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The magnetic polarisability is a fundamental property of hadrons, which provides insight into their 
structure in the low-energy regime. The pion magnetic polarisability is calculated using lattice QCD in the 
presence of background magnetic fields. The results presented are facilitated by the introduction of a new 
magnetic-field dependent quark-propagator eigenmode projector and the use of the background-field 
corrected clover fermion action. The magnetic polarisabilities are calculated in a relativistic formalism, 
and the excellent signal-to-noise property of pion correlation functions facilitates precise values.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The electromagnetic polarisabilities of hadrons are of funda-
mental importance in the low-energy regime of quantum chromo-
dynamics where they provide novel insight into the response of 
hadron structure to a magnetic field. The pion electric (απ ) and 
magnetic (βπ ) polarisabilities are experimentally measured using 
Compton scattering experiments, such as γ π → γ π [1–4] where 
they enter into the description of the scattering angular distribu-
tion [5–8].

Theoretical approaches to calculating the pion electromagnetic 
polarisabilities are diverse. Calculations in the framework of chiral 
perturbation theory have a long history [9,10] while other ap-
proaches include dispersion sum rules [11–13] and the linear σ
model [14]. Here we use the ab initio formalism of lattice QCD 
with an external background field. This method involves direct cal-
culation of pion energies in an external magnetic field where the 
relativistic energy-field relation [15,16]

E2 (B) = m2
π + (2 n + 1) |qe B|

− 4π mπ βπ |B|2 +O
(

B3
)

, (1)

can be used to extract the magnetic polarisability, βπ . Here the 
pion has mass mπ , charge qe and the term proportional to |qe B|
is the Landau-level energy term [17]. In principle there is an in-
finite tower of energy levels for n = 0, 1, 2, . . . but the lowest 
lying Landau level is isolated through Euclidean time evolution 
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and a hadronic Landau-level projection for the charged pion. The 
background-field method has previously been used to extract the 
polarisabilities of baryons [18,19] and nuclei [20] in dynamical 
QCD simulations as well as the magnetic polarisability of light 
mesons in quenched SU (3) simulations [21–23]. More recently 
the neutral π - and ρ-meson magnetic polarisabilities have been 
calculated in dynamical QCD [16,24–26]. In Ref. [25], Bali et al.
identified the spurious Wilson-fermion artefact associated with the 
background field. In Ref. [16], using Wilson-clover fermions we 
introduced the Background-Field-Corrected clover fermion action 
which removes this spurious artefact.

Background electric fields have also been used to calculate the 
electric polarisabilities of neutral hadrons such as the neutron [27]
and neutral pion [28]. Generalised background electromagnetic 
fields [29] can be used to calculate diverse quantities such as nu-
cleon spin polarisabilities [30,31] and the hadronic vacuum polari-
sation function [32].

The calculations presented herein are performed at several non-
zero pion masses in order to motivate a chiral extrapolation to 
the physical regime. These polarisability values are provided with 
the intent of spurring future chiral effective field theory develop-
ment to enable extrapolations to the physical regime incorporating 
finite-volume and sea-quark corrections.

2. Simulation details & background field method

Four values of the light quark hopping parameter κud are used 
on the 2 + 1 flavour dynamical gauge configurations provided by 
the PACS-CS [33] collaboration through the IDLG [34]. These pro-
vide pion masses of mπ = 0.702, 0.572, 0.411 and 0.296 GeV. 
The lattice spacing varies slightly at each mass due to our use 
of the Sommer scale [35] with r0 = 0.49. The lattice volume is 
L3 × T = 323 × 64.
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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The Background-Field-Corrected clover fermion action of Ref. 
[16] is used to remove spurious lattice artefacts that are introduced 
by the Wilson term. This action has a non-perturbatively improved 
clover coefficient for the QCD portion of the clover term and a 
tree-level coefficient for the portion deriving from the background 
field. This combination is effective in removing the additive-mass 
renormalisation induced by the Wilson term [25].

To suppress wrap-around thermal effects, fixed boundary con-
ditions are used in the temporal direction. We place the source at 
Nt/4 = 16 and analyse correlation functions for t ≤ 3 Nt/4 = 48 to 
ensure boundary effects in our correlation functions are negligi-
ble [36].

No background field is present on the gaugefield ensembles and 
therefore this simulation is electroquenched. This is a departure 
from the physical world and should be accounted for in future chi-
ral effective field theory work [37].

