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Abstract

Hadrons, such as protons and neutrons, are states that are formed through interactions of quarksand gluons, the fundamental building blocks of Quantum Chromodynamics (QCD). The role ofnon–perturbative effects in the emergent behaviour ofQCD is a key ingredient in our understand-ing hadrons and hence the atoms formed thereof. These dynamics have important consequencesfor matter in the universe from the atomic scale to neutron stars and beyond.We use an ab initio non–perturbative numerical path integral based approach to QCD, knownas lattice QCD. Advancing computing resources have made possible rapid advances in hadronicstudies in lattice QCD, but many challenges still remain. Two areas of vital importance to ourunderstanding of QCD and future experiments are gluonic observables and structure functions.Gluonic observables are difficult to calculate on the lattice due to sensitivity to short distancegauge noise. Naïve structure function calculations suffer from rapidly increasing computationalcost as the lattice grows to a size where discretisation systematics are under control, as well asproblems matching onto Minkowski matrix elements.A modification to the QCD action changes the energy eigenstates of hadrons. The shift inthese eigenstates can be related to matrix elements with interactions introduced in the shiftedaction via the Feynman–Hellmann Theorem (FHT). We show how the FHT can be extended tosecond order to calculate two current hadronic matrix elements using only two–point functiontechniques. A detailed analysis on how to improve uncertainty and reduce computational require-ments of any FHT calculation is given. Using the FHT the full Compton amplitude is calculated,which allow us to explore assumptions made in experimental parton studies in Deep InelasticScattering (DIS). The subtraction function, given in terms of the Compton amplitude is not exper-imentally extractable and is examined from first–principles for the first time.Gluonic matrix elements are traditionally difficult to calculate on the lattice. By using Wilsonflow to reduce short distance effects, forward matrix elements are determinable with reduceduncertainty. By classification of the Lorenz structure of off–forward gluonic matrix elements, theextraction of non–forward matrix elements were also made possible, providing further insightinto the highly non–perturbative binding of hadrons.
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Chapter 1

Outline

One of the greatest achievements of physics is the formulation of the Standard Model (SM). Thetheory has great predictive power, having successfully described phenomena from interactionsbetween individual quarks and gluons, all the way to neutron stars and beyond. Despite theseachievements, the SM does not successfully predict all phenomena, such as the non–zero neu-trino mass, and searches are under way for Beyond Standard Model (BSM) theories.The interactions between quarks and gluons form QCD describes the strong sector of theSM and can be simply summed up as fascinating. From a simple Lagrangian
LQCD(x) := q(x)

(
i /D(x)−m

)
q(x)− 1

4
Fµν(x)Fµν(x) (1.1)

many dynamic features arise; confinement, asymptotic freedom, dynamical chiral symmetry break-
ing and many more. Yet despite the simple equation and many years of studies, aspects of it’sdynamics are yet to be understood or discovered. Protons and neutrons are examples of hadrons,composite objects made up of quarks and gluons. The structure of hadrons can be studied fromthe perspective of spatial and momentum distributions of the quarks and gluons that make upthe hadron. The background to QCD and these hadronic structure are discussed in §2.Due to the self–interaction of gluons, hadrons are highly non–perturbative objects. The onlyknown non–perturbation ab initio determination of QCD, is the path integral based modelin-dependent discretisation of QCD known as lattice QCD. As lattice QCD calculation continue toimprove, fuelled by exponentially increasing computational resources, it provides more and moreinput into experiments. As lattices grow in size, computational costs increase, nowmore than everimproved lattice techniques become important. In §3 we provide a background introduction tolattice QCD necessary for subsequent chapters.One of the short comings of lattice QCD is the direct calculations of hadronic matrix elementsinvolving two currents. Using the FHT we can relate second order shifts of energy eigenstates tosuch matrix elements by introducing a new coupling to the action. In §4, we briefly describe thehistory of the FHT and followed by two proofs of second order FHT for path integrals that will al-low us to calculate suchmatrix elements. The implementation of FHT for latticeQCD is describedin §5, showing how using only hadron spectroscopy, we are able to extract matrix elements. Fur-ther improvements to the technique, reducing systematic uncertainty and computational costsare also presented.The first FHT results examined are nucleon–delta transition form factors in §6. By using largerthan physical masses the matrix elements from the FHT are approximately saturated by the low-est intermediate state, allowing us to test the FHT. This saturation allows one to relate the energyshifts to transition form factors, which are calculated and compared to other direct lattice calcu-lations, quark models and phenomenology.The Compton amplitude and the hadron tensor encode the longitudinal behaviour of partonsinside hadrons. In §7 we present extraction of the Compton amplitude. The second order FHT isused calculate the Compton amplitude on the lattice in an unphysical region, matched throughkinematics for the first time, without any rotations used by four–point techniques, or mixing

1



2 CHAPTER 1. OUTLINE

problems associated with Operator Product Expansion (OPE) methods. The Compton amplitudecan be related to the moments of partonic momentum distributions, and these are compared toother results. These moments are calculated to a higher order than it was possible using latticeQCD before. The scaling behaviour of both the Compton amplitude and moments are presented,and show no significant deviations from the expected behaviour. Finally higher–twist effectswere examined giving insights into many assumptions made in links to the partonic picture.The proton–neutron mass difference is a highly tuned quantity, the make-up of our universevaries greatly if it is changed slightly. Part of the difference is determined from the Cottingham
self energy, part of which is determined in terms of the Compton amplitude subtraction function,which is not extractable from experiment. Recent measurements of the proton charge radius us-ing Lamb shift give different results when using different leptons, and one of the inputs to theexperimental determination is the subtraction function. A long outstanding question is whetherthe subtraction function possesses a fixed–pole.We examine all these in §8, using multiple differ-ent vector operators and show that there is a possible fixed–pole term, and provide the necessarysteps to fully resolve it.Just as important as the study of the quark structure of the hadrons is the gluonic structure.However on the lattice the study of gluonic observable are plagued with high frequency gaugenoise. Using smoothing techniques we study the gluonic contributions to the EnergyMomentumTensor (EMT) in §9 and are able to extract clean signal in the form factors associated with thegluonicmass and spin density of the nucleon, albeit on quenched latticeswith larger than physicalquarkmasses. These results are compared to their quark equivalent results and the gluonic radiusis shown to be larger than it’s quark EMT counterpart.Finally in §10, all the results of this work are summarised, building a more complete pictureof the hadron structure investigated.



Chapter 2

Hadron Structure

The scale at which we studymatter has continuously expanded throughout history, both towardsthe large scale structures, of galaxy super-clusters, and to the other end of the scale towards thefundamental building blocks of matter; structures inside atoms. In 1896, the discovery of α, β,and γ radiation [1] gave physicists a lens for resolving structures on a finer level than possiblebefore. In 1911 the nucleus was discovered inside the atom by scattering α and β–particles offgold [2]. In the following years many phenomena where found to be in contention with a point–like model of the nucleus, eventually leading to the proposal of quarks and gluons as the nucleussubstructure in 1964 [3]. Eventually, after further theoretical and experimental advances, thislead to the formulation of QCD as the theory for these strong interactions [4, 5]. In each stepthese observations have been calibrated with the previous scale, leading to a rich description ofmatter over many different energy scales.QCD eventually became part of the formulation of the SM, with the incorporation of elec-troweak interactions [6], and the Higgs mechanism [7–9] completing the theory [10, 11]. TheSM is a Yang–Mills Gauge Field Theory (GFT) [12], with SU(3)C × SU(2)I × U(1)Y local gaugesymmetry.The theory has predicted, with great precision many interactions and particles. First the ex-istence of a weak current [13–15] followed a few years later by the existence of weak bosons[16–19]. The gluons [20–25], and the charm quarks [26, 27], were also discovered in parallel.Then decades after the formulation, the existence of the top quark was verified [28, 29]. Finally,most recently the last piece, the Higgs was discovered at the LHC [30, 31]. With a large array ofaccurate predictions, it makes the SM as one of the most successful theories of modern physics.The theory does not predict all observed phenomena however. Neutrinos where shown tohave mass [32–35], although it is not yet excluded for one of the neutrinos to be massless. An-other contention is the so called ‘Hierarchy Problem’, where the extreme difference in couplingconstant, requires delicate cancellation in renormalisation to retain such a difference, althoughit has been argued that this is not a concern by itself [36]. However there are other contentionsbeyond non–vanishing neutrino mass, such as CP problems [37–40], and lepton universality [41],amongst others. The SM is not the end of theoretical physics, the search for physics beyond thestandard model is under way in many areas, which requires a better understanding of the SM,particularly in the strong sector.Throughout this work we focus primarily on the hadron structure of the strong sector, andelectroweak interactions with strong sector composite objects; namely hadrons. Starting with abrief introduction into QCD §2.1, with a focus on it’s symmetries. We follow with various formu-lations of describing the structure, with form factors §2.2, structure functions §2.3, and finallytheir combination in Generalised Parton Distributions (GPDs) §2.4. §2.2 is primarily used in §6and §9, whereas §2.3 is used in §7 and §8.
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4 CHAPTER 2. HADRON STRUCTURE

(a) Quark gluon vertex. (b) Three gluon vertex. (c) Four gluon vertex.
Figure 2.1: The three fundamental QCD Feynman diagrams.

2.1 Quantum Chromodynamics

QCD is a Yang–Mills [12] formulation ofSU(3), made up of quarks; as 3 generations of quark pairs,and gluons; as 8 spin–1 bosons, which carry colour and colour–anti–colour pairs respectively.With quarks taken to be massless, it is a beautiful parameter free theory, after the number ofcolours and flavours has been fixed. The lowest two quark flavours have very small mass, and assuch many properties of QCD below energy scales at which the other flavours become activecan be described by this massless prescription.Ignoring the small quark mixing phase term the QCD Lagrangian can be written
LQCD(x) :=

∑
f

qf (x)αa

(
i /D(x)αβab −mfδabδ

αβ
)
qf (x)βb −

1

4
Fµν(x)iFµν(x)i. (2.1)

Defined in terms of the covariant derivative
Dµ(x)ab := δab∂µ − igtiabAiµ(x) (2.2)

which includes the strong coupling g. Often we write
Aµ(x)ab := tiabA

i
µ(x). (2.3)

where the eight SU(3) generators tiab are implicit, and represented by 3 × 3 traceless matrices,with unit determinant, acting in colour space.The non–abelian skew–symmetric field strength tensor is given by
F iµν := ∂µA

i
ν − ∂νAiν + gf ijkAjµA

k
ν (2.4)

where f ijk are SU(3) Lie group structure constants. These equations determine three interactionvertices from which all QCD phenomena is formed Figure 2.1. The QCD action is formed fromthe Lagrangian by
SQCD :=

∫
d4xLQCD(x). (2.5)

Despite the simplicity of the QCD Lagrangian it encodes an extraordinarily rich set of phe-nomena. From high energy particle colliders, probing deep into nuclei, to the core of neutronstars and quark gluon plasmas. The most prominent feature of QCD is that it features both con-
finement at large distances, and asymptotic freedom at short distances. This naturally leads to arunning coupling constant, which we can encode by the β function through use of the Callan–
Symanzik equation, which relates a shift in renormalisation scale µ to the shift in coupling β.The leading order form of β for an SU(N) non–abelian gauge theory is given by

β(g) = − β0g
3

(4π)2 (2.6)
β0 :=

11

3
N − 2

3
Nf (2.7)
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Figure 2.2: A selection of determinations of αS(Q) from a variety of methods, as col-lated by [42], with the global average for fits obtained therein. The data includes Z polefits methods from precision electroweak measurements [43], radiative Υ(1S) [44], and
τ–decays [42]. Further data was taken from HERA [45–48], TEVATRON [49, 50], LHC[51–53], and various e+e− collider experiments [54–56]. The fits where taken at twoloop order with Nf of 3, 4 and 5, with a Lambert function technique [57, 58]. All errors,including fit are shown to one standard deviation.

where Nf is the number of flavours of theory. For QCD N = 3 and Nf is the active flavours atthe current energy scale. One can then write the QCD coupling constant
αS :=

g2

4π
(2.8)

to leading order in Q in terms of β as
αS(Q) =

2π

β0 log (Q/ΛQCD)
. (2.9)

The QCD mass scale ΛQCD can then be determined from experiments by matching any observ-able quantity involving the strong force, in powers of αS with a Renormalisation Group Equations(RGE) via the Callan–Symanzik equation. The value is then determined by active quark flavoursat that scale. Due to this ambiguity in the extraction of ΛQCD, and that αS(Q) is entirely charac-terised by knowledge of ΛQCD or one value at some Q, it is standard practice to quote αS(mZ)instead. A collection of determinations of αS(Q) is seen in Figure 2.2. The precise determination,of αS over vastly different energy scales, is crucial evidence that QCD is the correct theory forthe strong interactions.The negative sign of β implies that as one heads to larger energy scales, the coupling constanttends to 0 and hence the theory has asymptotic freedom. At smaller scales Q or alternatively
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large separation scales, the coupling constant becomes large, and non–perturbative effects comeinto play. At even larger distances due to the rise in coupling constant, quark/anti–quark pairsbecome energetically favourable and hence one observes only colour singlet states, known as
confinement.
2.1.1 Symmetries

A symmetry of a theory says something fundamental about it’s properties. Each symmetry can belinked via Noether’s theorem to a conserved charge. We briefly introduce symmetries relevantto this work, namely gauge and chiral symmetry.
SU(3) Gauge Invariance

The primary symmetry that QCD theory has been constructed with is gauge invariance. We re-quire that the action is invariant under local transformation Ω(x)ab under the special unitarygroup SU(3), represented by unitary 3× 3 matrices. Local meaning that the transformation canvary at each point in space–time x. This means that under a transformation, fermion and gluonfields transform
qf (x)a → q′f (x)a = Ω(x)abqf (x)b (2.10)
qf (x)a → q′f (x)a = qf (x)bΩ

†(x)ba (2.11)
Aµ(x)ab → A′µ(x)ab = Ω(x)acAµ(x)cdΩ

†(x)db +
i

g
(∂µΩ(x)ac)Ω

†(x)cd (2.12)
while the action remains unchanged

S
[
A′µ, q

′
f , q
′
f

]
= S

[
Aµ, qf , qf

]
. (2.13)

The covariant derivative and field strength tensor transform as
Dµ(x)ab → D′µ(x)ab = Ω(x)acDµ(x)cdΩ

†(x)cb (2.14)
Fµν(x)ab → F ′µν(x)ab = Ω(x)acFµν(x)cdΩ

†(x)cb. (2.15)
The name covariant derivative comes from the fact that Dµq transforms like q. The conservedcharge for the symmetry is colour.
Chiral Symmetries

One of the approximate symmetries the theory possess, is the vector symmetry, or isospin sym-metry. For some constant α the action is constant under global transformations
qf1(x)a → q′f1(x)a = e

iαtif1f2 qf2(x)a (2.16)
qf1(x)a → q′f1(x)a = qf2(x)ae

−iαtif1f2 (2.17)
where tif1f2 is one of the N2

f − 1 = 8 generators of SU(3) and summation convention is usedfor f2. The symmetry is broken by non–degenerate mass terms in (2.1). In addition to the aboveequations, there is also an additional flavour diagonal (flavour singlet) symmetry
qf (x)a → q′f (x)a = eiαqf (x)a (2.18)
qf (x)a → q′f (x)a = qf (x)ae

−iα (2.19)
which holds even for non–degenerate quark masses. Both of these symmetries’ correspondingNoether currents are the vector currents, with the latter symmetries conserved quantity beingbaryon number.
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Another symmetry is the axial–vector symmetry, which requires the action to be independentunder the global transformations

qf1(x)a → q′f1(x)a = e
iαγ5tif1f2 qf2(x)a (2.20)

qf1(x)a → q′f1(x)a = qf2(x)ae
iαγ5tif1f2 . (2.21)

and due to a non–invariant integration measure an extra symmetry
qf (x)a → q′f (x)a = eiαγ5qf (x)a (2.22)
qf (x)a → q′f (x)a = qf (x)ae

iαγ5 (2.23)
These symmetries decouple left and right handed spinor components, which each separatelyobserve the symmetry. The corresponding conserved quantity is axial charge, corresponding tothe charge of the axial current.The combination of both of these symmetries is known as chiral symmetry and is exact in thezero quark mass limit mf = 0. The theory is implicitly broken by spontaneous chiral symmetrybreaking, leading to 8 massless Goldstone bosons; the pseudoscalar meson octet. In addition thequark masses explicitly break the symmetry, which gives the octet mesons their mass. Howeveras the three lightest quark flavours are small, the octet can still be considered approximatelychiral.

2.2 Form Factors

While once the proton was thought of as an atom; indivisible, it is now known to be made ofconstituents. With the above discussion on asymptotic freedom, confinement, and the scaling of
αS (Figure 2.2), it is clear that QCD objects, such as the proton p and the positively charged pion
π+ are complicated objects. We need a method for encapsulating the complex structure thatarises from the dynamics of QCD.The most natural way to think about probing the internal structure of hadrons is the evolu-tion of their Dirac structure’s at different energy scales. Indeed the charge and magnetisationdensities of the proton [59] were probed experimentally [60–62] more than a decade beforethe parton model was formulated [63]. To verify that the experimentally measured form factorsare consistent with those predicted by QCD, precise predictions must be made. The only knownmodel–independent formulation of form factors and other non–perturbative phenomena fromQCD is lattice QCD [64].A form factor encodes the effect of the composite nature of the object on interactions withit’s constituents. The Quantum Electrodynamics (QED) quark–photon vertex

eqf ε
µqfγµqf (2.24)

in terms of electric charge eqf , polarisation εµ, and quark fields qf of flavour f is then affected bydynamics between the quarks inside a hadron. The nature of the effect gives rise to all possibleDirac structures that transform in the same way, with the constraint that it has to obey the samesymmetries as the underlying interaction. In terms of vector current
V f
µ (x) := qf (x)γµqf (x) (2.25)

we have two form factors F1 and F2〈
P, ~p ′

∣∣∣V f
µ (0)

∣∣∣P, ~p〉 = uP
(
p′
) [
γµF

f
1

(
Q2
)

+
iσµαq

α

2m
F f2
(
Q2
)]
uP (p) (2.26)

where for convenience we have definedQ2 := −q2. Note the form factors are purely dependenton Q2.
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bx

by Fourier Transform←−−−−−−−−−−−−−−→

Q2

GE

Figure 2.3: The relationship between form factors and their corresponding charge den-sity. The charge density here is rotationally symmetric, but we have written it in termsof radial b⊥ to link to §2.4.
These two form factors are just one choice of representation, the Dirac F1 and Pauli F2. Theother representation commonly used is the Sachs electromagnetic form factors

GfE
(
Q2
)

:= F f1
(
Q2
)
− Q2

4m2
p

F f2
(
Q2
) (2.27)

GfM
(
Q2
)

:= F f1
(
Q2
)

+ F f2
(
Q2
)
. (2.28)

In this alternate form the form factors have simple non–relativistic interpretation in the infinitemomentum frame; as two–dimensional Fourier transforms of the charge and magnetisation dis-tribution respectively, as shown in Figure 2.3.
2.2.1 Generalised Form Factors

The electromagnetic form factors (2.26) are just one set of form factors, in general there aremany more, presented usually in terms of towers of operators; Generalised Form Factorss (GFFs).Starting with motivation of GFFs for OPE methods we now present the GFFs relevant to thiswork.GFFs are useful for the OPE; an expansion of a non–local operator in terms of local ones∫
d4xeiq·xO1(x)O2(0) =

∑
n

c12
n (q, µ)On(0, µ) (2.29)

where the expansion is done at some scale µ. The so called Wilson coefficients cn then encodethe dependence on the separation
cn(q, µ) :=

∫
d4xeiq·xcn(x, µ). (2.30)

In general, the factor cn(q, µ) will carry a suppression factor(
1

Q

)d−s−2 (2.31)
in terms of the dimension d and spin s of the operator On. It is natural then to define the twist τof an operator as

τ := d− s. (2.32)
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The matrix elements of a particular twist are then of interest to us. The tower of twist–twooperators do not have any general Q suppression, and are defined as

OqVµµ1···µn−1
= q

[
γ{µ i
←→D µ1 · · · i

←→D µn−1} − Traces] q (2.33)
OqAµµ1···µn−1

= q
[
γ{µγ5i

←→D µ1 · · · i
←→D µn−1} − Traces] q (2.34)

OqTµνµ1···µn−1
= q

[
σµ{ν i

←→D µ1 · · · i
←→D µn−1} − Traces] q (2.35)

Ogµνµ1···µn−1
= Fµαi

←→D {µ1 · · · i
←→D µn−1}F

α
ν − Traces (2.36)

Ogdµνµ1···µn−1
= Fµαi

←→D {µ1 · · · i
←→D µn−1} − iF̃ α

ν − Traces (2.37)
OgTµναβµ1···µn−1

= Fµνi
←→D {µ1 · · · i

←→D µn−1}F
αβ − Traces. (2.38)

We use ←→D = 1
2

(−→D −←−D) and {} indicates symmetrisation of indices. The first equation (2.33)
with n = 1 reduces to the vector form factor (2.26). In the case n = 2 this becomes the operatorfor the EMT

q

[
γ{µ i
←→D ν} −

1

4
gµνγαi

←→D α

]
q. (2.39)

The general form factors for (2.33) and (2.36) can then be defined as
〈
N, ~p ′

∣∣∣OqV/gµµ1···µn−1

∣∣∣N, ~p〉 = u
(
p′
) [ n−1∑

i even

γ{µ qµ1 · · · qµiPi+1 · · ·Pµ−1}A
q/g
n,i

(
Q2
)

−
n−1∑
i even

qα

2MN
σα{µ qµ1 · · · qµiPi+1 · · ·Pµ−1}B

q/g
n,i

(
Q2
)

+
(n+ 1)%2

MN
q{µ qµ1 · · · qµ−1}C

q/g
n,0

(
Q2
)]
u(p)

(2.40)

whereN represents a nucleon state with ingoing and outgoing momentum ~p and ~p ′ respectivelyand we have defined the average momentum
Pµ :=

1

2

(
p′µ + pµ

)
. (2.41)

For the EMT (n = 2) dropping V labelling this becomes〈
N, ~p ′

∣∣∣Oq/gµν

∣∣∣N, ~p〉 = u
(
p′
) [
γ{µ pν}A

q/g
20

(
Q2
)

+
iqασα{µPν}

2mp
B
q/g
20

(
Q2
)

+
qµqν
mp

C
q/g
20

(
Q2
)]
u(p).

(2.42)We shall look at the EMT in more detail in §9.1, but it can also be relevant to scaling of theCompton amplitude when gluonic moments aren’t known as discussed in §7.2.
The form factor Aq/g20 at Q2 = 0 is the momentum fraction 〈x〉q/g , so clearly for pure QCD∑

f

A
qf
20(0) +Ag20(0) = 1. (2.43)

This is the first of the sum rules of interest, used in §9.1.1.

2.3 Structure Functions

While form factors encode the spatial distributions of hadrons, structure functions encode light–cone momentum distributions. Experimentally DIS, e+e− annihilation, and the Drell–Yan processare all examples that exhibit behaviour that require structure functions. While the form factors
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xPµ

Pµ

Figure 2.4: The PartonModel for a particle with momentum Pµ, that at high boost lookslike a pancake, where each parton carries fractional momentum xPµ of that momentum.
probe the elastic contributions, the structure functions also contain, among other contributions,the in–elastic contributions.The structure functions can be linked to the parton model at large momentum transfers. Theparton model as first proposed by Feynman in 1969 [63], describes the constituents of the pro-ton as non–interacting at large boosts. In the infinite momentum frame the partons of a hadron(quarks and gluons) are effectively massless, and have no transverse momentum, the pancakepicture, shown in Figure 2.4.The structure functions then encode the x behaviour as well as the Q2 behaviour, althoughgenerally the former is more prominent than the latter. We now present two examples of struc-ture functions, the Compton amplitude §2.3.1 and the hadron tensor §2.3.2 as well as their rela-tion §2.3.3. We finish with discussions on the weak charge of the proton §2.3.4 and two photonexchange §2.3.5, which motivate our study.
2.3.1 Forward Compton Amplitude

The forward Compton amplitude [65] is
Tµν(p, q, ρ) := iρs′s

〈
p, s′

∣∣∣∣∫ d4xeiq·xT
{
J†µ(x)Jν(0)

}∣∣∣∣p, s〉 (2.44)
and at fixed Q2 is analytic in ν := p · q, for nucleon mass m (alternatively ω := 2ν/Q2). Thetime ordered product of electroweak currents Jµ in between nuclear states of momentum p, andspins s and s′, with polarisation density matrix ρs′s. We can divide the Compton amplitude intodifferent structure functions by using Lorentz and time–reversal invariance

Tµν =

(
−gµν +

qµqν
q2

)
T1 +

(
pµ − 1

2ωqµ
)(
pν − 1

2ωqν
)

ν
T2 +

qµqν
ν

T4 +
p{µqν}

ν
T5

+ iεµναβ

[
qαpβ

ν
T3 − qα

(
sβ

ν
G1 +

[
νsβ − (s · q)pβ

]
ν2

G2

)
+
pαsβ

ν
G3

]

+
(s · q)
ν

[(
−gµν +

qµqν
q2

)
X1 +

(
pµ − 1

2ωqµ
)(
pν − 1

2ωqν
)

ν
X2 +

qµqν
ν

X4 +
p{µqν}

ν
X5

]

+

(
s{µ − 1

2
(s·q)
ν p{µ

)(
pν} − 1

2ωqν}
)

ν
Y1 +

(
s{µ − 1

2
(s·q)
ν p{µ

)
pν}

ν
Y2

(2.45)
although other representations and normalisations are possible. This choice of normalisation isfor dimensionless structure functions, often called the scaling structure functions, chosen to
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match the DIS results, which where in turn chosen to match to easily to Parton DistributionFunctions (PDFs) at leading–twist in an OPE.We now demonstrate the crossing symmetry of the Compton amplitude. Starting with switch-ing µ and ν for the unpolarised ρ = 1

2I Compton amplitude, we can show the crossing symmetryby noting that the time ordering cares only about relative separation of the currents and redefin-ing our unit of integration
Tνµ(p, q) = i

〈
p

∣∣∣∣∫ d4xeiq·xT {Jν(x)Jµ(0)}
∣∣∣∣p〉 (2.46)

= i

〈
p

∣∣∣∣∫ d4xeiq·xT {Jµ(−x)Jν(0)}
∣∣∣∣p〉 (2.47)

= i

〈
p

∣∣∣∣∫ d4xe−iq·xT {Jµ(x)Jν(0)}
∣∣∣∣p〉 (2.48)

= Tµν(p,−q). (2.49)
For the unpolarised Compton amplitude we can then separate into µ,ν even and odd terms
T{µν}(p, q) =

(
−gµν +

qµqν
q2

)
T1 +

(
pµ − 1

2ωqµ
)(
pν − 1

2ωqν
)

ν
T2 +

qµqν
ν

T4 +
p{µqν}

ν
T5 (2.50)

T(µν)(p, q) = iεµναβ
qαpβ

ν
T3 (2.51)

The symmetries in the structure function Ti forced by the crossing symmetry do not allow us togo further with simple kinematic symmetries.
2.3.2 Hadron Tensor

One of the most fundamental experimental probes of small distance hadron structure is the pro-cess of DIS. A lepton is scattered of a hadronic target via interchange of an electroweak boson.Figure 2.5 shows the process for electromagnetic DIS. For large momentum transfer, such a pro-cess yields a single electron and a collinear shower or jet of hadrons, which one can interpret theelectron scattering off a single constituent particle of the hadron or parton. If this is the case thelongitudinal momentum fraction is given by the Bjorken variable
x :=

Q2

2p · q . (2.52)
The fractional electron energy transfer y is given by

y :=
p · q
p · k (2.53)

where k is the incident photon momentum. Note that both x and y can be determined entirelyfrom the scattered lepton.Experimentally DIS allowed the discovery of partons. It was seen that after removing QEDkinematic dependence the cross section was largely independent of Q2 [66–68]. This phenom-ena, known as Bjorken scaling, implies that interactions during the scattering process can be ig-nored, so the constituents can be interpreted as free particles; asymptotic freedom. Converselyany deviation from this scaling has implications on our understanding of QCD. In addition thebehaviour in y of the cross section established the fermion behaviour of these partons, the socalled Callan–Gross relation [69] specifying that the cross section is proportional to 1 + (1− y)2.One can relate the cross section of this inclusive lepton–hadron scattering rates to it’s lep-tonic Lµν and hadronic structureWµν separately
d3σ

dxdydφ
∝ LµνWµν (2.54)
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Figure 2.5: The deep inelastic scattering process for lepton l scattering off a hadron Nvia a photon with momentum transfer q to final state X .

∑
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2

=

Figure 2.6: The relationship between the hadronic part of the lepton scattering process(left) and the hadron tensor (right).
where Lµν encodes the Dirac structure of the scattered lepton

Lµν :=
∑
h′′

u
(
k, h′

)
Γ∗µu

(
k′, h′′

)
u
(
k′, h′′

)
Γνu(k, h) (2.55)

where h represents helicity, k electron momentum and k′ − k = q. The forward hadron tensor isthen defined
Wµν(p, q) :=

∫
d4xeiq·xρs′s

1

4π

〈
p, s′

∣∣[Jµ(x), Jν(0)]
∣∣p, s〉. (2.56)

The relationship can be described pictorially by Figure 2.6. Based on the current being probed
Γµ and Jµ take their appropriate forms, for instance with

Γµ = γµ (2.57)
then

Jµ = Jγµ (2.58)
for the electric current, or

Γµ =

([
1

2
− 2el sin

2 θW

]
− 1

2
γ5

)
γµ (2.59)

then
Jµ = JZµ (2.60)

for the neutral weak current, where el is the lepton’s electric charge. The leptonic part of the crosssection can be obtained from perturbation theory, so one is only left with the hadron tensor.
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Kinematic Region Scattering Process

W 2 ≈ m2 Quasi–elastic scattering region
m2 < W 2 . 4GeV 2 Resonance region

Q2 ≈ m2 W 2 & 4GeV 2 Regge region
Q2 > 4GeV 2 W 2 & 4GeV 2 DIS region

Table 2.1: The different scattering process classification for differing kinematic regionsfor lepton–hadron scattering in terms ofmomentum transferQ2 and invariant final statemassW 2 = m2 +Q2(1− x)/x. The quasi–elastic region encodes both the elastic formfactors as well as the proton–neutron transitions. The Resonance region contains con-tributions from various resonance outgoing states. The Regge region is of low x andfixed Q2. Finally the DIS region is for smaller x as Q2 becomes larger. The transitionbetween regions, such as between quasi–elastic, resonance and DIS are well known,but other transitions such as those between Regge and DIS are not.
By using Lorentz and time–reversal invariance the hadron tensor can be decomposed into aseries of structure functions

Wµν =

(
−gµν +

qµqν
q2

)
F1 +

(
pµ − 1

2ωqµ
)(
pν − 1

2ωqν
)

ν
F2 +

qµqν
ν

F4 +
p{µqν}

ν
F5

+ iεµναβ

[
qαpβ

ν
F3 − qα

(
sβ

ν
g1 +

[
νsβ − (s · q)pβ

]
ν2

g2

)
+
pαsβ

ν
g3

]

+
(s · q)
ν

[(
−gµν +

qµqν
q2

)
x1 +

(
pµ − 1

2ωqµ
)(
pν − 1

2ωqν
)

ν
x2 +

qµqν
ν

x4 +
p{µqν}

ν
x5

]

+

(
s{µ − 1

2
(s·q)
ν p{µ

)(
pν} − 1

2ωqν}
)

ν
y1 +

(
s{µ − 1

2
(s·q)
ν p{µ

)
pν}

ν
y2.

(2.61)

The Fi are the unpolarised structure functions, gi are the parity–conserved polarised structurefunctions, xi are the longitudinally–polarised parity–violating structure functions and yi are theparity violating transversely polarised structure functions. In an electromagnetic process chargeconservation implies that only F1, F2, g1 and g2 remain, but for a general current all are present.As for the Compton amplitude, this decomposition is not the only such choice of decompo-sition. This decomposition was chosen to match onto the parton model for a leading order OPEcalculation of F2, which we shall demonstrate below.These structure functions are valid for any x andQ2, but DIS occurs only for sufficiently large
Q2 and small enough x. The relationship between kinematics is summarised in Table 2.1, but firstwe focus on the DIS region. For large enough Q2 the Callan–Gross relation, can be used to relatethe structure functions F1 and F2 for spin 1

2 particles
F2

(
x,Q2

)
= 2xF1

(
x,Q2

)
. (2.62)

Experimentally the extraction of F2 in the DIS region is known to astounding precision, while
F1 data is harder to extract, requiring larger scattering angles. A sample of available proton F p2data showing approximate Bjorken scaling is shown in Figure 2.7. Further information about theexperimental DIS is available in §F.2.At large Q2 due to asymptotic freedom the constituents of the proton can be thought of asnon–interacting over the interaction with the external current. These so called partons are nat-urally the quarks and gluons of the nucleon. In terms of twist, partons are of leading–twist, ortwist–two, which has the so called “handbag” diagram Figure 2.8.At lower Q2 some part of the x region of the structure function are in the resonance region.A selection of F p2 resonance data is shown in Figure 2.9. The fact that this data with all the
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Figure 2.7: The determination of F p2 scaled by x, with x ranging between 2.430× 10−06

and 0.85. The scaling of the data by x effectively shifts the different x bins by a con-stant. The largest range of data come from HERA [70, 71] with both inclusive electronand positron scattering data. Further data come from various inclusive muon scatter-ing experiments; BCDMS [72], JLAB [73], NMC [74], SLAC [75], CERN [76] and EMC[77]. The data shows great consistency between experiments and clearly shows Bjorken
scaling. This plot was adapted from [78].

Figure 2.8: The “handbag” diagram, the leading–twist contribution to DIS, that one canrelate to the parton model.
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resonances is still described in average by fits taken at much higher energies in the DIS region isremarkable, which is known as quark–hadron duality (see [79, 80] for a more in depth discussion).As a consequence of this, structure functions from high Q2 scattering experiments can be usedto deduce moments at low energy.We now show the relationship of the structure function F2 and by extension F1 to the par-ton model. Diagrams involving more than one quark, have higher twist and so have at least 1

Qsuppression. Neglecting these terms, this means that at large Q2 one can factorise F2 as a sumof PDFs qf
F2

(
x,Q2

)
=
∑
q

e2
qx
(
qf (x, µ) + qf (x, µ)

) (2.63)
where qf is the probability of finding a parton of flavour f at momentum fraction x and similarly
qf for the anti–particle. This relationship naturally explains Bjorken scaling, as it does not haveexplicit Q2 dependence, although the PDFs still have a scale dependence, which we denote µ.

This relationship can be formalised to O( 1
Q

) by OPE methods, but this assumption still re-
quires some higher twist diagrams to be negligible. The diagrams neglected are those involvinginteraction between differing partons, such as those involving more than one quark line. Onesuch diagram is the so–called cat’s ears diagrams Figure 2.10, whose leading order twist contri-butions are twist τ = 4.Modern PDF extraction take into account such corrections, as well as accounting for contri-butions from higher twist. In addition to DIS data, they supplement the data with proton colliderdata to further constrain the PDFs, using weak bosons and jet production cross sections. Manydifferent PDF extractions are available, one of which we show in Figure 2.11.The following two sum rules then hold within the proton∫ 1

0
dx(u(x, µ)− u(x, µ)) = 2 (2.64)∫ 1

0
dx
(
d(x, µ)− d(x, µ)

)
= 1 (2.65)

These can be written in terms of structure functions, three of which we present now. The first isfor neutrino–baryon scattering, the Gross–Llewellyn–Smith sum rule [90]∫ 1

0
dxF3 = 3 (2.66)

where the deviations from 3 measure asymmetry within the sea. The second, also for neutrinoscattering is the Adler sum rule [91] ∫ 1

0

dx

x
(Fn2 − F p2 ) = 2 (2.67)

with no QCD corrections. The third sum rule, now for electron scattering, the Gottfried sum rule[92] is ∫ 1

0

dx

x
(F p2 − Fn2 ) =

1

3
+

2

3

∫ 1

0
dx
(
u(x, µ)− d(x, µ)

) (2.68)
whose deviation from 1

3 measures the u and d asymmetry already seen in Figure 2.11.We have discussed the relationship of the hadron tensor to the parton model, and the differ-ent kinematic contributions to the hadron tensor, notably the resonance and DIS regions. Whilewe have discussed PDFs, most of these relationships, including the sum rules do not requirepartonic interpretation, being valid for the full hadron tensor directly.
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(c) Q2 = 2.5 (GeV 2)
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Figure 2.9: A selection of data for F p2 (adapted from [81]) forQ2 ranging from 0.75 to 3.5
GeV 2 chosen to coincide with CLAS Q2 bins. This range puts a large fraction of the xregion in the resonance region. All experimental data within 5% of the specifiedQ2 wascombined without correction. The data is taken from F2 extractions from experiments;from CLAS [82], from which the Q2 bins have been chosen, as they provide the largestset of x at these Q2. Data reconstructed from cross section data available from JLAB[83] via model of R (see §F.2) as described in the same paper supplement the CLASdata. Further data from outside of the resonance region from SLAC [75] and NMC [74].The fit [84] is constructed using data from various DIS experiments outside of the reso-nance region. As Q2 grows, the resonance gets pushed closer and closer to x = 1, andhence it’s effect disappears at large Q2. The average Q2 dependence of the data in theresonance region is still described by structure functions fits in the DIS region, which isknown as quark–hadron duality.

