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Abstract 

 

Reinforcement that acts to passively confine concrete, such as stirrups, steel tubes, FRP 

(fibre reinforced polymer) wraps or a combination of the above can enhance the strength and, 

more importantly, the ductility of concrete members, allowing for greater absorption of 

energy and consequently ductile failure. Research to quantify the stress-strain response of 

confined concrete has largely resulted in empirical or semi-empirical modification factors 

that are applied to the stress-strain relationships for unconfined or actively confined concrete. 

These approaches appear, however, to be the result of seemingly disparate research 

conducted to develop safe approaches for design purposes. As a result, the approaches often 

yield conservative predictions of performance within the bounds of the dataset from which 

they were calibrated, but poor performance when extended outside these bounds. This 

presents a particular challenge for the application of new types of confinement reinforcement 

material as expensive member tests for different size and concrete strength specimens are 

required and the whole procedure has to be repeated for each type of new material..  

 

In this thesis, a generic mechanics-based model is proposed for the passive stress/strain of 

concrete that can incorporate: any type of confinement reinforcement; rectangular or circular 

cross-sections; different specimen sizes; and different concrete strengths. This approach is 

based on the direct application of fundamental partial-interaction shear-friction and bond-

slip mechanics rather than the empirical modification of unconfined material properties. The 

benefit of this approach is that it is based directly on fundamental material properties that 

are obtained from simple material tests and, therefore, it can rapidly and inexpensively be 

extended to new types of confinement without the need for member level calibration testing. 

Additionally, simplified closed-form solutions for the proposed approach are developed for 

use in the design of members. 

 

This thesis first investigates the confinement reinforcement behaviour including debonding, 

yielding, fracture or a combination of the above and the corresponding closed-form 

equations are proposed. Then the shear friction material properties are derived from actively 

confined cylinder tests as well as shear-sliding tests and are simplified to a linear form. After 

which the bond-slip material properties for different types of confinement reinforcement are 
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summarised. Having gathered all these fundamental material properties, the stress/strain 

response of confined concrete is quantified and corresponding simplified closed-form 

solutions are proposed for rectangular and circular cross-section members respectively. Next, 

closed-form solutions of the passive stress/strain of concentrically loaded specimens are 

simplified to rectangular stress blocks for flexural analysis. From which the closed-form 

solution based on the segmental analysis approach is used to quantify the beam ductility by 

deriving the moment/rotation of a hinge. Finally, the above proposed approach is extended 

to steel tube confined concrete for which the passive stress/strain incorporates shrinkage and 

the results are simplified to rectangular stress blocks that can be used in flexural analyses. 
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Introduction and General Overview 

 

Concrete members reinforced by passive confinement through the use of either internal 

stirrups or external FRP wraps, or FRP tubes, or steel tubes or a combination of the above 

have received much research interest as these confinement reinforcements can significantly 

enhance both the strength and, more importantly, the ductility of concrete members. Previous 

research relies on empirical or semi-empirical factors to define the stress-strain behaviour 

for confined concrete and these approaches often yield conservative results. Furthermore, 

these approaches may only be accurate within the bounds of the regressed databases and 

should not be extended beyond these bound. As a result, expensive member tests have to be 

repeated for new types of confinement reinforcement reinforced concrete with different sizes 

and concrete strengths to derive corresponding empirical or semi-empirical approaches. 

 

To aid in addressing the limitations of empirical and semi-empirical approaches, a generic 

fundamental mechanics-based approach is proposed to predict the passive stress/strain 

response and flexural behaviour of concrete members. This approach is generic in that it can 

be applied to rectangular or circular cross-sections, different specimen heights, different 

concrete strengths and various confinement reinforcement types such as stirrups, FRP wraps, 

steel tubes or a combination of the above. Based on fundamental partial-interaction shear-

friction and bond-slip material properties, the proposed approach and the corresponding 

closed-form solutions for design purposes are developed to predict the passive stress/strain 

response and flexural behaviour. As only partial-interaction material properties are required, 

they can be extracted from simple material tests instead of member level testing, such that 

the proposed approach can be extended to new types of confinement reinforcement at low 

cost. 

 

The Chapters in this thesis are comprised of a series of school reports which provide full 

details of the development of the approach and then these have then been condensed to 

journal papers. 
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Chapter 1 contains a school report which describes the mechanics of the confinement 

reinforcement which includes debonding, yielding, fracture, or a combination of the these. 

Based on the bond-slip fundamental material property, three scenarios that may occur to the 

confinement reinforcement are described and the mechanics equations for the confinement 

reinforcement behaviour are proposed for both rectangular cross-sections and circular cross-

sections.  

 

Chapter 2 contains two school reports on two partial-interaction material properties that 

govern the confinement mechanism. These material properties are used in this research, 

however, the mechanics does not depend directly on these specific properties such that they 

could be replaced by any more convenient or appropriate models. Firstly, the shear-friction 

material properties are derived from both actively confined cylinder tests and shear-sliding 

tests from a large dataset. These shear friction properties are then simplified to a linear 

approximation that can be used in the closed-form solutions of the proposed approach. Then 

active stress/strains are constructed based on the linearized shear friction material properties 

to validate this linear approximation. Secondly, bond-slip properties for available 

reinforcement including steel and FRP rebars as well as steel and FRP plates are summarised 

and simplified to a bilinear model for ease of application in the proposed approach. 

 

In Chapter 3, a passively confined stress-strain relationship for rectangular and circular 

cross-sections is derived based on the application of the material properties and mechanics 

equations described in the first two chapters. As a result, this approach does not rely on 

member tests and can predict the behaviour of concrete specimens with different properties. 

Closed-form solutions are given for design purpose which allows for the different scenarios 

that can occur to the confinement reinforcement including intermediate crack debonding, 

yield, fracture or a combination of these. In this chapter, two submitted journal papers are 

included. The first paper describes the proposed approach in detail for rectangular cross-

sections; the second paper investigates how the mechanics varies for circular cross-sections 

from the rectangular ones as well as a parametric study to show the importance of the 

specimen size on the passive stress/strain behaviour. 
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The traditional flexural analysis relies on empirically calibrated hinge lengths to quantify 

beam ductility and ignores the size-effect of the passively confined concrete stress/strain 

response as well as the confinement effect. Ignoring the confinement effect may 

underestimate the strength and, more significantly, the ultimate strain of the concrete. Hence 

in Chapter 4, one submitted journal paper is included to describe the application of the 

proposed passive stress/strain in flexural analyses which is mechanics-based and size-

dependent and can allow for confinement effect. The reason why the passive stress/strain 

derived from prisms can be applied in flexural analyses is first explained, then the passive 

stress/strain derived in Chapter 3 is simplified to a rectangular stress block. Based on the 

well-established segmental analysis, closed-form solutions are derived to quantify the beam 

ductility by quantifying moment/rotation of a hinge which can be used in design. 

 

In Chapter 5, the fundamental mechanics is extended to steel tube confined concrete prisms 

in a submitted journal paper. As a result, the passive stress/strain response allowing for the 

shrinkage effect is quantified and simplified to a rectangular stress block which can be used 

in flexural analyses. Then a parametric study is conducted to investigate the effect of 

shrinkage on the passive stress/strain behaviour. 

 

Chapter 6 concludes this thesis and provides possible future research. 
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Chapter 1— Confinement Reinforcement Behaviour 

 

Introduction 

 

This Chapter contains the school report below which describes the fundamental mechanism 

of the confinement reinforcement and gives the quantification of the confinement that 

includes the cases of IC debonding, yielding, fracture or a combination of these.  

 

List of Manuscripts 

 

Hao, X., Oehlers, D., and Visintin, P. (2017) Mechanics Closed Form Equations for the 

Confinement. School Report, School of Civil, Environmental and Mining Engineering, The 

University of Adelaide, Australia. 
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Mechanics Closed Form Equations for Confinement 

 

Introduction 

 

The lateral confinement of the concrete due to transverse reinforcement in the form of 

stirrups, steel tubes, FRP wraps or combinations of them can enhance the axial strength and 

ductility of concrete columns (Basset & Uzumeri 1986; Bresler & Gilbert 1961; Lam & Teng 

2003; Sakino et al. 2004; Visintin et al. 2012). The confinement due to the transverse 

reinforcement is a passive confinement as it depends on the lateral deformation, such that if 

there is no lateral deformation then the confinement effect is zero. In this report, the 

mechanics of the confinement due to the transverse reinforcement will be described and 

quantified. 

 

 

Fig. 1 Stirrups reinforced concrete column under axial load 
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It is assumed in this report that both the stirrup reinforced concrete column in Fig. 1 and the 

plated concrete column in Fig. 2 that are under concentric loads Pax will fail because of 

sliding along a single sliding plane at an angle of α as shown (Chen, Visintin & Oehlers 

2015a; Chen et al. 2015). It should be noted that the sections of the columns in Figs. 1 and 

2 can be either rectangular or circular and we will consider the rectangular case first, where 

Di is the width of the transverse reinforcement as shown. For a column whose slenderness 

ratio is equal to or more than three, sliding most likely occurs across a single sliding plane 

as in Figs. 1 and 2 (Ali, Oehlers & Griffith 2010; Visintin, Chen & Oehlers 2015). For 

slenderness ratios less than three such as in standard cylinder tests where the slenderness 

ratio is two, circumferential sliding planes are the most common form of failure (Chen, 

Visintin & Oehlers 2015a, 2015b; Chen et al. 2015; Oehlers, Deric J et al. 2017) and which 

occur at higher axial loads. As most columns in structures have a slenderness of more than 

three and as the strength of a single sliding plane is a lower bound to that due to 

circumferential sliding planes, only the single sliding plane failure type will be considered 

in this investigation. 

 

 

Fig. 2 Plate reinforced concrete column under axial load 
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In Figs. 1 and 2, the slip due to sliding S and the crack opening hcr will cause the crack width 

L across the sliding plane as shown and subsequently the confinement force Pconf as shown. 

As the crack opening hcr is an order of magnitude smaller than the slip S (Birkeland & 

Birkeland 1966; Chen, Visintin & Oehlers 2015a; Haskett, M et al. 2010; Haskett, Matthew 

et al. 2011), the effect of hcr on the crack width L is ignored in this research which is a further 

conservative approach. Section A-A’ from Fig. 2 can be either a rectangular or a circular 

section and the rectangular case is shown in Fig. 3 as an example. The crack width L is 

comprised of the crack face slips Δ of both sides of reinforcement such as ΔD and ΔE in Fig. 

3, which will induce the confinement force Pconf and subsequent confining stress σconf as in 

Fig. 2 (Muhamad et al. 2012).  

 

 

Fig. 3 Rectangular Section A-A’ from Fig. 2 

 

In this report, the reinforcement behaviours that includes debonding, yielding, fracture and 

combinations of these behaviours, will be investigated first. Then all the mechanics details 

of the relationships between the transverse confinement force Pconf and the crack width L in 

Fig. 3 will be investigated. 

 

Bond-Slip Relationship 

 

For the stirrup reinforced concrete column in Fig. 1 and the plated concrete column in Fig. 

2 under concentric loads, the slip S is constant along the shear failure plane. The components 

of the slip are shown in Fig. 4. The lateral component L is an effective crack width as it is 



 

8 

 

equivalent to a real crack width of L that would cause forces in the lateral reinforcement that 

induce confinement as shown in Fig. 3. The longitudinal or axial or vertical component V 

when divided by specimen height Lprsm gives the additional effective axial strain due to 

sliding. Furthermore, this can be written as that shown in square brackets in Fig. 4 such that 

the vertical axial deformation that controls the axial behaviour of the member such as under 

flexure is directly related to the lateral deformation that controls confinement. The horizontal 

component of the slip S, the effective crack width L, and which is equal to Ssinα is constant 

along the shear failure plane and this is shown in Figs. 1 and 2. 

 

 

Fig. 4 Vertical component V of slip S and horizontal component L of slip S 

 

Let us consider the mechanics that control confinement across a sliding plane, that is the 

mechanical relationships between the deformations and the forces in Fig. 3 that induce 

confinement. It will be shown that the confinement force Pconf depends directly on the bond-

slip characteristics in Fig. 5, which describes the relationship between the bond stress τB and 

the slip δ between reinforcement and adjacent concrete as explained next. 

 

 

Fig. 5 Bilinear bond-slip relationship for stirrups and plate reinforcement 
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Fig. 6 Reinforcements CD and EF from Fig. 3 

 

Consider the reinforcements CD and EF in Fig. 3 are shown in Fig. 6(a) as an example. The 

reinforcement ends are anchored because of the right angle bends at points C and F in Fig. 

3. At a distance x from point C in Fig. 6(b), the confinement force in the reinforcement Pconf 

will induce the slip δx between concrete and reinforcement and subsequently the bond stress 

τBx between them as shown. The distributions of slip δ and bond stress τB along the 

reinforcement CD are shown in Figs. 6(c) and (d) respectively. The relationship between δ 

and τB, that is the material bond property, can be idealised as a bilinear model; this is 

comprised of the ascending branch OA and the descending branch AB in Fig 5 and the 

expressions can be written as follows (Haskett, Matthew, Oehlers & Ali 2008; Visintin et al. 

2013) 

 

 max 1

1

B B if


   


   (1) 

 
max

max 1 max

max 1

B B if
 

    
 


  


 (2) 
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 max0B if     (3) 

 

where τBmax is the peak bond stress, δ1 is the slip between the reinforcement and adjacent 

concrete at τBmax and δmax is the slip between the reinforcement and adjacent concrete when 

the bond stress τB reduces to zero. The slip δ specifically at the crack face is referred to as 

the crack face slip Δ as shown in Fig. 6(a) and crack face slips of both sides of the 

confinement reinforcement that is ΔD and ΔE make up the crack width L as shown. In the 

following section, the relationship between the confinement force Pconf and the crack width 

L will be investigated for both rectangular-section columns and circular-section columns.  

 

Reinforced Concrete Column with Rectangular Sections 

 

The case of a rectangular column will first be considered and the results will then be used in 

the analysis of circular column sections. The mechanics for both the stirrup reinforced 

column in Fig. 1 and the plated column in Fig. 2 are almost identical so only the latter case 

in Fig. 2 will be described here.  

 

Displacement 

 

The width of the transverse reinforcement in Fig. 2 is equal to Di. The Sections A-A’ and B-

B’ through the rectangular-section column in Fig. 2 are shown in Figs. 3 and 7 respectively. 

In the former case in Fig. 3, the crack is at the centre and in the latter one in Fig. 7 the crack 

is off-centre. As a result, the length of the confinement reinforcement Lconf for the former 

case in Fig. 3 is equal to Di/2. However, for the latter one in Fig. 7: Lconf of the reinforcement 

IJ is referred to as Lconf-IJ and has a length x; such that Lconf of the reinforcement GH Lconf-GH 

is equal to Di-x. The crack width L in both Figs. 3 and 7 equals the sum of the reinforcement 

crack face slips of both sides as follows 

 

 D E H IL        (4) 

 

where ΔD and ΔE in Fig. 3 as well as ΔH and ΔI in Fig. 7 are the reinforcement slips at the 

crack faces. It should be noted that at the crack face, the confinement forces Pconf in both 



 

11 

 

sides are equal and the reinforcement ends are anchored because of the right angle bends 

such as points C, C’, F and F’ in Fig. 3 and G, G’, J and J’ in Fig. 7. The anchored 

confinement reinforcement may either debond, or yield or fracture or be subjected to a 

combination of these effects and the behaviour will be investigated in the following section. 

 

 

Fig. 7 Section B-B’ from Fig. 2 

 

Confinement Behaviour 

 

The behaviour of the confinement reinforcement will be investigated in this section. The 

debonding procedure in Fig. 8 will be described first. When the bond stress distribution in 

Fig. 5 is fully developed along the confinement reinforcement as in Fig. 8(c), the bond force 

reaches its maximum value and consequently the force in the confinement reinforcement 

reaches its maximum value that is when only restrained by the bond stresses. This is referred 

to as the intermediate crack (IC) debonding resistance PIC which is the maximum bond force 

and is given by (Ali et al. 2008; Oehlers, Deric John et al. 2008; Seracino, Raizal Saifulnaz 

& Oehlers 2007; Yuan et al. 2004) 

 

 max maxIC B per r rP L E A   (5) 

 

where Er is the modulus of the reinforcement, Lper and Ar in Fig. 9 are the total length of the 

potential debonding failure planes and the total cross-section area of the reinforcement 

respectively as shown. As shown in Fig. 8(c), the length of confinement reinforcement 

required to develop PIC is Lcrt which can be expressed as (Seracino, Raizal Saifulnaz & 

Oehlers 2007) 



 

12 

 

 

 
2

crtL



  (6) 

 

where the parameter λ can be expressed as 

 

 max

max

B per

r r

L

E A





  (7) 

 

where δmax and τBmax are shown in Fig. 5.  

 

 

Fig. 8 Procedure of confinement debonding when Lconf>Lcrt 
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Fig. 9 Debonding of stirrups or plate confinement 

 

The behaviour of the reinforcement is determined by the relationship between the critical 

length Lcrt from Eq. (6) and the length of the confinement reinforcement Lconf which is shown 

in Figs. 3 and 7. The case when Lcrt is smaller than Lconf will be described first and this is 

then followed by the case when Lcrt is larger. 

 

The case when Lcrt is smaller than Lconf 

 

When Lcrt is smaller than Lconf, the confinement reinforcement behaviour depends on the 

relative values between the debonding force PIC, the yield force Pyld and the fracture force 

Pfrac, such that the debonding of the confinement reinforcement may either occur or not. The 

case where debonding occurs prior to yielding or fracture will be described first. 

 

Debonding occurs prior to yielding or fracture  

 

When the debonding force PIC is smaller than the yield force Pyld or fracture force Pfrac, the 

confinement reinforcement will debond first then yield or fracture. The relationship between 

the confinement force Pconf and the crack face slip Δ is shown in Fig. 10 where for ease of 

analysis this relationship is assumed to be piecewise linear. The whole debonding process is 

shown in Fig. 8. Firstly, when the reinforcement slip at the crack face Δ in Fig. 8(a) is less 

than δ1 in Fig. 5, then the confinement force Pconf is less than PIC as shown in Fig. 8(a). 

Increasing the reinforcement slip Δ at the crack face such that Δ is larger than δ1 but smaller 

than δmax in Fig. 5 gives Fig. 8(b). When the crack face slip Δ reaches δmax in Fig. 8(c) that 

is also referred to as ΔIC, the confinement force will reach PIC at point A in Fig. 10; the stress 

distribution at which this occurs is labelled τB in Fig. 8(c) and occurs over the critical length 
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Lcrt. Any further increase in Δ will now cause debonding as the bond stress block τB will 

move along the length of the confinement reinforcement Lconf towards the reinforcement end 

as in Fig. 8(d). Meanwhile, the confinement force Pconf will remain the same at PIC and the 

reinforcement slip at the crack face Δ will increase until the bond stress distribution reaches 

the confinement reinforcement end at a crack face slip Δdeb, that is point B in Fig. 10, where 

Δdeb can be written as 

 

 ( )deb IC IC conf crtL L      (8) 

 

where εIC is the strain in the confinement reinforcement when the confinement force is PIC 

that is εIC is PIC/(ErAr) and Lcrt can be obtained from Eq. (6). A further increase of the crack 

face slip Δ in Fig. 8(d) will lead to a reduction of the component of the confinement force 

due to bond and an increase of the component due to anchorage. However, for convenience 

it will be assumed that the confinement force Pconf is kept constant at PIC until Δ reaches the 

following ΔIC2 at point C in Fig. 10 which can be written as 

 

 2IC IC confL   (9) 

 

after which, an increase in the reinforcement slip at the crack face will increase the 

confinement reinforcement strain. Subsequently, the confinement force due to the anchorage 

of the confinement reinforcement end will after completely debonding at point C: either 

yield at (Δyld, Pyld) that is point D in Fig. 10 then fracture at (Δfrac, Pfrac) that is point E in Fig. 

10; or directly fracture at point E. The corresponding crack face slip when the reinforcement 

yields or fractures, that is Δyld or Δfrac respectively, can be written as follows 

 

 yld yld confL   (10) 

 

 frac frac confL   (11) 

 

where εyld and εfrac are the yield and fracture strains respectively. 
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Fig. 10 The relationship between confinement force Pconf and crack face slip Δ when 

debonding occurs prior to yielding or fracture and Lconf>Lcrt 

 

From the above analyses, the relationship between the crack width L and the confinement 

force Pconf will be described next. When Lcrt is less than Lconf on both sides of the crack face 

as may occur in Figs. 3 and 7 when all values of Lconf are larger than Lcrt, then at the 

commencement of IC debonding as in Fig. 8(c) the confinement force is PIC and the width 

of the crack at the start of IC debonding LIC is 

 

 2IC ICL    (12) 

 

Furthermore, when the bond stress distribution reaches the reinforcement end as in Fig. 8(d), 

the confinement force remains at PIC and the following crack width Ldeb can be obtained 

from Eq. (8) 

 

 2 ( 2 )deb IC IC i crtL D L     (13) 

 

where Lcrt can be obtained from Eq. (6) and Di is shown in Fig. 2. After which at the end of 

debonding but still at PIC, the width of the crack LIC2 can be derived from Eq. (9) as 

 

 2IC IC iL D  (14) 
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A further increase in the crack width L will cause a direct increase in the confinement 

reinforcement strain and consequently an increase in the confinement force due to anchorage 

of the confinement reinforcement ends. When the confinement reinforcement either yields 

then fractures or directly fractures, the crack width Lyld at Pyld and Lfrac at Pfrac can be obtained 

from Eqs. (10) and (11) 

 

 yld yld iL D  (15) 

 

 frac frac iL D  (16) 

 

It is worth noting that Lcrt may be less than Lconf on one side but not on the other as might 

occur in Fig. 7. In which case at the attainment of PIC that is on the commencement of 

debonding on one side, the crack width LIC is less than 2ΔIC; this is because on one side the 

crack face slip is ΔIC but on the other side it is less due to the anchorage. Hence Eq. (12) will 

at worst give a conservative estimate in analysis when applied throughout the sliding plane. 

However at the end of debonding, Eqs. (13), (14), (15) and (16) still apply, that is these 

equations are always correct throughout the sliding plane in Figs. 1 and 2. 

 

 

Fig. 11 The closed form solution of stress-strain relationship of passively confined 

concrete columns when debonding occurs prior to yielding or fracture and Lconf>Lcrt 
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The relationship between the confinement force Pconf and the crack width L is employed to 

derive the closed form solution of the stress-strain relationship of passively confined 

concrete columns. Full details of the derivation are shown elsewhere (Hao 2017). Let us 

consider the stress-strain relationship in Fig. 11 of the passively confined concrete when 

debonding occurs prior to yielding or fracture and for the case where Lconf>Lcrt. The 

ascending branch O-A-B-C-D in Fig. 11 and the descending branches B-B’, C-C’ and D-D’ 

are idealised as linear. The positions of these falling branches are determined by the 

confining stresses σconf from the confinement reinforcement, which is a function of the 

confinement force Pconf. For instance, the confining stress σIC of the falling branch B-B’, σyld 

of the falling branch C-C’ and σfrac of the falling branch D-D’ are the functions of the 

debonding force PIC, yield force Pyld and fracture force Pfrac respectively.  

 

To summarise Fig. 11 (Hao 2017). The ascending branch of the concrete stress-strain O-A-

B-C-D is a material property that can be obtained directly from compression tests. The 

descending branch B-B’ is due to sliding, as shown in Figs. 1 and 2, when an active confining 

stress σconf is of magnitude σIC that is when the force in the confining reinforcement is PIC. 

Path B-B’ can be obtained from the shear friction properties (Hao 2017). Similarly the 

descending branch C-C’ is the descending branch which can be obtained from the shear 

friction properties when there is an active confinement of σyld that is when the reinforcement 

is at yield at Pyld. Finally, the descending branch D-D’ applies when the reinforcement is 

about to fracture that is when the force in the reinforcement is Pfrac such that the active 

confinement is σfrac. On application of a load such as Pax in Fig. 1, the stress in a concrete 

element follows the path of the ascending branch O-A in Fig. 11 of the unconfined concrete 

until at fc0 a sliding plane occurs such that the path diverges from O-A at point A. When 

there is sufficient sliding that the confinement reinforcement force is at PIC such that the 

confining stress is σIC, then the path is somewhere along B-B’ and it is a question of 

determining what part of B-B’ or what point on B-B’ is on the stress path. When there is 

sufficient sliding to cause yield such that the confining stress is σyld, then it is a question of 

determining which part or point of C-C’ lies on the stress path and similarly for D-D’ at 

fracture. Let us consider how this is achieved. 

 



 

18 

 

As an example, consider point E in Fig. 11 on the descending branch B-B’; any point on any 

of the descending branches could have been used. The axial strain εax in Fig. 11 of point E 

is comprised of the material strain εm and sliding strain εs caused by sliding as follows 

 

 ax m S     (17) 

 

where εm as shown in Fig. 11 is σax/Ec-un in which σax is the axial stress and Ec-un is the material 

modulus, and εs can be expressed as 

 

 s

prsm

V

L
   (18) 

 

where Lprsm is the height of the concrete column and V shown in Fig. 4 is the vertical 

component of the slip S such that V is also a function of the crack width L as from Fig. 4 the 

lateral deformation L=Ssinα. Hence 

 

 cos
tan

L
V S 


   (19) 

 

Substituting V from Eq. (19) into Eq. (18) gives the following sliding strain εs  

 

 
tan

s

prsm

L

L



  (20) 

 

To derive a closed form solution for the stress-strain relationship of a passively confined 

concrete, the axial stress σax and strain εax of key points such as the points that the 

confinement reinforcements debond, yield or fracture are required; these are shown as points 

F to J in Fig. 11.  

 

The crack widths L and consequently the strain εs, which can be obtained by substituting the 

crack width L into Eq. (20), and the confinement forces Pconf and consequently the 

confinement stresses σconf can be obtained for the key points in Fig. 11 as follows. 

 At point A in Fig. 11, sliding is about to start at the coordinates (εc0, fc0) where fc0 and 

εc0 are the unconfined concrete strength and strain at fc0 respectively. 
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 As sliding occurs after point A, debonding commences at point F in Fig. 11; at point 

F the crack width equals LIC from Eq. (12) and the confinement force is PIC such that 

the confining stress is σIC and consequently on the falling branch B-B’ which was 

derived for a confinement of σIC. The position of point F is fixed by ensuring that the 

horizontal distance between the ascending branch O-A-B-C-D and the descending 

branch B-B’ is equal to the sliding strain εs obtained by substituting LIC from Eq. (12) 

into Eq. (20) that is LIC/(tanαLprsm) as shown in Fig. 11. Point F can occur above or 

below point A. To simplify the derivation of closed form solutions, it has been 

assumed that there is a linear variation between points A and F. 

 After point F in Fig. 11 and on further sliding, the crack width will increase to Ldeb 

from Eq. (13) whilst the confining stress remains at σIC. Hence the sliding strain is 

obtained by substituting Ldeb from Eq. (13) into Eq. (20) that is Ldeb/(tanαLprsm). Point 

G is fixed by finding the position where the horizontal distance between O-A-B-C-

D and B-B’ is equal to Ldeb/(tanαLprsm) as shown. 

 Using the same procedure as outlined above. Point H in Fig. 11 lies on the falling 

branch B-B’ as the confining stress remains at σIC. Point H is fixed by finding the 

position where the sliding strain between the ascending branch O-A-B-C-D and B-

B’ is LIC2/(tanαLprsm) as shown where the crack width LIC2 is obtained from Eq. (14). 

 After a further increase in sliding, the crack width L may cause yield of the 

confinement reinforcement at the confinement force Pyld and confining stress σyld and, 

therefore, the next point I must lie on C-C’ where the confinement stress is σyld. Point 

I is fixed by finding the position where the sliding strain between the ascending 

branch O-A-B-C-D and C-C’ is Lyld/(tanαLprsm) as shown where the crack width Lyld 

is obtained from Eq.(15). To ease the complexity of finding closed form solutions, it 

has been assumed that there is a linear variation between points H and I. 

 After yielding, fracture of the reinforcement at the confinement force Pfrac and 

confinement stress σfrac lies somewhere along D-D’ which was obtained for a 

confinement of σfrac. The crack width Lfrac is given by Eq. (16) which can be used to 

fix point J as shown using the sliding strain Lfrac/(tanαLprsm). Once again, a linear 

interpolation between points I and J is assumed to help in the derivation of closed 

form solutions. 
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 For reinforcements that do not yield, the reinforcement may directly fracture at point 

J in Fig. 11 after completely debonding at point H that is there is a linear load path 

H to J as shown. 

 

As stated previously, for convenience and in order to develop closed form solutions, the 

stress-strain path in Fig. 11 is assumed to be linear between critical points as shown. It is 

also worth noting that if a solution cannot be found, this simple means that there is 

insufficient sliding capacity. For example, for fracture to occur a sliding strain of 

Lfrac/(tanαLprsm) is required as shown. If this strain exceeds O-D’, then this simply means that 

the sliding capacity is not sufficient to fracture the reinforcement. 

 

Yielding or fracture occurs prior to debonding 

 

Consider the case when yielding or fracture precedes debonding and when the critical length 

Lcrt is smaller than the confinement reinforcement length Lconf as in Fig. 8(c). The assumed 

relationship between the confinement force Pconf and crack face slip Δ is shown in Fig. 12. 

Point D, at PIC and ΔIC and which can be derived through mechanics, is therefore fixed 

through mechanics. Yield or fracture may happen when the bond stress is not fully developed 

as shown in Figs. 8 (a) and (b). However as point D is fixed and for ease of analysis, it is 

assumed that there is a linear variation in Fig. 12 from the origin to point D. The fracture 

force Pfrac and yield force Pyld are smaller than the debonding force PIC such that the 

confinement reinforcement may either directly fracture at (Δfrac2, Pfrac) at point B or yield at 

(Δyld2, Pyld) at point A. As we are assuming a linear variation O-A-B-D in Fig. 12, the stiffness 

of this linear variation is E1 =PIC/ΔIC such that Δyld2 and Δfrac2 can be expressed as 

 

 2

yld

yld IC

IC

P

P
    (21) 

 

 2

frac

frac IC

IC

P

P
    (22) 

 

where PIC is obtained from Eq. (5) and ΔIC can be obtained through mechanics (Ali et al. 

2008; Lu et al. 2005).  
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After yielding of the confinement reinforcement that is at point A in Fig. 12, the confinement 

force is assumed to be kept constant at Pyld; the effect of strain hardening on the IC debonding 

resistance (Haskett, Matthew et al. 2009) is ignored in this research to achieve a simple yet 

conservative solution for design purpose. It will be assumed that as yielding progresses along 

Lconf, the bond stress in Fig. 8 is gradually destroyed (Shima, Chou & Okamura 1987). Hence 

when yielding is complete along Lconf and the confinement force is still maintained at Pyld 

then point C in Fig. 12 is given by the crack face slip Δyld which can be obtained from Eq. 

(10) and Pyld. After which, a further increase in the crack face slip will cause the fracture of 

the confinement reinforcement at Pfrac that is point E in Fig. 12 and the crack face slip Δfrac 

can be obtained from Eq. (11). 

 

 

Fig. 12 The relationship between confinement force Pconf and crack face slip Δ when 

yielding or fracture occur prior to debonding and Lconf>Lcrt 

 

From the above analyses, when Lcrt from Eq. (6) is less than Lconf on both sides of the crack 

face and PIC>Pfrac or PIC>Pyld, the confinement reinforcement may fracture directly and at 

the commencement of fracture the following width of the crack Lfrac2 can be written as 

 

 2 22frac fracL    (23) 

 

where Δfrac2 can be achieved from Eq. (22). The confinement reinforcement may also yield. 

At the commencement of yielding the following width of the crack Lyld2 can be written as 
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 2 22yld yldL    (24) 

 

where Δyld2 can be obtained from Eq. (21). After which, when the reinforcement is 

completely yielded the crack width Lyld can be obtained from Eq. (15). Then a further 

increase in the crack width will cause the fracture of the confinement reinforcement when 

the crack width Lfrac can be obtained from Eq. (16).  

 

Similar to the case when debonding occurs first and Lcrt<Lconf. The critical length Lcrt may 

be less than Lconf on one side of the crack face but not on the other as might occur in Fig. 7. 

Then at the commencement of yielding or fracture, the crack widths Lfrac2 and Lyld2 may be 

less than 2Δfrac2 or 2Δyld2 respectively from Eqs. (23) or (24) because on one side the crack 

face slip is Δfrac2 or Δyld2 but on the other side it may be less due to the anchorage. Hence 

these crack widths will give a conservative estimate in analysis when applied throughout the 

sliding plane. However Eqs. (15) and (16) at the completion of yield or fracture still apply, 

that is they are always correct throughout the sliding plane. 

 

 

Fig. 13 The closed form solution of stress-strain relationship of passively confined 

concrete columns when yielding or fracture occurs prior to debonding and Lconf>Lcrt 
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Consider the construction of the passive stress-strain relationship for the case when Lcrt<Lconf 

and PIC is larger than Pyld or Pfrac as shown in Fig. 13. Equations. (23), (24), (15) and (16) 

can be used in the construction of the stress-strain relationship of passively confined concrete 

as in Fig. 13 where: should yield occur before fracture then the path is O-A-E-F-H; or should 

fracture occur before yield then the path is O-A-G. This case when Lcrt<Lconf and PIC is larger 

than Pyld or Pfrac is similar to the previous case in Fig. 11, where Lcrt<Lconf and PIC is smaller 

than Pyld or Pfrac. However, IC debonding does not occur such that B-B’ in Fig. 11 does not 

exist as shown in Fig. 13.  

 

In summary. For the fracture case where yielding does not occur, the confinement 

reinforcement will fracture at point G in Fig. 13, where the crack width equals Lfrac2 from 

Eq. (23) instead of Lfrac from Eq. (16) and the confinement force is Pfrac such that the 

confining stress is σfrac and consequently on the falling branch D-D’. The position of point 

G is fixed by finding the position where the horizontal distance between O-A-C-D and D-D’ 

is equal to the sliding strain derived by substituting Lfrac2 from Eq. (23) into Eq. (20) that is 

Lfrac2/(tanαLprsm) as shown. In addition, for the yield case, yielding commences at point E, 

where the crack width equals Lyld2 from Eq. (24) instead of Lyld from Eq. (15) and the 

confinement force is Pyld such that the confining stress is σyld and consequently on the falling 

branch C-C’. The position of point E is fixed by finding the position where the horizontal 

distance between O-A-C-D and C-C’ is equal to the sliding strain derived by substituting 

Lyld2 from Eq. (24) into Eq. (20) that is Lyld2/(tanαLprsm) as shown. It is worth noting that the 

position of completely yielding at point F in Fig. 13 is the same as that of yield point I in 

Fig. 11. The other procedures are the same. 

 

The case when Lcrt is larger than Lconf 

 

Confinement reinforcement behaviour 

 

When the critical length Lcrt in Fig. 8(c) is larger than the confinement length Lconf, the bond 

distribution labelled τB cannot be fully developed. Consequently the relationship between 

the confinement force Pconf and crack face slip Δ shown in Figs. 8, 10 and 12 and given by 

their associated equations above are not applicable. 
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The case where Lconf<Lcrt is shown in Figs. 14(a-c) where the anchor to the reinforcement is 

on the left and the crack face on the right. The variation in slip δ is shown in Fig. 14(b) where, 

because of the anchor, the slip on the left δ is zero and that on the right at the crack face is 

the crack face slip Δ as shown. The variation in the bond shear stress τB is shown in Fig. 

14(a). The variations in Figs. 14(a), (b) and (c) are identical to that which occurs in a multi-

crack analysis (Oehlers, D et al. 2012; Zhang, Visintin & Oehlers 2015; Zhang, Visintin & 

Oehlers 2017; Zhang et al. 2014) with a crack spacing Sp of 2Lconf in Figs 14(d) and (e) where 

by symmetry the slip midway between cracks is zero. Hence the relationship between the 

confinement force Pconf and the crack face slip Δ from a multi-crack analysis is directly 

applicable. 

 

 

Fig. 14 Analysis of the case when Lconf<Lcrt (a-c) and multi-crack analysis (d and e) 
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Fig. 15 The relationship between confinement force Pconf and crack face slip Δ when 

Lconf<Lcrt 

 

The Pconf/Δ relationship from a multi-crack analysis is shown as O-A-B in Fig. 15 with 

stiffness E2 as shown. Let us first consider the fracture case, that is the reinforcement 

fractures directly without showing yielding behaviour. The confinement reinforcement will 

fracture at (Δfrac3, Pfrac) that is point B in Fig. 15. With regard to the yield case, the 

confinement reinforcement will firstly yield at (Δyld3, Pyld) at point A in Fig. 15. After the 

start of yielding and as yielding progresses, the bond in Fig. 14(a) is gradually destroyed 

(Shima, Chou & Okamura 1987). Consequently when yielding is complete and still at Pyld, 

the crack face slip is Δyld from Eq. (10) that is point C in Fig. 15. After which, the 

confinement reinforcement will fracture at (Δfrac, Pfrac) at point D, where Δfrac can be derived 

from Eq. (11). With regard to Δfrac3 and Δyld3, they can be derived from multi-crack analysis. 

Closed form solutions to quantify Δfrac3 or Δyld3 as proposed by Sturm, Visintin and Oehlers 

(2018) can be written as follows 

 

 3 tanh( )
2
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
   (25) 

 

 3 tanh( )
2
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
   (26) 

 

where Sp is the primary crack spacing that is equal to 2Lconf as shown in Fig. 14(d), and λ is 

the variation in the slip parameter which can be written as follows 
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 k   (27) 

 

where the prism parameter β and bond-slip stiffness k can be expressed as 
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It should be noted that for a plate reinforcement the area of the reinforcement Ar is much 

smaller than that of the concrete Ac such that Eq. (28) can be simplified as follows (Ali et al. 

2008) 

 

 
per

r r

L

E A
   (30) 

 

Relationship between confinement force Pconf and crack width L 

 

In this section the crack width L will be quantified at different confinement forces Pconf 

including Pfrac and Pyld in Fig. 15. It is worth noting that when Lcrt>Lconf the confinement 

reinforcement slips at the crack face Δfrac3 and Δyld3 in Fig. 15 can be quantified from Eqs. 

(25) and (26) respectively, where Sp is equal to 2Lconf as in Fig. 14(d). This means that the 

length of the confinement reinforcement Lconf will affect the confinement reinforcement slip 

Δfrac3 and Δyld3 at the crack face and, subsequent, the corresponding crack width Lfrac3 and 

Lyld3, which will be derived below. 

 

Consider the cross section B-B’ in Fig. 7 which can be a yield case or fracture case and in 

which Lcrt is larger than Lconf. The yield case will be discussed first. For reinforcements GH 

and IJ in Fig. 7, the lengths of the confinement reinforcements Lconf are referred to as Lconf-

GH and Lconf-IJ, and are assumed to have lengths of Di-x and x respectively as shown. As a 

result, the following crack width L’yld3, when the confinement reinforcement starts to yield, 

can be derived from Eqs. (4) and (26) by substituting Lconf-GH=Di-x, Lconf-IJ=x and Sp=2Lconf 
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rearranging Eq. (31) gives 
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simplifying Eq. (32) gives 
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when Lconf-IJ=x in Fig. 7 varies, only cosh[λ(Di-2x)] in Eq. (33) is not a constant. This 

hyperbolic cosine function y=coshx in Fig. 16 will reach the lowest value at point A in Fig. 

16 at x=0 (Oldham, Myland & Spanier 2010). This means that when Di-2x=0 then cosh[λ(Di-

2x)] in Eq. (33) will reach the lowest value such that the crack width L’yld3 will reach the 

following highest value Lyld3 which can be obtained by substituting Di-2x=0 into Eq. (33)  
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2sinh( )
{ }

cosh( ) 1

yld i
yld

r r i

P D
L

E A D



 



 (34) 

 

For this case, Di-2x=0 can be arranged to x =Di/2 and this is the case in Fig. 3 in which the 

crack is at the mid-width of the cross-section. Consequently, when Lcrt>Lconf, L will reach 

the highest value Lyld3 for the case in Fig. 3 compared with that in Fig. 7 where the crack is 

off centre. As a result, it is only necessary to consider the former case in Fig. 3 as this gives 

a conservative solution compared with the latter one in Fig. 7; this simplifies the analysis 

considerably and consequently will be applied in the following research to derive the closed 

form solution of the stress-strain relationship of reinforced concrete columns (Hao 2017). It 

will be assumed that as yielding progresses, the bond stress in Fig. 8 is gradually destroyed 

(Shima, Chou & Okamura 1987). Consequently, when yielding is complete and still at Pyld 
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the crack width Lyld can be obtained from Eq. (15). Finally at the fracture force Pfrac, the 

crack width Lfrac can be obtained from Eq. (16). 

 

 

Fig. 16 Shape of hyperbolic cosine function y=cosh(x) 

 

With regard to the fracture case, that is when the confinement reinforcement fractures 

directly and does not yield, the following crack width Lfrac3 when the confinement 

reinforcement starts to fracture can be derived by substituting Pfrac for Pyld in Eq. (34) as 

follows 
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From the above analysis and for the case where Lcrt>Lconf, Eqs. (15), (16), (34) and (35) can 

be used in the construction of the stress-strain relationship of passively confined concrete as 

in Fig. 13. The only difference between this case of Lcrt>Lconf and the previous case in Fig. 

13, where Lcrt<Lconf and PIC is larger than Pyld or Pfrac, is that the confinement reinforcement 

starts to yield or fracture at points E or G in Fig. 13 at the crack width Lyld3 or Lfrac3 from Eqs. 

(34) or (35) respectively instead of Lyld2 or Lfrac2 from Eqs. (24) and (23). Consequently, 

point E or G can be fixed by the distance between O-A-C-D and falling branch C-C’ or D-

D’ that equals Lyld3/(tanαLprsm) or Lfrac3/(tanαLprsm) respectively which is derived by 

substituted the crack width Lyld3 or Lfrac3 into Eq. (20). 

 

In conclusion, the relationships between the crack width L and the confinement force Pconf 

are shown in Fig. 17. When the critical length Lcrt from Eq. (6) is less than the length of the 

confinement reinforcement Lconf and debonding force PIC is less than yield force Pyld or 
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fracture force Pfrac as in Fig. 17(a), the confinement reinforcement will: debond at (LIC, PIC); 

during a further increase in the crack width to Ldeb, the force is maintained at PIC; then the 

confinement reinforcement will be fully debonded at (LIC2, PIC); after which the confinement 

reinforcement may either directly fracture at (Lfrac, Pfrac); or yield at (Lyld, Pyld) first and then 

fracture at (Lfrac, Pfrac). When Lcrt<Lconf and PIC is larger than Pyld or Pfrac as in Fig. 17(b): the 

confinement reinforcement may either fracture directly at (Lfrac2, Pfrac); or yield at (Lyld2, Pyld); 

then reach (Lyld, Pyld); and fracture at (Lfrac, Pfrac) without showing debonding behaviour. 

When Lcrt is larger than the length of the confinement reinforcement Lconf: then the 

reinforcement may either directly rupture at (Lfrac3, Pfrac); or yield at (Lyld3, Pyld) in Fig. 17(c); 

then reach (Lyld, Pyld); and fracture at (Lfrac, Pfrac) without showing debonding behaviour. 

 

 

Fig. 17 Behaviour of reinforcement: (a) debonding occurs prior to fracture or yield when 

Lcrt<Lconf; (b) fracture or yield occurs prior to debonding when Lcrt<Lconf; (c) fracture or 

yield occurs when Lcrt>Lconf 
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Reinforced Concrete Column with Circular Sections 

 

The governing equations for rectangular sections have been derived above. Now let us 

consider the confinement of a circular column. The circular column in Fig. 18(a) has the 

sliding plane at the centre and that in Fig. 18(b) off-centre; these are equivalent to the 

sections in Figs. 3 and 7 for a rectangular section. It can be shown through the resolution of 

forces (Kyle et al. 2015) that for a given confinement force Pconf across the sliding plane as 

shown in Figs. 18(a) and (b), the lateral confinement stress across the sliding plane σconf is 

the same as shown. For example when Pconf has the same magnitude in Figs. 18(a) and (b), 

then the confinement stress σconf is the same in both cases even though the confinement force 

in Fig. 18(b) is inclined to the sliding plane. This is very important for columns with circular 

sections as it shows that the confinement stress and consequently confinement is constant 

which simplifies the mechanics considerably. 

 

 

Fig. 18 Section A-A’ (a) and B-B’ (b) for a circular-section case from Fig. 1 or 2 

 

Let us first consider Fig. 18(a) where the sliding plane is at the centre. Let us also start with 

IC debonding. Equation (5) for IC debonding is for a flat plate and, therefore, should be on 

the conservative side when there is a radius as in a circular column. Debonding will then 

progress to points C or F in Fig. 18(a) which by symmetry are the anchor points. Hence the 

sum of the confinement lengths Lconf-CD and Lconf-EF is equal to the Di of the rectangular 

section and each of them equals Di/2. Consequently equations (12), (13), (14), (15), (16) 
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with Di defined in Fig. 18(a) can be applied directly. Similarly for the case when debonding 

does not occur, equations (23), (24), (34) and (35) can be applied directly with Di defined in 

Fig. 18(a). 

 

The case when the sliding plane is eccentric is shown in Fig. 18(b). In this case, it can be 

seen that the crack widening measured along the circumference and shown as L is not the 

same as the crack width L’ of the sliding plane. Hence L from the above equations will 

overestimate L’ required for the shear friction analysis which will give a safe and 

conservative analysis. Consequently equations (12), (13), (14), (15), (16), (23) and (24) can 

also be applied directly with Di defined in Fig. 18(a). 

 

Conclusion 

 

In this report, the relationship between the confinement force Pconf and the crack width L is 

investigated. It is shown that it depends on the critical length Lcrt and the length of the 

confinement reinforcement Lconf as well as the relative value between debonding force PIC, 

yield force Pyld and fracture force Pfrac. If Lcrt is smaller than Lconf and debonding force PIC 

is smaller than yield force Pyld or fracture force Pfrac: the confinement reinforcement will 

debond first then fracture; or yield then fracture. When Lcrt<Lconf and debonding force PIC is 

larger than yield force Pyld or fracture force Pfrac: the confinement reinforcement may either 

directly fracture; or yield then fracture. When Lcrt>Lconf, the confinement reinforcement may 

either directly fracture or yield then fracture, too. The crack face slips and crack widths of 

the confinement reinforcement for different confinement forces are derived based on 

mechanics. The relationships between confinement forces and crack widths will be 

employed to derive the closed form solution of the stress-strain relationship of confined 

concrete columns in future research. 

 

Notation 

 

Ac = cross-section area of concrete which interacts with reinforcement in tension stiffening 

analysis 

Ar = total cross-section area of reinforcement in tension stiffening analysis 

Di = width of a rectangular prism  
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Ec = elastic modulus of concrete  

Ec-un = elastic modulus of material strain 

Er = elastic modulus of reinforcement 

E1 = stiffness of Pconf/Δ relationship that is equal to PIC/ΔIC 

E2 = stiffness of Pconf/Δ relationship from multi-crack analysis 

fc0 = unconfined concrete strength 

hcr = crack widening of sliding plane 

k = bond-slip stiffness in tension stiffening analysis 

L = crack width which is also horizontal component of slip S 

Lconf = length of confinement reinforcement 

Lcrt = critical length which is the minimum length required to achieve the maximum debond 

force 

Ldeb = crack width when debond developed to plate ends 

Lfrac = crack width when confinement reinforcement starts to fracture when Lcrt<Lconf and 

PIC<Pfrac 

Lfrac2 = crack width when confinement reinforcement starts to fracture when Lcrt<Lconf and 

PIC>Pfrac  

Lfrac3 = crack width when confinement reinforcement starts to fracture when Lcrt>Lconf 

LIC = crack width at commencement of IC debonding 

LIC2 = crack width when confinement reinforcement is fully debonded  

Lper = total length of potential debonding failure plane of reinforcement in tension stiffening 

analysis 

Lprsm = height of concrete column 

Lyld = crack width when reinforcement starts to yield when Lcrt<Lconf and PIC<Pyld 

Lyld2 = crack width when reinforcement starts to yield when Lcrt<Lconf and PIC>Pyld 

Lyld3 = crack width when reinforcement starts to yield when Lcrt>Lconf 

Pax = axial load  

Pconf = force in confinement reinforcement 

Pfrac = fracture force of confinement reinforcement 

PIC = debond force of confinement reinforcement 

Pyld = yield force of confinement reinforcement 

S = slip displacement 

Sp = primary crack spacing 

V = vertical component of slip S 
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α = failure angle of concrete column 

β = prism parameter in tension stiffening analysis 

Δ = slip of confinement reinforcement at crack face 

Δdeb = slip of confinement reinforcement at crack face when debond developed to plate ends 

Δfrac = slip of confinement reinforcement at crack face when confinement reinforcement 

starts to fracture when Lcrt<Lconf and PIC<Pfrac 

Δfrac2 = slip of confinement reinforcement at crack face when confinement reinforcement 

starts to fracture when Lcrt<Lconf and PIC>Pfrac  

Δfrac3 = slip of confinement reinforcement at crack face when confinement reinforcement 

starts to fracture when Lcrt>Lconf 

ΔIC = slip of confinement reinforcement at crack face when debond starts 

ΔIC2 = slip of confinement reinforcement at crack face when confinement reinforcement is 

fully debonded 

Δyld = slip of confinement reinforcement at crack face when confinement reinforcement starts 

to yield when Lcrt<Lconf and PIC<Pyld  

Δyld2 = slip of confinement reinforcement at crack face when confinement reinforcement 

starts to yield when Lcrt<Lconf and PIC>Pyld  

Δyld3 = slip of confinement reinforcement at crack face when confinement reinforcement 

starts to yield when Lcrt>Lconf 

δ = slip between reinforcement and adjacent concrete 

δ1 = slip between reinforcement and adjacent concrete at τBmax  

δmax = slip between reinforcement and adjacent concrete when bond stress τB reduces to zero 

εax = axial strain 

εc0 = axial strain at fc0 

εfrac = strain when force in confinement reinforcement equals Pfrac 

εIC = strain when force in confinement reinforcement equals PIC 

εm = material strain 

εs = sliding strain caused by slip 

εyld = strain when force in confinement reinforcement equals Pyld 

λ = variation in slip parameter 

σax = axial strain at εax 

σconf = lateral confining stress from confinement reinforcement 

σfrac = lateral confining stress from confinement reinforcement when confinement force 

equals fracture force Pfrac 
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σIC = lateral confining stress from confinement reinforcement when confinement force 

equals debond force PIC 

σyld = lateral confining stress from confinement reinforcement when confinement force 

equals yield force Pyld 

τB = bond stress existing between reinforcement and concrete 

τBmax = peak bond stress 
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Chapter 2— Material Properties 

 

Introduction 

 

This Chapter contains the two school reports below. These two school reports provide the 

shear-friction and bond-slip material properties required for the proposed approach given 

later. In the first school report, the shear friction material properties are derived from actively 

confined cylinder tests and are simplified to a linear form that can be used to derive closed-

form solutions of the proposed approach. In the second school report, the bond-slip material 

properties are simplified to a bilinear form and then summarised for different confinement 

reinforcements including rebars and plates of FRP or steel.  
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Mechanics of Extracting Shear-Friction Properties from Actively 

Confined Cylinder Tests 

 

Abstract 

Shear friction properties are used to quantify the shear resistance to concrete sliding by 

giving the relationship between the shear stress parallel to the shear-sliding plane, normal 

stress transverse to the shear-sliding plane and slip displacement along the shear-sliding 

plane. These shear friction properties are derived primarily from simple and inexpensive 

actively confined cylinder compression tests and where there are gaps in the results with the 

results from relatively expensive complex shear-sliding tests. Approximations of these shear 

friction properties are proposed. This is then applied inversely to construct the stress-strain 

relationships of actively confined concrete to validate the simulation and with good 

correlation.  

