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Abstract 

Security Orchestration, Automation and Response (SOAR) platforms leverage 

integration and orchestration technologies to (i) automate manual and repetitive labor-

intensive tasks, (ii) provide a single panel of control to manage various types of security 

tools (e.g., intrusion detection system, antivirus and firewall) and (iii) streamline 

complex Incident Response Process (IRP) responses. SOAR platforms increase the 

operational efficiency of overwhelmed security teams in a Security Operation Centre 

(SOC) and accelerate the SOC’s defense and response capacity against ever-growing 

security incidents. Security tools, IRPs and security requirements form the underlying 

execution environment of SOAR platforms, which are changing rapidly due to the 

dynamic nature of security threats. A SOAR platform is expected to adapt continuously 

to these dynamic changes. Flexible integration, interpretation and interoperability of 

security tools are essential to ease the adaptation of a SOAR platform. However, most of 

the effort for designing and developing existing SOAR platforms are ad-hoc in nature, 

which introduces several engineering challenges and research challenges. For instance, 

the advancement of a SOAR platform increases its architectural complexity and makes 

the operation of such platforms difficult for end-users. These challenges come from a 

lack of a comprehensive view, design space and architectural support for SOAR 

platforms.  

This thesis aims to contribute to the growing realization that it is necessary to advance 

SOAR platforms by designing, implementing and evaluating architecture-centric support 

to address several of the existing challenges. The envisioned research and development 

activities require the identification of current practices and challenges of SOAR 

platforms; hence, a Multivocal Literature Review (MLR) has been designed, conducted 

and reported. The MLR identifies the functional and non-functional requirements, 

components and practices of a security orchestration domain, along with the open issues. 

This thesis advances the domain of a SOAR platform by providing a layered architecture, 

which considers the key functional and non-functional requirements of a SOAR platform. 

The proposed architecture is evaluated experimentally with a Proof of Concept (PoC) 



 x 

system, Security Tool Unifier (STUn), using seven security tools, a set of IRPs and 

playbooks. The research further identifies the need for and design of (i) an Artificial 

Intelligence (AI) based integration framework to interpret the activities of security tools 

and enable interoperability automatically, (ii) a semantic-based automated integration 

process to integrate security tools and (iii) AI-enabled design and generation of a 

declarative API from user query, namely DecOr, to hide the internal complexity of a 

SOAR platform from end-users. The experimental evaluation of the proposed approaches 

demonstrates that (i) consideration of architectural design decisions supports the 

development of an easy to interact with, modify and update SOAR platform, (ii) an AI-

based integration framework and automated integration process provides effective and 

efficient integration and interpretation of security tools and IRPs and (iii) DecOr 

increases the usability and flexibility of a SOAR platform. This thesis is a useful resource 

and guideline for both practitioners and researchers who are working in the security 

orchestration domain. It provides an insight into how an architecture-centric approach, 

with incorporation of AI technologies, reduces the operational complexity of SOAR 

platforms.  
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Introduction 1 

Chapter 1 

1 Introduction 

The rapid growth in cyberattacks has recently become a major concern for industry and 

governments. Advanced data exploitation and phishing techniques are used to attack 

most organizations [1-3]. Industries ranging from financial to healthcare are all 

vulnerable to cyberattacks; among them, healthcare, manufacturing, financial services, 

government agencies and educational institutes are the most targeted [1, 4-7]. According 

to Cybersecurity Ventures, global cybercrime damage may reach $6 trillion (£4.6 trillion) 

in 2021 [8, 9]. In Australia, all levels of government, industry, political organizations, 

education, health, essential services providers and operators of critical infrastructure are 

experiencing a significant increase in cybercriminal activities and sophisticated state-

based cyberattacks [10-12]. This was been announced publicly by the Australian Prime 

Minister in June 2020 to raise awareness [11, 12].  

Many organizations are building Security Operation Centers (SOC) to improve 

their organization's security position, continuously monitor, detect, prevent, analyze and 

respond to, and reduce the financial impact of cyberattacks [13-15]. According to the 

SANS (Escal Institute of Advanced Technologies) Institute, “SOC is a combination of 

people, processes and technology protecting the information system of an organization 

through projective design and configuration, ongoing monitoring of the system state, 

detection of unintended actions or undesirable states and minimizing damage of 

unwanted effects” [13]. SOCs help organizations to increase their ability to detect threats 

and respond faster to cyberattacks; hence, minimizing the damage of cyberattacks. A 

recent survey by Kaspersky has revealed that the financial damage to many organizations 

is reduced to half with the help of SOCs [14]. An organization’s SOC uses a variety of 

security tools, developed by different vendors, to protect its Information Technology (IT) 
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infrastructures and Business Applications (BA). Security software or Security tools are 

software-intensive systems for detecting, preventing and recovering from cyberattacks. 

In this thesis, we have used the term security tool to refer to security software/security 

tools and information systems that are used or participate in responding to security 

incidents. Some of the commonly used security tools are antivirus, firewall, Intrusion 

Detection Systems and Instruction Prevention Systems (IDS/IPS), Security Information 

and Events Management (SIEM) and Endpoint Detection and Response (EDR) tools [16-

19]. These security tools use different steps for threat defense, from detecting, preventing 

and responding to security incidents to performing data enrichment by correlating and 

analyzing event data with contextual information.  

Security teams of a SOC are expected to monitor and analyze the activities (e.g., 

validate alerts, correlate logs, remove malware, etc.) of these security tools to respond to 

security incidents [20-23]. We refer to the human experts who are involved in different 

activities of SOC to protect an organization from cyberattacks as security teams. 

Common roles of security teams are: Cyber Security Incident Response Team (CSIRT), 

threat hunter, forensic analyst, security analyst, security administrator and network 

administrator [17, 33, 34]. To increase operational efficiency, SOCs are adopting 

Security Orchestration, Automation and Response platforms (SOAR) that orchestrate the 

activities of security tools and human experts and automate the labor-intensive repetitive 

tasks that are performed manually by security teams [20, 23, 24]. In this thesis, the terms 

security orchestration and automation, security orchestration and SOAR are used 

interchangeably. 

Security orchestration is defined as “the planning, integration, cooperation and 

coordination of the activities of security tools and experts to produce and automate 

required actions in response to any security incident across multiple technology 

paradigms” [22]. The incorporation of security orchestration and automation 

technologies promises to solve several challenges faced by the overwhelmed security 

teams in a SOC dealing with complex security operations. A key challenge is to analyze 

a huge pool of alerts in time.  

Incident responders must immediately respond to contain, mitigate and minimize 

the damage of a security incident. Another challenge is that most of the Incident 
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Response Processes (IRP) contain a sequence of activities that are required to be 

performed manually by a security team. Performing a task manually is often error-prone 

and time-consuming. In addition, most organizations have a lack of security experts to 

operate their SOCs efficiently. For instance, a SANS survey has revealed that a SOC’s 

capabilities may be hampered due to the lack of skilled professionals [13]. A SOAR 

platform minimizes the burden on human experts by orchestrating, automating and 

streamlining IRPs. It is a must-have technology for organizations (in-house or through 

service providers) to address the challenges associated with a massive volume of security 

alerts, dynamic security threat landscapes and huge skill gaps [2, 25, 26].  

The adoption of SOAR platforms has increased significantly in the last couple of 

years [26, 27]. Some of the examples of SOAR platform security vendors include (but 

are not limited to): MacAfee [28], IBM [22], FireEye [29], Intel [30], AlienVault [31], 

Swimlane [32], LogRhythm [33] and Demisto [34]. These vendors report on successful 

adoption of their SOAR technologies in SOC environments and how SOAR platforms 

may help to increase the operational efficiency of security teams. 

Figure 1.1 depicts an overview of a SOAR platform. To develop or deploy a 

SOAR platform, SOAR designers or developers first assess an organization’s existing 

security tools, information systems, security requirements and security expertise. Based 

on the assessments, they develop or utilize existing APIs, plugins or scripts to integrate 

security tools into a SOAR platform. Integration of security tools allows security teams 

to access the security tools from a single platform. Furthermore, response processes/ 

IRPs, rules and playbooks (i.e., an automated workflow) are designed to orchestrate and 

automate IRPs in response to security incidents [20, 32, 35]. Playbooks are mostly built 

from IRPs by demystifying security requirements/ concerns [26]. They help to deploy 

countermeasures following day to day security practices. 

The integrated security tools generate alerts, logs and reports in different formats 

that are used by a wide range of security teams. Data generated by different security tools 

are gathered and stored for investigation by security teams. Different security teams work 

with a different set of security tools to respond to security incidents. Furthermore, the 

data generated by one security tool might be used by other security tools for further 

processing. For example, the alerts produced by different IDS are analyzed by a SIEM 
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tool for a gathering context. As security tools have different data formats and are mostly 

designed to work in isolation, a SOAR platform needs to work as an interpreter among 

the security tools and enable interoperability among them. Rules, mechanisms or  
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Figure 1.1 An overview of a typical security orchestration and automation platform 



Introduction 5 

knowledge bases are developed for interpretation of the gathered data by a SOAR 

platform to bring them to security teams for analysis and investigation. Security teams 

investigate these data utilizing security intelligence based on defined playbooks. Finally, 

responses towards a security incident are orchestrated, and tasks are executed by a SOAR 

platform invoking the integrated security tools. 

1.1 OBJECTIVES AND RESEARCH QUESTIONS 

The rapid proliferation of cyberattacks is changing the way a SOC defends and responds 

to security incidents. Due to the COVID-19 pandemic, organizations are under a new 

level of stress where most people are working from home, resulting in COVID-19 themed 

cyberattacks that are phishing, business email compromise scams, ransomware, remote 

working vulnerabilities, hacking and hijacking of video and teleconferences [36-39]. 

According to the Australian Cyber Security Centre (ACSC), the frequency and severity 

of COVID-19-themed cyberattacks are likely to increase in the coming days [40]. In 

recent years, SOCs have evolved significantly to encompass a sophisticated range of 

security tools and activities within organizations to build and operate their cybersecurity 

tools. According to Cybersecurity Ventures, the global spending on cybersecurity 

products and services (i.e., security tools) will exceed $1 trillion cumulatively over five 

years (i.e., from 2017 to 2021) [8, 9]. The Australian federal government has announced 

a budget of $1.35 billion for enhancing Australian cybersecurity capabilities over the 

next ten years. According to AustCyber (i.e., Australian Cyber Security Growth 

Network), by 2026, approximately 77% of cybersecurity expenditure will be spent on 

externally managed security services [41].  

To counter the emerging security threats and make use of increasing demand for 

the available security products and services, new security tools are being introduced to 

secure organizational IT infrastructures, which are increasingly becoming hyper-virtual, 

mobile and connected. This situation causes a continuous change in the underlying 

execution environment (e.g., security tools, integration mechanisms and security 

requirements) of a SOAR platform, which must be designed in such a way that it can 

evolve with the evolution of its execution environment. 
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Software architecture plays an integral role in the design of large-scale integrated 

systems [42-44], like SOAR platforms. It guides the design, development and evaluation 

of a software system over time. Bass et al. have defined software architecture as “a set 

of structures needed to reason about the system, which comprises software elements, 

relations among the elements and properties of both the elements and the relations” [45]. 

Software architecture abstracts the different elements of a system and the relationships 

among these elements with respect to the functional and non-functional requirements 

(also known as quality requirements) of a system [43]. Software architecture is also 

known as the composition of architectural design decisions [44]. Jansen et al. have 

defined architectural design decisions as “a description of the set of architectural 

additions, subtractions and modifications to the software architecture, the rationale and 

the design rules, design constraints and additional requirements that (partially) realize 

one or more requirements on a given architecture”. However, the existing SOAR 

platforms lack the proper abstraction for designing a SOAR platform at an architectural 

level. The research reported in this thesis has been motivated by the increased realization 

that there is an important and urgent need for architecture-centric support for designing 

and evolving SOAR platforms, which are expected to integrate easily and smoothly and 

be interoperable with existing and new security tools. 

Before delving into the main body of this thesis, we perform an extensive study of 

the state-of-the-art and the state-of-the-practice of the existing SOAR platforms by 

carrying out a Multivocal Literature Review (MLR) [46]. More specifically, we 

investigate (i) the key functionalities and components required of a SOAR platform (ii) 

drivers of a SOAR platform and (iii) variation in SOAR platform solutions. Through an 

analysis of the existing studies, we find that there is also a lack of common understanding 

among vendors and SOCs of SOAR platforms. Some vendors are simply providing 

automated workflows or playbooks and claiming that as a SOAR platform. Some are 

providing an integrated layer for security tools and claiming them to be a SOAR platform, 

whilst others confuse security orchestration with security automation. Most of the 

existing SOAR platforms have been implemented in an ad-hoc manner, based on 

organizational requirements, without much attention paid to the underlying 

infrastructure. The lack of comprehensive vision and ad-hoc design results in several 

challenges in evolving a SOAR platform over time. 
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Some of the key challenges are: (i) seamless integration of new security tools and 

new playbooks, (ii) managing interoperability among the isolated and heterogenous 

security tools in a changing environment and (iii) building capability in a security team 

to understand the underlying libraries and components of a SOAR platform to 

incorporate new tools. To bridge the gap, we design, implement and evaluate architecture 

support for a human-centric SOAR platform. Based on the proposed architecture, we 

propose a set of Artificial Intelligence (AI) enabled toolsets and frameworks that address 

the abovementioned challenges.  

 

This thesis aims to propose architecture-centric support for integrating security 

tools into a SOAR platform, where a SOAR platform works as a hub for security tools 

and security teams. To achieve the goal, we address three key Research Questions (RQ). 

RQ1. How has security orchestration been defined and what are the key challenges 

in security orchestration? 

Since security orchestration and automation is an emerging concept, there is a 

lack of consensus amongst vendors about the various functionalities, components, 

toolsets and challenges of security orchestration. To identify how security orchestration 

has been defined, we investigate “what is security orchestration?”, “what are the key 

functional and Non-Functional Requirements (NFR) of a SOAR platform” and “what 

types of solutions has been presented?”. To the best of our knowledge, there has been no 

effort to systematically review and analyze the existing SOAR platforms’ functional 

features, NFR and core components for designing a human-centric SOAR platform. 

Therefore, it is important to systematically review state-of-the-art of security 

orchestration and automation to (i) identify the key functional and NFR requirements, 

Thesis statement: A SOAR platform is an integrated platform that involves the 

realization of three paradigms – unification, orchestration and automation. 

Integration mechanisms and interactions of security teams with a SOAR platform 

influence the usefulness and large-scale realization of existing SOAR platforms. An 

abstraction of a SOAR platform, along with its key functionalities, is required to 

identify the suitable architecture style and architecture patterns to embed agility in a 

human-centric SOAR platform. 
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(ii) gain insight about the key components and technologies that can fulfill the essential 

functional and NFR requirements and (iii) identify and codify the challenges associated 

with current practice for designing and deploying security orchestration and automation 

platforms. 

RQ2. How does software architecture play a role in improving the design practice 

of security orchestration and automation platforms? 

The functional and NFR requirements used to design and deploy a SOAR 

platform depend greatly on the requirements of security teams and the underlying 

infrastructure of an organization. As different security teams have different requirements, 

ad-hoc approaches appear to be more dominant in designing and deploying a SOAR 

platform. Incorporation of the changes in the underlying execution environment without 

a clear guideline and view of a SOAR design space results in a monolithic and complex 

design that is hard to evolve. Lack of conceptual and practical guidelines for optimal 

architectural design decisions may result in a highly complex design. It can be argued 

that an architecture-centric approach can help to reduce the design complexity of a SOAR 

by modularizing the functional and NFR elements, alongside consideration of 

architectural design decision help with analyzing and understanding sub-optimal design 

decisions that can be improved by leveraging well-known architecture styles and 

patterns.  

RQ3. What kinds of tools and techniques can be incorporated to realize the 

architecture while fulfilling the functional and NFR of the implemented platform? 

There is a need to identify the tools and techniques that are suitable for the 

realization of the proposed architecture, to provide an effective and efficient way to adapt 

to the changes in a SOAR platform. We designed the following three (sub) research 

questions to answer RQ3.  

RQ3.1. How is it possible to enable seamless interoperability and interpretability 

among security tools and SOAR platforms? 

A SOAR platform needs to enable interoperability among different security tools 

to orchestrate and automate IRPs. To do this, it is necessary to interpret both the 

capabilities of security tools and activities of IRPs, and map which security tools to use 
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to perform which activities. The whole process is done manually by a security team. 

Thus, changes in any of these components require security staff to adapt the changes 

manually. As new security tools and IRPs evolve with emerging threats, a SOAR 

platform needs to support easy integration of new security tools and IRPs. An integration 

framework can be designed leveraging Artificial Intelligence (AI) technologies such as 

semantic technologies, Natural Language Processing (NLP) and Machine Learning (ML) 

tools and techniques. Semantic-based integration of security tools can provide the 

security team with the flexibility to integrate security tools easily, without worrying 

about the underlying integration mechanisms. In addition, NLP and ML-based 

interpretation and prediction of IRPs reduces the burden on the security team to map the 

IRPs with the activities of the security tools. 

RQ3.2. How is it possible to automate the process of integrating security tools in a 

SOAR platform? 

To integrate a security tool in a SOAR platform, a security expert needs to know 

the underlying libraries and integration mechanism (e.g., APIs, plugins and scripts) of 

both security tools and SOAR platforms. Integration of security tools is considered one 

of the key challenges of a SOC as security tools vary in terms of their type (e.g., 

proprietary, legacy and open source), and the structure of the generated and consumed 

data. The process of integration is also repetitive and manual, whereby a security team 

first needs to investigate the type of security tool, its capabilities, the activities it can 

execute, and map the activity of IRPs with the security tools. The process of integration 

of security tools in a SOAR can be automated by designing a semantic-based integration 

approach.  

RQ3.3. How is it possible to hide the internal complex architecture of a SOAR platform 

from the security team? 

Incorporation of different automation, orchestration and AI technologies in a 

SOAR platform results in a complex architecture that makes the operating of such a 

platform difficult for an end-user with a changing threat landscape. Thus, there is a need 

to hide the underlying complex design of a SOAR platform from its end-users to reduce 

the operating complexity. A set of declarative APIs can be designed by leveraging AI 

technologies such as NLP and semantic tools and techniques. Declarative APIs are a 
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form of API through which a security team can provide the command in declarative form 

to specify what a SOAR platform needs to do without specifying the details as to how to 

execute that command.  

1.2 THESIS OVERVIEW 

This section presents a summary of how we address each of the RQs, which are analyzed 

across five chapters. Figure 1.2 provides an overview of the thesis. We describe the focus 

of each chapter below. 

Engineering Security Orchestration and Automation SolutionsBackground

Realization of the Architecture

Chapter 6
AI enabled 

Declarative API

Key Contributions

Ontology based 
Integration Process

NLP and ML based 
Integration 
Framework

Chapter 4
Semantic Based 

Integration

Chapter 5
Automated Process 

for Integration

Security Tool 
Integration

Architectural 
Complexity 

Encapsulation

Interpretation 
and 

interoperability

Declarative API 
driven SOAR 

Platform

Functional 
Requirements

Non Functional 
Requirements

Key 
Components

Chapter 2
Literature Review

State of the 
art

State of the 
practice

Chapter 3
Security Orchestration and Automation Architecture 

A Novel Layered 
Architecture of 
SOAR Platform

 

Figure 1.2 Overview and scope of the thesis 

Chapter 2 Literature Review 

We performed a comprehensive study of the existing security orchestration 

solutions, tools and technologies to answer RQ1 (orange boxes of Figure 1.2). A 

Multivocal Literature Review (MLR) has been conducted for this and is reported in 
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Chapter 2. Chapter 2 demonstrates a thorough knowledge of the area and provides an 

argument to support the thesis focus. More specifically, it highlights the importance of 

having an architecture for a SOAR platform. The review has helped us to gain a 

comprehensive understanding of the security orchestration domain. The review has 

identified the functional and Non-Functional Requirements (NFR) of a SOAR platform, 

along with the core components and technologies required to provide the functional 

requirement and fulfill the NFRs (blue boxes). It works as a guideline for any researcher 

or practitioner who plans to deploy orchestration and automation technologies in their 

SOC. 

Chapter 3 Security Orchestration and Automation Architecture 

One of the key purposes of a SOAR platform is to address the challenges of a 

SOC with integrating security tools and operation activities. To design a SOAR platform 

to fulfil this purpose, an architecture is proposed for a new kind of SOAR platform 

(yellow boxes of Figure 1.2). This chapter addresses RQ2 by presenting a concept map 

and key dimensions of the architecture design space for integration of security tools and 

operational activities in a SOAR platform. The architecture is designed considering the 

key functional and NFR of a SOAR platform. This chapter proposes a high-level 

architecture for a SOAR platform that relies on the layered architectural style. The 

proposed layered architecture consists of six layers – a security tool layer, integration 

layer, semantic layer, data processing layer, orchestration layer and User Interface (UI) 

layer. An abstraction layer is considered as part of the UI layers. By providing a detailed 

description of each layer of the proposed architecture, the way the layers integrate to 

achieve a set of NFRs, including integrability, interpretability, interoperability, 

modifiability and usability, can be shown. The proposed architecture is evaluated based 

on a Proof of Concept implementation of a SOAR platform for two use case scenarios 

with seven security tools. The realization of the architecture for different purposes is 

presented in Chapters 4, 5 and 6 (purple boxes of Figure 1.2).  

Chapter 4 Semantic-Based Integration 

This chapter answers RQ3.1 by addressing the challenges associated with 

changes in the underlying execution environment of a SOAR platform that may hamper 

the interpretability and interoperability of security tools for automated execution of an 
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IRP. An integration framework is proposed to unify the security tools’ data by 

formalizing the security tools’ capabilities, inputs, outputs and the activities of IRPs. An 

ontological knowledge base is developed that formalizes the security tools' capabilities 

and activities and defines their relationship. The integration framework contains an 

interoperability model to enable interoperability amongst the security tools for the 

automated execution of a sequence of activities. Interpreting the activities and 

capabilities to execute these activities, it finds the appropriate security tools that can be 

used for their execution. It shows how NLP and ML techniques can be used along with 

semantic technology to automate the interpretation of activities. A learning-based 

approach is proposed to identify activity classes from new activities’ descriptions given 

in natural language. The proposed approach is evaluated based on seven security tools 

and 23 IRPs. 

Chapter 5 Automated Process for Integration  

This chapter answers RQ3.2 by addressing the challenges with manual design 

and development of integration technologies (i.e., APIs. Plugins and scripts) for security 

tool integration. It leverages the semantics technologies used for formalizing the key 

concepts of security tools and IRPs to automate the process of integrating security tools 

in a SOAR platform. The integration process automates the selection of security tools, 

interpretation of security tools’ capabilities, formulation of commands to invoke security 

tools and finally invocation of security tools to execute an activity. This chapter mainly 

realizes three layers – the data processing, semantic and security tool layers. The data 

processing layer deals with information related to security tools. The semantic layer 

provides information related to the semantics of input and output, as well as the activities 

that are executed by security tools and directly related to the orchestration layer. The 

orchestration layer activates the tasks that are required when integrating multiple security 

tools. The proposed approach is evaluated based on an experiment using IRP for 

Distributed Denial of Service (DDoS) attacks. 

Chapter 6 AI Enabled Declarative API  

The proposed layered architecture has an abstraction layer that plays a key role in 

hiding the internal complex architecture of a SOAR from its end users (i.e., the security 

team). We find that most of the abstractions through declaration are more prominent and 
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gain major attention from recent software developments. As a result, to answer RQ3.3., 

this chapter proposes a set of declarative APIs for a SOAR platform. The declarative API 

can easily be used by the developers or end-users to define their plans, integrate security 

tools, update IRPs or even update the knowledge base. AI based approaches such as 

semantic and NLP technologies are leveraged in the design of the declarative APIs that 

allow users with little knowledge about declarative APIs to provide the command 

through natural language. A semantic framework is proposed to automate the generation 

of the declarative APIs from the task description. 

1.3 THESIS CONTRIBUTIONS 

This section summarizes the key contributions of this thesis that have been made while 

answering the Research Questions (RQs) (green boxes of Figure 1.2). We identify the 

key functional and NFR requirement of a human-centric SOAR platform (i.e., answer 

RQ1). Considering the functional and NFR requirements, we propose a layered 

architecture for integrating security tools in a SOAR platform (i.e., answer RQ2). We 

further leverage AI technologies to implement and evaluate a proof of concept SOAR 

platform (i.e., answer RQ3). The key contributions of this thesis are summarized as 

follows: 

• We establish a solid background knowledge of security orchestration and automation 

research and practices. We identify the key challenges that practitioners and 

researchers are expected to overcome through security orchestration. We also provide 

a taxonomy of different aspects of security orchestration practices that includes the 

key functional and NFR requirements and automation strategies. Furthermore, the 

open issues of the existing SOAR platforms are presented from people, process and 

technology perspectives. These contributions answer RQ1, are presented in Chapter 

2 and are published in the ACM Computing Survey (Impact factor: 6.131, Core 2020 

Ranking A*) as: 

o Chadni Islam, Muhammad Ali Babar, and Surya Nepal. 2019. A Multi-Vocal 

Review of Security Orchestration. ACM Computing Survey. (CSUR) Vol 52, 

Issue 2, Article 37 (April 2019), 45 pages.  
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• We demonstrate that the successful realization and evolution of a SOAR platform are 

governed by how the security tools are integrated, orchestration processes are 

defined, and security teams communicate with such a platform. We propose a layered 

architecture for a SOAR platform, which forms the basis for enabling automated 

integration of security tools and automated interpretation of the activities performed 

by a SOAR platform. We demonstrate that one of the basic requirements for any 

large-scale system is to have an abstract layer that hides the internal complexity of a 

platform from its end-user. Hence, we propose a layered architecture with an 

abstraction layer to fulfill this requirement. We further provide a proof of concept 

SOAR that is designed and implemented based on the proposed architectural 

approach. These contributions answer RQ2, are presented in Chapter 3 and were 

accepted for publication by the 14th European Conference on Software Architecture 

(ECSA’2020) (Core 2020 Ranking A) as: 

o Chadni Islam, Muhammad Ali Babar, and Surya Nepal. Architecture-centric 

Support for Integrating Security Tool in a Security Orchestration Platform. 

14th European Conference on Software Architecture (ECSA’2020), 14-18 

September 2020, L’Aquila, Italy. 

• We propose a semantic-based integration framework for automated interpretation of 

security tools and activities of IRPs to enable interoperability among security tools 

and automate the execution of IRPs. The integration framework consists of an 

ontological model, a prediction module and an annotation module. Considering a 

SOAR platform cannot automatically interpret activities of IRPs, security tool 

capabilities, and their input and generated data, we formalize various inputs, outputs 

and capabilities of security tools, activities of the IRPs and mapping of activities with 

the security tools’ capabilities in an ontological knowledge base. A systematic and 

structured path is followed to define and annotate classes of the ontology. The 

prediction module is developed by utilizing NLP and ML techniques that (i) learn the 

semantic model and (ii) automatically categorize the activities of IRPs according to 

the activity classes of an ontology. These contributions answer RQ3.1, and are 

presented in Chapter 4 and were published by the 31st International Conference on 
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Advanced Information Systems Engineering (CAiSE’2019) (CORE 2018 Ranking 

A) as 

o Chadni Islam, Muhammad Ali Babar and Surya Nepal. Automated 

Interpretation and Integration of Security Tools Using Semantic Knowledge. 

In 31st International Conference on Advanced Information Systems 

Engineering (CAiSE’2019), June 3-7, 2019, Rome, Italy. 

• We propose an ontology-driven approach for automating the process of integrating 

security tools in a SOAR platform. Following this process, data generated and 

consumed by security tools are interpreted and integrated automatically. We have 

identified that each security tool has a set of capabilities where the orchestration 

process has a set of activities. To respond to an activity, one security tool might 

require the output of other security tools. The proposed integration process 

formulates the input of security tools by deconstructing and extracting the features 

from the output of other security tools where needed. These contributions answer 

RQ3.2, and are presented in chapter 5 and were published by the 2019 International 

Conference on Software and Systems Process (ICSSP’2019) (CORE 2020 Ranking 

A) as 

o Chadni Islam, Muhammad Ali Babar and Surya Nepal. An Ontology-Driven 

Approach to Automating the Process of Integrating Security Software 

Systems. In ICSSP 2019 International Conference on Software and Systems 

Process (ICSSP’2019), May 25-26, 2019, Montreal, Canada. 

• We demonstrate that the incorporation of different technologies increases the 

architectural complexity of a SOAR platform. Different teams have different 

requirements or use a SOAR platform for different purposes. We identify the 

requirements of a set of declarative APIs through which security teams can provide 

their task without having a detailed knowledge of the underlying infrastructure of a 

SOAR platform. To free security teams from learning the declarative API, we 

propose an AI-based approach for generating declarative APIs from task description. 

This way novice users or users with little knowledge about the declarative API would 

be able to provide the commands to execute a task or activity in a SOAR platform. 

These contributions answer RQ3.3, are presented in Chapter 6 and were submitted to 
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the journal of Transactions of Software Engineering and Methodology (TOSEM) 

(Impact Factor: 2.071, Core 2020 Ranking A*) as 

o Chadni Islam, Muhammad Ali Babar and Surya Nepal. AI-Enabled Design 

and Generation of Declarative API for Security Orchestration Platform. 

Submitted to Transactions of Software Engineering and Methodology 

(TOSEM). 

Each chapter of this thesis is focused on addressing a research question while 

contributing to the overall objective of the thesis. We have mentioned the needed 

additional functionality or integration in each chapter separately. The limitations of the 

proposed approaches have also been discussed at each chapter.  

1.4 THESIS ORGANIZATION 

The remainder of this thesis is organized as follows. Chapter 2 presents a comprehensive 

review of the security orchestration domain. Chapter 3 provides a novel architecture for 

supporting the integration of security tools and operation activities in a human-centric 

SOAR platform. Chapter 4 presents an integration framework to semantically integrate 

security tools in a SOAR platform and provides an automated approach for interpreting 

security tools and activities of IRPs. Chapter 5 presents a process for automatically 

integrating security tools in a SOAR platform based on an ontological knowledge base. 

Chapter 6 presents a set of declarative APIs to hide the inherent complexity of a SOAR 

platform and an AI-based approach to automate the generation of declarative APIs from 

a user query. Chapter 7 concludes the thesis by providing a road map of two significant 

avenues for future work. 



 

Chapter 2 

2 Literature Review 

A Security Orchestration, Automation and Response (SOAR) platform aims to 

integrate multivendor security tools, so that the security tools can effectively and 

efficiently interoperate to automate and streamline activities of security teams in a 

Security Operation Centre (SOC). Given the growing need and importance of SOAR 

platforms, there has been an increasing amount of literature on their different 

aspects. However, there has been no effort to systematically review and analyze the 

reported solutions. This chapter aims to identify different aspects of SOAR 

platforms. To realize this goal, a Multivocal Literature Review (MLR) has been 

carried out, which systematically selects and reviews both the academic and grey 

(blogs, web pages and white papers) literature on the security orchestration and 

automation domain, published between January 2007 and July 2017. This chapter 

provides a working definition of security orchestration and automation. It further 

classifies the main functionalities of SOAR platforms into three main areas: 

unification, orchestration and automation. We identify the core components of a 

SOAR platform and categorize the drivers of SOAR platforms based on technical 

and socio-technical aspects. This chapter also provides a taxonomy of SOAR 

platforms based on the execution environment, automation strategy, deployment 

type, mode of task and resource type. This chapter also highlights several areas of 

further research and development in the security orchestration and automation 

domains. 
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2.1 INTRODUCTION 

Cybersecurity breaches lead to serious organizational and socio-economic consequences 

such as loss of revenue, damage to reputation and information systems, theft of 

proprietary data and customer sensitive information [47-50]. For example, in 2017 

Equifax (one of the largest credit reporting agencies in America) [51] reported a major 

data breach that had affected around 148 million US consumers [52-54]. The hackers 

successfully stole sensitive information (e.g., credit card numbers, phone numbers, email 

addresses, and social security numbers) through that breach, which was preventable as 

per a recent report. According to research sponsored by IBM, the average total cost of a 

breach is around $3.92 million [50]. 

Organizations use various security tools to prevent known and unknown attacks 

and avoid the consequences that are associated with security vulnerabilities and threats 

[3, 16, 55]. Some of the commonly used security tools are antivirus, Firewall, Intrusion 

Detection Systems and Instruction Prevention Systems (IDS/IPS), and Security 

Information and Events Management (SIEM) [16-19, 55]. The security tools vendors use 

different technologies and paradigms to develop, deploy and operate their security tools, 

which cannot be easily integrated and interoperated for effective and efficient support of 

Security Operation Centers (SOC). 

Security orchestration is aimed at introducing technical and socio-technical 

solutions to integrate multivendor security tools as a unified whole to support security 

teams in a SOC. Organizations are increasingly adopting SOAR platforms that are 

proactive, autonomous and collaborative solutions to enable security teams to perform 

their responsibilities effectively and efficiently [56-59]. A SOAR platform enables 

people, processes and technologies to work together to improve an organizations’ 

security intelligence for better security operations and management [60-62]. Security 

orchestration is a prerequisite of security automation, which is the process of 

automatically detecting, preventing and recovering from cyberattacks without human 

interference, using information technology, automation algorithms and Artificial 

Intelligence (AI) tools and techniques [61, 63]. 

Existing security tools are designed to monitor an organization’s IT infrastructures 

and network activities, generate security alerts and perform necessary actions upon 
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detection of security threats. An organization’s security tools generate thousands of 

alerts, which are usually monitored and acted upon by security teams, mostly using 

manual or semi-automated processes and practices [63-65]. A Verizon’s report indicates 

that 93% of data breach cases require minutes to be executed, but it can take companies 

weeks or months to discover attacks [66]. For example, after getting alerts from IDS for 

malicious behaviors, a security expert might go to an endpoint defense system to gather 

more relevant information by querying the network resources and validating a threat. 

After confirming the threat, a security expert commands a firewall to isolate or block the 

traffic from the affected region and update the threat information in the threat intelligence 

database. According to a report by Baker Hostetler [67], security experts took, on 

average, 61 days to discover the occurrence of an incident and, after discovery, 41 more 

days to take remedial action. A food chain, Wendy’s, Point of Sale systems were affected 

by malware at 1025 locations in 2015, but it was first discovered in February 2016 [68, 

69]. To deal with the potential threats of security breaches, security teams are expected 

to provision and facilitate the selection of the existing security solutions as quickly as 

possible to perform the required actions and ensure seamless security operation. 

A SOAR platform has the potential to address the concerns of manual threat 

analysis, delays in responses to security incidents, as well as provide the security status 

of an organization’s IT infrastructures. SOAR platforms are capable of automatically 

identifying suspicious activities in an organization’s environment and proactively act to 

mitigate cyberattacks. According to a Gartner’s report, by 2019, 30% of large and 

medium enterprises will be deploying some form of security orchestration and 

automation capabilities [70]. Another study [65] reports one third of organizations are 

planning to deploy or have deployed SOAR platforms that can bundle different security 

tools and human expertise together for the automation of security tools’ activities within 

an organization. 

Figure 2.1 captures some of the abovementioned organizational settings where 

several types of security tools generate alerts to be manually analyzed by security teams 

in the absence of a SOAR platform. A SOAR platform can automate most of these 

manual decision-making processes and accelerate incident responses by reducing the 

manual and repetitive activities. Orchestrating and automating the activities of 
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multivendor security tools requires a comprehensive view of SOAR platforms, as these 

tools have their own way to work and produce different formats of alerts. The existing 

SOAR platforms do not provide sufficient evidence of supporting different quality 

attributes such as flexibility, interoperability, scalability, modifiability, accuracy, 

integrability and extensibility [21, 58, 59, 71-74]. Given the increasing demand for 

security orchestration, a significant amount of research is needed to help understand the 

challenges in the existing solutions and practices of SOAR platforms to address the 

challenges. 

 

Figure 2.1 Overview of an organization’s decision against alerts without security 

orchestration and with security orchestration 

This chapter reports a Multi-Vocal Literature Review (MLR) which aims to 

systematically identify and review the literature on security orchestration under the 

conditions, “state of the art” and “state of the practice”. An MLR (i.e., a type of 

Systematic Literature Review) includes both peer reviewed and non-peer reviewed 

literature (e.g., newsletters, white papers, fact sheets, and blog posts) [46, 75]. A 

Systematic Literature Review (SLR) has become the most popular method of conducting 

a literature review in Software Engineering (SE) [76]. 

An SLR focuses only on peer-reviewed literature and does not include grey 

literature. An SLR may not always provide an established discipline of knowledge, as it 
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ignores a large amount of information produced by software engineering practitioners 

[46, 75, 77 ]. Hence, the MLR is attracting more attention in SE [46, 78]. We believe that 

conducting an MLR in the area of security orchestration will be more useful than an SLR 

as there is a large body of non-peer reviewed literature reported by practitioners. We 

conducted this MLR to explore the fundamental challenges and opportunities for the 

evolution of SOAR platforms. We analyzed the characteristics of existing SOAR 

platforms to understand how to solve the challenges associated with security 

orchestration. We also investigated the strengths and weaknesses of the technologies 

used in SOAR platforms. The main contributions of this chapter are: 

• It introduces a working definition of security orchestration, followed by several 

functionalities of SOAR platforms ranging from integrating several security tools to 

performing incident response planning against a threat, as well as enabling 

collaboration among security tools to materialize the concept of security 

orchestration (refer to sections 2.3 & 2.4 for further details) 

• It identifies the key challenges that practitioners and researchers intend to overcome 

through security orchestration (details are discussed in section 2.5). 

• It provides a taxonomy of different aspects of SOAR practices that are needed to 

support the dynamic adoption of applications in an organizations’ environment 

(details in section 0). 

• It determines and discusses the open research challenges and issues in the field of 

security orchestration (refer to sections 2.7 & 0). 

2.2 RESEARCH METHOD 

The methodology used for this chapter has benefited from the SLR guidelines reported 

in [79]. The methodology adopted to carry out the MLR was inspired by the work 

reported in [80, 81]. It involved three main phases: (i) planning and designing the review 

protocol, (ii) conducting the review and (iii) reporting the review. We developed a review 

protocol describing each step of an MLR. The review protocol included several steps: 

research identification, search strategies, study selection, data extraction and synthesis. 

Our MLR process follows the steps in the same order as shown in Figure 2.2. 
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Figure 2.2 An overview of our MLR process 

2.2.1 Research Identification 

We identified the relevant literature using a search strategy that was based on a set of 

research questions, as shown in Table 2.1. The research questions purported to help gain 

an understanding of SOAR platforms, their functionalities and respective elements. The 

research questions were also aimed at helping to identify and review the supportive tools, 

approaches and evaluation criteria for adopting a SOAR platform in practice. 

2.2.2 Search Strategy 

The following sections detail the search strategy for acquiring the relevant literature from 

multiple sources. 

2.2.2.1 Data Sources 

The review includes both peer reviewed and grey literature that was identified and 

acquired using both manual and automatic searches in the relevant sources. Initially, we 

performed a manual search on the Journal of Computer Security, ACM SIGSAC 

Conference on Computer and Communications Security, and USENIX Security 

Symposium to gain an overview of the recent literature. We also searched the recent 

proceedings of RSA conferences. Then we conducted an automatic search in three digital 

libraries, IEEE Xplore, ACM Digital Library and Scopus, that publish peer reviewed 

literature on computing. 
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Table 2.1 Research Questions of this MLR 

Research Questions Motivation 

RQ1. What is Security 

Orchestration? 

The first question (RQ1) investigates how security 

orchestration is defined. RQ1 aims to identify the 

relevant related work, i.e., identifying keywords for 

the literature search that lead to maximum coverage 

of the related approaches. RQ1 also investigates the 

functional features and core elements of security 

orchestration. 

RQ2. What challenges do security 

orchestration intend to solve? 

Security orchestration is commonly used by 

practitioners to bring automation, streamline incident 

response and integrate security tools. Many 

challenges that exist for security tools in a more 

traditional setting also apply to security orchestration. 

RQ2 focuses on the aspects where security 

orchestration fundamentally differs from traditional 

approaches. 

RQ3. What types of solutions have 

been proposed? 

RQ3.1. What practices have been 

reported for adopting security 

orchestration? 

RQ3.2. What types of tools and 

techniques do researchers and 

practitioners use, propose, design 

and implement in practice? 

RQ3.3. What aspects of 

architecture security do 

practitioners consider for large-

scale deployment of security 

orchestration? 

The motive behind this question is to identify the 

solutions related to security orchestration and the 

reported practices followed by organizations (i.e., 

requirements, guidelines and collaborative 

approaches) for adopting security orchestration 

(RQ3.1); more specifically how existing tools and 

techniques are employed to implement a SOAR 

platform; what are the innovative approaches and 

techniques needed for successful implementation of a 

SOAR platform (RQ3.2); and, most importantly, 

what aspects of architecture are being considered for 

large-scale deployment of a SOAR platform (RQ3.3). 

RQ3 would help researchers to find the gap and 

practitioners to consider the architectural aspects that 

need to be considered to successfully implement a 

SOAR platform on a larger scale. 

We used the advanced search option to facilitate a type of search that enables a 

multiple keywords search. During the automatic search in the digital libraries, we defined 

the search to match the search string with the titles, abstracts and keywords of the papers 

published between January 2007 and July 2017. Our search in ACM DL, IEEE Xplore, 

and Scopus included papers from the Annual Computer Security Applications Conference 
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and IEEE Security and Privacy. In addition, we searched in Google Scholar to search 

and include some relevant literature, especially some patents that we could have missed 

through the abovementioned search procedure. 

To search the grey literature, we used the Google search engine, like other MLRs 

[77, 78]. We search the first ten pages, which are considered sufficient to find the most 

relevant literature, as Google’s search engine’s algorithm retrieves and shows the most 

relevant results in the first few pages [77, 78]. For example, Google’s search engine 

returned 45,900 results for the term “security orchestration” in November 2017; 

however, the relevant content was captured in the first ten pages. 

2.2.2.2 Search Strings  

We created a search string to ensure a thorough search over several databases. For 

academic literature, we formulated the search string based on a) the key terms gathered 

from the relevant papers, b) synonyms, alternative terms and related concepts of security 

orchestration, c) AND and OR to combine all the terms. We performed several pilot 

searches and refined, discarded and added search terms to confirm the inclusion of the 

relevant papers that we already knew. We formulated the search string in three parts. We 

performed a match of the search string with the paper’s titles, abstracts and keywords. 

We used the following search string. 

Search String 1 

(“Security" OR "Alert" OR "Threat" OR "Policy" OR "Intrusion" OR 

"Anomaly Detection" OR "forensic") 

AND (“Orchestration" OR "Instrumentation" OR "Coordination" OR 

"Correlation" OR "Collaboration" OR "Automation" OR 

"Integration")  

AND ("Security Tool" OR "Safeguard Software" OR "IDS" OR "IPS" 

OR "Threat Intelligence" OR "Detection Engine" OR "Prevention 

Engine" OR "Security Control" OR "Security 

Appliance" OR "perimeter defense" OR "Incident Response") 

We used the search string “Security AND Orchestration” to search the grey literature 

and conducted a search using the Google search engine and Google Scholar. 

2.2.3 Eligibility Criteria 

We defined a set of inclusion and exclusion criteria to select relevant papers. The criteria 

are shown in Table 2.2. Since this review is a blend of scientific and grey literature, we 

used narrow inclusion and exclusion criteria. 
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Table 2.2 Inclusion and exclusion criteria 

Inclusion criteria Exclusion criteria 

• IC1: Articles in English and full text is 

accessible.  

• IC2: Articles that focus on developing 

integrated, coordinated and collaborative 

solutions. 

• IC3: Articles include a sound validation (for 

grey source: working prototype or tools, 

proper references to validate the result). 

• IC4: Articles that reports practices and 

challenges in cyberspace (such as blogs, 

magazine and reports) to give an indication 

of security orchestration. 

• EC1: Short academic paper (paper 

less than 6 pages). 

• EC2: Articles whose focus is 

irrelevant to security.  

• EC3: Articles that focus on 

physical infrastructure or 

hardware. 

• EC4: Articles where the focus is to 

enhance algorithms or features of a 

single security solution.  

• EC5: All duplicate articles found 

from various sources. 

2.2.4 Study Selection 

Figure 2.3 shows details of the selection of grey and academic literature at each step of 

the MLR. This also includes the search databases and number of papers selected after 

each step. We followed two different approaches to select the academic and grey 

literature. 

2.2.4.1 Selection of Academic Literature  

In this section, we describe each step of the process that we have followed to select the 

relevant papers. Our search in ACM DL, IEEE Xplore and Scopus returned 271, 600 and 

1017 results, respectively. The titles, abstracts and keywords of these papers were 

examined. For some papers, just reading the title and abstract was not enough to decide 

whether to keep them in the selected papers’ pool. We kept those papers for the next 

round. A total of 1617 papers were discarded based on the inclusion and exclusion criteria 

described in Table 2.2. We read the title, abstract and keywords of each paper in the 

Journal of Computer Security, ACM SIGSAC series of Conferences on Computer and 

Communications Security and RSA series conferences and filtered 19 papers. 

After round 1, we selected 290 papers. Then we removed the duplicates and 

excluded the papers that were shorter than 6 pages. Finally, we screened the whole text 

and applied the eligibility criteria to select the relevant papers. A total of 37 papers were 
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selected from the digital libraries. To ensure the inclusion of any relevant papers that we 

might have missed, we extended the search in Google Scholar. We searched for the string 

“Security and Orchestration” and checked both the titles and abstracts of the top 200 

results. We only included 6 articles that were not found in the automatic and manual 

search procedures of phase 1. We applied all the eligibility criteria while selecting the 

papers from Google Scholar. 

 

Figure 2.3 Study selection process of our MLR 

2.2.4.2 Selection of Grey Literature  

In the next phase, we used the Google search engine and checked the first 10 pages. We 

only continued further if needed. We identified several practitioners (niche and start-up) 

who were contributing to the field of security orchestration. We crawled through their 

websites and looked for the relevant resources and white papers. We applied the 

eligibility criteria while selecting the papers. At the end of this process, we identified a 

total of 52 papers, including white papers, blogs, news articles and websites. Finally, we 

included 95 pieces of literature (Figure 2.3) for data extraction and synthesis. Figure 2.4 

showed the distribution of the selected pieces over several types of venues. For both 
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cases, we excluded those papers published before 2007. Table 2.3 lists the papers that 

were finally reviewed. 

 

 

Figure 2.4 Distribution of selected articles over venues 

Table 2.3. Study selected for data extraction and qualitative analysis 

Academic Literature 

Grey Literature 

Websites & Blogs Whitepapers 

[21, 23, 58, 59, 72-74, 

82-117] = 43 

[17, 19, 20, 32, 33, 35, 56, 57, 60, 

62-65, 118-135] = 31 

[18, 24, 29, 61, 71, 136-

151] = 21 

 

2.2.5 Data Extractions, Synthesis, and Analysis 

Following the process of MLR, at this step, we read, assessed, extracted data and 

summarized the findings from the selected papers, based on the pre-defined RQs and 

motivations (Table 2.1). 

2.2.5.1 Data Extraction 

We identified and extracted the relevant data using a pre-defined data extraction form 

from each of the selected sources. We needed these data to answer the research questions. 

We also extracted some general information, e.g., author’s name, venue published and 

published year. We conducted a pilot study on a set of 10 sources before deciding how 

to extract the required data. We stored all the extracted data in a spreadsheet for analysis. 
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2.2.5.2 Synthesis and Analysis 

The extracted data were stored in three different sections of the data extraction 

form to perform the synthesis and analysis of the extracted data. These sections are (a) 

security orchestration definitions, functionalities and applications, (b) challenges to be 

solved and (c) security orchestration practices, tools and techniques. We analyzed each 

set of the data items using qualitative analysis methods. We used a combination of 

different qualitative analysis methods (i.e., narrative synthesis and thematic analysis). 

For example, for classification and categorization of data, we used thematic analysis 

[152, 153]. We followed several steps to analyze the data, including getting familiar with 

the extracted data by carefully reading each piece of data. We collaboratively analyzed 

and systematically synthesized the extracted data to develop a taxonomy to report the 

results in a generalized form. The taxonomy developed in this way has been used for 

reporting the functionalities, benefits and aspects of security orchestration in this chapter. 

For data analysis, we followed the qualitative data analysis guidelines [153]. Table 2.4 

contains the abbreviations that are used in this chapter. We report the synthesized result 

in sections 2.3, 2.4, 2.5, and 0. 

Table 2.4 Summary of Notations 

Acronym Abbreviation/ Description Acronym Abbreviation/ Description 

AI Artificial Intelligence  LR  ulti vocal Literature Review 

AIRS 
Automated Incident Response 

Solution 
NFV  Network Function Virtualization  

API 
Application Programming 

Interface 
NTT 

Nippon Telegraph and 

Telephone 

DBot Demisto’s chatbot  NVD National Vulnerability Database 

DDoS Distributed Denial of Service OADS 
Orchestration oriented Anomaly 

Detection System 

DHCP 
Dynamic Host Configuration 

Protocol 
OVAL 

Open Vulnerability and 

Assessment Language 

DNS Domain Name System ROI Return on Investment 

DXL Data Exchange Layer RQ Research Question 

EC Exclusion Criteria SDDC Software Defined Data Centre 

ETSI 
European Telecommunication 

Standard Institute  
SDN Software Defined Network 
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Acronym Abbreviation/ Description Acronym Abbreviation/ Description 

IC Inclusion Criteria SDSec Software Defined Security 

IDS Intrusion Detection System SE Software Engineering 

ID EF 
Intrusion Detection  essage 

Exchange Format 
SIE  

Security Information and Event 

 anagement 

IOC Indicator of Compromise SLR Systematic Literature Review 

IPS Intrusion Prevention System SOSDSec 
Service Oriented Software 

Defined Security 

IRP Incident Response Plan STIX 
Structured Threat Information 

Expression 

IT Information Technology TAXII 
Trusted Automated Exchange of 

Intelligence Information 

LEEF Log Event Extended Format PSI 
Premise aware Security 

Instrumentation 

 D5  essage Digest 5 algorithm VNF Virtual Network Function 

2.3 SECURITY ORCHESTRATION: DEFINITIONS, FUNCTIONALITIES, 

AND ELEMENTS 

This section presents the findings for RQ1 “What is Security Orchestration and 

Automation?”. Our data analysis for RQ1 reveals some key definitions of “security 

orchestration” given by practitioners, the functional and non-functional requirements and 

the key functional components of a SOAR platform. 

2.3.1 Definitions 

Our analysis shows that practitioners use the term security orchestration widely, with no 

clear and common definition. We assert that having a common working definition of 

security orchestration and automation will help practitioners and researchers to define a 

discipline of research and practice for promoting practices, processes, tools and 

technologies. The term security orchestration is being mostly used as a buzz-word that 

can lead to misinterpretation of the core concept of orchestration [60, 120, 121, 137]. 

Some organizations and practitioners confuse security orchestration with security 

automation [65]. We present a few key definitions from the reviewed work. 

According to HEXADITE, "Orchestration is the practice of connecting existing 

security tools together through APIs to streamline incident response processes." Here, 

Hexadite has considered security orchestration more as an integration tool and presented 
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a definition for security automation. Barak Klinghofer, CPO of HEXADITE [19] has 

defined "The active process of mimicking ideal steps a human would take to investigate 

a cyber threat, determining whether the threat requires actions, performing necessary 

remediation actions, deciding what additional investigation should be next" as security 

automation [139]. According to a start-up company, KOMAND [17], security 

orchestration is more than just connecting security tools. Their definition [17] is: 

“Security orchestration is a method of connecting security tools and integrating 

disparate security tools. It is the connected layer that streamlines security 

processes and powers security automation.” 

