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Abstract 

Our ability to recognise complex images across contexts depends on our exposure to 

similar instances. For example, despite much natural variation, it is easier to recognise a new 

instance of a familiar face than an unfamiliar face. As we encounter similar images, we 

automatically notice structural commonalities and form a representation of how the image 

generally looks, even when each image is presented rapidly (i.e., several milliseconds each). 

However, it is not clear whether this process allows us to better identify new instances of an 

image compared to assessing single images for a longer duration. Across two experiments, I 

tested observers’ person recognition ability when presented with rapid image streams at 

varying rates compared to a single image. Experiment 1 compares performance between 

upright and inverted faces. Experiment 2 compares performance between fingerprints from 

the same finger and from the same person more generally. My results suggest that viewing 

images rapidly is better than single images when identifying faces, but not fingerprints; and 

that people better recognise upright compared to inverted faces, but are similar in both 

fingerprint conditions. I discuss the theoretical implications of these results, as well as some 

practical implications in security and forensic contexts. 

Keywords: Visual cognition, recognition, gist perception, ensemble coding, face 

processing, fingerprint analysis 
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CHAPTER 1 - INTRODUCTION 

People have a remarkable ability to recognise familiar faces. When seeing a friend, 

for example, we may immediately recognise their face despite having never seen them in that 

particular context. Their facial expression may change, they may style their hair differently, 

wear a hat or sunglasses, or appear under different lighting conditions (see Figure 1). Still, we 

can somehow see past this visual noise and recognise that they are the same person (e.g., 

Bruce & Young, 1986; Bruce, Henderson, Newman, & Burton, 2001). Recognising a 

stranger, however, even under optimal viewing conditions, is more difficult because natural 

variations in hair, expression or pose can be mistaken for genuine differences between people 

(e.g., Bruce, Henderson, Greenwood, Hancock, Burton, & Miller, 1999; Clutterbuck & 

Johnston, 2002; Megreya & Burton, 2006). That is, our ability to recognise more familiar 

faces seems different from our ability to recognise less familiar faces (Megreya & Burton, 

2006). In this thesis, I focus on the cognitive processes that may underlie our ability to 

rapidly identify people. In particular, I explore the effect of varying image presentation rate 

on face recognition to determine what kind of exposure best familiarises people with new 

faces—carefully assessing the details of a face, or being rapidly exposed to different 

examples of the same face. 
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Figure 1. Natural variation among 64 images of the same face. 

 

1.1 The Role of Prior Experience in Face Recognition 

One explanation for our improved recognition for familiar faces is that we develop 

superior visual memory for objects we have great exposure to (e.g., Sunday, Donelly, & 

Gauthier, 2018; Tanaka, Curran, & Sheinberg, 2005; Wong, Palmeri, & Gauthier, 2009). 

Previous research suggests that we become more familiar with a person when exposed to 

their face for longer compared to shorter durations (e.g., Memon, Hope, & Bull, 2003); and 

other research suggests that we become more familiar with someone when exposed to several 

varying instances of their face in different contexts (e.g., Bruce & Young, 1986; Murphy, 

Ipser, Gaigg, & Cook, 2015). In real life, we can easily accumulate hours of direct exposure 
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to someone we spend a lot time with or see regularly in the media, and this allows us to 

encode thousands of instances into our visual long-term memory of particular people (see 

Standing, 1973; Standing, Cornezio, & Haber, 1970). As these instances accumulate, we 

seem to remember the facial features that are most consistent across contexts to understand 

what a person looks like (Bruce, 1994; Burton, Jenkins, Hancock, & White, 2005). For 

example, we may learn to rely more on stable features such as the eyes or nose, and learn to 

rely less on the more variable features such as hairstyle when making an identification (Bruce 

et al., 1999, 2001; Young, Hay, McWeeny, Flude, & Ellis, 1985). When viewing a friend’s 

face in a novel context, therefore, we draw upon this expansive repository of similar 

experiences, automatically assessing whether the stable features of their face align with our 

visual representation of that face in long-term memory (Bruce & Young, 1986; Burton & 

Bruce, 1993). 

1.2 Ensemble Coding: Understanding the ‘Average’ of a Face 

The influence of these stable representations in long-term memory may work in 

tandem with a process called ‘ensemble coding’—where we make sense of the regularities in 

our environment by computing the average representation of a set of similar instances (e.g., 

Ariely, 2001; Chong & Treisman, 2003). Indeed, to make sense of multiple instances of the 

same object, instead of expending much of our limited cognitive resources remembering 

specific details of each instance, we perceive all the instances’ ‘average’ properties, or their 

‘ensemble representation’ (see Alvarez, 2011). This process of ensemble coding is incredibly 

flexible and seems to apply automatically to many basic visual properties, from simple 

stimuli (e.g., average circle size, Chong & Treisman, 2003; average orientation of patches, 

Parkes, Lund, Angelucci, Solomon, & Morgan, 2001), to more complex stimuli, such a 

person’s average facial expression and identity (e.g., Haberman & Whitney, 2009).  
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In the context of face recognition, as we become more familiar with a face, each 

encounter adds another new instance to visual memory, and as each new memory competes 

for cognitive resources, new instances are thought to be represented with less precision, 

generating a more abstract face representation (Dunn, Ritchie, Kemp, & White, 2019; see 

Perrett, Oram, & Ashbridge, 1998). These ensemble representations allow us to rapidly glean 

the nature of a given face with a high degree of accuracy. Indeed, when presented with 

images of unfamiliar faces, the average of a face has demonstrated superior recognition 

performance even when compared to more analytic judgments of individual instances 

(Burton et al., 2005; White, Burton, Jenkins, & Kemp, 2014; Whitney & Leib, 2018). These 

findings suggest that an important aspect of face recognition may lie in our ability to generate 

ensemble representations of faces from exposure to that face across different contexts. 

 While research on ensemble coding in face recognition suggests that we create 

average representations of faces as we store new instances in memory, some evidence 

suggests that it may not even be necessary to commit particular instances to visual memory. It 

has been suggested that we need approximately 300 milliseconds of uninterrupted processing 

to encode an image into visual memory (Potter, 1976); however, research using Mary Potter’s 

rapid serial visual presentation (RSVP) manipulation, where a series of images is presented 

sequentially at a fixed location very briefly (i.e., several milliseconds per image), has shown 

that participants can rapidly process and understand each image even when they have no time 

to encode the images into memory (Potter & Levy, 1969). That is, when instructed to search 

for a particular image (e.g., a beach) among a rapid sequence of different images (e.g., a 

forest, followed by a mountain range, followed by a house, etc.), participants could 

successfully identify the prompted image despite being unable to recall any details (see 

Potter, 1975, 1976; see also Intraub, 1979, 1980, 1981). Although these RSVP studies 

initially involved different scene images, studies of ensemble coding have now suggested that 
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when similar images are presented rapidly, we can extract an average representation of the 

images in the stream (e.g., Im & Chong, 2009; Morgan, Watamaniuk, & McKee, 2000). 

Indeed, even when faces are presented in our peripheral vision and are not the main focus of 

the task at hand, we can still discriminate the average emotion or identity presented in the 

streams (Haberman, Harp, & Whitney, 2009; Ying & Xu, 2017). Despite some research 

suggesting that our ability to recognise people depends on our representation of that person in 

long-term memory, it seems that we can also rapidly understand what a person generally 

looks like even when we cannot commit any individual instance to memory. 

