we should factorise our hadronic matrix

elements and that the procedure is well defined.

49
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The effects of hadronization are incorporated into the number of effective colours

Nc which is taken to be the same for each operator Oi. It has the following general

form
1

Nc

=
1

3
+ ξ

where ξ is a parameter describing the non-factorizable colour octet contribution.

Thus, in our model, we have Nc as a free parameter. As a note, the value of the

gluon momentum transfer q2 influences the allowed values for Nc. For q2/m2
b = 0.3,

we take values for Nc of 0.98 and 2.01, while for q2/m2
b = 0.5 the equivalent values

are Nc = 0.94 and 1.95 [5,26]. In both cases we also investigate Nc = 3 which is the

physical limit of the number of colours.

5.1.1 Fierz Identities

The application of the Naive Factorisation is fairly straight forward, especially since

we are neglecting the electroweak penguin diagrams. However, in one of the com-

putations to follow, we require a useful tool called a Fierz identity (also known as a

Fierz Reordering Theorem).

The Fierz identities allow for products of Dirac matrices and spinors to be rear-

ranged. There are a number of these identities, although the only one we will need

is

ψ̄1γµ(1− γ5)ψ2ψ̄3γ
µ(1 + γ5)ψ4 = −2ψ̄1(1 + γ5)ψ4ψ̄3(1− γ5)ψ2 . (5.3)

This will allow us to calculate the matrix elements for the penguin operators

in which there are mixed chiral states and we need to rearrange the spinors us-

ing the cyclic property of traces. Here we will provide an outline for the proof of

equation (5.3).

To start, we’ll consider the case for spinors ui which commute. The case for

anticommuting spinors introduces an overall minus sign so we want to prove

ū1γµ(1− γ5)u2ū3γ
µ(1 + γ5)u4 = 2ū1(1 + γ5)u4ū3(1− γ5)u2 . (5.4)

In general, we can decompose a product of two Dirac bilinears in terms of the basis

ΓA = {1, γ5, γ
µ, γµγ5, σ

µν} [28]. We write this expansion as

ū1ΓAu2ū3ΓBu4 =
∑
C,D

cABCDū1ΓCu4ū3ΓDu2 (5.5)

with

cABCD =
1

16
tr
(
ΓCΓAΓDΓB

)
. (5.6)

To prove equation (5.6), consider

ū1αΓAu2βū3γΓ
Bu4δ =

∑
C,D

cABCDū1αu4δū3γu2βΓCαδΓ
D
γβ
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and so

ΓAαβΓBγδ =
∑
C,D

ΓCαδΓ
D
γβ .

Multiplying through by ΓEδαΓFβγ on both sides, we obtain

ΓEδαΓAαβΓFβγΓ
B
γδ =

∑
C,D

ΓCαδΓ
E
δαΓDγβΓFβγ = 16cABEF ,

where we’ve recognised the two traces tr
(
ΓCΓE

)
= ΓCαδΓ

E
δα and tr

(
ΓFΓD

)
= ΓFβγΓ

D
γβ,

and used the fact that tr
(
ΓAΓB

)
= 4δAB. Rewriting the left-hand side as a trace as

well, we see that we’ve proven equation (5.6).

The decomposition shown in equation (5.5) is the foundation for the remainder

of the proof, and all the hard work goes into computing the coefficients cABCD. We

will label the coefficients by the classification of the Dirac bilinears as scalar (S),

pseudoscalar (P ), vector (V ), axial vector (A) or antisymmetric tensor (T ).

Continuing to the main proof, we have

ū1γµ(1− γ5)u2ū3γ
µ(1 + γ5)u4 = ū1γµu2ū3γ

µu4 − ū1γµγ5u2ū3γ
µγ5u4

− ū1γµγ5u2ū3γ
µu4 + ū1γµu2ū3γ

µγ5u4 . (5.7)

Then we apply equation (5.5) to each of these four terms. The first term is expanded

as

ū1γµu2ū3γ
µu4 = cV VSS ū1u4ū3u2 + cV VPP ū1γ5u4ū3γ5u2

+ cV VV V ū1γµu4ū3γ
µu2 + cV VAA ū1γµγ5u4ū3γ

µγ5u2

+ cV VTT ū1σµνu4ū3σ
µνu2

where we note that we can only have bilinears with the same overall Lorentz structure

as the left-hand side, and only those bilinears which give an even number of gamma

matrices will survive when we take the trace to get the coefficients cABCD.

Then, it’s just a matter of calculating the coefficients cABCD from the traces of

gamma matrices. For example

cV VSS =
1

16
tr(1.γµ.1.γ

µ) =
1

16
tr(4I4) = 1 ,

cV VPP =
1

16
tr(γ5γµγ5γ

µ) = − 1

16
tr(γ5γ5γµγ

µ) = − 1

16
tr(4I4) = −1 .



52 Hadronic Matrix Elements

This is the general process, but rather than doing this for each term, one typically

looks up the coefficients from the following equation, from [28]
S

V

T

A

P

 =
1

4


1 1 1 1 1

4 −2 0 2 −4

6 0 −2 0 6

4 2 0 −2 −4

1 −1 1 −1 1



S ′

V ′

T ′

A′

P ′

 , (5.8)

where the primed indices indicate the reordered spinors. This accounts for the

first two terms of equation (5.7). For the last two terms, we have mixed bilinear

classifications and so we need to compute the traces of the gamma matrices explicitly.

It is a straightforward but tedious matter then of writing out all the expanded

terms in equation (5.7) using equation (5.5), collecting like terms and cancelling

until one eventually ends up with

ū1γµ(1− γ5)u2ū3γ
µ(1 + γ5)u4 = 2ū1(1 + γ5)u4ū3(1− γ5)u2 . (5.9)

Then, replacing the ui spinors with fermion spinors, one obtains the required Fierz

identity.

5.2 Factorisation Approximation

In the following calculation, we make use of Naive Factorisation and the Fierz iden-

tity in equation (5.3) to compute the hadronic matrix elements identified at the

end of the previous chapter. The expressions for the operators Oi are given in

equations (3.54) to (3.63).

For O1, we get〈
f0π

−∣∣O1

∣∣B−〉 =
〈
f0π

−∣∣d̄αγµ(1− γ5)uβūβγ
µ(1− γ5)bα

∣∣B−〉
=
〈
f0π

−∣∣d̄γµ(1− γ5)būγµ(1− γ5)u)
∣∣B−〉

= 〈f0|ūγµ(1− γ5)u|0〉
〈
π−
∣∣d̄γµ(1− γ5)b

∣∣B−〉 .
Similarly, for O2 we obtain〈

f0π
−∣∣O2

∣∣B−〉 =
〈
f0π

−∣∣d̄γµ(1− γ5)uūγµ(1− γ5)b
∣∣B−〉

=
〈
f0

∣∣ūγµ(1− γ5)b
∣∣B−〉 〈π−∣∣d̄γµ(1− γ5)u

∣∣0〉 .
Now consider the penguin operator contributions. For O3 we have〈

φπ−
∣∣O3

∣∣B−〉 =
〈
φπ−

∣∣d̄γµ(1− γ5)b
∑
q′

q̄′γµ(1− γ5)q′
∣∣B−〉

=
〈
φπ−

∣∣d̄γµ(1− γ5)b
(
ūγµ(1− γ5)u+ d̄γµ(1− γ5)d+ s̄γµ(1− γ5)s

)∣∣B−〉
= 〈φ|ūγµ(1− γ5)u+ d̄γµ(1− γ5)d+ s̄γµ(1− γ5)s|0〉

〈
π−
∣∣d̄γµ(1− γ5)b

∣∣B−〉 .
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For O4,〈
φπ−

∣∣O4

∣∣B−〉 =
〈
φπ−

∣∣d̄αγµ(1− γ5)bβ
∑
q′

q̄′βγ
µ(1− γ5)q′α

∣∣B−〉
=
〈
φπ−

∣∣d̄αγµ(1− γ5)bβ
(
ūβγ

µ(1− γ5)uα + d̄βγ
µ(1− γ5)dα + s̄βγ

µ(1− γ5)sα
)∣∣B−〉

=
〈
φπ−

∣∣d̄αγµ(1− γ5)bβ
(
ūβγ

µ(1− γ5)uα + d̄βγ
µ(1− γ5)dα

)∣∣B−〉
=
〈
φπ−

∣∣d̄γµ(1− γ5)uūγµ(1− γ5)b+ d̄γµ(1− γ5)dd̄γµ(1− γ5)b
∣∣B−〉

=
〈
φπ−

∣∣d̄γµ(1− γ5)uūγµ(1− γ5)b
∣∣B−〉+

〈
φπ−

∣∣d̄γµ(1− γ5)dd̄γµ(1− γ5)b
∣∣B−〉

=
〈
φ
∣∣ūγµ(1− γ5)b

∣∣B−〉 〈π−∣∣d̄γµ(1− γ5)u
∣∣0〉

+ 〈φ|d̄γµ(1− γ5)d|0〉
〈
π−
∣∣d̄γµ(1− γ5)b

∣∣B−〉 .
For O5,〈

φπ−
∣∣O5

∣∣B−〉 =
〈
φπ−

∣∣d̄γµ(1− γ5)b
∑
q′

q̄′γµ(1 + γ5)q′
∣∣B−〉

=
〈
φπ−

∣∣d̄γµ(1− γ5)b
(
ūγµ(1 + γ5)u+ d̄γµ(1 + γ5)d+ s̄γµ(1 + γ5)s

)∣∣B−〉
= 〈φ|ūγµ(1 + γ5)u+ d̄γµ(1 + γ5)d+ s̄γµ(1 + γ5)s|0〉

〈
π−
∣∣d̄γµ(1− γ5)b

∣∣B−〉 .
The final calculation makes use of the Fierz identity in equation (5.3).〈
φπ−

∣∣O6

∣∣B−〉 =
〈
φπ−

∣∣d̄αγµ(1− γ5)bβ
∑
q′

q̄′βγ
µ(1 + γ5)q′α

∣∣B−〉
=
〈
φπ−

∣∣d̄αγµ(1− γ5)bβ
(
ūβγ

µ(1 + γ5)uα + d̄βγ
µ(1 + γ5)dα + s̄βγ

µ(1 + γ5)sα
)∣∣B−〉

= −2
〈
φπ−

∣∣d̄α(1 + γ5)
[
uαūβ + dαd̄β + sαs̄β

]
(1− γ5)bβ

∣∣B−〉
= −2

( 〈
φπ−

∣∣d̄(1 + γ5)uū(1− γ5)b
∣∣B−〉+

〈
φπ−

∣∣d̄(1 + γ5)dd̄(1− γ5)b
∣∣B−〉

+
〈
φπ−

∣∣d̄(1 + γ5)ss̄(1− γ5)b
∣∣B−〉 )

= −2
( 〈
π−
∣∣d̄(1 + γ5)u

∣∣0〉 〈φ∣∣ū(1− γ5)b
∣∣B−〉

+ 〈φ|d̄(1 + γ5)d|0〉
〈
π−
∣∣d̄(1− γ5)b

∣∣B−〉 ) .
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To summarise, we have the 6 matrix elements〈
f0π

−∣∣O1

∣∣B−〉 = 〈f0|ūγµ(1− γ5)u|0〉
〈
π−
∣∣d̄γµ(1− γ5)b

∣∣B−〉 , (5.10)

〈
f0π

−∣∣O2

∣∣B−〉 =
〈
f0

∣∣ūγµ(1− γ5)b
∣∣B−〉 〈π−∣∣d̄γµ(1− γ5)u

∣∣0〉 , (5.11)

〈
φπ−

∣∣O3

∣∣B−〉 = 〈φ|ūγµ(1− γ5)u+ d̄γµ(1− γ5)d+ s̄γµ(1− γ5)s|0〉
×
〈
π−
∣∣d̄γµ(1− γ5)b

∣∣B−〉 , (5.12)

〈
φπ−

∣∣O4

∣∣B−〉 =
〈
φ
∣∣ūγµ(1− γ5)b

∣∣B−〉 〈π−∣∣d̄γµ(1− γ5)u
∣∣0〉

+ 〈φ|d̄γµ(1− γ5)d|0〉
〈
π−
∣∣d̄γµ(1− γ5)b

∣∣B−〉 , (5.13)

〈
φπ−

∣∣O5

∣∣B−〉 = 〈φ|ūγµ(1 + γ5)u+ d̄γµ(1 + γ5)d+ s̄γµ(1 + γ5)s|0〉
×
〈
π−
∣∣d̄γµ(1− γ5)b

∣∣B−〉 , (5.14)

〈
φπ−

∣∣O6

∣∣B−〉 = −2
( 〈
π−
∣∣d̄(1 + γ5)u

∣∣0〉 〈φ∣∣ū(1− γ5)b
∣∣B−〉

+ 〈φ|d̄(1 + γ5)d|0〉
〈
π−
∣∣d̄(1− γ5)b

∣∣B−〉 ) . (5.15)

Now that we have the required matrix elements in a factorised form, we need

some way of computing them. To meet this need, we introduce some form factors.

5.3 Form Factors

Form factors are of widespread use in nuclear and particle physics. They are typi-

cally used for describing the complex interactions between particles and describing

features of their structure. We briefly introduce their formalism here and then detail

the required form factors for our calculation of the matrix elements.

5.3.1 Motivation

Consider the matrix element 〈P |Jµ|B〉 for the transition from a B meson to some

pseudoscalar meson P through a V −A current Jµ. By considering Lorentz covari-

ance, we know that this matrix element behaves like a Lorentz four-vector so can

be written in terms of a basis for the Lorentz four-vector space. We thus need to

choose a convenient basis from the available four-vectors PP and PB. We choose

as our basis vectors PB + PP and PB − PP = k since these are manifestly linearly

independent and span the available space [23].

We write our matrix element as a linear combination of the basis vectors and

have

〈P |Jµ|B〉 = (PB + PP )µf+(k2) + (PB − PP )µf−(k2) , (5.16)
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where f±(k2) are scalar functions of the momentum transfer. These are our form

factors. We can then introduce another set of form factors F0(k2) , F1(k2) to obtain

〈P |Jµ|B〉 =

(
PB + PP −

M2
B −M2

P

k2
k

)µ
F1(k2) +

(
M2

B −M2
P

k2
kµ
)
F0(k2) . (5.17)

Clearly we have the following equations relating the form factors

F1(k2) = f+(k2) , (5.18)

F0(k2) = f+(k2) +
k2

M2
1 −M2

2

f−(k2) . (5.19)

It is typical in such calculations to take the nearest pole dominance assumption

[5, 26,29] in which the form factors are described by

f±(k2) =
f±(0)(

1− k2/M2
pole

)n . (5.20)

Here, Mpole is a pole mass and n denotes the order of the pole. The motivation behind

this form is that resonances appear as poles in the S-matrix for the decays [21]. These

are just the physical poles and the unphysical poles which are nearby may influence

the dependence on k2.

In [5, 26, 29] several models are used, such as n = 1 and n = 2 monopole domi-

nance (for a single pole close to the resonance) and also dipole dominance (for two

poles close to the resonance). For our case, we start with the n = 1 monopole dom-

inance assumption. Later calculations will investigate the influence of the n = 2

monopole and dipole dominance assumptions on the final CP asymmetry. In all

cases, we use values for the pole masses and form factor coefficients given in [5,26,29].

For the monopole dominance assumption, we have

F1(k2) =
h1(

1− k2

m2
1

)n (5.21)

with f+(0) = f−(0) = h1 = 0.330, m1 = 5.320 GeV/c2 and F1(0) = F0(0).