Markets and Markets [126] stated that “Security orchestration is an approach to 

automatically respond to security incidents and protect IT systems in organizations from 

advanced cyberattacks and vulnerabilities”. 

Microsoft has distinguished security orchestration and security automation [63] as: 

 “Security orchestration is the integration of security and information technology 

tools designed to streamline processes and drive security automation” and 

“Security Automation is the use of information technology in place of manual 

processes for cyber incident responses and security event management”. 

ThreatConnect [122] has also presented distinct definitions for security orchestration and 

security automation: 

“Security orchestration is the connecting and integration of various security 

applications and processes together” and “Security automation is the automatic 

handling of a task in a machine-based security application that would otherwise 

be done manually by a cybersecurity professional”.  

ThreatConnect has defined security automation and orchestration [122] as: “Security 

automation and orchestration is a coordination of automated security tasks across 

connected security applications and processes.” 

According to Forrester, security orchestration and automation should be described 

together as technology products. They have defined security orchestration and 

automation [120] as: 
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“Technology products that provide automated, coordinated, and policy-based 

actions for security processes across multiple technologies, making security 

operations faster, less error-prone and more efficient.” 

Clearly, Forrester’s definition asserts that automation can help take the full benefits from 

security orchestration. Bruce Schneier [56], chief security officer of IBM, defines 

security orchestration as the unification of people, processes and technology. He claims 

that security orchestration is keeping people in the loop of security automation, where 

the computer performs the automation of certain activities, but a human coordinates the 

activities. It is more about making people effective. He also pointed out that the security 

incident response needs to be dynamic and agile. DFLabs’ Oliver Rochford has defined 

security orchestration as the junction where people, process and technology all come 

together [60]. According to him, people build automation into the process and consume 

information and insight generated by technology. Security orchestration and automation 

is the realization of three paradigms – unification, orchestration and automation. Our 

definition of security orchestration is as following:        

“Security Orchestration is the planning, integration, cooperation and coordination 

of the activities of security tools and experts to produce and automate required 

actions in response to any security incident across multiple technology 

paradigms.” 

This definition provides siloed security tools the ability to share information and threat 

intelligence among them through an integrated and unified platform. This is achieved by 

seamless monitoring, situational awareness, data analytics, knowledge representations 

and semantic knowledge sharing across the existing security tools. A SOAR platform 

works as an intelligence assistant for security experts. It is clear that there is a need for 

extensive training to learn from human behavior to provide AI capabilities that can enable 

an enterprise to achieve long-lasting development and deployment of a SOAR platform 

using existent tools and protocols.  

2.3.2 Functionalities of Security Orchestration and the Automation Platform 

In this section, we report the findings of the functionalities of SOAR platforms. Several 

reports (i.e., References [120, 136]) have mentioned security orchestration as one of the 
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emerging technologies, which has the potential to be widely adopted in near the future 

[136]. One of the motivators of security orchestration is to bridge the gap between 

detection and remediation of security incidents [19, 144]. Most of the detection solutions 

are automated, whereas the response processes are still reliant on humans. To bridge this 

gap, there is a need to unify the activities of security tools, streamline the workflows and 

choose the right courses of action. According to Demisto [148], a comprehensive SOAR 

platform must be able to automate security tools’ activities, create playbooks with 

complicated logic, and track and orchestrate the tasks assigned to an analyst. Paul 

Weeden [129] has stated: “Security orchestration makes the most of human skills by 

bringing together automated tools and reports to provide risk information exactly when 

and where it is needed.”  

Figure 2.5 highlights the key functionalities of a SOAR platform in three 

paradigms, (i) unification where the security orchestration acts as middleware, (ii) 

orchestration that is the process of translating complex processes into streamlining 

workflow and (iii) automation that enables an automated response. 

2.3.2.1 Middleware/ Hub 

Vendors have mentioned security orchestration as a platform that acts as a hub for 

unification, coordination, data sharing and analysis for disparate cybersecurity and IT 

technologies [18, 58, 141]. Security teams can easily integrate multivendor security tools, 

share threat intelligence and collaborate with the external organizations to gain an insight 

into an organization’s security state through a SOAR platform. SDSec (Software Defined 

Security services’) orchestration solution has a layer of functionalities to perform 

communication and coordination across different subsystems [21]. 

Unify security tools: Several of the reviewed works mentioned that a SOAR platform 

unifies disparate security tools and processes [17-19, 29, 65, 72, 101, 154], integrates the 

enterprise’s security architecture [[136, 148], connects detection, networks and endpoint 

security tools [59, 144], and performs coordination among security tools’ activities [58, 

61, 65, 83]. Connecting the activities of disparate security tools makes the incident 

handling process efficient and effective for the security team. A SOAR platform provides 

a single console or platform to integrate security tools’ activities, removes the operational 

silos and helps security teams to free their time [128, 143]. 
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Figure 2.5 Key functionalities provided by a SOAR platform 

Unifying intelligence according to vulnerability also minimizes the overall complexity 

of the incident response process [72, 83, 92]. Through the coordination platform, security 

tools can interoperate with each other to enhance organizational protection and defense 

systems [101, 130, 145]. Feitosa et al. [23] have proposed collaborative solutions to 

detect intrusions and anomalies by analyzing the co-creation of events and alerts among 

different subnetworks. The orchestration tools proposed in Reference [58] are designed 

to coordinate the safeguarding function by calling an individual software package with 

respect to an installation. Jeong et al. have proposed a coordination module for 

organizational architecture integrating cyber forensic functions [117]. 
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Determine endpoint for human investigation: A SOAR platform [120] can enable 

security teams to gain insights into several security tools’ activities, operate disparate 

security tools as a unified system [59, 61] and collaborate with other security teams for 

planning and decision making [17, 128, 130]. A SOAR platform informs and educates 

security teams about an organizations’ threat behaviors [120] and notifies about the 

supported policies [144]. By orchestrating various activities, the platform can decide 

when human insight is required [17, 19, 24, 114, 121, 137]. For example, the work in 

[82] has highlighted the critical assets with high priority to the administrator for 

investigation. The motive is to keep the security team focused on threats that demand 

their immediate attention and expertise. 

Share contextual insight: A single security prevention and detection system usually 

suffers from the tunnel vision syndrome that leads to an inability to detect certain types 

of security attacks, such as Distributed Denial of Service (DDoS). A SOAR platform 

gathers threat intelligence from various external sources (e.g., web pages and blogs), 

extracts key features from a huge volume of threat intelligence data and provides the 

contextual insight related to alerts or attacks to a security team. In addition, it engages 

security tools to perform complete monitoring of endpoints [93, 136, 145], correlates 

their activities and provides real-time visibility of known and unknown threats to security 

teams [29, 128, 131]. An organization can share contextual device data with the third-

party system [18, 144]. It helps security teams reduce and mitigate risk exposure [29, 

144], make a faster decision based on context [24, 35, 59, 114] and gather an overview 

of what is happening in various subnetworks within an organization [18, 61, 62, 136]. 

By sharing the contextual insight, a SOAR platform works as a collaborative platform 

that also enables training of security teams based on past investigations [35, 61, 128]. 

The online evaluation framework proposed in [82] has provided situational awareness to 

an organization so that it can take appropriate actions. By assessing the security state of 

an organizations’ different assets, the proposed framework helps the administrator to 

identify compromised assets and prioritizes alerts [82]. A set of papers [72, 86, 88, 94] 

has proposed a platform for security teams and security tools used in an organization to 

share their knowledge. Jeong et al. [117] have followed the structure of having a 

coordination group with a participant group to propagate the relevant information to the 

external work or another coordination group. RiskVision has proposed SOAR platforms 
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to unify stakeholders in business, IT and security tools to provide automation for end-to-

end cyber risk prevention and response [130]. 

2.3.2.2 Orchestrate Security Activities 

Translate complex processes into streamlined workflow: After receiving alerts, 

security experts need to perform multiple steps to find the attacks, vulnerabilities, 

affected endpoints and mitigation solutions. These steps include the complex process of 

data collection, investigation, remediation, evaluation of actions and deciding on the 

appropriate courses of action. Several papers [17, 19, 65, 71, 82, 122, 139, 141, 148] 

have mentioned that the motivation for orchestration is to translate the complex process 

of threat investigation into a streamlined workflow through automation and 

orchestration. A streamlined workflow requires a standardized process that includes 

proper planning for incident responses, policy executions, investigations, response 

actions and remediation processes [21, 29, 140, 143]. The workflow is designed to mimic 

security teams’ activities during threat investigation to reduce the cumbersome manual 

processes, human errors and improve security teams’ capabilities for incident responses.  

Orchestrating and integrating security tools’ activities allows security teams to 

simplify complex workflows, coordinate the flow of data and tasks and enables powerful 

machine to machine automation [17, 29, 137, 151, 154]. The task can be fully or partially 

automated, based on the complexity of the threats [143]. ForeScout has proposed a rule 

engine and a workflow engine to make instant decisions and offered data aggregation to 

provide in-depth awareness about the organizational environment [136]. The online 

Evaluation framework, Seclius [82], has translated alerts into system security measures 

to reduce the reliance on human expertise in capturing system characteristics through 

low-level alerts. This work also provides a ranking of the affected system’s assets and 

malicious events for organizations to help the security administrator [82]. Similar to this, 

the Premise-aware Security Instrumentation (PSI) policy engine proposed in Reference 

[74], has translated the high-level security postures provided by an administrator into per 

device intents. 

Provide a deployment model: Several security vendors provide SOAR platform 

deployment services that require appropriate orchestration and automation of existing 

security tools, along with organization external and internal infrastructures [32, 87, 90, 
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118, 124]. FireEye deployment service for automation provides functionality to manage 

events across multiple FireEye and third-party products, and ensures deployment is 

successful [118]. The deployment model depends on the organizations’ scale, complexity 

and course of actions. Vendors are providing flexible deployment models for 

organizations to ensure simple installation and management of various forms of 

infrastructure. This action also ensures efficient deployment in heterogeneous 

environments. Organizations can choose security policies based on their need to restrict 

access and tailor security configurations [71, 146]. Additionally, testing and evaluation 

of deployment models are also undertaken once any change has been made. The proposed 

system can provide a progressive deployment module to perform upstream rules filtering 

that helps to reach the source of attacks [86]. The work in Reference [87] has proposed 

an innovative solution to perform quick deployment of various security mechanisms. The 

orchestration system proposed by Reference [90] has arranged appropriate virtual 

instances in the right place: virtual appliances are automatically added and controlled. It 

has also automatically moved traffic to virtual networks to prevent major harm, block the 

attack and strengthen the system. 

Determine appropriate courses of action: A SOAR platform can help to resolve an 

incident promptly to determine the appropriate and effective course of actions [19, 21, 

32, 118, 127, 128, 148]. By choosing the appropriate course of actions, a SOAR platform 

maintains process consistency across a security program. FireEye has mentioned the in-

built course of actions with automated support for all the needed steps for handling a 

security incident as a core of a SOAR platform [118]. Also, various kind of alerts (i.e., 

phishing and endpoint contamination) are needed to distinguish remediation activities 

with different courses of actions. Upon investigating an alert, a SOAR platform can 

determine the proactive response to threats or may initiate an additional investigation 

based on an attack’s complexity [118, 121, 144]. In many cases, a post-attack 

investigation or evaluation task can also be instantiated. Feitosa et al. [23] have proposed 

a framework, “Orchestration-oriented Anomaly Detection System (OADS)”, that 

performs coordination and collaboration among different anomaly detection techniques 

to detect and evaluate threats and choose right actions. Security teams do multiple 

investigations in response to an alert. In the process of orchestration, one investigation 

usually triggers multiple investigations [19]. 
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Workflows are designed to choose the appropriate course of actions, simplify threat 

responses through integration and automation [17, 18, 29], perform necessary 

remediation [144], decide additional investigation(s) [139], design documents for 

playbook review [118] and define sources of information to help the security team to 

solve the identified problems [142]. A formal workflow helps maintain effective 

communication and strong collaboration among security teams [139]. Providing a formal 

workflow helps security teams and SOAR platforms to maintain consistency across 

actions [29]. This simplifies and accelerates alerts investigations, eases proactive hunting 

of attackers, accelerates the Return on Investment (ROI) and eliminates the need for 

continuous assessment. The security functions are inserted dynamically into the 

workgroup, based on the policies [71]. The operating principle of the framework in 

Reference [59] has security tools that operate on their own and perform activities of 

context sensing, policy decisions and policy enforcement. Each activity is logically 

independent of each security tool. The SOAR tool proposed in [58] works as an interface 

to perform security scanning and testing or other security activities. This tool enables 

different safeguard software packages to come to an agreement for invoking the 

necessary activities(s) owned by any of the software packages. The framework discussed 

in Reference [117] helps to implement the coordination of an organization's activities 

effectively by performing an on-site and online investigation, to provide security 

warnings and appropriate response actions. 

2.3.2.3 Enable Automated Responses  

A SOAR platform automates incident response activities. HEXADITE has automated 

800,000 man-hours of work in two years that is equivalent to US $38.5 million in 

customer savings [19]. Several papers [18, 19, 35, 136] have reported that a SOAR 

platform automates the entire threat defense life cycle and provides intelligence 

automation services. ETSI (the European Telecommunication Standard Institute) 

considers automating the control of deployment and configuration of the security tools’ 

activities as a substantial prerequisite of orchestration [91]. According to Forrester, 

orchestrating incident response activities enables an automated response without the need 

for coding skills [120]. A SOAR platform allows autonomous control and protection of 

the network through discovered insights [144]. 
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Automate repetitive manual tasks: SOCs use a SOAR platform to automate repeatable 

tasks and remove duplicate incidents to optimize security teams’ capabilities and reduce 

the overall cost [17, 29, 35, 63, 125, 131, 144, 146, 154]. Automating the routine tasks 

helps security teams to tackle more critical problems [17, 18, 65, 122, 139, 144]. 

According to Swimlane, 80% to 90 % of all security operations of an incident response 

can be automated to some extent [150]. The collaborative incident response planning 

process design discussed in Reference [85] helps practitioners to come up with a 

repeatable and executable planning process. Some vendors provide a SOAR platform 

that also automates the deployment of security tools’ functions through a network 

infrastructure [71]. Several papers [72, 87, 121, 130] have proposed automation of the 

analysis of cyber threat intelligence, which includes extracting data from technical blogs, 

websites, finding correlations among different reported attacks and updating incidents’ 

severity levels based on threat intelligence feeds. A SOAR platform reduces the response 

time by minimizing the error-prone manual process and codifying real-world expertise. 

Koyama et al. have also reported a security operations automation framework that helps 

in optimizing decisions with regards to a variety of security sensors and appliances (i.e., 

security tools) [72]. Luo et al. [21] have proposed automated cybersecurity operations in 

the software-defined environment. 

Automate policy enforcement: Security policy enforcement greatly benefits from 

automation that considers all the tools, devices, and measures required for security policy 

implementation. A SOAR platform enables an organization to automate policy 

enforcement and configuration at runtime [71, 73, 74, 91, 99, 101, 141]. A set of systems 

developed to derive policy decisions based on contextual data and provide real-time 

policy enforcement have been reported in References [59, 73, 99]. Yu et al. [74] have 

introduced a multistage mapping mechanism to adjust policies automatically, based on 

network devices. In Reference [73], policy enforcement is performed automatically. 

ETSI has aligned security policies in an automated way inside virtual, physical and 

hybrid networks [91]. Dynamic enforcement of policies allows automatic configuration 

of security tools and updates of threat intelligence [71]. An organization can automate 

policy enforcement across disparate solutions [144]. Luo et al. [21] have proposed the 

provision of consistent security policies by orchestrating software-defined security 

services across a heterogeneous cloud environment. A generic SOAR framework 
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proposed in Reference [59] enables ad-hoc and context-aware policy criteria to be 

applied in real time by using an ecosystem of security tools connected via a Data 

Exchange Layer (DXL). 

2.3.3 Quality Requirements for Security Orchestration Platforms 

We have identified the key quality requirements/ Non-Functional Requirements 

(NFR) (also known as quality attributes) of a SOAR platform. Figure 2.6 shows the main 

quality attributes of a SOAR platform gathered from the existing literature. These are the 

non-functional requirements of a SOAR platform. Every organization needs to consider 

these attributes before adopting or implementing a SOAR platform. The quality attributes 

of a large-scale system are expected to guide the key architecture design decisions. 

Hexadite has mentioned the pre-requisite for a SOAR platform, which is basically the 

quality attributes of such a platform [140]. 

 

Figure 2.6 Quality Attributes of a Security Orchestration Platform 
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Table 2.5 lists the quality attributes and a set of corresponding metrics that can be 

used to measure these attributes. For example, usability is a crucial factor for the effective 

utilization of a SOAR platform. A SOAR platform requires a simple and powerful user 

interface that can be easily customizable for different types of SOAR platform users. A 

SOAR platform should have a flexible architecture, so that each security team can create 

a work environment according to their need for a service. 

Table 2.5 Quality attributes of a SOAR platform 

Quality 

Attribute 

Measurement Metrics Articles 

Accuracy  

- Accuracy of diagnosis 

- Appropriate measure against attacks 

- Accurate classification and reliable taxonomies 

of threats 

- Data integrity 

[23, 59, 72, 82, 

83, 87, 89, 95, 98, 

101, 102, 105, 

106, 113, 130, 

136] 

Usability 

- Ease-of-use, easy to manage, connect and repeat 

tasks and interruptible 

- Simplified user interface to control security tools  

- Simplification of security management tasks for 

the network administrator and auditing module 

- User satisfaction 

- Higher analyst productivity  

- Accessible and stable threat intelligence 

[19, 21, 24, 35, 

58, 61, 82, 84, 85, 

90, 92, 104, 112, 

114, 122, 137, 

140] 

Scalability 

- Vendor agnostics 

- Independent security policy orchestration 

- Extensible architecture 

[19, 21, 24, 71, 

73, 82, 84, 86, 88, 

102, 104, 112, 

121, 124, 136] 

Executability 

- Qualitative and quantitative information about 

security incidents 

- Measurable security tools  

- Measurable goals 

- Security state of different assets of 

organizational infrastructure 

[17-19, 24, 64, 85, 

92, 113] 

Trustworthiness 

(Reliability) 

- On human: expertise level, fairness to 

collaborator and reputation 

- On existing security tools: trust value and 

predictability 

[23, 59, 72, 82, 

83, 85, 87-89, 92, 

95, 98, 101, 102, 

105, 117] 
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Quality 

Attribute 

Measurement Metrics Articles 

Effectiveness  

and Efficiency 

- Increase in detection rate 

- Fewer overheads for the security team 

- Reliance on human ability and satisfaction 

- Optimizes resources and performance 

- Predictable cost structure and indicator of 

compromise;  

- Key indicator to measure security effectiveness: 

Mean time to notification, remediation and 

investigation 

- Speed of integration and speed of deployment 

[18, 24, 35, 59, 

61, 71, 82, 85, 93, 

97, 98, 101, 104, 
106, 113, 116, 

127, 136, 140, 

150] 

 

Timeliness/ 

Speed 

- Time to perform raid recovery 

- Time to detect, triage attack and remediation  

- Time need to analyze an attack 

- Time for policy enforcement 

- Delay in business activities 

- Overall latency of packet processing  

[18, 19, 23, 24, 

59, 61, 62, 70, 72, 

84-86, 90, 101, 

104-106, 112, 

114, 121, 122, 

125, 136, 140] 

Robustness 

- Robustness to DDoS 

- Capacity for attack detection 

- Incident response capacity  

[18, 24, 73, 86, 

88, 100, 101] 

Flexibility 

- Feasible to update 

- Flexibility to design workflow automation 

- Flexibility to adapt process and accelerate 

response to all types of threats 

[21, 23, 24, 35, 

59, 62, 73, 90, 

102, 104, 121, 

125, 131, 136] 

Visibility 

- What analyses are available and clear definitions 

of their capabilities  

- Security state of an organization 

- Secure configuration guidelines 

[18, 19, 21, 24, 

35, 59, 71, 89, 92, 

94, 103, 125, 130] 

Adaptable 

- Compatibility with existing network topology 

and security appliances 

- Adaptable with current process 

[17-19, 24, 74, 91, 

95, 116, 125] 

Cost 

- Low computation cost 

- Cost of effective SOAR platform for mixed 

environments  

- Additional resources 

- Costs of ownership 

[18, 19, 23, 71, 

74, 84, 122] 
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2.4 KEY COMPONENTS OF SECURITY ORCHESTRATION 

Organizations and SOCs must consider the key components of SOAR platforms before 

adopting them. We have identified several core components of a SOAR platform. Most 

of the reviewed studies have a combination of these components that we have categorized 

into three classes: unification, orchestration and an automation unit. This classification 

is based on the functionalities discussed in section 2.3.2. We have considered the external 

security tools as another key component of a SOAR platform because most of the SOAR 

vendors consider that an organization already owns some security tools and uses the 

capabilities of the existing security tools. Figure 2.7 presents the details of the 

classification of the core components of SOAR platforms. 

 

Figure 2.7 Categorization of core components of a SOAR platform 
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and rules associated with various organizational assets and endpoints [31]. We consider 

an organizations’ devices that can act as an endpoint to be a server and any client personal 

devices, such as a laptop, mobile, personal computer, or organization-owned workstation 

and so on. We do not include these in the presented categorizations in Figure 2.7 for 

simplicity’s sake. 

2.4.1 Unification Unit 

We have considered the components that are designed to unify the existing security tools 

and their activities under this category. The unification unit works as middleware or hub, 

as briefly discussed in section 2.3.2.1. We consider the data collector, alert pre-processor 

and description modules as part of the unification unit. 

2.4.1.1 Description Module 

This component refers to language and models to represent the configuration, 

deployment and control tasks of a SOAR platform. Luo et al. [21] have proposed a system 

that requires an abstract set of activities (i.e., services) to be defined for the same type of 

security activities. Security management is built using the API of abstract activities. Luo 

et al. [21] have proposed a security tool capability descriptor, which describes all types 

of security tools, inputs and necessary attributes. The description module requires a well-

designed API to connect the existing security tools. The security activities requirements 

and descriptors are derived from organizational security policies and security tools, 

respectively. The set of interfaces are mentioned as connectors in Reference [21]. They 

have introduced two sets of interfaces: event connectors and command connectors. Both 

security and network events are received by the event connector [21]. These events come 

from external sources. The events connector also sends the information to the playbooks. 

The set of interfaces under the command connector sends a command to a security tool 

to modify their configurations and update operation behavior [21]. 

A SOAR platform needs a set of APIs to help with integration of third-party 

security tools and control the activities in different layers [102-104, 118, 128, 132]. Intel 

has proposed a bi-directional notification-based API to orchestrate virtual security in 

Software Defined Data Centers (SDDC) [71]. The global threat intelligence platform 

supports dedicated tools to provide a simplified interface to a firewall’s control [72]. 

Swimlane also uses API to enable one-click automation [61]. As stated by Bernd [91], 
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one of the main purposes of ETSIs’ management and orchestration group is to control 

the Network Function Virtualization (NFV) environment through virtualization and 

automation as much as possible. This work has enhanced the NFV reference architecture 

with a security orchestrator, the interaction of the security orchestrator with the existing 

NFV orchestrator and a virtual network function manager of the reference architecture. 

The workgroup has also included the tasks of the security orchestrator and the required 

interfaces with which to interact. In this work, the author has stated how security is 

managed through orchestration in a virtualized network environment.  

The correlation module of alert correlation architecture proposed in Reference [83] 

uses an application interface with the reasoner for reply and request. The DXL layer 

proposed by McAfee for an enterprise service bus works as a connector for diverse 

security tools and has an extensible data exchange framework to facilitate configuration 

of trustworthy data representation [59]. The safeguard interface module of the enterprise-

level security orchestrator provides a layer of software for a consistent interface to 

abstract away the changing nature of the underlying safeguard software packages. 

2.4.1.2 Collector 

Most of the reviewed SOAR platforms have collectors to collect all the necessary 

information from integrated security tools or devices. In several studies, network traffic 

and alerts are collected and pre-processed before analyzing and taking a decision [23, 63, 

84, 99, 105, 125, 129, 147]. The collector collects both raw context and structured format 

data [103]. The orchestration server engine of the security orchestration framework 

presented in Reference [59] works as a collector and receives contextual data from 

clients. The SOAR platform discussed in Reference [23] has an OADS miner as a core 

component. The OADS miner works like a consultant to the overall platform, which 

comprises an OADS crawler. The OADS crawler is designed to gather new information 

from the Internet about threats, vulnerabilities, attacks, and the origin of attacks, and store 

them in a repository. The threat intelligence unit works as a blog scrapper that crawls 

through technical blogs to collect, gather and share threat intelligence data [87, 103]. A 

SOAR platform utilizes global threat intelligence platforms to collect external threat 

intelligence and to prevent data infiltration (the action of entering or gaining action) and 

subsequent actions performed by attackers [72]. 
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2.4.1.3  Pre-processor 

A pre-processor receives raw alerts from several security tools and prepares the alerts for 

analysis. The alert pre-processor first decides the alert adequacy and then it aggregates 

the alerts into clusters, based on similarity. The pre-processing of threat data involves 

many activities, such as sentence splitting, special content extraction, content term 

location, topic classification, template removing and content sanitizing [87, 99, 102, 103, 

113]. Feitosa et al. [23] have used the Intrusion Detection Message Format (IDMF) 

standard to aggregate the alerts of several IDS tools. The aggregation has also helped to 

explore the distance between the times of different alerts, determine the alerts field and 

make a hypothesis about alerts and defense strategies. The proposed architecture for the 

Collaborative Intrusion Detection System (CIDS) [84] has also used IDMEF to unify 

alerts from multiple IDS. In Reference [21], the SOAR platform has modular physical 

logical attribute mapping that maps all assets’ physical attributes to their corresponding 

logical attributes. The study in Reference [83] combines several knowledge 

representation languages, for example, IDMEF, TAXII, OVAL, STIX and NVD, to 

propose ontological conceptualization and divide the knowledge into several groups. 

Their proposed ontology-based event correlation architecture consists of two essential 

modules: one is the conversion, and the other is the correlation module. The conversion 

module consists of parsing reports, translation and ontology. 

2.4.1.4 Dashboard 

The dashboard category consists of tools aimed at visualizing the activities of a SOAR 

platform. According to Demisto Inc. [147], the dashboard will bridge the gap between 

the SOC and technology used to keep the organization secure. The dashboard provides 

an aggregated view of different scenarios, assets and metrics [32, 130, 147]. FireEye uses 

a centralized dashboard to facilitate advanced threat hunting [118]. In the Enterprise 

Level Security Orchestrator [58], the SOAR platform provides administration and an 

interface through a dashboard. The dashboard can be designed to provide an integrated 

view of an organization’s overall system to help the security team understanding the 

security states; for example, security teams can see all the scans in progress from a single 

console [58, 92, 114]. The FireEye orchestration deployment service provides documents 

associated with cyber playbook reviews that help the orchestration operation team to 
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understand the playbook [118]. Most of the reviewed systems generate some form of 

alert reports for security teams [84, 104, 113]. Through these reports, security teams can 

get a high-level overview of an organizational cybersecurity tool. These reports also 

enable experts to identify the security state of critical assets and the affected networks or 

subnetworks within an organization. The reporting tools receive a recommendation from 

the remediation engine related to threats. Threat visualization and analysis is an 

important part of security orchestration. A set of papers have mentioned several web 

portals or public websites that provide a web interface to visualize the threats [72, 94]. 

2.4.2 Orchestration Unit 

One of the substantial pre-requisites of a SOAR platform is to automate the control of 

deployment and configuration of all the security requirements. For this category, we 

consider all the components that are required to perform the functionalities described in 

section 2.3.2.2. For example, the security orchestration framework described in 

Reference [59] provides a security orchestration engine to receive contextual data from 

clients. It comprises one or more logic element(s) which are designed to work with the 

contextual data. Koyama et al. [72] have proposed a three steps process to cope with new 

sophisticated unpredictable threats: collect, judge and control. The operating principle of 

the proposed framework in Reference [59] has security controls, which perform context 

sensing and, based on the context, generate and enforce security policy decisions. A 

SOAR platform needs to manage several activities, as stated in References [91, 97]. The 

proposed SOAR platform performs central management of security activities and trust. 

FireEye, in their SOAR platform, have used a specialized component, called case 

management, for managing various cases. Thus, we categorize the orchestration unit into 

three components: threat intelligence, a planning module and a detection module. 

2.4.2.1 Threat Intelligence Unit  

Cyber threat intelligence can be considered as a database of evidence of existing and 

emerging attacks [87, 92, 103, 104, 112]. Threat intelligence consists of information 

related to the attack’s context, adversary strategies, mechanisms, indicators of 

compromise, possible courses of action, tactics and techniques [32, 87, 122, 126]. Threat 

intelligence plays a key role in security orchestration. An organization can gain visibility 

about threat landscapes by using threat intelligence. It helps organizations to identify the 
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early signs of attacks [87]. Organizations collect and exchange threat intelligence data 

across several domains and stakeholders as an Indicator of Compromise (IOC) [87, 100, 

101]. Example of IOC can be forensics artifacts, virus signatures, IPs/ domains of botnets 

and MD5 hashes of attack files. Most of the SOAR platforms consider threat intelligence 

as an essential element for identifying attack behavior at an early stage [23, 72, 90]. A 

SOAR platform with a Global Threat Intelligence Platform (GTIP) [72] incorporates 

proactive defense technologies, including threat intelligence.  

There are several open source threat intelligence platforms that provide high 

accuracy and coverage [87]. Each has their own specialized techniques for data 

extraction. Threat intelligence data may also suffer from quality issues such as accuracy, 

completeness, consistency, timeliness and relevance [92]. Filtering, configuration and 

searching options are not available in some of the current threat intelligence tools. 

Xiaojing et al. have identified 45 blogs that are operated by renowned organizations and 

practitioners to cover major security incidents [87]. These blogs consistently publish 

verified IOCs that a SOAR platform can utilize for updating threat intelligence 

information. 

2.4.2.2 Planning Module 

We consider the cybersecurity playbook as part of a planning module that outlines the 

steps to respond to a security incident, including incident qualification, triage, 

investigation, containment, notification and post-attack analysis [65, 121, 122, 129, 131]. 

A playbook arranges security operations into a human-led security workflow that is a 

coordinated set of activities performed by various components to complete an incident 

response within an organization. According to an organization’s policy and 

infrastructure, a cybersecurity playbook creates smart branching workflows and also 

supports the activities of the SIEM, firewall, IPS, vulnerability reporting and ticketing 

systems [105, 112, 147]. Incident response playbooks contain various courses of action. 

FireEye has proposed that an incident response playbook should be one of the key 

features of a SOAR platform [118]. To provide continuous proactive security, FireEye 

designs SOAR platforms according to an organization’s requirements, integrates security 

tools with the SOAR platform, deploys and tests it in the organization’s environment and 

operates it to execute an appropriate playbook against a security threat. Orchestration of 
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Software-defined Security Services [21] design playbooks to store the actions (i.e., 

operation plans) related to important security events/ security alerts. Security teams take 

the necessary steps, based on the actions mentioned in the playbooks [21].  

Zonouz et al. in Reference [82] have proposed a consequence tree (i.e., a tree of 

critical assets defined by an administrator) to capture critical IT assets and organizational 

security requirements. Each organization has their own list and priority of critical assets. 

The consequence tree is built using this list of critical assets. Kamal et al. [85] consider 

the Incident Response Plan (IRP) to be a crucial component of collaboration engineering. 

The authors highlight that creating an IRP through collaboration amongst a group of 

experts is challenging when time is very short. The PSI policy abstraction helps an 

administrator to define policies in terms of what they do, rather than the details of how 

to implement the policies[74]. With the help of a PSI engine, an administrator can define 

how the traffic of a particular device should be processed and where to forward it. A 

SOAR platform requires proper planning to respond to incidents. Without proper 

planning and preparation, a SOAR platform ends up automating a poor process that might 

slow people down [65]. 

2.4.2.3 Detection Module 

The detection module detects the anomalies and attacks around organizations, based on 

gathered and pre-processed data, shared insight, and knowledge of the playbook. The 

analyzer and the decision service unit are the two main, core components of the detection 

module. In the following paragraphs, we briefly describe these two components. 

Analyzer: The analyzer receives aggregated alerts from the alerts pre-processors, 

correlates them, validates the assumptions and, if possible, predicts future threats and 

targets. The analyzer performs an automated analysis of a system, analysis of the logic 

unit and enriches data to boost knowledge[70, 99, 101-103, 121, 122, 129]. A set of 

papers have reported on correlating suspicious evidence provided by distributed security 

entities to identify distributed attacks [83, 84, 86, 87, 105, 113, 121]. Enterprise Level 

Security Orchestrator [58] can analyze alert data and detect threats. It stores all the threats 

data in its analysis storage. It generates a set of rules or traffic patterns as a decision table 

by finding the correlations across different alerts. Similarly, the PSI performs packet pre-

processing and event pre-processing before analyzing the data [74].  
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Kenaza et al. [83] have used an ontological reasoning approach to correlate alerts. 

The proposed ontology-based event correlation architecture has a correlation module that 

works as a reasoner. Feitosa et al. [23] propose a collaborative solution to detect intrusion 

and anomalies by analyzing the co-creation of events and alerts among different 

subnetworks. It derives policy decisions, based on the contextual data that it receives 

from an orchestration engine [23]. The solution proposed by Reference [87] tries to find 

correlations among IOC to check the relationships amongst the threat data. A core part 

of their solution is the Analyzer. Seclius [82] tracks the interaction among files and 

processes to probabilistically identify dependencies among assets of an organization. 

Decision Service Unit: Most of the reviewed SOAR platforms have a decision services 

unit that orchestrates the activities for automated decision-making [35, 117, 121, 130]. 

The decision service unit makes security policy decision(s) related to vulnerability and 

threat assessment, and assessment of security enforcement systems [99]. The decision 

service unit receives summarized information from the analyzer and collector about 

suspicious behavior and generates decisions based on that data [23].  

A finite state machine (i.e., finite automata, Markov chains or stochastic regular 

grammars) is a popular method used in the decision process. For example, the security 

orchestration framework in Reference [59] uses a policy orchestration state machine to 

provide policy decisions to the security orchestration state machines and derive policy 

decisions based on the contextual data received from the security orchestration server 

engine. Policy decision logics are extracted from individual controls. The decision logics 

enable additional, ad-hoc, smart logic and intelligence analytics to be injected into the 

real-time policy decisions. Thus, policy decision logics capture context and drive actions 

staged over multiple points in space and time [59]. Similarly, Seclius [82] has constructed 

a dependency graph and consequence tree of existing assets to probabilistically 

determine the comprised assets, prioritize alerts, and provide a security state of different 

assets to the administrator.  

Koyama et al. [72] use optimal decision-making technology and diverse threat 

intelligence with a variety of security sensors and appliances to choose the correct 

countermeasure for stopping an attacker’s Internet-based actions. Utilizing a workflow 

engine is also a popular strategy for decision-making. For example, Rochford et al. [70] 
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decide on actions, based on the workflow engine. The reviewed study, SOSDSec, has 

generated a security service binding upon finding matching among security requirements 

and abstract services [21] that contains information related to assessment and its service 

provider. A change in the security control and module causes a change in the security 

service binding. Similarly, the differentiated search engine in OADS miner discussed in 

Reference [23] is used to generate decisions based on the queries received from end users 

or system tools. The decision service unit has been designed to make all the decisions 

related to the OADS miner, like activation, deactivation and parameter changes, and 

stores the configuration parameter in a file. The decision service unit also provides 

recommendations after analyzing information about attacks. The alert buffer of the 

security orchestrator proposed in Reference [58] continuously sends updates to a 

dashboard. 

2.4.3 Automation Unit 

The automation unit performs all the automated tasks, based on the decisions generated 

by the decision unit and analysis of the workflow. The remediation unit and actions 

performers help a SOAR platform to deal with the automated tasks. In the following 

paragraphs, the role of the remediation module and actions performers are described in 

detail. 

2.4.3.1 Remediation Module 

The remediation module promptly configures countermeasures and security operations, 

based on the decisions of the detection module to remediate threats [73, 104, 121, 125, 

129]. A remediation module reported in Reference [72] performs automatic security 

configurations for responding against and mitigating the effects of attacks. The 

remediation module brings about automation in SOAR platforms, delivers significant 

ROI and drives downtime to remediation [125]. The OADS system proposed in 

Reference [23] has a central controller to implement the established sequence of actions 

with a process including exceptions and conditions. Enterprise level security 

orchestrators [58] have a remediation module that has two main elements: response 

storage and a remediation engine. The remediation engine has been designed to detect 

threat patterns. It has a learning logic module that uses machine learning algorithms. 

Threat data are stored in the response storage once received from the remediation engine.  
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Koyama et al. [90] discuss the technology to recover rapidly from the effect of 

cyberattacks. The proposed remediation module immediately isolates the affected area 

after detecting attacks, based on the information from a detection module, and provides 

recommendations about detected attacks for further analysis and evaluation. These 

actions of the proposed system are expected to reduce a security operator’s burden. The 

SoSDSec system proposed in Reference [21] incorporates a model layer to manage the 

security policies and security models of an organization’s assets. The security 

orchestrator reads and updates policies to achieve automation. An SDSec orchestrator is 

a key element to achieve security orchestration and automation. It works with the 

communication and coordination subsystem. Communication with security tools is also 

performed through the orchestrator. The SDSec orchestrator communicates with 

virtualized functions to coordinate security activities and thus minimizes management 

dependencies on security appliances/ tools. 

2.4.3.2 Action Performer  

A controller or action performer controls the communications and actions of a SOAR 

platform [121]. The security team can control a SOAR platform’s various components 

directly through a controller [73, 104]. The action performer performs many actions such 

as sending an e-mail to the relevant persons, blocking an IP address, isolating a virtual 

machine, triggering a process to initiate a scan and running a script to perform auto-

configuration [70]. Poornachandran et al. [73] refer to the data management processing 

system as a security and administrator console that works as a tracking station. The tools 

enable security teams to tackle diverse and ongoing issues [129]. The communication 

module can be considered a subcomponent of the controller. The job of the 

communication module is to work as a bridge between several components of a SOAR 

platform. In addition to maintaining a secure exchange of threat data and policy 

information, a SOAR platform requires a secure broker or DXL [59, 73, 87]. Elshoush et 

al. [84] consider the communication module to be a bridge between the security tools and 

the decision-making module. The DXL fabric of Reference [59] provides command and 

control functions across the entire network. Published, subscribed notifications, query 

responses and push notifications are different types of messages from the DXL layer. 



52 

Literature Review 52 

Demisto provide DBot and ChatOps to perform intelligence automation and 

collaboration among security teams and security operations [35]. 

2.5 MOTIVATION BEHIND SECURITY ORCHESTRATION 

This section reports the result of RQ2: “What challenges is security orchestration 

intended to solve?” We have identified and analyzed the challenges that promote the 

practice of security orchestration. Our analysis of the extracted data enables us to identify 

several challenges, as shown in Figure 2.8. We have classified the challenges under 

technical and socio-technical aspects of security orchestration. 

 

Figure 2.8 Challenges that promote security orchestration 

2.5.1 Technical Challenges 

Technical challenges are related to technical issues that lead to security problems such 

as limitations of the IDS to detect intrusions accurately and interact with other security 

tools, conflict among several security tools running simultaneously, and dynamic 

changes of security tools’ behavior. The following sub-sections describe the technical 

challenges that a SOAR platform intends to solve. 

2.5.1.1 Lack of Interoperability Among Isolated Security Tools  

Our analysis of the reviewed papers reveals that most medium to large organizations use 

several security tools (e.g., IDS, Firewall and SIEM) to secure their critical data and 

infrastructure [18, 95, 137, 138, 151]. The main reason behind an organization installing 

several types of products is that different vendors provide distinct dimensions of security 
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tools and solutions [17, 58, 124, 145, 148]. Moreover, organizations lack a single security 

tool that can encompass all of the security operations needed. Isolated security tools are 

considered poor communicators and cannot always assume the presence of another 

security tool [18, 21, 23, 72, 121, 136]. Several security tools fail to guarantee the 

protection of an organization’s infrastructure, as they work in an isolated way and focus 

on solving specific problems [101, 104, 122].  

Several of the reviewed papers mention that it is extremely difficult for a single 

security tool to detect the distributed and complex behavior of cyberattacks. Moreover, 

security operators are usually unable to understand their organizational security state 

through individual security tools working separately [82]. To take incident response 

decisions, it is necessary to integrate and analyze the activities of different security tools, 

which are usually designed to work independently and are limited by their own services 

[72, 101, 104]. These tools have their own data representations and interpretation 

mechanisms. The disparate tools have inconsistent workflow [29], disconnected and non-

integrated architecture [18] and a lack of standardization for data exchange between 

different security tools [92]. These are some of the reasons that network administrators 

and security experts find it difficult to appropriately configure and integrate the activities 

of multivendor security tools, which means there is a need for the continuous 

involvement of humans in the entire process of a security incident response.  

The lack of interoperability among security tools results in more responsibility 

being placed on human experts (briefly explained in section 2.5.2) and leads to 

redundant, complex and inefficient incident response processes. Existing security 

management and risk assessment solutions are not designed to collaborate [116]. These 

solutions do not consider several aspects that affect the evaluation criteria of the threats 

and vulnerabilities, thus making the security procedures incomplete. As a result, with 

generic security policies, security management becomes inefficient [116]. 

2.5.1.2  Lack of Tools to Automate a Proactive Response 

Our review has revealed that there is a lack of tools to automate key security activities, 

such as threat intelligence collection and update, alert validation, task investigation, 

response and resolution [70, 121, 137, 141, 145, 147]. Organizations need tools to 

automate the repetitive manual tasks. FireEye mentions that security teams spend 95% 



54 

Literature Review 54 

of their time on the manual execution of repeatable tasks [29]. AT&T’s cyber securities 

insightreport has revealed 90% of their reported cyberattacks were from known 

vulnerabilities [145]. Whilst security defenders need to update new threat intelligence 

quickly, they usually fail to instantly update the threat intelligence [59, 87], promptly 

update software patches to remove vulnerabilities [105], keep every security tool up to 

date [137] and enforce policies as soon as they are agreed upon [74]. For a large network, 

it is time-consuming to update hosts from different vendors that leave the system open 

for intruders [105, 121, 122]. Ntouskas et al. [116] propose that there is a lack of 

automated collaborative tools to embed security standards, methodologies, tools and 

guidelines to train a security management team as one of the key reasons organizations 

lag behind in fulfilling their security needs. Fujitsu emphasize that an efficient SOC 

requires automation of the process of the threat defense life-cycle to help free up security 

analysts’ (i.e., the security team’s) time and keep the system up to date [114]. 

2.5.1.3 Limitations of Existing Security Tools to Provide Required Services 

Several of the reviewed studies have mentioned that the existing security tools are unable 

to give full protection to organizations’ infrastructure [70, 132, 137, 146, 148]. 

According to Verizon's 2017 Data Breach Investigation Report [49], 43% of data 

breaches utilize phishing techniques and it is clear that trying to prevent every attack is 

an impossible task. A single, standalone detection engine also fails to provide complete 

visibility of the network infrastructure to the security team. In most cases, the detection 

system generates a large number of false alerts that require extensive analysis [18, 19, 

29, 60, 121]. Security teams are overwhelmed with alerts and spend more time 

investigating and validating false and repetitive alerts than solving real attacks. In 2015, 

Hewlett-Packard reported 48% of their recorded cyberattacks were from known 

vulnerabilities that are five or four years old [145]. Organizations need tools that can 

learn from experts’ behavior. There is a lack of a platform whereby security teams can 

easily integrate security tools, network infrastructure and gather complete visibility of 

their cybersecurity tools [70, 124, 128]. Weilinger et al. [107] have reported that IT 

security tools used by security practitioners fail to address the complexity of their 

interactions. According to Demisto [147], an inappropriate interface between technology 

and personnel is the reason for security teams being ineffective and inefficient. The IT 
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security tools provide insufficient support for collaboration, coordination and 

cooperation among security practitioners and stakeholders. 

2.5.2 Socio-Technical Challenges 

Socio-technical challenges are related to the organizational process, policies and rules 

with respect to cybersecurity. Socio-technical aspects of security in an organization 

include matters involving business processes, skills, resource management, policies, law 

enforcement and interaction of people with the technical system. Many of the challenges 

faced by the security community are socio-technical rather than technical. Socio-

technical challenges are difficult to project as they involve interactions between 

individuals, groups and technical systems. Our analysis of the extracted data indicates 

some of the key socio-technical challenges that organizations face while handling a 

security incident. These challenges work as the primary drivers of security orchestration. 

2.5.2.1 More Responsibility and Workload on Human Experts  

Security teams are entrusted with several types of responsibilities, which include 

analyzing and dealing with sophisticated attacks [90], manual consultations and writing 

custom codes to validate alerts through threat intelligence [19, 114, 142], manual 

extraction of key attributes from threat intelligence data and linking them with relevant 

data [103], evaluating alerts, correlating data, coordinating the appropriate responses [17] 

and investigating results [105, 148]. Several papers [18, 19, 21, 72, 90] report that the 

response toward a security incident highly depends on the manual activities performed 

by security teams. A security team needs to combine several security tools [107], update 

threat intelligence, is involved in multiple administrative systems, including multiple 

control tools [72], analyzing data from new tools [136] and dealing with the inter-

component interaction of a modern complex system [63, 95] to perform their tasks. The 

manual steps are usually the main reason for longer incident response times [17, 124, 

132, 136]. A delay in the security incident analysis happens when security teams need to 

continuously shift between multiple disparate security tools to manage the different 

pieces of information generated by these security tools [29, 65, 137]. Fujitsu’s SOC 

considers manual consultation as one of the most time-consuming steps in the incident 

response process [114].  
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Hexadite report [19] that it takes around 45 days for an organization to resolve 

cyberattacks due to manual responses to incidents. According to a set of studies [87, 103, 

138, 147], security teams find difficulties with manually extracting features from huge 

volumes of threat intelligence data. Manual configuration, integration of several security 

tools, implementation and updates are associated with misconfiguration, erroneous 

responses and policy enforcement [92, 95, 132, 138]. Moreover, security teams face 

difficulty with dealing manually with the interaction of inter-components of modern 

complex systems [95]. Several papers [82, 83, 142] indicate that dealing manually with 

thousands of alerts to choose the right course of actions results in missing critical attack 

information. 

2.5.2.2 Lack of Skills and Expertise  

Security practitioners report [17-19, 29, 65, 136, 147] that the lack of skilled security 

teams is one of the major reasons for organizational failures to deal with security 

breaches. Large organizations are spending billions of dollars on buying and deploying 

several types of security tools [137, 144] that need up-to-date knowledge and expertise 

in different aspects of cyberattacks and countermeasures. Organizations face difficulties 

with finding and retaining security teams with the required expertise [65]. Security teams 

require a decade to acquire the expertise to fight against sophisticated cyberattacks [132]. 

The 2019 (ISC)2 cybersecurity workforce study estimates that the current cybersecurity 

workforce comprises 2.8 million professionals and estimates that 4.07 million 

professionals will be needed to close the skills gap in the cybersecurity domain [25]. The 

demand for skilled or experienced cybersecurity professionals is one of the biggest 

challenges faced by the cybersecurity industry, [12]. According to CyberSeek, 

cybersecurity data tools [155], 40,000 jobs for information security analysts remain 

empty each year in the USA, whilst organizations struggle to fill 200,000 other security-

related jobs. Organizations have few security experts to deal with the thousands of 

incidents that they receive each day [18, 65]. Security teams need to have an overall 

knowledge about organizational security policy, network infrastructure and security 

tools. One study reports that organizations are continuously shifting towards modern 

technology paradigms (e.g., cloud computing, mobile computing and IoT) that lead to an 
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expanded cyberattack surface and thus need security knowledge, incident response skills 

and resources for each technology initiative [141]. 

2.5.2.3 Lack of Regulation and Policy Framework  

One of the major challenges with organizational security tools is the lack of a fully 

developed framework for conducting IRP [85], performing coordination and 

collaboration among incident responses [100] and seamless implementation and 

deployment of policies [59]. Some of the challenges mentioned in the reviewed papers 

include failure to provide a clear definition of unwanted traffic and network behavior 

[23], significant difficulties in providing clear guidelines to deal with new security 

mechanisms [21, 107, 112], failure in providing appropriate training for security 

management [116], a lack of guidelines for conducting incident response planning [85] 

and severe challenges in enforcing and managing security policies. All these types of 

challenges result in security teams failing to take proactive decisions against 

cyberattacks. 

2.5.2.4 Lack of Coordination and Collaboration among Stakeholders and Security 

Teams  

Coordination and collaboration among security teams are important for analyzing 

complex threat behaviors. Most security teams lack collaborative processes for 

information sharing. Several papers [62, 85, 86, 88, 94, 107, 117] highlight the 

requirements for having combined knowledge and experience from several domain 

experts due to the complexity of the network flow and log data analysis. Most incident 

response teams follow no collaborative process while planning how to respond to a 

particular incident, which results in poor strategies planning [85]. Several papers [72, 98, 

117] have revealed that stakeholders from different organizations are unwilling to share 

threat intelligence with each other. Jeong et al. [117] report organizations’ fear of losing 

their reputation is one of the reasons for their unwillingness to share their security 

circumstances with other organizations. Zhao et al. [98] have discussed that many state 

and federal governments have developed threat information sharing services that are 

limited to sharing threat intelligence with central government. External organizations do 

not benefit from this kind of threat information sharing. Still, there is rarely collaboration 

among different organizations working in the same domain [72]. 
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Table 2.6 presents the mapping of the benefits that organizations obtain from the 

functionality discussed in section 2.3.2, which aims to solve the challenges discussed 

above in this section. 

Table 2.6 Mapping summary of key activities performed by a SOAR platform with 

benefits of SOC 

Key 

Functions 
Activity Performed Benefit to Organizations Articles 

Unify security 
tools 

• Unifies disparate security 

tools and processes 

• Integrates enterprise security 

architecture 

• Connects detection, 
networks and endpoint 

security tools 

• Performs coordination 

among security tools’ 
activities 

• Unifies intelligence 

according to vulnerability 

• Removes the operational 

silos. 

