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Chiral symmetry breaking in dimensionally regularized nonperturbative quenched QED
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In this paper we study dynamical chiral symmetry breaking in dimensionally regularized quenched QED
within the context of Dyson-Schwinger equations. InD,4 dimensions the theory has solutions which exhibit
chiral symmetry breaking for all values of the coupling. To begin with, we study this phenomenon both
numerically and, with some approximations, analytically within the rainbow approximation in the Landau
gauge. In particular, we discuss how to extract the critical couplingac5p/3 relevant in 4 dimensions from the
D dimensional theory. We further present analytic results for the chirally symmetric solution obtained with the
Curtis-Pennington vertex as well as numerical results for solutions exhibiting chiral symmetry breaking. For
these we demonstrate that, using dimensional regularization, the extraction of the critical coupling relevant for
this vertex is feasible. Initial results for this critical coupling are in agreement with cut-off based work within
the currently achievable numerical precision.@S0556-2821~99!06916-7#

PACS number~s!: 11.30.Qc, 11.15.Tk, 11.30.Rd, 12.20.Ds
ics
m
a

tio
th
at

i

y
in
us

r-

ic
n-
d

in
a
e
r
o
try
o
in
t

si
a

er
ac
to
e
ll

4
ro-

ry,
or-
n
he
y-
des
ral
n-
ur

er-
ver-
or a

t be
not
ashi

lly
a-

ains

e
za-
-off
y

uge
I. INTRODUCTION

It is fairly well established that quantum electrodynam
~QED!, and in particular quenched QED, breaks chiral sy
metry for sufficiently large couplings. This phenomenon h
been observed both in lattice simulations@1# as well as vari-
ous studies based on the use of Dyson-Schwinger equa
@2–4#. These latter calculations have generally relied on
use of a cut-off in Euclidean momentum in order to regul
divergent integrals, a procedure which breaks the gauge
variance of the theory.

On the other hand, continuation of gauge theories toD
,4 dimensions has long been used as an efficient wa
regularize perturbation theory without violating gauge
variance. In nonperturbative calculations, however, the
of this method of regularization is rarely used@5#. Within the
context of the Dyson-Schwinger equations~DSEs! only a
few publications@6,7# have employed dimensional regula
ization instead of the usual momentum cut-off.

It is the purpose of the present paper to study dynam
chiral symmetry breaking and the chiral limit within dime
sionally regularized quenched QED. We are motivated to
this by the wish to avoid some gauge ambiguities occurr
in cut-off based work, which we discuss in Sec. II. In th
section we also outline some general results which one
pects to be valid forD,4, independently of the particula
vertex which one uses as an input to the DSEs. Having d
this we proceed, in Sec. III, with a study of chiral symme
breaking in the popular, but gauge non-covariant, rainb
approximation. Just as in cut-off regularized work, the ra
bow approximation provides a very good qualitative guide
what to expect for more realistic vertices and has the con
erable advantage that, with certain additional approxim
tions, one may obtain analytical results. We check num
cally that the additional approximations made are in f
quite justified. Indeed, it is very fortunate that it is possible
obtain this analytic insight into the pattern of chiral symm
try breaking inD dimensions as it provides us with a we
0556-2821/99/60~6!/065007~12!/$15.00 60 0650
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defined procedure for extracting the critical coupling of the
dimensional theory with more complicated vertices. We p
ceed to the Curtis-Pennington~CP! vertex in Sec. IV. There
we derive, for solutions which do not break chiral symmet
an integral representation for the exact wave function ren
malization functionZ in D dimensions. We also provide a
approximate, but explicit, expression for this quantity. T
latter is quite useful, in the ultraviolet region, even if d
namical chiral symmetry breaking takes place as it provi
a welcome check for the numerical investigation of chi
symmetry breaking with the CP vertex with which we co
clude that section. Finally, in Sec. V, we summarize o
results and conclude.

II. MOTIVATION AND GENERAL CONSIDERATIONS

Although chiral symmetry breaking appears to be univ
sally observed independently of the precise nature of the
tex used in DSE studies, it has also been recognized f
long time that the critical couplings with almost all1 of these
vertices show a gauge dependence which should no
present for a physical quantity. With a bare vertex this is
surprising as this vertex Ansatz breaks the Ward-Takah
identity. However, even with the Curtis-Pennington~CP!
vertex, which does not violate this identity and additiona
is constrained by the requirement of perturbative multiplic
tive renormalizability, a residual gauge dependence rem
@11,12#.

Apart from possible deficiencies of the vertex, which w
do not investigate in this paper, the use of cut-off regulari
tion explicitly breaks the gauge symmetry even as the cut
is taken to infinity. This is well known in perturbation theor

1Some vertexAnsätzeexist which lead to critical couplings which
are strictly gauge independent@8–10#. However, these involve ei-
ther vertices which have unphysical singularities or ensure ga
independence of the critical coupling by explicit construction.
©1999 The American Physical Society07-1
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~see, for example, the discussion of the axial anomaly
Sect. 19.2 of Ref.@13#! and was pointed out by Roberts an
collaborators@14# in the present context. The latter autho
proposed a prescription for dealing with this ambigu
which ensures that the regularization does not violate
Ward-Takahashi identity.

As may be observed in Fig. 1, this ambiguity has a stro
effect on the value of the critical coupling of the theory. T
two curves in that figure correspond to the critical coupli
ac of Ref. @12# as well as the couplingac8 one obtains by
following the prescription of Roberts,et al. It is straightfor-
ward to show, following the analysis of Ref.@12#, that these
couplings are related through

ac85
ac

11
jac

8p

. ~1!

Also plotted in this figure are previously published numeri
results@11,15# obtained with both of the above prescription
Note that, curiously, the critical couplings obtained with t
prescription of Ref.@14# ~i.e. the calculation which restore
the Ward-Takahashi identity! exhibits a stronger gauge de
pendence, at least for the range of gauge parameters sh
in Fig. 1.

Gauge ambiguities such as the one outlined above
absent if one does not break the gauge invariance of
theory through the regularization procedure. Hence, we n
turn to dimensionally regularized~quenched! QED. The
Minkowski space fermion propagatorS(p) is defined in the
usual way through the dimensionless wave function ren
malization functionZ(p2) and the dimensionful mass func
tion M (p2), i.e.,

S~p![
Z~p2!

p”2M ~p2!
. ~2!