2.1. Background field method

The background field method [29,38,39] induces a constant 
magnetic field by adding a minimal electromagnetic coupling to 
the (continuum) covariant derivative

Dμ = DQCD
μ + i qe Aμ. (2)

This corresponds to a multiplication of the usual lattice QCD gauge 
links by an exponential phase factor

Uμ(x) → U (B)
μ (x) = ei a qe Aμ(x) Uμ(x), (3)

where a is the lattice spacing. For a uniform field along the ẑ
axis the spatial periodic boundary conditions induce a quantisation 
condition, limiting the choice of uniform magnetic field strengths 
to

|qe B| = 2π k

Nx N y a2
, (4)

where k is an integer which governs the field strength for a par-
ticle of charge qe and Nx = N y = 32 are lattice dimensions. The 
down quark has the smallest charge magnitude and governs the 
magnetic field quanta. As the d quark has charge qde the π+ will 
have charge qπ+e = −3 × qde. That is, the smallest field strength 
for the π+ has kπ+ = −3 and kd = 1.

2.2. Quark operators

In this work a tuned Gaussian smeared source is used to pro-
vide a representation of QCD interactions. The smearing level is 
varied at zero external field strength (B = 0) and the effective 
mass examined to determine the smearing which produces the 
earliest onset of plateau behaviour [36]. The resulting smearing 
levels are Nsm = 150, 175, 300, 250 sweeps for ensembles with 
masses mπ = 0.702, 0.572, 0.411, 0.296 GeV respectively [40].

As charged particles in an external magnetic field, the quarks 
will experience Landau type effects in addition to the confining 
force of QCD. To provide greater overlap with the energy eigen-
states of the pion we use the SU (3) × U (1) eigenmode quark 
projection technique introduced in Ref. [40]. In summary, the low-
lying eigenmodes |ψi〉 of the two-dimensional lattice Laplacian 
with both QCD and background field effects are calculated


�x,�x′ = 4 δ�x,�x′ −
∑

μ=1,2

Uμ(�x)δ�x+μ̂,�x′ + U †
μ(�x − μ̂)δ�x−μ̂,�x′ . (5)

Here Uμ

(�x) is the full SU (3) × U (1) gauge link of Eq. (3).
A projection operator can be defined by truncating the com-

pleteness relation I = ∑n
i=1 |ψi〉 〈ψi |. This truncation filters out 
2

the high-frequency modes, an effect similar to (2D) smearing. In 
the pure U (1) case each quark would have a definitive set of 
degenerate eigenmodes associated with each Landau level, how-
ever the introduction of QCD interactions into the Laplacian causes 
the U (1) modes associated with the different Landau levels to 
mix [41]. It is clear that in the case of a charged hadron, it is 
the hadronic level Landau modes that are respected and as such 
there is no longer a single definite Landau mode that describes 
the quark-level physics in the confining phase. We choose n = 96
eigenmodes to construct the quark-level projection operator, in ac-
cordance with our previous study Ref. [40] where this number 
was found to be sufficiently large as to avoid introducing signif-
icant noise into the correlation function whilst also small enough 
to place a focus on the low-energy physics relevant to the isolation 
of the magnetic polarisability.

As the lattice Laplacian used is two-dimensional, the low-lying 
eigenspace for each (z, t) slice on the lattice is calculated indepen-
dently, allowing for the four-dimensional coordinate space repre-
sentation of an eigenmode〈
�x, t

∣∣∣ψi,�B
〉
= ψi,�B (x, y|z, t) , (6)

to be interpreted as selecting the two dimensional coordinate 
space representation ψi,�B (x, y) from the eigenspace belonging 
to the corresponding (z, t) slice of the lattice. Hence the four-
dimensional coordinate space representation of the projection op-
erator is

Pn
(�x, t; �x′, t′) =

n∑
i=1

〈�x, t |ψi,�B〉 〈ψi,�B | �x′, t′〉 δzz′ δtt′ , (7)

where the Kronecker delta functions ensure that the projector acts 
trivially on the (z, t) coordinates.

This projection operator is then applied at the sink to the quark 
propagator in a coordinate space representation,

Sn

(
�x, t; �0,0

)
=

∑
�x′

Pn
(�x, t; �x′, t

)
S
(
�x′, t; �0,0

)
. (8)

The use of the SU (3) ×U (1) eigenmode quark projection technique 
has introduced both QCD and magnetic field physics into the quark 
sink. This, along with a tuned smeared source produces pion cor-
relation functions at non-trivial field strengths that have a strong 
overlap with the ground state pion, which occupies the lowest ly-
ing hadronic Landau level (as detailed in the next section).

2.2.1. U (1) hadronic Landau projection
As a charged particle, the pion experiences hadronic level Lan-

dau effects, such that the ground state will occupy the lowest Lan-
dau level associated with the hadronic charge. In the presence of 
an external magnetic field along the ẑ axis; the energy eigenstates 
of the π+ are no longer eigenstates of the px and p y momentum 
components.