Figure 2.10: The cat’s ears diagram, one of the diagrams corresponding to non–leading–twist contribution to DIS.
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Figure 2.11: TheCJ15 PDFs [85], shownweighted by x as all the PDFs diverge for small
x. The flavour combination u−u and d−d represent the valence PDFs, show that theirmost likely carried momentum fraction is roughly x = 1

3 . The heavier quark flavoursincluding the strange quark are assumed to be the same as their anti–particle counter-parts. The errors bars where generated to one standard deviation as described in [86].There is some light quark sea asymmetry, the u and d distributions, which convergeagain at small x. The gluon distribution is not determined directly, although inferablefrom gluon fusion and from DGLAP evolution [87–89].
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Figure 2.12: The dispersion integral of the Compton amplitude.
2.3.3 Dispersion Relation

We now form a relationship between the Compton amplitude and the hadron tensor, and byextension to the PDFs. The extraction relies on a dispersion relationship to map the unphysicalparts of the Compton amplitude via optical theorem to the hadron tensor. The derivations forthe dispersion relationship for T1 and T2 follow.The Compton amplitude is real in the unphysical region below the elastic threshold |ω| = 1,which wewish to relate to results to those experimentally reachable by DIS, 1 ≤ ω ≤ ∞. Supposewe had extracted T1 at some ω and Q2 we can then write down the a dispersion integral
T1

(
ω,Q2

)
=

1

2πi

∮
C

T1

(
ω′, Q2

)
ω′ − ω . (2.69)

Which is a dispersion integral of the formFigure 2.12. There is a cut on the real axis for 1 ≤ ω ≤ ∞,which we wrap around in the usual manner, which gives us a “Deathstar” dispersion integralFigure 2.13. Our dispersion integral in this form becomes
T1

(
ω,Q2

)
=

1

2πi

[ ∫ ∞
1

dω′
T1

(
ω′ + iε,Q2

)
ω′ − ω + iε

− T1

(
ω′ − iε,Q2

)
ω′ − ω − iε

+

∫ −∞
−1

dω′
T1

(
ω′ − iε,Q2

)
ω′ − ω − iε − T1

(
ω′ + iε,Q2

)
ω′ − ω + iε

+

∫
C′

T1

(
ω′, Q2

)
ω′ − ω

] (2.70)

where C ′ is the boundary integral of Figure 2.13. Using the Schwarz reflection principle this be-comes
T1

(
ω,Q2

)
=

1

2π

[
2

∫ ∞
1

dω′
ImT1

(
ω′ + iε,Q2

)
ω′ − ω + 2

∫ −∞
−1

dω′
ImT1

(
ω′ − iε,Q2

)
ω′ − ω

− i
∫
C′

T1

(
ω′, Q2

)
ω′ − ω

] (2.71)

where C ′ is the boundary term in Figure 2.13. The crossing symmetry (2.49) implies that thestructure function T1

(
ω,Q2

) is even in ω; T1

(
ω,Q2

)
= T1

(
−ω,Q2

). Applying this symmetry, aftersome algebra the dispersion integral becomes
T1

(
ω,Q2

)
=

1

2π

[
2

∫ ∞
1

dω′ ImT1

(
ω′ + iε,Q2

)( 1

ω′ − ω −
1

ω′ + ω

)
− i
∫
C′

T1

(
ω′, Q2

)
ω′ − ω

]
. (2.72)
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Figure 2.13: The “Deathstar” dispersion integral of the Compton amplitude with theusual shape around the branch cuts.
As discussed later in §8, the boundary term does not vanish as |ω| → ∞ and a subtracted disper-sion relation needs to be formed. This subtracted dispersion integral Figure 2.14, with boundaryterm removed is

T1

(
ω,Q2

)
− T1

(
0, Q2

)
=

2

2π

∫ ∞
1

dω′ ImT1

(
ω′ + iε,Q2

)( 1

ω′ − ω +
1

ω′ + ω
− 2

ω′

)
(2.73)

which simplifies to
T1

(
ω,Q2

)
− T1

(
0, Q2

)
=

4ω2

2π

∫ ∞
1

dω′ ImT1

(
ω′ + iε,Q2

) 1

ω′(ω′2 − ω2)
. (2.74)

The imaginary part of the Compton amplitude structure function T1 is related via optical theoremto the hadron tensor structure function F1

1

2π
ImT1

(
ω,Q2

)
= F1

(
ω,Q2

) (2.75)
and ω′ is related to the momentum fraction x by

ω′ =
1

x
(2.76)

which then gives us
T1

(
ω,Q2

)
− T1

(
0, Q2

)
= 4ω2

∫ 1

0
dx
xF1

(
x,Q2

)
1− (ωx)2 . (2.77)

The same steps can be performed for T2, starting with the same dispersion integral Fig-ure 2.12 the analogous equation to (2.69) is
T2

(
ω,Q2

)
=

1

2πi

∮
C

T2

(
ω′, Q2

)
ω′ − ω . (2.78)
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Figure 2.14: The subtracted dispersion integral for the Compton amplitude structurefunction T2.
Unlike T1, the boundary term for T2 vanishes and hence T2 does not require subtraction, as evi-dent from it’s skewness in ω. The Callan–Gross gross relationship (2.62) gives us an indication asto why, the limit |ω| → ∞, is roughly equivalent to x → 0. More easily if one performs the sub-traction the resultant dispersion relationship is unchanged due to the structure function beingodd in ω, which we shall discuss in more depth in §8.1. Following the same steps as for T1 theresulting dispersion relationship becomes

T2

(
ω,Q2

)
= 4ω

∫ 1

0
dx
F2

(
x,Q2

)
1− (ωx)2 . (2.79)

In this section we have seen derivation of dispersion relationship for structure functions thatare both even or odd in ω in terms of geometric sums
T1

(
ω,Q2

)
− T1

(
0, Q2

)
= 4ω2

∫ 1

0
dx
xF1

(
x,Q2

)
1− (ωx)2 (2.80)

T2

(
ω,Q2

)
= 4ω

∫ 1

0
dx
F2

(
x,Q2

)
1− (ωx)2 . (2.81)

2.3.4 Weak Charge of the Proton

The proton has a vector coupling GV to the vector current, formed from the underlying vectorcharges of it’s constituents. The same way we can define the weak charge QW of a compositeobject. In the case of the proton the weak charge is given at tree level by
QPW = 1− 4 sin2 θW . (2.82)

Coincidentally the weak mixing sin2 θW ≈ 1
4 , so the weak charge of the proton is incredibly sen-sitive to sin2 θW , unlike the neutron which has approximate weak charge of −1. This natural SMsuppression provides a natural test bed for the RGE scaling of the electroweak sector. The quan-tity would be sensitive to various parity violating BSM theories, notably SUSY,Z ′, and leptoquarktheories [93].With radiative corrections the weak charge of the proton becomes

QPW = [ρNC + ∆e]
[
1− 4 sin2 θW + ∆′e

]
+�WW +�ZZ +�γZ (2.83)

where ρNC renormalises the ratio of neutral and charged current interactions, ∆e and ∆′e cor-respond to Zee and γee couplings. The box diagrams are divided into purely electroweak boxdiagrams �WW and �ZZ whose contributions are perturbatively calculated using OPE methods.
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Figure 2.15: The γZ box diagram, with ingoing and outgoing proton P and electron e−

The�γZ box diagram (Figure 2.15) however includes significant long distance (smallQ) contribu-tions, that can’t be determined with perturbative QCD.Various model dependent determinations of�γZ are available [94–99] and are in good agree-ment with each other. However their determination still has some contribution in the uncertaintywhen compared to state of the art experimental measurement of QPW [100–102]. An improve-ment in the uncertainty in this quantity then increases the precision of our understanding of thescaling of sin2 θW and hence constraints on BSM physics. In addition to the electroweak charge,such box diagrams are also inputs on atomic parity violating experiments.Models of the�γZ box diagram differ in technique, but are all built from integrals of structurefunctions. These structure functions are fitted from experiment, but some kinematic regions arenot as precisely determined. The determination of any form of these structure functions whetherintegrated over x, or not, can lead to better constraints on the models, hence a better theoreticalprediction of �γZ . The end result of such an improved calculation would be a better extractionof sin2 θW .The accurate determination of sin2 θW then allows us to test the RGE scaling propertiesagainst the SM predictions. Even if in agreement, the combined SM and experimental combina-tion can be turned into bounds on different types of BSM particles. For instance current boundsfrom QPW experiments give a mass exclusion for generic semi–leptonic parity violating BSM par-ticles below 3.5 TeV [102].
2.3.5 Two Photon Exchange

The ratio of proton electric (2.27) and magnetic (2.28) form factors
µp
GpE
Gpm

(2.84)
where µp is the magnetic moment has two different apparent values when measured using twodifferent techniques as shown in Figure 2.16. Using Rosenbluth separation [59] this value is ap-proximately constant [103–105].When the same ratio is extracted using recoil polarisation exper-iments [106–110], the value dies off linear withQ2, although the fascinating question of whetherthere is a zero and it’s nature has profound implications [111]. Currently both experiment andtheory [112] are in the process of improving their determination of this ratio.The deviation between the two methods has been largely attribute to a hard two photonexchange, although the effect is much larger for the Rosenbluth method [111]. In response thedetermination of two photon exchange has improved [113–115], largely resolving the discrep-ancy.For the QCD prediction, only model dependent determinations are available. While somemodels predict the two photon exchange to remove the discrepancy [116–119], others do not
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Figure 2.16: The ratio µp GpEGpM shown against Q2 extracted from Rosenbluth [103–105]
(blue) and recoil polarisation [106–110] (orange) experiments.

[120, 121]. Such a discrepancy can be solved by providing an ab initio calculation, which in addi-tion can be used to improve the sensitivity of affected experiments.

2.4 Generalised Parton Distribution Functions

We have encoded the spatial distributions within the hadron using form factors in §2.2 and themomentum distributions using structure functions in §2.3, but these two concepts can be com-bined in one function; the GPD. Where the structure functions encode diagonal operators, theGPDs additionally encode off–diagonal elements, of the very same matrix elements. The GPDsare defined in the same way as our GFFs shown in §2.2.1, but with quark longitudinal momen-tum fraction x dependence on the operators which are defined at leading–twist for the vectoroperator on a spin–half particle X
〈
X, ~p ′

∣∣OqVµ (x)
∣∣X, ~p〉 = uX

(
p′
) [
γµH

(
x, ξ,Q2

)
+
iσµαq

α

2m
E
(
x, ξ,Q2

)]
uX(p) +O(τ) (2.85)

Here O(τ) represents the higher twist contributions, x the momentum fraction and ξ = −1
2n · qthe skewness as defined on the light–cone vector n satisfying P · n = 1.There are six additional GPDs defined for the axial and tensor currents, but we are only in-terested in the vector GPDs throughout this work. Like the vector current the GPDs can beseparated by flavour to define flavour dependent GPDs Hqf

(
x, ξ,Q2

) and Eqf (x, ξ,Q2
). In thelimit of zero skewness ξ and Q2 the GPDs can be related to the PDFs by

Hqf (x, 0, 0) = qf (x) (2.86)
Hg(x, 0, 0) = xg(x). (2.87)

A PDF is the probability of finding the parton of momentum fraction x, with negative x typicallycorresponding to anti–quark distributions.
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Figure 2.17: The information encoded in a GPD for a particle with momentum Pµ, thatat high boost looks like a pancake, where each parton carries fractional momentum
xPµ of that momentum at transverse distance b⊥ as encoded by q = q⊥ for ξ = 0. Theform factor (left) Figure 2.3 is shown to highlight how the GPD encapsulates the impactparameter b⊥ distribution, and the partons are shown Figure 2.4, with their additionalinformation.
The GPDs are relateable to the GFFs by∫ 1

−1
dxxn−1H

(
x, ξ,Q2

)
=

n−1∑
i even

An,i
(
Q2
)
(2ξ)i + [(n+ 1)%2]Cn,0

(
Q2
)
(2ξ)n (2.88)

∫ 1

−1
dxxn−1E

(
x, ξ,Q2

)
=

n−1∑
i even

Bn,i
(
Q2
)
(2ξ)i − [(n+ 1)%2]Cn,0

(
Q2
)
(2ξ)n. (2.89)

Hence the Dirac and Pauli form factors defined in (2.26) are then given by integrals∫ 1

−1
dxH

(
x, ξ,Q2

)
= F1

(
Q2
) (2.90)∫ 1

−1
dxE

(
x, ξ,Q2

)
= F2

(
Q2
) (2.91)

This means that the GPDs encode not only the longitudinal structure of the partons, but alsotheir internal distributions as well. For skewness ξ = 0, the momentum transfer is the purelyin the transverse direction q⊥. The Fourier transform with respect to q⊥ leads to distribution inthe impact parameter b⊥. Hence GPDs encode the information of both the form factors and thePDFs, pictured in Figure 2.17.We now have sufficient background in QCD for the work presented in subsequent chapters.We shall look at structure functions in §7 and §8, as well as GFFs, namely the EMT in §9.
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Chapter 3

Lattice Quantum Chromodynamics

At large energy scales QCD is a perturbative theory, offering precise predictions that can betested against experiment, but leaving gaps in understanding at smaller energy scales. For a morefull understanding of the phenomena of QCD such gaps need to be filled with other methods.We shall explore one method in particular; lattice QCD.Lattice QCD is a model–independent discretisation of QCD on a finite volume, first proposedbyWilson in 1974 [122]. It is the only known fundamental probe of QCD in the non–perturbativeregime. At lower energies calculations in lattice QCD allow us to test the SM, whether directlyin comparison to experiment or as complementary input to experiment or phenomenology. Theapproach can take advantage of modern high performance computational practices, improvable,in theory, to any desired accuracy. Underpinning latticeQCD is the path–integral formalism [123],on a finite extent four dimensional Euclidean space–time lattice of gauge fields and fermions. Thefinite volume provides an infrared cut-off and the discretisation an ultraviolet one, which withappropriate care can be compared to continuum results.In this chapter we outline the mathematical formulation and terminology of QCD on a lattice,first by introducing the lattice §3.1, followed by reducing this to a finite volume §3.2, before finallylooking at our reduced symmetry groups §3.3 and scale setting §3.4. To see this in practice weshow how to calculate correlation functions §3.5, with some examples for states that shall bethe focus throughout this work §3.6. For a more comprehensive background see [124, 125] andreferences therein.

3.1 Path Integrals

In practice to calculate observables on the lattice we use expectation values using the path inte-gral formalism. We shall start with the Minkowski space–time path integral, discuss it’s disadvan-tages and then Wick rotate it. The Minkowski path integral is
〈O〉 :=

1

Z

∫
DAµ

∏
f

DqfDqfO
[
Aµ, qf , qf

]
eiS[Aµ,qf ,qf ] (3.1)

where the partition function Z is defined as
Z :=

∫
DAµ

∏
f

DqfDqfe
iS[Aµ,qf ,qf ] (3.2)

with gluon gauge fieldAµ, quark fields qf for each flavour f , corresponding adjoint quark field qf ,action S, and arbitrary time–ordered operator O. The action is defined in the usual way as theintegral of the Lagrangian density L, as
S :=

∫
d4xL(x). (3.3)
25
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The evaluation of (3.1) is problematic because of the so called sign problem. The origin of theproblem is the oscillatory behaviour of the Boltzmann factor eiS , causing large cancellation in theintegral from different regions of phase space. To combat this problem we map the integral toEuclidean space, by performing a Wick rotation. There are multiple ways to perform the rotationand we choose the convention where our vectors are related by
xµ(M ) :=

(
x0

(M ), ~x(M )

)
→
(

~x(M ), ix
0
(M )

)
=
(
~x(E ), x

(E )
4

)
=: x(E )

µ (3.4)
x(M )
µ =

(
x0

(M ),−~x(M )

)
→
(
−~x(M ), ix

0
(M )

) (3.5)
and the corresponding Dirac matrix transforms

γ(M )
µ :=

(
γ

(M )
0 , ~γ(M )

)
→
(
i~γ(M ), γ

(M )
0

)
=: γ(E )

µ . (3.6)
Here the super and sub–script (M ) and (E ) note Minkowski and Euclidean space values respec-tively. The rest of the Clifford algebra transformations are fixed once we have chosen

γ
(M )
5 := iγ0γ1γ2γ3 (3.7)
γ

(E )
5 := γ1γ2γ3γ4 (3.8)

such that γ(M )
5 Wick rotates to γ(E )

5 . A consequence of these choices is that quantities such asa dot product will transform
(q · x)(M ) → −(q · x)(E ) (3.9)

The resulting properties of all the transformations, including of Clifford algebras and covariantderivatives are given in §C.1. Under the Wick rotation the Lagrangian density transforms
L(M ) = −L(E ) (3.10)

where in terms of our quark and gluon on fields the Euclidean Lagrangian density reads
L(E )
QCD =

∑
f

qf
(
/D +mf

)
qf +

1

4
FµνFµν (3.11)

Using (C.34) the path integral for Euclidean space now reads
〈O〉 :=

1

Z

∫
DAµ

∏
f

DqfDqfO
[
Aµ, qf , qf

]
e−S[Aµ,qf ,qf ] (3.12)

with partition function
Z :=

∫
DAµ

∏
f

DqfDqfe
−S[Aµ,qf ,qf ]. (3.13)

Nowwe no longer have the sign problem, caused by the Boltzmann factor, which now is preciselythe Boltzmann weighting, which we will take advantage of with importance sampling later. Theinterpretation of a path integral is a summation of all possible paths, weighted by their action.We now have the necessary pieces to work towards Euclidean observables on a lattice, that canthen be related back to Minkowski observables.
3.2 Lattice Quantum Field Theory in a Box

It was simple to express quantities of Quantum Field Theory (QFT) to those expressed in a stillcontinuum Euclidean path integral, but to transform this into one with a finite set of points; asrequired by limits of computational resources, introduces a lot of obstacles. In this section, wepresent how to realise quark and gluon fields on an a lattice with infinite extent, then how to re-duce it to a finite sized box, and finally we shall present some optimisations tomake computationsfeasible.
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q(n+ µ̂)q(n)

µ

ν

Figure 3.1: The graphical form of a discretised form of the naïve fermion part of theLagrangian, where the quark fields q sit on each of the sites.
3.2.1 Discretisation

The first step in achieving a computationally solvable path integral is to introduce discretisedspace–time, separated by isotropic distance a in each dimension. Anisotropic lattices with a dif-fering spacing in one direction have their uses [126], but are not the focus of this work. Thislattice spacing a is usually of the order of tenths of a femtometre, and acts a natural regulatorof ultraviolet divergences for the theory. In order to realise this we need to construct a latticewhich has the correct continuum limit, we start with the naïve approach and demonstrate theneed for link variables.
Fermion Lagrangian

Consider the non–interacting fermion part of the Euclidean action
LNIF

[
qf , qf

]
(x) = qf (x)

(
/∂ +mf

)
qf (x). (3.14)

This puts each of our quark fields on the lattice, where they now depend on the lattice point
q(x) → q(n) where n ∈ Z4, as seen diagrammatically as Figure 3.1. It should be noted thatwe implicitly use the lattice spacing x = an to compare these fields. Now we shall drop theflavour level f where appropriate to simplify equations. We take the free fermion Lagrangian(3.14), convert it to these lattice fields, and then transform the derivative into an simple numericalapproximation

LNIF [q, q] (n) = q(n)

(∑
µ

γµ
q(n+ µ̂)− q(n− µ̂)

2a
+mq(n)

)
. (3.15)

Clearly as a → 0 we recover the continuum form. This formulation however has a problem, theaction will not be invariant under a local SU(3) gauge transformation, to see this consider atransformation Ω(n) on q(n)q(n+ µ̂)

q(n)q(n+ µ̂)→ q(n)Ω†(n)Ω(n+ µ̂)q(n+ µ̂) (3.16)
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Uµ(n)

q(n+ aµ̂)q(n)

µ

ν

Figure 3.2: The representation of our lattice, with quark fields q on lattice sites and linkvariables Uµ, representing the gauge fields Aµ on links between the sites.
and as Ω can be chosen differently at each point in space–time this would break local SU(3)symmetry. Just as in the continuum case where we needed to add a gauge field to the derivativeto construct the covariant derivative, we add a term that transforms like

Uµ(n)→ Ω(n)Uµ(n)Ω†(n+ µ̂). (3.17)
Inserting these so called link variable Uµ into our Lagrangian yields an now gauge invariant ex-pression, of the fermion part of the Lagrangian, now with interactions

LF [q, q] (n) = q(n)

(∑
µ

γµ
Uµ(n)q(n+ µ̂)− U−µ(n)q(n− µ̂)

2a
+mq(n)

)
(3.18)

where for convenience we have defined
U−µ(n) := U †µ(n− µ). (3.19)

In the continuum limit this operator is the so–called gauge transporter, a path–ordered integralalong some curve that connect the two points
G(x, y) := P exp

(
i

∫
Cxy

A · ds
)
. (3.20)

These link variables encode the gluon fields, represented as elements of SU(3) rather than ele-ments of it’s Lie algebra
Uµ(n) = Peig

∫ a
0 Aµ(x+sµ̂)ds ≈ eiaAµ(n) (3.21)

where
Uµ(n) = G(n, n+ µ̂) +O(a). (3.22)

With this in place we have the basic form of the lattice, diagrammatically presented by Figure 3.2.By using the fact that Uµ(n) = 1 + iaAµ(n) + O
(
a2
) we can verify that in the continuum limit,we get the equivalent part of the QCD Lagrangian.
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Uµ(n)

Uν(n+ µ̂)

U†
µ(n+ ν̂)

U†
ν (n)

Pµν

µ

ν

Figure 3.3: A lattice plaquette formed as the product of four gauge links, forming aclosed loop on the lattice.
Gluon Lagrangian

To calculate the purely gluonic contribution to the actionwe need to introduce a particularWilsonloop, the plaquette
Pµν := Uµ(n)Uν(n+ µ̂)U †µ(n+ ν̂)U †ν (n) (3.23)

which we depict in Figure 3.3 and is clearly gauge independent after trace. By using the Baker–Campbell–Hausdorff formula for products of exponentials one can show that the action definedas
SG [Uµ] :=

2

g2

∑
n∈Z4

∑
µ≤ν

Re tr [I − Pµν ] =
a4

2g2

∑
n∈Z4

∑
µ,ν

tr
[
Fµν(n)2

]
+O

(
a2
) (3.24)

and has the correct a→ 0 continuum limit. It is clear that this term is also invariant under gaugetransformations. With both the fermion and gluonic parts of our action we now have the discre-tised path integrals
〈O〉 =

1

Z

∫ ∏
n∈Z4

DUµ(n)
∏
f

Dqf (n)Dqf (n)

O [Uµ, qf , qf ] e−SF [Uµ,qf ,qf ]−SG[Uµ] (3.25)

with partition function
Z =

∫ ∏
n∈Z4

DUµ(n)
∏
f

Dqf (n)Dqf (n)

e−SF [Uµ,qf ,qf ]−SG[Uµ] (3.26)

and have seen that in the continuum limit we recover the continuum expression. We are nowready to put this expression into a box.
3.2.2 QCD in a Box

An infinite lattice is still impossible to fit into the memory of a computer and so unless an ana-lytical solution is possible we must reduce our problem to a finite set of points. In addition to
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making the equations computationally solvable, the restriction to a finite volume automaticallyregularises infrared divergences from our theory. Suppose we take (3.25) and limit the latticeto some hypercubic region Λ ⊂ Z4 of extent L in each direction, all our degrees of freedom inour path integral are now finite. This means we introduce additional artefacts into our resultingexpectation values. The path integral for this system becomes
〈O〉 =

1

Z

∫ ∏
n∈Λ

DUµ(n)
∏
f

Dqf (n)Dqf (n)

O [Uµ, qf , qf ] e−SF [Uµ,qf ,qf ]−SG[Uµ] (3.27)

an evaluatable set of integrals, however the number of integration variables scales with the vol-ume, which for typical lattices sizes range from order of millions to hundreds of millions of sites.Clearly more analytic reduction needs to be done. In order to reduce the problem to a solvableproblem we introduce Grassmann variables and the Fermion determinant.
Fermion Determinant

As the fermionic degrees of freedom anti–commute with each other, care has to be made whenintroducing the interacting part of the fermion action. To perform such an integration we use socalled Grassmann numbers, which display these very properties and relate these to the fermionicpart of the lattice QCD action we denote qi and qi. First we need the Matthew–Salam formula[127, 128] ∫
dqNdqN . . . dq1dq1 exp (qiMijqj) = det (M) (3.28)

where there is implicit summation of i and j. The other important tool we need isWick’s theorem,stated with only fermionic degrees of freedom〈
qi1qj1 . . . qinqjn

〉
=

1

Z

∫
dqNdqN . . . dq1dq1qi1qj1 . . . qinqjn exp (qiMijqj)

= (−1)n
∑
P

sign (P )
(
M−1

)
i1jP1

. . .
(
M−1

)
injPn

(3.29)

where P is the set of all permutations of n numbers in N . To realise this in our box we take ouraction
SF [Uµ, q, q] = a4

∑
n,m∈Λ

q(n)αaD(n,m)αβab q(m)βb (3.30)
with for instance if we take D of (3.18) we have

D(n,m)αβab :=
∑
µ

(γµ)αβ
Uµ(n)abδn+µ̂,m − U−µ(n)abδn−µ̂,m

2a
+m(I)αβδabδn,m. (3.31)

Our inverses as defined in Wick’s theorem are of fully contracted operators of fermions. To dealwith the fact that our fermion action is dependent on the link variables we would then sub-sequently perform integration on our gluonic degrees of freedom, which transform our latticeobservables (3.27) to
〈O〉 =

1

Z

∫ ∏
n∈Λ

DUµ(n)
u
O [Uµ]

∏
f

det (Df [Uµ])e−SG[Uµ] (3.32)

where uO is our operator O with all possible Wick contractions performed, and are formed in ourcase by contracted quark propagators which can be calculated by
(Sf )αβab (n,m) = D−1

f (n,m)αβab (3.33)
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with inverse defined by ∑

m∈Λ

D−1
f (n,m)αβab Df (m, l)βγbc = δαγδacδ

(4)(n− l). (3.34)
As a consequence, the propagator inherits γ5–Hermitticitty from the Dirac operator defined in§C.2.4.
Importance Sampling

We can now begin to statistically evaluate (3.32), by using Monte–Carlo techniques. Suppose we
took N random samples of U (i)

µ , our expectation value can be approximated by
〈O〉 ≈ 1

Z

N∑
i=1

u
O
[
U (i)
µ

]∏
f

det
(
Df
[
U (i)
µ

])
e
−SG

[
U

(i)
µ

]
(3.35)

Z ≈
N∑
i=1

∏
f

det
(
Df
[
U (i)
µ

])
e
−SG

[
U

(i)
µ

]
. (3.36)

The problem we are left with now is that the weighting factor
ρ
(
U (i)
µ

)
=
∏
f

det
(
Df
[
U (i)
µ

])
e
−SG

[
U

(i)
µ

]
(3.37)

will be small for almost all samples of U (i)
µ , which can be overcome by generating the sampleswith weighting (3.37) which reduces our problem to a simple sum

〈O〉 ≈ 1

N

N∑
i=1

u
O
[
U (i)
µ

] (3.38)
over such generated lattices.There are two ways relevant to this body of work to generate lattices with such weighting,first is to set the fermion determinant to det (D) = 1, called ‘quenched’ and the other a hybridMonte–Carlo algorithm [129] based approach. As the heavier quarks are expected to have min-imal effect on hadron matrix elements, the c, b and t quarks have been absorbed into αQCD at
Nf = 3 in this work, but it should be noted that some quantities are reaching precisions where
c sea effects are significant [130]. As the u and d masses are similar and very small, we can takethem to be degenerate to further optimise computational cost.With the basic implementation of QCD on a lattice proscribed, we now briefly go throughsome optimisations performed to systematically reduce artefacts, introduced by discretisation.
3.2.3 Wilson Fermions

As consequence to the discretisation unphysical poles are introduced into our momentum spacefermion propagator. To see this we construct the free fermion (Uµ(n) = 1) propagator
S̃(p) =

m− ia−1
∑

µ γµ sin (apµ)

m2 + a−2
∑

µ sin2 (apµ)
. (3.39)

In the massless limit this becomes
S̃(p)

∣∣∣
m=0

= −ia
∑

µ γµ sin (apµ)∑
µ sin2 (apµ)

(3.40)
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which has 15 unphysical poles. The additional poles are referred to as ‘doublers’ and need to beremoved. Fundamentally it is impossible to write a fermion discretisation that simultaneously isfree from ‘doublers’, invariant under continuum chiral symmetry and has a local fermion operatorwhile giving the correct continuum limit [131–133].By including an extra term in the action (3.18), one possible solution to this problem is intro-ducing an extra term that violates chiral symmetry
LW [q, q] (n) = q(n)

(
1
2a

∑
µ [(r − γµ)Uµ(n)q(n+ µ̂) + (r + γµ)U−µ(n)q(n− µ̂)] +

(
m+ 4r

a

)
q(n)

) (3.41)
which by freedom of choice of field normalisation can be defined
LW [q, q] (n) = q(n)

(
κ
∑
µ

[
(r − γµ)Uµ(n)q(n+ µ̂) + (r + γµ)U−µ(n)q(n− µ̂)

]
+ q(n)

)
(3.42)

with
q → q√

2aκ
(3.43)

κ :=
1

2ma+ 8r
(3.44)

for any r ∈ (0, 1] typically chosen to be 1. We refer to κ as the hopping parameter and often useit as
am =

1

2

(
1

κ
− 1

κc

)
(3.45)

where κc := 1
8r is the critical hopping parameter, that κ has in the chiral limit. With this improve-ment the mass of these ‘doublers’ receive extra contribution to their mass inversely proportionalto a and hence tend to infinite mass in the continuum limit, decoupling from our theory entirely.The corresponding quark action is

SW [q, q] (n) = a4
∑
n∈Λ

q(n)

(
κ
∑
µ

[
(r − γµ)Uµ(n)q(n+ µ̂) + (r + γµ)U−µ(n)q(n− µ̂)

]
+ q(n)

)
.

(3.46)
3.2.4 Symanzik Improvement

The gluon action (3.24) and quark action (3.46) used have discretisation artefacts of orderO(a2
)

and O(a) respectively, meaning that calculations have to be performed at very fine computa-tionally expensive lattice spacings in order to compare to continuum results. To allow simula-tion on coarser lattice spacings, it is standard to reduce discretisation errors through Symanzik–
improvement [134], through introduction of higher order operators.We now present the improve-ment used for both fermions and gluons.
Clover Improved Fermions

To improve the Wilson fermion action (3.46) we use the Sheikholeslami–Wohlert action [135]which introduces a clover improvement term
SSW [q, q] (n) = SW [q, q] + a4

∑
n∈Λ

arcSW
4

q(n)σµνFµν(n)q(n) (3.47)
where the clover term is written

Fµν := − i
2

[
Cµν − C†µν

] (3.48)
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Pµν

µ

ν

Figure 3.4: The clover plaquette, made up of four plaquette to form a staple.
where Cµν is defined in terms of plaquettes (3.23)

Cµν(n) :=
1

4a2
[Pµ,ν(n) + Pν,−µ(n) + P−µ,−ν(n) + P−ν,µ(n)] (3.49)

which get their name from their shape, see Figure 3.4 The clover parameter cSW is tuned toremove O(a) discretisation artefacts.
Lüscher-Weisz Gluons

The gauge parts of the action are improved by observing that for differently shapedWilson loopsin (3.24), different discretisation artefacts of order O(a2
) are obtained. Combinations of suchdifferent shapes can then be combined to construct a gauge action without errors at O(a2

). Byusing Wilson loops in the form
SG [Uµ] :=

2

g2

∑
n∈Z4

(
c1

∑
Re tr

[
I − P plaq

]
+ c2

∑
Re tr

[
I − P rect

]
+ c3

∑
Re tr [I − P parra]

)
(3.50)with correct parameters ci the action improves toO(a4

) [136]. The two newWilson loops are thenext simplest extensions to the plaquette, forming 2× 1 rectangles and 1× 1× 1 ‘parallelograms’,which are six sided in three dimensions.With only one termneeding cancellation there is freedomin choice of ci resulting in constraining equation
c1 + 8c2 + 8c3 = 1. (3.51)
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A common choice for this action, as we shall use throughout this work is the tree–level improvedaction [137], corresponding to
c1 =

20

12
(3.52)

c2 = − 1

12
(3.53)

c3 = 0. (3.54)

3.3 Lattice Symmetries

Due to discretisation and finite volume we have broken many of our continuum symmetries. TheEuclidianisation shifts the Lorentz group to the four–dimensional rotation group O(4), beforebeing further broken by discretisation to the group of hypercubic rotations H(4). Due to thisreduced symmetry, causing less stringent requirements for covariance, one has to be carefulwith extraction of operators on the lattice. By working with operators in a particular irreduciblerepresentation of H(4) that avoid mixing with same or lower dimensional operators, continuumcomparable matrix elements can be extracted. For a more in depth look at problems arising dueto mixing see [138].This reduction in symmetry shall become important in our calculations involving gluonic op-erators later in §9. We shall also investigate the higher moments of PDFs §7.2, where the mixingis important for the comparable conventional techniques.Our discretised theory also inherits symmetries from the continuum theory. Euclidean spacelacks distinguished directions present in Minkowski space, which split temporal and spatial direc-tions. As any of the four dimensions can act as the temporal direction, the Euclidean theory mustalso have additional symmetries the Minkowski theory does not have. Of interest to us are parityand charge conjugation.On the lattice a parity transformation P acts on fields as
Pq(~n, n4) = γ4q(−~n, n4) (3.55)
Pq(~n, n4) = q(−~n, n4)γ4. (3.56)

The lack of singled out direction means that there are three additional symmetries, collectivelyall four can be labelled Pµ with γµ instead of just γ4. Consequently the product of three of them
P1P2P3 corresponds to the time reflection operator.The form for time reflection has consequences for Hilbert space reconstructions, which arethen onlywell definedwhen anti–periodic temporal boundary conditions are imposed on fermions.For this reason we use such boundary conditions in our formulation and periodic boundary con-ditions for all spatial, and non–fermionic temporal quantities.The charge conjugation operator C , that transforms particles into their anti–particle counter-part, is defined by the relation to Dirac matrices

CγµC
−1 = −γTµ (3.57)

which determines it’s form for a particular choice of representation for the Dirac matrices.

3.4 Quark Masses and Scale Setting

The formulation of the lattice QCD requires some calculations to be able to compare results tophysical observables. We discuss scale setting and quark masses as they pertain to this work.Lattice simulations are done at larger than physical quark masses, to improve inversion speedfor the Dirac matrix (3.34). The common choice is to use heavy quark masses at their physicalvalues and vary the u and d quark masses. Our simulations take a different approach, instead of
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using the physical strange mass, the average mass of the three light quarks (with u and d quarksdegenerate)

m =
1

3
(2ml +ms) (3.58)

is kept constant, at the physical value. This approach has several advantages [139], it constrainsflavour–symmetry breaking expansions and keeps flavour–singlet quantities constant at leadingorder.All quantities in lattice calculations are done in terms of the lattice spacing a. This spacinghas not set directly, rather indirectly by bare coupling parameter β and so must be determinedby scale setting. The scale setting has been performed for fixed β and varying κ by extrapolating anumber of SU(3)flav–singlet quantities to their physical values [137, 139–141]. The use of quarkmass trajectory (3.58) then ensures that these flavour–singlet quantities are constant to leadingorder. The determined a from this procedure is then constant for fixed β.

3.5 Correlators

With a working theory of QCD in a box, we now shift focus on how to use this to calculate mean-ingful quantities, which for this body of work deals with n–point correlation functions. Thesecorrelators allow us to extract energies and matrix elements which we can relate to continuumphenomena. In this section, the basic two–point correlator is defined, and extended to includeintermediate currents.
3.5.1 Two–point Correlator

To calculate the value of energy eigenstates on the lattice we use a two–point correlator. Thebasis of the two point function is a momentum projected pair of creation and annihilation in-terpolating operators χ† and χ, with quantum numbers corresponding to the state of interest.These operators create and annihilate a towers of states on a lattice, which have these quantumnumbers. We start with the general form of a two–point correlation function
G(2)
χ (x, y) :=

〈
χ(x)χ†(y)

〉
:=
〈

Ω
∣∣∣χ(x)χ†(y)

∣∣∣Ω〉 (3.59)
with creation operator at space–time point y referred to as the source and annihilation operatorat x referred to as the sink. In theory the interpolating operators on each end can be differentbut we shall restrict ourselves to a single interpolator with it’s Hermitian conjugate.The completeness relation on the lattice is

1 =
∑
X

∫
d3p

(2π)3

1

2EX,~p
|X, ~p〉〈X, ~p| (3.60)

as determined by the normalisation〈
Y,~k

∣∣∣X, ~p〉 := 2EX,~pδXY (2π)3δ(3)
(
~p− ~k

)
. (3.61)

The state X of momentum ~p quantised to ~p = 2πn
L for integer n, has energy EX,~p. We often uselattice momenta and lattice momentum numbers interchangeably, which have been multipliedby L

2π to turn them into integers.On a lattice the integrals over space and momenta become sums, however we shall keepthe notation of the continuum, the derivations in either form are equivalent and hence we can
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calculate both forms at the same time. This correspondence is∫
d3p

(2π)3 →
(2π)3∣∣∣~Λ∣∣∣

∑
~p

(3.62)
∫
d3x→

∑
~x

(3.63)

(2π)3δ(3)
(
~p− ~k

)
→

∣∣∣~Λ∣∣∣
(2π)3 δ~p~k (3.64)

Using the continuum normalisation we can work out the spectral form of (3.59), by insertinga complete set of states
G(2)
χ (x, y) =

∑
X

∫
d3k

(2π)3

1

2E
X,~k

1

2E
X,~k

〈
Ω
∣∣∣χ(x)

∣∣∣X,~k〉〈X,~k∣∣∣χ†(y)
∣∣∣Ω〉. (3.65)

To use this to extract an energy we use translational invariance to identify a x4 − y4 varyingterm. Using the translation invariance we can redefine our interpolating fields using the four–momentum operator P
χ(x) = e−iP ·xχ(0)eiP ·x (3.66)

where P4|X, ~p〉 = iEX,~p|X, ~p〉 the two point function becomes
G(2)
χ (x, y) =

∑
X

∫
d3k

(2π)3 e
−E

X,~k
(x4−y4)

ei
~k·(~x−~y) 1

2E
X,~k

〈
Ω
∣∣∣χ(0)

∣∣∣X,~k〉〈X,~k∣∣∣χ†(0)
∣∣∣Ω〉. (3.67)

It is clear that the two point function only depends on the separation between the two interpo-lating fields and hence we define two–point function with source–sink separation x as
G(2)
χ (x) := G(2)

χ (x, 0). (3.68)
which can be diagrammatically represented by Figure 3.5. The momentum projected correlator,we define as

G(2)
χ (x4, ~p) =

∫
d3xe−i~p·~xG(2)

χ (x) (3.69)
which has form

G(2)
χ (x4, ~p) :=

∑
X

e−EX,~px4
1

2EX,~p

〈
Ω
∣∣∣χ(0)

∣∣∣X, ~p〉〈X, ~p∣∣∣χ†(0)
∣∣∣Ω〉. (3.70)

In the large separation limit x4 >> 0, the lowest energy state with non–zero vacuum overlapsaturates (3.70). The lowest energy state X , at large x4 >> 0 then has form
G(2)
χ (x4, ~p)→ e−EX,~px4g(2)

χ [X, ~p] (3.71)
where the constant overlap g(2)

χ [X, ~p] is defined by
g(2)
χ [X, ~p] (x) :=

1

2EX,~p

〈
Ω
∣∣∣χ(x)

∣∣∣X, ~p〉〈X, ~p∣∣∣χ†(0)
∣∣∣Ω〉. (3.72)

g(2)
χ [X, ~p] := g(2)

χ [X, ~p] (0). (3.73)
From (3.71), the energyEX,~p can then be extracted from the time dependence of the exponential.Using this we are able to calculate energies, such as nucleon energies.
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χ(x) χ†(0)

Figure 3.5: The two point function for interpolators χ, with source created at 0 andannihilated at x. The intermediate line represent quark propagators, of all possible con-tractions between the two interpolators.
3.5.2 Three and Four–Point Correlators

While the two–point correlators allow the extraction of energy eigenstates, the three and four–point correlators allow the extraction matrix elements. The derivation of forms equivalent to(3.71) use the same basics steps as for the two–point correlator and are presented in §A. Wepresent a few of the results now.The steps for the equivalent three–point correlator are presented in §A.1, themain definitionsneeded for later chapters are
G

(3)
χ,J(x, y) :=

〈
χ(x)J(y)χ†(0)

〉 (3.74)
g

(3)

χJχ†

[
X,~k1;Y,~k2;x, y

]
:=

1

2E
X,~k1

1

2E
Y,~k2

〈
Ω
∣∣∣χ(x)

∣∣∣X,~k1

〉〈
X,~k1

∣∣∣J(y)
∣∣∣Y,~k2

〉〈
Y,~k2

∣∣∣χ†(0)
∣∣∣Ω〉
(3.75)

G
(3)
χ,J(x4, y4, ~p, ~q) :=

∫
d3x

∫
d3ye−i~p·~xei~q·~yG

(3)
χ,J(x, y)tag3.76 (3.76)

=
∑
X,Y

e−EX,~px4e−(EY,(~p−~q)−EX,~p)y4g
(3)

χJχ†
[X, ~p;Y, (~p− ~q)] . (3.77)

The same definitions have also been constructed for four–point correlators in §A.2, which interms of
G

(4)
χ,J1,J2

(x, y, z, w) :=
〈
χ(x)J2(y)J1(z)χ†(w)

〉 (3.78)
give

g
(4)
χ,J1,J2

[
X,~k1;Y,~k2;Z,~k3;x, y, z, w

]
:=

1

2E
X,~k1

1

2E
Y,~k2

1

2E
Z,~k3

×
〈

Ω
∣∣∣χ(x)

∣∣∣X,~k1

〉〈
X,~k1

∣∣∣J2(y)
∣∣∣Y,~k2

〉
×
〈
Y,~k2

∣∣∣J1(z)
∣∣∣Z,~k3

〉〈
Z,~k3

∣∣∣χ†(w)
∣∣∣Ω〉.