1.3 Gist Perception: How Rapid Face Identification Occurs 

The ability to instantly process images presented in this RSVP format is an example 

of ‘gist perception’. Gist perception refers to our ability to accurately identify the nature of an 

image or object without having to perceive every detail (e.g., Larson & Loschky, 2009; Oliva, 

2005; Oliva & Torralba, 2001). Indeed, many studies have shown that we can accurately 

identify and categorise images even when they are blurred (e.g., see Ruiz-Soler & Beltran, 

2006; Torralba, 2009), presented at a reduced resolution (e.g., Searston, Thompson, Vokey, 

French, & Tangen, 2018), presented for a few milliseconds (e.g., Evans, Georgian-Smith, 

Tambouret, Birdwell, & Wolfe, 2013; Potter, 1975, 1976), and presented in peripheral vision 

(e.g., Larson & Loschky, 2009). Studies have suggested that instead of relying on particular 

features to categorise an image, observers can rapidly identify the image by noticing broad 

commonalities among similar instances, such as the spatial relations between features (e.g., 

the distance between the eyes and nose for a particular face; Ruiz-Soler & Beltran, 2006; 

Schyns, 1998), or other information dispersed throughout the image diagnostic of the object’s 

category, such as colour or texture (e.g., skin tone or texture; see Oliva, 2005; Oliva & 

Schyns, 2000). It may be the case, therefore, that much of our immediate recognition of 

familiar faces, or faces more broadly, occurs within the first few moments of seeing the 
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person, based largely on the general characteristics, rather than particular details, of their 

face. In an RSVP stream of images, this mechanism may allow us to broadly categorise each 

image despite having insufficient time to memorise every detail. 

1.4 The Face Inversion Effect: Not All Faces Are Perceived Equally 

While ensemble coding and gist perception allow us to rapidly process faces, these 

processes may only operate so efficiently due to our extensive experience with this image 

category generally. Much of the literature surrounding visual memory, ensemble coding and 

gist perception incorporate either very basic stimulus classes (e.g., circle size, Chong & 

Treisman, 2003) or very familiar natural stimulus classes (e.g., facial expression, Haberman 

& Whitney, 2009)—and so it is less clear how these processes may operate when viewing 

natural stimulus classes that are less familiar. Exploring how we process faces presented in an 

unfamiliar manner may help to reveal important aspects of the recognition process, and how 

it may change under different conditions and with experience. Several studies have 

investigated, for example, the processing differences between upright and inverted faces (see 

Tanaka & Simonyi, 2016, and Valentine, 1988 for reviews). Despite generally being 

considered experts in facial recognition—whether due to specialised processing regions in the 

brain (e.g., Yin, 1969) or our extensive experience relative to other stimuli (Tanaka & 

Gauthier, 1997), or a combination—this expertise does not extend to inverted faces. When 

presented with inverted faces, observers typically perform significantly worse in 

identification tasks (Hochberg & Galper, 1967), old/new recognition tasks, and familiar and 

unfamiliar face processing tasks (see Rossion, 2008). These results suggest that the 

mechanisms we rely on for efficient face processing may not operate equally for all faces—

and are most strongly recruited for upright face recognition, given their prominence in 

everyday life. 
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A prominent explanation for the face inversion effect is that inversion disrupts 

‘holistic processing’. That is, when we perceive the gist of a complex image such as a face, 

we typically integrate all the features into one single image, rather than processing the 

features separately (Tanaka & Simonyi, 2016). However, holistic processing seems to depend 

somewhat on our familiarity with the object (e.g., Campbell & Tanaka, 2018; Tanaka & 

Simonyi, 2016; Wong et al., 2009; but see McKone & Robbins, 2007 for a critique); and so, 

compared to upright face processing, where separate facial features are perceived together as 

a single face (Farah, Wilson, Drain, & Tanaka, 1998; Ingvalson & Wenger, 2005), inverted 

faces are instead perceived as two eyes, a nose, and a mouth separately (see Rossion, 2008 

for a review). This disruption reduces our ability to accurately identify and remember 

inverted faces (Rossion, 2008). Although the face inversion effect is incredibly robust to task 

demands and has been widely studied in the context of visual memory (see Tanaka & 

Simonyi, 2016, and Valentine, 1988 for reviews), no studies have examined the effect of face 

inversion on gist perception and ensemble coding in an RSVP stream (but see Haberman et 

al., 2009; Haberman, Lee, & Whitney, 2015; and Leib, Puri, Fischer, Bentin, Whitney, & 

Robertson, 2012, in relation to ensemble coding generally); and so it is unknown how the 

perceptual processes that typically allow rapid face recognition in these contexts may operate 

with inverted faces. 

1.5 The Current Study 

Although previous research has focused on our ability to glean the average of an 

image category from an RSVP stream, less is known about how this RSVP paradigm might 

be used to improve recognition of new instances. In this thesis, I investigate the extent to 

which the rapid serial presentation of face images affects recognition of new images of the 

same identity compared with a single face image presented for the same duration. While no 

research has directly tested this, previous studies have suggested that, if given a limited 
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amount of time to recognise people, exposure to more varying images may be more 

beneficial than viewing single images (e.g., Murphy et al., 2015; Ritchie & Burton, 2017). 

Research on gist perception also suggests that we can rapidly process new images of a face 

within a few milliseconds. Therefore, it is plausible that presenting more images in a rapid 

stream would boost face recognition compared to viewing a single image for the same 

duration, given that these conditions provide participants with more exposure to a face in 

naturally varying contexts, despite the images being presented more briefly. 

 However, it is also possible that identification may be impeded at certain image rates 

due to the flashed-face distortion effect (FFDE), where faces presented serially for 200-250 

milliseconds have been reported to look distorted as the relative differences between facial 

features from one image bleed into the next (Tangen, Murphy, & Thompson, 2011). Given 

that this contrast effect seems to require holistic processing and is less prominent in inverted 

faces (Bowden, Whitaker, & Dunn, 2019; Tangen et al., 2011), it is possible that it may 

distract from our ability to correctly identify upright faces when presented in a rapid stream. 

To test these possibilities, my first experiment uses the RSVP methodology to vary 

the number of face images presented per second and attempts to reveal an optimal 

presentation rate for face recognition given a set amount of exposure time. My guiding 

hypothesis is that rapidly presenting images will allow participants to become more familiar 

with the face in different contexts, thereby facilitating recognition of new instances. Seeing a 

single image of a face for an equal amount of time, on the other hand, may enable better 

memory for specific details of the face but at the cost of exposure to within-face variability. 

By keeping the overall duration of the streams constant across conditions, my experiment 

examines whether it is better to glean the general gist of how a person varies in the more 

rapid presentation streams, or to assess the details that can be gleaned from any particular 

image in the less rapid presentation streams. I will also explore whether recognition in these 
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different image presentation conditions is affected by familiarity with general properties of 

the stimulus class, such as orientation, by presenting the faces as upright and inverted images. 

