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ABSTRACT 

Calibration and validation is essential in the development of remotely sensed fractional 

ground cover maps to ensure their reliability and provide users with confidence. Field 

measurements of fractional cover (FC) are typically collected through surveys where 

participants have the potential to introduce biases as they categorise ground cover. 

Environmental factors also have potential to influence the reliability of image-derived 

products. FC maps have been found to provide poor estimates of cover in arid regions 

of Australia, and it has been suggested that this may be due to soil colour. Further 

investigation is required to determine if soil colour influences satellite-derived FC 

products and there is scope to explore other methods of collecting field measurements in 

order to reduce errors.  

The aim of this thesis was to investigate methods of improving fractional ground cover 

mapping in Australia. The objectives were to (1) trial hyperspectral ground cover 

sampling in arid Australia by determining how spectral surveys and traditional sampling 

compare at the same scale and to compare these field methods to satellite-derived FC 

products, (2) examine observer consistency when classifying vegetation as 

photosynthetic or non-photosynthetic and to examine how spectral classification of 

vegetation compares to observer results, and (3) determine if the Australian MODIS FC 

product is influenced by soil colour. 

For objective one a sampling design suitable for the evaluation of coarse resolution 

imagery was developed. Sites were sampled collecting hyperspectral reflectance 

measurements and step-point observations of ground cover that were later compared to 

Australian MODIS and Landsat FC products. The results showed a strong relationship 

between the field sampling methods, that the Landsat FC product was strongly 

correlated to non-photosynthetic vegetation and soil and the MODIS product was 
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strongly correlated to photosynthetic vegetation. This study demonstrated the 

hyperspectral field sampling’s improved objectivity, ease of use, and ability to produce 

results comparable to traditional transect measures. 

Objective two examined photographs and reflectance measurements of vegetation 

transitioning from 100% photosynthetic to 100% non-photosynthetic. Observers 

classified leaves as either photosynthetic or non-photosynthetic (as required in field 

fractional cover methods), while spectral unmixing was used to decompose the 

reflectance measurements into photosynthetic and non-photosynthetic proportions. At 

the extremes (≤ 25 % or ≥ 75 %) photosynthetic observers tended to agree and assigned 

the leaf to the correct category. However, for leaves in transition (> 25 % or < 75 % 

photosynthetic) decisions differed more widely and classifications showed little 

agreement with the spectral proportions of photosynthetic and non-photosynthetic 

vegetation. This study increased our understanding of the limitations of field data 

collected using traditional observation methods, of observer variation, and of when 

observer data may become unreliable.  

Objective three compared MODIS and TERN AusPlot field estimates of FC at 250 sites 

across Australia and examined the effect of soil colour (represented by Munsell hue) on 

the FC values. Overall, there was a significant difference between all 250 sites based on 

hue suggesting that soil colour has a significant effect on the MODIS product. This 

evaluation provided insights into the association of specific soil colours with bias in 

MODIS ground cover fractions and highlighted hues that are associated with under- or 

overestimation of MODIS FC. Future research may utilise this information to help 

develop methods of minimising the effects of soil colour in future FC products.  

This thesis has contributed toward efforts to improve the collection of ground cover 

measurements for the validation of remotely sensed products, using spectral transect 
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surveys as an alternative to traditional surveys, for photosynthetic activity, provided 

insight into observer classification consistency and determined how observer-based 

classification and hyperspectral unmixing compare, and contributed to our 

understanding of the effects of soil colour on the MODIS FC product. This knowledge 

will allow informed consumption of the current MODIS FC product, and assist future 

efforts to calibrate and validate FC products ensuring end-users have reliable and 

consistent ground cover data for research and decision making.  
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1.1 Background 

Natural resource managers at regional, state and national levels require good quality 

environmental information for the effective assessment and monitoring of land 

condition (Bastin et al. 2009). Increasingly these decision-makers are seeking extensive 

data with detailed spatial coverages and high temporal frequencies for the assessment of 

land condition trends, states and transitions (Thackway and Lesslie 2006; Thackway et 

al. 2013). This information is especially important for managers of remote arid regions. 

The Australian arid zone covers approximately 48% of Australia’s land mass 

(3,697,109.29 km2) (Department of the Environment 2015), and there is significant 

variability in ecosystems and climate across the continent. Monitoring such large and 

variable regions solely using traditional on-ground survey methods is logistically 

impractical. Therefore, agencies in Australia and internationally have moved towards 

using remote sensing for broad-scale assessment of land condition (Bastin et al. 2009). 

Earth observation provides an efficient and effective means to map and monitor the 

natural and built environment. Analysis of remotely sensed imagery can provide 

continuous and consistent observations at a range of spectral, spatial and temporal 

scales (Congalton et al. 2014). These observations are critical for researchers and 

decision-makers across a range of sectors including research institutes, private and non-

government organisations as well as at various levels of government (Held et al. 2015; 

Tasman 2008). Analysing temporal data, such as that derived from Moderate-

Resolution Imaging Spectroradiometer (MODIS) or the Landsat time series, can provide 

vital information on a range of natural and anthropogenic phenomena that affect the 

Earth’s surface (Okin 2007). Urban growth (Stefanov et al. 2001), flood detection 

(Sakamoto et al. 2007), detecting fire danger, fuel loads (Yebra et al. 2008), monitoring 

vegetation phenology (Ma et al. 2013; Zhang et al. 2003) and land use land cover 
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change (Klein et al. 2012) are just a few examples of applications that can benefit from 

spatial and temporal data derived from remote sensing. 

Dynamic land cover information extracted from time series analysis of satellite imagery 

provides a means to meet the demands of users and can be used to focus the efforts of 

natural resource managers in Australia. The relative proportion of vegetation and soil 

exposure (fractional cover) is a frequently used indicator of land condition, stability and 

the success of land management practices. For example, vegetation cover is stated to 

maximise the productivity of the landscape as well as reduce the risk of soil erosion 

(Leys et al. 2009). It is also considered the single most important factor in determining 

soil erosion risk (McKenzie and Dixon 2006). Therefore fractional land cover 

information is a critical factor for land managers. McKenzie and Dixon (2006) report 

that the lack of fractional land cover data hinders the assessment of the environment, 

especially identification of land management outcomes, soil erosion modelling and risk 

assessments (Leys et al. 2009). To date most applications of remote sensing for land 

management assessment have relied on spectral indices such as the Normalised 

Difference Vegetation Index (Abuzar et al. 2017; De Keersmaecker et al. 2017; Wessels 

et al. 2004), Enhanced Vegetation Index (Lobell et al. 2010; Phompila et al. 2015), or 

the University of Adelaide Land Cover Index (Clarke et al. 2011; Clarke et al. 2004), as 

indicators for vegetation or soil cover. Alternative algorithms capable of estimating sub-

pixel proportions of cover types, such as spectral mixture analysis (SMA) (Adams et al. 

1993; Adams et al. 1986) or multiple endmember spectral mixture analysis (MESMA) 

(Quintano et al. 2013; Roberts et al. 1998), provide an alternative approach. 

In Australia, scientists and agencies have developed fractional cover measures that can 

be produced from Landsat and MODIS time series datasets. Scarth et al. (2010) 

produced a time series analysis based on 15 years of monthly Landsat-derived fractional 

cover imagery. This was conducted over Northern Queensland on land that had 
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undergone an intense grazing trial and the results were an improved method to recover 

key indicators for rangeland condition monitoring. The Scarth et al. (2010) method was 

then applied nationally and the Landsat fractional ground cover dataset is now available 

across Australia as part of Digital Earth Australia’s online platform (Geoscience 

Australia 2018). It works in conjunction with the Open Data Cube 

(https://www.opendatacube.org/) and has imagery from Landsat 5, 7 and 8 available for 

analysis. Guerschman et al. (2009) produced a fractional cover product from MODIS 

imagery, initially developed to monitor the northern tropical savanna region of the 

Northern Territory, and later implemented nationally (Stewart et al. 2011). 

Guerschman’s model produced a quantitative estimate of fractional green vegetation 

(GV), non-photosynthetic (NPV) and bare soil (BS) by unmixing the spectral space 

defined by the Normalized Difference Vegetation Index (Tucker 1979) (NDVI) and a 

Cellulose Absorption Index (CAI) (Nagler et al. 2003) proxy. In the process of 

implementing this model nationally, Guerschman et al. (2012) improved the model 

conducting further assessment of the output product and later in 2018 updated the 

product to use the latest MODIS MCD43A4 collection 6 imagery (Guerschman and Hill 

2018). Examples of the current application of the MODIS product include its use in the 

Australian State of the Environment Reports (https://soe.environment.gov.au/), as part 

of the DustWatch Australia (https://www.dustwatch.edu.au/) monitoring program and 

viewing through the Australian National University’s Environment Explorer 

(http://wenfo.org/ausenv). Researchers have also utilised the MODIS product to study 

vegetation dynamics (Zhou et al. 2016), forest decline (Evans et al. 2013) and rainfall 

erosivity and hillslope erosion (Zhu et al. 2019). This along with the development of 

other fractional cover products is a step forward in providing critical land condition data 

to natural resource managers, but as Lawley et al. (2014) found the MODIS product 

currently fails to represent accurately all rangeland conditions found across Australia. 

https://www.opendatacube.org/
https://soe.environment.gov.au/
https://www.dustwatch.edu.au/
http://wenfo.org/ausenv
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Scarth et al. (2015) stated this failure was not unexpected but highlights the need for 

further work in the area. 

Another measure developed for the monitoring of land cover dynamics using coarse 

multispectral data is the Relative Spectral Mixture Analysis (RSMA) (Okin 2007). 

RSMA is an index of the amount of GV, NPV, BS and snow relative to a reference 

time. This model differs from Scarth et al. (2010) and Guerschman et al. (2013) in two 

significant ways. Firstly, the RSMA uses three representative reference signatures of 

GV, NPV and snow to unmix multi-temporal reflectance data (i.e. MODIS imagery) but 

does not use a soil endmember, while the Landsat and MODIS models use image-

derived endmembers for all three cover components (GV, NPV and soil). Secondly, the 

ground cover components from the RSMA are defined so that the resulting index is 

positive when the fractional cover of the ground component is greater than at the 

reference time and negative when the fractional cover is less than the reference time. A 

limitation of this method is that it does not produce an absolute measure of vegetation 

cover but a relative index. Therefore, if a user requires absolute fractional cover values 

Guerschman et al. (2013), Scarth et al. (2010) or other conventional SMA products are 

recommended, but if a user is more interested in the change of ground cover over time, 

then RSMA is a good alternative. Further work was conducted by Okin et al. (2013) to 

calibrate RSMA to an absolute measure of fractional cover produce comparable results 

to SMA and MESMA but does not necessarily provide the best estimates of ground 

cover dynamics.  

Evaluation of fractional ground cover maps and any image-derived product is critical to 

ensure the accuracy of the product and provide users with confidence in the data they 

are using. A problem that arises especially for areas like the South Australian arid lands 

is that fractional cover products were not specifically designed for arid environments 

and there is some doubt over the accuracy of these methods in South Australia. Lawley 
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et al. (2014) evaluated the soil component of the MODIS product (Guerschman et al. 

2012) and found that it struggled to accurately monitor arid landscapes with significant 

soil exposure. Meyer and Okin (2015) and Lawley et al. (2014) evaluation of fractional 

cover measures found that the soil component these products poorly represents on-

ground soil exposure, which as stated earlier, is an important indicator of land 

condition. This may be due to any of several factors, including the spectral similarity 

and therefore difficulty of separating BS and NPV (Okin 2007); confounding influences 

of soil colour, brightness, texture or moisture; or landscape structural complexity 

leading to where multiple scattering and mutual shadowing complicating reflectance 

signals (Ray and Murray 1996). This is a problem common to many fractional cover 

products that requires a solution, either in the form of new and better fractional cover 

measures, or by better calibration of current measures. Understanding the influences of 

soil colour on fractional ground cover products was identified as a key gap in current 

research and is examined as part of this thesis.  

An important consideration when natural resource managers or other users employ 

remotely sensed products is the reliability of the data. This often depends on the quality 

of on-ground measurements used to calibrate and validate these products. The collection 

of field data over a variety of different environments, along with coincident imagery, is 

important to continue efforts to further calibrate and validate these products (Scarth et 

al. 2010). In the past this data has been collected on a needs basis by individual groups 

and organisations. More recently in Australia, the collection of some of this data has 

been coordinated by a national network of organisations including the Terrestrial 

Ecosystem Research Network (TERN) AusPlots and the Australian Bureau of 

Agricultural and Resource Economics and Sciences (ABARES), within the Australian 

Department of Agriculture and Water Resources. The AusPlots facility within TERN is 

a plot-based surveillance monitoring program aiming to ‘establish and maintain a 
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national network of plots that enable consistent ecological assessment and ongoing 

monitoring’ (TERN 2016). Ecological data collected as part of these programs include 

detailed vegetation and soil surveys that are outlined in full in the AusPlot Rangelands 

Survey Protocols Manual (White et al. 2012). The ABARES program developed and 

utilises the Muir et al. (2011) technical handbook for ground cover monitoring in 

Australia.  

Ground cover field measurements are extremely useful but costly and time-consuming 

to collect and have limited spatial and temporal coverage. It is therefore critical when 

these surveys are conducted that the information collected is optimal, efficient and of 

good quality to ensure that it can be utilised for a range of applications. Another 

challenge is to match the scale of the field data with that of broad-scale remote sensing 

fractional cover products (Guerschman et al. 2012; Morisette et al. 2002; Turner et al. 

2004; Turner et al. 2006). This is particularly relevant to the evaluation of MODIS 

derived products where the MODIS pixel size is greater than the current size of 

AusPlots or ABARES nationally consistent survey sites. 

