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TPA The plant accelerator 
UnderdevSpklt Under developed spikelet  
UnderdevSpklt Number of basal under-developed spikelets per spike 
WSC Water soluble carbohydrate 
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Abstract 

 

High temperature induced loss of wheat production is a global phenomenon and posing a threat 

to food security. This study is focused on the genetic mapping of heat tolerance traits of wheat 

to understand the genetics and underlying mechanism of heat tolerance at reproductive stages. 

A total of six varieties of varying heat tolerance for floret fertility and grain filling were tested 

for the effects of heat applied at 5 cm auricle interval (AI) and 10 days after anthesis (DAA) tiller 

stages in the presence and absence of shallow standing water to investigate the potential 

effects of standing water on the responses to this heat treatment protocol (Chapter 2). Heat 

reduced grain number, chlorophyll content and single grain weight in heat susceptible varieties 

but not in the tolerant genotypes. No additional effect of standing water was observed 

therefore keeping plant pots in standing water could be considered as safe watering method 

for this heat tolerance screening protocol.  

In Chapter 3, 34 homozygous NILs from nine families contrasting for two grain filling and 

chlorophyll heat tolerance QTLs, QHsgw.aww-3B and QChlr13.aww-6B, were phenotyped to 

study effects of the QTLs on heat tolerance. Heat treatment reduced single grain weight in three 

lines containing the Drysdale (intolerance) allele at the 3B locus, relative to their corresponding 

tolerant sibling lines, while no significant effects of the QTL were found in the remaining lines. 

Shoot weight and culm length at maturity, and anthesis date, remained unaffected for both QTL 

alleles after heat treatment. Lines carrying the Drysdale allele at QHsgw.aww-3B locus showed 

a small amount of chlorophyll loss just after heat treatment but the loss increased by two weeks 

after heat treatment, and the loss was greater than in the lines carrying the tolerance allele 

from Waagan. Homozygous NIL pairs from the WW30674 family showed contrasting 

phenotypes for all the key traits and had also resulted in recombination in the 3B locus region, 

allowing the locus to be delimited further.  

In Chapter 4, further mapping was undertaken to further delimit the QHsgw.aww-3B locus on 

the tip of the short arm of chromosome 3B. New markers that were further distal, or targeting 

the large gap in the map between positions 3.2 and 34.6 cM, were designed using available 

genetic maps and genome sequence information. Twelve new markers were developed, of 

which two were positioned distal of the distal-most markers from the previous map, four were 
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mapped 1.5 cM proximal of the previous most distal marker, and two of which were generated 

in the upper part of the gap region.  

  

In Chapter 5, the stem rust resistance gene Sr2, and genes NRT2.5 and GoGat involved in 

nitrogen utilization, were tested as candidates for the QHsgw.aww-3B heat tolerance effect. 

The csSr2 semi-diagnostic marker for Sr2, the pseudo black chaff pleotropic effect of Sr2, and 

the Lr27 leaf rust resistance locus tightly linked gene to Sr2 were scored in 144 Drysdale x 

Waagan DH lines. All of these loci were found to be tightly linked to the heat tolerance effects, 

hence the Sr2 stem rust resistance gene (or the gene encoding PBC, if different from that 

conditioning rust resistance), was considered to be a good candidate for the gene controlling 

the heat tolerance effect. Marker assays designed for NRT2.5 and GoGat failed to show 

polymorphism. A panel of 101 hexaploid wheat genotypes, for which there were grain filling 

and chlorophyll heat tolerance data available, were scored for csSr2, to further test the link 

between Sr2 and the 3B heat tolerance locus. On average, genotypes carrying the null csSr2 

marker allele (associated with rust susceptibility at Sr2) appeared more tolerant to the effects 

of heat on final grain size than those carrying either the second marker allele associated with 

rust-susceptibility (Marquis allele), or the resistance-associated marker allele (CS (Hope 3B) 

allele). Therefore, selection of Sr2 stem rust resistance in breeding might come at a cost of 

enhanced heat susceptibility, and if not selecting for Sr2, the particular rust-susceptibility allele 

that is present may influence heat tolerance. If they are not the same gene then they could be 

separated through breeding.  

In Chapter 6, a population of 250 Young x Reeves DH lines, with parents previously shown to 

contrast for heat tolerance of grain filling and floret fertility, were used to identify heat 

tolerance QTL. Plants were heat treated at the 6 cm AI and 10 DAA stages to target the effects 

on grain number and grain size, respectively. No grain size heat tolerance QTL were detected. 

Two floret fertility heat tolerance QTL were detected, on chromosomes 2B and 6A.  

In Chapter 7, 21 Australian hexaploid wheat varieties were screened for heat tolerance applied 

at 6 cm AI and 10 DAA to identify tolerant varieties for the farmers and breeders. Baxter and 

EGA Gregory were classified as tolerant for both effects. 
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Chapter 1 : Literature review and aims 

1.1 Wheat is an important cereal crop 

Wheat is one of the three most dominant cultivated cereal crops (Gustafson et al. 2009; 

Shewry, P 2009; Zohary & Hopf 2000) with a global annual production of 749.46 million 

tonnes(FAOSTATa). Since its domestication around 10,000 years ago (Dubcovsky & Dvorak 

2007) cultivation of wheat spread over 100 countries (Shewry, P 2009), including 200 million 

hectares of farmland (Ortiz et al. 2008) in the northern and southern hemisphere and the 

highlands of tropics and sub-tropics (Feldman  M 1995; Reiner L). World wheat production is 

95% hexaploid bread wheat (Triticum aestivum L.) and 5% durum wheat (Triticum durum) 

(Peng, Sun & Nevo 2011; Shewry, P 2009). Wheat plays a crucial role in the global agricultural 

economy and food security as one of the world's most important staple crops. It is a staple 

food for over 35% of the world’s population (Paux et al. 2008), accounts for 20% of human 

consumption of calories (FAOSTATb) and is an important source of protein, vitamins, 

carbohydrates and minerals. Demand for wheat as human food is expected to grow by 1.6% 

per annum, and as animal feed by 2.6% per annum, in developing countries, until 2020. The 

global average wheat yield will have to increase during the coming 25 years from 2.6 to 

3.5 tonnes/ha to meet the demand of the projected increases in population (Ortiz et al. 2008).  

1.2 Effect of heat stress on wheat production 

Like in other cereals, wheat production is affected by biotic and abiotic stresses and heat is 

one of the major abiotic stresses in wheat. Temperatures above the optimum for growth are 

deleterious, causing injury or irreversible damage, which is generally called ‘heat stress’ 

(Wahid et al. 2007). Heat stress is a function of the magnitude and rate of temperature 

increase, as well as the duration of exposure to the raised temperature (Wahid et al. 2007). 

The capability of crop plants to survive and produce economically viable grain yield under heat 

stress is heat tolerance (Wahid et al. 2007).  

In the last three decades global wheat production has fallen 5.5%, an amount equal to the 

annual wheat production in France (33 MT). Due to heat there was a 15% decline in wheat 

production in Russia alone during 1980-2008 (Lobell, Sibley & Ortiz-Monasterio 2012). Even a 

brief period of heat stress (>35 °C) affects wheat yield and grain quality (Graybosch et al. 1995; 

Mason et al. 2010; Rane & Nagarajan 2004; Wardlaw & Wrigley 1994). Asseng, Foster and 

Turner (2011) showed that there are on average 1-5 days with >34 °C during grain filling at 
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locations across the Australian wheat belt. Their modelling suggested a yield reduction by 5% 

for each such day, because of a dramatic acceleration of leaf senescence proportionate to the 

number of such shocks (Asseng, Foster & Turner 2011). In the Mediterranean region, the USA 

(Graybosch et al. 1995; Mason et al. 2010), India (Rane & Nagarajan 2004) and Australia, heat 

stress at grain filling reduces yield significantly. Annual average yield losses of 10- 15% (~AUD 

300-400 M) due to heat were estimated for Australia and the USA (Wardlaw & Wrigley 1994). 

Analysing heat events across the Australian wheat belt based on 50 years of historical records 

it was found that winter temperature is increasing during pre-flowering which causes serious 

damage to yield, therefore warmer winters would shorten the wheat season by up to 6 weeks 

(Zheng et al. 2012).  

Under moderate temperature stress during grain filling (25–32 °C), wheat grain yield declines 

by 3-4% for each 1 °C rise in average temperature above 15 °C under both controlled 

conditions (Wardlaw, Dawson & Munibi 1989b; Wardlaw et al. 1989a) and field conditions 

(Dhadhwal 1989; Wiegand & Cuellar 1980). This phenomenon affects about 9 million hectares 

of wheat grown in tropical and subtropical areas which experience temperatures above 17 °C 

even in the coolest month of the growing season (Ortiz et al. 2008). The Indo-Gangetic Plains 

contribute 15% of global wheat production but by 2050 about 51% this area is predicted to be 

reclassified as a heat-stressed as a result of climate change (Ortiz et al. 2008).  

Global warming is characterized by shifts in weather patterns with increases in the frequency 

and magnitude of extreme weather events. Increasing temperature and incidence of drought 

are posing serious threats to food security (Lobell, Sibley & Ortiz-Monasterio 2012). The global 

average temperature of both land and sea increased 0.85 from 1880 to 2012 and is predicted 

to increase a further by 1.5 to < 2 °C by the end of this century (Pachauri et al. 2014). It is 

projected that Southern Australia and Western Australia will experience an increase of 2.2 to 

2.5 °C, and 10% decreased rainfall, by 2070 (Cai & Cowan 2008). Future climates will also be 

characterized by greater variability in temperature and increased frequencies of hot days 

(Pittock 2003). Therefore, a major concern arises for the long-term productivity and 

sustainability of cropping systems under future climate conditions (Anwar et al. 2013; 

Challinor et al. 2014; Rodriguez, Cox & Power 2014; Stokes & Howden 2010). Major wheat-

producing regions show a trend of increasing growing season temperatures (Alexander et al. 

2006; Gaffen & Ross 1998; Hennessy & Flagship 2008). Therefore to adapt crop varieties to 
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the future climate, it is necessary to understand how crops respond to elevated temperatures 

and how tolerance to heat can be improved (Halford 2009).  

Burgeoning global population and global warming are putting ever greater pressure on wheat 

farmers to increase yields. With the global population projected to exceed 9 billion by 2050 

(Roberts 2011) researchers, breeders and growers are facing the challenge of increasing world 

food production by about 79% to meet future demands (Tweeten & Thompson 2008).  

1.3 Wheat genetics 

Wheat yields have increased significantly in the last century, due to genetic improvements 

and better management practises (Semenov et al. 2012). Wheat genetics and molecular 

breeding is complex due to a highly redundant, large (~17,000 Mb) and complex genome 

compared to other model plants e.g. Rice is 400 Mb and Arabidopsis thaliana is 125 Mb 

(Choulet, Alberti, Theil, Glover, Barbe, Daron, Pingault, Sourdille, Couloux & Paux 2014; 

Initiative 2000; Martínez-Pérez et al. 1999). The bread wheat genome is a segmental 

allohexaploid (2n=6x=42, AABBDD) which is a product of two separate hybridisation events 

involving three progenitors (Choulet, Alberti, Theil, Glover, Barbe, Daron, Pingault, Sourdille, 

Couloux & Paux 2014). The genome is subdivided into 3 homoeologous groups of 

chromosomes, the A, B, and D genomes, each comprised of 7 pairs of chromosomes (AABBDD) 

(Salamini et al. 2002). The genome of tetraploid wheat (also called hard or durum wheat) is 

11,000 Mb (Rombauts 2015) and contains two sets of genomes, the A and B (2n=4x=28, AABB) 

(Choulet, Alberti, Theil, Glover, Barbe, Daron, Pingault, Sourdille, Couloux & Paux 2014).  

So far, wheat genetic studies have improved our understanding of genetic mechanisms for 

disease resistance (Lagudah et al. 2009) but the molecular basis of heat adaptation is poorly 

understood and no heat tolerance gene has been cloned from wheat (Cossani & Reynolds 

2012).  

1.4 Molecular markers 

Molecular markers (dominant and codominant) are frequently used to identify/categorize 

individuals on the basis of sequence variations in the genome. A number of different types of 

polymorphic DNA molecular markers are used in wheat genetic studies including amplified 

fragment length polymorphisms (AFLPs) (Vos, P et al. 1995); random amplified polymorphic 

DNA (RAPD) (Williams et al. 1990); restriction fragment length polymorphisms (RFLPs) 
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(Botstein et al. 1980); simple sequence repeats (SSRs or microsatellites) (Jarne & Lagoda 

1996); diversity arrays technology (DArT) (Akbari et al. 2006) and single nucleotide 

polymorphisms (SNPs) (Rafalski 2002) markers. Advances in high throughput and low cost 

DNA sequencing and SNP detection technologies e.g. GBS (Elshire et al. 2011), invader assay 

(Mein et al. 2000), Illumina GoldenGate (Fan, J-B et al. 2003) and DArTSeq 

(http://www.diversityarrays.com) has revealed a large number of Single Nucleotide 

Polymorphisms (SNPs) in wheat which are relatively evenly distributed throughout the 

genome and abundant in number (Berkman et al. 2012). The International Wheat SNP working 

group has contributed to SNP discovery in wheat and has constructed a marker array 

containing almost 9,000 features (Cavanagh et al. 2013), and a subsequent version containing 

90,000 features (Wang et al. 2014), scorable using the iSelect technology. The Functional 

genomics group at the University of Bristol, UK 

(http://www.cerealsdb.uk.net/cerealgenomics/CerealsDB /indexNEW.php) also generated a 

publicly available SNP marker database and arrays e.g., Axiom 820K and 35K SNP Arrays, KASP 

probes, TaqMan for wheat research. Platforms such as these can now be used for cost-

effective QTL discovery, to produce high-resolution maps and facilitate positional cloning of 

genes of interest. 

1.5 Near Isogenic Lines for evaluating QTL effects 

Near Isogenic Lines (NILs), a pair of lines differing only/mainly for a chromosome region 

containing a specific/targeted locus (e.g., QTL region). Contrasting parents are crossed to 

obtain F1 individuals. F1 lines with the target trait are selected for back crossing with the 

standard line (the recurrent parent). This process is repeated for multiple generations, each 

time donor allele is selected in the progenies and back crossed with the recurrent parent, to 

give a NIL pair (the resulting line, together with the recurrent parent) NILs. RILs heterozygous 

for a target region could be identified by molecular marker assay and selected as NILs for that 

target region. NILs offer excellent opportunity to study in detail the effects of the allele/s of 

interest, including validation of QTL effects in the field, using only a pair of lines (as opposed 

to the whole original QTL mapping population).  

NILs can also be useful to delimit the target locus for a specific trait. To fine map a QTL, 

recombinant inbred lines (RILs) which are heterozygous at that particular locus can be 

identified using markers, selfed, and progeny of the two homozygous types (containing 

contrasting alleles) marker-selected. The progeny of these individuals can then be 
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phenotyped. Different pairs of RIL-derived NILs may result from different recombination 

points at the borders of the contrasting chromosome segments, as identified using markers, 

and phenotyping of the lines would thus help to further delimit the QTL. 

1.6 Fine mapping 

Fine mapping of a QTL is required to find markers close enough to the QTL to be useful to 

breeders for marker assisted selection and may lead eventually to the identification of the 

underlying gene. Alleles of the causal gene can also be used to identify other superior alleles 

in wheat germplasm. Gene cloning helps reveal the molecular function of the gene, identify 

homologues and allows trans-genic experiments. It also can also enable design of diagnostic 

markers, based on DNA sequence within the gene that are always present with the desirable 

allele, and which are thereby very useful for marker assisted selection (MAS) during breeding 

(Ogbonnaya et al. 2001).  

1.7 Impact of heat on different aspects of wheat 

Deleterious effects of heat stress at different developmental stages of wheat are discussed as 

follows: 

 Floret death  

The wheat spikelet is an indeterminate structure, but as a part of normal development only a 

proportion of the florets that begin development remain green by anthesis and hence are 

competent to produce a grain (notwithstanding infertility of individual floret organs caused 

by stress). Floret abortion begins at booting and ends at about heading or anthesis stage (Kirby 

1988; Langer & Hanif 1973; Siddique, Kirby & Perry 1989). Half of the total initial florets within 

a spikelet are not fertilized due insufficient development, and the florets initiated after the 

terminal spikelet is initiated do not set grain (Whingwiri & Stern 1982). Floret death occurs 

during the period of maximal stem and peduncle growth (Siddique, Kirby & Perry 1989) due 

to competition between the ear and the stem for resources (Kirby 1988). To my knowledge, 

there have been no reports addressing whether heat could affect grain number by influencing 

this phenomenon of whole-floret death.  

 Grain filling (grain size) 

Grain filling is sensitive to elevated temperature (Ferris et al. 1998). Heat stress accelerates 

grain filling rate, hasten senescence (Wardlaw & Wrigley 1994) and physiological maturity 
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after anthesis (Shpiler & Blum 1986; Warrington, Dunstone & Green 1977) and shortens grain 

filling duration (Dias & Lidon 2009).  

 Grain set (number of grains per spikelet) 

Heat stress due to moderately high temperatures (>20 °C) between spike initiation and 

anthesis can substantially reduce grain number per spike (Fischer, RA 1976; Warrington, 

Dunstone & Green 1977). Grain number per spike decreased by 4% for every 1 °C (from 15–

22 °C) increase in the 30 days before anthesis (Fischer, R 1985). Wheat plants exposed to 30 

°C for 3 consecutive days or for 3 days to day/night temperatures of 30/20 °C when pollen 

mother cells were dividing, markedly reduced grain set and therefore grain yield (Saini & 

Aspinall 1982). Wheat grain set is affected by high temperature in various ways and at 

different stages. Some of the effects of heat stress are discussed below: 

1.7.3.1 Floret sterility due to floret organ failure 

Heat, at or around meiosis, has been reported to lead to failed fertilization (sterility), due to 

failure of individual floret organs. Complete sterility was observed when wheat plants were 

grown at high temperature (35 °C) during ear emergence and onward (Owen 1971; Saini & 

Aspinall 1982). Saini and colleagues showed that heat stress can affect both male and female 

organs in wheat (Saini & Aspinall 1982; Saini, Sedgley & Aspinall 1983). Adverse effects of heat 

stress on pollen tube growth has also been reported (Saini, Sedgley & Aspinall 1983).  

Approximately 60% reduction in pollen viability was observed in cotton after a 5 hour 

incubation at 39°C (Burke 2007), and reduced pollen viability under heat stress has been 

linked to altered carbohydrate metabolism and starch deficiency in other cereals like sorghum 

(Jain et al. 2007; Prasad, PV & Djanaguiraman 2011). Rice plants showed complete spikelet 

sterility after heat treatment at 39 °C/30 °C for 2-4 days at the microspore stage (Endo et al. 

2009).  

Although less researched, female reproductive organs are also affected heat stress. Heat 

stress at meiosis has been reported to result in abnormal ovary development and accelerated 

stigma and ovule development, which may contribute to reduced pollen tube growth and seed 

set (Barnabás, Jäger & Fehér 2008). 
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1.7.3.2 Early grain abortion 

Heat stress within the first three days after pollination can lead to early abortion of grain 

growth (Saini & Aspinall 1982; Saini, Sedgley & Aspinall 1983; Tashiro & Wardlaw 1990b; 

Wardlaw et al. 1989a). Free nuclei in the developing endosperm multiply in the three days 

after pollination and heat treatment at this stage may result in abnormal nuclear division, 

which might explain the appearance of abortive or shrunken grains in heat-treated plants 

(Tashiro & Wardlaw 1990b).  

 Photosynthesis, stay green and senescence 

The wheat photosynthetic apparatus is affected by heat both functionally and structurally 

(Baker 1991; Sharkey 2005). Electron transport activity and fluorescence of chloroplasts 

decreases due to an increase in peroxidation of thylakoid lipids in heat treated leaves (Mishra 

& Singhal 1992). Thylakoid membranes and photosystem II (PS II) are very sensitive to high 

temperatures and their destruction under high temperatures can limit photosynthesis (Ristic, 

Bukovnik & Prasad 2007). Degradation of chlorophyll a and b, separation of light harvesting 

complex II from PS II (Schreiber & Berry 1977), dissociation of oxygen evolving complex (OEC) 

from PS II, reduction of photosynthetic pigments, reduction in RuBisCO activity, and other 

changes in photosynthesis machinery due to heat stress, reduce photosynthesis rate (Wahid 

et al. 2007).  

Photosynthesis is related to the stay-green trait. Stay-green is the ability of plants to delay 

senescence and maintain green leaf area during the reproductive stage. Senescence reduces 

chlorophyll which in turn affects photosynthesis and photo-assimilate supply. Heat stress 

accelerates loss of chlorophyll, hence stay-green can also represent the reduction of this stress 

induced effect.  

Stem reserves and current photosynthesis contribute to grain growth. Under optimum 

conditions, stem reserves contribute less to grain growth compared to the current 

photosynthesis, while under heat stress conditions when current photosynthesis is impaired 

it tends to contribute proportionately more to grain growth, depending on the genotype 

(Blum 1998; Yang et al. 2002). These studies suggest that maintaining photosynthate supply 

to the developing grain, either through maintaining access to high levels of stem reserves or 

sugars from current photosynthesis, may play a role in tolerance of grain filling under heat-

stress conditions. 
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Heat stress hastens the senescence-related metabolic changes in wheat (Al-Khatib & Paulsen 

1999; Paulsen 1994) by inhibiting chlorophyll biosynthesis (Tewari & Tripathy 1998) and 

accelerating the breakdown of thylakoid components (Harding, Guikema & Paulsen 1990). 

Early senescence in response to external environmental factors (e.g. heat, drought, and 

disease) affects photosynthetic competence and assimilate supply and consequently can 

negatively impact grain growth and yield (Distelfeld, Avni & Fischer 2014). Positive 

associations have been reported between stay-green and grain yield in wheat (Kumari, Goyal 

& Jain 2013; Lopes & Reynolds 2012; Reynolds et al. 1994; Reynolds et al. 1998).  

Stay-green sorghum genotypes under drought stress at grain filling stage exhibit increased 

xylem pressure potential, delayed loss of photosynthetic competence, modification of canopy 

development, leaf anatomy, root growth, water uptake, and enhanced nitrogen uptake 

(Borrell et al. 2014a; Borrell et al. 2014b; Tuinstra, Ejeta & Goldsbrough 1998; Vadez et al. 

2013). Delayed senescence is positively correlated with high water use efficiency during grain 

filling (Gorny & Garczynski 2002) and a root architecture that allows water to be extracted 

from deep in the soil profile post-anthesis under field conditions (Christopher et al. 2008; Kirby 

1988). 

Silva et al. (2001) reported control of stay-green by a single locus, showing high heritability 

and partial dominance in crosses of four contrasting genotypes of bread wheat. Joshi et al. 

(2007) found stay-green to be controlled by around 4 additive genes. Vijayalakshmi et al. 

(2010) observed polygenic inheritance of stay-green in recombinant inbred line (RIL) 

populations under field and controlled environment under high temperature conditions. A 

stay green durum wheat mutant showed increased leaf area and grain filling rate (Spano et al. 

2003). High expression of Rubisco activase, soluble starch synthase and glycine decarboxylase 

were seen for a longer time in a stay-green durum wheat mutant in comparison with the non-

stay-green parent line, which further suggest a positive effect of stay-green in prolonging 

photosynthesis and grain filling (Rampino et al. 2006). 

Positive correlations were found between stay green and heat tolerance for grain weight 

under late season heat and drought conditions (Distelfeld, Avni & Fischer 2014; Naruoka, Y. et 

al. 2012). However, stay-green may have negative impact on yield under regular conditions 

(Derkx et al. 2012; Kichey et al. 2007; Kipp, Mistele & Schmidhalter 2014; Naruoka, Y et al. 

2012) because it might hamper remobilization of assimilate reserves to grains, resulting in 

more of the storage carbohydrates remaining in the straw (Yang et al. 2002). An alternative 
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explanation for adverse effects of stay-green is prolonged consumption of glucose for 

continued nitrogen assimilation and protein synthesis by green leaves, which can deprive the 

grains of assimilate for grain filling (starch synthesis) (De Vries, Brunsting & Van Laar 1974; 

Hirel et al. 2007; Kipp, Mistele & Schmidhalter 2014).  

 Dough quality 

Wheat proteins gliadins and glutenins are associated with dough extensibility and elasticity 

respectively. Glutenins link via disulphide bonds to form high molecular weight polymers which 

confer the elasticity to dough (Ali et al. 2010; Shewry, PR et al. 2000). A shorter grain filling 

period as a result of heat stress lead to reduced disulphide bound formation due to shortening 

of the disulphide bond formation process (Blumenthal, C et al. 1994). Extensibility and 

elasticity are important factors in bread baking performance because of their contribution to 

the dough strength and ability of dough to rise and maintain its shape as it is baked. Heat stress 

(>35 °C) for 3 days during grain-filling can reduce dough strength (highest resistance to dough 

mixing) by 50% (Blumenthal, C et al. 1995), leading to a loss of quality for bread making 

(Blumenthal, CS et al. 1991; Blumenthal, C et al. 1995; Corbellini et al. 1998). Exposure to 32 

°C for 1-4 days during the grain-filling period can damage wheat quality by altering starch and 

protein composition (Wardlaw & Wrigley 1994).  

Stone and Nicolas (1994) studied grain yield and quality in response to short periods of high 

temperature in five wheat cultivars and the gliadin: glutenin ratio was found to be altered in 

the range -9 to +18% depending on variety. Proteomic analysis of grains from heat treated 

plants showed that under heat stress expression of several gliadins were increased but not 

glutenins.  

 General mechanisms of heat tolerance and damage 

Some general mechanisms of heat tolerance and damage are discussed below:  

1.7.6.1 Cell function 

Plants react to changes in ambient temperature through changes in metabolism, membrane 

fluidity, protein conformation and assembly of the cytoskeleton (Ruelland & Zachowski 2010). 

Transcriptome analysis of heat tolerant and susceptible wheat genotypes following heat 

treatment suggested that genes for heat shock proteins, transcription factors, calcium 

signalling and metabolism pathways are involved in responses of plant cells to heat (Qin et al. 
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2008). Heat has been documented to negatively affect cellular function in several ways. High 

temperature alters membrane fluidity (Alfonso et al. 2001; Sangwan et al. 2002) and enzyme 

function through denaturation (Kampinga et al. 1995; Vierling 1991). Heat stress induced 

membrane and protein damage can result in elevated concentrations of reactive oxygen 

species (ROS) that in turn create oxidative stress which can be harmful to plant tissues 

(Almeselmani, Deshmukh & Sairam 2009; Mittler 2002; Sairam, Srivastava & Saxena 2000). 

Hence detoxification of ROS by enzymatic and non-enzymatic antioxidant systems (Noctor & 

Foyer 1998) are important for protecting plants against heat stress. The activities of 

antioxidants (e.g. superoxide dismutase and catalase) increase when heat stress (34/22 °C) is 

applied during the reproductive phase (Zhao et al. 2007). Heat stress can also induce 

programmed cell death (Swidzinski, Sweetlove & Leaver 2002; Vacca et al. 2004) and activate 

expression of heat shock proteins (HSPs) as a protective mechanism (Blumenthal, C et al. 

1994).  

1.7.6.2 Hormone signalling 

Plant growth and development is regulated by hormones (Santner & Estelle 2009). Ethylene 

is a hormone known to regulate growth and development and to trigger senescence and 

maturation in wheat (Beltrano, Jose et al. 1994; Khan 2006; Pratt & Goeschl 1969; Schaller 

2012). Increased ethylene production in response to heat is associated with short grain filling 

period, decreased 1000 kernel weight and accelerated maturity (Beltrano, J, Ronco & 

Montaldi 1999).  

Enhanced ethylene accumulation upon heat exposure has been suggested to act as a timing 

signal to arrest development, trigger senescence and shorten grain filling duration, since 

endogenous application of an ethylene receptor inhibitor reduced heat stress induced kernel 

abortion kernel weight reductions in an otherwise susceptible wheat genotype (Hays et al. 

2007). Enhanced production of ethylene in the wheat spike has also been found during or 

after recovery from water stress (Beltrano, José, Montaldi & Carbone 1997; Beltrano, J, Ronco 

& Montaldi 1999; Morgan et al. 1990; Narayana, Lalonde & Saini 1991). Ethylene is also known 

to reduce root and embryo growth (Wilkinson, Sally & Davies 2010). In soybean, heat stress 

increased ethylene production rate which triggered premature leaf 

senescence (Djanaguiraman & Prasad 2010).  
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Application of gibberellic acid to seeds of a heat tolerant barley led to loss of tolerance due to 

loss of membrane stability and physiological damage to the photosynthetic apparatus 

(Vettakkorumakankav et al. 1999). Exogenous application of cytokinin at the ear emergence 

stage increased the number of grain endosperm cells, and increased grain weight and grain 

filling duration under normal temperatures (Alizadeh, Haghighi & Ordookhani 2010). On the 

other hand, reduction in cytokinin (50-80%) due to high temperature (7 days at 35/25 °C) was 

accompanied by reduced mature grain mass, in wheat (Banowetz, Ammar & Chen 1999). This 

suggests that cytokinins might have a role in the heat stress response.  

Root-shoot signalling involving abscisic acid (ABA) under water deficit conditions (Wilkinson, 

S & Davies 2002). Drought stress at the reproductive stage causes pollen sterility and grain 

loss in wheat due to ABA accumulation in spikes in drought-sensitive varieties (Ji et al. 2011).  

1.7.6.3 Stem water soluble carbohydrate 

Positive associations have been observed between stem water soluble carbohydrate content 

and floret fertility and grain number in wheat under high temperature conditions. High Water 

Soluble Carbohydrate (WSC) lines were found to have more grains per spike associated with 

more (~10 more) fertile florets per spike at anthesis and a higher glucose content and biomass 

spike at booting. At booting, high WSC lines showed higher rates of 13C fixation and higher 

levels of expression of genes involved in photosynthesis, sucrose transport and lower 

expression of genes involved in sucrose degradation, compared with Low WSC lines (Dreccer 

et al. 2014). The ability to set grain under heat might therefore be related to carbon 

availability, suggesting an area for further in depth study. 

1.7.6.4 Water relations 

Increased evapotranspiration under high temperatures can increase plant water stress if the 

soil moisture and hydraulic conductivity of the soil or plant cannot keep up with the 

evaporative demand and leads to a critically low water potential of leaves and grains (Wahid 

et al. 2007). Elevated temperature tends to increase hydraulic conductivity of membranes and 

plant tissues due to increased aquaporin activity, membrane fluidity and permeability 

(Martínez-Ballesta et al. 2009). Increasing hydraulic conductivity may also be beneficial if 

water supply is not limiting as it would allow stomata to stay open for longer. Transpiration 

also serves to cool the plant tissues, thereby alleviating heat stress.  
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Drought and waterlogging represent opposite ends of the spectrum of water supply. At least 

for waterlogging, the effect of combining with heat stress has not been widely investigated. 

Excess rain or irrigation may cause waterlogging and under this condition roots cannot respire 

due to a shortage of oxygen (hypoxia). Waterlogging can reduce root and vegetative biomass 

(Huang et al. 1994a; Lee et al. 2007; Malik et al. 2001), photosynthesis (Huang et al. 1994b) 

and induce leaf chlorosis (Huang et al. 1994b; Lee et al. 2007). In cotton 10% (Bange, Milroy 

& Thongbai 2004) to 40% (Hodgson 1982) yield loss could be attributed by waterlogging 

(Collaku & Harrison 2002). Oxygen already has a lower diffusion rate in water than in air 

(Christianson et al. 2010) and oxygen solubility in water decreases further with increasing 

temperature.  

Low oxygen levels cause rapid changes in gene transcription, protein synthesis/degradation, 

and cellular metabolism (Bailey-Serres & Voesenek 2008). Waterlogging causes the 

accumulation of ethylene in the soil which can ultimately impede root growth and function 

thereby adversely affecting shoot growth (Arshad & Frankenberger Jr 1990; Smith & Russell 

1969). It also caused a substantial reduction in grain yield and grain protein content and 

reduced processing quality of the wheat grain (Fan, X et al. 2004). Zheng, CF et al. (2009) 

reported that waterlogging decreased protein and starch content in the grains of the two 

wheat cultivars, Yangmai 12 and Huaimai 17. In heat effect studies researchers put their plant 

pots (e.g. 8 × 8 cm, 18 cm depth) in trays with shallow water during heat treatment in the 

growth chamber to minimize the drought effect and to maintain optimum humidity. This arose 

a possibility of short term waterlogging to the plants leading to potential interference with 

the observation under heat. Waterlogging combined with heat stress might have deleterious 

effect on wheat physiology and so far our knowledge goes it has never been studied.  

1.8 Aim of the thesis 

High temperature for short period at reproductive stage adversely affects both floret fertility 

and grain filling in wheat. Therefore, understanding of heat tolerance mechanism at these 

stages in wheat is crucial for further development and enhance wheat production. Present 

work is focused on the unveiling of underlying genetic mechanism for heat tolerance in wheat.  

Standing water creates anoxic condition in soil and considered to be deleterious to wheat 

production. When heat combines, these two stresses together might cause more damage to 

wheat plants. In wheat heat researches under greenhouse condition researchers places their 
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plant pots in trays with shallow water to minimize drought stress and maintain soil moisture 

during heat treatment. It raises a possibility of getting confounding results from heat research 

due to short term shallow water logging. Study of the effects of both stresses separately 

and/or together in varieties of varying heat tolerance for grain number and grain size would 

allow us to have better understanding of the tolerance mechanism against these stresses 

under controlled condition. It would also shed light on the reliability of the vastly used soil 

moisture controlling practice to avoid drought stress in heat researches. 

RIL-NILs are generated from recombinant inbred lines (RIL) carrying different recombination 

around the introgressed region of target QTLs. Marker scoring of the target QTL region helps 

to identify and select RIL-NILs with desirable recombination. RIL-NILs carrying contrasting 

introgressed region for two grain filling and chlorophyll heat tolerance QTLs, QTL11 

(QHsgw.aww-3B) and QTL27 (QChlr13.aww-6B) identified by  in a Drysdale x Waagan DH 

population were good candidates for phenotyping to reveal contributions of different 

chromosome segments in the QTL regions under certain culture condition. It also would aid 

further narrowing down the segment through further mapping using new markers around this 

region.  

Further mapping of aforementioned grain filling heat tolerance QTL, QHsgw.aww-3B (also 

associated with staygreen) could include development of new markers to narrow down the 

region. It could lead to identification and cloning of the gene/s controlling the trait and 

development of a diagnostic marker to enable breeders to select for heat tolerance. Around 

QHsgw.aww-3B, six genetically non redundant loci were identified with a big gap on the map 

which needs to be filled by additional markers to help delimit the QTL more accurately.  

Some genes known in that vicinity of QHsgw.aww-3B influence chlorophyll content or 

stability, namely, the stem rust resistance gene Sr2 showing heat induced seedling chlorosis 

as a likely pleotropic effect, and nitrogen use efficiency genes. These genes could be 

considered as candidates for the gene controlling the QHsgw.aww-3B QTL effects. It would be 

worthwhile to investigate these genes as candidates for QHsgw.aww-3B using available 

resources. 

Wheat cultivars Young and Reeves are known to contrast well for tolerance to both the grain 

filling and grain number effects of heat. A Young x Reeves DH population that is available 
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would therefore be suitable for mapping new heat tolerance QTL and addressing whether the 

two types of tolerance are genetically related.  

The main objective of this research was to have understanding of the genetic and physiological 

basis of heat tolerance in wheat. Therefore, a number of experiments were conducted with 

the following objectives: 

1. To investigate the effect of short term standing water during heat treatment on grain 

size, floret fertility and chlorophyll responses.  

2. To evaluate effect of 3B and 6B QTLs for grain filling and chlorophyll heat tolerance in 

near isogenic lines under controlled conditions. 

3. Further mapping of the 3B QTL for grain filling to narrow down the locus and to explore 

the genes potentially associated with the QTL. 

4. To identify QTL associated with floret fertility and grain filling in one mapping population 

to test for genetic overlap between heat tolerance at these two reproductive stages. 

5. To explore genetic variation for heat tolerance for grain filling and floret fertility in a set 

of Australian elite hexaploid wheat varieties, to provide recommendations on choice of 

varieties for breeding and cultivation.  
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Chapter 2: Effect of standing water during heat treatment on grain size, floret fertility and 

chlorophyll responses  

2.1 Introduction  

Waterlogging refers to the condition when soil contains excessive moisture resulting in low 

availability of dissolved oxygen around the root zone of a plant. Excess rain or over watering 

may cause waterlogging and under this condition roots cannot respire due to a shortage of 

oxygen (hypoxia). Wheat is susceptible to waterlogging stress and up to 44% yield loss (Collaku 

& Harrison 2002) and 21% shoot weight loss (Thomson et al. 1992) has been attributed to 

waterlogging. 

Low oxygen availability to the plants may cause rapid changes in gene transcription, protein 

synthesis/degradation, and cellular metabolism (Bailey-Serres & Voesenek 2008). Waterlogging 

and oxygen deficiency contribute to decreased root hydraulic conductance due to inhibition of 

plasma-membrane aquaporins (Bramley & Tyerman 2010). Waterlogging causes the 

accumulation of ethylene in the soil which can ultimately impede root growth and function 

thereby adversely affecting shoot growth (Arshad & Frankenberger Jr 1990; Smith & Russell 

1969). It may cause a substantial reduction in grain yield, grain protein content and grain 

processing quality in wheat (Fan, X et al. 2004; Zheng, Chunfang et al. 2009). Waterlogging even 

for a short period of time can negatively affect plant growth (Malik et al. 2002). Greenhouse 

experiments also show that long-term waterlogging of soil can induce early leaf senescence 

after anthesis in wheat (Nishida, Ida & Tanaka 1993) and in barley (Ishikawa, Takeuchi & 

Shiroishi 1953). Reduction in grain weight, and mobilization of stem water soluble carbohydrate 

(Araki et al. 2012) was observed in wheat due to waterlogging at stem elongation and anthesis 

stages.  

High temperature at the reproductive stage is one of the major yield reducing environmental 

factors in wheat production (Stone et al. 1995; Wardlaw, Sofield & Cartwright 1980). Diffusion 

rate of oxygen is lower in water than in air (Wilke & Chang 1955) and it decreases further with 

increasing temperature (Mysels 1955). Hence, yield reductions in wheat due to waterlogging in 

colder areas are less severe compared to the more temperate and tropical areas of the world 

(Samad et al. 2001). Wheat plants under combined stresses of waterlogging and heat might 

experience more deleterious effects due to increased hypoxia.  

In Western Turkey with a typical Mediterranean climate, waterlogging is one of the major yield 

reducing environmental factors for wheat (Giorgi & Lionello 2008; Sayre et al. 1994; Yavas, Unay 
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& Aydin 2012). Western Japan experiences waterlogging due to heavy precipitation during the 

wheat growing season especially after the heading stage which might trigger abnormal early 

ripening in wheat (Araki et al. 2012). In India, increases in winter rainfall (Dash et al. 2007; 

Francia et al. 2005) and temperature due to climate change are evident (Gupta et al. 2010; Ortiz 

et al. 2008), therefore combined heat and short term waterlogging stress is likely to be 

increasing. In Western Turkey, waterlogging combined with heat stress at tillering and jointing 

stage has been found to significantly reduce plant height, shoot biomass and single plant yield 

in eight wheat varieties (Yavas, Unay & Aydin 2012). Waterlogging effects are well studied at 

the vegetative stage in wheat (Musgrave 1994; Sharma & Swarup 1988) but not at the 

reproductive stage or in combination with short term heat stress.  

Waterlogging and heat stress reduce wheat yield, therefore tolerant varieties for these stresses 

would benefit farmers. Study of wheat responses to these stresses may reveal novel tolerance 

mechanisms/genes that are specific to the combined stresses, hence should reveal whether 

tolerance to a third type of stress (the two stresses combined) is needed.  

Increased temperatures increase the evaporative demand on plants and hence leaf 

transpiration rates. Accordingly, in various studies of heat responses at reproductive stages in 

wheat (Pradhan et al. 2012; Prasad, PVV et al. 2008; Randall & Moss 1990; Shirdelmoghanloo, 

Taylor, et al. 2016; Stone & Nicolas 1994; Tashiro & Wardlaw 1990b) researchers placed their 

plant pots into trays with shallow water (~2 cm depth) during the heat treatment to minimize 

drought stress. This is a convenient method for maintaining soil moisture during heat treatment 

but it also raises the concern that measures of heat tolerance obtained from those experiments 

might be confounded by (or even completely derived from) waterlogging effects. Therefore, an 

experiment was conducted to test the impact of this watering method on wheat in heat 

tolerance experiments (in non-heated controls or heat-treated plants). This exercise was 

expected to (a) help determine if there were any tolerance mechanisms specific to the 

combined stresses, and (b) indicate if this method of watering was appropriate for screens 

intended to assess tolerance to heat stress only.  

