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Systems of matrix Riccati equations, linear fractional transformations, partial

integrability and synchronization

M. A. Lohe1, a)

Centre for Complex Systems and Structure of Matter, Department of Physics,

University of Adelaide 5005, Australia

(Dated: 25 September 2019)

We partially integrate a system of rectangular matrix Riccati equations which de-

scribe the synchronization behaviour of a nonlinear complex system ofN globally con-

nected oscillators. The equations take a restricted form in which the time-dependent

matrix coefficients are independent of the node. We use linear fractional transforma-

tions to perform the partial integration, resulting in a system of reduced size which is

independent of N , generalizing the well-known Watanabe-Strogatz reduction for the

Kuramoto model. For square matrices the resulting constants of motion are related

to the eigenvalues of matrix cross ratios, which we show satisfy various properties

such as symmetry relations. For square matrices the variables can be regarded as ele-

ments of a classical Lie group, not necessarily compact, satisfying the matrix Riccati

equations. Trajectories lie either within, or on the boundary, of a classical domain

and we show by numerical example that complete synchronization can occur even for

the mixed case. Provided that certain unitarity conditions are satisfied, we extend

the definition of cross ratios to rectangular matrix systems and show that again the

eigenvalues are conserved. Special cases are models with real vector unknowns for

which trajectories lie on the unit sphere in higher dimensions, with well-known syn-

chronization behaviour, and models with complex vector wavefunctions that describe

synchronization in quantum systems, possibly infinite-dimensional.
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I. INTRODUCTION

Synchronization phenomena in physical, biological and other complex systems have been

extensively investigated in a wide variety of contexts1–6, including opinion dynamics7 with

related concepts of consensus8. In typical models the complex system consists of a large

number of elements interacting nonlinearly over a network of connections, with each node

comprising an independent dynamical system. The nodes become correlated in time as

synchronization occurs, leading to the evolution of the system as a collective entity. In large

systems with N nodes there are a correspondingly large number of differential equations to

be analyzed and solved, with behaviours that are sensitive to underlying parameters such as

coupling strengths, phase lag angles, time delays of interactions between the nodes, as well

as the effects of dynamic network topologies. The investigation and analysis of these systems

and their synchronization properties for large N remains an ongoing challenge, particularly

if the underlying parameters take distributed values that vary with time.

The widely-studied Kuramoto-type models of synchronization3,4,6,9, with its many exten-

sions and generalizations5,10, are useful because they are amenable to both numerical and

analytic investigations, while at the same time displaying a diverse range of behaviours.

In particular, a special case of the Kuramoto model with identical frequencies ω, but of

arbitrary size N , can be partially integrated by means of the Watanabe-Strogatz (WS)

transform11–15, which reduces the number of independent equations from N to only 3. This

allows for a much more detailed investigation of synchronization properties as a function of

the underlying parameters16,17.

The purpose of this paper is to generalize such models and their property of partial

integrability to systems where the variable Zi at each node i of the network is a rectangu-

lar matrix of arbitrary size, by firstly formulating the defining differential equations as a

system of cross-coupled matrix Riccati equations with time-dependent coefficients that are

independent of the node. Whereas Kuramoto models and their higher-dimensional exten-

sions generally have cubic nonlinearities, in special cases these can be regarded as quadratic

nonlinearities with time-dependent coefficients, and therefore take a Riccati form. These

equations can be partially integrated by means of linear fractional transformations, leaving

a reduced system of a size that depends only on the matrix dimensions, independent of N .

We find that for square matrices and also for unitary rectangular systems, the constants of
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integration are related to the eigenvalues of matrix cross ratios.

Special cases of interest are firstly square matrix variables Zi which are elements of a clas-

sical Lie group, such as GL(d,C) or the compact unitary and orthogonal subgroups, which

have previously been investigated in detail18–22. It is known that complete synchronization

can occur in these models for identical frequency matrices18,19, i.e. ZiZ
−1
j approaches the

identity matrix exponentially quickly for all i, j = 1, . . . N as the system evolves, for re-

stricted initial values. The second case of special interest, also extensively investigated, is

that in which the variables are real vectors that lie on the unit sphere in any dimension,

for which complete synchronization again occurs20,23–27. Partial integration has previously

been performed for these models28,29, although the reduced equations differ from those de-

rived here, see Sec. VIIC; evidently the method of partial integration is not unique. Partial

integation extends to general systems of rectangular matrices under the restricted circum-

stances mentioned such as identical frequency matrices, and we may then in principal use

the reduced equations to derive detailed properties of the trajectories as has been done for

the Kuramoto system17. Here, we focus on the methods of partial integration and the subse-

quent reduced equations, along with properties of linear fractional transformations, matrix

cross ratios and the constants of motion, and it remains to show how to use the reduced

equations to analyze the specific behaviour of the system for various underlying parameters.

A. Matrix Riccati equations

There is an extensive body of literature on Riccati equations for rectangular matrices of

arbitrary size p × q, with applications to random processes, optimal control, and diffusion

problems, as well as to other engineering science applications such as robust stabilization,

and network synthesis30–34, see also several reviews35–38. We refer in particular to Ref. 31

for a comprehensive development with further references, although the applications are in

these cases to single matrix Riccati equations, sometimes with constant coefficients.

By contrast, we consider cross-coupled Riccati matrix systems of unlimited size N with

coefficients of arbitrary time-dependence and these, it appears, have not previously been

investigated, either in general or for the specific application to synchronized systems, except

for the Kuramoto model13,39 and the n-sphere generalizations28,29. Although the partial

integration that we outline in Sec. III has not been previously described in its generality,
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many known results for a single matrix Riccati equation using for example linear fractional

transformations and matrix cross ratios, together with corresponding group properties and

classical domains, apply also to our matrix Riccati systems. This is to be expected in view

of the fact that the properties of a single Riccati matrix equation are a special case of those

for a system of N equations, since one can always replicate a single matrix equation N

times to form a system of N uncoupled equations, with different initial values for each node.

Such equations can be solved sequentially, whereas our equations can only be solved simul-

taneously due to the nonlinear cross couplings. We provide independent derivations of the

properties of linear fractional transformations and matrix cross ratios, which in some cases

are similar or equivalent to those previously derived for a single matrix Riccati equation, for

example those of Levin40 in 1959. In addition we derive properties that are specific to mod-

els of synchronization, such as constants of motion which are constructed from rectangular

matrices, as applied to models of quantum synchronization, or to the n-sphere models (see

Sec. VIIC).

Hermitean and symmetric Riccati differential equations, as defined for example in Chap-

ters 4 and 7 in Ref. 31, have previously been investigated for square matrices, whereas we

define unitary and orthogonal Riccati systems in Sec. VA more generally for rectangular

matrices. These are relevant to synchronized systems, and for square matrices are related

to hermitean and symmetric Riccati systems by means of the Cayley transform. Properties

of matrix cross ratios in rectangular unitary systems do not appear to have been previously

derived.

The main restriction of our approach is that the coefficients of the Riccati system are

uniform across the network, i.e. are independent of the node i, and only the N matrix

variables Zi depend on i as they evolve in time. The coefficient matrices can be constant

in time (for example the frequency matrices), or else are constructed as linear combinations

of the variables Zj, j = 1, . . . , N , possibly at a delayed time, and so are generally not fixed

functions of time. Our system of equations (9) cannot be formulated as a single matrix

Riccati equation unlike, for example, that investigated in Ref. 41.

Linear fractional transformations have previously been used to solve or simplify associated

Riccati equations35,40,42. Riccati equations appear in Lie group theory as the equations of one

parameter flows in a Lie group acting on Grassmann manifolds, where the group action is by

means of a partitioned matrix which lies in GL(p+ q) and acts by means of linear fractional
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transformations34,43. For square matrix Riccati equations it is known that the eigenvalues of

the matrix cross ratios are constants of motion35,38,40, as we discuss in Sec. IVA. For a single

Riccati equation the matrix cross ratio is formed from the solutions generated by distinct

initial conditions whereas for the Riccati system that we consider, matrix cross ratios Cijkl are

formed from all variables Zi across all distinct nodes i, j, k, l = 1, . . . N . We show explicitly

from the Riccati equations that the eigenvalues of Cijkl, and hence the determinant and trace,

are constants of motion by deriving a differential equation satisfied by Cijkl, generalizing a

property obtained by Whyburn44 (Theorem V) as long ago as 1934 for a single matrix

Riccati equation, see also Levin40. Properties of matrix cross ratios are well-known from

the early works of Siegel45 and Hua46,47 in 1943 and 1945, and their invariance under linear

fractional transformations has been analyzed in the context of Riccati equations34. It was

noted by Siegel45 that for two cross ratio matrices with the same eigenvalues there exists

a linear fractional transformation belonging to the symplectic group which relates the two

cross ratios. We extend the definition of cross ratios for square matrices to rectangular

matrix Riccati systems, for rectangular unitary systems as defined in Sec. VII, and again

show directly that the eigenvalues of the cross ratio matrices are constants of motion.

Related to properties of linear fractional transformations are those of bounded classical

domains, defined in our context as the space of p × q complex matrices Zi restricted by

the condition that Ip − ZiZ
†
i > 0 (meaning that Ip − ZiZ

†
i is positive definite) for each

i = 1, . . . N . There are four families of classical domains48 of which type I, which is diffeo-

morphic to U(p, q)/U(p) × U(q), is relevant to our models of synchronization. The group

U(p, q) acts by means of linear fractional transformations, as we show explicitly in Sec. VD.

It remains an open question as to whether the other classical domains also lead to matrix

Riccati systems with synchronization properties. We allow trajectories to lie either inside

the classical domain, i.e. with Ip − ZiZ
†
i > 0, or else on the boundary with ZiZ

†
i = Ip. Syn-

chronization occurs even in the mixed case, where some nodes i have trajectories inside the

classical domain and others are confined to the boundary, as we demonstrate by numerical

example in Secs. II A and VIIC.

For the Kuramoto model, which we review in Sec. II, the WS transform is equivalent

to the Möbius transformation which maps the unit circle to itself11–15 and also preserves

the unit disk, and is an example of a linear fractional transformation13,39 applied to the

complex variables zi. The classical domain in this case is the unit disk on which SU(1, 1)
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acts transitively by means of the Möbius transformation, and trajectories lie either on the

unit circle or within the unit disk, depending on the initial values. The cross ratios Cijkl are

constants of motion for all distinct nodes i, j, k, l = 1, . . . N and are invariant under linear

fractional transformations.

B. Summary

In Sec. II we review the Kuramoto model and the WS transform as the simplest example

of the method of partial integration, together with properties of linear fractional transfor-

mations (the Möbius map), cross ratios, and the identification of the classical domain as the

unit disk. We show by numerical example that the system can synchronize whether trajec-

tories lie either inside the unit disk, or on the boundary, or both. In Sec. III we consider a

general Riccati system of N rectangular matrix equations which we partially integrate and

although the derivation is elementary (Theorem 2), this leads to a significant reduction to a

set of equations which in number is independent of N . In Sec. IV we restrict our attention

to square matrix systems of size d × d for which synchronization is known to occur19, and

develop properties of matrix cross ratios, the eigenvalues of which are constants of motion.

The existence of these nontrivial constants of motion explains why the system is partially

integrable. In Sec. V the system is furthered restricted to unitary matrices which we relate to

the well-studied hermitean Riccati matrix equation. The matrix cross ratios lead in special

cases to constants of motion for synchronization models on the unit sphere (Corollary 8). We

show directly in Sec. VD that trajectories lie in the classical domain U(d, d)/U(d)× U(d).

In Sec. VI we further restrict the system to orthogonal matrices, firstly to point out that

matrix cross ratios are defined only for even d, and secondly to show that properties of partial

integration extend to noncompact orthogonal groups. As an example we consider the Lorentz

group SO(1, 1) and the associated hyperbolic Kuramoto equations, which are known to

describe synchronization of relativistic systems in Minkowski space49. We find a hyperbolic

form of the WS transform and derive the relevant classical domain which in this case is

unbounded. In Sec. VII we return to the rectangular matrix system, restricted to satisfy

unitarity conditions, which are of interest because they include the case of complex vector

unknowns which can be regarded as quantum wavefunctions. The matrix equations describe

quantum synchronization, which has been well-studied50–56, and we show in particular in

6



Sec. VIIB that partial integration formally extends to infinite-dimensional equations which

constitute a nonlinear system of Schrödinger equations. For real vectors the system has

trajectories which lie on the unit sphere or within the unit ball, and we show by numerical

example that synchronization can occur even for the mixed case (Sec. VIIC). A point of

particular interest is that the method of partial integration in Sec. VIIC, derived using linear

fractional transformations, differs from that derived specifically for the n-sphere models28;

the relationship between these two methods evidently deserves further investigation. We

conclude with a summary and final remarks in Sec. VIII.

