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Abstract 10 

Translating burial and exhumation histories from the petrological and geochronological 11 

record of high-pressure assemblages in subduction channels is key to understanding subduction 12 

channel processes. Convective return flow, either serpentinite or sediment hosted, has been suggested 13 

as a potential mechanism to retrieve rocks from significant depths and exhume them. Numerical 14 

modelling predicts that during convective flow, subducted material can be cycled within a 15 

serpentinite-filled subduction channel. Geochronological and petrological evidence for such cycling 16 

during subduction is preserved in lawsonite eclogite from serpentinite mélange in the Southern New 17 

England Orogen, eastern Australia. Ar–Ar, Rb–Sr phengite and U–Pb titanite geochronology, 18 

supported by phase equilibrium forward modelling and mineral zoning, suggest Cambro-Ordovician 19 

eclogite underwent two stages of burial separated by a stage of partial exhumation. The initial 20 

subduction of the eclogite at ca. 490 Ma formed porphyroblastic prograde-zoned garnet and lawsonite 21 

at approximate P–T conditions of at least 2.9 GPa and 600 °C. Partial exhumation to at least 2.0 GPa 22 

and 500 °C is recorded by garnet dissolution. Reburial of the eclogite resulted in growth of new Mg-23 

rich garnet rims, growth of new prograde-zoned phengite and recrystallization of titanite at P–T 24 

conditions of approximately 2.7 GPa and 590 °C. U–Pb titanite, and Ar–Ar and Rb–Sr phengite ages 25 

constrain the timing of reburial to ca. 450 Ma. This was followed by a second exhumation event at 26 

approximately 1.9 GPa and 520 °C.  These conditions fall along a cold approximate geotherm of 230 27 

°C/GPa. The inferred changes in pressure suggest the lawsonite eclogite underwent depth cycling 28 

within the subduction channel. Geochronological data indicates that partial exhumation and reburial 29 
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occurred over ca. 50 M.y., providing some estimation on the timescales of material convective cycling 30 

in the subduction channel.  31 

 32 

Keywords: eclogite, lawsonite, resubduction, high-pressure, corner flow, serpentinite 33 

 34 

 35 

1. INTRODUCTION 36 

Metamorphism along cool geothermal gradients in subduction zones produces eclogite-facies 37 

mineral assemblages. These assemblages often preserve an abundance of prograde, peak and 38 

retrograde petrological relationships. For example, elemental zoning in garnet and micas can be 39 

preserved due to slow rates of diffusion, and temperature-sensitive minerals such as lawsonite can 40 

also be preserved (Tsujimori et al., 2006; Tsujimori & Ernst, 2014). Given this potential to preserve 41 

extensive petrological relationship histories, methods such as phase equilibrium modelling coupled 42 

with new and emerging geochronological techniques open avenues to explore the pressure–43 

temperature–time (P–T–t) histories of these high-pressure low-temperature assemblages, and make 44 

inferences about the behaviour of the subduction systems that host them. 45 

 46 

The application of sophisticated petrological techniques to eclogite and blueschist assemblages 47 

has highlighted the potential for complex P–T–t histories. This is particularly apparent in serpentinite 48 

mélanges. Mixing, accumulation, long-lived residence and intrachannel circulation of high-pressure 49 

lithologies have started to emerge as common phenomena within subduction channels (e.g. Krebs et 50 

al., 2008; Lázaro et al., 2009). Numerical modelling has sought to explain the dynamics of material 51 

within subduction channels, and has demonstrated that complex P–T–t histories are possible, arising 52 

from cycling and corner flow within the channel (Gerya et al, 2002, Stöckhert & Gerya, 2005; Roda et 53 

al., 2019). Examples of high-pressure rocks that have seen two or more cycles of burial have been 54 

recognised through geochronological and mineralogical evidence, for example, dating zones within 55 

metamorphic zircon (e.g. Liati et al., 2016). However, in lieu of such useful petrochronological 56 

methods, recognising multiple burial cycles can prove difficult.  57 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 58 

Lawsonite eclogite is globally rare, despite the range of bulk compositions that support the 59 

formation of lawsonite-garnet-omphacite (Wei & Clarke, 2011). Therefore, their occurrence probably 60 

reflects unusually good preservation of deeply buried, cold subducted material. Consequently, 61 

lawsonite eclogites potentially preserve comprehensive records of the physical conditions of 62 

subduction channels. This study presents detailed petrological results from eclogite in the Southern 63 

New England Orogen (SNEO), that supports partial exhumation and reburial of a single block of 64 

lawsonite eclogite during on-going subduction. Phase diagrams constrain the approximate pressure–65 

temperature (P–T) conditions of partial exhumation and reburial within the subduction channel, which 66 

is supported by U–Pb titanite, and Rb–Sr and Ar–Ar phengite geochronological data. The cycle of 67 

exhumation and reburial records an approximate total pressure and temperature fluctuation of at least 68 

1.6 GPa and 190 °C and is constrained to have occurred over ca. 50 M.y.. If the pressure fluctuations 69 

recorded by high-pressure mineral assemblages reflect oscillations in burial depths, such records 70 

support the notion of convective flow within the subduction channel.  71 

 72 

2. GEOLOGICAL SETTING   73 

 74 

2.1 The Southern New England Orogen 75 

The Southern New England Orogen (SNEO) in eastern Australia is the youngest and most 76 

outboard orogen of the Tasmanides (Fig. 1a; Kemp et al., 2009; Glen, 2013; Phillips et al., 2015). The 77 

Tasmanides are interpreted to have formed as a result of long-lived subduction on the East 78 

Gondwanan margin during the Cambrian–Triassic, which resulted in a series of eastwards-younging 79 

orogens. The oldest and most westerly of these is the Delamerian Orogen, which formed at ca. 515–80 

490 Ma on the margin of cratonic Australia, and was post-dated by the Lachlan-Thompson Orogen at 81 

ca. 484–340 Ma (Fig. 1a). The SNEO formed between the upper Devonian-Triassic, and consists of a 82 

volcanic arc, forearc basin and accretionary complex (Fig. 1b; Jenkins et al., 2002; Jessop et al., 83 

2019). The Devonian-Carboniferous volcanic arc outcrops, but is generally obscured under the 84 

younger Permian-Triassic Sydney-Gunnedah basin (Jenkins et al., 2002). The Tamworth Belt contains 85 
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a forearc basin, consisting of felsic volcanic rocks and volcaniclastics (Roberts & James, 2010). The 86 

Tablelands Complex consists of deformed sediments and oceanic basalt that accumulated within an 87 

accretionary complex. These are separated by the serpentinite-bearing Peel Manning Fault System 88 

(Fig. 1b). The SNEO also contains numerous felsic magmatic rocks of the Permian-Triassic New 89 

England Batholith, which intrude the Tablelands Complex and the Early Permian basins (Leitch, 90 

1975; Shaw and Flood, 1981; Phillips et al., 2011). These are interpreted to have formed as the orogen 91 

evolved from an accretionary system to a back-arc position (Jenkins et al., 2002; Phillips et al., 2011).   92 

 93 

2.2 Tectonic framework of the high-pressure rocks and the Tasmanides 94 

There has been significant debate surrounding the evolution of the Tasmanides, including the 95 

tectonic significance of the high-pressure rocks. Notably, all the geochronology reported from 96 

serpentinite-hosted high-pressure exotic blocks in the SNEO is significantly older than the enclosing 97 

geology (Fig. 1b; e.g. Fukui et al., 1995, Sano et al., 2004; Phillips et al., 2015; Manton et al., 2017; 98 

Tamblyn et al., 2019a). The most coherent views about the evolution of the Tasmanides involve 99 

eastward retreat of a subduction system that formed close to the cratonic margin during the mid-late 100 

Cambrian (e.g. Collins, 2002; Phillips & Offler, 2011; Moresi et al., 2014; Phillips et al., 2015). The 101 

general consensus is the high-pressure rocks found in the SNEO were formed in a subduction channel 102 

on the cratonic margin of Australia during the Delamerian Orogen in the Cambrian–Ordovician. 103 

Subsequent cooling and transport of the high-pressure rocks occurred during eastward-directed slab 104 

rollback, until the high-pressure rocks were exhumed in their current location in the Permian-Triassic 105 

SNEO (Phillips & Offler, 2011; Phillips et al., 2015; Tamblyn et al., 2019a). During this rollback, the 106 

Lachlan/Thompson Orogens developed in a backarc setting on the upper plate (e.g. Collins, 2002; 107 

Kemp et al., 2009; Moresi et al., 2014). Eastward younging arcs track the rollback of the subduction 108 

zone, accompanied by voluminous I and S-type magmatism formed from arc and back-arc rifting 109 

processes (Collins, 2002; Collins & Richards, 2008).  This eastward migration is also revealed in εNd 110 

isotopes of magmatic rocks, which demonstrate an increasingly juvenile signature as the subduction 111 

zone migrated away from the cratonic margin (Kemp et al., 2009).  112 

 113 
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2.3 High-pressure metamorphism and mélange formation in the SNEO 114 

High-pressure metamorphic rocks hosted in serpentinite occur throughout the SNEO at Attunga, 115 

Gleneden, Glenrock, Pigna Barney and Port Macquarie (Fig. 1b; Phillips et al., 2015). The Port 116 

Macquarie mélange contains by far the largest lithological variety of high pressure-rocks, which are 117 

described in detail by Och et al. (2003; 2007) and Tamblyn et al. (2019a). The mélange consists of 118 

exotic high-pressure blocks encased in chlorite-actinolite schist, which is in turn encased within 119 

serpentinite (Fig. 1c). These exotic blocks consist of variably metamorphosed omphacitite, low-grade 120 

basaltic rocks, sedimentary rocks, marble, blueschist facies rocks, retrogressed eclogite and lawsonite-121 

bearing eclogite. In-situ U–Pb geochronology on micro-zircon from the lawsonite eclogite returned a 122 

range of ages from ca. 560–440 Ma (Tamblyn et al., 2019a). The zircons occur as inclusions in garnet 123 

and also occur in the surrounding matrix. Lu–Hf geochronology on lawsonite porphyroblasts gives an 124 

age of 506 ± 15 Ma, and a Lu–Hf garnet-whole rock isochron gives an age of 489.7 ± 5 Ma. These 125 

ages are interpreted to date prograde metamorphism, as garnet cores are enriched in Lu compared to 126 

rims, biasing the age to early garnet growth. Pressure-temperature conditions obtained from phase 127 

equilibrium modelling are approximately 2.7 GPa and 590 °C for the lawsonite eclogite, and 2.0 GPa 128 

and 550 °C for a garnet-omphacite-bearing blueschist block within the same mélange. Lu–Hf, Sm–129 

