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Abstract

Visual question answering (VQA) demands simultaneous
comprehension of both the image visual content and natu-
ral language questions. In some cases, the reasoning needs
the help of common sense or general knowledge which usu-
ally appear in the form of text. Current methods jointly em-
bed both the visual information and the textual feature into
the same space. However, how to model the complex inter-
actions between the two different modalities is not an easy
task. In contrast to struggling on multimodal feature fusion,
in this paper, we propose to unify all the input information
by natural language so as to convert VQA into a machine
reading comprehension problem. With this transformation,
our method not only can tackle VQA datasets that focus on
observation based questions, but can also be naturally ex-
tended to handle knowledge-based VQA which requires to
explore large-scale external knowledge base. It is a step to-
wards being able to exploit large volumes of text and natural
language processing techniques to address VQA problem.
Two types of models are proposed to deal with open-ended
VQA and multiple-choice VQA respectively. We evaluate
our models on three VQA benchmarks. The comparable
performance with the state-of-the-art demonstrates the ef-
fectiveness of the proposed method.
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Figure 1. Comparison between VQA and TQA. Questionl is

observation based, which can be inferred from the image itself.
Question?2 is knowledge based, which has to refer knowledge be-
yond the image. Extra knowledge commonly appears in text,
which is easier to be combined to the context paragraph in TQA.

1. Introduction

Visual Question Answering (VQA) is an emerging prob-
lem which requires the algorithm to answer arbitrary nat-
ural language questions about a given image. It attracts a
large amount of interests in both computer vision and Natu-
ral Language Processing (NLP) communities, because of its
numerous potential applications in autonomous agents and
virtual assistants.

To some extent, VQA is closely related to the task of
Textual Question Answering (TQA, also known as machine
reading comprehension), which asks the machine to answer
questions based on a given paragraph of text. However,
VQA seems to be more challenging because of the addi-
tional visual supporting information. As compared in Fig-
ure 1, the inputs in TQA are both pure text, while VQA
has to integrate the visual information from image with the
textual content from questions. On one hand, image has a
higher dimension than text and lacks the structure and gram-
matical rules of language, which increase the difficulty in
semantic analysis. On the other hand, the algorithm has to
jointly embed the visual and textual information that come
from two distinct modalities.

Most approaches in VQA adopt deep Convolutional
Neural Networks (CNNs) to represent images and Recur-
rent Neural Networks (RNNs) to represent sentences or
phrases. The extracted visual and textual feature vectors
are then jointly embedded by concatenation, element-wise
sum or product to infer the answer. Fukui er al. [8] ar-
gued that such simple kinds of merging might not be ex-
pressive enough to fully capture the complex associations
between the two different modalities and they proposed a
Multimodal Compact Bilinear pooling method (MCB) for
VQA. It would be even complex if extra knowledge is re-
quired to be combined for reasoning. Li ef al. [ 18] proposed
to embed knowledge in memory slots and incorporated ex-

ternal knowledge with image, question and answer features
by Dynamic Memory Networks (DMN).

In this work, different from exploring the high-
dimensional and noisy image feature vectors to infer the an-
swer, we express the image explicitly by natural language.
Compared to image feature, natural language represents a
higher level of abstraction and is full of semantic informa-
tion. For example, the phrase “a red hat” will represent var-
ious styles of “red hats” captured in the image. Thus the
VQA problem is converted to TQA. With this transforma-
tion, we can easily incorporate external knowledge as they
are all in the form of natural language. In addition, the
complex multimodal feature fusion problem can be avoided.
There are works on TQA and image description [ 1, 15], in
this work we move step-forward to connect those methods
in answering image based questions.

The main contributions of this work is three-fold:

1) We propose a new thought of solving VQA problem.
Instead of integrating feature vectors from different modal-
ities, we represent image content explicitly by natural lan-
guage and solve VQA as a reading comprehension problem.
Thus we can resort to the abundant research results in NLP
community to handle VQA problem. Using text and NLP
techniques allows very convenient access to higher-level in-
formation in identifying referred objects, and makes the in-
ferring more interpretable. Moreover, text data is more eas-
ier to be collected than images. Our method makes it possi-
ble to exploit large volumes of text in understanding images,
actions, and commands.

2) Two types of VQA models are proposed to address the
open-end VQA and the multiple-choice VQA respectively,
considering their own characteristics. Based on the con-
verted text description and the attention mechanism used in
the models, it becomes more accurate to retrieve related in-
formation from the context. The answer inferring process
is human-readable. The proposed models show compara-
ble performance with the state-of-the-art on three different
types of VQA datasets, which demonstrates their feasibility
and effectiveness.

3) Most VQA methods cannot handle the knowledge
based VQA or have poor performance because of the com-
plicated knowledge embedding. In contrast, our method can
be easily extended to address knowledge based VQA as they
have the same modality.

