
ARCHITECTURE-CENTRIC SUPPORT FOR

SECURITY ORCHESTRATION AND

AUTOMATION

 Chadni Islam

School of Computer Science

The University of Adelaide

This dissertation is submitted for the degree of

Doctor of Philosophy

Supervisors: Professor Muhammad Ali Babar and Dr Surya Nepal

November 2020

 i

Table of Contents

List of Figures ... v

List of Tables ... viii

Abstract .. ix

Declaration ... xi

Acknowledgments ... xii

1 Introduction ... 1

1.1 Objectives and Research Questions .. 5

1.2 Thesis Overview .. 10

1.3 Thesis Contributions .. 13

1.4 Thesis Organization ... 16

2 Literature Review .. 17

2.1 Introduction ... 18

2.2 Research Method ... 21
2.2.1 Research Identification .. 22
2.2.2 Search Strategy .. 22
2.2.3 Eligibility Criteria .. 24
2.2.4 Study Selection .. 25
2.2.5 Data Extractions, Synthesis, and Analysis .. 27

2.3 Security Orchestration: Definitions, Functionalities, and Elements 29
2.3.1 Definitions ... 29
2.3.2 Functionalities of Security Orchestration and the Automation Platform 31
2.3.3 Quality Requirements for Security Orchestration Platforms 39

2.4 Key Components of Security Orchestration.. 42
2.4.1 Unification Unit ... 43
2.4.2 Orchestration Unit ... 46
2.4.3 Automation Unit .. 50

2.5 Motivation behind Security Orchestration .. 52
2.5.1 Technical Challenges ... 52
2.5.2 Socio-Technical Challenges ... 55

2.6 Taxonomy of Security Orchestration .. 60
2.6.1 Execution Environment ... 61
2.6.2 Automation Strategy .. 65
2.6.3 Deployment Model .. 69
2.6.4 Mode of Task .. 71
2.6.5 Resource Type ... 72

2.7 Discussion ... 74
2.7.1 Open Issues in Security Orchestration .. 75
2.7.2 Architecture Level Support for Security Orchestration 78
2.7.3 Limitations of This Review .. 79

2.8 Chapter Summary .. 79

 ii

3 Security Orchestration and Automation Architecture 82

3.1 Introduction ... 82

3.2 Security Orchestration and Automation.. 84
3.2.1 Functional Requirements of Security Orchestration and Automation 85
3.2.2 Quality Attributes Requirements .. 86
3.2.3 Abstraction for Security Orchestration and Automation.................................. 88

3.3 SOAR Architecture ... 90
3.3.1 UI layer ... 91
3.3.2 Orchestration layer... 91
3.3.3 Semantic layer ... 92
3.3.4 Data processing layer ... 92
3.3.5 Integration layer... 92
3.3.6 Security tool layer .. 93

3.4 Dimensions of the Design Space of SOAR Platform .. 94
3.4.1 Process decision... 94
3.4.2 Technology decisions .. 94

3.5 Case Study – Prototype Implementation ... 96

3.6 Evaluation ..103
3.6.1 Automating the Integration of Security Tools ..103
3.6.2 Automating the Interpretation of the Activities to Execute an IRP105

3.7 Related Work ...107

3.8 Chapter Summary ...108

4 Automated Interpretation and Integration of Security Tools 109

4.1 Introduction ..109

4.2 Related Work ...111

4.3 Motivation Scenario ...113

4.4 An Integration framework for A SOAR Platform ..115
4.4.1 An Ontological Model to Enable Semantic Integration115
4.4.2 Classification of Activities based on Text Similarity119
4.4.3 Design and Development of the Annotation Module122

4.5 Interoperability Model for Execution of IRP ...122

4.6 Experiments and Results ...124
4.6.1 Preparing the dataset for a prediction module ..124
4.6.2 Implementing the prediction module ...125
4.6.3 Developing the Interoperability model ..125
4.6.4 Threats to validity ...127

4.7 Chapter Summary ...127

5 An Ontology-driven Integration of Security Tools 128

5.1 Introduction ..128

5.2 Preliminaries ..131
5.2.1 Challenges in Automated Integration ..131
5.2.2 Problem Formulation ..131
5.2.3 Motivation ..134

 iii

5.3 The Proposed Solution ..134

5.4 Semantic Layer ...136
5.4.1 Ontological Model ..136
5.4.1 Ontological Reasoning ..139
5.4.2 Querying the Ontology ...142

5.5 Security Tool Layer ..143

5.6 Data Processing Layer ..143
5.6.1 Interpretation of the Incident ...144
5.6.2 Identification of Capability to Respond to an Incident145
5.6.3 Selection of Security tools ..145
5.6.4 Formulation of Commands to Invoke a Security tool145

5.7 Experimental Design and Setup ..146
5.7.1 Gathering Input Data for OnSOAR ...146
5.7.2 Application Environment Setup ..147
5.7.3 Development of the Ontological Model ...148
5.7.4 Development of the Data Processing Layer ...148
5.7.5 Baseline Approaches...149

5.8 Evaluation ..150
5.8.1 RQ1: How Effective is OnSOAR’s Process for Automating the Integration of

Security tools? ..150
5.8.2 RQ2: How Efficient is OnSOAR for Practical Use?152
5.8.3 Threat to Validity..153

5.9 Related Work ...153

5.10 Chapter Summary ...155

6 Declarative API for Security Orchestration Platforms 156

6.1 Introduction ..157

6.2 Preliminaries and Motivation ..160
6.2.1 Playbook for Security Orchestration and Automation160
6.2.2 Ontological Knowledge Base ..161
6.2.3 Motivation Scenario ..163
6.2.4 Problem Formulation ..166

6.3 Our Approach ...167
6.3.1 Overview ..167
6.3.2 DecOr Declarative API (dAPI) ...169
6.3.3 SecAPIGen: Semantic Framework for dAPI Generation174
6.3.4 SemOnto: Identification of Ontological Concepts from Playbooks182

6.4 Experiment ...186
6.4.1 Data Collection and Tool Implementation ...187
6.4.2 Results and Analysis ...194

6.5 Discussion ..200
6.5.1 Benefits of DecOr ...200
6.5.2 Threat to validity ..202

6.6 Related Work ...205
6.6.1 Security Orchestration and Automation Solutions ...205
6.6.2 AI in Automated Interpretation and Integration ...207

 iv

6.6.3 AI in API Generation ..209

6.7 Chapter Summary ...210

7 Conclusion .. 212

7.1 Findings and Contributions ...213
7.1.1 Understanding of Security Orchestration and the Automation Landscape213
7.1.2 Layered Architecture for a SOAR platform ...214
7.1.3 Semantic-based Integration Framework ..215
7.1.4 Ontology-driven Integration Process ...215
7.1.5 AI-enabled Declarative API for Security Orchestration and Automation........216

7.2 Future Directions ..217
7.2.1 Software Engineering for Security Orchestration and Automation217
7.2.2 AI and ML for Security Orchestration and Automation220

Appendices .. 222

References ... 226

 v

List of Figures

Figure 1.1 An overview of a typical security orchestration and automation

platform .. 4

Figure 1.2 Overview and scope of the thesis ... 10

Figure 2.1 Overview of an organization’s decision against alerts without security

orchestration and with security orchestration ... 20

Figure 2.2 An overview of our MLR process .. 22

Figure 2.3 Study selection process of our MLR .. 26

Figure 2.4 Distribution of selected articles over venues .. 27

Figure 2.5 Key functionalities provided by a SOAR platform 33

Figure 2.6 Quality Attributes of a Security Orchestration Platform 39

Figure 2.7 Categorization of core components of a SOAR platform 42

Figure 2.8 Challenges that promote security orchestration 52

Figure 2.9 A Taxonomy of an Orchestration Platform... 61

Figure 2.10 Open issues in security orchestration platforms 76

Figure 3.1 Conceptual map of security orchestration and automation 89

Figure 3.2 High-level architecture for a SOAR platform ... 90

Figure 3.3 An example sequence diagram showing the flow of data and

interaction of components ... 93

Figure 3.4 Implementation architecture of the PoC for security tool integration 97

Figure 3.5 Interfaces of EDR, SIEM and IDS in UML class diagram form

showing only the methods of each security tool .. 98

Figure 3.6 Example of Splunk and Limacharlie collector class UML diagram 100

Figure 3.7 Example of data transfer from Splunk to LimaCharlie.......................... 101

Figure 3.8 Example of data transfer from Limacharlie to Splunk 101

Figure 3.9 Sequence diagram for deletion of a malicious file that is detected by

Splunk and deleted by Limacharlie ... 103

Figure 4.1 Overview of a security orchestration platform 114

Figure 4.2 Excerpt of our Ontology .. 117

Figure 4.3 The parts of speech tagging of the incident response plan and

removing stop words ... 118

Figure 4.4 Development of the prediction module .. 120

Figure 4.5 Workflow of the proposed solution .. 123

 vi

Figure 4.6 Bar plot of (a) validated weighted average of the F1-score for optimal

configuration of different classifiers and (b) testing results of Random

Forest for three levels of class ... 126

Figure 5.1 An example of execution of an incident response process in a security

orchestration platform ... 132

Figure 5.2 A high-level overview of OnSOAR ... 135

Figure 5.3 Part of our ontology: the dashed arrow represents the subclass and the

solid line represents the relationship among classes 137

Figure 5.4 The relationship between the SecurityTool class and subclass of the

Capability class... 140

Figure 5.5 Instances of classes of the ontological model and their relationship

with other instances. Blue lines represent the data property of the

instance of the class Input and Output ... 140

Figure 5.6 Example of sub processes of the integration process for interpreting

the incident ... 144

Figure 5.7 Example of sub processes of the integration process for identification

of capabilities to automatically respond to an incident 145

Figure 6.1 Example (a) snippet of a playbook for block IP which contains the list

of tasks, inputs and outputs of a playbook and (b) snippet of a task of a

playbook to run a script to “block IP with Check Point Firewall”, where

the task consists of the script arguments that are required to execute it 161

Figure 6.2 An example execution of a command based on the existing approaches

of semantic interpretation and integration and our proposed approach 162

Figure 6.3 System overview of DecOr; security tools, security operation center,

the playbooks, knowledge base and organizational infrastructure form

the underlying execution environment of a SOAR platform 168

Figure 6.4 System overview of the SecAPIGen framework 175

Figure 6.5 Example of (a) dependency parsing for “block the IPs using

checkpoint Firewall” (b) dependency parsing for “block the external IP

in the Firewall” and (c) other linguistic features of a token (each word is

considered as a token) such as token head, token head dependency, and

token child .. 176

Figure 6.6 (a) Examples of classes and properties of the classes account, email

and domain that are automatically analyzed (b) Part of a heat map

generated from context paths of the Demisto playbook, showing the

properties of classes of an ontology. The Y-axis indicates class and the

X-axis indicates the properties of a class. .. 185

Figure 6.7 Performance of SecAPIGen when generating declarative API elements

using dependency parsing ... 195

Figure 6.8 Performance of SecAPIGen to generate first part and the second part

of dAPI using two types of similarity measurements: Resnik (Res) and

 vii

Wu-palmer (WP) similarity; precision, recall and f1-measures with

respect to different RES scores for identifying (a) the first part and (b)

the second part of dAPI; precision, recall and f1-measures with respect

to different wp similarity scores for identifying (c) the first part and (d)

the second part of dAPI ... 196

 viii

List of Tables

Table 2.1 Research Questions of this MLR ... 23

Table 2.2 Inclusion and exclusion criteria ... 25

Table 2.3. Study selected for data extraction and qualitative analysis 27

Table 2.4 Summary of Notations .. 28

Table 2.5 Quality attributes of a SOAR platform .. 40

Table 2.6 Mapping summary of key activities performed by a SOAR platform

with benefits of SOC ... 58

Table 2.7 Number of papers that were returned during 2007 – July 2017 and 2017

– October 2020 for our proposed search string .. 79

Table 3.1 Summary of the architectural design decisions .. 96

Table 3.2. Illustration of a selected set of object properties of the security tool

class of an ontology .. 99

Table 3.3. Illustration of a selected set of data properties of the security tool class

of an ontology ... 99

Table 4.1. The incident response plan for a phishing attack 113

Table 4.2. Activity description and corresponding class label 120

Table 5.1. Different types of query ... 143

Table 5.2. Functional capability mapped with activity .. 147

Table 5.3. Use case scenario with IRP .. 147

Table 6.1 Summary of Notations .. 167

Table 6.2 Examples of declarative APIs.. 170

Table 6.3 Examples of the selected set of orchestration APIs 171

Table 6.4 Examples of a selected set of integration APIs 173

Table 6.5 Examples of a selected set of execution APIs .. 174

Table 6.6 Statistics of Demisto playbook .. 187

Table 6.7 Statistics of ground truth for the generation of dAPI 189

Table 6.8 Examples of ground truth for evaluation of SecAPIGen 190

Table 6.9 Performance of SecAPIGen .. 198

Table 6.10. Response times of SecAPIGen for different algorithms 200

 ix

Abstract

Security Orchestration, Automation and Response (SOAR) platforms leverage

integration and orchestration technologies to (i) automate manual and repetitive labor-

intensive tasks, (ii) provide a single panel of control to manage various types of security

tools (e.g., intrusion detection system, antivirus and firewall) and (iii) streamline

complex Incident Response Process (IRP) responses. SOAR platforms increase the

operational efficiency of overwhelmed security teams in a Security Operation Centre

(SOC) and accelerate the SOC’s defense and response capacity against ever-growing

security incidents. Security tools, IRPs and security requirements form the underlying

execution environment of SOAR platforms, which are changing rapidly due to the

dynamic nature of security threats. A SOAR platform is expected to adapt continuously

to these dynamic changes. Flexible integration, interpretation and interoperability of

security tools are essential to ease the adaptation of a SOAR platform. However, most of

the effort for designing and developing existing SOAR platforms are ad-hoc in nature,

which introduces several engineering challenges and research challenges. For instance,

the advancement of a SOAR platform increases its architectural complexity and makes

the operation of such platforms difficult for end-users. These challenges come from a

lack of a comprehensive view, design space and architectural support for SOAR

platforms.

This thesis aims to contribute to the growing realization that it is necessary to advance

SOAR platforms by designing, implementing and evaluating architecture-centric support

to address several of the existing challenges. The envisioned research and development

activities require the identification of current practices and challenges of SOAR

platforms; hence, a Multivocal Literature Review (MLR) has been designed, conducted

and reported. The MLR identifies the functional and non-functional requirements,

components and practices of a security orchestration domain, along with the open issues.

This thesis advances the domain of a SOAR platform by providing a layered architecture,

which considers the key functional and non-functional requirements of a SOAR platform.

The proposed architecture is evaluated experimentally with a Proof of Concept (PoC)

 x

system, Security Tool Unifier (STUn), using seven security tools, a set of IRPs and

playbooks. The research further identifies the need for and design of (i) an Artificial

Intelligence (AI) based integration framework to interpret the activities of security tools

and enable interoperability automatically, (ii) a semantic-based automated integration

process to integrate security tools and (iii) AI-enabled design and generation of a

declarative API from user query, namely DecOr, to hide the internal complexity of a

SOAR platform from end-users. The experimental evaluation of the proposed approaches

demonstrates that (i) consideration of architectural design decisions supports the

development of an easy to interact with, modify and update SOAR platform, (ii) an AI-

based integration framework and automated integration process provides effective and

efficient integration and interpretation of security tools and IRPs and (iii) DecOr

increases the usability and flexibility of a SOAR platform. This thesis is a useful resource

and guideline for both practitioners and researchers who are working in the security

orchestration domain. It provides an insight into how an architecture-centric approach,

with incorporation of AI technologies, reduces the operational complexity of SOAR

platforms.

 xi

Declaration

I, Chadni Islam, certify, this work contains no material which has been accepted for the

award of any other degree or diploma in my name in any university or other tertiary

institution. In addition, I certify that no part of this work will, in the future, be used in a

submission in my name for any other degree or diploma in any university or other tertiary

institution without the prior approval of the University of Adelaide and where applicable,

any partner institution responsible for the joint award of this degree. To the best of my

knowledge and belief, the thesis contains no material previously published or written by

another person except where due reference is made.