 

Keywords 

Shear friction properties; actively confined concrete; Shear-sliding tests; approximation; 

size effect;  
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Introduction 

 

Shear friction properties are used to quantify the shear resistance to sliding. They were first 

derived from shear-sliding tests as shown in Figs. 1(a) and (b) where the shear stress τ can 

be obtained for a given normal confining stress σN, crack widening hcr and slip S along the 

shear sliding plane as shown. It is worth noting that, the normal stress σN can be supplied by 

either external loading in Fig. 1(a) (Zhang 2014) or internal reinforcement in Fig. 1(b) 

(Birkeland & Birkeland 1966; Johal 1975; Mattock 1974; Mattock & Hawkins 1972). The 

latter type of shear sliding tests is widely used as it is simpler. The difference between these 

two types of experiments has be described elsewhere (Chen, Y et al. 2015) and summarised 

later. 

 

 

Fig. 1 Mechanism of shear sliding tests with (a) external confinement; (b) normal stress σN 

supplied by internal reinforcement 

 

Mattock investigated the relationship between the maximum shear stress along the sliding 

plane and normal stress transverse to the sliding plane from shear-sliding tests as in Fig. 1(b) 

for both initially cracked concrete and uncracked concrete (Johal 1975; Mattock 1974; 
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Mattock & Hawkins 1972). It is found that the confining stress σN normal to the sliding plane 

is a significant factor that affects the resistance to sliding. After only investigating the shear 

friction properties at the ultimate stage (Johal 1975; Mattock 1974; Mattock & Hawkins 

1972), Walraven and Reinhardt (1981) developed these properties for the whole loading 

spectrum, by quantifying the relationships between the shear stress τ parallel to the shear-

sliding plane, the confining stress σN normal to the sliding plane, slip displacement S along 

the shear-sliding plane and crack widening hcr across the shear-sliding plane as follows 

 

 0.8 0.7070
0[1.8 (0.234 0.2) ]

30

c cube
cr cr c cube

f
h h f S  

      (1) 

 

 0.63 0.5520
0[1.35 (0.191 0.15) ]

20

c cube
N cr cr c cube

f
h h f S  

     (2) 

 

where the unit of stress is in MPa, fc0-cube is the unconfined concrete strength from concrete 

cube tests, slip S and crack widening hcr are in mm. These shear friction properties are only 

for initially cracked concrete and were derived from shear-sliding tests as shown in Fig. 1(b). 

Haskett, Matthew et al. (2011) combined Mattock and Walraven’s approaches (Mattock 

1974; Mattock & Hawkins 1972; Walraven & Reinhardt 1981) such that the shear friction 

properties for both initially cracked concrete and uncracked concrete can be predicted. 

Furthermore, the shear friction properties are derived in the form which gives the 

relationship between the shear stress τ and slip S for the constant normal stress σN for easier 

application (Haskett, M et al. 2010). However, these shear friction properties are only 

obtained from experiments with low normal stress σN.  

 

Shear friction properties can also be extracted from actively confined cylinder compression 

tests (Chen, Y, Visintin & Oehlers 2015a; Chen, Y et al. 2015; Haskett, Matthew et al. 2011). 

By employing this method, high-cost shear sliding tests are not required and the shear 

friction properties with high confining stress σN can be obtained. However, in this work 

(Chen, Y, Visintin & Oehlers 2015a; Chen, Y et al. 2015; Haskett, Matthew et al. 2011), it 

was assumed that slip will occur before the peak stresses are attained of both unconfined 

concrete columns and actively confined concrete columns. This assumption is now felt not 

to simulate the behaviour accurately as it would entail the formation of numerous hinges that 

does not occur in practice. Instead this approach is modified by assuming that slip only 

happens after the peak stress is achieved as this ensures the formation of a single plastic 
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hinge. Furthermore, the form of the previous approach (Chen, Y, Visintin & Oehlers 2015a; 

Chen, Y et al. 2015) is comprised of power functions and rational functions which are not 

easy to apply. 

 

In this research, the derivation of these shear friction properties from actively confined 

cylinder tests will be described. Furthermore, approximations of these properties will be 

proposed and some of them are more simple and accurate. Moreover, these approximations 

will be applied inversely to construct the stress-strain relationships of the actively confined 

concrete to validate the approximations. 

 

Shear Sliding Mechanism 

 

An actively confined concrete column under a concentric load is assumed to fail due to 

sliding at an angle of α as shown in Fig. 2 (Rutland & Wang 1997). It should be noted that 

the cross-section of this column can be either rectangular, or square, or circular. For a slender 

prism whose aspect ratio is equal to or more than three, sliding mostly occurs across a single 

sliding plain as shown in Figs. 2 and 3 (Chen, Y, Visintin & Oehlers 2015b; Oehlers, D et 

al. 2012; Oehlers, DJ et al. 2017). For slenderness ratios less than three such as standard 

cylinder tests where the slenderness ratio is two, circumferential sliding planes are the most 

common form of failure as shown in Fig. 4 and which occur at higher axial loads. 

 

Let us consider a concrete column with a single sliding plane in Fig. 2 first. Along the 

potential sliding plane OQ in Fig. 2, the following confining stress σN and shear stress τ can 

be expressed as (Chen, Y et al. 2015) 

 

 
sin cosax l

N

sl sl

P CN

A A

 



   (3) 
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sl sl
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
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where Asl is the area of the sliding plane, T and N are the forces along and normal to the 

potential shear failure plane resolved from the axial load Pax and lateral confining force Cl. 
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It is assumed that the following axial load Pax is distributed uniformly along the cross-section 

and can be written as follows 

 

 ax ax inP A  (5) 

 

where σax is the axial stress of the confined concrete and Ain is the cross-section area of the 

confined concrete. The next step is to quantify the lateral confining force Cl for columns 

with rectangular, square and circular sections.  

 

 

Fig. 2 The forces and stresses of an actively confined column with a single sliding plane 

under a concentric compressive load 
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Fig. 3 A column fail due to concentric load with a single sliding plane 

 

 

Fig. 4 A column fail due to concentric load with a circumferential wedge 

 

Confinement Force 
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Consider the free body OPQ in Fig. 2 that contains the whole shear sliding plane of an 

actively confined rectangular-section column and is shown in Fig. 5. The following lateral 

confining force Crec applied on this free body can be expressed as 

 

 02 0

tan
rec con

D D
C 


  (6) 

 

where σcon is the active lateral confining stress and D0 and D02 are the width and depth of the 

rectangular prism respectively.  

 

 

Fig. 5 Lateral confining force applied on a rectangular-section column 

 

For a square-section column, the width D0 and depth D02 of the cross-section are equivalent 

such that Eq. (6) becomes 

 

 

2

0

tan
sq con

D
C 


  (7) 

 

The method to quantify the lateral confining force of a circular-section column Ccir proposed 

by Chen, Y et al. (2015) will be described as below.  

 

The free body OPQ in Fig. 2 that contains the whole sliding plane of an actively confined 

concrete column with a circular section is shown in Fig. 6(a). The diameter of the cylinder 
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equals D0. The height of the cylinder wedge PQ that equals D0/tanα is cut into n small slices. 

The cross-section of the i-th slice DE is shown in Fig. 6(b) as an example. The distance DQ 

in Fig. 6(a) that is xi can be expressed as  

 

 0

tan

th
i

i D
x

n 
  (8) 

 

 

Fig. 6 (a) Lateral confining force of the free body OPQ in Fig. 2; (b) Lateral confining 

force of the cross-section containing slice DE in Fig. 6(a) 

 

The length of chord HG in Fig. 6(b) yi can be written as follows 

 

 
2 20 02( ( ) ( tan )

2 2
i i

D D
y x     (9) 
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Substituting Eq. (8) into Eq. (9) yields  

 

  
2

02 ( ( )th th
i

i i
y D

n n

     (10) 

 

Taking line O0D in Fig. 6(b) as the baseline, the sector O0HDG is cut into small sectors. The 

horizontal component of the force d(Ccir)icosβ applied on the element O0IJ can be written as 

follows 

 

  0 0( ) cos cos
tan 2

cir i con

D D
d C d

n
  


   (11) 

 

where β is the angle between the sector O0IJ and the baseline O0D. The total horizontal lateral 

confining force can be derived by integrating forces acting on all elements along the arc 

HDG 
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Substituting Eq. (10) into Eq. (12) yields  
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C D

n n n



     (13) 

 

Then the force acting on element DE in Fig. 6(a) will be integrated along the vertical height 

of the sliding plane PQ and gives 

 

  0
0

4 tan
cir con

D
C D





   (14) 

 

Stress Equilibrium 
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For circular, square and rectangular section columns respectively, combining Eqs. (3), (5), 

(6), (7) and (14) gives the resultant stress normal to the sliding plane (σN)cir, (σN)sq and (σN)rec 

as 
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where D0 is either the diameter of a circular column, or the side length of a square prism, or 

the width of a rectangular prism and D02 is the depth of the rectangular prism. 

 

Similarly for the circular, square and rectangular section columns respectively, combining 

Eqs. (4), (5), (6), (7) and (14) gives the resultant stresses along the sliding plane τcir, τsq and 

τrec as 
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Fig. 7 The force and stress of a column with a circumferential wedge under concentric 

compressive load 

 

From Eqs. (15), (16) and (17), it can be concluded that the expressions of the resultant 

stresses normal to the shear failure plane σN are the same for circular, rectangular or square 

section columns and consequently can be expressed in the following generic 

 

    
2 2sin cosN ax con        (21) 

 

With regard to the shear stress along the shear failure plane τ, from Eqs. (18), (19) and (20), 

expressions are the same for columns with different cross-sections such that the generic form 

is as follows 

 

  ( )sin cosax con        (22) 
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As the shear friction properties will be derived from standard cylinder tests where the aspect 

ratios of all the test specimens are equal to two, the concrete columns will slide as in Fig. 4 

where the circumferential wedge will form (Chen, Yongjian 2015). The shear stress τ and 

normal stress σN along and normal to the shear failure plane will be changed as in Fig. 7 and 

can be expressed as (Chen, Y, Visintin & Oehlers 2015a, 2015b; Chen, Y et al. 2015)  

 

  
2 2sin 2 cosN ax con        (23) 

 

  ( 2 )sin cosax con        (24) 

 

Size Dependent Stress-Strain Relationship 

 

Typical stress-strain relationships for unconfined and actively confined concrete columns 

proposed by Chen, Y et al. (2013) are shown in Fig. 8, where it is assumed that 200 mm is 

the standard height of a standard test specimen Lprsm as this is the height of most test 

specimens. The stress-strain behaviour of concrete columns is governed by the height of test 

specimen Lprsm in Fig. 2 (Jamet, Millard & Nahas 1984; Jansen & Shah 1997; Sangha & Dhir 

1972; Smith et al. 1989); it will be shown how to derive a size-dependent stress-strain 

relationship for a non-standard specimen (Chen, Y et al. 2013; Visintin, Chen & Oehlers 

2015) which is shown in Fig. 8 as Lprsm > 200 mm. It is worth noting that the size-dependent 

stress-strain relationship does not need the same aspect ratio of 2:1 for non-standard 

specimens.  

 

Unconfined Concrete Column 

 

The following stress-strain relationship of unconfined concrete columns whose height is 

equal to 200 mm can be written as (Chen, Y et al. 2013) 
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where the unit of stress is in MPa, σax is the axial stress when the axial strain is equal to εax, 

εax-200 is the axial strain in a standard specimen that is of length 200 mm, fc0 is the peak stress 

of unconfined concrete, εc0 is the strain at the peak stress fc0 and r is the ductility factor which 

can be expressed as 
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  (26) 

 

where the unit of stress is in MPa and Ec is the elastic modulus of concrete. It will be shown 

how to adjust this stress-strain relationship to that of a specimen with a different height Lprsm > 

200 mm in Fig. 8. 

 

 

Fig. 8 Stress-strain relationships of both unconfined and actively confined concrete column 

with different specimen heights 

 

Before the stress reaches the unconfined concrete peak stress fc0 that is point C in Fig. 8, the 

axial deformation is defined as the material strain εmat which is size-independent. However 

after this point C, concrete starts to slide along the shear failure plane and the total axial 

deformation is comprised of: the size-independent material strain εmat, caused by material 

deformation as shown in Fig. 8 and size-dependent strain εS caused by the slip S also shown 

in Fig. 8; and the size-dependent strain caused by the crack widening hcr. However, the crack 

widening dimension hcr is an order magnitude smaller than the slip S (Chen, Y, Visintin & 
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Oehlers 2015a; Haskett, M et al. 2010; Haskett, Matthew et al. 2011) such that hcr can be 

ignored. Hence the size-dependent strain is only that due to slip S in Fig. 2 and is given by 

the vertical component of the slip S divided by the length of the prism Lprsm that is  

 

  
cos

S

prsm

S

L


    (27) 

 

Consider an arbitrary point on the falling branch of the stress-strain relationship in Fig. 8; 

this can be point A for the standard specimen and point A’ for the non-standard specimen 

where the axial stress is equal to σax. The total axial strain εax can be expressed as  
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 ax mat S mat
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Rearranging Eq. (28) gives the slip S as 
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The axial strain εax of a specimen with the height equal to Lprsm can be adjusted to the 

following strain εax-200 of a standard specimen (Chen, Y et al. 2013) 

 

  200 ( )
200

prsm

ax mat ax mat

L
         (30) 

 

Consequently from Eq. (30), the strain εax of the non-standard specimen can be adjusted to 

the strain εax-200 of the standard specimen. Substituting the strain εax-200 from Eq. (30) into 

the stress-strain relationship Eq. (25) for standard unconfined concrete specimen gives the 

axial stress σax as a function of the strain εax of the non-standard specimen. This relationship 

is referred to as size-dependent stress-strain relationship (Chen, Y et al. 2013). 

 

Confined Concrete Column 
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The stress-strain relationship of actively confined concrete columns proposed by Visintin, 

Chen and Oehlers (2015) for a standard specimen is shown as follows 
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where the unit of stress is in MPa, fcc and εcc are the peak stress of the confined concrete and 

strain at fcc, and rc is the ductility factor which can be expressed as  
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where the unit of stress is in MPa. Similar to the case of the unconfined concrete column, 

the axial strain εax and strain εS caused by slip S can be obtained from Eqs. (28) and (27) 

respectively that is the point B or B’ in Fig. 8. The stress-strain relationship of a specimen 

with the height equal to Lprsm > 200 mm can be obtained by substituting Eq. (30) into Eq. 

(31) as shown in Fig. 8 (Visintin, Chen & Oehlers 2015). Furthermore, the slip S can be 

derived from Eq. (29). 

 

Material Properties 

 

It is shown in tests that the natural angle of the sliding plane α as shown in Fig. 2 can be 

assumed to be constant at 26O (Chen, Yongjian 2015; Chen, Y, Visintin & Oehlers 2015a). 

 

With regard to the material properties of concrete, the strain εc0 at the unconfined concrete 

strength fc0 can be given by (Chen, Y et al. 2013) 

 

  
6 3

0 01.74 10 2.41 10c cf        (33) 

 



 

54 

 

where the unconfined concrete strength fc0 is in MPa. The material properties of confined 

concrete of strength fcc and strain εcc at fcc as in Fig. 8 can be expressed as (Visintin, Chen & 

Oehlers 2015) 
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where the unit of stress is in MPa, A0 and B0 are the coefficients derived from regression 

analyses and are taken as 5.34 and 13.9 respectively.  

 

Concrete elastic modulus Ec can be written as follows (Chen, Y, Visintin & Oehlers 2015a) 

 

  
03320 6900c cE f    (36) 

 

where the unconfined concrete strength fc0 is in MPa. 

 

Extracting Shear Friction Properties from Size-Dependent Stress-Strain Relationship 

of Actively Confined Column 

 

As in Fig. 2 and ignoring the crack widening hcr, the shear friction properties are the 

relationships between the shear stress τ and slip S for different normal stresses σN for a 

specific concrete strength fc0. Shear friction properties for 40 MPa concrete and 80 MPa 

concrete are shown in Figs. 9 and 10 as two examples. Let us start with 40 MPa-strength 

concrete as an example to show the derivation of the shear friction properties. The stress-

strain relationships of actively confined concrete columns with different lateral confining 

stresses σcon are shown in Fig. 11. At the coordinate (fc0, εc0) of the unconfined concrete 

stress-strain relationship that is the point A in Fig. 11, the shear stress Vu0 and the normal 

stress σN0 are the shear stress τ and normal stress σN at the onset of sliding. They can be 

derived by substituting σax = fc0 and σcon = 0 at point A into Eqs. (23) and (24) as follows 

 

  
2

0 0 sinN cf    (37) 
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  0 0 sin cosu cV f     (38) 

 

 

Fig. 9 Shear friction properties derived from stress-strain relationship for 40MPa concrete 
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Fig. 10 Shear friction properties derived from stress-strain relationship for 80MPa concrete 

 

 

Fig. 11 Extracting shear friction properties from stress-strain relationships of actively 

confined concrete columns with different lateral confining stresses (unconfined concrete 

strength fc0 = 40MPa) 
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Points can be extracted from the falling branches of the stress-strain relationships with 

different lateral confining stresses σcon in Fig. 11. From mechanics, the shear friction 

properties that is the shear stress τ, normal stress σN and slip S can be obtained from Eqs. 

(24), (23) and (29) respectively for these points. Then from this population of results, the 

points with the same normal confining stress σN can be extracted. For example, points A, B 

and C in Fig. 11 may have been found from the population set to have the same normal stress 

σN0 of 7.69 MPa. Hence these can be plotted as points A, B, C in Fig. 9 where the ordinate 

is the shear stress τexp and the abscissa is the slip S which, as shown previously, have been 

obtained from Eqs. (23), (24) and (29). Similarly, the points D and E with the same normal 

stress σN1 of 11.65 MPa in Fig. 11 can be extracted; and at these points the slip S and shear 

stress τexp can be derived from Eqs. (23), (24) and (29) such that points D and E can be plotted 

in Fig. 9.  

 

Repeating this procedure gives the shear friction properties for 40MPa concrete in Fig. 9 and 

80MPa concrete in Fig. 10 for different normal stresses σN as shown. This procedure can be 

duplicated for different unconfined concrete strengths from 20 MPa to 100 MPa. 

Approximations will be proposed to simulate all these shear friction properties later. 

 

Shear Stress Vu at the Commencement of Sliding from Mechanics 

 

It is worth noting that at the peak point of the actively confined concrete stress-strain 

relationship such as point D in Fig. 11, the shear stress τ is referred to as Vu as it is the shear 

stress at the onset of sliding. Furthermore, Vu is also the maximum shear stress for a specific 

normal stress σN for an unconfined concrete strength fc0, such as that as shown in Fig. 10. 

Being at the onset of sliding, it is obvious that the slips S at these peak points equal zero and 

the peak stresses equal fcc; these can be substituted into Eqs. (24) and (23) respectively to 

derive the shear stress Vu and normal stress σN at the peak point of the actively confined 

concrete stress-strain relationship as follows 

 

  ( 2 )sin cosu cc conV f       (39) 

 

  
2 2sin 2 cosN cc conf       (40) 



 

58 

 

 

substituting the peak stress fcc from Eq. (34) and the natural angle of the sliding plane α = 

26O (Chen, Yongjian 2015; Chen, Y, Visintin & Oehlers 2015a) into Eqs. (39) and (40) 

respectively and rearranging gives 

 

  00.394 1.182u c conV f     (41) 

 

  00.192 2.642N c conf     (42) 

 

combining Eqs. (41) and (42) gives the following shear stress Vu as a function of the normal 

stress σN and unconfined concrete strength fc0 

 

  00.298 0.498u c NV f     (43) 

 

It is worth noting that for some points, the normal stress σN is less than the peak normal stress 

in the unconfined concrete σN0 obtained from Eq. (37), such as points F and G in Fig. 11. 

The slip S of point F obtained from Eq. (29) is larger than zero and is plotted as point F in 

Fig. 9 at σN2 = 3.84 MPa. Hence there is now a gap, or an absence of experimental data 

between the y-axis and point F for σN2 = 3.84 MPa as shown. To fill this gap, the intercept 

of the plot at σN2 = 3.84 MPa with the y-axis, that is Vu at σN2 = 3.84 MPa, can be derived 

from shear sliding tests as shown in Figs. 1 and will be explained next. 

 

Shear Stress Vu at the Commencement of Sliding from Shear Sliding Tests 

 

The relationship between shear stress Vu over concrete strength fc0 and normal stress σN over 

fc0 is plotted in Fig. 12. Let us start with point A in Fig. 12. When the natural angle of the 

sliding plane α as shown in Fig. 2 is substituted with 26O (Chen, Yongjian 2015; Chen, Y, 

Visintin & Oehlers 2015a), σN is equal to σN0 from Eq. (37) which becomes 0.192fc0, which 

is also the abscissa of the point A. Consequently, when σN/fc0 ≥ 0.192 then σN ≥ 0.192fc0 and 

σN ≥ σN0 such that shear stress Vu can be derived from Eq. (43). The variation A‒B in Fig. 12 

can be obtained from Eq. (43) by substituting unconfined concrete strength fc0 and normal 

stress σN and can be expressed as  
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  0
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0.298 0.498 ( )u N
N N

c c

V

f f


      (44) 

 

where σN0 is obtained from Eq. (37) and this variation has been labelled ‘cylinder’ in Fig. 12 

as it has been derived from the analysis of cylinder tests. 

 

When σN/fc0 is smaller than 0.192 in Fig. 12 that is σN < σN0, there is a gap in the data set such 

as that shown in Fig. 9 between point F and y-axis such that cylinder tests cannot provide 

experimental data for this region. Consequently, the shear stress Vu can only be obtained 

from shear sliding tests that have external prestressed reinforcement that is the confinement 

is active; these are plotted as X mark points in Fig. 12 from the work of Zhang (2014). To 

make the shear stress Vu as a continuous function of the normal stress σN, point A in Fig. 12 

is fixed and the dashed line CA in Fig. 12 taken through the centroid of Zhang’s test results 

marked X as shown which gives the following equation 

 

  0
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0.105 1.50 ( )u N
N N

c c
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f f


      (45) 

 

where σN0 is obtained from Eq. (37). The shear stress Vu can also be obtained from shear 

friction tests with internal unprestressed reinforcement that is with passive confinement such 

that the confinement force gradually increases with slip through aggregate interlock. The 

experimental database of these passive confinement tests of initially uncracked concrete by 

Chen, Y et al. (2015) as plotted as dot points in Fig. 12. It can be seen that Chen’s test results 

from passively confined tests lie in general below the line C‒A from actively confined tests. 

The reason is as follows. 

 

Let us consider the relationship between the shear stress τ and slip S in Fig. 13 which is from 

an initially uncracked specimen with internal reinforcement in the shear sliding test, that is 

a passively confined shear friction test; the results in Fig. 13 are specimen G2 (Mattock, Li 

& Wang 1976). The test results follow the path O‒A‒C. The normal stress σN in Fig. 1(b) at 

the start point O in Fig. 13 (S = 0 mm) is equal to zero as the internal reinforcement in Fig. 

1(b) has no deformation and hence, no confining stress. As the slip S increases, the 

deformation of the internal reinforcement will increase through the aggregate interlock 

mechanism and, subsequently, the normal confining stress will reach σN1 at the peak point A 
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(S = S0) in Fig. 13 (Chen, Y et al. 2015; Mattock, Li & Wang 1976) where the transverse 

reinforcement has yielded and, consequently, provides the greatest confinement. The 

maximum shear stress τA at point A will be recorded as Vu in the experiment. On a further 

increase in slip, the reinforcement force remains at its yield strength so the confinement stays 

constant at its maximum but interface slip causes a reduction in the shear strength, as can be 

seen in Figs. 9 and 10, producing the gradual reduction A‒C in Fig. 13. This is an example 

of passive confinement as the normal stress builds up over O‒A and then is constant 

afterwards along A‒C. 

 

If the transverse reinforcement had yielded as soon as slip occurred that is at B in Fig. 13, 

then the specimen would behave as actively confined. In which case, the variation would be 

B‒A that is σN = σN1 throughout giving the dashed line in the Fig. 13. The maximum shear 

stress Vu equals τB at point B. Hence the variation B‒A‒C is due to active confinement. The 

reduction from B-A to O-A is due to the difference between active and passive confinement 

tests and explains why most of Chen’s points in Fig. 12 which were from passively confined 

tests are below A‒C which is based on active confinement. 

 

 

Fig. 12 Shear stress Vu over concrete strength fc0 against normal stress σN over fc0 
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Fig. 13 Shear stress τ against slip S from the shear sliding test with internal reinforcement 

for specimen G2 

 

In summary, for variations in Fig. 9 where the normal stress σN is less than σN0 as obtained 

from Eq. (37) such as σN2 in Fig. 9, the shear stress Vu at the commencement of sliding can 

be obtained from Eq. (45). Examples are point M in Fig. 9 (σN = σN2 = 3.84 MPa) and point 

N in Fig. 10 (σN = 7.69 MPa). When the normal stress σN is equal to or higher than σN0 as 

obtained from Eq. (37) such as solid lines AB (σN = 7.69 MPa) and DE (σN = 11.65 MPa) in 

Fig. 9, the shear stress Vu can be obtained from Eq. (43). Consequently from Eqs. (44) and 

(45) the shear stress Vu can be written as follows 
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where σN0 can be obtained from Eq. (37).  

 

Derivation of Shear Stress τ2.5 at S = 2.5 mm 
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In this section, the approximations to simulate the shear friction properties derived from the 

actively confined concrete stress-strain relationship, such as the lines in Figs. 9 and 10, will 

be proposed. It should be noted that the maximum slip is restricted to around 5 mm as shown, 

which is taken based on that of previous approach (Chen, Y, Visintin & Oehlers 2015a). It 

will be shown later how this affects the application. 

 

Consider the shear friction properties of 80 MPa concrete as shown in Fig. 14. The shear 

stresses Vu at the commencement of sliding at points A to G can be obtained from Eq. (46) 

and the slips at these points are equal to zero. Consequently one point at S = 0 is fixed for 

each dashed line in Fig. 14. Let us consider the shear stress τ2.5 where the slip equals 2.5 mm 

such as points H to N in Fig. 14. The shear stresses τ2.5 at S = 2.5 mm at points H to N can 

be obtained for the normal stresses σN-H, σN-I, σN-J, σN-K, σN-L, σN-M and σN-N as shown. This 

procedure can be duplicated for 20 to 100MPa concrete. Consequently the shear stresses τ2.5 

at S = 2.5 mm for the range of 20 MPa ≤ fc0 ≤ 100 MPa can be plotted against normal stress 

σN as shown in Fig. 15. Four approaches to quantify the shear stress τ2.5 as a function of the 

normal stress σN and unconfined concrete strength fc0 will be described in this section. 

 

 

Fig. 14 Derivation of the shear stress at S = 2.5mm when fc0 = 80MPa 
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Approach 1: Parabolic Approach 

 

Let us consider the shear stress τ2.5 at S = 2.5 mm against normal stress σN for different 

concrete strengths fc0 as shown in Fig. 15. As an example, shear stress τ2.5 for concrete 

strength fc0 = 100 MPa is plotted as hexagram marks. From these results, the three points A, 

B and C that have the normal stresses σN1, σN2 and (σN1+σN2)/2 respectively can be extracted 

and their shear stresses can be determined. Through these three points, τ2.5 can be simulated 

as a parabolic function of the normal stress σN as follows 

 

  
2

2.5 N Na b c       (47) 

 

where the parameters a, b and c for 100MPa concrete can be derived. This procedure can be 

duplicated for points in Fig. 15 with different concrete strengths and a, b and c can be derived 

for different concrete strengths as plotted as points in Figs. 16 to 18. These points can be 

simulated as quadratic polynomials as a function of the concrete strength fc0 as below 
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  (48) 

 

where the unconfined concrete strength fc0 is in MPa. Substituting Eq. (48) into Eq. (47) 

gives the shear stress τ2.5 at S = 2.5 mm. 
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Fig. 15 Shear stresses τ2.5 at S = 2.5mm within the range of 20 MPa ≤ fc0 ≤ 100 MPa 

 

 

Fig. 16 Parameter a as a function of unconfined concrete strength fc0 from approach 1 
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Fig. 17 Parameter b as a function of unconfined concrete strength fc0 from approach 1 

 

 

Fig. 18 Parameter c as a function of unconfined concrete strength fc0 from approach 1 

 

Approach 2: Three-Stage Approach 

 

The parameters a, b and c that are plotted as points in Figs. 16 to 18 can also be simulated 

as three-stage linear functions as shown in Figs. 19 to 21, which can be written as follows 
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where the unconfined concrete strength fc0 is in MPa. Hence for a specific concrete strength 

fc0, the associated parameters a, b and c can be derived from Eq. (49), which can be 

substituted into Eq. (47) to derive the shear stress τ2.5 at S = 2.5 mm. 

 

 

Fig. 19 Parameter a as a function of unconfined concrete strength fc0 from approach 2 
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Fig. 20 Parameter b as a function of unconfined concrete strength fc0 from approach 2 

 

 

Fig. 21 Parameter c as a function of unconfined concrete strength fc0 from approach 2 

 

Approach 3: Linear-Form Approach 

 

This approach is similar to approach 1. The difference is that the shear stress τ2.5 at S = 2.5 

mm in Fig. 15 is simulated as a linear function instead of the parabolic function of the normal 

stress σN for different concrete strengths as follows  
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  2.5 Na b     (50) 

 

where the slope a and y-intercept b for different concrete strength is shown in Figs. 22 and 

23 and can be expressed as follows 
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where the unconfined concrete strength fc0 is in MPa. Substituting Eq. (51) into Eq. (50) 

gives the shear stress τ2.5 at S = 2.5 mm. 

 

 

Fig. 22 Parameter a as a function of unconfined concrete strength fc0 from approach 3 
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Fig. 23 Parameter b as a function of unconfined concrete strength fc0 from approach 3 

 

Approach 4: Statistical Approach 

 

The shear stress τ2.5 at S = 2.5 mm for a given normal stress σN and unconfined concrete 

strength fc0 are shown in Fig. 15. First consider only the points whose concrete strengths are 

in the range of 20MPa ≤ fc0 < 50MPa. The shear stress τ2.5 at S = 2.5 mm, normal stress σN 

and unconfined concrete strength fc0 can be determined for every extracted point. Based on 

these data points and applying a multivariable linear regression analysis, the shear stresses 

τ2.5 at S = 2.5 mm can be simulated as a linear function of the normal stress σN and unconfined 

concrete strength fc0 as follows 

 

  2.5 00.779 0.0470 2.01N cf      (52) 

 

When only the points whose concrete strengths are in the range of 50MPa ≤ fc0 ≤ 100MPa 

are extracted from Fig. 15, the shear stress τ2.5 at S = 2.5 mm can also be simulated as a linear 

function of the normal stress σN and unconfined concrete strength fc0 as follows 

 

  2.5 00.886 0.0996 7.81N cf      (53) 

 

In summary, Eqs. (52) and (53) give the following shear stress τ2.5 at S = 2.5 mm 

 

b = -0.00196fc0
2 + 0.143fc0 + 1.39
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2.5 0 0

2.5 0 0

0.779 0.0470 2.01 ( 50 )

0.886 0.0996 7.81 ( 50 )

N c c

N c c

f f MPa

f f MPa

 

 

   

   
  (54) 

 

where the unit of stress is in MPa. This approach gives two equations near the boundary 

point fc0 = 50MPa and it will be shown later how the boundary point affects the accuracy of 

the shear friction properties. 

 

The shear stress τ2.5 at S = 2.5 mm have been obtained from four approaches described in 

this section. The mean, standard derivation and coefficient of variation of the ratio of τ2.5 

derived from experimental data τ2.5-exp over that derived from the approximations τ2.5-theo are 

shown in Table 1. This ratio is also shown in Figs. 24 to 27 against σN/σN0 where σN0 can be 

obtained from Eq. (37). It can be concluded that the second approach is the most accurate 

one but complex. By contrast, the third approach is accurate and simple, but less accurate 

than the second approach. 
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 approach1 approach 2 approach 3 approach 4 

mean 0.999 1.006 0.994 0.996 

SD 0.028 0.022 0.050 0.057 

CoV 0.028 0.022 0.050 0.057 

 

Table. 1 Mean, standard derivation (S.D) and coefficient of variations (COV) of τ2.5-exp/τ2.5-

theo from four approaches 

 

 

Fig. 24 Ratio of shear stress τ2.5-exp from experimental data over that from approach 1 τ2.5-

theo 
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Fig. 25 Ratio of shear stress τ2.5-exp from experimental data over that from approach 2 τ2.5-

theo 

 

 

Fig. 26 Ratio of shear stress τ2.5-exp from experimental data over that from approach 3 τ2.5-

theo 
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Fig. 27 Ratio of shear stress τ2.5-exp from experimental data over that from approach 4 τ2.5-

theo 

 

Derivation of τ2.5 at High σN 

 

In Fig. 15, the range of normal stress σN is σN < 3σN0 and in practise, this normal stress may 

be higher. Consequently in this section, the shear stress at S = 2.5 for higher normal stress 

σN will be described.  

 

Let us take the shear friction properties of 40 MPa concrete as an example as shown in Fig. 

28. The normal stresses τ2.5 at 2.5 mm for normal stress σN = 3σN0 and σN = 10σN0 can be 

extracted and are referred to as τ2.5-3σN0 and τ2.5-10σN0 respectively as shown. Furthermore, τ2.5-

10σN0 can be extracted for different concrete strengths including 20 MPa to 100 MPa concrete 

as shown in Fig. 29 and can be written as follows 

 

  2.5 10 0 01.229N cf     (55) 
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For simplification, it is assumed when σN > 3σN0 the shear stress τ2.5 is a linear function of 

σN as shown in Fig. 30 and can be expressed as 

 

  
2.5 10 0 2.5 3 0

2.5 0 02.5 3 0

0

( 3 ) ( 3 )
7

N N
N N N NN

N

 


 
     


 




      (56) 

 

where σN0 can be obtained from Eq. (37), τ2.5-3σN0 in Fig. 30 can be derived by substituting 

σN = 3σN0 into Eq. (46), (47), (48), (49), (50), (51) or (54) and τ2.5-10σN0 can be derived from 

Eq. (55). 

 

 

Fig. 28 Shear stress τ2.5 for different normal stress 3σN0 and 10σN0 for 40MPa concrete 
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Fig. 29 Shear stress τ2.5-10σN0 for different concrete strength fc0 

 

 

Fig. 30 Shear stress τ2.5 for different normal stress 3σN0 and 10σN0 

 

Shear Friction Property Equations 

 

The shear friction properties can be derived by linking the shear stress Vu at S = 0 and shear 

stress τ2.5 at S = 2.5 mm derived from four approaches in this section as follows 
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2.5

0

2.5 0

u

u

V S

V





 


 
  (57) 

 

which can be rearranged to 

 

  2.5

2.5

u
u

V
S V





    (58) 

 

substituting τ2.5 from Eqs. (47), (48), (49), (50), (51) and (54) and Vu obtained from Eq. (46) 

into Eq. (58) gives the shear friction properties. In the next section, the accuracy of these 

approximations will be validated.  

 

It is worth noting that substituting τ2.5 from Eq. (50) (approach 3) and Eq. (56) and Vu 

obtained from Eq. (46) into Eq. (58) and simplifying gives equations as follows 

 

When σN < σN0 

 

2

0 0 0 0[(0.00112 0.337) -0.000784 0.0152 0.556] 1.50 0.105m c N c c N cf f f S f          (59) 

 

where σN0 can be obtained from Eq. (37). 

 

and when σN0 ≤ σN < 3σN0, then 

 

2

0 0 0 0[(0.00112 0.0636) -0.000784 0.0620 0.556] 0.498 0.298m c N c c N cf f f S f          (60) 

 

and when σN > 3σN0, then 

 

  0 0[( 0.199) + 0.119 ] 0.498 0.298
2.5 2.5

H H
m N c N c

A B
f S f         (61) 

 

where the parameters AH and BH can be written as 

 

  0 0 0(1.229 0.577 ) / (1.345 )H c c cA f f A B f      (62) 
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2

00.00196 0.143 1.39co cB f f       (63) 

 

where the parameters a and b can be obtained from Eq. (51). 

 

Validation of Approaches 

 

Figures 31 to 50 show the shear friction properties derived from the stress-strain relationship 

of the actively confined concrete (the dashed lines) and the approximations obtained from 

the four approaches derived by substituting Eqs. (46), (47), (48), (49), (50), (51) and (54) 

into Eq. (58) (the solid lines) for 20 to 100 MPa concrete. Furthermore, the shear stress τexp 

derived from experimental data is plotted against the curve fits τtheo obtained from the four 

approaches in section 6 as shown in Figs. 51 to 54. In these results, the unconfined concrete 

strength fc0 varies from 20 MPa to 100 MPa and slip S varies from 0 mm to 5 mm. The mean, 

standard derivation and the coefficient of variation of the ratio τtheo/τexp are shown in Table 

2. It is found that these four approaches can simulate the shear friction properties well 

generally. Nevertheless, it is shown that the accuracy of the approximations will decrease 

when the shear stress τ is low enough as shown in Figs. 51 to 54; and this is the main reason 

why the standard derivations in Table 2 are not low. However, the approximations mostly 

give conservative prediction when the shear stress τ is low. The influence of the error 

between the approximations and shear friction properties from experimental data will be 

investigated in the next section. 

 

 approach1 approach2 approach3 approach4 

mean 1.042 1.050 1.048 1.054 

SD 0.158 0.168 0.165 0.197 

CoV 0.151 0.160 0.157 0.187 
 

Table. 2 Mean, standard derivation (S.D) and coefficient of variations (COV) of τexp/τtheo 

from four approaches 
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Fig. 31 Shear friction properties derived from stress-strain relationship (dashed lines) and 

approximation from approach 1 (solid lines) for 20MPa concrete 

 

Fig. 32 Shear friction properties derived from stress-strain relationship (dashed lines) and 

approximation from approach 1 (solid lines) for 40MPa concrete 
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Fig. 33 Shear friction properties derived from stress-strain relationship (dashed lines) and 

approximation from approach 1 (solid lines) for 60MPa concrete 

 

Fig. 34 Shear friction properties derived from stress-strain relationship (dashed lines) and 

approximation from approach 1 (solid lines) for 80MPa concrete 
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Fig. 35 Shear friction properties derived from stress-strain relationship (dashed lines) and 

approximation from approach 1 (solid lines) for 100MPa concrete 

 

Fig. 36 Shear friction properties derived from stress-strain relationship (dashed lines) and 

approximation from approach 2 (solid lines) for 20MPa concrete 
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Fig. 37 Shear friction properties derived from stress-strain relationship (dashed lines) and 

approximation from approach 2 (solid lines) for 40MPa concrete 

 

Fig. 38 Shear friction properties derived from stress-strain relationship (dashed lines) and 

approximation from approach 2 (solid lines) for 60MPa concrete 
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Fig. 39 Shear friction properties derived from stress-strain relationship (dashed lines) and 

approximation from approach 2 (solid lines) for 80MPa concrete 

 

Fig. 40 Shear friction properties derived from stress-strain relationship (dashed lines) and 

approximation from approach 2 (solid lines) for 100MPa concrete 
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Fig. 41 Shear friction properties derived from stress-strain relationship (dashed lines) and 

approximation from approach 3 (solid lines) for 20MPa concrete 

 

Fig. 42 Shear friction properties derived from stress-strain relationship (dashed lines) and 

approximation from approach 3 (solid lines) for 40MPa concrete 
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Fig. 43 Shear friction properties derived from stress-strain relationship (dashed lines) and 

approximation from approach 3 (solid lines) for 60MPa concrete 

 

Fig. 44 Shear friction properties derived from stress-strain relationship (dashed lines) and 

approximation from approach 3 (solid lines) for 80MPa concrete 
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Fig. 45 Shear friction properties derived from stress-strain relationship (dashed lines) and 

approximation from approach 3 (solid lines) for 100MPa concrete 

 

Fig. 46 Shear friction properties derived from stress-strain relationship (dashed lines) and 

approximation from approach 4 (solid lines) for 20MPa concrete 
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Fig. 47 Shear friction properties derived from stress-strain relationship (dashed lines) and 

approximation from approach 4 (solid lines) for 40MPa concrete 

 

Fig. 48 Shear friction properties derived from stress-strain relationship (dashed lines) and 

approximation from approach 4 (solid lines) for 60MPa concrete 
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Fig. 49 Shear friction properties derived from stress-strain relationship (dashed lines) and 

approximation from approach 4 (solid lines) for 80MPa concrete 

 

Fig. 50 Shear friction properties derived from stress-strain relationship (dashed lines) and 

approximation from approach 4 (solid lines) for 100MPa concrete 
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Fig. 51 Relationship between τexp from experimental data and τtheo from method 1 for 

different unconfined concrete strengths fc0 
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Fig. 52 Relationship between τexp from experimental data and τtheo from method 2 for 

different unconfined concrete strengths fc0 



 

90 

 

 

Fig. 53 Relationship between τexp from experimental data and τtheo from method 3 for 

different unconfined concrete strengths fc0 
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Fig. 54 Relationship between τexp from experimental data and τtheo from method 4 for 

different unconfined concrete strengths fc0 

 

Construction of the Stress-Strain Relationships of Actively Confined Cylinders 

 

In this report, the shear friction properties have been extracted from the stress-strain 

relationships of the actively confined cylinder tests and are simulated by four approaches in 

section 6. In this section, based on these approximations from the four approaches, the stress-

strain relationships of the actively confined concrete will be constructed in this section to 

check the accuracy of these approximations.  

 

Consider a standard specimen (specimen height Lprsm = 200 mm) with a concrete strength fc0 

and lateral confining stress σcon. The shear friction properties derived from actively confined 

cylinder tests such as the solid lines in Figs. 31 to 50 are shown in Fig. 55. It is worth noting 

that sliding is assumed to occur after the peak point of the stress/strain relationship such as 

point D in Fig. 8; the shear friction properties are dealing with the stage after the 
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commencement of sliding so that only the falling branches will be derived in this section. 

Let us consider the stress/strain relationship in Fig. 56 which will be derived from the 

approximations of the shear friction properties. The ascending branch OA of the stress-strain 

relationship will be obtained from Eq. (31) as this is a material property. The following 

procedure to find points on the falling branch will be described. 

1. The shear stress Vu at the first point A in Fig. 55 is obtained from Eq. (46); this is 

also the shear stress of the peak point A in Fig. 56 where the axial stress and strain 

equal fcc and εcc respectively and which are obtained from Eqs. (34) and (35) 

respectively.  

2. The slip S1 of the next point B in Fig. 55 can be fixed at any arbitrary positive value. 

The axial stress at point B which is generally below that at A due to sliding is guessed 

and is referred to as σax1-g. The shear stress τ1 at point B can be derived from 

mechanics that is from Eq. (24) by substituting in both this guessed axial stress σax1-

g and lateral confining stress σcon.  

3. Next the shear capacity τm at point B in Fig. 55 is now derived from the material 

properties; this is the material resistance to the applied guessed axial stress σax1-g. 

Hence the shear friction material properties will be applied to quantify τm which can 

be obtained from the approximations; that is substituting Eqs. (47), (48), (49), (50), 

(51) and (54) and Vu obtained from Eq. (46) into Eq. (58). This requires the 

unconfined concrete strength fc0 and also the normal stress σN1 at point B in Fig. 55 

which is derived as follows. 

4. The normal stress σN1 at point B in Fig. 55 will be obtained by substituting the 

guessed axial stress σax1-g and lateral confining stress σcon into Eq. (23). This is the 

normal stress when the guessed axial stress σax1-g is imposed. 

5. The normal stress σN1 and unconfined concrete strength fc0 can be substituted into 

Eqs. (46), (47), (48), (49), (50), (51), (54) and (58) to derive the shear capacity τm 

from shear friction material properties. 

6. If the shear capacity τm derived from Step 5 is equal to the shear stress τ1 derived 

from Step 2, the axial stress σax1 at point B in Fig. 56 can be taken as the guessed 

axial stress σax1-g.  

7. If the shear stress τ1 derived from Step 2 is not equal to the shear capacity τm derived 

from Step 5, then the guessed axial stress σax1-g in Step 2 will be changed. This 

procedure will be iterated until the shear capacity τm derived from Step 5 is equal to 
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the shear stress τ1 derived from Step 2. If a solution cannot be found, this simply 

means that there is not enough capacity to resist the applied loads. 

8. The axial stress σax1 at point B in Fig. 56 can be taken as the guessed axial stress σax1-

g after the end of the iteration Steps 2 to 7. At this point, the axial strain εax1 can be 

obtained from Eq. (28) as the slip S is known and this is illustrated in Fig. 56. 

 

The above procedure can be duplicated to derive the axial stress σax and strain εax for any 

point on the descending branch such as point C in Fig. 56. In this report, the interval of the 

imposed slips S of these points within a range of 0 ≤ S ≤ 5 (mm) is set as 0.01 mm.  

 

 

Fig. 55 The linear approximation of the shear friction properties 
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Fig. 56 Stress-strain relationship of actively confined concrete columns derived from 

approximation of the shear friction properties 

 

Comparison of the Stress-Strain Relationships Derived from the Closed Form Solutions and 

Cylinder Tests 

 

The procedure to construct the stress-strain relationship of actively confined concrete 

columns based on the approximations of the shear friction properties in Section 6 has been 

described. In Figs 57 to 76, are shown comparisons between the experimental stress/strain 

relationships (solid lines as shown) and the constructed stress/strain relationships (dashed 

lines as shown) based on the approximations; the approximations from the four approaches 

in Section 6 were derived by substituting Eqs. (47), (48), (49), (50), (51) and (54) and Vu 

obtained from Eq. (46) into Eq. (58). Details extracted from these comparisons are shown as 

follows: 

 The simulated standard specimens with specimen heights Lprsm = 200 mm cover a 

range of: 0 ≤ S ≤ 5 (mm), 0 ≤ σcon/fc0 ≤ 0.15 and 20 ≤ fc0 ≤ 100 (MPa). It can be seen 

for this range of slip, the axial strain εax is large enough or the axial stress σax is small 

enough at S = 5 mm in Figs 57 to 76 such that nearly overall shapes of the stress/strain 

relationships are given. Furthermore, as the mechanism of the derivation of the shear 

friction properties has been described in this report, it is easy to extend either the 

range of the slip S, or lateral confining stress σcon, or unconfined concrete strength fc0 

for shear friction properties. 
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 It should be noted that for 20MPa concrete in Figs. 67 and 72, the predictions can 

overestimate the axial stress for σcon = 0.15fc0. However, this may not be important 

as the usage of 20MPa concrete is decreasing in the last few decades (Kurniawan 

2011).  

 Most of the stress-strain relationships derived from the approximations give 

conservative result compared with that derived from experimental data. 

 In approach 4, the shear stress τ2.5 from Eq. (54) at S = 2.5 mm will be obtained from 

two different equations when the unconfined concrete strength fc0 ≥ 50MPa and fc0 < 

50MPa. To check the difference of these equations near the bound point fc0 = 50MPa, 

the stress-strain relationships of actively confined concrete are plotted in Fig. 77; 

these relationships are derived from experimental data (solid line) and derived based 

on shear friction properties obtained from approach 4 for fc0 = 50MPa (dotted line) 

and fc0 = 49.9MPa (dashed line). It can be seen that for high lateral confining stresses 

at σcon = 0.15fc0 the difference is large but for the remaining confinements the 

difference is relatively small.  

 

 

Fig. 57 The stress-strain relationship of actively confined concrete derived from 

experimental data (solid line) and that derived from shear friction properties from approach 

1 (dashed line) when fc0 = 20MPa 
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Fig. 58 The stress-strain relationship of actively confined concrete derived from 

experimental data (solid line) and that derived from shear friction properties from approach 

1 (dashed line) when fc0 = 40MPa 

 

Fig. 59 The stress-strain relationship of actively confined concrete derived from 

experimental data (solid line) and that derived from shear friction properties from approach 

1 (dashed line) when fc0 = 60MPa 
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Fig. 60 The stress-strain relationship of actively confined concrete derived from 

experimental data (solid line) and that derived from shear friction properties from approach 

1 (dashed line) when fc0 = 80MPa 

 

Fig. 61 The stress-strain relationship of actively confined concrete derived from 

experimental data (solid line) and that derived from shear friction properties from approach 

1 (dashed line) when fc0 = 100MPa 
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Fig. 62 The stress-strain relationship of actively confined concrete derived from 

experimental data (solid line) and that derived from shear friction properties from approach 

2 (dashed line) when fc0 = 20MPa 

 

Fig. 63 The stress-strain relationship of actively confined concrete derived from 

experimental data (solid line) and that derived from shear friction properties from approach 

2 (dashed line) when fc0 = 40MPa 
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Fig. 64 The stress-strain relationship of actively confined concrete derived from 

experimental data (solid line) and that derived from shear friction properties from approach 

2 (dashed line) when fc0 = 60MPa 

 

Fig. 65 The stress-strain relationship of actively confined concrete derived from 

experimental data (solid line) and that derived from shear friction properties from approach 

2 (dashed line) when fc0 = 80MPa 
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Fig. 66 The stress-strain relationship of actively confined concrete derived from 

experimental data (solid line) and that derived from shear friction properties from approach 

2 (dashed line) when fc0 = 100MPa 

 

Fig. 67 The stress-strain relationship of actively confined concrete derived from 

experimental data (solid line) and that derived from shear friction properties from approach 

3 (dashed line) when fc0 = 20MPa 
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Fig. 68 The stress-strain relationship of actively confined concrete derived from 

experimental data (solid line) and that derived from shear friction properties from approach 

3 (dashed line) when fc0 = 40MPa 

 

Fig. 69 The stress-strain relationship of actively confined concrete derived from 

experimental data (solid line) and that derived from shear friction properties from approach 

3 (dashed line) when fc0 = 60MPa 
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Fig. 70 The stress-strain relationship of actively confined concrete derived from 

experimental data (solid line) and that derived from shear friction properties from approach 

3 (dashed line) when fc0 = 80MPa 

 

Fig. 71 The stress-strain relationship of actively confined concrete derived from 

experimental data (solid line) and that derived from shear friction properties from approach 

3 (dashed line) when fc0 = 100MPa 
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Fig. 72 The stress-strain relationship of actively confined concrete derived from 

experimental data (solid line) and that derived from shear friction properties from approach 

4 (dashed line) when fc0 = 20MPa 

 

Fig. 73 The stress-strain relationship of actively confined concrete derived from 

experimental data (solid line) and that derived from shear friction properties from approach 

4 (dashed line) when fc0 = 40MPa 
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Fig. 74 The stress-strain relationship of actively confined concrete derived from 

experimental data (solid line) and that derived from shear friction properties from approach 

4 (dashed line) when fc0 = 60MPa 

 

Fig. 75 The stress-strain relationship of actively confined concrete derived from 

experimental data (solid line) and that derived from shear friction properties from approach 

4 (dashed line) when fc0 = 80MPa 
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Fig. 76 The stress-strain relationship of actively confined concrete derived from 

experimental data (solid line) and that derived from shear friction properties from approach 

4 (dashed line) when fc0 = 100MPa 

 

Fig. 77 The stress-strain relationship of actively confined concrete derived from 

experimental data (solid line) and that derived from shear friction properties from approach 

4 when fc0 = 50MPa (dotted line) and fc0 = 49.9MPa (dashed line) 
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Conclusion 

 

It is shown how the shear friction properties are derived primarily from simple actively 

confined cylinder compression tests; where there are gaps in the results they are then 

obtained from the results from relatively expensive shear-sliding tests. For design purpose, 

these shear friction properties are simulated by approximations which defines that, for a 

specific unconfined concrete strength fc0 and confining stress normal to the shear failure 

plane σN, the shear stress along the shear failure plane τ is a function of the slip S. These 

approximations can simulate the shear friction properties derived from actively confined 

cylinder tests well and are applied inversely to construct the stress-strain relationships of 

actively confined concrete with good correlation.  

