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Abstract 
The long-term planning of water and environmental systems presents major challenges to 

decision-makers, requiring them to make decisions despite a significant degree of 

uncertainty in the future state of the world. Frequently, decision-makers are operating at 

the level of deep uncertainty, which refers to when deterministic and stochastic processes 

are insufficient for representing the future state of the world, and the consideration of 

multiple plausible futures (scenarios) is required. Further complicating this, probabilities 

cannot be placed on the scenarios, and therefore traditional performance metrics such as 

reliability, vulnerability, resilience, or expected value do not apply. Rather, deep 

uncertainty requires robustness metrics, which aim to determine the level of system 

performance and how that performance varies across all scenarios. 

 

The specific aims of this research are (i) to introduce a unified framework for the 

calculation of a wide range of robustness metrics, enabling the robustness values and 

rankings obtained from different metrics to be compared in an objective fashion; (ii) to 

develop a deeper understanding of how different selections of scenarios can affect the 

absolute and relative robustness and rankings of decision alternatives of interest; and (iii) 

to create a generic guidance framework and software tool to assist with the identification 

of the most robust decision alternative for a given problem. 

 

For the first aim, this research presents a unifying framework for the calculation of 

robustness metrics, which assists with understanding how robustness metrics work, when 

they should be used, and why they sometimes disagree. The framework categorizes the 

suitability of metrics to a decision-maker based on the decision-context, the decision-

maker¶s preferred leYel of risk aYersion, and the decision-maker¶s preference toZards 

maximizing performance or minimizing variance. This research also introduces a 

conceptual framework describing when different robustness metrics are likely to agree 

and disagree. 

 

For the second aim, the research describes how scenarios are generally represented in 

model-based assessments, and develops a systematic, quantitative methodology for 

exploring the influence of different sets of scenarios on the absolute and relative 

robustness of different decision alternatives, which is then applied to the Lake Problem. 
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Case study results show that despite different sets of scenarios causing a significant 

difference in robustness values, there is little difference in the corresponding rankings, 

and therefore similar decision outcomes will be reached regardless of how the scenarios 

are selected. It is also revealed that the impact of the scenarios on the robustness values 

is due to complex interactions with the system model and robustness metrics. 

 

For the third aim, the research considers the knowledge developed in the first two aims 

and builds a guidance framework for decision-makers on how to identify the most robust 

decision alternative for a given problem. The guidance caters to a variety of situations 

where the scenarios and/or robustness metrics are known or not known and also includes 

guidance on how to create a custom robustness metric for the problem at hand. An open-

source software package is introduced, the RAPID package, to assist in the consistency 

and ease-of-use of implementing the guidance framework. 
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Chapter 1  
 

Around the world, decision-makers are required to make long-term plans for complex 

water and environmental systems. These plans and decisions may result in severe and 

long-lasting consequences as the future unfolds, including environmental (e.g. pollution, 

damage to ecosystems), economic (e.g. unexpectedly high costs), social (e.g. corporate 

or governmental reputation) and/or technological (e.g. unacceptable levels of service, 

infrastructure failure) (Ascough et al., 2008; Grafton et al., 2016; Walker et al., 2013a). 

As decision-makers seek to avoid these consequences, they face major challenges 

including the question of how to plan under significant uncertainty. Often, decision-

makers are operating in conditions of ³deep´ Xncertaint\, Zhich refers to Zhen 

deterministic and stochastic processes are insufficient for representing the future state of 

the world, and the consideration of multiple plausible futures (scenarios) is required 

(Bradfield et al., 2005; Herman et al., 2014; Kwakkel et al., 2010; Kwakkel and Haasnoot, 

2019; Lempert, 2003; Little et al., 2018; Maier et al., 2016; Schwarz, 1991; van der 

Heijden, 1996; Varum and Melo, 2010; Walker et al., 2013b; Wright and Cairns, 2011). 

 

When representing uncertain future conditions with the aid of scenarios, traditional 

performance metrics are used for each individual scenario, including metrics such as 

reliability (frequency of failure), vulnerability (severity of failure), and resilience (time to 

recover from failure) (Burn et al., 1991; Hashimoto et al., 1982; Maier et al., 2001; 

Zongxue et al., 1998). However, since scenarios have no probabilities or likelihoods 

attached to them, these metrics cannot be used to determine the robustness of the system 

(the system performance across multiple plausible futures) (Maier et al., 2016). 

 

1.1. Background on scenarios and robustness 
Decision-makers have used a wide variety of metrics to quantify the robustness of a 

system (the system performance across multiple plausible futures). These include: 

x Expected value metrics (Wald, 1951), which indicate an expected level of 

performance across a range of scenarios. 
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x Metrics of higher-order moments, such as variance and skew (e.g. Kwakkel et al. 

(2016)), which provide information on how the expected level of performance 

varies across multiple scenarios. 

x Regret-based metrics (Savage, 1951), where the regret of a decision alternative 

is defined as the difference between the performance of the selected option for a 

particular plausible condition and the performance of the best possible option for 

that condition. 

x Satisficing metrics (Simon, 1956), which calculate the range of scenarios that 

have acceptable performance relative to a threshold. 

 

Despite the wide variety of robustness metrics available to decision-makers, there has 

been no guidance on which robustness metrics are most appropriate for any given problem 

or set of decision-maker preferences. This is problematic, because a common conclusion 

from recent research is that different robustness metrics can sometimes lead to different 

decisions being made (Borgomeo et al., 2018; Drouet et al., 2015; Giuliani and Castelletti, 

2016; Hall et al., 2012; Herman et al., 2015; Kwakkel et al., 2016; Lempert and Collins, 

2007; Roach et al., 2016). The impact that the choice of robustness metric has on decision-

making has never been quantified in a generalisable manner in the literature. 

 

Included in the calculation of robustness is the set of scenarios under consideration. And 

just as there is a variety of robustness metrics, there is also a variety of factors that can 

contribute to different plausible futures (scenarios) being selected. This can include which 

school of thought is used to create the scenarios, with the three main schools being La 

Prospective (prospective thinking) (using experts and computational models to create 

scenarios and assign probabilities to these scenarios) (Berger, 1964; Bradfield et al., 

2005), Probabilistic Modified Trends method (determining a ³most-likel\´ fXtXre, as Zell 

as upper- and lower-quartiles of expected futures) (Bishop et al., 2007; Bradfield et al., 

2005), and the Intuitive Logics school (using domain experts to develop flexible, 

generalizable scenarios, without assigning probabilities) (Bryant and Lempert, 2010; 

Kwakkel et al., 2013). Generally, in the literature for water and environmental systems, 

the Intuitive Logics school is most commonly followed because it is the only one that 

does not assign probabilities to the scenarios. Even within the Intuitive Logics school, 

there are several factors that influence which scenarios are to be used to calculate 

robustness. 
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Generally, scenarios can be divided into three categories, including predictive, 

explorative and normative (Börjeson et al., 2006). Predictive scenarios aim to answer the 

qXestion ³Zhat Zill happen?´ and can either represent a particXlar trajector\ in fXtXre 

conditions or changes in this trajectory in response to particular events, whereas 

e[ploratiYe scenarios aim to ansZer the qXestion ³Zhat coXld happen?´, and can be 

framed on uncertainties in conditions that are known to affect system performance or can 

be completely unframed (Maier et al., 2016). In contrast, normative scenarios aim to 

ansZer the qXestion ³hoZ can a specific fXtXre be reali]ed´, and can represent conditions 

that result in interesting outcomes, or conditions under which certain decision alternatives 

no longer perform adequately. Different approaches may also result in different numbers 

of scenarios being used in the analysis. Since scenarios are used as inputs to the 

calculation of robustness, and there are many methods and approaches to calculating 

scenarios, it follows that it is important to understand the impact of the selection of 

scenarios on robustness. However, the only analyses of this have been qualitative and 

anecdotal (Kwakkel et al., 2012; Phadnis, 2019). Consequently (and similar to the 

robustness metrics), there are many methods for the selection of scenarios, and a need to 

better understand the impact that these methods have on the robustness of a system. 

 

Given that the robustness of decision alternatives is impacted by scenario selection and 

choice of robustness metric, it can be difficult to determine which decision alternatives 

are the most robust. For this reason, there is a need to provide a systematic approach to 

assist decision-makers with selecting the most appropriate robustness metric for their 

decision context (i.e. the attributes of the system) and decision-maker preferences. There 

is also a need for a method of quantifying the impact that the selection of scenarios and 

the robustness metric have on the robustness of decision alternatives. 

 

1.2. Research objectives 
This thesis addresses several of the key needs that arise from the gaps in the literature on 

the use of scenarios and robustness metrics. Specifically, three aims have been developed, 

and the link between these and the calculation of robustness is shown in Figure 1-1. The 

aims are: 
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1. To introduce a unified framework for the calculation of a wide range of robustness 

metrics, enabling the robustness values and rankings obtained from different 

metrics to be compared in an objective fashion; 

2. To develop a deeper understanding of how different selections of scenarios can 

affect the absolute and relative robustness of the decision alternatives of interest; 

and 

3. To create a generic guidance framework and software tool to assist with the 

identification of the most robust decision alternative for a given problem. 

  

 
Figure 1-1 Links between each research objective and the process of calculating the 

system robustness. 

 

1.3. Thesis organisation 
This thesis is comprised of five chapters. The bulk of the research is contained in Chapters 

2 to 4. These chapters are the three papers (Figure 1-1): Chapter 2 (Objective 1) has been 

pXblished in Earth¶s FXtXre; Chapter 3 (ObjectiYe 2) has been sXbmitted to Water 

Resources Research and is soon to be re-submitted after major revisions, which are 

included in the chapter presented in this thesis; and Chapter 4 (Objective 3) is to be 

submitted to Environmental Modelling and Software. The section, figure and table 

numbers have been modified in line with University guidelines but the manuscript 

material is otherwise unchanged. 
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Chapter 2 presents a unifying framework for the calculation of robustness metrics, which 

assists with understanding how robustness metrics work, when they should be used, and 

why they sometimes disagree. This chapter also introduces a conceptual framework 

describing when relative robustness values of decision alternatives obtained using 

different metrics are likely to agree and disagree. The framework is tested on three case 

studies, including water supply augmentation in Adelaide, Australia, the operation of a 

multipurpose regulated lake in Italy, and flood protection for a hypothetical river based 

on a reach of the river Rhine in the Netherlands. 

 

Chapter 3 looks closely at scenarios, describing three conceptually different distributions 

of scenarios in the scenario space, followed by the development of a systematic, 

quantitative methodology for exploring the influence of these distributions on the 

robustness and the ranking of decision alternatives. The influence of the distribution of 

scenarios is illustrated on The Lake Problem, a hypothetical case study commonly used 

in the literature. It is revealed that the impact of the scenarios on the robustness values is 

due to complex interactions with the system model and robustness metrics. 

 

Chapter 4 considers the knowledge developed in the first two aims (regarding the 

influence of robustness metrics and the selection of scenarios on the absolute and relative 

robustness of decision alternatives of interest), and from this, builds guidance for 

decision-makers on the identification of the most robust decision alternative for the 

problem at hand. This guidance includes the consideration of a variety of situations where 

the scenarios and/or robustness metrics are known or not known, and also includes 

guidance on how to create a custom robustness metric based on problem attributes and 

decision-maker preferences. This chapter also presents an open-source software package, 

the RAPID (Robustness Analysis Producing Intelligent Decisions) package, to assist in 

the consistency and ease-of-use of implementing the guidance framework. The guidance 

framework and software package are illustrated on The Lake Problem, where the 

guidance is used to create custom robustness metrics best suited to the case study, assess 

the impact of different candidate scenario sets and robustness metrics, and determine the 

most robust decision alternatives. 

 

Conclusions are provided in Chapter 5, which also summarises the research contributions, 

limitations, and recommended future research.  
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Abstract 
Robustness is being used increasingly for decision analysis in relation to deep uncertainty 

and many metrics have been proposed for its quantification. Recent studies have shown 

that the application of different robustness metrics can result in different rankings of 

decision alternatives, but there has been little discussion of what potential causes for this 

might be. To shed some light on this issue, we present a unifying framework for the 

calculation of robustness metrics, which assists with understanding how robustness 

metrics work, when they should be used, and why they sometimes disagree. The 

framework categorizes the suitability of metrics to a decision-maker based on (i) the 

decision-context (i.e. the suitability of using absolute performance or regret), (ii) the 

decision-maker¶s preferred leYel of risk aYersion, and (iii) the decision-maker¶s 

preference towards maximizing performance, minimizing variance, or some higher-order 

moment. This paper also introduces a conceptual framework describing when relative 

robustness values of decision alternatives obtained using different metrics are likely to 

agree and disagree. This is Xsed as a measXre of hoZ ³stable´ the ranking of decision 

alternatives is when determined using different robustness metrics. The framework is 

tested on three case studies, including water supply augmentation in Adelaide, Australia, 

the operation of a multipurpose regulated lake in Italy, and flood protection for a 

hypothetical river based on a reach of the river Rhine in the Netherlands. The proposed 

conceptual framework is confirmed by the case study results, providing insight into the 

reasons for disagreements between rankings obtained using different robustness metrics. 
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2.1. Introduction 
Uncertainty has long been considered an important facet of environmental decision-

making. This uncertainty arises from natural variability, as well as changes in system 

conditions over time (Maier et al., 2016). In the past, the latter have generally been 

represented b\ a ³best gXess´ or ³e[pected´ fXtXre (Lempert et al., 2006). Consequently, 

much of the consideration of uncertainty was concerned with the impact of localized 

uncertainty surrounding expected future conditions (Matteo Giuliani et al., 2016a; 

Monaco, 1992) and a realization of the value of information for reducing this localized 

uncertainty (Howard  Matheson, J. E., 1984; Howard, 1966). The consideration of 

localized uncertainty is reflected in the wide-spread usage of performance metrics such 

as reliability, vulnerability and resilience (Burn et al., 1991; Hashimoto et al., 1982b; 

Maier et al., 2001; Zongxue et al., 1998). However, as a result of climatic, technological, 

economic and socio-political changes, there has been a realization that it is no longer 

possible to determine a single best-guess of how future conditions might change, 

especially when considering longer planning horizons (e.g. on the order of 70-100 years) 

(Döll and Romero-Lankao, 2016; Grafton et al., 2016b; Guo et al., 2017; Maier et al., 

2016). 

 

In response, there has been increased focus on deep uncertainty, which is defined as the 

situation in which parties to a decision do not know, or cannot agree on, how the system 

under consideration, or parts thereof, work, how important the various outcomes of 

interest are, and/or what the relevant exogenous inputs to the system are and how they 

might change in the future (Kwakkel et al., 2010; Lempert, 2003; Maier et al., 2016; 

Walker et al., 2013). In such a situation, one can enumerate multiple plausible possibilities 

without being able to rank them in terms of likelihood (Döll and Romero-Lankao, 2016; 

Kwakkel et al., 2010). This inability can be due to a lack of knowledge or data about the 

mechanism or functional relationships being studied. However, it can also arise because 

the various parties involved in the decision cannot come to an agreement. That is, under 

deep uncertainty, there is a variety of uncertain factors that jointly affect the consequences 

of a decision. These uncertain factors define different possible states of the world in a 

deterministic and set-based manner (Bandi, 2012). 
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As pointed out by Maier et al. (2016), when dealing with deep uncertainty, system 

performance is generally measured using metrics that preference systems that perform 

well under a range of plausible conditions, which fall under the umbrella of robustness. 

It should be noted that while robustness metrics have been considered in different problem 

domains, such as water resources planning (Hashimoto et al., 1982a), dynamic chemical 

reaction models (Samsatli et al., 1998), timetable scheduling (Canon and Jeannot, 2007) 

and data center network service levels (Bilal et al., 2013) for some time, this has generally 

been in the context of perturbations centered on expected conditions, or local uncertainty, 

rather than deep uncertainty. In contrast, consideration of robustness metrics for 

quantifying system performance under deep uncertainty, which is the focus of this paper, 

has only occurred relatively recently. 

 

A number of robustness metrics have been used to measure system performance under 

deep uncertainty, such as: 

x Expected value metrics (Wald, 1951), which indicate an expected level of 

performance across a range of scenarios. 

x Metrics of higher-order moments, such as variance and skew (e.g. Kwakkel et al. 

(2016a)), which provide information on how the expected level of performance 

varies across multiple scenarios. 

x Regret-based metrics (Savage, 1951), where the regret of a decision alternative is 

defined as the difference between the performance of the selected option for a 

particular plausible condition and the performance of the best possible option for 

that condition. 

x Satisficing metrics (Simon, 1956), which calculate the range of scenarios that 

have acceptable performance relative to a threshold. 

 

However, although these metrics all measure system performance over a set of future 

states of the world, they do so in different ways, making it difficult to assess how robust 

the performance of a system actually is. For example, these metrics reflect varying levels 

of risk aversion, and differences about what is meant by robustness. Is robustness about 

ensuring insensitivity to future developments, reducing regret, or avoiding very negative 

outcomes? This meta-problem of deciding how to decide (Schneller and Sphicas, 1983) 

raises the following question: how robust is a robust solution? 
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Studies in environmental literature discussing this question have been receiving some 

attention in recent years. Lempert and Collins (2008) compared optimal expected utility, 

the precautionary principle, and robust decision making using a regret based measure of 

robustness. They found that the three approaches generated similar results, although some 

approaches may be more appropriate for different audiences and under different 

circumstances. Herman et al. (2015) compared two regret-based metrics and two 

satisficing metrics, showing how the choice of metric could significantly affect the choice 

of decision alternative. However, they found that the two regret-based metrics tended to 

agree with each other. 

 

Drouet et al. (2015) contrasted maximin, subjective expected utility, and maxmin 

expected utility, while Roach et al. (2016) compared two satisficing metrics (info-gap 

decision theor\ and Starr¶s domain criterion). Both stXdies foXnd that the choice of metric 

can greatly influence the trade-offs for decision-makers. The former highlighted the 

importance of understanding the preferences of the decision-maker, while the latter 

acknowledged the need for studies on more complex systems and the need to compare 

and combine metrics. Giuliani and Castelletti (2016) compared the classic decision 

theoretic metrics maximin, maximax, Hurwicz optimism-pessimism rule, minimax 

regret, and Laplace¶s principle of insXfficient reason, fXrther shoZing that it is Yer\ 

important to select a metric that is appropriate for the decision-maker¶s preferences to 

avoid underestimation of system performance. Kwakkel et al. (2016a) compared five 

robustness metrics and highlighted the importance of using a combination of metrics to 

see not just the expected value of performance, but also the dispersion of performance 

around the mean. 

 

A common conclusion across this work is that different robustness metrics reflect 

different aspects of what makes a choice robust. This not only makes it difficult to assess 

the absolXte ³robXstness´ of an alternatiYe, bXt also makes it difficXlt to determine 

whether a particular alternative is more robust than another. This leads to confusion for 

decision-makers, as they have no means of comparing the robustness values and rankings 

of different decision alternatives obtained using different robustness metrics in an 

objective fashion. 
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To address this shortcoming, the objectives of this paper are to (i) introduce a unified 

framework for the calculation of a wide range of robustness metrics, enabling the 

robustness values obtained from different metrics to be compared in an objective fashion, 

(ii) introduce a taxonomy of robustness metrics and discuss how this can be used to assist 

with deciding which robustness metric is most appropriate, providing guidance for 

decision makers as to which robustness metric should be used in their particular context, 

(iii) introduce a conceptual framework for conditions under which different robustness 

metrics resXlt in different decisions, or hoZ stable (³robXst´) the ranking of an alternatiYe 

is when different robustness metrics are used, providing further guidance to decision-

makers, and (iv) test the conceptual framework from (iii) on three case studies that 

provide a variety of decision contexts, objectives, scenario types and decision 

alternatives. The selected case studies are: the water supply augmentation in the southern 

Adelaide region in Australia (Paton et al., 2013), the operation of Lake Como in Italy for 

flood protection and water supply purposes (Giuliani and Castelletti, 2016), and flood 

protection for a hypothetical river called the Waas, which is based on a river reach of the 

Rhine delta in the Netherlands (Haasnoot et al., 2012). 

 

The remainder of this paper is organized as follows. In Section 2.2, the unified framework 

for the calculation of robustness metrics is introduced and a variety of robustness metrics 

are categorized according to this framework. A taxonomy based on these categories is 

provided in Section 2.3, as well as a summary of how the robustness metrics are classified 

in accordance with this taxonomy, the way they consider future uncertainties and the 

relative level of risk aversion they exhibit. In Section 2.4 an analysis of the conditions 

under which robustness metrics agree or disagree with other robustness metrics is given, 

as well as a conceptual framework categorizing the relative degree of agreement of the 

rankings of decision alternatives obtained using different robustness metrics based on the 

properties of the metric and the performance of the system under consideration. The three 

case studies are introduced in Section 2.5, as well as a summary of the similarities and 

differences between them. The robustness of different decision alternatives for the three 

case studies is calculated in Section 2.6 using a range of robustness metrics and the results 

are presented and discussed in terms of the stability of the ranking of different decision 

alternatives when different robustness metrics are used. Finally, conclusions are presented 

in Section 2.7. 
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2.2. How are robustness metrics calculated? 
Even though there are many different robustness metrics, irrespective of which metric is 

used, their calculation generally requires the specification of (i) the decision alternatives 

(e.g. policy options, designs, solutions, management plans) for which robustness is to be 

calculated, (ii) the outcome of interest (performance metric) of the decision alternatives 

(e.g. cost, reliability) and (iii) the plausible future conditions (scenarios) over which the 

outcomes of interest / performance of the decision alternatives is to be evaluated. These 

three components of robustness are illustrated in Figure 2-1. 

 
Figure 2-1. Common components contributing to the calculation of robustness. 

 

Robustness is generally calculated for a given decision alternative, 𝑥𝑖, across a given set 

of future scenarios 𝑆 = ሼ𝑠1, 𝑠2, … , 𝑠𝑛ሽ using a particular performance metric 𝑓ሺ∙ሻ. 

Consequently, the calculation of robustness using a particular metric corresponds to the 

transformation of the performance of a set of decision alternatives over different 

scenarios, 𝑓ሺ𝑥𝑖, 𝑆ሻ = ሼ𝑓ሺ𝑥𝑖, 𝑠1ሻ, 𝑓ሺ𝑥𝑖, 𝑠2ሻ, … , 𝑓ሺ𝑥𝑖, 𝑠𝑛ሻሽ to the robustness 𝑅ሺ𝑥𝑖, 𝑆ሻ of 

Robustness value
R(xi , S)

Performance 
metric (e.g. cost, 

reliability)
f (xi , S)

Decision alternatives 
(e.g. Policy options, 

plans, solutions)
x1, x2, ..., xm

Plausible future 
conditions 
(Scenarios)

S = {s1, s2, ..., sn}

Robustness metric 



20 
 

these decision alternatives over this set of scenarios. Although different robustness 

metrics achieve this transformation in different ways, a unifying framework for the 

calculation of different robustness metrics can be introduced by representing the overall 

transformation of 𝑓ሺ𝑥𝑖, 𝑆ሻ into 𝑅ሺ𝑥𝑖, 𝑆ሻ by three separate transformations: performance 

value transformation (T1), scenario subset selection (T2), and robustness metric 

calculation (T3), as shown in Figure 2-2. Details of these transformations for a range of 

commonly used robustness metrics are given in Table 2-1 and their mathematical 

implementations are given in the Supporting Information. 

 

 

 
Figure 2-2. Unifying framework of components and transformations in the calculation of 

commonly used robustness metrics. 

 



21 
 

The performance value transformation (T1) converts the performance values 𝑓ሺ𝑥𝑖, 𝑆ሻ into 

the type of information 𝑓′ሺ𝑥𝑖, 𝑆ሻ used in the calculation of the robustness metric 𝑅ሺ𝑥𝑖, 𝑆ሻ. 

For some robustness metrics, the absolute performance values (e.g. cost, reliability) are 

used, in which case T1 corresponds to the identity transform (i.e. the performance values 

are not changed). For other robustness metrics, the absolute system performance values 

are transformed to values that either measure the regret that results from selecting a 

particular decision alternative rather than the one that performs best had a particular future 

actually occurred or indicate whether the selection of a decision alternative results in 

satisfactory system performance or not (i.e. whether required system constraints have 

been satisfied or not).  

 

The scenario subset selection transformation (T2) involves determining which values of 

𝑓′ሺ𝑥𝑖, 𝑆ሻ to use in the robustness metric calculation (T3) (i.e. 𝑓′ሺ𝑥𝑖, 𝑆′ሻ ⊆ 𝑓′ሺ𝑥𝑖, 𝑆ሻ), which 

is akin to selecting a subset of the available scenarios over which system performance is 

to be assessed. This reflects a particular degree of risk aversion, where consideration of 

more extreme scenarios in the calculation of a robustness metric corresponds to a higher 

degree of risk aversion and vice versa. As can be seen from Table 2-1, which scenarios 

are considered in the robustness calculation is highly variable between different metrics. 
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Table 2-1. A summary of the three transformations that are used by each robustness metric 

considered in this paper. 

Metric Original 
reference 

T1: 
Performance 

value 
transformation 

T2: 
Scenario 

subset 
selection 

T3: 
Robustness 

metric 
calculation 

Maximin Wald (1951) Identity Worst-case Identity 
Maximax Wald (1951) Identity Best-case Identity 
Hurwicz 

optimism-
pessimism rule 

Hurwicz (1953) Identity Worst- and 
best-cases 

Weighted 
mean 

Laplace¶s 
principle of 
insufficient 

reason 

Laplace and 
Simon (1951) Identity All Mean 

Minimax regret 
Savage (1951); 

Giuliani and 
Castelletti (2016) 

Regret from 
best decision 
alternative 

Worst-case Identity 

90th percentile 
minimax regret Savage (1951) 

Regret from 
best decision 
alternative 

90th 
percentile Identity 

Mean-variance Hamarat et al. 
(2014) Identity All Mean-

variance 

Undesirable 
deviations 

Kwakkel et al. 
(2016a) 

Regret from 
median 

performance 
Worst-half Sum 

Percentile-based 
skewness 

Voudouris et al. 
(2014); Kwakkel 
et al. (2016a)* 

Identity 
10th, 50th 
and 90th 

percentiles 
Skew 

Percentile-based 
peakedness 

Voudouris et al. 
(2014); Kwakkel 
et al. (2016a)* 

Identity 

10th, 25th, 
75th and 

90th 
percentiles 

Kurtosis 

Starr¶s domain 
criterion 

Starr (1962); 
Schneller and 

Sphicas (1983) 

Satisfaction of 
constraints All Mean 

* Kwakkel et al. (2016a) adapted some metrics from Voudouris et al. (2014). 

 

The third transformation (T3) involves the calculation of the actual robustness metric 

based on transformed system performance values (T1) for the selected scenarios (T2), 

which corresponds to the transformation of 𝑓′ሺ𝑥𝑖, 𝑆′ሻ to a single robustness value, 

Rሺ𝑥𝑖, 𝑆ሻ. This equates to an identity transform in cases where only a single scenario is 

selected in T2, as there is only a single transformed performance value, which 

automatically becomes the robustness value. However, in cases where there are 

transformed performance values for multiple scenarios, these have to be transformed into 
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a single value by means of calculating statistical moments of these values, such as the 

mean, standard deviation, skewness of kurtosis. 

 

2.3. When should different robustness metrics be used? 
In this section, a taxonomy of different robustness metrics is given in accordance with the 

three transformations introduced in Section 2.2. A summary of the three transformations, 

as well as the relative level of risk aversion, is provided in Section 2.3.4. 

 

2.3.1. Transformation 1 (T1): Performance value transformation 

A categorization of different robustness metrics in accordance with the performance value 

transformation (T1) is given in Table 2-2. As can be seen, the categorization is based on 

(i) whether calculation of a robustness metric is based on the absolute performance of a 

particular decision alternative or the performance of a decision alternative relative to that 

of another decision alternative or a benchmark; and (ii) whether a robustness metric 

provides an indication of actual system performance or whether system performance is 

satisfactory compared with a pre-specified performance threshold. 
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Table 2-2. Classification of robustness metrics based on the performance value 

transformation (T1). 

 Robustness calculation 
based on relative 

performance values 

Robustness calculation 
based on absolute 

performance values 

Indication of whether 
system performance is 
satisfactory or not 

- (Management option 
rank equivalence 
(MORE)) 

- (Pareto optimal 
MORE 
(POMORE)**) 

- (Decision Scaling**) 

- Starr¶s domain criterion 
- (Info Gap*) 

Indication of actual 
system performance 

- Minimax regret 
- 90th percentile 

minimax regret 
- Undesirable 

deviations 

- Maximin (minimax) 
- Maximax 
- HXrZic]¶s optimism-

pessimism rule 
- Laplace¶s principle of 

insufficient reason 
- Mean-variance 
- Percentile-based 

skewness 
- Percentile-based 

peakedness 
* Robustness calculated explicitly, but based on deviations from an expected scenario 

** Robustness not calculated explicitly 

Note that brackets around a metric indicate that the metrics is considered unsuitable and 

is not considered in the following analysis. 

