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ABSTRACT Game theory is an established branch of mathematics that offers a rich set of mathematical tools
for multi-person strategic decision making that can be used to model the interactions of decision makers
in security problems who compete for limited and shared resources. This article presents a review of the
literature in the area of game theoretical modelling of network/cybersecurity and identifies a number of
challenges in this area that need to be addressed.

INDEX TERMS Cyberspace, mathematical model, optimization methods, cybersecurity, game theory,
network security.

I. INTRODUCTION
For most physical security situations the outcomes depend
on the actions of both attackers and defenders. The attack-
ers and defenders act rationally and can depend on various
incentives that may be diametrically opposite or, under other
circumstances, may have some overlap. Physical security
thus provides the situations where the tools of game theory
can be beneficially applied and can provide insights intomak-
ing optimal security decisions. For various decision-making
problems arising in physical security, game theory can pro-
vide a rich set of analytical methods and mathematical tools.

The pervasive use of the Internet opens up numerous
network security situations. The attackers and defenders in
typical situations are rational agents who have the abil-
ity to act strategically. The agents can be assumed to be
interested in finding either the most damaging or the most
secure use of available resources. In the domain of network
security, game theory has been shown [1], [2] to provide
useful insights in making decisions that lead to developing
novel, analytic, computational, and practical approaches in
the thought, policy, planning, and strategic action. Game
theory provides methodical approaches in order to explain
the inter-dependencies of the role of hidden and asymmetric
information in networks, network security decisions [3], [4],
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the incentives/limitations of the attackers, the perception of
risks and costs in human behavior, and much more. The
elegant and powerful tools made available by game theory
are found to be highly useful in order to build secure, resilient,
and dependable networked systems [5], [6].

II. GAME THEORY
Game theory [7]–[13] is an established branch of mathe-
matics that develops mathematical models, allowing rigorous
analysis, of strategic interaction between rational decision-
makers. It studies complex, competitive, and multi-agent
interactions in which one player’s utility depends not only
on his decisions, but also on the decisions of his oppo-
nents. Game theory is applied to a number of disciplines,
including economics [14], [15], biology [16]–[18], political
science [19], [20], electrical engineering [23], [24], busi-
ness [25], [26], computer science [21], [22], law [27], [28],
public policy [29], physical security [30], [31], mechanism
design [32]–[34], and more recently to the quantum informa-
tion [35]–[38]. Game theory can enable opponents to predict
each other’s rational behavior and suggest a course of action
to be taken in any given situation.

A. STATIC AND DYNAMIC GAMES
Games considered in the field of game theory are broadly
classified as being the static or dynamic games [10], [11] .
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In static games the players choose their strategies simultane-
ously whereas dynamic games involve a sequence of moves.
In dynamic games [39], [40], a player chooses before others
do, knowing that the others’ choices will be influenced by
his/her publicly observable choice. The dynamic character
of the game results in models that can enhance the learning
ability of the players. In turn, this learning can help security
practitioners to develop high quality theoretical studies on
real-life problems. Depending on a particular situation in
cybersecurity that are amenable to game theoretical analyses,
applying either static or dynamic game theory can considered
appropriate. For instance, a cybersecurity situation involving
a team of attackers and a plan of attack in which the attackers
act simultaneously, the application of static game theory will
be required. Whereas, dynamic game theory will be applied
when some of the attackers act first and the reaction of
the defenders is observed before the remaining attackers act
while equipped with the knowledge of how the defenders
have reacted.

B. NASH EQUILIBRIUM
The rule for predicting how a game will be played defines the
solution concepts in terms of which the game is understood
by game theorists. Themost commonly used solution concept
in game theory is that of a Nash equilibrium (NE). Assume
there are N players in a game. Let Si and Ui for 1 ≤ i ≤ N be
the strategy spaces and the payoff, or utility, for each player
i, respectively. The individual elements of the strategy space
Si for player i are called the pure strategies . The game can
then be described [41] by the set G :

G : {N ; S1, S2, . . . SN ;U1,U2, . . .UN } . (1)

The presumable outcome of the game is determined by ana-
lyzing the behaviour of the players and their strategy choices.
Let s = {s1, s2, . . . sN } be the profile of pure strategies with
si ∈ Si. Let s−1 be the profile of strategies excluding player
i. A strategy profile s with s = (si; s−i) for all i, is a NE [7],
[10], [13], [43], [44] such that for all 1 ≤ i ≤ N we have

Ui(s) ≥ Ui(t; s−i) for all t ∈ Si. (2)

This is also described by stating that the strategy of each
player i is a best reply [7], [10], [13] to the strategies of other
players. In the cybersecurity context, the defenders’ strategy
profile that is a NEwill consist of a set of defensive strategies,
one on the behalf of each defender, such that the strategy of
each defender is a best reply to the strategies of the attackers.

1) NASH EQUILIBRIUM IN MIXED STRATEGIES
A mixed strategy [13] is a linear combination, with real
coefficients, of two or more pure strategies, with their proba-
bility weights summing up to 1. This defines the probability
distribution πi = (πi,t )t∈Si for player i choosing randomly
among the pure strategies Si. The expected payoff for the

player i is then given [41] by

Ūi(s1, s2, . . . sN ) =
N∑
j=1

∑
sj∈Sj

Ui(s1, s2, . . . sN )5N
k=1πk,sk . (3)

A set of probability distributions πi = (πi)1≤i≤N defines a
mixed NE, or a NE in mixed strategies, such that for all i and
any other probability distribution π̄i = (πi,t )t∈Si we have

N∑
j=1

∑
sj∈Sj

Ui(s1, s2, . . . sN )5N
k=1πk,sk

≥

∑
t∈Si

∑
j 6=i

∑
sj∈Sj

Ui(t; s−i)π̄i,t5k 6=iπk,sk . (4)

A key result of Nash’s thesis [43], [44] states that a NE always
exists in mixed (randomized) strategies in games where each
player has only a finite number of deterministic strategies.
In a NE, no one player can improve his/her situation by
unilaterally changing his/her strategy. This amounts to stating
that each person is doing as well as they possibly can, even if
that does not mean that an optimal outcome has been achieved
for the collective of all players. In a cyber attack when a NE
is determined for a team of defenders, neither is left with any
motivation to deviate unilaterally from it.