 

Notation 

 

Ain = area of confined concrete 

Asl = area of sliding plane 

Cl = confining force 

Ccir = confining force of circular-section column 

Crec = confining force of rectangular-section column 

Csq = confining force of square-section column 

D0 = diameter of circular column, side length of square prism or width of rectangular prism 

D02 = depth of a rectangular-section prism 

Ec = elastic modulus of concrete 

fc0 = peak strength of unconfined concrete from cylinder tests 

fc0-cube = peak strength of unconfined concrete from cube tests 

fcc = peak strength of actively confined concrete 

hcr = crack widening of sliding plane 

Lprsm = height of specimen 

N = resultant force normal to shear-sliding plane 

Pax = axial load applied to confined concrete 

r = ductility factor in unconfined concrete stress-strain relationship 

rc = ductility factor in confined concrete stress-strain relationship 

S = slip displacement 
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T = resultant force along shear-sliding plane 

Vu = shear stress at the commencement of crack widening 

Vu0 = shear stress at the commencement of crack widening for unconfined concrete column 

α = failure angle of concrete column 

εax = axial strain 

εax-200 = axial strain of a specimen whose height is equal to 200 mm 

εc0 = εax at fc0 for unconfined concrete 

εcc = εax at fcc for confined concrete 

εmat = material strain of concrete column 

εS = strain caused by slip 

σax = axial stress applied to concrete 

σax-g = guessed axial stress applied to concrete 

σcon = transverse confining stress 

σN = resultant stress normal to shear-sliding plane 

(σN)cir = resultant stress normal to shear-sliding plane of a circular-section column 

(σN)rec = resultant stress normal to shear-sliding plane of a rectangular-section column 

(σN)sq = resultant stress normal to shear-sliding plane of a square-section column 

σN0 = normal stress at the commencement of crack widening for unconfined concrete 

column 

τ = resultant stress along shear-sliding plane 

τcir = resultant stress along shear-sliding plane of a circular-section column 

τm = shear capacity from material properties 

τrec = resultant stress along shear-sliding plane of a rectangular-section column 

τsq = resultant stress along shear-sliding plane of a square-section column 

τexp = shear stress derived from stress-strain relationship of actively confined concrete 

columns 

τtheo = shear stress from approximations 

τ2.5 = shear stress at S = 2.5 mm 

τ2.5-exp = shear stress at S = 2.5 mm derived from experimental data 

τ2.5-theo = shear stress at S = 2.5 mm derived from approximations 

τ2.5-3σN0 = τ2.5  when σN equals 3σN0 

τ2.5-10σN0 = τ2.5  when σN equals 10σN0 
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Partial Interaction Bond-Slip Relationship for Mechanical Properties 

 

Introduction 

 

Transverse reinforcement in the form of stirrups, steel tubes, FRP (fibre reinforced polymer) 

wraps or combination of them can significantly enhance both the axial strength and ductility 

of reinforced concrete columns (Basset & Uzumeri 1986; Chung et al. 2002; Giakoumelis 

& Lam 2004; Han 2000; Lam & Teng 2003; Pessiki & Pieroni 1997; Price 1951; Toutanji 

et al. 2009; Turgay et al. 2009). The bond behaviour between reinforcements and concrete 

plays a significant part in reinforced concrete columns and has received much research 

interest in the last few decades (Ali et al. 2008; Haskett et al. 2009; Lu et al. 2005; Seracino, 

Raizal Saifulnaz & Oehlers 2007; Visintin, Oehlers & Haskett 2013).  

 

In a companion report (Hao 2017a), the confinement mechanism in reinforced concrete has 

been investigated. In this report, all the partial interaction bond-slip material properties 

required for the partial interaction mechanical properties in the companion report (Hao 

2017a) will be described. 

 

Bond-Slip Mechanics Properties 

 

Let us start by considering the anchored confinement reinforcement AB in Fig. 1 which is 

pulled out from the concrete as shown. A confinement force Pconf in Fig. 1(a) will result in 

the slip δ between the reinforcement and adjacent concrete. Consider point C in Fig. 1(a); 

any point between points A and B in Fig. 1(a) could have been used. It is assumed that the 

distance between point C and point A equals x. At point C, the bond stress and slip are 

referred to as τBx and δx respectively. The distributions of bond stress τB and slip δ are shown 

in Figs. 1(b) and (c) respectively. The slip δ at the crack face is referred to as the crack face 

slip Δ. In this report, the relationship between bond stress τB and slip δ in Fig. 1 which is a 

material property and which can also be referred to as the bond-slip model will be described 

in this report. 
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Fig. 1 Analysis of an anchored reinforcement 

 

Shapes of Current Bond-Slip Models for Steel Rebars 

 

Eligehausen, Popov and Bertero (1982) proposed the most widely used model for steel rebars 

as shown in Fig. 2 and which was accepted by the International Federation for Structural 

Concrete (CEB-FIP 1993; Fib. 2010). This model is referred to as ‘B.E.P. Model’ and can 

be expressed as 

 

 max 1
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0B SR SRif
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where the parameter α is equal to 0.4, τBmaxSR is the peak bond stress for steel rebars, τf is the 

frictional component of the bond stress, δ1SR is the slip between the steel rebars and adjacent 

concrete when the bond stress first reaches τBmaxSR, δ2SR is the slip when the bond stress starts 

to decrease and δ3SR is the slip when the bond stress first reaches τf.  

 

 

Fig. 2 Eligehausen’s bond-slip model for steel rebars 

 

Most approaches have similar shapes as the ‘B.E.P. Model’ for steel reinforcements as 

shown in Fig 2 (Harajli, Hout & Jalkh 1995; Soroushian & Choi 1989). Furthermore, 

Yankelevsky (1985) simplified the ‘B.E.P. Model’ as a linear relationship as shown in Fig. 

3.  

 

 

Fig. 3 Simplified Eligehausen’s bond-slip model for steel rebars 

 

Haskett et al. (2009) proposed a bond-slip model for steel rebars as shown in Fig. 4. Based 

on a partial interaction mechanism, the values of the parameters δ1SR and δmaxSR in Fig. 4 

were derived. Then this model was validated by experimental data with good correlation. 

Furthermore, this model ignores the frictional component of the bond stress CD in Fig. 3 to 

achieve a conservative solution. 
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Fig. 4 Haskett’s bond-slip model for steel rebars 

 

Shapes of Current Bond-Slip Models for FRP Rebars 

 

With regard to FRP rebars, Cosenza, Edoardo, Manfredi and Realfonzo (1997) removed the 

platform AB of the ‘B.E.P. Model’ in Fig. 2 as shown in Fig. 5; this model is applied by the 

International Federation for Structural Concrete (Fib. 2010). Another widely used model as 

shown in Fig. 6 only gives the expression for ascending branch as follows (Cosenza, E, 

Manfredi & Realfonzo 1995) 

 

 max

1

[1 exp( )]B FR

FR


 


   (5) 

 

where β is a parameter, τBmaxFR is the peak bond stress for FRP rebars and δ1FR is the slip 

between the FRP rebars and adjacent concrete when the bond stress first reaches τBmaxFR. 

These two approaches are widely used and parameters including δ1FR, δ2FR, τf, τBmaxFR in the 

former approach (Cosenza, Edoardo, Manfredi & Realfonzo 1997) and β, δ1FR and τBmaxFR in 

the latter approach (Cosenza, E, Manfredi & Realfonzo 1995) are empirically derived for 

each individual item of research (Baena et al. 2009; Focacci, Nanni & Bakis 2000; Lin & 

Zhang 2014; Malvar, Cox & Cochran 2003; Pecce et al. 2001; Tighiouart, Benmokrane & 

Gao 1998). However, these parameters are more likely to be only accurate for the 

experiments from which they were derived. Consequently, this requires further research. 
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Fig. 5 Cosenza’s bond-slip model for FRP rebars 

 

 

Fig. 6 Cosenza’s ascending bond-slip model for FRP rebars  

 

Shapes of Current Bond-Slip Models for Bonded FRP or Steel Plates 

 

Lu et al. (2005) developed a database for bonded FRP plates and different models were 

reviewed. Most of the models give the shape as shown in Figs. 7 and 8. Based on the database, 

they also derive the values of the parameters δ1P, δmaxP and τBmaxP in the models in Figs. 7 

and 8. Seracino, Raizal Saifulnaz and Oehlers (2007) also proposed a bilinear model as in 

Fig. 8 for externally bonded (EB) and near-surface mounted (NSM) steel or FRP plates. This 

approach also gives the values of parameters δ1P, δmaxP and τBmaxP in Fig. 8 and will be 

described later. 

 

 

Fig. 7 Lu’s non-linear bond-slip relationship for FRP sheets and plates 
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Fig. 8 Lu’s bilinear bond-slip relationship for FRP sheets and plates 

 

Shapes of Current Bond-Slip Models for Unbonded FRP Plate or Steel Plate 

 

For unbonded FRP plates or steel plates such as that in concrete filled FRP tubes or steel 

tubes, there is no adhesive between the concrete and FRP tube or steel tube. Consequently, 

it is assumed there is no bond between concrete and FRP tube or steel tube as this gives a 

conservative solution in the analysis. 

 

Simplified Bond-Slip Model 

 

In order to derive a closed-form solution, several simplified bond-slip models are proposed. 

The three main models include the bilinear model, linear ascending model and linear 

descending model as shown in Figs. 9, 10 and 11 respectively (Yuan, Wu & Yoshizawa 

2001). The bilinear bond-slip model is the closest to reality. By contrast, the linear ascending 

bond-slip model in Fig. 10 can apply when δ1 in Fig. 9 is big enough such that the bond 

stress between reinforcement and concrete may be not able to reach the maximum bond 

stress τBmax. This is most likely to happen in steel reinforced concrete columns as the steel 

reinforcement is likely to yield before the crack face slip Δ in Fig. 1(a) reaches δ1 in Fig. 9 

(Sturm, Visintin & Oehlers 2018). When δ1 in Fig. 9 is small enough and can be ignored 

(Seracino, Raizal Saifulnaz & Oehlers 2007), the bilinear bond-slip model can be simplified 

to the linear descending model as shown in Fig. 11. 

 

In this research, the bilinear model in Fig. 9 will be applied in order to derive simple closed-

form solutions of the stress-strain relationships of passively reinforced concrete columns 
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(Hao 2017b). Next, the material properties in this bilinear model for different types of 

reinforcement will be described. 

 

 

Fig. 9 Bilinear bond-slip relationship 

 

 

Fig. 10 Linear ascending bond-slip relationship  

 

 

Fig. 11 Linear descending bond-slip relationship  

 

Bond-Slip Material Properties 

 

Bilinear Bond-Slip Model for Steel and FRP Rebars  
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For steel rebars, slips δ1SR and δmaxSR in Fig. 9 can be expressed as 

 

 1 1.5SR mm   (6) 

 

 max 15SR mm   (7) 

 

Furthermore, the maximum bond stress τBmaxSR at δ1SR can be expressed as (Haskett et al. 

2009)  

 

 max 02.5B SR cf   (8) 

 

where fc0 is the unconfiend concrete strength. With regard to the bilinear bond-slip model 

for FRP rebars, slips δ1FR and δmaxFR in Fig. 9 can be expressed as (Focacci, Nanni & Bakis 

2000) 

 

 1 1FR mm   (9) 

 

  max 16.9FR mm   (10) 

 

Furthermore, τBmaxFR in Fig. 9 can be taken as (Okelo & Yuan 2005) 

 

  0

max

0

14.7
c

B FR

f

d
   (11) 

 

where d0 is the diameter of the FRP rebar. 

 

Bilinear Bond-Slip Model for Bonded Steel and FRP Plates 

 

The parameters τBmaxP , δ1P and δmaxP in Fig. 9 for bonded steel and FRP plates proposed by 

Seracino, Raizal Saifulnaz and Oehlers (2007) can be expressed as  

 

  
0.6

max 0(0.802 0.078 )B P f cf    (12) 
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  1 0P   (13) 

 

  
0.526

max

0.976

0.802 0.078

f

P

f








 (14) 

 

where fc0 is the unconfined concrete strength, δ1P is assumed to be zero as it is an order of 

magnitude smaller than δmaxP and the aspect ratio of the interface failure plane φf can be 

expressed as 

 

  
2

f

f

f

d

b
   (15) 

 

where df and bf2 are the thickness of the failure plane and the length of the failure plane 

parallel to the concrete surface as shown in Fig. 12, and which are equal to 1 mm and bf + 2 

mm (bf is the width of reinforcement plate as shown in Fig. 12) respectively. Furthermore, 

the intermediate crack (IC) debonding resistance PIC can be expressed as (Seracino, Raizal 

Saifulnaz & Oehlers 2007) 

 

  0.25 0.33

00.85IC f c per p pP f L E A  (16) 

 

where Lper is the length of the potential failure plane in Fig. 12 and is equal to bf + 4 mm, Ep 

and Ap are the modulus and cross-section area of the reinforcement plate. It is worth noting 

that the IC debonding resistance PIC should be less than either the rupture force for the FRP 

plates or yield force for steel plates. When the confinement force first reaches the IC 

debonding resistance PIC, the crack face slip ΔIC can be expressed as (Hao 2017a) 

 

  maxIC P   (17) 

 

where δmaxP can be obtained from Eq. (14). The reinforcement length required to develop PIC 

is referred to as the critical length Lcrt and can be expressed as (Seracino, Raizal Saifulnaz 

& Oehlers 2007) 

 

  
2

crtL



  (18) 
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where the parameter λ can be expressed as 

 

   
max

max

B P per

P p p

L

E A





  (19) 

 

where τBmaxP and δmaxP can be obtained from Eqs. (12) and (14) respectively. 

 

 

Fig. 12 Debonding failure of FRP plate bonded to concrete 

 

Conclusion 

 

In this report, the partial interaction bond-slip relationships for the mechanics properties 

required in a companion report are described. A brief review of available bond-slip models 

for steel rebars, FRP rebars, bonded steel and FRP plates are described. In future research, 

the simplified bilinear model will be employed to derive the closed form solution of the 

stress-strain relationship for passively confined concrete. Furthermore, bond-slip material 

properties required to do quantitative analysis have been described in this report. 

 

Notation 

 

AP = total cross-section area of reinforcement plate 

bf = width of reinforcement plate 

bf2 = length of failure plane parallel to concrete surface 

df = thickness of failure plane 

d0 = diameter of FRP rebar. 
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EP = elastic modulus of reinforcement plate 

fc0 = unconfined concrete strength 

Lcrt = critical length that is reinforcement length required to develop PIC  

Lper = total length of potential debonding failure plane of reinforcement in tension stiffening 

analysis 

Pconf = force in confinement reinforcement 

PIC = IC debonding resistance 

Δ = slip of confinement reinforcement at crack face 

ΔIC = crack face slip when confinement force first reaches IC debonding resistance PIC 

δ = slip between reinforcement and adjacent concrete 

δ1 = slip between reinforcement and adjacent concrete at τBmax  

δ1FR = slip between FRP rebars and adjacent concrete at τBmaxFR 

δ1P = slip between plate reinforcement and adjacent concrete at τBmaxP 

δ1SR = slip between steel rebars and adjacent concrete at τBmaxSR 

δ2FR = slip between FRP rebars and adjacent concrete when τB starts to decrease 

δ2SR = slip between steel rebars and adjacent concrete when τB starts to decrease 

δ3SR = slip when the bond stress first reaches τf for steel rebars 

δmax = slip between confinement reinforcement and adjacent concrete when bond stress τB 

reduces to zero 

δmaxFR = slip between FRP rebars and adjacent concrete when bond stress τB reduces to zero 

δmaxP = slip between plate reinforcement and adjacent concrete when bond stress τB reduces 

to zero 

δmaxSR = slip between steel rebars and adjacent concrete when bond stress τB reduces to zero 

τB = bond stress existing between reinforcement and concrete 

τBmax = peak bond stress for confinement reinforcement 

τBmaxFR = peak bond stress for FRP rebars 

τBmaxP = peak bond stress for plates 

τBmaxSR = peak bond stress for steel rebars 

τf = frictional component of the bond stress 

φf = aspect ratio of interface failure plane 

 

References 

 



 

121 

 

Ali, MM, Oehlers, D, Griffith, M & Seracino, R 2008, 'Interfacial stress transfer of near 

surface-mounted FRP-to-concrete joints', Engineering Structures, vol. 30, no. 7, pp. 1861-

1868. 

 

Baena, M, Torres, L, Turon, A & Barris, C 2009, 'Experimental study of bond behaviour 

between concrete and FRP bars using a pull-out test', Composites Part B: Engineering, vol. 

40, no. 8, pp. 784-797. 

 

Basset, R & Uzumeri, S 1986, 'Effect of confinement on the behaviour of high-strength 

lightweight concrete columns', Canadian Journal of Civil Engineering, vol. 13, no. 6, pp. 

741-751. 

 

CEB-FIP 1993, CEB-FIP Model Code 1990: Design Code, Thomas Telford. 

 

Chung, H-S, Yang, K-H, Lee, Y-H & Eun, H-C 2002, 'Strength and ductility of laterally 

confined concrete columns', Canadian Journal of Civil Engineering, vol. 29, no. 6, pp. 

820-830. 

 

Fib. (The International Federation for Structural Concrete) (2010) 'Model Code 2010–Final 

draft', Thomas Thelford, Lausanne, Switzerland. 

 

Cosenza, E, Manfredi, G & Realfonzo, R 1995, '20 Analytical modelling of bond between 

frp reinforcing bars and concrete', in Non-Metallic (FRP) Reinforcement for Concrete 

Structures: Proceedings of the Second International RILEM Symposium, CRC Press, vol. 

29, p. 164. 

 

Cosenza, E, Manfredi, G & Realfonzo, R 1997, 'Behavior and modeling of bond of FRP 

rebars to concrete', Journal of Composites for Construction, vol. 1, no. 2, pp. 40-51. 

 

Eligehausen, R, Popov, EP & Bertero, VV 1982, 'Local bond stress-slip relationships of 

deformed bars under generalized excitations', Proceedings of the 7th European Conference 

on Earthquake Engineering, vol. 4, pp. 69-80 

 

Focacci, F, Nanni, A & Bakis, CE 2000, 'Local bond-slip relationship for FRP 

reinforcement in concrete', Journal of Composites for Construction, vol. 4, no. 1, pp. 24-

31. 

 

Giakoumelis, G & Lam, D 2004, 'Axial capacity of circular concrete-filled tube columns', 

Journal of Constructional Steel Research, vol. 60, no. 7, pp. 1049-1068. 

 

Han, L-H 2000, 'The influence of concrete compaction on the strength of concrete filled 

steel tubes', Advances in Structural Engineering, vol. 3, no. 2, pp. 131-137. 

 



 

122 

 

Hao, X 2017a, 'Mechanics closed-form equations for the confinement forces and 

displacesments', School Report, School of Civil, Environmental and Mining Engineering, 

The University of Adelaide, Australia. 

 

Hao, X 2017b, 'Generation of stress-strain relationship of passively reinforced concrete' 

School Report, School of Civil, Environmental and Mining Engineering, The University of 

Adelaide, Australia. 

 

Harajli, M, Hout, M & Jalkh, W 1995, 'Local bond stress-slip behavior of reinforcing bars 

embedded in plain and fiber concrete', Materials Journal, vol. 92, no. 4, pp. 343-353. 

 

Haskett, M, Oehlers, DJ, Mohamed Ali, M & Wu, C 2009, 'Yield penetration hinge 

rotation in reinforced concrete beams', Journal of Structural Engineering, vol. 135, no. 2, 

pp. 130-138. 

 

Lam, L & Teng, J 2003, 'Design-oriented stress–strain model for FRP-confined concrete', 

Construction and Building Materials, vol. 17, no. 6, pp. 471-489. 

 

Lin, X & Zhang, Y 2014, 'Evaluation of bond stress-slip models for FRP reinforcing bars 

in concrete', Composite Structures, vol. 107, pp. 131-141. 

 

Lu, X, Teng, J, Ye, L & Jiang, J 2005, 'Bond–slip models for FRP sheets/plates bonded to 

concrete', Engineering Structures, vol. 27, no. 6, pp. 920-937. 

 

Malvar, L, Cox, J & Cochran, KB 2003, 'Bond between carbon fiber reinforced polymer 

bars and concrete. I: Experimental study', Journal of Composites for Construction, vol. 7, 

no. 2, pp. 154-163. 

 

Okelo, R & Yuan, RL 2005, 'Bond strength of fiber reinforced polymer rebars in normal 

strength concrete', Journal of Composites for Construction, vol. 9, no. 3, pp. 203-213. 

 

Pecce, M, Manfredi, G, Realfonzo, R & Cosenza, E 2001, 'Experimental and analytical 

evaluation of bond properties of GFRP bars', Journal of Materials in Civil Engineering, 

vol. 13, no. 4, pp. 282-290. 

 

Pessiki, S & Pieroni, A 1997, 'Axial load behavior of large-scale spirally-reinforced high-

strength concrete columns', ACI Structural Journal, vol. 94, no. 3, pp. 304-314. 

 

Price, WH 1951, 'Factors influencing concrete strength', ACI journal, vol. 47, no. 2, pp. 

417-432. 

 



 

123 

 

Seracino, R, Raizal Saifulnaz, M & Oehlers, D 2007, 'Generic debonding resistance of EB 

and NSM plate-to-concrete joints', Journal of Composites for Construction, vol. 11, no. 1, 

pp. 62-70. 

 

Soroushian, P & Choi, K-B 1989, 'Local bond of deformed bars with different diameters in 

confined concrete', Structural Journal, vol. 86, no. 2, pp. 217-222. 

 

Sturm, AB, Visintin, P & Oehlers, DJ 2018, 'Time-dependent serviceability behavior of 

reinforced concrete beams: Partial interaction tension stiffening mechanics', Structural 

Concrete, vol. 19, no. 2, pp. 508-523. 

 

Tighiouart, B, Benmokrane, B & Gao, D 1998, 'Investigation of bond in concrete member 

with fibre reinforced polymer (FRP) bars', Construction and Building Materials, vol. 12, 

no. 8, pp. 453-462. 

 

Toutanji, H, Han, M, Gilbert, J & Matthys, S 2009, 'Behavior of large-scale rectangular 

columns confined with FRP composites', Journal of Composites for Construction, vol. 14, 

no. 1, pp. 62-71. 

 

Turgay, T, Köksal, H, Polat, Z & Karakoc, C 2009, 'Stress–strain model for concrete 

confined with CFRP jackets', Materials & Design, vol. 30, no. 8, pp. 3243-3251. 

 

Visintin, P, Oehlers, D & Haskett, M 2013, 'Partial-interaction time dependent behaviour 

of reinforced concrete beams', Engineering Structures, vol. 49, pp. 408-420. 

 

Yankelevsky, DZ 1985, 'New finite element for bond-slip analysis', Journal of Structural 

Engineering, vol. 111, no. 7, pp. 1533-1542. 

 

Yuan, H, Wu, Z & Yoshizawa, H 2001, 'Theoretical solutions on interfacial stress transfer 

of externally bonded steel/composite laminates', Doboku Gakkai Ronbunshu, vol. 2001, no. 

675, pp. 27-39. 

  



 

124 

 

Chapter 3— Passive Stress/Strain Behaviour 

 

Introduction 

 

In this chapter, a mechanics-based approach to predict the passive stress/strain for passively 

confined concrete prisms under concentric load are described in the two journal papers below. 

These two journal papers condense the information in the school reports in the first two 

chapters in a form suitable for a journal. 

 

In the first paper, a mechanics-based approach for rectangular cross-sections is derived from 

the confinement mechanics equations in Chapter 1 and material properties in Chapter 2. 

Then in the second paper, the proposed approach is extended to the circular sections and the 

effect of the section shape on confinement is described. This is followed by a parametric 

study to describe the effect of specimen size on the passive stress/strain response. 
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Simulating the Passive Confinement of Rectangular Concrete Prisms 

Allowing for Size Effect 

 

X. Hao1, P. Visintin2 and D. J. Oehlers3 

Abstract 

Tests have shown that providing passive confinement to concrete, either through the use of 

internal stirrups, external fibre reinforced polymer (FRP) wraps, FRP tubes or steel tubes, 

can increase the concrete strength and, in particular, the concrete ductility, thereby allowing 

greater absorption of energy and consequently ductile failure. The problem of including the 

benefits of passive confinement in design is in generalising the effect of passive confinement 

because it varies with member size, confining reinforcement configuration and material 

properties. In this paper, the fundamental mechanics of passive concrete confinement are 

explained both qualitatively and quantitatively through the use of shear-friction and bond-

slip mechanics. An analysis oriented procedure is described for quantifying the passive 

stress/strain of concrete for rectangular sections. The mechanics model is found to have good 

correlation with tests and, consequently, can be used in the design of a member to allow for 

the benefits of confinement. 

 

Keywords: concrete; concrete confinement; active confinement; passive confinement; 

partial interaction; RC members; IC debonding; shear sliding. 

 

Introduction 

 

Passive confinement may be applied to concrete members through the use of either internal 

stirrups or external FRP (fibre reinforced polymer) wraps, or FRP tubes or steel tubes. The 

changes in concrete strength and ductility arising from this passive confinement has received 

much research attention (Hognestad, 1951, Jiang and Teng, 2007, Mander et al., 1988, 

Plevris and Triantafillou, 1994, Popovics, 1973, Richart et al., 1928, Sakino et al., 2004, 

Teng et al., 2009). Means of predicting the impact of passive confinement on the stress/strain 

relationship of concrete can be split into two broad categories: design oriented or analysis 

oriented.  
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The design oriented approach generally treat passively confined concrete as a new material, 

and develops stress/strain models for each specific confinement based on empirical 

observations. The general shapes of passive stress/strain relationships for concrete confined 

by stirrups or wraps/tubes are compared in Fig. 1 (Lam and Teng, 2003, Mander et al., 1988, 

Shams and Saadeghvaziri, 1997). These are generally comprised of a non-linear ascending 

branch (O-A or O-C) followed by either an ascending or descending secondary branch 

depending on the level of confinement (A-B or C-D). Design oriented approaches such as 

that proposed by Lam and Teng (2003) provide a stress/strain model for FRP reinforced 

concrete based on the regression of a large database of test observations and have been 

routinely updated as new test data covering a broader range of parameters have become 

available (Teng et al., 2009, Wei and Wu, 2012, Youssef et al., 2007). For concrete confined 

by stirrups, Mander et al. (1988) derived the peak stress fcc and strain εcc at fcc semi-

empirically and substituted them into stress/strain models of actively confined concrete 

proposed by Popovics (1973). This approach is similar to that accepted by CEB-FIB Model 

(Fib., 2010).  

 

 

Fig. 1 Empirical stress/strain of passively confined concrete 

 

The primary benefit of design oriented approaches is their ease of use, that is, because they 

are based on the regressed data, simple expressions for the key points of the stress/strain 

relationship can be easily defined. Care in the application of design oriented approaches is 

however required, because the empirical basis that makes them easy to apply, may also limit 

accuracy if used to predict the behaviour of concrete with parameters outside the range of 
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the regressed database. An important example of this is in the prediction of the behaviour of 

full size columns which have overall dimensions much larger than the majority of specimens 

in the compiled databases. The issue of member size is significant because previous research 

has shown passive confinement to be size dependent (Du et al., 2017, Jin et al., 2017, 

Thériault et al., 2004, Wang et al., 2012). Also of importance is the consideration of member 

slenderness, as experimental work has shown the slenderness ratio to have a significant 

impact on both the failure mode and degree of confinement (Visintin et al., 2015a). Although 

empirically derived approaches based on the regression of the database of large-size concrete 

members do exist (Wang et al., 2011b) as do approaches that consider different slenderness 

ratios (Silva and Rodrigues, 2006). However, the largest diameter and slenderness ratio of 

concrete members in these database are 305 mm and 5, respectively; these ranges are smaller 

than a significant proportion of columns constructed in practice. 

 

In analysis-oriented approaches, the behaviour of confined concrete is based on the 

interaction between the concrete and lateral reinforcement. For analysis, a family of curves 

representing the actively confined stress/strain relationships of the concrete are first 

generated. Then, depending on the interaction relationship between the concrete and lateral 

reinforcement, the lateral confining stress is derived either from the radial dilation (Becque 

et al., 2003, Fam and Rizkalla, 2001, Jiang and Teng, 2007, Mirmiran and Shahawy, 1996, 

Spoelstra and Monti, 1999, Teng et al., 2007) or from the slip along the shear failure plane 

(Harmon et al., 1998, Visintin et al., 2015a), from which the axial strain and axial stress can 

be derived. Each point of the loading path on the family of curves of the generated active 

stress/strain can then be determined. 

 

Although a more detailed analysis than the design oriented approach, these analysis-oriented 

approaches suffer from the same limitations in that if the actively confined stress/strain 

relationships, from which the passive stress/strain behaviour is derived, are not size 

dependent then the passive relationship will not be size dependent. Again, this issue does 

not appear to be easy to solve with current empirical data as the vast majority of actively 

confined stress/strain relationships have been developed from triaxial test results on small 

scale specimens with an aspect ratio of 2. There is, therefore, a need to develop approaches 

to predict the passively confined stress/strain relationship of concrete that is independent of 

size and that are not based on size independent stress/strain relationships. In this paper, we 

seek to address this issue by developing an approach for constructing the stress/strain 
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relationship for concrete passively confined by stirrups, wraps or tubes using fundamental 

shear friction and partial interaction mechanics. 

  

The shear-friction and bond-slip partial interaction mechanics that control the fundamental 

mechanics of the passive confinement of concrete is first described in qualitative terms. The 

fundamental mechanics is then quantified with the use of mechanics equations and material 

properties. The quantitative analysis is then validated with comparison with test results. 

 

Qualitative Description of the Confinement Mechanism 

 

To understand the mechanisms that control the passive confinement of concrete, it is 

necessary to first consider the behaviour of actively confined concrete as the passive 

behaviour stems from these active properties. 

 

Actively Confined Concrete 

 

Consider the concrete prism in Fig. 2 that is subjected to an axial stress ax and an active 

confinement pressure conf. Prior to the formation of the sliding plane, the axial stress ax 

induces a material strain in the concrete m which is uniform throughout the concrete and 

independent of the length of the prism Ldef.  

 

On gradually increasing ax, eventually a sliding plane forms as in Fig. 2 at an inclination  

and slip S occurs across the sliding plane. The axial component of the slip Sax as shown in 

Fig. 2 causes contraction of the prism such that the axial strain increases by an equivalent 

strain of S equal to Sax/Ldef; this is an equivalent strain as it is not a material property since 

it involves both local and non-local deformations and is therefore size dependent. The total 

axial strain in the prism ax is, therefore, the sum of the material component m and the sliding 

component S. The lateral component of the slip Slat in Fig. 2 would be resisted by any lateral 

reinforcement such as stirrups or wraps should they be present. This tensile resistance of the 

lateral reinforcement is balanced by compression across the sliding plane and therefore acts 

in addition to the confinement stress conf.  
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Fig. 2 Actively confined prism 

 

As slip occurs across the sliding plane in Fig. 2, aggregate interlock causes the interface 

surfaces to separate by hcr as shown. The magnitude of this crack width hcr (Haskett et al., 

2010, Haskett et al., 2011) is at least one order of magnitude smaller than either Sax or Slat, 

therefore, for simplicity it will be ignored to give a slightly conservative design. The forces 

induced on the sliding plane due to the axial stress ax and the confinement stress conf can 

be resolved along the sliding plane to determine the shear stress  along the sliding plane 

and the normal stress to the sliding plane N. The parameters m, N and S are the shear-

friction material properties of the concrete as illustrated in Fig. 3 where: Vu is the shear 

capacity at the onset of sliding; and τm is the shear capacity for a specific combination of a 

normal stress N and slip S. It can be seen that for a given normal stress across the interface 

N the shear capacity τm reduces with slip S. 

 

The behaviour of the prism in Fig. 2 is shown as the active stress/strain (ax/ax) relationship 

in Fig. 4 where ax is the applied axial stress and ax is the total strain that is the material 

strain m plus the equivalent sliding strain S should it occur. For the unconfined concrete O-
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A-B, the peak strength fco at strain co occurs at the onset of sliding. For the confined concrete 

such as O-C-D or O-E-F, at the onset of sliding the peak strength is fcc at a strain cc. 

 

Prior to the formation of the sliding plane in Fig. 2, the axial stress/strain (ax/ax) in Fig. 4 

follows an ascending branch which depends on the active confinement pressure conf and 

which is a material property that can be determined directly from tests. Eventually a sliding 

plane forms after which the axial stress reduces due to interface slip as shown by the 

descending branch in Fig. 4. The descending branches in Fig. 4 can be determined from the 

concrete shear-friction properties in Fig. 3. That is, for a given axial stress ax and 

confinement pressure conf in Fig. 2, the shear friction properties mx and Nx in Fig. 3 can be 

determined. From these values, can be determine the interface slip Sx and from Sx can be 

determined the equivalent strain due to slip. That is one point on the descending branch for 

its construction. It is also worth noting that the peak strengths fcc in Fig. 4 occur at the shear 

capacities Vu in Fig. 3. 

 

 

Fig. 3 Shear-Friction material properties 

 



 

134 

 

 

Fig. 4 Theoretical stress/strain of actively confined concrete 

 

To summarise, take for example the ax/ax relationship O-E-F in Fig. 4 in which the active 

confinement is conf2. At an axial stress ax2, the material strain is m2 and the equivalent 

sliding strain is S2 which is equal to Sax2/Ldef that is the axial component of the slip divided 

by the length of the prism. 

 

Passively Confined Concrete 

 

Let us now add lateral reinforcement to the prism in Fig. 2 as shown in Fig. 5; this lateral 

reinforcement could be internal stirrups encasing the concrete within the width Di, or 

external wraps or external tubes encasing the section of width Di. The confinement pressure 

shown as conf is now not acting on the external surface of the prism but across the interface 

of the sliding plane. As shown, the interface slip S induces a lateral expansion Slat which 

causes the lateral or confinement reinforcement to go into tension which is shown as force 

Pconf. These tensile forces in the reinforcement are balanced by internal compression across 

the interface conf.  
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The lateral movement Slat in Fig. 5 can be visualised as the opening of a crack by 2 in the 

lateral direction which induces a reinforcement force Pconf. The relationship between Pconf 

and  (Pconf/) where  is the half crack width in the lateral direction can be determined 

from the partial-interaction mechanics of intermediate-crack (IC) debonding (Lu et al., 2005, 

Seracino et al., 2007) which depends on the bond-slip property (τB/) between the 

reinforcement and the adjacent concrete (Azizinamini et al., 1993, Darwin and Graham, 

1993, Yao et al., 2005). Hence, for a given slip S in Fig. 5,  is known, such that Pconf can 

be derived from the Pconf/ properties, and further from Pconf can be derived the passive 

confining pressure conf. Consequently conf in Fig. 4 is known, and as S is also known, it is 

a simple question of finding ax at which this occurs. For example, if the confinement 

pressure is conf1 in Fig. 4 such that O-C-D is the active stress/strain. Then for a specific slip 

S, Sy is known and it is a question of finding axy at which this occurs that is where the 

horizontal dimension Sy fits within O-C-D as shown. 

 

 

Fig. 5 Confinement force and deformation of passively confined concrete 

 

When debonding is complete, or when there is no bond, then the strain in the reinforcement 

in Fig. 5 is constant. Hence for a given strain such as z for the reinforcement D-E-F, Slat is 
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equal to zDi where Di is the length of the unbonded confinement reinforcement and the 

analysis proceeds as above that is substituting z for Sy in the above example.  

 

Construction of the passive stress/strain for a prism such as in Fig. 5 with specific dimensions, 

reinforcement arrangements and material properties is illustrated in Fig. 6 where the 

descending branches are shown as linear for ease of explanation. To construct the passively 

confined stress/strain relationship, firstly the actively confined stress/strain relationships are 

constructed as described previously. Let O-A-B represent the stress/strain when the concrete 

is unconfined that is conf0 is zero. The active confinement variation O-C-D is when the force 

in the reinforcement is the IC debonding force PIC, at a confinement reinforcement strain IC 

(Yuan et al., 2001), such that the confinement is confIC. The active confinement O-E-F is 

when the reinforcement is in yield at a force Pyld which starts at a strain yld2 and completes 

at a strain yld. Finally O-G-H is when the reinforcement is about to fracture at a force Pfr and 

a strain fr.  

 

On applying the axial stress to the prism in Fig. 5, the stress/strain path follows O-A in Fig. 

6 because prior to cracking the lateral reinforcement is to all intents and purposes ineffective 

in providing confinement. When a sliding plane occurs at Point A, the half crack width  at 

the commencement of IC debonding can be determined from partial-interaction theory 

(Yuan et al., 2001) as well as the IC debonding force PIC and consequently the confinement 

confIC and the reinforcement strain at which this occurs IC. Consequently Slat = 2IC is 

known so that SIC is known. From O-C-D and SIC can be determined the level of stress SIC 

at which this occurs and hence Point I along the descending branch C-D is known. During 

IC debonding the reinforcement force PIC and the strain in the unbonded bar IC remain 

constant (Yuan et al., 2001). When IC debonding is complete, Slat equals ICDi so SIC2 can 

be determined and consequently point J also along C-D as the confinement has not changed 

that is SIC2 can be determined. At the commencement of yield Pyld and consequently confyld 

at a strain yld2, Slat equals yld2Di from which can be determined Syld2 and consequently point 

K which now lies along E-F where the confinement is confyld and the stress is Syld2. 

Substituting the yield strain at the end of yielding yld, gives point L. Finally, at fracture Pfr 

and the fracture strain fr can be determined point M. It is worth noting that the sliding strain 
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such as Sfr may be larger than OH. This simply means that the prism has already failed 

before reaching this point. 

 

 

Fig. 6 Theoretical stress-strain of passively confined concrete 

 

From Fig. 6, and for the specific specimen in Fig. 5, the passive confinement stress/strain is 

given by O-A-I-J-K-L-M-N in Fig. 6. If yielding does not occur such as with FRP 

reinforcement, then the passive stress/strain is O-A-I-J-M-N. If there is no bond, then it is 

O-A-K-L-M-N and so on. The analysis can be made more accurate by using intermediate 

confinement stresses such as at PIC/2 or Pyld/2. It is worth noting that the lateral expansion 

of concrete will cause the confining stress between the concrete and confinement 

reinforcement which may enhance the bond between them (Chen et al., 2018). This 

enhancement has been ignored in this research to give a conservative solution. 

 

Quantification of Confinement 

 

In this section, the quantification of the stress/strain is described. The family of the active 

stress/strain relationships in Fig. 6 are first derived, then the sliding strains εS of all the key 

points in Fig. 6, after which the axial stresses σS. Let us start with the ascending branch of 

the active stress/strain. 
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Quantification of the Ascending Branch 

 

The ascending branches of the active stress/strain in Figs. 4 and 6 depend on the peak stress 

fcc and the strain εcc at fcc, which are functions of the lateral confining stress σconf. The strain 

εcc at fcc for confined concrete can be written as follows (Chen et al., 2013) 

 

 0 0

0
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conf

cc c

c

A
f


 

  
   
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 (1) 

 

where A0 is a coefficient derived from regression analyses and can be taken as 13.9, εc0 is 

the strain at fc0 for unconfined concrete and can be written as (Chen et al., 2013) 

 

 
6 3

0 01.74 10 2.41 10c cf       (2) 

 

where fc0 is in MPa. The peak stress of the confined concrete fcc can be either derived from 

experimental data or shear-friction material properties. In this research, the latter approach 

will be applied as follows. Here peak strain model of Chen et al. (Chen et al., 2013) is applied 

as it has been made independent of specimen size during the regression of terms.  

 

The active stress/strain behaviour is affected by the failure type as shown in Fig. 7. For a 

slender column with an aspect ratio equal to or more than three, sliding mostly occurs across 

a single failure plane as shown in Fig. 7(b). For a column whose slenderness is equal to two 

such as standard cylinder tests, a circumferential sliding plane is the most common failure 

form as shown in Fig. 7(a) and which, for a given concrete mix, occurs at higher axial loads 

than those for the single sliding plane (Visintin et al., 2015a). In practical structures the 

former case, that is the single sliding plane, is more common, and as the circumferential 

sliding plane can give an unsafe solution as it always represents an upper bound to the 

confinement, the single sliding plane, also shown in Figs. 2 and 5, will be used in this 

research and in the validation of test results both the results from the single sliding plane and 

circumferential sliding plane will be presented to give an indication of scatter. 
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(a) (b) 

Fig. 7 Concentrically loaded concrete column failure: (a) circumferential wedge  

(b) single sliding plane 

 

From the resolution of the axial load Pax and lateral confining force Pconf in Fig. 2, the shear 

stress τ and normal stress σN along and normal to the single shear sliding plane can be written 

as follows (Ali et al., 2010, Hao, 2017, Visintin et al., 2015b) 

 

  sin cosax conf       (3) 

 

 
2 2sin cosN ax conf       (4) 

 

where α is the angle of the shear failure plane as shown in Figs. 2 and 5 and as an example 

can be assumed to be constant at 26o (Chen et al., 2015a).  

 

From the shear-friction material properties in Fig. 3, the shear-stress material property τm 

shown as the unbroken lines can be written in the following linear form plotted as dash-dot 

lines, as follows 

 

 ( )m N NA B S C D       (5) 
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where A, B, C and D are coefficients of the unconfined concrete strength fc0. As an example, 

the linear approximation of the shear-friction material properties derived by Hao (Hao, 2017) 

are used as follows, although these can be replaced with any model deemed more appropriate 

or accurate. 

When σN < σN0 

 

 
2

0 0 0 0[(0.00112 0.337) -0.000784 0.0152 0.556] 1.50 0.105m c N c c N cf f f S f           (6) 

 

and when σN0 ≤ σN < 3σN0, then 

 

 
2

0 0 0 0[(0.00112 0.0636) -0.000784 0.0620 0.556] 0.498 0.298m c N c c N cf f f S f         (7) 

 

where, σN0 is the normal stress at the peak axial stress fc0 of unconfined concrete and is given 

as 

 

 
2

0 0 sinN cf   (8) 

 

It is worth noting that the fundamental mechanics does not depend directly on the material 

properties so any experimental values of the shear-friction material properties could have 

been used.  

 

Setting the shear stress from mechanical equilibrium τ from Eq. (3) to the shear-friction 

material capacity τm from Eq. (5) and substituting σN from Eq. (4) gives the variation of the 

axial stress σax in Fig. 2 with the interface slip S as 
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Actively confined concrete will reach the peak stress fcc at the onset of sliding. Hence 

substituting S = 0 into Eq. (9) gives the following peak stress fcc of confined concrete as 

derived from the shear-friction material properties 
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After the quantification of the peak stress fcc and strain εcc, the ascending branch can be 

derived from the active stress/strain relationship (Popovics, 1973) 
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where fcc and εcc can be obtained from Eqs. (10) and (1) and rc is the ductility factor which 

can be expressed as  

 

 c
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where the concrete elastic modulus Ec is a material property and can be expressed in MPa as 

(ACI 1992) 

 

 03320 6900c cE f   (13) 

 

Thus, for a specific lateral confining stress σconf, the ascending branch of the active 

stress/strain can be generated from Eq. (11). As an example and for ease of analysis, the 

ascending branch of the active stress/strain can be linearized as 

 

 
cc

ax ax

ccf


   (14) 

 

where fcc and εcc can be obtained from Eqs. (10) and (1). 

 

Quantification of the Descending Branch 
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The vertical component Sax of the slip S in Fig. 2 divided by Ldef is the equivalent strain due 

to slip εS that is 

 

 
cos

 S

def

S

L


   (15) 

 

Bearing in mind that there is also the additional material strain εm in Fig. 4 then the total 

axial strain is given by (Visintin et al., 2015a) 
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where, as an example, the material strain εm can also be obtained from Eq. (14) which can 

be substituted into Eq. (16) as follows 
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Substituting S from Eq. (17) into Eq. (9) gives the relationship between σax and the axial 

strain εax in Fig. 4. The descending branch can now be constructed.  

 

As an example, let us take the active stress/strain in Fig. 4 shown as O-E-G-F. First fix the 

slip S at a specific value Sax2 and the confinement σconf at σconf2. The axial stress σax2 can be 

derived from Eq. (9) by substituting σconf2 and Sax2 to give point G. The material strain εm2 is 

fixed by finding the point from the ascending branch O-E whose axial stress equals σax2. The 

axial strain εax2 at point G is given by Eq. (17). 

 

Linking points E and G in Fig. 4, that is assuming a linear falling branch EG, gives the falling 

branch of the active stress/strain for the lateral confining stress σconf2 as follows 
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where σax2, εax2, fcc and εcc can be obtained from Eqs. (9), (17), (10) and (1). 

 

Quantification of the Equivalent Strain S 

 

In order to derive the equivalent strain εS in Fig. 4 which is equal to Sax/Ldef as shown, the 

axial component of the slip Sax is required, which is also a function of the lateral component 

of slip Slat as shown in Fig. 5. Let us start with the derivation of Slat and consider the passive 

confinement reinforcement A-B in Fig. 5 as an example, which is shown in Fig. 8 in detail. 

The reinforcement is assumed to be anchored at point A due to the reinforcement angle bend 

between A-C and A-B, where A-C is the reinforcement perpendicular to the plane in Fig. 5.  

 

 

Fig. 8 Bond force first reaches IC debonding resistance PIC 

 

Bond-Slip 

 

The confinement across the sliding plane in Figs. 5 and 8 depends on the bond-slip (τB/) 

between the confinement reinforcement A-B and the adjacent concrete which is a material 

property and can be any shape. As an example, the bilinear bond-slip material properties in 

Fig. 9 for plate reinforcement have the following parameters τBmax, δ1 and δmax as shown 

which can be written as (Seracino et al., 2007) 
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in which the units are in mm and N and where φf is the aspect ratio of the interface failure 

plane as shown in Fig. 10 and which can be written as 
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where df and bf2 are the thickness of the failure plane and the length of the failure plane 

parallel to the concrete surface as shown, and which are equal to 1 mm and bf + 2 mm (where 

bf is the width of the reinforcement plate as shown) respectively.  

 

 

Fig. 9 Bond-slip material properties 

 

IC debonding 

 

When the bond stress τB in Fig. 9 is fully developed along the confinement reinforcement 

length Lconf as shown in Fig. 8, the confinement force Pconf will reach its maximum value PIC 

at a crack face slip ΔIC, where PIC and ΔIC can be written as follows (Seracino et al., 2007, 

Yuan et al., 2004, Yuan et al., 2001) 

 

 max maxIC B per r rP L E A   (23) 
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 maxIC    (24) 

 

where, τBmax and δmax are shown in Fig. 9 which can be obtained from Eqs. (19) and (21) 

respectively, Er is the modulus of the reinforcement, and Lper and Ar are the total length of 

the potential debonding failure plane and the total cross-section area of the reinforcement 

respectively. As an example, the IC debonding resistance PIC for the plate reinforcement can 

be written as (Seracino et al., 2007) 

 

 0.25 0.33

00.85IC f c per r rP f L E A  (25) 

 

where φf can be obtained from Eq. (22) and Lper is shown in Fig. 10. The length of 

reinforcement required to develop PIC is referred to as Lcrt as shown in Fig. 8, which can be 

written as (Seracino et al., 2007) 
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where the parameter λ can be expressed as 
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It is worth noting that the maximum width bf in Fig. 10 of the plate reinforced specimens in 

the database by Seracino et al. (Seracino et al., 2007) to derive PIC equals 100 mm. The width 

bf of the plate reinforcement along the shear failure plane may be outside this range of bf 

such that the reinforcement plate will be cut into plates with width bf ≤ 100 mm. The IC 

debonding resistance PIC can be obtained by adding PIC of all cut plates. For instance, if Hsl 

in Fig. 5 is assumed to be 350 mm and the plate along the shear failure plane will be cut into 

three 100-mm width plates and one 50-mm width plate. The IC debonding resistance PIC can 

be derived for each of these four plates which are added to obtain PIC for reinforcement along 

the whole shear failure plane. 
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Fig. 10 Failure plane of FRP plate bonded to concrete 

 

 

Fig. 11 Pconf and Slat relationship for: (a) debonding prior to fracture or yield and Lcrt≤Lconf; 

(b) fracture or yield without debonding and Lcrt≤Lconf; (c) Lcrt>Lconf 
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The confinement behaviour is determined by the relative values between Lcrt and Lconf in Fig. 

8 as well as that between the IC debonding resistance PIC, the yield capacity Pyld and the 

fracture capacity Pfr. In Fig. 11, the relationships between Pconf and Slat are shown. It is 

necessary to derive the relationship between Pconf and Slat to quantify confinement as follows. 

 

Debonding occurs prior to yielding or fracture when Lconf ≥ Lcrt 

 

When PIC is less than Pyld or Pfr and Lconf ≥ Lcrt in Fig. 8, then debonding occurs prior to 

yielding or fracture which is the case shown in Fig. 11(a). Debonding starts at point A in Fig. 