 

Many of the classic decision analytic robustness metrics belong to the bottom-right hand 

quadrant of Table 2-1, inclXding the ma[ima[ and ma[imin criteria, HXrZic]¶s optimism-

pessimism rXle and Laplace¶s principle of insXfficient reason, as Zell as Zell more 

recently developed metrics such as the mean-variance criterion, percentile based 

skewness and percentile-based peakedness. These metrics utilize information about the 

absolute performance (e.g. cost, reliability) of a particular decision alternative in a 

particular scenario. Consequently, values of 𝑓ሺ𝑥𝑖, 𝑆′ሻ consist of these performance values, 

and robust decision alternatives are those that maximize system performance across the 

scenarios. The difference between these metrics is which values of the distribution of 

performance values over the different scenarios 𝑓ሺ𝑥𝑖, 𝑆ሻ they use in the robustness 
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calculation (i.e. scenario subset selection (T2)) and how these values are combined into a 

single value of R (i.e. robustness metric calculation (T3)), as discussed in Sections 2.3.2 

and 2.3.3. 

 

Metrics in the bottom-left quadrant of Table 2-2 are calculated in a similar manner to 

those in the bottom-right quadrant, except that they use information about the 

performance of a decision alternative relative to that of other decision alternatives or a 

benchmark, and therefore generally express robustness in the form of regret or other 

measures of deviation. Consequently, the resulting values of 𝑓′ሺ𝑥𝑖, 𝑆ሻ consist of the 

differences between the actual performance of a decision alternative (e.g. cost, reliability) 

and that of another decision alternative or a benchmark. A robust decision alternative is 

the one that minimizes the maximum regret across scenarios (e.g. Herman et al., (2015)). 

Alternative metrics that are based on the relative performance of decision alternatives use 

some type of baseline performance for a given scenario instead of the performance of the 

best decision alternative (Herman et al., 2015; Kasprzyk et al., 2013; Kwakkel et al., 

2016a; Lempert et al., 2008; Popper et al., 2009).  

 

Metrics in the top right quadrant of Table 2-2 measure robustness relative to a threshold 

or constraint in order to determine whether a decision alternative performs satisfactorily 

under different scenarios, and are commonly referred to as satisficing metrics. These 

metrics build on the work of Simon (1956), who pointed out that decision makers often 

look for a decision that meets one or more requirements (i.e. performance constraints) 

under a range of scenarios, rather than determining optimal system performance. 

Therefore, values of 𝑓′ሺ𝑥𝑖, 𝑆ሻ consist of information on the scenarios for which the 

decision alternatives under consideration meet a minimum performance threshold and the 

larger the number of these scenarios, the more robust a decision alternative. A well-known 

example of this is the domain criterion, which focuses on the volume of the total space of 

plausible futures where a given performance threshold is met; the larger this space, the 

more robust the decision alternative. Often, this is simplified to looking at the fraction of 

scenarios where the performance threshold is met (e.g. Beh et al. (2015), Herman et al. 

(2015) and Culley et al. (2016)), as scenarios provide a discrete representation of the 

space of plausible futures. 
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Satisficing metrics can also be based on the idea of a radius of stability, which has made 

a recent resurgence under the label of info-gap decision theory (Ben-Haim, 2004; Herman 

et al., 2015). Here, one identifies the uncertainty horizon over which a given decision 

alternative performs satisfactorily. The uncertainty horizon 𝛼 is the distance from a pre-

specified reference scenario to the first scenario in which the pre-specified performance 

threshold is no longer met (Hall et al., 2012; Korteling et al., 2013). However, as these 

metrics are based on deviations from an expected future scenario, they only assess 

robustness locally and are therefore not suited to dealing with deep uncertainty (Maier et 

al., 2016). These metrics also assume that the uncertainty increases at the same rate for 

all uncertain factors when calculating the uncertainty horizon on a set of axes. 

Consequently, they are shown in parentheses in Table 2-2 and will not be considered 

further in this paper. 

 

Metrics in the top-left quadrant of Table 2-2 base robustness calculation on relative 

performance values and indicate whether these values result in satisfactory system 

performance or not. Methods belonging to this category are generally based on the 

concept of stability. However, in contrast to the stability-based methods in the top-right 

quadrant of Table 2-2, these methods assess stability of a decision alternative relative to 

that of another by identifying crossover points (Guillaume et al., 2016) at which the 

performance of one decision alternative becomes preferable to that of another and 

identifying the regions of the scenario space in which a given decision alternative is 

preferred over another. Methods belonging to this category include the management 

option rank equivalence (MORE) (Ravalico et al., 2010) and Pareto optimal management 

option rank equivalence (POMORE) (Ravalico et al., 2009) methods, as well as decision 

scaling (Brown et al., 2012; Poff et al., 2016). However, as these methods do not quantify 

robustness explicitly, they are shown in parentheses in Table 2-2 and will not be 

considered further in this paper. 

 

2.3.2. Transformation 2 (T2): Scenario subset selection 

A categorization of different robustness metrics in accordance with the scenario subset 

selection transformation (T2) is given in Table 2-3. As can be seen, the categorization is 

based on whether all or a subset of the values of (𝑓′ሺ𝑥𝑖, 𝑆ሻ) are used in the calculation of 

the robustness metric. If a subset of values is used, this can consist of a single value or a 

number of values. As shown in Table 2-3, Laplace¶s principle of insXfficient reason, the 
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mean-Yariance metric and Starr¶s domain criterion use the full set of scenarios 𝑆 and thus 

𝑆ᇱ = 𝑆. In contrast, the maximin, maximax, minimax regret and 90th percentile minimax 

regret metrics only use a single value from 𝑆 to form 𝑆′. The metrics that use a number of 

selected scenarios 𝑆′ in the calculation of R inclXde HXrZic]¶s optimism-pessimism rule, 

undesirable deviations, percentile-based skewness and percentile-based peakedness. 

 

Table 2-3. Classification of robustness metrics in terms of scenario subset selection (T2). 

Robustness metric 
Scenarios from 𝑆 used to form the subset 𝑆′ 

Subset All Single Number 
Maximin Worst-case   
Maximax Best-case   

Hurwicz optimism-
pessimism rule  Best- and worst-case  

Laplace¶s principle of 
insufficient reason   All 

Minimax regret Worst-case   
90th percentile minimax 

regret 90th percentile   

Mean-variance   All 

Undesirable deviations  
All performance values 

worse than the 50th 
percentile 

 

Percentile-based skewness  10th, 50th and 90th 
percentiles  

Percentile-based peakedness  10th, 25th, 75th and 90th 
percentiles  

Starr¶s domain criterion   All 
 

Which scenarios from 𝑆 are selected has a significant effect on the relative level of 

inherent risk aversion of a robustness metric, as shown in Figure 2-3. For example, the 

maximax metric has a very low inherent level of risk aversion, as its calculation is only 

based on the best performance over all scenarios considered (Table 2-3). In contrast, the 

maximin metric has a very high level of intrinsic risk aversion, as its calculation is only 

based on the worst performance over all scenarios considered (Table 2-3), leading to a 

very conservative solution (Bertsimas and Sim, 2004). Similarly, the minimax regret 

metric assumes that the selected decision alternative will have the largest regret possible, 

as its calculation is based on the worst-case relative performance (Table 2-3). The other 

metrics fit somewhere in-between these extremes of low and high levels of intrinsic risk 

aversion, as shown in Figure 2-3 and explained below. 
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Figure 2-3. Classification of robustness metrics in terms of relative level of risk aversion 

from a low level of risk aversion (green) to highly risk averse (blue). 

* Hurwicz optimism-pessimism rule is a weighted average between the minimax and 

maximax metrics, where the weighting is chosen by the decision-maker (see Section 

2.3.3). Hence this metric could be placed anywhere on the scale. ** As Starr¶s domain 

criterion is based on a user-selected threshold, which scenarios are considered in the 

robustness calculation is variable (see Table 2-2). Consequently, this metric could be 

placed anywhere on the scale. It should be noted that the relative level of risk aversion is 

subjective and is included for illustrative purposes only. 

 

Calculation of the metrics in the middle of Figure 2-3 is based on 𝑆′ that covers all regions 

of 𝑆, thereby providing a balanced perspective, corresponding to neither a low or high 

level of intrinsic risk aversion. Some of these metrics use all scenarios (𝑆), such as 

Laplace¶s principle of insXfficient reason and the mean-variance metric, whereas others 

are based on a subset of percentiles 𝑆′ that sample the distribution of 𝑆 in a balanced way, 

such as percentile-based skewness, which uses the 10th, 50th and 90th percentiles, and 

percentile-based peakedness, which uses the 10th, 25th, 75th and 90th percentiles (Table 

2-3). IntXitiYel\, HXrZic]¶s optimism-pessimism rule should also belong to this category, 

as it utilizes both the best and worst values of 𝑓ሺ𝑥𝑖, 𝑆ሻ. However, as these values are 

weighted in the calculation of R using user-defined values (see Section 2.3.3), the 

resulting robustness values can correspond to either low to high levels of intrinsic risk 

aversion, depending on the selected weightings, as indicated in Figure 2-3. Similarly, 



29 
 

robustness values obtained using Starr¶s domain criterion could range from low to high, 

depending on the value of the user-selected minimum performance threshold. For 

example, if this threshold corresponds to a very high level of performance, the resultant 

robustness value will correspond to a very high level of intrinsic risk aversion and vice 

versa. 

 

The undesirable deviations and 90th percentile minimax metrics also use a subset 𝑆′, 

however, these scenarios do not cover all regions of this 𝑆 and are therefore less balanced. 

The undesirable deviations metric considers regret from the median for scenarios for 

which values of (𝑓ሺ𝑥𝑖, 𝑆ሻ) are less than the median, resulting in robustness values that 

have a higher level of intrinsic risk aversion than those obtained using metrics that used 

information from all regions of the distribution (Table 2-3). The 90th percentile minimax 

regret metric corresponds to an even greater level of intrinsic risk aversion, as it is based 

on a single value that is close to the worst case (90th percentile ± see Table 2-3). 

 

2.3.3. Transformation 3 (T3): Robustness metric calculation 

A categorization of different robustness metrics in accordance with the final robustness 

metric calculation (T3) is given in Table 2-4. As can be seen, for some metrics, such as 

the maximin, maximin, minimax regret and 90th percentile minimax regret metrics, 

𝑓′ሺ𝑥𝑖, 𝑆′ሻ and 𝑅ሺ𝑥𝑖, 𝑆ሻ are identical (i.e. the robustness metric calculation corresponds to 

the identity transformation). This is because for these metrics, 𝑆′ consists of a single 

scenario and there is no need to combine a number of values in order to arrive at a single 

value of robustness. However, for the remaining metrics, for which 𝑆′ contains at least 

two values, some sort of transformation is required. Metrics that are based on the mean 

or sum of 𝑓′ሺ𝑥𝑖, 𝑆′ሻ, sXch as Laplace¶s principle of insXfficient reason, mean-variance and 

undesirable deviations, effectively assign an equal weighting to different scenarios and 

then suggest that the best decision is the one with the best mean performance, producing 

an e[pected YalXe of performance. In contrast, in HXrZic]¶s optimism-pessimism rule, 

the user can select the relative weighting of the two scenarios (low and high levels of risk 

aversion) considered, as mentioned in Section 2.3.2. 

 

Alternatively, some metrics consider aspects of the variability of 𝑓′ሺ𝑥𝑖, 𝑆′ሻ. For example, 

the mean-variance metric attempts to balance the mean and variability of the performance 
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of a decision alternative over different scenarios. However, a disadvantage of considering 

a combination of the mean and variance is that the resultant metric is not always 

monotonically increasing (Ray et al., 2013). Moreover, when considering variance, good 

and bad deviations from the mean are treated equally (Takriti and Ahmed, 2004). The 

undesirable deviations metric overcomes this limitation, while still providing a measure 

of variability. Other metrics are focused on different attributes of 𝑓′ሺ𝑥𝑖, 𝑆′ሻ, such as the 

skewness and kurtosis.  

 

Table 2-4. Robustness metric calculation (T3) used to transform the sampled performance 

information into the value of robustness. 

Robustness metric 

Robustness metric calculation 

N
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M
ea

n 
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Maximin ✓       
Maximax ✓       

Hurwicz optimism-pessimism 
rule    ✓    

Laplace¶s principle of 
insufficient reason   ✓     

Minimax regret ✓       
90th percentile minimax regret ✓       

Mean-variance   ✓  ✓   
Undesirable deviations  ✓      

Percentile-based skewness      ✓  
Percentile-based peakedness       ✓ 

Starr¶s domain criterion   ✓     
 

2.3.4. Summary of categorization of robustness metrics  

The complete categorization of the commonly used robustness metrics considered in this 

paper in accordance with the three transformations (performance value transformation 

(T1) (Table 2-2), scenario subset selection (T2) (Table 2-3) and robustness metric 

calculation (T3) (Table 2-4)), as well as the relative level of risk aversion that is associated 

with T2 (Figure 2-3), is given in Table 2-5. It is hoped that this can provide some guidance 

to decision-makers in relation to which robustness metric is appropriate for their decision 

context. 
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In relation to the performance value transformation (T1), which robustness metric is most 

appropriate depends on whether the performance value in question relates to the 

satisfaction of a system constraint or not, and is therefore a function of the properties of 

the system under consideration. For example, if the system is concerned with supplying 

water to a city, there is generally a hard constraint in terms of supply having to meet or 

exceeding demand, so that the city does not run out of water (Beh et al., 2017). The system 

performs satisfactorily if this demand is met and that is the primary concern of the 

decision-maker. Alternatively, there might be a fixed budget for stream restoration 

activities, which also provides a constraint. In this case, a solution alternative performs 

satisfactorily if its cost does not exceed the budget. For the above examples, where 

performance values correspond to determining whether constraints have been met or not, 

satisficing metrics, sXch as Starr¶s domain criterion, are most appropriate. 

 

In contrast, if the performance value in question relates to optimizing system 

performance, metrics that use the identity or regret transforms would be most suitable. 

For example, for the water supply security case mentioned above, the objective might be 

to identify the cheapest solution alternative that enables supply to satisfy demand. 

However, there might also be concern in over-investment in expensive water supply 

infrastructure that is not needed, in which case robustness metrics that apply a regret 

transformation might be most appropriate, as this would enable the degree of over-

investment to be minimized when applied to the cost performance value. For the stream 

restoration example, however, decision-makers might simply be interested in maximizing 

ecological response for the given budget. In this case, robustness metrics that use the 

identity transform might be most appropriate when considering performance values 

related to ecological response. 

 

In relation to scenario subset selection (T2), which robustness metric is most appropriate 

depends on a combination of the likely impact of system failure and the degree of risk 

aversion of the decision-maker. In general, if the consequences of system failure are more 

severe, the degree of risk-aversion adopted would be higher, resulting in the selection of 

robustness metrics that consider scenarios that are likely to have a more deleterious 

impact on system performance. For example, in the water supply security case, it is likely 

that robustness metrics that consider more extreme scenarios would be considered, as a 

city running out of water would most likely have severe consequences. In contrast, as the 
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potential negative impacts for the stream restoration example are arguably less severe, 

robustness metrics that use a wider range or less severe scenarios might be considered. 

However, this also depends on the values and degree of risk aversion of the decision 

maker. 

 

As far as the robustness value calculation (T3) goes, this is only applicable to metrics that 

consider more than one scenario, as discussed previously, and relates to the way 

performance values over the different scenarios are summarized. For example, if there is 

interest in the average performance of the system under consideration over the different 

scenarios selected in T2, such as the average cost for the water supply security example 

or the average ecological response for the stream restoration example, a robustness metric 

that sums or calculates the mean of these values should be considered. However, decision-

makers might also be interested in (i) the variability of system performance (e.g. cost, 

ecological response) over the selected scenarios, in which case robustness metrics based 

on variance should be used, (ii) the degree to which the relative performance of different 

decision alternatives is different under more extreme scenarios, in which case robustness 

metrics based on skewness should be used, and/or (iii) the degree of consistency in the 

performance of different decision alternatives over the scenarios considered, in which 

case robustness metrics based on kurtosis should be used. 

 



 

 
 

Table 2-5. Summary of categorizations of commonly used robustness metrics in accordance with performance value transformation, scenario subset 

selection, calculation of the robustness metric, and the relative level of risk aversion. See the Supporting Materials for equations. 

Robustness metric 

T1: Performance value transformation T2: Scenario subset selection T3: Robustness metric calculation 
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Maximin ✓    ✓   ☆☆☆☆☆ ✓     
Maximax ✓    ✓   ☆ ✓     

Hurwicz optimism-pessimism rule ✓     2  ☆ to ☆**  ✓    
Laplace¶s principle of insXfficient reason ✓      ✓ ☆☆☆ ✓     

Minimax regret  ✓   ✓   ☆☆☆☆☆ ✓     
90th percentile minimax regret  ✓   ✓   ☆☆☆☆ ✓     

Mean-variance ✓      ✓ ☆☆☆ ✓  ✓   
Undesirable deviations  ✓    V*  ☆☆☆☆ ✓     

Percentile-based skewness ✓     3  ☆☆☆    ✓  
Percentile-based peakedness ✓     4  ☆☆☆     ✓ 

Starr¶s domain criterion   ✓   V*  ☆ to ☆*** ✓     
* V = variable 
** Hurwicz optimism-pessimism rule has a parameter (selected by the decision-maker) to determine the relative level of risk aversion. 
*** This is dependent on the minimum performance threshold selected by the decision-maker. 
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2.4. When do robustness metrics disagree? 
As mentioned previously, robustness metrics have been shown to disagree in certain cases 

(Giuliani and Castelletti, 2016; Herman et al., 2015; Kwakkel et al., 2016a). As these 

metrics are used to make decisions on outcomes, it is important to obtain greater insight 

into the conditions under which different robustness metrics result in different decisions. 

It is important to note that the relative ranking of two decision alternatives (𝑥1 and 𝑥2), 

when assessed using two robustness metrics (Ra and Rb), will be the same, or stable, if the 

following three conditions hold: 

 𝑅𝑎ሺ𝑥1ሻ > 𝑅𝑎ሺ𝑥2ሻ  and  𝑅𝑏ሺ𝑥1ሻ > 𝑅𝑏ሺ𝑥2ሻ, (1) 

 or 𝑅𝑎ሺ𝑥1ሻ < 𝑅𝑎ሺ𝑥2ሻ  and  𝑅𝑏ሺ𝑥1ሻ < 𝑅𝑏ሺ𝑥2ሻ, (2) 

 or 𝑅𝑎ሺ𝑥1ሻ = 𝑅𝑎ሺ𝑥2ሻ  and  𝑅𝑏ሺ𝑥1ሻ = 𝑅𝑏ሺ𝑥2ሻ (3) 

 

The relatiYe rankings Zill be different or ³flipped´ if the folloZing tZo conditions hold: 

 𝑅𝑎ሺ𝑥1ሻ > 𝑅𝑎ሺ𝑥2ሻ  and  𝑅𝑏ሺ𝑥1ሻ < 𝑅𝑏ሺ𝑥2ሻ, (4) 

 or 𝑅𝑎ሺ𝑥1ሻ < 𝑅𝑎ሺ𝑥2ሻ  and  𝑅𝑏ሺ𝑥1ሻ > 𝑅𝑏ሺ𝑥2ሻ (5) 

 

Consequently, relative differences in robustness values obtained when different 

robustness metrics are used are a function of (i) the differences in the transformations (i.e. 

performance value transformation (T1), scenario subset selection (T2), robustness metric 

calculation (T3)) used in the calculation of 𝑅𝑎 and 𝑅𝑏 and (ii) differences in the relative 

performance of decision alternatives 𝑥1 and 𝑥2 over the different scenarios considered. In 

general, ranking stability is greater if there is greater similarity in the three 

transformations for 𝑅𝑎 and 𝑅𝑏 and if there is greater consistency in the relative 

performance of 𝑥1 and 𝑥2 for the scenarios considered in the calculation of 𝑅𝑎 and 𝑅𝑏, as 

shown in the conceptual representation in Figure 2-4. In fact, if the relative performance 

of two decision alternatives is the same under all scenarios, the relative ranking of these 

decision alternatives is stable, irrespective of which robustness metric is used. 

 

2.4.1. Similar transformations and consistent relative performance  

If the transformations used in the calculation of the robustness metrics are similar and the 

performance of the two decision alternatives considered is consistent across the scenarios, 

one would expect ranking stability to be very high (top-right quadrant, Figure 2-4). For 

example, when minimax regret and 90th percentile minimax regret correspond to 𝑅𝑎 and 
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𝑅𝑏, there is a high degree of similarity in the performance value transformation (T1), 

scenario subset selection (T2), and robustness metric calculation (T3) (𝑦-axis). For both 

metrics, the performance values are transformed to regret, 𝑆′ corresponds to a single 

scenario and there is no need to combine any values as part of the robustness metric 

calculation (T3), as there is only a single value of regret (Table 2-5). Similarly, there is a 

high degree of consistency in the relative performance values used for the calculation of 

𝑅𝑎 and 𝑅𝑏 (𝑥-axis), as minimax regret uses the worst-case scenario and 90th percentile 

minimax regret uses a scenario that almost corresponds to the worst case (Table 2-3). 

Consequently, one would expect the ranking of decision alternatives to be very stable 

when these two metrics are used. 

 

 
Figure 2-4. Conceptual representation of conditions affecting ranking stability. A high 

stability in ranking indicates that two metrics will rank the decision alternatives the same, 

whereas a low stability indicates that two metrics will rank the decision alternatives 

differently. 

 

2.4.2. Different transformations and inconsistent relative performance  

Ranking stability is generally low if there are marked differences in the three 

transformations for 𝑅𝑎 and 𝑅𝑏 and if there is greater inconsistency in the relative 
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performance of 𝑥1 and 𝑥2 for the scenarios considered in the calculation of 𝑅𝑎 and 𝑅𝑏. 

Consequently, if both of these conditions are met, one would expect ranking stability to 

be low (bottom-left quadrant, Figure 2-4). For example, when 𝑅𝑎 and 𝑅𝑏 correspond to 

minimax regret and percentile based peakedness, there is a high degree of difference in 

performance value transformation (T1), scenario subset selection (T2) and robustness 

metric calculation (T3) (𝑦-axis). For the former, performance values are transformed to 

regret, 𝑆′ consists of one scenario (worst-case scenario) and there is no need to combine 

any values as part of the robustness metric calculation (T3). For the latter, the actual 

performance values are used, 𝑆′ consists of four scenarios (10th, 25th, 75th and 90th 

percentiles) and the robustness metric calculation is the kurtosis of the four regret values 

(see Table 2-3 and Table 2-5). Similarly, there is a potentially high degree of 

inconsistency in the relative performance values used for calculation of 𝑅𝑎 and 𝑅𝑏 (𝑥-

axis), as minimax regret uses the worst-case scenario, whereas percentile-based 

peakedness uses four scenarios spread evenly across the distribution of 𝑆 (Table 2-3). 

Consequently, one would expect the ranking of decision alternatives to be generally 

unstable when these two metrics are used. 

 

2.4.3. Different transformations and consistent relative performance  

In cases where there are marked differences in the three transformations for 𝑅𝑎 and 𝑅𝑏 

but consistency in the relative performance of 𝑥1 and 𝑥2 over the scenarios considered in 

the calculation of 𝑅𝑎 and 𝑅𝑏 (bottom-right quadrant, Figure 2-4), ranking stability can 

range from high to low. For example, Zhen Laplace¶s principle of insXfficient reason and 

percentile-based skewness correspond to 𝑅𝑎 and 𝑅𝑏, there is a moderate degree of 

difference in the three transformations (𝑦-axis). Both use actual performance values, but 

the former uses values from all scenarios and averages them, whereas the latter uses the 

10th, 50th and 90th percentiles and calculates their skewness (see Table 2-3 and Table 2-5). 

However, as both use values from similar regions of the performance distribution, it is 

likely that there is a high degree of consistency in the relative performance values used 

in the robustness calculation (𝑥-axis). Consequently, this case belongs to the bottom-right 

quadrant in Figure 2-4, where ranking stability can vary from low to high, depending on 

the relative impact of using the average and skewness of performance values for the 

robustness metric calculation (T3). 
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2.4.4. Similar transformations and inconsistent relative performance 

In cases where the three transformations for 𝑅𝑎 and 𝑅𝑏 are similar but the relative 

performance of 𝑥1 and 𝑥2 is inconsistent over the scenarios considered in the calculation 

of 𝑅𝑎 and 𝑅𝑏 (top-left quadrant, Figure 2-4), ranking stability can also range from high 

to low due to the complex interactions between the different drivers affecting ranking 

stability. This is because the interactions between various drivers of ranking stability are 

complex and difficult to predict a priori. For example, when maximax and maximin 

correspond to 𝑅𝑎 and 𝑅𝑏, there is a high degree of similarity in the three transformations 

(𝑦-axis). For both metrics, the actual performance values are used (T1 is the identity 

transform), 𝑆′ corresponds to a single scenario and there is no need to combine any values 

as part of the robustness metric calculation (T3), as there is only a single value of 

performance (Table 2-5). However, there is a potentially low degree of consistency in the 

relative performance values used in the robustness calculations (𝑥-axis), as the single 

performance values used in the calculations of these two robustness metrics come from 

different ends of the distribution of performance values (i.e. one corresponds to the best-

case and one to the worst-case). Consequently, this case belongs to the top-left quadrant 

in Figure 2-4, where ranking stability can vary from low to high, depending on the 

consistency in relative performance of 𝑥1 and 𝑥2 for the best- and worst-case scenarios.  

 

2.5. Case studies 
Three case studies with different properties are used to test the conceptual model of 

ranking stability introduced in Section 2.4, as shown in Table 2-6. As can be seen, the 

case studies represent water supply systems and flood prevention systems, with decision 

variables including changes to existing infrastructure, construction of new infrastructure, 

and changes to operational rules or policies. The number of scenarios varies greatly in 

each case study (28 to 3000), as does the number of optimal decision alternatives 

considered (11 to 72).  
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Table 2-6. Summary of the characteristics of the Southern Adelaide, Lake Como and 

Waas case studies. 

Name Location 

Decision 
variables, 

components of 
𝒙𝒊 

Selected 
objectives 

and 
performanc
e metrics, 
𝒇ሺ𝒙𝒊, 𝑺ሻ 

Number 
of 

scenarios, 
𝒏, where 
𝑺 =

ሼ𝒔𝟏, … , 𝒔𝒏ሽ 

Number of 
decision 

alternatives
, 𝒎 where 
𝑿 =

ሼ𝒙𝟏, … , 𝒙𝒎ሽ 

Souther
n 

Adelaid
e water 
supply 
system 

Adelaide, 
Australia 

Construction of 
new water 

supply 
infrastructure 

(e.g. 
desalination 

plants, 
rainwater tanks, 

stormwater 
harvesting) and 

time of 
implementation 

Reliability 
(water 
supply) 

125 72 

Lake 
Como 

Como, 
Italy 

Parameterizatio
n of policies to 

determine 
releases based 
on day of year, 

current lake 
storage and 

previous day 
inflow. 

Reliability 
(flood 

prevention) 
 

Reliability 
(water 
supply) 

28 19 

Waas 

Rhine delta, 
The 

Netherlands 
(hypothetica

l model 
based on the 

real River 
Waal) 

Changes to 
existing 

infrastructure 
for flood 

reduction and 
flood damage 
reduction, and 

changes to 
operations (e.g. 

limits to 
upstream 
maximum 
discharge).  

Flood 
damage 

 
Casualties 

3000 11 
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2.5.1. Southern Adelaide 

This urban water supply augmentation case study models the southern region of the 

Adelaide water supply system, as it existed in 2010 (Beh et al., 2017, 2015, 2014; Clark 

et al., 2015; Paton et al., 2014b, 2014a, 2013). Adelaide has a population of approximately 

1.3 million people and is the capital city of the state of South Australia. Characterized by 

a Mediterranean climate and an annual rainfall of between 257 and 882 mm (average of 

552 mm) over the period from 1889 to 2010 (Paton et al., 2013), Adelaide is one of the 

driest capital cities in the world (Wittholz et al., 2008). The southern Adelaide system 

supplies approximately 50% of the water mains consumption (168 GL in 2008) (Beh et 

al., 2014). 

 

In 2010, the southern Adelaide system consisted of three reservoirs to supply water, as 

illustrated in Figure 2-5: Myponga Reservoir collects water from local catchments; Mt 

Bold Reservoir collects water both from local catchments and water pumped from the 

River Murray via the Murray Bridge ± Onkaparinga pipeline; Happy Valley reservoir is 

a service reservoir storing water that has been transferred from the Mt Bold Reservoir. 

Water from the River Murray is limited to a maximum of 650 GL over a 5-year rolling 

period and it is assumed that half of this water is available to the southern Adelaide 

system. 
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Figure 2-5. The southern Adelaide water supply system as it existed in 2010. 

 

Due to projected increases in demand and a changing climate there is a need to augment 

the water supply system (Paton et al., 2013). In particular, the River Murray will be 

greatly affected by climate change (Grafton et al., 2016a). This paper considers 125 

scenarios corresponding to various combinations of Representative Concentration 

Pathways (RCPs) and Global Circulation Models (GCMs) to project changes for future 

rainfall for the Adelaide system. 

There are a number of options for augmentation including the construction of desalination 

plants, stormwater harvesting schemes, and household rainwater tanks. A previous study 

(Beh et al., 2015) generated 72 optimal decision alternatives for this case study using a 

multi-objective evolutionary algorithm, which will be used in this paper. Greenhouse gas 

emissions and cost were used as objectives, and the vulnerability and reliability of each 

decision alternative was used to further analyze each optimal decision alternative. The 

reliability of the water supply was calculated over a range of future climate and demand 

scenarios. Reliability was calculated in the following manner: 

 Reliability = 𝑇𝑠
𝑇

 (6) 
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where 𝑇𝑠 is the number of years that supply meets demand and 𝑇 is the total number of 

years in the planning horizon. A higher reliability implies that the supply meets demand 

in more years and hence a higher reliability is more desirable than a lower reliability.  