I acknowledge that the copyright of published works contained within this thesis resides

with the copyright holder(s) of those works.

I give permission for the digital version of my thesis to be made available on the web,

via the University's digital research repository, the Library Search and also through web

search engines, unless permission has been granted by the University to restrict access

for a period of time.

I acknowledge the support I received for my research through the provision of Data61

postgraduate scholarship and full-fee scholarship.

Signature: .

Date: 31.07.2020 .

 xii

Acknowledgments

This thesis would not be possible without the continuous guidance, encouragement and

support of several persons. I would like to take this opportunity to acknowledge them.

First, I would like to express my gratitude and sincere appreciation to my supervisor,

Professor M. Ali Babar for his outstanding support, encouragement, and unwavering

guidance during all stages of my PhD. I am deeply indebted and grateful for all the

discussions and brainstorming sessions that we had through this timeframe. He was

instrumental in defining the path of my research. He continuously guided me and

encouraged me to be professional and do the right thing even when the road got tough.

Without his persistent help, the goal of this thesis would not have been realized. He

helped me to understand the power of critical thinking and reasoning. He supported me

by providing numerous revisions on my writing and comments on papers. He also gave

me opportunities to be involved in student projects and engaged with industry partners

and other researchers. I am greatly fortunate to get the chance to work closely with and

mentored by him. His passion and scientific intuition profoundly motivated me towards

high-quality research and inspired me to continually excel beyond ordinary limits and

kept me focused on my research.

I would also like to extend my deepest gratitude to my co-supervisor Dr. Surya Nepal.

His constructive criticism helped me to develop a broader perspective in my research. I

am highly fortunate to be mentored by him. The fruitful discussion with Surya helped

me to bring the thesis in shape. The completion of my thesis would be possible without

the support and nurturing of his supervision. His encouragement to participate in

symposium and present research to a wider community helped me to get feedback from

different people and enrich the contribution. I would like to recognize the invaluable

assistance that he provided during my study.

I would like to pay my special regards to CREST team members. All their efforts are

greatly appreciated. Special thanks to Dr Faheem Ullah, Triet Mihn Le, Dr Mojtaba

Shahin, Dr Aufeef Chauhan, Dr Nguyen Khoi Tran and Bushra Sabir. Faheem and Triet

had helped by continuously reviewing my research paper and providing constructive

 xiii

criticism. Faheem and Aufeef’s expertise in architecture and Triet and Bushra’s expertise

in machine learning facilitated my learning and enriching the work. They were always

open to discussion. The fruitful discussion with them helped me to look at my research

from different perspectives. I would also like to acknowledge, Dr. Mansooreh Zahedi for

the encouragement and insightful discussions in many stages of my candidature.

I also acknowledge CSIRO’s Data61, School of Computer Science and CREST for

providing various scholarships to facilitate and pursue my doctoral research and

activities.

I must acknowledge my best friend and partner, Sheik Mohammad Mostakim Fattah,

without whose support, I would not have finished this thesis, who has constantly

encouraged me through the hardest time of my PhD. I would also like to thank my Mom,

Sister, Papa, Mamoni and Brother for their encouragement. I thank all my friends and

family members who directly or indirectly supported me throughout this time.

Introduction 1

Chapter 1

1 Introduction

The rapid growth in cyberattacks has recently become a major concern for industry and

governments. Advanced data exploitation and phishing techniques are used to attack

most organizations [1-3]. Industries ranging from financial to healthcare are all

vulnerable to cyberattacks; among them, healthcare, manufacturing, financial services,

government agencies and educational institutes are the most targeted [1, 4-7]. According

to Cybersecurity Ventures, global cybercrime damage may reach $6 trillion (£4.6 trillion)

in 2021 [8, 9]. In Australia, all levels of government, industry, political organizations,

education, health, essential services providers and operators of critical infrastructure are

experiencing a significant increase in cybercriminal activities and sophisticated state-

based cyberattacks [10-12]. This was been announced publicly by the Australian Prime

Minister in June 2020 to raise awareness [11, 12].

Many organizations are building Security Operation Centers (SOC) to improve

their organization's security position, continuously monitor, detect, prevent, analyze and

respond to, and reduce the financial impact of cyberattacks [13-15]. According to the

SANS (Escal Institute of Advanced Technologies) Institute, “SOC is a combination of

people, processes and technology protecting the information system of an organization

through projective design and configuration, ongoing monitoring of the system state,

detection of unintended actions or undesirable states and minimizing damage of

unwanted effects” [13]. SOCs help organizations to increase their ability to detect threats

and respond faster to cyberattacks; hence, minimizing the damage of cyberattacks. A

recent survey by Kaspersky has revealed that the financial damage to many organizations

is reduced to half with the help of SOCs [14]. An organization’s SOC uses a variety of

security tools, developed by different vendors, to protect its Information Technology (IT)

Introduction 2

infrastructures and Business Applications (BA). Security software or Security tools are

software-intensive systems for detecting, preventing and recovering from cyberattacks.

In this thesis, we have used the term security tool to refer to security software/security

tools and information systems that are used or participate in responding to security

incidents. Some of the commonly used security tools are antivirus, firewall, Intrusion

Detection Systems and Instruction Prevention Systems (IDS/IPS), Security Information

and Events Management (SIEM) and Endpoint Detection and Response (EDR) tools [16-

19]. These security tools use different steps for threat defense, from detecting, preventing

and responding to security incidents to performing data enrichment by correlating and

analyzing event data with contextual information.

Security teams of a SOC are expected to monitor and analyze the activities (e.g.,

validate alerts, correlate logs, remove malware, etc.) of these security tools to respond to

security incidents [20-23]. We refer to the human experts who are involved in different

activities of SOC to protect an organization from cyberattacks as security teams.

Common roles of security teams are: Cyber Security Incident Response Team (CSIRT),

threat hunter, forensic analyst, security analyst, security administrator and network

administrator [17, 33, 34]. To increase operational efficiency, SOCs are adopting

Security Orchestration, Automation and Response platforms (SOAR) that orchestrate the

activities of security tools and human experts and automate the labor-intensive repetitive

tasks that are performed manually by security teams [20, 23, 24]. In this thesis, the terms

security orchestration and automation, security orchestration and SOAR are used

interchangeably.

Security orchestration is defined as “the planning, integration, cooperation and

coordination of the activities of security tools and experts to produce and automate

required actions in response to any security incident across multiple technology

paradigms” [22]. The incorporation of security orchestration and automation

technologies promises to solve several challenges faced by the overwhelmed security

teams in a SOC dealing with complex security operations. A key challenge is to analyze

a huge pool of alerts in time.

Incident responders must immediately respond to contain, mitigate and minimize

the damage of a security incident. Another challenge is that most of the Incident

Introduction 3

Response Processes (IRP) contain a sequence of activities that are required to be

performed manually by a security team. Performing a task manually is often error-prone

and time-consuming. In addition, most organizations have a lack of security experts to

operate their SOCs efficiently. For instance, a SANS survey has revealed that a SOC’s

capabilities may be hampered due to the lack of skilled professionals [13]. A SOAR

platform minimizes the burden on human experts by orchestrating, automating and

streamlining IRPs. It is a must-have technology for organizations (in-house or through

service providers) to address the challenges associated with a massive volume of security

alerts, dynamic security threat landscapes and huge skill gaps [2, 25, 26].

The adoption of SOAR platforms has increased significantly in the last couple of

years [26, 27]. Some of the examples of SOAR platform security vendors include (but

are not limited to): MacAfee [28], IBM [22], FireEye [29], Intel [30], AlienVault [31],

Swimlane [32], LogRhythm [33] and Demisto [34]. These vendors report on successful

adoption of their SOAR technologies in SOC environments and how SOAR platforms

may help to increase the operational efficiency of security teams.

Figure 1.1 depicts an overview of a SOAR platform. To develop or deploy a

SOAR platform, SOAR designers or developers first assess an organization’s existing

security tools, information systems, security requirements and security expertise. Based

on the assessments, they develop or utilize existing APIs, plugins or scripts to integrate

security tools into a SOAR platform. Integration of security tools allows security teams

to access the security tools from a single platform. Furthermore, response processes/

IRPs, rules and playbooks (i.e., an automated workflow) are designed to orchestrate and

automate IRPs in response to security incidents [20, 32, 35]. Playbooks are mostly built

from IRPs by demystifying security requirements/ concerns [26]. They help to deploy

countermeasures following day to day security practices.

The integrated security tools generate alerts, logs and reports in different formats

that are used by a wide range of security teams. Data generated by different security tools

are gathered and stored for investigation by security teams. Different security teams work

with a different set of security tools to respond to security incidents. Furthermore, the

data generated by one security tool might be used by other security tools for further

processing. For example, the alerts produced by different IDS are analyzed by a SIEM

Introduction 4

tool for a gathering context. As security tools have different data formats and are mostly

designed to work in isolation, a SOAR platform needs to work as an interpreter among

the security tools and enable interoperability among them. Rules, mechanisms or

Interpreted Data

Playbook

Task Execution

System Log

Data
Collection

Tool
Integration

Security Team
Collaboration

Orchestration

Intelligence

Response
Planning

Alert Log Requirements

Knowledge
base

Incident
Investivation

Security Incident
Response

Activity

Incident Malware

Data Interpretation

Performance

Security Tools Security Team

Incident Reports

Information Systems

Figure 1.1 An overview of a typical security orchestration and automation platform

Introduction 5

knowledge bases are developed for interpretation of the gathered data by a SOAR

platform to bring them to security teams for analysis and investigation. Security teams

investigate these data utilizing security intelligence based on defined playbooks. Finally,

responses towards a security incident are orchestrated, and tasks are executed by a SOAR

platform invoking the integrated security tools.

1.1 OBJECTIVES AND RESEARCH QUESTIONS

The rapid proliferation of cyberattacks is changing the way a SOC defends and responds

to security incidents. Due to the COVID-19 pandemic, organizations are under a new

level of stress where most people are working from home, resulting in COVID-19 themed

cyberattacks that are phishing, business email compromise scams, ransomware, remote

working vulnerabilities, hacking and hijacking of video and teleconferences [36-39].

According to the Australian Cyber Security Centre (ACSC), the frequency and severity

of COVID-19-themed cyberattacks are likely to increase in the coming days [40]. In

recent years, SOCs have evolved significantly to encompass a sophisticated range of

security tools and activities within organizations to build and operate their cybersecurity

tools. According to Cybersecurity Ventures, the global spending on cybersecurity

products and services (i.e., security tools) will exceed $1 trillion cumulatively over five

years (i.e., from 2017 to 2021) [8, 9]. The Australian federal government has announced

a budget of $1.35 billion for enhancing Australian cybersecurity capabilities over the

next ten years. According to AustCyber (i.e., Australian Cyber Security Growth

Network), by 2026, approximately 77% of cybersecurity expenditure will be spent on

externally managed security services [41].

To counter the emerging security threats and make use of increasing demand for

the available security products and services, new security tools are being introduced to

secure organizational IT infrastructures, which are increasingly becoming hyper-virtual,

mobile and connected. This situation causes a continuous change in the underlying

execution environment (e.g., security tools, integration mechanisms and security

requirements) of a SOAR platform, which must be designed in such a way that it can

evolve with the evolution of its execution environment.

Introduction 6

Software architecture plays an integral role in the design of large-scale integrated

systems [42-44], like SOAR platforms. It guides the design, development and evaluation

of a software system over time. Bass et al. have defined software architecture as “a set

of structures needed to reason about the system, which comprises software elements,

relations among the elements and properties of both the elements and the relations” [45].

Software architecture abstracts the different elements of a system and the relationships

among these elements with respect to the functional and non-functional requirements

(also known as quality requirements) of a system [43]. Software architecture is also

known as the composition of architectural design decisions [44]. Jansen et al. have

defined architectural design decisions as “a description of the set of architectural

additions, subtractions and modifications to the software architecture, the rationale and

the design rules, design constraints and additional requirements that (partially) realize

one or more requirements on a given architecture”. However, the existing SOAR

platforms lack the proper abstraction for designing a SOAR platform at an architectural

level. The research reported in this thesis has been motivated by the increased realization

that there is an important and urgent need for architecture-centric support for designing

and evolving SOAR platforms, which are expected to integrate easily and smoothly and

be interoperable with existing and new security tools.

Before delving into the main body of this thesis, we perform an extensive study of

the state-of-the-art and the state-of-the-practice of the existing SOAR platforms by

carrying out a Multivocal Literature Review (MLR) [46]. More specifically, we

investigate (i) the key functionalities and components required of a SOAR platform (ii)

drivers of a SOAR platform and (iii) variation in SOAR platform solutions. Through an

analysis of the existing studies, we find that there is also a lack of common understanding

among vendors and SOCs of SOAR platforms. Some vendors are simply providing

automated workflows or playbooks and claiming that as a SOAR platform. Some are

providing an integrated layer for security tools and claiming them to be a SOAR platform,

whilst others confuse security orchestration with security automation. Most of the

existing SOAR platforms have been implemented in an ad-hoc manner, based on

organizational requirements, without much attention paid to the underlying

infrastructure. The lack of comprehensive vision and ad-hoc design results in several

challenges in evolving a SOAR platform over time.

Introduction 7

Some of the key challenges are: (i) seamless integration of new security tools and

new playbooks, (ii) managing interoperability among the isolated and heterogenous

security tools in a changing environment and (iii) building capability in a security team

to understand the underlying libraries and components of a SOAR platform to

incorporate new tools. To bridge the gap, we design, implement and evaluate architecture

support for a human-centric SOAR platform. Based on the proposed architecture, we

propose a set of Artificial Intelligence (AI) enabled toolsets and frameworks that address

the abovementioned challenges.

This thesis aims to propose architecture-centric support for integrating security

tools into a SOAR platform, where a SOAR platform works as a hub for security tools

and security teams. To achieve the goal, we address three key Research Questions (RQ).

RQ1. How has security orchestration been defined and what are the key challenges

in security orchestration?

Since security orchestration and automation is an emerging concept, there is a

lack of consensus amongst vendors about the various functionalities, components,

toolsets and challenges of security orchestration. To identify how security orchestration

has been defined, we investigate “what is security orchestration?”, “what are the key

functional and Non-Functional Requirements (NFR) of a SOAR platform” and “what

types of solutions has been presented?”. To the best of our knowledge, there has been no

effort to systematically review and analyze the existing SOAR platforms’ functional

features, NFR and core components for designing a human-centric SOAR platform.

Therefore, it is important to systematically review state-of-the-art of security

orchestration and automation to (i) identify the key functional and NFR requirements,

Thesis statement: A SOAR platform is an integrated platform that involves the

realization of three paradigms – unification, orchestration and automation.

Integration mechanisms and interactions of security teams with a SOAR platform

influence the usefulness and large-scale realization of existing SOAR platforms. An

abstraction of a SOAR platform, along with its key functionalities, is required to

identify the suitable architecture style and architecture patterns to embed agility in a

human-centric SOAR platform.

Introduction 8

(ii) gain insight about the key components and technologies that can fulfill the essential

functional and NFR requirements and (iii) identify and codify the challenges associated

with current practice for designing and deploying security orchestration and automation

platforms.

RQ2. How does software architecture play a role in improving the design practice

of security orchestration and automation platforms?

