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PHYSICAL REVIEW D, VOLUME 63, 023503

Properties of cosmologies with dynamical pseudo Nambu-Goldstone bosons

S. C. Cindy Ng and David L. Wiltshiré
Department of Physics and Mathematical Physics, University of Adelaide, Adelaide, S.A. 5005, Australia
(Received 12 April 2000; published 18 December 2000

We study observational constraints on cosmological models with a quintessence field in the form of a
dynamical pseudo Nambu-Goldstone boson. After reviewing the properties of the solutions, from a dynamical
systems phase space analysis, we consider the constraints on parameter values imposed by luminosity distances
from the 60 type la supernovae published by Perimuteal,, and also from gravitational lensing statistics of
distant quasars. In the case of the type la supernovae we explicitly allow for the possibility of evolution of the
peak luminosities of the supernovae sources, using simple empirical models which have been recently dis-
cussed in the literature. We find weak evidence to suggest that the models with supernovae evolution fit the
data better in the context of the quintessence models in question. If source evolution is a reality then the
greatest challenge facing these models is the tension between the current value of the expandisip, ayel
the fraction of the critical energy densit),,, corresponding to the scalar field. Nonetheless there are ranges
of the free parameters which fit all available cosmological data.
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I. INTRODUCTION in the rise times of the supernovae is not conclusively ruled
in, neither is it conclusively ruled out.

Scalar fields have played a central role in models of the Given that an evolution in the shape of the light curves of
very early universe for the past 20 years. In the past fewthe supernovae measured in their rest frame remains a real
years attention has turned to models in which a scalar fielgossibility, it would not be surprising if the peak
plays a dynamical role at late times, rather than simply beinduminosity—which is the effective standard candle used—
frozen in as a static relic vacuum energy. Such modelswere also to evolve. Riest al.[5] conclude that the type la
which have been dubbed “quintessence” moddlf could supernovae data could conceivably be explained entirely
in principle provide a dynamical solution to the cosmologicalwithin the context of an open Friedmann-Robertson-Walker
constant problem—namely the question of why the magniuniverse together with a reasonable astrophysical evolution
tude of the vacuum energy at the present epoch is so muahodel, e.g., a consequence of a time variation of the abun-
smaller than one might naively expect from particle physicsdances of relevant heavy elements in the environment of the
models such as various supergravity theories. A dynamicalkhite dwarf supernovae progenitors. Detailed astrophysical
“solution” of the cosmological constant problem would modeling—see, e.g|7]—should hopefully eventually re-
amount to a demonstration that a particular dynamical evosolve the issue, although at this stage the difference between
lution of the scalar quintessence field is a natural conseeur theoretical understanding and the observations remains
guence of the cosmological field equations without fine-quite substantig]8].
tuning of parameters, given some reasonable physical In many recent papers it has been commonly assumed that
assumptions about the initial conditions. the dynamical scalar fields, should obey an effective equa-

The most notable recent observational evidence which hagon of stateP ,=wp, with —1<w<0, at the present ep-
driven the theoretical interest is the measurement of the ach, in order to obtain a cosmological acceleration, i.e., a
parent magnitude-redshift relationship using type la supernoegative deceleration parametgg. Indeed, the condition
vae (SNe 13 [2]. These results have been interpreted, in thehat —1<w<0 is often taken as a defining characteristic of
context of a cosmological model containing pressureless dustjuintessence”[1]. The broad picture in this cosmological
and a cosmological constant as evidence that the universe scenario is that the universe is currently in the early stage of
is undergoing accelerated expansion at the present épeeh an epoch of inflationary expansion. The motivation for this is
[3,4] and references thergiriThe validity of this conclusion that one could then hope to have a model cosmology in
is currently open to some doubt, however. In particular, avhich observations such as the type la supernovae apparent
recent analysis by Riess al.[5] indicates that the sample of magnitude-redshift relation could be explained by a cosmo-
type la supernovae shows a possible evolution in rise timelgical acceleration in a similar fashion to models with a
from moderate £~0.3) to large ¢~1) redshifts. Although cosmological constant, but with the possibility of explaining
the statistical significance of this result has beenwhy the magnitude of the vacuum energy density and the
diminished—from the 5.8 level [5] to the 1.% level energy density in ordinary pressureless mafigr, are com-
[6]—upon a more rigorous treatment of the uncertainties irparable at the present epoch—the so-called “cosmic coinci-
the datd 6], it remains true that while a systematic evolution dence problem’19].

One attractive feature of homogeneous isotropic cosmo-
logical models with dynamical scalar fields is that many of
*Electronic address: cng@physics.adelaide.edu.au them possess “cosmological scaling solutiorjd0], namely
"Electronic address: diw@physics.adelaide.edu.au solutions which at late times have energy density compo-
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nents which depend on the cosmic scale factor according toonstant, whereas gravitational lensing data has been used to
pxa ™ andpgca” ™ simultaneously, and which act as at- place upper bounds oA [25-27. They therefore provide
tractors in the phase spacenib<m,, which is the case, for complementary tests of the parameter spaces of models with
example, for simple power-law potentials with inverse pow-a non-trivial vacuum energy.
ers[11,12 V(¢)x ¢~ ¢, or for certain power-law potentials In this paper it is our intention to critically study these
with positive powerg10], then the scalar field dominates at bounds. First, we will consider how the bounds are affected
late times, producing a quintessence-dominated cosmolodyy the initial value of the scalar field at the beginning of the
with accelerated expansion at late timesnif=m,, whichis  matter-dominated epoch. Secondly, we wish to investigate
the case for exponential potentiqlk3—20, then the scaling how such bounds might be affected in the case of the PNGB
solutions are “self-tuning”[16]—i.e., the dynamics of the model if the observed apparent faintness of type la superno-
scalar field follows that of the other dominant energy com-vae is at least partly due to an intrinsic evolution of the
ponent, with a dependence(,,oca*4 in the radiation- sources over cosmological time scales, which in view of the
dominated era and a dependerymgoca‘3 in the matter- results of[5] would appear to be a very real possibility. The
dominated era. reason for focusing on the PNGB models in such an inves-
Even if the ultimate late-time properties of the solutionstigation is suggested by the fact that whereas many quintes-
are not precisely “self-tuning” in the above sense, modelssence models have been singled out in the literature, perhaps
such as those with inverse power law potentials can stilsomewhat artificially, simply because they have the property
effectively act as “tracking solutions,” since for a wide of yielding an accelerated expansion, many different possi-
range of initial conditions, the solutions rapidly converge tobilities arise in the PNGB case. Indeed, at very late times, the
a common, cosmic evolutionary tragk2]. Thus there are a apparent magnitude-redshift relation for PNGB models ulti-
number of ways in which one might hope to solve the “cos-mately coincides with that of the Einstein—de Sitter model,
mic coincidence problem,” though in practice a degree ofeven though the density of ordinary matter can be low in the
tuning of the parameters has been necessary in all modeRNGB cosmologies. The requirement that the faintness of
studied to date. type la supernovae is entirely due to their cosmological dis-
In this paper, we consider a form of quintessence, ariances places rather strong restrictions on the values of the
ultra-light pseudo Nambu-Goldstone bos6RNGB) [21]  parameterd/ andf [24], because it requires us to exist at an
which is still relaxing to its vacuum state. From the view- epoch of the PNGB cosmologies which is still quite far re-
point of quantum field theory PNGB models are the simplesmoved from our ultimate destiny. If these restrictions are
way to have naturally ultra-low mass, spin-0 particles andelaxed because of evolutionary effects, then it is quite plau-
hence perhaps the most natural candidate for a presently egible that other regions of the parameter space of the PNGB
isting minimally coupled scalar field. The effective potential models become viable alternatives. Since PNGB cosmolo-