11(a) when from Eq. (24) the crack face slip reaches ΔIC = δmax which can be obtained from 

Eq. (21). Adding the crack face slips from both crack faces gives the horizontal component 

of slip Slat-IC as 

 

 2lat IC ICS     (28) 

 

A further increase in the crack face slip Δ above ΔIC will cause the bond stress distribution 

to move towards the plate end until it reaches the plate end which is plotted as the dashed 

line in Fig. 8. The confinement force Pconf along the unbonded reinforcement is constant at 

PIC and subsequently at a strain εIC; this is point B in Fig. 11(a) such that Δdeb equals ΔIC+ εIC 

(Lconf – Lcrt). Adding the crack face slips at both sides of the crack face gives the lateral 

expansion Slat-deb as 

 

  2 2lat deb IC IC i crtS D L      (29) 

 

A further increase in Δ and consequently Slat will cause a reduction of the confinement force 

due to bond and an increase of that due to anchorage. For convenience, the confinement 

force Pconf is assumed to be kept constant at PIC until PIC is fully developed at a strain εIC, 

which is point C in Fig. 11(a), where the crack face slip ΔIC2 equals εICLconf and Slat-IC2 is  

 

 2lat IC IC iS D   (30) 

 

Further increasing Δ and consequently Slat will cause an increase in reinforcement strain and 

consequently an increase in Pconf due to anchorage. The confinement reinforcement may 
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either directly fracture at a strain εfr, point D in Fig. 11(a), or yield at a strain εyld at point E 

and then fracture at point D. The crack face slip Δyld at point E and Δfr at point D equal εyldLconf 

and εfrLconf respectively such that the lateral component of slips Slat-yld and Slat-fr can be written 

as follows  

 

 lat yld yld iS D   (31) 

 

 lat fr frac iS D   (32) 

 

It is worth noting in Fig. 11(a) that in the example and for ease of analysis it is assumed all 

the relationships between Pconf and Slat are piecewise linear.  

 

Yielding or fracture occurs prior to debonding when Lconf ≥ Lcrt  

 

When PIC is larger than Pfr or Pyld and Lconf ≥ Lcrt, debonding does not occur as the 

confinement reinforcement will either yield or fracture before the bond stress is fully 

developed. However, point C in Fig. 11(b) is fixed and a linear variation O-A-B-C is 

assumed, for ease of analysis, with a stiffness E1 = PIC/(2ΔIC). Subsequently, when the 

confinement reinforcement yields or fractures at points A and B, Slat can be written as 

 

 2 2
yld

lat yld IC

IC

P
S

P
    (33) 

 

 2 2
fr

lat fr IC

IC

P
S

P
    (34) 

 

where, from Eq. (24), ΔIC equals δmax which can be obtained from Eq. (21) and PIC can be 

obtained from Eq.(25). Consequently from Eqs. (33) and (34), the crack face slip at both 

sides of the crack face at points A and B in Fig. 11(b) can be written as Δyld2 = ΔICPyld/PIC 

and Δfr2 = ΔICPfr/PIC. The confinement reinforcement may either directly fracture at point B, 

or yield at point A then complete yielding at point E and then ultimately fracture at point D. 

At points E and D, Pconf, Δ and Slat are equal to that of points E and D in Fig. 11(a) such that 

Slat-yld and Slat-fr at these two points can be obtained from Eqs. (31) and (32) respectively. 
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The critical length Lcrt may be less than Lconf on one side but not on the other. For instance, 

Lcrt may be less than the confinement reinforcement length BC in Fig. 5 and larger than the 

confinement reinforcement length AB. At the commencement of debonding, yielding or 

fracture, Slat-IC, Slat-yld2 or Slat-fr2 from Eqs. (28), (33) and (34) may be less than 2ΔIC, 2Δyld2 or 

2Δfr2 because on one side the crack face slip is ΔIC, Δyld2 or Δfr2 but on the other side it may 

be less due to the end anchor. Hence these Slat values can be used as they give a conservative 

solution. However, the lateral expansions Slat of the other points B, C, E and D in Fig. 11(a) 

and points E and D in Fig. 11(b) from Eqs. (29), (30), (31) and (32) still apply directly. 

 

Yielding or fracture occurs prior to debonding when Lconf < Lcrt 

 

The case where Lconf < Lcrt is shown in Fig. 12(c) where the anchor to the reinforcement is 

on the left and the crack face on the right as shown. The variations in bond stress τB and slip 

δ are shown in Figs. 12(a) and (b) respectively. The slip δ on the left is zero due to the anchor 

such that the bond stress there is also zero. These variations are identical to that which occurs 

in a multi-crack analysis (Muhamad et al., 2012, Oehlers et al., 2010) with a crack spacing 

Sp of 2Lconf in Figs. 12(d) and (e) where by symmetry the midway slip between crack faces 

equals zero. Hence the Pconf/Δ relationship from a multi-crack analysis is directly applicable. 

 

Let us first take the yield case as an example. The crack face slip Δyld3 at point A in Fig. 11(c) 

when the confinement reinforcement first reaches Pyld can be derived through the following 

mechanics proposed by Sturm et al. (Sturm et al., 2018) where 

 

 
3 tanh

2

yld p

yld

r r

P S

E A





 
   

 
 (35) 

 

where Sp is the primary crack spacing that equals 2Lconf as shown in Fig. 12(d) and which 

will be quantified later, and where λ is the variation in the slip parameter which can be 

written as follows 

 

 k   (36) 
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where the prism parameter β and bond-slip stiffness k can be expressed as 

 

 
1 1

per

r r c c

L
E A E A


 

  
 

 (37) 

 

 
max

1

Bk



  (38) 

 

where Lper has already been defined through Fig. 10 and where Ac is the cross-section area 

of concrete which interacts with the reinforcement in the tension stiffening analysis. It should 

be noted that for plate reinforcement, the area of the reinforcement Ar is much smaller than 

that of the concrete Ac such that 1/EcAc in Eq. (37) can be assumed to be zero (Ali et al., 

2008). 

 

 

Fig. 12 (a) to (c) Lconf<Lcrt and (d) to (e) multi-crack analysis  
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Consider an arbitrary plane crossing the sliding plane, such as A-B-C in Fig. 5 where the 

crack face is x from the nearest anchor. Adding the crack face slips Δyld3 at point A in Fig. 

11 (c) from both sides of the crack face gives the lateral component of slip Slat-yld3 at point A 

as follows (Sturm et al., 2018) 

 

 
 

3

22
tanh tanh

2 2

yld yld i

lat yld

r r r r

P P D xx
S
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 


  
    

   

 (39) 

 

where x is the confinement reinforcement length AB in Fig. 5. Rearranging and simplifying 

Eq. (39) gives 
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   
3
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     

 (40) 

 

The value of Slat-yld3 in Eq. (40) will reach its maximum at x = Di/2 (Oldham et al., 2010) 

which means the crack is in the middle of the length Di such as in the plane D-E-F in Fig. 5. 

Only considering this case gives a conservative solution and simplifies the analysis. Hence 

substituting x = Di/2 into Eq. (40) gives 

 

 
 

 
3
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yld i

lat yld

r r i

P D
S

E A D



 


 
  

 
 (41) 

 

which is the crack width at the onset of yielding. 

 

After yielding at point A in Fig. 11(c), the confinement reinforcement will completely yield 

at point E and then fracture at point D. Furthermore, Slat at these points are the same as that 

of points E and D in Fig. 11(a) such that Slat-yld and Slat-fr can be obtained from Eqs. (31) and 

(32) respectively. 

 

Similarly for the fracture case, Slat-fr3 at Pfr that is point B in Fig. 11(c) can be derived by 

substituting Pfr for Pyld in Eq. (41) as follows 
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 

 
3

2sinh

cosh 1

fr i

lat fr

r r i

P D
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
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

 
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Equivalent strain εS 

 

The lateral expansions Slat of all the key points in Fig. 6 have been quantified above and can 

be employed to derive the sliding strain εS as follows 

 

 
cos

tan

lat
S

def def

SS

L L





   (43) 

 

In summary, for the fracture case in Fig. 11(a), the loading path will follow O-A-I-I2-J-M-N 

in Fig. 6, and Slat at the key points I, I2, J and M can be obtained from Eqs. (28), (29), (30) 

and (32) respectively. For the yield case in Fig. 11(a), the loading path will follow O-A-I-I2-

J-L-M-N in Fig. 6, and Slat at the key points I, I2, J, L and M can be obtained from Eqs. (28), 

(29), (30), (31) and (32). For the fracture case in Fig. 11(b), debonding does not occur and 

the falling branch C-D in Fig. 6 does not exist such that the loading path will follow O-A-

M-N in Fig. 6 where Slat at point M can be obtained from Eq. (34). For the yield case in Fig. 

11(b) the loading path will follow O-A-K-L-M-N in Fig. 6 where Slat at points K, L and M 

can be obtained from Eqs. (33), (31) and (32) respectively. The case in Fig. 11(c) is similar 

to the case in Fig. 11(b), the only difference is that the Slat at point M in Fig. 6 for the fracture 

case and Slat at point K for the yielding case can be obtained from Eqs. (42) and (41) 

respectively. 

 

Quantification of the Stress S 

 

The analysis of the confining stress from stirrups σconst and plates σconpl are shown in Fig. 13 

as these are required to derive the axial stress σs in Fig. 6. Consider the rectangular-section 

column reinforced by stirrups in Figs. 13(a) and (c). The crack width Slat will cause the 

confinement force Pst in the stirrups. The total tensile force in the stirrup legs crossing the 

crack face 2Pst is balanced by the compressive force from concrete across the crack face Pst-

comp and is of equal magnitude. It is assumed that the cover concrete acts as unconfined 

concrete and that the lateral confining stress σconst will act within the stirrups that is within 
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the width Di2 in Fig. 13(a). As shown in Fig. 13(c), the confinement reinforcement force acts 

along the region within a height equal to the stirrups spacing Ss such that the confining stress 

due to stirrups is 

 

 
2

2 st
const

s i

P

S D
   (44) 

 

Similarly, the analysis of a plated concrete column is shown in Figs. 13(b) and (d). All the 

concrete is encased, such that the confinement force Ppl from a plate is acting on all the 

concrete within the width Di2. In addition, Ppl is acting along the whole sliding plane that is 

over a depth Hsl = Di/tanα as shown in Fig. 5. Hence the confining stress due to the plate is 

 

 
2

2 tanpl

conpl

i i

P

D D


   (45) 

 

 

Fig. 13 (a) and (c) stirrup confined concrete and (b) and (d) plated concrete members 

 

The key points in Fig. 6 can now be fixed by fitting the horizontal dimension that is the 

sliding strain εS within the specific ascending branch and descending branch already derived. 



 

154 

 

For instance, fitting εSIC between ascending branch O-C and descending branch C-D in Fig. 

6 gives the point I. 

 

The following axial stress σS can be derived by substituting S = Slat/sinα and lateral confining 

stress σconf from Eq. (44) or (45) into Eq. (9) 
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 (46) 

 

Substituting Slat for all the key points in Fig. 6 gives the axial stress σS of these points, which 

can be substituted into Eq. (43) to derive sliding strain εS. Adding the addition material strain 

from εm from Eq. (14) gives the total axial strain εax as follows 

 

 
tan

cc lat
ax S

cc def

S

f L


 


   (47) 

 

where fcc and εcc can be obtained from Eqs. (10) and (1). After deriving the axial stress and 

strain of all the key points, linking adjacent key points gives the passive stress/strain.  

 

The flowchart of the whole procedure is shown in Fig. 14 and will be described by taking 

stage I-I2 in Fig. 6 as an example, where debonding starts at point I and is completed at I2 as 

illustrated in Fig. 8; this is the path A-B in Fig. 11(a). (1) First derive the lateral confining 

stress σconfIC at PIC from Eq. (44) or (45). (2) Substitute σconfIC into Eqs. (10) and (1) to derive 

fcc and εcc. (3) Substitute σconfIC as well as Slat-IC and Slat-deb from Eqs. (28) and (29) 

respectively into Eq. (46) gives the axial stress σSIC and σSdeb. (4) Substitute fcc, εcc, Slat-IC and 

Slat-deb as well as the derived axial stress σSIC and σSdeb into Eq. (47) gives the axial strain εaxIC 

and εaxdeb. (5) Linking two points (εaxIC, σSIC) and (εaxdeb, σSdeb) gives the passive stress/strain 

I-I2 as follows 

 

 
ax SIC ax axIC

Sdeb SIC axdeb axIC
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Fig. 14 Flowchart describing the generation of the passive stress/strain 

 

Validation of Confinement Model 

 

To validate the approach consider the FRP wrapped rectangular concrete prisms that were 

tested under concentric load by Abbasnia and Ziaadiny (2015), Carrazedo and de Hanai 

(2016), Lam and Teng (2003), Wang et al. (2012), Wang et al. (2011a) and Wu and Wei 

(2010) in Fig. 15, Fig. 16, Fig. 17, Fig. 18 and Fig. 19, and the rectangular prisms confined 

by stirrups shown in Fig. 20 (Basset and Uzumeri, 1986, Li et al., 2001). The results of these 

tests have been simulated using both the single sliding plane and the circumferential wedge 

and are compared with approaches to predict FRP (Wei and Wu, 2012, Youssef et al., 2007) 

and stirrup (Mander et al., 1988) confined stress/strain relationships. Full details of the 

simulated specimens are given in Appendix 2 but importantly the validation covers a range 

of specimen slenderness. It is worth noting that the gauge length over which the strains were 



 

156 

 

measured was referred to as Lgl which is, therefore, substituted for Ldef in Eq. (47) to derive 

the stress/strain. 

 

Derivation of Stress/Strain from Theoretical Approach 

 

As an example, Fig. 15 compares the experimentally derived passive stress/strain 

relationship for specimen G2L1 with the proposed theoretical approach. Let us consider the 

steps in the theoretical analysis: 

 

1. From Eq. (26) Lcrt equals 44.3 mm, and Di/2 equals 62.5 mm. From Eq. (25), PIC 

equals 41790 N and at PIC the confinement reinforcement strain εIC equals 

0.00400. The fracture capacity of the plate reinforcement along the shear failure 

plane Pfr equals fptFRPHsl = 185800 N, where the FRP fracture stress fp equals 4340 

MPa, the FRP thickness tFRP equals 0.167 mm and the height of the plate 

reinforcement along the shear failure plane Hsl in Fig. 5 equals 256.3 mm. As Lcrt 

< Di/2 and PIC < Pfr, then the variation in Fig. 11(a) applies so the loading path 

will follow O-A-I-I2-J-M in Fig. 6 as shown in Fig. 15.  

2. Let us start with the active stress/strain O-C-I-I2-J for σconfIC as shown in Figs. 6 

and 15. Substituting PIC into Eq. (45) gives the lateral confining stress at PIC σconfIC 

= 2.61 MPa, which can be substituted into Eqs. (1) and (10) to derive εcc-C = 

0.00609 and fcc-C = 31.4 MPa at point C. The crack width Slat-IC, Slat-deb and Slat-IC2 

at points I, I2 and J can be obtained by substituting ΔIC = 0.107 mm from Eqs. (21) 

and (24) as well as εIC = 0.00400, Di = 125 mm and Lcrt = 44.3 mm into Eqs. (28), 

(29) and (30). Consequently Slat-IC, Slat-deb and Slat-IC2 equal 0.214, 0.359 and 0.500 

mm respectively which, as well as εcc-C and fcc-C, can be substituted into Eqs. (46) 

and (47) to derive the axial stresses σS as 30.2 MPa, 29.4 MPa and 28.5 MPa and 

the axial strains εax as 0.00937, 0.0116 and 0.0138 at points I ,I2 and J respectively. 

Linking points O, C, I, I2 and J gives the active stress/strain O-C-I-I2-J for σconfIC. 

3. Then comes the active stress/strain O-G-M for σconffr as shown in Figs. 6 and 15. 

Let us start with the confinement reinforcement force at fracture. In the 

experiments (Wang et al., 2012, Wang et al., 2011a), concrete prisms will fail 

before the confinement reinforcement strain reaches material rupture strain εfr = 

0.0178 due to stress concentraction at the section corner. Consequently at failure 
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the average lateral fracture strain of reinforcement recorded in the experiments 

εfr2 = 0.00459 will be substituted for εfr in Eq. (32) to obtain Slat-fr2 = 0.574. As εfr2 

is larger than εIC = 0.00400 at point C in Fig. 11(a), the confinement reinforcement 

has completely debonded. Hence the confinement reinforcement stress σfr2 equals 

EFRPεfr2 = 1122 MPa where EFRP is the elastic modulus of FRP and subsequently 

confinement force along the shear failure plane Pfr2 equals σfr2tFRPHsl = 48040 N. 

Substituting Pfr2 into Eq. (45) gives the lateral confining stress at Pfr2 σconffr = 3.00 

MPa, which can be substituted into Eqs. (1) and (10) to derive εcc-G = 0.00663 and 

fcc-G = 32.4 MPa at point G in Figs. 6 and 15. Substituting Slat-fr2, εcc-G and fcc-G 

into Eqs. (46) and (47) gives the axial stress σS = 29.3 MPa and the axial strain εax 

= 0.0154 respectively at point M. Linking points O, G and M gives the active 

stress/strain O-G-M for σconffr. 

4. At point A in Figs. 6 and 15, the axial stress fc0 equals 24.4 MPa and the axial 

strain εc0 = 0.00245 can be obtained from Eq. (2). Linking points O-A-I-I2-J-M 

gives the passive stress-strain. 

 

 

Fig. 15 Theoretical analysis of specimen G2L1 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Fig. 16 Validation with FRP reinforced specimens (aspect ratio ≥ 3): (a) G1L1; (b) G1L2; 

(c) G2L1; (d) G2L2; (e) G3L1; (f) G3L2; 

 

With regard to the stirrups reinforced concrete prisms in Fig. 20, the case in Fig. 11(c) applies 

as Lcrt > Lconf. The passive stress/strain will follow O-A-K-F in Fig. 6 and is described as 
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follows. Sliding occurs at point A as shown and then the confinement reinforcement yields 

at point K. The strain hardening effect of stirrups is ignored for stirrups reinforced concrete 

prisms to achieve a conservative solution. Hence, after yielding the confinement 

reinforcement force Pconf is assumed to be constant at Pyld and subsequently the confinement 

σconfyld and consequently the falling branch K-F. This is also shown as O-A-K-F in Fig. 20(a) 

as an example. 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Fig. 17 Validation with FRP reinforced specimens (aspect ratio ≥ 3): (a) G4L2; (b) G4L4; 

(c) G5L2; (d) G5L4; (e) S1H0L1M; (f) S1H0L2M; 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Fig. 18 Validation with FRP reinforced specimens (aspect ratio ≥ 3): (a) S2H0L1M; (b) 

S2H0L2M; (c) S10r1; (d) S20r1; (e) X10r1; (f) X20r3; (g) S1R25; (h) S2R25; 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Fig. 19 Validation with stirrups reinforced specimens (aspect ratio =2): (a) 1S-1; (b) 1R-

1.25; (c) A2; (d) A3; (e) A6; (f) A7; 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Fig. 20 Validation with stirrups reinforced specimens (aspect ratio ≥ 3): (a) 1A; (b) 1B; (c) 

4A; (d) 4B; (e) 7A; (f)10A; (g)10; (h)15; 
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Ultimate Strain of FRP Reinforced Prisms 

 

It has been described in the last section that the average lateral fracture strain of 

reinforcement recorded in the experiments εfr2 can be substituted for εfr in Eq. (32) to quantify 

the axial stress and strain at fracture. This fracture point is plotted as left-pointing triangle as 

shown in Figs. 16 to 19 such as point A and A’ for single-sliding and circumferential failure 

type respectively as shown in Fig. 16(f). However, the theoretical axial strain at fracture εaxfr 

is normally larger than the ultimate strain εcu recorded experimentally. The theoretical axial 

stress corresponding to the experimentally measured rupture strain is plotted as right-

pointing triangle as shown in Figs. 16 to 19 and this is plotted as points B and B’ in Fig. 16(f) 

for single-sliding and circumferential failure type respectively as an example. The difference 

in result arises because the average lateral fracture strain εfr2 at facture overestimates the 

practical rupture strain of the confinement reinforcement which is also influenced by stress 

concentrations (Wang et al., 2012) and this requires further research. 

 

Validation of Theoretical Stress/Strain Approach 

 

In this paper, the fundamental mechanics of the single-sliding failure type in Fig. 7(b) has 

been described because, as explained previously, this is the mode by which most full size 

prisms will fail. In this section, the other circumferential failure type in Fig. 7(a) is described 

as many lab scale test specimens can often fail in this mode (Wu et al., 2009). This 

circumferential failure will change the resultant shear stress τ and normal stress σN from Eqs. 

(3) and (4) to τcir and σNcir as follows (Ali et al., 2010, Chen et al., 2015a, Chen et al., 2015b) 

 

  2 sin coscir ax conf       (49) 

 

 
2 2sin 2 cosNcir ax conf       (50) 

 

Setting the circumferential-wedge failure plane shear stress τcir from Eq. (49) to the shear-

friction material capacity τm from Eq. (5) and substituting σNcir from Eq. (50) as well as S = 
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Slat/sinα, which is similar to the way to derive σS in Eq. (46), gives the variation of the axial 

stress σScir as follows 
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The other procedures are the same as that of the single-sliding failure. The passive 

stress/strains of the single-sliding failure and circumferential failure gives a lower bound and 

upper bound respectively and are compared with the experimental data in Figs. 16 to 19 with 

good correlation both in magnitude and shape. The accuracy of the simulation can be 

improved by developing more accurate material properties but the fundamental mechanics 

always applies. For concrete prisms reinforced by high level of confinement reinforcement 

such as that shown in Fig. 18(b), the high lateral confining stress may cause the stress 

concentration at the section corner which may cause premature failure (Tastani et al., 2013) 

and this requires further research in the future. 

 

It is worth noting that for specimens whose aspect ratio is less than three, circumferential 

failure is more likely to occur and as shown in Fig. 19, the proposed approach (by assuming 

this failure type) gives good correlation with experimental results. Furthermore, for FRP 

wrapped specimens with Di < 300 mm such as specimens in Fig. 17(a), (b) and (c), the 

empirical approach proposed by Wei and Wu (Wei and Wu, 2012) can predict the passive 

stress/strain well; however, for large specimen with Di ≥ 300 mm such as specimens in Figs. 

17(b), (d), (e) and (f), proposed approach gives an improved prediction. The reason is that 

empirical approach is normally derived from small-size specimens (Di < 300 mm).  

 

Conclusions  

 

In this paper a theoretical model based on partial interaction shear-friction mechanics of 

concrete and bond-slip of reinforcement (internal or external) to concrete through 

intermediate-crack debonding have been used to quantify both the stress/strain of actively 

confined concrete and, consequently, the stress/strain of passively confined concrete. The 

theoretically derived passive stress/strain has been compared with FRP wrapped and stirrups 
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reinforced specimens with good correlation both in their shape and magnitude. It has been 

shown that the single sliding plane failure mode should be used in design as it is more likely 

to occur in full size specimens. The fundamental mechanics has been described specifically 

for members with rectangular RC sections although the mechanics applies to RC sections 

with any shape, size and configuration. This procedure can be used to derive the passive 

stress/strain of concrete for a particular member which can then be used to derive its strength 

and ductility. This new mechanics approach which is based only on fundamental material 

properties, provides structural engineers with the tools to incorporate the benefits of concrete 

confinement in their designs.  

 

Appendix 1. Notation 

 

The following symbols are used in this paper: 

Ac = cross-section area of concrete which interacts with reinforcement 

in tension stiffening analysis 

Ar = total cross-section area of reinforcement in tension stiffening 

analysis 

bf  = width of reinforcement plate 

bf2  = length of failure plane parallel to concrete surface 

c = concrete cover 

Di  = height within confined area of rectangular prism 

Di2 = width within confined area of rectangular prism 

D0 = height within the whole area including concrete cover of 

rectangular prism 

D02 = width within the whole area including concrete cover of 

rectangular prism 

df  = thickness of failure plane 

dl = longitudinal reinforcement diameter 

Ec  = elastic modulus of concrete 

EFRP = elastic modulus of FRP  

Er  = elastic modulus of reinforcement plate  

E1 = stiffness of Pconf/Slat relationship that is equal to PIC/(2ΔIC) 

E2  = stiffness of Pconf/Slat relationship from multi-crack analysis 
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fc0  = peak strength of unconfined concrete from cylinder tests 

fcc  = peak strength of confined concrete from cylinder tests 

fp = fracture stress of FRP 

fy-l = yield capacity of longitudinal reinforcement 

fy-s = yield capacity of stirrups 

hcr = separation of shear-sliding plane interface  

Hsl  = height of sliding plane  

k  = bond-slip stiffness in tension stiffening analysis 

Lconf = length of confinement reinforcement  

Lcrt = critical length which is the minimum length required to achieve 

the maximum debond force  

Ldef = height of specimen  

Lgl = gauge length 

Lper  = total length of potential debonding failure plane of reinforcement 

in tension stiffening analysis  

Pax = axial load applied to concrete column 

Pconf  = confinement force from confinement reinforcement 

Pexp = maximum axial load from experiments 

Pfr  = fracture capacity of confinement reinforcement 

Pfr2 = confinement force at εfr2 

PIC  = debond force of confinement reinforcement 

Ppl  = confinement force from plate reinforcement along the shear 

failure plane 

Pst  = confinement force from one leg of stirrups 

Pst-comp = compressive force from concrete across the crack face balanced 

by Pst or Ppl 

Pyld = yield capacity of confinement reinforcement 

rc  = ductility factor of confined concrete 

S  = slip displacement  

Sax  = vertical component of slip S  

Slat  = lateral component of slip S  

Slat-deb  = lateral component of slip when debond developed to plate ends  
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Slat-fr  = lateral component of slip when confinement reinforcement starts 

to fracture when Lcrt<Lconf and PIC<Pfr  

Slat-fr2  = lateral component of slip when confinement reinforcement starts 

to fracture when Lcrt<Lconf and PIC>Pfr  

Slat-fr3  = lateral component of slip when confinement reinforcement starts 

to fracture when Lcrt>Lconf  

Slat-IC  = lateral component of slip at commencement of IC debonding  

Slat-IC2  = lateral component of slip when confinement reinforcement is fully 

debonded  

Slat-yld  = lateral component of slip when reinforcement starts to yield when 

Lcrt<Lconf and PIC<Pyld  

Slat-yld2  = lateral component of slip when reinforcement starts to yield when 

Lcrt<Lconf and PIC>Pyld  

Slat-yld3  = lateral component of slip when confinement reinforcement starts 

to yield when Lcrt>Lconf  

Sp  = primary crack spacing  

Ss  = stirrups spacing  

S# = specimen reference number 

tFRP = FRP thickness  

Vu  = shear stress at the commencement of crack widening 

α  = failure angle of concrete column 

β  = prism parameter in tension stiffening analysis 

Δ  = slip of confinement reinforcement at crack face  

Δdeb  = slip of confinement reinforcement at crack face when bond stress 

develops to plate end  

Δfr = slip of confinement reinforcement at crack face when 

confinement reinforcement starts to fracture when Lcrt<Lconf and 

PIC<Pfr  

Δfr2 = slip of confinement reinforcement at crack face when 

confinement reinforcement starts to fracture when Lcrt<Lconf and 

PIC>Pfr  

ΔIC  = slip of confinement reinforcement at crack face when debond 

starts  
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ΔIC2  = slip of confinement reinforcement at crack face when 

confinement reinforcement is fully debonded  

Δyld = slip of confinement reinforcement at crack face when 

confinement reinforcement starts to yield when Lcrt<Lconf and 

PIC<Pyld  

Δyld2 = slip of confinement reinforcement at crack face when 

confinement reinforcement starts to yield when Lcrt<Lconf and 

PIC>Pyld  

Δyld3  = slip of confinement reinforcement at crack face when 

confinement reinforcement starts to yield when Lcrt>Lconf  

δ  = slip between reinforcement and adjacent concrete  

δ1 = δ at τBmax  

δmax = δ when τB reduces to zero  

εax  = axial strain when axial stress is equal to σax 

εaxdeb = axial strain at Sdeb 

εaxfr  = axial strain at fracture 

εaxIC  = axial strain at SIC 

εc0  = strain at fc0 for unconfined concrete 

εcc  = strain at fcc for confined concrete 

εcu = ultimate strain for confined concrete 

εfr  = confinement reinforcement strain at Pfr 

εfr2 = average lateral fracture strain of reinforcement recorded in the 

experiments 

εIC  = confinement reinforcement strain at PIC 

εm  = material strain of concrete 

εS  = sliding strain caused by slip S 

εSdeb  = sliding strain at Slat-deb 

εSfr  = sliding strain at Slat-fr 

εSIC  = sliding strain at Slat-IC 

εSIC2  = sliding strain at Slat-IC2 

εSyld  = sliding strain at Slat-yld 

εSyld2  = sliding strain at Slat-yld2 

εyld  = confinement reinforcement strain at Slat-yld 
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εyld2  = confinement reinforcement strain at Slat-yld2 

εz = confinement reinforcement strain when debonding is complete or 

when there is no bond 

λ  = variation in slip parameter 

σax  = axial stress applied to concrete 

σaxfr = axial stress at fracture 

σconf  = lateral confining stress applied on concrete 

σconffr = lateral confining stress from confinement reinforcement at Pfr 

σconfIC  = lateral confining stress from confinement reinforcement at PIC 

σconfyld  = lateral confining stress from confinement reinforcement at Pyld 

σconf0  = lateral confining stress of unconfined concrete and equals zero 

σconst  = lateral confining stress of from stirrups 

σconpl = lateral confining stress of from plate reinforcement 

σfr2 = confinement reinforcement stress at εfr2 

σN  = confining stress normal to single-sliding plane 

σNcir = confining stress normal to circumferential-sliding plane 

σN0  = normal stress at fc0 for unconfined concrete 

S = axial stress of passively confined concrete by assuming single-

sliding failure 

Scir = axial stress of passively confined concrete by assuming 

circumferential failure 

Sdeb = axial stress at Slat-deb 

Sfr = axial stress at Slat-fr 

SIC = axial stress at Slat-IC 

SIC2 = axial stress at Slat-IC2 

Syld = axial stress at Slat-yld 

Syld2 = axial stress at Slat-yld2 

τ = shear stress along single-sliding plane 

τcir = shear stress along circumferential-sliding plane 

τB  = bond stress existing between reinforcement and concrete 

τBmax = maximum τB 

τm  = shear-friction material capacity 

φf  = aspect ratio of interface failure plane 
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Appendix 2. Specimens Details 

 

Table 2.1 FRP wrapped specimens 

 

S# Ref. 
Ldef Di Di2 fc0 tFRP Lgl Efrp fp 

εfr2 
(mm) (mm) (mm) (MPa) (mm) (mm) (MPa) (MPa) 

G1L1 Wang et al 2012 300 100 100 24.4 0.167 100 244000 4340 0.00973 

G1L2 Wang et al 2012 600 200 200 24.4 0.334 200 244000 4340 0.00897 

G2L1 Wang et al 2012 375 125 125 24.4 0.167 125 244000 4340 0.00459 

G2L2 Wang et al 2012 750 250 250 24.4 0.334 250 244000 4340 0.00927 

G3L1 Wang et al 2012 450 150 150 24.4 0.167 150 244000 4340 0.01109 

G3L2 Wang et al 2012 900 300 300 24.4 0.334 300 244000 4340 0.00776 

G4L2 Wang et al 2012 525 175 175 24.4 0.334 175 244000 4340 0.00897 

G4L4 Wang et al 2012 1050 350 350 24.4 0.668 350 244000 4340 0.00832 

G5L2 Wang et al 2012 600 200 200 24.4 0.334 200 244000 4340 0.00897 

G5L4 Wang et al 2012 1200 400 400 24.4 0.668 400 244000 4340 0.00542 

S1H0L1M Wang et al 2011 915 305 305 25.5 0.167 305 240000 4340 0.00843 

S1H0L2M Wang et al 2011 915 305 305 25.5 0.334 305 240000 4340 0.00951 

S2H0L1M Wang et al 2011 612 204 204 25.5 0.167 204 240000 4340 0.00986 

S2H0L2M Wang et al 2011 612 204 204 25.5 0.334 204 240000 4340 0.01212 

S10r1 
Carrazedo et al 

2016 
450 150 150 42.5 0.17 450 209000 2720 0.00973 

S20r1 
Carrazedo et al 

2016 
450 150 150 42.5 0.34 450 209000 2720 0.00973 

X10r1 
Carrazedo et al 

2016 
450 150 150 31.1 0.17 450 209000 2720 0.00973 

X20r3 
Carrazedo et al 

2016 
450 150 150 31.1 0.17 450 209000 2720 0.00973 

S1R25 Lam et al 2003 600 150 150 33.7 0.165 600 257000 4519 0.0105 

S2R25 Lam et al 2003 600 150 150 33.7 0.33 600 257000 4519 0.0108 

1S-1 Wu et al 2010 300 150 150 34.1 0.167 200 230000 3400 0.0207 

1R-1.25 Wu et al 2010 300 150 188 33.6 0.167 200 230000 3400 0.0214 

A2 
Abbasnia et al 

2013 
300 150 150 32.0 0.176 200 241000 3943.5 0.0091 

A3 
Abbasnia et al 

2013 
300 150 150 34.0 0.176 200 241000 3943.5 0.0109 

A6 
Abbasnia et al 

2013 
300 120 180 32.0 0.176 200 241000 3943.5 0.0102 

A7 
Abbasnia et al 

2013 
300 120 180 32.0 0.176 200 241000 3943.5 0.0099 

 

where S# is the specimen reference number. 
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Table 2.2 stirrups reinforced specimens 

 

S# Ref. 
Ldef D0 D02 fc0 dl Lgl fy-l ds Ss fy-s 

(mm) (mm) (mm) (MPa) (mm) (mm) (MPa) (mm) (mm) (MPa) 

1A Li et al 2001 720 240 240 60.0 12.0 300 443 6.00 20.0 445 

1B Li et al 2001 720 240 240 72.3 12.0 300 443 6.00 20.0 445 

4A Li et al 2001 720 240 240 60.0 12.0 300 443 6.00 35.0 445 

4B Li et al 2001 720 240 240 72.3 12.0 300 443 6.00 35.0 445 

7A Li et al 2001 720 240 240 60.0 12.0 300 443 6.00 50.0 445 

10A Li et al 2001 720 240 240 60.0 12.0 300 443 6.00 65.0 445 

10 
Basset et al 

1986 
1956 305 305 34.0 29.9 610 491 7.94 50.8 533 

15 

Basset et al 

1986 

 

1956 305 305 37.2 19.5 610 418 7.94 50.8 533 

 

where D0 is the height within the whole area including concrete cover of rectangular prism, 

D02 is the width within the whole area including concrete cover of rectangular prism, c is the 

concrete cover, dl is the longitudinal reinforcement diameter, ds is the stirrups diameter, fy-l 

is the yield capacity of longitudinal reinforcement and fy-s is the yield capacity of stirrups.  
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Simulating the Passive Confinement of Circular Concrete Cylinders 

Allowing for Size Effect 

 

X. Hao1, P. Visintin2 and D. J. Oehlers3 

Abstract 

There are innumerable tests on small stocky circular cylinders with either internal passive 

encasement of the concrete with circular stirrups or spirals, or external passive encasement 

through fibre reinforced polymer (FRP) wrapping or through the use of FRP tubes or steel 

tubes. These tests have shown that passive confinement can increase the strength but, in 

particular, can substantially increase the ductility of concrete cylinders. Because of these 

important benefits, the effect of passive confinement on the concrete stress/strain in a 

particular cylinder section is invariably derived from tests such that substantial member 

testing is required. In this paper, it is shown how the passive stress/strain of the concrete for 

a particular circular member can theoretically be determined directly from their partial-

interaction shear-friction and partial-interaction bond-slip material properties for any 

reinforcement arrangement and geometry of the circular cylinder. This procedure provides 

the tools for designing for the benefits of passive confinement directly without the need for 

member testing. 

 

Keywords: concrete; concrete confinement; passive confinement; partial interaction; RC 

members; circular cylinders; shear sliding. 

 

Introduction 

 

The improvement in the concrete ductility of passively constrained RC cylinders through the 

use of stirrups [1, 2] or wraps [3-6] is well documented. Most current approaches for 

predicting the stress/strain of passively confined concrete cylinders are either design-

oriented or analysis-oriented.  

 

The former, that is the design-oriented approaches, treat the passively confined concrete 

simply as a new material in which the key properties of the passive stress/strain (σ/ε) are the: 

peak stress σmax; strain εcc-max at σmax; ultimate stress fcu; and the ultimate strain εcu. These 
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properties are derived empirically and separately for rectangular and circular cylinders [1, 7, 

8]. For instance, Mander et al. [2] proposed a semi-empirical approach to quantify the peak 

stress of concrete cylinders reinforced by stirrups that assumed that the rectangular or 

circular sections were not fully confined as shown in Figs. 1 (a), (b). An arching-effect 

coefficient ke was derived for rectangular or circular sections respectively and employed to 

reduce the lateral confining stress from the confinement reinforcement and subsequently the 

reduction of the peak strength and ductility. This approach was then extended to FRP 

wrapped concrete cylinders where it was assumed that circular cylinders reinforced by tubes 

are fully confined as in Fig. 1(c), whereas, rectangular cylinders are ineffectively confined 

as in Fig. 1(d) [8-12] such that the arching-effect coefficient ke was employed.  

 

The main benefit of these design-oriented approaches is their simplicity in defining the key 

points of the passive stress/strain. They are accurate within the bounds from which they were 

derived but should not be extrapolated beyond the ranges of their regressed databases which 

may severely limit their application to full size structures. For example, research has shown 

that the behaviour of passively confined concrete members is significantly dependent on size 

[13-15]. As most current design-oriented approaches are derived from databases where the 

specimens are small, having a diameter normally less than 200 mm [8, 16], application of 

these design-oriented approaches to much larger practical concrete members may limit their 

accuracy. Also of importance is the effect of the slenderness ratio as this affects the failure 

mode and strength significantly [17]. The aspect ratio of most specimens in databases [8, 16] 

equals two which is generally much less than that which occurs in practical concrete 

members. Empirically derived approaches based on the regression of databases of specimens 

with large sizes [18] or slenderness ratios [19] have been proposed but the derived 

approaches do not incorporate both the effects of size and slenderness ratio and the databases 

are small. 

 

With regard to analysis-oriented models, the passive stress/strain is derived from the 

interaction between the concrete and lateral reinforcement. The general procedure is 

summarised as follows. First a family of curves of the active stress/strain are generated and, 

similarly to the cases in Fig. 1, the arching-effect coefficient ke is employed. Then based on 

the interaction between the concrete and lateral confinement reinforcement, the lateral 

confining stress can be determined based either on the radial dilation [20-25] or the slip along 
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the shear failure plane [26]. From which, the axial stress and axial strain can be derived such 

that the loading path on the family of curves of the active stress/strain can be derived. 

 

 

Fig. 1 Effectiveness of concrete confinement: (a) stirrup reinforced circular section (b) 

stirrup reinforced rectangular section (c) tube reinforced circular section (d) tube 

reinforced rectangular section 
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Although analysis-oriented approaches are more detailed than design-oriented, these 

analysis-oriented approaches have the same limitation. That is, these passive stress/strains 

are derived from active stress/strains that may not incorporate a size effect, such that the 

derived passive stress/strain is not size dependent. Hence, an approach that is independent 

of size and is not based on size independent stress/strain relationships is required. In this 

paper, a fundamental partial-interaction mechanics approach that quantifies the σ/ε for 

passively restrained circular concrete cylinders is described. The approach uses the partial-

interaction shear-friction [27-31] and bond-slip [32-34] material properties to quantify the 

passive σ/ε of the concrete for design; this approach only requires the material properties and 

does not rely on member testing. 

 

The fundamental mechanics for quantifying the passive concrete σ/ε of passively restrained 

rectangular sections has been described elsewhere [35] where the results gave good 

correlation with tests. As the resolution of the passive restraints in circular cylinders differs 

markedly from those in rectangular prisms, this paper describes these differences in detail, 

and derives the fundamental mechanics allowing for these differences. The passive 

confinement pressure throughout the circular section is first quantified. This is followed by 

a qualitative description of the passive confinement mechanism in circular cylinders. Having 

described the fundamental mechanics, closed form solutions are then derived for the concrete 

passive σ/ε and a parametric study is conducted to highlight the main parameters that control 

the ductility of concrete through lateral passive confinement. This is then followed by the 

comparison between the published test data and the theoretical approaches. 

 

Confinement Pressure in Circular Sections 

 

Consider the tube infilled with concrete in Fig. 2 that has the cross-section in Fig. 3(a). The 

sliding plane in Fig. 2 has formed in the concrete at an angle α and the interface slip across 

the sliding plane is S. When the cylinder is subjected to active hydraulic pressure σconf, which 

is shown on the left and right hand sides of Fig. 2, then this active pressure induces an 

interface pressure across the sliding plane which is shown as σconf along the sliding plane. 

Similarly, slip across the sliding plane interface would cause any lateral reinforcement, 

which in this case is the tube, to go into tension through its passive resistance to sliding; this 
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tension is balanced by compression σconf across the sliding plane. Hence the interface 

pressure σconf across the sliding plane can be induced by either passive resistance of the lateral 

reinforcement or active hydraulic pressure. It is this interface confinement pressure across 

the sliding plane σconf that needs to be determined as it controls the strength and ductility of 

the sliding plane through its shear friction properties. 

 

 

Fig. 2 Prism subjected to active hydraulic pressure σconf 

 

The confinement mechanism in circular sections is compared with that in rectangular 

sections in Fig. 3. Let us first consider the square section in Fig. 3(b) of width and depth Dci 

[35] which could be a section of the cylinder in Fig. 2. Section B-B1 in Fig. 2 is taken where 

the sliding plane is at the centre of the section. This is shown in Fig. 3(b) with the sliding 

plane at B-B1 and where the lateral component of the interface slip S is Slat. This lateral 

movement of the sliding plane Slat is resisted by lateral tension in the tube Pconf which induces 

a lateral compressive force across the sliding plane of equal magnitude from which the 

confinement stress σconf can be derived. When the sliding plane is at A-A1 in Fig. 2, then the 

sliding plane is at 0.75Dci in Fig. 3(b). The slip component Slat is the same as in the previous 

example so that Pconf is the same such that σconf is the same. Hence the confinement stress 

σconf across the sliding plane in Fig. 2 is constant for a rectangular section as the confinement 

force Pconf and the lateral movement Slat is constant. 
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Fig. 3 Confinement mechanism in circular and rectangular sections 

 

The above description of confinement for a rectangular section is applied to the confinement 

mechanism in a circular section in Fig. 3(a). At B-B1 in Fig. 2, the analysis for the rectangular 

section in Fig. 3(b) is exactly the same as in the circular section in Fig. 3(a): Pconf and Slat are 

the same and the width over which Pconf acts that is the depth Dci is the same ensuring σconf 

is the same. However at A-A1 in Fig. 2: the lateral component of Pconf in Figs. 3(a) and 3(b) 

are not the same; the concrete compression zone is not the same being Dci in the rectangular 

section and <Dci in the circular section; and the tangential component of Slat, shown as S’lat 

and which induces the forces in the tube are not the same. Let us now consider the effect of 

these differences. 

 

Section A-A1 in Fig. 2 is shown in Fig. 4(a) where the sliding plane is to the left. The 

circumferential force in the tube, which is the confining reinforcement, is shown as Pconf and 

being a circumferential force it is tangential to the tube. Let us assume that the thickness of 

the tube t is much less than the internal diameter Dci and the intercept of the sliding plane 

with the tube occurs at  as shown. From the geometry in Fig. 4(a), it can be seen that the 

component of the circumferential force that is perpendicular to the sliding plane is Pconfsinθ 

as also shown in Fig. 4(b). Hence the total tensile force is 2Pconfsinθ and this is balanced by 

a compressive force across the sliding plane of width 2rsinθ and of equal magnitude. If Pconf 
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is the force per unit depth of tube that is the depth into the paper in Fig. 3, then the 

confinement pressure is given by 

 

  
2 sin

2 sin

conf conf

conf

P P

r r





    (1) 

 

which is the confinement pressure in Fig. 2 due to the passive lateral restraint. It can be seen 

in Eq. (1) that the confinement pressure is independent of θ that is it is independent of the 

level of the sliding plane in Fig. 2 for a specific confinement force Pconf. This is very 

important in deriving mechanics solutions as it means that the confinement pressure can be 

assumed to be constant along the sliding plane when Pconf is constant. 

 

 

Fig. 4 Confinement force in a circular cylinder 

 

From the above analysis, it can be seen that when Pconf is the same in the rectangular section 

in Fig. 3(b) and in the circular section in Fig. 3(a), then the confinement stress is the same in 

both cases. The confinement force Pconf could be limited by intermediate crack (IC) 
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debonding PIC [36-38], yield of the tube Pyld should the material be ductile or fracture of the 

tube Pfr. The IC debonding resistance PIC depends on the bond-slip material characteristics 

between the lateral reinforcement and the adjacent concrete. Hence PIC in the rectangular 

section in Fig. 3(b) will be the same as in the circular section in Fig. 3(a). Hence when Pconf 

equals PIC then σconf will be the same in both the circular and rectangular sections. 

 

The IC debonding resistance PIC depends on the tangential component of Slat that is S’lat for 

the circular section in Fig. 3(a). For the rectangular section in Fig. 3(b) S’lat equals Slat. Hence 

for a specific interface slip S in Figs. 3(a) and (b) S’lat is constant in the rectangular section 

in Fig. 3(b) but varies in the circular section in Fig. 3(a). Consequently both systems in Fig. 

3 have the same value of PIC but the onset of PIC, that is the interface slip at which they occur, 

varies. For a given Slat in Fig. 3, S’lat will be larger in the circular section than in the 

rectangular section except when the sliding plane is at the centre in which case they are equal. 

Hence PIC will occur earlier in the circular section than in the rectangular section that is the 

build up of confinement stress in the circular section will be more rapid in the circular section 

than in the rectangular section but their peak values will be the same. Hence basing the 

analysis of a circular section on the section at B-B1 in Fig. 3(a) will give a slightly 

conservative design as it will underestimate the build up of confinement stress but 

importantly it still gives the correct ultimate confinement. The same argument can be applied 

to yielding Pyld and fracture Pfr that is basing the analysis on a section at B-B1 in Fig. 3(a) 

will underestimate the build up of the confinement but give the correct maximum value. 

 

From the above, it can be seen that much of the mechanics for rectangular sections [35] can 

be applied directly to circular sections and only where they diverge will it be explained in 

detail in this paper. 

 

Confinement Mechanism 

 

The confinement mechanism for generating the passive concrete σ/ε is described 

qualitatively. This procedure first requires the active concrete σ/ε. 

 

Actively Confined Concrete 
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Consider the circular cylinder in Fig. 5 that is subjected to an axial stress σax and a lateral 

confining stress σconf. Prior to the occurrence of sliding, the longitudinal strain εm induced by 

σax is a material strain that applies throughout the cylinder height Ldef and εm is size-

independent of Ldef.  

 

 

Fig. 5 Actively confined cylinder 

 

With the gradual increase of σax in Fig. 5, a sliding plane forms eventually with a slip S and 

inclination α as shown. The vertical component of the slip Sax will cause the longitudinal 

contraction of concrete which is a size-dependent equivalent strain εS of Sax/Ldef. 

Consequently, the total axial strain εax when sliding occurs, is comprised of the size-

independent material strain εm and size-dependent sliding strain εS. If lateral confinement 

reinforcement such as stirrups, tubes or wraps are present, the lateral component of slip Slat 

would be resisted by these reinforcements going into tension. This tensile resistance from 

the lateral confinement is balanced by lateral compression of the concrete along the sliding 

plane of the same magnitude. 

 

The shear sliding plane in Fig. 5 is subjected to a normal stress σN and a shear stress τ that 

are resolved from the forces that induce the axial stress σax and lateral confining stress σconf. 
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The relationship between σN, the shear capacity τm, slip S and crack width hcr is referred to 

as the shear friction material property [27, 28, 31, 39, 40]. However hcr is an order of 

magnitude smaller than S such that hcr can be ignored which is also a conservative 

assumption [31, 41]. The relationship is shown in Fig. 6 where: Vu is the shear capacity at 

the onset of sliding; the shear capacity τmx can be determined for a given slip Sx and normal 

stress σNx; for a constant σN, the shear capacity τm reduces as the slip S increases. 

 

 

Fig. 6 Shear-Friction material properties 

 

Consider the active stress/strain of concrete as shown in Fig. 7. Sliding occurs at (fc0, εc0) for 

unconfined concrete and at (fcc, εcc) for confined concrete. Prior to the occurrence of sliding, 

the axial strain is the material strain εm which is a material property and can be directly 

measured by strain gauges. Once sliding occurs, the axial stress σax starts to reduce due to 

slip S and the axial strain εax is comprised of material strain εm and the additional sliding 

strain εS. This descending branch can be derived from shear friction material properties as 

shown in Fig. 6 where, from the axial stress σax in Fig. 5 and lateral confining stress σconf, the 

shear stress τmx and normal stress σNx can be quantified. From these values, the slip Sx in Fig. 

6 can be determined and consequently the sliding strain εS in Fig. 7 and subsequently one 

point on the descending branch. 
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Fig. 7 Theoretical stress/strain of actively confined concrete 

 

As an example, consider the active σ/ε O-E-F in Fig. 7 at a confining stress σconf2. The point 

G’ at (εm2, σax2) on the ascending branch O-E has a material strain εm2. The strain of the point 

G at the same axial stress σax2 on the descending branch E-G-F is comprised of the material 

strain εm2 and the sliding strain εS2 = Sax2/Ldef, where Sax2 is the vertical component of slip 

and Ldef is the specimen height. 

 

Passively Confined Concrete 

 

Consider the circular cylinder in Fig 8 with lateral confinement reinforcement which can be 

internal stirrups, external wraps or a tube. The diameter of the transverse reinforcement is 

Dci. Prior to the occurrence of sliding, the lateral confinement reinforcement has to all intents 

and purposes no deformation; consequently there is no confinement force nor the associated 

lateral confining stress. Increasing the axial stress will eventually cause sliding and the 

lateral component of the slip Slat will cause the deformation of the confinement 

reinforcement and subsequently a confinement force Pconf.  
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Fig. 8 Confinement force and deformation of passively confined concrete 

 

It has been explained previously using Figs. 3 and 4 that Pconf will cause a constant 

confinement pressure σconf on the sliding plane in Fig. 2. Furthermore in Fig. 3(a), S’lat will 

overestimate Slat and, therefore, it is reasonable to assume Slat equals S’lat to give a safe 

solution. In Fig. 8, Slat can be visualised as the sum of the crack face slips at both sides of 

the sliding plane and is referred to as 2Δ. The partial-interaction mechanics of intermediate-

crack (IC) debonding [33, 34, 42-44] depends on the bond-slip material property τB/δ 

between the confinement reinforcement and adjacent concrete [38, 45-47]. From which, the 

relationship between the confinement force Pconf and crack face slip Δ can be determined and 

subsequently Slat = 2Δ. Hence, for a given slip S of the sliding plane in Fig. 2, the horizontal 

component of slip Slat can be employed to derive the confinement force Pconf in Fig. 4 and, 

subsequently, the lateral confining stress σconf from Eq. 1. The sliding strain εS in Fig. 7 can 

be determined from the vertical component of slip Sax and it is a question of finding or fixing 

σax at which this occurs. For instance, for a lateral confining stress σconf1, the active 

stress/strain O-C-D in Fig. 7 can be constructed as described previously. For a given slip S, 

the vertical component of slip Sax can be quantified and subsequently the sliding strain εSy; 

this horizontal dimension εSy is then fitted within the ascending branch O-C and descending 

branch C-D to fix σaxy and consequently point D. 
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When there is no interface bond between the reinforcement and the concrete or when IC 

debonding is complete such that there is no interface bond, then the strain in the confinement 

reinforcement in Fig. 8 is constant at εz. Furthermore by symmetry in Fig. 4(a), this 

reinforcement is anchored or does not slip at points A and A1 such that each deformation 

S’lat is accommodated by strains within the tube of length πDci/2. As mentioned previously 

in terms of the build up of confinement, for a slightly conservative design it will be assumed 

that S’lat equals Slat. Hence for a given confinement reinforcement strain εz, the lateral 

component of slip Slat for a circular cylinder equals πεzDci/2 and the sliding strain εSy can be 

determined for Slat = πεSyDci/2. Then the analysis above to determine σaxy in Fig. 7 applies by 

substituting this εSy.  