Nd, K–Ar and Ar–Ar ages from adjacent blueschist blocks and fuchsite in serpentinite give ages 130 

between ca. 472 and 420 Ma (Fukui et al., 1995; Och et al., 2010; Tamblyn et al., 2019a). This 131 

geochronology, along with the presence of low-grade sedimentary blocks, confirms the accumulation 132 

of rocks with different P–T histories in the mélange.  133 

 134 

3. PETROGRAPHY 135 

Mineralogy of the lawsonite eclogite block (sample RB11) has been described in detail by 136 

Tamblyn et al. (2019a) and Och et al. (2003; 2007). The eclogite contains porphyroblastic garnet, 137 

lawsonite and omphacite, in a well-foliated matrix dominated by phengite and containing minor 138 

titanite (Fig. 2). However, it is clear from optical petrography and elemental mapping that there are 139 

two distinct mineral assemblages recorded in the sample, summarized in Supplementary Table 1, 140 

which are referred to as stage 1 and stage 2.  Garnet is euhedral and forms crystals up to 7 mm in 141 
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diameter, which have red-coloured cores and paler rims, referred to as garnet 1 and garnet 2 142 

respectively (Fig. 2a-d). The inclusion relationships in garnet are summarised in Supplementary 143 

Figure 1. Garnet 1 has inclusion-rich cores which contain lawsonite, titanite, omphacite, phengite, 144 

glaucophane, chlorite, epidote, stilpnomelane, quartz and zircon (Supp. Fig. 1). Very rarely, quartz 145 

inclusions in the outermost part of garnet 1 are surrounded by prominent radial fractures, suggesting 146 

the possibility that they were once coesite (Fig. 2e). Garnet 2 forms as ~ 400 µm wide rims on garnet 147 

1 that contain chlorite, glaucophane, titanite, omphacite, lawsonite, quartz and zircon (Fig. 2d), and in 148 

some instances overgrow matrix phengite. Enclosed inclusions of chlorite, phengite, omphacite, 149 

quartz, titanite and pyrite occur at the boundary between garnet 1 and 2 (Supp. Fig. 1). Sigmoidal 150 

inclusion trails of titanite are also commonly truncated at the boundary between garnet 1 and garnet 2, 151 

with the trails forming at a high angle to the matrix foliation (Supp. Fig. 1). Titanite included in garnet 152 

2 is coarser-grained than in garnet 1. Lawsonite forms euhedral crystals up to 3 mm (Fig. 2b,f). It has 153 

darker sections containing abundant fine-grained inclusions and clearer sections with coarser-grained 154 

inclusions. The inclusions are predominately titanite, epidote, glaucophane and phengite. In places the 155 

lawsonite grain boundaries are mantled by small garnet grains, which have been overgrown by a 156 

second generation of lawsonite. In other places the clearer lawsonite occurs as an overgrowth on 157 

darker lawsonite crystals (Fig. 2f). The darker, older lawsonite is referred to as lawsonite 1 and the 158 

clearer overgrowths are referred to as lawsonite 2. The foliated matrix is part of the stage 2 mineral 159 

assemblage, and is defined by coarse phengite (up to 1 mm but commonly ~ 300 µm) and pervasive 160 

but modally minor titanite (< 100 µm; Fig. 2b,d). The latter is associated with fine grained allanite 161 

and zircon (< 20 µm). Titanite and phengite are coarser in the matrix relative to the inclusions in 162 

garnet cores, and in places titanite forms aggregates of grains that rim phengite grains. Omphacite 163 

forms monominerallic patches up to 10 mm which are partially replaced by glaucophane and chlorite, 164 

as well as relic fractured porphyroblasts up to ~ 500 µm in size (Fig. 2a,b). Omphacite is partially 165 

replaced by chlorite and glaucophane. Garnet is partially replaced by chlorite along its grain 166 

boundaries or along fractures which cross-cut the garnet (Fig. 2c; Supp. Fig. 1). Where retrograde 167 

chlorite occurs with lawsonite, lawsonite is euhedral and unretrogressed, suggesting it was stable 168 

during the retrogression of the eclogite. In the matrix, glaucophane also forms foliated euhedral 169 
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crystals (Fig. 2c). These crystals, as well as coarse titanite crystals, are overgrown by stage 2 170 

lawsonite rims. These petrological observations denote two distinct stages of peak metamorphism in 171 

the eclogite, separated by a period of retrogression. A schematic representation of the petrologic 172 

observations made from optical petrography, phase mapping and elemental mapping can be found in 173 

Figure 3.   174 

 175 

4. METHODS 176 

 177 

4.1 Electron Probe Micro Analyses and mapping 178 

Spot analyses on minerals were obtained using a Cameca SX-5 microprobe at Adelaide 179 

Microscopy, using an accelerating voltage of 15 kV and a beam current of 20 nA. Element maps used 180 

an accelerating voltage of 15 kV and a 200 nA beam current, Ca, Fe, Mn and Mg were mapped using 181 

Wavelength Dispersive Spectrometers (WDS), whereas Al, Si, Ti, K and Na were mapped using 182 

Energy Dispersive Spectrometry (EDS). Maps were colour scaled in ImageJ. 183 

 184 

4.2 Phase equilibrium forward modelling  185 

Full phase equilibrium modelling methods are in Supplementary File 1. The rock composition 186 

was calculated for the lawsonite eclogite by combining modal proportions of each mineral with its 187 

measured chemical composition (Supp. Table 2; 3). Thin sections were mapped with a Quanta600 188 

scanning electron microscope (SEM) with mineral liberation analysis (MLA) software to calculate 189 

modal proportions of minerals. 190 

 191 

The phase equilibrium models were calculated using THERMOCALC (TC340i) using the 192 

internally-consistent thermodynamic dataset ‘ds5’ (filename tc-ds55.txt; November 2003 updated 193 

version of the Holland & Powell, 1998 data set) and activity–composition (a–x) models (Supp. Table 194 

4; Holland & Powell, 1988; Holland & Powell, 2003; White et al., 2007; Green et al., 2007; Holland 195 

& Powell, 2011; Diener et al., 2012) in the chemical system NCKFMASHO. A model for the local 196 

rock composition was calculated with water in excess, and a model for the local rock composition was 197 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



calculated with a set water content, derived from the abundance of hydrous minerals (Supp. Table 2; 198 

3).  199 

 200 

4.3 U–Pb titanite geochronology 201 

Titanite grains were analysed in-situ for U–Pb isotopes using an ASI m50 LA–ICP with an 202 

attached 7700 MS at Adelaide Microscopy. Grains were ablated using a spot size of 51 µm, a 203 

frequency of 5 Hz, and a surface energy density of 3.5 Jcm-2, with an acquisition time of 80 s for each 204 

analysis including 30 s of background measurement and 50 s of ablation. The primary reference 205 

titanite MKED-1 was used to correct for elemental fractionation, mass bias and instrument drift over 206 

the courses of analyses (Spandler et al., 2016), and a titanite grain from Mt Painter with an age of 207 

442.6 ± 1.8 Ma (Elburg et al., 2003) was used as the secondary standard. Corrections were done using 208 

the software Iolite (Paton et al., 2011) and age calculations were done using IsoplotR (Vermeesch, 209 

2018). The secondary standard from Mt Painter returned a weighted mean 206Pb/238U age of 440.3± 210 

2.5 Ma (MSWD = 1.5, n = 22) throughout the course of the analyses. 211 

 212 

4.4 Ar–Ar phengite geochronology 213 

Phengite 40Ar/39Ar isotope analyses utilized conventional furnace step-heating techniques at 214 

the University of Melbourne, after the analytical procedures of Phillips et al. (2007). Phengite grains 215 

were selected from mineral separates. Due to the possibility of contamination by excess argon in high-216 

pressure rocks (Kelley, 2002), a two-increment step-heating laser approach was employed on single 217 

grains of phengite. The laser analyses were conducted at The University of Melbourne, employing the 218 

analytical procedures described by Phillips and Harris (2008). This approach was used to screen for 219 

any significant intrasample inconsistency in argon content that could be an artefact of (i) multiple 220 

generations of phengite growth or (ii) varied amounts of isotopic resetting or excess argon 221 

contamination within single grains. Using the single-grain laser approach, spurious isotopic results 222 

from a single-grain analysis can be removed from the mean age calculations, using Isoplot software 223 

(Ludwig, 2003).  224 
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 225 

4.5 Rb–Sr phengite geochronology 226 

Phengite was analysed in-situ for Rb and Sr isotopes and major and trace elements using an 227 

ESI 213 NWR (TwoVol2) laser ablation system with an attached Agilent 8800QQQ ICP-MS/MS in 228 

the Microgeochemistry Laboratory at the University of Gothenburg, Sweden, following the methods 229 

of Zack & Hogmalm (2016) and Hogmalm et al. (2017). Full methods are in Supplementary File 1. 230 

Laser parameters were a fluence of ~ 6 Jcm-2 and a frequency of 10 Hz. Phengite was analysed with a 231 

spot size of 40 µm, both perpendicular and parallel to cleavage. Titanite was also analysed to obtain 232 

initial 87Sr/86Sr ratios, with a spot size of 50 µm. The primary standard for 87Rb/86Sr calibration was a 233 

pressed nanopowder MicaMg (87Rb/86Sr ratio of 154.6; Hogmalm et al., 2017). Other primary 234 

standards for 87Sr/86Sr ratios were the synthetic glass NIST610 (87Sr/86Sr ratio: 0.709699; Woodhead 235 

& Hergt, 2001) and the natural basaltic glass BCR2G (87Sr/86Sr ratio: 0.705003; Elburg et al., 2005). 236 

Secondary standards included La Posta biotite grains, with Rb–Sr isochron age of 91.6 ± 1.2 Ma and 237 

an initial 87Sr/86Sr ratio of 0.7049 ± 5 (Zack & Hogmalm, 2016), and MDC biotite grains with an 238 

isochron age of 519.4 ± 6.5 Ma and an initial 87Sr/86Sr ratio of 0.72 ± 0.002 (unpublished data). Over 239 

the course of the analyses, La Posta grains returned an isochron age of 90.5 ± 4.2 Ma, and MDC 240 

grains returned an isochron age of 501.2 ± 7.2 Ma.  241 

 242 

4.6 LA–ICP–QQQ mapping 243 

Phengite was mapped in-situ for Rb and Sr using an ASI m50 LA–ICP–MS with attached 244 

Agilent 8800 triple quadropole MS at Adelaide Microscopy, Australia. The reaction gas used was O2, 245 

with laser parameters of a fluence of 7 Jcm-2 and a frequency of 10 Hz. The primary standard used 246 

was a pressed nanopowder MicaMg, and NIST610 was used as a secondary glass standard. The maps 247 

were processed in Iolite (Paton et al., 2011). Results of the mapping are semi-quantitative, and are 248 

presented in counts per second (CPS). 249 

 250 

5. RESULTS 251 

 252 
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5.1 Electron Probe Micro Analyses and mapping 253 