of a PNGB field¢ can be taken to be of the forf@2] gies could therefore still solve the “missing energy prob-
lem,” even if the evidence for a cosmological acceleration
V(¢)=M*cog ¢/f)+1], (1)  proves to be ephemeral, we believe it is important to inves-

tigate this possibility quantitatively.

where the constant term is to ensure that the vacuum energy We will begin the paper with a qualitative analysis of the
vanishes at the minimum of the potential. This potential isSolutions, to provide some general insights which will help
characterized by two mass scales, a purely spontaneous sy#f-guide our quantitative discussion. Although these proper-
metry breaking scalé and an explicit symmetry breaking ti€s are no doubt already known, to the best of our knowl-
scaleM. edge an analysis of the phase space of the solutions has never

The effective PNGB mass m¢~M2/f_ To obtain solu- been presented in the literature. Having completed this
tions withQ ,~ 1, the energy scales are essentially figgt] ~ analysis in Sec. Il we will go on to discuss a number of
to valuesM~10"2 eV, interestingly close to the neutrino 1SSUes relating to numerical integration in Sec. I, and relate

mass scale for the Mikheyev-Smirnov-WolfenstéMSW) the properties of the solutions found numerically to the exact
solution to the solar neutrino problem, ant~mp, analysis of _Sec._ll. In Sec. IV we present the main analysis of
=10'° GeV, the Planck scale. Since these two energy scald§® constraints imposed on théA(f) parameter space, al-
have values which are reasonable from the viewpoint of parI_owmg for the possibility of evolution of peak Iummosmes_ in
ticle physics, one might hope to explain the coincidence thaf’® yPe€ la supernova sources. Bounds from gravitational

the vacuum energy is dynamically important at the presennsing statistics are updated in Sec. V, and the implications
epoch. of our results are discussed at greater length in Sec. VL.

The cosmology of PNGB models has already been exten-
sively studied in the literaturfl7,18,20,22—2} In particu-
lar, a number of constraints have been placed on the param-
eters M and f by various sets of observational data We will begin by performing an analysis of the differen-
[17,18,23,24 Most recently, Frieman and Wada4] have tial equations governing the cosmological evolution in a
set bounds based on the SNe la data of Ré¢s8.[4] (here-  manner similar to previous studies in inflationary and quint-
after R9§ on the one hand, and gravitational lensing surveysssential modelgl0,14,15,19,2D
on the other. Comparing these bounds is of interest, since the The classical action for gravity coupled to a scalar fi¢ld
Sn la data have been interpreted as favoring a cosmologiclls the form

Il. PHASE-SPACE ANALYSIS
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A. Field variables
+L|,

R 1
- [ oo

The first choice is to simply use the Hubble parameter, H,
(2 the scalar field and its first derivative as the elementary vari-
ables. These are of course simply the variabke,w of Fri-
where k is the Planck constanR is the Ricci scalarg eman and Wagfl8] up to an overall scaling. By defining
=detg,,, andL is the Lagrangian density of non-relativistic

matter and radiation. For simplicity, we assumeis mini- = ¢ ko, I= b 10
mally coupled to the curvature, and we work in units in T F =« (10
whichfi=c=1.

Consider a spatially flat Friedmann-Robertson-Walkemwe therefore obtain the system
(FRW) universe containing a fluid with barotropic equation
of stateP,=(y—1)p,, wherey is a constant, & y<2, . 3y ym? (2—1y)
iati = - i _ H=—-—H"+-——(cosl+1)—
such as radiationy=4/3) or dust (/=1). There is a self 2 2 4
interacting scalar field with the PNGB potential energy den-

sity (1) evolving in this universe. The total energy density of

_ N
this homogeneous scalar fielddg= ¢%/2+V(¢). The gov- == (12)
erning equations are given by

J2, (1)

K2

. me
H=—?( 3 J=—3HJ+ —sinl, (13)

pytP,+ %), F

where for notational simplicity we definm?=«x>M*, and
py=—3H(p,+P,), @ = xf, so thatF is dimensionless, whilen has dimensions
inverse time. The constraint equation becomes

dv
¢=—3H¢— ©)

de’

subject to the Friedmann constraint

1
k?p,,=3H?—m?(cosl +1)— EJZ. (14)

From Eq.(4), it follows thatby=0 if p,=0. Therefore tra-
(6)  Jectories do not cross the 2-dimensiona|=0 surface,

which is a hyperboloid in the variabld$, cos(/2), andJ.

Physical trajectories witlp,>0 are forced to lie within the
where x>=87G, H=ala is the Hubble parameter, and an volume of theH,l,J phase space bounded by the=0
overdot denotes ordinary differentiation with respect to timesurface.

2

K
2:—
H 3

1-2
py+§¢ +V],

t. The only critical points of the systeifi1)—(13) at finite
We may rewrite the Friedmann constraint as values ofH,I,J occur at
(1) C,+ atH==*=H,, I=0mod 27, J=0; and
Q,+Q,=1 (7 (2) C, atH=0, |=7mod 27, J=0, where
where 2
2 3
K°p,

07: 3H2 ’ (8) . . .

Both of these points in fact lie on the,=0 surface. Fur-

thermore, this surface intersects tHe=0 plane only at the

B o isolated points & TheH>0 andH<O0 subspaces are thus
Qfﬁ_W §¢ +V ©) physically distinct, and théd<<O subspace simply corre-
sponds to the time-reversal of thE>0 subspace. Therefore
are the ratios of the energy densities of the barotropic matteve can takeH>0 without loss of generality.
and the quintessence field as fraction of the critical density The pattern of trajectories close to the=0 surface can
respectively. be ascertained by continuity to the,=0 solutions, even

In contrast to the case of the cosmologies with an expothough the latter are not physical. Tihe=0 subspace is
nential potential14,15,19 where the dynamics can be re- obtained, for example, by regarding H44) as a quadratic
duced to a 2-dimensional autonomous phase plane, for thequation forH, and using the solution to eliminatkl,
system (3)—(6) the simplest phase space appears to bé¢hereby obtaining a 2-dimensional system FaandJ given
3-dimensional in the full four-dimensional phase space. by Egs.(12) and(13).