2. Related Work
2.1. Joint embedding

Current approaches need to integrate features from both
image and text, which is a multimodal feature fusion prob-
lem. Most existing approaches use simple manners such as
vector concatenation [21, 26, 30], element-wise product or
sum [ 1, 9, 34] to jointly embed the visual feature and textual



feature. Fukui et al. [8] argued that these simple manners
are not expressive enough and proposed MCB which allows
a multiplicative interaction between all elements of image
and text vectors. Nevertheless, it needs to project the image
and text features to a higher dimensional space firstly (e.g.,
16000D for good performance), and then convolves both
vectors by element-wise product in Fast Fourier Transform
space. Multimodal Low-rank Bilinear pooling (MLB) [13]
and Multimodal Factorized Bilinear pooling (MFB) [37]
were proposed later. MLB uses Hadamard product to inte-
grate the multimodal features, while MFB expands the mul-
timodal features to a high-dimensional space firstly and then
integrates them with Hadamard product. Kim et al. [12]
also presented Multimodal Residual Networks (MRN) to
learn the multimodality from vision and language informa-
tion, which inherently adopts shortcuts and joint residual
mappings to learn the multimodal interactions, inspired by
the outstanding performance of deep residual learning.

It can be observed that how to integrate multimodal fea-
tures plays a critical role in VQA. In contrast to consid-
ering the multimodal feature fusion manner, in this work,
we convert the visual information directly to text so that
all features are from textual information, which escapes the
feature jointly embedding issue immediately.

2.2. Knowledge-based VQA

There are some researches in the NLP community about
answering questions incorporating external knowledge us-
ing either semantic parsing [3, 33] or information re-
trieval [4, 5]. They are all based on textual features. It
is non-trivial to extend these methods to knowledge based
VQA because of the unstructured visual input.

In [32], a method was proposed for VQA that combines
image representation with extra information extracted from
a general knowledge base according to predicted image at-
tributes. The method makes it possible to answer questions
beyond the image, but the extracted knowledge is discrete
pieces of text, without structural representations. Ahab [28]
used explicit reasoning over an resource description frame-
work knowledge base to derive the answer. But the method
largely depends on the pre-defined templates, which re-
stricts its application. Wang et al. [29] introduced the “Fact-
based VQA (FVQA)” problem and proposed a semantic-
parsing based method for supporting facts retrieval. A
matching score is computed to obtain the most relevant sup-
port fact and the final answer. This method is vulnerable
to misconceptions caused by synonyms and homographs.
A learning based approach was then developed in [23] for
FVQA, which learns a parametric mapping of facts and
question-image pairs to an embedding space that permits to
assess their compatibility. Features are concatenated over
the image-question-answer-facts tuples. The work in [39]
and [ 18] exploited DMN to incorporate external knowledge.

Our method is more straightforward to deal with the
knowledge-based VQA. By representing the image visual
information as text, we unify the image-question-answer-
facts tuples into the natural language space, and tackle it
using reading comprehension techniques in NLP.

2.3. Textual Question Answering

Textual Question Answering (also known as reading
comprehension) aims to answer questions based on given
paragraphs. It is a typical cornerstone in the NLP do-
main, which assesses the ability of algorithms in under-
standing human language. Significant progress has been
made over the past years due to the using of end-to-end
neural network models and attention mechanism, such as
DMN [17], r-net [31], DrQA [6], QANet [36], and most re-
cently BERT [7]. Many techniques in QA have been inher-
ited in solving VQA problem, such as the attention mech-
anism, DMN, efc. In this work, we try to solve the VQA
problem built upon QANet.

3. VQA Models

Our method is build upon the newly proposed
QANet [36] for TQA problem. In this section, we firstly
outline QANet and its modules that will be used in our VQA
models. Then we propose two types of models to tackle the
open-ended VQA and the multiple-choice VQA separately.

3.1. QANet

QANet is a fast and accurate end-to-end model for
TQA. It consists of embedding block, embedding encoder,
context-query attention block, model encoder and output
layer. Instead of using RNNs to process sequential text,
its encoder consists exclusively of convolution and self-
attention. A context-question attention layer is followed to
learn the interactions between them. The resulting features
are encoded again, and finally decoded to the position of
answer in the context. The details can refer [306].

Input Embedding Block: This module is used to em-
bed each word in the context and question into a vector. For
each word, the representation is the concatenation of word
embedding and character embedding, i.e., X = [Xw, Xc),
where Xy, is the word embedding obtained from pre-trained
GloVe [24], % is from character embedding, which is the
maximum value of each row in the concatenated character
representation matrix. A two-layer highway network is ap-
plied on z to obtain the embedding features.

Embedding Encoder Block: It is a stack of convolu-
tional layers, self-attention layers, feed forward layers and
normalization layers, as illustrated in Figure 2. Depth-wise
separable convolutions are adopted here for better memory
and generalization ability. Multi-head attention mechanism
is applied which models global interactions.



Figure 2. The structure of en-
coder block used in QANet,
which is shared by embed-
ding encoder and model en-
coder. The number of convo-
lutional layers varies accord-
ing to design. Layer nor-
malization and residual con-
nection are adopted between
every layer for better perfor-
mance.

Context-question Attention Block: It is designed to
extract the most related features between the context and
the question words. There are context-to-question attention
and question-to-context attention constructed in the model.
Denote C and Q as the encoded context and question fea-
tures respectively, where C = {cq,ca,...,cn} with n
words, and Q = {q1,Q2,...,Qm} Wwith m words. The
context-to-question attention is defined as A = S - QT,
where S € R™ ™ is the similarity matrix between each
pair of context and question words, and S is the normal-
ization of S by applying softmax on each row. “” is ma-
trix product. The question-to-context attention is defined
as B = S-ST.CT, where S is the normalization of S
by applying softmax on each column. The similarity func-
tion is defined as f(q,c) = Wylq,c,q ® c|, where © is
the element-wise multiplication of each q and ¢, W is the
weight to be learned.