• Efficient and effective 

incident handling 

processes 

• Frees up experts’ time 

• Minimizes the overall 
complexity of the 

incident response 

process 

• Enhances 
organizational 

protection and defense 

systems 

• Experts operate 

disparate tools as a 
unified system 

[17-19, 

21, 29, 
58, 59, 

61, 65, 

72, 83, 

92, 101, 
124, 128, 

130, 136, 

143-145, 
148, 154] 

Determine 

Endpoint for 

human 
investigation

  

 
  

• Works as a helping hand for 

security experts 

• Informs and educates 

security analysts about threat 
behaviors 

• Decides when human insight 

is needed 

• Defines source of 

information to help experts 

solve problems 

• Keeps analyst focused 

on threats that demand 

their ability 

• Reduces human error 

• Faster decisions 

• Reduces burden on 
security operators 

[17, 19, 

24, 59, 
61, 72, 

90, 120, 

128, 137, 

144] 

Share 

contextual 
insight (via 

platform) 

• Gathers threat intelligence 
from various external 

sources 

• Extracts key features from 

threat intelligence data 

• Provides contextual insight 

related to alerts or attacks to 
the security analyst 

• Provides real-time visibility 

• Context-aware frameworks 

• Gathers an overview of what 

is happening in various 

subnetworks within the 
organization 

• Experts get the insight 
of several security 

controls activities 

• Organizations share 

contextual device data 

with third-party 
systems 

• Reduces and mitigates 

risk exposure 

• Faster decisions 

[18, 24, 

29, 35, 

59, 72, 

82, 85, 
86, 88, 

93, 94, 

102, 136, 
144, 145] 
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Key 

Functions 
Activity Performed Benefit to Organizations Articles 

Translate 
complex 

processes into 

a streamlined 

workflow 

• Allow experts to simplify 

high-quality workflow 

integration 

• Coordinates the flow of data 
and tasks by integrating 

tools and processes into 

automated workflows 

• Enables powerful machines 
to undertake machine 

automation 

• Offers data aggregation to 

provide in-depth awareness 

about the environment 

• Reduces human error 

• Improves staff 

capability for incident 

responses 

• Provides standardized 
processes  

• Reduces reliance on 

human expertise 

• Simplifies security 

management tasks 

[17, 19, 

21, 29, 
71, 74, 

82, 136, 

137, 139-
141, 143, 

148, 154] 

Provide 
deployment 

model  

• Resolves incidents in 

minutes to determine 

appropriate and effective 

course of actions 

• Determines a proactive 
response to threats  

• Initiates additional 

investigations, based on the 

level of the attack’s 
complexity 

• Accelerates response 

• Mitigates conflict 

installation 

• Reduces conflict 

configuration 

• Minimizes the effect of 

attacks on services 

[71, 74, 

86-88, 

90, 112, 
118, 146] 

Determine 

appropriate 
course of 

actions  

• Simplifies threat responses 
through integration and 

automation 

• Decides on additional 

investigations 

• Limits execution access and 
privileges to workflows 

alone 

• Dynamically inserts security 

functions into the 
workgroup, based on 

policies 

• Engages the security tools to 

perform complete 

monitoring of the endpoint 
and correlates their activities 

• Performs coordination and 

collaboration among 

different anomaly detection 
techniques to detect and 

evaluate threats and choose 

right actions 

• Maintains process 
consistency across 

security programs 

• Reduces manual 

investigation errors 

• Maintains effective 
communication and 

strong collaboration 

among cyber security 
teams 

• Simplifies and 

accelerates alerts 

investigations 

• Accelerates Return of 

Investment (ROI) 

[17-19, 

21, 29, 

58, 59, 
71, 72, 

82, 90, 

112, 117, 

118, 139, 
142, 144, 

148] 
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Key 

Functions 
Activity Performed Benefit to Organizations Articles 

Automate 

repetitive and 
manual tasks 

• Automates repeatable tasks 

Automates deployment of 

security functions over the 
network infrastructure 

• Repeatable, executable 

planning processes 

• Eliminates the need for 

continuous vendor 
assessment 

• Optimizes security 

teams’ capabilities 

• Reduces cost 

• Minimizes mistake-

prone manual processes 

• Accelerates responses 

[17, 29, 

71, 85, 
87, 102, 

144, 146, 

147, 154] 
 

Automate 

policy 
enforcement 

• Automates policy 

enforcement and 

configuration at runtime 

• Real-time policy 
enforcement 

• Minimizes mistake 

prone configurations 

• Reduces conflict 

configuration. 

[21, 59, 

71, 73, 
74, 91, 

98, 99, 

101, 104, 
141, 144] 

 

2.6 TAXONOMY OF SECURITY ORCHESTRATION 

In this section, we have summarized the results that answer to RQ3: “What types of 

solutions have been proposed to adopt security orchestration?” We have highlighted the 

key techniques, tools and strategies used by practitioners and researchers in the 

realization of security orchestration. Most of the reviewed studies propose platform-

based architectures as a strategy for incorporating security tools to support their 

unification, orchestration and automation [18, 19, 118]. McAfee focuses on four 

engineering approaches to automate the entire threat defense life-cycle: partnership 

centric, platform-based approaches, reinvented experiences and cloud-centric 

approaches [18]. All four approaches are integrated into a single platform to take the 

benefits of each. We consider the platform-based approach as the core engineering 

strategy. A SOAR platform is designed to automate various activities in the threat 

defense life cycle. This review has enabled us to propose a taxonomy of security 

orchestration to support a systematic comparison and analysis of the existing security 

orchestration solutions, as depicted in Figure 2.9. The proposed taxonomy consists of 

several dimensions and sub-dimensions for classifying security orchestration techniques. 
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Figure 2.9 A Taxonomy of an Orchestration Platform 

2.6.1 Execution Environment 

To help speedy organizational responses to security incidents with fewer resources, a 

SOAR platform’s execution environment can be supported by four types of technological 

solutions that are expected to work together to solve security issues and challenges. For 

Security Orchestration 
Platform Capabilities

Execution 
Environment

Endpoint

Cloud

Hybrid data 
centre

Threat 
management

Automation 
Strategy

Auto-integration

Workflow

Plugins and 
modules

Learning

Scripting

Prioritizing

Type of 
Deployment

Central

Distributed

Hybrid

Mode of Task

Fully-automated

Semi-automated

Manual

Resouce Type

Human

Security software



62 

Literature Review 62 

example, a combination of cloud-delivered data security tools and endpoint security for 

Infrastructure as a service, and multiple vendors with multi-tenancy features need to be 

considered in a virtual context. Another example is that ETSI has proposed a security 

orchestrator for a hybrid network consisting of a physical network and a virtualized 

network [91]. In the following subsection, we discuss the four execution environments 

for security orchestration solutions. 

2.6.1.1 Endpoint 

Most of the organizations have several siloed security tools in their endpoints. Installing 

several security tools in each endpoint and managing the endpoint in a large IT 

infrastructure is becoming challenging and inefficient [127]. An organization needs to 

monitor, assess and control all the endpoint devices connected within the organizations’ 

network to provide end to end threat protection [124, 127, 130]. McAfee has considered 

an endpoint security architecture from which an organization can expect agent 

consolidation. In this review, we consider any autonomous entity or software program 

that can perform actions as an agent. A SOAR platform can deliver consolidation at the 

endpoint, which can even be the entire portfolio, depending on time [18]. A SOAR 

platform agent can reside in various endpoints’ storage (RA , HDD or SSD) [73]. 

HEXADITE has proposed a SOAR platform, AIRS, that helps an enterprise to 

connect detection, networks and endpoint security tools. Though the proposed platform 

seems to be agentless, it uses a non-persistent agent that injects a dissolvable probe into 

endpoints during investigations [19]. Similar to Hexadite, Demisto [148] proposes an 

architecture that consists of dissolve agents for data collection from endpoints. The 

workflow tool CounterACT proposed by ForeScout uses multiple agentless discovery 

methods and integration techniques. CounterACT employs a combination of active and 

passive discovery methods to classify organizational devices based on a network [144]. 

Without installing any software agent or enrolling any management unit to a device, it 

first connects the device to the network. This reduces the overhead of an administrator 

to check each device and manually assign policies to each endpoint. The resilience engine 

proposed by NTT controls multiple devices at appropriate points, according to the type 

of attacks, to isolate the affected regions [90].  
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The security orchestration framework proposed in Reference [59] also supports 

distributed endpoints with DXL over an enterprise network. DXL is built on top of 

Enterprise Service Bus (ESB) technology and provides an abstraction layer between 

different types of connected endpoint devices. Through a SOAR platform, organizations 

can provide constant protection, irrespective of where an endpoint device is located. 

2.6.1.2 Private and Public Cloud Computing 

Cloud computing and its related technologies have created the need for a new generation 

of security technologies. A SOAR platform can be built as a single integrated solution to 

provide cloud-delivered data security [18, 127]. The motive for a cloud platform is to 

build software as a service, with the required levels of performance and availability. An 

organization can easily integrate their security tools (i.e., service) into a cloud [127]. 

Example of such services includes web protection, sandboxing, security brokers, data 

loss prevention and encryption. A cloud security platform continues to support next-

generation platforms that are built beyond VMware and Amazon web services to add 

Azure, OpenStack, Docker containers and emerging services. McAfee has proposed 

McAfee cloud ePO software to support consolidated management across their cloud 

management technology [18]. The work proposed in Reference [21] is designed to deal 

with heterogeneous cloud environments and automated security operations in a Software 

Defined Infrastructure (SDI) environment. The proposed solutions handle VM 

movement over dynamic infrastructures and provide transparent security management 

facilities. The resilience security technology for rapid recovery from cyberattacks also 

works for network services in cloud environments [90]. The enterprise-level security 

orchestrator installs a mirror of the SOAR platform in a cloud [58]. The authorshave 

proposed a security orchestration engine for both the server and the client and the SOAR 

platform can be used in public, private or even external cloud facilities [58]. Using the 

cloud as an execution environment helps an organization to have scalable, flexible and 

adaptable infrastructure. 

2.6.1.3 Hybrid Data Centers 

The evolvement of a data centre to SDDC has created new security-related challenges 

for organizations. Additionally, the increasing trend of distributing more workload on 

data centers and public clouds has also increased security challenges. The SOAR 
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platform and resilience engine proposed by NTT are mainly designed for a data centre 

[72, 90]. McAfee aims to build an integrated platform to deliver visibility and security to 

a cloud-enabled data centre [18].  cAfee’s SOAR platform includes global load 

balancing infrastructure with a Content Delivery Network (CDN)/ peering data centre 

[18]. Intel has introduced the open security controller, a SOAR platform to orchestrate 

virtual security in SDDC [71]. The purpose of this platform is to make security 

management visible, effective, agile and scalable by providing automated, dynamic and 

synchronized security services for software-defined infrastructure. It provides seamless 

brokering services between SDN and VNF. It is optimized for an OpenStack and 

VMware cloud environment. 

A SOAR platform gives visibility across the network and server tiers and 

public/private cloud data centers [127]. Dynamic micro-segmentation is performed for 

private clouds and workload auto-discovery is undertaken for public clouds [18, 71]. The 

concept of micro-segmentation restricts access and tailors security configurations. This 

gives better threat protection and faster remediation than siloed approaches. A SOAR 

platform helps security administrators to span their security model from an 

organizational data centre [127]. 

2.6.1.4 Threat Management 

A SOC suffers from a large volume of data, events and Indicators of Compromises (IOC) 

to prioritize true attacks in process or in the golden hour of post-breach [84, 86, 87]. A 

SOAR platform helps to analyze the security threat data by providing security analysis, 

threat and vulnerability management, attack detection, attack investigation and 

streamlines incident responses [18, 72, 90, 98, 127, 130]. Threat management includes 

prioritizing threats in progress and also in the golden hour post breaches [18]. It helps 

security analytics to continue advanced data management, risk assessment, correlation 

and deal with both the volume of security data and increasing sophistication of analysis 

[23, 92, 93, 98]. It automatically investigates attacks during and after a breach. It also 

provides both on-premise and cloud-based analysis. Threat Connect has proposed an 

intelligence-driven platform to manage both internal and external threat data and turn 

them into actionable threat intelligence [122]. A SOAR platform provides a central place 

for data aggregation, analysis and enrichment of security threat data. It allows security 
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teams to provide technologies like attack reconstruction that help an organization to 

identify and respond at a full attack level, not just at an event or malware level. An 

organization can use a SOAR platform to centrally manage the threat and automate the 

entire life cycle of threat defense. 

2.6.2 Automation Strategy 

Our review has revealed that a SOAR platform uses a combination of several types of 

automation strategies. Orchestration of different automated steps is needed for effective 

incident responses that suit all types of organizational activities, such as integration, 

aggregation of data, auto investigation or analysis, finding proper courses of action and 

deciding on remediation processes. The security automation realization approaches 

concern specific methods/tools. HEXADITE has highlighted five distinct approaches to 

security automation adopted by current vendors: workflow tools, orchestration tools, 

scripting tools, prioritization tools and intelligence security automation [139]. From the 

analysis of the reviewed literature, we consider intelligence security automation to be a 

SOAR platform that includes some of the available automation tools to orchestrate and 

automate the incident response process. Demisto has mentioned automation and human 

tasks need to be interwoven and worked together in a seamless fashion to achieve a 

desirable goal [148]. We have outlined the automation strategies that are used by 

practitioners in various organizations. 

2.6.2.1 Auto Integration 

We have placed the connecting or integration tools that are used to automatically connect 

existing security tools through APIs to streamline an incident response process under this 

category. Whilst some practitioners have mentioned the connecting tools as orchestration 

tools [139], this is not the only purpose of using a SOAR platform. A SOAR platform 

needs to have tools to automatically connect and integrate a full stack of security tools 

[17, 118, 139]. Several reviewed papers have also proposed the connection of 

organizational hardware, software and control unit into a SOAR platform [146, 154]. 

This work as a layer of connective fabric that makes the security tools work together. 

The integration tools help isolated security tools to interoperate with each other. 

Organizations can easily buy a new point of product, as the integration tools 

automatically connect and integrate new systems into existing ones, and make the 
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necessary changes in a system. An organization can dynamically insert security functions 

into any workgroup, based on their policies [71]. The ControlFabric interface by 

ForeScout uses an open standard based API to perform bi-directional integration [136]. 

Building a fully autonomous, integrated set of tools is very difficult due to the 

heterogeneous nature of multivendor security tools. The work reported in [59] enables 

the integration of third party software. Security management software can connect to the 

orchestration framework by connecting to DXL. It provides all the command control 

functions across the entire network. The DXL also provides API embedded with McAfee 

agents. However, if a security orchestration process is not well-defined [139], there are 

few benefits in simply connecting the existing security tools. A SOAR platform must 

have a well-designed framework and workflow to perform the required actions. 

2.6.2.2 Workflow  

Organizations usually use workflow tools to streamline an incident response flow and 

communication. Workflow tools are depicted as a solution to gather and enhance alerts 

that automatically send instructions to analysts, auditors and other security tools [17, 71, 

125, 136, 139, 148]. Some workflow tools provide a standard framework, specifying user 

roles and types of actions that are needed to perform during certain types of alerts [70, 

121, 122, 125, 130, 139]. FireEye has built a security orchestrator to design a workflow 

[118]. A SOAR platform can help organizations to organize incident response flows 

more efficiently with a built-in ticketing system. According to HEXADITE and 

KOMAND, the workflow tools automate data gathering and communication processes, 

leaving the investigation and remediation actions for the security team [17, 139]. The 

security team creates a sequence of automated tasks to perform the tasks in a logical 

sequence with a chained data flow [61, 63, 121, 122, 148]. Demisto mentions designing 

the workflow for automation of playbooks to weave human analysts into the middle of 

these workflows and playbooks. Some practitioners have designed the workflow in such 

a way that it will also trigger investigation and remediation actions [71, 121]. Some 

workflow tools, like the one proposed by McAfee, drive cross endpoint workflows and 

are built natively into an endpoint security architecture [18].  

ForeScout has built CounterACT, which uses both a rule engine and a workflow 

engine to automate the workflow for instant decision-making to deal with security 
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incidents [136]. This helps an organization to automate the security process across 

mobility management and endpoint platforms. Invotas Inc. has designed a multistage 

workflow, which includes the workflow of automatically connecting different security 

tools [154]. The majority of SOAR practitioners have built workflow based on use case 

scenarios [17, 19, 118, 125, 136, 147]. An organization can define its strategies about 

how to respond to certain security events. The cybersecurity playbooks keep a record of 

this in the form of a workflow rule that an orchestrator uses to autonomously control 

attacks [21, 65, 121, 125]. Workflow tools do not enable the integration of heterogeneous 

inter-organizational information and security tools.  

2.6.2.3 Scripting  

Scripting tools perform actions based on custom code written by security teams, who use 

the scripting tools to configure existing playbooks, security tools and policies. An 

organization requires skilled developers to consistently write and maintain code by 

performing in-depth investigations [65, 125, 139]. Scripting tools can be considered to 

be an execution engine that executes the script or configurable code. The SOAR platform 

proposed in [72, 90] uses scenario-based autonomous control of multiple virtual 

appliances to implement security measures. A security team can implement the measures 

regardless of their skill level. Scripting capabilities also include writing custom workflow 

and integration codes [125]. An organization with the resources to investigate and 

remediate threats can use scripting tools to perform automation. An organization needs 

to have both budgets and resources for using scripting tools. Defining new policies and 

designing scripts according to organizations’ budgets and resources can be considered 

under this category. The policy maker explicitly writes code to reconfigure some parts 

of a network. The enterprise-level security orchestration has an orchestrator routine to 

make calls to safeguard software packages via automated interfaces provided by 

safeguard interface modules [58]. 

2.6.2.4 Prioritization  

Prioritization tools help security teams to decide on critical security alerts. These types 

of tools normally assign a score to alerts to reflect more critical and urgent alerts and 

prioritize security events [63, 83, 105, 114, 122, 139]. Most organizations have some sort 

of prioritization tools within their detection system that automatically investigate and 
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correlate alerts to reduce false assumptions and give experts a list of critical alerts, which 

are produced by the organizational detection system. Major data breaches show that, in 

most cases, organizational security teams have missed critical alerts. SIEM [83, 121, 147] 

is a popular prioritization tool that collects and aggregates alerts from different security 

tools and prioritizes true alerts and discards false alerts. Tayeb et al. [83] propose 

ontological reasoning approaches to reduce the false alerts by correlating alerts. Some of 

the SOAR platforms use the existing SIEM technology to prioritize the alerts. 

2.6.2.5 Learning  

A set of studies have used Artificial Intelligence (AI) techniques and game theory models 

to make security tools intelligent [63, 84, 88, 105, 112, 116]. McAfee has proposed an 

expansion of the SOAR platforms’ capabilities by including behavioral security; for 

example, pre-execution, post-execution, machine learning and more [18]. Several of the 

reviewed studies [18, 20, 63] use machine learning based solutions to analyze security 

behaviors. The AIRS platform, a SOAR platform proposed by HEXADITE, uses AI to 

automate the activities of several security tools [142]. HEXADITE has proposed the use 

of AI as a critical capability for automated security technology [142]. Without 

automatically learning, it is not possible for any SOAR platform to predict uncertainties. 

Demisto has introduced ChatBot, a learning tool which combines intelligent automation 

with collaborative, human, social learning and experience [147]. For certain threat 

behaviors, defining rules and designing workflows works well. With a world full of 

uncertainty, a SOAR platform must be able to learn from a security team’s behavior and 

threat data. A combination of AI techniques (such as Machine Learning and Genetic 

Algorithms) has been used in SOAR platforms’ automated learning modules. Seclius 

[82] uses a set of instruments to learn from the dependency of systems’ assets and 

captures information flows between files and processes. The authors have also developed 

an algorithm to use with the set of instruments [82]. As a result, an administrator does 

not need to define low-level input. 

2.6.2.6 Plugin and Module  

For this category, we have classified small programs or software that organizations that 

can independently select and install, based on the required configuration. A SOAR 

platform can integrate plugins to automate various activities and create workflow [104, 
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125]. Siemplify has introduced a plugin framework for security orchestration that makes 

security tools accessible and easy to integrate into incident response workflows and 

automation [125]. Komand has introduced several plugins to include in an organization’s 

environment [17]. Each plugin has a set of tasks for a specific set of activities. FireEye 

orchestrator also uses predefined plugins to perform workflow integration [118]. This 

makes a security team more agile. A module-based automation strategy helps an 

organization to choose an integration module based on organizational infrastructure, 

policies and configuration. The ForeScout SOAR platform supports more than 70 third 

party solutions to automate various activities of security tools [136]. ForeScouts’ open 

integration module allows customers, system integrators and third-party product vendors 

to integrate their products with ForeScout’s CounterACT and communicate with each 

other. Both modules and plugins add specific features to a SOAR platform, which is why 

we have placed them under a single category. 

2.6.3 Deployment Model 

A SOAR platform includes several types of components. It might have several structures 

to manage its components and activities. Some of them form a distributed structure, while 

others become part of a central management site for a large-scale deployment [65]. 

ForeScout mentions three deployment models for their proposed SOAR platform: 

centralized, distributed and hybrid deployment architecture [144]. 

2.6.3.1 Centralized Deployment 

In a centralized deployment architecture, an organization has a centralized orchestration 

manager to communicate, manage and deploy policies to multiple orchestration 

appliances in a data centre or major sites. Several papers [61, 104, 122, 124, 125, 128, 

151] have indicated that a centralized SOAR platform is needed to provide security teams 

with a better understanding of the state of security throughout an organization for faster 

and more efficient incident response actions. For example, NetSec has proposed a central 

management approach for large-scale deployment of SOAR platforms [104]; whereas 

ThreatConnect [122] has proposed a central intelligence-driven platform to manage 

threat data in a single place. A centralized management configuration is necessary for 

optimal security enforcement. In this type of deployment, the appliances need IP 

connectivity to remote sites in order to manage devices and other endpoints located there. 
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Traffic from the remote location is sent to a centralized SOAR platform via a predefined 

interface for monitoring and assessment. A SOAR platform can monitor the activities of 

the user directory, DNS and DHCP to detect threats or potential rogue activity and initial 

remediation [144]. An organization manager contains the database of endpoints (active 

or passive) from the appliances it manages [103]. 

2.6.3.2 Distributed Deployment 

An organization can use a decentralized deployment model for a mixture of security 

orchestration components located in both a central facility and various remote sites [98]. 

A controller manages and controls the activities, provides policies to orchestration 

service consumers, and maintains a database of active and inactive endpoints. A 

distributed deployment enables the use of virtual firewalls, virtual security services, 

browser redirection and endpoint authentication to a server when a local SOAR platform 

is at that site. A distributed organization, large data centre, cloud platform and large IT 

infrastructure require distributed deployment of security policies and protocols that can 

be achieved by distributed SOAR components over multiple endpoints.  

Incorporating distributed security analysis and monitoring allows an organization 

to deliver tighter security policies and better protection against emerging cyber threats 

[127]. ForeScout [144] has introduced SOAR organizational controller functions that are 

the central notification points, where the communication occurs via email or syslog and 

bi-directional SIEM services via CEF or LEEF messaging to perform endpoint actions 

and to notify systems about each endpoint’s status. Radwane et al. [86] have proposed a 

distributed collaborative architecture to perform cooperation and placement of defense 

entities on organizational systems to defend against DDoS attacks. They have utilized 

the concept of a distributed hash table and overlay network to perform the distribution 

and placement of security tools. Fung et al. [88] have used a Chord overlay network to 

implement the protocol of their distributed system. 

2.6.3.3 Hybrid Deployment 

The hybrid deployment model uses a mixture of SOAR platform components in a central 

location and at remote sites. A SOAR controller maintains a database of the infrastructure 

and issues policies for the applications and components. Chen et al. propose a centralized 

controller for managing the distribution of applications and components [103]. A hybrid 
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deployment implementation supports virtual firewalls, browser redirection and 

authentication verification of an endpoint to a server when a local SOAR application is 

deployed at that site [111]. Elshoush et al. [44] highlight several hybrid deployment 

models for a collaborative intrusion detection system. Their proposed architecture can 

also be considered a hybrid architecture. The security orchestration framework reported 

in Reference [59] has performed distributed sensing over both the server and clients. The 

proposed system performs a centralized aggregation of data and enforcement policies on 

both the server and clients. In Reference [59], a centralized server has the visibility to see 

the entire context and communication layer DXL, which is highly scalable, based on an 

elastic architecture that supports multiple deployment options. Multiple security tools 

can be connected and deployed at diverse locations with distinct types of capability and 

visibility where a data exchange layer (DXL) provides a fabric to help them operate as a 

unified system (super-control). 

2.6.4 Mode of Task 

A SOAR platform generates remediation actions that are both automated and semi-

automated [80, 104]. Some actions need human involvement, depending on 

organizational policies and rules. SOAR platforms require a combination of machine-

driven and human-led processes and workflows to optimize security operations [90, 115]. 

Actions can be triggered either by a security team or when a new artifact is added to an 

incident [115]. A SOAR platform works as an intelligence assistant for security teams, 

who should conduct automation selectively, based on their resources and needs. The 

incident response can be fully automated or semi-automated [84, 90], depending on the 

nature of the tasks to be carried out. For example, a task such as notifying stakeholders, 

assigning incidents and enriching data with context can be automated safely, but the 

actual containment of a data breach and analysis of unknown threats frequently requires 

humans to be in the loop [84]. The online evaluation framework proposed in Reference 

[42] does not respond automatically to an attack. Instead, it is designed to help security 

administrators by providing situational awareness capability. Xiaojing et al. [47] have 

made feature extraction and analysis of threat intelligence data fully automated. They 

propose a fully automated cyber threat intelligence gathering solution to lessen the 

manual task of threat intelligence analysis. 
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A SOAR platform integrated with a global threat intelligence platform provides 

both fully automated and semi-automated tasks [90] that help to automatically classify 

the detected cybersecurity attack, and investigate whether or not the available 

countermeasures are possible. The system also investigates the possibilities of automated 

responses (i.e., automatic generation and notification of response recommendations that 

guide the decisions of a security team). An administrator specifies the service 

requirements based on security tools and needs in the system proposed in Reference [31]. 

A SOAR platform allows security teams to choose their level of security and types of 

responses. A SOC can take control of an organizations’ cybersecurity tools to combine 

various security tools and applications. 

2.6.5 Resource Type 

Analysis of the reviewed material reveals that the functionality and performance of a 

SOAR platform depend on the human expertise and security tools of an organization. We 

consider organizations’ security tools and human resources as the two most important 

resources of a SOAR platform. Building a SOAR platform on top of a clumsy list of 

security tools that is supported by an unskilled security team will bring few benefits to 

organizations. 

2.6.5.1 Security Tool Resource  

In this category, we consider the existing security tools provided by third party vendors 

or owned by an organization. Most SOAR platforms assume that organizations already 

own multivendor security tools. Several papers have mentioned a range of security tools 

while designing a SOAR platform for small to the medium organizations [19, 23, 29, 59, 

71, 99, 105, 116, 136]. Some key types of security tools used by organizations are SIEM, 

forensics tools, signature-based control tools, firewalls, IDS/IPS, anti-malware, 

antivirus, perimeter security tools, ticketing solutions, traffic inspection tools, 

compliance tools and vulnerability scanners [29, 83, 148]. McAfee classifies the existing 

security tools into attack detection and attack investigation [18]. Komand mentions IDSs, 

firewalls, ticketing tools and team communication tools as the minimum number of tools 

an organization must have to build a SOAR platform [17]. To further enhance 

performance, Komand considers threat intelligence, malware analysis tools and forensics 

tools as the next layer of security tools [17]. Komand has also considered some additional 
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security tools, such as applications for vulnerability scanning, phishing investigations, 

threat hunting, monitoring tools and malware protection tools [17].  

Most of the reviewed literature has considered anomaly detectors to analyze 

traffic for identification of potential attacks and abnormal traffic. Kenaza et al. [83] have 

performed cooperation among IDS, network scanners and vulnerability scanners to 

reduce alerts volumes. Feitosa et al. [23] mention two types of anomaly detectors: 

hardware and software based. They mention several hardware tools to capture network 

traffic [23]. These security tools can also inspect network traffic in real time. Several 

tools, techniques and systems are used as software-based anomaly detectors, such as IDS 

(Snort, BrO, & Prelude), Honeypots (Honeyd, & Nepenthes) and open software 

prototypes [21, 23]. The security tools give alerts to an orchestrator and receive script 

commands from the orchestrator to respond to security incidents. 

2.6.5.2 Human Resources  

Human Resources are an essential part of a SOAR platform. Security analysts, security 

engineers, forensic experts, network administrators, security administrators, directors of 

security operation centers, including security orchestration designers and security 

orchestration and automation engineers, are considered human resources for a SOAR 

platform [62, 84, 100, 104, 107, 112-114, 116, 133]. Demisto considers any security team 

who perform day to day security operations as a human resource [147]. An organization 

must have experts to assess organizations’ security infrastructures. According to a report 

by NSSLab, [62], the security architecture can ensure the organization’s security for an 

assigned level across the entire threat defense life cycle by assessing organizations’ 

existing security infrastructures. Before setting up an orchestration process, the security 

orchestration designers need to communicate and work closely with security analysts to 

make sure that the orchestrated process is well-understood [65, 125, 129, 131]. Security 

teams are the ones who perform coordination, timing, moderation, prioritization and 

enforcement algorithms for policies based on organizational requirements [62]. Human 

resources must be able to fully leverage the power of a SOAR platform [125]. 

A human-centric SOAR platform is necessary where the dashboard and planning 

tools will be used to make automation work. A SOAR platform is built to work as an 

intelligence assistant of a security team. According to Bruce Schneier, automation is only 
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possible in an environment of strong certainty, where everything is related to the planning 

of certain actions and synchronization of activities [56]. On the other hand, an uncertain 

world needs direct execution, initiative and prioritization commands. He emphasizes that 

it is not possible to replace humans; rather, humans are required in security orchestration 

to make the machine intelligence effective for security response actions. Zonouz et al. 

[82] mention an online evaluation framework to help administrators. For a coordination 

model, the work reported in Reference [116] proposes four groups of users, where they 

consider the security and business continuity teams as a group and the administrator as 

another group. The further two groups are a group of local users and a group of external 

or corporate users [116]. Security teams vary by size, vertical and expertise, and their 

perceptions of what an organization needs from threat intelligence [122]. A SOAR 

platform should be designed in a way that can work with all sizes, maturity levels and 

groups of security teams. 

2.7 DISCUSSION 

This chapter has introduced and analyzed the relevant aspects that motivate the need for 

a SOAR platform. Throughout this chapter, we have identified and categorized existing 

SOAR platforms. There is an increasing realization that SOAR platforms can enable 

significant progress towards achieving the goal of security as a service/ utility. Over the 

years, several technologies, such as SIEM and Distributed Intrusion Detection Systems 

(DIDS), have been proposed as solutions to the challenge of providing security as a 

service. However, security orchestration is still in its early stages of development and has 

significant potential for research and innovation.  

One of the areas of research is standardization, as most of the security vendors are 

coming up with their own SOAR platforms that have proprietary interfaces or plugins to 

integrate and access different security tools and services. This heterogeneity works as 

one of the major barriers to large-scale implementation and realization of security 

orchestration. Hence, SOAR platforms require new levels of collaboration and 

performance; the solutions also need to be adaptive to organizational structures that are 

quite dynamic these days. According to a report by Research and Markets [156], by 2021, 

the security orchestration market price will hit 1.6 billion USD. A SOAR platform needs 

to engage security teams fast enough to make a significant difference in the response 
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time. Security orchestration needs significant amount of research to create results for 

immediate incident response applications to unforeseen cybersecurity events. This 

review has enabled us to assert that large scale empirical studies of SOAR platforms and 

practices under real circumstances will greatly benefit those efforts aimed at addressing 

the obstacles to security orchestration in different organizational settings. 

2.7.1 Open Issues in Security Orchestration 

This chapter constitutes a first step towards reaching a common consensus as we 

examined several state-of-the-art and state-of-the-practice SOAR platforms and 

compared them with the existing literature. Our review has revealed that the existing 

SOAR platforms suffer from several open issues. We have analyzed the open issues from 

three key aspects of security orchestration: people, processes and technology, as shown 

in Figure 2.10. 

• Security orchestration is mainly aimed at increasing automation of security activities 

that primarily rely on human expertise. The humans need to be involved in the loop 

of orchestration and automation. With automation, security orchestration requires 

experts who can easily take the benefit of the automated decisions and take control 

when automation is inappropriate. There needs to be significant collaboration 

among different level of staffs involved in dealing with the security orchestration 

processes and technologies, as each team may have different responsibilities, 

priorities and metrics. 

• Whilst security orchestration and automation efforts are based on scenarios known 

to security practitioners, security vendors and organizations need to develop and 

deploy more formal workflows and playbooks for a SOAR platform. Experts 

involved in the process of orchestration and automation require proper training to 

gain a common understanding of the workflow, tools and techniques. An 

organization requires a security architect who can ensure the involvement of risk 

management and guidance to managed policies. Though one of the motivations 

behind security orchestration is to handle the collaboration among stakeholders and 

security experts, a SOAR platform itself requires strong collaboration among 

business risk owners, risk assessment teams, security operation centers and IT 

infrastructure managers. The analysis of our review has identified that the current 



76 

Literature Review 76 

security industry lacks training related to secure practices. That means that 

organizations and the security community both need to train current and future staff 

to keep pace with the wide adoption of security orchestration platforms and 

conceptualize the data needed to acquire the required insight into security events. 

 

Figure 2.10 Open issues in security orchestration platforms 

Open 
Issues

People

Little involvement and collaboration among different levels of 
staff during orchestration and automation

Lack of security architect for risk and policy management

No holistic training for staff to understand the security orchestration 
platform, integrated tools and incident response workflow

Process

Insufficient alignment of the incident response process with the 
organization's existing IT operational framework

No clear agreement among vendors on what needs to be 
orchestrated and what can be automated

Privacy and policy violations due to incorporating a learning 
capability into the orchestration platform

Lack of willingness to share knowledge and experience

No guideline to assess the maturity of the orchestration process 
and incorporate automation into the system 

Technology

Lack of modeling notation and language to support integraiton 
of securlty information at runtime

Increasing diversity of integrated security solutions due to 
dynamic changes of attack patterns

Insecure communication among different components of the 
system

Increasing vulnerability due to integration of new tools

Little research on AI for scalable and flexible security 
orchestration and integration 
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• The incident response process must be aligned with an organization’s existing IT 

operation framework. An organization needs to have a clear idea of what they can 

automate and what they need to orchestrate. Hence, there is no agreement on what 

to automate and what to orchestrate. Nevertheless, some research also refers to 

orchestration but does not specify its meaning: the focus is often on building plugins 

to integrate with existing tools. A SOAR platform needs to access organizations’ 

policies and other security tools data to make relevant decisions. Whilst the security 

team is empowered to streamline incidents, including addressing the issues raised 

by a SOAR platform, most organizations do not share their threat intelligence with 

others. This situation can lead to trust issues among organizations. 

• Whilst there is an increasing recognition of the importance of security orchestration 

and automation, the practice of security orchestration and automation is unbalanced. 

Technology should reach a level such that is able to further support the development 

of agreement on the definition of orchestration and automation in cybersecurity 

space. With the advancement of technologies, new vulnerabilities are found and 

exploited every day. The dynamic change of attack patterns causes the increase in 

diverse security tools. A SOAR platform should be adaptable with emerging 

technologies. As stated in the previous sections, orchestration in cybersecurity 

constitutes an interdisciplinary research area that adopts concepts from research in 

cybersecurity solutions, SIEM, cooperative IDS, distributed IDS and orchestrated 

and automated incident responses. There is a need for significant research into 

modeling notations and languages to support the integration of security-relevant 

information into streamlining incident response workflows at runtime. There has 

been no systematic approach to provide a standard API to perform such integration 

and handle communication among different components of a SOAR platform. There 

are very few SOAR platforms that provide plugins or support for all the existing 

multi-vendor security tools.  

• One key challenge is to secure the integration and communication of security tools. 

Another area of future research and development is the application of AI into 

security automation technology, which can extend, and/or replace where possible, 

human cognitive processes for security decisions. The existing SOAR platforms are 
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not currently scalable and flexible enough to handle the heterogeneity of security 

team structures, sizes and expertise levels. 

2.7.2 Architecture Level Support for Security Orchestration 

Security orchestration is an emerging area of research and practice. There is little 

accumulated knowledge and experience available to support industrial decision-making 

for different aspects of security processes and tools for security orchestration. Siemplify 

[151] suggested the importance of having a delicate balance between human intervention 

and automation. New security tools are expected to be adaptable to the existing SOAR 

platforms. However, a centralized SOAR platform usually incurs huge overhead costs 

and can be a single point of failure. Due to the ubiquitous realization of cloud, edge, fog 

and mobile computing, we need to make suitable changes to the ways of deploying 

SOAR platforms, considering certain properties such as context specifics, knowledge 

sharing, self-reinforcing and dynamicity. The services provided by SOAR platforms 

should be fragmented into siloes. Each silo should perform multiple actions in parallel to 

unleash the best results and act against a threat without delay. This requires choosing an 

appropriate architecture; for example, microservice, layered, service-oriented, 

monolithic and so forth. 

A SOAR platform needs a well-designed and rigorously evaluated architecture 

that can support easy integration and smooth interoperability of components and tools 

developed for various domains by different vendors. There needs to be architecture level 

support for visibility and comprehensibility of the functionalities and interactions of 

different components of a SOAR platform that should operate transparently. A SOAR 

platform’s architecture is expected to be dynamically adaptable to the changing threat 

environment. The MLR has identified the essential components of a SOAR platform that 

is expected to have certain quality attributes, such as usability, interoperability and 

flexibility. We can conclude that there is an urgent need to conduct research into 

identifying and leveraging suitable architectural styles/patterns when designing and 

evaluating architectures for a SOAR platform. 
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2.7.3 Limitations of This Review 

The MLR we have conducted has some potential limitations. Since security orchestration 

is an emerging paradigm with mixed and inconsistent terms, the search string used to 

identify the relevant papers may not have included some words that might be used for 

security orchestration. The inclusion and exclusion criteria used to assess and select the 

reviewed studies have been defined by the research team. The focus of this review does 

not include an in-depth discussion of the limitations of the reported solutions.  

 The findings of this review are based on the studies related to security 

orchestration that were found during the time period of January 2007 to July 2017. New 

technology and platform may appear after that time period. Nevertheless, to determine 

the research trends on the topic of security orchestration from 2017 to October 2020, we 

ran our search string on the considered three databases (i.e., IEEE Xplore, ACM DL and 

Scopus). The number of articles that were found from these databases for the two time 

periods are shown on Table 2.7. Table 2.7 also reports the number of results that were 

returned by Google search engine for search string “security AND orchestration” on 

November 2017 and October 2020. Table 2.7 shows that increasing number of articles 

have been published in 2017 to July 2020. It also shows substantial increase in the 

number of grey literatures published between 2017 to 2020. Growing focus on security 

orchestration from both academic and industry emphasizes our findings that 

incorporation of SOAR technologies and platforms in a SOC environment is on the rise. 

Table 2.7 Number of papers that were returned during 2007 – July 2017 and 2017 – 

October 2020 for our proposed search string 

Source 
2007 – July 2017 2017 – October 2020 

Total 
# of articles % #  of articles % 

IEEE Xplore 600 77.22% 177 22.78% 777 

Scopus 1017 57.92% 739 42.08% 1756 

ACM DL 271 65.30% 117 28.19% 415 

Grey literature 

Source 
November 2017 October 2020 

- Results Results 

Google Search Engine 45900 249,000 

We encourage the reader to take the above-mentioned limitations into 

consideration while using the findings from this chapter. Moreover, some organizations’ 



80 

Literature Review 80 

security orchestration requirements may not fully be met by any of the reported security 

orchestration technologies. 

2.8 CHAPTER SUMMARY 

Security teams may become overwhelmed by the task of monitoring and handling an 

increasingly huge pool of security alerts generated by a diverse set of security tools. 

Hence, they may fail to act in a timely manner to deal with security incidents due to the 

manual and repetitive job of receiving and combining security alert information from 

multi-vendor security tools. A SOAR platform aims to support security teams to monitor 

monitoring and deal with security incidents effectively and efficiently by enabling 

coordination and collaboration among the heterogeneous independent security tools. 

Integrating and orchestrating the various activities of security tools in an organization 

needs a comprehensive view of a SOAR platform. Recently, all sort of organizations 

have started taking interest in adopting SOAR platforms. However, academic research is 

yet to catch up with the increasing trend of technological innovation and practical 

adoption of SOAR platforms. Security tool vendors do not share a common/similar 

understanding while developing and supporting tools, process and technologies for 

SOAR platforms. 

We have systematically selected and rigorously analyzed the SOAR platforms 

provided by various practitioners and researchers to gain a good understanding of this 

emerging paradigm. We have also explored the challenges and possible future trends for 

security orchestration research and practice. Our review has addressed three research 

questions: (i) What is Security Orchestration? (ii) What challenges is security 

orchestration intended to solve? and (iii) What types of solutions have been proposed? 

We have identified and analyzed critical aspects of SOAR platforms found in 95 papers, 

which were selected based on a pre-designed review protocol. To the best of our 

knowledge, this MLR can be considered as the first attempt towards systematically 

reviewing and analyzing the literature on security orchestration. 

The analysis of the extracted data to answer RQ1 (i.e., What is Security 

Orchestration?) enabled us to explore several definitions of security orchestration 

provided by practitioners and come up with a working definition for the research on the 
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topic of security orchestration. The definition of security orchestration provided in this 

chapter is expected to help practitioners and researchers interested in this topic. Most of 

the reviewed literature has considered security orchestration as a platform that integrates 

and unifies various security tools and activities for prompt response to security incidents. 

The review has identified the key functional and non-functional requirements of a 

security orchestration platform. Our analysis of the identified functional requirements 

has revealed three key areas of focus for security orchestration: (i) unification, which is 

to unify security tools’ activities (ii) orchestration, which relates to the process of 

translating complex processes into streamlined workflow and (iii) automation, which is 

the process of selecting suitable courses of action to enable automated incident responses. 

Our review has also identified the key components of a SOAR platform.  

A SOAR platform is expected to address several technical and socio-technical 

challenges for which the review has identified the key techniques, tools and strategies. 

We have proposed a taxonomy for a security orchestration platform from five key 

dimensions: (i) execution environment, (ii) automation strategies, (iii) deployment type, 

(iv) task mode and (v) resource type; which is further split into sub-dimensions. This 

taxonomy gives a perception of the multidisciplinary nature of a SOAR platform. An 

organization can compare several security orchestration solutions using the reported 

taxonomy, which can provide security practitioners with insights into SOAR platforms’ 

usability in different but interdependent processes.  

Research is required into designing suitable architectures for supporting the 

activities of humancentric SOAR platforms, whose common and variable layers can be 

known to security tools developers and integrators, who are responsible for integrating a 

diverse set of security tools into a SOAR platform. Such an architecture will also help 

security experts to decide where to automate incident response processes and where a 

security orchestration engine is required. 
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Chapter 3 

3 Security Orchestration and Automation 

Architecture 

Chapter 2 shows most SOCs leverage a number of security tools to detect, thwart 

and deal with security attacks. One of the key issues of SOC is to quickly integrate 

security tools and operational activities. To address these challenges, an increasing 

number of organizations are using SOAR platforms, which are mostly designed in 

an ad-hoc manner. In chapter 2, we observed that the existing SOAR platform design 

lacks suitable architecture support. This chapter presents our work on architecture-

centric support for designing a SOAR platform. Our approach consists of a 

conceptual map of SOAR platforms and the key dimensions of an architecture design 

space. This chapter demonstrates the use of the approach in designing and 

implementing a Proof of Concept (PoC) SOAR platform. We also report a 

preliminary evaluation of the proposed architecture support for improving a SOAR’s 

design.  

3.1 INTRODUCTION 

The adoption of Security Orchestration, Automation and Response (SOAR) platforms 

has recently gained major popularity among security analysts, Security Operation 

Centers (SOC) and incident response teams [21-23, 59]. SOAR platforms enable 

integration, orchestration and automation of the activities (e.g., blocking IPs, scanning 

endpoints and isolating hosts) performed by security tools and human experts [22].  

Chapter 2 shows that existing SOAR platforms lack proper abstractions for 

designing a platform at the architectural level. Most of the existing SOAR platforms are 

implemented in an ad-hoc manner, without much attention to the underlying 
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infrastructure [21-23, 34, 136, 143, 157]. As a result, there can be several engineering 

challenges involved in embedding agility in a SOAR platform [26, 27, 43, 158, 159]. For 

example, managing interoperability among isolated and heterogenous security tools with 

changing environments, integrating new security tools and defining playbooks to adapt 

with the dynamic changes in attack patterns and advanced technologies and so forth. 

These challenges result in a highly complex and monolithic design that is hard to evolve. 

A SOAR’s design complexity may also be worsened by a lack of conceptual and practical 

guidelines for optimal architectural design decisions [22, 158]. The existing SOAR 

platforms lack any systematic approach to provide a standard set of Application 

Programming Interfaces (APIs) to integrate security tools or the activities performed by 

individual security tools or enabling interoperability among different security tools. 

An architecture-centric approach [44, 45, 160] is expected to help in reducing the 

design complexity of a SOAR by modularizing the functionalities and non-functional 

requirements. The architectural design decision provides a foundation for analyzing and 

understanding the sub-optimal design choices [44], which can be improved by leveraging 

suitable architectural styles and patterns. Design space is required to capture and 

characterize design decisions for integrating techniques and tools that underpin a SOAR 

platform [22]. Developing design spaces for different domains of software systems is a 

growing trend [44]. The design space of a SOAR platform involves many architectural 

design decisions and trade-offs that are impacted by the security tools and applications 

integrated into these platforms. We propose a concept map considering the functionalities 

performed by a SOAR platform. It enables the modularization of the functions and 

separation of the concerns of the components that provide the design space of a SOAR 

platform.  

In this chapter, we present an architecture-centric approach to design and 

implement a SOAR platform. The proposed approach consists of three parts:  

• Abstraction to model a SOAR platform design space: We provide a concept map 

of a SOAR platform that defines and relates the key concepts of SOAR to support 

understanding of security tools’ integration and orchestration. The design space is 

useful for understanding and analyzing the requirements of emerging SOAR 

platforms and integration technologies for faster responses and efficiency.  
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• Layered Architecture for SOAR platforms: We provide a layered architecture that 

modularizes the components into different layers based on two key functionalities: 

integration and orchestration. These two key requirements are to guide architects to 

design and deploy a SOAR platform to integrate security tools and orchestrate 

activities based on integrated security tools. We further consider the architecture style 

and pattern as a means for delimiting the design space.  

• Proof of concept SOAR platform support: We have developed a Proof of Concept 

(PoC) SOAR platform that has been designed to fulfill the quality requirements: 

integrability, interoperability, interpretability, usability and modifiability, following 

the proposed architecture. We have used seven security tools with different 

capabilities. The evaluation results show the feasibility of the proposed architecture 

approach for (i) automated integration of security tools and (ii) automated 

interpretation of incident response activities. 

This chapter is organized as follows. Section 3.2 introduces a concept map of a 

SOAR platforms' design space. Section 3.3 presents the modularized architecture of a 

SOAR platform. Section 3.4 details the dimensions of a SOAR platform’s integration 

design space. Section 3.5 presents a case study. Section 3.6 demonstrates an evaluation 

of the PoC. Section 3.7 discusses related work and section 3.8 concludes the chapter. 

3.2 SECURITY ORCHESTRATION AND AUTOMATION 

SOAR platforms are integrated solutions for an organization's SOC. The underlying 

technologies of SOAR platforms are designed to interweave people, processes and 

technologies. In a SOAR platform, people are responsible for intelligence-based 

decision-making and technologies are used to streamline complex processes. The key 

purpose of a SOAR platform is to power automation through orchestration. The 

functionalities of a SOAR are mainly categorized into integration, orchestration and 

automation [22]. 

The development of any SOAR platform first needs to focus on integrating the 

security tools in a single platform. Depending on the organization, the security tools can 

be open source, commercial, proprietary, packaged or even legacy scripts. Security tools 

are generally integrated using plugins, scripts, APIs and modules. Mostly SOAR vendors 
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provide plugins and API-based support for 150 – 200 security tools [143, 161]. Security 

tools generate data in a variety of formats. Furthermore, the data are unified to enable 

interoperability among security tools. 

The second key task of a SOAR is orchestration. It allows organizations to deploy 

and operationalize their security process or Incident Response Process (IRP) using a 

piece of code or script, also known as a playbook. An IRP is a set of activities performed 

by security experts and security tools. Playbooks contain a set of instructions that make 

security tools interoperate in a manner whereby the output of one tool is used as an input 

to other tools. An orchestration process improves the response to a security incident by 

reducing the manual and repetitive tasks done by human experts.  

The third task of a SOAR is automation or response. An organization needs to 

identify what they need to orchestrate and what can be automated. Mostly validation, 

prioritization, reducing false alarms and checking for access control authorization are the 

different types of activities that are automated through orchestration processes. The 

SOAR community has not quite reached a consensus on any standard mechanism of 

automation of security activities.  

The following subsections (section 3.2.1 and section 3.2.2) present the key 

functional and non-functional requirements that we have considered for designing and 

implementing a humancentric SOAR platform.  

3.2.1 Functional Requirements of Security Orchestration and Automation 

We consider two core functional requirements of a SOAR platform for integrating 

security tools and streamlining the incident response process. We adopt the functionality 

of a SOAR platform outlined in section 2.3.2 of chapter 2. 

3.2.1.1 SOAR as a unifier or hub 

We consider a SOAR platform as a hub that unifies the activities of security tools and 

provides a single pane for supporting the operations of a SOC. Security tool integration 

is one of the most important resource-intensive and time-consuming activities in a SOC. 

Security tools can be integrated using several architectural integration styles [162]. 

Semantic technology can be leveraged for integrating security tools. A semantic 

integration mechanism ensures that a SOAR platform can interpret the data consumed 
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and generated by security tools for interoperability. A SOAR platform first needs to 

integrate the security tools and then, based on integration mechanisms, it interprets the 

IRPs. It can enable organizations to use playbooks from different vendors to model an 

orchestration process by unifying the semantics provided in playbooks. Most SOAR 

platforms filter incoming alerts based on their syntactic and semantic correctness before 

delivering them to analytics tools. A SOAR’s architecture should support semantics 

integration among the artifacts produced and consumed by the security tools. 

3.2.1.2 SOAR as a coordinator or orchestrator 

A SOAR platform orchestrates the security tools’ activities and streamlines complex 

security processes into simplified processes. The orchestration processes can be 

considered as a sequence of actions, where the output of one tool needs to be the input 

of other tools. A simplified process is easy to follow and enables a SOC to differentiate 

between manual and automated processes. It also helps to keep track of the ongoing scans 

and activities that require immediate human involvement. It should be noted that several 

pieces of literature about SOAR tend to use integration mechanisms or connecting tools 

as an umbrella term to cover all processes that happen under the banner of security 

orchestration. Whilst this abstraction is helpful to gain an initial understanding of security 

orchestration, we argue that architects would benefit from a more modularized model 

that clearly distinguishes the activities related to integration, orchestration and 

automation within SOAR platforms. 

3.2.2 Quality Attributes Requirements 

A SOAR platform should satisfy certain quality attributes requirements or Non-

Functional Requirements (NFRs). The essential quality attributes requirements of a 

SOAR are categorized into design time and runtime requirements. To design the 

architecture of a SOAR platform, we focus on the following NFRs.  

• Integrability: Andersson et al. have defined “the ability of a system to easily 

integrate separate systems or components of a system” as integrability [162]. Security 

tools integrated into a SOAR platform come from different vendors. An architecture 

of a SOAR platform is expected to seamlessly integrate security tools and quickly 

adapt the modification of security tools’ functionalities. 
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• Interoperability: According to Bass et al. “interoperability is about the degree to 

which two or more systems can usefully exchange meaningful information via 

interfaces in a particular context”. A SOAR platform should support semantic 

integration of different types of artifacts generated by security tools and data sources. 

The integration mechanism needs to ensure that security tools can interoperate with 

each other. Security tools integrated into a SOAR platform need to have the ability 

to both syntactically and semantically interoperate with each other. A SOAR platform 

should be able to semantically interpret the data and artifacts generated and consumed 

by security tools. 

• Interpretability: Interpretability is mainly defined as “the degree to which a human 

can understand the cause of a decision” [163]. In this thesis, for interpretability, we 

consider both the ability of a SOAR platform to understand security tools’ artifacts 

and for a human observer to understand the cause of a decision made by a SOAR 

platform. A SOAR platform has several components with Artificial Intelligence (AI) 

capabilities (refer to chapter 2). Thus, the decisions taken by a SOAR platform need 

to be interpretable to security teams. 

• Usability: Bass et al. have considered that “usability is concerned with how easy it 

is for the user to accomplish a desired task and the kind of user support the system 

provides.” Andersson et al. have defined usability as the “effort to learn, operate, 

prepare input and interpret output of a program” [162]. A SOAR’s architecture needs 

to be easily understandable, so that a SOC can easily learn and operate a SOAR 

platform and interpret the input, output and activities of the components. 