There are two alternative choices of variables which are We plot the resultingd >0 pattern of trajectories in Fig. 1
useful to describe the dynamics, which we will discuss infor values ofl €[0,27). Since the potentialV(¢), is peri-
turn. odic the same pattern of trajectories repeats itself as we ex-

2
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J ¢

d

RSO =

FIG. 2. The projection of trajectories within the sphere at infin-
ity on the ¢—6 plane. The unphysical region is shaded.
infinity correspond to solutions for which the scalar field
FIG. 1. The projection of the trajectories within tpe=0 sub- reaCheS,the tOp_Of the potentlal hilles = (e.g., the, ”ghf['
space on thé—J plane for values of e[0,2r). Within this sub- ~ MOSt trajectory in Fig. 1L Finally, there are also straight line
space, G. is a saddle point and Qs a stable spiral. separatrices parallel to th¢-axis at each of the points,C,
extending fromH= *=H, to infinity, which represent solu-
. . . . s tions with a static scalar field sitting on top of the potential
tendl to =, with trajectories crossing from one “cell” to

another at the cell boundaries. , To examine the critical points at infinity it is convenient
The trajectories which occupy the lower half of Fig. 1 areyq transform to spherical polar coordinates 6, and ¢ by
obtained from those in the upper half by the symmdtry defining

—2m—1, J——J of the differential equation$11)—(14).

Physically this simply corresponds to the scalar field rolling H=r cosé, (16)
from the maximum to the right of the minimum as opposed
to the one to the left. I=rsingsing, (17
An analysis of small perturbations about the critical points
C, and G yield eigenvalues J=r sinf cose, (18
(1) A=—6my,—im(J/6=\6+4/F%) atC, .,
(2) A\=0,£im/F at G,. and to bring the sphere at infinity to a finite distance from the

Thus G attracts a two-dimensional bunch of trajectoriesorigin by the transformation=p/(1—p), 0<p=<1[29].
but is a saddle point with respect to trajectories lying in the Although the trajectories on the sphere at infinity do not
p,=0 surface, as is evident from Fig. 1. The 2-dimensionalepresent physical cosmologies, it is useful to plot them since
bunch of trajectories which approach Care found to cor- the form of the trajectories which lie just within the sphere
respond to an inflationary solution withecexp(y2/3mt) as Wil be similar. On the spherp=1 we find
t—o and ¢—const=2n7F, ne Z. The possible role of 40 2
scalar fields with PNGB potentials in driving an inflationary =7 _ : <7 _
expansion of the early universe has been discussg2igin dé sing cos 6 3sirf ¢+ 4 (tar? 6 cos’ ¢—6) |,

The point G is a degenerate case, in particular with re- (19
gard to perturbations orthogonal to tpe=0 surface(i.e.
into the surfacep,>0 region, for which the eigenvalue is d_¢: §cose sin 26 (20)
zero. It is a center with respect to the trajectories lying in the d¢ 2 '
p,=0 surface, and when perturbations of higher order are
considered it becomes a stable spiral point inghe0 sur- ~ where{ is a new time coordinate defined bf=rdt. The
face as can be seen in Fig. 1. Since there is a degeneradgsulting integral curves are plotted in Fig. 2. By Et) the
however, an alternative choice of phase space variables ojection of the physical regiop,>0 onto the sphere at
desirable. We will defer a discussion of the late time behavinfinity leads to the condition
ior of the solution near £to Sec. Il B.

. The points G- porrespond to modgls with a scalar field cot 0>£cos’- &. 21)

sitting at the maximum of the potential, whereas corre- 6
sponds to the scalar field sitting at the bottom of the potential
well. The separatrices in Fig. 1 which join,Cto C, corre-  Values of & and ¢ which violate this inequality lie in the
spond to the field rolling from the maximum to the mini- shaded region.
mum. It would appear from Fig. 1 that trajectories which ~ The critical points on the sphere at infinity are
spiral into G become arbitrarily close to the separatrix at (1) AT, A5, : four points at
late times. (6,¢) e{(+tan *6,0),(+tan * 6,7} or

The separatrices which join the pointg.Cto points at H=+o, I/H=0, andJ/H=* 6.
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B. Energy density variables

In view of the eigenvalue degeneracy encountered above,
we can alternatively choose to represent the system by the
variablesH, x, andy, where

K(.ﬁ J (22
A“l- = — =
6H \6H
VWV \2mcog1/2)
y=—z—= . (23
FIG. 3. The projection of trajectories within the-0 andl <0 \/§H \/§H
hemispheres at infinity on thd—J plane. The unphysical region is . .
shaded. These are the same variables used by Copeland, Liddle and
B . Wands[19] for the model with an exponential potential. As
(2) BX : two points at above, we will consideH >0 only. The field equations then
H=xw, |/H=0, andJ/H=0. take the form
Since the projection onto spherical polar coordinates
(16)—-(18) is degenerate at the north and south potes 3.,
=0,m, these points are excluded from the chaft¢) but H=— EH M (24)
can be included using an alternative hemispherical projection
(see Fig. 3 . . my 3y’H* 3
(3) C;,: two points at X= t7 1- WJr EHx(,u—Z), (25)
(0,9) e{(w/2,m/2),(m/2,37/2)} or
=+oo, H/I=0, andJ/1=0.
An analysis of small perturbations shows that the points . _mX 3y’H® 3
. y &l perturba P y=F—=\1- ——=+5Hyu, (26)
A7, . are repellors in all directions of the phase spéfe F 2m® 2
Table ), while A7_ ,_ are attractors. This therefore repre-
sents the most “typical” early behavior of solutions. Rer ~ Where
>0, A] correspond to the limit—0. We find thatH
L+ 2+ COTSP - p(Xy)=y(1-y?) +(2= )% (27)

~1/(3) or axt¥® while k¢~ =/2/3Int, for these solu-
tions. The points A ,  with H<O represent the time-
reversed solutions.
The point_ B (_Bf) repe_ls (attracts a _2—dimensional x2+y2=Q, (28)
bunch of trajectories traveling t¢from) finite values of
H,l,J, but is a saddle point with respect to directions on thewhich is why we have adopted the terminology “energy den-
sphere at infinity. The points are found to correspond to sity variables.” The physical region of the phase space will
—0 with H~2/(3yt) or ax<t?? while k¢ot", n>0. be constrained to lie within the cylinde®+y?<1 since
The points G, are the projection of the points;C and Q,4=<1. In the case of the exponential potential analyzed in
C, into the sphere at infinity. The degenerate eigenvaluefef. [19], one of the differential equations decoupled, and
simply reflect the degeneracy of the projection. the dynamics was effectively described by a phase plane
Bi acts as a repe”or for trajectories W|t¢20, ¢ W|th trajectories bounded by thECIere2+y2=l In the
=const ag—0. As shown in Fig. 3, trajectories are driven Present case, however, no such simplification arises.
towards B before they reach . This is consistent with the ~ 1he Physical region of phase space is further restricted by
; - : the requirement that’< 2m2/H2=H?/H?, which is equiva-
property that wher is large (3H=m,,), the field evolution . 3 T, W
is over-damped by the expansion, and the field is effectivel}efnatg I(-:|O§(I/2)hT-|l in ter;nsl_of thfetfrl]eld Vl"?‘r'gb'gi |:20<r i/alues
P ; 0 , eachH =const slice of the cylindex“+y°<1 is
frozen to its initial value ¢—0). cut off in the y-direction above and below thge=+H;/H
TABLE I. The critical points on the sphere at infinity and their lines. Thus the “fundamental cell” of the phase space can be