II. REVIEW OF THE WS TRANSFORM AND EXTENDED KURAMOTO

MODELS

The WS transform was introduced by Watanabe and Strogatz11,12 in 1993 as a trigono-

metric substitution in order to solve systems of globally coupled oscillators described by the

Kuramoto model, but was later seen to be equivalent to the Möbius group of transforma-

tions which map the unit disk D = {z ∈ C : |z| < 1} onto itself13,15. We refer to Ref. 5

for a summary of the Watanabe-Strogatz theory, also to Ref. 28, Section 1.1, which outlines

recent developments and applications of the theory, and generalizes the WS transform to

mappings of the unit ball Bd = {x ∈ Rd : ∥x∥ < 1} in any dimension d . The Kuramoto

model with identical frequencies takes the well-known form

θ̇i = ω +
1

N

N∑
j=1

λj sin(θj − θi), i = 1, . . . N, (1)

where the frequency ω of oscillation is fixed across all nodes, and where we have included

multiplicative parameters λj. One could also include arbitrary node-dependent phase lag

angles αj as well as a time delays τj > 0 for the interacting variables θj. Although the

WS transform applies to such general models, it is nevertheless restricted in that, as well as

requiring identical frequencies, the coupling constant κ must be uniform across all nodes, at

least in magnitude, and the network topology must be complete, i.e. we allow only global

connectivity. While these restrictions are severe, they result in a system which is expressible

in Riccati form and can be partially integrated and analyzed in detail16,17.

We perform the WS transform on (1) by introducingN angles ξi(t) and a complex variable
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z(t) according to

eiθi =
z + eiξi

1 + z eiξi
, (2)

then the N equations for ξi which follow by substitution into (1) are linear and can be inte-

grated directly, leaving only 3 real equations which govern the time evolution of the system.

The mapping (2) is an automorphism of the unit circle which extends to automorphisms of

the unit disk, generating the 3-dimensional Möbius group13,14. These transformations gen-

eralize in higher dimensions to linear fractional transformations which are automorphisms

of the group manifolds of the classical Lie groups.

A. Linear fractional transformations and Riccati equations

We rewrite (1) as a system of Riccati equations for zi = eiθi , but more generally we

consider a system in which zi ∈ C evolves from the initial value zi(0) = z0i according to

żi = iω zi + Γ1 − z2i Γ2, i = 1, . . . N, (3)

where ω,Γ1,Γ2 are complex functions of t, independent of i. The Kuramoto model (1)

is obtained by setting zi = eiθi together with Γ1 = Γ2 =
∑

j λjzj/(2N), as previously

observed13,39. The system (3) in this case allows solutions that can lie inside the unit disk

as well as on the unit circle, depending on the initial values z0i . Synchronization is measured

by the order parameter r = |
∑

j zj/N |, with r → 1 for complete synchronization, for which

we have |zi − zj| → 0 as t → ∞. Numerically we find that this indeed occurs for random

initial values z0i , provided that
∑

j λj > 0 and more generally, complete synchronization

occurs provided that
∑

j λj cos βj > 0, where βj are phase lag angles16,17. Rigorous results

have been obtained for the standard Kuramoto model in which all trajectories lie on the

unit circle22,57,58.

If we allow some of the parameters λi to be negative with
∑

j λj < 0 then the system

can settle into asymptotic configurations consisting either of asynchronous or bipolar states.

This is already known to occur for trajectories on the unit circle17, and here we provide

numerical examples to show that this occurs also for trajectories in the unit disk. In Fig. 1

we choose N = 15 with ω = 0, and plot 12 trajectories in the unit disk, with the remaining 3

confined to the unit circle. The initial values θ0i and the parameters λi ∈ [−1, 1] are generated

randomly. The trajectories are shown in red, the initial points in blue, and the final locations
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for which asymptotic configurations have been attained are marked in black. In (a) we have∑
j λj > 0 and complete synchronization of all nodes occurs, i.e. zi → eiϕ for some fixed

angle ϕ for all nodes i. For (b) we have
∑

j λj < 0, and in this case synchronization does

not occur, but the nodes are phase-locked into an asynchronous configuration, with some

nodes remaining well inside the unit circle.

In (c) we solve the Kuramoto system (1) with distributed frequencies ωi and for
∑

j λj > 0,

and observe that phase-locked synchronization occurs, with the final configuration similar

to those well-known for the simple Kuramoto model. The only difference is that here some

of the trajectories start inside the unit circle. Although this system is not expressible in

the Riccati form (3) and so is not partially integrable, we present this example in order

to demonstrate that synchronization can still occur for general extended Kuramoto models

whether trajectories start inside or on the unit circle, possibly in mixed form.

HaL

-1.0 -0.5 0.5 1.0
x

-1.0

-0.5

0.5

1.0

y

HbL

-1.0 -0.5 0.5 1.0
x

-1.0

-0.5

0.5

1.0

y

HcL

-1.0 -0.5 0.5 1.0
x

-1.0

-0.5

0.5

1.0

y

FIG. 1. Trajectories zi(t) (red) in the unit disk and on the unit circle, with initial values marked

in blue, final values in black, for N = 15, ω = 0 with 3 nodes restricted to the unit circle.
∑

j λj

is positive for (a), in which case complete synchronization occurs, and negative for (b). For (c) we

select distributed frequencies ωi with
∑

j λj > 0, and phase-locked synchronization occurs.

Now let us briefly review how the system (3) can be partially integrated13. Firstly, we

observe that the cross ratios

(zi, zj, zk, zl) =
(zi − zk)(zj − zl)
(zi − zl)(zj − zk)

(4)

are conserved functions of t for any distinct indices i, j, k, l = 1, . . . N and for arbitrary

complex functions ω(t),Γ1(t),Γ2(t), as follows by direct computation using (3). Secondly,
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these cross ratios are invariant under linear fractional transformations defined by

zi → g(zi) =
azi + b

czi + d
, i = 1, . . . N, (5)

where ad − bc ̸= 0, and where the complex coefficients a, b, c, d, as well as zi, are time-

dependent. We can use these linear fractional transformations therefore to transform the

system (3) whilst leaving the constants of motion (4) invariant.

Define

β =
b

d
, γ =

c

a
, ζi =

a zi
d
, (6)

(assuming that ad ̸= 0, βγ ̸= 1), then we rewrite (5) in terms of ζi, β, γ and substitute

zi =
β + ζi
1 + γ ζi

(7)

into (3). The resulting equations are solved by:

β̇ = iβ ω + Γ1 − β2Γ2, γ̇ = −iγ ω + Γ2 − γ2Γ1, ζ̇i = (iω + γΓ1 − βΓ2) ζi,

as is verified by direct substitution. The first two of these are themselves Riccati equations

and the last, which is linear, is partially integrated by writing ζi = ζ0i exp iα, where α is a

complex function satisfying α̇ = ω − i γΓ1 + i βΓ2 with α(0) = 0. The initial values β0, γ0

for β, γ are arbitrary, and ζ0i is obtained from (7) by imposing zi(0) = z0i . The system (3) of

N complex equations is therefore reduced to just three equations for the complex variables

α, β, γ.

A special case of (3) is when ω is real and Γ1 = Γ2, which we refer to as a unitary system

(since the variables zi are unitary for all t > 0 provided initially they are unitary), and is

related to hermitean Riccati systems as discussed in Sec. VA. In this case we can choose

β = γ = z, and so (7) agrees with (2) upon identifying ζi = eiξi and zi = eiθi . Such a system

is the Kuramoto model for which Γ1 = Γ2 =
∑

j λjzj/(2N), and in this case α is real.

The transformation (5) is a group transformation in which g =

a b

c d

 ∈ GL2(C). For

unitary Riccati systems, g preserves the unit circle provided that |g(zi)| = 1 whenever

|zi| = 1, which holds provided that

|a|2 − |c|2 = 1, |d|2 − |b|2 = 1, c d = a b, d c = b a, (8)

which in turn implies that g ∈ U(1, 1). It follows from these relations that for any g ∈ U(1, 1)

we have |czi + d|2(1− |g(zi)|2) = 1− |zi|2. Hence, if |zi| < 1 for any node i, then |g(zi)| < 1
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and so the transformation zi → g(zi) preserves both the unit disk and the unit circle48, and

(7) is equivalent to the Möbius transformation13. Trajectories zi(t) of the system either lie

entirely inside the unit disk or on the unit circle, depending on the initial value z0i for each

node i.

From (6) we have b = dz, c = az which implies from (8) that |a|2(1 − |z|2) = 1 =

|d|2(1 − |z|2). Hence |z| < 1, and also |a| = |d|, and so from (6) we have |ζi| = |zi|. We

therefore have a = eiψ/
√
1− |z|2 and d = eiφ/

√
1− |z|2 for angles ψ, φ, and so g ∈ U(1, 1)

factorizes according to

g =

a b

c d

 =
1√

1− |z|2

1 z

z 1

eiψ 0

0 eiφ

 ,

which is the product of an SU(1, 1) matrix and an element of U(1) × U(1). The group

SU(1, 1) acts transitively on the unit disk, which is diffeomorphic to U(1, 1)/U(1)×U(1), and

is an example of a bounded classical domain48. Such classical domains generalize to bounded

open subsets in Cn on which the corresponding groups act transitively. The trajectories of

the variables in higher-dimensional systems also lie either within the classical domain, or

on the boundary. We consider in particular synchronization models for which the classical

domain is the set of p × q complex matrices Zi such that Iq − Z†
iZi is positive definite for

each i, which is diffeomorphic to U(p, q)/U(p) × U(q), where Iq denotes the q × q identity

matrix.

III. RECTANGULAR MATRIX RICCATI SYSTEMS

We consider a globally connected network of N nodes in which the variable Zi, a p × q

complex matrix, is located at the ith node and evolves according to the equation:

Żi = Γ1 + iΩ1Zi + iZiΩ2 − ZiΓ2Zi, i = 1, . . . N, (9)

where the matrix dimensions are given by Zi : p×q,Γ1 : p×q,Ω1 : p×p,Ω2 : q×q,Γ2 : q×p.

The coefficient matrices Γ1,Γ2,Ω1,Ω2, depend on t, not necessarily as fixed functions of t,

but through the time-dependent variables Zj for j = 1, . . . N . The system (9) comprises

therefore a set of N cross-coupled nonlinear equations. We specify initial values Zi(0) = Z0
i ,

and assume that solutions exist at least locally. Equations (9) reduce to (3) for p = 1 = q,

with ω = Ω1 + Ω2.
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As examples of coefficient matrices which are used in models of synchronization, Ω1,Ω2

are typically constant hermitean matrices, which therefore have real eigenvalues which can

be regarded as frequencies of oscillation, and Γ1 =
∑N

j=1 ajZjbj where aj, bj are any fixed

set of p× p and q× q complex matrices, respectively, together with Γ2 =
∑N

j=1 cjZ
†
jdj where

cj, dj are also any set of q × q and p × p complex matrices, respectively, where Z†
j denotes

the hermitean conjugate of Zj. For the case p = q = d of square matrices an alternative

choice is Γ2 =
∑N

j=1 cjZ
−1
j dj where the variables Zj are elements of the general linear group,

i.e. invertible square matrices. For the general models considered in Ref. 19 (equation 1.3)

we choose Hi = Ω1 to be independent of i, then we obtain (9) with Ω2 = 0 and Γ1 =

K
∑

j Zj/(2N),Γ2 = K
∑

j Z
−1
j /(2N). Solutions for these particular equations exist locally

(Proposition 2.119), and also globally provided that the initial values are suitably restricted.

Under these conditions the solutions completely synchronize, meaning that Zi(t)Zj(t)
−1 →

Id for all i, j = 1, . . . N as t→∞. (Theorem 4.219).

A. Linear fractional transformations

In order to partially integrate (9) we define the linear fractional transformations

Zi → g(Zi) = (AZi +B)(CZi +D)−1, (10)

where the dimensions of the complex matrices A,B,C,D are given by A : p×p, B : p×q, C :

q× p, D : q× q. Hence CZi+D is a square matrix of dimension q× q, which we assume to

be invertible, and AZi +B is of dimension p× q. Define the (p+ q)× (p+ q) matrix g by

g =

A B

C D

 , (11)

then successive linear fractional transformations (10), in which Zi → g1(Zi) → g1(g2(Zi)),

are equivalent to a single linear fractional transformation Zi → g1g2(Zi), where g1g2 denotes

the matrix product for the matrices (11). Hence successive linear fractional transformations

correspond to group composition, and so we view (10) as a group transformation with

g ∈ GL(p + q,C), provided that g is invertible. We note the following decomposition of g

as a product of lower, diagonal, and upper triangular matrices:

g =

A B

C D

 =

 Ip 0

CA−1 Iq

A 0

0 Iq

Ip 0

0 D − CA−1B

Ip A−1B

0 Iq

 , (12)
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provided that A−1 exists. Hence g is invertible provided that det g = detA det(D−CA−1B)

is nonzero. The inverse transformation g−1 can be deduced from this decomposition, or

directly from (10).