 

2.5.2. Lake Como 

Lake Como is the third largest Italian lake with a total volume of 23.4 km3. The lake is 

fed by a 4,552 km2 watershed (see Figure 2-6) characterized by a mixed snow-rain 

dominated hydrological regime with relatively dry winters and summers, and higher 

flows in spring and autumn due to snow-melt and precipitation, respectively. The lake 

releases are controlled since 1946 with the twofold purpose of flood protection along the 

lake shores, particularly in the city of Como, and water supply to the downstream users, 

including eight run-of-the-river hydropower plants and a dense network of irrigation 

canals, which distribute the water to four agricultural districts with a total surface of 1,400 

km2 mostly cultivated with maize (Giuliani et al., 2016; Guariso et al., 1986, 1985).  

 

 
Figure 2-6. Map of the Lake Como system. 

 

To satisfy the summer water demand peak, the current regulation operates the lake to 

store a large fraction of the snowmelt in order to be, approximately, at full capacity 
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between June and July (Denaro et al., 2017). The projected anticipation of the snow melt 

caused by increasing temperature, coupled with the predicted decrease of water 

availability in the summer period, would require storing additional water and for longer 

periods, ultimately increasing the flood risk. The optimal flood protection would be 

instead obtained by drawing down the lake level as much as possible (Giuliani and 

Castelletti, 2016). 

 

Due to a changing climate and thus a changing flood risk (Giuliani and Castelletti, 2016; 

McDowell et al., 2014) and availability of water (Iglesias and Garrote, 2015), a climate 

ensemble of 28 scenarios was used for analysis by Giuliani and Castelletti (2016) and in 

the following analysis. These scenarios are combinations of different Representative 

Concentration Pathways, and Global, and Regional Climate Models. The resulting 

trajectories of temperature and precipitation are then statistically downscaled by means 

of quantile mapping and used as inputs to a hydrological model to generate projections 

of the Lake Como inflows over the time-period 2096-2100. 

 

There are two primary conflicting operating strategies: maximizing water availability 

versus reducing flood risk. Consistent with previous works (Castelletti et al., 2010; Culley 

et al., 2016; Matteo Giuliani et al., 2016b; Giuliani and Castelletti, 2016), the trade-offs 

between these two strategies are modeled using the following two objectives:  

x Flooding: the storage reliability (to be maximized), defined as  

 st_rel = 1 − 𝑛ಷ
ு

 (7) 

where nF is the number of days during which the lake level is higher than the flooding 

threshold of 1.24 m and H is the evaluation horizon.  

x Irrigation: the daily average volumetric reliability (to be maximized), defined as  

 vol_rel = 1
ு
∑ ௒೟

஽೟
ு
௧=1  (8) 

where Yt is the daily water supply and Dt the corresponding water demand. 

 

A previous study (Giuliani and Castelletti, 2016) generated 19 Pareto optimal decision 

alternatives by optimizing the Flooding and Irrigation objectives over historical climate 

conditions via Evolutionary Multi-Objective Direct Policy Search, a simulation-based 

optimization approach that combines direct policy search, nonlinear approximating 
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networks, and multi-objective evolutionary algorithms (Matteo Giuliani et al., 2016c). 

These optimal reservoir operation policies are used in the following analysis.  

2.5.3. Waas 

The Waas case study is a hypothetical case, based on a river reach in the Rhine delta of 

the Netherlands (the river Waal). An Integrated Assessment Meta Model is used 

(Haasnoot et al., 2012), which is theory motivated (Haasnoot et al., 2014) and has been 

derived from more detailed, validated models of the Waal area. The river and floodplain 

are highly schematized, but have realistic characteristics (see Figure 2-7), with the river 

being bound by embankments and the floodplain composed of five dike rings. In the 

southeast, a large city is situated on higher ground, while smaller villages exist in the 

remaining area. Other forms of land use include greenhouses, industry, conservation 

areas, and pastXres. In the recent past, tZo large Àood eYents occXrred in the Waal area, 

on which this hypothetical case study is based, resulting in considerable damage to houses 

and agriculture (Haasnoot et al., 2011). In the future, changes in land use and climate, as 

well as socio-economic developments, may further increase the risk of damage, so action 

is needed. 

 

 
Figure 2-7. The Waas case study area (left) is heavily schematized (right) into a three-

dimensional image of the floodplain presenting the land use and elevations (exaggerated 

vertically). The flow direction is from back to front (Haasnoot et al., 2012). 

 

There is a wide range of uncertainties that are considered, including climate change and 

its impact on river discharge (see Haasnoot et al. (2012) for details) and land use change 

through seven transient land use scenarios. Uncertainty with respect to the fragility of 

dikes and economic damage functions is taken into account by putting a bandwidth of 

plus and minus ten percent around the default values. Finally, some aspects of policy 
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uncertainty are included both through the uncertainty of the fragility function and by 

letting the impact of the action vary (Kwakkel et al., 2015). These drivers of change are 

combined to form a total of 3000 scenarios. 

 

Damage due to the flooding of dike rings is calculated from water depth and damage 

relations (De Bruijn, 2008; Haasnoot et al., 2011). Using these relations, the model 

calculates the flood impacts per hectare for each land use to obtain the total damage for 

sectors such as agriculture, industry, and housing. Casualties are assessed using water 

depth, land use, and flood alarms triggered by the probability of dike failure. These 

performance measures form the three objectives that are considered in the original studies 

(Kwakkel et al., 2016b, 2015): costs, loss of life, and economic damages. However, due 

to the fact that the costs were rarely affected by the scenario, this objective was not 

included in this study. In previous studies, a many-objective robust optimization approach 

was used to design robust adaptation pathways (Kwakkel et al., 2016b, 2015) and 11 

distinct adaptation pathways were identified. These optimal adaptation pathways are used 

in the following analysis.  

 

2.6. Results and discussion 
To assess if the rankings of decision alternatives are likely to be similar between two 

metrics for the different case studies and objectives considered, the percentage of pairs of 

decision alternatives where the ranking is stable is used. A stable pair of decision 

alternatives is one where one of these decision alternatives is always ranked higher than 

another, regardless of the robustness metric used, as described in Section 2.4. The ranking 

stability for each pair of metrics is displayed in Figure 2-8. A ranking stability of 100% 

indicates that the metrics agreed on the rankings for every pair of decision alternatives, 

while 0% indicates that one metric ranked the decision alternatives in reverse to the other 

metric. The robustness values for each case study are included in the Supporting 

Information. Figure 2-8 also provides basic information about the three transformations 

used in the calculation of each robustness metric in an effort to assess how well the results 

agree with the conceptual model presented in Figure 2-4.  

 



 

 
 

Metrics T1 T2 T3 
% of times that metrics agree on relative rankings 

Adelaide Lake Como Waas 
1 2 1 2 1 2 1 2 Supply Flooding Irrigation Flood damage Casualties 

Maximax Percentile-based peakedness I I Si Su M K 11% 12% 42% 40% 56% 
Laplace Percentile-based peakedness I I A Su M K 9% 45% 24% 40% 47% 

Mean-variance Percentile-based peakedness I I A Su M+V K 8% 49% 23% 38% 47% 
Maximin Percentile-based peakedness I I Si Su M K 8% 50% 23% 38% 47% 

Minimax regret Percentile-based peakedness R I Si Su M K 11% 50% 23% 40% 51% 
Hurwicz Percentile-based peakedness I I Su Su WM K 10% 50% 29% 40% 45% 

90th percentile minimax regret Percentile-based peakedness R I Si Su M K 12% 50% 23% 42% 55% 
Undesirable deviations Percentile-based peakedness I I Su Su M K 38% 51% 75% 53% 51% 

Percentile-based skewness Percentile-based peakedness I I Su Su S K 16% 58% 54% 27% 36% 
Maximax Percentile-based skewness I I Si Su M S 69% 18% 65% 80% 65% 
Maximin Percentile-based skewness I I Si Su M S 38% 44% 50% 84% 75% 
Hurwicz Percentile-based skewness I I Su Su WM S 71% 44% 60% 84% 76% 

Mean-variance Percentile-based skewness I I A Su M+V S 73% 45% 50% 85% 75% 
Laplace Percentile-based skewness I I A Su M S 73% 43% 51% 84% 75% 

Minimax regret Percentile-based skewness R I Si Su M S 71% 44% 53% 84% 71% 
90th percentile minimax regret Percentile-based skewness R I Si Su M S 71% 44% 53% 82% 67% 

Undesirable deviations Percentile-based skewness R I Su Su M S 63% 45% 49% 71% 60% 
Maximin Undesirable deviations I R Si Su M M 41% 98% 15% 85% 78% 
Laplace Undesirable deviations I R A Su M M 67% 92% 11% 87% 78% 

Mean-variance Undesirable deviations I R A Su M+V M 67% 96% 10% 85% 78% 
Hurwicz Undesirable deviations I R Su Su WM M 61% 98% 18% 87% 76% 

Minimax regret Undesirable deviations R R Si Su M M 63% 97% 6% 87% 89% 
90th percentile minimax regret Undesirable deviations R R Si Su M M 64% 97% 9% 89% 85% 

Maximax Undesirable deviations I R Si Su M M 60% 48% 22% 84% 60% 
Maximax 90th percentile minimax regret I R Si Si M M 91% 49% 75% 95% 75% 
Maximax Mean-variance I I Si A M M+V 88% 50% 72% 95% 82% 
Maximax Minimax regret I R Si Si M M 92% 50% 78% 96% 71% 
Maximax Laplace I I Si A M M 88% 53% 77% 96% 82% 
Maximax Hurwicz I I Si Su M WM 98% 49% 84% 96% 84% 
Maximin Maximax I I Si Si M M 49% 49% 68% 95% 82% 
Maximin Minimax regret I R Si Si M M 46% 98% 90% 98% 89% 
Maximin 90th percentile minimax regret I R Si Si M M 44% 98% 91% 96% 93% 



 

 
 

Maximin Laplace I I Si A M M 41% 95% 90% 98% 100% 
Maximin Mean-variance I I Si A M M+V 41% 98% 92% 98% 100% 
Maximin Hurwicz I I Si Su M WM 51% 100% 84% 98% 98% 
Hurwicz 90th percentile minimax regret I R Su Si WM M 93% 98% 88% 98% 91% 
Hurwicz Minimax regret I R Su Si WM M 93% 98% 89% 100% 87% 
Hurwicz Mean-variance I I Su A WM M+V 90% 98% 84% 98% 98% 
Hurwicz Laplace I I Su A WM M 90% 95% 89% 100% 98% 
Laplace Minimax regret I R A Si M M 95% 95% 94% 100% 89% 
Laplace 90th percentile minimax regret I R A Si M M 96% 95% 94% 98% 93% 

Minimax regret Mean-variance R I Si A M M+V 95% 99% 94% 98% 89% 
90th percentile minimax regret Mean-variance R I Si A M M+V 96% 96% 96% 96% 93% 

Minimax regret 90th percentile minimax regret R R Si Si M M 97% 97% 96% 98% 96% 
Laplace Mean-variance I I A A M M+V 100% 96% 95% 98% 100% 

Figure 2-8. Agreement in relative rankings when considering all pairwise combinations of metrics for all case studies. 

For performance value transformation (T1): I = identity; R = regret; for scenario subset selection (T2): Si = single decision alternative; Su = subset 

of decision alternatives; A = all decision alternatives; for robustness metric calculation (T3): M = none, sum or mean; WM = weighted mean; V = 

variance; S = skew; K = kurtosis. The rows are ordered approximately from least stable combinations (red) to most stable (green), although some 

rows have been moved to aid the illustration of concepts in the following discussion. 
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2.6.1. Impact of transformations 

Figure 2-8 indicates that the pairs of metrics with high stability (lower portion of the 

figure, shaded mostly green), tend to share the same robustness metric calculation 

transformation (T3). For example, in cases where both metrics use the identity 

transformation, sums or averages of 𝑓′ሺ𝑥𝑖, 𝑆ሻ (all indicated b\ ³M´ in the T3 columns), 

rankings are generally stable. In contrast, the metrics with low stability (upper portion of 

Figure 2-8, shaded mostly red and yellow) tend to have different robustness metric 

calculation transformations. An example is the percentile-based peakedness metric, being 

the only metric to use kurtosis. Every other metric uses a different robustness metric 

calculation transformation and hence when percentile-based peakedness is used as one of 

the two robustness metrics considered, rankings are generally unstable. This can be 

explained by the fact that when different types of calculations from 𝑓′ሺ𝑥𝑖, 𝑆ሻ to 𝑅ሺ𝑥𝑖, 𝑆ሻ 

are used, different attributes of the distribution of 𝑓′ሺ𝑥𝑖, 𝑆ሻ result in ³similarit\´, as 

discussed in Section 2.4. For example, as can be seen in Figure 2-4, two metrics that use 

different robustness metric calculation transformations (T3) will result in low stability 

unless there are consistent differences between two decision alternatives over the 

different scenarios. 

 

In general, a pair of metrics with the same robustness metric calculation transformation 

(T3) almost always has high ranking stability, while a pair with a different T3 almost 

always has low ranking stability. However, Figure 2-8 indicates the same is not always 

true of the other two transformations (i.e. performance value transformation (T1) and 

scenario subset selection (T2)), although in some cases, they can have an impact. For 

example, the maximax and maximin metrics share the same robustness metric calculation 

transformation (T3). However, their ranking stability is markedly lower than that for other 

metrics that share the same T3, particularly for the Adelaide and Lake Como case 

studies. In this case, the primary cause of ranking stability is associated with scenario 

subset selection (T2). The selected scenarios 𝑆′ for the maximin and maximax criteria 

correspond to different extremes of the distribution of 𝑆 and hence these two metrics show 

high levels of disagreement. This puts the comparison of these two metrics in the middle 

or lower region of Figure 2-4 and explains the large variance in the ranking stability of 

the maximin and maximax metrics in Figure 2-8. This variance in ranking stability is 

particularly clear when there is not a large consistent difference in performance between 

decision alternatives. The maximax metric is also different from most other metrics, 
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although to a lesser extent than the difference with the maximin metric, and it can be seen 

in Figure 2-8 that this results in variable levels of agreement between the maximax metric 

and the other metrics in each case study. 

 

Similarly, the undesirable deviations metric uses the sum of 𝑓′ሺ𝑥𝑖, 𝑆ሻ and is hence 

categorised with many other metrics when considering the robustness metric calculation 

transformation (T3). Like the maximin and maximax comparison, the undesirable 

deviations metric shows varying ranking stability depending on the case study. The 

complex effects of the performance value transformation (T1) explain this. Regret of a 

decision alternative in each scenario is used by the undesirable deviations metric, 

compared to most metrics, which use the actual performance values. This calculation of 

regret is also different from that of the other regret metrics (minimax regret and 90th 

percentile minimax regret) because it is considering regret relative to the median 

performance of that decision alternative, rather than regret relative to the absolute best 

performance across all decision alternatives. 

 

A relatively low level of agreement is seen when comparing the maximax and undesirable 

deviations (Figure 2-8). Similar to the above discussion, this variability is due to the 

different sampling methods for the scenario subset selection (T2) and different 

performance value transformations (T1). Maximax samples a single value from the left-

hand side of the distribution, whereas the undesirable deviations metric samples the 50% 

of values from the right-hand side of the distribution. In addition, there is also a difference 

in the initial performance value transformation (T1), with the maximax metric using the 

raw performance values, while the undesirable deviations metric uses the regret of a 

decision alternative relative to the median performance. 

 

2.6.2. Impact of relative performance 

As can be seen in Figure 2-8, although there is generally a high degree of consistency in 

ranking stability based on the similarity between the three transformations, this does not 

hold for certain combinations of robustness metrics and case studies / objectives. This is 

because ranking stability is not only affected by the similarities in / differences between 

robustness metrics, but also the similarities / differences in the relative performance of 

two decision alternatives under the different scenarios considered (see Figure 2-4). For 

example, as can be seen in Figure 2-8, ranking stability for the Adelaide case study is low 
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when the maximin metric is paired with other metrics that also used the same type of 

robustness metric calculation transformation (T3), while this is not the case for the other 

case studies. In this case, this is because many of the decision alternatives have a 

reliability of 0% in the worst-case scenario, and due to the scenario subset selection (T2), 

the maximin metric only considers this worst-case scenario and thus ranks many of the 

decision alternatives as equal. Other metrics with different scenario subset selection 

methods use different scenarios (which vary depending on the decision alternative) or use 

more scenarios and thus rank the decision alternatives differently. 

 

It is also worth noting the high level of disagreement obtained in the Lake Como case for 

the undesirable deviations when considering the reliability of water supply for irrigation. 

This effect does not appear when considering the reliability against flooding. This 

asymmetry can be explained by the fact that the IPCC projections in the alpine region 

consistently suggest a decrease of water availability in the summer period due to a change 

in the snow accumulation/melting dynamics. In fact, the impacts of global warming are 

expected to reduce the precipitation that falls as snow in winter and, at the same time, to 

reduce snow melt. The combined effect of this reduction of snow accumulation and 

reduction of the snow melt strongly challenges the possibility of filling up the lake to 

provide irrigation during the summer period. Yet, the temporal distribution of such effects 

can be different due to the variability in the considered scenarios, ultimately producing 

variable impacts on the performance of different operating policies, which implement 

different hedging strategies over time. The variable and asymmetric distribution of the 

resulting performance (towards degradation) is then captured by the metrics relying on a 

subset of values in the scenario subset selection transformation (T2) (i.e., undesirable 

deviations and the metrics relying on multiple percentiles), while other metrics do not 

recognize this effect and produce inconsistent rankings. 

 

2.7.  Summary and Conclusions 
Metrics that consider local uncertainty (i.e. reliability, vulnerability and resilience) have 

long been considered in environmental decision-making. Due to deeply uncertain drivers 

of change including climate, technological and socio-political changes, decision-makers 

have begun to consider multiple scenarios (plausible futures) and robustness metrics to 

quantify the performance of decision alternatives under deep uncertainty. A large variety 



 

 50   
 

of robustness metrics has been considered in recent research with little discussion of the 

implications of using each metric, and little understanding of the way the metrics are 

similar or different. However, it has become clear that the choice of robustness metric can 

have a large effect, with metrics sometimes showing disagreement with regard to which 

decision alternative is more robust. 

 

This paper presents a unifying framework for the calculation of robustness metrics 

derived from three major transformations (performance value transformation (T1), 

scenario subset selection (T2) and robustness metric calculation (T3)) used to convert 

system performance values (e.g. reliability) into the final value of robustness that can be 

used to rank decision alternatives. The performance value transformation (T1) converts 

the original performance values into the information that the decision-maker is interested 

in. The second transformation (T2) corresponds to the selection of which scenarios (and 

associated system performance values) the metric will use. The final transformation (T3) 

involves the conversion of transformed performance values over the selected scenarios 

into a single value of robustness. 

 

This paper also presents a conceptual framework for assessing the stability of the ranking 

of different decision alternatives when different robustness metrics are used. The 

framework indicates that the greater the similarity in the three transformations for 

robustness metrics, the more stable the ranking of decision alternatives that use these 

metrics is and vice versa. Ranking stability is also affected by the degree of consistency 

of the relative performance of different decision alternatives across the scenarios, where 

ranking stability is increased if one decision alternative always outperforms the other and 

vice versa. In order to test this conceptual understanding of ranking stability when 

different robustness metrics are used, the stability of any two metrics was determined for 

five objectives in three case studies, which confirmed the proposed conceptual model. 

The robustness metric calculation (T3) was found to be the most influential of the three 

transformations in determining ranking stability, however, the other two transformations 

also contributed.  

 

In conclusion, robustness metrics can be split into three transformations, which provides 

a unifying framework for the calculation of robustness. This framework helps decision-

makers understand when different robustness metrics should be used by considering (i) 
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the information the decision context relates to most (e.g. absolute performance, regret, or 

the satisfaction of constraints) (performance value transformation (T1)), (ii) the preference 

of a decision-maker towards a high or low level of risk aversion for the case study under 

consideration through scenario subset selection (T2), and (iii) the decision-maker¶s 

preference towards maximizing average performance, minimizing variance, or some 

other higher-order moment, as described by the robustness metric calculation (T3). These 

three transformations and the properties of the case studies are useful in describing why 

rankings of decision alternatives obtained using different robustness metrics sometimes 

disagree. 
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Abstract 
Multiple plausible future scenarios are being used increasingly in preference to a single 

deterministic or probabilistic prediction of the future in the long-term planning of water 

resources systems. These scenarios enable the determination of the robustness of a system 

± the consideration of performance across a range of plausible futures ± and allow an 

assessment of which possible future system configurations result in a greater level of 

robustness. There are many approaches to selecting scenarios, and previous studies have 

observed that the choice of scenarios might affect the estimated robustness of the system. 

However, these observations have been anecdotal and qualitative. This paper develops a 

systematic, quantitative methodology for exploring the influence of scenario selection on 

the robustness and the ranking of decision alternatives. The methodology is illustrated on 

The Lake Problem. The quantitative results obtained confirm the qualitative observations 

of previous works, showing that the selection of scenarios is important, as it has a large 

influence on the robustness value calculated for each decision alternative. However, we 

show it has a relatively small influence on how those decision alternatives are ranked. 

This implies that despite the difference in robustness values, similar decision outcomes 

will be reached in this case study, regardless of the basis on which the scenarios are 

obtained. It is also revealed that the impact of the scenarios on the robustness values is 

due to complex interactions with the system model and robustness metrics. 
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3.1. Introduction 
Traditionally, model-based assessments of different water resources decision alternatives 

(i.e. plans, policies) haYe been based on a single ³e[pected´ fXtXre (GiXliani, Anghileri, 

et al., 2016; Hall & Harvey, 2009; Kwakkel & van der Pas, 2011; Morgan et al., 1990). 

However, this does not consider the significant uncertainties associated with drivers of 

change such as climate, technology, economy, and society (Döll & Romero-Lankao, 

2016; Maier et al., 2016; Shepherd et al., 2018), potentially resulting in a range of 

negative consequences when conditions occur that are different from those expected 

future conditions (Lempert & Trujillo, 2018; McInerney et al., 2012; Raso et al., 2019). 

 

In response to the recognition that man\ fXtXre changes are ³deepl\ Xncertain´ (KZakkel 

et al., 2010; Lempert, 2003), the relative merits of potential decision alternatives are now 

commonly assessed under a range of plausible future conditions (scenarios) (Herman et 

al., 2014; Kwakkel et al., 2010; Lempert, 2003; Little et al., 2018; Maier et al., 2016; 

Varum & Melo, 2010; Walker, Lempert, et al., 2013). As part of model-based assessment, 

such scenarios correspond to different points in the hyperspace of plausible ranges of 

model inputs. However, how these points are distributed in this hyperspace for different 

scenarios can be highly variable, depending on scenario type and number. 

 

Scenarios are generally classified into three different types: predictiYe (³Zhat is likel\ to 

happen´), e[ploratiYe (³Zhat coXld happen´?), or normatiYe (³hoZ can a specific fXtXre 

be reali]ed´?) (Maier et al., 2016). A nXmber of Zater resoXrces stXdies haYe generated 

explorative scenarios by considering the impact of plausible changes in atmospheric 

carbon concentrations (Anghileri et al., 2018; Beh et al., 2014, 2015b, 2015a; Giuliani, 

Castelletti, et al., 2016; Giuliani & Castelletti, 2016; Haasnoot et al., 2012, 2013; Herman 

& Giuliani, 2018; Huskova et al., 2016; McPhail et al., 2018), as well as plausible changes 

in regional socio-economic conditions (Haasnoot et al., 2013; Wada et al., 2019). In 

contrast, normative scenarios consider conditions that represent interesting outcomes, as 

is the case with scenario discovery (e.g. Bryant and Lempert. (2010); Groves & Lempert 

(2007); Hadka et al. (2015); Kasprzyk et al. (2013); Kwakkel (2017); Kwakkel, Haasnoot, 

et al. (2016); Matrosov et al. (2013); Trindade et al. (2017)); conditions that result in one 

decision alternative being preferable to another, as is the case with MORE (Ravalico et 

al., 2010), POMORE (Ravalico et al., 2009) and decision scaling (e.g. Brown et al. 
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(2012)); or conditions under which certain decision alternatives no longer perform 

adequately, as is the case with adaptive tipping point approaches (e.g. Kwadijk et al. 

(2010); Haasnoot et al. (2013); Kwakkel et al. (2015); Kwakkel, Walker, et al. (2016); 

Vervoort et al. (2014); Walker, Haasnoot, et al. (2013)). 

 

How many scenarios are generated is generally linked to the philosophy that underpins 

scenario generation. When scenarios correspond to coherent descriptions of alternative 

hypothetical futures (e.g. van Notten (2005)), the number of scenarios considered is 

generally small (~3-9, see Table 1 ± Supporting Information) and scenarios are generally 

identified using some type of human input, such as the use of participatory approaches 

involving a variety of stakeholders (e.g. Wada et al. (2019)). In contrast, when scenarios 

are designed to represent a broad range of combined changes in future conditions, the 

number of scenarios considered is generally large (~100-15,000, see Table 1 ± Supporting 

Information) and scenarios are generated using numerical modelling and/or sampling- or 

optimization-based approaches, with minimal stakeholder input (e.g. Trindade et al. 

(2017); Culley et al. (2016, 2019); Hadka et al. (2015); Hall et al. (2012); Herman et al. 

(2014, 2015); Kasprzyk et al. (2013); Kwakkel (2017); Kwakkel et al. (2015); Kwakkel, 

Walker, et al. (2016); McPhail et al. (2018); Quinn et al. (2017, 2018); Singh et al. (2015); 

Trindade et al. (2017); Watson & Kasprzyk (2017); Weaver et al. (2013); Zeff et al. 

(2014)). 

 

In order to enable the performance of different decision alternatives to be compared across 

scenarios, robustness metrics are commonly used (Maier et al., 2016; McPhail et al., 

2018; Walker, Lempert, et al., 2013). Different robustness metrics combine values of 

performance metrics obtained for individual scenarios, such as cost, reliability (frequency 

of failure), vulnerability (magnitude of failure) and resilience (time to recover from 

failure) (Burn et al., 1991; Hashimoto et al., 1982; Maier et al., 2001; Zongxue et al., 

1998) in different ways, depending on decision-maker preferences and decision context 

(McPhail et al., 2018). Previous studies have shown that the relative robustness of 

different decision alternatives can vary depending on which robustness metric is used 

(Borgomeo et al., 2018; Drouet et al., 2015; Giuliani & Castelletti, 2016; Hall et al., 2012; 

Herman et al., 2015; Kwakkel, Eker, et al., 2016; Lempert & Collins, 2007; Roach et al., 

2016), highlighting the importance of choosing robustness metrics that are appropriate 
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for the decision context considered (McPhail et al., 2018). However, robustness values 

are also a function of which scenarios are considered. 

 

Given the diversity of scenario types and generation methods adopted in the water 

resources literature, as discussed above, there is a need to assess the impact of the choice 

of scenarios on robustness values, and the resulting ranking of decision alternatives, in 

addition to the impact of the choice of the robustness metric itself, as has been done in 

previous studies (Borgomeo et al., 2018; Drouet et al., 2015; Giuliani & Castelletti, 2016; 

Hall et al., 2012; Herman et al., 2015; Kwakkel, Eker, et al., 2016; Lempert & Collins, 

2007; McPhail et al., 2018; Roach et al., 2016). While the potential impact of the choice 

of plausible futures via different approaches to creating scenarios has been recognized in 

qualitative or anecdotal terms (Kwakkel et al., 2012; Phadnis, 2019), there is a lack of a 

systematic methodology for assessing this in a quantitative fashion. Kwakkel, Walker, & 

Marchau (2012) describe an experiment in airport strategic planning where they show 

that if the set of scenarios represents a narrow range of future airport demand rather than 

a wide range, then a static plan will outperform an adaptive plan. However, if the set of 

scenarios represents a wider range of future airport demands, then the adaptive plan 

outperforms the static plan. Phadnis (2019) compares four different decision-making 

approaches for competitive businesses, and shows that no single decision-making 

approach outperforms all others under all sets of future conditions. Specifically, it is 

shown that different decision-making approaches are superior depending on whether a 

narrow or wide set of future conditions is considered. However, as was the case in 

Kwakkel, Walker, & Marchau (2012), this analysis was case-specific. 

 

As discussed above, there is a lack of a generalized, quantitative method for assessing the 

impact of different sets of scenarios on the absolute and relative (i.e. ranking) robustness 

values of different decision alternatives under conditions of deep uncertainty, especially 

in the water resources domain. In order to address this shortcoming, the objectives of this 

paper are: 

1. To develop a methodology to quantitatively analyze how different sets of 

scenarios can influence both (a) robustness and (b) the ranking of decision 

alternatives based on robustness values (i.e. the relative robustness of different 

decision alternatives); and  
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2. To illustrate the methodology in 1. on the Lake Model, which is a stylized, 

hypothetical water resources case study that is well-represented in the literature 

(Carpenter et al., 1999; Eker & Kwakkel, 2018; Hadka et al., 2015; Kwakkel, 

2017; Lempert & Collins, 2007; Quinn et al., 2017; Singh et al., 2015; Ward et 

al., 2015). As part of the case study analysis, a number of issues are explored, 

including the influence of (a) the number and distribution of scenarios, (b) the 

behavior of the robustness metric, and (c) the behavior of the system performance 

metric on absolute and relative robustness. 