• Modifiability: According to Bass et al. modifiability is all about changes [45]. In a 

SOAR platform, changes can happen for incorporation of new features, tools, 

technologies, standards, platforms and so on. Gorton has proposed modifiability as a 

“measure of how easy it may be to change an application to cater for new functional 

and non-functional requirements” [164]. A SOAR platform’s tasks depend on 

integrated security tools, IRPs and emerging threat behaviors, which change 

continuously. A SOAR architecture should be flexible enough to provide mapping 

support for security tools and IRPs to adopt the changes.  
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Maintainability and flexibility are considered as two aspects of modifiability [153]. 

Maintainability refers to the degree of effectiveness of modifying a product or system by 

end-users or maintainers of that a system [35, 153]. It is often considered as the ability 

of a system to support changes. Flexibility is considered as “the ease with which a system 

or component can be modified for use in applications or environments other than those 

for which it was specifically designed”. 

Due to the limited time and scope of the thesis, we only considered the 

abovementioned quality attributes for integration of security tools and IRPs in a SOAR 

platform. These attributes are required for the evolvement of a SOAR platform where 

security tools can be easily integrated and data generated and ingested by these tools can 

be seamlessly interpreted.  Other quality attributes that are mentioned in Figure 2.6 of 

chapter 2 are equally important, hence will be considered in future research. 

3.2.3 Abstraction for Security Orchestration and Automation 

Organizations generically deploy and run a SOAR platform on top of existing security 

tools, information systems and organizational infrastructures to fulfill their security 

requirements and business needs. An architect must understand the core concepts of a 

SOAR platform to design and communicate about the orchestration process and required 

integration and automation technologies with stakeholders and developers of a SOAR 

platform. The lack of a comprehensive view might result in concept overlapping and 

ambiguity. To address this issue, we propose a conceptual map to capture the common 

terminologies of a SOAR. Figure 3.1 shows the conceptual map of a SOAR platform that 

provides the key elements and relationships among these elements. 

A SOAR platform connects a wide variety of security tools that have different 

capabilities. By capability, we mean the features and characteristics of security tools, 

which can support different types of activities. Security tools are generally categorized 

as detection, analysis and response tools depending on their capabilities (Figure 3.1). 

This categorization is made based on the activities performed by security tools while 

responding to an incident. For example, monitoring tools can be considered under 

detection or analysis tools depending on their contribution to an IRP. A detailed 

description of the security tools used for this research is beyond the scope of this chapter. 
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Figure 3.1 Conceptual map of security orchestration and automation 

A SOAR platform is designed and deployed based on an organization’s security 

requirements and the available security tools. A SOAR developer needs to design and 

develop different types of integration mechanisms (e.g., APIs, plugins or modules) to 

integrate security tools (Figure 3.1). A SOAR platform performs a set of tasks that can 

be categorized under unification, orchestration and automation. It runs the orchestration 

process that invokes security tools to perform certain activities. An orchestration process 

is the composition of tasks performed by a SOAR platform and activities performed by 

security tools. It contains the invocation actions, scripts to invoke tools and the responses 

of security tools. Orchestration processes govern the integration, orchestration and 

automation tasks to respond to a security incident.  

The orchestration process is primarily designed in the form of a set of playbooks, 

which are generally dedicated to a particular security incident and have a dedicated set 

of security tools that are deployed in an organization’s environment.  ost organizations 

also have dedicated Security Incident Response Teams (CSIRT) who mainly design IRPs 

for security incidents based on an organization’s preferred security requirements (i.e., 

confidentiality, integrity and availability), policies and quality requirements. SOAR 

developers or playbook designers design and develop playbooks based on the available 

security tools and well-known integration mechanisms.  
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3.3 SOAR ARCHITECTURE 

We propose an architecture to ensure the functional and non-functional requirements of 

a SOAR platform. The key research objective is “how software architecture can play a 

role in improving the design practices of a SOAR platform?”. We design the architecture 

of a SOAR platform at two levels of abstraction. The architecture is first designed 

following the layered architectural style, which provides the first level of abstraction. 

There are six layers: (i) security tools, (ii) integration, (iii) data processing, (iv) 

semantics, (v) orchestration and (vi) User Interface (UI) layers, as shown in Figure 3.2. 

Each layer has both logical and physical aspects. The logical aspects cover the 

architectural building blocks and design decisions of a SOAR platform. The physical 

aspects include the realization of the logical aspects by using organizations' technologies 

and products. Each layer has a separation of concerns that allows security teams to freely 

choose their preferred components and deploy a SOAR based on their requirements. 
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Figure 3.2 High-level architecture for a SOAR platform 

Each layer is decomposed into components and sub-components. We consider the 

components as the lower level of abstractions. Figure 3.2 shows the core components and 
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interactions among the components that are required to achieve the desired goals of a 

SOAR platform. Different functionalities of a SOAR platform require different 

combinations of these components. We specify the components as a principle 

computation element that implement different tasks of a SOAR to execute IRPs. 

3.3.1 UI layer 

Security teams initiate existing IRPs or define new plans using a SOAR’s  ser Interfaces 

(UIs) such as interactive dashboards or Integrated Development Environments (IDE), or 

Command Line Interfaces (CLI). The UI layer supports flexibility in designing UIs that 

help define IRPs and integrate security tools. A SOC can easily learn and operate a SOAR 

platform using the UI. An abstraction layer or API layer is implemented as part of the UI 

layers to maintain and encapsulate the interaction among a SOAR’s users and its 

components (Figure 3.2). The abstraction layer hides the inherent complexity of SOAR 

platforms from security teams. To increase the usability of a SOAR platform, the APIs 

of abstraction layers need to be easily interpretable and understandable by security teams, 

so that they can modify, update and interact with a SOAR to provide commands and 

execute IRPs.  

3.3.2 Orchestration layer 

The orchestrator and task manager together form the coordinator of a SOAR platform 

(Figure 3.2). The orchestrator is responsible for coordinating and forming configurations 

to achieve interoperability and automate the execution of IRPs. The planner in the 

orchestration layer has a set of ‘playbooks’ to automate the execution of an IRP and keep 

track of the tasks being executed. Each playbook has a set of tasks that contain the details 

of the process about the input required to execute a task and the output that is generated 

after task execution. The playbooks further contain the conditions that trigger the 

execution of a task. A playbook’s tasks vary depending on the requirements of a SOC 

and the types of security tools available. The orchestrator monitors the successful or 

unsuccessful execution of tasks. The planner provides a set of APIs through which a user 

can update or modify the orchestration process. An orchestrator may use a set of APIs to 

govern the execution of an IRP and enable interoperability among security tools. 



92 

Security Orchestration and Automation Architecture 92 

3.3.3 Semantic layer  

The semantic layer is responsible for the semantic interpretation of data that flows across 

a SOAR platform. It consists of a knowledge base, query engine and interpreter. The 

knowledge base consists of an ontology of security tools, their capabilities and the 

activities of an IRP, which enables the interpreter to semantically interpret security tools’ 

capabilities and IRPs’ activities. Ontology is commonly used for formalizing semantic 

knowledge and defining semantic relationships among data. The query engine is 

responsible for extracting data from a knowledge base. In our proposed architecture, we 

consider the semantic layer to be separate from other layers to give the SOC the flexibility 

to define or modify an ontology without affecting the other components. 

3.3.4 Data processing layer 

The information used by a SOAR ranges from business-critical data to usage systems 

logs, alerts logs and malicious activities that are processed by the data processing layer. 

The data curator, data extractor and data analyzer are the three main components of the 

data processing layer. The data curator gathers the data produced by tools for analysis. 

This layer contributes toward interoperability and interpretability by processing the 

heterogeneous structured and unstructured data of different security tools and playbooks. 

It is responsible for sharing semantically structured data among different components of 

a SOAR through an IRP execution process. An architect can incorporate any automation 

algorithm or data analysis techniques as part of the data analyzer without affecting the 

other components of a SOAR. 

3.3.5 Integration layer 

The integration layer has five components: the integration manager, wrapper, tool 

registry, plugin repository and API gateway. This layer is designed for seamless 

integration of security tools to achieve integrability. The integration manager works as 

a description module through which security tools are integrated and information is 

provided to enable interoperability among them. A tool registry is responsible for 

discovering and registering available security tools to monitor their status and report any 

changes. Security tools are registered in terms of their capabilities (i.e., input, output and 

functions) and types. The wrapper, API gateway and plugins are intermediary 

components that provide interfaces to encapsulate security tools for data translation or 
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imposing orchestration. An integration manager uses these components to initiate a 

request and become the ultimate recipient of the orchestrator’s commands. The 

difference between the wrapper, plugins and API gateway lies in the security tools’ 

integration and communication protocols.  

3.3.6 Security tool layer 

The security tools layer consists of multivendor heterogeneous security tools, which are 

typically a mix of open source, proprietary, custom and commercial-off-the shelf (COT) 

products. These tools are mainly characterized as unmodifiable components of a SOAR 

platform. Given most of the security tools are required to interact with each other, an in-

depth understanding of the security tools’ data structures and capabilities is necessary to 

integrate them into a SOAR platform and streamline the IRPs. 

Figure 3.3 shows an example UML sequence diagram for responding to a security 

incident that comprises of components from each layer. 

:Security Tool :APIs/plugins :Data Analyzer :Interpreter :Orchestrator

Generate Data
Send Data Collected Data

Interpreted Data

Find Capability

Capability

Invoke Tool
Interpreted Tool

Generate Command

Send Command

Invoke Tool

Find Tool

Tool

 

Figure 3.3 An example sequence diagram showing the flow of data and interaction of 

components 
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3.4 DIMENSIONS OF THE DESIGN SPACE OF SOAR PLATFORM 

The design space of a SOAR platform reveals that the integrated security tools and 

orchestration process mainly govern the tasks of a SOAR platform. Hence, we have 

considered the architectural design decisions from the process and technology 

perspective for automatically integrating security tools and orchestrating IRPs. 

3.4.1 Process decision 

Along with defining the orchestration process, it is important to define the process for 

integrating security tools and analyzing data. A SOAR’s process varies depending on the 

mode of a task – automated, semi-automated or manual. The automation of the 

integration process relies on five design decisions for the integration process, 

interpretation process, security tools to capability mapping process, security tool 

discovery process and security tool invocation process. 

A decomposition of the functions based on layers helps in selecting a suitable 

technology, depending on the required process. For example, the task to manually 

integrate security tools is separated from automatically interpreting the security tools’ 

data. Security tools are first required to integrate into a SOAR platform, then processes 

are designed to interpret the security tools’ data and the IRP’s activities. Here, the 

modular architecture helps to define different processes, which are mainly the 

orchestration of the security tools, the SOAR’s components and organizational 

information systems. A SOAR platform can be centralized, distributed or hybrid, 

depending on an organization’s infrastructure [22]. For centralized or distributed 

applications, the communication protocols are different. In most cases, these 

communication protocols (i.e., REST API, RPC and event-driven) are hidden under the 

internal structures of security tools, which expose their functions through APIs. A 

communication process can be designed to manage distributed communication among 

different security tools. 

3.4.2 Technology decisions 

From a technology perspective, we mainly consider the integration technologies, 

interpretation mechanisms and tools discovery mechanisms that are required for 

integrating security tools, designing the orchestration process and powering automation. 
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Chapter 2 shows six automation strategies (section 2.6.2) that are adopted by the existing 

SOAR platform. An underlying technology infrastructure consists of the assets of an 

organization, depending on the type of the automation strategy. An example of assets 

includes the various hardware and software infrastructures (i.e., computer systems, 

operating systems and applications) that an organization needs to protect from security 

attacks. Orchestrations can take place in different types of environments, which can be 

open or restricted. We need to consider different architectural integration styles to ensure 

that the integration constraints related to different security tools and stakeholders (e.g., 

semantic, performance and component constraints) are addressed [162]. 

In the following section, we provide a set of design decisions that need to be made 

by an architect. 

• Building a generic block of a SOAR platform. An architect can choose to design a 

playbook and script for orchestration and automation.  

• Disseminating tools that are integrated and participate in orchestration. Architects 

have to decide on how to map security tools to the IRP and where to deploy them in 

an organization’s environment so that the orchestrator can invoke the tools when 

required. 

• Setting up a mechanism for an orchestrator to discover security tools. An architect 

has to choose integration styles and define processes for the discovery of the security 

tools.  

• Setting up and starting an orchestration process. An architect has to decide who has 

the right to modify the process and provide an interface to modify or add new IRPs. 

• Designing APIs for hiding the architectural complexity from end-users. An architect 

has to design APIs through which end-users can interact easily with a SOAR 

platform. 

Table 3.1 shows a summary of the architectural design decisions for achieving the desired 

functional and non-functional requirements of a SOAR platform. By architectural design 

decisions, we mean the design decisions that would have a system-wide impact and/or 

impact on more than one non-functional requirement [45]. 
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Table 3.1 Summary of the architectural design decisions 

Design Decisions Expected Benefits 

Ontology for formalizing security 

tools and activities of IRPs 

Make a SOAR architecture flexible enough to 

integrate different types of security tools with varied 

data formats 

Use of ontology for semantic 

integration and information 

discovery  

Support tools’ specific integration and automated 

execution of IRPs in a dynamic environment 

Layered architectural style  Easy evolution of the SOAR’s components and easy 

modularization of functionalities and components 

Abstractions of SOAR’s 

components tasks with a set of 

APIs 

Make a SOAR platform easy to use, manage and learn 

for end-users 

Automated integration and 

interpretation processes 

Enable reuse of existing components with changes in 

IRPs and security tools  

Share ontology template in a 

centralized repository pattern 

Provide access to the ontology to its end users and 

support flexibility for updates 

3.5 CASE STUDY – PROTOTYPE IMPLEMENTATION 

In this section, we present a Proof of Concept (PoC) SOAR platform namely STUn – 

Security Tool Unifier) [165] that we have designed and implemented based on the 

proposed architectural approach. The functional requirements of STUn are to automate 

the process of integrating security tools, automate the selection of security tools to 

execute an IRP and automate the execution of a set of IRPs. We designed STUn such that 

it is easily evolvable for future changes and supports agility with the emergence of new 

technologies, processes and tools. In this implementation, we considered two types of 

changes that are most common in a SOAR’s execution environment: changes in security 

tools and changes in IRPs. Figure 3.4 presents the implementation architecture of STUn. 

We analyzed the instructions for integration and orchestration to select the technologies 

and identify the design decisions. We designed automated integration processes and 

selected semantic technologies to enable semantic integration and interpretation of 

security tools’ data. We further identify the requirements for and designed a set of 

declarative APIs to hide the complexity of the architecture from the security team. 

Security teams can use the declarative APIs to interact with the SOAR platform. 
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Figure 3.4 Implementation architecture of the PoC for security tool integration 

We selected seven open-source tools with varied capabilities. The selected tools 

are Snort, Splunk, LimaCharlie, MISP, Windows defender, Wireshark and WinPCap 

which are IDS (Intrusion Detection System), SIEM (Security Information and Event 

Management Tools), EDR (Endpoint Detection and Response) tools, Open Source Threat 

Intelligence and Sharing Platforms (OSINT), Firewall and packet monitoring and 

logging tools, respectively. The security tools were selected based on the diversity in 

their capabilities because the execution of an IRP would require multiple security tools.  

For instance, Snort is an open-source Intrusion Detection System (IDS). It usually 

generates alerts upon detection of anomalies or malicious activities in network traffic. It 

also works as a sniffing tool that can sniff network traffic and perform packet logging. 

Splunk is a widely-used Security Information and Event Management (SIEM) tool. It 

performs a variety of operations. Among them, the most popular is to collect log data 

from various sources, normalize data, correlate the collected data and present the results 
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to SOC for further analysis. Limacharlie is a cloud-based Endpoint Detection and 

Response (EDR) tool that operates by running sensors on endpoints. It collects data from 

different endpoints and enforces detection and response rules. It can send commands to 

an endpoint to isolate malicious endpoints, terminate or suspend a malicious process, and 

even delete malicious files from endpoints. MISP is an open-source threat intelligence 

platform, widely used by security teams for sharing, gathering and storing Indicators of 

Compromises (IOC) of targeted attacks, threat intelligence and vulnerabilities in a 

structured manner. 

We used 24 different capabilities of the selected tools, with MISP as a new tool to 

be integrated later. We have curated a set of IRPs from Demisto’s (i.e., a SOAR platform 

provider) collaborative playbooks [166]. We have selected 21 IRPs and slightly modified 

them to fit the capabilities of the seven security tools used for our research. We designed 

another 48 IRPs as a new set of IRPs that PoC would be required to execute without user 

intervention. The list of capabilities and IRPs are available at [165]. 

The implementation decision incorporated an API-based integration style as our 

primary mechanism to integrate security tools into a SOAR. The data from security tools 

such as MISP and Splunk have been made accessible through their APIs. Besides this, 

we have built wrappers for security tools that do not provide specific APIs such as Snort. 

Integrating a new tool required us to identify the security tool’s APIs, or information 

sharing protocols, and implement a suitable integration mechanism. The API and 

wrappers of Figure 3.4 are part of the integration layer of the PoC. Figure 3.5 shows 

examples of the method of the interface of SIEM, EDR and IDS’ API. Splunk, 

Limacharlie and Snort are considered as instances of SIEM and EDR, respectively. 

<<Interface>>

SIEM

+ connect(String): boolean
+ logManagement(String, String, 
String, boolean): boolean
+ runReport(String, boolean): 
boolean
+ fileIntegrityMonitor(String, String): 
boolean
+ correlate(String, String[]): double[]

<<Interface>>

EDR

+ isolateNode(String): boolean
+ rejoinNode (String): boolean
+ newDetectionRule(String): boolean
+ deleteFile(String, String): boolean
+ getFile(String, String, String): String
+ getFileInfo(String, String): String
+ killProcess(String, String): boolean
+ getProcess(String): List<String>

<<Interface>>

IDS

+ detectIntrusion(String): boolean
+ SniffPacket(String, String, String, 
boolean): boolean
+ LogPacket(String): boolean
+ detectIntrusionFile(String, String): 
boolean
+ detectIntrusionHost(String, String): 
boolean  

Figure 3.5 Interfaces of EDR, SIEM and IDS in UML class diagram form showing only 

the methods of each security tool 
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We also designed an ontology to formalize the security tools, their capabilities and 

IRP’s activities to enable semantic interpretation of the security tools’ data. The detailed 

design of the ontology is presented in chapter 4. Each security tool can execute multiple 

activities and each activity can be executed by multiple security tools. We used an 

Apache Jena Fuseki server to store the ontology. Security tools are formalized based on 

their capabilities and the activities of IRPs are mapped with the security tool class of an 

ontology. Table 3.2 and Table 3.3 illustrate how the security tools and IRPs have been 

mapped onto an ontology. We designed a SPARQL query engine to retrieve the required 

information from the ontology. The retrieve data are interpreted through an interpreter, 

which mainly deconstructs the data for further processing. The designed ontology, along 

with the interpreter, built the semantic layer. 

Table 3.2. Illustration of a selected set of object properties of the security tool class of an 

ontology 

Security tool Security 

Tool class 

has Capability Capability class Execute 

Activity 

snort_s IDS intrusion_detection_s IntrusionDetection detectIncident 

limaCharlie_l EDR intrusion_detection_l 

process_killing_l 

IntrusionDetection 

ProcessKilling 

detectIncident 

killProcess 

splunk_s SIEM log_collection_s 

alert_analysis_a 

LogCollection 

AlertAnalysis 

collectAlertLog 

investigateAlert 

Table 3.3. Illustration of a selected set of data properties of the security tool class of an 

ontology  

Security tool Security Tool 

class 

Is 

Integrated 

Has 

InputType 

Has 

Rule 

Has 

ConfigFile 

snort_s IDS True network 

traffic 
False snorts.config 

limaCharlie_l EDR True Payloads True inputs.conf 

splunk_s SIEM True Logs True LCConf 
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We built a collector to gather the security tools’ data, which are sent to an 

orchestrator via the interpreter for actions, e.g., Splunk's API is configured to receive 

system logs of various endpoints. This data is searched and processed to find programs, 

files or users that could be malicious. To formulate the commands further, an input 

constructor was built. Figure 3.6 shows the example Splunk and Limacharlie collectors 

that are instantiated from the collector interface. 

SplunkCollector

- dir: String
- handlers: ArrayList<OutputHandler>
- running: java.util.concurrent.atomic.AtomicBoolean
- thread: Thread
- Interpreter: Interpreter
+ getSplunkData(String, Interpreter)
+ getDir(): String
+ getHandlers(): ArrayList<OutputHandler>
+ getThread(): Thread
+ stopRunning(): void
+ run(): void

LimaCharlieCollector

- dir: String
- handlers: ArrayList<OutputHandler>
- running: java.util.concurrent.atomic.AtomicBoolean
- thread: Thread
- Interpreter: Interpreter
+ getLimaCharlieData(String, Interpreter)
+ getDir(): String
+ getHandlers(): ArrayList<OutputHandler>
+ getThread(): Thread
+ stopRunning(): void
+ run(): void  

Figure 3.6 Example of Splunk and Limacharlie collector class UML diagram 

The automation algorithms or processes have mainly been built as integration 

processes that are the parts of the orchestration layer (Figure 3.4). We designed and 

implemented scripts to define the automated integration process, which includes 

selecting the security tools based on activity descriptions, interpreting their capabilities, 

formulating the input commands and finally invoking the security tool by calling 

appropriate APIs. We have presented the detail of the integration process in Chapter 5. 

We have also shown how the ontology is leveraged to automate the integration process. 

An example is shown in Figure 3.7, where the output of Splunk is sent to LimaCharlie. 

The orchestrator is required to collect the output of Splunk and then interpret it. All the 

data generated by Splunk may not be required by LimaCharlie; so, STUn would be 

required to construct the input of LimaCharlie from Splunk’s output to invoke 

LimaCharlie. 

Figure 3.8 shows an example process where the output of Limacharlie is sent to 

Splunk. Similar to the above process, the commands are required to construct the input 

of Splunk from Limacharlie’s output to invoke Splunk. We developed and designed this 

process as part of the integration process to automate the interpretation of the security 

tools’ data, which enables seamless interoperability among the security tools.  sing the 
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integration process, data sharing among the security tools of Figure 3.7 and Figure 3.8 

happened seamlessly. 

 

Figure 3.7 Example of data transfer from Splunk to LimaCharlie 

 

Figure 3.8  Example of data transfer from Limacharlie to Splunk 
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We present an example to illustrate how STUn enables interoperability among 

different security tools and automates the response process. We consider an IRP is 

available to perform “deletion of malicious file” which contains three main steps: 

collection of system logs, detection of a malicious file and deletion of a malicious file. 

In ST n, Splunk works as a log analyser that collects a system’s logs and performs 

correlations among them. It can also monitor a system’s logs and detect malicious files. 

Specific rules are designed to detect malicious files. Upon detection of malicious files, 

Splunk generates an alert or report.  

Figure 3.9 shows a sequence diagram of how, based on the alerts generated by 

Splunk, Limacharlie deletes the malicious file, which demonstrates how the components 

of STUn enable interoperability between Splunk and Limacharlie. As shown in Figure 

3.9, the alerts are collected by the collector, which is sent to the interpreter for 

interpretation of alerts. Features of Splunk alerts or outputs are defined in an ontology. 

The interpreter invokes the query engine that queries an ontology to interpret the alerts 

and identify the details of the malicious file. Next, it sends the details to the orchestrator, 

which finds an IRP is available to respond to a malicious file that is to delete the files. It 

requests the interpreter to identify the security tools that can delete a file. The details of 

the security tools are available in an ontology; thus, the interpreter returns Limacharlie 

to the orchestrator. The orchestrator selects Limacharlie to delete the file and send a 

message to the input constructor to invoke LimaCharlie. To formulate the commands, 

the input constructor requires the details of the file that it retrieves from the output 

handler. Based on the message from the input constructor, the output handler 

deconstructs the output of Splunk and sends the file details to the input constructor. The 

input constructor formulates the input commands and invokes Limacharlie to execute the 

activity, delete file. Upon getting the commands, Limacharlie deletes the malicious files. 

 We designed a set of declarative APIs to hide the details of the components of 

STUn from security teams. We proposed a set of declarative APIs through which a user 

can provide text-based commands or interact with the SOAR through the declarative 

APIs. The requirements and design of the declarative APIs are proposed in chapter 6. 

The declarative APIs and commands interpreter were designed leveraging well- known 

AI tools and techniques, such as semantic technologies and NLP. The declarative APIs 
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are mainly designed for the security teams to interact with STUn to integrate new tools, 

update the ontologies, and define or execute IRPs. The declarative APIs and command 

interpreter of STUn (refer to Figure 3.4) form the abstraction layer of the proposed 

architecture (refer to Figure 3.2). 

Splunk Collector Interpreter Query Engine Orchestrator InputConstructor LimaCharlieOutputHandler

Collect Log

Alert

Alert type

MaliciousFile

RequestTool to 
deleteMaliciousFile

Request Tool

LimaCharlie

Tools details

Invoke tools

Store output

Construct input to invoke limaCharlie

Request 
capability

Capability

Request files deails

Files details
Construct 
Command

Invoke tool

MaliciousFile

 

Figure 3.9 Sequence diagram for deletion of a malicious file that is detected by Splunk 

and deleted by Limacharlie 

3.6 EVALUATION 

In this section, we report on how the PoC has been evaluated to demonstrate the 

feasibility of the proposed architecture approach, based on two scenarios.  

3.6.1 Automating the Integration of Security Tools 

Let’s assume that a user has expressed a goal of integrating security tools and we have 

decided to use the proposed architecture for automating security tools’ integration. In the 



104 

Security Orchestration and Automation Architecture 104 

current implementation, an ontology is available that works as a knowledge base of a set 

of existing security tools. To integrate the available security tools, the orchestrator 

provides a template of an ontology to users to specify the tools’ capabilities and map 

them onto the available activities or an activity it can execute. A user can also provide 

text-based commands or use declarative APIs to integrate security tools. In this chapter, 

we did not discuss the declarative APIs. The details of the declarative APIs and how the 

user can provide text-based commands are discussed in chapter 6. This process stores the 

security tools’ information in an ontology that makes the information available to the 

orchestrator. If the security tools have different capabilities, the information is updated 

in the ontology. Furthermore, the process for automating the integration of the security 

tools is invoked, which enables the collector to collect the security tools’ output and the 

orchestrator to formulate and send commands to the security tool for executing the 

desired activities. 

Other integration approaches, such as designing static APIs for communicating 

with security tools or plugin-based integration, require the development of a wrapper, 

along with connection with the data curator and the orchestrator, to collect the security 

tool data. The collector needs to be configured to access the data generated by security 

tools. Thus, integrating a single tool would require the development of at least one 

component and connection of that component with the orchestrator. For a security tool 

with multiple capabilities, for instance, Splunk and Limacharlie have different sets of 

APIs to invoke different capabilities, a single API or wrapper would fail to invoke 

different capabilities. 

For example, for LimaCharlie with static API based integration, we have designed 

two sets of scripts to kill a process and isolate a process. For seven security tools with 

24 capabilities, at least 48 connections are required among the orchestrator and security 

tools when considering API and wrapper-based integration to take the output and provide 

the commands to execute an activity. Any increase in the connections and components 

increases the design space of a SOAR. With the inclusion of new security tools, a new 

connection emerges, and a user would be required to go through the existing APIs, 

wrapper and connection to integrate a security tool in a playbook to execute an IRP. An 

update in the existing security tool features, for example, the addition of new capabilities 
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or a change in the existing API parameters, also requires the design of connections and 

updating of the playbook where the security tools have been used.  

With the semantic-based integration approach, we only need to update the security 

tools’ details in an ontology. The connections between the ontology and other 

components have already been designed and do not require any changes. Thus, with the 

PoC, the number of components and connections remains constant with the integration 

of new security tools: that is MISP. Without considering the proposed architecture 

approach, the number of components would increase by at least 2 upon integration of 

new security tools. We found that semantic-based integration is more suitable in this 

case. This demonstrates that the proposed architecture-based implementation keeps the 

number of components and connections lower by reusing the existing components. 

Our observation from running the experiment reveals that building wrappers and 

APIs requires more time than updating the security tool details in an ontology. Hence, 

ontology-based automated integration processes free up the SOC’s time. 

3.6.2 Automating the Interpretation of the Activities to Execute an IRP 

We assume a user has expressed his/her goal is to identify and isolate suspicious 

endpoints. Using the current implementation, the orchestrator can identify the 

capabilities required to execute the activities and then select the security tools that can 

execute that capability. As the process for automatically identifying the capabilities 

required to execute an activity and selecting the security tools are already defined, a user 

would not be required to manually identify the security tools. He/she simply needs to 

request the orchestrator to give them access to those security tools that can perform the 

required activities. The orchestrator runs the process and returns the available security 

tools. Then the user can also define which security tools should be used for each activity. 

Next, the orchestrator automatically generates the commands to invoke the security tools 

to execute a sequence of activities. In this whole process, the current architectural-based 

implementation has reused the existing process, components and protocols.  

With the non-modular and monolithic implementation of a SOAR platform, a 

playbook is required to design to fulfill the user’s goal. Developing a playbook would 

require an understanding of a playbook’s structure, knowledge of the available security 
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tools, developing scripts to access the data generated by the security tools and their 

specific APIs to execute an activity. In the monolithic approach, each playbook is 

designed for a specific IRP, which cannot be reused even if the new IRP is a subset of 

the existing IRPs. A user is required to modify the existing playbook to execute the new 

IRP. 

 odularizing a SOAR’s architecture provides a clear understanding of which part 

would require an update and which components can be reused without modification. 

Reusing the existing components provides the following benefits: a SOC spends less time 

adapting the changes and the evolution of a system does not increase the complexity of 

the architecture. Furthermore, it reduces the overhead for users by adopting the changes 

and providing processes that can be reused. The evaluation shows that, without 

separating the concerns, the number of changes would require more than our proposed 

architectural-based implementation. 

The PoC has accurately executed 45 IRPs among the new 48 IRPs. For three of the 

IRPs, the orchestrator could not find any security tools with the required capabilities to 

execute some of the activities, thus those were executed partially. The successful 

execution of the 45 IRPs demonstrates that the developed PoC has accurately interpreted 

the data generated by the security tools being used without user intervention. The security 

tool MISP is also used by some of the new IRPs; thus, it has also been successfully 

integrated. From the evaluation, we also observe that incorporating the changes in the 

PoC is easier than for other approaches. 

This chapter has demonstrated the feasibility of the proposed architecture for 

security tool integration and IRP interpretation based on three quality attributes: 

integrability, interoperability and interpretability. The details of the realization of the 

architecture for semantic integration, the automated integration process and 

encapsulation of architecture complexity through a set of declarative API are presented 

in chapters 4, 5 and 6 respectively. These chapters also present how the semantics layer 

has been realized and the challenges associated with building the different components. 

These chapters also demonstrate how the proposed layered architectural style helps to 

achieve usability and modifiability along with integrability, interoperability and 

interpretability. 
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Other quality attributes of a SOAR can be evaluated by following different 

architectural evaluation techniques, such as the Scenario-based Architecture Analysis 

Method (SAAM) and Architecture Tradeoff Analysis Method (ATAM) [42, 45].  

3.7 RELATED WORK 

The leading security service providers aim to provide SOAR platforms to deliver end to 

end security services [32, 143, 161, 167]. For example, FireEye (i.e., a leading 

cybersecurity company) designs a SOAR platform to integrate its endpoint products and 

offer support to its industry partners [143]. Meanwhile, the start-ups mainly focus on 

developing APIs to integrate different third-party solutions and provide playbooks for 

automated and semi-automated IRPs [35]. The ad-hoc implementations of a SOAR 

platform increase the design complexity of such a platform as these platforms are built 

as a whole, without separating the concerns of the deployed components. Furthermore, a 

SOAR is a large-scale system that integrates an organization's information and security 

tools. Organizations face several challenges in managing these solutions while any 

changes occur in the underlying operating environment, such as integrating new security 

tools and defining new IRPs [22, 159]. Our work addresses these kinds of challenges. 

The current state-of-the-practices and state-of-the-arts of SOARs lack a shared 

understanding between the vendors and stakeholders of SOAR [21, 23, 58, 59, 73]. For 

example, there is no shared understanding of the key software components and 

technologies that are necessary to integrate and enable interoperability among various 

security tools and bring automation to the IRPs’ execution. In these studies, the SOAR 

platform has mainly focused on security tool interactions, isolated processes and low-

level infrastructures, while paying less attention to the problems of how different 

components of a SOAR and security tools coordinate. 

A security team requires an understanding of the internal structure of a SOAR (i.e., 

libraries to integrate new security tools or requirements) to adopt the changes in a SOAR 

platform execution environment. Adopting the changes remains a tedious and difficult 

undertaking for end-users. State-of-the-art approaches for security process modeling 

provide limited or no decomposition mechanisms, which easily results in monolithic 

processes that address multiple concerns in a single model [21, 23, 59, 73].  
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None of the existing work provides the architectural design space that could inform 

architects of the decisions to be made where multiple components are interconnected. 

Software architecture is composed of early design decisions, which can help to address 

some of the existing challenges to be addressed by SOAR platform designers [44, 45, 

158]. An increased focus on the architectural aspects of SOAR can also facilitate further 

research on the design decisions of the existing SOAR platforms to form guidelines, rules 

and design techniques. The rise of security incidents has increased the demand for 

knowledge, processes and techniques for designing and deploying highly configurable 

and scalable SOAR platforms. As most organizations prefer to utilize their available 

software and security tools, it would be helpful to consider architectural design decisions 

for trade-off analysis before deploying a SOAR platform to enhance a SOC’s efficiency.  

3.8 CHAPTER SUMMARY 

Exploring and understanding architectural design decisions before designing and 

implementing a SOAR platform is a valuable task. The captured design decisions would 

help developers as well as the SOC staff of an organization to systemize their decision 

processes and trade-off analysis. The architectural design decisions would serve as a 

standalone lexicon to describe and evaluate the existing and new SOAR platforms. In 

this chapter, we have designed a conceptual diagram of a SOAR platform to support an 

architect's understanding of the design space of SOAR. We have further identified the 

requirement of a SOAR in terms of unification, orchestration and automation and 

proposed a layered architecture to modularize the functions and separate the concerns of 

the components of a SOAR platform. The architecture design decisions are chosen from 

process and technology perspectives. We have used the proposed approach to design and 

implement a PoC SOAR platform for an ad-hoc SOC infrastructure and observe its 

impact on the automated integration and interpretation process. We have leveraged well-

known architectural styles and patterns to implement the PoC. We have observed that 

consideration of the principal dimension of the architecture design space has improved 

SOAR design practices.  
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Chapter 4 

4 Automated Interpretation and Integration 

of Security Tools 

In chapter 2, we observed that a security orchestration and automation platform 

aims to integrate the activities performed by multi-vendor security tools to 

streamline the required incident response process. Chapter 3 has proposed a layered 

architecture for a SOAR platform, considering some of the key functional and 

nonfunctional requirements of a SOAR platform. To make such a platform useful 

in practice in a Security Operation Centre (SOC), in this chapter we address three 

key challenges: integrability, interoperability and interpretability. We proposed a 

novel semantic integration approach to automatically select and integrate security 

tools with an essential capability for auto-execution of an incident response process 

in a security orchestration and automation platform. The capability of security tools 

and the activities of the incident response process are formalized using ontologies, 

which have been used for an NLP-based approach to classify the activities for the 

emerging incident response processes. The developed ontologies and NLP 

approaches have been used for an interoperability model for selection and 

integration of security tools at runtime for the successful execution of an incident 

response process. Experimental results demonstrate the feasibility of the classifier 

and interoperability model to achieve integrability, interpretability and 

interoperability of security tools integrated into a SOAR platform. 

4.1 INTRODUCTION 

Emerging threat behaviors and variations in organizations’ infrastructure cause security 

experts to change the deployment and execution environment of SOAR, such as the 
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integration of new tools, updates of tools’ capabilities or modification of an IRP [21, 23, 

74]. Existing SOAR platforms, however, are not adaptive towards such changes [21, 23, 

74]. Security teams must sufficiently understand the APIs and rules of SOAR platforms 

to adapt to the changes by defining new rules or developing new APIs [20, 61, 168]. 

Human intervention is required to adjust the changes because security tools are not 

interoperable and SOAR cannot interpret security tools’ activities, their input and 

generated data [142, 168]. According to a recent report by the Enterprise Strategy Group 

[169], on average, a SOC has 25 different security tools, and this number goes up to 100 

for some SOCs. Most of these tools work independently. The SANS Institute (Escal 

Institute of Advanced Technologies) has revealed that the integration of security tools is 

the third most challenging task for SOC [170]. 

A SOAR platform requires the semantic knowledge to formalize various inputs, 

outputs and activities of security tools. The formalized concepts enable a SOAR to 

interpret the changes in runtime environment and automate the execution of modified or 

new IRP without any human intervention. Ontologies can be used to provide the required 

formal specification to support integrability, interoperability and semantic integration of 

security tools in a SOAR without any human involvement [171, 172]. Semantic 

integration refers to the ability of a SOAR to understand the semantics of the input or 

output of security tools. A SOAR can semantically interpret the activities of security 

tools when the formalization incorporates semantic integration of security tools.  

The process of defining a suitable ontology is not straightforward [158]. A well-

built ontology depends on domain expertise. Formalizing various security tools and the 

activities of IRPs is challenging due to the ambiguity of the terminology used by different 

vendors. The features of security tools and activities are defined using Natural Language; 

the same activity is defined using different terms in different IRPs. As the development 

of an ontology is an incremental process, domain experts are required to perform manual 

tasks to keep the ontologies updated, as per the new knowledge.  

We propose an integration framework for SOAR that integrates the data generated 

by different security tools to automate the execution of an IRP by making security tools 

interoperable. The proposed integration framework consists of an ontological model, a 

prediction module and an annotation module. We have formalized the core concepts of 
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a SOAR platform that are discussed in chapter 3 in an ontology. The developed ontology 

is required to automate the execution of an IRP. We have followed a systematic approach 

to define the classes of the proposed ontology and the relationships among the classes. 

We have designed and developed a prediction module utilizing the existing Natural 

Language Processing (NLP) and Machine Learning (ML) techniques to automatically 

classify the activities with text descriptions according to the ontology. For a new activity 

description in an IRP, we have performed a text-based similarity measure with the 

existing list of activities descriptions. We have defined a threshold for the similarity 

measure that is used to invoke the prediction module when the similarity score is above 

the threshold. For a similarity score below the threshold, we have designed an annotation 

module to generate and recommend the possible classes to experts and automatically 

annotate the new classes in the ontology after an expert selects the classes. 

We have designed and implemented an interoperability model to select the best 

suite of tools that have the required capability to execute an IRP. We checked the 

compatibility of the set of selected tools for interoperability based on their capabilities in 

terms of their input, output and execution environment. In this chapter, we do not show 

the development and evaluation of the ontology; instead, we demonstrate the use of the 

ontology by the prediction module and interoperability model for auto-execution of IRPs. 

The development and evaluation of the ontology for security tool integration is shown in 

chapter 5. The following are the key contributions expected in this chapter: 

• An ontological model to formalize the diverse activities and capabilities of security 

tools (refer to section 4.4.1). 

• A prediction module to automatically classify activities according to the ontology 

and an annotation module to annotate the unmatched activities with the existing 

ontology (refer to section 4.4.2 & 4.4.3). 

• An interoperability model to select the security tools to automate the sequence of 

activities in an IRP (refer to section 4.5). 

4.2 RELATED WORK 

A large-scale SOAR platform requires formalization of the concepts of different security 

tools and their respective activities. Most of the existing literature on SOAR only focuses 
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on providing APIs or plugins for multi-vendor tools, without considering the importance 

of formalizing the standard features or concepts used by different tools [20, 23 , 24, 35]. 

STIX, CyBox, and Unified Cybersecurity Ontologies (UCO) are examples of some of 

the known ontologies for the security domain. UCO combines the existing ontologies; 

however, it does not provide an ontology for security tools and their activities; nor does 

 CO support an IRP’s activities, which are required by a SOAR. A few studies formalize 

various concepts of information security, threat and attack related information for sharing 

the information amongst the security community [171-173]. None of these studies focus 

on formalizing the concepts of IRPs or the diverse nature of security tools. 

One recent study has developed ontologies for enabling tool-as-service (TSPACE) 

for cloud-platforms [158]. Based on the stakeholder’s requirements and tools’ artifacts, 

the required tools are selected using the ontologies, which helps the stakeholder to 

alleviate the semantic conflict while integrating multiple tools. The proposed ontology 

in TSPACE cannot automate the execution of the activities or enable interoperability 

among security tools. Moreover, TSPACE does not capture the capabilities of tools 

essential for interpretability and interoperability. Conversely, our proposed ontological 

model provides the capabilities of security tools to support interpretability and 

interoperability of security tools in a SOAR. Our work supports the interoperability issue 

by mapping the capabilities of the security tools with the activities of an IRP. Using the 

ontological model, a SOAR is able to interpret the diverse security tools' capabilities to 

make them work together to automate the execution of the security tools’ activities 

without any human intervention. 

 Alongside the general lack of interpretability and interoperability among multi-

vendor security tools, we could not find any work that addresses the issues with changing 

IRP due to emerging threat behaviors. Our proposed prediction module supports the auto-

classification of new activity descriptions according to the ontology for automatic 

execution of IRP. To the best of our knowledge, this is the first work that has enabled 

auto-integration of security tools in a SOAR based on an ontology, and developed a 

prediction module to classify activity descriptions based on the ontology. The automation 

is achieved by enabling interpretability and interoperability among a variety of security 
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tools from different vendors and auto-classification of activity descriptions according to 

the ontology. 

4.3 MOTIVATION SCENARIO 

An incident is any unwanted event that violates specific security objectives 

(confidentiality, integrity, and availability) of an organization’s assets. An IRP aims to 

provide the best sequence of activities to be performed in response to an incident, e.g., 

alerts for phishing emails, DDoS attacks, and so forth. Table 4.1 shows an IRP for one 

such incident, spear-phishing email. A phishing email is used to obtain sensitive 

information by disguising as a trustworthy entity in electronic communication.  

Table 4.1. The incident response plan for a phishing attack 

# Response Activity Description 

ac1 Is this a Phishing attack? Validate if this is a phishing attack. 

ac2 
Scan Endpoint – Malware 

found? 

After running a scan, determine whether malware was 

found. 

ac3 
Remove Malware – 

Success? 

Determine whether the malware was successfully 

removed. 

ac4 Wipe and reimage 
If you did not successfully remove the malware found, 
this task instructs you to perform a wipe and reimage of 

the infected computer 

ac5 
Update email protection 

software 

If it was determined as phishing attack, you are 
prompted to update the email protection software 

accordingly 

ac6 
Remove unread phishing 

emails 

Perform the steps necessary to remove unread phishing 

emails still in the queue. 

Figure 4.1 shows a scenario for SOAR where it collects the details of an incident, 

checks in the playbook for the corresponding IRP and rules therein, selects the tools to 

perform the activities based on the rules, orchestrates the activities and automates the 

execution of an IRP. Most SOARs have a playbook, as shown in Figure 4.1, where a 

SOC defines the rules based on their respective IRPs. The SOAR shows the scan and 

ongoing operation through its dashboard, based on which a SOC team makes the required 

decisions, defines new rules in the playbook and performs complex analysis. We refer to 

the activities that are performed by SOAR to orchestrate and automate an IRP as Tasks. 
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To address the interoperability issue, an existing SOAR offers APIs or plugins to 

communicate with different security tools.  ost of these APIs or plugins are not vendors’ 

or tools specific and fail when updates or changes are required [20, 32, 35]. There are 

several challenges associated with existing SOAR; however, in this work, we only focus 

on the challenges mentioned below. We use the example of Table 4.1 to illustrate the 

challenges that arise during the auto-execution of IRP by SOAR platform. 

 

Figure 4.1 Overview of a security orchestration platform 

Firstly, the IRP of Table 4.1 is written in text and does not follow a formal 

structure. There exists ambiguity among different words. Different words are used to 

define the same types of activities. For example, both Response and Activity Description 

in Table 4.1, i.e., “Is this a Phishing attack?” and “Validate if this is a phishing attack”, 

are referring to the same activity. A SOC does not follow any specific structure while 

defining the activities of an IRP. The similar types of activities performed for different 

security incidents require different tools. For example, “remove malware” and “remove 

phishing email” both refer to the activity “remove”, even though the execution of these 

activities requires two different types of security tools. A SOAR cannot automatically 

interpret the abovementioned similarities or ambiguity. 

Secondly, a SOAR needs to deal with different tools that are not interoperable to 

automate the execution of an IRP’s activities. For example, to execute an activity ac1 of 
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Table 4.1, a threat intelligence platform, e.g., Malware Information Sharing Platform 

(MISP), is needed. A MISP is used by a SOAR to validate the incident. The execution of 

ac2 requires an EDR tool to scan endpoints and a SIEM to identify the malware from 

EDR logs. Each activity has one or multiple rules associated with it. A SOAR uses these 

rules to orchestrate and automate an IRP by using different security tools. For example, 

if ac1 is true, then only it executes ac2. Based on the results of ac2, it further executes ac3 

or other activities.  shows an IRP for one such incident, a spear-phishing email. A 

phishing email is used to obtain sensitive information by disguising itself as a trustworthy 

entity in electronic communication. 

Thirdly, a SOAR needs to control the flow of the activities performed by different 

tools. Experts modify the activities based on the tool’s availability and preferences. For 

example, an expert may change one activity description in an IRP from “analyzing the 

alert log” to “correlating alert log” after installation of a new IDS in the network router. 

Installation of a new server requires the security tools’ capabilities to fulfil the security 

requirements of a server. An IRP team defines the plan to protect the server from security 

incidents. In case existing tools are unable to provide the required capability, a SOC 

integrates new security tools to protect the server.  

Fourthly, there may be multiple tools available for execution of a single activity. 

For example, different EDR tools and dedicated malware detection tools are used to 

perform “scan endpoint for malware.” There is a lack of a systematic approach that can 

be followed to perform the selection of security tools that are interoperable. 

In terms of changing activities in an IRP that needs integration of new tools, the 

challenge is how to provide an interoperability model for a variety of security tools to 

automatically execute different sets of IRPs. In the next sections, we first propose the 

semantic integration framework and then an interoperability model that uses the correct 

component of the integration framework to address the abovementioned challenges. 

4.4 AN INTEGRATION FRAMEWORK FOR A SOAR PLATFORM 

4.4.1 An Ontological Model to Enable Semantic Integration 

A SOAR deals with various types of data produced by heterogeneous security tools. 

These data can be structured, semi-structured, or unstructured. Data produced by one tool 
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are not always interpretable by another tool. Therefore, these heterogeneous security 

tools are not interoperable. We develop an ontological model to represent multi-sourced 

data and enable semantic-based data integration among heterogeneous security tools in 

a SOAR [171, 172]. We define the classes of the required ontology by following a 

structured approach to keep consistency among the classes. 

4.4.1.1 Design and Development of an Ontology Class 

We follow a bottom-up approach to develop the main concepts of our ontology, which 

contains three main classes: SecurityTool, Capability, and Activity. These classes are 

defined to represent heterogenous security tools from different vendors formally. We 

leverage the TSPACE work [158] to design the capabilities of security tools in terms of 

their functional and non-functional features. The functional feature is the ability of a 

security tool to execute an activity such as packet capturing, log management, intrusion 

detection and so forth. The non-functional features include input and output data 

structures, and the configuration details required to execute an activity. For example, a 

network-based IDS takes network traffic or packet (i.e., tcpdump), where a host-based 

IDS works with system logs (i.e., syslog). Even though both types of IDSs produce alerts 

as an output, the output format (i.e., PCAP, CSV) and data (e.g., IP address, Port, MD5, 

and URL) also vary, depending on the SOC’s preferences. 

The Capability class of the ontology consists of the two subclasses, 

FunctionalCapability and NonFunctionalCapability, to capture the features of security 

tools, as shown in Figure 4.2. The diversity among input and output data structures is 

apprehended using three subclasses under the Non-FunctionalCapability class: Input, 

Output, and RuntimeEnvironment. The input and output of the security tools need to be 

explicitly defined to be analyzed by a SOAR. A well-designed Capability class enables 

SOAR to auto-generate the APIs between security tools by retrieving the information 

about required input commands and produced output. The ability of a SOAR to 

deconstruct the output of one tool and then to use the output to formulate the input of 

another tool enables interoperability between isolated security tools. 

We analyze the functional capabilities of multiple security tools to identify the 

subclasses of the SecurityTool class, where each tool has more than one functional 

capability. The SecurityTool class is categorized based on the main functionalities of the 
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security tools. We define the first level of the subclass of the security tool based on the 

types of activities (e.g., detect, monitor, scan, validate and so on) they provide. For 

example, IDS, SIEM, Antivirus, and Firewall are different types of security tools that are 

defined as a subclass of the SecurityTool class. The available commercial and open 

source security tools are categorized under each of these subclasses, based on the 

benchmark of their functional capabilities. For example, different types of SIEM, i.e., 

Splunk and RSA NetWitness, are subclasses of SIEM. 

 

Figure 4.2 Excerpt of our Ontology 

We define and categorize different types of activities as the subclass of the Activity 

class. The activities are associated with the detection, prevention, recovery and 

remediation actions of a threat defense and response life cycle. We follow a systematic 

set of guidelines to define the subclasses of the Activity class manually. First, we only 

use the verb and noun of the sentence of activity description to define the subclasses of 

the Activity class. For example, for the activities of Table 4.1, Validate, Remove, Scan, 

Wipe, Reimage and Update are the subclasses of level 1 of the Activity class. Then, we 

combine the adjacent verb, noun, and adjective and discard all other parts of speech to 

define the categories of the subclasses, as shown in Figure 4.3. 

Each subclass of the Activity class contains multiple subclasses, based on the 

capabilities required to execute the activity. For example, the execution of two validation 
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activities: validation of a phishing email and validation of exposure of confidential 

information require different capabilities; therefore, they are categorized under different 

subclasses: ValidatePhishingAttack and ValidateDataExposure. We also consider the 

activity “Is this a phishing attack?” under the class Validate, as this is more similar to 

validating whether an alert/attack is phishing or not. We consider a different sentence 

with similar meaning in the same class. For example, the activity “scan endpoint for 

malware” and “scan host for malware” requires the same types of capabilities and thus 

they are categorized under the same class, ScanEndpointMalware. These subclasses can 

have more subclasses, depending on the requirements to execute the activities. Figure 4.2 

shows part of the subclasses of the Activity class that we have built following the 

abovementioned process. 

ac1 : Is (Verb) this (Det) a (Det) phishing (Verb) Attack (Noun) ? (Punc) = Is (Validate) 

Phishing Attack 

Subclass:   Validate → Validate Phishing → Validate Phishing Email 

ac2: Determine (Verb) whether (Adp) the (Det) data (Noun) associated (Verb) with 

(Adp) this (Det)  

is (Verb) sensitive (Adj) =  Determine Data Sensitivity 

Subclass: Determine → Determine Data → Determine Data Sensitivity 

Figure 4.3 The parts of speech tagging of the incident response plan and removing stop words 

4.4.1.2 Defining Relationships and Constraints.  

We define the relationship between the classes to select the tools with appropriate 

capabilities to execute an activity. The relationships between the classes are shown in 

Figure 4.2. We define a set of reasoning rules to enhance the relationships between 

different classes for error-free integration. These rules enable us to express conditions 

about the occurrence or non-occurrence of the required activities, the creation of 

instances, tracking and managing activities of a SOAR. For example, each security tool 

must have at least one functional capability associated with threat defense and incident 

response to execute an activity. The security tools must satisfy the capabilities associated 

with a class to be part of that class. 

