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Abstract

Reinforcement that acts to passively confine concrete, such as stirrups, steel tubes, FRP
(fibre reinforced polymer) wraps or a combination of the above can enhance the strength and,
more importantly, the ductility of concrete members, allowing for greater absorption of
energy and consequently ductile failure. Research to quantify the stress-strain response of
confined concrete has largely resulted in empirical or semi-empirical modification factors
that are applied to the stress-strain relationships for unconfined or actively confined concrete.
These approaches appear, however, to be the result of seemingly disparate research
conducted to develop safe approaches for design purposes. As a result, the approaches often
yield conservative predictions of performance within the bounds of the dataset from which
they were calibrated, but poor performance when extended outside these bounds. This
presents a particular challenge for the application of new types of confinement reinforcement
material as expensive member tests for different size and concrete strength specimens are

required and the whole procedure has to be repeated for each type of new material..

In this thesis, a generic mechanics-based model is proposed for the passive stress/strain of
concrete that can incorporate: any type of confinement reinforcement; rectangular or circular
cross-sections; different specimen sizes; and different concrete strengths. This approach is
based on the direct application of fundamental partial-interaction shear-friction and bond-
slip mechanics rather than the empirical modification of unconfined material properties. The
benefit of this approach is that it is based directly on fundamental material properties that
are obtained from simple material tests and, therefore, it can rapidly and inexpensively be
extended to new types of confinement without the need for member level calibration testing.
Additionally, simplified closed-form solutions for the proposed approach are developed for

use in the design of members.

This thesis first investigates the confinement reinforcement behaviour including debonding,
yielding, fracture or a combination of the above and the corresponding closed-form
equations are proposed. Then the shear friction material properties are derived from actively
confined cylinder tests as well as shear-sliding tests and are simplified to a linear form. After
which the bond-slip material properties for different types of confinement reinforcement are



summarised. Having gathered all these fundamental material properties, the stress/strain
response of confined concrete is quantified and corresponding simplified closed-form
solutions are proposed for rectangular and circular cross-section members respectively. Next,
closed-form solutions of the passive stress/strain of concentrically loaded specimens are
simplified to rectangular stress blocks for flexural analysis. From which the closed-form
solution based on the segmental analysis approach is used to quantify the beam ductility by
deriving the moment/rotation of a hinge. Finally, the above proposed approach is extended
to steel tube confined concrete for which the passive stress/strain incorporates shrinkage and

the results are simplified to rectangular stress blocks that can be used in flexural analyses.
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Introduction and General Overview

Concrete members reinforced by passive confinement through the use of either internal
stirrups or external FRP wraps, or FRP tubes, or steel tubes or a combination of the above
have received much research interest as these confinement reinforcements can significantly
enhance both the strength and, more importantly, the ductility of concrete members. Previous
research relies on empirical or semi-empirical factors to define the stress-strain behaviour
for confined concrete and these approaches often yield conservative results. Furthermore,
these approaches may only be accurate within the bounds of the regressed databases and
should not be extended beyond these bound. As a result, expensive member tests have to be
repeated for new types of confinement reinforcement reinforced concrete with different sizes

and concrete strengths to derive corresponding empirical or semi-empirical approaches.

To aid in addressing the limitations of empirical and semi-empirical approaches, a generic
fundamental mechanics-based approach is proposed to predict the passive stress/strain
response and flexural behaviour of concrete members. This approach is generic in that it can
be applied to rectangular or circular cross-sections, different specimen heights, different
concrete strengths and various confinement reinforcement types such as stirrups, FRP wraps,
steel tubes or a combination of the above. Based on fundamental partial-interaction shear-
friction and bond-slip material properties, the proposed approach and the corresponding
closed-form solutions for design purposes are developed to predict the passive stress/strain
response and flexural behaviour. As only partial-interaction material properties are required,
they can be extracted from simple material tests instead of member level testing, such that
the proposed approach can be extended to new types of confinement reinforcement at low

Ccost.

The Chapters in this thesis are comprised of a series of school reports which provide full
details of the development of the approach and then these have then been condensed to

journal papers.



Chapter 1 contains a school report which describes the mechanics of the confinement
reinforcement which includes debonding, yielding, fracture, or a combination of the these.
Based on the bond-slip fundamental material property, three scenarios that may occur to the
confinement reinforcement are described and the mechanics equations for the confinement
reinforcement behaviour are proposed for both rectangular cross-sections and circular cross-

sections.

Chapter 2 contains two school reports on two partial-interaction material properties that
govern the confinement mechanism. These material properties are used in this research,
however, the mechanics does not depend directly on these specific properties such that they
could be replaced by any more convenient or appropriate models. Firstly, the shear-friction
material properties are derived from both actively confined cylinder tests and shear-sliding
tests from a large dataset. These shear friction properties are then simplified to a linear
approximation that can be used in the closed-form solutions of the proposed approach. Then
active stress/strains are constructed based on the linearized shear friction material properties
to validate this linear approximation. Secondly, bond-slip properties for available
reinforcement including steel and FRP rebars as well as steel and FRP plates are summarised
and simplified to a bilinear model for ease of application in the proposed approach.

In Chapter 3, a passively confined stress-strain relationship for rectangular and circular
cross-sections is derived based on the application of the material properties and mechanics
equations described in the first two chapters. As a result, this approach does not rely on
member tests and can predict the behaviour of concrete specimens with different properties.
Closed-form solutions are given for design purpose which allows for the different scenarios
that can occur to the confinement reinforcement including intermediate crack debonding,
yield, fracture or a combination of these. In this chapter, two submitted journal papers are
included. The first paper describes the proposed approach in detail for rectangular cross-
sections; the second paper investigates how the mechanics varies for circular cross-sections
from the rectangular ones as well as a parametric study to show the importance of the

specimen size on the passive stress/strain behaviour.



The traditional flexural analysis relies on empirically calibrated hinge lengths to quantify
beam ductility and ignores the size-effect of the passively confined concrete stress/strain
response as well as the confinement effect. Ignoring the confinement effect may
underestimate the strength and, more significantly, the ultimate strain of the concrete. Hence
in Chapter 4, one submitted journal paper is included to describe the application of the
proposed passive stress/strain in flexural analyses which is mechanics-based and size-
dependent and can allow for confinement effect. The reason why the passive stress/strain
derived from prisms can be applied in flexural analyses is first explained, then the passive
stress/strain derived in Chapter 3 is simplified to a rectangular stress block. Based on the
well-established segmental analysis, closed-form solutions are derived to quantify the beam

ductility by quantifying moment/rotation of a hinge which can be used in design.

In Chapter 5, the fundamental mechanics is extended to steel tube confined concrete prisms
in a submitted journal paper. As a result, the passive stress/strain response allowing for the
shrinkage effect is quantified and simplified to a rectangular stress block which can be used
in flexural analyses. Then a parametric study is conducted to investigate the effect of

shrinkage on the passive stress/strain behaviour.

Chapter 6 concludes this thesis and provides possible future research.



Chapter 1— Confinement Reinforcement Behaviour

Introduction

This Chapter contains the school report below which describes the fundamental mechanism
of the confinement reinforcement and gives the quantification of the confinement that

includes the cases of IC debonding, yielding, fracture or a combination of these.
List of Manuscripts
Hao, X., Oehlers, D., and Visintin, P. (2017) Mechanics Closed Form Equations for the

Confinement. School Report, School of Civil, Environmental and Mining Engineering, The
University of Adelaide, Australia.



Mechanics Closed Form Equations for Confinement

Introduction

The lateral confinement of the concrete due to transverse reinforcement in the form of
stirrups, steel tubes, FRP wraps or combinations of them can enhance the axial strength and
ductility of concrete columns (Basset & Uzumeri 1986; Bresler & Gilbert 1961; Lam & Teng
2003; Sakino et al. 2004; Visintin et al. 2012). The confinement due to the transverse
reinforcement is a passive confinement as it depends on the lateral deformation, such that if
there is no lateral deformation then the confinement effect is zero. In this report, the
mechanics of the confinement due to the transverse reinforcement will be described and

quantified.

PHX
stirrups

[ G ]
B BI
Gcont L |— longitudinal
reinforcement
- _
A Al

o

Fig. 1 Stirrups reinforced concrete column under axial load



It is assumed in this report that both the stirrup reinforced concrete column in Fig. 1 and the
plated concrete column in Fig. 2 that are under concentric loads Pax will fail because of
sliding along a single sliding plane at an angle of « as shown (Chen, Visintin & Oehlers
2015a; Chen et al. 2015). It should be noted that the sections of the columns in Figs. 1 and
2 can be either rectangular or circular and we will consider the rectangular case first, where
Di is the width of the transverse reinforcement as shown. For a column whose slenderness
ratio is equal to or more than three, sliding most likely occurs across a single sliding plane
as in Figs. 1 and 2 (Ali, Oehlers & Griffith 2010; Visintin, Chen & Oehlers 2015). For
slenderness ratios less than three such as in standard cylinder tests where the slenderness
ratio is two, circumferential sliding planes are the most common form of failure (Chen,
Visintin & Oehlers 2015a, 2015b; Chen et al. 2015; Oehlers, Deric J et al. 2017) and which
occur at higher axial loads. As most columns in structures have a slenderness of more than
three and as the strength of a single sliding plane is a lower bound to that due to
circumferential sliding planes, only the single sliding plane failure type will be considered

in this investigation.

4

I_ . reinforcement H P.mp ] J
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Fig. 2 Plate reinforced concrete column under axial load




In Figs. 1 and 2, the slip due to sliding S and the crack opening hcr will cause the crack width
L across the sliding plane as shown and subsequently the confinement force Pcont as shown.
As the crack opening her is an order of magnitude smaller than the slip S (Birkeland &
Birkeland 1966; Chen, Visintin & Oehlers 2015a; Haskett, M et al. 2010; Haskett, Matthew
etal. 2011), the effect of hcr on the crack width L is ignored in this research which is a further
conservative approach. Section A-A’ from Fig. 2 can be either a rectangular or a circular
section and the rectangular case is shown in Fig. 3 as an example. The crack width L is
comprised of the crack face slips 4 of both sides of reinforcement such as 4p and 4e in Fig.
3, which will induce the confinement force Pcont and subsequent confining stress ocont as in
Fig. 2 (Muhamad et al. 2012).

plate A
rall
C
Leont=Leont-cp concrete D./2
D D'
L AD IPct}nf Pconf| AD L
AE IPconf Pconf| AE
E E
Lconl’"=Lc0nf-EF concrete Dcillz
F
o F‘
plate A'

Fig. 3 Rectangular Section A-A’ from Fig. 2

In this report, the reinforcement behaviours that includes debonding, yielding, fracture and
combinations of these behaviours, will be investigated first. Then all the mechanics details
of the relationships between the transverse confinement force Pcont and the crack width L in

Fig. 3 will be investigated.

Bond-Slip Relationship

For the stirrup reinforced concrete column in Fig. 1 and the plated concrete column in Fig.
2 under concentric loads, the slip S is constant along the shear failure plane. The components

of the slip are shown in Fig. 4. The lateral component L is an effective crack width as it is



equivalent to a real crack width of L that would cause forces in the lateral reinforcement that
induce confinement as shown in Fig. 3. The longitudinal or axial or vertical component V
when divided by specimen height Lyrsm gives the additional effective axial strain due to
sliding. Furthermore, this can be written as that shown in square brackets in Fig. 4 such that
the vertical axial deformation that controls the axial behaviour of the member such as under
flexure is directly related to the lateral deformation that controls confinement. The horizontal
component of the slip S, the effective crack width L, and which is equal to Ssina is constant

along the shear failure plane and this is shown in Figs. 1 and 2.

I V=Scosa
& [V=L/tana]

L=Ssina

Fig. 4 Vertical component V of slip S and horizontal component L of slip S

Let us consider the mechanics that control confinement across a sliding plane, that is the
mechanical relationships between the deformations and the forces in Fig. 3 that induce
confinement. It will be shown that the confinement force Pcont depends directly on the bond-
slip characteristics in Fig. 5, which describes the relationship between the bond stress 7z and

the slip o between reinforcement and adjacent concrete as explained next.

B
A
TBmax______ |
|
|
|
|
|
|
|
| B
O 6] Smax )

Fig. 5 Bilinear bond-slip relationship for stirrups and plate reinforcement
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Fig. 6 Reinforcements CD and EF from Fig. 3

Consider the reinforcements CD and EF in Fig. 3 are shown in Fig. 6(a) as an example. The
reinforcement ends are anchored because of the right angle bends at points C and F in Fig.
3. At a distance x from point C in Fig. 6(b), the confinement force in the reinforcement Pcont
will induce the slip ox between concrete and reinforcement and subsequently the bond stress
8x between them as shown. The distributions of slip ¢ and bond stress zs along the
reinforcement CD are shown in Figs. 6(c) and (d) respectively. The relationship between ¢
and g, that is the material bond property, can be idealised as a bilinear model; this is
comprised of the ascending branch OA and the descending branch AB in Fig 5 and the
expressions can be written as follows (Haskett, Matthew, Oehlers & Ali 2008; Visintin et al.
2013)

T8 = TBmax é if <0 1)
o)

75 =eraX§maX—:§ if 6,<5<6,,, )
max 1



;=0 if 5§26, ©)

where emax IS the peak bond stress, d1 is the slip between the reinforcement and adjacent
concrete at temax and dmax 1S the slip between the reinforcement and adjacent concrete when
the bond stress zg reduces to zero. The slip ¢ specifically at the crack face is referred to as
the crack face slip 4 as shown in Fig. 6(a) and crack face slips of both sides of the
confinement reinforcement that is 4p and 4e make up the crack width L as shown. In the
following section, the relationship between the confinement force Pcont and the crack width

L will be investigated for both rectangular-section columns and circular-section columns.

Reinforced Concrete Column with Rectangular Sections

The case of a rectangular column will first be considered and the results will then be used in
the analysis of circular column sections. The mechanics for both the stirrup reinforced
column in Fig. 1 and the plated column in Fig. 2 are almost identical so only the latter case

in Fig. 2 will be described here.

Displacement

The width of the transverse reinforcement in Fig. 2 is equal to Di. The Sections A-A’ and B-
B’ through the rectangular-section column in Fig. 2 are shown in Figs. 3 and 7 respectively.
In the former case in Fig. 3, the crack is at the centre and in the latter one in Fig. 7 the crack
is off-centre. As a result, the length of the confinement reinforcement Lcont for the former
case in Fig. 3 is equal to Di/2. However, for the latter one in Fig. 7: Lcont Of the reinforcement
1J is referred to as Lcont-13 and has a length x; such that Leonf Of the reinforcement GH Lcont-gH
is equal to Di-x. The crack width L in both Figs. 3 and 7 equals the sum of the reinforcement
crack face slips of both sides as follows

L=A,+Az = A, +A, 4)

where 4p and 4e in Fig. 3 as well as 4 and 4, in Fig. 7 are the reinforcement slips at the

crack faces. It should be noted that at the crack face, the confinement forces Pcon in both

10



sides are equal and the reinforcement ends are anchored because of the right angle bends
such as points C, C’, F and F’ in Fig. 3 and G, G’, J and J’ in Fig. 7. The anchored
confinement reinforcement may either debond, or yield or fracture or be subjected to a

combination of these effects and the behaviour will be investigated in the following section.

plate B
~ G'
G
Leonr=Leont-cD) concrete D;-x
H H
AH ‘ Pcunf Pconf | AH
L L
A[ l Pcunf Pcouf l A'
Leont=Leont.1s 1 ] concrete X| I
-~ : J'
plate B

Fig. 7 Section B-B’ from Fig. 2

Confinement Behaviour

The behaviour of the confinement reinforcement will be investigated in this section. The
debonding procedure in Fig. 8 will be described first. When the bond stress distribution in
Fig. 5 is fully developed along the confinement reinforcement as in Fig. 8(c), the bond force
reaches its maximum value and consequently the force in the confinement reinforcement
reaches its maximum value that is when only restrained by the bond stresses. This is referred
to as the intermediate crack (1C) debonding resistance Pic which is the maximum bond force
and is given by (Ali et al. 2008; Oehlers, Deric John et al. 2008; Seracino, Raizal Saifulnaz
& Oehlers 2007; Yuan et al. 2004)

I:)IC = ‘\/TBmaxé‘max \/Lper ErAY (5)

where E; is the modulus of the reinforcement, Lyer and Ar in Fig. 9 are the total length of the
potential debonding failure planes and the total cross-section area of the reinforcement
respectively as shown. As shown in Fig. 8(c), the length of confinement reinforcement
required to develop Pic is Lert which can be expressed as (Seracino, Raizal Saifulnaz &
Oehlers 2007)

11



Lo =2

where the parameter 4 can be expressed as

/1 — z-B max Lper
5max Er A‘r

where Jdmax and zamax are shown in Flg 5.
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Fig. 8 Procedure of confinement debonding when Lcont>Lert
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W ,//1 /— concrete surface

! I
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per Ac(stirrups)

Fig. 9 Debonding of stirrups or plate confinement

The behaviour of the reinforcement is determined by the relationship between the critical
length Lcrt from Eq. (6) and the length of the confinement reinforcement Lcons Which is shown
in Figs. 3 and 7. The case when Lt is smaller than Lcont Will be described first and this is

then followed by the case when L is larger.

The case when Lgrt is smaller than Leont

When Lert is smaller than Lcont, the confinement reinforcement behaviour depends on the
relative values between the debonding force Pic, the yield force Pyiq and the fracture force
Prac, Such that the debonding of the confinement reinforcement may either occur or not. The
case where debonding occurs prior to yielding or fracture will be described first.

Debonding occurs prior to vielding or fracture

When the debonding force Pic is smaller than the yield force Pyiq or fracture force Pyrac, the
confinement reinforcement will debond first then yield or fracture. The relationship between
the confinement force Pcont and the crack face slip 4 is shown in Fig. 10 where for ease of
analysis this relationship is assumed to be piecewise linear. The whole debonding process is
shown in Fig. 8. Firstly, when the reinforcement slip at the crack face 4 in Fig. 8(a) is less
than o1 in Fig. 5, then the confinement force Pcont is less than Pic as shown in Fig. 8(a).
Increasing the reinforcement slip 4 at the crack face such that 4 is larger than J1 but smaller
than Jdmax in Fig. 5 gives Fig. 8(b). When the crack face slip 4 reaches dmax in Fig. 8(c) that
is also referred to as 4ic, the confinement force will reach Pic at point A in Fig. 10; the stress
distribution at which this occurs is labelled zs in Fig. 8(c) and occurs over the critical length

13



Lert. Any further increase in 4 will now cause debonding as the bond stress block zs will
move along the length of the confinement reinforcement Lcont towards the reinforcement end
as in Fig. 8(d). Meanwhile, the confinement force Pcont Will remain the same at Pic and the
reinforcement slip at the crack face 4 will increase until the bond stress distribution reaches
the confinement reinforcement end at a crack face slip Aqen, that is point B in Fig. 10, where

Adeb Can be written as

Adeb = AIC té¢ (Lconf - Lcrt) (8)

where ¢ic is the strain in the confinement reinforcement when the confinement force is Pic
that is eic is Pic/(ErAr) and Lcrt can be obtained from Eq. (6). A further increase of the crack
face slip 4 in Fig. 8(d) will lead to a reduction of the component of the confinement force
due to bond and an increase of the component due to anchorage. However, for convenience
it will be assumed that the confinement force Pcont is kept constant at Pic until 4 reaches the

following 4ic at point C in Fig. 10 which can be written as

AIC2 = gIC Lconf (9)

after which, an increase in the reinforcement slip at the crack face will increase the
confinement reinforcement strain. Subsequently, the confinement force due to the anchorage
of the confinement reinforcement end will after completely debonding at point C: either
yield at (4yi4, Pyig) that is point D in Fig. 10 then fracture at (dfrac, Pirac) that is point E in Fig.
10; or directly fracture at point E. The corresponding crack face slip when the reinforcement

yields or fractures, that is Ayid or Afrac respectively, can be written as follows
AyId = gyld Lconf (10)
A

frac = gfrac Lconf (11)

where eyiq and efrac are the yield and fracture strains respectively.
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Fig. 10 The relationship between confinement force Pcont and crack face slip 4 when

debonding occurs prior to yielding or fracture and Lconf>Lert

From the above analyses, the relationship between the crack width L and the confinement
force Pcont Will be described next. When Lyt is less than Lcont 0N both sides of the crack face
as may occur in Figs. 3 and 7 when all values of Lcons are larger than Ler, then at the
commencement of IC debonding as in Fig. 8(c) the confinement force is Pic and the width

of the crack at the start of IC debonding Lic is

L =24 (12)
Furthermore, when the bond stress distribution reaches the reinforcement end as in Fig. 8(d),
the confinement force remains at Pic and the following crack width Lqen can be obtained

from Eq. (8)

Ldeb = 2AIC + gIC (DI - 2Lcrt) (13)

where L¢rt can be obtained from Eq. (6) and D; is shown in Fig. 2. After which at the end of

debonding but still at Pic, the width of the crack Lic2 can be derived from Eq. (9) as

Lico = €D, (14)
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A further increase in the crack width L will cause a direct increase in the confinement
reinforcement strain and consequently an increase in the confinement force due to anchorage
of the confinement reinforcement ends. When the confinement reinforcement either yields
then fractures or directly fractures, the crack width Lyiq at Pyig and Lirac at Pfrac Can be obtained
from Eqgs. (10) and (11)

Ly = €y D, (15)

y

L rae = €rac D (16)
It is worth noting that Lcrt may be less than Leont On one side but not on the other as might
occur in Fig. 7. In which case at the attainment of Pic that is on the commencement of
debonding on one side, the crack width Lic is less than 24,c; this is because on one side the
crack face slip is 4ic but on the other side it is less due to the anchorage. Hence Eq. (12) will
at worst give a conservative estimate in analysis when applied throughout the sliding plane.
However at the end of debonding, Egs. (13), (14), (15) and (16) still apply, that is these
equations are always correct throughout the sliding plane in Figs. 1 and 2.

Gax k&M \/

&

Lfrac’f ( tan G‘Lprsm)

EC-llI‘l

0 €c0
€ax

Fig. 11 The closed form solution of stress-strain relationship of passively confined

concrete columns when debonding occurs prior to yielding or fracture and Lcont>Lert
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The relationship between the confinement force Pcont and the crack width L is employed to
derive the closed form solution of the stress-strain relationship of passively confined
concrete columns. Full details of the derivation are shown elsewhere (Hao 2017). Let us
consider the stress-strain relationship in Fig. 11 of the passively confined concrete when
debonding occurs prior to yielding or fracture and for the case where Lconf>Lert. The
ascending branch O-A-B-C-D in Fig. 11 and the descending branches B-B’, C-C’ and D-D’
are idealised as linear. The positions of these falling branches are determined by the
confining stresses ocont from the confinement reinforcement, which is a function of the
confinement force Pcont. FOr instance, the confining stress oic of the falling branch B-B’, oyid
of the falling branch C-C’ and ofrac Of the falling branch D-D’ are the functions of the

debonding force Pic, yield force Pyiq and fracture force Prrac respectively.

To summarise Fig. 11 (Hao 2017). The ascending branch of the concrete stress-strain O-A-
B-C-D is a material property that can be obtained directly from compression tests. The
descending branch B-B’ is due to sliding, as shown in Figs. 1 and 2, when an active confining
stress aconf IS OFf magnitude oic that is when the force in the confining reinforcement is Pic.
Path B-B’ can be obtained from the shear friction properties (Hao 2017). Similarly the
descending branch C-C’ is the descending branch which can be obtained from the shear
friction properties when there is an active confinement of oyi4 that is when the reinforcement
is at yield at Pyq. Finally, the descending branch D-D’ applies when the reinforcement is
about to fracture that is when the force in the reinforcement is Psac Such that the active
confinement is ofrac. On application of a load such as Pax in Fig. 1, the stress in a concrete
element follows the path of the ascending branch O-A in Fig. 11 of the unconfined concrete
until at feo a sliding plane occurs such that the path diverges from O-A at point A. When
there is sufficient sliding that the confinement reinforcement force is at Pic such that the
confining stress is aic, then the path is somewhere along B-B’ and it is a question of
determining what part of B-B’ or what point on B-B’ is on the stress path. When there is
sufficient sliding to cause yield such that the confining stress is oyig, then it is a question of
determining which part or point of C-C’ lies on the stress path and similarly for D-D’ at

fracture. Let us consider how this is achieved.
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As an example, consider point E in Fig. 11 on the descending branch B-B’; any point on any
of the descending branches could have been used. The axial strain eax in Fig. 11 of point E

is comprised of the material strain em and sliding strain s caused by sliding as follows
gax = gm + 85 (17)

where em as shown in Fig. 11 is oax/Ec.un in Which oax is the axial stress and Ec.un is the material

modulus, and &s can be expressed as

& =—— (18)

where Lprsm IS the height of the concrete column and V shown in Fig. 4 is the vertical
component of the slip S such that V is also a function of the crack width L as from Fig. 4 the

lateral deformation L=Ssina. Hence

V =Scosa=_- (19)
tan o

Substituting V from Eq. (19) into Eq. (18) gives the following sliding strain &s

a L
tanaL

prsm

(20)

&s

To derive a closed form solution for the stress-strain relationship of a passively confined
concrete, the axial stress oax and strain cax Of key points such as the points that the
confinement reinforcements debond, yield or fracture are required; these are shown as points
FtoJinFig. 11.

The crack widths L and consequently the strain &s, which can be obtained by substituting the
crack width L into Eqg. (20), and the confinement forces Pcont and consequently the
confinement stresses ocont Can be obtained for the key points in Fig. 11 as follows.

e Atpoint Aiin Fig. 11, sliding is about to start at the coordinates (eco, fco) where feo and

&co are the unconfined concrete strength and strain at feo respectively.
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As sliding occurs after point A, debonding commences at point F in Fig. 11; at point
F the crack width equals Lic from Eq. (12) and the confinement force is Pic such that
the confining stress is oic and consequently on the falling branch B-B’ which was
derived for a confinement of aic. The position of point F is fixed by ensuring that the
horizontal distance between the ascending branch O-A-B-C-D and the descending
branch B-B’ is equal to the sliding strain &s obtained by substituting Lic from Eq. (12)
into Eq. (20) that is Lic/(tanaLprsm) as shown in Fig. 11. Point F can occur above or
below point A. To simplify the derivation of closed form solutions, it has been
assumed that there is a linear variation between points A and F.

After point F in Fig. 11 and on further sliding, the crack width will increase to Lgeb
from Eqg. (13) whilst the confining stress remains at oic. Hence the sliding strain is
obtained by substituting Lgen from Eq. (13) into Eq. (20) that is Laeb/(tanalLprsm). Point
G is fixed by finding the position where the horizontal distance between O-A-B-C-
D and B-B’ is equal to Lgen/(tanalLprsm) as shown.

Using the same procedure as outlined above. Point H in Fig. 11 lies on the falling
branch B-B’ as the confining stress remains at oic. Point H is fixed by finding the
position where the sliding strain between the ascending branch O-A-B-C-D and B-
B’ is Lico/(tanaLprsm) as shown where the crack width Lic. is obtained from Eq. (14).
After a further increase in sliding, the crack width L may cause yield of the
confinement reinforcement at the confinement force Pyiq and confining stress ayiqd and,
therefore, the next point I must lie on C-C” where the confinement stress is ayig. Point
| is fixed by finding the position where the sliding strain between the ascending
branch O-A-B-C-D and C-C’ is Lyia/(tanaLprsm) as shown where the crack width Lyiq
is obtained from Eq.(15). To ease the complexity of finding closed form solutions, it
has been assumed that there is a linear variation between points H and I.

After yielding, fracture of the reinforcement at the confinement force Pfac and
confinement stress ofrac lies somewhere along D-D’ which was obtained for a
confinement of ofrac. The crack width Lsrac is given by Eq. (16) which can be used to
fix point J as shown using the sliding strain Lfrac/(tanalprsm). Once again, a linear
interpolation between points | and J is assumed to help in the derivation of closed

form solutions.
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e For reinforcements that do not yield, the reinforcement may directly fracture at point
J in Fig. 11 after completely debonding at point H that is there is a linear load path
H to J as shown.

As stated previously, for convenience and in order to develop closed form solutions, the
stress-strain path in Fig. 11 is assumed to be linear between critical points as shown. It is
also worth noting that if a solution cannot be found, this simple means that there is
insufficient sliding capacity. For example, for fracture to occur a sliding strain of
Ltrac/(tanaLprsm) is required as shown. If this strain exceeds O-D’, then this simply means that

the sliding capacity is not sufficient to fracture the reinforcement.

Yielding or fracture occurs prior to debonding

Consider the case when yielding or fracture precedes debonding and when the critical length
Lert is smaller than the confinement reinforcement length Leont as in Fig. 8(c). The assumed
relationship between the confinement force Pcont and crack face slip 4 is shown in Fig. 12.
Point D, at Pic and 4,c and which can be derived through mechanics, is therefore fixed
through mechanics. Yield or fracture may happen when the bond stress is not fully developed
as shown in Figs. 8 (a) and (b). However as point D is fixed and for ease of analysis, it is
assumed that there is a linear variation in Fig. 12 from the origin to point D. The fracture
force Prrac and yield force Pyia are smaller than the debonding force Pic such that the
confinement reinforcement may either directly fracture at (dsrac2, Ptrac) at point B or yield at
(4yid2, Pyid) at point A. As we are assuming a linear variation O-A-B-D in Fig. 12, the stiffness
of this linear variation is E1 =Pic/4ic such that Ayiq2 and Afrac2 can be expressed as

P

Ayldz =Ac — (21)
Pec
Prac

Afracz = AIC F; (22)

where Pic is obtained from Eg. (5) and 4,c can be obtained through mechanics (Ali et al.
2008; Lu et al. 2005).
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After yielding of the confinement reinforcement that is at point A in Fig. 12, the confinement
force is assumed to be kept constant at Pyiq; the effect of strain hardening on the IC debonding
resistance (Haskett, Matthew et al. 2009) is ignored in this research to achieve a simple yet
conservative solution for design purpose. It will be assumed that as yielding progresses along
Lcont, the bond stress in Fig. 8 is gradually destroyed (Shima, Chou & Okamura 1987). Hence
when yielding is complete along Lcont and the confinement force is still maintained at Pyq
then point C in Fig. 12 is given by the crack face slip 4yiq which can be obtained from Eq.
(10) and Pyiq. After which, a further increase in the crack face slip will cause the fracture of
the confinement reinforcement at Prrac that is point E in Fig. 12 and the crack face slip Afrac
can be obtained from Eq. (11).

Pconf A
Pic D
|
Pfrac ——B E
|
|
P A ¢ |
| |
| |
| |
¢ | |
] ] >
A g Drracz Bic=Omax Ay A A

Fig. 12 The relationship between confinement force Pcont and crack face slip 4 when

yielding or fracture occur prior to debonding and Lcont>Lert

From the above analyses, when Lcrt from Eq. (6) is less than Lcont 0N both sides of the crack
face and Pic>Psrac Or Pic>Pyiq, the confinement reinforcement may fracture directly and at

the commencement of fracture the following width of the crack Lac2 can be written as

L 2A

frac2 (23)

frac2 —

where Afac2 can be achieved from Eq. (22). The confinement reinforcement may also yield.
At the commencement of yielding the following width of the crack Lyid> can be written as
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L 2A

yid2 = “8yig2 (24)

where Ayig2 can be obtained from Eq. (21). After which, when the reinforcement is
completely yielded the crack width Ly can be obtained from Eq. (15). Then a further
increase in the crack width will cause the fracture of the confinement reinforcement when

the crack width Lsrac can be obtained from Eq. (16).

Similar to the case when debonding occurs first and Lert<Lcont. The critical length Lere may
be less than Lcont ON 0ne side of the crack face but not on the other as might occur in Fig. 7.
Then at the commencement of yielding or fracture, the crack widths Lfrac2 and Lyig2 may be
less than 24srac2 OF 24y142 respectively from Eqgs. (23) or (24) because on one side the crack
face slip is Arac2 OF Ayig2 but on the other side it may be less due to the anchorage. Hence
these crack widths will give a conservative estimate in analysis when applied throughout the
sliding plane. However Egs. (15) and (16) at the completion of yield or fracture still apply,
that is they are always correct throughout the sliding plane.
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Fig. 13 The closed form solution of stress-strain relationship of passively confined

concrete columns when yielding or fracture occurs prior to debonding and Lcont>Lecrt
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Consider the construction of the passive stress-strain relationship for the case when Lert<Lconf
and Pic is larger than Pyiq or Psrac as shown in Fig. 13. Equations. (23), (24), (15) and (16)
can be used in the construction of the stress-strain relationship of passively confined concrete
as in Fig. 13 where: should yield occur before fracture then the path is O-A-E-F-H; or should
fracture occur before yield then the path is O-A-G. This case when Lcrt<Lcont and Pic is larger
than Pyiq or Psrac is similar to the previous case in Fig. 11, where Lcrt<Lconf and Pic is smaller
than Pyiq or Psrac. However, IC debonding does not occur such that B-B’ in Fig. 11 does not

exist as shown in Fig. 13.

In summary. For the fracture case where yielding does not occur, the confinement
reinforcement will fracture at point G in Fig. 13, where the crack width equals Lfrac2 from
Eq. (23) instead of Liac from Eq. (16) and the confinement force is Psac Such that the
confining stress is ofrac and consequently on the falling branch D-D’. The position of point
G is fixed by finding the position where the horizontal distance between O-A-C-D and D-D’
is equal to the sliding strain derived by substituting Lfrac2 from Eq. (23) into Eqg. (20) that is
Lfraco/(tanaLprsm) @s shown. In addition, for the yield case, yielding commences at point E,
where the crack width equals Lyii2 from Eq. (24) instead of Lyq from Eq. (15) and the
confinement force is Pyig such that the confining stress is ayig and consequently on the falling
branch C-C’. The position of point E is fixed by finding the position where the horizontal
distance between O-A-C-D and C-C’ is equal to the sliding strain derived by substituting
Lyiae from Eqg. (24) into Eq. (20) that is Lyig2/(tanaLprsm) as shown. It is worth noting that the
position of completely yielding at point F in Fig. 13 is the same as that of yield point I in

Fig. 11. The other procedures are the same.

The case when Lt is larger than Leont

Confinement reinforcement behaviour

When the critical length Le¢rt in Fig. 8(c) is larger than the confinement length Lconf, the bond
distribution labelled zz cannot be fully developed. Consequently the relationship between
the confinement force Pcont and crack face slip 4 shown in Figs. 8, 10 and 12 and given by

their associated equations above are not applicable.
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The case where Lcont<Lert is sShown in Figs. 14(a-c) where the anchor to the reinforcement is
on the left and the crack face on the right. The variation in slip ¢ is shown in Fig. 14(b) where,
because of the anchor, the slip on the left ¢ is zero and that on the right at the crack face is
the crack face slip 4 as shown. The variation in the bond shear stress zg is shown in Fig.
14(a). The variations in Figs. 14(a), (b) and (c) are identical to that which occurs in a multi-
crack analysis (Oehlers, D et al. 2012; Zhang, Visintin & Oehlers 2015; Zhang, Visintin &
Oehlers 2017; Zhang et al. 2014) with a crack spacing Sp of 2Lcont in Figs 14(d) and (e) where
by symmetry the slip midway between cracks is zero. Hence the relationship between the
confinement force Pcont and the crack face slip 4 from a multi-crack analysis is directly
applicable.
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Fig. 14 Analysis of the case when Leont<Lcrt (a-¢) and multi-crack analysis (d and e)
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Fig. 15 The relationship between confinement force Pcont and crack face slip 4 when

Lconf< Lcrt

The Pcont/4 relationship from a multi-crack analysis is shown as O-A-B in Fig. 15 with
stiffness E> as shown. Let us first consider the fracture case, that is the reinforcement
fractures directly without showing yielding behaviour. The confinement reinforcement will
fracture at (Afrac3, Prrac) that is point B in Fig. 15. With regard to the yield case, the
confinement reinforcement will firstly yield at (4yia3, Pyia) at point A in Fig. 15. After the
start of yielding and as yielding progresses, the bond in Fig. 14(a) is gradually destroyed
(Shima, Chou & Okamura 1987). Consequently when yielding is complete and still at Pyiq,
the crack face slip is 4yig from Eq. (10) that is point C in Fig. 15. After which, the
confinement reinforcement will fracture at (4srac, Prrac) at point D, where Afrac can be derived
from Eq. (11). With regard to Asrac3 and Ayiaz, they can be derived from multi-crack analysis.
Closed form solutions to quantify Asracz Or Ayigaz as proposed by Sturm, Visintin and Oehlers

(2018) can be written as follows

A o= Pra tanh(/lsp) 25

frac3 — ﬂvErA\o 2 ( )
P AS

Aygs = ﬂ.EyrA tanh( 2p) (26)

where Sy is the primary crack spacing that is equal to 2Lcont as shown in Fig. 14(d), and 4 is

the variation in the slip parameter which can be written as follows
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A =[pk (27)

where the prism parameter g and bond-slip stiffness k can be expressed as

1 1
IB = Lper (ﬁ + ﬁ) (28)
TB max
k = - (29)

It should be noted that for a plate reinforcement the area of the reinforcement Ar is much
smaller than that of the concrete Ac such that Eq. (28) can be simplified as follows (Ali et al.
2008)

_ Lo 30
ﬂ_ErA (30)

Relationship between confinement force Pcontf and crack width L

In this section the crack width L will be quantified at different confinement forces Pcont
including Psrac and Pyig in Fig. 15. It is worth noting that when Lcre>Lcont the confinement
reinforcement slips at the crack face Airac3 and Ayigs in Fig. 15 can be quantified from Eqgs.
(25) and (26) respectively, where Sp is equal to 2Lconf as in Fig. 14(d). This means that the
length of the confinement reinforcement Lcons Will affect the confinement reinforcement slip
Atracs and Ayigz at the crack face and, subsequent, the corresponding crack width Lsracz and
Lyig3, which will be derived below.

Consider the cross section B-B’ in Fig. 7 which can be a yield case or fracture case and in
which Lert is larger than Leonr. The yield case will be discussed first. For reinforcements GH
and 1J in Fig. 7, the lengths of the confinement reinforcements Lcons are referred to as Lcont-
cH and Lcont-13, and are assumed to have lengths of Di-x and x respectively as shown. As a
result, the following crack width L g3, when the confinement reinforcement starts to yield,
can be derived from Egs. (4) and (26) by substituting Lcont-cH=Di-X, Lconf-13=X and Sp=2Lcont
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P _
L'y =2 tanh(%) BT A Gt (31)
AEA AEA
rearranging Eq. (31) gives
Lo Pid sinh(D.A) P sinh(D ) @)
= 7E A cosh(Ax)cosh[A(D, —x)] AE.A 1

2cosh(DﬂL)+ cosh(D}t 21X)

simplifying Eq. (32) gives

' Pyld 23inh(D.l)

Has = JE.A {cosh(Di/l) +coshi/1(Di - 2x)]} (33)

when Leonf13=X in Fig. 7 varies, only cosh[A(Di-2x)] in Eqg. (33) is not a constant. This
hyperbolic cosine function y=coshx in Fig. 16 will reach the lowest value at point A in Fig.
16 at x=0 (Oldham, Myland & Spanier 2010). This means that when D;-2x=0 then cosh[1(Di-
2x)] in Eq. (33) will reach the lowest value such that the crack width L 'yia3 will reach the

following highest value Lyigs which can be obtained by substituting Di-2x=0 into Eq. (33)

P i _
Lygs =24 2DA) (34)
AE,A “cosh(D,4)+1

For this case, Di-2x=0 can be arranged to x =Di/2 and this is the case in Fig. 3 in which the
crack is at the mid-width of the cross-section. Consequently, when Ler>Leont, L Will reach
the highest value Lyig3 for the case in Fig. 3 compared with that in Fig. 7 where the crack is
off centre. As a result, it is only necessary to consider the former case in Fig. 3 as this gives
a conservative solution compared with the latter one in Fig. 7; this simplifies the analysis
considerably and consequently will be applied in the following research to derive the closed
form solution of the stress-strain relationship of reinforced concrete columns (Hao 2017). It
will be assumed that as yielding progresses, the bond stress in Fig. 8 is gradually destroyed

(Shima, Chou & Okamura 1987). Consequently, when yielding is complete and still at Pyiq
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the crack width Lyiq can be obtained from Eq. (15). Finally at the fracture force Pgrac, the
crack width Lirac can be obtained from Eq. (16).

y=cosh x

A(0,1)
O X

Fig. 16 Shape of hyperbolic cosine function y=cosh(x)

With regard to the fracture case, that is when the confinement reinforcement fractures
directly and does not yield, the following crack width Liacz when the confinement
reinforcement starts to fracture can be derived by substituting Psrac for Pyig in Eq. (34) as
follows

L - Piac , 2sinh(D,4)
3 ™ AE, A “cosh(D.A)+1

} (35)

From the above analysis and for the case where Lcre>Leonf, EQS. (15), (16), (34) and (35) can
be used in the construction of the stress-strain relationship of passively confined concrete as
in Fig. 13. The only difference between this case of Lcr>Lcont and the previous case in Fig.
13, where Lcr<Lconf and Pic is larger than Pyig or Prrac, IS that the confinement reinforcement
starts to yield or fracture at points E or G in Fig. 13 at the crack width Lyigz or Lfracs from Eqgs.
(34) or (35) respectively instead of Lyia2 or Lracz from Eqgs. (24) and (23). Consequently,
point E or G can be fixed by the distance between O-A-C-D and falling branch C-C’ or D-
D’ that equals Lyigs/(tanalprsm) OF Liraca/(tanalprsm) respectively which is derived by
substituted the crack width Lyigs or Liracz into Eq. (20).

In conclusion, the relationships between the crack width L and the confinement force Pcont
are shown in Fig. 17. When the critical length Lcrt from Eq. (6) is less than the length of the
confinement reinforcement Lcont and debonding force Pic is less than yield force Py or
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fracture force Psac as in Fig. 17(a), the confinement reinforcement will: debond at (Lic, Pic);
during a further increase in the crack width to Lqen, the force is maintained at Pic; then the
confinement reinforcement will be fully debonded at (Lic2, Pic); after which the confinement
reinforcement may either directly fracture at (Lfrac, Pfrac); Or Yield at (Lyid, Pyia) first and then
fracture at (Lfrac, Ptrac). When Ler<Lcont and Pic is larger than Pyig or Prrac as in Fig. 17(b): the
confinement reinforcement may either fracture directly at (Ltrac2, Pfrac); OF yield at (Lyid2, Pyid);
then reach (Lyid, Pyia); and fracture at (Lfrac, Pfrac) Without showing debonding behaviour.
When Let is larger than the length of the confinement reinforcement Lcont: then the
reinforcement may either directly rupture at (Lrac3, Pirac); Of Yyield at (Lyigz, Pyia) in Fig. 17(c);
then reach (Lyid, Pyia); and fracture at (Lfrac, Pfrac) Without showing debonding behaviour.
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Fig. 17 Behaviour of reinforcement: (a) debonding occurs prior to fracture or yield when
Leri<Leont; (b) fracture or yield occurs prior to debonding when Ler<Lcon, (C) fracture or

yield occurs when Lert>Lcont
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Reinforced Concrete Column with Circular Sections

The governing equations for rectangular sections have been derived above. Now let us
consider the confinement of a circular column. The circular column in Fig. 18(a) has the
sliding plane at the centre and that in Fig. 18(b) off-centre; these are equivalent to the
sections in Figs. 3 and 7 for a rectangular section. It can be shown through the resolution of
forces (Kyle et al. 2015) that for a given confinement force Pcont across the sliding plane as
shown in Figs. 18(a) and (b), the lateral confinement stress across the sliding plane oconf is
the same as shown. For example when Pcont has the same magnitude in Figs. 18(a) and (b),
then the confinement stress ocont is the same in both cases even though the confinement force
in Fig. 18(b) is inclined to the sliding plane. This is very important for columns with circular
sections as it shows that the confinement stress and consequently confinement is constant

which simplifies the mechanics considerably.
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Fig. 18 Section A-A’ (a) and B-B’ (b) for a circular-section case from Fig. 1 or 2

Let us first consider Fig. 18(a) where the sliding plane is at the centre. Let us also start with
IC debonding. Equation (5) for IC debonding is for a flat plate and, therefore, should be on
the conservative side when there is a radius as in a circular column. Debonding will then
progress to points C or F in Fig. 18(a) which by symmetry are the anchor points. Hence the
sum of the confinement lengths Lcont.cp and Leont.er iS equal to the Di of the rectangular
section and each of them equals Di/2. Consequently equations (12), (13), (14), (15), (16)
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with Dj defined in Fig. 18(a) can be applied directly. Similarly for the case when debonding
does not occur, equations (23), (24), (34) and (35) can be applied directly with D; defined in
Fig. 18(a).

The case when the sliding plane is eccentric is shown in Fig. 18(b). In this case, it can be
seen that the crack widening measured along the circumference and shown as L is not the
same as the crack width L~ of the sliding plane. Hence L from the above equations will
overestimate L’ required for the shear friction analysis which will give a safe and
conservative analysis. Consequently equations (12), (13), (14), (15), (16), (23) and (24) can
also be applied directly with Dj defined in Fig. 18(a).

Conclusion

In this report, the relationship between the confinement force Pcont and the crack width L is
investigated. It is shown that it depends on the critical length Lct and the length of the
confinement reinforcement Lcont as Well as the relative value between debonding force Pic,
yield force Pyiq and fracture force Prrac. If Lert is smaller than Leont and debonding force Pic
is smaller than yield force Pyiq or fracture force Psac: the confinement reinforcement will
debond first then fracture; or yield then fracture. When Lcr<Lcont and debonding force Pic is
larger than yield force Pyiq or fracture force Prrac: the confinement reinforcement may either
directly fracture; or yield then fracture. When Lcr>Lcont, the confinement reinforcement may
either directly fracture or yield then fracture, too. The crack face slips and crack widths of
the confinement reinforcement for different confinement forces are derived based on
mechanics. The relationships between confinement forces and crack widths will be
employed to derive the closed form solution of the stress-strain relationship of confined

concrete columns in future research.