2) PRISONERS’ DILEMMA
The game of Prisoners’ Dilemma (PD) [7], [10], [13]
describes the following situation: a) Two criminals, called in
the following as Alice and Bob, commit a crime together and
are arrested. As the evidence is being investigated, they wait
for their trial, b) Each suspect is offered the opportunity to
confess the crime after placing him/her in a separate cell, c)
Each suspectmay choose between the strategies of confessing
(D) or not confessing (C), where C and D represent the pure
strategies of cooperation and defection with one’s partner
in the crime and not with the authorities, d) If neither of
the two confesses, i.e. (C, C), they both go free, and divide
between them the proceeds of their crime. We represent this
in the following by 3 units of payoff to each prisoner, e)
However, if one prisoner confesses (D) and the other does not
(C), the prisoner who confesses testifies against his partner
in exchange for going free and gets the entire 5 units of
payoff. However, the prisoner who did not confess is sent to
prison and that is represented by the payoff of zero, f) If both
suspects confess, i.e. (D,D), then both are convicted while a
reduced term is given to both. This is represented by giving
each suspect 1 unit of payoff. This payoff is better than having
the other suspect confess, but it is not so good as going free.
The game between the prisoners can be represented by the
following bimatrix of payoffs:

Alice
C
D

Bob
C D(

(3, 3) (0, 5)
(5, 0) (1, 1)

)
(5)
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where the first and the second entry in a bracket correspond to
Alice’s and Bob’s payoff, respectively. Let Alice play C with
probability p and play D with probability (1 − p). Similarly,
let Bob play C with probability q and playD with probability
(1− q). The players’ payoffs for the PD matrix (5) are

UA(p, q)=−p+ 4q− pq+ 1, UB(p, q)=4p− q− pq+1.

(6)

The inequalities that define the NE consisting of a pair of
mixed strategies (p∗, q∗) in PD can then be written as

UA(p∗, q∗)− UA(p, q∗) = −(p∗ − p)(1+ q∗) ≥ 0,

UB(p∗, q∗)− UB(p∗, q) = −(q∗ − q)(1+ p∗) ≥ 0, (7)

which produces a unique NE in PD: p∗ = q∗ = 0. The
NE corresponds to both players playing the pure strategy D.
Reference [42] Utilizes an international relations PD game to
present an explanation of the complexities of cyber intrusions
and the way forward for nation-states to deal with these new
exigencies. The PD game is also discussed in the context of
cybersecurity in [54].

3) REFINEMENTS OF NASH EQUILIBRIUM
Some of the largest problems in security applications come
from actions that cannot be anticipated. This makes using
NE problematic as the concept presumes that the structure
of the game, as well as all possible moves, is common
knowledge among the players. Several refinements of the NE
have been introduced [8], [12] including sequential equilib-
rium, proper equilibrium, trembling hand equilibrium, and
rationalizability.

C. SEQUENTIAL OR STACKELBERG GAMES
A dynamic model of the duopoly game was proposed by
Stackelberg (1934) [11], [45] in which a leader (or dominant)
firm moves first and in view of the leading firm’s move a
follower (or subordinate) firm moves second. For instance,
in the early history of US mobile industry, General Motors
played this leadership role against more than one firm such as
Ford and Chrysler who acted as followers. In the sequential
game of duopoly a Stackelberg equilibrium is obtained using
the solution concept of backwards-induction outcome of the
game. As a solution-concept it is stronger than that of NE
and refers to sequential nature of the game. Multiple NE may
appear in sequential move games whereas only one of those
is associated with the backwards-induction outcome of the
game.

Consider the following simple three step game, a) Player 1
chooses an action a1 from the setA1 of his strategies, b) Player
2 observes a1 and then chooses an action a2 from the set A2
of her strategies, c) Payoffs for the two players areU1(a1, a2)
and U2(a1, a2). It is an example of the dynamic games of
complete and perfect information whose key features are, a)
Players take their moves in sequence, b) All previous moves
are known to the players they make a next move, and c) The
players’ payoff functions are common knowledge. Given the

action a1 is previously chosen, at the second stage of the game
when player 2 takes his turn to make the move he faces the
problem:

Max
a2∈A2

U2(a1, a2). (8)

Assume that for each a1 in A1, player 2’s above optimization
problem has a unique solution R2(a1), which is the best
response of player 2. By anticipating player 2’s response to
each action a1 that player 1might take, Player 1 can now solve
player 2’s optimization problem. So that player 1 faces the
problem:

Max
a1∈A1

U1(a1,R2(a1)). (9)

Assuming that this optimization problem has a unique solu-
tion for player 1 and it is denoted by a?1. The solution
(a?1,R2(a

?
1)) is then called as the backwards-induction out-

come of this game. In [46] Damjanovic-Behrendt presents an
approach to optimize the cybersecurity decisions in order to
protect instances of a federated Internet of Things platform
in the cloud. His solution implements the repeated Stackel-
berg security game. An overview of use-inspired research in
Stackelberg security games is presented in [47].

D. REPEATED GAMES
A specific class of dynamic games are the repeated games
in which the players play the same game more than once.
Players observe the outcome of the first play before the start
of the second play. Payoffs for the entire game are then
obtained as the sum of the payoffs from the previous stages.
Generally, repeated games have a strategic structure that is
more complex than it is in their one-stage counterpart. This is
because the players’ strategic choices in the following stages
are influenced by the outcome of the choices they make in an
earlier stage.

A two-stage game of complete but imperfect information
is sequential in that the players’ moves in the first stage
are observed before the next stage begins. The simultaneity
of the players’ moves in each stage result in the imperfect
information in the game. Such a game consists of these steps
[11], a) Players A and B simultaneously choose their moves
p and q from their strategy sets P and Q, respectively, b)
Players A and B observe outcome of the first stage of the
game, (p, q), and they then simultaneously choose actions p1
and q1 from the sets P and Q, respectively, c) Payoffs are
Ui(p, q, p1, q1) for i = A, B. Usually, the games from this
class are solved using the method of backwards-induction.
This involves solving the simultaneous-move game between
players A and B in the second stage, given the outcome
from the first stage. Players A and B can anticipate that their
second-stage behavior will be given by (p?1(p, q), q

?
1(p, q)).