5.3.2 Matrix Element Parameterisation

With this motivation, it should come as no surprise that we can similarly param-

eterise the other matrix elements in terms of form factors and 4-momenta. For

completeness, the relevant expressions for the B meson transitions are [26,30]

〈P |V̂µ|B〉 =

(
PB + PP −

m2
B −m2

P

k2
k

)
µ

F1(k2) +
m2
B −m2

P

k2
kµF0(k2) , (5.22)
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〈V |V̂µ − Âµ|B〉 =
2

mB +mV

εµνρσε
νP ρ

BP
σ
V V(k2) + i

(
εµ(mB +mV )A1(k2)

− ε · k
mB +mV

(PB + PV )µA2(k2)− ε · k
k2

2mV kµ
(
A3(k2)− A0(k2)

))
,

(5.23)

〈S|Âµ|B〉 = −i

[(
PB + PS −

m2
B −m2

S

k2
k

)
µ

F1(k2) +
m2
B −m2

S

k2
kµF0(k2)

]
. (5.24)

Here, for X = P or V , mX and PX are the mass and 4-momentum of the particle

X and k ≡ PB − PX is the momentum transfer. F0(k2) and F1(k2) are B → P and

B → S transition form factors. εµ is the polarisation 4-vector for the vector meson,

and V , A0, A1, A2, A3 are B → V transition form factors. εµνρσ is the Levi-Cevita

antisymmetric tensor with ε0123 = +1. We will come to find that the V , A1 , A2 ,

and A3 form factors won’t contribute (see Appendix A). The form factor A0 is given

in [5, 26,29] as

A0(k2) =
hA0(

1− k2

m2
0

)n (5.25)

with hA0 = 0.28 and m0 = 5.27 GeV/c2.

The vacuum transitions are much simpler and read

〈P (p′)|Âµ|0〉 = −ifPp′µ , (5.26)

〈V (p′)|V̂µ|0〉 = fVmV εµ , (5.27)

〈S(p′)|V̂µ|0〉 = fSp
′
µ . (5.28)

At this point it looks like we haven’t made our lives a whole lot easier, however

we note that we never need to calculate a matrix element on its own; they always

come as fully contracted pairs after applying Naive Factorisation. This significantly

simplifies the computations once we recognise the simple forms of the pairs of con-

tracted matrix elements. This is the topic of the following section.

5.4 Matrix Element Contraction

With expressions (5.22) to (5.28) for the matrix elements in hand, we return to

looking at the expressions for the factorised matrix elements in equations (5.10) to

(5.15). We begin by applying parity and charge conjugation symmetries to find that

the first matrix element, corresponding to O1, is zero [31].

We further note that the last matrix element, corresponding to O6, must also

vanish since it involves vector mesons in the final states. These vector mesons

require a current with either a vector or pseudovector component to form the vector

meson polarisation vector. Since the Fierz transformed current has only scalar
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and pseudoscalar components, this gives zero contribution so the matrix element

corresponding to O6 vanishes.

We are now in a position to make use of equations (5.22) to (5.28). To calculate

the O2 matrix element, we modify the general result for a B → P1P2 transition

where P1 and P2 are two pseudoscalar mesons,

〈P2|Jµ|0〉 〈P1|J ′µ|B〉 = ifP2(m
2
B −m2

P1
)F0(m2

P2
) . (5.29)

Making the replacement P1 → S we just get an additional factor of i (see equa-

tions (5.22) and (5.24)) and we obtain the general result for a B → PS transition:

〈P |Jµ|0〉 〈S|J ′µ|B〉 = −fP (m2
B −m2

S)F0(m2
P ) . (5.30)

Likewise, we compute the inner product of pairs of matrix elements in the general

cases involving a B meson transitioning to a pseudoscalar or vector final state. The

results are

〈V |Jµ|0〉 〈P |J ′µ|B〉 = 2fVmBpcF1(m2
V ) , (5.31)

〈P |Jµ|0〉 〈V |J ′µ|B〉 = 2fPmBpcA0(m2
P ) , (5.32)

where P is a pseudoscalar meson, V is a vector meson, B is a B meson; Jµ and J ′µ

are V −A currents; fi is the decay constant for the i = P, V meson; mj is the mass

of the j = P, V or B meson; F1 is a form factor for the pseudoscalar meson and A0

is a form factor for the vector meson; pc is the magnitude of the 3-momentum in the

centre of momentum frame

pc = |pP | = |pV | =
√

(m2
B − (mP +mV )2)(m2

B − (mP −mV )2)

2mB

. (5.33)

The proofs of equations (5.29) to (5.33) are given in Appendix A. These general

results allow us to quickly compute the matrix elements corresponding to the oper-

ators O2, O3, O4 and O5. Comparing with equations (5.10) to (5.15), the results

are given below: 〈
f0π

−∣∣O2

∣∣B−〉 = −fπ(m2
B −m2

f )F0(m2
π) , (5.34)〈

φπ−
∣∣O3

∣∣B−〉 = 2fφmBpcF1(m2
φ) , (5.35)〈

φπ−
∣∣O4

∣∣B−〉 = 2mBpc
(
fπA0(m2

π) + fφF1(m2
φ)
)
, (5.36)〈

φπ−
∣∣O5

∣∣B−〉 = 2fφmBpcF1(m2
φ) . (5.37)

With these expressions in mind, we write the expressions for the tree and penguin

amplitudes tf and pφ

tf =
GF√

2
VubV

∗
uda2

〈
f0π

−∣∣O2

∣∣B−〉 , (5.38)
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pφ = −GF√
2
VtbV

∗
td

(
a3

〈
φπ−

∣∣O3

∣∣B−〉+ a4

〈
φπ−

∣∣O4

∣∣B−〉+ a5

〈
φπ−

∣∣O5

∣∣B−〉) . (5.39)

Then we can use equations (5.34) to (5.37) to calculate tf and pφ and thus calculate

the ratio pφ/tf . To summarise, recall that the process we’re using to find the CP

asymmetry is

ACP ≡
|A(B− → K+K−π−)|2 − |A(B+ → K+K−π+)|2

|A(B− → K+K−π−)|2 + |A(B+ → K+K−π+)|2

which can be shown to be equivalent to

ACP = − 2r sin δ sinφ

1 + 2r cos δ cosφ+ r2
(5.40)

where

reiδeiφ =
〈K+K−π−|HP |B−〉
〈K+K−π−|HT |B−〉

. (5.41)

We then parametrised equation (5.41) using tf and pφ as

〈K+K−π−|HP |B−〉
〈K+K−π−|HT |B−〉

=
gφpφ
gf tf

sf
sφ

Next we used equation (4.16) to separate out the strong and weak phase contribu-

tions; the weak phase contribution was calculated using the Wolfenstein parametri-

sation of the CKM matrix while the strong phase contribution and ratio of the tree

and penguin diagrams was calculated through the Naive Factorisation approxima-

tion. Note that the quantities gφ , gf , pφ and tf amount to an overall constant

multiplying the propagators which we recall have the form

sM = s−m2
M + imMΓM . (5.42)

We use values for the relevant quantities in sf and sφ from the Particle Data Group

as well as the following [32,33]

gφ = 4.5 , GeV gf = 7.8 GeV . (5.43)

Then it is a simple matter of extracting the relevant pieces for the asymmetry

r =
∣∣reiδ∣∣ , r cos δ = Re(reiδ) , r sin δ = Im(reiδ) , (5.44)

and plotting the asymmetry as a function of s = mKK , the invariant mass of the

K+K− pair.
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5.5 Initial Results

Recall that we have several parameters in our model such as Nc, η, ρ and q2/m2
b . For

this initial calculation, we choose q2/m2
b = 0.3 , Nc = 0.98 , ρ = ρmax , η = ηmax.

The result of our initial work is shown in Figure 5.1.

Figure 5.1: Plot of the CP asymmetry against the two kaon invariant mass. The Belle

data is shown as well for comparison.

There are several important features to observe in Figure 5.1. First, we note

that although the Belle Collaboration label the first bin as 0.8− 1.1 GeV/c2 in the

K+K− invariant mass, their measurement is achieved by averaging across this bin.

The threshold for K+K− production is about 0.988 GeV/c2 or twice the mass of the

kaon at mK = 0.494 GeV/c2. This is indicated by the dashed line on Figure 5.1. For

our purely theoretical calculation of the asymmetry, the threshold is a hard cutoff

for the allowed decays. Taking this into account, we see that our curve predicts a

large CP asymmetry in the 0.8− 1.1 GeV/c2 bin, in agreement with the Belle data.

Second, we note that just after the downward spike at 1.0 GeV/c2, there is a

sharp upward peak in the asymmetry. This clearly doesn’t agree with the Belle data

in either of the two lowest bins.

Finally, the tail of the asymmetry is almost negligible and this is important.

Recall that when we outlined our choice of the φ(1020) meson for the penguin

diagram, we noted that it had a narrow width of about 4 MeV/c2. As such, we should

expect the interference between the penguin and tree diagrams to fall off rapidly

away from the mass of the φ. This is evident in the right hand tail approaching

zero.

Although we’ve reproduced a significant asymmetry in the first Belle bin, clearly

the result of our calculation is not sufficient to fully explain the result seen at



60 Hadronic Matrix Elements

Belle. In particular, we’d really like to have some way of calculating an averaged

asymmetry across the bin. A naive average of the asymmetry involves integrating

ACP as a function of mKK across the first Belle bin. The two opposite spikes in

the asymmetry lead to an integrated asymmetry of ACP = −0.00464, which seems

almost negligible. So, despite the promising minimum in the asymmetry in the

region of interest, it appears our model doesn’t reproduce the result from Belle

as is. The following chapter contains a discussion of improvements made to the

calculation and its extension.



Chapter 6

Revised Calculation

With the plot obtained at the end of the previous chapter, we see that there is

some agreement with the Belle findings. However, there are several discrepancies

which need to be addressed. The purpose of this chapter is to revise our definition

of the CP asymmetry to allow us to integrate over the available phase space. We

begin by introducing this phase space and construct it using Dalitz plot parameters,

and we also introduce the Breit Wigner and Flatté parametrisations of the meson

propagators. We then report results from our original model before moving on to a

new model involving non-resonant processes.

6.1 Lorentz Invariant Phase Space

Fundamentally, our approach thus far has been one contrived from pure theory. As

such, it doesn’t make complete sense to compare this directly with the experimen-

tally measured findings from Belle. For example, there is a finite resolution to any

physical measurement whereas we quote our predicted curve for the CP asymmetry

with infinite resolution. In other words, we need some way to make our prediction

more realistic.

To do this, we need to be more careful in our derivation of the CP asymmetry.

Recall equation (4.2) which had

ACP ≡
Γ(B− → K+K−π−)− Γ(B+ → K+K−π+)

Γ(B− → K+K−π−) + Γ(B+ → K+K−π+)
. (6.1)

In chapter 4 we went on to say that the asymmetry could be written as

ACP =
|A(B− → K+K−π−)|2 − |A(B+ → K+K−π+)|2

|A(B− → K+K−π−)|2 + |A(B+ → K+K−π+)|2
. (6.2)

Rather than jumping straight to this equation, we write the explicit definition of

the decay rate Γ as

Γ =

∫
dΓ , (6.3)

61
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where the differential decay rate dΓ is defined as [8]

dΓ =
1

2mB

|A|2dΠ . (6.4)

Here, mB is the mass of the B meson, |A|2 is the amplitude squared for the given

decay and dΠ is the Lorentz Invariant Phase Space (LIPS) [8] defined by

dΠ = (2π)4δ4
(∑

p
) 3∏
i=1

d3pi
(2π)3

1

2Epi

= (2π)4δ4
(∑

p
) d3p

(2π)3

d3k1

(2π)3

d3k2

(2π)3

1

2Ep

1

2Ek1

1

2Ek2
. (6.5)

Note that in equation (6.5) the delta function contains a sum of 4-momenta to

enforce 4-momentum conservation, and the product over the index i is over all the

final particle states (corresponding to the final momenta for the π± , K+ and K−;

p, k1 and k2 respectively).

Now, if we substitute equation (6.4) into equation (6.3) and then use this in

equation (6.1), we obtain

ACP =

∫
1

2mB
|A−|2dΠ−

∫
1

2mB
|A+|2dΠ∫

1
2mB
|A−|2dΠ +

∫
1

2mB
|A+|2dΠ

=

∫
|A−|2dΠ−

∫
|A+|2dΠ∫

|A−|2dΠ +
∫
|A+|2dΠ

, (6.6)

where we’ve introduced the notation A± ≡ A(B± → K+K−π±). Now, we note that

the LIPS is the same for both types of decay so we simplify this to

ACP =

∫
|A(B− → K+K−π−)|2 − |A(B+ → K+K−π+)|2 dΠ∫
|A(B− → K+K−π−)|2 + |A(B+ → K+K−π+)|2 dΠ

. (6.7)

Recall that we previously averaged the asymmetry by just integrating over it. We

prefaced this by saying the average was naive, and hopefully it is clear why. We

integrated over the asymmetry as a whole whereas, by equation (6.7), we see that

we need to integrate both the numerator and denominator individually in order to

produce an integrated asymmetry.

Additionally, equation (6.7) looks almost like we have the expression given in

equation (6.2). However, we can only simplify to this if the amplitudes inside the

integrals have no phase space dependence. It is not immediately clear whether they

do, and if they do, how strong the dependence is. So we will compute integrated

asymmetries directly, to be sure.
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6.2 Dalitz Phase Space

We are now left with the problem of how to perform the integral over the phase

space. Our approach is to integrate over a region of the Dalitz plot phase space. The

Kinematics chapter of [21] gives a succinct review of Dalitz plots but for completeness

we describe the formalism here.

6.2.1 Kinematics

Consider a three-body decay with parent particle of mass M and four momentum

P which decays to three daughter particles with masses and momenta mi, pi where

i = 1, 2, 3, shown in Figure 6.1. Clearly 4-momentum conservation implies that

P = p1 + p2 + p3. We go on to define the invariant mass of a pair of particles by

m2
ij = p2

ij where pij ≡ pi + pj . (6.8)

P,M

p1,m1

p2,m2

p3,m3

p′1,m1

p′2,m2

p′3,m3

(a) (b)

Figure 6.1: Three body decay in the (a) lab frame, and (b) parent particle rest frame.

We note that in the rest frame of the parent particle (see Figure 6.1) the de-

cay products’ 3-momenta lie in a plane. In fact, one can define three Euler angles

α, β and γ which describe the exact configuration of the particles, given their ener-

gies [21]. Then, since knowing two of the energies is enough to know the third, we

can change our phase space variables from momenta to dα, d(cos β), dγ, dE1, dE3.

We can then write the differential decay rate as

dΓ =
1

(2π)5

1

16M
|M|2dE1dE3dαd(cos β)dγ . (6.9)

At a quick glance we see that the delta function has been integrated over to simplify

the original nine dimensional phase space down to just five dimensions. The factors

of 2π and 2 follow from equation (6.5).
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Now, if we integrate over the Euler angles and average over the spins of the

parent particle, we have

dΓ =
1

(2π)5

1

16M
|M|2dE1dE3

∫ 2π

0

dα

∫ 1

−1

d(cos β)

∫ 2π

0

dγ

=
1

(2π)5

1

16M
2(2π)2|M|2dE1dE3

∴ dΓ =
1

(2π)3

1

8M
|M|2dE1dE3 .

Here |M|2 denotes the spin-averaged matrix element squared for the decay (which

we take to be our |A±|2 from previously). This is close to what we want but recall

that we would like to be integrating over the K+K− invariant mass at some point.

Hence, we need to perform a change of variables.