Mineral compositions and end member proportions are reported in Supplementary Table 2 254 

and Tamblyn et al. (2019a), additional phengite, chlorite, omphacite and glaucophane compositional 255 

data is in Supplementary Table 5.  256 

 257 

EPMA traverses and mapping of whole garnet grains (Fig. 4; 5; Supp. Fig. 2) show complex 258 

zoning in the major elements. In garnet 1, cores show a bell-shaped Mn enrichment, consistent with 259 

prograde zoning (Fig. 4a; 5a). In the outer part of garnet 1 and prominently in garnet 2 there is a series 260 

of thin concentric Mn-rich rings or oscillations (Fig. 5b-c). These narrow Mn-rich zones are often 261 

regular, forming hexagonal garnet crystal shapes (Fig. 5c), but can also be highly irregular, appearing 262 

to form on embayments in the garnet crystal (Fig. 5b). There is an overall average increase in Mn 263 

content from the outer part of garnet 1 to the garnet 2 rim (Fig. 4b). The grossular content of the entire 264 

garnet increases slightly from core to rim, from 0.23 to 0.3, and also shows slight enrichments in thin 265 

concentric rings in the outer garnet that are correlated with the patterns exhibited by Mn (Fig. 5). 266 

Garnet 1 has almandine-poor cores (0.45) increasing to higher almandine content in the outer garnet 267 

(0.65; Fig. 4a), with the exception of slight almandine-poor concentric rings which correlate with the 268 

Mn-rich rings. Garnet 2 is slightly depleted in almandine (Fig. 4b). Pyrope contents are low in garnet 269 

1, ~0.03, with the innermost core showing a very slight depletion compared to the rest of the garnet 270 

(Fig. 5a). Garnet 2 shows distinct step increase in pyrope (0.06) that defines an outer rim ~ 200 µm in 271 

width (Fig. 4b).  272 

 273 

High resolution EPMA maps (Fig. 5b-c) reveal that garnet 2 forms on a regular to irregular-274 

shaped original surface of the garnet, as indicated by the white dashed line. The growth of garnet 2 is 275 

marked by a sharp increase in Mn, followed by several variations in Mn, and a final Mn-poor rim 276 

which has been partially replaced by chlorite. Notably, these Mn zoning patterns only correspond to 277 

slight changes in MnO (<0.5 wt%). Fe is slightly depleted in garnet 2. This outer-rim transition is also 278 

marked by a sharp increase in Mg. The oscillations in Mn commonly correlate with slight increases in 279 

Ca.  280 
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 281 

EPMA X-ray maps were also obtained from phengite grains in the matrix and in garnet (Fig. 282 

6; Supp. Fig. 3). Matrix phengites display cores that are depleted in Fe, enriched in Al and slightly 283 

enriched in Na, surrounded by a rim enriched in Si, with enriched Fe and slight enrichment in Mg 284 

(Fig. 6). Phengite grains in garnet show phengite included in garnet 1 is enriched in Si, Mg and Fe, 285 

and depleted in Al and Na (Fig. 6). Phengite included in garnet 2 is enriched in Al and Na, and 286 

depleted in Si and Fe with a slight depletion in Mg, similar to cores of phengite grains in the matrix 287 

(Fig. 6). Compositional zoning in the phengite is sharp and well defined. Overall, the phengite zoning 288 

is defined by an increase in celadonite proportion from core (40%) to outer rim (45%), accompanied 289 

by a decrease in XMg (0.71–0.63) and an increase in Si (3.43–3.56 p.f.u.; Fig. 7). 290 

 291 

Omphacite occurs as inclusions in garnet 1 and garnet 2, and as coarser grains in the matrix, 292 

which show subtle differences in composition (Fig. 7). Omphacite in the matrix and as inclusions in 293 

garnet 1 is generally 0.37–0.44 proportion jadeite, 0.36–0.43 proportion diopside, 0.08–0.19 294 

proportion hedenbergite with a minor acmite component. Omphacite as inclusions in garnet 2 is 295 

similar in composition, with the exception of occasional diopsodic grains, which are 0.15–0.23 296 

proportion jadeite, 0.47–0.50 proportion diopside, and 0.19–0.26 proportion hedenbergite. Coarse 297 

grains in the matrix and as inclusions in garnet 2 are subtly zoned in XFe, from ~ 0.27 in the core to ~ 298 

0.23 in the rim (Supp. Fig. 4). Inclusions in garnet 1 have an average XFe of 0.28, and inclusions in 299 

garnet 2 have an average XFe of 0.3.  300 

 301 

Chlorite forms grains in the matrix that break down garnet and omphacite, along fractures 302 

which cross-cut garnet, and as inclusions at the boundary between garnet 1 and garnet 2 (Supp. Fig. 303 

1). Chlorite as inclusions between garnet 1 and garnet 2 has an average XMg of 0.46 (Supp. Table 5). It 304 

shows elevated MnO contents compared to the adjacent garnet (0.54–0.73 wt%). Chlorite throughout 305 

the matrix has an average XMg of 0.38. EPMA X-ray maps show that chlorite is often zoned or patchy 306 

in composition (Supp. Fig. 5).  307 

 308 
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Retrograde amphibole is ferro-glaucophane in composition after the nomenclature of Leake et 309 

al. (1997), and also shows sharply defined compositional zonation (Supp. Fig. 6). XMg increases from 310 

core to rim, accompanied by a slight decrease in Al (1.72–1.39 p.f.u.). There is a slight enrichment of 311 

Ca in the cores of the glaucophane (0.17 p.f.u.), however, the grains are dominantly sodic. Some 312 

grains have thin outer rims with slight enrichment in MnO (0.14–0.27 wt%, Supp. Fig. 6).  313 

 314 

Titanite differs slightly from ideal formula, with incorporation of Al2O3 (up to 2.27 wt%), 315 

FeO (up to 0.66 wt%) and F (up to 0.6 wt%) into its crystal structure (Supp. Table 5). Al2O3, FeO and 316 

F contents show positive correlations (Fig. 7). 317 

 318 

5.2 Phase equilibrium forward modelling  319 

The results of the phase equilibrium forward modelling and corresponding mineral modal and 320 

compositional isopleths are shown in Figures 8, 9 and 10. Figure 8 shows the phase equilibrium 321 

model for the total bulk rock composition after Tamblyn et al. (2019a). Figure 9 shows the phase 322 

equilibrium model for the local rock composition with water in excess, and garnet 1 and lawsonite 1 323 

removed. This was done to simulate the effective local composition for the stage 2 mineral 324 

assemblage, as garnet 1 and lawsonite 1 were chemically isolated from the reactive rock composition 325 

(e.g. Spear, 1988; Marmo et al., 2002; Evans, 2004; Gaides et al., 2008; Konrad-Schmolke et al., 326 

2008; Lanari & Engi, 2017). Figure 10 shows the phase equilibrium model with garnet 1 and 327 

lawsonite 1 removed, but with a set water content, calculated from the modes of hydrous minerals 328 

(H2O = 4.65 wt%). This was done as the current water content in the rock is most likely a measure of 329 

the minimum amount of water available in the local rock composition. Figures 11 and 12 can only be 330 

used for the mineral relations during the secondary assemblage formation after garnet 1 and lawsonite 331 

1 have been formed. It is likely that the local rock composition had a water content between that 332 

which is measured in the rock currently, and water in excess. Therefore, the P–T points during 333 

retrograde 1, prograde 2 and peak 2 have been interpreted from both of the models. A summary of the 334 

phase equilibrium models used for each stage of the metamorphic evolution is in Supplementary 335 

Table 6. The interpreted stages of the P–T path are indicated as grey arrows.  336 
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 337 

5.2.1   Stage 1 338 

The prograde path and peak conditions for the formation of the first mineral assemblage are 339 

shown on Figure 8b, after Tamblyn et al. (2019a). Garnet 1 nucleated at the ‘garnet cores in’ line at ~ 340 

0.8–1.1 GPa and approximately 350 °C, based on the core inclusion assemblage of phengite + 341 

omphacite + lawsonite + quartz + chlorite + epidote. The path is then interpreted to track up-pressure 342 

into the + glaucophane field to satisfy the inclusion relationship of glaucophane in lawsonite and in 343 

the core domains of garnet 1 porphyroblasts.  344 

 345 

The peak conditions of stage 1 metamorphism are determined from inclusions in the outer 346 

part of garnet 1 crystals. We acknowledge that the record of peak 1 has been obliterated by 347 

subsequent mineral growth, and as such the interpreted P–T conditions are tentative. We interpret that 348 

the lawsonite eclogite reached the phengite + garnet + lawsonite + omphacite + coesite field (based on 349 

radial fractures around quartz inclusions), at around 2.9 GPa and 600 °C. This field is bound up-350 

pressure by the conversion of omphacite to jadeite, bound up-temperature by the destabilization of 351 

lawsonite, and is bound down-temperature and down-pressure by the loss of coesite or the conversion 352 

of coesite to quartz. No inclusions of jadeite were detected, supporting that clinopyroxene remained 353 

omphacitic during the metamorphic evolution. Lawsonite is interpreted to have been stable during 354 

stage 1 burial as lawsonite preserves ages synchronous with garnet growth (ca. 500 Ma; Tamblyn et 355 

al., 2019a), and is ubiquitously found as inclusions in garnet 1. Rare examples of radial fractures 356 

around quartz in the outer parts of garnet 1 (Fig. 2e) could indicate the former presence of coesite, 357 

further supporting these inferred P–T conditions.  358 

 359 

These interpreted peak conditions are supported by the modal proportion of garnet 1. The 360 

interface between garnet 1 and 2 is marked by a step increase in XMg and a prominent increase in XMn 361 

(Fig. 4; 6), together with truncation of core-hosted inclusion trails. The microstructural relationships 362 

and change in XMn and XMg between the core and the rim strongly imply there was a hiatus in garnet 363 

growth. The overall average MnO of the garnet rim is higher than the MnO content of the outer garnet 364 
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core (Fig. 4), suggesting that there was a period of garnet 1 breakdown prior to the formation of 365 

garnet 2. Making the assumption that garnet growth effectively sequesters all available MnO in the 366 

rock, particularly at high P–T conditions when chlorite is no longer stable, the higher average MnO 367 

concentrations in garnet 2 compared to the outer part of garnet 1 suggests that it originally occupied a 368 

larger modal proportion of the rock (Fig. 3a). The original size of the garnets during stage 1 can be 369 

calculated using the amount of MnO stored in the MnO dissolution rings in garnet 2. If the outer part 370 

of the garnet that formed during stage 1 is assumed to have had a flat MnO profile whose MnO is now 371 

incorporated into garnet 2, stage 1 garnet at one point occupied ~ 1.05 times its current modal volume, 372 

equivalent to approximately 25 mol% (1-oxide-normalised; Fig. 4a). This is a minimum estimate, as 373 

the Mn-rich garnet 2 has been partially broken down and replaced by stage 2 Mn-rich chlorite. The 374 

calculated modal proportion of stage 1 garnet porphyroblasts plots at P–T conditions of ~ 2.9 GPa and 375 