In view of this, the first-stage interaction between the play-
ers becomes equivalent to the following simultaneous-move
game: a) Players A and B simultaneously choose actions
p and q from sets P and Q, respectively, b) Payoffs are
Ui(p, q, p?1(p, q), q

?
1(p, q)) for i = A,B. When (p?, q?) is the
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unique NE of this simultaneous-move game, the set of four
numbers (p?, q?, p?1(p, q), q

?
1(p, q)) is known as the subgame-

perfect outcome [11] of this two-stage game. This solution
concept is the natural analog of the backwards-induction
outcome in games of complete and perfect information.

Consider the PD game given by the matrix (5) for which
the players play the game twice and the outcome of the first
play is observed before the second stage begins. Payoffs for
the entire game are then obtained as the sum of the payoffs
from the two stages of the game. The game is a two-stage
game of complete but imperfect information [11] . Assume
players A and B play the pure strategy C with probabilities
p and q, respectively, in stage 1. Also assume the players
A and B play the strategy C with probabilities p1 and q1,
respectively, in stage 2. LetUA1 andUB1 represent the payoffs
to players A and B, respectively, in the stage 1. From Eqs. (6)
these payoffs are UA1 = −pq + 4q − p + 1 and UB1 =
−pq + 4p − q + 1. The NE conditions for this stage are
UA1(p?, q?)− UA1(p, q?) ≥ 0, UB1(p?, q?)− UB1(p?, q) ≥ 0
giving p? = q? = 0 (i.e. defection for both the players) as
the unique NE in this stage. Similarly, in the second stage
the payoffs to players A and B are expressed as UA2 and UB2
respectively, where UA2 = −p1q1 + 4q1 − p1 + 1, UB2 =
−p1q1 + 4p1 − q1 + 1. Therefore, the strategy of defection,
i.e. p?1 = q?1 = 0, once again comes out as the unique NE in
the second stage. To compute the subgame-perfect outcome
of this two-stage game, we analyze its first stage given that
the second-stage outcome is also the NE of that stage —
namely p?1 = q?1 = 0. For this NE the players’ payoffs in
the second stage are UA2(0, 0) = 1, UB2(0, 0) = 1. The
players’ first-stage interaction, therefore, in this two-stage
game becomes equivalent to a one-shot game, in which the
payoff pair (1, 1) from the second stage is added to their first-
stage payoff pair.We canwrite the players’ payoffs in the one-
shot game asUA(1+2) = UA1+UA2(0, 0) = −pq+4q−p+2,
and UB(1+2) = UB1 + UB2(0, 0) = −pq+ 4p− q+ 2. It has
again (0, 0) as the unique NE. The unique subgame-perfect
outcome of the two-stage PD, therefore, is (0, 0) in the first
stage, and it is also (0, 0) in the second stage. The strategy
of defection in both the stages comes out as subgame-perfect
outcome for the two stage classical PD.

E. COOPERATIVE GAMES
In cooperative games, players are allowed to form coali-
tions, binding agreements, pay compensations, make side
payments etc and there is a strong incentive to work together
to receive the largest total payoff. In their pioneering work
on game theory [14], von Neumann and Morgenstern offered
models of coalition formation where the strategy of each
player consists of choosing the coalition s/he wishes to join.
In coalition games the players’ possibilities are described
by the available resources of different groups (coalitions) of
players and joining a group, or remaining outside, is part of
strategy of a player affecting his/her payoff. The notion of
a strategy disappears in a cooperative game and the notion
of a coalition and the value or worth of that coalition attain

significance. It is assumed that each coalition can guarantee
for its members a certain amount that is called the value of a
coalition [8], [13]. It measures the worth of the coalition that
is obtained as the payoff which the coalition can guarantee for
itself if it selects an appropriate strategy. However, the ‘odd
man’ can prevent the coalition from receiving more than this
amount.

An example of a three-player symmetric cooperative game
is a classical three-person normal form game [48] that is
defined by:

a) Three non-empty sets 6A, 6B, and 6C that are the
strategy sets of the players A, B, and C ,

b) Three real valued functions UA, UB, and UC that are
defined on 6A ×6B ×6C , and
c) The product space 6A × 6B × 6C that is the set of all

tuples (σA, σB, σC ) with σA ∈ 6A, σB ∈ 6B and σC ∈ 6C .
For this game, a strategy is understood as such a tuple

(σA, σB, σC ) and UA, UB, UC are payoff functions of the
three players and the game can be denoted as 0 =

{6A, 6B, 6C ;UA,UB,UC }.
Let < = {A,B,C} represent the set of players and assume

that ℘ is an arbitrary subset of <. Players in ℘ may form a
coalition so that the coalition ℘ can be considered as a single
player. It is expected that players in (< − ℘) will form an
opposing coalition and the game has two opposing “coalition
players” i.e. ℘ and (< − ℘). One of the two strategies 1, 2
is chosen by each of the three players A, B, and C . There is
no payoff if the three players choose the same strategy. If the
two players choose the same strategy, both receive one unit of
money from the ’odd man.’ The payoff functions UA, UB and
UC for players A, B and C , respectively, are given as [48]:

UA(1, 1, 1) = UA(2, 2, 2) = 0,

UA(1, 1, 2) = UA(2, 2, 1) = UA(1, 2, 1) = UA(2, 1, 2) = 1,

UA(1, 2, 2) = UA(2, 1, 1) = −2, (10)

with similar expressions for UB and UC . Suppose ℘ =
{B,C}, hence < − ℘ = {A}. The coalition game represented
by 0℘ is given by the payoff matrix:

[11]
[12]
[21]
[22]

[1] [2]
0 2
−1 −1
−1 −1
2 0

. (11)

Here the strategies [12] and [21] are dominated by [11] and
[22]. After eliminating these dominated strategies the payoff
matrix becomes

[11]
[22]

[1] [2](
0 2
2 0

)
. (12)