The functional and NFR requirements used to design and deploy a SOAR

platform depend greatly on the requirements of security teams and the underlying

infrastructure of an organization. As different security teams have different requirements,

ad-hoc approaches appear to be more dominant in designing and deploying a SOAR

platform. Incorporation of the changes in the underlying execution environment without

a clear guideline and view of a SOAR design space results in a monolithic and complex

design that is hard to evolve. Lack of conceptual and practical guidelines for optimal

architectural design decisions may result in a highly complex design. It can be argued

that an architecture-centric approach can help to reduce the design complexity of a SOAR

by modularizing the functional and NFR elements, alongside consideration of

architectural design decision help with analyzing and understanding sub-optimal design

decisions that can be improved by leveraging well-known architecture styles and

patterns.

RQ3. What kinds of tools and techniques can be incorporated to realize the

architecture while fulfilling the functional and NFR of the implemented platform?

There is a need to identify the tools and techniques that are suitable for the

realization of the proposed architecture, to provide an effective and efficient way to adapt

to the changes in a SOAR platform. We designed the following three (sub) research

questions to answer RQ3.

RQ3.1. How is it possible to enable seamless interoperability and interpretability

among security tools and SOAR platforms?

A SOAR platform needs to enable interoperability among different security tools

to orchestrate and automate IRPs. To do this, it is necessary to interpret both the

capabilities of security tools and activities of IRPs, and map which security tools to use

Introduction 9

to perform which activities. The whole process is done manually by a security team.

Thus, changes in any of these components require security staff to adapt the changes

manually. As new security tools and IRPs evolve with emerging threats, a SOAR

platform needs to support easy integration of new security tools and IRPs. An integration

framework can be designed leveraging Artificial Intelligence (AI) technologies such as

semantic technologies, Natural Language Processing (NLP) and Machine Learning (ML)

tools and techniques. Semantic-based integration of security tools can provide the

security team with the flexibility to integrate security tools easily, without worrying

about the underlying integration mechanisms. In addition, NLP and ML-based

interpretation and prediction of IRPs reduces the burden on the security team to map the

IRPs with the activities of the security tools.

RQ3.2. How is it possible to automate the process of integrating security tools in a

SOAR platform?

To integrate a security tool in a SOAR platform, a security expert needs to know

the underlying libraries and integration mechanism (e.g., APIs, plugins and scripts) of

both security tools and SOAR platforms. Integration of security tools is considered one

of the key challenges of a SOC as security tools vary in terms of their type (e.g.,

proprietary, legacy and open source), and the structure of the generated and consumed

data. The process of integration is also repetitive and manual, whereby a security team

first needs to investigate the type of security tool, its capabilities, the activities it can

execute, and map the activity of IRPs with the security tools. The process of integration

of security tools in a SOAR can be automated by designing a semantic-based integration

approach.

RQ3.3. How is it possible to hide the internal complex architecture of a SOAR platform

from the security team?

Incorporation of different automation, orchestration and AI technologies in a

SOAR platform results in a complex architecture that makes the operating of such a

platform difficult for an end-user with a changing threat landscape. Thus, there is a need

to hide the underlying complex design of a SOAR platform from its end-users to reduce

the operating complexity. A set of declarative APIs can be designed by leveraging AI

technologies such as NLP and semantic tools and techniques. Declarative APIs are a

Introduction 10

form of API through which a security team can provide the command in declarative form

to specify what a SOAR platform needs to do without specifying the details as to how to

execute that command.

1.2 THESIS OVERVIEW

This section presents a summary of how we address each of the RQs, which are analyzed

across five chapters. Figure 1.2 provides an overview of the thesis. We describe the focus

of each chapter below.

Engineering Security Orchestration and Automation SolutionsBackground

Realization of the Architecture

Chapter 6
AI enabled

Declarative API

Key Contributions

Ontology based
Integration Process

NLP and ML based
Integration
Framework

Chapter 4
Semantic Based

Integration

Chapter 5
Automated Process

for Integration

Security Tool
Integration

Architectural
Complexity

Encapsulation

Interpretation
and

interoperability

Declarative API
driven SOAR

Platform

Functional
Requirements

Non Functional
Requirements

Key
Components

Chapter 2
Literature Review

State of the
art

State of the
practice

Chapter 3
Security Orchestration and Automation Architecture

A Novel Layered
Architecture of
SOAR Platform

Figure 1.2 Overview and scope of the thesis

Chapter 2 Literature Review

We performed a comprehensive study of the existing security orchestration

solutions, tools and technologies to answer RQ1 (orange boxes of Figure 1.2). A

Multivocal Literature Review (MLR) has been conducted for this and is reported in

Introduction 11

Chapter 2. Chapter 2 demonstrates a thorough knowledge of the area and provides an

argument to support the thesis focus. More specifically, it highlights the importance of

having an architecture for a SOAR platform. The review has helped us to gain a

comprehensive understanding of the security orchestration domain. The review has

identified the functional and Non-Functional Requirements (NFR) of a SOAR platform,

along with the core components and technologies required to provide the functional

requirement and fulfill the NFRs (blue boxes). It works as a guideline for any researcher

or practitioner who plans to deploy orchestration and automation technologies in their

SOC.

Chapter 3 Security Orchestration and Automation Architecture

One of the key purposes of a SOAR platform is to address the challenges of a

SOC with integrating security tools and operation activities. To design a SOAR platform

to fulfil this purpose, an architecture is proposed for a new kind of SOAR platform

(yellow boxes of Figure 1.2). This chapter addresses RQ2 by presenting a concept map

and key dimensions of the architecture design space for integration of security tools and

operational activities in a SOAR platform. The architecture is designed considering the

key functional and NFR of a SOAR platform. This chapter proposes a high-level

architecture for a SOAR platform that relies on the layered architectural style. The

proposed layered architecture consists of six layers – a security tool layer, integration

layer, semantic layer, data processing layer, orchestration layer and User Interface (UI)

layer. An abstraction layer is considered as part of the UI layers. By providing a detailed

description of each layer of the proposed architecture, the way the layers integrate to

achieve a set of NFRs, including integrability, interpretability, interoperability,

modifiability and usability, can be shown. The proposed architecture is evaluated based

on a Proof of Concept implementation of a SOAR platform for two use case scenarios

with seven security tools. The realization of the architecture for different purposes is

presented in Chapters 4, 5 and 6 (purple boxes of Figure 1.2).

Chapter 4 Semantic-Based Integration

This chapter answers RQ3.1 by addressing the challenges associated with

changes in the underlying execution environment of a SOAR platform that may hamper

the interpretability and interoperability of security tools for automated execution of an

Introduction 12

IRP. An integration framework is proposed to unify the security tools’ data by

formalizing the security tools’ capabilities, inputs, outputs and the activities of IRPs. An

ontological knowledge base is developed that formalizes the security tools' capabilities

and activities and defines their relationship. The integration framework contains an

interoperability model to enable interoperability amongst the security tools for the

automated execution of a sequence of activities. Interpreting the activities and

capabilities to execute these activities, it finds the appropriate security tools that can be

used for their execution. It shows how NLP and ML techniques can be used along with

semantic technology to automate the interpretation of activities. A learning-based

approach is proposed to identify activity classes from new activities’ descriptions given

in natural language. The proposed approach is evaluated based on seven security tools

and 23 IRPs.

Chapter 5 Automated Process for Integration

This chapter answers RQ3.2 by addressing the challenges with manual design

and development of integration technologies (i.e., APIs. Plugins and scripts) for security

tool integration. It leverages the semantics technologies used for formalizing the key

concepts of security tools and IRPs to automate the process of integrating security tools

in a SOAR platform. The integration process automates the selection of security tools,

interpretation of security tools’ capabilities, formulation of commands to invoke security

tools and finally invocation of security tools to execute an activity. This chapter mainly

realizes three layers – the data processing, semantic and security tool layers. The data

processing layer deals with information related to security tools. The semantic layer

provides information related to the semantics of input and output, as well as the activities

that are executed by security tools and directly related to the orchestration layer. The

orchestration layer activates the tasks that are required when integrating multiple security

tools. The proposed approach is evaluated based on an experiment using IRP for

Distributed Denial of Service (DDoS) attacks.

Chapter 6 AI Enabled Declarative API

The proposed layered architecture has an abstraction layer that plays a key role in

hiding the internal complex architecture of a SOAR from its end users (i.e., the security

team). We find that most of the abstractions through declaration are more prominent and

Introduction 13

gain major attention from recent software developments. As a result, to answer RQ3.3.,

this chapter proposes a set of declarative APIs for a SOAR platform. The declarative API

can easily be used by the developers or end-users to define their plans, integrate security

tools, update IRPs or even update the knowledge base. AI based approaches such as

semantic and NLP technologies are leveraged in the design of the declarative APIs that

allow users with little knowledge about declarative APIs to provide the command

through natural language. A semantic framework is proposed to automate the generation

of the declarative APIs from the task description.

1.3 THESIS CONTRIBUTIONS

This section summarizes the key contributions of this thesis that have been made while

answering the Research Questions (RQs) (green boxes of Figure 1.2). We identify the

key functional and NFR requirement of a human-centric SOAR platform (i.e., answer

RQ1). Considering the functional and NFR requirements, we propose a layered

architecture for integrating security tools in a SOAR platform (i.e., answer RQ2). We

further leverage AI technologies to implement and evaluate a proof of concept SOAR

platform (i.e., answer RQ3). The key contributions of this thesis are summarized as

follows:

• We establish a solid background knowledge of security orchestration and automation

research and practices. We identify the key challenges that practitioners and

researchers are expected to overcome through security orchestration. We also provide

a taxonomy of different aspects of security orchestration practices that includes the

key functional and NFR requirements and automation strategies. Furthermore, the

open issues of the existing SOAR platforms are presented from people, process and

technology perspectives. These contributions answer RQ1, are presented in Chapter

2 and are published in the ACM Computing Survey (Impact factor: 6.131, Core 2020

Ranking A*) as:

o Chadni Islam, Muhammad Ali Babar, and Surya Nepal. 2019. A Multi-Vocal

Review of Security Orchestration. ACM Computing Survey. (CSUR) Vol 52,

Issue 2, Article 37 (April 2019), 45 pages.

Introduction 14

• We demonstrate that the successful realization and evolution of a SOAR platform are

governed by how the security tools are integrated, orchestration processes are

defined, and security teams communicate with such a platform. We propose a layered

architecture for a SOAR platform, which forms the basis for enabling automated

integration of security tools and automated interpretation of the activities performed

by a SOAR platform. We demonstrate that one of the basic requirements for any

large-scale system is to have an abstract layer that hides the internal complexity of a

platform from its end-user. Hence, we propose a layered architecture with an

abstraction layer to fulfill this requirement. We further provide a proof of concept

SOAR that is designed and implemented based on the proposed architectural

approach. These contributions answer RQ2, are presented in Chapter 3 and were

accepted for publication by the 14th European Conference on Software Architecture

(ECSA’2020) (Core 2020 Ranking A) as:

o Chadni Islam, Muhammad Ali Babar, and Surya Nepal. Architecture-centric

Support for Integrating Security Tool in a Security Orchestration Platform.

14th European Conference on Software Architecture (ECSA’2020), 14-18

September 2020, L’Aquila, Italy.

• We propose a semantic-based integration framework for automated interpretation of

security tools and activities of IRPs to enable interoperability among security tools

and automate the execution of IRPs. The integration framework consists of an

ontological model, a prediction module and an annotation module. Considering a

SOAR platform cannot automatically interpret activities of IRPs, security tool

capabilities, and their input and generated data, we formalize various inputs, outputs

and capabilities of security tools, activities of the IRPs and mapping of activities with

the security tools’ capabilities in an ontological knowledge base. A systematic and

structured path is followed to define and annotate classes of the ontology. The

prediction module is developed by utilizing NLP and ML techniques that (i) learn the

semantic model and (ii) automatically categorize the activities of IRPs according to

the activity classes of an ontology. These contributions answer RQ3.1, and are

presented in Chapter 4 and were published by the 31st International Conference on

Introduction 15

Advanced Information Systems Engineering (CAiSE’2019) (CORE 2018 Ranking

A) as

o Chadni Islam, Muhammad Ali Babar and Surya Nepal. Automated

Interpretation and Integration of Security Tools Using Semantic Knowledge.

In 31st International Conference on Advanced Information Systems

Engineering (CAiSE’2019), June 3-7, 2019, Rome, Italy.

• We propose an ontology-driven approach for automating the process of integrating

security tools in a SOAR platform. Following this process, data generated and

consumed by security tools are interpreted and integrated automatically. We have

identified that each security tool has a set of capabilities where the orchestration

process has a set of activities. To respond to an activity, one security tool might

require the output of other security tools. The proposed integration process

formulates the input of security tools by deconstructing and extracting the features

from the output of other security tools where needed. These contributions answer

RQ3.2, and are presented in chapter 5 and were published by the 2019 International

Conference on Software and Systems Process (ICSSP’2019) (CORE 2020 Ranking

A) as

o Chadni Islam, Muhammad Ali Babar and Surya Nepal. An Ontology-Driven

Approach to Automating the Process of Integrating Security Software

Systems. In ICSSP 2019 International Conference on Software and Systems

Process (ICSSP’2019), May 25-26, 2019, Montreal, Canada.

• We demonstrate that the incorporation of different technologies increases the

architectural complexity of a SOAR platform. Different teams have different

requirements or use a SOAR platform for different purposes. We identify the

requirements of a set of declarative APIs through which security teams can provide

their task without having a detailed knowledge of the underlying infrastructure of a

SOAR platform. To free security teams from learning the declarative API, we

propose an AI-based approach for generating declarative APIs from task description.

This way novice users or users with little knowledge about the declarative API would

be able to provide the commands to execute a task or activity in a SOAR platform.

These contributions answer RQ3.3, are presented in Chapter 6 and were submitted to

Introduction 16

the journal of Transactions of Software Engineering and Methodology (TOSEM)

(Impact Factor: 2.071, Core 2020 Ranking A*) as

o Chadni Islam, Muhammad Ali Babar and Surya Nepal. AI-Enabled Design

and Generation of Declarative API for Security Orchestration Platform.

Submitted to Transactions of Software Engineering and Methodology

(TOSEM).

Each chapter of this thesis is focused on addressing a research question while

contributing to the overall objective of the thesis. We have mentioned the needed

additional functionality or integration in each chapter separately. The limitations of the

proposed approaches have also been discussed at each chapter.

1.4 THESIS ORGANIZATION

The remainder of this thesis is organized as follows. Chapter 2 presents a comprehensive

review of the security orchestration domain. Chapter 3 provides a novel architecture for

supporting the integration of security tools and operation activities in a human-centric

SOAR platform. Chapter 4 presents an integration framework to semantically integrate

security tools in a SOAR platform and provides an automated approach for interpreting

security tools and activities of IRPs. Chapter 5 presents a process for automatically

integrating security tools in a SOAR platform based on an ontological knowledge base.

Chapter 6 presents a set of declarative APIs to hide the inherent complexity of a SOAR

platform and an AI-based approach to automate the generation of declarative APIs from

a user query. Chapter 7 concludes the thesis by providing a road map of two significant

avenues for future work.

Chapter 2

2 Literature Review

A Security Orchestration, Automation and Response (SOAR) platform aims to

integrate multivendor security tools, so that the security tools can effectively and

efficiently interoperate to automate and streamline activities of security teams in a

Security Operation Centre (SOC). Given the growing need and importance of SOAR

platforms, there has been an increasing amount of literature on their different

aspects. However, there has been no effort to systematically review and analyze the

reported solutions. This chapter aims to identify different aspects of SOAR

platforms. To realize this goal, a Multivocal Literature Review (MLR) has been

carried out, which systematically selects and reviews both the academic and grey

(blogs, web pages and white papers) literature on the security orchestration and

automation domain, published between January 2007 and July 2017. This chapter

provides a working definition of security orchestration and automation. It further

classifies the main functionalities of SOAR platforms into three main areas:

unification, orchestration and automation. We identify the core components of a

SOAR platform and categorize the drivers of SOAR platforms based on technical

and socio-technical aspects. This chapter also provides a taxonomy of SOAR

platforms based on the execution environment, automation strategy, deployment

type, mode of task and resource type. This chapter also highlights several areas of

further research and development in the security orchestration and automation

domains.