(3.79)

and
G

(4)
χ,J1,J2

(x4, y4, z4, w4, ~p, ~q1, ~q2) =

∫
d3x

∫
d3y

∫
d3ze−i~p·(~x−~w)ei~q2·(~y−~w)ei~q1·(~z−~w)

×G(4)
χ,J1,J2

(x, y, z, w).

(3.80)
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Useful also is a definition of (3.79) with no state specified in between currents
g

(4,ph)

χJiJjχ†

[
X,~k1;Z,~k3;x, y, z, w

]
:=

1

2E
X,~k1

1

2E
Z,~k3

×
〈

Ω
∣∣∣χ(x)

∣∣∣X,~k1

〉〈
X,~k1

∣∣∣J2(y)J1(z)
∣∣∣Z,~k3

〉
×
〈
Z,~k3

∣∣∣χ†(w)
∣∣∣Ω〉

(3.81)

and current ordering swap
G

(4)
χ,J{1 ,J 2}

(x4, y4, z4, w4, ~p, ~q1, ~q2) :=
1

2

[
G

(4)
χ,J1,J2

(x4, y4, z4, w4, ~p, ~q1, ~q2)

+ G
(4)
χ,J2,J1

(x4, y4, z4, w4, ~p, ~q2, ~q1)
] (3.82)

where the momentum transfer q1 and q2 are properties of J1 and J2 rather than y−w and z −wrespectively, which naturally arises from temporal integrals of time ordered pairs of currents.One of the difficulties in calculating the three and four–point functions on the lattice arisesfrom the fact that one has more than one temporal variable to deal with. For regular three–pointfunctions inversions require either the source–sink or current–sink separation to be fixed foreach simulation, requiring multiple simulations for different separations to determine adequatesystematic control. In addition, the source–sink separationmust be increased as the current mustbe inserted at a time the ground state dominates, which further decreases signal. In practicethrough prior knowledge of approximate required separations, and use of multiple simulations atdifferent fixed separations this problem can be overcome.However when we look at four–point functions there are now three different temporal sep-arations, two of which must be fixed. First the source–sink separation must become even larger,which combined with the fact that one has to pick two separations ahead of time makes thecalculation complicated. This is before the challenge presented converting Euclidean four–pointfunction methods to their Minkowski counterparts [142, 143]. In this work we shall present newways of calculating four–point functions §4.2.2 and use them to avoid this problem §7.

3.6 Hadron Spectroscopy

In §3.5 we defined correlators on the lattice, which we shall now use to demonstrate how tocalculate pion and nucleon energies. In (3.70) we saw that any correlator comes with a tower ofexcited states, requiring us to fit our correlator at large source–sink separation x4 to isolate theground state. However except for the lowest energy hadronic state, the pion, fitting at large x4leads to fitting in areas of low signal–to–noise. The signal–to–noise for the nucleon n with Nmeasurements has form [144]
σ
G

(2)
χ

G
(2)
χ

∝ 1√
N
e(mn−

3
2
mπ)x4 . (3.83)

To reduce the time required to saturate to the ground state, interpolators are smeared byreplacing the delta function in (3.34) with an appropriate non–local function. It is expected thatthe ground state wave functions are approximately Gaussian, hence by tuning the smearing ofthe source, linking nearby lattice sites via some smooth function, to approximate the radius of ourintended state we can fit earlier. The same step can be performed at the sink of the correlators,to further improve this method. Our method is to use gauge–invariant Jacobi smearing [145],with smearing tuned for the ground state nucleon size.Much more sophisticated methods are possible, such as correlator matrix based techniques[146–150] that use multiple operators and smearing levels to construct almost perfect operators.
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To drastically reduce the earlier onset of the signal–to–noise problem at higher momenta, mod-ifying the smearing to better couple to high momentum states is also possible [151], but othermethods have also been developed [152]The two examples of two–point correlators we now present are of the pion §3.6.1 followedby the nucleon §3.6.2.
3.6.1 Example: Pion

As a consequence of spontaneous chiral symmetry breaking and the small explicit quark mass,the pion is a pseudo–Nambu–Goldstone boson. As the lowest mass hadronic state on the lat-tice, this means that it does not have problems with signal–to–noise, but instead the backwardspropagating state affects our fits. The basic interpolator we can use to extract mesons is of theform
χf1f2(x) := qf1(x)αaΓαβqf2(x)βa (3.84)

for some γ4–Hermitian (§C.2.3) element Γαβ of the Clifford algebra .By performing our calculation in the isospin–symmetric limit, the isospin triplet (π+, π0, π−
)

is mass degenerate, so we can work out pion masses by calculating any one of them. The π+

interpolator has form
χπ+ = d(x)αaγ

αβ
5 u(x)βa . (3.85)

We note that under a parity transformation §3.3 our interpolator is transformed as
Pχπ+(~x, x4) = −χπ+(−~x, x4). (3.86)

If we restrict our case to ~p = 0 then the mirroring of the spatial coordinates is not important,and the interpolator has parity of the pion state. Care has to be taken in analysis of non–zeromomentum state parity mixing, especially for excited state analysis [147, 150].We now construct our correlator from interpolator, using quark propagators. By usingWick’s
theorem on our correlatorG(2)

χ (x) we can construct our correlator in terms of quark propagators〈
χπ(x)χ†π(0)

〉
=
〈
d(x)γ5u(x)u(0)γ5d(0)

〉 (3.87)
which in terms of quark propagators (3.33) is〈

χπ(x)χ†π(0)
〉

= −〈tr [γ5Sd(0, x)γ5Su(x, 0)]〉. (3.88)
The problematic propagator is Sd, in order to calculate this correlator an all–to–all correlator isnecessary, however due to the γ5–Hermiticity (§C.2.4) of our quark propagators we can writethis

S†d(0, x) = γ5Sd(x, 0)γ5. (3.89)
The momentum projected correlator form from this then has form

G(2)
χπ

(
~0, x4

)
=
∑
X

g(2)
χπ

[
X,~0

] (
e−EX,~0x4 + e−EX,~0(T−x4)

) (3.90)
where the extra term when compared to (3.71) comes from the backwards propagating stateintroduced by the boundary conditions.We can rewrite the forwards and backwards propagatingstate together as a cosh

G(2)
χπ

(
~0, x4

)
=
∑
X

g(2)
χπ

[
X,~0

]
e−EX,~0

T
2 cosh

[
EX,~0

(
x4 −

T

2

)]
(3.91)

which for large enough x4 and T − x4 reduces to
G(2)
χπ

(
~0, x4

)
→ g(2)

χπ [π] e−mπ
T
2 cosh

[
mπ

(
x4 −

T

2

)]
. (3.92)
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The fit is then guided by an effective mass ratio
Reff = ln

[
G

(2)
χπ (x4)

G
(2)
χπ (x4 + a)

]
(3.93)

which allows us to see visually when our fit is late enough for excited state artefacts.We perform this calculation on our β = 5.5, SU(3)flavour symmetric, 323× 64 ensemble fromTable E.2. The results are taken from Ns = 7001 random sources evenly distributed over Ncfg =
1763 of the configurations, which accounts to roughly Ns/cfg ≈ 4 sources per configuration. Aswe see in the correlator and effective mass Figure 3.6, with such high statistics, to have negligiblesystematic error from the excited states, a fairly late fitting range x4 ∈ [9, 55] had to be chosen.The resultant mass in lattice units is

amπ = 0.17534(23). (3.94)
Scale setting §3.4 has been used on these lattice to calculate a [137, 139–141], which canuse with appropriate factors of ~c to get the corresponding pion mass in GeV

mπ = 0.467(12) GeV. (3.95)
This is the simplest mass calculation possible on the lattice, which we shall build upon throughoutthis work.
3.6.2 Example: Nucleon

In §3.6.1, you might have noticed that we only formed our particle from quark propagators withsingle source locations. As the inversion is themost expensive part of the calculation, it is possibleto calculate a nucleon correlator from the same quark propagators as well. A nucleon interpolator,naturally has three quark fields, with appropriate spin structure. The general form of particleoperators are
χf1f2f3(x)α := eabcqf1(x)αa

[
qf2(x)βbΓβγqf3(x)γc

]
+ similar terms (3.96)

which ensures colour asymmetry and a spin degree of freedom. Just like in the pion case §3.6.1,the neutron and proton are mass degenerate in pure QCD with degenerate u and d quarks. Onechoice for nucleon interpolator is one that couples to the proton
χN (x)α := eabcu(x)αa

[
u(x)βb (Cγ5)βγd(x)γc

]
. (3.97)

If we form a correlator thenWick’s theoremwill give us a correlatormade up of quark propagators.The correlator
G(2)
χN

(x)αβ =
〈
χN (x)αχ†N (0)β

〉 (3.98)
has some Dirac dependency α and β, and use a projector Γαβ (not the same Γ as (3.96)) in toproject to the right spin and parity. For now we restrict ourselves to the unpolarised case, wherewe only project parity

Γ± :=
1

2
(I ± γ4). (C.79)

We use both parity projections as the backwards propagating state will be the parity partner ofthe forward propagating state, so to maximise our statistics, we fit the forward propagating pos-itive parity projected nucleon and the backwards propagating negative parity projected nucleon.With the forward and backward propagating states being much heavier, at early times, at leastbefore the noise wall, the correlator is saturated by the forward propagating state. For sufficientlylarge x4, but not too large we then have
G(2)
χN

(
~0, x4

)
→ g(2)

χN
[N ] e−mNx4 (3.99)
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Figure 3.6: Shown are the pion correlator (a) and corresponding effective mass (b). Thedata points are the raw correlator and effective mass values, shown with coshine fit ofthe correlator. The errors bars on the data points and the shaded error on the fit aretoo small to be visible by eye. The fit has chosen to be x4 ∈ [9, 55], as guided by χ2

dofby varying start and end time symmetrically.
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from which we can form an effective mass ratio (3.93), to fit on the same ensemble, from thesame quark propagators as §3.6.1, which is summarised in Figure 3.7. We can clearly see theexpected signal–to–noise reduction at large time steps in both the correlator and effective mass.The calculated nucleon mass in lattice and physical units respectively is then
amN = 0.4698(56) (3.100)
mN = 1.250(39) GeV (3.101)
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Figure 3.7: The nucleon correlator (a) and corresponding effective mass (b). The datapoints are the raw correlator and effective mass values, where in both the line is anexponential fit to the correlator. Errors are shown to on standard deviation includingshaded errors bars. From the slope of the backwards propagating state in (a), it is clearthat the backwards propagating state has higher mass than the forward one, a conse-quence of the interpolator as described in the text. The fitting range x4 ∈ [11, 31], hasbeen chosen by picking the starting slice such that χ2

dof is close to 1.



44 CHAPTER 3. LATTICE QUANTUM CHROMODYNAMICS

3.7 Summary

In this chapter we presented the formulation of lattice QCD with various improvements thatwill be used in subsequent chapters. We showed how to extract masses from lattice two–pointfunctions, which we shall use extensively throughout this work in all remaining chapters.



Chapter 4

The Feynman–Hellmann Theorem

The first formulations of the FHT were presented in the 1930s, first by Göttinger in 1932 [153],followed by Pauli in 1933 [154], finally in 1937 and 1939 by Hellmann [155] and Feynman [156]respectively, fromwhich the theoremderives it’s name.On the lattice it is widely used to calculatesigma terms [157–169]. Various similar methods are in use on the lattice as well, such as the back-ground field method [170–172] to calculate polarisabilities [173–177], including with momen-tum transfer [178, 179], hadron vacuum polarisation [180], as well double–β decay [181, 182].Other than the sigma terms, it has been used to calculate gluonic moments of the nucleon [183],by using anisotropy to provide an effective shift in the ‘gluonic’ magnetic and electric fields, viashifting temporal and spatial plaquettes. It can provide both connected [112, 184] and discon-nected [185] form factors, as well as calculate renormalisation factors [186] and provide insightinto resonance states [187].The FHT is underpinned by a simple idea, a reverse of renormalisation. We renormalise aquantity, we expand it in terms of unperturbed diagrams, grouped by orders of powers of the in-troduced new Yukawa couplings. The renormalised propagators can be calculated to some orderby calculating the appropriate diagrams. Suppose it were easier to calculate the renormalisationof a quantity, to all orders, than it was to calculate any of the diagrams involved in that renormali-sation. If this were the case, then one could infer the value of the diagrams by changing the valueof the coupling. The advantage of this is that one can calculate the renormalisation diagrams fornon–perturbative objects, such as a low energy neutron or proton propagator. This is realisedby introducing a weak external field to the Lagrangian and calculating the response to this fieldfor various coupling strengths. We can determine the relation between a shift in Lagrangian to ashift in energy in multiple different spaces. In Quantum Mechanics (QM) the FHT relates shiftsin the Hamiltonian, to matrix elements. In lattice QCD, this corresponds to shifts in Lagrangiandensity, with resultant shift in hadron energies.Although alternative lattice approaches exist [188–191], we shall follow the approach of[112, 161, 183–185], deriving the FHT first for QM §4.1.1 and then extending it to second or-der §4.1.2. While the formulation of the theorem in QFT is possible [192], we shall derive it forpath integrals directly §4.2, including to multiple forms at second order, each with their advan-tages and disadvantages. A short discussion is given on problems extending these results to amore general form §4.3. Finally we finish with some comments about Euclidean and Minkowskiconnections in §4.4.

4.1 For QM

The principle of the FHT is most easily shown in the form originally presented by Feynman, inQM, which we then compare to the result from perturbation theory.To derive the FHT for QM we first define the unperturbed system of states as an inner–

45
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product space, diagonalised with respect to the Hamiltonian H
〈ψn|ψm〉 = δnm (4.1)
H|ψn〉 = En|ψn〉. (4.2)

Suppose that one varies the Hamiltonian by some continuous parameter λ, the modified systemobeys
〈ψn(λ)|ψm(λ)〉λ = δnm (4.3)
H(λ)|ψn(λ)〉λ = En(λ)|ψn(λ)〉λ (4.4)

where the states and measure both vary with λ. The energy of any particle can easily be obtainedby
En(λ) = 〈ψn(λ)|H(λ)|ψn(λ)〉λ (4.5)

which we shall now use to derive the FHT as presented in [156].
4.1.1 First Order

Taking derivatives of both sides of (4.5) gives
dEn
dλ

=

〈
ψn(λ)

∣∣∣∣dHdλ
∣∣∣∣ψn(λ)

〉
λ

+

〈
dψn
dλ

∣∣∣∣H(λ)

∣∣∣∣ψn(λ)

〉
λ

+

〈
ψn(λ)

∣∣∣∣H(λ)

∣∣∣∣dψndλ
〉
λ

(4.6)
where we use shorthand 〈

dψn
dλ

∣∣∣∣ =
d

dλ
〈ψn(λ)|λ (4.7)

Using (4.4) this becomes
dEn
dλ

=

〈
ψn(λ)

∣∣∣∣dHdλ
∣∣∣∣ψn(λ)

〉
λ

+ En(λ)

[〈
dψn
dλ

∣∣∣∣ψn(λ)

〉
λ

+

〈
ψn(λ)

∣∣∣∣dψndλ
〉
λ

]
. (4.8)

The latter two terms can be transformed via the product rule giving
dEn
dλ

=

〈
ψn(λ)

∣∣∣∣dHdλ
∣∣∣∣ψn(λ)

〉
λ

+ En(λ)
d

dλ
〈ψn(λ)|ψn(λ)〉λ (4.9)

which disappears via (4.3) leaving just
dEn
dλ

=

〈
ψn(λ)

∣∣∣∣dHdλ
∣∣∣∣ψn(λ)

〉
λ

. (4.10)
By evaluating this expression in the limit of λ→ 0, the FHT in QM is

dEn
dλ

∣∣∣∣
λ=0

=

〈
ψn(0)

∣∣∣∣dHdλ
∣∣∣∣ψn(0)

〉
0

(4.11)
It is obvious that this result is equivalent to the first order energy shift in perturbation theory fora linear shift in Lagrangian

L = L0 + λV. (4.12)
Like perturbation theory it is straightforward to extend to the degenerate case.
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4.1.2 Second Order

To extend this to second order we take the derivative of (4.10), dropping explicit λ dependencelabels
d2En
dλ2

=

〈
ψn

∣∣∣∣d2H

dλ2

∣∣∣∣ψn〉+

〈
dψn
dλ

∣∣∣∣dHdλ
∣∣∣∣ψn〉+

〈
ψn

∣∣∣∣dHdλ
∣∣∣∣dψndλ

〉
. (4.13)

The former term looks just like the (4.10) but for the quadratic shift of the Hamiltonian, so wefirst focus on the latter two terms. Inserting a complete set of states
d2En
dλ2

=

〈
ψn

∣∣∣∣d2H

dλ2

∣∣∣∣ψn〉+
∑
m

[〈
dψn
dλ

∣∣∣∣ψm〉〈ψm∣∣∣∣dHdλ
∣∣∣∣ψn〉+

〈
ψn

∣∣∣∣dHdλ
∣∣∣∣ψm〉〈ψm∣∣∣∣dψndλ

〉]
.

(4.14)In the case where them = n the term inside the sum disappears. To see this consider the deriva-tive
d

dλ
〈ψn|ψm〉 =

〈
dψn
dλ

∣∣∣∣ψm〉+

〈
ψn

∣∣∣∣dψmdλ
〉

= 0 (4.15)
for any n andm including n = m, implying that those parts of (4.14) cancel, resulting in
d2En
dλ2

=

〈
ψn

∣∣∣∣d2H

dλ2

∣∣∣∣ψn〉+
∑
m 6=n

[〈
dψn
dλ

∣∣∣∣ψm〉〈ψm∣∣∣∣dHdλ
∣∣∣∣ψn〉+

〈
ψn

∣∣∣∣dHdλ
∣∣∣∣ψm〉〈ψm∣∣∣∣dψndλ

〉]
.

(4.16)To relate the shifts of states to the shifts in the Hamiltonian we take the derivative of an off–diagonal term of the Hamiltonianm 6= n

d

dλ
〈ψm|H|ψn〉 =

〈
ψm

∣∣∣∣dHdλ
∣∣∣∣ψn〉+

〈
dψm
dλ

∣∣∣∣H∣∣∣∣ψn〉+

〈
ψm

∣∣∣∣H∣∣∣∣dψndλ
〉

(4.17)
which after applying H reduces to

d

dλ
〈ψm|H|ψn〉 =

〈
ψm

∣∣∣∣dHdλ
∣∣∣∣ψn〉+ En

〈
dψm
dλ

∣∣∣∣ψn〉+ Em

〈
ψm

∣∣∣∣dψndλ
〉
. (4.18)

By utilising (4.15) the conditionm 6= n implies the LHS is 0, so the RHS can be rewritten, yielding
0 =

〈
ψm

∣∣∣∣dHdλ
∣∣∣∣ψn〉+ [Em − En]

〈
ψm

∣∣∣∣dψndλ
〉
. (4.19)

By using this with careful substitution ofm and n of (4.16) we get
d2En
dλ2

=

〈
ψn

∣∣∣∣d2H

dλ2

∣∣∣∣ψn〉+
∑
m 6=n

∣∣〈ψn∣∣dHdλ ∣∣ψm〉∣∣2
Em − En

(4.20)
which evaluated at λ = 0 is the second order FHT for QM

d2En
dλ2

∣∣∣∣
λ=0

=

〈
ψn(0)

∣∣∣∣d2H

dλ2

∣∣∣∣ψn(0)

〉
0

+
∑
m 6=n

∣∣〈ψn(0)
∣∣dH
dλ

∣∣ψm(0)
〉

0

∣∣2
Em(0)− En(0)

(4.21)

Likewith the linear perturbation (4.12) we get the familiar result from perturbation theory, for thesecond order shift. This extension is useful as a demonstration of what we will find, but to fullyunderstand what happens we would need to re–derive this for QFT, or GFT. A QFT formulationcan be found in [192], so we shall focus on the latter with a direct derivation using path integrals.
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4.2 For Path Integrals

To understand the structure of a modified Hamiltonian or equivalently action on the lattice, weneed to know the formof the states on the lattice.We can infer this information by calculating theFHT for discretised path integrals. It will turn out that the second order shift requires knowledgeof the first order amplitude shift. As it will be useful at second order to consider action modifi-cation involving multiple different currents at the same time, we consider action modificationswith multiple λ. If we modify our action with an arbitrary number of λ
S → S(λλλ) := S(λ1, λ2, · · ·) (4.22)

we can derive equivalent results for lattice QCD. Our normalisation condition (3.61) is now〈
Y,~k

∣∣∣X, ~p〉
λλλ

:= 2EX,~p(λλλ)δXY (2π)3δ(3)
(
~p− ~k

) (4.23)
and similar for the identity operator for the complete set of states (3.60). Starting with a ba-sic momentum dependent two–point function in form (3.69) and (3.72) from §3.5.1 giving two
equivalent forms of G(2)

χλλλ(x4, ~p), in terms of the vacuum expectation value this is
G

(2)
χλλλ(x4, ~p) =

∫
d3xe−i~p·~x

〈
χ(x)χ†(0)

〉
λλλ

(4.24)
and in spectral form this is

G
(2)
χλλλ(x4, ~p) =

∑
X

g
(2)
χλλλ [X, ~p] e−EX,~p(λλλ)x4 . (4.25)

By taking derivatives of both sides one can then relate energy shifts to matrix elements. We startwith the first order case §4.2.1, before forming the extended FHT at second order §4.2.2, finallywe shall look at a useful formulation of the second order FHT with momentum transfer §4.2.3,taking advantage of intricacies of the first order proof. Correlator notation used is defined in §3.5.
4.2.1 First Order

To start we construct pieces for a general shift in action. The action is present in the path integral(3.12) and partition function (3.13), the derivative of (4.24) is then
∂

∂λi
G

(2)
χλλλ(x) =

〈
∂

∂λi

(
χ(x)χ†(0)

)〉
λλλ

−
〈
χ(x)χ†(0)

∂S

∂λi

〉
λλλ

+

〈
∂S

∂λi

〉
λλλ

〈
χ(x)χ†(0)

〉
λλλ

(4.26)
the first term being the shift in our choice of creation and annihilation operators with respect to
λi, the second will contain the matrix element we are interested in. The third term is the vacuumcorrection to the operator in the second term arising from the partition function, whichwill vanishfor our choice of operators, but is important later for §4.2.2. If one wanted to include this termone can simply redefine ones current in the Lagrangian to be vacuum subtracted. Under theseassumptions we then have

∂

∂λi
G

(2)
χλλλ(x) = −

〈
χ(x)χ†(0)

∂S

∂λi

〉
λλλ

(4.27)
where we stress that there is implicit time ordering inside the expectation value. The derivativeof (4.25) meanwhile reads

∂

∂λi
G

(2)
χλλλ(x4, ~p) =

∑
X

[
∂

∂λi
g

(2)
χλλλ [X, ~p]− x4

∂EX,~p
∂λi

g
(2)
χλλλ [X, ~p]

]
e−EX,~p(λλλ)x4 . (4.28)
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It is clear now that to find the energy shift one only needs to find the term in (4.27) whichhas the same energy dependency of the second term in (4.28), which we shall refer to as time–
enhancement orx4–enhancement. As it will turn out the important factor for this time–enhancementwill be energy degeneracy, which we shall assume to be only in the case where the states arethe same, in other words the states of interest for us to evaluate will be non–degenerate energyeigenstates, which we shall relax later. There are energy degenerate states in the tower of states,but these do not affect lower energy non–degenerate states in our proof, and so can be ignored.Despite only needing the x4–enhanced terms for the first order FHT we will need the first termin (4.28) as well for calculation of the second order FHT in §4.2.2.With a modification of our action of form

S(λi) = S(0) + λi

∫
d4xei~qi·~xJi(x) (4.29)

for some translationally invariant Ji, then (4.27) becomes the time–ordered expression
∂

∂λi
G

(2)
χλλλ(x) = −

〈∫
d4yei~qi·~yT

{
χ(x)χ†(0)Ji(y)

}〉
λλλ

. (4.30)
First we resolve the time ordering

− ∂

∂λi
G

(2)
χλλλ(x) =

∫ ∞
x4

dy4

∫
d3yei~qi·~y

〈
Ji(y)χ(x)χ†(0)

〉
λλλ

+

∫ x4

0
dy4

∫
d3yei~qi·~y

〈
χ(x)Ji(y)χ†(0)

〉
λλλ

+

∫ 0

−∞
dy4

∫
d3yei~qi·~y

〈
χ(x)χ†(0)Ji(y)

〉
λλλ
.

(4.31)

The first and last terms look like re–definitions of our interpolating operator overlap with the
vacuum, which makes us expect them to affect ∂

∂λi
g

(2)
χλλλ , not the energy shift itself which we shallprove now. Dropping all explicit λλλ dependence labels, inserting a complete set of states on thefirst term of (4.31) gives∑

X,Y

∫
d3k1

(2π)3

∫
d3k2

(2π)3

∫ ∞
x4

dy4

∫
d3yei~qi·~yg

(3)

Jiχχ†

[
X,~k1;Y,~k2; y, x, 0

]
. (4.32)

We then pull out the explicit operator space–time dependence referring to k1 = (~k, iE
X,~k1

) andsimilar for k2∑
X,Y

∫
d3k1

(2π)3

∫
d3k2

(2π)3

∫ ∞
x4

dy4

∫
d3yeik1·yei(k2−k1)·xei~qi·~yg

(3)

Jiχχ†

[
X,~k1;Y,~k2

]
. (4.33)

which after integration of k1 and ~y simplifies to∑
X,Y

∫
d3k2

(2π)3

∫ ∞
x4

dy4e
−EX,−~qiy4e

−
(
E
Y,~k2
−EX,−~qi

)
x4ei

~k2·~xg
(3)

Jiχχ†

[
X,−~qi;Y,~k2

]
. (4.34)

Now we can integrate over y4∑
X,Y

∫
d3k2

(2π)3

1

EX,−~qi
e
−E

Y,~k2
x4ei

~k2·~xg
(3)

Jiχχ†

[
X,−~qi;Y,~k2

]
. (4.35)

In a similar fashion the last term of (4.31) becomes∑
X,Y

∫
d3k1

(2π)3

1

EY,~qi
e
−E

X,~k1
x4ei

~k1·~xg
(3)

χχ†Ji

[
X,~k1;Y, ~qi

] (4.36)
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which after reautoreflingX , Y , k1, k2, as well as using EX,~qi = EX,−~qi we can combine (4.35) and(4.36) into one expression∑
X,Y

∫
d3k1

(2π)3

1

EY,~qi
e
−E

X,~k1
x4ei

~k1·~x
(
g

(3)

χχ†Ji

[
X,~k1;Y, ~qi

]
+ g

(3)

Jiχχ†

[
Y,−~qi;X,~k1

])
. (4.37)

As expected neither term has the required time–enhancement, instead they only provides a mul-tiplicative factor to our vacuum overlap of χ.We can insert a complete set of states into the middle term of (4.31)∑
X,Y

∫
d3k1

(2π)3

∫
d3k2

(2π)3

∫ x4

0
dy4

∫
d3yei~qi·~yg

(3)

χJiχ†

[
X,~k1;Y,~k2;x, y, 0

] (4.38)
and pull out explicit space–time dependence∑

X,Y

∫
d3k1

(2π)3

∫
d3k2

(2π)3

∫ x4

0
dy4

∫
d3yeik1·xei(k2−k1)·yei~qi·~yg

(3)

χJiχ†

[
X,~k1;Y,~k2

]
. (4.39)

Integration of ~y and ~k2 then reduces the momentum dependence to one momenta∑
X,Y

∫
d3k1

(2π)3

∫ x4

0
dy4e

ik1·xe
−
(
E
Y,(~k1−~qi)

−E
X,~k1

)
y4
g

(3)

χJiχ†

[
X,~k1;Y,

(
~k1 − ~qi

)]
. (4.40)

Now we finally see a term with possible time dependence in the case where E
X,~k1

= E
Y,~k1

thenthe integral over y4 will give us an x4–enhancement, for any degeneracies of energies. We cansplit our sum into degenerate and non–degenerate parts∑
{
X,Y |E

X,~k1
=E

Y,(~k1−~qi)

}
∫

d3k1

(2π)3

∫ x4

0
dy4e

ik1·xg
(3)

χJiχ†

[
X,~k1;Y,

(
~k1 − ~qi

)]

+
∑

{
X,Y |E

X,~k1
6=E

Y,(~k1−~qi)

}
∫

d3k1

(2π)3

∫ x4

0
dy4e

ik1·xg
(3)

χJiχ†

[
X,~k1;Y,

(
~k1 − ~qi

)]
e
−
(
E
Y,(~k1−~qi)

−E
X,~k1

)
y4
.

(4.41)
By integrating over y4 in each term the time–enhancement becomes apparent∑

{
X,Y |E

X,~k1
=E

Y,(~k1−~qi)

}
∫

d3k1

(2π)3 e
i~k1·~xg

(3)

χJiχ†

[
X,~k1;Y,

(
~k1 − ~qi

)]
x4e
−E

X,~k1
x4

+
∑

{
X,Y |E

X,~k1
6=E

Y,(~k1−~qi)

}
∫

d3k1

(2π)3 e
i~k1·~xg

(3)

χJiχ†

[
X,~k1;Y,

(
~k1 − ~qi

)] e−EX,~k1x4 − e−EY,(~k1−~qi)x4
E
Y,(~k1−~qi) − EX,~k1

.

(4.42)
This degeneracy yielding time–enhancement shall play out in a similar manner in our second or-der derivations. To finish this proof, we will need to match time dependence, which we do byrelabelling terms to each include only a single exponential∑

{
X,Y |E

X,~k1
=E

Y,(~k1−~qi)

}
∫

d3k1

(2π)3 e
i~k1·~xg

(3)

χJiχ†

[
X,~k1;Y,

(
~k1 − ~qi

)]
x4e
−E

X,~k1
x4

+
∑

{
X,Y |E

X,~k1
6=E

Y,(~k1−~qi)

}
∫

d3k1

(2π)3 e
i~k1·~xg

(3)

χJiχ†

[
X,~k1;Y,

(
~k1 − ~qi

)] e
−E

X,~k1
x4

E
Y,(~k1−~qi) − EX,~k1

+
∑

{
X,Y |E

X,(~k1−~qi)
6=E

Y,~k1

}
∫

d3k1

(2π)3 e
i~k1·~xg

(3)

χJiχ†

[
Y,~k1;X,

(
~k1 − ~qi

)] e
−E

X,(~k1−~qi)
x4

E
Y,~k1
− E

X,(~k1−~qi)

(4.43)
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Combining all these terms together we see the full shift in the two point correlator

− ∂

∂λi
G

(2)
χλλλ(~p) =

∑
X,Y

(
g

(3)

χχ†Ji
[X, ~p;Y, ~qi] + g

(3)

Jiχχ†
[Y,−~qi;X, ~p]

) 1

EY,~qi
e−EX,~px4

+
∑

{
X,Y |EX,~p=EY,(~p−~qi)

} g(3)

χJiχ†
[X, ~p;Y, (~p− ~qi)]x4e

−EX,~px4

+
∑

{
X,Y |EX,~p 6=EY,(~p−~qi)

} g(3)

χJiχ†
[X, ~p;Y, (~p− ~qi)]

e−EX,~px4

EY,(~p−~qi) − EX,~p

+
∑

{
X,Y |EX,(~p−~qi) 6=EY,~p

} g(3)

χJiχ†
[Y, ~p;X, (~p− ~qi)]

e
−EX,(~p−~qi)x4

EY,~p − EX,(~p−~qi)
.

(4.44)

Due to energy degeneracy requirements being dependent on ~qi we look at the FHT in two cases;forward and non–forward.
Forward Case

Let us first consider the forward case, ~qi = ~0. If we assume that there is no energy degeneracy inour state of interest then under our assumptions
EX,~p = EY,~p =⇒ X = Y. (4.45)

As the relationship (4.44) is true for all timeswe can use the time dependence tomatch up specific
X terms. Consider the large time limits, only the lowest energy states contribute. By matchingthe lowest energy terms on both sides we can subtract these terms and repeat. In such a mannerwe can match up to arbitrary order. Alternatively one can think in terms of constructing perfectoperators, in theory using correlator matrix techniques or similar other methods, an operatorthat overlaps with only one state can be constructed. Either way this matching allows us to getresults, of a particular state X with momentum ~p for shift in overlap

− ∂

∂λi
g

(2)
χλλλ [X, ~p] =

∑
Y

1

EY,~0(λλλ)

(
g

(3)

χχ†Ji

[
X, ~p;Y,~0

]
+ g

(3)

Jiχχ†

[
Y,~0;X, ~p

])
+
∑
Y 6=X

1

EY,~p(λλλ)− EX,~p(λλλ)

(
g

(3)

χJiχ†
[X, ~p;Y, ~p] + g

(3)

χJiχ†
[Y, ~p;X, ~p]

) (4.46)

and shift in energy
∂EX,~p
∂λi

=
g

(3)

χJiχ†λλλ
[X, ~p;X, ~p]

g
(2)
χλλλ [X, ~p]

=
1

2EX,~p(λλλ)
〈X, ~p|Ji(0)|X, ~p〉λλλ (4.47)

respectively.By evaluating these expressions at λ = 0 we then have the shift in the overlap
− ∂

∂λi
g

(2)
χλλλ [X, ~p]

∣∣∣∣
λ=0

=
∑
Y

1

EY,~0

(
g

(3)

χχ†Ji

[
X, ~p;Y,~0

]
+ g

(3)

Jiχχ†

[
Y,~0;X, ~p

])
+
∑
Y 6=X

1

EY,~p − EX,~p

(
g

(3)

χJiχ†
[X, ~p;Y, ~p] + g

(3)

χJiχ†
[Y, ~p;X, ~p]

) (4.48)

while not explored in this work, also encodes interesting phenomena, the first term representsthe redefinition of the two–point function overlap, while the second part matches an energy
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pp

Ji

Figure 4.1: The diagram corresponding to the first order FHTwithout momentum trans-fer, that one can calculate from the first order energy shift
weighted set of all transition amplitudes from our state, which we shall see looks like a ‘half–piece’ of the second order FHT.Now finally we can write the FHT for the linear forward case

∂EX,~p
∂λi

∣∣∣∣
λ=0

=
1

2EX,~p
〈X, ~p|Ji(0)|X, ~p〉0. (4.49)

This relates the linear response of the energy, introduced by a weak external field to a matrixelement of one operator, a three–point functions defined in §A.1 with external legs removed.This allows us to calculate simple vertex diagrams as depicted by Figure 4.1.
Non–forward Case

To extend this result to include the non–forward case we have to take care with our redefinedstates. Notice the energy exponential in the last term of (4.43), at non–zero qi our states |X, ~p〉and |X, (~p− ~qi)〉 nowmix. Before in our FHTwe dealt with Hermitian modifications to our Hamil-tonian, here the momentum transfer is off forward and so need to take a formwhich is Hermitian,by introducing a ‘cosine’ momentum transfer term
∂S

∂λi
=

∫
d4x
(
ei~qi·~x + e−i~qi·~x

)
Ji(x). (4.50)

The observation that our states mix, is then equivalent to saying that we are dealing with energydegenerate states for non–zero x4–enhanced terms. Assuming all energy degeneracies occur be-tween the same state, choosing p and qi such that |~p| = |~p− ~qi|, the term of interest is
∂

∂λi
G

(2)
χλλλ(~p) = −

∑
X

g
(3)

χJiχ†
[X, ~p;X, (~p− ~qi)]x4e

−EX,~px4 + · · · (4.51)
where the matrix element of each state X, ~p will mix with

g
(3)

χJiχ†
[X, (~p− ~qi);X, ~p]x4e

−EX,(~p−~qi)x4 . (4.52)
To counteract this if we instead consider shifts of combinations of G(2)

χλλλ(~p) and G(2)
χλλλ(~p− ~qi) thenwe can diagonalise the problem to get proper energy shifts free of mixing. Again assuming thedegeneracy in energy only occurs in momenta, the combinations∣∣∣X+

~qi
, ~p
〉

=
1√
2

(
|X, ~p〉+ eiθ|X, (~p− ~qi)〉

) (4.53)∣∣∣X−~qi , ~p〉 =
1√
2

(
|X, ~p〉 − eiθ|X, (~p− ~qi)〉

) (4.54)
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p− qi

qi

p

Ji

p

−qi

p− qi

Ji

Figure 4.2: The diagrams corresponding to the first order FHTwith momentum transfer,for the case where |~p| = |~p− ~qi|. Both these diagrams are calculated at once using thefirst order energy shift
will diagonalise the problem for any choice of relative phase θ ∈ R. While we are free to chooseeither of these states in our calculation, in practice we use the former with θ = 0, as the latterwill results in subtraction of correlation functions at λ = 0. The same setup occurs when thedegenerate state is |~p| = |~p+ ~qi|. Either way by modifying our completeness relation we thenget matching

∂EX+
~qi
,~p

∂λi

∣∣∣∣∣
λ=0

=
1

2EX+
~qi
,~p

〈
X+
~qi
, ~p
∣∣∣Ji(0)

∣∣∣X+
~qi
, ~p
〉

0
. (4.55)

Where the matrix element will be zero in cases where the magnitude of the momenta aren’t thesame. The corresponding diagrams are Figure 4.2. This form of the FHT is useful in reaching largemomentum transfers on the lattice, but not the focus of this work, except for correct derivationof the second order FHT. For results using this to calculate electromagnetic form factors see[112], or for a more in depth derivation of the theory see [193].In addition we can say something about the shift in the amplitude, but the strategy has tochange. Consider the long time behaviour of the function, it will be dominated only by expo-nentials of the lowest energy states, that is the lowest energy states that mix with |X, ~p〉 or
|X, (~p− ~qi)〉. In our case, by construction, the lowest energy states are of momentum ~p and ~p−~qirespectively. This means in this case, extraction of the shift in overlap is possible, through a sim-ilar manner as described in the forward case. For a second order derivation, we will avoid theBreit frame for intermediate momenta (2p·q

Q2 6= 1 in it’s terminology), stepping around this issue.
4.2.2 Second Order

For the first order case we used first order derivatives of G(2)
χλλλ(x4, ~p) which we recall have forms

G
(2)
χλλλ(x4, ~p) =

∫
d3xe−i~p·~x

〈
χ(x)χ†(0)

〉
λλλ

(4.24)
and

G
(2)
χλλλ(x4, ~p) =

∑
X

g
(2)
χλλλ [X, ~p] e−EX,~p(λλλ)x4 . (4.25)

We shall now repeat the same steps, but taking second order derivatives of both sides, which
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for (4.24) goes like
∂2

∂λi∂λj
G

(2)
χλλλ(x) =

〈
∂2

∂λi∂λj

(
χ(x)χ†(0)

)〉
λλλ

− 2

〈
∂

∂λi

(
χ(x)χ†(0)

) ∂S
∂λj

〉
λλλ

+ 2

〈
∂S

∂λj

〉
λλλ

〈
∂

∂λi

(
χ(x)χ†(0)

)〉
λλλ

− 2

〈
∂

∂λj

(
χ(x)χ†(0)

) ∂S
∂λi

〉
λλλ

+ 2

〈
∂S

∂λi

〉
λλλ

〈
∂

∂λj

(
χ(x)χ†(0)

)〉
λλλ

−
〈
χ(x)χ†(0)

∂2S

∂λi∂λj

〉
λλλ

+

〈
χ(x)χ†(0)

∂S

∂λi

∂S

∂λj

〉
λλλ

− 2

〈
∂S

∂λi

〉
λλλ

〈
χ(x)χ†(0)

∂S

∂λj

〉
λλλ

− 2

〈
∂S

∂λj

〉
λλλ

〈
χ(x)χ†(0)

∂S

∂λi

〉
λλλ

+

〈
∂S

∂λi

〉
λλλ

〈
∂S

∂λj

〉
λλλ

〈
χ(x)χ†(0)

〉
λλλ

+

〈
∂2S

∂λi∂λj

〉
λλλ

〈
χ(x)χ†(0)

〉
λλλ

(4.56)

with the same conditions as before on (4.26), all derivatives of our interpolators are 0 by con-struction and the vacuum expectations values at first order are zero, giving a much reducedexpression
∂2

∂λi∂λj
G

(2)
χλλλ(x) = −

〈
χ(x)χ†(0)

∂2S

∂λi∂λj

〉
λλλ

+

〈
χ(x)χ†(0)

∂S

∂λi

∂S

∂λj

〉
λλλ

+

〈
∂2S

∂λi∂λj

〉
λλλ

〈
χ(x)χ†(0)

〉
λλλ
.