Predictions: 

1. In accordance with upright and inverted face-matching literature (see McKone 

& Yovel, 2009), I predict that my participants will perform better than chance 

in all conditions 

2. I predict that face recognition will increase as image rate increases (i.e., a 

single image, 2, 4, or 8 images per second) 

3. I predict that this benefit will be more pronounced for inverted compared to 

upright faces, given the existing advantage for upright face-matching and 

possible interference from the flashed-face distortion effect 

4. In the absence of similar prior studies, I predict that confidence will be highest 

when viewing single images, as it provides the most amount of time for 

conscious encoding of image details 
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CHAPTER 2 - EXPERIMENT 1 

In this experiment, participants viewed streams of face images from the same person 

and made a judgement about whether a new face presented immediately afterwards depicted 

the same or different identity to the person in the stream. I varied the orientation of the faces 

(upright, inverted) and the image presentation rate for the streams within-subjects, so each 

participant rated face images after 8-second streams of 1 image, 16 images, 32 images, or 64 

images. 

2.1 Method 

I preregistered my research plan for this experiment on the Open Science Framework 

(OSF), available here. The wiki page includes a full description of my predictions and 

hypotheses, methodology, power analysis, analysis plan, and links to all available materials, 

software, raw data files, and R markdown scripts. 

2.1.1 Participants. 30 participants took part in this experiment (19 male, 11 female, 

mean age of 25) consisting of students from the University of Adelaide and members of the 

general Adelaide population. All participants were required to be at least 18 years of age, 

fluent in English, and have normal or corrected-to-normal vision. Participants were 

incentivised by receiving a $20 Coles/Myer gift card in exchange for their time (see 

Appendix A). All participants provided informed consent prior to commencing the 

experiment (see Appendix B). 

Participants’ responses were to be excluded if they failed to complete the experiment 

due to illness, fatigue or excessive response delays (i.e., longer than the session allows). 

Participants who responded in less than 500ms, or consecutively provided the same response, 

for over 30 percent of trials were also to be excluded. In these cases, another participant was 

to be recruited and given the same stimulus set according to the previous participant’s 
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experiment number. None of the 30 participants met any of these pre-specified exclusion 

criteria. 

2.1.2 Power Analysis. To my knowledge, no previous research has analysed the effect 

of image presentation rate in a face recognition task. The sample size was determined based 

on a power analysis assuming a Smallest Effect Size of Interest (SESOI; Lakens, Scheel, 

Isagar, 2018) of d = 0.45 for all effects. Previous studies on face recognition typically show 

face inversion effect sizes ranging between 0.96 and 1.29 (e.g., Civile, Elchlepp, McLaren, 

Galang, Lavric, & McLaren, 2018), and so this SESOI was a conservative estimate. With a 

sample of 30 participants and 96 observations per participant (12 trials ✕ 4 different image 

presentation rates ✕ 2 levels of image orientation = 96 trials), the experiment had an estimated 

power of 83.2% to detect a main effect of image presentation rate, and an estimated power of 

98.2% to detect an interaction between image presentation rate and orientation. I used Jake 

Westfall’s PANGEA R Shiny App to calculate power given these design parameters. 

2.1.3 Design. This experiment had a 4 (presentation rate: single image, 2, 4, 8 images 

per second) ✕ 2 (orientation: upright vs. inverted) fully within-subjects design. In Experiment 

1, participants were presented with a series of 96 face streams for eight seconds. Presentation 

rate varied across the streams, with participants viewing streams of 64 face images for 125 

milliseconds each (8 images per second), streams of 32 face images for 250 milliseconds 

each (4 images per second), streams of 16 images for 500 milliseconds each (2 images per 

second), and single images of faces for eight seconds. After a brief 500 millisecond delay, a 

new ‘target’ face image from either the same or different person was displayed and 

participants indicated on a scale whether they believed this new face was the same or 

different person as the face in the stream, and their confidence in their decision (see Figure 

2). 
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The faces were presented upright for one half of the trials and inverted on the other 

half. Both orientation blocks were counterbalanced across participants. The four presentation 

rate blocks were also randomly presented to each participant within the two orientation 

blocks. Within each presentation rate block, half of the trials depicted the same person as the 

target image, and the other half depicted a different person to the target image. These trials 

were randomly presented for each participant. 

 

Figure 2. An illustration of the single image condition (top) compared to an example stream 

(4 images per second; bottom), with a target depicting the same person. The confidence rating 

scale that appeared with the target is provided underneath. 

 

2.1.4 Measures. Participants indicated their judgments on a 12-point forced choice 

confidence rating scale: 1 to 6 indicates a “Different” response and 7 to 12 a “Same” 

response, with ratings closer to 1 and 12 indicating higher confidence than ratings closer to 6 

or 7 (see Figure 2). This scale allows me to compute participants’ accuracy (mean proportion 
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correct), and mean confidence (between 1 and 6), and has been used in previous research to 

compute individuals’ discriminability as indicated by the area under their proper Receiver 

Operating Characteristic (ROC) curve (‘AUC’; Vokey, Tangen, & Cole, 2009). 

To measure discriminability, I computed each participant’s AUC for each condition 

from their cumulative confidence ratings on same and different trials (see Hanley & McNeil, 

1982; Vokey, 2016). An AUC of 1 indicates perfect discriminability, and an AUC of .5 

indicates chance performance. A large number of ‘hits’ (i.e., participant correctly says 

“Same”) and a small number of ‘false alarms’ (i.e., participant incorrectly says “Same”) 

indicates high discriminability and would produce an AUC score closer to 1, whereas an 

equal number of hits and false alarms would indicate chance discriminability, resulting in 

lower AUC scores closer to .5. Participants’ confidence is also taken into account in 

computing AUC, such that lower confidence judgments reflect lower discriminability. 

Confidence was computed by collapsing the 12-point rating scale to a 6-point scale. 

The original scale provided six degrees of confidence for both “Different” (1-6) and “Same” 

(7-12) responses; and so the collapsed scale isolates confidence by coding all “unsure” 

responses (6 or 7) to 1, all “moderately unsure” responses (5 or 8) to 2, all “slightly unsure” 

responses (4 or 9) to 3, and so on—until all “sure” responses (1 or 12) are coded to 6. 

2.1.5 Materials. The faces were sourced from the VGGFace 2 dataset (Cao, Shen, 

Xie, Parkhi, & Zisserman, 2018). The original set contains 3.31 million images of 9,131 

identities collected from Google Image searches. I used a subset of 9,600 images of 48 

identities (200 images per identity; see the Materials component of the preregistered study). I 

preserved all natural variation across the images of each identity to increase the difficulty of 

the target trials (i.e., dissimilar matching identities are more challenging to tell together). The 

original dataset also contains a large number of blonde, Caucasian, female identities. I 

constrained my subset to this demographic to increase the difficulty of the distractor trials in 
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the experiment (i.e., similar mismatching identities are more challenging to tell apart). My 

supervisor and I further increased similarity by computing the distributional characteristics 

(mean, min, max of image) of each identity and pairing similar identities side-by-side to 

increase target-distractor resemblance (see Appendix C). 

I reduced the original set of images for each identity down to 200 by manually 

excluding any images with dimensions under 100 ✕ 100 pixels, drawings, illustrations or 

animations of faces, significantly occluded faces, faces with distracting watermarks, 

duplicates or images that clearly depicted a different identity. All other original details were 

left intact, including natural variation in pose, age, illumination, etc. I then cropped each face 

to a square using a script in Adobe Photoshop CC (version 20.0.4) and centred the images 

around the eyes as close as possible. To increase task difficulty, my supervisor and I initially 

reduced all the images to 64 ✕ 64 pixels, then upsized them to 400 ✕ 400 pixels in MATLAB. 