18

Literature Review 18

2.1 INTRODUCTION

Cybersecurity breaches lead to serious organizational and socio-economic consequences

such as loss of revenue, damage to reputation and information systems, theft of

proprietary data and customer sensitive information [47-50]. For example, in 2017

Equifax (one of the largest credit reporting agencies in America) [51] reported a major

data breach that had affected around 148 million US consumers [52-54]. The hackers

successfully stole sensitive information (e.g., credit card numbers, phone numbers, email

addresses, and social security numbers) through that breach, which was preventable as

per a recent report. According to research sponsored by IBM, the average total cost of a

breach is around $3.92 million [50].

Organizations use various security tools to prevent known and unknown attacks

and avoid the consequences that are associated with security vulnerabilities and threats

[3, 16, 55]. Some of the commonly used security tools are antivirus, Firewall, Intrusion

Detection Systems and Instruction Prevention Systems (IDS/IPS), and Security

Information and Events Management (SIEM) [16-19, 55]. The security tools vendors use

different technologies and paradigms to develop, deploy and operate their security tools,

which cannot be easily integrated and interoperated for effective and efficient support of

Security Operation Centers (SOC).

Security orchestration is aimed at introducing technical and socio-technical

solutions to integrate multivendor security tools as a unified whole to support security

teams in a SOC. Organizations are increasingly adopting SOAR platforms that are

proactive, autonomous and collaborative solutions to enable security teams to perform

their responsibilities effectively and efficiently [56-59]. A SOAR platform enables

people, processes and technologies to work together to improve an organizations’

security intelligence for better security operations and management [60-62]. Security

orchestration is a prerequisite of security automation, which is the process of

automatically detecting, preventing and recovering from cyberattacks without human

interference, using information technology, automation algorithms and Artificial

Intelligence (AI) tools and techniques [61, 63].

Existing security tools are designed to monitor an organization’s IT infrastructures

and network activities, generate security alerts and perform necessary actions upon

19

Literature Review 19

detection of security threats. An organization’s security tools generate thousands of

alerts, which are usually monitored and acted upon by security teams, mostly using

manual or semi-automated processes and practices [63-65]. A Verizon’s report indicates

that 93% of data breach cases require minutes to be executed, but it can take companies

weeks or months to discover attacks [66]. For example, after getting alerts from IDS for

malicious behaviors, a security expert might go to an endpoint defense system to gather

more relevant information by querying the network resources and validating a threat.

After confirming the threat, a security expert commands a firewall to isolate or block the

traffic from the affected region and update the threat information in the threat intelligence

database. According to a report by Baker Hostetler [67], security experts took, on

average, 61 days to discover the occurrence of an incident and, after discovery, 41 more

days to take remedial action. A food chain, Wendy’s, Point of Sale systems were affected

by malware at 1025 locations in 2015, but it was first discovered in February 2016 [68,

69]. To deal with the potential threats of security breaches, security teams are expected

to provision and facilitate the selection of the existing security solutions as quickly as

possible to perform the required actions and ensure seamless security operation.

A SOAR platform has the potential to address the concerns of manual threat

analysis, delays in responses to security incidents, as well as provide the security status

of an organization’s IT infrastructures. SOAR platforms are capable of automatically

identifying suspicious activities in an organization’s environment and proactively act to

mitigate cyberattacks. According to a Gartner’s report, by 2019, 30% of large and

medium enterprises will be deploying some form of security orchestration and

automation capabilities [70]. Another study [65] reports one third of organizations are

planning to deploy or have deployed SOAR platforms that can bundle different security

tools and human expertise together for the automation of security tools’ activities within

an organization.

Figure 2.1 captures some of the abovementioned organizational settings where

several types of security tools generate alerts to be manually analyzed by security teams

in the absence of a SOAR platform. A SOAR platform can automate most of these

manual decision-making processes and accelerate incident responses by reducing the

manual and repetitive activities. Orchestrating and automating the activities of

20

Literature Review 20

multivendor security tools requires a comprehensive view of SOAR platforms, as these

tools have their own way to work and produce different formats of alerts. The existing

SOAR platforms do not provide sufficient evidence of supporting different quality

attributes such as flexibility, interoperability, scalability, modifiability, accuracy,

integrability and extensibility [21, 58, 59, 71-74]. Given the increasing demand for

security orchestration, a significant amount of research is needed to help understand the

challenges in the existing solutions and practices of SOAR platforms to address the

challenges.

Figure 2.1 Overview of an organization’s decision against alerts without security

orchestration and with security orchestration

This chapter reports a Multi-Vocal Literature Review (MLR) which aims to

systematically identify and review the literature on security orchestration under the

conditions, “state of the art” and “state of the practice”. An MLR (i.e., a type of

Systematic Literature Review) includes both peer reviewed and non-peer reviewed

literature (e.g., newsletters, white papers, fact sheets, and blog posts) [46, 75]. A

Systematic Literature Review (SLR) has become the most popular method of conducting

a literature review in Software Engineering (SE) [76].

An SLR focuses only on peer-reviewed literature and does not include grey

literature. An SLR may not always provide an established discipline of knowledge, as it

21

Literature Review 21

ignores a large amount of information produced by software engineering practitioners

[46, 75, 77]. Hence, the MLR is attracting more attention in SE [46, 78]. We believe that

conducting an MLR in the area of security orchestration will be more useful than an SLR

as there is a large body of non-peer reviewed literature reported by practitioners. We

conducted this MLR to explore the fundamental challenges and opportunities for the

evolution of SOAR platforms. We analyzed the characteristics of existing SOAR

platforms to understand how to solve the challenges associated with security

orchestration. We also investigated the strengths and weaknesses of the technologies

used in SOAR platforms. The main contributions of this chapter are:

• It introduces a working definition of security orchestration, followed by several

functionalities of SOAR platforms ranging from integrating several security tools to

performing incident response planning against a threat, as well as enabling

collaboration among security tools to materialize the concept of security

orchestration (refer to sections 2.3 & 2.4 for further details)

• It identifies the key challenges that practitioners and researchers intend to overcome

through security orchestration (details are discussed in section 2.5).

• It provides a taxonomy of different aspects of SOAR practices that are needed to

support the dynamic adoption of applications in an organizations’ environment

(details in section 0).

• It determines and discusses the open research challenges and issues in the field of

security orchestration (refer to sections 2.7 & 0).

2.2 RESEARCH METHOD

The methodology used for this chapter has benefited from the SLR guidelines reported

in [79]. The methodology adopted to carry out the MLR was inspired by the work

reported in [80, 81]. It involved three main phases: (i) planning and designing the review

protocol, (ii) conducting the review and (iii) reporting the review. We developed a review

protocol describing each step of an MLR. The review protocol included several steps:

research identification, search strategies, study selection, data extraction and synthesis.

Our MLR process follows the steps in the same order as shown in Figure 2.2.

22

Literature Review 22

Figure 2.2 An overview of our MLR process

2.2.1 Research Identification

We identified the relevant literature using a search strategy that was based on a set of

research questions, as shown in Table 2.1. The research questions purported to help gain

an understanding of SOAR platforms, their functionalities and respective elements. The

research questions were also aimed at helping to identify and review the supportive tools,

approaches and evaluation criteria for adopting a SOAR platform in practice.

2.2.2 Search Strategy

The following sections detail the search strategy for acquiring the relevant literature from

multiple sources.

2.2.2.1 Data Sources

The review includes both peer reviewed and grey literature that was identified and

acquired using both manual and automatic searches in the relevant sources. Initially, we

performed a manual search on the Journal of Computer Security, ACM SIGSAC

Conference on Computer and Communications Security, and USENIX Security

Symposium to gain an overview of the recent literature. We also searched the recent

proceedings of RSA conferences. Then we conducted an automatic search in three digital

libraries, IEEE Xplore, ACM Digital Library and Scopus, that publish peer reviewed

literature on computing.

 LR planning and design

Inclusion and exclusion

criteria

Reporting LR

 apping and review

results
Research Identification

 LR Goal RQs

Search Strategies

Selecting Data source

Design search strings

Start

Conducting LR

Data extraction

Data extraction based on RQ

Study Selection

Data Synthesis and Data Analysis

Generalization and

categorization

Identification of key elements

End

Legend

 ain step

Activity

Sub step Flow

Start End

Sub step

Flow

23

Literature Review 23

Table 2.1 Research Questions of this MLR

Research Questions Motivation

RQ1. What is Security

Orchestration?

The first question (RQ1) investigates how security

orchestration is defined. RQ1 aims to identify the

relevant related work, i.e., identifying keywords for

the literature search that lead to maximum coverage

of the related approaches. RQ1 also investigates the

functional features and core elements of security

orchestration.

RQ2. What challenges do security

orchestration intend to solve?

Security orchestration is commonly used by

practitioners to bring automation, streamline incident

response and integrate security tools. Many

challenges that exist for security tools in a more

traditional setting also apply to security orchestration.

RQ2 focuses on the aspects where security

orchestration fundamentally differs from traditional

approaches.

RQ3. What types of solutions have

been proposed?

RQ3.1. What practices have been

reported for adopting security

orchestration?

RQ3.2. What types of tools and

techniques do researchers and

practitioners use, propose, design

and implement in practice?

RQ3.3. What aspects of

architecture security do

practitioners consider for large-

scale deployment of security

orchestration?

The motive behind this question is to identify the

solutions related to security orchestration and the

reported practices followed by organizations (i.e.,

requirements, guidelines and collaborative

approaches) for adopting security orchestration

(RQ3.1); more specifically how existing tools and

techniques are employed to implement a SOAR

platform; what are the innovative approaches and

techniques needed for successful implementation of a

SOAR platform (RQ3.2); and, most importantly,

what aspects of architecture are being considered for

large-scale deployment of a SOAR platform (RQ3.3).

RQ3 would help researchers to find the gap and

practitioners to consider the architectural aspects that

need to be considered to successfully implement a

SOAR platform on a larger scale.

We used the advanced search option to facilitate a type of search that enables a

multiple keywords search. During the automatic search in the digital libraries, we defined

the search to match the search string with the titles, abstracts and keywords of the papers

published between January 2007 and July 2017. Our search in ACM DL, IEEE Xplore,

and Scopus included papers from the Annual Computer Security Applications Conference

24

Literature Review 24

and IEEE Security and Privacy. In addition, we searched in Google Scholar to search

and include some relevant literature, especially some patents that we could have missed

through the abovementioned search procedure.

To search the grey literature, we used the Google search engine, like other MLRs

[77, 78]. We search the first ten pages, which are considered sufficient to find the most

relevant literature, as Google’s search engine’s algorithm retrieves and shows the most

relevant results in the first few pages [77, 78]. For example, Google’s search engine

returned 45,900 results for the term “security orchestration” in November 2017;

however, the relevant content was captured in the first ten pages.

2.2.2.2 Search Strings

We created a search string to ensure a thorough search over several databases. For

academic literature, we formulated the search string based on a) the key terms gathered

from the relevant papers, b) synonyms, alternative terms and related concepts of security

orchestration, c) AND and OR to combine all the terms. We performed several pilot

searches and refined, discarded and added search terms to confirm the inclusion of the

relevant papers that we already knew. We formulated the search string in three parts. We

performed a match of the search string with the paper’s titles, abstracts and keywords.

We used the following search string.

Search String 1

(“Security" OR "Alert" OR "Threat" OR "Policy" OR "Intrusion" OR

"Anomaly Detection" OR "forensic")

AND (“Orchestration" OR "Instrumentation" OR "Coordination" OR

"Correlation" OR "Collaboration" OR "Automation" OR

"Integration")

AND ("Security Tool" OR "Safeguard Software" OR "IDS" OR "IPS"

OR "Threat Intelligence" OR "Detection Engine" OR "Prevention

Engine" OR "Security Control" OR "Security

Appliance" OR "perimeter defense" OR "Incident Response")

We used the search string “Security AND Orchestration” to search the grey literature

and conducted a search using the Google search engine and Google Scholar.

2.2.3 Eligibility Criteria

We defined a set of inclusion and exclusion criteria to select relevant papers. The criteria

are shown in Table 2.2. Since this review is a blend of scientific and grey literature, we

used narrow inclusion and exclusion criteria.

25

Literature Review 25

Table 2.2 Inclusion and exclusion criteria

Inclusion criteria Exclusion criteria

• IC1: Articles in English and full text is

accessible.

• IC2: Articles that focus on developing

integrated, coordinated and collaborative

solutions.

• IC3: Articles include a sound validation (for

grey source: working prototype or tools,

proper references to validate the result).

• IC4: Articles that reports practices and

challenges in cyberspace (such as blogs,

magazine and reports) to give an indication

of security orchestration.

• EC1: Short academic paper (paper

less than 6 pages).

• EC2: Articles whose focus is

irrelevant to security.

• EC3: Articles that focus on

physical infrastructure or

hardware.

• EC4: Articles where the focus is to

enhance algorithms or features of a

single security solution.

• EC5: All duplicate articles found

from various sources.

2.2.4 Study Selection

Figure 2.3 shows details of the selection of grey and academic literature at each step of

the MLR. This also includes the search databases and number of papers selected after

each step. We followed two different approaches to select the academic and grey

literature.

2.2.4.1 Selection of Academic Literature

In this section, we describe each step of the process that we have followed to select the

relevant papers. Our search in ACM DL, IEEE Xplore and Scopus returned 271, 600 and

1017 results, respectively. The titles, abstracts and keywords of these papers were

examined. For some papers, just reading the title and abstract was not enough to decide

whether to keep them in the selected papers’ pool. We kept those papers for the next

round. A total of 1617 papers were discarded based on the inclusion and exclusion criteria

described in Table 2.2. We read the title, abstract and keywords of each paper in the

Journal of Computer Security, ACM SIGSAC series of Conferences on Computer and

Communications Security and RSA series conferences and filtered 19 papers.

After round 1, we selected 290 papers. Then we removed the duplicates and

excluded the papers that were shorter than 6 pages. Finally, we screened the whole text

and applied the eligibility criteria to select the relevant papers. A total of 37 papers were

26

Literature Review 26

selected from the digital libraries. To ensure the inclusion of any relevant papers that we

might have missed, we extended the search in Google Scholar. We searched for the string

“Security and Orchestration” and checked both the titles and abstracts of the top 200

results. We only included 6 articles that were not found in the automatic and manual

search procedures of phase 1. We applied all the eligibility criteria while selecting the

papers from Google Scholar.

Figure 2.3 Study selection process of our MLR

2.2.4.2 Selection of Grey Literature

In the next phase, we used the Google search engine and checked the first 10 pages. We

only continued further if needed. We identified several practitioners (niche and start-up)

who were contributing to the field of security orchestration. We crawled through their

websites and looked for the relevant resources and white papers. We applied the

eligibility criteria while selecting the papers. At the end of this process, we identified a

total of 52 papers, including white papers, blogs, news articles and websites. Finally, we

included 95 pieces of literature (Figure 2.3) for data extraction and synthesis. Figure 2.4

showed the distribution of the selected pieces over several types of venues. For both

IEEE

AC

Step 2: Screen on basis of title

and abstract

SCOP S

Step 1: Running search string Step : Removing duplicates

Step 4: Excluding paper

shorter than 6 pages

Step 5: Articles screened on

basis on full text

600

271

1017

IEEE

AC DL

SCOP S

N: 271

N: 290 N: 225 N: 7

DBLP N: 19

N: 274

 anual Search

Google

scholar

N: 6

Step 6: Additional search on

Google Scholar

Running search

string

Applying

eligibility criteria

Google Search Engine

N: 52

Crawl through

Websites

N: 4

N: 95

Studies included for

qualitative synthesis

Selection of Grey Literature

Selection of Academic Literature

27

Literature Review 27

cases, we excluded those papers published before 2007. Table 2.3 lists the papers that

were finally reviewed.