 

 

Fig. 9 Theoretical stress-strain of passively confined concrete 

 

Let us now consider the construction of the passive stress/strain in Fig. 9 for the circular 

cylinder in Fig. 8. The descending branches in Fig. 9 are simplified as straight lines for ease 

of explanation. Let us start with the active stress/strain O-A-B in Fig. 9 for σconf0 = 0 which 

can be constructed as described previously. Similarly, the active stress/strain O-C-D can be 

constructed at the IC debonding resistance PIC at the lateral confining stress σconfIC when the 

strain of the confinement reinforcement in the debonded region equals εIC [33]. The active 

stress/strain O-E-F can be constructed at the yield capacity Pyld and lateral confining stress 
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σconfyld. Confinement reinforcement starts to yield at a strain εyld2 and completes at εyld. Finally 

at the fracture capacity Pfr, the active stress/strain O-G-H can be constructed for lateral 

confining stress σconffr at a reinforcement strain εfr. 

 

Prior to the occurrence of the sliding plane, slip S equals zero such that the confinement 

reinforcements do not have a deformation and consequently they are ineffective. The loading 

path will follow the ascending branch O-A in Fig. 9 for the unconfined concrete. Sliding 

commences at the peak point A. Slip gradually increases, which will cause an increase in the 

confinement reinforcement force Pconf until it reaches PIC at a crack face slip ΔIC and lateral 

confining stress σconfIC. Hence Slat equals 2ΔIC and the sliding strain εSIC can be determined. 

This εSIC can be fitted within the active stress/strain O-C-D at σconfIC as shown to fix point I 

and quantify σSIC. Similarly, at the end of debonding and still at PIC, the reinforcement strain 

equals εIC [33] such that Slat = εICπDci/2 and subsequently the sliding strain εSIC2. Hence the 

point J can be fixed by fitting this εSIC2 within O-C-D for σconfIC and subsequently the axial 

stress σSIC2 can be determined. At the onset of yielding, the confinement reinforcement strain 

equals εyld2 and subsequently Slat = εyld2πDci/2 at the yield capacity Pyld and subsequently the 

lateral confining stress σconfyld. This Slat = εyld2πDci/2 can determine the sliding strain εSyld2 and 

consequently the axial stress σSyld2 at point K. Similarly, yielding ends at a reinforcement 

strain εyld and Slat = εyldπDci/2 which can determine point L. Finally the confinement 

reinforcement fractures at the reinforcement rupture strain εfr at the confinement force Pfr. 

From which Slat = εfrπDci/2 and lateral confining stress σconfr can be determined and 

subsequently the sliding strain εSfr and axial stress σSfr at point M. It is worth noting that when 

the sliding strain is larger than O-H in Fig. 9, it means there is not enough capacity and the 

concrete cylinder has failed already before reaching this point. 

 

When debonding occurs, the loading path of the passive stress/strain in Fig. 9 will follow O-

A-I-J-K-L-M. If yielding does not occur then the loading path will follow O-A-I-J-M. If 

there is no bond, the loading path will follow O-A-L-M and so on. More points on the loading 

path can be fixed by taking more confinement forces such as at PIC/2 or Pyld/2, which makes 

the passive stress/strain more accurate. 

 

Quantification of Active Stress/Strain 
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The passive confinement mechanism has been described in the previous section; specific 

equations for quantifying this mechanism are given in this and the following section. Where 

the mechanics requires material properties, examples are given. However the mechanics 

does not depend on these specific material properties nor in the form that they are given and 

as such they could be replaced by the reader with more convenient, suitable or appropriate 

values. It is worth noting that the type of concrete sliding plane depends on the slenderness 

ratio. Short cylinders that have a slenderness ratio less than two may fail due to the formation 

of a circumferential wedge [17, 35, 48]. For larger slenderness ratios, sliding is likely to 

occur with a single sliding plane as shown in Fig. 8 and this will be investigated first as it is 

more likely to occur in practice and gives a lower bound to that of the circumferential wedge 

[35]. However an adjustment for the circumferential wedge will be given later. 

 

The concrete active stress/strain such as in Fig. 7 is derived here from the partial interaction 

shear friction material properties of Hao [35] as follows. 

 

Shear Friction Properties 

 

The peak stresses fcc in Fig. 7 can be derived from the shear-friction material properties in 

Fig. 6. The shear-stress capacity τm shown as the unbroken lines can be simplified to the 

linear approximations as follows 

 

 ( )m N NA B S C D        (2) 

 

where A, B, C and D are coefficients of the unconfined concrete strength fc0. The following 

is an example of the linear approximation derived by Hao [49]. 

 

When σN < σN0, where σN0 is the normal stress at the peak axial stress fc0 of unconfined 

concrete, then 

 

 
2

0 0 0 0[(0.00112 0.337) -0.000784 0.0152 0.556] 1.50 0.105m c N c c N cf f f S f          (3) 

 

and 
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2

0 0 sinN cf    (4) 

 

When σN0 ≤ σN < 3σN0, then 

 

 
2

0 0 0 0[(0.00112 0.0636) -0.000784 0.0620 0.556] 0.498 0.298m c N c c N cf f f S f        (5) 

 

And when σN ≥ 3σN0, then 

 

 0 00.199 0.119 0.498 0.298
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H H
m N c N c

A B
f S f  

  
       

  
   (6) 

 

where the parameters AH and BH are the following functions of the unconfined concrete 

strength fc0 

 

 0 0 0(1.229 0.577 ) / (1.345 )H c c cA f f A B f      (7) 

 

 0 00.527 0.824 1.429H c cB f f A B       (8) 

 

in which the parameters Aτ and Bτ are given by 

 

 00.00281 0.657cA f     (9) 

 

 
2

00.00196 0.143 1.39co cB f f       (10) 

 

Ascending Branch 

 

The peak stress fcc and the strain εcc at fcc, such as at points C and E in Fig. 7, are functions 

of the lateral confining stress σconf as follows [35] 
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  0 0
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conf
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f


     (12) 

 

where C and D are coefficients that are the same as those in Eq. (2), A0 is a coefficient that 

equals 13.9 and where the unconfined concrete strain εc0 at fc0 is 

 

  
6 3

0 01.74 10 2.41 10c cf        (13) 

 

in which fc0 is in MPa.  

 

The ascending branch of the active stress/strain in Fig. 7 can now be obtained [50, 51] by 

substituting fcc and εcc from Eqs. (11) and (12) into 
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where rc is the following ductility factor 
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  (15) 

 

in which the concrete elastic modulus Ec in MPa can be taken as [52] 

 

  03320 6900c cE f    (16) 

 

For ease of analysis, the ascending branch of active stress/strain in Fig. 7 can be linearised 

as 
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cc

ax ax

ccf


    (17) 

 

where fcc and εcc can be obtained from Eqs. (11) and (12).  

 

Descending Branch 

 

For a given lateral confining stress σconf and a slip S in Fig. 5, the axial stress σax of the 

descending branch can be written as [35] 

 

 

2 2
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where A, B, C and D are coefficients in Eq. (2).  

 

The vertical component Sax of the slip S in Fig. 5 divided by the specimen height Ldef gives 

the sliding strain εS that is 

 

  
cos

S

def

S

L


    (19) 

 

Adding the additional material strain εm in Fig. 7 from Eq. (17) gives the following total axial 

strain εax  

 

  
coscc

ax ax

cc def

S

f L

 
     (20) 

 

Substituting a specific slip S1 for a specific confinement σconf1 into Eq. (18) gives the axial 

stress σax1. Substituting S1 and σax1 into Eq. (20) gives the axial strain εax1 for σax1. Hence one 

point on the descending branch at (σax1, εax1) for the confinement σconf1 has been obtained and 

the process is repeated to construct the descending branch. 

 

Quantification of Passive Stress/Strain 
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As explained previously using Fig. 3(a), a slightly conservative design can be based on the 

section where the sliding plane crosses the centre such as at B-B1 in Fig. 3(a) and which is 

shown in Fig. 10. When the sliding crack of width Slat first forms, interface bond shear 

stresses τB form on either side of the crack over a length Lcrt as shown. These shear stresses 

induce a shear force Pconf which is balanced by the confinement force of equal magnitude. 

As Slat is increased, and assuming yield or fracture of the reinforcement does not occur, the 

bond forces reach their maximum value which is referred to as the intermediate crack (IC) 

debonding resistance [33, 36, 38, 53, 54]. The force at which this occurs is referred to as PIC 

which induces a reinforcement strain εIC and occurs at an interface lateral slip Slat of ΔIC. 

These parameters depend on the bond-slip properties as follows. 

 

 

Fig. 10 Confinement lengths at both sides of the sliding plane 

 

IC Debonding 

 

Any appropriate bond-slip material property can be used. As an example, consider the 

bilinear bond-slip material properties O-A-B in Fig. 11. 

 

For flat plate reinforcement, the parameters can take the following values [38]  

 

  
0.6

max 0(0.802 0.078 )B f cf     (21) 



 

197 

 

 

  1 0    (22) 
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f
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
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
  (23) 

 

in which the units are in mm and N and where φf is the aspect ratio of the interface debonding 

plane which can be taken approximately as the inverse of the width of the plate bf also in 

mm. It is worth noting that the plate reinforcement width bf should be no more than 100 mm 

as this is the maximum of the plate reinforcement width in the database of Seracino et al. 

[38] used to derive PIC in Eq. (26). 

 

 

Fig. 11 Bond-Slip material properties 

 

It is also worth noting that the lateral expansion of concrete will induce a confining stress 

across the curved bonded interface in Fig. 10 which may enhance the bond [55] derived from 

flat plates and, hence, the above will be on the conservative side. 

 

The maximum bond force is given by [33, 37, 38] 

 

  max maxIC B per r rP L E A    (24) 

 

where Er and Ar are the elastic modulus and cross-sectional area of the confinement 

reinforcement and Lper is bf and PIC occurs at a half crack width that is a lateral slip Slat/2 of 
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  maxIC     (25) 

 

As an example, for plate reinforcement the IC debonding can be written as [38] 

 

  0.25 0.33

00.85IC f c per r rP f L E A   (26) 

 

The minimum length of confinement reinforcement required to develop PIC is referred to as 

Lcrt as shown in Fig. 10 and can be expressed as [38] 

 

  
2
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where 
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As previously explained using Fig. 3(a), by symmetry points A and A1 in Fig. 10 can be 

considered as anchor points such that the length of the confinement reinforcement either side 

of the sliding plane is Lconf as shown. Hence the maximum bond force PIC can be attained 

when Lcrt < Lconf. Furthermore, the length of a fully debonded plate as shown in Fig. 10 is 

given by 

 

  
2

ci
i

D
D


   (29) 

 

Hence when there is no bond or the confinement reinforcement has been fully debonded, the 

confinement reinforcement strain is constant at εz such that Slat is εzDi which is εzπDci/2. 

 

Interaction between Slip and Confinement 

 

As Slat in Fig. 10 is gradually increased, the bond stresses τB build up. When Lcrt < Lconf, then 

PIC can be achieved but the reinforcement may yield at Pyld or fracture at Pfr prior to 
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debonding. Should debonding occur at PIC at the bond stresses τC, then the distribution of 

the bond stresses τC move away from the sliding plane to the anchor points as shown whilst 

the confinement force PIC remains constant. After which, the anchor points A and A1 take 

over such that, for all intents and purposes, the reinforcement is completely debonded over 

the length Di at a strain εIC. Any further increases in Slat may lead to yield at a strain εyld over 

Di or fracture at a strain εfr. When Lcrt > Lconf in Fig. 10, then PIC cannot be achieved so that 

debonding over the length Di cannot occur in which case the confinement force is limited by 

yield Pyld or fracture Pfr. It is a question of determining Slat for these possible scenarios or 

cases [35]. 

 

 

Fig. 12 Pconf and Slat relationship for: (a) debonding prior to fracture or yield and Lcrt≤Lconf; 

(b) fracture or yield without debonding and Lcrt≤Lconf; (c) Lcrt>Lconf 

 

Case 1: Lconf ≥ Lcrt; PIC < Pyld; PIC < Pfr 
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The critical points for the case when PIC is less than Pfr or Pyld and Lconf ≥ Lcrt is summarised 

in Fig. 12(a). The reinforcement will debond at the crack width and force coordinates (Slat-

IC, PIC) at point A. Then the bond stress distributions τC in Fig. 10 move to the anchor points 

which is point B in Fig. 12(a) at (Slat-deb, PIC), and then they completely debond at (Slat-IC2, 

PIC) at point C. After which, the confinement reinforcement may either yield at (Slat-yld, Pyld) 

at point E and then fracture at point D (Slat-fr, Pfr) or directly fracture at point D. The slips at 

which they occur are as follows [35]: 

 

  2lat IC ICS      (30) 

 

  2 ( 2 )lat deb IC IC i crtS D L       (31) 

 

  2lat IC IC iS D    (32) 

 

  lat yld yld iS D    (33) 

 

  lat fr frac iS D    (34) 

 

where Lcrt, Di and ΔIC can be obtained from Eqs. (27), (29) and (25). 

 

Case 2: Lconf ≥ Lcrt; PIC ≥ Pyld; PIC ≥ Pfr 

 

The crack widths when PIC is more than the fracture capacity Pfr or the yield capacity Pyld 

and when Lconf ≥ Lcrt are shown in Fig. 12(b). In this case, debonding does not occur. The 

confinement reinforcement may either directly fracture at (Slat-fr2, Pfr) at point B, or yield at 

(Slat-yld2, Pyld) at point A and then completely yield at (Slat-yld, Pyld) at point E and ultimately 

fracture at (Slat-fr, Pfr) at point D. From Hao [35] 

 

  2 2
yld

lat yld IC

IC

P
S

P
     (35) 
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  2 2
fr

lat fr IC

IC

P
S

P
     (36) 

 

Case 3: Lconf < Lcrt 

 

The variation in crack widths when Lconf < Lcrt is shown in Fig. 12(c); it is similar to the 

previous case in Fig. 12(b). The only difference is that the confinement reinforcement may 

yield at (Slat-yld3, Pyld) at point A or fracture at (Slat-fr3, Pfr) at point B. The lateral components 

of slip Slat and confinement force Pconf at points E and D are the same as those in Fig. 12(b) 

where from Hao [35]  
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3

2sinh( )

cosh( ) 1

fr i
lat fr

r r i

P D
S

E A D



 


 
  

 

  (38) 

 

where Di can be obtained from Eq. (29). It is worth remembering that the crack is assumed 

to occur in the middle of the cross-section as in Fig. 10 to achieve a conservative solution 

[35]. Hence the confinement length Lconf equals the perimeter of the quadrant that is πDci/4. 

The parameter λ in Eqs. (37) and (38) can be expressed as [56] 

 

  k    (39) 

 

where the cylinder parameter β and bond-slip stiffness k can be written as 
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  (40) 
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where Lper can be taken as bf and where Ac is the cross-section area of concrete which 

interacts with the reinforcement in the tension stiffening analysis. It should be noted that for 

plate reinforcement, the area of the concrete Ac is much larger than that of the reinforcement 

Ar such that 1/EcAc in Eq. (40) can be assumed to be zero [44].  

 

Lateral confining stress conf  

 

The lateral confining stress σconf can be derived from Eq. (1) by substituting the lateral 

confinement force per unit depth of reinforcement for Pconf. This is shown in Fig. 13(a) for 

a cylinder with stirrups where Pst is the confining force in a single stirrup that is spaced at 

SS. In which case, the confinement per unit depth is  

 

  
st

st1

S

P
P

S
   (42) 

 

For a concrete infilled tube as in Fig. 13(b), the confinement per unit depth is 

 

  
pl

pl1

f

P
P

b
   (43) 

 

where Ppl is the confinement force in the tube of depth bf. The forces Pst1 and Ppl1 can be 

substituted for Pconf in Eq. (1) to quantify σconf.  

 

 

Fig. 13 Lateral confining force from (a) stirrups (b) plate 
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Equivalent strain εS and axial stress S 

 

For a given slip S, the sum of the crack face slips at both sides of the sliding plane Slat and 

the confinement force Pconf can be determined from Fig. 12. Subsequently, the lateral 

confining stress σconf can be obtained from Eqs. (42) or (43) and (1). From these values, the 

axial stress σS can be obtained from [35] 
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  (44) 

 

Furthermore, Slat used in Eq. (44) can be employed to derive the following sliding strain εS 
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S

def def
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L L
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Adding the addition material strain from Eq. (17) gives the following axial strain εax 

 

  
tan

cc lat
ax S

cc def

S

f L


 


    (46) 

 

where σS can be obtained from Eq. (44) and fcc and εcc can be obtained from Eqs. (11) and 

(12) by substituting the lateral confining stress σconf from Eq. (1). 

 

Summary 

 

For a given key point in Fig 12: Slat and the confinement force Pconf as well as slip S can be 

determined; the confinement force Pconf can be substituted into Eqs. (42) or (43) and (1) to 

quantify the lateral confining stress σconf; substituting σconf and Slat into Eq. (44) gives the 

axial stress σS; substituting σconf into Eqs. (11) and (12) gives fcc and εcc, which as well as Slat 

and σS can be substituted into Eq. (46) to give the axial strain εax. Consequently, the axial 
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stress and strain of one key point in Fig. 9 on the passive stress/strain is fixed and, similarly, 

the axial stress and strain of other key points in Fig. 9 can be determined. 

 

Circumferential Failure Type 

 

The theoretical approach assuming a single sliding mechanism [35, 48] has been described 

above. However, when the aspect ratio of the circular cylinders tested was small failure due 

to circumferential wedges [57] may have occurred. The only difference between these two 

failure types in the proposed approach is the following peak stress fcccir of the active 

stress/strain from Eq. (11) and the axial stress σScir of the passive stress/strain from Eq. (44) 

[35] 
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The other procedures are the same as that of the single-sliding failure.  

 

Parametric Study 

 

Effect of Bond Material Properties 

 

As mentioned previously, the lateral expansion of the encased concrete will induce a 

confining stress across the curved bonded interface in Fig. 10 which may enhance the bond. 

To determine the effect of this bond enhancement, a parametric study of the FRP reinforced 

specimen SCP-4-2 [10] is conducted using the proposed approach with the circumferential 

failure type. The variation O-A-B-C-D in Fig. 12(a) applies. 
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In the previous analysis, the bilinear bond-slip material properties, that is the variation O-A-

C-B in Fig. 11, was applied which means that the friction bond stress τBf equals zero. 

However, the confining stress across the curved bonded interface may enhance the friction 

bond stress τBf [55]. In this section, the effect of the friction component of bond τBf in Fig. 11 

for the case in Fig. 12(a) is investigated. 

 

 

Fig. 14 Distribution of τB, Pconf, εr and δ along Di 

 

As explained previously by using Fig. 3(a), a slightly conservative assumption is made by 

using the sliding plane that crosses the centre as shown in Fig. 10. Consider the distribution 

of bond stress τB in Fig. 14(a), confinement force Pconf in Fig. 14(b), strain εr in Fig. 14(c) 

and slip δ in Fig. 14(d) along the arch A-A’ in Fig. 10 when the bond stress τC has been 

developed to the anchor point A or A’ as shown in Fig. 14(a). The shaded bond stress is 

ignored for ease of analysis and which also gives a slightly conservative assumption. Hence 

the confinement force, strain and slip at points B and B’ equal PIC, εIC and δmax respectively. 
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The friction component of bond τBf will enhance the confinement force to PfIC which can be 

written as 

 

  
( )

2

i
fIC IC Bf per crt

D
P P L L  

  (49) 

 

the crack face slip δfIC can be written as 
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and consequently the crack width Slat-fIC as 
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Fig. 15 Pconf and Slat relationship for debonding prior to fracture or yield and Lcrt≤Lconf 

allowing for τBf 

 

The variation O-A-B-C-D that normally applies for FRP reinforced specimens in Fig. 12(a) 

is updated as shown in Fig. 15. From the variation at point B in Fig. 15, the axial stress and 

strain can be derived from Eqs. (44) and (46) respectively that is at point Q in Fig. 9. This 
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point is located on the additional active stress/strain O-P-R in Fig. 9 for confinement σconffIC 

at PfIC from Eq. (49). Hence the loading path of the passive stress/strain in Fig. 9 follows O-

A-I-Q-M-N. The corresponding passive stress/strains for specimen SCP-4-2 has been plotted 

in Fig. 16 where the friction component of bond τBf varies. The friction component can 

increase the strength after debonding at point I and when τBf = 0.6τmax, there is no apparent 

step change and the loading path follows an ascending branch such as I-M. As there is no 

available model to quantify τBf, in the following validation part, τBf is assumed to equal 

0.4τmax as an example and this requires further research [58, 59].  

 

 

Fig. 16 Parametric study of specimen SCP-4-2 

 

Effect of Cylinder Diameter Dci 

 

A parametric study is conducted to investigate the effect of the cylinder diameter Dci for 

specimens reinforced with either FRP wrap or a steel tube. Specimen details are given in 

Appendix 2. The general behaviour is first described followed by a quantification based on 

the partial interaction theory developed previously. 

 

General Behaviour 
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The FRP reinforced cases are shown in Fig. 17, Fig. 18, Fig. 19 and Fig. 20. In Fig. 17, the 

confinement stress σconffr at fracture of the FRP (Pfr) is maintained constant for varying 

specimen diameters that is Pfr is changed with diameter to ensure σconffr is constant. In the 

remaining figures, the confinement stress σconfIC at IC debonding (PIC) is held constant. The 

passive stress/strain follows O-A-I-J-M such as in Fig. 17 where: sliding occurs at point A; 

confinement reinforcements start to debond at point I; completely debonds at point J; and 

fracture occurs at point M. Some passive stress/strains end at a point N such as O-A-I5-N5 in 

Fig. 17; this is because at the next point after point N, the sliding strain εS is larger than O-

H in Fig. 9 which means there is not enough shear capacity along the sliding plane to fracture 

the FRP. For some cases that fail before the occurrence of debonding at point I, such as the 

case O-A-M1 in Fig. 18, the confinement reinforcement fractures first as the fracture capacity 

Pfr is less than the IC debonding resistance PIC that is the case in Fig. 12(b).  

 

 

Fig. 17 Effect of diameter Dci when σconffr is constant (FRP reinforced)  

 

It can be seen in Fig. 17 that design based on the confinement at FRP fracture can lead to 

large variability in the passive stress/strain with the ductility reducing as the specimen 

diameter increases. In contrast, design based on confinement at IC debonding in Figs. 18 to 
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20 has little variability except at fracture and ductility increases with increasing diameter 

and confinement stress. 

 

 

Fig. 18 Effect of diameter Dci when σconfIC is constant at 3.91MPa (FRP reinforced) 

 

It is worth noting that in this parametric study it is assumed that FRP will fail at the material 

rupture strain. Hence, substituting the fracture capacity Pfr into Eqs. (42) or (43) and (1) 

gives the lateral confining stress at fracture σconffr; then substituting this σconffr and the lateral 

component of slip Slat-fr at fracture from Eq. (34) into Eq. (44) and Eq. (46) gives the 

following axial stress σSfr and axial strain εaxfr at fracture 
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which are the co-ordinates of the points M in Figs. 17 to 20 that is a measure of the extent 

or ductility of the passive stress/strain. 

 

 

Fig. 19 Effect of diameter Dci when σconfIC is constant at 5.53MP (FRP reinforced) 

 

For the steel tube reinforced cases in Fig. 21, Fig. 22 and Fig. 23, the confinement stress at 

yield is held constant. The passive stress/strain follows O-A-L, which is also the case in O-

A-L in Fig. 9 where the confinement reinforcements yield at point L. It can be seen that 

basing the design on the confinement at yield produces a wide variation in the concrete 

ductility with ductility reducing with increasing diameter. 

 

Variation in Diameter 

 

Specimens designed with the same confinement at fracture 

 

In Fig. 17, the diameter Dci is varied whilst the lateral confining stress at fracture σconffr is 

held constant (series Ds1 in Appendix 2). The fracture force Pfr1 per unit depth can be 

obtained from fptFRP where fp and tFRP are the fracture capacity and FRP thickness. 

Substituting Pfr1 into Eq. (1) gives σconffr = 2fptFRP/Dci. The ratio of σconffr for two specimens 
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of diameter Dci-S and Dci-M are written as follows where the subscripts S and M have been 

used to distinguish between the specimens 

 

  
(2 ) /

(2 ) /
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conffr M p M FRP M ci M

f t D
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
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If it is assumed that the fracture capacity of the FRP fp and the lateral confining stresses at 

fracture σconffr are the same for the two specimens, then Eq. (54) becomes 

 

  
FRP S ci S

FRP M ci M

t D

t D

 

 

   (55) 

 

which means that to ensure that the confinement stresses σconffr at fracture are the same, the 

FRP thickness ratio should be directly proportional to that of the specimen diameters. Most 

current design-oriented approaches [8, 16, 21, 60] design for σconffr without considering the 

size-effect. For instance, when σconffr is constant and Dci varied, these approaches are 

assumed to give the same passive stress/strains which is not the case as can be seen in Fig. 

17. It would appear that as most specimens in the databases [8, 16] have a small diameter, 

deriving the stress/strain empirically from these small specimens may overestimate the 

ductility for large cylinders. 

 

Specimens designed with the same confinement at IC debonding 

 

In Figs. 18 to 20: the lateral confining stress σconfIC at the IC debonding resistance PIC is held 

constant; the diameters Dci are varied; and the triangular marks are where the specimen fails 

due to fracture of the confinement reinforcements.  

 

Let us first consider the case in Fig. 18 which is at a small confinement σconfIC of 3.91MPa. 

The specimens reach their peak stress at the start of IC debonding at point I such that σconfIC 

controls the strength. As can be seen in Fig. 18, when σconfIC is constant then the ductility, 

that is the ultimate strain at the Δ points, increases with increasing Dci. 

 

Figures 19 and 20 show that at relatively high confinements σconfIC, the ductility increases 

with increasing diameter Dci. This is in contrast to those in Fig. 17 where σconffr is constant 
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and the ductility decreases with increasing Dci. Substituting Ar = bftFRP into Eq. (26) gives 

the IC debonding resistance PIC. Substituting the confinement force per unit depth PIC1 = 

PIC/bf into Eq. (1) gives the lateral confining stress σconfIC at PIC 
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Fig. 20 Effect of diameter Dci when σconfIC is constant at 7.82MPa (FRP reinforced) 

 

The ratio of σconfIC for two specimens is therefore 
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where the subscripts S and M distinguish between the specimens. When these two specimens 

have the same unconfined strength fc0 and FRP elastic modulus Er, then the ratio of the FRP 

thicknesses tFRP to achieve the same lateral confining stresses at debonding σconfIC becomes 

from Eq. (57) 
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which means that to ensure that the IC confining stresses σconfIC are the same, the FRP 

thickness ratio should be directly proportional to the square of that of the specimen diameters.  

 

Specimens designed with the same confinement at yield 

 

In Figs. 21 to 23: the concrete is encased in a steel tube; the lateral confining stress σconfyld at 

the yield capacity Pyld is constant; and the diameter Dci varies at 100 mm, 200 mm, 300 mm, 

500 mm and 800 mm (SDs2, SDs3 and SDs4 series in Appendix 2). It can be seen that when 

σconfyld is constant and Dci increases then the ductility decreases. When σconfyld is constant, the 

relationship between the diameters and reinforcement thickness is the same as the fracture 

case as illustrated by Eqs. (54) and (55); hence they can be applied by substituting yield 

capacity fy and σconfyld for fracture capacity fp and σconffr respectively. Hence deriving a design-

oriented approach from these small-diameter specimen tests based on σconfyld without 

considering the effect of the diameter Dci [61] may overestimate the ductility for large 

cylinders. 

 

 

Fig. 21 Effect of diameter Dci when σconfyld is constant at 4MPa (steel tube reinforced) 
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Fig. 22 Effect of diameter Dci when σconfyld is constant at 8MPa (steel tube reinforced) 

 

 

Fig. 23 Effect of diameter Dci when σconfyld is constant at 12MPa (steel tube reinforced) 
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Validation of Confinement Model 

 

The proposed approach has been compared with tests on FRP wrapped circular cylinders 

[10, 15, 57, 62-70] and those with stirrups [71, 72] that were tested under concentric load. 

Details of the simulated specimens are given in Appendix 3. Validation with more specimens 

are given elsewhere [73]. 

 

The experimental results are compared with the proposed approach assuming both a single-

sliding and a circumferential failure type to give theoretical bounds to the approach. It is 

worth noting that the strains were measured within the gauge length Lgl which will be 

substituted for Ldef in Eq. (46) to derive the passive axial strain within the gauge length. 

 

Example of Stress/Strain Derivation 

 

As an example, the approach is applied to the circular cylinder specimen SCP-4-2 by Song 

et al. [10] for the case of a circumferential failure type as follows. 

1. The critical length Lcrt from Eq. (27) equals 50.1 mm and is less than the perimeter 

of the quadrant that is Lconf = πDci/4 = 118 mm. From Eq. (26), PIC for a 100 mm 

width of plate equals 24,400 kN such that PIC1 = 244 kN/mm from Eq. (43) which 

on substituting into Eq. (1) gives σconfIC = 3.25 MPa. Fracture capacity for a bf = 1mm 

width of plate can be obtained from Pfr1 = bffptFRP = 1222 kN, where tFRP is the plate 

thickness and fp is the fracture strength. As Lcrt < Lconf and PIC1 < Pfr1, then the 

variation in Fig. 15 applies. The loading path will follow O-A-I-Q-M in Fig. 9 also 

shown in Fig. 24 and which will now be determined. 

2. Let us start by deriving the active stress/strain O-C-I for σconfIC = 3.25 MPa. The axial 

stress and strain at the peak point C are fcccir-C = 58.3 MPa and εcc-C = 0.00522 which 

can be obtained from Eqs. (47) and (12) respectively by substituting σconfIC. The 

lateral component of slip Slat of point I, that is Slat-IC, can be obtained from Eq. (30) 

and equals 0.213 mm. The axial stress σS and strain εax of point I can be obtained by 

substituting σconfIC and Slat-IC into Eqs. (44) and (46) which gives 55.7 MPa and 

0.00597 respectively. Linking points O, C and I in Fig. 24 gives the active 

stress/strain O-C-I for σconfIC. 



 

216 

 

3. Consider the active stress/strain O-P-Q for σconffIC in Fig. 24 where σconffIC = 5.94 MPa 

is derived by substituting the confinement force PfIC from Eq. (49) into Eqs. (1) and 

(43).The axial stress and strain at peak point P, fcccir-P = 72.6 MPa and εcc-P = 0.00748, 

are derived from Eqs. (47) and (12) respectively by substituting σconffIC. The lateral 

component of slip Slat of point Q that is Slat-fIC can be obtained from Eq. (51) and 

equals 1.53 mm. The axial stresses σS and strain εax of point Q can be obtained by 

substituting Slat-fIC and σconffIC into Eqs. (44) and (46) which gives 61.5MPa and 

0.0133 respectively. Linking points O, P and Q in Fig. 24 gives the active stress/strain 

O-P-Q for σconffIC. 

4. Let us now determine the active stress/strain O-G-M in Fig. 24 for σconffr. In practice, 

it has been found [10, 62] that FRP confinement reinforcement cannot reach its 

material rupture strain in tests, that is it cannot reach its material fracture stress fp. 

Consequently, the fracture capacity Pfr2 will be quantified from the experimentally 

recorded rupture strain εfr2 = 0.0107 such that Pfr2 for bf = 1 mm equals bftFRPEFRPεfr2 

which comes to 754kN. Substituting Pfr2 into Eqs. (43) and (1) gives the lateral 

confining stress σconffr = 10.6 MPa, which can be substituted into Eqs. (47) and (12) 

to derive fcccir-G = 94.6 MPa and εcc-G = 0.0110 at the peak point G in Fig. 24. From 

Eq. (34) Slat-fr at fracture at point M equals 2.53 mm, which with σconffr can be 

substituted into Eq. (44) to obtain σS = 82.0 MPa. Substituting Slat-fr, fcc-G, εcc-G and σS 

into Eq. (46) gives the axial strain εax at point M that is 0.0210. Linking points O, G, 

and M gives the active stress/strain O-G-M for σconffr. 

5. At point A in Fig. 24, the axial stress fc0 and strain εc0 obtained from Eq. (13) equal 

40.9 MPa and 0.00248 respectively. Linking points O-A-I-Q-M gives the passive 

stress-strain. 

 

With regard to the stirrup reinforced concrete cylinders in Fig. 25, the case in Fig. 12(c) 

applies as Lcrt > Lconf. The passive stress/strain O-A-K-F in Fig. 9 applies. After the onset of 

sliding at point A, the confinement reinforcement yields at point K. The strain hardening 

effect of stirrups is ignored to give a conservative solution so the remaining path follows K-

F. 
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Fig. 24 Theoretical analysis of specimen SCP-4-2 

 

Comparison with Published Experimental Results and Approaches 

 

The comparisons for stirrup reinforced specimens is shown in Fig. 25 where the proposed 

approach is compared with the experimental results and with Mander’s approach [2]. It can 

be seen that the proposed approach for a circumferential failure type gives reasonable 

correlation after the initial ascending branch when concrete softening starts and passive 

confinement commences to improve the ductility. 

 

The design-oriented approach proposed by Lam and Teng [6] and Wei and Wu [74] for FRP 

confined concrete are shown in Fig. 26; the stress/strain is comprised of a parabolic 

ascending branch O-A and linear ascending branch A-B. In this approach, the peak axial 

stress fcc and strain εcc at point B are empirically derived from a large database of test 

observations. However, this approach does not consider the size-dependent effect of sliding 

nor debonding between concrete and confinement reinforcement nor the gauge length Lgl. 

This approach is compared with the proposed approach and experimental results in Fig. 27, 

Fig. 28, Fig. 29 and Fig. 30. There is reasonable correlation with the circumferential failure 

type after concrete softening commences, that is there is reasonable correlation in predicting 

the beneficial effects of the ductility of passively confined concrete. 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

  

(g) (h) 

Fig. 25 Validation with stirrups reinforced specimens (slenderness ratio ≥ 3): (a) 2; (b) 3; 

(c) 4; (d) 9B; (e) 12A; (f) 12B; (g) 6HB; (h) 6HC; 
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Fig. 26 Teng’s and Wu’s approach for FRP confined concrete 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

  

(g) (h) 

Fig. 27 Validation with FRP reinforced specimens (slenderness ratio ≥ 3): (a) N-0.2T-5R-

1; (b) N-0.2T-5R-2; (c) N-0.2T-5R-3; (d) SCP-1-1; (e) SCP-2-1; (f) SCP-3-1 (g) SCP-3-2 

(h) SCP-4-2 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

  

(g) (h) 

Fig. 28 Validation with FRP reinforced specimens (slenderness ratio ≥ 3): (a) SCP-4-3; (b) 

C20; (c) C2H0L1M; (d) C1H0L2M; (e) C1H0L2; (f) LC1; (g) LC2; (h) MC3 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

  

(g) (h) 

Fig. 29 Validation with FRP reinforced specimens (slenderness ratio < 3): (a) CC-S; (b) 

CC-M; (c) CC-L; (d) L2; (e) L3; (f) H2; (g) M1L1; (h) M2L1 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

  

(g) (h) 

Fig. 30 Validation with FRP reinforced specimens (slenderness ratio < 3): (a) M1L3; (b) 

M2L3; (c) M3L3; (d) M5L3; (e) E04; (f) E05; (g) E08; (h) E14 
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Conclusions  

 

A partial-interaction mechanics procedure has been proposed for quantifying the passive 

stress/strain relationship of encased concrete within circular sections. The procedure uses 

the partial-interaction bond-slip material property of the encasement and the partial-

interaction shear friction material property of the sliding plane. Consequently, it does not 

rely on member testing and can derive the passive concrete stress/strain for any type of 

encasement that is stirrups, tubes or wraps, with any geometric variation of the circular 

section and the concrete can be encased both internally and/or externally such that the 

confinement varies within the section. The procedure allows for intermediate crack 

debonding, yield should it occur, fracture of the confinement reinforcement and it also 

identifies the sequences in which these critical points occur. 

 

Closed form solutions for deriving the passive stress/strain are given. The mechanics model 

has been compared with published tests on FRP wrapped or stirrup reinforced circular RC 

sections and with two published semi-empirical approaches which shows that it can simulate 

the change in ductility with good correlation. These closed form solutions can be used to 

generate the concrete passive stress/strain from material properties only, that is without the 

need for member testing, and for any circular cross-section for direct use in design. 

 

A parametric study illustrates the importance of the cylinder size on the concrete passive 

stress/strain, which is an effect which is normally ignored in current design rules and 

consequently may give unsafe solutions particularly in practical large-size members. Useful 

rules of thumb are also developed in the parametric study: to quantify the limit to the ductility 

of the concrete that is the concrete stress and strain at reinforcement fracture; and to increase 

the FRP or steel wrap thickness in proportion to the square of the cylinder diameter to 

maintain concrete ductility. 

  

Appendix 1. Notation 

 

The following symbols are used in this paper: 

A, B, C, 

D, AH, 

= coefficients of unconfined concrete strength fc0 in linear shear 

friction properties 
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BH, Aτ, 

Bτ  

Ac = cross-section area of concrete which interacts with reinforcement 

in tension stiffening analysis 

Ar = total cross-section area of reinforcement in tension stiffening 

analysis 

bf  = width of reinforcement plate 

Dci = diameter of circular cylinder 

Di  = height within confined area of rectangular cylinder or perimeter of 

a semi-circle for circular cylinder 

dl = diameter of longitudinal reinforcement 

ds = diameter of stirrups 

Ec  = elastic modulus of concrete 

EFRP = elastic modulus of FRP  

Er  = elastic modulus of reinforcement plate  

E1 = stiffness of Pconf/Slat relationship that is equal to PIC/(2ΔIC) 

E2  = stiffness of Pconf/Slat relationship from multi-crack analysis 

fc0  = peak strength of unconfined concrete from cylinder tests 

fcc  = peak strength of confined concrete by assuming single sliding 

failure 

fcccir = peak strength of confined concrete by assuming circumferential 

failure 

fcu = ultimate stress 

fp = fracture stress of FRP 

fy-l = yield capacity of longitudinal reinforcement 

fy-s = yield capacity of stirrups. 

hcr = separation of shear-sliding plane interface  

k  = bond-slip stiffness in tension stiffening analysis 

ke = arching-effect coefficient  

Lconf = length of confinement reinforcement  

Lcrt  = critical length which is the minimum length required to achieve 

the maximum debond force  

Ldef  = height of specimen  
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Lgl = gauge length  

Lper  = total length of potential debonding failure plane of reinforcement 

in tension stiffening analysis  

Pax = axial load applied to concrete cylinder 

Pconf  = confinement force from confinement reinforcement 

PfIC = confinement force when bond stress τC is developed to plate end 

allowing for τBf  

Pfr  = fracture capacity of confinement reinforcement 

Pfr2 = confinement force at εfr2 

PIC  = debond force of confinement reinforcement 

Ppl  = confinement force from plate reinforcement along the shear 

failure plane 

Pst  = confinement force from one leg of stirrups 

Pyld = yield capacity of confinement reinforcement 

r = radius of cross-section of circular cylinder 

rc  = ductility factor of confined concrete 

S  = slip displacement  

Sax  = vertical component of slip S  

Slat = lateral component of slip S 

S’lat  = sum of crack face slips at both sides of sliding plane 

Slat-deb  = lateral component of slip when debond developed to plate ends  

Slat-fIC = lateral component of slip at PfIC when Lcrt<Lconf and PIC<Pfr 

Slat-fr  = lateral component of slip when confinement reinforcement starts 

to fracture when Lcrt<Lconf and PIC<Pfr  

Slat-fr2  = lateral component of slip when confinement reinforcement starts 

to fracture when Lcrt<Lconf and PIC>Pfr  

Slat-fr3  = lateral component of slip when confinement reinforcement starts 

to fracture when Lcrt>Lconf  

Slat-IC  = lateral component of slip at commencement of IC debonding  

Slat-IC2  = lateral component of slip when confinement reinforcement is fully 

debonded  

Slat-yld  = lateral component of slip when reinforcement starts to yield when 

Lcrt<Lconf and PIC<Pyld  
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Slat-yld2  = lateral component of slip when reinforcement starts to yield when 

Lcrt<Lconf and PIC>Pyld  

Slat-yld3  = lateral component of slip when confinement reinforcement starts 

to yield when Lcrt>Lconf  

Ss  = stirrups spacing  

S# = specimen reference number 

t = tube thickness 

tFRP = FRP thickness  

Vu  = shear stress at the commencement of crack widening 

α  = failure angle of concrete cylinder 

β  = cylinder parameter in tension stiffening analysis 

Δ  = slip of confinement reinforcement at crack face  

ΔIC  = slip of confinement reinforcement at crack face when debond 

starts  

δ  = slip between reinforcement and adjacent concrete  

δfIC = crack face slip at PfIC 

δmax = δ when τB reduces to zero  

δ1 = δ at τBmax  

εax  = axial strain when axial stress is equal to σax 

εc0  = strain at fc0 for unconfined concrete 

εcc  = strain at fcc for confined concrete 

εcc-max = strain at σmax of passive stress/strain 

εcu = strain at fcu of passive stress/strain 

εfIC = Reinforcement strain at crack face at PfIC 

εfr  = confinement reinforcement strain at Pfr 

εfr2 = average lateral fracture strain of reinforcement recorded in the 

experiments 

εIC  = confinement reinforcement strain at PIC 

εm  = material strain of concrete 

εr = confinement reinforcement strain 

εS  = sliding strain caused by slip S 

εSdeb  = sliding strain at Slat-deb 

εSfr  = sliding strain at Slat-fr 
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εSIC  = sliding strain at Slat-IC 

εSIC2  = sliding strain at Slat-IC2 

εSyld  = sliding strain at Slat-yld 

εSyld2  = sliding strain at Slat-yld2 

εyld  = confinement reinforcement strain at Slat-yld 

εyld2  = confinement reinforcement strain at Slat-yld2 

εz = confinement reinforcement strain when debonding is complete or 

when there is no bond 

λ  = variation in slip parameter 

σ = axial stress 

σax  = axial stress applied to concrete 

σconf  = lateral confining stress applied on concrete 

σconffr = lateral confining stress from confinement reinforcement at Pfr 

σconffIC = lateral confining stress from confinement reinforcement at PfIC 

σconfIC  = lateral confining stress from confinement reinforcement at PIC 

σconfyld  = lateral confining stress from confinement reinforcement at Pyld 

σconf0  = lateral confining stress of unconfined concrete and equals zero 

σmax = maximum axial stress of passive stress/strain 

σN  = confining stress normal to single-sliding plane 

σN0  = normal stress at fc0 for unconfined concrete 

S = axial stress of passively confined concrete by assuming single-

sliding failure 

Scir = axial stress of passively confined concrete by assuming 

circumferential failure 

Sdeb = axial stress at Slat-deb 

Sfr = axial stress at Slat-fr 

SIC = axial stress at Slat-IC 

SIC2 = axial stress at Slat-IC2 

Syld = axial stress at Slat-yld 

Syld2 = axial stress at Slat-yld2 

τ = shear stress along single-sliding plane 

τB  = bond stress existing between reinforcement and concrete 

τBf = friction component of bond 
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τBmax = maximum τB 

τC = bond stress at PIC 

τm  = shear-friction material capacity 

φf  = aspect ratio of interface failure plane 

 

Appendix 2. Specimens Details in Parametric Study  

 

Table 2.1 FRP wrapped specimens 

 

S# 
Ldef Dci fc0 tFRP Efrp fp 

σconfIC/fc0 σconffr/fc0 
(mm) (mm) (MPa) (mm) (Gpa) (MPa) 

Dsl-S1 900 100 50.0 0.400 240 3000 0.1211 0.480 

Dsl-S2 900 200 50.0 0.800 240 3000 0.0857 0.480 

Dsl-M 900 300 50.0 1.200 240 3000 0.0699 0.480 

Dsl-L1 900 500 50.0 2.000 240 3000 0.0542 0.480 

Dsl-L2 900 800 50.0 3.200 240 3000 0.0428 0.480 

Ds2-S1 2400 100 50.0 0.100 400 1000 0.0782 0.040 

Ds2-S2 2400 200 50.0 0.400 400 1000 0.0782 0.080 

Ds2-M 2400 300 50.0 0.900 400 1000 0.0782 0.120 

Ds2-L1 2400 500 50.0 2.500 400 1000 0.0782 0.200 

Ds2-L2 2400 800 50.0 6.400 400 1000 0.0782 0.320 

Ds3-S1 2400 100 50.0 0.200 400 1000 0.1106 0.080 

Ds3-S2 2400 200 50.0 0.800 400 1000 0.1106 0.160 

Ds3-M 2400 300 50.0 1.800 400 1000 0.1106 0.240 

Ds3-L1 2400 500 50.0 5.000 400 1000 0.1106 0.400 

Ds3-L2 2400 800 50.0 12.80 400 1000 0.1106 0.640 

Ds4-S1 2400 100 50.0 0.400 400 1000 0.1564 0.160 

Ds4-S2 2400 200 50.0 1.600 400 1000 0.1564 0.320 

Ds4-M 2400 300 50.0 3.600 400 1000 0.1564 0.480 

Ds4-L1 2400 500 50.0 10.00 400 1000 0.1564 0.800 

Ds4-L2 2400 800 50.0 25.60 400 1000 0.1564 1.280 
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Table 2.2 Steel encased specimens 

 

S# 
Ldef Dci fc0 tsteel Esteel fy 

σconfyld/fc0 
(mm) (mm) (MPa) (mm) (Gpa) (MPa) 

SDs2-S1 2400 100 50.0 0.50 200 400 0.080 

SDs2-S2 2400 200 50.0 1.00 200 400 0.080 

SDs2-M 2400 300 50.0 1.50 200 400 0.080 

SDs2-L1 2400 500 50.0 2.50 200 400 0.080 

SDs2-L2 2400 800 50.0 4.00 200 400 0.080 

SDs3-S1 2400 100 50.0 1.00 200 400 0.160 

SDs3-S2 2400 200 50.0 2.00 200 400 0.160 

SDs3-M 2400 300 50.0 3.00 200 400 0.160 

SDs3-L1 2400 500 50.0 5.00 200 400 0.160 

SDs3-L2 2400 800 50.0 8.00 200 400 0.160 

SDs4-S1 2400 100 50.0 1.50 200 400 0.240 

SDs4-S2 2400 200 50.0 3.00 200 400 0.240 

SDs4-M 2400 300 50.0 4.50 200 400 0.240 

SDs4-L1 2400 500 50.0 7.50 200 400 0.240 

SDs4-L2 2400 800 50.0 12.00 200 400 0.240 

 

where tsteel is the steel tube thickness and Esteel is the steel tube modulus. 

 

Appendix 3. Specimens Details in Validation 
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Table 3.1 Details of published FRP reinforced specimen whose aspect ratio is equal to or 

larger than three 

 

S# Ref. 
Lgl 

(mm) 

Ldef   

(mm) 

Dci 

(mm) 

fc0 

(MPa) 

tFRP 

(mm) 

Efrp 

(Gpa) 

fp 

(MPa) 

N-0.2T-5R-1 Vincent et al [62] 175 750 150 55.2 0.200 128.5 2390 

N-0.2T-5R-2 Vincent et al [62] 175 750 150 55.2 0.200 128.5 2390 

N-0.2T-5R-3 Vincent et al [62] 175 750 150 55.2 0.200 128.5 2390 

SCP-1-1 Song et al [10] 300 300 100 22.4 0.150 237 4073 

SCP-2-1 Song et al [10] 450 450 150 22.4 0.150 237 4073 

SCP-3-1 Song et al [10] 300 300 100 40.9 0.150 237 4073 

SCP-3-2 Song et al [10] 300 300 100 40.9 0.300 237 4073 

SCP-4-2 Song et al [10] 450 450 150 40.9 0.300 237 4073 

SCP-4-3 Song et al [10] 450 450 150 40.9 0.450 237 4073 

C20 Carrazedo et al [63] 450 450 150 42.5 0.340 209 2720 

C2H0L1M Wang et al [70] 204 612 204 24.5 0.167 240 4340 

C1H0L2M Wang et al [70] 305 915 305 24.5 0.334 240 4340 

C1H0L2 Wang et al [69] 204 612 204 24.5 0.334 240 4340 

LC1 Wu et al [57] 300 300 100 46.4 0.286 118 2060 

LC2 Wu et al [57] 300 300 100 46.4 0.572 118 2060 

MC3 Wu et al [57] 300 300 100 78.5 0.858 118 2060 

 

where S# is the specimen reference number. 
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Table 3.2 Details of published FRP reinforced specimen whose aspect ratio is less than 

three. 