The AusPlots methodology surveys plots 100 m by 100 m, one-twenty-fifth the size of a 

500 m MODIS pixel. This is not ideal for calibration and validation but has been 

deemed acceptable under the assumption that the surveyed plots are placed within a 

homogeneous landscape and can, therefore, be up-scaled as they are representative of 

the wider landscape (Held et al. 2015). It is suggested that sampling should ideally 

occur over a cluster of pixels (3 x 3) (Congalton and Green 2008; Muir et al. 2011) in 

order to reduce errors related to geo-rectification but when analysing imagery with a 

spatial resolution of 500 m the sampling area becomes logistically infeasible. This is the 

reason why up-scaling, the integration of field measurements and high-resolution 

imagery to produce high resolution maps of the parameters measured in the field, has 

been used in the past and is why other techniques should be explored (Held et al. 2015). 
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Currently, the Muir et al. (2011) technical guide for field measurements of fractional 

ground cover and AusCover Good Practice Guidelines (Held et al. 2015) are Australia’s 

only survey techniques specifically designed for the validation of fractional cover 

datasets and these methods are considered reliable for measuring ground cover 

components.  

A key problem with this method of estimating cover is in the categorisation of ground 

cover into defined categories. Categories such as soil and rock are simple for field 

observers to distinguish but the distinction between green (photosynthetic) and dry 

(non-photosynthetic) vegetation can introduce subjective decision making and multiple 

observers may vary in their distinction of these cover types. There has been little 

examination of observer reliability when conducting field assessments of fractional 

cover. However, bare soil and non-photosynthetic vegetation have been demonstrated to 

be the least and most challenging categories (respectively) for observers to categorise, 

regardless of observer experience; while photosynthetic vegetation proved challenging 

for inexperienced observers (Trevithick et al. 2012).  Other than the Trevithick et al. 

(2012) study there is a lack of research that explores the variation in decisions among 

field observers and how this can influence the reliability of calibration and validation. A 

key knowledge gap that is addressed in this thesis is identifying the degree of inter-

observer variation when classifying vegetation as either photosynthetic vegetation (PV) 

or non-photosynthetic vegetation (NPV), as well as examining how observer and 

spectral classification of PV and NPV compare. 

Currently, field-based reflectance data is rarely used for the validation of fractional 

cover maps but is used to calibrate or validate other satellite products. Digital Earth 

Australia has developed an initiative in order to collect standardised validation data for 

the assessment of surface reflectance data. This initiative takes a community approach 

to data collection around Australia in order to collect data across a variety of surface 
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types and landscapes (Malthus 2019).  This data has the potential to not just be used for 

calibration of surface reflectance products but could be used to calibrate and validate a 

variety of other satellite derived ground cover products and is an area for future 

research.  

A promising spectral field method, the Meyer and Okin (2015) spectral line point 

intercept transect (SLPIT), is capable of rapidly collecting field data over long transects 

and could potentially remove the need for observers to categorise ground cover in the 

field. This technique samples transects similar to the Muir et al. (2011) approach but 

instead records continuous surface reflectance measurements with a portable high 

spectral resolution spectroradiometer, aiming to reduce human error by removing the 

need for the human classification of ground cover in the field. The SPLIT method has 

demonstrated strong correlation with satellite fractional cover, but poor correlation with 

field step-point data. However, the later poor correlation is likely a result of a scale 

mismatch between the SPLIT transect length (500 m) and the step-point transect length 

(100 m). Thus, the SPLIT method appears promising, by being both rapid and 

quantitative. However, the SPLIT technique has not yet been trialled in other 

environments, and the inconsistency between SPLIT and step-point data has not been 

resolved. More widespread testing is required in order to establish confidence in and 

refine the sampling design. The SPLIT techniques shows a considerable promise and is 

worth exploring to determine its suitability as a field method for the collection of 

calibration and validation data in the Australian landscape context. Therefore, testing 

hyperspectral field sampling in Australia is examined in the thesis.  
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1.2 Research Aims & Objectives 

Established in section 1.1 were three key knowledge gaps in the current literature. These 

were: a need to understand the effect of soil properties on fractional ground cover 

estimates derived from remotely sensed imagery; the need to improve our understanding 

of observer variation when categorising vegetation as photosynthetic or non-

photosynthetic in the field and lastly; the need for more quantitative field methods, 

potentially hyperspectral field sampling of ground cover, for the calibration and 

validation remotely sensed ground cover maps.   

Therefore, the overarching aim of this thesis is to investigate methods of improving 

fractional ground cover mapping in Australia. This aim is approached from two angles; 

studying the collection of validation data (objective 1 and 2) and a systematic evaluation 

of soil colour influence on satellite-derived fractional cover estimates (objective 3). The 

objectives of the thesis are: 

1. To trial hyperspectral ground cover sampling in arid Australia by determining 

how spectral surveys and traditional sampling compare at the same scale and to 

compare these field methods to current satellite-derived fractional cover 

products.  

2. To examine observer consistency when classifying vegetation as photosynthetic 

or non-photosynthetic and to examine how spectral classification of vegetation 

compares to observer results.  

3. To determine if the Australian MODIS fractional cover product is influenced by 

soil colour. 
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1.3 Thesis Structure 

The following thesis is divided into five chapters. Chapter one outlines key literature 

relevant to this research, highlights gaps in the literature, provides a study context and 

outlines the research aims and motivations behind the thesis. Chapters two, three and 

four cover the principal bodies of research which are presented as stand-alone published 

papers or manuscripts intended for publication. Chapter five is composed of the 

discussion and conclusions which highlight key results, significance and contributions 

of the thesis as well as future research opportunities. The following provides a brief 

summary of the content presented in each chapter. 

Chapter Two: Fisk, C., Clarke, K.D., & Lewis, M.M. (2019). Comparison of 

Hyperspectral Versus Traditional Field Measurements of Fractional Ground Cover in 

the Australian Arid Zone. Remote Sensing, 11, 2825, 

https://doi.org/10.3390/rs11232825. 

This chapter explores the use of hyperspectral field sampling in order to improve the 

measurement of fractional ground cover for the purpose of calibration and validation of 

fractional ground cover maps in Australia. The aim of this study was to develop an 

effective sampling design for spectral ground cover surveys in order to estimate 

fractional ground cover in the Australian arid zone. To meet this aim two objectives are 

addressed: (1) determining how spectral surveys and traditional step-point sampling 

compare when conducted at the same spatial scale and (2) comparing these two methods 

to current Australian satellite-derived fractional ground cover products. From this study 

we developed a new sampling design for field-based hyperspectral sampling of ground 

cover, demonstrated the significant potential of hyperspectral transect sampling and 

tested the relationship between the field methods and two current satellite-derived 

fractional cover products. 
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Chapter Three: Fisk, C., Clarke, K.D., Delean, S., & Lewis, M.M. (2019). 

Distinguishing Photosynthetic and Non-Photosynthetic Vegetation: How do traditional 

observations and spectral classification compare? Remote Sensing, 11, 2589, 

https://doi.org/10.3390/rs11212589. 

This chapter explores the decisions observers make when classifying vegetation in the 

field as photosynthetic or non-photosynthetic and the potential problems associated with 

these techniques. The aim of this study was to examine how multiple observers compare 

when categorising vegetation over the full range of photosynthetic levels and how the 

classification of hyperspectral reflectance measurements compare to human 

observations of the same vegetation samples. Understanding how observers’ decisions 

may compare is essential when creating consistent datasets and when understanding the 

potential limitations of the data. This chapter provides an explanation of when people 

are more likely to differ when classifying vegetation in relation to the percentage of 

photosynthetic or non-photosynthetic material and highlights the benefits of collecting 

hyperspectral measurements of vegetation.  

Chapter Four: Fisk, C., Clarke, K.D. & Lewis, M.M. (2019). Evaluating the influence 

of soil colour on the MODIS Fractional Cover product in Australia (unpublished).  

The first two chapters of the thesis relate to the validation of fractional cover mapping 

whereas this chapter addresses the third aim by investigating the potential influence soil 

colour may have on the MODIS fractional cover product. Early in the development of 

the Australia-wide MODIS product soil moisture and soil colour or more specifically 

soil brightness was thought to cause errors in the fractions of ground cover reported. 

Since then soil moisture and soil brightness have been investigated and studies have 

reported that these properties do not influence the product. A concern with these results 

is that the soil colour maps used are not direct soil colour measurements and that the 
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maps were so coarse (5 km pixels) that these factors may have influenced results. The 

aim of this study was to perform a systematic evaluation to determine if soil colour has 

any influence on the relative cover fractions derived from the MODIS unmixing model. 

We sought to understand (1) the possible influence of soil colour on the MODIS 

product and if there is an influence, (2) whether there is an observable pattern or a 

specific colour affecting the ground cover fractions. This will enable conclusions to be 

made regarding why these errors may be occurring. Future research can then build on 

these findings to work towards mitigating the influence, if negative, soil colour has on 

satellite-derived fractional cover products.  

Chapter Five: Discussion 

This chapter highlights and further explores the key findings from chapters two, three 

and four. It outlines contributions this work has made to the field of earth observation 

sciences and also provides recommendations for future research.  
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Traditional Field Measurements of Fractional Ground Cover in the Australian Arid 

Zone. Remote Sensing, 11, 2825, https://doi.org/10.3390/rs11232825. 

Abstract 

The collection of high-quality field measurements of ground cover is critical for 

calibration and validation of fractional ground cover maps derived from satellite 

imagery. Field-based hyperspectral ground cover sampling is a potential alternative to 

traditional in situ techniques. This study aimed to develop an effective sampling design 

for spectral ground cover surveys in order to estimate fractional ground cover in the 

Australian arid zone. To meet this aim, we addressed two key objectives: (1) 

Determining how spectral surveys and traditional step-point sampling compare when 

conducted at the same spatial scale and (2) comparing these two methods to current 

Australian satellite-derived fractional cover products. Across seven arid, sparsely 

vegetated survey sites, six 500-m transects were established. Ground cover reflectance 

was recorded taking continuous hyperspectral readings along each transect while step-

point surveys were conducted along the same transects. Both measures of ground cover 

were converted into proportions of photosynthetic vegetation, non-photosynthetic 

vegetation, and bare soil for each site. Comparisons were made of the proportions of 

photosynthetic vegetation, non-photosynthetic vegetation, and bare soil derived from 

both in situ methods as well as MODIS and Landsat fractional cover products. We 

found strong correlations between fractional cover derived from hyperspectral and step-

point sampling conducted at the same spatial scale at our survey sites. Comparison of 

the in situ measurements and image-derived fractional cover products showed that 

overall, the Landsat product was strongly related to both in situ methods for non-

photosynthetic vegetation and bare soil whereas the MODIS product was strongly 

correlated with both in situ methods for photosynthetic vegetation. This study 
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demonstrates the potential of the spectral transect method, both in its ability to produce 

results comparable to the traditional transect measures, but also in its improved 

objectivity and relative logistic ease. Future efforts should be made to include spectral 

ground cover sampling as part of Australia’s plan to produce calibration and validation 

datasets for remotely sensed products. 

2.1 Introduction 

Satellite image-derived fractional ground cover mapping has proven to be an essential 

source of information for applications, including analysis of spatial and temporal 

vegetation dynamics (Ma et al. 2013), monitoring urban greenness (Gan et al. 2014), 

mapping bushfire burn severity levels (Quintano et al. 2013), forest cover change 

(Mayes et al. 2015), and deforestation (Karimi et al. 2016). Algorithms, including 

spectral mixture analysis (Adams et al. 1986; Settle and Drake 1993; Smith et al. 1990), 

multiple endmember spectral mixture analysis (Roberts et al. 1998), and relative 

spectral mixture analysis (Okin 2007), are used to produce fractional cover (FC) maps. 

These algorithms can be applied to multispectral and hyperspectral imagery, 

decomposing each image pixel into a measure of similarity to two or more spectrally 

distinct land cover types. These typically include photosynthetic vegetation (PV), non-

photosynthetic vegetation (NPV), bare soil (BS), shadow, and snow (Okin 2007; Settle 

and Drake 1993), with the resulting maps providing quantitative estimates of the 

proportion of the cover types comprising each pixel. 

Fractional cover mapping has been performed across a range of scales, including global 

mapping projects as such the Copernicus Global Land Service, which has produced a 

300-m and a 1-km fraction of green vegetation cover product based on PROBA-V and 

SPOT-VGT imagery (Baret et al. 2013; Camacho et al. 2013). Local studies have used 

FC products to assist water quality management of catchments (Awad et al. 2018), 
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urban land cover mapping (Powell et al. 2007), and the study of savanna vegetation 

morphology (Guerschman et al. 2009; Mishra et al. 2014). In Australia, time series of 

fractional cover have been produced from MODIS (Thomas et al. 2003) and Landsat 

(Artigas and Yang 2005; Guerschman et al. 2012) and are being used widely for 

environmental assessment and monitoring applications. 

Calibration and validation are essential for ensuring the reliability and consistency of 

FC products. Data used for calibration and validation of fractional cover are derived 

from a variety of sources and techniques, and there is currently no international 

standard. Lawley et al. (2014), Montesano et al. (2009), Morisette et al. (2003), and 

Xiao and Moody (2005) all utilised remotely sensed imagery with high spatial 

resolution to validate FC products with lower spatial resolution. The advantages of this 

approach are that high-spatial resolution imagery provides an objective record at the 

time of the region being assessed and may allow for the validation of areas that cannot 

be easily accessed. Alternative evaluations have sought to avoid subjective on-ground 

assessments of ground cover and instead have used a combination of qualitative and 

quantitative data for assessment. For example, Guerschman et al. (2009) utilised two 

qualitative datasets to calibrate the Australian MODIS fractional cover product: (1) A 

general description of vegetation type and condition, including photographs of each site, 

and (2) a vectorized fire scar map that classified areas of the landscape as either burnt or 

unburnt. 