2.2 Materials and Methods  

2.2.1 Plant materials  

Six wheat genotypes were used in this experiment. Four varieties: Westonia, Drysdale, Waagan, 

Kukri, and two breeding lines: HTWYT_12 (from CIMMYT) and RAC875 (from the University of 
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Adelaide breeding program). These genotypes previously showed contrasting levels of 

tolerance to the floret sterility and grain filling effects of heat stress (Erena 2015; 

Shirdelmoghanloo 2011; Lohraseb and Collins 2014; unpublished) (Table 2.1).  

Table 2.1 Fertility and grain filling heat tolerance of six genotypes. 

Genotype Fertility tolerance index Grain filling tolerance index 

Drysdale 0  0  

HTWYT_12 3  0  

Kukri 1  1  

RAC875 2 2 

Waagan 3  4  

Westonia 0  4  
 

* Subjective classification from 0 to 4, with 4 representing most tolerant. 
 

2.2.2 Plant growth conditions 

Two seeds per pot were sown on the 13th March, 2015, then following germination, the plants 

were thinned to one per pot. Plastic pots (8 × 8 cm, 18 cm depth) contained a steam-sterilized 

mixture of coco peat: Waikerie sand (2:1; pH 6.0-6.5) containing the following added nutrients 

(mg/L): agricultural lime: 561, dolomite lime: 202, hydrated lime: 131, iron phosphate: 505, iron 

chelate: 33.7, gypsum: 202, super phosphate: 202, trace elements (Scotts Micromax): 202, 

calcium nitrate: 505 and slow-release fertilizer pellets (Mini Osmocote): 2022.  

Two naturally lit greenhouse rooms 29 and 30 and a growth chamber WI.5 (BDW120, Conviron 

Asia Pacific Pty Ltd. Melbourne, Australia), located in The Plant Accelerator (TPA, The University 

of Adelaide, Waite Campus, Adelaide), were used in this experiment. 

Greenhouse conditions were recorded every 30 minutes using a data logger. Measured 

greenhouse conditions during the experiment are shown in Table 2.2. Greenhouse rooms were 

equipped with evaporative cooling systems which are capable of cooling ~10°C relative to the 

outside temperature therefore actual temperature on some days were higher than the set 

maximum temperature due to high outside temperature (Table 2.2). 

Growth chamber conditions were similarly logged. Temperature was maintained very close to 

the programmed regime (not shown): maximum (37oC) and minimum (27oC) temperature of 

the growth chamber was held for 8 and 10 hours respectively each day with 3-hour transition 

periods used either side to linearly ramp the temperature up and down. Lighting (a mixture of 
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metal halide and tungsten incandescent) was set at 630 μM m-2s-1 at spike height for 10 hours 

each day, with 2-hour transition steps either side at 460 μM m-2s-1. Humidity was not controlled 

and averaged 51.5% relative humidity during heat treatments. 

For the control watering regime (normal watering) pots were placed in plastic tubs containing 

drain holes (12 pots to a tub) to prevent the tall pots from falling over, and plants were watered 

from the top often enough to avoid any drought stress. For the standing-water treatment, 

plants were placed in tubs lacking drain holes and containing ~2 cm depth of water. 

Table 2.2 Measured temperatures (°C) and relative humidity in greenhouse rooms. Set 
maximum-day/minimum-night temperatures were 20/16 °C. 

 Month 
Daily 
average 

Average 
daily min. 

Average 
daily max. 

Days 
>30°C 

Average % relative 
humidity 

Room 30  

Mar 22.1 15.8 31.7 5 62.8 
Apr 19.2 14.6 28.0 0 70.0 
May 18.1 14.3 25.9 0 77.3 
Jun 18.0 14.2 24.5 0 73.0 
Jul 18.3 14.6 22.8 0 66.2 

 Aug 19.5 14.9 34.8 9 60.5 
 Sept 17.5 15.1 21.8 0 62.3 

Room 29  
Mar 21.7 17.6 29.5 0 56.3 
Apr 21.0 17.3 25.8 0 53.0 
May 19.3 14.6 26.0 0 60.1 

2.2.3 Treatments 

Watering/temperature treatments were applied at two different growth stages to study their 

effect on grain size and grain number. Booting stage (around meiosis) is sensitive to heat effects 

on floret fertility (Saini & Aspinall 1982), so plants were moved for treatment when the distance 

between the base of the main tiller flag leaf blade and the blade of the next leaf down (auricle 

interval, AI) was 5 cm. Grain filling in wheat is sensitive to elevated temperature ~5 days before 

anthesis to 10-15 days after anthesis (DAA) (Savin et al. 1999; Wardlaw & Willenbrink 1994; 

Wardlaw & Wrigley 1994) therefore early grain filling (10 days after anthesis) was used to target 

effects on grain size.  

All plants were initially grown in greenhouse room 30. When the plants reached the targeted 

developmental stage, they were moved to other locations for the 3-day treatments (growth 

chamber for heat or greenhouse room 29 for treatments not involving heat, including control) 

and then returned to greenhouse room 30 to reach maturity. Treatments without heat were 
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done in another greenhouse room, mainly as there was insufficient space in room 30 for the 

additional trays. Room 29 was adjacent to room 30 and had the same temperature settings.  

Seven treatments viz. T1, T2, T3, T4, T5, T6 and T7 (Table 2.3) combining heat or no heat with 

standing water or drained conditions, were applied. One treatment (no heat and free-drainage; 

T1) was intended to serve as a ‘universal’ control for treatments applied at either 5 cm AI or 

10DAA. Plants for T1 were also moved to greenhouse room 29 at a randomly selected stage (5 

cm AI), to subject these plants to movement, in case movement itself had any effect.  

Table 2.3 Experimental treatments. 

Treatment 
name 

Heat 
treatment 

Standing water 
treatment 

Developmental stage at 
which treatment applied 

For treatment 
plants moved to Target traits 

T1 No No Moved when AI 5 cm Room 29 Grain number and 
size 

T2 No Yes Booting, 5cm AI Room 29 Grain number 

T3 No Yes Grain filling, 10 DAA Room 29 Grain size 

T4 Yes Yes Booting, 5cm AI Growth chamber Grain number 

T5 Yes Yes Grain filling, 10 DAA Growth chamber Grain size 

T6 Yes No Booting, 5cm AI Growth chamber Grain number 

T7 Yes No Grain filling, 10 DAA Growth chamber Grain size 

2.2.4 Experimental design 

Three hundred and thirty-six plants were used in this experiment. The experiment employed a 

split plot layout with 8 blocks (replications) and treatments were randomly allocated to main 

plots and varieties were randomly allocated to subplots. Table 2.4 presents a summary of the 

design. Pots remained in the same block when moved to the room 29 or the heat chamber. 

Table 2.4 Main features of the greenhouse 30, greenhouse 29 and growth chamber designs. 

 

 

 

 

 

2.2.5 Data collection  

A total of 15 traits were measured, with most being scored for only particular treatments (Table 

2.5). Except for grain number per spike, scoring of all grain and spikelet number traits and 

chlorophyll traits were unintentionally omitted for the T1 treatment. Chlorophyll related traits 

Place Layout Plots Rows Columns Number of 
treatments 

Genotype
s 

Blocks 

Greenhouse 30  Split plot  336  28  12  7  6  8 
Greenhouse 29 Split plot  96  8  12  2 6  8 
Growth 
chamber 

Split plot  96  16  12  2 6  8 
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were measured during development while the other traits were measured at maturity. The 

primary tiller of each plant was tagged with various colored tape after reaching the target stage 

to identify which tiller was to be scored afterwards and to confirm treatment status (whether 

it had been treated or not). All traits were measured from the primary tiller only and these were 

as follows: 

Chlorophyll content 

Flag leaf relative chlorophyll content was measured using a portable SPAD chlorophyll meter 

(SPAD-502; Minolta Co. Ltd., Japan) just before heat treatment at 10 DAA (SPAD10DAA), just 

after heat treatment at 13DAA (SPAD13DAA) and at two weeks after heat treatment at 27DAA 

(SPAD27DAA) (Fig. 2.1). Each value was the average of 10 measurements taken from the same 

leaf section (middle half), along the left-hand side of the flag leaf between the mid-rib and leaf 

margin. Change in chlorophyll content during the treatment period was calculated as 

SPAD13DAA - SPAD10DAA, for control and heat treated plants separately. Similarly, chlorophyll 

change during the period of treatment plus the two weeks after treatment was calculated as 

SPAD27DAA - SPAD10DAA.  

 Fig. 2.1 Schematic presentation of trend of chlorophyll loss at 10, 13 and 27DAA under heat 
and control (Shirdelmoghanloo, Taylor, et al. 2016). Dotted lines and yellow box indicate 
sampling times and heat treatment period respectively. 
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Grain filling 

Days to anthesis (Rane & Nagarajan): Days from sowing to the day that exerted anthers first 

became visible.  

Flag leaf senescence (FLSen): Days from anthesis to flag leaf senescence, representing the stay-

green duration. The flag leaf was defined as fully senesced when they appeared ~ 95% yellow 

by visual scoring. 

Grain filling duration (GFD): Days from anthesis to maturity. Plants were defined as mature 

when spikes became ~ 95% senesced and seeds became firm. 

Number of developed or under developed spikelets per spike (DevSpklt and UnderdevSpklt): 

Developed and under developed spikelets were distinguished on the basis of awn length, to 

separate spikelets that may not normally form any grains from the others. Spikelets from the 

bottom of a spike having awn length less than half of the average awn length of the spike were 

defined as under developed spikelets. Total number of developed spikelets on a spike was 

defined as developed spikelet number spike-1 (DevSpklt).  

Grain weight spike-1 (GnWSpk) and single grain weight (SingGW): The grains were left in the 

laboratory for ~4 weeks to reach a stable moisture content before being weighed. SingGW was 

calculated as GnWSpk / GnNoSpk.  

Floret fertility 

Grain number spike-1 (GnNoSpk) and grain number spikelet-1 (GnNoSpklt): Underdeveloped 

spikelets were removed, then the remainder of the spike divided into three equal parts (top, 

middle and bottom) for scoring floret fertility traits. Seeds at floret position 1 + 2 in each spikelet 

(the two most basal positions) and positions >2 were counted separately as the former develop 

before the latter (McMaster 1997). This gave GnNoSpklt for each third of the spike, and for each 

floret type. GnNoSpk was obtained by adding the component grain number measurements (for 

T2, T4 and T6), or was obtained simply by counting the seeds threshed from the entire spike 

after the basal underdeveloped spikelets had been removed (other treatments). GnNoSpklt for 

the whole spike was the average for all floret types across the spike. 
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Table 2.5 Traits scored in plants subjected to the various treatments.  

Traits scored Treatments 

  T1 T2 T3 T4 T5 T6 T7 

 Heat - - - + + + + 

 Standing water - + + + + - - 

Grain size        

Anth missed  yes  yes  yes 

GnWSpk yes  yes  yes  yes 

SingGW yes  yes  yes  yes 

Floret fertility        

UnderdevSpklt missed yes  yes  yes  

DevSpklt missed yes  yes  yes  

GnNoSpk yes yes yes yes yes yes yes 

GnNoSpklt missed yes  yes  yes  

% fertility at top third part in floret 1+2 spike-1 missed yes  yes  yes  

% fertility at middle third part in floret 1+2 spike-1 missed yes  yes  yes  

% fertility at bottom third part in floret 1+2 spike-1 missed yes  yes  yes  

GnNoSpklt1&2 missed yes  yes  yes  

GnNoSpklt>2 missed yes  yes  yes  

Grain number at top third part in floret 1+2 spike-1 missed yes  yes  yes  
Grain number at middle third part in floret 1+2 
spike-1 

missed yes  yes  yes  

Grain number at bottom third part in floret 1+2 
spike-1 

missed yes  yes  yes  

Grain number at top third part in floret >2 spike-1 missed yes  yes  yes  
Grain number at middle third part in floret >2 
spike-1 

missed yes  yes  yes  

Grain number at bottom third part in floret >2 
spike-1 

missed yes  yes  yes  

Chlorophyll content         

SPAD10DAA  missed  yes  yes  yes 

SPAD13DAA  missed  yes  yes  yes 

SPAD27DAA  missed  yes  yes  yes 

2.2.6 Data analysis 

Types of data generated here included counts or continuous variables, percentages and 

repeated measurements. Measurements of all traits for different treatments were also 

compared. To analyze the data, several statistical modeling procedures were followed to 

minimize error and increase statistical power. Statistical models that were adopted for the 

various types of data were as follows:  

Counts or continuous variables: Counts e.g. number of spikelets, grain number and continuous 

variable e.g. grain weight etc. were analyzed using linear mixed model: 

y = Xτ + Zu + e 
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Where y is the vector of observations, τ is the vector of treatment, genotype and treatment by 

genotype fixed effects with design matrix X, u is the vector of block and whole plot random 

effects with design matrix Z, and e is the subplot random error. 

Percentage variables: At floret positions 1+2, each developed spikelet can form a maximum 2 

grains, so fertility could be expressed as a percentage (2 grains at this position being 100%). The 

empirical logistic transformation was used to transform the data onto the logit scale (McCullagh 

& Nelder 1989). The percentage of fertility was analyzed using the linear mixed model: 

z = Xτ + Zu + e 

Where z is the vector of transformed percentages, τ is the vector of treatment, genotype and 

treatment by genotype fixed effects with design matrix X, u is the vector of block and whole 

plot random effects with design matrix Z, and e is the subplot random error. 

Repeated measurements over time: Repeated measurements were taken for traits e.g. 

chlorophyll content. Analysis of repeated measurement was done by the mode below: 

y = Xτ + Zbub + Zwuw + e 

where y is the combined vector of chlorophyll content values at time 10, 13 and 27DAA, τ is the 

vector of treatment, genotype, time and all possible interaction effects with design matrix X, ub 

is the vector of block with design matrix Zb, uw is the vector of whole plot random effects with 

design matrix Zw and e is the random error. 

Adjustment for multiple comparisons: Comparison of multiple means or hypotheses requires 

adjustment of p value as the probability of obtaining a false positive result increases with the 

number of comparisons. The Benjamini and Hochberg (1995) derived Bonferroni type multiple 

testing procedure was used to adjust the p value.  

2.3 Results 

Floret fertility 

Plants destined for heat and standing water treatment for floret fertility reached the targeted 

stage (5cm AI) between the 25th of April and 13th of May 2015 (Fig. 2.2B). Daily maximum 

temperature in the greenhouses did not exceed 30 °C (Fig. 2.2A and B) for a single day during 

that time.  
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Fig. 2.2 A) Temperature of greenhouse room 29, with dates indicating the range at which plants 
were moved to room 29 at the sensitive tiller stage. B) Temperature of greenhouse room 30 
from sowing to maturity. Red bar shows the dates at which plants reached the targeted growth 
stage and green extended bar indicate estimated time when plants were at sensitive stages to 
the effects of heat on fertility.  

Heat treatment reduced GnNoSpk for all the varieties, and the effect was largely insensitive to 

the watering method (Fig. 2.3). GnNoSpk in HTWYT12 showed a strong response to heat but 

this genotype was previously classified as tolerant, while the magnitudes of the reactions of the 

other genotypes were consistent with their previous heat tolerance classifications, broadly 

speaking (Table 2.1). The only genotype in which the watering method made a significant 

difference was RAC875, for which a significant reduction in GnNoSpk due to heat was observed 

only under freely drained conditions.  
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Fig. 2.4 Grain number at floret position 1+2 (A) and >2 (B) under three treatments. Means with 
same letter code were not significantly different for comparisons within a genotype and bars 
show SE.  

In control plants of all genotypes, GnNoSpklt for florets 1+2 was close to 2.0 (Fig. 2.5A), 

confirming that temperatures in the greenhouse rooms used for control treatments 

(compartments 29 and 30) were not high enough to affect floret fertility.  

GnNoSpklt at floret position 1+2 at top, middle and bottom spike positions were reduced in 

Drysdale, HTWYT_12, Kukri and Westonia but not in the highly and moderately tolerant 

varieties Waagan and RAC675, respectively (Fig. 2.5A). Standing water in the presence and 

absence of heat did not cause additional effects in any of the three parts of the spike. 

In all three parts of the spike, GnNoSpklt in >2 floret positions (Fig. 2.5B) followed a similar trend 

as GnNoSpklt at floret positions 1+2. 

 

A 

B 
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Grain filling 

The sensitive stage for grain filling is from five days before anthesis to 20 days after anthesis. 

Plants were at this stage from 29th of April to 5th of June and plants reached the target treatment 

stage (10DAA) between the 4th and 26th of May 2015 (Fig. 2.7A and B). Plants did not experience 

high temperature (> 30°C) at the sensitive stage for grain filling, even for a single day for this 

sub-experiment. Temperatures of room 30 were high at the beginning of August but this was 

well before anthesis occurred. 

 

Fig. 2.7 Temperatures of two greenhouse rooms at the sensitive stage for grain filling (A, B). Red 
bar (B) shows the dates at which plants reached the targeted stage. Red bar shows the dates at 
which plants reached the targeted growth stage and the green extended bar indicates the range 
of time when the plants were at the sensitive stage (from five days before to 20 days after 
anthesis).  

The magnitude of the responses seen for SingGW were not as great as those observed for floret 

fertility, which somewhat limited the power of the grain filling experiment to fulfil the purpose 

of the study. In Drysdale, SingGW was reduced significantly by heat, but was not further reduced 

by standing water. In HTWYT_12 and Westonia SingGW was reduced significantly only by the 

combined heat with standing water treatment (Fig. 2.8). The tolerant genotypes Waagan and 
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The similarity between trends for SingGW and flag leaf chlorophyll heat responses, with respect 

to which genotypes were intolerant, combined with the lack of any strong effect of watering 

method on heat responses, is consistent with other studies that found these two traits and their 

heat responses to be strongly correlated genetically (Lopes & Reynolds 2012; Reynolds et al. 

1994; Shirdelmoghanloo, Taylor, et al. 2016).  

2.4 Conclusions 

Heat treatment reduced GnNoSpk for all the varieties, and the effect was largely insensitive to 

the watering method. GnNoSpk at floret 1+2 and >2 positions were significantly reduced in heat 

susceptible genotypes Drysdale and Westonia along with tolerant genotype HTWYT_12. 

GnNoSpklt at floret position 1+2 and >2 in the three different sections of the spike (top, middle 

and bottom) showed that middle part of the spike gave more GnNoSpklt at both floret positions 

compared to other parts of spike. Heat reduced GnNoSpklt in heat susceptible genotype at both 

floret positions on all parts of the spike. Fertility percentage at floret positions 1+2 showed a 

similar trend and for all the traits standing water did not exacerbate the heat effect.  

SingGW was reduced significantly in the intolerant genotype Drysdale under heat only 

condition but under the heat + standing water condition HTWYT_12 and Westonia (tolerant 

genotypes) showed a reduction in this trait. GnWSpk followed similar trends to SingGW. 

Chlorophyll content just after heat treatment, and at two weeks after heat treatment, were 

reduced in intolerant genotypes and showed similar trends to GnWSpk. Watering method had 

no significant impact on this trait. 

Therefore, in this test of wheat genotypes of varying tolerance levels, standing water did not 

affect grain number or grain size responses to a three day heat treatments (or the traits under 

non-heated control conditions). Thus, these heat tolerance screening protocols can be used 

without concern that the method of watering will have a major influence on the plant 

responses. It can also be concluded that previously described heat experiments were unlikely 

to have been confounded by this type of watering method. As no consistent responses to the 

watering method itself was observed, the experiment shed no light on whether tolerance 

mechanisms for water logging and heat might be related or interact. A more severe 

waterlogging stress treatment would be needed to be used to address these questions. 
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Chapter 3: Selection and greenhouse evaluation of Near Isogenic Lines for QTL on chromosome 

3B and 6B for grain filling and chlorophyll heat tolerance from the Drysdale × Waagan 

cross 

 Introduction  

Two grain filling and chlorophyll heat tolerance QTLs, QTL11 (QHsgw.aww-3B) and QTL27 

(QChlr13.aww-6B) were identified by Shirdelmoghanloo, Taylor, et al. (2016), on the short arm of 

chromosome 3B and on chromosome 6B, in Drysdale × Waagan mapping population under 

greenhouse/chamber conditions. QHSGW.AWW-3B on chromosome 3B was identified in two 

different phenotyping experiments and accounted for 11 to 22% variance for heat susceptibility 

index (HSI) of single grain weight (SingGW) and grain weight spike-1 (GnWSpk) in the whole 

population. The Waagan allele accounted for SingGW stability and reduced GnWSpk loss due to heat 

stress by 2.5 and 1.7 mg in the two experiments over the Drysdale allele. This locus also gave 

significant QTL effects under heat conditions for grain filling duration and shoot weight. 

QHSGW.AWW-3B was also the strongest for HSI of chlorophyll related traits e.g. response of 

absolute chlorophyll content after heat treatment and duration of flag leaf senescence after 

anthesis and accounted for ~13 to 40% of the variance for these traits. The Waagan allele at 

QHSGW.AWW-3B conferred greater chlorophyll stability and higher values per se in control plants 

for flag leaf chlorophyll content, both before (ChlC10DAA trait) and after (ChlC13DAA and 

ChlC27DAA traits) the heat treatment period. As QHSGW.AWW-3B showed heat tolerance effects 

for grain weight and chlorophyll stabilization in coupling, it indicated that heat tolerance for grain 

weight was associated with stay-green.  

QTL 27 on chromosome 6B was identified in one experiment only, with weaker and less consistent 

effect for SingGW stability, chlorophyll loss and higher area under the SPAD curve (AUSC) per se 

under heat compared to QHsgw.aww-3B. The QTL contributed 8.9 to 12 % of the variation for these 

traits, with the Drysdale contributing the positive allele for heat tolerance on average, the Drysdale 

allele reduced heat-induced SingGW loss by 2.1 mg over the Waagan allele.  

The two experiments used to define those QTLs were conducted in different seasons using a 

greenhouse for growth before and after heat treatments, and a growth chamber for heat 
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treatments. Using potted plants and a greenhouse and growth chamber allowed heat stress to be 

applied at a specific developmental stage. However, growth conditions of such experiments differ 

from those in the field in various ways which can lead to ‘artifacts’ (Passioura 2006). Quantitative 

traits observed in a greenhouse may be expressed differently in the field due to the different 

conditions. Polygenic quantitative traits may differ in expression depending on the environment due 

to interactions with various environmentally sensitive genes. Consistent expression of QTL under 

field conditions is important for their utility in marker assisted breeding. Field trials are time 

consuming and expensive and require replication to observe quantitative effects of a QTL in a whole 

population. Field trials for heat tolerance studies are difficult due to the unpredictability of heat 

waves. Nevertheless, field trials are necessary to validate QTL effects in the target production 

environment.  

Near isogenic lines (NILs) offer a means to evaluate QTLs effects in detail under both controlled and 

field conditions, and are also useful for fine mapping, as they allow observation of QTL effects with 

fewer individuals, thereby increasing the statistical power of experiments. NILs can be produced by 

crossing F1 individuals with a recurrent parent repeatedly for many generations, while maintaining 

selection for the QTL allele of interest (backcrossing), to provide a line (Singh, RP, Huerta-Espino & 

William 2005) that is genetically similar to the recurrent parent, except carrying a different version 

of the QTL chromosome region. Recombinant inbred lines (RILs) can also be used to generate NILs 

(herein referred to as RIL-NILs). Starting with an F2 family, an inbred line is produced from each F2 

through successive generations of single-seed descent. RILs that are still heterogeneous for a target 

QTL can be identified using molecular markers, and markers applied to individuals of those lines to 

select out plants that are homozygous for each of the two contrasting alleles to produce a NIL pair. 

These can be used for further detailed study and validation of the QTL.  

Phenotyping of multiple pairs of NILs differing slightly for the introgressed segment can allow the 

QTL interval to be narrowed down further. This process can involve generating new molecular 

markers in the region using various high throughput genotyping arrays, to delimit the boundaries of 

the introgressed chromosome segments, and hence further refine the QTL interval. This process 
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may ultimately lead to the identification of gene/s controlling the QTL of interest, and/or diagnostic 

markers suitable for use in breeding. 

In this exercise, RIL-NILs were generated for the Drysdale × Waagan grain filling heat tolerance QTLs 

on chromosome 3B and 6B, and evaluated for heat tolerance phenotypes. 

 Materials and Methods  

 Plant materials  

Plant materials used in this experiment were obtained from several previous experiments 

conducted since 2009. RIL and NIL generation from the cross between the varieties Drysdale and 

Waagan included a number of steps and trials.  

(Background information regarding generation and selection of RIL-NILs was written by Nick Collins; 

Marker work prior to selection of homozygous NIL-RILs was done by Iman Lohraseb; selection of 

homozygous NIL-RILs and all subsequent steps were done by me) 

Construction and initial field trialling of the Drysdale × Waagan RIL population was done by the 

group of Livinus Emebiri at the EH Graham Centre for Agricultural Innovation, NSW Department of 

Primary Industries, Wagga Wagga, as part of a project funded by the NSW BioFirst initiative. The 

number of generations of single-seed descent used to make the population was not recorded, 

although it was likely to have been around 5 (F2:5 population). The population of 2,627 lines (derived 

from 43 F1 plants) was subjected to several field trials at Wagga Wagga during 2009-2011, and plant 

height, flowering time and yield data used to identify ~604 most agronomic lines (semidwarfs, since 

the population segregates for both the Rht-B1 and Rht-D1 dwarfing genes, and excluding those with 

the most extreme early or late flowering time). Seed of those lines were sourced for further work, 

mostly from the first field trial (9E1; single row trial). It was assumed 9E1 was sown using seed of 

individual plants from the last SSD generation (not seed produced from a multi-plant bulk), but 

records were not available to verify this (Fig. 3.1).  

DNA was extracted from each of the 604 lines (plus the parents, obtained from NSW-DPI), using a 

mixture of leaf tissue from 5 seedlings per line, to allow detection of any genetic heterogeneity. Six 
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Fig. 3.2 Twenty-two Drysdale × Waagan RIL families were selected for homozygous NIL pair 

generation on the basis that they showed heterogeneity for QTL regions. Cell color designates 

Drysdale (pink), Waagan (Warrington, Dunstone & Green) or heterozygous (yellow) allele calls. 

White cells represent KASP calls different from parental alleles. Red and blue boxes highlight 

families that were selected for homozygous NIL pair generation for the 3B and 6B QTL regions, 

respectively. ‘?’ indicates unsure KASP calls. Marker order was determined by (Shirdelmoghanloo, 

Taylor, et al. 2016) on DH lines. 
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cM position 0.0 1.4 1.4 2.3 3.2 34.6 0.0 18.1 18.1

Drysdale A:A C:C C:C T:T C:C G:G C:C C:C G:G

Waagan G:G T:T T:T C:C A:A G:G T:T T:T A:A

WW30666 G:G C:C C:C C:T ? C:C A:A C:C C:C G:G

WW30674 G:G C:T C:T ? C:C C:C G:G C:C T:T A:A

WW30676 G:A C:T C:T C:C C:A G:G T:T T:T A:A

WW30692 A:A C:T C:T ? C:T C:C G:G T:T C:C G:G

WW30702 A:A C:C C:C T:T C:C G:A T:T T:T A:A

WW30709 A:A C:T C:T C:T C:A G:G T:T T:T A:A

WW30860 G:G C:C C:C T:T C:C G:A C:C C:C G:G

WW30883 G:G C:C C:C T:T C:C G:A C:C C:C G:G

WW30895 A:A C:C C:C C:T ? C:C G:G T:T T:T A:A

WW30913 G:A T:T C:T C:C C:A G:G T:T T:T A:A

WW30914 A:A C:C C:C T:T C:C G:A C:C C:C G:G

WW30764 G:A C:T C:T C:T ? C:A? G:G T:T C:T G:A

WW30655 A:A C:C C:C T:T C:C G:G C:T C:T G:A

WW30711 G:G T:T T:T C:C A:A G:G T:T C:T G:A

WW30845 A:A C:C C:C T:T C:C G:G C:T? T:T A:A

WW30852 A:A C:C C:C T:T C:C A:A T:T C:T? G:G

WW30874 G:G C:C C:C T:T C:C G:G C:T? T:T A:A

WW30875 A:A C:C C:C T:T C:C G:G C:T C:C G:G

WW30893 G:G T:T T:T C:C A:A G:G C:T T:T A:A

WW30900 G:G T:T T:T C:C A:A G:G T:T C:T A:A

WW30908 G:G T:T T:T C:C A:A G:G C:T T:T A:A

WW30915 A:A C:C C:C T:T C:C A:A T:T C:T? G:G

Genotype
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 Homozygous NIL pair selection 

It was expected that RILs with heterozygous allele calls in the QTL regions would be heterogeneous 

and provide homozygous NILs. Seeds were taken from the same seed packets that were sown for 

the original DNA samples but this time DNA was extracted from individual plants. Seeds from these 

families were sown on 25th April, 2015 in a greenhouse with growth conditions similar to those 

discussed in paragraph (2.2.2).  

Leaf tissue of ~50 mm long and 4mm wide segment from 2-week old plants were used for DNA 

extraction using the protocol of (Pallotta et al. 2003). DNA concentrations were measured by 

absorbance at 260 nm using NanoDrop (ND-1000 spectrophotometer; 3411 Silverside Rd, Tatnall 

Building Wilmington, DE 19810, USA) and integrity was tested by electrophoresis on 0.8% agarose 

gels. 

KASP assay primers are shown in Table 3.1. Primers were supplied by Sigma-Aldrich (PO Box 970, 

Castle Hill NSW 1765, Australia), 100 µM primer stock was prepared by re-suspending in 10x µL MQ 

water to the amount (nmol) of DNA mentioned by the supplier. Genomic DNAs were diluted to 

concentration of ~5 ng/µL by adding Milli-Q water for DNA stamping. Five microliters of diluted DNA 

per sample was dispensed to each 384 well flat top black working plate (LGC, Labor GmbH Augsburg, 

Bgm. Schlosser-Str. 6 A, 86199 Augsburg, Germany) using an oKtopure robot (LGC, Queens Road, 

Teddington, Middlesex, TW11 0LY, UK; www.lgcgroup.com), spun briefly and oven dried for 1 hour 

or more at 65°C. 

The KASP assay mix was prepared separately for each marker and contained one forward primer 

specific for each SNP allele and one common primer. KASP assay mix and master mix were added 

together to the DNA-containing 384 well flat top black plate using a Meridian liquid dispenser (LGC, 

London, UK; www.lgcgroup.com). Volumes of KASP master mix (TAQ polymerase, dNTPs, MgCl2, 

FRET cassettes) and assay mix (primers) were calculated according to the standard protocol 

(https://www.lgcgroup.com/LGCGroup/media/PDFs/Products/Geno typing /KASP-genotyping-

chemistry-User-guide.pdf?ext=.pdf). Plates were sealed using Kube heat sealing and Fusion3 laser 

sealing instruments (LGC, London, UK; www.lgcgroup.com), and spun briefly before hydrocycling.  
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Table 3.1 Primers for KASP assays used in RIL-NIL selection. 

Marker name (from wheat 
Illumina 9,000 SNP array) 

KASP 
Primer  

Primer sequence (5’-3’) SNP allele 
specificity 

For QTL on short arm of chromosome 3B 

wsnp_Ra_c41135_48426638 
 

A1 GTCACTACAACACTACTCTTCT A 
A2 AGGTCACTACAACACTACTCTTCC G 
C TCAGCGACAAGGGCGCCATCAA  

wsnp_Ex_rep_c66331_64503065 A1 CAAAGATCACTGCCACTGCTA T 
 A2 GCAAAGATCACTGCCACTGCTG C 
 C GGGCATAGAAATTACTGATTTTGATGCCTT  
wsnp_Ku_c12698_20441325 A1 CCAACACCCTGGAGAACATCGTT T 
 A2 CAACACCCTGGAGAACATCGTC C 
 C CCCCATCGATCTGAGAAGCAATGTT  
wsnp_Ex_c3005_5548573 A1 AAGTGCGAAACTCACACACAGAGT T 
 A2 GTGCGAAACTCACACACAGAGC C 
 C CAGTAGTTATCCCAATTATTGCTGGCATA  
wsnp_BE497169B_Ta_2_2 A1 GCACATGCAGATCCATCATATGCAA A 
 A2 CACATGCAGATCCATCATATGCAC C 
 C GAACAAGATGAAAGGGGCATTGAAATGAT  
wsnp_Ku_c3817_7009093 A1 CATGCCGGGTAGTATGCTTGGT A 
 A2 ATGCCGGGTAGTATGCTTGGC G 
 C CGCCGATCCGAATACAGGAAATTCTA  

For QTL on chromosome 6B 

wsnp_Ex_c11379_18370310 A1 CCAGAAGTTCAGGATATCTTATGATGAA T 
 A2 CAGAAGTTCAGGATATCTTATGATGAG C 
 C CTCAAAATCGGACATAGGTCATGTACTAT  
wsnp_Ex_c19525_28494827 A1 CGATGCAGATTGTCAGGCAGA T 
 A2 CGATGCAGATTGTCAGGCAGG C 
 C GAACTATGCTACTACATACAGTAGTACAAT  
wsnp_Ex_c45713_51429315 A1 ATCATGTTGATGGACTTGATCTGACA A 
 A2 CATGTTGATGGACTTGATCTGACG G 
 C CGGGAAGCATCTCATCATGYACAGAA  

A1 and A2 primers have GAAGGTGACCAAGTTCATGCTATAG and GAAGGTCGGAGTCAACGGATTC 5’ extensions 
not shown here, that are complementary to FAM and HEX labelled oligonucleotides, respectively, that are in 
the KASP master mix. 
 

A Hydrocycler16 (LGC, London, UK; www.lgcgroup.com) was used for hot start PCR amplification 

following the standard programs (https://www.lgcgroup.com/LGCGroup 

/media/PDFs/Products/Genotyping/KASP-genotyping-chemistry-User-guide.pdf?ext=.pdf) for 

thermal cycling and ~5 additional rounds of thermal cycling. After each cycle of amplification 

fluorescence was measured using a PHERAstar FSX plate reader (BMG LABTECH Pty. Ltd., 2/24 

Carbine Way, Mornington, Victoria 3931, Australia; www.bmglabtech.com) and outputs were 
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processed by Kraken software (https://www.lgcgroup.com/products/genotyping-

software/kraken/#.WL0AoW996Uk). 

Once homozygous NIL plants were selected, these were grown up and seed collected. Five of these 

seeds per line were sown in 20 cm pots (all 5 plants in one pot) in a greenhouse. Two or three plants 

per line were randomly selected for marker analysis to verify the lines’ genotype. Plants were grown 

to maturity and seed sent to NSW-DPI Wagga Wagga for field multiplication in the 2016 season, in 

preparation for validation trials in 2017.  

 NIL phenotyping 

Seeds from selected NIL were sown for phenotyping on 31st March, 2016. Plants were grown and 

heat treated following similar growth and treatment conditions to those mentioned by 

Shirdelmoghanloo, Taylor, et al. (2016). In brief, two seeds were sown per pot in Room 30 at The 

Plant Accelerator (TPA, The University of Adelaide, Waite Campus, Adelaide). After germination 

plants were thinned to one per pot. Plants destined for heat treatment were moved to a growth 

chamber WI.5 (BDW120, Conviron Asia Pacific Pty Ltd. Melbourne, Australia). Greenhouse room 

conditions were as summarized in Table 3.2. 

Heat treatments were applied at 10 days after anthesis (10DAA) as described by Shirdelmoghanloo, 

Taylor, et al. (2016). Pots were moved to the growth chamber set at 37oC/27oC day/night 

temperature for three days and then moved back to the greenhouse to grow up to maturity. The 

experiment used a split-plot design provided by Sabela Munoz-Santa (The University of Adelaide). 

A randomized complete block arrangement of 4 blocks was used to assign the two treatments 

(control and heat). For heat treatment eight (2 for each block) and four (1 for each block) 

replications for NILs and parental lines were used respectively but as control one plant for each of 

NILs and parental lines for each of the four blocks were used and were randomly distributed among 

four rows and 27 columns of each block. Pots from the same block in the greenhouse were placed 

in the same block in the growth chamber, so as to accumulate the variability due to blocks for the 

two different places. 
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Table 3.2 Details of greenhouse (room 30) temperature (°C) and relative humidity during the NIL 
phenotyping experiment. Set maximum-day/minimum-night temperatures were 20/16 °C. The 
stage for heat treatment (10DAA) was reached during May-June.  

 

Data for six traits were collected. Chlorophyll traits were measured during growth, while the rest 

were measured at maturity. The primary tiller of each plant was tagged with colored tapes after 

reaching anthesis and after heat treatment, to identify the tiller to score afterwards and to confirm 

treatment status of the plants. Trait descriptions are described in Table 3.3. 

Table 3.3 Traits evaluated in the NILs. 

Trait  Abbreviation  Measurement method  

Culm length (cm) CulmLMat Length of the culm from soil surface to the 
collar of the spike, at maturity. 

Shoot weight (g)  
 

ShootW Measured at maturity only on the primary 
tiller. The tiller was cut off at the soil surface, 
the spike cut off at the collar, and the shoot 
(stem + leaves) was oven dried at 85oC for 3 
days before weighing. 

Chlorophyll content 
(SPAD unit) 

SPAD10DAA, 
SPAD13DAA and  
SPAD27DAA 

Measured on flag leaf using a portable SPAD 
chlorophyll meter (SPAD-502; Minolta Co. 
Ltd., Japan) at 10 DAA (SPAD10DAA; before 
heat treatment), just after heat treatment 
(SPAD13DAA) and at two weeks after heat 
treatment (SPAD27DAA). Each value 
recorded was the average of 10 
measurements taken from the same leaf 
area, along the left-hand side of the flag leaf 
between the mid-rib and leaf margin. 

Days to anthesis  Anth From time of sowing. 

Grain weight spike-1 (g)  
 

GnWSpk 
 

Grains were left in the laboratory at room 
temperature for ~4 weeks to reach a stable 
moisture content before being weighed. 

Single grain weight (g) SingGW  GnWSpk/ GnNoSpk. 

Month Daily avg. Avg. daily min. Avg. daily max. Days >30°C Avg. % relative humidity 

Mar 22.6 15.9 32.3 9 68.4 
Apr 20.3 15.8 28.6 0 68.3 
May 19.8 15.8 30.8 1 74.8 
Jun 19.5 15.4 29.1 0 79.1 
Jul 18.5 14.0 25.2 0 77.7 
Aug 18.8 14.3 24.8 0 68.4 
Sep 19.2 15.3 28.5 0 66.5 
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 Results 

 Homozygous NIL pair selection and propagation 

Homozygous NILs for the 3B and 6B QTL regions were identified by KASP assays in plants grown 

from the heterogeneous seed packets. These assays were performed on ~17 plants from each of 

the 22 families plus the parental varieties (total 380 plants). Results from seven families were not 

presented, as these families were either found to be not segregating, or segregating for too many 

recombinant chromosomes, making interpretation too difficult (not shown). Of the remaining 15 

families, six were segregating for the 3B QTL and nine for the 6B QTL.  

NILs were selected from five and four families for the 3B (Fig 3.3 A-B) and 6B (Fig 3.3 C-E) QTLs, 

respectively. Another six families showing no recombination in the intervals, or similar 

recombination to other families, were not phenotyped due to space limitation. Four plants were 

selected from each of these nine families: 2 homozygous for each of the two contrasting 

chromosome types (total 36 plants). Five seeds from each of the 36 selected RIL-NILs were grown 

for further seed propagation and verification of marker genotypes. DNA was extracted from three 

to two plants from each line and were used in KASP analysis except WW30676 family for which only 

two lines (WW30676_11 and WW30676_13) were used for phenotyping. KASP marker 

wsnp_Ku_c3817_7009093 was not used further due to its poor performance (Fig. 3.3). KASP assays 

were performed, giving clear genetic profiles of the RIL-NILs (Fig. 3.4). 

Seeds from each of the five plants from each of eight families were collected. One to six grams of 

seed per RIL-NIL was sent to NSW-DPI Wagga Wagga research station for field propagation in the 

2016 season.  

 RIL-NIL phenotyping 

Thirty-four lines (excluding WW30676_9 and WW30676_17) from nine families (paragraph 3.3.1) 

were subjected to phenotypic evaluation of the 3B and 6B QTL effect in the greenhouse. Two NIL 

pairs (four lines) from each of five families for 3B and four families for 6B were selected but from 

family WW30676 only two contrasting lines were used. 
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Fig. 3.3 Selection of homozygous RIL-NILs using KASP markers. Cell color designates homozygous 

Drysdale (pink), homozygous Waagan (green) or heterozygous (yellow) marker allele calls. The 

original marker profile of the 5-plant DNA bulk (highlighted in blue for 3B and red for 6B) is shown 

for reference above the scores for the single plants, grown from the same seed packet. Selected 

homozygous RIL-NILs lines are marked in orange. NC: No call (unscorable) Tentative KASP calls are 

marked with ‘?’. Markers outlined in blue performed poorly; White cells represent KASP scores 

different from parental alleles. Blank cells mean that the marker was not run. In some families, 

plants were re-ordered to aid interpretation. Marker order was determined by (Shirdelmoghanloo, 

Taylor, et al. 2016) on DH lines. 