From the definition of the invariant mass and conservation of 4-momentum, we

write

m2
12 = (p1 + p2)2 = (P − p3)2 = M2 +m2

3 − 2ME3 , (6.10)

and likewise

m2
23 = (P − p1)2 = M2 +m2

1 − 2ME1 . (6.11)

To complete our change of variables from (E1, E3) → (m23,m12) we take partial

derivatives and construct the Jacobian matrix as

J =


∂E1

∂m23

∂E1

∂m12

∂E3

∂m23

∂E3

∂m12

 =

−
m23

M
0

0 −m12

M

 . (6.12)

The Jacobian factors which enter the integrand upon our change of variables are

simply given by the determinant of the matrix above and so we write the differential

decay rate as

dΓ =
1

(2π)3

1

8M3
|M|2m12m23dm12dm23 . (6.13)

The factors of 2π and 8M3 are irrelevant for us since we’ll take the ratio of the

sum and difference of the decay rates; the key feature is that there is some explicit

dependence on the phase space parameters m12 and m23 along with any dependence

which lies within the matrix element itself. As a note, if the matrix elements have

no dependence on the phase space parameters, then integrating over the phase space

will just produce a constant, which will again drop out of the ratio. What we find

however, is that the matrix elements do in fact depend on the phase space and so

the reduction of the CP asymmetry to equation (6.2) is not immediately justified.

Now we make the identifications m1 ≡ mK+ , m2 ≡ mK− and m3 ≡ mπ± . Since

all the constants drop out when we take the ratio in the asymmetry, we then write
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equation (6.7) as

ACP =

∫ (
|A−|2 − |A+|2

)
mKKmKπdmKKdmKπ∫ (

|A−|2 + |A+|2
)
mKKmKπdmKKdmKπ

. (6.14)

Then we can make use of results which led us to equation (4.10), and we obtain

ACP = −
∫
mKKmKπ(2r sin δ sinφ)|AT |2dmKKdmKπ∫

mKKmKπ(1 + 2r cos δ cosφ+ r2)|AT |2dmKKdmKπ

. (6.15)

Previously the tree amplitude terms |AT |2 cancelled since weren’t integrating them.

However, with the full phase space integrals we need to keep these. For completeness

we recall that the tree amplitude is written

AT ≡
tfgf
sf

. (6.16)

6.2.2 Dalitz Plots

Our next step is to construct the phase space in such a way that it is simple to

compute. Plots of the phase space for three-body decays in terms of the invariant

masses are known as Dalitz plots [21]. For a given value of m12, we can place

bounds on the value of m23 by considering when the momenta of the particles are

aligned or anti-aligned. These are given by

(m2
23)max = (E∗2 + E∗3)2 −

(√
E∗22 −m2

2 −
√
E∗23 −m2

3

)2

, (6.17)

and

(m2
23)min = (E∗2 + E∗3)2 −

(√
E∗22 −m2

2 +
√
E∗23 −m2

3

)2

. (6.18)

Here, we use the ∗ notation to denote energies in the rest frame of m12. These

energies are given by

E∗2 =
m2

12 −m2
1 +m2

2

2m12

, (6.19)

and

E∗3 =
M2 −m2

3 −m2
12

2m12

. (6.20)

The bounds of the Dalitz plot are then restricted purely by enforcing conservation of

4-momentum and are determined by the masses of the particles. For instance, m12

has minimal value (m12)min = m1 + m2 (the particles m1 and m2 are at rest) while

its maximum is (m12)max = M −m3 (when M and m3 are at rest). Equations (6.17)

and (6.18) along with the maximal and minimal values for m12 and m23 allow us to

generate plots such as that shown in Figure 6.2.
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Figure 6.2: Dalitz plot for a general three-body decay, taken from [21]. The dotted line

shows all possible values of m2
23 for a given value of m2

12.

For the case of B± → K+K−π± decays, the allowed phase space is bounded by

(mKπ)max and (mKπ)min which are both functions of mKK , as well as mKK in the

range

mK+ +mK− = 2mK ≤ mKK ≤ mB −mπ , (6.21)

or

0.986 ≤ mKK ≤ 5.14 GeV/c2 . (6.22)

Although we’ve now mapped out the entire phase space available in the decays, we

are only interested in a small fraction of this space. Recall that the bin where Belle

measured the significant asymmetry was the first bin, 0.8 ≤ mKK ≤ 1.1 GeV/c2.

The other bins all showed negligible, or at least less significant, CP asymmetry

and so we aren’t interested in these. In fact, since our model only incorporates

resonances at ∼ 1 GeV/c2, we aren’t justified in extending beyond this first Belle

bin. Recalling that the lower bound on the Belle bin is unphysical, we thus take our

limits of integration to be 0.986 GeV/c2 and 1.1 GeV/c2 in the mKK variable, with

the corresponding limits on mKπ determined by equations (6.17) and (6.18).

Once we’ve chosen the end points of our integration, we can proceed with one of

two integration schemes. In the first, we take the bin 0.986 ≤ mKK ≤ 1.1 GeV/c2

and integrate over it. This should then be directly comparable to the Belle data.

In the second case, we subdivide this bin and perform the integration over these

smaller bins. In particular, by taking the number of bins to infinity and making
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each bin width infinitesimally small, we expect to produce purely theoretical curves

similar to those seen in chapter 5.

6.3 Couplings and Partial Widths

Although we can calculate the asymmetry at this point, we note that there is some

implicit phase space dependence in the propagators which we haven’t addressed;

specifically in the ΓM term. The form of the propagator in equation (5.42) is more

explicitly written as

sM(mKK) = mKK −m2
M + imMΓM(mKK) , (6.23)

where the width of the propagating meson M is in principle dependent on the K+K−

invariant mass. Typically, one writes the full width as

ΓR(s) =
∑
c

ΓR→c

(
qc
qRc

)2Lc+1(
mR√
s

)(
FLc(qc, q0)

FLc(qRc, q0)

)2

, (6.24)

where R denotes the resonance in question, c denotes the available decay channels

and
√
s is the invariant mass of the final states [21]. The momenta qc is given by

qc =
1

2mab

√
(m2

ab − (ma +mb)2)(m2
ab − (ma −mb)2) (6.25)

where a and b denote the particles in the two-particle final state. One arrives at

this form by considering conservation of 3-momentum, as in the earlier case of pc
for the centre of mass momentum (see Appendix A for derivation). We then have,

for a Breit Wigner pole mass mBW [21]

qRc =
1

2mBW

√
(m2

BW − (ma +mb)2)(m2
BW − (ma −mb)2) (6.26)

and if the final states have the same mass (ma = mb = mc) then we get

qRc =
1

2

√
m2
BW − 4m2

c . (6.27)

Returning back to equation (6.24), Lc is the angular momentum of the decay prod-

ucts, s = m2
c is the square of the invariant mass of the decay products. Finally, FLc

are barrier factors. They are typically taken to be of the Blatt-Weisskopf form, given

in Table 6.1. We note that there are other forms for the Blatt-Weisskopf functions;

we’ve chosen the form in Table 6.1 so that we can explicitly write the centrifugal

barrier factors as the ratio qc/qRc [34].

This formalism comes with the caveat that it only applies for resonances which

are isolated. This is the case for the φ(1020) but it does not apply for the f0(980)
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Lc FLc(qc, q0)

0 1

1

√
1 + z0

1 + z

2

√
(z0 − 3)2 + 9z0

(z − 3)2 + 9z

where z = (|qc|d)2 and z0 = (|q0|d)2

Table 6.1: Table of Blatt-Weisskopf form factors. qc has already been defined previously

and q0 is the value of qc when mab = mR. d is the impact parameter (meson radius) which

we take to be on the order of 1 fm [34].

since the a0(980) is also close to the KK̄ threshold [34]. We instead need to introduce

another parametrization for the mass dependent propagator of the f0(980).

6.3.1 Flatté Parametrization

In the Flatté parametrization [21,34,35], we write the mass dependent width of the

f0(980) as

mfΓf = ρππg
2
ππ + ρKKg

2
KK (6.28)

where the phase space terms are

ρππ =
2

3

√
s− 4m2

π±

s
+

1

3

√
s− 4m2

π0

s
, (6.29)

and

ρKK =
1

2

√
s− 4m2

K±

s
+

1

2

√
s− 4m2

K0

s
. (6.30)

We take gKK/gππ = 4.21± 0.25± 0.21 and gππ = 0.165± 0.010± 0.015 GeV/c2 [35].

This then fully accounts for the mass dependence of the propagators and so we are

able to compute the asymmetry. This is shown in the following section.

6.3.2 Results for the f0(980) Tree, φ(1020) Penguin Model

With the phase space fully defined, we compute the integrated CP asymmetry for

the model using the f0(980) in the tree diagram and the φ(1020) in the penguin.

In our preliminary calculation of the purely theoretical asymmetry we just set the

values of Nc = 0.98 , q2/m2
b = 0.3 , ρ = ρmax and η = ηmax. Now, we allow each of

these parameters to vary, with the results shown in Table 6.2 (the purely theoretical

asymmetry curves are shown in Figure 6.3 for reference).
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Unfortunately, the promising asymmetry we first observed with this model is

not present in the integrated CP asymmetry, although it does appear again in the

plots of the asymmetry. We suspect that, since the φ is produced by a gluon, it

must be spin-1 and so when we integrate over the angular degrees of freedom in

the phase space the penguin amplitude will be suppressed. Hence, although the

plots suggest that there is a significant asymmetry around 1 GeV/c2 in mKK , the

integrated asymmetry (the asymmetry which is measurable by Belle) appears to be

negligible. We thus propose a second model with which we compute the asymmetry,

in the hope that it performs better than the first model we’ve tested.

q2/m2
b = 0.3 q2/m2

b = 0.5

Nc = 0.98 Nc = 0.94

ρmax , ηmax −0.0008 ρmax , ηmax −0.0282

ρmin , ηmin −0.0007 ρmin , ηmin −0.0252

Nc = 2.01 Nc = 1.95

ρmax , ηmax −0.0020 ρmax , ηmax −0.0449

ρmin , ηmin −0.0018 ρmin , ηmin −0.0403

Nc = 3.00 Nc = 3.00

ρmax , ηmax −0.0032 ρmax , ηmax −0.0554

ρmin , ηmin −0.0028 ρmin , ηmin −0.0500

Table 6.2: The values for the integrated CP asymmetry for the f0(980) tree and φ(1020)

penguin diagrams for q2/m2
b = 0.3 , 0.5. The integration is performed over the range

2mK ≤ mKK ≤ 1.1 GeV and for both maximum and minimum values of ρ and η.

6.4 Non-Resonant Calculation

Since the φ meson has spin-1, we postulated that the interference between this

contribution and that of the tree diagram would vanish once we integrated over the

entire angular range of our phase space. Further, although we could potentially

see an a0(980) from the tree/penguin diagram, with the f0(980) coming from the

penguin/tree diagram, these would necessarily have orthogonal wavefunctions (they

correspond to different isospins for the K+K− pair) so can not interfere as needed

to observe significant CP violation.

The result of this is that we now take two new diagrams, although they still

have the same general form as those in Figures 4.1 and 4.2. We replace the φ(1020)
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Figure 6.3: Plots of the integrated CP asymmetry for 50 bins over the range

2mK ≤ mKK ≤ 1.1 GeV/c2. The top (bottom) plot is for q2/m2
b = 0.3(0.5). Squares

correspond to maximum values for ρ and η, while triangles correspond to minimum values

for ρ and η. The numbers of effective colours correspond to the colours of the plots in

the following way: Nc = 0.98(0.94) is shown in orange, Nc = 2.01(1.95) is shown in blue,

Nc = 3.00(3.00) is shown in purple.
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produced in the penguin diagram with an f0(980) and the original f0(980) produced

in the tree diagram is replaced with a non-resonant qq̄ state. Figures 6.4 and 6.5

show these new diagrams.

In calculating the amplitudes for these two diagrams, we use the same method-

ology as before with some slight adjustments. The amplitudes for the two diagrams

are written as〈
K+K−π−

∣∣HP
∣∣B−〉 =

gf
sf
pf and

〈
K+K−π−

∣∣HT
∣∣B−〉 = tNR , (6.31)

and the ratio of these is just

reiδeiφ =
〈K+K−π−|HP |B−〉
〈K+K−π−|HT |B−〉

=
gfpf
sf tNR

. (6.32)

The key thing to note here is that the tree process has been condensed down to

just the tNR factor; there is no intermediate resonance in this non-resonant decay

and so there is no propagator for the tree process, nor is there a separate coupling

to the K+K− pair as we had previously. The factorisation approximation proceeds

as usual, with the same definitions of the operators Oi found in equations (3.54) to

(3.63). The results of the factorisation are given after a brief discussion of Heavy

Meson Chiral Perturbation Theory.

K+

B−

K−

tNR
π−

Figure 6.4: Simplified tree diagram for B− → K+K−π− through a non-resonant decay

channel.

6.4.1 Heavy Meson Chiral Perturbation Theory

Our method for computing the matrix elements in the factorisation approximation

is based on that found in [36]. Before we proceed though, one should be aware of

the limitations of this method, in particular, the limitations of using heavy meson

chiral perturbation theory (HMChPT). For HMChPT to be valid, we require two

of the final state pseudoscalar mesons to be soft with momenta less than the chiral

symmetry breaking scale Λχ ∼ 0.83 GeV [36]. As a result, HMChPT is applicable

to only a small region of the Dalitz phase space and so we need to check if the range

of mKK values of interest lies within the region of validity for HMChPT.
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π−

B−

K+

K−

pf f0

gf

Figure 6.5: Simplified penguin diagram for B− → f0(980)π− → K+K−π−.

More specifically, we’ll need HMChPT to describe the B− to K+K− transition

so we should consider the invariant mass of the kaons in the context of soft kaons;

if the region we’ve investigated (2mK < mKK < 1.1 GeV/c2) corresponds to soft

kaons, then we are justified in using HMChPT.

In the following, we’ll use a rough argument to investigate the validity of HM-

ChPT. First, let’s apply conservation of 4-momentum at the decay vertex. We have

that

pµB = pµK+ + pµK− + pµπ . (6.33)

Working in the rest frame of the B meson, we choose our axes such that the pion

travels in the negative z direction while the kaons travel in the x − z plane. We

also assume that the kaons have the same magnitude for their momenta and define

|pK+ | = |pK−| ≡ pK so the angle θ between them is symmetric about the z-axis.

The zero component of momentum conservation then gives

p0
B = p0

K+ + p0
K− + p0

π

⇒ mB = 2
√
m2
K + p2

K +

√
m2
π + |pπ|

2

∴ |pπ| =

√(
mB − 2

√
m2
K + p2

K

)2

−m2
π . (6.34)

The conservation of 3-momentum gives only one meaningful equation (in the z

direction) from which we get

pB = pK+ + pK− + pπ

⇒ 0 = 2pK cos θ − |pπ|

∴ θ = cos−1

(
|pπ|
2pK

)
. (6.35)

Combining these results, we can plot the values of θ as a function of the magni-

tude of the kaon momenta. This is shown in Figure 6.6.
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Figure 6.6: Plot of the values for θ the angle between the kaons as a function of pK , the

magnitude of their momenta. This assumes the kaons have the same magnitude for their

momenta.

We note that there are two types of region where this function is undefined.

The first case is when the square roots in equation (6.34) give an imaginary result.

Clearly the term
√
m2
K + p2

K is always real and so we just need to check the overall

square root. In other words, θ is undefined if(
mB − 2

√
m2
K + p2

K

)2

< m2
π (6.36)

which is equivalent to

0 < mB − 2
√
m2
K + p2

K < mπ . (6.37)

where we note that the terms in brackets in inequality (6.36) are equal to the pion

energy and so cannot be negative. Rearranging these inequalities and substituting

values for the relevant masses, one finds that the square roots lead to the function

being undefined in the region

2.52 < pK < 2.59 GeV/c . (6.38)

The second cause for the θ(pK) function being undefined is to do with the inverse

cosine function. Since cos(x) has values within −1 ≤ cos(x) ≤ 1, the cos−1(x)

function is only defined on the interval from −1 to 1. So, we need to check if

there are any places where the argument of the cos−1 function is outside this range.