Execution of each activity depends on the availability of the relevant security tools 

and the preference of an organization’s security requirements. Auto-execution of an 
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activity requires at least one tool with the required functional capability to execute a 

desired activity. We impose different types of restrictions for creating the instance of a 

class that must satisfy the relationship it holds with other classes. The defined rules 

enable a SOAR to avoid ambiguity, while creating an instance of a class. A SOAR 

executes the activities sequentially; as a result, the security tool that is selected to execute 

aci+1 must have access to the output of a security tool that executes aci. For example, if 

Splunk is required to analyze the alert log produce by Snort, it must have access to the 

output file of Snort. Similarly, a SOAR needs to have the authorization to run and stop 

every security tool that is integrated into it.  

 The proposed ontological model enables a SOAR to interpret activities and 

security tools’ capabilities. Retrieving the information of the non-functional capability 

class, SOAR can interpret the data generated in various forms and formulate the input 

command to invoke a tool for auto-execution of the activity. 

4.4.2 Classification of Activities based on Text Similarity 

A SOC adds new types of activities or updates the existing IRP to keep the playbook 

updated for emerging threats. Considering the tools available to execute IRPs, we 

leverage existing NLP and ML techniques to automatically classify the new activity 

description according to the activity ontology. This process makes the SOAR capable of 

analyzing an IRP and transforming the data into a representation that gives both an 

analyst and a machine insights about the data. We consider the classes of Activity classes 

in different levels separately (Figure 4.2). An example of a class on each level would 

include: level 1 {Remove, Scan, Validate}, level 2 {RemoveSpam, RemoveMalware, 

ScanFile}, and level 3 {RemovePhishingEmail, ValidatePhishingEmail}. From the 

perspective of ML, this problem is designed as a multiclass supervised text classification 

problem. 

Given a new activity description in an IRP, we design the prediction module to 

classify the activity description according to the classes of the ontology. The overall 

workflow of building an ML-based prediction module is given in Figure 4.4. The dataset 

consists of the activity descriptions labelled according to the ontology. Table 4.2 shows 

examples of the labels that correspond to the activity described in each level of the 

ontology for each Activity class. Initially, the dataset is divided into training and testing 
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sets. The key components of building the ML model include text pre-processing, model 

selection, model building, and prediction. The model selection and model building 

processes work on the training set and the prediction process works on the testing set or 

with new activity descriptions.  
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Figure 4.4 Development of the prediction module 

Table 4.2. Activity description and corresponding class label 

Activity Description  Level 1 Level 2 Level 3 

Scan endpoint to see whether 

malware was found 
Scan ScanEndpoint ScanEndpointMalware 

Is this a phishing email Validate ValidatePhishing ValidatePhishingEmail 

Isolate the malicious node from the 

network 
Isolate IsolateMalicious IsolateMaliciousNode 

Text pre-processing: We start with a corpus of activity descriptions and follow the 

standard process of text wrangling and pre-processing. During the preprocessing step, 

we remove the null-value, punctuation, stop words, and meaningless words for the 
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analysis. We perform part-of-speech tagging of the text before removing the stop words 

and only retain the verbs, adjectives, and nouns. 

Model Selection: We use the preprocessed text to perform k-fold cross-validation to 

select the optimal classifiers for the prediction module. As shown in Figure 4.4, the model 

selection method has four steps: data splitting, n-gram generation, feature 

transformation and model training and evaluation. The preprocessed text in each fold is 

split into the training and validation sets with equal sample sizes. We generate word-

based n-grams for the training and validation sets that are merely the combinations of 

adjacent words of length n. We combine the n-gram with the Term Frequency-Inverse 

Document Frequency (TF-IDF) for each activity description.  

The ML-based classifiers cannot directly process the text documents. Most of them 

expect numerical feature vectors of a fixed size, whereas the raw text documents are of 

variable lengths. The features generated from the n-gram are presented into Document-

Term Matrix (DTM), where each row corresponds to an activity description and each 

column corresponds with a word in the term. 

In the model training and evaluation steps, we train the four classifiers (Random 

Forest, Linear Support Vector, Multinomial Model of Naïve Bayes, and Logistic 

Regression) on the training set and then evaluate the model on the validation set using 

different evaluation metrics (accuracy, recall, precision, and f1-score). The classifier 

with the highest average cross-validation score is selected as an optimal classifier. The 

process is repeated for each level (levels 1, 2 and 3). The optimal classifiers and feature 

representations are returned for all three levels. 

Model building: The model building process uses the whole set of pre-processed 

training sets to generate the word n-gram. Here, n-gram generation and feature 

transformation are based on the identified feature configurations for each level of class. 

The generated n-gram vocabularies are combined with the feature configurations to 

create the feature model. The feature model is saved to transform the data for future 

predictions. The extracted features are trained with the optimal classifiers returned in the 

model selection process to build the prediction model for each level.  
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Prediction: The prediction process is used for both testing the trained model and 

classifying the new activity descriptions. In this process, the activity descriptions are first 

preprocessed and then, using the saved feature model, transformed into a feature set. 

Finally, the features set is used by the saved trained model to determine the class of the 

activity descriptions in terms of the ontology for each level. The prediction module 

reduces the manual analysis of the activity description by classifying the activities 

according to the ontology. 

4.4.3 Design and Development of the Annotation Module 

A new activity description may not always fall in any of the existing activity classes of 

the ontology. In this context, we are considering these types of description as outliers. To 

identify the outlier descriptions, we perform text-based similarity checking of the 

updated or new description with the existing activity description and measure the cosine 

similarity. We define a threshold for considering whether the description is an outlier in 

terms of the existing set of activity descriptions. If the new description is not an outlier, 

then only the description is sent to the prediction module. If the new description is 

considered as an outlier, we develop the annotation module to automate the generation 

of the possible list of classes, following the same set of guidelines proposed to design the 

Activity class in section 4.4.1. The generated classes are matched with the existing set of 

classes, and if none of the classes are found in the ontology, the annotation module 

recommends a possible list of classes to the user. Once the user selects the corresponding 

classes, it creates new classes for the activity description and, if required, requests 

additional details about the classes from the user to keep the ontology consistent.  

4.5 INTEROPERABILITY MODEL FOR EXECUTION OF IRP 

A SOAR may need to invoke a different set of security tools in a different order to 

execute a variable sequence of IRPs. For example, one IRP may include an activity scan 

endpoint, followed by another activity correlate alerts log, whereas another IRP may 

include correlating alerts logs followed by scan endpoint. Both of these IRPs require the 

same security tools in different orders. We provide the interoperability model for auto-

execution of the required IRPs, whereby one tool can understand the output of other tools. 

The model also helps SOAR to interpret the output and input of different security tools. 
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For example, a SIEM tool needs an output of alerts produced by IDS and a system log 

produced by EDR to perform correlations. Figure 4.5 shows the overall workflow of the 

interoperability model, starting from gathering a security incident to notifying a SOC.  
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Figure 4.5 Workflow of the proposed solution 

Two key tasks of the interoperability model are: select the desired tools based on 

their functional and non-functional capabilities and invoke the tools to execute an IRP. 

The key components of the integration framework (ontological model, prediction and 

annotation module), as shown in Figure 4.5, are used to design the interoperability model. 

We have designed a Query Engine (QE) to retrieve information from the ontology. 

Given a set of Security tools S = {s1, s2,…, sm ,…}, a list of the required activities AC = 

{ac1,ac2,…, ack,…} and a list of capabilities, 𝐹 = {f1, f2,…, fj,…}, a SOAR looks up the 

corresponding IRP for each security incident. For each activity ack of IRP, SOAR 

invokes the QE to search for the corresponding Activity class. If the activity is found in 

the ontology, the SOAR invokes QE to retrieve the capability required to execute the 

activity. Considering fj is the required functional capability, a SOAR sends queries to 

retrieve the security tool that has the functional capability, fj. In cases where multiple 

tools are available, the SOAR selects the right tool from the list. In the next step, the 
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SOAR retrieves the non-functional capability of the selected security tool to formulate 

the input command for instructing the tool to execute the activity. The QE extracts the 

necessary information from the ontology to formulate the input for the tool. After 

constructing the input command, the SOAR calls the tool’s corresponding routine to 

execute the activities. If the execution is successful, the next activity in the IRP is 

executed by following the same sequence of tasks (performed by SOAR). 

Considering the output produced by one tool, sm, is provided as an input to another 

tool, sp, the SOAR checks for the interoperability of the two security tools. The SOAR 

deconstructs the output of sm to formulates the input of the sp. This action is only possible 

if the tools are interoperable; otherwise, the SOAR notifies the SOC. An activity’s 

description may change continuously; if no class is found for a particular activity, a 

SOAR first invokes the AU unit to determine the possibility that new description is part 

of the existing ontology. Based on the similarity measurement, it either generates the list 

of classes or invokes the prediction module to classify the activity description. After 

receiving the appropriate class from the prediction module, the same steps of looking for 

the required functional capability and non-functional capability to execute the activity 

are carried out.  

Following the abovementioned process, a SOAR can automate the sequence of 

activities in an IRP even when changes occur in the underlying execution environment. 

The interoperability model enhances the capability of a SOAR to automate the execution 

of an IRP by interpreting the activity, required capability, and tools’ interoperability. 

4.6 EXPERIMENTS AND RESULTS 

We carried out a set of experiments to assess the feasibility of the proposed prediction 

module and the interoperability model. The flexibility of the proposed ontology-based 

sematic integration is discussed in chapter 5.  

4.6.1 Preparing the dataset for a prediction module 

Our experimental dataset is based on the IRP crawled from the website of ServiceNow, 

which resulted in 1080 activity descriptions. For each activity description, we labeled the 

classes manually, according to the ontology, as shown in Table 4.2. We have 34 

categories under level 1, 67 categories under level 2 and 74 categories under level 3. 
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4.6.2 Implementing the prediction module 

We used the scikit-learn, NLTK and spaCy packages of python to build a classifier. For 

each level, we first implemented four classification algorithms with different hyper-

parameter settings separately. We performed k-fold cross validation for each 

configuration by splitting the data set into different training and validation sets. We used 

the function GridSearchCV() to select the optimal configuration and perform cross-

validation for each classifier. For both Support Vector Machine (SVM) and Linear 

Regression (LR), we considered different values for the regularization parameter (i.e., 

0.01., 0.1, 1, 10, and 100). For Multinomial Naïve Bayes (NB), we considered the prior 

probability of the class True and False. For Random Forest (RF), we considered different 

values for estimators (i.e., 10, 100, 20, 200, 50, and 500) and the maximum number of 

leaves (i.e., 10, 50, 100, and 200).  

Figure 4.6 (a) shows the results of different classifiers for the optimal 

configuration. We examined the performance of the classifiers in terms of accuracy and 

F1-score [174]. An F1 score is considered more reliable than accuracy. Accuracy reflects 

the total of the correct predictions divided by the total number of cases. The F-1 score is 

the harmonic mean of Precision and Recall. The precision represents the total of the 

correct predictions for each class, divided by the total number of activities predicted for 

that class. The recall is the correct prediction for each category, divided by the total 

number that belongs to this category. Comparing the results of the classifier, we found 

that RF outperformed other classifiers. We built the final model with the RF classifier. 

The optimal configuration for RF (estimators, maximum leaf) for levels 1, 2 and 3 are 

(50, 100), (100, 100) and (10, 200), respectively. We used 70% of the activities for each 

level as the training data and 30% as the testing data. Figure 4.6 (b) shows the results of 

the RF for different evaluation metrics. 

4.6.3 Developing the Interoperability model 

We implemented a Proof of Concept (POC) system using seven security tools (Snort, 

Splunk, LimaCharlie, Wireshark, WinPcap, Microsoft essential, and MISP) to study the 

viability of the interoperability model. We described their capabilities in terms of the 

ontological model and used a list of IRPs with different activities. We used the network 

traffic and system logs as the input to identify the security incidents. The experimental 
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study used 21 different capabilities and 9 IRPs with 17 activities. We only considered 

the activities for which the capabilities were available. We changed the activities and 

observed the corresponding changes in the operation’s execution.  

       

 (a) Validated Weighted average of F1-Score    (b) Testing results of the Random Forest classifier  

Figure 4.6 Bar plot of (a) validated weighted average of the F1-score for optimal 

configuration of different classifiers and (b) testing results of Random Forest for three 

levels of class 

Discussion: The results showed that in more than 90% of cases (Figure 4.6 (b)) the 

prediction module classified the activity descriptions accurately. The performance in 

classifying the activities in levels 2 and 3 is lower than that in level 1. The reason for this 

appears to be the number of members in these classes is lower than that in level 1. The 

more input data we can provide to the classifier, the more accurate results it will produce. 

Furthermore, the activity description was passed to the prediction module only when the 

text similarity was found, which makes the classifiers less error-prone towards the new 

activity description that does not belong to any of the existing classes. Out of the 17 IRPs, 

the POC was able to automate 15 IRPs successfully and 2 IRPs partially. While 

modifying the activity descriptions, there were two activities (update email protection 

software and detect phishing email) for which security tools were not available. For these 

two activities, the interoperability model was unable to find suitable security tools, thus 

failed to automate the execution of that particular IRP. Except for these two activities, 

the POC automatically (a) retrieved the information from the developed ontology; (b) 

generated the configuration details to call the desired security tools; and (c) enabled 

interpretability and interoperability among the different security tools and SOAR. 

0
.9

2
6

0
.9

0
9

0
.8

6
50

.9
3

0
.9

1
1

0
.8

6
9

0
.8

3
3

0
.8

1
7

0
.7

9
2

0
.9

1
8

0
.9

0
5

0
.8

6
4

LEVEL 1 LEVEL 2 LEVEL 3

SVM RF NB LR

0
.9

6

0
.9

4

0
.90

.9
7

0
.9

3

0
.8

7

0
.9

6

0
.9

4

0
.90
.9

6

0
.9

3

0
.8

8

LEVEL 1 LEVEL 2 LEVEL 3

Accuracy Precision Recall F1-score



127 

Automated Interpretation and Integration of Security Tools 127 

4.6.4 Threats to validity  

We developed the ontology based on freely available and open source security tools’ 

capabilities, and activity descriptions, which might not fully represent the situations or 

scenarios of an organization. Considering the development of an ontology is an 

incremental process, a human expert can easily extend the ontology to incorporate the 

tools used in an organization. The selected optimal may not guarantee the highest 

performance for classifying the new and updated activity descriptions since an infinite 

number of configurations are available to tune the hyper-parameters of ML classifiers. 

The selected classifiers might not be the best, but the system provides a learning-based 

approach to classify any activity description, which can be further improved and 

extended with different classifiers and configurations. The model we built is retrainable 

and can be easily trained with a new dataset. 

4.7 CHAPTER SUMMARY 

Given the widespread adoption of SOAR over the last couple of years, there is an 

increasing demand for self-adaptive SOARs. Our research seeks to devise a solution that 

can enhance the integrability, interpretability and interoperability of security tools 

integrated into a SOAR. The proposed approach allows a SOAR to select the required 

security tools that are interoperable for auto-execution of an IRP. We have introduced an 

ontological model to formalize the security tools, their capabilities, and the activities of 

an IRP. A learning-based prediction module is proposed to reduce the manual work of a 

security team to define the classes for activity in a playbook. The proposed 

interoperability model successfully automates the execution of most of the IRPs at 

runtime. In future work, we will extend the system to automate the generation of the APIs 

from the ontology. We also aim to use the semantic definition of tools’ capabilities to 

auto-create the APIs when new security tools with new capabilities are integrated, and 

design a probabilistic model for selecting and integrating security tools. 
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Chapter 5 

5 An Ontology-driven Integration of Security 

Tools 

As discussed in Chapter 4, the lack of interpretability and interoperability among 

security tools is considered a key challenge to fully leveraging the potential of the 

collective capabilities of different security tools. The processes of integrating 

security tools are repetitive, time-consuming and error-prone; these processes are 

carried out manually by human experts or using ad-hoc methods. To help automate 

security tools’ integration processes, in this chapter, we propose an Ontology-driven 

approach for a SOAR platform (OnSOAR). The developed solution enables 

interpretability and interoperability among security tools, which may exist in 

operational silos. We demonstrate OnSOAR’s support for automated integration of 

security tools to execute the incident response process with three security tools 

(Splunk, Limacharlie and Snort) for a Distributed Denial of Service (DDoS) attack. 

The evaluation results show that OnSOAR enables a SOAR platform to interpret the 

input and output of different security tools, produce error-free integration details, 

and make security tools interoperable with each other to automate and accelerate an 

incident response process. 

5.1 INTRODUCTION 

A SOAR platform aims to minimize dependency on human experts for a streamlined 

incident response process [70, 175]. However, most of the existing SOAR platforms 

cannot automatically adapt to changes in organizational systems’ operational processes, 

such as the installation of new software, deployment of new servers, and rolling out of 

new access control policies [21, 22, 72]. Security teams need to integrate different 
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security tools with a SOAR platform manually and map their activities into an incident 

response process [18, 118, 176]. 

Human-centric intervention is required in the existing SOAR platforms because 

security tools are not designed to interoperate with each other [168]; for example, an IDS 

cannot automatically send an output alert to a SIEM. The messages generated by a 

security tool are also not semantically interpretable [35, 177]; for example, an IDS may 

generate an alert in its proprietary format, and such an alert may contain different features 

of an attack. A SIEM cannot ingest and interpret the meaning of those alerts unless the 

alerts’ definitions are explicitly defined for a particular type of SIEM [35, 83]. Chapter 

1 provides an overview of a SOAR platform that shows that, before deploying a SOAR 

platform, an organization assesses the existing security tools to identify the configuration 

details, such as dependency among different activities, process flow within a security 

tool, input and output data formats and runtime environments [35, 176]. Based on such 

an assessment, a SOAR is designed, and different security tools are integrated using 

plugins or APIs [21, 118, 176, 178]. 

Human intervention can be minimized by providing SOAR platforms with a formal 

specification of the security data format, configuration, and structural specifications of 

security tools to automate the process of integrating different security tools. A SOAR can 

use such formal specifications to continuously integrate and invoke security tools, based 

on the activities in the incident response process. Ontologies can be used to provide the 

required formal specifications to support semantic integration [172, 179-181]. In the 

context of SOAR, semantic integration means one security tool can understand the 

semantics of the input and output of another security tool. A SOAR can semantically 

interpret the activities when the formalization incorporates semantic integration of 

heterogeneous security tools.  

Several studies have developed ontologies to formalize heterogeneous threat 

intelligence information for cybersecurity tools [172, 179-182], including ontologies to 

help stakeholders deal with any semantic conflict that arises while integrating multiple 

security tools [158]. These approaches focus on providing an effective method of 

information sharing and exchanging among cybersecurity communities, and 

stakeholders. None of these approaches provides support for sharing information 
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between different security tools and the SOAR. Security tools (e.g., IDS, SIEM, or EDR) 

are software-intensive systems that can be integrated and interoperate at the software 

level, based on data integration. Hence, ontological approaches can be leveraged to 

automate the process of integrating and interoperating heterogeneous security tools in a 

SOAR platform. 

We have developed an Ontology-driven approach for a SOAR platform, 

OnSOAR, to automate the process of integration of security tools. At the core of 

OnSOAR is an ontological model that involves both high-level and fine-grained classes 

for different security tools, their capabilities and the activities of an incident response 

process. The developed ontology provides a formal specification of the core concepts of 

a SOAR, i.e., security tools, their capabilities and the activities of the incident response 

processes. Based on the ontology, OnSOAR automatically annotates a set of security 

tools, their capabilities and an incident response process at a much finer-grained scale. 

We have also designed a set of queries, rules, and constraints for the orchestration 

process that enables OnSOAR to extract the required information from the ontology and 

invoke the required functionalities of a security tool. OnSOAR ensures error-free and 

automated integration of different security tools in a SOAR. 

We have developed and evaluated OnSOAR with a robust incident response 

application. As a use case scenario, we have investigated an incident response plan for a 

Distributed Denial of Service attack (DDoS) with three different security tools. This can 

be extended for any other use case scenario and security tools. By composing a set of 

simple rules and defining structured queries for the orchestration process, we have shown 

that the developed OnSOAR can automatically select and invoke an appropriate set of 

functionalities from the available security tools. We have also shown that the developed 

OnSOAR can provide automation support to the process of integrating and interoperating 

security tools. The following are the main contributions of this chapter:  

• Design and implementation of an ontology-driven approach, OnSOAR, that supports 

the process of automated integration and interpretation of a variety of security tools 

(Section 5.3, 5.4, 5.5, 5.6). 

• Demonstration of the use of OnSOAR to automate the execution of an incident 

response process for a DDoS attack with three security tools (Section 5.7).  
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• Evaluation of OnSOAR’s ability to automatically generate accurate configuration 

details for enabling security tools to interoperate and remove operational silos for a 

DDoS attack (Section 5.8).  

5.2 PRELIMINARIES 

5.2.1 Challenges in Automated Integration 

Given the diverse nature of security tools, the integration process of SOAR has several 

challenges [183]. It is not possible to know all the requirements of an organization at the 

design and installation phases of a SOAR platform [171]. A SOAR platform needs to 

control the flow of the activities performed by different security tools. A security expert 

modifies the activities based on a system’s availability and preferences. For example, a 

security expert may change an activity in the incident response process from analyzing 

alert log to correlating alert log after installation of a new IDS in a network router. 

However, there is a lack of a systematic way of automating the process of integrating 

security tools [22, 158]. 

A security expert adds or removes security tools or changes their configuration and 

deployment strategies; for example, a security team may change the preferred format of 

an alerts log file based on the SIEM system being used. A security expert manually maps 

the newly-integrated security tool’s functionalities with the activities of an incident 

response process and vice versa. Figure 5.1 depicts a scenario of an organization that has 

a SOAR platform (i.e., similar to Figure 4.1 of chapter 4). However, the SOAR platform 

shown in Figure 5.1 cannot automatically perform the mentioned changes due to the 

heterogeneity and isolated nature of most security tools, which lack interoperability and 

interpretation of the generated messages. 

5.2.2 Problem Formulation 

Consider a scenario where an application of an organizations’ website is being 

overused with a superfluous request. Detecting the scenario as a malicious one, an IDS 

generates alerts that consider the behaviors as a DDoS attack. Upon gathering such alerts, 

the SOAR orchestrates and automates the incident response process to prevent and 

recover from the DDoS attack. For illustration purposes, we assume the actions 

automated by a SOAR are detecting incidents, collecting alerts and system logs, 
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identifying the affected systems, and generating an incident report. Let us assume that an 

organization has a set of security tools 𝑆, that are integrated into a SOAR, where 𝑆 =

 {𝑠1, 𝑠2, 𝑠3, … , 𝑠𝑖, … , 𝑠𝑛}. An example of 𝑠𝑖 can be Snort, Bro, Splunk, or Limacharlie. 

Each security tool, 𝑠𝑖, performs a set of activities, 𝐴𝐶 =  {𝑎𝑐1, 𝑎𝑐2, … , 𝑎𝑐𝑗 … , 𝑎𝑐𝑚} to 

protect against potential security attacks. 

 

Figure 5.1 An example of execution of an incident response process in a security 

orchestration platform 

Definition: 5.1. (Activity). An Activity is an action performed by a security tool or 

a human expert to detect, prevent, remediate, recover or respond to security incidents. 

Examples of the activities include detecting security incidents, investigating threats, and 

analyzing threat behaviors. A SOAR has a playbook that has a list of Incident Response 

Plans (IRP), 𝐼𝑅𝑃 = {𝑖𝑟𝑝1, 𝑖𝑟𝑝2, … , 𝑖𝑟𝑝𝑘, … , 𝑖𝑟𝑝𝑝}, where, 𝑖𝑟𝑝𝑘 = { 𝑎𝑐1, 𝑎𝑐2 … , 𝑎𝑐𝑗} is a 

sequence of activities that needs to be executed in response to a security incident. The 

playbook contains the rules associated with the execution of an IRP. 

Definition: 5.2. (Security Incident). A security incident is an unwanted or 

unexpected event/events that has a significant probability of compromising the security 

of an organization’s assets. Examples of security incidents include security threats, 

breaches, attacks and so forth. For example, for a security incident, 𝐼 (𝐷𝐷𝑜𝑆 𝐴𝑡𝑡𝑎𝑐𝑘), 

the response process includes activities: DetectIncident, CollectLog, AnalyzeLog, 

GenerateReport, and so on. 
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 Figure 5.1 shows a scenario for auto-execution of an incident response plan 𝑖𝑟𝑝𝑘 

to respond to a security incident. In the scenario, a security tool, 𝑠𝑖, detects suspicious 

traffic on asset 𝑎𝑙 and generates an alert that it is considered as a security incident I (i.e., 

an alert “DDoS attack”).  

Definition: 5.3 (Asset): An asset is any system, data, resources, hardware, or 

software that an organization wants to protect. Examples of assets include databases, 

servers, hosts, applications, and websites. 

 A SOAR gathers the incident details and searches for an appropriate IRP in the 

playbook. For example, for the incident, I, shown in Figure 5.1, a SOAR finds the best 

match IRP 𝑖𝑟𝑝1, which has a list of activities 𝑖𝑟𝑝1 = {𝑎𝑐1, 𝑎𝑐2, 𝑎𝑐3}. The SOAR then 

searches for a security tool that can execute those activities and finds the artifacts 

required to automate the execution of the activities. Then SOAR performs a set of tasks, 

T for each activity, where 𝑇 = { 𝑡1, 𝑡2, … , 𝑡𝑞, … , 𝑡𝑟}. 

Definition: 5.4 (Artifact): We consider the alerts and logs generated by different 

security tools as the artifacts of a SOAR, which deal with different structured, semi-

structured and unstructured data that come in various formats and languages from 

different security tools. 

Definition: 5.5 (Task). A task is an action that a SOAR performs to automate the 

execution of the activities in an IRP. For example, the execution of an activity 

DetectMaliciousTraffic requires a SOAR to perform three tasks: searchDetectionSystem 

(t1): looking for an available security tool that purports to detect intrusion, 

selectDetectionSystem (t2): if multiple systems are available, selecting one, and 

invokeDetectionSystem (t3): invoking a security tool to run in detection mode.  

 We assume that a SOAR selects a security tool 𝑠𝑖  (Snort), which can scan the 

asset 𝑎𝑙 (endpoint) to detect incidents. A SOAR invokes 𝑠𝑖 to run in intrusion detection 

mode. These tasks are performed by a SOAR to automate the execution of the activity 

𝑎𝑐𝑗 (DetectIncident). Finally, 𝑠𝑖  scans 𝑎𝑙  to detect suspicious traffic. We refer to this as 

the execution of the activity 𝑎𝑐𝑗, that is performed by a security tool 𝑠𝑖. We consider the 

combined activities performed by security tools and the tasks performed by SOAR to 

automate the execution of activities to be an automated integration process. 
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5.2.3 Motivation 

Our research aims to automate the process of integrating different security tools into a 

SOAR platform. The integration process is a combination of interpretation, selection, 

formulation, and invocation. A SOAR platform performs different types of tasks to 

manage different aspects of threat defense and incident response. For example, a SOAR 

connects different activities of different security tools to remove operational silos. We 

refer to this type of task as an integration task. A SOAR also orchestrates the flow of 

data and activities to make security tools interoperable and enables machine to machine 

automation by providing machine interpretability semantics. We consider these types of 

tasks as orchestration, and automation of security activities. The process of automated 

integration of security tools for the execution of an IRP depends on the combination of 

these three tasks. 

 

 In this work, we focus on developing suitable support for automating the process 

of integrating security tools in a SOAR for a seamless incident response without human 

effort in performing activities. 

5.3 THE PROPOSED SOLUTION  

Figure 5.2 provides an overview of the developed OnSOAR. It mainly comprises three 

layers: a semantic layer, data processing layer and security tool layer. It is composed of 

core concepts of a SOAR’s platform and provides (i) the unified capability of a SOAR 

platform, which can be achieved through a number of security tools, (ii) the semantics of 

different security tools’ generated data and (iii) the rules to avoid conflict and invalid 

integration of security tools. It can make different security tools interoperable, so that the 

output of one security tool can be used as input to another security tool without human 

intervention. 

Security Tool Layer (Sec 5.5): The security tool layer provides the fine-grained 

information about security tools, running processes and the current state of an 

organization. In this layer, the artifacts generated by different security tools and assets 

are forwarded to the upper layers (Figure 5.2), which then extract the features (e.g., alert 

Auto-Integration Process = task (Integration, Orchestration, Automation)  

= Interpretation + Selection + Formulation + Invocation + Execution 
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types) from logs. Figure 5.2 shows that the raw data are passed through the integration 

layer to the data processing layer, which applies pre-processing rules to map the raw 

events onto the classes of the developed ontology (e.g., maps the alerts log to the IDS 

that generated it). The integration layer mainly consists of APIs, plugins and wrappers 

that are used to integrate security tools in a SOAR platform (chapter 3). As the focus of 

this chapter is on automating the process for integrating the security tools, we do not 

discuss the integration layers at this point. 

Integration layer

Data Processing Layer

Security Tool 
Layer

Semantic Layer

Collector

Output Handler

InterpreterQuery Engine

ReasonerOntology

Input Constrcutor
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Figure 5.2 A high-level overview of OnSOAR 

Semantic Layer (Sec 5.4): The semantic layer provides the semantic details about 

the input, output, and activities performed by security tools to the data processing layer 

and orchestration layer. It supports the integration process of the security tools to 

OnSOAR through which (i) security tools’ capabilities (functional and non-functional 

features) are captured, (ii) the capabilities required by IRPs are identified, (iii) the related 

artifacts and data maintained among different security tools are identified and (iv) the 

configuration details of security tools are retrieved. It also stores abstract knowledge 

about the tasks performed by SOAR. 

Data Processing Layer (Sec 5.6): The data processing layer is responsible for 

collecting and analyzing security tools’ data and invoking security tools. The collector 
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collects the system logs and output of security tools. The output produced by different 

security tools are passed to the interpreter. Furthermore, the annotated artifacts from the 

semantic layer are passed to the data processing layers’ input constructor to formulate 

commands for invoking a security tool.  

The orchestrator of the orchestration layer mainly controls the integration process. 

The orchestration layer is responsible for invoking appropriate tasks for automating the 

process of integration of several security tools based on the activities of an IRP (details 

in chapter 3).  

5.4 SEMANTIC LAYER 

Interpretation of security tools’ capabilities requires formalization of various concepts 

(i.e., activities, inputs and outputs). The semantic layer uses an ontology to represent the 

domain knowledge of the SOAR platform through a set of concepts and their 

relationships, as described in the following section. It leverages the ontologies’ capability 

to represent multi-sourced data [179, 182], taking into account the semantic integration 

process among heterogeneous data produced by different security software systems. 

5.4.1 Ontological Model 

To build the ontological model for OnSOAR, we have cataloged the existing security 

tools based on their key features, different data types and runtime environments. Our 

ontology engineering focuses on leveraging existing and widely-adopted ontologies 

[158]. We used the ontological model to formalize the semantics of some of the key 

security tools’ capabilities (e.g., intrusion detection and the command to invoke a 

system), artifacts (i.e., windows log, Syslog) or context data (affected assets) and the 

activities of IRPs. The proposed ontology model consists of the following classes, shown 

in Figure 5.3. The security tool class (SecurityTool) represents all types of security tools. 

These systems are designed to protect assets, based on an organization’s requirements. 

We modeled different features of security tools under this ontology class. The activity 

class (Activity) formalizes the actions of the IRP. The activities are presented with respect 

to a system’s required functional features. The capability class (Capability) is used to 

capture functional and non-functional features of an individual security tool. This class 

is used to instantiate the underlying ontology model in response to a security incident to 
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execute the selected activities. It also formalizes the types of data with which security 

tools deal. As shown in Figure 5.3, the Activity class has a relation requireUseOf with 

SecurityTool class, where the SecurityTool class has a relation hasCapability with the 

class Capability. The relationship between classes is defined as the object property. Here 

the hasCapability is the object property of the SecurityTool class. These types of 

relationships can also be presented as a triplet in RDF or XML, for example, 

(SecurityTool, hasCapability, Capability) where SecurityTool is the domain of the object 

property and Capability is the range. 

 

Figure 5.3 Part of our ontology: the dashed arrow represents the subclass and the solid 

line represents the relationship among classes 

5.4.1.1 Security Tools 

Different types of security tool have been categorized under the abstract class 

SecurityTool, which has different subclasses, with some subclasses based on their 

functionality, as shown in Figure 5.3. For example, both Bro and Snort in Figure 5.3 are 

considered as the subclass of IDS due to their extensive use of intrusion detection. 

Though Snort can be used for both intrusion detection and packet sniffing, most 

organizations use Snort to detect intrusions, which is the main functionality of Snort.  

We express the necessary conditions for a security tool to execute an activity 

through the semantics of the Capability class. The SecurityTool class can be extended to 

incorporate new security tools with new types of behaviors. When OnSOAR intends to 

integrate a security tool, it creates an instance of a security tool by instantiating the 
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associated properties required for the security tool’s integration. For example, an instance 

of SecurityTool, SnortInstance represents the instance of Snort class, which indicates a 

Snort system is integrated into OnSOAR. To categorize a security tool under a particular 

subclass, the security tool must satisfy the capability associated with that subclass. We 

impose different types of restrictions for creating an instance of a class that must satisfy 

the relations with other classes. For example, as shown in Figure 5.3, the SecurityTool 

class has a relation execute with the Activity class. An instance of a SecurityTool class 

must execute an activity. We describe more details on the rules for imposing different 

constraints and restrictions in section 5.4.1. 

5.4.1.2 Activity 

We categorize each activity of the IRP under the Activity class. This class is instantiated 

in response to an incident I (i.e., DDOS attack). An instance 𝑎𝑐𝑖 

(i. e., DetectMaliciousTraffic) of an activity class 𝑎𝑐𝑗, 𝑎𝑐𝑗 ∈  𝐴𝐶 represents the execution 

of 𝑎𝑐𝑗 in response to the incident I. DetectMaliciousTraffic and CollectSnortAlertLog are 

instances of the subclass of the Activity class. Figure 5.3 shows the details of the 

subclasses and their relationships. Execution of each activity further depends on the 

availability of security tools and the preferences of an organization’s security 

requirements. 

A SOAR executes an orchestration routine to call individual security tools to 

execute an activity. Execution of activities generates artifacts, i.e., system and alert logs. 

Artifacts are also required before executing the activities. For each activity, a SOAR 

performs a set of tasks T (i.e., select security tool and invoke security tool) to collect and 

manage artifacts, automate, and track execution of the activities performed by the 

security tools. The execution of these tasks generates further events, i.e., system found 

and endpoint protection system running successfully, through which OnSOAR keeps 

track of the tasks and the activities being executed by a security tool. 

5.4.1.3 Capability 

We define the capability of a security tool under the class Capability with two subclasses: 

FunctionalCapability and NonFunctionalCapability. We consider each security tool can 

be represented in terms of their functional and non-functional capability. 
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Definition 4.1. (Functional Capability). The functional capability is the capability 

of a security tool to perform activities to achieve security objectives. We denote a set 𝔽 as 

the functional capability of a security tool. Each security tool, 𝑠𝑖, can have a list of 

functions denoted by 𝛿𝑠𝑖
 where 𝛿𝑠𝑖

⊂  𝔽. For example, IntrusionDetection and 

LogManagement support the activities DetectIncident and ManageLog, respectively. 

Definition 4.2. (Non-Functional Capability). The non-functional capability is the 

ability of a security tool to support the quality requirement, while providing the 

functional features. Examples of a security tool’s non-functional capabilities include the 

command syntax, input parameter format, and data type. For instance, alerts generated 

by Snort in various file formats (i.e., CSV or binary) are considered as the non-functional 

capability. 

Each security tool has a different data structure, preferred configuration, generated 

workflow and a way to share information with security experts [21-23, 72]. We define 

these kinds of the knowledge required by OnSOAR to run and maintain a security tool 

under non-functional capability. The Non-Functional capability class has three further 

subclasses: Input, Output, and RuntimeEnvironment. The proposed ontology model 

requires the Input class for executing an activity. The SnortInputForIntrusion has the 

information to run Snort on IntrusionDetection mode. The Input class has the 

configuration details for Snort in intrusion detection mode. We have designed the Output 

class to capture different types of outputs that are generated by security tools after the 

execution of an activity. The inputs and outputs of each security tool vary with the 

activities executed and depend on the runtime environment. Whenever a new security 

tool is installed in an organization, a security expert can populate the ontological model 

by defining the capabilities of the installed security tool. More details on the relationship 

between the classes are shown in Figure 5.4. Figure 5.5 shows some of the instances of 

the SecurityTool, FunctionalCapability, Input and Output class. 

5.4.1 Ontological Reasoning 

Our proposed OnSOAR has a Reasoner that uses rule-based reasoning to derive the 

semantic correlation among the activities, security tool and capabilities. We have defined 

various rules within the ontology to provide inferred information and some constraints  
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Figure 5.4 The relationship between the SecurityTool class and subclass of the 

Capability class 

 

Figure 5.5 Instances of classes of the ontological model and their relationship with 

other instances. Blue lines represent the data property of the instance of the class Input 

and Output 

for error-free integration. These rules help OnSOAR avoid ambiguity, while creating an 

instance of classes. Based on the rule-based reasoning of an ontology, the Reasoner 

provides the inferred information. For example, Figure 5.5 shows that SnortInstance 
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hasFuncCap IntrusionDetection, and hasOutput OutputForIntrusion. 

OutputForIntrusion hasOutputType Alert. Based on the reasoning, the Reasoner infers 

the relation SnortInstance hasOutputType Alert. Using the Reasoner, we can derive the 

following information: “If Snort generates an alert in intrusion detection mode, then the 

execution of activity DetectIncident by Snort must generate an alert while seeing 

malicious traffic”. 

We provide the examples of some rules (Rules 1 to 9) that are defined in our 

ontology. The rules enable OnSOAR to satisfy the need for reliable automation of the 

activities. These rules enable us to express the conditions about the occurrence or non-

occurrence of auto execution of the activities, the creation of instances, and tracking and 

managing the activities of IRP. Each security tool must have at least one functional 

capability to execute an activity (Rule 1). For example, Snort must have a functional 

capability Intrusion Detection that can execute an activity detection intrusion. Auto-

execution of an activity requires at least one system with the functional capability 

required to execute the activity (Rule 2 & 3). 

The input and output of security tools need to be explicitly defined to be 

integrated into a SOAR. For example, every security tool must have an input command 

(Rule 4) so that OnSOAR can automatically invoke a security tool to execute different 

types of activities. Most of the output produced by different security tools needs to have 

an output file location from where the SOAR reads the file to interpret the output (Rule 

5). For example, if Snort runs in intrusion detection mode and generates output, then the 

output type must be an Alert (Rule 6). 

 

We have also defined the rules for each security tool class. Rules 7 to 9 are 

examples of such rules, where Rules 7 and 8 are dedicated to security tool SIEM and 

Rule 9 is for IDS. We impose the criteria to categorize a security tool under a subclass 

Rule 1: SecurityTool hasFuncCap min 1 FunctionalCapability 

Rule 2: Activity requireUseOf exactly 1 SecurityTool 

Rule 3: Activity requireFuncCap some FunctionalCapability 

Rule 4: Input hasCommandSyntax some xsd:string 

Rule 5: Output hasOutputFileLoc some xsd:string 

Rule 6: OutputForIntrusion hasOutputType only Alert 
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of the SecurityTool class. For example, using Rules 7 and 8, we restrict the creation of a 

SIEM system instance. Any instance of a SIEM system must satisfy Rules 7 and 8. 

OnSOAR executes the activities sequentially; that causes the input to execute 𝑎𝑐𝑗+1 which 

relies on the output of 𝑎𝑐𝑗. As a result, a security tool that is selected to execute 𝑎𝑐𝑗+1 

must have access to the output of a security tool that executes 𝑎𝑐𝑗. For example, if Splunk 

needs to analyze the alert log produced by Snort, it must have access to the output file of 

Snort. As per our rules, if the Splunk input type is equivalent to the Snort output, then the 

Splunk input file location must be the same as the Snort output file location. Similarly, 

OnSOAR needs to have the authorization to invoke and stop every security tool that is 

integrated into its platform. 

 

5.4.2 Querying the Ontology 

The semantic layer deploys a Query engine to extract the necessary features from the 

ontology. The Query engine is responsible for communicating with our ontology. It 

queries the ontology based on the requirement of an Interpreter. We designed a set of 

queries for OnSOAR to retrieve the necessary information from the ontology. The queries 

have three different structures, depending on the required information, as shown in Table 

5.1. The Interpreter of the orchestration layer invokes the appropriate query to select the 

security tools (Q1), functional capabilities required by the activities (Q2), and capabilities 

of a security tool (Q3). Query Q3 has three different structures: query to extract the input 

details, query to extract the output details and query about the runtime environment. If 

an incident response process has an activity DetectIncident, and execution of that activity 

requires the capability IntrusionDetection, then the Query engines queries the ontology 

for a security tool that has the capability IntrusionDetection. Assuming an instance of 

Snort is available, the query returns SnortInstance. 

 

 Rule 7: SIEM hasFuncCap min 3 FunctionalCapability 

 Rule 8: SIEM hasFuncCap some (EventManagement or EventMonitoring or 

LogAnalysis or LogCollection or LogManagement) 

 Rule 9: IDS hasFuncCap only (IntrusionDetection or PacketLogging or 

PacketSniffing) 
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Table 5.1. Different types of query 

Query Type Query Details 

Q1 Query to identify the functional capability required to execute an activity 𝑎𝑐𝑗. 

Q2 
Query to search for a security software system 𝑠𝑖 that has functional 

capability 𝔽. 

Q3 
Query to retrieve the non-functional capability required by 𝑠𝑖 to execute 
functional capability Fa 

5.5 SECURITY TOOL LAYER 

The security tool layer consists of the various security tools. The security tools send 

outputs to the collector of the data processing layer. The integration layer lies between 

the security tool layer and the data processing layer, which mainly consist of the 

integration mechanism through which security tools are integrated (chapter 3). Raw 

events, system logs, network packets, alerts, security incidents, configuration changes, 

or commands from experts are sent from the security tool layer. The security tool layer 

also consists of tools to integrate the knowledge in the ontology and security tool. An 

ontology Editor can also be deployed in the security layer to create, update and modify 

the ontology classes. In this thesis, we consider a security team will update the ontology’s 

details. Chapter 6 provides a set of APIs that can be used by security teams to interact 

with the ontology. OnSOAR uses the reasoner in every step to check the consistency of 

the operation that is performed via the editor. For example, if the editor attempts to create 

an instance of Snort with functional capability MonitorFile, the reasoner considers the 

ontology inconsistent because, based on rule 9, Snort has three capabilities that do not 

include MonitorFile. 

5.6 DATA PROCESSING LAYER  

This section describes the process of automating the integration of security tools 

performed in a data processing layer which is coordinated by the orchestration layer in 

four stages: (i) interpretation of incident, (ii) identification of activities and functional 

capabilities required to respond to an incident (iii) selection of security tools, and (iv) 

formulation of command to invoke a security tool. The data processing layer mainly 
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consist of a collector, output handler and input handler. Given the logs collected from 

different security tools, the Collector pre-processes the raw events data before sending 

data to the Output handler. The output handler annotates the output with the context 

details, such as types of log (i.e., Syslog, server logs, event logs, and message logs), the 

location from where the logs (i.e., the directory) have been collected, the environment 

(OS, endpoint, sensor, server) and timestamps. 

5.6.1 Interpretation of the Incident 

The output handler of data processing receives the output of a security tool from the 

Collector. Upon receiving the alert event, it sends the output (i.e., alert log produced by 

𝑠𝑖 Snort) to the Interpreter to interpret the incident type I. Figure 5.6 shows an example 

process of interpreting the incident type from the alert log generated by a security tool. 

To semantically interpret the incident, the interpreter first identifies a security tool 𝑠𝑖  that 

generates the alert. It invokes the Query engine to get the output format of 𝑠𝑖 . Upon 

receiving the output, it semantically annotates the incident type I among the list of 

features in the alert. The Interpreter returns the annotated alert (e.g., alert type, 

description, and source IP) to the Output handler and sends the incident I to the 

Orchestrator to take the response action. 

 

 

Figure 5.6 Example of sub processes of the integration process for interpreting the 

incident  
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5.6.2 Identification of Capability to Respond to an Incident 

Upon receiving the incident, I, the orchestrator looks for the possible IRP in the incident 

response playbook. Assuming 𝑖𝑟𝑝𝑘  =  {𝑎𝑐1, 𝑎𝑐2, 𝑎𝑐3} is the IRP for incident I, the 

Orchestrator extracts the list of activities from 𝑖𝑟𝑝𝑘 and invokes the interpreter to 

identify the functional capability required to perform an incident response against an 

incident. For each activity, the Interpreter invokes the query engine to run query Q1 ( 

 

Table 5.1), which returns the functional capability required to execute an activity and 

send it to the Orchestrator. 

5.6.3 Selection of Security tools 

According to the proposed scenario (5.2.2), the auto-execution of the IRP requires 

OnSOAR to identify security tool𝑠𝑖 , with the functional capability 𝐹𝑎, to execute the 

activity. The query Q2 is used to identify a security tool with functional capability 𝐹𝑎, 

where  𝐹𝑎 ∈ 𝔽 (Figure 5.7). Each security tool has a relationship with the functional 

capability class. The Interpreter queries the ontology to find the list of security tools 

required to execute 𝑖𝑟𝑝𝑘. 

 

Figure 5.7 Example of sub processes of the integration process for identification of 

capabilities to automatically respond to an incident 
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5.6.4 Formulation of Commands to Invoke a Security tool 

The Input constructor requires the knowledge to formulate the instruction to run 𝑠𝑖 in  𝐹𝑎 

mode. The formulation of commands requires the Orchestrator to invoke the interpreter 

to interpret the input features of a security tool. The ontological model has that 

information as a data property in the Input class (5.4.1.3). The Interpreter invokes query 

Q3 of Query engine to extract the details of the input command. The annotated inputs are 

passed to the Input constructor, which ultimately generates the command details to 

invoke a particular security tool (Figure 5.7). 

In some cases, the execution of specific activities requires the output from previous 

activities. The Input constructor needs to generate the script to invoke a security tool and 

sends an integration command to execute the activities sequentially. To execute a 

sequence of activities, the Input constructor needs the annotated output of the previous 

activities. The Output handler is invoked to send the annotated output to the Input 

constructor to execute this activity. OnSOAR also has a set of rules to manage 

interoperability among the security tools. The Orchestrator controls the flow of the 

operation in these cases and invokes appropriate modules, rules and queries to automate 

the execution of 𝑖𝑟𝑝𝑘. The orchestration layer enables direct interpretation of the input 

and output of security tools in order to make them interoperable. 

This whole process of integration of security tools is automated by OnSOAR using the 

proposed ontology, a set of rules and queries. 

5.7 EXPERIMENTAL DESIGN AND SETUP 

In this section, we describe the experimental setup used for demonstrating and evaluating 

OnSOAR’s ability to automate the process of integrating various security tools. We have 

developed the required components based on Figure 5.2. 

5.7.1 Gathering Input Data for OnSOAR 

We gathered a list of activities and identified the functional capabilities required to 

execute these activities. Table 5.2 shows the part of the activities gathered. The activities were 

extracted from the IRP for different types of attacks. We extracted the IRP from the website ServiceNow 

for different incidents. We slightly modified the IRP to match with the capabilities of the security tools 

we were using. We used the IRP for DDoS attack shown in  
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Table 5.3 for our experiment. The purpose of this experiment is to demonstrate 

OnSOAR’s ability to automate the integration process that enables auto-execution of the 

IRP in a SOAR platform. 

Table 5.2. Functional capability mapped with activity  

Activity Functional capability 

𝑎𝑐1 Detect incident Intrusion detection  F1 

𝑎𝑐2 Collect alert log Log collection  F2 

𝑎𝑐3 Identify affected system Alert Analysis  F3 

𝑎𝑐4 Generate incident report Report generation F4 

𝑎𝑐5 Sniff network packet Packet sniffing F5 

𝑎𝑐6 Log network packet Packet Logging  F6 

𝑎𝑐7 Isolate affected node Node Isolation  F7 

𝑎𝑐8 Kill malicious process Process killing F8 

𝑎𝑐9 Generate report Report Generation F9 

𝑎𝑐10 Monitor Event Event monitoring  F10 

𝑎𝑐11 Manage log Log management F11 

𝑎𝑐12 Investigate alert  Alert analysis F3 

𝑎𝑐13 Generate alerts Intrusion detection F1 

𝑎𝑐14 Scan endpoint  Intrusion detection  F1 

𝑎𝑐15 Remove malware Process killing F8 

 

Table 5.3. Use case scenario with IRP 

Incident type Incident response plan (IRP) 

𝐼1 DDoS attack 𝑎𝑐2, 𝑎𝑐12, 𝑎𝑐5, 𝑎𝑐3, 𝑎𝑐13, 𝑎𝑐10, 𝑎𝑐7, 𝑎𝑐9 

𝐼2 Malicious process  𝑎𝑐10, 𝑎𝑐11, 𝑎𝑐3, 𝑎𝑐9, 𝑎𝑐8  

𝐼3 Malware 𝑎𝑐14, 𝑎𝑐12, 𝑎𝑐15, 𝑎𝑐9 

 

5.7.2 Application Environment Setup 

To set up the application environment, we chose three different types of security tools, 

Snort as IDS, Splunk as SIEM and Limacharlie as EDR, that have the capabilities to 
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execute the activities of Table 5.2. Among these security tools, Snort and Limacharlie 

are open source security tools, whereas Splunk is commercial. We used the free trial of 

Splunk enterprise version due to its wide range of functional capabilities. We mapped the 

functional capability of the security tools with Table 5.2, which gave δSplunk = {F2, F3, 

F4, F9, F10, F11}, δSnort= {F1, F5, F6} and δLimacharlie = {F2, F7, F8, F12}. Both Limacharlie 

and Splunk can perform other activities that are not listed here. We used a centralized 

directory to collect alerts logs produced by Snort, the event and process log sent by a 

Limacharlie sensor to a Limacharlie cloud and gathered the reports generated by Splunk. 

We defined variables to preserve the information following from the application layer to 

orchestration layer, for example, variable SystemFrom to store security tools that 

produced the output and variable filePath to store the location of the output file (Sec 5.5). 

We installed the Snort and Limacharlie sensor applications on the local host. 

Limacharlie’s cloud server and Splunk’s server application were deployed on a virtual 

machine. We also defined the detection and response rules for Limacharlie and Splunk. 

5.7.3 Development of the Ontological Model 

We developed the ontology of OnSOAR using protégé [184], an ontology editor. We 

defined the details of the abovementioned three security tools, the capabilities of these 

systems and activities of the incident response plan in the ontology. We used RDF/XML 

serialization to store the ontology. We followed the similar approaches discussed in 

section 5.4.1. We used the OntOlogy Pitfall Scanner [185] to evaluate the functional and 

structural dimensions, conciseness, and completeness of the ontology. We maintained 

the consistency of the ontology, while developing the concepts and populating it. We 

defined the reasoning rules discussed in section 5.4.1 and used Pellet reasoner to remove 

any ambiguity. Whenever any class instance does not satisfy the rules imposed on the 

class, the ontology becomes inconsistent. The reasoner generated error notifications if it 

found any inconsistency within the classes of the ontology. A violation of the restriction 

imposed on the classes also caused the reasoner to give an error notification. Thus, the 

reasoner ensured the consistency of our developed ontological model. We developed an 

Interpreter to semantically interpret the input and output and communicate with an 

orchestrator. We also developed a Query engine that can access the ontology through 
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SPARQL queries and an interpreter. We loaded the ontology meta model into an Apache 

Jena Fuseki server, an open source SPARQL server. 

5.7.4 Development of the Data Processing Layer 

Language. We have used both Java and Python for developing OnSOAR. Splunk has an 

SDK that allows interfacing with Java-based programs. It has a REST API to send a 

command to a security tool through HTTP requests. Limacharlie has a Python API 

available on GitHub. It is simply an interface to a REST API service. Whilst the API 

provides an easy way to interface with Limacharlie services, it is not tool agnostic. 