Next, we define (generalizing (6)):

ζi = AZiD
−1, β = BD−1, γ = CA−1, (13)

where the complex matrices ζi, β, γ are of size p× q, p× q, q × p respectively. The transfor-

mation (10) now reads:

Zi → (ζi + β) (γζi + Iq)
−1 . (14)

We substitute for Zi into (9), and therefore replace the N equations for Zi by N+2 equations

for the matrices ζi, β, γ, which leaves the degrees of freedom residing in the two matrix

variables β, γ yet to be fixed; only then is ζi determined uniquely for all i. These extra

degrees of freedom arise from the group properties of the linear fractional transformations

(10) with respect to GL(p + q,C). If we choose β = 0 = γ, we regain Zi, however we now

define β, γ as the solutions of specific equations, from which the equations for ζi follow:

Lemma 1. Equations (9) are satisfied by Zi = (ζi + β) (γζi + Iq)
−1 provided that

β̇ = Γ1 + iΩ1β + i β Ω2 − βΓ2β, (15)

γ̇ = Γ2 − i γ Ω1 − i Ω2γ − γΓ1γ, (16)

ζ̇i = (Γ1γ + iΩ1)ζi − ζi(Γ2β − i Ω2). (17)

Proof. The proof is by direct substitution. We choose the equation for β by requiring that

(9) be satisfied to lowest order in ζi which, in effect, means we set ζi → 0 in (14) and hence

we simply replace Zi → β in (9), which gives (15). Next, we substitute (14) into (9), and

postmultiply both sides by (γζi + Iq). Inverse matrices are differentiated using the identity

d/dt(A−1) = −A−1ȦA−1, for any invertible square matrix A. Then we substitute for β̇ from

(15). The resulting equation can be manipulated into the form:

ζ̇i = Γ1 (γζi + Iq) + iΩ1 (ζi + β)− Γ1 − i Ω1 β − i β Ω2 + β Γ2 β

+ (ζi + β) (γζi + Iq)
−1
[
iΩ2 (γζi + Iq) + γ̇ζi + γζ̇i − Γ2 (ζi + β)

]
= Γ1γζi + iΩ1 ζi + i ζiΩ2 − ζiΓ2β

+ (ζi + β) (γζi + Iq)
−1
[
−i γζiΩ2 + iΩ2γζi + γ̇ζi + γζ̇i − Γ2ζi + γζiΓ2 β

]
, (18)

13



and we then set the quantity in brackets to zero. The remaining terms in this equation lead

directly to (17). On back-substituting for ζ̇i into the term in brackets in (18), and setting it

to zero, we obtain (16).

Evidently (15,16) are themselves Riccati equations if we regard the coefficients as having

a fixed time-dependence. Similarly, (17) is linear in ζi and is sometimes referred to as a

system of Sylvester differential equations (in homogeneous form), see Ref. 31, Chapter 1,

equation (1.7). The fact that solutions of the matrix Riccati equation (9), for any fixed

i, can be associated with a linear matrix system is well-known, and is sometimes known

as Radon’s Lemma (see Theorem 3.1.131). We emphasize, however, that in applications to

models of synchronization the coefficient matrices Γ1γ+iΩ1 and Γ2β− i Ω2 are not actually

fixed functions of time, but depend on t through the unknowns Zj by means of expressions

such as Γ1 =
∑N

j=1 ajZjbj, as described above and hence, upon substituting for Zj using

(14), are in fact nonlinear functions of β, γ, ζj. Nevertheless, we may perform N integrations

to solve for ζi by regarding (17) as a linear system. Firstly, we define the p × p complex

matrix S and the q × q complex matrix T by means of:

Ṡ = (Γ1γ + iΩ1)S, S(0) = Ip, Ṫ = (Γ2β − i Ω2)T, T (0) = Iq, (19)

which are square matrix equations of size p×p and q×q respectively. Hence, if we regard the

coefficients as fixed functions of t, then S, T are principal matrix solutions which exist over

any interval for which the coefficient matrices exist. Despite the fact that (17) is nonlinear

in the variables ζj, j = 1, . . . N , we can now solve for ζi for each i in terms of S, T as follows:

Theorem 2. 1. The solution of (17) with ζi(0) = ζ0i is

ζi = S ζ0i T
−1, (20)

where S, T are determined by (19).

2. The solution of the N matrix equations (9) with initial values Zi(0) = Z0
i is

Zi =
(
Sζ0i + βT

) (
γSζ0i + T

)−1
, (21)

where β, γ are determined by (15,16) with arbitrary initial values β0 = β(0), γ0 = γ(0),

and where the initial values ζ0i are given in terms of Z0
i by:

ζ0i = −
(
Z0
i γ0 − Ip

)−1 (
Z0
i − β0

)
. (22)
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Proof. 1. We firstly verify that (20) satisfies (17) with ζi(0) = ζ0i , then by uniqueness

this is the required solution:

ζ̇i = Ṡζ0i T
−1 − Sζ0i T−1Ṫ T−1 = ṠS−1ζi − ζiṪ T−1 = (Γ1γ + iΩ1)ζi − ζi(Γ2β − i Ω2),

together with ζi(0) = ζ0i , as required.

2. Eq. (21) follows by substituting (20) into (14). The relation between the initial values

Z0
i , ζ

0
i is determined by setting t = 0 in (21), leading to (22).

Because we have introduced two extra variables β, γ, the system is not fully determined

until we specify initial values β(0) = β0, γ(0) = γ0, which then fixes β, γ as the unique

solutions of (15,16). The choice of β0, γ0 is arbitrary, reflecting the group transformation

properties of the linear fractional transformations (10), although we do not demonstrate this

explicitly. A convenient choice is β0 = 0 = γ0, for then we have from (22) ζ0i = Z0
i .

In summary, by partial integration we have reduced theN matrix equations (9) to the four

matrix equations (15,16,19) for β, γ, S, T , with associated initial values. For unitary systems,

which we define in Secs. VA and VII, we may also choose β = γ†, which then leaves only three

complex matrix equations to be solved. The partial integration is therefore useful for N ⩾ 4,

but is particularly significant for large N ; numerical simulations of synchronization models

have been performed, for example, with N > 25, 00059. In terms of matrix elements, (9)

comprises pqN complex equations, whereas (15,16,19) comprise (p+ q)2 complex equations,

independent of N .

In typical models of synchronization Ω1,Ω2 are constant matrices, and Γ1 is a complex

linear combination of all elements Zj, for j = 1, . . . N , i.e.

Γ1 =
N∑
j=1

ajZjbj =
N∑
j=1

aj
(
Sζ0j + βT

) (
γSζ0j + T

)−1
bj, (23)

where aj, bj are a fixed set of p×p and q×q complex matrices, respectively. This expresses Γ1

in terms of the four unknowns β, γ, S, T , and similarly for Γ2 =
∑

j cjZ
†
jdj. Then (15,16,19)

together with their corresponding initial values comprises a set of four coupled nonlinear

equations for the unknowns β, γ, S, T . Having solved for β, γ, S, T we construct Zi from

(21).
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IV. SYSTEMS OF SQUARE MATRICES AND COMPLETE

SYNCHRONIZATION

The general results of Section III for rectangular matrices apply in particular to square

matrices, and so the system can be partially integrated as before, however we now obtain

explicit constants as the eigenvalues of cross ratio matrices, which restrict the possible

dynamics of the system. In this section, therefore, we investigate in detail the properties

of matrix cross ratios together with linear fractional transformations, which have been well-

known since the work of Siegel45 and Hua47. We set p = q = d in (9) so that Zi,Ω1,Ω2,Γ1,Γ2

are now d× d complex matrices satisfying

Żi = Γ1 + iΩ1Zi + iZiΩ2 − ZiΓ2Zi, i = 1, . . . N, (24)

with Zi(0) = Z0
i , and we assume that the unknowns Zi are invertible at all times.

A specific model of synchronization which is defined for a classical Lie group G, which

could be noncompact19, takes the form:

Żi = HiZi +
K

2N

N∑
j=1

(
Zj − ZiZ−1

j Zi
)
, i = 1, . . . N, (25)

where Zi ∈ GL(d,C), with initial values Zi(0) = Z0
i ∈ G. The matrices Hi are elements

of the Lie algebra of G, and therefore are also elements of GL(d,C), and K is a coupling

constant. Solutions of (25) exist locally (Proposition 2.119), and global existence also follows

provided that some a priori conditions are imposed (Proposition 2.219). If G is compact the

equations (25) admit a unique smooth global solution for any initial values Z0
i ∈ G (Remark

2.419). Phase-locked states are defined as configurations in which Zi(t)Z
−1
j (t) is constant

for all i, j = 1, . . . , N , then it is known that asymptotic phase-locking occurs for sufficiently

large K > 0, and for restricted initial conditions (Theorem 5.119). Further results have

recently been obtained for systems with nontrivial topologies60.

Of particular interest here is the case of identical oscillators in which Hi = H is indepen-

dent of i, since then the system (25) takes the matrix Riccati form (24) with

i Ω1 = H, Ω2 = 0, Γ1 =
K

2N

N∑
j=1

Zj, Γ2 =
K

2N

N∑
j=1

Z−1
j . (26)

In this case exponential complete entrainment occurs, i.e. Zi(t)Z
−1
j (t) approaches the iden-

tity matrix for all i, j = 1, . . . , N exponentially fast as the system evolves (Theorem 4.219).
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As outlined in Section III, equations (25) can be partially integrated and so can be reduced

to (15,16,17). A specific example is the well-studied Kuramoto model (1) with identical

frequencies, which corresponds to (24) with d = 1 and Zi = eiθi , together with the identifi-

cations (26) with Ω1 = ω, and can be partially integrated by means of the WS transform as

discussed in Sec. II.

A. Matrix cross ratios

For square matrices the partial integration described in Sec. III can be viewed as a

consequence of the existence of conserved quantities for the system (24). We define the d×d

matrix cross ratios Cijkl for i, j, k, l = 1, . . . , N , with i ̸= l, j ̸= k by:

Cijkl = (Zi − Zk) (Zi − Zl)−1 (Zj − Zl) (Zj − Zk)−1 = ZikZ
−1
il ZjlZ

−1
jk , (27)

where Zi, Zj, Zk, Zl ∈ GL(d,C) and Zij = Zi − Zj = −Zji. It is known that matrix

cross ratios have simple transformation properties with respect to distinct solutions of a

single matrix Riccati equation (Levin40, Theorem 5), see also Reid30 (Theorem 12.1) and

Zelikin34 (Chapter 5) for properties of matrix double ratios. Firstly we derive an evolution

equation satisfied by Cijkl when the matrices Zi evolve according to (24), from which it

follows that the eigenvalues of Cijkl are constants of motion. We then show that linear

fractional transformations result in similarity transformations of Cijkl, which therefore leave

invariant the eigenvalues of Cijkl.

Theorem 3. If the variables Zi satisfy (24) then the cross ratios (27) evolve according to

Ċijkl = [Cijkl, ZkΓ2 − i Ω1]. (28)

Proof. See Appendix A for the proof by direct calculation.

Γ1 does not appear in the commutator on the RHS of (28), as is evident from the defining

equations (24) and the fact that the cross ratios depend only on the differences Zi − Zj.

Less obvious is the fact that Ċijkl is also independent of Ω2. If we fix the indices i, j, k, l

and denote A = Cijkl, H = iZkΓ2 +Ω1, then (28) reads iȦ = [A,H] which is the well-known

Heisenberg equation of motion for observables A, but in complex form. We may solve the

system (28) in the same way as the Heisenberg equations of motion:
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Corollary 4. For each k = 1, . . . N define the d× d complex matrix Sk by

Ṡk = (iΩ1 − ZkΓ2)Sk, Sk(0) = Id, (29)

then the solution of (28) is Cijkl(t) = Sk(t)C
0
ijklS

−1
k (t) where C0

ijkl = Cijkl(0).

Proof. We can regard Sk as the principal matrix solution of (29) which exists over any

interval for which the coefficient matrix i Ω1 − ZkΓ2 exists. We have

Ċijkl = Ṡk C
0
ijklS

−1
k − Sk C

0
ijklS

−1
k ṠkS

−1
k = ṠkS

−1
k Cijkl − CijklṠkS−1

k

= [ṠkS
−1
k , Cijkl] = [i Ω1 − ZkΓ2, Cijkl],

together with C0
ijkl = Cijkl(0) as required.