Model Encoder Block: This block takes [c,a,c®a, cO
b] as input, where a and b are a row of the attention matrix
A and B respectively. It shares parameters with the embed-
ding encoder block.

Output Layer: The output layer predicts the probability
of each position in the context being the start or end loca-
tions of the answer, based on the outputs of 3 repetitions of
model encoder.

3.2. Open-ended VQA model

Instead of merging the visual and textual features into the
same space, we convert the image wholly into a descrip-
tive paragraph, so that all the input information is unified
as text. It avoids the challenge task of multimodal feature
fusion, and can extend to deal with the knowledge-based
VQA straightforwardly. The answer inference is more ob-
vious from the semantically high level text description, in
contrast to the unstructured image feature. The architecture
of our proposed model is presented in Figure 3. Besides
the modules such as embedding block, embedding encoder,
context-question attention block and model encoder used
in QANet, we add another input pre-processing block and
modify the output block for the open-ended VQA problem.

T Probability over answer classes

Output block

[ Concatenate ]
tvo fv fwv
[ Average pooling ] [ Average pooling ] [ Average pooling ]
[

[ Model Encloder v)

|
[ Model Encoder (M1) J—
f

—{ Model Encoder (Mo) }

[ Context-Question Attention }

Embedding Encoder

Embedding Encoder

Embedding Embedding
5 Context Question
Input pre-processing
Image = = = = Candidate
description !'supporting facts

_________ L2
]

! Supporting-facts |
1
i Retrieval

Image I I'Large-scale
knowledge base

Figure 3. Open-ended VQA model. By representing image with
neural language, we convert VQA as a reading comprehension
problem. Extra knowledge can be added naturally into the model
because of the same modality.

The input pre-processing block may include an im-
age description module or/and external knowledge retrieval
module, depending on the task. The image description mod-
ule aims to represent the image information by a text para-
graph. As the question to be asked is undetermined and
can be about any part of the image, a simple summary sen-
tence or paragraph is insufficient to cover all the details.
It is prefer to collect image information at different levels,
from single object, concept, sub-region to the whole image.
The Visual Genome dataset [16] provides various human-
generated region descriptions for each image, as presented
in Figure 4. Regions may overlap with each other but have
different focus of interest. The descriptions range from the
states of a single object (color, shape, action, efc.) to the re-
lationships between objects (spatial positions, efc.). Based
on this dataset, Johnson et al. [1 1] proposed the dense cap-
tion task, which aims to generate sophisticated lever of re-
gions of interest in an image, and describe each region by a
sentence. The generated region captions provide a detailed
descriptions about the image. Here we combine them as the
image description for QANet.

For VQA that requires auxiliary knowledge beyond the
image, a supporting-facts retrieval module is needed. It is
demanded to extract related supporting facts from a general
large-scale knowledge base but ignore the irrelevant ones.
Wang et al. [29] proposed to query the knowledge bases
according to the estimated query types and visual concepts
detected from the image. A keyword matching technique
is used to retrieve the ultimate supporting fact as well as



the answer. Rather than apply the heuristic matching ap-
proach which is vulnerable to homographs and synonyms,
here we make use of all the retrieved candidate supporting
facts as context. Since both image description and support-
ing facts are expressed by natural language, they can merge
together easily by concatenation. The QANet will then en-
code the textual information, seek the correlation between
context and question, and predict the answer.

The output layer is also task-specific. If the answer is
definitely included in the text paragraph, we can continue
using the output layer in QANet by predicting the start and
end positions of answer in the context. However, in some
cases, the answer may not explicitly show up in the context.
For example, region descriptions generally do not include
the answer to the question “When the image is taken?”” pro-
posed for the image shown in Figure 4. Some reasoning is
required in this circumstances. It is hoped that the model
can learn some clues from region descriptions such as the
bright colors presented in the text so as to predict the an-
swer “Day time”. To address this situation, we built the
output layer as a multi-class classification layer, and predict
the probabilities over pre-defined answer classes based on
the output features of three model encoders My, My, Mo,
as shown in Figure 3. An average pooling layer is adopted
firstly. The resulted feature vectors are then concatenated
and projected to an output space with the number of answer
classes. The probability of being each class is calculated as
p = softmax(W/vg; vy;Vva]), where W is the parameter
to be learned. Cross entropy loss is employed here as the
object function to train the model.

3.3. Multiple-choice VQA model

Multiple-choice VQA provides several pre-specified
choices, besides the image and question. The algorithm
is asked to pick the most possible answer from these mul-
tiple choices. It can be solved directly by the aforemen-
tioned open-ended VQA model by predicting the answer
and matching with the provided multiple choices. However,
this approach does not take full advantage of the provided
information. Inspired by [8, 10], which receive the answer
as input as well and show substantial improvement in per-

man walking on sidewalk.

red car parked on the street.

a sidewalk with write stripes.
tall buildings in the background.

a white box on a black pole.

Figure 4. 10 region description examples for an image in Visual
Genome dataset [16], where each region description corresponds
to a bounding box with the same color in the image. The descrip-
tions range from the states of a single object (color, trait, action,
etc.) to object relationships.
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fe
( MLP )
i
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I vou T Via t Viq T Voq
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[ Embedding ]

Candidate I Image description Question

Answer Dense Caption Model
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Figure 5. Multiple-choice VQA model. It takes image-question-
answer triplet as input and encodes both interactions of question
and answer with the context.

formance, we propose another model for multiple-choice
VQA problem.