Common approaches to in situ measurement of ground cover, demonstrated by Scarth et 

al. (2010), Asner and Heidebrecht (2002), and Lewis (1998), have utilised variants of 

point-based sampling techniques that were initially developed for vegetation ecology 

and rangeland assessment (Evans and Love 1957; Graham 1989; Winkworth et al. 

1962). These methods include line-point intercept transects, step-point surveys, and 

wheel-point surveys, where observers walk across a study area making point-based 
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observations at defined intervals. Across a survey area, hundreds of point-based 

observations are used to estimate FC. Point observations generally categorise ground 

cover into defined classes, such as rock, disturbed soil, green leaf, and dry leaf, which 

are later aggregated into broader classes, such as PV, NPV, and BS, matching the field 

classes with the image product being assessed. Muir et al. (2011) developed an 

Australian national standard for field measurements of fractional ground cover, which 

provides a well-documented, easily repeatable method that is now widely used. 

Although field protocols have been developed to improve consistency and reduce the 

potential for errors, subjective human judgements are still required, and these may affect 

the data significantly (Trevithick et al. 2012). In such surveys, observers are required to 

make hundreds of rapid decisions, only having a few seconds to observe and record the 

cover type before moving on. Most cover types are relatively easy to discriminate in the 

field but distinguishing between PV and NPV can be a difficult task. PV and NPV are 

better thought of as extremes of a continuum, rather than binary categories, and hence 

distinguishing between PV and NPV can be difficult for observers (Fisk et al. 2019). 

A technique that has the potential to help reduce subjectivity is to estimate the relative 

fractions of PV, NPV, and BS from field-based hyperspectral reflectance measurements. 

While in situ hyperspectral measurements have been used for radiometric and spectral 

calibration and validation of remotely sensed products (Li et al. 2010; Liang et al. 

2002), and may provide reference signatures for image analyses (Artigas and Yang 

2005; Thomas et al. 2003), they have not been used explicitly for the validation of 

fractional ground cover products until Meyer and Okin (2015). This method records 

many in situ spectra over a study area, which in their aggregate, capture the combined 

spectral response of the site. The relative proportions of PV, NPV, and BS can then be 

unmixed from the field spectra. Using this approach (Meyer and Okin 2015) 

demonstrated a stronger agreement between FC values derived from field-based 
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reflectance measurements and their image-based product than between traditional line-

point intercept observations and their image-based product, which showed low 

correlations. In our paper, hyperspectral ground surveys refer to the collection of 

spectral measurements over an area for the purpose of estimating ground cover fractions 

(Li et al. 2010), quite a different application to the use of in situ spectroscopic 

measurements for radiometric calibration of imagery. 

Another challenge for calibration and validation is to match the scale of field data with 

that of broad-scale FC products. When validating products developed from coarse 

resolution imagery (e.g., 500 m), it is common to up-scale field data recorded at a finer 

scale (e.g., 100 m) in order to determine the accuracy of the coarse resolution products. 

This is usually conducted under the assumption that the area around the sample site is 

homogenous and similar to that surveyed. For example, Meyer and Okin (2015) 

conducted spectral sampling over 500-m transects to correspond to a MODIS pixel and 

compared the results to line-point intercept sampling that was conducted over smaller 

100-m transects. A potential reason for the low correlation between the sampling 

methods is that the 100-m transects were insufficient to gain an adequate estimate of the 

ground cover for a 500-m pixel. (Meyer and Okin 2015) were following the Muir et al. 

(2011) field sampling layout, where transects were placed in a radiating star pattern that 

was designed to relate field measurements to Landsat imagery. The Muir et al. (2011) 

design samples three 100-m transects, which covers approximately 3 × 3 Landsat pixels, 

making it ideal for validating Landsat-based products but not necessarily adequate for 

coarser resolution products (MODIS). 

The layout of transects also has the potential to affect how an area is sampled. For 

instance, the star-transect method includes a sampling bias that over-represents cover 

towards the centre of the plot. Three transects are placed in a star pattern with the result 

being that observation points are concentrated in the centre of the star and increasingly 
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dispersed as the distance from the centre increases. Therefore, a sampling pattern that 

provides a more even distribution across a site may provide a better representation of 

the ground cover. Other studies have placed parallel transects evenly across sample sites 

(Lewis 2000; Lewis 1998) or placed transects in a grid pattern in order to more evenly 

sample the area (White et al. 2012). 

Field-based hyperspectral ground cover sampling is a potential alternative to traditional 

techniques that may assist with the calibration and validation of remotely sensed 

products. The motivation for this research is to expand upon the work of Meyer and 

Okin (2015) and trial hyperspectral ground cover sampling in Australia, with the 

ultimate aim of incorporating spectral sampling as part of Australia’s national effort to 

collect validation and calibration data to meet our remote sensing needs. Our aim was to 

develop an effective sampling design for spectral ground cover surveys in order to 

estimate fractional ground cover. Our objectives were (1) to determine how spectral 

surveys and traditional step-point sampling compare when conducted at the same spatial 

scale, and (2) determine how these in situ methods compare to current Australian 

satellite-derived FC products. 

2.2 Materials & Methods 

Currently, in situ validation data collected using the Muir et al. (2011) method is used to 

assess the accuracy of both the MODIS and Landsat products. Meyer and Okin (2015) 

found that the in situ spectral measurements they collected could be used to validate 

fractional ground cover mapping developed from MODIS imagery over Botswana, but 

this has not been tested across other environments. To meet our objectives, we therefore 

completed ground cover surveys before inspecting how our in situ measurements would 

compare with the MODIS and Landsat products. Figure 1 provides an overview of the 

methods used in this study. 
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Figure 1 Flowchart outlining the methodological approach taken in this paper. 

2.2.1 Study Area 

The study was conducted in New South Wales (NSW), Australia within the arid zone 

(Figure 2). Sites FG1–FG4 (Figure 3a,b) were situated at Fowlers Gap Arid Research 

Station, 110 km north of Broken Hill, NSW, while sites BH1–BH3 (Figure 3c,d) were 

located surrounding the City of Broken Hill. The climate for both regions is hot and 

persistently dry (Stern et al. 2000). Fowlers Gap has a mean annual rainfall of 240 mm, 

a mean annual minimum temperature of 13 °C, and a mean annual maximum 

temperature of 26.9 °C (Bureau of Meteorology 2019b). The vegetation at Fowlers Gap 

comprises low open chenopodiaceous shrublands, some low open Acacia and Casuarina 

woodland as well as grasslands on the plains (Mabbutt et al. 1973). Broken Hill has a 

mean annual rainfall of 250 mm with a mean annual minimum temperature of 11.8 °C 



 

29 

 

and a mean annual maximum temperature of 24.7 °C (Bureau of Meteorology 2019a). 

The vegetation around Broken Hill is also composed of chenopod shrublands that 

includes saltbush and bluebush communities as well as Mulga (Acacia aneura) (Benson 

1999). 

 

Figure 2 Site map displaying the locations of survey sites surrounding Broken Hill and Fowlers Gap 

Research Station, NSW. Base map: true colour satellite image accessed from ESRI, 2019. 

 

Figure 3 Site photographs from Fowlers Gap Research Station (a,b) and Broken Hill (c,d). 
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2.2.2 Ground Cover Surveys 

To survey ground cover, six 500 m transects oriented north–south and spaced 100 m 

apart were established at each site. Across the six transects, two survey methods were 

used. Firstly, ground cover reflectance was recorded using an Analytical Spectral 

Devices Inc. FieldSpec 3 spectroradiometer (ASD) that measures the visible to 

shortwave infrared (350 - 2500 nm) parts of the electromagnetic spectrum. The sensor 

has 2150 bands with a spectral resolution of 3 nm from 350 - 1000 nm and 10 nm from 

1000 - 2500 nm. An 8-degree field of view fore-optic was held 1 m above the ground, 

creating a 0.14 m diameter ground field of view. At the start of each transect, and as 

required, the device was optimized and white reference measurements taken following 

the recommended protocols (Analytical Spectral Devices 2008). The operator of the 

ASD walked along each transect at a consistent pace taking continuous readings of 

ground cover reflectance. The continuous readings were averaged by the ASD and 10 

averaged spectra were recorded for each 25 m segment of the transect, totalling 200 

spectra per transect (1200 measurements per site). 

The second method used was step-point sampling, where an observer collected point-

based observations of ground cover along the six transects. The observer marked a point 

on a boot tip and at 5 m intervals recorded the cover that intersected the point. Cover 

was categorised into a set number of cover types, including crust, rock, litter, green leaf, 

and dry leaf, as outlined in the Muir et al. (2011) protocol. The cover for each of these 

categories was calculated as the proportion of the total number of point observations at 

the site (n = 600). These categories were grouped into three broad classes, PV, NPV, 

and BS, to give their FC percentage within the site. 

2.2.3 Endmember Extraction & Spectral Unmixing 

The hyperspectral reflectance measurements for each transect were converted into 

single raster files enabling them to be processed in ENVI 5.3.1 (Exelis Visual 
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Information Solutions, Boulder, Colorado). The Sequential Maximum Angle Convex 

Cone (SMACC) tool was used to extract endmembers from the transect rasters and to 

perform linear spectral unmixing (Gruninger et al. 2004). The SMACC tool 

automatically defines the most extreme point (i.e., the brightest pixel in multi-

dimensional space) as the first endmember in the raster using a convex cone model. The 

next endmember is identified based on the angle it makes with the existing cone (i.e., 

the pixel that is most different from the brightest), which is then added to the cone to 

derive the next endmember. This process continues until a specific tolerance is reached 

or until a specific number of endmembers are identified. 

 

Figure 4 Example of image-derived endmembers for non-photosynthetic vegetation, photosynthetic 

vegetation, and bare soil. 

For each of the transects, PV, NPV, and BS endmembers (Figure 4) were extracted and 

abundance images of PV, NPV, BS, and shadow were produced, with each image 

displaying the proportion a specific endmember contributes to each pixel. These images 

were produced using a fully constrained linear spectral unmixing algorithm: 

𝐷𝑁𝑏 =  ∑ 𝐹𝑖
𝑛
𝑖=1 𝐷𝑁𝑖,𝑏 +  𝐸𝑏 and ∑ 𝐹𝑖 = 1 𝑛

𝑖=1  (1) 
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where 𝐷𝑁𝑏  is the apparent surface reflectance of a pixel in band 𝑏 of an image; 𝐹𝑖 is the 

fraction of endmember 𝑖; 𝐷𝑁𝑖,𝑏 is the relative reflectance of endmember 𝑖 in band 𝑏; 𝑛  is 

the number of endmembers; and 𝐸𝑏   is the error for band b of the fit of 𝑛 spectral 

endmembers, that of (Adams et al. 1993; Adams et al. 1986; Smith et al. 1990). The 

proportions of PV, NPV, and BS across each site were calculated as the averages of the 

unmixed fractions derived from each transect spectrum.  

2.2.4 Comparison to Image-Based Fractional Cover Products 

The field-based FC estimates were compared to two Australian image-derived FC 

products based on MODIS (Guerschman and Hill 2018) and Landsat imagery 

(Geoscience Australia 2015). The MODIS FC product was initially developed for 

monitoring the tropical savanna region of the Northern Territory, Australia 

(Guerschman et al. 2009) and was later applied across the continent by the 

Commonwealth Scientific and Industrial Research Organisation (CSIRO) (Guerschman 

et al. 2012). This product uses MODIS imagery and describes the proportion of PV, 

NPV, and BS Australia-wide. The Landsat product was developed by the Joint Remote 

Sensing Research Program (JRSRP) also as a national FC product utilising the Landsat 

archive. Initially developed for rangeland monitoring in Queensland, Australia, the 

product is now being implemented nationally by Geoscience Australia (Scarth et al. 

2010; Schmidt et al. 2010). Key differences between the two products include their 

spatial and temporal resolutions. The MODIS product has a moderate resolution of 500 

m while the Landsat product is at a finer scale of 25 m. The latest version of the MODIS 

product uses MODIS MC43A4 version 6 imagery, which is a 16-day composition of 

daily captures from 2000 to 2019 (on-going) (Guerschman and Hill 2018). The Landsat 

product utilises data from the Landsat archive from 1986 to the present. Recent versions 

of the Landsat and MODIS FC products use a similar unmixing process (Guerschman et 

al. 2015) that incorporates endmembers of PV, NPV, and BS derived from field spectra 
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and the imagery itself. For this study, the Guerschman and Hill (2018) version 3.1.0 

MODIS product and the Landsat FC25 version 1.5 were used (Geoscience Australia 

2015). The MODIS and Landsat FC products were acquired for dates that corresponded 

with the collection of in situ ground cover measurements. The Landsat FC image is 

based on a single date (17 August 2018) while the MODIS FC product is developed 

from a 16-day composite of imagery collected from the 13 to 28 August 2018. The PV, 

NPV, and BS values for each of the seven sites were extracted from a single pixel for 

the MODIS product while an average of 400 Landsat pixels across the same 500 × 500 

m area were calculated. These extracted values were then compared to both the step-

point and the spectral PV, NPV, and BS fractions. 

2.2.5 Statistical Analysis 

To determine the relationship between the in situ FC estimates and the image-based 

estimates, two metrics were used: Spearman’s rank-order correlation (rs) to measure the 

relationship between methods and the mean absolute error (MAE) to measure the 

average error. MAE was calculated as follows: 

𝑀𝐴𝐸 =  
1

𝑛
 ∑ | 𝑓1 − 𝑓2 |𝑛

𝑖=1                                             (2) 

 

where f1 and f2 represent the two FC measures being tested and n is the number of 

measurements. MAE is an average of the absolute difference between FC measure 1 and 

FC measure 2 (i.e., the absolute error). MAE is calculated in the same units as the 

variables and is a negatively oriented score, with lower values indicating lower errors. 