However, after pilot testing (N = 2) revealed that the task was still too easy for upright faces 

(mean proportion correct = .92), we further reduced the images to 32 ✕ 32 pixels. A second 

pilot (N = 5) then revealed near-chance performance with the inverted faces (mean proportion 

correct = .59), and so we generated a fresh batch of images reduced to 48 ✕ 48 pixels to avoid 

ceiling or chance performance in either condition (see Figure 2). 

2.1.6 Software. The video instructions and face recognition task were presented to 

participants on a 13-inch MacBook Pro, with over-ear headphones. My supervisor developed 

the software used to generate the trial sequences, present stimuli to participants, and record 

their responses in LiveCode (version 9.0.2; the open source ‘community edition’). The 

LiveCode source files and experiment code are available in the Software component of the 

OSF project. The data analytic scripts and plots for this project were produced in RStudio 

with the R Markdown package. A list of other package dependencies needed to reproduce my 
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plots and analyses are listed in the data visualisation and analysis html file found in the 

Analyses component of the OSF project. 

2.1.7 Procedure. Participants commenced the task after reading an information sheet, 

signing a consent form, and watching an instructional video. Participants rated a total of 96 

faces as the same or different identity to the faces in the stream. In each case, they indicated 

their judgments on the 12-point confidence rating scale. The response buttons remained on 

screen until participants selected their rating; however, a prompt to respond within 4 seconds 

was displayed between trials if participants took longer to decide. Corrective feedback in the 

form of an audio (correct or incorrect tone) and visual (the selected response button turns 

green or red) cue is presented to participants after every trial. The whole face recognition task 

took about 25 minutes to complete. 

2.2 Results 

I repeated all reported analyses with participants’ AUC (discriminability) and raw 

proportion correct (accuracy) data as planned in my pre-registration. As the pattern of results 

was the same using both of these performance indicators, for brevity I will only report the 

analyses I conducted on participants’ discriminability. My analyses on participants’ accuracy 

can be found in Appendix D and Appendix E. 

2.2.1 Checking Assumptions. My statistical tests involve the following assumptions: 

normality of differences between paired observations, no extreme outliers, and a continuous 

dependent variable. Given that the same participants completed each condition, all 

observations were paired, and the data did not appear to have any severe skewness or 

deviations from normality (see histograms in Appendix F). Although there was one outlying 

observation on the upright face trials (see orientation boxplot in Figure 3), other observations 

from this participant were not outliers and no participants displayed response patterns 

consistent with my exclusion criteria. It was impossible to determine whether the outlying 
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observation was a genuine outlier or merely due to an experimental artefact (e.g., interruption 

or distraction), and so removing it may have artificially inflated my orientation effect size. To 

err on the side of caution, I did not remove the outlier from my dataset. Both discriminability 

and confidence are continuous measures of performance. 

2.2.2 Comparison to Chance. To examine whether participants’ performance was 

better than chance, I calculated participants’ discriminability scores for each condition and 

compared them to randomly generated data. To generate these responses, my supervisor 

programmed a complementary “sim” participant to respond randomly (i.e., a random 

match/no-match response at a random response time between 0 and 4000 milliseconds, and a 

random 1-12 confidence rating) to an identical stimulus set as completed by each human 

participant. A paired-samples t-test comparing participants to their simulated counterparts 

suggests that participants’ discriminability is significantly better than chance (t(239) = -6.689, 

p < .001, d = 0.121), supporting my prediction that participants should identify faces 

reasonably well, despite the complexity of the current task and the low resolution (48 ✕ 48). 

2.2.3 Presentation Rate and Orientation. I conducted repeated measures ANOVAs 

on participants’ AUC scores to test whether their ability to distinguish faces of the same 

versus different identities significantly increased as presentation rate increased, and whether 

these effects varied as a function of familiarity with the stimulus orientation. 

As shown in Table 1, my results suggest that participants are better at recognising 

faces when viewing rapid streams of the same face compared to single images for both 

upright and inverted conditions, despite discriminability decreasing overall with inverted 

faces. A repeated measures ANOVA yielded a significant, medium-to-large (see Cohen, 1988 

for conventions) main effect of orientation (F(1, 29) = 68.258, p < .001, 𝜂𝐺
2  = .148) and a 

significant, small-to-medium main effect of image rate (F(3, 87) = 3.788, p = .013, 𝜂𝐺
2  = .041) 

on participants’ discriminability scores (see Figure 3). No significant interaction was found 
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(F(3, 87) = 1.952, p = .127, 𝜂𝐺
2  = .019). Mauchly’s test for sphericity suggested that the 

assumption of sphericity was met (image rate: W = .756, p = .17; orientation-image rate 

interaction: W = .957, p = .942); and so no corrections were applied to the reported p-values. 

A treatment-control contrast suggested that when compared to viewing a single image, 

participants’ discriminability scores significantly improved under all rapid presentation rate 

conditions (2 images: t = 2.192, p = .029; 4 images: t = 2.468, p = .014; 8 images: t = 2.431, p 

= .016). A subsequent trend analysis also revealed a significant linear trend over presentation 

rate conditions (t = 2.394, p = .018). That is, discriminability increased in a linear fashion as a 

function of increasing presentation rate for both upright and inverted faces, despite inverted 

faces being harder to recognise. 

Table 1. 

Descriptive statistics for recognition performance in Experiment 1. 

 Mean Discriminability (AUC) Mean Proportion Correct 

Image rate Upright (SD) Inverted (SD) Upright (SD) Inverted (SD) 

Single image .548 (.216) .462 (.163) .619 (.138) .542 (.117) 

2 images .715 (.242) .473 (.202) .733 (.190) .547 (.145) 

4 images .698 (.208) .513 (.218) .733 (.151) .625 (.143) 

8 images .684 (.176) .524 (.201) .733 (.139) .603 (.145) 

Note: Discriminability estimates participants’ ability to discriminate faces depicting the same 

versus different people; proportion correct depicts accuracy. 

 

 

Figure 3. Box plots of participants’ discriminability as measured by their AUC scores for the 

main effects of image rate (left) and image orientation (right). 
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To address my prediction that confidence will be highest when viewing single images, I 

analysed participants’ confidence ratings for each condition. As shown in Table 2, participants 

were more confident at identifying upright compared to inverted faces, though confidence 

seems similar across different presentation rates. A repeated measures ANOVA revealed a 

significant, medium-to-large main effect of orientation (F(1, 29) = 8.655, p = .006, 𝜂𝐺
2  

= .020), but no significant main effect of image rate (F(3, 87) = 0.785, p = .505, 𝜂𝐺
2  = .002), 

and no significant interaction (F(3, 87) = 0.365, p = .779, 𝜂𝐺
2  = .001; see Figure 4). Mauchly’s 

test for sphericity suggests that the assumption of sphericity was met (image rate: W = .923, p 

= .818; orientation-image rate interaction: W = .885, p = .643); and so no correction was 

applied to the reported p-values. Given that confidence did not significantly differ across 

image rate conditions, my data did not support the third hypothesis. 

Table 2. 

Descriptive statistics for confidence in Experiment 1. 

Mean Confidence Scores 

Image Rate Upright (SD) Inverted (SD) 

Single image 3.644 (1.394) 3.347 (1.539) 

2 images 3.664 (1.538) 3.322 (1.395) 

4 images 3.739 (1.446) 3.292 (1.465) 

8 images 3.925 (1.419) 3.392 (1.448) 

 

 

Figure 4. Confidence data for the main effects of image rate (left) and orientation (right). 
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2.3 Discussion. 