In a finite volume lattice the hadronic Landau levels corre-
spond to the eigenmodes of the two-dimensional lattice Laplacian 
in Eq. (5) where only the U (1) background field is present. As 
|kπ | = |3 kd|, there is a degenerate subspace of |3 kd| eigenmodes 
to consider at the lowest hadronic Landau level, where kd is the 
down quark field quanta. We optimise a single U (1) eigenmode, 
ψ�B (x, y), to project the (x, y) dependence of the two-point corre-
lation function onto the lowest Landau level

G
(

pz, �B, t
)

=
∑

�r
ψ�B (x, y) e−i pz z

× 〈
�

∣∣ T
{
χ

(�r, t
)
χ̄ (0)

} ∣∣�〉
, (9)
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Fig. 1. π+ energy shift (E (B) + mπ ) using Eq. (10) for the mπ = 0.296 GeV ensem-
ble.

where �r = (x, y, z). The eigenmode ψ�B (x, y) in Eq. (9) is chosen to 
optimise the overlap with the source ρ (x, y) = δx,0 δy,0 (assumed 
to be at the origin) through a rotation of the U (1) eigenmode ba-
sis that maximises the value of 

〈
ρ

∣∣ψ�B
〉
. An optional phase can be 

applied so that ψ�B (0,0) is purely real at the source point.
The projection of Eq. (9) is critical to successful isolation of the 

π+ energy-eigenstate in a background magnetic field [42].

3. Magnetic polarisability

Defining the following combinations of two-point correlation 
functions

R+ (B, t) = G (B, t) G (0, t) , (10)

R− (B, t) = G (B, t)

G (0, t)
, (11)

where G (B, t) is the correlation function for pz = 0 in a magnetic 
field of strength B, then the energy shift is simply

(E (B) + mπ ) (E (B) − mπ ) = E2 (B) − m2
π

= |qe B| − 4π mπ βπ |B|2 +O
(

B3
)

. (12)

Specifically, the effective energies

E(�B, t) ± mπ = 1

δt
log

(
R±(�B, t)

R±(�B, t + δt)

)
, (13)

are calculated with δt = 2. This formulation advantageously re-
moves a portion of correlated QCD fluctuations, allowing the mag-
netic polarisability to be extracted using a simple polynomial fit. 
In order to constrain the charge of the pion to be q = 1, the fit 
performed is

E2 (kd) − m2
π − |a B| = c2 k2

d +O
(

B3
)

, (14)

where c2 has the units of E2 (kd) and is the fit parameter which is 
related to the magnetic polarisability using Eqs. (4) and (12)

β = −c2 α
q2

d a2

mπ

(
Nx N y

2π

)2

, (15)

where α = 1/137 . . . is the fine structure constant.
3

Fig. 2. π+ energy shift (E (B) − mπ ) using Eq. (11) for the mπ = 0.296 GeV ensem-
ble.

3.1. Fitting

The two effective-energy shifts (E (B) + mπ ) and (E (B) − mπ )

generated by the correlator combinations of Eqs. (10) and (11)

are required to have plateau behaviour reflecting an isolated en-
ergy eigenstate. This isolation is evident in the long constant fits 
in Figs. 1 and 2 for the mπ = 0.296 GeV pion. The isolation is a 
result of our detailed projection treatment of the quark level ef-
fects of the background field. This is the first time that plateau 
behaviour has been observed in these quantities.

From here the energy shift and fits of Eq. (14) are per-
formed and the magnetic polarisability extracted. The fit function 
of Eq. (14) is considered, with the fits selected through a con-
sideration of the full covariance matrix χ2

dof . The selected fits 
are displayed in Fig. 3, where the fit for κud = 0.13770 of the 
mπ = 0.296 GeV ensemble corresponds to the fit window dis-
played in Figs. 1 and 2. This is the first lattice calculation in which 
the fully relativistic energy shift of Eq. (1) has been used. This 
is made possible due to the enhanced precision of pion correla-
tion functions from the SU (3) × U (1) eigenmode projected quark 
propagator and Landau-projected hadron sink.

The neutral pion is also amenable using these techniques. Here 
we consider the neutral, source-sink connected pion with quark 
content dd. The fit of Eq. (14) now needs no explicit subtraction of 
the Landau energy term as the π0

d is overall charge-less. The suc-
cess of the quadratic only and linearly constrained quadratic fits to 
the highly precise π0

d and π+ energy shifts of Eq. (12) suggests 
that higher order contributions in B are negligible. These neutral 
pion results draw from these new techniques, in particular the in-
clusion of the SU (3) × U (1) quark-propagator Laplacian projection 
which enables improved energy shift plateaus to be fitted.