Figure 2.4 Distribution of selected articles over venues

Table 2.3. Study selected for data extraction and qualitative analysis

Academic Literature

Grey Literature

Websites & Blogs Whitepapers

[21, 23, 58, 59, 72-74,

82-117] = 43

[17, 19, 20, 32, 33, 35, 56, 57, 60,

62-65, 118-135] = 31

[18, 24, 29, 61, 71, 136-

151] = 21

2.2.5 Data Extractions, Synthesis, and Analysis

Following the process of MLR, at this step, we read, assessed, extracted data and

summarized the findings from the selected papers, based on the pre-defined RQs and

motivations (Table 2.1).

2.2.5.1 Data Extraction

We identified and extracted the relevant data using a pre-defined data extraction form

from each of the selected sources. We needed these data to answer the research questions.

We also extracted some general information, e.g., author’s name, venue published and

published year. We conducted a pilot study on a set of 10 sources before deciding how

to extract the required data. We stored all the extracted data in a spreadsheet for analysis.

28

Literature Review 28

2.2.5.2 Synthesis and Analysis

The extracted data were stored in three different sections of the data extraction

form to perform the synthesis and analysis of the extracted data. These sections are (a)

security orchestration definitions, functionalities and applications, (b) challenges to be

solved and (c) security orchestration practices, tools and techniques. We analyzed each

set of the data items using qualitative analysis methods. We used a combination of

different qualitative analysis methods (i.e., narrative synthesis and thematic analysis).

For example, for classification and categorization of data, we used thematic analysis

[152, 153]. We followed several steps to analyze the data, including getting familiar with

the extracted data by carefully reading each piece of data. We collaboratively analyzed

and systematically synthesized the extracted data to develop a taxonomy to report the

results in a generalized form. The taxonomy developed in this way has been used for

reporting the functionalities, benefits and aspects of security orchestration in this chapter.

For data analysis, we followed the qualitative data analysis guidelines [153]. Table 2.4

contains the abbreviations that are used in this chapter. We report the synthesized result

in sections 2.3, 2.4, 2.5, and 0.

Table 2.4 Summary of Notations

Acronym Abbreviation/ Description Acronym Abbreviation/ Description

AI Artificial Intelligence LR ulti vocal Literature Review

AIRS
Automated Incident Response

Solution
NFV Network Function Virtualization

API
Application Programming

Interface
NTT

Nippon Telegraph and

Telephone

DBot Demisto’s chatbot NVD National Vulnerability Database

DDoS Distributed Denial of Service OADS
Orchestration oriented Anomaly

Detection System

DHCP
Dynamic Host Configuration

Protocol
OVAL

Open Vulnerability and

Assessment Language

DNS Domain Name System ROI Return on Investment

DXL Data Exchange Layer RQ Research Question

EC Exclusion Criteria SDDC Software Defined Data Centre

ETSI
European Telecommunication

Standard Institute
SDN Software Defined Network

29

Literature Review 29

Acronym Abbreviation/ Description Acronym Abbreviation/ Description

IC Inclusion Criteria SDSec Software Defined Security

IDS Intrusion Detection System SE Software Engineering

ID EF
Intrusion Detection essage

Exchange Format
SIE

Security Information and Event

 anagement

IOC Indicator of Compromise SLR Systematic Literature Review

IPS Intrusion Prevention System SOSDSec
Service Oriented Software

Defined Security

IRP Incident Response Plan STIX
Structured Threat Information

Expression

IT Information Technology TAXII
Trusted Automated Exchange of

Intelligence Information

LEEF Log Event Extended Format PSI
Premise aware Security

Instrumentation

 D5 essage Digest 5 algorithm VNF Virtual Network Function

2.3 SECURITY ORCHESTRATION: DEFINITIONS, FUNCTIONALITIES,

AND ELEMENTS

This section presents the findings for RQ1 “What is Security Orchestration and

Automation?”. Our data analysis for RQ1 reveals some key definitions of “security

orchestration” given by practitioners, the functional and non-functional requirements and

the key functional components of a SOAR platform.

2.3.1 Definitions

Our analysis shows that practitioners use the term security orchestration widely, with no

clear and common definition. We assert that having a common working definition of

security orchestration and automation will help practitioners and researchers to define a

discipline of research and practice for promoting practices, processes, tools and

technologies. The term security orchestration is being mostly used as a buzz-word that

can lead to misinterpretation of the core concept of orchestration [60, 120, 121, 137].

Some organizations and practitioners confuse security orchestration with security

automation [65]. We present a few key definitions from the reviewed work.

According to HEXADITE, "Orchestration is the practice of connecting existing

security tools together through APIs to streamline incident response processes." Here,

Hexadite has considered security orchestration more as an integration tool and presented

30

Literature Review 30

a definition for security automation. Barak Klinghofer, CPO of HEXADITE [19] has

defined "The active process of mimicking ideal steps a human would take to investigate

a cyber threat, determining whether the threat requires actions, performing necessary

remediation actions, deciding what additional investigation should be next" as security

automation [139]. According to a start-up company, KOMAND [17], security

orchestration is more than just connecting security tools. Their definition [17] is:

“Security orchestration is a method of connecting security tools and integrating

disparate security tools. It is the connected layer that streamlines security

processes and powers security automation.”

Markets and Markets [126] stated that “Security orchestration is an approach to

automatically respond to security incidents and protect IT systems in organizations from

advanced cyberattacks and vulnerabilities”.

Microsoft has distinguished security orchestration and security automation [63] as:

 “Security orchestration is the integration of security and information technology

tools designed to streamline processes and drive security automation” and

“Security Automation is the use of information technology in place of manual

processes for cyber incident responses and security event management”.

ThreatConnect [122] has also presented distinct definitions for security orchestration and

security automation:

“Security orchestration is the connecting and integration of various security

applications and processes together” and “Security automation is the automatic

handling of a task in a machine-based security application that would otherwise

be done manually by a cybersecurity professional”.

ThreatConnect has defined security automation and orchestration [122] as: “Security

automation and orchestration is a coordination of automated security tasks across

connected security applications and processes.”

According to Forrester, security orchestration and automation should be described

together as technology products. They have defined security orchestration and

automation [120] as:

31

Literature Review 31

“Technology products that provide automated, coordinated, and policy-based

actions for security processes across multiple technologies, making security

operations faster, less error-prone and more efficient.”

Clearly, Forrester’s definition asserts that automation can help take the full benefits from

security orchestration. Bruce Schneier [56], chief security officer of IBM, defines

security orchestration as the unification of people, processes and technology. He claims

that security orchestration is keeping people in the loop of security automation, where

the computer performs the automation of certain activities, but a human coordinates the

activities. It is more about making people effective. He also pointed out that the security

incident response needs to be dynamic and agile. DFLabs’ Oliver Rochford has defined

security orchestration as the junction where people, process and technology all come

together [60]. According to him, people build automation into the process and consume

information and insight generated by technology. Security orchestration and automation

is the realization of three paradigms – unification, orchestration and automation. Our

definition of security orchestration is as following:

“Security Orchestration is the planning, integration, cooperation and coordination

of the activities of security tools and experts to produce and automate required

actions in response to any security incident across multiple technology

paradigms.”

This definition provides siloed security tools the ability to share information and threat

intelligence among them through an integrated and unified platform. This is achieved by

seamless monitoring, situational awareness, data analytics, knowledge representations

and semantic knowledge sharing across the existing security tools. A SOAR platform

works as an intelligence assistant for security experts. It is clear that there is a need for

extensive training to learn from human behavior to provide AI capabilities that can enable

an enterprise to achieve long-lasting development and deployment of a SOAR platform

using existent tools and protocols.

2.3.2 Functionalities of Security Orchestration and the Automation Platform

In this section, we report the findings of the functionalities of SOAR platforms. Several

reports (i.e., References [120, 136]) have mentioned security orchestration as one of the

32

Literature Review 32

emerging technologies, which has the potential to be widely adopted in near the future

[136]. One of the motivators of security orchestration is to bridge the gap between

detection and remediation of security incidents [19, 144]. Most of the detection solutions

are automated, whereas the response processes are still reliant on humans. To bridge this

gap, there is a need to unify the activities of security tools, streamline the workflows and

choose the right courses of action. According to Demisto [148], a comprehensive SOAR

platform must be able to automate security tools’ activities, create playbooks with

complicated logic, and track and orchestrate the tasks assigned to an analyst. Paul

Weeden [129] has stated: “Security orchestration makes the most of human skills by

bringing together automated tools and reports to provide risk information exactly when

and where it is needed.”

Figure 2.5 highlights the key functionalities of a SOAR platform in three

paradigms, (i) unification where the security orchestration acts as middleware, (ii)

orchestration that is the process of translating complex processes into streamlining

workflow and (iii) automation that enables an automated response.

2.3.2.1 Middleware/ Hub

Vendors have mentioned security orchestration as a platform that acts as a hub for

unification, coordination, data sharing and analysis for disparate cybersecurity and IT

technologies [18, 58, 141]. Security teams can easily integrate multivendor security tools,

share threat intelligence and collaborate with the external organizations to gain an insight

into an organization’s security state through a SOAR platform. SDSec (Software Defined

Security services’) orchestration solution has a layer of functionalities to perform

communication and coordination across different subsystems [21].

Unify security tools: Several of the reviewed works mentioned that a SOAR platform

unifies disparate security tools and processes [17-19, 29, 65, 72, 101, 154], integrates the

enterprise’s security architecture [[136, 148], connects detection, networks and endpoint

security tools [59, 144], and performs coordination among security tools’ activities [58,

61, 65, 83]. Connecting the activities of disparate security tools makes the incident

handling process efficient and effective for the security team. A SOAR platform provides

a single console or platform to integrate security tools’ activities, removes the operational

silos and helps security teams to free their time [128, 143].

33

Literature Review 33

Figure 2.5 Key functionalities provided by a SOAR platform

Unifying intelligence according to vulnerability also minimizes the overall complexity

of the incident response process [72, 83, 92]. Through the coordination platform, security

tools can interoperate with each other to enhance organizational protection and defense

systems [101, 130, 145]. Feitosa et al. [23] have proposed collaborative solutions to

detect intrusions and anomalies by analyzing the co-creation of events and alerts among

different subnetworks. The orchestration tools proposed in Reference [58] are designed

to coordinate the safeguarding function by calling an individual software package with

respect to an installation. Jeong et al. have proposed a coordination module for

organizational architecture integrating cyber forensic functions [117].

Functionalities of

Security Orchestration

Act as a Middleware/ Hub

Unify security tools

Determine endpoint for
human investigation

Share contextual insight

Orchestrate Security
Activities

Translate complex
processes into streamlined

workflow

Provide deployment model

Determine appropriate
course of action

Enable Automated
Responses

Automate repetitive and
manual tasks

Automate policy
enforcement across
disparate solutions

34

Literature Review 34

Determine endpoint for human investigation: A SOAR platform [120] can enable

security teams to gain insights into several security tools’ activities, operate disparate

security tools as a unified system [59, 61] and collaborate with other security teams for

planning and decision making [17, 128, 130]. A SOAR platform informs and educates

security teams about an organizations’ threat behaviors [120] and notifies about the

supported policies [144]. By orchestrating various activities, the platform can decide

when human insight is required [17, 19, 24, 114, 121, 137]. For example, the work in

[82] has highlighted the critical assets with high priority to the administrator for

investigation. The motive is to keep the security team focused on threats that demand

their immediate attention and expertise.

Share contextual insight: A single security prevention and detection system usually

suffers from the tunnel vision syndrome that leads to an inability to detect certain types

of security attacks, such as Distributed Denial of Service (DDoS). A SOAR platform

gathers threat intelligence from various external sources (e.g., web pages and blogs),

extracts key features from a huge volume of threat intelligence data and provides the

contextual insight related to alerts or attacks to a security team. In addition, it engages

security tools to perform complete monitoring of endpoints [93, 136, 145], correlates

their activities and provides real-time visibility of known and unknown threats to security

teams [29, 128, 131]. An organization can share contextual device data with the third-

party system [18, 144]. It helps security teams reduce and mitigate risk exposure [29,

144], make a faster decision based on context [24, 35, 59, 114] and gather an overview

of what is happening in various subnetworks within an organization [18, 61, 62, 136].

By sharing the contextual insight, a SOAR platform works as a collaborative platform

that also enables training of security teams based on past investigations [35, 61, 128].

The online evaluation framework proposed in [82] has provided situational awareness to

an organization so that it can take appropriate actions. By assessing the security state of

an organizations’ different assets, the proposed framework helps the administrator to

identify compromised assets and prioritizes alerts [82]. A set of papers [72, 86, 88, 94]

has proposed a platform for security teams and security tools used in an organization to

share their knowledge. Jeong et al. [117] have followed the structure of having a

coordination group with a participant group to propagate the relevant information to the

external work or another coordination group. RiskVision has proposed SOAR platforms

35

Literature Review 35

to unify stakeholders in business, IT and security tools to provide automation for end-to-

end cyber risk prevention and response [130].

2.3.2.2 Orchestrate Security Activities

Translate complex processes into streamlined workflow: After receiving alerts,

security experts need to perform multiple steps to find the attacks, vulnerabilities,

affected endpoints and mitigation solutions. These steps include the complex process of

data collection, investigation, remediation, evaluation of actions and deciding on the

appropriate courses of action. Several papers [17, 19, 65, 71, 82, 122, 139, 141, 148]

have mentioned that the motivation for orchestration is to translate the complex process

of threat investigation into a streamlined workflow through automation and

orchestration. A streamlined workflow requires a standardized process that includes

proper planning for incident responses, policy executions, investigations, response

actions and remediation processes [21, 29, 140, 143]. The workflow is designed to mimic

security teams’ activities during threat investigation to reduce the cumbersome manual

processes, human errors and improve security teams’ capabilities for incident responses.

Orchestrating and integrating security tools’ activities allows security teams to

simplify complex workflows, coordinate the flow of data and tasks and enables powerful

machine to machine automation [17, 29, 137, 151, 154]. The task can be fully or partially

automated, based on the complexity of the threats [143]. ForeScout has proposed a rule

engine and a workflow engine to make instant decisions and offered data aggregation to

provide in-depth awareness about the organizational environment [136]. The online

Evaluation framework, Seclius [82], has translated alerts into system security measures

to reduce the reliance on human expertise in capturing system characteristics through

low-level alerts. This work also provides a ranking of the affected system’s assets and

malicious events for organizations to help the security administrator [82]. Similar to this,

the Premise-aware Security Instrumentation (PSI) policy engine proposed in Reference

[74], has translated the high-level security postures provided by an administrator into per

device intents.

Provide a deployment model: Several security vendors provide SOAR platform

deployment services that require appropriate orchestration and automation of existing

security tools, along with organization external and internal infrastructures [32, 87, 90,

36

Literature Review 36

118, 124]. FireEye deployment service for automation provides functionality to manage

events across multiple FireEye and third-party products, and ensures deployment is

successful [118]. The deployment model depends on the organizations’ scale, complexity

and course of actions. Vendors are providing flexible deployment models for

organizations to ensure simple installation and management of various forms of

infrastructure. This action also ensures efficient deployment in heterogeneous

environments. Organizations can choose security policies based on their need to restrict

access and tailor security configurations [71, 146]. Additionally, testing and evaluation

of deployment models are also undertaken once any change has been made. The proposed

system can provide a progressive deployment module to perform upstream rules filtering

that helps to reach the source of attacks [86]. The work in Reference [87] has proposed

an innovative solution to perform quick deployment of various security mechanisms. The

orchestration system proposed by Reference [90] has arranged appropriate virtual

instances in the right place: virtual appliances are automatically added and controlled. It

has also automatically moved traffic to virtual networks to prevent major harm, block the

attack and strengthen the system.