2.3.1 Addressing Predictions. This experiment aimed to assess what kind of 

exposure leads to better face recognition when presented with upright and inverted faces. In 

line with previous face-matching literature (e.g., Murphy et al., 2015; Ritchie & Burton, 

2017), my analyses suggest that overall recognition performance increases as participants 

view more examples of naturally varying face images. This finding builds upon our previous 

understanding of the ensemble coding literature. While previous research suggests that RSVP 

streams allow observers to recognise the average representation easier than individual 

instances in the stream (e.g., Ariely, 2001; De Fockert & Wolfenstein, 2009), the current 

study suggests that this ensemble can also facilitate the recognition of new instances of the 

same category. This is not surprising, given that previous face recognition research suggests 

that we compare new instances of a familiar face to the average representation of that face in 

our long-term memory (e.g., Bruce & Young, 1986; Burton & Bruce, 1993). 

My results also suggest that the benefit associated with increasing image rate occurred 

in a similar manner for both upright and inverted faces, despite inverted faces being harder to 

recognise overall. While lower performance when recognising inverted faces was expected 

(see Tanaka & Simonyi, 2016, and Valentine, 1988), it is surprising that the RSVP paradigm 

influenced both upright and inverted faces equally. Given that we already process upright 

faces more successfully than inverted faces, possibly due to experience (Tanaka & Simonyi, 

2016), I expected that image streams may only provide a slight benefit over single images, 

compared to inverted faces, which may show a larger benefit as image rate increased. The 

fact that the two orientation conditions increased in a similar manner may be a product of 

presenting the images at a reduced resolution. During pilot testing, my supervisor and I 

blurred the images to increase difficulty with upright faces and prevent ceiling effects (e.g., 

Balas, Gable, & Pearson, 2019). It is possible, therefore, that while an advantage for upright 
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face processing is still evident, it may be less prominent at low resolutions, allowing the 

image streams to demonstrate a similar advantage for both orientation conditions. However, 

no studies seem to have tested the face inversion effect at reduced resolutions, and so future 

research may wish to confirm this conclusion. 

I also suspected a lesser advantage for upright faces due to the flashed-face distortion 

effect (FFDE). The FFDE refers to the apparent distortion of upright (but not inverted) faces 

presented in an RSVP stream of different random faces, and is thought to emerge due to  the 

relative differences between facial features contrasting from one identity to the next (Tangen 

et al., 2011). The lack of interaction between orientation conditions, however, suggests that 

the FFDE had no detrimental effect on either condition. Given that each face in the streams 

belonged to the same person in the current experiment, rather than different people as is 

typically the case with FFDE studies (e.g., Balas & Pearson, 2019; Bowden et al., 2019), it 

may be that the commonalities across each face image were exaggerated, rather than the 

differences, thereby increasing performance when viewing rapid streams. However, given 

that I did not directly manipulate the FFDE, future experiments may wish to explicitly 

measure the potential influence of this effect in similar face recognition tasks, to investigate 

whether it aids encoding of an unfamiliar face. 

2.3.2 Considerations. One minor consideration regarding the current methodology is 

that, given that the selected database sampled faces from Google Images, several of the 

identities depicted celebrities. Although this provided a suitably large sample of naturally 

varying face images that could not be found in other databases, this may have increased 

participants’ performance in some trials and inflated my effect sizes, as familiar faces are 

easier to recognise than unfamiliar faces (Megreya & Burton, 2006). Although an informal 

post-experiment assessment of each participant’s prior familiarity with each face 

demonstrated that most participants were unfamiliar with the faces (although eight 
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participants reported being previously familiar with 8-13 faces out of 48, and one reported 

25), future research may wish to use a dataset containing exclusively unfamiliar faces if 

possible. 
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CHAPTER 3 – EXPERIMENT 2 

Experiment 1 suggests that presenting similar images in an RSVP stream can facilitate 

the identification of new instances even when viewing less familiar stimuli (e.g., inverted 

faces). This method of rapidly presenting multiple similar instances may also be useful in 

improving performance in other disciplines that rely on identifying naturally varying 

images—such as fingerprint examination (see Figure 5). 

 

 
 

Figure 5. Natural variation among plain or ‘arrest’ fingerprints left by the same finger (top) 

and same person (bottom). 

 

3.1 Current Practices and Research on Fingerprint Analysis 

Fingerprint identifications are made by human examiners who judge the similarity of 

a crime scene (‘latent’) print against either a single print or a set of known (‘arrest’) prints 

returned from a large national computer database (e.g., Emerick, Vanderkolk, & Busey, 2015; 

PCAST, 2016). Fingerprint examiners have been trained to carefully mark up and classify 

distinguishing features of a crime scene print before comparing them to the known prints 

since the turn of the 20th century (see Henry, 1900). It is commonly claimed that deliberate 

analysis is required for accurate fingerprint identification (Busey & Parada, 2010; Cole, 

2005); however, recent evidence suggests that fingerprint examiners’ superior identification 
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skills also derive from non-analytic processes that emerge from vast exposure to many 

different fingerprints over time (Searston & Tangen, 2017a, 2017b; Thompson & Tangen, 

2014). Previous research highlights the possibility that fingerprint training could be 

streamlined by incorporating exposure to varying instances, rather than just carefully 

comparing individual prints (Thompson & Tangen, 2014). It is possible, therefore, that 

presenting novices with rapid streams of varying fingerprints will help to simulate experts’ 

experience, therefore improving their fingerprint recognition ability and developing 

‘expertise’ more efficiently. 

3.2 The Current Study 

In Experiment 2, I explore whether the RSVP method of increasing image exposure, 

while keeping exposure duration constant, improves person recognition with fingerprints. 

Experiment 2 employed a similar design to Experiment 1; however, to more closely resemble 

fingerprint identification procedure, participants were shown the target image of a crime 

scene print first, before viewing the RSVP stream or single comparison print. Additionally, 

given that no studies have directly compared performance with fingerprints belonging to 

same finger versus belonging to the same person more generally (but see Searston & Tangen, 

2017c, Tangen, Thompson, & McCarthy, 2011, and Thompson, Tangen, & McCarthy, 2014 

for indirect comparisons), I presented participants with image streams of prints from the same 

finger half the time, and from different prints from the same person the other half the time, 

rather than in upright and inverted orientations. While evidence suggests that novices can 

notice general similarities among prints from different fingers of the same person (Searston & 

Tangen, 2017c), streams from the same finger may contain less variation and therefore may 

generate a more stable average representation of the finger to compare with the latent print 

(see Whitney & Leib, 2018). 
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Predictions: 

1. In accordance with previous literature (e.g., Searston & Tangen, 2017c; 

Tangen et al., 2011; Thompson et al., 2014), I predict that participants would 

perform better than chance in all conditions. 

2. I predict that fingerprint identification would increase as image presentation 

rate increases, and that this improvement would be more pronounced with 

streams of the same finger compared to streams of the same person. 

3. I predict that confidence would be higher when viewing single images in both 

conditions. 

3.3 Method 

In this experiment, participants viewed single images of a latent crime scene 

fingerprint before viewing a stream of fingerprint images. They then determined whether the 

fingerprints in the stream belonged to the same or different finger, or the same or different 

person more broadly, to the latent fingerprint (see Figure 5 and Figure 6). As in Experiment 1, 

presentation rate varied for each stream, and participants’ confidence and discriminability 

were the main performance measures of interest. This experiment was preregistered along 

with Experiment 1. 