FIG. 1. The critical coupling for the CP vertex. The solid line
taken from the bifurcation analysis carried out in Ref.@12#, which
agrees with the numerical results~open squares! of Ref. @11#. The
dashed line corresponds to the bifurcation analysis carried out
the ‘‘gauge violating term’’ removed~as suggested in Ref.@14#!
and agrees with the numerical results~open triangles! of Ref. @15#.
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The dependence ofZ and M on the dimensionality of the
space is not explicitly indicated here. Furthermore, note t
to a large extent we shall be dealing only with the regul
ized theory without imposing a renormalization procedu
as renormalization@15,16# is inessential to our discussion.

In addition to the above, we shall consider the theo
without explicit chiral symmetry breaking~i.e. zero bare
mass!. This theory would not contain a mass scale were
not for the usual arbitrary scale~which we denote byn)
introduced inD5422e dimensions which provides the con
nection between thedimensionfulcouplingaD and the usual
dimensionlesscoupling constanta5e2/4p:

aD5an2e. ~3!

As n is the onlymass scale in the problem, and as the co
pling always appears in the above combination with t
scale, on dimensional grounds alone the mass function m
be of the form

M ~p2!5na1/2eM̃ S p2

n2a1/e
,e D ~4!

whereM̃ is a dimensionless function and in particular

M ~0!5na1/2eM̃ ~0,e!. ~5!

Moreover, ase goes to zero then dependence on the righ
hand side must disappear and hence the dynamical m
M (0) is either zero~i.e. no symmetry breaking! or goes to
infinity in this limit. This situation is analogous to what hap
pens in cut-off regularized theory, where the scale param
is the cut-off itself and the mass is proportional it.

Note that M̃ (0,e) is not dependent ona. This implies
immediately that there can be no non-zero critical coupl
in DÞ4 dimensions: ifM (0) is non-zero for some coupling
a then it must be non-zero for all couplings.

Given these general considerations~which are of course
independent of the particular Ansatz for the vertex! it be-
hooves one to ask how this situation can be reconciled w
a critical couplingac of order 1 in four dimensions. In orde
to see how this might arise, we shall extract a conveni
numerical factor out ofM̃ and suggestively re-write the dy
namical mass as

M ~0!5nS a

ac
D 1/2e

M̄ ~0,e!. ~6!

At present there is no difference in content between Eq.~5!
and Eq.~6!. However, if we nowdefineac by demanding
that the behavior ofM (0) is dominated by the facto
(a/ac)

1/2e ase goes to zero, which is equivalent to deman
ing that

@M̄ ~0,e!#e ——˜

e˜0
1, ~7!

then the intent becomes clear: even thoughM (0) may be
nonzero for all couplings inD,4 dimensions, in the limit
that e goes to zero we obtain

th
7-2
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CHIRAL SYMMETRY BREAKING IN DIMENSIONALLY . . . PHYSICAL REVIEW D 60 065007
M ~0! ——˜

e˜0
0, a,ac ~8!

M ~0! ——˜

e˜0
`, a.ac .

Note that in the above we have not addressed the issu
whether or not there actually is aM̄ (0,e) with the property
of Eq. ~7!. In fact, the numerical and analytical work in th
following sections is largely concerned with finding th
function and hence determining whether or not chiral sy
metry is indeed broken forD,4.2 Notwithstanding this, as
one knows from cut-off based work that there actually is
non-zero critical coupling forD54, one can at this stag
already come to the conclusion thatM̄ (0,e) exists and hence
that quenched QED inD,4 dimensions has a chiral sym
metry breaking solution for all couplings. Furthermore, ev
though the dimensionless couplinga does not get modified
by vacuum polarization effects in the quenched approxim
tion, theeffectivedimensionless couplingā(q2) in D,4 di-
mensions nevertheless runs as a function ofq2:

ā~q2!5a~m2!S m2

q2 D e

, ~9!

where m is the renormalization scale~for details see, for
example, the discussion of the renormalization group eq
tions in Chapter 3.2 of Ref.@17#!. In the infrared the effective
coupling increases without bound, suggesting not only t
the theory is likely to break chiral symmetry for any co
pling ~for DÞ4) but also that it may actually be confining
Although we will not pursue this further in this paper, th
feature of quenched QED bears some similarity to QCD
that it may be of interest to investigate the theory witho
taking the limite˜0. In this connection, note also that in th
ultraviolet the running couplingā(q2) vanishes; i.e., inD
Þ4 dimensions quenched QED exhibits ‘‘asymptotic fre
dom’’.

In summary, as the trivial solutionM (p2)50 always ex-
ists as well, we see that inD,4 dimensions the trivial and
symmetry breaking solutions bifurcate ata50 while for D
54 the point of bifurcation is ata5ac ; i.e., there is a
discontinuous change in the point of bifurcation. AsD ap-
proaches four~i.e. ase approaches 0! the generated mas
M (0) decreases~grows! roughly like (a/ac)

1/2e for a&ac
(*ac), respectively, becoming an infinite step function
a5ac whene goes to zero.

Finally, it is of interest to speculate as to how the abo
analysis might be carried over to other field theories, in p
ticular full QED and QCD. Indeed, it is clear that Eq.~5! @as
well as Eq.~6! in theories which have a non-zero critic
coupling#, which is based purely on a dimensional argume
will remain valid in any theory which does not contain a
explicit mass scale. However, it should be kept in mind t

2The reader will note that as neitherM̃ (0,e) nor M̄ (0,e) are func-
tions of the couplinga, the value ofac can be determined indepen
dently of the strengtha of the self-interactions inD,4 dimensions.
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the coupling occuring on the right hand side of these eq
tions is theunrenormalizedcouplinga. In full QED or QCD,
as opposed to quenched QED, this is not a convenient q
tity as the bare coupling will itself be a function ofe if the
renormalized coupling is kept fixed as the regulator is
moved~indeed, in lattice studies of QCD the unrenormaliz
coupling goes to zero as the lattice spacing is taken to z
see Section 9.2 of Ref.@18#!. Hence Eqs.~5! and ~6!, al-
though valid, loose their utility.