Determine appropriate courses of action: A SOAR platform can help to resolve an

incident promptly to determine the appropriate and effective course of actions [19, 21,

32, 118, 127, 128, 148]. By choosing the appropriate course of actions, a SOAR platform

maintains process consistency across a security program. FireEye has mentioned the in-

built course of actions with automated support for all the needed steps for handling a

security incident as a core of a SOAR platform [118]. Also, various kind of alerts (i.e.,

phishing and endpoint contamination) are needed to distinguish remediation activities

with different courses of actions. Upon investigating an alert, a SOAR platform can

determine the proactive response to threats or may initiate an additional investigation

based on an attack’s complexity [118, 121, 144]. In many cases, a post-attack

investigation or evaluation task can also be instantiated. Feitosa et al. [23] have proposed

a framework, “Orchestration-oriented Anomaly Detection System (OADS)”, that

performs coordination and collaboration among different anomaly detection techniques

to detect and evaluate threats and choose right actions. Security teams do multiple

investigations in response to an alert. In the process of orchestration, one investigation

usually triggers multiple investigations [19].

37

Literature Review 37

Workflows are designed to choose the appropriate course of actions, simplify threat

responses through integration and automation [17, 18, 29], perform necessary

remediation [144], decide additional investigation(s) [139], design documents for

playbook review [118] and define sources of information to help the security team to

solve the identified problems [142]. A formal workflow helps maintain effective

communication and strong collaboration among security teams [139]. Providing a formal

workflow helps security teams and SOAR platforms to maintain consistency across

actions [29]. This simplifies and accelerates alerts investigations, eases proactive hunting

of attackers, accelerates the Return on Investment (ROI) and eliminates the need for

continuous assessment. The security functions are inserted dynamically into the

workgroup, based on the policies [71]. The operating principle of the framework in

Reference [59] has security tools that operate on their own and perform activities of

context sensing, policy decisions and policy enforcement. Each activity is logically

independent of each security tool. The SOAR tool proposed in [58] works as an interface

to perform security scanning and testing or other security activities. This tool enables

different safeguard software packages to come to an agreement for invoking the

necessary activities(s) owned by any of the software packages. The framework discussed

in Reference [117] helps to implement the coordination of an organization's activities

effectively by performing an on-site and online investigation, to provide security

warnings and appropriate response actions.

2.3.2.3 Enable Automated Responses

A SOAR platform automates incident response activities. HEXADITE has automated

800,000 man-hours of work in two years that is equivalent to US $38.5 million in

customer savings [19]. Several papers [18, 19, 35, 136] have reported that a SOAR

platform automates the entire threat defense life cycle and provides intelligence

automation services. ETSI (the European Telecommunication Standard Institute)

considers automating the control of deployment and configuration of the security tools’

activities as a substantial prerequisite of orchestration [91]. According to Forrester,

orchestrating incident response activities enables an automated response without the need

for coding skills [120]. A SOAR platform allows autonomous control and protection of

the network through discovered insights [144].

38

Literature Review 38

Automate repetitive manual tasks: SOCs use a SOAR platform to automate repeatable

tasks and remove duplicate incidents to optimize security teams’ capabilities and reduce

the overall cost [17, 29, 35, 63, 125, 131, 144, 146, 154]. Automating the routine tasks

helps security teams to tackle more critical problems [17, 18, 65, 122, 139, 144].

According to Swimlane, 80% to 90 % of all security operations of an incident response

can be automated to some extent [150]. The collaborative incident response planning

process design discussed in Reference [85] helps practitioners to come up with a

repeatable and executable planning process. Some vendors provide a SOAR platform

that also automates the deployment of security tools’ functions through a network

infrastructure [71]. Several papers [72, 87, 121, 130] have proposed automation of the

analysis of cyber threat intelligence, which includes extracting data from technical blogs,

websites, finding correlations among different reported attacks and updating incidents’

severity levels based on threat intelligence feeds. A SOAR platform reduces the response

time by minimizing the error-prone manual process and codifying real-world expertise.

Koyama et al. have also reported a security operations automation framework that helps

in optimizing decisions with regards to a variety of security sensors and appliances (i.e.,

security tools) [72]. Luo et al. [21] have proposed automated cybersecurity operations in

the software-defined environment.

Automate policy enforcement: Security policy enforcement greatly benefits from

automation that considers all the tools, devices, and measures required for security policy

implementation. A SOAR platform enables an organization to automate policy

enforcement and configuration at runtime [71, 73, 74, 91, 99, 101, 141]. A set of systems

developed to derive policy decisions based on contextual data and provide real-time

policy enforcement have been reported in References [59, 73, 99]. Yu et al. [74] have

introduced a multistage mapping mechanism to adjust policies automatically, based on

network devices. In Reference [73], policy enforcement is performed automatically.

ETSI has aligned security policies in an automated way inside virtual, physical and

hybrid networks [91]. Dynamic enforcement of policies allows automatic configuration

of security tools and updates of threat intelligence [71]. An organization can automate

policy enforcement across disparate solutions [144]. Luo et al. [21] have proposed the

provision of consistent security policies by orchestrating software-defined security

services across a heterogeneous cloud environment. A generic SOAR framework

39

Literature Review 39

proposed in Reference [59] enables ad-hoc and context-aware policy criteria to be

applied in real time by using an ecosystem of security tools connected via a Data

Exchange Layer (DXL).

2.3.3 Quality Requirements for Security Orchestration Platforms

We have identified the key quality requirements/ Non-Functional Requirements

(NFR) (also known as quality attributes) of a SOAR platform. Figure 2.6 shows the main

quality attributes of a SOAR platform gathered from the existing literature. These are the

non-functional requirements of a SOAR platform. Every organization needs to consider

these attributes before adopting or implementing a SOAR platform. The quality attributes

of a large-scale system are expected to guide the key architecture design decisions.

Hexadite has mentioned the pre-requisite for a SOAR platform, which is basically the

quality attributes of such a platform [140].

Figure 2.6 Quality Attributes of a Security Orchestration Platform

Quality Attributes
of Security

Orchestration

Accuracy

Usability

Scalability

Executability

Trustworthiness

Effectiveness &
efficiency

Timeliness

Robustness

Flexibility

Visibility

Adaptable

Cost

40

Literature Review 40

Table 2.5 lists the quality attributes and a set of corresponding metrics that can be

used to measure these attributes. For example, usability is a crucial factor for the effective

utilization of a SOAR platform. A SOAR platform requires a simple and powerful user

interface that can be easily customizable for different types of SOAR platform users. A

SOAR platform should have a flexible architecture, so that each security team can create

a work environment according to their need for a service.

Table 2.5 Quality attributes of a SOAR platform

Quality

Attribute

Measurement Metrics Articles

Accuracy

- Accuracy of diagnosis

- Appropriate measure against attacks

- Accurate classification and reliable taxonomies

of threats

- Data integrity

[23, 59, 72, 82,

83, 87, 89, 95, 98,

101, 102, 105,

106, 113, 130,

136]

Usability

- Ease-of-use, easy to manage, connect and repeat

tasks and interruptible

- Simplified user interface to control security tools

- Simplification of security management tasks for

the network administrator and auditing module

- User satisfaction

- Higher analyst productivity

- Accessible and stable threat intelligence

[19, 21, 24, 35,

58, 61, 82, 84, 85,

90, 92, 104, 112,

114, 122, 137,

140]

Scalability

- Vendor agnostics

- Independent security policy orchestration

- Extensible architecture

[19, 21, 24, 71,

73, 82, 84, 86, 88,

102, 104, 112,

121, 124, 136]

Executability

- Qualitative and quantitative information about

security incidents

- Measurable security tools

- Measurable goals

- Security state of different assets of

organizational infrastructure

[17-19, 24, 64, 85,

92, 113]

Trustworthiness

(Reliability)

- On human: expertise level, fairness to

collaborator and reputation

- On existing security tools: trust value and

predictability

[23, 59, 72, 82,

83, 85, 87-89, 92,

95, 98, 101, 102,

105, 117]

41

Literature Review 41

Quality

Attribute

Measurement Metrics Articles

Effectiveness

and Efficiency

- Increase in detection rate

- Fewer overheads for the security team

- Reliance on human ability and satisfaction

- Optimizes resources and performance

- Predictable cost structure and indicator of

compromise;

- Key indicator to measure security effectiveness:

Mean time to notification, remediation and

investigation

- Speed of integration and speed of deployment

[18, 24, 35, 59,

61, 71, 82, 85, 93,

97, 98, 101, 104,
106, 113, 116,

127, 136, 140,

150]

Timeliness/

Speed

- Time to perform raid recovery

- Time to detect, triage attack and remediation

- Time need to analyze an attack

- Time for policy enforcement

- Delay in business activities

- Overall latency of packet processing

[18, 19, 23, 24,

59, 61, 62, 70, 72,

84-86, 90, 101,

104-106, 112,

114, 121, 122,

125, 136, 140]

Robustness

- Robustness to DDoS

- Capacity for attack detection

- Incident response capacity

[18, 24, 73, 86,

88, 100, 101]

Flexibility

- Feasible to update

- Flexibility to design workflow automation

- Flexibility to adapt process and accelerate

response to all types of threats

[21, 23, 24, 35,

59, 62, 73, 90,

102, 104, 121,

125, 131, 136]

Visibility

- What analyses are available and clear definitions

of their capabilities

- Security state of an organization

- Secure configuration guidelines

[18, 19, 21, 24,

35, 59, 71, 89, 92,

94, 103, 125, 130]

Adaptable

- Compatibility with existing network topology

and security appliances

- Adaptable with current process

[17-19, 24, 74, 91,

95, 116, 125]

Cost

- Low computation cost

- Cost of effective SOAR platform for mixed

environments

- Additional resources

- Costs of ownership

[18, 19, 23, 71,

74, 84, 122]

42

Literature Review 42

2.4 KEY COMPONENTS OF SECURITY ORCHESTRATION

Organizations and SOCs must consider the key components of SOAR platforms before

adopting them. We have identified several core components of a SOAR platform. Most

of the reviewed studies have a combination of these components that we have categorized

into three classes: unification, orchestration and an automation unit. This classification

is based on the functionalities discussed in section 2.3.2. We have considered the external

security tools as another key component of a SOAR platform because most of the SOAR

vendors consider that an organization already owns some security tools and uses the

capabilities of the existing security tools. Figure 2.7 presents the details of the

classification of the core components of SOAR platforms.

Figure 2.7 Categorization of core components of a SOAR platform

All the components proposed here comprise of learning capabilities, specific

policies and storage to store the threat data. These components also store security policies

Security
Orchestration Core

Components

Unification Unit

Description Module

Collector

Pre- processor

Dashboard

Orchestration Unit

Threat Intelligence

Planning Module

Detection Module

Automation Unit

Remediation Module

Action Performer

43

Literature Review 43

and rules associated with various organizational assets and endpoints [31]. We consider

an organizations’ devices that can act as an endpoint to be a server and any client personal

devices, such as a laptop, mobile, personal computer, or organization-owned workstation

and so on. We do not include these in the presented categorizations in Figure 2.7 for

simplicity’s sake.

2.4.1 Unification Unit

We have considered the components that are designed to unify the existing security tools

and their activities under this category. The unification unit works as middleware or hub,

as briefly discussed in section 2.3.2.1. We consider the data collector, alert pre-processor

and description modules as part of the unification unit.

2.4.1.1 Description Module

This component refers to language and models to represent the configuration,

deployment and control tasks of a SOAR platform. Luo et al. [21] have proposed a system

that requires an abstract set of activities (i.e., services) to be defined for the same type of

security activities. Security management is built using the API of abstract activities. Luo

et al. [21] have proposed a security tool capability descriptor, which describes all types

of security tools, inputs and necessary attributes. The description module requires a well-

designed API to connect the existing security tools. The security activities requirements

and descriptors are derived from organizational security policies and security tools,

respectively. The set of interfaces are mentioned as connectors in Reference [21]. They

have introduced two sets of interfaces: event connectors and command connectors. Both

security and network events are received by the event connector [21]. These events come

from external sources. The events connector also sends the information to the playbooks.

The set of interfaces under the command connector sends a command to a security tool

to modify their configurations and update operation behavior [21].

A SOAR platform needs a set of APIs to help with integration of third-party

security tools and control the activities in different layers [102-104, 118, 128, 132]. Intel

has proposed a bi-directional notification-based API to orchestrate virtual security in

Software Defined Data Centers (SDDC) [71]. The global threat intelligence platform

supports dedicated tools to provide a simplified interface to a firewall’s control [72].

Swimlane also uses API to enable one-click automation [61]. As stated by Bernd [91],

44

Literature Review 44

one of the main purposes of ETSIs’ management and orchestration group is to control

the Network Function Virtualization (NFV) environment through virtualization and

automation as much as possible. This work has enhanced the NFV reference architecture

with a security orchestrator, the interaction of the security orchestrator with the existing

NFV orchestrator and a virtual network function manager of the reference architecture.

The workgroup has also included the tasks of the security orchestrator and the required

interfaces with which to interact. In this work, the author has stated how security is

managed through orchestration in a virtualized network environment.

The correlation module of alert correlation architecture proposed in Reference [83]

uses an application interface with the reasoner for reply and request. The DXL layer

proposed by McAfee for an enterprise service bus works as a connector for diverse

security tools and has an extensible data exchange framework to facilitate configuration

of trustworthy data representation [59]. The safeguard interface module of the enterprise-

level security orchestrator provides a layer of software for a consistent interface to

abstract away the changing nature of the underlying safeguard software packages.

2.4.1.2 Collector

Most of the reviewed SOAR platforms have collectors to collect all the necessary

information from integrated security tools or devices. In several studies, network traffic

and alerts are collected and pre-processed before analyzing and taking a decision [23, 63,

84, 99, 105, 125, 129, 147]. The collector collects both raw context and structured format

data [103]. The orchestration server engine of the security orchestration framework

presented in Reference [59] works as a collector and receives contextual data from

clients. The SOAR platform discussed in Reference [23] has an OADS miner as a core

component. The OADS miner works like a consultant to the overall platform, which

comprises an OADS crawler. The OADS crawler is designed to gather new information

from the Internet about threats, vulnerabilities, attacks, and the origin of attacks, and store

them in a repository. The threat intelligence unit works as a blog scrapper that crawls

through technical blogs to collect, gather and share threat intelligence data [87, 103]. A

SOAR platform utilizes global threat intelligence platforms to collect external threat

intelligence and to prevent data infiltration (the action of entering or gaining action) and

subsequent actions performed by attackers [72].

45

Literature Review 45

2.4.1.3 Pre-processor

A pre-processor receives raw alerts from several security tools and prepares the alerts for

analysis. The alert pre-processor first decides the alert adequacy and then it aggregates

the alerts into clusters, based on similarity. The pre-processing of threat data involves

many activities, such as sentence splitting, special content extraction, content term

location, topic classification, template removing and content sanitizing [87, 99, 102, 103,

113]. Feitosa et al. [23] have used the Intrusion Detection Message Format (IDMF)

standard to aggregate the alerts of several IDS tools. The aggregation has also helped to

explore the distance between the times of different alerts, determine the alerts field and

make a hypothesis about alerts and defense strategies. The proposed architecture for the

Collaborative Intrusion Detection System (CIDS) [84] has also used IDMEF to unify

alerts from multiple IDS. In Reference [21], the SOAR platform has modular physical

logical attribute mapping that maps all assets’ physical attributes to their corresponding

logical attributes. The study in Reference [83] combines several knowledge

representation languages, for example, IDMEF, TAXII, OVAL, STIX and NVD, to

propose ontological conceptualization and divide the knowledge into several groups.