2.3 Results 

The in situ methods showed strong positive relationships across all three ground cover 

types (Table 1). While rs was high, the MAE for NPV (rs = 0.61, MAE = 19.82) and BS 

(rs = 0.82, MAE = 19.26) was also relatively high. PV (rs = 0.87, MAE = 1.37) showed 

a high correlation with low errors. Overall, low errors were observed for all 
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comparisons made for PV. When the in situ methods were compared to the image-based 

models (MODIS and Landsat), spectral transect sampling showed a strong relationship 

to the MODIS image for PV and was the strongest relationship observed (rs = 0.91, 

MAE = 4.21). For BS, the correlation between the MODIS imagery and the in situ 

methods was moderate and moderate to low for NPV. In comparison, the Landsat 

imagery showed a strong to moderate relationship with both in situ methods for BS, 

NPV, and PV. 

Table 1 Summary of correlations and errors for each ground cover type based on comparisons between in 

situ and image-based fractional cover methods (step-point, spectral, MODIS, and Landsat). 

Bare Soil 

 Step-point Spectral 
 rs MAE rs MAE 

Step-point     

Spectral 0.82 19.26   

MODIS 0.58 20.31 0.56 26.43 

Landsat 0.79 13.85 0.79 19.95 

Non-photosynthetic Vegetation 

 Step-point Spectral 
 rs MAE rs MAE 

Step-point     

Spectral 0.61 19.82   

MODIS 0.43 19.62 0.16 19.61 

Landsat 0.68 15.79 0.71 14.86 

Photosynthetic Vegetation 

 Step-point Spectral 
 rs MAE rs MAE 

Step-point     

Spectral 0.87 1.37   

MODIS 0.86 4.24 0.91 4.21 

Landsat 0.5 4.68 0.45 4.71 

 

The percent cover of PV, NPV, and BS calculated for the in situ and image-based 

method at each field site (Figure 5) shows the in situ methods varied significantly. For 

Fowlers Gap sites 2 - 4, the step-point and spectral PV, NPV, and BS were very similar, 

whereas at the Fowlers Gap site 1 and the Broken Hill sites, PV followed a similar 

pattern but NPV and BS varied significantly from one another. Overall, PV was low 
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across all sites and especially low for the Fowlers Gap sites, with approximately 10% 

less PV than the Broken Hill sites. As shown in Figure 3a,b, Fowlers Gap vegetation 

was extremely sparse with vast areas of exposed soil, and while the Broken Hill sites 

were also sparely vegetated, they still had considerably more vegetation than the 

Fowlers Gap sites. 

 

Figure 5 Summary of the fractional cover at each survey site calculated for each survey method. 

2.4 Discussion 

The motivation for this study was to test field-based hyperspectral ground cover 

sampling as a method of calibrating and validating image-based fractional ground cover 

products in Australia. By developing an alternative survey design for spectral transect 

sampling and comparing this method to step-point sampling at the same spatial scale, 

we developed an insight into the relationship between our two field methods and how 

they compare to current Australian image-derived fractional ground cover products. 

Overall, the in situ methods were positively correlated with each other. Though neither 

method is truly ‘ground truth’, this strong positive linear relationship between the in situ 

methods suggests they provided relatively accurate estimates of ground cover at each 

field site. In contrast, Meyer and Okin (2015) found little to no correlation between their 
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two field methods. This is likely due to a scale mismatch in the Meyer and Okin study 

(the line point transects were 100 m, and the spectral transects were 500 m), whereas we 

avoided this mismatch by conducting both surveys over the same 500-m transects. 

Additionally, by avoiding a star-transect layout, our grid sample design more evenly 

distributed sample points across each site, ensuring that that we were not over sampling 

a specific area and collecting data evenly across each site. 

Overall, there was relatively good correlation between both in situ methods and the 

image-based products. Previous validation of the MODIS and Landsat methods using in 

situ measurements similar to our step-point sampling reported good correlation between 

in situ measurements and the image-based products (Guerschman and Hill 2018; Scarth 

et al. 2010), but very few of these sites were located in areas with a very low percentage 

of vegetation. MAE was consistently low between the in situ measurements and image-

based values for PV compared to BS and NPV, which showed considerably higher 

errors (Table 1). This pattern of errors is also consistent with past studies, where PV has 

been successfully unmixed due to being spectrally unique, whereas BS and NPV are 

typically harder to distinguish due to their spectral similarity (Meyer and Okin 2015; 

Mishra et al. 2014). 

The observer and the spectral field data recorded less than 1.3% PV at the Fowlers Gap 

site, MODIS PV values ranged from 0% to 3%, and Landsat ranged from 0% to 9.72% 

PV. Considering the finer resolution of the Landsat product, we would have expected 

PV to be better correlated with the Landsat values rather than the MODIS values. A 

reason for this could be related to the image products. The Landsat FC product is based 

on a single image captured on one day, whereas the MODIS MCD43A4 product 

calculates the weighted estimate of albedo over a 16-day period. The Landsat image was 

captured during this 16-day composite period. 



 

37 

 

This comparison was conducted with a small number of samples located in the arid 

zone where we know these products tend to fail (Guerschman et al. 2012; Scarth et al. 

2010). More extensive surveys are needed to determine if this pattern is more 

widespread in arid areas. It is also important to remember that we compared single 

MODIS pixels with an average of 400 Landsat pixels. Sampling a cluster of pixels is 

preferable for accuracy assessment to remove errors associated with positional accuracy 

(Congalton and Green 2008). This is feasible for image products with resolutions of 5, 

10, or 30 m but becomes logistically taxing for clusters of MODIS pixels at 500 m. This 

is why the upscaling of field data is regularly used. Currently, the MODIS product is 

validated using upscaled in situ data initially collected over 100-m transects. Sampling 

the area of a single pixel in the field has limitations. We argue that overall, surveying 

the area of a single MODIS pixel is preferable to comparing upscaled field data to a 

MODIS pixel. 

Arid shrublands and desert zone cover 48% of the Australian continent (Department of 

the Environment 2015). Having reliable long-term fractional cover data at varying 

scales is crucial for those managing or studying these regions, especially for areas that 

are inaccessible or unsafe to travel. The in situ methods used have both benefits and 

shortcomings. Step-point sampling has been developed over time as a simple and easily 

repeatable method of collecting fractional ground cover estimates. Limitations of this 

technique include the time-consuming collection of field observations and the potential 

for human subjectivity and bias to be introduced, especially when classifying PV and 

NPV (Fisk et al. 2019). Utilizing standardized definitions and methods (Muir et al. 

2011) may reduce subjective error but cannot remove it entirely. In order to further 

reduce human bias, spectral transect sampling provides a solution. This method allows 

for continuous, quantitative hyperspectral measurements to be taken over an area, 

providing an objective record of ground cover without the need for observers to make 
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categorical decisions in the field. This hyperspectral record of ground cover may also 

have the potential to calibrate and validate a range of other remotely sensed products 

and this is an area of future research. With the continued demand for high-quality 

ground cover products, it is critical to ensure that we are collecting high-quality 

calibration and validation data for the assessment of these sought-after products. 

2.5 Conclusions 

Field-based estimation of fractional ground cover is critical for ensuring the accuracy 

and consistency of remotely sensed ground cover maps. Currently, Australia’s national 

standard for the collection of field estimates of ground cover uses traditional field 

sampling techniques, but hyperspectral reflectance sampling of ground cover has 

considerable potential to improve field measurements collected for calibration and 

validation purposes. This study trailed the use of hyperspectral reflectance sampling in 

the sparsely vegetated NSW arid zone. Comparison of step-point and spectral transect 

sampling across the same transects, at the same spatial scale, demonstrated the 

significant potential of the spectral transect method, both in is ability to produce results 

comparable to the traditional transect measures and also in the improved objectivity and 

relative logistic ease of the method. 

Overall, we found the in situ step-point and spectral sampling techniques to be 

positively correlated across the three ground cover classes. Comparing the in situ data 

and current Australian image-derived fractional cover products showed that overall, the 

Landsat product was strongly related to both in situ methods for non-photosynthetic 

vegetation and bare soil whereas the MODIS product was strongly correlated with both 

in situ methods for photosynthetic vegetation. These results are specific to our survey 

sites and further work is required to test their wider applicability. 
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While a limitation of spectral sampling is the availability and cost of the 

spectroradiometer itself, overall, the benefits outweigh the limitations. Spectral 

sampling is especially beneficial for repeat surveys or multi-temporal studies. Future 

efforts should be made to include spectral ground cover sampling as part of Australia’s 

efforts to produce calibration and validation datasets for remotely sensed products and 

should further test this method to develop a national or global standard. 
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Abstract 

Remotely sensed ground cover maps are routinely validated using field data collected 

by observers who classify ground cover into defined categories such as photosynthetic 

vegetation (PV), non-photosynthetic vegetation (NPV), bare soil (BS), and rock. There 

is an element of subjectivity to the classification of PV and NPV, and classifications 

may differ between observers. An alternative is to estimate ground cover based on in 

situ hyperspectral reflectance measurements (HRM). This study examines observer 

consistency when classifying vegetation samples of wheat (Triticum aestivum var. 

Gladius) covering the full range of photosynthetic activity, from completely senesced 

(0% PV) to completely green (100% PV), as photosynthetic or non-photosynthetic. We 

also examine how the classification of spectra of the same vegetation samples compares 

to the observer results. We collected HRM and photographs, over two months, to 

capture the transition of wheat leaves from 100% PV to 100% NPV. To simulate typical 

field methodology, observers viewed the photographs and classified each leaf as either 

PV or NPV, while spectral unmixing was used to decompose the HRM of the leaves 

into proportions of PV and NPV. The results showed that when a leaf was ≤25% or 

≥75% PV observers tended to agree, and assign the leaf to the expected category. 

However, as leaves transitioned from PV to NPV (i.e., PV ≥ 25% but ≤ 75%) observers’ 

decisions differed more widely and their classifications showed little agreement with the 

spectral proportions of PV and NPV. This has significant implications for the reliability 

of data collected using binary methods in areas containing a significant proportion of 

vegetation in this intermediate range such as the over/underestimation of PV and NPV 
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vegetation and how reliably this data can then be used to validate remotely sensed 

products. 

3.1 Introduction 

Remotely sensed fractional cover maps are critically important for understanding a 

variety of environmental issues such as the impacts of land use change, climate change 

variability, ecosystem function, and desertification (Asner and Heidebrecht 2002; 

Guerschman et al. 2009). Algorithms used to produce fractional cover maps decompose 

each pixel in an image into a measure of similarity to two or more spectrally distinct 

land cover types, typically including photosynthetic vegetation (PV), non-

photosynthetic vegetation (NPV), bare soil (BS), shadow, and snow (Okin 2007; Settle 

and Drake 1993). This results in quantitative estimates of the fraction or proportion of 

the cover types that comprise image pixels. 

During the production of these fractional cover maps some form of reference data is 

required for calibration and validation, typically derived from on-ground measurements. 

Commonly-used field methods for estimating fractional ground cover require observers 

to walk across a study area and make point-based observations at defined intervals. 

These methods use variants of point-based sampling techniques that were initially 

developed for vegetation ecology and rangeland assessment (Evans and Love 1957; 

Graham 1989; Winkworth et al. 1962). They can also be used for more detailed surveys 

such as determining the presence or abundance of plant species across a survey area 

(Lewis 1994; Peterson and Reich 2008). 

When estimating fractional cover within a defined sampling area observers typically 

make hundreds of point-based assessments which are collated to produce overall 

estimates of fractional cover for each cover type across the site. Some cover types are 

discrete, well defined classes (e.g., “rock”, “cryptogam”, or “litter”) that are easily 
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discriminated with high accuracy. However, PV and NPV are more accurately thought 

of as the extremes of a continuum, rather than binary categories, and therefore, 

distinguishing between PV and NPV can be a difficult task for observers. Moreover, 

there is little information on how consistently different observers categorise samples 

across the PV/NPV continuum. 

This uncertainty is widely acknowledged and dealt with to some degree in standard field 

methods. For instance, Muir et al. (2011) technical handbook outlines a simple, 

systematic and repeatable method to ensure the collection of consistent observations of 

fractional ground cover. This method has been implemented in Australia across a 

national network of ground cover sites and is used to calibrate and validate a variety of 

remotely sensed fractional cover datasets including the Commonwealth Scientific and 

Industrial Research Organisation (CSIRO) fractional cover product (Guerschman and 

Hill 2018) and the Joint Remote Sensing Research Program (JRSRP) Landsat fraction 

cover product (Scarth et al. 2010). Muir’s method surveys 100 m transects and was 

designed initially to validate Landsat products allowing the average fractional cover 

values from a cluster of Landsat pixels (90 m) to be compared to in situ fractions. When 

this field method is used to validate the CSIRO product, which has a spatial resolution 

of 500 m, it requires the field observations to be up-scaled. In order for these sites to be 

up-scaled the area surrounding the site needs to fit a specific criteria; (1) the species 

composition and cover should be spatially consistent and (2) that minimal topographic 

variation should occur across the site and surrounding area (Guerschman et al. 2012; 

Muir et al. 2011).  

Field measurements for validating satellite-derived land cover products come with a 

number of limitations. Firstly, the data is often thought of as ‘ground truth’, but because 

of the sampling techniques involved, there is the potential to introduce errors. Secondly, 

acquiring calibration and validation data is often time-consuming and costly due to the 
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number of sites required, the labour needed and distance required to travel to sites that 

may be dispersed across large areas. Thirdly, human subjectivity is known to be a 

significant contributing factor in the variability of vegetation field estimates, 

particularly when identifying NPV. 