Hence Cijkl(t) ∼ C0
ijkl for all t > 0 and so the eigenvalues of Cijkl are constant in time and

are therefore determined by the initial values Z0
i for the system (24). In particular the trace

and determinant of Cijkl are constant. For the Kuramoto model the cross ratios reduce to

(4), which are constant for all trajectories whether on or inside the unit circle.

The fact that the eigenvalues of Cijkl are constants of motion constrains the possible

trajectories of the system, in particular any two nodes which are initially co-located, i.e.

Z0
i = Z0

j for some i, j, remain co-located for all t > 0, despite the nontrivial interactions

between nodes, since then we have Cijkl = 0 for all k ̸= j, l ̸= i. Conversely, if Z0
i ̸= Z0

j then

Zi ̸= Zj at all later times t > 0, i.e. collisions cannot occur. For general Kuramoto models

it is known that at most a finite number of collisions occur61, see also Ref. 57 (Remark

5.2), and that for identical frequencies there are no finite-time collisions61, see also Ref. 58

(Lemma 2.5). Evidently this property extends to the matrix systems (24).

Theorem 5. Under linear fractional transformations Zi → (AZi + B)(CZi + D)−1 for

i = 1, . . . , N we have Cijkl → PkCijklP
−1
k for all i, j, k, l = 1, . . . N , where

Pk = A− (AZk +B)(CZk +D)−1C. (30)

Proof. See Appendix B. This result is similar to that derived by Zelikin35 (Section III).

Hence, the eigenvalues of Cijkl are invariant under linear fractional transformations and

so can be computed using the expression (21) or by direct evaluation of Cijkl at t = 0. A

special case of Theorem 5 is for A = 0 = D,B = Id = −C, for which the linear fractional
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transformation reads Zi → −Z−1
i for all i = 1, . . . N , in which case g ∈ SL(d,C) and

Pk = Z−1
k . We observe that (24) is invariant with respect to Zi → −Z−1

i provided that

Γ1 ←→ −Γ2 and Ω1 ←→ −Ω2. If all trajectories of the system are confined to the boundary

of the classical domain defined by the condition Z†
iZi = Id for all i, then the transformation

Zi → −Z−1
i leaves this domain invariant. This property is evident for the Kuramoto model

(1) under the transformation θi → −θi + π, together with ω → −ω.

B. Symmetries and equivalences of the matrix cross ratios

There are 4! = 24 permutations of the fixed indices i, j, k, l, however the corresponding

cross ratios are either similar to Cijkl, or are explicit functions of Cijkl, and hence do not

lead to independent constants of motion. The symmetries and similarities that we derive

here generalize known properties for the case d = 1 of complex cross ratios13.

Theorem 6. For the matrix cross ratios Cijkl (27), and for any indices i ̸= l, j ̸= k,m ̸=

k,m ̸= l with i, j, k, l,m ∈ {1, . . . , N} we have:

1. Ciikl = Id = Cijkk

2. Cijkl = CimklCmjkl

3. Cjikl = C−1
ijkl

4. Cljki = Id − Cijkl

5. Clikj = −C−1
ijkl (Id − Cijkl)

6. Cjlki = (Id − Cijkl)−1

7. Cilkj = −Cijkl (Id − Cijkl)−1

Proof. 1. Set j = i or l = k in (27).

2. CimklCmjkl = ZikZ
−1
il ZmlZ

−1
mkZmkZ

−1
mlZjlZ

−1
jk = ZikZ

−1
il ZjlZ

−1
jk = Cijkl.

3. Set j = i in 2., use 1., then relabel m→ j.
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4. Cijkl + Cljki = ZikZ
−1
il ZjlZ

−1
jk − ZklZ

−1
il ZijZ

−1
jk =

(
ZikZ

−1
il Zjl − ZklZ

−1
il Zij

)
Z−1
jk

=
(
ZikZ

−1
il Zjl − ZklZ

−1
il Zil + ZklZ

−1
il Zjl

)
Z−1
jk =

(
ZikZ

−1
il Zjl − Zkl + ZklZ

−1
il Zjl

)
Z−1
jk

=
(
ZilZ

−1
il Zjl − Zkl

)
Z−1
jk =

(
Zjl − Zkl

)
Z−1
jk = ZjkZ

−1
jk = Id,

where we have used Zij = Zil − Zjl and Zik + Zkl = Zil.

5. Clikj + C−1
ijkl (Id − Cijkl) = Clikj + C−1

ijkl − Id = Clikj + Cjikl − Id = 0 using 3. then 4.

with i↔ j.

6. Follows from 3. applied to 4.

7. Follows from 3. applied to 5.

Next we show that the 24 matrix cross ratios comprising Cijkl and its permutations split

into 6 equivalence classes with respect to similarity, each containing four elements.

Corollary 7. We have the following similarities:

1. Cijkl ∼ Cjilk ∼ Cklij ∼ Clkji

2. Cjikl ∼ Cijlk ∼ Clkij ∼ Cklji

3. Cljki ∼ Cjlik ∼ Ckilj ∼ Cikjl

4. Clikj ∼ Ciljk ∼ Ckjli ∼ Cjkil

5. Cjlki ∼ Cljik ∼ Ckijl ∼ Ciklj

6. Cilkj ∼ Clijk ∼ Ckjil ∼ Cjkli

Proof. The equalities 3.–7. in Theorem 6 express each of Cjikl, Cljki, Clikj, Cjlki, Cilkj as ex-

plicit functions of Cijkl, and so these particular cross ratios are not similar to Cijkl. It is

sufficient to show that the elements listed in item 1 are all similar to Cijkl, and then the

similarities for the other equivalence classes follow from the functional relations of 3.–7. in

Theorem 6. From (27):

Cjilk = ZjlZ
−1
jk ZikZ

−1
il = ZjlZ

−1
jk

(
ZikZ

−1
il ZjlZ

−1
jk

)
ZjkZ

−1
jl = ZjlZ

−1
jk CijklZjkZ

−1
jl ∼ Cijkl.
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From Zjl = Zil + Zjk − Zik we obtain:

Cijkl = ZikZ
−1
il ZjlZ

−1
jk = ZikZ

−1
jk + ZikZ

−1
il − ZikZ

−1
il ZikZ

−1
jk = P +Q−QP, (31)

Cklij = ZikZ
−1
jk ZjlZ

−1
il = ZikZ

−1
jk + ZikZ

−1
il − ZikZ

−1
jk ZikZ

−1
il = P +Q− PQ, (32)

where P = ZikZ
−1
jk , Q = ZikZ

−1
il . For any two square matrices A,B we have AB ∼ BA. On

setting A = Id−P and B = Id−Q, we deduce that (Id−P )(Id−Q) ∼ (Id−Q)(Id−P ) which

implies that P + Q − QP ∼ P + Q − PQ, and hence from (31,32) we obtain Cijkl ∼ Cklij.

Next, we use the first equivalence Cijkl ∼ Cjilk applied to Cklij to obtain Cklij ∼ Clkji,

which completes the proof of item 1. Similarly, we generate the four elements for each of

the remaining five equivalence classes.

It is perhaps useful to observe from items 3.–7. in Theorem 6 that Cijkl commutes with

each of Cjikl, Cljki, Clikj, Cjlki, Cilkj, but not with any other elements of the corresponding

equivalence class.

V. UNITARY GROUP MODELS OF SYNCHRONIZATION

The variables Zi of the matrix models considered in Section IV are elements of the

noncompact group GL(d,C) and as one consequence trajectories on the group manifold

are generally unbounded. Despite this, complete synchronization can occur under suitable

conditions19. For compact subgroups of GL(d,C), however, all trajectories on the group

manifold are bounded and exist globally for arbitrary initial values, and synchronization

occurs under conditions such as a sufficiently large coupling constant18–20. We investigate

in this section partial integration of the system for the case where the variables Zi = Ui are

d× d unitary matrices which evolve according to the equations

i U̇iU
−1
i = H − iκ

2N

N∑
j=1

(
UiU

†
j − UjU

†
i

)
, (33)

with initial values Ui(0) = U0
i . These models have been extensively investigated18–21, both

numerically and analytically, and have synchronization properties similar to those of the

Kuramoto model. We have chosen the coupling constant κ to be uniform across the network

and the d×d hermitean matrix H to be independent of i, in order to allow partial integration

of the system. It is usually supposed that H is constant in time, however partial integration

can still be performed for any time-dependent H. Provided that the initial matrices U0
i are

21



unitary, it follows from (33) that Ui remains unitary as the system evolves, i.e. all trajectories

remain on the group manifold20. In the application to quantum mechanics Ui can be regarded

as the unitary time evolution operator at the ith node, and H is the Hamiltonian at each

node of the quantum system, the real eigenvalues of which comprise the energy levels.

We write the system (33) in the form

U̇i = −iH Ui + Γ− Ui Γ† Ui, i = 1, . . . N, (34)

with initial values Ui(0) = U0
i ∈ U(d), where Γ = κ

∑
j Uj/(2N), and where we have set

U †
i Ui = Id. In the form (34) unitarity is still preserved, since it follows from (34) and its

hermitean conjugate that

d

dt

(
U †
i Ui − Id

)
= U †

i U̇i + U̇ †
i Ui = −

(
U †
i Ui − Id

)
Γ†Ui − U

†
i Γ
(
U †
i Ui − Id

)
, (35)

which implies, by uniqueness of solutions, that if U †
i Ui = Id at t = 0 then U †

i Ui = Id for

all t > 0. The expression for Γ as above can be generalized by choosing, for example,

Γ =
∑

j ajUjbj for any set of d × d complex matrices aj, bj, which can be regarded as non-

Abelian generalizations of the well-known phase lag and multiplicative parameters used in

the Kuramoto model. Partial integration can be performed for all such cases, but synchro-

nization properties depend on the explicit form of Γ. The Kuramoto model (1) corresponds

to the case d = 1 with Ui = eiθi and H = −ω, together with real parameters aj, bj such that

ajbj = κλj/(2N), giving Γ = κ
∑

j λjUj/(2N).

Eq. (34) is a special case of the Riccati system (24) with Γ1 = Γ = Γ†
2,Ω1 = −H =

Ω†
1,Ω2 = 0, and variables Zi = Ui. The partial integration outlined in Section III remains

valid, but instead of introducing two independent functions β, γ as in (14), we can choose

β = γ† and still satisfy the reduced equations (15-17) in Lemma 1. The equations for γ and

ζi may be integrated as in Theorem 2. The condition Ω2 = 0 is not necessary in order to

partially integrate models of synchronization, see for example Eq. (26) in Ref. 20 and Eq.

(2) in Ref. 62 for models with Ω2 ̸= 0, however both Ω1,Ω2 must be uniform across the

network.
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A. Hermitean and unitary Riccati matrix systems

We generalize the properties of the system (34) to define a unitary Riccati matrix system

as a square matrix system (24) in which

Γ1 = Γ†
2, Ω1 = Ω†

1. Ω2 = Ω†
2. (36)

These conditions are typical of synchronization models such as the Kuramoto model (1) and

more generally (34). A consequence of the defining properties (36) is that Ui evolves as a

unitary matrix for all t > 0, provided that Ui(0) = U0
i is unitary. We discuss this more

generally in Sec. VII, where we extend (36) to rectangular matrices.