It is seen that the mixed strategies:

1
2
[11]+

1
2
[22] , and

1
2
[1]+

1
2
[2] , (13)
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are optimal for ℘ and (< − ℘) respectively. With these
strategies a payoff 1 for players ℘ is assured for all strategies
of the opponent; hence, the value of the coalition υ(0℘) is 1
i.e. υ({B,C}) = 1. Since 0 is a zero-sum game υ(0℘) can
also be used to find υ(0<−℘) as υ({A}) = −1. The game is
symmetric and one can write

υ(0℘) = 1, and υ(0<−℘) = −1 or,

υ({A}) = υ({B}) = υ({C}) = −1,

υ({A,B}) = υ({B,C}) = υ({C,A}) = 1. (14)

Cooperative game theory has been applied to cybersecurity
in a number of studies: In a Masters thesis submitted to
the Florida Atlantic University, Golchubian [56] has used
cooperative game theory by developing a game theoretical
approach to prevent collusion and to incentivize cooperation
in cybersecurity contexts. Vakilinia and Sengupta [57] have
investigated profit sharing in coalitional game theory using
calculation for rewarding the players that is participation-fee.
In particular, they analyze the well-known Shapley value
concept [10], [11] by formulating a coalitional game between
organizations in cybersecurity information sharing system.

F. BAYESIAN GAMES
In other situations that are characterized by the players’
access to only a partial knowledge about the game, game the-
ory is still shown to be an effective modelling tool by exploit-
ing the concepts from Bayesian games [11]. A Bayesian
game is defined as a game of incomplete information in
which the players do not have the complete knowledge
of the rules of the game. The incomplete knowledge is
described by the existence of the so-called state of Nature,
which is decided probabilistically by some relevant random
source. In Bayesian games, the probability distribution over
the states of Nature is private to each player and which
represents each player’s knowledge about Nature. Nature
is allowed to leak some information about its state in the
Bayesian games, which is called the signal to the players.
With the signal, the players can probabilistically work out
their expected utilities. A Bayesian game [55] consists of a
tuple

〈
N , �, 〈Si,Ti,Ci, τi, pi,Ui〉i∈N

〉
where � is the set of

natural states, and for each player i ∈ N ,
a) Si is the set of player i’s all available actions,
b) Ti is the set of player i’s signals/types, with τi : � −→ Ti

is the state-to-signal mapping,
c) Ci : Ti −→ 2Si is the set of i’s available actions after

receiving ti ∈ Ti,
d) pi is the probability measure over �, and,
e) Ui : �× S −→ R is player i’s utility function whereR

is the set of real numbers.
The solution concept of a NE is adapted into Bayesian

games and is called Bayesian NE. Some applications of
Bayesian games include Liu et al’s. [58] computation of
Bayesian Nash outcomes for an intrusion detection game and
under the conditions of limited information, Johnson et al’s

[59] determination of Bayesian Nash equilibria for network
security games.

III. NETWORK/CYBERSECURITY AND GAME THEORY
The information technology landscape has been revolution-
ized by the recent advances in software and hardware tech-
nologies. Cyberspace has now become an integral part of the
way the business is conducted. For current telecommunica-
tion and information networks, their network/cybersecurity
is the main concern and the protection and security of
cyberspace infrastructure is of key importance.

Game theory is applied to networks in settings in which
agents are connected by physical or virtual links. Given the
network structure and the actions of other users of the net-
work, the agents must decide on some action in a strategic
manner.

Heterogeneous, large-scale, and dynamic networks define
the cyberspace of the present time. Cyberspace has become
increasingly complex even within carefully designed network
and software infrastructures. Ample and a large attack sur-
face is available for evasive maneuvers of adversaries in the
cyberspace. Cyberspace has become characterized by higher
computational power and ubiquitous connectivity and these
features have given birth to new risks and threats.

The miscreants launching cybersecurity attacks have var-
ious degrees of uncertainty and defenders have incomplete
information about their intentions and capabilities. Improving
cybersecurity thus involves difficult challenges and decision
making on multiple levels and over different time scales.
The goal of cybersecurity is to provide practical and scalable
security mechanisms and to enhance the trustworthiness of
cyber-physical systems.

As is the case with the physical security, in cybersecurity
there exists a wide variety of the agents’ utilities, including
adversarial and antithetical types. Game theory, therefore,
shares many common features with the cybersecurity prob-
lem. The success of a cybersecurity scheme depends not
only on the actual cyberdefense strategies that have been
implemented, but also on the strategic actions taken by the
attackers to launch their attacks. Thus these scenarios are
well-suited to the game theoretical analyses of the cybersecu-
rity schemes. Such analyses can also be viewed from the per-
spective of establishing trust. When security is compromised,
building trustworthy relationships, and deciding whether to
trust received information becomes particularly relevant. It is
well known [60] that the trust problem can be formulated as in
game-theoretic strategic terms. Trust emerges as an important
aspect in the design and analysis of security solutions and the
implementations of security games involve several levels of
trust.

A. NETWORK/CYBERSECURITY GAMES
A significant motivation for cybersecurity games comes from
earlier applications of game theory to the domain of physi-
cal security. These are examples of practical situations that
demonstrate the potential for game theory in that domain.
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Physical security considerations are important at airports,
product transportation, national security patrols, etc. Usually,
a defender allocates the available resources to defend against
an attacker whereas the attacker can attempt to compromise
targets that the defender is protecting from possible attacks.
Most often, the defender can best allocate resources to min-
imize the chance of success for the attacker and minimize
the cost incurred by the defender. How should the defender
allocate agents, patrols, surveillance technology, and other
resources to minimize the impact of attackers? Examples of
physical security situations include, a) the airport security:
where the defender can schedule optimal checkpoints and
patrols for their agents, b) the coast guard: more efficiently
protection can be provided to ferries or ports that are the
targets for theft or terrorism. The finite number of agents
and limited resources can be allocated in such ways to best
counteract wide scale poaching.