Marker 

w
sn

p_
Ra

_c
41

13
5_

48
42

66
38

w
sn

p_
Ex

_r
ep

_c
66

33
1_

64
50

30
65

w
sn

p_
Ku

_c
12

69
8_

20
44

13
25

w
sn

p_
Ex

_c
30

05
_5

54
85

73

w
sn

p_
BE

49
71

69
B_

Ta
_2

_2

w
sn

p_
Ku

_c
38

17
_7

00
90

93

w
sn

p_
Ex

_c
11

37
9_

18
37

03
10

w
sn

p_
Ex

_c
19

52
5_

28
49

48
27

w
sn

p_
Ex

_c
45

71
3_

51
42

93
15

chrom region 3B1 3B1 3B1 3B1 3B1 3B1 6B3 6B3 6B3

cM position 0.0 1.4 1.4 2.3 3.2 34.6 0.0 18.1 18.1

Drysdale A A C C C C T T C C G G C C C C G G

Waagan G G T T T T C C A A G G T T T T A A

WW30908 C T T T A A

WW30908_1 C T T T A A

WW30908_2 T T T T A A

WW30908_4 C T T T A A

WW30908_5 C C T T A A

WW30908_6 C C T T A A

WW30908_7 T T T T A A

WW30908_8 T T T T A A

WW30908_9 T T T T A A

WW30908_10 T T T T A A

WW30908_11 C T T T A A

WW30908_12 C T T T A A

WW30908_13 C T T T A A

WW30908_14 T T T T A A

WW30908_15 C T T T A A

WW30908_16 C T T T A A

WW30908_17 C C T T A A

WW30915 T T C T ? G G

WW30915_1 T T C C G G

WW30915_2 T T T T A A

WW30915_3 T T C C G G

WW30915_4 T T C C G G

WW30915_5 T T C C G G

WW30915_6 T T C C G G

WW30915_7 C C T T NC

WW30915_8 T T C C G G

WW30915_9 T T C C G G

WW30915_10 T T C C NC

WW30915_11 C C T T A A

WW30915_12 T T C T G A

WW30915_13 T T C C G G

WW30915_14 T T C C G G

WW30915_15 T T C C G G

WW30915_16 T T C C G G

WW30874 C T? T T A A

WW30874_1 T T T T A A

WW30874_2 C C T T A A

WW30874_3 C C T T A A

WW30874_4 C T T T A A

WW30874_5 C C T T A A

WW30874_6 T T T T NC

WW30874_8 C C T T A A

WW30874_9 T T T T A A

WW30874_10 C C T T A A

WW30874_11 C T T T A A

WW30874_12 T T T T A A

WW30874_13 C C T T A A

WW30874_14 NC NC NC

WW30874_15 C T T T A A

WW30874_16 NC T T A A

Genotype
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chrom region 3B1 3B1 3B1 3B1 3B1 3B1 6B3 6B3 6B3

cM position 0.0 1.4 1.4 2.3 3.2 34.6 0.0 18.1 18.1

Drysdale A A C C C C T T C C G G C C C C G G

Waagan G G T T T T C C A A G G T T T T A A

WW30852 T T C T ? G G

WW30852_1 T T C C G G

WW30852_2 T T T T A A

WW30852_3 T T C C G G

WW30852_4 T T C T G A

WW30852_5 C C C C G G

WW30852_6 NC T T A A

WW30852_7 C C C C G G

WW30852_8 T T C T ? A A

WW30852_9 T T T T A A

WW30852_10 T T C T G A

WW30852_11 T T T T A A

WW30852_12 T T T T A A

WW30852_13 T T C C G G

WW30852_14 C C C C G G

WW30852_15 NC C C G G

WW30852_16 T T T T A A

WW30711 T T C T G A

WW30711_1 T T C C G G

WW30711_2 T T T T A A

WW30711_3 T T T T A A

WW30711_4 T T C C G G

WW30711_5 NC C T NC

WW30711_6 T T T T A A

WW30711_7 T T C T G A

WW30711_8 T T C T G A

WW30711_9 T T T T A A

WW30711_10 T T T T A A

WW30711_11 T T T T A A

WW30711_12 T T C T G A

WW30711_13 T T T T A A

WW30711_14 T T T T A A

WW30711_15 T T C T G A

WW30711_16 T T T T A A

WW30655 C T C T G A

WW30655_10 C T C C G A

WW30655_2 NC C C G G

WW30655_1 C C C C G G

WW30655_3 C C C C G G

WW30655_9 C C C C G G

WW30655_17 C C C C G G

WW30655_11 C T C C G G

WW30655_15 C T C C G G

WW30655_13 T T C C G G

WW30655_16 T T C C G G

WW30655_5 C C C T G A

WW30655_8 C C C T G A

WW30655_4 C T C T G A

WW30655_7 C T C T G A

WW30655_12 C T T T A A

WW30655_6 T T T T G A ?

WW30655_14 NC C T NC

Genotype

E 
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Fig. 3.4 Results from KASP assays to verify the genotypes of selected homozygous RIL-NILs for 3B 
and 6B (A and B respectively) QTL set. Two to three progenies of each selected homozygous plant 
were analyzed. Pink, and green cells represent Drysdale and Waagan alleles respectively. NC: No 
call (uncallable). 
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Linkage group 3B1 3B1 3B1 3B1 3B1
cM position 0.0 1.4 1.4 2.3 3.2

Drydale A:A C:C C:C T:T C:C

Drydale A:A C:C C:C T:T C:C

Drydale A:A C:C C:C T:T C:C

Drydale A:A C:C C:C T:T C:C

Waagan G:G T:T T:T C:C A:A

Waagan G:G T:T T:T C:C A:A

Waagan G:G T:T T:T C:C A:A

Waagan G:G T:T T:T C:C A:A

WW30674_13_1 G:G T:T C:C T:T C:C

WW30674_13_2 G:G T:T C:C T:T C:C

WW30674_13_3 G:G T:T C:C T:T C:C

WW30674_1_1 G:G T:T C:C T:T C:C

WW30674_1_2 G:G T:T C:C T:T C:C

WW30674_1_3 G:G T:T C:C T:T C:C

WW30674_3_1 G:G T:T T:T C:C C:C

WW30674_3_2 G:G T:T T:T C:C C:C

WW30674_3_3 G:G T:T T:T C:C C:C

WW30674_4_1 G:G T:T T:T C:C C:C

WW30674_4_2 G:G T:T T:T C:C C:C

WW30674_4_3 G:G T:T T:T C:C C:C

WW30692_12_1 A:A C:C C:C T:T C:C

WW30692_12_2 A:A C:C C:C T:T C:C

WW30692_12_3 A:A C:C C:C T:T C:C

WW30692_4_1 A:A C:C C:C T:T C:C

WW30692_4_2 A:A C:C C:C T:T C:C

WW30692_4_3 A:A C:C C:C T:T C:C

WW30692_17_1 G:G T:T T:T C:C A:A

WW30692_17_2 G:G T:T T:T C:C A:A

WW30692_17_3 G:G T:T T:T C:C A:A

WW30692_3_1 G:G T:T T:T C:C A:A

WW30692_3_2 G:G T:T T:T C:C A:A

WW30692_3_3 G:G T:T T:T C:C A:A

WW30709_8_1 A:A C:C C:C T:T C:C

WW30709_8_2 A:A C:C C:C T:T C:C

WW30709_8_3 A:A C:C C:C T:T C:C

WW30709_9_1 A:A C:C C:C T:T C:C

WW30709_9_2 A:A C:C C:C T:T C:C

WW30709_9_3 A:A C:C C:C T:T C:C

WW30709_5_1 G:G T:T T:T C:C A:A

WW30709_5_2 G:G T:T T:T C:C A:A

WW30709_5_3 G:G T:T T:T C:C A:A

WW30709_17_1 G:G T:T T:T C:C A:A

WW30709_17_2 G:G T:T T:T C:C A:A

WW30709_17_3 G:G T:T T:T C:C A:A

WW30913_12_1 A:A C:C C:C T:T C:C

WW30913_12_2 A:A C:C C:C T:T C:C

WW30913_10_1 A:A C:C C:C T:T C:C

WW30913_10_2 A:A C:C C:C T:T C:C

WW30913_10_3 A:A C:C C:C T:T C:C

WW30913_16_1 G:G T:T T:T C:C A:A

WW30913_16_2 G:G T:T T:T C:C A:A

WW30913_9_1 G:G T:T T:T C:C A:A

WW30913_9_2 G:G T:T T:T C:C A:A

WW30913_9_3 G:G T:T T:T C:C A:A
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Linkage group 6B3 6B3 6B3
cM position 0.0 18.1 18.1

Drydale C:C C:C G:G

Drydale C:C C:C G:G

Drydale C:C C:C G:G

Drydale C:C C:C G:G

Waagan T:T T:T A:A

Waagan T:T NC A:A

Waagan T:T NC A:A

Waagan T:T T:T A:A

WW30711_1_1 T:T C:C G:G

WW30711_1_2 T:T C:C G:G

WW30711_4_1 T:T C:C G:G

WW30711_4_2 T:T C:C G:G

WW30711_4_3 T:T C:C G:G

WW30711_2_1 T:T T:T A:A

WW30711_2_2 T:T T:T A:A

WW30711_16_1 T:T T:T A:A

WW30711_16_2 T:T T:T A:A

WW30711_16_3 T:T T:T A:A

WW30875_13_1 C:C C:C G:G

WW30875_13_2 C:C C:C G:G

WW30875_10_1 C:C C:C G:G

WW30875_10_2 C:C C:C G:G

WW30875_10_3 C:C C:C G:G

WW30875_5_1 T:T C:C G:G

WW30875_5_2 T:T C:C G:G

WW30875_7_1 T:T C:C G:G

WW30875_7_2 T:T C:C G:G

WW30875_7_3 T:T C:C G:G

WW30908_5_1 C:C T:T A:A

WW30908_5_2 C:C T:T A:A

WW30908_17_1 C:C T:T A:A

WW30908_17_2 C:C T:T A:A

WW30908_17_3 C:C T:T A:A

WW30908_2_1 T:T T:T A:A

WW30908_2_2 T:T T:T A:A

WW30908_8_1 T:T T:T A:A

WW30908_8_2 T:T T:T A:A

WW30908_8_3 T:T T:T A:A

WW30900_11_1 T:T C:C G:G

WW30900_11_2 T:T C:C G:G

WW30900_6_1 T:T C:C G:G

WW30900_6_2 T:T C:C G:G

WW30900_6_3 T:T C:C G:G

WW30900_10_1 T:T T:T A:A

WW30900_10_2 T:T T:T A:A

WW30900_15_1 T:T T:T A:A

WW30900_15_2 T:T T:T A:A

WW30900_15_3 T:T T:T A:A

Genotype
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3.3.1.1 Single grain weight (SingGW) 

The NILs were largely unaffected by the heat treatment for SingGW; only four lines from the 3B set 

showed significant effects (reductions): one carrying Waagan QTL alleles, and three carrying 

Drysdale alleles (Fig. 3.5).  

In the 3B NIL set, heat treated plants carrying Drysdale alleles showed reduced SingGW relative to 

those carrying Waagan alleles, in four of the five families (Fig. 3.6). In the 6B NIL set, two of the lines 

in the WW30711 family had lower SingGW than the other two lines under heat treatment, but this 

did not relate to the genotype at the 6B locus (Fig. 3.6). The parent varieties Drysdale and Waagan 

did not show any significant effects of heat treatment on SingGW, nor did they significantly differ 

under control conditions (Fig 3.5 and 3.6) perhaps reflecting the lower number of replications used 

in the experiment or chance variation.  
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Fig. 3.5 Final single grain weight (SingGW) of NILs. Green and red bars represent control and heat treated plants, respectively. Bars 
with pink and light green tips represents lines harbouring Drysdale and Waagan marker alleles, respectively, at the target loci. NIL 
pairs for 3B and 6B QTL are separated by the dotted line. Bars are SE and “*” shows where there was a significant difference between 
the control and heat treated plants of the same line, at α=0.05. 

Fig. 3.6 Final single grain weight (SingGW) of NIL lines subjected to heat treatment (same means as shown in Fig 3.5, except only the 
heat treated plants). The vertical bar indicates the LSD=5.246 at α = 0.05 for within–family comparisons. In each family, pairs of bars 
with different letters were significantly different. Columns with pink and light green tip represent lines harbouring Drysdale and 
Waagan alleles, respectively, at the target QTLs.  
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3.3.1.2 Final shoot dry weight (ShootW) 

ShootW was essentially unaffected by the heat treatment; only one line (WW30692) showed an 

effect with heat treatment (increase) (Fig. 3.7). 

Fig. 3.7 Final shoot weight ShootW of NILs. Green and red bars represent control and heat treated 
plants, respectively. Bars with pink and light green tips represent lines harbouring Drysdale and 
Waagan marker alleles at the target loci, respectively. NIL sets for 3B and 6B QTL are separated 
by the dotted line. Lines on the bars show SE and “*” shows where there were significant 
differences between control and heat treated plants of the same line, at α=0.05. 

3.3.1.3 Relative chlorophyll content  

Relative chlorophyll content (SPAD) was measured at three time points, just before heat 

treatment (10DAA), just after heat treatment (13DAA) and two weeks after heat treatment 

(27DAA). Heat responses were then assessed based on the change in SPAD during the heat 

treatment period (Fig. 3.8 A; 10DAA vs. 13DAA) or between just before treatment to 2 weeks 

after the heat treatment (Fig. 3.8 B; 10DAA vs. 27DAA). 

In the 3B QTL set, heat had little effect on SPAD change during the treatment period (10-13 DAA), 

but it had large effects by 27DAA which were generally related to the alleles at the 3B QTL; 

Marker alleles from Drysdale (which contributes the intolerance allele at this QTL) were 

significantly associated with greater reductions in SPAD in four of the five families, and in the 

fifth, significant reductions were observed in both lines carrying the Drysdale and Waagan alleles, 

but the former showed a greater absolute reduction.  
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In the 6B set, some significant reductions in SPAD were observed due to heat and these responses 

tended to be weakly associated with genotype at the 6B QTL markers. In family WW30900, 

significant heat responses were consistently associated with Waagan alleles (in line with Waagan 

contributing the susceptibility allele at this QTL), while in family WW30908, this was only the case 

for responses during the heat treatment period. In family WW30875, heat reduced SPAD in all 

lines, about equally in those carrying the two allele types. 

Fig. 3.8 Relative chlorophyll content of NILs. A: Chlorophyll content of the same plants at 10DAA 
(before heat treatment; green bars) and 13DAA (just after heat treatment; red bars). B: 
Chlorophyll content of same plants at 10DAA (before heat treatment; green bars) and at 27DAA 
(two weeks after heat treatment; red bars). Bars with pink and light green tips represent lines 
harbouring Drysdale and Waagan alleles at target QTL, respectively. NIL sets for 3B and 6B QTL 
are separated by the dotted line. Bars show SE. 

Relative chlorophyll contents of the control plants at 10DAA, 13DAA and 27DAA are represented 

in Fig. 3.9 A-C. In the 3B set, Drysdale marker alleles at the QTL were associated with lower 

chlorophyll content in three of the five families. In the 6B set, there were some significant 
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differences in chlorophyll content between lines, but these differences were not consistently 

related with marker alleles at the 6B QTL in any of the families.  

Fig. 3.9 Relative chlorophyll content of NILs under control conditions, at 10DAA (A), 13DAA (B) 
and 27DAA (C). Plants harbouring Drysdale (pink tip) and Waagan (light green tip) alleles at the 
target QTLs are represented by the bars with the pink and light green tips, respectively. Bars with 
different letters show where means were significantly different at p=0.05 for within family 
comparisons of the same trait (LSDs were 4.851, 4.259 and 5.658 for Figure A, B and C 
respectively). NIL sets for 3B and 6B QTL are separated by the dotted line. Lines on the bars show 
SE. 
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3.3.1.4 Culm length at maturity (CulmLMat) 

One line (WW30692_4) showed significant increase in culm length after heat treatment while 

others remained unaffected (Fig. 3.10). This may have been due to segregation for an Rht gene 

in this line, caused by outcrossing. Family WW307711 also showed similar pattern and seems they 

differ for Rht genes, likely due to segregation for Rht genes in the original seed packet 

Fig. 3.10 Culm length of NILs at maturity. Green and red bars represent control and heat-treated 
plants, respectively. Bars with pink and light green tips represent lines with Drysdale and Waagan 
alleles at target loci, respectively. NIL sets for 3B and 6B QTL are separated by the dotted line. 
“*” shows where there were significant differences between control and heat-treated plants of 
the same line, at α=0.05. 

3.3.1.5 Days to anthesis (Rane & Nagarajan) 

No significant difference was observed in any line for days to anthesis between control and heat 

treated plants (Fig. 3.11), which was expected, as heat treatments were applied after anthesis. 

The allelic variation in different lines also did not affect the date of anthesis. 

Fig. 3.11 Days to anthesis of NILs. Green and red bars represent control and heat-treated plants, 
respectively. Bars with pink and light green tips represent lines with Drysdale and Waagan alleles 
at target loci, respectively. NIL sets for 3B and 6B QTL are separated by the dotted line.  
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3.3.1.6 Association of phenotypic and genotypic scores of the RIL-NILs 

As previously highlighted, in all five RIL-NILs sets for the 3B locus, the lines carrying Drysdale 

marker alleles at the 3B QTL showed greater loss of chlorophyll due to the heat treatment (by 

just after or two weeks after heat treatment) than the lines carrying the Waagan alleles, 

confirming that the effect of the 3B tolerance locus was closely linked to these markers, or 

spanned by them. This can also be visualized in Fig. 3.12, which shows the phenotype data in 

colored conditional formatting, alongside the marker genotypes of the lines. As these lines were 

confirmed as differing for the 3B tolerance locus genotype, they were shown to be suitable for 

future molecular/physiological/field evaluation of the 3B tolerance locus effects. 

Contrasting chromosomes in the WW30674 RIL-NIL set were the result of a (different) 

recombination event in the region spanned by the 3B markers. The contrasting tolerance 

phenotypes between these lines (significant difference for chlorophyll loss by two weeks after 

heat treatment and SingGW traits and decreasing trend of the Drysdale types being less tolerant 

for ShootW and loss of chlorophyll just after heat treatment) suggested that the 3B tolerance 

locus is positioned in the 1.8 cM interval between the markers wsnp_Ku_c12698_20441325 and 

wsnp_BE497169B_Ta_2_2 (Fig. 3.12, between red arrows), however, this position needs to be 

confirmed by further mapping work. There was a large gap of 31.4 cM between 

wsnp_BE497169B_Ta_2_2 wsnp_Ku_c3817_7009093 markers mapped by Shirdelmoghanloo et 

al. (2016). Later in this thesis (Section 4.4) possible reason for this large gap is discussed. The 

Drysdale types showed greater loss of chlorophyll between 10 and 27DAA and greater loss of 

SingGW and ShootW. Hence, the WW30674 set of RIL-NILs helped to further delimit the 3B 

tolerance locus, in addition to providing another set of 3B locus NILs that could be used in 

functional evaluation of the locus effects. 

As already mentioned, the 6B QTL sets showed no consistent tolerance phenotype differences 

associated with the genotypes of the markers in the 6B QTL region (Fig 3.12). Therefore, these 

RIL-NILs could not be confirmed as differing for a 6B tolerance locus. 
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 Discussion 

 Homozygous RIL-NIL pair selection and propagation 

Homozygous RIL-NIL pairs differed from each other for small chromosome segments at the QTL 

regions and provide the opportunity to study QTL effects using a small population of lines. In this 

study, homozygous RIL-NIL pairs were selected for the 3B and 6B QTL regions using KASP markers, 

from 22 families heterogeneous for those loci. Phenotyping of different RIL-NIL pairs was 

expected to reveal phenotypic contributions of different chromosome segments in the QTL 

regions to aid fine mapping. RIL-NILs are required to be tested in the field or close to the 

production environment for assessing the breeding value of the QTL. Seeds from the RIL-NILs 

were field multiplied for trialling using late vs. timely sown trials with irrigation to assess heat 

tolerance, as part of GRDC project UA-00147, in 2017 and 2018 seasons, at sites at Wagga Wagga, 

Leeton and Condobolin, NSW. The NILs will also be trialed under rain fed conditions as part of 

the ARC Industrial Transformation Research Hub for Wheat in a hot and dry climate. 

 RIL-NIL phenotyping 

3.4.2.1 Single grain weight (SingGW), final shoot dry weight (ShootW), culm length at 

maturity (CulmLMat) and days to anthesis (Rane & Nagarajan) 

SingGW was mostly unaffected by heat in the RIL-NILs. Three lines carrying Drysdale alleles at the 

3B locus showed reduction in SingGW as expected (Shirdelmoghanloo, Taylor, et al. 2016). Lines 

with the Drysdale allele at the 6B locus were expected to be heat tolerant. However, the NIL sets 

for the 6B locus showed weak associations between 6B marker genotypes and SingGW. Most 

plants reached the sensitive stage for heat stress during May and June. Plants in the greenhouse 

were exposed to high temperature (>30oC, Table 2.2) for one day at that period (due to high 

outside temperatures) which might have affected SingGW in control plants and explained the 

weak/lack of correlation with genotype at the tolerance loci. 
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ShootW was also largely unaffected by the heat treatment, so the correlation between SingGW 

and ShootW heat responses identified by Shirdelmoghanloo, Lohraseb, et al. (2016) could not be 

tested in this instance. 

CulmLMat was also not affected by heat and no effect of the 3B or 6B tolerance loci on anthesis 

date was observed, consistent with the findings of (Shirdelmoghanloo, Taylor, et al. 2016). 

3.4.2.2 Relative chlorophyll content  

RIL-NIL pairs carrying Drysdale marker alleles at the 3B locus showed small reductions in 

chlorophyll during the treatment, but they showed much greater heat-attributed chlorophyll loss 

than the Waagan types by two weeks after heat treatment. Shirdelmoghanloo, Taylor, et al. 

(2016) observed that the 3B QTL accounted for ~13 to 40 % variance for chlorophyll retention 

and that the Waagan allele conferred greater chlorophyll stability than the Drysdale allele. It was 

also reported that chlorophyll retention, or stay green, was associated with higher ShootW and 

longer grain filling duration. In this study, this correlation was not strongly observed. The RIL-NILs 

selected for 6B QTL showed no consistent association with the traits. 

The RIL-NIL phenotype analysis showed that lines with Drysdale and Waagan alleles in the 

WW30674 family expressed contrasting phenotypes under short term heat stress. This family 

resulted in recombination (Fig. 3.12) in the region and allowed further delimitation of the 3B 

locus. These recombinant chromosomes could be used to further delimit the locus by scoring the 

WW30674 NILs with additional markers in the region. 
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Chapter 4: Further mapping of the 3B QTL for grain filling  

4.1 Introduction 

Narrowing down a QTL interval can be done using molecular markers and repeated phenotyping. 

The markers used to define a major grain filling heat tolerance QTL, QHsgw.aww-3B on 

chromosome 3B in a Drysdale x Waagan DH population (Shirdelmoghanloo, Taylor, et al. 2016) 

covered 34.6 cM. The most closely associated markers were the distal most markers on the map 

of the short arm of chromosome 3B, so the boundary of the QTL interval was only defined on the 

lower (proximal side). This region could correspond to one gene with major effect or, less likely, 

a cluster of genes. The chromosome 3B sequence pseudomolecule is predicted to contain 7264 

coding genes (Choulet, Alberti, Theil, Glover, Barbe, Daron, Pingault, Sourdille, Couloux, Paux, et 

al. 2014) with a gene density of one gene per 104 kb (Choulet, Frédéric et al. 2010). Further 

mapping of the 3B locus for grain filling heat tolerance could lead to the cloning of the gene/s 

controlling the trait and development of a diagnostic marker to enable breeders to select for heat 

tolerance. In this region, Shirdelmoghanloo, Taylor, et al. (2016) defined six genetically non 

redundant loci using SNP markers from the 9K SNP array, at positions 0, 1.4, 2.3, 3.2 and 34.6 cM 

on linkage group 3B1 of the Drysdale x Waagan DH map. It may be possible to delimit the 3B 

locus further by mapping additional markers closer to the telomere, or in the large gap in the 

map between positions 3.2 and 34.6 cM. Available genetic maps with marker information for 

parental lines Drysdale and Waagan e.g. 9K SNP array, 35K Axiom array, 90K SNP array, and 

markers used by other researches in the same region, could provide a source of additional 

markers. This chapter describes work to further delimit the 3B heat tolerance locus using the 

aforementioned approaches.  

4.2 Materials and methods 

Markers mapped in the vicinity of the 3B QTL were identified in other genetic maps: Maps 

examined included genetic consensus/biparental genetic maps supplied for the 9K SNP array 

(Cavanagh et al. 2013), 90K SNP array (Wang et al. 2014), and the 35K Axiom array 

(http://www.cerealsdb.uk.net/cerealgenomics/CerealsDB /axiom_download.php). Sequenced 

RFLP probes or sequenced SSR markers reported to be mapped by others close to heat tolerance 
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related traits in this region (Xbarc133, Xcfa2226, Xbrac102, Xbarc75 and Xgwm493; 

(Shirdelmoghanloo, Taylor, et al. 2016) , and references therein) were also evaluated.  

Potential markers were also identified along the IWGSC whole genome assembly of the cv. 

Chinese Spring through the wheat genomics platform DAWN (Diversity Among Wheat geNome). 

The IWGSC assembly used in DAWN was the version made using the DeNovoMAGICTM software 

from NRgene. DAWN (Ute Baumann, unpublished) is a tool created by The University of Adelaide 

Bioinformatics group to visualize diversity among wheat genotypes by aligning the IWGSC 

reference sequence of cv. Chinese Spring to the 10x genomic shotgun sequences from Drysdale 

and 15 other (mostly Australian) wheat varieties generated in a collaboration with Bioplatforms 

Australia (BPA) (Edwards et al. 2012). The tool also aligns the genomic sequences with gene 

annotation and gene expression data, and with marker information from different sources 

including the 35K Axiom array (Allen et al. 2017). Markers from the 9k SNP array (Cavanagh et al. 

2013), mapped by Shirdelmoghanloo, Taylor, et al. (2016), were used to search the IWGSC 

genomic reference sequence using the BLAST portal of ACPFG (The University of Adelaide) to 

obtain the corresponding scaffold numbers (Table 4.2). The scaffolds in the large gap between 

the markers at 3.2 and 34.6 cM, and distal to the last markers on the short arm of the map, were 

identified with the help of ACPFG Bioinformatics group using the marker scaffolds as reference. 

The scaffolds were selected with an aim to generate one marker per cM. Preference was given 

to the markers reported to be polymorphic for Drysdale/Waagan in those scaffolds, according to 

the information provided for the 35K Axiom array on the aforementioned website. As there was 

only BPA sequence for Drysdale and not Waagan, Drysdale and Chinese Spring were compared 

in DAWN to identify SNP markers for mapping.  

When possible, primer sets for KASP assays were designed to be 3B sub-genome specific. The 

SNP source sequences were BLASTed against the Chinese Spring genomic reference sequence to 

identify polymorphisms between the (usually 3) homoeologous sequence copies, which were 

subsequently used to position the 3’ ends of the common primers so as to make them more 

locus-specific. Primer performance was predicted using the NetPrimer online tool 

(http://www.premierbiosoft.com/netprimer/) so that primers predicted to give strong hairpin 

structure, self-dimers or cross dimers, could be avoided.  
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4.3 Results and Discussion 

Targeted marker generation and mapping using Drysdale x Waagan DH lines.  

Genetic locations of the markers on the 90k SNP array consensus map and the 9k SNP array map 

of the CSIRO 4-way MAGIC population were mostly on chromosome 3B, but otherwise the order 

and locations of the markers were quite inconsistent between these maps and the 9K SNP 

Drysdale x Waagan genetic map (Table 4.1). Possible reasons for this inconsistency may include 

use of different plant materials (parent with divergent haplotypes), difficulties in achieving 

correct marker orders with consensus maps, and differences in algorithms used for constructing 

the various maps. The order of the IWGSC genomic scaffolds agreed most with marker orders of 

the 9K SNP Drysdale x Waagan genetic map (Table 4.1), so the IWGSC genomic scaffolds were 

used as the main basis for identifying SNPs located in useful positions.  

Three scaffolds in the IWGSC whole genome assembly (92936, 20580 and 98002) contained 

markers mapped to the respective positions 0, 2.29 and 3.15 cM in the Drysdale x Waagan genetic 

map (Table 4.1). Among those three scaffolds, the positions of last two markers were not in the 

same order as in the Drysdale x Waagan genetic map. Other IWGSC scaffolds matching markers 

in the region were not allocated to chromosomes or were in different orders on the assembly 

relative to the Drysdale x Waagan genetic map (Table 4.1), reflecting limitations in the accuracy 

and completeness of the genome assembly in this region.  

With the help of the Bio-informatics group at ACPFG, scaffolds potentially located in and around 

the QTL region were identified (Table 4.2). These scaffolds were visualized in DAWN to identify 

SNPs polymorphic for Drysdale/CS. From these, a subset of SNPs was chosen for KASP assay 

development, giving preference to those shown to be Drysdale/Waagan polymorphic in the 

publicly available database of 35K Axiom array SNP scores of wheat varieties. Twenty-six primer 

sets were designed and tested on the parents (Table 4.4). Twelve primer sets were found to give 

clear polymorphism, nine were monomorphic and five failed to produce clear amplification 

(Table 4.3).  
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Table 4.1 Position of marker sequences in the 3B QTL region in various genetic maps and the 
genomic assembly of cv. Chinese Spring. 

 

 

Marker 
W×D 9K SNP 

map 
90K SNP array 

consensus 

CSIRO 4-way 
MAGIC RIL 

population 9K 
SNP map 

IWGSC scaffolds and 
their positions 

 
Linkage 
group 

cM 
Linkage 
group 

cM 
Linkage 
group 

cM 
Linkage 
group 

cM Scaffold 

wsnp_Ra_c41135_4842663
8 

3B 0 3B, 3D 
204.26, 
13.29 

3B 177.4 3B 8.1 92936 

Xbarc75 - - - - - - 3B 8.1 92936 
wsnp_Ex_c30368_39293103 3B 0 3B 35.9 3B 177.4 3B 8.1 92936 

wsnp_Ex_c1375_2633027 3B 1.4 1B 102.4 - - 1D 8.6 37555 

wsnp_Ex_rep_c67107_6558
4404 

3B 1.4 3B 47.3 3B 173 1D 8.6 37555 

wsnp_Ex_rep_c66331_6450
2363 

3B 1.4 3D 11.7 3B 173 UA 8 134957 

wsnp_Ex_c12875_20407926 3B 1.4 3A 47.9 3A,3B - 3A 9.3 38898 
Xbarc133 - - - - - - 3B 11.4 117960 

wsnp_Ku_c12698_2044132
5 

3B 1.4 3B 43.5 3B 11.6 UA NA 204247 

wsnp_Ex_rep_c66331_6450
3065 

3B 1.4 3B 11.5 3B 173.3 UA 8 134957 

wsnp_Ex_c3005_5548573 3B 2.3 3B 56.4 3B 19.2 3B 24.6 20580 
Xgwm493  - - - - - - 3B 18.7 126088 

wsnp_BE497169B_Ta_2_1 3B 3.2 3A,3B 
156.40, 

54.4 
3B 7.1 3B 21.5 98002 

Xcfa2226 - - - - - - 3B 21.5 98002 
Xbrac102 - - - - - - 3B 21.5 98002 

wsnp_BE497169B_Ta_2_2 3B 3.2 3B 121.3 3B 7.1 3B 21.5 98002 
wsnp_Ex_c25636_34897348 3B 3.2 - - 2A 24.8 2A 91.8 20969 

wsnp_Ku_c3817_7009093 3B 34.6 - - 3A,3B 0.9 3A 10 28042 
wsnp_Ex_c44375_50444756 3B 46.3 - - 3A,3B - 3A 9.2 99374 

wsnp_Ra_c5532_9788185 3B 46.4 3D 11.8 3A,3B - 3A 9.2 99374 

Markers with “wsnp” prefixes are markers from the 9K SNP mapped on the Drysdale x Waagan 
DH population by Shirdelmoghanloo, Taylor, et al. (2016) and markers beginning with “X” were 
mapped to heat related QTL in other studies. Purple highlighted cells represent the scaffolds 
used as reference for identification of remaining scaffolds. “-“ means no information was 
available and “UA” refers to scaffolds not allocated to a chromosome. Some markers were 
identified on chromosomes other than 3B but those genetic locations were not used. cM 
positions of IWGSC scaffolds were mostly defined using PopSeq data. Conditional formatting 
was used on the cM locations to help visualize the order of the markers on 3B. 
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Table 4.2 IWGSC reference genome scaffolds reported around the 3B locus position and their 

genetic locations. 

Scaffold 
No. 

cM  
Scaffold 
No. 

cM  
Scaffold 
No. 

cM  
Scaffold 
No. 

cM 
Scaffold 
No. 

cM 

120622 0.7 55789-1 22.8 64394 36.2 1676 42.6 30202 46.6 

65694 2.5 58481 22.7 54738 36.7 124144 43.8 6897 47.0 

2536 1.0 20580 24.6 58580 37.7 9470 41.9 82468-1 46.8 

16578 8.5 134957 8.0 153200 37.9 118191 42.7 28382 46.7 

76726 7.5 204247 NA 145471 38.4 682 43.1 73826 46.7 

92936 8.1 87992 20.0 50269 40.6 
30207-
1 

43.0 21513 46.7 

133866 9.1 98002 21.5 1649 40.4 140960 43.1 33973 46.6 

27539 7.3 126152 22.8 45978 39.9 90058 43.6 70209 46.7 

117960 11.4 55789-1 22.8 88454 40.5 
16628-
2 

43.0 95739 46.7 

15984 13.2 58481 22.7 51241 41.3 114067 44.1 127963 46.7 

67011 18.0 20580 24.6 38168 41.1 61887 44.0 140033 46.7 

6769 18.9 127841 30.7 127231 42.2 2599 44.2 19863 46.6 

126088 18.7 39148 32.0 14004 42.2 48217 44.3 61520 46.7 

87992 20.0 51931 36.4 20 43.9 48216 45.2 82468-1 46.8 

98002 21.5 44202 33.1 11305 42.4 25340 45.6 103980 74.1 

126152 22.8 30362 33.0 80536 42.9 72581 46.5 139052 121.0 
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Table 4.3 KASP marker assays tested. Markers with a 35k Axiom SNP ID had been reported to be 

polymorphic between Drysdale and Waagan in the database of 35K Axiom array SNP scores for 

wheat varieties. The last column indicates whether the developed KASP assay detected clear 

polymorphism between Drysdale and Waagan. 

Marker name Sequence IWGSC reference genome 
sequence 35K 

Axiom 
SNP ID 

Drysdale/Waagan 
Polymorphic? Scaffold 

Position 
(cM) 

KASParmar2 GAATCATTGAAAGAGGACATTACCCAGAC
CATTTTACTAAACGTACAGCAGGTTC[C/T]
GCACAAGTTCATCTACTAGATTACTACTAA
AGTTACATGAATCTA 

scaffold2536 1.0 AX-
94396258 

Yes 

KASParmar8 AAGTGTGGAACGCACCTCTTATTCGGCCT
GTAATCCACCCTCATTTTCGGCCTTC[G/T]
AAACGGGCCCTGTTTTAGAGTTGAGCAGA
GCACCAAGCTGCCCTGTTTGTCGGCC 

scaffold16578 8.5 AX-
94433176 

Yes 

KASParmar10 TGACACCACAGCGCTCCGTCATCTGGCGA
TCCATGTCGGTCAGGGGGGACTTCTT[C/G
]TTGATCGCCTTGAACGCGTCCTCACACAT
ATCACCAGCGTCCTTCGCGAGCAAGA 

scaffold133866 9.1 AX-
94744906 

Yes 

KASParmar11 TAAACCTGGGCCTTTTGAAGGGGTAAATG
ACTCCGCGTTGGGGAAATTAGCTGTA[C/G
]TTCCGCTCCCAGGAGTACCGTTTCCTACA
GATGAACAAACGCTAATCACAACACC 

scaffold117960 11.4 AX-
94705969 

Yes 

KASParmar12 CATTCTGGTACGGTTCGTACCCTACGGCCT
TAGCCTTTTCCAGCAAATTCTCCAA[C/T]A
ATAGATACAACTCTGTAGCTTGTGGGTGA
GTCATGTCATCAGCTCTGAAGAAAT 

scaffold117960 11.4 AX-
94388729 

Yes 

KASParmar13 TCAGTATAGTATAAGTTTCAGGACTAGTTA
GGGAAGGGAAGAAGGCCTGAGCACT[A/
G]CCGGGGTGACAAAAGGAGACGAAACC
CACCCCCATTTTGCAGCGAAGAGTTTGGT 

scaffold15984 13.2 AX-
94691217 

Yes 

KASParmar15 TTGAACGTACTCCTACCTTTTTAACTACTAG
TGTTTCAAGCGTGCGATGCGACCA[A/G]G
AAGAAGAAGACCCGTACTAGTTGACGAT
GTGAACTGCCAAACACACTCAGACAT 

scaffold6769 18.9 AX-
94809409 

Yes 

KASParmar16 ACAAGCCAGCGGCCAGCCGCACCACCATC
AAGGGAGCGCACCTCGGCGGGGTCCA[C/
T]GGGATCTCCTTCGCCGACAACGACACCC
TGGTGACCGCCGGCGAGGACGCATGCA 

scaffold98002 21.5 AX-
95000416 

Yes 

KASParmar17 TCGAAACGATTTGATCCAAGTTGTCAAATA
CGGAGAAGCAAGGATAGAGTAGGTG[G/
T]CCCATTTCATCACTGTCACGCTACTACG
ACATCTCTTTTCTTGTCCGAAGGCAGG 

scaffold126152 22.8 AX-
94430973 

Yes 

KASParmar21 ATATGGTGACTTCTTAGTCAGCTTTGACTT
AACATACTTGGATATGGCCTCTTGGAGG[
C/T]ATTCAACCGTGTATGTTTTTCTATGTT
TTTGTCTGCCTTAGGGCTTCAGACT 

scaffold153200 37.9 _ Yes 
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Table 4.3 continued 
 

Marker name Sequence IWGSC reference genome 
sequence 35K 

Axiom 
SNP ID 

Drysdale/Waagan 
Polymorphic? 

  
Scaffold 

Position 
(cM) 

KASParmar4 TTGGAGGAGCACAAGGATAAGATTCCTGA
GATCAC[G/T]GCGGCCATCTTGTCAGCAG
GCACTGATTTAATGGA 

scaffold118191 42.7 AX-
95169625 

Yes?  

KASParmar4_1 
 

TGCAGAAGAGCAGACACATCAAGAAGGC
TTGCTCATGTATTTGGAGGAGCACAAGGA
TAAGATTCCTGAGATCAC[T/G]GCGGCCA
TCTTGTCAGCAGGCACTGATTTAATGGAG
TCGCCGAAGAAGGATGAAGACGGCAGCA
GAAGCAGCACC 
 

scaffold118191 42.7 AX-
95169625 

Monomorphic 

KASParmar3 CGTAGCGACCCAAACCGAGCTCCTCACGG
GGAGCAGAGTTACGAGACTAGAGATGTT
CC[T/G]AATAGGCAGCTAGTGTGCAAAGC
TGGACGAATTGGTTATTGGCCCGTCGAGC
ATC 

scaffold88454 40.5 _ Monomorphic?  

KASParmar3_1 
 

ATGTTGACCACTTTGGGCCAGCAACG
GAGGAAGAGATGGAGGCTGACCTGATGA
GGGTAGATGCCATGGAAGATCAAGAAGT
CACCTCTCGCCTTCGAGC[C/T]GGGTTTAC
GATGGGGGAACTATAGAGCTCAGCTATTC
CAAATTCGGTTATCCCTTCCAATGTTAGAT
TTCTTTCCTATGAAAATATGAGGAGGAGT
GTCT 

 

scaffold88454 40.5 _ Monomorphic 

KASParmar1 GAGGCTTGATATCGAAATGGACAATACGA
GTATTACATCTATG[T/G]TGTAAGTACTCA
AGGCCACGAGCAATCCCG 

scaffold30362 33.0 _ Monomorphic 

KASParmar7 TCACATCATCTTGCACCAACTCTTCCGACG
AATCCGCAACTAACTCAGCTTCCTC[A/G]G
GCACCTCCACATTTATGACCTGAACTTTGA
ACTCGGGAATCCGGGACTTGAAAA 

scaffold120622 0.7 AX-
95218138 

Monomorphic 

KASParmar9 GGTACATGGCTCCAGAGTATGCATCCAGT
GGCAAGCTGACTGAGAAATCTGATGT[C/
G]TTCTCTTTTGGCGTTGTCCTCTTAGAGCT
CATTACTGGTAGAAAGCCTGTCGATG 

scaffold76726 7.5 AX-
95081630 

Monomorphic 

KASParmar14 CGAGTGCAACATGTGGAAAGAGATTGGC
ATCCATTGGGTTGGACAACACCGAAGT[G
/T]AACCGCCAGGCTTACAGGCAGCTGTTG
CTGACCACTGCTGGTCTTGGTGAATATA 

scaffold67011 18.0 AX-
95072897 

Monomorphic 

KASParmar19 ATCAAGATAAGAGAAGAGCTTTGACGAAT
TATCATTGTACGTAACATTATAGTTATG[A/
G]TAGTTGAAATGATGGAATGTGTAGCAC
TAACCTGTTTTCTTGTCGTGTAGTATA 

scaffold20580 24.6 _ Monomorphic 
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Table 4.3 continued..     