600 °C (Fig. 8c), within lawsonite stability. The modal proportion of garnet at this stage of the rock’s 376 

evolution may be overestimated in the phase equilibrium model, by perhaps up to 5 vol % (e.g. Lanari 377 

& Engi, 2017), as garnet growth fractionates major elements. This uncertainty in the garnet mode 378 

estimate is presented on the phase equilibrium model (Fig. 8b). The calculated modal proportion of 379 

garnet passes through the phengite + lawsonite + omphacite + coesite field. The P–T path linking the 380 

interpreted prograde assemblages with the peak P–T point passes through talc-bearing P–T space, 381 

however the calculated modal proportion of talc is low (< 1 vol%), and as such it is unlikely that talc 382 

would have been preserved in the eclogite.  383 

 384 

The retrograde conditions following peak 1 must be interpreted from the phase equilibrium 385 

models calculated from the local bulk rock composition, where garnet 1 and lawsonite 1 cores are not 386 

part of the chemical system. However, the P–T conditions are difficult to assess, as the water content 387 

in the rock at this stage in the lawsonite eclogite’s evolution is unknown. Figure 9 shows the phase 388 

equilibrium model for the local rock composition with water set to excess (i.e. water saturation), and 389 

Figure 10 shows the same composition but with a water content defined by the current mineralogy in 390 

the rock. The amount of water currently in the rock is relevant to the assemblages formed during stage 391 

2 retrogression, however its relation to the assemblages formed during stage 1 retrogression is 392 
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unknown. Water content affects the stable mineral assemblages at lower pressures and temperatures, 393 

particularly the stability of garnet. The primary mineralogical evidence for stage 1 retrogression is the 394 

addition of chlorite + glaucophane to the mineral assemblage (as found as inclusions in garnet and 395 

lawsonite rims), and the consumption of garnet 1 rims. As such, the ‘garnet-in’ line is an important 396 

indicator of stage 1 retrograde P–T conditions, as it represents the modal volume of garnet in the rock 397 

before new stage 2 rims formed. In Figure 9, the garnet-in line occurs in the retrograde assemblage at 398 

~ 1.8–2.1 GPa and 490–500 °C. However, it is unknown if the mineral assemblage was water 399 

saturated during retrogression. If the water content was below saturation, we would expect the garnet-400 

in line to move further down pressure and temperature. This can be seen in Figure 10. The difference 401 

in position of the garnet-in line is due to water content limiting the formation of chlorite at the 402 

expense of garnet. Essentially, this means the garnet-in line in Figure 9 represents the maximum 403 

pressures and temperatures the rock could have reached during stage 1 retrogression. As water 404 

saturation during retrogression seems unlikely, it appears the lawsonite eclogite may have been 405 

exhumed to lower pressures and temperatures than can be constrained. In Figure 9, the amount of 406 

water in the local bulk composition necessary to destabilize garnet is approximately 6 wt%, 1.35 wt% 407 

more than is currently held in hydrous minerals in the rock.  408 

 409 

5.3.2   Stage 2 410 

Renewed burial leading to the growth of the new garnet rims (garnet 2) is interpreted to start at 411 

the ‘garnet rims in’ line (Fig. 9). This is notably only an estimate of the maximum P–T conditions for 412 

the start of the prograde path for stage 2, as the water content in the eclogite was unknown as this 413 

time, and it may have been exhumed to shallower conditions within the subduction channel but failed 414 

to record it. The early stages of the prograde path can be determined using compositions of the cores 415 

of stage 2 minerals. Useful compositional parameters are x(g), z(g) and y(phe), where x(g) is the XFe 416 

in garnet, z(g) is the grossular component of garnet, and y(phe) is the proportion of Al on the M2 site 417 

in phengite (i.e. dioctahedral Al), a pressure-sensitive parameter. In the P–T model with water in 418 

excess, the x(g) and z(g) parameters from the interior of garnet 2 plot at approximately 1.9 GPa and 419 

500–510 °C within the prograde field. Notably, the x(phe) and y(phe) parameters from the cores of 420 
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phengite intersect at approximately 2.2 GPa and 540°C, possibly indicating the initiation of 421 

recrystallisation of phengite at this P–T point. The x(o) parameter from cores of omphacite grains, 422 

which reflects the XFe, also plots close to these conditions, however as the textural timing of 423 

omphacite growth in this sample is not well known, it is not clear if its compositions reflect stage 1 424 

burial or stage 2 burial. In the P–T model with set water content, these same compositional parameters 425 

plot over a larger range of P–T conditions, however converge towards 1.95 GPa and 450 °C. The 426 

x(phe) and y(phe) parameters from the cores of phengite intersect at the same point as Figure 9: 2.2 427 

GPa and 540°C. As such, an alternative prograde 2 P–T path may have begun at lower pressures and 428 

temperatures and tracked up towards ~ 2.2 GPa and 540 °C. 429 

 430 

 The peak assemblage during stage 2 is interpreted to have been phengite + garnet + omphacite + 431 

lawsonite + quartz, which is modelled to occur at conditions of ~ 2.7 GPa and 590 °C. This field 432 

exists identically on both Figure 9 and Figure 10, and is bound up-temperature by the loss of 433 

lawsonite, down-temperature by the presence of talc and/or glaucophane, and up-pressure by the 434 

conversion of quartz to coesite and/or omphacite to jadeite.  435 

 436 

Stage 2 retrograde P–T conditions are constrained from Figure 10. It is characterised by the 437 

growth of chlorite and retrograde-zoned glaucophane at the expense of garnet and omphacite. It also 438 

includes a modal proportion increase in lawsonite (lawsonite 2), which overgrows garnet 2 (Fig. 2f). 439 

The current modal proportions of all stage 2 minerals – minus the garnet 1 and lawsonite 1 cores 440 

which are not included in the modelling – intersect in the phengite + garnet + lawsonite + omphacite 441 

+ quartz + chlorite + glaucophane + H2O field (Fig. 10c). The modelled isopleths track parallel to 442 

each other down temperature in the H2O absent field, spanning between 1.8–2.1 GPa (Fig. 10c). Final 443 

recorded retrogression is therefore interpreted to occur down to ~ 2.0 GPa and 520 °C. 444 

 445 

5.3 U–Pb titanite geochronology 446 

In-situ U–Pb isotopic analyses of titanite in the matrix and in the garnet 2 rims define a 447 

common lead trend with a lower intercept of 455.1 r 9.6 Ma (MSWD = 3.3, n = 163, Fig. 11a). The 448 
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upper intercept has a 206Pb/207Pb ratio of 0.8166 r 0.0096. During data processing, 16 analyses were 449 

discarded due to low or no signal, and a further 23 analyses were discarded due to contamination from 450 

detectable or visible micro-zircons. Incidental ablation of these zircons was visible in the signals as 451 

large Zr spikes. U–Pb geochronological data can be found in Supplementary Table 7. 452 

 453 

 454 

5.4 Ar–Ar phengite geochronology 455 

Step-heating results of two aliquots of phengite from the lawsonite eclogite taken from ~ 50 456 

cm apart are shown in Figure 12. The mineral grains come from the rock matrix. Ar–Ar data can be 457 

found in Supplementary Table 8. For aliquot 1, an age of 458.4 r 3.7 Ma was obtained from 72.4% of 458 

released 39Ar. Aliquot 2 shows a rise in age with increasing temperature steps. An age of 462.6 r 3.6 459 

Ma was calculated from 61.9% of released 39Ar. 460 

 461 

5.5 Rb–Sr phengite geochronology 462 

In-situ LA–ICP–MS Rb–Sr analyses of phengite cores and rims produce almost identical 463 

isochrons (Fig. 13). Phengite rims have a wide range of 87Rb/86Sr ratios and produce an age of 448 r 464 

13 Ma (MSWD = 0.61, n = 18, Fig. 13a), in many cases with favourably high 87Rb/86Sr ratios (up to 465 

2000). Phengite cores generally have lower 87Rb/86Sr ratios and produce an age of 437 r 37 Ma 466 

(MSWD = 0.84, n = 16, Fig. 13b). When combined, all phengite data give an isochron age of 449 r 467 

19 Ma (MSWD = 0.55, n = 34, Fig. 13c). Based on textural evidence that titanite occurs as inclusions 468 

in phengite, as matrix grains and locally as grains rimming phengite (Fig. 11), it was assumed to have 469 

grown synchronously with matrix phengite. Therefore, titanite was analysed to obtain an initial 470 

87Sr/86Sr ratio to anchor the isochron, producing an average 87Sr/86Sr ratio of 0.70986 (n = 6, Fig. 13d). 471 

The rims are interpreted to form during peak metamorphism and thus were used in the final age 472 

calculations. When the phengite rims are anchored with the titanite analyses, the isochron age 473 

produced is 450 r 11 Ma (MSWD = 1.09, n = 26, Fig. 13e). Rb–Sr geochronological data can be 474 

found in Supplementary Table 9.  475 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 476 

5.6 LA–ICP–QQQ isotope mapping 477 

Phengite was mapped for 85Rb and 87Sr (Fig. 14). The qualitative results reveal the phengites 478 

are zoned, showing enrichments in Sr in the cores of the grains with slight Rb depletion, and Rb 479 

enrichments in the rims which correlates to comparatively low levels of Sr. The boundary between 480 

these cores and rims is sharp, and in larger grains is aligned along cleavage (Fig. 14). This zoning 481 

correlates to zoning seen in the major elements; Sr enriched cores correspond to low Si/high Al cores, 482 

and Rb enriched rims correspond to high Si/low Al rims.  High Sr grains are titanite. The outline of 483 

phengite grains is shown in white.  484 

 485 

6. DISCUSSION 486 

 487 

6.1 Petrological evidence for reburial of the lawsonite eclogite 488 

Petrographical observations from the block of lawsonite eclogite in the Port Macquarie 489 

serpentinite mélange denote at least two interpretable burial events, summarized in Supplementary 490 

Table 1 and schematically outlined in Figure 3.  491 

 492 

Evidence for stage 1 prograde (or burial 1) is preserved in the cores of garnet porphyroblasts, 493 

which are prograde-zoned, showing bell-shaped Mn profiles. Lawsonite porphyroblasts grew in 494 

equilibrium with garnet, as evidenced by their ca. 500 Ma age, synchronous with garnet growth 495 