In network/cybersecurity situations, the zero-sum games
betweenmalicious attackers and the transmitter-receiver pairs
can model the problems of jamming and eavesdropping in
communication networks. Attackers and defenders are most
often considered as the agents in network security problems.
Security games form a basis for formal decision making,
algorithm development, and in predicting the behaviour of
attackers. Security games can be deterministic or stochastic.
They can be sequential or hierarchical (Stackelberg game) in
which an agent has a certain information advantage over the
others. In cooperative or coalitional security games the agents
can cooperate to achieve their strategic objectives. Exam-
ples of security games in the network/cybersecurity domain
include, i) intrusion detection [5], [75], ii) privacy con-
cerns [74], [83], [84], iii) network jamming [76], [77], [79],
and iv) eavesdropping in communication networks [78].

Scheduling and deployment of patrols is a key operational
problem for those who are responsible for the security of
airports, art galleries etc. Alpern et al. [49] have presented
a class of patrolling games addressing the optimization prob-
lem involving randomized, and thus unpredictable, patrols.
They have considered the facility to be patrolled as a network
or graph Q of interconnected nodes (e.g. rooms, terminals)
such that the Attacker has the option to attack any node of
Q within a given time T. That is, the attacker requires m
consecutive periods that are uninterrupted by the Patroller in
order to commit his nefarious act and therefore win. In this
approach, the Patroller can follow any path on the graph. The
patrolling game turns out to be a win-lose game in which,
given best play on both sides, the Value is the probability that
the Patroller successfully intercepts an attack.

B. EXAMPLES
We begin by reviewing two examples from the literature in
some detail, as reported by Sokri [50] and Durkota et al. [65].

1) OPTIMAL RESOURCE ALLOCATION IN CYBERSECURITY
Sokri [50] has considered a security game between an attacker
a and a defender d in a system for cyberinfrastructure.

Let T = {t1, t2, . . . , tn} be a set of n targets that are at
the risk of being attacked and S = {s1, s2, . . . , sm} a set
of resources to protect the targets. Vector 〈at 〉 can represent
the attacker’s mixed strategy where at is the probability of
attacking the target t . The defender’s mixed strategy is the
vector 〈pt 〉 where the marginal probability of protecting the
target t is pt . Players’ access to mixed strategies allows them
to play probability distributions over their pure strategies.
A strategy profile 〈a, p〉 is a combination of (mixed) strate-
gies that the attacker and the defender may play. Let rd (t)
be the defender’s reward if the attacked target t is cov-
ered and cd (t) his cost if the target is uncovered. Simi-
larly, denote by ra(t) the attacker’s reward if the attacked
target t is uncovered and by ca(t) the attacker’s costs
if the attacked target t is covered. For the strategy pro-
file 〈a, p〉 following are the expected payoffs of the two
players:

Ud (a, p) = t ∈ Tat [ptrd (t)− (1− pt )cd (t)] , (15)

Ua(a, p) = t ∈ Tat [(1− pt )ra(t)− ptca(t)] . (16)

The payoffs in Eqs. (15,16) depend only on the attacked
targets and their protection and these payoffs do not consider
the targets that are not attacked. Now, if the players move
simultaneously, the solution of this cybersecurity game is a
NE. However, if the game is played sequentially in which
the defender moves first (leader) and commits to a strategy
and the attacker (follower) reacts to the defender’s move,
the Stackelberg equilibrium appears as the standard solution
in this leader-follower interaction.

Given the defender’s strategy p, the attacker’s optimization
problem can be presented as follows:

Maxat ∈ Tat [(1− pt )ra(t)− ptca(t)] , (17)

s. t. t ∈ Tat = 1, at ≥ 0, ∀t ∈ T . (18)

It is optimal to assign 1 to any at that is associated with a
maximal value of

Ua(t, p) = (1− pt )ra(t)− ptca(t), ∀t ∈ T . (19)

The dual problem that corresponds to the above has the same
optimal solution and it can be formulated as follows:

Min u, (20)

u ≥ Ua(t, p), ∀t ∈ T . (21)

The complementary slackness condition then becomes:

at (u− Ua(t, p)) = 0, ∀t ∈ T . (22)

When the leader problem is completed by including the
follower’s optimality condition, it becomes a single mixed-
integer quadratic problem [51]:

Maxpt ∈ Tat [ptrd (t)− (1− pt )cd (t)] , (23)∑
t∈T

pt ≤ m, (24)

t ∈ Tat = 1, (25)
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TABLE 1. Pay off table [50].

0 ≤ u− Ua(t, p) ≤ (1− at )M , ∀t ∈ T , (26)

pt ∈ [0, 1], ∀t ∈ T , (27)

at ≥ 0, ∀t ∈ T , (28)

u ∈ R. (29)

Eq. (23) maximizes the leader’s expected payoff. The cov-
erage to the available resources (m) is limited by Eq. (24)
whereas Eq. (27) restricts the coverage vector to [0, 1]. The
leader’s mixed strategy is enforced to be feasible by these two
constraints. Eq. (26), whereM is a large number, is the com-
plementary slackness condition indicating that the follower’s
payoff u is optimal for every pure strategy with at > 0.
Sokri [50] has considered the example of a game in normal

form as shown in the Table 1 and that is adapted from the
Refs. [52], [53]. There are 4 targets and two resources that
can cover any of the two targets. For each target, there are
two payoffs i.e. the payoffs of the attacker and the payoffs of
the defender. Each payoff consists of two parts i.e. a reward
and a cost.

Note that, a) If the target is attacked, the defender can
cover a target and get a reward, b) He can also leave the
target uncovered and incur a cost if it is attacked, c) If the
target is uncovered, the attacker can attack a target and get
a reward, and d) If the target is covered he can also incur a
cost. By changing the static values in Table 1 to a range of
values, an uncertainty can be placed on each variable. Using
a three-point estimate (minimum, most likely, and maximum)
approach that incorporates this uncertainty, Sokri [50] has
determined the following solution, which is found to sat-
isfy all the constraints as well as the numerical convergence
criterion:

〈p= (0.5549, 0.4994, 0.3411, 0.6025), a= (0, 0, 0, 1)〉 .