As presented in Figure 5, aside from the question and
the converted image description, our model also takes a
candidate answer choice as input, and calculates the in-
teraction between the candidate answer and context. If
the answer is true, the encoded features of vg, and via
are strong correlated with voq and viq. Otherwise,
the features may be independent. A multilayer percep-
trons (MLP) is trained on the concatenated features, i.e.,
e = Wamax(0, W1[Voa; Via; Voq; V1q)). Dropout with a
probability of 0.5 is used after the first layer. The objec-
tive is to predict whether the image-question-answer triplet
is correct or not. Hence a sigmoid function is followed to
transform the feature into probability. A binary logistic loss
is employed to train the model.

Compared to the open-ended VQA model which selects
the top answers as class labels and excludes the rare an-
swers, multiple-choice VQA model encodes the candidate
answers directly. Thus It will cover more answer choices.
For similar answer expressions, such as “During the day
time”, “During daytime”, “In the daytime”, the model can
learn the similarity itself by embedding and encoder, rather
than use the heuristic answer normalization. Hence, it
avoids the chance of regarding them as different classes and
learning to distinguish them from the training data.

4. Experiments

In this section, we perform extensive experiments to as-
sess the effectiveness of the proposed approach. All the ex-
periments are conducted on an NVIDIA Titan X GPU with
12 GB memory. The models are implemented in PyTorch.



4.1. Datasets

We evaluate the models on three public available
datasets. Each dataset has its own peculiarity.

FVQA [29] (Fact-based VQA) is a dataset that not only
provides image-question-answer triplets, but also collects
extra knowledge for each visual concept. A large-scale
knowledge base (with about 193, 449 fact sentences) is con-
structed by extracting the top visual concepts from all the
images and querying those concepts from three knowledge
bases, including DBPedia [2], ConceptNet [19] and We-
bChild [27]. FVQA collects 2190 images and 5826 ques-
tions. The dataset has 5 train/test splits. Each split has 1100
training images and 1090 test images, providing roughly
2927 and 2899 questions for training and test respectively.
The questions are categorized into 32 classes.

Visual Genome [16] is a dataset that has abundant in-
formation about image and language. It contains 108,077
images and 1,445,233 Question and Answer (QA) pairs.
It also supplies 5.4 Million region descriptions as we intro-
duced before. These descriptions give a finer level of details
about the image and are used as the ground-truth text repre-
sentation in our experiments. As there is no official training
and test split, we random split 54, 039/4038/50, 000 im-
ages for training/validation/test as done by [30], which re-
sults in 723,917/53,494/667,911 training/validation/test
QA pairs. There are 6 types of questions including what,
where, how, when, who, and why (“6W”).

Visual7W [38] is a subset of Visual Genome, which
aims exclusively for VQA. It contains 47, 300 images with
139,868 QA pairs. Answers in Visual7W are in a mul-
tiple choice format, where each question has four answer
candidates, with only one correct. Here we evaluate our
model on the Telling QA subtask, which also consists of
the “6W” questions. The QA pairs have been split into
69, 817/28,020/42, 031 for training/validation/test.

4.2. Implementation Details

FVQA dataset needs to access external knowledge to
answer the given question. We follow the question-to-
query(QQ) mapping method proposed in FVQA [29] and
use the top-3-QQmapping results to extract candidate sup-
porting facts from the whole knowledge base. The extracted
supporting facts contain not only the image information, but
also demanded knowledge beyond the image. All the facts
are combined together into a paragraph. QANet [36] is fol-
lowed directly to predict the answer position in the para-
graph. We use the default parameters in QANet, and fine-
tune the model from the one that well-trained on general
reading comprehension dataset SQuAD [25]. The model is
finetuned with a learning rate of 0.001 for 10 epochs and
0.0001 for another 10 epochs on each training split sepa-
rately, and tested on the corresponding test split.

Visual Genome provides ground-truth region descrip-

tions. Based on this labeling, Justin ez al. [1 1] proposed a
fully convolutional localization network to jointly generate
finer level of regions and captions. Yang et al. [35] pro-
posed a model pipeline based on joint inference and visual
context fusion, which achieves much better dense caption
results. We re-train these models using our training split,
and predict dense captions for test images. The top-5000
frequently appeared answers are selected as class labels to
train the open-ended VQA model. Considering the average
paragraph length, we use a paragraph limit of 500 words and
4 attention heads in encoder blocks for fast training. The
model is trained from scratch using ADAM optimizer [14]
for 30 epochs. The learning rate is set to 0.001 initially,
with a decay rate of 0.8 every 3 epochs until 0.0001.

As to Visual7W dataset which has multiple-choice an-
swers provided for each question, we train the multiple-
choice VQA model. we randomly sample two negative an-
swers from the multiple choices for each positive example,
and shuffle all the image-question-answer triplets to train
the model.

4.2.1 Results Analysis on FVQA

We use answer accuracy to evaluate the model, follow-
ing [29]. The predicted answer is determined to be correct if
the string matches the corresponding ground-truth answer.
(All the answers have been normalized to eliminate the the
differences caused by singular-plurals, cases, punctuations,
articles, efc.) The top-1 and top-3 accuracies are calculated
for each evaluated methods. The averaged answer accuracy
across 5 test splits is reported here as the overall accuracy.