 

S# Ref 
Lgl    

(mm) 

Lprsm 

(mm) 

Dci    

(mm) 

fc0   

(MPa) 

tFRP 

(mm) 

EFRP 

(GPa) 

fp 

(MPa) 

CC-S Liang et al [66] 200 200 100 25.9 0.167 245.0 3248 

CC-M Liang et al [66] 400 400 200 22.7 0.334 245.0 3248 

CC-L Liang et al [66] 600 600 300 24.5 0.501 245.0 3248 

L2 Xiao et al [67] 152 305 152 33.7 0.762 105.0 1577 

L3 Xiao et al [67] 152 305 152 33.7 1.143 105.0 1577 

H2 Xiao et al [67] 152 305 152 55.2 0.762 105.0 1577 

M1L1 Almusallam [68] 150 300 150 47.7 1.300 27.0 540 

M2L1 Almusallam [68] 150 300 150 50.8 1.300 27.0 540 

M1L3 Almusallam [68] 150 300 150 47.7 3.900 27.0 540 

M2L3 Almusallam [68] 150 300 150 50.8 3.900 27.0 540 

M3L3 Almusallam [68] 150 300 150 60.0 3.900 27.0 540 

M5L3 Almusallam [68] 150 300 150 90.3 3.900 27.0 540 

E04 Nanni et al [65] 300 300 150 36.3 0.600 72.6 3240 

E05 Nanni et al [65] 300 300 150 36.3 0.600 72.6 3240 

E08 Nanni et al [65] 300 300 150 36.3 0.600 72.6 3240 

E14 Nanni et al [65] 300 300 150 36.3 2.400 72.6 3240 

 

Table 3.3 Details of published stirrups reinforced specimen whose aspect ratio is equal to 

or larger than three 

 

S# Ref. 
Lgl Dci cover fc0 dl fy-l ds Ss fy-s 

(mm) (mm) (mm) (MPa) (mm) (MPa) (mm) (mm) (MPa) 

2 Mander [71] 450 438.00 25.0 28.0 16.0 275 12.0 69.0 275 

3 Mander [71] 450 438.00 25.0 28.0 16.0 275 12.0 103 275 

4 Mander [71] 450 440.00 25.0 28.0 16.0 275 10.0 119 275 

9B Li et al [72] 300 204.00 15.0 72.3 12.0 443 6.00 50.0 445 

12A Li et al [72] 300 204.00 15.0 63.0 12.0 443 6.00 65.0 445 

12B Li et al [72] 300 204.00 15.0 72.3 12.0 443 6.00 65.0 445 

6HB Li et al [72] 300 203.60 15.0 52.0 12.0 443 6.40 50.0 1318 

6HC Li et al [72] 300 203.60 15.0 82.5 12.0 443 6.40 50.0 1318 

 

where cover is the cover thickness, dl is the diameter of longitudinal reinforcement, fy-l is the 

yield capacity of longitudinal reinforcement, ds is the diameter of stirrups and fy-s is the yield 

capacity of stirrups. 

 



 

233 

 

Acknowledgements 

 

The first author would like to acknowledge the financial support of the China Scholarship 

Council.  

 

References 

 

[1] Bing L, Park R, Tanaka H. Stress-strain behavior of high-strength concrete confined by 

ultra-high-and normal-strength transverse reinforcements. ACI Structural Journal. 

2001;98:395-406. 

[2] Mander JB, Priestley MJ, Park R. Theoretical stress-strain model for confined concrete. 

Journal of Structural Engineering. 1988;114:1804-26. 

[3] Toutanji H, Deng Y. Performance of concrete columns strengthened with fiber 

reinforced polymer composite sheets. Advanced Composite Materials. 2001;10:159-68. 

[4] Toutanji HA. Stress-strain characteristics of concrete columns externally confined with 

advanced fiber composite sheets. ACI Materials Journal. 1999;96:397-404. 

[5] Purba BK, Mufti AA. Investigation of the behavior of circular concrete columns 

reinforced with carbon fiber reinforced polymer (CFRP) jackets. Canadian Journal of Civil 

Engineering. 1999;26:590-6. 

[6] Lam L, Teng J. Design-oriented stress–strain model for FRP-confined concrete. 

Construction and Building Materials. 2003;17:471-89. 

[7] Kumutha R, Vaidyanathan R, Palanichamy M. Behaviour of reinforced concrete 

rectangular columns strengthened using GFRP. Cement and Concrete Composites. 

2007;29:609-15. 

[8] Lam L, Teng J. Design-oriented stress-strain model for FRP-confined concrete in 

rectangular columns. Journal of Reinforced Plastics and Composites. 2003;22:1149-86. 

[9] Wang Z, Wang D, Smith ST, Lu D. CFRP-confined square RC columns. I: 

Experimental investigation. Journal of Composites for Construction. 2011;16:150-60. 

[10] Song X, Gu X, Li Y, Chen T, Zhang W. Mechanical behavior of FRP-strengthened 

concrete columns subjected to concentric and eccentric compression loading. Journal of 

Composites for Construction. 2012;17:336-46. 



 

234 

 

[11] Al-Salloum YA. Influence of edge sharpness on the strength of square concrete 

columns confined with FRP composite laminates. Composites Part B: Engineering. 

2007;38:640-50. 

[12] Harajli MH. Axial stress–strain relationship for FRP confined circular and rectangular 

concrete columns. Cement and Concrete Composites. 2006;28:938-48. 

[13] Du M, Jin L, Du X, Li D. Size effect tests of stocky reinforced concrete columns 

confined by stirrups. Structural Concrete. 2017;18:454-65. 

[14] Jin L, Du M, Li D, Du X, Xu H. Effects of cross section size and transverse rebar on 

the behavior of short squared RC columns under axial compression. Engineering 

Structures. 2017;142:223-39. 

[15] Wang Z, Wang D, Smith ST. Size effect of square concrete columns confined with 

CFRP wraps. Proceedings of the 3rd Asia-Pacific Conference on FRP in Structures, 

Hokkaido University, Sapporo, Japan2012. p. 2-4. 

[16] Ozbakkaloglu T, Lim JC. Axial compressive behavior of FRP-confined concrete: 

Experimental test database and a new design-oriented model. Composites Part B: 

Engineering. 2013;55:607-34. 

[17] Visintin P, Chen Y, Oehlers D. Simulating the behavior of FRP-confined cylinders 

using the shear-friction mechanism. Journal of Composites for Construction. 

2015;19:04015014. 

[18] Wang Z, Wang D, Smith ST, Lu D. CFRP-confined square RC columns. II: Cyclic 

axial compression stress-strain model. Journal of Composites for Construction. 

2011;16:161-70. 

[19] Silva MA, Rodrigues CC. Size and relative stiffness effects on compressive failure of 

concrete columns wrapped with glass FRP. Journal of Materials in Civil Engineering. 

2006;18:334-42. 

[20] Jiang T, Teng J. Analysis-oriented stress–strain models for FRP–confined concrete. 

Engineering Structures. 2007;29:2968-86. 

[21] Teng J, Huang Y, Lam L, Ye L. Theoretical model for fiber-reinforced polymer-

confined concrete. Journal of Composites for Construction. 2007;11:201-10. 

[22] Becque J, Patnaik AK, Rizkalla SH. Analytical models for concrete confined with 

FRP tubes. Journal of Composites for Construction. 2003;7:31-8. 

[23] Mirmiran A, Shahawy M. A new concrete-filled hollow FRP composite column. 

Composites Part B: Engineering. 1996;27:263-8. 



 

235 

 

[24] Marques SPC, Marques DCdSC, Lins da Silva J, Cavalcante MAA. Model for 

analysis of short columns of concrete confined by fiber-reinforced polymer. Journal of 

Composites for Construction. 2004;8:332-40. 

[25] Chun S, Park H. Load carrying capacity and ductility of RC columns confined by 

carbon fiber reinforced polymer. Proceeding, 3rd Int Conf on Composites in Infrastructure: 

Univ. of Arizona San Francisco; 2002;1-12. 

[26] Harmon TG, Ramakrishnan S, Wang EH. Confined concrete subjected to uniaxial 

monotonic loading. Journal of Engineering Mechanics. 1998;124:1303-9. 

[27] Mattock AH, Hawkins NM. Shear transfer in reinforced concrete-recent research. PCI 

Journal. 1972;17:55-75. 

[28] Mattock AH. Shear transfer in concrete having reinforcement at an angle to the shear 

plane. Special Publication. 1974;42:17-42. 

[29] Chen Y, Visintin P, Oehlers D. Concrete shear-friction material properties: Derivation 

from actively confined compression cylinder tests. Advances in Structural Engineering. 

2015;18:1173-85. 

[30] Chen Y, Zhang T, Visintin P, Oehlers D. Concrete shear-friction material properties: 

application to shear capacity of RC beams of all sizes. Advances in Structural Engineering. 

2015;18:1187-98. 

[31] Haskett M, Oehlers DJ, Ali MM, Sharma SK. Evaluating the shear-friction resistance 

across sliding planes in concrete. Engineering Structures. 2011;33:1357-64. 

[32] Haskett M, Oehlers DJ, Mohamed Ali M, Wu C. Yield penetration hinge rotation in 

reinforced concrete beams. Journal of Structural Engineering. 2009;135:130-8. 

[33] Yuan H, Wu Z, Yoshizawa H. Theoretical solutions on interfacial stress transfer of 

externally bonded steel/composite laminates. Doboku Gakkai Ronbunshu. 2001;2001:27-

39. 

[34] Lu X, Teng J, Ye L, Jiang J. Bond–slip models for FRP sheets/plates bonded to 

concrete. Engineering Structures. 2005;27:920-37. 

[35] Hao X. Generation of stress-strain relationship of passively reinforced rectangular 

concrete prisms. School Report, School of Civil, Environmental and Mining Engineering, 

The University of Adelaide, Australia. 2018. 

[36] Oehlers DJ, Haskett M, Wu C, Seracino R. Embedding NSM FRP plates for improved 

IC debonding resistance. Journal of Composites for Construction. 2008;12:635-42. 

[37] Yuan H, Teng J, Seracino R, Wu Z, Yao J. Full-range behavior of FRP-to-concrete 

bonded joints. Engineering Structures. 2004;26:553-65. 



 

236 

 

[38] Seracino R, Raizal Saifulnaz M, Oehlers D. Generic debonding resistance of EB and 

NSM plate-to-concrete joints. Journal of Composites for Construction. 2007;11:62-70. 

[39] Haskett M, Oehlers D, Ali MM, Sharma S. The shear friction aggregate interlock 

resistance across sliding planes in concrete. Magazine of Concrete Research. 2010;62:907-

24. 

[40] Walraven J, Reinhardt H. Theory and experiments on the mechanical behaviour of 

cracks in plain and reinforced concrete subjected to shear loading. HERON, 26 (1A), 

1981;5-68. 

[41] Chen Y, Visintin P, Oehlers D. Extracting Size-Dependent Stress–Strain 

Relationships from FRP-Confined Concrete Cylinders for Varying Diameters and Heights. 

Journal of Materials in Civil Engineering. 2015;28:04015182. 

[42] Haskett M, Oehlers DJ, Ali MM. Local and global bond characteristics of steel 

reinforcing bars. Engineering Structures. 2008;30:376-83. 

[43] Visintin P, Oehlers D, Muhamad R, Wu C. Partial-interaction short term serviceability 

deflection of RC beams. Engineering Structures. 2013;56:993-1006. 

[44] Ali MM, Oehlers D, Griffith M, Seracino R. Interfacial stress transfer of near surface-

mounted FRP-to-concrete joints. Engineering Structures. 2008;30:1861-8. 

[45] Lin X, Zhang Y. Evaluation of bond stress-slip models for FRP reinforcing bars in 

concrete. Composite Structures. 2014;107:131-41. 

[46] Haskett M, Ali MM, Oehlers D, Wu C. Influence of bond on the hinge rotation of 

FRP plated beams. Advances in Structural Engineering. 2009;12:833-43. 

[47] Zhang T, Visintin P, Oehlers DJ. Partial-interaction tension-stiffening properties for 

numerical simulations. Advances in Structural Engineering. 2017;20:812-21. 

[48] Ali MM, Oehlers D, Griffith M. The residual strength of confined concrete. Advances 

in Structural Engineering. 2010;13:603-18. 

[49] Hao X. Mechanics of extracting shear-friction properties from actively confined 

cylinder tests. School Report , School of Civil, Environmental and Mining Engineering, 

The University of Adelaide, Australia. 2017. 

[50] Visintin P, Chen Y, Oehlers D. Size dependent axial and lateral stress strain 

relationships for actively confined concrete. Advances in Structural Engineering. 

2015;18:1-20. 

[51] Popovics S. A numerical approach to the complete stress-strain curve of concrete. 

Cement and Concrete Research. 1973;3:583-99. 



 

237 

 

[52] A.C.I Committee. State-of-the-Art report on high-strength concrete. Farmington Hills, 

Michigan. 1992. 

[53] Rashid R, Oehlers D, Seracino R. IC debonding of FRP NSM and EB retrofitted 

concrete: Plate and cover interaction tests. Journal of Composites for Construction. 

2008;12:160-7. 

[54] Wu Z, Yuan H, Niu H. Stress transfer and fracture propagation in different kinds of 

adhesive joints. Journal of Engineering Mechanics. 2002;128:562-73. 

[55] Chen C, Sui L, Xing F, Li D, Zhou Y, Li P. Predicting bond behavior of HB FRP 

strengthened concrete structures subjected to different confining effects. Composite 

Structures. 2018;187:212-25. 

[56] Sturm AB, Visintin P, Oehlers DJ. Time-dependent serviceability behavior of 

reinforced concrete beams: Partial interaction tension stiffening mechanics. Structural 

Concrete. 2018;19:508-23. 

[57] Wu H-L, Wang Y-F, Yu L, Li X-R. Experimental and computational studies on high-

strength concrete circular columns confined by aramid fiber-reinforced polymer sheets. 

Journal of Composites for Construction. 2009;13:125-34. 

[58] Wu Y-F, Liu K. Characterization of mechanically enhanced FRP bonding system. 

Journal of Composites for Construction. 2013;17:34-49. 

[59] Wu Y-F, He L, Bank L. Bond-test protocol for plate-to-concrete interface involving 

all mechanisms. Journal of Composites for Construction. 2015;20:04015022. 

[60] Teng J, Lam L. Behavior and modeling of fiber reinforced polymer-confined concrete. 

Journal of Structural Engineering. 2004;130:1713-23. 

[61] Ellobody E, Young B. Design and behaviour of concrete-filled cold-formed stainless 

steel tube columns. Engineering Structures. 2006;28:716-28. 

[62] Vincent T, Ozbakkaloglu T. Influence of slenderness on stress-strain behavior of 

concrete-filled FRP tubes: experimental study. Journal of Composites for Construction. 

2014;19:04014029. 

[63] Carrazedo R, de Hanai JB. Concrete Prisms and Cylinders Wrapped by FRP Loaded 

in Compression with Small Eccentricities. Journal of Composites for Construction. 

2016;21:04016115. 

[64] Wang Y-f, Wu H-l. Size effect of concrete short columns confined with aramid FRP 

jackets. Journal of Composites for Construction. 2010;15:535-44. 

[65] Nanni A, Bradford NM. FRP jacketed concrete under uniaxial compression. 

Construction and Building Materials. 1995;9:115-24. 



 

238 

 

[66] Liang M, Wu Z-M, Ueda T, Zheng J-J, Akogbe R. Experiment and modeling on axial 

behavior of carbon fiber reinforced polymer confined concrete cylinders with different 

sizes. Journal of Reinforced Plastics and Composites. 2012;31:389-403. 

[67] Xiao Y, Wu H. Compressive behavior of concrete confined by carbon fiber composite 

jackets. Journal of Materials in Civil Engineering. 2000;12:139-46. 

[68] Almusallam TH. Behavior of normal and high-strength concrete cylinders confined 

with E-glass/epoxy composite laminates. Composites Part B: Engineering. 2007;38:629-

39. 

[69] Wang ZY, Wang DY, Lu DG. Behavior of Large-Scale Circular and Square RC 

Columns Confined with Carbon Fiber-Reinforced Polymer under Uniaxial Compression. 

Advanced Materials Research: Trans Tech Publ; 2011. p. 3686-93. 

[70] Wang Z, Wang D, Smith ST, Lu D. Experimental testing and analytical modeling of 

CFRP-confined large circular RC columns subjected to cyclic axial compression. 

Engineering Structures. 2012;40:64-74. 

[71] Mander JB. Seismic design of bridge piers. 1983. Ph.D. dissertation, University of 

Canterbury. 

[72] Li B, Park R, Tanaka H. Stress-strain behavior of high-strength concrete confined by 

ultra-high-and normal-strength transverse reinforcements. ACI Structural Journal. 

2001;98:395-406. 

[73] Hao X. Generation of stress-strain relationship of passively reinforced circular 

concrete cylinders. School Report, School of Civil, Environmental and Mining 

Engineering, The University of Adelaide, Australia. 2018. 

[74] Wei Y-Y, Wu Y-F. Unified stress–strain model of concrete for FRP-confined 

columns. Construction and Building Materials. 2012;26:381-92. 

 

 

 

 

  



 

239 

 

Chapter 4— Flexural Analysis 

 

Introduction 

 

This chapter contains the journal paper below. This paper first shows how the passive 

stress/strain derived in Chapter 3 from concentrically loaded confined prisms can be used in 

a flexural analysis. The passive stress/strain is then simplified to a rectangular concrete stress 

block suitable for design. Closed-form solutions to quantify the ductility of passively 

confined concrete beams are then derived. 
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Closed Form Solutions for Quantifying the Ductility of Concrete Beams 

with Passively Restrained Concrete  

 

X. Hao1, P. Visintin2 and D. J. Oehlers3 

Abstract 

 

The ductility of a beam is important in reinforced concrete member design at the ultimate 

limit state, especially in resisting dynamic loads such as those from earthquakes or blasts. 

Concrete confinement reinforcement, such as stirrups or tubes, are widely used in structures 

and can significantly enhance the ductility of concrete beams. However, this confinement 

effect is normally ignored in current design standards, limiting the ability to design 

specifically for ductility or to estimate the ductility of existing structures. In this paper, a 

novel concrete passive stress/strain relationship based on the application of partial 

interaction and shear friction theories is simplified to a rectangular stress block for flexural 

analyses. This confined concrete stress block is then applied to quantify the moment/rotation 

of a hinge where both the confinement of the concrete and hinge lengths are quantified 

through mechanics.  

 

Keywords: concrete confinement; passive stress/strain; partial interaction; reinforced 

concrete beams; ductility; moment/rotation; closed form solutions 

 

Introduction 

 

Experimental research has broadly illustrated that inclusion of confinement reinforcement, 

such as internal stirrups or external plates or tubes, can enhance the strength and, especially, 

the ductility of concrete members (Lopes et al. 2012; Mansur et al. 1997; Rashid and Mansur 

2005). While widely investigated in research, concrete confinement is often ignored in 

practical applications (ACI 2014; Fib. 2010) resulting in an under prediction of member 

strength, but more importantly, member ductility. For instance, over-reinforced beams are 

not recommended in practical design because of a lack of member ductility when the 

concrete is unconfined (ACI 2014; Australia Standard 2009; Fib. 2010). However, allowing 
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for the influence of concrete confinement may allow the beam to behave in a ductile way 

and to achieve a higher moment capacity (Mansur et al. 1997). 

 

Traditional approaches for predicting member strength and ductility are based on full-

interaction moment/curvature analyses (Max/), that is they assume that plane sections 

remain plane and that there is no slip between the longitudinal or transverse reinforcement 

and adjacent concrete (Hognestad 1951). Further, at the ultimate limit state a rectangular 

stress block is applied to idealise the distribution of concrete compressive stresses at an 

assumed maximum concrete strain. As a result of these assumptions traditional approaches: 

1. Rely on empirical factors to quantify the hinge length and member ductility despite 

significant challenges in their general definition and calibration (Attard and Stewart 

1998; Hognestad 1951; Rajagopalan and Everard 1976; Tan and Nguyen 2005); 

2. Ignore the size dependency of the concrete stress/strain behaviour, which is known 

to result in reduced member ductility as member size increases (Du et al. 2017; Jin 

et al. 2017; Silva and Rodrigues 2006; Thériault et al. 2004); and 

3. Ignore the influence of concrete confinement, which increases member ductility at 

all member sizes, but is a phenomena which is itself size dependent (ACI 2014; Fib. 

2010; Hognestad 1951). 

 

In the traditional beam flexural analysis, non-linear unconfined concrete stress/strain 

relationships are simplified to simplified stress blocks which may be either rectangular 

(Whitney 1937), bilinear (Jensen 1943), or parabolic (Mensch 1914). The rectangular 

concrete stress block is widely accepted by codes due to its ease of application (ACI 2014; 

Australia Standard 2009; Fib. 2010) where parameters α and γ determine the magnitude and 

position of the simplified rectangular stress block. However, these empirically derived 

parameters have the following drawbacks. Firstly, they are empirically derived from 

unconfined-concrete-beam regions (Kaar et al. 1978; Rajagopalan and Everard 1976) but are 

often used for the design of confined regions (ACI 2014). As a result, their application may 

underestimate the strength and, more importantly, the ultimate strain of concrete εcu (Mansur 

et al. 1997), meaning designers are not able to utilise the higher capacity and ductility 

afforded by concrete confinement. Secondly, the controlling parameters α and γ are known 

to be affected by member size, but this effect is not typically quantified (Yi et al. 2002).  
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In this paper, a new rectangular stress block is quantified based on the application of the 

fundamental mechanisms of shear friction and partial-interaction theories. It is shown that 

with this approach the rectangular stress block can be made size-dependent and can explicitly 

allow for passive confinement which is limited by either yielding, fracture or debonding of 

the confining reinforcement. Having defined the rectangular stress block it can be utilised 

either directly in traditional strain-based analysis approaches, or alternatively, as shown here, 

it can incorporate into displacement based analysis approaches and closed form solution to 

predict member ductility is proposed. 

 

Passive Concrete σ/ε  

 

The confinement mechanism for deriving the passive stress/strain has been described for 

rectangular prisms (Hao 2018b) and for circular cylinders (Hao 2018a). This mechanism will 

be described qualitatively in this section starting with the active stress/strain mechanism 

followed by the passive mechanism which will then be quantified.  

 

Active Stress/Strain  

 

Consider the actively confined rectangular concrete prism in Fig. 1(a) that has a potential 

sliding plane F-N. The prism in Fig. 1(a) is subjected to an axial stress σax and lateral 

hydraulic stress σconf. Here a rectangular prism is shown in Fig. 1(a), but the approach 

described can also be applied to a circular cross-section. Before the occurrence of sliding, 

the axial strain is a material strain εm and is independent of the size of the deformed length 

Ldef. The axial stress σax is gradually increased until the sliding plane F-N forms which then 

has a slip S and inclination αs. The axial component of the slip Sax will cause contraction of 

the concrete prism and subsequently a size-dependent equivalent axial strain εS = Sax/Ldef. 

The shear sliding plane F-N is subjected to shear stress τ and normal stress σN along and 

normal to the shear failure plane resolved from the components of force from σax and σconf. 

The relationship between shear stress τ, normal stress σN, slip S and crack width hcr is referred 

to as the shear friction material properties (Mattock 1974; Mattock and Hawkins 1972). As 

the lateral component of the crack width hcr is much smaller than Slat it is ignored in practice 

giving a slightly conservative assumption (Haskett et al. 2010a; Haskett et al. 2011). 
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Fig. 1 (a) Actively confined concrete (b) passively confined concrete 

 

Let us first consider the active stress/strain properties which are required in the following 

section on the passive stress/strain. The active stress/strain O-A-B in Fig. 2 is for the 

unconfined concrete that is σconf0 = 0. As an example (although the following applies to any 

confinement), consider the laterally confined case O-P1-E-F where the lateral confinement 

is σconfyld. On application of load, sliding occurs at point A (εc0, fc0) for the unconfined 

concrete and at point E (εcc2, fcc2) for the confined concrete. Prior to the formation of a sliding 

plane, the axial strain is the size-independent material strain εm. Sliding occurs with a 

reduction of the axial stress, and the axial strain is comprised of the size-independent 

material strain εm and size-dependent sliding strain εS such as point P at a confinement σconfyld. 

Then for a given axial stress σax and lateral confinement σconf, the τ and σN in Fig. 1(a) can be 

determined (Ali et al. 2010). From these values, slip S can be derived and subsequently the 

sliding strain εS allowing for the definition of the descending branch of active stress/strain 

relationship. 
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Fig. 2 Passive stress/strain 

 

Passive Stress/Strain 

 

Consider the passively restrained rectangular prism in Fig. 1(b) which is laterally reinforced 

by either stirrups, tubes, plates or a combination of them. This prism has the same dimensions 

and potential sliding plane F-N as that in Fig. 1(a) and is under a concentric load Pax and 

axial stress σax. The diameter or width of the cross-section within the transverse 

reinforcement is Dci. Prior to the formation of the sliding plane, the lateral confinement 

reinforcement does not have any significant deformation and, subsequently, neither a 

confinement force nor an associated lateral confining stress. Increase the axial stress until 

the occurrence of sliding. The lateral slip component Slat is resisted by the lateral 

reinforcement by the confinement force Pconf and subsequently the lateral confinement stress 

σconf. It has been illustrated that for circular cross-sections when the confinement force Pconf 

is constant along the confinement reinforcement, then the corresponding lateral confining 

stress σconf is constant along the shear sliding plane (Hao 2018a). In Fig. 1(b), Slat can be 

visualized as the sum of the crack face slips Δ at both sides of the sliding plane that is 2Δ. 

The confinement reinforcement behaviour Pconf/Δ can be determined from partial-interaction 

mechanics (Haskett et al. 2008; Yuan et al. 2004) and subsequently the relationship Pconf/Slat 

can be derived. Hence for a given slip S, Pconf can be derived from Pconf/Slat properties, and 

then σconf can be derived from Pconf from which the active stress/strain can be determined. 
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From slip S, the sliding strain εS can be derived and is fitted within the active stress/strain to 

fix points on the passive stress/strain (Hao 2018b). 

 

 

Fig. 3 Confinement mechanism in circular and rectangular sections 

 

Consider the cross-section of the cylinder in Fig. 3(a) or that of the rectangular prism in Fig. 

3(b). The sliding plane can be either at the centre at plane C-C’ in Fig. 1(b) or off-centre at 

plane D-F. For the circular section in Fig. 3(a), the confinement force Pconf depends on the 

tangential component of Slat that is S’lat. However, it has been illustrated that it is reasonable 

to assume that Slat equals S’lat to give a safe solution (Hao 2018a). The confinement 

reinforcement is assumed to be anchored: at points M and M’ in Fig. 3(a) due to symmetry 

about M-M’; or at points N and N’ in Fig. 3(b) due to the right angle bends. Hence when 

there is no bond or debonding is completed, strain of the confinement reinforcement is 

constant at εZ along the confinement reinforcement length Di and consequently the lateral 

component of slip Slat equals DiεZ. For circular cylinders in Fig. 3(a), Di equals the length of 

the perimeter of the semi-circle. For rectangular prisms in Fig. 3(b), it equals the section 

width Dci. 

 

Let us now derive the passive stress/strain in Fig. 2. For this, first derive the active 

stress/strain O-A-B for σconf0 that is the unconfined case. Then O-C-D for the IC debonding 

resistance PIC which induces a reinforcement strain εIC and the consequential lateral 
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confining stress σconfIC at PIC; PIC is described and quantified in the Appendix B. The active 

stress/strain O-E-F in Fig. 2 can be constructed for the yield capacity Pyld and lateral 

confining stress σconfyld at Pyld. Similarly, the active stress/strain O-G-H can be constructed 

for the fracture capacity Pfr and lateral confining stress σconffr at Pfr. 

 

Prior to the occurrence of sliding, the confinement reinforcement does not deform so the 

passive stress/strain follows O-A in Fig. 2 at σconf0 = 0. Sliding occurs at point A and slip 

gradually increases until IC debonding occurs that is at the confinement force PIC and lateral 

component of slip Slat-IC from which the effective strain εSIC can be determined and 

consequently point I. At the end of debonding and still at PIC, Slat equals Slat-IC2 which is εICDi 

and consequently εSIC2 can be determined to give point J. From similar analyses, the 

confinement reinforcement may yield at Pyld at point L then fracture at Pfr at point M or 

directly fracture at point M without yielding at point L. When debonding does not occur, the 

confinement reinforcement may either yield at point K then completely yield at point L and 

ultimately fracture at point M or directly fracture at point M without yielding at point L. 

When the confinement reinforcement does not fracture, after completely yielding at point L, 

the loading path follows L-F. The ultimate strain εcu may be either at point D when the 

longitudinal reinforcement fails at debonding, or at point F for longitudinal reinforcement 

that fails due to yielding, or at point N for longitudinal reinforcement that fails due to fracture 

at point M as shown. It is worth noting that for stirrup reinforced prisms under concentric 

load, it is found that the axial stress will not be lower than a specific strength which is the 

minimum axial stress and is referred to as the residual stress σrs (Li et al. 2001) and shown 

in the ordinate. For instance, should the confinement reinforcement yield at point P in Fig. 

2, then the axial stress may be kept constant at the residual stress σrs such that it follows the 

path P-Q. 

 

Quantification of Passive Stress/Strain 

 

Quantification of Key Points 

 

The full quantification of the passive stress/strain through closed form solutions has been 

given elsewhere (Hao 2018b) and for completeness is summarised in Appendix B. Figure 2 
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shows the key points in the passive stress/strain for four confinements: that is zero 

confinement that occurs prior to the onset of sliding; that at the onset and completion of IC 

debonding; that at yield prior to and after debonding; and that at fracture. A specific 

confinement may not occur and other confinements may be considered such as at a strain 

between that at yield and fracture to make the analysis more accurate. 

 

Table 1. Loading path for different cases in Fig. B3 

 
Loading path in Fig. 2 Confinement reinforcement behaviour Equation to give Slat Scenarios in Fig. B3 

① ② ③ ④ 
O-A-I-I2-J-L-M debond then yield then fracture Eqs.(38) to (42) Lconf ≥ Lcrt; PIC < Pyld; PIC < Pfr 

O-A-I-I2-J-M debond then fracture Eqs.(38), (39), (40) and (42) Lconf ≥ Lcrt; PIC < Pyld; PIC < Pfr 
O-A-M fracture directly Eq. (44) Lconf ≥ Lcrt; PIC ≥ Pyld; PIC ≥ Pfr 

O-A-K-L-M yield then fracture Eqs. (43), (41) and (42) Lconf ≥ Lcrt; PIC ≥ Pyld; PIC ≥ Pfr 

O-A-M fracture directly Eq. (46) Lconf < Lcrt 
O-A-K-L-M yield then fracture Eqs. (45), (41) and (42) Lconf < Lcrt 

 

Bearing in mind that the lateral strains εS in Fig. 2 are a function of the lateral slip Slat, Fig. 

B3 shows diagrammatically all the slip paths that can occur. Possible sequences of these slip 

paths are given in Table 1, their scenarios summarised and the closed form equations for 

deriving them listed. The key points with corresponding equations are also given in Table 2 

for ease of analysis. Finally the procedure is shown as a flow chart in Fig. 4 where it can be 

seen that central to the whole analysis is the derivation of the lateral slip Slat. 

 

Table 2. Slat of all key points in Fig. 2 

 
Key point in Fig. 2 Slat Equation to give Slat Pconf σconf Scenario 

① ② ③ ④ ⑤ ⑥ 
A 0  0 0  

I Slat-IC Eq. (38) PIC σconfIC Lconf ≥ Lcrt; PIC < Pyld; PIC < Pfr 

I2 Slat-deb Eq. (39) PIC σconfIC Lconf ≥ Lcrt; PIC < Pyld; PIC < Pfr 

J Slat-IC2 Eq. (40) PIC σconfIC Lconf ≥ Lcrt; PIC < Pyld; PIC < Pfr 

K Slat-yld2 Eq. (43) Pyld σconfyld Lconf ≥ Lcrt; PIC ≥ Pyld; PIC ≥ Pfr 

K Slat-yld3 Eq. (45) Pyld σconfyld Lconf < Lcrt 

L Slat-yld Eq. (41) Pyld σconfyld  

M Slat-fr Eq. (42) Pfr σconffr  

M Slat-fr2 Eq. (44) Pfr σconffr Lconf ≥ Lcrt; PIC ≥ Pyld; PIC ≥ Pfr 

M Slat-fr3 Eq. (46) Pfr σconffr Lconf < Lcrt 
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Fig. 4 Flowchart to derive passive stress/strain 

 

Rectangular Stress Block 

 

Having quantified the key points of the passive stress/strain through the procedures outlined 

in Fig. 4, the form is now simplified to that of a rectangular stress block (Hognestad 1951). 

The application in a flexural analysis will be described later. 

 

Area and Centroid of the Stress Block 

 

Consider the arbitrary passive stress/strain O-A-K-L-F in Fig. 2 where each key point has 

coordinates (xi, yi). These are also shown in Fig. 5 where point P at (xci, yci) is the centroid 

of the stress block O-A-K-L-F. The coordinates (xi, yi) are derived from Eqs. (52) and (53) 

through Fig. 4 and Appendix B. The area Arec of the polygon O-A-K-L-F in Fig. 5 and the 

x-coordinate of the polygon centroid xci are (Bourke 1988) 
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where N is the number of key points and xN and yN are equals x0 and y0 respectively. Take 

the stress block O-A-K-L-F in Fig. 5 as an example, when N equals five, the coordinate (x5, 

y5) in Eqs. (1) and (2) is assumed to equal (x0, y0) as shown (Bourke 1988). 

 

 

Fig. 5 Rectangular simplification of passive stress/strain 

 

α and γ Parameters 

 

The stress block O-A-K-L-F in Fig. 5 is simplified to the rectangular stress block D-B-C-F 

with the same area and x-coordinate of the centroid. The width and length of the rectangular 

stress block are αfc0 and γOF where OF equals the maximum strain of the stress block εtop 

which equals x1 as shown. From the geometry, parameter γ is 
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where xci can be obtained from Eq. (2). From the geometry, α is derived as follows 
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where Arec can be obtained from Eq. (1). Substituting γ from Eq. (3) into Eq. (5) gives 
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Examples of α and γ Derivation 

 

Parameters α and γ will be derived for the stirrup reinforced beam B4-1.5C from tests by 

Mansur et al. (1997); the details are given in Table 3. The passive stress/strain is derived 

first and then α and γ. 

 

Table 3. Details of stirrup reinforced beam 

 

S# Ref. 
La D0 D02 fc0 fy-l Ss σconfyld 

ρS 
(mm) (mm) (mm) (MPa) (MPa) (mm) (MPa) 

B2-2.6C Mansur et al 1997 1000 250 170 76.3 550 40.0 6.02 0.0231 

B4-3.5C Mansur et al 1997 1000 250 170 76.3 550 30.0 8.03 0.0462 

B4-2.6C Mansur et al 1997 1000 250 170 81.7 550 40.0 6.02 0.0462 

B4-1.5C Mansur et al 1997 1000 250 170 82.2 550 70.0 3.44 0.0462 

B4-2.6L Mansur et al 1997 1000 250 170 73.0 550 40.0 6.02 0.0462 

B4-0.0C Mansur et al 1997 1000 250 170 72.9 550 - 0.00 0.0462 

C4-0.0C Mansur et al 1997 1000 250 170 89.1 550 - 0.00 0.0462 

D4-0.0C Mansur et al 1997 1000 250 170 105.3 550 - 0.00 0.0462 

B312 Rashid et al 2005 2400 400 250 72.8 460 100 3.76 0.0295 

B313 Rashid et al 2005 2400 400 250 72.8 460 66.7 5.64 0.0295 

S1B0 Giduquio et al 2012 900 300 200 23.9 531 190 1.07 0.0101 

S2B2 Giduquio et al 2012 900 300 200 30.9 596 90.0 2.19 0.0101 

S2B3 Giduquio et al 2012 900 300 200 31.1 596 45.0 4.38 0.0101 
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Note: S# = specimen reference number; fy-l = yield capacity of longitudinal reinforcement; 

ρS = longitudinal tensile reinforcement ratio. 

 

Passive Stress/Strain 

 

From Fig. 4 and Appendix B, the passive stress/strain of the stirrup reinforced prism is 

plotted in Fig. 6. The passive stress/strain depends on the deformed length Ldef of the prism 

as in Fig. 1 which depends on the length of the hinge in the RC beam; this will be assumed 

to be 259 mm as will be explained later in the beam analysis. The concrete strength fc0 equals 

82.2 MPa which can be substituted into Eq. (31) to give axial strain εc0 = 0.00255 at fc0. 

Hence sliding occurs at point A in Fig. 6 that has coordinates (εc0 = 0.00255, fc0 = 82.2). The 

confinement reinforcement yields at point C where the lateral confining stress at yield σconfyld 

= 3.44MPa as obtained from Eq. (47) by substituting the yield capacity of the stirrups Pyld = 

15.6 kN. The critical length Lcrt from Eq. (25) equals 1292 mm which is larger than the 

confinement length Lconf = Di/2 = 102 mm. Hence the variation in Fig. B3(c) applies. The 

lateral component of slip at the onset of yield Slat-yld3 from Eq. (45) equals 0.162 mm. 

Substituting σconfyld = 3.44 MPa and Slat-yld3 = 0.431 mm into Eqs. (52) and (53) gives the 

axial stress 66.9 MPa and axial strain εax-yld 0.00632 at point C in Fig. 6 that is the onset of 

yielding. The strain hardening effect is ignored, hence, after yielding at point C, the 

confinement force and stress σconfyld is unchanged. With regard to point D, substituting the 

axial stress σS = 0 MPa into Eq. (52) and rearranging gives the slip at point D of Slat-D = 1.47 

mm. Substituting σconfyld = 3.44 MPa, Slat-D = 1.47 mm and σS = 0 MPa into Eq. (53) gives 

the axial strain at point D which is also the ultimate strain εcu = 0.0118. At point E, axial 

strain equals 1.5εcu = 0.0177 and axial stress equals zero. Hence, all the coordinates of the 

key points O, A, C, D and E have been derived. The additional point E at a strain of 1.5εcu 

is not required in design but will be used in the ensuing validation to following the rapidly 

descending branch of the strength. 
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Fig. 6 Rectangular simplification of passive stress/strain of specimen B4-1.5C and Ldef = 

0.5Scr 

 

Parameters in Flexural Analysis 

 

In this section, α and γ are derived for the stress blocks in Fig. 6 of O-A-A’ at the onset of 

sliding, O-A-C-C’ at the onset of yield and O-A-C-D and at the ultimate strain. These stress 

blocks have the same abscissa of the centroid A0, C0 and D0 with their corresponding 

rectangular stress blocks A1-A2-A3-A’, C1-C2-C3-C’ and D1-D2-D3-D respectively. For 

instance, the stress block O-A-A’ has the same abscissa of the centroid A0 with the simplified 

rectangular stress block A1-A2-A3-A’. Furthermore, the maximum strain of these stress 

blocks is also known because the strain of all the key points has been derived. For instance 

when the stress block O-A-A’ is developed, then the maximum strain of the stress block εtop1 

equals εc0.  

 

The coordinates of points O, A and A’, derived previously, are substituted into Eqs. (1) and 

(2) to give the area of the polygon O-A-A’ which is Arec = 0.1048 and the abscissa of the 

polygon centroid xci = 0.00170. From which the parameters α = 0.750 and γ = 0.667 can be 
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obtained from Eqs. (6) and (3) and, subsequently, the rectangular stress block A1-A2-A3-A’ 

as well as the centroid A0 can be determined from the definitions of α and γ. 

 

With regard to the stress blocks O-A-C-C’ and O-A-C-D in Fig. 6, εtop equals strains at point 

C’ and D with εtop2 = εax-yld and εtop3 = εcu as shown. Similar to the procedure for the derivation 

of α and γ of the stress block O-A-A’, α and γ can be derived from Eqs. (6) and (3); for stress 

block O-A-C-C’, α equals 0.852 and γ equals 0.853 and for stress block O-A-C-D, α equals 

0.467 and γ equals 1.16. 

 

The stress block O-A-C-D-E in Fig. 6 is developed to validate the descending branch of the 

strength and this is not required in design and only in the validation. Similar to the previous 

description, this stress block is simplified to the rectangular stress block E1-E2-E3-E and 

parameters α equals 0.252 and γ equals 1.44 from Eqs. (6) and (3). 

 

Segmental Flexural Analysis 

 

In this section, the parameters α and γ are used in a flexural analysis of rectangular sections 

for both strength and ductility. The results of α and γ can be applied directly to a circular 

cross-section. 

 

Passive Concrete Confinement in Beams 

 

It will be shown that the concrete stress/strain that is derived from passively confined 

concentrically loaded prisms as in Fig. 1(b), where the strain profile is uniform, can be 

applied directly to the concrete in flexurally loaded beams in Fig. 7 where the strain profile 

varies linearly. 

 

The prismatic section M-N-O-H1-A1 in Fig. 1(b) is shown in the beam in Fig. 7(a) where the 

sliding plane is N-F and the cross section and passive restraints are in Fig. 7(b). Let the prism 

in Fig. 7(a) be subjected to a uniform axial stress σax along its depth M-F-A1. The prism is 

sliced into n segments of equal depth S1-n such that the sliding plane within each segment is 

passively restrained by identical elements E1-n. Each portion of the sliding plane is shown in 
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Fig. 8 where σax1-n = σax. It can be seen that the sliding planes are identically restrained such 

that as the axial stress σax is varied, the behaviour along each sliding plane can be considered 

to be identical. Now let us apply a varying axial stress along the depth M-F-A1 in Fig. 7(a) 

as occurs in a flexural analysis such that each segment in Fig. 8 has a different axial stress 

but within the segment the axial stress is uniform. The behaviour of each individual segment 

is identical to that which would have been obtained from a prism test for the corresponding 

axial stress. 

 

 

Fig. 7 Lateral reinforced prism 

 

Hence to allow for the variation in the axial stress in a segmental analysis of a beam, each 

segment and each element in Fig. 8 are considered to act individually. 
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Fig. 8 Elements of lateral reinforced prism from Fig. 7 

 

Segmental Analysis 

 

It has been shown that the passive stress/strain derived from prisms can be applied directly 

to beams. This passive stress/strain has also been simplified to rectangular stress blocks 

which will now be used in the segmental analysis of beams. As the segmental analysis has 

been described in detail elsewhere (Oehlers et al. 2012; Oehlers et al. 2011; Oehlers et al. 

2017; Visintin et al. 2012a; Visintin et al. 2013; Visintin et al. 2012b), it is summarised here 

and the closed form solution will be derived later. 

 

Consider the half of a stirrup reinforced beam under four-point bending in Fig. 9(a). It is 

symmetric about the plane A’-A2 and has the rectangular cross-section in Fig. 9(b). The 

beam is subjected to a shear load Pax and a moment Max. The load Pax is gradually increased 
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until flexural cracks and a wedge form. Consider the possible wedge locations A’-E’-E and 

A’-F’-F which have the same inclination αs as shown (Visintin et al. 2012b). The 

deformation or hinge length Ldef equals (n+0.5)Scr in which n is an integer and Scr is the crack 

spacing (Visintin et al. 2012b). The integer n is chosen such that Ldef just encompasses the 

wedge length Lwdg: such as Ldef1 = Scr/2 to cover wedge A’-E’-E which has a length Lwdg1; or 

Ldef2 = Scr + Scr/2 to cover wedge A’-F’-F which has a length Lwdg2 (Visintin et al. 2012b). In 

summary, the deformation or hinge length Ldef for the moment/rotation analysis is chosen to 

just cover the maximum wedge length Lwdg.  

 

 

Fig. 9 Half of the reinforced beam under four point bending 

 

Consider, as an example, the segment in Fig. 10(a) that has a hinge length Ldef = Scr/2 and 

which is subjected to a moment Max that causes an Euler-Bernoulli rotation θ (Visintin et al. 

2012a; Visintin et al. 2012b) such that the displacement profile is linear as in Fig. 10(b). 

Consequently, the strain profile is linear as in Fig. 10(c) and subsequently the stress in the 

compressive and tensile longitudinal reinforcement σrc and σrt in Fig. 10(d) can be 

determined. From the peak concrete strain in the linear strain profile in Fig. 10(c) can be 

determined the concrete rectangular stress block as previously explained. Consider the 

passive stress/strain O-A-K-L-F in Fig. 5 which is simplified to the rectangular block C-F-

D-B which is also shown in Fig. 10(d). This rectangular stress block has a width of αfc0 and 

a length of γdNA where dNA is the neutral axis depth in Fig. 10(a). As occurs in practice, the 

concrete cover in the compression zone is assumed to spall off as in Fig. 10(f). 

 

From Figs. 10(d) and (f), the compressive force in the concrete is 
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  0 2conc c NA iP f d D    (7) 

 

where Di2 is the width the cross-section of the confined concrete as in Fig. 10(f). For the 

longitudinal tensile reinforcement, the stress is obtained from partial interaction theory that 

gives the relationship between the reinforcement force Prt and crack face slip Δrt (Visintin et 

al. 2012b) where Δrt is derived from the linear deformation profile in Fig. 10(b). The force 

in the longitudinal compressive reinforcement Prc can be obtained from its strain. Hence 

when the displacement profile is determined, Prt and Prc can be determined. In the ensuing 

validation only reinforcement yield is considered, that is reinforcement fracture or 

debonding are not considered. Furthermore strain hardening is ignored to achieve a 

conservative solution. 

 

 

Fig. 10 Segmental analysis when Ldef equals 0.5Scr: (a) segment; (b) displacement profile; 

(c) strain profile; (d) stress profile; (e) force profile; (f) cross-section 

 

When concrete softening occurs, then the maximum strain in the rectangular stress block 

that controls the key points is shown as an εtop in Fig. 6. Hence the deformation of the top 

fibre of the confined concrete Δtop in Fig. 10(b) is 

 

  top deftop L    (8) 

 



 

261 

 

The iterative approach applied in the segmental analysis is described first and the closed 

form solution will be given later. For a specific εtop that is for a specific key point in the 

passive stress/strain, Δtop can be determined from Eq. (8). It is then a question of guessing 

the neutral axis depth dNA that is by pivoting about Δtop. This fixes the deformation profile in 

Fig. 10(b) from which the strain, stress and force profiles in Figs. 10(c) to (e) can be derived. 

The neutral axis depth dNA is varied until longitudinal equilibrium is achieved after which 

the moment Max can be derived. When concrete softening does not occur as in under-

reinforced beams, then the pivotal point is now Δrt in Fig. 10(b) when the tension 

reinforcement yields and the analysis proceeds as before. 

 

Hinge Length Quantification 

 

The hinge or segment length Ldef in Fig. 10(a) must encompass Lwdg. The minimum length 

of Ldef equals Scr/2 where Scr is given by Zhang et al. (2014) as  
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in which in a tension stiffening analysis: Lper is the total length of the debonding failure plane 

of the tensile reinforcement which equals the perimeter of the reinforcement: Ac is the cross-

section area of concrete which interacts with the reinforcement; Ar is the cross-section area 

of reinforcement; τBmax and δ1 are shown in Fig. B1 and quantified in Appendix B; the 

coefficient α1 is set as 0.4; and fct is the concrete tensile capacity which can be taken as 

follows (Iravani 1996) and in which fc is in MPa 

 

 0.59ct cf f   (10) 

 

The wedge depth dw in Fig. 10(a) can be derived by assuming that concrete cover spalls off 

from the geometry of the strain profile in Fig. 10(b) as follows 
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where the strain at level C-E in Fig. 10(c) equals εc0. Hence the wedge length in Fig. 10(a) 

equals 

 

  0( ) / tanc
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top
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




    (12) 

 

Should the derived Lwdg be larger than Scr/2, then Ldef should be increased by Scr to 1.5Scr as 

in Fig. 9 for Lwdg2 such that the size dependent passive stress/strain in Figs. 2 and 6 are now 

for length 1.5Scr. The segmental analysis proceeds as explained previously bearing in mind 

that, as can be seen in Fig. 9, the total deformation of the tensile reinforcement within the 

hinge length, that is the total crack face slip, is now 3Δrt. Should Lwdg exceed 1.5Scr, the 

procedure is repeated by increasing deformed length Ldef by Scr until Ldef covers the wedge 

length Lwdg. 

 

Closed Form Solution 

 

A closed form solution for the beam B4-1.5C from tests by Mansur et al. (1997) is given in 

detail in Appendix C as an example. The main steps are summarised as follows. 

1. The passive stress/strain and rectangular stress block, such as those shown in Fig. 6, 

have been derived previously. Hence for these stress blocks, the parameters α and γ 

as well as the strain of the top fibre of the confined concrete εtop are known. 

2. The cross-section of the specimen B4-1.5C is shown in Fig. 11(f) and the hinge of 

the beam in Fig. 11(a). The hinge length Ldef is chosen to cover Lwdg from Eq. (12). 

For a neutral axis depth dNA, the displacement profile and strain profile can be 

determined as a function of dNA. The rectangular concrete stress block is determined 

as shown in the stress profile in Fig. 11(d) and the concrete force Pconc is obtained 

from Eq. (7) which is also a function of dNA. 

3. From the displacement profile the force in longitudinal reinforcement Prt1 and Prt2 

are derived as a function of dNA from Eq. (57) or (58). Substituting the derived Pconc, 
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Prt1 and Prt2 into the force equilibrium from Eq. (65) in Fig. 11(e), dNA can be solved 

and then the following rotation θ and moment Max can be determined 

 

  
top
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where cup is the cover in Fig. 11(a), Δtop can be determined from Eq. (8), Prt1 and Prt2 

are tensile reinforcement forces as shown in Fig. 11(e) and Lrt1 and Lrt2 are their lever 

arms as shown. 

 

 

Fig. 11 Segmental analysis of specimen B4-1.5C when Ldef equals 1.5Scr: (a) segment; (b) 

displacement profile; (c) strain profile; (d) stress profile; (e) force profile; (f) cross-section 

 

For an under-reinforced beam, the pivot point is the displacement when all the tensile 

reinforcement has yielded. The derivation of the moment/rotation about this pivotal point 

follows. Consider the segmental analysis in Fig. 11. At the pivotal point, the crack face slip 

Δrt2 in Fig. 11(a) equals Δyld which is the crack face slip when the longitudinal tensile 

reinforcement starts to yield and can be quantified from Eq. (59). Hence, when the neutral 

axis depth dNA is guessed as well as Δrt2 = Δyld in Fig. 11(a), the displacement profile and 

strain profile can be determined as a function of dNA. Softening normally does not occur and 
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the triangular concrete stress block O-H-H’ in Fig. 5 is developed. For this triangular 

concrete stress block the resultant force and its lever arm are obtained as a function of dNA 

from geometry. Having determined the concrete force, the other procedures to derive the 

moment/rotation is the same as that of an over-reinforced beam. 

 

Idealisation of the Ductility 

 

Derivation of Moment/Rotation from Experiments 

 

There are several methods of quantifying the ductility of a beam such as by using: the 

traditional full-interaction moment/curvature (Max/); or the partial-interaction 

moment/rotation (Max/) where, for example, the moment/rotation can be employed in the 

moment redistribution analysis (Haskett et al. 2010b; Haskett et al. 2009; Visintin and 

Oehlers 2016); or the load/mid-deflection (Pax/Δm). In this research, moment/rotation is used 

to measure the beam ductility which is extracted from experimental load/mid-deflections as 

follows. 

 

 

Fig. 12 Load/Mid-deflection (Pax/Δm) of specimen B4-3.5C 
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The load/mid-deflection of the passively confined beam B4-3.5C by Mansur et al. (1997) is 

shown in Fig. 12. Before the formation of the wedge, the mid-deflection δ-exp can be 

obtained by integrating the continuous curvature along the beam. After the formation of the 

wedge at point A in Fig. 12, it is assumed that all of the concrete cover above the neutral 

axis spalls off due to the formation of the wedge; this degree of spalling is probably an 

overestimation and is therefore a conservative assumption. The spalling causes a sudden 

reduction of the shear load Pax to point B (Giduquio et al. 2015; Mansur et al. 1997). After 

which, the mid-deflection, such as that at point C, is comprised of the deflection outside the 

hinge region δ-exp and that due to the rotation of the hinge δ-exp. These components of the 

deflection are also shown in Figs. 13(a) and (b) where Lb is the length of the beam. 