(4.57)The first term is present only if our action shift is not linear inλλλ, relevant only for certain currents.It’s derivation is identical to the first order case, but matching to the second order energy shift.The third term is a vacuum expectation value of a product of our currents and is non–zero incases we shall look at, but as we only look at connected contributions at second order, neglectfor this work. Finally the second order term, is the term we wish to extract. The derivative of(4.25) meanwhile becomes
∂2G

(2)
χλλλ

∂λi∂λj
(x4, ~p) =

∑
X

[
∂2

∂λi∂λj
g

(2)
χλλλ [X, ~p]

− x4

(
∂

∂λi
g

(2)
χλλλ [X, ~p]

∂EX,~p
∂λj

+
∂

∂λj
g

(2)
χλλλ [X, ~p]

∂EX,~p
∂λi

+
∂2EX,~p
∂λi∂λj

g
(2)
χλλλ [X, ~p]

)
+ x2

4

∂EX,~p
∂λi

∂EX,~p
∂λj

g
(2)
χλλλ

]
e−EX,~p(λλλ)x4 .

(4.58)
There are now extra terms of different time–enhancement including two x4–enhanced termswhich have to be carefully treated. The first term of (4.57), the part of the first and all of thelast term of (4.58) are expected terms purely from a redefinition of λλλ′ =

√
λλλ. As part of ouranalysis we are only interested in energy shifts but one could possibly also look at the changein the overlap of the states, which as we shall see relates to transition amplitudes to all otherstates, with careful analysis of both ∂

∂λi
G

(2)
χλλλ and ∂2

∂λi∂λj
G

(2)
χλλλ could lead to useful results in the

right circumstances.This makes it clear also that in the x4–enhanced termswe see terms involving first order terms.We modify the action with the form
S(λλλ) = S(0) +

∑
i

λi

∫
d4xJi(x) (4.59)

where there is no momentum transfer. We then work with (4.57), the first term being identicalformulation to the first order, and is usually 0. The latter term only becomes important for discon-nected quantities, so we focus on the middle term. By substituting (4.59) into (4.57) we obtain
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the expression

∂2

∂λi∂λj
G

(2)
χλλλ(x) =

〈∫
d4y

∫
d4zT

{
χ(x)χ†(0)Ji(y)Jj(z)

}〉
λλλ

(4.60)
which we can split into 12 explicitly time ordered terms

∂2

∂λi∂λj
G

(2)
χλλλ(x) =

∫ 0

−∞
dy4

∫ y4

−∞
dz4

∫
d3y

∫
d3z
〈
χ(x)χ†(0)Ji(y)Jj(z) + (i↔ j)

〉
λλλ

+

∫ x4

0
dy4

∫ 0

−∞
dz4

∫
d3y

∫
d3z
〈
χ(x)Ji(y)χ†(0)Jj(z) + (i↔ j)

〉
λλλ

+

∫ ∞
x4

dy4

∫ 0

−∞
dz4

∫
d3y

∫
d3z
〈
Ji(y)χ(x)χ†(0)Jj(z) + (i↔ j)

〉
λλλ

+

∫ x4

0
dy4

∫ y4

0
dz4

∫
d3y

∫
d3z
〈
χ(x)Ji(y)Jj(z)χ

†(0) + (i↔ j)
〉
λλλ

+

∫ ∞
x4

dy4

∫ x4

0
dz4

∫
d3y

∫
d3z
〈
Ji(y)χ(x)Jj(z)χ

†(0) + (i↔ j)
〉
λλλ

+

∫ ∞
x4

dy4

∫ y4

x4

dz4

∫
d3y

∫
d3z
〈
Ji(y)Jj(z)χ(x)χ†(0) + (i↔ j)

〉
λλλ
.

(4.61)

We now systematically work through each line, one by one, inserting complete sets of states,starting with the first, third and last line. The first part of the first line is∑
X,Y,Z

∫
d3k1

(2π)3

∫
d3k2

(2π)3

∫
d3k3

(2π)3

∫ 0

−∞
dy4

∫ y4

−∞
dz4

∫
d3y

∫
d3z

× g(4)

χχ†JiJj

[
X,~k1;Y,~k2;Z,~k3;x, 0, y, z

]
.

(4.62)

Using translational–invariance to pull the explicit space–time dependence out of g(4)

χχ†JiJj
, with

k1 =
(
~k1, iEX,~k1

), and similar for k2 and k3

∑
X,Y,Z

∫
d3k1

(2π)3

∫
d3k2

(2π)3

∫
d3k3

(2π)3

∫ 0

−∞
dy4

∫ y4

−∞
dz4

∫
d3y

∫
d3z

× eik1·xei(k3−k2)·ye−ik3·zg
(4)

χχ†JiJj

[
X,~k1;Y,~k2;Z,~k3

]
.

(4.63)

We can then perform all the spatial integrals reducing the expression to∑
X,Y,Z

∫
d3k1

(2π)3

∫ 0

−∞
dy4

∫ y4

−∞
dz4e

−E
X,~k1

x4e−(EZ,~0−EY,~0)y4eEZ,~0z4ei
~k1·~xg

(4)

χχ†JiJj

[
X,~k1;Y,~0;Z,~0

]
(4.64)which after integration of the temporal integrals reduces to∑

X,Y,Z

∫
d3k1

(2π)3 e
i~k1·~x 1

EY,~0EZ,~0
g

(4)

χχ†JiJj

[
X,~k1;Y,~0;Z,~0

]
e
−E

X,~k1
x4 . (4.65)

The other five terms have the same results, hence after relabelling states we get∑
X,Y,Z

∫
d3k1

(2π)3

1

EY,~0EZ,~0
e
−E

X,~k1
x4ei

~k1·~x
(
g

(4)

χχ†JiJj

[
X,~k1;Y,~0;Z,~0

]
+ g

(4)

χχ†JjJi

[
X,~k1;Y,~0;Z,~0

]
+g

(4)

JiJjχχ†

[
Y,~0;Z,~0;X,~k1

]
+ g

(4)

JjJiχχ†

[
Y,~0;Z,~0;X,~k1

]
+g

(4)

Jiχχ†Jj

[
Y,~0;X,~k1;Z,~0

]
+ g

(4)

Jjχχ†Ji

[
Y,~0;X,~k1;Z,~0

])
.

(4.66)
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These terms just look like a second order multiplicative factor for our vacuum overlap with χ,
contributing only to ∂2

∂λi∂λj
g

(2)
χλλλ . If we then turn our attention to the second and second to last

term of (4.61), we can use (4.35) to see that∫ 0

−∞
dz4

∫
d3z
〈
χ(x)Ji(y)χ†(0)Jj(z)

〉
=
∑
Z

1

EZ,~0

〈
Ω
∣∣∣χ(x)Ji(y)χ†(0)

∣∣∣Z,~0〉〈Z,~0∣∣∣Jj(0)
∣∣∣Ω〉.
(4.67)We can then use (4.41) to get∑

X,Z

1

EZ,~0

∫
d3k1

(2π)3 e
i~k1·~xg

(4)

χJiχ†Jj

[
X,~k1;X,~k1;Z,~0

]
x4e
−E

X,~k1
x4

+
∑

{X,Y,Z|X 6=Y }

1

EZ,~0

∫
d3k1

(2π)3 e
i~k1·~xg

(4)

χJiχ†Jj

[
X,~k1;Y,~k1;Z,~0

] e
−E

X,~k1
x4

E
Y,~k1
− E

X,~k1

+
∑

{X,Y,Z|X 6=Y }

1

EZ,~0

∫
d3k1

(2π)3 e
i~k1·~xg

(4)

χJiχ†Jj

[
Y,~k1;X,~k1;Z,~0

] e
−E

X,~k1
x4

E
Y,~k1
− E

X,~k1

(4.68)

for one order of Ji and Jj , and∑
X,Z

1

EZ,~0

∫
d3k1

(2π)3 e
i~k1·~xg

(4)

JjχJiχ†

[
Z,~0X,~k1;X,~k1;

]
x4e
−E

X,~k1
x4

+
∑

{X,Y,Z|X 6=Y }

1

EZ,~0

∫
d3k1

(2π)3 e
i~k1·~xg

(4)

JjχJiχ†

[
Z,~0;X,~k1;Y,~k1

] e
−E

X,~k1
x4

E
Y,~k1
− E

X,~k1

+
∑

{X,Y,Z|X 6=Y }

1

EZ,~0

∫
d3k1

(2π)3 e
i~k1·~xg

(4)

JjχJiχ†

[
Z,~0;Y,~k1;X,~k1

] e
−E

X,~k1
x4

E
Y,~k1
− E

X,~k1

(4.69)

for the other ordering. Naturally as before the terms not x4–enhancedwill contribute to ∂2

∂λi∂λj
g

(2)
χλλλ ,but it is not yet clear where the x4–enhanced terms will contribute, however they look like termscontributing to ∂

∂λi
g

(2)
χλλλ

∂EX,~p
∂λj

+ ∂
∂λj

g
(2)
χλλλ

∂EX,~p
∂λi

, but to verify this we need also the terms in the last
term of (4.61), the fourth line. The first term of this line, after inserting complete sets of statesbecomes ∑

X,Y,Z

∫
d3k1

(2π)3

∫
d3k2

(2π)3

∫
d3k3

(2π)3

∫ x4

0
dy4

∫ y4

0
dz4

∫
d3y

∫
d3z

× g(4)

χJiJjχ†

[
X,~k1;Y,~k2;Z,~k3;x, y, z, 0

]
.

(4.70)

Using translational invariance and defining k1 =
(
~k1, iEX,~k1

), with similar definition for k2 and
k3, this becomes ∑

X,Y,Z

∫
d3k1

(2π)3

∫
d3k2

(2π)3

∫
d3k3

(2π)3

∫ x4

0
dy4

∫ y4

0
dz4

∫
d3y

∫
d3z

× eik1·xei(k2−k1)·yei(k3−k2)·zg
(4)

χJiJjχ†

[
X,~k1;Y,~k2;Z,~k3

] (4.71)

which becomes∑
X,Y,Z

∫
d3k1

(2π)3

∫ x4

0
dy4

∫ y4

0
dz4e

−E
X,~k1

x4e
−
(
E
Y,~k1
−E

X,~k1

)
y4e
−
(
E
Z,~k1
−E

Y,~k1

)
z4ei

~k1·~x

× g(4)

χJiJjχ†

[
X,~k1;Y,~k1;Z,~k1

]
.

(4.72)



4.2. FOR PATH INTEGRALS 57
Under the same assumption as before where energy degeneracies occur only when the statesare the same we can split this sum up into components using the identity∑

X,Y,Z

f(X,Y, Z) =
∑
X

f(X,X,X)

+
∑

{X,Y |X 6=Y }

(f(X,X, Y ) + f(X,Y,X) + f(Y,X,X))

+
∑

{X,Y,Z|X 6=Y,Y 6=Z,Z 6=X}

f(X,Y, Z).

(4.73)

Taking the case where all states are the same in (4.72), we get immediately∑
X

∫
d3k1

(2π)3 e
i~k1·~xg

(4)

χJiJjχ†

[
X,~k1;X,~k1;X,~k1

] 1

2
x2

4e
−E

X,~k1
x4 . (4.74)

For the term where there are no degeneracies we get, after relabelling∑
{X,Y,Z|X 6=Y,Y 6=Z,Z 6=X}

∫
d3k1

(2π)3 e
i~k1·~xe

−E
X,~k1

x4

[
1

E
Z,~k1
− E

Y,~k1

(
1

E
Y,~k1
− E

X,~k1

− 1

E
Z,~k1
− E

X,~k1

)
g

(4)

χJiJjχ†

[
X,~k1;Y,~k1;Z,~k1

]
+

1(
E
Y,~k1
− E

X,~k1

)(
E
Z,~k1
− E

X,~k1

)g(4)

χJiJjχ†

[
Y,~k1;X,~k1;Z,~k1

]

− 1(
E
Y,~k1
− E

X,~k1

)(
E
Z,~k1
− E

X,~k1

)g(4)

χJiJjχ†

[
Z,~k1;Y,~k1;X,~k1

]

(4.75)

another term contributing purely to the ∂2

∂λi∂λj
g

(2)
χλλλ term. The terms which are degenerate in the

middle state gives, after relabelling∑
{X,Y |X 6=Y }

∫
d3k1

(2π)3 e
i~k1·~xe

−E
X,~k1

x4

[
x4

E
Y,~k1
− E

X,~k1

(
g

(4)

χJiJjχ†

[
X,~k1;X,~k1;Y,~k1

]
+ g

(4)

χJiJjχ†

[
Y,~k1;X,~k1;X,~k1

])
+

1(
E
Y,~k1
− E

X,~k1

)2

(
g

(4)

χJiJjχ†

[
X,~k1;X,~k1;Y,~k1

]
+ g

(4)

χJiJjχ†

[
Y,~k1;X,~k1;X,~k1

])

− 1(
E
Y,~k1
− E

X,~k1

)2

(
g

(4)

χJiJjχ†

[
Y,~k1;Y,~k1;X,~k1

]
+ g

(4)

χJiJjχ†

[
X,~k1;Y,~k1;Y,~k1

]) .
(4.76)

The final term then is the one where the ingoing and outgoing states are degenerate, which after
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relabelling yields∑
{X,Y |X 6=Y }

∫
d3k1

(2π)3 e
i~k1·~xe

−E
X,~k1

x4

 1(
E
Y,~k1
− E

X,~k1

)2

(
g

(4)

χJiJjχ†

[
Y,~k1;X,~k1;Y,~k1

]
− g(4)

χJiJjχ†

[
X,~k1;Y,~k1;X,~k1

])

− x4

E
Y,~k1
− E

X,~k1

g
(4)

χJiJjχ†

[
X,~k1;Y,~k1;X,~k1

]]
.

(4.77)
There are also the terms with (i↔ j), but we now have all the terms to determine the secondorder energy and vacuum overlap shift. By adding all these expression together and subtractingthe known parts (4.46), (4.47) from (4.58) we get relations

∂2

∂λi∂λj
g

(2)
χλλλ [X, ~p] =

∑
Y,Z

1

EY,~0EZ,~0


g

(4)

χχ†JiJj

[
X, ~p;Y,~0;Z,~0

]
+ g

(4)

JiJjχχ†

[
Y,~0;Z,~0;X, ~p

]
+ g

(4)

Jiχχ†Jj

[
Y,~0;X, ~p;Z,~0

]


+
∑

{Y,Z|X 6=Y }

1

EZ,~0
(
EY,~p − EX,~p

)


g
(4)

χJiχ†Jj

[
X, ~p;Y, ~p;Z,~0

]
+ g

(4)

χJiχ†Jj

[
Y, ~p;X, ~p;Z,~0

]
+ g

(4)

JjχJiχ†

[
Z,~0;X, ~p;Y, ~p

]
+ g

(4)

JjχJiχ†

[
Z,~0;Y, ~p;X, ~p

]



+
∑

{Y |X 6=Y }

1(
EY,~p − EX,~p

)2


g
(4)

χJiJjχ†
[X, ~p;X, ~p;Y, ~p]

+ g
(4)

χJiJjχ†
[Y, ~p;X, ~p;X, ~p]

− g(4)

χJiJjχ†
[Y, ~p;Y, ~p;X, ~p]

− g(4)

χJiJjχ†
[X, ~p;Y, ~p;Y, ~p]


+

∑
{X,Y |X 6=Y }

1(
EY,~p − EX,~p

)2
 g

(4)

χJiJjχ†
[Y, ~p;X, ~p;Y, ~p]

− g(4)

χJiJjχ†
[X, ~p;Y, ~p;X, ~p]


+

∑
{Y,Z|X 6=Y,Y 6=Z,Z 6=X}

1(
EY,~p − EX,~p

)(
EZ,~p − EX,~p

)
 g

(4)

χJiJjχ†
[Y, ~p;X, ~p;Z, ~p]

− g(4)

χJiJjχ†
[Z, ~p;Y, ~p;X, ~p]


+

∑
{Y,Z|X 6=Y,Y 6=Z,Z 6=X}

1

EZ,~p − EY,~p
1

EY,~p − EX,~p
g

(4)

χJiJjχ†
[X, ~p;Y, ~p;Z, ~p]

−
∑

{Y,Z|X 6=Y,Y 6=Z,Z 6=X}

1

EZ,~p − EY,~p
1

EZ,~p − EX,~p
g

(4)

χJiJjχ†
[X, ~p;Y, ~p;Z, ~p]

+(i↔ j) (4.78)
and

∂2EX,~p
∂λi∂λj

=
∑
Y 6=X

〈X, ~p|Ji(0)|Y, ~p〉λλλ〈Y, ~p|Jj(0)|X, ~p〉λλλ + (i↔ j)

EX,~pEY,~p
(
EX,~p − EY,~p

) (4.79)
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pp

Ji Jj
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Figure 4.3: The two diagrams corresponding to the second order FHT without momen-tum transfer, that one can calculate from the second order energy shift
which at λλλ = ~0 gives

∂2EX,~p
∂λi∂λj

∣∣∣∣
λλλ=~0

=
∑
Y 6=X

〈X, ~p|Ji(0)|Y, ~p〉0〈Y, ~p|Jj(0)|X, ~p〉0 + (i↔ j)

EX,~pEY,~p
(
EX,~p − EY,~p

) (4.80)
This relates the second order shift to the sum of transition amplitudes, or diagrams that look likeFigure 4.3, which as in perturbation theory the denominator forces the lowest energy state tohave negative second order energy shift.We can also state this in convenient formwhenworkingwith only one current inserted twice

∂2EX,~p

∂λi
2

∣∣∣∣
λλλ=~0

= 2
∑
Y 6=X

〈X, ~p|Ji(0)|Y, ~p〉0〈Y, ~p|Ji(0)|X, ~p〉0
EX,~pEY,~p

(
EX,~p − EY,~p

) (4.81)
This relation allows us to verify the second order FHT on the lattice. It doesn’t however allow usto calculate the Thomson term of the Compton amplitude as it has some intricacies in order oflimits p · q → 0 and Q2 → 0 as discussed at length in §8.
4.2.3 Second Order in Partial Hilbert Space

By limiting ourselves to no momentum transfer, the lack of state mixing allowed us to easily
compare terms that are x4–enhanced, separating ∂

∂λi
g

(2)
χλλλ

∂EX,~p
∂λj

+ ∂
∂λj

g
(2)
χλλλ

∂EX,~p
∂λi

terms from our
signal term ∂2EX,~p

∂λi∂λj
. Now in theory this should still be possible with momentum transfer, however

the state mixing means that our technique of subtracting the known terms to get the secondorder energy shift via identifying shifts of specific states, requires us to diagonalise our systemafter the mixing at the interpolator vacuum overlap level, rather than just the energy level.This small change has a far larger effect than is first apparent, the new eigenvectors of thatsystem involve all momenta ~p ± n~qi for all n ∈ Z, rather than just one other state. For morediscussion on this problem see §4.3.1.There is another way around this however, by restricting ourselves to cases where ∂EX,~p
∂λi

= 0,we do not need to separate time enhanced terms in our matrix elements, instead we can equatethose with the second order energy shift directly.We take the modified action with momentum transfer like (4.50), but with uniform momen-tum transfer
S(λλλ) = S(0) + λi

∫
d4x
(
ei~q·~x + e−i~q·~x

)
Ji(x). (4.82)

and start by matching the remaining terms of (4.58) to
∂2G

(2)
χλλλ

∂λi∂λj
(x4, ~p) =

∑
X

[
∂2

∂λi∂λj
g

(2)
χλλλ [X, ~p] − x4

∂2EX,~p
∂λi∂λj

g
(2)
χλλλ [X, ~p]

]
e−EX,~p(λλλ)x4 . (4.83)
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As we see we only have one term that is time enhanced, this means that after identifying termswith this enhancement, only mixing in energy shifts can occur. We will see however that in ourcase this does not occur, as our momentum transfer is uniform. We take the same equation asthe momentum–transfer free case (4.57) and as before focus only on the middle term of (4.60),which we can divide into explicit time orderings (4.61). The only part that has time–enhancementparts that remains under the condition that ∂EX,~p∂λi
= 0 can be written∫ x4

0
dy4

∫ x4

0
dz4

∫
d3y

∫
d3z
(
ei~q·~y + e−i~q·~y

)(
ei~q·~z + e−i~q·~z

)〈
χ(x)T {Ji(y)Jj(z)}χ†(0)

〉
λλλ(4.84)with both orderings of the current in one integral. We then perform the same steps as we did forno momentum transfer and insert a complete set of states, but not in between the current∑

X,Z

∫
d3k1

(2π)3

∫
d3k3

(2π)3

∫ x4

0
dy4

∫ x4

0
dz4

∫
d3y

∫
d3z
(
ei~q·~y + e−i~q·~y

)(
ei~q·~z + e−i~q·~z

)
× g(4,ph)

χJiJjχ†

[
X,~k1;Z,~k3;x, y, z, 0

] (4.85)

before pulling out explicit space–time dependence for ingoing and outgoing states∑
X,Z

∫
d3k1

(2π)3

∫
d3k3

(2π)3

∫ x4

0
dy4

∫ x4

0
dz4

∫
d3y

∫
d3z
(
ei~q·~y + e−i~q·~y

)(
ei~q·~z + e−i~q·~z

)
× eik1·xei(k3−k1)·zg

(4,ph)

χJiJjχ†

[
X,~k1;Z,~k3; 0, y − z, 0, 0

] (4.86)

with k1 =
(
~k1, iEX,~k1

) and similar for k3. We now wish to perform one of the integrals, by
changing system of coordinates to separate the integral inside the matrix element to the oneoutside. One of the coordinate transformations to do this is

Y = y − z (4.87)
Z = y + z (4.88)

which we can use to rewrite our expression as∑
X,Z

∫
d3k1

(2π)3

∫
d3k3

(2π)3

∫ x4

0
dy4

∫ x4

0
dz4

1

23

∫
d3Y

∫
d3Z

[(
ei~q·

~Y + e−i~q·
~Y
)

+
(
ei~q·

~Z + e−i~q·
~Z
)]

× eik1·xei(k3−k1)·(Z−Y )/2g
(4,ph)

χJiJjχ†

[
X,~k1;Z,~k3; 0, Y, 0, 0

]
(4.89)

wherewe haven’t yet rewritten the temporal integrals in the new coordinate system.We can nowhowever perform the ~Z spatial integral and look for time–enhancement. If we restrict ourselvesto the case where |~p| 6= |~p± 2~q| then the ~Z part of the momentum transfer will not give any
time–enhancement and hence we get∑

X,Z

∫
d3k1

(2π)3

∫ x4

0
dy4

∫ x4

0
dz4

∫
d3Y

(
ei~q·

~Y + e−i~q·
~Y
)

× eik1·xe−
(
E
Z,~k1
−E

X,~k1

)
(Z4−Y4)/2

g
(4,ph)

χJiJjχ†

[
X,~k1;Z,~k1; 0, Y, 0, 0

] (4.90)

which clearly only has no time–enhancement for non–degenerate energy E
Z,~k1
6= E

X,~k1
or withour assumptions X 6= Z which reduces us to∑

X

∫
d3k1

(2π)3

∫ x4

0
dy4

∫ x4

0
dz4

∫
d3Y

(
ei~q·

~Y + e−i~q·
~Y
)
eik1·xg

(4,ph)

χJiJjχ†

[
X,~k1;X,~k1; 0, Y, 0, 0

]
.

(4.91)
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This leaves only the temporal integral which becomes∫ x4

0
dy4

∫ x4

0
dz4 =

1

2

∫ 0

−x4
dY4

∫ 2x4+Y4

−Y4
dZ4 +

∫ x4

0
dY4

∫ 2x4−Y4

Y4

dZ4. (4.92)
Our expression inside the integral is independent of Z4 so we can freely perform that integral∫ x4

0
dy4

∫ x4

0
dz4 =

∫ x4

−x4
dY4x4 − |Y4| . (4.93)

giving us∑
X

∫
d3k1

(2π)3

∫ x4

−x4
dY4(x4 − |Y4|)

∫
d3Y

(
ei~q·

~Y + e−i~q·
~Y
)
eik1·xg

(4,ph)

χJiJjχ†

[
X,~k1;X,~k1; 0, Y, 0, 0

]
.

(4.94)The variable |Y4| is the current separation, which in small current separation expansions becomesnegligible. Performing momentum projection and equating with (4.83) we then get
∂2EX,~p
∂λi∂λj

= −

〈
X, ~p

∣∣∣∫ x4−x4 dY4

∫
d3Y

(
ei~q·

~Y + e−i~q·
~Y
)
T {Ji(Y )Jj(0)}

∣∣∣X, ~p〉
λλλ

2EX,~p
. (4.95)

Due to the exponential suppression on currents outside the range |Y4| ∈ [0, x4], we can rewritethe integral
∂2EX,~p
∂λi∂λj

= −

〈
X, ~p

∣∣∣∫ d4Y
(
ei~q·

~Y + e−i~q·
~Y
)
T {Ji(Y )Jj(0)}

∣∣∣X, ~p〉
λλλ

2EX,~p
(4.96)

which finally gives us the partial Hilbert space FHT
∂2EX,~p
∂λi∂λj

∣∣∣∣
λλλ=~0

= −
〈
X, ~p

∣∣∫ d4y
(
ei~q·~y + e−i~q·~y

)
T {Ji(y)Jj(0)}

∣∣X, ~p〉
0

2EX,~p
(4.97)

We now have a form of equation that looks like the Compton amplitude, the sum of four diagramsat once Figure 4.4, which we use in §7 and §8.
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Figure 4.4: The four diagrams corresponding to the second order FHT with momentumtransfer, that one can calculate the sum or difference thereof with ‘cosine’ and ‘sin’overall momentum transfer combinations
4.3 State Mixing

So far we have only considered one case where states are non–degenerate, or degenerate only inpairs of momenta. We showed the prescription for a simple energy degeneracy (4.53), and (4.54),that diagonalises the system with respect to energy shifts. Other degeneracies could occur, forinstance between unpolarised and polarised states, in this case though as the spin operator com-mutes with the modified Lagrangian and hence it is possible to resolve the degeneracy with addi-tional operators. While it is very easy to avoid the same energy degeneracies in the second ordercase, with two different ~qi it is very easy to arrive at cases where this can become problematic.This problem of differing momentum transfers ~qi could allow one to generalise the extraction ofthe Compton amplitude (§7) to GPDs. To form a complete derivation of §4.2.2, with momentumtransfer, one would need to account for state mixing at the overlap level.
4.3.1 Diagonalising Mixed Momentum States

In the off–forward FHT, we diagonalised energy degeneracies by redefining the states of interestin a closed form (4.53). Such a procedure could be generalised to more complicated degeneracies,like those that can occur between four states at ~p · ~q/Q2 = 2. However the mixing that occursin the correlator is more problematic, a state ~p mixes to first order in λ with ~p + ~q and ~p − ~q,regardless of energy. To illustrate the severity of the problem consider a system with degenerate
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eigenvalues λ perturbed, represented by the N ×N matrix

λ δ 0 δ

δ λ δ

0 δ λ
. . .. . . . . . δ

δ δ λ


. (4.98)

This is a symmetric circulant matrix which has eigenvectors and eignevalues
e′j =

1√
N

(
1, Rj , R

2
j , · · · , RN−1

j

) (4.99)
λ′j = λ+ δ

(
Rj +RN−1

j

) (4.100)
where Rj is an N th root of unity

Rj = e2πi j
N . (4.101)

We note that the eigenvalues are all real in such a perturbation and have a simple form, howeverthe eigenvectors of the mixed states all depend on every other eigenvector. In fact if we take thisto second order having twomore diagonals non–zero, themixing in this system, the eigenvectors,do not change at all. In the case where the diagonals are no longer constant, as is the case for oursystem, these expressions would get even more complicated. Nonetheless the problem remainsthat our matrix splits into equivalence classes ~p+ n~q for n ∈ Z, where the eigenvectors mix withevery other state in their equivalence class, in a similar fashion to (4.98).On a finite lattice this problem could possibly be circumvented by working with very large
~q, which would reduce the size of each equivalence class to a manageable level. As the focusof the work is just on the energy shifts, we do not explore further. However there are manypossible interesting finds with the shift in the overlap of the operators, which with correlatormatrix techniques [146, 147, 149, 150], or AMIAS [148] could lead to some novel results.

4.4 For Minkowski Space

To perform calculations directly comparable to experimental results, in addition to discretisationartefacts, an extrapolation back to physical quantities must bemanaged. The FHT has one uniquestrong advantage over three and four–point methods, we are calculating energy eigenstates ofthe Hamiltonian, which you can extrapolate to physical mass and continuum limit before calculat-ing the derivatives using a Taylor expansion and relating those to matrix elements in Minkowskispace. The subtlety here is the discretisation and Euclidianisation that are responsible for time–
enhancement have no continuum counterparts, but this only excludes some continuum diagrams,and the one calculable on the lattice can still be extrapolated to the continuum. The only reasonthe lattice derivation of the FHT is useful is to understand how one should go about fitting it, andto understand the excited state and time evolution of the correlators. This means that one couldin theory only derive the relationship between energy shift and matrix elements in a continuumfashion.There is a subtlety here, the extrapolation to the physical continuum has to be done at con-stant λ in physical units. As one varies a, as required for a continuum extrapolation the requiredlattice λ varies. However as we shall see smaller λ correlator are easily interpolated.To calculate the FHT for Minkowski space, it is useful to think of determining renormalisa-tion diagrams from dressed and undressed propagators with respect to the new term in the La-grangian. We introduce extra terms into the Lagrangian, whose correction at some order, are theones we are interested in. By expanding the renormalisation of a propagator we are interested
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in interms of the coupling constant, and by calculating our renormalised propagator at differentcoupling constants we can infer those diagrams. To formalise this, consider a modification ofLagrangian
LQCD(x)→ LQCD(x)− λO(x) (4.102)

and look at our dressed propagator S, in terms of unperturbed propagator S0 of some particle
N . We can write the new propagator in terms of the old one, in terms of one particle irreducible
Σ as

S = S0 + S0ΣS (4.103)
or alternatively in terms of momentum p and unperturbed massm0, as a geometric sum

S =
iZ

/p+m0 + Σ
(
/p
) . (4.104)

We can then expand Σ in terms of λ to find the terms of interest, the linear terms giving us singleoperator insertions of O, and the quadratic giving∑N ′ 6=N OSN ′O. As one can see, these formsare much more easy to work with and vast literature is available for performing these sorts ofcalculations. This is an intriguing avenue to explore for future FHT calculations, as continuumextrapolation of energy eigenstates are well understood.

4.5 Summary

We have presented the FHT for QM and a form for use with lattice QCD. For the first time wepresented a derivation of the second order FHT, including momentum transfer for path integrals.The continuum extrapolation prior to FHT calculations is particularly intriguing but is left forfuture studies.We follow the FHT proofs with a guide on putting the FHT into practice, including methodsof reducing statistical and systematics uncertainty, reducing simulation cost with a full methodexample in §5. This theory is then used in §6, §7 and §8.



Chapter 5

Lattice Implementation of the
Feynman–Hellmann Theorem

The FHT in literature has so far been limited to first order local vector and axial–vector currents,which limits the available matrix elements. In the previous chapter the FHT was extended tosecond order §4.2.3, giving access to new types of matrix elements. By extending the rangeof operators available, the phenomina available to study using the FHT can be extended evenfurther.In this chapter we lead through concepts by use of a demonstrated example, that of quarkcounting in §5.1. From this lense we look at the lattice implementation of different operators§5.2, including both connected and disconnected contractions. Flavour decomposition and theirrelationship to physical counterparts are shown in §5.3. Correlator ratios are then constructedto reduce errors in extraction of lattice energy shifts in §5.4. By utilising unperturbed solutionsand optimising λ size, inversion times are optimised in §5.5. Finally we look at the extracting theenergy derivatives from discrete λ in §5.6 before summarising first the lattice FHT method §5.7and then the chapter §5.8.

5.1 Example Setup: Quark Counting

To help us demonstrate all the intraquacies of the FHT, we will work upon realising an examplecalculationg; that of quark counting. The Euclidean space Dirac vector form factors for a spin halfparticle as defined in §C.1.4, are〈
X, ~p ′

∣∣∣V f
µ (0)

∣∣∣X, ~p〉 = u
(
p′
) [
γµF

f
1

(
Q2
)

+
σµαqα

2m
F f2
(
Q2
)]
u(p) (5.1)

where unlike Minkowski space Q2 := q2 for spacelike q2. If we restrict ourselves to the temporalvector current in the forward case, we can use the Gordon identity §C.4 to reduce this to〈
X, ~p

∣∣∣V f
4 (0)

∣∣∣X, ~p〉 = u(p)γ4F
f
1 (0)u(p) = 2EX,~pF

f
1 (0). (5.2)

If we modify our action by
S(λ) = S(0) + λ

∫
d4xV f

4 (n) (5.3)
the FHT of form (4.49) then tells us that for nucleon state N

∂EN,~0
∂λ

= F f1 (0). (5.4)
Our example is only based on the simplest FHT we have but all our techniques hold for the otherforms (4.55), (4.80) and (4.97), up to their respective caveats discussed in their sections.

65



66 CHAPTER 5. LATTICE IMPLEMENTATION OF THE FEYNMAN–HELLMANN THEOREM

γ4

Figure 5.1: The diagram for the temporal photon vertex, used for quark counting
Charge conservation tells us that F f1 (0) is the total charge of flavour f , which is expected fora diagram of form Figure 5.1. Taking the same lattice as for our previous example (§3.6.1, §3.6.2),our β = 5.5, SU(3)flavour symmetric, 323 × 64 ensemble described in Table E.2, we only need a

lattice implementation of V f
4 (x) and choice of sufficiently many λ.

5.2 Lattice Operators

With this example in mind we discuss how to implement currents on the lattice. The simplestexample is the connected local quark bilinear, whichwe discuss before showing other possibiities,both connected and disconnected.
5.2.1 Connected Local

The connected local current is the most common action shift used [112, 157–169, 184, 186],which include sigma, vector and axial–vector matrix elements. Recall that the wewrite our actionas a quark bilinear
SF [Uµ, q, q] = a4

∑
n,m∈Λ

q(n)αaD(n,m)αβab q(m)βb (3.30)
and then invert D to obtain quark propagators to use in contractions. As a consequence if wemodify the Dirac matrix prior to inversion, we can add an extra quark bilinear term to the con-nected part of the action. Specifically this modification in terms of the action is of the form

S → S + λi
∑
n

ei~qi·~nq(n)Γq(n) (5.5)
This modification is equivalent to modifying the diagonal of D to include an additional ei~qi·~nΓterm, where Γ is any element of the Clifford Algebra §C.1.2. For our purposes we focus on thevector and axial–vector currents

V loc
µ (n) := q(n)γµq(n) (5.6)
Alocµ (n) := q(n)γµγ5q(n). (5.7)

with possible extra factors of i to keep the term Hermitian.As the quark propagator is modified using this method, we are free to mix perturbed andunperturbed quark propagators in contraction. In the case of a meson this means that we canmodify one or both connected quarks. In the case of baryons, we treat the quarks as eithersingly or doubly represented and can modify combinations of both of these. Either way as aconsequence we can form four differnet current flavour decompositions discussed later in §5.3.
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(a) Quark line connected diagram (b) Quark line disconnected diagram
Figure 5.2: The two possible cases for the FHT, (a) the connected contribution, wherethe current hits a valence quark and (b) the disconnected contribution, where the cur-rent hits a sea quark, only connected to the propagator via gluon lines.

As Grassmanian integration has already been performed on the gluonic degrees of freedom, wewill only get the connected contributions for these matrix elements (Figure 5.2a).This modification looks like an effective shift in the quark mass; the diagonal component ofthe Dirac matrix (3.31) contains the quark mass term, (5.5) also modifies the diagonal. Indeed for
Γ = 1, the first order energy shift, the so called sigma terms is the shift in hadron mass due toshift in quark mass. For Γ 6= 1 this terms does not directly shift the quark mass but still causes thematrix to become more singular, a similar problem to the more singular matricies at near physicalquarkmasses. As thematrix becomesmore singular the larger λ is, this introduces a natural upperbound on λ. As we shall observe later §5.5, there is no actual advantage to large λ, so in practicewe seek values well below this limit. This holds true as quark masses tend towards the physicalpoint, where the window between κ and κc reduces.Unlike it’s continuum counterpart, due to discretisation the local current is not conserved onthe lattice. However as the FHT gives usmatrix elements of their n–point correlatormethod coun-terparts, the same renormalisation on matrix elements as described in §3.4 can be used. This re-quires us a multiplicative renormalisation factor ZV , such that ZV V loc

µ (n) gives the renormalisedmatrix element at some fixed scal. Similar multiplicative renormalisation ZA can be calculated forthe axial current.Coming back to our example, it is clear that we can then use V loc
4 as our lattice operator, aslong as we also calculate ZV for our lattice.