Nevertheless, it is possible to write down an equivale
expression in terms of the dimensionless renormalized c
pling aR(m2). We may use the relationship betwee
aR(m2), a andn in order to eliminate the scalen. Further-
more, as inD dimensions the dependence on the renorm
ized coupling enters through the dimensionful couplingaD

R

[aRm2e, the appropriate equation for the unrenormaliz
massM (0) becomes

M ~0!5m„aR~m2!…1/2eM̃ ~0,e!. ~10!

In addition, should the theory under consideration hav
non-zero critical coupling~as has been observed in som
Dyson-Schwinger calculations of full QED, with a sma
number of fermion flavorsNf ; see Ref.@4#!, then Eq.~6! and
the subsequent discussion remains applicable as long a
coupling a is replaced by the renormalized couplin
aR(m2). In particular, it would be possible to explore th
dependence of the critical coupling onNf by investigating
the smalle behavior of the relevantM̃ (0,e). On the other
hand, if the four-dimensional theory breaks chiral symme
for all couplings~e.g. QCD! only Eq. ~5! remains valid and
there is no essential difference betweenD54 andD,4. In
this case the limite˜0 could be smooth.

III. THE RAINBOW APPROXIMATION

Let us now consider an explicit vertex. To begin with, w
consider the rainbow approximation to the Euclidean m
function of quenched QED with zero bare mass in Land
gauge. It is given by

M ~p2!5~ene!2~322e!E dDk

~2p!D

M ~k2!

k21M2~k2!

1

~p2k!2
.

~11!

Note that the Dirac part of the self-energy is equal to zero
the Landau gauge in rainbow approximation even inD,4
dimensions and hence thatZ(p2)51 for all p2.

It is of course possible to find the solution to Eq.~11!
numerically—indeed we shall do so—however it is far mo
instructive to first try to make some reasonable approxim
tions in order to be able to analyze it analytically. First,
the angular integrals involved inD-dimensional integration
are standard~see, for example, Refs.@7# and @17#! we may
reduce Eq.~11! to a one-dimensional integral, namely
7-3
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M ~p2!5an2eceE
0

` dk2~k2!12eM ~k2!

k21M2~k2!

3F 1

p2 FS 1,e;22e;
k2

p2D u~p22k2!

1
1

k2 FS 1,e;22e;
p2

k2D u~k22p2!G , ~12!

where

ce5
322e

~4p!12eG~22e!
S c05

3

4p D . ~13!

Note that forD54 the mass function in Eq.~12! reduces to
the standard one in QED4.

In DÞ4 dimensions the hypergeometric functions in E
~12! preclude a solution in closed form. However, note th
these hypergeometric functions have a power expansione
so that for smalle one is not likely to go too far wrong by
just replacing these by theire50 ~i.e. D54) limit. After all,
the reason for choosing dimensional regularization in
first place is in order to regulate the integral, and this
achieved by the factor ofk22e, not the hypergeometric func
tions. In addition, this approximation also corresponds to
replacing the hypergeometric functions by their IR and U
limits, so that one might expect that even for largere that the
approximation is not too bad in these regions.3

Making this replacement, i.e.

M ~p2!5an2eceF 1

p2E
0

p2 dk2~k2!12eM ~k2!

k21M2~k2!

1E
p2

` dk2~k2!2eM ~k2!

k21M2~k2!
G , ~14!

allows us to convert Eq.~12! into a differential equation,
namely

@p4M 8~p2!#81an2ece

~p2!12e

p21M2~p2!
M ~p2!50, ~15!

with the boundary conditions

p4M 8~p2!up25050, @p2M ~p2!#8up25`50. ~16!

Unfortunately, the differential equation~15! still has no so-
lutions in terms of known special functions. Since the m
function in the denominator of Eq.~14! serves primarily as
an infrared regulator we shall make one last approxima
and replace it by an infrared cut-off for the integral, whi

3It is however possible to show that a linearized version of E
~11! always has symmetry breaking solutions even without mak
this approximation of the angular integrals. We indicate how t
may be done in Appendix A.
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can be taken as a fixed value ofM2(k2) in the infrared re-
gion ~for convenience we shall call this value the ‘‘dynam
cal mass’’ m). This simplifies the problem sufficiently to
allow the derivation of an analytical solution.

In terms of the dimensionless variablesx5p2/n2, y
5k2/n2 anda5m2/n2 the linearized equation becomes

M ~x!5aceF1

xEa

x dyy12eM ~y!

y
1E

x

` dyy2eM ~y!

y G ;
~17!

for simplicity, we do not explicitly differentiate betwee
M (x) andM (p2). This may be written in differential form as

@x2M 8~x!#81acex
2eM ~x!50, ~18!

with the boundary conditions

M 8~x!ux5a50, @xM~x!#8ux5`50. ~19!

This differential equation has solutions in terms of Bes
functions

M ~x!5x21/2FC1JlS A4ace

exe/2 D 1C2J2lS A4ace

exe/2 D G ,

~20!

where we have definedl51/e in order to avoid cumbersom
indices on the Bessel functions. The ultraviolet bound
condition Eq.~19! givesC250 while the infrared boundary
condition leads to

C1FJlS A4ace

exe/2 D 1
A4ace

xe/2
Jl8S A4ace

exe/2 D G
x5a

50. ~21!

This equation may be simplified using the relation amo
Bessel functions

zJl8~z!1lJl~z!5zJl21~z!, ~22!

and becomes

C1FA4ace

exe/2
Jl21S A4ace

exe/2 D G
x5a

50. ~23!

Clearly this equation is satisfied byC150, which corre-
sponds to the trivial chirally symmetric solutionM (x)50.
However, for values ofa which are such that the argument
the Bessel function in Eq.~23! corresponds to one of its
zeroes, the equation is also satisfied forC1Þ0, i.e. for these
values ofa there exist solutions with dynamically broke
chiral symmetry. If we definej l21,15A4ace/eae/2 to be the
smallest positive zero of Eq.~23!, the dynamical mass fo
this solution becomes

m5na1/25na1/2eS A4ce

e j l21,1
D 1/e

. ~24!