The conditions (36) differ from those which define a hermitean Riccati square matrix

equation, as defined for example in Ref. 30 (Eq. (II:2.1)) and Ref. 31 (Chapter 2). For any

fixed i our notation for the Riccati equation corresponds to that in Ref. 30, Eq. (II:2.1)

according to Zi = W,Γ1 = C,Γ2 = B, i Ω1 = −D, i Ω2 = −A, and the conditions for a

hermitean Riccati square matrix equation are B = B†, C = C†, D = A†. Similar conditions

define the involutory equation considered in Chapter III30, and the HRDE equation31. For

square matrices, unitary systems are related to hermitean Riccati systems by the Cayley

transform which maps between unitary and hermitean matrices Ui, Xi respectively, according

to

Ui = (Xi − i Id)(Xi + i Id)
−1, Xi = i (Id + Ui)(Id − Ui)−1. (37)

By substituting for Ui into the unitary Riccati matrix system U̇i = Γ + iΩ1Ui + iUiΩ2 −

UiΓ
†Ui, in which Ω1 = Ω†

1,Ω2 = Ω†
2, we obtain:

Ẋi = −A†Xi −XiA−Q+XiSXi, (38)

where

S =
1

2

(
−i Γ + i Γ† + Ω1 + Ω2

)
, Q =

1

2

(
−i Γ + i Γ† − Ω1 − Ω2

)
,

and A =
(
−Γ− Γ† + iΩ1 − i Ω2

)
/2. Since Q = Q† and S = S†, (38) constitutes a hermitean

Riccati matrix system, and if the coefficient matrices are real then (38) defines a symmetric

Riccati system, since the real variables Xi are symmetric provided the initial values are

symmetric. We refer to Ref. 31 (Chapter 4) for detailed results about hermitean Riccati

matrix equations, leaving open the possibility that these results can be extended in some

way to the unitary systems related by means of the Cayley transform (37).
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B. Cross ratio matrices and constants of motion

Since the system of Riccati equations (34) is a special case of that for square complex

matrices Zi in Section IV, we can define matrix cross ratios Cijkl as in (27), then the

eigenvalues are constants of motion as stated in Corollary 4. Specifically, we have

Cijkl = (Ui − Uk) (Ui − Ul)−1 (Uj − Ul) (Uj − Uk)−1 = UikU
−1
il UjlU

−1
jk , (39)

where Uij = Ui − Uj = −Uji. The cross ratios evolve according to (28), i.e. Ċijkl =

[Cijkl, UkΓ
† + iH], and it follows that the eigenvalues of Cijkl are constants of motion. The

matrices Cijkl are related with respect to permutations of the indices (i, j, k, l) as stated in

Theorem 6 and Corollary 7. We also have from (39), using U †
ij = −U−1

i UijU
−1
j :

C†
ijkl = (U †

jk)
−1U †

jl(U
†
il)

−1U †
ik

= (U−1
j UjkU

−1
k )−1U−1

j UjlU
−1
l (U−1

i UilU
−1
l )−1U−1

i UikU
−1
k

= UkU
−1
jk

[
UjlU

−1
il UikU

−1
jk

]
UjkU

−1
k = UkU

−1
jk ClkjiUjkU

−1
k ∼ Clkji. (40)

From Corollary 7, item 1. we also have Cijkl ∼ Clkji, and therefore C†
ijkl ∼ Cijkl, hence the

conserved eigenvalues of Cijkl are either real, or appear as complex conjugate pairs. Both

the conserved trace and determinant of Cijkl are therefore real.

C. Trajectories on U(2)

The case d = 2 is of particular interest as the simplest example of a non-Abelian model

with synchronization properties18,20,21 that is also partially integrable. We parametrize Ui ∈

U(2) according to:

Ui = e−iθi

(
i

3∑
k=1

xki σk + x4i I2

)
= e−iθi

 x4i + ix3i x2i + ix1i

−x2i + ix1i x
4
i − ix3i

 , (41)

where σk denotes the Pauli matrices, and where xi = (x1i , x
2
i , x

3
i , x

4
i ) ∈ R4, and in order that

Ui ∈ U(2) we impose the constraint xi � xi = 1, hence xi ∈ S3. Since H is hermitean we

have the expansion H = ν I2+
∑3

k=1 ω
kσk for frequencies ν and parameters (ω1, ω2, ω3), and
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we define the antisymmetric matrix Ω by:

Ω =


0 −ω3 ω2 −ω1

ω3 0 −ω1 −ω2

−ω2 ω1 0 −ω3

ω1 ω2 ω3 0

 .

The equations of motion (33) or (34) reduce to20:

θ̇i = ν +
κ

N

N∑
j=1

sin(θj − θi) xi � xj, (42)

ẋi = Ωxi +
κ

N

N∑
j=1

cos(θj − θi) (xj − xi � xj xi) , (43)

with initial values θi(0) = θ0i ,xi(0) = x0
i ∈ S3. If we choose θ0i = 0 for all i, together with

ν = 0, then the unique solution of (42) is θi = 0 for all t > 0, and so from (41) this implies

that Ui ∈ SU(2). This reduction from U(2) to SU(2) is possible because the RHS of (33)

has zero trace for d = 2 provided that trH = 0, which ensures that detUi = 1 for all i

and all t > 0, provided that detU0
i = 1. That trajectories on SU(2) can be equivalently

formulated as trajectories on S3 is of course due to the fact that the group manifold of SU(2)

is diffeomorphic to S3. Complete synchronization for the system (33) of identical oscillators

occurs from any initial configuration18–22.

In order to explicitly evaluate the constants of motion, namely the determinant and trace

of Cijkl for any i, j, k, l = 1, . . . N , we calculate from (41):

det(Ui − Uj) = 2e−i(θi+θj) [cos(θi − θj)− xi � xj] ,

where we have used xi,xj ∈ S3. From (39) we obtain:

detCijkl =
[cos(θi − θk)− xi � xk] [cos(θj − θl)− xj � xl]
[cos(θi − θl)− xi � xl] [cos(θj − θk)− xj � xk]

, (44)

and we may also evaluate the conserved quantities trCijkl. These are not independent

constants, but are related to detCijkl as follows from the identity trA = 1+detA−det(I2−A)

which is valid for all 2× 2 matrices A. On setting A = Cijkl and using Theorem 6, item 4.,

we obtain trCijkl = 1 + detCijkl − detCljki.

It is evident that the system (42,43) can be extended to any dimension n with trajectories

on Sn−1 × S1, by allowing xi ∈ Sn−1 ⊂ Rn, and so we deduce:
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Corollary 8. For the system (42,43) in which xi ∈ Sn−1 ⊂ Rn, where Ω is any n ×

n antisymmetric matrix, the parameters λijkl = detCijkl defined by (44) are constants of

motion for any i ̸= l, j ̸= k.

For θi = 0 these constants λijkl are precisely those found for the unit sphere models,

which are partially integrable by means of transformations which preserve the unit sphere28.

Symmetry properties of λijkl can be deduced from Theorem 6 and Corollary 7, in particular

we have λijkl = λimklλmjkl and λjikl = 1/λijkl, and the similarities in Corollary 7 become

equalities.

D. Linear fractional transformations, unitarity and classical domains

We partially integrate the system (34) in any dimension d as in Theorem 1, and hence

we substitute (setting β = γ†)

Ui =
(
ζi + γ†

)
(γζi + Id)

−1 (45)

into (34) which is satisfied provided that

γ̇ = Γ† + i γH − γΓγ, ζ̇i = (Γγ − iH)ζi − ζiΓ†γ†. (46)

The equations for ζi can be integrated as shown in (20), giving ζi = S ζ0i T
−1, and so we

obtain Ui =
(
Sζ0i + γ†T

)
(γSζ0i + T )

−1
. For the choice

Γ =
κ

2N

N∑
j=1

Uj =
κ

2N

N∑
j=1

(
Sζ0j + γ†T

) (
γSζ0j + T

)−1
,

the three matrix equations, namely (46) for γ and (19) for S and T , together with the initial

conditions ζ0i = U0
i , γ0 = 0, S(0) = Id, T (0) = Id comprises a system of three nonlinear

matrix equations which determine γ, S, T , and hence the unknowns Ui for all i = 1, . . . N

and any t > 0, which can be solved by standard numerical methods.

It is known48,63 that linear fractional transformations leave invariant the bounded clas-

sical domain defined by complex d × d matrices Ui satisfying U
†
i Ui < Id. For models of

synchronization the trajectories are usually confined to the boundary of the classical do-

main but, as the example of the Kuramoto model in Sec. IIA shows, synchronization can

still occur in the mixed case, where trajectories lie inside or on the boundary of the clas-

sical domain. So we consider now explicitly the linear fractional transformation (45) and
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determine the conditions which ensure that Ui is unitary, and hence the conditions which

are satisfied by the trajectories of the variable γ which appears in (45). We firstly return

to the definition (10), Ui → g(Ui) = (AUi + B)(CUi +D)−1 and consider conditions on the

d× d coefficient matrices A,B,C,D which ensure that g(Ui) is unitary. As is well-known
63,

unitarity is satisfied provided that

A†A− C†C = Id, D†D −B†B = Id, C†D = A†B, D†C = B†A, (47)

in which case the 2d× 2d matrix g defined by (11) satisfies g†Jg = J , where

J =

Id 0

0 −Id

 . (48)

Hence g ∈ U(d, d) and the mapping Ui → g(Ui) = (AUi+B)(CUi+D)−1 preserves unitarity

for any square matrices A,B,C,D satisfying (47). It also follows from (47) that

Id − g(Ui)†g(Ui) = (CUi +D)−1†(Id − U †
i Ui)(CUi +D)−1,

hence if Id−U †
i Ui is positive definite, then g(Ui) is also positive definite, i.e. g preserves the

bounded classical domain defined by the condition U †
i Ui < Id.

Next, we define as in (13), ζi = AUiD
−1, γ = CA−1, then it follows from (47) that

β = BD−1 = γ†. Directly from (45), unitarity U−1
i = U †

i requires

ζ†i
(
Id − γ†γ

)
ζi = Id − γγ†. (49)

Hence, the d×dmatrices ζi are not themselves unitary unless d = 1. We suppose that Id−γ†γ

and Id − γγ†, which are each hermitean, are positive definite matrices; if for example we

choose γ(0) = 0, then both Id − γ†γ > 0 and Id − γγ† > 0 hold for all t > 0, and so the

square roots of these matrices are well-defined. Then ui = (Id − γ†γ)1/2 ζi (Id − γγ†)−1/2 is

unitary as a consequence of (49). Define also the d× d matrices V,W according to

V = (Id − γ†γ)1/2 A, W = (Id − γγ†)1/2 D, (50)

then from (47) both V and W are unitary, and these expressions represent polar decompo-

sitions of A,D. Also from (50) we have:

B = γ†D = γ†(Id − γγ†)−1/2W, C = γA = γ(Id − γ†γ)−1/2V. (51)
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From the definition of g we find

g =

A B

C D

 =

 A γ†D

γA D

 =

 (Id − γ†γ)−1/2 γ†(Id − γγ†)−1/2

γ(Id − γ†γ)−1/2 (Id − γγ†)−1/2

V 0

0 W

 = gγ gV W
,

(52)

which defines matrices gγ and g
V W

. Evidently g
V W
∈ U(d) × U(d). By factorizing gγ

according to:

gγ =

Id 0

γ Id

Id 0

0 Id − γγ†

Id γ†
0 Id

(Id − γ†γ)−1/2 0

0 (Id − γγ†)−1/2

 ,

we deduce that det gγ = det(Id − γγ†)1/2/ det(Id − γ†γ)1/2 = 1, since the positive definite

matrices Id− γγ† and Id− γ†γ are similar and so have the same positive eigenvalues. Hence

gγ ∈ SU(d, d). The trajectory γ satisfies γ†γ < Id and so is an element of the classical

domain which by means of the mapping γ → gγ defined in (52) is diffeomorphic to the

homogeneous space U(d, d)/U(d) × U(d). This holds whether the matrices Ui lie on the

boundary or within the classical domain.

As a specific example, for d = 1 denote γ = z, and set V = eiψ,W = eiϕ, then from

(50,51) we have:

A =
eiψ√

1− |z|2
, B =

z eiϕ√
1− |z|2

, C =
z eiψ√
1− |z|2

, D =
eiϕ√

1− |z|2
.

Since Id − γ†γ = Id − γγ† = 1 − |z|2 is positive definite, the trajectories z(t) lie within the

unit disk, and the group element is

g =

A B

C D

 =
1√

1− |z|2

 eiψ z eiϕ

z eiψ eiϕ

 =
1√

1− |z|2

1 z

z 1

eiψ 0

0 eiϕ

 ,

which satisfies g†Jg = J , and so g ∈ U(1, 1). The matrix

gz =
1√

1− |z|2

1 z

z 1


is an element of SU(1, 1) and acts transitively on the unit disk, which is precisely the classical

domain for the Kuramoto model. By means of the matrix gz therefore we can transform any

initial value z0 = γ(0) to lie at the origin. The substitution (45), on setting Ui = eiθi , ζi = eiξi ,

reduces to the Möbius transformation (2).

28



VI. ORTHOGONAL GROUP MODELS OF SYNCHRONIZATION

The square matrix models considered in Section IV are also of particular interest for

the group SO(d), since it is known from numerical and analytic investigations19,20 that

synchronization occurs in such models. The variables Ri in this case are d×d real orthogonal

matrices with unit determinant which evolve according to (33) upon replacing Ui = Ri, H =

iΩ, where Ω is a d× d real antisymmetric matrix, with initial values Ri(0) = R0
i ∈ SO(d).

The case d = 2 reduces to the Kuramoto model. From the general considerations of Sect.

III, this system can be partially integrated by the substitution Ri =
(
ζi + γT

)
(γζi + Id)

−1,

where γ, ζi are real d× d matrices, having set β = γT.

Matrix cross ratios Cijkl are defined as in Section IVA for complex square matrices, by

replacing Zi → Ri, except that now the dimension d is restricted to be even, since otherwise

Ri −Rj is singular for any two elements Ri, Rj ∈ SO(d). This follows from:

det(Ri −Rj) = detRi det(Id −RT
i Rj) = det(Id −RT

i Rj) = det(Id −RT
j Ri), (53)

using detA = detAT for any square matrix A, and also

det(Ri −Rj) = detRj det(R
T
j Ri − Id) = det(RT

j Ri − Id) = (−1)d det(Id −RT
j Ri). (54)

For odd d this implies det(Ri−Rj) = 0, and so the matrix cross ratios are singular. For even

d, however, the matrices Cijkl evolve as in Theorem 3, and the eigenvalues are constants of

motion.