(30)

The objective did not move significantly after many itera-
tions, and even if it is heavily defended the attacker pre-
ferred to attack the most valuable target. The most likely
payoffs have the corresponding cumulative distribution func-
tion (CDF). This can now be determined With this solu-
tion and the median of the defender’s average payoff comes
out to be approximately 0.95. This gives a 50% probability
that the defender’s average payoff will be less than 0.95.
The values for minimum and maximum of defender’s aver-
age payoff are then determined to be 0.4261 and 1.5166,
respectively.

2) THRESHOLD-SETTING TO DETECT DATA EXFILTRATION
Data breach involves strategic interaction between defender
and attacker for which game theory provides helpful insights.
It is carried out through the process of information exfiltration
and involves unauthorized transfer of information. A dynamic
(sequential) game model of data infiltration is described by
Durkota et al. [65] in which the attacker’s objective is to
exfiltrate as much data as possible before the activity is
detected. The defender’s objective is to minimize the loss of
data before the breach is detected.

The defender records the volume of data that each host at
the network uploads over time while using windows of time
with fixed lengths. Defender selects a detection threshold
θ , chosen from a set 2 of thresholds, such that if the host
uploading data that is more than θ in the time window then it
triggers an alarm.

The defender can set the detection threshold θ for each
host individually. However, it is possible to identify groups
of hosts with similar behaviours. For instance, a group can be
of type λ from the set3 of all types. For a randomly selected
host, P(λ) then defines the probability that the host is of the
type λ. That is, P(λ) is the probability of the concurrence
of the host types. It is assumed that both the attacker and
the defender know the probability P(λ). Two hosts of same
types have the common activity pattern i.e. P(o | λ) gives the
probability that a host of type λ transfers the amount of data
o ∈ O in a time interval.

It can be the case that even without an attacker’s activity
a selected threshold θ is surpassed along with the alarm
triggered. These instances are called the false positives and
usually it is a time consuming task for the administrators to
determine their cause. Certain number of false positives are
expected in the defender’s strategies and usually their bound
is expressed as the constant FP.

The external and internal attackers are called the outsider
and the insider, respectively. The nature of information that
the insiders and the outsiders have about the targeted organi-
zation can be different from each other. Although the outsider
may know which host types exist but cannot know which
types were compromised. In contrast, the insider knows
which host types exist and also which were compromised.

3) DEFENDER’S STRATEGY
Defender’s pure strategy ψ is a map from the set 3 of all
types to the set 2 of thresholds, i.e. ψ : 3→ 2. Defender’s
mixed or randomized strategy is σ (θ | λ) that defines a
probability distribution of thresholds θ given host types λ.
The false positive constraint for a defender strategy σ is then
written as ∑

λ∈3

∑
θ∈2

σ (θ | λ)P(λ)FP(θ | λ) ≤ FP , (31)

where

FP(θ | λ) =
∑

o∈O: o>θ

P(o | λ), (32)

is type λ’s amount of false positives when the threshold is θ .
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4) ATTACKER’S STRATEGY
It consists of choosing the amount of data a ∈ A that the
attacker infiltrates in the next time window. By controlling
one of the users, the attacker uploads as much data as possible
before being detected. The attacker is awarded a utility when
the sum of the host’s activity o ∈ O and the amount of data
that the attacker infiltrates a ∈ A is less than the detection
threshold θ ∈ 2. A belief state

b ∈ 1(3×2) (33)

is a probability distribution over possible host types and
threshold settings. It is assumed that first the defender selects
the threshold θ and the attacker acts in response to knowing θ .
Attacker’s expected utility is then defined as ua(σ, π) where
σ is the defender’s mixed strategy whereas π is the attacker’s
policy chosen from the set 5. The attacker’s policy

π : 1(3×2)→ A, (34)

is defined as a mapping from the set of belief states1(3×2)
to the set A of the amounts of data. During the course of
interaction with the defender, the attacker takes into account
the last action and observation and uses Bayesian update
rule in order to keep track of his belief b. Attacker’s action
π depends on his belief b i.e. π = π (b). The defender’s
expected utility is defined as

ud (σ, π) = −Cua(σ, π), (35)

where C > 0. This requires that the attacker and the defender
have opposite objectives and their payoffs are proportional
to each other’s. Also, C being greater than 1 means that the
defender’s disutility is greater than the attacker’s utility.

5) THE INSIDER vs. OUTSIDER ATTACKS
The data breach attacks can be performed by agents who
are inside an organization/company or who are inside. The
outsiders usually does not know the type of the host that is
compromised even though s/he can knowwhich types (group)
exist within the company, for instance, IT admins and secre-
taries. The insiders, however, know their host types as they
use the network regularly and they are also knowledgeable
on the defences that are deployed. For instance, an insider
because of him/her knowing the exact values of the thresholds
that has been fixed for each host type by the defender, can
exfiltrate exactly at those values.

An approximate algorithm is used to compute the attacker’s
policy and to find an approximate Stackelberg equilibrium.
The defender’s strategy is also an approximate Stackelberg
equilibrium and his utility presents as a close approximation
to the exact Stackelberg equilibrium.

6) DEFENDER’S OPTIMAL STRATEGY AGAINST ATTACKS BY
THE INSIDERS
Durkota et al. [65] present an algorithm that computes
exact Stackelberg algorithm against attacks from the insid-
ers. Knowing the type of the user, using whom the insider

can exfiltrate data, allows representing the game between
the host and the attacker as a normal form game. For this
game, the attacker’s strategy consists of choosing for each
host type a probability distribution over the actions from the
set A. Similarly, the defender’s strategy consists of choosing
for each host type a probability distribution over thresholds
from the set 2. The game between the attacker and all host
types can then be formalized as one problem. To achieve this,
the zero-sum normal-form linear program [66] is extended to
include a false-positive constraint and multiple host types:

min
σ (θ |λ)

Ua, (36)

s.t.: (∀λ ∈ 3, ∀a ∈ A) :
∑
θ∈2

ua(θ, a, λ)σ (θ | λ) ≤ Ua,λ,

(37)∑
λ∈3

P(λ)Ua,λ ≤ Ua, (38)

(∀λ ∈ 3) :
∑
λ∈3

σ (θ | λ) = 1, (39)

(∀λ ∈ 3, ∀a ∈ A) : σ (θ | λ) ≥ 0, (40)∑
λ∈3

∑
θ∈2

P(λ)σ (θ | λ)FP(θ | λ) ≤ FP. (41)

Here σ (θ | λ),Ua and Ua,λ are the variables in the linear
program. In the above, the expected utilities of each type are
Ua,λ that is weighed by its probability given by ( 38). With
the requirement (36), the expected utility of the attacker Ua
is minimized. With the requirement (37) it is ensured that
against the given defense strategy, a best response is played
in each host type. The requirements given by (39) and (40)
are placed in order to ensure that the defender’s strategy
given by σ is considered a proper probability distribution.
The requirement (41 ) ensures that the false-positive rate is
met by σ .