Notation

Ac = cross-section area of concrete which interacts with reinforcement in tension stiffening
analysis
A = total cross-section area of reinforcement in tension stiffening analysis

Di = width of a rectangular prism
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Ec = elastic modulus of concrete

Ec-un = elastic modulus of material strain

Er = elastic modulus of reinforcement

E1 = stiffness of Pcont/4 relationship that is equal to Pic/4ic

E> = stiffness of Pconi/4 relationship from multi-crack analysis

fco = unconfined concrete strength

her = crack widening of sliding plane

k = bond-slip stiffness in tension stiffening analysis

L = crack width which is also horizontal component of slip S

Lcont = length of confinement reinforcement

Lcrt = critical length which is the minimum length required to achieve the maximum debond
force

Lden = crack width when debond developed to plate ends

Lfrac = crack width when confinement reinforcement starts to fracture when Ler<Lcont and
Pic<Pfrac

Lrac2 = crack width when confinement reinforcement starts to fracture when Lert<Lconf and
Pic>Prrac

Lfrac3 = crack width when confinement reinforcement starts to fracture when Lcrt>Lcon

Lic = crack width at commencement of 1C debonding

Lic2 = crack width when confinement reinforcement is fully debonded

Lper = total length of potential debonding failure plane of reinforcement in tension stiffening
analysis

Lprsm = height of concrete column

Lyia = crack width when reinforcement starts to yield when Ler<Leont and Pic<Pyiq

Lyia2 = crack width when reinforcement starts to yield when Lcrt<Lcont and Pic>Pyiq

Lyias = crack width when reinforcement starts to yield when Lert>Lcont

Pax = axial load

Pcont = force in confinement reinforcement

Psrac = fracture force of confinement reinforcement

Pic = debond force of confinement reinforcement

Pyia = yield force of confinement reinforcement

S =slip displacement

Sp = primary crack spacing

V = vertical component of slip S
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o. = failure angle of concrete column

S = prism parameter in tension stiffening analysis

A = slip of confinement reinforcement at crack face

Adeb = slip of confinement reinforcement at crack face when debond developed to plate ends
Afrac = Slip of confinement reinforcement at crack face when confinement reinforcement
starts to fracture when Lcrt<Lconf and Pic<Pfrac

Asrac2 = slip of confinement reinforcement at crack face when confinement reinforcement
starts to fracture when Lcrt<Lconf and Pic>Pfrac

Airacz = slip of confinement reinforcement at crack face when confinement reinforcement
starts to fracture when Lcrt>Lcont

Aic = slip of confinement reinforcement at crack face when debond starts

Aic2 = slip of confinement reinforcement at crack face when confinement reinforcement is
fully debonded

Ayig = slip of confinement reinforcement at crack face when confinement reinforcement starts
to yield when Lert<Lcont and Pic<Pyiq

Ayigz = slip of confinement reinforcement at crack face when confinement reinforcement
starts to yield when Lcrt<Lcont and Pic>Pyiq

Ayigs = slip of confinement reinforcement at crack face when confinement reinforcement
starts to yield when Lcre>Lcont

o = slip between reinforcement and adjacent concrete

o1 = slip between reinforcement and adjacent concrete at zemax

omax = slip between reinforcement and adjacent concrete when bond stress zg reduces to zero
eax = axial strain

&eco = axial strain at fco

efrac = Strain when force in confinement reinforcement equals P#rac

eic = strain when force in confinement reinforcement equals Pic

em = material strain

&s = sliding strain caused by slip

eyld = strain when force in confinement reinforcement equals Pyiq

/= variation in slip parameter

oax = axial strain at eax

oconf = lateral confining stress from confinement reinforcement

ofrac = lateral confining stress from confinement reinforcement when confinement force

equals fracture force Prac
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oic = lateral confining stress from confinement reinforcement when confinement force
equals debond force Pic

oyid = lateral confining stress from confinement reinforcement when confinement force
equals yield force Pyiq

8 = bond stress existing between reinforcement and concrete

Bmax = peak bond stress
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Chapter 2— Material Properties

Introduction

This Chapter contains the two school reports below. These two school reports provide the
shear-friction and bond-slip material properties required for the proposed approach given
later. In the first school report, the shear friction material properties are derived from actively
confined cylinder tests and are simplified to a linear form that can be used to derive closed-
form solutions of the proposed approach. In the second school report, the bond-slip material
properties are simplified to a bilinear form and then summarised for different confinement

reinforcements including rebars and plates of FRP or steel.
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Mechanics of Extracting Shear-Friction Properties from Actively

Confined Cylinder Tests

Abstract

Shear friction properties are used to quantify the shear resistance to concrete sliding by
giving the relationship between the shear stress parallel to the shear-sliding plane, normal
stress transverse to the shear-sliding plane and slip displacement along the shear-sliding
plane. These shear friction properties are derived primarily from simple and inexpensive
actively confined cylinder compression tests and where there are gaps in the results with the
results from relatively expensive complex shear-sliding tests. Approximations of these shear
friction properties are proposed. This is then applied inversely to construct the stress-strain
relationships of actively confined concrete to validate the simulation and with good

correlation.

Keywords

Shear friction properties; actively confined concrete; Shear-sliding tests; approximation;
size effect;
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Introduction

Shear friction properties are used to quantify the shear resistance to sliding. They were first
derived from shear-sliding tests as shown in Figs. 1(a) and (b) where the shear stress z can
be obtained for a given normal confining stress on, crack widening her and slip S along the
shear sliding plane as shown. It is worth noting that, the normal stress on can be supplied by
either external loading in Fig. 1(a) (Zhang 2014) or internal reinforcement in Fig. 1(b)
(Birkeland & Birkeland 1966; Johal 1975; Mattock 1974; Mattock & Hawkins 1972). The
latter type of shear sliding tests is widely used as it is simpler. The difference between these
two types of experiments has be described elsewhere (Chen, Y et al. 2015) and summarised

later.

%
46_N
ON
— P
sliding <N (a)
plane
ON on
" (b)
internal/ A \ ON
reinforcement T‘ Itl
L/
hCl’

Fig. 1 Mechanism of shear sliding tests with (a) external confinement; (b) normal stress on

supplied by internal reinforcement

Mattock investigated the relationship between the maximum shear stress along the sliding
plane and normal stress transverse to the sliding plane from shear-sliding tests as in Fig. 1(b)

for both initially cracked concrete and uncracked concrete (Johal 1975; Mattock 1974;
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Mattock & Hawkins 1972). It is found that the confining stress on normal to the sliding plane
is a significant factor that affects the resistance to sliding. After only investigating the shear
friction properties at the ultimate stage (Johal 1975; Mattock 1974; Mattock & Hawkins
1972), Walraven and Reinhardt (1981) developed these properties for the whole loading
spectrum, by quantifying the relationships between the shear stress ¢ parallel to the shear-
sliding plane, the confining stress on normal to the sliding plane, slip displacement S along

the shear-sliding plane and crack widening her across the shear-sliding plane as follows

f

T= —COTSUW +[1.8h°% +(0.234h°™" —0.2) f, .. 1S 1)

cr

o, = eo-aue 1 350953, (019102 — 0.15) f

20 cr cr (:O—t:ube]S (2)

where the unit of stress is in MPa, fco-cube IS the unconfined concrete strength from concrete
cube tests, slip S and crack widening her are in mm. These shear friction properties are only
for initially cracked concrete and were derived from shear-sliding tests as shown in Fig. 1(b).
Haskett, Matthew et al. (2011) combined Mattock and Walraven’s approaches (Mattock
1974; Mattock & Hawkins 1972; Walraven & Reinhardt 1981) such that the shear friction
properties for both initially cracked concrete and uncracked concrete can be predicted.
Furthermore, the shear friction properties are derived in the form which gives the
relationship between the shear stress z and slip S for the constant normal stress on for easier
application (Haskett, M et al. 2010). However, these shear friction properties are only

obtained from experiments with low normal stress on.

Shear friction properties can also be extracted from actively confined cylinder compression
tests (Chen, Y, Visintin & Oehlers 2015a; Chen, Y et al. 2015; Haskett, Matthew et al. 2011).
By employing this method, high-cost shear sliding tests are not required and the shear
friction properties with high confining stress on can be obtained. However, in this work
(Chen, Y, Visintin & Oehlers 2015a; Chen, Y et al. 2015; Haskett, Matthew et al. 2011), it
was assumed that slip will occur before the peak stresses are attained of both unconfined
concrete columns and actively confined concrete columns. This assumption is now felt not
to simulate the behaviour accurately as it would entail the formation of numerous hinges that
does not occur in practice. Instead this approach is modified by assuming that slip only

happens after the peak stress is achieved as this ensures the formation of a single plastic
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hinge. Furthermore, the form of the previous approach (Chen, Y, Visintin & Oehlers 2015a;
Chen, Y et al. 2015) is comprised of power functions and rational functions which are not

easy to apply.

In this research, the derivation of these shear friction properties from actively confined
cylinder tests will be described. Furthermore, approximations of these properties will be
proposed and some of them are more simple and accurate. Moreover, these approximations
will be applied inversely to construct the stress-strain relationships of the actively confined

concrete to validate the approximations.

Shear Sliding Mechanism

An actively confined concrete column under a concentric load is assumed to fail due to
sliding at an angle of « as shown in Fig. 2 (Rutland & Wang 1997). It should be noted that
the cross-section of this column can be either rectangular, or square, or circular. For a slender
prism whose aspect ratio is equal to or more than three, sliding mostly occurs across a single
sliding plain as shown in Figs. 2 and 3 (Chen, Y, Visintin & Oehlers 2015b; Oehlers, D et
al. 2012; Oehlers, DJ et al. 2017). For slenderness ratios less than three such as standard
cylinder tests where the slenderness ratio is two, circumferential sliding planes are the most

common form of failure as shown in Fig. 4 and which occur at higher axial loads.

Let us consider a concrete column with a single sliding plane in Fig. 2 first. Along the
potential sliding plane OQ in Fig. 2, the following confining stress on and shear stress z can
be expressed as (Chen, Y et al. 2015)

N P,sina+C cosa

A A

Oy

)

T_l_PaXCOSa—Clsina @
A A

where Aq is the area of the sliding plane, T and N are the forces along and normal to the

potential shear failure plane resolved from the axial load Pax and lateral confining force Ci.
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It is assumed that the following axial load Pax is distributed uniformly along the cross-section

and can be written as follows

Py =0uA, (5)

where oax IS the axial stress of the confined concrete and Ain is the cross-section area of the
confined concrete. The next step is to quantify the lateral confining force C; for columns

with rectangular, square and circular sections.

P

Fig. 2 The forces and stresses of an actively confined column with a single sliding plane

under a concentric compressive load
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Fig. 4 A column fail due to concentric load with a circumferential wedge

Confinement Force
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Consider the free body OPQ in Fig. 2 that contains the whole shear sliding plane of an
actively confined rectangular-section column and is shown in Fig. 5. The following lateral

confining force Crec applied on this free body can be expressed as

DozDo (6)

tan

C

rec Gcon

where acon IS the active lateral confining stress and Do and Do are the width and depth of the

rectangular prism respectively.

Dy
Q¥ | /
3 Y/
P | /1 /
| /|
\ / a/
— 1 / o
\ // |
Qcon i //
g (Crec) } / )/
= — / A -
“Qa i YV sliding plane
v/
— /} //
ay
/
/
/
/
Q

Fig. 5 Lateral confining force applied on a rectangular-section column

For a square-section column, the width Do and depth Do. of the cross-section are equivalent

such that Eq. (6) becomes

Dy

=0, —
tan o

sq con

(7)

The method to quantify the lateral confining force of a circular-section column Ceir proposed
by Chen, Y et al. (2015) will be described as below.

The free body OPQ in Fig. 2 that contains the whole sliding plane of an actively confined

concrete column with a circular section is shown in Fig. 6(a). The diameter of the cylinder
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equals Do. The height of the cylinder wedge PQ that equals Do/tana is cut into n small slices.
The cross-section of the i.t slice DE is shown in Fig. 6(b) as an example. The distance DQ

in Fig. 6(a) that is xj can be expressed as

_ 1yDy (8)

Geon

(Car),

Dy/tana

Q

Geon'

|
|
d(ccir)icosﬁl

I
d(ccir)i ‘ QQ
| IS

Geon ‘ J
{ Ea¥
o~ (Cj;irz’_D L_

Geon,

X;tand

Fig. 6 (a) Lateral confining force of the free body OPQ in Fig. 2; (b) Lateral confining
force of the cross-section containing slice DE in Fig. 6(a)

The length of chord HG in Fig. 6(b) yi can be written as follows

Doy2 Dy 2
Yi —2(\/(7) ( 2 X tana) 9)
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Substituting Eq. (8) into Eq. (9) yields

Y; = 2Dy( (10)

Lo Ly
n (n)

Taking line OoD in Fig. 6(b) as the baseline, the sector OgHDG is cut into small sectors. The
horizontal component of the force d(C.ir)icosp applied on the element OolJ can be written as
follows

Do Dy

70 oy 11
ntana 2 s ( )

d (Ccir)i COSIB = CO0s lBO-c

where £ is the angle between the sector OolJ and the baseline OgD. The total horizontal lateral

confining force can be derived by integrating forces acting on all elements along the arc
HDG

arcsin(Li) D D0

C. :j % cos fo. —20 0
( Clr)l —arcsin(%) ﬁ con ntana 2
0

dg (12)

Substituting Eq. (10) into Eq. (12) yields

D, Lo _ Ly
()] (13)

" ntan o

(Ccir)i =0,

C

[2D,

Then the force acting on element DE in Fig. 6(a) will be integrated along the vertical height

of the sliding plane PQ and gives

c, =20, —2D, (14)

Stress Equilibrium
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For circular, square and rectangular section columns respectively, combining Egs. (3), (5),
(6), (7) and (14) gives the resultant stress normal to the sliding plane (on)cir, (on)sq @nd (on)rec

as
2 2
P sina+C, cosa % 4 Sina+aconﬂcosa
(on)r === A = - 4 ¥ dtang =o, sinfa+o,, cos’a (15)
T
| 0
4sina
2
. 2 qj 0
P, sina+C, cosa oDysina+o, tanacosa . i
(o) = A = 52 =0, sinfa+o,,cos’a (16)
| 0
sina
. D,D
. D,D,, sina + o, ——%cosa
P, sina+C, cosa a0 con :
(00 )ree == A = = 5D tang =0, sin’ a+o,, cos?a (17)
| 002
sina

where Dy is either the diameter of a circular column, or the side length of a square prism, or

the width of a rectangular prism and Do is the depth of the rectangular prism.

Similarly for the circular, square and rectangular section columns respectively, combining

Egs. (4), (5), (6), (7) and (14) gives the resultant stresses along the sliding plane zcir, 7sq and

Trec dS
2 2
; o 0 cosa—o. 0 sing
P,cosa—-C_ sina ~* 4 N 2 tan g _
Tgr = A = — = (0, — 0, Sinacosa (18)
! RO
4sina
2
2 0 .
—C_,si oxDy cosa—oy, sina
P.cosa—C, sina P— .
Tsq = A = o2 =(o, —0,)Sinacosa (19)
! 0
sina
D0D02 H
P cosa—C._ sing CaPole COS“—Uconmsma
- & rec _ _ .
fre ™ A N D,D,, = (0, — O.,)Sinacosa (20)
I ———
sina
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Fig. 7 The force and stress of a column with a circumferential wedge under concentric

compressive load

From Egs. (15), (16) and (17), it can be concluded that the expressions of the resultant
stresses normal to the shear failure plane on are the same for circular, rectangular or square

section columns and consequently can be expressed in the following generic

oy =0, sin°a+o,, Cos’ a (21)
With regard to the shear stress along the shear failure plane z, from Egs. (18), (19) and (20),
expressions are the same for columns with different cross-sections such that the generic form

is as follows

r=(0, —0,,)siNaCos (22)
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As the shear friction properties will be derived from standard cylinder tests where the aspect
ratios of all the test specimens are equal to two, the concrete columns will slide as in Fig. 4
where the circumferential wedge will form (Chen, Yongjian 2015). The shear stress z and
normal stress on along and normal to the shear failure plane will be changed as in Fig. 7 and
can be expressed as (Chen, Y, Visintin & Oehlers 2015a, 2015b; Chen, Y et al. 2015)

oy, =0, 5N’ a+20,, cos’a (23)

r=(0, —20,,)SInaCcosa (24)

Size Dependent Stress-Strain Relationship

Typical stress-strain relationships for unconfined and actively confined concrete columns
proposed by Chen, Y et al. (2013) are shown in Fig. 8, where it is assumed that 200 mm is
the standard height of a standard test specimen Lprsm as this is the height of most test
specimens. The stress-strain behaviour of concrete columns is governed by the height of test
specimen Lprsm in Fig. 2 (Jamet, Millard & Nahas 1984; Jansen & Shah 1997; Sangha & Dhir
1972; Smith et al. 1989); it will be shown how to derive a size-dependent stress-strain
relationship for a non-standard specimen (Chen, Y et al. 2013; Visintin, Chen & Oehlers
2015) which is shown in Fig. 8 as Lprsm > 200 mm. It is worth noting that the size-dependent
stress-strain relationship does not need the same aspect ratio of 2:1 for non-standard

specimens.

Unconfined Concrete Column

The following stress-strain relationship of unconfined concrete columns whose height is

equal to 200 mm can be written as (Chen, Y et al. 2013)

&
ax—200 r

ch

o, =, (25)
r—1+ (gax—ZOO )
c0
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where the unit of stress is in MPa, oax is the axial stress when the axial strain is equal to ay,
ax-200 1S the axial strain in a standard specimen that is of length 200 mm, fc is the peak stress
of unconfined concrete, o is the strain at the peak stress feo and r is the ductility factor which

can be expressed as

r=——=— (26)

where the unit of stress is in MPa and E. is the elastic modulus of concrete. It will be shown
how to adjust this stress-strain relationship to that of a specimen with a different height Lprsm >
200 mm in Fig. 8.

D(fcc,&:c)
Emat & B actively confined
concrete
le Emat ok Es - B'
. L. . ,=200mm
_C( Feos€c0) prsm
- 8mat/ Lprsm>200mm
o
b - 85 DA'
Es .A
Emat unconfined concrete
[ Lprsm=200mm
| Lprsm>200mm
€ax

Fig. 8 Stress-strain relationships of both unconfined and actively confined concrete column

with different specimen heights

Before the stress reaches the unconfined concrete peak stress fco that is point C in Fig. 8, the
axial deformation is defined as the material strain emat Which is size-independent. However
after this point C, concrete starts to slide along the shear failure plane and the total axial
deformation is comprised of: the size-independent material strain emat, caused by material
deformation as shown in Fig. 8 and size-dependent strain es caused by the slip S also shown
in Fig. 8; and the size-dependent strain caused by the crack widening her. However, the crack

widening dimension her is an order magnitude smaller than the slip S (Chen, Y, Visintin &
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Oehlers 2015a; Haskett, M et al. 2010; Haskett, Matthew et al. 2011) such that her can be
ignored. Hence the size-dependent strain is only that due to slip S in Fig. 2 and is given by

the vertical component of the slip S divided by the length of the prism Lprsm that is

Scosa
6‘3 = L

(27)

prsm

Consider an arbitrary point on the falling branch of the stress-strain relationship in Fig. 8;
this can be point A for the standard specimen and point A’ for the non-standard specimen

where the axial stress is equal to oax. The total axial strain ¢ax can be expressed as

Scosa
Ex TEma TE = t—/ (28)
I—prsm
Rearranging Eq. (28) gives the slip S as
S — (gax _gmat)Lprsm (29)

CoSa

The axial strain eax of a specimen with the height equal to Lprsm can be adjusted to the
following strain eax-200 Of a standard specimen (Chen, Y et al. 2013)

Eax200 = Empar T 2%58 (gax _gmat) (30)

Consequently from Eq. (30), the strain eax of the non-standard specimen can be adjusted to
the strain eax-200 Of the standard specimen. Substituting the strain cax-200 from Eq. (30) into
the stress-strain relationship Eq. (25) for standard unconfined concrete specimen gives the
axial stress oax as a function of the strain ax of the non-standard specimen. This relationship

is referred to as size-dependent stress-strain relationship (Chen, Y et al. 2013).

Confined Concrete Column
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The stress-strain relationship of actively confined concrete columns proposed by Visintin,
Chen and Oehlers (2015) for a standard specimen is shown as follows

&
ax—200 rc

o =f e (31)

ax cc
&
rc 1 ( ax—200)fc

cc

where the unit of stress is in MPa, fcc and ecc are the peak stress of the confined concrete and

strain at fec, and re is the ductility factor which can be expressed as

.= f (32)

where the unit of stress is in MPa. Similar to the case of the unconfined concrete column,
the axial strain eax and strain es caused by slip S can be obtained from Eqgs. (28) and (27)
respectively that is the point B or B’ in Fig. 8. The stress-strain relationship of a specimen
with the height equal to Lprsm > 200 mm can be obtained by substituting Eq. (30) into Eq.
(31) as shown in Fig. 8 (Visintin, Chen & Oehlers 2015). Furthermore, the slip S can be
derived from Eq. (29).

Material Properties

It is shown in tests that the natural angle of the sliding plane o as shown in Fig. 2 can be
assumed to be constant at 26° (Chen, Yongjian 2015; Chen, Y, Visintin & Oehlers 2015a).

With regard to the material properties of concrete, the strain ¢co at the unconfined concrete
strength feo can be given by (Chen, Y et al. 2013)

£, =1.74x107°f  +2.41x10° (33)
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where the unconfined concrete strength feo is in MPa. The material properties of confined
concrete of strength fec and strain ecc at fec as in Fig. 8 can be expressed as (Visintin, Chen &
Oehlers 2015)

%=R$+%€mﬂ (34)
c0
%=&JHBJ%QH (35)

c0

where the unit of stress is in MPa, Ag and By are the coefficients derived from regression

analyses and are taken as 5.34 and 13.9 respectively.

Concrete elastic modulus E. can be written as follows (Chen, Y, Visintin & Oehlers 2015a)

E, =3320,/f_, +6900 (36)

where the unconfined concrete strength fco is in MPa.

Extracting Shear Friction Properties from Size-Dependent Stress-Strain Relationship
of Actively Confined Column

As in Fig. 2 and ignoring the crack widening hcr, the shear friction properties are the
relationships between the shear stress 7 and slip S for different normal stresses on for a
specific concrete strength fco. Shear friction properties for 40 MPa concrete and 80 MPa
concrete are shown in Figs. 9 and 10 as two examples. Let us start with 40 MPa-strength
concrete as an example to show the derivation of the shear friction properties. The stress-
strain relationships of actively confined concrete columns with different lateral confining
stresses ocon are shown in Fig. 11. At the coordinate (fco, eco) of the unconfined concrete
stress-strain relationship that is the point A in Fig. 11, the shear stress Vo and the normal
stress ono are the shear stress r and normal stress on at the onset of sliding. They can be

derived by substituting oax = fco and ocon = 0 at point A into Eqgs. (23) and (24) as follows

Ono = chSinza (37)
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Vo = fosinacosa (38)
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Fig. 9 Shear friction properties derived from stress-strain relationship for 40MPa concrete
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Fig. 11 Extracting shear friction properties from stress-strain relationships of actively
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strength feo = 40MPa)
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Points can be extracted from the falling branches of the stress-strain relationships with
different lateral confining stresses ocon in Fig. 11. From mechanics, the shear friction
properties that is the shear stress z, normal stress on and slip S can be obtained from Egs.
(24), (23) and (29) respectively for these points. Then from this population of results, the
points with the same normal confining stress on can be extracted. For example, points A, B
and C in Fig. 11 may have been found from the population set to have the same normal stress
ono Of 7.69 MPa. Hence these can be plotted as points A, B, C in Fig. 9 where the ordinate
IS the shear stress zexp and the abscissa is the slip S which, as shown previously, have been
obtained from Egs. (23), (24) and (29). Similarly, the points D and E with the same normal
stress on1 Of 11.65 MPa in Fig. 11 can be extracted; and at these points the slip S and shear
stress zexp can be derived from Eqgs. (23), (24) and (29) such that points D and E can be plotted
in Fig. 9.

Repeating this procedure gives the shear friction properties for 40MPa concrete in Fig. 9 and
80MPa concrete in Fig. 10 for different normal stresses on as shown. This procedure can be
duplicated for different unconfined concrete strengths from 20 MPa to 100 MPa.
Approximations will be proposed to simulate all these shear friction properties later.

Shear Stress Vy at the Commencement of Sliding from Mechanics

It is worth noting that at the peak point of the actively confined concrete stress-strain
relationship such as point D in Fig. 11, the shear stress z is referred to as V, as it is the shear
stress at the onset of sliding. Furthermore, Vy is also the maximum shear stress for a specific
normal stress on for an unconfined concrete strength fco, such as that as shown in Fig. 10.
Being at the onset of sliding, it is obvious that the slips S at these peak points equal zero and
the peak stresses equal fec; these can be substituted into Egs. (24) and (23) respectively to
derive the shear stress Vy and normal stress on at the peak point of the actively confined

concrete stress-strain relationship as follows

V, =(f,.-20,,)sinacosa (39)

u
oy = f.sina+20,, cos’ a (40)
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substituting the peak stress fcc from Eq. (34) and the natural angle of the sliding plane « =
26° (Chen, Yongjian 2015; Chen, Y, Visintin & Oehlers 2015a) into Eqgs. (39) and (40)

respectively and rearranging gives

V, =0.394f ,+1.1820,, (41)

o, =0.192f , +2.6420, 42)

combining Egs. (41) and (42) gives the following shear stress V, as a function of the normal

stress on and unconfined concrete strength fco

V, =0.298 , +0.4980, (43)

It is worth noting that for some points, the normal stress on is less than the peak normal stress
in the unconfined concrete ono obtained from Eq. (37), such as points F and G in Fig. 11.
The slip S of point F obtained from Eq. (29) is larger than zero and is plotted as point F in
Fig. 9 at on2 = 3.84 MPa. Hence there is now a gap, or an absence of experimental data
between the y-axis and point F for on2 = 3.84 MPa as shown. To fill this gap, the intercept
of the plot at on2 = 3.84 MPa with the y-axis, that is V, at on2 = 3.84 MPa, can be derived

from shear sliding tests as shown in Figs. 1 and will be explained next.

Shear Stress V, at the Commencement of Sliding from Shear Sliding Tests

The relationship between shear stress V, over concrete strength feo and normal stress on over
fco Is plotted in Fig. 12. Let us start with point A in Fig. 12. When the natural angle of the
sliding plane « as shown in Fig. 2 is substituted with 26° (Chen, Yongjian 2015; Chen, Y,
Visintin & Oehlers 2015a), o is equal to ono from Eq. (37) which becomes 0.192fco, which
is also the abscissa of the point A. Consequently, when on/fco > 0.192 then on > 0.192fc and
oN > ono such that shear stress Vy can be derived from Eq. (43). The variation A-B in Fig. 12
can be obtained from Eq. (43) by substituting unconfined concrete strength fco and normal

stress on and can be expressed as
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\f/—“ —0.298+ 0.498% (0 2 0,) (44)

c0 c0

where ono is obtained from Eq. (37) and this variation has been labelled ‘cylinder’ in Fig. 12

as it has been derived from the analysis of cylinder tests.

When on/fco is smaller than 0.192 in Fig. 12 that is on < ono, there is a gap in the data set such
as that shown in Fig. 9 between point F and y-axis such that cylinder tests cannot provide
experimental data for this region. Consequently, the shear stress V, can only be obtained
from shear sliding tests that have external prestressed reinforcement that is the confinement
is active; these are plotted as X mark points in Fig. 12 from the work of Zhang (2014). To
make the shear stress V, as a continuous function of the normal stress on, point A in Fig. 12
is fixed and the dashed line CA in Fig. 12 taken through the centroid of Zhang’s test results
marked X as shown which gives the following equation

}/_uzo.105+1.50T—N (0 <o) (45)
c0 c0

where ono is obtained from Eq. (37). The shear stress V, can also be obtained from shear
friction tests with internal unprestressed reinforcement that is with passive confinement such
that the confinement force gradually increases with slip through aggregate interlock. The
experimental database of these passive confinement tests of initially uncracked concrete by
Chen, Y etal. (2015) as plotted as dot points in Fig. 12. It can be seen that Chen’s test results
from passively confined tests lie in general below the line C—A from actively confined tests.

The reason is as follows.

Let us consider the relationship between the shear stress z and slip S in Fig. 13 which is from
an initially uncracked specimen with internal reinforcement in the shear sliding test, that is
a passively confined shear friction test; the results in Fig. 13 are specimen G2 (Mattock, Li
& Wang 1976). The test results follow the path O—A—C. The normal stress on in Fig. 1(b) at
the start point O in Fig. 13 (S = 0 mm) is equal to zero as the internal reinforcement in Fig.
1(b) has no deformation and hence, no confining stress. As the slip S increases, the
deformation of the internal reinforcement will increase through the aggregate interlock

mechanism and, subsequently, the normal confining stress will reach on: at the peak point A
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(S = So) in Fig. 13 (Chen, Y et al. 2015; Mattock, Li & Wang 1976) where the transverse
reinforcement has yielded and, consequently, provides the greatest confinement. The
maximum shear stress za at point A will be recorded as Vy in the experiment. On a further
increase in slip, the reinforcement force remains at its yield strength so the confinement stays
constant at its maximum but interface slip causes a reduction in the shear strength, as can be
seen in Figs. 9 and 10, producing the gradual reduction A—C in Fig. 13. This is an example
of passive confinement as the normal stress builds up over O-A and then is constant

afterwards along A—C.

If the transverse reinforcement had yielded as soon as slip occurred that is at B in Fig. 13,
then the specimen would behave as actively confined. In which case, the variation would be
B—A that is on = on1 throughout giving the dashed line in the Fig. 13. The maximum shear
stress Vy equals g at point B. Hence the variation B-A—C is due to active confinement. The
reduction from B-A to O-A is due to the difference between active and passive confinement
tests and explains why most of Chen’s points in Fig. 12 which were from passively confined

tests are below A—C which is based on active confinement.
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Fig. 12 Shear stress V, over concrete strength fco against normal stress on over feo
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Fig. 13 Shear stress z against slip S from the shear sliding test with internal reinforcement

for specimen G2

In summary, for variations in Fig. 9 where the normal stress o is less than ono as obtained
from Eq. (37) such as on2 in Fig. 9, the shear stress Vy at the commencement of sliding can
be obtained from Eq. (45). Examples are point M in Fig. 9 (on = on2 = 3.84 MPa) and point
N in Fig. 10 (on = 7.69 MPa). When the normal stress on is equal to or higher than ono as
obtained from Eqg. (37) such as solid lines AB (on = 7.69 MPa) and DE (o~ = 11.65 MPa) in
Fig. 9, the shear stress V can be obtained from Eqg. (43). Consequently from Eqgs. (44) and

(45) the shear stress Vy can be written as follows

V, =0.105f, +1.500 oy <0,
0 N ( N NO) (46)

V, =0.298f, +04980, (o} >0y,)

where ono can be obtained from Eq. (37).

Derivation of Shear Stress o5 at S = 2.5 mm
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In this section, the approximations to simulate the shear friction properties derived from the
actively confined concrete stress-strain relationship, such as the lines in Figs. 9 and 10, will
be proposed. It should be noted that the maximum slip is restricted to around 5 mm as shown,
which is taken based on that of previous approach (Chen, Y, Visintin & Oehlers 2015a). It

will be shown later how this affects the application.

Consider the shear friction properties of 80 MPa concrete as shown in Fig. 14. The shear
stresses Vy at the commencement of sliding at points A to G can be obtained from Eq. (46)
and the slips at these points are equal to zero. Consequently one point at S = 0 is fixed for
each dashed line in Fig. 14. Let us consider the shear stress 7.5 where the slip equals 2.5 mm
such as points H to N in Fig. 14. The shear stresses 725 at S = 2.5 mm at points H to N can
be obtained for the normal stresses on-H, oN-1, ON-J, ONK, ON-L, oN-M @nd on-n @S shown. This
procedure can be duplicated for 20 to 100MPa concrete. Consequently the shear stresses 725
at S = 2.5 mm for the range of 20 MPa < fco < 100 MPa can be plotted against normal stress
on as shown in Fig. 15. Four approaches to quantify the shear stress 7,5 as a function of the

normal stress on and unconfined concrete strength fco will be described in this section.
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Fig. 14 Derivation of the shear stress at S = 2.5mm when fco = 80MPa
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Approach 1: Parabolic Approach

Let us consider the shear stress 725 at S = 2.5 mm against normal stress on for different
concrete strengths fco as shown in Fig. 15. As an example, shear stress 725 for concrete
strength fco = 100 MPa is plotted as hexagram marks. From these results, the three points A,
B and C that have the normal stresses on1, onz and (on1t+onz)/2 respectively can be extracted
and their shear stresses can be determined. Through these three points, 725 can be simulated

as a parabolic function of the normal stress on as follows

r ,.=ao; +bo, +¢ (47)

where the parameters a, b and ¢ for 100MPa concrete can be derived. This procedure can be
duplicated for points in Fig. 15 with different concrete strengths and a, b and ¢ can be derived
for different concrete strengths as plotted as points in Figs. 16 to 18. These points can be

simulated as quadratic polynomials as a function of the concrete strength fco as below

= -0.00000336f 2 +0.000619f ,-0.0333
= -0.0000447f 2 +0.00744f_, +0.902 (48)
= -0.00161f2 +0.0660f , +1.87

O T o

where the unconfined concrete strength fco is in MPa. Substituting Eq. (48) into Eq. (47)
gives the shear stress 725 at S = 2.5 mm.
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Fig. 16 Parameter a as a function of unconfined concrete strength fco from approach 1
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Approach 2: Three-Stage Approach

The parameters a, b and c that are plotted as points in Figs. 16 to 18 can also be simulated
as three-stage linear functions as shown in Figs. 19 to 21, which can be written as follows
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a, =0.000524f,-0.0334  (20MPa< f,, <40MPa)

a, =0.000196f , —0.0208  (40MPa< f_, < 70MPa)

a, =0.0000935f,, —0.0135  (70MPa< f  <100MPa)

b, =0.00561f,+0.915  (20MPa< f , < 40MPa)

b, =0.00209f, +1.05  (40MPa< f < 70MPa) (49)
b, =0.000217f,+1.19  (70MPa< f <100MPa)

¢, =-0.0184f,+287  (20MPa< f,,<40MPa)

c,=-0.117f,+6.91  (40MPa< f,<70MPa)

¢,=-0.201f,+12.7  (70MPa< f,, <100MPa)

where the unconfined concrete strength feo is in MPa. Hence for a specific concrete strength
fco, the associated parameters a, b and c can be derived from Eqg. (49), which can be

substituted into Eq. (47) to derive the shear stress 725 at S = 2.5 mm.
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Fig. 19 Parameter a as a function of unconfined concrete strength fco from approach 2
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Fig. 21 Parameter c as a function of unconfined concrete strength fco from approach 2

Approach 3: Linear-Form Approach

This approach is similar to approach 1. The difference is that the shear stress 75 at S = 2.5
mm in Fig. 15 is simulated as a linear function instead of the parabolic function of the normal

stress on for different concrete strengths as follows
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T ,s=aoy +b (50)

where the slope a and y-intercept b for different concrete strength is shown in Figs. 22 and

23 and can be expressed as follows

a=0.00281f, +0.657

(51)
b =-0.00196f2 +0.143f , +1.39

where the unconfined concrete strength feo is in MPa. Substituting Eq. (51) into Eq. (50)

gives the shear stress r25 at S = 2.5 mm.
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Fig. 22 Parameter a as a function of unconfined concrete strength fco from approach 3
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Approach 4: Statistical Approach

The shear stress 725 at S = 2.5 mm for a given normal stress on and unconfined concrete
strength fco are shown in Fig. 15. First consider only the points whose concrete strengths are
in the range of 20MPa < fco < 50MPa. The shear stress 725 at S = 2.5 mm, normal stress on
and unconfined concrete strength feo can be determined for every extracted point. Based on
these data points and applying a multivariable linear regression analysis, the shear stresses
725 at S =2.5mm can be simulated as a linear function of the normal stress on and unconfined

concrete strength fco as follows

7, =0.7790, —0.0470,, +2.01 (52)

When only the points whose concrete strengths are in the range of 50MPa < fco < 100MPa
are extracted from Fig. 15, the shear stress 725 at S = 2.5 mm can also be simulated as a linear

function of the normal stress on and unconfined concrete strength feo as follows

7,5 =0.8860, —0.0996 f ; +7.81 (53)

In summary, Egs. (52) and (53) give the following shear stress 725 at S = 2.5 mm
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7, =0.7790, —0.0470f , +2.01 (f., <50MPa) (54)
7,5 =0.8860, —0.0996 f , +7.81 (f., >50MPa)

where the unit of stress is in MPa. This approach gives two equations near the boundary
point fo = 50MPa and it will be shown later how the boundary point affects the accuracy of
the shear friction properties.

The shear stress 725 at S = 2.5 mm have been obtained from four approaches described in
this section. The mean, standard derivation and coefficient of variation of the ratio of 725
derived from experimental data 2 5.exp Over that derived from the approximations z2.5-teo are
shown in Table 1. This ratio is also shown in Figs. 24 to 27 against an/ono Where ono can be
obtained from Eq. (37). It can be concluded that the second approach is the most accurate
one but complex. By contrast, the third approach is accurate and simple, but less accurate
than the second approach.
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approachl  approach 2  approach3  approach 4

mean 0.999 1.006 0.994 0.996
SD 0.028 0.022 0.050 0.057
CoV 0.028 0.022 0.050 0.057

Table. 1 Mean, standard derivation (S.D) and coefficient of variations (COV) of 72.5.exp/725-

theo from four approaches
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Derivation of 2.5 at High on

In Fig. 15, the range of normal stress on IS on < 3ono and in practise, this normal stress may
be higher. Consequently in this section, the shear stress at S = 2.5 for higher normal stress

on Will be described.

Let us take the shear friction properties of 40 MPa concrete as an example as shown in Fig.
28. The normal stresses 725 at 2.5 mm for normal stress on = 3ono and on = 10ono Can be
extracted and are referred to as 72.5-3snv0 and 72.5-100v0 respectively as shown. Furthermore, 725
10on0 €an be extracted for different concrete strengths including 20 MPa to 100 MPa concrete

as shown in Fig. 29 and can be written as follows

T 55 100n0=1-229 14 (55)
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For simplification, it is assumed when on > 3ano the shear stress 725 is a linear function of

on as shown in Fig. 30 and can be expressed as

_ T 25106N0 "7 25-30N0 (o
- - ’
Ono

T 25 —300) + 7 25 30n0 (o >30y,) (56)

where ano can be obtained from Eq. (37), t25-30v0 In Fig. 30 can be derived by substituting
on = 3ono into Eq. (46), (47), (48), (49), (50), (51) or (54) and 72.5-10,n0 Can be derived from
Eq. (55).

60
777777777777777777 | T2.5-106N0
30 T T T ST T IOGNO
40+
=
S 30-
=1
,,,,,, . T2.5-36N0
20 i:““:::::iiﬂ“\‘ \i:::::::Rﬁ‘*“““xﬁfNo
10 I
0 | | | | | |
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Fig. 28 Shear stress 7.5 for different normal stress 3ono and 10ono for 40MPa concrete
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Shear Friction Property Equations

The shear friction properties can be derived by linking the shear stress Vy at S = 0 and shear

stress 725 at S = 2.5 mm derived from four approaches in this section as follows
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r-V, S-0

= 57
7,.-V, 25-0 7)
which can be rearranged to
r=fas Vg, y (58)
2.5

substituting 725 from Egs. (47), (48), (49), (50), (51) and (54) and V, obtained from Eq. (46)
into Eq. (58) gives the shear friction properties. In the next section, the accuracy of these

approximations will be validated.

It is worth noting that substituting 725 from Eq. (50) (approach 3) and Eq. (56) and Vy
obtained from Eq. (46) into Eq. (58) and simplifying gives equations as follows

When on < ono

7, =[(0.00112f ,-0.337)0, -0.000784fcf, +0.0152f , +0.556]S +1.500, +0.105f,,  (59)
where ano can be obtained from Eq. (37).

and when ono < on < 3ono, then

7 =[(0.00112f,, +0.0636)c, -0.000784f 2 —0.0620f., + 0.556]S +0.4980, +0.298 1., (60)

and when on > 3ono, then

r =[(2t-0.199)0, +5—%—o.119 f,]15+0.4980, +0.298 1, (61)

" 725

where the parameters Ay and By can be written as

A, =(1229f,-0577f A —B)/(L345f ) (62)
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B. =-0.00196f +0.143f , +1.39 (63)

T_

where the parameters a and b can be obtained from Eq. (51).

Validation of Approaches

Figures 31 to 50 show the shear friction properties derived from the stress-strain relationship
of the actively confined concrete (the dashed lines) and the approximations obtained from
the four approaches derived by substituting Eqgs. (46), (47), (48), (49), (50), (51) and (54)
into Eq. (58) (the solid lines) for 20 to 100 MPa concrete. Furthermore, the shear stress zexp
derived from experimental data is plotted against the curve fits e, Obtained from the four
approaches in section 6 as shown in Figs. 51 to 54. In these results, the unconfined concrete
strength feo varies from 20 MPa to 100 MPa and slip S varies from 0 mm to 5 mm. The mean,
standard derivation and the coefficient of variation of the ratio zeo/zexp are shown in Table
2. It is found that these four approaches can simulate the shear friction properties well
generally. Nevertheless, it is shown that the accuracy of the approximations will decrease
when the shear stress 7 is low enough as shown in Figs. 51 to 54; and this is the main reason
why the standard derivations in Table 2 are not low. However, the approximations mostly
give conservative prediction when the shear stress z is low. The influence of the error
between the approximations and shear friction properties from experimental data will be

investigated in the next section.

approachl approach2 approach3 approach4

mean 1.042 1.050 1.048 1.054
SD 0.158 0.168 0.165 0.197
CoV 0.151 0.160 0.157 0.187

Table. 2 Mean, standard derivation (S.D) and coefficient of variations (COV) of zexp/ttheo

from four approaches
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different unconfined concrete strengths feo

Construction of the Stress-Strain Relationships of Actively Confined Cylinders

In this report, the shear friction properties have been extracted from the stress-strain
relationships of the actively confined cylinder tests and are simulated by four approaches in
section 6. In this section, based on these approximations from the four approaches, the stress-
strain relationships of the actively confined concrete will be constructed in this section to

check the accuracy of these approximations.

Consider a standard specimen (specimen height Lyrsm = 200 mm) with a concrete strength feo
and lateral confining stress ocon. The shear friction properties derived from actively confined
cylinder tests such as the solid lines in Figs. 31 to 50 are shown in Fig. 55. It is worth noting
that sliding is assumed to occur after the peak point of the stress/strain relationship such as

point D in Fig. 8; the shear friction properties are dealing with the stage after the
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commencement of sliding so that only the falling branches will be derived in this section.
Let us consider the stress/strain relationship in Fig. 56 which will be derived from the
approximations of the shear friction properties. The ascending branch OA of the stress-strain
relationship will be obtained from Eq. (31) as this is a material property. The following
procedure to find points on the falling branch will be described.

1. The shear stress Vy at the first point A in Fig. 55 is obtained from Eq. (46); this is
also the shear stress of the peak point A in Fig. 56 where the axial stress and strain
equal fec and ecc respectively and which are obtained from Egs. (34) and (35)
respectively.

2. The slip S1 of the next point B in Fig. 55 can be fixed at any arbitrary positive value.
The axial stress at point B which is generally below that at A due to sliding is guessed
and is referred to as oax1g. The shear stress 71 at point B can be derived from
mechanics that is from Eq. (24) by substituting in both this guessed axial stress oax:-
g and lateral confining stress ocon.

3. Next the shear capacity =m at point B in Fig. 55 is now derived from the material
properties; this is the material resistance to the applied guessed axial stress caxi-g.
Hence the shear friction material properties will be applied to quantify zm which can
be obtained from the approximations; that is substituting Egs. (47), (48), (49), (50),
(51) and (54) and V. obtained from Eq. (46) into Eq. (58). This requires the
unconfined concrete strength feo and also the normal stress on: at point B in Fig. 55
which is derived as follows.

4. The normal stress ont at point B in Fig. 55 will be obtained by substituting the
guessed axial stress oaxi-g and lateral confining stress ocon into Eq. (23). This is the
normal stress when the guessed axial stress oaxi-g IS imposed.

5. The normal stress on1 and unconfined concrete strength feo can be substituted into
Eqgs. (46), (47), (48), (49), (50), (51), (54) and (58) to derive the shear capacity m
from shear friction material properties.

6. If the shear capacity wm derived from Step 5 is equal to the shear stress 71 derived
from Step 2, the axial stress oax1 at point B in Fig. 56 can be taken as the guessed
axial stress oaxi-g.

7. If the shear stress 71 derived from Step 2 is not equal to the shear capacity m derived
from Step 5, then the guessed axial stress oaxig in Step 2 will be changed. This
procedure will be iterated until the shear capacity =m derived from Step 5 is equal to

92



the shear stress 71 derived from Step 2. If a solution cannot be found, this simply
means that there is not enough capacity to resist the applied loads.

8. The axial stress oax at point B in Fig. 56 can be taken as the guessed axial stress gax:-
g after the end of the iteration Steps 2 to 7. At this point, the axial strain eax1 can be

obtained from Eq. (28) as the slip S is known and this is illustrated in Fig. 56.

The above procedure can be duplicated to derive the axial stress oax and strain eax for any
point on the descending branch such as point C in Fig. 56. In this report, the interval of the

imposed slips S of these points within a range of 0 <S <5 (mm) is set as 0.01 mm.

A(=V,) \\

'\

Oy INCrease

T(MPa)

O(S=0) S

S(mm)

Fig. 55 The linear approximation of the shear friction properties
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Fig. 56 Stress-strain relationship of actively confined concrete columns derived from

approximation of the shear friction properties

Comparison of the Stress-Strain Relationships Derived from the Closed Form Solutions and
Cylinder Tests

The procedure to construct the stress-strain relationship of actively confined concrete
columns based on the approximations of the shear friction properties in Section 6 has been
described. In Figs 57 to 76, are shown comparisons between the experimental stress/strain
relationships (solid lines as shown) and the constructed stress/strain relationships (dashed
lines as shown) based on the approximations; the approximations from the four approaches
in Section 6 were derived by substituting Egs. (47), (48), (49), (50), (51) and (54) and V,
obtained from Eqg. (46) into Eq. (58). Details extracted from these comparisons are shown as
follows:

e The simulated standard specimens with specimen heights Lprsm = 200 mm cover a
range of: 0 <S<5 (mm), 0 < gconf/feo < 0.15 and 20 < feo < 100 (MPa). It can be seen
for this range of slip, the axial strain eax is large enough or the axial stress oax is small
enough at S=5mm in Figs 57 to 76 such that nearly overall shapes of the stress/strain
relationships are given. Furthermore, as the mechanism of the derivation of the shear
friction properties has been described in this report, it is easy to extend either the
range of the slip S, or lateral confining stress acon, Or unconfined concrete strength feo

for shear friction properties.
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e It should be noted that for 20MPa concrete in Figs. 67 and 72, the predictions can
overestimate the axial stress for ocon = 0.15fco. However, this may not be important
as the usage of 20MPa concrete is decreasing in the last few decades (Kurniawan
2011).

e Most of the stress-strain relationships derived from the approximations give
conservative result compared with that derived from experimental data.

e In approach 4, the shear stress 725 from Eq. (54) at S = 2.5 mm will be obtained from
two different equations when the unconfined concrete strength fco > 50MPa and fco <
50MPa. To check the difference of these equations near the bound point fco = 50MPa,
the stress-strain relationships of actively confined concrete are plotted in Fig. 77;
these relationships are derived from experimental data (solid line) and derived based
on shear friction properties obtained from approach 4 for fco = 50MPa (dotted line)
and fco = 49.9MPa (dashed line). It can be seen that for high lateral confining stresses
at ocon = 0.15f the difference is large but for the remaining confinements the
difference is relatively small.
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Fig. 57 The stress-strain relationship of actively confined concrete derived from
experimental data (solid line) and that derived from shear friction properties from approach
1 (dashed line) when feo = 20MPa
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Fig. 58 The stress-strain relationship of actively confined concrete derived from
experimental data (solid line) and that derived from shear friction properties from approach
1 (dashed line) when feo = 40MPa
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Fig. 59 The stress-strain relationship of actively confined concrete derived from
experimental data (solid line) and that derived from shear friction properties from approach

1 (dashed line) when feo = 60MPa
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Fig. 60 The stress-strain relationship of actively confined concrete derived from
experimental data (solid line) and that derived from shear friction properties from approach
1 (dashed line) when f,o = 80MPa
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Fig. 61 The stress-strain relationship of actively confined concrete derived from

experimental data (solid line) and that derived from shear friction properties from approach
1 (dashed line) when feo = 100MPa
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Fig. 62 The stress-strain relationship of actively confined concrete derived from
experimental data (solid line) and that derived from shear friction properties from approach
2 (dashed line) when feo = 20MPa
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Fig. 63 The stress-strain relationship of actively confined concrete derived from

experimental data (solid line) and that derived from shear friction properties from approach
2 (dashed line) when feo = 40MPa
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Fig. 64 The stress-strain relationship of actively confined concrete derived from
experimental data (solid line) and that derived from shear friction properties from approach
2 (dashed line) when fco = 60MPa

1

150

100

axial stress(MPa)

50

N\
X, Geon=0

0 0.005 0.01 0.015 0.02 0.025 0.03
strain(mm/mm)

Fig. 65 The stress-strain relationship of actively confined concrete derived from

experimental data (solid line) and that derived from shear friction properties from approach
2 (dashed line) when feo = 80MPa
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Fig. 66 The stress-strain relationship of actively confined concrete derived from
experimental data (solid line) and that derived from shear friction properties from approach
2 (dashed line) when fco = 100MPa
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Fig. 67 The stress-strain relationship of actively confined concrete derived from

experimental data (solid line) and that derived from shear friction properties from approach
3 (dashed line) when feo = 20MPa
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Fig. 68 The stress-strain relationship of actively confined concrete derived from
experimental data (solid line) and that derived from shear friction properties from approach
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Fig. 69 The stress-strain relationship of actively confined concrete derived from
experimental data (solid line) and that derived from shear friction properties from approach

3 (dashed line) when feo = 60MPa
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Fig. 70 The stress-strain relationship of actively confined concrete derived from
experimental data (solid line) and that derived from shear friction properties from approach
3 (dashed line) when fo = 80MPa
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Fig. 71 The stress-strain relationship of actively confined concrete derived from
experimental data (solid line) and that derived from shear friction properties from approach
3 (dashed line) when feo = 100MPa
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Fig. 72 The stress-strain relationship of actively confined concrete derived from
experimental data (solid line) and that derived from shear friction properties from approach
4 (dashed line) when feo = 20MPa
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Fig. 73 The stress-strain relationship of actively confined concrete derived from

experimental data (solid line) and that derived from shear friction properties from approach
4 (dashed line) when feo = 40MPa
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Fig. 74 The stress-strain relationship of actively confined concrete derived from
experimental data (solid line) and that derived from shear friction properties from approach
4 (dashed line) when feo = 60MPa
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Fig. 75 The stress-strain relationship of actively confined concrete derived from

experimental data (solid line) and that derived from shear friction properties from approach
4 (dashed line) when feo = 80MPa
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Fig. 76 The stress-strain relationship of actively confined concrete derived from
experimental data (solid line) and that derived from shear friction properties from approach
4 (dashed line) when feo = 100MPa
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Fig. 77 The stress-strain relationship of actively confined concrete derived from
experimental data (solid line) and that derived from shear friction properties from approach
4 when feo = 50MPa (dotted line) and fco = 49.9MPa (dashed line)
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Conclusion

It is shown how the shear friction properties are derived primarily from simple actively
confined cylinder compression tests; where there are gaps in the results they are then
obtained from the results from relatively expensive shear-sliding tests. For design purpose,
these shear friction properties are simulated by approximations which defines that, for a
specific unconfined concrete strength fco and confining stress normal to the shear failure
plane on, the shear stress along the shear failure plane 7 is a function of the slip S. These
approximations can simulate the shear friction properties derived from actively confined
cylinder tests well and are applied inversely to construct the stress-strain relationships of

actively confined concrete with good correlation.