A. Noncompact orthogonal group models

The unitary groups considered in Sect. V are compact and so the trajectories Ui(t) are

bounded, and synchronization occurs under conditions which generalize those for the Ku-

ramoto model. Synchronization can also occur for noncompact groups in which case trajec-

tories are unbounded, although in some cases solutions exist only locally19. We demonstrate

here that partial integrability and properties of linear fractional transformations and matrix

cross ratios extend to the noncompact case by considering the noncompact group SO(m,n),

with m + n = d, for which the d × d real matrices Mi ∈ SO(m,n) satisfy MT
i KMi = K,
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where

K =

Im 0

0 −In

 .

A special case is n = 0 for which K is the identity matrix, when we regain the SO(d) model.

On replacing Zi →Mi with M
−1
i = KMT

i K, we write (25) in the Riccati form

Ṁi = ΩMi + Γ−MiKΓTKMi, (55)

where the d×d real matrix Ω is an element of the Lie algebra of SO(m,n), and hence satisfies

ΩTK + KΩ = 0, where we have set Hi = Ω in (25). We choose Γ = κ
∑

j λjMj/(2N)

with multiplicative real constants λj. We obtain the Riccati system (24) by identifying

i Ω1 = Ω,Ω2 = 0,Γ1 = Γ,Γ2 = KΓTK, and the initial values are Mi(0) = M0
i where

M0
i ∈ SO(m,n). Trajectories Mi are confined to the group manifold for all t > 0, and

complete synchronization occurs under certain sufficient conditions19.

The system (55) can be partially integrated as described in Section IIIA, where now we

set β = KγTK and substitute

Mi =
(
ζi +KγTK

)
(γζi + Id)

−1 , (56)

into (55) to obtain:

γ̇ = −γΩ +KΓTK − γΓγ, ζ̇i = (Γγ + Ω)ζi − ζiKΓTγTK. (57)

The equations for ζi may be partially integrated as in Theorem 2. Let us consider this

now in detail for d = 2, for which there are applications to synchronization in relativistic

dynamical systems.

B. The Lorentz group SO(1,1) and partial integrability

For d = 2 with n = 1 = m the elements Mi of the system are SO(1, 1) matrices which

evolve according to (55), and complete synchronization occurs19 in the sense thatMiM
−1
j →

I2 as t→∞. This system describes the synchronization of a relativistic cluster of particles in

Minkowski space-time49, for distributed matrices Ωi. We consider here in particular identical

matrices Ω for which the Riccati system (55) can be partially integrated. We parametrize
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elements of SO(1, 1) according to

Mi = eαiJ =

coshαi sinhαi

sinhαi coshαi

 , (58)

for hyperbolic angles αi, hence Mi ∈ SO+(1, 1) (the connected component of the identity)

and then MT
i KMi = K where

J =

0 1

1 0

 , K =

1 0

0 −1

 ,

with JK + KJ = 0. Define Ω = ωJ for some real parameter ω, then Ω is an element of

the Lie algebra of SO(1, 1) as required. The evolution equations (55), in which we choose

Γ = κ
∑

j λjMj/(2N), reduce to:

α̇i = ω +
κ

N

N∑
j=1

λj sinh(αj − αi), i = 1, . . . N, (59)

which evidently is a hyperbolic form of the Kuramoto model (1). This model has been

discussed in the context of relativistic mechanics in 1+1 dimensions49, in which the particle

coordinates (x0i , x
1
i ) in Minkowski space-time are given by λi(sinhαi, coshαi), where αi is the

rapidity of the particle of unit mass at the ith node. For identical parameters ωi = ω and

with κi = κ/λi, complete synchronization occurs exponentially quickly, with αi−αj → 0 as

t→∞.

The system (59) may be partially integrated by substituting for Mi as in (56). Because

SO(1, 1) is abelian we have ζi ∈ SO(1, 1) and hence we parametrize ζi = eβiJ for hyperbolic

angles βi, similar to (58). Since γ commutes with ζi for all i we can parametrize γ according

to γ = v1I2 − v2J for time-dependent real coordinates v1, v2, and hence γ is a symmetric

matrix. The formula (56) reduces to

eαi =
v1 + v2 + eβi

1 + (v1 − v2) eβi
, (60)

which is a hyperbolic form of the WS transform (2).

The trajectory of the vector (v1, v2) ∈ R2 is restricted to a region in R2 as determined

by the positivity of the LHS of (60). By taking the cases in which eβi is either arbitrarily

small or arbitrarily large, positivity requires both v1 + v2 ⩾ 0 and v1 − v2 ⩾ 0. The inverse

mapping to (60) is given by

eβi =
−(v1 + v2) + eαi

1− (v1 − v2) eαi
, (61)
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and is of the same form as (60), but exists only if 1 − v21 + v22 ̸= 0. Hence the trajectories

(v1, v2) are restricted to the region R in the plane defined by

R = {(v1, v2) : |v2| ⩽ v1, v
2
1 − v22 < 1}, (62)

which is the region bounded by the lines v1 = ±v2 for v1 ⩾ 0, and the right branch of the

hyperbola v21 − v22 = 1, provided that the initial value (v1(0), v2(0)) lies in R. The mapping

(60) does not give all possible values for eαi as (v1, v2) evolves, rather trajectories αi are such

that, from (61), v1 + v2 < eαi < 1/(v1 − v2) for all i.

Partial integration of the system (59) is achieved by substituting for αi using (60) to

obtain equations for v1, v2, βi, as may also be derived directly from (57). The N equations

for βi can be integrated directly to obtain βi(t) = βi(0) + b(t) for some function b(t) with

b(0) = 0. If we choose the initial values v1(0) = 0 = v2(0) then from (60) βi(0) = αi(0),

which are the given initial values for (59). Hence we obtain a closed system of 3 equations

for v1, v2, b, which determine αi for all t > 0

The matrix cross ratio Cijkl given by (27) with Zi =Mi = eαiJ reduces to Cijkl = λijklI2,

where

λijkl =
sinh 1

2
(αi − αk) sinh 1

2
(αj − αl)

sinh 1
2
(αi − αl) sinh 1

2
(αj − αk)

.

These cross ratios are conserved with respect to the evolution equations (59), as may be

verified by direct calculation, and satisfy symmetries as derived in Sec. IVB.

For general d, the linear fractional transformation Mi → (AMi+B)(CMi+D)−1, where

A,B,C,D are d × d real matrices with m + n = d, and with Mi ∈ SO(m,n), preserves

orthogonality, i.e. the relation MT
i KMi = K is satisfied provided that the 2d× 2d matrix g

as defined in (11) is an element of O(d, d). We can factorize g = gγ gV W
, similar to (52) for

the unitary group, but now with g
V W
∈ O(m,n) × O(m,n). For d = 2 and m = 1 = n we

use the fact that

I2 −KγTKγ = I2 − γKγTK = (1− v21 + v22)I2,

(setting γ = v1I2 − v2J) is a positive definite matrix, since (v1, v2) ∈ R. The 4 × 4 matrix

gγ in the factorization g = gγ gV W
is given explicitly by

gγ =
1√

1− v21 + v22

I2 KγTK

γ I2

 =
1√

1− v21 + v22


1 0 v1 v2

0 1 v2 v1

v1 −v2 1 0

−v2 v1 0 1

 , (63)
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and satisfies gTγK
′gγ = K ′, as well as det gγ = 1, where K ′ = diag[1,−1,−1, 1], and so we de-

duce that gγ ∈ SO(2, 2). Trajectories (v1, v2) are therefore constructed on the homogeneous

space O(2, 2)/O(1, 1)×O(1, 1) which is diffeomorphic to the unbounded classical domain R

defined in (62) via the mapping γ → gγ.

VII. RECTANGULAR UNITARY MATRIX RICCATI SYSTEMS

We return now to the general Riccati system of equations (9) for rectangular p×q matrices

Zi with dimensions as in Sec. III, but with coefficients restricted according to

Γ1 = Γ†
2, Ω1 = Ω†

1, Ω2 = Ω†
2, (64)

which extend the conditions for square matrices that define a unitary Riccati system in (36);

hence we refer to this as a rectangular unitary matrix Riccati system. For square matrices

these conditions are related to those which define a hermitean Riccati matrix system by

means of the Cayley transform, as discussed in Sec. VA. The case of rectangular matrices is of

considerable interest in the formulation of synchronization models, particularly the case q =

1 for which the unknowns Zi are column vectors of length p, either real or complex. For the

real case these vectors are confined to the unit sphere Sp−1, leading to synchronization models

which have been extensively investigated20,23–27, and for p = 2 reduce to the Kuramoto

model. For the complex case we obtain models of quantum synchronization50–55,64.

Writing Γ1 = Γ, we consider therefore the system

Żi = Γ + iΩ1Zi + iZiΩ2 − ZiΓ†Zi, i = 1, . . . N, (65)

with Zi(0) = Z0
i , where typically Γ =

∑N
j=1 ajZjbj, where aj, bj are any set of p×p and q×q

complex matrices, respectively, together with constant hermitean matrices Ω1 = Ω†
1,Ω2 =

Ω†
2. Eqs. (65) can be partially integrated as described in Section III with β = γ†, and hence

we substitute

Zi =
(
ζi + γ†

)
(γζi + Iq)

−1 (66)

into (65), which is satisfied provided that

γ̇ = Γ† − i γ Ω1 − i Ω2γ − γΓγ, ζ̇i = (Γγ + iΩ1)ζi − ζi(Γ†γ† − i Ω2). (67)

The latter N equations can be integrated as in (20) to give ζi = S ζ0i T
−1, and so we obtain

Zi =
(
Sζ0i + γ†T

)
(γSζ0i + T )

−1
. The three matrix equations, (67) for γ and (19) for S with
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Ṫ =
(
Γ†γ† − i Ω2

)
T , together with the initial conditions ζ0i = Z0

i , γ0 = 0, S(0) = Ip, T (0) =

Iq comprise a system of nonlinear matrix equations, independent of N , which determine

γ, S, T , and hence the unknowns Zi for all i = 1, . . . N and any t > 0.

It follows from (65), as shown in (C2,C3) by setting i = j, that

d

dt

(
Iq − Z†

iZi

)
= −i

[
Ω2, Iq − Z†

iZi

]
− Z†

i Γ
(
Iq − Z†

iZi

)
−
(
Iq − Z†

iZi

)
Γ†Zi, (68)

d

dt

(
Ip − ZiZ

†
i

)
= i

[
Ω1, Ip − ZiZ

†
i

]
− ZiΓ†

(
Ip − ZiZ

†
i

)
−
(
Ip − ZiZ

†
i

)
ΓZ†

i . (69)

If we set Z†
iZi = Iq initially, then we must have Z†

iZi = Iq for all t > 0, and similarly for

ZiZ
†
i = Ip, by uniqueness of solutions. For square matrices this means that if Zi is initially

chosen to be unitary for all i, then this unitarity is preserved as the system evolves, as

discussed in Sec. V. For q = 1 with Zi a real column p-vector, if we specify Z†
iZi = 1 at t = 0

then Zi remains a unit vector for all t > 0, i.e. the trajectory of the ith node is restricted to

the unit sphere.

On the other hand, if we choose Iq − Z†
iZi to be positive definite at t = 0, then it also

follows from (68) that Iq−Z†
iZi remains a positive definite matrix for all t > 0, since trajec-

tories cannot cross the boundary. The space of p× q matrices Zi which satisfy Iq−Z†
iZi > 0

constitutes a bounded classical domain which is diffeomorphic to U(p, q)/U(p)×U(q), with

a group action on the elements Zi by means of linear fractional transformations48,63. The

example of the extended Kuramoto model in Sec. IIA shows that trajectories can lie within

the classical domain for some nodes, or else on the boundary for others, and synchronization

can still occur for this mixed case.

A. Matrix cross ratios

The partial integrability of the system of square matrix Riccati equations discussed in

Sec. IV can be viewed as a consequence of the existence of conserved quantities, namely the

eigenvalues of the cross ratio matrices Cijkl defined in (27). Although the expression for Cijkl

requires that the matrices Zi be square, we can manipulate Cijkl into a form which, upon

replacing the inverse Z−1
i by the hermitean conjugate Z†

i , is also well-defined for rectangular

matrices, and satisfies conservation properties with respect to the system (65), similar to

those of Cijkl. Define therefore the p× p matrix Dp
ijkl for any i, j, k, l = 1, . . . N :

Dp
ijkl =

(
Ip − ZkZ

†
i

)(
Ip − ZlZ

†
i

)−1 (
Ip − ZlZ

†
j

)(
Ip − ZkZ

†
j

)−1

, (70)
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and the q × q matrix

Dq
ijkl =

(
Iq − Z†

kZi

)(
Iq − Z†

l Zi

)−1 (
Iq − Z†

l Zj

)(
Iq − Z†

kZj

)−1

, (71)

For d × d unitary matrices Zi = Ui as discussed in Sec. VB, we have Dp=d
ijkl = Cijkl =

UkD
q=d
ijklU

−1
k , where Cijkl is defined in (39).

