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ABSTRACT

In order to assess nutrient and sediment pollution in the upper River Torrens catchment a
palaeoenvironmental investigation from sediments in Gumeracha Weir was undertaken.
The geochemistry of core samples from Gumeracha Weir, was compared to suspended
sediment samples taken from tributaries upstream of the weir, samples of Murray River
water and also from sites with various land use types scattered throughout the upper River

Torrens catchment.

Sediment accumulation rates in the Gumeracha Weir appear to have increased in the last
50 years. A major source of sediments in Gumeracha Weir is the River Murray, via water
being diverted into the river through the Mannum-Adelaide pipeline. A second important
source, associated with high silica sediments deposited in high energy flows, originated
from in the Torrens catchment. No single type of land use, (eg roads or pasture) could be

identified as the source of these sediments.

Through diatom analysis a history of changes in water chemistry was also established. The
results indicating that there has been a significant increase in pH from approximately pH
7.6 units in samples pre-pipeline to an average of pH 8.4 units at present. The decline in
Rhicosphenia abbrevata indicates that turbidity has also increased markedly since the

commencement of River Murray water input.

It was therefore determined that the divergence of River Murray water into the upper River

Torrens catchment has consequently added to an increase in both sediment and nutrient

concentrations of the River Torrens.
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CHAPTER 1 INTRODUCTION

1.1 Australian Rivers as Lifelines

Rivers are a critical lifeline of the Australian natural and social landscape. Many of our
most productive wetland and estuarine ecosystems are dependent on the provision of
freshwater and nutrients delivered by rivers. Many people are dependent on rivers to
supply them with water for a range of purposes including for drinking, irrigating, and
recreational activities. Our dependence however, is also the reason why many of
Australia’s rivers are now in a state of disrepair. It is for this reason that the health of

Australian rivers needs to be given high priority,

The “State of the Environment 2001” report (SOEC, 2001) indicated that the conditions of
Australian river systems are deteriorating while pressure is increasing. Two of the main
factors that have been attributed to these declining conditions are the increase of nutrients
and sediments into waterways. Cyanobacterial or “blue green algal” blooms are one of the
greatest concerns for water quality as they frequently produce toxins that are harmful to
both humans and animals and also negatively impacts upon the native aquatic flora and
fauna of river systems (SOEC, 2001). One of the main reasons for these concerns is that
the problem is so wide spread, it is suggested that all bar a very few river systems in the
Murray-Darling Basin have high enough nutrient levels to support algal blooms (SoEC,
2001). Suspended sediments which contribute nutrients to Australian streams also increase
turbidity which, on the one hand can suppress a variety of autotrophic organisms, while
competitively advantaging cyanobacteria with the ability to regulate their buoyancy

(SoEC, 2001).



1.2 The River Torrens

The River Torrens in South Australia is faces similar problems to other Australian river
systems (Schultz et al., 2000). Concerns over the health of the River Torrens due to recent
cyanobacterial blooms has lead to the realisation that the River Torrens, and the water
resource it provides, needs to be managed in a more sustainable manner. The phytplankton
growth is associated with excess fluxes of nutrients within the River Torrens, particularly

an increase in the concentration of the limiting nutrient phosphorous.

There are a number of programs currently underway for the improvement of the River
Torrens. The “Watercourse Rehabilitation program”, one of these initiatives, incorporates
on ground works across 94 km of waterways. These works include fencing the riparian
zone to exclude stock, the removal of woody weeds and exotic trees, creek bed
stabilisation, erosion remediation and revegetation using local provenance indigenous
species (Fisher et al., 1999). These initiatives have been taken on in an attempt to limit the
flux of nutrients and sediments to the river system. However, they are limited in their
success as, at present there is considerable speculation as to the source of these nutrients
and sediments. This is a concern that in management programmes such as this as, while
improvements may be gained, that key sources of the problem may be overlooked and

therefore remain unaddressed.

One potential source that is not a main focus at present is the inputs of River Murray water
into the River Torrens catchment via the Mannum to Adelaide pipeline (see for example,
Schultz et al., 2000). River Murray water has very high nutrient and fine suspended
sediment loads, which, among other things, may be causing the River Torrens to become

more turbid and eutrophic.



Through the study of sediments within the River Torrens it is believed a greater
understanding can be gained of the origin of nutrients and sediments in the river system.
Armed with this knowledge a more appropriate and successful management approach can

be taken to rectify the River’s health.

1.3 Biomonitoring

The short instrumental record and the unreliability and incomplete nature of anecdotal
evidence means that the documentation of environmental change within our catchments is
a challenging task. The recent emphasis on chemical and biological monitoring of
waterways has enabled the Commonwealth of Australia (SOEC, 2001) to assess the
national trends from 1996 to 2001. However, it is clear that much of the impact of modern
people on rivers and lakes began early in the settlement period, well before appropriate
instrumentation. As such, the SOEC’s observations only provide a brief snapshot of change
and provide little in terms of understanding natural condition or variability. One approach
that can remedy the pioneer community’s lack of foresight and facilities is palaeoecology.
Contained in sediment sequences are ‘fossils’ of the chemical and biological indicators
widely used in modern monitoring protocols. The integration of the modern and fossil lines
of evidence offers a unique capacity to understand change and the true impact of our

activities on natural river systems.

1.4 Aims and Objectives

This study will examine a sediment sequence from the uppermost reservoir in the River

Torrens, Gumeracha Weir. This contains sediment that has accumulated before and after



the commencement of the operation of the Mannum-Adelaide pipeline (1954) and should
therefore reveal changes to the Rivers condition as a result of River Murray water input.
The establishment of a chronology for a core extracted from Gumeracha Weir will provide
a time line within the sediments to enable them to be correlated with recorded events in the

River Torrens system.

This palaeolimnological approach will provide a history of the water quality in Gumeracha
Weir, through the use of palaco-indicators, fossil diatoms. Geochemical analysis of the
core sediments and those collected within the catchment and from the River Murray, will
enable the principal source of the sediments that have accumulated in the weir to be

identified.

So, the aims of the project are:

1. to identify the main sources of nutrients and sediments entering the River Torrens

2. to reveal changes in the sediment and nutrient load in the upper River Torrens catchment
through time

3. fo determine the extent to which nutrients and sediments are impacting upon the health

of the river system.



CHAPTER 2 LITERATURE REVIEW

2.1 Aquatic Ecosystem Health

2.1.1 Changes in Aquatic Ecosystems

Aquatic ecosystems are complex and susceptible to change. They are a combination of the
interactions between the biota living within them and the physical nature of the aquatic
environment, which itself is influenced by the catchment (Boulton and Brock, 1999).
Changes in one or more of the characteristics that make up an ecosystem can alter the types
of organisms that live within it. These changes range from human-induced alterations in
water quality, water flow, sediment and nutrient inputs to natural climatic change. Direct
anthropogenic impacts include, for example, the removal of aquatic plants or riparian
vegetation. However indirect changes are just as, if not more, capable of impacting upon
aquatic ecosystems (Boulton and Brock, 1999). These changes range from land clearance
or changes in land use practices, including the removal of vegetation within the catchment,
to changes in river flow and the input of nutrients and sediments, through to the import and
export of water to or from the catchment. These modifications can be classified as
disturbances. The magnitude of disturbance, and the resilience of the system to

disturbance, will influence the degree to which aquatic ecosystems are affected.

2.1.2 Riverine ecosystems

Riverine ecosystems can be classified on the basis of photosynthesis: respiration ratios.
Heterotrophic systems exist when respiration is greater than photosynthesis, normally due
to the system being limited in either nutrients or light. A stream is classified as autotrophic
rather than heterotrophic if photosynthesis exceeds respiration. For this to occur there must

be adequate light and nutrients in the river ecosystem. The availability of light is often



influenced by climate, riparian vegetation and turbidity. Nutrients or energy come from an
array of different sources, both natural and anthropogenic. Natural sources include
allochthonous, chemical energy produced outside the stream from organic matter, or
autochthonous, for example, internal, stream or lake photosynthesis by water plants and
algae (Boulton and Brock, 1999). Nutrients can also enter the aquatic ecosystem through
other means, these are discussed in more detail below. If the net input of nutrients exceeds
the rate to which they are lost, either through deposition, consumption or outflow, then
they increase. Ongoing increases in nutrient loads can generate responses within the
system, which impact negatively on the system’s health (e.g. excessive growth of attached

plants and algae, cyanobacterial blooms).

2.2 Processes that degrade Wetland Health

2.2.1 Nutrient Enrichment

There are two main ways excess nutrients can enter a river system, either from ‘diffuse
sources’, or from ‘direct’ or ‘point’ sources. The former is where nutrients enter the system
either through runoff, infiltration processes or subsurface flow (Boulton and Brock, 1999).
The latter, ‘point source’, is an influx of nutrients coming from specific locations, such as
nutrient-rich tributaries, sewage treatment plants, drains or water that has been diverted
from another source. One example of this is the Mannum-Adelaide pipeline which diverts
nutrient enriched water from the River Murray into the upper reaches of the River Torrens
(Davies et al., 1992). A second example is that of the releases from the Bird-in-Hand
sewage treatment plant, which are responsible for very high concentrations of nitrate and

phosphate in Dawesley Creek, South Australia (Markich and Jefree, 2002).



enormous costly to control. In recent times, there has been an increasing recognition that
“native” phosphorus in eroded from gullies and stream banks can be the dominant nutrient
source in Australian catchments (Wallbrink et al., 2003; Wallbrink, 2004). In many case,
resultant “solutions” revolve around treating symptoms (such as copper sulphate dosing of

cyanobacterial blooms) rather than the problem’s source.

Two approaches have been suggested for the control of the symptom of algal blooms
arising from the eutrophication of reservoirs. The “bottom-up” theory suggests that by
controlling nutrient levels, such as phosphorous which can cause water bodies to become
eutrophic, the health and equilibrium of aquatic ecosystems can be maintained (OECD,
1986). The difficulties in identifying the sources of nutrients have lead to an increased
focus on “top down control” (Matveev, 1998, Matveev and Matveeva, 1997, Matveev et
al., 1994). . This is a form of biomanipulation based on the premise that reductions in
phytoplankton can be achieved through increase in zooplankton population biomass.
Zooplankton, in turn, can be controlled by planktivorous fish who themselves are
controlled by changes in the population of predatory fish. Hence, if there are large
populations of zooplanktivorous fish, the extent to which zooplankton can control
phytoplankton growth, is limited. As a result cyanobacterial outbreaks may occur. The top-
down approach observes that if abundances in piscivorous fish are augmented, then, this
will control the population size of zooplankton eating fish, which will inturn allow
zooplankton numbers to increase, increasing control on phytoplankton biomass (Matveev,
1998, Matveev and Matveeva, 1997, Matveev et al., 1994). This idea, while theoretically
simple, has enormous practically complexity (e.g. success of fish recruitment in often

degraded habitats) and is largely unsubstantiated in Australian systems (Harris, 1999).