Notation

Ain = area of confined concrete

Asi = area of sliding plane

Ci = confining force

C.ir = confining force of circular-section column

Crec = confining force of rectangular-section column

Csq = confining force of square-section column

Do = diameter of circular column, side length of square prism or width of rectangular prism
Do2 = depth of a rectangular-section prism

Ec = elastic modulus of concrete

fco = peak strength of unconfined concrete from cylinder tests
fco-cube = peak strength of unconfined concrete from cube tests

fcc = peak strength of actively confined concrete

her = crack widening of sliding plane

Lprsm = height of specimen

N = resultant force normal to shear-sliding plane

Pax = axial load applied to confined concrete

r = ductility factor in unconfined concrete stress-strain relationship
re = ductility factor in confined concrete stress-strain relationship

S =slip displacement
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T = resultant force along shear-sliding plane

Vu = shear stress at the commencement of crack widening

Vo = shear stress at the commencement of crack widening for unconfined concrete column
o = failure angle of concrete column

cax = axial strain

eax-200 = axial strain of a specimen whose height is equal to 200 mm

&co = €ax at feo for unconfined concrete

&cc = eax at fec for confined concrete

emat = Material strain of concrete column

&s = strain caused by slip

oax = axial stress applied to concrete

oax-g = guessed axial stress applied to concrete

ocon = transverse confining stress

on = resultant stress normal to shear-sliding plane

(on)cir = resultant stress normal to shear-sliding plane of a circular-section column
(on)rec = resultant stress normal to shear-sliding plane of a rectangular-section column
(on)sq = resultant stress normal to shear-sliding plane of a square-section column

ono = normal stress at the commencement of crack widening for unconfined concrete
column

7 = resultant stress along shear-sliding plane

7eir = resultant stress along shear-sliding plane of a circular-section column

7m = Shear capacity from material properties

rec = resultant stress along shear-sliding plane of a rectangular-section column

7sq = resultant stress along shear-sliding plane of a square-section column

Texp = Shear stress derived from stress-strain relationship of actively confined concrete
columns

Ttheo = Shear stress from approximations

725 = Shear stress at S = 2.5 mm

T25-exp = Shear stress at S = 2.5 mm derived from experimental data
T2.5theo = Shear stress at S = 2.5 mm derived from approximations
725-30N0 = 125 When on equals 3ono

725-100N0 = 725 When on equals 10ono
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Partial Interaction Bond-Slip Relationship for Mechanical Properties

Introduction

Transverse reinforcement in the form of stirrups, steel tubes, FRP (fibre reinforced polymer)
wraps or combination of them can significantly enhance both the axial strength and ductility
of reinforced concrete columns (Basset & Uzumeri 1986; Chung et al. 2002; Giakoumelis
& Lam 2004; Han 2000; Lam & Teng 2003; Pessiki & Pieroni 1997; Price 1951; Toutanji
et al. 2009; Turgay et al. 2009). The bond behaviour between reinforcements and concrete
plays a significant part in reinforced concrete columns and has received much research
interest in the last few decades (Ali et al. 2008; Haskett et al. 2009; Lu et al. 2005; Seracino,
Raizal Saifulnaz & Oehlers 2007; Visintin, Oehlers & Haskett 2013).

In a companion report (Hao 2017a), the confinement mechanism in reinforced concrete has
been investigated. In this report, all the partial interaction bond-slip material properties
required for the partial interaction mechanical properties in the companion report (Hao
2017a) will be described.

Bond-Slip Mechanics Properties

Let us start by considering the anchored confinement reinforcement AB in Fig. 1 which is
pulled out from the concrete as shown. A confinement force Pcons in Fig. 1(a) will result in
the slip o between the reinforcement and adjacent concrete. Consider point C in Fig. 1(a);
any point between points A and B in Fig. 1(a) could have been used. It is assumed that the
distance between point C and point A equals x. At point C, the bond stress and slip are
referred to as zsx and dx respectively. The distributions of bond stress zg and slip ¢ are shown
in Figs. 1(b) and (c) respectively. The slip ¢ at the crack face is referred to as the crack face
slip 4. In this report, the relationship between bond stress zg and slip ¢ in Fig. 1 which is a
material property and which can also be referred to as the bond-slip model will be described

in this report.
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Fig. 1 Analysis of an anchored reinforcement

Shapes of Current Bond-Slip Models for Steel Rebars

Eligehausen, Popov and Bertero (1982) proposed the most widely used model for steel rebars
as shown in Fig. 2 and which was accepted by the International Federation for Structural
Concrete (CEB-FIP 1993; Fib. 2010). This model is referred to as ‘B.E.P. Model’ and can
be expressed as

T =Tgmsr [éJ if 0<0<0,4 (1)
)
T = TBmaxsR if O <0< 0,4 2)
o —0. )
T =Tgmaxsr — (TBmaxSR — T )% if 0,5 <O <03 (3)
3sR — O2sR
T=1, if Oy <O (4)
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where the parameter a is equal to 0.4, zamaxsr IS the peak bond stress for steel rebars, z is the
frictional component of the bond stress, d1sr Is the slip between the steel rebars and adjacent
concrete when the bond stress first reaches zgmaxsr, dzsr IS the slip when the bond stress starts

to decrease and dssr is the slip when the bond stress first reaches .

)
TBmaxSR f[— — — A B

|
|

Tp - _ + R D
|
I | |

o (SISR 628[2 638R 3

Fig. 2 Eligehausen’s bond-slip model for steel rebars

Most approaches have similar shapes as the ‘B.E.P. Model’ for steel reinforcements as
shown in Fig 2 (Harajli, Hout & Jalkh 1995; Soroushian & Choi 1989). Furthermore,
Yankelevsky (1985) simplified the ‘B.E.P. Model’ as a linear relationship as shown in Fig.
3.

L]
TBmaxSR|— — — H
RN
A i R
| \
| | \
0 8]SR 62SR 63SR 0

Fig. 3 Simplified Eligehausen’s bond-slip model for steel rebars

Haskett et al. (2009) proposed a bond-slip model for steel rebars as shown in Fig. 4. Based
on a partial interaction mechanism, the values of the parameters disr and dmaxsr in Fig. 4
were derived. Then this model was validated by experimental data with good correlation.
Furthermore, this model ignores the frictional component of the bond stress CD in Fig. 3 to

achieve a conservative solution.
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Fig. 4 Haskett’s bond-slip model for steel rebars

Shapes of Current Bond-Slip Models for FRP Rebars

With regard to FRP rebars, Cosenza, Edoardo, Manfredi and Realfonzo (1997) removed the
platform AB of the ‘B.E.P. Model’ in Fig. 2 as shown in Fig. 5; this model is applied by the
International Federation for Structural Concrete (Fib. 2010). Another widely used model as
shown in Fig. 6 only gives the expression for ascending branch as follows (Cosenza, E,
Manfredi & Realfonzo 1995)

T = TgmaFR [1_ exp(i)]ﬁ (5)

1FR

where £ is a parameter, emaxrr IS the peak bond stress for FRP rebars and oirr is the slip
between the FRP rebars and adjacent concrete when the bond stress first reaches zgmaxer.
These two approaches are widely used and parameters including dirr, d2rR, tf, TBmaxer in the
former approach (Cosenza, Edoardo, Manfredi & Realfonzo 1997) and 3, d1rr and zemaxrr in
the latter approach (Cosenza, E, Manfredi & Realfonzo 1995) are empirically derived for
each individual item of research (Baena et al. 2009; Focacci, Nanni & Bakis 2000; Lin &
Zhang 2014; Malvar, Cox & Cochran 2003; Pecce et al. 2001; Tighiouart, Benmokrane &
Gao 1998). However, these parameters are more likely to be only accurate for the

experiments from which they were derived. Consequently, this requires further research.
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Fig. 5 Cosenza’s bond-slip model for FRP rebars

B
TBmaxFR

0 6IFR

Fig. 6 Cosenza’s ascending bond-slip model for FRP rebars

Shapes of Current Bond-Slip Models for Bonded FRP or Steel Plates

Lu et al. (2005) developed a database for bonded FRP plates and different models were
reviewed. Most of the models give the shape as shown in Figs. 7 and 8. Based on the database,
they also derive the values of the parameters d1p, dmaxp and zsmaxp in the models in Figs. 7
and 8. Seracino, Raizal Saifulnaz and Oehlers (2007) also proposed a bilinear model as in
Fig. 8 for externally bonded (EB) and near-surface mounted (NSM) steel or FRP plates. This
approach also gives the values of parameters dip, dmaxe and zemaxp in Fig. 8 and will be

described later.

B

TBmaxP}— —

0 S 5

Fig. 7 Lu’s non-linear bond-slip relationship for FRP sheets and plates
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Fig. 8 Lu’s bilinear bond-slip relationship for FRP sheets and plates

Shapes of Current Bond-Slip Models for Unbonded FRP Plate or Steel Plate

For unbonded FRP plates or steel plates such as that in concrete filled FRP tubes or steel
tubes, there is no adhesive between the concrete and FRP tube or steel tube. Consequently,
it is assumed there is no bond between concrete and FRP tube or steel tube as this gives a

conservative solution in the analysis.

Simplified Bond-Slip Model

In order to derive a closed-form solution, several simplified bond-slip models are proposed.
The three main models include the bilinear model, linear ascending model and linear
descending model as shown in Figs. 9, 10 and 11 respectively (Yuan, Wu & Yoshizawa
2001). The bilinear bond-slip model is the closest to reality. By contrast, the linear ascending
bond-slip model in Fig. 10 can apply when 41 in Fig. 9 is big enough such that the bond
stress between reinforcement and concrete may be not able to reach the maximum bond
stress zemax. This is most likely to happen in steel reinforced concrete columns as the steel
reinforcement is likely to yield before the crack face slip 4 in Fig. 1(a) reaches d1 in Fig. 9
(Sturm, Visintin & Oehlers 2018). When o1 in Fig. 9 is small enough and can be ignored
(Seracino, Raizal Saifulnaz & Oehlers 2007), the bilinear bond-slip model can be simplified

to the linear descending model as shown in Fig. 11.

In this research, the bilinear model in Fig. 9 will be applied in order to derive simple closed-

form solutions of the stress-strain relationships of passively reinforced concrete columns
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(Hao 2017b). Next, the material properties in this bilinear model for different types of

reinforcement will be described.

T3 (TBmaxSRsTBmaxFR or TBmaxP)

(TBmax__

9] 3, Omax O
(B1sR-01FR OF O1p) (Brmaxsr>OmaxFR OF Omaxp)

Fig. 9 Bilinear bond-slip relationship

B
Bmax- — — — — — — —

0]

Fig. 10 Linear ascending bond-slip relationship

B
TBmax

(0] Omax O

Fig. 11 Linear descending bond-slip relationship

Bond-Slip Material Properties

Bilinear Bond-Slip Model for Steel and FRP Rebars
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For steel rebars, slips disr and dmaxsr in Fig. 9 can be expressed as

05z =1.5mm (6)
5maxSR = 15mm (7)

Furthermore, the maximum bond stress zemaxsr at disr can be expressed as (Haskett et al.
2009)

25 ch (8)

TB maxSR —

where feo is the unconfiend concrete strength. With regard to the bilinear bond-slip model
for FRP rebars, slips d1rr and dmaxrr in Fig. 9 can be expressed as (Focacci, Nanni & Bakis
2000)

Oy =1mm 9)

0

max FR

=16.9mm (10)

Furthermore, zemaxrr In Fig. 9 can be taken as (Okelo & Yuan 2005)

=14.7ﬂ (11)

0

7’-B max FR

where dp is the diameter of the FRP rebar.

Bilinear Bond-Slip Model for Bonded Steel and FRP Plates

The parameters zemaxp , d1p and dmaxe iN Fig. 9 for bonded steel and FRP plates proposed by

Seracino, Raizal Saifulnaz and Oehlers (2007) can be expressed as

Torae = (0.802+0.078¢, ) £ 28 (12)
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0p =0 (13)

0.97647°%

- 14
mF " 0.802+0.078¢, a4

where feo is the unconfined concrete strength, d1p is assumed to be zero as it is an order of
magnitude smaller than Jmaxp and the aspect ratio of the interface failure plane ¢f can be
expressed as

¢ =— (15)

where dr and by, are the thickness of the failure plane and the length of the failure plane
parallel to the concrete surface as shown in Fig. 12, and which are equal to 1 mm and bs + 2
mm (bs is the width of reinforcement plate as shown in Fig. 12) respectively. Furthermore,
the intermediate crack (1C) debonding resistance Pic can be expressed as (Seracino, Raizal
Saifulnaz & Oehlers 2007)

PIC = 085¢?25 fC%33 \' Lper EpAp (16)

where Lper is the length of the potential failure plane in Fig. 12 and is equal to bs + 4 mm, E,
and A, are the modulus and cross-section area of the reinforcement plate. It is worth noting
that the 1C debonding resistance Pic should be less than either the rupture force for the FRP
plates or yield force for steel plates. When the confinement force first reaches the IC
debonding resistance Pic, the crack face slip 4ic can be expressed as (Hao 2017a)

AIC = 5maxP (17)

where dmaxp Can be obtained from Eq. (14). The reinforcement length required to develop Pic
is referred to as the critical length Lct and can be expressed as (Seracino, Raizal Saifulnaz
& Oehlers 2007)

L == (18)
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where the parameter 1 can be expressed as

L

T
ﬂ,Z Bmax P —per (19)
Sraxp Ep A,

max P

where zemaxp and dmaxp Can be obtained from Eqs. (12) and (14) respectively.

bt — reinforcement plate
/|

Imm v

T I

I P R =)/ concrete
z N\
£ potential failure plane
|
5

Fig. 12 Debonding failure of FRP plate bonded to concrete

Conclusion

In this report, the partial interaction bond-slip relationships for the mechanics properties
required in a companion report are described. A brief review of available bond-slip models
for steel rebars, FRP rebars, bonded steel and FRP plates are described. In future research,
the simplified bilinear model will be employed to derive the closed form solution of the
stress-strain relationship for passively confined concrete. Furthermore, bond-slip material

properties required to do quantitative analysis have been described in this report.

Notation

Ap = total cross-section area of reinforcement plate

bt = width of reinforcement plate

br> = length of failure plane parallel to concrete surface
dr = thickness of failure plane

do = diameter of FRP rebar.
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Epr = elastic modulus of reinforcement plate

fco = unconfined concrete strength

Lcrt = critical length that is reinforcement length required to develop Pic

Lper = total length of potential debonding failure plane of reinforcement in tension stiffening
analysis

Pcont = force in confinement reinforcement

Pic = IC debonding resistance

A = slip of confinement reinforcement at crack face

A\c = crack face slip when confinement force first reaches 1C debonding resistance Pic

o0 = slip between reinforcement and adjacent concrete

o1 = slip between reinforcement and adjacent concrete at zgmax

o1rr = slip between FRP rebars and adjacent concrete at zamaxrr

o1p = slip between plate reinforcement and adjacent concrete at zgmaxp

o1sr = slip between steel rebars and adjacent concrete at zamaxsr

o2rr = slip between FRP rebars and adjacent concrete when g starts to decrease

o2sr = slip between steel rebars and adjacent concrete when zg starts to decrease

o3sr = slip when the bond stress first reaches z: for steel rebars

omax = slip between confinement reinforcement and adjacent concrete when bond stress 7z
reduces to zero

omaxFr = slip between FRP rebars and adjacent concrete when bond stress zg reduces to zero
omaxp = Slip between plate reinforcement and adjacent concrete when bond stress zg reduces
to zero

omaxsr = Slip between steel rebars and adjacent concrete when bond stress zg reduces to zero
8 = bond stress existing between reinforcement and concrete

Bmax = Peak bond stress for confinement reinforcement

BmaxFr = peak bond stress for FRP rebars
Bmaxp = peak bond stress for plates

Bmaxsr = peak bond stress for steel rebars
7t = frictional component of the bond stress

ot = aspect ratio of interface failure plane

References

120



Ali, MM, Oehlers, D, Griffith, M & Seracino, R 2008, 'Interfacial stress transfer of near
surface-mounted FRP-to-concrete joints', Engineering Structures, vol. 30, no. 7, pp. 1861-
1868.

Baena, M, Torres, L, Turon, A & Barris, C 2009, 'Experimental study of bond behaviour
between concrete and FRP bars using a pull-out test', Composites Part B: Engineering, vol.
40, no. 8, pp. 784-797.

Basset, R & Uzumeri, S 1986, 'Effect of confinement on the behaviour of high-strength
lightweight concrete columns', Canadian Journal of Civil Engineering, vol. 13, no. 6, pp.
741-751.

CEB-FIP 1993, CEB-FIP Model Code 1990: Design Code, Thomas Telford.

Chung, H-S, Yang, K-H, Lee, Y-H & Eun, H-C 2002, 'Strength and ductility of laterally
confined concrete columns', Canadian Journal of Civil Engineering, vol. 29, no. 6, pp.
820-830.

Fib. (The International Federation for Structural Concrete) (2010) '‘Model Code 2010-Final
draft’, Thomas Thelford, Lausanne, Switzerland.

Cosenza, E, Manfredi, G & Realfonzo, R 1995, '20 Analytical modelling of bond between
frp reinforcing bars and concrete’, in Non-Metallic (FRP) Reinforcement for Concrete
Structures: Proceedings of the Second International RILEM Symposium, CRC Press, vol.
29, p. 164.

Cosenza, E, Manfredi, G & Realfonzo, R 1997, 'Behavior and modeling of bond of FRP
rebars to concrete’, Journal of Composites for Construction, vol. 1, no. 2, pp. 40-51.

Eligehausen, R, Popov, EP & Bertero, VV 1982, 'Local bond stress-slip relationships of
deformed bars under generalized excitations', Proceedings of the 7th European Conference
on Earthquake Engineering, vol. 4, pp. 69-80

Focacci, F, Nanni, A & Bakis, CE 2000, 'Local bond-slip relationship for FRP
reinforcement in concrete', Journal of Composites for Construction, vol. 4, no. 1, pp. 24-
31.

Giakoumelis, G & Lam, D 2004, 'Axial capacity of circular concrete-filled tube columns’,
Journal of Constructional Steel Research, vol. 60, no. 7, pp. 1049-1068.

Han, L-H 2000, "The influence of concrete compaction on the strength of concrete filled
steel tubes', Advances in Structural Engineering, vol. 3, no. 2, pp. 131-137.

121



Hao, X 2017a, 'Mechanics closed-form equations for the confinement forces and
displacesments', School Report, School of Civil, Environmental and Mining Engineering,
The University of Adelaide, Australia.

Hao, X 2017b, 'Generation of stress-strain relationship of passively reinforced concrete’
School Report, School of Civil, Environmental and Mining Engineering, The University of
Adelaide, Australia.

Harajli, M, Hout, M & Jalkh, W 1995, 'Local bond stress-slip behavior of reinforcing bars
embedded in plain and fiber concrete’, Materials Journal, vol. 92, no. 4, pp. 343-353.

Haskett, M, Oehlers, DJ, Mohamed Ali, M & Wu, C 2009, 'Yield penetration hinge
rotation in reinforced concrete beams', Journal of Structural Engineering, vol. 135, no. 2,
pp. 130-138.

Lam, L & Teng, J 2003, 'Design-oriented stress—strain model for FRP-confined concrete’,
Construction and Building Materials, vol. 17, no. 6, pp. 471-489.

Lin, X & Zhang, Y 2014, 'Evaluation of bond stress-slip models for FRP reinforcing bars
in concrete', Composite Structures, vol. 107, pp. 131-141.

Lu, X, Teng, J, Ye, L & Jiang, J 2005, 'Bond-slip models for FRP sheets/plates bonded to
concrete', Engineering Structures, vol. 27, no. 6, pp. 920-937.

Malvar, L, Cox, J & Cochran, KB 2003, '‘Bond between carbon fiber reinforced polymer
bars and concrete. I: Experimental study’, Journal of Composites for Construction, vol. 7,
no. 2, pp. 154-163.

Okelo, R & Yuan, RL 2005, 'Bond strength of fiber reinforced polymer rebars in normal
strength concrete’, Journal of Composites for Construction, vol. 9, no. 3, pp. 203-213.

Pecce, M, Manfredi, G, Realfonzo, R & Cosenza, E 2001, 'Experimental and analytical
evaluation of bond properties of GFRP bars', Journal of Materials in Civil Engineering,
vol. 13, no. 4, pp. 282-290.

Pessiki, S & Pieroni, A 1997, 'Axial load behavior of large-scale spirally-reinforced high-
strength concrete columns', ACI Structural Journal, vol. 94, no. 3, pp. 304-314.

Price, WH 1951, 'Factors influencing concrete strength’, ACI journal, vol. 47, no. 2, pp.
417-432.

122



Seracino, R, Raizal Saifulnaz, M & Oehlers, D 2007, 'Generic debonding resistance of EB
and NSM plate-to-concrete joints', Journal of Composites for Construction, vol. 11, no. 1,
pp. 62-70.

Soroushian, P & Choi, K-B 1989, 'Local bond of deformed bars with different diameters in
confined concrete’, Structural Journal, vol. 86, no. 2, pp. 217-222.

Sturm, AB, Visintin, P & Oehlers, DJ 2018, 'Time-dependent serviceability behavior of
reinforced concrete beams: Partial interaction tension stiffening mechanics', Structural
Concrete, vol. 19, no. 2, pp. 508-523.

Tighiouart, B, Benmokrane, B & Gao, D 1998, 'Investigation of bond in concrete member
with fibre reinforced polymer (FRP) bars', Construction and Building Materials, vol. 12,
no. 8, pp. 453-462.

Toutanji, H, Han, M, Gilbert, J & Matthys, S 2009, 'Behavior of large-scale rectangular
columns confined with FRP composites', Journal of Composites for Construction, vol. 14,
no. 1, pp. 62-71.

Turgay, T, Kcksal, H, Polat, Z & Karakoc, C 2009, 'Stress—strain model for concrete
confined with CFRP jackets', Materials & Design, vol. 30, no. 8, pp. 3243-3251.

Visintin, P, Oehlers, D & Haskett, M 2013, 'Partial-interaction time dependent behaviour
of reinforced concrete beams', Engineering Structures, vol. 49, pp. 408-420.

Yankelevsky, DZ 1985, 'New finite element for bond-slip analysis’, Journal of Structural
Engineering, vol. 111, no. 7, pp. 1533-1542.

Yuan, H, Wu, Z & Yoshizawa, H 2001, "Theoretical solutions on interfacial stress transfer
of externally bonded steel/composite laminates', Doboku Gakkai Ronbunshu, vol. 2001, no.
675, pp. 27-39.

123



Chapter 3— Passive Stress/Strain Behaviour

Introduction

In this chapter, a mechanics-based approach to predict the passive stress/strain for passively
confined concrete prisms under concentric load are described in the two journal papers below.
These two journal papers condense the information in the school reports in the first two

chapters in a form suitable for a journal.

In the first paper, a mechanics-based approach for rectangular cross-sections is derived from
the confinement mechanics equations in Chapter 1 and material properties in Chapter 2.
Then in the second paper, the proposed approach is extended to the circular sections and the
effect of the section shape on confinement is described. This is followed by a parametric

study to describe the effect of specimen size on the passive stress/strain response.
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Simulating the Passive Confinement of Rectangular Concrete Prisms

Allowing for Size Effect

X. Hao?, P. Visintin? and D. J. Oehlers®

Abstract

Tests have shown that providing passive confinement to concrete, either through the use of
internal stirrups, external fibre reinforced polymer (FRP) wraps, FRP tubes or steel tubes,
can increase the concrete strength and, in particular, the concrete ductility, thereby allowing
greater absorption of energy and consequently ductile failure. The problem of including the
benefits of passive confinement in design is in generalising the effect of passive confinement
because it varies with member size, confining reinforcement configuration and material
properties. In this paper, the fundamental mechanics of passive concrete confinement are
explained both qualitatively and quantitatively through the use of shear-friction and bond-
slip mechanics. An analysis oriented procedure is described for quantifying the passive
stress/strain of concrete for rectangular sections. The mechanics model is found to have good
correlation with tests and, consequently, can be used in the design of a member to allow for

the benefits of confinement.

Keywords: concrete; concrete confinement; active confinement; passive confinement;

partial interaction; RC members; IC debonding; shear sliding.

Introduction

Passive confinement may be applied to concrete members through the use of either internal
stirrups or external FRP (fibre reinforced polymer) wraps, or FRP tubes or steel tubes. The
changes in concrete strength and ductility arising from this passive confinement has received
much research attention (Hognestad, 1951, Jiang and Teng, 2007, Mander et al., 1988,
Plevris and Triantafillou, 1994, Popovics, 1973, Richart et al., 1928, Sakino et al., 2004,
Teng et al., 2009). Means of predicting the impact of passive confinement on the stress/strain
relationship of concrete can be split into two broad categories: design oriented or analysis

oriented.
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The design oriented approach generally treat passively confined concrete as a new material,
and develops stress/strain models for each specific confinement based on empirical
observations. The general shapes of passive stress/strain relationships for concrete confined
by stirrups or wraps/tubes are compared in Fig. 1 (Lam and Teng, 2003, Mander et al., 1988,
Shams and Saadeghvaziri, 1997). These are generally comprised of a non-linear ascending
branch (O-A or O-C) followed by either an ascending or descending secondary branch
depending on the level of confinement (A-B or C-D). Design oriented approaches such as
that proposed by Lam and Teng (2003) provide a stress/strain model for FRP reinforced
concrete based on the regression of a large database of test observations and have been
routinely updated as new test data covering a broader range of parameters have become
available (Teng et al., 2009, Wei and Wu, 2012, Youssef et al., 2007). For concrete confined
by stirrups, Mander et al. (1988) derived the peak stress fcc and strain ecc at fec semi-
empirically and substituted them into stress/strain models of actively confined concrete
proposed by Popovics (1973). This approach is similar to that accepted by CEB-FIB Model
(Fib., 2010).

concrete reinforced by
stirrups or steel tube

c B
S A_Concrete reinforced D
// byFRP
/ unconfined
| ~——__concrete
0' €ax

Fig. 1 Empirical stress/strain of passively confined concrete

The primary benefit of design oriented approaches is their ease of use, that is, because they
are based on the regressed data, simple expressions for the key points of the stress/strain
relationship can be easily defined. Care in the application of design oriented approaches is
however required, because the empirical basis that makes them easy to apply, may also limit

accuracy if used to predict the behaviour of concrete with parameters outside the range of
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the regressed database. An important example of this is in the prediction of the behaviour of
full size columns which have overall dimensions much larger than the majority of specimens
in the compiled databases. The issue of member size is significant because previous research
has shown passive confinement to be size dependent (Du et al., 2017, Jin et al., 2017,
Théiault et al., 2004, Wang et al., 2012). Also of importance is the consideration of member
slenderness, as experimental work has shown the slenderness ratio to have a significant
impact on both the failure mode and degree of confinement (Visintin et al., 2015a). Although
empirically derived approaches based on the regression of the database of large-size concrete
members do exist (Wang et al., 2011b) as do approaches that consider different slenderness
ratios (Silva and Rodrigues, 2006). However, the largest diameter and slenderness ratio of
concrete members in these database are 305 mm and 5, respectively; these ranges are smaller

than a significant proportion of columns constructed in practice.

In analysis-oriented approaches, the behaviour of confined concrete is based on the
interaction between the concrete and lateral reinforcement. For analysis, a family of curves
representing the actively confined stress/strain relationships of the concrete are first
generated. Then, depending on the interaction relationship between the concrete and lateral
reinforcement, the lateral confining stress is derived either from the radial dilation (Becque
et al., 2003, Fam and Rizkalla, 2001, Jiang and Teng, 2007, Mirmiran and Shahawy, 1996,
Spoelstra and Monti, 1999, Teng et al., 2007) or from the slip along the shear failure plane
(Harmon et al., 1998, Visintin et al., 2015a), from which the axial strain and axial stress can
be derived. Each point of the loading path on the family of curves of the generated active

stress/strain can then be determined.

Although a more detailed analysis than the design oriented approach, these analysis-oriented
approaches suffer from the same limitations in that if the actively confined stress/strain
relationships, from which the passive stress/strain behaviour is derived, are not size
dependent then the passive relationship will not be size dependent. Again, this issue does
not appear to be easy to solve with current empirical data as the vast majority of actively
confined stress/strain relationships have been developed from triaxial test results on small
scale specimens with an aspect ratio of 2. There is, therefore, a need to develop approaches
to predict the passively confined stress/strain relationship of concrete that is independent of
size and that are not based on size independent stress/strain relationships. In this paper, we

seek to address this issue by developing an approach for constructing the stress/strain
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relationship for concrete passively confined by stirrups, wraps or tubes using fundamental

shear friction and partial interaction mechanics.

The shear-friction and bond-slip partial interaction mechanics that control the fundamental
mechanics of the passive confinement of concrete is first described in qualitative terms. The
fundamental mechanics is then quantified with the use of mechanics equations and material

properties. The quantitative analysis is then validated with comparison with test results.

Qualitative Description of the Confinement Mechanism

To understand the mechanisms that control the passive confinement of concrete, it is
necessary to first consider the behaviour of actively confined concrete as the passive
behaviour stems from these active properties.

Actively Confined Concrete

Consider the concrete prism in Fig. 2 that is subjected to an axial stress oax and an active
confinement pressure ocont. Prior to the formation of the sliding plane, the axial stress oax
induces a material strain in the concrete &n which is uniform throughout the concrete and

independent of the length of the prism Les.

On gradually increasing oax, eventually a sliding plane forms as in Fig. 2 at an inclination «
and slip S occurs across the sliding plane. The axial component of the slip Sax as shown in
Fig. 2 causes contraction of the prism such that the axial strain increases by an equivalent
strain of &s equal to Sax/Lder; this is an equivalent strain as it is not a material property since
it involves both local and non-local deformations and is therefore size dependent. The total
axial strain in the prism &ax is, therefore, the sum of the material component &, and the sliding
component . The lateral component of the slip Siat in Fig. 2 would be resisted by any lateral
reinforcement such as stirrups or wraps should they be present. This tensile resistance of the
lateral reinforcement is balanced by compression across the sliding plane and therefore acts

in addition to the confinement stress ocont.
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Fig. 2 Actively confined prism

As slip occurs across the sliding plane in Fig. 2, aggregate interlock causes the interface
surfaces to separate by her as shown. The magnitude of this crack width her (Haskett et al.,
2010, Haskett et al., 2011) is at least one order of magnitude smaller than either Sax or Sat,
therefore, for simplicity it will be ignored to give a slightly conservative design. The forces
induced on the sliding plane due to the axial stress oax and the confinement stress ocont Can
be resolved along the sliding plane to determine the shear stress z along the sliding plane
and the normal stress to the sliding plane on. The parameters zm, on and S are the shear-
friction material properties of the concrete as illustrated in Fig. 3 where: Vy is the shear
capacity at the onset of sliding; and = is the shear capacity for a specific combination of a
normal stress on and slip S. It can be seen that for a given normal stress across the interface

on the shear capacity m reduces with slip S.
The behaviour of the prism in Fig. 2 is shown as the active stress/strain (oax/ax) relationship

in Fig. 4 where oay is the applied axial stress and &ax is the total strain that is the material

strain &m plus the equivalent sliding strain & should it occur. For the unconfined concrete O-
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A-B, the peak strength feo at strain & occurs at the onset of sliding. For the confined concrete

such as O-C-D or O-E-F, at the onset of sliding the peak strength is fec at a strain &.

Prior to the formation of the sliding plane in Fig. 2, the axial stress/strain (oax/&ax) in Fig. 4
follows an ascending branch which depends on the active confinement pressure ocont and
which is a material property that can be determined directly from tests. Eventually a sliding
plane forms after which the axial stress reduces due to interface slip as shown by the
descending branch in Fig. 4. The descending branches in Fig. 4 can be determined from the
concrete shear-friction properties in Fig. 3. That is, for a given axial stress oax and
confinement pressure oconf in Fig. 2, the shear friction properties zmx and onx in Fig. 3 can be
determined. From these values, can be determine the interface slip Sx and from S can be
determined the equivalent strain due to slip. That is one point on the descending branch for
its construction. It is also worth noting that the peak strengths fec in Fig. 4 occur at the shear

capacities Vy in Fig. 3.

shear friction properties

—— — linear approximation

Fig. 3 Shear-Friction material properties
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Fig. 4 Theoretical stress/strain of actively confined concrete

To summarise, take for example the oax/ &ax relationship O-E-F in Fig. 4 in which the active
confinement is ocon2. At an axial stress oaxz, the material strain is em2 and the equivalent
sliding strain is &2 which is equal to Sax/Lder that is the axial component of the slip divided

by the length of the prism.

Passively Confined Concrete

Let us now add lateral reinforcement to the prism in Fig. 2 as shown in Fig. 5; this lateral
reinforcement could be internal stirrups encasing the concrete within the width Dj, or
external wraps or external tubes encasing the section of width Di. The confinement pressure
shown as oconf IS NOW NOt acting on the external surface of the prism but across the interface
of the sliding plane. As shown, the interface slip S induces a lateral expansion Sjat Which
causes the lateral or confinement reinforcement to go into tension which is shown as force
Pcont. These tensile forces in the reinforcement are balanced by internal compression across

the interface ocont.
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The lateral movement Siat in Fig. 5 can be visualised as the opening of a crack by 24 in the
lateral direction which induces a reinforcement force Pcont. The relationship between Pcont
and A (Pconi/A) where A is the half crack width in the lateral direction can be determined
from the partial-interaction mechanics of intermediate-crack (1C) debonding (Lu et al., 2005,
Seracino et al., 2007) which depends on the bond-slip property (zs/6) between the
reinforcement and the adjacent concrete (Azizinamini et al., 1993, Darwin and Graham,
1993, Yao et al., 2005). Hence, for a given slip S in Fig. 5, 4 is known, such that Pcont can
be derived from the Pcon/A properties, and further from Pcons can be derived the passive
confining pressure ocont. Consequently ocont in Fig. 4 is known, and as & is also known, it is
a simple question of finding oax at which this occurs. For example, if the confinement
pressure is oconf1 in Fig. 4 such that O-C-D is the active stress/strain. Then for a specific slip
S, &y is known and it is a question of finding oaxy at which this occurs that is where the

horizontal dimension &sy fits within O-C-D as shown.

Oax
confinement —T
reinforcement
""" I
i Di+Sy, N
Pc,o,nf4 S . ?é‘
" _Pconf _mv
D E /S =2A
Ceont=f24) o = at = g Geon=F(2A)
j Z e
. D i T
— E5
—— :E
Aleg /B - Cl i
. D, J

|
Gax

Fig. 5 Confinement force and deformation of passively confined concrete

When debonding is complete, or when there is no bond, then the strain in the reinforcement

in Fig. 5 is constant. Hence for a given strain such as & for the reinforcement D-E-F, Sjat is
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equal to &Di where D; is the length of the unbonded confinement reinforcement and the

analysis proceeds as above that is substituting & for &sy in the above example.

Construction of the passive stress/strain for a prism such as in Fig. 5 with specific dimensions,
reinforcement arrangements and material properties is illustrated in Fig. 6 where the
descending branches are shown as linear for ease of explanation. To construct the passively
confined stress/strain relationship, firstly the actively confined stress/strain relationships are
constructed as described previously. Let O-A-B represent the stress/strain when the concrete
is unconfined that is oconfo IS zero. The active confinement variation O-C-D is when the force
in the reinforcement is the 1C debonding force Pic, at a confinement reinforcement strain ac
(Yuan et al., 2001), such that the confinement is oconfic. The active confinement O-E-F is
when the reinforcement is in yield at a force Py which starts at a strain &q2 and completes
at a strain gyq. Finally O-G-H is when the reinforcement is about to fracture at a force Psand

a strain &r.

On applying the axial stress to the prism in Fig. 5, the stress/strain path follows O-A in Fig.
6 because prior to cracking the lateral reinforcement is to all intents and purposes ineffective
in providing confinement. When a sliding plane occurs at Point A, the half crack width A at
the commencement of IC debonding can be determined from partial-interaction theory
(Yuan et al., 2001) as well as the IC debonding force Pic and consequently the confinement
oconfic and the reinforcement strain at which this occurs ac. Consequently Siat = 2Aic is
known so that &sic is known. From O-C-D and &sic can be determined the level of stress osic
at which this occurs and hence Point | along the descending branch C-D is known. During
IC debonding the reinforcement force Pic and the strain in the unbonded bar &c remain
constant (Yuan et al., 2001). When IC debonding is complete, Siat equals eicDi S0 &ic2 can
be determined and consequently point J also along C-D as the confinement has not changed
that is osic2 can be determined. At the commencement of yield Pyiq and consequently occontyid
at a strain &jid2, Siat equals &1d92Di from which can be determined &syiq2 and consequently point
K which now lies along E-F where the confinement is occonfyia and the stress is osyide.
Substituting the yield strain at the end of yielding &4, gives point L. Finally, at fracture P

and the fracture strain gr can be determined point M. It is worth noting that the sliding strain
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such as &sr may be larger than OH. This simply means that the prism has already failed

before reaching this point.

\ |
€axIC  Caxdeb €ax

Fig. 6 Theoretical stress-strain of passively confined concrete

From Fig. 6, and for the specific specimen in Fig. 5, the passive confinement stress/strain is
given by O-A-1-J-K-L-M-N in Fig. 6. If yielding does not occur such as with FRP
reinforcement, then the passive stress/strain is O-A-1-J-M-N. If there is no bond, then it is
O-A-K-L-M-N and so on. The analysis can be made more accurate by using intermediate
confinement stresses such as at Pic/2 or Pyia/2. It is worth noting that the lateral expansion
of concrete will cause the confining stress between the concrete and confinement
reinforcement which may enhance the bond between them (Chen et al., 2018). This

enhancement has been ignored in this research to give a conservative solution.

Quantification of Confinement

In this section, the quantification of the stress/strain is described. The family of the active
stress/strain relationships in Fig. 6 are first derived, then the sliding strains ¢s of all the key
points in Fig. 6, after which the axial stresses os. Let us start with the ascending branch of

the active stress/strain.
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Quantification of the Ascending Branch
The ascending branches of the active stress/strain in Figs. 4 and 6 depend on the peak stress

fcc and the strain ecc at fee, which are functions of the lateral confining stress ocont. The strain

ecc at fec for confined concrete can be written as follows (Chen et al., 2013)

=8 {1+ A (Gf“’”f ﬂ (1

where A is a coefficient derived from regression analyses and can be taken as 13.9, &co is

the strain at feo for unconfined concrete and can be written as (Chen et al., 2013)
£, =174x10"° f  +2.41x107° )

where feo is in MPa. The peak stress of the confined concrete fcc can be either derived from
experimental data or shear-friction material properties. In this research, the latter approach
will be applied as follows. Here peak strain model of Chen et al. (Chen et al., 2013) is applied

as it has been made independent of specimen size during the regression of terms.

The active stress/strain behaviour is affected by the failure type as shown in Fig. 7. For a
slender column with an aspect ratio equal to or more than three, sliding mostly occurs across
a single failure plane as shown in Fig. 7(b). For a column whose slenderness is equal to two
such as standard cylinder tests, a circumferential sliding plane is the most common failure
form as shown in Fig. 7(a) and which, for a given concrete mix, occurs at higher axial loads
than those for the single sliding plane (Visintin et al., 2015a). In practical structures the
former case, that is the single sliding plane, is more common, and as the circumferential
sliding plane can give an unsafe solution as it always represents an upper bound to the
confinement, the single sliding plane, also shown in Figs. 2 and 5, will be used in this
research and in the validation of test results both the results from the single sliding plane and

circumferential sliding plane will be presented to give an indication of scatter.
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(b)

Fig. 7 Concentrically loaded concrete column failure: (a) circumferential wedge

(b) single sliding plane

From the resolution of the axial load Pax and lateral confining force Pcont in Fig. 2, the shear
stress 7 and normal stress on along and normal to the single shear sliding plane can be written
as follows (Ali et al., 2010, Hao, 2017, Visintin et al., 2015b)

rz(aax — O ot )sinaCOSa (3)
o, =0, Sina+o, Cos’ a (4)

where a is the angle of the shear failure plane as shown in Figs. 2 and 5 and as an example
can be assumed to be constant at 26° (Chen et al., 2015a).

From the shear-friction material properties in Fig. 3, the shear-stress material property zm

shown as the unbroken lines can be written in the following linear form plotted as dash-dot
lines, as follows

r. =(Ao, +B)S+Co, +D (5)
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where A, B, C and D are coefficients of the unconfined concrete strength fco. As an example,
the linear approximation of the shear-friction material properties derived by Hao (Hao, 2017)
are used as follows, although these can be replaced with any model deemed more appropriate
or accurate.

When on < ono
T, = [(0.00112 fcO —0.337)0'N -0.0007841‘0% 4—0.01521‘co +0.556]S +1.500, +0.105 fco (6)
and when ono < on < 3ono, then

7 =[(0.00112f, +0.0636)c, -0.000784f 2 —0.0620f,, + 0.556]S +0.498, +0.298 1, (7)

where, ono is the normal stress at the peak axial stress fco of unconfined concrete and is given

as
Ong = fcoSinza (8)

It is worth noting that the fundamental mechanics does not depend directly on the material
properties so any experimental values of the shear-friction material properties could have

been used.

Setting the shear stress from mechanical equilibrium z from Eqg. (3) to the shear-friction
material capacity wm from Eq. (5) and substituting on from Eq. (4) gives the variation of the

axial stress oax in Fig. 2 with the interface slip S as

| O SN COSa+ ASC, COS* ar +BS +Co,, COS* r + D

Oax

(9)

sinacosa — ASsin® a —Csin’ o
Actively confined concrete will reach the peak stress fec at the onset of sliding. Hence

substituting S = 0 into Eq. (9) gives the following peak stress fcc of confined concrete as

derived from the shear-friction material properties
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H 2
¢ _ oo sinacosa +Co,, COS" a+D

cc

- - 10
sinacosa —Csina (10)

After the quantification of the peak stress fec and strain ecc, the ascending branch can be

derived from the active stress/strain relationship (Popovics, 1973)

o o=f — fe (11)

where fec and &cc can be obtained from Egs. (10) and (1) and rc is the ductility factor which
can be expressed as

= (12)

where the concrete elastic modulus Ec is a material property and can be expressed in MPa as
(ACI 1992)

E, =3320,/f_, +6900 (13)

Thus, for a specific lateral confining stress ocont, the ascending branch of the active
stress/strain can be generated from Eq. (11). As an example and for ease of analysis, the

ascending branch of the active stress/strain can be linearized as
&€
Eax = O > (14)
fCC
where fec and &cc can be obtained from Eqgs. (10) and (1).

Quantification of the Descending Branch
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The vertical component Sax of the slip S in Fig. 2 divided by Lt is the equivalent strain due

to slip es that is

_ Scosa

g = (15)

def

Bearing in mind that there is also the additional material strain ey in Fig. 4 then the total

axial strain is given by (Visintin et al., 2015a)

Scosa

Ey=EntEs =€+

(16)

def

where, as an example, the material strain em can also be obtained from Eq. (14) which can

be substituted into Eq. (16) as follows

&, Scosa
Ey =0, —+

cc def

(17)

Substituting S from Eq. (17) into Eq. (9) gives the relationship between oax and the axial
strain gax In Fig. 4. The descending branch can now be constructed.

As an example, let us take the active stress/strain in Fig. 4 shown as O-E-G-F. First fix the
slip S at a specific value Sax> and the confinement ocont at ocont2. The axial stress oaxe can be
derived from Eq. (9) by substituting ocont2 and Saxz to give point G. The material strain em is
fixed by finding the point from the ascending branch O-E whose axial stress equals oax2. The

axial strain eax2 at point G is given by Eq. (17).

Linking points E and G in Fig. 4, that is assuming a linear falling branch EG, gives the falling

branch of the active stress/strain for the lateral confining stress ocont2 as follows

Oax " Ouo _ Eax ~Eax2 (18)
1:cc ) € T Ea2
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where oaxe, ax2, fec and ecc can be obtained from Egs. (9), (17), (10) and (1).

Quantification of the Equivalent Strain &

In order to derive the equivalent strain &s in Fig. 4 which is equal to Sax/Lder as shown, the
axial component of the slip Sax is required, which is also a function of the lateral component
of slip Siat as shown in Fig. 5. Let us start with the derivation of Sjat and consider the passive
confinement reinforcement A-B in Fig. 5 as an example, which is shown in Fig. 8 in detail.
The reinforcement is assumed to be anchored at point A due to the reinforcement angle bend

between A-C and A-B, where A-C is the reinforcement perpendicular to the plane in Fig. 5.

oE
o9 A
A~ p2 B .
3 reinforcement

N /
& Pic
A | i il

‘ 2 Lent B_LAIC,

anchored concrete N
| L
! eank crack face

Fig. 8 Bond force first reaches IC debonding resistance Pic

Bond-Slip

The confinement across the sliding plane in Figs. 5 and 8 depends on the bond-slip (z&/0)
between the confinement reinforcement A-B and the adjacent concrete which is a material
property and can be any shape. As an example, the bilinear bond-slip material properties in
Fig. 9 for plate reinforcement have the following parameters zgmax, 01 and dmax as shown

which can be written as (Seracino et al., 2007)

Toma =(0.802+0.0784, ) f.5° (19)
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0,=0 (20)

_ 0.976¢)%*
™ 0.802+0.078¢,

(21)

in which the units are in mm and N and where ¢ is the aspect ratio of the interface failure
plane as shown in Fig. 10 and which can be written as

¢ = (22)

where dr and by, are the thickness of the failure plane and the length of the failure plane
parallel to the concrete surface as shown, and which are equal to 1 mm and b + 2 mm (where

bt is the width of the reinforcement plate as shown) respectively.