Lemma 9. The matrix cross ratios Dp
ijkl, D

q
ijkl evolve according to:

Ḋp
ijkl =

[
Dp
ijkl, ZkΓ

† − i Ω1

]
, Ḋq

ijkl =
[
Dq
ijkl, Z

†
kΓ + iΩ2

]
,

for any i, j, k, l = 1, . . . N .

Proof. See Appendix C.

It follows as in Corollary 4 that the eigenvalues of Dp
ijkl, D

q
ijkl are constants of motion. Of

the relations and symmetries for Cijkl listed in Theorem 6, those for items 1-3 remain valid

for Dp
ijkl, D

q
ijkl, and numerical evaluations indicate that the similarities in Corollary 7 also

hold.

We consider next the special case q = 1 with p = d for which Zi is a real or complex

d-vector. General properties such as partial integrability and the existence of constants of

motion remain valid for q = 1, but we consider this particular case here for several rea-

sons; firstly, complex vectors Zi are relevant to quantum synchronization where they can be

viewed as wavefunctions which evolve according to finite-dimensional nonlinear Schrödinger

equations64. The system of equations can be extended to infinite dimensions in which the

wavefunctions are elements of a Hilbert space in which the Hamiltonian at each node acts as

a self-adjoint operator. It is known50–56 for models with identical potentials that solutions

exist globally, and that complete synchronization occurs under specified conditions56. We

show that partial integration extends to this infinite-dimensional case, with a fixed number of

nodes N . Secondly, we consider in Sec. VIIC the formulas for partial integration for models

with real d-vectors lying on the unit sphere which have been extensively investigated, mostly

without using the properties of partial integration. As we will see, the method of partial

integration using linear fractional transformations is not unique, and we briefly compare two

alternative schemes.
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B. Quantum synchronization and partial integration

We first consider models of quantum synchronization64 in which a quantum oscillator

such as a quantum particle of fixed spin is located at each node i of the network with a

corresponding wavefunction |ψi⟩. Each d-dimensional wavefunction evolves according to

i
∂

∂t
|ψi⟩ = H|ψi⟩+

iκ

2N

N∑
j=1

[
|ψj⟩ − |ψi⟩⟨ψj|ψi⟩

]
, i = 1, . . . , N (72)

where we have set ℏ = 1 and aij = 1 (for all-to-all coupling), and where the Hamiltonian

H = Hi is a prescribed d× d hermitean matrix, independent of i. Each wavefunction |ψi⟩ is

normalized to unity, ⟨ψi|ψi⟩ = 1. Although we regard (72) as a system of finite-dimensional

nonlinear evolution equations for spin (d− 1)/2 particles which interact nonlinearly over a

quantum network, (72) can be extended to infinite dimensions in which N remains fixed

and finite, but |ψi⟩ becomes an element of a Hilbert space H in n spatial dimensions, and

is therefore a complex function ψi(x, t) of both x ∈ Rn and t. The Hamiltonian H, which is

a sum of kinetic and potential terms, acts in H as a self-adjoint operator with an identical

potential for each node, and the time-dependent scalar product ⟨ψj|ψi⟩ is defined in the

usual way as a Hilbert space inner product:

⟨ψj|ψi⟩ =
∫
Rn

ψj(x, t)ψi(x, t) dx.

Equations (72) therefore comprise a system of N coupled partial differential-integral equa-

tions. It is known50–56 that complete synchronization can occur in both finite and infinite

dimensions.

We write (72) in the form

i
∂

∂t
|ψi⟩ = H|ψi⟩+ i |Φ⟩ − i ⟨Φ|ψi⟩|ψi⟩, (73)

where the averaged wavefunction |Φ⟩ is defined by |Φ⟩ = κ
∑

j |ψj⟩/(2N). In finite dimen-

sions we identify Zi = |ψi⟩,Ω1 = −H,Ω2 = 0,Γ = |Φ⟩, and these equations take the form of

a unitary Riccati system (65). Partial integration proceeds by means of the linear fractional

transformations (66), which in turn leads to the system (67) which may be partially inte-

grated. This procedure formally extends to infinite dimensions in which (73) is regarded as

an infinite-dimensional Riccati system. Hence, denoting ζi = |ζi⟩ and γ† = |β⟩, which are
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now elements of a Hilbert space H and are therefore functions of x ∈ Rn and t, we substitute

|ψi⟩ =
|ζi⟩+ |β⟩
1 + ⟨β|ζi⟩

(74)

into (65), which is satisfied provided that

i
∂

∂t
|β⟩ = H |β⟩+ i |Φ⟩ − i ⟨Φ|β⟩ |β⟩, i

∂

∂t
|ζi⟩ = H |ζi⟩ − i ⟨Φ|β⟩ |ζi⟩+ i ⟨β|ζi⟩ |Φ⟩. (75)

The equations for |ζi⟩ are satisfied by the wavefunctions |ζi⟩ =M |ζ0i ⟩, where |ζ0i ⟩ = |ζi⟩t=0,

and M is a (nonunitary) operator in H satisfying i Ṁ = HM − i ⟨Φ|β⟩M + i|Φ⟩⟨β|M , with

Mt=0 equal to the identity operator. The system is reduced therefore to partial differential-

integral equations for the operator M and for the wavefunction |β⟩ ∈ H. The cross ratios

Dq=1
ijkl in (71) are constant in time, as follows from Lemma 9, with the explicit form:

Dq=1
ijkl =

(1− ⟨ψi|ψk⟩) (1− ⟨ψj|ψl⟩)
(1− ⟨ψi|ψl⟩) (1− ⟨ψj|ψk⟩)

. (76)

That these cross ratios are conserved has been independently observed in recent work56,

where various synchronization and stability properties of the system are also derived but

without using the partially integrated (reduced) system (75). Again, our aim in this section

is to demonstrate that partial integration extends formally to infinite-dimensional systems.

C. Vector models on the unit sphere

Models of synchronization on the unit sphere Sd−1 have been extensively developed,

including proofs of synchronization properties together with various applications20,23–27,65–67,

including consensus properties in opinion dynamics68–71. It has been previously observed that

the system with identical frequency matrices can be partially integrated in any dimension d

using the vector transform28, and also for S3 by using quaternionic variables29. We show here

that the general formalism applied to these vector models leads to known properties such

as conserved cross ratios, but in particular we observe that the details of partial integration

differ from those in Ref. 28. Evidently partial integration can be performed in several distinct

ways. Here, we use linear fractional transformations which differ from the vector transform,

which algebraically maps the unit sphere to itself in any dimension and also preserves the

unit ball.
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We choose q = 1, p = d and denote the real column d-vector Zi = xi, then xi ∈ Rd

satisfies (65) which reads:

ẋi = Ωxi +X − xiX
Txi, (77)

where we have set Ω2 = 0 and have defined the real antisymmetric d × d matrix Ω = iΩ1,

and have denoted Γ = X, a real column d-vector with Γ† = XT. A typical choice could be

X =
∑

j λjxj/(2N) where λj are multiplicative real parameters, but more generally could

be any set of constant rotation matrices in SO(d) which implement rotational phase lag.

We choose initial values xi(0) = x0
i ∈ Sd−1 which ensures that xi ∈ Sd−1 for all t > 0, but

we also allow x0
i ∈ Bd for some or all nodes i, in which case the corresponding trajectories

are strictly confined to the unit ball Bd. In order to partially integrate (77) by means of the

linear fractional transformation (66), we substitute for xi according to:

xi =
w + ζi

1 +w � ζi
, (78)

where w = γT and ζi = ζi are real column d-vectors. The equations for w, ζi which solve

(77) are given by (67), which reads:

ẇ = Ωw +X − (w �X)w, ζ̇i = Ω ζi +Xw � ζi − (w �X) ζi =Mζi, (79)

where the d×d matrixM is defined byM = Ω+XwT− (w �X)Id, and so is independent of

i. The equations for ζi can be integrated as before, and we obtain ζi = Sζ0
i where the initial

values are ζi(0) = ζ0
i , and S is the principal matrix solution of Ṡ = M S with S(0) = Id.

Since S has d2 independent elements, there are d(d+1) coupled nonlinear equations for w, S

which remain to be solved.

By contrast, the vector transform proceeds28 by means of the mapping ui → xi defined

by:

xi = v +
(ui + v)(1− ∥v∥2)
∥v∥2 + 2ui � v + 1

, (80)

which maps the unit sphere to itself and also preserves the unit ball for any v ∈ Rd. The

defining equations (77) are partially integrated by specifying equations to be satisfied by v

and R, where ui = Ru0
i ; in this case the reduced equations are d(d+1)/2 in number because

R ∈ SO(d). The mapping (80) differs from (78), which does not algebraically preserve the

unit sphere since ζi is not a unit vector for arbitrary w ∈ Rd, whereas (80) preserves the

unit sphere for any v ∈ Rd. Nevertheless, because the equation xi � ẋi = (1− xi � xi)X � xi
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is satisfied, xi remains a unit vector as the system evolves, whether we use (78) or (80),

provided that x0
i is a unit vector. Similarly, if we choose x0

i ∈ Bd, then xi remains inside Bd

for all t > 0 for that particular node i.

The cross ratios defined in (71) take the explicit form:

Dq=1
ijkl =

(1− xi � xk)(1− xj � xl)
(1− xi � xl)(1− xj � xk)

, (81)

and are constants of motion as follows from Lemma 9, in agreement with Ref. 28 (equation

(27)). These are a special case of the cross ratios discussed in Sec. VC, see in particular the

cross ratios (44) which are constants of motion for the system (42,43) as stated in Corollary

8, which holds for any time-dependent coefficient X(t).

Let us briefly discuss synchronization properties of the system (77) as determined numer-

ically for d = 3, choosing X =
∑

j λjxj/(2N) where λj are real parameters. In particular

we demonstrate that synchronization can occur even if some trajectories are confined to the

unit ball, and others lie on the sphere. For d = 2 it is known28 that complete synchroniza-

tion occurs whenever
∑

j λj > 0, but for
∑

j λj < 0 either asynchronous states appear in

which all asymptotic positions xi are distinct, or else (N − 1, 1) states, sometimes known as

bipolar states22, occur in which all nodes except one approach the same position. Bipolar

states also occur in models of quantum synchronization56 and are unstable if λi = 1 for all

i. Our numerical studies indicate that similar behaviour occurs for d > 2, and that these

properties are maintained whether trajectories lie inside the unit ball or on the unit sphere.

Such behaviour occurs for d = 2 as shown in Fig. 1 (a,b).

In Fig. 2 with d = 3 we choose N = 15,Ω = 0, with randomly generated values for each

λj ∈ [−1, 1], together with randomly generated initial values x0
i that lie either inside or on

S2. We plot trajectories (shown in red) in the unit ball B3, with just one node confined to the

surface S2. The initial points are shown in blue, except for the single node on S2 in green,

and the asymptotic (final) locations are marked in black. In (a) we have
∑

j λj > 0 and

complete synchronization occurs with all trajectories converging to a single point which, in

the limit, lies on S2. For (b) we have
∑

j λj < 0, and in this case asynchronous states appear

in which the asymptotic positions xi are distinct, with all nodes except one on S2 (in green)

remaining well inside the unit ball. The plots Fig. 2 (a,b) are generalizations to d = 3 of those

in Fig. 1 (a,b) for d = 2. In (c), for which again
∑

j λj < 0, we obtain a bipolar state in which

all nodes except one completely synchronize to a final position which is arbitrarily close to

39



S2. The single node which lies exactly on S2, for this example, is diametrically opposite

the remaining asymptotic nodes. We have obtained these configurations numerically by

solving both the original equations (77) and, as a consistency check, the reduced equations

(79). The numerical accuracy can be estimated in each case by evaluating the constants of

motion (81). The classical domain is the unit ball B3 and so synchronization occurs whether

trajectories are confined to the sphere S2 and/or remain inside B3.

HaL HbL HcL

FIG. 2. Trajectories zi(t) (red) in the unit ball and on the unit sphere, with initial values marked

in blue, final values in black, for N = 15 nodes with the frequency matrix Ω = 0.
∑

j λj is positive

for (a), in which complete synchronization occurs, and negative for (b,c) for which asynchronous

states and bipolar states appear asymptotically, respectively.