3.3.1 Participants. Both experiments were conducted concurrently with the same 

participants. 

3.3.2 Design. Experiment 2 had a 4 (image presentation rate: single image, 2, 4, 8 

images per 8-second stream) ✕ 2 (image specificity: prints from the same finger vs. prints 

from the same person) fully within-subjects design. Participants judged if a latent fingerprint 

belonged to the same or different finger or person as the fingerprint images in a rapidly 

presented stream of images. In this experiment, participants viewed the latent fingerprint 

(single image) before viewing the image stream. Due to the limited number of fingerprint 
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images in the selected dataset, streams consisted of one-second fingerprint streams presented 

‘on loop’ for eight seconds. Participants viewed streams of eight images per second for 125 

milliseconds each, streams of four images per second for 250 milliseconds each, streams of 

two images per second for 500 milliseconds each, and single fingerprint images for eight 

seconds. Fingerprint streams remained on-screen until a response was made, though 

participants were prompted to respond within eight seconds (see Figure 6). Participants 

received corrective feedback for every decision. 

 

 
 

Figure 6. An illustration of the single image condition compared to an example stream (4 

images per second), with the left thumb from the same person as the test stimulus. 
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3.3.3 Materials. The fingerprints were generated from a subset of the Forensic 

Informatics Biometric Repository (Tear, Thompson, & Tangen, 2010). For the person 

recognition component of the task, there are ten fully-rolled prints, one from each finger, 

from 48 different individuals. These served as the rolled prints presented in the rapid streams. 

For each individual there is also one ‘target’ latent print from the same person, and a 

‘distractor’ latent print from another person. The targets and distractors were always taken 

from the left thumb, as previous research suggests that novices can distinguish prints based 

on hand type (less so based on finger type; Searston & Tangen, 2017a, 2017b; Thompson & 

Tangen, 2014). For the finger recognition component of the task, there are eight different 

fully-rolled impressions from the left thumb of the same 48 individuals. The target and 

distractor latent prints are the same as those used in the person component of the task 

All natural variation in the latent prints was preserved, while the rolled prints 

presented in the streams were centred on a white background, grey-scaled, level balanced, 

and cropped to 400 ✕ 400 pixels (as with the faces). Any distracting borders and text from the 

arrest cards were removed to isolate the prints. 

3.3.4 Software. The software for Experiment 2 was identical to that in Experiment 1. 

The relevant files are similarly available under the same pre-registration link. 

3.3.5 Procedure. Participants were randomly assigned to complete Experiment 2 

either immediately before or after Experiment 1. The procedure for Experiment 2 was 

identical to that in Experiment 1, except for the necessary design changes, and participants 

were prompted to respond within eight seconds. 

3.4 Results 

As planned in my pre-registration, I repeated all reported analyses with participants’ 

AUC (discriminability) and raw proportion correct (accuracy) data. While proportion correct 

analyses revealed mostly similar results, it suggested no main effect of image rate (F(3, 87) = 
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2.149, p = .100), contrary to my discriminability analyses. This is likely due to more the 

difficult nature of the task compared to Experiment 1 (see Comparison to Chance analyses), 

and that proportion correct analyses are less sensitive than discriminability analyses. I will 

therefore only report discriminability as it better represents participants’ recognition 

differences between conditions. My analyses on participants’ accuracy can be found in 

Appendix G and Appendix H. 

3.4.1 Checking Assumptions. My statistical tests involve the same assumptions as in 

Experiment 1, and have been addressed in the same way (see histograms in Appendix I for 

distributional properties of the data). 

3.4.2 Comparison to Chance. Similarly to Experiment 1, I compared human 

performance to chance performance using “sim” data. A paired-samples t-test suggests that 

my participants are significantly more accurate than chance (t(239) = -3.318, p = .001, d = 

0.058), supporting my prediction that participants should identify fingerprints with reasonable 

discriminability. 

3.4.3 Presentation Rate and Image Specificity. I conducted repeated measures 

ANOVAs on participants’ AUC scores to test whether their ability to distinguish related and 

non-related fingerprints significantly increased as presentation rate increased, and whether 

these effects varied as a function of stimulus specificity level. As shown in Table 3, my 

results show that participants’ fingerprint recognition performance generally decreased as 

image rate increased for both “same finger” and “same person” conditions. My results 

suggest no significant main effect of specificity (F(1, 29) = 0.108, p = .744, 𝜂𝐺
2  < .001), a 

significant, small-to-moderate main effect of image rate (F(3, 87) = 3.367, p = .022, 𝜂𝐺
2  = 

.035) on participants’ discriminability, and no significant interaction (F(3, 87) = 2.053, p = 

.112, 𝜂𝐺
2  = .018; see Figure 7). Mauchly’s test for sphericity suggests that the assumption of 

sphericity was met (image rate: W = .934, p = .862; specificity-image rate interaction: W = 
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.827, p = .386); and so no corrections were applied to the reported p-values. A treatment-

control contrast suggested that compared to viewing a single image, participants’ 

discriminability scores significantly decreased when presented with 4 and 8 images per 

second (2 images: t = -0.897, p = .371; 4 images: t = -2.016, p = .045; 8 images: t = -2.663, 

p = .008). A subsequent trend analysis also revealed a significant linear trend over 

presentation rate (t = -2.880; p = .004). That is, discriminability decreased in a linear fashion 

as presentation rate increased for both same finger and same person conditions—contrary to 

my predictions. 

Table 3. 

Descriptive statistics for recognition performance in Experiment 2. 

 Mean Discriminability (AUC) Mean Proportion Correct 

Image rate Person (SD) Print (SD) Person (SD) Print (SD) 

Single image .595 (.242) .531 (.214) .656 (.166) .594 (.176) 

2 images .535 (.218) .521 (.197) .619 (.619) .586 (.141) 

4 images .439 (.182) .532 (.185) .542 (.134) .606 (.126) 

8 images .456 (.262) .464 (.174) .575 (.197) .547 (.143) 

Note: Discriminability estimates participants’ ability to discriminate faces depicting the same 

versus different people; proportion correct depicts accuracy. 

 

 

 
 

Figure 7. Box plots of participants’ discriminability as measured by their AUC scores for the 

main effects of image rate (left) and image orientation (right). 

 

To investigate my prediction that confidence will be highest when viewing single 

images, I also examined participants’ confidence ratings for each condition. As demonstrated 

in Table 4, participants were consistently confident across all presentation rates when viewing 
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streams of prints from the same person and prints from the same finger. A repeated measures 

ANOVA revealed no significant main effect of specificity (F(1,29) = 3.994, p = .055, 𝜂𝐺
2  

= .006) or image rate (F(3,87) = 0.763, p = .518, 𝜂𝐺
2  = .002), and no significant interaction 

(F(3,87) = 0.486, p = .693, 𝜂𝐺
2  < .001; see Figure 8). Mauchly’s test for sphericity suggests 

that the assumption of sphericity was met (image rate: W = .743, p = .144; specificity-image 

rate interaction: W=.676, p = .054); and so no corrections were applied to the reported p-

values. Given that confidence did not significantly differ across image rate conditions, my 

data does not support my initial prediction. 

Table 4. 

Descriptive statistics for confidence in Experiment 2. 