TBmax

1

|

|

|

|

| ~N
O 8[ 6]'[]3}( 6
Fig. 9 Bond-slip material properties

IC debonding

When the bond stress zs in Fig. 9 is fully developed along the confinement reinforcement
length Lcont as shown in Fig. 8, the confinement force Pcont Will reach its maximum value Pic
at a crack face slip 4ic, where Pic and 4,c can be written as follows (Seracino et al., 2007,
Yuan et al., 2004, Yuan et al., 2001)

I:)IC = \/TBmax5max \/Lper ErA (23)
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A Ic = 5max (24)

where, temax and Jmax are shown in Fig. 9 which can be obtained from Eqgs. (19) and (21)
respectively, E; is the modulus of the reinforcement, and Lper and Ay are the total length of
the potential debonding failure plane and the total cross-section area of the reinforcement
respectively. As an example, the IC debonding resistance Pic for the plate reinforcement can

be written as (Seracino et al., 2007)

PIC = 085¢?25 f0%33 \é Lper Er A’ (25)

where ¢f can be obtained from Eq. (22) and Lper is shown in Fig. 10. The length of
reinforcement required to develop Pic is referred to as Lt as shown in Fig. 8, which can be

written as (Seracino et al., 2007)

Lo = % (26)

where the parameter 1 can be expressed as

Z-B max Lper (27)

5max Er Af

It is worth noting that the maximum width br in Fig. 10 of the plate reinforced specimens in
the database by Seracino et al. (Seracino et al., 2007) to derive Pic equals 100 mm. The width
bt of the plate reinforcement along the shear failure plane may be outside this range of bs
such that the reinforcement plate will be cut into plates with width b < 100 mm. The IC
debonding resistance Pic can be obtained by adding Pic of all cut plates. For instance, if Hs
in Fig. 5 is assumed to be 350 mm and the plate along the shear failure plane will be cut into
three 100-mm width plates and one 50-mm width plate. The IC debonding resistance Pic can
be derived for each of these four plates which are added to obtain P,c for reinforcement along

the whole shear failure plane.
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Fig. 11 Pcont and Sia relationship for: (a) debonding prior to fracture or yield and Ler<Lconf;

(b) fracture or yield without debonding and Lcrt<Lconf; (C) Lert>Lcont

146



The confinement behaviour is determined by the relative values between Lcrt and Leonf in Fig.
8 as well as that between the IC debonding resistance Pic, the yield capacity Pyig and the
fracture capacity Psx. In Fig. 11, the relationships between Pcont and Siat are shown. It is

necessary to derive the relationship between Pcont and Siat to quantify confinement as follows.

Debonding occurs prior to yielding or fracture when Lconf > Lert

When Pic is less than Pyig or Psr and Leont > Lert in Fig. 8, then debonding occurs prior to
yielding or fracture which is the case shown in Fig. 11(a). Debonding starts at point A in Fig.
11(a) when from Eq. (24) the crack face slip reaches 4ic = dmax Which can be obtained from
Eq. (21). Adding the crack face slips from both crack faces gives the horizontal component

of slip Siat-ic as
Stic =28 (28)

A further increase in the crack face slip 4 above 4ic will cause the bond stress distribution
to move towards the plate end until it reaches the plate end which is plotted as the dashed
line in Fig. 8. The confinement force Pcont along the unbonded reinforcement is constant at
Pic and subsequently at a strain gc; this is point B in Fig. 11(a) such that Aq¢e» equals Aic+ eic
(Lcont — Lert). Adding the crack face slips at both sides of the crack face gives the lateral

expansion Siat-deb aS
St =20 T8¢ (D —2Ly,) (29)

A further increase in 4 and consequently Siat Will cause a reduction of the confinement force
due to bond and an increase of that due to anchorage. For convenience, the confinement
force Pconf is assumed to be kept constant at Pic until Pic is fully developed at a strain eic,
which is point C in Fig. 11(a), where the crack face slip Aic2 equals eicLcont and Siat-ic2 iS

Si-ic =&ic D, (30)
Further increasing 4 and consequently Siat Will cause an increase in reinforcement strain and

consequently an increase in Pcont due to anchorage. The confinement reinforcement may
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either directly fracture at a strain ef, point D in Fig. 11(a), or yield at a strain eyiq at point E
and then fracture at point D. The crack face slip 4yiq at point E and 4+ at point D equal &yidLconf
and errLcont respectively such that the lateral component of slips Siat-yid and Siat-fr can be written

as follows

Slat—yld =&y D, (31)

SIat—fr = ‘gfrac Di (32)

It is worth noting in Fig. 11(a) that in the example and for ease of analysis it is assumed all

the relationships between Pcont and Siat are piecewise linear.

Yielding or fracture occurs prior to debonding when Lconf > Lert

When Pic is larger than Ps or Pyig and Leont > Lert, debonding does not occur as the
confinement reinforcement will either yield or fracture before the bond stress is fully
developed. However, point C in Fig. 11(b) is fixed and a linear variation O-A-B-C is
assumed, for ease of analysis, with a stiffness E1 = Pic/(24ic). Subsequently, when the

confinement reinforcement yields or fractures at points A and B, Siat can be written as

I:)yld
SIat—yIdZ =2A P_ (33)

IC

Pfr
SIat—frZ = 2A|c P_ (34)

IC

where, from Eq. (24), 4\c equals dmax Which can be obtained from Eq. (21) and Pic can be
obtained from Eq.(25). Consequently from Egs. (33) and (34), the crack face slip at both
sides of the crack face at points A and B in Fig. 11(b) can be written as Ayia2 = AicPyid/Pic
and A2 = A1cP#/Pic. The confinement reinforcement may either directly fracture at point B,
or yield at point A then complete yielding at point E and then ultimately fracture at point D.
At points E and D, Pcont, 4 and Sat are equal to that of points E and D in Fig. 11(a) such that

Siat-yid and Siat-r at these two points can be obtained from Egs. (31) and (32) respectively.
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The critical length Lcrt may be less than Leont On 0ne side but not on the other. For instance,
Lcrt may be less than the confinement reinforcement length BC in Fig. 5 and larger than the
confinement reinforcement length AB. At the commencement of debonding, yielding or
fracture, Siat-ic, Siat-yid2 OF Siat-fr2 from Egs. (28), (33) and (34) may be less than 24,c, 24yi42 or
242 because on one side the crack face slip is 4ic, 4yid2 or Aq2 but on the other side it may
be less due to the end anchor. Hence these Siat Values can be used as they give a conservative
solution. However, the lateral expansions Siat of the other points B, C, E and D in Fig. 11(a)
and points E and D in Fig. 11(b) from Egs. (29), (30), (31) and (32) still apply directly.

Yielding or fracture occurs prior to debonding when Lconf < Lert

The case where Lcont < Lert 1S Shown in Fig. 12(c) where the anchor to the reinforcement is
on the left and the crack face on the right as shown. The variations in bond stress zg and slip
o are shown in Figs. 12(a) and (b) respectively. The slip ¢ on the left is zero due to the anchor
such that the bond stress there is also zero. These variations are identical to that which occurs
in a multi-crack analysis (Muhamad et al., 2012, Oehlers et al., 2010) with a crack spacing
Sp of 2Lconf in Figs. 12(d) and (e) where by symmetry the midway slip between crack faces

equals zero. Hence the Pcont/4 relationship from a multi-crack analysis is directly applicable.

Let us first take the yield case as an example. The crack face slip 4yig3 at point A in Fig. 11(c)
when the confinement reinforcement first reaches Pyiq can be derived through the following

mechanics proposed by Sturm et al. (Sturm et al., 2018) where

P AS
Ay = —2—tanh| —° (35)
AE.A 2

where Sp is the primary crack spacing that equals 2Lcon as shown in Fig. 12(d) and which
will be quantified later, and where A is the variation in the slip parameter which can be

written as follows

A=1pk (36)
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where the prism parameter 8 and bond-slip stiffness k can be expressed as

1
13 = Lper [ﬁ—’_—
k — TBmax
&

j @37)

(38)

where Lper has already been defined through Fig. 10 and where A is the cross-section area

of concrete which interacts with the reinforcement in the tension stiffening analysis. It should

be noted that for plate reinforcement, the area of the reinforcement Ar is much smaller than

that of the concrete Ac such that 1/EcAc in Eq. (37) can be assumed to be zero (Ali et al.,

2008).

B
/ - \'\,‘
(a) A \
TBZO
/ 0 S
p — I
(b) !
18=0
_~— reinforcement
|~ anchored Peont
A [ — b
(c) ‘| concrete AL
’ L ~— crack face
conf |
Poons (d) /— reinforcement Py
— >
LA; ' concrete -A
crack face — Sy=2Lcons ‘ — crack face
o e
© | 3
f//' |
=0
< -
-0

Fig. 12 (a) to (¢) Leonr<Lert and (d) to () multi-crack analysis
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Consider an arbitrary plane crossing the sliding plane, such as A-B-C in Fig. 5 where the
crack face is x from the nearest anchor. Adding the crack face slips 4yi43 at point A in Fig.
11 (c) from both sides of the crack face gives the lateral component of slip Siat-yid3 at point A
as follows (Sturm et al., 2018)

P P 2A4(D, —
Sia_yigs = iEyij} tanh [&zxj + ﬁ tanh {%} (39)

where X is the confinement reinforcement length AB in Fig. 5. Rearranging and simplifying
Eq. (39) gives

. Py 2sinh(D;A) 40
O JE, A | cosh(DiA)+cosh| A(D, —2x) ] o

The value of Siatyigz in EQ. (40) will reach its maximum at x = Di/2 (Oldham et al., 2010)
which means the crack is in the middle of the length D; such as in the plane D-E-F in Fig. 5.
Only considering this case gives a conservative solution and simplifies the analysis. Hence

substituting x = Di/2 into Eq. (40) gives

(41)

Py { 2sinh(D,A) }

S =
lat-yld3 AE, A | cosh ( Diﬂ“) +1

which is the crack width at the onset of yielding.

After yielding at point A in Fig. 11(c), the confinement reinforcement will completely yield
at point E and then fracture at point D. Furthermore, Sia at these points are the same as that
of points E and D in Fig. 11(a) such that Siat-yis and Siat-fr can be obtained from Egs. (31) and
(32) respectively.

Similarly for the fracture case, Siat-r3 at Ps that is point B in Fig. 11(c) can be derived by
substituting P for Pyiq in Eq. (41) as follows
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(42)

P, { 2sinh(D,2) }

S =
" JE A | cosh(DA) +1

Equivalent strain s

The lateral expansions Siqt of all the key points in Fig. 6 have been quantified above and can

be employed to derive the sliding strain s as follows

S cos S
gS = a = lat (43)
Lo tana Ly

In summary, for the fracture case in Fig. 11(a), the loading path will follow O-A-I-12-J-M-N
in Fig. 6, and Sjat at the key points 1, 12, J and M can be obtained from Egs. (28), (29), (30)
and (32) respectively. For the yield case in Fig. 11(a), the loading path will follow O-A-I-I,-
J-L-M-N in Fig. 6, and Siat at the key points |, I2, J, L and M can be obtained from Egs. (28),
(29), (30), (31) and (32). For the fracture case in Fig. 11(b), debonding does not occur and
the falling branch C-D in Fig. 6 does not exist such that the loading path will follow O-A-
M-N in Fig. 6 where Siat at point M can be obtained from Eq. (34). For the yield case in Fig.
11(b) the loading path will follow O-A-K-L-M-N in Fig. 6 where Sis at points K, L and M
can be obtained from Egs. (33), (31) and (32) respectively. The case in Fig. 11(c) is similar
to the case in Fig. 11(b), the only difference is that the Siat at point M in Fig. 6 for the fracture
case and Siat at point K for the yielding case can be obtained from Egs. (42) and (41)

respectively.

Quantification of the Stress o3

The analysis of the confining stress from stirrups oconst and plates oconp are shown in Fig. 13
as these are required to derive the axial stress os in Fig. 6. Consider the rectangular-section
column reinforced by stirrups in Figs. 13(a) and (c). The crack width Sia will cause the
confinement force Ps in the stirrups. The total tensile force in the stirrup legs crossing the
crack face 2Ps: is balanced by the compressive force from concrete across the crack face Ps:.
comp @and is of equal magnitude. It is assumed that the cover concrete acts as unconfined

concrete and that the lateral confining stress oconst Will act within the stirrups that is within
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the width Diz in Fig. 13(a). As shown in Fig. 13(c), the confinement reinforcement force acts
along the region within a height equal to the stirrups spacing Ss such that the confining stress

due to stirrups is

o, . = 2F, (44)
const SS DIz

Similarly, the analysis of a plated concrete column is shown in Figs. 13(b) and (d). All the
concrete is encased, such that the confinement force Py from a plate is acting on all the
concrete within the width Di». In addition, Py is acting along the whole sliding plane that is

over a depth Hs = Di/tana as shown in Fig. 5. Hence the confining stress due to the plate is

2P, tana
Gconpl = T (45)
i—i2
. , a cover Pp1 .
Bl
H 4)
Gconst—> DCE QS' conpl > Qr':l‘
— —
Pst% Ppl%
Slat} Slatl
\ \/ | /\/ ]
\ |
Wy |
\ |
I - B |
5] —
2P5t P i ch“ 2Ppl% i :w
I - B |
Wy ||~ |
\ |
| Y | Y
(c) (d)

Fig. 13 (a) and (c) stirrup confined concrete and (b) and (d) plated concrete members

The key points in Fig. 6 can now be fixed by fitting the horizontal dimension that is the

sliding strain s within the specific ascending branch and descending branch already derived.
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For instance, fitting esic between ascending branch O-C and descending branch C-D in Fig.
6 gives the point I.

The following axial stress os can be derived by substituting S = Siat/sina and lateral confining
stress acont from EQ. (44) or (45) into Eq. (9)

G SiN@COSa+| A2 1 C | cos’a+B—2 +D
sina sina (46)

Og =

] ] S
sinacosa —sin*a| At 4+ C
sina

Substituting Siat for all the key points in Fig. 6 gives the axial stress os of these points, which
can be substituted into Eq. (43) to derive sliding strain s. Adding the addition material strain

from em from Eq. (14) gives the total axial strain eax as follows

S
£, =0 Loy D (47)
f, tanal,

cc

where fec and ecc can be obtained from Egs. (10) and (1). After deriving the axial stress and

strain of all the key points, linking adjacent key points gives the passive stress/strain.

The flowchart of the whole procedure is shown in Fig. 14 and will be described by taking
stage I-12 in Fig. 6 as an example, where debonding starts at point | and is completed at 1> as
illustrated in Fig. 8; this is the path A-B in Fig. 11(a). (1) First derive the lateral confining
stress aconfic at Pic from Eq. (44) or (45). (2) Substitute oconfic into Egs. (10) and (1) to derive
fec and ecc. (3) Substitute oconfic as well as Siatic and Siat-deb from Egs. (28) and (29)
respectively into Eq. (46) gives the axial stress osic and osdeb. (4) Substitute fec, &cc, Siat-ic and
Siat-deb as Well as the derived axial stress osic and osgen Into Eq. (47) gives the axial strain eaxic
and eaxdeb. (5) Linking two points (axic, osic) and (eaxdeb, osdeb) gives the passive stress/strain

I-15 as follows

Oun " Osc _ _Eax~%anc

(48)
Osgeb ~Osic €axdeb ~ Caxic
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Quantify Loyt (Eq. 26), Leonfs Pylds Pgand

Pic (Eq. 23)
\
Lert <Leonf Lert <Lconf
Py14 > Pic Ps > P P14 <P Pr. <P Lert > Leonf
yld > P1C Py > PIC yld <P1C Pfr <PIC
casel case2 case3
Y Y A

Quantify S4¢ for each key

points in Fig. 11(a) (Eqs.
28~32)

Quantify S4¢ for each key

points in Fig. 11(b) (Egs.
31~34)

Quantify Sy4¢ for each key

points in Fig. 11(c) (Eqs 31,
32,41, 42)

2V

Quantify 6oopf for each key
points (Egs. 44, 45)

Y

Quantify axial stress and strain for all key points

(Eqs. 46, 47)

Y

Linking these key points gives the passive stress/strain

Fig. 14 Flowchart describing the generation of the passive stress/strain

Validation of Confinement Model

To validate the approach consider the FRP wrapped rectangular concrete prisms that were
tested under concentric load by Abbasnia and Ziaadiny (2015), Carrazedo and de Hanai
(2016), Lam and Teng (2003), Wang et al. (2012), Wang et al. (2011a) and Wu and Wei
(2010) in Fig. 15, Fig. 16, Fig. 17, Fig. 18 and Fig. 19, and the rectangular prisms confined
by stirrups shown in Fig. 20 (Basset and Uzumeri, 1986, Li et al., 2001). The results of these
tests have been simulated using both the single sliding plane and the circumferential wedge
and are compared with approaches to predict FRP (Wei and Wu, 2012, Youssef et al., 2007)
and stirrup (Mander et al., 1988) confined stress/strain relationships. Full details of the
simulated specimens are given in Appendix 2 but importantly the validation covers a range
of specimen slenderness. It is worth noting that the gauge length over which the strains were
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measured was referred to as Lg which is, therefore, substituted for Lqer in Eq. (47) to derive

the stress/strain.

Derivation of Stress/Strain from Theoretical Approach

As an example, Fig. 15 compares the experimentally derived passive stress/strain
relationship for specimen G2L1 with the proposed theoretical approach. Let us consider the

steps in the theoretical analysis:

1. From Eq. (26) Lcrt equals 44.3 mm, and Di/2 equals 62.5 mm. From Eq. (25), Pic
equals 41790 N and at Pic the confinement reinforcement strain eic equals
0.00400. The fracture capacity of the plate reinforcement along the shear failure
plane Pt equals fptrrrHsi = 185800 N, where the FRP fracture stress f, equals 4340
MPa, the FRP thickness trre equals 0.167 mm and the height of the plate
reinforcement along the shear failure plane Hs in Fig. 5 equals 256.3 mm. AS Lert
< Di/2 and Pic < Py, then the variation in Fig. 11(a) applies so the loading path
will follow O-A-I-12-J-M in Fig. 6 as shown in Fig. 15.

2. Let us start with the active stress/strain O-C-I-12-J for oconfic as shown in Figs. 6
and 15. Substituting Pic into Eq. (45) gives the lateral confining stress at Pic oconfic
= 2.61 MPa, which can be substituted into Egs. (1) and (10) to derive &cc.c =
0.00609 and fcc-c = 31.4 MPa at point C. The crack width Siat-ic, Siat-deb and Siat-ic2
at points 1, I and J can be obtained by substituting 4ic = 0.107 mm from Eqgs. (21)
and (24) as well as ¢ic = 0.00400, Di = 125 mm and Lcrt = 44.3 mm into Egs. (28),
(29) and (30). Consequently Siat-ic, Siat-deb and Siat-ic2 equal 0.214, 0.359 and 0.500
mm respectively which, as well as &cc.c and fcc-c, can be substituted into Egs. (46)
and (47) to derive the axial stresses os as 30.2 MPa, 29.4 MPa and 28.5 MPa and
the axial strains ¢ax as 0.00937,0.0116 and 0.0138 at points I, 1> and J respectively.
Linking points O, C, I, I> and J gives the active stress/strain O-C-1-12-J for oconfic.

3. Then comes the active stress/strain O-G-M for ocontir as Shown in Figs. 6 and 15.
Let us start with the confinement reinforcement force at fracture. In the
experiments (Wang et al., 2012, Wang et al., 2011a), concrete prisms will fail
before the confinement reinforcement strain reaches material rupture strain ef =

0.0178 due to stress concentraction at the section corner. Consequently at failure
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4.

the average lateral fracture strain of reinforcement recorded in the experiments
efr2 = 0.00459 will be substituted for &sr in EQ. (32) to obtain Siat-fro = 0.574. AS &fr2
is larger than ic = 0.00400 at point C in Fig. 11(a), the confinement reinforcement
has completely debonded. Hence the confinement reinforcement stress o2 equals
Errrerr = 1122 MPa where Erre is the elastic modulus of FRP and subsequently
confinement force along the shear failure plane Psr2 equals osrotrrrHsi = 48040 N.
Substituting P2 into Eq. (45) gives the lateral confining stress at Psr2 aconir = 3.00
MPa, which can be substituted into Egs. (1) and (10) to derive &cc-c = 0.00663 and
fee-c = 32.4 MPa at point G in Figs. 6 and 15. Substituting Siat-fr2, &cc-c and fec-c
into Egs. (46) and (47) gives the axial stress os = 29.3 MPa and the axial strain gax
= 0.0154 respectively at point M. Linking points O, G and M gives the active
stress/strain O-G-M for oconfir.

At point A in Figs. 6 and 15, the axial stress fco equals 24.4 MPa and the axial
strain o = 0.00245 can be obtained from Eq. (2). Linking points O-A-I-1-J-M

gives the passive stress-strain.

50r

451

98]
(]

axial stress(MPa)
— (3] [\ (O8]
wh <o W ()

—
S

- active
——— theoretical

experimental

L L L
0 0.005 0.01 0.015 0.02 0.025 0.03
strain

Fig. 15 Theoretical analysis of specimen G2L1
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Fig. 16 Validation with FRP reinforced specimens (aspect ratio > 3): (a) G1L1; (b) G1L2;
(c) G2L1; (d) G2L2; (e) G3L1; (f) G3L2;

With regard to the stirrups reinforced concrete prisms in Fig. 20, the case in Fig. 11(c) applies
as Lert > Leont. The passive stress/strain will follow O-A-K-F in Fig. 6 and is described as
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follows. Sliding occurs at point A as shown and then the confinement reinforcement yields
at point K. The strain hardening effect of stirrups is ignored for stirrups reinforced concrete
prisms to achieve a conservative solution. Hence, after yielding the confinement
reinforcement force Pcont IS assumed to be constant at Py and subsequently the confinement
oconfyld aNd consequently the falling branch K-F. This is also shown as O-A-K-F in Fig. 20(a)

as an example.
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Ultimate Strain of FRP Reinforced Prisms

It has been described in the last section that the average lateral fracture strain of
reinforcement recorded in the experiments efr» can be substituted for e in Eq. (32) to quantify
the axial stress and strain at fracture. This fracture point is plotted as left-pointing triangle as
shown in Figs. 16 to 19 such as point A and A’ for single-sliding and circumferential failure
type respectively as shown in Fig. 16(f). However, the theoretical axial strain at fracture gaxir
is normally larger than the ultimate strain &c, recorded experimentally. The theoretical axial
stress corresponding to the experimentally measured rupture strain is plotted as right-
pointing triangle as shown in Figs. 16 to 19 and this is plotted as points B and B’ in Fig. 16(f)
for single-sliding and circumferential failure type respectively as an example. The difference
in result arises because the average lateral fracture strain &fr2 at facture overestimates the
practical rupture strain of the confinement reinforcement which is also influenced by stress

concentrations (Wang et al., 2012) and this requires further research.

Validation of Theoretical Stress/Strain Approach

In this paper, the fundamental mechanics of the single-sliding failure type in Fig. 7(b) has
been described because, as explained previously, this is the mode by which most full size
prisms will fail. In this section, the other circumferential failure type in Fig. 7(a) is described
as many lab scale test specimens can often fail in this mode (Wu et al., 2009). This
circumferential failure will change the resultant shear stress z and normal stress on from Eqgs.
(3) and (4) to zir and oncir as follows (Ali et al., 2010, Chen et al., 2015a, Chen et al., 2015b)

T, =((7ax—20'conf )SinaCOSa (49

CIr
Oper =0, SIN° @ +20,, COS° a (50)

Setting the circumferential-wedge failure plane shear stress zir from Eq. (49) to the shear-

friction material capacity =m from Eq. (5) and substituting oncir from Eq. (50) as well as S =
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Siat/sina, which is similar to the way to derive os in Eq. (46), gives the variation of the axial

stress oscir as follows

20, SIN aCOSCY-F(A_Sm-FC)zUconf cos® o+ B_Si+ D
sina sina (51)

Ogeir =

] ] S
sinacosa —sin‘a| A——2 4 C
sina

The other procedures are the same as that of the single-sliding failure. The passive
stress/strains of the single-sliding failure and circumferential failure gives a lower bound and
upper bound respectively and are compared with the experimental data in Figs. 16 to 19 with
good correlation both in magnitude and shape. The accuracy of the simulation can be
improved by developing more accurate material properties but the fundamental mechanics
always applies. For concrete prisms reinforced by high level of confinement reinforcement
such as that shown in Fig. 18(b), the high lateral confining stress may cause the stress
concentration at the section corner which may cause premature failure (Tastani et al., 2013)

and this requires further research in the future.

It is worth noting that for specimens whose aspect ratio is less than three, circumferential
failure is more likely to occur and as shown in Fig. 19, the proposed approach (by assuming
this failure type) gives good correlation with experimental results. Furthermore, for FRP
wrapped specimens with Di < 300 mm such as specimens in Fig. 17(a), (b) and (c), the
empirical approach proposed by Wei and Wu (Wei and Wu, 2012) can predict the passive
stress/strain well; however, for large specimen with Di > 300 mm such as specimens in Figs.
17(b), (d), (e) and (f), proposed approach gives an improved prediction. The reason is that

empirical approach is normally derived from small-size specimens (Di < 300 mm).

Conclusions

In this paper a theoretical model based on partial interaction shear-friction mechanics of
concrete and bond-slip of reinforcement (internal or external) to concrete through
intermediate-crack debonding have been used to quantify both the stress/strain of actively
confined concrete and, consequently, the stress/strain of passively confined concrete. The

theoretically derived passive stress/strain has been compared with FRP wrapped and stirrups
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reinforced specimens with good correlation both in their shape and magnitude. It has been
shown that the single sliding plane failure mode should be used in design as it is more likely
to occur in full size specimens. The fundamental mechanics has been described specifically
for members with rectangular RC sections although the mechanics applies to RC sections
with any shape, size and configuration. This procedure can be used to derive the passive
stress/strain of concrete for a particular member which can then be used to derive its strength
and ductility. This new mechanics approach which is based only on fundamental material
properties, provides structural engineers with the tools to incorporate the benefits of concrete

confinement in their designs.

Appendix 1. Notation

The following symbols are used in this paper:
Ac =  cross-section area of concrete which interacts with reinforcement

in tension stiffening analysis

Ar = total cross-section area of reinforcement in tension stiffening
analysis
bf = width of reinforcement plate
b, = length of failure plane parallel to concrete surface
c = concrete cover
Di = height within confined area of rectangular prism
Di = width within confined area of rectangular prism
Do = height within the whole area including concrete cover of

rectangular prism
Do = width within the whole area including concrete cover of

rectangular prism

dr = thickness of failure plane
di = longitudinal reinforcement diameter
Ec = elastic modulus of concrete
Errr =  elastic modulus of FRP
Er = elastic modulus of reinforcement plate
E:1 =  stiffness of Peont/Siat relationship that is equal to Pic/(24ic)
E> = stiffness of Pconf/Siat relationship from multi-crack analysis
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fo =  peak strength of unconfined concrete from cylinder tests

fe =  peak strength of confined concrete from cylinder tests
f, =  fracture stress of FRP
fya =  yield capacity of longitudinal reinforcement
fys =  yield capacity of stirrups
hee =  separation of shear-sliding plane interface
Hs = height of sliding plane
k = bond-slip stiffness in tension stiffening analysis
Lot =  length of confinement reinforcement
Let = critical length which is the minimum length required to achieve

the maximum debond force

Leet =  height of specimen
Lg = gauge length
Ler =  total length of potential debonding failure plane of reinforcement

in tension stiffening analysis

Pax =  axial load applied to concrete column
Pcont = confinement force from confinement reinforcement
Pexy =  maximum axial load from experiments
Py =  fracture capacity of confinement reinforcement
P2 = confinement force at &2
Pic = debond force of confinement reinforcement
Po = confinement force from plate reinforcement along the shear
failure plane
P« = confinement force from one leg of stirrups
Pstcomp =  compressive force from concrete across the crack face balanced
by Pst or Py
Pya =  vyield capacity of confinement reinforcement
rc = ductility factor of confined concrete
S = slipdisplacement
Sax = vertical component of slip S
St = lateral component of slip S
Siatden = lateral component of slip when debond developed to plate ends
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Slat-fr

S lat-fr2

S lat-fr3

Slat-Ic

Slat-1c2

Slat-yld

Stat-yld2

Slat-ylds

Sp
Ss
S#
trrP
'

a

B
4

Adeb

Asr

Afr2

Aic

lateral component of slip when confinement reinforcement starts
to fracture when Lcrt<Lcont and Pic<Psr

lateral component of slip when confinement reinforcement starts
to fracture when Lert<Lcont and Pic>Psr

lateral component of slip when confinement reinforcement starts
to fracture when Lecr>Lcont

lateral component of slip at commencement of IC debonding
lateral component of slip when confinement reinforcement is fully
debonded

lateral component of slip when reinforcement starts to yield when
Lert<Lcont and Pic<Pyiq

lateral component of slip when reinforcement starts to yield when
Lert<Lcont and Pic>Pyig

lateral component of slip when confinement reinforcement starts
to yield when Lert>Lcont

primary crack spacing

stirrups spacing

specimen reference number

FRP thickness

shear stress at the commencement of crack widening

failure angle of concrete column

prism parameter in tension stiffening analysis

slip of confinement reinforcement at crack face

slip of confinement reinforcement at crack face when bond stress
develops to plate end

slip of confinement reinforcement at crack face when
confinement reinforcement starts to fracture when Lcr<Lcont and
Pic<Ps

slip of confinement reinforcement at crack face when
confinement reinforcement starts to fracture when Lcr<Lcont and
Pic>Pir

slip of confinement reinforcement at crack face when debond
starts
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Mc2 = slip of confinement reinforcement at crack face when
confinement reinforcement is fully debonded

Agya = slip of confinement reinforcement at crack face when
confinement reinforcement starts to yield when Lcr<Lcont and
Pic<Pyid

Ayd2 = slip of confinement reinforcement at crack face when
confinement reinforcement starts to yield when Lcr<Lcont and
Pic>Pyid

Aygs = slip of confinement reinforcement at crack face when

confinement reinforcement starts to yield when Lcrt>Lcont

o = slip between reinforcement and adjacent concrete
01 = 0 at TBmax
omax = o0 when zg reduces to zero
eax =  axial strain when axial stress is equal to oax
caxdeb =  axial strain at Sgeb
caxr =  axial strain at fracture
eaxic =  axial strain at Sic
g&o =  strain at fco for unconfined concrete
eec =  strain at fec for confined concrete
eu =  ultimate strain for confined concrete
er =  confinement reinforcement strain at Psr
er2 =  average lateral fracture strain of reinforcement recorded in the

experiments

ec = confinement reinforcement strain at Pic
em =  material strain of concrete
es = sliding strain caused by slip S
esdeb =  sliding strain at Sjat-deb
eser = sliding strain at Sjat-fr
esic = sliding strain at Sjat.ic
esicc = sliding strain at Sat-ic2
esyid = sliding strain at Sjat.yid
esyiiz = sliding strain at Siat-yid2
eyd =  confinement reinforcement strain at Syat.yid
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eyid2 = confinement reinforcement strain at Siat.yid2
g =  confinement reinforcement strain when debonding is complete or

when there is no bond

A = variation in slip parameter
oax =  axial stress applied to concrete
oaxfr =  axial stress at fracture
ocont = lateral confining stress applied on concrete
oconir = lateral confining stress from confinement reinforcement at P
oconfic = lateral confining stress from confinement reinforcement at Pic
oconfyld = lateral confining stress from confinement reinforcement at Pyiq
oconfo = lateral confining stress of unconfined concrete and equals zero
oconst = lateral confining stress of from stirrups
oconpt = lateral confining stress of from plate reinforcement
o2 =  confinement reinforcement stress at efr2
on =  confining stress normal to single-sliding plane
oneir =  confining stress normal to circumferential-sliding plane
ono =  normal stress at fco for unconfined concrete
os = axial stress of passively confined concrete by assuming single-
sliding failure
oscir =  axial stress of passively confined concrete by assuming

circumferential failure

osdeb =  axial stress at Sat-deb
osir =  axial stress at Siatfr
osic =  axial stress at Sjat-ic
osicc =  axial stress at Sjat-ic2
osyid =  axial stress at Siatyid
osyd2 =  axial stress at Sjatyig2
r =  shear stress along single-sliding plane
ir =  shear stress along circumferential-sliding plane
8 =  bond stress existing between reinforcement and concrete
TBmax =  Mmaximum g
mm =  shear-friction material capacity
@of =  aspect ratio of interface failure plane
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Appendix 2. Specimens Details

Table 2.1 FRP wrapped specimens

Laef Di Diz feo trre L Efrp fo
S# Ref. &fr2
(mm) | (mm) | (mm) | (MPa) | (mm) (mm) (MPa) | (MPa)

GIL1 | Wangetal 2012 | 300 | 100 | 100 | 24.4 | 0167 | 100 | 244000 | 4340 | 0.00973
GIL2 | Wangetal 2012 | 600 | 200 | 200 | 24.4 |0334| 200 |244000 | 4340 | 0.00897
G2L1 | Wangetal 2012 | 375 | 125 | 125 | 24.4 | 0167 | 125 | 244000 | 4340 | 0.00459
G2L2 | Wangetal 2012 | 750 | 250 | 250 | 24.4 | 0.334| 250 | 244000 | 4340 | 0.00927
G3L1 | Wangetal 2012 | 450 | 150 | 150 | 24.4 | 0.167 | 150 | 244000 | 4340 | 0.01109
G3L2 | Wangetal 2012 | 900 | 300 | 300 | 24.4 |0334| 300 |244000 | 4340 | 0.00776
G4L2 | Wangetal 2012 | 525 | 175 | 175 | 244 | 0334 | 175 | 244000 | 4340 | 0.00897
G4L4 | Wangetal 2012 | 1050 | 350 | 350 | 24.4 | 0.668 | 350 | 244000 | 4340 | 0.00832
G5L2 | Wangetal 2012 | 600 | 200 | 200 | 24.4 |0334| 200 |244000 | 4340 | 0.00897
G5L4 | Wangetal 2012 | 1200 | 400 | 400 | 24.4 | 0668 | 400 | 244000 | 4340 | 0.00542
SIHOLIM | Wangetal 2011 | 915 | 305 | 305 | 255 |0.167| 305 | 240000 | 4340 | 0.00843
SIHOL2M | Wangetal 2011 | 915 | 305 | 305 | 255 |0.334| 305 | 240000 | 4340 | 0.00951
S2HOLIM | Wangetal 2011 | 612 | 204 | 204 | 255 |0.167| 204 | 240000 | 4340 | 0.00986
S2HOL2M | Wangetal 2011 | 612 | 204 | 204 | 255 |0.334| 204 | 240000 | 4340 | 0.01212
s10r1 Ca”azzgfg etal | 450 | 150 | 150 | 425 | 017 450 | 209000 | 2720 | 0.00973
S20r1 Ca”azzgfg etal | 450 | 150 | 150 | 425 | 0.34 450 | 209000 | 2720 | 0.00973
X10r1 Ca”azzgfg etal | 450 | 150 | 150 | 311 | 017 450 | 209000 | 2720 | 0.00973
X20r3 Ca”azzgfg etal | 450 | 150 | 150 | 311 | 047 | 450 | 209000 | 2720 | 0.00973
SIR25 | Lametal2003 | 600 | 150 | 150 | 33.7 |0.165| 600 | 257000 | 4519 | 0.0105
S2R25 | Lametal2003 | 600 | 150 | 150 | 337 | 0.33 | 600 | 257000 | 4519 | 0.0108
15-1 Wuetal 2010 | 300 | 150 | 150 | 34.1 | 0.167 | 200 | 230000 | 3400 | 0.0207
1R-125 | Wuetal2010 | 300 | 150 | 188 | 33.6 | 0.167| 200 | 230000 | 3400 | 0.0214
A2 Abbzs(;‘l'g etal 300 | 150 | 150 | 32.0 | 0176 | 200 | 241000 | 39435 | 0.0091
A3 Abbzs(;‘l'g etal 300 | 150 | 150 | 34.0 | 0176 | 200 | 241000 | 39435 | 0.0109
A6 Abbzs(;‘l'g etal 300 | 120 | 180 | 32.0 | 0176 | 200 | 241000 | 39435 | 0.0102
A7 Abbazsg‘l'g etal | a0 | 120 | 180 | 320 | 0476| 200 | 241000 | 39435 | 0.0099

where S# is the specimen reference number.
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Table 2.2 stirrups reinforced specimens

S Ref. L et Do Do feo di Lg fy-1 ds Ss fy-s
(mm) (mm) (mm) | (MPa) | (mm) (mm) | (MPa) | (mm) (mm) | (MPa)
1A | Lietal2001 | 720 | 240 | 240 | 60.0 | 12.0 | 300 | 443 | 6.00 | 20.0 | 445
1B | Lietal2001 | 720 | 240 | 240 | 72.3 | 12.0 | 300 | 443 | 6.00 | 20.0 | 445
4A | Lietal2001 | 720 | 240 | 240 | 60.0 | 12.0 | 300 | 443 | 6.00 | 35.0 | 445
4B | Lietal 2001 | 720 | 240 | 240 | 723 | 12.0 | 300 | 443 | 6.00 | 35.0 | 445
7A | Lietal2001 | 720 | 240 | 240 | 60.0 | 12.0 | 300 | 443 | 6.00 | 50.0 | 445
10A | Lietal2001 | 720 | 240 | 240 | 60.0 | 12.0 | 300 | 443 | 6.00 | 65.0 | 445
10 Basfgggt al | 1956 | 305 | 305 | 340 | 29.9 | 610 | 491 | 7.94 | 50.8 | 533
Basset et al
15 1986 1956 | 305 | 305 | 37.2 | 195 | 610 | 418 | 7.94 | 50.8 | 533

where Dy is the height within the whole area including concrete cover of rectangular prism,

Do is the width within the whole area including concrete cover of rectangular prism, c is the

concrete cover, d; is the longitudinal reinforcement diameter, ds is the stirrups diameter, fy.|

is the yield capacity of longitudinal reinforcement and fys is the yield capacity of stirrups.
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Simulating the Passive Confinement of Circular Concrete Cylinders

Allowing for Size Effect

X. Hao?, P. Visintin? and D. J. Oehlers®

Abstract

There are innumerable tests on small stocky circular cylinders with either internal passive
encasement of the concrete with circular stirrups or spirals, or external passive encasement
through fibre reinforced polymer (FRP) wrapping or through the use of FRP tubes or steel
tubes. These tests have shown that passive confinement can increase the strength but, in
particular, can substantially increase the ductility of concrete cylinders. Because of these
important benefits, the effect of passive confinement on the concrete stress/strain in a
particular cylinder section is invariably derived from tests such that substantial member
testing is required. In this paper, it is shown how the passive stress/strain of the concrete for
a particular circular member can theoretically be determined directly from their partial-
interaction shear-friction and partial-interaction bond-slip material properties for any
reinforcement arrangement and geometry of the circular cylinder. This procedure provides
the tools for designing for the benefits of passive confinement directly without the need for

member testing.

Keywords: concrete; concrete confinement; passive confinement; partial interaction; RC

members; circular cylinders; shear sliding.

Introduction

The improvement in the concrete ductility of passively constrained RC cylinders through the
use of stirrups [1, 2] or wraps [3-6] is well documented. Most current approaches for
predicting the stress/strain of passively confined concrete cylinders are either design-

oriented or analysis-oriented.

The former, that is the design-oriented approaches, treat the passively confined concrete
simply as a new material in which the key properties of the passive stress/strain (o/¢) are the:

peak Stress omax; Strain &ccmax at omax; Ultimate stress fcy; and the ultimate strain ecy. These
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properties are derived empirically and separately for rectangular and circular cylinders [1, 7,
8]. For instance, Mander et al. [2] proposed a semi-empirical approach to quantify the peak
stress of concrete cylinders reinforced by stirrups that assumed that the rectangular or
circular sections were not fully confined as shown in Figs. 1 (a), (b). An arching-effect
coefficient ke was derived for rectangular or circular sections respectively and employed to
reduce the lateral confining stress from the confinement reinforcement and subsequently the
reduction of the peak strength and ductility. This approach was then extended to FRP
wrapped concrete cylinders where it was assumed that circular cylinders reinforced by tubes
are fully confined as in Fig. 1(c), whereas, rectangular cylinders are ineffectively confined
as in Fig. 1(d) [8-12] such that the arching-effect coefficient ke was employed.

The main benefit of these design-oriented approaches is their simplicity in defining the key
points of the passive stress/strain. They are accurate within the bounds from which they were
derived but should not be extrapolated beyond the ranges of their regressed databases which
may severely limit their application to full size structures. For example, research has shown
that the behaviour of passively confined concrete members is significantly dependent on size
[13-15]. As most current design-oriented approaches are derived from databases where the
specimens are small, having a diameter normally less than 200 mm [8, 16], application of
these design-oriented approaches to much larger practical concrete members may limit their
accuracy. Also of importance is the effect of the slenderness ratio as this affects the failure
mode and strength significantly [17]. The aspect ratio of most specimens in databases [8, 16]
equals two which is generally much less than that which occurs in practical concrete
members. Empirically derived approaches based on the regression of databases of specimens
with large sizes [18] or slenderness ratios [19] have been proposed but the derived
approaches do not incorporate both the effects of size and slenderness ratio and the databases

are small.

With regard to analysis-oriented models, the passive stress/strain is derived from the
interaction between the concrete and lateral reinforcement. The general procedure is
summarised as follows. First a family of curves of the active stress/strain are generated and,
similarly to the cases in Fig. 1, the arching-effect coefficient ke is employed. Then based on
the interaction between the concrete and lateral confinement reinforcement, the lateral

confining stress can be determined based either on the radial dilation [20-25] or the slip along

179



the shear failure plane [26]. From which, the axial stress and axial strain can be derived such
that the loading path on the family of curves of the active stress/strain can be derived.
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Fig. 1 Effectiveness of concrete confinement: (a) stirrup reinforced circular section (b)
stirrup reinforced rectangular section (c) tube reinforced circular section (d) tube

reinforced rectangular section
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Although analysis-oriented approaches are more detailed than design-oriented, these
analysis-oriented approaches have the same limitation. That is, these passive stress/strains
are derived from active stress/strains that may not incorporate a size effect, such that the
derived passive stress/strain is not size dependent. Hence, an approach that is independent
of size and is not based on size independent stress/strain relationships is required. In this
paper, a fundamental partial-interaction mechanics approach that quantifies the o/e for
passively restrained circular concrete cylinders is described. The approach uses the partial-
interaction shear-friction [27-31] and bond-slip [32-34] material properties to quantify the
passive a/e of the concrete for design; this approach only requires the material properties and

does not rely on member testing.

The fundamental mechanics for quantifying the passive concrete o/¢ of passively restrained
rectangular sections has been described elsewhere [35] where the results gave good
correlation with tests. As the resolution of the passive restraints in circular cylinders differs
markedly from those in rectangular prisms, this paper describes these differences in detail,
and derives the fundamental mechanics allowing for these differences. The passive
confinement pressure throughout the circular section is first quantified. This is followed by
a qualitative description of the passive confinement mechanism in circular cylinders. Having
described the fundamental mechanics, closed form solutions are then derived for the concrete
passive a/e and a parametric study is conducted to highlight the main parameters that control
the ductility of concrete through lateral passive confinement. This is then followed by the

comparison between the published test data and the theoretical approaches.

Confinement Pressure in Circular Sections

Consider the tube infilled with concrete in Fig. 2 that has the cross-section in Fig. 3(a). The
sliding plane in Fig. 2 has formed in the concrete at an angle a and the interface slip across
the sliding plane is S. When the cylinder is subjected to active hydraulic pressure oconf, Which
is shown on the left and right hand sides of Fig. 2, then this active pressure induces an
interface pressure across the sliding plane which is shown as ocont along the sliding plane.
Similarly, slip across the sliding plane interface would cause any lateral reinforcement,

which in this case is the tube, to go into tension through its passive resistance to sliding; this
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tension is balanced by compression ocont across the sliding plane. Hence the interface
pressure acont aCross the sliding plane can be induced by either passive resistance of the lateral
reinforcement or active hydraulic pressure. It is this interface confinement pressure across
the sliding plane oconf that needs to be determined as it controls the strength and ductility of

the sliding plane through its shear friction properties.
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Fig. 2 Prism subjected to active hydraulic pressure ocont

The confinement mechanism in circular sections is compared with that in rectangular
sections in Fig. 3. Let us first consider the square section in Fig. 3(b) of width and depth Di
[35] which could be a section of the cylinder in Fig. 2. Section B-B; in Fig. 2 is taken where
the sliding plane is at the centre of the section. This is shown in Fig. 3(b) with the sliding
plane at B-B; and where the lateral component of the interface slip S is Siat. This lateral
movement of the sliding plane Siat is resisted by lateral tension in the tube Pcont Which induces
a lateral compressive force across the sliding plane of equal magnitude from which the
confinement stress acont Can be derived. When the sliding plane is at A-Aq in Fig. 2, then the
sliding plane is at 0.75D; in Fig. 3(b). The slip component Sia; is the same as in the previous
example so that Pcont is the same such that oconf IS the same. Hence the confinement stress
ocont aCross the sliding plane in Fig. 2 is constant for a rectangular section as the confinement

force Pcont and the lateral movement Sy is constant.
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Fig. 3 Confinement mechanism in circular and rectangular sections

The above description of confinement for a rectangular section is applied to the confinement
mechanism in a circular section in Fig. 3(a). At B-Bz in Fig. 2, the analysis for the rectangular
section in Fig. 3(b) is exactly the same as in the circular section in Fig. 3(a): Pcont and Sjat are
the same and the width over which Pconr acts that is the depth Dg; is the same ensuring ocont
is the same. However at A-A1 in Fig. 2: the lateral component of Pcont in Figs. 3(a) and 3(b)
are not the same; the concrete compression zone is not the same being Dci in the rectangular
section and <Dc; in the circular section; and the tangential component of Siat, Shown as S iat
and which induces the forces in the tube are not the same. Let us now consider the effect of

these differences.

Section A-A: in Fig. 2 is shown in Fig. 4(a) where the sliding plane is to the left. The
circumferential force in the tube, which is the confining reinforcement, is shown as Pconf and
being a circumferential force it is tangential to the tube. Let us assume that the thickness of
the tube t is much less than the internal diameter D¢ and the intercept of the sliding plane
with the tube occurs at @ as shown. From the geometry in Fig. 4(a), it can be seen that the
component of the circumferential force that is perpendicular to the sliding plane is PcontSing
as also shown in Fig. 4(b). Hence the total tensile force is 2Pconsing and this is balanced by

a compressive force across the sliding plane of width 2rsing and of equal magnitude. If Peont
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is the force per unit depth of tube that is the depth into the paper in Fig. 3, then the
confinement pressure is given by

2P, sind P

conf

Gcon - . - 1
" 2rsing r 1)

which is the confinement pressure in Fig. 2 due to the passive lateral restraint. It can be seen
in Eq. (1) that the confinement pressure is independent of @ that is it is independent of the
level of the sliding plane in Fig. 2 for a specific confinement force Pconr. This is very
important in deriving mechanics solutions as it means that the confinement pressure can be
assumed to be constant along the sliding plane when Pcont is constant.

(b) Pc:lfsine

y b4
rsinf

Seonf >
e _sliding
plane

v v v

]
P onesing

Fig. 4 Confinement force in a circular cylinder

From the above analysis, it can be seen that when Pcont is the same in the rectangular section
in Fig. 3(b) and in the circular section in Fig. 3(a), then the confinement stress is the same in

both cases. The confinement force Pcont could be limited by intermediate crack (IC)
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debonding Pic [36-38], yield of the tube Pyiq should the material be ductile or fracture of the
tube Ps. The IC debonding resistance Pic depends on the bond-slip material characteristics
between the lateral reinforcement and the adjacent concrete. Hence Pic in the rectangular
section in Fig. 3(b) will be the same as in the circular section in Fig. 3(a). Hence when Pcont

equals Pic then acont Will be the same in both the circular and rectangular sections.

The IC debonding resistance Pic depends on the tangential component of S that is S ’ja for
the circular section in Fig. 3(a). For the rectangular section in Fig. 3(b) S"ia equals Sjat. Hence
for a specific interface slip S in Figs. 3(a) and (b) S’iat is constant in the rectangular section
in Fig. 3(b) but varies in the circular section in Fig. 3(a). Consequently both systems in Fig.
3 have the same value of Pic but the onset of Pic, that is the interface slip at which they occur,
varies. For a given Sia in Fig. 3, S’ Will be larger in the circular section than in the
rectangular section except when the sliding plane is at the centre in which case they are equal.
Hence Pic will occur earlier in the circular section than in the rectangular section that is the
build up of confinement stress in the circular section will be more rapid in the circular section
than in the rectangular section but their peak values will be the same. Hence basing the
analysis of a circular section on the section at B-B1 in Fig. 3(a) will give a slightly
conservative design as it will underestimate the build up of confinement stress but
importantly it still gives the correct ultimate confinement. The same argument can be applied
to yielding Pyiq and fracture P that is basing the analysis on a section at B-B; in Fig. 3(a)

will underestimate the build up of the confinement but give the correct maximum value.
From the above, it can be seen that much of the mechanics for rectangular sections [35] can

be applied directly to circular sections and only where they diverge will it be explained in

detail in this paper.