Table 1. Experimental Results on FVQA. Our method with fine-

tuned QANet achieves the highest top-1 accuracy.
Method Overall Accuracy (%)
top-1 top-3
LSTM-Question
+Image+Pre-VQA [29] 24.98 40.40
Hie-Question

+Image+Pre-VQA [29] 43.14 59.44
FVQA (top-3-QQmaping) [29] | 56.91 64.65

FVQA (Ensemble) [29] 58.76 -
Question+Visual Concepts [23] | 62.20 75.60
Ours-pretrained QANet 55.14 63.34
Ours-QANet-train-from-scratch | 47.87 54.24
Ours-finetuned QANet 62.94 70.08

Table 1 shows the overall accuracy of our method
based on supporting facts retrieved by using the top-3-
QQmapping results in [29]. Our method with finetuned
QANet achieves the highest top-1 accuracy, which is 0.7%
higher than the state-of-the-art result. It should be note that
[23] has the top-3-QQmapping accuracy of 91.97%, which
is 9% higher than what we used. The QQmapping results
have a direct influence on retrieving the related supporting
facts. With the same top-3-QQmapping results, our ap-
proach outperforms the method in [29] about 6% on top-



1 and top-3 answer accuracies respectively, and even per-
forms better than the ensemble method in [29]. As this work
aims to propose an alternative approach for VQA prob-
lem by representing all the input information with natural
language and solving VQA as reading comprehension, we
leave the improvement of QQmapping as a future work.

In addition, we test the QANet model without finetuned
by FVQA training data, i.e., the one trained only by general
reading comprehension dataset SQUAD [25]. Experimental
results show that the pre-trained QANet model is also fea-
sible on FVQA dataset. The model gives even better results
than that trained from scratch solely by FVQA training data,
because of the small amount of available data. This phe-
nomenon illustrates that with our framework, we can draw
on the experience of well-trained TQA models and make
use of the large volumes of general text to improve the VQA
performance.

In Figure 6, we show some cases of our method on the
FVQA data. Compared to [29] which fails to answer ques-
tions in the first two columns because of the wrong sup-
porting fact retrieved, our method leave the exact support-
ing fact extraction by the context-question attention block
in QANet, which is more reliable than the keyword match-
ing approach used in [29]. Method in [23] fails on the third
question because of the wrong supporting facts retrieved ei-
ther. Our method predicts a wrong answer for the last ques-
tion even if the text representation includes the answer. This
may be caused by the similar expressions of “sth. belongs
to the category of Food” in the paragraph, which confuses
the model.

4.2.2 Results Anslysis on Visual Genome QA

We use the top-1 answer accuracy to measure the perfor-
mance on Visual Genome QA dataset, following [30] for
fair comparison. All answers are normalized as well. An-
swer accuracy for each question type is also reported.
Table 2 lists the evaluation results on Visual Genome QA
test split. It can be observed that our method achieves the
best performance with the use of ground-truth region de-
scriptions. The overall accuracy is about 5% higher than the
result based on ground-truth facts used in [30]. When the
predicted region descriptions are applied, our method still
has higher accuracies on “SW” questions except “What”,
which demonstrates the effectiveness of our method. The
superiority is even obvious for “Who” questions, which is
almost 10% higher. Nevertheless, since “What” questions
account for 60.5% of all questions, its performance has a
large effect on the overall accuracy. Answering “What”
questions largely depends on the image description, as they
mainly concern the states of objects. Using the dense cap-
tion model in [35] results in 1% higher overall accuracy
than using the model in [11], because of the better dense
caption results. As stated in [|1], using the ground-truth

region boxes produces the mAP (mean Average Precision)
of 27.03, while using the model in [1 1] only has mAP of
5.39 and the model in [35] obtains mAP of 9.31. The great
gap between the predicted and the ground-truth region de-
scriptions causes the VQA performance degradation. How-
ever, based on our method, the VQA problem is solved by
two subtasks: image description and TQA, which avoids
the multimodal feature fusion problem. We believe that as
better image description methods become available, the re-
sults will improve further. Here we leave the improvement
of generating more detailed and correct region descriptions
as a future work.

We show some qualitative results produced by our open-
ended VQA model tested on Visual Genome QA dataset in
Figures 7 8 9.

In Figure 7, all the questions are proposed based on
the image shown on the top left. The corresponding text
descriptions are presented in the red and blue rectangular
boxes on the right, where the red one shows the human-
labeled description and the blue one shows the predicted
dense captions. Predicted answers based on both descrip-
tions are presented in the table. The results show that 1) our
open-ended VQA model can tackle different types of ques-
tions; 2) the VQA model works better if the text description
is more detailed. Even if the predicted answer is not ex-
actly the same as the ground-truth answer, it is more reason-
able based on better description. For example, when ask-
ing “What are the man’s hands doing?”, the predicted an-
swer according to human-labeled region description shows
“rope”, which is more relevant to the ground-truth answer
“holding rein”.

In Figure 8, we present more examples from different in-
put images and questions. According to the weights calcu-
lated by the context-question attention block, the sentences
containing the higher weighted words in the converted text
description are also presented. The results demonstrate that
the question can be well answered if there is correspond-
ing description about the question. For questions such as
“Why” and “When” which need reasoning, the answer can
be learned from the training data.