Marker name Sequence IWGSC reference genome 
sequence 

35K Axiom 
SNP ID 

Drysdale/Waag
an 
Polymorphic? 

  
Scaffold 

Posit
ion (cM) 

KASParmar20 CACCATTGACCTCGACATCCTCGACTGCCC
CGTCTGCTACCTGC[C/T]CCTGCGCCCTCC
CATCTTCCAGGTACCCCCTGCACCTGTCTT
GAT 

scaffold127841 30.7 _ Monomorphic 

KASParmar22 TCGCGAAAGTCCTACAGCCACATCCTCCA
GTTTGC[C/T]GTGTGCCTCGGTCAGCTCTA
CGGATGCATCGTCTA 

scaffold48217 44.3 AX-
94895411 

Did not work 

KASParmar22_1 ACAAGAAATCCAATGCACAAAAGTTGGAT
GAAAAG[A/C]AGCTCATAGTAGAACTCCG
AAAATTACTTGAGAAT 

scaffold48217 44.3 AX-
95223462 

Did not work 

KASParmar5 TCGGGTGATGGTTGGGATAGGGAGAAAT
CCCTGTCGGCCTGTCCGAGACT[G/A]ACG
TGGTGGCGTGTGAGGGTGCCGCCGGGCC
TTCCTGAAGGGCG 

scaffold20 43.9 _ Did not work 

KASParmar5_1 GTGGCGTAGCCGGCCAGCGAAGTAGGGT
GCGCCGCCTGATCTGAGCTTGGAATTTCA
CCTCCTGCTCCGCCACCGCTGTTTTCTCGC
CCAAATCCACTGCCTGCC[G/T]CCGTCCGT
CTCATTCAGAGCTTGGTCAACACACTGCT
GACCTCTTTTTTCCACAAAAATATAACCCT
CATAAAAACTGACCCACTAGGTCCTTCCA
GCAG 

scaffold20 43.9  Did not work 

KASParmar6 CAGACCGCGCACCCCCTAGCCCGCCGAAT
CTGGTTGGGCT[T/C]TCGGTAATGGAGTT
CACCGCTGCAGATATCTTCCAACACTCGCC
CT 

scaffold72581 46.5 _ Did not work 

KASParmar6_1 CTCGTGGCGGTGCAGACGCCGTGGAGCC
GCCATGG[C/T]GGGGATTTTACGCTGGTC
AAGGTGTCCAACATGTC 

scaffold72581 46.5 AX-
94807379 

Yes 

Markers without 35k Axiom SNP ID were selected as polymorphic for Drysdale and Chinese Spring.  
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Table 4.4 Names and sequences of primers. 

KASP Primer 
Name Sequence 

KASP Primer 
Name Sequence 

KASParmar1A1 AAATGGACAATACGAGTATTAC
ATCTATGT 

KASParmar10C TCATCTGGCGATCCATGTCG
GTC 

KASParmar1A2 GGACAATACGAGTATTACATCT
ATGG 

KASParmar11A1 GCGTTGGGGAAATTAGCTGT
AC 

KASParmar1C GATTGCTCGTGGCCTTGAGTAC
TTA 

KASParmar11A2 GCGTTGGGGAAATTAGCTGT
AG 

KASParmar2A1 AGTAATCTAGTAGATGAACTTG
TGCG 

KASParmar11C GGAAACGGTACTCCTGGG 

KASParmar2A2 GTAGTAATCTAGTAGATGAACT
TGTGCA 

KASParmar12A1 CCTTTTCCAGCAAATTCTCCA
AC 

KASParmar2C AGACCATTTTACTAAACGTACA
GCAGGTT 

KASParmar12A2 CCTTTTCCAGCAAATTCTCCA
AT 

KASParmar3A1 GAGTTACGAGACTAGAGATGT
TCCT 

KASParmar12C AGAGCTGATGACATGACTCA
CCCA 

KASParmar3A2 AGTTACGAGACTAGAGATGTTC
CG 

KASParmar13A1 AAGGGAAGAAGGCCTGAGC
ACTA 

KASParmar3C CAGCTTTGCACACTAGCTGCCT
ATT 

KASParmar13A2 AAGGGAAGAAGGCCTGAGC
ACTG 

KASParmar3_1A
1 

TTCCCCCATCGTAAACCCG KASParmar13C AATGGGGGTGGGTTTCGTCT
CCTTT 

KASParmar3_1A
2 

TTCCCCCATCGTAAACCCA KASParmar14A1 CCTGTAAGCCTGGCGGTTC 

KASParmar3_1C GAAGATCAAGAAGTCACCTCTC KASParmar14A2 CCTGTAAGCCTGGCGGTTA 
KASParmar4A1 CAAGGATAAGATTCCTGAGATC

ACG 

KASParmar14C GGAAAGAGATTGGCATCCA
TTGGG 

KASParmar4A2 ACAAGGATAAGATTCCTGAGAT
CACT 

KASParmar15A1 GCGTGCGATGCGACCAA 

KASParmar4C CATTAAATCAGTGCCTGCTGAC
AAGAT 

KASParmar15A2 GCGTGCGATGCGACCAG 

KASParmar4_1A
1 

ACAAGGATAAGATTCCTGAGAT
CACT 

KASParmar15C CAGTTCACATCGTCAACTAG
TACGG 

KASParmar4_1A
2 

ACAAGGATAAGATTCCTGAGAT
CACG 

KASParmar16A1 ACCTCGGCGGGGTCCAC 

KASParmar4_1C CTGCTGACAAGATGGCCGCC KASParmar16A2 ACCTCGGCGGGGTCCAT 
KASParmar5A1 CCTCACACGCCACCACGTC KASParmar16C CGGCGGTCACCAGG 
KASParmar5A2 CCCTCACACGCCACCACGTT KASParmar17A1 CGTGACAGTGATGAAATGG

GC 
KASParmar5C GGTGATGGTTGGGATAGGGAG

AAAT 

KASParmar17A2 CGTGACAGTGATGAAATGG
GA 
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Table 4.4 continued… 
 

KASP Primer 
Name Sequence 

KASP Primer 
Name Sequence 

KASParmar5_1A
1 

CCAAATCCACTGCCTGCCG KASParmar17C GTCAAATACGGAGAAGCAA
GGAT 

KASParmar5_1A
2 

CCAAATCCACTGCCTGCCT KASParmar18A1 CGTGACAGTGATGAAATGG
GC 

KASParmar5_1C TGGGTCAGTTTTTATGAGGGTT
ATA 

KASParmar18A2 CGTGACAGTGATGAAATGG
GA 

KASParmar6A1 CAGCGGTGAACTCCATTACCGA
A 

KASParmar18C TGTCAAATACGGAGAAGCA
AGGAT 

KASParmar6A2 AGCGGTGAACTCCATTACCGAG KASParmar19A1 TGCTACACATTCCATCATTTC
AACTAC 

KASParmar6C CCTAGCCCGCCGAATCTGGTT KASParmar19A2 TGCTACACATTCCATCATTTC
AACTAT 

KASParmar6_1A
1 

CGTGGAGCCGCCATGGC KASParmar19C GACGAATTATCATTGTACGT
AACATT 

KASParmar6_1A
2 

CGTGGAGCCGCCATGGT KASParmar20A1 ATGGGAGGGCGCAGGG 

KASParmar6_1C GACATGTTGGACACCTTGACC KASParmar20A2 ATGGGAGGGCGCAGGA 
KASParmar7A1 CGCAACTAACTCAGCTTCCTCA KASParmar20C GCCGCCGATGTCACCATT 
KASParmar7A2 CGCAACTAACTCAGCTTCCTCG KASParmar21A1 ACATAGAAAAACATACACGG

TTGAATG 
KASParmar7C GGATTCCCGAGTTCAAAGTTCA

G 

KASParmar21A2 ACATAGAAAAACATACACGG
TTGAATA 

KASParmar8A1 TGTAATCCACCCTCATTTTCGGC
CTTCG 

KASParmar21C TAACATACTTGGATATGGCC
TCTTG 

KASParmar8A2 TGTAATCCACCCTCATTTTCGGC
CTTCT 

KASParmar22A1 TAGAGCTGACCGAGGCACA
CG 

KASParmar8C TCTGCTCAACTCTAAAACAGG KASParmar22A2 TAGAGCTGACCGAGGCACA
CA 

KASParmar9A1 AAGAGGACAACGCCAAAAGAG
AAC 

KASParmar22C TACAGCCACATCCTCCAGTTT 

KASParmar9A2 AAGAGGACAACGCCAAAAGAG
AAG 

KASParmar22_1
A1 

AATGCACAAAAGTTGGATG
AAAAGA 

KASParmar9C CATCCAGTGGCAAGC KASParmar22_1
A2 

AATGCACAAAAGTTGGATG
AAAAGC 

KASParmar10A1 GCGTTCAAGGCGATCAAC KASParmar22_1
C 

ATTCTCAAGTAATTTTCGGA
GTTCTACT 

KASParmar10A2 GCGTTCAAGGCGATCAAG   
 5’ complementary sequence to fluor‐labelled oligos: FAM: GAAGGTGACCAAGTTCATGCT, HEX: 
GAAGGTCGGAGTCAACGGATT were added to each A1 and A2 primers respectively and are not shown 
here. 
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New KASP assays were scored on the 144 Drysdale x Waagan DH lines (Shirdelmoghanloo, Taylor, 

et al. 2016) originally used to map the QHSGW.AWW-3B heat tolerance QTL. Markers were 

placed in order by graphical genotyping, in such a way as to minimize the requirement for double 

recombination events (Fig 3.1). One sub population of DH lines (Derived from F1 individual R) was 

found to behave differently to the other DH lines with respect to segregation of some of the 

markers; a Drysdale or Waagan plant that contained an atypical haplotype in this region was 

probably used for crossing to make this F1 plant. For this reason, DH lines from this sub-

population were not used in construction of the revised map. After obtaining the optimal order 

for the new and old markers, new centimorgan (cM) distances were calculated on the basis of 

numbers of recombination events between markers and the Kosambi mapping function (Kosambi 

1943) was used to convert recombination frequencies to cM distances. Two new markers were 

positioned four recombinants (3.1 cM) distal of the most distal markers from the previous genetic 

map (previous 0 cM location). Four new markers were positioned at the previously defined 1.4 

cM location. Two new markers were located in the gap between the previous 3.2 and 34.6 cM 

positions, but close (9.1 and 9.9 cM) to the distal boundary (Fig 3.2). The last three new markers 

were located below the previous 34 cM position.  

Unfortunately, most of the markers intended to fill the gap between 3.2 to 34.6 cM were either 

monomorphic or performed inadequately (Table 4.3). The paucity of markers in this region may 

be due to one or a combination of factors: (a) the presence of the same/similar haplotype for this 

region in cvs. Drysdale and Waagan, (b) the presence of the same/similar haplotype for this 

region in cvs. Drysdale and Chinese Spring (since polymorphism between them was a pre-

requisite for identifying SNPs for marker generation), (c) sequence duplication, insertion/deletion 

of chromosomal segment in this interval, or (d) poor coverage of the Drysdale BPA genomic 

sequence in parts of the region, as revealed by variation in read depth along the chromosome 

visualized in DAWN.  

All the developed KASP markers were scored on 16 of the RIL-NILs for QHsgw.aww-3B (that had 

been selected in Chapter 2) by scoring two or three progeny of each plant originally selected as 

being homozygous for contrasting alleles of QHsgw.aww-3B (Fig. 3.3). Markers were arranged in 
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the same order as those determined using the DH lines in Fig 3.3 to understand the 

recombination patterns in the RIL-NILs. The wsnp_Ku_c12698_20441325 marker score for the 

WW30674_13 plants showed an unexpected Drysdale allele call as in the previous generation (for 

selection of heterozygous lines, Chapter 2, Fig. 2.3) This line was the only one derived from the 

F1 plant 21, therefore one of the parent plants used to produce this F1 plant may have contained 

a slightly different haplotype in the region to other parent plants of the same variety. KASParmar2 

showed unexpected heterozygous scores in all tested plants from the four families 

WW30692_12, WW30692_4, WW30709_8, WW30709_9 (Fig. 3.3). The three tested 

WW30913_9 plants showed three different classes of KASParmar2 calls. A likely explanation 

seems to be that this marker detected two polymorphic loci, only one of which was in the 3B QTL 

region. The two single plant selections of Drysdale also differed for their KASParmar21 scores 

(Fig. 3.3), suggesting that these two selections of Drysdale may contain slightly different 

haplotypes in the region.  
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Fig. 4.1 continued..  

Fig. 4.1 Scores for 9k SNP markers and new KASP markers on the Drysdale x Waagan DH lines. 
Cell color designates Drysdale (pink), Waagan (green) alleles, bad call (black), ‘?’ for unsure, and 
‘X’es indicate recombination points. Singleton marker scores for markers otherwise closely linked 
to surrounding markers were suspected of being errors and were not counted in making the 
genetic map. 
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Fig. 4.2 Genetic and physical map of the 3B QTL region. Relative size and positions of the IWGSC 
whole genome assembly scaffolds presented by black boxes with possible gaps (diagonal stripes). 
Relative marker position in D x W DH lines and 9K SNP array also incorporated with number of 
recombination (in brackets).  



89 
 

 

Fig. 4.3 Scores of markers on RIL-NILs. Pink, green and yellow cells represent Drysdale, Waagan 
and heterozygous marker calls, respectively. ‘?’ means unsure and ‘*’ unexpected calls. Marker 
order was followed as observed in DH lines (Fig. 4.1). 
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4.4  Conclusions 

 Two new markers were identified distal of the distal-most markers from the previous 

map, four new markers were mapped 1.5 cM proximal of the previous most distal marker, 

and two were generated in the upper part of the previous 31.4 cM gap between positions 

3.2 and 34.6 cM. 

 Markers were designed for the 31.4 cM gap in the previous map but these were mostly 

found to be monomorphic or did not perform well. This may indicate that this region had 

the same/similar haplotypes in Drysdale and Waagan, sequence duplications in Drysdale 

and Waagan, or errors in the IWGS genomic sequence assembly.  

 Sequencing of cv Waagan and alignment of its sequence to the Drysdale sequence could 

help to identify more SNP markers in the target region, including the large gap. 

 KASP markers are high throughput and cheap to run, and hence are good for further 

genetic studies of this locus (Chapter 5). From IWGS genomic sequence assembly it is now 

possible to predict distance between the markers but at the time of this study the wheat 

genome was assembled in scaffolds. 
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Chapter 5: Genes potentially associated with the chromosome 3B grain filling heat tolerance 

locus 

 Introduction 

Wheat chromosome 3B contains 5326 genes with a density of 145 genes kb-1 (Choulet, Alberti, 

Theil, Glover, Barbe, Daron, Pingault, Sourdille, Couloux, Paux, et al. 2014) including a number of 

disease resistance genes e.g. Sr2, located on the short arm of this (Hare & McIntosh 1979). Stem 

rust (or black rust) of wheat is one of the devastating fungal diseases and is caused by the obligate 

parasite Puccinia graminis Pers. f. sp. tritici Eriks. & E. Henn. A total of 58 stem rust resistance 

genes were listed by McIntosh R. A. (2013), of which five confer adult plant resistance (APR), 

which is typically non-race-specific (broad-spectrum). Sr2 is one of the APR genes and is located 

on the short arm of chromosome 3B (Hare & McIntosh 1979). This gene was transferred from 

tetraploid emmer wheat Triticum turgidum L. ssp. dicoccum Schrank ex Schübler (accession 

‘Yaroslav Emmer’) into hexaploid wheat by crossing with the stem rust susceptible hexaploid 

wheat cv. Marquis (McFadden 1930). Since then it has been widely deployed. It is present in 

many currently grown cultivars and is considered as one of the most important disease 

resistance genes for wheat breeding (McIntosh, Wellings & Park 1995).  

Sr2 stem rust resistance is non-hypersensitive and is only detectable in adult wheat plants (Roelfs 

1988). Recessive inheritance (McIntosh, Wellings & Park 1995) and the partial nature of the 

resistance conferred by Sr2 also hamper its selection. Its resistance effect can also be masked by 

the presence of other resistance genes, environmental factors or genetic background effects. 

Pleiotropic effects of the Sr2 resistance locus, namely pseudo-black chaff (PBC) (Hare & 

McIntosh 1979; Kota et al. 2006) and enhancement of high-temperature-induced seedling 

chlorosis (at >25 oC; HTISC) (Brown 1997) have been used to assist selection of Sr2 in breeding 

programs. Adult plant chlorosis associated with PBC has also been reported by (Sheen, Ebeltoft 

& Smith 1968). PBC is characterized by a dark pigmentation on the stem internodes and glumes. 

Expression of PBC is partially dominant and influenced by genotype and environment (Bhowal 

& Narkhede 1981) which hinders its selection. HTISC is recessively expressed (Brown 1997) 

which also makes it non-ideal for selection. It has been proposed that Sr2 might have a yield 
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penalty in the absence of rust, due to the PBC phenotype (Hare & McIntosh 1979; Kota et al. 

2006; Sheen, Ebeltoft & Smith 1968). Kota et al. (2006) failed to separate Sr2 and PBC through 

recombination in a fine mapping study using 1340 F2 plants. PBC and HTISC could therefore be 

pleiotropic effects of the Sr2 resistance gene, or due to separate but closely linked genes.  

Sr2 also shows tight linkage with rust resistance genes Lr27 (Singh, R & McIntosh 1984) with the 

resistance alleles being inherited together in coupling phase (Singh, RP, Huerta-Espino & William 

2005). Lr27 is a major race specific leaf (brown) rust (caused by Puccinia triticina) seedling 

resistance gene (Nelson et al. 1997). Expression of Lr27 resitance requires the presence of a 

complementary gene Lr31 on chromosome 4BL (Singh, R & McIntosh 1984). In one study, (Singh, 

D, Park & McIntosh 1999) the Sr2 and Lr27 genes co-segregated in a high resolution family 

derived from over 3000 gametes from the cross between cv. CS and a CS derivative containing a 

3B chromosome substitution from cv. Hope. Lr27 resistance can therefore be used as a surrogate 

for following the inheritance of Sr2. Sr2 and Lr27 may therefore represent the same resistance 

gene effective against multiple rust types, or separate but closely linked resistance genes.  

Sr2 was positioned between markers CA640157 and gwm533 using a cv. Chinese Spring (CS) x CS 

(Hope3B) mapping population by Kota et al. (2006) and localized to the wheat cv. CS genomic 

sequence contig 11 (1.2 Mb; 3B specific BAC library, contig ctg0011b, Genbank accession 

FN645450) by Choulet, F. et al. (2010). The SSR marker gwm533 (Röder et al. 1998) is tightly 

linked to Sr2 and through fine mapping Sr2 was narrowed down further to a 0.07 cM interval 

(approximately 570 kb) (Mago, R., Tabe, et al. 2011) using the same mapping cross. This research 

group also developed the cleaved amplified polymorphic sequence (CAPS) marker csSr2 by 

exploriing 3B specific sequence variation in cv. CS and ‘Hope’. It produces one of three DNA 

banding patterns upon digestion of the PCR product with BspHI: null (no amplification), three 

fragments of 172, 112 and 53 bp (CS (Hope 3B) type) and two fragments of 225 and 112 bp 

(Marquis type; due to a A→G SNP that abolishes a BspHI restriction site). The CS (Hope 3B) marker 

allele is associated with the presence of Sr2 resistance, whereas the null and Marquis marker 

alleles are associated with its absence. In a set of 205 genotypes, the null and Marquis csSr2 
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alleles predicted absence of Sr2 with 100% and 95% accuracy, respectively, whereas the CS (Hope 

3B) predicted its presence with 95% accuracy (Mago, R. et al. 2011). 

At the grain filling heat tolerance locus QHsgw.aww-3B identified on chromosome 3B in the 

Drysdale x Waagan mapping population (Shirdelmoghanloo, Taylor, et al. 2016), grain weight 

stability was positively associated with stay-green. QHsgw.aww-3B accounted for ~13-40% 

variance in the heat susceptibility index (HSI) of traits relating to chlorophyll content after heat 

treatment, senescence rate and duration of flag leaf senescence after anthesis. The stay green 

and grain filling tolerance phenotypes were proposed to be encoded by the same gene, in line 

with a model involving common control of heat triggered senescence in both the leaves and 

grains (Shirdelmoghanloo, Cozzolino, et al. 2016).  

In BLAST searches of the wheat cv. CS genomic sequence, markers mapped to QHsgw.aww-3B 

were found to be located in the same region of 3BS as those mapped to Sr2, indicating that 

QHsgw.aww-3Band Sr2 were in a similar location (N. Collins, unpublished data). Sr2 has been 

documented to be present in cv. Drysdale but not cv. Waagan (www.wheatpedigree.net). The 

Drysdale x Waagan DH mapping population has been subjected to several trials in NSW which 

were affected by rust, where rust infection levels and PBC was scored. QTLs were detected in the 

QHsgw.aww-3B region, with the Drysdale QTL alleles conferring PBC and rust resistance (Livinus 

Emebiri and Hamid Shirdelmoghanloo, unpublished data). The HTISC and flag leaf chlorophyll 

effects of QHsgw.aww-3B conceivably represent the same biological phenomenon. These factors 

suggest that the same gene controls the effects at QHsgw.aww-3B and Sr2, with the allele for 

heat intolerance (both grain weight and chlorophyll instability) being one and the same as the 

Sr2 rust resistance gene.  

In the current chapter, closer examination of the aforementioned data from the Drysdale x 

Waagan DH mapping population, and scoring for the Sr2 diagnostic marker, are used to further 

test the hypothesis that QHsgw.aww-3B is Sr2. Furthermore, grain filling and chlorophyll heat 

tolerance data from five previous screens of wheat genotypes, performed in the group of Nick 

Collins (Shirdelmoghanloo, Lohraseb, et al. 2016); and unpublished data), and scoring of the CsSr2 
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diagnostic marker in these lines, are used to test the idea that Sr2 controls variation for these 

heat tolerance traits in wheat germplasm more broadly.  

Alternatively, the grain filling heat tolerance QTL on 3BS might have as its basis a gene involved 

in nitrogen use. Leaf senescence is a natural phenomenon which could either be triggered by 

internal hormonal signals or external stresses e.g. disease or nitrogen deficiency. Adequate 

nitrogen supply positively influences leaf growth and delays senescence (Diaz et al. 2005; Vos, J 

& Van der Putten 1998) but deficiency accelerates senescence (Schulte auf'm Erley et al. 2007). 

In barley, senescence was slowed or even reversed by supplying additional nitrogen at the onset 

of senescence (Schildhauer, Wiedemuth & Humbeck 2008). 

Plants take up nitrogen from the soil in the form of nitrate (NO3
−) and ammonium (NH4

+). 

Candidate genes for nitrogen use efficiency include genes for nitrate and ammonium 

transporters. Nitrate transporter gene families include genes for high and low affinity 

transport, known as NRT1 and NRT2 respectively. By comparing publicly available wheat cDNA 

sequences with characterized NRT genes in Arabidopsis, Brachypodium and maize, Guo et al. 

(2014) identified seven NRT1 isoforms (NRT1.1- NRT1.5, NRT1.7, NRT1.8) and five NRT2 

isoforms (NRT2.1- NRT2.5) in wheat. Through BLAST searches of these genes in the wheat cv. 

CS genomic sequence we established that NRT2.5 (only) (GenBank accession number- 

GH727959.1) was located on 3BS. In this chapter, genetic mapping is used to test the hypothesis 

that the NRT2.5 gene could be responsible for the chlorophyll and grain size heat tolerance 

effects controlled by QHsgw.aww-3B on 3BS. 

Higher plants directly take up ammonium using ammonium transporters in the roots, or they 

generate it from nitrite by reduction of nitrate by nitrate reductase, followed by assimilation as 

amide group into amino acids through GS/GoGat (Glutamine synthase/glutamine-2-oxoglutarate 

aminotransferase). In a meta analysis of NUE (nitrogen use efficiency) QTLs on wheat 

chromosome 3B, GoGat was identified as a candidate gene for NUE loci on 3B (Quraishi et al. 

2011). This group also found GoGat to be conserved in its location across co-linear chromosomal 

segments of wheat chromosome 3B, rice chromosome 1, sorghum chromosome 3 and maize 

chromosomes 3 and 8. Two GoGat genes (Fd-GoGAT, NADH-GoGAT) were identified on rice 
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chromosome 1, syntenic to wheat chromosome 3B (Kurata et al. 1994). Fd-GoGAT is active in 

photorespiration (Ireland & Lea 1999) and NADH-GoGAT is active in non-green leaves and 

developing grains (Yamaya et al. 1992). Wheat NADH-GoGAT shows 95% similarity with the rice 

NADH-GoGAT protein and has been asserted to play a major role in NUE in wheat (Salse et al. 

2011). This group also patented a technology for improving yield of wheat through over 

expression of NADH-GoGAT in transgenic wheat. In the current chapter, the hypothesis that 

GoGat gene is QHsgw.aww-3B is tested by genetic mapping.  

 Materials and Methods 

 Marker design 

New markers were designed to determine the positions of the candidate genes using the 

Drysdale x Waagan DH mapping population, and thereby establish their relationship with 

QHsgw.aww-3B.  

An EST for the wheat NRT2.5 gene sequence was obtained from GenBank 

(www.ncbi.nlm.nih.gov/nucest/GH727959). It was then used to identify a scaffold in the IWGSC 

reference genome sequence using the ACPFG (Australian Centre for Plant Functional Genomics) 

BLAST portal. SNPs were identified in the scaffold using the wheat genomics platform DAWN 

(Diversity Among Wheat geNome). DAWN (Ute Baumann, unpublished) helps to visualize 

diversity among wheat genotypes by aligning the IWGSC reference sequence of cv. Chinese 

Spring to the 10x genomic shotgun sequences of Drysdale and 15 other (mostly Australian) wheat 

varieties that had been generated in a collaboration with Bioplatforms Australia (BPA) (Edwards 

et al. 2012). The tool does not include genomic shotgun sequence of Waagan (one of the parental 

lines). Therefore, SNPs that were within the gene and polymorphic between Drysdale and CS 

were selected for marker generation. KASP primers were designed based on the SNPs following 

the procedure described in section 3.2.1. The new KASP markers were then tested on the 

parental lines to see if they would detect polymorphism between Drysdale and Waagan.  

The sequence of the rice GoGat gene positioned at the orthologous position in rice chromosome 

1, represented by the gene model LOC_Os01g48960 (rice genome annotation project, 
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http://rice.plantbiology.msu.edu/cgi-bin/ORF_infopage.cgi?orf=LOC_Os01g48960.1, GenBank 

sequence accession no. AB001916) was used to identify the IWGSC reference genome sequence 

scaffold containing the corresponding gene on 3BS. Wheat marker assays were then generated 

using the same methodologies as described for the NRT2.5 gene. 

Markers used by Mago, R., Tabe, et al. (2011) to fine map Sr2, including CA640157 and gwm533 

(0.4 cM apart) that flank the Sr2 gene (Kota et al. 2006), and markers RGA_1, DOX_1, BEX_2, 

CD882879, CA746621, RKO_2, MSF_2 and RKO_1 that co-segregated with Sr2, were used as the 

basis for designing KASP markers closely linked to Sr2. BLAST searches with the marker sequences 

identified various scaffolds in the CS sequence assembly. These included 206172, 186348, 

271041, 182457, 125609, 56755 and 20622 but these were all un-allocated (UA) to 

chromosomes. Only the CA746621 marker detected seqeunces on scaffold 16578 located to 3B 

but no SNPs between Drysdale and CS were indentified in this scaffold sequence. Hence, IWGSC 

reference genome scaffold 206172 corresponding to contig 11 sequence was selected for KASP 

marker design. A SNP marker polymorphic for Drysdale and CS which is also polymorphic for 

Drysdale and Waagan according to the 35K Axiom array 

(http://www.cerealsdb.uk.net/cerealgenomics/CerealsDB /axiom_download.php) data was 

selected. The primers were designed following similar methods as above. 

 csSr2 marker scoring 

Scoring of the csSr2 marker on 101 hexaploid wheat varieties (mostly Australian; Table 5.1) and 

184 DH lines of the Drysdale x Waagan population was done using previously extracted DNA. The 

former was done with DNA from the study of Shirdelmoghanloo (2015) and the latter was 

extracted by Iman Lohraseb. csSr2 primer sequences and PCR conditions were as described by 

Mago, R., Tabe, et al. (2011), except OneTaq DNA polymerase and OneTaq standard reaction 

buffer (5×) (Genesearch Pty Ltd, Arundel, Australia) were used, and PCR reactions were 25 µL 

volume instead of 20 µL. Reaction mix contained: 2 µL of DNA (350 ng/µL), 5 µL of 5x NEB One 

Taq standard reaction buffer, 1 µL of each of 2mM dNTPs, 5 µM of each forward and reverse 

primer, 0.125 µL of One Taq DNA Polymerase and 14.875 µL of MQ water. For restriction 

digestion with BspHI, reactions of 20 µL contained 15 µL of PCR mix, 2 µL of 10x CutSmart buffer 
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(Genesearch Pty Ltd), 2 µL of BSA (10mg/mL, acetylated) and 1 µL of BspHI (10u/ µL; Genesearch 

Pty Ltd). Digestion reactions were incubated at 37 oC for one hour and then subjected to 

electrophoresis in 2.5% agarose gels. 

 Field trials used to obtain rust resistance and pseudo black chaff scores 

Scores for rust resistance and PBC were obtained from a field trial of the Drysdale x Waagan DH 

population at Wagga Wagga in 2013 (Table 5.2). Running and scoring of the trial was done by the 

group of Livinus Emebiri (EH Graham Centre for Agricultural Innovation, NSW-DPI). The trial had 

a complete randomized design and two replicate plots per line. The rust infection was from 

unintentional natural inoculation, and based on knowledge of rusts prevalent in the area at this 

time, it was likely to be stripe rust (Robert Park, personal communication). Rust infection levels 

was scored subjectively on a 1 to 9 scale, with 9 representing the most severe infection. PBC was 

scored as presence or absence (1 and 0, respectively) on each plot. QTL mapping was done by 

Hamid Shirdelmoghanloo using the 9K SNP array marker scores and procedures previously 

described (Shirdelmoghanloo, Taylor, et al. 2016). 

 Scoring of Lr27 and high-temperature-induced seedling chlorosis (HTISC) under 

controlled conditions 

Scoring for Lr27 resistance and HTISC was done under controlled conditions by Robert Park at the 

Plant Breeding Institute, University of Sydney, Cobbitty (Table 5.2). For this purpose, 48 Drysdale 

x Waagan DH lines and single plant selections of the parental cvs. (7 for Drysdale and 8 for 

Waagan) were used. The 48 Drysdale x Waagan DH lines were selected to represent nearly all of 

the recombinants in the QHsgw.aww-3B/Sr2 region from the DH population. For Lr27, 

inoculation of seedlings with the leaf rust isolate 122-2,3 [73003] was used, and infection sites 

scored using the codes of DL and Kolmer (1989). For HTISC, seedlings were grown in a warm 

growth chamber and HTISC was scored as presence or absence in each line.  
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 Grain size and chlorophyll content data from controlled environment experiments 

involving 101 hexaploid wheat varieties 

The potential relationship between Sr2 status and grain filling and chlorophyll heat tolerance was 

tested using phenotypic data generated in five controlled-environment experiments (gf1-gf5) 

undertaken between 2010 and 2015 in The Plant Accelerator (TPA, The University of Adelaide, 

Waite Campus, Adelaide) (Table 5.3). A total of 101 hexaploid wheat genotypes were used in 

these experiments, and these were mostly Australian varieties (Table 5.1). Chlorophyll data was 

only collected in experiments gf3 and gf5. Experiment gf 5 was performed by me (chapter 7), 

while the others were performed by Iman Lohraseb and Hamid Shirdelmoghanloo. Plant growth 

and heat treatments were all as described in paragraph 1.2.2. The grain filling heat tolerance 

index was calculated using a linear regression of final single-grain weight after heat vs. in control 

across all genotypes in each experiment, with the tolerance index for each genotype being 

defined as the deviation of the value observed after heat from the value expected from the value 

in control based on the regression. Chlorophyll response was defined as the proportion of 

chlorophyll loss observed over the period of the heat treatment, as determined using SPAD 

readings taken on the flag leaf just before and just after the heat treatment.  

Table 5.1 Hexaploid wheat genotypes used to test the association between csSr2 marker 
genotype and heat tolerance for grain filling and chlorophyll retention.  

Ajana Egret* PI626580-4 Sunvale* Crusader* Corack* Opata85* 
Aroona Excalibur PI625123-3 Sunvex Drysdale* EGA Bonnie 

Rock* 
Reeves* 

Avocet S Fang Mendos Synthetic 
W7985* 

EGA 
Eaglehawk 

Emu Rock* Scepter* 

Axe* Flanker* Mexico-120 Tasman* HTWYT012 Hartog* Siete 7 Cerros 
Barham Frame* Molineux* Trident* Lyallpur-73* HTWYT007 Sokoll* 
Cadoux* Gascoigne Najah Vigour18 Seri M82 HTWYT028 Spitfire* 
Catalina Gladius RAC875 Waagan* 6HRWSN125 Hydra* Suntop* 
CD87* H45 RT414 Westonia* Babax Kalyansona Tammarin Rock* 
Chara H46 RT416 WW2449 Calingiri* Katepwa* Vorobey 
Chuan Mai 18 Halberd* RT417 Yitpi* Suzuky_12 Kauz Wyalkatchem* 
Cook Janz* RT418 Young* Suzuky_17 King Rock* Wyuna 
Correll* Kite Scout* Baxter* Suzuky_19 Kukri*  
EGA 2248 Kord* Stiletto* Berkut* Suzuky_23 Mace*  
EGA Blanco* Krichauff* Sunco* Cobra* Suzuky_24 Magenta*  
EGA Gregory* Lincoln* Sunstar* Cranbrook* Suzuky_9 Millewa*  

 ‘*’: the only genotypes assessed for chlorophyll heat tolerance 
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Table 5.2 Details of experiments used for PBC and rust typing. 

Condition Traits Sowing date Genotypes used 

Field PBC and rust resistance 11/6/2013 184 D x W DH lines and parents 

Growth 

chambers 

Lr27_Lr31 and HTISC 23/11/2016 48 D x W DH lines, 7 selections of 

Drysdale and 8 selections of Waagan 
 

Table 5.3 Details of controlled environment experiments used to assess grain filling and 

chlorophyll heat tolerance 

Experiment 
name 

Trait Sowing date No. of hexaploid 
wheat genotypes used 

No. of 
replicates 

gf1 Grain filling 19/7/2010 12 6 
gf2 Grain filling 15/3/2011 12 10 
gf3a Grain filling and 

chlorophyll retention 
23/5/2011 36 9 

gf4 Grain filling 20/2/2013 60 8 
gf5 
 

Grain filling and 
chlorophyll retention 

28/8/2015 21 4 

a: (Shirdelmoghanloo 2015) 

 Results and discussion 

 New marker design 

One KASP marker for each of the GoGat, NRT2.5 and Sr2 genes were initially designed and tested 

on the Waagan and Drysdale parents (Tables 4.4 and 4.5). All the markers showed no or poor 

amplification. Another common primer was then designed for each of the GoGat and NRT2.5 

markers and used with the previous allele specific primers. These primer sets amplified products 

but the assays did not reveal polymorphism between the parents.  

One KASP assay (KASParmarSr2; Tables 5.4 and 5.5) was designed from a sequence located within 

contig 11, reported to contain the Sr2 locus, but while this primer set amplified products, the 

assay did not reveal polymorphism between the parents.  

Possible reasons for these failures to generate useful KASP assays include lack of polymorphism 

between Drysdale and Waagan even though there was a SNP between CS and Drysdale. It is 

possible that effective KASP markers for these genes may be obtainable if other SNPs are used as 

the basis for designing further assays. Another explanation could be insertion/deletion 
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differences such as those reported to exist between some Sr2 resistant and susceptible varieties 

(Mago, Rohit et al. 2014). These authors found that the size of the region encompassed by RKO_1 

and DOX_1 markers was 867 kb in the Sr2 resistant cv. ‘Hope” but 567kb in the susceptible cv. 

CS. The 300kb difference was at least in part due to extensive sequence polymorphism involving 

presence/absence of genes from a cluster of 17 genes encoding germin-like proteins. Consistent 

with this, DAWN also showed that a low number of Drysdale sequence reads mapped to the CS 

reference sequence in most of the scaffolds from the Sr2 region (data not shown). The parents 

Drysdale and Waagan might have a similar high level of sequence divergence which may have 

prevented binding of some of the primers to the correct target sequence in one or both of these 

parents.  

Table 5.4 KASP marker detailsa
. 

KASP assay 
name Sequence 

IWGSC reference 
genome 

35K 
Axio

m 
SNP 
ID 

KASP 
marker 
performanc
e 

Chrom
osom
e 

Scaffo
ld no. 

Positio
n (cM) 

KASParmarGoG
at 

CGGTGCCATAGGCCACCGAGGTGAA
CACAACCCACCAGGGTGCGTCTGGG
CCCCCAAGCG[C/T]GTCCAGGTGGTT
GTGCCCCCCTCGGGGGCACCCCTAT
GGTACTTCTTTGGCCCATCATGT 

3B 7336 52.2 - No 
amplificatio
n in both 
varieties 

KASParmarGoG
at_1 

Same as KASParmarGoGat 3B 7336 52.2 - No W/D 
polymorphi
sm 

KASParmarNRT
2.5 

GCCCGGTTTTCTTTTAAATTGGAGGC
AAATTATCATATACTATCAACCGCCG
TCTGCACT[T/G]GGTGGCTCAATGG
GCAGGCGCACAAGTCACCGCCAATA
CAGTTTT 

3B 3375-
 

52.4 - No 
amplificatio
n in both 
varieties 

KASParmarNRT
2.5_1 

Same as KASParmarNRT2.5 3B 3375-
 

52.4 - No W/D 
polymorphi
sm 

KASParmarSr2 AGCTGGTGAGAAAGAGGGCCT
AATAACAGAGAAGACA[C/T]TCTTG
ATGGGTGAGACACTAAGGGTGGGC
ACACATCTGGACATCGAAATTGAGC
TAAATTTGA 

UA 206172 NA AX-
945
167
89 

No W/D 
polymorphi
sm 

a:KASParmarGoGat_1 and KASParmarNRT2.5_1 were the same as KASParmarGoGat and 
KASParmarNRT2.5 respectively, but with different common primers. ‘UA’: unallocated, No: 
monomorphic for both parents; ‘-`: No 35K Axiom SNP available 



101 
 

Table 5.5 KASP assay primersa
. 

KASP Primer Name Primer sequence (5’ to 3’) 

KASParmarGoGatA1 GGTATTATGAGTTTATGTGATTTGATGTAT 

KASParmarGoGatA2 GGTATTATGAGTTTATGTGATTTGATGTAC 

KASParmarGoGatC CTTTATGTCTCGACCATTTCT 

KASParmarGoGat_1A1 Same as KASParmarGoGatA1 

KASParmarGoGat_1A2 Same as KASParmarGoGatA2 

KASParmarGoGat_1C CTCATCGTCATGTCCGTGATCTC 

KASParmarNRT2.5A1 TATCAACCGCCGTCTGCACTG 

KASParmarNRT2.5A2 TATCAACCGCCGTCTGCACTT 

KASParmarNRT2.5C AATTTAACCAAAACTGTATT 

KASParmarNRT2.5_1A1 Same as KASParmarNRT2.5A1 

KASParmarNRT2.5_1A2 Same as KASParmarNRT2.5A2 

KASParmarNRT2.5_1C TGTGCGCCTGCCCATTGAG 

KASParmarSr2A1 AAAGAGGGCCTAATAACAGAGAAGACAC 

KASParmarSr2A2 AAAGAGGGCCTAATAACAGAGAAGACAT 
KASParmarSr2C TAGCTCAATTTCGATGTCCAGATG 

 a: 5’ complementary sequence to fluor‐labelled oligos: FAM: GAAGGTGACCAAGTTCATGCT, HEX: 
GAAGGTCGGAGTCAACGGATT were added with each A1 and A2 primers, respectively, but are not 
shown here; common primers were redesigned for KASParmarGoGat_1 and KASParmarNRT2.5_1 
markers only. 