Because the Limacharlie API has been implemented in Python with the Limacharlie 

package, the Limacharlie class in Java is not able to send commands to endpoints by 

itself. It needs to execute Python scripts and passes the required arguments to the 

appropriate command to an agent on an endpoint. 

Module. We defined a task associated with each activity, as discussed in section 5.2.1. 

We developed rules for the Collector, Output handler and the Input constructor to collect 

the events log, interpret output and issue commands to invoke security tool(s). We 

developed the processes described in sections 5.6.1, 5.6.2, 5.6.2, and 5.6.4 for automating 

the process of integration. For example, to interpret the output of security tools, the 

developed interpreter extracted the information about a security tool’s capabilities and 

returned hash maps, which contain the information about the output file’s location and 

the action that generated the output. 

5.7.5 Baseline Approaches 

We used two baseline approaches to perform comparative analysis: a manual integration 

process (BL1) and an API-based integration process with a static interpreter (BL2).  

In BL1, the response process depends on a human. The security team performed 

the tasks using the security tool. For example, during the monitoring process, if the 

security team found alerts, they looked in the playbook for the response actions or used 

previous experience to investigate the alerts.  

In the BL2 solution, we developed a set of APIs between security tools to automate 

the sequence of activities. This process needed pre-developed APIs in both directions for 

each security tool, i.e., API to send data from Splunk to Limacharlie, from Snort to Splunk 
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and Limacharlie to Splunk as well. The goal of these APIs was to capture the essential 

expected capabilities of each security tool that allowed the implementation of the 

interface by any that kinds of security tools. We developed a static interpreter along with 

an output handler to automate responses for the DDoS attack in  

Table 5.3.  

5.8 EVALUATION 

We have evaluated OnSOAR using the following Research Questions (RQ).  

5.8.1 RQ1: How Effective is OnSOAR’s Process for Automating the Integration 

of Security tools? 

Motivation. OnSOAR leverages the semantic interpretation of both activities and 

security tools’ capabilities to integrate security tools through the orchestration process. 

However, the integration process still works if the APIs are designed and developed 

between security tools. Thus, we would like to investigate whether the combination of 

semantic integration and orchestration results in a better-automated process. The RQ1 

answers how effective OnSOAR is in making security tools interoperable where one 

system can directly use the output of another system as its input. It also investigates 

whether or not the system interprets the output of a security tool to formulate the input 

of another security tool with different capabilities. 

Approaches. We used network traffic with malicious behavior that has DDoS attacks. 

The Snort security tool generated alerts for the security incident I1 DDoS attack, which 

triggers the whole integration process. We compared the process for OnSOAR with the 

two baseline approaches. We monitored the actions performed by human experts for each 

activity for the IRP of I1. We also considered the different numbers of APIs needed for 

automation of the process using the BL2. Finally, we investigated the developed 

OnSOAR to execute the same list of activities. 

Results. Considering all three approaches use the same IRP, for each alert the security 

team first searched for the alert types and then looked for the possible list of actions and, 

based on the list, performed the actions. For the standard case, the staff used their 

previous experience to select security tools to perform each activity. For example, to 

perform the activities 𝑎𝑐2 and 𝑎𝑐12 , which are collect and investigate alerts logs, the 
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security team collected the alerts generated by Snort, and then uploaded those alerts to 

Splunk. For this, the experts needed to log into Splunk manually and upload the alert logs 

and then define the rules to investigate alerts. In case the same types of alerts were seen 

next, the security team needed to go through the same manual process again. The expert 

also needed to read the reports generated by Splunk and then send the commands to 

Limacharlie to isolate the affected nodes. For similar types of alerts, the manual process 

requires staff to repeat the same sequence of actions, which requires huge amounts of 

man-hours and also delays the response process. 

For BL2, APIs were available to perform the same sequence of actions. The APIs 

used a shared directory, where Snort stored the alerts and Splunk collected those alerts. 

A separate collector needed to be designed for each security tool to automate the process 

and interpret which security tool produced the alerts. BL2 also required definitions of the 

APIs for each function before the execution of an IRP. For example, execution of I1 

required the design of eight different APIs for each activity, even though the number of 

security tools was three. If the same set of operations needed to be performed in a 

different host and server, the APIs would need to be redesigned to work with that host 

and server. 

With OnSOAR, once Snort generated the alerts, the Interpreter automatically 

identified the incident as a DDoS attack and triggered the incident response process. We 

discuss the effectiveness of OnSOAR regarding the challenges mentioned above. 

OnSOAR chose the security tool based on its functional capabilities. It gathered the list 

of the security tools that can perform the activities in the IRP for incident I1. The input 

command syntax has the command needed by the security tools to run the security 

software. The commandSyntax has the sequence of the parameters to formulate the 

commands. Retrieving this information, OnSOAR successfully generated the scripts to 

run Snort, Splunk and Limacharlie in a different mode. Thus, OnSOAR successfully 

invoked each security tool to perform the sequence of activities without the intervention 

of human experts. Our developed system executed all the activities where it generated 

three different types of command to run Splunk in three different modes. We state that 

the program removes the operational silos by enabling the security tool to execute 

different activities. 
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Given the developed OnSOAR selected Splunk to execute the activity 𝑎𝑐2 , it 

generated the configuration commands for Splunk to collect the Snort log. It queried the 

Ontology to identify the input command to invoke Splunk to gather Snort alert logs, as 

well as the location of the output of the Snort alert log. Based on the results, OnSOAR 

generated the scripts to run Splunk to collect Snort output. Finally, it invoked Splunk to 

analyze logs (𝑎𝑐3) that were based on the rules defined in Splunk to identify the affected 

assets or cluster malicious assets. OnSOAR interpreted the output of the security tool to 

formulate the input of another security tool with different capabilities. A similar process 

is performed when OnSOAR selects Splunk to identify the malicious nodes and 

Limacharlie to isolate those nodes (𝑎𝑐3). OnSOAR extracted the node details from Splunk 

and generated the commands details for Limacharlie. Through the same process, the 

system auto-executed a sequence of activities where the output of one system has been 

used by another system. The system is able to interpret the data generated by the security 

tool and also interpret the actions performed by the security tool. With BL2, the same 

API that was used to send the Snort log to Splunk was not applicable. To interpret and 

extract the message of Splunk, BL2 needed to define the rules in the interpreter and then 

develop the API to send a message to Limacharlie. 

From the evaluation of OnSOAR in comparison with traditional approaches, we 

state our proposed approach for automating the process of integrating security tools 

successfully executes the IRP. The same process can be used to automate a different 

number of IRPs with different types of security tools, whereas, with BL2, new rules and 

APIs needs to be defined for different IRPs. 

5.8.2 RQ2: How Efficient is OnSOAR for Practical Use? 

Motivation. During the ontology development process, OnSOAR needs a domain expert 

to design the classes of security tool capabilities. Developing the ontology requires a 

substantial understanding of the security tools being used. Another time-consuming 

process is designing the incident response plan and orchestration process. If OnSOAR 

cannot alleviate challenges related to the manual integration process, and substantial 

efforts are needed to build the ontology, security experts may not be willing to use it in 

practice.  
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Approaches. We introduced new incidents (I2 and I3) which includes a list of activities 

and investigates the results of OnSOAR. Among these activities, some activities were 

executed during incident I1, and some are new. For the new activities, we compared the 

amount of effort required for OnSOAR in terms of the information an expert needed to 

include in the ontology and the efforts of BL2 in terms of the number of new APIs 

needing to be designed.  

Results. For all the three incidents, the security team required a substantial understanding 

of the security tools. Also, for both BL2 and OnSOAR, the IRP and the automation 

processes must be defined. For BL2, the security team needed to select security tools, 

develop the APIs accordingly, and then define the rules to automate the process. For 

OnSOAR, the staff only need to define the capabilities of the security tools to execute 

those activities. For the already-defined capabilities, no further action needs to be taken. 

The same integration process of extracting incidents, selecting security tools, interpreting 

output and formulating input works for executing the IRP for I2 and I3. The evaluation 

shows that little effort and few changes are required in OnSOAR to change the IRP. 

5.8.3 Threat to Validity 

Our work is focused on security tools that are used by the SOC of an organization. 

Gathering the security tool capabilities was challenging, as the information is not freely 

accessible. The developed system is limited to security tools that are widely used, freely 

available and open source. Currently, the evaluation of the proposed method is carried 

out in a University laboratory environment, which also limits the scope of the experiment. 

The proposed evaluation approach does not provide any quantitative measurement, 

which we plan to carry out in future work. 

5.9 RELATED WORK 

Much research effort is dedicated to using security ontologies to formalize several 

concepts in the cyber security domain [83, 179-181]. Such concepts include security 

mechanisms, security objectives, attacks, alerts, threats, vulnerabilities, and 

countermeasures. Most studies are focused on modelling various types of attacks using 

ontologies [83, 186], whilst others use ontologies to detect and prevent attacks [180, 187]. 

None of the abovementioned ontologies can be used by SOAR to make security tools 
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work together as these ontologies do not have the capabilities of security tools to 

streamline the incident response process.  

Several studies [172, 180, 181] have developed ontologies to formalize 

heterogenous threat intelligence information for cybersecurity tools. These studies focus 

on providing effective ways of information sharing and exchanging among cybersecurity 

communities. One study [172] has developed a Unified Cyber Security (UCO) ontology 

by combining and mapping widely used ontologies, i.e., STIX and CybOX. UCO 

provides a standard semantic representation of cybersecurity tools for information 

integration and cyber situational awareness. Although UCO has enriched the threat 

vocabulary, it does not provide any support for interoperability among heterogeneous 

security tools. The work also lacks ontologies that SOARs can use to interpret the 

activities performed by different security tools to make them work together as a 

requirement for auto-execution of IRP. 

Recently, a set of ontologies have been developed to enable tool-as-service 

(TSPACE) for a cloud-based platform [158]. Ontologies are used to select and provision 

tools, based on a stakeholder’s requirements, and semantically integrate the artifacts of 

the tools. A platform provides the stakeholder with a set of tools by using the ontology 

proposed by the authors; further stakeholders use those tools to perform the required 

activities. Ontologies help stakeholders to deal with semantic conflicts that arise while 

integrating multiple tools in the same platform. The ontologies of TSPACE do not 

provide any support to automate the execution of activities or make the tools 

interoperable. Thus, the ontologies are not applicable to SOAR. The features of the tools, 

needed to make them interoperable and remove the operational silos, are not captured in 

the ontologies of TSPACE. Unlike this generic work, our proposed OnSOAR provides 

the features of security tools that address the issues of interoperability and 

interpretability, and an automated process for integrating security tools, which can 

execute their respective activities for working together without human intervention. 

We have not found any other work that addresses the interpretability and 

interoperability issues, which need to be addressed to integrate, automate and orchestrate 

security tools’ activities for seamless incident response processes. Our thesis supports 

the interoperability and interpretability issues by mapping the capabilities of the security 
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tools with the activities of the IRP and providing an orchestration process to automate 

the execution of the IRP. Our ontology formalizes the security tools in detail by capturing 

their functional and non-functional features. OnSOAR can interpret the capability of 

security tools and generate the commands required to invoke a tool. Hence, it is uniquely 

positioned to address the challenges. To the best of our knowledge, this is the first work 

that has developed an ontology to automate the process of integrating security tools in 

SOAR. The automation is achieved by enabling interpretability, interoperability, and 

removing operational silos from multivendor heterogeneous security tools. 

5.10 CHAPTER SUMMARY 

We propose an ontology-driven approach to automating the process of integrating 

different security tools in a security orchestration platform. By formalizing the concepts 

of security tools, we aim to support automation in the integration process for security 

tools that further enables interoperability among different security tools. We provide an 

ontological model that characterizes all the concepts and relationships of SOAR 

platforms that are required for the integration process. We assert that OnSOAR can 

interpret the semantics of the output shared by different security tools and formulate the 

input required by security tools. Furthermore, OnSOAR glues security tools to execute 

the incident response process automatically. We have demonstrated the viability of the 

proposed approach by developing and using a proof-of-concept system. The results show 

that OnSOAR can (i) interpret the output of security tools, (ii) invoke a security tool to 

analyze the data of anothersecurity tool and (iii) automate the integration process to 

execute an incident response plan. We assert that our approach can minimize the 

challenges characterized by the manual integration process and effectively automate the 

integration process of different security tools. The findings from developing and 

evaluating our approach enable us to believe that OnSOAR can be easily integrated with 

an existing SOAR platform for the large-scale realization of security orchestration and 

automation in an organization’s SOC. 
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Chapter 6 

6 Declarative API for Security Orchestration 

Platforms 

The proposed semantic-based integration framework (chapter 4) and automated 

process for integrating security tools (chapter 5) has simplified the way security tools 

are combined in a security orchestration platform to automate an Incident Response 

Process (IRP). As discussed in the previous chapters, the emerging and dynamic 

threat landscape changes the underlying execution environment (i.e., security tools, 

IRPs and components) of a security orchestration platform. However, the users of 

security orchestration solutions have difficulty in adapting to these changes because 

of the ad-hoc and complex architecture of such platforms. This chapter introduces a 

Declarative API-driven Orchestration approach, DecOr, to resolve these 

difficulties. DecOr forms the abstraction layer of our proposed layers in chapter 3. 

DecOr comprises of (i) three sets of declarative APIs to encapsulate the activities 

related to security orchestration, (ii) a semantic framework to support an Artificial 

Intelligence (AI)-enabled design and generation of declarative APIs from task 

descriptions, leveraging Natural Language Processing (NLP) techniques, and (iii) a 

semi-automated approach to identify the concepts of an ontology from the available 

playbooks (i.e., an automated IRP) that are required by a security orchestration 

platform to automatically interpret the generated declarative APIs. We 

experimentally evaluate the effectiveness and efficiency of our proposed approach 

based on a benchmark of 147 task and declarative API pairs that are curated from a 

set of real-world playbooks. The evaluation results show that DecOr accurately 

generates declarative APIs in near real-time, with precision and recall values over 

80%.  
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6.1 INTRODUCTION 

The dynamic and unpredictable threat landscape causes constant change in the Incident 

Response Process (IRP) and security tools, requiring the security orchestration and 

automation platform (also known as Security Orchestration, Automation and Response 

(SOAR or SOA)) to be easily adaptable and modifiable to the needs of a Security 

Operation Centre (SOC) [21-23, 33, 159, 188].  

The process of updating the relevant components of a SOAR platform is time-

consuming and may hinder faster responses as it involves interactions between different 

levels of expertise and continuous human interventions [22, 26, 189]. In addition, a 

SOAR platform is difficult to maintain, as it requires an extensive understanding of the 

underlying libraries and infrastructures to accommodate changes. We assert that the 

changes associated with the existing SOARs are usually designed in an ad-hoc manner 

by blending several software components (i.e., proprietary, open-source or third party) 

through a complex architecture. We believe that, despite the inherent complexity of the 

existing solutions it should be possible to hide the complex design of SOARs behind an 

easy-to-use and flexible user interface, so a security team does not need to worry about 

the details of the libraries, plugins and tools to be used for an IRP. 

The architectural complexity of a SOAR platform comes from different factors. 

For example, to automate the execution of IRPs (i.e., defined in natural language), a 

SOAR’s or playbook’s developers build the automated workflow (i.e., playbook) or write 

executable scripts for IRPs [21-23]. The developed automated workflow is mostly static 

and cannot be changed with changing needs. Besides this, multiple security tools are 

required to execute an IRP. Security teams are expected to modify playbooks when 

security tools are installed and/or modified. It is quite difficult to seamlessly modify and 

develop new IRPs and integrate new security tools without fully knowing the playbooks 

or libraries of a SOAR [22, 26, 189]. A security team needs to have extensive domain 

expertise and understanding of the available tools, libraries and security requirements for 

developing IRPs. A security team in a SOC uses SOAR for different purposes, such as 

network administration or incident response planning. However, it should not be 

necessary for him/her to have extensive domain knowledge about the underlying 

execution environments.  
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Another factor contributing to the complexity is enabling interpretability and 

interoperability between security tools and the SOAR. Semantic technologies (e.g., 

ontological knowledge bases, RDF and OWL) are usually leveraged to support 

interpretability and interoperability among heterogeneous security tools and components 

[21, 23, 159, 188]. In chapters 4 and 5, an ontology has been designed to semantically 

describe the concepts of security tools, their actions, relationships between different 

concepts and the categories of the concepts. Whilst the existing semantic-based solutions 

automate the interpretation of security tools through semantic integration [21, 23, 159, 

188], human experts still need to update the ontology whenever changes occur. 

Development of an ontology requires substantial understanding of the domain of security 

orchestration. Furthermore, to integrate an updated IRP, a human expert needs to map 

that IRP with suitable concepts from an ontology, which further requires them to identify 

the semantic concepts and the relationship between the different categories of the 

ontology.  

In this chapter, we propose an Artificial Intelligence (AI) enabled Declarative API 

driven Orchestration approach, namely DecOr, to design a flexible, scalable and easy to 

modify SOAR to overcome the above-mentioned challenges. DecOr enables end-users 

of a SOAR to focus on the WHAT (e.g., run a playbook or block an IP) through a set of 

declarative APIs (dAPI) that hides a SOAR’s operating complexities at different levels 

of abstraction. The use of AI techniques, such as Natural Language Processing (NLP) 

and semantic technologies, in designing dAPI enables easy adoption of changing IRPs 

and security tools, which also contributes towards automating the manual and labor-

intensive tasks. The dAPIs are designed to provide the security team with flexibility to 

define IRPs or execute their desired tasks without having detailed knowledge about the 

underlying libraries and tools. We identify three sets of dAPIs: (i) orchestration API, (ii) 

integration API and (iii) execution API, as shown in Figure 6.3 (discussed in section 

6.3.2). 

DecOr's input can be a text-based query or commands to perform a task in response 

to a security incident. An organization’s security team can provide a description of the 

tasks or use a dAPI to update IRPs or provide commands. We have categorized the main 

operations of DecOr into two phases: understanding the commands or tasks and 
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interpreting dAPIs. For the first stage, we developed a semantic framework, SecAPIGen, 

that accepts a command or task description and translates that into a dAPI. SecAPIGen 

uses NLP techniques to interpret a command or task of SOAR and automatically 

generates a dAPI. For example, to invoke a task “block the IP address using the 

Checkpoint Firewall”, the generated dAPI is “block.IP.firewall(Checkpoint)”.  

For the second stage of our DecOr, we have developed a semi-automated approach, 

SemOnto, to identify concepts from IRP playbooks for the relevant ontology, which are 

required to interpret a dAPI. SemOnto automatically extracts the properties of the 

generated dAPI elements, which are incorporated in the form of the concepts of an 

ontology. In this way, SemOnto reduces the burden on security teams, who manually 

analyze and identify concepts for an ontology. We have modified the existing ontology 

of a SOAR to map the generated dAPI elements with the classes of an ontology. Mapping 

dAPIs with an ontology allows automated interpretation of dAPIs by a SOAR. Hence, 

AI-enabled declarative API-driven orchestration, DecOr, enables automated adaption 

and integration of IRPs and security tools by hiding the underlying complexity of the 

SOAR. 

We have evaluated the effectiveness and efficiency of our approach using 147 tasks 

from 194 playbooks. Our evaluation explores three key questions: (i) How effective is 

SecAPIGen in generating and identifying dAPIs for different tasks? (ii) Can SemOnto 

identify the concepts of an ontology from a playbook? and (iii) How efficient is DecOr in 

terms of required time? The results of our evaluation demonstrate the effectiveness of 

using AI-based approaches (i.e., NLP and semantic technologies) to automate the 

generation of a dAPI from a task description in terms of accuracy and response time. 

Across the benchmark, DecOr generates dAPIs with precision and recall above 90% and 

80% respectively. On average, for 90% of the cases, DecOr successfully identifies the 

properties of the generated dAPI elements as a concept of ontology. Moreover, the 

average response time to generate different parts of a dAPI is close to 170 milliseconds. 

The following are the key contributions of this work: 

• A set of requirements for designing three sets of dAPIs for AI-enabled dAPI driven 

orchestration to integrate security tools and execute IRPs in a SOAR. 
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• A semantic framework, SecAPIGen, to automate the generation of dAPIs from task 

descriptions by leveraging NLP tools and techniques. SecAPIGen allows both 

technical and non-technical users to interact with a SOAR without requiring detailed 

knowledge about the underlying libraries and configurations. 

• A semi-automated approach, SemOnto, to identify the properties of the generated 

dAPI elements as a part of the concepts of an ontology from the playbooks of a 

SOAR.  

• Design and execution of rigorous evaluation of the developed solution using 194 

playbooks.  

In section 6.2, we provide the background and preliminaries of security orchestration and 

ontologies, and a detailed motivation scenario for proposing declarative API driven 

orchestration. We describe the proposed approach in Section 6.3. The experiment design, 

proof of concept system and evaluation of our proposed approach are discussed in 

Section 4. Section 5 discusses the benefits, limitations, and future directions and 

opportunities. Section 6.6 provides the related works. Section 6.7 concludes the chapter. 

6.2 PRELIMINARIES AND MOTIVATION 

This section provides the background information on the playbooks and ontology of a 

SOAR platform. We start with an example playbook and provide a brief overview of the 

ontology proposed in chapters 4 and 5. Then we introduce a running example that we use 

to illustrate the motivations of this chapter. Finally, we formulate the problem and 

introduce the key notations that are used throughout this chapter.  

6.2.1  Playbook for Security Orchestration and Automation 

A SOAR platform executes playbooks to respond to specific incidents. The playbooks 

contain automated workflows designed from an IRP of an incident. The SOAR platform 

developers or playbook designers explicitly code all possible action flows and forecast 

all possible exceptions in a playbook. Figure 6.1 shows a code snippet of a playbook 

from Demisto (i.e., a SOAR platform) [166]. The playbook script is written in YML 

[190] and expresses the code for “blocking malicious IP using all available security 

tools”. Figure 6.1(a) shows that a playbook has a set of tasks (line 13), inputs (line 430) 
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and outputs (line 439). Figure 6.1(b) shows a snippet of one of the tasks (line 91) of that 

playbook. It shows that, to execute a task, a SOAR platform runs a script (line 93). The 

details of the script, such as names and arguments, are also defined in a playbook (lines 

100-108). The playbook also contains the names of the security tools (lines 8-11) that 

will be used to execute a task (Figure 6.1(a)). For example, for a task block IP (Figure 

6.1(b)), the security tool is “Checkpoint Firewall”. Several things can go wrong while 

executing a playbook, such as a task may fail due to the unavailability of the scripts or 

argument settings of security tools; or a security tool might not have the authority to 

block a particular IP, making it impossible to execute a task and so forth. 

(a) An example of the script of a playbook – Block IP (b) Code snippet of task  block the IPs using Check Point Firewall  

Figure 6.1 Example (a) snippet of a playbook for block IP which contains the list of 

tasks, inputs and outputs of a playbook and (b) snippet of a task of a playbook to run a 

script to “block IP with Check Point Firewall”, where the task consists of the script 

arguments that are required to execute it 

6.2.2  Ontological Knowledge Base 

Whilst a playbook helps to bring automation in a SOAR platform, the interpretability and 

interoperability of a SOAR platform are achieved by formalizing and storing the 

semantic knowledge of security tools and IRPs in an ontological knowledge base. A 

SOAR platform can automatically use a knowledge base to interpret the data generated 

and ingested by heterogeneous security tools. We have analyzed different security tools 

and built an ontology based on different security tools’ and playbooks’ activities (refer 

to chapters 4 and 5). The key concepts in an ontological knowledge base are security 

tools, their capabilities and tasks of IRPs (see Figure 6.2(a)). 
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A = select.capability (block.IP.firewall(checkpoint))      

X = get.capability (A)         Y = get.tool(X)                             B = interpret.input(Y)           Z = get.input(Z)            

C = select.tool (Y, Z)          D = formulate.input(C, Z)             E = execute.command(D)

(e) Declarative API driven orchestration

Dependency tree showing the dependency and POS

 block.IP.firewall(checkpoint)

(c) Modified ontology with semi automated 

generation of concepts

(b) SPARQL query to extract required capability and  tools

?y1:  IP_blocking 

SELECT ?y2 where

{ ?x Func_Cap IP_blocking .

  ?x hasFuncCap Func_Capability.

  ?x type ?y2.} 

?y2:  CheckPoint 

    PaloAlto 

SELECT ?y1 where

{ ?x Activity block_external_IP .

  ?x requireCap Func_Capability.

  ?x type ?y1.} 
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Figure 6.2 An example execution of a command based on the existing approaches of 

semantic interpretation and integration and our proposed approach 

Figure 6.2(a) shows an excerpt of an ontology for a SOAR platform proposed in 

chapter 4. The ontology of Figure 6.2(a) has three key classes: SecurityTool, Activity and 

Func_Capability. The classes are designed in such a way that a SOAR platform can 

easily select the required category of security tools and automatically interpret their 

capabilities (i.e., functionality, inputs and outputs) to execute a task. Security tools such 

as Checkpoint and PaloAlto are categorized as a Firewall under the SecurityTool class 

(see Figure 6.2(a)). The Func_Capability class presents the capabilities of security tools 

that are required for the execution of an activity. The Activity class defines the tasks of a 

SOAR platform (i.e., defined in a playbook) and actions of security tools. The task 

descriptions are mapped with the Activity classes of an ontology. For example, the key 

task of Figure 6.1 (i.e., blocking malicious IP using all available security tools) is 

mapped with block_IP, which is a subclass of block that is categorized under Activity 

class. 

An ontology also shows the relationships (presented using an edge) between 

classes. For example, Figure 6.2(a) shows the relationship between the SecurityTool class 
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and Activity class is execute. The SecurityTool class also has a relationship, hasFuncCap, 

with FuncCapability class. The ontology of Figure 6.2(a) further shows that the 

execution of an activity block_IP needs the capability IP_blocking and security tools of 

type Firewall that have that capability. Considering these relationships between different 

classes and the properties of each class, a SOAR platform interprets that Checkpoint and 

PaloAlto (i.e., a type of Firewall) can execute the activity block_IP. Furthermore, the 

rules are defined to maintain the consistency of the ontology. Using an ontology, a SOAR 

platform generates the scripts to invoke security tools by querying inputs of security tools 

that are selected to execute a task. To enable interpretability and interoperability, an 

ontology needs to be continuously updated as a result of changes in IRPs and security 

tools. A SOAR platform may fail to interpret the available data or may select the wrong 

security tools if its ontology is not up to date. 

The following subsection presents the difficulties with managing and updating 

existing playbooks and ontology-based approaches adopted by a SOAR platform with a 

scenario. Using the same scenario, it also highlights the potential benefits of using a set 

of dAPIs for orchestration in a SOC.  

6.2.3  Motivation Scenario 

We provide a running example to illustrate the limitations of the existing approaches (i.e., 

playbooks and ontological knowledgebases) that are used to automate the execution of 

IRPs and enable semantic interpretations and integrations of security tools in SOAR 

platforms. We also show the motivation for, need and importance of the reported work 

on dAPI.  

Example 1. An organization needs to defend against DDoS (i.e., Distributed 

Denial of Service) attacks. The idea is to design an IRP to scan the organization’s host 

or endpoints for malicious activities, quarantine the affected endpoint and, if required, 

block the malicious IPs. We assume an IRP is available to periodically scan an 

organization’s infrastructure for malicious activities and isolate or quarantine the affected 

endpoints. We further consider that such a system would require an IRP, a network to be 

scanned and a security tool (or tools) to be used. The requirements can be gathered and 

implemented in multiple ways to achieve the overall goal, which can be accomplished in 

several ways. There might be a preferred ordering among different tasks that builds 
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orchestration (e.g., the task of visualizing the alerts data comes after the task of scanning). 

In particular, some workflows are alternatives, while others operate in a particular 

sequence.  

We assume an IRP provided by an incident response planning team is (i) scan an 

organization network, (ii) analyze the traffic, (iii) identify the affected endpoint, (iv) 

isolate endpoint and (v) block malicious IPs. A playbook developer designs a playbook 

for the corresponding IRP as an orchestration of the existing security tools' capabilities 

and events. They may design different playbooks for each step, where the execution of 

each step requires the following of a sequence of tasks. For example, Figure 6.1 shows a 

playbook for a task (v) block Malicious IPs of an IRP. A SOAR platform or security team 

executes the playbook when required. However, the emergent threat behaviors cause a 

continuous change in a SOAR platform’s IRPs. As shown in Figure 6.1, a playbook is a 

hardcoded script or code that is designed to execute a sequence of tasks. Security teams 

may want to execute part of a playbook during the analysis of an incident, for example, 

if security teams just want to perform the task shown in Figure 6.1(b). For this, a separate 

playbook is needed that will perform the task in Figure 6.1(b). This incurs an overhead 

of defining all the possible combinations of tasks in a playbook or designing a playbook 

at runtime. Knowing all possible sequences of tasks is not possible due to the emergent 

threat behavior. On the other hand, defining new playbooks requires knowledge about 

the underlying libraries and security tools’ APIs.  

Another alternative approach is to semantically represent and store security tools’ 

capabilities and tasks from playbooks in an ontology (as discussed in section 6.2.2) 

instead of designing all possible playbooks. For this approach, we assume an ontology 

designer formalizes the available security tools, their capabilities and tasks of the related 

IRPs using semantic knowledge (e.g., Figure 6.2(a)). The corresponding query is also 

designed to extract the relevant classes and instances from an ontology. Figure 6.2(b) 

shows examples of SPARQL queries that are used to query an ontology. In many 

instances, security teams need to select from the alternatives which tools to use, and 

modify queries to get the required features. A SOAR platform is unable to execute IRPs 

or interpret the security tools’ capabilities if these are not explicitly defined in an 

ontology. For this reason, an ontology needs to be updated with changes in any playbook 
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or IRP. Adding a new IRP, modifying an IRP, or adding/modifying a security tool will 

require the addition of a definition in an ontology if the tasks or security tools are new. 

Irrespective of the approaches used (i.e., playbook or ontology), security teams should 

be able to use a SOAR platform to modify and update IRPs and add new security tools. 

Furthermore, a SOAR platform should be able to interpret an IRP and automate its 

execution.  

We assume a security team wants to express a task in the natural language form Ɲ1 

= “Block IP with Check Point Firewall” instead of the task (v) block malicious IPs. An 

ontological knowledge base of the existing security tools, their capabilities and activities 

is available and Ɲ1 is mapped with the Activity class owl_ac1 = 

“block_IP_use_checkpointFirewall” (step 1 Figure 6.2(a)). Next, the SPARQL queries 

of Figure 6.2(b) are executed to identify the capability “IP_blocking” (step 2) and 

security tools with that capability (step 4). The classes associated with the security tools 

(i.e., Palo Alto [191] and Checkpoint [192]) are suggested to the security team (step 5). 

The security team then selects a suitable class that represents the requested security tool. 

A relationship is defined between checkpoint and owl_ac1 to automate the execution of 

Ɲ1 with Checkpoint. If a SPARQL query is not available to identify a specific security 

tool for a specific capability, the security team needs to design a suitable query, which 

requires an understanding of the ontology and SPARQL. 

We address these issues by designing a framework, SecAPIGen, to generate 

different elements of a dAPI from Ɲ1. Figure 6.2(d) shows the dependency parsing of Ɲ1. 

The SecAPIGen extracts the semantic relationships, based on the dependency parse tree 

of Ɲ1 for generating dAPIs (step 1 Figure 6.2(d)) which is “block.IP.Firewall 

(Checkpoint)”. SecAPIGen recommends a set of dAPIs to the security team (step 4), 

through which they modify the plan, define new plans, integrate security tools and even 

update the ontology (step 3). We resolved the issue of manual identification of an 

ontology’s classes for each command by developing SemOnto, a semi-automated 

approach to identify an ontology’s concepts. We modified the existing ontology (see 

Figure 6.2(c)) using SemOnto, which maps the dAPIs with the classes of an ontology 

(steps 2 and 3) and recommends a potential list of classes and their properties to the 

security team (Step 3). SemOnto makes subclasses of block_IP, shown in Figure 6.2(a), 
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redundant. Using the dAPIs, the security team can easily execute task Ɲ1 by providing 

the sequence of commands shown in Figure 6.2(e). The complexity of interacting with 

the ontology, modifying the IRPs or selecting a security tool to execute a task is hidden 

through dAPIs. The proposed approach of using dAPI-driven orchestration to execute 

Ɲ1, as shown in Figure 6.2(e), also hides the complexity of interacting with different 

components of the SOAR platform and makes the SOAR platform easy to manage and 

interact with. In the following section, we formulate the components that we have 

discussed previously (in sections 6.2.1, 6.2.2 and 6.2.3) and which are required to explain 

our proposed approach, DecOr. 

6.2.4  Problem Formulation 

We formulate the problem considering the scenario discussed in section 6.2.3, where an 

organization already has a set of security tools, S= {S1, S2… Si …}, a set of playbooks, Ƥ 

= {Ƥ1, Ƥ2 … Ƥm …}, and an ontology O. Examples of Si include Snort, Splunk, Firewall 

and so forth. Each playbook, Ƥm, provides an automated workflow of an IRP with a set 

of tasks Ƭ, where T = {Ƭ1, Ƭ2… Ƭn …}. Each task T has an unstructured text description 

Ɲ, input and output. Each IRP is a set of tasks and their descriptions, where the IRP = 

{Ɲ1, Ɲ2… Ɲk …}. For simplicity of the experiments, this work only considers a task 

description that contains an imperative and a simple sentence structure [193, 194]; hence, 

we have not considered any complex or compound sentences (detailed in section 6.4.1.3). 

The tasks of a playbook are mapped with the security tools’ capabilities. The function δ 

(Si, Ƭn) defines that a security tool, Si, has the capability to perform a task Ƭn. The set of 

security tools, tasks and capabilities are formalized in an ontology under the class 

SecurityTool (𝑜𝑤𝑙_𝑠𝑡), Activity (𝑜𝑤𝑙_𝑎𝑐), and Capability (𝑜𝑤𝑙_𝑐𝑎𝑝) respectively. We 

consider 𝑜𝑤𝑙_𝑐𝑙𝑎𝑠𝑠 to be the set of different types of classes of O, where 𝑜𝑤𝑙_𝑐𝑙𝑎𝑠𝑠 = 

{𝑜𝑤𝑙𝑠𝑡 , 𝑜𝑤𝑙𝑎𝑐 , 𝑜𝑤𝑙𝑐𝑎𝑝 . . . 𝑜𝑤𝑙_𝑖𝑛𝑝𝑢𝑡, 𝑜𝑤𝑙_𝑜𝑢𝑡𝑝𝑢𝑡, 𝑜𝑤𝑙_𝑟𝑒 …}. For simplicity, again, 

here we consider three major classes: 𝑜𝑤𝑙_𝑠𝑡, 𝑜𝑤𝑙_𝑎𝑐, and 𝑜𝑤𝑙_𝑐𝑎𝑝. The goal of this 

work is to provide a dAPI-driven orchestration approach for the end-users of a SOAR 

platform that enables easy ways to manage, interact and update IRPs and security tools. 

Given an IRP or a single task description Ɲ, we identify the set of dAPIs (detailed in 

section 6.3.2) that are required to execute Ɲ. 
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Definition (Declarative API-driven Orchestration). In declarative API-driven 

orchestration, users provide a command (or a task) through a set of dAPIs, without 

specifying the detailed steps and rules for its execution. The complex details are hidden 

behind the commands. The security team do not define the sequence of actions that are 

needed to execute the task.  

Table 6.1 shows the summary of notations that are used in this chapter.  

Table 6.1 Summary of Notations 

Notation Meaning Notation Meaning 

SOAR 
Security orchestration and 

automation 
Ɲ 

Task description in natural 

language 

SOC Security operation center δ Capability function 

IRP Incident response process/ plan Ƭ Set of tasks 

AI Artificial intelligence 𝒜I Set of integration APIs 

NLP Natural language processing Ƥ Set of playbooks 

dAPI Declarative APIs O Set of ontologies 

Synset Synonym set 𝑎𝑖
Ɗ An element of 𝒜Ɗ 

S Set of security tools 𝑎𝑖𝑗
Ɗ  jth part of declarative API 𝑎𝑖

Ɗ 

𝒜Ɗ Set of declarative APIs 𝑎𝑘
ξ
 An element of 𝒜ξ 

𝒜ξ Set of execution APIs 𝑎𝑗
Ơ An element of 𝒜Ơ 

𝒜Ơ Set of orchestration APIs 𝑎𝑗
𝐼 An element of 𝒜I 

6.3 OUR APPROACH 

This section presents our AI-enabled Declarative API-driven Orchestration approach, 

DecOr. We first provide the overall structure of a system overview of Decor. We then 

introduce (i) dAPIs that are designed to hide the inherent complexity of a SOAR from a 

SOC (ii) SecAPIGen, a framework that automates the generation of the dAPIs from task 

descriptions and (iii) SemOnto, which Semantically interprets the concepts of an 

Ontology related to dAPIs, and recommend a possible set of an ontology’s classes.  

6.3.1  Overview 

Figure 6.3 provides an overview of our proposed approach for AI-enabled Declarative 

API-driven Orchestration, DecOr. It comprises three core components: dAPIs, 

SecAPIGen, and SemOnto. DecOr is built on top of an existing SOAR. Based on an in-

depth analysis of the SOAR’s activities, we designed three sets of dAPIs. Our approach 
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supports interactions between the SOAR and the security team through these three sets 

of dAPIs. 
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Figure 6.3 System overview of DecOr; security tools, security operation center, the 

playbooks, knowledge base and organizational infrastructure form the underlying 

execution environment of a SOAR platform 

Declarative APIs (dAPI) (section 6.3.2) The interactions among different 

components of the SOAR and SOC are maintained using dAPIs. DecOr has three sets of 

declarative APIs: orchestration APIs, integration APIs and execution APIs, which are 

designed to manage tasks related to orchestration, integration and automation, 

respectively. The set of orchestration APIs is mainly defined to support interaction 

between the security team and the SOAR platform to define or update IRPs or running 

playbooks. Some of examples of orchestration APIs include 

“scan.traffic(malicious).IDS”, “block.IP”, and “run.playbook(alert.enrichment)”. We 

design integration APIs to integrate and update an ontology’s concepts. Some examples 

of the tasks that can be encapsulated through integration APIs include querying, 

updating, or crafting the concepts of an ontology. The dAPI “get.tool” is an example of 

an integration API. The set of execution APIs is designed to automatically interpret the 

data generated and ingested by multiple security tools to execute an IRP. The tasks 

encapsulated through the execution APIs are interpretation of the data generated by 

security tools, identification of the commands’ parameters, formulation of the commands 

to invoke security tools and so on. The dAPIs “interpret.input”, and 

“formulate.command” are the examples of execution APIs. 
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SecAPIGen (section 6.3.3): SecAPIGen is a semantic framework that generates, 

manages and recommends dAPIs leveraging NLP technologies (i.e., tools and 

techniques). SemAPIGen provides a user interface to the SOC (Figure 6.3) through which 

the security team can define new plans or request execution of an incident or a playbook. 

Common forms of user interfaces are GUI, interactive dashboard or an IDE that provides 

access to a dAPI and renders the activities’ responses according to the security 

requirements. We consider two modes of a user interface: a novice mode for non-

technical users and an expert mode for technical users. On novice mode, SecAPIGen 

receives text-based commands or imperative sentences (i.e., Ɲ1 = block the IPs using the 

checkpoint Firewall) from the SOC. The commands or requests are passed to 

SecAPIGen.  pon receiving Ɲ1, SecAPIGen interprets the commands and identifies that 

a block operation needs to be performed by a security tool, Checkpoint Firewall, on an 

IP. On expert mode, the security team gives commands directly through the dAPIs (e.g., 

block.IP.Firewall(Checkpoint)) to SecAPIGen. Table 6.2 shows examples of dAPIs and 

the corresponding task descriptions.  

SemOnto (section 6.3.4): SemOnto gives SOC the flexibility to define their 

ontology or modify the bootstrapping ontology (i.e., the existing ontology) with changing 

playbooks and IRPs. The interactions of SemOnto and other components are exposed 

through an integration API. SemOnto uses the integration API to query an ontology to 

interpret the security tools’ data and integrate the knowledge about security tools with 

the ontology. To execute dAPIs, a SOAR platform needs to understand the input and 

output of the different components. SemOnto automatically identifies these details and 

relationships among different components from the playbook of the SOAR platform. For 

example, to perform a task “block the IPs using the checkpoint Firewall”, the SOAR 

platform needs to interpret the IP and its properties and the Firewall’s inputs, which 

SemOnto automatically extracts from the available playbooks.  

6.3.2  DecOr Declarative API (dAPI) 

We propose a semantic framework, SecAPIGen, leveraging NLP technologies to design 

and generate a set of declarative APIs (dAPIs). We define a dAPI by combining similar 

functions and mapping from a high level. For example, both the tasks “block malicious 

IPs” and “block the IP with Checkpoint Firewall” come under the dAPI “block”. The 
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dAPI is used to provide direct commands without highlighting how the commands need 

to be executed. In this section, we discuss the design and categories of dAPIs. 

6.3.2.1  Description of dAPI 

We consider 𝒜Ɗ as a set of dAPIs. Each dAPI, 𝑎𝑖
Ɗ  ∈ 𝒜Ɗ has three parts 𝑎𝑖1

Ɗ , 𝑎𝑖2
Ɗ , and 𝑎𝑖3

Ɗ , 

as shown in Table 6.2. The first part, 𝑎𝑖1,
Ɗ  consists of the key abstract functions such as 

block, scan, verify and detonate. The second part, 𝑎𝑖2,
Ɗ  provides an object (e.g., IP and 

capability) on which a task needs to be performed. The third part, 𝑎𝑖3
Ɗ  , identifies the 

specific elements corresponding to an object (i.e., endpoint and ontology), which provide 

fine-grained details about a task or the types of tools (i.e., firewall) to be used. The last 

two parts of a dAPI take parameters that provide the modifiers or attributes of an object 

and its components. For example, the task “block external IPs in the Firewall” specifies 

the type of IPs. To capture these types of information, we designed 𝑎𝑖2
Ɗ  and 𝑎𝑖3

Ɗ  to take 

parameters. Table 6.2 shows an example, “block.IP(external).firewall” where 𝑎𝑖2
Ɗ  takes 

“external” as a parameter. We have followed a systematic approach and proposed the 

semantic framework SecAPIGen to generate a set of 𝒜Ɗ (the details are given in section 

6.3.3). Enabling auto-creation of the APIs reduces human efforts to identify libraries 

manually ident to execute a task. In the following subsections (i.e., sections 6.3.2.2, 

6.3.2.3 and 6.3.2.4), we present the three sets of 𝒜Ɗ
.  

Table 6.2 Examples of declarative APIs  

 Description 

Declarative API 

First 

Part 
Second Part Third Part 

𝑎1
Ɗ   

Block the external IPs in the 

Firewall  
block IP(external) firewall 

𝑎2
Ɗ   

Interpret the capability of 

checkpoint Firewall 
interpret capability firewall(checkpoint) 

𝑎3
Ɗ 

Check the activity class block in 

the ontology 
check activity(block) ontology 

6.3.2.2  Orchestration API to Update and Define New Plans  

A SOC’s security team (e.g., an IRP planner) uses a set of orchestration API 𝒜Ơ
, where 

𝒜Ơ ⊂ 𝒜Ɗ and 𝒜Ơ = {𝑎1
Ơ, 𝑎2

Ơ … 𝑎𝑖
Ơ … } to execute, modify or update IRPs without having 

a detailed knowledge of the available security tools. Using 𝒜Ơ, a security team provides 
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commands to the SOAR platform or designs IRPs. 𝒜Ơ is built based on the available 

IRPs and task descriptions of the existing playbooks. Each orchestration API 𝑎𝑖
Ơ is 

dedicated to perform a specific type of task, such as scan, block and retrieve, as shown 

in Table 6.3. Each API element has several variations, depending on the objects on which 

a task is performed or the security tool that is used to perform a task. For example, Table 

6.3 shows two variations of an API element block, where 𝑎1
Ơ: 

block.IP.firewall(checkpoint) and 𝑎2
Ơ: block.IP(external).firewall. In both instances, 

three elements of the two dAPIs are similar; they vary in terms of their parameters. 𝒜Ơ 

is used to execute or update the existing plans or define the new plans of the SOAR 

platform. The elements of dAPIs are mapped with classes of an ontology. For example, 

the first part of the dAPI is categorized and mapped with Activity class, 𝑜𝑤𝑙_𝑎𝑐. In this 

way, an ontology is modified and designed to have three levels of class, such as a class 

block that has subclass block_IP, as shown in Figure 6.2(c). 

Table 6.3 Examples of the selected set of orchestration APIs  

API Example API Description 

block 
block.IP.firewall(checkpoint) 

block.IP(external).Firewall 

Perform block operations on IPs using 

different types of security tools. 

scan 
scan.networktraffic 

scan.Endpoint 

Scan network traffic, host and other 

resources for malicious behavior. 

retrieve retrieve.information.account(user) 
Retrieve information from different data 

source(s). 

verify 
verify.account(source.user).address 

(email) 

Verify information such as account 

details, email address, credentials and so 

forth.  

Unlike the existing ontology, which has a separate class for block_IP_firewall, 

the modified ontology omits these sets of classes by mapping the activity with the 

corresponding security tools. The details of a firewall are mapped under the SecurityTool 

class, which enables us to systematically define the classes of an ontology and remove 

ambiguity. In most cases, security teams use the orchestration API to interact with a 

SOAR platform to execute or define an IRP or run a playbook. Changing threat behavior, 

integration of new tools or modification of IRP, requires frequent access to and updates 
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of the orchestration API. Thus, changes and updates of 𝒜Ơ are more frequent than 

integration APIs and execution APIs. 

6.3.2.3  Integration APIs to Communicate with an Ontology  

The goal of integration APIs is to automatically incorporate security tools’ details into 

and from an ontology. We design a set of integration APIs 𝒜I, where 𝒜I ⊂ 𝒜Ɗ and 𝒜I 

= {𝑎1
𝐼 , 𝑎2

𝐼 … 𝑎𝑖
𝐼 … } to interact with an ontology and integrate the security tools’ data. An 

existing ontology is modified and extended to incorporate auto-identification of 

semantics from the available playbooks of the SOAR platform. The interaction of the 

SOAR platform with the ontological knowledge base is encapsulated through 𝒜I, which 

encapsulates certain tasks such as querying an ontology, updating an ontology or crafting 

the concept of ontology by analyzing a playbook. 𝒜I enables a SOAR platform to 

integrate, interpret and select a security tool based on an IRP’s commands, and frees the 

security team from knowing the details of the underlying query language (e.g., SPARQL) 

or ontological knowledge base. For example, DecOr queries an ontology using 

integration API “get.securityTool”. Table 6.4 shows examples of 𝒜I. For instance, if a 

SOAR platform needs a security tool with the capability block, an ontology has a class 

block. We have designed an 𝑎𝑖
𝐼 “check” to find out whether such a class exists in an 

ontology and then another 𝑎𝑖
𝐼 “get” to query an ontology and retrieve the security tools’ 

details. An integration API “update” is used to update the features of a particular class 

of an ontology, such as modify an ontology or add a new feature.  nlike “update” or 

“post”, dAPI is used to add new classes in an ontology. 

6.3.2.4 Execution API to Invoke Security Tools 

Execution APIs play an important role in making the process of integration and execution 

seamless and automated. We have leveraged the process of automating the integration of 

security tools proposed in chapter 5 and designed a set of execution APIs 𝒜ξ, where 

𝒜ξ ⊂ 𝒜Ɗ and 𝒜ξ = {𝑎1
ξ
, 𝑎2

ξ
… 𝑎𝑖

ξ
… } to encapsulate the individual tasks of a process. In 

this way, components can be designed individually without affecting each other’s 

performance or exposing their functionalities through 𝒜ξ. For example, a process of 

automated integration of security tools involves (i) selecting the security tools, (ii) 

interpreting the security tools’ input and output features, (iii) checking the security tools’ 
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capability, and then (iv) form the input commands to invoke the security tool and finally 

(v) execute a given task. 

Table 6.4 Examples of a selected set of integration APIs 

API Example API Description 

identify identify.activity.playbook 
Identify the activity details from the playbook’s 

description 

validate validate.activity(scan).ontology Validate the new activity scan in an ontology 

update update.output.ontology 
Integrate the newly identified output into the 

existing ontology 

get get.activity(block) Query to select a class of an ontology 

post post.input(IP) Query to create a class in an ontology 

delete delete.tool(snort) Query to select and remove a class in an ontology 

check check.activity(block) Check whether a class exists in an ontology  

As an example, where one security tool needs to use the outputs of other security tools, 

the process changes to (i) interpreting the security tools’ outputs, (ii) deconstructing the 

outputs, then (iii) extracting the required features, (iv) interpreting the features, and 

finally (v) formulating the inputs. We design 𝒜ξ to hide the details of the process of 

automating the integration of security tools using semantic knowledge. Some of the 

examples of integration APIs are “select.securityTool” and “interpret.capability”. The 

interpretation of the security tools’ input and formation of the commands is done through 

𝒜ξ. Thus, 𝒜ξ enables security teams to control and modify the process based on their 

required task. Table 6.5 shows examples of 𝒜ξ that we have designed. 

Similar to an orchestration API and integration API, an execution API 𝑎𝑖
ξ
 has 

different parts. The first part 𝑎𝑖1
ξ

 defines the main tasks, such as select and interpret, 

where the second part 𝑎𝑖12
ξ

 defines an object (i.e., security tools and input) on which a 

task needs to be performed. We have designed the second part based on the classes of an 

ontology. As most of the features are extracted from an ontology, an easy to map  𝑎𝑖
ξ
 with 

an ontology helps to keep task execution seamless and interpretable. An example of a 

process that uses 𝒜ξ to invoke security tools involves a combination of “select. tool”, 

“interpret. capability” and “formulate. input”. 
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Table 6.5 Examples of a selected set of execution APIs 

API Example API Description 

select 
select.tool.capability 

select.capability 

Select security tools from a list of available tools or 

tools explicitly specified by the security team, and the 

capabilities of the security tool required to perform an 

action 

interpret 
interpret.output 

interpret.input 

Semantically interpret data generated and ingested by 

security tools and different components of DecOr  

deconstruct 
deconstruct.input 

deconstruct.command 

Deconstruct generated outputs or commands to extract 

required features 

formulate 
formulate.input 

formulate.command 

Formulate input commands of security tools based on 

the script’s arguments 

execute 
execute.command 

execute.script 

Send execution commands or invoke security tools by 

calling appropriate API with passing right arguments 

in right formats 

To select security tools, the first task is to get the list of the available security 

tools and their inputs, outputs and the runtime environments to check the compatibility 

of the security tool with the ongoing execution environment. For this reason, a query to 

the ontology “get.securityTool.capability(IP_blocking)” is performed, which returns 

Palo_Alto and Check_Point. To interpret security tools’ capabilities, an appropriate 

security tool is selected. Next, to formulate the input, the features of a host are checked, 

and an input is constructed. The security tools’ details are available in the ontology. After 

formulating the command, “execute.command” is used to invoke a security tool that 

executes the requested task. We leverage the existing work on building a semantic 

knowledge base (i.e., an ontological model) to unify the heterogeneous security tools in 

a structured way [171, 172, 188]. Our ontological model stores information about the 

inputs required to invoke a security tool, for example, function calls, the number of 

parameters, the list of parameters and also different variations of a single function call.  