 

 

Fig. 13 Mid-Deflection of a beam due to (a) curvature in the non-wedge region (b) rotation 

of the wedge 

 

The hinge region, which is shown hatched in Fig. 13(b), has a rotation of . For ease of 

analysis, the pivot is assumed to occur at the middle point of the hinge region at point A. 

Consequently, the deflection due to rotation δ-exp is given by θexp(Lb/2-Ldef/2). Rearranging 

gives the rotation of the hinge as 
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Because in Fig. 13 the deformed length Ldef << Lb, the effect of the pivot position is small. 

The remaining component of the deflection δ-exp is determined by integrating the curvature 

outside the hinge region as in Fig. 13(a). The moment/rotation of the hinge can now be 

obtained from Fig. 12 by converting the ordinate to the moment in the hinge and the abscissa 

to the rotation using Eq. (15). 

 

It is worth noting that the concrete cover above the neutral axis is assumed to spall off, as in 

Fig. 10(f), only in the hinge region and after the formation of the wedge at point A in Fig. 

12. Consequently the mid-deflection due to the wedge δ-exp in Fig. 13(b) is derived from the 

cross-section without concrete cover that is θexp is based on a cross-section without concrete 

cover. In contrast, the concrete cover does not spall off outside the hinge region in Fig. 10(f) 

through the whole loading process; thus while unloading Pax/Δm follows A-O in Fig. 12 that 

is the load/deflection of beam with concrete cover. Having derived the moment/rotation from 

experimental load/mid-deflection, let us now consider the derivation of a theoretical 

moment/rotation. 

 

Idealised Theoretical Moment/Rotation 

 

Key points on the theoretical moment/rotation for over-reinforced and under-reinforced 

beams will be described qualitatively. 

 

Over-Reinforced Beam 

 

The analysis of an over-reinforced beam is summarised in Fig. 14. Four distributions of the 

concrete stress block with increasing applied strain profiles are shown in Figs. 14(b) to (e). 

The concrete cover shown hatched in Fig. 14(a) is assumed to spall off in the compressive 

region after the onset of concrete softening. The neutral axis A-A’ in Fig. 14(a) corresponds 

to the stress block in Fig. 14(b) and applies to point A in Fig. 15. Whereas the neutral B-B’ 

in Fig. 14(a) is for the stress block in Fig. 14(e) that corresponds to point E in Fig. 15. The 
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moment/rotation from a continuous segmental analysis is plotted as the solid line in Fig. 15 

where the concrete stress block controls the flexural behaviour of the beam as not all the 

tensile reinforcement may have yielded or fractured. The five key points linking O-A-B-D-

E with a dashed line give a simplified moment/rotation for which closed form solutions will 

be described in the next section by taking specimen B4-1.5C (Mansur et al. 1997) as an 

example. 

 

 

Fig. 14 Cross section of the beam (a) and different stress blocks are developed (b, c, d, and 

e) 

 

At point A at (1, M1) in Fig. 15, the strain of the top fibre of the confined concrete, εtop in 

Fig. 14(a), equals εc0 that is the strain at the unconfined strength fc0 in Fig. 5 and in Fig. 14(b). 

At point B (2, M2) in Fig. 15, εtop is the strain at the maximum of the passively confined 

concrete after sliding shown as point K (εmax, σmax) in Fig. 5 and in Fig. 14(c). After point B 

in Fig. 15, the slope of moment/rotation changes rapidly. Further development of the 

concrete stress block gives point C at the maximum moment Mmax where either the moment 

lever arm or the force in the reinforcement reaches its maximum. Then at point D at (3, M3), 

the passive stress/strain is fully developed as in Fig. 14(d). After which, there is usually a 

rapid loss of moment capacity due to a reduced lever arm such as in Fig. 14(e) which is at 

point E in Fig. 15 at (4, M4). The difference between the moments M2, M3 and Mmax is 

normally within a few percentage points so closed form solutions will only be determined 
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for: (1, M1) and (2, M2) to give the ascending branch and (3, M3) to quantify the ductility. 

With regard to point E, it is not required in design but it gives a point as the strength reduces 

in the validation. 

 

 

Fig. 15 Moment/Rotation of over-reinforced beam 

 

Under-Reinforced Beam 

 

The idealised moment/rotation of an under-reinforced beam is shown in Fig. 16 where the 

behaviour of the longitudinal reinforcement controls the flexural behaviour. There are 

several scenarios to consider: the longitudinal reinforcement may either fracture prematurely 

leading to no ductility at point G (5, M5); or yield at point H (6, M6); and then fracture at I 

(7, M7); or yield at H after which the concrete stress block is fully developed at point J (8, 

M8) which is the case shown in Fig. 14(d); after which the moment capacity rapidly reduces 

due to the reduction of the moment lever arm at point K in Fig. 16 at (9, M9) which is the 

case shown in Fig. 14(e). Hence for beams that fail due to fracture of the longitudinal 

reinforcement, closed form solutions are required for points G, H and I in Fig. 16 at (5, M5), 

(6, M6) and (7, M7). For beams that do not fail due to fracture but are governed by yield of 

the longitudinal reinforcement, closed form solutions are required for points H and J at (6, 

M6) and (8, M8). Point K is not required in design but will be used in the following validation. 
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Fig. 16 Moment/Rotation of under-reinforced beam 

 

Validation 

 

Figure 17 compares six different segmental analyses that were applied to the over-reinforced 

beam B4-1.5C by Mansur et al. (1997). The experimental results of the ductility plateau were 

obtained from the load/deflection plots as explained using Fig. 13. In cases 1 to 3 in Fig. 17, 

the theoretical ascending branch of the passive stress/strain was assumed to be linear using 

Eq. (35). The results of the first three cases are obtained from the proposed closed form 

solution described in this paper. 

1. The first case assumes that all the concrete is unconfined and that there is no spalling 

or concrete cover loss to give a lower bound. 

2. The second case allows for the effect of the confinement reinforcement but without 

considering the residual stress σrs in Fig. 2 that is σrs = 0. It also assumes that concrete 

cover in the compressive region, shown in the hatched area in Fig. 14(a), spalls off.  

3. The third case is the same as the second case but includes the residual stress σrs from 

Eq. (54) giving a reasonably good correlation with the experimental results along the 

ductile plateau. 
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Fig. 17 Moment/Rotations of specimen B4-1.5C 

 

In cases 4 to 6 in Fig. 17, the passive stress/strain has the non-linear ascending branch from 

Eq. (32) and the results are obtained from a numerical model described elsewhere (Visintin 

et al. 2012b). 

4. The fourth case is the same as the third case except that the linear ascending branch is 

replaced with a more accurate non-linear form from Eq. (32) giving better correlation 

at the onset of sliding or softening and good correlation along the ductility plateau. 

5. The fifth case is the same as the second case except that the passive stress/strain has 

the non-linear ascending branch. Once again giving better correlation at the onset of 

sliding. 

6. The sixth case is the same as the fourth case except that the concrete cover in the 

compressive region does not spall off. This gives a very unconservative result 

stressing the importance of allowing for spalling. 
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Compared with Code Approach 

 

Closed form solutions have been compared with published test results by Rashid and Mansur 

(2005) and Mansur et al. (1997) in Figs. 18 and 19, as well as by Lopes et al. (2012) in Fig. 

20. These specimens were either over-reinforced or under-reinforced beams reinforced with 

lateral confining steel reinforcement; details of these specimens are in Table 3. The second 

case above, which uses a linear ascending branch without residual stress and with concrete 

spalling, has been used as it gives a conservative result as well as case 3 that allows for the 

residual stresses. The results have also been compared with a standard approach for strength 

referred to as the code approach (Warner et al. 1998) which does not quantify the ductility. 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Fig. 18 Moment/Rotations of over-reinforced beam with specimen number: (a) B2-2.6C; 

(b) B4-3.5C; (c) B4-2.6C; (d) B4-1.5C; (e) B4-2.6L; (f) B4-0.0C; 
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(a) (b) 

  

(c) (d) 

Fig. 19 Moment/Rotations of over-reinforced beam with specimen number: (a) C4-0.0C; 

(b) D4-0.0C: (c) B312; (d) B313 

 

In Figs. 18 to 20, the ‘theoretical without residual strength’ that is the second case in Fig. 17 

gives, in general, a lower bound to the ductility. With regard to the ‘theoretical with residual 

strength’ case that is the third case in Fig. 17, the ductility is in good correlation with the 

experimental moment/rotation. The passive stress/strain block at point B in Fig. 17 for 

different levels of confinement reinforcement (B4-3.5C, B4-2.6C, B4-1.5C and B4-0.0C in 

Table 3) are shown in Fig. 21 and corresponding simplified rectangular stress block is shown 

in Fig. 22. The experimental moment/rotations of these specimens are also shown in Fig. 23 

and corresponding ‘theoretical with residual strength’ cases are shown in Fig. 24. It can 

clearly be seen that the confinement reinforcement can enhance ductility for over-reinforced 
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beams. Using code rectangular stress block in Fig. 22 for confined concrete may give 

conservative solution. 

 

  

(a) (b) 

 

 

(c)  

Fig. 20 Moment/Rotations of under-reinforced beam with specimen number: (a) S1B0; (b) 

S2B2; (c) S2B3 
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Fig. 21 Effect of confinement on passive stress/strain 

 

 

Fig. 22 Effect of confinement on rectangular stress block 
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Fig. 23 Effect of confinement on experimental moment/rotations 

 

 

Fig. 24 Effect of confinement on theoretical moment/rotations 
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Compared with Karthik’s Approach 

 

The proposed rectangular concrete stress/strain block is compared with that proposed by 

Karthik and Mander (2010) (which also allows for concrete confinement) for specimen B4-

3.5C in Fig. 25 and specimen B4-1.5C in Fig. 26 and details of these specimen are shown in 

Table 3. It shows that the main difference between these two stress blocks is the ductility at 

large rotation such as that at points D and E in Fig. 15. This difference in ductility likely 

arises because Karthik and Mander’s work is based on a size-independent stress/strain 

relationship and from the application of the empirical hinge length proposed by Sawyer 

(1965). Figures 27 and 28 compare Karthik and Mander’s M/θ with the case ‘theoretical with 

residual strength’ as well as the experimental M/θexp of confined concrete beams in Figs. 18 

to 20; the empirically derived rotation of the hinge θexp is obtained from Eq. (15). It is shown 

in Eq. (15) that the hinge length Ldef may affect θexp but it also has been described previously 

this effect is small and can be ignored.  

 

Importantly, it is found when applying Karthik and Mander’s full-interaction approach, that 

two layers of tensile longitudinal reinforcement in Fig. 11(f) are yielded, while from 

proposed approach the top-layer tensile reinforcement is not yielded, and this results in a 

significant variation in the predicted strength for all specimens shown in Fig. 27. 
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(a) (b) 

  

(c) (d) 

 

Fig. 25 Rectangular concrete stress block for specimen B4-3.5C for point in Fig. 15: (a) 

point A; (b) point B; (c) point D; (d) point E 
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(a) (b) 

  

(c) (d) 

 

Fig. 26 Rectangular concrete stress block for specimen B4-1.5C for point in Fig. 15: (a) 

point A; (b) point B; (c) point D; (d) point E 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

 

Fig. 27 Moment/Rotations of over-reinforced confined beam with specimen number: (a) 

B2-2.6C; (b) B4-3.5C; (c) B4-2.6C; (d) B4-1.5C; (e) B4-2.6L; (f) B312; 
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(a) (b) 

  

(c) (d) 

 

Fig. 28 Moment/Rotations of over-reinforced confined beam (a) B313; and under-

reinforced confined beam (b) S1B0; (c) S2B2; (d) S2B3 

 

Conclusions 

 

A mechanics based approach has been described to quantify the concrete passive stress/strain 

in prisms due to lateral confinement of the concrete from stirrups, tubes and wraps. It has 

been shown that this passive stress/strain from prisms can be used directly in RC beam 

analyses. Furthermore, this passive stress/strain has been simplified to a rectangular stress 

block that is suitable for beam analyses not only for strength but also ductility. 
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The concrete rectangular passive stress/strain has been used in a segmental analysis of over-

reinforced and under-reinforced RC beams with stirrups. It has been shown that there are 

three key points in quantifying the moment/rotation and consequently the load/deflection 

behaviour which are: the moment/rotation at the onset of concrete softening which helps 

quantify the ascending moment/rotation branch; the moment/rotation at the maximum 

strength of the passively restrained concrete which helps quantify the moment capacity; and 

the moment/rotation when the passive stress/strain is fully developed which quantifies the 

ductility. Closed form solution to give moment/rotation of a hinge for these three key points 

have been derived and are compared with test data extracted from load/deflection test data 

of fourteen under-reinforced and over-reinforced beams with good correlation.  

 

Appendix A. Notation 

 

The following symbols are used in this paper: 

Ac = cross-section area of concrete which interacts with reinforcement 

in tension stiffening analysis 

Ar = cross-section area of reinforcement 

bf  = width of reinforcement plate 

Dci = depth of confined cross-section 

Di = confinement reinforcement length 

Di2 = width of confined cross-section 

D0 = beam depth 

D02 = beam width 

dl = longitudinal reinforcement diameter 

dNA = depth of neutral axis 

dW = wedge depth 

Ec  = elastic modulus of concrete 
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Er = modulus of reinforcement 

fcc  = peak strength of confined concrete by assuming single sliding 

failure 

fct = tensile capacity of concrete 

fc0  = peak strength of unconfined concrete from cylinder tests 

fy-l = yield capacity of longitudinal reinforcement 

hcr = separation of shear-sliding plane interface  

k  = bond-slip stiffness in tension stiffening analysis 

La = shear span 

Lb = half-length of beam 

Lcrt  = critical length which is the minimum length required to achieve 

the maximum debond force  

Ldef = deformed length 

Lper  = total length of potential debonding failure plane of reinforcement 

in tension stiffening analysis  

Lwdg = wedge length 

Max = moment 

Mmax = maximum moment 

Pax = shear load 

Pconc = compressive concrete force 

Pconf = confinement force from reinforcement 

Pfr  = fracture capacity of reinforcement 

PIC  = debond force of confinement reinforcement 

Ppl = confinement force from plate reinforcement along shear failure 

plane 
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Pplb  = confinement force in tube of depth bf 

Ppl1 = confinement force per unit depth from plate  

Prc = force in longitudinal compressive reinforcement 

Prt = force in longitudinal tensile reinforcement 

Pst = confinement force from one leg of stirrups 

Pst1  = confinement force per unit depth from stirrups 

Pyld = yield capacity of confinement reinforcement 

rc  = ductility factor of confined concrete 

S = slip displacement  

Sax = axial component of slip 

Scr = crack spacing 

Slat = lateral component of slip S 

Slat-deb  = lateral component of slip when debond developed to plate ends  

Slat-fIC = lateral component of slip at PfIC when Lcrt<Lconf and PIC<Pfr 

Slat-fr  = lateral component of slip when confinement reinforcement starts 

to fracture when Lcrt<Lconf and PIC<Pfr  

Slat-fr2  = lateral component of slip when confinement reinforcement starts 

to fracture when Lcrt<Lconf and PIC>Pfr  

Slat-fr3  = lateral component of slip when confinement reinforcement starts 

to fracture when Lcrt>Lconf  

Slat-IC = lateral component of slip at commencement of IC debonding  

Slat-IC2 = lateral component of slip when confinement reinforcement is fully 

debonded  

Slat-yld = lateral component of slip when reinforcement starts to yield when 

Lcrt<Lconf and PIC<Pyld  
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Slat-yld2  = lateral component of slip when reinforcement starts to yield when 

Lcrt<Lconf and PIC>Pyld  

Slat-yld3 = lateral component of slip when confinement reinforcement starts 

to yield when Lcrt>Lconf  

Ss  = stirrup spacing  

S# = specimen reference number 

S’lat = tangential component of Slat 

xci = x-coordinate of polygon centroid 

yci = y-coordinate of polygon centroid 

α = parameter in beam flexural analysis to determine the magnitude of 

simplified rectangular stress block 

αs = inclination of failure plane 

β = cylinder parameter in tension stiffening analysis 

γ = parameter in beam flexural analysis to determine the position of 

simplified rectangular stress block 

θ = rotation of wedge 

θ1 = rotation of wedge of segment with Ldef equal to Scr/2 

Δ = crack face slip 

Δal = total crack face slip of segment 

Δfr = crack face slip at fracture of longitudinal tensile reinforcement 

ΔIC = slip of confinement reinforcement at crack face when debond 

starts  

Δm = mid-deflection 

Δrc = crack face slip of longitudinal compressive reinforcement 

Δrt = crack face slip of longitudinal tensile reinforcement when Ldef = 

0.5Scr 
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Δrt-1.5 = crack face slip of longitudinal tensile reinforcement when Ldef = 

1.5Scr 

Δtop = deformation at top fibre of confined concrete 

Δtop1 = deformation at top fibre of confined concrete of segment with Ldef 

equal to Scr/2 

Δyld = crack face slip at onset of yielding of longitudinal tensile 

reinforcement 

δ  = slip between reinforcement and adjacent concrete  

δmax = δ when τB reduces to zero  

δ-exp = deflection due to rotation of wedge 

δ-exp = deflection outside hinge region 

δ1 = δ at τBmax 

εax = axial strain when axial stress is equal to σax 

εcc  = strain at fcc for confined concrete 

εcu = ultimate strain when residual strength is ignored and axial stress 

decrease to zero 

εc0 = strain at fc0 for unconfined concrete 

εfr = confinement reinforcement strain at Pfr 

εIC  = confinement reinforcement strain at PIC 

εm  = material strain of concrete 

εmax = strain at σmax 

εS = sliding strain caused by slip S 

εSdeb = sliding strain at Slat-deb 

εSfr  = sliding strain at Slat-fr 

εSIC = sliding strain at Slat-IC 
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εSIC2  = sliding strain at Slat-IC2 

εst = average strain in longitudinal tensile reinforcement 

εSyld  = sliding strain at Slat-yld 

εSyld2  = sliding strain at Slat-yld2 

εtop = strain of top fibre of confined concrete 

εyld  = confinement reinforcement strain at Slat-yld 

εz = confinement reinforcement strain when debonding is complete or 

when there is no bond 

ρS = longitudinal tensile reinforcement ratio 

σax = axial stress 

σconf = lateral confining stress applied on concrete 

σconffr = lateral confining stress from confinement reinforcement at Pfr 

σconfIC = lateral confining stress from confinement reinforcement at PIC 

σconfyld  = lateral confining stress from confinement reinforcement at Pyld 

σconf0  = lateral confining stress of unconfined concrete and equals zero 

σconpl = lateral confining stress of from plate reinforcement 

σconst  = lateral confining stress of from stirrups 

σcu = ultimate stress at εcu 

σcu2 = stress at 1.5εcu 

σmax = maximum axial stress of key points of passive stress/strain after 

the onset of sliding 

σN  = confining stress normal to single-sliding plane 

σN0 = normal stress at fc0 for unconfined concrete 

rc = stress in longitudinal compressive reinforcement 
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rs = residual strength 

rt = stress in longitudinal tensile reinforcement 

S = axial stress of passively confined concrete by assuming single-

sliding failure 

Sdeb = axial stress at Slat-deb 

Sfr = axial stress at Slat-fr 

SIC = axial stress at Slat-IC 

SIC2 = axial stress at Slat-IC2 

Syld = axial stress at Slat-yld 

Syld2 = axial stress at Slat-yld2 

τ = shear stress along single-sliding plane 

τB  = bond stress existing between reinforcement and concrete 

τBmax = maximum τB 

τC = bond stress at PIC 

τm = shear-friction material capacity 

 

Appendix B. Quantification of Passive Stress/Strain 

 

The confinement mechanism that induces the concrete passive stress/strain described 

previously in qualitative terms is now quantified. The whole procedure has been described 

elsewhere (Hao 2018b) and only a summary is given here. As the concrete in beams softens 

due to a single sliding plane (Visintin et al. 2012b), this will be applied in the ensuing 

analyses. 

 

Partial Interaction Properties and Behaviours 
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Shear Friction Properties 

 

The shear-stress capacity τm can be simplified in the following linear form (Hao 2017) 

 

  ( )m N NA B S C D        (16) 

 

where σN is the stress normal to the sliding plane and the coefficients A, B, C and D are 

functions of the unconfined concrete strength fc0. As an example, the following were derived 

by Hao (2017). 

 

When σN < σN0, where σN0 is the normal stress at the peak axial stress fc0 of unconfined 

concrete and which is given by  

 

  
2

0 0 sinN c sf    (17) 

 

where αs is the sliding angle as shown in Fig. 1(a) and is assumed to equal 26o (Ali et al. 

2010; Jensen 1975; Mattock and Hawkins 1972; Visintin et al. 2015) then 

 

2

0 0 0 0[(0.00112 0.337) -0.000784 0.0152 0.556] 1.50 0.105m c N c c N cf f f S f          (18) 

 

When σN0 ≤ σN < 3σN0, then 

 

2

0 0 0 0[(0.00112 0.0636) -0.000784 0.0620 0.556] 0.498 0.298m c N c c N cf f f S f          (19) 

 

Bond/Slip and IC Debonding 

 

Any appropriate bond-slip material property can be used. Consider the bilinear bond-slip in 

Fig. B1 as an example. For stirrups, the parameters in Fig. B1 have the following values 

(Haskett et al. 2008) 

 

 max 02.5B cf    (20) 
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 1 1.5mm    (21) 

 

 max 15mm    (22) 

 

where fc0 is in MPa. The IC debonding resistance PIC (Ali et al. 2008) is 

 

 max maxIC B per r rP L E A    (23) 

 

which occurs at a crack face slip ΔIC that is also Slat-IC/2 and where 

 

 maxIC     (24) 

 

The critical length required to develop the debonding resistance PIC (Ali et al. 2008) is 

 

 
2

crtL



   (25)  

 

where the parameter λ is 

 

 max

max

1 1
( )

B per

r r c c

L

E A E A





    (26) 

 

The length of the fully debonded confinement reinforcement Di in Fig. 3 for a rectangular 

prism is 

 

 i ciD D   (27) 

 

and for a circular prism is 

 

 
2

ci
i

D
D


   (28) 
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Hence when no bond exists or the confinement reinforcement has been fully debonded, the 

strain in confinement reinforcement is constant along Di at εZ such that Slat = εZDi. 

 

 

Fig. B1 Bond slip material properties 

 

Quantification of Active Stress/Strain 

 

Ascending Branch 

 

The following peak stress fcc, such as those at points C, E and G in Fig. 2, are functions of 

the lateral confining stress σconf (Hao 2018b) 

 

  

2

2

sin cos cos

sin cos sin

conf s s conf s

cc

s s s

C D
f

C

    

  

 



  (29) 

 

where the strain εcc at fcc is (Visintin et al. 2015) 

 

  0 0

0

[1 ( )]
conf

cc c

c

A
f


     (30) 

 

in which A0 is a coefficient that equals 13.9 and where the unconfined concrete strain εc0 at 

fc0 is 

 

  
6 3

0 01.74 10 2.41 10c cf        (31) 
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where fc0 is in MPa. The ascending branch of the active stress/strain such as O-P1-E in Fig. 

2 (Popovics 1973) is 

 

  

1

c

ax
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cc
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ax
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cc

r

f
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
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
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  (32) 

 

where rc is the following ductility factor 

 

  c
c

cc
c

cc

E
r

f
E







  (33) 

 

in which the concrete elastic modulus Ec in MPa can be taken as (ACI 1992) 

 

  03320 6900c cE f    (34) 

 

For ease of analysis, the ascending branch O-P1-E of the active stress/strain in Fig. 2 can be 

linearised to O-P2-E as 

 

  
cc

ax ax

ccf


    (35) 

 

where fcc and εcc can be obtained from Eqs. (29) and (30). 

 

Descending Branch 

 

For a given lateral confining stress σconf and slip S in Fig. 1(a), the following axial stress σax 

is derived from the shear friction material properties (Hao 2018b) 
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2 2

2 2

sin cos cos cos

sin cos sin sin

conf s s conf s conf s

ax

s s s s

AS BS C D

AS C
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

   

   


 
  (36) 

 

The axial strain εax can be written as (Hao 2018b) 

 

  
coscc s

ax ax

cc def

S

f L

 
     (37) 

 

where fcc and εcc can be obtained from Eqs. (29) and (30). 

 

Quantification of Passive Stress/Strain 

 

A slightly conservative assumption is made in that the sliding plane crosses the centre, such 

as plane C-B-C’ in Fig. 1(b), which is shown in Figs. B2(a) and (b) for a rectangular and 

circular prism respectively (Hao 2018a; Hao 2018b). After the onset of sliding, the lateral 

component of slip Slat in Fig. 1(a) will cause the bond stress τB as shown which induces a 

shear force Pconf and which is balanced by a confinement force of equal magnitude. As Slat 

increases, the bond stress may build up to the maximum value τC and, subsequently, a 

maximum confinement force due to bond PIC should yield or fracture not occur. This PIC is 

referred to as the intermediate crack debonding resistance (Seracino et al. 2007; Yuan et al. 

2001) which occurs at a crack face slip ΔIC that depend on the bond-slip material properties. 
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Fig. B2 Development of bond stress for (a) rectangular section (b) circular section 

 

Lateral Extension due to Sliding Slat 

 

As Slat in Fig. B2 gradually increases, the bond stress τB builds up over the critical length Lcrt. 

When Lcrt is less than confinement reinforcement length Lconf, the bond stress τB can be fully 

developed to τC when PIC is less than the yield capacity Pyld or fracture capacity Pfr. Any 

further increase in Slat causes the bond stress block to move away from the sliding plane 

towards the anchor points A or A1 whilst the confinement force remains at PIC. After 

completely debonding, the strain in the debonded reinforcement equals εIC and any further 

increase in Slat may lead to a yield strain εyld or fracture strain εfr over Di. When Lcrt is larger 

than Lconf, debonding does not occur and the confinement reinforcement may directly yield 
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at Pyld or fracture at Pfr. For all these scenarios, Slat will be derived as below; full details are 

shown elsewhere (Hao 2018b). 

 

Case 1: Lconf ≥ Lcrt; PIC < Pyld; PIC < Pfr  

 

The Pconf/Slat relationship for the case where PIC is less than Pyld or Pfr and Lconf ≥ Lcrt is shown 

in Fig. B3(a). The reinforcement debonds at (Slat-IC, PIC) at point A. Then the fully developed 

bond stress τC in Fig. B2 moves towards the anchor points at (Slat-deb, PIC) at point B in Fig. 

B3(a) after which the reinforcement completely debonds at (Slat-IC2, PIC) at point C. The 

confinement reinforcement may either yield at (Slat-yld, Pyld) at point E and then fracture at 

(Slat-fr, Pfr) at point D or directly fracture at point D. For these points Slat is given as follows 

(Hao 2018b) 

 

 2 )(  ;   ;   conf crt IC yld Ia Cl t I fC I rC LS L P P P P        (38) 

 

 (  );   ;   2 2 ) ( colat deb IC I t CC i crt nf cr I yld IC frS L L P P PD L P         (39) 

 

 2  ;   ;   )( conf cr llat IC II t C y d IC ri fC LS PD L P P P       (40) 

 

 lat yld yld iS D    (41) 

 

 lat fr frac iS D    (42) 

 

where Lcrt, Di for rectangular prisms and cylinders, and ΔIC can be obtained from Eqs. (25), 

(27), (28) and (24) respectively. 
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Fig. B3 Pconf and Slat relationship for: (a) debonding prior to fracture or yield and Lcrt≤Lconf; 

(b) fracture or yield without debonding and Lcrt≤Lconf; (c) Lcrt>Lconf 

 

Case 2: Lconf ≥ Lcrt; PIC ≥ Pyld; PIC ≥ Pfr 

 

When Lconf ≥ Lcrt and the IC debonding resistance is larger than the yield capacity Pyld or 

fracture capacity Pfr, debonding does not occur and the Pconf/Slat behaviour is shown in Fig. 

B3(b). The confinement reinforcement may: either yield at (Slat-yld2, Pyld) at point A; then 

completely yield at (Slat-yld, Pyld) at point E; and ultimately fracture at (Slat-fr, Pfr) at point D; 

or directly fracture at (Slat-fr2, Pfr) at point B. From Hao (2018b) 

 

 2 ( ) ;   ;   2 conf crt IC yld I

yld

lat yld IC
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C fr

P
S

P
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 2 ) ( ;   ;   2
fr

lat c Cfr IC

I

conf rt I yld IC

C

fr

P
S L L P P P

P
P       (44) 

 

where ΔIC and PIC can be obtained from Eqs. (24) and (23) respectively. 

 

Case 3: Lconf < Lcrt 

 

When Lconf < Lcrt, debonding does not occur as shown in Fig. B3(c). This case is similar to 

the previous Case 2 in Fig. B3(b). The only difference is that Slat-yld2 at point A and Slat-fr2 at 

point B are replaced by the following Slat-yld3 and Slat-fr3 as shown in Fig. B3(c) (Hao 2018b). 
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where Di can be obtained from either Eq. (27) for rectangular prisms or Eq. (28) for cylinders. 

The parameter λ in Eqs. (45) and (46) can be obtained from Eq. (60). 

 

Lateral Confining Stress 

 

The lateral confining stress from stirrup reinforcement σconst and plate reinforcement σconpl 

for rectangular prisms have been derived elsewhere and can be written as (Hao 2018b) 
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2 st
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where Ss is the stirrup spacing, Di2 is the length of the cross-section length within transverse 

reinforcement as shown in Fig. 3(b), Pst is the confinement force from one leg of the stirrups 

and Ppl is the confinement force from a plate acting along the whole sliding plane. 

 

With regard to cylinders, the lateral confining stress σconf be written as (Hao 2018a) 

 

 
2 conf

conf

ci

P

D
    (49) 

 

Then σconst or σconpl can be derived by substituting the following confinement force per unit 

depth from stirrups Pst1 or plate Ppl1 for Pconf in Eq. (49) 
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P
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b
   (51) 

 

where Pplb is the confinement force in the tube of depth bf. 

 

Axial Stresses σS and Strains εax at Key Points  

 

For an arbitrary key point in Fig. B3, the confinement force Pconf and Slat can be obtained as 

described above. The lateral confining stress σconf can be derived from either Eq. (47), (48) 

or (49) by substituting the confinement force Pconf. Then σconf and Slat can be substituted into 

following equations to derive the axial stress σS and axial strain εax (Hao 2018b) 
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ax S
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f L


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
     (53) 

 

Hence the axial stress and strain for each key point in Fig. B3 can be derived such as those 

shown in Fig. 2 and linking these key points gives the passive stress/strain. 

 

The residual stress σrs as shown in Fig. 2 for stirrup reinforced prisms is written as follows 

(Li et al. 2001) 

 

 max0.4rs     (54) 

 

The whole procedure is summarized in Fig. 4. 

 

Appendix C. Example of a Beam Analysis 

 

Specimen B4-1.5C by Mansur et al. (1997) will be analysed for the second case in Fig. 17 

which uses a linear ascending branch of the passive stress/strain without residual stress and 

with concrete spalling. The passive stress/strain parameters α and γ in the flexural analysis 

for each key point in Figs. 15 and 16 have been derived previously. Specimen B4-1.5C which 

is over-reinforced has two layers of tensile reinforcement as in Fig. 11(f). From compatibility 

in Fig. 11(b), the deformation in the tensile reinforcement layers are 

 

 
0 1
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where Lrt1 and Lrt2 are shown in Fig. 11(e). First assume that the deformed length Ldef in Fig. 

11(a) is 1.5Scr such that Ldef encompasses an interior crack as shown; this assumption will 

be checked later. Full details of each step of the analysis are as follows. 
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Point A in Fig. 15 

 

The deformed length in Fig. 11(a) is Ldef = 1.5Scr = 259mm where Scr is from Eq. (9). The 

concrete stress block is O-A-A’ in Fig. 6 and for the equivalent rectangular stress block the 

parameters α and γ are 0.750 and 0.667 respectively as derived previously. The deformation 

at the top fibre Δtop = 0.661 mm is obtained from Eq. (8). The analysis consists of pivoting 

about Δtop in Fig. 11(b) and finding the neutral axis depth dNA in which equilibrium is 

achieved in Fig. 11(e). 

 

For a given or fixed value of dNA, the forces in Fig. 11(e) can be derived as follows. The 

concrete force Pconc is obtained by substituting dNA as well as parameters α and γ into Eq. (7). 

As can be seen in Figs. 11(a) and (b), the deformation required to determine the force in the 

tensile reinforcement for Ldef = 1.5Scr are Δrt1 = Δrt1-1.5/3 or Δrt2 = Δrt2-1.5/3. The relationship 

between the tensile reinforcement force Prt and Δrt is bilinear as follows (Zhang et al. 2017) 
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 ( )rt yld rt yldP P       (58) 

 

where before the yield of tensile reinforcement, Prt is obtained from Eq. (57) and after 

yielding Prt is kept constant at Pyld that is from Eq. (58) and Δyld = 0.222 mm can be derived 

from the following (Sturm et al. 2018) 

 

  tanh
2

yld cr
yld

r r

P S

E A





 
   

 
  (59) 

 

where λ is 

 

  k    (60) 

 

and where the prism parameter β and bond-slip stiffness k can be expressed as 
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  (61) 

 

  
max

1

Bk



   (62) 

 

where Ec is concrete modulus and Er is modulus of reinforcement.  

 

However, Prt cannot be directly obtained from Δrt as the relationship between them is bilinear 

from Eqs. (57) and (58) so the solution is given as follows. Firstly, assume that the two layers 

of tensile longitudinal reinforcement are not yielded. It has been illustrated previously that 

before yielding Prt is obtained from Eq. (57) and after yielding Prt is from Eq. (58). Then as 

the tensile longitudinal reinforcement are assumed to be not yielded, the following force in 

two-layer tensile reinforcement Prt1 and Prt2 as shown in Fig. 11(e) can be obtained from Eq. 

(57) 

 

 
1

1

( )

3

i up rt NA yld

rt top

NA yld

D c L d P
P

d

  
 


  (63) 

 

 
2

2

( )

3

i up rt NA yld

rt top

NA yld

D c L d P
P

d

  
 


  (64) 

 

Equilibrium in Fig. 11(e) is 

 

 r 1 r 2 0conc t tP P P      (65) 

 

Substituting Eqs. (63) and (64) as well as Pconc from Eq. (7) into Eq. (65) and solving for the 

neutral axis depth gives dNA = 107 mm and consequently the force Pconc = 599 kN, Prt1 = 424 

kN and Prt2 = 174 kN from Eqs. (7), (63) and (64) respectively. Previously, it had been 

assumed that the two layers of tensile reinforcement had not yielded and whether this 

assumption is correct will be checked. From compatibility in Fig. 11(a) Δrt2-1.5 equals 0.215 

mm from Eq. (56) and Δrt1-1.5 equals 0.524 mm from Eq. (55). Subsequently, Δrt2 = Δrt2-1.5/3 



 

302 

 

= 0.0717 mm and Δrt1 = Δrt1-1.5/3 = 0.175 mm which are both smaller than Δyld = 0.222 mm 

from Eq. (59) and consequently both have not yielded and previous assumption is correct. 

The results of the analyses are given in Fig. C1. From geometry the rotation θ from Eq. (13) 

equals 0.00617 and the moment from Eq. (14) equals 84.9 kN·m. 

 

 

Fig. C1 Segmental analysis of specimen B4-1.5C at point A in Fig. 15 when Ldef equals 

1.5Scr: (a) segment; (b) displacement profile; (c) strain profile; (d) stress profile; (e) force 

profile; (f) cross-section 

 

Points B and D in Fig. 15 

 

At the next point B in Fig. 15, stress block O-A-C-C’ in Fig. 6 is developed for which α = 

0.852 and γ = 0.853. The deformation at the top fibre Δtop is obtained from Eq. (8) and equals 

1.63 mm. Assuming both layers longitudinal tensile reinforcement have not yielded then 

substituting Prt1 from Eq. (63), Prt2 from Eq. (64) and Pconc from Eq. (7) into Eq. (65) and 

solving gives dNA = 122 mm. From compatibility Δrt1 and Δrt2 in Fig. 11(a) equals 0.316 mm 

and 0.0916 mm. However Δrt1 is larger than Δyld = 0.222 mm from Eq. (59). Hence the 

bottom-layer tensile reinforcement yields and has the force Prt1 = Pyld = 540 kN. 

Consequently, previous assumption that both layers longitudinal tensile reinforcement have 

not yielded is incorrect. Substituting Prt1 = Pyld as well as Prt2 from Eq. (64) and Pconc from 
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Eq. (7) into the force equilibrium Eq. (65) gives dNA = 111 mm. Hence the forces can be 

determined by substituting this dNA = 111 mm to give Pconc = 905 kN from Eq.(7), Prt1 = Pyld 

= 540 kN and Prt2 = 365 kN from Eq. (64). The results are shown in Fig. C2. The rotation 

and moment can be obtained from Eqs. (13) and (14) which are 113 MPa and 0.0147 

respectively. 

 

 

Fig. C2 Segmental analysis of specimen B4-1.5C at point B in Fig. 15 when Ldef equals 

1.5Scr: (a) displacement profile; (b) strain profile; (c) stress profile; (d) force profile 

 

The moment/rotation analysis at points D in Fig. 15 is similar to that at point B. The only 

different input is the value of parameters α and γ. The results are given in Fig. C3. The top-

layer of longitudinal reinforcement has not yielded for all the key points in Fig. 15, hence, 

this beam is an over-reinforced beam. 

 

It is worth noting that the largest wedge length Lwdg from Eq. (12) equals 208 mm at point D 

in Fig. 15 which is larger than Scr/2 and smaller than 1.5Scr. Hence, the initial assumption at 

the start of the analyses of Ldef = 1.5Scr is correct. 
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Fig. C3 Segmental analysis of specimen B4-1.5C at point D in Fig. 15 when Ldef equals 

1.5Scr: (a) displacement profile; (b) strain profile; (c) stress profile; (d) force profile 
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Chapter 5— Behaviour of Steel Tube Confined Concrete 

 

Introduction 

 

In the journal paper below, the mechanics based closed-form solutions of the passive 

stress/strain response developed in Chapter 3 for reinforced concrete members are now 

extended to cover steel tube confined concrete with the additional effect of shrinkage for the 

first time. These closed-form solutions of the passive stress/strain are then simplified to a 

rectangular stress block based on the mechanics described in Chapter 4 for application in 

flexural analyses. Then a parametric study is conducted to investigate the effect of shrinkage 

on the passive stress/strain response.  
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Passive Stress/Strain Relationship for the Design of Steel Tube Confined 

Concrete 

X. Hao, P. Visintin and D. J. Oehlers 

Abstract 

 

The encasement of concrete in steel tubes provides an efficient form of composite steel and 

concrete construction. As an additional benefit, the steel tube provides passive confinement 

to the concrete which can increase both the concrete strength and in particular the ductility, 

thereby, enhancing that of the composite steel and concrete structure. The difficulty in 

utilising this additional benefit is in quantifying the passive concrete confinement and, 

consequently, the concrete passive stress/strain as it depends on the encased concrete size, 

shape, and material properties such as the concrete shrinkage. This paper derives, through 

mechanics, the concrete passive stress/strain from the partial-interaction concrete shear-

friction properties for any configuration of the composite structure, for any material 

properties and for any concrete shrinkage. Furthermore, the passive stress/strain relationship 

is simplified to a rectangular stress block that can be used in standard design approaches to 

allow for the benefits of concrete confinement in design. 

 

Keywords: confined concrete, steel tube confined concrete (STCC), composite steel and 

concrete columns  

 

1. Introduction 

 

In the past two decades, steel tubes have been widely used as confinement reinforcement in 

concrete structures as they can significantly enhance the strength and especially the ductility 

[1-3]. Most current research approaches focus on concrete filled steel tubular (CFST) prisms 

where both the concrete and steel tube are simultaneously loaded axially [4-9]. However in 

practical buildings, this sometimes is not the case as the steel tube does not sustain axial 

loads [10-12]. In this case, the steel tube only acts as confinement reinforcement and this 

type of column is referred to as a steel tube confined concrete (STCC) column [11]. 

Furthermore, STCC columns have several benefits compared with CFST columns as they 

avoid longitudinal buckling of the steel tube [13, 14] and have a better ductility performance 
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to resist seismic loads [15]. In this paper, only the concrete in STCC columns under 

concentric loads will be investigated. However it is worth bearing in mind that the 

stress/strain of the passively confined concrete that is developed in this research can be 

applied directly to the analysis of members under flexural load [16]. 

 

There are only a limited number of approaches for predicting the behaviour of STCC prisms 

or columns, as most available approaches focus on CFST prisms. Approaches to predicting 

the behaviour of STCC prisms can be split mainly into two categories: empirical approaches 

and numerical approaches. 

 

The former approach treats STCC as a new material and develops the concrete stress/strain 

from empirical observations. For example, O’Shea et al. [17] applied Mander’s equation [18] 

for stirrup reinforced prisms. O’Shea’s approach [17] can only be applied for circular-section 

specimens and requires the peak stress fcc and strain εcc at fcc which are derived from 

regression analyses of O’Shea’s test results [19]. The simple form of these approaches makes 

their application easy. However outside the range of the regressed databases, the accuracy 

of these approaches may decrease and, furthermore, in these approaches the size effect is not 

considered. The importance of the size-effect is recognised [20] but there is no available 

empirical model to quantify it. 

 

In the finite element method which is also a numerical approach, the concrete and steel tube 

are treated separately and the passive concrete stress/strain is derived from the interaction 

between them [5, 21]. The procedure is summarized as follows: impose an axial strain from 

which the lateral strain can be derived from Poisson’s ratio and subsequently the lateral 

confining stress; consequently the concrete element is assumed to be under a triaxial 

confining stress and from the active stress/strain properties its behaviour can be determined 

[5, 21]. However, the active stress/strain of concrete used in these numerical approaches 

normally does not consider the size effect. Furthermore, although these models can give a 

more accurate prediction of the concentrically loaded behaviour, the complexity of these 

approaches may hinder their application.  

 

With regard to the effect of shrinkage on the behaviour of STCC prisms, it was found that 

shrinkage for normal strength concrete can be ignored but for high strength concrete this 
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effect is critical [1]. Most current approaches to predicting the behaviour of STCC prisms 

do not allow for shrinkage. 

 

In this paper, an approach is developed to predict the passive stress/strain of concentrically 

loaded STCC prisms that allows for the size effect and which can incorporate different cross-

sectional shapes and shrinkages. This approach is based on fundamental mechanics that uses 

the shear-friction [22-27] material properties. This fundamental approach has been used 

elsewhere for prisms confined with stirrups or FRP wraps under either concentric loads [28, 

29] or flexural loads [16]. In this paper, the application of this approach specifically to STCC 

prisms is described and, furthermore, the fundamental mechanics is extended for the first 

time to allow for the displacements due to shrinkage. 

 

The procedure to construct the concrete passive stress/strain from the shear-friction partial 

interaction material properties is described and it is shown how to allow for shrinkage in the 

derivation. This is followed by a validation to compare the proposed approach with 

published tests and then a parametric study to show the effect of shrinkage on different 

specimen sizes and concrete strengths. 

 

2. Confinement mechanism 

 

Consider the concrete prism encased in a steel tube of thickness t in Fig. 1(a). The dimension 

Dci is the width of the prism in the direction of sliding. The deformation length Ldef is any 

length of prism that encompasses the sliding plane; for concentrically loaded prisms it is 

normally the specimen height Lprsm. The length Ldef allows for the size effect of the concrete 

stress/strain. 

 

In the lateral direction in Fig. 1(a), the concrete shrinks εshDci such that a void could form 

between the concrete and tube all around the concrete. It is worth bearing in mind that the 

gap due to shrinkage is very small [30]. However the shrinkage gap will help reduce the 

already weak chemical bond such that no bond will be considered. 
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Fig. 1 (a) STCC prisms under concentrically loaded with: (b) rectangualr section or (c, d) 

circular section 

 

2.1 Behaviour prior to concrete confinement 

 

Prior to loading and after shrinkage and for ease of explanation, the concrete prism is shown 

as A-B-C-D-E-F in Fig. 1(a). In the direction of potential sliding, the gap due to shrinkage 

Slat-sh is 

 

  lat sh sh ciS D    (1) 

 

which is shown in Fig. 1(a) to the left. Because of the shrinkage gap and prior to sliding, the 

concrete behaves as unconfined. 
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An axial displacement that induces an axial stress σax and an axial strain in the material εm is 

applied directly to the concrete in Fig. 1(a) until the peak unconfined strength fc0 is reached, 

whereupon, the sliding plane B’-B-E’-E occurs at an angle αs. Any further increase in the 

axial displacement causes rigid body sliding along the plane such that the prism above the 

sliding plane moves from A-B-E-F to A’-B’-E’-F’ as shown. The axial component of the 

slip along the sliding plane S is Sax and the lateral component is Slat such that Sax = Slatcotαs. 

Hence the axial component of the strain due to sliding s= Sax/Ldef, which is the effective 

axial strain due to sliding, is given by [31, 32] 

 

  
cotlat s

S

def

S

L


    (2) 

 

Prior to the shrinkage gap closing, the concrete does not bear onto the tube so the concrete 

is unconfined such that σconf in Fig. 1(a) is zero. Hence when the axial stress σax is applied in 

Fig. 1(a) and after sliding, the total axial strain εax is comprised of two components that is 

the material strain εm and the additional sliding strain εS as shown at level σax in Fig. 2. 

 

 

Fig. 2 Passive stress/strain 

 



 

318 

 

The lateral component of slip required to close the shrinkage gap is Slat-sh from Eq. (1). Hence 

the sliding strain required to close the shrinkage gap εS-sh is obtained by substituting Slat-sh 

from Eq. (1) into Eq. (2) to give 

 

  
cotsh ci s

S sh

def

D

L

 
     (3) 

 

This strain is shown at a stress level σS-sh in Fig. 2 between the ascending branch O-A and 

descending branch A-B for the unconfined concrete that is at σconf = 0. Hence from the known 

material stress/strain of the unconfined concrete O-A-B in Fig. 2, it is a question of finding 

the level of σS-sh at which there is the known strain εS-sh between the ascending and 

descending branches to give point A’. Point A’ being the axial stress σax and axial strain εax 

when the shrinkage gap has closed that is the point on the passive stress/strain at the onset 

of confinement. Hence on applying the axial load in Fig. 1(a), the passive concrete 

stress/strain path follows O-A-A’ in Fig. 2 after which the concrete bears against the tube 

inducing confinement and its benefits. Once confinement occurs, then the concrete no longer 

acts as unconfined that is the active stress/strain does not follow the path O-A-B in Fig. 2 

but the material properties are enhanced such that the active stress/strain will follow a path 

such as O-C-D or O-E-F which depends on the confinement stress σconf. 

 

2.2 Confinement benefit on concrete stress/strain 

 

Once the shrinkage gap has been closed due to sliding in Fig. 1(a), any further increase in 

axial displacement will cause the concrete prism to bear against the tube causing the tube to 

go into lateral tension Pconf and, consequently, inducing lateral compression σconf across the 

concrete tube interface as shown. This is the passive confinement pressure on the concrete 

which is induced at the concrete tube interface and subsequently across the sliding plane.  

 

2.2.1 Rectangular section 

 

For a rectangular section, the lateral tensile forces in the tube Pconf are shown in Fig. 1(b). 

Both of these forces, that is 2Pconf, passively restrain the sliding action and they act over the 

width of the sliding plane Di2 and depth of the sliding plane Dci/tanαs in Fig. 1(a). Should 
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Pconf be defined as the confinement force in the tube, over the depth of the sliding plane that 

is Dci/tanαs in Fig. 1(a), per unit depth of tube, then the lateral confinement pressure across 

the sliding plane [28] is 

 

 
2

2 conf

conf rct

i

P

D
     (4) 

 

For a given confinement σconf from Eq. (4), the active stress/strain, such as for example O-

C-D in Fig. 2 when the tube has yielded, can be obtained from the known material properties 

at that confinement. It is now a question of determining where on C-D this confinement force 

σconf starts to act or is acting, bearing in mind that the concrete is only passively restrained 

that is σconf is not acting all the time. To determine this, we need to know at which level of 

axial stress σS the effective strain εS acts.  

 

Let the strain in the tube along H’-K’ and I’-J’ in Fig. 1(b) be εtube so that the lateral expansion 

of the tube Slat-rct is 

 

  blat rc ct tu e iS D    (5) 

 

which on substituting into Eq. (2) gives the effective strain due to sliding in a rectangular 

section of 

 

  
cottube ci s

S rct

def

D

L

 
     (6) 

 

As an example, consider when the confinement pressure is sufficient to cause the steel tube 

to start to yield laterally that is when σconf in Fig. 1(a) equals σconf-yld. Let the concrete with 

this active confinement have the properties O-C-D in Fig. 2. When the strain εtube in Fig. 1(b) 

is the steel strain at the start of yielding εyld1, then the effective strain due to sliding εS-yld1 can 

be obtained from Eq. (6) by substituting εtube = εyld1. There are now two components of the 

sliding strain as well as the material strain εm such that the total strain is given by 

 

  ax m S sh S rct         (7) 
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where on substituting εS-sh and εS-rct from Eqs. (3) and (6) respectively gives 

 

  
cot

( )ci s
ax rct m tube sh

def

D

L


         (8) 

 

As shown in Fig. 2 at level σS-yld1, the total sliding strain is now that due to the tube εS-yld1 

and that due to shrinkage εS-sh. Once this known strain is fitted between the ascending branch 

and descending branches for the actively confined concrete at σconf-yld, then this gives both 

the axial stress at which this occurs σS-yld1 and axial strain εax-yld1 and subsequently point C’ 

of the passive stress/strain. Hence from the start of loading, the concrete passive stress/strain 

follows the path O-A-A’-C’. Another point between A’ and C’ could be obtained by 

repeating the above analysis at a confinement pressure σconf between zero and that due to 

yield. 

 

Should the steel have a material yield plateau and have a yield strain or effective yield strain 

just prior to strain hardening of εyld2, then substituting εyld2 for εyld1 in the previous analysis 

gives point C” in Fig. 2. Hence the passive stress/strain follows the path O-A-A’-C’-C”. 

Should εS-yld2+εS-sh exceed O-D then this simply means that the shear friction properties of 

the concrete [33] along the sliding plane are not strong enough to cause εyld2 that is the 

concrete strength governs which may be referred to as concrete failure. 

 

The above analysis can be repeated at the steel fracture strain εtube = εfr. The active stress at 

this confinement is shown as σconf-fr in Fig. 2. Should the sliding strain εS-fr + εS-sh be greater 

than O-F, then fracture of the tube does not occur so that the passive stress/strain can be 

considered to be O-A-A’-C’-C” with a rapid descent. As the fracture strain is normally 

considerably greater than that of the yield strain, fracture of the tube is unlikely to occur [4]. 