 Scoring of the csSr2 marker on the Drysdale x Waagan DH lines 

The csSr2 CAPS marker assay produced one amplicon of around 337 bp before BspHI digestion 

from Drysdale (Fig. 5.1). After digestion of the PCR product three DNA fragments were produced, 

of sizes consistent with the 172, 112 and 53 bp fragments characteristic of the CS (Hope 3B) type 

marker allele (not shown), which is normally associated with the Sr2 rust resistance gene (Mago, 

R., Brown-Guedira, et al. 2011). The csSr2 primers failed to amplify a product from Waagan (Fig. 

5.1), hence Waagan contained the csSr2 null type marker allele that is normally associated with 

absence of the Sr2 rust resistance gene (Mago, R., Brown-Guedira, et al. 2011). These results 

were consistent a report of Sr2 being present in Drysdale but not Waagan 

(www.wheatpedigree.net).  

The absence of csSr2 amplification from Waagan enabled this marker to be scored in the D x W 

DH lines without BspHI digestion. A total of 184 lines were scored, but due to the presence of  

 





103 
 

 Pseudo black chaff (PBC) and rust resistance scored in the field 

Analysis of the rust data from the Wagga Wagga 2013 trial of the Drysdale x Waagan DH 

population identified five rust resistance QTL (Table 5.6), of which one was on 3BS, with Waagan 

contributing the resistance allele. The marker from the 9K SNP array most closely associated with 

the QTL was wsnp_Ex_c30368_39293103 (3.1cM), which was close to the csSr2 marker locus and 

the QHsgw.aww-3B heat tolerance locus (previous section). As the resistance was from Waagan, 

this effect was evidently not due to Lr27 (or Sr2) resistance gene that were expected to be present 

at this location in Drysdale, and must have been due to another rust resistance gene from 

Waagan. At least one stripe rust resistance gene is very closely linked to the Sr2 locus and can be 

present in the absence of the Sr2 resistance gene (Lowe et al. 2011). The rust isolate(s) present 

in the 2013 Wagga Wagga trial must have been avirulent on the gene from Waagan and affected 

less than (been more virulent on) the genes Lr23 and Sr2.  

Of the 127 unique D x W DH lines that were field-trialled, 37 were scored as positive for PBC in 

at least one of the field replicates. Initial QTL mapping indicated the presence of a single major 

QTL for PBC in the vicinity of the QHsgw.aww-3B QTL (data not shown), with the allele promoting 

PBC coming from Drysdale. Comparison of the PBC scores to the marker scores indicated a 

position for the PBC locus distal of the marker wsnp_Ex_c3005_5548573 (Fig. 5.2). The expression 

of the PBC phenotype showed incomplete penetrance, as only around 50% of the lines that were 

expected from the marker scores to contain the PBC allele were scored positive for the trait, 

hence only PBC positive scores were informative. Only one line (WW28521_WW28522) was 

inconsistent with the designated locus position, as it was scored positive for PBC but carried 

Waagan marker alleles in the region. The chromosome region containing the PBC locus, distal of 

wsnp_Ex_c3005_5548573, also contained the csSr2 marker locus. Sr2 is unique among known 

wheat rust resistance genes in being associated with the PBC phenotype (McIntosh, Wellings & 

Park 1995). Hence these results from the PBC mapping were consistent with the idea that the 

Drysdale x Waagan population segregated for Sr2, with the resistance coming from Drysdale.  
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Table 5.6 Rust resistance QTL detected using data from Wagga Wagga 2013 field trial (most 
likely stripe rust).  

Closest associated marker Link
age 
grou
p 

cM 
Posit
ion 

LOD R2 
(%Expl. 
Var.) 

Add. 
eff. 

Resistan
ce allele 

P-
value 

1.5 LOD 
confidence 
interval 

wsnp_Ex_c2337_4379619 2A 79.4
4 

8.92 15.007 0.358 Waagan <0.001 77.95-
80.92 

wsnp_RFL_Contig4483_5312236
(C) 

2B1 84.8 5.44 8.828 0.275 Drysdale <0.001 76.51-84.8 

wsnp_Ex_c1408_2704736(C) 2D1 0 5.13 8.034 0.262 Waagan <0.001 0 
wsnp_Ex_c104027_88843215 2D3 6.48 5.65 8.942 0.276 Drysdale <0.001 3.6-15.2 
wsnp_Ra_c41135_48426638(C) 3B1 0 4.72 7.938 0.26 Waagan <0.001 0-11.02 

 Scoring of rust resistances and high-temperature-induced seedling chlorosis (HTISC) 

under controlled conditions 

Mapping of Sr2 in the Drysdale x Waagan DH population was also attempted by scoring a selected 

subset of 48 of the lines for HTISC and Lr27 leaf rust resistance, under controlled conditions (tests 

by Robert Park, University of Sydney, Cobbitty).  

HTISC was scored as positive in 22 of the tested lines. The enhanced heat induced chlorosis came 

from the Drysdale parent, and the locus for this trait mapped in the same marker interval as the 

csSr2 marker (Fig. 5.2), i.e., between markers wsnp_Ex_rep_c67107_65584404 and 

wsnp_Ex_c3005_5548573, or between wsnp_Ex_c30368_39293103 and 

wsnp_Ex_c3005_5548573 if line WW28454 was disregarded (Fig. 5.2). Only line WW28493 gave 

an HTISC score that was inconsistent with this location (positive, but carrying Waagan marker 

alleles). This result was therefore consistent with the ideas that the Drysdale x Waagan DH 

population segregated for Sr2 locus and HTISC, and that the enhanced heat induced seedling 

chlorosis may be a pleiotropic effect of the rust resistance gene from Drysdale.  

Only seven of the 48 tested lines (14.5%) were scored as positive for Lr27 (resistant infection 

types of ;1-, ;1+ or ;12-). This was well below the 50% frequency of positives expected from single 

gene segregation, suggesting that the population also segregated for the unlinked Lr31 gene 

required for expression of Lr27. Nonetheless, the available scores were consistent with 

segregation for Lr27 on 3BS, with the resistance coming from Drysdale, and suggested a map 

location for Lr27 distal of the marker KASPamar21. This chromosome region contained the 

mapped locations of all the other Sr2 associated traits (Fig. 5.3).  
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Fig. 5.2 continued..  
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Fig. 5.2 continued.. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.2 Graphical genotyping to position loci for the csSr2 marker, high-temperature-induced seedling chlorosis (HTISC), pseudo black 
chaff (PBC) and Lr27 leaf rust resistance relative to molecular markers and the grain filling heat tolerance locus QHsgw.aww-3B. PBC 
scores are averages of two field replicates (1 for presence and 0 for absence). Asterisks indicate lines tested for HTISC and Lr27 at 
Cobbitty. Red, yellow, blue and green arrows indicate the inferred direction of loci for csSr2, HTISC, Lr27 rust resistance and PBC 
respectively, relative to critical recombination points between markers. Other details are as described in the caption of Fig. 4.1.  
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Fig. 5.3 Genetic map locations of the csSr2 marker and loci for HTISC, Lr27 and PBC traits on 
chromosome 3B. Red arrows show the mapped intervals for the trait loci. 
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 Association of csSr2 marker alleles with grain filling and chlorophyll heat tolerance 

obtained from greenhouse screens  

The csSr2 CAPS marker was scored on the 101 hexaploid wheat genotypes screened for heat 

tolerance in the greenhouse. After digestion with BspHI, the csSr2 amplicons showed three 

different patterns on agarose gels that were consistent with the those reported by (Mago, R., 

Brown-Guedira, et al. 2011): No amplification product (null allele, associated with lack of Sr2); 

two fragments of 225 and 112 bp (Marquis type allele, associated with lack of Sr2), and three 

fragments of 172, 112 and 52 bp (CS (Hope 3B) type allele, associated with the presence of Sr2). 

Of the 101 genotypes, 56 had the null allele, 34 showed the Marquis type marker allele and 11 

showed the CS (Hope 3B) type allele (Table 5.7).  

There were 27 genotypes common to this study and that of Mago, R., Brown-Guedira, et al. 

(2011), and the csSr2 scores were the same, with 2 exceptions: Scout was scored as null type in 

this study (consistent with wheatpedigree.net not saying it contained Sr2) but as CS (Hope 3B) 

type allele by Mago, R., Brown-Guedira, et al. (2011). Wyalkatchem was scored as Marquis type 

in this study, but as null type by Mago, R., Brown-Guedira, et al. (2011); the latter is consistent 

with the report that it contains Sr2 (Wellings, Bariana & Park 2003). Such inconsistencies may be 

due to mislabelling errors, marker mis-scoring or heterogeneity for Sr2 within these varieties.  

Both in the current study and that of Mago, R., Brown-Guedira, et al. (2011), Kukri showed the 

Marquis type csSr2 allele normally associated with absence of Sr2, although this variety was 

reported to contain Sr2 (www.wheatpedigree.net) but pedigree information could also be wrong.  

In this study cv. Mendos was scored as null allele but according to www.wheatpedigree.net it 

carries Sr2 (Table 5.7). Eight other varieties were reported at www.wheatpedigree.net to carry 

Sr2, yet showed the Marquis-type marker allele. This inconsistency may be due to mislabelling 

errors, variety heterogeneity the fact that PBC is not always a clear indicator for Sr2, but it also 

raises the possibility that the csSr2 marker is not completely diagnostic of the presence of Sr2.  
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Table 5.7 csSr2 marker scores for hexaploid wheat genotypes used in heat tolerance screens. 

Variety  csSr2 score 

Ajana, Aroona, Avocet S, Axe, Barham, Cadoux, Catalina, CD87, Chara, 

Chuan Mai 18, Cook, Correll, EGA 2248, EGA Blanco, EGA Gregory, Egret, 

Excalibur, Fang, Flanker, Frame, Gascoigne, Gladius, H45, H46, Halberd, 

Janz, Kite, Kord, Krichauff, Lincoln, PI626580-4, PI625123-3, Mendos*, 

Mexico-120, Molineux, Najah, RAC875, RT414, RT416, RT417, RT418, 

Scout, Stiletto, Sunco, Sunstar, Sunvale, Sunvex, Synthetic W7985, 

Tasman, Trident, Vigour18, Waagan, Westonia, WW2449, Yitpi, Young 

Null 

Baxter*, Berkut, Cobra*, Cranbrook*, Crusader*, Drysdale*, EGA 

Eaglehawk*, Hartog*, HTWYT012, Lyallpur-73*, Seri M82 
CS (Hope 3B) type 

6HRWSN125, Babax, Calingiri, Suzuky_12, Suzuky_17, Suzuky_19, 

Suzuky_23, Suzuky_24, Suzuky_9, Corack*, EGA Bonnie Rock, Emu 

Rock*, HTWYT007, HTWYT028, Hydra, Kalyansona*, Katepwa, Kauz, 

King Rock, Kukri*, Mace*, Magenta, Millewa, Opata85*, Reeves, 

Scepter, Siete 7 Cerros, Sokoll, Spitfire*, Suntop, Tammarin Rock, 

Vorobey*, Wyalkatchem*, Wyuna 

Marquis type 

*: varieties reported at www.wheatpedigree.net to carry Sr2. Without *: varietal information 
not available or no record of Sr2 available in www.wheatpedigree.net. 

The csSr2 marker allele scores showed subtle relationships to heat tolerance measured in 

greenhouse screens. The trend was for genotypes carrying the null csSr2 marker allele to be more 

tolerant than those carrying either the Marquis and CS (Hope3B) type alleles, for both grain 

weight (higher tolerance index) and chlorophyll (less loss) (Fig. 5.4). This raised the possibility 

that heat tolerance was related to the haplotype at the Sr2 locus, but that it could be uncoupled 

from the presence of the Sr2 stem rust resistance gene across the two stem rust susceptible 

classes. However these differences between the groups were unlikely to be significant and need 

to be tested further.   
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 Conclusions: 

 The NRT2.5 and GoGat genes couldn’t be tested as candidates for the gene controlling 

QHsgw.aww-3B as marker assays designed to these genes failed. Design of more marker 

assays for these genes may yet allow them to be mapped relative to QHsgw.aww-3B. 

Alternatively, the alleles for these genes may be identical in sequence between Drysdale 

and Waagan, preventing them from ever being mapped in the Drysdale x Waagan DH 

population. 

 In the Drysdale x Waagan DH population, HTISC, PBC and Lr27 leaf rust resistance were 

all mapped in coupling phase to overlapping marker intervals on the short arm of 

chromosome 3B, with the source of these traits being Drysdale. This was consistent with 

knowledge that these traits tend to occur together with the Sr2 stem rust resistance gene, 

and that Drysdale carries Sr2.  

 In the Drysdale x Waagan DH population, the grain filling and chlorophyll retention heat 

tolerance effects of the QHsgw.aww-3B locus mapped to the same marker interval as the 

Sr2 locus, with the heat tolerance coming from Waagan. This was consistent with the idea 

that the heat susceptibility at this locus may be due to the same gene(s) and biological 

processes that lead to the HTISC, PBC and/or Lr27, Sr2 rust resistances in Drysdale – e.g., 

relating to accelerated heat induced senescence. Thus, selection for these rust resistances 

in breeding may come with a penalty of increased heat susceptibility.  

 A natural field inoculum revealed a rust resistance gene (possibly for stripe rust) from 

Waagan that was closely linked to the Sr2 locus. This indicated that selection for the heat 

tolerance allele from Waagan at QHsgw.aww-3B may not always come with the penalty 

of increased rust susceptibility (due to the absence of Sr2 or Lr27); in fact it may 

sometimes improve rust resistance against some field rust isolates.  

 Comparing heat tolerance data from the greenhouse to scores at the Sr2-linked marker 

csSr2 indicated that heat tolerance at QHsgw.aww-3B may be associated with only one 

of the two known non-Sr2 haplotypes (the ‘null-csSr2’ type). Hence, in situations where 

breeders do not need to use Sr2, selection for the ‘null-csSr2’ haplotype may be required 

to maximize heat tolerance. However, the association was weak, so further verification is 
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required – e.g., by observing heat tolerance QTL segregation at QHsgw.aww-3B in a 

population segregating for the null-csSr2 vs. Marquis-csSr2 haplotypes.  

 The Waagan allele of QHsgw.aww-3B may therefore be quite useful in breeding, by 

providing both heat tolerance (as it is a ‘null-ssSr2’ haplotype) as well as occasional 

protection against rust.  
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Chapter 6: QTL mapping of heat tolerance in Young × Reeves DH population under short term 

heat stress at the reproductive stage 

6.1 Introduction 

The wheat cultivar Young (VPM1/3*Beulah//Silverstar) was released by Australian Grain 

Technologies Pty Ltd in 2009 and Reeves (Bodallin//Gamenya/Inia 66) was released by Western 

Australian Department of Agriculture in 1989. These two varieties showed a good overall contrast 

for heat tolerance across a range of chamber/greenhouse assays, in the GRDC funded ACPFG 

heat tolerance projects UA00123 and UA00147. Erena Million F. (2015) (PhD student of ACPFG 

in his research project- Genetic and physiological bases of heat-induced floret sterility in wheat, 

unpublished), heat treated plants of various varieties at 1 or 6 cm auricle interval (AI) for three 

days, and found that Reeves developed a high level of floret sterility (88.5%) compared to Young 

(9.4%). These parents also contrasted for heat responses of single grain weight and flag leaf 

chlorophyll after heat treatment at 10 DAA (Shirdelmoghanloo 2015), and for responses of 

relative growth rate and chlorophyll loss in heat treated seedlings (Shirdelmoghanloo 2015). 

Young showed the least response for single grain weight (less than 3.0% loss of single grain weight 

due to heat while Reeves showed more than 25.0% reduction in single grain weight.  

Young is an early to mid-season maturity variety and takes ~57 days to reach anthesis. It has 

performed best in low and medium rainfall environments of southern Australia. It also shows 

good tolerance to yellow leaf spot, black point, cereal cyst nematode (CCN) and acidic soils. It is 

classified as Australian premium white (APW) grade in the Western and Northern zones of 

Australia with the characteristics of high milling performance and flour quality, ideal for the 

production of a variety of noodle types, Middle Eastern and Indian flat breads and Chinese 

steamed bread. 

Reeves is a mid-season, tall cultivar and takes ~60 days to reach anthesis. Reeves gives noodles 

with good texture, was previously classified as ASW (noodle) but was later stripped of its Western 

Australian noodle wheat market classification due to low falling number and became classified 

as a feed wheat (Australian general purpose grade; AGP).  
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Due to the contrasting heat tolerance of these varieties, they were crossed to make a DH 

population for mapping heat tolerance QTL in the laboratory of Dr Nick Collins. The contrast 

between the pedigrees and other quality and physical characteristics of the parents also suggests 

this population might be useful for genetic analysis of other types of traits. Identification of heat 

tolerance QTL for grain number and grain size in this one population could provide insight into 

how the physiology and genetics of the two types of responses may overlap. Accordingly, this 

chapter is focused on QTL mapping for tolerance to heat applied at two reproductive stages (6 

cm AI and 10 DAA) in the Young x Reeves DH mapping population.  

6.2 Materials and Methods  

6.2.1 Plant materials  

The mapping population of 250 F1 derived DH lines was constructed using crosses between the 

cvs. Young and Reeves, using Young as the female and Reeves as the male in all of the crosses. 

Two plants of each parental cv. (Young-4, Young-5, Reeves-1 and Reeves-2) were used for F1 seed 

production. Three F1 plants from each of the crosses Young-4 x Reeves-1 and Young-4 x Reeves-

2, in addition to two F1 plants from the Young-5 x Reeves-2 cross, were used as donors for DH 

production (i.e., 8 F1 plants total). Nick Collins did the crossing and supplied Sue Broughton at 

DAFWA with F1 seed, who then used the F1 plants to make the DHs by the anther culture 

technique. 

6.2.2 DNA extraction 

I extracted genomic DNA from the 250 DH lines and the four parental single plant parent 

selections, by working together with Iman Lohraseb. Leaf segments ~50 mm long was collected 

from two-week-old plants and DNA extracted following the protocol of Yamaya et al. (1992). DNA 

concentration was measured using the Quant-iT PicoGreen dsDNA Assay Kit (Life Technologies 

Australia Pty Ltd., Scoresby, Australia) following the manufacturer’s protocol, in 96 well plates, 

using a PHERAstar FSX multi-mode microplate reader (BMG Labtech Pty. Ltd., Mornington, 

Australia) with a 485 nm excitation filter and 520 nm emission filter. The DNA quality (integrity) 

was tested by electrophoresis in 0.8% agarose gels and was found to be adequate. 
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6.2.3 DArTseq 

DNA samples of DH lines and parental selections were diluted to ~50 ng/µL in TE buffer and 20 

µL of each sample dispensed into fully skirted V-bottom 96 well microtiter plates (Eppendorf 

Twin-Tec, Eppendorf South Pacific Pty. Ltd., North Ryde, Australia) leaving wells G12 and H12 

empty for negative controls. The wells were sealed with strips of 8 flat caps (65.1998.002, 

Sarstedt AG & Co., Nümbrecht, Germany) and shipped to Diversity Array Technology (Canberra, 

Australia) for DArTseq genotyping. 

6.2.4 Rht-B1, Vrn-A1 and Vrn-D1 markers 

Based on a previous marker analysis (Nick Collins, personal communication; and this study), cvs. 

Young and Reeves were known to carry functionally contrasting alleles at the dwarfing locus Rht-

B1, and the vernalisation loci Vrn-A1 and Vrn-D1 (Table 6.1). I therefore scored parents and the 

DH lines for polymorphisms in Rht-B1, Vrn-A1 and Vrn-D1. Both parents carry the tall (wild-type) 

allele at Rht-D1, hence the population was expected to segregate double-tall vs. semidwarf at 

Rht-B1. Both parents carry a spring allele at Vrn-B1, hence the population was expected to only 

contain spring types, with phenology effects potentially segregating at both the Vrn-A1 and Vrn-

D1 loci. These Vrn-A1 and Vrn-D1 effects were expected to be relatively subtle (compared to a 

spring type vs. winter type effect).  

The Rht-B1 and Vrn-A1 markers were scored by KASP assays using the CerealsDB (Functional 

Genomics Group, the University of Bristol; 

www.cerealsdb.uk.net/cerealgenomics/CerealsDB/kasp_download.php) primer sets 

wMAS000001 and wMAS000033, respectively.  

The Vrn-D1 marker was scored using a three-primer mixture (Intr1/D/F, Intr1/D/R3 and 

Intr1/D/R4) (Fu et al. 2005) targeting insertion/deletion variation in intron-1. Intr1/D/F and 

Intr1/D/R3 primers produce a 1,671 bp PCR product from the spring allele (containing the 

deletion) while the Intr1/D/F and Intr1/D/R4 primer pair produces a 997bp PCR product from the 

winter allele (not containing the deletion). The PCR program started with an initial denaturation 

at 94 oC for 3 min and was followed by 40 cycles of 94 oC for 10 sec, 60 oC for 10 sec, 68 oC for 2 
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min 30 sec and final extension at 72 oC for 10 min. PCR products were separated on 1.5% agarose 

gels.  

Table 6.1 Phenology marker alleles present in Young and Reeves. Marker designations were 
based on marker assays described by Shirdelmoghanloo, Taylor, et al. (2016).  

6.2.5 Genetic map 

The genetic map was constructed by Nick Collins and Julian Taylor (Fig. 6.1). The scores for the 

Rht-B1, Vrn-A1 and Vrn-D1 markers were combined with those of the DartSeq markers. In an 

initial analysis, 17 of the DH DNAs were found to give a high proportion of heterozygous marker 

calls, suggesting that the original DH ‘plants’ of these lines may have in fact been multiple plants 

(derived from multiple microspores) that were not successfully divided. These lines were 

excluded from further analysis. Conversely, 39 of the lines had counterparts with virtually 

identical marker calls, suggesting that some of the original DH plants were divisions of the same 

plant (derived from the same microspore). This group of lines was represented by 18 unique lines 

for map construction. After applying various quality filters, 4,528 polymorphic markers were 

retained for map construction. Markers that showed a different allele between the two 

selections of a parent cv. (due to residual heterogeneity in the varieties) were treated as 

described by Shirdelmoghanloo, Taylor, et al. (2016) so that they did not compromise the 

accuracy of the map. The final map contained 1,149 genetically non-redundant loci. For each 

redundancy group, a representative marker was chosen for map construction and reporting. The 

final map (Fig 6.1) contained 28 linkage groups representing all of the 21 wheat chromosomes. It 

had a total length of 3,499 cM, which is similar to other high-quality maps of wheat (2,937 to 

4,110 cM; Akbari et al. 2006; Chalmers et al. 2001; Paillard et al. 2003; Quarrie et al. 2005).  

Variety Rht-B1 Rht-D1 Ppd-D1 Ppd-B1 Vrn-A1 Vrn-B1 Vrn-D1 

Young dwarf tall insensitive unknown spring spring spring 
Reeves tall tall insensitive unknown heterogeneous?a spring winter 
a: Parent plants later determined in this current study to carry only the winter allele. 
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Fig. 6.1 Genetic map of the Young x Reeves DH population. Vertical lines represent each linkage 
group and the horizontal lines indicate the position of the markers loci on the linkage groups.  

6.2.6 Plant growth conditions 

Two seeds per pot were sown on 26th August, 2015 in Room 30 at The Plant Accelerator (TPA, 

The University of Adelaide, Waite Campus, Adelaide). After germination, plants were thinned to 

one per pot. The temperature control system was set at 15 / 20 °C daily minimum/maximum on 

a sine-wave pattern, then increased to 16 / 22 °C on 18th September. Plant growth was carried 

out as described by Shirdelmoghanloo, Taylor, et al. (2016). Measured greenhouse conditions are 

summarized in Table 6.2. The growth chamber used for heat treatments (Conviron BDW120) was 

set at 37/27 °C day/night temperature. Further details of growth chamber conditions were as 

mentioned in paragraph 2.2.2. 

Table 6.2 Measured temperatures and relative humidity (%) in the greenhouse (The Plant 
Accelerator, Room 30) during the experiment. The stages for treatments for assessing floret 
fertility (6 cm AI) and grain filling (10 DAA) effects were reached during October-November and 
November-December, 2015 respectively. 

Month 
Daily 

avg. 
Avg. daily 
min. 

Avg. daily 
max. 

Days 
>30°C 

Avg. % 
humidity 

Aug 17.9 14.9 23.5 0 61.7 

Sep 19.1 14.6 29.4 0 64.3 

Oct 21.6 15.8 33.7 4 60.3 

Nov 22.3 15.7 31.7 3 59.5 

Dec 23.3 15.6 32.5 7 60.8 

Jan-16 23.8 16.1 32.8 7 62.2 
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6.2.7 Treatment and experimental design 

The experiment employed heat treatments at two different growth stages, using a common set 

of plants as non-heat-treated controls. For one-third of the plants, when the AI of the main stem 

reached 6 cm, the main stem was tagged with colored tape and moved to the growth chamber 

for three days to apply heat treatment, to measure effects of heat on floret fertility on the main 

stem. Another third of the plants were heat treated at 10 DAA following the same method 

described in 2.2.3, to assess the effects of heat on final grain size. The remaining third of plants 

were not heat treated and served as controls for both the plants treated at 6 cm AI and at 10 

DAA.  

The experimental design was produced by Julian Taylor. The experiment employed a split-plot 

design with randomized complete blocks. There were two blocks. Each main plot comprised three 

plants of the same genotype. The plants in each plot represented sub-plots of one plant for each 

control, heat at 10 DAA and heat at 6 cm AI. Within each block, each DH had one replicate (as 

defined by the original DH line names; clonal lines in effect provided additional replication) and 

each of the four parental selections had three replicates. During heat treatment, plants were 

placed in arbitrary locations in the growth chamber, as there was insufficient space available to 

employ a proper design.  

6.2.8 Trait data collection and analysis 

The main stem of each plant was tagged with colored tape when it reached the target stage, to 

identify the tiller to score afterwards and to confirm treatment status of the plants. The traits 

that were measured/derived are detailed in Table 6.3. 

Data were analysed following methods described in paragraph 2.2.6. Best linear unbiased 

predictions (BLUPs) of trait mean values for each genotype/treatment were produced by Sabela 

Munoz-Santa and heat tolerance indexes derived from the BLUPs for each genotype. The heat 

tolerance index was defined using a linear regression of the BLUPs of all the genotypes under 

heat vs. control conditions, and was calculated for each genotype as the difference between the 

observed value under heat and its expected value based on the value in the control and the overall 
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regression. The heat tolerance index was expressed in the original unit or transformed when 

required to produce a more normal frequency distribution. This tolerance index has the 

advantage over HSI (heat susceptibility index) (Fischer and Maurer, 1978) of being less dependent 

on the control values.  

QTL analysis was done using GenStat 18 (www.vsni.co.uk/downloads/genstat/) for trait values 

(BLUPs) under control, heat and trait heat tolerance indexes. Initial linkage analysis was 

performed using simple interval mapping, then the selected candidate QTL were used as co-

factors for composite interval mapping (CIM), setting the minimum co-factor proximity to 30 cM. 

For CIM, a 10 cM maximum step size and a genome wide significance level of α = 0.05 was chosen. 

QTL effects were grouped into numbered QTL regions, with effects mapping within ~30 cM being 

assigned the same QTL number. 

Table 6.3 Traits scored in the Young × Reeves DH population and parental selections. 

Trait name Abbreviation Details Contr
ol 
plants 

Plants 
treated at 

6 cm 
AI 

10 
DAA 

Culm length at 10 DAA 
(cm) 

CulmL10 Measured from the soil surface 
to the spike collar 

yes   
yes 

Culm length at maturity 
(cm) 

CulmLMat Measured from the soil surface 
to the spike collar 

yes yes yes 

Peduncle length at 10 
DAA (cm) 

PedL10 DAA From last stem node to the 
base of the spike 

yes   yes 

Peduncle length (cm) 
between 10 DAA and at 
maturity 

PedL10ToMat Derived from difference of the 
peduncle length at 10 DAA and 
maturity 

yes   yes 

Peduncle length at 
maturity (cm) 

PedLMat From last stem node to the 
base of the spike 

yes yes yes 

Spike length at maturity 
(cm) 

SpkLMat From the collar to the top of 
the spike, excluding awns 

yes yes   

Awn length at maturity 
(cm) 

AwnL Distance from end of awns to 
top of glumes of terminal 
spikelet 

yes yes   
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Table 6.3 continued.. 

Trait name Abbreviation Details Contr
ol 
plants 

Plants 
treated at 

6 cm 
AI 

10 
DAA 

Shoot weight at 
maturity (g) 

ShootW Each plant was cut off at the 
soil surface and the shoot 
(stem + leaves) separated from 
the spike at the collar. Shoots 
were oven dried at 85 oC for 3 
d before being weighed 

yes yes yes 

Flag leaf length (cm), at 
10 DAA 

FlagL The length of the flag leaf from 
base of the blade to the leaf tip 

yes     

Flag leaf width (cm), at 
10 DAA 

FlagW The width of the flag leaf at the 
widest part of the flag leaf 
blade 

yes     

Chlorophyll content at 
10 DAA (SPAD units) 

SPAD10 DAA Relative chlorophyll content of 
the flag leaf, using a portable 
SPAD meter 

yes   yes 

Chlorophyll content at 
13 DAA (SPAD units)  

SPAD13 DAA As above yes   yes 

Chlorophyll content at 
27 DAA (SPAD units) 

SPAD27 DAA As above yes   yes 

Days to anthesis Anth Time from sowing to 
emergence of first anther 

yes   yes 

Days to Awn 
emergence 

AwnEm Time from sowing to when first 
awns were first visible past the 
flag leaf auricle 

yes yes   

Time from sowing to 
the day the target 
auricle interval length 
was reached 

AIdate When auricle interval was ~6 
cm 

yes yes   

Measured length of AI 
on the day of treatment 

AILgth When auricle interval was ~6 
cm 

  yes   

Days from anthesis to 
maturity  

AnthToMat Maturity defined as when 
spikes were ~ 95% yellow and 
seeds hard 

yes   yes 

Days from anthesis to 
flag leaf senescence 

AnthToFLSen Senescence defined as when 
flag leaves were 95% yellow 

yes   yes 

Number of developed 
spikelets per spike, at 
maturity 

DevSpklt Total spikelets minus 
UnderdevSpklt 

(yes)* (yes)* yes 

Total number of grains 
per spike, at maturity 

GnNoSpk Only those in developed 
spikelets were counted 

(yes)* (yes)* yes 

Grains per spikelet, at 
maturity 

GnNoSpklt GnSpk divided by DevSpklt yes yes yes 
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Table 6.3 continued..      

Trait name Abbreviation Details Contr
ol 
plants 

Plants 
treated at 

 6 cm 
AI 

10 
DAA 

Number of basal under-
developed spikelets per 
spike, at maturity 

UnderdevSpklt Under-developed spikelets 
defined as those having awns 
<50% length of majority of the 
other spikelets 

yes yes yes 

Number of developed 
spikelets per spike, at 
maturity 

DevSpklt Total spikelets minus 
UnderdevSpklt 

(yes)* (yes)* yes 

Grain weight per spike, 
at maturity 

GnWSpk After removing the 
underdeveloped spikelets, 
spikes were threshed and 
grains weighted after storage 
at room temperature for ~4 
weeks 

yes   yes 

Single grain weight, at 
maturity 

SingGW GnWSpk divided by GnNoSpk yes   yes 

Number of grains per 
spike at floret positions 
1+2 

GnNoSpklt1&2 Recorded separately for the 
top, middle and bottom third 
of the spike, basal two floret 
positions per spikelet, in 
developed spikelets only 

yes yes   

Number of grains per 
spike at floret positions 
>2  

GnNoSpklt>2 As above, but for floret 
positions 2 and above in the 
spikelets 

yes yes   

 

6.3 Results and Discussion 

6.3.1 Greenhouse conditions 

Unfortunately, while the temperature control system of the greenhouse was set at 16 / 22 °C 

daily minimum/maximum, much higher temperatures were reached during the sensitive 

developmental stages, due to late time of sowing, the resulting high outside temperatures 

(www.bom.gov.au), and limitations of the evaporative cooling system to limit temperatures.  

Plants reached the peak heat sensitive stage for floret fertility (6 cm AI) between 30th September 

and 13th of November, 2015 (Fig. 6.2). The sensitive stage for this effect of heat in wheat includes 

three days before and after the reaching the target stage 6 cm AI (Nick Collins, personal 
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communication). During this period, greenhouse temperatures exceeded 25 oC for 28 days and 

30 oC for six days. During this period outside temperatures were high, reaching above 30 oC for 

11 days and above 35 oC for four days (Fig. 6.2) (www.bom.gov.au, Kent Town, weather station 

number 023090). The main sensitive period for grain filling in wheat spans approximately five 

days before anthesis to 20 days after anthesis and occurred in the plants from 9th of October to 

17th of December (Fig. 6.2). During this sensitive period for grain filling, plants were exposed to 

above 25 oC for 38 days and above 30 oC for seven days. 

 

Fig. 6.2 Daily maximum temperatures of greenhouse room 30 (red line) and outside (brown line) 
from sowing to maturity. Yellow and red bars indicate the period when plants reached the target 
stage for heat treatment, for fertility (6 cm AI) and grain filling (10 DAA) effects, respectively. 
Green extended bars show the estimated time when plants were potentially sensitive to effects 
of heat on fertility or grain filling. 

6.3.2 Heat responses in parental and DH lines  

6.3.2.1 Responses to treatment at 6 cm AI 

Duration of developmental processes 

DH plants that were heat treated at 6 cm AI reached awn emergence around one day earlier than 

control plants, but senescence (AIToFLSen) was delayed for two days compared to the control 

plants (~67 vs. ~65 days). Heat also reduced final culm length by an average of ~6 cm in the DH 

lines and Young (Table 6.4). 
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Grain number 

The total number of grains per spike in heat treated DH lines and Reeves was decreased by ~9 

(26.26%) and ~16 (39.42%) respectively, relative to control plants. At floret position 1 and 2, heat 

decreased seed number per spike by ~20 (57.9%) and ~10 (36.41%) in Reeves and the DH lines, 

respectively. At floret positions >2 in the spikelets, grain number was decreased by 12.8% in the 

DH lines. The heat susceptible parent Reeves and the DH lines showed reductions in grain number 

per spike due to heat (BotGnNo1&2: 31.7% and 24.71%; MidGnNo1&2: 70% and 34%; 

TopGnNo1&2: 71% and 49%, in Reeves and the DH lines, respectively) and grain number per 

spikelet at floret position 1 and 2 in all three parts of the spike (BotGnNoSpklt1&2: 34% and 

32.7%; MidGnNoSpklt1&2: 74% and 40%; TopGnNoSpklt1&2: 71.71 and 53.69%, in Reeves and 

the DH lines, respectively). BotGnNo at floret position >2 increased (doubled), and 

BotGnNoSpklt>2 also increased, in Reeves due to the heat treatment. Million F. Erena (personal 

communication) also observed significant increases in grain number in more apical florets (>2) of 

the spikelets in bottom and top parts of the spike, but decreases at the 1&2 floret positions in all 

three parts of the spike, in the Drysdale x Waagan population, with heat treatment applied at 3 cm 

AI. These data overall therefore suggest that heat treatment during booting can decrease fertility 

of the basal two floret positions in the spikelets, but increase fertility in the more apical floret 

positions of the spikelets. GnNoSpklt was decreased in all three genotype classes (42.8% in 

Reeves, 19% in Young and 33% in DH lines) and the trend was consistent with the observation of 

Million F. Erena showing Young being more tolerant than Reeves for this trait.  

Spikelet number 

Data for total number of spikelets per spike was not modelled, but the raw means showed 

essentially no response due to the treatment (0.42, 0.71 and 0.02 in Reeves, Young and DH lines, 

respectively). This was consistent with knowledge that total spikelet number is set by Zadoks 

stage 31 (First node detectable on the main stem ) (Bennett et al. 1973; Rawson & Evans 1970) which 

was long before the stage for heat treatment. By contrast, the number of spikelets classified as 

under-developed was decreased by the heat treatment, in Reeves (12%), Young (35%) and the 

DH lines (35%). As a consequence, the number of spikelets per spike classified as developed 
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increased. Million F. Erena (personal communication) also observed that heat treatment at the 

booting stage decreased the number of under-developed spikelets per spike in the Drysdale x 

Waagan population. Therefore, it appears that heat treatment at this stage can increase the 

development status of spikelets located at the base of the spike, by maturity. 

6.3.2.2 Responses to treatments at 10 DAA 

Duration of developmental processes 

Heat treatment at 10 DAA significantly shortened the period from anthesis to flag leaf senescence 

in Reeves and the DH lines. Reeves and the DH lines reached the flag leaf senescence stage at 45 

and 48 days after anthesis, respectively, and the heat treatment reduced this interval by 11.42 

and 5.59 days, respectively (Table 6.4). It is interesting to note that heat produced the opposite 

effect on plants when treated at 6 cm AI (delaying senescence rather than accelerating it). 

Chlorophyll content 

The heat treatment decreased chlorophyll content significantly in the DH lines by just after heat 

treatment (SPAD13 DAA), by 3.8%, and decreased it by 17.9% by two weeks after heat treatment 

(SPAD27 DAA) (Table 6.4).  

Traits measured at maturity, including grain weight 

Reeves and the DH lines took an average of 116 days to reach maturity under heat conditions 

which was four days earlier than under control conditions. The period from anthesis to maturity 

was also decreased by four days in Reeves and the DH lines.  

Heat reduced single grain weight by three mg (4.7% reduction) in the DH lines (Table 6.4). On 

average, single grain weight was 3.5% (~2 mg) lower in the heat-treated plants than in the control 

plants for Reeves, and the reduction was 13% (~6 mg) in Young. Shirdelmoghanloo (2015) found 

that the same heat treatment protocol produced a 3.0% loss of single grain weight in Young and 

25.0% reduction in Reeves. Hence, it seems that the relative tolerance of the parental lines may 

have been reversed in the current experiment relative to that were recorded by 
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Shirdelmoghanloo (2015). The reason for this difference was not known, but may have had 

something to do with the hot conditions experienced in the greenhouse during the current study.  

Table 6.4 Trait responses for heat treatments at 6 cm AI or 10 DAA. Responses are average 
percent differences in heat vs. control (based on raw means), for the two parents and across all 
the doubled haploids (DH). 

Treatments at 6 cm AI 

Trait Reeves Young DH 

Duration of developmental processes (d)  

AIToAwnEm 4.23±3.27 -16.39±6.03 -10.85±2.07*** 

SowToAI -0.91±1.27 -1.52±1.31 0.32±0.29 

AIToFLSen 2.52±7.15 11.33±5.91 6.96±1.42* 

Traits measured at maturity 

Final organ length, or gain in organ length from the commencement of treatment (cm) 

AIToMat 2.74±2.06 0.16±0.80 1.90±0.64 

AwnLMat -8.88±3.31 1.00±4.28 1.30±1.10 

CulmLMat -4.28±5.37 -8.59±3.61* -7.10±0.71*** 

PedLMat 13.18±4.96* 1.01±3.31 1.28±1.01 

ShootWMat -1.28±7.93 -3.50±6.14 0.90±1.24 

SpkLMat -2.98±2.11 0.58±2.22 2.49±0.61* 

Grain and spikelet number 

GnNoSpk1&2 -56.34±7.03*** -30.56±12.17 -29.68±3.10*** 
GnNoSpk>2 31.35±19.67 95.65±61.11 40.49±10.68* 

GnNoSpk -37.37±5.45*** -9.59±13.35 -13.57±4.43*** 

GnNoSpklt1&2 -58.22±7.16*** -38.00±10.06* -38.08±2.43*** 

GnNoSpklt>2 19.22±16.56 74.51±52.01 24.47±9.16 

BotGnNoSpklt1&2 -29.49±8.16*** -6.03±33.29 -16.82±4.55*** 

BotGnNoSpklt>2 83.00±18.43** 63.89±48.99 12.15±5.57 

BotGnNo1&2 -32.96±8.12*** -20.60±26.50 -27.22±3.83*** 

BotGnNo>2 70.81±16.70*** 40.56±38.62 1.29±4.90* 

MidGnNoSpklt1&2 -72.06±7.42*** -34.55±13.36* -36.80±2.56*** 

MidGnNoSpklt>2 -23.01±10.97 31.50±25.47 -2.71±5.03 

MidGnNo>2 -17.03±10.94 42.00±30.72 7.38±5.94 
MidGnNo1&2 -70.56±8.24*** -27.05±15.35 -29.32±3.16*** 

TopGnNoSpklt1&2 -64.55±12.62*** -35.61±9.52* -45.11±4.05*** 
TopGnNoSpklt>2 -100.00±0.00 -20.42±20.42 -10.79±9.59* 

TopGnNo>2 -100.00±0.00 -16.67±26.35 -6.10±9.78** 
TopGnNo1&2 -63.87±12.62*** -30.77±11.15 -38.68±4.65*** 

GnNoSpklt 182.50±9.23*** 234.70±8.85*** 210.40±2.36*** 

BotSpkltNo 8.06±4.31 14.39±4.65* 14.19±1.02*** 
MidSpkltNo 9.84±5.58 8.03±6.28 11.36±1.01*** 
TopSpkltNo 10.36±5.34 5.76±3.71 11.52±0.92*** 
DevSpkltSpk 9.26±4.75* 8.73±4.02* 11.89±0.89*** 
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Table 6.4 continued.. 
 