Starting with the inequality

−1 ≤ |pπ|
2pK

≤ 1 , (6.39)

one can show that θ(pK) is undefined for pK ≤ 1.273 GeV/c. These two regions

where θ is undefined correspond to the flat lines shown in Figure 6.6 along the

pK-axis.
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Immediately, we can see a problem. We wanted to show that the pseudoscalars

K+ and K− are soft, with momenta smaller than 0.83 GeV/c. However, this is

physically untenable with our assumptions, since there is no value of θ for which the

kaons can have this low a value for their momenta and still conserve momentum.

So the question is, should we be using HMChPT to evaluate the matrix elements?

Strictly speaking, we shouldn’t. However, we stress an important part of the rec-

ommendations from [36]; the main cause for concern with using chiral perturbation

theory in these heavy meson decays is that the phase space is quite large and yet

chiral perturbation theory is only applicable to a small portion of it. Problems arise

when one attempts to calculate, say, the total decay rate across the entire phase

space, since this entails extending HMChPT well beyond its region of applicability.

In our case however, we are only interested in the lower end of the phase space, with

the region of interest being 2mK ≤ mKK ≤ 1.1 GeV/c2.

The question then arises; how far away from the region of validity might we be ex-

tending in our investigation? In our rough approximation where the kaons have equal

momenta, we actually showed that the kaons cannot both have pK < 0.83 GeV/c

in any region of the phase space. However, we can still check what our range in

mKK corresponds to in pK . Starting from the definition of the kaon pair’s invariant

mass

m2
KK ≡ (pK+ + pK−)2

= 2m2
K + 2pµK+p

K−

µ

= 2m2
K + 2

(
p0
K+pK

−

0 − pK+ · pK−
)

= 2m2
K + 2

√(
|pK+|2 +m2

K

)(
|pK−|

2 +m2
K

)
− 2|pK+||pK−| cos θ ,

we can then substitute the condition that |pK+| = |pK+| = pK and use the resulting

form for θ given in equation (6.35). This gives us an expression for mKK in terms

of pK

m2
KK = 4m2

K + 2p2
K

1−

√(
mB − 2

√
m2
K + p2

K

)2

−m2
π

2pK

 . (6.40)

Hence, in our investigation of the invariant mass region 0.986 ≤ mKK ≤ 1.1 GeV/c2

we in fact have kaons with approximately 1.27 ≤ pK ≤ 1.32 GeV/c (assuming the

kaons have the same magnitude for their 3-momenta).

In these rough calculations, we’ve shown that the kaons are not “soft” (we want

pK < 0.83 GeV/c), and so we can only treat the remainder of the calculation of the

asymmetry as approximate.
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6.4.2 Factorisation Approximation

With this interlude complete, we perform the calculation of the tree and penguin

amplitudes following the method of [36]. We begin by considering the tree amplitude

tNR defined as

tNR ≡
GF√

2
VudV

∗
ub

(
a1

〈
K+K−π−

∣∣O1

∣∣B−〉+ a2

〈
K+K−π−

∣∣O2

∣∣B−〉) . (6.41)

We propose that the total non-resonant contribution to the B− → K+K−π− decay

is tree dominated and also that the O1 contribution is dominant [36]. Focusing on

the O1 contribution, we obtain〈
K+K−π−

∣∣O1

∣∣B−〉
=
〈
K+K−π−

∣∣(d̄u)V−A(ūb)V−A
∣∣B−〉

=
〈
π−
∣∣(d̄u)V−A

∣∣0〉 〈K+K−
∣∣(ūb)V−A∣∣B−〉+

〈
K+K−π−

∣∣(d̄u)V−A
∣∣0〉 〈0∣∣(ūb)V−A∣∣B−〉

=
〈
π−
∣∣(d̄u)V−A

∣∣0〉 〈K+K−
∣∣(ūb)V−A∣∣B−〉 ,

where we’ve used the fact that, after factorising, the second pair of matrix elements

is helicity suppressed so vanishes [36]. We thus have the result〈
K+K−π−

∣∣O1

∣∣B−〉 =
〈
π−
∣∣(d̄u)V−A

∣∣0〉 〈K+K−
∣∣(ūb)V−A∣∣B−〉 . (6.42)

The matrix element involving the pion is exactly what we had previously and is

calculated in the same manner. However, we need to make use of a new set of form

factors in order to compute the second matrix element. We write〈
K+(p2)K−(p1)

∣∣(ūb)V−A∣∣B−(pB)
〉

= ir(pB − p1 − p2)µ + iω+(p1 + p2)µ

+ iω−(p2 − p1)µ + hεµναβp
ν
B(p1 + p2)α(p2 − p1)β , (6.43)

where the relevant form factors are obtained by considering pole diagrams such as

those shown in Figure 6.7. The key idea in these diagrams is that the mesons can

fluctuate into other states, such as the vector meson B̄∗0s by weak and/or strong

interactions [37,38].

The couplings in the pole diagrams are calculable using the Lagrangian [39]

LPP ∗ = DµPD
µP † −m2

PPP
† + fQ

(
PAµP ∗†µ + P ∗µA

µP †
)

− 1

2
P ∗µνP ∗†µν +m2

P ∗P
∗µP ∗†µ +

1

2
gQεµνλκ

(
P ∗µνAλP ∗κ† + P ∗κAλP ∗µν†

)
, (6.44)

where

P ∗†µν = DµP
∗†
ν −DνP

∗†
µ , (6.45)

P ∗µν =
(
∂µ + V ∗µ

)
P ∗ν − (∂ν + V ∗ν )P ∗µ , (6.46)

and Aµ are the fields for the Goldstone bosons. The diagrams are thus calculated
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using this Lagrangian, with the results for the form factors given in [36,40] as

ω+ = − g

f 2
π

fB∗smB∗s

√
mBmB∗s

t−m2
B∗s

[
1− (pB − p1) · p1

m2
B∗s

]
+

fB
2f 2

π

, (6.47)

ω− =
g

f 2
π

fB∗smB∗s

√
mBmB∗s

t−m2
B∗s

[
1 +

(pB − p1) · p1

m2
B∗s

]
, (6.48)

r =
fB
2f 2

π

− fB
f 2
π

pB · (p2 − p1)

(pB − p1 − p2)2 −m2
B

+
2gfB∗s
f 2
π

√
mB

mB∗s

(pB − p1) · p1

t−m2
B∗s

− 4g2fB
f 2
π

mBmB∗s

(pB − p1 − p2)2 −m2
B

p1 · p2 − p1 · (pB − p1)p2 · (pB − p1)/m2
B∗s

t−m2
B∗s

, (6.49)

where

t ≡ (pB − p1)2 = (p2 + p3) = (pK+ + pπ)2 ≡ m2
Kπ . (6.50)

The contribution from the form factor h vanishes when we contract equation (6.43)

with the vacuum to pion matrix element in equation (6.42), so its form is not re-

quired.

In contracting the pair of matrix elements, we end up needing to compute the

term (pB − p1) · p1. It turns out that we can rewrite this in terms of the invariant

masses of the K+K− and K+π− pairs and thus compute the CP asymmetry with

the same integration method as used previously (integrating over the Dalitz plot for

K+

B−

K−

K−

B−

K+

B−

K+B−

K−

B
∗0
s

K+

B−

K−

B
∗0
s

B(∗)−

Figure 6.7: Point-like (top left) and pole diagrams for the decay B− → K+K−. The

coloured circle denotes an insertion of the current ūγµ(1 − γ5)b. These figures are based

on those found in [36].
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mKK and mKπ). We find, using the fact that pB = p1 + p2 + p3 = pK− + pK+ + pπ,

(pB − p1) · p1 = pB · p1 − p2
1

= pB · p1 −m2
1

= (p1 + p2 + p3) · p1 −m2
1

= m2
1 + p2 · p1 + p3 · p1 −m2

1

=
1

2
(p1 + p2)2 − 1

2
m2

1 −
1

2
m2

2 +
1

2
(p1 + p3)2 − 1

2
m2

1 −
1

2
m2

3

=
1

2

[
(p1 + p2)2 + (p1 + p3)2 − 2m2

1 −m2
2 −m2

3

]
.

We recognise the bracketed terms as just the squares of the invariant masses for the

K+K− and K+π− pairs and write

(pB − pK−) · pK− =
1

2

[
m2
KK +m2

Kπ − 3m2
K −m2

π

]
. (6.51)

Hence, the form factors can be calculated explicitly in terms of the invariant masses.

The next thing to do is contract the matrix elements written in terms of their form

factors. This is the topic of the following section.

Matrix Element Contraction

Recall equation (6.43) which shows the form factor description of the non-resonant

B− to K+K− matrix element. We now contract this with the corresponding form

factor representation of the pion matrix element〈
π−
∣∣(d̄u)V−A

∣∣0〉 〈K+K−
∣∣(ūb)V−A∣∣B−〉

= ifπp
µ
3

[
ir(pB − p1 − p2)µ + iω+(p1 + p2)µ + iω−(p2 − p1)µ

+ hεµναβp
ν
B(p1 + p2)α(p2 − p1)β

]
= −fπ

[
pµ3(pB − p1 − p2)µr + pµ3(p1 + p2)µω+ + pµ3(p2 − p1)µω−

+ iεµναβp
µ
3p

ν
B(p1 + p2)α(p1 − p2)βh] . (6.52)

We will investigate the above result term by term, starting with the h contribution

(recall that we claimed it vanishes). This term is proportional to

εµναβp
µ
3p

ν
B(p1 + p2)α(p1 − p2)β

= εµναβ(pB − (p1 + p2))µpνB(p1 + p2)α(p1 − p2)β

= εµναβ(pµBp
ν
B(p1 + p2)α(p1 − p2)β − (p1 + p2)µpνB(p1 + p2)α(p1 − p2)β) .

The Levi Civita symbol is totally antisymmetric under the exchange of any of its

two indices while in the first term in the parentheses pµBp
ν
B is totally symmetric

under the exchange µ↔ ν. Hence the first term is zero. Likewise, the second term
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involving (p1 +p2)µ(p1 +p2)α which is totally symmetric under µ↔ α also vanishes.

So the total contribution from the h term is zero, as originally stated.

For convenience, we defineX ≡ 〈π−|(d̄u)V−A|0〉 〈K+K−|(ūb)V−A|B−〉 and rewrite

equation (6.52) as

X = −fπ[pµ3(pB − p1 − p2)µr + pµ3(p1 + p2)µω+ + pµ3(p2 − p1)µω−] . (6.53)

It turns out that it will prove more convenient to have a factor of 2 in the brackets

and so we write

X = −fπ
2

[2pµ3(pB − p1 − p2)µr + 2pµ3(p1 + p2)µω+ + 2pµ3(p2 − p1)µω−] . (6.54)

The contribution due to r is then

2pµ3(pB − p1 − p2)µ = 2pµ3p3µ = 2m2
3 . (6.55)

The ω+ contribution is

2pµ3(p1 + p2)µ = 2(pB − (p1 + p2))µ(p1 + p2)µ

= 2pµB(p1 + p2)µ − 2(p1 + p2)2

= 2pµB(pB − p3)µ − 2(p1 + p2)2

= 2m2
B − 2pµBp3µ − 2s ,

where

s ≡ (p1 + p2)2 = (pB − p3)2 . (6.56)

From here, it isn’t so obvious how we should proceed. Consider though the following:

m2
B − s−m2

3 = m2
B − (pB − p3)2 −m2

3

= 2pµBp3µ − 2m2
3

⇒ 2pµBp3µ = m2
B − s+m2

3

Then the contribution due to ω+ becomes

2m2
B − 2pµBp3µ − 2s = 2m2

B − (m2
B − s+m2

3)− 2s

= m2
B − s−m2

3 . (6.57)

Finally, consider the contribution due to ω−, that is, 2pµ3(p2 − p1)µ. We start with

2t+ s−m2
B − 2m2

2 −m2
3 = 2(p2 + p3)2 + (pB − p3)2 −m2

B − 2m2
2 −m2

3 .

(6.58)
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Expanding out and collecting terms, we are left with

2t+ s−m2
B − 2m2

2 −m2
3 = 4pµ2p3µ + 2m2

3 − 2pµBp3µ

= 2pµ2p3µ − 2(pB − p2)µp3µ + 2m2
3

= 2pµ2p3µ − 2(p1 + p3)µp3µ + 2m2
3

= 2pµ2p3µ − 2pµ1p3µ − 2m2
3 + 2m2

3

= 2(p2 − p1)µp3µ . (6.59)

Finally, substituting equations (6.55), (6.57) and (6.59) into our expression for X

given by equation (6.54), we obtain

X = −fπ
2

[2m2
3r + (m2

B − s−m2
3)ω+ + (2t+ s−m2

B − 2m2
2 −m2

3)ω−] . (6.60)

Now we can simply recall that m1 = m2 = mK and m3 = mπ. Then, since the mass

of the pion is negligible on the scale of the mass of the B meson, we can neglect the

first term. Rewriting our final expression for X in a more suggestive way, we have

X = −fπ
2

[(m2
B −m2

KK −m2
π)ω+ + (2m2

Kπ +m2
KK −m2

B − 2m2
K −m2

π)ω−] . (6.61)

Recalling that both ω+ and ω− are functions of the invariant masses mKK and mKπ

we see that the contraction of the factorised matrix elements from the non-resonant

tree decay can be expressed in terms of just these invariant masses. With equation

(6.41) and our definition of X, we can then write the tree vertex amplitude as

tNR = −GF√
2
VudV

∗
uba1

fπ
2
×[

(m2
B −m2

KK −m2
π)ω+ + (2m2

Kπ +m2
KK −m2

B − 2m2
K −m2

π)ω−
]
. (6.62)

Noting the forms of ω+ and ω−, this concludes the tree calculation. All that remains

is to perform the analogous calculation of the penguin matrix elements. These are

achieved in exactly the same manner as we had previously, albeit with the f0(980)

replacing the φ(1020). From the Naive Factorisation we obtain〈
f0π

−∣∣O3

∣∣B−〉 = −
〈
π−
∣∣(d̄b)V−A∣∣B−〉 〈f0|(ūu+ d̄d+ s̄s)V−A|0〉 = 0 ,〈

f0π
−∣∣O4

∣∣B−〉 =
〈
f0

∣∣(ūb)V−A∣∣B−〉 〈π−∣∣(d̄u)V−A
∣∣0〉 ,〈

f0π
−∣∣O5

∣∣B−〉 = 〈f0|(ūu+ d̄d+ s̄s)V+A|0〉
〈
π−
∣∣(d̄b)V−A∣∣B−〉 = 0 ,〈

f0π
−∣∣O6

∣∣B−〉 = −2
[ 〈
f0

∣∣ū(1− γ5)b
∣∣B−〉 〈π−∣∣d̄(1 + γ5)u

∣∣0〉
+ 〈f0|d̄(1 + γ5)d|0〉

〈
π−
∣∣d̄(1− γ5)b

∣∣B−〉 ] = 0 .