 

The remainder of the paper is organized as follows: Section 3.2 introduces the 

methodology for quantifying and visualizing the effect of the selection of different sets 

of scenarios on robustness and the ranking of decision alternatives; Section 3.3 describes 

how this methodology was applied to the Lake Model; and Section 3.4 shows the results 

of this analysis, along with a discussion of the effects of different sets of scenarios on 

robustness and on the rankings of decision alternatives. This is followed by a summary 

and conclusions in Section 3.5. 

 

3.2. Generic approach for assessing the influence of scenario selection 

on robustness 
To quantify the impact of scenario selection/creation on robustness (Aim 2a) and on the 

rankings of decision alternatives (Aim 2b), we propose the approach presented in Figure 

3-1. The approach compares outcomes from applying two distinct sets of scenarios, and 

thus provides insight into the sensitivity of those outcomes on the method of scenario 

selection. Thus, the proposed approach is generic, as it can cater to and is independent of 

the approach used to create the sets of scenarios²including aspects such as the number 

of scenarios considered, the distribution of scenarios over the scenario space, the method 

used to generate the scenarios (e.g. sampling or using stakeholder input) etc. (see Section 

3.1). 
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Figure 3-1. Approach for the quantitative analysis of the influence of any two sets of 

scenarios on the robustness and ranking of decision alternatives. 

 

The two sets of scenarios to be compared are denoted by a and b, which comprise of some 

number of distinct scenarios (possibly a different number of scenarios in each set). These 

scenarios form inputs to a system model, which is run for all m decision alternatives, with 

the model outputting values of the p possible measures of system performance. 

Considering each of the p performance metrics one at a time, and for a single robustness 

metric, the robustness value R is calculated for each of the decision alternatives for each 

of the two scenario sets via some form of aggregation of the system performance values 

(see McPhail et al., 2018). These calculations can be repeated for each of the p 

performance metrics and any number of other robustness metrics to enable exploration of 

the effect of metric choice on the study objectives. The final part of the approach is the 

quantification and visualization of the influence of the selected scenarios on the 

robustness and the rankings of the decision alternatives. 

 

The methodology used for assessing the impact of two sets of scenarios on the robustness 

values is shown in Figure 3-2. For a single decision alternative and single robustness 

metric, the two different sets of scenarios produce one robustness value each, and these 

two robustness values are compared. This difference is then averaged across all m 

decision alternatives. 
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Figure 3-2. Calculation of the sensitivity of robustness to different sets of scenarios. 

 

The methodology used for assessing the impact of two different sets of scenarios on 

ranking similarity (i.e. relative robustness) is shown in Figure 3-3. We begin with the 

robustness of all m decision alternatives when using one set of scenarios and compare this 

to the robustness of the same m decision alternatives evaluated with a different set of 

scenarios. These tZo sets of robXstness YalXes are compared Xsing Kendall¶s rank 

correlation. This statistical metric tests how similarly two quantities are ranked. In this 

case, we are testing how the decision alternatives are ranked when robustness is calculated 

twice, each time with a different set of scenarios. 
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Figure 3-3. Methodology used to determine the similarity of the rankings of decision 

alternatives. 

 

In other words, there are two sets of robustness values, 𝑅, for each of the 𝑚 decision 

alternatives: ሼ𝑅ሺ𝑙1, 𝑆𝑎ሻ, 𝑅ሺ𝑙2, 𝑆𝑎ሻ,… , 𝑅ሺ𝑙𝑚, 𝑆𝑎ሻሽ for scenario set 𝑎, 𝑆𝑎, and 

ሼ𝑅ሺ𝑙1, 𝑆𝑏ሻ, 𝑅ሺ𝑙2, 𝑆𝑏ሻ,… , 𝑅ሺ𝑙𝑚, 𝑆𝑏ሻሽ for scenario set 𝑏, 𝑆𝑏. If two decision alternatives, 𝑙𝑖 

and 𝑙𝑗, are ranked the same way regardless of whether robustness is calculated using 𝑆𝑎 

or 𝑆𝑏, then the ranking is considered ³similar´ or ³concordant´. More e[plicitl\, 

concordance is defined as one of the following two conditions being true: 

 

𝑅ሺ𝑙𝑖, 𝑆𝑎ሻ > 𝑅൫𝑙𝑗, 𝑆𝑎൯ and ሺ𝑙𝑖, 𝑆𝑏ሻ > 𝑅൫𝑙𝑗, 𝑆𝑏൯ ,    (1) 

or 𝑅ሺ𝑙𝑖, 𝑆𝑎ሻ < 𝑅൫𝑙𝑗, 𝑆𝑎൯ and 𝑅ሺ𝑙𝑖, 𝑆𝑏ሻ < 𝑅൫𝑙𝑗, 𝑆𝑏൯    (2) 

 

If the two scenario sets lead to a different ranking of decision alternatives, then the 

rankings of the decision alternatiYes are considered ³dissimilar´ or ³discordant´. 

Discordance occurs under either of the following two conditions:  

 

𝑅ሺ𝑙𝑖, 𝑆𝑎ሻ > 𝑅൫𝑙𝑗, 𝑆𝑎൯ and ሺ𝑙𝑖, 𝑆𝑏ሻ < 𝑅൫𝑙𝑗, 𝑆𝑏൯ ,    (3) 

or 𝑅ሺ𝑙𝑖, 𝑆𝑎ሻ < 𝑅൫𝑙𝑗, 𝑆𝑎൯ and 𝑅ሺ𝑙𝑖, 𝑆𝑏ሻ > 𝑅൫𝑙𝑗, 𝑆𝑏൯    (4) 

 

In the case that either set of scenarios produces a tie in ranking, then it is considered 

neither similar (concordant) nor dissimilar (discordant). This occurs during either of the 

following two conditions: 
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𝑅ሺ𝑙𝑖, 𝑆𝑎ሻ = 𝑅൫𝑙𝑗, 𝑆𝑎൯ ,        (5) 

or 𝑅ሺ𝑙𝑖, 𝑆𝑏ሻ = 𝑅൫𝑙𝑗, 𝑆𝑏൯       (6) 

 

Kendall¶s rank correlation compares all pairs of decision alternatiYes, 𝑙𝑖 and 𝑙𝑗, to obtain 

a measXre of the agreement in ranking Xnder the tZo sets of scenarios. We Xse Kendall¶s 

Tau-b metric because it makes adjustments for ties in rankings to ensure that the values 

of Tau-b, 𝜏, range between -1 (opposite rankings / complete disagreement) and +1 (same 

rankings / complete agreement). This gives a high-level view of how scenario selection 

impacts the rankings of the decision alternatives, providing confidence to decision-

makers that a particular decision alternative is more robust than another irrespective of 

the choice of scenario sets if there is a high degree of ranking similarity across the 

scenarios. Conversely, a high degree of disagreement in the ranking of the decision 

alternatives across the different scenario sets indicates that it is difficult to identify the 

most robust decision alternative and that the scenarios considered might have to be 

examined more carefully. 

 

3.3. Case study 

3.3.1. Background 

In order to illustrate the generic approach for assessing the impact of scenario selection 

on absolute and relative robustness, we use the intertemporal Lake Problem as a case 

study. It is a stylistic, hypothetical problem that has been used in many previous studies 

(Carpenter et al., 1999; Eker & Kwakkel, 2018; Hadka et al., 2015; Kwakkel, 2017; 

Lempert & Collins, 2007; Quinn et al., 2017; Singh et al., 2015; Ward et al., 2015). It is 

based on the idea of a town that releases pollution into a lake, and has many of the 

characteristics commonly encountered by decision-makers dealing with real water 

resources problems, such as (1) environmental thresholds; (2) deep uncertainty in future 

conditions; (3) deep uncertainty associated with identifying environmental thresholds; 

and (4) conflicting objectives (e.g. economic vs. environmental) (Lempert & Collins, 

2007; Lenton, 2013; Quinn et al., 2017). The specific details of the Lake Problem are 

contained in the studies mentioned above, and an overview of the performance metrics, 

decision alternatives and scenarios is given below. 
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There are environmental consequences of the release of pollution into the lake, which are 

measured by two of the performance metrics: maximum phosphorus concentration (to be 

minimized) and the frequency of time where the pollution is below a critical threshold 

(i.e. reliability) (to be maximized). Competing against these environmental metrics is a 

third performance metric, the economic utility (to be maximized), which is decreased 

when action is taken to reduce pollution. 

 

The performance metric values are influenced by the decision alternatives and scenarios. 

The decision alternatives represent the annual pollution control strategies that the 

inhabitants of the town implement (i.e. they define the annual quantity of industrial 

pollution that is allowed to enter the lake for each year in the 100 year planning horizon). 

A reduction in annual pollution improves reliability and maximum phosphorous (by 

increasing the number of years the system is below the pollution threshold and 

minimizing the maximum level of phosphorus). However, this decreases economic utility 

(because it costs money). 

 

3.3.2. Scenario set generation 

 In principle, the Lake Problem can be represented using a range of qualitative and 

quantitative approaches, with important choices related to system model boundaries, 

process representations and other key modelling considerations. In the particular case 

considered in this paper, a s\stem model (referred to as the ³Lake Model´) is Xsed, as it 

represents a trusted numerical representation of the system that has reasonable fidelity in 

simulating key system processes (Carpenter et al., 1999; Lempert & Collins, 2007). 

System model selection represents a key consideration in model-based assessments, and 

the system model boundaries effectively delineate the scenarios that are required as model 

inputs. These inputs are described in Table 3-1, with the set of valid combinations of 

scenarios depicted as a five-dimensional hypercube with plausible bounds selected based 

on previous studies (Kwakkel (2017); Quinn et al. (2017); Eker & Kwakkel (2018)), as 

given in Table 3-1. 
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Table 3-1. Deeply uncertain scenario variables (model inputs) and associated ranges of 

values for the Lake Problem. 

Variable Range Description 

𝜇  0.01 ± 0.05 
Mean of the lognormal distribution of natural pollution 

inflows 

𝜎  0.001 ± 0.005 
Standard deviation of the lognormal distribution of 

natural pollution inflows 

𝑏  0.1 ± 0.45 Natural removal rate of pollution 

𝑞  2 ± 4.5 Natural recycling rate of pollution 

𝛿  0.93 ± 0.99 Discount rate (for economic utility) 

 

The objectives of the case study are to emulate the impact of the diversity of scenario 

selection approaches used in the water resources literature, as summarized in Section 3.1, 

on absolute and relative robustness values. However, regardless of which scenario 

selection approach is used, for a quantitative study such as the Lake Problem, the outcome 

of the scenario selection step needs to be the quantitative specification of inputs to the 

system model (i.e. points in the five-dimensional hypercube that represents the input 

parameter space for the Lake Model). Thus, several sampling strategies are used to 

generate the requisite Lake Model inputs, which encapsulate key features of alternative 

scenario generation techniques, including: 

x how the space is covered (i.e. whether the focus is on evenly covering the 

space, or on identifying regions of the space that are more or less likely); and 

x the number of scenarios considered. 

 

To ensure the generality of our findings, we have analyzed 300 different potential 

scenario sets for each distribution of scenarios, consisting of a total of 18,000 individual 

scenarios in sets of size 20, 40, 60, 80, and 100 scenarios per set. These are distributed in 

different ways throughout the scenario space, including uniform coverage of the space, 

sparse coverage of diverse regions of the space, and a targeted spread over certain regions 

of the space (see Supporting Information for details on how the different scenarios were 

generated).  

 

Illustrative examples of the resulting differences in the distributions of the scenarios 

obtained are shown in Figure 3-4.  
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x Diverse: Figure 3-4 (a) depicts the situation where four diverse futures are first 

identified (analogous to RCPs) with many samples taken around each of these 

four points (analogous to the use of multiple global and regional climate models 

to create multiple downscaled realizations of each of the RCPs) of which there are 

many examples in the water resources literature (Anghileri et al., 2018; Giuliani, 

Castelletti, et al., 2016; Giuliani & Castelletti, 2016; Haasnoot et al., 2012, 2013; 

Herman & Giuliani, 2018; Huskova et al., 2016; McPhail et al., 2018). 

x Targeted: Figure 3-4 (b) depicts a targeted approach to identifying samples that 

coYer ³interesting´ regions of the s\stem model space, for the situation where the 

model performance responds monotonically to each input (i.e. an increase in one 

variable always results in increased or decreased performance). This can occur 

when two model inputs (e.g. water supply and water demand) are lined up from 

worst to best, and the two worst values (e.g. lowest water supply and highest water 

demand) are paired, etc., leading to a clear set of worst to best points in the 

hypercube (Beh et al., 2014, 2015a, 2015b). 

x Uniform: Figure 3-4 (c) depicts a uniform sampling of the entire hypercube to 

consider a wide range of plausible futures, as is often done in the water resources 

literature (Culley et al., 2016, 2019; Hadka et al., 2015; Hall et al., 2012; Herman 

et al., 2015; Kasprzyk et al., 2013; Kwakkel, 2017; Kwakkel et al., 2015; 

Kwakkel, Walker, et al., 2016; McPhail et al., 2018; Quinn et al., 2017, 2018; 

Singh et al., 2015; Trindade et al., 2017; Watson & Kasprzyk, 2017; Weaver et 

al., 2013; Zeff et al., 2014). 
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Figure 3-4. Two-dimensional illustration of how the three distributions of scenarios are 

implemented for the case study, with examples for both a small and large number of 

scenarios, emulating the diversity in scenarios that could be obtained by using different 

scenarios selection approaches. 

 

3.3.3. Decision alternatives and performance values 

Robustness values are determined relative to potential decision alternatives, and in this 

analysis we consider 4,611 such alternatives. These were obtained using a many-objective 

evolutionary algorithm to identify a set of Pareto optimal decision alternatives for a 

reference scenario, as is recommended in many-objective robust decision making 

(Kasprzyk et al., 2013). Specifically, we used a generational version of the BORG 

algorithm (Hadka & Reed, 2013), to allow for easy parallelization to reduce run times. 

The generational version of BORG uses autoadaptive operator selection, restarts for 

stalled search, and adaptive population sizing from BORG (Hadka & Reed, 2013), within 

the generational e-NSGA2 structure. As a stopping condition, we used 500,000 function 

evaluations, while convergence was assessed using hypervolume and epsilon progress 

(Reed et al., 2013; Ward et al., 2015). We repeated this for 50 different initial random 

seeds and merged the final results into one large set of final decision alternatives. For 

each decision alternative, three performance values are produced per simulation 
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(described in more detail in Section 3.4.1) and per scenario, leading to a total of 

248,994,000 performance values (i.e. the product of 18,000 scenarios that were grouped 

into 300 sets of scenarios, 4,611 decision alternatives and three performance metrics). 

 

3.3.4. Robustness metrics 

Robustness values were calculated using ten different robustness metrics (see Table 3-2), 

also used by McPhail et al. (2018), and chosen because they assess global robustness, 

rather than local robXstness (i.e. no ³reference´ or ³best estimate´ scenario needs to be 

selected) (Matrosov et al., 2013; Roach et al., 2016). The consideration of global 

robustness, rather than local robustness, is important, due to the ability for global 

robustness to better analyze and manage non-probabilistic uncertainty (Sniedovich, 

2010). The aggregation of performance values across each set of scenarios for the 

robustness metrics involved the manipulation of the 248,994,000 performance values into 

45,648,900 robustness values (i.e. the product of 300 sets of scenarios, 4,611 decision 

alternatives, three performance metrics and 11 robustness metrics). These robustness 

values were then used to assess the impact of different scenario sets on (a) the robustness 

of decision alternatives and (b) the ranking of decision alternatives (methodology 

explained in more detail in Sections 3.2 and 3.3, respectively). 

 

Table 3-2.Robustness metrics used in analysis 

Metric name Brief description 

Maximin Worst-case performance (high level of risk aversion). 

Maximax Best-case performance (low level of risk aversion). 

HXrZic]¶s Optimism-Pessimism 

Rule 

Weighted sum of the best- and worst-cases. 

Laplace¶s Principle of InsXfficient 

Reason 

Mean performance. 

Minimax Regret The worst-case cost of making a wrong decision in any 

given scenario (high level of risk aversion). 

90th Percentile Minimax Regret The 90th percentile cost of making a wrong decision 

(high level of risk aversion) (percentile-based 

calculation). 

Mean-variance A function of the mean and variance in performance. 

Undesirable Deviations The sum of performance below the median performance. 
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Percentile-based Skewness The skew of performance (towards high- or low-

performance) (percentile-based calculation). 

Percentile-based Peakedness The kurtosis (peakedness) of performance (percentile-

based calculation). 

Starr¶s Domain Criterion Calculates the proportion of scenarios with acceptable 

levels of performance. 

 

3.4. Results and discussion 

3.4.1. Robustness values 

Following the methodology outlined in Figure 3-2, the sensitivity of each robustness 

metric to the different distributions of scenarios is shown in Figure 3-5. The sensitivity is 

the percentage difference between the robustness calculated for two different sets of 

scenarios, and this is averaged across all of the Pareto-optimal decision alternatives (as 

described in Figure 3-2) from each of the 50 optimization runs. Orange and red represents 

high sensitivity (i.e. >10% difference in robustness for the two different sets of scenarios) 

and purple and blue represents low sensitivity (i.e. <10% difference in robustness for the 

two different sets of scenarios). The robustness values (and therefore the sensitivity of the 

robustness values) is calculated using the distribution of scenarios in the scenario space 

(e.g. diverse futures or uniform spread), the decision alternatives, the performance metric 

(e.g. reliability), and the robustness metric (e.g. Maximin). The decision alternatives are 

purely case-specific while the other three factors are more general; therefore we have 

presented the results in Figure 3-5 in a way that allows the scenario distribution, 

performance metric, and robustness metric to be compared one-by-one, or in 

combination. 
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Figure 3-5. Sensitivity of the robustness metrics (as measured by the percentage difference), for each of the case study performance metrics 

(maximum phosphorous, utility, and reliability) for each distribution of scenarios in the scenario space (diverse futures, uniform spread, targeted 

spread). Red represents high sensitivity and purple represents low sensitivity of the robustness metric to the set of scenarios. 
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Overall, Figure 3-5 indicates that scenario selection has a large impact on robustness 

values. This is evidenced by the fact that the bars are generally green, orange, or red when 

comparing the robustness values obtained when different scenario sets are used 

(indicating a difference in robustness values in excess of 10%) (Figure 3-5). This is most 

likely because the different sets of scenarios are covering very different areas of the 

scenario space (Figure 3-4), and therefore different input variables are being used by the 

model to determine system performance and robustness. 

 

The results also show that differences in robustness methods between scenarios that 

represent a uniform spread and scenarios that represent a targeted spread are smaller than 

those between the other two combinations of distributions of scenarios (Figure 3-5), 

particularly for the reliability performance metric. To explain why this occurs, Figure 3-

6 shows one set of scenarios for each of the different scenario distributions, overlaid on 

the performance values for a 2D subspace of the scenario space for a single decision 

alternative. Figure 3-6 indicates that the scenario space is covered very differently by 

scenarios that represent diverse futures, a uniform spread and a targeted spread. In 

particular, scenarios are spread across all levels of performance when the set represents a 

uniform spread or targeted spread (all colors in Figure 3-6), however, some levels of 

performance (some colors) will be missed when there is a clustering of scenarios, as 

happens when the scenarios are representative of diverse futures, particularly if there are 

thresholds in performance (e.g. for reliability and maximum phosphorous). The similarity 

in coverage of the performance values by the distribution of scenarios representing a 

uniform spread and targeted spread leads them to produce more similar values of 

robustness relative to the distribution of scenarios that is representative of diverse futures. 
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Figure 3-6. Illustration of how different sets of scenarios will sample different points in 

the space of system performance values for The Lake Problem. Robustness is calculated 

by the sampled system performance values and therefore affected by the distribution of 

scenarios and system performance values. 

 

As mentioned above, the degree of similarity in robustness values can be affected by the 

distribution of the performance values. For example, when considering the utility metric 

column in Figure 3-5, it can be seen that there are significantly fewer orange and red bars, 

which indicates high similarity in robustness values. The utility metric shows slightly 

more similarity in robustness values when the distribution of scenarios is representative 

of diverse futures, but much greater similarity when the scenarios correspond to a uniform 

spread or targeted spread. Figure 3-6 illustrates that the performance values for the utility 

metric form a smooth and continuous space, relative to the reliability and maximum 

phosphorous metrics, which have sharp gradients and non-linearities (due to tipping 

points in the environmental dynamics of the Lake Problem). This leads to 

correspondingly higher dissimilarity in robustness values for the latter metrics. 

 

In most instances, the number of scenarios considered does not have a significant effect 

on the relative similarities or differences in the robustness values obtained using the 

different distributions of scenarios throughout the scenario space (Figure 3-5). This 

indicates that the way that the scenarios cover the scenario space (i.e. diverse futures, 

uniform spread or targeted spread) plays a greater role in determining robustness values 

than the number of scenarios used for each approach. For situations where there is a 
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gradient in robustness values with an increase in the number of scenarios, the level of 

agreement in robustness values increases as the number of scenarios increases. 

 

Figure 3-7 summarizes the trends in similarity in robustness values from Figure 3-5, with 

reference to the factors affecting this similarity (Figure 3-6). Figure 3-7 highlights (using 

examples) that, in general, a dissimilar coverage of the scenario space (e.g. the diverse 

futures vs. uniform spread scenarios, as discussed previously) will lead to a lower degree 

of similarity in robustness (Example A in Figure 3-7), and a more similar coverage of the 

scenario space (e.g. targeted spread vs. uniform spread scenarios) leads to a higher degree 

of similarity in robustness (Example F in Figure 3-7). However, the interactions of the 

distribution of scenarios, the behavior of the system performance metrics, and the 

behavior of the robustness metrics (Figure 3-6) are complex, and so there are exceptions 

to these findings. 

 

Example 
# 

Coverage of 
scenario space 

Behavior of 
performance 

metric 

Behavior of 
robustness 

metric 

Degree of similarity in 
robustness 

A 

Dissimilar 
E.g. Diverse 

futures vs 
Uniform spread 

Discontinuous, 
unbounded 
E.g. Max. 

Phosphorous 

All 
E.g. Mean-

variance 
Very dissimilar 

B 

Dissimilar 
E.g. Diverse 

futures vs 
Uniform spread 

Discontinuous, 
bounded 

E.g. Reliability 

Most metrics 
E.g. Laplace¶s 

Principle 

Very 
dissimilar to similar 

C 

Dissimilar 
E.g. Diverse 

futures vs 
Uniform spread 

Discontinuous, 
bounded 

E.g. Reliability 

Extreme low or 
high risk 

averseness 
E.g. Maximin, 

maximax 

Very 
dissimilar 

to very 
similar 

D 

Dissimilar 
E.g. Diverse 

futures vs 
Uniform spread 

Continuous 
E.g. Utility 

Percentile-
based 

E.g. Skewness 
Very dissimilar 

E 

Dissimilar 
E.g. Diverse 

futures vs 
Uniform spread 

Continuous 
E.g. Utility 

Most metrics 
E.g. Maximin, 
Mean-variance 

Dissimilar to similar 

F 

Similar 
E.g. Uniform 

spread vs 
Targeted spread 

Discontinuous, 
unbounded 
E.g. Max. 

Phosphorous 

All 
E.g. Mean-

variance 

Very 
dissimilar 

to 
dissimilar 

G Similar 
Discontinuous, 

bounded 
E.g. Reliability 

Most metrics 
E.g. Minimax 

regret 

Very 
dissimilar 

to 
dissimilar 
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E.g. Uniform 
spread vs 

Targeted spread 

H 

Similar 
E.g. Uniform 

spread vs 
Targeted spread 

Discontinuous, 
bounded 

E.g. Reliability 

Extreme low or 
high risk 

averseness 
E.g. Maximin, 

Maximax 

Very 
dissimilar 

to very 
similar 

I 

Similar 
E.g. Uniform 

spread vs 
Targeted spread 

Continuous 
E.g. Utility 

Percentile-
based 

E.g. Skewness 
Neutral 

J 

Similar 
E.g. Uniform 

spread vs 
Targeted spread 

Continuous 
E.g. Utility 

Most metrics 
E.g. Mean-

variance 
Very similar 

Figure 3-7. General indication of how different distributions of scenarios, different 

performance metrics, and different robustness metrics all affect the robustness of decision 

alternatives in for the Lake Problem. 

 

An exception to the general findings is that the value of the Maximax robustness metric 

is insensitive to the distribution of scenarios used for the reliability system performance 

metric, especially if a sufficiently large number of scenarios is used. This is because 

almost any decision alternative will achieve 100% reliability if the uncertain model inputs 

affecting the pollution levels (e.g. the mean natural pollution inflow) are favorable. In 

other words, for almost any decision alternative, there is some favorable region of the 

scenario space where the decision alternative can achieve 100% reliability. Due to the 

Maximax metric selecting the scenario with the best performance, the robustness will 

always be 100%, regardless of the distribution of scenarios or the decision alternative. 

This highlights how a performance metric with bounds (e.g. reliability is bounded 

between 0% and 100%) can interact with some robustness metrics (e.g. Maximax and 

Maximin, which use the best- and worst-case performance, respectively), as highlighted 

in Examples C and H in Figure 3-7. Note that this effect is not seen for the Maximin 

metric in this case study, because the starting conditions for the lake do not allow for the 

possibility of 0% reliability and thus the reliability is always greater than 0% in practice. 

 

Robustness metrics that use percentiles (e.g. the Undesirable Deviations metric, 

Percentile-based Skewness, and Percentile-based Peakedness) are sensitive to the 

distribution of scenarios in the scenario space because they are dependent on the higher 
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order moments of the distribution of performance values, which can vary more 

significantl\ than mean performance (e.g. Laplace¶s Principle of InsXfficient Reason), 

and also vary more significantly than bounded maximum and minimum performance 

(Maximax and Maximin metrics respectively) (see Examples D and I, Figure 3-7). 

Metrics that use percentiles were an exception to the generalized findings and it should 

be noted that these metrics were also found to behave very differently to the other metrics 

in McPhail et al. (2018). 

 

The above results indicate that the similarity of robustness metrics when comparing the 

robustness calculated from different distributions of scenarios is a function of the complex 

interactions between: 

x The similarity/dissimilarity of the coverage of the space of plausible values of the 

model inputs that are represented by scenarios. 

x The behavior (e.g. smoothness, discontinuities) of the system performance metric 

over the space of plausible model input values. 

x The number of scenarios used in the calculation of robustness (when comparing 

the distributions of scenarios corresponding to a uniform spread and a targeted 

spread). 

 

3.4.2. Ranking similarity 

Following the methodology outlined in Figure 3-3, the correlation of the performance 

values (i.e. similarity in how the decision alternatives are ranked) is shown in Figure 3-8. 

The similarit\ of the rankings of the decision alternatiYes is giYen b\ Kendall¶s TaX-b for 

two different sets of scenarios, and this is averaged across all decision alternatives and all 

random seeds (as described in Figure 3-3). A value of -1 (red) indicates that the two 

distributions of scenarios give perfectly opposite rankings for the decision alternatives 

and a value of 1 (blue) represents the case where the rankings are the same (regardless of 

how different the robustness values are). A value of 0 represents the case where there is 

no correlation between the two methods, and therefore this represents a low similarity in 

rankings. Figure 3-9 summarizes the results from Figure 3-8, highlighting that in general, 

the coverage of the scenario space has little to no impact on the ranking of decision 

alternatives, which are almost always ranked the same way. However, as with the analysis 

of robustness values (Section 3.5.1), there are some exceptions to the above findings for 
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the rankings, which are due to the interactions between the distribution of scenarios, the 

behavior of the system performance metrics, and the behavior of the robustness metrics 

(see Figure 3-6). 
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Figure 3-8. Similarit\ of the rankings of decision alternatiYes (as measXred b\ Kendall¶s TaX-b) for each of the case study objectives (maximum 

phosphorous, utility, and reliability) for each pair of distributions of scenarios (diverse futures, uniform spread, targeted spread). Red or white 

represents low and blue represents high similarity (decision alternatives have the same rankings). 
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Example 
# 

Coverage of 
scenario space 

Behavior of 
performance 

metric 

Behavior of 
robustness 

metric 

Degree of similarity 
in rankings 

A 

Dissimilar 
E.g. Diverse 

futures vs 
Uniform spread 

Discontinuous, 
unbounded 
E.g. Max. 

Phosphorous 

Multiple 
percentiles or 
undesirable 
deviations 

E.g. Percentile-
based skewness 

Dissimilar to 
similar 

B 

Dissimilar 
E.g. Diverse 

futures vs 
Uniform spread 

Discontinuous, 
unbounded 
E.g. Max. 

Phosphorous 

Most metrics 
E.g. Minimax 

regret 
Very similar 

C 

Dissimilar 
E.g. Diverse 

futures vs 
Uniform spread 

Discontinuous, 
bounded 

E.g. Reliability 

Multiple 
percentiles or 
undesirable 
deviations 

E.g. Percentile-
based skewness 

Dissimilar to 
similar 

D 

Dissimilar 
E.g. Diverse 

futures vs 
Uniform spread 

Discontinuous, 
bounded 

E.g. Reliability 

All 
E.g. Maximin Similar to very 

similar 

E 

Dissimilar 
E.g. Diverse 

futures vs 
Uniform spread 

Continuous 
E.g. Utility 

All 
E.g. Maximin Similar to very 

similar 

F 

Similar 
E.g. Uniform 

spread vs 
Targeted spread 

Discontinuous, 
unbounded 
E.g. Max. 