Treatments at 10 DAA 

Trait Reeves Young DH 

UndDevSpkltSpik -21.53±12.71* -31.69±9.59** -26.46±2.06*** 
DaysToMat 1.12±1.14 -0.51±0.87 0.92±0.34 
LowInternMat -16.84±6.51* -18.31±5.19** -12.34±1.00*** 

SowToAwnEm -0.49±1.29 -2.93±1.12* -1.55±0.31* 

TotSpkltSpik 2.25±2.29 -3.82±2.83 0.52±0.44 

Duration of developmental processes (d) 

SowToAnth 0.83±0.89 1.19±1.31 0.57±0.27 
AnthToFLSen -20.49±5.73* -3.89±6.39 -5.99±1.76*** 

Traits measured before and after heat treatment 

CulmL10 9.89±8.01 -5.03±5.09 0.26±0.78 
PedL10 DAA 5.82±6.45 -6.65±3.55 0.24±0.98 
SPAD10 DAA -1.70±2.43 1.35±2.61 0.65±0.35 
SPAD13 DAA -8.31±2.54 -1.65±1.71 -4.51±0.49*** 
SPAD10To13 -41.25±123.20 -432.90±315.90 -120.00±38.43*** 
SPAD27 DAA -14.98±10.16 -5.31±5.51 39.38±30.97*** 
SPAD10To27 -416.10±231.60 164.10±243.80 -64.57±135.20*** 
SPAD13 DAATo27DAA -984.20±920.90** -157.40±145.80 142.30±140.10*** 

Traits measured at maturity 

AnthToMat -7.02±3.21 -1.71±3.25 -5.63±0.89*** 
CulmLMat 11.17±8.63 -5.60±5.05 0.58±0.78 
PedLMat 6.65±6.57** -6.56±3.49* 0.68±1.03 
ShootWMat -2.01±6.87 -7.20±5.84 1.25±1.22 
CulmL_10 DAAToMat 52.83±41.30* -11.61±7.01 4.11±1.42 
GWSpk -2.11±8.51 -7.77±17.06 17.52±12.58 
SingGW -3.56±4.53 -13.06±8.64 -4.72±1.12*** 
DevSpklt -1.97±3.33 -3.79±3.98 0.39±0.66 
LowIntern10ToMat 429.70±417.20 -15.83±10.67 10.82±3.01 
PedL10ToMat 22.55±11.23 -4.78±5.11 3.67±1.57 
DaysToMat -3.20±1.58 -0.34±1.53 -2.94±0.40*** 
GNoSpk 1.94±8.00 -0.16±17.87 18.02±9.31 
GNoSpklt 4.98±7.66 -1.39±16.89 16.25±8.45 

LowInternMat 15.32±10.97 -3.57±8.05 2.37±1.12 
CulmLMat_PedLmat_ratior 3.66±2.81 0.75±3.42 2.27±0.73 

Shoot_wt_length_ratior 13.95±7.24 3.63±4.34 3.01±0.88 

*, ** and *** indicate significant difference between control and heat-treated plants at p < 0.05, 
p < 0.01 and p < 0.001, respectively in analysis of variance. 
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Table 6.5 Trait raw mean ± standard error (SE) for heat treatments at 6 cm AI and 10 DAA, for the two parents and across all the 
doubled haploids (DH), under control and heat conditions. A common set of control plants was used for comparison to the plants 
treated at the different stages. 

Treatment at 6 cm AI  

 Reeves Young DH 

Trait Genotype Control Heat Control Heat  Control Heat 

Duration of developmental processes (d) 

AIToAwnEm 5.50±0.23 5.67±0.14 4.17±0.30 3.42±0.31 4.83±0.08 3.91±0.06 
SowToAI 49.33±0.53 48.83±0.44 46.42±0.40 45.67±0.40 49.35±0.32 49.41±0.32 
AIToFLSen 67.83±2.54 68.55±4.25 67.25±2.00 74.00±2.93 64.86±0.68 67.04±0.66 

Traits measured at maturity  

Final organ length, or gain in organ length from the commencement of treatment (cm)  

AIToMat 71.17±1.13 72.92±0.95 73.58±0.83 73.67±0.74 70.52±0.34 71.28±0.32 
AwnLMat 4.90±0.18 4.46±0.21 6.11±0.18 6.08±0.20 5.30±0.05 5.22±0.05 
CulmLMat 82.85±4.79 77.23±2.21 66.24±1.64 60.15±2.03 73.33±0.85 67.02±0.73 
PedLMat 34.91±1.39 38.75±0.83 34.70±0.37 34.98±1.01 32.35±0.33 31.94±0.30 
ShootWMat 1.58±0.09 1.50±0.07 0.97±0.04 0.92±0.04 1.21±0.02 1.17±0.02 
SpkLMat 8.58±0.12 8.32±0.17 8.71±0.23 8.72±0.15 8.69±0.05 8.85±0.06 

Grain and spikelet number  

GnNoSpk1&2 31.67±1.09 13.33±1.84 22.58±2.02 16.27±2.97 26.28±0.39 16.71±0.48 
GnNoSpk>2 8.92±1.17 11.25±1.10 6.50±1.08 9.55±1.55 7.01±0.26 7.94±0.30 
GnNoSpk 40.58±2.17 24.58±1.59 29.08±3.02 25.82±4.29 33.28±0.60 24.54±0.69 
GnNoSpklt1&2 1.75±0.05 0.70±0.11 1.59±0.13 1.05±0.19 1.63±0.02 0.94±0.03 
GnNoSpklt>2 0.49±0.06 0.57±0.05 0.45±0.07 0.62±0.09 0.42±0.01 0.43±0.01 
BotGnNoSpklt1&2 1.83±0.07 1.19±0.13 1.37±0.19 0.84±0.19 1.59±0.03 1.07±0.03 
BotGnNoSpklt>2 0.54±0.09 1.01±0.09 0.51±0.10 0.75±0.16 0.50±0.02 0.51±0.02 
BotGnNo1&2 10.50±0.47 7.17±0.71 5.92±0.91 4.18±0.94 7.97±0.15 6.00±0.18 
BotGnNo>2 3.08±0.54 6.25±0.63 2.25±0.46 3.64±0.79 2.55±0.10 2.85±0.11 
MidGnNoSpklt1&2 1.93±0.03 0.55±0.15 1.74±0.12 1.15±0.24 1.80±0.02 1.07±0.03 
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Table 6.5 continued.. 
 

Treatment at 6 cm AI 

 Reeves Young DH 

Trait Genotype Control Heat Control Heat  Control Heat 

Grain and spikelet number  

MidGnNo>2 5.25±0.55 4.75±0.66 3.33±0.48 4.18±0.90 3.71±0.13 3.99±0.15 
MidGnNo&2 11.58±0.36 3.42±0.92 8.33±0.72 5.91±1.27 9.73±0.14 6.39±0.19 
TopGnNoSpklt1&2 1.52±0.11 0.43±0.11 1.64±0.10 1.13±0.18 1.49±0.02 0.69±0.03 

TopGnNoSpklt>2 0.09±0.04 0.04±0.02 0.18±0.07 0.31±0.07 0.12±0.01 0.15±0.01 

TopGnNo>2 0.58±0.26 0.25±0.13 0.92±0.34 1.73±0.41 0.75±0.06 1.01±0.08 

TopGnNo1&2 9.58±0.68 2.75±0.74 8.33±0.51 6.18±1.03 8.58±0.16 4.33±0.18 
GnNoSpklt 2.24±0.11 1.28±0.10 2.05±0.19 1.66±0.26 2.05±0.03 1.37±0.03 
BotSpkltNo 5.75±0.13 6.17±0.17 4.25±0.18 4.82±0.12 4.98±0.04 5.58±0.05 
MidSpkltNo 6.00±0.17 6.50±0.20 4.75±0.18 5.00±0.14 5.41±0.04 5.92±0.05 
TopSpkltNo 6.33±0.19 6.92±0.23 5.08±0.08 5.36±0.15 5.69±0.04 6.25±0.05 
DevSpkltSpk 18.08±0.43 19.58±0.54 14.08±0.40 15.18±0.33 16.07±0.13 17.75±0.15 
UndDevSpklt 3.75±0.33 2.67±0.38 5.17±0.41 3.36±0.36 4.73±0.10 3.07±0.07 

Treatment at 10 DAA 

Trait Reeves Young DH 

 Control Heat Control Heat Control Heat 

Duration of developmental processes (d) 

SowToAnth 60.25±0.49 60.75±0.74 57.75±0.61 58.42±0.87 60.39±0.33 60.65±0.33 
AnthToFLSen 56.92±2.49 45.50±3.98 55.92±1.86 53.58±3.62 53.76±0.67 48.17±0.72 

Traits measured before and after heat treatment 

CulmL10 77.11±4.28 81.65±2.38 61.34±1.66 57.48±2.10 68.21±0.78 67.19±0.79 
LowInternL10 44.25±3.20 47.60±1.75 28.87±1.60 27.18±1.54 37.77±0.63 37.55±0.64 
PedL10 DAA 32.85±1.27 34.28±1.05 32.47±0.36 30.30±1.16 30.38±0.31 29.76±0.32 
SPAD10 DAA 47.37±0.96 46.35±0.64 47.25±0.86 47.72±0.89 44.96±0.16 45.13±0.16 
SPAD13 DAA 47.39±0.80 43.30±0.89 47.82±0.78 46.98±0.89 45.56±0.15 43.42±0.21 
SPAD27 DAA 44.92±1.49 37.39±4.26 47.14±0.93 44.48±2.58 42.73±0.39 37.04±0.61 

SPAD10To13 0.03±0.41 -3.05±0.65 0.57±0.42 -0.75±0.34 0.60±0.08 -1.70±0.17 

SPAD10To27 -2.45±1.02 -8.96±4.01 -0.11±0.65 -3.24±2.65 -2.24±0.37 -8.09±0.60 

SPAD13 DAATo27DAA -2.48±1.02 -5.91±3.98 -0.68±0.61 -2.49±2.71 -2.84±0.36 -6.41±0.55 
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Table 6.5 continued.. 

Treatment at 10 DAA 

Trait Reeves Young DH 

 Control Heat Control Heat Control Heat 

Traits measured at maturity 

AnthToMat 60.25±1.04 55.75±1.36 62.25±0.65 61.17±2.09 59.46±0.34 55.40±0.40 

CulmLMat 82.85±4.79 88.35±2.49 66.24±1.64 61.77±2.37 73.33±0.85 72.64±0.86 

PedLMat 34.91±1.39 36.68±1.16 34.70±0.37 32.41±1.23 32.35±0.33 31.86±0.34 

ShootWMat 1.58±0.09 1.50±0.08 0.97±0.04 0.88±0.04 1.21±0.02 1.18±0.02 

CulmL10 DAAToMat 5.74±0.56 6.69±0.21 4.90±0.17 4.30±0.34 5.37±0.07 5.39±0.08 

GWSpk 1.73±0.07 1.64±0.11 1.02±0.13 0.74±0.11 1.22±0.03 1.17±0.02 

SingGW 43.27±1.60 41.38±1.88 35.63±2.22 29.49±2.98 37.65±0.38 34.76±0.34 

DevSpklt 18.25±0.35 17.82±0.42 14.08±0.40 13.42±0.38 16.09±0.13 15.96±0.13 

LowIntern10ToMat 3.68±0.45 4.30±0.24 2.68±0.17 2.1±0.28 3.32±0.07 3.38±0.07 

PedL10ToMat 2.06±0.14 2.40±0.14 2.23±0.05 2.11±0.11 2.06±0.03 2.03±0.03 

DaysToMat 120.50±1.20 116.50±1.36 120.00±0.92 119.60±2.04 120.00±0.39 116.10±0.48 

LowInternMat 47.94±3.58 51.90±1.84 31.54±1.62 29.37±1.73 40.98±0.69 40.97±0.70 

CulmLMat_PedLmat_ratio 2.34±0.06 2.42±0.06 1.91±0.05 1.92±0.06 2.31±0.02 2.34±0.03 

Shoot_wt_length_ratio 75.13±4.98 60.38±2.68 68.93±2.32 70.74±2.53 62.86±0.55 63.52±0.51 

UnderdevSpklt 3.67±0.28 4.18±0.35 5.17±0.41 5.17±0.35 4.73±0.10 4.79±0.11 
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6.3.3 QTLs detected for heat tolerance and per se traits 

The 13 QTL regions detected are summarized in Table 6.5 and described in the following 

sections.  

QTL1 

This was identified for single grain weight (SingGW) per se under control conditions, on 

chromosome 1B (58.98 cM). The positive allele was from Young and the locus contributed 6% of 

the phenotypic variability for this trait. 

QTL 2 

This was identified for awn length at maturity (AwnLMat) per se under heat when heat treated 

at 6 cm AI. The closest marker was at the 0.00 cM position on chromosome 1D. The positive allele 

came from Young and the locus explained 6.43% of the variability.  

QTL 3 

Two QTL effects were identified in this region of chromosome 2B, with peak markers at 83-87 

cM, for under-developed spikelets per spike (UnderdevSpklt) per se under heat, and for floret 

fertility at the lower two floret positions in the spikelets from the middle third of spike 

(MidGnNoSpklt1&2). The high value allele for the UnderdevSpklt effect was contributed by Young 

and the effect explained 22% of the phenotypic variation. The QTL for MidGnNoSpklt1&2 

explained 8.68 % of the phenotypic variance, with the tolerance allele coming from Young. The 

peak marker for the MidGnNoSpklt1&2 tolerance effect (1205884|F|0--37:C>T(C)) was located 

on the scaffold 57860 in the IWGSC wheat genome reference sequence. A much stronger QTL 

effect for heat induced floret sterility tolerance (explaining 49% of the variance) has been 

identified in a Drysdale x Waagan mapping population (Million F. Erena, personal 

communication) with the peak marker (wsnp_JD_c3732_4781170) located on the same scaffold 

57860, suggesting an effect of the same gene was detected in the two populations. The pedigrees 

of the Australian varieties Waagan and Drysdale have no strong affinity to those of Young or 

Reeves, suggesting that variation for the same 2B floret fertility QTL may be present across a 

diverse range of Australian varieties. The genetic association of the tolerance effect from Young 
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with a greater number of underdeveloped spikelets after heat, suggests that a common process 

may provide both floret fertility tolerance and inhibition of development of the lower spikelets 

on the spike under heat.  

QTL4 

Markers located at 26.0 to 26.94 cM on linkage group 3B2 affected both the duration of 

senescence at latter tiller developmental stages per se (AIToFLSen, control and heat, and 

AIToFLSen, control), and culm length per se at maturity (CulmMat and LowinternMat, heat and 

control) (Table 6.5). The allele from Young shortened the period from target AI stage or 10DAA 

to flag leaf senescence, and resulted in longer culms. These effects explained between 4.5 and 

6.7% of the variation in the corresponding traits.  

There was also a QTL effect with a peak at 9.9 cM (which may or may not have been due to the 

same gene controlling the aforementioned traits) for single grain weight at maturity (SingGW), 

observed only under heat conditions (treatment at 10 DAA), with the positive allele coming from 

Young, and explaining 6.7% of the variance. As this effect was only found under heat conditions, 

it raises the possibility it may represent a weak effect for grain filling heat tolerance. If this is true, 

then the tolerance for grain filling seemed to be associated with accelerated senescence – rather 

than slower senescence, as found at the 3B locus described by Shirdelmoghanloo, Lohraseb, et al. 

(2016) in the study of the Drysdale x Waagan mapping population.  

The chromosome 3B grain filling heat tolerance locus (QHsgw.aww-3B) identified by 

Shirdelmoghanloo, Taylor, et al. (2016) was located on the tip of the short arm, and explained 

11-20% of the phenotypic variability. BLAST searches of the closest markers against scaffolds 

from the IWGSC reference sequence V4 located QHsgw.aww-3B at 1-21 cM. However, markers 

closest to the SingGW effect of QTL4 were located in scaffolds at ~105.5 cM in IWGSC reference 

sequence V4. Therefore, the QTL effects detected in the two populations seemed to be due to 

different genes, located approximately 100 cM apart on chromosome 3B. 
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QTL5 

This region on chromosome 4A showed two QTL effects related to the magnitude of heat 

accelerated flag leaf senescence, with Reeves contributing the positive allele for tolerance 

(stability). The locus explained ~7% of the phenotypic variances. The traits concerned were the 

period between reaching 6 cM AI and flag leaf senescence (AIToFLSen), and the duration between 

anthesis and flag leaf senescence (AnthToFLSen), identified with the treatments at 6 cm AI and 

10 DAA, respectively. The effects had peak markers located at 75.46 cM to 81.75 cM, respectively.  

QTL6 

A QTL for grain number per spikelet at floret position above two (GnNoSpklt>2) was identified 

under heat, on chromosome 4A, with a peak marker at 155.63 cM. It explained 7.43% of the 

variability and Young contributed the positive allele. As this effect was detected only under heat, 

it may represent a weak tolerance effect.  

QTL7 

Twenty five QTL effects for heat tolerance and per se traits were identified in this region, with 

peak markers at 30.92 to 39.56 cM on chromosome 4B (Table 6.5). The Rht-B1 gene was mapped 

at 38.62 cM, and this population segregated for height at Rht-B1, hence it seems all/most of these 

effects were likely to be due to Rht-B1 segregation. The Reeves allele (representing the tall 

marker allele), as expected, was positive for height-related and shoot weight traits per se. As for 

the QTL4 on 3B, the tall allele was also associated with a shorter period between anthesis or the 

target AI and complete senescence. The tall allele was associated with greater SingGW at 

maturity per se, as was the case at the Rht-B1 and Rht-D1 loci in the study of Shirdelmoghanloo, 

Cozzolino, et al. (2016). The tall allele was also associated with longer AILToAwnEm and shorter 

LowinternL0 per se, which was again probably a consequence of the height effect.  

The tall allele also provided tolerance (stability) for peduncle length at maturity (PedLMat, 10DAA 

treatment), shoot weight at maturity (ShootWMat, 10DAA treatment), peduncle growth from 10 

DAA to maturity (PedL10ToMat, 10DAA treatment) and for the duration of the period between 

reaching the target auricle interval and awn emergence (AIToAwnEm, 6 cm AI treatment). These 
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‘tolerance’ effects were probably the result of artefacts caused by the large effects of Rht-B1 on 

development, i.e. by altering whether these organs were at a more or less sensitive stage to the 

heat effects, at the given target AI.  

QTL8 

One tolerance and sixteen per se QTLs effect were identified with peak markers at 166.78 to 

178.54 cM on chromosome 5A. The Vrn-A1 gene, which was known to segregate for functionally 

contrasting alleles in this population, was mapped at 178.54 cM. Hence it appears likely that 

these observed QTL effects were all due to Vrn-A1 segregation. The winter allele from Reeves, as 

expected, delayed the period from sowing to flowering stage (SowToAnth, SowToAwnEm and 

SowToAI). The locus also showed a range of effects on spikelet number, spikelet development 

status, spikelet fertility and organ length/width, which also seemed consistent with 

developmental effects expected from Vrn-A1 segregation.  

The heat tolerance QTL was observed here for peduncle growth from 10 DAA to maturity 

(PedL10ToMat; 10 DAA), with tolerance (stability) coming from Young. This locus explained ~19% 

of the phenotypic variation for the respective traits. As for tolerance effects at Rht-B1, this 

tolerance effect might represent a staging artefact.  

QTL9 

QTLs for UnderdevSpklt and PedMat were identified on chromosome 5D in control plants, with 

closest markers at 27.64 and 14.27 cM, respectively, and explaining 5-6 % of the variability. The 

Vrn-D1 gene mapped close to these QTL peaks, at 33.86 cM, so one or both of these effects may 

have been due to Vrn-D1 segregation. Consistent with this notion, the spring alleles at Vrn-A1 

(QTL8) and Vrn-D1 (QTL9), from Young, were both associated with high values for PedMat and 

low values for UnderdevSpklt. 

QTL10 

Another QTL for floret fertility tolerance was detected on chromosome 6A, at 179.09 cM (for 

floret positions 1&2 in the top third of the spike; TopGnNoSpklt1&2), with the tolerance allele 

coming from Young. It only explained 6.3% of the phenotypic variance (Table 6.6). 
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QTL11 

This effect on linkage group 6D2 (172.42 cM) was detected for fertility per se only under control 

conditions in the floret positions above 2 (GnNoSpklt>2, whole of spike), with the high fertility 

allele coming from Reeves. 

QTL12  

This QTL for AwnLMat in control plants was located at 140.29 cM on chromosome 7A and 

explained 8.59% of the phenotypic variability. The Young allele contributed longer awn length. 

QTL13 

This QTL on linkage group 7D1 was identified for grain number per spike (GnNoSpk) and was 

detected only in control plants. Young contributed the positive allele. It is unclear whether this 

effect derives from an effect on spikelet number per spike or grains per spikelet, as a QTL effect 

for neither of these component traits was detected at this position. 
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Table 6.6 Summary of QTLs detected in the Young × Reeves DH population. Linkage group, 
position (cM), closest marker, LOD score, percentage of explained variation (R2), additive effect, 
and high value allele (Young, Y; Reeves, R) are presented. Conditional formatting colors were 
used to help visualization. The traits were mapped using the BLUPS, except those marked with 
(*). The latter showed distributions which were not amenable to modelling, so the raw means 
were used; (a): heat and control data were combined for these traits as they were measured 
before heat treatment. 
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QTL1 1B SingGW C 10 DAA 58.98  1051996|F|0--55:A>G(C) 3.60 6.15 0.86 Y 

QTL2 1D AwnLMatH* H 6 cm AI 0.00  1061093|F|0--18:G>A 3.68 6.43 0.21 Y 

QTL3 2B MidGnNoSpklt1&2 T 6 cm AI 86.59  1205884|F|0--37:C>T(C) 4.34 8.68 0.09 Y 

 2B UnderdevSpklt* H 6 cm AI 82.83  1091546|F|0--48:T>G 11.03 22.26 0.67 Y 

QTL4 3B2 AnthToFLSen* C 10 DAA 26.47  1674039|F|0--22:G>C(C) 4.43 6.21 2.89 R 

 3B2 AIToFLSen C 6 cm AI 26.00  2280402|F|0--52:G>A 4.47 6.06 1.41 R 

 3B2 AIToFLSen H 6 cm AI 26.00  2280402|F|0--52:G>A 4.23 5.94 1.44 R 

 3B2 CulmMat* C 10 DAA 26.94  4009891|F|0--8:G>A(C) 7.65 4.48 3.72 Y 

 3B2 LowinternMat* C 10 DAA 26.94  4009891|F|0--8:G>A(C) 8.46 5.62 3.32 Y 

 3B2 SingGW* H 10 DAA 9.90  1120374|F|0--15:A>G 3.88 6.71 0.80 Y 

 3B2 CulmMat* H 10 DAA 26.94  4009891|F|0--8:G>A(C) 7.35 4.88 3.95 Y 

 3B2 LowinternMat* H 10 DAA 26.94  4009891|F|0--8:G>A(C) 8.92 6.71 3.70 Y 

QTL5 4A AIToFLSen T 6 cm AI 75.46  1093181|F|0--18:C>A 4.23 7.45 0.39 R 

 4A AnthToFLSen T 10 DAA 81.10  1107438|F|0--36:C>T(C) 4.14 7.22 0.18 R 

QTL6 4A GnNoSpklt>2 H 6 cm AI 155.63  5411454|F|0--16:T>A(C) 4.27 7.43 0.05 Y 

QTL7 4B CulmL10*a C 10 DAA 38.62  2371505|F|0--24:A>C 54.41 68.73 12.34 R 

 4B ShootWMat C 10 DAA 30.92  C15P31 15.24 34.92 0.00 R 

 4B CulmMat* C 10 DAA 38.62  2371505|F|0--24:A>C(C) 56.97 66.66 14.32 R 

 4B GWSpk* C 10 DAA 38.62  2371505|F|0--24:A>C(C) 14.96 26.44 0.26 R 

 4B LowinternMat* C 10 DAA 38.62  2371505|F|0--24:A>C(C) 51.39 62.25 11.03 R 

 4B PedMat* C 10 DAA 38.62  2371505|F|0--24:A>C(C) 19.66 26.08 3.35 R 

 4B AIToAwnEm* C 6 cm AI 39.56  4010028|F|0--43:C>G(C) 7.41 13.46 0.49 R 

 4B ShootWMat H 10 DAA 30.92  C15P31 15.24 34.92 0.16 R 

 4B CulmMat* H 10 DAA 38.62  2371505|F|0--24:A>C(C) 51.38 63.39 14.23 R 

 4B GWSpk* H 10 DAA 38.62  2371505|F|0--24:A>C(C) 12.34 22.19 0.21 R 

 4B LowinternMat* H 10 DAA 38.62  2371505|F|0--24:A>C(C) 46.48 58.69 10.95 R 

 4B PedMat* H 10 DAA 30.92  C15P31 17.66 32.48 3.86 R 

 4B AILToAwnEm* H 6 cm AI 38.62  2371505|F|0--24:A>C(C) 15.86 27.86 0.60 R 

 4B PedLMat T 10 DAA 39.56  4010028|F|0--43:C>G(C) 4.50 7.87 0.29 R 

 4B ShootWMat T 10 DAA 38.62  2371505|F|0--24:A>C 15.43 0.35 0.00 R 

 4B PedL10ToMat T 10 DAA 38.62  2371505|F|0--24:A>C 6.05 8.62 1.46 R 

 4B AIToAwnEm T 6 cm AI 38.62  2371505|F|0--24:A>C(C) 9.67 17.45 0.08 R 
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Table 6.6 continued.. 
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 4B LowInternL10*a C 10 DAA 38.62  2371505|F|0--24:A>C 20.60 34.77 2.21 Y 

 4B AnthToFLSen* C 10 DAA 39.56  4010028|F|0--43:C>G(C) 12.78 21.45 5.37 Y 

 4B AnthToMat* C 10 DAA 38.62  2371505|F|0--24:A>C(C) 7.44 13.55 2.02 Y 

 4B AIToFLSen C 6 cm AI 39.56  3958247|F|0--52:C>G 13.96 23.15 2.76 Y 

 4B AnthToFlse* H 10 DAA 39.56  4010028|F|0--43:C>G(C) 11.98 21.54 5.89 Y 

 4B AnthToMat* H 10 DAA 38.62  2371505|F|0--24:A>C(C) 6.37 11.52 2.22 Y 

 4B AILToMat* H 6 cm AI 38.62  2371505|F|0--24:A>C(C) 4.34 7.64 1.59 Y 

 4B AIToFLSen H 6 cm AI 38.62  2371505|F|0--24:A>C 11.84 19.94 2.63 Y 

QTL8 5A SowToAnth* C 10 DAA 178.54  2261632|F|0--9:A>C(C) 21.70 36.69 4.14 R 

 5A SowToAIL* C 6 cm AI 178.54  2261632|F|0--9:A>C(C) 23.69 39.40 4.26 R 

 5A SowToAwnEm* C 6 cm AI 178.54  2261632|F|0--9:A>C(C) 22.20 37.28 4.42 R 

 5A UnderdevSpklt* C 6 cm AI 172.42  4992467|F|0--21:G>T(C) 11.72 20.57 0.85 R 

 5A SowToAnth* H 10 DAA 178.54  2261632|F|0--9:A>C(C) 21.38 36.31 4.09 R 

 5A GnNoSpk H 6 cm AI 172.42  1220783|F|0--38:C>T 4.52 8.09 6.92 R 

 5A SowToAwnEm* H 6 cm AI 178.54  2261632|F|0--9:A>C(C) 23.41 38.80 4.36 R 

 5A SowToAI* H 6 cm AI 178.54  2261632|F|0--9:A>C(C) 23.20 38.71 4.19 R 

 5A UnderdevSpklt* H 6 cm AI 177.60  1135154|F|0--9:G>A(C) 4.34 6.25 0.36 R 

 5A FlagW C 10 DAA 178.54  1094478|F|0--31:G>A 15.39 27.13 0.08 Y 

 5A FlagL* C 10 DAA 177.60  1135154|F|0--9:G>A(C) 11.75 21.18 1.91 Y 

 5A PedMat* C 10 DAA 178.54  2261632|F|0--9:A>C(C) 17.09 21.84 3.06 Y 

 5A GnNoSpklt C 6 cm AI 166.78  998276|F|0--28:G>A 5.69 10.31 0.13 Y 

 5A AwnLMat* C 6 cm AI 168.19  1074531|F|0--11:G>A(C) 6.35 10.78 0.28 Y 

 5A PedMat* H 10 DAA 177.60  1135154|F|0--9:G>A(C) 15.09 20.63 3.07 Y 

 5A GnNoSpklt H 6 cm AI 172.42  1220783|F|0--38:C>T 6.76 12.41 0.07 Y 

 5A PedL10ToMat T 10 DAA 172.42  1220783|F|0--38:C>T 11.94 19.66 2.21 Y 

QTL9 5D UnderdevSpklt* C 6 cm AI 27.64  C20P28 3.66 5.95 0.46 R 
 5D PedMat* C 10 DAA 14.27  C20P14 3.85 4.82 1.44 Y 

QTL10 6A TopGnNoSpklt1&2 T 6 cm AI 179.09  3023373|F|0--13:A>T(C) 3.70 6.35 0.12 Y 

QTL11 6D2 GnNoSpklt>2 C 6 cm AI 0.00  1001843|F|0--17:G>A 3.84 6.67 0.03 R 

QTL12 7A AwnLMat* C 6 cm AI 140.29  4911242|F|0--20:T>G 5.24 8.59 0.25 Y 

QTL13 7D1 GnNoSpk C 6 cm AI 61.68  1075787|F|0--25:C>T 3.38 5.77 1.84 Y 
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6.4 Conclusions 

 No heat tolerance QTLs for final grain size (SingGW) were detected. The grain filling 

tolerance was reversed in the parents relative to what was observed by 

Shirdelmoghanloo (2015) (3.5% and 13% reduction in SingGW in Reeves and Young, 

respectively, contrasting with 25% and 3.0%, in the previous study). The high 

temperatures experienced by the plants in the greenhouse in the current experiment 

may partly explain this reversal in tolerance of the parents, and the lack of any SingGW 

tolerance QTL detected.  

 Two floret fertility heat tolerance QTL were detected, on chromosomes 2B (QTL3) and 

6A (QTL10), but they explained a relatively low amount of the phenotypic variation (8.68% 

and 6.35%). QTL2 was located at a similar genomic location to a floret fertility tolerance 

for grain number per spike (GrNoSpk), and explained 49% of the variance in the Drysdale 

x Waagan mapping population. The heat treatment in the current experiment had a large 

impact on floret fertility (e.g., 65% in Reeves and 50% in Young), hence the high 

temperatures experienced in the greenhouse during this experiment do not easily explain 

why the effect of the 2B locus was relatively weak compared to that seen in the Drysdale 

x Waagan population. It is possible that the two populations segregate for different pairs 

of alleles for this gene. 

 QTL4 for SingGW per se under heat conditions, on chromosome 3B, was located 100 cM 

away from the 3B SingGW heat tolerance QTL that had been identified in the Drysdale 

x Waagan population, and therefore appears to represent a different gene.  

 QTL5 on chromosome 4A affected tolerance for the rate of senescence from the AI 

target stage or from anthesis (i.e. affected the degree of heat-enhanced senescence). 

 Heat tolerance QTLs for various developmental process were detected on 

chromosomes 4B and 5A, but it seemed likely these were due to effects of segregation 

at the major phenology loci Rht-B1 and Vrn-A1, respectively. 
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Chapter 7: Genetic variation for grain filling and floret fertility response to brief heat stress 

treatments in 21 Australian varieties of hexaploid wheat (Triticum aestivum L.) 

7.1 Introduction 

Australia is one of the highest wheat producing countries in the world (10th highest; FAOSTAT). 

Across the Australian wheat belt, exposure of wheat to high temperature causes yield reduction 

due to accelerated leaf senescence (Asseng, Foster & Turner 2011). Heat (>20 °C) accelerates 

grain filling rate (by 1.32 to 1.67 mg grain−1 d−1) but shortens grain filling duration (by 30% or 

more) (Stone et al. 1995; Wardlaw, Sofield & Cartwright 1980), resulting in reduced grain weight.  

High temperature at around meiosis results in failed grain set due to heat induced female sterility 

and damage to the anthers. It can also cause complete sterility (Owen 1971; Saini & Aspinall 

1982) when occurring during and after ear emergence. Moderately high temperatures (>20 °C) 

between spike initiation and anthesis can substantially reduce grain number per spike (Fischer, 

RA 1976; Warrington, Dunstone & Green 1977). Grain number per spike can decrease by 4% for 

every 1 °C (from 15-22 °C) increase during the 30 days before anthesis (Fischer, R 1985).  

Shirdelmoghanloo, Cozzolino, et al. (2016) studied heat tolerance at grain filling stage in 37 

varieties, mostly Australian, and observed that heat reduced single grain weight in 23 of the 

varieties. Million F Erena (PhD thesis: Genetic and Physiological Bases of Heat-Induced Floret 

Sterility in Wheat, unpublished) used 26 hexaploid wheat varieties (also mostly Australian) to 

study heat tolerance for floret fertility and observed that parental lines for seven existing 

mapping populations showed contrasting tolerance under heat treatment.  

In the experiment described in the current chapter, 21 Australian wheat varieties were screened 

for heat tolerance for both grain filling and floret fertility. Young and Reeves were selected as 

they were parents of the mapping population described in Chapter 5. The rest of the varieties 

were selected to represent a selection of the Australian varieties that were most widely grown 

or promising for cultivation at around the time of the experiment in 2015. Most of these lines 

belonged to the quality categories APW (Baxter, Corack, Hydra, Kord, Magenta, Scout, Stiletto 

and Yitpi), APH (EGA_Gregory, Flanker, Spitfire, Suntop, Sunvale) and AH (Cobra, Emu Rock, 

Sceptre and Mace).  
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Table 7.1 Details of wheat genotypes. 
 

The findings of the experiment might allow varieties to be recommended to the breeders for use 

as parents for breeding programs for heat prone target environments; also varieties to 

Variety Pedigree Released by Year of 
release 

Baxter INIA-
66/GAMUT//COOK/4/JUPATECO/3/LE
RMA-ROJO-64/SONORA-64-A//(Lobell, 
Sibley & Ortiz-Monasterio)TIMGALEN 

Dept. of Primary Industries QLD 1998 

Calingiri Chino/Kulin//Reeves InterGrain 1997 
Cobra Westonia/Sentinel LongReach Plant Breeders Pty 

Ltd. 
2011 

Corack Wyalkatchem/Silverstar//Wyalkatche
m 

Australian Grain Technologies 2011 

EGA Gregory Pelsart/2*Batavia doubled haploid line Dept. of Primary Industries QLD 
and Enterprise Grains Australia 
joint venture 

2004 

Emu Rock Westonia/Kukri/Perenjori/Ajana Intergrain 2011 
Flanker EGA Gregory//EGA Gregory/Lang LongReach Plant Breeders Pty 

Ltd. 
2014 

Hydra EGA Bonnie Rock/ Strzelecki InterGrain 2015 
Kord Gladius’*2/4/Frame//Wild4/11A/3Sun

mist 
Australian Grain Technologies 2011 

Mace Wyalkatchem/ Stylet  Australian Grain Technologies 2008 
Magenta Carnamah/Tammin18 InterGrain 2007 
Reeves  Bodallin//Gamenya/Inia 66 Western Australian Department 

of Agriculture  
1989 

Scepter RAC1480/2*Mace Australian Grain Technologies 2015 
Scout Sunstate/QH71-6//Yitpi LongReach Plant Breeders Pty 

Ltd. 
2009 

Spitfire Drysdale/Kukri LongReach Plant Breeders Pty 
Ltd. 

2011 

Stiletto Veranopolis/3*RAC177/2/3*Spear/3/D
agger 

InterGrain 2000 

Suntop Sunco/2*Pastor//SUN436E Australian Grain Technologies 2012 
Sunvale Cook*2/VPM1//3*Cook Australian Grain Technologies 1993 
Wyalkatche
m 

Machete/4/(W84–129*504) 
Gutha/3/Jacup*2//(11thISEPTON135) 
Iassul/H567–71 

InterGrain 2001 

Yitpi C-8-MMC-8-HMM/Frame SA Research and Development 
Institute 

1999 

Young  VPM1/3*Beulah//Silverstar Australian Grain Technologies 2009 
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recommend to the farmers, if growing more heat tolerant varieties is desirable. The findings 

might also help to understand the correlation between grain filling and floret fertility heat 

tolerance traits. 

7.2 Materials and Methods  

7.2.1 Plant materials 

Twenty-one Australian wheat varieties (Table 7.1) were used in this experiment to screen for 

heat tolerance for both grain filling and floret fertility. Seeds were sown on 28th August, 2015. 

7.2.2 Experimental design, plant growth and heat stress conditions 

This genotype screening was combined with the phenotyping experiment of Y x R DH mapping 

population. Plant growth conditions, treatment and experimental design were as described in 

paragraphs 6.2.6 and 6.2.7.  

7.2.3 Data collection and analysis 

Data for 24 traits were collected, when plants reached ~6 cm AI, at 10 DAA, after heat treatment 

and at maturity. Heat response was calculated as percent difference of heat vs. control. GenStat 

18 (www.vsni.co.uk/downloads/genstat/) was used for analysis of variance. Detailed descriptions 

of the measured and derived traits are described in Table 5.2.  

7.3 Results and discussion 

7.3.1 Greenhouse conditions 

The 6 cm AI target stage of the plants occurred between 5th October and 5th November, 2015. 

The sensitive stage for fertility effects of heat includes three days before and after the target 

stage (Nick Collins, personal communication) – some plants were exposed to one day above 30 

oC during this sensitive developmental window (Fig. 7.1). Plants for the grain filling experiment 

reached the target stage (10 DAA) between 26th October and 28th November, 2015. The sensitive 

stage (five days before to 20 days after anthesis) was reached between 21st October and 18th 
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December, during which there were eight days above 30 oC (Fig. 7.1). The evaporative cooling 

system of the greenhouse was only able to cool the room by ~10 oC relative to the outside 

temperature. Outside temperature was very high during both sensitive stages (periods of >35 oC; 

Fig. 7.1) (www.bom.gov.au, Kent Town, weather station number 023090). Plants were therefore 

exposed to higher temperatures than intended in the greenhouse, around the sensitive stages in 

all plants, and during the target treatment stages in the control plants. 

Fig. 7.1 Daily maximum temperature of greenhouse room 30 (red line) and outside (brown line) 
from sowing to maturity. Yellow and red bars indicate periods of reaching target stages for heat 
treatment for 6 cm AI (floret fertility effects) and 10 DAA (for grain filling effects), respectively. 
Green extended bars indicate estimated time when plants were at sensitive stages to the effects 
of heat on fertility or grain filling.  

7.3.2 Traits established pre-heat 

Significant genotypic variation for all the traits established before heat treatment (SowToAI, Sow 

to Anth, TotSpltSpk at 6cm AI, TotSpltSpk at 10 DAA, CulmL10 DAA, PedL10 DAA and SPAD10DAA) 

was observed (Table 7.2). Plants reached the target 6 cm AI stage (SowToAI) at an average of 

53.97 days from sowing, with values ranging from 40 (Emu Rock) to 73 (Magenta) days. The time 

taken to reach anthesis after sowing (SowToAnth) averaged ~65 days. Genotypes reached this 

stage at variable duration, ranging from 53 to 76 days. Average total number of spikelets per 

spike (TotSpltSpk) was similar (~22) for plants treated at 6 cm AI or 10 DAA, supporting the notion 

that spikelet number was established prior to the heat treatment period. Variation among the 

genotypes were observed, ranging from ~14 to 31. Culm length averaged ~61 cm at 10 DAA 
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(CulmL10 DAA) and ranged between 38 to 81 cm. Average peduncle length at 10 DAA (PedL10 

DAA) was ~28 cm and ranged from 17 to 33 cm. Average SPAD reading just prior to heat 

treatment (SPAD 10DAA) was 45.57, ranging between 41 and 49 between genotypes (Appendix).  