We note that in these variables

eigenvalues. considered to be a cylinder forsOH<H,, capped by a horn
for H>H, which tapers off to a line segmentl<x=<1 on
Critical points Eigenvalueéwith degeneracigs the x-axis asH— (see Fig. 4 In fact, the phase space
A%, AL +3(2), ©3(2—7) consists of an infinite number of copies of the fundamental
- cell of Fig. 4 as a result of the periodic structure of the
B” 3y 3 potential. These cells;,, can be labeled by an integen,
- *5 (2,552~ with the variablel lying in the range Bn<I<2(n+1)w
for eachn. For cells with evem the dynamics is described
Ci, 03 by Egs.(24)—(27) with the upper sign in Eq$25) and (26),

while for oddn one must take the lower sign.

023503-5
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where the amplitude is governed by the equation
d mt
2y — 2 _ P _ A2
dt(A )=3HA (y 25|rF—]__)(1 A%). (31

The nature of ¢ is now found to depend of:

(1) If y<1 we find that over a cycle the average value of
the right-hand sidérhs) of Eq. (31) is negative and\? de-
creases so that,Gs an asymptotically stable spiral. Further-
more to leading ordeH~2/(3yt) ast— or axt?®” and
A(t) is given by

1 (=dt’ mt’
A(t)= Bt(y‘l)/yexp{ —— cos( —) (32

vl v F

with B constant. The late-time attractor h@g=0 and(},,
=1.
(2) If y>1 then over a cycle the average value of the rhs
of Eq. (31) is positive andA? increases until it reaches a
limit cycle A%=1, i.e.x*+y?*=1 orQ,=1, Q,=0. In this
FIG. 4. The “fundamental cell” of the phase space in terms of Case
the energy density variables. On thg=HZ/H? planes(the shaded
planes, only one trajectory is possible as shown. It corresponds to i m2(1-v) ~dt’ !
the scalar field lying on top of the potential hill all along. On the A(t)=1-Bt""""exg —2 | —-co F I
; . S . t t
H=0 plane, the trajectories are concentric circles with center at the
origin.

X

(33

(3) If y=1, which corresponds physically to an ordinary

i . matter-dominated universe, then an intermediate situation
Within the horn portion of each phase space cell the mo-

tion of most traiectories is rouahly circular iH — const obtains. Essentially any of the concentric circles in the
; . Jec ugnly - : =0 plane of Fig. 4 can be approached asymptotically giving
slices, in a clockwise sense in even cells,, and anti-

clockwise in odd cell€,, ., ;. However, trajectories can cross Z l::r(])lr\:str;r?t f?nr m;.\lcgn(ﬁg_e)%;agdlﬂ(\//’v;}ih gépvé?“ejrsei;; I?h o
from one cell to another along thye= = H, /H boundaries of initial conditions and the par;meienrsand]-‘

their horns, which correspond to the surfades2n# in We observe that for all values of ’

terms of the field variables. For even cells,,, trajectories '

join the cell C,, along they=H,/H surface and the cell 1

Con+1 along they=-—H,/H surface. Below theH=H, P> B (34)
plane solutions cannot cross from one cell to another, but

- . . - . 2
remain confined within the cy||nde¢2+y <1. at late times. Sincepyoca_”, the three different late time

WhenH=0 we see from Eqs(24)—(27) thatx=my/F  behaviors can thus be understood as a consequence of the
andyz —mx F, so that trajectories which lie in thd=0 scalar field either decreasing more rapidly than the barotropic

surface are purely concentric circles. Sirwe 0 in theH  fluid (y<1), less rapidly ¢>1), or at the same ratey(
=0 plane, these do not represent physically interesting cos=1)- The scalar field thus eventually dominatesyit1,
mologies, but by continuity the behavior of the trajectoriesWhile the barotropic fluid dominates #f<1. In the interest-
just above the plane will be of a spiral nature. ing critical case of dust filled modelsyE 1) b_oth theiscg_lar

The originH=x=y=0 is in fact the critical point corre- field _and ordlna}ry matter are of cosmologically significant
sponding to G. The nature of the critical point is altered by density at late times. _ _ _
the change of variables, however. In particular, whereas the One simplification that is often made in studying quintes-
eigenvalues for linear perturbations are unchanged, whep€nce models is to assume that at late times the quintessence
higher order corrections are considered the point is no longéf€!d obeys an equation of state
i\l.ways an asymptotically stable spiral as was the case in Fig. Ps=(vs— L)y (35)

Asymptotically ast—o we have with 1y, effectively constant. While such an assumption is

mt justified in the case of models with a slowly varying scalar

x=A(t)sin—, (29  field, it does not apply in the present case. In particular, since
F the effective barotropic index of the scalar field i5]
mt 2x2

y=A(t)cos?, (30) Vo= T2 (36)
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we see thaty¢=sin2(mt/f) at late times, so that it remains making the choicg39) is that it allows us to integrate the
truly variable, varying from O to 2 over each cycle. It fol- Friedmann equation directly rather than a second order equa-
lows from Egs.(25—(28) that the scalar energy density pa- tion (11) which follows from the other equations by virtue of

rameter obeys the equation the Bianchi identity. This may possibly lead to better nu-
} merical stability since it is not necessary to implement the
Q,=3HQ (1= Q) (y—vy) (37 Friedmann constraint separately.

) We begin the integration at initial values of v, andw
so that() ,—0 ast—oe, which accords with the late time chosen to correspond to initial conditions expected in the

properties of the solutions observed above. early matter-dominated era. The integration proceeds then
until the rhs of Eq(44) is equal to 1, thereby determining the
I1l. NUMERICAL INTEGRATION value of the present epochy, to be the time at whiciH

. ) . =H,. We are then also able to determiflg,y, since accord-
We will now consider the extent to which models basedmg to Eq.(39)

on the PNGB potential are constrained by the latest observa-

tional evidence. This work extends the studies previously 3

undertaken by various authdr7,18,23,24,3D In the most Qmo=0v"(to)- (45)
recent analysis, Frieman and Waga have compared the con-

straints imposed by the high redshift supernovae luminosity The choice of appropriate initial conditions has been pre-
distance on the one hand and gravitational lensing bounds ariously discussedi23,17,1§. In particular, since the Hubble
the other[24]. The two measures provide tests which areparameter is large at early times, it effectively acts as a
potentially in opposition. Here we will perform a similar damping term in Eq(3), driving the scalar field to a state
analysis for the PNGB models, but also taking into accounfyith =0 initially, i.e. u=0. We takev =1101 initially,

the possibility of luminosity evolution which has not been yhich in view of relation (39 and the fact thatQ
considered in previous studigk8,24. We are therefore con- g 1_1 corresponds to the early matter dominated era

sidering the model of the previous section with-1. 1100<z=3000. Results of the integration do not change sig-

To proceed it is necessary to integrate the equations Nisicantly if v is altered to values within the same order of
merically. To do this we introduce the dimensionless vari-magnitude.

ables The initial value of the scalar field variable;=w(t;),

. can lead to some variability in predicted cosmological pa-
u:i:ﬁ (39) rameters at the present epoch. A few different values of
Ho Ho' w(t;) have been considered by different authi#8,17,18.