Phosphorous 

Multiple 
percentiles or 
undesirable 
deviations 

E.g. Percentile-
based skewness 

Dissimilar to 
similar 

G 

Similar 
E.g. Uniform 

spread vs 
Targeted spread 

Discontinuous, 
unbounded 
E.g. Max. 

Phosphorous 

Most metrics 
E.g. Minimax 

regret 
Very similar 

H 

Similar 
E.g. Uniform 

spread vs 
Targeted spread 

Discontinuous, 
bounded 

E.g. Reliability 

Multiple 
percentiles or 
undesirable 
deviations 

E.g. Percentile-
based skewness 

Dissimilar to 
similar 

I 

Similar 
E.g. Uniform 

spread vs 
Targeted spread 

Discontinuous, 
bounded 

E.g. Reliability 

All 
E.g. Maximin Similar to very 

similar 

J 

Similar 
E.g. Uniform 

spread vs 
Targeted spread 

Continuous 
E.g. Utility 

All 
E.g. Maximin Very similar 
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Figure 3-9. General indication of how different distributions of scenarios, different 

performance metrics, and different robustness metrics all affect the rankings of decision 

alternatives in for the Lake Problem. 

 

Overall, Figure 3-8 indicates that for the majority of robustness values, the distribution of 

scenarios in the scenario space has a minor impact on the rankings of decision alternatives 

(with a few exceptions explained in more detail below). This is evidenced by the fact that 

much of Figure 3-8 is shaded dark blue, representing a positive correlation in the rankings 

of the decision alternatives when different distributions of scenarios are used to calculate 

robustness. This is likely because a high dissimilarity in robustness values (evidenced by 

much of Figure 3-5) does not necessarily mean a high dissimilarity in rankings. Therefore, 

although the robustness values may be very dissimilar when different scenario selection 

methods are used, the values are not changing relative to each other so that the same 

decision alternative would be selected as the most robust in both cases (i.e. the relative 

robustness of different decision alternatives is the same). 

 

The number of scenarios does not have a significant effect on the rankings of the decision 

alternatives when comparing two sets of scenarios obtained by different methods. The 

reason for this is that, as described above, a high level of dissimilarity in robustness values 

calculated for two different distributions of scenarios does not necessarily lead to a change 

in the rankings of the decision alternatives, and therefore the rankings have high similarity 

even as the number of scenarios increases. 

 

Some examples of exceptions to the above findings include that the metrics that consist 

of multiple percentiles (percentile-based skewness, peakedness) and the undesirable 

deviations metric can lead to dissimilar rankings in some cases (Examples A, C, F, and G 

in Figure 3-9) whereas most other metrics rank decision alternatives very similarly (see 

Figure 3-9). It should also be noted that McPhail et al. (2018) showed these same three 

robustness metrics to produce very dissimilar rankings when compared to other 

robustness metrics, even when the same scenarios were used in all robustness 

calculations. 

 

Another exception is that there is relatively high dissimilarity in the rankings of the 

Maximax metric when robustness is calculated using the reliability metric. This is 
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because, as mentioned previously, the region of the scenario space where any decision 

alternative can achieve 100% reliability is very large for this case study, and therefore 

when using the Maximax metric, most decision alternatives have the same robustness 

YalXe (100%). Kendall¶s TaX-b metric (used to determine similarity in ranking) becomes 

highly sensitive when there are many decision alternatives with the same rankings, 

because a change in robustness to 99% for a single decision alternative will cause 

Kendall¶s TaX-b metric to see the two distributions of scenarios as having a high 

dissimilarity. 

 

To summarize Figure 3-8 and Figure 3-9, the rankings of decision alternatives is generally 

not strongly affected by scenario selection. However, there are some exceptions, based 

on the complex interactions between the behavior (e.g. smoothness vs. discontinuities) of 

the system performance metric (e.g. economic utility vs. reliability and maximum 

phosphorous) over the space of plausible model input values. The multi-faceted nature of 

the interactions between different aspects of the analysis means that while the overall 

methodology of assessing the impact of scenarios on the robustness analysis is 

generalizable, the specific results presented here are likely to be case-study specific. 

 

3.5. Summary and conclusions 
As part of model-based assessment of decision alternatives under deep uncertainty, the 

performance of the different alternatives is assessed under a range of plausible future 

conditions (scenarios). However, while each of these scenarios corresponds to a different 

combination of values of model inputs, there is a diversity of approaches for generating 

these values in the water resources literature. For example, some studies have determined 

plausible future conditions by considering changes in atmospheric carbon concentrations 

and/or socio-economic conditions, whereas other studies have generated normative 

scenarios using techniques such as scenario discovery, decision scaling, or adaptive 

pathways approaches. These scenarios can also be generated in different ways, including 

qualitative, participatory approaches, or purely quantitative methods. Given this diversity 

of scenario creation approaches, it is important to determine the impact this has on the 

robustness values and rankings of decision alternatives. 
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This paper proposes a methodology for quantitatively assessing the impact of different 

sets of scenarios on the robustness and rankings (relative robustness) of decision 

alternatives. The methodology for comparing two sets of scenarios begins by first 

simulating the decision alternatives across the different sets of scenarios, and then 

calculating the robustness of those decision alternatives using a variety of robustness 

metrics. The robustness values are analyzed by looking at the relative difference in 

robustness, and by looking at the correlation in the rankings of the decision alternatives 

(based on robustness) when different distributions of scenarios are used. 

 

As a simplified example of how to apply this methodology, it was used to analyze the 

effect of three conceptually different distributions of scenarios (Figure 3-4). The 

methodology was applied to the Lake problem, using a variety of robustness metrics 

(Table 3-2). The results show that the distribution of scenarios has a significant effect on 

the robustness values calculated (Figure 3-5), but a small effect on how decision 

alternatives are ranked (i.e. relative robustness) (Figure 3-8). With regard to the degree 

of similarity of robustness values, the results indicated that dissimilar coverage of the 

scenario space (e.g. a diverse set of futures compared to a uniform spread) generally led 

to a lower degree of similarity in robustness values, in contrast to a similar coverage of 

the scenario space (e.g. a uniform spread and a targeted spread), which led to a higher 

degree in similarity of robustness values. Similarity of the robustness values is also 

affected by complex interactions of scenario selection with the number of scenarios, the 

behavior (e.g. smoothness, discontinuities) of the system performance metric over the 

space of plausible model input values, and the robustness metric itself (Figure 3-6). In 

contrast to the robustness values, it was found that the rankings of the decision alternatives 

based on robustness values often had a moderate to high degree of similarity when 

different sets of scenarios are used. Again, exceptions to this were caused by certain 

combinations of the behavior of the system performance metric and the characteristics of 

the robustness metric used. 

 

The effects of several distributions of scenarios have been assessed using both theoretical 

and computational evidence, but the results presented are by no means representative of 

all combinations of scenario selections, robustness metrics, case studies etc. This study 

used many stochastic simulations to highlight that scenarios can have an effect, but in 

order to see the effect on real-life decision-making, further investigation is warranted. 
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One way to explore the effects on decision-making could be through simulation gaming 

workshops with students, followed by workshops with decision-makers, case-studies of 

successful long-term infrastructure plans, and the creation of carefully designed pilot 

studies to compare these approaches, as recommended by Kwakkel & van der Pas (2011). 

Further exploration would also be required to understand the impact that the decision 

alternatives have on this analysis. Here, we used a large set of decision alternatives built 

from multiple Pareto fronts. Using the generic methodology presented here it would be 

possible to see whether scenarios have the same impact when the set of decision 

alternatives is smaller or is comprised of a single Pareto front. 

 

The application of the generic methodology presented in this paper to a simple case study 

(the Lake Model) allowed this paper to explore the effect of a variety of sets of scenarios, 

emulating different approaches to creating scenarios used in practice, on the robustness 

of a system, something that has not been explored previously. Without this method, there 

is no approach in the literature to understanding the impact of scenario selection on the 

absolute and relative robustness values of different decision alternatives. We highlighted 

several examples of how different distributions of scenarios could affect the robustness 

of decision alternatives in different ways, which shows the utility of the generic 

methodology. Interestingly, in the case study considered, the number of scenarios seemed 

to have relatively little impact, and the results also showed that despite the significant 

effect of the distribution of scenarios on robustness values, the effect on the rankings of 

the decision alternatives was relatively small (and in many cases negligible). 
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The Lake Model is widely available on GitHub in multiple repositories, including in the 

EMAworkbench: https://github.com/quaquel/EMAworkbench 
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Abstract 
The long-term planning of environmental systems presents several challenges to decision-

makers including the question of how to make decisions when model inputs cannot be 

represented by deterministic or stochastic processes (i.e. when the future is deeply 

uncertain) and must instead be represented as multiple plausible futures (scenarios). A 

variety of metrics exist for determining the robustness (performance across the scenarios) 

and recent research shows that different metrics can lead to different decisions being 

made. Similarly, a variety of approaches exist for the selection or generation of scenarios 

and recent research has shown that because they are an input to the calculation of 

robustness, these different approaches can lead to different decisions being made. Despite 

the uncertainty in which robustness metric or scenario selection approach should be used 

to determine which decision alternative is most robust, no guidance for decision-makers 

exists for how to conduct a holistic robustness analysis for the problem at hand. In this 

paper, we develop a generic guidance framework to assist with the identification of the 

most robust decision alternative. To ensure consistency and ease-of-use for the proposed 

guidance framework, this paper also introduces a software package that assists in the 

implementation of this framework. We illustrate the guidance framework and software 

package on a hypothetical lake pollution problem, known in the literature as The Lake 

Problem, showing how the guidance and software package applies to several situations 

where the decision-makers may or may not know or which scenarios or robustness metrics 

to use. 
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4.1. Introduction 
The long-term planning of water and environmental systems presents major challenges to 

decision-makers, requiring them to make decisions despite a significant degree of 

uncertainty in the future state of the world. Frequently, decision-makers are operating at 

the level of deep uncertainty, which refers to when deterministic and stochastic processes 

are insufficient for representing the future state of the world, and the consideration of 

multiple plausible futures (scenarios) is required (Bradfield et al., 2005; Herman et al., 

2014; Kwakkel et al., 2010; Kwakkel and Haasnoot, 2019; Lempert, 2003; Little et al., 

2018; Maier et al., 2016; Schwarz, 1991; van der Heijden, 1996; Varum and Melo, 2010; 

Walker et al., 2013; Wright and Cairns, 2011). Further complicating this, probabilities 

cannot be placed on the scenarios, and therefore traditional performance metrics such as 

reliability (frequency of acceptable performance), vulnerability (magnitude of failure), 

resilience (duration of failure), or expected value (expected level of performance) do not 

apply because a traditional Monte Carlo analysis would require the probabilities to be 

known (Maier et al., 2016). Rather, deep uncertainty requires robustness metrics, which 

aim to determine the level of system performance and how that performance varies across 

all scenarios (Herman et al., 2015; Kwakkel and Haasnoot, 2019; Lempert, 2003; Maier 

et al., 2016; McPhail et al., 2018). 

 

However, the literature contains a multitude of approaches to quantify the performance 

across a range of deeply uncertain futures, including: (i) expected value metrics (Wald, 

1951), which indicate an expected level of performance across a range of scenarios; (ii) 

metrics of higher-order moments, such as variance and skew (e.g. Kwakkel et al. 

(2016a)), which provide information on how the expected level of performance varies 

across multiple scenarios; (iii) regret-based metrics (Savage, 1951), where the regret of a 

decision alternative is defined as the difference between the performance of the selected 

option for a particular plausible condition and the performance of the best possible option 

for that condition; and (iv) satisficing metrics (Simon, 1956), which calculate the range 

of scenarios that have acceptable performance relative to a threshold. A common 

conclusion from recent research is that different robustness metrics can sometimes lead 

to decision alternatives being ranked differently, making it difficult to determine which 

decision alternatives are the most robust (Borgomeo et al., 2018; Drouet et al., 2015; 

Giuliani and Castelletti, 2016; Hall et al., 2012; Herman et al., 2015; Kwakkel et al., 
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2016a; Lempert and Collins, 2007; McPhail et al., 2018; Roach et al., 2016). For example, 

one of the conclusions of the Lake Como study by Giuliani and Castelletti (2016) was 

that ³solutions obtained with misdefined robustness metrics generally underestimate the 

system performance with respect to the one achievable with a correctly defined metric, 

with the degradation of performance that is larger in the case of the more pessimistic 

metrics.´ Similarly,  a Kwakkel et al. (2016a) case study on the transition of the European 

energy system towards a more sustainable fXtXre conclXded that ³there is no clearly 

superior single robustness metric. Case specific consideration and system characteristics 

affect the merits of the various robustness measures. This implies that an analyst has to 

choose carefully which robustness measure is being used and assess its appropriateness.´ 

 

Due to the scenarios being an input for the calculation of robustness, the scenarios also 

have an impact on the robustness of a decision alternative (McPhail et al., 2020, 2018). 

However, just as there is a diversity of approaches to calculating robustness, there is also 

a diversity of approaches for selecting or creating scenarios. A common categorization of 

approaches to scenario generation is given by Börjeson et al. (2006), where scenarios are 

split into three types: 

x Predictive scenarios ± where the aim is to determine ³Zhat Zill happen?´ For 

example, the future state of the world could be based on some future trajectory or 

change in trajectory due to some event; 

x Explorative scenarios ± where the aim is to determine ³Zhat coXld happen?´ 

Generally, this is done by framing the future in terms of the uncertainties that have 

the largest effects on system performance, but the future can also be unframed 

(Maier et al., 2016); and 

x Normative scenarios ± where the aim is to determine ³hoZ can a specific fXtXre 

be reali]ed?´ This is generally focused on interesting future outcomes or failure 

points for decision alternatives. 

 

In addition to this, scenarios can be created in very different ways. For example, a set of 

scenarios for a particular problem could be created in a largely qualitative manner through 

a participatory process with stakeholders with the aim of producing generalizable 

scenarios (e.g. Wada et al. (2019)), while a different set of scenarios for the same problem 

could be created through a largely quantitative process by varying the inputs to the system 

model of interest (e.g. using an approach such as Latin hypercube sampling (LHS)) 
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(Culley et al., 2019, 2016; Hadka et al., 2015; Hall et al., 2012; Herman et al., 2015; 

Kasprzyk et al., 2013; Kwakkel, 2017; Kwakkel et al., 2016b, 2015; McPhail et al., 2018; 

Quinn et al., 2018, 2017; Singh et al., 2015; Trindade et al., 2017; Watson and Kasprzyk, 

2017; Weaver et al., 2013; Zeff et al., 2014). However, each of these approaches can lead 

to vastly different scenarios being produced (Shepherd et al., 2018), for example, a 

participatory approach will generally result in a small number of scenarios in targeted 

regions of the uncertain variable space, while the latter example (LHS of scenarios) would 

lead to a large number of scenarios with even coverage of the space. Recent studies have 

shown that, as is the case for the use of different robustness metrics, the use of different 

sets of scenarios can also result in different relative robustness values of decision 

alternatives (McPhail et al., 2020), further inhibiting our ability to identify which decision 

alternative is most robust. 

 

In order to assist analysist and decision makers to better understand the sensitivity of the 

absolute and relative robustness of decision alternatives (e.g. designs, policies) of interest 

to the choice of robustness metrics and scenarios, McPhail et al. (2018) developed a 

generalizable, quantitative approach to assess the impact of the choice of different 

robustness metrics on the absolute and relative robustness of decision alternatives, and 

McPhail et al. (2020) did the same for the impact of the selection of different scenario 

sets. However, there is still a lack of a holistic procedure that provides guidance to 

analysts on the best way to identify which of the available decision alternatives is likely 

to be the most robust. 

 

Given the uncertainty in the choice of the most appropriate robustness metric and the 

variability in the relative robustness of different decision alternatives when different 

robustness metrics and/or scenarios are used, the overarching aim of this paper is to 

develop a generic guidance framework to assist with the identification of the most robust 

decision alternative. It should be noted that the focus is on the relative robustness of 

different decision alternatives, rather than their absolute robustness values, as the 

selection of the most robust solution is the generally the primary objective from a 

decision-making context, rather that the calculation of robustness per se. In order to 

enable to the proposed guidance framework to be implemented in a consistent and user-

friendly manner, this paper also introduces a software package that enables the most 

robust decision alternatives to be identified for a given problem. We illustrate the 
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guidance framework and software package on a hypothetical lake pollution problem, 

known in the literature as The Lake Problem, as it is a simple and well-represented case 

study in the literature (Carpenter et al., 1999; Eker and Kwakkel, 2018; Hadka et al., 

2015; Kwakkel, 2017; Lempert and Collins, 2007; Quinn et al., 2017; Singh et al., 2015; 

Ward et al., 2015). 

 

The specific objectives of this paper are: 

1. To develop a generic guidance framework to assist with the identification of the 

most robust decision alternative for a given decision context. 

2. To develop and describe a software package that enables the guidance framework 

to be implemented in a consistent and user-friendly manner. 

3. To illustrate the application of the framework and software package on the Lake 

Problem. 

 

The remainder of this paper is organized as follows: Section 4.2 introduces the guidance 

framework for analyzing the robustness of a set of decision alternatives, including how 

to create a custom robustness metric and how to assess the impact of the selection of 

scenarios and choice of robustness metric; Section 4.3 introduces a software package that 

can be used to implement this guidance and quantitatively and visually assess the impact 

of the choice of scenarios and robustness metric on the robustness values and rankings of 

the decision alternatives; Section 4.4 introduces the Lake Problem and provides a simple 

illustration of how the guidance and software package can be applied to an environmental 

model; and conclusions are presented in Section 4.5. 

 

4.2. Guidance framework for identifying the most robust decision 

alternative 
At the heart of the proposed framework for the assisting with the identification of the 

most robust decision alternatives is the calculation of different robustness metrics. The 

calculation of these metrics requires scenarios, decision alternatives (i.e. plans, policies, 

solutions), and one or more quantitative metrics (e.g. reliability or vulnerability), which 

can be used to determine the level of performance of each decision alternative in each 

scenario (Herman et al., 2015; McPhail et al., 2018). Figure 4-1 shows the processes 

through which these three inputs are used to calculate the robustness of each decision 
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alternative (i.e. the system performance across all scenarios). It consists of two main steps, 

including the use of the system model to calcXlate each decision alternatiYe¶s performance 

in each scenario, followed by the combination of these values in order to calculate a single 

robustness metric. While these steps are identical for each robustness metric, different 

robustness metrics correspond to the selection of different options at each of one of three 

transformations: (1) performance value transformation; (2) scenario subset selection; and 

(3) aggregation of performance values (McPhail et al., 2018) (Figure 4-1). At the first 

transformation, the options are whether to use the raw values of system performance or 

whether to transform these values using regret or satisficing transforms. At the second 

transformation, the choice is which subset of the available scenarios to use in the 

calculation of the robustness metric. At the third transformation, the options are whether 

to combine the transformed performance values over the selected scenarios using a 

measure of the level of performance, such as the mean, or a measure of variability in 

performance, such as the standard deviation. 
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Figure 4-1: Inputs and processes for calculating system performance and robustness. 

Transformations 1-3 are the components of the robustness metric, explained further in the 

guidance below. 

 

The proposed guidance framework for assisting with the identification of the most robust 

decision alternatives is given in Figure 4-2. The framework is designed to be as generic 

as possible, catering to situations where the robustness metric to be used has been pre-

determined, where a range of robustness metrics are to be considered or where the most 

appropriate robustness metric is to be determined based on the different attributes of the 

decision context (the properties of the problem) and the preferences of the decision-

maker. The framework also caters to situations where the scenarios under which system 

performance is to be calculated are known and situations where the influence of different 

sets of scenarios on the identification of the most robust solution is to be considered. It 

should be noted that the proposed framework assumes that the decision alternatives to be 

considered have already been selected and that the relevant performance metrics for these 

decision alternatives have been calculated. 
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Figure 4-2: Proposed generic guidance framework for assisting with the identification of 

the most robust decision alternative. 

 

The process of identifying the decision alternative that has the highest relative robustness 

commences with the candidate set of decision alternatives for which the relative 

robustness is to be calculated. The first decision point in this process is whether the 

robustness metric to be used in the assessment is known (Figure 4-2, Box 2). If an 

appropriate metric has already been selected, the next decision point in determining the 

most robust decision alternative is whether the scenarios to be used to determine the 

performance of the decision alternatives under consideration are known or not (Figure 

4-2, Box 6). If this is the case, the robustness of each decision alternative can be calculated 
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by combining its performance over the selected scenarios with the aid of the selected 

robustness metric. Then the alternative with the highest robustness value can be selected 

(Figure 4-2, Boxes 10 and 16). If it is not clear which scenarios should be used for the 

robustness calculation, the sensitivity of the relative robustness values of the different 

decision alternatives can be determined for different user-defined scenario sets, using the 

approach of McPhail et al. (2020) (Figure 4-2, Box 13). Visualizations of the relative 

ranking of the decision alternatives can be used to determine (using human judgement) 

whether the choice of candidate scenario set matters (Figure 4-2, Box 14), as illustrated 

in McPhail et al. (2020). If the choice of candidate scenarios does not matter because the 

visualizations indicate that the decision alternatives are ranked similarly regardless of the 

scenarios, then the decision alternative that is considered most robust can be easily 

selected (Figure 4-2, Box 16). However, if the choice of scenarios does affect the relative 

robustness of the decision alternatives of interest, then depending on the degree of 

sensitivity of the relative robustness of the different decision alternatives to the selected 

scenario sets, some degree of judgement will be required to determine which decision 

alternative is considered most robust (Figure 4-2, Box 15), or it might be concluded that 

it is not possible to identify which decision alternative is most robust. Note that in the 

situation where a robustness metric is known or pre-selected, it may still be useful to 

consider the pathways through Figure 4-2 where the robustness metric is not known. This 

would provide extra information about the system and the impact of the selected 

robustness metric on the robustness and rankings, as described below. 

 

If the robustness metric to be used is not known, the key decision point is whether a set 

of alternative robustness metrics to be considered in the analysis is known or not (Figure 

4-2, Box 3). If this is known, the next decision point is whether the scenarios are known 

or not (Figure 4-2, Box 5). If there is a known set of scenarios, the stability of the relative 

robustness of the decision alternatives under consideration can be calculated for the 

selected robustness metrics over the selected scenarios, using the approach of McPhail et 

al. (2018) (Figure 4-2, Box 12). Visualizations of the relative ranking of the decision 

alternatives can be used to determine whether the choice of candidate robustness metrics 

matters (Figure 4-2, Box 14), as illustrated in McPhail et al. (2020) and further discussed 

in Sections 4.3 and 4.4. If the choice of robustness metrics does not matter because the 

visualizations indicate that the decision alternatives are ranked similarly regardless of the 

robustness metric, then the decision alternative that is considered most robust can be 
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easily selected (Figure 4-2, Box 16). However, if the robustness metric does affect the 

relative robustness of the decision alternatives of interest, then depending on the degree 

to which it has an effect, some degree of judgement will be required to determine which 

is most robust, and it is recommended that the process for identifying the most appropriate 

robustness metric for the decision context under consideration introduced in Figure 4-3 

and discussed below be applied and that the analysis be repeated for the selected 

robustness metric (Figure 4-2, Box 15). 

 

If the scenarios to be used are not known, the sensitivity of the relative robustness values 

of the different decision alternatives to the different user-defined scenario sets and 

robustness values can be determined using the approach of McPhail et al. (2020) (Figure 

4-2, Box 11). Again, the visualizations (as illustrated in McPhail et al. (2020) and further 

discussed in Sections 4.3 and 4.4) allow the decision-maker to see whether the candidate 

scenarios and candidate robustness metrics have a significant effect on the relative 

robustness (Figure 4-2, Box 14). If the selection of scenarios and robustness metrics has 

an insignificant effect on the rankings, the most robust decision alternative can be easily 

selected (Figure 4-2, Box 16). However, if there is an effect on the relative robustness, 

then depending on the degree to which this is the case, some degree of judgement will be 

required to determine which decision alternative is most robust, and it is recommended 

that the most appropriate robustness metric is used to help determine this (Figure 4-2, 

Box 15). 

 

If the set of alternative robustness metrics to be considered in the analysis is unknown 

(Figure 4-2, Box 3), the most appropriate robustness metric to be used for each individual 

performance metric can be determined by selecting the most appropriate options at each 

of the three transformations in Figure 4-1 with the aid of the guidance in Figure 4-3 and 

the corresponding equations in Table 4-1 (Figure 4-2, Box 4). The first step in this process 

is to determine whether there is a meaningful threshold in the problem under 

consideration. For example, in a water supply system, supply must be greater than 

demand and thus the required demand becomes a constraint for the problem. In this case, 

the question then becomes whether solutions can be assessed using a pass or fail criterion, 

or whether the magnitude of the failure is important. In the previous example, a water 

supply system would be deemed to fail if demand was greater than the supply, so all 

decision alternatives could be classed as passing or failing in each scenario. Alternatively, 
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a decision-maker looking at a water supply system could choose to set a threshold as the 

point where supply is low enough to cause water restrictions, in which case the magnitude 

of failure does matter, since less water would mean greater water restrictions. 

 

 
Figure 4-3: Guidance for the creation of a robustness metric for each performance metric 

according to the problem being analyzed and the preferences of the decision-maker. (Note 

that the equations assume the objective here is to maximize system performance). 
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Table 4-1: Equations for the robustness metric transformations (assuming the aim is to 

maximize performance). 

T1 (performance value transformation) 

Identity transform 
𝑓1ሺ𝑙𝑎, 𝑠𝑖ሻ = 𝑓ሺ𝑙𝑎, 𝑠𝑖ሻ 

(performance metric 𝑓; decision alternative 𝑎, 𝑙𝑎; 
scenario 𝑖, 𝑠𝑖) 

Regret transform 𝑓1ሺ𝑙𝑎, 𝑠𝑖ሻ = argmax
𝑗

𝑓൫𝑙𝑎, 𝑠𝑗൯ − 𝑓ሺ𝑙𝑎, 𝑠𝑖ሻ 

Satisficing regret 
transform 

𝑓1ሺ𝑙𝑎, 𝑠𝑖ሻ = {
0,                     𝑓ሺ𝑙𝑎, 𝑠𝑖ሻ ≥ 𝑐
𝑐 − 𝑓ሺ𝑙𝑎, 𝑠𝑖ሻ, 𝑓ሺ𝑙𝑎, 𝑠𝑖ሻ ≤ 𝑐

 

(constraint of 𝑐) 

Satisficing transform 𝑓1ሺ𝑙𝑎, 𝑠𝑖ሻ = {
1, 𝑓ሺ𝑙𝑎, 𝑠𝑖ሻ ≥ 𝑐
0, 𝑓ሺ𝑙𝑎, 𝑠𝑖ሻ ≤ 𝑐

 

T2 (scenario subset selection) 

Select a single percentile 
𝑓2ሺ𝑙𝑎, 𝑆ሻ = 𝑓1൫𝑙𝑎, 𝑠𝑝൯ 

(𝑝th percentile; 𝑆 is full set of scenarios) 

Select bounds of range 
𝑓2ሺ𝑙𝑎, 𝑆ሻ = {𝑓1൫𝑙𝑎, 𝑠𝑢𝑝൯, 𝑓1൫𝑙𝑎, 𝑠𝑙𝑝൯ൟ 
(where T3 is magnitude of range) 

(𝑢𝑝 is the upper percentile, 𝑙𝑝 is the lower percentile) 

Select range of scenarios 
𝑓2ሺ𝑙𝑎, 𝑆ሻ = ሼ𝑓1ሺ𝑙𝑎, 𝑠𝑖ሻ ∀ 𝑖 ∶ 

𝑓1൫𝑙𝑎, 𝑠𝑙𝑝൯ ≤ 𝑓1ሺ𝑙𝑎, 𝑠𝑖ሻ ≤ 𝑓1൫𝑙𝑎, 𝑠𝑢𝑝൯ൟ 
T3 (performance value aggregation) 

Identity transform 𝑓3ሺ𝑙𝑎, 𝑆ሻ = 𝑓2ሺ𝑙𝑎, 𝑆ሻ 
Magnitude of range 𝑓3ሺ𝑙𝑎, 𝑆ሻ = 𝑓2൫𝑙𝑎, 𝑠𝑢𝑝൯ − 𝑓2൫𝑙𝑎, 𝑠𝑙𝑝൯ 

Mean 𝑓3ሺ𝑙𝑎, 𝑆ሻ = ൭෍𝑓2ሺ𝑙𝑎, 𝑠𝑖ሻ
𝑛

𝑖=1

൱ 𝑛⁄  

 

If there is no threshold, then the question is whether the aim is to maximize performance 

or avoid making the ³wrong´ decision. B\ aYoiding making the ³Zrong´ decision, Ze are 

referring to some decision-makers who may have a desire to avoid selecting decision 

alternatives if there is a potential that, with hindsight, the decision-maker could be 

criticized for having made the wrong decision, even if at the time of making the decision, 

it appeared to be a reasonable option with the available information. For example, many 

publicly owned water authorities face intense public scrutiny, and for that reason some 

decision-makers may want to avoid making decisions (e.g. large capital expenditure 

projects, such as a desalination plant for water security) that could be perceived to be 

³Zrong´ after the fact (e.g. an Xnnecessar\ e[penditXre becaXse climate change or 

population growth eventuates to be less than expected). Decision-makers in this situation 
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may prefer to choose a decision alternative that is not the best in any single scenario but 

is never far from the best decision alternative in extreme good or bad scenarios. 