Confinement Mechanism

The confinement mechanism for generating the passive concrete ofe is described

qualitatively. This procedure first requires the active concrete o/e.

Actively Confined Concrete
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Consider the circular cylinder in Fig. 5 that is subjected to an axial stress oax and a lateral
confining stress acont. Prior to the occurrence of sliding, the longitudinal strain em induced by
oax IS @ material strain that applies throughout the cylinder height Lger and em is size-

independent of Lger.

O'ax(Pax)
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— =
\ ‘( A b e—
\/ /
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(Pconf \’l/ &/ /4/7 Sliding Gconf
conf/ "%_.g A/ /// « plane (Fconf)
// ’/// '\\ o (Sm)
............. N . %
—;VQ P / N
N // (777——77D71 ffffffff
RN
Gax(Pax)

Fig. 5 Actively confined cylinder

With the gradual increase of oax in Fig. 5, a sliding plane forms eventually with a slip S and
inclination « as shown. The vertical component of the slip Sax will cause the longitudinal
contraction of concrete which is a size-dependent equivalent strain es Of Sax/Ldet.
Consequently, the total axial strain eax when sliding occurs, is comprised of the size-
independent material strain em and size-dependent sliding strain es. If lateral confinement
reinforcement such as stirrups, tubes or wraps are present, the lateral component of slip Sjat
would be resisted by these reinforcements going into tension. This tensile resistance from
the lateral confinement is balanced by lateral compression of the concrete along the sliding

plane of the same magnitude.

The shear sliding plane in Fig. 5 is subjected to a normal stress on and a shear stress z that

are resolved from the forces that induce the axial stress oax and lateral confining stress ocont.
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The relationship between o, the shear capacity =m, slip S and crack width her is referred to
as the shear friction material property [27, 28, 31, 39, 40]. However her is an order of
magnitude smaller than S such that her can be ignored which is also a conservative
assumption [31, 41]. The relationship is shown in Fig. 6 where: Vy is the shear capacity at
the onset of sliding; the shear capacity zmx can be determined for a given slip Sx and normal
stress onx; for a constant on, the shear capacity =m reduces as the slip S increases.

shear friction properties

—— —— linear approximation

Fig. 6 Shear-Friction material properties

Consider the active stress/strain of concrete as shown in Fig. 7. Sliding occurs at (fco, &co) for
unconfined concrete and at (fcc, ecc) for confined concrete. Prior to the occurrence of sliding,
the axial strain is the material strain em which is a material property and can be directly
measured by strain gauges. Once sliding occurs, the axial stress oax Starts to reduce due to
slip S and the axial strain eax is comprised of material strain em and the additional sliding
strain es. This descending branch can be derived from shear friction material properties as
shown in Fig. 6 where, from the axial stress gax in Fig. 5 and lateral confining stress ocont, the
shear stress zmx and normal stress anx can be quantified. From these values, the slip Sx in Fig.
6 can be determined and consequently the sliding strain s in Fig. 7 and subsequently one

point on the descending branch.
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Fig. 7 Theoretical stress/strain of actively confined concrete

As an example, consider the active o/e O-E-F in Fig. 7 at a confining stress oconr2. The point
G’ at (emz, oax2) On the ascending branch O-E has a material strain emz. The strain of the point
G at the same axial stress oaxe 0n the descending branch E-G-F is comprised of the material
strain em2 and the sliding strain es2 = Saxo/Ldef, Where Saxo is the vertical component of slip

and Ler IS the specimen height.

Passively Confined Concrete

Consider the circular cylinder in Fig 8 with lateral confinement reinforcement which can be
internal stirrups, external wraps or a tube. The diameter of the transverse reinforcement is
D.i. Prior to the occurrence of sliding, the lateral confinement reinforcement has to all intents
and purposes no deformation; consequently there is no confinement force nor the associated
lateral confining stress. Increasing the axial stress will eventually cause sliding and the
lateral component of the slip St will cause the deformation of the confinement

reinforcement and subsequently a confinement force Pcont.
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Fig. 8 Confinement force and deformation of passively confined concrete

It has been explained previously using Figs. 3 and 4 that Pcont Will cause a constant
confinement pressure acont ON the sliding plane in Fig. 2. Furthermore in Fig. 3(a), S at will
overestimate Siat and, therefore, it is reasonable to assume Siat equals S’iat to give a safe
solution. In Fig. 8, Siat can be visualised as the sum of the crack face slips at both sides of
the sliding plane and is referred to as 24. The partial-interaction mechanics of intermediate-
crack (IC) debonding [33, 34, 42-44] depends on the bond-slip material property zs/d
between the confinement reinforcement and adjacent concrete [38, 45-47]. From which, the
relationship between the confinement force Pcont and crack face slip 4 can be determined and
subsequently Siat = 24. Hence, for a given slip S of the sliding plane in Fig. 2, the horizontal
component of slip Siat can be employed to derive the confinement force Pcont In Fig. 4 and,
subsequently, the lateral confining stress oconf from Eq. 1. The sliding strain s in Fig. 7 can
be determined from the vertical component of slip Sax and it is a question of finding or fixing
oax at which this occurs. For instance, for a lateral confining stress ocont1, the active
stress/strain O-C-D in Fig. 7 can be constructed as described previously. For a given slip S,
the vertical component of slip Sax can be quantified and subsequently the sliding strain esy;
this horizontal dimension esy is then fitted within the ascending branch O-C and descending

branch C-D to fix oaxy and consequently point D.
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When there is no interface bond between the reinforcement and the concrete or when IC
debonding is complete such that there is no interface bond, then the strain in the confinement
reinforcement in Fig. 8 is constant at ¢, Furthermore by symmetry in Fig. 4(a), this
reinforcement is anchored or does not slip at points A and A1 such that each deformation
S1at IS accommodated by strains within the tube of length zD.i/2. As mentioned previously
in terms of the build up of confinement, for a slightly conservative design it will be assumed
that S, equals Sia. Hence for a given confinement reinforcement strain e, the lateral
component of slip Sia for a circular cylinder equals ze;Dci/2 and the sliding strain esy can be
determined for Sjat = mesyDci/2. Then the analysis above to determine oaxy in Fig. 7 applies by
substituting this esy.
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Fig. 9 Theoretical stress-strain of passively confined concrete

Let us now consider the construction of the passive stress/strain in Fig. 9 for the circular
cylinder in Fig. 8. The descending branches in Fig. 9 are simplified as straight lines for ease
of explanation. Let us start with the active stress/strain O-A-B in Fig. 9 for oconfo = 0 which
can be constructed as described previously. Similarly, the active stress/strain O-C-D can be
constructed at the IC debonding resistance Pic at the lateral confining stress aconfic When the
strain of the confinement reinforcement in the debonded region equals eic [33]. The active

stress/strain O-E-F can be constructed at the yield capacity Py and lateral confining stress
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oconfyld- Confinement reinforcement starts to yield at a strain &yig2 and completes at yiq. Finally
at the fracture capacity P, the active stress/strain O-G-H can be constructed for lateral

confining stress oconfir at a reinforcement strain er.

Prior to the occurrence of the sliding plane, slip S equals zero such that the confinement
reinforcements do not have a deformation and consequently they are ineffective. The loading
path will follow the ascending branch O-A in Fig. 9 for the unconfined concrete. Sliding
commences at the peak point A. Slip gradually increases, which will cause an increase in the
confinement reinforcement force Pcont until it reaches Pic at a crack face slip 4ic and lateral
confining stress oconfic. Hence Siat equals 24,c and the sliding strain esic can be determined.
This esic can be fitted within the active stress/strain O-C-D at oconfic as shown to fix point |
and quantify asic. Similarly, at the end of debonding and still at P\c, the reinforcement strain
equals eic [33] such that Siat = eiczDci/2 and subsequently the sliding strain esic2. Hence the
point J can be fixed by fitting this esic2 within O-C-D for oconfic and subsequently the axial
stress asic2 can be determined. At the onset of yielding, the confinement reinforcement strain
equals eyig2 and subsequently Siat = eyid2Dcil2 at the yield capacity Py and subsequently the
lateral confining stress oconfyid. This Siat = eyid2Dcil2 can determine the sliding strain esyiq2 and
consequently the axial stress osyig2 at point K. Similarly, yielding ends at a reinforcement
strain eyig and Siat = eywDci/2 which can determine point L. Finally the confinement
reinforcement fractures at the reinforcement rupture strain ef at the confinement force Px.
From which Siat = enmDci/2 and lateral confining stress oconfr Can be determined and
subsequently the sliding strain est and axial stress ostr at point M. It is worth noting that when
the sliding strain is larger than O-H in Fig. 9, it means there is not enough capacity and the

concrete cylinder has failed already before reaching this point.

When debonding occurs, the loading path of the passive stress/strain in Fig. 9 will follow O-
A-1-J-K-L-M. If yielding does not occur then the loading path will follow O-A-1-J-M. If
there is no bond, the loading path will follow O-A-L-M and so on. More points on the loading
path can be fixed by taking more confinement forces such as at Pic/2 or Pyia/2, which makes

the passive stress/strain more accurate.

Quantification of Active Stress/Strain
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The passive confinement mechanism has been described in the previous section; specific
equations for quantifying this mechanism are given in this and the following section. Where
the mechanics requires material properties, examples are given. However the mechanics
does not depend on these specific material properties nor in the form that they are given and
as such they could be replaced by the reader with more convenient, suitable or appropriate
values. It is worth noting that the type of concrete sliding plane depends on the slenderness
ratio. Short cylinders that have a slenderness ratio less than two may fail due to the formation
of a circumferential wedge [17, 35, 48]. For larger slenderness ratios, sliding is likely to
occur with a single sliding plane as shown in Fig. 8 and this will be investigated first as it is
more likely to occur in practice and gives a lower bound to that of the circumferential wedge

[35]. However an adjustment for the circumferential wedge will be given later.

The concrete active stress/strain such as in Fig. 7 is derived here from the partial interaction
shear friction material properties of Hao [35] as follows.

Shear Friction Properties
The peak stresses fcc in Fig. 7 can be derived from the shear-friction material properties in

Fig. 6. The shear-stress capacity zm shown as the unbroken lines can be simplified to the

linear approximations as follows
r.=(Ao, +B)S+Co, +D )

where A, B, C and D are coefficients of the unconfined concrete strength fco. The following

is an example of the linear approximation derived by Hao [49].

When on < ono, Where ono IS the normal stress at the peak axial stress feo of unconfined

concrete, then
7. =[(0.00112f , —0.337),-0.000784f 2 +0.0152f , +0.556]S +1.500, +0.105f, (3)
and
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oy = oo sin’ & (4)
When ono < on < 3ono, then

7 =[(0.00112f , +0.0636)c,, -0.000784f 2 —0.0620f , + 0.556]S +0.4985,, +0.298f , (5)

And when on > 30on0, then
A, B,
7, =|| ==-0.199 |o, + —--0.119f , |S +0.4980, +0.298f, (6)
25 2.5

where the parameters An and Bn are the following functions of the unconfined concrete

strength feo

A, =(1.229f ,—0577f A -B)/(L345f,) (7)

B, =—0.527f,+0.824f A +1.429B. ®)
in which the parameters A; and B; are given by

A =0.00281f ; +0.657 ©)

B. =-0.00196f +0.143f , +1.39 (10)

Ascending Branch

The peak stress fec and the strain ecc at fee, such as at points C and E in Fig. 7, are functions

of the lateral confining stress ocont as follows [35]

: 2
¢ _ Ooon sinacosa +Co,, COS"a+ D

cc

; ; 11
sinacosa—Csin’a (11
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b = Sl A (12

c0

where C and D are coefficients that are the same as those in Eq. (2), Ao is a coefficient that

equals 13.9 and where the unconfined concrete strain &co at feo is
£,=174x10"°f  +2.41x107° (13)

in which feo is in MPa.

The ascending branch of the active stress/strain in Fig. 7 can now be obtained [50, 51] by
substituting fec and ecc from Egs. (11) and (12) into

o, =f — ‘o (14)

I, = < (15)

in which the concrete elastic modulus E¢ in MPa can be taken as [52]

E, =3320,/f_, +6900 (16)

For ease of analysis, the ascending branch of active stress/strain in Fig. 7 can be linearised

as
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&
8&)( = Gax f_cc (17)
where fec and ecc can be obtained from Egs. (11) and (12).

Descending Branch

For a given lateral confining stress ocont and a slip S in Fig. 5, the axial stress gax of the

descending branch can be written as [35]

: ) ,
_ O SINaCOS + ASo, COS" a+BS +Co, COS" a+D

Oax

- - - 18
sinacosa — ASsin® o —Csin’ « (18)

where A, B, C and D are coefficients in Eq. (2).

The vertical component Sax of the slip S in Fig. 5 divided by the specimen height Lger gives
the sliding strain &s that is

Scosa
&= (19)
def

Adding the additional material strain em in Fig. 7 from Eq. (17) gives the following total axial

strain eax

Scosa
Ldef

&

=O'a

(20)

&
cc
ax X f_+
cc

Substituting a specific slip S1 for a specific confinement ocont1 into Eq. (18) gives the axial
stress oax1. Substituting S and cax into Eq. (20) gives the axial strain eax for oax1. Hence one
point on the descending branch at (oax1, €axt) for the confinement oconr1 has been obtained and

the process is repeated to construct the descending branch.

Quantification of Passive Stress/Strain
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As explained previously using Fig. 3(a), a slightly conservative design can be based on the

section where the sliding plane crosses the centre such as at B-B; in Fig. 3(a) and which is

shown in Fig. 10. When the sliding crack of width Sia first forms, interface bond shear

stresses zg form on either side of the crack over a length Lcrt as shown. These shear stresses

induce a shear force Pcont Which is balanced by the confinement force of equal magnitude.

As Siat is increased, and assuming yield or fracture of the reinforcement does not occur, the

bond forces reach their maximum value which is referred to as the intermediate crack (IC)

debonding resistance [33, 36, 38, 53, 54]. The force at which this occurs is referred to as Pic

which induces a reinforcement strain ic and occurs at an interface lateral slip Sjat of 4ic.

These parameters depend on the bond-slip properties as follows.

Fig. 10 Confinement lengths at both sides of the sliding plane
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Any appropriate bond-slip material property can be used. As an example, consider the

bilinear bond-slip material properties O-A-B in Fig. 11.

For flat plate reinforcement, the parameters can take the following values [38]

Toms = (0.802+0.078¢, ) £2°
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5,=0 (22)

0.976425°

max (23)
0.802+0.078¢,

in which the units are in mm and N and where ¢s is the aspect ratio of the interface debonding
plane which can be taken approximately as the inverse of the width of the plate bf also in
mm. It is worth noting that the plate reinforcement width br should be no more than 100 mm
as this is the maximum of the plate reinforcement width in the database of Seracino et al.
[38] used to derive Pic in Eq. (26).

g A
TBmax| ~ /lf \
N
BfH | \\\ fffffff D
| s
! ~.B
O 8] 6max 6

Fig. 11 Bond-Slip material properties
It is also worth noting that the lateral expansion of concrete will induce a confining stress
across the curved bonded interface in Fig. 10 which may enhance the bond [55] derived from

flat plates and, hence, the above will be on the conservative side.

The maximum bond force is given by [33, 37, 38]

F)IC = ’\/TBmaxgmax \/Lper Er A (24)

where E; and A, are the elastic modulus and cross-sectional area of the confinement

reinforcement and Lper is br and Pic occurs at a half crack width that is a lateral slip Sia/2 of
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AIC = 5max (25)

As an example, for plate reinforcement the IC debonding can be written as [38]

F)IC = 085¢?25 fc%33 I—per Er A\ (26)

The minimum length of confinement reinforcement required to develop Pic is referred to as

Lert as shown in Fig. 10 and can be expressed as [38]

T
L =2 27
=7 (27)
where
2= T Bmax Lper (28)
§max Er A’

As previously explained using Fig. 3(a), by symmetry points A and A; in Fig. 10 can be
considered as anchor points such that the length of the confinement reinforcement either side
of the sliding plane is Lconf @S shown. Hence the maximum bond force Pic can be attained
when Lert < Leont. Furthermore, the length of a fully debonded plate as shown in Fig. 10 is

given by

D ="u (29)

Hence when there is no bond or the confinement reinforcement has been fully debonded, the

confinement reinforcement strain is constant at ; such that Siat is €:Di which is gzzDcil2.

Interaction between Slip and Confinement

As Siat in Fig. 10 is gradually increased, the bond stresses zg build up. When Lert < Leont, then

Pic can be achieved but the reinforcement may vyield at Pyq or fracture at Ps prior to
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debonding. Should debonding occur at Pic at the bond stresses zc, then the distribution of
the bond stresses zc move away from the sliding plane to the anchor points as shown whilst
the confinement force Pic remains constant. After which, the anchor points A and A: take
over such that, for all intents and purposes, the reinforcement is completely debonded over
the length Di at a strain eic. Any further increases in Siat may lead to yield at a strain eyiq Over
Dj or fracture at a strain efr. When Lert > Leont In Fig. 10, then Pic cannot be achieved so that
debonding over the length Di cannot occur in which case the confinement force is limited by
yield Pyiq or fracture P. It is a question of determining Siat for these possible scenarios or

cases [35].

Pconf‘ Pconf"
Ps | D Pc | C
| |
Pyl e :
| |
| |
PIC B| | | } Pfr | B { D
al L |
| || | Poal A } | E }
I I \ \ \ | \
. | L |
I L | \ : \
| | | (9 | | |
|1 Sty | |
0 lat-1C Slal-deb Slal-IC2 Slat-fr Slat O Slal_yldzslm-fdslavlc Slat-y!d Slat-l‘r Slat
a b
Pconf A { )
B
Pfr D

l:,yld

: >
slas-yldS Sta.fr3 Slat-yld Stafr Stat
©

Fig. 12 Pcont and Siat relationship for: (a) debonding prior to fracture or yield and Ler<Lconf;
(b) fracture or yield without debonding and Lert<Lconf; (C) Lert>Lcont

Case 1: Lconf > Lert; Pic < Pyig; Pic < P
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The critical points for the case when Pic is less than Psr or Pyig and Leont > Lert IS Summarised
in Fig. 12(a). The reinforcement will debond at the crack width and force coordinates (Siat-
ic, Pic) at point A. Then the bond stress distributions zc in Fig. 10 move to the anchor points
which is point B in Fig. 12(a) at (Siat-deb, Pic), and then they completely debond at (Siat-ic2,
Pic) at point C. After which, the confinement reinforcement may either yield at (Siat-yid, Pyid)
at point E and then fracture at point D (Siat-tr, Psr) or directly fracture at point D. The slips at

which they occur are as follows [35]:

Siic =240 (30)
Siaer =20 +&,c (D -2L,,) (31)
Sitic2 = €D, (32)
Siat—yig = Eyg D, (33)
Sttt = €rac D; (34)

where Lcrt, Di and 4ic can be obtained from Egs. (27), (29) and (25).

Case 2: Lconf > Lert; Pic > Pyig; Pic > P

The crack widths when Pic is more than the fracture capacity P+ or the yield capacity Pyid
and when Lcons > Lert are shown in Fig. 12(b). In this case, debonding does not occur. The
confinement reinforcement may either directly fracture at (Siat-r2, Psr) at point B, or yield at
(Siatyid2, Pyid) at point A and then completely yield at (Siat-yid, Pyid) at point E and ultimately
fracture at (Siatfr, Psr) at point D. From Hao [35]

I:)yld
SIat—yIdZ = 2A|c = (35)

IC
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Pfr
P

Slat—frz = ZAIC (36)

Case 3: Lconf < Lcrt

The variation in crack widths when Lcont < Lert IS shown in Fig. 12(c); it is similar to the
previous case in Fig. 12(b). The only difference is that the confinement reinforcement may
yield at (Siatyia3, Pyia) at point A or fracture at (Siat-r3, P#r) at point B. The lateral components
of slip Siat and confinement force Pcont at points E and D are the same as those in Fig. 12(b)

where from Hao [35]

< _ Py | 2sinh(D2) (37)
lat—yld3 AE, A | cosh(D,2) +1

< P, 2sinh(D, 1) (38)
lat—fr3 /AtErAr coSh(Diﬂv) +1

where Dj can be obtained from Eq. (29). It is worth remembering that the crack is assumed
to occur in the middle of the cross-section as in Fig. 10 to achieve a conservative solution
[35]. Hence the confinement length Lcont equals the perimeter of the quadrant that is zDci/4.
The parameter 4 in Egs. (37) and (38) can be expressed as [56]

A=1pk (39)

where the cylinder parameter £ and bond-slip stiffness k can be written as

1 1
p=telEaEn) 4o
k= T;ﬂ (41)
1
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where Lper can be taken as br and where Ac is the cross-section area of concrete which
interacts with the reinforcement in the tension stiffening analysis. It should be noted that for
plate reinforcement, the area of the concrete Ac is much larger than that of the reinforcement
Ar such that 1/EcAc in Eg. (40) can be assumed to be zero [44].

Lateral confining stress ocont

The lateral confining stress ocont Can be derived from Eq. (1) by substituting the lateral
confinement force per unit depth of reinforcement for Pcont. This is shown in Fig. 13(a) for
a cylinder with stirrups where Py is the confining force in a single stirrup that is spaced at

Ss. In which case, the confinement per unit depth is

P,
Pstl = S_St (42)

For a concrete infilled tube as in Fig. 13(b), the confinement per unit depth is

P,=—"% (43)

where Ppi is the confinement force in the tube of depth br. The forces Psu and Ppiz can be

substituted for Pcont in EQ. (1) to quantify oconf.

Slat A Slat A
i '\y i \/ —T
| |
Pst } }
) S E— | plate
m —
Py } - E{ l)pl'i } -
| |
- |
A
Py i N - }
| stirrups |
11 A , 1l A
(a) (b)

Fig. 13 Lateral confining force from (a) stirrups (b) plate
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Equivalent strain &s and axial stress os

For a given slip S, the sum of the crack face slips at both sides of the sliding plane Sia: and
the confinement force Pcont can be determined from Fig. 12. Subsequently, the lateral
confining stress ocont Can be obtained from Eqgs. (42) or (43) and (1). From these values, the

axial stress as can be obtained from [35]

O SIN@COS+| A2+ C |o,, COS* o + B2+ D
sina sina (44)

Og =

) ] S
sinacosa —sina| At 4 C
sina

Furthermore, Siat used in Eq. (44) can be employed to derive the following sliding strain &s

S cos S
g = & _ O (45)
Lger tan oL,
Adding the addition material strain from Eq. (17) gives the following axial strain eax
S
g, =0, S p (46)
f. tanaly,

where s can be obtained from Eq. (44) and fec and &cc can be obtained from Egs. (11) and

(12) by substituting the lateral confining stress ocont from Eq. (1).

Summary

For a given key point in Fig 12: Sia and the confinement force Pcont as well as slip S can be
determined; the confinement force Pcont Can be substituted into Egs. (42) or (43) and (1) to
quantify the lateral confining stress oconf; SUbstituting ocont and Siat into Eq. (44) gives the
axial stress os; substituting ocont into Eqgs. (11) and (12) gives fec and ecc, which as well as Sat

and os can be substituted into Eq. (46) to give the axial strain sax. Consequently, the axial
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stress and strain of one key point in Fig. 9 on the passive stress/strain is fixed and, similarly,

the axial stress and strain of other key points in Fig. 9 can be determined.

Circumferential Failure Type

The theoretical approach assuming a single sliding mechanism [35, 48] has been described

above. However, when the aspect ratio of the circular cylinders tested was small failure due

to circumferential wedges [57] may have occurred. The only difference between these two

failure types in the proposed approach is the following peak stress fcccir Of the active

stress/strain from Eq. (11) and the axial stress oscir Of the passive stress/strain from Eq. (44)

[35]

H 2
_ 204,y sinacosa +2Co,, cos” a+D

cecir

f - -
sinacosa —Csin’ a

2O-conf Sinacosa + A.A'FC Zo-conf COS2 o+ B_Ii+ D
SINx SINx

O-Scir =

sin a cos o —sin? a(A_S““+C)
sina
The other procedures are the same as that of the single-sliding failure.

Parametric Study

Effect of Bond Material Properties

(47)

(48)

As mentioned previously, the lateral expansion of the encased concrete will induce a

confining stress across the curved bonded interface in Fig. 10 which may enhance the bond.

To determine the effect of this bond enhancement, a parametric study of the FRP reinforced

specimen SCP-4-2 [10] is conducted using the proposed approach with the circumferential

failure type. The variation O-A-B-C-D in Fig. 12(a) applies.
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In the previous analysis, the bilinear bond-slip material properties, that is the variation O-A-
C-B in Fig. 11, was applied which means that the friction bond stress zgs equals zero.
However, the confining stress across the curved bonded interface may enhance the friction
bond stress zgf [55]. In this section, the effect of the friction component of bond zgf in Fig. 11

for the case in Fig. 12(a) is investigated.

i Di/2
T
B 1:9/\ ignored St ignored /\T\C
TN r T By e
(@ - ’ - . o0
A Lert !B : p BI Lert ‘A
A fic fIC
Pconf Plcﬂ FPIC
(b) ’ '
A Lert B B Lert A
& &c &hc
814 NIC
(c) ' ‘
A Lert B B Lert IA
\ o dnc

B B' A
Lert Stat-1c=20q1¢ Len ‘

Fig. 14 Distribution of g, Pcont, &r and ¢ along Di

As explained previously by using Fig. 3(a), a slightly conservative assumption is made by
using the sliding plane that crosses the centre as shown in Fig. 10. Consider the distribution
of bond stress zg in Fig. 14(a), confinement force Pcont In Fig. 14(b), strain & in Fig. 14(c)
and slip ¢ in Fig. 14(d) along the arch A-A’ in Fig. 10 when the bond stress zc has been
developed to the anchor point A or A’ as shown in Fig. 14(a). The shaded bond stress is
ignored for ease of analysis and which also gives a slightly conservative assumption. Hence

the confinement force, strain and slip at points B and B’ equal Pic, €ic and dmax respectively.
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The friction component of bond zg will enhance the confinement force to Psc which can be

written as

D,
Pic =P + 7t Lper (7 — L)

(49)
the crack face slip Jnc can be written as
Pic +Pc ,D.
5fIC = 5max + =< (_I - Lcrt) (50)
2ELA 2
and consequently the crack width Sjat.fic as
PﬂC + F)IC
Siat-tic = 204 = 20 "‘ﬁ (Di - 2Lcrt) (51)

Pconf A

Pfr | D
Pya | e |
:
|
Pac | | |
PIC L | B | |
A 1 | |
| 1 | |
\ | i |
[ 1 l |
| ' | |
{ 1 | |
[ 1 | |
& ] |
|
1 ¢ } 1 | |
O \ 1 | 1 | >
SIat-lC SIat-ﬂC Slat-yld Slat-fr Slat

Fig. 15 Pcont and Siat relationship for debonding prior to fracture or yield and Lert<Lcont

allowing for zat

The variation O-A-B-C-D that normally applies for FRP reinforced specimens in Fig. 12(a)
is updated as shown in Fig. 15. From the variation at point B in Fig. 15, the axial stress and

strain can be derived from Eqgs. (44) and (46) respectively that is at point Q in Fig. 9. This
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point is located on the additional active stress/strain O-P-R in Fig. 9 for confinement ocontric
at Pnc from Eq. (49). Hence the loading path of the passive stress/strain in Fig. 9 follows O-
A-1-Q-M-N. The corresponding passive stress/strains for specimen SCP-4-2 has been plotted
in Fig. 16 where the friction component of bond g varies. The friction component can
increase the strength after debonding at point | and when zgf = 0.6zmax, there is no apparent
step change and the loading path follows an ascending branch such as I-M. As there is no
available model to quantify zgf, in the following validation part, zsf is assumed to equal

0.47max as an example and this requires further research [58, 59].
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10 == TBf:0'61—max
= ¢xperimental
0 1 1 1 1 T |
0 0.005 0.01 0.015 0.02 0.025 0.03

strain

Fig. 16 Parametric study of specimen SCP-4-2

Effect of Cylinder Diameter Dc;

A parametric study is conducted to investigate the effect of the cylinder diameter D for
specimens reinforced with either FRP wrap or a steel tube. Specimen details are given in
Appendix 2. The general behaviour is first described followed by a quantification based on

the partial interaction theory developed previously.

General Behaviour
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The FRP reinforced cases are shown in Fig. 17, Fig. 18, Fig. 19 and Fig. 20. In Fig. 17, the
confinement stress oconfir at fracture of the FRP (Ps) is maintained constant for varying
specimen diameters that is Pt is changed with diameter to ensure ocontir IS constant. In the
remaining figures, the confinement stress aconfic at IC debonding (Pic) is held constant. The
passive stress/strain follows O-A-1-J-M such as in Fig. 17 where: sliding occurs at point A,
confinement reinforcements start to debond at point I; completely debonds at point J; and
fracture occurs at point M. Some passive stress/strains end at a point N such as O-A-Is-Ns in
Fig. 17; this is because at the next point after point N, the sliding strain &s is larger than O-
H in Fig. 9 which means there is not enough shear capacity along the sliding plane to fracture
the FRP. For some cases that fail before the occurrence of debonding at point I, such as the
case O-A-M1 in Fig. 18, the confinement reinforcement fractures first as the fracture capacity
P is less than the IC debonding resistance Pic that is the case in Fig. 12(b).
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Fig. 17 Effect of diameter Dci when oconttr IS constant (FRP reinforced)

It can be seen in Fig. 17 that design based on the confinement at FRP fracture can lead to
large variability in the passive stress/strain with the ductility reducing as the specimen

diameter increases. In contrast, design based on confinement at IC debonding in Figs. 18 to
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20 has little variability except at fracture and ductility increases with increasing diameter
and confinement stress.
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D,=100mm
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Fig. 18 Effect of diameter D¢ when oconfic is constant at 3.91MPa (FRP reinforced)

It is worth noting that in this parametric study it is assumed that FRP will fail at the material
rupture strain. Hence, substituting the fracture capacity Ps into Egs. (42) or (43) and (1)
gives the lateral confining stress at fracture ocontfr; then substituting this ocontir and the lateral
component of slip Siatr at fracture from Eq. (34) into Eq. (44) and Eq. (46) gives the
following axial stress osfr and axial strain eaxsr at fracture

i € trac D .. D
Oonfir SINX COS & + AT C GconffrCOSZOHrB&JrD
SINx sina
Ot =

(52)
D.
sin a cos a —sin? o{AgfralC ! +C)

Sino

g_ 2 frac Di (5 3)
tan oL,

209



which are the co-ordinates of the points M in Figs. 17 to 20 that is a measure of the extent
or ductility of the passive stress/strain.
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Fig. 19 Effect of diameter D¢ when oconfic is constant at 5.53MP (FRP reinforced)

For the steel tube reinforced cases in Fig. 21, Fig. 22 and Fig. 23, the confinement stress at
yield is held constant. The passive stress/strain follows O-A-L, which is also the case in O-
A-L in Fig. 9 where the confinement reinforcements yield at point L. It can be seen that
basing the design on the confinement at yield produces a wide variation in the concrete
ductility with ductility reducing with increasing diameter.

Variation in Diameter

Specimens designed with the same confinement at fracture

In Fig. 17, the diameter Dg; is varied whilst the lateral confining stress at fracture oconfr IS
held constant (series Ds1 in Appendix 2). The fracture force Ps1 per unit depth can be
obtained from fptrrp wWhere f, and trrp are the fracture capacity and FRP thickness.

Substituting P#1 into Eq. (1) gives oconftr = 2fptrre/Dei. The ratio of acontir fOr two specimens

210



of diameter Dci-s and Dci-m are written as follows where the subscripts S and M have been
used to distinguish between the specimens

Oconffr-s (2, stege s)/ Dyis

_ (54)
Ocontr-m (2 fpr tere-m ) / D

If it is assumed that the fracture capacity of the FRP f, and the lateral confining stresses at
fracture ocontir are the same for the two specimens, then Eq. (54) becomes

terp s Diis
= 55
S (55)

tFRP—M ci—-M

which means that to ensure that the confinement stresses oconffr at fracture are the same, the
FRP thickness ratio should be directly proportional to that of the specimen diameters. Most
current design-oriented approaches [8, 16, 21, 60] design for ocontir Without considering the
size-effect. For instance, when ocontir IS constant and Dci varied, these approaches are
assumed to give the same passive stress/strains which is not the case as can be seen in Fig.
17. 1t would appear that as most specimens in the databases [8, 16] have a small diameter,
deriving the stress/strain empirically from these small specimens may overestimate the

ductility for large cylinders.

Specimens designed with the same confinement at IC debonding

In Figs. 18 to 20: the lateral confining stress oconfic at the 1C debonding resistance Pic is held
constant; the diameters D¢; are varied; and the triangular marks are where the specimen fails

due to fracture of the confinement reinforcements.

Let us first consider the case in Fig. 18 which is at a small confinement ocontic of 3.91MPa.
The specimens reach their peak stress at the start of IC debonding at point I such that oconfic
controls the strength. As can be seen in Fig. 18, when oconfic IS constant then the ductility,

that is the ultimate strain at the A points, increases with increasing Dei.

Figures 19 and 20 show that at relatively high confinements oconfic, the ductility increases

with increasing diameter Dgj. This is in contrast to those in Fig. 17 where ocontr IS cOnstant
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and the ductility decreases with increasing Dci. Substituting Ar = bitrre into Eq. (26) gives
the IC debonding resistance Pic. Substituting the confinement force per unit depth Pic1 =

Pic/br into Eq. (1) gives the lateral confining stress aconfic at Pic

1'7¢(f)'25 fc%-33 \’ I‘per Er bf tFRP

O-conflc = bf DCi (56)
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Fig. 20 Effect of diameter D¢ when oconfic is constant at 7.82MPa (FRP reinforced)

The ratio of oconfic for two specimens is therefore

Gomes (L7215 L ED e 5 )/ (6,Dy )

= (57)
O confic-Mm (17¢?25 fc%33 Lper ErbftFRP—S )/(bf Dci—M )

where the subscripts S and M distinguish between the specimens. When these two specimens
have the same unconfined strength fco and FRP elastic modulus Ey, then the ratio of the FRP

thicknesses trrp to achieve the same lateral confining stresses at debonding oconfic becomes
from Eq. (57)



= (58)
Sy D;

which means that to ensure that the IC confining stresses oconfic are the same, the FRP

thickness ratio should be directly proportional to the square of that of the specimen diameters.

Specimens designed with the same confinement at yield

In Figs. 21 to 23: the concrete is encased in a steel tube; the lateral confining stress oconfyid at
the yield capacity Pyiq is constant; and the diameter D¢ varies at 100 mm, 200 mm, 300 mm,
500 mm and 800 mm (SDs2, SDs3 and SDs4 series in Appendix 2). It can be seen that when
oconfyld 1S constant and Dcj increases then the ductility decreases. When acontyid IS constant, the
relationship between the diameters and reinforcement thickness is the same as the fracture
case as illustrated by Eqgs. (54) and (55); hence they can be applied by substituting yield
capacity fy and ocontyid for fracture capacity fp and oconsir respectively. Hence deriving a design-
oriented approach from these small-diameter specimen tests based on oconfyia Without

considering the effect of the diameter D¢ [61] may overestimate the ductility for large
cylinders.
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Fig. 21 Effect of diameter Dci when ocontyid 1S constant at 4MPa (steel tube reinforced)
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Fig. 23 Effect of diameter D¢ when oconfyid IS constant at 12MPa (steel tube reinforced)
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Validation of Confinement Model

The proposed approach has been compared with tests on FRP wrapped circular cylinders
[10, 15, 57, 62-70] and those with stirrups [71, 72] that were tested under concentric load.
Details of the simulated specimens are given in Appendix 3. Validation with more specimens

are given elsewhere [73].

The experimental results are compared with the proposed approach assuming both a single-
sliding and a circumferential failure type to give theoretical bounds to the approach. It is
worth noting that the strains were measured within the gauge length Lg which will be

substituted for Lger in Eq. (46) to derive the passive axial strain within the gauge length.

Example of Stress/Strain Derivation

As an example, the approach is applied to the circular cylinder specimen SCP-4-2 by Song
et al. [10] for the case of a circumferential failure type as follows.

1. The critical length L¢rt from Eq. (27) equals 50.1 mm and is less than the perimeter
of the quadrant that is Lcont = 7Dci/4 = 118 mm. From Eqg. (26), Pic for a 100 mm
width of plate equals 24,400 kN such that Pic1 = 244 kN/mm from Eq. (43) which
on substituting into Eq. (1) gives aconfic = 3.25 MPa. Fracture capacity for a bf = 1mm
width of plate can be obtained from Psr1 = befptrrp = 1222 KN, where trre is the plate
thickness and f, is the fracture strength. As Lert < Leont and Pici < P, then the
variation in Fig. 15 applies. The loading path will follow O-A-1-Q-M in Fig. 9 also
shown in Fig. 24 and which will now be determined.

2. Letus start by deriving the active stress/strain O-C-I for aconfic = 3.25 MPa. The axial
stress and strain at the peak point C are feccir-c = 58.3 MPa and &cc.c = 0.00522 which
can be obtained from Eqgs. (47) and (12) respectively by substituting oconfic. The
lateral component of slip Sia: of point I, that is Siat.ic, can be obtained from Eq. (30)
and equals 0.213 mm. The axial stress os and strain eax of point | can be obtained by
substituting oconfic and Siat-ic into EqQs. (44) and (46) which gives 55.7 MPa and
0.00597 respectively. Linking points O, C and | in Fig. 24 gives the active

stress/strain O-C-I for oconfic.
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3. Consider the active stress/strain O-P-Q for ocontric in Fig. 24 where oconfiic =5.94 MPa
is derived by substituting the confinement force Psic from Eq. (49) into Egs. (1) and
(43).The axial stress and strain at peak point P, feccir-p = 72.6 MPa and ecc.p = 0.00748,
are derived from Eqs. (47) and (12) respectively by substituting oconttic. The lateral
component of slip Siat of point Q that is Siat-ic can be obtained from Eqg. (51) and
equals 1.53 mm. The axial stresses os and strain gax of point Q can be obtained by
substituting Siat-ic and oconic iNto Eqgs. (44) and (46) which gives 61.5MPa and
0.0133 respectively. Linking points O, P and Q in Fig. 24 gives the active stress/strain
0O-P-Q for oconffic.

4. Let us now determine the active stress/strain O-G-M in Fig. 24 for oconttr. IN practice,
it has been found [10, 62] that FRP confinement reinforcement cannot reach its
material rupture strain in tests, that is it cannot reach its material fracture stress fp.
Consequently, the fracture capacity P> will be quantified from the experimentally
recorded rupture strain err2 = 0.0107 such that Psr2 for b = 1 mm equals bitrrrErrpetr2
which comes to 754kN. Substituting Ps2 into Egs. (43) and (1) gives the lateral
confining stress oconfr = 10.6 MPa, which can be substituted into Egs. (47) and (12)
to derive feccir-c = 94.6 MPa and &cc.c = 0.0110 at the peak point G in Fig. 24. From
Eq. (34) Siafr at fracture at point M equals 2.53 mm, which with ocontir Can be
substituted into Eq. (44) to obtain os = 82.0 MPa. Substituting Siat-fr, fec-G, &cc-c and os
into Eq. (46) gives the axial strain eax at point M that is 0.0210. Linking points O, G,
and M gives the active stress/strain O-G-M for oconfr.

5. At point A in Fig. 24, the axial stress fco and strain eco obtained from Eq. (13) equal
40.9 MPa and 0.00248 respectively. Linking points O-A-1-Q-M gives the passive

stress-strain.

With regard to the stirrup reinforced concrete cylinders in Fig. 25, the case in Fig. 12(c)
applies as Lert > Leont. The passive stress/strain O-A-K-F in Fig. 9 applies. After the onset of
sliding at point A, the confinement reinforcement yields at point K. The strain hardening
effect of stirrups is ignored to give a conservative solution so the remaining path follows K-
F.
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Fig. 24 Theoretical analysis of specimen SCP-4-2

Comparison with Published Experimental Results and Approaches

The comparisons for stirrup reinforced specimens is shown in Fig. 25 where the proposed
approach is compared with the experimental results and with Mander’s approach [2]. It can
be seen that the proposed approach for a circumferential failure type gives reasonable
correlation after the initial ascending branch when concrete softening starts and passive

confinement commences to improve the ductility.

The design-oriented approach proposed by Lam and Teng [6] and Wei and Wu [74] for FRP
confined concrete are shown in Fig. 26; the stress/strain is comprised of a parabolic
ascending branch O-A and linear ascending branch A-B. In this approach, the peak axial
stress fec and strain ecc at point B are empirically derived from a large database of test
observations. However, this approach does not consider the size-dependent effect of sliding
nor debonding between concrete and confinement reinforcement nor the gauge length L.
This approach is compared with the proposed approach and experimental results in Fig. 27,
Fig. 28, Fig. 29 and Fig. 30. There is reasonable correlation with the circumferential failure
type after concrete softening commences, that is there is reasonable correlation in predicting
the beneficial effects of the ductility of passively confined concrete.
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Fig. 25 Validation with stirrups reinforced specimens (slenderness ratio > 3): (a) 2; (b) 3;

(c) 4; (d) 9B; (e) 12A; (f) 12B; (g) 6HB; (h) 6HC;
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Fig. 27 Validation with FRP reinforced specimens (slenderness ratio > 3): (a) N-0.2T-5R-
1; (b) N-0.2T-5R-2; (c) N-0.2T-5R-3; (d) SCP-1-1; (e) SCP-2-1; (f) SCP-3-1 (g) SCP-3-2
(h) SCP-4-2
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Fig. 28 Validation with FRP reinforced specimens (slenderness ratio > 3): (a) SCP-4-3; (b)
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Fig. 29 Validation with FRP reinforced specimens (slenderness ratio < 3): (a) CC-S; (b)
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Fig. 30 Validation with FRP reinforced specimens (slenderness ratio < 3): (a) M1L3; (b)

M2L3; (c) M3L3; (d) M5L3; (e) EO4; (f) EO5; (g) E08; (h) E14
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Conclusions

A partial-interaction mechanics procedure has been proposed for quantifying the passive
stress/strain relationship of encased concrete within circular sections. The procedure uses
the partial-interaction bond-slip material property of the encasement and the partial-
interaction shear friction material property of the sliding plane. Consequently, it does not
rely on member testing and can derive the passive concrete stress/strain for any type of
encasement that is stirrups, tubes or wraps, with any geometric variation of the circular
section and the concrete can be encased both internally and/or externally such that the
confinement varies within the section. The procedure allows for intermediate crack
debonding, yield should it occur, fracture of the confinement reinforcement and it also

identifies the sequences in which these critical points occur.

Closed form solutions for deriving the passive stress/strain are given. The mechanics model
has been compared with published tests on FRP wrapped or stirrup reinforced circular RC
sections and with two published semi-empirical approaches which shows that it can simulate
the change in ductility with good correlation. These closed form solutions can be used to
generate the concrete passive stress/strain from material properties only, that is without the

need for member testing, and for any circular cross-section for direct use in design.

A parametric study illustrates the importance of the cylinder size on the concrete passive
stress/strain, which is an effect which is normally ignored in current design rules and
consequently may give unsafe solutions particularly in practical large-size members. Useful
rules of thumb are also developed in the parametric study: to quantify the limit to the ductility
of the concrete that is the concrete stress and strain at reinforcement fracture; and to increase
the FRP or steel wrap thickness in proportion to the square of the cylinder diameter to

maintain concrete ductility.