5.2.2 Connected Conserved

It is also possibly to implement the conserved vector current with minimal additional implemen-tation. Recall the Wilson fermion action
LW [q, q] (n) = q(n)

(
1
2a

∑
µ [(r − γµ)Uµ(n)q(n+ µ̂) + (r + γµ)U−µ(n)q(n− µ̂)] +

(
m+ 4r

a

)
q(n)

) (3.41)
it has a conserved current [124, 194, 195]

V con
µ (n) :=

1

2
[q(n+ µ̂)(r + γµ)U−µ(n+ µ̂)q(n)− q(n)(r − γµ)Uµ(n)q(n+ µ̂)] . (5.8)

We are interested in transforming the Gauge Links
Uν → Uνe

iλνf(n) (5.9)
for some fixed ν, real constant λν and a real function f(n).We first rewrite the interacting fermionaction, with some translation in elements of the sum

SIF [q, q] = a4
∑
n

∑
µ

[q(n+ µ̂)(r + γµ)U−µ(n, λν) + q(n)(r − γν)Uµ(n, λν)q(n+ µ̂)] (5.10)
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where the first derivative in the action then becomes
∂SF
∂iλν

= a4
∑
n

1

2

[
q(n+ ν̂)(r + γν)(−f(n))U−µ(n) + q(n)(r − γν)Uµ(n)(f(x))q(n+ µ̂) +O(λ)

]
= a4

∑
n

[
− f(n)V con

ν +O(λ)
]

(5.11)
where we have absorved the λ dependence ofUµ intoO(λ). Clearly this implies the second orderderivative of this action is not zero, unlike all our other FHT cases
−∂

2SF
∂λ2

ν

= a4
∑
n

1

2

[
q(n+ ν̂)(r + γν)(f(n))2U−µ(n) + q(n)(r − γν)Uµ(n)(f(n))2q(n+ µ̂) +O(λ)

]
(5.12)which is fermion action except with an additional f2(n) factor

a4
∑
n

f2q(n)Dνγνq(n). (5.13)
Now the second order derivative of the action term in the FHT requires time–enhancement justlike the first order terms to modify the energy shifts. The matrix elements corresponding to thesecond order energy shift include a second order action shift matrix element, the first elementof (4.57). Notice that (5.13) gives FHT current

J(n) = f2(n)q(n)Dνγνq(n) (5.14)
and the matrix element it is inserted to has just one instance of this current despite being ofsecond order in λ. This means the derivation of the relationship between this matrix elementand the energy shift is the same as the linear FHT, except the matching to second order energyshift

∂2EX,~p
∂λ2

∣∣∣∣
λ=0

=
1

2EX,~p
〈X, ~p|J(0)|X, ~p〉0 +

(
Regular ∂SF

∂iλν
Term

)
(5.15)

or
∂2EX+

~q
,~p

∂λ2

∣∣∣∣∣∣
λ=0

=
1

2EX+
~q
,~p

〈
X+
~q , ~p

∣∣∣J(0)
∣∣∣X+

~q , ~p
〉

0
+

(
Regular ∂SF

∂iλν
Term

)
(5.16)

depending on momentum transfer.This means the form of the matrix elements is determined by Breit frame conditions imposedon f2. Take the case where f(n) = cos ~q · ~n this is f2(n) = 1
2(1 + cos 2~q · ~n). The first term isa forward matrix element for any choice of ~q and the latter obeys Breit frame kinematics at

~p = ~p± 2~q, which can be expressed as ∣∣∣∣2p · qQ2

∣∣∣∣ = 2. (5.17)
This means this additional term is dependent on ~p only up to energy normalisation 2EX,~p andcompletely independent of ~q outside of (5.17).To implement this conserved current on the lattice, we introduce a U(1) phase term to theguage links after smearing. Ideally this step would be performed before smearing but the Chromasoftware library [196] has many optimisations which this step would break, requiring extensivesoftware developement. Another possible method would be to directly add the (3.31) equivalentof (5.11) to the non–diagonal parts of the Dirac matrix prior to inversion.In either case we are calculating modified quark propagators like the local current §5.2.1and the same contraction behaviours apply. We shall use V con

4 as the second vector currentimplementation for our example.
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Disconnected Quarks

The calculations of self–contracted fermion lines has many challenges on the lattice. The prob-lem in their calculation with established three–point function techniques on the lattice, naïvelyrequires the calculation of all–to–all propgataors. Recently there has been significant progress instochastic estimation of such propgators [197–201] and [185] presented another complemen-tary method which we summarise now.In §5.2.1, we saw that a simple modification prior inversion due to our importance sampling(3.37) will only give the connected contribution to the energy shift. To generate the disconnected
contributions with a FHTmethodwe requiremodification of the configurationweighting ρ(U (i)

µ

)
in the configuration generation. Lattices generated with an additional γ5–Hermitian term in theDirac matrix, yield the missing disconnected matrix elements. On these modified lattices onecan also apply the modification for the connected local current to extract both connected anddisconnected contribution at the same time. Such a modification has been used to give a betterunderstanding of problems where the disconnected contribution is non–negligible [185] , in thiscase the proton spin problem §9.1.1. Note that for such problems the lattice spacing a is depedenton λ and quadratic at lowest order in λ in our case, see [193] for further details.This technique has one major disadvantage, every single new discrete modification λ is ac-companied by the generation of entirely new lattice ensembles. As lattices grow in volume, thework required to invertD becomes a larger contribution to the overall cost of computation. Thatis a larger part of the combination of generating general purpose lattice configurations and thecombined computation performed on them. Despite this the disconnected calculation are stillexpensive enough to be limited by the need to generate single purpose lattice ensembles.
5.2.3 Future Operators

All the operators we have discussed do not break low–level Chroma software library [196] opti-misations, which is why our local operators only modify the diagonal of the Dirac matrix §5.2.1.Such an addition for the local current already breaks even–odd preconditioning optimisations,which translates to slower inverters. The conserved current converted can use all existing invert-ers and such can use better inverters, such as domain decomposition [202].By removing the constraint onmodifying only the diagonal for local operators, more operatorscan be used for the FHT beyond those of the Clifford algebra. One such example would be adirect implementation of the conserved current, without including a shift beyond first order inthe action. In fact this would allow any arbitrary quark billinears to be included into the Diracmatrix, such as the operators for quasi–distributions [203] and Ioffe time distributions [204], thelatter of which already uses a different FHT approach for it’s matrix elements [188].

5.3 Flavour Decomposition

In adding quark bilinears to the action prior to inversion in §5.2.1 and §5.2.2, we generate modi-fied quark propagators, whichwe use to build up compositeQCDobjects.We are free to combineboth modified and unmodified quark propagators to isolate flavour contribution to our matrix el-ements. We shall ignore the s flavour terms in our simulation as they are not present in our con-nected operator calculations but are straightforward to reinclude once disconnected quantitiesare studied.Using two different λ we can construct any combination of flavour in hadron currents λ1u+
λ2d. For technical reasons we shall go into later we always calculate λ and−λ pairs for our quarkand so without requiring extra inversion we can always form the u, d, u− d and u+ d flavouredcurrents. For the linear case, their flavour decomposition is trivial, with only two independentquantities u and d shown diagramatically in Figure 5.3.
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(a) (b) (c)
Figure 5.3: The three ways of inserting one current on a baryon with a doubly repre-sented quark (plain) and a singly represented quark (dashed)

(a) (b) (c)

(d) (e) (f)
Figure 5.4: The sixways of inserting two currents on a baryonwith a doubly representedquark (plain) and a singly represented quark (dashed)

At second order, there are two current insertions, so either one or two quark lines are hit withthe current. Consider the information available from two simulation; one with just u currentsFigure 5.4 (a)–(c) and the other with just d currents Figure 5.4d. This would miss an importantclass of insertions, those hitting two different flavoured currents Figure 5.4 (e)–(f). We shall labelcontributions by their quark flavour content, uu, dd and ud, which we shall use throughout thiswork and is summarised in Table 5.1. The normalisation ion the ud component is fixed such thattwo (u+ d) currents are split as uu+ dd+ ud.Getting back to our quark counting example, we are dealing with the simpler linear energyshift, so only need to take u and d flavoured currents. The extra u − d and u + d contractionavailable without extra inversions are not statistically independent of u and d, so are not used.This means we can construct V u
4 and V d

4 giving us access to F u1 (0) and F d1 (0) respectively.
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Insertions Flavour Combination Diagrams

Single u Figure 5.3 (a)–(b)
d Figure 5.3 (c)

Double uu Figure 5.4 (a)–(c)
dd Figure 5.4 (d)
ud Figure 5.4 (e)–(f)

Table 5.1: The contributing diagrams to our defined flavour combinations, which can beextended in the obvious manner to include disconnected terms as well.
5.4 Ratios

We now outline our method of extracting energy shifts from correlators modified as describedabove. The basic principle between a calculation is to shift the action at some finite discretenumber of λλλ(1),λλλ(2), · · · , calculating the correlator at each λλλ, before fitting effective masses oftwo–point correlation functions as in §3.6. The energy extracted then follow a Taylor expansion
EX,~p(λλλ) = EX,~p(0) +

∑
i

λi
∂EX,~p
∂λi

∣∣∣∣
λλλ=~0

+
∑
i

λi
2

2!

∂2EX,~p

∂λi
2

∣∣∣∣
λλλ=~0

+
∑
i

∑
j<i

∂2EX,~p
∂λi∂λj

∣∣∣∣
λλλ=0

+O
(
λ3
)
.

(5.18)By fitting to this expansion for our calculated two–point correlators at differing λλλ we can thenextract the derivatives in energy, which we then relate to matrix elements via FHT. There arehowever some optimisations that can be performed on the simulation.It is easiest to observe this improvement through our quark counting example. To extractmodified hadron correlators we require definite or turned λ. Tuning λ however requires knowl-edge of the correct ratios to verify systematics, so we are left with a chicken and egg problem. Asit will turn out in §5.5 the range of λ that gives the correct result is quite large 10−6 < |λ| < 10−1,so we shall use λ ∈ {±10−4,±10−5
} for our exploration.The local vector current V loc

4 modified only for the u quark propagator inside a hadron isour example. With four λ and one unperturbed λ = 0, there are 5 different nucleon correlators
G

(2)
χλ . The naïve expectation is that these correlators can be fit like a normal nucleon correlator, eg.§3.6.2 by using the effectivemasses to determine fitting range. The correlators and their effectivemasses are shown in Figure 5.5, with the modified correlator fit ranges chosen in the same wayas the unmodified (see §3.6.2 for details). It is clear that the perturbations in energy caused bythis modified action are not visible to the eye, however the correlators are highly correlated witheach other, possessing the same lattice source sites. Using this high correlation we can extract afit in λ, which gives a proton mass of

mp(λ) = 0.923(19) + 2.31(18)λ. (5.19)
The coeficient infront of λ is our first order energy shift using the FHT.The first major optimisation one can perform is at this Taylor expansion fit step. By taking theratios of modified and unmodified correlator

G
(2)
χλ

G
(2)
χ

(x4, ~p)→
g

(2)
χλ [X, ~p]

g
(2)
χ [X, ~p]

e−(EX,~p(λ)−EX,~p)x4 ∝ e−∆EX,~p(λ)x4 . (5.20)
the constant in λ mass term, the first term of (5.18) from our fit is removed. This ratio is stillincludes O(λ2

) terms in general, so we can go even further than this by taking the ratio of twomodified correlators
G

(2)
χ(+λ)

G
(2)
χ(−λ)

(x4, ~p)→
g

(2)
χλ [X, ~p]

g
(2)
χ(−λ) [X, ~p]

e−(EX,~p(λ)−EX,~p(−λ))x4 ∝ e−EoX,~p(λ)x4 (5.21)
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Figure 5.5: Themodified and unmodified correlator comparison, the unmodified correla-tor (blue) is also shownwith correlator fit. The points have been offset slightly for clarity.The inverters for the unperturbed correlator use even–odd preconditioning, while themodified correlators do not.

which only includes terms odd in λ, making the next–most significant precent term O(λ3
). Weshall leave the systematic control of presence of such terms to §5.5.Focusing on this ratio for our example we are left with fewer correlator ratios than thereare modified correlators, see in Figure 5.6 that the both the different λ correlators have distinctsignals and their effective mass Figure 5.6b, has two different distinct values.The correlators are then fit by looking for constant effective mass behaviour, except with thecorrelator fit artificially later, the fit suggest starting at time–slice x4/a = 2. This early plateaux isdue to the excited states having the same value as the lowest order state, nevertheless prior firstorder FHT fits are earlier than their unmodified counterparts [184]. In later chapters we shallalso calculate second order energy shifts using even ratios, which tend to plateaux later thantheir unmodified correlator counterpart.The one parameter fit of the odd λ dependence of the mass with respect to λ then is

modd(λ) = 2.330(26)λ. (5.22)
The precision of this fit is amagnitude smaller thanwhen fitting each of the correlators separately,whose predominant contributions are from mass and momentum of the unperturbed groundstate. Note that the method without ratios does not even attain the same precision if the ratioguided fitting range is used, hence for all future results we shall exclusively use the relevant ratiosthat we now define formally.
5.4.1 Single Modification

We can write the Taylor expansion of a λ dependent energy in one variable to all orders as
EX,~p(λ) = EX,~p(0) + EeX,~p(λ) + EoX,~p(λ) (5.23)

where Ee denotes the even part of the energy with respect to λ and Eo the corresponding oddpart. Then one can construct ratios in the same manner as (5.20), to extract pure odd or evenenergy shifts
Roχλλλ(x4, ~p) :=

G
(2)
χ(+λ)

G
(2)
χ(−λ)

(x4, ~p)→ g
(o)
χλe
−2EoX,~p(λ)x4 (5.24)

Reχλλλ(x4, ~p) :=
G

(2)
χ(+λ)G

(2)
χ(−λ)(

G
(2)
χ

)2 (x4, ~p)→ g
(e)
χλe
−2EeX,~p(λ)x4 . (5.25)
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Figure 5.6: The correlator ratios for our quark couting example of both correlator (a)and effective mass Figure 5.6b.

Where we have defined
g

(o)
χλ :=

g
(2)
χλλλ [X, ~p]

g
(2)
χ(−λ) [X, ~p]

(5.26)

g
(e)
χλ :=

g
(2)
χλ [X, ~p] g

(2)
χ(−λ) [X, ~p]

g
(2)
χ [X, ~p]2

(5.27)
One can then simply fit these in exactly the same manner as a two–point correlation function,using effective masses to guide a fitting window, but the resultant Taylor expansions becomessimpler

EoX,~p(λ) = λ
∂EX,~p
∂λ

∣∣∣∣
λ=0

+O
(
λ3
) (5.28)

EeX,~p(λ) =
λ2

2!

∂2EX,~p
∂λ2

∣∣∣∣
λ=0

+O
(
λ4
)
. (5.29)

As our strategy is to perform a fit with the lowest possible λ, in almost all cases, fits of thepolynomial in λ are single parameter fits. As single parameter fits, with just with two different λmagnitudes for the ratios all higher order λ effects can demonstrated to be negligible.
5.4.2 Double Modification

The same principle can be extended to any number of different λλλ modifications, but the onlyother one of interest to us is two different action modifications λλλ = (λ1, λ2). We split the Taylorexpansion into five pieces
EX,~p(λλλ) = EX,~p(0) + EeeX,~p(λλλ) + EeoX,~p(λλλ) + EoeX,~p(λλλ) + EooX,~p(λλλ). (5.30)
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whereEoe represent the energy odd in λ1 and even in λ2, and similar forEee, Eeo, Eoo. To extractthese four ratios are formed
Rooχλλλ :=

G
(2)
χ(+λ1,+λ2)G

(2)
χ(−λ1,−λ2)

G
(2)
χ(+λ1,−λ2)G

(2)
χ(−λ1,+λ2)

→ g
(oo)
χλ e−4EooX,~p(λλλ)x4 (5.31)

Roeχλλλ :=
G

(2)
χ(+λ1,+λ2)G

(2)
χ(+λ1,−λ2)

G
(2)
χ(−λ1,−λ2)G

(2)
χ(−λ1,+λ2)

→ g
(oe)
χλ e

−4EoeX,~p(λλλ)x4 (5.32)

Reoχλλλ :=
G

(2)
χ(+λ1,+λ2)G

(2)
χ(−λ1,+λ2)

G
(2)
χ(−λ1,−λ2)G

(2)
χ(+λ1,−λ2)

→ g
(eo)
χλ e

−4EeoX,~p(λλλ)x4 (5.33)

Reeχλλλ :=
G

(2)
χ(+λ1,+λ2)G

(2)
χ(−λ1,−λ2)G

(2)
χ(+λ1,−λ2)G

(2)
χ(−λ1,+λ2)(

G
(2)
χ

)4 → g
(ee)
χλ e

−4EeeX,~p(λλλ)x4 (5.34)

which allow extraction of energy shifts
EooX,~p(λλλ) = λ1λ2

∂2EX,~p
∂λ1∂λ2

∣∣∣∣
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+O
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λ1λ
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)
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(
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) (5.35)
EoeX,~p(λλλ) = λ1

∂EX,~p
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) (5.36)
EeoX,~p(λλλ) = λ2
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∑
i

λ2
i

2!

∂EX,~p
∂λi

∣∣∣∣
λλλ=~0

+O
(
λ2

1λ
2
2

)
+O

(
λ4

1

)
+O

(
λ4

2

) (5.38)
If one where interested in only higher order interference terms, where the terms includes non–interference terms, one can remove them by combing the ratios with appropriate one λ ratios.
5.4.3 Imaginary Shifts

The ratios of §5.4.1, §5.4.2, can be easily modified for extracting imaginary shifts by taking thephase of the ratio
Arg

{
Roχλλλ

}
=→ Arg

{
g

(o)
χλ

}
− 2 Im

{
EoX,~p(λ)

}
x4 (5.39)

Arg
{
Reχλλλ

}
=→ Arg

{
g

(e)
χλ

}
− 2 Im

{
EeX,~p(λ)

}
x4 (5.40)
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}
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x4 (5.41)
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}
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x4 (5.43)

Arg
{
Reeχλλλ

}
=→ Arg

{
g

(ee)
χλ

}
− 4 Im

{
EeeX,~p(λλλ)

}
x4. (5.44)

Unlike the effective mass style ratios of the real shift counterparts, these ratios have a muchsimpler form to extract time depedence
Arg

{
Rχλλλ(x4)

}
−Arg

{
Rχλλλ(x4 + a)

}
∝ Im

{
EX,~p(λλλ)

} (5.45)
for large enough x4. As we use small λ any phase wrap around effects can be ignored, althoughnothing in theory is stopping their extraction with a slightly modified fit.
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5.5 Inversion Optimisation

The FHT requires the calculation of additional propagators, which can be expensives when usingmany different λ. To make our extrapolation of energy shifts to zero λ well defined, we restrictourselves to the smallest possible λλλ, which allows us to perform a simple but effective improve-ment to the inversion time. This optimisation works on any inversions of perturbed propagators,in our case local and conserved currents. By using the unperturbed quark propagator, the inver-sion of the unperturbed Dirac matrix, as the initial guess to the inversion of a perturbed one, onecan save substantially on inversion time. Additionally one can use combinations of prior guessesto get even better initial guess for the inversion by using a simple linear extrapolation. In all cases,as we care just determining the initial guess of the propagator solution, the resulting modifiedpropagator with or without guess is the same, hence any improvement in inversion time is a puregain. We now investigate the initial guess using our quark counting example.The expected effect of a perturbation in λ depends on the magnitude. Theoretically one ex-pect the entire perturbation to fail as λ tends to 1, as higher order energy shifts contribute moreand more, thus extraction of some low order energy shifts becomes infeasible. In practice a moredominant bound on λ is given by increasingly singular Dirac matrix as |λ| grows larger. If we lookat the local vector current modification (5.5), a term that looks like the quark mass in (3.31) isintroduced. This is an effective shift in the quark and anti–quark mass, so as the quark mass getslighter one can get hit κc singularities. Additionally at large λ, higher order effects than of interestmight become statistically significant. These give us both a hard and soft ceiling on λ.Smaller λ have their own problems, due to finite machine precision. The IEEE 754 doubleprecision float, most commonly implemented by hardware, has only approximately sixteen sig-nificant decimal digits. Thus for λ smaller than this, we expect no perturbation evident. Onemustalso be careful due, only part of the perturbation might ‘fall’ through the correlator shift, whichcould lead to erroneous results. However our ratios §5.4, allows us to look at systematics in ourperturbation by comparing multiple different λ. In the case where the perturbation ‘falls’ throughthe lattice we except to observe a rapid breakdown in leading order λ trend. In the case where λis too large, their trend will also diverge from the dominant λ trend as λ gets bigger.We now investigate different inversion guess strategies in a simple low statistics simulationto analyse the λ for the effects mentioned above. The calculation is performed on the β = 5.5
SU(3)flavour symmetric ensemble Table E.2, performed on a small subset of size Ncfg = 27. Theaction modification as the example was chosen to be a simple single flavour vector current

S(λ) = S(0) + λ

∫
d4x
(
ei~q·~x + e−i~q·~x

)
V d,loc

3 (5.46)
for q = (4, 1, 0), in lattice units corresponding to a Q2 of 4.64 GeV 2.The λ where chosen with the machine precision and higher order perturbations in mind. In-version times where recorded for each λ and shown in Figure 5.7. We first observe that no guessis significantly worse than the unperturbed inversion, as the unperturbed inverter has been op-timised for the clover improved Wilson action. In addition the time of no guess is very unstable,which arises from the fact that the inverter does not initialise the initial guess to zero. This meansthat the trend towards smaller λ has more to do with the memory configuration of the used sys-tem. With a large difference between a guess and no guess inversions, an improved technique isclearly preferred.We first look at the simplest inversion guess by looking at Figure 5.5, notice that the correla-tors are virtually unchanged, which means the quark propagator used are virtually the same too.The modified quark propagator was inverted off a slightly modified source, which means thatfor sufficiently small λ the solution of the perturbed quark propagator is almost identical to theunperturbed one. To this end we also run the same inversions with a starting perturbation, andobserve due to the consistent starting perturbation that the result is much more stable between
λ. We observe even for the larger λ, the inversion times are universally faster than no guess andcan even beat the optimised inverter on the unperturbed inversion, once the unperturbed quark
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Figure 5.7: The inversion time in seconds for one colour andDirac index, plotted againstthe absolute value of λ. The points in blue are the inversion done with no initial guess,the points in orange represent inversions with unperturbed correlator as initial guessfor the solution and red the inversions with a linear extrapolation based initial guess.The teal band is the corresponding unperturbed correlator inversion time for reference,which we note uses a more optimised inverter. All error bars and bands are shown forone standard deviation.
propagator has been measured. In practice the unperturbed quark propagator needs to be calcu-lated in every one of our simulations anyway, so this is effectively a free gain. This linear trendof inversion, is a good indication that no κc effects are hit for our choice of λ. Clearly a simpleinversion guess is already better than none.With the long linear inversion time trend we saw, it is natural to want to investigate whathappens when we use simple Linear Interpolation (LERP) techniques. If one has an unperturbedand perturbed solution, one can form a initial guess by predicting the solution as only linear in
λ. We observed that for a large range of λ the inversion time with this technique remains con-stant, until larger λ, it rises sharply in linear fashion. This improved technique has no significantimplementation cost over inversionwithout guess, only storage inmemory of prior solutions, andhence will be used throughout this work. Quadratic extrapolation and further techniques shouldalso be possible, although improvements aren’t expected to be as pronounced. Such extensionswould be relevant for extracting cubic and quartic perturbation.

5.6 λ Tuning

Figure 5.7 shows that for very small λ = 10−13 the solution to the perturbed quark propgatoris indistinguishable from the unperturbed up to machine precision. This is when the entirety ofthe response from our action modification is definitely no longer measureable. We have to bemore careful about this, we don’t expect the perturbation to become invisible from one λ tothe next, instead expecting a slower decline in signal which we investigate now. By calculatingbaryon correlators and ratios thereof to look at even energy shifts we can examine the λ trend.Again as this is a low statistics run we do not expect anything meaningful from these results, butwe can look for λ consistency.The results against λ of the even energy shift (5.29), as extracted using the even one–λ ratio(5.25) are shown in Figure 5.8. Aswe have divided by λ2 we expect to observe constant behaviourwhere systematics are under control. For small λ we observe that not only is the result unstable,
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Figure 5.8: The even energy shift (5.29) divided by λ2, as extracted from the ratio (5.25),given by the low statistics run as described in the text. For (a) the absolute value of theeven energy shift was shown, to see the rapid decline in signal, with box showing thelimits of zoomed figure (b), which is shown in linear scale and no absolute value.

it is certainly not consistent. Only for the largest λ do we not observe a consistent result. It issurprising how dramatic the falloff is from the consistent range of λ ∈ [10−5, 10−2
], to a slightinconsistency in λ = 10−6, to completely different just one magnitude lower. This means that wemust use large enough λ for our simulation.To ensure that we observe the proper energy shift we can perform our calculation at multipledifferent values of λ, to see whether our ratios give consistent values. Due to the autocorrelationon the same source we observe that if our perturbation is invalid, even two very close λ valueswill show this difference, even if they differ by less than a magnitude.The choice of λ then is limited for the problem, but is also changed based on the hardwareat hand. As inversions can also be solved using GPGPU techniques and GPU hardware is oftenavailable at a cheaper cost, λ optimisation for them is also important. Inversions on such currentreadily available hardware is often done using single precision floating point. This lower precisiondoes not change the inversion time characteristics much, but it does require us to usemuch larger

λ. Future available GPUs however are designed for double precision calculations, so identicalcalculations can then be performed as for the CPU.A typical three–point function techniques on the lattice have inversion equivalent in time toan unperturbed correlator. For properly tuned λ the computation of the equivalent matrix ele-ment is then faster than a sequential three point functions with the same operator, although the
~q extractable using FHT are more limited. In cases where both FHT and three point function areable to calculate the same matrix elements, this gives us an advantage in inversion time compar-ative to three point function techniques. Even without the inversion time improvement providedby using an initial guess the FHT method is already favourable [184].We have shown how to optimise the λ chosen for inversions for extractions of second orderenergy shifts. This is keeping the λ small enough, that the inversion time is kept small and higherorder effects are in check. As well as not letting it become to small that machine precision effectsare noticeable. Throughout this work, 3 λ values are chosen for most simulation, with 2 chosen,when similar simulations with very close parameters have already been run.In Figure 5.8 we saw that for a range of λ the ratio divided by λ2 was constant, implying
O
(
λ4
) terms were negligiable. This means we can verify that our λ are purely the energy shift ofinterest by comparing the effective masses divided by appropriate λ factors.In the case of our quark counting example we want only linear λ terms in our ratio (5.24).The consistency is easily observed by looking at the odd energy shift with respect to λ and it’s fitwhich we plot in Figure 5.9. Clearly there are no significant higher order terms present in eachof the data points, if they were the straight line would not be consistent with all the points.
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Figure 5.9: A linear fit in λ to the energy shift, showing no signs of other terms present,either constant or of higher order.
It turns out we can examine the fitting range and verify choice of λ at the same time. If wedivide the effective mass by λ, then a linear trend in Figure 5.9 will exhibit itself as consistenteffective masses. The resultant shifted effective mass observed in Figure 5.10 allows us to de-termine fitting range and presence of λ systematics in one plot qualitatively. Visually we see anexact agreement between the different λ, which means that the extracted energy divided by λ

is a direct fit for the first order energy shift ∂Eoddp

∂λ , the quantity shown on the y–axis from thisfit. In the case where the energy shift is imaginary, as is the case for quark counting with theconserved vector current, the same principle can be applied, dividing the effective phase by thecorresponding λ factor.
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Figure 5.10: The shifted effective mass of the odd ratio (5.24), used to calculate theodd shift in energy for two different values of λ. The points have been offset slightlyfor clarity.
5.7 The Lattice Feynman–Hellmann Recipe

We now summarise the steps for a (connected) FHT calculation on the lattice.
1. Choose the FHT corresponding to the matrix element of interest (§4.2)
2. Choose the operators including any momentum transfer ~q (§5.2)
3. Identify the ratio (§5.4) for the matrix element and operator
4. Choose tuned λ (§5.6) for the choice of ratio and operators
5. Calculate modifed quark propagators
6. Contract quark propagators into hadrons to form modified correlators with chosen currentflavour combination
7. Fit correlators using shifted effective masses to determine fitting ranges, fitting a polyno-mial with higher order terms if necessary
8. Perform flavour decomposition if not trivial (§5.3)
9. Renormalise matrix element if nessesary
Performing these steps for our quark counting example, also including the conserved vectorcurrent we can count the quarks inside the nucleon, summarised in Table 5.2. We observed anexcellent aggreement between the two methods, although the conserved current is much moreprecise, which is expected as the symmetry is exact even trajectory by trajectory. For the vector
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Current Form Factor Value
V loc

4
F u1 (0) 1.996(23)
F d1 (0) 0.993(11)

V con
4

F u1 (0) 1.9993(21)
F d1 (0) 0.99981(72)

Table 5.2: The summary for the calculation of proton F f1 (0), for two different flavoursand two different currents.
current the multiplicative renormalisation factor ZV was calculated already for this lattice, ourcalculation can also be used to fix this quantity instead giving a renormalisation constant of

ZV = 0.8611(84) (5.47)
which is used throughout this work.

5.8 Summary

Wehave presented implementable FHT operators, including a conserved current implementation.Using simple implementable steps, we showed how to reduce both statistical and systematicuncertainty, while at the same time reducing computational cost. By calculating precise vectorcharges of the proton using two different operators, including the first implementation of theconserved current using FHT in literature we have shown these steps in practice and calculatedthe vector renormalisation used throughout this work. This is put into practice in §6, §7 and §8.



Chapter 6

Transition Form Factors

In the case of the first order FHT, we have simple benchmark checks available in the form ofquark counting §5.6. Additionally there are also many investigations with identical, or similartechniques that give us an understanding of the discretisation effects [112, 160–162, 165, 170–172, 180, 183–187].Similar two current matrix elements have been studied on the lattice [173–177, 181, 182]and so now we present some results from the second order FHT. The result of the second orderenergy shift, is evidently a polarisability, in similar fashion to the electric and magnetic polar-isabilities extracted using the background field technique. Due to the larger than physical pionmass we can consider the two current matrix element as being saturated by the ∆+ intermediatestate and compare the resultant derived transition form factor to other established lattice andphenomenological techniques.The Goldberger–Treiman relation, links the strong pseudoscalar pion–nucleon coupling con-stant to the nucleon axial charge, via the partially conserved axial current. A similar result, the
off–diagonal Goldberger–Treiman relation links the pion–nucleon–delta coupling constant to thelongitudinal Adler transition form factors [205]. We first investigate how we are able to relate thesecond order FHT to transition form factors §6.1, followed by describing one such form factorwe can gain some knowledge of the one of the Adler transition form factors §6.2 and finishing withsome lattice calculations investigating this link §6.3, before summarising §6.4.

6.1 Lattice Spectrum

By taking advantage of the spectrum of lattice states at larger than physical masses, we can infersome behaviour of just one of them. Recall the second order FHT without momentum transfer
∂2EX,~p

∂λi
2

∣∣∣∣
λλλ=~0

= 2
∑
Y 6=X

〈X, ~p|Ji(0)|Y, ~p〉0〈Y, ~p|Ji(0)|X, ~p〉0
EX,~pEY,~p

(
EX,~p − EY,~p

) (4.81)
and note that the contribution for each state Y is weighted by

EY,~p
(
EX,~p − EY,~p

)
. (6.1)

This means that larger mass intermediate states are suppressed compared to the lighter ones.We saw in §3.6.1 and §3.6.2, that for those simulation parameters the masses where much largethan their physical counterparts. In addition the gap in mass between the delta and proton isrelatively unchanged. This means that for these parameters, the delta is the lowest energy statein the sum. As a consequence ofm∆ −mp < mπ , the delta particle is stable.Diagrammatically we can look at the differences between the continuum and the unphysicallyheavier than physical lattice as Figure 6.1. As we expect the lowest energy Nπ contributions tobe small, we assume the energy shift (4.81) is saturated by just the delta contribution for a vectoror axial current. Under these assumptions, we now relate the p → ∆ transition form factors to
81
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∼ 140MeV
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ρs(ω)

(a) Physical Point Continuum

∆

Pπ

ω

ρs(ω)

∼ 300MeV ∼ 200MeV

(b) SU(3)SYM Point Lattice
Figure 6.1: A sketch of the spectral density function ρs(ω) of our state against energydifference ω = EY,~p − EX,~p. We have the continuum representation (a), where we seethe pion production threshold at roughly 140 MeV, where Nπ states (dotted) start con-tributing, the delta resonance (dashed) and with combined effect (solid). The latticerepresentation (b) formπ ≈ 500 MeV has discrete lattice states, a discrete ∆, followedby a discrete set of Nπ states.

the FHT matrix element, and any deviations from these assumptions will lead to an overestimateof the transition form factors.
6.2 Adler Transition Form Factors

The matrix element of a p → ∆+ transition form factor can be expressed in terms of four formfactors [205–207]〈
∆+, ~p ′

∣∣∣Au−dµ

∣∣∣p, ~p〉 = 2uν∆+

(
p′
) [

gµνC
A
5

(
Q2
)

+ qµqν
CA6
(
Q2
)

M2
N

+ (qλgµν − qνgµλ)

(
γλ
CA3
(
Q2
)

MN
+ p

′λC
A
4

(
Q2
)

M2
N

)]
up(p).

(6.2)

The two form factors CA3 and CA4 are the transverse contributions. Conversely the form factors
CA5 andCA6 encode the longitudinal part, which are dominant to the transverse part on the lattice[208]. Alternatively the Sachs transition form factor representation can be used [209–211], butfor us the Adler form is used for comparison with the off–diagonal Goldberger–Treiman relation-ship.Using the Rarita-Schwinger spin sum [210]∑

s

uν
′

∆+

(
p, s′

)
uν∆+(p, s) = −/p

′ +M∆

2M∆

[
gν′ν −

1

3
γν′γν −

2pν′pν
3M2

∆

+
pν′γν − pνγν′

3M∆

]
(6.3)

and the Gordon identity (§C.4), we can relate a FHT like matrix form to CA5 (0)〈
p,~0
∣∣∣Au−d3 (0)

∣∣∣∆+,~0
〉

0

〈
∆+,~0

∣∣∣Au−d3 (0)
∣∣∣p,~0〉

0

mpm∆(mp −m∆)
=

16

3

(
CA5 (0)

)2 1

mpm∆(mp −m∆)
. (6.4)

The diagonal Goldberger–Treiman relationship [212], links the pion–nucleon decay constant
gπNN to the isovector axial charge gA and pion decay constant Fπ

gπNN =
gAmN

Fπ
. (6.5)

The Adler CA5 can be related exactly to the pion–nucleon–delta coupling constant gπN∆

(
Q2
)

[205] by
CA5 (0) =

√
2

3

(
gπN∆(0)Pπ(0)

mNm2
π

− C(0)

)
(6.6)
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where Pπ(Q2

) is the psuedoscalar current coupling to the pion andC(Q2
) encodes the non–polecontributions. Experimentally neither gπN∆ or Pπ are obtainable at Q2 = 0, but can be obtainedat Q2 = m2

π . We assume that neither of these quantities vary much with Q2 and that the pionpole dominates the process, allowing us to neglect C(Q2
). We can then write the off–diagonal

Goldberger–Treiman relationship as
CA5 (0) =

√
2

3

gπN∆

(
m2
π

)
Pπ
(
m2
π

)
mNm2

π

(1−∆π) (6.7)
where ∆π the off–diagonal Goldberger–Treiman discrepancy is a measure of the breaking in ourassumptions above.We are now able to relate the CA5 (0) to the ∆ intermediate part of the second order FHT,which we assume to saturate the even energy shift. With this relationship we now focus oncalculating this energy shift on the lattice.

6.3 Lattice Results

If we modify our action by
S(λ) = S(0) + λ

∫
d4xAu−d3 (x) (6.8)

the resultant axial–vector matrix elements allow us to calculate gA and the Adler transition formfactor CA5 . These calculations are extracted using the same modified correlators with odd ratio(5.24) for gA and even ratio for (5.25) for CA5 .We perform this calculation on our two β = 5.5 SU(3)flavour symmetric ensemble Table E.2as summarised in Table 6.1. The resultant second order energy shift is shown in Figure 6.2. Wenote that λ = 0.1 is already too large for this simulation leading to significant inversion failuresfor this action modification, which are caused by too large effective κ shifts in the inversion ofthe Dirac matrix D, causing it to be too singular. We then perform these energy shifts for theother volume and compare. In Figure 6.3 we observe that the λ2 scaled even energy shifts areconstant, which implies that the signal is entirely of second order with negligible corrections fromhigher order even powers of λ. The odd ratio also has no λ3 terms, although the ∆+ energy shiftdoes. We also observe that the values between the two volumes are consistent with each other,although the smaller lattice has vastly increased statistics.The values for the extrapolation back to zero λ are given by
∂E243×48

p,~0

∂λ

∣∣∣∣∣∣
λ=0

= −26.9(29) (6.9)
∂E323×64

p,~0

∂λ

∣∣∣∣∣∣
λ=0

= −31.1(51) (6.10)

which combined with (6.4) corresponds to∣∣∣CA5 (0)243×48
∣∣∣ = 0.748(41) (6.11)∣∣∣CA5 (0)323×64
∣∣∣ = 0.803(67). (6.12)

The effect of increasing volume would change the gap between spacing in the Nπ states inFigure 6.1b while not changing the ∆ contribution overly much. Roughly this would increase thecontribution from unwanted intermediate states. The fact that we do not see significant volumedependence shows that for our lattices the ∆ saturation assumption seems to hold. To compareto other results we assume the sign of CA5 is positive.
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(a) 243 × 48 (b) 323 × 64

Figure 6.2: The effective mass of ratio Table 6.1 that provides the even energy shiftagainst lattice time t/a, shifted by λ2. The three different λ values are λ = 0.0125 (blue),
λ = 0.025 (orange) and λ = 0.0375 (red). Each of these points have been offset forclarity.
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Figure 6.3: The even energy shifts for the forward axial current scaled by λ2 against λ,with constant fit. The λ = 0 y–axis intercept then gives the value for the second orderenergy shift at λ = 0.

Dimensions Ncfg Nsrc/cfg Ns

243 × 48 3002 2 6003
323 × 64 1080 1.4 1513

Table 6.1: The lattice details for the used transition form factors, with λ ∈
[0.0125, 0.025, 0.0375]. A subsetNcfg of the full ensemble was use withNsrc/cfg sourcesper trajectory resulting in Ns total sources.
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The first result to compare to is a direct lattice extraction of CA5 using conventional three–point functions [208, 213]

CA5 (0)DWF = 0.903(11). (6.13)
This extraction was made from several lattices with differing lattice spacing with domain wallfermions with pionmassesmπ of 0.297(5), 0.329(1) and 0.353(2)GeV . The transition form factorswere calculated at a finite series of non–zeroQ2, before being extrapolated back toQ2 = 0.Whilethe quark masses used are still larger than physical, they are smaller than the quark masses usedin our simulation, so if CA5 is mildly suppressed by hadron masses this result is still consistentwith our value.We can investigate the mass dependence by turning to a quark model. A quark model thatuses the isovector–axial charge gA, protonmp and deltam∆ mass [214] gives

CA5 (0)QM =
1

1.17

6

5
√

3

2m∆

mp +m∆
gA (6.14)

for the Adler transition form factor. The prediction for the physical values for each parameter givesa value
CA5 (0)physQM = 0.87 (6.15)

which is slightly larger than our result. We can extract gA with the same correlators generatedfor CA5 but with the odd ratio and combine with proton and delta masses as measured on ourconfigurations to give values for CA5 (0) of
CA5 (0)243×48

QM = 0.888(77) (6.16)
CA5 (0)323×64

QM = 0.854(35). (6.17)
The errors come purely from errors in masses and gA, not from the model. We see that for ourparameters we observe a slightly smaller CA5 for our lattices and hence expect our value to un-derestimate the physical value by a small amount.Experimentally the transition form factor is obtainable from neutrino scattering of hydrogenand deuterium [215] to give a value of

CA5 (0)νH/D = 1.15(23). (6.18)
One can also infer the value through pion pole dominance and χPT through the off–diagonal
Goldberger–Treiman relationship

CA5 (0)χPT = 0.93(10) (6.19)
however this assumes that the discrepancy ∆π is zero. An alternative calculation using renor-malised Berkeley and Argonne National Laboratory data for neutrino–induced P33(1232) reso-nance data [216] yielded

CA5 (0)P33(1232) = 1.0. (6.20)
In the original Adler parameterisation the Partially Conserved Axial–vector Current (PCAC)hypothesis was used to parameterise the transition form factors [215]. This model predicts at

Q2 = 0

CA5 (0)PCAC =
gπN∆Fπ√

12mN

= 1.2. (6.21)
Table 6.2 shows the summary of all these results. In combination these extractions suggestthat this Adler transition form factor depends on the quark masses. In our case at larger thanphysical masses we predict a suppression compared to the experimental result of 1.15(23). Hencetaking this into account our values are in broad agreement with the other results.
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Source CA5 (0)

FHT (This Work) 243 × 48 0.748(41)
323 × 64 0.803(67)

Alternative lattice QCD Technique [213] mπ = 0.297–0.353 GeV 0.903(11)

Quark Model [214] physical masses 0.87
243 × 48 masses 0.888(77)
323 × 64 masses 0.854(35)Original Adler parameterisation [215] PCAC 1.2

Experiment [205, 216] empirical νH/D scattering 1.15(23)low energy χPT pion scattering 0.93(10)
νP33(1232) data 1.0

Table 6.2: A comparison of the extractions of CA5 (0) from multiple different techniques.The two FHT calculations are of the magnitude only, here present with positive sign.
6.4 Summary

We have demonstrated the second order FHT by using it to estimate transition form factors,with comparable results to other methods and experiment. While one could calculate the pion–nucleon–delta coupling constant gπN∆ for a theoretical prediction for the off–diagonalGoldberger–
Treiman relationship discrepancy, the technique would break down as the quark mass becomeslighter. However this provides confidence in the second order FHT proof §4.2.2, and we nowmove onto calculations with external momentum, the Compton amplitude in §7 and §8.