Their proposed ontology-based event correlation architecture consists of two essential

modules: one is the conversion, and the other is the correlation module. The conversion

module consists of parsing reports, translation and ontology.

2.4.1.4 Dashboard

The dashboard category consists of tools aimed at visualizing the activities of a SOAR

platform. According to Demisto Inc. [147], the dashboard will bridge the gap between

the SOC and technology used to keep the organization secure. The dashboard provides

an aggregated view of different scenarios, assets and metrics [32, 130, 147]. FireEye uses

a centralized dashboard to facilitate advanced threat hunting [118]. In the Enterprise

Level Security Orchestrator [58], the SOAR platform provides administration and an

interface through a dashboard. The dashboard can be designed to provide an integrated

view of an organization’s overall system to help the security team understanding the

security states; for example, security teams can see all the scans in progress from a single

console [58, 92, 114]. The FireEye orchestration deployment service provides documents

associated with cyber playbook reviews that help the orchestration operation team to

46

Literature Review 46

understand the playbook [118]. Most of the reviewed systems generate some form of

alert reports for security teams [84, 104, 113]. Through these reports, security teams can

get a high-level overview of an organizational cybersecurity tool. These reports also

enable experts to identify the security state of critical assets and the affected networks or

subnetworks within an organization. The reporting tools receive a recommendation from

the remediation engine related to threats. Threat visualization and analysis is an

important part of security orchestration. A set of papers have mentioned several web

portals or public websites that provide a web interface to visualize the threats [72, 94].

2.4.2 Orchestration Unit

One of the substantial pre-requisites of a SOAR platform is to automate the control of

deployment and configuration of all the security requirements. For this category, we

consider all the components that are required to perform the functionalities described in

section 2.3.2.2. For example, the security orchestration framework described in

Reference [59] provides a security orchestration engine to receive contextual data from

clients. It comprises one or more logic element(s) which are designed to work with the

contextual data. Koyama et al. [72] have proposed a three steps process to cope with new

sophisticated unpredictable threats: collect, judge and control. The operating principle of

the proposed framework in Reference [59] has security controls, which perform context

sensing and, based on the context, generate and enforce security policy decisions. A

SOAR platform needs to manage several activities, as stated in References [91, 97]. The

proposed SOAR platform performs central management of security activities and trust.

FireEye, in their SOAR platform, have used a specialized component, called case

management, for managing various cases. Thus, we categorize the orchestration unit into

three components: threat intelligence, a planning module and a detection module.

2.4.2.1 Threat Intelligence Unit

Cyber threat intelligence can be considered as a database of evidence of existing and

emerging attacks [87, 92, 103, 104, 112]. Threat intelligence consists of information

related to the attack’s context, adversary strategies, mechanisms, indicators of

compromise, possible courses of action, tactics and techniques [32, 87, 122, 126]. Threat

intelligence plays a key role in security orchestration. An organization can gain visibility

about threat landscapes by using threat intelligence. It helps organizations to identify the

47

Literature Review 47

early signs of attacks [87]. Organizations collect and exchange threat intelligence data

across several domains and stakeholders as an Indicator of Compromise (IOC) [87, 100,

101]. Example of IOC can be forensics artifacts, virus signatures, IPs/ domains of botnets

and MD5 hashes of attack files. Most of the SOAR platforms consider threat intelligence

as an essential element for identifying attack behavior at an early stage [23, 72, 90]. A

SOAR platform with a Global Threat Intelligence Platform (GTIP) [72] incorporates

proactive defense technologies, including threat intelligence.

There are several open source threat intelligence platforms that provide high

accuracy and coverage [87]. Each has their own specialized techniques for data

extraction. Threat intelligence data may also suffer from quality issues such as accuracy,

completeness, consistency, timeliness and relevance [92]. Filtering, configuration and

searching options are not available in some of the current threat intelligence tools.

Xiaojing et al. have identified 45 blogs that are operated by renowned organizations and

practitioners to cover major security incidents [87]. These blogs consistently publish

verified IOCs that a SOAR platform can utilize for updating threat intelligence

information.

2.4.2.2 Planning Module

We consider the cybersecurity playbook as part of a planning module that outlines the

steps to respond to a security incident, including incident qualification, triage,

investigation, containment, notification and post-attack analysis [65, 121, 122, 129, 131].

A playbook arranges security operations into a human-led security workflow that is a

coordinated set of activities performed by various components to complete an incident

response within an organization. According to an organization’s policy and

infrastructure, a cybersecurity playbook creates smart branching workflows and also

supports the activities of the SIEM, firewall, IPS, vulnerability reporting and ticketing

systems [105, 112, 147]. Incident response playbooks contain various courses of action.

FireEye has proposed that an incident response playbook should be one of the key

features of a SOAR platform [118]. To provide continuous proactive security, FireEye

designs SOAR platforms according to an organization’s requirements, integrates security

tools with the SOAR platform, deploys and tests it in the organization’s environment and

operates it to execute an appropriate playbook against a security threat. Orchestration of

48

Literature Review 48

Software-defined Security Services [21] design playbooks to store the actions (i.e.,

operation plans) related to important security events/ security alerts. Security teams take

the necessary steps, based on the actions mentioned in the playbooks [21].

Zonouz et al. in Reference [82] have proposed a consequence tree (i.e., a tree of

critical assets defined by an administrator) to capture critical IT assets and organizational

security requirements. Each organization has their own list and priority of critical assets.

The consequence tree is built using this list of critical assets. Kamal et al. [85] consider

the Incident Response Plan (IRP) to be a crucial component of collaboration engineering.

The authors highlight that creating an IRP through collaboration amongst a group of

experts is challenging when time is very short. The PSI policy abstraction helps an

administrator to define policies in terms of what they do, rather than the details of how

to implement the policies[74]. With the help of a PSI engine, an administrator can define

how the traffic of a particular device should be processed and where to forward it. A

SOAR platform requires proper planning to respond to incidents. Without proper

planning and preparation, a SOAR platform ends up automating a poor process that might

slow people down [65].

2.4.2.3 Detection Module

The detection module detects the anomalies and attacks around organizations, based on

gathered and pre-processed data, shared insight, and knowledge of the playbook. The

analyzer and the decision service unit are the two main, core components of the detection

module. In the following paragraphs, we briefly describe these two components.

Analyzer: The analyzer receives aggregated alerts from the alerts pre-processors,

correlates them, validates the assumptions and, if possible, predicts future threats and

targets. The analyzer performs an automated analysis of a system, analysis of the logic

unit and enriches data to boost knowledge[70, 99, 101-103, 121, 122, 129]. A set of

papers have reported on correlating suspicious evidence provided by distributed security

entities to identify distributed attacks [83, 84, 86, 87, 105, 113, 121]. Enterprise Level

Security Orchestrator [58] can analyze alert data and detect threats. It stores all the threats

data in its analysis storage. It generates a set of rules or traffic patterns as a decision table

by finding the correlations across different alerts. Similarly, the PSI performs packet pre-

processing and event pre-processing before analyzing the data [74].

49

Literature Review 49

Kenaza et al. [83] have used an ontological reasoning approach to correlate alerts.

The proposed ontology-based event correlation architecture has a correlation module that

works as a reasoner. Feitosa et al. [23] propose a collaborative solution to detect intrusion

and anomalies by analyzing the co-creation of events and alerts among different

subnetworks. It derives policy decisions, based on the contextual data that it receives

from an orchestration engine [23]. The solution proposed by Reference [87] tries to find

correlations among IOC to check the relationships amongst the threat data. A core part

of their solution is the Analyzer. Seclius [82] tracks the interaction among files and

processes to probabilistically identify dependencies among assets of an organization.

Decision Service Unit: Most of the reviewed SOAR platforms have a decision services

unit that orchestrates the activities for automated decision-making [35, 117, 121, 130].

The decision service unit makes security policy decision(s) related to vulnerability and

threat assessment, and assessment of security enforcement systems [99]. The decision

service unit receives summarized information from the analyzer and collector about

suspicious behavior and generates decisions based on that data [23].

A finite state machine (i.e., finite automata, Markov chains or stochastic regular

grammars) is a popular method used in the decision process. For example, the security

orchestration framework in Reference [59] uses a policy orchestration state machine to

provide policy decisions to the security orchestration state machines and derive policy

decisions based on the contextual data received from the security orchestration server

engine. Policy decision logics are extracted from individual controls. The decision logics

enable additional, ad-hoc, smart logic and intelligence analytics to be injected into the

real-time policy decisions. Thus, policy decision logics capture context and drive actions

staged over multiple points in space and time [59]. Similarly, Seclius [82] has constructed

a dependency graph and consequence tree of existing assets to probabilistically

determine the comprised assets, prioritize alerts, and provide a security state of different

assets to the administrator.

Koyama et al. [72] use optimal decision-making technology and diverse threat

intelligence with a variety of security sensors and appliances to choose the correct

countermeasure for stopping an attacker’s Internet-based actions. Utilizing a workflow

engine is also a popular strategy for decision-making. For example, Rochford et al. [70]

50

Literature Review 50

decide on actions, based on the workflow engine. The reviewed study, SOSDSec, has

generated a security service binding upon finding matching among security requirements

and abstract services [21] that contains information related to assessment and its service

provider. A change in the security control and module causes a change in the security

service binding. Similarly, the differentiated search engine in OADS miner discussed in

Reference [23] is used to generate decisions based on the queries received from end users

or system tools. The decision service unit has been designed to make all the decisions

related to the OADS miner, like activation, deactivation and parameter changes, and

stores the configuration parameter in a file. The decision service unit also provides

recommendations after analyzing information about attacks. The alert buffer of the

security orchestrator proposed in Reference [58] continuously sends updates to a

dashboard.

2.4.3 Automation Unit

The automation unit performs all the automated tasks, based on the decisions generated

by the decision unit and analysis of the workflow. The remediation unit and actions

performers help a SOAR platform to deal with the automated tasks. In the following

paragraphs, the role of the remediation module and actions performers are described in

detail.

2.4.3.1 Remediation Module

The remediation module promptly configures countermeasures and security operations,

based on the decisions of the detection module to remediate threats [73, 104, 121, 125,

129]. A remediation module reported in Reference [72] performs automatic security

configurations for responding against and mitigating the effects of attacks. The

remediation module brings about automation in SOAR platforms, delivers significant

ROI and drives downtime to remediation [125]. The OADS system proposed in

Reference [23] has a central controller to implement the established sequence of actions

with a process including exceptions and conditions. Enterprise level security

orchestrators [58] have a remediation module that has two main elements: response

storage and a remediation engine. The remediation engine has been designed to detect

threat patterns. It has a learning logic module that uses machine learning algorithms.

Threat data are stored in the response storage once received from the remediation engine.

51

Literature Review 51

Koyama et al. [90] discuss the technology to recover rapidly from the effect of

cyberattacks. The proposed remediation module immediately isolates the affected area

after detecting attacks, based on the information from a detection module, and provides

recommendations about detected attacks for further analysis and evaluation. These

actions of the proposed system are expected to reduce a security operator’s burden. The

SoSDSec system proposed in Reference [21] incorporates a model layer to manage the

security policies and security models of an organization’s assets. The security

orchestrator reads and updates policies to achieve automation. An SDSec orchestrator is

a key element to achieve security orchestration and automation. It works with the

communication and coordination subsystem. Communication with security tools is also

performed through the orchestrator. The SDSec orchestrator communicates with

virtualized functions to coordinate security activities and thus minimizes management

dependencies on security appliances/ tools.

2.4.3.2 Action Performer

A controller or action performer controls the communications and actions of a SOAR

platform [121]. The security team can control a SOAR platform’s various components

directly through a controller [73, 104]. The action performer performs many actions such

as sending an e-mail to the relevant persons, blocking an IP address, isolating a virtual

machine, triggering a process to initiate a scan and running a script to perform auto-

configuration [70]. Poornachandran et al. [73] refer to the data management processing

system as a security and administrator console that works as a tracking station. The tools

enable security teams to tackle diverse and ongoing issues [129]. The communication

module can be considered a subcomponent of the controller. The job of the

communication module is to work as a bridge between several components of a SOAR

platform. In addition to maintaining a secure exchange of threat data and policy

information, a SOAR platform requires a secure broker or DXL [59, 73, 87]. Elshoush et

al. [84] consider the communication module to be a bridge between the security tools and

the decision-making module. The DXL fabric of Reference [59] provides command and

control functions across the entire network. Published, subscribed notifications, query

responses and push notifications are different types of messages from the DXL layer.

52

Literature Review 52

Demisto provide DBot and ChatOps to perform intelligence automation and

collaboration among security teams and security operations [35].

2.5 MOTIVATION BEHIND SECURITY ORCHESTRATION

This section reports the result of RQ2: “What challenges is security orchestration

intended to solve?” We have identified and analyzed the challenges that promote the

practice of security orchestration. Our analysis of the extracted data enables us to identify

several challenges, as shown in Figure 2.8. We have classified the challenges under

technical and socio-technical aspects of security orchestration.

Figure 2.8 Challenges that promote security orchestration

2.5.1 Technical Challenges

Technical challenges are related to technical issues that lead to security problems such

as limitations of the IDS to detect intrusions accurately and interact with other security

tools, conflict among several security tools running simultaneously, and dynamic

changes of security tools’ behavior. The following sub-sections describe the technical

challenges that a SOAR platform intends to solve.

2.5.1.1 Lack of Interoperability Among Isolated Security Tools

Our analysis of the reviewed papers reveals that most medium to large organizations use

several security tools (e.g., IDS, Firewall and SIEM) to secure their critical data and

infrastructure [18, 95, 137, 138, 151]. The main reason behind an organization installing

several types of products is that different vendors provide distinct dimensions of security

53

Literature Review 53

tools and solutions [17, 58, 124, 145, 148]. Moreover, organizations lack a single security

tool that can encompass all of the security operations needed. Isolated security tools are

considered poor communicators and cannot always assume the presence of another

security tool [18, 21, 23, 72, 121, 136]. Several security tools fail to guarantee the

protection of an organization’s infrastructure, as they work in an isolated way and focus

on solving specific problems [101, 104, 122].

Several of the reviewed papers mention that it is extremely difficult for a single

security tool to detect the distributed and complex behavior of cyberattacks. Moreover,

security operators are usually unable to understand their organizational security state

through individual security tools working separately [82]. To take incident response

decisions, it is necessary to integrate and analyze the activities of different security tools,

which are usually designed to work independently and are limited by their own services

[72, 101, 104]. These tools have their own data representations and interpretation

mechanisms. The disparate tools have inconsistent workflow [29], disconnected and non-

integrated architecture [18] and a lack of standardization for data exchange between

different security tools [92]. These are some of the reasons that network administrators

and security experts find it difficult to appropriately configure and integrate the activities

of multivendor security tools, which means there is a need for the continuous

involvement of humans in the entire process of a security incident response.

The lack of interoperability among security tools results in more responsibility

being placed on human experts (briefly explained in section 2.5.2) and leads to

redundant, complex and inefficient incident response processes. Existing security

management and risk assessment solutions are not designed to collaborate [116]. These

solutions do not consider several aspects that affect the evaluation criteria of the threats

and vulnerabilities, thus making the security procedures incomplete. As a result, with

generic security policies, security management becomes inefficient [116].