Appendix 1. Notation

The following symbols are used in this paper:

A B,C, = coefficients of unconfined concrete strength fco in linear shear
D, An, friction properties
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BH, A,

B:
Ac =  cross-section area of concrete which interacts with reinforcement
in tension stiffening analysis
Ar = total cross-section area of reinforcement in tension stiffening
analysis
b = width of reinforcement plate
D =  diameter of circular cylinder
Di = height within confined area of rectangular cylinder or perimeter of
a semi-circle for circular cylinder
d = diameter of longitudinal reinforcement
ds = diameter of stirrups
Ec = elastic modulus of concrete
Errr =  elastic modulus of FRP
Er = elastic modulus of reinforcement plate
E: = stiffness of Pcont/Siat relationship that is equal to Pic/(241c)
E> = stiffness of Pcont/Siat relationship from multi-crack analysis
fo =  peak strength of unconfined concrete from cylinder tests
fe =  peakstrength of confined concrete by assuming single sliding
failure
fecir = peak strength of confined concrete by assuming circumferential
failure
fw = ultimate stress
fo = fracture stress of FRP
fy1 = yield capacity of longitudinal reinforcement
fys =  yield capacity of stirrups.
he =  separation of shear-sliding plane interface
k = bond-slip stiffness in tension stiffening analysis
ke = arching-effect coefficient
Lot = length of confinement reinforcement
Let = critical length which is the minimum length required to achieve
the maximum debond force
Leet =  height of specimen
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Lg = gauge length
Leer =  total length of potential debonding failure plane of reinforcement

in tension stiffening analysis

Pax =  axial load applied to concrete cylinder
Pcont = confinement force from confinement reinforcement
Pac = confinement force when bond stress zc is developed to plate end

allowing for zgs

Py =  fracture capacity of confinement reinforcement
Pr2 = confinement force at &fr2
Pic = debond force of confinement reinforcement
Pp =  confinement force from plate reinforcement along the shear
failure plane
Pss = confinement force from one leg of stirrups
Pya =  vyield capacity of confinement reinforcement
r = radius of cross-section of circular cylinder
re =  ductility factor of confined concrete
S = slipdisplacement
Sax = vertical component of slip S
St = lateral component of slip S
Sat = sum of crack face slips at both sides of sliding plane
Siatder = lateral component of slip when debond developed to plate ends
Saatfic = lateral component of slip at Pric when Lert<Lcont and Pic<Pir
Satfr = lateral component of slip when confinement reinforcement starts

to fracture when Lcr<Lconf and Pic<Ps

Satfrr - = lateral component of slip when confinement reinforcement starts
to fracture when Lert<Lconf and Pic>Psr

Stz = lateral component of slip when confinement reinforcement starts

to fracture when Lert>Leont

Satic = lateral component of slip at commencement of IC debonding
Siaticc = lateral component of slip when confinement reinforcement is fully
debonded
Satya =  lateral component of slip when reinforcement starts to yield when

Lert<Lcont and Pic<Pyiq
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Satyiiz = lateral component of slip when reinforcement starts to yield when
Lert<Lcont and Pic>Pyid
Satyis =  lateral component of slip when confinement reinforcement starts

to yield when Lerte>Lcont

Ss = stirrups spacing
S# = specimen reference number
t = tube thickness
trre =  FRP thickness
Vu =  shear stress at the commencement of crack widening
a =  failure angle of concrete cylinder

=  cylinder parameter in tension stiffening analysis

A4 = slip of confinement reinforcement at crack face
MAc = slip of confinement reinforcement at crack face when debond
starts
o = slip between reinforcement and adjacent concrete
onc =  crack face slip at Psc
omax = o when zg reduces to zero
01 = 0 at 7Bmax
eax = axial strain when axial stress is equal to gax
e&o =  strain at fco for unconfined concrete
e&c =  strain at fec for confined concrete
gccmax =  Strain at omax Of passive stress/strain
eu =  strain at fe, of passive stress/strain
enc =  Reinforcement strain at crack face at Pric
er =  confinement reinforcement strain at P
er2 =  average lateral fracture strain of reinforcement recorded in the

experiments

ec = confinement reinforcement strain at Pic
em =  material strain of concrete
er = confinement reinforcement strain
es = sliding strain caused by slip S
esdeb =  sliding strain at Siat-deb
eser = sliding strain at Sjat-fr
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&sIC
ESIC2
&syld
&Syld2
&yld
&yld2

&1

A

2

Oax
Oconf
Oconffr
OconffIC
OconfIC
Oconfyld
Oconf0
Omax
ON

ONO

OScir

OSdeb

OsIC
OsIC2
OSyld

O%yld2

B

Bf

sliding strain at Siat-ic

sliding strain at Siat-ic2

sliding strain at Siat-yid

sliding strain at Siat-yia2

confinement reinforcement strain at Siatyid

confinement reinforcement strain at Sat-yid2

confinement reinforcement strain when debonding is complete or
when there is no bond

variation in slip parameter

axial stress

axial stress applied to concrete

lateral confining stress applied on concrete

lateral confining stress from confinement reinforcement at P
lateral confining stress from confinement reinforcement at Psic
lateral confining stress from confinement reinforcement at Pic
lateral confining stress from confinement reinforcement at Pyiq
lateral confining stress of unconfined concrete and equals zero
maximum axial stress of passive stress/strain

confining stress normal to single-sliding plane

normal stress at feo for unconfined concrete

axial stress of passively confined concrete by assuming single-
sliding failure

axial stress of passively confined concrete by assuming
circumferential failure

axial stress at Siat-deb

axial stress at Sjat-fr

axial stress at Sat-ic

axial stress at Siat-ic2

axial stress at Sjat-yld

axial stress at Sat-yid2

shear stress along single-sliding plane

bond stress existing between reinforcement and concrete

friction component of bond
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TBmax
(1

Tm

of

maximum s

bond stress at Pic

shear-friction material capacity

aspect ratio of interface failure plane

Appendix 2. Specimens Details in Parametric Study

Table 2.1 FRP wrapped specimens

Lef Dci ch trrP Efrp fp
S# (mm) (mm) (MPa) (mm) (Gpa) (MPa) oconfic/feo | Oeonfir/feo
Dsi-S1 900 | 100 | 50.0 |0.400 | 240 | 3000 | 0.1211 0.480
Dsi-S2 900 | 200 | 50.0 [0.800 | 240 | 3000 | 0.0857 0.480
Dsi-M 900 | 300 | 50.0 |1.200 | 240 | 3000 | 0.0699 0.480
Dg-L1 900 | 500 | 50.0 |2.000| 240 | 3000 | 0.0542 0.480
Dg-L2 900 | 800 | 50.0 [3.200 | 240 | 3000 | 0.0428 0.480
Ds2-S1 2400 | 100 | 50.0 [ 0.100 | 400 | 1000 | 0.0782 0.040
Ds2-S2 2400 | 200 | 50.0 | 0.400| 400 | 1000 | 0.0782 0.080
Ds2-M 2400 | 300 | 50.0 [0.900| 400 | 1000 | 0.0782 0.120
Ds2-L1 2400 | 500 | 50.0 | 2.500| 400 | 1000 | 0.0782 0.200
Ds2-L.2 2400 | 800 | 50.0 |6.400| 400 | 1000 | 0.0782 0.320
Ds3-S1 2400 | 100 | 50.0 [ 0.200 | 400 | 1000 | 0.1106 0.080
Ds3-S2 2400 | 200 | 50.0 | 0.800 | 400 | 1000 | 0.1106 0.160
Ds3-M 2400 | 300 | 50.0 [1.800| 400 | 1000 | 0.1106 0.240
Dss-L1 2400 | 500 | 50.0 |5.000| 400 | 1000 | 0.1106 0.400
Ds3-L2 2400 | 800 | 50.0 [12.80| 400 | 1000 | 0.1106 0.640
Ds4-S1 2400 | 100 | 50.0 | 0.400 | 400 | 1000 | 0.1564 0.160
Dss-S2 2400 | 200 | 50.0 |1.600 | 400 | 1000 | 0.1564 0.320
Dss-M 2400 | 300 | 50.0 |3.600 | 400 | 1000 | 0.1564 0.480
Dss-L1 2400 | 500 | 50.0 |10.00 | 400 | 1000 | 0.1564 0.800
Dss-L2 2400 | 800 | 50.0 | 25.60 | 400 | 1000 | 0.1564 1.280
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Table 2.2 Steel encased specimens

Lef Dei ch Lsteel Esteel fy

S (mm) | (mm) | (MPa) | (mm) | (Gpa) | (MPa) | “eore/fe

SDs2-S1 | 2400 | 100 | 50.0 | 0.50 | 200 400 0.080

SDs2-S2 | 2400 | 200 | 50.0 | 1.00 | 200 400 0.080

SDs-M | 2400 | 300 | 50.0 | 1.50 | 200 400 0.080

SDs-L1 | 2400 | 500 | 50.0 | 2.50 | 200 400 0.080

SDs-L2 | 2400 | 800 | 50.0 | 4.00 | 200 400 0.080

SDs3-S1 | 2400 | 100 | 50.0 | 1.00 | 200 400 0.160

SDs3-S2 | 2400 | 200 | 50.0 | 2.00 | 200 400 0.160

SDs3-M | 2400 | 300 | 50.0 | 3.00 | 200 400 0.160

SDg-L1 | 2400 | 500 | 50.0 | 5.00 | 200 400 0.160

SDg3-L2 | 2400 | 800 | 50.0 | 8.00 | 200 400 0.160

SDs-S1 | 2400 | 100 | 50.0 | 1.50 | 200 400 0.240

SDs-S2 | 2400 | 200 | 50.0 | 3.00 | 200 400 0.240

SDss-M | 2400 | 300 | 50.0 | 4.50 | 200 400 0.240

SDg-L1 | 2400 | 500 | 50.0 | 7.50 | 200 400 0.240

SDg-L2 | 2400 | 800 | 50.0 |12.00 | 200 400 0.240

where tseer IS the steel tube thickness and Este is the steel tube modulus.

Appendix 3. Specimens Details in Validation
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Table 3.1 Details of published FRP reinforced specimen whose aspect ratio is equal to or
larger than three

Lgl Ldef Dci ch trrP Efrp fp

S# Ref. (mm) | (mm) | (mm) | (MPa) | (mm) | (Gpa) | (MPa)

N-0.2T-5R-1 | Vincentetal [62] 175 750 150 55.2 0.200 128.5 2390

N-0.2T-5R-2 | Vincent et al [62] 175 750 150 55.2 0.200 128.5 2390

N-0.2T-5R-3 | Vincent et al [62] 175 750 150 55.2 0.200 128.5 2390

SCP-1-1 Song et al [10] 300 300 100 | 224 | 0150 | 237 | 4073
scp-2-1 Song et al [10] 450 450 150 | 224 | 0150 | 237 | 4073
SCP-3-1 Song et al [10] 300 300 100 | 409 | 0150 | 237 | 4073
SCP-3-2 Song et al [10] 300 300 100 | 409 | 0300 | 237 | 4073
SCP-4-2 Song et al [10] 450 450 150 | 409 | 0300 | 237 | 4073
SCP-4-3 Song et al [10] 450 450 150 | 409 | 0450 | 237 | 4073

C20 Carrazedo etal [63] | 450 450 150 | 425 | 0340 | 209 | 2720

C2HOL1M Wang et al [70] 204 612 204 245 0.167 240 4340

CLHOL2M | Wang etal [70] 305 915 305 | 245 | 0334 | 240 | 4340

C1HOL2 Wang et al [69] 204 612 204 245 0.334 240 4340
LC1 Wau et al [57] 300 300 100 46.4 0.286 118 2060
LC2 Wu et al [57] 300 300 100 46.4 0.572 118 2060
MC3 Wu et al [57] 300 300 100 78.5 0.858 118 2060

where S# is the specimen reference number.
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Table 3.2 Details of published FRP reinforced specimen whose aspect ratio is less than

three.
- Ref Lgi Lprsm Dei feo trrP Errp fo
(mm) | (mm) | (mm) | (MPa) | (mm) (GPa) (MPa)
CC-S Liang et al [66] 200 200 100 25.9 0.167 245.0 3248
CC-M Liang et al [66] 400 400 200 22.7 0.334 245.0 3248
CC-L Liang et al [66] 600 600 300 24.5 0.501 245.0 3248
L2 Xiao et al [67] 152 305 152 33.7 0.762 105.0 1577
L3 Xiao et al [67] 152 305 152 33.7 1.143 105.0 1577
H2 Xiao et al [67] 152 305 152 55.2 0.762 105.0 1577
M1L1 Almusallam [68] 150 300 150 47.7 1.300 27.0 540
M2L1 Almusallam [68] 150 300 150 50.8 1.300 27.0 540
M1L3 Almusallam [68] 150 300 150 47.7 3.900 27.0 540
M2L3 Almusallam [68] 150 300 150 50.8 3.900 27.0 540
M3L3 Almusallam [68] 150 300 150 60.0 3.900 27.0 540
M5L3 Almusallam [68] 150 300 150 90.3 3.900 27.0 540
E04 Nanni et al [65] 300 300 150 36.3 0.600 72.6 3240
E05 Nanni et al [65] 300 300 150 36.3 0.600 72.6 3240
EO08 Nanni et al [65] 300 300 150 36.3 0.600 72.6 3240
E14 Nanni et al [65] 300 300 150 36.3 2.400 72.6 3240

Table 3.3 Details of published stirrups reinforced specimen whose aspect ratio is equal to

or larger than three

Lgl Dei cover fco d| fy.| ds Ss fy.s
(mm) [ (mm) | (mm) | (MPa) | (mm) | (MPa) | (mm) | (mm) | (MPa)
Mander [71] | 450 | 438.00 | 25.0 | 28.0 | 16.0 | 275 | 12.0 | 69.0 | 275
Mander [71] | 450 | 438.00 | 25.0 | 28.0 | 16.0 | 275 | 12.0 | 103 275
Mander [71] | 450 | 440.00 | 25.0 | 28.0 | 16.0 | 275 | 10.0 | 119 275
9B | Lietal[72] | 300 |204.00 | 150 | 723 | 12.0 | 443 | 6.00 | 50.0 | 445
12A | Lietal[72] | 300 | 204.00 | 15.0 | 63.0 | 12.0 | 443 | 6.00 | 65.0 | 445
12B | Lietal[72] | 300 | 204.00 | 150 | 723 | 12.0 | 443 | 6.00 | 65.0 | 445
6HB | Lietal [72] | 300 | 203.60 | 15.0 | 52.0 | 12.0 | 443 | 6.40 | 50.0 | 1318
6HC | Lietal [72] | 300 | 203.60 | 15.0 | 825 | 120 | 443 | 6.40 | 50.0 | 1318

S# Ref.

where cover is the cover thickness, di is the diameter of longitudinal reinforcement, fy. is the
yield capacity of longitudinal reinforcement, ds is the diameter of stirrups and fy.s is the yield

capacity of stirrups.
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Chapter 4— Flexural Analysis

Introduction

This chapter contains the journal paper below. This paper first shows how the passive
stress/strain derived in Chapter 3 from concentrically loaded confined prisms can be used in
a flexural analysis. The passive stress/strain is then simplified to a rectangular concrete stress
block suitable for design. Closed-form solutions to quantify the ductility of passively

confined concrete beams are then derived.
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Closed Form Solutions for Quantifying the Ductility of Concrete Beams

with Passively Restrained Concrete

X. Hao?, P. Visintin? and D. J. Oehlers®

Abstract

The ductility of a beam is important in reinforced concrete member design at the ultimate
limit state, especially in resisting dynamic loads such as those from earthquakes or blasts.
Concrete confinement reinforcement, such as stirrups or tubes, are widely used in structures
and can significantly enhance the ductility of concrete beams. However, this confinement
effect is normally ignored in current design standards, limiting the ability to design
specifically for ductility or to estimate the ductility of existing structures. In this paper, a
novel concrete passive stress/strain relationship based on the application of partial
interaction and shear friction theories is simplified to a rectangular stress block for flexural
analyses. This confined concrete stress block is then applied to quantify the moment/rotation
of a hinge where both the confinement of the concrete and hinge lengths are quantified

through mechanics.

Keywords: concrete confinement; passive stress/strain; partial interaction; reinforced

concrete beams; ductility; moment/rotation; closed form solutions

Introduction

Experimental research has broadly illustrated that inclusion of confinement reinforcement,
such as internal stirrups or external plates or tubes, can enhance the strength and, especially,
the ductility of concrete members (Lopes et al. 2012; Mansur et al. 1997; Rashid and Mansur
2005). While widely investigated in research, concrete confinement is often ignored in
practical applications (ACI 2014; Fib. 2010) resulting in an under prediction of member
strength, but more importantly, member ductility. For instance, over-reinforced beams are
not recommended in practical design because of a lack of member ductility when the
concrete is unconfined (ACI 2014; Australia Standard 2009; Fib. 2010). However, allowing
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for the influence of concrete confinement may allow the beam to behave in a ductile way
and to achieve a higher moment capacity (Mansur et al. 1997).

Traditional approaches for predicting member strength and ductility are based on full-
interaction moment/curvature analyses (Max/y), that is they assume that plane sections
remain plane and that there is no slip between the longitudinal or transverse reinforcement
and adjacent concrete (Hognestad 1951). Further, at the ultimate limit state a rectangular
stress block is applied to idealise the distribution of concrete compressive stresses at an
assumed maximum concrete strain. As a result of these assumptions traditional approaches:

1. Rely on empirical factors to quantify the hinge length and member ductility despite
significant challenges in their general definition and calibration (Attard and Stewart
1998; Hognestad 1951; Rajagopalan and Everard 1976; Tan and Nguyen 2005);

2. Ignore the size dependency of the concrete stress/strain behaviour, which is known
to result in reduced member ductility as member size increases (Du et al. 2017; Jin
et al. 2017; Silva and Rodrigues 2006; Thé&iault et al. 2004); and

3. Ignore the influence of concrete confinement, which increases member ductility at
all member sizes, but is a phenomena which is itself size dependent (ACI 2014; Fib.
2010; Hognestad 1951).

In the traditional beam flexural analysis, non-linear unconfined concrete stress/strain
relationships are simplified to simplified stress blocks which may be either rectangular
(Whitney 1937), bilinear (Jensen 1943), or parabolic (Mensch 1914). The rectangular
concrete stress block is widely accepted by codes due to its ease of application (ACI 2014;
Australia Standard 2009; Fib. 2010) where parameters « and y determine the magnitude and
position of the simplified rectangular stress block. However, these empirically derived
parameters have the following drawbacks. Firstly, they are empirically derived from
unconfined-concrete-beam regions (Kaar et al. 1978; Rajagopalan and Everard 1976) but are
often used for the design of confined regions (ACI 2014). As a result, their application may
underestimate the strength and, more importantly, the ultimate strain of concrete &, (Mansur
et al. 1997), meaning designers are not able to utilise the higher capacity and ductility
afforded by concrete confinement. Secondly, the controlling parameters « and y are known
to be affected by member size, but this effect is not typically quantified (Yi et al. 2002).
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In this paper, a new rectangular stress block is quantified based on the application of the
fundamental mechanisms of shear friction and partial-interaction theories. It is shown that
with this approach the rectangular stress block can be made size-dependent and can explicitly
allow for passive confinement which is limited by either yielding, fracture or debonding of
the confining reinforcement. Having defined the rectangular stress block it can be utilised
either directly in traditional strain-based analysis approaches, or alternatively, as shown here,
it can incorporate into displacement based analysis approaches and closed form solution to

predict member ductility is proposed.

Passive Concrete o/c

The confinement mechanism for deriving the passive stress/strain has been described for
rectangular prisms (Hao 2018b) and for circular cylinders (Hao 2018a). This mechanism will
be described qualitatively in this section starting with the active stress/strain mechanism

followed by the passive mechanism which will then be quantified.

Active Stress/Strain

Consider the actively confined rectangular concrete prism in Fig. 1(a) that has a potential
sliding plane F-N. The prism in Fig. 1(a) is subjected to an axial stress oax and lateral
hydraulic stress ocont. Here a rectangular prism is shown in Fig. 1(a), but the approach
described can also be applied to a circular cross-section. Before the occurrence of sliding,
the axial strain is a material strain em and is independent of the size of the deformed length
Laer. The axial stress oax is gradually increased until the sliding plane F-N forms which then
has a slip S and inclination as. The axial component of the slip Sax will cause contraction of
the concrete prism and subsequently a size-dependent equivalent axial strain es = Sax/Let.
The shear sliding plane F-N is subjected to shear stress r and normal stress on along and
normal to the shear failure plane resolved from the components of force from oax and ocont.
The relationship between shear stress z, normal stress on, slip S and crack width her is referred
to as the shear friction material properties (Mattock 1974; Mattock and Hawkins 1972). As
the lateral component of the crack width her is much smaller than S it is ignored in practice

giving a slightly conservative assumption (Haskett et al. 2010a; Haskett et al. 2011).
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Fig. 1 (a) Actively confined concrete (b) passively confined concrete

Let us first consider the active stress/strain properties which are required in the following
section on the passive stress/strain. The active stress/strain O-A-B in Fig. 2 is for the
unconfined concrete that is oconfo = 0. As an example (although the following applies to any
confinement), consider the laterally confined case O-P1-E-F where the lateral confinement
IS oconfyid. ON application of load, sliding occurs at point A (eco, feo) for the unconfined
concrete and at point E (ecc2, fec2) for the confined concrete. Prior to the formation of a sliding
plane, the axial strain is the size-independent material strain em. Sliding occurs with a
reduction of the axial stress, and the axial strain is comprised of the size-independent
material strain em and size-dependent sliding strain es such as point P at a confinement ocontyid.
Then for a given axial stress oax and lateral confinement ocont, the zand on in Fig. 1(a) can be
determined (Ali et al. 2010). From these values, slip S can be derived and subsequently the
sliding strain es allowing for the definition of the descending branch of active stress/strain

relationship.
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Fig. 2 Passive stress/strain

Passive Stress/Strain

Consider the passively restrained rectangular prism in Fig. 1(b) which is laterally reinforced
by either stirrups, tubes, plates or a combination of them. This prism has the same dimensions
and potential sliding plane F-N as that in Fig. 1(a) and is under a concentric load Pax and
axial stress oax. The diameter or width of the cross-section within the transverse
reinforcement is Dci. Prior to the formation of the sliding plane, the lateral confinement
reinforcement does not have any significant deformation and, subsequently, neither a
confinement force nor an associated lateral confining stress. Increase the axial stress until
the occurrence of sliding. The lateral slip component Siat is resisted by the lateral
reinforcement by the confinement force Pcont and subsequently the lateral confinement stress
ocont. It has been illustrated that for circular cross-sections when the confinement force Pcont
is constant along the confinement reinforcement, then the corresponding lateral confining
stress acont IS constant along the shear sliding plane (Hao 2018a). In Fig. 1(b), Siat can be
visualized as the sum of the crack face slips 4 at both sides of the sliding plane that is 24.
The confinement reinforcement behaviour Pcont/4 can be determined from partial-interaction
mechanics (Haskett et al. 2008; Yuan et al. 2004) and subsequently the relationship Pcont/Siat
can be derived. Hence for a given slip S, Pcon Can be derived from Pcont/Siat properties, and

then oconf can be derived from Pcont from which the active stress/strain can be determined.
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From slip S, the sliding strain es can be derived and is fitted within the active stress/strain to
fix points on the passive stress/strain (Hao 2018b).
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Fig. 3 Confinement mechanism in circular and rectangular sections

Consider the cross-section of the cylinder in Fig. 3(a) or that of the rectangular prism in Fig.
3(b). The sliding plane can be either at the centre at plane C-C’ in Fig. 1(b) or off-centre at
plane D-F. For the circular section in Fig. 3(a), the confinement force Pcont depends on the
tangential component of Sia that is S1at. However, it has been illustrated that it is reasonable
to assume that Siat equals S’ to give a safe solution (Hao 2018a). The confinement
reinforcement is assumed to be anchored: at points M and M’ in Fig. 3(a) due to symmetry
about M-M’; or at points N and N’ in Fig. 3(b) due to the right angle bends. Hence when
there is no bond or debonding is completed, strain of the confinement reinforcement is
constant at &z along the confinement reinforcement length D; and consequently the lateral
component of slip Siat equals Diez. For circular cylinders in Fig. 3(a), Di equals the length of
the perimeter of the semi-circle. For rectangular prisms in Fig. 3(b), it equals the section
width Dei.

Let us now derive the passive stress/strain in Fig. 2. For this, first derive the active
stress/strain O-A-B for oconfo that is the unconfined case. Then O-C-D for the IC debonding

resistance Pic which induces a reinforcement strain ec and the consequential lateral
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confining stress oconfic at Pic; Pic is described and quantified in the Appendix B. The active
stress/strain O-E-F in Fig. 2 can be constructed for the yield capacity Pyq and lateral
confining stress aconyid at Pyia. Similarly, the active stress/strain O-G-H can be constructed

for the fracture capacity P+ and lateral confining stress oconffr at Psr.

Prior to the occurrence of sliding, the confinement reinforcement does not deform so the
passive stress/strain follows O-A in Fig. 2 at acono = 0. Sliding occurs at point A and slip
gradually increases until IC debonding occurs that is at the confinement force Pic and lateral
component of slip Siatic from which the effective strain esic can be determined and
consequently point I. At the end of debonding and still at Pic, Siat equals Siat-ic2 which is icDi
and consequently esic2 can be determined to give point J. From similar analyses, the
confinement reinforcement may yield at Pyiq at point L then fracture at Ps at point M or
directly fracture at point M without yielding at point L. When debonding does not occur, the
confinement reinforcement may either yield at point K then completely yield at point L and
ultimately fracture at point M or directly fracture at point M without yielding at point L.
When the confinement reinforcement does not fracture, after completely yielding at point L,
the loading path follows L-F. The ultimate strain ecu may be either at point D when the
longitudinal reinforcement fails at debonding, or at point F for longitudinal reinforcement
that fails due to yielding, or at point N for longitudinal reinforcement that fails due to fracture
at point M as shown. It is worth noting that for stirrup reinforced prisms under concentric
load, it is found that the axial stress will not be lower than a specific strength which is the
minimum axial stress and is referred to as the residual stress ors (Li et al. 2001) and shown
in the ordinate. For instance, should the confinement reinforcement yield at point P in Fig.
2, then the axial stress may be kept constant at the residual stress ors such that it follows the
path P-Q.

Quantification of Passive Stress/Strain

Quantification of Key Points

The full quantification of the passive stress/strain through closed form solutions has been

given elsewhere (Hao 2018b) and for completeness is summarised in Appendix B. Figure 2
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shows the key points in the passive stress/strain for four confinements: that is zero
confinement that occurs prior to the onset of sliding; that at the onset and completion of IC
debonding; that at yield prior to and after debonding; and that at fracture. A specific
confinement may not occur and other confinements may be considered such as at a strain

between that at yield and fracture to make the analysis more accurate.

Table 1. Loading path for different cases in Fig. B3

Loading path in Fig. 2 Confinement reinforcement behaviour Equation to give S Scenarios in Fig. B3
@
O-A-I-1,-J-L-M debond then yield then fracture Eqgs.(38) to (42) Leont > Lert; Pic < Pyig; Pic < Pr
0O-A-1-1,--M debond then fracture Eqs.(38), (39), (40) and (42) Leont = Lert; Pic < Pyig; Pic < Pr
O-A-M fracture directly Eq. (44) Leont > Lent; Pic > Pyig; Pic = Py
0O-A-K-L-M yield then fracture Egs. (43), (41) and (42) Leont > Lert; Pic > Pyig; Pic > Py
O-A-M fracture directly Eq. (46) Leont < Lent
O-A-K-L-M yield then fracture Egs. (45), (41) and (42) Leont < Lert

Bearing in mind that the lateral strains s in Fig. 2 are a function of the lateral slip Sat, Fig.
B3 shows diagrammatically all the slip paths that can occur. Possible sequences of these slip
paths are given in Table 1, their scenarios summarised and the closed form equations for
deriving them listed. The key points with corresponding equations are also given in Table 2
for ease of analysis. Finally the procedure is shown as a flow chart in Fig. 4 where it can be

seen that central to the whole analysis is the derivation of the lateral slip Siat.

Table 2. Sjat of all key points in Fig. 2

Key point in Fig. 2 Siat Equation to give Siat ~ Pcont  Ocont Scenario
@ ® @ © ®

A 0 0 0
I Siatic Eqg. (38) Pic  oconic Leont > Lert; Pic < Pyig; Pic < P
I2 Sat-deb Eqg. (39) Pic  oconfic  Leont > Lert; Pic < Pyig; Pic < Prr
J Slat-ic2 Eqg. (40) Pic  ogcomic Leont = Lert; Pic < Pyig; Pic < P
K Slat-yld2 Eq. (43) Pyd  gconyid  Leont = Lert; Pic = Pyig; Pic > P
K SIat—yIdS Eq- (45) I:)yld Oconfyld Leont < Lert
L Stat-yld Eq. (41) Pyd  Oconfyld
M Stat-fr Eq (42) P Oconffr
M SIat—frZ Eq (44) P Oconffr Lconf ZLcrt; PIC ZPyId; PIC > Py
M SIat—er Eq (46) P Oconffr Leont < Lert
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Quantify Loyt (Eq. 25), Loon=Dji/2 (where Dj is
from Eq. 27 or Eq. 28), Pyld, P and Pyc (Eq. 23)

y

Lert = Leonf Lert < Leonf LosL
Pyld > P1c P> PiC Pyld < P1c P < PiC ort = -conf
casel case2 case3
Y Y Y
Quantify Sya¢ for each key Quantify Sy for each key Quantify Sy for each key
points in Fig. B3(a) (Egs. points in Fig. B3(b) (Egs. points in Fig. B3(c) (Eqgs.
38~42) 41~44) 41, 42, 45, 46)

LS ]
&L

Quantify oonf for each key
points (Eqgs. 47, 48, 49)

Y

Quantify axial stress and strain for all key points
(Egs. 52, 53)

Y

Linking these key points gives the passive stress/strain

Fig. 4 Flowchart to derive passive stress/strain

Rectangular Stress Block

Having quantified the key points of the passive stress/strain through the procedures outlined
in Fig. 4, the form is now simplified to that of a rectangular stress block (Hognestad 1951).

The application in a flexural analysis will be described later.

Area and Centroid of the Stress Block

Consider the arbitrary passive stress/strain O-A-K-L-F in Fig. 2 where each key point has
coordinates (xi, yi). These are also shown in Fig. 5 where point P at (X, Yci) is the centroid
of the stress block O-A-K-L-F. The coordinates (xi, yi) are derived from Egs. (52) and (53)
through Fig. 4 and Appendix B. The area Arec of the polygon O-A-K-L-F in Fig. 5 and the

x-coordinate of the polygon centroid X.i are (Bourke 1988)
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Z_:(X y|+l |+1y| (1)

Xci GAQC ;(X + X|+1)(X y|+1 |+1yi) (2)

where N is the number of key points and xn and yn are equals Xo and yo respectively. Take
the stress block O-A-K-L-F in Fig. 5 as an example, when N equals five, the coordinate (xs,

ys) in Egs. (1) and (2) is assumed to equal (xo, Yo) as shown (Bourke 1988).

A
K(Smafo3,GmaXZY3)
£ Axgy)) — ‘
afco‘ B — ‘;‘ C
> \
& L(x2,y2)
Yei ’H(StopZ’Gﬂxz) .
} P(xci’yci)
8top:xl
/ D Xei |
O(xg=xsyo=ys) | H' B0y &x(X) |F(xi,y)

Fig. 5 Rectangular simplification of passive stress/strain

a and y Parameters

The stress block O-A-K-L-F in Fig. 5 is simplified to the rectangular stress block D-B-C-F
with the same area and x-coordinate of the centroid. The width and length of the rectangular
stress block are afco and yOF where OF equals the maximum strain of the stress block &top

which equals x1 as shown. From the geometry, parameter y is

_DF _2(x—Xxy)
" OF X

@)
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where Xi can be obtained from Eq. (2). From the geometry, o is derived as follows

eC
af,=—"% 4
° = x, 4)

AEC
o=—t 5
12007/)(1 ()

where Arec can be obtained from Eq. (1). Substituting y from Eq. (3) into Eq. (5) gives

A’ec

“ 2(X1 - Xci) fco (6)

Examples of a and y Derivation

Parameters « and y will be derived for the stirrup reinforced beam B4-1.5C from tests by
Mansur et al. (1997); the details are given in Table 3. The passive stress/strain is derived

first and then o and 7.

Table 3. Details of stirrup reinforced beam

La Do Doz ch fy-l Ss Oconfyld
(mm)  (mm) (mm) (MPa) (MPa) (mm) (MPa)

S# Ref. ps

B2-2.6C Mansur et al 1997 1000 250 170 76.3 550 40.0 6.02 0.0231

B4-3.5C Mansur et al 1997 1000 250 170 76.3 550 30.0 8.03 0.0462

B4-2.6C Mansur et al 1997 1000 250 170 81.7 550 40.0 6.02 0.0462

B4-1.5C Mansur et al 1997 1000 250 170 82.2 550 70.0 3.44 0.0462

B4-2.6L Mansur et al 1997 1000 250 170 73.0 550 40.0 6.02 0.0462

B4-0.0C Mansur et al 1997 1000 250 170 72.9 550 - 0.00 0.0462
C4-0.0C Mansur et al 1997 1000 250 170 89.1 550 - 0.00 0.0462
D4-0.0C Mansur et al 1997 1000 250 170 1053 550 - 0.00 0.0462

B312 Rashid et al 2005 2400 400 250 72.8 460 100 3.76 0.0295

B313 Rashid et al 2005 2400 400 250 72.8 460 66.7 5.64 0.0295

S1B0 Giduquio etal 2012 900 300 200 23.9 531 190 1.07 0.0101

S2B2 Giduquio etal 2012 900 300 200 30.9 596 90.0 2.19 0.0101

S2B3 Giduquio etal 2012 900 300 200 311 596 45.0 4.38 0.0101
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Note: S# = specimen reference number; fy. = yield capacity of longitudinal reinforcement;
ps = longitudinal tensile reinforcement ratio.

Passive Stress/Strain

From Fig. 4 and Appendix B, the passive stress/strain of the stirrup reinforced prism is
plotted in Fig. 6. The passive stress/strain depends on the deformed length Lger of the prism
as in Fig. 1 which depends on the length of the hinge in the RC beam; this will be assumed
to be 259 mm as will be explained later in the beam analysis. The concrete strength fco equals
82.2 MPa which can be substituted into Eq. (31) to give axial strain g = 0.00255 at fo.
Hence sliding occurs at point A in Fig. 6 that has coordinates (eco = 0.00255, feo = 82.2). The
confinement reinforcement yields at point C where the lateral confining stress at yield oconfyid
= 3.44MPa as obtained from Eq. (47) by substituting the yield capacity of the stirrups Pyid =
15.6 kN. The critical length L¢rt from Eq. (25) equals 1292 mm which is larger than the
confinement length Lconf = Di/2 = 102 mm. Hence the variation in Fig. B3(c) applies. The
lateral component of slip at the onset of yield Siatyiiz from Eq. (45) equals 0.162 mm.
Substituting oconfyld = 3.44 MPa and Siatyiez = 0.431 mm into Egs. (52) and (53) gives the
axial stress 66.9 MPa and axial strain eax-yis 0.00632 at point C in Fig. 6 that is the onset of
yielding. The strain hardening effect is ignored, hence, after yielding at point C, the
confinement force and stress oconfyid 1S unchanged. With regard to point D, substituting the
axial stress os = 0 MPa into Eq. (52) and rearranging gives the slip at point D of Sjat.0 = 1.47
mm. Substituting oconfyid = 3.44 MPa, Siat.0 = 1.47 mm and os = 0 MPa into Eq. (53) gives
the axial strain at point D which is also the ultimate strain . = 0.0118. At point E, axial
strain equals 1.5¢cy = 0.0177 and axial stress equals zero. Hence, all the coordinates of the
key points O, A, C, D and E have been derived. The additional point E at a strain of 1.5&c
is not required in design but will be used in the ensuing validation to following the rapidly
descending branch of the strength.
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Fig. 6 Rectangular simplification of passive stress/strain of specimen B4-1.5C and Lger =
0.5Scr

Parameters in Flexural Analysis

In this section, « and y are derived for the stress blocks in Fig. 6 of O-A-A’ at the onset of
sliding, O-A-C-C’ at the onset of yield and O-A-C-D and at the ultimate strain. These stress
blocks have the same abscissa of the centroid Ao, Co and Do with their corresponding
rectangular stress blocks Ai-Az-Asz-A’, C1-C2-C3-C’ and Di1-D2-Ds-D respectively. For
instance, the stress block O-A-A’ has the same abscissa of the centroid Ao with the simplified
rectangular stress block Ai-Ax-As-A’. Furthermore, the maximum strain of these stress
blocks is also known because the strain of all the key points has been derived. For instance
when the stress block O-A-A’ is developed, then the maximum strain of the stress block &top1

equals &co.

The coordinates of points O, A and A’, derived previously, are substituted into Egs. (1) and
(2) to give the area of the polygon O-A-A’ which is Arec = 0.1048 and the abscissa of the
polygon centroid X = 0.00170. From which the parameters a = 0.750 and y = 0.667 can be
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obtained from Egs. (6) and (3) and, subsequently, the rectangular stress block Ai-Az-As-A’
as well as the centroid Ao can be determined from the definitions of a and .

With regard to the stress blocks O-A-C-C’ and O-A-C-D in Fig. 6, &top equals strains at point
C’ and D with &top2 = gax-yid aNd top3 = &cu @S Shown. Similar to the procedure for the derivation
of o and y of the stress block O-A-A’, a and y can be derived from Eqgs. (6) and (3); for stress
block O-A-C-C’, a equals 0.852 and y equals 0.853 and for stress block O-A-C-D, « equals
0.467 and y equals 1.16.

The stress block O-A-C-D-E in Fig. 6 is developed to validate the descending branch of the
strength and this is not required in design and only in the validation. Similar to the previous
description, this stress block is simplified to the rectangular stress block Ei-E2-Es-E and

parameters o equals 0.252 and y equals 1.44 from Egs. (6) and (3).

Segmental Flexural Analysis

In this section, the parameters « and y are used in a flexural analysis of rectangular sections
for both strength and ductility. The results of « and y can be applied directly to a circular

cross-section.

Passive Concrete Confinement in Beams

It will be shown that the concrete stress/strain that is derived from passively confined
concentrically loaded prisms as in Fig. 1(b), where the strain profile is uniform, can be
applied directly to the concrete in flexurally loaded beams in Fig. 7 where the strain profile

varies linearly.

The prismatic section M-N-O-H:-Aq in Fig. 1(b) is shown in the beam in Fig. 7(a) where the
sliding plane is N-F and the cross section and passive restraints are in Fig. 7(b). Let the prism
in Fig. 7(a) be subjected to a uniform axial stress oax along its depth M-F-A1. The prism is
sliced into n segments of equal depth Si.n such that the sliding plane within each segment is

passively restrained by identical elements E1.n. Each portion of the sliding plane is shown in
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Fig. 8 where gax1-n = oax. It can be seen that the sliding planes are identically restrained such
that as the axial stress oax IS varied, the behaviour along each sliding plane can be considered
to be identical. Now let us apply a varying axial stress along the depth M-F-Az in Fig. 7(a)
as occurs in a flexural analysis such that each segment in Fig. 8 has a different axial stress
but within the segment the axial stress is uniform. The behaviour of each individual segment
Is identical to that which would have been obtained from a prism test for the corresponding

axial stress.
confinement
b b b .

M N 0 . reinforcement
Segment] S, | > @) d
Segment2, S,/ |
Segment3 S, |

~sliding]
F - plane | E, % E, E - D's Q:
| |
| |
Ay ! ! T | - @) @
element3 element2 elementl H,
(a) (b)

Fig. 7 Lateral reinforced prism

Hence to allow for the variation in the axial stress in a segmental analysis of a beam, each

segment and each element in Fig. 8 are considered to act individually.
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Fig. 8 Elements of lateral reinforced prism from Fig. 7

Segmental Analysis

It has been shown that the passive stress/strain derived from prisms can be applied directly
to beams. This passive stress/strain has also been simplified to rectangular stress blocks
which will now be used in the segmental analysis of beams. As the segmental analysis has
been described in detail elsewhere (Oehlers et al. 2012; Oehlers et al. 2011; Oehlers et al.
2017; Visintin et al. 2012a; Visintin et al. 2013; Visintin et al. 2012b), it is summarised here

and the closed form solution will be derived later.

Consider the half of a stirrup reinforced beam under four-point bending in Fig. 9(a). It is
symmetric about the plane A’-A2 and has the rectangular cross-section in Fig. 9(b). The

beam is subjected to a shear load Pax and a moment Max. The load Pax is gradually increased
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until flexural cracks and a wedge form. Consider the possible wedge locations A’-E’-E and
A’-F’-F which have the same inclination as as shown (Visintin et al. 2012b). The
deformation or hinge length Lger equals (n+0.5)Ser in which n is an integer and Scr is the crack
spacing (Visintin et al. 2012b). The integer n is chosen such that Lger just encompasses the
wedge length Lwdg: such as Lger1 = Scr/2 to cover wedge A’-E’-E which has a length Lwdg1; Or
Laef> = Ser + Ser/2 to cover wedge A’-F’-F which has a length Lwdg2 (Visintin et al. 2012b). In
summary, the deformation or hinge length Lger for the moment/rotation analysis is chosen to

just cover the maximum wedge length Lwdg.

L\\dul P . -
ax La longitudinal
Al E' F' ‘r‘einforcement
& & -
N |
M /\‘ U] C
flexural .
crnck stirrups E
Max /7 A%/Vﬁ\y\
F -
A ‘ : ‘y“ v /fAV /rA\ \ @] a
{ /B eI J\ /| [ [\ Do
S s | Pse € | Ser l Ser | D
Lgeri=Ser/2 ' ' ' ' Pax Dyz
Lgep=ScrtSe/2 @ b)

Fig. 9 Half of the reinforced beam under four point bending

Consider, as an example, the segment in Fig. 10(a) that has a hinge length Lget = Ser/2 and
which is subjected to a moment Max that causes an Euler-Bernoulli rotation 6 (Visintin et al.
2012a; Visintin et al. 2012b) such that the displacement profile is linear as in Fig. 10(b).
Consequently, the strain profile is linear as in Fig. 10(c) and subsequently the stress in the
compressive and tensile longitudinal reinforcement orc and ont in Fig. 10(d) can be
determined. From the peak concrete strain in the linear strain profile in Fig. 10(c) can be
determined the concrete rectangular stress block as previously explained. Consider the
passive stress/strain O-A-K-L-F in Fig. 5 which is simplified to the rectangular block C-F-
D-B which is also shown in Fig. 10(d). This rectangular stress block has a width of afc and
a length of ydna where dna is the neutral axis depth in Fig. 10(a). As occurs in practice, the

concrete cover in the compression zone is assumed to spall off as in Fig. 10(f).

From Figs. 10(d) and (f), the compressive force in the concrete is
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Pconc =a fco7d NADi2 (7)

where Di2 is the width the cross-section of the confined concrete as in Fig. 10(f). For the
longitudinal tensile reinforcement, the stress is obtained from partial interaction theory that
gives the relationship between the reinforcement force Pyt and crack face slip 4 (Visintin et
al. 2012b) where 4 is derived from the linear deformation profile in Fig. 10(b). The force
in the longitudinal compressive reinforcement Prc can be obtained from its strain. Hence
when the displacement profile is determined, Pr and Prc can be determined. In the ensuing
validation only reinforcement vyield is considered, that is reinforcement fracture or
debonding are not considered. Furthermore strain hardening is ignored to achieve a

conservative solution.

Lier=Ser/2 . concrete cover
compressive ) .
wdg reinforcement 1 compression
A’ B, c|B -
| /‘{ v Cllp Atop EmpE Ore Prc __Cup % @ /.r{
~ \ \‘gﬁ._ b 8 < s
C \ €co 'SZ_ /
| wedge R Peonc 4
| Max - s 1
s =Y
| B D 3 / stirrups
| | ol . /] \Q
| \ \
i A \ P .
" HoT | O I %
| \ \ = A
A| DD, A Bax Gax P tensile
(@) (b) (c) (d) (e) reinforcement  (f)

Fig. 10 Segmental analysis when Lger equals 0.5S¢r: (a) segment; (b) displacement profile;

(c) strain profile; (d) stress profile; (e) force profile; (f) cross-section

When concrete softening occurs, then the maximum strain in the rectangular stress block
that controls the key points is shown as an ewp in Fig. 6. Hence the deformation of the top

fibre of the confined concrete Atwp in Fig. 10(b) is

A &

top Ldef (8)

top —
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The iterative approach applied in the segmental analysis is described first and the closed
form solution will be given later. For a specific etwp that is for a specific key point in the
passive stress/strain, Awp can be determined from Eqg. (8). It is then a question of guessing
the neutral axis depth dna that is by pivoting about Ap. This fixes the deformation profile in
Fig. 10(b) from which the strain, stress and force profiles in Figs. 10(c) to (e) can be derived.
The neutral axis depth dna is varied until longitudinal equilibrium is achieved after which
the moment Max can be derived. When concrete softening does not occur as in under-
reinforced beams, then the pivotal point is now Ay in Fig. 10(b) when the tension

reinforcement yields and the analysis proceeds as before.
Hinge Length Quantification

The hinge or segment length Lger in Fig. 10(a) must encompass Lwdg. The minimum length
of Laer equals Scr/2 where Ser is given by Zhang et al. (2014) as

1

Ity

s, = 29.1(ﬁJ | L) AS" ©)
A: z-Bmax Lper ('\/E) 1

in which in a tension stiffening analysis: Lper is the total length of the debonding failure plane
of the tensile reinforcement which equals the perimeter of the reinforcement: Ac is the cross-
section area of concrete which interacts with the reinforcement; Ar is the cross-section area
of reinforcement; zemax and o1 are shown in Fig. B1 and quantified in Appendix B; the
coefficient oy is set as 0.4; and fet is the concrete tensile capacity which can be taken as

follows (Iravani 1996) and in which fc is in MPa

f, =0.59,/f, (10)

The wedge depth dw in Fig. 10(a) can be derived by assuming that concrete cover spalls off

from the geometry of the strain profile in Fig. 10(b) as follows
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dw:dNA_dNAi (11)

top

where the strain at level C-E in Fig. 10(c) equals &c0. Hence the wedge length in Fig. 10(a)

equals

‘900

Lugg = (dya —dya —) /tana (12)

top

Should the derived Lwdg be larger than Ser/2, then Lger should be increased by Scr to 1.5S¢r as
in Fig. 9 for Lwdg2 Such that the size dependent passive stress/strain in Figs. 2 and 6 are now
for length 1.5Scr. The segmental analysis proceeds as explained previously bearing in mind
that, as can be seen in Fig. 9, the total deformation of the tensile reinforcement within the
hinge length, that is the total crack face slip, is now 34y. Should Lwdg exceed 1.5S, the
procedure is repeated by increasing deformed length Lger by Scr until Laer cOvers the wedge

length Lwdg.

Closed Form Solution

A closed form solution for the beam B4-1.5C from tests by Mansur et al. (1997) is given in
detail in Appendix C as an example. The main steps are summarised as follows.

1. The passive stress/strain and rectangular stress block, such as those shown in Fig. 6,
have been derived previously. Hence for these stress blocks, the parameters « and y
as well as the strain of the top fibre of the confined concrete &tp are known.

2. The cross-section of the specimen B4-1.5C is shown in Fig. 11(f) and the hinge of
the beam in Fig. 11(a). The hinge length Lger is chosen to cover Lwag from Eq. (12).
For a neutral axis depth dna, the displacement profile and strain profile can be
determined as a function of dna. The rectangular concrete stress block is determined
as shown in the stress profile in Fig. 11(d) and the concrete force Pconc is Obtained
from Eq. (7) which is also a function of dna.

3. From the displacement profile the force in longitudinal reinforcement Py and Pr2

are derived as a function of dna from Eq. (57) or (58). Substituting the derived Pconc,
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Prt1 and Pr2 into the force equilibrium from Eqg. (65) in Fig. 11(e), dna can be solved
and then the following rotation & and moment Max can be determined

0=—"= (13)

NA

o>

d
M ax Pconc (DO - Cup - 7/—2NA) - PrtlLrtl - Prtz Lrt2 (14)

where cyp is the cover in Fig. 11(a), 4wp can be determined from Eq. (8), Pr1 and Pre

are tensile reinforcement forces as shown in Fig. 11(e) and Ly and L are their lever

arms as shown.
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Fig. 11 Segmental analysis of specimen B4-1.5C when Lqef equals 1.5Scr: (a) segment; (b)

displacement profile; (c) strain profile; (d) stress profile; (e) force profile; (f) cross-section

For an under-reinforced beam, the pivot point is the displacement when all the tensile
reinforcement has yielded. The derivation of the moment/rotation about this pivotal point
follows. Consider the segmental analysis in Fig. 11. At the pivotal point, the crack face slip
Ar2 In Fig. 11(a) equals 4yia which is the crack face slip when the longitudinal tensile
reinforcement starts to yield and can be quantified from Eq. (59). Hence, when the neutral
axis depth dna is guessed as well as 4w = Ayig In Fig. 11(a), the displacement profile and

strain profile can be determined as a function of dna. Softening normally does not occur and
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the triangular concrete stress block O-H-H’ in Fig. 5 is developed. For this triangular
concrete stress block the resultant force and its lever arm are obtained as a function of dna
from geometry. Having determined the concrete force, the other procedures to derive the

moment/rotation is the same as that of an over-reinforced beam.

Idealisation of the Ductility

Derivation of Moment/Rotation from Experiments

There are several methods of quantifying the ductility of a beam such as by using: the
traditional ~ full-interaction moment/curvature (Max/y); or the partial-interaction
moment/rotation (Max/6) where, for example, the moment/rotation can be employed in the
moment redistribution analysis (Haskett et al. 2010b; Haskett et al. 2009; Visintin and
Oehlers 2016); or the load/mid-deflection (Pax/4m). In this research, moment/rotation is used
to measure the beam ductility which is extracted from experimental load/mid-deflections as

follows.
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250

2001

100

50

O 1 1 1 1 1 1
0 20 40 60 80 100 120 140

Ayy(mm)

Fig. 12 Load/Mid-deflection (Pax/4m) of specimen B4-3.5C
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The load/mid-deflection of the passively confined beam B4-3.5C by Mansur et al. (1997) is
shown in Fig. 12. Before the formation of the wedge, the mid-deflection J,exp can be
obtained by integrating the continuous curvature along the beam. After the formation of the
wedge at point A in Fig. 12, it is assumed that all of the concrete cover above the neutral
axis spalls off due to the formation of the wedge; this degree of spalling is probably an
overestimation and is therefore a conservative assumption. The spalling causes a sudden
reduction of the shear load Pax to point B (Giduquio et al. 2015; Mansur et al. 1997). After
which, the mid-deflection, such as that at point C, is comprised of the deflection outside the
hinge region d,exp and that due to the rotation of the hinge daexp. These components of the

deflection are also shown in Figs. 13(a) and (b) where Ly is the length of the beam.
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Fig. 13 Mid-Deflection of a beam due to (a) curvature in the non-wedge region (b) rotation

of the wedge

The hinge region, which is shown hatched in Fig. 13(b), has a rotation of 6. For ease of
analysis, the pivot is assumed to occur at the middle point of the hinge region at point A.
Consequently, the deflection due to rotation de.exp IS given by Gexp(Ln/2-Leer/2). Rearranging

gives the rotation of the hinge as
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Ouyp = O o0 (15)
"L /2-Ly /2)

Because in Fig. 13 the deformed length Laer << Ly, the effect of the pivot position is small.
The remaining component of the deflection J,.exp is determined by integrating the curvature
outside the hinge region as in Fig. 13(a). The moment/rotation of the hinge can now be
obtained from Fig. 12 by converting the ordinate to the moment in the hinge and the abscissa

to the rotation using Eqg. (15).

It is worth noting that the concrete cover above the neutral axis is assumed to spall off, as in
Fig. 10(f), only in the hinge region and after the formation of the wedge at point A in Fig.
12. Consequently the mid-deflection due to the wedge deaexp in Fig. 13(b) is derived from the
cross-section without concrete cover that is Gexp IS based on a cross-section without concrete
cover. In contrast, the concrete cover does not spall off outside the hinge region in Fig. 10(f)
through the whole loading process; thus while unloading Pax/4m follows A-O in Fig. 12 that
is the load/deflection of beam with concrete cover. Having derived the moment/rotation from
experimental load/mid-deflection, let us now consider the derivation of a theoretical

moment/rotation.