However, the only systematic studies of bounds in thg
v=Q},{S’(1+z), (39 parameter space have been perfori&sl24] for one par-
ticular initial value,w;=1.5. One must bear in mind that
K¢ such bounds are also dependentgn the value of which is
T~ (40) not greatly restricted. Given that we are starting wift;)
=0, so that the kinetic energy of the scalar field is initially
where ) is the fractional energy density of matter at the negligible, the only physical restriction on the value vaf
present epoch,. The dynamical system then becomes comes from the requirement that the scalar field should be
sufficiently far from the minimum of the potentiaV/(¢),

w=|

H m? that Q 4(t;) is small. Thus will ensure that; is consistent
u'= —3gut ESIHW, (41)  with a scalar field that has emerged from the radiation domi-
0 0 nated era with(} , sufficiently small that is consistent with

bounds set by primordial nucleosynthesis, and by structure

r_ i formation models. This still leaves considerable latitude for
v Ui (42) :
Ho the choice ofw;, however.
In Figs. 5 and 6 we display contour plots@f,, andH
,_u 43) in the M,f parameter space for two values=1.5 andw;
W= F’ =0.5. Similar figures have been given by Frieman and Waga

[18] in thew; = 1.5 case, although our resolution is somewhat
where the Hubble parameter is defined implicitly accordingbetter. Asw; decreases the contour plots do not change sig-
to nificantly in terms of their overall features, but contours with
equivalent values shift to lower values of thearameter. For

H 1, m v le, for | lues ofl the Q. 4o=0.7 I
AL T N example, for large values dfl the (2 40=0.7 contour lies at
Ho |” 6" :SHOZ(COSW bl @4 S Valuef=2.05< 10 GeV if w;=1.5, while the same con-

tour lies atf=0.94x 10'® GeV if w;=0.5.
and prime denotes a derivative with respect to the dimen- The other principal feature of the plots 5 and 6, which was
sionless time parameter=Hyt. Only the variablev differs  not commented on in Ref18], is the wave-like properties of
from those used by Frieman and Wdda&]. Our reason for the contours at larger values &f. These features can be
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FIG. 5. Contours of) 4, in the M,f parameter space for two FIG. 7. Contours ofg in the M,f parameter space for two
choices of initial values(a) w;=1.5; (b) w;=0.5. choices of initial values(a) w;=1.5; (b) w;=0.5. Valuesqy<0,
orresponding to a universe whose expansion is accelerating at the

readily understood by considering the corresponding plots ogresem epoch, are shaded.

the deceleration parametey,, which is defined in terms of

u(tg), v(ty), andw(ty) b . .
(to). v (to) (to) by We display contour plots odjy in the M,f parameter space

3 , in Fig. 7. Essentially, aM increases for roughly fixetifor
Qo= 5V (to) + e (to)—1, sufficiently largeM, the value ofg, oscillates over negative
and positive values from a minimum qf=3(1— 30 4) tO
5 a maximumgy=3(1+ 30 40) about a mean afj,=0.5. This
= 5143040~ 6yo"). (46)  corresponds to the scalar fielgh, having undergone more
and more oscillations by the time of the present epoch. The

6§ minimum value ofg, is attained wherb=0 instantaneously,
55 while the maximum value i, is attained when is instan-
= taneously passing through the minimum of its potential.
:,5 o3 For smaller values o to the left of the plots the scalar
2 37 field has only relatively recently become dynamical, whereas
- £ for larger values oM, the scalar can already have undergone
2— several oscillations by the time of the present epoch, particu-
E larly if fis small. This variation can be understood in terms
of the asymptotic period of oscillation of solutions which
(a) approach &, which by Eqs.(29),(30) is
30F ta=2mFIm=27fIM2. (47)
25
E 20 The periodt, is shorter for largeM, or for smallerf. Since
38 L5F the finalf values plotted in thev;=0.5 case are a factor of 2
< 10b smaller than thev;=1.5 case, this also explains why points
g with the same value dfl have undergone more oscillations
0'5;_ up to the present epoch for the smaller valuevpf
0.0C

The value ofHgt, oscillates asM increases for roughly
(0) o (10_ahl/§ev) fixed f, according to whether the universe has been acceler-
ating or decelerating in the most recent past, with more rapid
FIG. 6. Contours oHgt, in the M,f parameter space for two Vvariation for parameter values with shorter asymptotic peri-
choices of initial valuesfa) w;=1.5; (b) w;=0.5. ods,t,.
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The wiggles in the() 4, contours are a residual effect of A. Models without evolution

the oscillation of the scalar field &3, settles down to a We use the stretch-luminosity corrected effectB4pand

constant value according to E(B7). The variation in the  hoak magnitude in Table 1 of P98 as the absolute magnitude
value of €1 4o with the value ofw; can be understood from 5.4 denote it asn . The distant modulus of a supernova is

the fact that for smaller values of, the scalar field begins its defined asmg +Mo, where M, is the fiducial absolute

evolution in the matter- dommated era closer to the Cr't'calmagmtude which has not been given in the literatures. A

points, G, gorrespondmg o the _maX|mum Of. t.he pptentlal, fitting method to obtain\,, using only the 18 CataTololo

V(¢). For .f|xed M andf the period of quasi-inflationary supernovae, can be found [83,34]. Perlmutteret al. [3]

lexpansmn is therefore longer, and the present valug of calculate the confidence regions by simply integrating over

arger. M. In this paper, we will perform an analytic marginaliza-
tion over M, and obtain the marginal likelihood.