Mean Confidence Scores 

Image Rate Person (SD) Print (SD) 

Single image 3.097 (1.544) 3.292 (1.367) 

2 images 3.147 (1.631) 3.475 (1.381) 

4 images 3.086 (1.591) 3.233 (1.509) 

8 images 3.008 (1.662) 3.286 (1.552) 

 

 

Figure 8. Confidence data for the main effects of image rate (left) and orientation (right).  
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4.1 Discussion 

4.1.1 Addressing Predictions. This experiment aimed to assess whether viewing 

several impressions of similar fingerprints, either from the same finger or the same person, 

would better assist novices in making an identification compared to viewing a single 

fingerprint for a longer duration. My results suggest that this is not the case for either 

condition. Since novices have no experience in fingerprint matching, it is possible that 

recognition may benefit from carefully assessing fingerprints, as is currently standard practice 

(e.g., Busey & Parada, 2010), during the early stages of training. Indeed, given that 

understanding the images in an RSVP stream seems to rely on holistically processing each 

image (i.e., perceiving a complex image as a whole, rather than a collection of features; see 

Oliva, 2005), which may depend on image familiarity (e.g., Tanaka & Simonyi, 2016), it may 

be that the completely novel nature of the stimulus class required longer exposure to 

compensate for a lack of holistic processing. If this is true, it is plausible that rapidly 

presenting fingerprints may have introduced a floor effect in participants’ performance—

obscuring any positive effect that viewing multiple exemplars may have otherwise exerted. 

This explanation seems likely, as discrimination performance significantly decreased as 

presentation rate dropped below 300 milliseconds per image—the approximated minimum 

duration required to process visual stimuli (Potter, 1976). 

The fact that there was no significant difference or interaction between the same 

person and same finger conditions was also surprising. I suspected that performance would be 

higher when participants viewed streams from the same finger, to the extent that these 

streams contain less variation compared those in the ‘same person’ condition, thus providing 

a more stable ensemble representation with which to compare the latent print (see Whitney & 

Leib, 2018). However, while no studies have directly compared the two conditions as in the 

present experiment, evidence suggests that novices may not perform very differently when 
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asked to match a print to either the same person or same finger (see Searston & Tangen, 

2017c, Tangen et al., 2011, and Thompson et al., 2014). It seems likely, therefore, that 

because novices have no specific fingerprint matching experience like experts, the RSVP 

methodology allows them to notice general similarities between related prints, regardless of 

how precisely the prints are related. 

4.1.2 Future Directions. While the current results suggest that the RSVP paradigm 

does not improve fingerprint novice performance, this does not necessarily mean that 

exposure to various naturally varying fingerprints will not benefit novices. Previous research 

suggests that images presented in streams of at least one second per image can be efficiently 

remembered for long periods (e.g., Potter & Levy, 1969; Standing, 1973); and additionally, 

Thompson and Tangen (2014, Experiment 3) suggested that viewing a print for two seconds 

only incurred a 6.8 percent decrease in accuracy for novices compared to viewing prints for 

one minute. It is possible, therefore, that if each fingerprint in the stream was presented for 

several seconds, rather than several milliseconds, this may optimally balance the advantages 

of both viewing the detail in a single image and being exposed to variability within images. 

Future research may wish to either decrease the presentation rate, or allow participants 

themselves to control presentation rate and view each fingerprint for as long as they deem 

necessary for familiarisation. The latter manipulation would preserve individual differences 

in evidence accumulation styles (i.e., some people may prefer more image variation, while 

others may prefer more viewing time), providing a less intrusive method of investigating how 

presentation rate might predict identification performance. 

Additionally, future research may wish to administer the current experiment to 

participants with varying degrees of fingerprint-matching experience. Given that novices did 

not benefit from the RSVP stream (and were no better than chance in some conditions), it is 

possible that more experienced fingerprint examiners may derive greater benefits from the 



IMAGE PRESENTATION RATE AND PERSON IDENTIFICATION   

 

RSVP paradigm, as they may process the fingerprints more holistically (Busey & Vanderkolk, 

2005; but see Vogelsang, Palmeri, & Busey, 2017 for a competing study). Given that previous 

research suggests that the majority of learning among novices occurs within the first three 

months of training (Searston & Tangen, 2017b), it is possible that increasing exposure to 

varying prints may be most beneficial after the initial learning phase. 

  



IMAGE PRESENTATION RATE AND PERSON IDENTIFICATION   

 

CHAPTER 4 - GENERAL DISCUSSION 

This thesis examined whether rapidly viewing several instances of complex stimuli, 

across varying levels of familiarity (Experiment 1) and specificity (Experiment 2), would 

better facilitate recognition of a new instance compared to viewing a single image for a 

longer duration. Previous literature suggests that we can recognise new instances of an object 

based on our prior experience with similar instances (Brooks, 1987; Medin & Ross, 1989). 

Research on ensemble coding also suggests that we can rapidly understand the general nature 

of an object as we view several similar, varying instances (e.g., Im & Chong, 2009; Morgan 

et al., 2000). However, no research has examined how an RSVP-generated ensemble 

representation may assist in identifying new instances. 

Experiment 1 suggests that ensemble coding may indeed facilitate recognition when 

viewing upright and inverted faces. Given that upright and inverted faces differ only in 

observers’ decreased familiarity with inverted faces (Valentine, 1988), these results suggest 

that ensemble coding may assist recognition even when exposed to less familiar stimuli. 

Experiment 2, however, suggests the opposite pattern of results, as fingerprints—a 

completely unfamiliar stimulus class—showed worse discrimination when participants were 

presented with RSVP streams from either the same finger or same person as the crime scene 

print. 

 5.1 Addressing Predictions 

Contrary to my predictions in both experiments, participants’ confidence showed no 

significant differences across image rate conditions, despite single images allowing the 

greatest encoding time. It may be that the task demands were too difficult in each condition 

for participants to feel confident. Indeed, identifying different instances of unfamiliar faces 

has been reported to be a challenging task (e.g., Bruce et al., 1999), which would 

undoubtedly be harder when the faces are blurred (e.g., Balas et al., 2019; Sanford, Sarker, & 
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Bernier, 2018); and novice performance in fingerprint matching appears equally challenging 

(Searston & Tangen, 2017c; Tangen et al., 2011; Thompson et al., 2014). It seems likely that 

the relative disadvantages in either condition (i.e., less variation with single images compared 

to less processing time with several images) may have undermined confidence equally across 

all conditions. 

5.2 Discrepancies Between Discriminability Patterns 

Although my contradicting discriminability results between the two experiments were 

unexpected, several explanations are possible. Firstly, the fact that I presented the test 

stimulus in Experiment 2 before, rather than after the image streams, may have placed greater 

demands on working memory—especially as the ‘more familiar’ faces in Experiment 1 

(approximated from rapid stream conditions) may have already demanded less from working 

memory compared to recognising ‘less familiar’ faces (approximated by single image 

conditions; Jackson & Raymond, 2008). As opposed to Experiment 1, where the test stimulus 

remained onscreen until the response, participants in Experiment 2 had to hold a complex, 

unfamiliar, noisy latent fingerprint in working memory while viewing the subsequent print 

streams. This working memory demand may have made Experiment 2 more difficult than 

Experiment 1, particularly as the images became more difficult to process at faster image 

rates. The fact that ensemble coding seems more beneficial during the encoding stage of 

learning an identity, rather than on retrieval, seems concurrent with previous research on 

categorisation. Such research typically suggests that we can identify a new image by 

comparing its similarity to previously encountered images or representations (e.g., Brooks, 

1987; Dopkins & Gleason, 1997). If participants can only view similar instances after being 

exposed to the test stimulus, as in Experiment 2, then they are not previously encountering 

similar instances to create a representation; they view these images after the fact. 
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A second possible explanation is that compared to upright and inverted faces, 

fingerprints may be too difficult for novices to process using the current methodology. 