(Tamblyn et al., 2019a). Stage 1 burial is also recorded by phengite inclusions in the outer part of 496 

garnet 1, which are high in Si and low in Al, consistent with crystallization at high pressure. It is 497 

possible that rare coesite was formed and captured in the outer parts of garnet 1, interpreted from the 498 

presence of radial fractures around quartz.  499 

 500 

The petrologic evidence for a second burial event after partial exhumation is recorded as 501 

inclusions within garnet rims, lawsonite rims, and the compositions of matrix minerals. The step 502 

increase in XMg and a Mn oscillation marks the boundary of new garnet 2 growth, and the general 503 
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increased Mn throughout the new garnet rim suggests that it was formed from the breakdown of 504 

previously larger garnet porphyroblasts. The presence of chlorite on the boundary between garnet 1 505 

and garnet 2 is key evidence that lower temperatures and pressures were reached before the growth of 506 

garnet 2. Omphacite grains in the matrix are prograde zoned (Supp. Fig. 4), and possibly grew from 507 

the breakdown of glaucophane during the second burial event, however, may also be relic from stage 508 

1. Phengite and titanite (which make up the strongly foliated rock matrix) underwent recrystallization 509 

during prograde 2 deformation (e.g. Spencer et al., 2013; de Meyer, 2014; Itaya & Tsujimori, 2015). 510 

This interpretation is supported by petrological observation that the pervasive foliation in the matrix is 511 

at an oblique angle to the foliation preserved as inclusion trails in garnet 1 (Fig. 3c). The prograde 512 

zoning in the phengite is consistent with recrystallization with increasing pressure and temperature, 513 

however the sharp boundary between zones could either be interpreted as i) progressive prograde 514 

zoning during total recrystallization of the phengite grains or ii) partial recrystallization of the 515 

phengite rims at higher pressure, preserving an older low-pressure core. Phengite with low Si/high Al, 516 

identical to the cores of phengite in the matrix, is preserved in the garnet 2 rims (Fig. 6), providing 517 

further evidence that garnet 2 rims grew at lower P–T conditions than the outer parts of garnet 1. 518 

Evidence for stage 2 retrograde includes partial replacement of garnet by chlorite, and partial 519 

replacement of omphacite by glaucophane and chlorite (Fig. 3d). Retrograde zoning in glaucophane 520 

(Supp. Fig. 6) supports that it grew during decreasing pressure and temperature. New lawsonite 521 

growth on existing crystals captured coarse titanite, garnet and glaucophane, suggesting that lawsonite 522 

increased its modal proportion during retrograde 2 (Fig. 3d). 523 

 524 

6.2 The origin of oscillatory garnet zoning and the possible role of fluids 525 

 526 

Garnets from the lawsonite eclogite show oscillatory zoning in Ca, Mn, Fe and Mg (Fig. 5; 527 

Supp. Fig. 2), which is subtle in the outer parts of stage 1 garnet but marked throughout the stage 2 528 

garnet rims. Narrow annuli enriched in Mn and Ca are depleted in Fe and Mg, and vice versa. The 529 

oscillations are sharp; they occasionally form epitaxial hexagonal crystal shapes on pre-existing 530 

garnet (Fig. 5c), or form on irregular-shaped embayed surfaces of pre-existing garnet (Fig. 5b). These 531 
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features suggest that garnet was resorbed and regrown several times during the metamorphic history 532 

of the lawsonite eclogite (aside from the major garnet resorption event between burial 1 and burial 2).  533 

 534 

Garnet resorption and regrowth have been suggested to occur via changes in pressure and 535 

temperature which influence garnet stability (e.g. García-Casco et al., 2002; Kohn, 2004). This 536 

mechanism has been interpreted as the cause of oscillatory garnet zoning from high-pressure rocks in 537 

subduction systems, where seismic instability and/or serpentinite hosted channel circulation cause 538 

cyclic P–T changes (García-Casco et al., 2002; Li et al., 2016, Viete et al., 2018). However, garnet 539 

resorption has also been suggested to be a result of external fluid influx, which dissolves and 540 

reprecipitates garnet in equilibrium with the fluid (Angiboust et al., 2011; Hyppolito et al, 2018). 541 

Additionally, the influx of fluids may enrich or deplete cations incorporated into the garnet during its 542 

growth (e.g. Martin et al., 2011; Angiboust et al., 2014; Park et al., 2017). Such fluid influxes may not 543 

be easy to trace, however the lack of oscillatory zoning in the major elements of other minerals (e.g. 544 

phengite, omphacite) suggests that fluid influxes did not occur on a major scale, or at least were only 545 

recorded in garnet. As there is no petrologic evidence supporting either case, the major element 546 

oscillatory zoning in garnet is interpreted to have formed by subtle fluctuations in P–T and/or influxes 547 

of fluid. 548 

 549 

6.3 P–T conditions of reburial  550 

The record of the P–T conditions during the first burial event is contained as inclusions in 551 

lawsonite and garnet, while the record of the second burial event is found in garnet and lawsonite rims 552 

and the matrix mineralogy. The P–T path proposed is summarised in Figure 15, the interpreted 553 

conditions are summarised in Supplementary Table 6. The proposed P–T path is tentative, due to the 554 

difficulty in reconstructing the mineralogical evolution of the sample. 555 

 556 

The P–T path during stage 1 burial is recorded from 0.8–1.1 GPa at approximately 350 °C, 557 

and then tracks up to peak conditions of at least 2.9 GPa and 600 °C based on lawsonite stability, 558 

inclusion assemblages in lawsonite and garnet and the estimated modal proportion of garnet (Fig. 8). 559 
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The potential former presence of coesite, now recorded by radial fractures around quartz inclusions in 560 

the outer parts of garnet 1, supports these peak conditions. High Si/low Al phengite inclusions in the 561 

outer parts of garnet 1 also support that high-pressures were reached during this stage (Fig. 6). 562 

Subsequent retrogression to maximum conditions of ~ 2.0 GPa and 500 °C is recorded by the 563 

consumption of garnet, and growth of chlorite and glaucophane (Fig. 9; 10). It is likely the lawsonite 564 

eclogite reached lower pressures and temperatures than this during retrogression, however this part of 565 

its evolution is difficult to reconstruct. 566 

 567 

Stage 2 reburial began at maximum conditions of ~ 2.0 GPa and 500 °C. Growth of new 568 

garnet rims with elevated Mn and XMg captured the stage 1 chlorite and glaucophane. Stage 2 peak 569 

conditions of 2.7 GPa and 590 °C were reached, based on the preserved peak mineral assemblage. 570 

Retrogression to approximately 1.9 GPa and 520 °C is based on the current modal mineralogy of the 571 

rock (Fig. 10c), and is supported by the formation of retrograde-zoned glaucophane and the partial 572 

break down of garnet to form chlorite. 573 

 574 

If these tentative estimates are taken at face value, the earliest stages of the prograde 575 

evolution of the rock occurred on a geothermal gradient of approximately 370 °C/GPa, while the peak 576 

and retrograde stages of both stage 1 and 2 occurred on a cooler geothermal gradient of approximately 577 

210–265 °C/GPa. These gradients are in line with a subduction channel which is cooling over time, 578 

potentially in response to the refrigeration effects of on-going subduction (Gerya, 2002; Agard et al., 579 

2018). If this is correct, it suggests the eclogite records the transition from subduction initiation (e.g. 580 

Tamblyn et al., 2019a) to subduction maturity. These inferred geothermal estimates are comparable to 581 

the geothermal gradient experienced by garnet blueschist from the same mélange that hosts the 582 

lawsonite eclogite at Port Macquarie (~  275 °C/GPa; Tamblyn et al., 2019a). The complete P–T path 583 

suggested in Figure 15 is two hair-pin loops, which are constrained by the presence of lawsonite 584 

throughout the recorded history. Such P–T evolutions have been previously suggested for high-585 

pressure rocks in oceanic subduction systems (e.g. Gerya et al, 2002; Krebs et al., 2011; Pourteau et 586 

al., 2019). 587 
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 588 

6.4 Timing of reburial 589 

Tamblyn et al. (2019a) obtained Lu–Hf ages of 489.7 ± 5 Ma for garnet–whole rock and 505 590 

± 15 Ma for lawsonite–whole rock from the eclogite. The cores of stage 1 garnet are highly enriched 591 

in Lu compared to the stage 2 garnet, indicating the garnet Lu–Hf age is essentially the age of stage 1 592 

garnet growth. The lawsonite Lu–Hf age is less precise but within uncertainty of the garnet age, 593 

suggesting that stage 1 garnet and stage 1 lawsonite grew within a single isotopic reservoir at ca. 500–594 

490 Ma. The lawsonite grains contain patches that are enriched in Lu (Tamblyn et al., 2019a), and in 595 

places are overgrown by volumetrically minor second generation lawsonite (Fig. 2f). The Lu-rich 596 

domains in stage 1 lawsonite formed prior to garnet nucleation. The P–T path during the stage 1 burial 597 

tracks up to tentative peak conditions of at least 2.9 GPa and 600 °C (section 6.3). This occurred at ca. 598 

505–490 Ma as dated by garnet and lawsonite Lu–Hf (Tamblyn et al., 2019a; Fig. 15). 599 

 600 

Matrix phengite that encloses garnet, lawsonite and omphacite porphyroblasts shows an 601 

increasing Si and celadonite content from core to rim (Fig. 6; Carswell et al., 2000). This 602 

compositional component is consistent with increasing pressure, which in the absence of information 603 

about changes in non-lithostatic stress, equates to increasing burial depth. The plateau ages obtained 604 

from Ar–Ar geochronology from phengite from the rock matrix give ages of ca. 458 and ca. 462 Ma.  605 

The suggested closure temperature of argon diffusion in phengite is variable (e.g. Warren et al., 2011; 606 

Fornash et al., 2016), and is dependent on grain size and fluid availability (e.g. Glodny et al., 2002). 607 

Numerical diffusion modelling suggests that phengite grown at blueschist to eclogite facies (up to 550 608 

°C) can retain argon from its prograde history (Warren et al., 2011). This has been supported by step-609 

heating experiments which suggest phengite can be highly retentive of argon (Forster and Lister, 610 

2014). These findings are in line with samples from high-pressure terranes where Ar–Ar ages are 611 

similar to peak metamorphic ages obtained from zircon or garnet geochronology (Fornash et al., 612 

2016), or can be texturally related to mineral growth during sequential phases of deformation (Putlitz 613 

et al., 2005).  614 
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In-situ LA–ICP–MS Rb–Sr dating of mica is still in its infancy as a geochronological 616 

technique. However, it has the potential to rapidly constrain ages of metamorphism and deformation 617 

in metamorphic rocks. Rb–Sr analyses of phengite rims, coupled with an initial 87Sr/86Sr value from 618 

texturally intergrown titanite, give an isochron age of ca. 450 Ma. The rims of phengite were selected 619 

for the final age calculation, as they are interpreted to grow at peak conditions of stage 2.  620 