A potential solution to help reduce human error is to estimate the relative fractions of 

PV, NPV, and BS from field-based hyperspectral reflectance measurements. This 

method allows for many spectra to be recorded over a defined area, which capture the 

combined spectral response of the site in their aggregate. These spectra can then be 

unmixed to estimate the relative fractions of PV, NPV, and BS. Using this approach 

Meyer and Okin (2015) demonstrated stronger agreement between fractional cover 

derived from field-based reflectance measurements and remotely sensed imagery than 

between traditional line-point intercept observations and remotely sensed imagery. 

However, as there was no ultimate point of truth for field cover, it was not possible to 

tell which measurements best represented reality. Thus, the collection of field spectral 

reflectance is a potential alternative to observer surveys, but we have a limited 

understanding of how this data compares when categorising PV and NPV. We are 

especially uncertain how spectral fractional cover estimates compare to human 

assessments as vegetation transitions from photosynthetic (green) to non-photosynthetic 

(dry). For the purpose of this study the spectral samples were considered a less 

subjective method of classifying vegetation and therefore used as a point of truth for the 

comparisons though acknowledge that there still remains uncertainties in the spectral 

measurements. 

The overall aim of this study was to examine how human assessments compare to 

spectral fractional cover estimates, with a particular focus on how humans categorise 

vegetation across the PV/NPV continuum. Specifically, the research compared how 

vegetation is classified as photosynthetic and non-photosynthetic through observer 
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surveys, replicating decisions made during field surveys, versus spectral unmixing of 

hyperspectral vegetation spectra. The key objectives were to understand when observers 

categorise vegetation as green or dry, determine the amount of variation between 

observers (if any) and to analyse how spectral classification compares to observation-

based classification of vegetation. 

3.2 Materials & Methods 

3.2.1 Wheat Plants 

Wheat plants (Triticum aestivum var. Gladius) sown during August 2013 were grown in 

pots and monitored throughout their development in a glasshouse at the South 

Australian Research and Development Institute Plant Research Centre, University of 

Adelaide. Once the wheat reached maturity, single leaves from 12 separate plants were 

selected and labelled. To capture plant transition from maturity through to the end of 

senescence each of the 12 leaves was sampled over a two month period. During this 

period, the 12 leaves were photographed to create a visual record (Figure 6a), and 

hyperspectral measurements of reflectance (Figure 6b) were taken using an ASD Inc. 

(Analytical Spectral Devices) FieldSpec 3 spectroradiometer. This instrument measures 

the visible to shortwave infrared (350 - 2500 nm) parts of the electromagnetic spectrum 

in 2150 bands with a spectral sampling interval of 3 nm for 350–1000 nm and 10 nm for 

1000 - 2500 nm. Leaf spectra were recorded with an ASD leaf-clip, an accessory 

specifically designed for recording leaf spectra under controlled lighting and geometry. 

Measurements were taken from the same part of each leaf, approximately 3 cm from the 

base of the leaf, on each sample date (Figure 6c). 
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(a) (b) 

 

(c) 

Figure 6 (a) An example of wheat photographs taken over four dates. (b) Hyperspectral reflectance 

measurements of the four leaves in Figure 6a. (c) Black dashed circle indicates the reflectance sample 

location for each leaf. 

3.2.2 Observer-Based Binary Classification 

A questionnaire was developed to simulate observer field classifications of vegetation 

samples as either a green leaf (PV) or dry leaf (NPV) when using the Muir et al. (2011) 

technique and definitions. From the photographs taken over a two month period, 74 

were randomised and developed into the survey, with the leaves chosen to ensure a mix 

of different stages of senescence. Thirty-two observers were asked to perform a binary 

classification of each leaf as either green or dry. The observers consisted of university 

staff and students ranging from experienced field observers with a background in 

remote sensing and ecology to staff and students with no experience in the field or in 

remote sensing. Prior to the survey, all observers read the Muir et al. (2011) definitions 

of a green leaf and a dry leaf (Table 2) and subsequently classified the 74 leaves in a 

closed format survey based on their interpretation of the definitions provided. The 

classifications were based on observations of the small area of leaves where the spectral 
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samples were taken (Figure 6c) and each leaf was viewed individually and classified 

before moving on to the next leaf. 

Table 2 Definition of a green and dry leaf according to Muir et al. (2011). 

Category Definition 

Green 

Leaf 

• A leaf with green pigmentation (one that is actively photosynthesising) attached 

to a plant.  

• Leaves may appear more yellow than green. 

Dry Leaf 

• A leaf with non-green pigmentation (one that is not actively photosynthesising).  

• Includes senescing (but still living vegetation) and dead vegetation.  

• Leaf must be attached to a plant or the ground. 

 

3.2.3 Spectral Unmixing 

Photosynthetic and non-photosynthetic fractions of the 74 leaf spectral samples were 

derived by spectral unmixing. Reference spectra (endmembers) for the unmixing were 

selected from leaves not included in the survey (Figure 7). 

 

Figure 7 Green and dry leaf endmembers selected for spectral unmixing. 

The individual leaf spectra were converted into a single raster-like file which was 

processed using the linear spectral unmixing tool in ENVI 5.3.1 (Exelis Visual 

Information Solutions, Boulder, Colorado) and the reference spectra were used to 
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decompose each of the spectral samples into relative proportions of green and dry. The 

partially constrained linear spectral unmixing algorithm (Adams et al. 1993; Adams et 

al. 1986; Smith et al. 1990) used was: 

𝐷𝑁𝑏 =  ∑ 𝐹𝑒
𝑛
𝑖=1 𝐷𝑁𝑒,𝑏 + 𝐸𝑏  and ∑ 𝐹𝑒 = 1  𝑛

𝑖=1  (1) 

where 𝐷𝑁𝑏 is the apparent surface reflectance of a pixel in band b of an image; 𝐹𝑒 is the 

fraction of endmember 𝑒; 𝐷𝑁𝑒,𝑏 is the relative reflectance of endmember 𝑒 in band b; 

𝑛 is the number of endmembers, and 𝐸𝑏 is the error for band b of the fit of 𝑛 spectral 

endmembers. The unmixing resulted in three values for each leaf; the PV fraction, NPV 

fraction, and the root mean squared error (RMSE). Overall, the RMSE for each leaf 

showed very low errors with the highest RMSE reported as 0.08%. This provides 

confidence in the fractions of PV and NPV derived from the unmixing. Past studies 

show that PV can be predicted with high accuracy from spectral unmixing while 

typically NPV is harder to estimate (Li et al. 2017; Okin et al. 2013). The reflectance 

measurements were taken in a way to ensure no other materials such as soil or litter 

would be recorded by the sensor which can cause confusion during unmixing. 

Considering these factors, we can have a high degree of confidence in the spectral 

unmixing. In this paper PV and NPV is used to refer to the spectral classification of the 

leaves while ‘green’ and ‘dry’ refers the observer classifications. PV/ green leaf are 

equivalent categories, as are NPV/ dry leaf. 

3.2.4 Statistical Analysis  

To summarise the individual green and dry observations, descriptive statistics were used 

to calculate the total number of green observations and dry observations as a percentage 

of the total number of leaves (n = 74). Based on these totals, the grouped mean was 

calculated for both green and dry classes along with the standard deviation. These 

summary statistics were repeated for the spectral measurements of each leaf, calculating 
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the average PV and NPV percentage based on the PV and NPV fractions derived for 

each leaf from the linear unmixing. 

To test the relationship between the PV fractions and the green observations the raw 

individual observations and spectral unmixing fractions were analysed. Logistic 

regression was used to model the binary observer response variable (i.e., green or not 

green). PV was the single, linear, fixed effects predictor in the model, and observer 

identity was fitted as a random intercept effect to account for the repeated measures by 

observers in scoring all photographs. The regression was calculated in R using a 

generalized linear mixed effect model (GLMM) (Bates et al. 2015). A detailed 

explanation of the GLMM can be found in (Chambers et al. 2001). Using the GLMM 

output parameters the confidence intervals (CI) were calculated. 

3.3 Results 

Firstly, we explored the observers’ classifications to determine their variation within the 

green and dry categories. Individual observers categorised 32 - 49% of the leaves in our 

sample as green and 51 - 65% as dry. The majority (73%) of observer responses were 

situated within the 91 - 100% range representing 54 of the 74 leaves analysed (Figure 

8). These 54 leaves (Figure 9a) were unanimously classified as either a green or dry leaf 

by the observers. Of the remaining 20 leaves, 11 showed 90 - 99% agreement between 

the observers, while the remaining 9 leaves (Figure 9b) had the most substantial 

variation in observer response.  

The grouped mean proportions of green and dry leaves within the sample were 42% 

green and 58% dry, with a standard deviation of 3.82% for both green and dry showing 

that overall there is little variation amongst the observers. The average fractions of PV 

and NPV were 44.68% and 55.31%. The green and dry observational data, and PV and 
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NPV fractions are both inverse of each other. From here on we will report only the 

green and PV results. 

  

Figure 8 (a) Distributions of green observation vs. the photosynthetic vegetation (PV) fractions 

(photosynthesis activity levels) and (b) the distribution of dry observations vs. the non-photosynthetic 

vegetation (NPV) fractions (non-photosynthesis activity levels). 

 

 

Figure 9 (a) Example of leaves unanimously classified as green or dry by observers. (b) Leaves with 

significant variation amongst observers. 

The GLMM likelihood ratio test between the spectral and observer results showed a 

strong positive linear relationship between the PV fractions and green observations (χ2 

(a) (b) 
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= 2358.2, df = 1, p < 0.001). The GLMM also provided a value for the odds of an 

observer classifying a leaf as green. In this case, the odds of an observer scoring green 

increased by 10% with every one percent increase in the PV fraction (95% CI = 9.3%, 

10.9%). It is important to note that this increase is relative to each observer. For 

example, some observers classify leaves as green, on average, at lower PV values, 

thereby reaching 100% PV more slowly, while others classify a leaf as green much later 

in the continuum and will reach 100% very quickly. 

Based on the GLMM, the predicted mean observer values were calculated and 

represented as a line of best fit along with its confidence intervals (Figure 10). This 

confirms that at the extremes, when a leaf is extremely dry (0 - ~25%)) or extremely 

green (PV ~75 - 100%) as classified by spectral unmixing, observers were almost all in 

agreement, and made the most appropriate classification. In the middle of the PV/NPV 

continuum (between ~25% and ~75% green) there is a zone of uncertainty where we 

saw observer decisions considerably differed from one another. 

 

Figure 10 Relationship between predicted green observations and the percentage of photosynthetic 

vegetation. The green line represents the mean predicted observer values and the 95% confidence interval 

range is represented by the grey shaded area. 
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3.4 Discussion 

The aim of this study was to investigate how human assessments compare to spectral 

estimates of fractional cover. By having multiple observers assess the same samples, we 

have developed an insight into the consistency of observer classifications and have also 

clarified the relationship between human and spectral assessments of PV and NPV. 

When assessing the variation in the human observation of green and dry classes, there 

was a 17% difference between the minimum and maximum green proportions and a 

14% difference between the dry proportions. Comparison of variation between observer 

results is not something that can be done routinely in the field because, typically, a 

single person would survey a specific area or transect due to time and cost. One study 

that examined the variability of fractional ground cover reference data between 

experienced and inexperienced observers found that there was no significant difference 

between mean estimates of cover based on experience level (Trevithick et al. 2012). 

They noted that variation did increase between experienced and inexperienced observers 

for PV and NPV and that, for all observers NPV was the hardest to identify. It is 

important to note this variation when comparing these observed estimates to PV and 

NPV from satellite-derived fractional cover maps. While this variation is small, it is 

important to recognise when designing field methods and may influence cover estimates 

when multiple observers are contributing to one larger dataset. 

Unanimous agreement between observers does not necessarily mean that the observers 

were correct but does suggest strong agreement among the observers for those specific 

leaves. When observers perform these classifications, they are required to make binary 

decisions, and in order to gain consistent data, it is vital that all observers have the same 

understanding of the definitions they are using. After our survey, observers provided 

feedback on the definitions (Table 2) upon which they based their decisions. A 
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comment expressed by many was that the green and dry leaf definitions were not clear 

and that they appeared contradictory. When using these definitions it can be difficult for 

observers to define the point at which they should classify a leaf as green or dry and for 

this decision to be consistent between a group of observers. If an observer chooses to 

honour the dry leaf definition, anything with non-green pigmentation should be 

considered dry, meaning that an observer potentially would only classify a leaf as green 

if it was entirely green even though the green leaf definition stated that it could be more 

yellow than green. Another potential confounding factor is that a leaf may still be 

photosynthesising even if it has patches of yellow or appears dry, which was observed 

in a small number of leaves in the survey. An area of future research would be to 

improve these definitions clarifying how to classify any leaf into the green/dry 

categories. 

There was a strong positive linear relationship between observer decisions and the 

spectral classification of each leaf. A limitation of this study is that the majority of the 

leaves fell within the top and bottom 25% of the photosynthetic continuum with few 

leaves spread across the mid 50% range: This distribution is likely to have influenced 

the results of the GLMM. When leaves were close to being completely green or dry, 

both the observers and spectral unmixing results were strongly related, but as the leaf 

transitioned this relationship became unclear. This is consistent with past studies that 

extract PV from in remotely sensed imagery using spectral unmixing techniques finding 

that PV can be reliably extracted (Mishra et al. 2014; Trevithick et al. 2012). The 

classification of leaves by observers within this 50% range can occur as follows; (1) a 

leaf that is classified as ~25% PV might be assessed as green by 0%, 5%, or 35% of 

observers, (2) a leaf that is ~55% PV might be assessed as green by 30% or 100% of 

observers and (3) a leaf that is ~70% PV might be assess as green by 0%, 20%, or 85% 

of human observers. Therefore, human classification of leaves with a mixture of PV and 
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NPV (i.e., within the mid 50% of the spectral range) shows little agreement with the 

spectral proportions of PV and NPV. To examine these results further, a survey 

including more leaves within the mid-range of the PV/ NPV continuum would be 

desirable and is a potential area for future research. The GLMM also tested the odds of 

the relationship between the observer and spectral results and showed that the odds of 

an observer classifying a leaf as green increases by 10% for every 1% increase in the 

PV fraction relative to the observer’s last decision. 