2.2.2 Sediment and Turbidity

In simple terms, rivers move sediment from upland and deposit them downriver. Three
types of sediment loads that are transported along a river. These are dissolved load,
suspended load and bedload, each of which is influenced by energy flows, gradients and
diversions along the river. Dissolved loads refer to particles that have been dissolved into
the water stream and are primarily derived from chemical weathering of rocks within
catchment areas. Bedloads are larger particles, sand and gravel and sometimes even rocks
or boulders. These particles are carried along the stream’s riverbed to a point where the
energy flow has decreased to such an extent that these particles can no longer be shifted
(Goudie, 2001). The volume of deposited materials, alluvium, is generally greater lower
sections of the river (Young, 2001). Much of the coarser material is deposited in the upper
or middle reaches of a stream. Lower sections of river systems usually carry smaller
particles in the sediment load as these are more easily transported along gentle

slopes(Goudie, 2001).

Turbidity influences the dynamics of a river system in numerous ways. It is mostly brought
about by an increase in the suspended sediment load of a water body. High turbidity
increases surface water temperature as the sediment traps the solar energy. This however
reduces the water temperature at depth as particles stop light from penetrating through the
water column. High turbidity limits instream photosynthesis to the upper few centimetres
in many rivers therefore confining autotrophic productivity to a shallow photic
zone(Boulton and Brock, 1999). Turbidity also makes it difficult for organisms on, or near,
the riverbed to survive as interstices in the river gravel are filled. Primary production of
micro-organisms is limited by the levels of light in the water as is the successful
germination of some aquatic plants (Young, 2001). Aquatic plants may also be buried or

smothered by sediment and high fluxes of sediment also makes it difficult for periphyton to
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grow as they can be physically removed or smothered by suspended sediment (Boulton and

Brock, 1999).

A significant proportion of phosphorus transported in Australian waterways is attached to
soil or organic particles (Dyer et al.,1996). As such, sediments are a major source of
nutrients in lowland rivers. Anoxia at the sediment—water interface can release phosphate
from the sediment-bound internal load (Boulton and Brock, 1999). Additionally, benthic
algae can access nutrients in the sediments and make them bioavailable (Biggs, 1996). So,
an increase in the release of sediments into the river can act as an increase in the

bioavailable nutrient load.

2.2.3 Reservoirs and Sedimentation

In order to manage water resources on a continent with extremely high rainfall-runoff
variability (Finlayson and McMahon, 1988), Australia stores more water per capita than
any other nation (McLennan, 1996). As the conditions of rivers change, so dQes that of
reservoirs. Weirs, dams and reservoirs trap sediment flowing in from rivers, rather than
letting the sediment flow down the river system naturally, therefore sediment accumulation
rates can become high in reservoirs (Caitcheon et al., 1995), in contrast to natural lakes
(Clark and Wasson, 1986a). The high volumes of sediment trapped decreases the water
holding capacity of the reservoir or dam. This can result in the need for dredging to remove
excess sediment that has accumulated, as has been the case on numerous occasions for

sections along the River Torrens in South Australia.

It has been acknowledged that in South Eastern Australia, the filling of reservoirs is not

generally a problem (Davis, 1996). In arid and semi- arid catchments, however sediment
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accumulation due to erosion has resulted in decommissioning of key systems (Clark and
Wasson, 1986b). Research conducted on the Eildon Reservoir in Victoria, demonstrated
that large scale events can contribute to sediment accumulation, and are often the cause of
bulk sedimentation in standing waters. Half the storage capacity lost within some Victorian

reservoirs was a consequence of one major event, the 1939 fires (Davis, 1996).

High sediment accumulation, at its most extreme, is also believed to impact upon the
quality of water in reservoirs, as it brings a greater influx of nutrients into the system. The
shallowing of a standing body of water due to sediment accumulation, brings the bottom
closer to the epilimnion. Consequently, nutrients that are released from the sediment enters
this zone, causing eutrophication. This process is referred to as ontogeny and can lead to
problems associated to eutrophication (Larson, 1996). This is especially so, because,
epilimnetic zones are generally characterised by higher temperatures and greater intensities
of light (Boulton and Brock, 1999), which inturn encourages photosynthesis and

reproduction.

The sediments trapped in impoundments also have attached nutrients, particularly
phosphorous. This can lock away the attached nutrients, however, if a mechanism exists, it
can act as a store from which nutrients can be periodically re-released into the water
column. This, sometimes substantial, internal load can provide an ongoing source of
phosphate to drive the ecology of a reservoir for many years (Caitcheon ef al., 1995). As
such, eutrophication can also occur from nutrients being released into the water body of a

river system through these internal processes.
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2.2.4 Determining Sediment Sources

Aquatic sediments have many sources but are greatly influenced by the geology and
topography of the system catchment (Williams, 1983). Other sources contributing to
sediment changes in river systems include diversion of water from different sources and

the farming and soil management practices of people using land in the catchment.

In many rivers channel bank erosion is the major cause of sediment inflows into the river
system (Caitcheon et al., 1995). A South Australian example is that of the River Torrens
where riverbanks are extremely unstable in the upper reaches. It has especially been noted
in the Kersbrook, Miller and Hannaford creek sub-catchments and along the River between
Mount Pleasant and Gumeracha Weir (Burston et al., 1997). In the upper reaches of this
area, it has been estimated, through 137¢s and 2'°Pb ratios, that subsoil contributes up to

82% of sediment that accumulates in weirs (Gell et al., 1999).

Sediment sourcing techniques can be used to identify the province of sediment that has
accumulated in a reservoir. Three examples are, the use of measuring radioactive elements
otherwise known as “fallout tracing”, “mineral magnetics” which measures the mineral
magnetic properties of sediment grains (Wallbrink and Fogarty, 1998) and the third,
“major element tracing” measures the geochemistry of major elements found within the
sediment (Dyer et al. 1996). These techniques are used for research in many disciplines,
but traditionally by geologists and geomorphologists. Fallout tracing, which measures the
concentrations of fallout '*’Cs and ?'°Pb, is best suited to measuring the depth of erosion,
rather than the special origin of the sediment. This technique was used to determine the
sources and transit times of suspended sediment in the Murrumbidgee River in New South

Wales (Wallbrink et al., 1998). Analyses were conducted on sediment samples from three

sediment sources, uncultivated lands, cultivated lands and subsoil material from channels
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and gullies. The results of these samples were then compared to suspended sediment
samples taken from the main river channel. The researchers were able to determine, among
other things, that channel banks and gully walls contribute >80% of the suspended

sediment load in the river (Wallbrink et al., 1998).

The other two techniques are used to trace the original location of deposited sediments. For
example, suspended sediment flowing into the main river channel from major sub-
catchments tributaries upstream can be compared to sediment that has been obtained from
within the main stream itself, and then for example, to that trapped in weirs. From results
obtained, such as geochemical similarities between the sediment accumulated in the weir
and those of the main channels, it is possible to establish which tributaries or sources are
contributing the greatest volumes of sediment to the weir. This has great implications for
management as, having the ability to identify the principle sediment sources, management
can be targeted so that the greatest benefit accrues from management efforts (Gell et al.,

1999).

2.3 Monitoring ecological change

2.3.1 Bio-indicators

There is an increasing emphasis on the use of biological indicators to assess ecosystem
health. These are used as direct measures of ecological health (e.g. biodiversity) or,
because they are present in the environment for periods ranging from weeks to years as
integrators of changes to water quality over long time periods (Reid et al., 1995). There are
a range of different types of biota that can be studied to asses water quality and chemistry.

These include fish, macroinvertibrates, algae and microbes (Norris and Norris, 1995).
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Biological indicators such as diatoms, are very good indicators as they are sensitive to
environmental change and therefore assemblage changes in diatom taxa can signify small
changes to the aquatic environment. With the development of diatom indices, it is possible
to establish both the water quality and chemistry due to benchmarked variations in taxon
responses and tolerance. These indices have also made it possible to establish the
sensitivity of taxa to anthropogenic disturbances (Chessman et al.). Moreover, using
diatoms, it is possible link modern biomonitoring programs to fossil studies in order to
assess the (biological) success of remediation efforts (Juggins et al., 1996; Flower et al.,

1997).

2.3.2 Palaeolimnological Studies

Palaeolimnology refers to the study of the history of waterbodies. Palaeolimnological
techniques are useful in understanding changes in nutrient levels where monitoring data is
lacking (Hall and Smol, 1999). In terms of sediment tracing, such studies are important
since large proportions of reservoir sediment (and potentially nutrient) loads may be
deposited in short periods of the reservoir’s history. For example, in some cores from
Burrinjuck Reservoir, more than post-1945 half was deposited in time periods totalling no

more than a week (Tibby, 2001).

Palaeolimnological techniques vary from regional approaches involving the study of flora
and fauna remains to reveal past conditions of the area based on knowledge of the local or
regional ecological requirements of the taxa (Cameron ef al., 1999), to sedimentological
approaches that can be used globally. The former can be achieved through the use of bio-
indicators such as diatoms. This is because the silicate shell of diatoms is an ideal palaco-

indicator tool as they preserve well in sedimentary layers allowing comparison with known
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ecological requirements of the organisms (Gell et al., 1999). So, as modern diatoms
respond to nutrient concentrations, fossil diatom sequences can be used to create
reconstructions of nutrient history (Tibby, 2001, Reid et al., 1995). Such data serves to
reconstruct the history of erosion and nutrient pollution within a site’s catchment (Gell ez

al., 1999b).

Palacolimnological studies carried out recently have indicated that there may be a parallels
between written and verbal histories of events in the area and the events recorded in the
sedimentary record (Tibby, 2001). The study of sediment cores to reconstruct the rate and
deviation of change through time can assist management decisions by revealing possible
causes of change and the nature of a site’s water pre-disturbance water quality. This state

(or states) can then be identified as targets for restoration efforts.
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CHAPTER 3 STUDY AREA

The principle study site of this project is Gumeracha Weir and the River Torrens catchment
above the weir. The weir was opened on July 5" 1918 (Hammerton, 1986) and is situated
in the study area, the upper River Torrens catchment, South Australia. There are many
physical attributes to the study area that influence both the River Torrens as a whole, and

more directly to the upper reaches.

3.1 River Torrens

The River Torrens remains an important water supply for the city of Adelaide (TCWMB
2002). It originates to the north east of Adelaide near Mt Pleasant in the Mt Lofty Ranges
and flows in a south-westerly direction across the plateau of the ranges and through a
gorge on the western scarp of the Mount Lofty Ranges. It then flows through metropolitan
Adelaide to the Henley Beach outlet where it discharges into the Gulf of St Vincent. The
catchment spans approximately 504 km? and incorporates many sub-catchments and
tributaries. It may be separated into two distinct areas based on their topography,
hydrology and land use - the lower and upper reaches (Figure 3.1) (Schultz et al., 2000).
The upper reaches are the focus of this study while the lower region will be excluded from

further discussion as it has no direct impact on the chosen area.