Although Experiment 1 suggests that RSVP streams may familiarise observers with less 

familiar stimuli, fingerprints may simply be too unfamiliar for a similar benefit to occur. The 

RSVP methodology seems to depend on holistic processing (see Oliva, 2005), and while 

previous research suggests that we process unfamiliar stimuli less holistically than familiar 

stimuli (e.g., Campbell & Tanaka, 2018; Wong et al., 2009), holistic and analytic processing 

seem to be opposing ends of a spectrum, rather than a dichotomy (see Farah, 1992, and 

Tanaka & Simonyi, 2016). That is, while inverted faces are not processed as holistically as 

upright faces (Tanaka & Simonyi, 2016), fingerprints may be processed even less so, and 

therefore benefit less from the RSVP paradigm as presentation rate increases. Future research 

may wish to confirm these suspicions, assessing and comparing our holistic processing 

abilities with a range of less familiar stimuli (e.g., fingerprints, paintings, bird species) with 

various recognition or categorisation tasks. 

5.3 Discrepancies Between Chance Comparisons 

While participants in both experiments displayed better performance than chance, 

participants in Experiment 1 displayed a higher difference (d = 0.121) than those in 

Experiment 2 (d = 0.058). In addition to the changes listed above, this difference in overall 

discriminability may be due to the fact that Experiment 1 had a higher degree of image 

variation than Experiment 2. In Experiment 1, all images were coloured and blurred and 

consisted of people in different contexts, including the subsequent test images; however, in 

Experiment 2 the stream images were somewhat controlled and artificial (i.e., fully-rolled 

prints, all on a white background) compared to the latent crime scene prints, which may vary 

in different ways to the prints used in the stream (e.g., contact surface or print pressure). That 

is, the streams in Experiment 1 were a closer match to the test images than in Experiment 2. 
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Previous research in face recognition suggests that exposure to more variable images better 

facilitates recognition in a new context compared to less variable images (Menon, White, & 

Kemp, 2015; Ritchie & Burton, 2017), and so it is possible that the more controlled nature of 

the stream images in Experiment 2 may have hindered participants’ ability to recognise the 

test images compared to the more variable stream images in Experiment 1. However, Ritchie 

and Burton (2017) suggest that reduced variability should nevertheless increase rather than 

decrease recognition compared to viewing single images. As such, while reduced variability 

may explain why participants did not benefit from the print streams in Experiment 2, it does 

not account for the significant decrease in discriminability observed with increasing 

presentation rates. Of course, it is possible that a combination of the aforementioned design 

factors may have produced the opposite trends observed across the two experiments. 

Another possible factor that may have contributed to the different pattern of results 

across the two experiments is that Experiment 2 contained fewer unique image exemplars in 

the streams compared to those in Experiment 1. Given the differences in the selected 

databases, participants viewed fewer unique fingerprints in each stream compared to the faces 

in Experiment 1. Indeed, even the highest presentation rate condition in Experiment 2 only 

showed participants eight unique prints, compared to the slowest stream condition in 

Experiment 1, which contained 16 unique faces. Given that previous research suggests that 

viewing fewer different exemplars may decrease recognition of new instances compared to 

viewing more (Murphy et al., 2015), it is possible that there were not enough fingerprints to 

produce a similar benefit of presentation rate in Experiment 2. However, it is also important 

to note that, in real-world fingerprint examination settings, examiners are unlikely to always 

have access to many varying exemplars of a suspects’ fingerprints—in some cases, 

fingerprint databases may only contain a single comparison print, or a ten-print card 

consisting of fully-rolled prints and ‘slapped’ prints from the same person, and not the same 
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finger (Jain, Nandakumar, & Ross, in press; PCAST, 2016). While Experiment 2 aimed to use 

prints that fingerprint analysts are likely to encounter in their daily work (e.g., latent crime 

scene prints presented with fully rolled suspect prints), and the aforementioned task 

constraints are an important limitation with respect to the experiment’s theoretical 

implications, they also highlight real constraints in attempting to generalise these findings to 

more applied contexts. 

5.4 Broader Implications 

Despite the different pattern of results observed with faces and fingerprints, my 

findings nevertheless help reveal important information about how observers may best 

familiarise themselves with novel images under different conditions. If these findings were to 

be replicated or extended in different contexts, they may reveal benefits of image presentation 

rate beyond face recognition for other domains of perceptual expertise. Given that prior 

exposure to variation seems to increase recognition performance when controlling for time, 

the identification decisions of counterfeit investigators, passport officers, various medical 

practitioners, and other professionals who rely on their perceptual expertise, may benefit from 

accumulating as much exposure as possible to varying examples within their domain. Future 

research may look to improve expert identification decisions by optimising the advantages of 

viewing time and exposure to variation in a range of given fields. 

5.5 Conclusion 

This thesis is the first to explore how to best familiarise observers with complex, 

unfamiliar images given a fixed amount of time: should we assess the finer details, or glean 

the general gist of several similar images? Across two experiments, I establish a new 

relationship between the RSVP-based ensemble coding literature and the image recognition 

literature, with the caveat that this relationship may change when presented under different 

conditions and in other expert domains not explored in this thesis. In Experiment 2, I 
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attempted to boost novices’ fingerprint identification performance by increasing their 

exposure to fingerprint variation in each case, and I found tentative support for current 

analytical practices, as reported by analysts, during the early stages of their training. My 

thesis highlights the need to further investigate how to optimally balance the potential 

advantages of both assessing the details of individual instances, and gaining experience with 

natural variation, when tasked with recognising familiar or unfamiliar identities and visual 

categories. As it stands, this thesis provides foundational evidence for the effect of 

presentation rate that may inform future research on improving the training and identification 

decisions of professionals in  medicine, security, and law enforcement—who are faced with 

the task of diagnosing or classifying new complex cases based on their previous experience. 
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Appendix C 

Similarity-matched identity pairs, matched by computing the mean, min, and max properties 

of each identity 
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Appendix E 

Descriptive statistics for participants’ proportion correct scores in Experiment 1 

 

Descriptive statistics for “sim” participants’ proportion correct scores in Experiment 1 

 

Repeated measures ANOVA code chunk and output for participants’ proportion correct scores 

in Experiment 1 

 

 
  



IMAGE PRESENTATION RATE AND PERSON IDENTIFICATION   

 

Trend analysis code chunk and output for participants’ proportion correct scores 

 

Treatment-control contrast code chunk and output for participants’ proportion correct scores 
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Appendix F 

Histograms of participants’ discriminability scores for Experiment 1 

 

Histograms of “sim” participants’ discriminability scores for Experiment 1 

 

Histograms of participants’ confidence scores for Experiment 1 
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Appendix H 

Descriptive statistics for participants’ proportion correct scores in Experiment 2 

 

Descriptive statistics for sim participants’ proportion correct scores in Experiment 2 

 

Repeated measures ANOVA code chunk and output for participants’ proportion correct scores 
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Appendix I 

Histograms of participants’ discriminability scores for Experiment 2 

 

Histograms of “sim” participants’ discriminability scores for Experiment 2 

 

Histograms of participants’ confidence scores for Experiment 2 

 

 