Note that all but one of the matrix elements above vanish; this is mostly due to

the fact that a scalar meson requires either a scalar or vector transition current to

couple to the vacuum. In the case of the f0 though, C invariance implies that the

contribution from a vector current is zero [31]. This eliminates the contributions due
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to O3 and O5 as well as one of the contributions from O6. For the other contribution

in O6, we note that the pion to B meson transition requires either a vector or axial

vector current. Since none are available, this contribution also vanishes, meaning

that only O4 gives a non-zero contribution. We thus have

pf ≡ −
GF√

2
V ∗tdVtba4

〈
f0π

−∣∣O4

∣∣B−〉 (6.63)

= −GF√
2
V ∗tdVtba4

〈
f0

∣∣(ūb)V−A∣∣B−〉 〈π−∣∣(d̄u)V−A
∣∣0〉 . (6.64)

This is easily calculable in the same manner as was used previously using the form

factors in equations (5.22) to (5.28), taking the form

pf =
GF√

2
V ∗tdVtba4fπ(m2

B −m2
f )F0(m2

π) . (6.65)

Then we use the same Dalitz plot phase space as before to perform the integra-

tion; our intermediate states have changed but the overall phase space allowed by

the final states is the same. Recall that we write the full, phase space dependent

CP asymmetry as

ACP =

∫
mKKmKπ(−2r sin δ sinφ)|AT |2dmKKdmKπ∫

mKKmKπ(1 + 2r cos δ cosφ+ r2)|AT |2dmKKdmKπ

. (6.66)

The terms r sin δ, r cos δ and |AT |2are made up of tNR , pf and the associated prop-

agators and couplings to the kaons; these are obtained from the factorisation ap-

proximation and are functions of the Dalitz plot parameters. The sinφ and cosφ

terms are found directly from the CKM matrix and are constant with respect to the

Dalitz plot parameters. We then integrate over the Dalitz plot phase space in the

same manner used previously, thereby obtaining a final value for the CP asymmetry.
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Results and Discussion

We are now in a position to report results for the integrated CP asymmetry in-

volving non-resonant tree processes. We report our results for various choices of

Nc , q
2/m2

b , ρ and η and later in this chapter we also use form factor descriptions

other than the simple n = 1 monopole dominance assumption we made earlier.

7.1 Non-resonant Tree with f0(980) Penguin

We present here the results for the CP asymmetry produced via the interference of

the non-resonant (NR) tree process with the resonant (R) f0(980) penguin process.

Table 7.1 shows the total integrated CP asymmetry for a given value of the number

of effective colours Nc. Recall that the number of effective colours differs for the

two values of q2/m2
b ; for a value of 0.3, the number of effective colours is taken to be

0.98, 2.01 or 3.00, while for a value of 0.5, Nc is 0.94, 1.95 or 3.00. For the moment

we are interested in the columns labelled NR.

Figure 7.1 shows the theory curves for the asymmetry. We obtained these by

integrating over 50 equally spaced bins in the range 2mK ≤ mKK ≤ 1.1 GeV/c2.

The model appears to perform better for higher values of Nc with the Nc = 2.01

and Nc = 1.95 results being particularly promising. However, we note that the

non-resonant decay may not be the dominant mode for the tree decay in this region

of phase space. There could be some resonant decay, such as decay through the

φ(1020) or f0(980), which has a greater amplitude and thus a larger contribution

to the overall tree amplitude. We’ll ignore the φ(1020) for the same reasons we

abandoned it in the penguin diagram in addition to the fact that there is no s̄s

pair in the tree diagram for it to couple to. However, this still leaves us with the

possibility of the f0(980) coupling to the tree decay. We thus need to check which

process, NR or R tree decay, is dominant in the region of phase space of interest to

us.

We do this by directly comparing the amplitudes for the decays where we recall

the expressions for the amplitudes are

A(B±
R tree−−−→ K+K−π±) =

tfgf
sf

, (7.1)
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A(B±
NR tree−−−−→ K+K−π±) = tNR . (7.2)

We then take the ratio
A(B±

NR tree−−−−→ K+K−π±)

A(B±
R tree−−−→ K+K−π±)

, (7.3)

and look for how far this number deviates from zero as a function of the K+K−

invariant mass. This is shown in Figure 7.2. Clearly the ratio, labelled NR/R,

remains between 0 and 1 across the entirety of the region of phase space of interest

to us. Hence, we would not be justified in claiming that the non-resonant process

contributes more to the CP asymmetry than the resonant process. Rather, we should

include the f0(980) with the non-resonant diagram in the overall tree process. This

leads us to our final model.

7.2 Non-resonant and f0(980) Tree with f0(980) Pen-

guin

In view of these findings we now include the resonant tree process involving the

f0(980). We do this by writing the amplitudes as

AT =
tfgf
sf

+ tNR , AP =
pfgf
sf

, (7.4)

where we recall that the individual amplitudes tf , tNR and pf include the factors

GF/
√

2 , V T and V P . The total tree amplitude receives contributions from the two

tree processes we’ve identified; the resonant f0(980) decay and the non-resonant

process. It is worth clarifying that the total tree amplitude is written as AT and

this should not be confused with, for example, A(B−
tree−−→ f0π

−) ≡ tf .

This leads to the integrated CP asymmetries shown in Table 7.1 in the NR+R

column and the theoretical asymmetry plots shown in Figure 7.3. Unfortunately,

the asymmetry is significantly reduced, especially for the Nc = 2.01 and Nc = 1.95

cases. The reasons for this reduction in the asymmetry will be explored shortly.

7.3 Discussion

To understand our results, it may prove useful to recall our overall approach. First,

we started with a model involving the f0(980) participating in the tree diagram

and the φ(1020) in the penguin diagram. Calculating the CP asymmetry due to the

interference of these two diagrams led us to the promising result shown in Figure 5.1.

However, in comparing this result to the desired number from Belle, we realised that

we needed to consider the full, phase space dependent decay rates. This led to a

much less impressive result and so we introduced some new models. The first of

these had a non-resonant tree decay interfering with an f0(980) penguin process

and gave some highly significant results. We showed however that the amplitude for
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q2/m2
b = 0.3 q2/m2

b = 0.5

NR NR + R NR NR + R

Nc = 0.98 Nc = 0.94

ρmax , ηmax −0.130 −0.0324 ρmax , ηmax −0.114 −0.0561

ρmin , ηmin −0.144 −0.0363 ρmin , ηmin −0.126 −0.0629

Nc = 2.01 Nc = 1.95

ρmax , ηmax −0.344 −0.0243 ρmax , ηmax −0.293 −0.0613

ρmin , ηmin −0.343 −0.0273 ρmin , ηmin −0.296 −0.0689

Nc = 3.00 Nc = 3.00

ρmax , ηmax −0.180 −0.0196 ρmax , ηmax −0.168 −0.0601

ρmin , ηmin −0.163 −0.0220 ρmin , ηmin −0.152 −0.0675

Table 7.1: Table of values for the integrated CP asymmetry for n = 1 monopole dominant

form factors.

the non-resonant decay was typically smaller than that for a resonant tree process

involving the f0(980). We thus computed the asymmetry for a third model with both

non-resonant and resonant f0(980) contributions in the tree diagram and the f0(980)

in the penguin diagram. Unfortunately, this gave much less promising results, and

we’d like to understand why that is. Our first point of call is the ratio of penguin

and tree amplitudes r (see equation (5.41)).

7.3.1 Penguin to Tree Ratio

Consider Figure 7.2 once more. In the region of interest, the resonant decay domi-

nates. However, this resonant decay won’t interfere with the penguin diagram which

has the same f0(980) resonance. Hence, we can imagine that we have two opposing

effects; on the one hand, the NR decay gives rise to values close to 1 for the ratio

tNR/pf (improving the CP asymmetry). On the other hand the R decay gives rise

to values much larger than 1 for the ratio tf/pf (producing no asymmetry)1. Tak-

ing the sum of these and inverting, we get a small value for r due to the resonant

contribution and so a small value for the CP violating asymmetry. Showing this

1There cannot be any asymmetry produced if we just consider the f0(980) tree and penguin
diagrams since there is no phase difference between them. However, we can still calculate the
amplitudes tf and pf and see how they contribute to the ratio of total tree and penguin amplitudes.
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explicitly, we have

r ≡ |AP |
|AT |

=

∣∣∣∣ pfgf/sf
tNR + tfgf/sf

∣∣∣∣ .
Inverting this equation we get

1

r
=

∣∣∣∣tNR + tfgf/sf
pfgf/sf

∣∣∣∣ =

∣∣∣∣ tNR
pfgf/sf

+
tfgf/sf
pfgf/sf

∣∣∣∣ =

∣∣∣∣ tNR
pfgf/sf

+
tf
pf

∣∣∣∣ .
The term tf/pf is typically large in the physically relevant region between 0.98 and

2.01 (in the case where we have q2/m2
b = 0.3) and up to the limiting value Nc = 3,

with the ratio |tf/pf | approximately constant at a value of ∼ 20.

Then, since tf/pf is relatively large while the non-resonant term is typically

much closer to 1, 1/r is much larger than 1. Inverting this, we see that r is much

smaller than 1, leading to the small CP asymmetry observed. To show just how

small r is, we present the plots shown in Figure 7.4. These required taking the

magnitudes of the tree and penguin amplitudes across the region of phase space

for 0.986 ≤ mKK ≤ 1.1 GeV/c2 and plotting their ratio as a density/colour plot.

Although there are slight variations throughout each individual plot, these amount

to small fluctuations around a value of r ∼ 0.1. These are non-conducive with a

significant CP asymmetry and so we try some final calculations with alternative

form factors.

7.3.2 Pole Dominance

Recall that there was a two fold ambiguity associated with the initial choice of form

factors in the hadronic matrix elements. First, that we assumed that the form factor

was dominated by a single pole (also known as monopole dominance), and second,

that the order of the pole was a free parameter which we set to n = 1. As a final

attempt at producing a significant asymmetry, we perform the same calculations

but under an order 2 monopole dominance assumption [5, 26, 41] and finally with a

dipole model [5, 26,41].

By repeating the calculation for a higher order pole, we might expect that this

should reduce the f0(980) contribution in both the tree and penguin diagrams.

However, it is unclear exactly how this should affect the CP asymmetry. We report

the results in Table 7.2 and, comparing to Table 7.1, find that the asymmetry is

increased, particularly for the low values of Nc.

For the case of a dipole form factor, we take as our B → P and B → S transition

form factors

f±(k2) =
f±(0)

1− a1
k2

m2
B

+ b1

(
k2

m2
B

)2 , (7.5)
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q2/m2
b = 0.3 q2/m2

b = 0.5

NR NR + R NR NR + R

Nc = 0.98 Nc = 0.94

ρmax , ηmax −0.156 −0.0466 ρmax , ηmax −0.114 −0.0902

ρmin , ηmin −0.172 −0.0523 ρmin , ηmin −0.126 −0.101

Nc = 2.01 Nc = 1.95

ρmax , ηmax −0.346 −0.0293 ρmax , ηmax −0.293 −0.0801

ρmin , ηmin −0.343 −0.0330 ρmin , ηmin −0.296 −0.0899

Nc = 3.00 Nc = 3.00

ρmax , ηmax −0.174 −0.0219 ρmax , ηmax −0.168 −0.0714

ρmin , ηmin −0.157 −0.0247 ρmin , ηmin −0.152 −0.0802

Table 7.2: Table of values for the integrated CP asymmetry for the NR+R tree and R

penguin diagrams for n = 2 monopole dominant form factors.

and for the B → V transitions

A0(k2) =
hA0

1− a0
k2

m2
B

+ b0

(
k2

m2
B

)2 , (7.6)

with hA0 = 0.28, a1 = 0.266, b1 = −0.752, a0 = 1.4 and b0 = 0.437 [5, 26] . The

results for the CP asymmetry are given in Table 7.3. For each of the form factor

models tested, the NR tree model performs best, but in each case it is suppressed by

the resonant tree amplitude. This leads to the typically smaller values for the NR+R

columns. It thus appears that we simply haven’t chosen our intermediate states well

enough. Since there are several resonances in the region of interest, many of which

are not well understood (such as the f0(980) and a0(980)), it may be that we either

haven’t used the correct intermediate states in our calculations, or we simply do not

have the correct description of these intermediate states. Further recommendations

on future avenues of research are given in the concluding chapter.
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Figure 7.1: Plot of the CP asymmetry for a non-resonant tree decay interfering with an

f0(980) penguin diagram, for q2/m2
b = 0.3(top) and q2/m2

b = 0.5(bottom). The squares

represent points for which ρ and η take their maximum values, while the triangles are for

the minimum values. The colours correspond to the number of effective colours Nc in the

top(bottom) diagram: orange for Nc = 0.98(0.94), blue for Nc = 2.01(1.95) and purple for

Nc = 3.00(3.00).
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Figure 7.2: Plot of the ratio of non-resonant (NR) and resonant (R) amplitudes across

the invariant mass range 2mK ≤ mKK ≤ 1.2 GeV/c2 for q2/m2
b = 0.3.

q2/m2
b = 0.3 q2/m2

b = 0.5

NR NR + R NR NR + R

Nc = 0.98 Nc = 0.94

ρmax , ηmax −0.130 −0.0466 ρmax , ηmax −0.0819 −0.0902

ρmin , ηmin −0.144 −0.0523 ρmin , ηmin −0.0907 −0.101

Nc = 2.01 Nc = 1.95

ρmax , ηmax −0.344 −0.0293 ρmax , ηmax −0.273 −0.0801

ρmin , ηmin −0.343 −0.0330 ρmin , ηmin −0.278 −0.0900

Nc = 3.00 Nc = 3.00

ρmax , ηmax −0.181 −0.0219 ρmax , ηmax −0.169 −0.0714

ρmin , ηmin −0.163 −0.0247 ρmin , ηmin −0.153 −0.0802

Table 7.3: Table of values for the integrated CP asymmetry for dipole dominated form

factors.
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Figure 7.3: The top (bottom) plot shows the CP asymmetry for a non-resonant decay

and f0(980) decay in the tree process, interfering with an f0(980) penguin diagram, for

q2/m2
b = 0.3(0.5). The squares represent points for which ρ and η take their maximum

values, while the triangles are for the minimum values. The colours correspond to the

number of effective colours Nc in the top (bottom) plot: orange for Nc = 0.98(0.94), blue

for Nc = 2.01(1.95) and purple for Nc = 3.00(3.00).
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Figure 7.4: Colour plots of the ratio of R penguin and NR+R tree amplitudes r for

various values of the number of colours and assuming n = 1 monopole dominance. The

left column is for q2/m2
b = 0.3 while the right is for q2/m2

b = 0.5.





Chapter 8

Conclusion

8.1 Summary

In this work we’ve presented calculations of various CP asymmetries for the decays

B± → K+K−π± with the aim to reproduce the asymmetry

ACP = −0.90± 0.17± 0.03

measured by Belle in the invariant mass region 0.986 < mKK < 1.1 GeV/c2. Such

asymmetries arise through the interference between tree and penguin diagrams with

non-zero weak and strong phase differences and we’ve proposed several combinations

of diagrams with which we compute our asymmetries. The first of these models had

a tree diagram involving an intermediate f0(980) resonance and a penguin diagram

with an intermediate φ(1020) resonance. We constructed an effective Hamiltonian

based on four-fermion interactions and the Operator Product Expansion, then com-

puted the asymmetry using the Naive Factorisation approximation. The initial result

of this was promising, though it lacked any accounting for the finite resolution of

real detectors.

We extended our method to include consideration of the phase space and realised

that once we integrated over the angular degrees of freedom the φ(1020) would have

its contribution diminished. This was supported by the results for the integrated

asymmetry which took a minimum value of

ACP = −0.0554 Tree: f0(980), Penguin: φ(1020) .

Thus we investigated a second model involving a non-resonant tree decay and a pen-

guin diagram with the f0(980) replacing the φ(1020). This led to results significantly

more comparable to the Belle data, with a minimum asymmetry of

ACP = −0.346 Tree: NR, Penguin: f0(980) .

However, this non-resonant tree diagram is not the only contribution in this

region of phase space; indeed we found the resonant diagram involving the tree decay

of the f0(980) to be dominant here. Hence we proposed our third model where the

tree process consists of a non-resonant contribution and a resonant contribution from
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the f0(980). This overall process then interferes with an f0(980) penguin diagram.

Since the f0(980) tree diagram gives rise to zero CP asymmetry when taken with

the f0(980) penguin, the total CP asymmetry was found to be mostly negligible,

with a minimum asymmetry

ACP = −0.101 Tree: NR + f0(980), Penguin: f0(980) .