3.1.2 Upper Reaches of the River Torrens

The Upper region incorporates the 30 km stretch of the River from its source to Kangaroo
Creek Reservoir (KCR) covering an estimated area of 270 km? (Illman and Gell, 1998).
There are thirteen sub-catchments with nine occurring above Gumeracha Weir (Figure

3.2). All contribute to the water, sediment and nutrient influxes to the River Torrens.
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Figure 3.1 Upper and lower sub-catchments of the River Torrens Catchment. Adapted from Heneker

(2003)
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Figure 3.2 Sub catchments of the Upper River Torrens Catchment. Adapted from Heneker (2003)



3.2 Mt Lofty Ranges

The Upper Reaches of the River Torrens are a feature of the western slopes of the Mt Lofty
Ranges. Thus the geology and climate of the ranges is that of the river and substantially

contributes to the river’s hydrology.

3.2.1 Geology

The Mount Lofty ranges contain rock formations dating from the Cambrian and pre-
Cambrian periods (Daily ef al., 1976) that are aligned in a generally north-south orientation
above the Adelaide plain with wide lowland sections to the east and west (Corbett, 1977).
The Mount Lofty Ranges and its rivers are of debatable age and history, however studies
have shown that the precursor to the modern River Torrens existed from the early Tertiary
period. The lower reaches of both the ranges and river have been impacted by glacial and
sea movements over the millennia, whereas the upper reaches have been moulded more by
the interactions of the Eden, Burnside and Para faults (Twidale, 1976). These were
responsible for the uplift of the Mt Lofty ranges to the height that provided the geological
basis for the river’s current existence (Figure 3.3). The river has been shaped by its
environment in sections where it follows local bedrock for extended sections. It has also
played a part shaping its own surroundings by exposing large areas of geological interest
including eroded limestone valleys and ridges (Twidale, 1976). Geology also has an impact
on the sediments in the river system with local rocks and landforms providing material that

is deposited downstream (Williams, 1983)
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Figure 3.3 Locality of the River Torrens in the Mount Lofty Ranges. Adapted from Twidale (1976)

3.3 Hydrology

3.3.1 Climate and Hydrology

The River Torrens has a Mediterranean climate that is generally warm and dry during

summer and wet and cool during winter. Around 70% of the total rainfall occurs within the
six months of the cooler period (Schultz er al., 2000). Over the iasi century of recoras,

rainfall in the upper catchments has varied between 650mm and 900 mm, with a mean of

750 mm (Figure 3.4).
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Figure 3.4 Decadal Rainfall Patterns for the Upper River Torrens Catchment. Adapted from Heneker

(2003)

R‘ainfall patterns vary further when compiled for individual sub catchments of the upper
River Torrens (Table 3.1). These sub-catchments contribute varying volumes of water into
the River Torrens annually. The volume of average annual discharge that is drained from
the sub-catchments into the River Torrens varies with the nature of the catchment. For
example, larger sub-catchments generally discharge larger volumes of water as they cover
more surface area (Table 3.1). The volume of discharge into the river from the sub-
catchments can also, however, be influenced by the land use practices (Figure 3.5) in the
catchment as there will be considerably less runoff in areas that are vegetated to those that

have been cleared.

Sub- Mean annual Rainfall Discharge
catchment Area (km?) (mm) (Lt/yr)
Birdwood 50.9 707 6308
Hannaford
Creek 15.1 686 1968
McCormick
Creek 9.3 772 1223
Angas Creek 27.2 727 2884
Footes Creek 9.5 809 1375
Kenton Valley 12.8 794 1938
Millers Creek 22.8 772 2958

Table 3.1 Mean Annual rainfall and discharge rates of seven sub-catchments in the Upper River
Torrens Catchment
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Figure 3.5 Types and Locations of different Land uses in the Upper River Torrens Catchment
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3.3.2 European influences on the Hydrology

While, at present, there is a great deal of interest in restoring natural flows to the River
Torrens, there was a time in our past when the public complained of its ‘torrents’ (Smith
and Twidale, 1986). The nature of the hydrology of the River Torrens has been altered
considerably by the hand of ‘man’, as, during early European settlement, there was
considerable concern regarding the erratic characteristics and unpredictability of the River.
One of the biggest concerns was that during periods of low flow, there was such a scarcity
of water that it would often need to be transported from long distances to supply the town
folk; this problem exacerbated social economic problems as the members of the public
who could not afford to have their own well, or afford the services of water carters, would

simply be left without water supplies (Smith and Twidale, 1986).

Another pressing concern was the dangers of people drowning during times of flooding.
One member of the public was so concerned that he went so far as to write into the local
Newspaper at the time (Register, January 20™ 1844), declaring that the River Torrens was
uncertain, dangerous and deceptive, and even went so far to suggest that a possible way to
help people who might be swept away by the torrent, would be to strategically place long
poles, each with some rope and a hook, along the river (Smith and Twidale, 1986). Due to
the need for water supplies for the growing European population the river was transformed
from an ephemeral water source to a permanent river (Fisher et al., 1999). This was done
through deliberately augmenting the catchment flows. The establishment of water flow
controls such as reservoirs and weirs, along with the input and extraction of water to and
from the River Torrens over the last century, has lead to a complete transformation of the

hydrological nature of the River.
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3.3.3 River Ecology

Changes in hydrology affects the physical characteristics of the River Torrens channel
itself; it alters flow regimes and thus the main water quality parameters such as dissolved
oxygen, conductivity, nitrate and ammonia concentrations (Illman and Gell, 1998).
Turbidity, water levels, erosion and sediment accumulation rates are also affected by
changes in hydrology. An increase in sedimentation rates through the importation of water
and changes in land use practices has lead to an increase of nutrient loads. Significant
changes in the chemical and biological characteristics of the river have been attributed to
changes in phosphorus levels and these remain of high concern (Illman and Gell, 1998).
Pollutant concentrations are generally higher during low flow in summer and autumn due
to evapoconcentration. Such concentrations can impact heavily on native aquatic biota,
such as native fish, macroinvertebrates and diatom assemblages, and increase threats such

as algal blooms.

3.3.4 The Mannum-Adelaide Pipeline

A water diversion scheme was commissioned in 1954 to bring River Murray water into
Adelaide water production catchments. The Mannum-Adelaide pipeline exports water from
the River Murray into the upper River Torrens catchment via three separate scour outlet
locations: Mount Pleasant, which only entered service in 1968 (Hammerton, 1986); Angas
Creek, which is located 200 metres above the confluence with the River Torrens; and
Millbrook Reservoir. Millbrook Reservoir is situated off the main river channel, however it
can both receive river water from Gumeracha Weir and return it to the river at a point
downstream of the weir (Illman and Gell, 1998). This is done to control mean monthly

flow distributions of the River Torrens.
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The only area of the river that is unregulated is at the headwaters in the Mount Lofty
Ranges and down to the first input scour at Mount Pleasant. This area has the most natural
hydrological flow regime, with low flows occurring during summer and early autumn and
peak flows during winter and early spring (Illman and Gell, 1998). The input of River
Murray water into the River Torrens increases monthly water flow during the summer and
early spring months from October to April and decreases the extent of high flow events

(Illman and Gell, 1998).

3.3.5 Weirs and infrastructures

Due to the alterations that have been made to the River Torrens, such as the development
of weirs and reservoirs, along with the inputs and extractions of water to and from the river
system, a reverse of the natural seasonal flow has occurred; therefore, summer flows now
resemble Spring and Winter flows of the past (Illman and Gell, 1998). Along with the
consequent modification of turbidity and water levels, weirs have also contributed to the
geomorphological changes of the channel itself. Gumeracha Weir, for example, has
increased the depth of the river between 2-4 m directly below the wall, since the 1st survey
in 1973, most likely as a consequence of the high velocity of water flowing over the weir
wall when it reaches capacity (Illman and Gell, 1998). Increases in erosion are also
attributed to Gumeracha Weir as analysis of three bridges downstream from the Weir has

shown decreasing localised erosion with increasing distance.

3.4 River Torrens, an important resource

It is imperative that the River Torrens be successfully managed to prevent degradation and

improve the water quality of the river as extensive farms and rural towns depend on this
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resource (TCWMB, 2002). Approximately 30,000 ML/yr of water is extracted from the
River Torrens for public supplies (Fisher et al., 1999). The rural stretch of the River
Torrens catchment supports around 1,350 properties, incorporates roughly 156,000
dwellings and their residents (Gell et al., 1999). The people who are most dependent on
this water resource may be contributing to the problems surrounding its quality through
poor land use practices, exemplified in the increase of sedimentation due to erosion of
banks where riparian vegetation has been removed (Illman and Gell, 1998). A number of
costly proposals have been implemented in an endeavour to improve river health. These
include the allocation of $22.4 million to be dispersed over the period between 2002 —
2007 to the Torrens Catchment Water Management Board, to the issues of the quality and

supply of the River Torrens water (TCWMB, 2002).
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CHAPTER 4 METHODOLOGY

In order to address the objectives of the study, a range of approaches were needed. Initially
field and laboratory work was required to collect and prepare samples in order to generate

data. The data was then objectively synthesized after statistical analysis.

4.1 Field Work

4.1.1 Site Selection

The intention of this study was to help establish the extent and reasons for changes in the
sediment sources and water chemistry of the upper reaches of the River Torrens.

Gumeracha Weir (GuW) was chosen as the site for intensive study for three reasons.

1. Location - its location down stream from the discharge outlets of the Mannum-Adelaide
pipeline into the River Torrens. Gumeracha Weir’s position within the hydrological cycle
of the Upper Torrens makes it an ideal site to study as it receives the influx of Murray
water from the Mannum to Adelaide pipeline after it has been discharged into Mount

Pleasant and Angas Creek.

2. The weir has a long history - it was commissioned in the early 1900s so it is thought to
contain over a century of sediment accumulation and, therefore, over a hundred years of

data for analysis. Due to the time period that the sediment core was expected to cover, it
was hoped that a strong differentiation between conditions of the River Torrens pre- and

post-completion of the River Murray (Mannum to Adelaide) pipeline in 1954 would be

revealed (Gell and Wallbrink, 2002).
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3. Previous analysis — previously a smaller core sample (Gu2) was collected from
Gumeracha Weir in the 1950s with a core length of 120 cm. Study of this core revealed
that a comprehensive analysis could be undertaken of diatoms indicating that this site was

suitable for a more detailed palaeolimnological study (Gell ef al., 1999).