.
g
s

7-4
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Note that for this solution the normalizationC1 is not fixed
by Eq. ~17! as this equation is linear inM (x). Later on we
shall fix C1 by demanding thatM (a)5m, however there is
no compelling reason to do this and one might alternativ
fix the normalization in such a way as to approximate
true ~numerical! solutions of Eq.~11! as well as possible
Finally, note that, as expected, a dynamical symmetry bre
ing solution exists for any value of the coupling and that
expression for the dynamical mass is in agreement with
general form expected from dimensional considerations@i.e.
Eq. ~5!#.

In order to extractac , we need to look at the behavior o
m ase goes to zero~i.e. l˜`). This may be done by noting
that the positive roots of the Bessel functionJl have the
following asymptotic behavior~see, for example, Eq. 9.5.2
in Ref. @19#!:

j l,s;lz~z!1 (
k51

`
f k~z!

l2k21
, z5l22/3as , ~25!

whereas is thesth negative zero of Airy function Ai(z), and
z(z) is determined@z(z).1# from the equation

2

3
~2z!3/25Az2212arccos

1

z
. ~26!

For largel the variablez is small and so it is valid to expan
z around 1. Writingz511d we obtain

arccos
1

11d
;A2d2

5A2

12
d 3/2, ~27!

and sod.2z/21/3 yielding, to leading order,

z512
a1

21/3l2/3
. ~28!

If we define

g52
a1

21/3
;1.855757 ~29!

then the leading terms in the expansion ofj l21,1 are

j l21,1;l1gl1/3211O~l21/3!. ~30!

Also, the coefficientce appearing in Eq.~24! may be ex-
panded

ce ;
e˜0

3
4p

~11de!, d5 ln~4p!1
1
3

1c~1! ~31!

so that for smalle the dynamical mass becomes

m;na1/2e
F 3

p
~11de!G1/2e

~11ge2/32e!1/e
;nS a

p/3D 1/2e

e11d/22ge21/3
.

~32!
06500
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Note that the behavior of the first term~for e going to zero!
dominates over the exponential function, as required in
~7!. Hence the critical coupling in four dimensions is give
by p/3, as expected from cut-off based work@2,3#.

Returning now to the mass function itself, we may subs
tute the expression for the dynamical mass, i.e., Eq.~24!,
together with our choice of normalization condition

M ~p25m2!5m, ~33!

into Eq. ~11! in order to eliminateC1. One obtains

M ~p!5
m2

upu

JlF j l21,1•S m

upu D
eG

Jl@ j l21,1#
. ~34!

Note that the explicit dependence onn ~and hencea) has
been completely replaced bym in this expression.

So far we have takena independent of the regularization
As we have seen this leads to a dynamically generated m
which becomes infinite as the regulator is removed. Fom
et al. @2# examined~within cut-off regularized QED! a dif-
ferent limit, namely one where the massm is kept constant
while the cut-off is removed. In our case this limit neces
tates that the couplinga is dependent one through

a.
p

3
~112ge2/3! ~35!

@see Eq.~32!; note thatac is approached from above#. The
limit may be taken analytically in Eq.~34! by making use of
the known asymptotic behavior of the Bessel functions~see
Eq. 9.3.23 of Ref.@19#!, i.e.

Jl~l1l1/3z!;S 2

l D 1/3

Ai ~221/3z!, ~36!

as well as the asymptotic expansion ofj l21,1 in Eq. ~30!.
One obtains

M ~p!5
m2

p S ln
p

m
11D , ~37!

which agrees with the result in Ref.@2#.
To conclude this section, we analyze the validity of t

approximations made by solving Eq.~11! numerically and
comparing it to the Bessel function solution in Eq.~34!. In
Fig. 2a we have plotted the mass function~divided byn) as
a function of the dimensionless momentumx for a moder-
ately large coupling (a50.6) ande50.03. The solid curve
corresponds to the exact numerical result@Eq. ~11!# while the
dashed line is a plot of Eq.~34! for these parameters. As ca
be seen, the approximation is not too bad and could actu
be made significantly better by adopting a different norm
ization condition to that in Eq.~33!. However, no further
insight is gained by doing this and we shall not pursue
further.

One might naively think that most of the difference b
tween the Bessel function and the exact numerical solu
comes from the linearization of Eq.~11!—i.e., the approxi-
7-5
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mation made by going from Eq.~14! to Eq.~17!, as the only
approximation made prior to this is to replace the hyperg
metric functions by unity, which is expected to be good
order e ~i.e. in this case, 3%!. This turns out to be not the
case; the dotted curve in Fig. 2a corresponds to the~numeri-
cal! solution of Eq.~14!. Not only is the difference to the
true solution essentially an order of magnitude larger th
expected~about 30%—note that Fig. 2a is a log-log plot!, it
is actually of opposite sign to the equivalent difference
the Bessel function. In other words, the validity of the tw
approximations is roughly of the same order of magnitu
and they tend to compensate.

Why are the quantitative differences rather larger th
expected? On the level of the integrands the approximat
are actually quite good. In Fig. 2b we show the integrands
Eqs. ~11!, ~17! and Eq.~14! for a value ofx in the infrared
(x'7.1310211). Clearly the replacement of the hyperge
metric functions by unity is indeed an excellent approxim
tion, as is the linearization performed in Eq.~17! ~except in
the infrared, as expected. Note that when estimating the
tribution to the integral from differenty one should take into
account that the x-axis in Fig. 2b is logarithmic!. The real
source of the ‘‘relatively large’’ differences observed for t
integrals in Fig. 2a is the fact that these are integral equat
for the functionM (x)—small differences in the integrand
do not necessarily guarantee small differences inM (x). To
illustrate this point, consider a hypothetical ‘‘approxim
tion’’ to Eq. ~17! in which we just scale the integrands by
constant factor 11e and ask the question how much th
affects the solutionM (x). For x50 the answer is rathe
simple: the hypothetical approximation just corresponds t
rescaling ofa by 11e and asM (0) scales likea1/2e we find
that the solution has increased by a factor (11e)1/2e. In

FIG. 2. The mass function for rainbow QED fora50.6 ande
50.03 as a function ofx[p2/n2. The dynamical mass is specifie
by m/n52.2431026, wheren is the scale introduced by dimen
sional regularization. The solid line corresponds to the exact
merical solution of Eq.~11!, the dashed line is the Bessel functio
of Eq. ~34! and the dotted line is the solution of the Dyso
Schwinger equation with the hypergeometric function replaced
unity @Eq. ~14!#. In ~a! the actual mass function is shown, while
~b! we show the integrand at a particular value ofx.
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other words, even in the limite˜0 there remains a remnan
of the ‘‘approximation,’’ namely a rescaling ofM (0) by a
factor e1/2'1.6!