The use of wheat (Triticum aestivum var. Gladius) was an ideal choice to visually 

capture the transition of leaves from green to dry. Growing wheat in a controlled 

environment ensured that photographs and reflectance measurements of the same leaves 

could be taken over time with the results providing a baseline understanding of how 

observers can react when categorizing vegetation. No work was performed to test if 

these results could be generalized across other plant species but our results should be 

generalizable across other spectrally similar C3 plants as well as other green plants that 

lack any other significant source of pigmentation. 

Spectral sampling provided a continuous and objective means to collect the reflectance 

of vegetation for spectral unmixing. The linear spectral unmixing results showed that 

very few leaves were entirely classified as PV or NPV and highlights the benefit of a 

survey method that can record continuous, rather than binary data. The ability to 

measure and analyse reflectance of vegetation or ground cover is a key advantage of this 

technique as it removes the need for observers to make binary decisions in the field. A 

recommendation for future studies is that if all vegetation is expected to be <75% PV or 

NPV either spectral sampling or observer surveys are appropriate. If the majority of the 

vegetation is situated between ~25% and ~75% PV, observer surveys are likely to 

introduce uncertainty and therefore we recommend spectral sampling. Spectral sampling 

enables the collection of more quantitative information to be collected over a study area 
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and may allow for a more accurate assessment of relative PV or NPV status of 

vegetation to be attained for the purpose of training and evaluating earth observation 

products. 

3.5 Conclusions 

The collection of field-based calibration and validation data is critical for ensuring the 

accuracy and consistency of remotely sensed fractional ground cover products. This 

study provides a greater understanding of the variation that may occur between observer 

decisions and when this data may become less reliable. In addition, it clarifies the 

relationship between human and spectral assessment of PV and NPV, highlighted by the 

follow key findings. Firstly, when comparing the proportions of PV and NPV between 

observers, there was up to 17% variation between observers for PV and up to 14% 

variation for NPV. This variation can have implications for the consistency of data 

collected using multiple observers and how accurately satellite-derived ground cover 

products can be calibrated and validated using this data. Secondly, the GLMM suggests 

that the PV and NPV values for the observer and spectral data were similar but shows 

that observers overestimated NPV and underestimated PV. Lastly, at the extremes of 

leaf photosynthetic expression there was strong agreement between observer decisions 

and spectral classification but as the leaves transitioned this relationship weakened, with 

little agreement for leaves close to 50%. 
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Abstract 

Soil colour is a significant factor that influences soil reflectance and is believed to 

negatively influence fractional ground cover estimates derived from MODIS imagery. 

MODIS fractional cover estimates of ground cover play an important role in ecosystem 

monitoring across Australia. While past assessments suggest that soil colour or soil 

brightness does not influence these ground cover estimates some doubts remain. This 

study aimed to perform a systematic evaluation of fractional ground cover estimates 

derived from MODIS imagery across Australia to determine if soil colour has any 

influence on the product. To meet this aim, we addressed two key objectives: (1) to 

compare fractional ground cover estimates from the Australian MODIS fractional 

ground cover product and the Australia-wide AusPlot program field measurements, 

providing a baseline understanding of how the image-derived estimates compared to 

field estimates; (2) to examine if soil colour has any influence of the MODIS product 

using quantitative and qualitative methods. Two hundred and fifty AusPlot sites 

distributed across Australia that contained field measurements of fractional ground 

cover of bare soil, photosynthetic and non-photosynthetic vegetation along with 

Munsell soil colour descriptors were selected for the analysis. Relationships were 

established between the MODIS and AusPlot fractional cover values using Munsell hue 

as an indicator of soil colour. Linear relationships were established for the soil colour 

groups and a visual assessment of the graphs produced was performed to uncover any 

observable pattern in the data based on hue and the Munsell colour notation as a whole. 

Overall the MODIS and AusPlot fractional cover values for BS and PV were strongly 

correlated while NPV displayed a weak relationship but was still statistically 

significant. There was a significant difference between the five hues analysed, showing 

an observable effect of hue within the MODIS product at the 250 sites. For the majority 

of hues there was some over or underestimation of MODIS fractional cover relative to 
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AusPlot estimates. For example, for  sites with a hue of 10R bare soil tended to be 

overestimated and photosynthetic vegetation underestimated. It is our hope that 

understanding the effect of soil colour on MODIS fractional cover estimates will assist 

future calibration efforts to improve the product, and provide the context to enable more 

accurate consumption of the current product in cases where precision might be of the 

utmost importance. 
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4.1 Introduction 

Ground cover is a frequently used indicator of soil condition, soil erosion, the health 

and function of rangelands as well as the success or failures of land management 

practices (Bastin et al. 2012; Stewart et al. 2011). Mapping and monitoring ground 

cover using remotely sensed imagery provides a consistent means of recording and 

monitoring ground cover over time and a practical way to monitor broad regions or 

entire continents as a whole. In Australia, efforts have been made to develop fractional 

cover products that support temporal analysis of ground cover change (i.e. seasonal, 

monthly or yearly).  

The MODIS fractional ground cover product provides relative estimates of the 

proportion of bare soil (BS), photosynthetic (PV)  and non-photosynthetic vegetation 

(NPV) and has become a vital component of the Australian Government Ground Cover 

project (Guerschman and Hill 2018; Stewart et al. 2011). This project was established in 

2009 after recognising the need for nationally consistent ground cover data that can be 

utilised for land management and the assessment of soil condition. Fractional ground 

cover estimates were derived from MODIS imagery and initially developed to monitor 

the tropical savanna region of the Northern Territory (Guerschman et al. 2009). It used 

MODIS Nadir Bidirectional Reflectance Distribution Function Adjusted Reflectance 

(NBAR MCD43A4) collection 5 imagery which was an 8-day product with a spatial 

resolution of 500 m. The Guerschman et al. (2009) method was later applied nationally, 

creating a continent-wide fractional cover product utilising the MODIS archives 

available from 2000 to present (Guerschman et al. 2015). In 2018, the MODIS NBAR 

MCD43A4 dataset was updated to collection 6, and with it the MODIS fractional cover 

product was also updated undergoing further calibration and validation (Guerschman 

and Hill 2018). Applications of the MODIS fractional cover dataset are a part of the 

Australian National University Explorer (Van Dijk 2016) which is a web application 
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developed to summarise spatial data in order to report on the condition and changes 

occurring to the Australia landscape, the DustWatch program (DustWatch Australia 

2019) and State of the Environment Reports (Department of the Environment and 

Energy 2018). It is therefore vital to ensure the accuracy of the MODIS product when it 

is used to inform a variety of end-users such as researchers studying rainfall erosivity 

and hillslope erosion (Zhu et al. 2019), forest decline (Evans et al. 2013) or vegetation 

dynamics (Zhou et al. 2016).  

Soil colour has a significant influence on the variability of soil reflectance (Escadafal et 

al. 1989; Viscarra Rossel et al. 2010). Across a landscape such as Australia soil 

properties including moisture, texture and soil colour can vary considerably over short 

distances (Mouazen et al. 2005; Viscarra Rossel et al. 2006; Whiting et al. 2004). Past 

evaluations of the MODIS fractional cover estimates found that the bare soil component 

performs poorly in arid regions of Australia, where vegetation is sparse (Lawley et al. 

2014). Other studies have explored soil properties to determine if they affect the 

production of fractional cover maps. Specifically, Guerschman et al. (2012) evaluated 

the accuracy of fractional cover estimates derived from the MODIS model across 

Australia. Evaluation of the effects of soil properties included soil colour data derived 

from the Digital Soil Atlas of Australia (Australian Soil Resource Information System 

2009) and hyperspectral reflectance measurements of soil collected in the field at 

varying moisture conditions. This study highlighted that bright soils were associated 

with poor model performance in particular for the BS and NPV layers, but that soil 

colour in general did not affect the model. Soil moisture was also found to affect the 

estimation of cover especially in areas with a high proportion of exposed wet soil, 

finding that these areas are likely to be wrongly classified as non-photosynthetic 

vegetation. Guerschman et al. (2015) later explored the influence of soil moisture and 

soil brightness as a proxy for soil colour and found that there was no substantial 
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influence on model performance. That analysis used digital soil colour maps developed 

from over 4000 hyperspectral soil measurements collected across Australia (Rossel and 

Chen 2011; Viscarra Rossel et al. 2010). Munsell hue, value and chroma maps at 5km 

resolution were derived from an RGB map produced using principal component 

analysis applied to hyperspectral measurements of surficial soil and interpolated from 

these across Australia to develop a full coverage map. It was noted that the coarse 

resolution of the information may have influenced results (Guerschman et al. 2015). 

Furthermore, these digital Munsell soil colour maps do not represent direct soil colour 

measurements but rather inferred colour based on spectral measurements that have been 

transformed and substantially interpolated. Therefore an area for future research is the 

use of direct in situ soil colour measurements to explore the effects of soil colour on 

MODIS fractional cover estimates. 

As part of the 2009 Australian Government Ground Cover initiative, the Terrestrial 

Ecosystem Research Network (TERN) was established in order to provide standardised 

and integrated measurements of change to Australia’s land-based ecosystem 

biodiversity. This is being delivered by providing open-access data and tools for 

researchers and infrastructure in order to contribute to a broader understanding of 

Australia’s ecosystems (TERN 2017). AusPlots is a branch of TERN responsible for the 

plot-based surveillance monitoring program. The aim of AusPlots is to establish and 

maintain a network of plots for ecological assessment and on-going monitoring of 

ecosystems across Australia (TERN AusPlots 2017). The AusPlots Rangeland Survey 

Protocol (White et al. 2012) outlines the field methods used for surveillance and the 

data that is available. Point intercept ground cover surveys have been used to calculate 

the percentage of bare soil and photosynthetic and non-photosynthetic vegetation across 

each plot. This has the potential to be used to validate and calibrate image-based 

fractional cover products along with other satellite-derived products. Recording of soil 
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properties at AusPlots sites was introduced late into the program therefore is only 

available for parts of the growing dataset. Soil information that is available includes soil 

characteristics, Munsell soil colour classification, soil cores, bulk density and soil 

samples. Soil samples collected are later stored as part of the CSIRO National Soils 

archive (White et al. 2012).  

Other than Rossel and Chen (2011) digital soil colour maps and the AusPlots Munsell 

soil colour data, there is no other suitable national soil colour database available in 

Australia. Now that there is a larger number of surveillance sites with soil data 

available, the motivation of this study was to explore the potential effect of soil colour 

on the MODIS fractional cover product utilising this newly collected AusPlots data. The 

principal aim was to perform a systematic evaluation of fractional ground cover 

estimates derived from MODIS imagery to determine if soil colour had any influence on 

the product. The following objectives were used to address this aim and motivation: (1) 

to compare the fractional cover values derived from the MODIS product and the 

AusPlots ground measurements, thus providing a baseline understanding of how the 

image (MODIS) and field (AusPlots) estimates compare prior to the soil colour 

analysis, and (2) to examine if soil colour has any influence on the MODIS fractional 

cover product using qualitative and quantitative methods.  

4.2 Materials & Methods 

4.2.1 Field data 

AusPlots field measurements were used as our in situ dataset and were accessed using 

the R package ausplotR (TERN 2019). Basic site information, fractional cover values 

for percentage green (photosynthetic vegetation), brown (non-photosynthetic 

vegetation) and bare (bare soil) and soil colour were calculated using the default settings 

(cryptogram assigned to NPV) and extracted from the AusPlots database. Each 

AusPlots site covers 100 by 100 m and is located in a homogenous area to enable 
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upscaling of the data. At each site the latitude and longitude are recorded at the centre 

and four corners of the plot and a 1 m soil pit is dug in the south-west corner of the plot 

in order to record the soil profile and provide a general description of the soil for the 

site. Full details of the data collection protocols are provided in the AusPlots Rangeland 

Survey Protocol (White et al. 2012). 

AusPlots data extracted from ausplotR was filtered to keep only surficial soil colour 

measurements collected from the soil pits. Sites that did not contain soil colour or 

contained soil data with errors were removed. This left 250 sites situated around 

Australia and surveyed between 2011 - 2018 (Figure 11) available for the analysis. 

 

Figure 11 Location across Australia of 250 AusPlot sites used in the analysis. 

Each of these 250 sites contains a Munsell soil colour classification which describes the 

hue, value and chroma of the soil sample taken at the site. The Munsell Soil Colour 

Charts (Munsell Colour 1992) were developed from the Munsell (1912) Colour System 

and Notation and are used to visually match soil samples with standard colour chips 

contained in the charts in order to provide a soil sample with a soil name. The Munsell 

colour notation is a traditional and reliable method that soil scientists use to provide an 

internationally consistent colour name that does not require translation. Munsell soil 

colour names consist of three components; hue, value and chroma. Hue is defined by 

the principal hues such red (R) and yellow (Y) and intermediate hues such as YR 
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between the adjacent principal hues. The hue is preceded by a number ranging from 0 - 

10, (i.e. 10YR) and as this number increases the hue becomes more yellow and less red. 

The value represents the lightness or darkness of the colour and is denoted by numbers 

ranging from 0 representing black to 10 representing white. Chroma defines the 

saturation of the colour and is represented by a number ranging from 0 – 20 in the 

Munsell (1912) colour charts but in the soil charts typically stops at a chroma of 8. An 

example of a complete Munsell colour classification from one of the AusPlots sites is 

10YR 4/2 (hue = 10YR, value = 4 and chroma = 2). In this study hue was used as the 

key descriptor of colour as it represents the principal colour of the soil. Munsell colour 

can differ if the soil is wet or dry.  