4.1.2 Sample Collection

The core used for this project (GuW3) was attained in the year 2002 by employees of
Diatoma in the Department of Geographical and Environmental Studies at Adelaide
University using a ‘D-section’ or ‘Russian’ corer (Jowsey, 1966). This corer collects 50
centimetre sections of sediment at a time. The core extracts the sediment when the bit is
pushed into the ground and twisted 180° before it is lifted back out. The sediment is then
removed from the corer through a side opening chamber to prevent sediment compaction
and placed immediately into labelled, split PVC pipe and wrapped in cling film to limit
drying. Each 50 centimetre section gathered is collected in alternate, adjacent holes to
prevent contamination. This processes is repeated until the desired depth of sediment is
gathered or the corer hits bottom. At Gumeracha Weir this coring processes retrieved
sediment to a depth of 371 centimetres, three attempts were made to push the corer further
into the ground, however all attempts were unsuccessful and it was determined that they

had hit rock, which was presumably the base of the sediment.

The end of the ‘D’ section corer that is pushed into the sediment is 15 cm long and does
not collect sediment, therefore if a different corer had been used a sediment core of 386 cm
would have been recovered. The GuW3 core was retrieved approximately 80 meters from

the Gumeracha Weir wall. It is possible therefore that if the core had been taken closer to
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the wall a greater core depth would have been obtained as sediment would have

accumulated there first.

4.1.3 Suspended Sediment Collection

Suspended sediment was collected from 7 sites upstream of Gumeracha Weir (See Table
4.1). The intention of gathering the suspended sediment from the upstream creeks was to
obtain geochemical data, through XRF analysis (refer to section 4.2.4), which would help
establish the source of excess sediment flowing into the river and help identify the key
areas for erosion management. The sediment was retrieved from the river during a period
of flooding when the water was most turbulent. The suspended sediment was extracted
from the river in large 60 litre bins where it was then taken to the laboratory and allowed to
settle. Once this was done the excess water was then siphoned out, until it was no longer
possible to siphon water without disturbing the sediment. At this point the excess water
was left to evaporate and then the remaining sediment was placed in an oven at 110°

Celsius overnight to remove all moisture.

4.2 Laboratory Techniques

4.2.1 Sediment Stratigraphy

The four meters of sediment within the PVC pipe retrieved from GuW was laid out in the
laboratory. The last 50 centimetre core section overlapped with the second last at depths
321-351 centimetres, therefore the total depth of sediment gathered was 371 centimetres. A
description was taken of the entire core, including the overlapping sections, using both the
modified Troels-Smith method after Kershaw (1997) and the ‘Munsell Soil Color

Charts’(Munsell Colour, undated).
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Site Collection Water volume L Dry s?diment Sdliment
date weight g mg/L
Kenton Creek 03-Aug-04 160 267.41 1671.30
Millers Creek 17-Jul-04 240 1.78 7.40
Footes Creek 17-Jul-04 300 8.90 29.66
Angas Creek 04-Aug-05 310 16.22 52.32
Williams Creek | 03-Aug-04 290 9.65 33.27
Hannaford Creek| 04-Aug-04 270 11.53 42.70
Stony Creek 17-Jul-04 280 17.51 62.54
Murray waters-
Millbrook scour | 12-Mar-03 672 14.94 22.23
TR03001/1
Murray waters-
Millbrook scour | 12-Mar-03 990 22.44 22.67
TR03001/2
Murray waters-
Millbrook scour | 12-Mar-03 990 23.29 23.53
TR03001/3
Torrens with
Murray water-d/s | 45 par. o3 600 7.72 12.87
Millbrook
TR03003/1
Torrens with
Murray water-d/s |y, y1a103 900 11.39 12.66
Millbrook
TR03003/2
Murray waters-at
Mannum 13-Mar-03 990 23.82 24.06
TR03004/1
Murray waters-at
Mannum 13-Mar-03 990 25.3 25.56
TR03004/2
Murray waters-at
Mannum 13-Mar-03 660 14.19 21.50
TR03004/3

Table 4.1 Figures for suspended sediment samples collected from seven sites upstream of Gumeracha
Weir and eight suspended sediment samples collected of River Murray water; the volume of water
collected at each site, the total dry weight of sediment in grams, retrieved from the water collected and
the amount of dry sediment per milligrams per litre collected.
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4.2.2 Moisture, Organic and Carbonate Content

Sediment was extracted in ten centimetre intervals from the GuW3 core and analysed for
moisture', organic and carbonate content. In each case established relationships were used
to calibrate the mass lost for each desired parameter (Heiri et al., 2001, Dean, 1974). The
sediment samples were placed in marked pre-weighed crucibles and then weighed again to
establish wet sample weight. The samples were then dried in an oven at 105° Celsius for
24 hours and re-weighed to determine moisture content. Loss on ignition was calculated
after the sediment was fired in a muffle furnace at 450° Celsius for four hours and then re-
weighed. Carbonate content was established after the sample was fired at 900° Celsius for

a further two hours, and reweighed.

4.2 .3 Fossil Diatom Sampling and Preparation

Diatom samples of the GuW3 core were retrieved from the depths of. Approximately 1 cm3
of sediment was taken at 10 centimetre intervals from the GuW3 core for diatom analysis.
This is with the exception of the very top of the core where sediment was retrieved from
the depth of 0 cm -5 cm to compensate for the sandy, loose nature of the section. The
method used for diatom preparation and mounting onto slides followed Battarbee et al

(1999) HCI and H,0, digestion.

A minimum of 100 diatom valves was counted per slide using a Nikon Eclipse E600 light
microscope at 1500x magnification, with Differential Interference Contrast. The diatoms

were counted along vertical transects of known coordinates following Battarbee (1986). To

" Due to the possible drying out of the core during storage, the reliability of the results of % moisture cannot

be assured.
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identify the valves taxonomic texts Krammer and Lange-Bertalot (1986-91), Sonneman et
al (2000) and Gell et al (1999) were used. Taxonomy was supported through image

capturing and printing using a locally produced iconograph.

4.2.4 Geochemistry Sampling and Preparation

Geochemistry sediment samples for XRF analysis were extracted at levels from the core
directly adjacent to those destined for diatom analysis, in order to maximise correlation
between the two data sets. Such correlation facilitates the establishment of a relationship
between the fossil diatom assemblages identified at each depth with the geophysical-
chemical parameters. As XRF analysis requires 1 gram dry weight of sediment the
majority of samples were approximately 1 cm? in size, with the exception of approximately
2.5 c¢m3 of sediment being extracted from the depth between 3 cm - 5.5 cm, approximately
3 cm? being removed from depth 54 - 56 cm? and 2 cm? from both depths 42 cm - 44 cm
and 103 cm - 105 cm. Extra sediment was gathered from these three depths to compensate
for the loose and light nature of the sediment and for excess visible organic matter

identified at these depths.

The samples were placed in pre-weighed crucibles and fired in an oven at 110° Celsius for
two hours to remove moisture. The samples were then again fired in a muffle furnace at
960° Celsius for a further six hours to discharge any organic matter or carbonates from the
sample. Once this was completed the samples were again weighed to calculate loss on

ignition.

Following firing, the sediment was then ground, using a mortar and pestle, into powder

form. From this 1 gram of fired sample was mixed with 4 grams of flux. The sample and
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flux?, was precisely weighed. Fusion of the sample-flux mixture was conducted in a Pt-Au
crucible using a propane-oxygen flame at an approximate temperature of 1150° it was then
poured into a preheated mould, producing a glass disc that was used for analysis. John
Stanley, X-ray Analyst, Geology and Geophysics, School of Earth and Environmental
Sciences then conducted analysis of the glass disc on a Philips PW 1480 X-ray

Fluorescence Spectrometer.

4.2.5 Dating Techniques

The development of a chronology for the core, GuW3, was achieved using 219pp and Cs
analysis. Dating analysis was carried out on ten sections of the core. The interval between
dating samples was between 33-41 centimetres, with the exception of the interval between
the first and second samples taken which was 22 cm. Each sample taken for dating was
taken adjacent to the diatom and geochemistry samples to tightly link measured changes

with points in time past and the correlation of the end results.

To prepare the samples it was decided to sift the sediment through a 10 pm sieve using
distilled water and a small brush. Although this was an unusual, and in fact unprecedented
procedure, it was determined that this would help obtain the best results as H0pph has a
strong affinity to fine particles. In this context, larger particles can be viewed as a dilutant,

which decreases the reliability of the method.

The samples were then dried overnight in an oven at 105° Celsius before being weighed

into aluminium containers and placed into a muffle furnace at 450° Celsius for a further 48

2 Commercially available as type 12:22, comprising of 35.3% lithium tetraborate and 64.7% lithium

metaborate.
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hours. After ashing of the samples they were re-weighed to establish LOI. The samples
were then finely ground and placed in sealed containers before being sent to CSIRO Land
and Water, Canberra for dating. These samples were then analysed for their 210py, g,
226Ra and ***Th content using the method of Murray et al. (1987). Selected samples in the
0-100 cm interval were also analysed for 21%pp by measurement of its short-lived daughter,
210p4 This method, which provides improved sensitivity compared to gamma
spectrometry, utilises a radioactive tracer (**Po), radiochemical separation, and analysis

by alpha particle spectrometry (Martin and Hancock, 1992).

4.3 Statistical Techniques

43.1pH

Water column pH was estimated in C2 (Juggins, 20Q4) using the diatom-pH transfer
function of Tibby et al. (2003). This transfer function has relatively strong predictive
power, with a correlation between diatom inferred and measured pH of 0.77 and a root
mean square error of prediction (a weighted standard deviation of the errors) of 0.35 pH

units. All diatoms with relative abundance >1% were used in the reconstruction.