IV. THE CURTIS-PENNINGTON VERTEX

We shall now leave the rainbow approximation and tu
to the CP vertex. The expressions for the scalar and D
self-energies for this vertex, using dimensional regularizat
and in an arbitrary gauge, have already been given in R
@7#. Before we discuss chiral symmetry breaking for this v
tex we shall first examine the chirally symmetric phase. W
remind the reader that in this phase in four dimensions
wave function renormalization has a very simple form f
this vertex@20#, namely

Z~x,m2!uM (x)505S x

m2D ja/4p

, ~38!

where the renormalized Dirac propagator is given by

S~p!5
Z~x,m2!

p”
. ~39!

Herej is the gauge parameter andm2 is the~dimensionless!
renormalization scale. This power behavior ofZ(x) is in fact
demanded by multiplicative renormalizability@21# as well as
gauge covariance@14#. We shall derive the form of this self
energy inD,4 dimensions, which will provide a very usefu
check on the numerical results even ifM (x)Þ0 as long as
x@@M (x)/n#2.

A. Z„p2
… in the chirally symmetric phase

In the chirally symmetric phase, the unrenormalizedZ(x)
corresponding to the CP vertex inD dimensions is given by

Z~x!511
a

4p

~4p!e

G~22e!
jE

0

`

dy
y2e

x2y
Z~y!

3F ~12e!X12I 1
DS y

xD C1 y

y1x
I 1

DS y

xD G . ~40!

This equation may be obtained from Eq.~A6! of Ref. @7# by
settingb(y) equal to zero in that equation and by using E
~A8! of the same reference in order to eliminate the ter
with coefficienta2(y). The angular integralI 1(w) is defined
to be

I 1
D~w!5~11w!2F1~1,e;22e;w!, 0<w<1 ~41!

I 1
D~w!5I 1

D~w21!, w>1. ~42!

In four dimensions the solution to Eq.~40! is given by a
Z(x) having a simple power behavior while forD,4 this is
clearly no longer the case. Nevertheless, it is possible
derive an integral representation of the solution of Eq.~40!
by making use of the gauge covariance of this equation.
do so in Appendix B, with the result

-

y
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Z~x!5xe/2212eG~22e!E
0

`

du ue21e2ru2e
J22e~Axu!,

~43!

wherer is defined in Eq.~B4!. Although this result is exact i
is somewhat cumbersome to evaluate numerically beca
for e˜0, the oscillations in the integrand become incre
ingly important. For this reason we shall approximate
integrand in Eq.~40! by its IR and UV limits, as we did for
the rainbow approximation~as before, this approximation i
good to ordere). Using

I 1
D~w!511

2

22e
w1O@w2# ~44!

this approximation yields

Z~x!511
a

4p

~4p!e

G~22e!
jF e

22eE0

x

dy
y12e

x2
Z~y!

2E
x

`

dy y2e21Z~y!G . ~45!

This may be converted to the differential equation

Z9~x!1
3

x
Z8~x!5

c̃

x11e FZ8~x!12
12e

x
Z~x!G ~46!

wherec̃ is defined to be

c̃5
a

2p

~4p!e

G~32e!
j ~47!

and the appropriate boundary conditions are

x22eZ~x!ux5050, Z~x!ux5`51. ~48!

@The IR boundary condition arises from the requirement t
the integral in Eq.~45! needs to converge at its lower limit#
In order to solve Eq.~46!, it is convenient to change vari
ables to

z5
c̃

22e
x2e, ~49!

and to define

a5
2

e
21 ~50!

so that the differential equation becomes

zZ92a~12z!Z82a~a21!Z50, ~51!

while the boundary conditions now are

z2aZuz5`50, Zuz5051. ~52!

This equation is essentially Kummer’s equation~see Eq.
13.1.1 of Ref.@19#; we use the notation of that reference
06500
se,
-

e

t

the following!. Its general solution may be expressed
terms of confluent hypergeometric functions, i.e.

Z5za11e2az@C̃1M ~a,a12;az!1C̃2U~a,a12;az!#

5e2az$C1@g~a11,2az!1azg~a,2az!#1C2@11z#%.

~53!

The UV boundary condition is fulfilled ifC251 while C1 is
not fixed by the boundary conditions. Although Eq.~45! is
solved by Eq.~53! for arbitraryC1 we shall concentrate on
the solution withC150. The reason for this is that the solu
tion to the unapproximated integral@Eq. ~43!# vanishes atx
50 ~see Appendix B! while the term multiplyingC1 in Eq.
~53! diverges likex2e22 and is therefore unlikely to provide
a good approximation to Eq.~40!. Hence we obtain

Z~x!5F11
c̃

22e
x2eGexpS 2

c̃

e
x2eD . ~54!

Finally, the renormalized functionZ(x,m2) may be obtained
from this by demanding thatZ(m2,m2)51 so that the renor-
malized wave function renormalization becomes

Z~x,m2!5

11
c̃

22e
x2e

11
c̃

22e
m22e

expS 2
c̃

e
x2eD

expS 2
c̃

e
m22eD . ~55!

Only in the limit D˜4 does this reduce to the usual pow
behaved function found in cut-off based work@Eq. ~38!#
while for D,4 it vanishes non-analytically atx50. On the
other hand, note that the solution to Eq.~40!—for finite
e—only goes to zero linearly inx. For the purpose of this
paper this difference in the analytic behavior in the infrar
does not concern us as for solutions which break chiral s
metry the infrared region is regulated byM2(x) so that we
do not expect the chirally symmetricZ to be a good approxi-
mation in this region in any case.