 

Table 7.2 Mean of heat response (percent difference of heat vs. control) and P-values for 
genotype (G), treatment (T) and genotype x treatment (GxT) effects for plants heat treated at 6 
cm AI and 10 DAA (and controls). P-values of <0.001, 0.01 and 0.05 are highlighted in gradients 
of green color. 

Traits p-value 

Traits established pre-heat 
Mean of 
response G T G x T 

SowToAI 0.31 <.001 0.930 0.550 
Sow to Anth 0.36 <.001 0.591 0.483 
TotSpltSpk (6cm AI) 0.323 <.001 0.579 0.681 
TotSpltSpk (10 DAA) -0.746 <.001 0.330 0.420 
CulmL10 DAA 1.19 <.001 0.844 0.519 
PedL10 DAA 3.14 <.001 0.938 0.600 
SPAD10DAA 0.13 <.001 0.758 0.818 

Proportion of spikelets that are underdeveloped  

PropSpltUndDev (6 cm AI) -29.54 <.001 <.001 0.027 
PropSpltUndDev (10 DAA) 22.39 <.001 0.090 0.681 

Grains per spikelet     

BotGNoSpklt1&2 -32.67 <.001 <.001 0.010 
MidGnNoSpklt1&2 -51.83 <.001 <.001 0.000 
TopGnNoSpklt1&2 -49.48 <.001 <.001 0.000 
BotGNoSpklt>2 21.06 <.001 <.001 0.730 

MidGNoSpklt>2 -24.87 <.001 0.780 0.030 

TopGnNoSpklt>2 -51.16 <.001 0.200 0.790 

Duration of developmental processes 

AIToAwnEm (6 cm AI) -12.49 <.001 <.001 0.070 
SowToAwnEm (6cm AI) -1.15 <.001 0.070 0.960 
AIToFLSen (6 cm AI) 7.01 <.001 0.070 0.600 
AnthToFLSen (10 DAA) -3.02 <.001 0.004 0.805 
AIToMat (6 cm AI) 2.84 <.001 0.050 0.450 
AnthToMat (10 DAA) -5.1 <.001 <.001 0.584 
DaysToMat (6cm AI) 1.77 <.001 0.040 0.420 
DaysToMat (10 DAA) -2.46 <.001 <.001 0.524 

Chlorophyll content     

SPAD13DAA -6.67 <.001 <.001 0.047 
SPAD27DAA 4.05 0.001 <.001 0.345 
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Table 7.2 continued.. 
 

    

Traits p-value 

Traits established pre-heat 
Mean of 

response G T G x T 

SingGW 

SingGW -6.83 <.001 0.001 0.937 

Organ final weight, final length or gain in length 

CulmLMat (6cm AI) -5.8 <.001 <.001 0.100 
CulmLMat (10 DAA) 0.8 <.001 0.960 0.587 
PedLMat (6cm AI) 1.51 <.001 0.970 0.000 
PedLMat (10 DAA) 1.31 <.001 0.918 0.675 
SpikeLMat (6cm AI) 4.61 <.001 <.001 <.001 
AwnLMat (6cm AI) -0.48 <.001 0.390 0.930 

ShootWMat (10 DAA) -3.97 <.001 0.012 0.276 

CulmL10 DAAToMat (10 DAA) 10.86 <.001 0.234 0.672 
PedL10ToMat (10 DAA) 5.05 <.001 0.415 0.168 

7.3.3 Proportion of spikelets that were underdeveloped 

Significant treatment (T) and genotype by treatment (G x T) effects were observed for 

PropSpltUndDev (6 cm AI) in ANOVA for the treatment at 6 cm AI (Table 7.4). The trait value 

decreased in all genotypes. Wyalkatchem, Flanker, Scepter and Corack showed more than 60% 

decrease while Spitfire, Emu Rock and Suntop displayed less than 20% reduction in this trait 

under heat (Fig. 7.2). Therefore, the heat treatment somehow advanced the developmental 

status of these lower spikelets, by the time maturity was reached.  

Fig. 7.2 Means of Proportion of spikelets that were underdeveloped, PropSpltUndDevat (6 cm AI) 

in each genotype for control (green columns) and heat-treated plants (brown columns). 

Genotypes are ordered by heat response (heat vs. control). The vertical arrows indicate LSD 

values (α = 0.05) for comparisons of means of control (green) and heat (red) across genotypes. 
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7.3.4 Grains per spikelet 

TopGnNoSpklt1&2, MidGnNoSpklt1&2 and BotGnNoSpklt1&2 

Under favorable conditions, wheat is expected to set close to two grains per spikelet at the lowest 

two floret positions in the spikelets (McMaster et al., 1992). In the control plants, around half the 

genotypes set an average of 1.8 grains or less at these positions, possibly due to the high 

temperatures experienced in the greenhouse (paragraph 6.3.1).  

Grain number per spikelet at floret position 1&2 in the top, middle and bottom third of the spike 

was reduced significantly by heat treatment and genotype by treatment interaction was also 

observed for these traits. On average, 42, 57 and 55% reduction were observed at floret position 

1&2 in top, middle and bottom part of the spike, respectively (Fig. 7.3A, B and C). Cobra, 

Wyalkatchem, Magenta, Suntop, Hydra, Emu Rock, Corack, Reeves and Spitfire, Wyalkatchem 

and Cobra showed the most reduction in seed number (70% or more) and could therefore be 

regarded as the most intolerant of the varieties. EGA Gregory and Scout maintained their floret 

fertility relatively well after heat treatment, and therefore appeared to be the most tolerant of 

the varieties.  

TopGnNoSpklt>2, MidGnNoSpklt>2 and BotGnNoSpklt>2 

Grain number per spikelet in the third and above floret positions was lowest in the top third of 

the spike (Fig. 7.3D, E and F). As previously observed by (Evans, Bingham & Roskams 1972), 

fertility was greatest in the middle of the spike for these >2 floret positions.  

There were significant T or G x T effects for >2 floret positions only in some cases (Table 7.3). No 

genotypic differences in sterility appeared consistently over the three parts of the spike (Fig. 

7.3D, E and F).  

7.3.5 Duration of developmental processes 

There were G effects for all these traits, but T effects for only six: AIToAwnEm and AIToMat (6 cm 

AI), AnthToFLSen and AnthToMat (10 DAA), DaysToMat (6cm AI and 10 DAA treatments). None 

of the traits showed G x T effects.  
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Heat accelerated awn emergence overall (AIToAwnEm; a trait measured only for the 6 cm AI 

treatment), and this increase was evident in 16 genotypes (Fig. 7.4A).  

For the remaining traits, which described the rate at which maturity or complete flag leaf 

senescence was reached, the different heat treatments produced opposite effects (Table 7.3; Fig 

7.4B, C, D, E, F); the heat treatment applied at 6 cm AI delayed senescence/maturity (AIToMat, 

DaysToMat, and AIToFLSen, although the latter was not statistically significant) while the heat 

treatment applied at 10 DAA acclerated senescence/maturity (AnthToFLSen, DaysToMat and 

AnthToMat). The overall effects were in the order of 2 to 5 days difference. These findings are 

consistent with observations by other authors that heat applied at grain filling shortened the 

grain filling duration (Stone et al. 1995; Wardlaw, Sofield & Cartwright 1980).  
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Fig. 7.3 Average grain number per spikelet in control (green) and heat-treated (brown) plants of hexaploid wheat genotypes, for the 
first and second floret positions in the spikelet at top (A), middle (B) and bottom (C) third of the spike. Similarly, D, E and F presents 
grain number per spikelet in the third and above floret positions at top, middle and bottom parts of the spike. Genotypes are ordered 
according to heat response of grains per spikelet at floret position 1&2 in the middle part of the spike. The vertical bars indicate the 
LSD values (α = 0.05) for across genotype mean comparisons within control (green bar), or heat (brown bar).
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Fig. 7.4 Means of days from AIToAwnEm (6 cm AI) (A), AIToMat (6 cm AI) (B), DaysToMat (6cm AI) (C), AnthToMat (10 DAA) (D), 
AnthToFLSen (10 DAA) (E), and DaysToMat (10 DAA) (F) of each genotype for control (green column) and heat-treated plants (brown 
column). These six traits showed significant T effects but no G x T effects. The vertical arrows indicate LSD values (α = 0.05) for 
comparisons of means of control (green) and heat (red) across genotypes. The genotypes are ordered according to heat response of 
AIToAwnEm. 
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7.3.6 Chlorophyll content (SPAD10 DAA, SPAD13 DAA and SPAD27 DAA) 

Chlorophyll content just before heat treatment (SPAD10 DAA) differed significantly across the 

genotypes and averaged ~45 SPAD units. On average across all genotypes, control plants senesced 

(lost chlorophyll) in the two weeks after the time the heat-treated plants were removed from the 

heat chamber, and heat treatment reduced chlorophyll content during the heat treatment period 

and accelerated its loss in the two weeks after, relative to control plants (Fig. 7.5). A very similar 

pattern was observed by Shirdelmoghanloo, Lohraseb, et al. (2016) upon heat treating another set 

of wheat genotypes at 10 DAA.  

In control plants, Cobra, Magenta, Baxter, Emu Rock and Yitpi showed chlorophyll decreases by 

27DAA, but the other genotypes showed no appreciable senescence during this period (Fig. 7.6A). 

Chlorophyll decreased significantly due to the heat treatment by 13 DAA (just after heat 

treatment), by an average of 4 SPAD units. There were GxT effects at this time point. Yitpi and 

Scepter were the most stable (tolerant), while Calingiri exhibited the greatest loss (32%; Fig. 6.6A), 

followed by Cobra, Magenta, Sunvale, Corack and Reeves. Chlorophyll content decreased further 

by two weeks after heat treatment (27 DAA). GxT effects were insignificant at this point, although 

the means varied widely (Fig. 7.6B).  

Fig. 7.5 Overall mean + SE of flag leaf chlorophyll content across all genotypes, measured at 10, 13 
and 27 DAA in control (green line) and heat-treated plants (brown line). Red bar indicates time of 
heat treatment. 
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Fig. 7.6 Means of SPAD unit measured at 10, 13 and 27 DAA in each genotype for control (green 
columns) and heat-treated plants (brown columns). Genotypes are ordered by heat response (heat 
vs. control) at 13DAA. The vertical arrows indicate LSD values (α = 0.05) for comparisons of means 
of control (green) and heat (red) across genotypes. 

7.3.7 SingGW 

Significant G and T effects were observed for single grain weight. SingGW was reduced by 3.5 mg 

under heat treatment on average. There was no significant G x T effect but Sunvale, Young, 

Magenta, Suntop, Scout, Stiletto, Flanker and Calingiri appeared to be the least tolerant based on 

comparison of the means of heat vs. control (Fig. 7.7).  
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Fig. 7.7 Means single grain weight at 10 DAA of each genotype for control (green column) and 
heat-treated plants (brown column). The vertical arrows indicate LSD values (α = 0.05) for 
comparisons of means of control (green) and heat (red) across genotypes. Genotypes are ordered 
by heat response (heat vs. control). 

7.3.8 Final organ weight and length 

While all these traits showed significant G effects, only SpkLMat (6cm AI) showed both significant 

T and G x T effects. CulmLMat (6cm AI) and ShootWMat (10 DAA) showed only T effects but no G 

x T effect, whereas PedLMat (10 DAA) only showed G x T effect but no T effect.  

CulmLMat (6cm AI) 

Heat at 6 cm AI significantly reduced culm length, by an average of 5 cm with Yitpi, Flanker, Baxter, 

Spitfire, Hydra, Calingiri and Young showing the greatest responses (Fig. 7.8). 

Fig. 7.8 Means of CulmLMat (6cm AI) of each genotype for control (green column) and heat-treated 
plants (brown column). The vertical arrows indicate LSD values (α = 0.05) for comparisons of means 
of control (green) and heat (red) across genotypes. Genotypes are ordered by heat response (heat 
vs. control). 

SpkLMat (6cm AI) 

SpkLMat overall was increased by heat, with Yitpi, Scout, Sunvale, Wyalkatchem, EGA Gregory and 

Corack responding the most (Fig. 7.9).  
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Fig. 7.9 Means of SpkLMat (6cm AI) of each genotype for control (green column) and heat-treated 

plants (brown column). The vertical arrows indicate LSD values (α = 0.05) for comparisons of means 

of control (green) and heat (red) across genotypes. Genotypes are ordered according to heat 

response of CulmLMat (6cm AI treatment). 

ShootWMat (10 DAA) 

On average, heat at 10 DAA reduced shoot weight at maturity, by 72 mg (Fig. 7.10). 

(Shirdelmoghanloo, Cozzolino, et al. 2016)observed a similar reduction in the Drysdale x Waagan 

population. Hydra showed the greatest reduction (29%). However, heat had essentially no effect 

on shoot weight in Magenta, Suntop, Emu Rock, and there were increases in seven varieties 

(Corack, Wyalkatchem, Mace, EGA Gregory, Cobra, Scepter and Scout).  

Fig. 7.10 Means of ShootWMat (10 DAA) of each genotype for control (green column) and heat-
treated plants (brown column). The vertical arrows indicate LSD values (α = 0.05) for comparisons 
of means of control (green) and heat (red) across genotypes. Genotypes are ordered according to 
heat response of CulmLMat (6cm AI treatment). 

PedLMat (6cm AIL) 

The 6 cm AI treatment reduced peduncle length at maturity in about half of the genotypes and 

increased it in the other half of the varieties (Fig. 7.11). 
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Fig. 7.11 Means of PedLMat (6cm AIL) of each genotype for control (green column) and heat-
treated plants (brown column). The vertical arrows indicate LSD values (α = 0.05) for comparisons 
of means of control (green) and heat (red) across genotypes. Genotypes are ordered according to 
heat response of CulmLMat (6cm AI treatment). 

7.3.9 Correlations between trait for heat tolerance 

Genotypic correlations between the heat responses of six traits were investigated: SingGW (10 

DAA), ave. fertility at floret positions 1&2 across the whole spike (GnNoSpklt1&2), SPAD13 DAA 

(10 DAA) and some representative developmental traits PropSpltUndDev (6 cm AI treatment), 

PedLMat (10DAA treatment) and SpkLMat (6cm AI treatment). No strong correlation (correlation 

coefficient > 0.5) was identified (Table 7.4). It was perhaps surprising that no correlation was found 

between heat accelerated chlorophyll loss (SPAD13 DAA response) and SingGW response, as 

Shirdelmoghanloo, Lohraseb, et al. (2016) identified strong correlations between these responses. 

However, lack of a significant G x T effect for SingGW in the current experiment may have 

precluded the possibility of detecting a genotypic correlation with this trait. 

Table 7.3 Genotypic correlations (Pearsons’s correlation coefficients) between average heat 
response (percent difference of heat vs. control) of six traits. Conditional formatting colors were 
used to help visualization.  

  G
n

N
o

Sp
kl

t
1

&
2

 

P
ed

LM
at

 

P
ro

p
Sp

lt
U

n
d

D
ev

 

Si
n

gG
W

 

SP
A

D
1

3
 

D
A

A
 

Sp
ik

eL
M

at
 

GnNoSpklt1&2 1           

PedLMat -0.063 1         

PropSpltUndDev 0.007 -0.217 1       

SingGW -0.145 -0.283 -0.051 1     

SPAD13 DAA 0.0997 -0.248 0.1322 0.1566 1   

SpikeLMat 0.3554 0.4804 -0.131 -0.277 -0.032 1 
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7.3.10 Tolerance categorization of varieties 

The varieties were categorized as intolerant, moderately tolerant or tolerant for heat effects 

(based on percent heat responses), for GnNoSpklt1&2 (average across whole spike), SingGW and 

SPAD13 DAA (Table 7.5). The lack of correlation between these tolerance traits was also evident 

from this table. Magenta was susceptible for both grain weight and number effects (and 

chlorophyll effects) and could therefore be classified as heat intolerant. Baxter and EGA Gregory 

(varieties both released in Queensland) were tolerant to both grain weight and grain number 

effects (and moderately tolerant or tolerant for chlorophyll loss) and could therefore be classified 

as heat tolerant. The remaining varieties showed various combinations of tolerances. Advice to 

growers and breeders could be based on these categorizations.  

Table 7.4 Tolerance categorization of varieties (intolerant, 0; moderately tolerant, +; tolerant, ++) 
based on percent heat responses for three key traits. Conditional formatting colors were used to 
help visualization. 

  

GnNoSpklt1&2 SingGW SPAD13DAA 

Magenta 0 0 0 

Suntop 0 + + 

Stiletto 0 + ++ 

Wyalkatchem 0 ++ 0 

Spitfire 0 ++ + 

Cobra 0 ++ ++ 

Emu Rock 0 ++ ++ 

Mace 0 ++ ++ 

Sunvale + 0 0 

Flanker + + + 

Corack + + + 

Yitpi + + ++ 

Reeves + ++ + 

Kord + ++ + 

Hydra + ++ ++ 

Calingiri ++ + 0 

Young ++ + ++ 

Scout ++ + ++ 

Scepter ++ + ++ 

Baxter ++ ++ + 

EGA Gregory ++ ++ ++ 
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7.4 Conclusions  

Wheat plants grown under good conditions are expected to show near complete fertility (set ~2 

seeds per spikelet in the two lower floret positions) but in this experiment half of the genotypes 

under control condition set less than 1.8 seeds in these positions, perhaps reflecting the high 

temperatures experienced in the greenhouse.  

Nonetheless, grain numbers per spikelet at floret position 1&2 and >2 were reduced significantly 

by the heat treatment, and genotypic differences in responses were identified, allowing 

identification of potentially heat tolerant and intolerant varieties.  

The heat treatment at 10 DAA produced a significant reduction of single grain weight at maturity, 

and although there was no significant G x T effect overall, the varieities were categorized for 

tolerance based on the % difference between the means of the heat and control plants. Perhaps 

the high temperatures in the greenhouse interfered with the ability to discriminate the genotypes 

for SingGW tolerance. 

The tolerance categorizations (Table 7.5) potentially provide a basis for choice/avoidance of 

varieties by breeders and growers, where heat tolerance is desired. However, it should be 

cautioned that these categorizations are so far based on a single experiment, and hence need 

verification. Tolerance for floret fertility and grain weight were not correlated. However, cvs. 

Baxter and EGA Gregory were classified as tolerant for both, potentially offering good options for 

the Northern growing region.  

Heat applied at the 6 cm AI stage prolonged senescence, but heat applied at 10 DAA accelerated 

it. However, G x T effects were only observed for flag leaf chlorophyll just after the heat treatment 

(SPAD13 DAA). No correlation was identified between responses of SingGW and SPAD13 DAA, in 

contrast to previous studies.  

Heat significantly reduced culm length (CulmLMat) and peduncle length (PedLMat) but increased 

the spike length at maturity (SpkLMat; for the treatment at 6 cm AI), but G x T effects were only 

detected for the latter.  
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Appendix: 1 Mean ± SE of traits measured under heat and control condition for 6 cm AI and 10 DAA 
6 cm AI 
Trait  Baxter Calingiri Cobra Corack 

 Control Heat Control Heat Control Heat Control Heat 

AIToAwnEm 2.75±0.47 2.50±0.28 4.75±0.47 3.33±0.88 4.5±0.64 2.33±0.33 5.75±0.47 3..005±0.28 
AIToFLSen 53.00±3.80 46.25±3.86 66.00±3.89 73.33±2.02 53.75±8.14 54.67±4.33 81.75±7.52 80.05±8.37 
AIToMat 70.25±3.68 64.75±3.96 65.00±3.02 69.00±1.52 68.67±3.33 68.00±4.16 76.00±0.91 75.00±1.29 
AwnLMat 6.00±0.43 5.65±0.43 5.10±0.25 5.36±0.37 3.17±0.37 0.00±0.00 5.55±0.28 5.67±0.32 
BotGNoSpklt1&2 1.71±0.18 0.89±0.12 1.80±0.07 1.12±0.24 0.78±0.29 0.06±0.03 0.66±0.2 0.33±0.12 
BotGNoSpklt>2 0.25±0.15 0.49±0.17 0.32±0.19 0.16±0.16 0.03±0.03 0.21±0.07 0.00±0.00 0.14±0.08 
BotGnNo1&2 9.00±1.00 5.50±0.64 7.25±0.85 5.66±2.02 4.75±1.88 0.50±0.28 2.50±0.86 2.25±0.85 
BotSpkltNo 5.25±0.25 6.25±0.47 4.00±0.40 6.25±0.47 5.5.0±0.64 7.25±0.75 3.75±0.47 6.25±0.47 
BotGnNo>2 1.25±0.75 3.25±1.31 1.50±0.95 1.00±1.00 0.25±0.25 1.75±0.62 0.00±0.00 1.00±0.57 
CulmLMat 84.2±1.46 69.38±2.28 61.4±2.76 55.33±3.93 49.25±3.40 47.02±3.27 48.9±3.33 48.17±2.73 
DevSpkltSpk 17.00±0.70 19.75±0.94 12.75±1.31 15.00±2.08 17.75±1.49 22.25±2.09 13.00±1.41 20.00±1.58 
GNoSpike1&2 30.75±0.47 21.00±4.24 23.75±3.32 17.00±2.08 18.75±5.12 0.75±0.47 10.00±2.04 5.75±2.62 
GNoSpike>2 4.75±1.79 8.50±2.78 6.50±2.17 8.33±4.91 2.00±2.00 3.00±1.08 0.00±0.00 3.75±2.13 
GnNoSpk 35.5±1.84 29.5±3.32 30.25±5.48 25.33±6.56 20.75±6.42 3.75±1.49 10.00±2.04 9.50±3.12 
GnNoSpklt 2.11±0.18 1.51±0.21 2.30±0.25 1.64±0.23 1.09±0.29 0.15±0.06 0.78±0.15 0.44±0.13 
GnNoSpklt1&2 1.81±0.07 1.08±0.25 1.83±0.09 1.16±0.16 1.00±0.24 0.03±0.01 0.78±0.15 0.27±0.11 
GnNoSpklt>2 0.29±0.11 0.42±0.12 0.46±0.15 0.48±0.27 0.09±0.09 0.12±0.04 0.00±0.00 0.17±0.08 
MidGNoSpklt1&2 2.00±0.00 1.39±0.36 2.00±0.00 1.53±0.17 1.38±0.4 0.03±0.03 1.00±0.1 0.26±0.17 
MidGNoSpklt>2 0.61±0.21 0.63±0.21 0.63±0.21 0.88±0.48 0.21±0.21 0.15±0.07 0.00±0.00 0.27±0.16 
MidGnNo>2 3.25±1.10 4.25±1.43 3.00±1.08 5.00±2.88 1.50±1.50 1.25±0.62 0.00±0.00 2.00±1.35 
MidGnNo1&2 11.00±0.57 9.25±2.28 8.50±0.95 7.66±1.20 8.75±2.78 0.25±0.25 4.50±0.64 1.75±1.18 
MidSpkltNo 5.50±0.28 6.75±0.25 4.25±0.47 5.00±0.57 6.00±0.40 7.25±0.75 4.50±0.50 6.50±0.64 
PedLMat 35.02±1.42 29.77±0.96 27.48±3.42 23.70±4.02 18.33±1.87 20.75±1.63 25.02±2.61 26.27±1.19 
ShootWMat 1.18±0.02 0.89±0.11 1.20±0.07 1.10±0.14 0.79±0.14 1.01±0.15 0.83±0.07 0.80±0.06 
SowToAI 5.03±1.78 55.25±0.62 64.5±3.12 65.00±3.21 61.25±3.35 58.33±0.66 52.00±1.00 53.75±0.75 
SpikeLMat 9.82±0.02 9.30±0.42 8.00±0.22 8.16±0.08 9.20±0.33 9.60±0.54 8.35±0.33 10.57±0.21 
TopGnNoSpklt1&2 1.73±0.17 0.95±0.30 1.70±0.23 0.80±0.47 0.82±0.16 0.00±0.00 0.65±0.21 0.23±0.10 
TopGnNoSpklt>2 0.04±0.04 0.14±0.10 0.40±0.24 0.38±0.20 0.03±0.03 0.00±0.00 0.00±0.00 0.09±0.06 
TopGnNo>2 0.25±0.25 1.00±0.70 2.00±1.22 0.00±2.08 0.25±0.25 0.00±0.00 0.00±0.00 0.75±0.47 
TopGnNo1&2 10.75±0.75 6.25±1.70 8.00±1.68 3.66±1.66 5.25±1.31 0.00±0.00 3.00±1.08 1.75±0.85 
TopspkltNo 6.25±0.25 6.75±0.25 4.50±0.50 5.33±0.66 6.25±0.47 7.75±0.62 4.75±0.47 7.25±0.47 
UndDevSpkltSpk 6.00±0.00 3.50±0.86 7.50±1.65 5.33±2.33 11.25±2.01 8.00±2.41 9.75±1.03 3.75±1.10 
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Appendix:1 continued… 

Trait  EGA Gregory Emu Rock Flanker Hydra Kord 

 Control Heat Control Heat Control Heat Control Heat Control Heat 

AIToAwnEm 6.33±0.33 5.33±1.76 3.25±0.94 2.66±0.33 4.25±0.47 4.00±0.57 5.25±1.25 0.00±0.00 3.75±0.85 3.00±0.00 
AIToFLSen 60.33±0.88 69.00±5.29 65.75±13.6 75.33±2.84 56.75±5.8 55.75±5.79 68.00±5.13 64.25±2.46 85.75±5.58 80.33±3.84 
AIToMat 75.00±2.08 71.00±4.00 65.5±7.17 70.00±2.64 62.00±4.79 65.25±6.47 69.5±3.88 75.50±0.64 73.75±1.65 76.00±1.00 
AwnLMat 5.80±0.11 5.46±0.18 6.47±0.73 6.80±0.45 6.97±0.26 6.05±0.14 6.72±0.65 6.62±0.25 5.90±0.33 6.16±0.42 
BotGNoSpklt1&2 0.50±0.50 0.54±0.40 1.93±0.06 0.66±0.54 1.48±0.13 0.78±0.46 1.28±0.43 0.61±0.20 1.48±0.30 0.82±0.19 
BotGNoSpklt>2 0.08±0.08 0.22±0.22 0.53±0.14 0.41±0.41 0.14±0.14 0.28±0.20 0.32±0.19 0.32±0.14 0.25±0.14 0.62±0.11 
BotGnNo1&2 2.00±2.00 3.33±2.40 7.75±0.85 2.66±2.18 8.75±1.65 5.50±3.22 6.50±2.39 3.50±1.32 6.50±1.19 4.33±0.88 
BotSpkltNo 4.00±0.00 6.00±0.57 4.00±0.40 4.00±0.00 5.75±0.62 7.25±0.25 5.00±0.40 5.50±0.64 4.50±0.28 5.33±0.33 
BotGnNo>2 0.33±0.33 1.33±1.33 2.25±0.75 1.66±1.66 1.00±1.00 2.00±1.41 1.75±1.03 2.00±0.91 1.00±0.57 3.33±0.66 
CulmLMat 56.5±4.07 60.57±6.45 59.85±4.13 57.6±4.52 72.45±3.34 58.70±2.60 60.93±1.48 54.02±2.12 62.00±3.17 60.77±0.27 
DevSpkltSpk 13.00±0.57 18.67±1.85 13.25±0.85 13.00±0.57 18.75±1.88 23.00±1.08 16.00±0.81 17.25±1.49 14.75±0.85 1.007±0.57 
GNoSpike1&2 12.33±3.75 21.67±8.95 25.50±1.84 7.00±4.50 33.00±4.02 22.75±5.79 22.00±3.97 7.25±4.38 26.75±0.62 14.00±2.08 
GNoSpike>2 0.33±0.33 5.33±4.84 7.75±1.79 6.33±5.84 6.25±4.00 7.50±4.44 6.75±2.86 3.50±2.02 4.25±1.43 7.66±2.02 
GnNoSpk 12.67±4.05 2.07±12.74 33.25±3.52 13.33±10.35 39.25±7.95 30.25±10.14 28.75±6.66 10.75±6.3 31.00±1.58 21.67±1.45 
GnNoSpklt 0.99±0.35 1.34±0.61 2.48±0.11 1.03±0.79 2.04±0.21 1.33±0.44 1.78±0.37 0.00±0.00 2.12±0.17 1.28±0.11 
GnNoSpklt1&2 0.96±0.32 1.08±0.41 1.92±0.05 0.54±0.34 1.75±0.06 1.00±0.25 1.37±0.23 0.37±0.20 0.00±0.00 0.83±0.15 
GnNoSpklt>2 0.02±0.02 0.26±0.24 0.56±0.10 0.48±0.44 0.28±0.17 0.33±0.19 0.41±0.16 0.17±0.09 0.30±0.10 0.44±0.11 
MidGNoSpklt1&2 1.23±0.43 1.37±0.49 2.00±0.00 0.46±0.14 1.92±0.07 0.94±0.37 1.50±0.37 0.33±0.27 2.00±0.00 0.86±0.36 
MidGNoSpklt>2 0.00±0.00 0.28±0.28 0.82±0.11 0.66±0.54 0.26±0.20 0.39±0.22 0.70±0.23 0.07±0.07 0.61±0.18 0.50±0.28 
MidGnNo>2 0.00±0.00 2.00±2.00 3.75±0.62 2.66±2.18 2.00±1.68 3.00±1.78 3.75±1.31 0.50±0.50 3.00±0.91 3.00±1.73 
MidGnNo1&2 5.33±1.76 9.33±3.71 9.00±0.57 2.00±0.57 12.5±1.25 7.25±3.03 8.00±2.12 2.25±1.93 10.00±0.81 4.66±1.66 
MidSpkltNo 4.33±0.33 6.33±0.66 4.50±0.28 4.33±0.33 6.50±0.64 7.75±0.47 5.25±0.25 5.75±0.47 50.00±0.40 5.66±0.33 
PedLMat 25.07±4.33 28.2±2.53 35.93±1.88 30.35±0.86 28.8±0.65 26.3±2.04 31.93±1.47 27.48±1.37 30.15±2.07 33.77±0.38 
ShootWMat 0.83±0.04 1.17±0.08 0.87±0.09 0.93±0.07 1.33±0.15 1.03±0.17 1.18±0.08 1.04±0.06 1.14±0.12 1.23±0.11 
SowToAI 59.67±3.33 59.00±2.64 42.75±0.94 43.00±1.15 62.5±0.28 60.00±1.87 5.003±2.04 51.25±2.35 51.5±1.5 49.67±0.33 
SpikeLMat 8.50±0.28 0.00±0.98 8.22±0.25 7.96±0.26 9.95±0.49 10.15±0.13 7.77±0.34 8.05±0.52 8.17±0.17 8.66±0.18 
TopGnNoSpklt1&2 1.08±0.14 1.32±0.46 1.83±0.09 0.48±0.36 1.8±0.10 1.26±0.14 1.31±0.14 0.21±0.21 1.95±0.05 0.83±0.16 
TopGnNoSpklt>2 0.00±0.00 0.28±0.21 0.35±0.12 0.40±0.40 0.45±0.17 0.31±0.18 0.20±0.12 0.14±0.14 0.05±0.05 0.22±0.05 
TopGnNo>2 0.00±0.00 2.00±1.52 1.75±0.62 2.00±2.00 3.25±1.43 2.50±1.44 1.25±0.75 1.00±1.00 0.25±0.25 1.33±0.33 
TopGnNo1&2 5.00±0.57 9.00±3.51 8.75±0.75 2.33±1.85 11.75±1.37 10.00±0.70 7.50±0.64 1.50±1.50 10.25±0.62 5.00±1.00 
TopspkltNo 4.66±0.33 6.33±0.66 4.75±0.25 4.66±0.33 6.50±0.64 800±0.400 5.75±0.25 6.00±0.40 5.25±0.25 6.00±0.00 
UndDevSpkltSpk 10.67±0.88 6.00±1.52 2.50±0.50 2.00±0.57 7.25±1.49 2.25±0.85 4.25±0.62 2.00±0.7 4.00±0.70 1.66±0.33 
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Appendix:1 continued… 

Trait Mace Magenta Reeves Scepter Scout 

 Control Heat Control Heat Control Heat Control Heat Control Heat 

AIToAwnEm 4.75±0.75 2.75±0.25 4.00±0.40 3.33±0.33 5.5±0.23 5.66±0.14 5.50±0.28 4.00±0.00 6.66±0.88 4.5±0.28 
AIToFLSen 6.003±9.61 77.00±1.47 55.5±2.32 68.33±0.88 67.83±2.53 68.55±4.25 68.5±6.51 71.75±8.64 69.33±9.38 54.00±2.38 
AIToMat 63.5±4.78 7.002±1.29 65.25±0.47 66±0.57 71.17±1.12 72.92±0.94 72.25±1.75 73.75±1.88 67.67±1.33 64.00±1.52 
AwnLMat 4.35±0.10 4.27±0.22 6.85±0.35 6.53±0.49 4.90±0.18 4.45±0.21 5.10±0.10 5.30±0.18 4.72±0.36 4.65±0.43 
BotGNoSpklt1&2 1.51±0.23 0.45±0.17 0.93±0.25 0.74±0.13 1.82±0.07 1.18±0.12 0.88±0.29 1.24±0.28 0.78±0.32 1.42±0.37 
BotGNoSpklt>2 0.18±0.12 0.14±0.09 0.00±0.00 0.00±0.00 0.53±0.09 1.00±0.08 0.00±0.00 0.30±0.15 0.00±0.00 0.00±0.00 
BotGnNo1&2 6.50±1.19 2.50±1.04 4.25±1.10 4.33±0.33 10.50±0.46 7.16±0.70 4.00±1.47 8.25±2.32 3.50±1.55 7.25±2.05 
BotSpkltNo 4.25±0.25 5.50±0.28 4.50±0.28 6.00±0.57 5.75±0.13 6.16±0.16 4.50±0.28 6.50±0.64 4.00±0.40 5.25±0.47 
BotGnNo>2 0.75±0.47 0.75±0.47 0.00±0.00 0.00±0.00 3.08±0.54 6.25±0.62 0.00±0.00 2.25±1.31 0.00±0.00 0.00±0.00 
CulmLMat 58.40±2.83 53.77±0.98 61.33±2.72 64.7±2.95 82.85±4.79 77.23±2.20 65.75±2.80 65.62±2.67 61.57±2.29 61.38±2.81 
DevSpkltSpk 13.75±0.47 17.00±0.70 14.50±0.64 19.33±1.76 18.08±0.43 19.58±0.54 15.25±0.75 20.50±1.70 12.00±1.22 17.25±1.37 
GNoSpike1&2 23.67±2.33 12.75±2.78 18.00±3.24 6.00±1.15 31.67±1.08 13.33±1.84 18.67±0.33 20.25±6.03 16.00±4.30 22.50±3.70 
GNoSpike>2 4.75±1.25 1.75±0.85 0.75±0.47 0.00±0.00 8.91±1.17 11.25±1.1 0.25±0.25 10.00±3.10 0.00±0.00 2.00±1.22 
GnNoSpk 28.67±4.05 14.5±2.06 18.75±3.66 6.00±1.15 40.58±2.16 24.58±1.59 18.67±0.33 30.25±8.93 16.25±4.51 24.50±4.87 
GnNoSpklt 2.13±0.25 0.86±0.15 1.28±0.23 0.31±0.06 2.24±0.10 1.27±0.09 1.28±0.07 1.45±0.35 1.27±0.24 1.43±0.24 
GnNoSpklt1&2 1.82±0.11 0.76±0.18 1.23±0.20 0.31±0.06 1.75±0.05 0.7±0.10 1.44±0.17 0.97±0.24 1.26±0.23 1.31±0.19 
GnNoSpklt>2 0.37±0.12 0.10±0.04 0.05±0.03 0.00±0.00 0.49±0.06 0.57±0.05 0.00±0.00 0.47±0.11 0.01±0.01 0.11±0.06 
MidGNoSpklt1&2 2.00±0.00 0.90±0.39 1.51±0.23 0.25±0.16 1.93±0.03 0.55±0.14 2.00±0.00 0.78±0.35 1.56±0.21 1.51±0.25 
MidGNoSpklt>2 0.75±0.14 0.13±0.04 0.10±0.05 0.00±0.00 0.87±0.08 0.73±0.10 0.00±0.00 0.79±0.19 0.05±0.05 0.10±0.10 
MidGnNo>2 3.50±0.64 0.75±0.25 0.5±0.28 0.00±0.00 5.25±0.55 4.75±0.66 0.25±0.25 5.50±1.70 0.25±0.25 0.50±0.50 
MidGnNo1&2 8.66±0.66 5.00±2.04 7.25±1.31 1.66±1.20 11.58±0.35 3.41±0.91 10.00±0.00 5.75±2.81 6.50±1.44 8.50±1.32 
MidSpkltNo 4.33±0.33 5.75±0.25 4.75±0.25 6.33±0.66 6.00±0.17 6.05±0.19 5.00±0.00 6.75±0.62 4.00±0.40 5.75±0.47 
PedLMat 23.18±0.75 20.52±1.38 23.67±1.84 0.00±0.00 34.91±1.38 38.75±0.82 26.43±1.13 28.88±1.14 29.43±2.88 27.07±3.11 
ShootWMat 1.06±0.07 1.01±0.08 0.82±0.01 0.92±0.00 1.57±0.08 1.49±0.06 1.01±0.09 1.13±0.18 0.91±0.09 0.91±0.08 
SowToAI 55.5±0.86 57.25±1.03 64.75±0.25 65.33±0.88 49.33±0.52 48.83±0.44 58.5±0.86 57.25±0.25 56.00±1.52 61.00±0.70 
SpikeLMat 8.12±0.14 8.20±0.19 7.70±0.17 7.66±0.17 8.58±0.12 8.31±0.17 9.50±0.20 10.10±0.34 8.45±0.34 9.30±0.25 
TopGnNoSpklt1&2 1.85±0.09 0.92±0.20 1.22±0.19 0.00±0.00 1.52±0.11 0.42±0.11 1.34±0.22 0.89±0.22 1.43±0.21 1.06±0.09 
TopGnNoSpklt>2 0.10±0.05 0.04±0.04 0.05±0.05 0.00±0.00 0.09±0.04 0.03±0.01 0.00±0.00 0.31±0.06 0.00±0.00 0.22±0.16 
TopGnNo>2 0.50±0.28 0.25±0.25 0.25±0.25 0.00±0.00 0.58±0.26 0.25±0.13 0.00±0.00 2.25±0.47 0.00±0.00 0.00±2.38 
TopGnNo1&2 9.25±0.47 5.25±1.10 6.50±1.19 0.00±0.00 9.58±0.67 2.75±0.74 7.50±1.55 6.25±1.43 6.00±1.47 6.75±1.03 
TopspkltNo 5.00±0.00 5.75±0.25 5.25±0.25 7.00±0.57 6.33±0.18 6.91±0.22 5.50±0.28 7.25±0.47 4.00±0.40 6.25±0.47 
UndDevSpkltSpk 8.00±0.40 4.50±0.50 12.00±0.81 7.00±1.52 3.75±0.32 2.66±0.37 10.00±0.81 3.25±1.49 13.00±1.29 8.00±1.08 
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               Appendix:1 continued… 