4.3.2 PCA
Principle Components Analysis (PCA) in Canoco 4.02 (Braak and Smilauer, 1999) was
used to ordinate the modern and fossil (Gumeracha Weir) geochemistry data.
Environmental variables were centred and standardised (to a mean of zero and a variance
of 1) to account allow differences in their variability, rather than absolute value, to be
compared (Braak and Prentice, 1988). In the PCA, fossil samples were made passive, so
they could be located on the ordination, without influencing the relative position of the

modern data set.
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4.3.3 Diagram zonation

The GuW3 diatom diagram was zoned with the aid of CONISS (Grimm, 1987). Euclidean
distance was used to determine the degree of similarity between samples, with the most
similar samples (or groups) grouped first, subject to the constraint that they were adjacent
to the sample (or group) to which they were being grouped. The zonation of the diatom
diagram was also applied to the GuW3 geochemistry stratigraphy to enable an assessment

of the degree of correspondence between the diatoms and geochemistry.
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CHAPTER 5 RESULTS

The raw data collected from GuW3 consisting of fossil diatom analysis, geochemistry
analysis and sediment analysis was compared with modern geochemistry data from the

River Torrens catchment (Tibby, Gell, Nalbrink, Hancock, unpublished data)

5.1 Sediment Analysis and Stratigraphy

The 3.71 meter GuW3 core was laid out in the lab and described, with the assistance of
Professor Martin Williams, Geographical and Environmental Studies, University of
Adelaide and using the modified Troels-Smith method of Kershaw (1997) and the
‘Munsell Soil Color Charts’ (Munsell Colour, undated). The Stratigraphy (Figure 5.1)
shows that sediment type B is most dominant throughout the core with bands of other
sediment types ranging from 1 cm — 20 cm thick dispersed sporadically throughout. This
includes Sediment type A, micaceous fine sand, which also frequently occurs throughout
the core and may be representative of a slightly higher energy flow. Also identified
throughout the core were mica traces. This, along with sedimentary analysis of percentage
of moisture, organic matter and carbonate (Figures 5.2, 5.3 and 5.4 respectively), has lead

to the identification of different units along the core.
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Figure 5.1 The stratigraphic units of Gumeracha Weir core, GaW3

5.1.1 Unit7 (371 cm — 336 cm)

The bottom twenty-eight centimetres of the core was uniform sediment type B (described
in Figure 5.1), with a grey-brown colour. In this unit, represented by three samples, the

percentage of organic matter and carbonate content rose slightly. Carbonate content was
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Figure 5.2 GuW3 Moisture content
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the most stable variable, staying just under 1%. Organic matter rose from 4.7% to 5.2%

and moisture content had the largest change rising from 31.5% to 38%.

5.1.2 Unit 6 (336 cm - 321 cm)

This unit consisted predominantly of sediment type B, with 1-2 mm thick bands of yellow-
brown, very fine sand between depth 336 cm — 333 cm, indicating signs of loading
structures where sand is deposited on soft clay. All three variables dropped to their lowest
points in the core at this level, the most notable was moisture content falling to 8.8% and
then slightly rising back up to 10.5%. Carbonate content dropped from 0.9% in the
previous unit to 0.4% and organic matter also fell to 1.3%, only slightly rising again to

1.7%.

5.1.3 Unit 5 (321 cm - 300 cm)

This unit consists of grey, clayey fine sand. The stratification of the soil indicates slightly
reducing anaerobic conditions. Carbonate and organic matter again rose in this unit,
carbonate increasing to around 1% and organic matter rising to around 6.5%. Moisture

content continues to stay very low, falling to 7.7% and then down to 7.5%

5.1.4 Unit 4 (300 cm - 195 cm)

This unit was also dominated by sediment type B. It is relatively uniform right through this
section, with the exception of a large band of sediment type A, micaceous fine sand,
identified between depths 295 cm — 290 cm and smaller bands, around 1 cm — 2 cm thick,

at depths 275 cm, 214 cm, 210 cm and 198 cm.
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The percentage of organic matter varies between, 4.3 % and 5.3 %, between the depths 295
cm and 215 cm, before finally dropping down to 2.7% at depth 205 cm. Carbonate content
fluctuates from 0.8 % to 1.8 % and back down to 0.9 % at depths 295 cm, 285 cm and 275
cm, respectively. It then stays relatively steady until 205 cm where it drops to 0.63 %. The
percentage moisture varies the most in this unit. Beginning at 295 cm it starts off relatively
low at 24.8% and then gradually rises to 46.7 % at 215 cm. At 205 cm there is again a

sudden drop in moisture down to 25.6 %.

5.1.5 Unit 3 (195 cm - 100 cm)

This unit is dominated by sediment type B, micaceous clay, with lenses of pale yellow-
brown, clayey white sand between the depths 144 cm — 143 cm and 128 cm — 126 cm.
Additional, sporadic pockets of type B occurred between depths 150 cm and 100 cm. Fine
rootlets and small woody detritus was also evident up to this depth, while large woody

detritus was identified between the depths 162 cm and153 cm.

Organic matter content gradually rises at the beginning of this unit, peaking at 14.8 % at
155 c¢m, which concurs with the organic matter identified between depths 162 cm — 153
cm. From there it fluctuates between 3.4 % and 5 % before once again suddenly rising to

12.3% at 105 cm.

Moisture content gradually rises through the beginning of this unit and peaks to 47.6 % at
155 c¢cm. From this depth to the end of unit 3 there is a considerable amount of fluctuation,
from 36.8 % at 145 cm, down to 19.1 % at 135 cm, and then up again 10% to 29.9% at 125

cm and down again to 25 % at 115 cm, before rising back up to 40.4 % at 105 cm.
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Carbonate content is relatively stable in comparison to the other variables, fluctuating
between 0.8 % and 0.9 %. At 155 cm carbonate content was at its lowest value for the core,
at 0.065 %. It then rises back up to 0.8% at 145 cm before gradually declining to 0.4 % at

105 cm.

5.1.6 Unit 2 (100 cm - 60 cm)

This unit consists of two sediment types. The first, between depth 100 cm to 84 cm, is a
very pale grey-brown micaceous loamy fine sand, where a gradational change is evident.
Between 84 cm and 60 cm sediment type B, a very dark grey-brown (colour 10Y 3/2)

(Munsell Colour, undated), alluvial micaceous clay was evident.

Carbonate content rose sharply at the beginning of this unit to 1.6 % at 95 cm, however it
fell abruptly again down to 0.65 % at depth 85 cm, before rising again to around 0.9% at

depths 75 cm and 65 cm.

The percentage of organic matter dropped significantly at the beginning of this unit at 95
cm and then again down to 4.9 % at 85 cm, it rose once at 75 cm to 8.2 % and finally

dropped again down to 5.4 % at the end of this unit at 65 cm.

Moisture content also fell considerably at the beginning of this unit dropping down to 8.9

% at 95 cm. It began to rise again to 28 % at depth 85 cm and again to 39.7 % at 75 cm,

before once again falling to 30.2 % at 65 cm.
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5.1.7 Unit 1 (60 cm — 0 cm)

Within this unit, there are two distinct sedimentary types. Firstly, sediment type A, a
slightly micaceous fine sand, was identified at 60 cm — 43 cm and 14 cm — 0 cm. The
lower band had woody detritus throughout. The upper band was yellow-brown in colour,
correlating best to 2.5YR 5/2 from the ‘Munsell Soil Chart’ (Munsell Colour, undated).
The second sediment type, lying between these two bands, was a slightly organic, slightly

silty dark brown clay.

At 55 cm there was once again a significant fall in moisture content down to 17.5 %. It
then gradually rose to 20.5 % at 45 cm, 32.9 % at 35 cm, 37.9 % at 25 cm and then again

to 40.4 % at 15 cm, before dropping to 4.34 % at O cm.

The percentage organic matter also slightly decreased at 55 cm to 4.9 % before rising to
6.5 % at 45 cm and 35 cm. It decreases for the remainder of the core down to 5.7 % at 35

cm, 4.9 % at 15 cm and 2.5 % at O cm.

Carbonate content fell to 0.47 % at 55 cm, and to 0.28 % at 45 cm. It then rose slowly to

0.49 % at 35 cm, 0.7 % at 25 cm and 0.9% at 15 % before falling to 0.2 % at O cm.

5.2 Chronology and Sedimentation Rates

5.2.1 %¢Cs Dating

The *’Cs dating that was conducted on the 10 samples collected from the GuW3 core,
indicated that '*’Cs was present in the top 9 samples to a depth of 334 cm. The final
sample dated from 365 cm — 371 cm had no traces of caesium. The 13Cs dating was used

to establish, down the core, the sediment deposited after 1958. It is unknown which level is
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precisely equivalent to 1958, therefore two separate points were proposed. The first is
based on the lowest possible depth that P¥cs may have occurred, just above the last sample
at 367 cm. The second point was based on the lowest depth that 1¥7Cs was known to be
present, 334 cm, from the section sent, however it may have only been present in the upper

most cm of the section sent, between 326 cm — 334 cm.

5.2.2 2!%Pb Dating

Once the two possible 1958 depths were estimated from the 137Cs dating, it was then
possible to create a chronology of the core from the 219 analysis using a CRS model. The
results are shown in Figure 5.5. From the establishment of two possible depths
representing the maximum and minimum point for 1958 from the 197Cs dating, two
alternate chronologies for the core were created. Two possible timelines for each depth
given were suggested, as each depth ascends closer to the top of the core, the inferred dates

for the depth converge.

Age (yr AD)
1955 1965 1975 1985 1995 2005
O L L L L L ! L | L

50 +
100 H
150 H
200 +
250
300 -
350 +
400

—o— Model 1
--o--Model 2

Depth (cm)

Figure 5.5 Two models for the chronology of GuW3 based on 210p}y analysis.
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5.3 Sediment Geochemistry

Energy dispersive X-ray fluorescence spectrometry (XRF) was used to analyse the
geochemistry of sediment gathered from the GuW3 core and suspended sediment retrieved
from seven tributaries upstream of Gumeracha Weir. The geochemistry procedure analysed
eleven different types of elements, comprising, Silica (SiO,), Aluminium (Al,Os), Iron
(Fe,03), Manganese (MnO), Magnesium (MgO), Calcium (Ca0O), Sodium (Nay0),

Potassium (K;0), Titanium (TiO,), Phosphorus (P,Os) and Sulphate (SO3).

5.3.1 GuW3 Geochemistrv Sediment Stratigraphy

The GuW3 geochemistry results were stratigraphicaly plotted (Figure 5.6). Figure 5.6
clearly indicates that silica is the most dominant ion throughout the core, fluctuating
between 55% - 80%. Sodium tends to follow the same trends as silica, however on a

smaller scale.

Aluminium is the second most dominant element, fluctuating between 5% - 20% and, for
the most part, is a mirror image of the fluctuations of silica. It also generally represents the
interchange-ability of the compounds, iron (Fe,0O3), manganese (MnO), magnesium
(MgO), potassium (K,0), titanium (TiO,), and phosphorus (P,0s), that tend to follow

along similar trends to that of aluminium, on a smaller scale ranging from 0.002% - 6%.

Sulphate has the least association with the two chief elements, silica and aluminium, or any

other compound, as does calcium to a lesser extent.
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5.3.1 Geochemistry Principle Components Analysis

Geochemistry results were placed in a principle components analysis (Figure 5.7), based
on their geochemistry similarity (Figure 5.8). They are all indicative of high silica
concentrations. There is a clear mixing line of the Gumeracha core samples, the River
Murray samples and five of the Torrens (suspended sediment samples), Hannaford Creek,
Angas Creek, Footes Creek, Kenton Creek and Williams Creek. The data displayed
directly below the dotted line box (Figure 5.7), along the same mixing line, also have a
high correlation to silica compared to the rest of the Torrens samples, however they have a
slightly higher concentration of aluminium, titanium and potassium, and have a lower
concentration of phosphorus and calcium. Stony Creek also appears to have a link with this
mixing line, however has an even higher concentration of aluminium, manganese and iron
compared to the other samples. Millers Creek is the only Torrens (suspended sediment)
sample that does not appear to be linked with the established mixing line, but instead lies

in between it and the other Torrens samples.