 621 

Rb and Sr maps also support that the geochronologic results are growth ages (Fig. 14); the 622 

zoning is sharply defined, suggesting minimal post-growth diffusion within the grains (e.g. Konrad-623 

Schmolke et al., 2011). Rb–Sr maps show Sr enrichments in the low-Si cores of phengite, and Rb 624 

enrichments in the high-Si rims, a pattern that has been noted in high-pressure rocks (Di Vincenzo et 625 

al., 2006). The incorporation of Sr into phengite may therefore be related to the breakdown of another 626 

Sr-bearing mineral in the system at lower pressures, or, a preference for Sr in low-Si less-phengitic 627 

white mica, which declines with increasing phengitic component up-pressure. The Rb–Sr age of the 628 

phengite rims is within uncertainty of the age obtained from phengite Ar–Ar analyses and titanite U–629 

Pb age of ca. 455 Ma (below). This interpretation is in line with similar high-pressure terranes, where 630 

Rb–Sr dates record crystallization of phengite on the prograde-peak path during metamorphism (e.g. 631 

Hetzel & Romer, 2000; Glodny et al., 2002; Bosse et al., 2005; Di Vincenzo et al., 2006). In some of 632 

these examples, Rb–Sr phengite growth ages are synchronous with Ar–Ar phengite ages 633 

(Anczkiewicz et al., 2000; Hetzel & Romer, 2000; Glodny et al., 2002; Rodríguez et al., 2003). Rb–Sr 634 

has also been shown to date continuous recrystallization of white mica during retrograde deformation 635 

in polymetamorphic terranes, at peak temperatures of ~ 500–550 °C (Bröcker et al., 2013), 636 

demonstrating the ability for the Rb–Sr white mica ages to record recrystallization events. 637 

 638 

The U–Pb data from titanite in the matrix and as inclusions in the stage 2 garnet gives an age 639 

of ca. 455 Ma. Although there is some dispersion in the data, it is evident the matrix titanites are 640 

significantly younger than the ca. 490 Ma age for stage 1 lawsonite and garnet. Phase equilibrium 641 

modelling suggests the rock experienced P–T conditions below the closure temperature of titanite 642 

(~600–800 °C; Hartnady et al., 2019). Additionally, there is no evidence of a rutile-bearing 643 
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assemblage in the lawsonite eclogite. Therefore, it is unlikely the titanite formed from breakdown of 644 

rutile on the retrograde path. Consequently, we interpret the titanite U–Pb data to reflect the timing of 645 

titanite recrystallisation. 646 

 647 

Titanite occurs throughout the matrix and forms around the edges of prograde-zoned phengite 648 

(Fig. 11b-d). It occurs as fine-grained inclusion trails in garnet cores and lawsonite, and as coarse-649 

grained inclusions in stage 2 garnet and lawsonite rims (Fig. 11b-c). These textural relationships 650 

indicate that titanite was stable during the entire metamorphic evolution of the eclogite, first growing 651 

during the stage 1 burial event, and recrystallizing during the prograde evolution of the stage 2 burial 652 

event to form coarser-grained titanite. This recrystallization was possibly tracked by increasing F, 653 

Al2O3 and FeO content in the titanite (Fig. 7).  654 

 655 

 The inclusions in titanite are limited to fine-grained apatite, phengite and zircon (< 10 µm). 656 

Zircon is either euhedral and 5–10 µm in size, or occurs as fine-grained clusters or web-like 657 

intergrowths which are 2 µm or less (Fig. 11b,c). The 5–10 µm sized apatite, phengite and zircon 658 

inclusions are interpreted to predate the crystallization of titanite, and were avoided during analyses. 659 

However, the extremely fine-grained web-like micro-zircon was difficult to avoid, and was possibly 660 

incorporated into analyses. This is suggested by Zr concentrations in the titanite analyses of up to ~ 661 

18800 ppm (Supp. Table 7). Texturally, these extremely fine-grained zircon dustings only occur in 662 

sections of titanite grains, and are absent in phengite, garnet, lawsonite and omphacite. This suggests 663 

they are probably exsolution of Zr from the titanite, rather than inclusions (Fig. 11b,c). Titanite can 664 

substitute Zr4+ for Ti4+ in its crystal lattice, as evidenced by development of the Zr-in-titanite 665 

thermobarometer (Hayden et al., 2008). However, in quartz-absent rocks, titanite can take in 666 

significant amounts of ZrO2 (up to 15 wt%; Della Ventura et al., 1999; Seifert & Kramer, 2003; 667 

Seifert; 2005; Vuorinen & Hålenius, 2005; Liferovich & Mitchell, 2005; Chakhmouradian, 2004). 668 

While these studies are from igneous rocks, they demonstrate the ability for significant Zr to 669 

substitute into titanite.  670 

 671 
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The phase equilibrium modelling of the stage 2 effective bulk composition suggests the 672 

prograde-peak path taken by the lawsonite eclogite during reburial was quartz-free until absolute peak 673 

conditions were obtained (590 °C, 2.7 GPa). Zircon exsolution from titanite has not been directly 674 

reported before, but in lieu of other explanations, we suggest these fine-grained clusters of zircon 675 

within titanite represent high-Zr titanite which formed in a quartz absent matrix assemblage, which 676 

then exsolved zircon after crystallization of the parent mineral. As such, while we tried to avoid areas 677 

of obvious weblike zircon in titanite, we suggest that if small amounts of fine-grained zircon 678 

exsolution were incorporated into the titanite U–Pb analyses, we are dating U–Pb isotopic ratios 679 

related to titanite recrystallization at ca. 455 Ma.   680 

 681 

The above interpretations suggest recrystallization of phengite and titanite at ca. 450 Ma dates 682 

the timing of burial 2, which reached peak P–T conditions of 2.7 GPa and 590 °C. The two burial 683 

events were separated by a period of exhumation to maximum conditions of approximately 2.0 GPa 684 

and 500 °C, however the lawsonite eclogite may have been exhumed further up the subduction 685 

channel. The two stages of metamorphism and burial in the lawsonite eclogite occurred over a period 686 

of at least ca. 50 M.y. (Fig. 15). The timing of final exhumation after burial 2 is unknown, but had 687 

occurred by the Permian, based on serpentinite detritus in nearby early Permian basins in the SNEO 688 

(Aitchison et al., 1994). 689 

 690 

6.5 Examples of other burial cycles 691 

The suggestion that the block of lawsonite eclogite at Port Macquarie underwent two stages 692 

of burial, each marked by garnet growth and separated by a stage of garnet breakdown, is similar to 693 

P–T histories proposed from other studies on subducted rocks in oceanic settings, and is supported by 694 

results of numerical modelling (e.g. Gerya et al., 2002). Despite the difficulties in recognizing and 695 

constraining multiple cycles of burial and exhumation within single high-pressure samples, workers 696 

have had success using various geochronological and mineralogical tools. Dating zones within 697 

metamorphic zircon, combined with REE chemistry and inclusion assemblages, have allowed two or 698 

more subduction cycles to be identified in Rhodope, Greece (Liati et al., 2016) and the Italian Alps 699 
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(Rubatto et al., 2011), however the latter was within a continental subduction system. Three burial 700 

cycles in the Sambagawa belt in Japan have been identified from mineral assemblages and mineral 701 

chemistry of garnet and amphibole in eclogite by Kabir & Takasu (2010). Two burial cycles are 702 

recorded in eclogite from the Akeyazi terrane in Tianshan, China, interpreted from petrological and 703 

mineral zoning evidence, with P–T paths constrained from psuedosections (Li et al., 2016). García-704 

Casco et al. (2002) modelled oscillatory zoning in garnet and amphibole chemistry from serpentinite 705 

mélange in Cuba, concluding that they formed in near-equilibrium and record fluctuations in P–T 706 

conditions during subduction. Blanco-Quintero et al. (2011) also reported reburial during interpreted 707 

large-scale convective flow from this mélange, interpreted from garnet zoning and P–T pseudosection 708 

modelling. Geochronological constraints on the development of the mineral assemblages in the Port 709 

Macquarie eclogite point to a long history of high-pressure metamorphism, with a significant age 710 

difference between the formation of stage 1 and stage 2 assemblages (Fig. 15). Based on time scales 711 

of material movement in subduction systems from numerical modelling (Gerya et al., 2002), the 712 

geochronological data from the eclogite supports the likelihood that multiple burial and partial 713 

exhumation paths may have occurred. 714 

 715 

6.6 Subduction channel dynamics 716 

 717 

A corner or return flow model of material within the subduction channel (e.g. Shreve & Cloos, 718 

1986, Gerya et al., 2002; Agard et al., 2009; Roda et al., 2019), is suggested for repeated burial and 719 

exhumation of the lawsonite eclogite at Port Macquarie. Numerical modelling predicts that during 720 

oceanic subduction, hydration of the mantle wedge creates a buoyant low viscosity serpentinite-filled 721 

subduction channel which can pluck high-pressure rocks from the subducting slab and circulate them 722 

within the channel (e.g. Gerya et al., 2002). In these models, the high-pressure fragments can become 723 

deeply subducted, but can also experience partial exhumation and reburial, resulting in P–T loops 724 

(Gerya et al., 2002). Rocks with different P–T–t histories can also accumulate within the channel and 725 

be exhumed together to form mélanges that contain a variety of subducted products (e.g. Krebs et al., 726 

2008). At Port Macquarie, this behaviour is confirmed by the presence of garnet blueschist, which is 727 
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ca. 470 Ma in age, and has a different P–T path to the eclogite, yet is found as a tectonic block less 728 

than 10 meters away from the lawsonite eclogite (Och et al., 2003; Tamblyn et al., 2019a).  729 

 730 

The geochronological data presented above also supports the notion of long-lived residence of 731 

high-pressure materials within oceanic subduction channels. The minimum duration spent in the 732 

subduction channel by the lawsonite eclogite at Port Macquarie is ca. 50 M.y. (Fig. 15). Analogous 733 

durations of high-pressure metamorphism and accumulation have been reported from oceanic 734 

subduction systems. Exotic high-pressure rocks hosted in serpentinite, which have been interpreted to 735 

have been buried and exhumed by convective flow processes, span an age range of ca. 55 M.y. in 736 

Cuba (Lázaro et al., 2009), and ca. 40 M.y. in the Dominican Republic (Krebs et al., 2008). High-737 

pressure rocks exhumed in Turkey with different P–T–t histories span an age range of ca. 20 M.y. 738 