6.3.3  SecAPIGen: Semantic Framework for dAPI Generation  

Figure 6.4 provides the system level overview of the SecAPIGen framework, which 

generates and recommends dAPIs based on users’ requests. One of the main goals of 

SecAPIGen is auto-generation of dAPIs, along with the parameters to execute a 

command Ɲk. There are two aspects of automating the generation of a dAPI. First, 
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SecAPIGen needs to automate the generation of different elements of a dAPI. Second, 

based on the generated dAPI, SecAPIGen should be able to identify semantically similar 

dAPI elements (detailed in section 0) from the available dAPI list. For example, two 

dAPIs “quarantine.endpoint” and “isolate.endpoint” are semantically similar and can 

be mapped as a single dAPI.  

Generate 

Declarative API

Similarity 

Computation

Find Similar 

Declarative APIs

Recommend 

Declarative APIs

Declarative 

APIs

SecAPIGen Framework

SOAR User Interface

User (Expert) 2 User (Novice) 1 User (Novice) n
 

Figure 6.4 System overview of the SecAPIGen framework 

As shown in Figure 6.4, SecAPIGen provides support for both novice (i.e., user 

1) and expert users (i.e., user 2). In novice mode, a security team with little or no prior 

knowledge about dAPIs and security tools directly provide text descriptions of a task 

(e.g., “block a malicious IP”) that they want to carry out. SecAPIGen automatically 

generates a dAPI from a task description using Algorithm 1 and Algorithm 2. In expert 

mode, a security team who frequently interact with SOAR call on a dAPI related to a 

task. For example, for “block the malicious IP”, instead of providing a text description, 

the security team provides the dAPI with “block.malicious.IP”. SecAPIGen executes 

“block.malicious.IP” which requires a language model to search for similar dAPIs and 

recommend a suitable dAPI. Algorithm 3 identifies semantically similar dAPIs and 

recommends the most similar dAPIs to security the experts. In both modes, modules 

under the dashed box in Figure 6.4 are executed, where the dAPI generation module is 

only executed for inputs from novice users. In the following sections, we present three 

algorithms of SecAPIGen, using an example. 
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6.3.3.1 Automatic Generation of dAPIs from Task Description 

We use dependency parsing [195, 196] to achieve our goal of automating the generation 

of different parts of a dAPI, 𝑎𝑖
Ɗ. Dependency parsing extracts a dependency parse tree of 

a sentence that represents grammatical structures of a sentence and defines the 

relationships between a root word of a sentence and the words which modify the root 

[195, 196]. It identifies both syntactical and semantic parsing of a sentence structure. 

Syntactical parsing provides a parse tree, whereas the semantic analysis provides the 

subject, object and different attributes of a sentence.  

 

Token Token 

dep 

POS of 

Token  

Token 

head 

Token 

head 

dep 

POS of 

Token 

head  

Token 

child 

Block root VERB Block root VERB IP, In 

The det DET IPs dobj PROP - 

External amod ADJ IPs dobj PROPN - 

IPs dobj PROP Block root VERB The, 
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In Prep ADP Block root VERB Firewall 

The det DET Firewall pboj NOUN - 

Firewall pobj NOUN In prep ADP the 

 

dobj

Block IPsexternal

amod
det

the      in the Firewall

prep

det

pboj

VERB PRONADJDET ADP DET NOUN

Block. IP (external). FirewallBlock the external IPs in the firewall

Natural Language Command Generated declarative API

(b) Dependency tree showing the dependency and POS for 

 block the external IPs in the firewall 
(c) The different linguistic associated with each word (here 

token) of sentence  block the external IPs in the firewall 

(a) Dependency tree for  block the IPs using check point firewall 

Block the IPs using check point firewall

Natural Language Command

Block. IP. Firewall (Check point)

Generated declarative API

dobj

det

the check firewall

advcl dobj

VERB PRONDET Noun Noun NOUN

Block using

Verb

compound compound

pointIPs

 

Figure 6.5 Example of (a) dependency parsing for “block the IPs using checkpoint 

Firewall” (b) dependency parsing for “block the external IP in the Firewall” and (c) 

other linguistic features of a token (each word is considered as a token) such as token 

head, token head dependency, and token child 

Given a task description Ɲk, our problem is to automate the generation of a dAPI. 

Figure 6.5(a) and Figure 6.5(b) show examples of dependency parsing for two tasks with 

description Ɲ1 = “block the IPs using checkpoint Firewall” and Ɲ2 = “Block the external 

IP in the Firewall”. An arrow shows the dependency between two words. Several types 

of dependency (i.e., nominal subject and direct object) exist between different words of 
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a sentence [195-197]. We have used the spaCy NLP library to identify the dependencies 

and parts of speech (POS) of different words [197]. The spaCy NLP library takes a 

sentence and returns a dependency parse tree. Each node of a tree corresponds to a word 

of a sentence and contains several features such as dependency, POS, and the 

lemmatization form of a word (i.e. lemma). Figure 6.5(c) shows other linguistic features 

associated with each word (i.e., each node of a parse tree).  

The root of a dependency parse tree is considered as an ancestor of all other nodes 

of a parse tree. From Figure 6.5(a) and Figure 6.5(b), we can see that the root of both 

sentences is “block”. Usually, a root word is used to identify the main verb of a sentence. 

We consider a root that POS is verb as the first part of a dAPI. Among many 

dependencies, the most common ones are the nominal subject (nsubj) and direct object 

(dobj). A nominal subject modifies a nonverbal predicate of a sentence, where an object 

is either a direct object (dobj) of a root or a prepositional object (pobj) [196]. In Figure 

6.5, “IP” is the dobj of the root. Other characteristics that we have considered are 

modifiers of roots, objects and subjects, which are defined as a compound dependency 

or attribute dependency. Another common dependency that we have considered is the 

clausal complement (ccom) of a word. The compound words are a modifier of a 

compound word sequence, where an attribute is any miscellaneous properties of an object 

or subject. Leveraging these properties, we have designed Algorithm 1 to identify three 

parts (i.e., API elements) of a dAPI,  𝑎𝑖
Ɗ where 𝑎𝑖

Ɗ = 𝑎𝑖1
Ɗ  . 𝑎𝑖2

Ɗ  . 𝑎𝑖3
Ɗ  . 

Algorithm 1 generates a declarative API, 𝑎𝑖
Ɗ, utilizing the dependency parsing 

techniques that give a dependency parse tree of a sentence Ɲk. It considers the root of the 

sentence Ɲk as the first part (𝑎𝑖1
Ɗ ) of an API 𝑎𝑖

Ɗ (line 1). From lines 2-25, Algorithm 1 

takes each child token of a root and considers the dependencies of each child with root. 

If a root has a dependency of a nominal subject with its child, only then does Algorithm 

1 consider the nominal subject in 𝑎𝑖1
Ɗ  and the root in 𝑎𝑖2

Ɗ  (lines 3-5). If a root has a direct 

object dependency with a child, the word of that child is considered in the second part 

𝑎𝑖2
Ɗ  (lines 6-7). For cases where a child has a dependency of clausal complement with a 

root, Algorithm 1 takes each node (that is the child of the root’s child) of that child 

separately to identify the possible elements of a dAPI (lines 8-6). For each node of a child 

with a dependency clausal complement, if a child is a nominal subject, it is considered 
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as 𝑎𝑖2 
Ɗ  and if a child is a direct object, it is assigned to 𝑎𝑖3 

Ɗ (lines 11-15). Lines 17-24 

consider the children of a child of root that has a dependency of preposition object and 

assign it to 𝑎𝑖3 
Ɗ . The operation discussed above is repeated for each child token of a root 

which generates the elements (i.e., 𝑎𝑖1
Ɗ  , 𝑎𝑖2

Ɗ  and 𝑎𝑖3
Ɗ ) of a dAPI 𝑎𝑖 

Ɗ.  

Algorithm 1. Generating a declarative API from task description using dependency parsing 

 
Input: Dependency tree of Ɲk with dependency and Parts of Speech (POS) of each word 

Output: Different parts of a dAPI 𝑎𝑖 
Ɗ 

1 

2 

Initialize 𝑡𝑜𝑘𝑒𝑛 ← root of the dependency tree, 𝑎𝑖1 
Ɗ ←  extract_text(token) 

For each child ∈ token . children do 

3  
 IF dependency of a child is a nominal subject of root and POS of that child is “verb” or 

“noun” 

4   𝑎𝑖1 
Ɗ  ← extract_text(child) 

5   𝑎𝑖2
Ɗ  ← extract_text (token) 

6  
 ELSE IF dependency of a child is a direct object of root and POS of that child is “verb” 

or “noun” 

7   𝑎𝑖2
Ɗ ← extract_text(child) 

8  
 ELSE IF dependency of a child is an adverbial or clausal complement or modifier of root 

& POS of that child is a “verb” 

9    Consider the children of child 

 For each node ∈ child . children do 10   

11     IF dependency of a node is a nominal subject of child and POS of that node is “verb” 

12     𝑎𝑖2
Ɗ ← extact_text(node) 

13     ELSE IF dependency of a node is a direct object of child 

14     𝑎𝑖3 
Ɗ ← extract_text(node) 

15     End IF 

16    End For 

17   ELSE IF dependency of a child is preposition and POS of a node is “adverbial position” 

18 

19 
  
 Consider the children of child  

 For each node ∈ child . children do 

20    
 IF dependency of a node is prepositional object of child and POS of node is a “verb” 

or “noun” 

21     𝑎𝑖3 
Ɗ ← extract_text(node) 

22     End IF 

23    End For 

24   End IF 

25 

26 

End For 

Return 𝑎𝑖1,
Ɗ  𝑎𝑖2

Ɗ , 𝑎𝑖3
Ɗ  

Each object and subject have further modifiers (i.e., adverbial modifiers, noun 

compound modifiers), which we utilized to get the properties of an object and subject 

Ɲk. Consider an example task “block the external IPs in the Firewall”, where external is 

a modifier (i.e., adjective modifier: amod) of IP (Figure 6.5(b)). Leveraging the modifier 
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dependencies, Algorithm 2 is designed to identify the parameters of 𝑎𝑖2 
Ɗ  and 𝑎𝑖3 

Ɗ . Lines 

1-6 take each of them separately and look for their modifier dependencies from the 

corresponding parse tree. Several cases exist where a single object or subject has multiple 

dependencies; for example, “send a message to the source user email address”. Here, the 

“source user email” is considered as a modifier of the object address. Lines 8-21 identify 

such forms of multiple modifiers of a dAPI element. Algorithm 2 returns the list of 

parameters for 𝑎𝑖2 
Ɗ  and 𝑎𝑖3 

Ɗ . 

Algorithm 2. Identify declarative API (dAPI) parameters using dependency parsing 

  

Input: Generated dAPI 𝑎𝑖 
Ɗ= 𝑎𝑖1,

Ɗ  𝑎𝑖2
Ɗ , 𝑎𝑖3

Ɗ  for Ɲk, and dependency tree of Ɲk with 

dependency and Parts of Speech (POS) of each word 

Output: List of dAPI elements’ parameters 

1 For the second and third part of 𝑎𝑖 
Ɗ  

2 

3 
 

 𝑡𝑜𝑘𝑒𝑛 ←  𝑒𝑥𝑡𝑟𝑎𝑐𝑡_𝑡𝑜𝑘𝑒𝑛(𝑎𝑖𝑗 
Ɗ )  

  𝑡𝑜𝑘𝑒𝑛_param j ← identify_api_param (token, 𝑎𝑖𝑗 
Ɗ  ) 

4   remove 𝑎𝑖𝑗 
Ɗ from 𝑡𝑜𝑘𝑒𝑛_param j  

5 End For 

6 Return 𝑡𝑜𝑘𝑒𝑛_𝑝𝑎𝑟𝑎𝑚 list 

7 𝒊𝒅𝒆𝒏𝒕𝒊𝒇𝒚_𝒂𝒑𝒊_𝒑𝒂𝒓𝒂𝒎(𝑡𝑜𝑘𝑒𝑛, 𝑡𝑜𝑘𝑒𝑛_parameter) 

8  Consider the children of token 

For each child ∈  𝑡𝑜𝑘𝑒𝑛 . children 9  

10    IF dependency of a child is noun compound, adjective or adverbial modifier 

11 

12 

13 

   

 𝑡𝑜𝑘𝑒𝑛_𝑡𝑒𝑥𝑡 ← extract_text (𝑡𝑜𝑘𝑒𝑛) 

 𝑛𝑒𝑤_𝑝𝑎𝑟𝑎𝑚_𝑙𝑖𝑠𝑡 ← extract_text (child) + . + token_text 

 𝑡𝑜𝑘𝑒𝑛_𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 ← replace 𝑡𝑜𝑘𝑒𝑛_𝑣𝑎𝑙𝑢𝑒 with 𝑛𝑒𝑤_𝑝𝑎𝑟𝑎𝑚_𝑙𝑖𝑠𝑡 in 

 𝑡𝑜𝑘𝑒𝑛_𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟  

14 

15 
   

 Consider the children of child  

 For each node ∈ child. Children 

16      IF dependency of a node is noun compound, adjective or adverbial modifier 

17       𝑡𝑜𝑘𝑒𝑛_parameter = 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑦_𝑎𝑝𝑖_𝑝𝑎𝑟𝑎𝑚(child, 𝑡𝑜𝑘𝑒𝑛_parameter) 

18      End IF 

19     End For 

20    End IF 

21 

22 
 

End For 

Return 𝑡𝑜𝑘𝑒𝑛_parameter 

 

6.3.3.2 Identifying Semantically Similar dAPIs 

The problem in this section is to identify whether (i) the dAPI elements generated 

using Algorithm 1 or (ii) a dAPI element provided by the security team exists in the 
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existing set of dAPIs 𝒜Ɗ with a different name. The dAPI elements generated using 

Algorithm 1 may exist with a different name in the initial set of 𝒜Ɗ. The reason behind 

this is the word ambiguity in defining a task. For example, both Ɲ3: “quarantine the 

endpoint” and Ɲ4: “Isolate the affected endpoint”, are referring to a similar task. 

Algorithm 1, generates two dAPI “quarantine.endpoint” and “isolate.endpoint” 

respectively for Ɲ3 and Ɲ4. We consider “quarantine” and “isolate” as semantically 

similar because both of them ultimately do similar types of tasks. Thus, we propose 

Algorithm 3 to minimize the number of dAPIs in 𝒜Ɗ by linking these types of 

semantically similar dAPI elements under a single dAPI element. For example, instead 

of having both quarantine and isolate, 𝒜Ɗ has one dAPI element “quarantine” in its 

first part, which is used to perform both Ɲ3 and Ɲ4. 

Algorithm 3. Identify semantically similar declarative API (dAPI) 

 Input: List of an initial set of declarative APIs 𝒜 
Ɗ and generated declarative API 𝑎𝑛 

Ɗ =
𝑎𝑛 1

Ɗ . 𝑎𝑛 2
Ɗ . 𝑎𝑛 3

Ɗ   

Output: Suggested declarative API 𝑎𝑠 
Ɗ

 

1 Initialize 𝑎𝑠 
Ɗ ← 𝑎𝑛 

Ɗ, 𝑚𝑎𝑥_𝑠𝑐𝑜𝑟𝑒 ← 0, 𝑠𝑖𝑚_𝑠𝑐𝑜𝑟𝑒   

2 IF 𝑎𝑛𝑖 
Ɗ not in 𝒜Ɗ:  

3  For each 𝑎𝑛𝑗 
Ɗ ∈ 𝑎𝑖 

Ɗ:   

4   For each 𝑎𝑖𝑗 
Ɗ ∈ 𝒜𝑗 

Ɗ :  

5    Syn_api = return the synonym set of 𝑎𝑖𝑗 
Ɗ from Wordnet synsets 

6    Syn_newapi= return synonym set of 𝑎𝑛𝑖𝑗 
Ɗ from Wordnet synsets 

7    For each s_api ∈ Syn_api: 

8     For each s_newapi ∈ Syn_api: 

9       𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦_𝑠𝑐𝑜𝑟𝑒 = the similarity between s_api and s_newapi 

10      IF 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦_𝑠𝑐𝑜𝑟𝑒 ≥  𝑠𝑖𝑚_𝑠𝑐𝑜𝑟𝑒 and Pos of s_api is equal to Pos of 

s_newapi: 

11       IF 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦_𝑠𝑐𝑜𝑟𝑒 >  𝑚𝑎𝑥_𝑠𝑐𝑜𝑟𝑒 : 

12 

13 

       𝑚𝑎𝑥_𝑠𝑐𝑜𝑟𝑒 ← 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦_𝑠𝑐𝑜𝑟𝑒 

𝑎𝑠𝑗 
Ɗ  ← 𝑎𝑖𝑗 

Ɗ  

14       End IF 

15      End IF 

16     End For 

17    End For 

18   End For 

19  End IF 

20 Return 𝑎𝑠 
Ɗ 

Algorithm 3 identifies semantically similar words that remove word ambiguity and 

represent a set of tasks with a minimal set of dAPIs. The reason behind representing an 
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abstract set of functions with a set of minimum dAPI elements is to keep the ontology 

and commands (i.e., dAPI) straightforward, which enables security teams to easily 

accommodate the set of commands supported by DecOr. 

Two critical issues with a dAPI generated using Algorithm 1 or provided by expert 

users are (i) how to identify whether a dAPI element is semantically similar to the 

available list of dAPI elements and (ii) how to address the ambiguity of natural language 

Ɲ. Algorithm 3 considers each part (ai1
Ɗ , ai2 

Ɗ  and ai3,
Ɗ  ) of a dAPI ai 

Ɗ that is generated 

using Algorithm 1 (lines 1-2). Algorithm 3 utilizes the concepts of Word-Net, which is a 

lexical database (i.e., dictionary for the English language) [198-200], mainly used for 

NLP related tasks. For each part aij
Ɗ of ai

Ɗ, Algorithm 3 finds semantically similar words 

of aij
Ɗ by considering the lexical structure of the two words and the semantics of sense of 

these words (lines 3-19). For example, NLTK has an interface (i.e., synset) to look up 

words in WordNet, which returns the instances of a synonymous set (synset) [198-200]. 

Synonymous words that express similar concepts are grouped together and return as 

instances of a synset. A single word can have one synset or multiple synsets, depending 

on the datasets used to build Wordnet.  

Algorithm 3 calls Wordnet.synset(words) to get a list of synonym words and 

calculates the similarity score between two words (lines 7-17). The similarity score 

indicates how close the two words are in terms of their semantics. We consider different 

types of similarity metrics (e.g., Wu-Palmer metric and Resnik) [200, 201] to compare 

the semantic similarity (line 9). We define a threshold for the similarity score, 𝑠𝑖𝑚_𝑠𝑐𝑜𝑟𝑒 

and discard words with a similarity score lower than the threshold (line 10). The 

similarity function and similarity scores’ threshold were chosen during the experiment, 

as discussed in section 6.4.2.1. The input of Algorithm 3 can also be a dAPI from an 

expert user. The same set of steps are carried on to identify whether the provided dAPI 

exists or not. We consider that for some queries or commands a SOAR platform might 

not have any dAPI. This can happen when a SOAR platform does not have any IRPs or 

playbooks to perform the requested tasks, or the security tools that are required to execute 

the requested task. 
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SecAPIGen automatically generates different parts of a dAPI, leveraging NLP 

techniques. These API elements are further required to incorporate into an existing 

ontology [21, 23, 159, 188] of the SOAR platform to keep its ontology up to date and 

enable automatic interpretation of activities, inputs and outputs. We consider a 

bootstrapping ontology (i.e., the existing ontology) is available for semantic 

interpretation of security tools and activities which are utilized by the SOAR platform to 

execute an IRP [21, 23, 159, 188]. In the next section, we provide a semi-automated 

approach to identify properties of generated dAPI elements from the detailed descriptions 

(i.e., inputs, outputs, and scripts) of available playbooks.  

6.3.4  SemOnto: Identification of Ontological Concepts from Playbooks 

We map the generated dAPI elements with the classes of an ontology, so that a SOAR 

can interpret a dAPI. For example, as shown in Figure 6.2(c) dAPI “block.IP” is mapped 

with an Activity class 𝑜𝑤𝑙_𝑎𝑐i: block which has a subclass block_IP. To select a security-

suitable tool for executing “block.IP”, a SOAR must semantically interpret what an “IP” 

is and find the properties of an IP. The reason is that, instead of “block.IP”, the command 

could be “block.account”. Here, a SOAR needs to semantically differentiate “IP” and 

“account”, as it might require two different security tools to execute these two tasks. 

Furthermore, the properties of an account (i.e., type, domain, and user) may vary, 

depending on the task, which might also require different types of security tools to block 

it. As a result, the ontology of a SOAR needs to have classes that formalize IP and 

account. It enables the SOAR to extract information for interpreting and selecting 

security tools for providing IP and account as inputs. It also reflects the properties of a 

particular class of an ontology. For example, consider a class Account that has specific 

properties, such as type, email and username. A playbook has the detail of the input and 

output descriptions (Figure 6.1), which can be utilized to identify those properties of a 

dAPI element that are required by a SOAR platform to invoke a security tool. 

We provide a semi-automated approach, SemOnto, to identify the properties of a 

dAPI element from available playbooks, which are further incorporated as concepts (i.e., 

class, subclass and link between two classes) of an ontology. These properties are 

required by a SOAR platform to automate the interpretation of a dAPI and generate the 
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commands or scripts required to invoke a security tool for execution of a task. SemOnto 

analyzes a playbook to extract the key features of a task. 

As the structure of playbooks may vary from vendor to vendor, the key features 

(i.e., input, output and tasks) of a playbook that SemOnto is required to analyze are 

provided manually by human experts. Each playbook has a sequence of tasks that are 

performed by different security tools and a SOAR platform. As a result, identifying the 

inputs and outputs of a task also reflects the inputs and outputs of the security tools. In 

this work, we have considered the playbooks of Demisto, a collaborative playbook that 

provides output in the form of an output context path (lines 440-452 of Figure 6.1(a)). 

The context path is a dot-notation representation of the path to access the context object 

of an incident. SemOnto analyzes the output context path of Demisto’s available 

playbooks to understand the key properties associated with a dAPI element (e.g., IP, 

email and account). We have designed Algorithm 4, which is at the core of SemOnto, to 

identify the key concepts (i.e., the properties of dAPI elements) of an ontology, 

relationships between classes and the data properties of a class. 

Algorithm 4. Identification of ontological concepts from a playbooks’ description 

 
Input: Set of playbooks 

Output: Set of classes and class properties 

1 Extract the input, output and context path from the playbook and pre-process the data.  

2 

3 

Extract context path from the output and build a dictionary, 𝐿𝑖𝑠𝑡_𝑜𝑏𝑗 separating the 

objects in the context path 

For each pair of adjacent objects (𝑜𝑏𝑗𝑖 . 𝑜𝑏𝑗𝑘) in the context path 

4  Calculate the occurrence of each pair and store in an adjacent matrix 𝐴𝑑𝑗_𝑚𝑎𝑡.  

5 End For 

6 
For each object 𝑜𝑏𝑗𝑖  in 𝐿𝑖𝑠𝑡_𝑜𝑏𝑗, consider all the rows and columns in the 𝐴𝑑𝑗_𝑚𝑎𝑡 

associated with 𝑜𝑏𝑗𝑖 

7   IF all the row of 𝐴𝑑𝑗_𝑚𝑎𝑡 for 𝑜𝑏𝑗𝑖is zero, assign the type(𝑜𝑏𝑗𝑖) as a class object 

8   ELSE IF all the column of 𝐴𝑑𝑗_𝑚𝑎𝑡 for 𝑜𝑏𝑗𝑖 is zero, assign the type(𝑜𝑏𝑗𝑖) as attribute 

9 

10 

End For 

For each object pair (𝑜𝑏𝑗𝑖 𝑜𝑏𝑗𝑘) in 𝐴𝑑𝑗_𝑚𝑎𝑡 where 𝐴𝑑𝑗_𝑚𝑎𝑡 (𝑜𝑏𝑗𝑖 𝑜𝑏𝑗𝑘) is not zero: 

11    IF both type(𝑜𝑏𝑗𝑖) and type(𝑜𝑏𝑗𝑘) are class then 𝑜𝑏𝑗𝑖has a relation with 𝑜𝑏𝑗𝑘: 

12   
 IF the properties of 𝑜𝑏𝑗𝑘 properties of 𝑜𝑏𝑗𝑖, 𝐴𝑑𝑗_𝑚𝑎𝑡 (𝑜𝑏𝑗𝑘 𝑜𝑏𝑗𝑖) is 0 then 𝑜𝑏𝑗𝑘 is  a 

subclass of 𝑜𝑏𝑗𝑖 

13  
  ELSE IF type(𝑜𝑏𝑗𝑖) is a class and type(𝑜𝑏𝑗𝑘) is an attribute, then 𝑜𝑏𝑗𝑘 is a data 

property of 𝑜𝑏𝑗𝑖 

14 End For 

15 Return the class list with the properties 
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Algorithm 4 takes each context path and separate objects from a context path based 

on the dot (.) and builds a vocabulary for objects (lines 1-2). We have found that the 

objects are similar to different parts of a dAPI element, except the first part refers to an 

action (i.e., block, scan and isolate). Algorithm 4 develops an adjacent matrix 𝐴𝑑𝑗_𝑚𝑎𝑡 

that stores neighbors of each object in an ordered form to highlight the occurrence of 

pairs of objects (lines 3-5). For an ordered pair 𝑜𝑏𝑗𝑖.𝑜𝑏𝑗𝑘, 𝐴𝑑𝑗_𝑚𝑎𝑡[𝑜𝑏𝑗𝑖][𝑜𝑏𝑗𝑘] = total 

number of occurrences of 𝑜𝑏𝑗𝑖.𝑜𝑏𝑗𝑘 . For example, if a pair “account. email” is seen in 20 

output context paths, 𝐴𝑑𝑗_𝑚𝑎𝑡[𝑎𝑐𝑐𝑜𝑢𝑛𝑡][𝑒𝑚𝑎𝑖𝑙] = 20. If “email. account” is not seen 

in any of the context paths other than 𝐴𝑑𝑗_𝑚𝑎𝑡[email][account] = 0. The order of the 

objects’ pair in the context path is considered as identifying the classes, their data 

properties and object properties. The order of the pairs of objects can also be shown as a 

directed graph (Figure 6.6(a)).  

Lines 6-9 consider each object and its adjacency matrix to identify the classes and 

properties of the classes of an ontology. If all rows of an object are zero, Algorithm 4 

considers that object as a class (line 7). On the other hand, if all columns for an object 

are zero, then that object is considered as a data property (line 8). For example, based on 

the graph in Figure 6.6(a), which shows the ordered pairs of objects, account, email and 

domain are considered as classes of an ontology. For each pair, Algorithm 4 uses the 

adjacency matrix to identify related classes and attributes (both data property and object 

property) of each class (lines 10-14). If for two objects 𝑜𝑏𝑗𝑖 and 

𝑜𝑏𝑗𝑘, 𝐴𝑑𝑗_𝑚𝑎𝑡[𝑜𝑏𝑗𝑖][𝑜𝑏𝑗𝑘] is not zero, then it considers a relation (i.e., an object 

property) exists between these two classes (line 11). If 𝐴𝑑𝑗_𝑚𝑎𝑡[𝑜𝑏𝑗𝑖][𝑜𝑏𝑗𝑘] is zero, then 

𝑜𝑏𝑗𝑘 is considered as a data property of 𝑜𝑏𝑗𝑖 (line 13). Figure 6.6(a) shows an example 

where email is an object property of account and domain is an object property of email. 

It also shows the account class has the data properties id, username and type. 

The heat map of Figure 6.6(b) shows the frequencies of each pair of objects that 

occur together. The x-axis indicates an object and the y-axis indicates the neighbors of 

that object. It shows which two objects are related. SemOnto generates such heatmaps to 

provide insight about the related objects that are identified by Algorithm 4. The 

relationships of Figure 6.6(a) can also be noticed in the heatmap of Figure 6.6(b). 

SemOnto automatically generates the discussed properties by analyzing playbook data. 
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It can identify whether two classes are related. However, the name of the object property 

is not automatically generated by SemOnto, which requires an expert to define the object 

properties. The heatmap can be used by domain experts to verify the identified concepts 

and define the relationship of the related classes. 

email

id

type

name

address

User

name

analysis

id

domain

account

                        
  (a)      (b) 

Figure 6.6 (a) Examples of classes and properties of the classes account, email and 

domain that are automatically analyzed (b) Part of a heat map generated from context 

paths of the Demisto playbook, showing the properties of classes of an ontology. The 

Y-axis indicates class and the X-axis indicates the properties of a class. 

DecOr uses SemOnto to identify properties of a dAPI element generated by 

SecAPIGen and the relationships between different dAPI elements. SemOnto automates 

the generation of semantic definitions of different dAPI elements from playbooks’ 

descriptions. It should be noted that playbooks from different vendors might have 

different structures. To extract features from playbooks with different structures, a 

human expert (e.g., playbook designer) needs to define the key fields of their playbooks 

(i.e., description, tasks, inputs and outputs) to SemOnto. SemOnto can be modified to 

identify the relevant ontological concepts of dAPI elements from different types of 

playbooks. As the focus of this chapter is mainly on design and automatic generation of 

dAPIs, this chapter does not show how SemOnto automatically integrates new concepts 

to update an ontology. However, SemOnto can be modified to fully or partially update 

an ontology, depending on the features of security tools and playbooks. To do so, first, 

the concept of the ontology can be identified by analyzing the input and output 

descriptions of available playbooks. Then SemOnto can integrate new classes or features 

of classes with an existing ontology. Before integrating the latest concepts, SemOnto 

must check whether the class exists in an ontology and verify the consistency. Depending 
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on an organization’s preference, the security team can either modify the concepts or use 

the standard defined or imposed by a SOAR platform.  

The integration of new concepts generated through SemOnto with a bootstrapping 

ontology is two-fold. Firstly, it performs a manual update and secondly, a semi-

automated update. In the manual update, SemOnto suggests a form to the experts to fill 

in when they make any changes in the underlying execution environment. For example, 

if a new security tool is added, it requests the security tool’s name, type, functional 

capabilities, input, output and runtime environment. For a semi-automated update, 

SemOnto uses the playbook to interpret the input and output, identify key classes of 

ontology from the playbook and recommends them to users. It minimizes the overhead 

of users manually identifying the concepts. Furthermore, upon being verified by users, 

dAPIs are used to include new concepts and update an ontology. For example, an 

organization has a new security tool, Firewall that they want to integrate. Three 

integration APIs are used to identify (identify.SecurityTool(firewall).ontology) and 

validate (validate.securityTool(firewall).ontology) the concepts of the ontology and 

further integrate (integrate.ontology) them with the bootstrapping ontology (as shown in 

Figure 6.2(e)). 

6.4 EXPERIMENT 

This section presents the experimental setups, implementation details and evaluation 

procedures that we have followed to answer the main Research Questions (RQ) for 

evaluation.  

• RQ1. How effective is SecAPIGen in generating and identifying dAPIs for different 

tasks? 

• RQ2. Can SemOnto identify the concepts of an ontology from a playbook? 

• RQ3. How efficient is DecOr in terms of time?  

The goal of these RQs is to evaluate the effectiveness and efficiency of AI technologies 

to generate dAPIs that support a paradigm shift from traditional SOAR solutions. Section 

6.4.1 discusses how we have performed the experiments and section 6.4.2 presents the 

results we obtained.  
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6.4.1  Data Collection and Tool Implementation 

In this section, we describe the data collection, experimental design and tool 

implementation procedure that we followed for the evaluation of our proposed approach, 

DecOr. We used a computer as our experiment environment that has the following 

configuration: Intel(R) Core™ i7-6600U CPU, 8GB RAM, and Window 10 (64-bit). 

6.4.1.1  Task and Object Corpus  

We downloaded the open-source playbooks of Demisto [166, 189]. A playbook of 

Demisto is written in YAML format. We extracted the descriptions of the available 

playbooks’ tasks with a focus on generating dAPIs. We separated each task’s description 

from the details of each task to build a task corpus (Figure 6.1). We further extracted 

outputs descriptions from each playbook and extracted the context paths from each 

output with a focus on generating the properties of dAPI elements from the output context 

path. We extracted the objects from the context path that were similar to the dAPI 

elements. Table 6.6 shows the statistics of the data that we collected in this way, which 

consist of 2000 unique task descriptions, 194 unique descriptions of the playbook, 448 

unique context paths and 292 unique objects. 

Table 6.6 Statistics of Demisto playbook 

Features Number 

Number of playbooks 194 

Number of tasks 2000 

Number of context paths 448 

Number of objects 292 

 

6.4.1.2 Benchmark for Generation of dAPI 

The results from using NLP to automate the generation of particular information are 

usually evaluated based on a benchmark data set [202]. Most of the time, these 

benchmarks are manually annotated by human experts [202-204]. Unfortunately, there 

was no such corpus for the dAPIs of a SOAR platform that we could use as a reference 

benchmark. One of the key reasons behind this situation may be that SOAR platform 

technologies are still in their early stages of development, evaluation and adoption. To 

the best of our knowledge, this work is the first one to identify the requirements and 
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design of dAPI for a SOAR platform. That is why we decided to develop the required 

benchmark based on the textual descriptions of the tasks, e.g., line 92 of Figure 6.1(b) 

explicitly describes what task it performs and which security tool it uses. The text 

description of a task can be considered as an input to SecAPIGen. Following that, dAPI 

can be manually assigned each task which can also be used as a ground truth. As a result, 

we manually labeled the dAPIs for 147 tasks that were selected from the playbooks’ task 

corpus. We considered each task as a query from an end-user of a SOAR platform and 

assigned each task only one dAPI. The generated ground truth served as a benchmark for 

our experiment. In the following section, we explain how we selected a suitable task 

description to be used as an input text and annotation instruction for labeling the dAPIs 

manually.  

6.4.1.3  Ground Truth of Experimental Queries, Commands and dAPIs  

We built two sets of ground truth for SecAPIGen: (i) ground truth 1 to evaluate the 

generation of dAPIs from the task descriptions (i.e., Algorithm 1) and the identification 

of dAPIs’ parameters (i.e., Algorithm 2) using dependency parsing and (ii) ground truth 

2 to evaluate all the generated dAPI elements (i.e., Algorithm 1 and Algorithm 2) and the 

identification of semantically similar APIs (i.e., Algorithm 3). 

Ground truth 1. We randomly selected a small number of tasks to label the dAPIs 

manually. The goal is to create experimental queries for our proposed algorithms. We 

considered a case where a security team will be using DecOr to support security 

orchestration. Thus, they would already have knowledge about the tasks and incidents 

being considered. As a result, we assumed that a user would provide queries in imperative 

sentence form and would not provide any incomplete descriptions. Furthermore, we 

assumed a single query would be associated with a single task. Hence, the task 

description should not be in a complex or compound sentence structure [193, 194]. 

 Considering the goal of dAPI is to hide the details of the SOAR’s task at different 

levels, we also assumed each task should be self-explainable and should not refer to an 

object or element of the previous task. The task descriptions gathered from the playbooks 

were written in a mixed form. For example, some descriptions were in a question form 

and some were contained in multiple sentences. Considering the above-mentioned 

assumptions, we defined the following criteria that selected task descriptions to be 
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satisfied: (i) each description should explain only a single task; thus, we discarded any 

task that had a complex or compound sentence structure or clause. An example of a 

discarded task according to this criterion is “if you identify suspicious URL, then analyze 

in-depth in next steps”, (ii) a task should have a complete description; if the first two 

parts of a dAPI could not be identified from the description, we considered them to be 

incomplete tasks. (iii) the tasks should be in an imperative sentence form; thus we 

removed the tasks that were in question or interrogative sentence forms (e.g., “are there 

any files to hunt?”). (iv) A task should not refer to an entity of the previous task. Hence, 

we removed or modified tasks that were referring to an entity of the previous task. For 

example, “block these on the proxy gateway”. If a task contained words such as ‘this’, 

‘that’, and ‘them’, then we replaced those words with exact object or entities if they had 

been identified from previous tasks. Otherwise, we removed those sets of tasks. In this 

way, we labeled the dAPIs for 147 tasks in total. Table 6.7 shows the average length of 

the selected tasks is 6 words. An average length of 6 words is acceptable considering the 

descriptions represent commands that are given to a SOAR platform for a specific task.  

Table 6.7 Statistics of ground truth for the generation of dAPI 

# of task 

Statistics of task length 
No. of unique methods and parameters in 

dAPI 

Mean Median Mode 𝐚𝐢𝟏
Ɗ  𝐚𝐢𝟐

Ɗ  𝐚𝐢𝟑
Ɗ  

Param of 

𝐚𝐢𝟐
Ɗ  

Param of 

𝐚𝐢𝟑
Ɗ  

147 6.5 6 7 17 46 50/76 33/38 19/41 

 

We labeled the dAPI following an annotation instruction which further 

implemented as the algorithms proposed in sections 6.3.2.1 and 6.3.3.1. The detailed 

annotation instruction to label a dAPI from a task description is provided in Appendix 

A1. Any annotator can follow that instruction to design dAPIs for a particular set of tasks. 

We considered the first part the main method (or dAPI element) of creating a dAPI. 

Multiple tasks can be performed by a similar method. For example, among the 147 tasks, 

23 tasks are performed by the dAPI method verify and 11 tasks are performed by block 

(more details in Appendix A2). Table 6.7 shows the number of unique API elements seen 

in each part of dAPIs in our ground truth. Some dAPIs might not have all the parts. Table 
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6.7 further shows the number of unique API elements that were seen in each part (x) and 

the total number of unique API elements (y) in that part in the form of x/y. For example, 

for parameters of the third part, from 41 unique API elements only 19 were seen in this 

part and others were also seen in the previous parts (i.e., the second part ai2
Ɗ , third part 

ai3
Ɗ  or a parameter of the second part) of APIs for different tasks. However, as mentioned 

before each dAPI must have the first two parts, which are ai1
Ɗ  and ai2

Ɗ . For example, Table 

6.8 shows that the third part i.e., ai3
Ɗ  of task t1 is empty and the parameters of ai3

Ɗ  for a 

task t2 are empty. In all the examples in Table 6.8, 𝐚𝐢𝟏
Ɗ  and 𝐚𝐢𝟐

Ɗ  are available.  

Table 6.8 Examples of ground truth for evaluation of SecAPIGen 

# 
Task 

description 
dAPI 𝐚𝐢𝟏

Ɗ  𝐚𝐢𝟐
Ɗ  𝐚𝐢𝟑

Ɗ  
Param of 

𝐚𝐢𝟐
Ɗ  

Param of 

𝐚𝐢𝟑
Ɗ  

t1 
Block the 

malicious IP 
block.IP(malicious) block IP - malicious - 

t2 

Block the 

malicious IP 

using the firewall 

block.IP 

(malicious). firewall 
block IP firewall malicious - 

t3 

Block the 

malicious IP 

using checkpoint 

firewall 

block.IP(malicious). 

firewall(checkpoint) 
block IP firewall external checkpoint 

Ground truth 2. We further combined the annotated dAPI elements into a single 

dAPI element based on their semantics and the task they were performing. For example, 

“quarantine the endpoint” and “isolate the endpoint” refer semantically to the same 

task. With the above annotation, there are two different API elements in the first part: 

quarantine and isolate of ground truth 1. To build ground truth 2, we combined these 

API elements and presented them as a single API element. For example, we used 

quarantine instead of isolate. Thus, ground truth 2 refers to tasks that are related to isolate 

and quarantine using the API element quarantine. Considering 𝐚𝐢𝟏
Ɗ  and 𝐚𝐣𝟏

Ɗ  were 

semantically similar to 𝐚𝐤𝟏,
Ɗ  which were then combined to execute by ak1

Ɗ , we presented 

this in the form: ak1
Ɗ : (ai1

Ɗ , aj1
Ɗ , ak1

Ɗ ). Appendix A3 shows which dAPI elements are 

combined into a single dAPI element for the first part in the form of ak1
Ɗ : (ai1

Ɗ , aj1
Ɗ , ak1

Ɗ ). 

After combining semantically similar dAPIs, ground truth 2 had 17 unique dAPI methods 

in the first part, and 36 in the second part of the APIs. Unlike the first part, for later parts, 
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the annotated dAPIs tend to have fewer similarities. We used 70% of ground truth 2 as 

the validation set to build and select the similarity measurement types and similarity 

scores for Algorithm 3. The remaining 30% was considered as the testing set to evaluate 

the performance of SecAPIGen, when combining semantically similar APIs. 

Two authors independently labeled the dAPIs following the annotation instruction 

in Appendix A1. For some tasks, the annotator identified the dAPI object elements in the 

second part, third part and the parameter of these parts in an alternative order. An 

example of such a task is “send an sms alert using Twilio”, for which two annotated 

dAPIs by annotator 1 and annotator 2 were “send.sms(alert).twilio” and 

“send.alert(sms).twilio”. The annotated dAPIs showed that annotator 1 labeled “sms” in 

the second part and “alert” as a parameter of the second part and annotator 2 labeled 

“alert” in the second part and “sms” as a parameter of the second part. dAPI 

“send.sms(alert).twilio” will first identify the way to send an object and then send that 

object; whereas dAPI “send.alert(sms). twilio” will first identify the object and then the 

way to send that object. Execution of both these dAPIs will successfully send an alert to 

Twilio via SMS. As both of these APIs were fulfilling the objective of a requested task, 

we considered both of them to be a correct label and used the second form in our ground 

truth. For some tasks, partial matching was noticed in the parameters of the second and 

third parts. We considered partial matching to be an agreement between the annotators. 

We used the Cohen Kappa score [205-207] to measure the agreement between the two 

labelers after resolving the abovementioned issues. We calculated the agreement between 

the two annotators for each part of the dAPI elements and also the overall agreement 

score for annotating all dAPI elements. The overall kappa score was 0.82. Both 

annotators had 100% agreement on the first part, thus the kappa score for the first part 

was 1. For the second and third parts, the scores were 0.86 and 0.7 respectively. We 

noticed the score reduces for identifying parameters of the second and third parts, at 0.68 

and 0.6 respectively. Based on the kappa score, the ground truth was considered to have 

a good reliability score [205-207]. 

6.4.1.4 Evaluation Metrics 

We first evaluated the correctness of DecOr using precision, recall and F1-measure, 

which are important, classic metrics to evaluate NLP-based models [202, 208, 209]. 



192 

Declarative API for Security Orchestration Platforms 192 

Precision referred to the ratio of correct dAPI elements and the total number of dAPIs 

that were generated by SecAPIGen for the corresponding tasks. Recall referred to the 

proportion of the actual number of dAPIs SecAPIGen successfully generated. To 

understand precision and recall, we need to first understand the concept of true positive 

and false positive. For our experiment, true positive referred to the fact that SecAPIGen 

generated a dAPI element for a task, and in fact the corresponding dAPI element was 

recommended for that task in the ground truth. Whereas, false-positive referred to the 

fact that SecAPIGen generated a dAPI element for a task but in actuality the dAPI 

element was not recommended for that specific task. Alongside the notions of true 

positive and false positive, we also considered false negatives. False-negative referred to 

the cases where SecAPIGen predicted that dAPIs were not available to predict a task, but 

in fact dAPI elements were available to execute the task. The following are equations for 

precision and recall in terms of true positive, false positive and false negative.  

Precision = 
True positive

True Positive+False Positive
 

 

Recall = 
True positive

True Positive+False Negative
 

 

F1-measure = 2 ×
Precision ×Recall

Precision+Recall
 

The F1 measure is considered a good performance metric because it leverages both 

precision and recall metrics. We obtained the f1-measure simply by taking a harmonic 

mean of precision and recall. From the equation of precision and recall, we can see that 

true positive precision considers only false-positives and recall considers false negatives. 

Conversely, the f1-measure focuses both on false positives and false negatives. 

In addition to the correctness, we considered the average time DecOr took to 

generate a dAPI from a task description and the average time it took to find similar APIs.  

6.4.1.5 Evaluation Procedure  

Evaluation with Ground Truth (E1): We compared the dAPIs that were generated by 

SecAPIGen against the two ground truths. As discussed in section 6.3.3, SecAPIGen has 

two modes: novice mode for non-technical users and expert mode for the technical user. 

In novice mode, users with little knowledge about the available dAPI provide the task 
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description/query in imperative sentence form. In expert mode, users have knowledge 

about some of the available dAPIs. Hence, an expert user provides a dAPI to perform a 

task instead of a task description. As a result, we first experimented with the use case of 

novice mode using ground truth 1, where SecAPIGen generated the dAPI elements from 

task descriptions. Next, we conducted the experiment with the use case of expert mode 

using ground truth 2, where SecAPIGen identified the semantically similar API elements.  

Evaluation based on Expertise (E2): To evaluate the identified ontological concepts, 

we manually selected the generated concepts that had a higher frequency and checked 

whether they were able to capture information about an object. We also compared the 

generated concepts with the existing ontology if a match was found, to check the 

similarities in terms of the identified properties and related classes.  

Procedure: Our evaluation includes the following steps: 

• Use Algorithm 1 and Algorithm 2 to take inputs in novice mode and generate a dAPI. 

• Evaluate the generated dAPI with ground truth 1. 

• Use Algorithm 3 to identify the semantically similar dAPIs of the generated dAPI. 

• Use 70% of ground truth 2 to build and select the similarity measurement metrics and 

similarity scores, and 30% as the testing sets for performance evaluation. 

• Use Algorithm 4 to identify the concepts of the ontology.  

• In evaluation E1, calculate precision, recall and f1-measures for each element of the 

dAPIs to answer RQ1. 

• In evaluation E1, calculate the response time to generate a dAPI from the task 

description to answer RQ3.  

• In evaluation E2, based on human expertise, identify the correctness of the generated 

concepts and check with respect to the dAPI elements to answer RQ2.  

6.4.1.6 Language and Libraries  

We used spaCy, which is a free open source python library [197] widely used for NLP-

related tasks, to find the dependency parse tree for an input task [196, 210, 211]. We 

developed Algorithm 1 and Algorithm 2 using spaCy. We further used python NTLK 

wordnet packages for Algorithm 3 to identify the wordnet and synonym sets (synsets) 

for each word (i.e., the elements of an API) [198-200]. We tried the different similarity 
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measurement metrics that are provided by wordnet to find similarity measurement 

metrics types and scores that best suit our experiment and datasets [201, 212]. We further 

used the python Networkx package [213] to automatically draw the classes and properties 

of the classes through a network graph. We used the network graph to manually evaluate 

the identified concepts of the ontology.  

6.4.2  Results and Analysis 

We conducted experiments for the design and generation of dAPI using AI technologies 

(i.e., NLP and semantics) to answer the three research questions. We evaluated each 

component of DecOr (i.e., SecAPIGen and SemOnto) separately, which ultimately 

provided the overall evaluation of DecOr.  

6.4.2.1  RQ1. How effective is SecAPIGen in Generating and Identifying dAPIs for 

Different Tasks? 

RQ1 mainly focuses on evaluating the effectiveness of SecAPIGen. We ran extensive 

experiments for the generation of dAPI to answer RQ1, which is essentially about the 

generation of each API element. Based on the results of the experiment, we explored 

three sub-questions: 

• RQ1.1. Does dependency parsing help in generating different parts of a dAPI? 

• RQ1.2. Which similarity functions should we choose for identifying semantically 

similar words? 

• RQ1.3. Does SecAPIGen help in identifying the semantically similar API elements 

that are generated using dependency parsing? 

To answer RQ1.1, we evaluated the use of dependency parsing in generating different 

API elements, which mainly evaluated the performance of Algorithm 1 and Algorithm 

2. Figure 6.7 shows the performance of SecAPIGen when generating different parts of 

the dAPIs using dependency parsing. It shows that the precision and recall of SecAPIGen 

are higher in identifying the first two parts of an API, whilst it has lower precision and 

recall for identifying the third part of a dAPI. Furthermore, we can see that the precision 

for identifying the parameters of the second and third API elements is higher than for 

recall. The reason behind the higher precision is that most of the dAPI elements for the 

second and third parameters were empty, which the algorithm identified correctly. For 
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some test cases, the second and third parts of the parameter had multiple dAPI elements. 

SecAPIGen failed to identify all the dAPI elements for all cases; however, it partially 

identified them for most cases. Besides considering there were some errors involved in 

human judgment, the ground truth might not be 100% correct.  

We considered two popular similarity functions, Wu-palmer and Resnik, among 

several available similarity measure functions to answer RQ1.2 [201, 212]. The Wu-

palmer similarity function is a structure-based measure and the Resnik similarity function 

is an information content-based measure. The similarity score for Wu-palmer (WP) is 

between 0 and 1 and Resnik (Res) is integer values greater than or equal to zero. We ran 

Algorithm 3 to consider the different similarity scores of WP and Res to select a suitable 

value for the similarity score of Algorithm 3. Figure 6.8 shows the results from 

identifying the first two parts of dAPI elements using both of the similarity metrics with 

different values of the similarity score. For the later parts of the dAPI elements, there 

were not many similar API elements that could be combined. As a result, we simply 

demonstrate the results in Figure 6.8 for the first two parts of the dAPIs.  

 

Figure 6.7 Performance of SecAPIGen when generating declarative API elements using 

dependency parsing 

The results of Figure 6.8 reveal that even though Algorithm 3 has higher precision 

with a higher similarity score, the recall decreases to below 60% with higher similarity 

scores. We considered the recall value to select the similarity functions and similarity 
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scores. If the recall were similar, then we considered the F1-measure. The reason for 

choosing recall is that recall reflects the actual dAPI elements that were correctly 

identified by the algorithm, where precision considers the ratio of correct dAPI elements 

that were identified. Even though the F1-measure provides the mean of precision and 

recall, we did not entirely rely on the F1-measure, because with higher precision and 

lower recall (e.g., less than 60%), the value of the F1-measure seems to be higher. 

    

(a) Performance of Res for identifying the first part  (b) Performance of Res for identifying the second part  

    

(c) Performance of WP for identifying the first part    (d) Performance of WP for identifying the second part 

Figure 6.8 Performance of SecAPIGen to generate first part and the second part of 

dAPI using two types of similarity measurements: Resnik (Res) and Wu-palmer (WP) 

similarity; precision, recall and f1-measures with respect to different RES scores for 

identifying (a) the first part and (b) the second part of dAPI; precision, recall and f1-

measures with respect to different wp similarity scores for identifying (c) the first part 

and (d) the second part of dAPI 

All four graphs in Figure 6.8 show higher precision values (close to 1) with higher 

similarity scores. Mostly, with higher similarity scores, the dAPI elements that did not 

have any similar dAPI were identified accurately. However, with higher similarity 
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scores, semantically similar dAPI elements were not identified, which resulted in lower 

recall. For example, “quarantine” and “isolate” were semantically similar API elements 

that were categorized under the dAPI element “quarantine”. With a higher similarity 

score, Algorithm 3 failed to identify “isolate” as similar to “quarantine”. Figure 6.8(a) 

shows that for the RES similarity function, the value of recall decreases when the 

similarity score is greater than 5. 

Similarly, Figure 6.8(c) shows that the recall of similarity function WP degrades 

when the similarity score is greater than 0.5. Furthermore, it also shows that the recall 

for WP degrades when the similarity score is less than 0.3. The f1-measures for WP with 

similarity scores 0.4 and 0.5 are 0.78. As shown in Figure 6.8(b) and Figure 6.8(d), the 

performances of both similarity functions are quite similar in identifying the second part 

of dAPI elements. Both graphs also show steady values of recall and f1-measure. We 

identified the lack of similar dAPI elements in the second part of dAPI as the reason 

behind this similar and steady performance. Moreover, the performances in Figure 6.8(b) 

and Figure 6.8(d) are quite similar to the performance in Figure 6.7, which ultimately 

reflects the performance for generating dAPI elements without considering semantically 

similar dAPI elements. By observing the value of the f1-measure and recall for both 

similarity functions, we considered both as suitable similar functions for identifying 

semantically similar dAPI. We chose 4 as the similarity score threshold for RES and 0.5 

as the similarity score threshold for WP.  