At the time of AusPlots sampling, surface soil is recorded as dry or moist (wet). 

Typically if the soil is dry (i.e. no moisture observed) the dry Munsell colour is 

determined before wetting the soil and recording wet soil colour. If the soil if already 

wet due to rain only a wet soil colour is recorded. The majority of the 250 sites 

available had both wet and dry soil classifications while others had only a wet 

classification. For the purpose of this study wet and dry soil colours were analysed 

separately.  

4.2.2 MODIS Fractional Cover Product 

The MODIS fractional cover product version 3.1.0 (Guerschman 2018) was used for 

this analysis and is developed from the MODIS MCD43A4 NBAR collection 6 (Schaaf 

and Wang 2015) imagery. The MODIS product is available from 2000 to present, hence 

we were able to match the AusPlot site field collection dates (2011 – 2018) to the 

MODIS product date and extract the corresponding MODIS fractional cover values. The 

MODIS product provides a centre date for each 16 day composite therefore AusPlots 

dates were matched to the 16 day date range and the corresponding MODIS fractional 

cover values were extracted.   
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4.2.3 Statistical Analysis 

The R package Standardised Major Axis Estimation and Testing Routines (SMATR) 

(Warton et al. 2012) was used to test the relationship between the fractional cover 

values derived from the AusPlots data and the MODIS image product using the 

standardised major axis (SMA) function. Unlike typical regression models where the 

user is attempting to predict a dependent (Y) from and independent variable (X), the 

SMA model analyses a pair of variables, for example Y1 (i.e. AusPlots BS fractions) 

and Y2 (i.e. MODIS BS fractions) and determines how they relate to one another. The 

first analysis compared all sites with a wet soil colour classification and tested the 

relationship between the AusPlots and the MODIS fractional cover values. This was 

necessary in order to gain a baseline understanding of how the MODIS and AusPlot 

fractional cover values compared. The test was performed for the three ground cover 

categories PV, NPV and BS and this process was then repeated for sites with a dry soil 

colour.  

The second analysis stratified the sites by wet soil Munsell hue and the SMA function 

was used to establish linear relationships between AusPlots and MODIS fractions for 

each hue. The linear relationships for all hues were then tested using the common slopes 

test for bivariate lines that is included in SMA function when requested. The common 

slope test examines the slope and elevation of the line of best fit for each group to 

determine if they differed from each other. This was again conducted separately for the 

BS, NPV and PV values as well as for wet and dry soil colours. A qualitative 

interpretation of the plots was conducted in order to visualise any observable patterns or 

trends in the data. This was assisted by the use of the R package Algorithms for 

Quantitative Pedology (AQP) (Beaudette et al. 2013) to colour each of the sample 

points with their associated soil colour chip from the Munsell soil colour charts.  
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4.3 Results 

At the highest level, ignoring soil colour and just examining the relationship between 

the MODIS and AusPlots fractional cover estimates, our results demonstrate strong and 

statistically significant correlations for BS and PV, and weaker but still statistically 

significant correlations for NPV (Table 3) for sites with either wet or dry soil colour 

classifications.  

Table 3 Relationships between MODIS and AusPlots BS, NPV and PV fractional cover for sites with wet 

(n = 250) and dry (n = 139) soil colour classifications. 

 BS NPV PV 

 Wet Dry Wet Dry Wet Dry 

r2 0.633 0.668 0.077 0.045 0.635 0.679 

p-value < 2.22e-16 < 2.22e-16 9.9042e-06 0.012 < 2.22e-16 < 2.22e-16 

 

When beginning to examine the impact of hue, our results demonstrated slopes 

significantly different from 1 for almost all hues (Figure 12 and 13), but that the 

elevation of the line for most categories is not offset. This occurred for both wet and dry 

soil colour except for BS and NPV in the dry soil category. Comparison of the linear 

relationships for the wet soil colours and the PV dry soil colours shows that the slopes 

were significantly different while the elevation of the lines did not significantly differ 

except for the dry BS and NPV categories (Table 4) where the slope and elevation for 

each significantly differed. 

Table 4 Comparison of linear relationships between hue groups for wet and dry soil colour 

classifications. 

 BS NPV PV 

 Wet Dry Wet Dry Wet Dry 

Slope comparisons 

among groups (p-value) 0.004 0.538 0.010 0.003 0.034 0.078 

Elevation comparisons 

among groups (p-value) 
0.119 1.7613e-05 0.178 3.4126e-05 0.111 0.873 

 



 

78 

 

 

 

Figure 12 Lines of best fit for wet soil hues. 
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Figure 13 Lines of best fit for dry soil hues. 
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For BS the slope of the AusPlots-MODIS relationship does not significantly differ from 

1 for any of the hue groups other than 2.5YR (slope = 0.84, CI 0.72 - 0.98 and 7.5YR 

(slope = 0.82, CI 0.69 – 0.97). Conversely, all NPV and PV slopes differ from 1. 

Overall BS is systematically overestimated by the MODIS product with the majority of 

the points sitting above the 1:1 line (Figure 14). NPV points typically sit higher than the 

1:1 but are not distributed evenly across the line like BS and PV due to the weak 

relationship between MODIS and AusPlots for this class. PV also appears to contain a 

systematic bias where the MODIS appears to underestimate PV with the majority of 

points sitting below 1:1.  

When examining specific hue relationships (Figures 15 - 20), there appear to be cases of 

substantial bias. The most extreme cases are PV for the 10R and 2.5YR hue, where the 

range of MODIS values (~ 0 to 30 %) is extremely compressed compared to the range 

of AusPlots values (~ 0 % to 80 %) with red soils having lower MODIS fractions and 

darker soils higher fractions. Other noteworthy cases are PV values for all other Hues 

(MODIS values systematically lower than AusPlots), soil for 10R (MODIS values 

systematically higher than AusPlots), and NPV for 2.5YR, 5YR, 7.5YR, and possibly 

10YR (MODIS values systematically higher than AusPlots). For NPV, the darker soils 

colours are typically situated above the 1:1 line while red and light brown/yellow soils 

are situated in the middle or below 1:1.  
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Wet Soil Colours     Dry Soil Colours 

  

  

  

Figure 14 Comparison of MODIS and AusPlots fractional cover values for BS, NPV and PV. Red line 

represents the 1:1 line and the colour of each point represents the Munsell soil colour for that site. Wet 

soil colours are represented in the left column and dry soil colours in the right column. 
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Figure 15 Comparison of bare soil fractions from MODIS and AusPlots grouped by Munsell hue (wet 

soil). 

 

 

Figure 16 Comparison of bare soil fraction from MODIS and AusPlots grouped by Munsell hue (dry 

soil).  
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Figure 17 Comparison of non-photosynthetic vegetation fractions from MODIS and AusPlots grouped by 

Munsell hue (wet soil). 

 

 

Figure 18 Comparison of non-photosynthetic vegetation fractions from MODIS and AusPlots grouped by 

Munsell hue (dry soil).  
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Figure 19 Comparison of photosynthetic vegetation fractions from MODIS and AusPlots grouped by 

Munsell hue (wet soil). 

 

 

Figure 20 Comparison of photosynthetic vegetation fractions from MODIS and AusPlots grouped by 

Munsell hue (dry soil).  
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4.4 Discussion 

The aim of this study was to perform a systematic evaluation of the Australian MODIS 

fractional cover product to determine if soil colour has any influence on the estimates of 

bare soil, photosynthetic and non-photosynthetic vegetation. By comparing the MODIS 

fractional cover product to AusPlots in situ measurements of fractional cover and soil 

colour, we have highlighted biases in the data and determined which soil colours are 

most affected.   

Our first objective was to test the relationship between the AusPlots in situ fractions and 

the MODIS product fractions. Statistically significant relationships were observed for 

all three ground cover types with PV and BS showing the strongest relationships (r2 

between 0.63 and 0.68) and NPV showing a very weak but still statistically significant 

relationship (r2 = 0.05 for dry soils; r2 = 0.08 for wet soils). Thus, MODIS and AusPlots 

appear to be measuring the same ground cover types. However, we revealed that the 

MODIS product systematically underestimated PV and overestimated BS and NPV 

relative to the AusPlots in situ values and that the degree of over- or underestimation 

was influenced by soil colour (hue). For the BS and PV classes, our results are 

consistent with past studies conducted on the MODIS products that showed a strong 

relationship between in situ data and MODIS product BS, NPV and PV values 

(Guerschman and Hill 2018; Guerschman et al. 2012). The relationship between the 

MODIS product and AusPlot fractional cover values is similar to that demonstrated by 

Guerschman et al. (2012). They reported a high correlation between their field values 

and the MODIS product for PV and low correlation for NPV and BS. Examination of 

Figure 20 in Guerschman et al. (2012) shows that PV was underestimated by the 

MODIS product and BS was overestimated, consistent with our observations. This high 

correlation for PV is consistent with other studies and is likely due to the spectral 

uniqueness of photosynthetic vegetation which facilitates successful spectral unmixing 
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(Meyer and Okin 2015; Mishra et al. 2014). NPV and BS are more likely to be confused 

in the unmixing process and it is common in similar studies to see weaker relationships 

between image and field fractional measures for these cover types.  

Our second aim was to examine the influence of soil colour on the MODIS product. 

Analysis of the sites grouped by soil colour (as represented by Munsell hue) revealed 

several colour-specific relationships. We detected a substantial influence of soil colour 

on the relationship between MODIS and AusPlot fractional cover. Overall, there was no 

relationship observed between the five wet hues analysed and the dry PV hues. This 

shows that a statistical difference is observed within the MODIS and AusPlot fractional 

cover values based on hue. An exception to this was for dry BS and NPV MODIS and 

AusPlot comparison where a relationship was observed between the hues. The effect of 

specific hues was most strong for PV where 10R and 2.5YR is underestimated and red 

soil colour are observed and associated with > 50% MODIS PV. The effect is also seen 

strongly for NPV; for dark soil colours NPV is overestimated by the MODIS product. 

For BS, the most observable effect is for red soils (10R) where MODIS over-estimates 

bare soil.  

Our initial assumption was that the fractional values of the MODIS and AusPlots BS, 

NPV and PV should follow a 1:1 relationship and be distributed evenly either side of 

the line. This would suggest a 1:1 relationship between the image fractional cover 

values and the field values, confirming that the MODIS product was accurately 

representing ground cover conditions. For BS the relationships between MODIS and 

AusPlots fractions do not deviate from 1:1 for hues 10R, 10YR and 5YR whereas for all 

other hues in the PV and NPV categories they do deviate. Examining the bare soil plots 

shows that the majority of 10R sites sit above 1:1 and consists of sites with red soils 

while the majority of the 10YR sites are clustered within the 0 - 30% BS range of the 

plot. In the NPV plots the points are typically clustered towards the centre of the plot 
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with the majority sitting above the 1:1 suggesting that the MODIS product is 

overestimating NPV.  

Visual representation of soil colours for each site shows that dark soils (i.e. with a low 

value) within each hue sit above the 1:1 across most groups in the wet soil graphs while 

red soils sit near the 1:1 or just below the 1:1. For dry soil hue 7.5YR there was a 

negative relationship between MODIS and AusPlot variables. Lastly, considering PV 

again red soils sit low in the plot >30% MODIS PV and > 40 – 60% AusPlots PV 

especially for soil with a hue of 10R and 2.5YR. Otherwise darker soil colours typically 

sit higher and are more evenly distributed just below the 1:1 line.  

Key strengths of the AusPlot soil colour measurements are that the sites are distributed 

across Australia and that the Munsell soil colour represents first-hand field 

observations. Five hues that represented red and red yellow soils were available for 

analysis: 10R, 10YR, 2.5YR, 5YR and 7.5YR. These five hues represent a majority of 

those outlined in the Munsell Soil Colour charts. Hues 2.5Y and 5Y were not included 

since there were too few sites available for analysis at the time of this study and there 

were no AusPlot sites that represented any of the Gley hues (Munsell Colour 1992).  

A limitation of our study is that we have up-scaled field data collected over a 1 ha area 

and compared it to a MODIS pixel (500 m2), such up-scaling of data is regularly used 

due to the intensive and time-consuming nature of collecting field survey data. In 

contrast, Guerschman et al. (2015) utilised an Australia-wide digital soil colour map 

that had a spatial resolution of 5 km and underwent significant processing in order to 

produced the digital Munsell maps (Viscarra Rossel et al. 2010). This processing has 

implications for the Munsell soil colours developed and may have affected the result of 

previous soil colour / soil brightness studies.  
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Another limitation is that the collection of soil colour information was introduced late 

into the AusPlots survey meaning that only 250 sites around Australia out of the 

approximately 733 sites available at the time of this study could be utilised. As new 

AusPlot sites become available or old sites that lack soil information are revisited it 

would be useful to revise this analysis and determine if these trends are more 

widespread as well as investigate the influence of currently un-sampled soil hues.  

Fractional ground cover values derived from MODIS imagery are a valuable resource 

for scientists and land managers especially for those that require broad-scale or 

continent-wide estimates of ground cover. Analysing Munsell soil colour notations, 

AusPlot and MODIS fractional cover data has uncovered soil colour bias that has not 

been previously discovered in the MODIS product. Future studies should utilise this 

information to determine if the MODIS fractional cover algorithm can be calibrated to 

minimise or remove the effects of soil colours therefore producing a more reliable 

product for end-users. 