VIII. CONCLUSION

We have partially integrated a system of rectangular matrix Riccati equations of arbitrary

size which in special cases is known to describe the synchronization behaviour of a nonlinear

complex system of N globally connected oscillators. The Riccati equations are of a special

form in which the time-dependent matrix coefficients are independent of the node, the

simplest example being the Kuramoto model with identical frequencies. Partial integration

reduces the system to a size independent of N , generalizing the well-known Watanabe-

Strogatz reduction for the Kuramoto model. We have developed properties of the system

which generalize those already known for a single matrix Riccati equation, in particular we

have used linear fractional transformations to convert the equations to a form which can

be partially integrated, and for square matrices have shown that the resulting constants of
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motion are related to the eigenvalues of matrix cross ratios. We have derived symmetries and

other properties of these matrix cross ratios and have shown how to extend the definition

to rectangular matrices, for the special case in which the Riccati system satisfies unitarity

conditions.

The matrix unknowns can be regarded as elements of classical domains which are in-

variant under the group of linear fractional transformations. Numerical examples show that

trajectories can lie either within or on the boundary of the classical domain, and yet complete

synchronization can still occur for this mixed case. We have considered several special cases

for which synchronization has been proved to occur, including the hyperbolic Kuramoto

model for which the group is SO+(1, 1), and the non-Abelian model for SU(2).

It remains to use the reduced equations to derive explicit synchronization properties

for general models, including those with rectangular matrices, and determine conditions

under which complete synchronization occurs as a function of the underlying parameters.

Rectangular matrix models have been studied only for the vector and square matrix cases,

although there have been some recent extensions72. Having developed properties of these

restricted models (assuming global coupling, for example), it is straightforward to formulate

more general models of synchronization in which the coefficients of the Riccati system depend

on the node, and so have cubic nonlinearities. It would be of interest to determine the effect

of nontrivial network couplings or phase lag parameters, for example, for models in which

partial integrability no longer holds. It is also an open question as to whether there are

models of synchronization corresponding to each of the four classical domains63 as classified

by Cartan73. We have considered only those of type I which have an explicit realization as

the space of p× q matrices Zi satisfying Ip > ZiZ
†
i , or Ip = ZiZ

†
i .

Appendix A: Time evolution of the matrix cross ratios

We prove here Theorem 3. From (27) Cijkl = ZikZ
−1
il ZjlZ

−1
jk , and so

Żij = Żi − Żj = Γ1 + iΩ1Zi + iZiΩ2 − ZiΓ2Zi − (Γ1 + iΩ1Zj + iZjΩ2 − ZjΓ2Zj)

= iΩ1Zij + iZijΩ2 − ZiΓ2Zi + ZjΓ2Zj,
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leading to:

Ċijkl = ŻikZ
−1
il ZjlZ

−1
jk − ZikZ

−1
il ŻilZ

−1
il ZjlZ

−1
jk + ZikZ

−1
il ŻjlZ

−1
jk − ZikZ

−1
il ZjlZ

−1
jk ŻjkZ

−1
jk

= iΩ1ZikZ
−1
il ZjlZ

−1
jk − ZiΓ2ZiZ

−1
il ZjlZ

−1
jk + ZkΓ2ZkZ

−1
il ZjlZ

−1
jk

+ZikZ
−1
il ZiΓ2ZiZ

−1
il ZjlZ

−1
jk − ZikZ

−1
il ZlΓ2ZlZ

−1
il ZjlZ

−1
jk

−ZikZ−1
il ZjΓ2ZjZ

−1
jk + ZikZ

−1
il ZlΓ2ZlZ

−1
jk

−iZikZ−1
il ZjlZ

−1
jk Ω1 + ZikZ

−1
il ZjlZ

−1
jk ZjΓ2ZjZ

−1
jk − ZikZ

−1
il ZjlZ

−1
jk ZkΓ2ZkZ

−1
jk ,

where we have cancelled multiplicative factors and additive terms wherever possible. In

particular, the terms involving Ω2 cancel out completely. Collecting all terms, as well as

subtracting and adding ZikZ
−1
il ZlΓ2ZjlZ

−1
jk , we obtain:

Ċijkl = [Cijkl,−iΩ1] (A1)

+
(
−ZiΓ2Zi + ZkΓ2Zk + ZikZ

−1
il ZiΓ2Zi − ZikZ−1

il ZlΓ2Zl − ZikZ−1
il ZlΓ2Zil

)
Z−1
il ZjlZ

−1
jk

+ZikZ
−1
il

(
−ZjΓ2Zj + ZlΓ2Zl + ZjlZ

−1
jk ZjΓ2Zj − ZjlZ−1

jk ZkΓ2Zk + ZlΓ2Zjl
)
Z−1
jk .

We also have (using Zil = Zi − Zl, Zik = Zi − Zk, Zjk = Zj − Zk):

−ZiΓ2Zi + ZkΓ2Zk + ZikZ
−1
il ZiΓ2Zi − ZikZ−1

il ZlΓ2Zl − ZikZ−1
il ZlΓ2Zil = −ZkΓ2Zik,

−ZjΓ2Zj + ZlΓ2Zl + ZjlZ
−1
jk ZjΓ2Zj − ZjlZ−1

jk ZkΓ2Zk + ZlΓ2Zjl = ZjlZ
−1
jk ZkΓ2Zjk,

which, after substitution into (A1), leads to the required result Ċijkl = [Cijkl, ZkΓ2 − i Ω1].

Appendix B: Transformation of matrix cross ratios

We prove here Theorem 5. We decompose g as shown in (12) and consider separately the

effect on the matrix cross ratio of upper, lower and diagonal matrix transformations. For

A = Id = D and C = 0 (10) reads Zi → Zi + B and so Zij is unchanged, as is Cijkl. For

A = Id and B = 0 = C (10) reads Zi → ZiD
−1 and so Zij → ZijD

−1 in which case

Cijkl = ZikZ
−1
il ZjlZ

−1
jk → ZikD

−1DZ−1
il ZjlD

−1DZ−1
jk = Cijkl, (B1)

and so Cijkl again remains invariant. For B = 0 = C and D = Id (10) reads Zi → AZi, in

which case Zij → AZij and

Cijkl → AZikZ
−1
il A

−1AZjlZ
−1
jk A

−1 = ACijklA
−1. (B2)
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Finally, for A = Id = D and B = 0 (10) reads Zi → Zi(CZi+Id)
−1 = C−1−C−1(CZi+Id)

−1,

and so

Zij = Zi − Zj → C−1 − C−1(CZi + Id)
−1 − C−1 + C−1(CZj + Id)

−1

= C−1(CZi + Id)
−1C Zij (CZj + Id)

−1, (B3)

which gives

Cijkl = ZkiZ
−1
li ZljZ

−1
kj → C−1(CZk + Id)

−1CZki(CZi + Id)
−1(CZi + Id)Z

−1
li C

−1

×(CZl + Id)CC
−1(CZl + Id)

−1CZlj(CZj + Id)
−1(CZj + Id)Z

−1
kj C

−1(CZk + Id)C

= C−1(CZk + Id)
−1CZkiZ

−1
li ZljZ

−1
kj C

−1(CZk + Id)C

= (ZkC + Id)
−1Cijkl (ZkC + Id). (B4)

From the decomposition (12), by applying successive factors from the right, we obtain:

Zk → Z ′
k = Zk + A−1B → Z ′′

k = Z ′
k(D − CA−1B)−1 = (Zk + A−1B)(D − CA−1B)−1

→ Z ′′′
k = AZ ′′

k → Z ′′′′
k = Z ′′′

k (CA
−1Z ′′′

k + Id)
−1 = AZ ′′

k (CZ
′′
k + Id)

−1, (B5)

which, on substituting for Z ′′
k , correctly reproduces (10), while for Cijkl we find:

Cijkl → C ′
ijkl = Cijkl → C ′′

ijkl = Cijkl → C ′′′
ijkl = ACijklA

−1 (B6)

→ C ′′′′
ijkl = (Z ′′′

k CA
−1 + Id)

−1C ′′′
ijkl (Z

′′′
k CA

−1 + Id)

= (AZ ′′
kCA

−1 + Id)
−1ACijklA

−1(AZ ′′
kCA

−1 + Id) = PkCijklP
−1
k ,

where

P−1
k = Z ′′

kCA
−1 + A−1 = (Zk + A−1B)(D − CA−1B)−1CA−1 + A−1. (B7)

We can rearrange this expression by means of the Sherman-Morrison-Woodbury formula74,

which reads:

(A− UV )−1 = A−1 + A−1U(Id − V A−1U)−1V A−1.

We set UV = (AZk +B)(CZk +D)−1C in this formula to obtain (30).

Appendix C: Rectangular matrix cross ratios

We prove here Lemma 9. From (65) we obtain

Ż†
i = Γ† − iZ†

iΩ1 − i Ω2Z
†
i − Z

†
i ΓZ

†
i . (C1)

43



Define the q × q matrix Zij = Iq − Z†
jZi = Z†

ji then from (65) and (C1) we obtain

Żij = −
d

dt

(
Z†
jZi

)
= −Ż†

jZi − Z
†
j Żi

= −Γ†Zi + iZ†
jΩ1Zi + iΩ2Z

†
jZi + Z†

jΓZ
†
jZi − Z

†
jΓ− iZ†

jΩ1Zi − iZ†
jZiΩ2 + Z†

jZiΓ
†Zi

= −i Ω2Zij + iZijΩ2 − Z†
jΓZij − ZijΓ†Zi. (C2)

From the definition (71), Dq
ijkl = ZikZ

−1
il ZjlZ

−1
jk , and by cancelling multiplicative factors and

additive terms wherever possible, we obtain:

Ḋq
ijkl = ŻikZ

−1
il ZjlZ

−1
jk − ZikZ

−1
il ŻilZ

−1
il ZjlZ

−1
jk + ZikZ

−1
il ŻjlZ

−1
jk − ZikZ

−1
il ZjlZ

−1
jk ŻjkZ

−1
jk

= −i Ω2ZikZ
−1
il ZjlZ

−1
jk + iZikZ

−1
il ZjlZ

−1
jk Ω2 − Z†

kΓZikZ
−1
il ZjlZ

−1
jk + ZikZ

−1
il ZjlZ

−1
jk Z

†
kΓ

= −i Ω2D
q
ijkl + iDq

ijklΩ2 − Z†
kΓD

q
ijkl +Dq

ijklZ
†
kΓ = [Dq

ijkl, Z
†
kΓ + iΩ2].

Similarly, with the definition Zij = Ip − ZjZ
†
i = Z†

ji we obtain

Żij = −
d

dt

(
ZjZ

†
i

)
= −ŻjZ

†
i − ZjŻ

†
i

= −ΓZ†
i − i Ω1ZjZ

†
i − iZjΩ2Z

†
i + ZjΓ

†ZjZ
†
i − ZjΓ† + iZjZ

†
iΩ1 + iZjΩ2Z

†
i + ZjZ

†
i ΓZ

†
i

= iΩ1Zij − iZijΩ1 − ZjΓ†Zij − ZijΓZ
†
i . (C3)

Then, using Dp
ijkl = ZikZ

−1
il ZjlZ

−1
jk we obtain:

Ḋp
ijkl = ŻikZ

−1
il ZjlZ

−1
jk − ZikZ

−1
il ŻilZ

−1
il ZjlZ

−1
jk + ZikZ

−1
il ŻjlZ

−1
jk − ZikZ

−1
il ZjlZ

−1
jk ŻjkZ

−1
jk

= (iΩ1Zik − iZikΩ1 − ZkΓ†Zik − ZikΓZ
†
i )Z

−1
il ZjlZ

−1
jk

−ZikZ−1
il (i Ω1Zil − iZilΩ1 − ZlΓ†Zil − ZilΓZ

†
i )Z

−1
il ZjlZ

−1
jk

+ZikZ
−1
il (i Ω1Zjl − iZjlΩ1 − ZlΓ†Zjl − ZjlΓZ

†
j )Z

−1
jk

−ZikZ−1
il ZjlZ

−1
jk (i Ω1Zjk − iZjkΩ1 − ZkΓ†Zjk − ZjkΓZ

†
j )Z

−1
jk

= iΩ1ZikZ
−1
il ZjlZ

−1
jk − ZkΓ

†ZikZ
−1
il ZjlZ

−1
jk − iZikZ

−1
il ZjlZ

−1
jk Ω1 + ZikZ

−1
il ZjlZ

−1
jk ZkΓ

†

= iΩ1D
p
ijkl − ZkΓ

†Dp
ijkl − iDp

ijklΩ1 +Dp
ijklZkΓ

† = [Dp
ijkl, ZkΓ

† − i Ω1],

as required.
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