IV. CONSTRAINTS FROM HIGH-REDSHIFT TYPE IA Similarly to the y? statistic used by Riesst al. [4], we

SUPERNOVAE define the quadratic form
Empirical calibration of the light curve—luminosity rela- 60 , eff 5
tionship of type la supernovae provides absolute magnitudes M f)=2 Mg, + Mo~ ui) (53
that can be used as distance indicators. Since the luminosity ’ =1 o?

distance of a light source, , is defined by
whereu;(z;Hq,M,f) is the predicted distance modulus for

odL (2t 1)f70(z+ 1)dr, (49 ~ model parametersi(, f), and
' » 2 S5loge |2
with 7=Hot, it is convenient to define an additional variable gi=0 Sﬁ.+ EARGIE (54)
r=-— fTv dr, (490  The predicted distance modulus is
70
mi=5logd (z;)+25, (55)

which is proportional to the comoving coordinate distance
if the luminosity distanced, , as defined by Eq48) or Eq.
 comoving™ _ (50) (52), is given in units of Megaparsecs.
Hoa(to)v(to) In order to perform analytic marginalization ovelp, as
well as overM, we separate out thel, and M, depen-
dence fromy; into a quantity,v, which we define by

r

We then adjoin a differential equation
T 50 - Mo=gi+v (56
to the differential equation&38)—(40) when performing the

numerical integration. In terms af and v, the luminosity
distance is then determined according to

whereg;(z ;M,f) depends implicitly only orM andf. We
then follow the statistical procedures adopted by Drell,
Loredo and WassermdB5,36 and marginalize over using

OdL v a flat prior th_at is_boynded_over some range.
c — (r=r(to)), (52 The marginal likelihood is
m0
and can be used in the appropriate distance modulus to com- L(M,f)= if dye x12= ﬁe*@’2 (57)
pare with the supernovae data. Av v
Frieman and Wag#24] have recently considered con-

straints on PNGB models from supernovae dététhout where
source evolutionusing the data set of Riess al. [4]. We 60 et )
will perform a similar analysis, but we will make use of the Q(M f)=2 —9i~ v) (59)
largest available data set, namely the 60 supernovae pub- ’ = 0.2

lished by Perimutteet al. [3] (hereafter P9B Of these, 18
low redshift SNe la were discovered and measured in th
Calan-Tololo survey[31], and the Supernova Cosmology
Project discovered 42 new SNe la at redshifts between 0.1
and 0.83. The peak magnitudes of the supernovae are cor-
rected using the “stretch factor” light curve fitting method
[3,32]. This method is based on fitting a time-stretched ver-
sion of a single standard template to the observed light curve.
The stretch factor is then used to estimate the absolute mag-

nitude. and v ass? times the coefficient of- v, viz.

&nd »(M,f) is the best-fit value ofr given M andf, with
onditional uncertaintg. We identify 152 as the coefficient
f v2 in Eq. (53),
1 60
22 (59

)

1
_2
O
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rolling down the potentiaV(¢). The label | is thus indica-
tive of the fact that the scalar field is rolling down the po-
tential for the first timegfrom left to right, while in region Il
the scalar field is rolling down the potential for the second
time (from right to lefy. In region Il gqq is positive—
however, it corresponds to parameter values for which there
would have been a cosmological acceleration at modest red-
shifts in the past, e.g., a-0.2, well within the range of the
current supernovae dataset.

6 Since conclusions regarding statistically preferred regions
M (107°h!/%eV) of the parameter space can change if evolution of the sources

i - . occurs, we think it is important that this possibility is also
FIG. 8. Confidence limits oM,f parameter values, withv, examined. as we will novr\)l do P y

=1.5 and no evolution of sources, for the 60 supernovae la in the

Ao

f (10'%GeV)
W

P98 dataset. Para_lmeter values excluded at the 95.4% Ieyel are B. Models with evolution
darkly shaded, while those excluded at the 68.3% level are lightly )
shaded. In view of the recent results of Refib,6], supernovae la

may exhibit some evolutionary behavior, at least as far as
60 _eff their rise times are concerned. A possible evolution in the
- o Mei— 0 peak luminosity is therefore a possibility which must be se-
v(M,f)=s le o2 60 tiously investigated.
: In the absence of a detailed physical model to explain
) ] ] precisely how the source peak luminosities vary with red-
The quadratic form(58) is what one would obtain by shift, one approach is to assume some particular empirical
calculating the “maximum likelihood” foM andf. Sinces  form for the source evolution, and to examine the conse-
is independent oM andf, it follows from Eq.(57) that the  quences. Such an analysis has been recently preformed by
marginal likelihood is proportional to the maximum likeli- Drell, Loredo and Wasserma85] in the case of Friedmann-
hood in this case. Lematre models with constant vacuum energy. We will un-
Figure 8 shows the 68.3% and 95.4% joint credible re-dertake an equivalent analysis for the case of PNGB quint-
gions forM andf, and is a direct analogue of Fig. 1 of Ref. essential cosmologies.
[24], where a similar analysis was performed on 37 superno- Following Drell, Loredo and Wasserm&B5] we will as-
vae given in R98. The position of the region of parameterssume that the intrinsic luminosities of SNe la scale as a
which are included at both the 68.3% and 95.4% confidenc@ower of 1+ z as a result of evolution. This model introduces
levels is broadly similar to that obtained from the R98 data@ continuous magnitude shift of the forgin(1+2) to the
[24]. Although Frieman and Wag4] did not include the ~SNe la sample. Equatiof$3) then becomes

parameter regionM>0.004 eV, we have redone their 60 , eff 2
analysis on the R98 data and find that the parameter values to EMH=S mgi—gi—v—BIn(1+z)) 61)
the right of Fig. 8 which are admitted at the 95.4% level but =1 o? '

excluded at the 68.3% for the P98 datadabeled region I

in Fig. 8), are in fact excluded also at the 95.4% confidencelhe parametep will be assumed to have a Gaussian prior
level if the 37 supernovae of the R98 dataset are used. It idistribution with means, and standard deviatiob. Physi-
possible that this discrepancy has its origin in the differen€ally the parameteg, represents a redshift-dependent evo-
techniques used by Riess al.[4] to determine the distance !ution of the peak luminosity of the supernovae sources,

moduli. Possible systematic discrepancies in the “stretchVNich might be expected to arise as a result of the chemical
factor” method of P98 versus the “multi-color light curve” evolution of the environment of the supernovae progenitors

and “template fitting methods” of R98 have been discusse s abundances of heavier elements increase with cosmic
in some detail in Ref[35] ime. Ultimately, one should hope to account for this evolu-

The importance of the @ included parameter region to tion with astrophysical modeling of the supernovae explo-

iaht of Fia. 8 diminishes. h " + with sions[7]. The parameteb would then account for a local
rignt or Fig. o diminIShes, NOWEVET, 1T oné compares 1t With v iapijity in the supernovae environments between regions

Figs. 5 and 6, since it largely corresponds to parameter valst ingividual galaxies at the same redshift which are richer or
ues with( 4,=0.9, which can be discounted by dynamical yoorer in metals, or with progenitor populations of different
measurements df g, where Qo+ 40=1. Furthermore, ages and masses, etc.

the few allowed values below th@ ,,=0.9 contour in this We now have two parameters to marginalize ovegand
part of the parameter space have unacceptably small valugs As in the case of models with no evolution, we will mar-
for the age of the Universé]t,. ginalize overv using a flat prior. We use a Gaussian prior for