Figure 9 shows some interesting failure cases, where the
predicted answers are very closer to the ground-truth an-
swers. The predicted answer may have the same meaning
as the ground-truth or in a general term. But they are not
exactly the same and are regarded as incorrect during eval-
uation. These results expose a drawback of the open-ended
VQA model in which multi-class classification is adopted
in the output block. It is difficult to deal with synonyms by
heuristically normalizing the answers. In addition, as they
are divided into different classes, the model will learn to
distinguish them from the training data, which is not rea-
sonable.



Table 2. Experimental Results on Visual Genome QA based on the open-ended VQA model. The top-1 accuracies for different question
types are also reported. Our method achieves higher accuracies on “5SW” question types except “What”. The percentage of each question
type is shown in parentheses. “GtDescp” means using the human-labeled region descriptions which is refer to the “GtFact” used in [30].
“PredDescp” means applying the predicted dense caption results in our VQA model.

Method Accuracy (%)
What Where When  Who Why How

60.5%) (7.0%) G35% (5% ©@7%) 10.9% Overall
VGG+LSTM [1] 3512 1633 5271 3003 1155 4269  32.46
HicCoAt-VGG [20] 30.72 1753 5253 33.80 1262 4514  35.94

VQA-Machine [30]
GtFact(Obj+Att+Rel)+ VGG 44.28 18.87 52.06 38.87 12.93 46.08 39.30
VQA-Machine [30]
PredFact(Obj+Att+Rel)+VGG | 40.34 17.80 52.12 34.98 12.78 45.37 36.44

Ours-GtDescp 49.6 23.8 56.9 57.2 16.7 59.3 44.8
Ours-PredDescp-by-[11] 36.4 17.9 56.5 48.6 14.7 45.1 33.7
Ours-PredDescp-by-[35] 374 18.6 56.6 49.0 14.8 45.8 34.5
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5 e ‘Which object in this image is utilized to ‘What animal in the image can rest | Which object in this image is What sort of food can you see in this
S 2 | chill food? standing up? round? image?

A kitchen with a white refrigerator and a

white stove. Brown wooden cabinets. White | A horse drawn carriage on a city A man playing tennis. Tennis Abunch of fruits and vegetables ona

. . . S racket in the mans hand. A table. A bunch of yellow bananas.
refrigerator with freezer. Refrigerator street. A man riding a horse drawn . . . .
belongs to the category of Food. A carriage down a street. Horses can man holding a tennis racquet Red apples in a bowl. Fruits belongs
. § on a tennis court. A man to the category of Food. Apple

refrigerator is used for chilling food. Oven | rest standing up. Person is related
belongs to the category of Food preparation | to animate being. Person is related
appliances. Oven belongs to the category of | to standing. People is related to
Food and drink preparation. An oven is a animal. People can stand up for
device to heat Food. Stove belongs to the themselves. Tree is related to up.
category of Food preparation appliances.

swinging a tennis racket at a belongs to the category of Food. Pear
ball. A tennis ball is round. A belongs to the category of Foods.
tennis ball is often yellow. Banana belongs to the category of
Tennis balls are spherical in Food. Orange belongs to the

shape. Tennis balls are hollow. | category of Food.

ydeaSeaed Suipuodsdrio)

< 2

ég % Refrigerator Horses Tennis ball Banana
-

‘gé ; Refrigerator Horses Tennis ball Fruits

Figure 6. Successful and failure cases of our method on FVQA dataset. Our method correctly predicts answers for the questions in the first
three columns, but fails for the last one. In addition, the reason for the answer is obvious from the converted paragraph, which is more
semantic and structured than image.

Table 3. Answer accuracies on Visual7W [38] Telling dataset using the multiple-choice VQA model. “GtDescp” means using the human-
labeled region descriptions, while “PredDescp” means applying the predicted dense caption results.

Method Accuracy (%)
What Where When  Who Why How Overall
47.8%) (16.5%) (4.5%) (10.0%) (6.3%) (14.9%)

LSTM+CNN [1] 48.9 54.4 71.3 58.1 51.3 50.3 52.1
Visual7W [38] 51.5 57.0 75.0 59.5 55.5 49.8 55.6
MCB [8] 60.3 70.4 79.5 69.2 58.2 51.1 62.2
MLP [10] 64.5 75.9 82.1 72.9 68.0 56.4 67.1
MAN [22] 59.0 63.2 75.7 60.3 56.2 52.0 59.4
KDMN-NoKG [18] 59.7 69.6 79.9 68.0 61.6 51.3 62.0
Ours-GtDescp 70.5 74.5 77.0 80.3 63.8 55.7 69.8
Ours-PredDescp-by[ 1 1] 58.4 64.9 75.1 70.2 56.3 50.8 60.2
Ours-PredDescp-by[35] 59.7 66.2 75.1 70.8 58.0 51.5 61.2

4.2.3 Results Analysis on Visual7W truth region descriptions. It also performs well when we
use the predicted dense captions from [35], compared with
the results by recently proposed dynamic memory network
based methods of [22] and [18] without extra information
added. To be specific, our model shows better perfor-

We test the multiple-choice VQA model on Visual7TW
dataset. The results are presented in Table 3. Our method
achieves the best performance when applying the ground-



Question Answer-pred [ Answer-pred | Answer-gt
(GtDisp) (PredDisp)

‘What pulls the cart? horse horse horse

Who drives the cart? man engineer man

Where is the man? on cart on street on cart

What color is the horse? brown brown brown

lh:;‘}li:‘::;l: hat? white white white

How many wheels are N S N

on the pony cart? - - -

ha:::‘:;:;:f,‘"““ s rope riding bike [ holding rein
5 g?

qu)‘:z‘:‘;':z :::Z:n’ riding taking off pulling it

‘What kind of tires

does the wagon have? rubber e rubber

What is the pony doing? riding parked pulling cart white stripe.