Hence, although our non-resonant model was initially promising, it is suppressed

by the dominant resonant contribution and gives a less significant value for the

asymmetry. We have thus been unable to reproduce the Belle result. Future work

which may improve on our result for the asymmetry is outlined in the following

section.

8.2 Future Work and Outlook

CP violation remains a promising avenue of physics research, especially with regards

to flavour physics and physics beyond the Standard Model. As research in this area

continues, we expect that uncertainties to do with the CKM matrix parameters and

properties of the f0(980) should be improved. However, one of the key methods

we’ve used is Naive Factorisation and this is likely to be the source of most of the

uncertainty in our results. For one, Naive Factorisation fails to describe colour sup-

pressed modes, although the parameter Nc goes towards rectifying this by absorbing

non-factorizable effects which are unaccounted for by Naive Factorisation [42]. Even

with this, the neglect of renormalisation scale dependence in the hadronic matrix

elements means the amplitudes can be unphysical [42]. As such, future calculations

could make use of alternative methods for calculating the hadronic matrix elements

in these heavy quark decays. These include QCD Factorisation [5,42,43] and Lattice

QCD [44].

In addition, we suggest that the calculation of the non-resonant tree amplitude

should be made with minimal use of heavy meson chiral perturbation theory. Our

calculation as it stands acts as an estimate for the asymmetry and future calculations

should look to minimize the use of HMChPT, as per [36].

As a final remark, we have perhaps limited ourselves by mainly considering the

f0(980) resonance in the intermediate states of tree and penguin processes. Although

we noted that there can be no interference between the f0(980) and the closely

related a0(980), there is no particular reason we could not have chosen to replace

the f0(980) with the a0(980) in our models. These two resonances differ in their

isospin but this is not necessarily conserved in weak interactions and so the a0(980)

is a valid choice. Future work might investigate the role the a0(980) plays and

possible mixing between it and the f0(980).



Appendix A

Additional Derivations

A.1 Propagators for Unstable Particles

Throughout this work we make repeated use of the propagator for unstable mesons

M

s−1
M =

1

s−m2
M + imMΓM

. (A.1)

This is not the typical form of a propagator that one would usually be familiar with

and so we shall need to prove it.

In quantum field theory (QFT) the first propagator one typically encounters is

the Feynman propagator for a scalar field φ. This is typically written as DF , but we

will use the notation Πφ to be clear that we are referring to the field φ. We write

Πφ ≡
i

p2 −m2 + iε
(A.2)

to denote the bare propagator for the φ, where p and m are the 4-momentum and

mass of the φ field and ε is an infinitesimal quantity.

Suppose now that the field φ is unstable and satisfies a Lagrangian with terms

such as φψψ so can decay through the vertex

φ

ψ

ψ
.

Then, the propagator can involve effective interactions called “dressings” such as

φ φ

ψ

ψ
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to first order. The matrix element for this ψ loop, denoted iMloop, will have an

imaginary part if and only if m < mψ/2, that is, if the decay φ → ψψ is allowed

kinematically [8]. We can imagine having more ψ loops such that the dressed prop-

agator Π̃φ is written

Π̃φ = Πφ + Πφ(iMloop)Πφ + Πφ(iMloop)Πφ(iMloop)Πφ + . . . (A.3)

Clearly we can write the n-th order correction to the propagator as

Π
(n)
φ = Πφ[(iMloop)Πφ]n , (A.4)

and so

Π̃φ = Πφ + Πφ[(iMloop)Πφ] + Πφ[(iMloop)Πφ]2 + . . .

= Πφ

(
1 + [(iMloop)Πφ] + [(iMloop)Πφ]2 + . . .

)
= Πφ

∞∑
k=0

(iMloopΠφ)k .

We recognise that this takes the form of a geometric series and so we’ll make use of

the general result
∞∑
k=0

ark =
a

1− r
for |r| < 1 . (A.5)

Writing the matrix element for each loop asMloop = A+ iB and dropping the iε in

the bare propagator, we write

Π̃φ = Πφ

∞∑
k=0

(iMloopΠφ)k

=
i

p2 −m2

∞∑
k=0

(
i(A+ iB)

i

p2 −m2

)k
=

i

p2 −m2

∞∑
k=0

(
−(A+ iB)

p2 −m2

)k
=

i

p2 −m2

1

1 + (A+iB)
p2−m2

=
i

p2 −m2 + A+ iB
.

Rewriting this, we have

Π̃φ =
i

p2 − m̃2 + imΓ
(A.6)

where we’ve absorbed the real part of the loop matrix element into the mass to

obtain the dressed mass m̃ and we’ve defined the decay width Γ ≡ B/m. This form

is supported by the fact that, calculating the cross section for s-channel scattering
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using this propagator, one observes the characteristic “bump” associated with a

particle with decay width Γ.

A.2 Momentum Transfer Region 0.3 < q2/m2
b < 0.5

At the quark level, one can draw the Feynman diagram shown in Figure A.1. Ap-

plying conservation of 4-momentum at each of the three vertices, we obtain the

equations

pb = k + pt ,

pt = q + p′t ,

pd = k + p′t ,

where pb is the momentum of the bottom quark, q is the momentum of the glu-

on/photon participating in the penguin decay, pd is the momentum of the down

quark in the final state, k is the momentum of the W boson and pt and p′t are the

momenta of the top quark in the intermediate state. These three equations combine

to give the result

pb = q + pd .

Rearranging and squaring this, we can recognise that md � mb and get

q2 = m2
b − 2pµb p

µ
d . (A.7)

The second term is written

pµb p
µ
d = p0

bp
0
d − pb · pd =

√
m2
b + |pb|

2Ed ,= mbEd

where we’ve used the fact that the momentum of the b quark is negligible. Then,

by taking Ed ' 1
3
mb [5, 26] and substituting this back in to the equation for q2, we

b d

q

q

pb pt p′t pd

k

q

Figure A.1: Penguin decay b→ qq̄d through a gluon and W boson loop.
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get
q2

m2
b

' 1

3
. (A.8)

Hence, we take q2 such that 0.3 < q2/m2
b < 0.5.

A.3 Momentum in Centre of Mass Frame

Here we prove a fairly straightforward kinematic result. Consider the 2-particle final

state decay process

A→ B + C .

The magnitude of the 3-momenta of the outgoing particles in the rest frame of

particle A is given by

|pB| = |pC | =
c
√
m4
A +m4

B +m4
C − 2m2

Am
2
B − 2m2

Am
2
c − 2m2

Bm
2
C

2mA

(A.9)

where mi is the mass of the particle i and c is the speed of light [45].

Proof: First, we recall the forms of the 4-momenta involved. Using the relativistic

energy equation E2 = |p|2c2 +m2c4 we can write the 4-momentum of particle A as

pA = (EA/c, pA) = (mAc, 0) . (A.10)

Likewise, we can write the 4-momentum of particles B and C as

pB = (EB/c, pB) , pC = (EC/c, pC) . (A.11)

Applying conservation of 4-momentum, we have

pµA = pµB + pµC . (A.12)

Now, some forward thinking is essential here. We’ll make use of the Lorentz invariant

quantity p2 = pµpµ = m2c2. To get squared momenta, we’ll need to square our

conservation of momentum equation. However, this will necessarily lead to cross

terms such as pB · pC . It will be difficult to work with terms such as these when we

have no information about pB and pC . Rather, we’ll rearrange equation (A.12) and

square the result to obtain an equation where the cross term vanishes,

pµA = pµB + pµC
⇒ pµC = pµB − p

µ
A

⇒ p2
C = p2

B − 2pA · pB + p2
A .

The cross term has

pA · pB =
EAEB
c2

− pA · pB =
EAEB
c2

= mAEB
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where we’ve used the fact that particle A is at rest so has zero 3-momentum and that

EA =
√
|pA|

2c2 +m2
Ac

4 = mAc
2. Substituting in the invariant quantities p2

i = m2
i c

2

we then have

m2
Cc

2 = m2
Bc

2 +m2
Ac

2 − 2mAEB

⇒ EB =
(m2

A +m2
B −m2

C)c2

2mA

. (A.13)

Similarly, we could have rearranged equation (A.12) to be pµB = pµA−p
µ
C and followed

the same process to obtain the energy for particle C as

EC =
(m2

A +m2
C −m2

B)c2

2mA

. (A.14)

With the energies given by equations (A.13) and (A.14), we can make use of the

following:

E2 = |p|2c2 +m2c4

⇒ |p| =
√
E2 −m2c4

c
.

Then, applying conservation of 3-momentum

pA = pB + pC

⇒ 0 = pB + pC

⇒ |pB| = |pC | =
√
E2
B −m2

Bc
4

c

=

√(
(m2

A+m2
B−m

2
C)c2

2mA

)2

−m2
Bc

4

c

=

√
(m2

A +m2
B −m2

C)
2
c4 − 4m2

Am
2
Bc

4

2mAc

=
c2
√
m4
A +m4

B +m4
C + 2m2

Am
2
B − 2m2

Am
2
C − 2m2

Bm
2
C − 4m2

Am
2
B

2mAc

∴ |pB| = |pC | =
c
√
m4
A +m4

B +m4
C − 2m2

Am
2
B − 2m2

Am
2
C − 2m2

Bm
2
C

2mA

.
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A.4 Matrix Element Contractions

In chapter 5 we made use of the following results without proof (see equations (5.30)

to (5.32)).

〈P |Jµ|0〉 〈S|J ′µ|B〉 = −fP (m2
B −m2

S)F0(m2
P ) . (A.15)

〈V |Jµ|0〉 〈P |J ′µ|B〉 = 2fVmBpcF1(m2
V ) . (A.16)

〈P |Jµ|0〉 〈V |J ′µ|B〉 = 2fPmBpcA0(m2
P ) (A.17)

where P is a pseudoscalar meson, V is a vector meson, B is a B meson; Jµ and J ′µ

are V −A currents; fi is the decay constant for the i = P, V meson; mj is the mass

of the j = P, V or B meson; F1 is a form factor for the pseudoscalar meson and A0

is a form factor for the vector meson; pc is the magnitude of the 3-momentum in the

centre of momentum frame

pc = |pP | = |pV | =
√

(m2
B − (mP +mV )2)(m2

B − (mP −mV )2)

2mB

. (A.18)

We will now prove each of these results, recalling the form factor parametrisation

of the various matrix elements given in chapter 5. We begin the proof of equa-

tion (A.15) with

〈S|Vµ − Aµ|B〉 〈P |Vµ − Aµ|0〉

= +i

[(
pB + pS −

m2
B −m2

S

k2
k

)
µ

F1(k2) +
m2
B −m2

S

k2
kµF0(k2)

]
(+ifPp

µ
P )

= −fP
[
(pB + pS)µp

µ
PF1(k2)− m2

B −m2
S

k2
kµp

µ
PF1(k2) +

m2
B −m2

S

k2
kµp

µ
PF0(k2)

]
.

Conservation of 4-momentum implies pµP = pµB − p
µ
S ≡ kµ so we can write

〈S|Vµ − Aµ|B〉 〈P |Vµ − Aµ|0〉

= −fP
[
(pB + pS)µ(pB − pS)µF1(m2

P )− m2
B −m2

S

k2
kµk

µF1(m2
P )

+
m2
B −m2

S

k2
kµk

µF0(m2
P )

]
= −fP

[(
m2
B −m2

S

)
F1(m2

P )−
(
m2
B −m2

S

)
F1(m2

P ) + (m2
B −m2

S)F0(m2
P )
]

= −fP
(
m2
B −m2

S

)
F0(m2

P ) .

Hence, we’ve proven equation (A.15). The proof of equation (A.16) is as follows.

〈V |Vµ − Aµ|0〉 〈P |V µ − Aµ|B〉

= fVmV εµ

[
(pB + pP )µF1(k2)− m2

B −m2
P

k2
kµ
(
F1(k2)− F0(k2)

)]
.
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Recalling equation (5.18) to (5.20), we note that f+(0) = f−(0)⇒ f+(k2) = f−(k2)

and so we can write

〈V |Vµ − Aµ|0〉 〈P |V µ − Aµ|B〉

= fVmV εµ

[
(pB + pP )µF1(k2)− m2

B −m2
P

k2
kµF1(k2) +

m2
B −m2

P

k2
kµF1(k2)

+
m2
B −m2

P

k2

k2

m2
B −m2

P

kµF1(k2)

]
= fVmV εµ

[
(pB + pP )µF1(k2) + kµF1(k2)

]
= fVmV εµ

[
(pB + pP )µF1(k2) + (pB − pP )µF1(k2)

]
= 2fVmV εµp

µ
BF1(k2) .

We can then substitute for the polarisation vector εµ since the vector meson is

longitudinally polarised [8],

εµ =

(
pc
mV

, 0, 0,
EV
mV

)
. (A.19)

which gives

〈V |Vµ − Aµ|0〉 〈P |V µ − Aµ|B〉 = 2fVmV

(
pc
mV

, 0, 0,
E

mV

)
· (mB, 0, 0, 0)F1(m2

V )

= 2fVmBpcF1(m2
V )

where again we’ve used conservation of 4-momentum to identify pµV = pµB−p
µ
P ≡ kµ.

We’ve thus proven equation (A.16).

The final proof is the longest but proceeds in the usual manner, by first writing

out the form factor expressions for the matrix elements. This gives

〈V |Vµ − Jµ|B〉 〈P |V µAµ|0〉

= −ifPpµP
[

2

mB +mV

εµνρσε
νpρBp

σ
V V(k2) + i

(
εµ(mB +mV )A1(k2)

− ε · k
mB +mV

(pB + pV )µA2(k2)− ε · k
k2

2mV kµ(A3(k2)− A0(k2))

)]
= fP

[
−2i

mB +mV

εµνρσp
µ
P ε

νpρBp
σ
V V(k2) + εµp

µ
P (mB +mV )A1(k2)

− ε · k
mB +mV

(pB + pV )µp
µ
PA2(k2)− ε · k

k2
2mV kµp

µ
P

(
A3(k2)− A0(k2)

)]
.
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At this point, we digress to show

(ε · k)(pB + pV )µp
µ
P = ενkν(pB + pV )µp

µ
P

= ενgµνk
µ(pB + pV )µp

µ
P

= ενgµνp
µ
Pk

µ(pB + pV )µ

= (ε · pP )(pB − pV )µ(pB + pV )µ

= (ε · pP )(m2
B −m2

V ) .

This allows us to write

〈V |Vµ − Jµ|B〉 〈P |V µAµ|0〉

= fP

[
−2i

mB +mV

εµνρσp
µ
P ε

νpρBp
σ
V V(k2) + (ε · pP )(mB +mV )A1(k2)

− (ε · pP )(mB −mV )A2(k2)− (ε · pP )2mV

(
A3(k2)− A0(k2)

)]
.

Then, using the fact that according to [5, 26]

A3(k2) =
mB +mV

2mV

A1(k2)− mB −mV

2mV
A2(k2) , (A.20)

we can write

〈V |Vµ − Jµ|B〉 〈P |V µAµ|0〉

= fP

[
−2i

mB +mV

εµνρσp
µ
P ε

νpρBp
σ
V V(k2)

+ (ε · pP )(mB +mV )A1(k2)− (ε · pP )(mB −mV )A2(k2)

− (ε · pP )(mB +mV )A1(k2) + (ε · pP )(mB −mV )A2(k2) + (ε · pP )2mVA0(k2)

]
= fP

[
−2i

mB +mV

εµνρσp
µ
P ε

νpρBp
σ
V V(k2) + 2mV (ε · pP )A0(k2)

]
.