The dotted box outlined in Figure 5.7 was enlarged into a separate graph (Figure 5.9),
defining the samples that are most evidently apart of the same mixing line. All the GuW3
core samples fall within this zone, representative of high silica concentrations. A ciear
mixing line can be seen of the GuW3 samples, one of the Torrens suspended sediment
results, Hannaford and the eight River Murray samples, outlined by the dotted line box

(this has been enlarged in Figure 5.9).
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Figure 5.9 Enlargement of the data that is outlined by the doted line in Figure 5.7, these contain all
GuW3 results, along with all eight River Murray samples and one Torrens (suspended sediment)
result, Hannaford Creek.

5.3.1.2 Scatter Plots

A more defined analysis was conducted to gain a greater understanding of the patterns
identified in the principle components analysis. Three ions were chosen for this analysis
and plotted against each other into scatter plots (Figure 10, A sulphate against silica, B
sulphate against calcium and C calcium against silica). Silica was chosen from the eleven
ions because it was the most dominant and the principal variable. Sulphate and calcium,
despite their low values, were used because they correlated least with silica or the other
elements, therefore their fluctuations were less likely to be related to the trends of the more
dominant elements. Manganese also showed considerable variation, however due to its

extremely low percentage, was excluded from analysis.
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From the three scatter plots represented in Figures 5.10, two GuW3 samples, depth 244 cm
-245 c¢m and depth 254 cm- 255 c¢m, and the two Torrens with Murray water-d/s Millbrook
samples (3003/1 and 3003/2) repeatedly shifted along a similar pathway from their

respective assemblages. This indicates that these four data sets have similar geochemistry.

5.4 Fossil Diatom Analysis

There were thirty-seven diatom samples taken from the 3.71 meter GuW3 core at 10 cm
intervals. A comparison of diatom species was conducted to establish the impact of River
Murray water being diverted into River Torrens was having on both the algae community

and the water chemistry of the river.

From Figure 5.11 it can be seen that Actinocyclus normanii, Aulacoseira ambigua and
Aulacoseira granulata are the three dominant Murray River diatom species that have been
identified. They are all planktonic taxa, that are found in the lower River Murray (Tibby
and Reid, 2004) Both diatom species Actinocyclus normanii and Aulacoseira granulata
first become present in the core at a depth of 336 cm. Aulacoseira ambigua does not

present itself until depth 195 cm.

The diatom taxa were alphabetically ordered, with the exception of the three dominant
River Murray species which are represented first. Four Zones and two sub-zones were
identified from the diatom assemblages using a constrained incremented sum of squares
technique throughout the core depth. Within these diatom zones shifts between the

dominant diatom species are evident.
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5.4.1 Zone D4 (367 cm - 300 cm)

Rhoicosphenia abbreviata is the dominant diatom species in zone D4. There is also a large
proportion of species within both the Nitzschia and Navicula genera. Aulacoseira ambigua
and Staurosira construens are the only two species found elsewhere, that are not present at
all in this zone, however Staurosira elliptica, and the two remaining River Murray diatom

species, do not become present until 336 cm.

5.4.2 Zone D3.1 (300 cm - 240 cm)

At the bottom of sub zone D3.1 at a depth of 295 cm there is a significant peak of
Cyclotella spp. There is also a considerable abundance of Nitzshia spp. and an increase of
Navicula spp. towards the top of this zone. There is also a significant increase in the
species Planothidium delicatulum, Surirella brebissonii and Staurosirella pinnata, making
it the most abundant single species in this zone. Actinocyclus normanii and Aulacoseira
granulata are absent for most of this section, only beginning to occur again at the very top

at around depth 255 cm. Rhoicosphenia abbreviata declines slightly through this zone.

5.4.3 Zone D3 (240 cm — 210 cm)

Within this sub zone, Staurosirella pinnata falls to the lowest percentage (<3%) in the
entire core. Rhoicosphenia abbreviata is again abundant, its presence increasing slightly
from the previous zone. It is also at this point that Actinocycus normanii is in greatest
abundance, >20% at depth 225 cm; however it peters off almost as abruptly as it begins.
Aulacoseira granulata increases markedly, making it the most abundant single species in
this zone, however the third River Murray species Aulacoseira ambigua is still absent from

zone D3. There is also a noticeable decline of many other diatom genera, most noticeably
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those that have been present through the majority of the core up to this point, including

Synedra spp., Gomphonema spp. and Cyclotella spp.

5.4.4 Zone D2.1 (210 cm — 170 cm)

Navicula spp. is the most dominant taxon of this zone, however Staurosirella pinnata
increases considerably, making it again the most dominant single species in this section.
Staurosira ellipica also becomes more abundant. Synedra spp., Gomphonema spp. and
Cyclotella spp., return. One of the most noticeable changes in this zone is the massive
decline in the abundance of Rhoicosphenia abbreviata, along with both River Murray
genera Actinocycus normanii and Aulacoseira granulata. This is also the zone where the
first occurrence, of the third River Murray species, Aulacoseira ambigua, which appears in

abundance at 195 cm.

5.4.5 Zone D2 (170 cm — 40 cm)

Throughout this zone, the three River Murray species, Aulacoseira ambigua, Aulacoseira
granulata and Actinocycus normanii are variably represented. Staurosira ellipica becomes
one of the most abundant species within this zone, second only to Staurosirella pinnata.
Staurosira construens occurs for the first and only time through the core and in
considerable abundance. Rhoicosphenia abbreviata is in low abundance through this
section, it increases sharply to 10% at 115 cm, however does not occur at all in others and
is non-existent from 55 cm upwards. Planothidium spp. peaks at 135 cm and Navicula
viridula peaks at 85 cm. Achnanthidium minutissimum only occurs once through this zone

at depth 135 cm and then does not occur in the core again.
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5.4.6 Zone D1 (40 cm- 0 cm)

Staurosira elliptica still has a strong presence in the 40 cm of the top of the core as does
Staurosirella pinnata and Nitzshia spp. Navicula viridula and the River Murray species
Aulacoseira ambigua increases,while Actinocyclus normanii and Aulacoseira granulata
also maintain a notable presence. Along with Rhoicosphenia abbreviata, Synedra spp. and

Gomphonema spp. are no longer present by the top section of the core.

5.5 pH Reconstruction from Fossil Diatom Analysis

The pH reconstruction based on the transfer function of Tibby (Tibby et al., 2003) (Figure
5.12) shows that, while inferred pH levels have fluctuated throughout, there is a substantial
increase in pH levels throughout the core. The pH reconstruction has been divided into the

four diatom zones from which they were constructed.

5.5.1 Zone D4 (367 cm - 300 cm)

Between depths 366 cm and 315 cm pH levels fluctuate between 7.5 and 7.7 units,

however it drops down to 7.37 units at 305 cm.

5.5.2 Zone D3.1 (300 cm - 240 cm)

The pH level sharply rises to 8.2 at 295 cm, before again dropping 0.3 units at the 285 cm.
It rises up to 8.1 at 275 cm, before slowly decreasing to around 7.9 at 265 cm and 255 cm,

and then down again to 7.7 at 245 cm.
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5.5.3 Zone D3 (240 cm — 210 cm)

At depths 235 cm, 225 cm and 215 cm inferred pH levels fluctuate around 7.7 and 7.8.

5.54 Zone D2.1 (210 cm — 170 cm)

At depth 205 cm the inferred pH level again sharply rises to 8.2 units and falls back down
to 7.9 units at 195 cm, and then to 7.8 units at 185 cm. The pH level then increases to 8.0 at

175 cm.

5.5.5 Zone D2 (170 cm — 40 cm)

The inferred pH level then sharply rises to 8.5 units at depth 165 cm. From depths 155 cm,
145 cm and 135 cm the levels fall to 8.3, back up to 8.6 and then back down to 8.3
respectively. At depth 125 cm there is again a sharp rise in pH levels to the second highest
inferred value 8.8, recorded throughout the core. This is followed by a sharp drop to 8.4
units at the next depth. At 96 cm there is a 0.2 unit increase in inferred pH before the levels
again fall to 7.8 units at 86 cm. At 76 cm the largest fluctuation of pH levels occurs in the
core as they rise 0.9 units back up to 8.7. At 66 cm and 56 cm the pH level drops to 8.5

units and 8.4 units respectively, before peaking to 8.9 units at depth 46 cm.

5.5.6 Zone D1 (40 cm- 0 cm)

At depth 36 cm the greatest decline in pH levels occurs as it drops 0.9 units in 10 cm to
8.0. The inferred pH then fluctuates up to 8.5 units and back down to 8.0 units at depths 26

cm and 16 cm respectively, before remaining steady at 8.2 units at the final depth of O cm.
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Figure 5.12 Diatom-based reconstruction of pH from Gumeracha Weir. pH was estimated using
weighted-averaging calibration using the data set of Tibby ef al. (2003). The model has a root mean
square error of prediction of 0.35 pH units.



CHAPTER 6 DISCUSSION

6.1 Chronology and Sedimentation

From the two derived 2'°Pb-based age-depth models, model two is used in this discussion,
as the sequence of events outlined below supports the adoption of this model. From the
137Cs dating (Figure 5.5), it can be established that, at a minimum, the top 334 cm of core,
GuW3, has accumulated over 44 years, from 1958 to 2002 when the core was collected.

The sedimentation rate at Gumeracha weir, post-1958, is therefore approximately 7 cm/yr.

Sediments between 334 cm and 371 cm pre date 1958. The remaining 37 cm of core,
combined with the basal 15 cm beyond the reach of the D-section sampler (due to its
elongated “nose”), total 52 cm. Hence, it could be suggested that since 1918 when
Gumeracha Weir first became operational (Hammerton, 1986), a maximum of 1.3 cm/yr of
sediment accumulated before 1958. However, GuW3 was extracted 80 meters upstream
from the weir wall. This would have almost certainly limited the amount of sediment
obtained as, sediment is likely to have begun accumulating at the base of the wall,
accumulating vertically and longitudinally upstream to the point where GuW3 was
obtained. The calculated sedimentation of 1.3 cm/yr before 1958 is therefore a minimum
estimate. Sedimentation rates appear to be a great deal higher post Mannum-Adelaide
pipeline (1954), which is not surprising as River Murray water has higher turbidity than

those of the River Torrens and its tributaries (Davies et al., 1992).
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6.2 Sediment Sources in the Upper River Torrens Catchment

The main composition of GuW3 is a mixture of sand and clay-sized particles. The sand
bands that are identified along the core lithostratigraphy (Figure 5.5) indicate periods
where velocities are relatively high, as such velocities are required to carry heavier sand
particles (Knighton, 1998). It is highly likely that the source of these deposits are high
energy storm flows in the River Torrens. Even before regulation, the lower River Murray
carried a predominantly fine suspended load, a condition accentuated following
construction of regulation structures (Thoms et al., 1999). Suspended sediment loads of the

River Murray are therefore, unlikely to have contributed to the sand bands in the core.