(Pourteau et al., 2019), supported by in-situ Ar–Ar data (Fornash et al., 2016). In the Mariana 739 

subdution system, the residence time for blueschist within the subduction channel is ca. 48 M.y. 740 

(Tamblyn et al., 2019b).  741 

 742 

With the caveat that the P–T conditions suggested from the phase equilibrium modelling of 743 

the eclogite at Port Macquarie are taken as approximations, a P–T–t path can be constructed for the 744 

lawsonite eclogite, and the rate of exhumation to reburial estimated. If the maximum possible P–T 745 

conditions of stage 1 exhumation are taken as 2.0 GPa and 500 °C, the total pressure and temperature 746 

change from peak stage 1 to peak stage 2 equates to ~ 1.6 GPa and 190 °C. If an average lithostatic 747 

pressure of 3.2 km/kbar with no non-lithostatic loads is assumed, this pressure change is equivalent to 748 

approximately 50 km of vertical depth change. Depending on subduction angle, the total travel 749 

distance of the lawsonite eclogite within the channel may have been more than 100 km during the 750 

looping P–T history.  751 

 752 

 753 

7. CONCLUSIONS 754 

 755 
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Lawsonite eclogite in serpentinite mélange at Port Macquarie in the Southern New England 756 

Orogen records P–T conditions of ~ 2.9 GPa and 600 °C, attained at ca. 500–490 Ma. The mineral 757 

assemblages that define these P–T conditions were overprinted by a second high-pressure 758 

assemblage that formed at ca. 450 Ma. Compositional zoning in phengite, and growth of a second 759 

generation of garnet, indicate the overprinting mineral assemblage formed during up-pressure 760 

metamorphism to ~ 2.7 GPa and 590 °C. Between these two stages of burial, partial exhumation 761 

occurred to at least 2.0 GPa, but probably to lower P–T conditions. The P–T evolution defines hair-762 

pin looping P–T paths that developed along a similar geothermal gradient, suggesting the lawsonite 763 

eclogite was cycled within a serpentinite-filled subduction channel during return flow of subducted 764 

material. This cycling occurred over a minimum timeframe of ca 50 M.y., implying long-lived 765 

residence of the eclogite within the subduction system. A number of studies are beginning to 766 

discover that subducted material may undergo complex P–T–t evolutions that record multiple 767 

episodes of burial and exhumation during prolonged residence within subduction systems. These 768 

cyclic P–T evolutions support predictions from numerical models which suggest material can follow 769 

convective flow paths within evolving serpentinite filled subduction channels.  770 
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Figure captions 1084 

 1085 

Figure 1: a) Simplified map of eastern Australia (east of the Tasman line) showing the main eastward-1086 

younging orogens. The SNEO is indicated in the black box. b) Geological map of the SNEO, showing 1087 

other high-pressure rock localities and indicating the location of Port Macquarie in the black box. 1088 

PMFS: Peel Manning Fault System. c) Geological map of Rocky Beach at Port Macquarie, showing 1089 

the high-pressure mélange encased in serpentinite, modified from Och et al. (2003). 1090 

 1091 

Figure 2: Mineral textural relationships in the Port Macquarie eclogite. a) Eclogite in outcrop, 1092 

showing coarse-grained garnet, phengite and lawsonite with patches of omphacite, which is partially 1093 

retrogressed by glaucophane. b) Photomicrograph showing the porphyroblastic nature of garnet, 1094 

lawsonite and omphacite, in a finer-grained phengite and titanite matrix. c) Stage 2 retrograde features 1095 

of the eclogite, showing chlorite replacement of garnet and glaucophane replacement of omphacite. d) 1096 

Garnet 2 enclosing a pre-existing garnet 1 porphyroblast. Boundary between the stage 1 garnet and 1097 

stage 2 garnet is shown by a white dashed line. The boundary between the two garnet domains 1098 

contains entrapped chlorite and omphacite inclusions.. e) Radial fractures surrounding a quartz 1099 

inclusion in the outermost part garnet 1. f) Large lawsonite porphyroblast, with an inclusion-rich 1100 

euhedral crystal (lawsonite 1) which is overgrown by a rim (lawsonite 2). The new lawsonite growth 1101 

contains inclusions of garnet 2 that developed on the margin of the older lawsonite, as well as stage 2 1102 

glaucophane and titanite. Abbreviations: O: Omphacite; Law: Lawsonite; Phe: Phengite; Ttn: Titanite; 1103 

G: Garnet; Chl: Chlorite; Gl: Glaucophane; Stlp: Stilpnomelane; Q: Quartz.  1104 

 1105 

Figure 3: Schematic interpretation of the petrologic evolution of the lawsonite eclogite. a) Prograde–1106 

peak stage 1 burial: garnet cores nucleate and as garnet 1 grows it entraps prograde mineralogy and 1107 

inclusion trails. Lawsonite porphyroblasts grow and entrap prograde minerals. b) Retrograde 1: garnet 1108 

is partially consumed by chlorite, and glaucophane forms at the expense of omphacite. c) Prograde–1109 

peak 2: garnet forms new rims (garnet 2). In rare instances stage 2 garnet overgrows stage 1 1110 
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lawsonite. Phengite recrystallises in the matrix with coarse-grained titanite during deformation. d) 1111 

Stage 2 retrograde: garnet is partially replaced by chlorite and omphacite is partially replaced by 1112 

glaucophane. There is minor growth of lawsonite.  1113 

 1114 

Figure 4: Representative EPMA traverse of garnet, showing the proportions of end-members and XFe. 1115 

a) Traverse across entire garnet porphyroblast, showing a prograde bell-shaped zoning profile. b) 1116 

Traverse across stage 1 garnet to stage 2 garnet, showing a step decrease in XFe and increase in 1117 

spessartine content.  1118 

 1119 

Figure 5: EPMA element maps of garnet, the white dashed line shows the interpreted boundary 1120 

between garnet 1 and garnet 2. a) Garnet porphyroblasts with prograde zoning in Mn, along with 1121 

several oscillatory rings in the stage 2 rim. Zoning in Fe and Mg show garnet 2 as a marked outer ring 1122 

with elevated XMg. Subset maps are marked in grey boxes. b) Compositional oscillations in the garnet 1123 

2 which define smaller hexagonal garnet crystals that nucleated on the older garnet 1 rim. c) Complex 1124 

Mn zoning patterns and a marked XMg increase in the outer garnet rim. Embayments and subsequent 1125 

overgrowths are highlighted in the Mn oscillations, with correlate with Ca oscillations. Late chlorite 1126 

replaces garnet. The boundary between garnet 1 and garnet 2 contains Mn-rich chlorite inclusions. 1127 

 1128 

Figure 6: EPMA maps across transition from garnet 1 to garnet 2 and into matrix phengite. 1129 

White/black dashed line indicates the boundaries of garnet 1 and garnet 2. Solid white/black line 1130 

indicates the boundaries of phengite included in garnet.  1131 

 1132 

Figure 7: Mineral compositions of omphacite, phengite, chlorite and titanite measured by EPMA. a) 1133 

Omphacite analyses from inclusions in garnet and omphacite porphyroblasts in the matrix. b) 1134 

Phengite analyses showing increasing Si, Fe and Mg component from core to rim, and decreasing Na 1135 

content. c) Chlorite analyses from stage 1 chlorite, from the boundary between garnet 1 and garnet 2, 1136 

and stage 2 chlorite, from the matrix. d) Titanite analyses showing elevated Al2O3, FeO and F 1137 
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contents with a positive correlation, suggesting increasing pressure during crystallization (e.g. Castelli 1138 

& Rubatto, 2002). 1139 

 1140 

Figure 8: a) Phase equilibrium model calculated with THERMOCALC, modified from Tamblyn et al. 1141 

(2019a), calculated with garnet 1 and lawsonite 2 included in the bulk rock chemistry. Dashed thin 1142 

grey lines indicate the position of solvi. Colour changes indicate changes in variance across fields. b) 1143 

Model (a) showing the prograde assemblage and estimated garnet mode at stage 1 peak. Thick grey 1144 

arrow indicates the interpreted P–T path of stage 1 prograde-peak. Abbreviations: Act: Actinolite, Bi: 1145 

Biotite, Chl: Chlorite, Coe: Coesite, Ep: Epidote, G: Garnet, Gl: Glaucophane, Hb: Hornblende, Jd: 1146 

Jadeite, Law: Lawsonite, O: Omphacite, Pa: Paragonite, Phe: Phengite, Pl: Plagioclase, Q: Quartz, Ta: 1147 

Talc. 1148 

 1149 

Figure 9: a) Phase equilibrium model calculated with THERMOCALC for the local rock composition 1150 

with garnet 1 and lawsonite 1 removed, and water in excess. Dashed thin grey lines indicate the 1151 

position of solvi. Colour changes indicate changes in variance across fields. Note the scale change 1152 

from Figure 8. b) Model (a) showing the interpreted peak conditions of stage 1 peak from Figure 8b, 1153 

and the interpreted stage 1 retrograde path in the thick grey arrow. Note these retrograde P–T 1154 

conditions are considered the maximum possible pressures and temperatures obtained during 1155 

retrogression. c) Model (a) showing the interpreted stage 2 prograde and peak assemblages, and 1156 

mineral compositional isopleths. Thick grey arrow indicates the interpreted P–T path during stage 2 1157 

prograde to peak. Abbreviations are listed in Figure 8. 1158 

 1159 

Figure 10: a) Phase equilibrium model calculated with THERMOCALC for the local rock 1160 

composition with garnet 1 and lawsonite 1 removed, and set water content. Dashed thin grey lines 1161 

indicate the position of solvi. Colour changes indicate changes in variance across fields. Note the 1162 

scale change from Figure 8. b) Model (a) showing a possible alternative path for stage 2 prograde, 1163 

based on compositional isopleths from garnet 1, omphacite and phengite cores. Peak conditions 1164 
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remain the same. c) Model (a) showing the final stage 2 retrograde conditions reached, based on 1165 

modal proportion isopleths. Abbreviations are listed in Figure 8. 1166 

 1167 

Figure 11: Results of LA–ICP–MS U–Pb titanite geochronology and representative BSE images of 1168 

analysed titanite grains. a) Terra-Wasserburg plot . b) Coarse-grained titanite in the rim of a stage 2 1169 

lawsonite crystal (outlined in white dotted line) displaying a well-formed mesh-like intergrowth of 1170 

exsolved zircon. c) Coarse titanite trails outlined in purple in the rims of stage 2 garnet, which is 1171 

distinguished from the stage 1 garnet core by the black dotted line. d) Titanite grains rim a prograde 1172 

zoned phengite, which has darker cores and brighter rims.  1173 

 1174 

Figure 12: Step-heating Ar–Ar results from two phengite grains in the lawsonite eclogite. 1175 