4.5 Conclusion 

The MODIS fractional cover product is an important resource in Australia for 

monitoring and reporting on changes to our landscape and ecosystems. It is essential to 

ensure that this data is a good representation of the Australian environments and where 

possible to improve the model through calibration and validation. Past studies used 

coarse resolution soil colour maps derived from transformed and interpolated soil 

spectra to understand the influence of soil colour on the MODIS fractional cover 

product. These studies reported that soil colour or soil brightness did not influence the 

MODIS product but there is some doubt about this conclusion. This study used 

AusPlots in situ measurements of fractional ground cover and Munsell soil colour to 

determine if there was an observable influence of soil colour on the MODIS product. 
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We found that compared to the AusPlots fractional cover values the MODIS product 

systematically overestimates BS and NPV and underestimates PV. Secondly, there is a 

significant difference between the MODIS – AusPlots fractional cover relationship for 

five hues recorded in the 250 sites studied across Australia, suggesting that soil colour 

has an observable effect on the MODIS fractional cover values. Lastly, we found that 

for the bare soil fraction, sites with a hue of 10R and 10YR were observably different 

from the other hues. In the non-photosynthetic fraction darker soil colours (low value) 

where associated with sites where the MODIS product overestimated non-

photosynthetic vegetation. For photosynthetic vegetation, sites with a hue of 10R and 

2.5YR were associated with lower photosynthetic vegetation values (>25% PV) 

reported by MODIS product and darker soils were associated with higher 

photosynthetic values (< 25% PV). While this study is limited to 250 sites across 

Australia these results suggest that soil colour does have an observable influence on the 

MODIS product and requires further exploration to determine how these soil colour 

effects can be mitigated in future versions of the MODIS product in order to ensure that 

natural resource managers, farmers and scientists have the best quality information for 

decision making and future research. 
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Earth observation data is an essential resource for exploring our natural and built 

environment. Environmental concerns such as land degradation and regeneration 

(Eckert et al. 2015), desertification (Ajaj et al. 2017), fire severity (Loschiavo et al. 

2017), vegetation dynamics (Jamali et al. 2015) and ocean productivity (Auricht et al. 

2018) are a few examples of studies that can utilise earth observation data to 

understand, monitor, and manage these issues. This thesis has focused on fractional 

ground cover products developed from remotely sensed measures of the proportion of 

vegetation and soil cover, which can be used as indicators of landscape condition or the 

success of management practices. Calibration and validation are essential steps in the 

development of satellite-derived fractional cover products to ensure reliability and 

provide users with confidence in the quality of the information used for decision making 

and further modelling or monitoring. The overarching aim of this thesis was to 

investigate methods of improving fractional ground cover mapping in Australia. This 

aim was approached from two angles (1) studying the collection of validation data, and 

(2) a systematic evaluation of soil colour influence on satellite-derived fractional cover 

estimates for Australia.  

5.1 Key Outcomes 

Chapter two investigated the collection of fractional cover field measurements using 

hyperspectral sampling. This was the first time hyperspectral sampling was tested in 

Australia for the validation of fractional cover mapping, and this chapter outlines an 

appropriate sampling design for this survey technique. Hyperspectral reflectance 

measurements of ground cover were shown to produce comparable estimates of 

fractional cover to traditional step-point measurements but with advantages such as 

improved consistency and objectivity of measurements as well as logistic ease of use. 

Comparing both in situ methods with two current Australian image-derived fractional 

cover products produced from Landsat and MODIS imagery showed that overall both 
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datasets were strongly correlated with the in situ values but that this relationship did 

differ between the two image products. While this study was limited in its sample size, 

this method shows considerable potential and should be explored further. In Australia, 

TERN’s AusPlot facility is responsible for plot-based surveillance of ecosystems across 

Australia in order to monitor and contribute to our broader understanding of the 

Australian landscape. While hyperspectral imagery is collected at what are known as 

TERN supersites, these are limited to 15 sites across the country. One key reason TERN 

was established was to collect and manage data that could be used to calibrate and 

validated remotely sensed products created for landscape and ecological assessment 

purposes. The adoption of hyperspectral sampling in the AusPlot rangeland protocol 

would provide invaluable data to Earth observation scientists in Australia.  

When collecting in situ measurements of ground cover using traditional methods such 

as step-point, wheel point or transect-based sampling, it is common to have multiple 

observers contributing to a single dataset that will be used to calibrate or validate 

remotely sensed products. Sampling designs are generally created to be consistent and 

easily repeatable, but observers still have the potential to introduce errors in particular 

when classifying photosynthetic and non-photosynthetic vegetation. Chapter three 

examined observer consistency when classifying vegetation photosynthetic status and 

examined the relationship between the classification of vegetation spectra and human 

observations. Unlike discriminating other ground cover types in the field such as soil 

and rock, photosynthetic and non-photosynthetic vegetation are better thought of as 

extremes of a continuum rather than binary categories. This makes distinguishing 

between the two categories difficult. We found that at the extremes (100% PV or 100% 

NPV) observers were consistent in their observations and strongly agreed with the 

spectral classification but as the leaves senesced variation between observers increased 

and overall we saw up to 17% variation between observers classifying photosynthetic 
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leaves and 14% non-photosynthetic leaves. Similar to the observer agreement at the 

extremes of leaf photosynthetic expression there was a substantial agreement between 

observer decisions and spectral classification but as the leaves transitioned this 

relationship weakened, with little agreement for leaves close to 50%. This comparison 

between observers is not typically conducted in the field as field surveys are time-

intensive and expensive. Implications of this study are that users have more information 

when deciding which field technique should be used to estimate fractional cover. For 

example, if the majority of vegetation in the field is expected to be close to 100% green 

or dry then the field observers may be satisfied with traditional observer surveys, but if 

the majority of vegetation is senescing, then hyperspectral sampling provides a more 

objective means to collect field observations. Conducting this study in a controlled 

scenario ensured observers were categorising the same samples, in the same locations, 

which in conjunction with the collection of the spectral measurements ensured observer 

consistency could be examined successfully. While we cannot directly apply our results 

to other studies, it provides a baseline understanding of how observers can react when 

categorising vegetation as green or dry. 

The overarching aim of this thesis was to investigate methods of improving fractional 

ground cover mapping in Australia. Chapters two and three studied the collection of 

validation data while chapter four’s aim was to perform a systematic evaluation of 

fractional ground cover estimates. The Australia MODIS fractional ground cover 

product provides essential data for landscape and ecological monitoring in Australia and 

has been revised multiple time since its initial development in 2009 to improve the 

accuracy of the data (Guerschman and Hill 2018; Guerschman et al. 2009; Guerschman 

et al. 2012). Past versions of the MODIS product were found to provide poor estimates 

of cover in arid regions where vegetation is sparse, and soil dominates the ground cover 

(Lawley et al. 2014). Regions in Australia with bright soils have also been associated 
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with poor model performance (Guerschman et al. 2012). A recent study found that soil 

brightness did not affect the MODIS product but recommended that this result be 

examined further. Specifically, the coarse resolution of the digital soil colour maps (5 

km) used was thought to influence the results (Guerschman et al. 2012; Guerschman et 

al. 2015). An additional concerning factor is the processing undertaken to create the 

maps. Over 4000 hyperspectral measurements of soil collected across Australia were 

processed and interpolated to create continent-wide maps. This chapter instead used 

direct soil colour measurements collected as a part of national AusPlots surveys. An 

initial assessment of MODIS fractional cover estimate found that for 250 AusPlot sites 

across Australia strong correlation between BS and PV MODIS and the AusPlots in situ 

measurements. While NPV displayed a weak relationship, it was still statistically 

significant. Using direct Munsell soil colour measurements showed that for the five soil 

hues present across the 250 sites are significantly different from one another and that 

this difference in hue across the sites is observable in MODIS and AusPlot fractional 

cover data. Lastly, we were able to determine which hues were associated with over or 

underestimation of MODIS fractional cover values such as 10R associated with the 

overestimation of BS and the underestimation of PV. This work has provided a greater 

understanding of the pattern and influences that soil colour has on the MODIS products. 

This knowledge should be used to guide future research efforts to calibrate the MODIS 

product in order to mitigate the effects of soil colour on the extraction of fractional 

cover values.  

5.2 Significance and implications of the research 

Findings from this thesis demonstrate that hyperspectral sampling is a viable method of 

improving the collection of fractional cover validation and calibration data. 

Hyperspectral transect sampling provides an objective and consistent way to collect 

ground cover data, and our study found that it performed well in arid rangelands. This 
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thesis demonstrates an alternative field survey method that can be used to collect 

validation data which removes subjective decision making by observers and reduces 

problems associated with the consistency of data collection. While this data was 

collected specifically for fractional cover validation, these measurements have the 

potential to be used to validate or calibrate other remotely sensed products. For example 

reflectance measurements are being used to validate Australian surface reflectance 

products from Landsat and Sentinel imagery using a similar survey design (Malthus 

2019). Efforts should be made to create a national standard for the collection of ground 

reflectance measure outlining a standard procedure to ensure that the data is suitable for 

multiple applications.  

Chapter three explored the inconsistency in observer classification of photosynthetic 

and non-photosynthetic vegetation. Understanding these inconsistencies is critical to 

understand potential bias that could be introduced into a validation dataset. Observers 

who over- or underestimate photosynthetic or non-photosynthetic vegetation create bias 

in the data collected that will be used to validate an image-derived fractional cover map. 

The flow on effect is that the accuracy assessment will be biased and will not 

appropriately assess the image product. Understanding inconsistencies and bias that can 

be introduced into validation datasets may help explain errors that are observed when 

comparing field estimates to image-based estimates. Chapter three also highlighted that 

there is potential to improve the definition of green and dry leaves that are provided as 

part Muir et al. (2011) technical guide for field measurement of fractional cover. Lastly, 

this chapter emphasized the benefit of using hyperspectral sampling of vegetation to 

classify vegetation. Hyperspectral sampling provides more consistent and objective 

records of vegetation cover as well as providing greater information about vegetation 

status beyond whether the leaf is photosynthetic or not. The chapter recognises when it 

is appropriate to use traditional step-point or when hyperspectral sampling would be 
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more beneficial. For example when sampling an area that is expected to contain 

vegetation close to 100% green or 100% dry then traditional observer-based sampling is 

adequate but if the majority of vegetation will be senescing then spectral sampling is a 

more reliable, objective sampling technique.  

Chapter four outlined the observable affect soil colour has on fractional ground cover 

estimates derived from MODIS imagery. While past studies stated that soil colour, in 

general, does not influence MODIS fractional cover values, chapter four utilised direct 

field measurements of soil colour to demonstrate that across 250 AusPlot sites soil 

colour does have an observable effect on MODIS fractional cover. The chapter specifies 

which soils colours are associated with over- or underestimation of soil, photosynthetic 

and non-photosynthetic vegetation as well as other observable effects. This knowledge 

will have significant implications for those working to improve fractional cover 

mapping. Understanding the influence of soil colour and specifically what is occurring 

in the MODIS data is the first step in developing a way to mitigate or remove the effect 

of soil colour in future versions of the MODIS product. The intention being that through 

removing soil colour errors the MODIS product will provide an improved 

representation of Australian soil and vegetation exposure especially for areas containing 

high proportions of exposed soils.  

5.3 Recommendation for future research 

The following are areas of future research that have been identified as part of the work 

presented in the thesis.  

• Development of a technical guide outlining a national approach to the collection 

of hyperspectral field measurements of fractional cover for the calibration and 

validation of remotely sensed ground cover maps.  
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• Trials of hyperspectral ground cover sampling in a variety of other environments 

across Australia to further explore the potential of this method and identify any 

problems that may be encountered related to specific environments (i.e. those 

containing < 2 m overstory vegetation).  

• Refinement of the definitions used in Muir et al. (2011) technical guide to define 

green and dry leaves.  

• Examination of the consistency of observer observations of photosynthetic and 

non-photosynthetic for other vegetation types.  

• Expansion of research in Fisk et al. (2019) (chapter three) to include more 

vegetation samples in order to learn more about the decisions made by observers 

classifying vegetation within the 25 % -75% photosynthesis range.  

• Development of calibration methods to mitigate the influence of soil colour in 

order to improve fractional cover values derived in future versions of the 

MODIS fractional cover product.  

• To use direct hyperspectral measurements of soil to further analyse the effects of 

soil on the MODIS fractional cover product. 

• To examine the classification of soil crust / cryptogram as photosynthetic or 

non-photosynthetic vegetation for the calibration and validation of fractional 

cover maps. 

5.4 Conclusions 

Calibration and validation is an integral part of the developed of remotely sensed 

products. Validation should not be an afterthought and should be considered during the 

development of these products where possible, and more consideration needs to made 

by the global remote sensing community to develop standard methods of collecting 

fractional ground cover data through traditional and new techniques like hyperspectral 

field sampling. This thesis has outlined the potential of hyperspectral field sampling 
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showing that it is a comparable to traditional sampling methods when conducted at the 

same scale and provides improved objectivity, increased information and has greater 

potential to be used for producing and assessing other remotely sensed products. It has 

outlined how field observers are likely to vary based on the level of photosynthetic 

activity when conducting traditional and widely-used field sampling of ground cover. 

This information can be used to determine which method should be used field campaign 

in relation to the state of the vegetation (i.e. 100% photosynthetic, senescing or 100% 

non-photosynthetic). Lastly, the effects of soil colour were explored and soil was found 

to have an observable effect on the MODIS fractional cover product with specific 

colours associated with significant bias. This work has highlighted the need for further 

research to be conducted in order to minimise the influence of soil colour on the 

MODIS product. Overall, improving fractional ground cover mapping needs to be 

approached from multiple angles. The work conducted in this thesis will contribute 

toward the improvement fractional cover maps and the data used for validation. These 

improvements will help to ensure scientists are able to develop high quality datasets and 

that end-users such as researcher or land managers can be confident in their decisions 

informed from these measures.  
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