B. Chiral symmetric breaking for the CP vertex

We shall now examine dynamical chiral symmetry brea
ing for theCP vertex in the absence of any explicit symm
try breaking by a nonzero bare mass, as before. Even
solutions exhibiting dynamical symmetry breaking, it is to
expected that the analytic result derived forZ(x)uM (x)50 @Eq.
~55!# remains valid as long asx is large compared to
(M (x)/n)2 ande is sufficiently small. That this is indeed th
case is illustrated in Fig. 3, where we show a typical exam
of Z21(x) for a solution which breaks chiral symmetry. I
this figure, as well as in the rest of this section, we shall
dealing with the renormalizedZ(x) andM (x) instead of the
unrenormalized quantities in the previous sections. T
makes no essential difference to the physics of chiral sy
metry breaking, although it of course effects the absol
scale ofZ(x). For a discussion of the renormalization of th
dimensionally regularized theory we refer the reader to R
@7#.
7-7
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The comparison to the analytic result in Fig. 3 provide
very convenient check on the numerics. Another check
provided by plotting the logarithm ofM (0) against the loga-
rithm of the coupling. According to Eq.~5! this should be a
straight line with gradient 1/2e. As can be seen in Fig. 4 no
only does one observe chiral symmetry breaking down
couplings as small asa50.15, the expected linear behavi
is confirmed to quite high precision.

Although the numerics inD,4 dimensions are clearly
under control, the extraction of the critical coupling~appro-
priate in four dimensions! has proven to be numerically quit
difficult. From the discussion in Secs. II and III, we antic
pate that the logarithm of the dynamical mass has the gen
form

lnS M ~0!

n D5
1

2e
lnS a

ac
D1 ln„M̄ ~0,e!… ~56!

FIG. 3. A typical~inverse! wave function renormalization func
tion Z21(x,m2) corresponding to a chiral symmetry breaking so
tion. Note that the mass functionM (x) is of the same order a
Z21(x,m2) itself. Nevertheless, the analytical chirally symmet
solution of Sec. IV A~thin line! provides an excellent approxima
tion ~better than one part in a thousand forx.m2) for x.M (x).

FIG. 4. The logarithm of the dynamical mass as a function
ln(a) for e50.025~i.e. 1/2e520). The gauge parameter is fixed
j50.25 and the renormalization point ism25108. The open
squares are the numerical values while the solid line is a linear fi
these points. Note that the dependence on the coupling expect
Eq. ~5! is reproduced to high precision.
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where the last term is subleading as compared to the firs
e tends to zero. For sufficiently smalle, therefore,ac is
related to the gradient of ln„M (0)… plotted againste21.

In Fig. 5 we attempt to extractac in this way. The loga-
rithm of M (0) was evaluated fore ranging from 0.03 down
to e50.015 for a fixed gaugej50.25. The squares corre
sponds to a coupling constanta51.2, although some of the
points at lowere have actually been calculated at smallera
and then rescaled according to Eq.~5!. At present we are
unable, for these parameters, to decreasee significantly fur-
ther without a significant loss of numerical precision.~We
also note in passing that it is quite difficult numerically
move away from small values of the gauge parameterj
520, which, judging from Fig. 1, would not require a ve
high numerical accuracy forac , is unfortunately not an op-
tion.!

The two fits shown in Fig. 5 correspond to two differe
assumptions for the functional form ofM̄ (0,e), which is a
priori unknown. The curves do indeed appear to be w
approximated by a straight line, however we caution
reader that this does not allow an accurate determinatio
ac as the gradient is essentially determined by the ‘‘trivia
dependence on log(a) ~more on this below!. The solid line
corresponds to the assumption that the leading term
M̄ (0,e) has the same form as what we found in the rainb
approximation, i.e.

lnS M ~0!

n D5
1

2e
lnS a

ac
D1c1S 1

2e D 1/3

. ~57!

With this form the fit parametersac andc1 are found to be

ac50.966, c1521.15. ~58!

Indeed, the critical coupling is similar to what is found
cut-off based work~see Sec. II; in Ref.@15# the value was
0.9208 forj50.25). At present it is difficult to make a mor
precise statement, let alone differentiate between the
curves plotted in Fig. 1, asac is quite strongly dependent o

f

to
in

FIG. 5. The logarithm of the dynamical mass as a function
1/2e for a coupling ofa51.20. All other parameters are as in Fi
4. The open squares are the numerical values while the two line
fits ~see main text!.
7-8
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the functional form assumed in Eq.~57!. In fact, allowing an
extra constant term on the right hand side of Eq.~57! reduces
the critical coupling to 0.920 and the addition of yet a furth
term proportional toe1/3 increases it again to 0.931. As the
numbers appear to converge to something of the orde
0.92 or 0.93 one might think thatac has been determined t
this precision. However, it is not clear that the function
form suggested by the rainbow approximation should
taken quite this seriously. The dashed line in Fig. 5 cor
sponds to a fit where the power ofe of the subleading term
has been left free, i.e.

lnS M ~0!

n D5
1

2e
lnS a

ac
D1c1S 1

2e D c2

. ~59!

The optimum fit assuming this form for ln„M (0)… yields a
power quite different to1

3 and a very much smallerac :

ac50.825, c1520.801, c250.688. ~60!

To conclude this section, let us discuss why it is that
functional form of the subleading termM̄ (0,e) appears to be
rather important even ife is already rather small. The reaso
for this is two-fold: most importantly, although the leadinge
dependence of ln„M (0)… is indeede21, the coefficient of this
term ~leaving out the triviala dependence! is ln(ac). As ac
is rather close to 1 one therefore obtains a strong suppres
of this leading term, increasing the relative importance of
subleading terms. In addition, it appears as if the numer
results favor a subleading term which is not as strongly s
pressed~as a function ofe) as suggested by the rainbo
approximation~i.e. the power ofe21 of the subleading term
appears to be closer to23 rather than1

3 ). This again increase
the importance of the subleading terms.