Chapter 7

Compton Amplitude

Earlier we introduced the notion of looking at hadronic structure in terms of structure functions§2.3. We showed how the hadron tensor is related via a dispersion relation to the Compton am-plitude, which we will now examine in practice. In the extraction of PDFs, multiple experimentalresults using different techniques, including DIS are combined to improve accuracy. The samething is possible for lattice QCD, the Compton amplitude can be combined with other latticetechniques, which in combination would improve the theoretical predictions for the PDFs ortheir moments.The PDF is only the leading–twist component of the hadron tensor and hence the Comp-ton amplitude contains more information about hadron dynamics, the higher twist components.Radiative corrections in the form of box diagrams are important model inputs for experiments.Currently these box diagrams are determined from model calculations. Knowledge of such dia-grams play a crucial role in the precision of many experiments discussed in prior chapters §2.3.4,§2.3.5. A first principle of extraction here could provide improved understanding of QCD andimprove the precision of experimental results.Recently developed methods try to match onto the parton model directly on the lattice,through use of Ioffe time distributions [217]. By Fourier transform one can relate the Ioffe time
distributions to PDFs directly, however they can also be related by different Fourier transformsto both quasi–PDFs [218] and pseudo–PDFs [219], which in turn can both be compared to PDFsby factorisation. The quasi–PDFs are calculated using Wilson line connected quark operators atlarge but non–infinite boost, roughly around 3 GeV using momentum smearing techniques. Byvarying the boost to extrapolate to the infinite momentum frame the PDFs can be extracted, aselection of which are [203, 220–223] although renormalisation of such extractions are difficult[224–226]. Pseudo–PDFs are the off light-cone generalisations of PDFs and have similar suc-cess [204, 227–230]. A related method has also been proposed [231], referred to as good lattice
cross–sections, although there are some objections to the correctness of the term [219], withthe alternative factorisable matrix elements being suggested [232]. Regardless of the name, earlyresults are available using this technique [233, 234].The direct computation of structure functions, either for the hadron tensor or the Comptonamplitude offer a complementary approach. Prior work has been done on extracting the struc-ture functions directly from latticeQCD, including heavy quarks [235, 236], the Euclidean hadrontensor [237] and lattice OPE methods [238–240]. Some other methods have been proposed, byavoiding the problem of mixing [241] or a strategy similar to the one presented here [242]. Wepropose extracting the Compton amplitude directly using the second order FHT. Compared toheavy quark and Euclidean hadron tensor techniques, this avoids making a connection betweenMinkowski and Euclidean temporal coordinates instead exploiting physical kinematics so the cur-rent separation remains space–like. A similar use of space–like current separation was proposedto ensure analytic continuation in Minkoswki space for pion light–cone distribution amplitude[243]. The FHT renormalisation is as simple as for three–point techniques using the same oper-ators, which are well understood.
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The highermoments of the structure functions have problemswithmixingwith same or lowerdimensional operators. While these terms are still present in our method, in the a→ 0 limit, theultraviolet divergences in this limit should not be present as we are fundamentally determiningour quantities from energy eigenstates. Some of the work in this chapter has been published[244].In this chapter we first present how to extract the Compton amplitude including it’s ω depen-dence in §7.1. These results are used to examine moments §7.2, scaling §7.3 and higher twistterms §7.4. Finally we conclude the results presented §7.5. Some of the work presented in thischapter has been published [244]

7.1 Subtracted Compton Amplitude

The unpolarised Euclidean counterpart to the Compton amplitude (2.45) reads

T (E )
µν (p, q) =

(
δµν −

q
(E )
µ q

(E )
ν(

q(E )
)2
)
T1 −

(
p

(E )
µ − 1

2ωq
(E )
µ

)(
p

(E )
ν − 1

2ωq
(E )
ν

)
ν(E )

T2. (7.1)
To extract the Compton amplitude using the FHT we need to consider the action modificationused. We have already seen an example where the isovector–axial–vector current was used in§6.3. For our calculation we will use

S(λ) = S(0) + λ1

∫
d4x
(
ei~q·~x + e−i~q·~x

)
J1µ(x) + λ2

∫
d4x
(
ei~q·~x + e−i~q·~x

)
J2ν(x) (7.2)

for the general current Ji and external three–momenta ~q. This ‘cosine’ external momentum trans-fer is required to make the action modification Hermitian, and a similar ‘sin’ combination is alsopossible, which has been tested, and gives the same results as the ‘cosine’ results. We can relatethis action modification via the FHT relation (4.97) to the Compton amplitude
∂2EN,~p
∂λ1∂λ2

∣∣∣∣
λλλ=0

= −Tµν(p, q) + Tµν(p,−q)
2EN,~p

(7.3)
where the second term comes from our use of ‘cosine’ external momentum and

Tµν(p, q) =

〈
p

∣∣∣∣∫ d4xeiq·xT {Jµ(x)Jν(0)}
∣∣∣∣p〉. (7.4)

Jµ can be any pair of V loc
µ (5.6) and V con

µ (5.8).If we further limit ourselves to µ = ν = 3, pz = 0 and qz = 0 then we are able to directlyextract T1 from the energy shift
∂2EN,~p
∂λ1∂λ2

∣∣∣∣
λλλ=0

= −T1

(
ω,Q2

)
EN,~p

. (7.5)
Throughout this chapter, after demonstrating the extraction of the Compton amplitude atfixed ω, we will present results only for subtracted quantities (2.80). Due to this relationship, the

ω dependence of the subtracted dispersion relationship gives us insight into the x dependenceof the hadron tensor structure function F1.
7.1.1 Analysis

We have already discussed in §6.3 how to extract and verify the quadratic regime for the secondorder energy shift with respect to one λ using the even ratio (5.25). As there are higher twistcontribution to any Compton amplitude, it was thought by removing some of these by taking
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Figure 7.1: An illustration of the link between discretised ~p and ω for ~q = (4, 1, 0). Theallowed momentum values for the x and y component are shown (blue), with the pointsthat are extracted in our simulation shownusing filled circles. On the plot are also shownthe lines of constant ω, including our theory limiting line |ω| = 1 (orange) which sand-wiches the points where our FHT matching is valid.
averages of modified quark propagators and using different ratios the signal could be improved,however this did not turn out to be the case (for additional information see §F.1).The interference current requires a similar process, but uses an imaginary energy shift due tothe implementation of V con

3 . The ratio for the interference current (5.41) will allow one to extractenergies odd in both λi
∆Eoo = λ1λ2

∂2E

∂λ1∂λ2
+O

(
λ3

1λ2

)
+O

(
λ1λ

3
2

)
. (7.6)

If you divide the effective mass ratio by λ1λ2 and the separate (highly correlated) λλλ correlatorscoincide with one another the bilinear regime is identified and the higher order terms are negli-gible.Each simulation will extract multiple ~p results at the same time, which corresponds to theextraction of multiple ω. As an example, the ω extracted in a ~q = (4, 1, 0) and |~p|2 ≤ 5 simulationis given in Figure 7.1 and tabulated in Table 7.1. Note that there are at least two possible ~p valuesfor each distinct ω, hence we present all T1 results with same ω averaged to improve statistics.As px has a larger impact on ω than py for this choice of ~q, ω is not proportional to |~p|, providinga good ω ‘lever arm’ for fits for co–prime qx and qy .As discussed in §5.3, the contraction of modified and unmodified correlators allow us tochoose u, d, u+d and u−d current flavour combinations for the action modification (7.2), whichcan be decomposed into uu, dd and ud flavour combinations. In the vector case, these are thenrelated to the proton and neutron electromagnetic Compton amplitude by
T p1
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=
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+
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9
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)
− 2

9
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) (7.7)
Tn1
(
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=
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T dd1
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)
− 2

9
T ud1

(
ω,Q2

)
. (7.8)
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p 17ω

(−2,−1, 0) −18
(−2, 0, 0) −16
(−2, 1, 0) −14

(−1,−2, 0) −12
(−1,−1, 0) −10
(−1, 0, 0) −8
(−1, 1, 0) −6
(−1, 2, 0) −4
(0,−2, 0) −4
(0,−1, 0) −2
(0, 0, 0) 0
(0, 1, 0) 2
(0, 2, 0) 4

(1,−2, 0) 4
(1,−1, 0) 6
(1, 0, 0) 8
(1, 1, 0) 10
(1, 2, 0) 12

(2,−1, 0) 14
(2, 0, 0) 16
(2, 1, 0) 18

Table 7.1: The momenta ~p and their corresponding ω values.
Note that experiment are only able to extract data from physical targets like a proton or neutron,which without further data does not allow them to decompose the quark flavour components,as this technique is able to.Finally the ω = 0 term is subtracted from the data, to match our subtracted dispersion rela-tionship (2.80). The subtraction function of the Compton amplitude on it’s own will be discussedin §8.
7.1.2 Simulation Details

As it is of much interest to study theQ2 evolution, we are using lattices, with large set of different
~q. For each lattice and ~q we use multiple λ as discussed in §5.6 to verify the quadratic or bilinearregime. The λ chosen vary in size as some of the results were generated either in single precisionfloating point on GPUs or before the λ tuningwaswell understood. Other simulations use small λ,as is done for all new simulations performed with double precision floating point. In some casesonly one λ was generated, but in all those cases a very close simulation was also performed,giving us confidence in staying in the quadratic regime.The actionmodifications used correspond to a {Jµ, Jν} of {V loc

µ , V loc
ν }, {V con

µ , V con
ν }, {V loc

µ , V con
ν }

and {Alocµ , Alocν }. Prior calculated ZV (5.47) and ZA [186] were used to renormalise the local cur-rents. The conserved current, by construction has ZV = 1.Multiple lattices are used in the calculation as different lattice spacings and volumes give usimportant information of our discretisation systematics. However as Q2 is dependent on both βand L, such differing lattices do not give exact matching in Q2. In some cases a different ~q canbe picked that corresponds to an existing Q2, but this causes the non–zero ω to not match ingeneral. Instead we shall examine this in §8.5 and see that there are no significant effects.The resulting simulation parameters are tabulated in Table 7.2, and additional informationabout the ensembles used are available in §E.2.
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β L3 × T κ {Jµ, Jν} ~q aλ Ns Nsrc/cfg

5.4 323 × 64 (0.11993, 0.11993) {V con
3 , V con

3 } (4, 1, 0) [0.01, 0.001, 0.0001] 194 1.0

5.5 323 × 64 (0.1209, 0.1209) {V con
3 , V con

3 } (1, 0, 0) [0.001, 0.0001] 1024 1.0
5.5 323 × 64 (0.1209, 0.1209) {V con

3 , V con
3 } (1, 1, 0) [0.01, 0.001, 0.0001] 928 1.0

5.5 323 × 64 (0.1209, 0.1209) {V con
3 , V con

3 } (2, 0, 0) [0.001, 0.0001] 802 1.0
5.5 323 × 64 (0.1209, 0.1209) {V con

3 , V con
3 } (4, 0, 0) [0.001, 0.0001] 761 1.0

5.5 323 × 64 (0.1209, 0.1209) {V con
3 , V con

3 } (4, 1, 0) [0.01, 0.001, 0.0001] 1517 1.4

5.5 323 × 64 (0.1209, 0.1209)
{
V loc

3 , V loc
3

}
(1, 0, 0) [0.025] 1001 1.0

5.5 323 × 64 (0.1209, 0.1209)
{
V loc

3 , V loc
3

}
(1, 1, 0) [0.0125, 0.025] 754 1.0

5.5 323 × 64 (0.1209, 0.1209)
{
V loc

3 , V loc
3

}
(2, 0, 0) [0.0125, 0.025] 902 1.0

5.5 323 × 64 (0.1209, 0.1209)
{
V loc

3 , V loc
3

}
(2, 1, 0) [0.0125, 0.025, 0.0375] 1758 1.0

5.5 323 × 64 (0.1209, 0.1209)
{
V loc

3 , V loc
3

}
(3, 1, 0) [0.0125, 0.025, 0.0375] 8668 4.9

5.5 323 × 64 (0.1209, 0.1209)
{
V loc

3 , V loc
3

}
(3, 2, 0) [0.0125, 0.025, 0.0375] 1234 1.0

5.5 323 × 64 (0.1209, 0.1209)
{
V loc

3 , V loc
3

}
(4, 0, 0) [0.0005, 5e− 05] 512 1.0

5.5 323 × 64 (0.1209, 0.1209)
{
V loc

3 , V loc
3

}
(0, 1, 4) [5e− 05, 5e− 06] 1694 1.0

5.5 323 × 64 (0.1209, 0.1209)
{
V loc

3 , V loc
3

}
(0, 4, 1) [5e− 05, 5e− 06] 1403 1.0

5.5 323 × 64 (0.1209, 0.1209)
{
V loc

3 , V loc
3

}
(4, 1, 0) [0.0125, 0.025] 10461 5.9

5.5 323 × 64 (0.1209, 0.1209)
{
V loc

3 , V loc
3

}
(4, 2, 0) [0.0125, 0.025, 0.0375] 1758 1.0

5.5 323 × 64 (0.1209, 0.1209)
{
V loc

3 , V loc
3

}
(4, 3, 0) [0.0125, 0.025, 0.0375] 1758 1.0

5.5 323 × 64 (0.1209, 0.1209)
{
V loc

3 , V loc
3

}
(5, 1, 0) [0.025, 0.05] 7036 4.0

5.5 323 × 64 (0.1209, 0.1209)
{
V loc

3 , V loc
3

}
(5, 1, 0) [5e− 05, 5e− 06] 4313 2.5

5.5 323 × 64 (0.1209, 0.1209)
{
V loc

3 , V loc
3

}
(3, 5, 0) [0.0375,−0.075] 1006 1.0

5.5 323 × 64 (0.1209, 0.1209)
{
V loc

3 , V loc
3

}
(5, 3, 0) [0.05] 3052 3.0

5.5 323 × 64 (0.1209, 0.1209)
{
V loc

3 , V loc
3

}
(6, 3, 0) [0.025, 0.05] 618 1.0

5.5 323 × 64 (0.1209, 0.1209)
{
V loc

3 , V loc
3

}
(7, 3, 0) [0.025, 0.05] 602 1.0

5.5 323 × 64 (0.1209, 0.1209)
{
V loc

3 , V con
3

}
(0, 1, 4) [0.001, 0.0001] 1767 1.5

5.5 323 × 64 (0.1209, 0.1209)
{
V loc

3 , V con
3

}
(4, 0, 1) [0.001, 0.0001] 1915 1.5

5.5 323 × 64 (0.1209, 0.1209)
{
V loc

3 , V con
3

}
(4, 1, 0) [0.001, 0.0001] 1507 1.4

5.5 323 × 64 (0.1209, 0.1209)
{
V loc

3 , V con
3

}
(6, 1, 0) [0.001, 0.0001] 1153 1.3

5.65 483 × 96 (0.122005, 0.122005)
{
V loc

3 , V loc
3

}
(1, 0, 0) [0.01, 0.02] 500 1.0

5.65 483 × 96 (0.122005, 0.122005)
{
V loc

3 , V loc
3

}
(1, 1, 0) [0.01, 0.02] 500 1.0

5.65 483 × 96 (0.122005, 0.122005)
{
V loc

3 , V loc
3

}
(2, 0, 0) [0.0125, 0.025] 498 1.0

5.65 483 × 96 (0.122005, 0.122005)
{
V loc

3 , V loc
3

}
(2, 1, 0) [0.0125, 0.025] 498 1.0

5.65 483 × 96 (0.122005, 0.122005)
{
V loc

3 , V loc
3

}
(3, 1, 0) [0.0125, 0.0375] 536 1.0

5.65 483 × 96 (0.122005, 0.122005)
{
V loc

3 , V loc
3

}
(7, 4, 0) [0.0125, 0.0375] 536 1.0

Table 7.2: Parameters for the gauge–field ensembles §E.2 used as specified by cou-pling constant β, dimension L3 × T and quark mass parameters κ. Each simulation isperformed using even time currents Jµ and Jν at specified momentum transfer ~q for aseries of λ, with a total ofNs sources withNsrc/cfg average sources per used trajectory.
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Figure 7.2: The effective mass of the ratio (5.25), which corresponds to the even energyshift∆Eeven shifted by λ2 for the Compton amplitude T33 for d flavoured currents, ~p = ~0and ~q = (4, 1, 0) for different λ. The fitting range x4 ∈ [11, 31], has been chosen bypicking the starting slice such that χ2
dof is closest 1.

7.1.3 Results

Figure 7.2 shows the effective mass for ~p = ~0 for the β = 5.5, 323 × 64, SU(3)flav–symmetricensemble with ~q = (4, 1, 0) which corresponds to Q2 = 4.64 GeV 2. We are able to identify aclean plateaux and both values of λ are consistent once scaled, which shows we are well within aquadratic regime; ∆Eeven/λ2 = ∂2E
∂λ2

, allowing us to determine T1. The fitting range varies widelyfrom the underlying two–point correlators (see Figure 3.7 for nucleon mass determination fromthe same data.)After the remaining ~p with ω < 1 from the same simulation are fit, we get the subtractedCompton amplitude at Q2 = 4.64 GeV 2 against ω. Figure 7.3 shows the results available from
u and d action modifications. The FHT approach hence is able to extract a more complete ω be-haviour for the Compton amplitude on the lattice than was available before. Unlike comparabletechniques, the structure functions (after continuum and chiral extrapolation) are comparabledirectly to their continuum Minkowski space counterparts. The uncertainty in signal is not de-pendent on ω, rather it’s dependent on |~p|.We have implemented two different vector currents in three different combinations. As theyeach correspond to the same continuum current, they should give the same result and Figure 7.4shows that they indeed do. However the relative uncertainty at each ω point differs betweenthe techniques, the conserved current provides more precise results at low |~p| and less preciseat large |~p| for the same statistics than the local current, and the interference current is some-where between both. Due to the difference in implementation of the conserved and local vectorcurrents, both have their use cases. The different vector results are somewhat statistically inde-pendent, so from here on out we will present only vector results, averaged over the differentmethods. Additional flavour comparisons are available in Figure B.1, Figure B.2 and Figure B.3.With simulations taken from multiple different Q2 we can perform a rough check on the
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Figure 7.3: The subtracted and flavour decomposed Compton amplitude structure func-
tion T uu/dd1
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Figure 7.4: Operator comparison of the subtracted Compton amplitude T uu1

(
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)
−

T uu1

(
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) for ~q = (4, 1, 0) for a set of different currents. Note that there is a largedifference in the number of sources between the V loc
3 and the other currents (Table 7.2).
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Figure 7.5: The subtracted Compton amplitude T uu1
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). The pointsare the high statistics Ns = O(10000) simulations from Table 7.2.
scaling behaviour. The scaling behaviour itself is not expected to be strong, inheriting the loga-rithmic scaling behaviour from the hadron tensor. Figure 7.5 show the uu component for threehigh statistics runs on the same lattice as the prior results. No conclusive scaling can be seenfrom this, however if one were being generous, the smaller Q2 points do appear to be systemat-ically above the higher ones. Note that it is difficult to compare the structure functions against
Q2 directly at the same ω points, this is part of the motivations for looking at moments in §7.2,and we will partially get around this through clever choice of ~q in §7.3. Additional ~q comparisonsfor the other flavour combination are available in Figure B.5 and Figure B.6.It is important to look at lattice volume and spacing effects, as the mixing problem associatedwith higher moments has not been entirely removed, just the ultra–violet divergences as a→ 0.However for our lattices, a reduction in a is also associated with an increase in L, which prohibitsthe comparison of differing a at the sameQ2. At largeQ2 theQ2–dependence becomes small, sowe could compare slightly differing ~q results more easily. However the lattice momenta requiredfor that becomes more prohibitive, and the cost associated with the larger external momenta iscompounded with the increased cost of larger lattices. In our case to have similarQ2 to a β = 5.5,
323 × 64 lattice with ~q = (5, 3, 0) for a β = 5.65, 483 × 96 lattice is ~q = (7, 4, 0). We will see arough test of this using moments §7.2 but a more definitive test is presented later in §8.5, whereconsistency between different β is seen more easily.So far extractions have been limited to the uu and dd Compton amplitude, obtainable directlyfrom the u and d flavoured currents. We also have the u− d and u+ d flavoured currents, fromwhich we can extract the ud component. Combing these three components allows us to recon-struct the photonic proton (7.7) and neutron (7.8) structure functions. Figure 7.6 shows the highstatistics proton structure function. This sets the stage for future calculations, extrapolated tothe continuum for comparison to the experimental hadron tensor. In principle the same recon-struction technique can be extended to other electroweak currents as well. The ud componentrequired for the reconstruction is actually highly interesting by itself as it is a term of higher–twist,and will be discussed in §7.4.
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Figure 7.6: The reconstructed subtracted proton Compton amplitude T p1
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T p1
(
0, Q2

). The points are the high statistics subset of data points of our simulationTable 7.2. The neutron equivalent is shown in Figure B.4.
We have shown the first model–independent calculation of the subtracted Compton ampli-tude structure functions T1 and are ready to examine these results further. In the remaining partof the chapter we cover extractions of moments §7.2, scaling §7.3 and higher twist behaviour§7.4 from these results.

7.2 Moments

The moments of the hadron tensor are defined
µf1f2n :=

∫ 1

0
dxxn−1F f1f21

(
x,Q2

) (7.9)
where fi denote the quark flavours. When f1 = f2 = f the Hadron tensor moments are relatedto quark moments in the parton model at sufficiently large Q2 by

µffn =
1

2

〈
xn−1

〉f
. (7.10)

We will show that (2.80) allows us to extract such moments from the Compton amplitude.While the lowest lying moments of the lattice are well understood [130], the higher momentsare plagued with mixing problems due to the breaking of the continuum symmetry group O(4)to the hyper-cubic group H(4) §3.3. Some attempts have been made to take into account suchmoments to calculate higher order moments [245–249] although these are still limited to 〈x3
〉

for baryons. By inferring themoments directly from the forward unpolarised Compton amplitude,we can extract the (even) moments, without having to account for ultraviolet divergent mixing.While quenched calculations of baryon 〈x3
〉 have been performed [245], the renormalisation
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for this method is difficult. As the divergence caused by the mixing is currently the main diffi-culty for extracting moments beyond 〈x2
〉, this would lead to first ab initio determination of suchquantities without this problem.While many moments are required for a full reconstruction of the hadron tensor at low Q2,even a few moments are useful in constraining hadron tensor models such as the model in [99]used to calculate the �γZ box. In the DIS region, the moments can be used to reconstruct thePDFs, even with relatively few moments [244].While different Q2 lattice results do not share the same ω, they do share the same moments,so we can use the moments to investigate the scaling behaviour more directly. The operatorsassociated with the moments in the DIS limit are expected to have Bjorken scaling, up to a smalldeviation due to operator scaling from the Callan–Symanzik equation governed by the anomalousdimension γ of the three–point current vertex. As each of the moments has been extracted at adifferent energy scale Q, this allows us to relate them to another scale µ by [250]

〈xn〉fµ =

(
log
(
µ2/ΛQCD

)
log (Q2/ΛQCD)

)an/(2β0)

〈xn〉fQ. (7.11)
Here β0 is defined in (2.7) and an is the leading term in the γ function of 〈xn〉

an = −8

3

1− 2

n(n+ 1)
+ 4

n∑
j=2

1

j

. (7.12)
This is all done under the assumption of no mixing with the equivalent twist gluonic operators,so we have to restrict ourselves to those operators without gluon mixing. As the gluon is flavourblind we can take our flavour combination uu−dd combination, which corresponds to an isovec-tor quark moment 〈xn〉u−d, to remove the mixing. To extend this result to include the mixing, onewould require knowledge of either the gluon moments or the EMT.
7.2.1 Analysis

We showed that by using an optical theorem we can relate T1 to a geometric sum of F1 (2.80).We now relate this to the PDF quark moments through use of Callan–Gross. We can write (2.80)in terms of it’s geometric series
T f1f21

(
ω,Q2

)
− T f1f21

(
0, Q2

)
= 4ω2

∫ 1

0
dx
xF f1f21

(
x,Q2

)
1− (ωx)2 (7.13)

=

∞∑
n=1

4ω2n

∫ 1

0
dxx2n−1F f1f21

(
x,Q2

) (7.14)
=
∞∑
n=1

4ω2nµf1f22n (7.15)
We now use Callan-Gross

F2

(
x,Q2

)
= 2xF1

(
x,Q2

)
. (7.16)

our moments where f1 = f2 = f are related to the PDFs using (2.63) at leading twist by
µffn =

1

2

∫ 1

0
dxxnF ff2

(
x,Q2

) (7.17)
=

1

2

∫ 1

0
dxxn−1

(
qf (x) + qf (x)

) (7.18)
=

1

2

〈
xn−1

〉f
. (7.19)
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Relating all of these together we can rewrite the subtracted Compton amplitude as

T ff1

(
ω,Q2

)
− T ff1

(
0, Q2

)
=
∞∑
n=1

2ω2n
〈
x2n−1

〉f (7.20)

As T p/n1 come from cross–sections, they must be positive over the entire kinematic region.The same holds for uu and dd quark moments separately. As a consequence (7.9) implies that thecorresponding moments must approach zero monotonically
µff0 ≥ µff1 ≥ µff2 ≥ · · · ≥ 0. (7.21)

The same is not true for µudn , although using the proton, neutron, uu and dd moments, they canbe shown to tend to 0, just not monotonically. As we only extract the connected components,we miss the small disconnected component, and assume that monotonicity still holds.As a consequence of (7.21), the series (7.20) converges and we can fit an even polynomial toextract the moments. However such a fit does not take into account the decreasing nature of themoments, while a Bayesian approach is in development [251] we pick a least square approachhere. We can enforce the decreasing nature by fitting
P con2n =

n∑
m=1

c2

(
m∏
l=2

e−c2l

)
ω2m (7.22)

where we enforce positivity on cn for n ≥ 4. We now perform this analysis on the full data set of§7.1.2.
7.2.2 Results

Figure 7.7 shows even polynomial fits, truncated at several different powers ofω for T uu1

(
ω,Q2

)
−

T uu1

(
0, Q2

) at one fixed Q2, where the fits are
P even2 = 0.70(14)ω2 (7.23)
P even4 = 0.45(19)ω2 + 0.57(32)ω4 (7.24)
P even6 = 0.86(53)ω2 − 1.5(24)ω4 + 1.9(22)ω6 (7.25)
P even10 = 4.6(23)ω2 − 41(24)ω4 + 140(89)ω6 − 189(128)ω8 + 88(63)ω10 (7.26)

which is clearly not a well constrained fit.We now investigate the use of constrained polynomial fits (7.22), to enforce monotonicity.Figure 7.8 shows these fits to Tn1 (ω,Q2
)
− Tn1

(
0, Q2

). It is straight away evident that the fitsexhibit more consistent behaviour with n > 2 fits. The resulting fit coefficients are
P con2 = 0.416(78)ω2 χ2

dof = 2.49

(7.27)
P con4 = 0.335(58)ω2 + 0.326(59)ω4 χ2

dof = 1.41

(7.28)
P con6 = 0.297(62)ω2 + 0.260(64)ω4 + 0.207(96)ω6 χ2

dof = 1.19

(7.29)
P con8 = 0.289(70)ω2 + 0.208(63)ω4 + 0.178(65)ω6 + 0.152(76)ω8 χ2

dof = 1.66

(7.30)
P con10 = 0.289(75)ω2 + 0.187(67)ω4 + 0.158(60)ω6 + 0.126(63)ω8 + 0.100(65)ω10 χ2

dof = 2.61.

(7.31)
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Figure 7.7: We show the subtracted Compton amplitude T uu1

(
ω,Q2

)
− T uu1

(
0, Q2

) for
~q = (4, 1, 0) with a number of simple even polynomial fits without an ω0 componentfor ω < 1, the valid region for our derived dispersion relationship (2.80). The lack ofdescription of these unconstrained polynomials has lead to modified fits as describedin §7.2.

First we note the coefficients are more stable, all the coefficients at each order are consistentwith each other, but the P con6 has the closest χ2
dof to one, so we shall use this fit in our analysis.The exact same story plays out with the other flavours too, however their best polynomial orderdiffers.To compare the result to experiment, we can use these moments to construct uu−dd flavourcomponents, which correspond to the isovector quark moments 〈xn〉u−d. The resulting inferredfit is

T uu−dd1

(
ω,Q2

)
− T uu−dd1

(
0, Q2

)
= 0.513(100)ω2 + 0.57(13)ω4 + 0.47(30)ω6 (7.32)

which corresponds to
〈x〉u−dµ=2.16GeV = 0.257(50). (7.33)

It is standard in literature to quote the isovector momentum fraction value at µ = 2.0GeV , so weuse a fit to the expected scaling behaviour to determine this quantity. Figure 7.9 shows all ourisovector momentum fractions for a range of Q. Our extracted moments are consistent with theexpected scaling behaviour (7.11), althoughwith this precision inmeasurement over this range of
Q we do not expect to be able to observe small deviations from such scaling. The fit is (7.11) forpoints Q > 1.5 GeV , as at low Q scaling breaks down and we cannot link our moments and thepartonmodel. There is some tension starting to show from the deviation of this scaling, the valuessmaller thanQ = 2.0GeV are systematically higher, and the values larger are systematically lower,however the signal quality is not yet good enough to resolve this. Quoted at µ = 2.0 GeV the fitgives

〈x〉u−dµ=2.0 GeV = 0.293(29). (7.34)
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Figure 7.8: The constrained polynomials fits to the Compton amplitude Tn1 (ω,Q2
)
−

Tn1
(
0, Q2

) for ~q = (4, 1, 0) of the neutron. The different fits are for different orders asdescribed in the text, with ω points fitted only for ω < 1, in the region valid for thederived dispersion relationship (2.80).
This value is comparable to other results in literature but this extraction was done at larger thanphysical pion masses. As many lattice collaborations calculate this value as a benchmark calcula-tion we can compare our results to theirs at equivalent pion masses. The comparative results areshown in Figure 7.10, where our point is larger than some other lattice results, but consistentwith others. The larger uncertainty is because this is an indirect calculation of the momentumfraction, where the others calculate them directly using three point functions. Nevertheless weobserve broad agreement within errors with other lattice results at our pion mass.The first and third point in Figure 7.9 are from the β = 5.65 simulation, however due to theseparation inQ from the low uncertainty β = 5.5 results we can only conclude that the differenceis not large, we will examine whether it is significant in §8.5.Combining the proton, neutron, uu and dd moments allow us to infer the ud moments. How-ever performing this for our highest statistics simulations yields

T ud1

(
ω,Q2

)
− T ud1

(
0, Q2

)
= −0.016(56)ω2 − 0.09(10)ω4 − 0.03(31)ω6 (7.35)

clearly indeterminable using this technique. Using the proton, uu and dd moments as bounds animproved method could be devised, but we keep our focus on higher moments of uu− dd.Figure 7.11 shows the extraction of µu−d4 , demonstrating the strength of the second orderFHT approach. There are fewer µuu−dd4 moments than there were µuu−dd2 moments, but an ex-traction of 〈x3
〉 is still possible. The resultant µ = 2.0 GeV quark moment is〈

x3
〉u−d
µ=2.0 GeV

= 0.186(31). (7.36)
The next higher moments were not extractable. The fit to our highest statistics (7.32) gave themost non–zero of the µuu−dd6 , but in combination the final result is too close to zero for comfort.
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Figure 7.9: The second isovector quarkmoment µu−d2 /2 (blue) extracted from the Comp-ton amplitude as described in the next. The data needs to be fit when we can linkthe moments to the parton model and so fit using the points Q > 1.5 GeV with theexpected scaling behaviour (7.11). The extracted 〈x〉u−dQ with corresponding point at
µ = 2.0 GeV (orange) is shown.
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Figure 7.10: The comparison between different lattice results of 〈x〉u−dµ=2 GeV for differ-ent mπ . The results have differing techniques, as well as lattice spacing and chiral tra-jectories. The results include the phenomenological extraction from experimental data(orange) [252]. Also shown are results from ETMC forNf = 2 andNf = 2+1+1 results(red) [253, 254] and Nf = 2 + 1 results; RBC/UKQCD (teal) [255], LHPC (green) [256].Other simulations have been done but intermediate pre–chiral extrapolation data wasnot found [257, 258].
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Figure 7.11: The fourth moment µu−d4 /2 (blue) extracted from the Compton amplitudeas described in the next. The data is fit using the points Q > 1.5 GeV with the ex-
pected scaling behaviour (7.11) and it’s resultant extraction for 〈x3

〉u−d
Q

(orange) with
corresponding result at µ = 2.0 GeV shown.

As there are fewer simulations with more than two moments, many of the data points did notcontribute to the µuu−dd6 extraction.In summary we have presented the first ab initio extraction of the higher quark momentsof the nucleon on a dynamical lattice. The observed power scaling behaviour of the momentswas consistent with theory, however seen only over a small range of Q, which warrants futureinvestigation at larger Q2. The technique is extendible in principle to even higher moments.

7.3 Scaling

In the DIS region at constant x the proton structure function F2 is approximately constant in Q2,up to logQ2 scaling, which is seen in the ‘fan plots’ Figure 2.7. Due to the Callan-Gross relationthe same result holds for F1. One would think that moments, which are integrals over x of suchdata would exhibit the same approximate scaling behaviour. Another way to look at the samedata would be to look for scaling behaviour within the Compton amplitude T1 at unphysical xwhich as
x =

1

ω
(7.37)

will correspond to x > 1. Due to the dispersion relationship (2.80), both these scaling behavioursare the twoways of looking at the same problem.We now investigate the scaling of the Comptonamplitude T1 directly, rather than looking at moments.The equivalent test at constant x in our case is constant ω. Our ~q were specifically setup(Table 7.2) to allow this direct constant ω comparison at differentQ2 to be possible. We look at anumber of ω bins, where the results from T1

(
ω,Q2

)
−T1

(
0, Q2

) are taken when ω is within 10.0%of the ω bin. In combinations with this data, we can use the fits performed of the moments to
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interpolate values to the ω bins. While our data is not as precise as the equivalent experimentaldata for T2, this is still a fundamental test for the behaviour predicted for the theory.The combinations of T1

(
ω,Q2

)
− T1

(
0, Q2

) data and our fits are shown in Figure 7.12. Thelarger ω is, the larger |~p| is in general to obtain that ω at the same Q2, hence the smaller ω havea better relative determination. At these small ω we see that the fits show broad consistencyover the range of Q2, except maybe at the smallest Q2 point. The data points by themselves arenot as precise as the points generated from our fits. Quantitatively no deviation from a powercorrection can be seen from this data, but more statistics would be need to verify this. Additionalplots for smaller and larger ω are presented in Figure B.7.
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Figure 7.12: The scaling at constant ω of the subtracted Compton amplitude
T dd1

(
ω,Q2

)
− T dd1

(
0, Q2

) for ω = 0.4 (a) and ω = 0.6 (b). These points include directcalculations at these ω (blue), whose ω are within 10.0% of this value. The constrainedfit values for each simulation have been used to generate points (orange) at these ω,offset slightly for clarity.
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7.4 Higher Twist

Throughout this chapterwe have focused on the proton, neutron, uu, dd and uu−dd quark flavourquantities with only a brief mention of ud. By looking at either moments §7.2 or at constant ω§7.3, we can observe hints that the dominant contribution to these terms scales as logarithmsin Q2. Other than this scaling there seems to be no more Q dependence, which implies thisdominant contribution is twist–2 or leading–twist (2.32).We briefly discuss higher twist diagrams,before showing how we can access these terms from the ud component.The leading–twist terms consist of the handbag terms Figure 2.8. Quark and gluon lines in-troduce extra twist, with an example twist–3 term being the handbag diagram with gluon lineconnecting the interacting quark before and after one interaction. We have already shown thesimplest example of higher twist, the cat’s ears diagram Figure 2.10, whose lowest twist contri-butions are twist–4. These higher twist terms are important in collinear factorisation [259] andpseudo-PDFs [260], to determine whether higher twist corrections are under control.The lowest twist contributions to the ud contribution are the twist–4 contributions from the
cat’s ears diagram, and hence has no leading twist. Thus this allows direct study of the highertwist effects within the Compton amplitude. Three high statistics results from Table 7.2, all fromthe β = 5.5, 323 × 64, SU(3)flav–symmetric ensemble are shown in Figure 7.13. We clearly seethe power suppression of purely higher twist terms, the Compton amplitude rapidly dies off as
Q2 increases.The remarkable thing about the extraction of the ud term is how accurate such a higher twistextraction is. While there are methods of calculating some higher twist contributions to somequantities (see for instance [234]), direct higher twist extraction ordinarily requires the use ofhigher dimensional operators §2.2.1, which are harder extract quantities from on the lattice. The
Q2 dependence of the ud subtraction function is studied in §8.5.
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7.5 Summary and Outlook

We have investigated the Compton amplitude at unphysical ω, related it to the hadron tensor viadispersion relationship and hence via OPE to the PDFs. We showed for the first time that the fullCompton amplitude structure function T1 is calculable on the lattice for arbitrary lattice ~q anda variety of different vector currents, the summary of our simulations performed are availablein Table 7.2. This method unlike comparable methods does not require complicated operatorrenormalisation or handling of mixing. We then used this to calculate the moments of structurefunctions using constrained fits, getting results formoments difficult to obtain using conventionallattice techniques.We looked at the flavour decomposition allowed by the FHT (§5.3), to extract separate uand d quark terms, as well as proton–neutron different term uu − dd and the flavour diagonalcomponent ud, and used them to construct proton and neutron photonic Compton amplitudes.Furthermore this can be extended to reconstructions of the full electroweak structure functions.These results set the stage for calculations that will help reduce model uncertainty of boxdiagram and two–photon exchange calculation in non–perturbative QCD, pending chiral andcontinuum extrapolation. Those same results could also then be combined with other PDF de-termination procedures to improve the theoretical determination of PDFs from first principles. Inaddition they can be used to test the PDF extractions’ control of higher twist systematics. Workis under way for an improved fitting method, which will be able to extract even higher momentsfrom the data presented here [251, 261].With the extraction of T1, this sets the stage for future extractions of the other structurefunctions, but require modification of the technique. To get at the equivalent T2 result to T1 atfixed ω, in our simulation with qz = 0 one or more units of momentum must be introduced tothe z direction, before decomposing a linear system, leading to reduced signal. However futuresimulations, using methods such as momentum smearing could allow extraction of T2. Anotherpossible extension is for the extraction of terms odd in µ and ν required to extract T3, G1 and
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G2. If the external momentum on one current is changed from a ‘cosine’ to a ‘sin’ in (7.5), thenthese structure functions would be extractable. The extraction of T3 would allow the separationof quark and anti–quark PDFs. The extraction ofG1 andG2, gives us further insight into the spinstructure of hadrons. This would allow investigation into the spin PDFs but there are also somepredictions for the relationship between T1/2 and G1/2 to investigate [262].The off forward Compton amplitude gives information on the full GPDs [263]. The techniquecan also be extended to such terms by introducing more than one momentum transfer term tothe off–forward Compton amplitude but care would have to be taken with energy degeneracies,analogous to the off–forward first order FHT §4.2.1. Work is currently on–going into extractingthe GPDs with this technique [264].In the calculation of the subtracted dispersion relationship we have not looked more deeplyat the subtraction function, which we shall investigate in the next chapter §8.
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Chapter 8

Subtraction Function

In §2.3.3 we determined a relationship between the Compton amplitude structure functions andtheir hadron tensor counterparts, in particular we used a once subtracted dispersion relationship(2.80) to extract ω dependence of the Compton amplitude in §7. Unlike the imaginary part of theCompton amplitude for ω ≥ 1, the ω = 0 subtraction function is not directly obtainable fromexperiment. As such, an alternative determination is crucial to the understanding of sub–atomicstructure.While it has been predicted to be obtainable from the background field methods [179],no actual calculation has been performed to verify this. We shall now examine the Compton am-plitude in unsubtracted form, focusing on the subtraction function, the ω = 0 structure function.Theoretically some values are known. Using low energy theories [265, 266], one predicts thesubtraction function in the Thomson limit Q2 → 0 to be
T
p/n
1 (ν = 0, 0) = −2e2

p/n (8.1)
which is the so called Thomson term. We use ν = p · q instead of ω = 2ν

Q2 as the former is well
defined at Q2 = 0. Part of the leading Q2 behaviour is known from elastic form factors, but stillincludes contributions from unknown functions [267].We can also examine the prediction at largeQ2, the leading asymptotic behaviour constrainedby the OPE is [268]

T p/n
(
0, Q2

)
∼ 1

Q2
. (8.2)

The asymptotic behaviour of the proton–neutron difference can be shown to be [269]
T p−n1

(
0, Q2

)
≈ 1

Q2

(
−4mN

(
4

9
σp−nu +

1

9
σp−nd

)
+

2m2
N

3
〈x〉u−d

)
. (8.3)

Naturally as we expect the proton and neutron to asymptote to zero at large Q2, by extension
uu and dd must as well.The requirement for a subtracted dispersion relationship is predicted by Regge theory [270–272] and the requirement has strong implications for the presence of fixed pole terms. Anotherargument exists as well for the need of subtraction term, from electric polarisability [273]. Alter-natively it is proposed that one can avoid the subtraction term by using the longitudinal structurefunction [274]. Another low energy relation is that for real photon Compton scattering one canrelate the slope of T2 at Q2 = 0 to T1 at Q2 = 0∣∣∣∣ 1

Q2

∂

∂Q2
T2

(
ω,Q2

)∣∣∣∣
Q2=0

=
T1(ω, 0)− T1(0, 0)

ω2
(8.4)

or a similar relation using Regge theory and current algebra [262]. We have mentioned Regge
theorymultiple times, which due to the experimentally indeterminable subtraction function playsan important role for it’s model determination.