Before proceeding, we can argue that the first term vanishes. This occurs by noticing

that

εµνρσp
µ
P ε

νpρBp
σ
V = εµνρσp

µ
P ε

ν(pP + pV )ρpσV

= εµνρσp
µ
P ε

νpρPp
σ
V + εµνρσp

µ
P ε

νpρV p
σ
V .

The Levi Cevita tensor is antisymmetric under the exchange of any pair of its indices

and in both terms there is a symmetric combination of momenta (pµPp
ρ
P in the first

term and pρV p
σ
V in the second). Hence the total contribution is zero leaving us with

〈V |Vµ − Jµ|B〉 〈P |V µAµ|0〉 = 2fPmV (ε · pP )A0(m2
P ) , (A.21)
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where again we’ve recognised pµP = kµ. At this point, we need to write out the

explicit forms of the 4-vectors. The vector and pseudoscalar come out with back-to-

back momenta and have

pµV = (EV , 0, 0,+pc) , pµP = (EP , 0, 0,−pc) , (A.22)

where pc is the 3-momentum of the decay products in the rest frame of the B meson.

The polarisation of the vector meson is longitudinal and so we write

mV ε
νpPν = mV (ε0pP0 − ε · pP )

= mV

(
pc
mV

EP +
EV
mV

pc

)
= pc(EP + EV )

= pcEB

= pcmB .

We thus have the result

〈V |Vµ − Jµ|B〉 〈P |V µAµ|0〉 = 2fPmBpcA0(m2
P ) , (A.23)

and so we’ve proven equation (A.17).





Appendix B

ω − φ mixing

Here we briefly discuss the idea of ω − φ mixing. This is useful for deciding which

quark currents contribute to the φ.

Mesons are generally classified in JPC multiplets. Isoscalar states (states with

zero isospin) will mix if they belong to the same multiplet. For example, the ω and

φ mesons both have isospin zero and JPC = 1−− so they are able to mix [21]. To

see how this mixing occurs, consider the following.

Let the I = 0 members of the light quark nonet (φ and ω) be labelled by f and f ′.

These states will be composed of the SU(3) wave functions ψ8 and ψ1 corresponding

to the octet and singlet respectively. The mixing occurs by(
f

f ′

)
=

(
cos θ − sin θ

sin θ cos θ

)(
ψ8

ψ1

)
.

Hence, we have

f ′ = ψ8 cos θ − ψ1 sin θ , (B.1)

f = ψ8 sin θ + ψ1 cos θ , (B.2)

where θ is the mixing angle and

ψ8 =
1√
6

(
uū+ dd̄− 2ss̄

)
,

ψ1 =
1√
3

(
uū+ dd̄+ ss̄

)
.

One can consider the case for “ideal” mixing, where the ideal mixing angle θI is

such that tan θI = 1/
√

2 (θI = 35.3◦). Then, defining α = θ + (90 − θI), we note

that ideal mixing occurs for α = 90◦. Using this expression for θ in equation (B.1)
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we can write

cos θ = cos(α− (90− θI)) = cosα cos(90− θI) + sinα sin(90− θI)
= sinα sin θI + cosα cos θI

=
1√
3

sinα +

√
2

3
cosα ,

where we’ve made use of the fact that if tan θI = 1/
√

2, then cos θI =
√

2/3 and

sin θI = 1/
√

3. Likewise

sin θ = sin(α− (90− θI)) = sinα cos(90− θI)− cosα sin(90− θI)
= cosα sin θI − sinα cos θI

=
1√
3

cosα−
√

2

3
sinα .

This then allows us to write

f ′ = ψ8

(
1√
3

sinα +

√
2

3
cosα

)
− ψ1

(
1√
3

cosα−
√

2

3
sinα

)

= cosα

(
1√
3
ψ8 +

√
2

3
ψ1

)
+ sinα

(√
2

3
ψ8 −

1√
3
ψ1

)

= cosα

(
1√
3

1√
6

(
uū+ dd̄− 2ss̄

)
+

√
2

3

1√
3

(
uū+ dd̄+ ss̄

))

+ sinα

(√
2

3

1√
6

(
uū+ dd̄− 2ss̄

)
− 1√

3

1√
3

(
uū+ dd̄+ ss̄

))

= cosα

(
1

3

1√
2

(
uū+ dd̄

)
−
√

2

3
(ss̄) +

2

3

1√
2

(
uū+ dd̄

)
+

√
2

3
(ss̄)

)

+ sinα

(
1

3

(
uū+ dd̄

)
− 2

3
(ss̄)− 1

3

(
uū+ dd̄

)
− 1

3
(ss̄)

)
=

1√
2

(
uū+ dd̄

)
cosα− (ss̄) sinα .

We can perform the same calculation for the f case and we thus end up with the

two results

f ′ =
1√
2

(
uū+ dd̄

)
cosα− (ss̄) sinα ,

f =
1√
2

(
uū+ dd̄

)
sinα + (ss̄) cosα .
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Hence, for ideal mixing where α = 90o, we see that the f ′ is a pure state of ss̄

pairs and the f is a pure state of uū and dd̄ pairs. We identify the physical φ(1020)

meson with the f ′ and the ω(783) with the f . Further, the vector mixing angle can

be determined theoretically using mass formulae and is found to be θV = 36.4◦ [21].

Substituting this value into the expressions for f ′ and f above, we obtain the fol-

lowing expressions for φ and ω,

φ = −0.01401(uū+ dd̄)− 0.99980(ss̄) ,

ω = 0.70697(uū+ dd̄)− 0.01982(ss̄) .

Hence we see that the φ is predominantly composed of ss̄ pairs while the ω is mostly

uū and dd̄ pairs. In addition, the φ having a non-zero uū+dd̄ contribution indicates

that there is some small amplitude for an ω to mix to a φ.





Appendix C

Tables

C.1 Meson Reference Table

Throughout this work we reference the mesons listed in Table C.1. The mesons are

ordered by their mass which is given in MeV/c2 (noting that the rest of this work

uses units of GeV/c2). The scalar mesons are not well known in terms of their quark

structure and mass widths.

Meson Name Quark Structure Mass (MeV/c2) Width (MeV/c2) JPC

π± ud̄ , ūd 139.57018± 0.00035 − 0−

K± us̄, ūs 493.677± 0.016 − 0−

K0 , K̄0 ds̄, d̄s 497.614± 0.024 − 0−

f0(980) ∗ 990± 20 10 to 100 0++

a0(980) ∗ 990± 20 10 to 100 0++

φ(1020) ss̄ (∗∗) 1019.461± 0.019 4.266± 0.031 1−−

B± ub̄, ūb 5279.26± 0.17 − 0−

B0 , B̄0 db̄, d̄b 5279.58± 0.17 − 0−

B0
s , B̄

0
s sb̄, s̄b 5366.77± 0.24 − 0−

Table C.1: Table of relevant mesons, their JPC classifications (JP where C is not ap-

plicable), their quark content, masses and widths. (∗) The exact quark structure of the

f0(980) and a0(980) is still an open question. Several models claim a mixture of uū+ dd̄

with ss̄ while others postulate more exotic states of quark matter [27]. (∗∗) The φ(1020)

is predominantly composed of ss̄ under a typical quark mixing scheme [21].

C.2 Wilson Coefficients

One of the key pieces in our calculations is the Wilson Coefficients. These are

calculated at some scale where perturbation theory is applicable and then scaled to
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108 Tables

a new scale µ under some regime. We take coefficients at the scale mb = 5 GeV/c2.

c1 −0.3125

c2 1.1502

c3 0.0174

c4 −0.0373

c5 0.0104

c6 −0.0459

c7 −1.050× 10−5

c8 3.839× 10−4

c9 −0.0101

c10 1.959× 10−3

Table C.2: Table of Wilson coefficients [5, 26].
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c′i q2/m2
b = 0.3 q2/m2

b = 0.5

c′1 −0.3125 −0.3125

c′2 1.1502 1.1502

c′3 2.433× 10−2 + 1.543× 10−3i 2.120× 10−2 + 2.174× 10−3i

c′4 −5.808× 10−2 − 4.628× 10−3i −4.869× 10−2 − 1.552× 10−2i

c′5 1.733× 10−2 + 1.543× 10−3i 1.420× 10−2 + 5.174× 10−3i

c′6 −6.668× 10−2 − 4.628× 10−3i −5.729× 10−2 − 1.552× 10−2i

c′7 −1.435× 10−4 − 2.963× 10−5i −8.340× 10−5 − 9.938× 10−5i

c′8 3.839× 10−4 3.839× 10−4

c′9 −1.023× 10−2 − 2.963× 10−5i −1.017× 10−2 − 9.938× 10−5i

c′10 1.959× 10−3 1.959× 10−3

Table C.3: Table of effective Wilson coefficients [5, 26].





Appendix D

Mathematica Code

Over the following pages, we present the Wolfram Mathematica code used for the

work in this thesis. The calculation is shown for the case of a non-resonant and

f0(980) tree amplitude interfering with an f0(980) penguin. However, it is a simple

matter of changing to include the φ(1020) and the propagator for the φ(1020) is

included for reference. Mathematica was used for the majority of the calculations,

namely for its simple to use NIntegrate function.

As a note, the plot of Figure 5.1 was produced in Python, but the code used

follows the same general structure as that shown over the next pages. A key dif-

ference though is that Mathematica doesn’t lend itself so well to vectorised code.

Rather, it relies more heavily on function definitions. In our case, we define func-

tions for most things, including the Wilson coefficients. In this case, the coefficients

depend on the momentum transfer q2. Then, when we combine the Wilson coeffi-

cients to form the ai’s, we introduce a dependence on the effective number of colours

Nc. As we continue building up the code, we hold off on evaluating the functions

until the last possible moment, in other words, when we compute the CP asymme-

tries. This allows us to obtain asymmetries for a given set of starting parameters

{q2/m2
b , n} where we recall that q2 is the momentum transferred by the gluon in

the penguin diagram and n is the order of the poles in a monopole dominated form

factor parametrisation.

Since functions play such a large role in the following code, it is worth noting that

the syntax in Mathematica for calling a function f depending on a set of variables

xi is f[x1 , x2 , . . . ]. When defining functions, one writes

f[x1 , x2 , . . . ]:=

followed by the function definition. The function definition is some combination of

explicit terms and predefined functions involving the variables xi (with no under-

scores after variables).
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Calculation of CP Asymmetry
In[1]:= Clear"Global`*"

In[2]:= qmRatio = 0.3;(* 0.3 or 0.5*)

In[3]:= If[qmRatio ⩵ 0.3, Nc1 = 0.98, Nc1 = 0.94];

In[4]:= If[qmRatio ⩵ 0.3, Nc2 = 2.01, Nc2 = 1.95];

In[5]:= Nc3 = 3.00;

In[6]:= n = 1; (* Pole dominance, use either n=1 or n=2 *)

In[7]:= Gfermi = 1.1663787 * 10-5;

List the Relevant constants

Note that all masses are given in units of GeV  c2.

Masses

In[8]:= mk = 0.493; (* Mass of the charged kaons *)

In[9]:= mk0 = 0.4976; (* Mass of the neutral kaons *)

In[10]:= mpi = 0.1396; (* Mass of the charged pions *)

In[11]:= mpi0 = 0.1350; (* Mass of the neutral pion *)

In[12]:= meta = 0.547862; (* Mass of the eta meson *)

In[13]:= mf = 0.990; (* Mass of the f0(980) resonance *)

In[14]:= ma0 = 0.980; (* Mass of the a0(980) resonance *)

In[15]:= mϕ = 1.019461; (* Mass of the ϕ resonance *)

In[16]:= mB = 5.27926; (* Mass of the B mesons *)

In[17]:= mBs = 5.4154; (* Pole mass *)

Decay Widths

In[18]:= Γf = 0.050; (* Total decay width of the f0(980) *)

In[19]:= Γϕ = 4.266 * 10-3; (* Total decay width of the ϕ(1020) *)

Printed by Wolfram Mathematica Student Edition
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Coupling Constants

In[20]:= gf = 7.8; (* Coupling of the f0 to two charged kaons *)

In[21]:= (*gϕ = 4.54 Coupling of the ϕ to two charged kaons *)

In[22]:= strongg = 0.59; (* Strong coupling constant *)

Wilson Coefficients

In[23]:= c1 = -0.3125;

In[24]:= c2 = 1.1502;

In[25]:= IfqmRatio ⩵ 0.5, c3 = 2.12 * 10-2 + 2.174 * 10-3 * ⅈ, c3 = 2.433 * 10-2 + 1.543 * 10-3 * ⅈ;

In[26]:= IfqmRatio ⩵ 0.5, c4 = -4.869 * 10-2 - 1.552 * 10-2 * ⅈ, c4 = -5.808 * 10-2 - 4.628 * 10-3 * ⅈ;

In[27]:= IfqmRatio ⩵ 0.5, c5 = 1.420 * 10-2 + 5.174 * 10-3 * ⅈ, c5 = 1.733 * 10-2 + 1.543 * 10-3 * ⅈ;

In[28]:= IfqmRatio ⩵ 0.5, c6 = -5.729 * 10-2 - 1.552 * 10-2 * ⅈ, c6 = -6.668 * 10-2 - 4.628 * 10-3 * ⅈ;

In[29]:= IfqmRatio ⩵ 0.5, c7 = -8.340 * 10-5 - 9.938 * 10-5 * ⅈ, c7 = -1.435 * 10-4 - 2.963 * 10-5 * ⅈ;

In[30]:= c8 = 3.839 * 10-4;

In[31]:= IfqmRatio ⩵ 0.5, c9 = -1.017 * 10-2 - 9.938 * 10-5 * ⅈ, c9 = -1.023 * 10-2 - 2.963 * 10-5 * ⅈ;

In[32]:= c10 = 1.959 * 10-3;

Construct the a’s; the combinations of Wilson coefficients we make use of.