V. CONCLUSIONS AND OUTLOOK

The primary purpose of this paper was to explore
phenomenon of dynamical chiral symmetry breaking throu
the use of Dyson-Schwinger equations with a regulariza
scheme which does not break the gauge covariance of
theory, namely dimensional regularization. It is necessar
do this as the cut-off based work leads to ambiguous res
for the critical coupling of the theory precisely because of
lack of gauge covariance in those calculations. In particu
this should be kept in mind when using the expected ga
invariance of the critical coupling as a criterion for judgin
the suitability of a particular vertex.

To begin with, we have shown on dimensional groun
alone and for an arbitrary vertex, that inD,4 dimensions
either a symmetry breaking solution does not exist at all~in
which case, however, it would also not exist inD54 dimen-
sions! or it exists for all nonzero values of the coupling~in
which case a chiral symmetry breaking solution exists inD
54 for a.ac). For Dyson-Schwinger analyses employin
the rainbow and CP vertices we have shown that it is
second of these possibilities which is realized. For th
symmetry breaking solutions the limit toD54 is necessarily
discontinuous and so the extraction of the critical coupling
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the theory~in 4 dimensions! is not as simple as in cut-of
regularized work.

We next turned to an examination of symmetry break
in the rainbow approximation in Landau gauge, both anal
cally and numerically. Indeed, for this vertex one could
write the~linearized! Dyson-Schwinger equation as a Schr¨-
dinger equation in 4 dimensions and appeal to stand
results from elementary quantum mechanics to explic
show that the theory always breaks chiral symmetry ifD
,4. We also showed how the usual critical couplingac
5p/3 may be extracted from the dimensionally regulariz
work.

We concluded this work with an examination of the C
vertex. By making use of the gauge covariance of the the
we derived an exact integral expression for the wave fu
tion renormalization functionZ(p2) of the chirally symmet-
ric solution. Furthermore we obtained a compact express
for this quantity which is an excellent approximation to t
trueZ(p2) even for solutions which break the chiral symm
try. Finally, we extracted the critical coupling correspondi
to this vertex and found that, within errors, it agrees with t
standard cut-off results.

In the future, we plan to increase the numerical precis
with which we can extract this critical coupling for the C
vertex by an order of magnitude or so. The factor limitin
the precision at present is that when solving the propagat
Dyson-Schwinger equation with the CP vertex by iterati
the rate of convergence decreases dramatically ase is de-
creased belowe'0.015. If this increase in precision can b
attained it will enable one to make a meaningful comparis
with the cut-off based results shown in Fig. 1.

In addition to the above, it would be interesting to exte
the work described in this paper to unquenched QED. Ch
symmetry breaking in this theory has been much studied
four dimensions~employing a cut-off as a regulator; for
review, and references, see Sec. 10.9 of Ref.@3#! as well as
in three dimensions~see Ref.@22# as well as Sec. 3 of Ref
@4#!. In particular, forD53 it is known that~at least in the
Nf˜` limit, with fixed aNf) the theory has both an ultra
violet fixed point atā50 and an infrared fixed point atā
;1. These fixed points will survive in 422e dimensions,
however in this case~within the same approximation! the
value of the running coupling at the infrared fixed point w
go to zero likeā;e. The issue of how chiral symmetr
breaking is manifested in dimensionally regularized u
quenched QED, without a cutoff, will then become close
connected to the possible existence of additional fixed po
in the theory when going beyond the largeNf approximation.
If there are none, full QED would be trivial and uninterestin
without the introduction~even inDÞ4 dimensions! of a new
dimensionful scale signifying the onset of physics outs
the theory.
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APPENDIX A: CHIRAL SYMMETRY BREAKING
IN RAINBOW APPROXIMATION

In this appendix we show that the linearized version
Eq. ~11!, i.e.

M ~p2!5~ene!2~322e!E dDk

~2p!D

M ~k2!

k21m2

1

~p2k!2
,

~A1!

has symmetry breaking solutions for all values of the c
pling. Our aim here is to convert this equation to
Schrödinger-like equation, which we do by introducing th
function

c~r !5E dDk

~2p!D

eikrM ~k2!

k21m2
. ~A2!

With this definition we have

~2h1m2!c~r !5E dDk

~2p!D
eikrM ~k2! ~A3!

whereh is theD-dimensional Laplacian and so

~2h1m2!c~r !5e2n2e~322e!E dDp

~2p!D
eipr

3E dDk

~2p!D

M ~k2!

k21m2

1

~p2k!2
.

~A4!

After shifting the integration variable (p˜p1k) the last
equation can be written in the form of a Schro¨dinger-like
equation

Hc~r !52m2c~r !, ~A5!

where H52h1V(r ) is the Hamiltonian,E52m2 plays
the role of an energy and the potentialV(r ) given by

V~r !52e2n2e~322e!E dDp

~2p!D

eipr

p2
52

h

r D22
,

~A6!

where

h5
G~12e!

4p22e
e2n2e~322e!. ~A7!

For D53 the coefficienth is 2na while nearD54 it is
(3/p)an2e. It is well known from any standard course o
06500
a

f

-

quantum mechanics~see, for example, Ref.@23#! that poten-
tials behaving as 1/r s at infinity, with s,2, always support
bound states~actually, an infinite number of them!. In the
present case this can be seen by considering the Schro¨dinger
equation~A5! for zero energy, i.e.E50. The s-symmetric
wave function then satisfies the equation

c91
D21

r
c81

h

r D22
c50. ~A8!

The solution finite at the originr 50 is

c~r !5const3r e21J1/e21SAh

e
r eD . ~A9!

The Bessel function in Eq.~A9! has an infinite number o
zeros, which means that there is an infinite number of sta
with E,0.

Returning now to Eq.~A5!, we can estimate the lowes
energy eigenvalue variationally by using

c~r !5Ce2kr ~A10!

as a trial wave function. HereC is related tok by demanding
that c is normalized, i.e.

uCu25
~2k!D

VDG~D !
, ~A11!

whereVD is the volume of aD-dimensional sphere. Calcu
lating the expectation value of the ‘‘Hamiltonian’’H on the
trial wave function in Eq.~A10! we find

E0~k2!5^cuHuc&5k2F12
2D22

G~D !
kD24hG . ~A12!

The minimum of the ‘‘ground state energy’’ in Eq.~A12!,
E0(k), is reached at

k42D5~D22!
2D23

G~D !
h ~A13!