After selecting the similarity score, we reported how accurately SecAPIGen 

generated dAPIs for different tasks with similar dAPI elements to evaluate RQ1.3, which 

mainly evaluated the overall performance of SecAPIGen. Table 6.9 shows the 

performance of SecAPIGen when identifying the first and second parts of dAPIs using 

the testing dataset. The precision, recall and f1-measure for identifying the first part of 

dAPI are 0.88, 0.8 and 0.84, respectively. Table 6.9 shows the precision, recall and f1-

measure for identifying the second part of dAPI are above 88% for Resnik. On the other 

hand, the precision, recall and f1-measure for identifying the second part of dAPI for 

Wu-Palmer are above 90%. The results show that SecAPIGen accurately generated 

dAPIs and identified the semantically similar APIs 80% of the time for the first part and 

89% of the time for the second part.  
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Table 6.9 Performance of SecAPIGen 

dAPI element 
Similarity function and 

score 
Precision Recall F1-measure 

First Part Wu-palmer, 0.5 0.88 0.8 0.84 

Second Part Wu-palmer, 0.5 0.95 0.91 0.93 

Second Part Resnik, 4 0.93 0.89 0.91 

 

6.4.2.2 RQ2. Can SemOnto Identify the Concepts of an Ontology from the 

Playbook?  

To evaluate the performance of SemOnto, we first extracted the objects from the context 

path and then generated the concepts of the ontology following the steps of Algorithm 4. 

Analyzing 448 output context paths and 292 objects, it returned 71 concepts. Among 

these 71 classes, 37 classes were similar to generated dAPI elements. We further 

analyzed these classes to evaluate the data properties and object properties associated 

with each class. For example, considering the ontological concept file, we found the 

object properties (i.e., classes associated with a file) and data properties of a file. To 

automate the execution of a task, an ontology of a SOAR platform needs to have these 

concepts. The analysis of these classes revealed details of the security tools. For example, 

the identified classes, Atd, Cuckoo, Anyrun, Checkpointfwrule, Joe, Wildfire and Vmray 

refer to McAfee Advanced Threat Defence, Cuckoo Sandbox, Checkpoint firewall, Joe 

security sandbox, PaloAlto Wildfire and Vmray malware sandbox, respectively. As we 

were directly using context paths and each company had its own notation to refer to 

different attributes in a playbook, some of the class names might not directly match with 

the name of a dAPI element. Furthermore, we also saw “Sndbox” as a class that was 

referring to a sandbox. 

  By closely analyzing the name of each class, we removed the above-mentioned 

ambiguity, while integrating these concepts in an ontology. We further compared these 

classes with an existing ontology of the SOAR platform and security tools to identify the 

concepts that were missing. The manual analysis of 71 classes reveals that, for 90% of 

cases, SemOnto successfully identified the properties of API elements. Thus, 

recommending the ontological concepts to the security experts will help them to validate 

the concepts and reduce their burden of manually crafting the concepts of an ontology. 
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Also, it will help with the cases where the dAPI elements are not identified correctly by 

SecAPIGen.  

We showed that, by analyzing playbooks’ inputs and outputs, SemOnto 

automatically identified the semantic concepts of an ontology, which provided further 

details about the dAPI elements. The results demonstrate the feasibility of using the 

playbooks to identify the concepts of an ontology. Using SemOnto, a security team or 

ontology developer can easily identify the core concepts that are required for the 

execution of a task. Considering different vendors use playbooks of different types and 

structures where the tools and tasks also vary, SemOnto helps to gain an overall insight 

from a playbook about the tools, input and output. As a result, an end-user does not need 

to learn the structure or libraries of a playbook to incorporate changes that reduce the 

time taken for manual analysis.  

6.4.2.3  RQ3. How Efficient is DecOr in Terms of Time? 

To evaluate the efficiency of DecOr, we recorded the time to generate and identify 

the similarity of dAPIs; which is the query processing time for SecAPIGen to recommend 

a dAPI. If SecAPIGen cannot generate a dAPI in a reasonable amount of time, the 

security team may show no interest in using it at run time to define or update their plans. 

During the dAPI recommendation phase, given a query, SecAPIGen generated a dAPI 

element using dependency parsing and then identified synonym sets (synsets) of the 

generated dAPI element and available dAPI elements to compute the similarity score of 

two dAPI elements. We considered the time that was required to generate all parts of a 

dAPI. We recorded the time to generate different elements of a dAPI using dependency 

parsing and the time to identify semantically similar dAPI elements separately.  

Table 6.10 presents the average processing time that SecAPIGen took to generate 

a dAPI from the task description. It shows that the average time to generate different 

parts of an API is 9.8 milliseconds (ms), which is the processing time for Algorithm 1 

and Algorithm 2. On the other hand, the average time for Algorithm 3 is 160 ms, which 

is the time taken to identify the semantically similar elements of a dAPI. Algorithm 3 

first identified all synsets of two dAPI elements and then performed one to one checking 

to identify the most similar dAPI element, which resulted in higher processing time, as 

shown in Table 6.10. It performed the similarity checking, for each part of a dAPI. Hence, 
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it took a longer time to calculate the semantic similarity of dAPI elements than generating 

different parts of a dAPI. Overall SecAPIGen took 170 ms on average to generate a dAPI, 

which included both use of dependency parsing to generate the API elements and then 

complete the semantics similarity checking. Hence, the semantic framework, SecAPIGen 

recommends a dAPI in near real-time to the end-user.  

Table 6.10. Response times of SecAPIGen for different algorithms 

Algorithm Algorithm 1 and 2 Algorithm 3 SecAPIGen 

Average Response Time 9.8ms 160ms 170ms 

To sum up, we evaluated DecOr in terms of accuracy and response time to generate 

dAPIs and dAPI elements using AI technologies. We first showed that using dependency 

parsing and wordnet, DecOr generated dAPI elements with 90% accuracy, taking only 

170 ms on average to generate a dAPI. Furthermore, we showed that SemOnto identified 

most of the concepts of an ontology that were required to integrate with an existing 

ontology related to the dAPI elements. Hence, SemOnto contributes to reducing the 

manual overhead of a security team identifying and crafting the ontologies for the 

different playbooks provided by different vendors.  

6.5 DISCUSSION 

6.5.1  Benefits of DecOr 

In this section, we discuss the key challenges of the existing SOAR platforms that can be 

addressed to a certain extent with our proposed dAPI-driven orchestration platform, 

DecOr.  

Wide variety of security tools, technologies and solutions. The first and foremost 

problem with the adaptability of a SOAR platform is the diversity of security tools with 

heterogeneous capabilities and requirements. An organization needs to keep pace with 

the changing threat landscape. For this reason, most organizations end up deploying a 

wide variety of security tools, each dedicated to a specific set of tasks. Even though a 

SOAR platform is designed to enable interoperability among security tools, diversity is 

also found in the SOAR platforms, ranging from plugin-supported to scripts-oriented 
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(chapter 2). dAPI can easily handle a wide variety of security tools, technologies and 

solutions. As most of the underlying technologies and tools are abstracted through the 

three sets of dAPIs, a security team can easily interact with a wide range of security tools 

and technologies as a result.  

Declaration Ambiguity. The commands or the task descriptions in playbooks are 

defined in natural language (see Figure 6.1), whereas an IRP team uses words or phrases 

they are familiar with or which are popular in their context. For example, consider two 

tasks Ɲ3 and Ɲ4: “quarantine the affected endpoint” and “isolate malicious host”. Ɲ3 

and Ɲ4 share the same semantics and require similar types of security tools. However, 

both of these tasks can be found in several playbooks, which are defined by the same 

company. DecOr handles this sort of ambiguity by identifying these two tasks as similar 

and provides a single dAPI for both of these tasks.  

Technical Expertise. An example is illustrated in Figure 6.2(a) and (b), which 

shows at least three different types of domain expertise required in existing SOAR 

solutions. However, most organizations have very few security experts. Even so, many 

organizations are not able to adopt SOARs due to the lack of a dedicated security team 

or because they have a smaller size of SOC. In a recent study, Gartner predicts that by 

2022 even an organization with a security team of five or more will start leveraging 

SOAR tools for orchestration and automation, where currently it is fewer than 5% [27]. 

Besides this, the different teams of a SOC require different forms of expertise. As a 

consequence, instead of building all the required expertise in a single SOC, an 

organization needs a SOAR that supports the activities of any team and is easy to manage, 

modify and adapt due to the changing threat landscape. Abstracting the underlying 

complex architecture through the three sets of dAPI, DecOr can enable a security team 

to focus on their task alone, without the need to learn the underlying infrastructure.  

Manual Creation of Semantics. The existing solutions proposed for enabling 

semantic integration focus on manually crafting the semantics and defining ontologies to 

integrate data in a unified way. Extensive domain knowledge is required to create 

ontologies manually, which makes it difficult for a SOC to keep the ontology up to date. 

DecOr addresses this issue by identifying the semantics concepts from the playbooks' 

input and output, which ultimately provide the properties of the security tools and assets 
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of an organization through which most tasks are performed. Instead of spending the time 

to craft the semantics concepts, a security team can use the concepts suggested by DecOr 

and spend time on verifying the concepts and then including them in an ontology. 

Proprietary security tools. Of the wide variety of available security tools, most are 

proprietary. External users have limited access to their API, or vendors publish a set of 

APIs that other tools or SOAR can use or modify. Developers of SOAR platforms (i.e., 

designers of playbooks or plugins) need to have extensive knowledge about the usage 

and constraints of the proprietary security tools. In many cases, several plugins and 

wrappers of the APIs are designed to integrate the security tools in a SOAR platform. 

While designing a playbook, a developer also needs to keep in mind the interoperability 

and compatibility issues associated with different security tools. This issue can easily be 

addressed if the security vendors expose the properties of their security tools, which can 

then be integrated easily through the use of integration API, where the playbook 

developer simply focuses on defining the plans without worrying about the security tools’ 

features.   

DecOr aims to address the abovementioned issues by hiding the complexity of the 

SOAR platform from the security team, so that they can focus on utilizing the SOAR 

platform to take proactive and informed decisions rather than worrying about underlying 

security tools, playbooks, diversity in their libraries, configurations and ambiguities in 

the declarations. We claim that using the dAPI-driven orchestration approach, an 

organization can easily incorporate different playbooks and security tools into their 

SOAR platform, thus removing them from being locked into a single vendor. Also, by 

abstracting their activities through dAPIs, security tools and playbook vendors can ease 

the path to using multivendor products.  

6.5.2  Threat to validity 

In this work, we assume each task in the playbooks has only one dAPI through which it 

can be executed. Nevertheless, there might be multiple dAPIs suitable for executing a 

single task. In our future work, we plan to extend the design of dAPI, such that each task 

can be executed by multiple dAPIs. The dAPIs will be recommended to users so they can 

choose the most suitable dAPI for their respective needs. Furthermore, within the 

approaches we have used here, several approaches exist to find word similarities [196, 
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197, 210]. We did not apply all the possible approaches. As a result, there might be some 

more suitable similarity metrics or approaches that we might have missed. Depending on 

the datasets used to build the wordnet, the similarity scores can also vary. 

To build the used ground truth for SecAPIGen, we only considered imperative 

sentences with clearly defined task descriptions. We ignored sentences with complex and 

compound structures because we assume each task description will be given for the 

execution of a single task. In a practical scenario, this may not always be the case. This 

issue can be resolved by identifying semantically similar tasks based on sentence 

similarity, which will identify the semantic similarity between two sentences and thus 

generate dAPIs for them. Moreover, we have not considered cases where a single dAPI 

element might have similarities with multiple dAPI elements. We observed cases where 

a single API element has a similar similarity score with multiple existing dAPI elements.  

The developed system presented semantically similar dAPI elements (i.e., two 

synonymous API elements/words) with one dAPI element even if the tasks are executed 

by different security tools. The tasks and security tools are mapped with an ontology, 

which also mapped the user semantics model (i.e., the task defined by the user) with the 

tools semantic model (i.e., the task performed by the security tool). Though we have not 

explored the consequences when a user’s semantic model cannot be mapped with a task 

semantic model, this will be an interesting area for future work, to avoid executing tasks 

that are different from those the user intends to execute. 

The experimental results show that the precision of DecOr in generating dAPI 

elements is lower than 100%. This may result in the wrong execution of a task if the 

whole process is automated. However, we have designed DecOr to hide the complex 

internal details of a SOAR platform from its end-user, so that the security team can use 

it as an intelligence advisory (i.e., a recommendation tool). DecOr is designed to 

transform a user query into a dAPI and suggests that dAPI to its end-user as an IDE (i.e., 

python or Java IDE). Depending on the suggested dAPI, the security team can then 

choose whether to use that dAPI or not. Hence, we consider a precision of lower than 

100% is acceptable and applicable in this scenario. The dAPI elements are designed so 

that they can be mapped with the ontology of a SOAR platform and security tools, which 
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we believe will help to avoid false execution of tasks by security tools and the SOAR 

platform.  

SemOnto relies on the structure of a playbook’s output. Playbooks from different 

vendors might not follow the same structure, template or notation. However, the purpose 

of this study is to show that by analyzing an output of a playbook, SemOnto can identify 

the properties of dAPI elements. A playbook’s output also reflects the output of the 

security tools, so the proposed approach demonstrates the feasibility of using a playbook 

to identify an API’s elements.  

SemOnto analyzes the output produced by a playbook and finds the properties 

associated with a class that must be presented as the core class of an ontology. An existing 

ontology can also be incorporated during the phase where semantically similar dAPI are 

identified. Using the combination of ontology and SecAPIGen to identify an API is 

beyond of the scope of this chapter, which we plan to extend in future work. In this work, 

we did not show how to automatically use the generated set of dAPI to define the classes 

of an ontology. Also, the interaction of the three types of dAPI to execute IRPs is not 

shown in this work and will also be covered in future work.  

The evaluation of SemOnto was undertaken manually by one author based on the 

existing ontology and their domain expertise. This choice may have caused some bias in 

the evaluation. As the ontologies of the security tools and SOAR platforms are not freely 

available, it was not possible to perform an automatic comparison of the identified 

concepts. To minimize the potential impact of the bias of manual analysis, this work can 

be extended by carrying out a case study where the identified concepts can be shared 

with domain experts, who can verify the identified concepts as correct or not. The manual 

validation of the identified concepts of ontologies can be automated by using advanced 

NLP and Machine Learning (ML) techniques. A future direction to extend SemOnto is 

to make it fully automated. We plan to extend SemOnto by bringing automation to the 

manual validation process. One approach to automatically validate the ontological 

concepts is to update the concepts in an ontology and use that to generate the execution 

API, running the execution API to invoke a security tool. A fully automated approach 

can also use the advanced feature extraction techniques of NLP to perform validation of 

the generated concepts of an ontology.  
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In this work, we have evaluated DecOr in terms of effectiveness and efficiency. A 

qualitative evaluation of dAPIs is yet to be performed. We plan to design a study to 

collect feedback from novice users of a SOAR platform and thereby evaluate the 

designed dAPIs. The work can also be extended to collect a SOAR platform users’ 

feedback to find the usefulness of dAPI within a changing execution environment.  

6.6 RELATED WORK 

In this section, we provide an overview of the most relevant research in the area of 

security orchestration in the light of AI-enabled design and generation of dAPI for a 

SOAR.  

6.6.1  Security Orchestration and Automation Solutions 

In chapter 2, we conducted a multivocal literature review on security orchestration. The 

review identified several strategies for orchestration and automation that are incorporated 

in the state-of-the-practice and state-of-the-art. Our proposed approach here is partially 

motivated by the results of this review. The multivocal review showed that even though 

the existing SOAR incorporates a combination of different automation strategies, the 

planning and decision-making processes largely rely on human expertise. Security 

analysts, network administrators, security engineers, forensic teams, incident response 

teams, a staff of SOC, including a designer, developer and engineer for SOAR are 

involved in the decision-making and response actions of such a platform. As a 

consequence, they must be able to interact easily with a SOAR platform to leverage the 

power of automation and orchestration. However, we noticed little focus from vendors 

or researchers on making such a solution easily adaptable and modifiable for end-users.  

SOAR platform vendors or designers perform pre-assessment of an organizations’ 

security requirements, hardware, software system(s) and available security tools, which 

form the underlying execution environment of a SOAR platform. The key functionalities 

of a SOAR platform mainly include the integration, orchestration and automation of 

security tools’ activities and repetitive tasks of security experts. Most commercial SOAR 

platforms support the integration of the full stack of security tools and information 

systems (i.e., open-source and proprietary) through APIs, plugins or modules [32, 143, 

161, 167, 214]. As most of the security tools are proprietary and each tool has its own 
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form of API, the integration process is mostly reliant on human experts. A wide range of 

solutions is seen in security tools’ integration. However, the integration of technologies 

and APIs does not follow a standard that can be followed by end-users to integrate a new 

set of security tools. Without a well-defined orchestration process, a SOC cannot take 

the full benefit of integrating existing security tools. The objective is eventually to drive 

the automated workflow from an incident response plan.  

As discussed earlier, an incident response team defines a set of tasks that are 

required to be executed in response to an incident. These sets of tasks are logically 

sequenced with chained data flow in a playbook. A playbook contains the automated 

workflow, which is integrated into a SOAR platform. The majority of practitioners build 

the workflow based on known use case scenarios. Even though the ultimate goal of a 

playbook is orchestration and automation, differences are seen in the ways playbooks are 

built and managed. For example, commercial vendors such as Demisto [35] and 

Forescout [136] have different forms of playbooks and different ways to interact with 

them. ForeScout has built a dedicated rule-based engine to automate the workflow [146], 

whereas Demisto is working toward building a collaborative playbook where anyone can 

contribute to the design of a playbook. Most of the tools built for workflow design are 

not suitable for automating the integration of security tools required for task execution. 

As a result, scripting tools are used to perform automation, which mostly comprise 

custom codes written by SOAR developers [166, 215]. A developer usually writes scripts 

to configure a SOAR platform and playbook to integrate security tools in the automated 

workflow. Execution of such scripts automates a playbook and thus automates a response 

against an incident.  

The continuous changes in the threat landscape require consistent involvement of 

a SOC team, with designers and engineers of the aforementioned systems even for an 

instance where changes could be few. For example, after buying a new point of the 

product, the security team relies on integration tools to connect and integrate the new 

system into an existing SOAR platform. Moreover, including the new product 

information in a playbook requires skilled personal in a SOC to write and update 

corresponding code efficiently. As a consequence, a security team ends up spending a 

great deal of time learning the underlying libraries and technologies of a SOAR platform 
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execution environment. Otherwise, the SOC needs to have a dedicated orchestration team 

to develop the APIs and write the scripts, modifying or updating the workflow across 

multiple technology paradigms. 

Unlike the aforementioned solutions, this chapter has proposed a framework that 

eases the use of existing SOARs, irrespective of integration tools and vendors. To do so, 

instead of proposing or developing new tools, we call for a paradigm shift that requires 

abstraction of the functionalities of the integration, orchestration and automation 

technologies. Along with abstracting the task of the abovementioned solutions with sets 

of APIs, we provide a solution to select the correct set of dAPIs for a task easily. This 

will enable a security team to interact with a SOAR or security tools integrated into a 

SOAR for different purposes without having an extensive understanding of the 

underlying technologies. 

We assert that the architecture of security orchestration solution needs to be 

designed in a way that the complex approaches can be integrated easily with the existing 

SOAR system, such that little involvement of end-users should be required to adopt any 

new technology (i.e., security tools, APIs, or plugins). However, most of the SOARs are 

proprietary and designed in an ad-hoc manner, therefore they do not follow any specific 

architectural styles or patterns. Vendors of SOAR have little consensus among them 

about where different industries have different requirements for orchestration and 

automation based on the capabilities of their security team and product requirements. We 

believe that our proposed framework is a contribution towards tackling the challenges 

associated with large scale adaption of SOAR platforms. 

6.6.2  AI in Automated Interpretation and Integration 

Building a fully autonomous process for integrating security tools in a SOAR platform 

is quite challenging because of the diverse nature of security tools, which are provided 

by multiple vendors. The use of AI technologies such as semantic knowledge, ontology, 

NLP and ML is increasingly gaining attention to automate the interpretation and 

integration of security tools. Chapter 5 proposes semantic representation of the security 

tools’ capabilities and the tasks of IRPs using ontology instead of designing all possible 

workflows and scripts for integration of security tools. It considered the process of 

automating the integration of security tools as a combination of subprocesses: 
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interpretation (interpret the input and output), selection (select security tools), 

formulation (formulate the input), invocation (invoke a security tool) and execution 

(execute a task). However, the work considered the process as a whole, while changes in 

one part might require changing the whole process. Furthermore, we consider each 

subprocess of selection, interpretation, integration, invocation and execution as 

standalone processes and encapsulate them through a set of APIs, which will enable any 

security team to easily choose the point where they want to make the changes. 

Several studies focus on developing semantic knowledge for formalizing security-

related information (e.g., attacks, vulnerabilities, resources and countermeasures) to 

enable automated interpretation and automation in the identification of relevant incidents 

[171, 172, 180, 182, 187]. In chapters 4 and 5, we have also focused on incorporating 

semantic technologies to formalize different types of tools, based on their capabilities to 

enable interoperability and interpretability among heterogenous tools. The set of 

ontologies proposed in chapter 4 has enabled a SOAR platform to interpret the task and 

command of the security tools. Chapter 4 explicitly refers to the involvement of experts 

during the development of the ontologies. It proposes a semi-automated approach, 

leveraging NLP and ML techniques to classify the classes of ontologies from the 

descriptions in incident response plans. Here, the activities are automatically classified 

to map with the classes of an ontology. The study did not utilize the playbooks, which 

are mainly structured to identify the concepts of an ontology. The automation here 

focused on identifying a suitable class of activity from its description. With the same 

goal of making a SOAR platform adaptable, but with different objectives, one of the foci 

of our work is on reducing the human effort of learning the details of the semantic 

technologies by abstracting the interactions across a SOAR platform and its knowledge 

base. 

We further investigate whether the existing automation techniques could be used 

to identify the concepts of an ontology from the structured documents. The approaches 

we found fail to satisfy our objective for many reasons. For instances, significant data 

are not captured in documentation in the existing SOAR platforms. Research has been 

seen in the area of information extraction and retrieval to automate the identification of 

ontological concepts, generation of SPARQL from a keyword or text-based query and 
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annotation of the classes [216-221], which are mostly applicable for the domain of web 

services or service composition. A SOAR platform deals with the heterogeneous system 

(i.e., security tools and information systems) which are mostly software systems that are 

proprietary and open source. Most of the security tools are proprietary and their manuals, 

guidelines and API documentation are also heterogeneous in nature and vary based on 

their purpose. Moreover, the documentation details of these systems vary hugely in terms 

of their structure and content. As a result, to hide the complex details of querying and 

crafting the concepts of ontologies, we propose to abstract the task to communicate with 

the semantic knowledge base (i.e., ontologies and query engines) through a set of dAPIs. 

6.6.3  AI in API Generation 

Recent studies have been seen on the use of AI technologies, mostly NLP, ML and deep 

learning, for API mining. They recommend increases in the efficiency of software 

developers [203, 204, 222-224]. Several studies focus on Python or Java-based projects. 

The purpose of these chapters is to suggest API and API usages based on developer 

requests by mining APIs from software documentation, GitHub issues and question 

answering forums or websites. These studies rely on the available documentation from 

Python and Java and question answering websites’ stack overflow. Unfortunately, these 

sets of studies are not suitable for the security orchestration domain, as a SOAR platform 

has a diverse set of security tools and each tool has a specific form of APIs and formats, 

which varies in terms of classes, methods, parameters and so on. As the design and 

development of a SOAR platform are mostly done in an ad-hoc manner, vendors share 

little consensus. As previously mentioned, most of the SOAR platforms are proprietary 

and their documentation and architecture are not available for mining and analysis like 

open source repositories. Consequently, for a SOAR platform, a standard set of APIs is 

not available to end-users like Java and Python, for development purposes. Moreover, 

Security orchestration is still in its early stages and only at the exploration phase, which 

results in a few queries in question-answering websites like stack overflow. The incident 

response plans are dynamic, whereby continuous human involvement is required to 

update ontologies by extracting features of security tools and then defining plans. Similar 

to the work on API mining, where a system is designed to take both structured and 
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unstructured queries, we designed DecOr to work with both structured and unstructured 

queries provided by end-users.  

6.7 CHAPTER SUMMARY 

This chapter provides an AI-enabled framework, Declarative API-driven Orchestration 

(DecOr), that supports security teams to leverage the advanced features of security 

orchestration platforms without expecting them to know the inherent operational 

complexities. DecOr is built on top of an existing SOAR platform. The key idea for 

DecOr is to free security teams from worrying about the underlying libraries, plugins or 

modules of a SOAR while executing tasks, modifying or updating IRPs, or integrating 

new security tools. As part of DecOr, there are three sets of dAPIs: orchestration API, 

integration API and execution API. These dAPIs encapsulate the task of a SOAR 

platform at different levels of abstraction. The dAPIs are required for the easy 

maintenance of a SOAR. We have also developed a semantic framework, SecAPIGen, 

that leverages existing AI technologies (i.e., NLP technologies, and semantics 

relationships) to design and generate the dAPIs from the security tasks’ descriptions. We 

further leverage the synonym sets of WordNet, which is the semantics knowledgebase of 

words, to identify and combine semantically similar words. Finally, we have proposed a 

semi-automated approach, SemOnto, which uses the playbooks' output to automatically 

identify the concepts of an ontology (i.e., an AI approach to semantically formalize 

heterogenous concepts). These concepts are required for a SOAR to automatically 

interpret the generated dAPIs.  

We ran a detailed experiment with a manually curated benchmark of 147 pairs of 

tasks and dAPIs where the task descriptions are taken from collaborative playbooks from 

Demisto (i.e., a SOAR platform). We have shown that the dAPIs are automatically 

generated using dependency parsing, with an average precision higher than 80% and 

recall higher than 70%. The results of our experiment have demonstrated that 

semantically similar words are identified with a precision and recall of 88% and 80%, 

respectively. The analysis of ontological concepts generated by SemOnto further reveals 

that among the 71 classes, 37 were related to the generated API elements. The reason 

behind this result is that we did not consider all the tasks in the playbooks and some 

classes have different names from the API elements generated by SecAPIGen. On 
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average, DecOr takes 170 milliseconds to generate a dAPI from a task, which is near 

real-time. Thus, while using DecOr as intelligence assistance or advisory, a SOCs’ 

security team can obtain the corresponding dAPIs and their properties required for task 

execution instantly. dAPIs free security teams from understanding the underlying 

libraries and security tools’ details. As a result, the team can focus more on analysis of 

security incidents and preparing response actions. 
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Chapter 7 

7 Conclusion 

Over the past few years, we have witnessed increasing adoption of security 

orchestration and automation platforms in Security Operation Centers (SOC). 

Utilization and implementation of a SOAR platform requires skilled and 

experienced cybersecurity professionals, including (but not limited to) experienced 

designers and developers, cybersecurity incident response teams, playbook 

developers and security analysts. A SOAR platform demands collaboration among 

SOAR vendors and different security teams in a SOC to quickly adapt to the changes 

in its underlying execution environment and keep updated with the dynamic threat 

landscape. A SOAR platform should support an increased level of agility and 

customization to fulfill security teams’ requirements. Lack of a comprehensive view 

and variations in security team requirements leads to ad-hoc design and development 

of SOAR platforms. These factors pose several further challenges related to seamless 

integration, managing interoperation and building skilled teams for the incorporation 

of new tools and technologies.  

In this thesis, we have aimed to provide architecture-level support for designing 

and implementing an easily evolvable human-centric SOAR platform, which 

enables smooth integration and interoperation of existing and new security tools. 

We have proposed, implemented and evaluated a layered architecture style for a 

SOAR platform. We have implemented a set of frameworks and toolsets leveraging 

AI technologies to realize the proposed architecture. Our findings show that 

consideration of architectural design decisions can improve the design and 

development of a SOAR platform. Security orchestration and automation is 

undeniably the next line of research that requires more attention from cybersecurity 

researchers and practitioners. We urge the relevant research and industry 
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communities to come forward to contribute to R&D for developing and evaluating 

appropriate architectural support for advanced security orchestration and 

automation solutions. 

7.1 FINDINGS AND CONTRIBUTIONS 

This section summarizes the significant contributions and the main findings of this thesis.  

7.1.1 Understanding of Security Orchestration and the Automation Landscape 

This thesis has provided a holistic insight into the current state-of-the-art and state-of-

the-practice of security orchestration. Through a Multivocal Literature Review (MLR), 

which covers 95 key studies, we have presented an overview of a SOAR platform in 

Chapter 2. We have provided a working definition of security orchestration. A SOAR 

platform is designed to work as intelligence assistance for human experts, who can 

benefit from an automated process and make informed decisions proactively. Most of the 

security vendors provide SOAR platforms to build a connection layer for security tools, 

through which isolated and heterogenous security tools can interoperate with each other 

and security teams can interact with security tools from a single pane of glass. Repetitive 

labor-intensive tasks are automated and orchestrated through a SOAR platform, which 

increases the operational efficiency of security teams.  

By analyzing the existing studies, we have identified three key paradigms, 

unification, orchestration and automation, that drive our perception of security 

orchestration. We have analyzed the key functionalities and components of a SOAR 

platform in terms of these paradigms. The results of the analysis further show most of 

the SOAR platforms leverage six automation strategies and focus on four execution 

environments. We have provided a taxonomy of security orchestration, analyzing the key 

techniques, tools and strategies used by practitioners and researchers for the design and 

development of a SOAR platform. The reported taxonomy has covered five key 

dimensions: (i) automation strategies, (ii) execution environments, (iii) task execution 

modes (iv) deployment types and (v) resource types. Based on the research, we have 

further identified a few open issues in security orchestration practice and research, 

including the design of an evolvable SOAR platform, integration mechanism, 
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orchestration process and the requirement for skilled professionals and human 

involvement in the automation loop.  

7.1.2 Layered Architecture for a SOAR platform 

We have proposed a layered architecture of a SOAR platform and an associated design 

space to support architectural design decisions for a SOAR platform in chapter 3. The 

proposed SOAR platform’s architectural design is based on two key functions and five 

non-functional requirements. The two key functions are (i) that the SOAR is perceived 

as a unifier or hub and (ii) that is SOAR is recognized as a coordinator or orchestrator. 

The five NFR include integrability, interoperability, interpretability, usability and 

modifiability. The proposed six layers are: the user interface, orchestration, semantic, 

data processing, integration and security tool layers. They help in the design and 

implementation of a SOAR platform that provides a security team with the desired 

functionalities, while fulfilling the NFR.  

A layered architecture of a SOAR has been designed, separating the concerns of a 

SOAR platform into different layers by modularizing the functionalities and components. 

The separation of the semantic layers has helped to achieve interpretability and also 

enabled semantic interoperability among the security tools and SOAR platforms. 

Furthermore, the integration layer has been designed to enable security teams to flexibly 

integrate heterogeneous security tools (i.e., proprietary, open-source, legacy and COTs), 

based on their preferred integration mechanism (i.e., plugins, scripts, APIs and modules). 

Employing a layered architectural style has addressed issues with the evolution of SOAR 

platforms by providing security teams with the flexibility to choose, modify or add 

preferred components for deployment and evolution of a SOAR platform. We have 

developed a Proof of Concept (PoC) SOAR platform, STUn (i.e., Security Tool Unifier), 

giving consideration to the structure of an ad-hoc SOC infrastructure. Observing the 

impact of automated integration and interpretation of security tools and incident response 

processes, we have found that consideration of architectural design decisions has 

improved the SOAR design practices. 
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7.1.3 Semantic-based Integration Framework 

We have devised and implemented a semantic-based integration framework for 

automatic integration and interpretation of security tools’ data and IRPs’ activities in 

chapter 4. The semantic-based integration of security tools has enabled interoperability 

among isolated, heterogenous and multi-vendor security tools. We have formalized the 

key concepts of a SOAR platform as: security tools, their functional and non-functional 

capabilities and the activities of IRPs. We have introduced an ontological model for 

SOAR platforms that has three main classes: security tools, capabilities and activities. 

The relationships among these classes have been defined for automatic selection and 

invocation of security tools in chapters 4 and chapter 5. We have designed the classes of 

the ontological model following a systematic and structured approach. Furthermore, we 

have implemented an annotation and prediction module, leveraging popular NLP and 

ML techniques. The prediction module has automatically classified the activity 

descriptions of IRPs in an ontology class, enabling automatic adaption to changes in the 

activity descriptions, and thereby generating new IRPs. It has also removed ambiguity in 

activity descriptions when different security teams have defined similar tasks in different 

words.   

The ontological model, annotation module, and prediction module form the 

integration framework that has been used to create an interoperability model. The 

interoperability model has been designed to automate the execution of an IRP that has 

been performed by automatically predicting the classes of activities from their 

descriptions, identifying the security tools needed and invoking those security tools. The 

feasibility of the proposed prediction model and interoperability model has been 

evaluated experimentally. We have found that consideration of NLP and ML techniques 

have enabled automated interpretation of text-based activity descriptions and the 

execution of IRPs.  

7.1.4 Ontology-driven Integration Process 

In order to provide further support for automation, we have proposed a novel ontology-

driven integration process in chapter 5. We have observed that to adapt the changes in 

security tools or IRPs, a SOC requires skilled professionals, who are familiar with the 

underlying libraries and components of a SOAR platform. APIs, plugins or scripts must 
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be designed and developed by human experts to adopt the changes, which are usually 

repetitive, time-consuming and error prone. Most SOCs already suffer from a shortage 

of skilled professionals; hence, the manual and repetitive process may result in further 

challenges for the organizations interested in leveraging the benefits of a SOAR platform.  

We have found that human interventions can be minimized in the integration 

process by formalizing the input, output, execution environment and functionalities of 

security tools. We have proposed and designed a set of ontologies to provide the required 

formal specifications. We have further proposed an approach, OnSOAR, to automate the 

process for integration of security tools in four stages: (i) interpretation of the incident, 

(ii) identification of activities, (iii) selection of security tools and (iv) formulation of 

commands. Furthermore, a set of rules and structured queries have been defined to keep 

the ontology consistent and retrieve data from it. The proposed approach has been 

experimentally evaluated and compared with two existing baseline approaches. The 

evaluation has demonstrated the effectiveness and efficiency of the proposed approach. 

This research has demonstrated that the proposed approach can contribute towards an 

integrable, interpretable, interoperable and modifiable SOAR platform. 

7.1.5 AI-enabled Declarative API for Security Orchestration and Automation 

We have presented an AI-enabled declarative API-driven orchestration approach, namely 

DecOr, in chapter 6, for a flexible, scalable and easy to modify SOAR platform. DecOr 

has mainly been designed as part of the abstraction layer of the proposed layered 

architecture (chapter 3). Thus, the inherent complexity of a SOAR platform has been 

hidden from its end users using a set of declarative APIs (dAPIs). We have identified 

three sets of dAPIs: (i) orchestration APIs, (ii) integration APIs and (iii) execution APIs, 

to encapsulate the activities related to orchestration, integration and execution of the 

activities of a SOAR platform. Each dAPI (e.g., block. IP (malicious). Firewall 

(checkpoint)) has been designed to represent a task (e.g., scan, block and correlate), an 

object (e.g., IP, and endpoint), properties of an object (e.g., malicious IP) and, for some 

cases, the security tools (e.g., checkpoint firewall and SIEM) that are required to execute 

the needed task(s). The dAPIs can enable an end-user to interact with a SOAR without 

having detailed knowledge about the underlying libraries and configurations of a SOAR 

platform.  
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We have also developed a semantic framework, SecAPIGen, to automate the 

design and generation of dAPIs elements from task descriptions (i.e., activity 

descriptions or user queries). SecAPIGen leverages the NLP tools and techniques, such 

as dependency parsing and WordNet, to generate different parts of a dAPI and identify 

semantically similar dAPIs. We have observed that the playbooks of a SOAR platform 

are mostly structured, which can be utilized to automatically identify the concepts of an 

ontology and map the elements of dAPIs with the classes and elements of an ontology. 

Our proposed solution also includes SemOnto, which uses playbooks’ output to 

automatically identify the concepts of a SOAR’s ontology (i.e., it is required for semantic 

integration and interpretation). The concepts generated by SemOnto can enable semantic 

interpretation of a dAPI’s elements. DecOr has been experimentally evaluated with a 

detailed experiment of 147 pairs of tasks and dAPIs. The experimental results 

demonstrate that DecOr has successfully generated dAPIs in near real-time with high 

precision. Our proposed approach has provided support for an easy to learn, interact with 

and modify SOAR platform. Based on the reported solutions and the results of the 

evaluation of the proposed solutions, we can assert that the declarative APIs and the 

utilization of AI technologies in the design and development of a SOAR platform are 

able to address several of the challenges of a SOAR platform identified in Chapter 2 

effectively.  

7.2 FUTURE DIRECTIONS 

This thesis has made a significant contribution to the growing body of knowledge and 

technologies (i.e., methods, processes and tools) for designing and evolving a SOAR 

platform that can support ease of integration and interoperability of different types of 

security tools. The findings from the reported research also lay the foundation for several 

future research opportunities in this area. We consider two key potential areas for future 

research below.  

7.2.1 Software Engineering for Security Orchestration and Automation 

Despite the widespread adoption of security orchestration technologies and practices in 

recent years, several engineering and management issues (such as legal issues, trust 
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management, adaptability, scalability and usability) have mostly been neglected and need 

to be addressed. Below we discuss some important points for future research: 

7.2.1.1 Empirical evaluation of the proposed architecture and frameworks 

The proposed architecture and toolsets of this thesis have been evaluated through 

rigorous experimentation using seven open-source, freely-available security tools, a set 

of IRPs and 189 playbooks from one SOAR vendor. Further research is needed for a 

large-scale evaluation of the proposed architecture, toolsets and frameworks with 

multiple proprietary and enterprise editions of security tools, IRPs, playbooks and use 

case scenarios. Chapter 2 has identified a dearth of solid studies in the security 

orchestration domain. There is an important need to define evaluation criteria and metrics 

to empirically evaluate different aspects of a SOAR platform, including the promised 

functional and non-functional requirements. Further research is also required for 

developing and applying a framework for evidence-based evaluation of the security 

orchestration tools and techniques.  

In this thesis, we have proposed a paradigm shift for large-scale realization of a 

SOAR platform. To the best of our knowledge, this thesis is the first step towards 

encapsulating the tasks of a SOAR platform through a set of dAPIs. SOAR platform 

vendors, or security tools vendors, may consider abstracting the activities of their 

products and tools through a set of standard dAPIs and their underpinning AI techniques 

to empirically understand whether or not the proposed solution can improve the 

efficiency and productivity of a SOC team who are dealing with a continuously changing 

threat landscape.  

A useful area of empirical exploration could be conducting large-scale mapping of 

the existing SOAR platforms and IRPs onto their architecture design decisions to 

generate patterns and hide interactions among the different components across multiple 

technology paradigms. Such a large-scale evaluation would provide the usefulness and 

generalizability of the findings of this thesis.  

Another potential area of future research is to evaluate the practical value of the 

findings of this thesis by seeking feedback from practitioners by performing industry-

scale evaluations, whose findings could help improve the proposed architecture and 

toolsets. For such an evaluation, domain experts should be tasked with designing a 
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suitable ontology for the security tools used to study the amount of efficiency that can be 

increased with the use of semantic integration.  

Another empirical study could invite a security team to use the semantic integration 

framework to devise an ontology and cause the declarative APIs to interact with a given 

SOAR for integrating and interoperating security toolsets.  

7.2.1.2 Reference architecture for security orchestration and automation 

Whilst this research has proposed a generic layered architecture that supports security 

tools’ integration in a SOAR platform, there is need to develop and evaluate a reference 

architecture for the security orchestration domain. A reference architecture often serves 

as a guideline or starting point for designing concrete architecture for a software system 

in a particular domain. Emerging large-scale systems that include the integration of a 

wide variety of software and new technologies such as cloud, fog, IoT, big data and 

blockchain have benefited from having a reference architecture [225-228]. Hence, an 

emerging domain like security orchestration will benefit from research efforts aimed at 

developing a suitable reference architecture for a security orchestration platform. A 

reference architecture for security orchestration will help define a model to characterize 

different components of a SOAR platform and the relationships across the different 

components of the platform. We assert that the design and evaluation of a suitable 

reference architecture for large-scale realization and materialization of security 

orchestration platforms is a significant research challenge. There is an important need for 

close collaboration between industry and academic researchers from the cybersecurity 

and software engineering domains to develop a reference architecture for security 

orchestration. 

7.2.1.3 Evaluating the quality and design of incident response process 

Responding to a security incident as soon as possible is an intricate task for security 

experts. Despite significant efforts over the decades to detect incidents, the response 

process is still manual and poorly designed. IRPs can be considered as one of the pre-

requisites of a SOAR, based on the IRPs’ playbook as it is designed and developed. For 

successful automation and orchestration, it is important to empirically study and 

understand different aspects of the existing approaches to developing and assessing IRPs. 

There are no clear evaluation criteria to assess the quality of an IRP. Given an incident, 
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a SOC should be able to derive how good an IRP is regarding an automated process. 

There is an urgent need for evaluation metrics that can be used to evaluate and assess the 

quality of IRPs. Besides this, following a standard template to define the IRPs will hugely 

benefit a security team’s efforts to respond proactively to a security incident. It is 

necessary to identify the key features of an IRP: for example, the required security tool 

that can be used, which part can be automated, whom to contact if a critical system has 

been compromised, what countermeasures to be followed, and so on. 

7.2.2 AI and ML for Security Orchestration and Automation 

This research has also identified several opportunities for leveraging AI/ML technologies 

for developing advanced security orchestration and automation solutions ranging from 

threat management to automated identification of security tools’ features. In the 

following subsections, we first discuss the potential applications of AI and ML to 

enhance our proposed frameworks and then highlight how a SOAR platform can benefit 

from AI technologies.  

7.2.2.1 API generation at runtime 

Several opportunities exist to enhance and leverage the proposed framework, DecOr (i.e., 

Declarative API driven orchestration), reported in chapter 6, by using AI technologies. 

One way is to consider that multiple declarative APIs (dAPIs) can be made available to 

execute a single task due to the diversity of security tools and organizational preferences. 

NLP and AI technologies can be used to recommend suitable dAPI when multiple dAPIs 

are available to execute a single task. Another potential area for using AI is to automate 

the semi-automated approach, SemOnto, which identifies the concepts of an ontology 

(proposed in chapter 6). For this objective, AI technologies can be explored to extract 

features from existing semantic knowledge bases (i.e., ontologies, RDF, or structure 

documents), analyzing different playbooks’ structures, and use that information to 

predict or classify similar features from the structured and unstructured documents of a 

SOAR (e.g., playbook documentation, security tool documentation and so on).  

7.2.2.2 Automated identification of security tools’ features 

This thesis has proposed an ontology-driven integration approach (chapter 4), which 

requires a detailed definition of the features of different security tools and incident 
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response plans. Without suitable definitions of a security tool’s functional and non-

functional capabilities, the proposed approach will not be able to perform the 

abovementioned tasks. A probabilistic learning model can also be designed to automate 

the integration process, using the ontological model and the existing security tools’ 

configurations to generate the APIs when an exact match is missing. The use of advanced 

NLP and ML techniques can help to automate the identification of the security tools’ 

features that are required to automate the execution of an IRP. For example, an AI-

enabled automation framework could be developed to recommend the features of 

security tools from their documentation. This can be achieved by using existing NLP 

techniques (i.e., Word2Vec and word embedding) and the ML/ Deep Learning (DL) 

model for analysis of security tools’ descriptions or documentation. At the core of such 

a framework will be a security tool features-centric language model that will be built 

with the existing security tools and ML/DL models. 

7.2.2.3 Automated analysis and recommendations of a security incident response 

plan 

There is also a need for future research to develop an automated framework that can 

recommend a set of IRPs based on different characteristics of an incident to security 

experts. NLP techniques (e.g., word embedding) and ML techniques (e.g., traditional or 

deep learning models) can be used for analysis of and recommendations for the existing 

IRPs. There will need to be a development of incident response-centric language models, 

which can recommend the possible IRPs to the security team for a real-time response. A 

tool for automatic analysis of IRPs may also help to identify the key features of an IRP 

and automate the generation of playbooks from IRPs and other, available security tools. 
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Appendices  

Appendix A1. Annotation Instruction  

Annotate the different parts of a dAPI element from the task description: The annotator 

needs to take each task description from the “raw_file.xls” and annotate the different 

parts (i.e., dAPI element) of a dAPI element. Certain things need to be considered.  

(a) Each annotated dAPI will have three parts.  

(b) The first part, consists of the key abstract functions such as block, scan, verify and 

detonate.  

(c) The second part provides details about the task and compromises of the object (e.g., 

IP and capability) on which the task needs to be performed.  

(d) The third part is to identify the specific components (i.e., endpoint and ontology) on 

which the task needs to be done or the types of tools (i.e., firewall) that need to be 

used.  

(e) The last two parts of a dAPI take parameters that provide more fine-grained detail 

about a task. For example, the task “block external IPs in the Firewall” specifies 

the types of IPs. The dAPI for the task will be “block. IP (external). firewall” where 

the second part takes “external” as an input parameter. Follow the annotation 

instruction below to label the task with the corresponding dAPI.  

(f) The third part and the parameters of the second and third parts of a dAPI might be 

empty depending on the task description.  

Following are the step by step annotation instruction  

Step 1: Identify the Part of speech of a sentence from the list of the task description and 

the relationship between different words of a sentence or build the dependency parse tree.  

Step 2: Annotation of the first part of the dAPI  

(g) Identify the root word of a sentence and consider the root of a sentence as the first 

part of a dAPI.  

(h) if a word is the nominal subject of the root of a sentence and the part of speech of 

the word is verb or noun then consider the word as a first part of the.  

Step 3: Annotation of the second part of the dAPI  
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(i) If the root has a nominal subject where the parts of speech of the nominal subject 

are either verb or noun only then consider the root as a second part of the dAPI  

(j) If a word is a direct object of a root consider it as the second part of the dAPI  

(k) If a word is a modifier (adverbial modifier or clausal complement) of the root 

consider the child of the word that is a nominal subject of the word a. If the child is 

a nominal subject of the word and the part of speech of the child is a verb then 

consider it as the second part of the dAPI  

Step 4: Annotation of the third part of the dAPI  

(l) if a word is a modifier (adverbial modifier or clausal complement) of the root 

consider the child of the word that is a nominal subject of the word a. If a child is a 

direct object of the word and the part of speech of the child is a verb then consider 

it as the third part of the dAPI  

(m) If a word is a preposition of the root and the part of speech of the word is the 

adverbial position then consider the child of the word that is a prepositional object 

of the word a. If the child of the word is a preposition object and its part of speech 

is a verb or noun consider the child of the word as a third part of the API ii. Consider 

the modifier of an API element as the parameter of that API element. For example, 

block the external IPs in the Firewall, here external is a modifier (i.e., adjective 

modifier) of IP.  

(n) Several cases exist where a single object or subject has multiple dependencies, for 

example, “send a message to the source user email address”, here the “source user 

email” is the modifier of the object address and parameter of the address API 

element. Identify the multiple modifiers of the dAPI element and consider them as 

the list of parameters for that part. Example: address (source user email)  

For annotation of the parameter of the second part of the dAPI and the parameter of the 

third part of the API follow  

Step 5: Annotation of the parameter of the second and third part of the dAPI 

(b) Each object and subject of the second and third part of the dAPI (also referred to as 

dAPI element) have further modifiers (e.g., adverbial modifier, adjective modifier 

and noun compound modifier).  

Save the file as “annotated_API_AnnotatorName.xls” 
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Combine the semantically similar words:  Some of the annotated dAPI elements can 

be combined into a single API element based on their semantics and the task they are 

performing. For example, “quarantine the endpoint” and “isolate the endpoint” referring 

to the same task. With the above annotation, there will be two different API elements in 

the first part: quarantine and isolate. The job of the annotator here is to combine the API 

elements and present them with a single API element. For example: use quarantine 

instead of isolate or vice versa. In the new annotated API element, the API element 

quarantine refers to the task related to isolate and quarantine that is quarantine → 

(quarantine, isolate)  

Quarantine the endpoint: quarantine. endpoint  

Isolate the endpoint: quarantine. endpoint  

Similarity retrieve can be used instead of acquire, and get  

Instruction:  

(o) Take each API element and consider the rest of the API elements and see whether 

they seem to be the synonym of each other or tends to have a semantically similar 

meaning in the context of the task. 

(p) Provide the API element list that can be combined in the following form and save 

the file with the name “semanticAPI_AnnotatorName.docs”   

“semantics_api_annotatorName.pdf”  

o quarantine →(quarantine, isolate)  

o retrieve → (acquire, get, retrieve)  

Save the new annotated file as “annotate_Semantic_API_AnnotatorName.xls”. 

Appendix A2. Frequent dAPI Elements 

Frequent API elements with the frequency of each element in different parts of the dAPI 

Frequency of each dAPI element in first part: retrieve: 28, verify: 23, send: 21, set: 16, 

block: 11, enrich: 9, detonate: 9, query: 6, create: 5, quarantine: 4, close: 3, parse: 3, 

categorise: 3, download: 2, print: 2, use: 1, disable: 1 

Frequency of frequent dAPI elements in second part: file: 14, information: 9, url: 9, 

report: 9, ips: 8, severity: 7, incident: 7, account: 6, directory: 6, sample: 5, device: 5, 

email: 4, object: 4, username: 4, input: 4, endpoint: 3, address: 3, operation: 3, list: 3, 

domain: 3, result: 2, host: 2, classifier: 2, alert: 2, task: 2 
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Frequency of frequent dAPI elements in third part: integration: 11, sandbox: 5, room: 

4, address: 3, high: 3, url: 3, analysis: 3, repository: 3, domain: 3, account: 2, low: 2, 

siem: 2, firewall: 2, qradar: 2, information: 2, username: 2, service: 2, zscaler: 2, cuckoo: 

2, context: 2, crowdstrike: 2, hash: 2 

Frequent API elements for parameter for second part of dAPI: incident: 7, active: 5, 

account: 4, playbook: 4, user: 3, host: 3, cve: 3, logs: 2, external: 2, email: 2, file: 2, md5: 

2, malicious: 2 

Frequent dAPI elements for parameter of third part: user: 4, mcafee: 4, email: 3, 

source: 3, carbonblack: 3, war: 3, joe: 3, security: 3, sandbox: 3, network: 2, crowdstrike: 

2, falcon: 2, advanced: 2, threat: 2, defence: 2, blacklist: 2 

Most frequent dAPI elements (i.e., objects) except the first part in ground truth: file: 

18, incident: 15, account: 12, url: 12, information: 11, report: 11, integration: 11, ips: 10, 

email: 9, severity: 8, sandbox: 8, directory: 7, username: 7, user: 7, address: 6, host: 6, 

device: 6, playbook: 6, domain: 6, active: 6, endpoint: 5, sample: 5, input: 5, crowd strike: 

5, object: 4, operation: 4, md5: 4, cve: 4, room: 4, source: 4, mcafee: 4, hash: 3, list: 3, 

task: 3, high: 3, blacklist: 3, analysis: 3, repository: 3, network: 3, carbon black: 3  

Appendix A3. Semantically Similar API Element 

 Following we show the API elements that are considered under an API element for the 

first part of an API.  

retrieve: (acquire, get, retrieve), categorize: (categorize, classify), enrich: (add, enrich), 

quarantine: (isolate, quarantine), send: (dump, submit, send, return, upload), set: 

(assign, change, initiate, poll, set), verify: (check, review, verify), block, close, create, 

detonate, disable, download, parse, print, query, use 

Appendix A4. Identified Concepts of an Ontology that are dAPI Elements 

Class: account, analysis, anyrun, atd, bitdam, cuckoo, cve, email, endpoint, file, hash, 

ip, joe, log, malicious, nexpose, qradar, report, result, sample, search, task, threat, url, 

user. 
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