 

The next step in Figure 4-3 is to determine whether it is most important to get an 

indication of the level of performance, or the range of performance across the multiple 

plausible futures. Generally, the former is of greatest importance, but the latter may also 

be important as an additional robustness metric. In other words, if the range of 

performance is considered important, it would generally be considered as a secondary 

metric to be used in addition to a robustness metric that indicates the range of 

performance. For example, in a water supply system, it would be most important for 

decision makers to have an indication of how much water each decision alternative will 

supply. But, as an additional metric, the decision makers may opt to choose a decision 

alternative with a slightly lower performance if the range of performance values is smaller 

across the different scenarios. In this case, the decision makers could consider both 

robustness metrics in their decision-making. 

 

In the case where an indication of the level of performance is chosen as being most 

important, this is based on the level of risk tolerance or risk aversion required for the 

problem or preferred by the decision-maker. Often, a high level of risk aversion is 

warranted when the consequences of failure are very high. For example, the design of a 

water supply system would require a high level of risk aversion. In contrast to this, the 

remediation of an environmental stream may allow a high level of risk tolerance, 

depending on the preference of the decision maker. Alternatively, the level of risk 

aversion may also be a matter of personal preference, with some decision-makers being 

more tolerant of risk than others. This scale of risk aversion and risk tolerance can be 

represented in the robustness metric by selecting a percentile between 0% and 100%, with 

0% reflecting the worst-case scenario (extreme risk aversion) for each decision alternative 

(i.e. 0% of scenarios have worse performance) and 100% reflecting the best-case scenario 

(extreme risk tolerance). It must be noted that unlike a probabilistic assessment of level 

of performance, percentiles that are used for robustness metrics are reflective of relative 

(not absolute) risk. For example, the 50th percentile does not reflect the median level of 

performance that can be expected in future, however, it does represent a level of 

performance that is worse than the 90th percentile and therefore is more risk averse than 

selecting the 90th percentile. 
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Once the most appropriate ³cXstom´ robXstness metric has been determined based on the 

attributes of the decision context (the properties of the problem) and the preferences of 

the decision-maker with the aid of the process in Figure 3, the next decision point is 

whether the scenarios under which the performance of the decision alternatives under 

consideration should be evaluated are known or not (Figure 4-2, Box 5). From here, the 

same process is followed as if the robustness metric was known in advance (as described 

above), leading to a scenario analysis (Figure 4-2, Box 13) if the scenarios are unknown, 

and the selection of the most robust decision alternative if the scenarios are known (Figure 

4-2, Boxes 10 and 16). 

 

4.3. The RAPID software package 
The RAPID (Robustness Analysis Producing Intelligent Decisions) Python software 

package enables the generic guidance framework introduced in Figure 4-2 to be 

implemented in a user-friendly and consistent manner, including functionality to guide 

the user through the process of creating a custom robustness metric as described in Figure 

4-3. RAPID is written in Python, which is increasingly being used for scientific modelling 

because it is a high-level, general-purpose, and open source programming language with 

an emphasis on code readability. It also has a very large standard library, and a significant 

repository of third-party Python packages. The fact that the RAPID package is written in 

Python also makes it easier for it interact with many other software packages, including 

the Exploratory Modeling (EM) Workbench (Kwakkel, 2017), which is also written in 

Python. As the EM Workbench includes functionality for the generation of decision 

alternatives (i.e. policy options, solutions, etc.), the generation of scenarios (i.e. states of 

the world, plausible futures) and vulnerability analyses (including scenario discovery, 

feature scoring, and sensitivity analyses), the EM Workbench can be used for the creation 

of all of the inputs needed for the generic guidance framework (Figure 4-2) which the 

RAPID package implements.  

 

As shown in Figure 4-4, the processes from the guidance framework are implemented 

across two sub-packages, metrics and analysis (colored purple and green respectively in 

Figure 4-4). The sub-package metrics contains functions that enable each of the three 

transformations required for the calculation of robustness metrics (Figure 4-1) to be 
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implemented (see Table 4-2 for available options at each of the three transformations). 

This enables user-defined ³cXstom´ robXstness metrics to be implemented (see Table 4-2 

for available options at each of the three transformations), including those obtained by 

following the process outlined in Figure 4-3 (either by manually selecting the 

transformations and combining them using the custom_R_metric function, or by 

interacting with the guidance helper function, guidance_to_R, which steps through the 

process in Figure 4-3). A number of commonly used robustness metrics have also been 

pre-programmed (see Table 4-3 for these metrics as well as the corresponding choices at 

each of the three transformations). These robustness metrics can then be used to calculate 

the robustness values for given decision alternatives, scenarios, and performance metrics, 

as highlighted in Figure 4-1. 

 



 

 

 
Figure 4-4: The general guidance framework introduced in Figure 4-2, with an explanation of how the RAPID software package assists in the 

implementation of this guidance and one way that it can interact with the EM Workbench package.  



 

 

Table 4-2: Options for each of the three robustness metric calculation transformations included in the software package 

Transformation 
number Transformation name Used in 

traditional metrics 
Used in proposed 
guidance Software package function 

T1 
(performance 
value 
transformation) 

Identity  ✓ ✓ t1.identity 

Regret  ✓ ✓ 
t1.regret_from_best_da 
(regret from best decision alternative) 

Satisficing regret  ✓ ✓ t1.satisficing_regret 
Regret from median ✓  t1.regret_from_median 

Regret from value ✓ ✓ 
t1.regret_from_value (used to calculate the 
other regret metrics (which are all calculating 
regret with respect to different values) 

Satisficing ✓ ✓ t1.satisfice 

T2 
(scenario subset 
selection) 

Select a single percentile ✓ ✓ 
t2.select_percentiles, 
t2.worst_case (for 0th percentile), or 
t2.best_case (for 100th percentile) 

Worst- and best-case scenarios ✓  t2.worst_and_best_cases 
Select bounds of range  ✓ t2.select_percentiles 

Select range of scenarios ✓ ✓ 
t2.range, 
t2.worst_half, or 
t2.all_scenarios 

(cRQWiQXeV RQ Qe[W Sage«) 
 

  



 

 

(«cRQWiQXeV fURm SUeYiRXV Sage) 
Transformation 
number 

Transformation name 
Used in 

traditional metrics 
Used in proposed 

guidance 
Software package function 

T3 
(performance 
value 
aggregation) 

Identity transform ✓ ✓ t3.f_identity 
Magnitude of range  ✓ t3.f_range 
Mean ✓ ✓ t3.f_mean 
Sum ✓  t3.f_sum 
Weighted sum ✓  t3.f_w_sum 
Variance ✓  t3.f_variance 
Mean-variance ✓  t3.f_mean_vairance 
Skew ✓  t3.f_skew 
Kurtosis ✓  t3.f_kurtosis 

 

  



 

 

Table 4-3: Commonly used robustness metrics included in the software package, as well as corresponding choices at each of the three 

transformations 

Metric name T1 (performance value 
transformation) 

T2 (scenario subset 
selection) 

T3 (performance value 
aggregation) 

Software package 
function 

Maximin Identity Worst-case Identity maximin 
Maximax Identity Best-case Identity maximax 
HXrZic]¶s Optimism-
Pessimism Rule 

Identity Worst- and best-cases Mean hurwicz 

Laplace¶s Principle of 
Insufficient Reason 

Identity All scenarios Mean laplace 

Minimax Regret Regret Worst-case Identity minimax_regret 
Percentile Regret (e.g. 90th 
percentile regret) 

Regret Percentile Identity percentile_regret 

Mean-variance Identity All scenarios Mean-variance mean_variance 
Undesirable deviations Regret from median Worst-half Sum undesirable_deviations 

Percentile-based skew Identity 
10th, 50th, and 90th 
percentiles 

Skew percentile_skew 

Percentile-based kurtosis Identity 
10th, 25th, 75th, and 90th 
percentiles 

Kurtosis percentile_kurtosis 

Starr¶s Domain Criterion Satisfice All scenarios Mean starrs_domain 
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The analysis sub-package (colored green in Figure 4-4) contains the quantitative methods 

and visualizations for assessing the sensitivity of the relative robustness values of 

different decision alternatives to the choice of robustness metrics and / or scenario sets. 

For the assessment of the impact of scenario selection on the robustness values, the 

software package uses the approach outlined by McPhail et al. (2020). That is, the 

software package calculates the difference in robustness values when the robustness is 

calculated using two different sets of scenarios. First, for each decision alternative, 𝑙𝑖, one 

can calculate robustness, 𝑅, using one set of scenarios, 𝑆𝑎, then calculate the robustness 

again with a second set of scenarios, 𝑆𝑏, and compare the relative difference between the 

two robustness values. We use the average relative difference, Δ, across all 𝑛 decision 

alternatives: 

Δ =෍
|𝑅ሺ𝑙𝑖, 𝑆𝑎ሻ − 𝑅ሺ𝑙𝑖, 𝑆𝑏ሻ|

൬|𝑅ሺ𝑙𝑖, 𝑆𝑎ሻ| + |𝑅ሺ𝑙𝑖, 𝑆𝑏ሻ|2 ൰

𝑛

𝑖=1

𝑛⁄ × 100% 

 

Similarly, for the assessment of the impact that scenario selection has on the rankings of 

the decision alternatives, we follow McPhail et al. (2020), Xsing Kendall¶s TaX-b ranking 

correlation to determine the difference in rankings when robustness is calculated using 

two different sets of scenarios. Kendall¶s TaX-b ranking has a range between -1 and +1 

(inclusive), where -1 indicates that all decision alternatives have opposite rankings, +1 

indicates that the rankings are exactly the same, and 0 implies that there is no correlation 

betZeen the rankings. Specificall\, Kendall¶s TaX-b metric is used to compare two sets 

of robustness values, one calculated using a set of scenarios, 𝑆𝑎, and the other calculated 

using a different set of scenarios, 𝑆𝑏: 

ሼ𝑅ሺ𝑙1, 𝑆𝑎ሻ, 𝑅ሺ𝑙2, 𝑆𝑎ሻ,… , 𝑅ሺ𝑙𝑛, 𝑆𝑎ሻሽ 

ሼ𝑅ሺ𝑙1, 𝑆𝑏ሻ, 𝑅ሺ𝑙2, 𝑆𝑏ሻ,… , 𝑅ሺ𝑙𝑛, 𝑆𝑏ሻሽ 

 

Similarl\, Kendall¶s TaX-b ranking can be used to assess the difference in rankings when 

robustness is calculated using two different robustness metrics (rather than two different 

sets of scenarios, considered above), as recommended by McPhail et al. (2018). 

Specifically, Kendall¶s TaX-b metric is used to compare two sets of robustness values, 

one calculated using a robustness metric, 𝑅1, and the other calculated using a different 

robustness metric, 𝑅2: 
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ሼ𝑅1ሺ𝑙1, 𝑆ሻ, 𝑅1ሺ𝑙2, 𝑆ሻ,… , 𝑅1ሺ𝑙𝑛, 𝑆ሻሽ 

ሼ𝑅2ሺ𝑙1, 𝑆ሻ, 𝑅2ሺ𝑙2, 𝑆ሻ, … , 𝑅2ሺ𝑙𝑛, 𝑆ሻሽ 

 

Note that since we are comparing different robustness metrics, they can be in different 

scales or units. Therefore, the relative difference in robustness values cannot be 

calculated, unlike when assessing the impact of scenario selections on the robustness 

values, where a single robustness metric is used and therefore the values can be compared 

directly. 

 

The structure of the two sub-packages mentioned above (i.e. metrics and analysis) is as 

follows:  

x metrics; a sub-package containing functions for each of the three robustness 

metric transformations, common metrics from the literature, functions to help 

build custom robustness metrics, and a helper function which asks the user the 

questions from the guidance provided in Section 4.2. This sub-package is 

structured as: 

o transforms; a sub-package, split into the three transformations (T1, T2, 

T3) as three separate modules (the t1, t2, and t3 sub-packages), which 

implement the transformations listed in Table 4-2. Note that if the aim is 

to minimize the performance value (e.g. if cost is the measure of 

performance), the sign of the performance values is inverted in all T1 

functions, because this ensures that the value of all robustness metrics is 

maximized. 

o common_metrics; a sub-package for calculating a number of the following 

11 commonly used robustness metrics (McPhail et al., 2018): Maximin, 

Ma[ima[, HXrZic]¶s Optimism-Pessimism RXle, Laplace¶s Principle of 

Insufficient Reason, Minimax Regret, Percentile Minimax Regret, Mean-

Variance, Undesirable Deviations, Percentile-based Skew, Percentile-

based KXrtosis, and Starr¶s Domain Criterion, implementing the three 

transformations from the transforms sub-package (as listed in Table 4-3). 

o custom_metrics; a module that includes a function (custom_R_metric) for 

creating a custom robustness metric composed of three transformations 

(from the transforms sub-package), and also provides a helper function for 

stepping users through the flowchart in Figure 4-3 to create a custom 
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robustness metric that is most appropriate for the decision context under 

consideration (the guidance_to_R function). This helper function asks 

questions of the user and uses the responses to create the resulting custom 

robustness metric (using the custom_R_metric function). 

x analysis; a sub-package that enables the influence of different sets of scenarios 

and robustness metrics on the robustness values and rankings to be determined 

(the scenarios_similarity and robustness_similarity functions, respectively). This 

module also produces plots to visualize the influence that the scenarios and 

robustness metrics have, including (i) the delta_plot function for plotting the 

relative difference in robustness values (i.e. the deltas) caused by different 

scenario selections or robustness metrics and (ii) the tau_plot function for plotting 

the ranking similarit\ (i.e. the Kendall¶s TaX-b correlation) from different 

robustness metrics (both functions explained in more detail above). 

 

A number of examples using the software package are also contained within the package, 

including a multi-objective robust optimization of the Lake Problem (also explored in 

Section 4.4); a common, hypothetical environmental modelling problem used in the 

environmental systems modelling literature.  

 

4.4. The Lake Problem 

4.4.1. Background 

The examples directory in the RAPID package includes the Lake Problem as an example 

of common usage of the package. The Lake Problem is a hypothetical, stylized model 

which is well-represented in the literature (Carpenter et al., 1999; Eker and Kwakkel, 

2018; Hadka et al., 2015; Kwakkel, 2017; Lempert and Collins, 2007; McPhail et al., 

2020; Quinn et al., 2017; Singh et al., 2015; Ward et al., 2015), and represents a city that 

must decide the amount of pollution that it releases into a lake. There are four competing 

objectives: (1) the average concentration of phosphorous in the lake; (2) the frequency of 

pollution levels exceeding a critical threshold (i.e. the reliability); (3) the economic 

benefit (i.e. economic utility) of polluting the lake; and (4) a penalty for if the change in 

level of pollution is too high from year to year (i.e. a measure of inertia of the pollution) 

to help achieve more realistic and appropriate solutions. Both deep and stochastic 

uncertainties are present for the natural inflows of pollution into the lake, the natural 
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removal and recycling rates of pollution in the lake, and the discount rate for the economic 

benefits. To illustrate the generic guidance framework on the Lake Problem, we will 

follow several different pathways through the framework (Figure 4-2), including the 

situations where: 

1. Section 4.4.2 ± The robustness metric is unknown, and there are no candidate 

robustness metrics under consideration. The method for generating the scenarios 

is known. 

2. Section 4.4.3 ± The robustness metric is unknown and there are no candidate 

robustness metrics under consideration. There are multiple candidate sets of 

scenarios. 

3. Section 4.4.4 ± The robustness metric is unknown, however there are multiple 

candidate robustness metrics. The method for generating the scenarios is known. 

 

4.4.2. No candidate robustness metrics but scenario generation method known 

Following the guidance framework, we consider a situation in which we aim to use an 

optimization process (Figure 4-4, Box 18) to determine a set of robust decision 

alternatives. In this situation, we also assume that the robustness metric is unknown 

(Figure 4-4, Box 2) and that there are no candidate robustness metrics (Figure 4-4, Box 

3), leading to Box 4 in Figure 4-4. Here, we deviate from the EM Workbench (Kwakkel, 

2017) example of the Lake Problem which used standard robustness metrics for each of 

the objectives. In our example, we create a custom robustness metric by following the 

guidelines in Figure 4-3. Note that the creation of these custom robustness metrics is 

illustrative of how to follow the guidance and uses many assumptions about decision 

maker preferences that are not present in previous formulations of the Lake Problem. Also 

note that we have created one robustness metric for each of the four Lake Problem 

performance metrics, but this need not be the case. 

 

First, for the average concentration of the phosphorous in the lake, we decide that there 

is no meaningful threshold (note that some studies have created a threshold for this 

objective), and that we are most interested in making the best decision, which gives us 

the identity transform for T1. We are looking for an indication of the level of performance, 

leading to the identity transform for T3, and are relatively risk averse, so the 25th 

percentile is used for T2 (also see summary in Table 4-4). 
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Table 4-4: Custom robustness metrics created for the Lake Problem. 

Performance 
metric 

T1 T2 T3 

Average 
phosphorous 

Identity 25th percentile Identity 

Reliability Satisfice (threshold 
80%) 

All scenarios Mean 

Economic utility Magnitude below 
threshold of 0.75 

50th percentile Identity 

Inertia Identity 50th percentile Identity 
 

For the reliability, we assume a situation where a requirement for the project is a 

minimum of 80% reliability for whichever decision alternative is selected, and that this 

requirement should be met in as many scenarios as possible. Thus, the T1 transformation 

is the satisficing transform and the T3 transformation is the mean. It is also decided that 

the aim is to understand what percentage of all scenarios under consideration have 

acceptable performance, and so all scenarios are selected for T2. 

 

For the economic utility, it is assumed that a level of 0.75 is required, and that any level 

lower than this will have significant consequences. Therefore, the satisficing regret 

transform is used, since that includes the threshold of 0.75, but also penalizes decision 

alternatives in each scenario that fail to achieve this. The level of performance (i.e. the 

level of potential regret) is most important, and therefore the identity transform is used 

for T3. It is also assumed that the decision-maker has a moderate level of risk aversion 

for this objective, and T2 is the 50th percentile of performance (i.e. regret). 

 

The inertia is a measure of how much the decision alternative options vary from year to 

year (it is preferred that there are no significant changes in the level of pollution from one 

year to the next). We are not using a specific threshold for this (although some other 

studies have), and the objective of the decision-maker is to make the best decision 

regarding the level of performance (level of inertia). Therefore, the identity transform is 

chosen for T1 and T3. Again, the level of risk aversion is moderate for this objective, and 

thus the 50th percentile is chosen for T2. 

 

Returning to the overarching guidance framework for robustness analysis (Figure 4-2 and 

Figure 4-4), now that we have the robustness metrics (Figure 4-4, Box 4) and the scenarios 
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are known (Figure 4-4, Box 6), we can calculate the robustness using the selected 

scenarios and selected (custom) robustness metrics (Figure 4-4, Box 10). To illustrate this 

with the RAPID software package, we build upon an example of the Lake Problem that 

is included in the EM Workbench (Kwakkel, 2017), with the following methodology: 

1. Using the EM Workbench, we formulate the model (e.g. uncertain parameters, 

objectives, etc.). 

2. Using the RAPID package, we create the custom robustness metrics defined 

above in Table 4-4. 

3. Using the EM Workbench, we formulate an optimization problem with the 

formulated model (from Step 1) and custom robustness metrics (from Step 2). 

4. Using the EM Workbench, we run the optimization to determine the most robust 

decision alternatives. 

 

For Step 1, the Lake Problem was specified in the same manner as in the EM Workbench 

example (i.e. the uncertain parameters, options for the decision alternatives, and the 

performance objectives were defined in the same way) using the EM Workbench 

functionality for defining a model (Figure 4-5). 

 
Figure 4-5: Code snippet - formulation of the lake model. 

 

For Step 2, the custom robustness metrics defined in Table 4-4 were first specified using 

the RAPID package and then put into the form required for the EM Workbench (Figure 
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4-6). Note that when defining these custom metrics, it was possible to use any 

combination of the three robustness metric transformations (from the guidance for 

decision-makers Figure 4-3, and defined in Table 4-1). These metrics can be defined using 

code as shown or can also be created using the metrics.guidance_to_R function. This 

function asks the user the questions from the flow chart in Figure 4-3, guiding them to 

the creation of the robustness metric best suited for the problem that they can then use in 

proceeding analyses (as shown in Figure 4-7). The output from the 

metrics.guidance_to_R function is the same as the output from the 

metrics.custom_R_metric function in the example code.  

  
Figure 4-6: Code snippet - creation of custom robustness metrics using the RAPID 

package, followed by putting this in the form required for the EM Workbench. 
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Figure 4-7: Example of the dialogue provided by the metrics.guidance_to_R function in 

the RAPID package. 

 

As per the EM Workbench example, once the model has been formulated and the 

robustness metrics have been defined, the next step is to use the EM Workbench to create 

a set of scenarios, formulate an optimization problem, and then run that optimization 

problem to find optimally robust decision alternatives (Figure 4-8). This corresponds to 

the loop formed by Box 18 in Figure 4-4. The results found from this process are shown 

in Figure 4-9. Note again that the robustness metric transformations from the RAPID 

software package ensure that a higher robustness value is always better (e.g. we seek to 

minimize vulnerability, but the sign for the robustness metric for vulnerability is switched 

so that we are aiming to maximize the robustness value). The Pareto front (Figure 4-9) 

shows expected relationships between objectives. For example, better vulnerability also 

results in better reliability but a worse result for the economic utility. The relationship 

between the inertia and the other three objectives is weaker. 

 



 

 131 

 
Figure 4-8: Code snippet - formulation and execution of the optimization of The Lake 

Problem using robustness metrics from the RAPID software package and the optimization 

functionality from the EM Workbench. 

 

 
Figure 4-9: Example results that can be produced using custom robustness metrics from 

the RAPID package and multi-objective optimisation functionality from the EM 

Workbench package. The axes are the robustness metrics and each point represents the 

robustness of a single solution from the 4-dimensional Pareto front. 
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In this example of following the guidance framework (Figure 4-2 and Figure 4-4), we 

showed that with no known robustness metric or set of candidate robustness metrics we 

could create a set of custom robustness metrics that were best suited to the problem (Table 

4-4) using the guidance for creating a custom robustness metric (Figure 4-3) to determine 

the appropriate robustness metric transformations from Table 4-2. We then created these 

robustness metrics in a systematic manner using the RAPID software package and used 

these newly created robustness metrics in conjunction with another software package, the 

EM Workbench, to run a robust optimization and develop a Pareto front of optimal 

decision alternatives. 

 

4.4.3. No candidate robustness metrics and multiple candidate scenario sets 

Again, following the guidance framework, we use the optimal decision alternatives from 

the previous section and we assume a situation in which the robustness metric is unknown 

(Figure 4-4, Box 2) and there are no candidate robustness metrics (Figure 4-4, Box 3), 

leading to Box 4 in Figure 4-4. Here, we create custom robustness metrics as per Section 

4.4.2, leading to the robustness metrics in Table 4-4. Unlike Section 4.4.2, in this section 

we consider a situation where there are multiple candidate sets of scenarios (Figure 4-4, 

Box 6). 

 

Different sets of scenarios correspond to different sets of points within the space of 

uncertain model inputs (McPhail et al., 2020). Because these points are inputs to the 

calculation of robustness (see Figure 4-1), different sets of scenarios can lead to 

differences in robustness. As a simplified illustration of this, we create five candidate sets 

of 20 scenarios, where each set is sampled from the uncertain variable space using the 

EM Workbench package with Latin hypercube sampling (Figure 4-10). We then evaluate 

the optimal decision alternatives (from Section 4.4.2) in all 100 scenarios using the EM 

Workbench package and calculate the robustness for all 5 scenario sets and all decision 

alternatives using the custom robustness metrics created in Section 4.4.2 using the RAPID 

package (Figure 4-4, Box 9). Note that for simplicity, we only focus on the vulnerability 

objective from here on. The same analysis could be applied to each of the four objectives. 

 



 

 133 

 
Figure 4-10: Code snippet - Creating 5 candidate scenario sets of 20 scenarios each, 

evaluating them, and calculating robustness for each of these 5 sets. 

 

Returning to the robustness analysis guidance framework, this brings us to Box 13 in 

Figure 4-4, where we use the analysis module of the RAPID package to evaluate the 

relatiYe difference in robXstness YalXes and the Kendall¶s TaX-b rank correlation (for 

determining the ranking similarity) (Figure 4-11), as described in Section 4.3. The 

analysis module also enables us to visualize the influence of the scenarios by creating 

heatmaps that show all combinations of candidate sets of scenarios (see Figure 4-12 (a) 

and (b)). The diagonal of the heatmaps is each candidate scenario set compared to itself, 

and therefore the relative difference is 0% (indicated by purple in Figure 4-12 (a)) and 

the ranking correlation is 1 (indicated by blue in Figure 4-12 (b)) as expected. From 

Figure 4-12 (a) we can see that for the other comparisons of the scenario sets, the relative 

difference in robustness values is very high in general (indicated by mostly orange 

squares, ~30% difference in robustness values), however there are some cases (e.g. 

scenario sets 1 and 5, and scenario sets 4 and 5) that are more similar than the rest 

(indicated by the green). Note that despite a high difference in robustness values, Figure 

4-12 (b) indicates that the rankings of the decision alternatives are very stable (consistent 

with McPhail et al. (2020)). 
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Figure 4-11: Code snippet - Calculation and visualization of the impact of scenario 

selection on robustness and robustness rankings of the decision alternatives. 

 

 
Figure 4-12: Example of outputs produced by the RAPID package. For the Lake Problem 

analysed as described above: (a) relative difference in robustness for pairs of scenario sets 

(5 sets of 20 scenarios); (b) ranking similarity for pairs of scenario sets (5 sets of 20 

scenarios); (c) relative difference in robustness for pairs of scenario sets (5 sets of 100 

scenarios); (d) ranking similarity for pairs of robustness metrics (one set of 100 

scenarios). 
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Given that all five candidate sets of scenarios were sampled using Latin hypercube 

sampling, it is interesting that the relative difference in robustness is so high in Figure 

4-12 (a). If the robustness values were important for the decision-making process, it 

would be difficult to be sure of the actual robustness values because the values would 

depend on which set of scenarios is being considered (leading to Figure 4-4, Box 15). 

There are many reasons why the relative difference could be high, including dissimilarity 

in the coverage of the scenario space, and discontinuities in performance space (McPhail 

et al., 2020). In this example, we can use judgement to estimate it is the former of these 

reasons, because the number of scenarios in each set is small. Running the same code as 

above but with a larger number of scenarios (100 scenarios per set, rather than 20 

scenarios per set in Figure 4-12 (a)), we produce the heatmap shown in Figure 4-12 (c). 

With the larger number of scenarios, the relative difference is significantly lower in 

general (likely due to a more similar coverage of the scenario space), indicated by the 

greater number of blue and green squares and smaller number of orange squares. In this 

case, we move from Box 14 to Boxes 16 and 17 in Figure 4-4, being able to accurately 

determine the robustness of the decision alternatives. Alternatively, if we are simply 

interested in the rankings of the solutions (see Figure 4-12 (b)), then we would be able to 

move from Box 14 to Boxes 16 and 17 without increasing the number of scenarios 

(assXming that Ze jXdge the Kendall¶s TaX-b values (approximately in the range between 

0.7 and 1.0) to be sufficiently high for our purposes. 

 

In this second example of following the guidance framework (Figure 4-2 and Figure 4-4), 

we showed that with multiple candidate sets of scenarios, we could use the RAPID 

software package to evaluate the influence these candidate sets of scenarios had on both 

the robustness values and rankings. Using the visualizations produced by the software 

package, we were then able to determine that the relative robustness values of different 

decision alternatives was not substantially affected by the different scenario sets (Figure 

4-6b), giving confidence to decision makers and enabling the most robust decision 

alternative to be identified. 

 

4.4.4. Multiple candidate robustness metrics and a known set of scenarios 

In this situation, we assume that the robustness metric is unknown (Figure 4-4,  Box 2), 

but that there are multiple candidate robustness metrics (Figure 4-4, Box 5) and that the 
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set of scenarios is known, leading to Box 8 in Figure 4-4. Note that if there were multiple 

candidate sets of scenarios, the analysis would be a combination of the following method 

and the method in Section 4.4.3. We create the candidate robustness metrics using the 

RAPID software package, retaining the original robustness metric for the vulnerability 

determined in Section 4.4.2 (Table 4-4) using the metrics.custom_R_metric module, and 

four traditional robustness metrics as the other candidate metrics, including the Maximax, 

Laplace¶s Principle of InsXfficient Reason, Minima[ Regret, and Percentile-Based 

Kurtosis robustness metrics (all included in the metrics.common_metrics module). As 

with the previous examples, these metrics were calculated, evaluated (this time across a 

known set of 100 scenarios, sampled using Latin hypercube sampling), and visualized 

using the RAPID package (see Figure 4-12 (d)). 

 

 
Figure 4-13: Code snippet ± Creation of robustness metrics, and calculation and 

visualization of the impact of the robustness metrics on robustness rankings of the 

decision alternatives. 

 

In the visualization of the similarity in rankings (Figure 4-12 (d)), the diagonal shows full 

ranking similarity (a value of 1, indicated by blue) because that is where each robustness 

metric is being compared to itself. Most of the metrics also show high levels of ranking 

similarity with each other, with the exception of the percentile-based kurtosis metric, 

which shows a slight negative correlation with all other metrics (indicated by the slightly 

red squares). This potentially leads us from Box 14 to Box 15 in Figure 4-4, because it is 

unknown which ranking is the one that we should follow: the rankings provided by the 

percentile-based kurtosis or the rankings provided by the rest of the metrics. Again, using 

our judgement, we decide that the percentile-based kurtosis does not reflect the needs of 
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the decision-makers as much as the other robustness metrics do, because the T3 

transformation does not reflect the need to get an indication of the level of performance 

(as explained Figure 4-3 and by McPhail et al. (2018)). Also, since all of the other 

candidate solutions generally agree with the custom robustness metric, it follows that we 

can rely on this custom metric to determine which decision alternative is most robust 

(Figure 4-4, Box 16). 