109
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In this chapter we start by providing context of the subtraction in literature from Regge theory§8.1, proton–neutron mass splitting §8.2 andmuonic hydrogen Lamb shifts §8.3.We then discussdiscretisation of the current §8.4 and lattice results of the subtraction function §8.5, before con-cluding §8.6.

8.1 Fixed Pole and Regge Theory

Analytic continuation is a common tool in physics, indeed we have used just such a techniqueto calculate dispersion relationships for the Compton amplitude in §2.3.3. We shall now discussthe analytic continuation of orbital angular momentum and it’s consequences for the subtractionfunction.Classically the idea of using complex angular momentum was first established for harmonicoscillator problems [275, 276]. The actual first use in a quantised theory, was by Regge for acomplex orbital angular momentum [277, 278], from where it derives the name Regge theory.
Regge theory describes an interaction in terms of an exchange of a fictitious particle, a so called
Regge pole, sometimes referred to as aReggeon, that has varyingQ2–dependent complex spin. The
Q2 dependence of this particle is referred to as the Regge trajectory, which can be used to relatethe high energy s–channel process to bound states and resonances in the t–channel through useof the complex spin.

Regge theory is used to model interactions for high energy particle accelerators where not allhard interactions can be described in terms of free particle systems. Soft processes are one suchinteraction, two examples being ep→ eXp at HERA [279] or pp→ Xp among others at the LHC[280]. These diffractive processes are modelled using the exchange of strongly interacting colourneutral particles called Pomerons [281]. This means that Regge theory plays an important role inmodern experiments to model backgrounds.Part of the electromagnetic self–energy depends on the ν → ∞ limit of the Compton am-plitude. This can be analysed in terms of Regge trajectories [270], which allow us to determinebounds for the Compton amplitude structure function in the large ν limit, in terms of να where
α is referred to as the Regge trajectory intercept. The existence of a boundary term, the non–vanishing of the Compton amplitude as |ν| → ∞ can then be determined from the sign of theintercept α. If α < 0 then the dispersion integral will converge without subtraction, however if
α > 0 then it will not. For the pion α < 0, so no subtracted dispersion relationship is needed,however for the proton 0 < α < 1 a (once) subtracted dispersion relationship is needed.If we assume the hadron tensor structure function F1 is fully defined by a Regge model, de-noted FR1 , then it can be written as [282–284]

FR1
(
ν,Q2

)
=
∑
α>0

βα
(
Q2
)
να (8.5)

for Regge poles α and corresponding residues β. The dispersion relationship between the hadrontensor and the Compton amplitude §2.3.3, prior to subtraction and in terms of ν not ω, thenpredicts a definite form for the Regge structure of the Compton amplitude
TR1
(
ν,Q2

)
=
∑
α>0

πβα
(
Q2
)

sinπα
[(−ν − iε)α + (ν − iε)α] . (8.6)

In the case where α is an integer we have pomerons but in other cases a branch cut in the positivereal axis.The Compton amplitude contains non–Regge contributions but the Reggeon dominance hy-
pothesis states that in the large ν limit only the Regge components survive, formally

lim
ν→∞

(
T1

(
ν,Q2

)
− TR1

(
ν,Q2

))
= 0. (8.7)
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Hence the need for a subtracted dispersion relationship assuming Reggeon dominance hypothesisis wholly determined from Regge theory. Furthermore any deviations from this form must be
ν–independent, a pole with zero angular momentum. One possible such fixed pole would be aterm independent of Q2, which has implications for small x behaviour for partons. For furtherdiscussion of such a fixed pole see [285, 286] and references therein.

8.2 Cottingham Self Energy

The proton–neutron mass difference plays an important role in the particle make–up of the uni-verse. Assuming degenerate light quark flavours, the mass difference at leading order is purelydetermined by QED effects and predicts mp > mn. In reality the small isospin breaking due to
md > mu provides a slightly larger opposite effect resulting inmp < mn. Experimentally the masssplitting has been measured to extraordinary accuracy [42]

mn −mp = 1.29333205 (51) MeV (8.8)
which is less than the difference in mu and md. This mass splitting is in fact finely tuned, withonly a narrow band of less than 3 MeV allowed values. In the case where this mass splittingwere only 1MeV larger, deuterium would no longer be a bound nuclear state, leading to a hydro-gen dominated universe. Conversely if the neutron was light enough to favour inverse β decay
e− + mn < mp then the universe would be neutron dominated. As such, improvements in ourunderstanding of the mass difference is important to our understanding of the universe.At leading order the mass difference is

mp −mn = δmmd−mu + δmγ (8.9)
where the first term is the contribution due to quarkmass splitting and the latter them the electro-magnetic self energy. The quark mass splitting term requires calculation of low–energy hadroniceffects, which have been calculated using lattice QCD [287]. The latter term can be obtainedby the Cottingham self energy [267, 288] pictured in Figure 8.1. The Cottingham formula relatesthe electromagnetic self energy to the Compton amplitude, part of which requires the forwardCompton amplitude subtraction function [287]

δmγ
sub = − 3α

16πm

∫
dQ2T p−n1

(
0, Q2

)
. (8.10)

Theoretical determination of this electromagnetic self energy has been made and summarisedin Table 8.1. It is clear that improved determinations of the Q2 dependence of the subtractionfunction then will improve our understanding of fundamental sub–atomic physics.

δmγ Source
0.76(30) [289]
1.30(50) [287]
1.04(35) [290]

Table 8.1: Theoretical determinations of the electromagnetic self energy contributionto the proton–neutron mass difference. These are the long standing Cottingham self
energy based calculation [289] and proposed modern improvement [287], as well asinference from δmmu−md [290].
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Figure 8.1: The Cottingham self energy, which can be related via dispersion relation tothe Compton amplitude subtraction function.
8.3 Muonic Hydrogen Lamb Shift

From the difference in binding energy between the 2P and 2S states of hydrogen; the Lamb shift[291] can be used to infer the proton charge radius. Using lepton scattering experiments theroot–mean–square proton charge radius can be determined, however the values obtained bydifferent leptons are not consistent. The value determined from eH Lamb shifts [292] averagedfrom multiple sources is √〈
r2
p

〉
= 0.8768(69) fm. (8.11)

As the Born radius of lepton orbits are inversely proportional to their mass, a muon in 2P and 2Sorbit much closer to the atom than an electron. Hence 2P and 2S are more sensitive to the finitesize of the proton when the electron is replaced by a muon. Such measurements have recentlybecome feasible [293] and yield a charge radius of√〈
r2
p

〉
= 0.84184(67) fm. (8.12)

This muonic Lamb shift differs by about 5 standard deviations from the electron measurement.One of the inputs into the determination in muonic hydrogen is two photon exchange [294], suchdetermination uses analysis that requires knowledge of pole contributions toF1 towrite the Bornterm in terms of vector boson form factors and subtract it from the Compton amplitude [269].Thus for the same reason as for Cottingham self energy, further understanding of the propertiesof the subtraction function are needed.

8.4 Lattice Integral Discretisation

In §7.1.3we examined purely–local, purely–conserved and interference vector currents a showedthey were statistically equivalent after subtraction for ω < 1 (Figure 7.4). As the subtractionfunction, is a short distance function, it may be more sensitive to discretisation. The differentimplementation of the vector current have different short distance structure, so by examiningthese we can improve our understanding of the continuum limit.Recall the second FHT in partial Hilbert form
∂2EX,~p
∂λi∂λj

∣∣∣∣
λλλ=~0

= −
〈
X, ~p

∣∣∫ d4y
(
ei~q·~y + e−i~q·~y

)
T {Ji(y)Jj(0)}

∣∣X, ~p〉
0

2EX,~p
. (4.97)

On the lattice the continuum integral will be turned into a discrete sum, meaning the weightof the y4 = 0 term in the integral does not represent a set of measure zero. This present new
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term would lead to a contact term that has non–infinitesimal contribution to the second ordermatrix element. This extra term behaves properly in the continuum limit a → 0, as in this limitthe offending term in the integrand will have zero measure, however is still present at finite a.We can gain some insight into this phenomena by looking into the conservation of the vectorcurrent on the lattice. By using Noether current for the discrete symmetries of QCD on thelattice the conserved vector current can also be constructed (see §5.2.2), which then does notrequire renormalisation. By comparing local and conserved vector currents, some insights intothe contact term can be inferred.The local (non–conserved) vector operator can be improved using a Symanzik scheme in thesame manner as §3.2.4. From this perspective at leading order in a the breaking of conservationcan be thought of as a derivative, which we consider in terms of an improved local current V imp

µwhich has form [295]
V imp
µ := (1 + amqc0)V loc

µ − 1

2
ac1qDµq +

1

2
aic2∂λ(qσµλq). (8.13)

Through careful choice of c0, c1 and c2 this allows the cancellation ofO(a) errors. Conversely thisallows us to look at the interplay of two V loc
µ current insertions. Neglecting the c2 component,the interplay of two different currents would look like the derivative term qDµq interacting with

qγµq of the other current, introducing an artefact into our calculation, a contact term.The presence of contact term for interference current is not unique to the second order FHT,in Hadron Vacuum Polarisation (HVP) this term is present as well [296]. In HVP there are variousways to remove this term, one of which removes the contact term by constructing a projectiononto the conserved component of your matrix element [296]. Another way of removing thecontact term is to use a mixture of the lattice local and conserved currents. The local current
V loc
µ (n) (§5.2.1) is as the name suggests an operator which lives on lattice site n, whereas theconserved current V con

µ (n) (§5.2.2) effectively lives on lattice site n+ 1
2 µ̂. Thus the contact termshould not be present for the interference current.We can take advantage of this in our technique, both the conserved and local vector currentsare implementable using the FHT and so it is possible to construct the interference of them.The interference current has one further improvement over the conserved current, the explicitcontact term due to the non–zero second order shift in the action, is also not present. We haveof course seen the interference current already in subtracted form Figure 7.4, where each of themethods provide consistent results, once subtracted. This naturally predicts that a discrepancyfound in the Compton amplitude is independent of ω and so our once subtracted dispersionrelationship is valid without any changes. The question still remains what level of contributionthese contact terms have to the FHT extracted result in our subtraction function. By utilising thethree different vector current combinations, we should be able to infer more about presence ofany contact term.

8.5 Lattice Results

We have already shown the method to extract results for T1

(
ω,Q2

)
− T1

(
0, Q2

) in §7. In thissection we focus on the subset ω = 0, from our simulations Table 7.2.Figure 8.2 shows the subtraction function for pure V loc
3 currents for different flavour com-binations. The FHT is capable of extracting the subtraction function for an extraordinarily largerange of Q2, both very close to zero using larger lattice volumes as well as out to approximately

Q2 = 16GeV 2. We observe differing behaviour between the different flavour combinations. The
uu and dd flavours both rapidly decrease at smallQ2, however dip in uu is preceded by a suddenrise. The ud combination rapidly approaches zero as Q2 increases.We have attempted to look at the lattice spacing and volume dependence of the Compton am-plitude in §7.1.3, §7.2.2, §7.3 and §7.4, however no clean comparisons were possible. Here how-ever, as we have so manyQ2 values and the trends, especially for the ud term are so clean we can
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Figure 8.2: The subtraction function for the Compton amplitude structure function
T1

(
ω = 0, Q2

) for V loc
3 against Q2 for a variety of flavour combinations.

compare two different lattices, with differing spacing and volume side by side. Figure 8.2 showsno significant deviation except for a small shift in the ud component. Since this term stronglytends to zero we can be confident that there are no significant volume effects at larger Q2 andonly a small effect at smaller Q2.Neither the uu, dd or uu − dd combinations vanish as 1
Q2 as predicted by (8.2), instead are

approximately flat for Q2 & 3 GeV 2, which suggest a fixed pole term is present. This fixed polewould cause a quadratic divergence in theCottingham formulawith no obvious SMoperators avail-able to renormalise. However other possibilities due to discretisation and contact terms have tobe explored. We fill now look at the difference in the subtraction function between our differentvector operators because this may offer some insight into possible discretisation artefacts.
8.5.1 Vector Operator Subtraction Functions Comparison

Earlier we discussed the nuances of Q2–independent contributions to the subtraction function§8.4,whichwenowdiscuss usingmultiple different operators; {Jµ, Jν} of{V loc
3 , V loc

3

}, {V con
3 , V con

3 }and {V loc
3 , V con

3

}. Figure 8.3 shows the difference between operators for the proton subtractionfunctions. We see a large differences in behaviour between them, most easily seen at Q2 = 4.64
GeV 2. As the ω–dependent part of the Compton amplitude remains rather insensitive to theoperator form, we expect that any contact terms that are present to also be ω–independent.The pure local and pure conserved vector currents differ at largerQ2 by an apparent constantoffset. They are expected to be differ as the pure conserved vector current has an extra explicitcontact term introduced by the non–zero second order action shift (5.12), the correction ofwhichhas not yet been performed. The pure local and interference vector currents also seem to differat larger Q2 by a constant. The interference of currents does not have a contact term, so the
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Figure 8.3: Operator comparison of the subtraction function for the Compton ampli-tude structure function T p1
(
ω = 0, Q2

) against Q2. Note that the conserved current
{V con

3 , V con
3 } has not had the second order action shift term (5.12) removed and sostrictly isn’t purely T p1 (ω = 0, Q2

).
difference should be the local contact term. This suggests that the purely local and probably thepurely conserved currents contains contact terms arising from the discretisation.As contact terms involve only one quark line the ud component of the subtraction functionis not sensitive to them. Figure 8.4 shows no difference between operators for the ud flavourcombination. Hence we conclude that the difference between the operators likely stems fromcontact terms.The largeQ2 behaviour is important for the presence or lack of fixed pole like terms discussedearlier. As the interference of currents also does not exhibit asymptotic 1

Q2 behaviour, there is stilla possible fixed pole. However the difference between the different discretisation structure of thecurrents suggests that this observable could be highly sensitive to the lattice cut–off, warrantinga more careful a → 0 study to see if it persists before drawing conclusions. To resolve this thecontact and seagull terms present in the pure local and conserved currents need to be calculated,to conclude whether their differences do in fact come from contact terms in the subtractionfunction. Finally the interference of currents needs to be studied for volume and lattice spacingdependence. Resolving these issues would allow one to conclude whether there is a fixed polein the subtraction function.
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) against Q2.
8.6 Summary and Outlook

In this chapter we have presented further insight into the nature of the subtraction function.Presented was an ab initio calculation of the Compton amplitude subtraction for the first time,with possible remaining unresolved lattice artefacts, a fixed pole or a mixture thereof. Multipleoperators were examined and a prescription presented for resolving this question, including a useof a interference currents, the current most free of these artefacts. This sets the stage for futurecalculations, offering the potential to resolve the long standing question of whether a fixed poleis present in the Compton amplitude.



Chapter 9

Gluons

As one of the fundamental building blocks of hadrons, gluons play an important role in the emer-gent behaviour of QCD. Just as we study the quark structure of hadrons, we also need to un-derstand the gluon structure of hadrons. While many of the dynamics of gluons can be inferredfrom quark form factors, we can look at gluons directly from the lense of gluonic GFFs or morespecifically the EMT (n = 2 GFFs in the terminology of §2.2.1).The coupling of gravity and matter is described by the EMT, which allows us to probe thefundamental properties of such matter [297]; mass, spin and the so called D–term, which charac-terises the stresses inside the hadron. As a consequence, understanding of the EMT is importantfor a wide array of phenomena, from matter in strong gravitational fields to hard scattering pro-cesses and exotic matter.On the lattice the extraction of matrix elements using gluonic operators has been plagued bytheir sensitivity to short range gauge noise. Nevertheless some earlier lattice determinations of
Q2 6= 0 gluonic operators are available [257, 298]. By utilising smoothing to reduce such noise,it has become possible to extract gluonic matrix elements at larger Q2 [299–303].

9.1 Energy Momentum Tensor

In §2.2.1 we introduced GFFs and noted that (2.33) with n = 2 is the operator for the EMT (2.39).Recall the EMT for a nucleon N〈
N, ~p ′

∣∣∣Oq/gµν

∣∣∣N, ~p〉 = u
(
p′
) [
γ{µ pν}A

q/g
20

(
Q2
)

+
iqασα{µPν}

2mp
B
q/g
20

(
Q2
)

+
qµqν
mp

C
q/g
20

(
Q2
)]
u(p).

(2.42)This decomposition is just one of the decompositions commonly used, the other being〈
N, ~p ′

∣∣∣Oq/gµν

∣∣∣N, ~p〉 = u
(
p′
) [
PµPνM

q/g
2

(
Q2
)

+
iqασα{µPν}

4m
Jq/g

(
Q2
)

+
qµqν
m

d
q/g
1

(
Q2
)]
u(p).

(9.1)The relationship between these two forms can be derived from the Euclidean Gordon identity(C.96) and are related by
M q/g = A

q/g
20 (9.2)

Jq/g =
1

2

(
A
q/g
20 +B

q/g
20

) (9.3)
d
q/g
1 = C

q/g
20 . (9.4)

This latter representation is commonly chosen for physical interpretation of each of the GFFs.The first of which is M (A20), which at Q2 = 0 is the momentum fraction. The slope of Mencodes the gravitational radius, an interesting open question in physics is whether the gluonor quark radius is larger. The size of such radii are important to the dynamics of the binding of
117
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atoms (see for instance [304] and references therein). In addition the axis intercept determinesthe gluon or quark momentum fractions.The second term, the spin form factor Jq/g , encodes the spin distribution, which at Q2 = 0

gives the quark and gluon contributions to the spin of the proton. The corresponding GFF Bq/g
20is known as the anomalous gravitomagnetic moment, which is a measure of how much the spincontribution proportions differs from the momentum fraction ones. Some hints exists that thisterm is non–zero [257].The third term d1 (C20), often called the D term [297], encodes ‘pressure’ inside the proton[305]. The combination of proton and gluons provide information of strong shear and pressuredistributions inside the nucleon.For the individual quark and gluon EMT components, there is an additional form factor inboth (2.42) and (9.1), a gµν term. For the (2.42) decomposition this becomes〈

p, ~p ′
∣∣∣Oq/gµν

∣∣∣p, ~p〉 = u
(
p′
) [
γ{µ pν}A

q/g
20

(
Q2
)

+
iqασα{µPν}

2m
B
q/g
20

(
Q2
)

+
qµqν − q2gµν

m
C
q/g
20

(
Q2
)

+mgµνC
q/g(

Q2
)]
u(p)

(9.5)

satisfying
C
g(
Q2
)

+
∑
q

C
q(
Q2
)

= 0. (9.6)
However due to the breaking of the continuum rotational group, no trace terms are extractablewith our technique so we shall omit it, for a discussion on this term see [297].
9.1.1 Sum Rules

We can relate the EMT GFFs to sum rules formally through use of GPDs. The second Mellinmoments of the GPDs defined in §2.4 can be related to the GFFs by (2.88) and (2.89)∫ 1

−1
dxxH

(
x, ξ,Q2

)
= A20

(
Q2
)

+ (2ξ)2C2

(
Q2
) (9.7)∫ 1

−1
dxxE

(
x, ξ,Q2

)
= B20

(
Q2
)
− (2ξ)2C2

(
Q2
) (9.8)

which at Q2 = 0 can be related to the parton spin contributions [306]
Jq/g =

1

2

[
A
q/g
20 (0) +B

q/g
20 (0)

] (9.9)
1

2
= Jq + Jg. (9.10)

Note the use of spin contribution Jq/g and Q2 dependent spin form factor Jq/g(Q2
), which are

related by Jq/g = Jq/g(0). In combination with (2.43), (9.9) predicts∑
f

B
qf
20 +Bg

20 = 0. (9.11)
If one of theB20 is zero, then this wouldmean that the fraction ofmomentum is the same fractionof contribution to the proton spin and conversely the deviation from this a measure of dynamicaleffects inside the hadron affecting the spin contribution.To understand (9.10) we need to decompose the spin contribution to quark and gluonic parts.The first decomposition we will look at is the Ji decomposition [307]

1

2
=

1

2
∆Σ +

∑
q

Lq + Jg (9.12)
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where ∆Σ is the contribution to the spin of the proton from the spin of the quarks, Lq the con-tribution to the spin due to the orbital angular momentum of the quarks and Jg is the remainingcontributions due to the gluons defined above. The Ji decomposition is gauge invariant.The second decomposition is the Jaffe–Manohar decomposition [308]

1

2
=

1

2
∆Σ +

∑
q

Lq + ∆G+ Lg (9.13)
whereLq/g are the light cone orbital angular momenta of quarks and gluons respectively, and∆Gis the contribution to spin due to gluon spin. Unlike the Ji decomposition, this decomposition is notgauge invariant. This has lead to another light–conemethodwith partonic picture [309, 310], thatspecifies a preferred direction and argue that experiments are performed at large boost, makingsuch a preferred direction fairly natural.On the lattice greats strides have been taken to calculate all these components. The quarkspin contributions can be calculated with three point functionmethods (see for instance [64]) butrecently methods to extract the others have been published. Both Ji and Jaffe–Manohar quarkorbital angular momenta are extractable using the same lattice technique [311] by varying theshape of used gluon ‘staple’. Using a gluon spin density operator [312], ∆G has also been calcu-lated [313]. This means that if Lg can be extracted directly from the lattice, both spin sum rulescan be verified ab initio.Experimentally ∆Σ has been measured [314, 315], providing around a third of the total spinof the proton, often referred to as the ‘spin problem’ [316]. The other contributions, includingthe contributions from the gluons are less well determined [317]. Proposals for experiments atboth JLab and BNL are under way for future experiments for determining the gluon contributionsmore precisely [304].The conservation of the EMT implies that the total sum of all quark and gluon componentsto a GFF is scale invariant. Individually however the quark and gluon GFFs have renormalisationscale dependence µ which we only highlight when necessary.

9.2 Lattice Method

To calculate the gluonic EMT, we need the corresponding gluon operator
Tµν = trc [GµαG

α
ν ] . (9.14)

On the lattice our continuous rotational symmetry group O(4) is broken into the hypercubicgroupH(4), so to avoid mixing we restrict to the components of (9.14) that transform irreduciblyunder H(4). Two such operator combinations are
O1i = T4i (9.15)
O2 = T44 −

1

3
Tii (9.16)

where in the second line summation convention is used over the spatial indices. These operatorshave interpretations as gluonic equivalents of electromagnetic fields,O1i is the gluonic (E ×B)iand O2 the gluonic (B2 − E2
) where the sign of the latter comes from Euclidianisation. These

two operators correspond to v2,a and v2,b in [183, 238, 239] or τ (6)
3 and τ (3)

1 in [318].Due to the integrated gluonic degrees of freedoms, the resulting three–point correlators(3.74) are constructed source–by–source on each configuration
G

(3)
χ,O(x, y) = G(2)

χ (x)O(y) (9.17)
which means that the momentum dependent three–point function (3.76) is then

G
(3)
χ,O
(
x4, y4, ~p

′, ~q
)

=

∫
d3ye−i~q·~yG(2)

χ

(
x4, ~p

′)O(y). (9.18)
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As a consequence three–point functions can be generated from lattice two point functions with-out need for additional inversions. This means that calculating all combinations of y4, ~p ′ and ~q arerelatively cheap to compute. The three–point functions are then vacuum subtracted to improvesignal 〈
Ĝ(3)

χ,O
(
x4, y4, ~p

′, ~q
)〉

=
〈
G

(3)
χ,O
(
x4, y4, ~p

′, ~q
)〉
−
〈
G(2)
χ

(
x4, ~p

′)〉〈O(y4, ~q)〉. (9.19)
The gluon operator (9.14) is implemented using the Clover staple (3.48), with gradient flow [319]applied to the gauge links in the staple to a flow–time 5 in lattice units in steps sizes of 0.01.
9.2.1 Feynman–Hellmann Re–weighting

Prior work has been done using the FHT to calculate the forward gluon matrix elements [183].We now briefly discuss a new FHT based method.It is known that re–weighting Monte Carlo samples [320, 321] can effectively generate sam-ples with a different action on the lattice [322]. If one has some small perturbation in action
S(0)→ S(λ) then one can re–weight existing path integral expectation values by

〈O(λ)〉 =
1〈

e−(S(λ)−S(0))
〉〈O(0)e−(S(λ)−S(0))

〉 (9.20)
Initially it was attempted to use reweighting in terms of varying small λO as the reweighting termand using the FHT to get the EMT. This method has one problem for the gluon operator. Dueto the decomposition (9.17), any FHT calculation is forced to be equivalent to the summationmethod. Consider operator two–point correlator operator O = G

(2)
χ (x) = χ(x)χ†(0) and actionmodification

S(λ) = S(0) + λ

∫ x4

0
dy4

∫
d3yT4i(y) (9.21)

then the resulting operator becomes〈
G

(2)
χλ(x)

〉
=

1〈
e−λ

∫ x4
0 dy4

∫
d3yT4i(y)

〉〈G(2)
χ (x)e−λ

∫ x4
0 dy4

∫
d3yT4i(y)

〉
. (9.22)

For very small λ and neglecting the λ dependence of the first term, this becomes〈
G

(2)
χλ(x)

〉
≈
〈
G(2)
χ (x)

〉
− λ
〈
G(2)
χ (x)

∫ x4

0
dy4

∫
d3yT4i(y)

〉
(9.23)

the derivative of the operator just forming the summation method. This method would still berelevant for non–gluonic operators to calculate other disconnected matrix elements, but we shalllook at regular three–point methods for our gluon calculation.
9.2.2 Form Factors

In FHT calculations the matrix element 〈X, ~p|O|X, ~p〉 is determine directly, however for regularthree–point functions we extract terms of form
F3(Γ, J) := Γαβ

〈
Ω
∣∣∣χβ∣∣∣X, ~p〉〈X, ~p∣∣∣O∣∣∣X, ~p〉〈X, ~p∣∣∣χ†α∣∣∣Ω〉 (9.24)

some appropriate projector Γ an element of the Clifford algebra.
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These trace terms need to be taken into account whenmatching onto the GFFs. For polarised

T4i we have
F3

(
Γ+Γŝ, 2T4i

)
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−iP4
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· ŝ+

(
E′ +m

)(
~p× ~p ′

)
· ŝ
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B20

(
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+
{q4qi
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(
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)
· ŝ
}
C20

(
Q2
)

(9.25)
where Γ+Γŝ = 1

2(I + γ4)i~γ · ŝγ5 to project onto the positive parity state with spin vector ŝ. Similarforms can be calculated for other operator and unpolarised cases, and are presented in §D.The polarisation vector ŝ is then chosen for the polarised projected three–point functions.We define
F3

(
Γ+Γŝ,O

)
=: aŝA20 + bŝB20 + cŝC20 (9.26)

and unit vectors î, ĵ, k̂ in the three spatial direction. For results satisfying ~p× ~p ′ = ~0 we use
ŝ =

(aî, aĵ , ak̂)∣∣∣(aî, aĵ , ak̂)∣∣∣ (9.27)

and for ~p× ~p ′ 6= ~0 use
ŝ =

~p× ~p
|~p× ~p| (9.28)

or
ŝ = P̂ . (9.29)

The constructed three–point function (9.19) has dependence in fit on both sink and operatorinsertion time where we need x4 >> y4 >> 0 sufficiently apart to remove excited state effects.Just as for two–point functions we form an effective mass to guide fitting ranges, we constructa ratio that once excited states are suppressed is constant in x4 and y4. While many such ratiosexist we use
Rχ,O

(
x4, y4, ~p

′, ~q
)

=
Ĝ(3)

χ,O(x4, y4, ~p
′, ~q)

G
(2)
χ (x4, ~p ′)

√√√√G
(2)
χ (x4 − y4, ~p)G

(2)
χ (y4, ~p ′)G

(2)
χ (x4, ~p ′)

G
(2)
χ (x4 − y4, ~p ′)G

(2)
χ (y4, ~p)G

(2)
χ (y4, ~p)

(9.30)

from [64], which has the required properties. As the construction of newG
(3)
χ,O just requires multi-plication by two–point correlators (9.19), unlike normalmethodswe can construct all source–sinkand operator insertion time combinations for all ~p ′ and ~q at no significant additional cost, exceptfor the storage space required.

9.3 Results

A quenched lattice ensemble was generated for this project, with details summarised in Table E.1.Two–point correlators were generatedwith (κl, κs) = 0.132which corresponds tomπ = 754.8(3),with Ns = 20000 random sources evenly distributed over Ncfg = 2000 of the configurations,which corresponds to Ns/cfg = 10.0.Ratios with the same combinations of the GFFs were averaged before fitting. One such athree–point function fit is presented in Figure 9.1 and Figure 9.2, whose simultaneously varying
x4 and y4 allows us to verify control of excited states.
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Fits were chosen by choosing first minimum operator insertion time y4, then the source–sinkseparation range x4 was picked for this operator insertion time (y4/a = 6 in Figure 9.2). Themaximum operator insertion time for minimum and maximum source–sink separation were thenpicked (x4/a of 15 and 21 in Figure 9.1). The maximum operator insertion times for source–sinkseparation in-between source–sink minima and maxima are then taken to be linear interpolationof this. This forms a discrete approximation to a right trapezoid. Finally these fits are checked forconsistency, and if necessary y4 was changed and the process repeated again. In the case wereno consistent fitting range was found, the data was discarded.A total of 157 independent ratios were extracted, Q2 ranging from 0.0 to 1.1 GeV 2.
9.3.1 Quark Comparison

To interpret the gluon results, we need the quark GFFs as well. Regular three–point functiontechniques were used to obtain the EMT GFFs for the quarks in [323]. Using the operator (2.33),these results for the form factor using sequential sources are shown in Figure 9.3. Note thatBu+d
20is small whileBu−d

20 is not, this implies that the spin contribution of each of the quarks differs fromtheir proportional momentum fraction. On the other hand theC20 contributions from each of thequarks are approximately equal, implying that they feel the same shear forces within the nucleon.Dipole fits
fdip

(
Q2
)

=
A

1 + Q2

Λ2

(9.31)
are then performed on each of these GFFs except for Cu−d20 and Bu+d

20 , which are approximatelyzero. The corresponding unrenormalised momentum fraction extracted from this is
〈x〉u+d = 0.590(61). (9.32)

9.3.2 Gluon Momentum Fraction and Renormalisation

While the un–flowed gluon renormalisation factor Zg has been calculated for the lattice for both
O1i and O2 [183, 245], the flow changes this factor.One could calculate this factor from first principles, but there is a subtlety. As the gluon op-erator has been calculated using flowed links, it is unclear whether to use flowed links in theoperator only or for every link in the action as well. Instead we shall use the momentum sum ruleto determine Zg for this flow time.We take the renormalisation prescription of [183], where the ‘bare’ parameters are writtenin terms of the extracted lattice results as

〈x〉g,bare = Zg〈x〉g (9.33)
〈x〉q,bare = Zq〈x〉q (9.34)

where 〈x〉g,bare and 〈x〉q,bare satisfy the momentum sum rule (2.43) to O(a2
). These results canbe changed toMS scheme at scale µ, which for quenched lattices are related by

〈x〉g,MS
µ = 〈x〉g,bare +

(
1− ZMS

µ,bare qq

)
〈x〉q,bare (9.35)

〈x〉q,MS
µ = ZMS

µ,bare qq〈x〉q,bare (9.36)
which conserve the momentum sum rule. The quark renormalisation factors are taken to be [183,245]

Zq = 1.0(1) (9.37)
ZMS
µ,bare qq = 1.06(1). (9.38)
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Figure 9.1: An example of a gluon three–point function fit for Q2 = 0 and ~p2 = 0. Thedifferent slices shown vary the sink location x4 and the x axis is y4. For the same plotwith x4 and y4 flipped see Figure 9.2. The fit was chosen as described in the text, andthe value of the fit corresponds to the value of A20(0).
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Figure 9.2: The same plot as Figure 9.1, with the slices and x axis flipped, now the slicesdiffer by y4 and the x axis is x4.
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Figure 9.3: The quark EMT GFFs calculated on the same lattice, using conventionalthree–point function techniques. Dipole fits are shown for each GFF except for Bu+d

20and Cu−d20 . The uncertainty on many points is too small to see by eye.
As we are using the momentum sum rule to fix the renormalisation we fix 〈x〉g,bare from (9.32)

〈x〉g,bare = 0.410(61). (9.39)
In theMS scheme at µ = 2 GeV the quark and gluon momentum fractions then are

〈x〉g,MS
µ=2 GeV = 0.374(65) (9.40)

〈x〉u+d,MS
µ=2 GeV = 0.626(65). (9.41)

consistent with the other method in [183] performed on lattices generated with the same param-eters. The gluon momentum fraction is smaller than the continuum counterpart [324], howeverthese calculations have been performed on a quenched lattice with very large quark masses, sothis is to be expected.We now calculate the renormalisation constants from our data. As the two operators in useare in different representations of H(4) it is not necessary for the renormalisation factors to bethe same, however they are expected to be close as they must both tend to 1 in the continuum.The lattice momentum fractions calculated from the data are
〈x〉gO1i

= 0.328(45) (9.42)
〈x〉gO2

= 0.339(27) (9.43)
which differ from [183] due to the Wilson flow. Using the momentum sum rule one can thencalculate the bare renormalisation factors for each operator

ZgO1i
= 1.27(27) (9.44)

ZgO2
= 1.22(20). (9.45)

The consistency between different representations is good, as they need to converge in the con-tinuum. All of the remaining results in the chapter are presented in ‘bare’ form.
9.3.3 Spin Form Factor Jg(Q2)

The spin GFF can be examined directly from (9.1). Using a polarised projector for kinematicssatisfying ~p× ~p ′ = ~0, for the operator O1i, Jg(Q2
) is accessed directly. As the condition is easilysatisfied for almost every possible Q2 except Q2 = 0, many points have been extracted. Theresulting form factor is shown in Figure 9.4, the dipole fit (9.31) gives coefficients

A = 0.255(73) (9.46)
aΛ = 0.503(43) (9.47)
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Figure 9.4: The spin form factor Jg(Q2
) as extracted using polarised projector for kine-matics satisfying ~p× ~p ′ = 0 for operator O1i, which fix the three–point functions to bepurely Jg(Q2

).
The precision in the extracted Λ is quite clean, which provides a cleaner picture into the spindensity distribution inside the nucleon. Using Jg(0) and the gluon momentum fraction predicts

B20(0) = 2Jg(0)−Ag20(0) = 0.10(12). (9.48)
This is consistent with zero, hence there is no apparent deviation from J

(
Q2
)

= 1
2A20

(
Q2
).

9.3.4 Separation of Ag20(Q
2) and Bg

20(Q
2)

As almost every non–zeroQ2 point has extractable Jg(Q2
), each of these only require one moreindependent point for operator O1i with kinematics satisfying qi = 0 in order to separate J into

A20 and B20. The second condition, on the momentum transfer ensures zero coefficient for C20.In addition we take theQ2 = 0 points from both operators, which correspond toAg20(0). EachQ2

where this decomposition is possible is shown in Figure 9.5.There are fewer points than Figure 9.4, this is because the requirement is more stringent onthe possible momenta involved. Nevertheless the Ag20

(
Q2
) extraction is clean, but the Bg

20

(
Q2
)

extraction remains noisy, although consistent with zero. To this end a dipole is fit to Ag20

(
Q2
)

giving
A = 0.356(33) (9.49)
aΛ = 0.600(43). (9.50)

No non–zero signal was evident in the Bg
20

(
Q2
) signal. While we haven’t ruled out a small

Bg
20, a very precise simulation would have to be performed to determine this. With no indicationof how small this term would be we treat it as equivalent to zero.
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Figure 9.5: The gluon spinGFF decomposed into gluonmomentum form factorAg20

(
Q2
)

(blue) and gluonic anomalous gravitomagnetic form factor Bg
20

(
Q2
) (orange), as ex-tracted using polarised projected operator O1i with kinematic satisfying ~p × ~p ′ = 0or qi = 0 as well as forward results from both operators at Q2 = 0.

9.3.5 Full Decomposition: Ag20(Q
2), Bg

20(Q
2) and Cg

20(Q
2)

To extract C20 as well we need three independent points at fixed Q2. By utilising all the dataavailable, the Q2 where it is possible to extract each GFF are shown in Figure 9.6, with dipole fitfor Ag20

(
Q2
).The dipole fit on Ag20

(
Q2
) gives

A = 0.369(31) (9.51)
aΛ = 0.602(33). (9.52)

The extra data points have not been able to increase the precision of axis interceptA from §9.3.4,as this point is mainly fixed by the Q2 = 0 point, common between these two. However the Λterm is improved in precision slightly, whichwe shall use to compare the gluonic radii of the quarkand gluon GFFs in §9.3.6.Despite the new data points in the extraction, the anomalous gravitomagnetic moment is stillconsistent with zero.Finally the D term Cg20

(
Q2
) was not yet extractable with these statistics.

9.3.6 Gravitational Radius Comparison

One can relate A20 to the gravitational radii via the first derivative of the form factor [64], i.e. Λin (9.31). We can determine relative radii visually alone, as sharper slopes imply larger radii. Byplotting the Q2 evolution of the dipole fits without the A factor we can observe this difference,from both data and fit, shown in Figure 9.7. Clearly the gluonic form factor drops much fasterwhich implies it’s gravitational radius is larger.
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Figure 9.6: The full EMT GFF extraction, decomposed from the full data set, with
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(
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) (blue), Bg

20

(
Q2
) (orange) and Cg20

(
Q2
) (red).