Major sand bands do not appear to correlate with periods of high precipitation. Sand bands
are evident at depths of 1 cm — 13 cm (2001), 43 cm — 60 cm (1999/2000), 84 cm and 100
cm (1996/97) and 300 cm — 321 cm (1960-63). There are a number of explanations for this
including that the sand bands are a result of disturbance occurring upstream of the weir
such as excessive erosion or riverbank collapse, that may be caused by activities such as
land clearance or the land use practises outlined in Chapter 3. However, it is difficult to
identify clear phases in the catchment history that can be related to the timing of sand
deposition. It seems likely that the sand bands may represent small sand “slugs” which
result from periods of erosion in the past and move slowly downstream during higher
discharge events. Sand slugs are now recognised to be common phenomena in Australian

rivers (Prosser et al., 2001).

GuW3 samples with identified sand bands (including 3'cm, 42 cm, 54 cm, 85 cm, 95 cm,
294 cm and 324 cm) plot high on Principle Components Analysis (PCA) Axis 2 (Figure
5.7) and are, not surprisingly, characterised by high silica content (Figure 5.8). These, and
the remaining GuW3 samples, are oriented largely in a line in the PCA Figures 5.7. Such a

58



distribution suggests that there is a mixing of two (or more) distinct geochemical sources
(Wallbrink et al., 2003). Unfortunately, no potential source materials are identified at one
end of the mixing line (high Axis 1). Samples with lower Axis 2 scores (i.e. those which
plot lower than the Hannaford Creek suspended sediment samples) are, for the most part,
located closest to samples from the modern River Murray. Sediment in these samples
therefore appear to be largely derived from the River Murray. Indeed a number of these
samples, including 164 cm, 214 cm, 224 cm and 344 cm, plot closer to some River Murray
samples, than some River Murray sample plot to each other, indicating they have a very
similar geochemistry. Importantly, whilst it could be argued that there is a substantial
contribution to these sediments from the Angas, Footes, Kenton, Williams and Stony
Creek catchments (which are located on the purported mixing line with low Axis 2 scores),
no GuW3 samples plot below the modern Murray samples This is despite the fact that, at
times, there is little River Murray inflow into the River Torrens for periods of more than a

year (Heneker, 2003).

Further support for this interpretation comes from a combination of the diatom data and a
more detailed examination of the geochemistry data. Figure 5.11, diatom stratigraphy,
indicates the proportion of diatoms attributed to a River Murray source. Figure 6.1
illustrates these data in a different manner, with the proportion of River Murray diatoms
expressed on a temporal axis. The first dated appearance of River Murray diatoms (1955)
corresponds well with the commencement of the Mannum- Adelaide pipeline’s operation
(1954). Furthermore, there is a good correlation between the abundance of River Murray
taxa and the volume of River Murray water pumped into the River Torrens channel in the
period 1974 and 2002. The peak in Murray water input centred on 1978 is clearly
registered in the relative abundances of Murray diatoms. Lower recorded values of River

Murray diatoms in the GuW3 sediments correspond to reduced volumes of River Murray

59



water pumped into the upper River Torrens catchment between 1986 and 1990. Lastly, the
medium level pumping witnessed through the 1990s to present corresponds to elevated,

albeit variable, relative abundances of River Murray diatoms in the sediments.
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Figure 6.1: Inflows of River Murray water pumped into the River Torrens above Gumeracha Weir
(i.e. from Mount Pleasant and Angas Creek scours) compared to the total relative abundance of River
Murray diatoms (Actinocylus normanii, Aulacoseira ambigua and Aulacoseira granulata) in the GuW3
core. Volumes of River Murray water were estimated by Dr Teresa Heneker, Department of Water,
Land and Biodiversity Conservation (Heneker, 2003).

Given the strong correspondence between River Murray diatoms and the volume of water
pumped into the Torrens catchment, these data may be used to identify those samples most
likely to be characterised by River Murray sediments. Through examination of selected
elements which allow a separation of River Murray and River Torrens suspended sediment
sources (Figure 5.10), it can be seen that the GuW3 samples that contain the highest

proportions of River Murray diatom taxa often plot further from the River Murray samples
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than a number of other GuW3 samples, for example 334 cm, 314 cm, 304 cm, 274 cm, 265
cm, 204 cm, 144 c¢m, 65 cm and 25 cm. A number of these samples also fail to correlate
with periods of River Murray water input. This observation suggests that, although the
other GuW3 samples may not contain as high a percentage of River Murray diatom taxa,
they do in fact have similar geochemistry to River Murray samples and that River Murray
sediments are being deposited in the River Torrens system and then reworked during high
natural (Torrens) flow events. A similar situation has been noted in Kangaroo Creek
Reservoir, downstream of Gumeracha Weir, where periods where the most Murray
sediment is deposited are those when the Torrens is flooding (Tibby and Gell unpublished

data).

One possible contradiction to the above argument is that GuW3 samples, considered to
have been deposited before commencement of pumping River Murray water (344 cm, 355
cm and 365 cm), also plot close to the modern Murray samples (Figure 5.7). It is possible
that more precise results could have been obtained from the geochemistry if analysis
conducted on GuW3 samples and River Torrens suspended sediment samples had been
consistent with the River Murray samples. GuW3 samples and River Torrens samples were
analysed using non-specific particle sizes, as there was not enough fine material on which
to conduct the analysis. The River Murray samples analysed were, however, dominated by
sediment particles <10 um. The larger particle sizes originating from the catchment may be
influencing, and possibly cloaking, some of the geochemistry elements from the smaller
particle size, Murray sediment, giving only partial answers, especially considering that the
bulk of Murray River sediment being transported into the River Torrens, consists of
smaller particle sizes. Nonetheless, larger particle size analysis on the Guw3 and River

Torrens samples is beneficial in the respect that it indicates that at least one source in the
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catchment, containing high proportions of silica that is greatly contributing to the

sedimentation at Gumeracha Weir.

The provenance of that sediment derived from the River Torrens catchment, is, at present,
uncertain. The data presented in Figure 5.9 indicate that Hannaford Creek is a possible
source, due to its position on the mixing line and its high concentrations of silica.
However, this catchment has relatively low rainfall (Heneker, 2003) and the suspended
sediment concentrations in this stream during a substantial storm event (Table 4.1) suggest
that it is unlikely to be a major source. As noted (above) From Figure 5.7 the mixing line
also incorporates Angas, Footes, Kenton, Williams and, to some extent, Stony Creek, all of
which are also possible sources. From the seven upstream creeks where suspended
sediment samples were retrieved, Hannaford Creek contained the forth-smallest amount of
sediment (42.7 mg/L), whereas Kenton Creek, the sub-catchment carrying the largest
volume of suspended sediment (1671.3 mg/L), for instance was contributing almost forty
times the sediment of Hannaford. Furthermore Kenton Creek is the closest, sampled creek
to Gumeracha Weir and therefore should have the least amount of particle drop off to any
other stream, as its distance from the weir is far less. Millers Creek, the seventh creek
sampled, has been ruled out as a possible source as it does not sit along the mixing line.
Furthermore there does not appear to be one or more specific type of land use in the
Torrens catchment, e.g roads, generating the bulk of the Torrens’ sediment contribution to
Gumeracha Weir. As can be seen from an examination of Figure 5.7 PCA, a variety of land
uses plot well away from the GuW3 samples and are not located on the hypothesised

mixing line.
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Weirs are sediment traps, the sediment that is washed down streams accumulate in them,
rather than being deposited naturally downstream. In Gumeracha Weir the high
sedimentation rates are causing the weir to fill at a rapid pace. This could firstly be a
problem as it limits the weirs water holding capacity, possibly leading to more frequent
overspills during large storm events. Secondly, at present the water at Gumeracha weir is
10 meters high, the sediment that has accumulated at the wall is 7 meters high, this is a
concern because the sediment has accumulated to within 0.5 meters of the mouth of the
off-take pipeline from Gumeracha Weir to Millbrook Reservoir (Brian Murray, Manager
operations, Millbrook Reservoir). The transport of such a large amount of sediment is
likely to have even greater affects upon the water chemistry being diverted to the reservoir,
as well as filling up the reservoir and decreasing its storage capacity. Dredging is proposed
for Gumeracha weir to rectify these problems (Brian Murray, Manager operations,
Millbrook Reservoir), however it is a costly project that causes a great deal of disturbance

to the river’s ecology.

Between 1974 — 2002 the scours above Gumeracha weir, discharged 406, 000 ML of River
Murray water into the River Torrens. This is only a slightly smaller percentage of the water
flowing into the river from the catchment of 575, 000 ML (Heneker, 2003), reaffirming the
probability of the River Murray being a major sediment source. So the sediment in
Gumeracha Weir is originating from two or more sources, the first being the import of

River Murray water.

6.3 Water Quality

The change in diatom taxa through the core provide substantial insight into changes in

water quality of the River Torrens and the role of River Murray water in this change.
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Murray diatoms are evident in sediments dated to the commencement of pumping (1954,
336 cm), but at relatively low values (Figure 5.11). The second major influx of River
Murray diatoms begins at 265 cm (1968), and increases dramatically from 235 cm (1976),
to 215 cm (1981). The first date coincides with the opening of the third scour importing
River Murray water to the River Torrens and the second scour that affects the Gumeracha
weir site. This third scour is situated at Mount Pleasant and has the capacity to release 492
ML/per-day, a large increase to the Angas Creek pipeline, which only has the capacity to
release 168 ML/per-day. Therefore the Mount Pleasant scour drastically increased the
amount of Murray input into the system, which would entirely explain the disproportionate
increase of Murray diatoms at that time (Brian Murray, Manager operations, Millbrook
Reservoir). The second dates correlate with the period when the largest volume of Murray
water was being diverted into the Torrens (Heneker, 2003), accompanying the peak in

River Murray taxa (Figure 6.1).