The magnetic polarisability of the π0 may be estimated by con-
sidering the average of the magnetic polarisability of the uu and dd
pions

βπ0 = 1

2

(
βπ0

d + βπ0
u

)
, (16)

where π0
u is the pion with quark content uu. This pion has rela-

tivistic energy

E2
π0

u
(B) − m2

π = −4π mπ βπ0
u |B|2 +O

(
B3

)
. (17)

As the uu pion is simply the dd pion in a field of twice the mag-
nitude

E2
π0

u

(
B

2

)
= E2

π0
d
(B) , (18)
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Fig. 3. Linearly constrained quadratic fits of the energy shift of Eq. (12) to the field quanta at each quark mass for the π+ .
we may write

E2
π0

u

(
B

2

)
− m2

π = −4π mπ βπ0
u

∣∣∣∣ B

2

∣∣∣∣
2

+O
(

B3
)

= −4π mπ βπ0
u

1

4
|B|2 +O

(
B3

)
, (19)

and hence

E2
π0

d
(B) − m2

π = −4π mπ βπ0
d |B|2 +O

(
B3

)
= −4π mπ βπ0

u
1

4
|B|2 +O

(
B3

)
, (20)

where we have used Eqs. (18) and (19). Thus the magnetic polar-
isability of the uu pion is related to that of the dd pion by

βπ0
u = 4βπ0

d . (21)

The magnetic polarisability of the full neutral pion is then esti-
mated as

βπ0 = 1

2

(
βπ0

d + βπ0
u

)
= 5

2
βπ0

d . (22)

Our resulting pion magnetic polarisabilities are presented in Ta-
ble 1.

All quark masses produce similar values for βπ+
and βπ0

. This 
is in contrast to the neutron [19] and evident in Fig. 4 where our 
magnetic polarisabilities are plotted as a function of pion mass 
squared. The neutral pion results using Eq. (22) are in good agree-
ment with a number of theoretical approaches and experimental 
measurements [10,43]. Ref. [26] presents results for βπ0

and βπ0
d

in their Table II which have a ratio consistent with Eq. (22).
4

Fig. 4. The magnetic polarisability of the pion from lattice QCD is plotted as a func-
tion of m2

π .

We note again that we consider only the source-sink connected 
portion of the neutral pion correlator here. Pion electromagnetic 
polarisabilities were studied using chiral perturbation theory for 
partially quenched QCD in Ref. [44] where the polarisability of the 
neutral pion at one-loop order arises entirely from self-annihilation 
contractions. These terms are also expected to scale quadratically 
with the field strength and so may provide an important correction 
in the full magnetic polarisability of the neutral pion.

The results presented herein utilise the SU (3) × U (1) eigen-
mode quark-projection technique that we introduced in Ref. [40]. 
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Table 1
Magnetic polarisability values for the pion at each quark mass considered. The numbers in parenthe-
ses describe statistical uncertainties.

κud mπ (GeV) a (fm) βπ+
(×10−4 fm3) βπ0

d (×10−4 fm3) βπ0
(×10−4 fm3)

0.13700 0.702 0.1023 0.255(56) 0.900(17) 2.25(5)
0.13727 0.570 0.1009 0.275(54) 0.872(16) 2.18(4)
0.13754 0.411 0.0961 0.355(62) 0.766(33) 1.92(9)
0.13770 0.296 0.0951 0.35(11) 0.754(35) 1.89(9)
The success of this technique is evident in the improved energy-
shift plateaus when compared to the equivalent energy shifts of 
Ref. [16]. These new results represent an improved understanding 
of the physics relevant to the extraction of the magnetic polaris-
ability of the pion.

4. Conclusion

The magnetic polarisability of the charged pion has been calcu-
lated using lattice QCD for the first time. This is an important step 
forward in our understanding of this fundamental property, made 
possible due to the use of the SU (3) × U (1) eigenmode projection 
technique, along with a hadronic Landau eigenmode projection. 
The neutral pion magnetic polarisability is also presented. These 
results represent the first systematic study of pion magnetic po-
larisabilities across a range of pion masses with a fermion action 
which does not suffer from magnetic-field dependent quark-mass 
renormalisation effects.

To connect these results to experiment, one can draw on chiral 
effective field theory. By formulating the theory in a finite volume, 
finite-volume corrections can be determined. Moreover, by sepa-
rating the contributions of valence and sea quarks, using the tech-
niques of partially-quenched chiral effective field theory, one can 
address the electro-quenched aspects of these calculations. Thus 
our results present an interesting challenge for the effective field 
theory community.

Future work in lattice QCD for the pion magnetic polarisabilities 
could focus on calculating the full neutral pion correlator which 
includes self-annihilation contractions and thus requires the x-to-x
loop propagator [45]. Similarly the electroquenched nature of our 
calculations could be addressed by extending the background field 
to the “sea” quarks of the simulation at gaugefield generation time. 
Such a calculation requires a separate set of gaugefields for each 
external magnetic field strength and thus removes the advanta-
geous QCD correlations between two-point correlation functions at 
zero and finite external field strengths. Reweighting [27] promises 
an avenue to preserve these correlations.
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