Trait  Spitfire Stiletto Suntop Sunvale 

 Control Heat Control Heat Control Heat Control Heat 

AIToAwnEm 2.75±0.25 2.75±0.25 5.75±0.62 4.33±0.66 3.25±0.62 3.25±0.25 6.00±0.00 3.00±0.00 
AIToFLSen 55.5±6.93 59.00±8.32 54.00±4.77 67.00±11.02 67.75±6.92 67.33±2.18 66.00±4.50 61.00±5.00 
AIToMat 66.5±3.32 73.00±1.22 73.75±1.97 80.00±4.58 74.5±2.59 72.25±3.42 70.00±1.15 70.00±0.00 
AwnLMat 5.25±0.55 5.70±0.17 7.60±0.67 7.96±0.32 7.27±0.33 7.12±0.12 3.76±0.63 3.80±1.40 
BotGNoSpklt1&2 1.68±0.14 0.43±0.17 1.49±0.10 0.41±0.15 1.83±0.05 0.60±0.07 0.26±0.26 0.10±0.10 
BotGNoSpklt>2 0.42±0.24 0.00±0.00 0.21±0.15 0.59±0.13 0.97±0.20 1.02±0.34 0.00±0.00 0.00±0.00 
BotGnNo1&2 9.50±1.75 2.75±1.1 8.25±0.85 2.66±0.88 8.25±0.47 3.00±0.40 1.33±1.33 0.50±0.50 
BotSpkltNo 5.50±0.64 6.00±0.70 5.50±0.28 6.66±0.33 4.50±0.28 5.00±0.40 5.00±0.00 6.00±1.00 
BotGnNo>2 2.75±1.60 2.50±0.95 1.25±0.94 4.00±1.00 4.25±0.75 5.25±1.70 0.00±0.00 0.00±0.00 
CulmLMat 73.57±1.86 60.98±1.44 75.53±3.95 72.63±1.03 72.03±2.52 68.12±2.36 52.33±2.97 54.70±5.20 
DevSpkltSpk 17.0.±1.58 19.00±2.48 17.00±0.57 20.33±1.2 15.00±0.70 16.00±0.91 15.67±0.33 20.00±3.00 
GNoSpike1&2 30.75±3.03 9.00±3.67 30.75±1.37 13.33±3.84 26.5±2.98 6.75±0.25 7.66±3.52 5.00±5.00 
GNoSpike>2 9.50±3.52 6.75±2.17 7.25±2.13 12.33±2.9 10.00±1.08 7.25±2.39 0.00±0.00 0.00±0.00 
GnNoSpk 40.25±6.54 15.75±5.67 38.00±2.16 25.67±1.45 36.5±3.27 14.00±2.19 7.66±3.52 5.00±5.00 
GnNoSpklt 2.33±0.21 0.82±0.28 0.00±0.00 1.27±0.10 2.42±0.12 0.87±0.12 0.48±0.21 0.29±0.29 
GnNoSpklt1&2 1.81±0.07 0.46±0.18 1.80±0.03 0.67±0.22 1.75±0.13 0.42±0.03 0.48±0.21 0.29±0.29 
GnNoSpklt>2 0.52±0.16 0.36±0.11 0.42±0.12 0.59±0.12 0.66±0.06 0.44±0.14 0.00±0.00 0.00±0.00 
MidGNoSpklt1&2 1.85±0.14 0.54±0.13 2.00±0.00 0.62±0.34 1.85±0.09 0.35±0.06 0.73±0.4 0.50±0.50 
MidGNoSpklt>2 0.88±0.16 0.51±0.13 0.74±0.14 0.87±0.31 0.90±0.05 0.03±0.12 0.00±0.00 0.00±0.00 
MidGnNo>2 5.25±1.25 3.00±0.70 4.00±0.7. 6.00±2.30 4.75±0.25 1.75±0.75 0.00±0.00 0.00±0.00 
MidGnNo1&2 10.50±0.50 3.50±0.95 11.00±0.57 4.00±2.08 9.75±0.85 2.00±0.40 3.66±2.02 3.00±3.00 
MidSpkltNo 5.75±0.47 6.25±0.94 5.50±0.28 6.66±0.33 5.25±0.25 5.50±0.28 5.00±0.00 7.00±1.00 
PedLMat 35.6±0.42 29.9±1.75 35.12±2.99 35.97±0.83 36.00±1.40 35.27±2.03 18.83±1.87 23.45±2.15 
ShootWMat 1.12±0.11 1.03±0.12 1.46±0.04 1.40±0.03 1.38±0.08 1.47±0.07 0.67±0.05 0.74±0.11 
SowToAI 47.00±1.29 50.25±1.88 57.00±1.47 56.33±1.85 46.25±0.94 45.5±0.28 64.33±1.20 67.00±2.00 
SpikeLMat 10.02±0.5 9.90±0.47 9.20±0.39 9.60±0.20 11.03±0.20 10.22±0.36 7.06±0.53 8.30±0.40 
TopGnNoSpklt1&2 1.86±0.09 0.39±0.29 1.91±0.04 0.97±0.18 1.60±0.28 0.34±0.15 0.45±0.19 0.25±0.25 
TopGnNoSpklt>2 0.23±0.15 0.17±0.13 0.33±0.11 0.34±0.12 0.18±0.06 0.04±0.04 0.00±0.00 0.00±0.00 
TopGnNo>2 1.50±0.95 1.25±0.94 2.00±0.70 2.33±0.88 1.00±0.40 0.25±0.25 0.00±0.00 0.00±0.00 
TopGnNo1&2 10.75±1.10 2.75±2.09 11.50±0.28 6.66±0.88 8.50±1.70 1.75±0.75 2.66±1.20 1.50±1.50 
TopspkltNo 5.75±0.47 6.75±0.85 6.00±0.00 7.00±0.57 5.25±0.25 5.50±0.28 5.66±0.33 7.00±1.00 
UndDevSpkltSpk 3.75±1.43 3.00±0.70 5.00±0.70 2.33±0.88 3.75±0.62 3.25±0.62 8.66±0.33 6.00±2.00 
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Appendix:1 continued… 

Trait  Wyalkatchem Yitpi Young 

 Control Heat Control Heat Control Heat 

AIToAwnEm 3.33±0.33 3.25±0.47 6.00±1.08 4.75±0.25 4.16±0.29 3.41±0.31 
AIToFLSen 68.25±2.86 76.67±13.09 52.00±1.82 54.25±1.7 67.25±2.00 74.00±2.92 
AIToMat 68.33±2.18 68.67±3.84 65.500±3.61 72.5±3.79 73.58±0.83 73.67±0.74 
AwnLMat 4.77±0.47 4.92±0.38 7.75±0.44 6.62±0.37 6.10±0.18 6.08±0.20 
BotGNoSpklt1&2 1.00±0.29 0.05±0.05 1.16±0.41 0.60±0.31 1.36±0.18 0.84±0.18 
BotGNoSpklt>2 0.00±0.00 0.19±0.13 0.05±0.05 0.03±0.03 0.51±0.09 0.74±0.15 
BotGnNo1&2 4.50±2.17 0.25±0.25 6.25±2.25 3.75±2.05 5.91±0.90 4.18±0.94 
BotSpkltNo 4.00±0.70 6.25±0.47 6.00±0.70 7.00±0.70 4.25±0.17 4.81±0.12 
BotGnNo>2 0.00±0.00 1.25±0.94 0.25±0.25 0.25±0.25 2.25±0.46 3.63±0.78 
CulmLMat 41.55±1.93 42.67±1.84 78.9±3.95 60.62±2.37 66.24±1.64 60.15±2.02 
DevSpkltSpk 13.25±2.17 20.00±1.78 19.50±2.25 21.25±1.88 14.08±0.39 15.18±0.32 
GNoSpike1&2 16.25±6.14 2.25±1.03 26.00±1.87 15.00±4.18 22.58±2.01 16.27±2.97 
GNoSpike>2 0.25±0.25 3.00±2.67 4.50±2.59 7.25±2.72 6.50±1.08 9.54±1.54 
GnNoSpk 16.5±6.38 5.25±2.78 30.5±4.21 22.25±6.89 29.08±3.01 25.82±4.29 
GnNoSpklt 1.12±0.25 0.24±0.11 1.65±0.30 1.06±0.32 2.04±0.19 1.66±0.26 
GnNoSpklt1&2 1.11±0.23 0.10±0.04 1.40±0.19 0.72±0.20 1.59±0.12 1.04±0.18 
GnNoSpklt>2 0.01±0.01 0.13±0.11 0.25±0.14 0.34±0.12 0.45±0.07 0.61±0.09 
MidGNoSpklt1&2 1.56±0.30 0.11±0.06 1.39±0.31 0.50±0.31 1.74±0.12 1.14±0.24 
MidGNoSpklt>2 0.04±0.04 0.18±0.18 0.45±0.26 0.70±0.17 0.69±0.09 0.82±0.16 
MidGnNo>2 0.25±0.25 1.50±1.50 2.75±1.60 4.75±1.10 3.33±0.48 4.18±0.90 
MidGnNo1&2 7.50±2.02 0.75±0.47 8.25±1.43 3.50±2.17 8.33±0.72 5.9±1.26 
MidSpkltNo 4.50±0.64 6.75±0.75 0.00±0.00 7.00±0.70 4.75±0.17 5.00±0.13 
PedLMat 20.73±1.69 23.15±1.58 33.87±2.26 28.73±0.85 34.7±0.37 34.98±1.00 
ShootWMat 0.76±0.10 0.88±0.08 1.40±0.05 1.32±0.05 0.97±0.04 0.92±0.04 
SowToAI 58.33±4.05 56.00±4.34 63.00±1.58 62.5±0.64 46.42±0.39 45.67±0.39 
SpikeLMat 7.40±0.28 8.77±0.57 9.97±0.24 10.7±0.68 8.70±0.23 8.71±0.15 
TopGnNoSpklt1&2 0.73±0.32 0.15±0.09 1.62±0.14 1.05±0.21 1.63±0.09 1.13±0.18 
TopGnNoSpklt>2 0.00±0.00 0.03±0.03 0.22±0.13 0.30±0.20 0.17±0.06 0.3±0.06 
TopGnNo>2 0.00±0.00 0.25±0.25 1.50±0.95 2.25±1.43 0.91±0.33 1.72±0.40 
TopGnNo1&2 4.25±2.59 1.25±0.75 11.05±1.93 7.75±1.88 8.33±0.51 6.18±1.02 
TopspkltNo 0.00±0.00 7.00±0.57 7.00±0.70 7.25±0.47 5.08±0.08 5.36±0.15 
UndDevSpkltSpk 10.00±2.34 3.00±0.40 6.25±1.88 5.00±1.73 5.16±0.40 3.36±0.36 
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Appendix:1 continued… 

10 DAA 
 

Trait Baxter Calingiri Cobra Corack 

 Control Heat Control Heat Control Heat Control Heat 

1000GnW(mg) 34.4 ± 1.08 33.76±3.19 36.87 ± 2.43 33.13±1.52 34.25 ± 6.01 34.32±6.83 49.33 ± 3.9 44.81±1.32 
AnthToFLSen 44.00 ± 3.80 40.00±3.44 56.00 ± 3.55 51.00±6.74 38.33 ± 11.55 39.25±7.99 68.25 ± 6.42 64.50±4.40 
AnthToMat 61.25 ± 3.68 55.00±1.58 55.00 ± 2.67 51.50±1.84 55.33 ± 3.93 49.25±4.36 62.5 ± 0.50 60.00±0.81 
CulmL10 DAAToMat 5.77 ± 0.22 6.26±0.84 4.40 ± 0.26 4.10±0.28 3.53 ± 0.63 3.52±0.43 2.87 ± 0.33 3.25±0.41 
CulmL10 78.42 ± 1.47 69.87±7.12 57.00 ± 2.59 54.17±2.03 48.93 ± 1.04 47.17±1.70 46.03 ± 3.02 49.70±2.61 
CulmLMat 84.2 ± 1.46 76.13±7.95 61.40 ± 2.76 58.28±2.21 49.25 ± 3.40 50.7±1.60 48.9 ± 3.33 52.95±2.88 
CulmLMat_PedLMat_ratio 2.41 ± 0.06 2.63±0.14 2.3 0± 0.19 2.20±0.11 2.63 ± 0.05 2.77±0.29 1.99 ± 0.16 1.79±0.06 
DaysToMat 123.2 ± 6.6 122.2±3.72 129.5 ± 5.79 125.5±2.21 126.7 ± 2.40 119.5±4.62 128.00 ± 1.08 128.00±0.91 
DevSpklt 17.00 ± 0.70 15.05±1.04 12.75 ± 1.31 11.75±0.47 17.75 ± 1.49 16.50±2.10 13 .00± 1.41 12.75±0.854 
GnNoSpk 35.5 ± 1.84 19.75±5.54 30.25 ± 5.48 25.5±3.06 20.75 ± 6.42 21.75±6.12 10.00± 2.04 12.25±2.25 
GnNoSpklt 2.11 ± 0.18 1.28±0.35 2.30 ± 0.25 2.15±0.18 1.09 ± 0.29 1.23±0.21 0.78 ± 0.15 0.95±0.15 
GnWSpk 1.21 ± 0.03 0.69±0.23 1.08 ± 0.16 0.83±0.08 0.72 ± 0.28 0.70±0.22 0.47 ± 0.05 0.54±0.09 
LowIntern10ToMat 3.62 ± 0.27 4.46±0.70 2.67 ± 0.18 2.37±0.33 1.95 ± 0.75 2.67±0.44 1.22 ± 0.18 1.30±0.40 
LowInternL10 45.55 ± 0.51 42.60±6.11 31.25 ± 1.28 29.12±0.85 29.85 ± 1.65 29.02±1.49 22.65 ± 1.82 21.93±1.2 
LowInternMat 49.17 ± 0.69 47.07±6.77 33.92 ± 1.36 31.50±1.13 29.53 ± 2.65 31.70±1.74 23.88 ± 1.99 23.23±1.58 
PedL10 DAA 32.88 ± 1.32 28.50±1.95 25.75 ± 3.22 25.05±2.05 19.05 ± 0.15 18.15±2.22 23.38 ± 2.38 27.77±1.94 
PedL10ToMat 2.15 ± 0.10 1.72±0.13 1.72 ± 0.20 1.72±0.13 1.15 ± 0.05 0.85±0.13 1.65 ± 0.24 1.95±0.17 
PedLMat 35.02 ± 1.42 30.23±1.99 27.48 ± 3.42 26.77±2.14 18.33 ± 1.87 19.00±2.30 25.02 ± 2.61 29.73±2.07 
Shootw_length_ratio 71.23 ± 2.14 89.67±6.58 51.59 ± 4.04 63.28±5.21 66.77 ± 10.05 56.5±3.29 59.92 ± 7.24 66.1±10.78 
ShootWMat 1.18 ± 0.02 0.94±0.13 1.2 0± 0.07 0.93±0.05 0.79 ± 0.14 0.91±0.07 0.83 ± 0.07 0.85±0.11 
SingGW(g) 34.4 ± 1.08 33.76±3.19 36.87 ± 2.43 33.13±1.52 36.87 ± 2.43 34.32±6.83 49.33 ± 3.90 44.81±1.32 
SowToAnth 62.00 ± 1.78 67.25±3.50 74.50 ± 3.52 74.00±1.58 71.33 ± 3.48 70.25±2.86 65.50 ± 1.19 68.00±1.35 
SPAD13DAA 44.52 ± 0.91 41.15±2.03 46.45 ± 1.02 31.65±5.34 44.4 ± 2.06 33.48±8.62 45.35 ± 1.48 40.95±1.55 
SPAD27DAA 37.7 ± 0.60 28.82±6.10 47.43 ± 0.84 26.45±6.58 32.07 ± 10.73 25.25±10.71 46.08 ± 1.41 43.55±1.52 
SPAD10 DAA 45.17 ± 0.9 44.08±1.31 46.25 ± 0.91 44.42±0.99 44.57 ± 1.22 42.88±1.97 46.03 ± 0.94 44.8±0.48 
SPAD10To13 -0.65 ± 0.09 -2.92±1.19 0.20 ± 0.29 12.78±5.55 -0.16 ± 1.23 -9.40±7.65 -0.67 ± 0.61 -3.85±1.35 
SPAD10To27 -7.47 ± 0.38 -15.25±5.75 -1.17 ± 0.65 -17.98±7.38 0.00 ± 17.15 -17.62±10.15 0.05 ± 1.94 -1.25±1.21 
SPAD13DAATo27DAA -6.82 ± 0.35 -12.32±6.30 0.97 ± 0.73 -5.20±5.01 -12.33 ± 8.71 -8.22±5.43 0.72 ± 2.53 2.60±0.41 
UnderdevSpklt 6.00 ± 0.00 8.00±0.70 7.50 ± 1.65 8.75±0.94 11.25 ± 2.01 12.00±2.19 9.75 ± 1.03 12.50±0.5 
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Appendix:1 continued… 

 

Trait EGA Gregory Emu Rock Flanker Hydra 

 Control Heat Control Heat Control Heat Control Heat 

1000GnW(mg) 41.29 ± 2.76 39.74±3.73 27.43 ± 3.36 27.35±3.37 44.85 ± 0.19 40.08±3.94 36.8 ± 2.85 34.13±4.39 
AnthToFLSen 47.00 ± 1.52 47.67±3.84 55.5 ± 13.16 46.75±12.36 45.75 ± 5.15 42.25±6.53 58.33 ± 5.23 46.5±5.73 
AnthToMat 61.67 ± 2.60 57.33±1.85 55.25 ± 6.75 49.5±5.36 51.00 ± 3.80 52.5±2.32 62.25 ± 1.65 56.25±0.47 
CulmL10 DAAToMat 4.16 ± 0.48 3.76±0.47 4.20 ± 0.42 4.47±0.18 5.42 ± 0.51 5.40±0.67 3.66 ± 0.14 4.30±0.36 
CulmL10 52.33 ± 3.59 52.20±6.58 55.65 ± 3.76 51.22±4.70 67.03 ± 2.89 67.62±4.81 54.02 ± 3.39 54.87±0.59 
CulmLMat 56.50 ± 4.07 55.97±7.03 59.85 ± 4.13 55.7±4.80 72.45 ± 3.34 73.03±5.39 60.93 ± 1.48 59.17±0.84 
CulmLMat_PedLMat_ratio 2.33 ± 0.22 2.33±0.12 1.66 ± 0.08 1.77±0.19 2.36 ± 0.04 2.28±0.02 1.91 ± 0.04 1.86±0.05 
DaysToMat 134.7 ± 2.33 130.7±1.20 108.2 ± 6.78 103.2±4.58 124.5 ± 4.94 123.8±2.86 122.5 ± 2.98 116.8±0.75 
DevSpklt 13.00 ± 0.57 12.00±0.57 13.25 ± 0.85 12.5±0.64 18.75 ± 1.88 19.00±1.47 16.00 ± 0.81 13.50±0.64 
GnNoSpk 9.50 ± 4.27 13.67±5.36 33.75 ± 3.90 28.75±7.43 39.25 ± 7.95 40.25±6.57 28.75 ± 6.66 24.75±4.80 
GnNoSpklt 0.99 ± 0.35 1.15±0.45 2.52 ± 0.14 2.23±0.52 2.04 ± 0.21 2.08±0.20 1.78 ± 0.37 1.80±0.26 
GnWSpk 0.39 ± 0.17 0.00±0.58 0.92 ± 0.14 0.72±0.17 1.76 ± 0.36 1.65±0.35 1.03 ± 0.24 0.78±0.04 
LowIntern10ToMat 2.46 ± 0.17 2.20±0.15 1.80 ± 0.45 2.36±0.14 3.43 ± 0.58 3.37±0.53 1.83 ± 0.26 2.3±0.30 
LowInternL10 28.97 ± 0.60 29.33±2.61 22.12 ± 2.98 17.33±2.94 36.9 ± 0.23 37.77±2.97 26.78 ± 0.5 24.93±1.39 
LowInternMat 0.00 ± 0.75 31.53±2.72 23.93 ± 3.33 19.70±2.80 40.33 ± 0.39 41.15±3.33 0.00 ± 0.34 27.23±1.61 
PedL10 DAA 23.37 ± 3.99 22.87±4.13 33.52 ± 1.72 31.43±2.86 27.27 ± 0.48 29.85±1.85 27.25 ± 2.98 29.93±0.8 
PedL10ToMat 1.70 ± 0.34 1.56±0.32 2.4 0± 0.18 2.13±0.38 1.53 ± 0.27 2.02±0.21 1.83 ± 0.23 2.00±0.05 
PedLMat 25.07 ± 4.33 24.43±4.46 35.93 ± 1.88 33.57±3.23 28.8 ± 0.65 31.88±2.06 31.93 ± 1.47 31.93±0.78 
Shootw_length_ratio 68.37 ± 7.71 60.74±5.88 69.89 ± 5.87 66.96±5.72 55.55 ± 3.58 60.46±1.98 52.06 ± 4.00 61.5±3.05 
ShootWMat 0.83 ± 0.04 0.91±0.02 0.87 ± 0.09 0.87±0.16 1.33 ± 0.15 1.20±0.08 1.18 ± 0.08 0.88±0.09 
SingGW(g) 41.29 ± 2.76 39.74±3.73 27.43 ± 3.36 27.35±3.37 44.85 ± 0.19 40.08±3.94 36.8 ± 2.85 34.13±4.39 
SowToAnth 73.00 ± 4.00 73.33±2.33 53.00 ± 0.70 53.75±0.85 73.5 ± 1.19 71.25±1.25 60.25 ± 1.97 60.5±0.95 
SPAD13DAA 44.17 ± 0.66 41.83±1.48 45.12 ± 0.89 42.83±1.27 48.02 ± 1.06 44.82±0.89 44.6 ± 0.95 42.17±0.92 
SPAD27DAA 42.43 ± 0.93 42.23±3.42 28.15 ± 8.12 24.45±7.80 44.98 ± 2.04 32.30±9.68 44.05 ± 1.27 34.35±8.81 
SPAD10 DAA 43.83 ± 0.2 44.2±0.92 44.12 ± 1.19 43.60±1.12 46.38 ± 1.02 46.08±0.98 44.55 ± 1.09 43.65±0.96 
SPAD10To13 0.33 ± 0.49 -2.36±0.75 0.33 ± 0.49 -0.63±1.70 1.65 ± 0.15 -1.25±1.75 0.05 ± 0.33 -1.47±0.20 
SPAD10To27 -1.4 0± 1.10 -1.96±2.56 -15.97 ± 9.22 -13.33±6.34 -1.40 ± 3.01 -13.77±9.71 -0.50 ± 0.23 -9.3±9.65 
SPAD13DAATo27DAA -1.73 ± 1.39 0.40±2.56 -16.97 ± 9.01 -18.38±7.14 -3.05 ± 3.07 -12.52±9.15 -0.55 ± 0.48 -7.82±9.58 
UnderdevSpklt 10.67 ± 0.88 12.33±1.20 2.50 ± 0.50 3.00±0.70 7.25 ± 1.49 7.25±1.60 4.25 ± 0.62 4.50±0.64 
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Appendix:1 continued… 

Trait Kord Mace Magenta Reeves 

 Control Heat Control Heat Control Heat Control Heat 

1000GnW(mg) 36.44 ± 1.33 40.42±1.39 27.41 ± 2.82 27.41±1.38 47.86 ± 1.13 40.9±5.82 43.27 ± 1.59 41.38±1.88 
AnthToFLSen 75.00 ± 6.67 53.50±5.60 53.25 ± 9.22 63.50±2.25 43.50 ± 3.12 39.75±6.01 56.92 ± 2.48 45.05±3.98 
AnthToMat 63.00 ± 1.73 63.00±1.78 53.75 ± 4.49 57.75±0.75 53.25 ± 1.88 48.25±5.6 60.25 ± 1.03 55.75±1.35 
CulmL10 DAAToMat 3.62 ± 0.29 3.33±0.43 4.32 ± 0.14 4.05±0.32 4.90 ± 1.26 5.22±0.96 5.73 ± 0.56 6.69±0.21 
CulmL10 58.38 ± 2.92 53.13±1.12 54.08 ± 2.72 56.38±2.26 56.43 ± 1.88 58.3±3.30 77.11 ± 4.28 81.65±2.38 
CulmLMat 62.00 ± 3.17 56.47±1.39 58.4 ± 2.83 60.42±2.51 61.33 ± 2.72 63.52±4.00 82.85 ± 4.79 88.35±2.48 
CulmLMat_PedLMat_ratio 2.06 ± 0.07 2.35±0.26 2.51 ± 0.05 2.91±0.18 2.55 ± 0.12 2.58±0.09 2.34 ± 0.06 2.41±0.06 
DaysToMat 125.2 ± 2.28 130.8±1.03 119 ± 4.02 122.5±1.19 130 ± 0.40 123.2±5.46 120.5 ± 1.19 116.5±1.36 
DevSpklt 14.75 ± 0.85 13.25±0.47 13.75 ± 0.47 13.25±1.43 14.50 ± 0.64 15.33±0.33 18.25 ± 0.35 17.82±0.42 
GnNoSpk 31.00 ± 1.58 19.75±2.56 30.00 ± 3.16 31.00±6.60 18.75 ± 3.66 18.75±4.21 40.67 ± 2.15 39.75±1.75 
GnNoSpklt 2.12 ± 0.17 1.48±0.18 2.17 ± 0.18 2.26±0.25 1.28 ± 0.23 1.38±0.29 2.22 ± 0.10 2.25±0.09 
GnWSpk 1.12 ± 0.04 0.78±0.08 0.83 ± 0.15 0.83±0.15 0.88 ± 0.15 0.79±0.21 1.73 ± 0.07 1.64±0.10 
LowIntern10ToMat 1.90 ± 0.30 2.05±0.65 2.87 ± 0.21 3.06±0.41 2.26 ± 0.52 3.50±0.89 3.68 ± 0.45 4.3±0.23 
LowInternL10 29.95 ± 1.38 29.70±1.20 32.35 ± 2.07 36.00±3.25 33.07 ± 1.66 35.38±2.39 44.25 ± 3.20 47.6±1.74 
LowInternMat 31.85 ± 1.64 31.75±1.85 35.22 ± 2.16 39.07±3.48 35.33 ± 1.86 38.88±2.81 47.94 ± 3.58 51.9±1.84 
PedL10 DAA 28.43 ± 1.94 24.55±0.95 21.73 ± 0.72 20.97±0.48 22.27 ± 1.69 22.92±1.67 32.85 ± 1.26 34.28±1.05 
PedL10ToMat 1.72 ± 0.16 1.45±0.05 1.45 ± 0.11 1.13±0.18 1.40 ± 0.15 1.72±0.14 2.05 ± 0.14 2.4±0.13 
PedLMat 30.15 ± 2.07 26.00±0.90 23.17 ± 0.75 22.10±0.58 23.67 ± 1.84 24.65±1.68 34.91 ± 1.38 36.68±1.16 
Shootw_length_ratio 55.09 ± 3.59 74.10±6.01 55.24 ± 3.67 52.74±1.93 75.13 ± 4.98 78.44±4.40 75.13 ± 4.98 60.38±2.67 
ShootWMat 1.14 ± 0.12 0.86±0.10 1.06 ± 0.07 1.14±0.03 0.82 ± 0.01 0.81±0.05 1.57 ± 0.08 1.49±0.07 
SingGW(g) 36.44 ± 1.33 40.42±1.39 27.41 ± 2.82 27.41±1.38 47.86 ± 1.13 40.90±5.82 43.27 ± 1.59 41.38±1.88 
SowToAnth 62.25 ± 2.59 67.75±2.42 65.25 ± 0.62 64.75±0.85 76.75 ± 1.54 75.00±1.35 60.25 ± 0.49 60.75±0.74 
SPAD13DAA 48.45 ± 1.5 44.95±0.58 45.6 ± 1.34 44.45±0.59 43.55 ± 1.71 37.12±1.11 47.39 ± 0.80 43.3±0.89 
SPAD27DAA 49.35 ± 1.95 46.55±0.63 39.00 ± 8.31 44.68±0.38 27.85 ± 8.38 30.45±8.30 44.92 ± 1.48 37.39±4.25 
SPAD10 DAA 48.05 ± 1.29 45.82±1.11 44.40 ± 1.51 46.6±1.38 44.32 ± 1.28 42.32±1.48 47.37 ± 0.96 46.35±0.64 
SPAD10To13 0.40 ± 0.48 -0.87±0.92 1.20 ± 0.26 -2.15±1.17 -0.77 ± 0.55 -5.20±1.77 0.02 ± 0.41 -3.05±0.64 
SPAD10To27 1.30 ± 0.96 0.72±0.77 -5.40 ± 8.21 -1.92±1.46 -16.48 ± 9.19 -11.88±8.61 -2.45 ± 1.01 -8.95±40 
SPAD13DAATo27DAA 0.90 ± 0.56 1.60±0.89 -6.60 ± 8.15 0.22±0.49 -15.7 ± 9.33 -6.67±7.33 -2.47 ± 1.01 -5.9±3.97 
UnderdevSpklt 4.00 ± 0.70 5.00±1.08 8.00 ± 0.40 8.00±1.63 12.00 ± 0.81 10.67±0.66 3.66 ± 0.28 4.18±0.35 
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Appendix:1 continued… 

Trait Scepter Scout Spitfire Stiletto 

 Control Heat Control Heat Control Heat Control Heat 

1000GnW(mg) 45.98 ± 4.12 41.94±4.31 41.66 ± 2.15 36.06±3.03 34.63 ± 2.01 35.09±2.62 42.36 ± 0.52 36.82±6.01 
AnthToFLSen 57.00 ± 5.75 51.25±10.77 57.33 ± 9.02 35.25±5.25 44.5 ± 6.71 46.75±6.86 41.75 ± 5.07 39.25±5.45 
AnthToMat 60.75 ± 1.43 56.5±5.36 55.67 ± 1.45 42.25±4.95 55.5 ± 3.17 52.5±2.06 61.50 ± 2.1 57.75±3.44 
CulmL10 DAAToMat 4.55 ± 0.53 5.42±0.40 4.23 ± 0.57 5.60±0.20 5.32 ± 0.35 5.32±0.21 5.77 ± 0.33 5.70±0.26 
CulmL10 61.20 ± 2.70 65.85±1.05 56.45 ± 1.58 68.4±3.92 68.25 ± 1.66 66.05±2.48 69.75 ± 3.66 67.65±3.69 
CulmLMat 65.75 ± 2.80 71.28±1.32 61.57 ± 2.29 74.00±3.95 73.57 ± 1.86 71.38±2.51 75.53 ± 3.95 73.57±5.46 
CulmLMat_PedLMat_ratio 2.50 ± 0.15 2.50±0.09 2.12 ± 0.18 2.31±0.10.00 2.06 ± 0.06 2.02±0.03 2.17 ± 0.16 2.22±0.12 
DaysToMat 130.8 ± 1.49 123.5±5.69 124.5 ± 0.86 114.2±4.53 113.5 ± 2.17 111.5±2.63 130.8 ± 0.62 127.8±2.35 
DevSpklt 15.25 ± 0.75 16.25±0.62 12.00 ± 1.22 14.75±1.54 17.00 ± 1.58 14.5±0.64 17.00 ± 0.57 14.75±1.25 
GnNoSpk 22.50 ± 3.84 29.25±5.86 16.25 ± 4.51 24.75±6.65 40.25 ± 6.54 37.25±3.11 38.00 ± 2.16 28.25±8.81 
GnNoSpklt 1.46 ± 0.18 1.79±0.33 1.27 ± 0.24 1.59±0.28 2.33 ± 0.21 2.56±0.17 2.23 ± 0.10 1.78±0.53 
GnWSpk 0.99 ± 0.06 1.17±0.22 0.70 ± 0.22 0.87±0.20 1.38 ± 0.21 1.28±0.06 1.61 ± 0.10 0.92±0.31 
LowIntern10ToMat 3.00 ± 0.60 3.55±0.33 2.40 ± 0.55 3.90±0.17 3.12 ± 0.29 2.80±0.20 3.80 ± 0.10 3.50±0.11 
LowInternL10 36.33 ± 2.86 39.08±0.43 31.4 0± 2.06 39.23±3.63 34.85 ± 1.86 33.67±2.15 36.60 ± 1.17 36.63±1.61 
LowInternMat 39.32 ± 3.15 42.62±0.46 32.13 ± 2.24 43.13±3.46 37.98 ± 2.07 36.47±2.21 40.40 ± 1.23 40.13±1.70 
PedL10 DAA 24.88 ± 1.01 26.77±1.48 25.05 ± 3.14 29.10±2.30 33.4 ± 0.34 33.73±0.93 33.15 ± 2.77 31.23±3.77 
PedL10ToMat 1.55 ± 0.13 1.87±0.10 1.83 ± 0.29 1.90±0.20 2.20 ± 0.12 2.40±0.05 1.97 ± 0.22 2.20±0.20 
PedLMat 26.43 ± 1.13 28.65±1.54 29.43 ± 2.88 31.00±2.50 35.60 ± 0.42 36.13±0.99 35.12 ± 2.99 33.43±3.97 
Shootw_length_ratio 66.16 ± 4.28 64.12±9.00 68.76 ± 6.36 70.39±2.7 67.83 ± 8.08 72.83±2.52 51.78 ± 2.75 69.39±7.88 
ShootWMat 1.01 ± 0.09 1.16±0.14 0.91 ± 0.09 1.05±0.08 1.12 ± 0.11 0.98±0.06 1.46 ± 0.04 1.12±0.15 
SingGW(g) 45.98 ± 4.12 41.94±4.31 41.66 ± 2.15 36.06±3.03 34.63 ± 2.01 35.09±2.62 42.36 ± 0.52 36.82±6.01 
SowToAnth 70.00 ± 1.68 67.00±1.47 68.00 ± 1.52 72.00±1.78 58.00 ± 1.41 59.00±0.57 69.25 ± 1.6 70.00±1.41 
SPAD13DAA 44.60 ± 0.48 46.92±0.71 44.10 ± 0.27 42.75±2.02 48.90 ± 1.16 45.75±0.63 46.47 ± 1.01 46.05±1.42 
SPAD27DAA 44.62 ± 1.36 35.00±10.51 40.52 ± 2.73 14.98±9.38 43.17 ± 2.53 40.08±3.52 47.08 ± 0.9 34.88±10.39 
SPAD10 DAA 44.30 ± 1.25 47.18±0.54 43.95 ± 0.45 45.65±0.54 48.50 ± 0.93 49.05±0.58 46.17 ± 1.32 46.6±0.83 
SPAD10To13 0.30 ± 0.90 -0.25±0.29 0.15 ± 0.47 -2.90±1.95 0.40 ± 0.77 -3.30±0.91 0.30 ± 0.68 -0.55±2.23 
SPAD10To27 0.32 ± 0.67 -12.17±10.29 -3.42 ± 2.60 -30.68±9.53 -5.32 ± 2.18 -8.97±3.92 0.90 ± 0.57 -11.73±9.60 
SPAD13DAATo27DAA 0.02 ± 1.24 -11.92±10.3 -3.57 ± 2.47 -27.77±9.02 -5.72 ± 1.69 -5.67±3.94 0.60 ± 0.72 -11.17±11.81 
UnderdevSpklt 10.00 ± 0.81 7.50±0.64 13.00 ± 1.29 10.00±1.58 3.75 ± 1.43 4.25±0.25 5.00 ± 0.70 8.00±2.70 
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       Appendix:1 continued… 

Trait Suntop Sunvale Wyalkatchem Yitpi Young 

 Control Heat Control Heat Control Heat Control Heat Control Heat 

1000GnW(mg) 36.52 ± 2.92 31.48±4.53 37.37 ± 1.07 23.08±5.12 34.54 ± 5.56 32.74±4.77 47.94 ± 2.98 43.58±2.57 35.63 ± 2.22 29.49±2.97 
AnthToFLSen 58.00 ± 6.64 53.25±12.41 53.67 ± 3.84 46.25±9.49 60.75 ± 4.36 53.00±12.15 39.25 ± 2.05 44.25±2.49 55.92 ± 1.85 53.58±3.61 
AnthToMat 64.75 ± 2.13 53.75±8.97 57.67 ± 0.66 52.5±3.88 58.25 ± 1.54 51.75±5.43 52.75 ± 3.27 57.75±2.35 62.25 ± 0.65 61.17±2.09 
CulmL10 DAAToMat 5.97 ± 0.24 5.45±0.20 3.73 ± 0.16 3.27±0.35 2.70 ± 0.33 3.32±0.48 5.05 ± 0.36 5.60±0.48 4.90 ± 0.16 4.30±0.34 
CulmL10 66.05 ± 2.47 64.3±1.35 48.60 ± 2.80 47.25±3.24 38.85 ± 3.7 41.70±3.14 73.85 ± 3.63 68.5±2.58 61.34 ± 1.65 57.48±2.09 
CulmLMat 72.03 ± 2.52 69.75±1.35 52.33 ± 2.97 50.53±3.45 41.55 ± 1.93 45.02±3.59 78.9 ± 3.95 74.10±3.00 66.24 ± 1.64 61.77±2.37 
CulmLMat_PedLMat_ratio 2.00 ± 0.02 2.00±0.02 2.80 ± 0.14 2.48±0.06 2.02 ± 0.10 2.19±0.12 2.30 ± 0.23 2.28±0.14 1.91 ± 0.04 1.91±0.06 

DaysToMat 120.8 ± 1.65 109.5±8.64 131.00 ± 3.34 130±5.01 128.5 ± 2.46 117.5±2.39 128.5 ± 5.12 129.8±1.60 120.00 ± 0.92 119.6±2.03 
DevSpklt 15.00 ± 0.70 15.00±0.70 15.67 ± 0.33 15.75±1.10 11.75 ± 1.10 11.5±1.50 19.50 ± 2.25 15.5±1.75 14.08 ± 0.39 13.42±0.37 
GnNoSpk 36.5 ± 3.27 35.00±3.85 5.75 ± 3.14 19.75±6.67 16.25 ± 6.14 10.75±3.01 30.50 ± 4.21 35.75±9.19 29.08 ± 3.01 25.00±3.81 
GnNoSpklt 2.42 ± 0.12 2.31±0.14 0.48 ± 0.21 1.19±0.31 1.32 ± 0.43 0.87±0.19 1.65 ± 0.30 2.19±0.34 2.04 ± 0.19 1.80±0.25 
GnWSpk 1.31 ± 0.09 1.05±0.07 0.21 ± 0.11 0.38±0.08 0.58 ± 0.25 0.36±0.10 1.43 ± 0.14 1.56±0.39 1.01 ± 0.13 0.73±0.11 
LowIntern10ToMat 3.47 ± 0.29 3.12±0.18 2.50 ± 0.26 2.07±0.36 1.45 ± 0.37 2.13±0.21 3.06 ± 0.61 3.60±0.55 2.67 ± 0.17 2.10±0.28 
LowInternL10 32.55 ± 1.18 31.8±1.08 31.00 ± 1.21 28.07±2.24 19.38 ± 0.92 23.07±1.32 42.27 ± 6.82 37.77±2.80 28.87 ± 1.6 27.18±1.53 
LowInternMat 36.02 ± 1.24 34.92±1.08 33.50 ± 1.47 30.15±2.30 20.83 ± 1.19 25.2±1.32 45.33 ± 7.43 41.38±3.28 31.54 ± 1.61 29.37±1.72 
PedL10 DAA 33.5 ± 1.36 32.5±0.31 17.60 ± 1.83 19.18±1.24 19.48 ± 1.59 21.67±1.57 31.7 ± 2.06 30.73±1.49 32.47 ± 0.35 30.3±1.16 
PedL10ToMat 2.5 ± 0.07 2.32±0.04 1.23 ± 0.17 1.20±0.14 1.25 ± 0.100 1.60±0.20 0.00 ± 0.35 2.00±0.18 2.22 ± 0.05 2.10±0.10 
PedLMat 36.00 ± 1.40 34.83±0.34 36.00 ± 1.40 20.38±1.35 20.73 ± 1.69 23.27±1.77 20.73 ± 1.69 32.72±1.64 34.7 ± 0.37 32.41±1.22 
Shootw_length_ratio 52.25 ± 1.44 50.66±2.33 79.60 ± 10.43 90.57±7.14 56.50 ± 5.21 57.07±4.26 56.5 ± 3.28 56.41±1.73 68.93 ± 2.32 70.74±2.53 
ShootWMat 1.38 ± 0.08 1.38±0.05 0.67 ± 0.05 0.55±0.01 0.76 ± 0.10 0.79±0.08 1.40 ± 0.05 1.31±0.07 0.97 ± 0.04 0.88±0.03 
SingGW(g) 36.52 ± 2.92 31.48±4.53 37.37 ± 1.07 23.08±5.12 34.54 ± 5.56 32.74±4.77 47.94 ± 2.98 43.58±2.57 35.63 ± 2.22 29.49±2.97 
SowToAnth 56.00 ± 0.57 55.75±0.47 76.67 ± 0.88 77.50±1.89 70.25 ± 3.44 65.75±5.66 75.75 ± 1.97 72.00±1.47 57.75 ± 0.60 58.42±0.86 
SPAD13DAA 45.75 ± 0.57 42.88±0.96 40.40 ± 3.56 35.75±4.95 40.40 ± 3.56 37.92±3.49 49.58 ± 1.21 49.32±1.55 47.82 ± 0.77 46.98±0.89 
SPAD27DAA 43.1 ± 1.93 35.98±6.38 45.27 ± 0.69 33.6±10.26 47.00 ± 1.22 28.65±10.51 35.45 ± 8.6 46.9±1.92 47.14 ± 0.93 44.48±2.58 
SPAD10 DAA 44.3 ± 0.44 43.8±1.19 42.83 ± 0.92 41.38±1.66 43.65 ± 1.35 44.55±1.18 44.45 ± 4.60 47.80±1.46 47.25 ± 0.86 47.72±0.88 
SPAD10To13 1.45 ± 0.80 -0.92±0.34 -2.43 ± 2.64 -5.62±3.34 -0.50 ± 0.35 -6.62±2.95 5.12 ± 4.53 1.52±0.36 0.56 ± 0.42 -0.75±0.33 
SPAD10To27 -1.20 ± 1.71 -7.82±5.45 2.43 ± 1.29 -7.77±8.66 3.35 ± 1.09 -15.9±10.59 -9.00 ± 11.61 -0.90±1.78 -0.10 ± 0.64 -3.24±2.65 
SPAD13DAATo27DAA -2.65 ± 2.06 -6.90±5.79 4.86 ± 3.85 -2.15±5.32 3.85 ± 0.79 -9.27±8.15 -14.12 ± 9.67 -2.42±2.14 -0.67 ± 0.61 -2.49±2.70 
UnderdevSpklt 3.75 ± 0.62 4.50±0.28 8.66 ± 0.33 8.00±1.41 10.00 ± 2.34 11.25±3.54 6.25 ± 1.88 9.75±2.17 5.16 ± 0.40 5.160±0.34 

 

 

 