Idealised Theoretical Moment/Rotation

Key points on the theoretical moment/rotation for over-reinforced and under-reinforced

beams will be described qualitatively.

Over-Reinforced Beam

The analysis of an over-reinforced beam is summarised in Fig. 14. Four distributions of the
concrete stress block with increasing applied strain profiles are shown in Figs. 14(b) to (e).
The concrete cover shown hatched in Fig. 14(a) is assumed to spall off in the compressive
region after the onset of concrete softening. The neutral axis A-A’ in Fig. 14(a) corresponds
to the stress block in Fig. 14(b) and applies to point A in Fig. 15. Whereas the neutral B-B’
in Fig. 14(a) is for the stress block in Fig. 14(e) that corresponds to point E in Fig. 15. The
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moment/rotation from a continuous segmental analysis is plotted as the solid line in Fig. 15
where the concrete stress block controls the flexural behaviour of the beam as not all the
tensile reinforcement may have yielded or fractured. The five key points linking O-A-B-D-
E with a dashed line give a simplified moment/rotation for which closed form solutions will

be described in the next section by taking specimen B4-1.5C (Mansur et al. 1997) as an

example.
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Fig. 14 Cross section of the beam (a) and different stress blocks are developed (b, ¢, d, and

e)

At point A at (61, My) in Fig. 15, the strain of the top fibre of the confined concrete, &top in
Fig. 14(a), equals eco that is the strain at the unconfined strength feo in Fig. 5 and in Fig. 14(b).
At point B (6, M) in Fig. 15, &tp is the strain at the maximum of the passively confined
concrete after sliding shown as point K (emax, omax) in Fig. 5 and in Fig. 14(c). After point B
in Fig. 15, the slope of moment/rotation changes rapidly. Further development of the
concrete stress block gives point C at the maximum moment Mmax Where either the moment
lever arm or the force in the reinforcement reaches its maximum. Then at point D at (5, Ms),
the passive stress/strain is fully developed as in Fig. 14(d). After which, there is usually a
rapid loss of moment capacity due to a reduced lever arm such as in Fig. 14(e) which is at
point E in Fig. 15 at (6, Ms). The difference between the moments Mz, Mz and Mmax IS

normally within a few percentage points so closed form solutions will only be determined
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for: (61, M1) and (&, M>) to give the ascending branch and (s, M3) to quantify the ductility.
With regard to point E, it is not required in design but it gives a point as the strength reduces

in the validation.

Fig. 15 Moment/Rotation of over-reinforced beam

Under-Reinforced Beam

The idealised moment/rotation of an under-reinforced beam is shown in Fig. 16 where the
behaviour of the longitudinal reinforcement controls the flexural behaviour. There are
several scenarios to consider: the longitudinal reinforcement may either fracture prematurely
leading to no ductility at point G (&, Ms); or yield at point H (&, Mg); and then fracture at |
(67, M7); or yield at H after which the concrete stress block is fully developed at point J (6,
Msg) which is the case shown in Fig. 14(d); after which the moment capacity rapidly reduces
due to the reduction of the moment lever arm at point K in Fig. 16 at (&, Mg) which is the
case shown in Fig. 14(e). Hence for beams that fail due to fracture of the longitudinal
reinforcement, closed form solutions are required for points G, H and I in Fig. 16 at (&, Ms),
(65, Mg) and (67, M7). For beams that do not fail due to fracture but are governed by yield of
the longitudinal reinforcement, closed form solutions are required for points H and J at (é,

Ms) and (&, Mg). Point K is not required in design but will be used in the following validation.
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H Bé,Mé) I(B7>M7) :I(B&MS)
yielding S
K (69, My)
E’é G(65,Ms)
0 0
Fig. 16 Moment/Rotation of under-reinforced beam
Validation

Figure 17 compares six different segmental analyses that were applied to the over-reinforced
beam B4-1.5C by Mansur et al. (1997). The experimental results of the ductility plateau were
obtained from the load/deflection plots as explained using Fig. 13. In cases 1 to 3 in Fig. 17,
the theoretical ascending branch of the passive stress/strain was assumed to be linear using
Eq. (35). The results of the first three cases are obtained from the proposed closed form
solution described in this paper.

1. The first case assumes that all the concrete is unconfined and that there is no spalling
or concrete cover loss to give a lower bound.

2. The second case allows for the effect of the confinement reinforcement but without
considering the residual stress ors in Fig. 2 that is ors = 0. It also assumes that concrete
cover in the compressive region, shown in the hatched area in Fig. 14(a), spalls off.

3. The third case is the same as the second case but includes the residual stress ors from
Eq. (54) giving a reasonably good correlation with the experimental results along the

ductile plateau.
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Fig. 17 Moment/Rotations of specimen B4-1.5C

In cases 4 to 6 in Fig. 17, the passive stress/strain has the non-linear ascending branch from
Eq. (32) and the results are obtained from a numerical model described elsewhere (Visintin
et al. 2012b).

4. The fourth case is the same as the third case except that the linear ascending branch is
replaced with a more accurate non-linear form from Eq. (32) giving better correlation
at the onset of sliding or softening and good correlation along the ductility plateau.

5. The fifth case is the same as the second case except that the passive stress/strain has
the non-linear ascending branch. Once again giving better correlation at the onset of
sliding.

6. The sixth case is the same as the fourth case except that the concrete cover in the
compressive region does not spall off. This gives a very unconservative result
stressing the importance of allowing for spalling.
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Compared with Code Approach

Closed form solutions have been compared with published test results by Rashid and Mansur
(2005) and Mansur et al. (1997) in Figs. 18 and 19, as well as by Lopes et al. (2012) in Fig.
20. These specimens were either over-reinforced or under-reinforced beams reinforced with
lateral confining steel reinforcement; details of these specimens are in Table 3. The second
case above, which uses a linear ascending branch without residual stress and with concrete
spalling, has been used as it gives a conservative result as well as case 3 that allows for the
residual stresses. The results have also been compared with a standard approach for strength
referred to as the code approach (Warner et al. 1998) which does not quantify the ductility.
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Fig. 18 Moment/Rotations of over-reinforced beam with specimen number: (a) B2-2.6C;
(b) B4-3.5C; (c) B4-2.6C; (d) B4-1.5C; (e) B4-2.6L; (f) B4-0.0C;
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In Figs. 18 to 20, the ‘theoretical without residual strength’ that is the second case in Fig. 17

gives, in general, a lower bound to the ductility. With regard to the ‘theoretical with residual

strength’ case that is the third case in Fig. 17, the ductility is in good correlation with the
experimental moment/rotation. The passive stress/strain block at point B in Fig. 17 for
different levels of confinement reinforcement (B4-3.5C, B4-2.6C, B4-1.5C and B4-0.0C in
Table 3) are shown in Fig. 21 and corresponding simplified rectangular stress block is shown
in Fig. 22. The experimental moment/rotations of these specimens are also shown in Fig. 23
and corresponding ‘theoretical with residual strength’ cases are shown in Fig. 24. It can

clearly be seen that the confinement reinforcement can enhance ductility for over-reinforced
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beams. Using code rectangular stress block in Fig. 22 for confined concrete may give

conservative solution.
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Compared with Karthik’s Approach

The proposed rectangular concrete stress/strain block is compared with that proposed by
Karthik and Mander (2010) (which also allows for concrete confinement) for specimen B4-
3.5C in Fig. 25 and specimen B4-1.5C in Fig. 26 and details of these specimen are shown in
Table 3. It shows that the main difference between these two stress blocks is the ductility at
large rotation such as that at points D and E in Fig. 15. This difference in ductility likely
arises because Karthik and Mander’s work is based on a size-independent stress/strain
relationship and from the application of the empirical hinge length proposed by Sawyer
(1965). Figures 27 and 28 compare Karthik and Mander’s M/6 with the case ‘theoretical with
residual strength’ as well as the experimental M/6exp 0f confined concrete beams in Figs. 18
to 20; the empirically derived rotation of the hinge Bex is obtained from Eq. (15). It is shown
in Eq. (15) that the hinge length Lger may affect Gexp but it also has been described previously

this effect is small and can be ignored.

Importantly, it is found when applying Karthik and Mander’s full-interaction approach, that
two layers of tensile longitudinal reinforcement in Fig. 11(f) are yielded, while from
proposed approach the top-layer tensile reinforcement is not yielded, and this results in a

significant variation in the predicted strength for all specimens shown in Fig. 27.
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Conclusions

A mechanics based approach has been described to quantify the concrete passive stress/strain
in prisms due to lateral confinement of the concrete from stirrups, tubes and wraps. It has
been shown that this passive stress/strain from prisms can be used directly in RC beam
analyses. Furthermore, this passive stress/strain has been simplified to a rectangular stress

block that is suitable for beam analyses not only for strength but also ductility.
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The concrete rectangular passive stress/strain has been used in a segmental analysis of over-
reinforced and under-reinforced RC beams with stirrups. It has been shown that there are
three key points in quantifying the moment/rotation and consequently the load/deflection
behaviour which are: the moment/rotation at the onset of concrete softening which helps
quantify the ascending moment/rotation branch; the moment/rotation at the maximum
strength of the passively restrained concrete which helps quantify the moment capacity; and
the moment/rotation when the passive stress/strain is fully developed which gquantifies the
ductility. Closed form solution to give moment/rotation of a hinge for these three key points
have been derived and are compared with test data extracted from load/deflection test data

of fourteen under-reinforced and over-reinforced beams with good correlation.

Appendix A. Notation

The following symbols are used in this paper:

Ac =  cross-section area of concrete which interacts with reinforcement

in tension stiffening analysis

Ar = cross-section area of reinforcement

bf = width of reinforcement plate

D =  depth of confined cross-section

Di = confinement reinforcement length
Di = width of confined cross-section

Do = beam depth
Doz =  beam width

di = longitudinal reinforcement diameter
dva = depth of neutral axis

dwv = wedge depth

Ec = elastic modulus of concrete

282



Er

fCC

fet

La
Lo

Lert

Ldef

Lper

Lwdg
Moax
Mmax
Pax
Pconc
Pcon
Prr
Pic

Ppl

modulus of reinforcement

peak strength of confined concrete by assuming single sliding

failure

tensile capacity of concrete

peak strength of unconfined concrete from cylinder tests
yield capacity of longitudinal reinforcement

separation of shear-sliding plane interface

bond-slip stiffness in tension stiffening analysis

shear span

half-length of beam

critical length which is the minimum length required to achieve

the maximum debond force
deformed length

total length of potential debonding failure plane of reinforcement

in tension stiffening analysis

wedge length

moment

maximum moment

shear load

compressive concrete force

confinement force from reinforcement
fracture capacity of reinforcement

debond force of confinement reinforcement

confinement force from plate reinforcement along shear failure

plane
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Poib
Poi
Prc
Prt
Pst
Pst1
Pyid

e

Sax
SCI’
Slat
Sat-deb
Stat-fic

Slat-fr

S lat-fr2

S lat-fr3

Siat-Ic

Siat-1c2

Stat-yld

confinement force in tube of depth bs

confinement force per unit depth from plate

force in longitudinal compressive reinforcement

force in longitudinal tensile reinforcement

confinement force from one leg of stirrups

confinement force per unit depth from stirrups

yield capacity of confinement reinforcement

ductility factor of confined concrete

slip displacement

axial component of slip

crack spacing

lateral component of slip S

lateral component of slip when debond developed to plate ends
lateral component of slip at Pric when Lert<Lcont and Pic<Prr

lateral component of slip when confinement reinforcement starts

to fracture when L¢rt<Lcont and Pic<Pyr

lateral component of slip when confinement reinforcement starts

to fracture when L¢rt<Lcont and Pic>Pyr

lateral component of slip when confinement reinforcement starts

to fracture when Lert>Lcont
lateral component of slip at commencement of IC debonding

lateral component of slip when confinement reinforcement is fully
debonded

lateral component of slip when reinforcement starts to yield when

Lert<Lcont and Pic<Pyiq
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Stat-yld2

Stat-yld3

Ss
St
Slat
Xci

Yei

as

Am
AI’C

Ant

lateral component of slip when reinforcement starts to yield when

Lert<Lcont and Pic>Pyid

lateral component of slip when confinement reinforcement starts

to yield when Lcrt>Lcont

stirrup spacing

specimen reference number
tangential component of Sjat
x-coordinate of polygon centroid
y-coordinate of polygon centroid

parameter in beam flexural analysis to determine the magnitude of

simplified rectangular stress block
inclination of failure plane
cylinder parameter in tension stiffening analysis

parameter in beam flexural analysis to determine the position of

simplified rectangular stress block

rotation of wedge

rotation of wedge of segment with Lqer equal to Scr/2

crack face slip

total crack face slip of segment

crack face slip at fracture of longitudinal tensile reinforcement

slip of confinement reinforcement at crack face when debond

starts

mid-deflection

crack face slip of longitudinal compressive reinforcement

crack face slip of longitudinal tensile reinforcement when Lger =

0.5Scr
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Art1s

Atop

yi| topl

Ayid

Omax
0 G-exp
O y-exp

o1
Eax
&cc

Ecu

&c0
Efr
€Ic
&m
Emax
&s
&Sdeb
ESfr

&siIc

crack face slip of longitudinal tensile reinforcement when Lger =
l.SSCr

deformation at top fibre of confined concrete

deformation at top fibre of confined concrete of segment with Lget

equal to Scr/2

crack face slip at onset of yielding of longitudinal tensile

reinforcement

slip between reinforcement and adjacent concrete
o when zg reduces to zero

deflection due to rotation of wedge

deflection outside hinge region

0 at TBmax

axial strain when axial stress is equal t0 oax

strain at fcc for confined concrete

ultimate strain when residual strength is ignored and axial stress

decrease to zero

strain at feo for unconfined concrete
confinement reinforcement strain at P
confinement reinforcement strain at Pic
material strain of concrete

strain at omax

sliding strain caused by slip S

sliding strain at Sjat-deb

sliding strain at Sjat-fr

sliding strain at Sjat.ic
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&sic2

Est

&syld

&ESyld2

Etop

&yld

&z

ps

Oax

Oconf

Oconffr

OconflC

Oconfyld

Oconf0

Oconpl

Oconst

Ocu

Ocu?2

Omax

ON

ONO

Orc

sliding strain at Siat-ic2

average strain in longitudinal tensile reinforcement
sliding strain at Siat-yid

sliding strain at Sjat-yid2

strain of top fibre of confined concrete
confinement reinforcement strain at Sat-yid

confinement reinforcement strain when debonding is complete or

when there is no bond

longitudinal tensile reinforcement ratio

axial stress

lateral confining stress applied on concrete

lateral confining stress from confinement reinforcement at P

lateral confining stress from confinement reinforcement at Pic
lateral confining stress from confinement reinforcement at Pyiq
lateral confining stress of unconfined concrete and equals zero
lateral confining stress of from plate reinforcement

lateral confining stress of from stirrups

ultimate stress at ecu

stress at 1.5&cu

maximum axial stress of key points of passive stress/strain after

the onset of sliding
confining stress normal to single-sliding plane
normal stress at fco for unconfined concrete

stress in longitudinal compressive reinforcement
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ors =  residual strength

ot = stress in longitudinal tensile reinforcement
os = axial stress of passively confined concrete by assuming single-
sliding failure
osgeb =  axial stress at Sat-deb
osir =  axial stress at Sjat-fr
osic =  axial stress at Sat-ic
osicc = axial stress at Sjat-ic2
osyld = axial stress at Siatyid
osyde = axial stress at Sjatyig2
t =  shear stress along single-sliding plane
8 =  bond stress existing between reinforcement and concrete
TBmax = maximum zs
tc =  bond stress at Pic
mm =  shear-friction material capacity

Appendix B. Quantification of Passive Stress/Strain

The confinement mechanism that induces the concrete passive stress/strain described
previously in qualitative terms is now quantified. The whole procedure has been described
elsewhere (Hao 2018b) and only a summary is given here. As the concrete in beams softens
due to a single sliding plane (Visintin et al. 2012b), this will be applied in the ensuing

analyses.

Partial Interaction Properties and Behaviours
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Shear Friction Properties

The shear-stress capacity m can be simplified in the following linear form (Hao 2017)
r. =(Ao, +B)S+Co, +D (16)

where on is the stress normal to the sliding plane and the coefficients A, B, C and D are
functions of the unconfined concrete strength fco. As an example, the following were derived
by Hao (2017).

When on < ono, Where ono IS the normal stress at the peak axial stress feo of unconfined

concrete and which is given by
HJ
Oy = fosin o (17)

where as is the sliding angle as shown in Fig. 1(a) and is assumed to equal 26° (Ali et al.
2010; Jensen 1975; Mattock and Hawkins 1972; Visintin et al. 2015) then

T, = [(0.00112 fCO —0.337)0N -0.000784f0% + 0.0152fCO +0.556]S +1.500,, +0.105 fCO (18)
When ano < on < 3ono, then

7. =[(0.00112f , +0.0636)c,,-0.000784f 2 —0.0620f , + 0.556]S +0.4985,, +0.298f,, (19)

Bond/Slip and IC Debonding

Any appropriate bond-slip material property can be used. Consider the bilinear bond-slip in
Fig. B1 as an example. For stirrups, the parameters in Fig. B1 have the following values
(Haskett et al. 2008)

Tomax = 2:54/ Tog (20)
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6, =1.5mm (21)

O =15Mm (22)

where feo is in MPa. The IC debonding resistance Pic (Ali et al. 2008) is

I:)IC = \/TBmaxémax '\/Lper ErA' (23)
which occurs at a crack face slip 4ic that is also Siat.ic/2 and where
AIC = 5max (24)

The critical length required to develop the debonding resistance Pic (Ali et al. 2008) is

T
== 25
L= (25)
where the parameter 1 is
L
1= TBmax per( 1 + 1 ) (26)
§max EI’A’ ECA%

The length of the fully debonded confinement reinforcement D; in Fig. 3 for a rectangular

prism is

D, = D, (27)
and for a circular prism is
7D,
D =2 —c 28
== (28)
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Hence when no bond exists or the confinement reinforcement has been fully debonded, the

strain in confinement reinforcement is constant along D;j at &z such that Sjat = &zDi.

Tgh

TBmax| '

81 Omax -Ss

Fig. B1 Bond slip material properties

Quantification of Active Stress/Strain

Ascending Branch

The following peak stress fec, such as those at points C, E and G in Fig. 2, are functions of

the lateral confining stress ocont (Hao 2018b)

H 2
. o Sina cosa, +Co,, COS” o, + D (29)
« sina, cosa, —Csin’ a,

where the strain ecc at fec is (Visintin et al. 2015)

Eq = EqoL+ A)(%)] (30)

in which A is a coefficient that equals 13.9 and where the unconfined concrete strain gco at

ch iS
£, =174x107° f ) +2.41x10° (31)
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where feo is in MPa. The ascending branch of the active stress/strain such as O-P1-E in Fig.
2 (Popovics 1973) is

Oy = f —— (32)

r=—7~ (33)

in which the concrete elastic modulus E¢ in MPa can be taken as (ACI 1992)

E, =3320,/f_, +6900 (34)

For ease of analysis, the ascending branch O-P1-E of the active stress/strain in Fig. 2 can be

linearised to O-P,-E as

Eax

&
=0, (35)
cC

where fec and ecc can be obtained from Egs. (29) and (30).
Descending Branch

For a given lateral confining stress oconf and slip S in Fig. 1(a), the following axial stress oax

is derived from the shear friction material properties (Hao 2018b)
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O SIN@, COS 0, + AST ¢ cos’ a, +BS +Co,, cos’ o, + D 36
o, = (36)

sina, cosa, — ASsin® o, —Csin’

The axial strain eax can be written as (Hao 2018b)

. o ﬁJFSCOSOcs

ax ax
fcc Ldef

(37)

where fec and &cc can be obtained from Eqgs. (29) and (30).

Quantification of Passive Stress/Strain

A slightly conservative assumption is made in that the sliding plane crosses the centre, such
as plane C-B-C’ in Fig. 1(b), which is shown in Figs. B2(a) and (b) for a rectangular and
circular prism respectively (Hao 2018a; Hao 2018b). After the onset of sliding, the lateral
component of slip Sia in Fig. 1(a) will cause the bond stress zs as shown which induces a
shear force Pcont and which is balanced by a confinement force of equal magnitude. As Siat
increases, the bond stress may build up to the maximum value zc and, subsequently, a
maximum confinement force due to bond Pic should yield or fracture not occur. This Pic is
referred to as the intermediate crack debonding resistance (Seracino et al. 2007; Yuan et al.

2001) which occurs at a crack face slip 4ic that depend on the bond-slip material properties.
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crt Lcn Lcn Lcrt
T, T,
/C'\ /9\\ Ic e
anchor [/~ \ g NP S
A /4 \\ P \ i..' TB < I
}‘," p = A(anchor)
L conf conf L
conf conf |
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(a)
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. _li_ concrete
| Slat
anchor anchor
A
a

Fig. B2 Development of bond stress for (a) rectangular section (b) circular section

Lateral Extension due to Sliding Siat

As Siat in Fig. B2 gradually increases, the bond stress zg builds up over the critical length L.
When Lt is less than confinement reinforcement length Leonf, the bond stress zg can be fully
developed to zc when Pic is less than the yield capacity Pyiq or fracture capacity Px. Any
further increase in Siat causes the bond stress block to move away from the sliding plane
towards the anchor points A or A: whilst the confinement force remains at Pic. After
completely debonding, the strain in the debonded reinforcement equals eic and any further
increase in Siat may lead to a yield strain &yiq Or fracture strain ¢r over Di. When Ly is larger

than Lcont, debonding does not occur and the confinement reinforcement may directly yield
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at Pyg or fracture at Ps. For all these scenarios, Siat Will be derived as below; full details are
shown elsewhere (Hao 2018b).

Case 1: Leont > Lert; Pic < Pyid; Pic < Py

The Peoni/Siat relationship for the case where Pic is less than Pyig or Psr and Leont > Lert is shown
in Fig. B3(a). The reinforcement debonds at (Siat-ic, Pic) at point A. Then the fully developed
bond stress zc in Fig. B2 moves towards the anchor points at (Siat-den, Pic) at point B in Fig.
B3(a) after which the reinforcement completely debonds at (Siatic2, Pic) at point C. The
confinement reinforcement may either yield at (Siatyid, Pyia) at point E and then fracture at
(Siat-fr, Psr) at point D or directly fracture at point D. For these points Sjat is given as follows
(Hao 2018b)

SIat—IC = 2A|c (L

con

> L

crt?

Pe < Puss Re < Pr) (38)

y

SIat—deb = 2AIC + gIC (D| - 2Lcrt) (L 2 L

conf — “ert?

Pe < P Pc < Py) (39)

y

SIat—ICZ :gIC Di (Lconf 2 Lcrt; PIC < Pyld; I:)IC < Pfr) (40)
Slat—yld =&y D, (41)
SIat—fr = gfrac Di (42)

where Lc¢rt, Di for rectangular prisms and cylinders, and 4,c can be obtained from Egs. (25),
(27), (28) and (24) respectively.
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Fig. B3 Pconf and Siat relationship for: (a) debonding prior to fracture or yield and Lcr<Lcont;

(b) fracture or yield without debonding and Ler<Lconf; (C) Lert>Lcont

Case 2: Lcont > Lert; Pic > Pyid; Pic > P

When Lcont > Lert and the IC debonding resistance is larger than the yield capacity Pyiq or
fracture capacity Py, debonding does not occur and the Pcont/Siat behaviour is shown in Fig.
B3(b). The confinement reinforcement may: either yield at (Siatyia2, Pyid) at point A; then
completely yield at (Siat-yid, Pyid) at point E; and ultimately fracture at (Siatfr, P#) at point D;
or directly fracture at (Siat-fr2, P#r) at point B. From Hao (2018b)

P
SIat—yIdZ = 2A|c PLId (Lconf 2 Lcrt; PIC > Pld; PIC 2 Pfr) (43)

y
IC
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Slat—frz :ZAIC ¢t 2 Ly P2 Pyld; Pc 2 Pfr) (44)

where 4,c and Pic can be obtained from Egs. (24) and (23) respectively.

Case 3: Lconf < Lcrt

When Lconf < Lert, debonding does not occur as shown in Fig. B3(c). This case is similar to
the previous Case 2 in Fig. B3(b). The only difference is that Siat.yid2 at point A and Sjat-r2 at
point B are replaced by the following Siat-yiaz and Siat-r3 as shown in Fig. B3(c) (Hao 2018b).

P 2sinh(D. 1)
S — ' L L 45
lat—yld 3 iErAy |:COSh(Diﬂ) +1:| ( conf < crt) ( )
P 2sinh(D. 1)
S — fr i L 46
lat—fr3 /’LErAr |:C03h(Di/1)+lj| (Lconf < crt) ( )

where Dj can be obtained from either Eq. (27) for rectangular prisms or Eq. (28) for cylinders.
The parameter 4 in Egs. (45) and (46) can be obtained from Eq. (60).

Lateral Confining Stress

The lateral confining stress from stirrup reinforcement oconst and plate reinforcement oconpi

for rectangular prisms have been derived elsewhere and can be written as (Hao 2018b)

2P,

Oconst = S [;t (47)
s—i2
2P, tan«
Gconpl = W (48)
ci —i2
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where S; is the stirrup spacing, Di2 is the length of the cross-section length within transverse
reinforcement as shown in Fig. 3(b), Pst is the confinement force from one leg of the stirrups

and Py is the confinement force from a plate acting along the whole sliding plane.

With regard to cylinders, the lateral confining stress acont be written as (Hao 2018a)

2Pconf
Uconf = D (49)

ci

Then aconst OF aconpl CaN be derived by substituting the following confinement force per unit

depth from stirrups Psy or plate Ppiz for Peont in EQ. (49)

P,

Pt =S—‘ (50)
S
P

P.= bL'b (51)
f

where Ppip is the confinement force in the tube of depth b.

Axial Stresses os and Strains €ax at Key Points

For an arbitrary key point in Fig. B3, the confinement force Pcont and Siar can be obtained as
described above. The lateral confining stress ocont can be derived from either Eq. (47), (48)
or (49) by substituting the confinement force Pcont. Then ocont and Siat can be substituted into

following equations to derive the axial stress os and axial strain sax (Hao 2018b)

. S S
O eont SIN QL COS 7 +(A““+C Opon COS° @, +B—2— 4 D

sina sina,

(52)

O5 =

. . S
sina, cos a, —sin® o (A_““+C
sina,
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£, =0 oy _Sa (53)
f, tano Ly,

cc

Hence the axial stress and strain for each key point in Fig. B3 can be derived such as those

shown in Fig. 2 and linking these key points gives the passive stress/strain.

The residual stress ors as shown in Fig. 2 for stirrup reinforced prisms is written as follows
(Lietal. 2001)

o, =04do_ (54)

The whole procedure is summarized in Fig. 4.
Appendix C. Example of a Beam Analysis

Specimen B4-1.5C by Mansur et al. (1997) will be analysed for the second case in Fig. 17
which uses a linear ascending branch of the passive stress/strain without residual stress and
with concrete spalling. The passive stress/strain parameters o and y in the flexural analysis
for each key point in Figs. 15 and 16 have been derived previously. Specimen B4-1.5C which
is over-reinforced has two layers of tensile reinforcement as in Fig. 11(f). From compatibility
in Fig. 11(b), the deformation in the tensile reinforcement layers are

(Do — Lrtl — dNA)

Anyas = Atop d (55)
NA
(D, —c,, — Ly, —dya)
Anpas = top . pd = = (56)
NA

where L1 and Lo are shown in Fig. 11(e). First assume that the deformed length Lger in Fig.
11(a) is 1.5S¢r such that Lqer encompasses an interior crack as shown; this assumption will

be checked later. Full details of each step of the analysis are as follows.
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Point A in Fig. 15

The deformed length in Fig. 11(a) is Lget = 1.5S¢r = 259mm where Scr is from Eq. (9). The
concrete stress block is O-A-A’ in Fig. 6 and for the equivalent rectangular stress block the
parameters o and y are 0.750 and 0.667 respectively as derived previously. The deformation
at the top fibre Awp = 0.661 mm is obtained from Eq. (8). The analysis consists of pivoting
about Aiwp in Fig. 11(b) and finding the neutral axis depth dna in which equilibrium is

achieved in Fig. 11(e).

For a given or fixed value of dna, the forces in Fig. 11(e) can be derived as follows. The
concrete force Pconc is Obtained by substituting dna as well as parameters o and y into Eq. (7).
As can be seen in Figs. 11(a) and (b), the deformation required to determine the force in the
tensile reinforcement for Lger = 1.5Scr are Ar1 = Ar1-15/3 or Arz = Ar2-1.5/3. The relationship
between the tensile reinforcement force Pyt and 4yt is bilinear as follows (Zhang et al. 2017)

P
Pe =4y Aﬂ (An < Ayld) (57)
yld
Prt = Pyld (Art 2 Ayld) (58)

where before the yield of tensile reinforcement, Py is obtained from Eq. (57) and after
yielding Py is kept constant at Pyiq that is from Eq. (58) and 4yiq = 0.222 mm can be derived
from the following (Sturm et al. 2018)

P
Ay =—2" tanh(ls”j (59)
AE A 2

where A is

A=pk (60)

and where the prism parameter 4 and bond-slip stiffness k can be expressed as
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petul e (61)

k — TB max (62)

where E¢ is concrete modulus and E; is modulus of reinforcement.

However, Py cannot be directly obtained from 4. as the relationship between them is bilinear
from Eqgs. (57) and (58) so the solution is given as follows. Firstly, assume that the two layers
of tensile longitudinal reinforcement are not yielded. It has been illustrated previously that
before yielding Pyt is obtained from Eq. (57) and after yielding P is from Eqg. (58). Then as
the tensile longitudinal reinforcement are assumed to be not yielded, the following force in
two-layer tensile reinforcement Py and Pri2 as shown in Fig. 11(e) can be obtained from Eq.
(57)

P —A (DI _Cup - I‘rtl _dNA) I:)yld (63)
rtl top 3d A Ayld

p (DI _Cup - Lr‘(2 - dNA) F)yld

= 64
" o 3d NA Ayld ( )

Equilibrium in Fig. 11(e) is

P

conc

P

rtl

~Piy =0 (65)
Substituting Egs. (63) and (64) as well as Pconc from Eq. (7) into Eq. (65) and solving for the
neutral axis depth gives dna = 107 mm and consequently the force Pconc = 599 kN, Pt =424
KN and Py = 174 kN from Eqgs. (7), (63) and (64) respectively. Previously, it had been
assumed that the two layers of tensile reinforcement had not yielded and whether this
assumption is correct will be checked. From compatibility in Fig. 11(a) 4rt-15 equals 0.215
mm from Eq. (56) and A1-15 equals 0.524 mm from Eq. (55). Subsequently, 4w = Ar2-15/3
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=0.0717 mm and 41 = Ar1-15/3 = 0.175 mm which are both smaller than Ayig = 0.222 mm
from Eq. (59) and consequently both have not yielded and previous assumption is correct.
The results of the analyses are given in Fig. C1. From geometry the rotation € from Eq. (13)
equals 0.00617 and the moment from Eq. (14) equals 84.9 KN m.

concrete cover

- det‘: 1 ~SScr:259mm

in compression
Al B, C'IB |
2
A,=0.661mm g, =0.00255 af(=61.6MPa
C 0 T
Peonc=599kN
>
6=0.00617 Ydya=
71.5mm .
du.= stirrups
NA™
107mm
= 5 — 4
Or2~
0.215mm
\ Or2=
Apry 5= 432MPa | P, =424kN
/\\ 0.524mm ‘ >
76 g
A D D, bottom-layer tensile top-layer tensile
@ (b) (© (d (e reinforcement () reinforcement

Fig. C1 Segmental analysis of specimen B4-1.5C at point A in Fig. 15 when Lger equals
1.5Sr: (a) segment; (b) displacement profile; (c) strain profile; (d) stress profile; (e) force

profile; (f) cross-section

Points B and D in Fig. 15

At the next point B in Fig. 15, stress block O-A-C-C’ in Fig. 6 is developed for which a =
0.852 and y = 0.853. The deformation at the top fibre Ap is obtained from Eq. (8) and equals
1.63 mm. Assuming both layers longitudinal tensile reinforcement have not yielded then
substituting Pri1 from Eq. (63), Pr2 from Eq. (64) and Pconc from Eqg. (7) into Eq. (65) and
solving gives dna = 122 mm. From compatibility 41 and A in Fig. 11(a) equals 0.316 mm
and 0.0916 mm. However A is larger than Ayq = 0.222 mm from Eqg. (59). Hence the
bottom-layer tensile reinforcement yields and has the force Pr1 = Pyg = 540 kN.
Consequently, previous assumption that both layers longitudinal tensile reinforcement have

not yielded is incorrect. Substituting Prt1 = Pyig as well as Pr2 from Eq. (64) and Pconc from
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Eq. (7) into the force equilibrium Eq. (65) gives dna = 111 mm. Hence the forces can be
determined by substituting this dna = 111 mm to give Pconc = 905 kN from Eq.(7), Prt1 = Pyid
= 540 kN and P2 = 365 kKN from Eq. (64). The results are shown in Fig. C2. The rotation
and moment can be obtained from Egs. (13) and (14) which are 113 MPa and 0.0147

respectively.

App=1.18mm ¢ =0.00631 af,;=70.0MPa

Peonc=905kN
EE—

dya=11Imm

0=0.0147
vdna=95mm|

6,,-372MPa|  P,,=365kN
- -]
6o=550MPa|  P,=540kN

(a) (b) (c) (d
Fig. C2 Segmental analysis of specimen B4-1.5C at point B in Fig. 15 when Lger equals

1.5S¢r: (a) displacement profile; (b) strain profile; (c) stress profile; (d) force profile

The moment/rotation analysis at points D in Fig. 15 is similar to that at point B. The only
different input is the value of parameters a and y. The results are given in Fig. C3. The top-
layer of longitudinal reinforcement has not yielded for all the key points in Fig. 15, hence,

this beam is an over-reinforced beam.
It is worth noting that the largest wedge length Lwdg from Eq. (12) equals 208 mm at point D

in Fig. 15 which is larger than Scr/2 and smaller than 1.5Scr. Hence, the initial assumption at

the start of the analyses of Lqef = 1.5S¢r IS correct.
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Ag,=148mm g, =00118 af =38.4MPa

Peonc=785kN
: | >
0=0.0236 dya=129mm
ydna=151mm
» — Pry=245kN
Arl2—1,5=04303mm
6,,=250MPa “
Anlv]._s: . Pm=540kN
e 6,p=350MPa

@) (b) © )
Fig. C3 Segmental analysis of specimen B4-1.5C at point D in Fig. 15 when Lqef equals
1.5S,r: (a) displacement profile; (b) strain profile; (c) stress profile; (d) force profile
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Chapter 5— Behaviour of Steel Tube Confined Concrete

Introduction

In the journal paper below, the mechanics based closed-form solutions of the passive
stress/strain response developed in Chapter 3 for reinforced concrete members are now
extended to cover steel tube confined concrete with the additional effect of shrinkage for the
first time. These closed-form solutions of the passive stress/strain are then simplified to a
rectangular stress block based on the mechanics described in Chapter 4 for application in
flexural analyses. Then a parametric study is conducted to investigate the effect of shrinkage

on the passive stress/strain response.
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Passive Stress/Strain Relationship for the Design of Steel Tube Confined

Concrete
X. Hao, P. Visintin and D. J. Oehlers

Abstract

The encasement of concrete in steel tubes provides an efficient form of composite steel and
concrete construction. As an additional benefit, the steel tube provides passive confinement
to the concrete which can increase both the concrete strength and in particular the ductility,
thereby, enhancing that of the composite steel and concrete structure. The difficulty in
utilising this additional benefit is in quantifying the passive concrete confinement and,
consequently, the concrete passive stress/strain as it depends on the encased concrete size,
shape, and material properties such as the concrete shrinkage. This paper derives, through
mechanics, the concrete passive stress/strain from the partial-interaction concrete shear-
friction properties for any configuration of the composite structure, for any material
properties and for any concrete shrinkage. Furthermore, the passive stress/strain relationship
is simplified to a rectangular stress block that can be used in standard design approaches to

allow for the benefits of concrete confinement in design.

Keywords: confined concrete, steel tube confined concrete (STCC), composite steel and

concrete columns

1. Introduction

In the past two decades, steel tubes have been widely used as confinement reinforcement in
concrete structures as they can significantly enhance the strength and especially the ductility
[1-3]. Most current research approaches focus on concrete filled steel tubular (CFST) prisms
where both the concrete and steel tube are simultaneously loaded axially [4-9]. However in
practical buildings, this sometimes is not the case as the steel tube does not sustain axial
loads [10-12]. In this case, the steel tube only acts as confinement reinforcement and this
type of column is referred to as a steel tube confined concrete (STCC) column [11].
Furthermore, STCC columns have several benefits compared with CFST columns as they
avoid longitudinal buckling of the steel tube [13, 14] and have a better ductility performance
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to resist seismic loads [15]. In this paper, only the concrete in STCC columns under
concentric loads will be investigated. However it is worth bearing in mind that the
stress/strain of the passively confined concrete that is developed in this research can be

applied directly to the analysis of members under flexural load [16].

There are only a limited number of approaches for predicting the behaviour of STCC prisms
or columns, as most available approaches focus on CFST prisms. Approaches to predicting
the behaviour of STCC prisms can be split mainly into two categories: empirical approaches

and numerical approaches.

The former approach treats STCC as a new material and develops the concrete stress/strain
from empirical observations. For example, O’Shea et al. [17] applied Mander’s equation [18]
for stirrup reinforced prisms. O’Shea’s approach [17] can only be applied for circular-section
specimens and requires the peak stress fec and strain e at fec which are derived from
regression analyses of O’Shea’s test results [19]. The simple form of these approaches makes
their application easy. However outside the range of the regressed databases, the accuracy
of these approaches may decrease and, furthermore, in these approaches the size effect is not
considered. The importance of the size-effect is recognised [20] but there is no available

empirical model to quantify it.

In the finite element method which is also a numerical approach, the concrete and steel tube
are treated separately and the passive concrete stress/strain is derived from the interaction
between them [5, 21]. The procedure is summarized as follows: impose an axial strain from
which the lateral strain can be derived from Poisson’s ratio and subsequently the lateral
confining stress; consequently the concrete element is assumed to be under a triaxial
confining stress and from the active stress/strain properties its behaviour can be determined
[5, 21]. However, the active stress/strain of concrete used in these numerical approaches
normally does not consider the size effect. Furthermore, although these models can give a
more accurate prediction of the concentrically loaded behaviour, the complexity of these

approaches may hinder their application.

With regard to the effect of shrinkage on the behaviour of STCC prisms, it was found that
shrinkage for normal strength concrete can be ignored but for high strength concrete this
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effect is critical [1]. Most current approaches to predicting the behaviour of STCC prisms
do not allow for shrinkage.

In this paper, an approach is developed to predict the passive stress/strain of concentrically
loaded STCC prisms that allows for the size effect and which can incorporate different cross-
sectional shapes and shrinkages. This approach is based on fundamental mechanics that uses
the shear-friction [22-27] material properties. This fundamental approach has been used
elsewhere for prisms confined with stirrups or FRP wraps under either concentric loads [28,
29] or flexural loads [16]. In this paper, the application of this approach specifically to STCC
prisms is described and, furthermore, the fundamental mechanics is extended for the first

time to allow for the displacements due to shrinkage.

The procedure to construct the concrete passive stress/strain from the shear-friction partial
interaction material properties is described and it is shown how to allow for shrinkage in the
derivation. This is followed by a validation to compare the proposed approach with
published tests and then a parametric study to show the effect of shrinkage on different

specimen sizes and concrete strengths.

2. Confinement mechanism

Consider the concrete prism encased in a steel tube of thickness t in Fig. 1(a). The dimension
D.i is the width of the prism in the direction of sliding. The deformation length Lqef is any
length of prism that encompasses the sliding plane; for concentrically loaded prisms it is
normally the specimen height Lyrsm. The length Lqer allows for the size effect of the concrete

stress/strain.

In the lateral direction in Fig. 1(a), the concrete shrinks &snDci such that a void could form
between the concrete and tube all around the concrete. It is worth bearing in mind that the
gap due to shrinkage is very small [30]. However the shrinkage gap will help reduce the

already weak chemical bond such that no bond will be considered.
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2.1 Behaviour prior to concrete confinement

Prior to loading and after shrinkage and for ease of explanation, the concrete prism is shown
as A-B-C-D-E-F in Fig. 1(a). In the direction of potential sliding, the gap due to shrinkage

Slat-sh IS

SIat—sh = gsh Dci (1)

which is shown in Fig. 1(a) to the left. Because of the shrinkage gap and prior to sliding, the

concrete behaves as unconfined.
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An axial displacement that induces an axial stress oax and an axial strain in the material e is
applied directly to the concrete in Fig. 1(a) until the peak unconfined strength fco is reached,
whereupon, the sliding plane B’-B-E’-E occurs at an angle as. Any further increase in the
axial displacement causes rigid body sliding along the plane such that the prism above the
sliding plane moves from A-B-E-F to A’-B’-E’-F’ as shown. The axial component of the
slip along the sliding plane S is Sax and the lateral component is Sjat such that Sax = SiatCOtas.
Hence the axial component of the strain due to sliding &= Sax/Ldefr, Which is the effective
axial strain due to sliding, is given by [31, 32]

.= S

cota,

lat

= @

def

Prior to the shrinkage gap closing, the concrete does not bear onto the tube so the concrete
is unconfined such that oconf In Fig. 1(a) is zero. Hence when the axial stress oax is applied in
Fig. 1(a) and after sliding, the total axial strain eax is comprised of two components that is

the material strain em and the additional sliding strain &s as shown at level oax in Fig. 2.
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Fig. 2 Passive stress/strain
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The lateral component of slip required to close the shrinkage gap is Siat-sh from Eq. (1). Hence
the sliding strain required to close the shrinkage gap es-sn is obtained by substituting Siat-sh
from Eq. (1) into Eqg. (2) to give

P &4, D, Cot g
S-sh — L
def

@)

This strain is shown at a stress level os.sh in Fig. 2 between the ascending branch O-A and
descending branch A-B for the unconfined concrete that is at ocontf = 0. Hence from the known
material stress/strain of the unconfined concrete O-A-B in Fig. 2, it is a question of finding
the level of ossh at which there is the known strain essh between the ascending and
descending branches to give point A’. Point A’ being the axial stress oax and axial strain eax
when the shrinkage gap has closed that is the point on the passive stress/strain at the onset
of confinement. Hence on applying the axial load in Fig. 1(a), the passive concrete
stress/strain path follows O-A-A’ in Fig. 2 after which the concrete bears against the tube
inducing confinement and its benefits. Once confinement occurs, then the concrete no longer
acts as unconfined that is the active stress/strain does not follow the path O-A-B in Fig. 2
but the material properties are enhanced such that the active stress/strain will follow a path

such as O-C-D or O-E-F which depends on the confinement stress ocont.

2.2 Confinement benefit on concrete stress/strain

Once the shrinkage gap has been closed due to sliding in Fig. 1(a), any further increase in
axial displacement will cause the concrete prism to bear against the tube causing the tube to
go into lateral tension Pcont and, consequently, inducing lateral compression ocont across the
concrete tube interface as shown. This is the passive confinement pressure on the concrete

which is induced at the concrete tube interface and subsequently across the sliding plane.

2.2.1 Rectangular section

For a rectangular section, the lateral tensile forces in the tube Pcons are shown in Fig. 1(b).
Both of these forces, that is 2Pcont, passively restrain the sliding action and they act over the
width of the sliding plane Di> and depth of the sliding plane Dci/tanos in Fig. 1(a). Should
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Pcont be defined as the confinement force in the tube, over the depth of the sliding plane that
is Dci/tanas in Fig. 1(a), per unit depth of tube, then the lateral confinement pressure across

the sliding plane [28] is

2 I:)conf
o, = —_cont (4)

conf —rct D
i2

For a given confinement acont from Eq. (4), the active stress/strain, such as for example O-
C-D in Fig. 2 when the tube has yielded, can be obtained from the known material properties
at that confinement. It is now a question of determining where on C-D this confinement force
ocont Starts to act or is acting, bearing in mind that the concrete is only passively restrained
that is ocont IS NOt acting all the time. To determine this, we need to know at which level of

axial stress os the effective strain gs acts.

Let the strain in the tube along H’-K” and I’-J” in Fig. 1(b) be &twpe SO that the lateral expansion
of the tube Siat-rct IS

SIat—rct = gtube Dci (5)
which on substituting into Eq. (2) gives the effective strain due to sliding in a rectangular

section of

_ 8tube Dci cot as (6)

gS -rct — L
def

As an example, consider when the confinement pressure is sufficient to cause the steel tube
to start to yield laterally that is when ocont in Fig. 1(a) equals ocont-yid. Let the concrete with
this active confinement have the properties O-C-D in Fig. 2. When the strain ewpe in Fig. 1(b)
Is the steel strain at the start of yielding eyia1, then the effective strain due to sliding &s.yiq1 can
be obtained from Eq. (6) by substituting etube = &yia1. There are now two components of the

sliding strain as well as the material strain em such that the total strain is given by

gax = gm + gS—sh + gS—rct (7)
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where on substituting es-sh and es.rct from Eqs. (3) and (6) respectively gives

D, cota

¢ : (gtube + gsh) (8)

ax—rct — ©m
Ldef

As shown in Fig. 2 at level osyia1, the total sliding strain is now that due to the tube &s.yid1
and that due to shrinkage &s.sh. Once this known strain is fitted between the ascending branch
and descending branches for the actively confined concrete at ocontyid, then this gives both
the axial stress at which this occurs os.yig1 and axial strain gaxyid1 and subsequently point C’
of the passive stress/strain. Hence from the start of loading, the concrete passive stress/strain
follows the path O-A-A’-C’. Another point between A’ and C’ could be obtained by
repeating the above analysis at a confinement pressure ocont between zero and that due to

yield.

Should the steel have a material yield plateau and have a yield strain or effective yield strain
just prior to strain hardening of &yid2, then substituting eyid2 for eyig1 in the previous analysis
gives point C” in Fig. 2. Hence the passive stress/strain follows the path O-A-A’-C’-C”.
Should é&s.yig2t+es-sh exceed O-D then this simply means that the shear friction properties of
the concrete [33] along the sliding plane are not strong enough to cause &yiq2 that is the

concrete strength governs which may be referred to as concrete failure.

The above analysis can be repeated at the steel fracture strain ewbe = et The active stress at
this confinement is shown as ocont-r in Fig. 2. Should the sliding strain es.r + es.sh be greater
than O-F, then fracture of the tube does not occur so that the passive stress/strain can be
considered to be O-A-A’-C’-C” with a rapid descent. As the fracture strain is normally

considerably greater than that of the yield strain, fracture of the tube is unlikely to occur [4].

2.2.2 Circular section
Consider the circular section in Fig. 1(c). The concrete shrinks such that radius of the
concrete reduces from Dci/2 to Dci(1-esh)/2 as shown. For ease of explanation, the concrete

cylinder has been placed touching the tube to the right such that the vertical axes of the
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concrete O’-Y” is eshDeif2 to the right of the vertical axes of the tube O-Y. On applying an
axial load oax to the cylinder in Fig. 1(a) and on reaching the unconfined concrete strength
fco, a sliding plane will form. After which, the upper part of the cylinder will move as a rigid
body to the left. Sliding will continue until Siat equals eshDei after which passive confinement
will occur. The fundamental mechanism illustrated in Fig. 1(a) is the same for both the
rectangular and circular sections. However, there is a slight difference in quantifying the

lateral displacements [29].

In the rectangular section in Fig. 1(b), the upper and lower portions of the tube H’-K’ and
I’-J’ provide the confinement force. The angle between these forces and the sliding plane
(90°) is always constant. Hence the confinement pressure is not affected by the level at which
the section in Fig. 1(b) is taken in Fig. 1(a). That is an analysis at the mid-depth of the sliding
plane in Fig. 1(a) would give the same results as that closer to the ends of the sliding plane.
This is not the case for the circular section in Fig. 1(d).