The parameter region 0.002eV<M<0.001 eV, g with meang, and standard deviation, so that
which from Fig. 8 is admitted at both the 68.3% and 95.4%
levels (labeled region)l, by contrast corresponds to accept- , 1
able values of botif) 4, and Ht,. Comparing with Fig. 7, p(B")= b\/—Z_a-re
we see that this region has0.1<qy=< — 0.6, corresponding
to a Universe with a scalar field still in an early stage ofwhere

7ﬁ72/2b2 (62)
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B'=B~Bo- (63

The marginal likelihood is calculated by multiplying the
prior (62) by the likelihood resulting from Eq57), and in-
tegrating overB. The resulting likelihood is

f (10"°GeV)

z(M,f)=Ain dB’J dvp(B')e X2

so\2m
=0 e Q2 (64  (2)g=g.b=0 M (107°rY2eV)
14
where
B & (h—s"H) z
QM,fl=——+2> ———, (65) g
2 S o 3
S
hi(zi:M,f) =mgi—gi— BoIn(1+2), (66)
60 |
|
HM, =2, —. 67) o) p
i=1 O'i
The conditional best-fit of3’ is given by
60 2 =
N — hi[In(1+2z)—s°G 3
B =gz, M 2') g 68 2
i=1 loF E
60 -
In(1+z)
G=2 ——>—, (69)
i=1 T
and theg’ uncertainty,;, is given by (c)Bo=pb=05 M (107%h"%eV)
1 1 50 1n2(1+7) FIG. 9. Confidence limits oM, f parameter values in the best-
I __32g2+2 —'_ (70) fit By=0.414 slice of the M,f,B8,) parameter space, withy;
o2 b? i=1 o-iz =1.5, for the 60 supernovae la in the P98 dataset. Parameter values

excluded at the 95.4% level are darkly shaded, while those excluded
Although;is independent oM andf, the marginal likeli-  at the 68.3% level are lightly shaded. For reference, contours of
hood is no longer proportional to the profile likelihood be- s @ndHoto are superposed as dashed and dotted lines respec-
causeQ is now given by Eq.(65) rather than by the chi- fvely-

square type statisti58). _ . _ parameter space faw;=1.5: (a) the best-fit casg@,=B*;

We have performed a detailed numerical analysis on thgnq (p) Bo=0. Analagously, the best-fit case is shown in
P98 dataset, varyingo, b andw;. As a result we find a Fig. 11 for w;=0.2. We seefrom Fig. 10 that once the
best-fit value ofg,=g*=0.414, forw;=1.5 in the PNGB |ikelihood is normalized relative t@* no regions remain in
models. This would correspond to supernovae being intrinsithe =0 parameter plane which are admitted at theldvel
cally dimmer by 0.17 magnitudes at a redshift #0.5, when b=0. Furthermore, even when a non-zero standard
which is an effect of the typical order of magnitude beingdeviation,b, is included, region Il of the NI,f) parameter
addressed in current attempts to better model the supernoyane is favored at thedl level, in contrast to Fig. 8.
explosiond 7]. Furthermore, we find that inclusion of a non-  We have also undertaken an analysis of the models with
zero varianceb?, does not alter the prediction of the best-fit 8,=0 but variableb, similarly to the study of Ref[35]. In
value of 8y, although it naturally does lead to a broadeningthat case, we once again find that region Il of thé,{)
of the areas of parameter space included at theléel.  parameter plane is admitted at the level if b=0.25 orb
There is relatively little broadening of the region of param-=0.5. The dependence of the value of
eter values included at thesllevel in the By=B* plane,

however, which is no doubt a consequence of the steepness O=—2 1N LAY =O—2| V2mso 21
of the go contours in Fig. 7a) in the area corresponding to Q=-2In(£Av)=Q n b (71
region Il

In Figs. 9 and 10 we display the joint credible regions foron the value ob is displayed in Fig. 12, foB,=0 as com-
M andf, for two slices through the 3-dimensiona(f, B,) pared with the best-fit cagg,= 8*. The quantityQ is analo
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FIG. 10. Confidence limits oM, f parameter values in thé, FIG. 11. Confidence limits oM, f parameter values in the,
=0 slice of the M,f,8,) parameter space relative to a best-fit —0 Slice of the M.f,5,) parameter space relative to a best-fit

value 8* =0.414, for the 60 supernovae la in the P98 dataset, Withvalue,B* =0.435, for the 60 supernovae la in the P98 dataset, with
w,=1.5. Parameter values excluded at the 95.4% level are darklyyi=0-2. Parameter values excluded at the 95.4% level are darkly
shaded, while those excluded at the 68.3% level are lightly shadeg@ded, while those excluded at the 68.3% level are lightly shaded.

For reference, contours 6f 4, andHot, are superposed as dashed FOr réference, contours 615, andHot, are superposed as dashed
and dotted lines respectively. and dotted lines respectively.

) o ) o other relatively sensitive constraint on the cosmological
gous to the chi-square statistic of the maximum likelihoodmgdels of interest. For cosmology the situation of most in-
method. We see that the,=0 models favor a non-zero tgrest is the lensing of high luminosity quasars by interven-
value ofb=0.36 by a very small margin as compared to thejng galaxies. The abundance of multiply imaged quasars and
b=0 case. Fob=0.36 the points of greatest likelihood lie the observed separation of the images to the source puts con-
mainly in region I, in contrast with the=0 case in Fig. 8.  straints on the luminosity-redshift relation and hence the

Varying the initial conditiorw; does not appear to affect model parameters. Basically, if the volume of space to a
the best-fit value ofg, significantly. Forw;=0.2 (cf. Fig.  given redshift is larger then on average one can expect more
11), for example, the best-fit value wgs' =0.435, a differ-  |ensing events. This leads to a statistical test, which has been
ence of 5% from thavi=1.5£ase. Furthermore, the numeri- ysed to put bounds oA [25-27 and to test properties of
cal value of the least value 6 was only 0.2% greater in the some decaying\ or quintessence mod€]80,37).
w;=0.2 case. We have not attempted to find a best-fit value Gravitational lensing statistics are useful since they pro-

for w; . vide a test which potentially provides opposing constraints to
those obtained from supernovae magnitude-redshift tests. In
V. CONSTRAINTS EROM LENSING STATISTICS particular, in the case of models with a vacuum energy pro-

vided by a cosmological constant, the high redshift superno-
Gravitational lensing of distant light sources due to thevae have been interpreted as favoring relatively large values
accumulation of matter along the line of sight provide an-of () ,—Perlmutteret al.[3] give a value of), =0.72 at I
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= L
O
level—whereas the gravitational lensing data lead to uppel % 1.0/
bounds on() , : Kochanek{25] quotes() ,<0.66 at the 2r L
level. A combined likelihood analysis has been performed by 050
various author$24,27,3Q. x

Gravitational lensing constraints on the PNGB models 5 "