7) DEFENDER’S OPTIMAL STRATEGY AGAINST ATTACKS BY
THE OUTSIDERS
As the outsider is unaware of the host’s type, s/he tries to
learn about it by observing host’s activity. This results in
the attacker’s strategies becoming more complex when these
are compared to the strategies of the insider. To achieve his
objectives, the outsider can come up with stronger attacks
which can vary over time. The uncertainty involved sug-
gests using Partially Observable Markov Decisions Processes
(POMDPs). The algorithms developed in order to solve
POMDPs can be used to compute the attacker’s best response
and his/her optimal strategy. In every time step, the attacker
exploiting the POMDP framework takes an action from a set
of allowed actions and receives the environment’s response to
that action. Based on this response he then updates his beliefs
about the environment. Also, in each time step, the attacker’s
utility is a function of his action and the environment’s
response. POMDP generates a solution in the form of a policy
describing the list of actions for all belief states about the
environment. Heuristic Search Value Iteration (HSVI) [67]
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is the well established algorithm that is used to solve the
POMDPs as it computes the Stackelberg equilibrium of the
game. Using interations the HSVI computes the strategies
constituting the best response of the attacker and the defender.
A best response is then achieved by a convergence of the best
response strategies.

IV. APPLICATION SCENARIOS
Game theory has many security applications, and we cannot
give detailed examples of all such analyses here. In this
section, we review a number of other applications that have
seen game-theoretic analysis.

A. TRUST ASSIGNMENT
Rajtmajer et al. [83] (2017) consider the problem of mul-
tiparty access control [68]. Users of social networks have
a shared interest in the privacy settings applied to content
relating to them. They model the problem as a variant of the
ultimatum gamewhere all parties are motivated to reach some
agreement, despite the need to compromise. They develop a
model of how participants will vary their offers over time, and
show empirically that the network tends to converge around
the proposals of the more ‘stubborn’ users who are unwilling
to vary their proposals. However, they also find that stubborn
users are less likely to reach agreement with their neighbours
at all, unlike less stubborn users who will quickly take an
approach similar to that of their neighbours, resulting in a
greater rate of successful interaction.

Raya et al. [84] (2010) consider the ‘‘free-rider’’ problem
in systems based on data aggregation: participants gain a pri-
vacy benefit by refusing to trust other parties with their data,
but with less data available, the system as a whole becomes
less resistant to malicious behavior. They show that it is
possible to design an incentive scheme that discourages free-
riding to avoid a ‘tragedy of the commons’-type scenario.

B. RESOURCE ALLOCATION
Game theory is a natural tool for the analysis of resource
allocation problems in cybersecurity. An example of this is
the analysis by Panaousis et al. [73] (2014), which builds up
a quantitative model of how various security controls interact
with various classes of vulnerability, yielding different types
of costs to the defender, for example in the form of reputa-
tional damage or data loss. This is then used to argue that
certain controls are or are not worthwhile at a given budget
and at a given depth in the network.

A related analysis is given by Cui et al. [69] (2017).
In [69], it is hypothesized that an attacker can choose between
attacking a customer database and attacking individual users.
Gaining access to the database yields a greater reward for the
attacker, but may lead to a more vigorous law-enforcement
response. Conversely, targeting individual users—e.g. by
phishing—leads to a reduced payoff, but may be less risky
for the attacker. The defender is represented by two parties: a
system administrator who manages the database, and a user
who sets a security level for themselves only. One of the more

interesting features of this model is the use of a two-stage
process for compromising the database, in order to model
the greater technical sophistication of such an attack, at least
relative to the difficulty of acquiring user credentials by e.g.
phishing.

C. ANOMALY DETECTION
Intrusion detection systems based on anomaly detection [70]
require the setting of a threshold parameter, that determines
whether some data is reported as ‘normal’ or ‘anomalous’.
This leads to a trade-off: a low threshold will force attackers
to sacrifice the efficacy of their attacks in order to stay covert,
but will also lead to a high false-positive rate, resulting in
excess cost to the defender. Conversely, a high threshold
will reduce the time wasted investigating false-positives, but
allows attackers to be less covert and use more powerful
attacks that are more costly to the defender.

This interplay between the strategies of the attacker
and defender is well-modelled by game-theory, and so
game-theoretic methods can effectively inform the design of
these anomaly detectors.

Schlenker [63] considers the problem of allocating inves-
tigative resources to security-relevant events in a more gen-
eral sense. A system that triggers investigation in too-
predictable a manner is vulnerable to an attacker that can
tailor its behavior so as to avoid a follow-up investigation
even if it is detected. For example, a system that directs
all its investigative capacity toward targets labelled as high-
value is easily circumvented by an attacker who has carte
blanche to attack moderate-value systems without concern
for covertness.

D. INFORMATION FLOW
Durkota et al. [65] (2017) consider the problem of detecting
data exfiltration in a heterogeneous network. Once an attacker
is present inside a network, they must decide how quickly
to exfiltrate the data that they acquire: a small flow of data
is difficult to detect, but the value of the information to the
attacker is less timely and therefore argued to be less valuable.
Conversely, a large flow of data is more readily apparent,
but more valuable to the adversary while it goes undetected.
This leads to an interesting result: the optimum strategy for
the defender is to vary their detection threshold randomly,
yielding a 30% reduction in exfiltrated data relative to a
deterministic choice of threshold.