Note the much larger than physical masses, the heavier quarks have natural suppression ontheir radii. As one heads towards the physical limit, one expects the gravitational radius of thequark to increase. This method will then with sufficient statistics be able to determine which ofthe radii are larger.
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9.4 Summary and Outlook

We showed how one can use Wilson flow to calculate the EMT GFFs on the lattice. Throughcareful choice of ~q and ŝ the spin form factor was extracted directly. Using progressively moreof data, first Ag20 and Bg
20 were separated, before extracting Cg20 as well with the full data set. Nodeviation was found from Jg/q = 1

2A
g/q
20 , implying the spin contributions are determined entirelyby momentum fractions. For these statistics no Cg20 signal was extractable.Finally these gluon results were compared to the quark contributions to the EMT and showedthat the gluon gravitational radius was larger than it’s quark counterpart. Although this was atlarger than physical masses, but sets the stage for future physical mass calculations.
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Chapter 10

Summary and Outlook

Studies in hadron structure are at the forefront of the fundamental processes that underpin thestructure of all matter in the universe. Lattice QCD is at the cutting edge of hadronic studies,with many observables now calculated at the percent level. Other quantities however, are not aswell understood through the lens of lattice QCD, but work is on going to bridge these gaps. Inthis work we have shown through the use of the FHT how to calculate hadron matrix elementsinvolving two external currents, normally extremely difficult on the lattice. Additionally gluonicspin and momentum structures were studied. as well as gluonic observables.The cost of lattice calculations prohibits the breadth of studies with limited computing re-sources. In our proof of the FHT we presented two second order proofs, usable with lattice QCDthat provide a new way of calculating hadron matrix elements with two currents on the lattice.Furthermore improvements to the FHT were shown, improving control of excited state system-atics through the use of ratios and dramatically reducing computational costs through λ tuningand initial inverter conditions. This new FHT based tool-set allows us to examine new areas ofthe QCD from first principles for the first time.Calculations of transition form factors are an interesting recent addition to the capabilitiesof lattice QCD. As a consequence of the parameters of the lattices used we are able to use theFHT approximate nucleon to delta transition form factors. With this simple approach the Adler
transition form factor was approximated on two different lattice volumes to be ∣∣∣CA5 (0)243×48

∣∣∣ =

0.748(41) and ∣∣∣CA5 (0)323×48
∣∣∣ = 0.803(67), consistent with other lattice data and slightly smaller

but still consistent with current experimental determinations.The forward Compton amplitude in the unphysical region is related to the hadron tensor interms of a sum of moments of the structure functions, which historically have been plaguedby mixing, making extraction only possible for the lowest lying moments. We used the FHT tocalculate the Compton amplitude T1

(
ω,Q2

), for ω < 1 and Q2 between 0.72 and 15.85 GeV 2.The subtracted dispersion relationship was shown to be insensitive to the vector operator form.From this data, moments were extracted for the nucleon. These and related extensions offer thepossibility to further constrain the models such as two–photon exchange and �γZ calculations.In addition we showed the ω dependence of higher twist components of the structure function.The subtraction function for the Compton amplitude has important implications for hadronstructure. One open question remaining is the presence of a fixed–pole term, a term indepen-dent of Q2. While it is not possible with current simulation data to determine whether a fixedpole is present, future simulations have been outlined to improve on this investigation. Withthis question resolved, these results could be used to calculate or challenge the existence of the
Cottingham formula.The EMT characterises the mass, spin and ‘pressure’ inside a hadron. Gluonic componentsare difficult to calculate on the lattice due to the short distance fluctuations present in the gaugelinks. Using gradient flow these operators were extracted, presenting the Q2 dependency of theEMT GFFs. A direct calculation of the spin density Jg(Q2

) was also achieved and showed no
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deviation from Jg = 1
2A

g
20. The EMT gluonic radius was determined to be greater than it’s quarkcounterpart, albeit on a quenched lattice with large quark masses.The study of the Compton amplitude in this work has been primarily limited to T1

(
ω,Q2

), withthe other structure functions extractable in principle. Momentum smearing could improve the ex-traction of the ω dependence of T1

(
ω,Q2

), and allow determination of T2

(
ω,Q2

). The structurefunction T3

(
ω,Q2

) requires the use of mixed ‘cosine’ and ‘sin’ momentum combinations, ratherthan the pure ‘cosine’ combination shown here, and can be used to improve model calculation ofbox diagrams even further. The method can be further generalised to polarised or non–forwardCompton amplitude and efforts are already under way to use the latter to extract GPDs. Thefuture of FHT has exciting potential, both for our understanding of QCD and for it’s impact onexperiments.



Appendix A

Three and Four–Point Correlator
Definitions

A.1 Three–point Correlator

The three–point correlator we will define differs from that of a two–point correlator by an extraoperator applied in between the source and sink. Like the two–point case, it is easily shown thattranslational invariance implies the three–point correlator is only sensitive to separation betweenoperators, not their absolute positions. Hence we have defined the three–point correlator
G

(3)
χ,J(x, y) :=

〈
χ(x)J(y)χ†(0)

〉
. (3.74)

We have restricted ourselves to the temporal ordering x4 > y4 > 0 for simplicity. As with thetwo–point correlator, we insert a complete set of states in between each operator
G

(3)
χ,J(x, y) =

∑
X,Y

∫
d3k1

(2π)3

∫
d3k2

(2π)3

× 1

2E
X,~k1

1

2E
Y,~k2

〈
Ω
∣∣∣χ(x)

∣∣∣X,~k1

〉〈
X,~k1

∣∣∣J(y)
∣∣∣Y,~k2

〉〈
Y,~k2

∣∣∣χ†(0)
∣∣∣Ω〉 (A.1)

and use translational invariance to simplify to
G

(3)
χ,J(x, y) =

∑
X,Y

∫
d3k1

(2π)3

∫
d3k2

(2π)3 e
ik1·xei(k2−k1)·yg

(3)

χJχ†

[
X,~k1;Y,~k2; 0, 0

] (A.2)
where
g

(3)

χJχ†

[
X,~k1;Y,~k2;x, y

]
:=

1

2E
X,~k1

1

2E
Y,~k2

〈
Ω
∣∣∣χ(x)

∣∣∣X,~k1

〉〈
X,~k1

∣∣∣J(y)
∣∣∣Y,~k2

〉〈
Y,~k2

∣∣∣χ†(0)
∣∣∣Ω〉.
(3.75)and we often use shorthand

g
(3)

χJχ†

[
X,~k1;Y,~k2

]
:= g

(3)

χJχ†

[
X,~k1;Y,~k2; 0, 0

]
. (A.3)

The momentum space version then is
G

(3)
χ,J(x4, y4, ~p, ~q) =

∫
d3x

∫
d3ye−i~p·~xei~q·~yG

(3)
χ,J(x, y) (3.76)

=
∑
X,Y

e−EX,~px4e−(EY,(~p−~q)−EX,~p)y4g
(3)

χJχ†
[X, ~p;Y, (~p− ~q); 0, 0] . (3.77)
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In a similar manner to two–point functions in the large x4 and y4 time limit with x4 >> y4 >> 0yields
G

(3)
χ,J(x4, y4, ~p, ~q)→ e−EX,~px4e−(EX,(~p−~q)−EX,~p)y4g

(3)

χJχ†
[X, ~p, Y, (~p− ~q); 0, 0] (A.4)

where X is the lowest energy states for ~p and ~p − ~q with g(3)

χJχ†
6= 0. This gives us a three–point

function which we can use to calculate matrix elements. We use three–point correlators for ourFHT proofs in §4 and directly on the lattice for our gluon calculations §9.

A.2 Four–point Correlator

We look at four–point correlators with two interpolators and two currents. As we see by increas-ing the number of operators in our expectation value, the complexity of the calculations increases.The four–point correlator is defined in position space by
G

(4)
χ,J1,J2

(x, y, z, w) :=
〈
χ(x)J2(y)J1(z)χ†(w)

〉
. (3.78)

Unlike the two and three–point case, we have not redefined our result in terms of separationvariables x−w, y−w and z −w, as this form is useful only to our proof in §4. As before we picktime ordering for our operators x4 > y4 > z4 > w4 and insert complete sets of states
G

(4)
χ,J1,J2

(x, y, z, w) =
∑
X,Y,Z

∫
d3k1

(2π)3

∫
d3k2

(2π)3

∫
d3k3

(2π)3

× g(4)
χ,J1,J2

[
X,~k1;Y,~k2;Z,~k3;x, y, z, w

] (A.5)

where
g

(4)
χ,J1,J2

[
X,~k1;Y,~k2;Z,~k3;x, y, z, w

]
:=

1

2E
X,~k1

1

2E
Y,~k2

1

2E
Z,~k3

×
〈

Ω
∣∣∣χ(x)

∣∣∣X,~k1

〉〈
X,~k1

∣∣∣J2(y)
∣∣∣Y,~k2

〉
×
〈
Y,~k2

∣∣∣J1(z)
∣∣∣Z,~k3

〉〈
Z,~k3

∣∣∣χ†(w)
∣∣∣Ω〉.

(3.79)

Then as before we can use translational invariance
G

(4)
χ,J1,J2

(x, y, z, w) =
∑
X,Y,Z

∫
d3k1

(2π)3

∫
d3k2

(2π)3

∫
d3k3

(2π)3 e
ik1·xei(k2−k1)·yei(k3−k2)·ze−ik3·w

× g(4)
χ,J1,J2

[
X,~k1;Y,~k2;Z,~k3, 0, 0, 0, 0

]
.

(A.6)

The momentum projected form of this function then has three momenta to be specified
G

(4)
χ,J1,J2

(x4, y4, z4, w4, ~p, ~q1, ~q2) =

∫
d3x

∫
d3y

∫
d3ze−i~p·(~x−~w)ei~q2·(~y−~w)ei~q1·(~z−~w)

×G(4)
χ,J1,J2

(x, y, z, w)

(3.80)

where we note the careful choice of momentum projections, which after integration becomes
G

(4)
χ,J1,J2

(x4, y4, z4, w4, ~p, ~q1, ~q2) =
∑
X,Y,Z

e−EX,~p(x4−w4)e−(EY,(~p−~q1)−EX,~p)(y4−w4)

× e−(EY,(~p−~q1−~q2)−EY,(~p−~q1))(z4−w4)

× g(4)
χ,J1,J2

[X, ~p;Y, (~p− ~q1);Y, (~p− ~q1 − ~q2); 0, 0, 0, 0]

(A.7)

As expected we have an expression defined entirely in terms of differences of our temporal vari-ables and momentum.
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Additional Plots

B.1 Compton Amplitude
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Figure B.1: Operator comparison of the subtracted Compton amplitude T dd1

(
ω,Q2

)
−

T dd1

(
0, Q2

) for ~q = (4, 1, 0) for a set of different currents. Note that there is a largedifference in the number of sources between the V loc
3 and the other currents (Table 7.2).
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Figure B.2: Operator comparison of the subtracted Compton amplitude T ud1
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ω,Q2

)
−

T ud1

(
0, Q2

) for ~q = (4, 1, 0) for a set of different currents. Note that there is a largedifference in the number of sources between the V loc
3 and the other currents (Table 7.2).
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Figure B.3: Operator comparison of the subtracted Compton amplitude
T uu−dd1
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) for ~q = (4, 1, 0) for a set of different currents.Note that there is a large difference in the number of sources between the V loc
3 andthe other currents (Table 7.2).
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Figure B.7: The scaling at constant ω of the subtracted Compton amplitude
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Appendix C

Conventions

C.1 Euclidianisation

With our work with Euclidean space path integrals on the lattice we often wish to compare ourresults to those of QFT or GFT in Minkowski space. Here we present the convention used inthe Wick rotation in our work. Our aim is to convert the metric gµν with signature (+,−,−,−)to δµν with signature (+,+,+,+). We note carefully that we have used the metric of signature
(+,−,−,−) as opposed to the one with (−,+,+,+) for all our definitions. We start with a Wickrotation as described in §3.1

xµ(M ) :=
(
x0

(M ), ~x(M )

)
→
(

~x(M ), ix
0
(M )

)
=
(
~x(E ), x

(E )
4

)
=: x(E )

µ (C.1)
x(M )
µ =

(
x0

(M ),−~x(M )

)
→
(
−~x(M ), ix

0
(M )

) (C.2)
and for Dirac matrices

γ(M )
µ :=

(
γ

(M )
0 , ~γ(M )

)
→
(
i~γ(M ), γ

(M )
0

)
=: γ(E )

µ . (C.3)
Explicitly transformations affect vectors in the following way

x
(E )
4 = ix

(M )
0 (C.4)

x
(E )
4 = ix0

(M ) (C.5)
x

(E )
i = −x(M )

i (C.6)
x

(E )
i = xi(M ) (C.7)

for transformation from Minkowski into Euclidean, and
x

(M )
0 = −ix(E )

4 (C.8)
x0

(M ) = −ix(E )
4 (C.9)

x
(M )
i = −x(E )

i (C.10)
xi(M ) = x

(E )
i (C.11)

for transformation from Euclidean into Minkowski. The Dirac matrices meanwhile transform
γ

(M )
0 = γ

(E )
4 (C.12)

γ0
(M ) = γ

(E )
4 (C.13)

γ
(M )
i = −iγ(E )

i (C.14)
γi(M ) = iγ

(E )
i (C.15)

(C.16)
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from Euclidean into Minkowski, and
γ

(E )
4 = γ

(M )
0 (C.17)

γ
(E )
4 = γ0

(M ) (C.18)
γ

(E )
i = iγ

(M )
i (C.19)

γ
(E )
i = −iγi(M ) (C.20)

from Minkowski to Euclidean. The fifth gamma matrix γ5 is defined to transform
γ

(M )
5 = γ

(E )
5 (C.21)

as
γ

(M )
5 := iγ

(M )
0 γ

(M )
2 γ

(M )
3 (C.22)

γ
(E )
5 := γ

(E )
1 γ

(E )
2 γ

(E )
3 γ

(E )
4 (C.23)

For explicit gamma matrices in each space see §C.1.2. Our convention has sign change fordot products under transformation
(q · x)(M ) := qµx

µ

→
(
−~q(M ), iq

(M )
0

)
·
(
~x(M ), ix

(M )
0

)
= −(q · x)(E )

(C.24)

Noting all but the first dot product is in Euclidean space and hence uses the δµν metric.We nowhave the necessary pieces towork out all the resulting transformation properties.Wewill start by working out the transformation properties of the tangent plane in §C.1.1, followedby the various parts of the Clifford algebra §C.1.2, and then the field strength tensor §C.1.3. Wethen use all these piece to work out the transformation properties of matrix elements we areinterested in, namely the vector §C.1.4, gluon §C.1.5, and Compton amplitude §C.1.6.
C.1.1 Derivatives

We start with the tangent space Wick rotation, first with partial derivatives
∂

(M )
0 =

∂

∂x0
(M )

= − ∂

∂ix0
(E )

= i
∂

∂x4
(E )

= i∂
(E )
4 (C.25)

∂0
(M ) = i∂

(E )
4 (C.26)

∂
(M )
i =

∂

∂xi(M )

=
∂

∂xi(E )

= ∂
(E )
i (C.27)

∂i(M ) = −∂(E )
i . (C.28)

Taking the partial derivative in combination with the transformation law of vectors we can workout how the covariant derivative
D(M )
µ := ∂(M )

µ − igA(M )
µ (C.29)

D(E )
µ := ∂(E )

µ + igA(E )
µ (C.30)

(C.31)
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where because A(M )

µ transforms like our arbitrary vectors
D(M )

0 = ∂
(M )
0 − igA(M )

0

= i∂
(E )
4 − gA(E )

4

= i∂
(E )
4 + i2gA

(E )
4

= i
(
∂

(E )
4 + igA

(E )
4

)
=: iD(E )

4

(C.32)

and
D(M )
i = ∂

(M )
i − igA(M )

i

= ∂
(E )
i + igA

(E )
i

= D(E )
i .

(C.33)

Another transformationwe can now calculate is a space–time integrals, that like derivatives trans-form in the tangent space. A four dimensional integrals transforms like∫
d4x(M ) = i

∫
d4x(E ) (C.34)

C.1.2 Clifford Algebra

The only part of the Clifford algebra we still need to transform is the anti commuting σµν . Wedefine it in both spaces by
σ(M )
µν :=

i

2

[
γ(M )
µ , γ(M )

ν

] (C.35)
σ(E )
µν :=

i

2

[
γ(E )
µ , γ(E )

ν

]
. (C.36)

Due to the skew symmetry one only needs to calculate the transformation of two possible cases
σ

(M )
0i = −iσ(E )

4i (C.37)
σ

(M )
ij = − σ

(E )
ij (C.38)

which means their reverse transformations are
σ

(E )
4i = iσ

(M )
0i (C.39)

σ
(E )
ij = − σ

(M )
ij . (C.40)

In our case we often see a contracted vector with the tensor
σ

(M )
0α qα(M ) = σ

(M )
0i qi(M )

= −iσ(E )
4i q

(E )
i

(C.41)
and

σ
(M )
iα qα(M ) = σ

(M )
ij qj(M ) + σ

(M )
i0 q0

(M )

= −σ(E )
ij q

(E )
j + (−i)2σ

(E )
i4 q

(M )
4

= −σ(E )
iα q(E )

α .

(C.42)

Then we note γ5 transforms to it’s counterpart so pseudo–vectors γµγ5 transform like the vectorcounterparts.
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C.1.3 Field Strength Tensor

To calculate how the field strength tensor
F (M )
µν := i

[
D(M )
µ ,D(M )

ν

] (C.43)
we divide into different parts, which because of the skew symmetry of indices is just two differentcases just like σµν

F
(M )
0i = i

[
D(M )

0 ,D(M )
i

]
= i2

[
D(E )

4 ,D(E )
i

]
= iF

(E )
4i (C.44)

and
F

(M )
ij = i

[
D(M )
i ,D(M )

j

]
= i
[
D(E )
i ,D(E )

j

]
= F

(E )
ij (C.45)

where we define
F (E )
µν := i

[
D(E )
µ ,D(E )

ν

]
. (C.46)

Using this we can then figure out how the photonic (or implicitly colour traced gluonic) E and Bfields transform
E

(M )
i := F

(M )
0i = iF

(E )
4i = iE

(E )
i (C.47)

B
(M )
i := −1

2
εijkF

jk
(M ) = (−1)3 1

2
εijkF

jk
(E ) = B

(E )
i . (C.48)

For the gluonic EMT operator
T (M )
µν := −FµαF α

ν (C.49)
we consider only three different combinations, using the anti symmetric property of Fµν
T

(M )
00 = −F (M )

0α (F α
0 )(M ) = (−1)2

(
F

(M )
0i

)2
= −

(
F

(E )
4i

)2
=: T

(E )
44 (C.50)

T
(M )
ii = −F (M )

iα (F α
i )(M ) = (−1)2

(
F

(M )
ij

)2
−
(
F

(M )
i0

)2
=
(
F

(E )
ij

)2
− i2

(
F

(E )
i0

)2
= −T (E )

ii(C.51)
T

(M )
i0 = −F (M )

iα (F α
4 )(M ) = (−1)2F

(M )
ij F

(M )
0j = iF

(E )
ij F

(E )
4j = iF

(E )
iα F

(E )
4α = −iT (E )

i4 (C.52)
C.1.4 Vector Form Factor

By defining the matrix elements of form factors carefully, the form factors themselves are thesame, whether from a Minkowski or Euclidean form factor (In fact that is the motivation for ournormalisation choice (3.61)). Consider a nucleon vector form factor
〈
p′
∣∣γµ∣∣p〉(M )

= u
(
p′
)γ(M )

µ F1(t) +
iσ

(M )
µα qα(M )

2m
F2(t)

u(p) (C.53)

we then look at the temporal and spatial components separately, and equate them after wickrotation. 〈
p′
∣∣γ0

∣∣p〉(M )
=
〈
p′
∣∣γ4

∣∣p〉(E ) (C.54)
= u

(
p′
) [
γ

(E )
4 F1(t)− i iσ

(E )
4α q

(E )
α

2m
F2(t)

]
u(p) (C.55)

= u
(
p′
) [
γ

(E )
4 F1(t) +

σ
(E )
4α q

(E )
α

2m
F2(t)

]
u(p) (C.56)
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for the temporal and〈

p′
∣∣γi∣∣p〉(M )

= −i
〈
p′
∣∣γi∣∣p〉(E ) (C.57)

= u
(
p′
) [
−iγ(E )

i F1(t)− iσ
(E )
iα q

(E )
α

2m
F2(t)

]
u(p) (C.58)

which corresponds to
〈
p′
∣∣γi∣∣p〉(E )

= u
(
p′
) [
γ

(E )
i F1(t) +

σ
(E )
iα q

(E )
α

2m
F2(t)

]
u(p). (C.59)

Hence we as both temporal and spatial transform in the same manner we can say that
〈
p′
∣∣γµ∣∣p〉(E )

= u
(
p′
) [
γ(E )
µ F1(t) +

σ
(E )
µα q

(E )
α

2m
F2(t)

]
u(p). (C.60)

C.1.5 Gluon Form Factor

We perform the same steps of matching as for the vector form factors for the gluon EMT GFFs.Consider the form factor of a symmetric tensor Tµν , which in Minkowski space has general form

〈N |Tµν |N〉(M ) =
1

2
u
(
p′
)γ(M )

µ P (M )
ν A(t)

+
iσ

(M )
µα qα(M )P

(M )
ν

2m
B(t)

+
q

(M )
µ q

(M )
ν

m
C(t) + (µ↔ ν)

u(p)

(C.61)

Now we wish to look at the transformation of this to Euclidean space component by component
〈N |T00|N〉(M ) =

〈
N
∣∣∣T (E )

44

∣∣∣N〉 (C.62)
= u

(
p′
) [
−iγ(E )

4 P
(E )
4 A(t) +

i3σ
(E )
4α q

(E )
α P

(E )
4

2m
B(t)− q

(E )
4 q

(E )
4

m
C(t)

]
u(p)

(C.63)
= u

(
p′
) [
−iγ(E )

4 P
(E )
4 A(t)− iσ

(E )
4α q

(E )
α P

(E )
4

2m
B(t)− q

(E )
4 q

(E )
4

m
C(t)

]
u(p)

(C.64)
〈
N
∣∣∣T (M )
ii

∣∣∣N〉 = −
〈
N
∣∣∣T (E )
ii

∣∣∣N〉 (C.65)
= u

(
p′
) [
iγ

(E )
i P

(E )
i A(t) +

iσ
(E )
iα q

(E )
α P

(E )
i

2m
B(t) +

q
(E )
i q

(E )
i

m
C(t)

]
u(p) (C.66)
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N
∣∣∣T (M )

0i

∣∣∣N〉 = −i
〈
N
∣∣∣T (E )

0i

∣∣∣N〉
=

1

2
u
(
p′
) [(
−γ(E )

4 P
(E )
i + (−i)2γ

(E )
i P

(E )
4

)
A(t)

+
i(−i)(−1)σ

(E )
4α q

(E )
α P

(E )
i + i(−1)(−i)σ(E )

iα q
(E )
α P

(E )
4

2m
B(t)

+
2iq

(E )
4 q

(E )
i

m
C(t)

]
u(p)

=
1

2
u
(
p′
) [(
−γ(E )

4 P
(E )
i − γ(E )

i P
(E )
4

)
A(t)

− σ
(E )
4α q

(E )
α P

(E )
i + σ

(E )
iα q

(E )
α P

(E )
4

2m
B(t)

+
2iq

(E )
4 q

(E )
i

m
C(t) .

(C.67)

Then for the components we are interested in it is clear that〈
N
∣∣∣T (E )
µν

∣∣∣N〉 =
1

2
u
(
p′
) [
−iγ(E )

µ P (E )
ν A(t)− iσ

(E )
µα q

(E )
α P

(E )
ν

2m
B(t)

− q
(E )
µ q

(E )
ν

m
C(t) + (µ↔ ν)

]
u(p)

(C.68)

C.1.6 Compton Amplitude

First we determine the equivalent to T (M )
µν (p, q, ρ) in Euclidean space starting with theMinkowskidefinition

T (M )
µν (p, q, ρ) := iρs′s

〈
p, s′

∣∣∣∣∫ d4x(M )ei(q·x)(M )
T
{
J (M )
µ

(
x(M )

)
J (M )
ν (0)

}∣∣∣∣p, s〉. (C.69)
The next step is to convert elements on the RHS to Euclidean

T (M )
µν (p, q, ρ) = icµcνρs′s

〈
p, s′

∣∣∣∣i∫ d4x(E )e−i(q·x)(E )
T
{
J (E )
µ (0)J (E )

ν

(
x(E )

)}∣∣∣∣p, s〉 (C.70)
where cµ is the factor such that J (M )

µ = cµJ
(E )
µ andwe have used translational invariance J(x) =

e−ip·xJ(0)eip·x. Then we use crossing symmetry
T (M )
µν (p, q, ρ) = −cµcνρs′sT (E )

νµ (p, q, ρ) (C.71)
for

T (E )
µν (p, q, ρ) := ρs′s

〈
p, s′

∣∣∣∣∫ d4x(E )ei(q·x)(E )
T
{
J (E )
µ

(
x(E )

)
J (E )
ν (0)

}∣∣∣∣p, s〉. (C.72)
Take µ = ν = 4, which has c4 = 1, and work out how the coefficient in front of T1 where

− 1 +

(
q

(M )
0

)2

q2
= −1 +

(
q

(E )
4

)2

q2
=⇒ −gµν +

qµqν
q2
→ δµν −

qµqν
q2

. (C.73)
The same step can be done for T2 where

1

ν(M )

(
p

(M )
0 − 1

2
ωq

(M )
0

)(
p

(M )
0 − 1

2
ωq

(M )
0

)
(C.74)



C.2. VARIOUS DEFINITIONS 147
is equivalent to

− (−i)2 1

ν(E )

(
p

(E )
4 − 1

2
ωq

(E )
4

)(
p

(E )
4 − 1

2
ωq

(E )
4

)
(C.75)

which implies (
pµ − 1

2ωqµ
)(
pν − 1

2ωqν
)

ν
→ −

(
pµ − 1

2ωqµ
)(
pν − 1

2ωqν
)

ν
(C.76)

This gives us for the first two structure functions

T (M )
µν (p, q) =

(
−gµν +

q
(M )
µ q

(M )
ν(

q(M )
)2
)
T1 +

(
p

(M )
µ − 1

2ωq
(M )
µ

)(
p

(M )
ν − 1

2ωq
(M )
ν

)
ν(M )

T2 (C.77)

T (E )
µν (p, q) =

(
δµν −

q
(E )
µ q

(E )
ν(

q(E )
)2
)
T1 −

(
p

(E )
µ − 1

2ωq
(E )
µ

)(
p

(E )
ν − 1

2ωq
(E )
ν

)
ν(E )

T2. (C.78)
The other structure functions follow in the same way, but are not necessary for this work. Asthe structure functions are the same between the spaces with these definitions, the Minkowskirelationships to the hadron tensor and hence the parton model apply to the structure functionsdetermined from the Euclidean Compton amplitude.

C.2 Various Definitions

C.2.1 Parity Projector

Γ± :=
1

2
(I ± γ4) (C.79)

C.2.2 Spin Projector

Γŝ = i~γ · ŝγ5 (C.80)
where the polarisation vector ε for spinor u(p, σ) is then defined as

ε =

(
σ

[
ŝ+

~p · ŝ
m(E +m)

~p

]
, iσ

~p · ŝ
m

)
. (C.81)

This convention then satisfies
p · s = 0 (C.82)
s2 = 1 (C.83)

C.2.3 γ4–Hermiticity

A operator O is γ4–Hermitian if
(γ4O)† = γ4O. (C.84)

C.2.4 γ5–Hermiticity

A operator O is γ5–Hermitian if
(γ5O)† = γ5O. (C.85)



148 APPENDIX C. CONVENTIONS

C.3 Special Unitary Group

The special unitary group SU(N) of degree N is a non–abelian Lie group of N × N unitarymatrices with determinant 1. The lie algebra in the fundamental representation is representedby N2 − 1 traceless Hermitian matrices whose generators are denoted tiab for i ranging over all
N2−1 generators. The non–abelian nature gives rise to the structure constants defined in termsof commutators of the generators

if ijkti =
[
tj , tk

]
. (C.86)

For N = 2 the generators are the Pauli matrices and for N = 3 the Gell–Mann matrices.

C.4 Gordon Identity

The (vector) Gordon identity for Minkowski space reads
u
(
p′
)
γµu(p) = u

(
p′
) [ iσµαqα

2m
+
Pµ
m

]
u(p) (C.87)

which we no derive for Euclidean space. Starting with the σ term
u
(
p′
)
iσµαqαu(p) = −1

2
u
[
γµ/q − /qγµ

]
u(p). (C.88)

We can use the anti–commutator to rewrite this as
u
(
p′
)
iσµαqαu(p) = −1

2
u
[{
γµ, /q

}
− 2/qγµ

]
u(p) (C.89)

= −1

2
u
[
2qµ − 2/qγµ

]
u(p). (C.90)

We then rewrite the latter term
u
(
p′
)
/qγµu(p) = u

(
p′
) [
/p
′γµ − /pγµ

]
u(p) (C.91)

= u
(
p′
) [
/p
′γµ −

{
/p, γµ

}
+ γµ/p

]
u(p) (C.92)

= u
(
p′
) [
/p
′γµ − 2pµ + γµ/p

]
u(p) (C.93)

which combined with the Klein–Gordon equation /pu(p) = imu(p) gives
u
(
p′
)
/qγµu(p) = u

(
p′
)

[2imγµ − 2pµ]u(p). (C.94)
Substituting this into (C.90) we then have

u
(
p′
)(
p′
)
iσµαqαu(p)(p) = −u

(
p′
)

[2Pµ − 2imγµ]u(p) (C.95)
which after rearranging gives us the Euclidean Gordon identity

u
(
p′
)
iγµu(p) = u

(
p′
) [ iσµαqα

2m
+
Pµ
m

]
u(p) (C.96)
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F Functions

The ‘F’ functions are convenient for determining the traces of matrix elements encountered inlattice QCD calculations. Consider the matrix element part of two (3.72) and three–point (3.75)correlators
g(2)
χ [X, ~p] =

1

2EX,~p

〈
Ω
∣∣∣χ(0)

∣∣∣X, ~p〉〈X, ~p∣∣∣χ†(0)
∣∣∣Ω〉 (D.1)

g
(3)

χJχ†

[
X, ~p ′, X, ~p

]
=

1

2EX,~p ′

1

2EX,~p

〈
Ω
∣∣∣χ(0)

∣∣∣X, ~p ′〉〈X, ~p ′∣∣∣J(0)
∣∣∣X, ~p〉〈X, ~p∣∣∣χ†(0)

∣∣∣Ω〉. (D.2)
The two matrix elements in (D.1) are then projected onto the parity and spin of interest using aprojection matrix Γ

F2(Γ) := Γαβ

〈
Ω
∣∣∣χβ(0)

∣∣∣X, ~p〉〈X, ~p∣∣∣χ†α(0)
∣∣∣Ω〉 (D.3)

=
1

4
tr
[
Γ
(
−i/p+mX

)]
. (D.4)

To simplify the calculations we drop explicit state X labelling throughout this chapter. The F2function for positive parity §C.2.1 then is
F2

(
Γ+
)

=
1

2

(
m+ E~p

)
. (D.5)

For three–point functions we define F3 by
F3(Γ, J) := 2Γαβ

〈
Ω
∣∣∣χβ(0)

∣∣∣~p ′〉〈~p ′∣∣J(0)
∣∣~p〉〈~p∣∣∣χ†α(0)

∣∣∣Ω〉 (D.6)
F3(Γ, J) =

1

2
tr
[
Γ
(
−i/p′ +m

)
J
(
−i/p+m

)]
. (D.7)

Note that this differs from the usual definition by a factor of 2. The resultant basis forF3 functionscan then be constructed in full, we present the part of interest to §9.2
F3(I, I) = m2 − p′ · p = −2P 2 =

1

2
Q2 + 2m2 (D.8)

F3(I, γµ) = −2imPµ (D.9)
F3(I, σµν) = −i

[
p′µpν − p′νpµ

]
= −i [qµPν − Pµqν ] (D.10)

F3(γµ, I) = −2imPµ (D.11)
F3(γµ, γν) = −

[
p′µpν + pµp

′
ν + δµν

Q2

2

]
= −2

[
PµPν −

1

4

(
qµqν − δµνQ2

)] (D.12)
F3(γµ, σνα) = m [δµαqν − δµνqα] (D.13)
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Using these we can then construct our F3 basis in terms of our projectors, first the unpolarisedprojector
F3

(
Γ+, I

)
=
(
E′ +m

)
(E +m)− ~p ′ · ~p (D.14)

F3

(
Γ+, γi

)
= −i

[
(E +m)p′i +

(
E′ +m

)
pi
] (D.15)

F3

(
Γ+, γ4

)
=
(
E′ +m

)
(E +m) + ~p ′ · ~p (D.16)

F3

(
Γ+, σ4i

)
= −

[
(E +m)p′i −

(
E′ +m

)
pi
] (D.17)

F3

(
Γ+, σij

)
= iεijk

(
~p× ~p ′

)
k

(D.18)
where E′ and E are shorthand for E(~p ′) and E(~p) respectively. The polarised projector thenyields

F3

(
Γ+Γŝ, I

)
= −i

(
~p× ~p ′

)
· ŝ (D.19)

F3

(
Γ+Γŝ, γi

)
=
[
(E +m)

(
~p ′ × ŝ

)
i
+
(
E′ +m

)
(~p× ŝ)i

] (D.20)
F3

(
Γ+Γŝ, γ4

)
= i
(
~p× ~p ′

)
· ŝ (D.21)

F3

(
Γ+Γŝ, σ4i

)
= −i

[
(E +m)

(
~p ′ × ŝ

)
i
+
(
E′ +m

)
(~p× ŝ)i

] (D.22)
F3

(
Γ+Γŝ, σij

)
= εijk

((
E′ +m

)
(E +m)sk − pk

(
~p ′ · ŝ

)
− p′k(~p · ŝ) + sk

(
~p · ~p ′

))
. (D.23)

In the FHT the first and last matrix element of (D.2) are cancelled exactly leaving us withjust the middle element, the element we are always trying to extract and hence the ‘F’ functionsaren’t required. When using regular three point function techniques such as in §9.2 we use com-binations of F2 and F3 to determine our results.We can work out arbitrary form factor coefficients by using (D.14)–(D.23). For (9.15) in termsof projections §C.2.1 and §C.2.2 this becomes
F3(Γ+,2T4i) =

{
−P4

[
(E +m)p′i +

(
E′ +m

)
pi
]
− iPi

[(
E′ +m

)
(E +m) + ~p ′ · ~p

]}
A20

(
Q2
)

+
1

2m

{
−iPi~q ·

[
(E +m)~p ′ −

(
E′ +m

)
~p
]
− iP4q4

[
(E +m)p′i −

(
E′ +m

)
pi
]}
B20

(
Q2
)

+
{q4qi
m

[(
E′ +m

)
(E +m)− ~p ′ · ~p

]}
C20

(
Q2
)

(D.24)
F3(Γ+,2T4i) =

{
−P4

[
(E +m)p′i +

(
E′ +m

)
pi
]
− iPi

[(
E′ +m

)
(E +m) + ~p ′ · ~p

]}
A20

(
Q2
)

+
1

2m

{
−iPi~q ·

[
(E +m)~p ′ −

(
E′ +m

)
~p
]
− iP4q4

[
(E +m)p′i −

(
E′ +m

)
pi
]}
B20

(
Q2
)

+
{q4qi
m

[(
E′ +m

)
(E +m)− ~p ′ · ~p

]}
C20

(
Q2
)

(D.25)
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]

−iP4

[(
E′ +m

)
(E +m) + ~p · ~p ′

]
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Appendix E

Lattice Configurations

Here we summarise the lattices generated and used throughout this work. First we look at thequenched lattices generated specifically for gluonic studies §9 in §E.1, followed by a summary ofthe dynamical trajectories used throughout the rest of the work §E.2.

E.1 Quenched

The quenched lattices, those with det (D) = 1 in (3.37) have been generated using Chromasoftware library [196]. 2000 such lattices were generated as summarised in Table E.1, built tocompare directly to [183].
β 1

a4
L3 × T a (fm) Ncfg

6.0 243 × 48 0.1 2000

Table E.1: Parameters of quenched gauge–field ensembles used. Lattice have extend Lin three directions and T in the direction chosen to represent the time direction.

E.2 Dynamical

The QCDSF/UKQCD ensembles are summarised in Table E.2. These have all been generatedusing Nf = 2 + 1 dynamical flavours, with two degenerate light quark flavours u and d, and oneseparate flavour s, using the BQCD lattice QCD program [325].As described in §3.4, all ensembles have been generated to keep the average quark mass
m =

1

3
(2ml +ms) (3.58)

constant. This has one advantage over fixing the strangemass to the physical mass in that flavourbreaking expansions are constrained. In addition flavour singlet quantities exhibit no leading or-der effects. As a consequence of this choice, the SU(3)flavour symmetric point has been chosen,where the pion and kaon have mass of the ‘centre of multiplet mass’
X2
π =

1

3

(
2m2

K +m2
π

) (E.1)
which is invariant on our trajectory to the physical point, where we have used that charge con-jugate mesons have the same masses for pure QCD. The ensembles are all made up of non–perturbatively O(a) improved Wilson fermions as described in §3.2.4 with tree–level Symanzikimproved gluons and stout smeared fermion action. The lattice spacing a has been set using anumber of singlet quantities [137, 139–141] as described in §3.4.
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β cSW κl κs
1
a4
L3 × T a (fm) mπ (MeV ) Ncfg

5.5 2.65 0.1209 0.1209 243 × 48 0.074(2) ≈ 470 2988
5.5 2.65 0.1209 0.1209 323 × 64 0.074(2) ≈ 470 1763
5.65 2.48 0.122005 0.122005 483 × 96 0.068(3) ≈ 470 530
5.4 2.79 0.11993 0.11993 323 × 64 0.082(2) ≈ 400 1067

Table E.2: Parameters of dynamical gauge–field ensembles used in this work.



Appendix F

Further Compton Amplitude Discussion

F.1 Averaged Propagators

To isolate the second order energy shift a ratio was used (5.25), removing odd energy shift termsat the hadron level. Anotherway of removing the odd energy shift terms is at the propagator level,by averaging λ and −λ propagator prior to subtraction, all odd energy shift terms are removedand the ratio to extract the equivalent energy shifts as (5.25) becomes (5.20).A consequence of removing odd λ terms at the propagator level is that higher twist effectsinvolving more than one quark line have been cancelled. It was thought that by removing theseterms the signal could be improved, for use in extracting PDFs. However in the resultant compar-ison Figure F.1, we do not see any significant differences and no increase in precision. Thus weshall use the basic ratio technique for all our extractions.
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Figure F.1: A comparison of average propagator (blue) and the regular method of§7.1.3 (orange) extraction of the unsubtracted Compton amplitude T1 for u (a) and d(b) flavours. The data points have been offset slightly for clarity. The data is taken froma subset Ncfg = 1755 of the β = 5.5, SU(3)flav symmetric ensemble of §E.2, with
Ns = 3460 sources corresponding to Ns/cfg = 2.0 random sources on each trajectory.

F.2 Experimental Deep Inelastic Scattering

In lepton–Hadron to lepton–X or lepton–Hadron scattering the differential cross section is givenby
dσ

dΩdE′
(F.1)
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where Ω is the solid angle, and E′ is the outgoing measured lepton energy. So the cross sectionis binned in terms of angle and energy. This cross section might be modified by effects suchas bremsstrahlung, vertex corrections, loop diagrams and radiative corrections. We shall take in-clusive lepton scattering as our example. Kinematically appropriate variables to determine thescattering are then the in–going E and outgoing E′ lepton energy and their corresponding scat-tering angle θ. The virtual exchanged photon polarisation ε and flux Γ is also measured.Note that all these quantities are determined entirely from the lepton. From these quantitiesthe scattering process can be determined such as (2.53)
y =

E − E′
E

(F.2)
and

Q2 = 4EE′ cos2 θ

2
. (F.3)

From these kinematics invariant massW and Bjorken x can also be inferred
W 2 = m2 +Q2 1− x

x
. (F.4)

For our example in inclusive scattering we work with the so called reduced scattering crosssection
σr =

dσ

Γ
(F.5)

which we can further divide into transverse and longitudinal parts via the virtual photon polari-sation ε
σr = σL + εσT . (F.6)

Finally these two cross section can be related to the hadron tensor structure functions
F1 =

8π2α

W 2 −M2
σT (F.7)

FL =
1

x

4π2α

W 2 −M2
σL (F.8)

where FL is defined as
FL = 2xF1 − F2. (F.9)

This form is used as in terms of x and Q2 as the cross section can be written in terms of thenatural units for F as
dσ

dQ2dx
=

4πα2

Q4

[(
1 + (1− y)2

)
F2 +

1− y
x

FL

]
. (F.10)

The reduced cross section (F.6) can be rewritten using the so called R function
σr = σL(1 + εR) (F.11)
R :=

σT
σL
. (F.12)

Either R is calculated directly by running experiments at constant Q2 and x (W 2) and differing εor a model for R is used and F2 can be extracted directly by
σr =

4π2α

1− x
ρ2

Q2

1 + εR

1 +R
(F.13)

where the commonly used ρ is defined by
ρ2 := 1 +

4m2x2

Q2
. (F.14)

This theory was used to reconstruct F2 in the JLAB data of Figure 2.9.
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