 

2.2.2 Circular section 

 

Consider the circular section in Fig. 1(c). The concrete shrinks such that radius of the 

concrete reduces from Dci/2 to Dci(1-εsh)/2 as shown. For ease of explanation, the concrete 

cylinder has been placed touching the tube to the right such that the vertical axes of the 



 

321 

 

concrete O’-Y’ is εshDci/2 to the right of the vertical axes of the tube O-Y. On applying an 

axial load σax to the cylinder in Fig. 1(a) and on reaching the unconfined concrete strength 

fc0, a sliding plane will form. After which, the upper part of the cylinder will move as a rigid 

body to the left. Sliding will continue until Slat equals εshDci after which passive confinement 

will occur. The fundamental mechanism illustrated in Fig. 1(a) is the same for both the 

rectangular and circular sections. However, there is a slight difference in quantifying the 

lateral displacements [29]. 

 

In the rectangular section in Fig. 1(b), the upper and lower portions of the tube H’-K’ and 

I’-J’ provide the confinement force. The angle between these forces and the sliding plane 

(90o) is always constant. Hence the confinement pressure is not affected by the level at which 

the section in Fig. 1(b) is taken in Fig. 1(a). That is an analysis at the mid-depth of the sliding 

plane in Fig. 1(a) would give the same results as that closer to the ends of the sliding plane. 

This is not the case for the circular section in Fig. 1(d).  

 

At section O-N in Fig. 1(d), neither the lateral movement that stresses the tube S’lat nor the 

force in the tube Pconf are in line with the direction of sliding. However research has shown 

[34] that even though the force in the tube is not in line with the sliding plane, it does provide 

exactly the same confinement. Furthermore an analysis at section L-M, which is equivalent 

to that in Fig. 1(b) where the sliding plane and force are in line, gives a safe and only slightly 

conservative solution. Hence the lateral confining stress for a circular section σconf-crc is [29] 

 

 
2 conf

conf crc

ci

P

D
     (9) 

 

The strain in the tube over half the circumference in Fig. 1(d) allows the lateral slip, so Eq. 

(4) for a rectangular section becomes for a circular section 

 

 
2

tub
c

e ci
lat crS

D
    (10) 

 

and Eq. (6) becomes 
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cot

2

tube ci s
S crc

def

D

L

 
     (11) 

 

and Eq. (8) becomes 

 

 
cot

( )
2

ci s tube
ax crc m sh

def

D

L

 
        (12) 

 

3. Quantification of confinement 

 

The active concrete stress/strain at different confinement levels in Fig. 2 is shown generically 

in Fig. 3 in terms of the concrete confinement properties (εcc, fcc) and the idealised maximum 

slip strain (εcu, 0) at specific confinements σconf. Both the ascending branch O-A-P and the 

descending branch P-R-M are nonlinear. Any active stress/strain [18, 31, 35], preferably 

with size dependency [31], can be used. For example Appendix B gives approaches based 

on shear friction material properties that can be applied using closed form or numerical 

solutions. 

 

 

Fig. 3 Active stress/strain 

 

For ease of analysis, the non-linear stress/strain variation in Fig. 3 can be idealised as linear 

ascending O-B-P and linear descending P-Q. Examples of which are also given in Appendix 
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B based on shear friction material properties. These linear variations give the following 

simplified approach to quantifying the passive stress/strain. 

 

The co-ordinates of the bilinear variation O-B-P-Q in Fig. 3 are fcc, εcc and εcu where for a 

concrete with an unconfined concrete strength fc0 and lateral confining stress σconf, fcc is the 

peak axial stress, εcc is the strain at fcc and εcu is the ultimate strain. The bilinear active 

stress/strain can be determined as follows 

 

 

( )

( )

cc
ax ax ax cc

cc

ax cu
ax cc ax cc

cc cu

f

f

   


 
  

 

 


 



  (13) 

 

From the geometry of Fig. 3, the sliding strain εS is 

 

 
cu S

S cu

ccf

 
     (14) 

 

where the sliding strain εS consists of two components: the sliding strain due to the tube 

strain εtube which is either εS-rct from Eq. (6) for a rectangular section or εS-crc from Eq. (11) 

for a circular section; plus the sliding strain due to shrinkage εS-sh from Eq. (3). Inserting 

these two components of εS into Eq. (14) gives the axial stress at which the sliding strain is 

accommodated which for a rectangular cross-section is 

 

 
cot

[ ( )]ci s cc
S rct cu tube sh

def cu

D f

L


   


      (15) 

 

or for a circular cross-section is 

 

 
cot

[ ( )]
2

ci s tube cc
S crc cu sh

def cu

D f

L

 
  


      (16) 

 

The strain at which this occurs can be obtained by substituting σS into Eq. (13) to give for 

the descending branch P-Q in Fig. 3 
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( )S cc cu

ax cu

ccf

  
 


    (17) 

 

The procedure is described in Appendix B and summarized in Table 1. For a given strain in 

the steel tube εtube in Column 2, the confinement force Pconf can be derived and, subsequently, 

the lateral confining stress σconf from Eq. (4) or (9) which is shown in Column 3. For this 

σconf, the axial stress σS in Column 4 can be determined by substituting the given εtube from 

Column 2 into Eq. (15) or (16) and, subsequently, the axial strain εax in Column 5 from Eq. 

(17). 

 

Table 1. Coordinates of the stress blocks in Fig. 4 using bilinear active stress/strain 

 

Key 

points in 

Fig. 2 

εtube σconf σS εax 

Coordinates of 

stress block O-

A’-C’-C1’ 

Coordinates of 

stress block O-

A’-C’-C”-C1” 

Coordinates of 

stress block O-

A’-C”-C1” 

① ② ③ ④ ⑤ ⑥ ⑦ ⑧ 

O 0 0 0 0 
(εax0, σax0), 

(εax4, σax4) 

(εax0, σax0), (εax5, 

σax5) 

(εax0, σax0), (εax4, 

σax4) 

A 0 0 fc0 
εc0 from 

Eq.(36) 
   

A’ 0 0 Eq. (15) or (16) Eq. (17) (εax3, σax3) (εax4, σax4) (εax3, σax3) 

C’ εyld1 σconf-yld Eq. (15) or (16) Eq. (17) (εax2, σax2) (εax3, σax3)  

C” εyld2 σconf-yld Eq. (15) or (16) Eq. (17)  (εax2, σax2) (εax2, σax2) 

C1’ εyld1 σconf-yld Eq. (15) or (16) Eq. (17) (εax1, σax1)   

C1” εyld2 σconf-yld Eq. (15) or (16) Eq. (17)  (εax1, σax1) (εax1, σax1) 

E’ εfr σconf-fr Eq. (15) or (16) Eq. (17)    

 

4. Rectangular stress block 

 

The above analysis has explained how in Fig. 2 the points A’, at the onset of confinement, 

C’, at the onset of yield, and C”, at the completion of yield, can be derived from the active 

concrete stress/strain. Hence the concrete passive stress/strain can be approximated as the 

multilinear variation O-A-A’-C’-C” followed by a rapid decent. To simplify the analysis, 

this can be approximated to O-A’-C’-C”. Flexural analyses [16] have shown that: using the 

stress block O-A’-C’-C1’ in Fig. 4(a), that is limiting the concrete strain to that at the peak 

concrete strength, can give a good approximation of the flexural capacity; and, furthermore, 

using the stress block O-A’-C’-C”-C1” in Fig. 4(b), that is limiting the strain to that at the 

completion of yield, can give a good approximation of the flexural ductility. A further 

simplification of the stress block O-A’-C’-C”-C1” in Fig. 4(b) is the stress block O-A’-C”-
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C1” in Fig. 4(c). To allow for a standard flexural analysis, these multilinear stress blocks 

have been further simplified to rectangular stress blocks as follows. 

 

 

Fig. 4 Conrete stress block for analysis of: (a) strength; (b) ductility; (c) simplified ductility 

 

4.1 Derivation of rectangular stress blocks 

 

The derivation of key points of the passive stress/strain has been given in Appendix B and 

summarised in Table 1. It has been explained previously that: at key point A’ in Column 1 

in Table 1 confinement starts; at key point C’ the confinement reinforcement yields; and at 

key point C”, yield is completed. Other key points including C1’ and C1” as shown in Fig. 4 

have the same abscissae with C’ and C” respectively and are located on the x-axis. To 

determine the rectangular stress block, the coordinates of the vertexes of the original stress 

block are required and these vertexes are the key points in Column 1. These coordinates are 

assumed to be numbered in the order of their occurrence along the stress block’s perimeter 

in the anticlockwise order. Take stress block O-A’-C’-C1’ in Fig. 4(a) as an example, the 
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first point is fixed at the origin O in Fig. 4(a) at (εax0, σax0) at (0, 0). The next points at (εax1, 

σax1), (εax2, σax2) and (εax3, σax3) are defined at points C1’, C’ and A’ respectively in 

anticlockwise order of the stress block which is shown in Column 6 in Table 1. Then the 

area of the stress block is given by 

 

 

1

( 1) ( 1)

0

1

2

N

rec axi ax i ax i axi

i

A    


 



      (18) 

 

and the abscissa of the centroid by 

 

 
1

( 1) ( 1) ( 1)

0

1
( )

6

N

ax ci axi ax i axi ax i ax i ax

irecA
      



   



       (19) 

 

where N is the number of key points [36]. It is worth noting that substituting the maximum 

value for N into Eqs. (18) and (19) gives an undefined point (εaxN, σaxN). Take stress block 

O-A’-C’-C1’ in Fig. 4(a) as an example, when substituting N = 4 into Eqs. (18) and (19), the 

coordinate (εax4, σax4) is not defined as described previously and this point is assumed to be 

the same as (εax0, σax0) at (0, 0) [36]. 

 

To determine the simplified rectangular stress block with the same area Arec and the same 

abscissa of the centroid as the original stress block, parameters α and γ are required; these 

two parameters determine the width and length of this rectangular stress block which equals 

αfc0 and γεax1 respectively [16]. They have been derived elsewhere [16] and can be written 

as  

 

 
02( )ax1 x

rec

a ci c

A

f

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


  (20) 

 

 
2( )ax1 ax ci

ax1

 





   (21) 
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where Arec and εax-ci are obtained from Eqs. (18) and (19). Take the stress block O-A’-C’-C1’ 

in Fig. 4(a) as an example. It is simplified to the rectangular stress block D-B-C-C1’ and they 

have the same area Arec and the same abscissa of the centroid that is εax-ci at point P [16]. 

 

4.2 Stress block for analysis of strength 

 

The concrete passive stress block for strength O-A’-C’-C1’ in Fig. 2 which is shown in Fig. 

4(a) is simplified to the rectangular stress block D-B-C-C1’. The coordinates of the stress 

block O-A’-C’-C1’ have been described as an example previously and substituting these 

coordinates in Column 6 in Table 1 into Eqs. (18) and (19) gives  

 

  1 2 2 3 3 2

1

2
rec ax ax ax ax ax axA           (22) 

 

 
 

1 2 1 2 2 3 2 3 3 2

1 2 2 3 3 2

( ) ( )( )

3

ax ax ax ax ax ax ax ax ax ax
ax ci

ax ax ax ax ax ax

         


     


   


 
  (23) 

 

and then the parameters α and γ can be obtained from Eqs. (20) and (21) respectively. 

 

4.3 Stress block for analysis of ductility 

 

Consider the stress block O-A’-C’-C”-C1” in Fig. 2 for analysis of ductility which is shown 

in Fig. 4(b) where it is simplified to the rectangular stress block D-B-C-C1” [16].  

 

Similarly to the coordinates of the key points in Column 6 in Table 1, the coordinates of the 

stress block O-A’-C’-C”-C1” are shown in Column 7 in Table 1.These coordinates are used 

in Eqs. (18) and (19) and numbered along the stress block’s perimeter in an anticlockwise 

order where the first point at (εax0, σax0) is fixed at the origin O in Fig. 4(a). Substituting the 

coordinates of the stress block O-A’-C’-C”-C1” in Column 7 in Table 1 into Eqs. (18) and 

(19) gives 

 

  1 2 2 3 3 2 3 4 4 3

1

2
rec ax ax ax ax ax ax ax ax ax axA                 (24) 
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 
1 2 1 2 2 3 2 3 3 2 3 4 3 4 4 3

1 2 2 3 3 2 3 4 4 3

( ) ( )( ) ( )( )

3

ax ax ax ax ax ax ax ax ax ax ax ax ax ax ax ax
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      
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   
 

(25) 

 

and subsequently the parameters α and γ from Eqs. (20) and (21) respectively. 

 

For simplification, stress block O-A’-C’-C”-C1” in Fig. 4(b) can be simplified to stress block 

O-A’-C”-C1” in Fig. 4(c). The coordinates of this case are similar to that of the previous 

stress block O-A’-C’-C”-C1” shown in Column 7 in Table 1 and the only difference is that 

coordinate of point C’ is removed as shown in Column 8 in Table 1. Substituting these 

coordinates of stress block O-A’-C”-C1” in Column 8 in Table 1 into Eq. (18) and (19) gives  

 

  1 2 2 3 3 2

1

2
rec ax ax ax ax ax axA           (26) 
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   

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  (27) 

 

and subsequently parameters α and γ from Eqs. (20) and (21) respectively. 

 

5. Validation 

 

The above theoretical approach has been compared with sixteen concentrically loaded 

circular and rectangular specimens with normal strength concrete. As the effect of shrinkage 

has been found to be negligible in normal strength concrete specimens [1], shrinkage has 

been ignored in this validation. However the effect of shrinkage will be studied in detail in 

the ensuing parametric study. 

 

Four closed-form solutions from Appendix B are compared with the experimental results of 

concentrically loaded STCC circular cylinders [11, 19] in Figs. 5 to 6 and those with 

rectangular cross-sections [11] in Fig. 7. Details of the specimens are shown in Table 2. The 

closed-form solutions in Figs. 5 to 7: use a non-linear descending branch for the active 
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stress/strain that is derived from linear shear friction properties [33]; assume either a single 

sliding failure or a circumferential failure as derived in Appendix B; assume either no-

interaction between the steel tube and concrete or full-interaction such that they act together 

with the same total axial strain. The passive stress/strains in Figs. 5 to 7 are labelled as 

follows: ‘E’ for the experimental stress/strain from the tests; ‘S’ for the theoretical approach 

in which a single sliding failure plane is assumed; ‘C’ when a circumferential failure type is 

assumed; ‘SB’ when the theoretical approach assumes both a single sliding failure and full-

interaction between the concrete and steel tube; and ‘CB’ when the approach assumes both 

a circumferential failure type and full-interaction between concrete and steel tube. 

 

Table 2 Details of STCC Prisms in Validation 

 

S# Ref. Section 
Ldef Dci fc0 t fyld 

σconfyld/fc0 
(mm) (mm) (MPa) (mm) (MPa) 

S10CL80C [19] circular 665 188 56.4 0.86 211 0.034 

S12CL80C [19] circular 662 188 56.4 1.13 186 0.040 

S10CL50C [19] circular 658 188 38.2 0.86 211 0.050 

S12CL50C [19] circular 657 188 38.2 1.13 186 0.059 

S20CL80C [19] circular 656 186 56.4 1.94 256 0.095 

S20CL50C [19] circular 660 186 38.2 1.94 256 0.140 

A-CTRC-3d [11] circular 600 196 59.4 2.00 263 0.090 

A-CTRC-2d [11] circular 630 204 59.4 3.00 254 0.126 

A-CTRC-5d [11] circular 630 204 59.4 3.00 346 0.137 

A-CTRC-4d [11] circular 630 204 42.4 3.00 254 0.171 

A-CTRC-1d [11] circular 450 144 59.4 3.00 254 0.178 

A-STRC-3d [11] rectangular 600 196 59.4 2.00 263 0.090 

A-STRC-5d [11] rectangular 630 206 42.4 2.00 263 0.120 

A-STRC-2d [11] rectangular 630 204 59.4 3.00 254 0.126 

A-STRC-4d [11] rectangular 630 204 42.4 3.00 254 0.171 

A-STRC-1d [11] rectangular 450 144 59.4 3.00 254 0.178 

 

Note: S# is the specimen number and fyld is the yield strength of steel tube. 

 

Four numerical approaches from Appendix B are also compared with the above experimental 

results for circular section specimens in Figs. 8 to 9 and for rectangular sections in Fig. 10. 

In addition, they are also compared with O’Shea’s approach [17], that was derived for 

circular section prisms only, in Figs. 8 to 9. These numerical approaches use a non-linear 

active stress/strain and non-linear shear friction properties. The passive stress/strains in Figs. 
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8 to 10 are labelled in the same way as those in Figs. 5 to 7 with the addition of O’Shea’s 

approach [17] which is labelled ‘O’. 

 

In the sets of figures in Figs. 5-10, the confinement stress σconf-yld/fc0 increases from the first 

of the set of figures labelled (a) onwards. It can be seen in each of these sets of figures that 

the correlation between the experimental results and the theoretical model with full 

interaction labelled SB or CB improves with increasing confinement σconf. This is because 

the confinement pressure increases the bond between the concrete and tube such that full 

interaction is more likely to occur. In addition from previous research it was shown that for 

rectangular cross-sections, single sliding failure is more likely to occur [28, 37, 38] and for 

circular sections circumferential failure more likely [29, 39, 40]. Hence, single sliding failure 

is recommended for rectangular sections as also suggested by the results in Fig. 10. In 

contrast, circumferential failure is recommended for circular cross sections such as 

suggested by the results in Figs. 8 and 9. Furthermore, it is worth noting that the two 

specimens in Figs. 5(a) and (b) had almost the same properties and only a slight difference 

in the lateral confining stress (σconf-yld/fc0 equals 0.034 and 0.040 respectively). However, 

when compared with the experimental stress/strain, the closed-form solutions show poor 

correlation in Fig. 5(a) and good correlation in Fig. 5(b) which indicates the scatter of the 

experimental results. 

 

In general there is good correlation with the numerical model labelled C in Figs. 8-10 in 

which there is no bond between the concrete and the steel tube and, furthermore, in which a 

circumferential sliding plane is assumed as might occur for specimens of this size. Allowing 

for full-interaction, that is the numerical model labelled CB, does increase the strength 

slightly and may lead on occasion to better correlation with the test results. However, it is 

felt that this bond should not be relied upon in design as it does occasionally lead to an 

unconservative results as in Figs. 10(b), 10(d) and 10(e) where it would appear that the bond 

had broken down. As would be expected, the numerical models in Figs. 8-10 give a better 

correlation with the test results than the simplified closed form solutions in Figs. 5-7. 

However these simplified closed form solutions do in general give a lower bound, that is a 

safe approximation, and are more convenient to use in design. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

 

Fig. 5 Closed-Form solution of STCC circular cylinders with specimen number: (a) 

S10CL80C (b) S12CL80C (c) S10CL50C (d) S12CL50C (e) S20CL80C (f) S20CL50C  
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(a) (b) 

  
(c) (d) 

 

 

(e)  

 

Fig. 6 Closed-Form solution of STCC circular cylinders with specimen number: (a) A-

CTRC-3d (b) A-CTRC-2d (c) A-CTRC-5d (d) A-CTRC-4d (e) A-CTRC-1d 
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(a) (b) 

  
(c) (d) 

 

 

(e)  

 

Fig. 7 Closed-Form solution of STCC rectangular prisms with specimen number: (a) A-

STRC-3d (b) A-STRC-5d (c) A-STRC-2d (d) A-STRC-4d (e) A-STRC-1d 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

 

Fig. 8 Numerical model to simulate STCC circular cylinders with specimen number: (a) 

S10CL80C (b) S12CL80C (c) S10CL50C (d) S12CL50C (e) S20CL80C (f) S20CL50C 
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(a) (b) 

  
(c) (d) 

 

 

(e)  

 

Fig. 9 Numerical model to simulate STCC circular cylinders with specimen number: (a) A-

CTRC-3d (b) A-CTRC-2d (c) A-CTRC-5d (d) A-CTRC-4d (e) A-CTRC-1d 
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(a) (b) 

  
(c) (d) 

 

 

(e)  

 

Fig. 10 Numerical model to simulate STCC rectangular prisms with specimen number: (a) 

A-STRC-3d (b) A-STRC-5d (c) A-STRC-2d (d) A-STRC-4d (e) A-STRC-1d 

 

6. Parametric study 
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In the following parametric study: only the cases in Fig. 4(a) for strength and in Fig. 4(b) for 

ductility are investigated; the passive stress/strain is derived using linear shear friction 

properties which results in a non-linear descending branch of the active stress/strain; and a 

single sliding failure type is used. The procedure is derived in Appendix B and in Table 4 

and is similar to that summarised in Table 1. The only difference is that for the key points in 

Column 1 after the occurrence of sliding, the axial stress σS in Column 4 is obtained from 

Eq. (46) or (48) and the axial strain εax in Column 5 is obtained from Eq. (47) or (49). Details 

of the specimens in this parametric study are shown in Table 3. 

 

Table 3. Details of STCC Prisms in Parametric Study 

 

S# 
Figure 

number 
Section 

εsh Ldef Dci fc0 t fyld 
σconf-yld/fc0 

με (mm) (mm) (MPa) (mm) (MPa) 

Dci100 Figs.11,12 circular 0 300 100 60 2 300 0.200 

Dci100 Figs.11,12 circular 500 300 100 60 2 300 0.200 

Dci100 Figs.11,12 circular 1000 300 100 60 2 300 0.200 

Dci300 Figs.11,12 circular 0 900 300 60 6 300 0.200 

Dci300 Figs.11,12 circular 500 900 300 60 6 300 0.200 

Dci300 Figs.11,12 circular 1000 900 300 60 6 300 0.200 

fc030 Figs.13,14 circular 0 900 300 30 3 300 0.200 

fc030 Figs.13,14 circular 500 900 300 30 3 300 0.200 

fc030 Figs.13,14 circular 1000 900 300 30 3 300 0.200 

fc090 Figs.13,14 circular 0 900 300 90 9 300 0.200 

fc090 Figs.13,14 circular 500 900 300 90 9 300 0.200 

fc090 Figs.13,14 circular 1000 900 300 90 9 300 0.200 

Dci100 Fig.15 circular 1000 300 100 60 2 300 0.200 

Dci200 Fig.15 circular 1000 600 200 60 4 300 0.200 

Dci300 Fig.15 circular 1000 900 300 60 6 300 0.200 

 

Note: figure number is where the figure is shown. 
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Table 4. Coordinates of the stress blocks in Fig. 4 using non-linear descending branch of 

active stress/strain and linear shear friction properties 

 

Key 

points in 

Fig. 2 

εtube σconf σS εax 

Coordinates of 

stress block O-

A’-C’-C1’ 

Coordinates of 

stress block O-

A’-C’-C”-C1” 

Coordinates of 

stress block O-

A’-C”-C1” 

① ② ③ ④ ⑤ ⑥ ⑦ ⑧ 

O 0 0 0 0 
(εax0, σax0), 

(εax4, σax4) 

(εax0, σax0), (εax5, 

σax5) 

(εax0, σax0), (εax4, 

σax4) 

A 0 0 fc0 εc0 from Eq.(36)    

A’ 0 0 Eq. (46) or (48) Eq. (47) or (49) (εax3, σax3) (εax4, σax4) (εax3, σax3) 

C’ εyld1 σconf-yld Eq. (46) or (48) Eq. (47) or (49) (εax2, σax2) (εax3, σax3)  

C” εyld2 σconf-yld Eq. (46) or (48) Eq. (47) or (49)  (εax2, σax2) (εax2, σax2) 

C1’ εyld1 σconf-yld Eq. (46) or (48) Eq. (47) or (49) (εax1, σax1)   

C1” εyld2 σconf-yld Eq. (46) or (48) Eq. (47) or (49)  (εax1, σax1) (εax1, σax1) 

E’ εfr σconf-fr Eq. (46) or (48) Eq. (47) or (49)    

 

Figure 11 shows the results of the analysis for strength as in Fig. 4(a). The results in Fig. 

11(a) and Fig. 11(c) are for a 100 mm diameter specimen and those in Fig. 11(b) and Fig. 

11(d) for a 300 mm specimen. It can be seen that varying the shrinkage strain over a very 

wide range from zero to 1000 με only has a relatively minor effect on the passive 

stress/strains in Figs. 11(a) and (b) and, consequently, that in the rectangular stress blocks in 

Figs. 11(c) and (d). However, comparing the passive stress/strains with the unconfined 

stress/strain shows a very significant increase in both strength and ductility that is the 

beneficial effect of confinement. Figure 12 shows the results for the analysis for ductility in 

Fig. 4(b). Once again shrinkage has only a minor effect on the stress blocks and confinement 

a huge beneficial effect on both the strength and ductility. A comparison of Fig. 11(b) with 

Fig. 12(c) shows only a minor change for the large diameter specimen (300 mm) which is in 

contrast to the major change between Fig. 11(a) and Fig. 12(a) for the small diameter 

specimen (100 mm). Hence the benefits of confinement increase with reducing diameter. 

 

In Fig. 13, the strength of the concrete is changed from 30 MPa in Figs. 13(a) and (c) to 90 

MPa in Figs. 13(b) and (d) in this analysis for strength. It can be seen that shrinkage has little 

effect on the low strength concrete but causes a significant reduction in the strength and 

ductility of the high strength concrete. A similar outcome can be seen in the ductility analysis 

in Fig. 14. It can also be seen in both the strength and confinement analyses that the 

confinement substantially increases both the strength and ductility. 
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(a) (b) 

  
(c) (d) 

 

Fig. 11 (a) Strength;100 mm (b) Strength;300 mm (c) Strength;100 mm (d) Strength;300 

mm 
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(a) (b) 

  
(c) (d) 

 

Fig. 12 (a) Ductility; 100 mm (b) Ductility; 300 mm (c) Ductility; 100 mm (d) Ductility; 

300 mm 

 

In Fig. 15, the specimen diameter was varied from 100 mm to 300 mm and a large shrinkage 

strain of 1000 με was imposed. It can be seen that a substantial change in shrinkage has only 

a minor effect on the strength analysis in Figs. 15(a) and (c). However it has a significant 

effect on the ductility in Figs. 15(b) and (d) where it can be seen that the beneficial effects 

of confinement reduce significantly with increasing diameter. Once again, the strength and 

ductility are significantly increased with confinement. 
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(a) (b) 

  
(c) (d) 

 

Fig. 13 (a) Strength; 30 MPa (b) Strength; 90 MPa (c) Strength; 30 MPa (d) Strength; 90 

MPa 
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(a) (b) 

  
(c) (d) 

 

Fig. 14 (a) Ductility; 30 MPa (b) Ductility; 90 MPa (c) Ductility; 30 MPa (d) Ductility; 90 

MPa 
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(a) (b) 

  
(c) (d) 

 

Fig. 15 (a) Strength (b) Ductility (c) Strength (b) Ductility 

 

7. Conclusion 

 

A procedure has been developed to quantify the passive concrete stress/strain of concrete 

encased in steel tubes which allows for any configuration of the composite steel and concrete 

member and for the effects of concrete shrinkage. The analysis requires the active 

stress/strain properties of the confined concrete. These properties can be determined directly 

from tests on confined concrete or as shown in this paper from the shear/friction properties 

of the concrete which are readily available or relatively easy to obtain experimentally. The 

procedure does not depend on member level testing and can be applied to both circular and 

rectangular sections. 

 

A numerical shear/friction analysis technique is described to derive the passive stress/strain 

properties which have then been simplified to provide closed form solutions for the passive 
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stress/strain. These in turn have been further simplified into rectangular stress blocks 

convenient for standard design approaches for composite steel and concrete members 

subjected to both flexure and axial loads. These passive stress/strains have then been 

compared with sixteen test results of members with circular or rectangular sections. 

Confinement varied from 5% to 23% of the unconfined concrete strength. The numerical 

approach gave good correlation with the test results. It was shown how full interaction could 

be achieved particularly with high confinements but that the bond required for full 

interaction could not be relied upon. The closed form solutions were shown to give a lower 

bound to the strengths and ductility as would be expected and, hence, are suitable for a safe 

design, 

 

A parametric study was then used to determine the influence of shrinkage and confinement 

on specimens up to 300 mm width. It was shown that confinement substantially increases 

both the concrete strength and ductility but the beneficial effects of confinement reduce with 

increasing specimen diameter. Furthermore shrinkage has little effect on the behaviour of 

normal strength concrete but a substantial effect on high strength concrete in which the 

benefits of confinement reduce with increasing shrinkage. 

 

Appendix A. Notation 

 

The following symbols are used in this paper: 

Arec = area of the stress block 

Dci = depth or diameter of confined cross-section 

Di2 = width of confined cross-section 

Ec  = elastic modulus of concrete 

fcc  = peak strength of confined concrete by assuming single sliding 

failure 

fcccir  = peak strength of confined concrete by assuming circumferential 

wedge failure 

fcc-yld = fcc for lateral confining stress at yield σconf-yld 

fcc-fr = fcc for lateral confining stress at fracture σconf-fr 

fc0  = peak strength of unconfined concrete from cylinder tests 
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fyld = yield strength of steel tube 

hcr = separation of shear-sliding plane interface  

Ldef = deformed length 

Lprsm = specimen height 

Pax = axial load 

Pconf = 
confinement force from reinforcement acting along the whole 

sliding plane 

Pfr  = fracture capacity of reinforcement 

Pyld = yield capacity of confinement reinforcement 

rc  = ductility factor of confined concrete 

S = slip displacement  

Sax = axial component of slip 

Slat = lateral component of slip S 

Slat-crc-all = total lateral component of slip to cause sliding strain for circular 

section 

Slat-crc = lateral expansion of circular section tube 

Slat-fr  = lateral component of slip when confinement reinforcement starts 

to fracture 

Slat-rct = lateral expansion of rectangular section tube 

Slat-rct-all = total lateral component of slip to cause sliding strain for 

rectangular section 

Slat-sh = lateral component of slip to close the shrinkage gap 

Slat-yld1 = lateral component of slip when reinforcement starts to yield 

Slat-yld1 = lateral component of slip at the end of reinforcement yielding 

S# = specimen reference number 

S’lat = tangential component of Slat 

t = steel tube thickness 

α = parameter in beam flexural analysis to determine the magnitude of 

simplified rectangular stress block 

αs = sliding angle  

γ = parameter in beam flexural analysis to determine the position of 

simplified rectangular stress block 

εax = axial strain when axial stress is equal to σax 



 

346 

 

εax5 = axial strain at S = 5 mm 

εax-ci = x-coordinate of stress block centroid 

εax-crc = εax for circular section 

εax-rct = εax for rectangular section 

εax-yld1 = axial strain at the onset of tube yielding 

εax-yld2 = axial strain at the end of tube yielding 

εcc  = strain at fcc for confined concrete 

εcc-fr  = strain at fcc-fr 

εcc-yld  = strain at fcc-yld 

εcu = ultimate strain for confined concrete 

εc0 = strain at fc0 for unconfined concrete 

εfr = confinement reinforcement strain at Pfr 

εm  = material strain of concrete 

εm-fr = material strain at fracture 

εm-sh  = material strain to close shrinkage gap 

εm-yld1  = material strain at the onset of yielding 

εm-yld2  = material strain at the end of yielding 

εS = sliding strain caused by slip S 

εS-crc = sliding strain due to tube strain in a circular section 

εS-fr = sliding strain at fracture 

εS-rct = sliding strain due to tube strain in a rectangular section 

εS-sh = sliding strain to close shrinkage gap 

εS-yld1 = sliding strain at the onset of yielding 

εS-yld2 = sliding strain at the end of yielding 

εsh = shrinkage strain 

εtube = strain in tube 

εyld1  = tube strain at the onset of tube yielding 

εyld2  = tube strain at the end of tube yielding 

σax = axial stress 

σax5 = axial stress at S = 5 mm 

σconf = lateral confining stress applied on concrete 

σconf-crc = lateral confining stress for circular section 

σconf-fr = lateral confining stress from confinement reinforcement at Pfr 
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σconf-rct = lateral confining stress for rectangular section 

σconf-yld  = lateral confining stress from confinement reinforcement at Pyld 

σconf0  = lateral confining stress of unconfined concrete and equals zero 

σN  = confining stress normal to single-sliding plane 

σNcir  = confining stress normal to circumferential wedge 

σN0 = normal stress at fc0 for unconfined concrete 

S = axial stress of passively confined concrete by assuming single-

sliding failure 

Scir = axial stress of passively confined concrete by assuming 

circumferential failure 

S-fr = axial stress at fracture 

σS-g = guessed axial stress 

S-sh = axial stress to close shrinkage gap 

S-yld1 = axial stress at the onset of tube yielding 

S-yld2 = axial stress at the end of tube yielding 

τ = shear stress along single-sliding plane 

τcir = shear stress along circumferential wedge 

τm = shear-friction material capacity 

 

Appendix B. Quantification of confinements based on shear friction material 

properties 

 

The passive stress/strain is quantified using shear friction material properties. Full details 

that were originally developed for reinforced concrete elements are described elsewhere [28]. 

These are adapted here specifically for STCC prisms. 

 

B.1 Shear friction properties 

 

The crack width hcr in Fig. 1(a) is ignored as its contribution to both the axial and lateral 

strains is small compared with that due to S to give a slightly conservative assumption [22, 

24]. The material interaction between σN, τ and S, as in Fig. B1, are the shear friction material 

properties [22, 42, 43]. The non-linear shear friction property τm in Fig. B1 is a function of 



 

348 

 

the confining stress normal to the sliding plane σN, slip S and the unconfined concrete 

strength fc0 [27] that is 

 

 0( ; ; )m N cf S f    (28) 

 

which can be derived from actively confined cylinder tests [33, 42, 43]. These non-linear 

variations can be linearized to the following form [33] also shown in Fig. B1 

 

 ( )m N NA B S C D        (29) 

 

where A, B, C and D are coefficients of unconfined concrete strength fc0. As an example, the 

following linear shear friction properties were derived by Hao [33]: 

 

when σN < σN0, where 

 

 
2

0 0 sinN c sf    (30) 

 

and in which αs is the sliding angle as shown in Fig. 1(a) and is assumed to equal 26o [31, 

44-46], then 

 

2

0 0 0 0[(0.00112 0.337) -0.000784 0.0152 0.556] 1.50 0.105m c N c c N cf f f S f          (31) 

 

when σN0 ≤ σN < 3σN0, then 

 

2

0 0 0 0[(0.00112 0.0636) -0.000784 0.0620 0.556] 0.498 0.298m c N c c N cf f f S f         (32) 

 

which was derived for slips S less than 5 mm [33, 43] which is, therefore, the limit to the 

application of this equation. 
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Fig. B1 Shear friction material properties for fc0 = 40MPa 

 

B.2 Closed-Form solutions of active stress/strain 

 

This closed-form solution uses a linear ascending branch of the active stress/strain that is O-

B-P in Fig. 3 and the non-linear descending branch P-R-M derived from the linear shear 

friction properties from Eqs. (31) and (32) such as those shown in Fig. B1. 

 

B.2.1 Linear ascending branch 

 

The non-linear ascending branch of the active stress/strain O-A-P is linearized to O-B-P as 

shown in Fig. 3. However, the material strain O’-B from the linearized O-B-P may 

overestimate the material strain O’-A from the non-linear ascending branch O-A-P. Hence, 

the unconfined ascending branch O-A’-P1 is used to derive the material strain O’-A’ to give 

a safe solution for the ductility where P1 is at (εc0, fc0). Hence from Fig.3, the linear ascending 

branch is given by  
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0

0

c
ax ax

cf


    (33) 

 

in which εc0 can be obtained from Eq. (36).  

 

B.2.2 Linear descending branch 

 

To derive the linear descending branch, the coordinates of point P in Fig. 3, that is εcc and 

fcc, can be taken as follows [28] 

 

 

2

2

sin cos cos

sin cos sin

conf s s conf s

cc

s s s

C D
f

C

    

  

 



  (34) 

 

where C and D are the same as those in Eq. (29) and the strain εcc at fcc is [31] 

 

 0 0

0

[1 ( )]
conf

cc c

c

A
f


     (35) 

 

where A0 is equal to 13.9, fc0 is in MPa and εc0 is a function of fc0 as follows 

 

 
6 3

0 01.74 10 2.41 10c cf        (36) 

 

in which fc0 is in MPa. The ultimate strain εcu in Fig. 3 is also required to construct the linear 

descending branch. Consider point M where the slip S equals 5 mm, which is the maximum 

slip that can be used for the shear friction material properties in Eqs. (31) and (32). 

Substituting σconf and S = 5 mm into Eqs. (40) and (41) gives the axial stress σax5 and strain 

εax5 respectively which can be substituted into the following geometry equation to give the 

ultimate strain εcu 

 

 
5 5

5

cc ax ax cc
cu

cc ax

f

f

  








  (37) 
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after which the linear descending branch P-M-Q can be constructed by linking points P and 

Q. 

 

B.2.3 Non-Linear descending branch 

 

Along the sliding plane B’-E in Fig. 1(a), the confining stress σN and shear stress τ are 

resolved from the axial stress σax and lateral confining stress σconf as follows [33, 45] 

 

 ( )sin cosax conf s s        (38) 

 

 
2 2sin cosN ax s conf s        (39) 

 

Setting the shear stress τ from Eq. (38), that is from mechanics, to equal the shear stress 

material capacity τm from Eq. (29) gives the axial stress σax as a function of slip S and the 

lateral confining stress σconf as follows [28] 

 

 

2 2

2 2

sin cos cos cos

sin cos sin sin

conf s s conf s conf s

ax

s s s s

AS BS C D

AS C

      


   

   


 
  (40) 

 

The axial strain εax at σax can be obtained from the sum of the material strain εm and sliding 

strain 

 

 
cos s

ax m

def

S

L


     (41) 

 

in which εm is from Eq. (33). Substituting a series of slips S into Eq. (40) and (41) gives the 

non-linear descending branch P-R-M in Fig. 3. 

 

B.3 Closed-Form solutions of passive stress/strain 

 

B.3.1 Passive stress/strain using linear descending branch of active stress/strain 

 



 

352 

 

This simplified bilinear approach has been described previously in the main text. The axial 

stress can be obtained from Eq. (15) or (16) and the axial strain from Eq. (17) where fcc, εcc 

and εcu are obtained from Eqs. (34), (35) and (37). The whole procedure is summarised in 

Table 1. For the key points in Column 1: sliding occurs at point A in Fig. 2; confinement 

starts at point A’; the confinement reinforcement yields at point C’ and yielding ends at point 

C”; and the confinement reinforcement fractures at point E’. The strain in the tube εtube is 

shown in Column 2 in Table 1 and the lateral confining stress σconf is shown in Column 3 

which are substituted into the equations in Columns 4 and 5 to give the axial stress σS and 

strain εax. 

 

B.3.2 Passive stress/strain using non-linear descending branch of active stress/strain 

 

For a lateral component of slip Slat and for the lateral confining stress σconf from Eq. (4) or 

(9), substituting S = Slat/sinαs into Eq. (40) and (41) gives the following axial stress σS and 

strain εax [28] 

 

 

2

2

sin cos cos
sin sin

sin cos sin
sin

lat lat
conf s s conf s

s s

S

lat
s s s

s

S S
A C B D

S
A C

    
 



  


 
    
 

 
  

 

  (42) 

 

 
tan

lat
ax m

s def

S

L
 


    (43) 

 

where εm is from Eq. (33). As described previously, the following lateral components of slip 

Slat are comprised of that due to shrinkage from Eq. (1) and that due to the tube strain from 

Eq. (5) or (10), that is for a rectangular cross-section 

 

 lat rct all s ith ube cci DS D       (44) 

 

and for a circular cross-section 

 

 
2

lat crc all sh
u

ci
t be ciS

D
D


      (45) 
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These can be substituted into Eqs. (42) and (43) to give the axial stress and strain as a 

function of εtube which for a rectangular cross-section is 

 

2

2

( ) ( )
sin cos cos

sin sin

( )
sin cos sin

sin

tube sh ci tube sh ci
conf s s conf s

s s

S rct

tube sh ci
s s s

s

D D
A C B D

D
A C

   
    

 


 
  





  
    
 

 
  

 

  (46) 

 

 
( ) cottube sh ci s

ax rct m

def

D

L

  
 


    (47) 

 

and for a circular cross-section is 

 

2

2

( / 2 ) ( / 2 )
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sin sin

( / 2 )
sin cos sin

sin

tube sh ci tube sh ci
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s s

S crc

tube sh ci
s s s
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D D
A C B D
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A C
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 
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    
 

 
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 

 (48) 

 

 
( / 2 ) cottube sh ci s

ax crc m

def

D

L

  
 


    (49) 

 

where the material strain εm is obtained from Eq. (33). 

 

The whole procedure is summarised in Table 4 where substituting εtube from Column 2 and 

σconf from Column 3 into the equations in Columns 4 and 5 gives the axial stress and strain 

of the key points in Column 1. This procedure is similar to that summarized in Table 1; the 

only difference are the equations in Columns 4 and 5 to derive the axial stress and strain. It 

is worth noting that the points on the descending branch derived from linear shear friction 

properties from Eqs. (31) and (32) have a maximum slip S = 5 mm at point M in Fig. 2. 

Hence, the descending branch of the passive stress/strain using the linear shear friction 

properties from Eqs. (31) and (32) in the validation and parametric study are derived by 

linking C’-M in Fig. 2, where at point C’ the confinement reinforcement yields and M is the 
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maximum strain point. As an example, these are the limits to the closed form solutions in 

Fig. 6(c) and the analyses Fig. 12(a). 

 

B.4 Passive Stress/Strain from Numerical Model 

 

The way to construct the passive stress/strain numerically will be described in this section. 

Firstly, the non-linear shear friction properties, such as those shown in Fig. B1 which were 

derived from actively confined cylinder tests [33], are used in this numerical model. 

Secondly, the following non-linear ascending branch [31, 35], such as O-P-C in Fig. 2, is 

used 
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  (50) 

 

where fcc and εcc are obtained from Eqs. (34) and (35) and in which the ductility factor rc is 

 

 c
c

cc
c

cc

E
r

f
E







  (51) 

 

where the concrete elastic modulus Ec in MPa is 

 

 03320 6900c cE f    (52) 

 

Finally, the axial stress σS is obtained from iterative steps. The steps have been described in 

details elsewhere [33] and are summarised in Fig. B2 as follows: 

 

1. Before the occurrence of sliding, the loading path follows the non-linear unconfined 

ascending branch O-Z-A in Fig. 2 which is obtained from Eq. (50) by substituting fc0 and 

εc0 for fcc and εcc respectively [31, 35]. With regard to a point after the occurrence of 

sliding at point A in Fig. 2, guess an axial stress σS-g and impose a slip Sx. For the imposed 
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slip Sx, Slat equals Sxtanαs and when Sxtanαs is less than Slat-sh from Eq. (1), there is no 

confinement and Pconf equals zero. When Sxtanαs is larger than the Slat-sh, Sxtanαs can be 

substituted for Slat-all in Eq. (44) or (45) and rearranged to give εtube and from which the 

confinement force Pconf can be obtained. Substituting Pconf into Eq. (4) or (9) gives the 

lateral confining stress σconf. Then the shear stress τ from mechanics and the normal stress 

σN can be obtained by substituting σS-g and σconf into Eqs. (38) and (39). 

 

2. The nonlinear shear friction properties for a concrete with fc0 = 40 MPa are given in 

Fig. B1; for a given confining stress σN normal to the sliding plane, when a slip S is 

imposed, then the shear friction material capacity τm can be determined. As an example, 

from the non-linear shear friction material properties derived from actively confined 

cylinder tests [33] from Eq. (28) and shown in Fig. B1, Sx is imposed and σN is obtained 

from Eq. (39) and then τmx is obtained. 

 

4. If the shear stress τ from mechanics, that is from Eq. (38), is not equal to the shear 

capacity τm from step 2, then the guessed axial stress σS-g will be changed. The whole 

procedure will be iterated until the shear stress τ equals the shear capacity τm and then 

the axial stress σS equals σS-g. Then for the imposed slip Sx, the axial stress σS = σS-g 

is derived, and from Eq. (47) or (49) the strain εax can be obtained. It is worth noting 

that for the numerical model described in this section, the material strain εm in Eq. 

(47) or (49) is obtained from the non-linear ascending branch of the active 

stress/strain from Eq. (50); for instance, εm in Fig. 3, that is O’A, is obtained from the 

non-linear ascending branch O-A-P. Furthermore, if there is no solution to σS, this 

simply means that there is not enough capacity to resist the applied load. 
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Fig. B2 Flowchart of to derive passive stress/strain numerically 

 

B.5 Different Failure Types 

 

The theoretical approach described above assumes a single sliding mechanism [41]. 

However, the circular cylinder may fail due to the formation of circumferential wedges [41, 

47]. The difference between these two failure types is the following peak stress fcccir of the 

actively confined concrete from Eq. (34) and the axial stress σScir of the passively confined 

concrete from Eq. (42) [28] 
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Furthermore and for the circumferential failure type, the shear stress τ from Eq. (38) and the 

normal stress σN from Eq. (39) become the following [28, 48] 

 

 ( 2 )sin coscir ax conf s s        (55) 

 

 
2 2sin 2 cosNcir ax s conf s        (56) 

 

B.6 Summary 

 

When the linear descending branch of the active stress/strain is used, substituting εtube from 

Column 2 in Table 1 and the lateral confining stress σconf from Column 3 into Eqs. (17) and 

(15) or (16) gives the axial strains and stresses of the key points in Column 1. 

 

When the non-linear descending branch of the active stress/strain and the linear shear friction 

properties are used, then the derivation of the closed-form solutions of the key points in Fig. 

2 is summarised in Table 4. The loading path follows O-A-A’-C’-C”-E’. For these key points, 

substituting εtube from Column 2 and the lateral confining stress σconf from Column 3 into the 

equations in Columns 4 and 5 gives the axial stress and strain when assuming a single sliding 

failure. When the circumferential wedge is assumed to occur, then fcccir of the actively 

confined concrete from Eq. (34) and the axial stress σScir of the passively confined concrete 

from Eq. (42) are obtained from Eqs. (53) and (54) respectively.  

 

With regard to the numerical model, the non-linear shear friction properties and the non-

linear active stress/strains are used. The main step is summarised in Fig. B2 for a single 

sliding failure. When the circumferential wedge is assumed to occur, then fcccir, τcir and σNcir 

are obtained from Eqs. (53), (55) and (56) respectively instead of Eqs. (34), (38) and (39). 
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Chapter 6— Conclusions and Further Research 

 

Summary and Conclusions 

 

Confinement reinforcement can enhance the strength and ductility of concrete structures. 

This thesis presents the development of a mechanics-based model to predict both the 

stress/strain behaviour and the flexural behaviour of passively confined concrete. This model 

is directly based on fundamental partial interaction shear-friction and bond-slip material 

properties and can incorporate: different types of the confinement reinforcement; different 

shapes of the cross-section; different types of reinforcement; different specimen sizes; 

different concrete strengths; and different loading conditions that includes concentric loads 

and flexural loads. As only the material properties are required in this model which can be 

obtained from simple material tests, there is no need for member testing and this approach 

can be easily extended to new types of confinement reinforcement reinforced concrete 

members. Corresponding closed-form solutions are given which can be used for design 

purpose.  

 

The closed-form equations of the confinement mechanisms are introduced first for both 

rectangular and circular cross-sections for all possible scenarios of the confinement 

reinforcement that is debonding, yield, fracture or combinations of these; hence these 

equations can be applied to all kinds and types of available confinement reinforcement such 

as external plates or internal stirrups. Then shear friction material properties are derived from 

actively confined cylinder tests as well as shear-sliding tests that are based on a large 

database and then these properties are simplified to a linear form which can be used in the 

ensuing derivation of the closed-form solutions of the proposed approach. The active 

stress/strain is then constructed to validate the linear approximation with good correlation. 

After which, the required bond-slip material properties for FRP and steel plates as well as 

for FRP and steel rebars are summarised and simplified to a bilinear model. 

 

Having gathered all the required material properties, a mechanics-based model to give the 

stress/strain of passively confined concrete is derived for both rectangular and circular cross-

section prisms respectively. The specimen height and diameter or side length of the cross-
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section as well as different scenarios of confinement reinforcement are considered in this 

approach. Closed-form solutions for this model are proposed for design purposes. Closed-

form solutions of the proposed approach are compared with published test data of concrete 

prisms reinforced by either FRP or stirrups with good correlation. Hence, the proposed 

approach can predict the passive stress/strain behaviour well and can be used for design 

purposes. A parametric study has been conducted to show the effect of size. It is shown that 

available empirical approaches that were derived from small-size specimens may be unsafe 

for practical use in large size concrete structures. 

 

Closed-form solutions of the passive stress/strain have been derived and then their 

application in a flexural analysis is described. Firstly it is shown how the passive stress/strain 

can be applied in a flexural analysis and then the passive stress/strain is simplified to a 

rectangular stress block. Using this rectangular stress block in a segmental analysis, closed-

form solutions of the moment/rotation of the beam are derived for three key points which 

are: at the onset of concrete softening; at the maximum strength of the passively confined 

concrete; and when the passive stress/strain is fully developed. Then the derived 

moment/rotation is compared with test data extracted from experimental load/deflections 

with good correlation. Consequently, the proposed closed-form solutions can quantify the 

ductility of passively confined concrete beams allowing for confinement and can be used in 

design. 

 

The proposed approach is then extended to steel tube confined concrete to give passive 

stress/strains which can also incorporate the shrinkage effect. Derived passive stress/strains 

are then simplified to rectangular stress blocks which can be used in flexural analyses. This 

is followed by a parametric study which shows the effect of shrinkage on the passive 

stress/strain with regard to strength and to ductility. 

 

In summary, this thesis describes a mechanics-based model that is based on partial 

interaction bond-slip and shear friction material properties. This model can predict the 

stress/strain and flexural behaviour of passively confined concrete to quantify the strength 

and, more importantly, the ductility of concrete prisms restrained by confinement 

reinforcement.  
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Further Research Directions 

 

The following directions are suggested to improve the accuracy of the proposed approach: 

 

1: Shear friction material properties derived in this thesis are limited by the assumption that 

the maximum slip is five millimetres. Although the validation shows a five millimetre limit 

is sufficient for most current concrete members, when better shear friction material 

properties are developed, they can be applied to improve the accuracy of the proposed 

approach.  

 

2: Bond slip material properties are derived from pull-out tests where the confining stress 

normal to the interface between the concrete and reinforcement is zero which is not the case 

for members with circular cross-sections. Although from the validation, it is shown that 

based on this assumption the proposed model gives good correlation with experimental 

results, when better bond-slip material properties are developed, they can be applied in the 

proposed approach to increase accuracy. 

 

3: The proposed approach can be applied to different types of concrete such as ultra-high 

performance concrete or sea sand concrete when the shear friction material properties for 

these new types of concrete are developed. The proposed approach can also be easily 

extended to concrete members reinforced by new types of confinement reinforcement such 

as double skin composite confinement. 
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