 

In this final illustration of using the guidance framework (Figure 4-2 and Figure 4-4) and 

RAPID software package, we showed that with multiple candidate robustness metrics, 

we could use the software package to evaluate the influence these robustness metrics had 

on the rankings of the decision alternatives. Using the visualizations produced by the 

software package, we were then able to determine whether or not the influence was great 

enough to affect these rankings. 

 

All three of the simple examples considered show that the RAPID package is easy to use 

and can be used in conjunction with other related software packages, such as the EM 

Workbench. They also show that the RAPID package is a practical tool for systematically 

following the guidance framework in Figure 4-2 and Figure 4-4, the guidance for creating 

robustness metrics in Figure 4-3 (shown in Section 4.4.2), assessing the influence of 

candidate sets of scenarios on the robustness values and rankings (shown in Section 

4.4.3), and assessing the influence of candidate robustness metrics on the robustness 

rankings of decision alternatives (shown in Section 4.4.4). 

 

4.5. Summary and conclusions 
Robustness is important in the long-term planning of environmental systems. However, 

there is a variety of metrics that can be used to calculate the robustness of a set of decision 

alternatives, and recent research has shown that the choice of metric can affect the ranking 

of decision alternatives. Similarly, there is a variety of approaches to selecting or 

generating scenarios (which are an input to the calculation of robustness), and the chosen 

approach has also been shown to have an effect on the robustness values and rankings of 

decision alternatives. Despite the uncertainty in which selection of scenarios or which 

robustness metric to use to determine the rankings of decision alternatives, no guidance 

exists for decision-makers on which choices to make. 
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As a response to this need for guidance, this paper proposes a generic guidance framework 

to assist decision-makers in the identification of robust decision alternatives (Figure 4-2). 

This framework caters to a variety of situations where the scenarios and/or robustness 

metrics are known or not known. The framework includes guidance on how to create a 

custom robustness metric for the problem at hand (Figure 4-3), based on the attributes of 

the problem (e.g. the presence of performance thresholds / tipping points, or the objectives 

of the problem) as well as the preferences of the decision-maker (e.g. the level of risk-

aversion). The output from the guidance for the creation of a custom robustness metric is 

three robustness metric transformations (Table 4-1), which form the robustness metric 

when combined (Figure 4-1). The overarching guidance framework also identifies 

situations where quantitative analyses can be used to determine the influence that the 

selection of scenarios and/or the choice of robustness metric has on the rankings of 

decision alternatives. 

 

This paper also introduces an open-source software package, the RAPID (Robustness 

Analysis Producing Intelligent Decisions) package, to assist in the consistency and ease-

of-use of implementing the guidance framework (see Figure 4-4). The software package 

includes a module for the creation of custom robustness metrics using a wide range of 

robustness metric transformations (Table 4-2), including a function that leads the user 

through the guidance of how to create the robustness metric most suited for the problem 

at hand (Figure 4-3). It also includes a variety of traditional robustness metrics from the 

literature (Table 4-3), commonly used in the absence of the guidance introduced in this 

paper. The software package also contains a module for the calculation and visualization 

of the impact of the selection of scenarios and choice of robustness metric on robustness 

values and rankings. 

 

To illustrate the implementation of the guidance framework and RAPID software 

package, we consider the Lake Problem, a hypothetical lake pollution problem, 

commonly used in the literature. We use the guidance in Figure 4-3 to create custom 

robustness metrics for The Lake Problem, based on hypothetical problem attributes and 

decision-maker preferences (Table 4-4). In conjunction with the EM Workbench 

(Kwakkel, 2017), we use these robustness metrics as objectives in a robust optimization 

to create a set of robust decision alternatives. As an example of the utility of the guidance 
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framework and software package, we use these optimal decision alternatives to consider 

a situation where there are multiple sets of scenarios under consideration. Using the 

RAPID software package, we visualize the impact of these different sets of scenarios, 

showing that the robustness values are affected (Figure 4-12 (a)), but rankings of the 

decision alternatives are not (Figure 4-12 (b)), providing confidence to decision makers 

that the most robust decision alternative has been identified. We also show that when 

using a larger set of scenarios, the impact of the set of scenarios on the robustness values 

is greatly decreased (Figure 4-12 (c)). In another example to highlight the utility of the 

guidance framework and software package, we consider a situation where there is a 

variety of candidate robustness metrics. We use the framework and software package to 

visualize the impact of the choice of robustness metric (Figure 4-12 (d)), showing that 

most of the metrics agree on the rankings of the decision alternatives, again providing 

confidence to decision makers that the most robust solution has been identified.  

 

This guidance framework and software package assist decision-makers in the 

identification of robust decision alternatives. It does so in a systematic way, and the 

software package increases the consistency and ease-of-use of implementing the 

guidance. The guidance framework and software package are generic and cater to a wide 

variety of circumstances where the robustness metrics and/or scenarios may or may not 

be known, greatly increasing the accessibility of robustness analyses and techniques to 

decision-makers. 

 

Acknowledgements 
Thanks is given to SA Water Corporation (Australia) who support the research of 

Cameron McPhail through Water Research Australia, and thanks is also given to Water 

Research Australia. The authors would also like to thank Andrea Castelletti and Matteo 

Giuliani (both from Politecnico di Milano) for their important conceptual contributions 

to this research. 

 

The Lake Model is widely available on GitHub in multiple repositories, including in the 

EMAworkbench: https://github.com/quaquel/EMAworkbench 
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The RAPID (Robustness Analysis Producing Intelligent Decisions) software package is 

available on GitHub (https://github.com/cameronmcphail/RAPID) and in the Python 

Package Index (PyPI) (https://pypi.org/project/rapidrobustness/). 

 

  

https://github.com/cameronmcphail/RAPID
https://pypi.org/project/rapidrobustness/
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Chapter 5  
Long-term decision making for water and environmental systems presents significant 

challenges to decision-makers. Prominent among these challenges is how to make 

decisions under conditions of deep uncertainty, where deterministic and stochastic 

processes are insufficient for representing the future state of the world, and the 

consideration of multiple plausible futures is required. Recent research into decision-

making under deep uncertainty has highlighted a number of challenges and questions 

including (i) how do different robustness metrics affect the robustness of the system, (ii) 

how do different selections of scenarios affect the robustness of a system, and (iii) how 

do decision-makers decide which robustness metrics should be used for any given 

problem and which of the decision alternatives under consideration are most robust? 

 

This research contributes to the field of long-term decision-making for water and 

environmental systems by achieving the aims set out at the beginning of this thesis: (i) to 

introduce a unified framework for the calculation of a wide range of robustness metrics, 

enabling the robustness values and rankings obtained from different metrics to be 

compared in an objective fashion; (ii) to develop a deeper understanding of how different 

selections of scenarios can affect the absolute and relative robustness of the decision 

alternatives of interest; and (iii) to create a generic guidance framework and software tool 

to assist with the identification of the most robust decision alternative for a given problem. 

 

5.1. Research contributions 
The overall contribution of this research is that it provides a better understanding of 

robustness for the long-term planning of water and environmental systems and how to 

identify the most robust decision alternatives. This provides decision-makers with better 

information, understanding guidance, and confidence for making decisions on these 

complex systems. More specifically, the contributions of this thesis are: 

 

1. In Chapter 2, we contribute to the field a better understanding of how robustness 

metrics work. We show that the wide variety of robustness metrics in the literature 

can be split into a set of three transformations, which provides a unifying 

framework for the calculation of robustness. This chapter also provides a 
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conceptual framework for assessing the impact different robustness metrics have 

on robustness. The framework indicates that the greater the similarity in the three 

transformations for robustness metrics, the more stable the ranking of decision 

alternatives that use these metrics is and vice versa. This framework and the 

properties of the case studies are useful in explaining why the robustness and the 

rankings of decision alternatives obtained using different robustness metrics 

sometimes disagree. Previously, this had only been observed but never explained. 

We illustrate this framework on three water and environmental case studies. 

 

2. Chapter 3 explores how the selection of scenarios can affect the robustness of a 

system. The literature only contained qualitative or anecdotal evidence of the 

effects of scenario selection. This chapter contributes to the field by providing the 

first generalisable, quantitative methodology for assessing the impact of different 

selections of scenarios on the absolute and relative robustness of decision 

alternatives of interest. Without this method, there is no approach in the literature 

to understanding if different sets of scenarios have an impact on robustness, and 

what that impact might be. As an illustration of this generalisable methodology, it 

was applied to the Lake Problem. Within this case study, several examples were 

highlighted of how different scenario selections could affect the absolute and 

relative robustness of decision alternatives in different ways, which demonstrates 

the utility of the generic methodology. 

 

3. Building upon the knowledge developed in Chapters 2 and 3, Chapter 4 

contributes to this field of research by providing a guidance framework and 

software package. Previously, no guidance has existed for decision-makers on 

how to determine the most robust decision alternative for their problem, and this 

chapter provides guidance (including flow charts) that leads users through several 

situations including those situations where they know or do not know which 

scenarios and/or robustness metrics to use. The guidance framework also 

identifies situations where quantitative analyses can be used to determine the 

influence that the selection of scenarios and/or the choice of robustness metric has 

on the rankings of decision alternatives, and these analyses can also be 

implemented by the software package. The guidance and software package 
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increase the consistency, ease-of-use, and accessibility of robustness analyses for 

decision-makers. 

 

5.2. Limitations and recommendations for future research 
Below is a discussion of the limitations of this research, as well as recommended future 

research, with the aim of further improving the long-term planning of water 

environmental systems. 

 

5.2.1. Further development of software package 

The RAPID software package developed in Chapter 4 assists decision-makers in 

identifying the most robust decision alternative for a given problem. However, this 

software is still in a beta mode, and not yet widely tested on a variety of applications. 

Further development of this software is recommended to ensure that it meets the needs of 

practitioners. This software package should also increase in scope to include other useful 

analyses or integrations with other software packages, as needed by practitioners. 

 

5.2.2. Extension of guidance framework to make recommendations on scenarios 

The guidance framework in Chapter 4 (built using knowledge obtained in Chapter 3) 

cannot recommend one scenario selection approach over another. Rather, it provides 

quantitative techniques to assess whether two or more scenario selection approaches 

agree or disagree on the robustness values and rankings. It is recommended that further 

research is done on scenario selection approaches with the aim of developing guidance 

for decision-makers to select the best scenarios for a given problem. This would be an 

interesting avenue of research, particularly given the recent research in this area for 

scenario generation techniques that focus on areas of interest in the space of possible 

scenarios. 

 

5.2.3. Increased applicability of guidance framework to additional problem types 

5.2.3.1. Increased testing of guidance framework 

The guidance framework was built from knowledge in the literature, as well as the 

knowledge developed through Chapters 2 and 3. The guidance is a compelling conceptual 

contribution and has been explored through a case study. As highlighted by Kwakkel and 

van der Pas (2011), conceptual contributions and exploratory modelling are important 
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foundational steps for improving the long-term planning of water and environmental 

systems, but further work is required for it to become a commonly used best practice. It 

is recommended that these concepts are further tested, refined, and improved through 

simulation gaming workshops with students, followed by workshops with decision-

makers, case-studies of successful long-term infrastructure plans, and the creation of 

carefully designed pilot studies to compare these approaches, as recommended by 

Kwakkel & van der Pas (2011). 

 

5.2.3.2. Extension of framework with additional considerations 

It is also recommended that the guidance framework is tested more widely across a variety 

of problem types to further improve its effectiveness and applicability. As it is tested more 

widely, it may be realised that the framework does not consider particular types of 

problems that decision-makers come across. If this happens, it may be appropriate to 

extend the framework to include these additional considerations. For example, the 

guidance framework does not consider some robustness metric transformations (such as 

kurtosis), since it was unclear when these transformations would be useful in a decision-

making context. However, if a use for it was found, then there is no reason why this cannot 

be included in the guidance framework. 

 

5.2.3.3. Further awareness and education of guidance framework 

Additionally, the use of this guidance framework across pilot studies in a variety of 

problem types will increase awareness of the utility of considering deep uncertainty and 

robustness metrics. At present, the consideration of deep uncertainty is confined to a 

relatively small number of specialists in a small number of fields. To support the 

widespread adoption of these techniques, practitioners in water and environmental 

systems modelling would benefit from wider recognition and additional education for 

how to achieve the greatest benefits from these techniques. 
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Appendix A 

 

Supplementary Material (Paper 1): 

Robustness metrics: How are they 

calculated, when should they be used and 

why do they give different results? 
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A.1 Robustness metric Transformation 1 
The performance value transformation (T1) converts 𝑓ሺ𝑥𝑖, 𝑆ሻ to 𝑓′ሺ𝑥𝑖, 𝑆ሻ where 𝑓′ሺ𝑥𝑖, 𝑆ሻ 

is the relevant information about the performance values, which may be the performance 

values themselves, the regret, or the satisfaction of a constraint. 

 

Some of the common performance value transformations are given in the table below to 

show the transformation of 𝑓൫𝑥𝑖, 𝑠𝑗൯ to 𝑓′൫𝑥𝑖, 𝑠𝑗൯ for 𝑗 = ሼ1, 2, … , 𝑛ሽ where 𝑛 is the total 

number of scenarios in 𝑆. Note that some of the transformations depend on whether the 

aim is to maximise or minimise the performance values. 

 

Description Equation 

Identity transformation 𝑓′൫𝑥𝑖, 𝑠𝑗൯ = 𝑓൫𝑥𝑖, 𝑠𝑗൯ 

Regret from best 

decision alternative 𝑓′൫𝑥𝑖, 𝑠𝑗൯ = {
max
𝑥
𝑓൫𝑥, 𝑠𝑗൯ − 𝑓൫𝑥𝑖, 𝑠𝑗൯,    ma[imisation

𝑓൫𝑥𝑖, 𝑠𝑗൯ − min𝑥 𝑓൫𝑥, 𝑠𝑗൯ ,   minimisation
 

Regret from median 
𝑓′൫𝑥𝑖, 𝑠𝑗൯ = ቊ

𝑞ହ0 − 𝑓൫𝑥𝑖, 𝑠𝑗൯,    ma[imisation
𝑓൫𝑥𝑖, 𝑠𝑗൯ − 𝑞ହ0,   minimisation

 

where 𝑞ହ0 is the median performance for decision alternative 

𝑥𝑖. i.e. 

𝑃ሺ𝑓ሺ𝑥𝑖, 𝑆ሻ ≤ 𝑞ହ0ሻ =
1
2
  

Satisfaction of 

constraints 
𝑓′൫𝑥𝑖, 𝑠𝑗൯ =

{
 
 

 
 ቊ
 1    if 𝑓൫𝑥𝑖, 𝑠𝑗൯ ≥ 𝑐
 0    if 𝑓൫𝑥𝑖, 𝑠𝑗൯ < 𝑐

 ,  ma[imisation

ቊ
 1    if 𝑓൫𝑥𝑖, 𝑠𝑗൯ ≤ 𝑐
 0    if 𝑓൫𝑥𝑖, 𝑠𝑗൯ > 𝑐

 ,  minimisation
 

where 𝑐 is a constraint 
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A.2 Robustness metric Transformation 2 
The scenario subset selection transformation (T2) is the process of selecting the values 

from 𝑓′ሺ𝑥𝑖, 𝑆ሻ to be used in the calculation of robustness 𝑅ሺ𝑥𝑖, 𝑆ሻ. This is done by 

choosing a subset 𝑆′ ⊆ 𝑆 to transform 𝑓′ሺ𝑥𝑖, 𝑆ሻ to 𝑓′ሺ𝑥𝑖, 𝑆′ሻ. The table below describes 

how 𝑆′ is found for an individual decision alternative (𝑥𝑖): 

 

Description Equation 

Worst-case 

𝑆ᇱ = ൞
{arg min

𝑠
𝑓′ሺ𝑥𝑖, 𝑠ሻൠ ,  ma[imisation

{arg max
𝑠

𝑓′ሺ𝑥𝑖, 𝑠ሻൠ ,  minimisation
 

Best-case 

𝑆ᇱ = ൞
{arg max

𝑠
𝑓′ሺ𝑥𝑖, 𝑠ሻൠ ,  ma[imisation

{arg min
𝑠

𝑓′ሺ𝑥𝑖, 𝑠ሻൠ ,  minimisation
 

Worst- and best-cases 𝑆ᇱ = {arg max
𝑠

𝑓′ሺ𝑥𝑖, 𝑠ሻ , arg min
𝑠

𝑓′ሺ𝑥𝑖, 𝑠ሻൠ 

All 𝑆ᇱ = 𝑆 

Worst-half 𝑆ᇱ = {
ሼ𝑠 ∈ 𝑆: 𝑓′ሺ𝑥𝑖, 𝑠ሻ ≤ 𝑞ହ0ሽ,  ma[imisation
ሼ𝑠 ∈ 𝑆: 𝑓′ሺ𝑥𝑖, 𝑠ሻ ≥ 𝑞ହ0ሽ,   minimisation  

where 𝑞ହ0 is the 50th percentile (median) value of 𝑓′ሺ𝑥𝑖, 𝑆ሻ  

Percentile 𝑆ᇱ = ሼ𝑓′ሺ𝑥𝑖, 𝑠ሻ = 𝑞௞ሽ 

where 𝑞௞ is the kth percentile value of 𝑓′ሺ𝑥𝑖, 𝑆ሻ 

Note that the scenario 𝑠 that produces the value of 𝑓′ሺ𝑥𝑖, 𝑠ሻ 

closest to 𝑞௞ is the scenario that is used. 
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A.3 Robustness metric Transformation 3 
The robustness metric calculation (T3) transforms the set 𝑓′ሺ𝑥𝑖, 𝑆′ሻ into a single value of 

robustness, 𝑅ሺ𝑥𝑖, 𝑆ሻ. Common methods for the robustness metric calculation are given in 

the table below. Note that if the set contains a single value then the robustness metric 

calculation will be an identity transformation.  

 

Description Equation 

Identity 

transformation 

𝑅ሺ𝑥𝑖, 𝑆ሻ = 𝑓′ሺ𝑥𝑖, 𝑆′ሻ 

Mean 
𝑅ሺ𝑥𝑖, 𝑆ሻ =

1
𝑛′
෍𝑓′൫𝑥𝑖, 𝑠𝑗൯
𝑛ᇱ

𝑗=1

 

where 𝑛′ is the number of scenarios in 𝑆′ 

Sum 
𝑅ሺ𝑥𝑖, 𝑆ሻ =෍𝑓′൫𝑥𝑖, 𝑠𝑗൯

𝑛ᇱ

𝑗=1

 

Weighted 

mean (two 

scenarios) 

𝑅ሺ𝑥𝑖, 𝑆ሻ = 𝛼𝑓′ሺ𝑥𝑖, 𝑠𝑎ሻ + ሺ1 − 𝛼ሻ𝑓′ሺ𝑥𝑖, 𝑠𝑏ሻ 

where 𝑠𝑎 and 𝑠𝑏 are two scenarios and 𝛼 is the preference of the 

decision maker towards using 𝑠𝑎 and 0 < 𝛼 < 1 

Variance-

based (i.e. the 

standard 

deviation) 

𝑅ሺ𝑥𝑖, 𝑆ሻ = ඩ
1

𝑛ᇱ − 1
෍൫𝑓′൫𝑥𝑖, 𝑠𝑗൯ − 𝜇൯

2
𝑛ᇱ

𝑗=1

 

where 𝜇 is the mean (see the equation earlier in this table) 

Mean-variance 𝑅ሺ𝑥𝑖, 𝑆ሻ = {
ሺ𝜇 + 1ሻ ሺ𝜎 + 1ሻ⁄ ,   ma[imisation
−ሺ𝜇 + 1ሻሺ𝜎 + 1ሻ,  minimisation  

where 𝜇 is the mean and 𝜎 is the standard deviation (given by 

equations above) 

Skew 𝑅ሺ𝑥𝑖, 𝑆ሻ

=

{
 
 

 
 ൫𝑓′ሺ𝑥𝑖, 𝑠90ሻ + 𝑓′ሺ𝑥𝑖, 𝑠10ሻ൯ 2⁄ − 𝑓′ሺ𝑥𝑖, 𝑠ହ0ሻ

൫𝑓′ሺ𝑥𝑖, 𝑠90ሻ − 𝑓′ሺ𝑥𝑖, 𝑠10ሻ൯ 2⁄
,      ma[imisation

−
൫𝑓′ሺ𝑥𝑖, 𝑠90ሻ + 𝑓′ሺ𝑥𝑖, 𝑠10ሻ൯ 2⁄ − 𝑓′ሺ𝑥𝑖, 𝑠ହ0ሻ

൫𝑓′ሺ𝑥𝑖, 𝑠90ሻ − 𝑓′ሺ𝑥𝑖, 𝑠10ሻ൯ 2⁄
,  minimisation

 

where 𝑠10, 𝑠ହ0 and 𝑠90 are scenarios that represent the 10th, 50th and 

90th percentiles for 𝑓′ሺ𝑥𝑖, 𝑆ሻ 
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Kurtosis 
𝑅ሺ𝑥𝑖, 𝑆ሻ =

𝑓′ሺ𝑥𝑖, 𝑠90ሻ − 𝑓′ሺ𝑥𝑖, 𝑠10ሻ
𝑓′ሺ𝑥𝑖, 𝑠଻ହሻ − 𝑓′ሺ𝑥𝑖, 𝑠2ହሻ

 

where 𝑠10, 𝑠2ହ, 𝑠଻ହ and 𝑠90 are scenarios that represent the 10th, 25th, 

75th and 90th percentiles for 𝑓′ሺ𝑥𝑖, 𝑆ሻ 
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A.4 Description of robustness metrics 
Maximin 

The maximin (minimax) metric was first used by Wald (1950). It is a very risk averse 

metric that assumes that the scenario that will occur is the scenario under which the 

performance is lowest. 

 

Maximax 

Maximax is the opposite of the maximin metric. It is a metric with a low level of risk 

aversion that looks for the best possible performance that is possible in a decision 

alternative. 

 

HXUZic]¶V RSWimiVm-pessimism rule 

HXrZic]¶s optimism-pessimism rule (Hurwicz, 1953) uses a weighted sum of the 

maximin and maximax metrics that have previously been discussed. Like the previous 

metrics, the HXrZic]¶s optimism-pessimism rule uses the distribution of performances 

for an individual decision alternative (i.e. it does not compare the performances of 

multiple decision alternatives). It has a parameter 𝛼 that determines the relative degree of 

intrinsic risk aversion of the metric where 0 < 𝛼 < 1 is the weighting of the maximin 

(high level of risk aversion) metric. In other words, 𝛼 may be described as the proportion 

of high to low risk aversion for the decision-maker. Being composed of both the maximin 

and maximax metrics brings many of the characteristics of these metrics.  

 

LaSlace¶V SUiQciSle Rf iQVXfficieQW UeaVRQ 

Laplace¶s principle of insXfficient reason (Laplace and Simon, 1951) states that in the 

absence of information on the relative probabilities of the scenarios, each scenario should 

be treated as equally likely. This is equivalent to assuming the mean performance across 

the distributions represents the expected value of robustness. Unlike the previously 

discXssed metrics, Laplace¶s principle of insXfficient reason Xses the performance YalXes 

from every scenario rather than just using one or two performance values. 

 

Minimax regret 

Rather than looking at individual decision alternatives, regret metrics including minimax 

regret (Savage, 1951) look for the regret of choosing a particular option. Specifically, 
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minimax regret calculates the maximum regret that can be expected in any scenario. The 

regret for a decision alternative 𝑥𝑖 in scenario 𝑠𝑗 is calculated by comparing the 

performance 𝑓൫𝑥𝑖, 𝑠𝑗൯ to the best possible performance of any decision alternative in 

scenario 𝑠𝑗. For decision alternative 𝑥𝑖, the robustness value is the regret from the scenario 

with the greatest level of regret. In this case, the objective is to minimize the regret. Unlike 

other metrics which consider an individual decision alternative, the minimax regret metric 

is sensitive to the distributions of performance of two or more decision alternatives. 

However, it is only sensitive to the largest difference between the distributions. 

 

90th percentile minimax regret 

The 90th percentile minimax regret metric (Herman et al., 2015) is a variant of the 

minimax metric (Savage, 1951) that was discussed previously. Regret is calculated using 

the same transformation as the minimax regret metric, and thus this metric also is used to 

compare two or more decision alternatives rather than only looking at an individual 

decision alternative. The expected amount of regret for decision alternative 𝑥𝑖 is 

calculated using the 90th percentile of regret rather than the maximum possible regret. 

 

This metric is thus more sensitive to the overall distribution of the performance when 

compared to the minimax regret metric. However, it is still most sensitive to only a small 

nXmber of scenarios Zhen compared to a metric sXch as Laplace¶s principle of insXfficient 

reason which uses the average of every scenario. 

 

Mean-variance 

The mean-variance metric (Kwakkel et al., 2016b) is similar to Laplace¶s principle of 

insufficient reason in that it uses the mean to determine the expected value of the 

distribXtion of performances for an indiYidXal decision alternatiYe. Unlike Laplace¶s 

principle of insufficient reason, the mean-variance metric also considers the variability in 

the distribution of performances by using the standard deviation of performance values. 

This metric does face several challenges including that the influence of the mean and 

standard deviation will depend on their relative magnitude and thus the trade-off between 

mean and standard deviation is unknown (Kwakkel et al., 2016b). 

 

Undesirable deviations 
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The undesirable deviations metric (Kwakkel et al., 2016b) is a variation on the approach 

used by Takriti & Ahmed (2004). This metric only considers undesirable deviations 

(regret) away from the median performance value (which is considered the expected 

value). 

 

Percentile-based skewness 

The percentile-based skewness metric (Voudouris et al., 2014) considers the skewness of 

the distribution of performance values. This metric gives preference to decision 

alternatives where the performance values are skewed towards better performance values. 

It uses the 10th, 50th and 90th percentile values.  

 

Percentile-based peakedness 

A variation of Kurtosis was applied by Voudouris et al. (2014) to determine robustness. 

This metric indicates the ³peakedness´ of the distribXtion (Kwakkel et al., 2016b). It uses 

the 10th, 25th, 75th and 90th percentile performance values respectively for each decision 

alternative. Unlike the percentile-based skewness metric, this metric does not consider 

whether the distribution is skewed towards higher or lower performance values. A higher 

value implies that the performance values are more peaked around the median value. 

 

SWaUU¶V DRmaiQ CUiWeUiRQ 

Unlike preYioXs metrics, Starr¶s domain criterion (Starr, 1963; Schneller and Sphicas, 

1983) compares the distribution of performance values to a threshold value. This metric 

is most useful when the threshold is selected such that the level of performance above or 

below the threshold does not matter, but preferably the decision alternative will meet this 

threshold. For example, a system may have a threshold such that any decision alternative 

with a performance below the threshold is a fail and any performance above the threshold 

is a pass. 

 

 



 

  
 

A.5 Robustness values for the three case studies 
Robustness values for each robustness metric for the Southern Adelaide case study (reliability of water supply under 125 scenarios). 
 