Red flowers climbing the wall. man driving buggy and horse. a shrubbery with red flowers. A
man is sitting on a cart being pulled by a horse. A beautiful flowering bush. a chestnut colored
horse. a man in blue jeans and ball cap. flowering foliage. a concrete sidewalk path.part of a
banana tree. the horse’s reins . a green hedge with white blooms. man driving a pony cart.
wheels on pony cart. man’s hands holding the reins. lush flowering shrub. trimmed hedges in
front of a house. air conditioner protruding from house. harness around a pony’s neck. A man
steering a horse-drawn carriage. A pink entry way. A patch of short grass. A pale blue and red
stripped shirt. Horse pulling a cart. Dark green leaves with red flowers. Cart with two wheels
with rubber tires. Black horse with white facial markings. Green shrub in the middle of the
sidewalk. Man with a white hat. Grey brick wall. A horse carrying a man in a carriage. A man
riding a horse in a carriage. Green bushes beneath a house. A brown horse with silver hooves. A
white house with some pink on it. A street next to pavement. A tree with red on it. worn out
cart tire. stone exterior of building. exterior wall painted pink. patch of lawn and weeds.
overhanging palm tree fronds. a carriage pulled by a horse. a green palm tree. a tall stone wall.
an white apartment building. window with red bars. tan bricks on distant building. a horse's
hoofs on pavement. white baseball hat on man's head. shrubs outside a residence. a hole in the
man's pants. A sidewalk has a white curb. Man is holding a horse's reins. Two black wheels.

a man riding a horse. white hat on the man. a blue and white shirt. brown horse with black
mane. two wheels on a cart. red flowers in a tree. a paved road. a black tire. a palm tree. the
man is wearing blue jeans. green bushes in front of the building. a house with a red roof. a horse
on the road.a bush in the background. a wooden cart. a chain link fence. a concrete sidewalk. a
white door on the wall. a brick wall. a red brick building. a man wearing a blue jeans. a green
tree in the background. shadow of the person on the ground. grass growing on the sidewalk.
red and white building. the horse is wearing a harness. white line on the road. a black and
white sign. the road is grey. a tree with green leaves. a house in the background. a white
building with a window. a white light on the wall. a black and white bench. a brown horse with a

Figure 7. Success and failure cases of our open-ended VQA method on Visual Genome QA dataset. The model is feasible for different
types of questions. “GtDisp” means using the human-labeled region descriptions which are presented in the red box, while “PredDisp”
means applying the dense caption results by model in [1 1] which are shown in the blue box.

Q: Whose head is poking out of the
side?

A: Dog

C: Dog sticking head through railing.

Q: What type of bus is turning?
A: Double decker
C: Ared double decker bus.

[ ===

Q: What color is the floor? Q:
A: White A:
C: The white tile floor. C:

ow many boys are playing?

N

=]

wo boys holding tennis rackets.

Q: When is the picture taken?

A: Daytime

C: flower box with green leaves
and purple and red flowers.

Q: Where was this photo taken?
A: Train station

C: Passenger train stopped at
the station.

Q: Who is standing front of
the green wall?

A: Woman

C: The woman is standing.

Q: Why are there shadows?
A: Sunny
C: Elephant shadow on pavement.

Figure 8. Correctly answered examples from Visual Genome QA dataset. “Q”, “A”, “C” denote the question, the properly predicted answer,
and the supporting sentence from the predicted image description by model in [11].

mance on “Who” questions and comparable accuracies on
“What” and “How” questions. Because the region descrip-
tions contain abundant semantic information about the im-
age. They are helpful to answer questions such as “What
color”, “What shape”, “What is the man doing”, “Who

is doing ...”. However, it performs poorly on “Why” and
“When” questions even if we use the ground-truth region
descriptions. We infer that is because the candidate answers
for “Why” and “When” questions are generally longer than
others, and are usually not included by the converted text



Q: Where was this photo taken?

A(pred): Street corner

A(gt): Asian city street

C: A Chinese business advertisement sign.

Q: How is the triangle logo situated?
A(pred): Upside down

A(gt): Base up

C: Large upside down triangle inside of
ared circle.

Q: What has lights on?
A(pred): Bicycle
A(gt): Bike

C: Lights and reflectors on bicycle.

Q: Why would you ride the bus?
A(pred): Transportation
A(gt): Commute

C: Large bus that says Crosstown
on the front.

Q: Who has their mouths open?
A(pred): Boy

A(gt): Two boys

C: A boy with his mouth open.

Q: When was this taken?

A(pred): Day time

A(gt): During day

C: Brown tee-shirt and denim skirt

on little girl.

Figure 9. Some failure cases in which the predicted answers are very closer to the ground-truth answers. “Q”, “A(pred)”, “A(gt)”, “C”
denote the question, the predicted answer, the ground-truth answer, and the supporting sentence from the predicted image description by

model in [ 1].