„for D53 the parameterk is na while near D54 it is
n@a/(p/2)#1/2e

… and is given by the expression

~E0!var52m25k2S 12
1

D

2
21D 5k2

D24

D22
, ~A14!

where the 1 is the contribution from the kinetic energy wh
the (D/221)21 corresponds to the potential energy. ForD
.2 the potential is attractive and for 2,D,4 it is always
larger than the kinetic energy, so for this case we get
namical symmetry breaking for any value ofa. For example,
for D53, one obtainsE052k252n2a2 which coincides
precisely with the ground-state energy of the hydrogen a
~not surprisingly, as we have used the ground-state hydro
wave function as our trial function!. In this case the dynami
cal mass ism5na.
7-10
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For D near 4, on the other hand, we obtain from E
~A14! that

m.n~e!1/2S a

p/2D
1/2e

. ~A15!

This is of the general form anticipated in Sec. II, withac
5p/2. Indeed, forD54, the Schro¨dinger equation~A5! be-
comes an equation with the singular potential

V~r !52
h

r 2
, h5

a

p/3
. ~A16!

Again, it is known from standard quantum mechanics@24#
that the spectrum of bound states for such a potential
pends on the strengthh of the potential: it has an infinite
number of bound states withE,0 if h.1 and bound state
are absent ifh,1. Thus, the true critical value for the cou
pling is expected to beac5p/3 instead of theac5p/2 ob-
tained with the help of the variational method~which made
use of the exponentialAnsatzfor the wave function and thu
only gave an upper bound for the energy eigenvalue!.

APPENDIX B: CHIRALLY SYMMETRIC QED FROM THE
LANDAU-KHALATNIKOV TRANSFORMATION

Because the CP vertex in the chirally symmetric phase
QED is gauge-covariant@14# it is possible to derive an inte
gral representation of the wave function renormalizat
function Z(x) @see Eq.~40!# from the Landau-Khalatnikov
transformation@25#. This transformation relates the coord
nate space propagatorS̃j(u) in one gauge to the propagato
in a different gauge. Specifically, with covariant gauge fi
ing, we have

S̃j~u!5e4pan2e[D(0)2D(u)]S̃j50~u! ~B1!

whereD(u) is essentially the Fourier transform of the gaug
dependent part of the photon propagator, i.e.

D~u!52jE dDk

~2p!D

e2 ik•u

k4
. ~B2!

Specifically, we obtain

S̃j~u!5e2r (nu)2e
S̃j50~u! ~B3!

where

r 52
a

4p
G~2e!~p!ej. ~B4!

Substituting the coordinate-space propagator in Lan
gauge, i.e.

S̃j50~u!5E dDp

~2p!D

eip•u

p”
5

i

2pD/2
GS D

2 D u”

uD
, ~B5!
06500
.

e-

f

n

-

-

u

and carrying out the inverse Fourier transform of Eq.~B3!
one obtains the wave function renormalization function in
arbitrary gauge, namely

Z~x!52
i

2pD/2
GS D

2 D E dDueip•u
p•u

uD e2r (nu)2e

5xe/2212eG~22e!E
0

`

du ue21e2ru2e
J22e~Axu!.

~B6!

Note that for smallx this function vanishes:

Z~x!5

GS 1

e D
4e~22e!

r 2 1/ex1O~x2!. ~B7!

It may be checked explicitly that Eq.~B6! is indeed a
solution to Eq.~40! for arbitrary D by making use of the
expansion of Eq.~B6! aroundx2e50. To be more precise
consider the RHS of Eq.~40! upon insertion of the poweryd

in the place ofZ(y). Note that the integral converges only
e.d.e22. After some work the result is that the RHS
Eq. ~40! becomes

11 c̃
22e

2
xd2eF2~11d2e!

G~22e!

G~e!

3 (
n52`

`
G~e1n!

G~22e1n!

1

n2d1eG . ~B8!

For e,1 this may simplified further by applying Dougall’
formula ~Eq. 1.4.1 in@26#! which, in this case, reduces to

(
n52`

`
G~e1n!

G~22e1n!

1

n2d1e

5
p2

sin~pe!sin~p@e2d#!

1

G~12d!G~21d22e!
.

~B9!

Using this result, Eq.~B8! becomes

12 c̃
22e

2
xd2e

G~12e!G~22e!G~e2d!G~21e2d!

G~21d22e!G~12d!
.

~B10!

Note that, as opposed to the integral representation Eq.~40!,
this expression is defined ford outside the rangee.d.e
22 and so we may use it as an analytical continuation of
integral. Furthermore, note that this last expression vanis
for integer d>1 hence we cannot obtain a simple pow
expansion aroundx50 for Z(x) in this way.

On the other hand, an expansion in powers ofx2e is pos-
sible. If we seek a solution of the form
7-11
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Z~x!5 (
n50

`

cnx2ne, ~B11!

we may equate the coefficients of equal powers ofx2e after
inserting the series~B11! into both sides of Eq.~40!. This
way we obtain the recurrence relation for the coefficie
cn(c051) as

cn11

cn
5

c̃

2~n11!
G~2e!G~32e!

3
G~11en1e!G~22e2en!

G~222e2en!G~11en!
. ~B12!

This may be solved leading to

cn5F c̃

2
G~2e!G~32e!Gn

G~22e!G~11ne!

G~22e2ne!n!
, ~B13!

so that finally we obtain
t.
,

.

m

g

eg
R

s
.

D

n,

06500
s

Z~x!5G~22e! (
n50

`
G~11ne!

G~22e2ne!n!

3F c̃G~2e!G~32e!

2
x2eGn

~B14!

as the series expansion of the solution to Eq.~40!. The reader
may check that this coincides precisely with the correspo
ing expansion of the solution obtained via the Landa
Khalatnikov transformations@Eq. ~B6!#. The latter may be
obtained by changing the variable of integration fromu to
u/Ax, expanding the exponential in the integrand and m
ing use of the standard integral

E
0

`

xa21Jn~cx!dx52a21c2a

GS a1n

2 D
GS 11

n2a

2 D . ~B15!
D

n-
s,

.
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