Alvim et al. [72] (2017) consider information leakage in
more general terms, defining a framework of information
leakage games, and finding that in many cases, the attacker
also benefits from a mixed strategy. They also show that the
utility of a strategy for the defender is a convex function,
allowing the optimal strategy to be determined using normal
optimization techniques.

E. DECEPTION
Others have used game theory to model techniques aimed at
deception of attackers [62]. Underbrink (2016) [61] classifies
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these into passive methods, which serve to frustrate recon-
naissance and detect the attacker before it strikes, and active
methods, which in which the defender takes actions predicted
to interfere with an attack in progress.

Schlenker [64] considers the passive case where the
defender manipulates their behavior so that an attacker scan-
ning the defender’s network will be uncertain about the
type or value of each system, making it difficult for the
attacker to effectively allocate their effort. Schlenker shows
that determining the optimal strategy for the defender is
NP-hard in general, but provides an algorithm to approximate
this.

Alternatively, deception may be used to engage an attacker
that has already compromised the defender’s network.
Horák et al. [71] (2017) consider a system in which the
defender can feed the attacker with useless data once an
attack has been detected. They argue that evicting the attacker
immediately upon detection is suboptimal, as this leads to the
attacker starting again from an ‘undetected’ state, only now
armed with useful information on the defender’s detection
capabilities. The defender might therefore be better served
by allowing the attacker to remain for a time, ideally fed with
a stream of valueless disinformation.

F. JAMMING
Game-theoretic analysis of channel jamming has a long his-
tory, tracing back to Basar [79] (1983), who shows that
the optimum strategy of a single attacker seeking to jam
a Gaussian memoryless channel is to either transmit a lin-
ear function of the transmitted signal or to transmit ran-
dom symbols, depending on the relative signal and noise
powers.

Other authors have carried out similar analyses in different
situations: for example Kashyap et al. [80] (2004) consider
a Rayleigh fading channel, and show that knowledge of the
channel input does not affect the jammer’s strategy.

Altman et al. [77] (2009) analyze the case of multiple
attackers who seek to jam an orthogonal frequency-division
multiplexing (OFDM) communication channel. The attacker
and defender must each decide how to distribute their power
across the available subchannels in order to minimize or
maximise, respectively, the signal-to-interference-plus-noise
ratio (SINR) of the channel.

Han et al. [78] (2009) consider a different scenario in
which ‘friendly’ jammers broadcast their own signals, intro-
ducing noise to disrupt eavesdroppers. They consider the
problem from an economic viewpoint: what price can the
friendly jammers demand for their services, given some
desired rate of secret communication? However, like all eco-
nomic analyses, this depends strongly on the model of the
participants: their analysis assumes that the sender gains a
constant utility per unit bandwidth, and the jammers pay a
constant amount per unit power. Nevertheless, the results are
interesting: in their simulations, they find that there exists
a cutoff price for jamming power above which the use of
friendly jammers is no longer justifiable.

G. SMART GRIDS
Smart grids can incorporate fine-grained demand-side data
into their control systems, as well as provide demand-side
management: with the right incentives, users will consent to
automatic reduction of their power consumption at times of
high load—for example, by slightly increasing the target tem-
perature of their air conditioners, or by delaying the activation
of refrigerator motors.

By incorporating incentives into the pricing scheme, users
may be incentivized to lie about their usage in order to secure
a reduced tariff. Mohsenian-Rad et al. [82] (2010) provide
a game-theoretic analysis of a decentralized demand-side
management system; they show how to design the system so
that users do not benefit from lying to each other about their
usage.

Though a decentralized system as in [82] might provide
privacy benefits to its users, issues such as communication
complexity and deployment considerations may result in a
centralized system being preferable in practice. Hajj and
Awad (2015) [81] describe a centralized system that uses
game-theoretic methods to provides optimum scheduling.
This comes at the cost of forcing users to reveal their pro-
jected demand to the supplier. In practice this may be a
reasonable sacrifice: in order to take advantage of off-peak
tariffs, users must already reveal some information on their
demand schedule, so the difference in privacy might well be
small in practice.

V. CHALLENGES TO APPLYING GAME THEORY TO
SECURITY
Although game theory has been shown to be significant for
security, there exist many challenges that need to be addressed
for developing a viable game-theoretic approaches to secu-
rity. In this regard, some key challenges include the com-
plexity of computing a game-theoretical equilibrium strategy,
as the illustrative examples in Section (III-B) show. There are
also difficulties in properly quantifying security parameters
such as risk, privacy, and trust [83], [84], i.e. the parameters
in terms of which the utility functions for the participants
(players) in a security game are defined.

Choosing an appropriate game model for a given security
problem comes out as a challenge for the game theory too.
Such a model need to depend on the detail and particular
aspects of the security problem/application scenario. Choos-
ing a game can be solely based on the intuition and this
choice may not substantiated by the available data. A two-
player game can be a model for a security game involving
an attacker and a defender. However, in the dynamic version
of this game can involve multiple stages for attacking and
defending. In fact, as described in Section (III-B), the games
of later type are more likely to be representative of the net-
work/cybersecurity challenges of the real world.

Another aspect of the security game models is that the
players are assumed to have unbounded rationality. In real
life and experimental studies, the players do not always act
with rationality. As a consequence, there exists a significant
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scope for studying the solution-concepts of Harsanyi’s dis-
turbed games or that of Selten’s perturbed games [9], [13]
in the network/cybersecurity situations. In Selten’s perturbed
games, a player’s hand ‘trembles’, resulting in the erroneous
move and the trembles are assumed to be determined by a
random process. On the other hand, in Harsanyi’s disturbed
games, it is the payoffs or the utility functions, rather than the
players’ actions, that go astray.

Interpretation of game-theoretical notions such as mixed
strategy Nash equilibrium also appears as a challenge, and
particularly so for the security games. Usual approach in
game theory in this regard involves considering repeated
games whereas many security games are represented as one-
shot games. Even within the game theory community, there
is no consensus on how to interpret a mixed strategy. There
is clear need for interpreting the notion of a mixed-strategy
for network/cybersecurity games. In order to convert the
game theoretic results into practical security solutions these
challenges are required to be addressed.
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