 1176 

Figure 13: In-situ LA–ICP–MS Rb–Sr geochronological results. a) Isochron constructed from 1177 

analyses of phengite rims. b) Isochron constructed from analyses of phengite cores. c) Isochron using 1178 

both phengite cores and rims. The isochrons produce similar ages within the uncertainties. d) Isotopic 1179 

analyses of texturally intergrown titanite, which records the initial 87Sr/86Sr isotopic ratio. e) Isochron 1180 

constructed from phengite rims and anchored with titanite analyses. 1181 

 1182 

Figure 14: LA–ICP–MS Rb and Sr maps of phengite from the lawsonite eclogite. Maps are semi-1183 

quantitative. Phengites show Sr enrichments of all isotopes in their cores, and sometimes a slight Rb 1184 

enrichment in their rims. These enrichments follow along cleavage planes of the phengite. The 1185 

boundaries between these rims and cores are extremely sharp and well-defined. The Sr-rich mineral is 1186 

titanite. The outline of phengite grains is shown in white. Rb-rich material without obvious grain 1187 

boundaries traced is fine-grained phengite.  1188 

 1189 

Figure 15: Summary of the P–T–t path of the lawsonite eclogite. Lu–Hf geochronology from 1190 

lawsonite and garnet dates an earlier event during burial 1. Ar–Ar and Rb–Sr data from phengite, and 1191 
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U–Pb data from titanite, date a younger recrystallization event associated with reburial of the 1192 

lawsonite eclogite within the subduction channel. This results in two hairpin P–T loops. While the 1193 

exact timing of exhumation and P–T conditions reached between these two burial events is unknown, 1194 

it must have occurred between approximately 485–465 Ma.  1195 
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Supplementary File 1 and supplementary figure captions: 
 
 
Phase mapping methods 

To identify inclusions assemblages in garnet, phase maps were constructed in the Tescan 

Integrated Mineral Analyser (TIMA) software using data collected on a Tescan Mira3 TIMA with 

four PulsTor SDD X-ray detectors at the John de Laeter Center, Curtin University. Analysis was 

conducted in dot-mapping mode with 1 µm BSE pixel spacing. EDS analyses of 1000 counts were 

acquired at a regular spacing of 5 µm, and additionally at every change in BSE contrast. TIMA 

software was used to compare BSE intensity and EDS peaks to a custom mineral reference library and 

automatically classify individual mineral grains. Analytical conditions were an accelerating voltage of 

25 kV, beam intensity of 19, probe current of 5.48 nA, spot size of 80 nm, and a working distance of 

15 mm.  

 

EBSD map data were collected using a Tescan Mira3 VP-FESEM with Oxford Instruments 

X-Max 150 SDD X-ray detector, Symmetry EBSD detector and Aztec Synergy software at the John 

de Laeter Center, Curtin University. Analytical conditions were an accelerating voltage of 20 kV, 

beam intensity of 18, and working distance of 25 mm. Stage tilt was 70° and step size was 1.22 µm. 

The EBSD camera was set to binning mode “Speed 1”, camera exposure time was 10 ms, and the 

camera gain was 2. Auto background correction was used with a Hough Resolution of 40, band 

detection mode was “Centers”, number of band detected was 11, and indexing mode was “Optimized 

- TDK”. Band contrast and EDS maps were exported from Aztec and EDS maps were colour scaled in 

ImageJ. 

 

Extended phase equilibrium modelling methods 

The phase equilibria model was calculated using THERMOCALC (TC340i, Powell and 

Holland, 1988; Holland and Powell, 2011) using the internally-consistent thermodynamic dataset 

‘ds5’ (filename tc-ds55.txt; November 2003 updated version of the Holland & Powell, 1998 data set) 

and activity–composition (a–x) models (Supp. Table 2; Holland and Powell, 1988; Holland and 
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Powell, 2003; White et al., 2007; Green et al., 2007; Holland and Powell, 2011; Diener et al., 2012) in 

the chemical system NCKFMASHO. The latest thermodynamic dataset ds62 (Green et al., 2016) was 

not used, to allow direct comparison with the phase equilibria models of Tamblyn et al. (2019a). The 

Mn-rich interiors of prograde-zoned garnet were not included in the calculated local rock composition 

for the stage 2 mineral assemblage, so Mn was not considered in the modelled system. Ti was also not 

considered, due to limitations in modelling the stability of titanite at high pressure. Titanite has been 

reported to be the stable Ti-bearing phase rather than rutile in systems due to the low activity of CO2, 

or minor amounts of Al and Fe3+ in its crystal lattice (Enami et al., 1993; Castelli & Rubatto; 2002: 

Brovarone et al., 2011). As we did not investigate rutile/titanite stability as a function of XCO2, and the 

current a–x model does not allow Al or Fe3+ substitution in titanite, we did not include it in the 

calculation of bulk compositions or the phase equilibria models. Stilpnomelane was also not predicted 

in the model as currently there is no a–x model available for it.   

 

Water content was handled in two ways. A model for the local rock composition was 

calculated with water in excess, and a model for the local rock composition was calculated with a set 

water content, derived from the abundance of hydrous minerals (Table 2; Supp. Table 1). This was 

done to approximate the two ‘end-members’ of hydration the eclogite may have experienced, with the 

water content calculated from the abundance of hydrous minerals representing the minimum amount 

of water available in the rock system. We acknowledge this assumes essentially closed-system 

behaviour, i.e. does not model water flux into the rock from an external source. As we have no 

indication that this process occurred, we did not model such behaviour.  

 

Oxidation state (Fe2O3) for the sample was constrained from the measured microprobe 

chemical analyses from each mineral used to calculate the metamorphic local rock composition, by 

using mineral stoichiometry in the calculation of cations from raw weight % oxides (Table 2; Supp. 

Table 1; Droop, 1987).  

 

Extended Rb–Sr LA-QQQ-MS methods 



Phengite was analysed in-situ for Rb and Sr isotopes and major and trace elements using an 

ESI 213 NWR (TwoVol2) laser ablation system with an attached Agilent 8800QQQ ICP-MS/MS in 

the Microgeochemistry Laboratory at the University of Gothenburg, Sweden, following the methods 

of Zack & Hogmalm (2016) and Hogmalm et al. (2017). Laser parameters were a fluence of ~ 6 Jcm-2 

and a frequency of 10 Hz. Phengite was analysed with a spot size of 40 µm, both perpendicular and 

parallel to cleavage. Titanite was also analysed to obtain initial 87Sr/86Sr ratios, with a spot size of 50 

µm. The ICP-MS/MS allows separating 87Sr+ from 87Rb+ where Sr+ reacts with a reaction gas (here 

N2O) to form SrO+ while Rb+ does not react. Complete separation is achieved by first allowing only 

one specific M/Z through the first quadrupole (Q1) into the reaction cell and then collect the reacted 

ion through the second quadrupole (Q2). In detail, to measure 86Sr, Q1 is set to M/Z 86 and Q2 to M/Z 

102, while for 87Sr, Q1 is 87 and Q2 is 103. Since not all Sr reacts with N2O (only about 80%; 

Hogmalm et al., 2017), 87Rb cannot be analysed interference-free. Instead, 85Rb can be used as a 

proxy for 87Rb, as 87Rb/85Rb can be assumed to be constant on Earth within the precisions required for 

this approach. As Rb+ does not react with N2O, Q1 is set to M/Z 85 and Q2 is set to M/Z 85 as well. 

A range of other isotopes were collected during each analysis together with 85Rb, 86Sr and 87Sr in 

order to detect and exclude contamination by other minerals, such as: 23Na, 24Mg, 27Al, 28Si, 39K, 43Ca, 

48Ti, 55Mn, 56Fe, 89Y, 133Cs, 137Ba, and 140Ce.  Laser parameters chosen were a fluence of ~ 6 Jcm-2 and 

a frequency of 10 Hz. 

 

Supplementary Figure captions: 

 

Supplementary Figure 1: Phase map and corresponding images showing an example of inclusion 

assemblages from garnet porphyroblast in Figure 2d. White dashed line indicates the boundary 

between garnet 1 and garnet 2. a) Band contrast image, showing that there are no cracks or fractures 

leading to the minerals included on the boundary of garnet 1 and garnet 2. b) Phase map, showing 

chlorite 1 trapped at the boundary of garnet 1 and garnet 2, and chlorite 2 cross-cutting the garnet 

porphyroblast. Phengite, omphacite, titanite, quartz and pyrite are also trapped at the boundary of 

garnet 1 and garnet 2. c) Mn EDS map of the garnet porphyroblast, showing the boundary between 



garnet 1 and garnet 2 but also deflections in the Mn zoning around inclusions, indicating they were 

trapped during garnet growth. d) Mg EDS map, confirming the high-Mg chlorite grains, and also 

showing the boundary between garnet 1 and garnet 2. e) Schematic diagram of the inclusion 

assemblages in garnet, traced from phase maps and EPMA compositional maps (Supp. Fig. 1; 2). 

Chlorite 1 is from both stage 1 prograde and stage 1 retrograde. See figure 2 for abbreviations.  

 

Supplementary Figure 2: Additional EPMA element maps of garnets from lawsonite eclogite. a) Maps 

of a different garnet that was used to trace the inclusion assemblages in Figure 4 of the main text. b) 

Maps of two garnets showing prograde zoning in stage 1 garnet. Stage 2 garnet is evident as rims with 

elevated XMg. Multiple embayments can be seen in Mn-rich oscillatory zoning.  

 

Supplementary Figure 3: Additional EPMA maps of phengite from the lawsonite eclogite, showing 

prograde zoning, defined by increasing Si, Fe and Mg. 

 

Supplementary Figure 4: BSE images of omphacite, showing zoning related to Fe content. a) Coarse 

omphacite crystal in the matrix. b) Omphacite crystals captured in garnet 2, showing similar zoning to 

omphacite in the matrix. 

 

Supplementary Figure 5: EPMA maps of chlorite in textural positions throughout the lawsonite 

eclogite, showing that chlorite composition appears related to the minerals it is forming in association 

with. Continuous white/black line indicates the boundary of a chlorite crystals. Dotted white/black 

line indicates the boundary between garnet 1 and garnet 2. a) Zoned chlorite, forming in stage 2 

retrograde fractures which cross-cut both garnet 1 and garnet 2. b) Chlorite 1, trapped as inclusions 

between garnet 1 and garnet 2, and chlorite 2, which is consuming garnet 2. The two different stages 

of chlorite have different compositions. c) Chlorite 2 forming from the breakdown of omphacite in the 

matrix. The chlorite zoning is patchy, showing strong differences in composition throughout the 

maps.  



 

Supplementary Figure 6: EPMA maps of texturally late glaucophane from the lawsonite eclogite, 

showing retrograde zoning that developed during exhumation following stage 2 burial. 
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