At section O-N in Fig. 1(d), neither the lateral movement that stresses the tube S’jat nor the
force in the tube Pcont are in line with the direction of sliding. However research has shown
[34] that even though the force in the tube is not in line with the sliding plane, it does provide
exactly the same confinement. Furthermore an analysis at section L-M, which is equivalent
to that in Fig. 1(b) where the sliding plane and force are in line, gives a safe and only slightly

conservative solution. Hence the lateral confining stress for a circular section ocont-crc 1S [29]

2 Pconf
o = 9)

conf —crc
D

ci

The strain in the tube over half the circumference in Fig. 1(d) allows the lateral slip, so Eq.

(4) for a rectangular section becomes for a circular section

S — Tt e Dci (10)

lat—crc
2

and Eq. (6) becomes
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D, cota,

& — tube ci 11
S—crc — 2Ldef ( )
and Eq. (8) becomes
D cot
Epore =& % (ﬂgtUbe ) (12)

ax-—cre m
Ldef 2

3. Quantification of confinement

The active concrete stress/strain at different confinement levels in Fig. 2 is shown generically
in Fig. 3 in terms of the concrete confinement properties (ecc, fcc) and the idealised maximum
slip strain (ecu, 0) at specific confinements ocont. Both the ascending branch O-A-P and the
descending branch P-R-M are nonlinear. Any active stress/strain [18, 31, 35], preferably
with size dependency [31], can be used. For example Appendix B gives approaches based
on shear friction material properties that can be applied using closed form or numerical

solutions.

fec P(gcc,fcc) 1dealised
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(Scﬂvfc())
Og | €m /. __f \ N\
0 ' y >
o Al A, ‘B O\ Geonf
Gax /‘/ J \\ .
R \T
f/ / \\ \\\

’_.I \\\ M(deS, de)
e (S Smm)
\\@ ‘\ N

N
N
\

O Ecc thcu,o)
Eax

Fig. 3 Active stress/strain

For ease of analysis, the non-linear stress/strain variation in Fig. 3 can be idealised as linear

ascending O-B-P and linear descending P-Q. Examples of which are also given in Appendix
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B based on shear friction material properties. These linear variations give the following
simplified approach to quantifying the passive stress/strain.

The co-ordinates of the bilinear variation O-B-P-Q in Fig. 3 are fcc, ecc and ecu Where for a
concrete with an unconfined concrete strength feo and lateral confining stress acont, fec is the
peak axial stress, ecc is the strain at fcc and ecy is the ultimate strain. The bilinear active

stress/strain can be determined as follows

O = = Eax (gax <gcc)
Eec (13)
&, — &
Ox = fcc = < (gax 2 gcc)
e~

From the geometry of Fig. 3, the sliding strain s is

&0
_ _Zeu—s
& =&y f

cc

(14)

where the sliding strain es consists of two components: the sliding strain due to the tube
strain ewne Which is either esrct from Eq. (6) for a rectangular section or escrc from Eq. (11)
for a circular section; plus the sliding strain due to shrinkage essh from Eq. (3). Inserting
these two components of &s into Eq. (14) gives the axial stress at which the sliding strain is

accommodated which for a rectangular cross-section is

D cota f
= > (gtube + gsh )] —= (15)
L g

def cu

Os_rt = [gcu -

or for a circular cross-section is

_ Dci cot as (ﬂ.‘gtube
cu L

. w)]% (16)

def cu

US—crc = [8

The strain at which this occurs can be obtained by substituting os into Eq. (13) to give for

the descending branch P-Q in Fig. 3
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The procedure is described in Appendix B and summarized in Table 1. For a given strain in
the steel tube etwne in Column 2, the confinement force Pcont can be derived and, subsequently,
the lateral confining stress ocont from Eq. (4) or (9) which is shown in Column 3. For this
oconf, the axial stress as in Column 4 can be determined by substituting the given &wpe from
Column 2 into Eq. (15) or (16) and, subsequently, the axial strain eax in Column 5 from Eq.
7).

Table 1. Coordinates of the stress blocks in Fig. 4 using bilinear active stress/strain

Key Coordinates of ~ Coordinates of ~ Coordinates of
pointsin  &twbe Oconf os gax stress block O-  stress block O-  stress block O-
Fig. 2 A’-C’-Cy’ A’-C’-C’-Cy” A’-C’-Cy”
® ® 6 ® ® ©® @
o 0 0 0 0 (&‘axo, Gaxo), (é‘axo, Gaxo), (é‘axs, (é‘axo, O'axo), (8a><4,
(€axa, oaxa) Oaxs) Oaxa)
&co from
A 0 0 feo Eq.(36)
A 0 0 Eqg. (15) or (16) Eqg. (17) (cax3, oaxa) (caxd, Oaxa) (cax3, ax3)
C eyldl  oconfyid  EQ. (15) or (16) Eqg. (17) (cax2, Oax2) (cax3, 0ax3)
(o &yld2  oconfyid  EQ. (15) or (16) Eq. (17) (eax2, 0ax2) (eax2, Oax2)
Cv éydl  oconfyid  EQ. (15) or (16) Eq. (17) (6ax1, oax1)
Cy” &yld2  oconfyid  EQ. (15) or (16) Eq. (17) (€axt, oax1) (£ax1, oax1)
E’ &fr ocont-ir Eq. (15) or (16) Eq. (17)

4. Rectangular stress block

The above analysis has explained how in Fig. 2 the points A’, at the onset of confinement,
C’, at the onset of yield, and C”, at the completion of yield, can be derived from the active
concrete stress/strain. Hence the concrete passive stress/strain can be approximated as the
multilinear variation O-A-A’-C’-C” followed by a rapid decent. To simplify the analysis,
this can be approximated to O-A’-C’-C”. Flexural analyses [16] have shown that: using the
stress block O-A’-C’-Cy’ in Fig. 4(a), that is limiting the concrete strain to that at the peak
concrete strength, can give a good approximation of the flexural capacity; and, furthermore,
using the stress block O-A’-C’-C”-C1” in Fig. 4(b), that is limiting the strain to that at the
completion of yield, can give a good approximation of the flexural ductility. A further
simplification of the stress block O-A’-C’-C”-C1” in Fig. 4(b) is the stress block O-A’-C”-
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C1” in Fig. 4(c). To allow for a standard flexural analysis, these multilinear stress blocks

have been further simplified to rectangular stress blocks as follows.
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Fig. 4 Conrete stress block for analysis of: (a) strength; (b) ductility; (c) simplified ductility

4.1 Derivation of rectangular stress blocks

The derivation of key points of the passive stress/strain has been given in Appendix B and
summarised in Table 1. It has been explained previously that: at key point A’ in Column 1
in Table 1 confinement starts; at key point C’ the confinement reinforcement yields; and at
key point C”, yield is completed. Other key points including C1’ and C1” as shown in Fig. 4
have the same abscissae with C* and C” respectively and are located on the x-axis. To
determine the rectangular stress block, the coordinates of the vertexes of the original stress
block are required and these vertexes are the key points in Column 1. These coordinates are
assumed to be numbered in the order of their occurrence along the stress block’s perimeter

in the anticlockwise order. Take stress block O-A’-C’-C:’ in Fig. 4(a) as an example, the
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first point is fixed at the origin O in Fig. 4(a) at (caxo, oaxo) at (0, 0). The next points at (eaxt,
oax1), (cax2, oax2) and (eaxs, oaxs) are defined at points C1’, C’ and A’ respectively in
anticlockwise order of the stress block which is shown in Column 6 in Table 1. Then the

area of the stress block is given by

1 N-1
Ae = EZ[gaxiGax(Hl) ~ Eax(i+1) O axi ] (18)
i=0
and the abscissa of the centroid by
8ax—ci Z(gam +gax(|+1 )I: aX| ax(|+1) —¢ (i+1)o-ax:| (19)

6Aec i=0

where N is the number of key points [36]. It is worth noting that substituting the maximum
value for N into Egs. (18) and (19) gives an undefined point (eaxn, oaxn). Take stress block
O-A’-C’-Cy’ in Fig. 4(a) as an example, when substituting N = 4 into Egs. (18) and (19), the
coordinate (eaxs, oaxs) 1S NOt defined as described previously and this point is assumed to be
the same as (eaxo, gaxo) at (0, 0) [36].

To determine the simplified rectangular stress block with the same area Arec and the same
abscissa of the centroid as the original stress block, parameters a and y are required; these
two parameters determine the width and length of this rectangular stress block which equals
afeo and yeaxa respectively [16]. They have been derived elsewhere [16] and can be written

as

_ Ac
‘" 2(8axl - gax—ci) ch (20)
_ 2(‘c"atxl — gax—ci)
=S —Ce @

axl
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where Arec and cax-ci are obtained from Eqgs. (18) and (19). Take the stress block O-A’-C’-Cy’
in Fig. 4(a) as an example. It is simplified to the rectangular stress block D-B-C-C;’ and they

have the same area Arec and the same abscissa of the centroid that is eax-ci at point P [16].

4.2 Stress block for analysis of strength

The concrete passive stress block for strength O-A’-C’-C4’ in Fig. 2 which is shown in Fig.
4(a) is simplified to the rectangular stress block D-B-C-C1’. The coordinates of the stress
block O-A’-C’-C1’ have been described as an example previously and substituting these
coordinates in Column 6 in Table 1 into Egs. (18) and (19) gives

A’ec = E [gaxlo-axz + E5420ax3 — gaxso-axz] (22)

— (gaxl + gaxz)gaxlo-aXZ + (gaxz + gaxs)(gaxzaaXS _gax3o-ax2)
3(gaxlo-ax2 + €203 ~ Eax3Oax2 )

(23)

ax—ci

and then the parameters « and y can be obtained from Egs. (20) and (21) respectively.
4.3 Stress block for analysis of ductility

Consider the stress block O-A’-C’-C”-C1” in Fig. 2 for analysis of ductility which is shown
in Fig. 4(b) where it is simplified to the rectangular stress block D-B-C-C1” [16].

Similarly to the coordinates of the key points in Column 6 in Table 1, the coordinates of the
stress block O-A’-C’-C”-Cy” are shown in Column 7 in Table 1.These coordinates are used
in Egs. (18) and (19) and numbered along the stress block’s perimeter in an anticlockwise
order where the first point at (caxo, oaxo) is fixed at the origin O in Fig. 4(a). Substituting the
coordinates of the stress block O-A’-C’-C”-C1” in Column 7 in Table 1 into Egs. (18) and
(19) gives

Aec = E [Saxlaaxz T Ex20ax3 ~ €ax3Cax2 T €ax3Caxa — gax4o_ax3] (24)
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— (gaxl + ‘C"axz)gaxlaaxz + (gaxz + gaxS)(gangax3 — 8ax3o-ax2) + (gaxii + 8ax4)(gax36ax4 — 8ax4aax3)

3(8axlo-ax2 T €203 ~€axa0ax2 T €axa0axa — 8ax40ax3)

ax—ci

(25)
and subsequently the parameters « and y from Eqgs. (20) and (21) respectively.

For simplification, stress block O-A’-C’-C”-C1” in Fig. 4(b) can be simplified to stress block
0O-A’-C”-C1” in Fig. 4(c). The coordinates of this case are similar to that of the previous
stress block O-A’-C’-C”-C1” shown in Column 7 in Table 1 and the only difference is that
coordinate of point C’ is removed as shown in Column 8 in Table 1. Substituting these

coordinates of stress block O-A’-C”-C;” in Column 8 in Table 1 into Eq. (18) and (19) gives

1
A’ec = E [gaxlo-aXZ +t &40 a3 — gaxSGaXZ] (26)

— (gaxl + gaxz)gaxlaaxz + (gaxz + 8ax3)(8ax20-ax3 — gax3o-ax2) (27)

3(8ax16ax2 T €003 ~ €ax30ax2 )

ax—ci

and subsequently parameters o and y from Egs. (20) and (21) respectively.

5. Validation

The above theoretical approach has been compared with sixteen concentrically loaded
circular and rectangular specimens with normal strength concrete. As the effect of shrinkage
has been found to be negligible in normal strength concrete specimens [1], shrinkage has
been ignored in this validation. However the effect of shrinkage will be studied in detail in

the ensuing parametric study.

Four closed-form solutions from Appendix B are compared with the experimental results of
concentrically loaded STCC circular cylinders [11, 19] in Figs. 5 to 6 and those with
rectangular cross-sections [11] in Fig. 7. Details of the specimens are shown in Table 2. The
closed-form solutions in Figs. 5 to 7: use a non-linear descending branch for the active
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stress/strain that is derived from linear shear friction properties [33]; assume either a single
sliding failure or a circumferential failure as derived in Appendix B; assume either no-
interaction between the steel tube and concrete or full-interaction such that they act together
with the same total axial strain. The passive stress/strains in Figs. 5 to 7 are labelled as
follows: ‘E’ for the experimental stress/strain from the tests; ‘S’ for the theoretical approach
in which a single sliding failure plane is assumed; ‘C’ when a circumferential failure type is
assumed; ‘SB’ when the theoretical approach assumes both a single sliding failure and full-
interaction between the concrete and steel tube; and ‘CB’ when the approach assumes both

a circumferential failure type and full-interaction between concrete and steel tube.

Table 2 Details of STCC Prisms in Validation

L der D.i feo t fyia
(mm) (mm) (MPa) (mm) (MPa)
S10CL80C  [19] circular 665 188 564 086 211 0.034
S12CL80C  [19] circular 662 188 56.4 1.13 186 0.040
S10CL50C [19] circular 658 188 382 086 211 0.050
S12CL50C [19] circular 657 188 38.2 1.13 186 0.059
S20CL80C [19] circular 656 186 564 194 256 0.095
S20CL50C [19] circular 660 186 382 194 256 0.140
A-CTRC-3d [11] circular 600 196 594 200 263 0.090
A-CTRC-2d [11] circular 630 204 594 3.00 254 0.126
A-CTRC-5d [11] circular 630 204 594 3.00 346 0.137
A-CTRC-4d [11] circular 630 204 424 3.00 254 0.171
A-CTRC-1d [11] circular 450 144 594 300 254  0.178
A-STRC-3d [11] rectangular 600 196 594 200 263 0.090
A-STRC-5d [11] rectangular 630 206 424 200 263 0.120
A-STRC-2d [11] rectangular 630 204 59.4 3.00 254 0.126
A-STRC-4d [11] rectangular 630 204 424 3.00 254 0.171
A-STRC-1d [11] rectangular 450 144 594 3.00 254 0.178

S# Ref. Section Sconfyld/Teo

Note: S# is the specimen number and fyiq is the yield strength of steel tube.

Four numerical approaches from Appendix B are also compared with the above experimental
results for circular section specimens in Figs. 8 to 9 and for rectangular sections in Fig. 10.
In addition, they are also compared with O’Shea’s approach [17], that was derived for
circular section prisms only, in Figs. 8 to 9. These numerical approaches use a non-linear

active stress/strain and non-linear shear friction properties. The passive stress/strains in Figs.
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8 to 10 are labelled in the same way as those in Figs. 5 to 7 with the addition of O’Shea’s
approach [17] which is labelled ‘O’.

In the sets of figures in Figs. 5-10, the confinement stress ocont.yia/fco increases from the first
of the set of figures labelled (a) onwards. It can be seen in each of these sets of figures that
the correlation between the experimental results and the theoretical model with full
interaction labelled SB or CB improves with increasing confinement ocont. This is because
the confinement pressure increases the bond between the concrete and tube such that full
interaction is more likely to occur. In addition from previous research it was shown that for
rectangular cross-sections, single sliding failure is more likely to occur [28, 37, 38] and for
circular sections circumferential failure more likely [29, 39, 40]. Hence, single sliding failure
is recommended for rectangular sections as also suggested by the results in Fig. 10. In
contrast, circumferential failure is recommended for circular cross sections such as
suggested by the results in Figs. 8 and 9. Furthermore, it is worth noting that the two
specimens in Figs. 5(a) and (b) had almost the same properties and only a slight difference
in the lateral confining stress (ocont.yia/fco equals 0.034 and 0.040 respectively). However,
when compared with the experimental stress/strain, the closed-form solutions show poor
correlation in Fig. 5(a) and good correlation in Fig. 5(b) which indicates the scatter of the

experimental results.

In general there is good correlation with the numerical model labelled C in Figs. 8-10 in
which there is no bond between the concrete and the steel tube and, furthermore, in which a
circumferential sliding plane is assumed as might occur for specimens of this size. Allowing
for full-interaction, that is the numerical model labelled CB, does increase the strength
slightly and may lead on occasion to better correlation with the test results. However, it is
felt that this bond should not be relied upon in design as it does occasionally lead to an
unconservative results as in Figs. 10(b), 10(d) and 10(e) where it would appear that the bond
had broken down. As would be expected, the numerical models in Figs. 8-10 give a better
correlation with the test results than the simplified closed form solutions in Figs. 5-7.
However these simplified closed form solutions do in general give a lower bound, that is a

safe approximation, and are more convenient to use in design.
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Fig. 9 Numerical model to simulate STCC circular cylinders with specimen number: (a) A-
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6. Parametric study
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In the following parametric study: only the cases in Fig. 4(a) for strength and in Fig. 4(b) for
ductility are investigated; the passive stress/strain is derived using linear shear friction
properties which results in a non-linear descending branch of the active stress/strain; and a
single sliding failure type is used. The procedure is derived in Appendix B and in Table 4
and is similar to that summarised in Table 1. The only difference is that for the key points in
Column 1 after the occurrence of sliding, the axial stress os in Column 4 is obtained from
EQ. (46) or (48) and the axial strain eax in Column 5 is obtained from Eq. (47) or (49). Details

of the specimens in this parametric study are shown in Table 3.

Table 3. Details of STCC Prisms in Parametric Study

Figure Esh Lot Dei feo t fyid

S# number Section " (mm) (mm) (MPa) (mm) (MPa) Gconf-yld/feo
D.il00 Figs.11,12 circular 0 300 100 60 2 300 0.200
Dcil00  Figs.11,12 circular 500 300 100 60 2 300 0.200
Dcil00  Figs.11,12 circular 1000 300 100 60 2 300 0.200
Dci300  Figs.11,12 circular 0 900 300 60 6 300 0.200
Dci300  Figs.11,12 circular 500 900 300 60 6 300 0.200
Dci300  Figs.11,12 circular 1000 900 300 60 6 300 0.200

fo30  Figs.13,14 circular 0 900 300 30 3 300 0.200
fo30  Figs.13,14 circular 500 900 300 30 3 300 0.200
feo30  Figs.13,14 circular 1000 900 300 30 3 300 0.200
fc090  Figs.13,14 circular 0 900 300 90 9 300 0.200
feo90  Figs.13,14 circular 500 900 300 90 9 300 0.200
fco90  Figs.13,14 circular 1000 900 300 90 9 300 0.200
Dci100 Fig.15 circular 1000 300 100 60 2 300 0.200
D.i200 Fig.15 circular 1000 600 200 60 4 300 0.200
D300 Fig.15 circular 1000 900 300 60 6 300 0.200

Note: figure number is where the figure is shown.
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Table 4. Coordinates of the stress blocks in Fig. 4 using non-linear descending branch of

active stress/strain and linear shear friction properties

Key
pointsin  &tube

Eax

Coordinates of
stress block O-

Coordinates of
stress block O-

Coordinates of
stress block O-

Fig. 2 A’-C-Cr’ A’-C’-C"-C1” A’-C-Cr”
o @ 6 @ ® ® @
0 0 0 0 0 ({;‘axo, Uaxo), (Eaxo, O'axo), (8ax5, (Eaxo, O'axo), (8ax4,

(8ax4, 0'ax4) 0'ax5) 0'ax4)

A 0 0 feo &co from Eq.(36)
A 0 0 Eq (46) or (48) Eq (47) or (49) (8ax3, 0'ax3) (8ax4, 0'ax4) (8ax3, Uax3)
C &yld1 aconf-yld Eq. (46) or (48) Eq. (47) or (49) (eax2, Oax2) (£axs, 0axs)
(O &yld2 aconf-yld Eq. (46) or (48) Eq. (47) or (49) (eax2, 0ax2) (eax2, 0ax2)
Cr eydl  oconfyid  EQ. (46) or (48)  Eq. (47) or (49) (€axt, oax1)
C1” eyld2  oconfyld  EQ. (46) or (48) Eq. (47) or (49) (£axt, oaxt) (axt, oaxt)
E’ &fr Oconf-fr Eq. (46) or (48) Eq. (47) or (49)

Figure 11 shows the results of the analysis for strength as in Fig. 4(a). The results in Fig.
11(a) and Fig. 11(c) are for a 100 mm diameter specimen and those in Fig. 11(b) and Fig.
11(d) for a 300 mm specimen. It can be seen that varying the shrinkage strain over a very
wide range from zero to 1000 pe only has a relatively minor effect on the passive
stress/strains in Figs. 11(a) and (b) and, consequently, that in the rectangular stress blocks in
Figs. 11(c) and (d). However, comparing the passive stress/strains with the unconfined
stress/strain shows a very significant increase in both strength and ductility that is the
beneficial effect of confinement. Figure 12 shows the results for the analysis for ductility in
Fig. 4(b). Once again shrinkage has only a minor effect on the stress blocks and confinement
a huge beneficial effect on both the strength and ductility. A comparison of Fig. 11(b) with
Fig. 12(c) shows only a minor change for the large diameter specimen (300 mm) which is in
contrast to the major change between Fig. 11(a) and Fig. 12(a) for the small diameter

specimen (100 mm). Hence the benefits of confinement increase with reducing diameter.

In Fig. 13, the strength of the concrete is changed from 30 MPa in Figs. 13(a) and (c) to 90
MPa in Figs. 13(b) and (d) in this analysis for strength. It can be seen that shrinkage has little
effect on the low strength concrete but causes a significant reduction in the strength and
ductility of the high strength concrete. A similar outcome can be seen in the ductility analysis
in Fig. 14. It can also be seen in both the strength and confinement analyses that the

confinement substantially increases both the strength and ductility.
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300 mm

In Fig. 15, the specimen diameter was varied from 100 mm to 300 mm and a large shrinkage
strain of 1000 pe was imposed. It can be seen that a substantial change in shrinkage has only
a minor effect on the strength analysis in Figs. 15(a) and (c). However it has a significant
effect on the ductility in Figs. 15(b) and (d) where it can be seen that the beneficial effects
of confinement reduce significantly with increasing diameter. Once again, the strength and

ductility are significantly increased with confinement.

340



150 1

c_(MPa)

50

150 1

c_(MPa)

50

O L
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014

Fig. 13 (a) Strength; 30 MPa (b) Strength; 90 MPa (c) Strength; 30 MPa (d) Strength; 90

100 -

100 -

€ =0pe
_--ash:SOO ue

£ =0pe
—— =500 pe

peaeng = 1000 pe

r
1
I
1
1

€
ax

(©)

150 1

GaX(M Pa)

50

150 1

GaX(M Pa)

50

MPa

341

100 ¢

100 ¢

O 1
0 0.002

sh7

€
ax

€ =0pe

———t = 500 pe

reaan g = 1000 pe

0.004 0.006 0.008 0.01

€
ax

(d)

0.012 0.014

O 1 L 1 n 1
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014




150

caX(MPa)

501

150

caX(MPa)

501

100 |

£ =0pe
_--ssh:500 pe
rern g = 1000 pe

100 |

ssh:O ue
_--ssh=500 pe

reaeg = 1000 pe

0.002 0.004 0.006 0.008 0.01

€
ax

(©)

GaX(MPa)

GaX(MPa)

0.012 0.014

¢‘,’
150 Sl
L4 ’¢‘
. ”"
. ’,"
100 | . ¢“‘.0
et
PRl e =0pue
50+ ., * sh
A ".' ———t =500 pe
“.‘ rerer g = 1000 pe
0 L L L I L I
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014
€
ax
(b)
150 I CE N R
1.
100 !
l:
i :
H e =0upe
507 i E 85h=500 €
i —— it
! E . ssh:1000 ue
0 . "
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014
8ax

(d)

Fig. 14 (a) Ductility; 30 MPa (b) Ductility; 90 MPa (c) Ductility; 30 MPa (d) Ductility; 90

MPa

342



140 : : : : 140
120 | | 120 f ~
£ & N
100 * EI 100 " . [
S " £ g0l 3 I
= ¢ = a
5 60| % E < 601 % I
© 73 : ——D . =100 mm © 7
+ 0’ :I c1 - o 0’ : I
40 * E — _DCi =200 mm 40 o D, =100 mm : I
20 A ... D =300 mm| | 20} = =Dg200mmis
:I ci | |asmas Dc‘=300mm H I
O 1 L [} L L O T T L L
0 0.005 0.01 0.015 0.02 0.025 0 0.005 0.01 0.015 0.02 0.025
4 e
ax ax
(@) (b)
140 : : : : 140
120 1 120 +
100 F ] 100 7 crereraverererenn 1
£ g0l £ g0l !
= =S |
5 60| 5 60
© ——D_, =100 mm © |
407 — -D_ =200 mm| | 407 Dy =100mm |3
200 A e D =300 mm| | 20} = =Paommin
. ct. 4 | Nessas DC‘7300mm .
0 : : 0
0 0.005 0.01 0.015 0.02 0.025 0 0.005 0.01 0.015 0.02 0.025
€ e
ax ax
(©) (d)

Fig. 15 (a) Strength (b) Ductility (c) Strength (b) Ductility

7. Conclusion

A procedure has been developed to quantify the passive concrete stress/strain of concrete
encased in steel tubes which allows for any configuration of the composite steel and concrete
member and for the effects of concrete shrinkage. The analysis requires the active
stress/strain properties of the confined concrete. These properties can be determined directly
from tests on confined concrete or as shown in this paper from the shear/friction properties
of the concrete which are readily available or relatively easy to obtain experimentally. The
procedure does not depend on member level testing and can be applied to both circular and

rectangular sections.

A numerical shear/friction analysis technique is described to derive the passive stress/strain

properties which have then been simplified to provide closed form solutions for the passive
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stress/strain. These in turn have been further simplified into rectangular stress blocks
convenient for standard design approaches for composite steel and concrete members
subjected to both flexure and axial loads. These passive stress/strains have then been
compared with sixteen test results of members with circular or rectangular sections.
Confinement varied from 5% to 23% of the unconfined concrete strength. The numerical
approach gave good correlation with the test results. It was shown how full interaction could
be achieved particularly with high confinements but that the bond required for full
interaction could not be relied upon. The closed form solutions were shown to give a lower
bound to the strengths and ductility as would be expected and, hence, are suitable for a safe

design,

A parametric study was then used to determine the influence of shrinkage and confinement
on specimens up to 300 mm width. It was shown that confinement substantially increases
both the concrete strength and ductility but the beneficial effects of confinement reduce with
increasing specimen diameter. Furthermore shrinkage has little effect on the behaviour of
normal strength concrete but a substantial effect on high strength concrete in which the

benefits of confinement reduce with increasing shrinkage.

Appendix A. Notation

The following symbols are used in this paper:

Arec =  area of the stress block
D =  depth or diameter of confined cross-section
Di = width of confined cross-section
Ec =  elastic modulus of concrete
fce =  peak strength of confined concrete by assuming single sliding
failure
fecir = peak strength of confined concrete by assuming circumferential
wedge failure
feeya = fec for lateral confining stress at yield ocont-yid
feetr = fec for lateral confining stress at fracture ocont-fr
fo =  peak strength of unconfined concrete from cylinder tests
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fyid

L def
Lprsm
Pax

Pconf

Prr
Pyid
Ic

S
Sax
Siat

Slat-crc-all

slat-crc

Slat-fr

Slat—rct

Slat—rct—all

Siat-sh
Slat-yld1
Slat-yld1

S#
S lat
t

o

Os

Eax

yield strength of steel tube

separation of shear-sliding plane interface

deformed length

specimen height

axial load

confinement force from reinforcement acting along the whole
sliding plane

fracture capacity of reinforcement

yield capacity of confinement reinforcement

ductility factor of confined concrete

slip displacement

axial component of slip

lateral component of slip S

total lateral component of slip to cause sliding strain for circular
section

lateral expansion of circular section tube

lateral component of slip when confinement reinforcement starts
to fracture

lateral expansion of rectangular section tube

total lateral component of slip to cause sliding strain for
rectangular section

lateral component of slip to close the shrinkage gap

lateral component of slip when reinforcement starts to yield
lateral component of slip at the end of reinforcement yielding
specimen reference number

tangential component of Sjat

steel tube thickness

parameter in beam flexural analysis to determine the magnitude of
simplified rectangular stress block

sliding angle

parameter in beam flexural analysis to determine the position of
simplified rectangular stress block

axial strain when axial stress is equal to gax
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caxs = axial strainatS=5mm

caxci =  X-coordinate of stress block centroid
caxcre =  &ax for circular section
caxrct =  &ax fOr rectangular section
caxydl =  axial strain at the onset of tube yielding
caxyld2 =  axial strain at the end of tube yielding
e&c =  strain at fec for confined concrete
gcfr = strain at fecsr
Ecyld =  strain at fecyid
gu =  ultimate strain for confined concrete
o =  strain at fco for unconfined concrete
er =  confinement reinforcement strain at P
em =  material strain of concrete
emfr =  material strain at fracture
emsh =  material strain to close shrinkage gap
emydt =  material strain at the onset of yielding
emyld2 =  material strain at the end of yielding
es = sliding strain caused by slip S
escrc =  sliding strain due to tube strain in a circular section
esfr =  sliding strain at fracture
esrct =  sliding strain due to tube strain in a rectangular section
essh =  sliding strain to close shrinkage gap
esyidr =  sliding strain at the onset of yielding
esyi2 = sliding strain at the end of yielding
egh =  shrinkage strain
ewbe =  strainin tube
eyigr =  tube strain at the onset of tube yielding
eyid2 =  tube strain at the end of tube yielding
oax =  axial stress
oas =  axial stressat S=5mm
ocont = lateral confining stress applied on concrete
oconfcrc = lateral confining stress for circular section
oconttr = lateral confining stress from confinement reinforcement at Ps,
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Oconf-rct
Oconf-yld
Oconf0
ON
ONcir

ONO

OScir

OS-fr
05-g
OS-sh
OS-yld1

O5-yld2

Tcir

Tm

Appendix B.

properties

The passive stress/strain is quantified using shear friction material properties. Full details
that were originally developed for reinforced concrete elements are described elsewhere [28].

lateral confining stress for rectangular section

lateral confining stress from confinement reinforcement at Pyiq
lateral confining stress of unconfined concrete and equals zero
confining stress normal to single-sliding plane

confining stress normal to circumferential wedge

normal stress at feo for unconfined concrete

axial stress of passively confined concrete by assuming single-
sliding failure

axial stress of passively confined concrete by assuming
circumferential failure

axial stress at fracture

guessed axial stress

axial stress to close shrinkage gap

axial stress at the onset of tube yielding

axial stress at the end of tube yielding

shear stress along single-sliding plane

shear stress along circumferential wedge

shear-friction material capacity

Quantification of confinements based on shear friction material

These are adapted here specifically for STCC prisms.

B.1 Shear friction properties

The crack width her in Fig. 1(a) is ignored as its contribution to both the axial and lateral
strains is small compared with that due to S to give a slightly conservative assumption [22,
24]. The material interaction between on, Tand S, as in Fig. B1, are the shear friction material

properties [22, 42, 43]. The non-linear shear friction property zm in Fig. B1 is a function of
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the confining stress normal to the sliding plane on, slip S and the unconfined concrete
strength feo [27] that is

T

0= (oS ) (28)

which can be derived from actively confined cylinder tests [33, 42, 43]. These non-linear

variations can be linearized to the following form [33] also shown in Fig. B1
r, =(Ao, +B)S+Co, +D (29)

where A, B, C and D are coefficients of unconfined concrete strength fco. As an example, the

following linear shear friction properties were derived by Hao [33]:

when on < ono, Where
H)
Oy = foSin“ o (30)

and in which s is the sliding angle as shown in Fig. 1(a) and is assumed to equal 26° [31,
44-46], then

7. =[(0.00112f , —0.337),,-0.000784f 2 +0.0152f , +0.556]S +1.500, +0.105,  (31)
when ono < on < 3ono, then
7. =[(0.00112f , +0.0636)c, -0.000784f 2 —0.0620f , +0.556]S +0.4980,, +0.298f , (32)

which was derived for slips S less than 5 mm [33, 43] which is, therefore, the limit to the

application of this equation.

348



25

———-Non-Linear

Linear

m

T _(MPa)

S(mm)

Fig. B1 Shear friction material properties for foo = 40MPa

B.2 Closed-Form solutions of active stress/strain

This closed-form solution uses a linear ascending branch of the active stress/strain that is O-
B-P in Fig. 3 and the non-linear descending branch P-R-M derived from the linear shear
friction properties from Eqgs. (31) and (32) such as those shown in Fig. B1.

B.2.1 Linear ascending branch

The non-linear ascending branch of the active stress/strain O-A-P is linearized to O-B-P as
shown in Fig. 3. However, the material strain O’-B from the linearized O-B-P may
overestimate the material strain O’-A from the non-linear ascending branch O-A-P. Hence,
the unconfined ascending branch O-A’-P1 is used to derive the material strain O’-A’ to give
a safe solution for the ductility where Py is at (eco, fco). Hence from Fig.3, the linear ascending

branch is given by
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=0y -2 (33)

in which &co can be obtained from Eq. (36).

B.2.2 Linear descending branch

To derive the linear descending branch, the coordinates of point P in Fig. 3, that is e and

fec, can be taken as follows [28]

: 2
¢ _ Ceon sing, cosa, +Co,, COS" a, +D (34)
°C sina, cosa, —Csin’

where C and D are the same as those in Eg. (29) and the strain e at fc is [31]

Gconf

f

& = Ecol1+ A (=] (35)

c0

where Ao is equal to 13.9, feo is in MPa and & is a function of fco as follows
£, =174x10"° f  +2.41x107° (36)

in which feo is in MPa. The ultimate strain ecy in Fig. 3 is also required to construct the linear
descending branch. Consider point M where the slip S equals 5 mm, which is the maximum
slip that can be used for the shear friction material properties in Egs. (31) and (32).
Substituting ocont and S = 5 mm into Eqgs. (40) and (41) gives the axial stress oaxs and strain
caxs respectively which can be substituted into the following geometry equation to give the

ultimate strain ey

fe.—0.c
_ ‘cc”axb ax5%cc
cu f (37)
o« " Oaxs
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after which the linear descending branch P-M-Q can be constructed by linking points P and

Q.
B.2.3 Non-Linear descending branch

Along the sliding plane B’-E in Fig. 1(a), the confining stress on and shear stress z are

resolved from the axial stress oax and lateral confining stress oconf as follows [33, 45]

T=(0,, — 0., )SINa, CoSe, (38)

oy, =0, sin"a, +o,,. Cos’ a, (39)

Setting the shear stress = from Eq. (38), that is from mechanics, to equal the shear stress
material capacity zm from Eq. (29) gives the axial stress oax as a function of slip S and the
lateral confining stress ocont as follows [28]

_ Ot SiNGt, COS @, + ASO, COS” @, + BS +Co, i COS° ar, + D (40)
O = . ) Pa2
sing, cosa, — ASsin® o, —Csin® ¢

The axial strain eax at oax can be obtained from the sum of the material strain em and sliding

strain

. :gmjLScosws (41)
Ldef

in which em is from Eq. (33). Substituting a series of slips S into Eq. (40) and (41) gives the
non-linear descending branch P-R-M in Fig. 3.

B.3 Closed-Form solutions of passive stress/strain

B.3.1 Passive stress/strain using linear descending branch of active stress/strain

351



This simplified bilinear approach has been described previously in the main text. The axial
stress can be obtained from Eq. (15) or (16) and the axial strain from Eq. (17) where fec, &cc
and ey are obtained from Egs. (34), (35) and (37). The whole procedure is summarised in
Table 1. For the key points in Column 1: sliding occurs at point A in Fig. 2; confinement
starts at point A’; the confinement reinforcement yields at point C’ and yielding ends at point
C”; and the confinement reinforcement fractures at point E’. The strain in the tube &wpe IS
shown in Column 2 in Table 1 and the lateral confining stress ocont is shown in Column 3
which are substituted into the equations in Columns 4 and 5 to give the axial stress os and

strain eax.

B.3.2 Passive stress/strain using non-linear descending branch of active stress/strain
For a lateral component of slip Siat and for the lateral confining stress ocont from Eq. (4) or

(9), substituting S = Sjat/Sinas into Eq. (40) and (41) gives the following axial stress os and
strain eax [28]

O-conf sin as COSO{S +(A.Lat+c O_conf COSZ as + B.i‘f— D

o = sing, g sine, 42)
sina, cosa, —sin® o, [A_““JFCJ
sinea,
S
&y =&, +— B — (43)
tan o L

where en is from Eq. (33). As described previously, the following lateral components of slip
Siat are comprised of that due to shrinkage from Eq. (1) and that due to the tube strain from

Eq. (5) or (10), that is for a rectangular cross-section

SIat—rct—all = gsh Dci + gtube Dci (44)
and for a circular cross-section
ng, . D,
SIat—crc—all = gsh Dci + tsze < (45)
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These can be substituted into Eqgs. (42) and (43) to give the axial stress and strain as a

function of &wbe Which for a rectangular cross-section is

. Ewbe T €an) Dai Ewbe T ) Dy
O SIN O, COS O + A(“‘tm_—s")c'+c O wor cos? a, + B(tube_—sh)u+ D
sina, sing,

O-S—rct = ( )D (46)

. . & + & :

sina, cosa, —sin’ o | AXTube ~Zsh/ 76 4 C
sing,
& +&,.)D. cota,
gax—rct — gm + ( tube sh) ci S (47)
Ldef
and for a circular cross-section is
- Ty | 2+ &4) D, Ty | 2+ &4,) D,
Uconf sin as COSaS+ A( tube . sh) ci +C Gconf COSZ as+B( tube . sh) ci +D
sina, sina,

O-S—crc = ( /2 )D (48)

. . & +& .

sin &, Cos ar, —sin® ¢ | AS=Tube "= - Zsh I 4 C
sina,
(m&e | 2+ &4,) D, COt
gax—crc = gm + = : < : (49)
Ldef

where the material strain em is obtained from Eq. (33).

The whole procedure is summarised in Table 4 where substituting &wne from Column 2 and
acont from Column 3 into the equations in Columns 4 and 5 gives the axial stress and strain
of the key points in Column 1. This procedure is similar to that summarized in Table 1; the
only difference are the equations in Columns 4 and 5 to derive the axial stress and strain. It
is worth noting that the points on the descending branch derived from linear shear friction
properties from Eqgs. (31) and (32) have a maximum slip S =5 mm at point M in Fig. 2.
Hence, the descending branch of the passive stress/strain using the linear shear friction
properties from Egs. (31) and (32) in the validation and parametric study are derived by

linking C’-M in Fig. 2, where at point C’ the confinement reinforcement yields and M is the
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maximum strain point. As an example, these are the limits to the closed form solutions in

Fig. 6(c) and the analyses Fig. 12(a).

B.4 Passive Stress/Strain from Numerical Model

The way to construct the passive stress/strain numerically will be described in this section.
Firstly, the non-linear shear friction properties, such as those shown in Fig. B1 which were
derived from actively confined cylinder tests [33], are used in this numerical model.
Secondly, the following non-linear ascending branch [31, 35], such as O-P-C in Fig. 2, is
used

o= f — (50)

f=—" (51)

where the concrete elastic modulus Ec in MPa is

E, =3320,/f_, +6900 (52)

Finally, the axial stress os is obtained from iterative steps. The steps have been described in

details elsewhere [33] and are summarised in Fig. B2 as follows:

1. Before the occurrence of sliding, the loading path follows the non-linear unconfined
ascending branch O-Z-A in Fig. 2 which is obtained from Eq. (50) by substituting fco and
eco for fee and ecc respectively [31, 35]. With regard to a point after the occurrence of

sliding at point A in Fig. 2, guess an axial stress as.g and impose a slip Sx. For the imposed
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slip Sx, Siat equals Sxtanas and when Sytanas is less than Siash from Eqg. (1), there is no
confinement and Pcont equals zero. When Sytanas is larger than the Siatsh, Sxtanas can be
substituted for Sjat-an in Eq. (44) or (45) and rearranged to give &wbe and from which the
confinement force Pcont can be obtained. Substituting Pcont into Eq. (4) or (9) gives the
lateral confining stress ocont. Then the shear stress z from mechanics and the normal stress

on can be obtained by substituting os.g and oconf into Eqgs. (38) and (39).

2. The nonlinear shear friction properties for a concrete with fco = 40 MPa are given in
Fig. B1; for a given confining stress on normal to the sliding plane, when a slip S is
imposed, then the shear friction material capacity wm can be determined. As an example,
from the non-linear shear friction material properties derived from actively confined
cylinder tests [33] from Eq. (28) and shown in Fig. B1, Sx is imposed and o is obtained
from Eq. (39) and then zmx is obtained.

4. If the shear stress  from mechanics, that is from Eq. (38), is not equal to the shear
capacity =m from step 2, then the guessed axial stress os.g will be changed. The whole
procedure will be iterated until the shear stress z equals the shear capacity wm and then
the axial stress os equals as-g. Then for the imposed slip S, the axial stress os = gsg
is derived, and from Eq. (47) or (49) the strain eax can be obtained. It is worth noting
that for the numerical model described in this section, the material strain em in Eq.
(47) or (49) is obtained from the non-linear ascending branch of the active
stress/strain from Eq. (50); for instance, em in Fig. 3, that is O’ A, is obtained from the
non-linear ascending branch O-A-P. Furthermore, if there is no solution to os, this

simply means that there is not enough capacity to resist the applied load.
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Fig. B2 Flowchart of to derive passive stress/strain numerically

B.5 Different Failure Types

The theoretical approach described above assumes a single sliding mechanism [41].

However, the circular cylinder may fail due to the formation of circumferential wedges [41,

47]. The difference between these two failure types is the following peak stress fcecir Of the

actively confined concrete from Eq. (34) and the axial stress oscir Of the passively confined
concrete from Eq. (42) [28]

i 2
P 20, Sina, cosa, +2Co,, cos” a, +D (53)
e sina, cosa, —Csin’ o
2Gconf Sina, COS +(A.m +C 20'conf COSZ o+ B.i-i- D
- sina sin o
GScir (54)

. . S
sina, cosa, —sin’ a, (A_““+C
sina,
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Furthermore and for the circumferential failure type, the shear stress z from Eq. (38) and the

normal stress on from Eq. (39) become the following [28, 48]

Teir = (O-ax - 2Gcom‘ ) sin a, COS o (55)

HJ 2
Oner =0 SIN° 0 +20,,, COS™ (56)

B.6 Summary

When the linear descending branch of the active stress/strain is used, substituting ewe from
Column 2 in Table 1 and the lateral confining stress acont from Column 3 into Egs. (17) and

(15) or (16) gives the axial strains and stresses of the key points in Column 1.

When the non-linear descending branch of the active stress/strain and the linear shear friction
properties are used, then the derivation of the closed-form solutions of the key points in Fig.
2 is summarised in Table 4. The loading path follows O-A-A’-C’-C”-E’. For these key points,
substituting ewne from Column 2 and the lateral confining stress acont from Column 3 into the
equations in Columns 4 and 5 gives the axial stress and strain when assuming a single sliding
failure. When the circumferential wedge is assumed to occur, then feeir Of the actively
confined concrete from Eq. (34) and the axial stress oscir Of the passively confined concrete

from Eq. (42) are obtained from Egs. (53) and (54) respectively.

With regard to the numerical model, the non-linear shear friction properties and the non-
linear active stress/strains are used. The main step is summarised in Fig. B2 for a single
sliding failure. When the circumferential wedge is assumed to occur, then feccir, zcir and oncir
are obtained from Egs. (53), (55) and (56) respectively instead of Egs. (34), (38) and (39).
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Chapter 6— Conclusions and Further Research

Summary and Conclusions

Confinement reinforcement can enhance the strength and ductility of concrete structures.
This thesis presents the development of a mechanics-based model to predict both the
stress/strain behaviour and the flexural behaviour of passively confined concrete. This model
is directly based on fundamental partial interaction shear-friction and bond-slip material
properties and can incorporate: different types of the confinement reinforcement; different
shapes of the cross-section; different types of reinforcement; different specimen sizes;
different concrete strengths; and different loading conditions that includes concentric loads
and flexural loads. As only the material properties are required in this model which can be
obtained from simple material tests, there is no need for member testing and this approach
can be easily extended to new types of confinement reinforcement reinforced concrete
members. Corresponding closed-form solutions are given which can be used for design

purpose.

The closed-form equations of the confinement mechanisms are introduced first for both
rectangular and circular cross-sections for all possible scenarios of the confinement
reinforcement that is debonding, yield, fracture or combinations of these; hence these
equations can be applied to all kinds and types of available confinement reinforcement such
as external plates or internal stirrups. Then shear friction material properties are derived from
actively confined cylinder tests as well as shear-sliding tests that are based on a large
database and then these properties are simplified to a linear form which can be used in the
ensuing derivation of the closed-form solutions of the proposed approach. The active
stress/strain is then constructed to validate the linear approximation with good correlation.
After which, the required bond-slip material properties for FRP and steel plates as well as

for FRP and steel rebars are summarised and simplified to a bilinear model.

Having gathered all the required material properties, a mechanics-based model to give the
stress/strain of passively confined concrete is derived for both rectangular and circular cross-

section prisms respectively. The specimen height and diameter or side length of the cross-
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section as well as different scenarios of confinement reinforcement are considered in this
approach. Closed-form solutions for this model are proposed for design purposes. Closed-
form solutions of the proposed approach are compared with published test data of concrete
prisms reinforced by either FRP or stirrups with good correlation. Hence, the proposed
approach can predict the passive stress/strain behaviour well and can be used for design
purposes. A parametric study has been conducted to show the effect of size. It is shown that
available empirical approaches that were derived from small-size specimens may be unsafe

for practical use in large size concrete structures.

Closed-form solutions of the passive stress/strain have been derived and then their
application in a flexural analysis is described. Firstly it is shown how the passive stress/strain
can be applied in a flexural analysis and then the passive stress/strain is simplified to a
rectangular stress block. Using this rectangular stress block in a segmental analysis, closed-
form solutions of the moment/rotation of the beam are derived for three key points which
are: at the onset of concrete softening; at the maximum strength of the passively confined
concrete; and when the passive stress/strain is fully developed. Then the derived
moment/rotation is compared with test data extracted from experimental load/deflections
with good correlation. Consequently, the proposed closed-form solutions can quantify the
ductility of passively confined concrete beams allowing for confinement and can be used in

design.

The proposed approach is then extended to steel tube confined concrete to give passive
stress/strains which can also incorporate the shrinkage effect. Derived passive stress/strains
are then simplified to rectangular stress blocks which can be used in flexural analyses. This
is followed by a parametric study which shows the effect of shrinkage on the passive

stress/strain with regard to strength and to ductility.

In summary, this thesis describes a mechanics-based model that is based on partial
interaction bond-slip and shear friction material properties. This model can predict the
stress/strain and flexural behaviour of passively confined concrete to quantify the strength
and, more importantly, the ductility of concrete prisms restrained by confinement

reinforcement.
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Further Research Directions

The following directions are suggested to improve the accuracy of the proposed approach:

1: Shear friction material properties derived in this thesis are limited by the assumption that
the maximum slip is five millimetres. Although the validation shows a five millimetre limit
is sufficient for most current concrete members, when better shear friction material
properties are developed, they can be applied to improve the accuracy of the proposed

approach.

2: Bond slip material properties are derived from pull-out tests where the confining stress
normal to the interface between the concrete and reinforcement is zero which is not the case
for members with circular cross-sections. Although from the validation, it is shown that
based on this assumption the proposed model gives good correlation with experimental
results, when better bond-slip material properties are developed, they can be applied in the

proposed approach to increase accuracy.

3: The proposed approach can be applied to different types of concrete such as ultra-high
performance concrete or sea sand concrete when the shear friction material properties for
these new types of concrete are developed. The proposed approach can also be easily
extended to concrete members reinforced by new types of confinement reinforcement such

as double skin composite confinement.
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