. . 6 8 10
have been very recent'ly given by Frieman anq W& for (b) w, = 0.2 M(107%h"/%eV)
w;=1.5. However, Frieman and Waga considered a more
restricted range of parameter spabk<0.005h eV, since FIG. 13. Confidence limits from gravitational lensing statistics:

they did not consider the possibility of source evolution in(a) w;=1.5; (b) w;=0.2. Parameter values excluded at the 95.4%
the case of the type la supernovae and therefore took valudésvel are darkly shaded, while those excluded at the 68.3% level are
of M>0.00% eV to be ruled out. We wish to extend the lightly shaded. For reference, contours(®f,, andHt, are super-
range ofM for the gravitational lensing statistics to consider posed as dashed and dotted lines respectively.
parameter values corresponding to region Il in the superno- _ ) )
vae constraint graphs, Figs. 8 and 10, so as to compare t9 the universe is to expand at the same rate as a spatially flat
constraints from different tests. Friedmann-Robertson-Walker model, rather than to undergo
We have thus simply followed the calculation described@n accelerated expansion. This is of course precisely why we
by Waga and Micel[30], who performed a statistical lensing chose the PNGB models as the basis of our investigation,
analysis of optical sources described earlier by Kochanekather than models in which a late-time accelerated expan-
[25]. They used a total of 862z(1) high luminosity qua-  SIOn had been b_unt in by hand. If we wish to test the_ hypoth-
sars plus 5 lenses from seven major optical sunj@gl.  ©sis that the faintness of the type la supernovae is at least
(Another alternative not considered here is to analyze datartly due to an intrinsic variation of their peak
from radio surveys—see, e.426,27].) Undertaking a simi- luminosities—which is a very real possibility in view of the
lar analysis for the increased parameter range, we arrive 48Sults off5}—then a quintessence model which possesses a
Fig. 13, which shows the 68.3% and 95.4% joint crediblevariety of possibilities for the present-day variation of the
regions forM and f, for two values ofw;. We refer the Scale factor is probably the best type of model to investigate.
reader to Refd25,30] for details of the calculation. The only ~If only supernovae luminosity distancésf., Fig. 9 and
regions of parameter space excluded at thelével turn out gravitational lensing stgtlsncezf., Fig. 13 are compared
to be areas of parameter space for which the deceleration {8€n we see that there is a remarkable concordance between
presently negativéct., Fig. 7, with the scalar field still com- the two tests—region Il of Fig. 9 coincides with a region

mencing its first oscillation at the present epoch. included at even thed level in Fig. 13. This is perhaps not
surprising, since in view of Fig. 7 region Il corresponds to

parameter values for which the present day universe has al-
ready undergone almost one complete oscillation of the sca-
Let us now consider the overall implications of the con-lar field about the final critical point Lof Fig. 1. It is thus
straints observed above. already well on the way towards its asymptotic behavior,
First, since empirical models with source evolution dowhich closely resembles that of a standard spatially flat
appear to fit the data somewhat better, it would appear thdtriedmann-Robertson-Walker model.
we do have weak evidence for an underlying evolution of the Due to the oscillatory behavior, parameter values in re-
peak luminosity of the type la supernovae sources, at least igion Il correspond to models in which there has been a re-
the context of the PNGB quintessence models. It might beent cosmological acceleratide.g., atz~0.2), butwith a
interesting to compare the case of other quintessence modef$(z) which changes sign three times over the larger range of
or the case of a cosmological constant. However, the PNGBedshifts, 6<z<4, in the quasar lensing sample, and there-
model is qualitatively different from such models since itsfore differing significantly from Friedmann-Lentee models
final state corresponds to one in which the ultimate destinyver this larger redshift range. Extending the SNe la sample

VI. DISCUSSION
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to include objects at redshifts 0<1z<0.4 andz>0.85 in  fact that the mere introduction of an additional dispersion,
substantial numbers would greatly improve the ability to de>0.17, in the peak luminosities while leaving their mean
cide between models in regions | and II. value fixed(cf. Fig. 1), gives rise to a change in the best-fit
There is some cause for concern, however, if we consideiegion of parameter space from region | to region(8ee
the favored values df ;o andHot,. In the case of the mod- [A_fl] for further details. One would imagine that an increased
els with empirical evolution of the supernovae sources, wélispersion is likely to be a feature of many models of source
always found that the best-fit parameter values occurred &volution, even if evolutionary effects are of secondary im-
the Q40— 1 boundary of the N1,f) parameter space. The portance. Thus even _|f the emplrlcal_mlodels with non-zero
overwhelming evidence of many astronomical observation@'® somewhat artificial, more sophisticated scenarios could
over the past two decad¢89] would tend to indicate that Well lead to similar changes in regard to the fitting of cos-
Q0=0.2+0.1, indicating that a vacuum energy fraction of mological parameters in the PNGB model. _
Q,40~0.7-0.8 is desirable, anfl 5,=<0.9 in any case. Al- Much tlghter. bounpis on the parameter space of qumtes—
though parameter values with 4,<0.8 certainly fall within sence models, including the present model, will be obtained
both the 2r and 1o portions of region Il of Fig. 9, for all Over the next decade as more supernovae data are colleg:ted.
values ofb, there are potentially serious problems if we wish What we wish to emphasize, however, is that an effective
to simultaneously obtain large values Hft,. In view of vacuum energy which is c_osmologlcally S|gn|f!cant at the
recent estimates of the ages of globular clustégs, a lower ~ Present epoch should not simply be thought of in terms of a
bound of 12 Gyr for the age of the Universe appears to bé‘cos.mlc acce_leranon.”_A dynamical vacuum energy W|t_h.a_1
currently indicated. Witth=0.65 this would requireH ot varying effective equanon of stgte allows for many pos§|t3_|I|—
=0.8. Forw;=1.5, parameter values witHt,>0.8 coin- ties for t_he evolution of the universe, and overly restrictive
cide with values 40=0.9 in region II, which is phenomeno- assumptions, such_as equating quintessence to models with a
logically problematic. late pe_rlod of contl_nuous cosmo!oglcal acc_eleratlon, should
The tension between the values®f,, andHt, is some- be avoided. If deFaMed a§trophy3|cal modeling of type la su-
what mitigated for lower values of, . Forw,=0.2, for ex- pernovae explosions ult|m.ately shows that the d!mness of
ample, we see from Figs. 12 and(BBthat the(2 4= 0.7 and dlstanF supernova events is largely due to'evoll.monary ef-
Hoto meet in region 11, and there is a small region of param_fects, it doe_s not spell the end for cosmologies with dynami-
eters there with 02 4,=<0.9 andHyt;= 0.8, which is also cal scalar fields.
consistent with the other cosmological tests.
Even if the supernovae sources undergo evolution it is
clear that parameter values in region | of 8, which are fa- We would like to thank Chris Kochanek for supplying us
vored in the absence of evolution of peak SNe la luminosiwith the gravitational lensing data, Elisa di Pietro, Don Page
ties, are still included at the @ level in the models with and loav Waga for helpful discussions about various aspects
evolution, in view of Fig. 9. of the paper, and the Australian Research Council for finan-
Perhaps the most significant aspect of our results is theial support.
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