Solution # 
Robustness 

Maximin Maximax Hurwicz Laplace Minimax 
regret 

90th percentile 
minimax regret 

Mean-
variance 

Undesirable 
deviations 

Percentile-based 
skewness 

Percentile-based 
peakedness 

1 0.000 0.780 0.390 0.341 0.920 0.850 1.099 3.804 0.119 1.513 
2 0.000 0.800 0.400 0.413 0.910 0.802 1.147 5.324 0.297 1.565 
3 0.000 0.800 0.400 0.425 0.910 0.780 1.157 5.648 0.340 1.590 
4 0.000 0.830 0.415 0.436 0.900 0.776 1.160 5.853 0.315 1.580 
5 0.000 0.830 0.415 0.460 0.870 0.760 1.188 5.893 0.403 1.674 
6 0.000 0.830 0.415 0.451 0.890 0.766 1.171 6.127 0.368 1.630 
7 0.000 0.860 0.430 0.483 0.860 0.740 1.200 6.116 0.390 1.726 
8 0.000 0.840 0.420 0.452 0.890 0.760 1.174 6.049 0.368 1.630 
9 0.000 0.860 0.430 0.494 0.850 0.726 1.208 6.842 0.463 1.773 

10 0.000 0.830 0.415 0.436 0.900 0.776 1.160 5.853 0.315 1.580 
11 0.000 0.860 0.430 0.486 0.860 0.736 1.202 6.356 0.421 1.726 
12 0.000 0.860 0.430 0.483 0.860 0.740 1.200 6.116 0.390 1.726 
13 0.000 0.860 0.430 0.494 0.850 0.726 1.208 6.842 0.463 1.773 
14 0.000 0.860 0.430 0.494 0.850 0.726 1.208 6.842 0.463 1.773 
15 0.000 0.870 0.435 0.514 0.850 0.716 1.223 6.928 0.486 1.846 
16 0.000 0.860 0.430 0.494 0.850 0.726 1.207 6.862 0.463 1.773 
17 0.000 0.860 0.430 0.494 0.850 0.726 1.208 6.842 0.463 1.773 
18 0.000 0.860 0.430 0.494 0.850 0.726 1.208 6.842 0.463 1.773 
19 0.000 0.860 0.430 0.494 0.850 0.726 1.207 6.862 0.463 1.773 
20 0.000 0.860 0.430 0.494 0.850 0.726 1.207 6.862 0.463 1.773 
21 0.000 0.790 0.395 0.365 0.920 0.830 1.115 4.195 0.155 1.480 
22 0.000 0.800 0.400 0.413 0.910 0.802 1.147 5.324 0.297 1.565 
23 0.000 0.830 0.415 0.436 0.900 0.776 1.160 5.853 0.315 1.580 
24 0.000 0.860 0.430 0.494 0.850 0.726 1.207 6.862 0.463 1.773 
25 0.000 0.830 0.415 0.436 0.900 0.776 1.160 5.853 0.315 1.580 
26 0.000 0.860 0.430 0.494 0.850 0.726 1.208 6.842 0.463 1.773 
27 0.000 0.860 0.430 0.494 0.850 0.726 1.207 6.862 0.463 1.773 
28 0.000 0.860 0.430 0.494 0.850 0.726 1.208 6.842 0.463 1.773 
29 0.000 0.860 0.430 0.494 0.850 0.726 1.207 6.862 0.463 1.773 
30 0.000 0.860 0.430 0.494 0.850 0.726 1.208 6.842 0.463 1.773 
31 0.000 0.860 0.430 0.494 0.850 0.726 1.207 6.862 0.463 1.773 
32 0.000 0.860 0.430 0.494 0.850 0.726 1.207 6.862 0.463 1.773 
33 0.000 0.860 0.430 0.494 0.850 0.726 1.207 6.862 0.463 1.773 
34 0.000 0.900 0.450 0.622 0.770 0.580 1.321 6.479 0.529 2.214 
35 0.000 0.900 0.450 0.630 0.750 0.576 1.331 6.091 0.508 2.259 



 

  
 

36 0.000 0.910 0.455 0.644 0.710 0.568 1.346 5.829 0.519 2.156 
37 0.000 0.910 0.455 0.644 0.710 0.568 1.346 5.829 0.519 2.156 
38 0.000 0.900 0.450 0.617 0.770 0.586 1.318 6.253 0.515 2.289 
39 0.000 0.900 0.450 0.630 0.750 0.576 1.331 6.091 0.508 2.259 
40 0.000 0.900 0.450 0.637 0.720 0.568 1.339 5.787 0.502 2.150 
41 0.000 0.900 0.450 0.630 0.750 0.576 1.331 6.091 0.508 2.259 
42 0.000 0.900 0.450 0.645 0.710 0.560 1.344 6.228 0.547 2.143 
43 0.000 0.900 0.450 0.608 0.790 0.596 1.310 6.574 0.556 2.333 
44 0.000 0.900 0.450 0.630 0.750 0.576 1.331 6.091 0.508 2.259 
45 0.000 0.900 0.450 0.638 0.740 0.564 1.336 6.237 0.535 2.076 
46 0.000 0.910 0.455 0.656 0.700 0.556 1.354 6.175 0.529 2.121 
47 0.000 0.930 0.465 0.677 0.710 0.548 1.367 6.401 0.552 2.148 
48 0.000 0.950 0.475 0.689 0.690 0.548 1.380 6.544 0.562 2.304 
49 0.000 0.930 0.465 0.677 0.710 0.548 1.367 6.401 0.552 2.148 
50 0.000 0.950 0.475 0.689 0.690 0.548 1.380 6.544 0.562 2.304 
51 0.000 0.950 0.475 0.689 0.690 0.548 1.380 6.544 0.562 2.304 
52 0.000 0.950 0.475 0.695 0.690 0.536 1.387 6.264 0.532 2.317 
53 0.000 0.950 0.475 0.689 0.690 0.548 1.380 6.544 0.562 2.304 
54 0.000 0.950 0.475 0.712 0.690 0.512 1.406 6.192 0.579 2.270 
55 0.000 0.950 0.475 0.695 0.690 0.536 1.387 6.264 0.532 2.317 
56 0.000 0.950 0.475 0.695 0.690 0.536 1.387 6.264 0.532 2.317 
57 0.430 0.990 0.710 0.928 0.110 0.030 1.775 0.948 0.524 2.520 
58 0.500 0.990 0.745 0.932 0.040 0.020 1.795 0.723 0.524 2.520 
59 0.500 0.990 0.745 0.937 0.020 0.000 1.802 0.745 0.552 2.900 
60 0.490 0.990 0.740 0.938 0.010 0.000 1.806 0.700 0.552 2.900 
61 0.500 0.990 0.745 0.937 0.020 0.000 1.802 0.745 0.552 2.900 
62 0.490 0.990 0.740 0.938 0.010 0.000 1.806 0.700 0.552 2.900 
63 0.500 0.990 0.745 0.931 0.040 0.020 1.794 0.729 0.524 2.520 
64 0.500 0.990 0.745 0.931 0.040 0.020 1.794 0.729 0.524 2.520 
65 0.500 0.990 0.745 0.937 0.020 0.000 1.802 0.745 0.552 2.900 
66 0.430 0.990 0.710 0.928 0.110 0.030 1.775 0.948 0.524 2.520 
67 0.500 0.990 0.745 0.932 0.040 0.020 1.795 0.723 0.524 2.520 
68 0.500 0.990 0.745 0.937 0.020 0.000 1.802 0.745 0.552 2.900 
69 0.500 0.990 0.745 0.931 0.040 0.020 1.794 0.729 0.524 2.520 
70 0.430 0.990 0.710 0.930 0.070 0.020 1.784 0.843 0.524 2.520 
71 0.500 0.990 0.745 0.931 0.040 0.020 1.794 0.729 0.524 2.520 
72 0.500 0.990 0.745 0.931 0.040 0.020 1.794 0.729 0.524 2.520 

 
  



 

  
 

Robustness values for each robustness metric for the Lake Como case study (reliability against flooding under 28 scenarios). 
 

Solution # 
Robustness 

Maximin Maximax Hurwicz Laplace Minimax 
regret 

90th percentile 
minimax regret 

Mean-
variance 

Undesirable 
deviations 

Percentile-based 
skewness 

Percentile-based 
peakedness 

1 0.946 1.000 0.973 0.987 0.034 0.015 1.964 0.004 0.382 2.027 
2 0.941 1.000 0.970 0.985 0.039 0.019 1.959 0.004 0.176 1.761 
3 0.961 1.000 0.981 0.991 0.019 0.010 1.973 0.002 0.323 1.691 
4 0.969 1.000 0.984 0.993 0.015 0.007 1.977 0.002 0.425 1.763 
5 0.969 1.000 0.985 0.993 0.013 0.007 1.978 0.001 0.462 1.731 
6 0.962 1.000 0.981 0.991 0.018 0.009 1.973 0.002 0.273 1.619 
7 0.927 0.999 0.963 0.976 0.058 0.033 1.943 0.006 0.214 1.533 
8 0.898 0.996 0.947 0.961 0.096 0.058 1.916 0.012 0.245 1.851 
9 0.933 0.999 0.966 0.979 0.049 0.029 1.949 0.005 0.228 1.475 

10 0.948 1.000 0.974 0.987 0.032 0.015 1.965 0.003 0.240 1.755 
11 0.980 1.000 0.990 0.996 0.000 0.000 1.985 0.001 0.538 1.733 
12 0.931 1.000 0.965 0.981 0.049 0.030 1.949 0.007 0.408 1.918 
13 0.928 0.999 0.963 0.977 0.054 0.030 1.946 0.007 0.339 1.507 
14 0.918 1.000 0.959 0.979 0.061 0.033 1.943 0.008 0.392 2.416 
15 0.937 1.000 0.968 0.983 0.043 0.022 1.956 0.004 0.195 1.831 
16 0.706 0.973 0.840 0.860 0.288 0.209 1.747 0.064 0.019 1.659 
17 0.964 1.000 0.982 0.991 0.017 0.009 1.974 0.002 0.385 1.763 
18 0.933 0.999 0.966 0.979 0.049 0.029 1.949 0.006 0.264 1.537 
19 0.949 1.000 0.975 0.987 0.031 0.015 1.965 0.003 0.240 1.755 

 
  



 

  
 

Robustness values for each robustness metric for the Lake Como case study (reliability of irrigation supply under 28 scenarios). 
 

Solution # 
Robustness 

Maximin Maximax Hurwicz Laplace Minimax 
regret 

90th percentile 
minimax regret 

Mean-
variance 

Undesirable 
deviations 

Percentile-based 
skewness 

Percentile-based 
peakedness 

1 0.528 0.934 0.731 0.770 0.036 0.028 1.634 0.117 0.066 1.971 
2 0.534 0.934 0.734 0.779 0.019 0.015 1.643 0.125 0.117 1.976 
3 0.526 0.920 0.723 0.763 0.047 0.036 1.630 0.112 0.069 1.932 
4 0.524 0.910 0.717 0.755 0.058 0.046 1.624 0.104 0.049 1.947 
5 0.523 0.911 0.717 0.755 0.057 0.046 1.625 0.105 0.051 1.949 
6 0.529 0.920 0.724 0.765 0.042 0.034 1.632 0.108 0.052 1.982 
7 0.542 0.929 0.735 0.785 0.014 0.008 1.651 0.124 0.131 2.195 
8 0.540 0.934 0.737 0.786 0.010 0.006 1.651 0.131 0.157 2.032 
9 0.542 0.934 0.738 0.785 0.011 0.007 1.649 0.129 0.132 2.143 

10 0.535 0.930 0.733 0.778 0.016 0.013 1.643 0.125 0.120 2.091 
11 0.499 0.856 0.677 0.699 0.131 0.110 1.580 0.081 -0.031 1.954 
12 0.532 0.943 0.737 0.779 0.026 0.014 1.640 0.119 0.046 2.003 
13 0.543 0.932 0.737 0.784 0.012 0.007 1.649 0.127 0.129 2.143 
14 0.532 0.941 0.737 0.775 0.031 0.021 1.637 0.115 0.036 1.952 
15 0.540 0.929 0.735 0.782 0.013 0.010 1.648 0.127 0.144 2.163 
16 0.536 0.921 0.729 0.776 0.040 0.026 1.642 0.109 0.017 1.720 
17 0.526 0.922 0.724 0.763 0.046 0.035 1.629 0.111 0.054 1.906 
18 0.541 0.933 0.737 0.783 0.013 0.009 1.648 0.128 0.124 2.126 
19 0.536 0.931 0.733 0.778 0.015 0.013 1.643 0.125 0.115 2.170 

 
  



 

  
 

Robustness values for each robustness metric for the Waas case study (reduction in flood impacts under 3000 scenarios). 
 

Solution # 
Robustness 

Maximin Maximax Hurwicz Laplace Minimax 
regret 

90th percentile 
minimax regret 

Mean-
variance 

Undesirable 
deviations 

Percentile-based 
skewness 

Percentile-based 
peakedness 

1 -7.67E+03 -6.14E+02 -4.14E+03 -3.19E+03 1.26E+03 1.40E+01 -7.85E+06 6.77E+08 -0.368 1.448 
2 -7.67E+03 -3.75E+02 -4.02E+03 -3.03E+03 0.00E+00 0.00E+00 -7.93E+06 5.78E+08 -0.306 1.398 
3 -9.50E+03 -2.55E+03 -6.02E+03 -5.19E+03 1.22E+04 7.04E+03 -1.07E+07 7.45E+09 -0.525 1.845 
4 -9.50E+03 -2.55E+03 -6.02E+03 -5.19E+03 1.22E+04 7.04E+03 -1.07E+07 7.45E+09 -0.525 1.845 
5 -4.35E+04 -1.46E+04 -2.90E+04 -2.91E+04 5.97E+04 3.18E+04 -2.51E+08 3.15E+10 0.195 1.292 
6 -3.66E+04 -1.03E+04 -2.34E+04 -2.35E+04 5.45E+04 3.34E+04 -1.58E+08 7.73E+10 0.062 1.592 
7 -1.61E+04 -8.25E+03 -1.22E+04 -1.19E+04 1.97E+04 1.35E+04 -2.23E+07 4.58E+09 0.010 1.497 
8 -7.24E+04 -2.47E+04 -4.86E+04 -4.76E+04 8.92E+04 5.90E+04 -6.53E+08 9.10E+10 0.237 1.449 
9 -8.95E+03 -2.55E+03 -5.75E+03 -4.97E+03 9.48E+03 6.06E+03 -9.39E+06 5.21E+09 -0.565 1.949 

10 -4.77E+04 -1.65E+04 -3.21E+04 -3.22E+04 6.60E+04 4.24E+04 -2.82E+08 7.64E+10 0.238 1.499 
11 -5.43E+04 -1.89E+04 -3.66E+04 -3.71E+04 7.13E+04 4.43E+04 -3.92E+08 5.43E+10 0.282 1.303 

 
 
Robustness values for each robustness metric for the Waas case study (reduction in casualties under 3000 scenarios). 
 

Solution # 
Robustness 

Maximin Maximax Hurwicz Laplace Minimax 
regret 

90th percentile 
minimax regret 

Mean-
variance 

Undesirable 
deviations 

Percentile-based 
skewness 

Percentile-based 
peakedness 

1 -1.40E+02 -2.05E+01 -8.03E+01 -7.48E+01 3.63E+02 5.36E+01 -3.30E+03 7.16E+06 -0.334 1.318 
2 -8.82E+01 -2.05E+01 -5.43E+01 -5.76E+01 2.90E+02 5.34E+01 -1.44E+03 4.89E+06 0.105 1.558 
3 -2.38E+02 -1.70E+01 -1.28E+02 -1.18E+02 7.61E+02 2.45E+02 -1.07E+04 2.59E+07 0.193 1.126 
4 -2.38E+02 -1.70E+01 -1.28E+02 -1.18E+02 7.61E+02 2.45E+02 -1.07E+04 2.59E+07 0.193 1.126 
5 -4.32E+02 -1.05E+02 -2.68E+02 -2.64E+02 7.44E+02 3.55E+02 -2.78E+04 2.21E+07 -0.036 1.519 
6 -7.80E+02 -1.59E+02 -4.70E+02 -4.54E+02 1.49E+03 8.94E+02 -8.45E+04 1.81E+08 -0.220 1.534 
7 -1.38E+03 -3.88E+02 -8.82E+02 -9.22E+02 1.89E+03 1.23E+03 -2.93E+05 5.28E+07 0.348 1.253 
8 -9.37E+02 -2.46E+02 -5.91E+02 -5.75E+02 1.23E+03 7.11E+02 -1.11E+05 1.53E+07 0.305 1.239 
9 -1.54E+02 -1.70E+01 -8.57E+01 -8.06E+01 4.42E+02 2.07E+02 -4.41E+03 2.04E+07 0.056 1.215 

10 -8.70E+02 -2.02E+02 -5.36E+02 -5.30E+02 1.79E+03 1.07E+03 -9.83E+04 1.98E+08 0.110 1.531 
11 -9.38E+02 -2.36E+02 -5.87E+02 -5.93E+02 1.24E+03 8.01E+02 -1.31E+05 3.21E+07 0.202 1.276 
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Appendix B 

 

Supplementary Material (Paper 2): 

Impact of scenario selection on robustness 

 
 



 

 

B.1 Examples in literature of how scenarios were selected 

Reference Case Study 
Number 

of 
Scenarios 

Number of 
Axes/ 

Dimensions 
Method to generate final scenarios, 𝑺 

Herman & 
Giuliani 
(2018) 

Folsom Reservoir, 
Northern 
California, USA 

97 1 CMIP5 ensemble ĺ doZnscaling ĺ Yariable infiltration capacit\ (VIC) model ĺ 
streamflow projections. 

Giuliani & 
Castelletti 
(2016), 
McPhail et al. 
(2018) 

Lake Como, Italy 28 2 

3 RCPs ĺ particXlar RCPs applied to particXlar GCMs (8 GCMs) (17 combinations) ĺ 
particular combinations applied to particular RCMs (5 RCMs) (28 total combinations) 
ĺ statisticall\ doZnscaled Xsing qXantile mapping for the Lake Como site ĺ rainfall 
and temperatXre data e[tracted ĺ HBV h\drological model Æ inflow projections 

Haasnoot et al. 
(2013) 

Lower Rhine 
Delta, the 
Netherlands 

4 2 
2 climate change scenarios (affecting temperature, seasonal precipitation, sea level, salt 
intrusion); 2 socio-economic scenarios (affecting population, land use, water demand, 
economic growth). These form the 2 axes to create a set of 4 scenarios. 

McPhail et al. 
(2018) 

Southern 
Adelaide Water 
Supply System, 
Australia 

125 1 
4 RCPs ĺ particXlar RCPs applied to particular GCMs (40 GCMs) (128 combinations) 
ĺ statisticall\ doZnscaled for the SoXthern Adelaide region ĺ rainfall data e[tracted 
ĺ pertXrbed historical rainfall (end scenarios). 

Haasnoot et al. 
(2012) 

Waas River, the 
Netherlands 
(hypothetical) 

3 2 3 climate scenarios (Royal Dutch Meteorological Institute (KNMI)) (includes no 
climate change as a scenario) ĺ affects temperatXre and seasonal precipitation 

Giuliani et al. 
(2016) 

Red River, 
Vietnam 5 ?? 

1 SRES scenario Æ 5 parameterization of the same GCM (perturbed physics ensemble) 
Æ 1 RCM Æ statistically downscaled using quantile mapping for the Red River basin 
Æ HBV hydrological model Æ inflow projections 

Anghileri et al. 
(2018) 

Mattmark, 
Switzerland 100 2 1 emission scenario (A1B) simulated by ECHAM5r3, RegCM3, REMO models, Æ 100 

realizations generated via stochastic downscaling; 1 electricity price  

Hall et al. 
(2012) 

Dynamic 
Integrated model 
of Climate and 
Economy (DICE) 

2,662 4 

4 uncertain parameters: (1) climate sensitivity, (2) initial growth rate of carbon 
intensity, (3) economic damages associated with collapse of the North Atlantic 
Meridional Overturning Circulation (MOC), (4) binary parameter to indicate whether 
MOC will actually collapse if critical emissions thresholds are reached. First three 



 

 

parameters split into 11 values and final parameter has 2 values. All combinations were 
used. 

Kwakkel et al. 
(2016) EU Energy Model 500 46 

46 parametric uncertainties identified and LHS is used to select 500 combinations of 
values. Uncertainties can be classed as: (1) economic lifetime of technologies; (2) 
learning curve for technology; (3) economic growth; (4) electrification rate of economy; 
(5) physical limits of technology penetration; (6) preferences of investors; (7) battery 
storage; (8) timing of a ban on nuclear energy; (9) price demand elasticity. 

Weaver et al. 
(2013) 

Inland Empire 
Utilities Agency 
(IEUA) water 
supply, Southern 
California, USA 

450 6 

6 key uncertainties identified: (1) 450 climate scenarios (monthly temperature and 
precipitation changes), (2) water demand (increases in efficiency), (3) declines in 
imported water supply, (4) change in groundwater infiltration, (5) delay in achievement 
of groundwater replenishment goals, (6) changes in costs of imported supply. Sampled 
using unknown approach. 

Culley et al. 
(2016) Lake Como, Italy 861 2 

Range of 21 changes in temperature and 41 changes in precipitation (including present-
day conditions) were used to form a grid of 861 changes in climate. These changes were 
used to perturb historical temperature and precipitation records. 

Hadka et al. 
(2015) 

Lake Model 
(hypothetical) 

1000 5 The 5 uncertain inputs are parameters associated with pollution inputs, pollution 
removal and an economic discount rate. These are sampled from using LHS. 

Singh et al. 
(2015) 9 2 2 parameters associated with log-normal pollution inputs are used to create a 3x3 grid 

of log-normal pollution inputs (i.e. 3 different means and 3 different variances). 
Kwakkel 
(2017) 150 5 Same 5 uncertainties as Hadka et al. (2015). Sampled using LHS. 

Quinn et al. 
(2017) 1000 6 Same 5 uncertainties as Hadka et al. (2015) plus uncertainty in the initial concentration 

of pollution in the lake. Sampled using LHS. 

Kasprzyk et al. 
(2013), 
Watson and 
Kasprzyk 
(2017) 

Lower Rio 
Grande Valley 
(LRGV) Water 
Resources 
System, Texas, 
USA 

10,000 3 3 model inputs: initial rights for water supply for city, demand growth rate, and initial 
reservoir level. Sampled using Latin Hypercube Sampling. 

Herman et al. 
(2015, 2014)  
 

North Carolina 
Research 
Triangle, USA 

10,000 13 
13 uncertain factors were determined to form axes for 13-dimensional LHS (10,000 
scenarios). The 13 dimensions can be categorized as climate, demand, capacity, or costs 
changes. 



 

 

Trindade et al. 
(2017) 10,000 13 Same as Herman et al. (2015, 2014), but also includes a posteriori scenario discovery 

step to narrow the number of scenarios to those that are most of interest. 

Kwakkel et al. 
(2015) Waas River, the 

Netherlands 
(hypothetical) 

150 5 

5 primary uncertainties determined and used to form axes for Latin Hypercube 
Sampling (LHS) (150 scenarios used): (1) 3 climate change scenarios; (2) 7 land use 
scenarios; (3) bandwidth of ±10% fragility of the dikes (10% chosen for illustrative 
purposes); (4) ±10% in parametric uncertainty for flood damage functions (chosen for 
illustrative purposes); (5) effect of policy actions on upstream collaboration. 

McPhail et al. 
(2018) 3,000 5 Same as Kwakkel et al. (2015) above but with a larger sample size (3,000) during the 

LHS. 

Quinn et al., 
(2018) 

Red River, 
Vietnam 1,000 11 

6 parameters related to inflow hydrograph (i.e., log-space mean, log-space standard 
deviation, log-space amplitudes of annual and semiannual monsoonal cycle, log-space 
shifts of annual and semiannual cycle), 1 parameter related to evaporation, 4 parameters 
related to water demands 

Beh et al. 

(2015a, 

2015b) (using 

method 

recommended 

by Paton et al. 

(2013)) 

Southern 
Adelaide Water 
Supply System, 
Australia  

7 3 

5 SRES scenarios (IPCC, 2000) ĺ each applied to 7 GCMs (35 combinations) ĺ 7 
combinations handpicked ĺ rainfall and temperatXre data e[tracted ĺ pertXrbed 
historical rainfall and eYaporation data ĺ ranked Zorst to best and paired Xp Zith 7 
popXlation scenarios (also Zorst to best) ĺ end scenarios were a rainfall, evaporation 
and population timeseries. 

Roach et al. 
(2016) 

Sussex North 
Water Resource 
Zone (SNWRZ), 
UK 

288 2 

11 floZ projections from UK Climate Impact Programme at Xpstream site ĺ changes in 
upstream site mapped onto downstream site of interest onto different 30 year historical 
timeseries with different seasonal flow factors (produces 72 scenarios). Demand 
scenarios from SoXthern Water¶s WRMP (Southern Water, 2009) for up to 2035 (4 
scenarios) ĺ e[trapolated to 2060 Xsing 2030-2035 data ĺ monthl\ demand factors 
applied to create daily time steps for a 50-year period (4 scenarios). 72 supply and 4 
demand scenarios combined to form 288 scenarios. 



 

 

Matrosov et al. 
(2013) 

Thames Water 
Resource System, 
UK 

15,554 3 

101 hydrological scenarios (including the historical hydrological observations) derived 
from previous climate change studies; 14 uniformly spaced energy cost estimates based 
on the assumption energy costs will increase; 3 demand scenarios from previous studies 
ĺ a normal distribXtion for each scenario ĺ 9 deciles from the 3 distribXtion and the 
0.01 and 0.99 percentiles ĺ 11 demand scenarios; All combinations of 101 
hydrological, 14 energy cost, and 11 demand scenarios used. 

Matrosov et al. 
(2013) 

Thames Water 
Resource System, 
UK 

3850 3 Same as Matrosov et al. (2013) but with 25 hydrological scenarios. All combinations of 
25 hydrological, 14 energy cost, and 11 demand scenarios used. 

Huskova et al. 
(2016) 88 4 

SRES A1B (mediXm emissions) scenario ĺ HadRM3-PPE Regional Climate Model ĺ 
11 hydrological timeseries; A future demand projection from a previous study is used, 
and a second demand scenario is produced using a 10% increase on this; Energy price 
scenarios (13p/kWh and 35p/kWh) are very different and are taken from 2 independent 
previous studies; 1 sustainability scenario is that current water extractions are continued 
and the other sustainability scenario is that extractions decrease. All combinations of 11 
hydrological, 2 water demand, 2 sustainability, and 2 energy scenarios used. 

Wada et al. 
(2019) Indus River Basin NA 4 

One ³BAU´ scenario, created b\ assXming SSP2 (³Middle of the road´). ThroXgh a 
participatory process, it was determined how things would look different from the BAU 
scenario if the economy, society, or environmental domains were prioritized, creating 3 
new scenarios. This paper highlighted the ability to create new scenarios relative to the 
BAU (e.g. by prioritizing particular Sustainable Development Goals), by using a 
participatory process, and then quantifying each scenario using large integrated models. 
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B.2 Generation of targeted spread scenarios 
Let 𝑛 be the number of scenarios and 𝑑 be the number of dimensions (number of 

variables) for each scenario (the Lake Problem has 5 variables). Let the full set of 

scenarios be 𝑆 = ሼ𝑠1, 𝑠2, … , 𝑠𝑛ሽ. 

The mean value of 𝑠𝑖 for variable 𝑗 = ሼ1,2, … , 𝑑ሽ is given by 

𝜇𝑖,𝑗 = ൞

𝑖 − 1
𝑛 − 1

,         a higher value for variable 𝑗 implies better performance

1 −
𝑖 − 1
𝑛 − 1

, a lower value for variable 𝑗 implies better performance
 

 

In the real example where 𝑛 = 3, the ³mediXm´ YalXe is not necessaril\ halfZa\ betZeen 

0 and 1. It could depend on the chain of processes that led to the creation of the scenarios. 

Therefore, some Gaussian noise is added to these mean values. To preserve the 

monotonicity, the standard deviation is set such that the 95% bounds of the distribution 

fall within 1/3 of the distance to either side of the point. See the diagram below for the 

1D case with 5 scenarios: 

 
This standard deviation, 𝜎, is the same for all scenarios in all dimensions (since we are 

treating all dimensions as being between 0 and 1 at this point): 

𝜎 = ൬
1
3
×

1
𝑛 − 1

൰ 1.96⁄  

where 1.96 is used to achieve the 95% confidence interval. 

Thus each scenario, 𝑠𝑖, (with 𝑑 dimensions) can be sampled a series of normal 

distributions, 𝒩 such that: 

𝑠𝑖 = {𝒩൫𝜇𝑖,1, 𝜎൯,𝒩൫𝜇𝑖,2, 𝜎൯, … ,𝒩൫𝜇𝑖,𝑑, 𝜎൯ൟ 
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B.3 Generation of diverse scenarios 
Let 𝑛 be the number of scenarios and 𝑑 be the number of dimensions (number of 

variables) for each scenario (the Lake Problem has 5 variables). Let the full set of 

scenarios be 𝑆 = ሼ𝑠1, 𝑠2, … , 𝑠𝑛ሽ. 

For simplicity we assume 4 clusters of scenarios. Each cluster, 𝑐, is given a random 

weighting, where this weighting is the likelihood of any given scenario being placed in 

that cluster. 

The mean values in for each cluster, 𝑐, in each of the 𝑑 dimensions is calculated in the 

same way as the monotonic scenarios above. For 𝑗 = ሼ1,2, … , 𝑑ሽ and 𝑐 = ሼ1, 2, 3, 4ሽ (4 

clusters), the mean is given by: 

𝜇𝑐,𝑗 = ൞

𝑐 − 1
𝑛 − 1

,         a higher value for variable 𝑗 implies better performance

1 −
𝑐 − 1
𝑛 − 1

, a lower value for variable 𝑗 implies better performance
 

 

Also similar to the hybrid scenarios above, the standard deviation was calculated such 

that a 95% confidence interval around each cluster mean was restricted. To reflect real 

situations, we wanted the spread of scenarios around a mean to be different for each 

cluster. I.e. we want some clusters to have a high spread of scenarios, and others to have 

a low spread. So we allow the standard deviation for each cluster and each dimension to 

be different. We let the standard deviation, 𝜎𝑐,𝑗, of cluster 𝑐 = ሼ1, 2, 3, 4ሽ in dimension 

𝑗 = ሼ1,2, … , 𝑑ሽ have a 95% confidence interval between 0.2 and 0.35 of the gap between 

the clusters. This is similar to the hybrid scenarios but rather than fix the standard 

deviation at 1/3 of the distance between clusters (see diagram above), we allow it to vary 

within 0.2 and 0.35 of the distance between the clusters. 

𝜎𝑐,𝑗 = 𝒩ሺ𝜇, 𝜎ሻ 

 

where 𝜇 is in the middle of 0.2 and 0.35 of the gap between the cluster centres (i.e. 0.275 

of the gap), and 𝜎 is the standard deviation such that the 95% bounds fit between 0.2 and 

0.35 of the gap. 

 

Then for each scenario, 𝑠𝑖, (with 𝑑 dimensions), the scenario is selected to go into cluster 

𝑐 according to the random weightings for each cluster. 

𝑠𝑖 = {𝒩൫𝜇𝑐,1, 𝜎𝑐,1൯,𝒩൫𝜇𝑐,2, 𝜎𝑐,2൯, … ,𝒩൫𝜇𝑐,𝑑, 𝜎𝑐,𝑑൯ൟ 