Small child in grass. Small child wearing yellow shirt. Green patch of grass. girl's capris are pink.
girl's shirt is yellow. lady bug on girl's shirt. black spots on lady bug. girl's hair is blonde. boy is
kicking soccer ball. boy's shorts are red. boy's shirt is red and white. soccer ball is white orange and
black. blonde girl soccer with ball. apple on the ground with green. hand with five fingers on it. red
shirt with white on the clock. green ball with soccer bakset. sun with bank and money coin. lady bug
shirt with yellow. boy hand weapon gun knife black. White and black ball. Small patch of green
grass. Yellow shirt with red and black design. Small child in the grass. a ball on the grass. a shadow
on the grass . pink and blue pants . a white ball. girl wearing shoes. a yellow shirt . a soccer ball .

Questions What time When will the children Why are the children | How many Who is standing | Where is this
of day is it? | leave the field? running? children are there? | in this photo? photo taken?
Multi- Night time When the game is over | They are playing tag | Three (0.13) A woman (0.28) | Ata park (0.60)
choices (0.04) (0.45) (0.26) Four (0.04) Acouple (0.01) | Ina swimming
provided Afternoon When they are done They are exercising | None (0.18) An old man pool (0.01)
and (0.15) playing (0.23) (0.09) Two (0.63) (0.01) At the museum
probability | Morning When it is time to eat They are having fun A girl and boy (0.02)
predicted (0.04) (0.10) together (0.66) (0.97) On a grassy
Daytime When their parents get They are trying to field (0.72)
(0.96) ready to take them home | kick the balls (0.18)
(0.08)
Gt_answer | Daytime When their parents get They are trying to Two A girl and boy On a grassy
ready to take them home | kick the balls field

Figure 10. Qualitative results of our multiple-choice VQA model on Visual7W dataset. Given the image, the predicted dense caption result
by [11] is presented in the blue box. We report the probability to each candidate answer choice in brackets. The predicted answer is the
one with the largest probability for each question, which is shown in red color. The VQA model will attend the most related words by the

context-question and context-answer attentions (as shown in the red words in the text paragraph), which helps the answer inferring.

description. In that case, it becomes difficult for the model
to co-attention between question/answer and context. The
encoded features of v, and vq are not strong correlated.

In addition, it should be note that the work in [10] re-

10

ports the accuracies of 64.5% and 54.9% for “Why” and
“How” questions even based the inputs of question and an-
swer, without image, which means their model can infer the
correct answer without using image information. It seems



the model is overfit on this dataset. It merely learns the bi-
ases from the dataset, which is not accepted from the point
of solving VQA problem.

We present some qualitative results produced by our
multiple-choice VQA method on different kinds of ques-
tions in Figure 10, based on the same input image. The re-
sults illustrate that the VQA model performs well if the re-
lated information is contained by the text description. Even
if the answer is not exactly expressed in the paragraph,
the model can infer it according to some related words.
The correctly inferred answers to the “How many” and the
“Who” questions in Figure 10 prove this point. The “When”
and “Why” questions are wrongly answered in this exam-
ple, because they are totally not mentioned in the text de-
scription.

Furthermore, after converting to text which is full of
semantic information, the reasoning process is readable
from the context-question attention. Other examples show
that when the question asks about “color”, all words about
color in the context will be higher weighted by the context-
question attention. The corrected answer can then be in-
ferred by considering the focused object additionally.

A few more examples are shown in Table 4 which
achieves correct answers and in Table 5 which shows fail-
ure cases. Our method achieves better results if the answer
is included in the converted text description. In Table 4, the
predicted results for “What” question shows higher prob-
abilities for both “tree” and “train”, which is understand-
able, and “train” has higher probability than “tree”. For
“Why” and “When” questions, the corrected answers may
be learned from the training data. From Table 5, we can
see that the failure reasons are mainly caused by the un-
described information in dense captions. The candidate
answers usually cannot get higher probabilities, no matter
correct or incorrect ones. Furthermore, some improvement
directions are observed. For example, for the first image
in Table 5, the description includes “the glasses of water”,
but does not mention “Food” or “Drink”. Hence external
knowledge would be helpful here which explains that “Wa-
ter belongs to the category of drink”. The second question is
a kind of text recognition problem. Therefore, an additional
text detection and recognition module is useful, which can
extract all the text in the image. Actually, text appeared in
the image usually contains lots of semantic information. It
can help the image understanding. Last but not least, it is
found that summary or analysis about the image would be
very useful in answering questions such as “the total num-
ber of objects/person show in the image”.

5. Conclusion

In this work, we attempt to solve VQA from the view-
point of machine reading comprehension. In contrast to ex-
plore the obscure information from image feature vector,

we propose to explicitly represent image contents by natu-
ral language and convert VQA to textual question answer-
ing. With this transformation, we avoid the cumbersome
issue on multimodal feature fusion. The reasoning process
are readable from the context. The framework can be easily
extended to handle knowledge based VQA. Moreover, we
can exploit the large volume of text and NLP techniques to
improve VQA performance.

Our experiments also show that if the context is too long,
it becomes hard to infer the correct answer. Hence, how to
generate correct and valid image description, and how to
extract proper external knowledge are next work.
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Table 5. Failure cases of our multiple-choice VQA model on Visual7W dataset. The failure reasons are mainly caused by the excluded
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