In[33]:= If[OddQ[i] ⩵ True, a[i_, Nc_] := ci + 1 / Nc * ci+1, a[i_, Nc_] := ci + 1 / Nc * ci-1]

In[34]:= a[1, Nc_] := c1 + 1 / Nc * c2

Decay Constants and Form Factor Coefficients

In[35]:= fϕ = 0.233; (* Decay constant for the ϕ meson *)

In[36]:= fpi = 0.1307; (* Decay constant for the π meson *)

In[37]:= fBs = 0.217284; (* Decay constant for the pole mass *)

In[38]:= fB = 0.191; (* Decay constant for the B meson *)

In[39]:= h1 = 0.330;

In[40]:= h0 = 0.28;

In[41]:= m1 = 5.320; (* Pole mass for F1 *)

In[42]:= m0 = 5.270; (* Pole mass for A0 *)
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CKM Parameters

In[43]:= λ = 0.22453; (* see PDG *)

In[44]:= rhomax = 0.122 + 0.018;

In[45]:= rhomin = 0.122 - 0.017;

In[46]:= etamax = 0.355 + 0.012;

In[47]:= etamin = 0.355 - 0.011;

In[48]:= Vud = 0.97446;

In[49]:= Vub = 0.00365;

In[50]:= Vtd = 0.00896;

In[51]:= Vtb = 0.999105;

Form Factors and Vertex Amplitude Calculation

Center of Mass Momentum

In[52]:= pc =

SqrtmB2 - mϕ - mpi2 * mB2 - mϕ + mpi2

2 * mB

;

Form Factors

In[53]:= F1[x_] :=

h1

1 -
x

m1
2

n

In[54]:= F0[x_] :=

h1

1 -
x

m1
2

n

+

x

mB
2 - mf

2

*

h1

1 -
x

m1
2

n

In[55]:= A0[x_] :=

h0

1 -
x

m0
2

n

In[56]:= w+[mkk_, mkpi_] :=

-

strongg

fpi2
*

fBs * mBs Sqrt[mB * mBs]

mkpi2 - mBs
2

* 1 -

(1 / 2) * mkk2 + mkpi2 - 3 mk2 - mpi2

(mBs)
2

+

fB

2 * fpi2
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In[57]:= w-[mkk_, mkpi_] :=

strongg

fpi2
*

fBs * mBs Sqrt[mB * mBs]

mkpi2 - mBs
2

* 1 +

(1 / 2) * mkk2 + mkpi2 - 3 mk2 - mpi2

(mBs)
2

Tree and Penguin Vertex Amplitudes

In[58]:= tNR[Nc_, mkk_, mkpi_] :=

-a[1, Nc] *

fpi

2

* mB2 - mkk2 - mpi2 * w+[mkk, mkpi] + 2 mkpi2 + mkk2 - 2 mk2 - mpi2 * w-[mkk, mkpi]

In[59]:= tf [Nc_] := - a[2, Nc] * fpi * mB2 - mf2 * F0mpi2

In[60]:= pf [Nc_] := -a[4, Nc] fpi * mB2 - mf2 * F0mpi2

In[61]:= tR[Nc_] := tf [Nc] + ta0[Nc]

In[62]:= ttotal[Nc_, mkk_, mkpi_] = tNR[Nc, mkk, mkpi];

CKM Ratio

In[63]:= MagCKM[ρ_, η_] :=

Sqrt(1 - ρ)2 + η2

1 -
λ2

2
* Sqrtρ2 + η2

;

Amplitude Ratio

In[64]:= strongr[Nc_, mkk_, mkpi_, ρ_, η_] := -

pf [Nc]

(ttotal[Nc, mkk, mkpi])

* MagCKM[ρ, η]

Propagators (with mass dependent widths)

f0(980):

In[65]:= gpi = 0.165; (* GeVc2 *);

In[66]:= gK = 4.21 * gpi;

In[67]:= ρpi[mkk_] := 2 / 3 * Sqrt1 - 4 mpi
2  mkk + 1 / 3 * Sqrt1 - 4 mpi0

2  mkk

In[68]:= ρK [mkk_] := 1 / 2 * Sqrt1 - 4 mk
2  mkk + 1 / 2 * Sqrt1 - 4 mk0

2  mkk

In[69]:= Gf [mkk_] := gpi * ρpi[mkk] + gK * ρK [mkk]

In[70]:= sf [mkk_] := mkk2 - mf2 + mf * Gf [mkk] * ⅈ
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ϕ(1020):

In[71]:= ΓϕKK = 0.6340 *

0.004266

1.251

(* See partial widths for the ϕ in the PDG *);

In[72]:= d = 0.5 / 0.1973 * 10-15; (* Impact parameter/ meson radius for the ϕ, in metres *)

In[73]:= Gϕ [mkk_] := ΓϕKK *
mkk2 - 4 mk23/2

mkk

*

1 +
1

4
* mϕ 2 - 4 mk

2 * d2

1 +
1

4
* mkk2 - 4 mk2 * d2

*

mϕ

mϕ 2 - 4 mk
23/2

In[74]:= sϕ [mkk_] := mkk2 - mϕ 2 + mϕ * Gϕ [mkk] * ⅈ

Calculate the term reiδ  and get the r, rcos(δ ) and rsin(δ ) 

terms

Calculate various amplitudes for different values of mkk

These are for plotting

In[75]:= Atree[Nc_, mkk_, mkpi_] :=

SqrtConjugatetNR[Nc, mkk, mkpi] *

Gfermi

Sqrt[2]

* Vud * Vub * tNR[Nc, mkk, mkpi] *

Gfermi

Sqrt[2]

* Vud * Vub

In[76]:= Apenguin[Nc_, mkk_, mkpi_] :=

ReSqrtConjugatepf [Nc] *
gf

sf [mkk]

*

Gfermi

Sqrt[2]

* Vtd * Vtb * pf [Nc] *

gf

sf [mkk]

*

Gfermi

Sqrt[2]

* Vtd * Vtb 

In[77]:= ANRT[Nc_, mkk_, mkpi_] := tNR[Nc, mkk, mkpi] *

Gfermi

Sqrt[2]

* Vud * Vub

In[78]:= ART[Nc_, mkk_, mkpi_] := tf [Nc] *

gf

sf [mkk]

*

Gfermi

Sqrt[2]

* Vud * Vub

In[79]:= AT[Nc_, mkk_, mkpi_] :=

ANRT[Nc, mkk, mkpi] + ART[Nc, mkk, mkpi] (*INCLUDE this term if we are looking at NR+R*)

In[80]:= AP[Nc_, mkk_] := pf [Nc] *

gf

sf [mkk]

Gfermi

Sqrt[2]

* Vtd * Vtb
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Calculate reiδ

In[81]:= res[Nc_, mkk_, mkpi_, ρ_, η_] := -

pf [Nc]

tNR[Nc, mkk, mkpi] + tf [Nc] *
gf

sf[mkk ]

*

gf

sf [mkk]

* MagCKM[ρ, η]

(*INCLUDE the second term in the denominator if we're looking at NR+R*)

In[82]:= r[Nc_, mkk_, mkpi_, ρ_, η_] := Abs[res[Nc, mkk, mkpi, ρ, η]]

In[83]:= rcosdelta[Nc_, mkk_, mkpi_, ρ_, η_] := Re[res[Nc, mkk, mkpi, ρ, η]]

In[84]:= rsindelta[Nc_, mkk_, mkpi_, ρ_, η_] := Im[res[Nc, mkk, mkpi, ρ, η]]

Calculate the sinϕ and cosϕ terms

In[85]:= sinϕ[ρ_, η_] :=

η

Sqrtρ (1 - ρ) - η22 + η2

In[86]:= cosϕ[ρ_, η_] :=

ρ (1 - ρ) - η2

Sqrtρ (1 - ρ) - η22 + η2

Put it all together to get the integrands

In[87]:= diff[Nc_, mkk_, mkpi_, ρ_, η_] :=
-2 * rsindelta[Nc, mkk, mkpi, ρ, η] * sinϕ[ρ, η] * Abs[AT[Nc, mkk, mkpi]]2

In[88]:= sum[Nc_, mkk_, mkpi_, ρ_, η_] :=
1 + 2 * rcosdelta[Nc, mkk, mkpi, ρ, η] * cosϕ[ρ, η] + (r[Nc, mkk, mkpi, ρ, η])2 *
Abs[AT[Nc, mkk, mkpi]]2

Setup the Integral bins: Dalitz plots etc

In[89]:= num[Nc_, mkk_, mkpi_, ρ_, η_] := mkk * mkpi * diff[Nc, mkk, mkpi, ρ, η]

In[90]:= denom[Nc_, mkk_, mkpi_, ρ_, η_] := mkk * mkpi * sum[Nc, mkk, mkpi, ρ, η]

Do the binning in the mkk direction

In[91]:= numBin = 50;

In[92]:= mkkmin1 = 2 * mk;

In[93]:= mkkmaxnumBin = 1.1;
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In[94]:= di =

mkkmaxnumBin - mkkmin1

numBin

;

In[95]:= Do[mkkmini = mkkmini-1 + di, {i, 2, numBin}]

In[96]:= Do[mkkmaxi = mkkmini+1, {i, 1, numBin - 1}]

In[97]:= mkkminfixed = 2 * mk;

In[98]:= mkkmaxfixed = mB - mpi;

Construct bounds in the mkpi direction

In[99]:= E2[mkk_] :=

mB
2 - mkk2 - mpi

2

2 * mkk

In[100]:= E3[mkk_] :=

mkk

2

In[101]:= mkpimax[mkk_] := Sqrt(E2[mkk] + E3[mkk])2 - SqrtE2[mkk]2 - mpi2 - SqrtE3[mkk]2 - mk22

In[102]:= mkpimin[mkk_] := Sqrt(E2[mkk] + E3[mkk])2 - SqrtE2[mkk]2 - mpi2 + SqrtE3[mkk]2 - mk22

Draw the Dalitz Plot for the phase space

In[103]:= dalitzmin =

Plot[mkpimin[mkk], {mkk, mkkminfixed, mkkmaxfixed}, PlotRange → {{0.4, 5.6}, {0, 5.2}}];

In[104]:= dalitzmax =

Plot[mkpimax[mkk], {mkk, mkkminfixed, mkkmaxfixed}, PlotRange → {{0.4, 5.6}, {0, 5.2}}];

In[105]:= Show[dalitzmin, dalitzmax, PlotRange → {{0.4, 5.6}, {0, 5.2}}]

Out[105]=

1 2 3 4 5
0

1

2

3

4

5
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Setup the integrals for plotting the numerical curve

In[106]:= Do[integratedNumi[Nc_, ρ_, η_] := NIntegrate[num[Nc, mkk, mkpi, ρ, η],
{mkk, mkkmini, mkkmaxi}, {mkpi, mkpimin[mkk], mkpimax[mkk]}], {i, 1, numBin}]

In[107]:= Do[integratedDenomi[Nc_, ρ_, η_] := NIntegrate[denom[Nc, mkk, mkpi, ρ, η],
{mkk, mkkmini, mkkmaxi}, {mkpi, mkpimin[mkk], mkpimax[mkk]}], {i, 1, numBin}]

In[108]:= DoAcpi[Nc_, ρ_, η_] :=
Re[integratedNumi[Nc, ρ, η]]

Re[integratedDenomi[Nc, ρ, η]]
, {i, 1, numBin}

In[109]:= Doxvali =

mkkmini + mkkmaxi

2

, {i, 1, numBin}

In[110]:= list[Nc_, ρ_, η_] := Reap[For[i = 1, i < numBin + 1, i++, Sow[{xvali, Acpi[Nc, ρ, η]}]];][[2, 1]];

In[111]:= label = StringTemplate["Asymmetry with Nc="][Nc];

Calculate an integrated Acp for the first Belle bin

In[112]:= Ncfixed = 0.94;

In[113]:= theoryplot[Nc_, ρ_, η_] := ListPlotlist[Nc, ρ, η], PlotRange → {{0.8, 1.3}, {-1, 1}},

AxesLabel → "mKK (GeV/c2)", ACP, LabelStyle → {14, GrayLevel[0]},

PlotLabel → ("Asymmetry with Nc = " <> ToString[Ncfixed]), ImageSize → Large

In[114]:= Acpcheck [Nc_, ρ_, η_] := (Re[NIntegrate[num[Nc, mkk, mkpi, ρ, η],
{mkk, 2 * mk, 1.1}, {mkpi, mkpimin[mkk], mkpimax[mkk]}]]) /

(Re[NIntegrate[denom[Nc, mkk, mkpi, ρ, η], {mkk, 2 * mk, 1.1},

{mkpi, mkpimin[mkk], mkpimax[mkk]}]])

In[115]:= Acpcheck [Nc1, rhomax, etamax]

Out[115]= -0.0465666

In[116]:= Acpcheck [Nc1, rhomin, etamin]

Out[116]= -0.0522811

In[117]:= Acpcheck [Nc2, rhomax, etamax]

Out[117]= -0.0293259

In[118]:= Acpcheck [Nc2, rhomin, etamin]

Out[118]= -0.0329731

In[119]:= Acpcheck [3, rhomax, etamax]

Out[119]= -0.0219389
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In[120]:= Acpcheck [3, rhomin, etamin]

Out[120]= -0.0246714

In[121]:= (*theoryplot[Ncfixed]*)

In[122]:= ListPlot{list[Nc1, rhomax, etamax], list[Nc1, rhomin, etamin], list[Nc2, rhomax, etamax],

list[Nc2, rhomin, etamin], list[3, rhomax, etamax], list[3, rhomin, etamin]},

PlotRange → {{2 * mk, 1.1}, {-0.1, 0}}, AxesLabel → "mKK (GeV/c2)", ACP,
LabelStyle → {14, GrayLevel[0]}, ImageSize → Large,

PlotMarkers → {{, 10}, {▲, 10}, {, 10}, {▲, 10}, {, 10}, {▲, 10}},

PlotStyle → {Lighter[Orange], Lighter[Orange],

Darker[Cyan], Darker[Cyan], Lighter[Purple], Lighter[Purple]}(*,

PlotLegends→{"Nc = "<>ToString[Nc1] "","Nc = "<>ToString[Nc1] "","Nc = 3.00"}*)

Out[122]=

                                                 

▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

                                                 

▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

                                                 ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

1.00 1.02 1.04 1.06 1.08 1.10
mKK (GeV/c2)

-0.10

-0.08

-0.06

-0.04

-0.02

0.00
ACP

DalitzNR+R_Final.nb 9

Printed by Wolfram Mathematica Student Edition

120 Mathematica Code



Check Amplitudes etc

Compare Tree in both Resonant and Non-resonant cases

In[138]:= Plot3D{Abs[ANRT[Nc1, mkk, mkpi]], Abs[ART[Nc1, mkk, mkpi]]},

{mkk, mkkminfixed, 1.1}, {mkpi, mkpimin[mkk], mkpimax[mkk]},

AxesLabel → "mKK (GeV/c2)", "mKπ (GeV/c2)", "Amplitude", PlotLabel →
("Resonant and Non-resonant Tree Amplitudes with Nc = " <> ToString[Ncfixed]),

LabelStyle → {14, GrayLevel[0]},

PlotLegends → {"Non-resonant Tree Amplitude", "Resonant Tree Amplitude"},

PlotRange → All, ImageSize → Large

Out[138]=
Non-resonant

Resonant Tree

Plot the ratio of the resonant and non-resonant tree amplitudes 

In[131]:= NRoverR2[Nc_, mkk_] :=

NIntegrate[ANRT[Nc, mkk, mkpi] / Abs[ART[Nc, mkk, mkpi]], {mkpi, mkpimin[mkk], mkpimax[mkk]}]
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In[132]:= Plot{NRoverR2[Nc1, mkk], NRoverR2[Nc2, mkk], NRoverR2[3.00, mkk], 1},

{mkk, mkkminfixed, mkkmaxfixed}, PlotRange → {{2 * mk, 1.1}, {0, 2}},

PlotLabel → "Ratio of NR and R tree amplitudes",

AxesLabel → "mKK (GeV/c2)", "NR/R", LabelStyle → {14, GrayLevel[0]},

PlotLegends → {"Nc = " <> ToString[Nc1], "Nc = " <> ToString[Nc2],

"Nc = 3.00", "NR/R = 1"}, (*ImageSize→Large,*)PlotStyle →
{{Line, Lighter[Orange]}, {Line, Darker[Cyan]}, {Line, Lighter[Purple]}, {Dashed, Gray}}

Out[132]=
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Nc = 0.98

Nc = 2.01
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NR/R = 1

In[133]:= Export["~/Desktop/NRoverR_Zoom_final.png", %];
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Compare the amplitudes for the tree and penguin diagrams

In[134]:= DensityPlotAbs[AP[Nc3, mkk]] / Abs[AT[Nc3, mkk, mkpi]], {mkk, mkkminfixed, 1.1},

{mkpi, mkpimin[mkk], mkpimax[mkk]}, LabelStyle → {14, GrayLevel[0]},

PlotLegends → Automatic, FrameLabel → "mKK (GeV/c2)", "mKπ (GeV/c2)",
PlotLabel → ("Ratio of Penguin and Tree Amplitudes with Nc = " <> ToString[Nc3]),

ImageSize → Large,

ColorFunction → (ColorData["SunsetColors"][Rescale[#, {0.118, 0.13}]] &),

ColorFunctionScaling → False, PlotRange → {0, 0.15}

Out[134]=
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0.120

0.122
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0.128

In[135]:= Export["~/Desktop/PTcolor303.png", %];
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Plot the values of t_f/p_f to check 1/r contribution from the resonant only decay

In[136]:= Plot
Abs[tf [Nc]]

Abs[pf [Nc]]

, {Nc, 0, 3}, PlotRange → {{0, 3}, {0, 500}}, AxesLabel → {"Nc", "tf /pf"}

Out[136]=
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