Between 205 cm (1982) — 165 cm (1990) there is an increase in Staurosirella pinnata and a
decrease in Rhicosphenia abbreviata. This is attributed to the fact that Staurosirella
pinnata is faculatative plankton, which means it can live within the water body and can
also survives in epipelic (mud habitat) and epilithic (rock habitat). Rhicosphenia
abbreviata on the other hand, can only live in epipelic and epilithic habitats. The change in
taxon is most likely due to turbidity. Turbidity, among other things, decreases the ability
for light to penetrate through the water column (Boulton and Brock, 1999) therefore
limiting the ability for epipelic and epilithic diatoms to reproduce and photosynthesise.
Planktonic taxa are more likely to thrive in such conditions as they have the ability to

thrive in the water column where more light is available.
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The euphotic zone is the depth at which 99% of light disappears in the water column and
therefore, generally, the depth where the greatest reduction of photosynthesis occurs
(Boulton and Brock, 1999). The depth at which the euphotic zone occurs varies greatly
between water-bodies and is influenced by a number of different factors. In the River
Torrens two such factors can be attributed to Murray water input, these are water depth and
turbidity. Firstly, the influx of additional water from the Murray means that water levels
are frequently higher than they would otherwise be. Higher water levels decrease the
possibility of light penetrating down to epipelic and epilithic habitats as the further the
light travels through the water column, the more likely it will be absorbed before it
penetrates to the riverbed. The River Murray carries much greater loads of sediment than
that of the River Torrens (Davies et al., 1992), so input of River Murray water into the

River Torrens there is a greater increase in turbulence.

Some indication of the possible impacts of turbidity on Rhicosphenia abbreviata are
evident in Figure 6.2, as its presence decreases with an increase in turbidity in Mount Lofty
Ranges streams (Gell, unpublished data). In general this taxon declines following the
commencement of pumping to the Mount Pleasant scours. This taxon is eventually
eliminated from the system and Staurosirella pinnata and Staurosira elliptica become the
dominant taxa. These taxa are facultative planktonic (i.e. part of their life cycle is spent in
the water column), with a chain-forming structure which enables them to be entrained into
the water column. In comparison with an attached taxon Rhicosphenia abbreviata they are
ad\llantaged in turbid waters and are often associated with catchment clearance and soil
erosion (Flower et al., 1988). Their continued abundance in Gumeracha Weir presumably
relates to continually elevated suspended solids concentrations in the water column

resulting from River Murray pumping.
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In addition to higher suspended solids, River Murray waters also have significantly higher

total phosphorus concentrations. Indications that Gumeracha Weir has become more
eutrophic over the past fifty years can be seen in changes in diatom assemblages. For
example Melosira varians, a nutrient enrichment indicator (Sonneman et al., 2000)

increases in abundance at 185 cm (1985/86) just after the major influx of River Murray

100+

Rhoicosphenia abbreviata (%)

Turbidity (NTU)

Figure 6.2 Relationship between Rhoicosphenia abbreviata and turbidity in a 61 sample Mt Lofty
Ranges stream data set. NB: One sample with turbidity> 100 NTU (with no R. abbreviata) not
illustrated. (Gell, unpublished data).

water entering the River Torrens system. It also increases in abundance at 35 cm (2000),

where another large input of River Murray water comes into the river. This indicates that

eutrophication of Gumeracha Weir is very likely to be a result of higher nutrient loads

coming into the system from River Murray inputs, rather than from water quality changes

brought about by ontogeny of the reservoir (described in detail in chapter 2) The most
dominant species within the core Staurosirella pinnata and Staurosira elliptica give no

great insight into changes of nutrients as they have a very broad ecological preference

(Bennion et al., 2001) and can therefore thrive in environments with very high and very

low nutrient concentrations.
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The pH reconstruction also indicates that shortly after the River Murray water was first
being diverted into the Torrens, pH began to fluctuate to a much greater extent.
Furthermore, over the past 50 years the pH levels have become significantly more alkaline.
pH increases from an average of 7.6 units from the bottom of the core to 1964 (295 cm) up
to an average of 7.9 units from 1964-1988 (295 cm — 165 cm) and then increases up to an
average of 8.4 units from 1988 —2002 (165 cm — 0 cm). This phenomenon was to be
expected with the input of River Murray water into the River Torrens system as Murray
water pH levels are considerably more alkaline with pH at Morgan (upstream of the
Mannum off take) typically between 8.0 and 9.0 (Tibby and Reid, 2004). The change in
species assemblage clearly outlines the increase in pH that has been occurring since 1954
when the pipeline was first established. Default trigger values have been estimated by
Australian and New Zealand Environment and Conservation Council (ANZECC), and,
Agricultural and Resource Management Council of Australia and New Zealand
(ARMCANZ), at pH 8.0, at which point they suggest ecological health can be

compromised (ANZECC, 2000).
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CHAPTER 7 CONCLUSION

7.1 Sedimentation in River Torrens Catchment Reservoirs

By nature, reservoirs accumulate large volumes of sediment. The sedimentation rates in
Gumeracha Weir are particularly high and potentially compromise its role in the Adelaide
water supply system. Sediments in Gumeracha Weir originate from two sources. The first
source is the River Murray, which has transported suspended sediment via the Mannum-
Adelaide pipeline since it was established in 1954. Fine suspended sediments from the
River Murray have impacted on the river health by increasing the turbidity in the Upper
River Torrens System. This is exemplified by the elimination of the attached diatom
Rhoicosphenia abbreviata and its replacement by turbidity tolerant taxa. Associated with
this change is a substantial increase in inferred pH in Gumeracha Weir. The other sediment
source originates within the Torrens catchment, the bulk of which is deposited as a result
of high energy flow events and do not appear to be associated with any single land use

practise in the River Torrens catchment.

7.2 Sources of Nutrients in River Torrens Catchment

The point sources of River Murray water entering the River Torrens system are a key
source of nutrients in Gumeracha Weir. River Murray water contains higher concentrations
of total phosphorus (Schultz et al., 2000; Tibby and Reid, 2004), which is being

transported into the River Torrens system attached to suspended sediment particles.

The diatom stratigraphy, particularly through the increased relative abundance of Melosira
varians, indicates nutrient enrichment in Gumeracha Weir following the commencement of
pumping of River Murray water into the River Torrens system.
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7.3 Recommendations for Management

There are a number of options for better management of the River Torrens to improve the
River’s health. The quality of the water being transferred from the River Murray to the
River Torrens could be improved by simply adjusting the timing of water pumping from
the River Murray to a period of low turbidity in the source, for example during the months
August and October. It may also be suggested that water from the River Murray be
pumped straight to Millbrook Reservoir, where excess suspended sediment can settle out,
thus limiting the impact of the River Murray water on the River Torrens. More
fundamentally, a reduction in water use to the point where River Murray water input is no
longer necessary would result in dramatic improvements in the ecological health of the
Upper Torrens system. Such an initiative requires widespread community support,
however such proposals are now in the public domain. Finally, it is recommended that
dredging, though expensive, should be considered in areas along the river that have high
sediment accumulation as this would reduce the impact of internal nutrient cycling which

might otherwise be a substantial nutrient source for many years to come.

7.4 Suggestions for Further Research

This, and coincident studies within the River Torrens catchment, are likely to prompt a
reassessment of the focus of sediment and nutrient research by the statutory authorities. As
such, it opens up an array of future research opportunities. Further research possibilities
include additional cores being retrieved from Gumeracha Weir as close as possible to the
wall to assess the full volume of sediment trapped through the entire history of the weir.
Such an initiative is necessary before proposed dredging of the weir takes place. By
obtaining the entire depth of sediment, clearer insight could be gained into the pre

Mannum-Adelaide pipeline conditions.
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It would also be beneficial to conduct geochemistry analysis using <10 pm particle sizes
on the core to obtain more comparable results between Gumeracha Weir sediment and

River Murray samples that were analysed using <10 pm particle sizes.

The collection of a more extensive range of suspended sediment samples from tributaries
sub catchments upstream would provide a more rigorous assessment of sediment sources.
However to do this would be relatively difficult as it would require long-term access to a
continuous flow centrifuge. Additionally, the major storm events that transport much of the
sediment are sporadic (Schultz et al., 2000) and the timing of sampling would need to
catch the rise in these floods. Even in this event, at best only 1-2 samples would be

obtained per flood.

Research could also extend to examine more widely the sources of sediment in other
Mount Lofty Ranges impoundments, in particular Mt Bold and South Para Reservoirs.
These sites, which also receive River Murray water flow diversions, would be a logical
extension to the research. Mt Bold, in particular, is older than Gumeracha Weir and should
contain sediment indicative of pre- and post Murray water divergence into the Mount Lofty
catchments. It is anticipated that this research would bring about a clearer understanding of
how River Murray water input has affected both the water chemistry and biota of the

Mount Lofty water supply catchments and streams.
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Code |Location Type

2001 |Yacka ridge Sediment grab

2002 |Upstream of Mannum pipeline intake Griggs rd Sediment grab

2013 |Foresten Creek on northern side of Torrens Deposited sediment

2014 |Surrounds of Foreston Creek Surface soil

2015 |Within foreston Creek Sub soil

2016 |Torrens river @ Hynes bridge Deposited sediment

2017 |Kenton valley Creek Deposited sediment

2018 |Williams Creek Deposited sediment

2019 |Williams Creek Surface soil

2020 |Williams Creek Subsoil erosion

2021 |Torrens river Deposited sediment

2022 |Adjacent to Torrens river near Bulimberg hill Surface soil

2023 |[Unknown Northern input stream NW of Birdwood |Deposited sediment

2024 [Unknown Northern input stream NW of Birdwood |[Surface soil

2025 |Stony Creek Sediment

2026 |Torrens on black snake rd Deposited sediment

2027 |Black snake rd Surface sediment from gravel rd

2028 |Torrens river Sediment

2029 |Road leading to Cromer Sediment from surface of road

2030 |Near Cromer rd Surface erosion from cultivated paddock

2031 [Torrens u/s of input line next to Mt Pleasant Deposited sediment

2032 |Next to Mt Pleasant Surface soil from cultivated land

2033 |Adjacent to Mt Pleasant golf course Sediment from road surface

2034 |Upper Torrens river next to Mt Pleasant golf course{Deposited sediment

2035 |u/s from Gumeracha Weir Deposited sediment
3001/1 |Murray waters-Millbrook scour Continuous flow centrifuge
3001/2 [Murray waters-Millbrook scour Continuous flow centrifuge
3001/3 |Murray waters-Millbrook scour Continuous flow centrifuge
3004/1 [Murray waters-at Mannum Continuous flow centrifuge
3004/2 [Murray waters-at Mannum Continuous flow centrifuge
3004/3 |Murray waters-at Mannum Continuous flow centrifuge
3004/3B |Murray waters-at Mannum Continuous flow centrifuge
3003/1 |Torrens with Murray water-d/s Millbrook Continuous flow centrifuge
3003/2 |Torrens with Murray water-d/s Millbrook Continuous flow centrifuge

Appendix 1: sample codes, sample location and type for modern geochemistry samples
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