2.5.1.2 Lack of Tools to Automate a Proactive Response

Our review has revealed that there is a lack of tools to automate key security activities,

such as threat intelligence collection and update, alert validation, task investigation,

response and resolution [70, 121, 137, 141, 145, 147]. Organizations need tools to

automate the repetitive manual tasks. FireEye mentions that security teams spend 95%

54

Literature Review 54

of their time on the manual execution of repeatable tasks [29]. AT&T’s cyber securities

insightreport has revealed 90% of their reported cyberattacks were from known

vulnerabilities [145]. Whilst security defenders need to update new threat intelligence

quickly, they usually fail to instantly update the threat intelligence [59, 87], promptly

update software patches to remove vulnerabilities [105], keep every security tool up to

date [137] and enforce policies as soon as they are agreed upon [74]. For a large network,

it is time-consuming to update hosts from different vendors that leave the system open

for intruders [105, 121, 122]. Ntouskas et al. [116] propose that there is a lack of

automated collaborative tools to embed security standards, methodologies, tools and

guidelines to train a security management team as one of the key reasons organizations

lag behind in fulfilling their security needs. Fujitsu emphasize that an efficient SOC

requires automation of the process of the threat defense life-cycle to help free up security

analysts’ (i.e., the security team’s) time and keep the system up to date [114].

2.5.1.3 Limitations of Existing Security Tools to Provide Required Services

Several of the reviewed studies have mentioned that the existing security tools are unable

to give full protection to organizations’ infrastructure [70, 132, 137, 146, 148].

According to Verizon's 2017 Data Breach Investigation Report [49], 43% of data

breaches utilize phishing techniques and it is clear that trying to prevent every attack is

an impossible task. A single, standalone detection engine also fails to provide complete

visibility of the network infrastructure to the security team. In most cases, the detection

system generates a large number of false alerts that require extensive analysis [18, 19,

29, 60, 121]. Security teams are overwhelmed with alerts and spend more time

investigating and validating false and repetitive alerts than solving real attacks. In 2015,

Hewlett-Packard reported 48% of their recorded cyberattacks were from known

vulnerabilities that are five or four years old [145]. Organizations need tools that can

learn from experts’ behavior. There is a lack of a platform whereby security teams can

easily integrate security tools, network infrastructure and gather complete visibility of

their cybersecurity tools [70, 124, 128]. Weilinger et al. [107] have reported that IT

security tools used by security practitioners fail to address the complexity of their

interactions. According to Demisto [147], an inappropriate interface between technology

and personnel is the reason for security teams being ineffective and inefficient. The IT

55

Literature Review 55

security tools provide insufficient support for collaboration, coordination and

cooperation among security practitioners and stakeholders.

2.5.2 Socio-Technical Challenges

Socio-technical challenges are related to the organizational process, policies and rules

with respect to cybersecurity. Socio-technical aspects of security in an organization

include matters involving business processes, skills, resource management, policies, law

enforcement and interaction of people with the technical system. Many of the challenges

faced by the security community are socio-technical rather than technical. Socio-

technical challenges are difficult to project as they involve interactions between

individuals, groups and technical systems. Our analysis of the extracted data indicates

some of the key socio-technical challenges that organizations face while handling a

security incident. These challenges work as the primary drivers of security orchestration.

2.5.2.1 More Responsibility and Workload on Human Experts

Security teams are entrusted with several types of responsibilities, which include

analyzing and dealing with sophisticated attacks [90], manual consultations and writing

custom codes to validate alerts through threat intelligence [19, 114, 142], manual

extraction of key attributes from threat intelligence data and linking them with relevant

data [103], evaluating alerts, correlating data, coordinating the appropriate responses [17]

and investigating results [105, 148]. Several papers [18, 19, 21, 72, 90] report that the

response toward a security incident highly depends on the manual activities performed

by security teams. A security team needs to combine several security tools [107], update

threat intelligence, is involved in multiple administrative systems, including multiple

control tools [72], analyzing data from new tools [136] and dealing with the inter-

component interaction of a modern complex system [63, 95] to perform their tasks. The

manual steps are usually the main reason for longer incident response times [17, 124,

132, 136]. A delay in the security incident analysis happens when security teams need to

continuously shift between multiple disparate security tools to manage the different

pieces of information generated by these security tools [29, 65, 137]. Fujitsu’s SOC

considers manual consultation as one of the most time-consuming steps in the incident

response process [114].

56

Literature Review 56

Hexadite report [19] that it takes around 45 days for an organization to resolve

cyberattacks due to manual responses to incidents. According to a set of studies [87, 103,

138, 147], security teams find difficulties with manually extracting features from huge

volumes of threat intelligence data. Manual configuration, integration of several security

tools, implementation and updates are associated with misconfiguration, erroneous

responses and policy enforcement [92, 95, 132, 138]. Moreover, security teams face

difficulty with dealing manually with the interaction of inter-components of modern

complex systems [95]. Several papers [82, 83, 142] indicate that dealing manually with

thousands of alerts to choose the right course of actions results in missing critical attack

information.

2.5.2.2 Lack of Skills and Expertise

Security practitioners report [17-19, 29, 65, 136, 147] that the lack of skilled security

teams is one of the major reasons for organizational failures to deal with security

breaches. Large organizations are spending billions of dollars on buying and deploying

several types of security tools [137, 144] that need up-to-date knowledge and expertise

in different aspects of cyberattacks and countermeasures. Organizations face difficulties

with finding and retaining security teams with the required expertise [65]. Security teams

require a decade to acquire the expertise to fight against sophisticated cyberattacks [132].

The 2019 (ISC)2 cybersecurity workforce study estimates that the current cybersecurity

workforce comprises 2.8 million professionals and estimates that 4.07 million

professionals will be needed to close the skills gap in the cybersecurity domain [25]. The

demand for skilled or experienced cybersecurity professionals is one of the biggest

challenges faced by the cybersecurity industry, [12]. According to CyberSeek,

cybersecurity data tools [155], 40,000 jobs for information security analysts remain

empty each year in the USA, whilst organizations struggle to fill 200,000 other security-

related jobs. Organizations have few security experts to deal with the thousands of

incidents that they receive each day [18, 65]. Security teams need to have an overall

knowledge about organizational security policy, network infrastructure and security

tools. One study reports that organizations are continuously shifting towards modern

technology paradigms (e.g., cloud computing, mobile computing and IoT) that lead to an

57

Literature Review 57

expanded cyberattack surface and thus need security knowledge, incident response skills

and resources for each technology initiative [141].

2.5.2.3 Lack of Regulation and Policy Framework

One of the major challenges with organizational security tools is the lack of a fully

developed framework for conducting IRP [85], performing coordination and

collaboration among incident responses [100] and seamless implementation and

deployment of policies [59]. Some of the challenges mentioned in the reviewed papers

include failure to provide a clear definition of unwanted traffic and network behavior

[23], significant difficulties in providing clear guidelines to deal with new security

mechanisms [21, 107, 112], failure in providing appropriate training for security

management [116], a lack of guidelines for conducting incident response planning [85]

and severe challenges in enforcing and managing security policies. All these types of

challenges result in security teams failing to take proactive decisions against

cyberattacks.

2.5.2.4 Lack of Coordination and Collaboration among Stakeholders and Security

Teams

Coordination and collaboration among security teams are important for analyzing

complex threat behaviors. Most security teams lack collaborative processes for

information sharing. Several papers [62, 85, 86, 88, 94, 107, 117] highlight the

requirements for having combined knowledge and experience from several domain

experts due to the complexity of the network flow and log data analysis. Most incident

response teams follow no collaborative process while planning how to respond to a

particular incident, which results in poor strategies planning [85]. Several papers [72, 98,

117] have revealed that stakeholders from different organizations are unwilling to share

threat intelligence with each other. Jeong et al. [117] report organizations’ fear of losing

their reputation is one of the reasons for their unwillingness to share their security

circumstances with other organizations. Zhao et al. [98] have discussed that many state

and federal governments have developed threat information sharing services that are

limited to sharing threat intelligence with central government. External organizations do

not benefit from this kind of threat information sharing. Still, there is rarely collaboration

among different organizations working in the same domain [72].

58

Literature Review 58

Table 2.6 presents the mapping of the benefits that organizations obtain from the

functionality discussed in section 2.3.2, which aims to solve the challenges discussed

above in this section.

Table 2.6 Mapping summary of key activities performed by a SOAR platform with

benefits of SOC

Key

Functions
Activity Performed Benefit to Organizations Articles

Unify security
tools

• Unifies disparate security

tools and processes

• Integrates enterprise security

architecture

• Connects detection,
networks and endpoint

security tools

• Performs coordination

among security tools’
activities

• Unifies intelligence

according to vulnerability

• Removes the operational

silos.

• Efficient and effective

incident handling

processes

• Frees up experts’ time

• Minimizes the overall
complexity of the

incident response

process

• Enhances
organizational

protection and defense

systems

• Experts operate

disparate tools as a
unified system

[17-19,

21, 29,
58, 59,

61, 65,

72, 83,

92, 101,
124, 128,

130, 136,

143-145,
148, 154]

Determine

Endpoint for

human
investigation

• Works as a helping hand for

security experts

• Informs and educates

security analysts about threat
behaviors

• Decides when human insight

is needed

• Defines source of

information to help experts

solve problems

• Keeps analyst focused

on threats that demand

their ability

• Reduces human error

• Faster decisions

• Reduces burden on
security operators

[17, 19,

24, 59,
61, 72,

90, 120,

128, 137,

144]

Share

contextual
insight (via

platform)

• Gathers threat intelligence
from various external

sources

• Extracts key features from

threat intelligence data

• Provides contextual insight

related to alerts or attacks to
the security analyst

• Provides real-time visibility

• Context-aware frameworks

• Gathers an overview of what

is happening in various

subnetworks within the
organization

• Experts get the insight
of several security

controls activities

• Organizations share

contextual device data

with third-party
systems

• Reduces and mitigates

risk exposure

• Faster decisions

[18, 24,

29, 35,

59, 72,

82, 85,
86, 88,

93, 94,

102, 136,
144, 145]

59

Literature Review 59

Key

Functions
Activity Performed Benefit to Organizations Articles

Translate
complex

processes into

a streamlined

workflow

• Allow experts to simplify

high-quality workflow

integration

• Coordinates the flow of data
and tasks by integrating

tools and processes into

automated workflows

• Enables powerful machines
to undertake machine

automation

• Offers data aggregation to

provide in-depth awareness

about the environment

• Reduces human error

• Improves staff

capability for incident

responses

• Provides standardized
processes

• Reduces reliance on

human expertise

• Simplifies security

management tasks

[17, 19,

21, 29,
71, 74,

82, 136,

137, 139-
141, 143,

148, 154]

Provide
deployment

model

• Resolves incidents in

minutes to determine

appropriate and effective

course of actions

• Determines a proactive
response to threats

• Initiates additional

investigations, based on the

level of the attack’s
complexity

• Accelerates response

• Mitigates conflict

installation

• Reduces conflict

configuration

• Minimizes the effect of

attacks on services

[71, 74,

86-88,

90, 112,
118, 146]

Determine

appropriate
course of

actions

• Simplifies threat responses
through integration and

automation

• Decides on additional

investigations

• Limits execution access and
privileges to workflows

alone

• Dynamically inserts security

functions into the
workgroup, based on

policies

• Engages the security tools to

perform complete

monitoring of the endpoint
and correlates their activities

• Performs coordination and

collaboration among

different anomaly detection
techniques to detect and

evaluate threats and choose

right actions

• Maintains process
consistency across

security programs

• Reduces manual

investigation errors

• Maintains effective
communication and

strong collaboration

among cyber security
teams

• Simplifies and

accelerates alerts

investigations

• Accelerates Return of

Investment (ROI)

[17-19,

21, 29,

58, 59,
71, 72,

82, 90,

112, 117,

118, 139,
142, 144,

148]

60

Literature Review 60

Key

Functions
Activity Performed Benefit to Organizations Articles

Automate

repetitive and
manual tasks

• Automates repeatable tasks

Automates deployment of

security functions over the
network infrastructure

• Repeatable, executable

planning processes

• Eliminates the need for

continuous vendor
assessment

• Optimizes security

teams’ capabilities

• Reduces cost

• Minimizes mistake-

prone manual processes

• Accelerates responses

[17, 29,

71, 85,
87, 102,

144, 146,

147, 154]

Automate

policy
enforcement

• Automates policy

enforcement and

configuration at runtime

• Real-time policy
enforcement

• Minimizes mistake

prone configurations

• Reduces conflict

configuration.

[21, 59,

71, 73,
74, 91,

98, 99,

101, 104,
141, 144]

2.6 TAXONOMY OF SECURITY ORCHESTRATION

In this section, we have summarized the results that answer to RQ3: “What types of

solutions have been proposed to adopt security orchestration?” We have highlighted the

key techniques, tools and strategies used by practitioners and researchers in the

realization of security orchestration. Most of the reviewed studies propose platform-

based architectures as a strategy for incorporating security tools to support their

unification, orchestration and automation [18, 19, 118]. McAfee focuses on four

engineering approaches to automate the entire threat defense life-cycle: partnership

centric, platform-based approaches, reinvented experiences and cloud-centric

approaches [18]. All four approaches are integrated into a single platform to take the

benefits of each. We consider the platform-based approach as the core engineering

strategy. A SOAR platform is designed to automate various activities in the threat

defense life cycle. This review has enabled us to propose a taxonomy of security

orchestration to support a systematic comparison and analysis of the existing security

orchestration solutions, as depicted in Figure 2.9. The proposed taxonomy consists of

several dimensions and sub-dimensions for classifying security orchestration techniques.

61

Literature Review 61

Figure 2.9 A Taxonomy of an Orchestration Platform

2.6.1 Execution Environment

To help speedy organizational responses to security incidents with fewer resources, a

SOAR platform’s execution environment can be supported by four types of technological

solutions that are expected to work together to solve security issues and challenges. For

Security Orchestration
Platform Capabilities

Execution
Environment

Endpoint

Cloud

Hybrid data
centre

Threat
management

Automation
Strategy

Auto-integration

Workflow

Plugins and
modules

Learning

Scripting

Prioritizing

Type of
Deployment

Central

Distributed

Hybrid

Mode of Task

Fully-automated

Semi-automated

Manual

Resouce Type

Human

Security software

62

Literature Review 62

example, a combination of cloud-delivered data security tools and endpoint security for

Infrastructure as a service, and multiple vendors with multi-tenancy features need to be

considered in a virtual context. Another example is that ETSI has proposed a security

orchestrator for a hybrid network consisting of a physical network and a virtualized

network [91]. In the following subsection, we discuss the four execution environments

for security orchestration solutions.

2.6.1.1 Endpoint

Most of the organizations have several siloed security tools in their endpoints. Installing

several security tools in each endpoint and managing the endpoint in a large IT

infrastructure is becoming challenging and inefficient [127]. An organization needs to

monitor, assess and control all the endpoint devices connected within the organizations’

network to provide end to end threat protection [124, 127, 130]. McAfee has considered

an endpoint security architecture from which an organization can expect agent

consolidation. In this review, we consider any autonomous entity or software program

that can perform actions as an agent. A SOAR platform can deliver consolidation at the

endpoint, which can even be the entire portfolio, depending on time [18]. A SOAR

platform agent can reside in various endpoints’ storage (RA , HDD or SSD) [73].

HEXADITE has proposed a SOAR platform, AIRS, that helps an enterprise to

connect detection, networks and endpoint security tools. Though the proposed platform

seems to be agentless, it uses a non-persistent agent that injects a dissolvable probe into

endpoints during investigations [19]. Similar to Hexadite, Demisto [148] proposes an

architecture that consists of dissolve agents for data collection from endpoints. The

workflow tool CounterACT proposed by ForeScout uses multiple agentless discovery

methods and integration techniques. CounterACT employs a combination of active and

passive discovery methods to classify organizational devices based on a network [144].

Without installing any software agent or enrolling any management unit to a device, it

first connects the device to the network. This reduces the overhead of an administrator

to check each device and manually assign policies to each endpoint. The resilience engine

proposed by NTT controls multiple devices at appropriate points, according to the type

of attacks, to isolate the affected regions [90].

63

Literature Review 63

The security orchestration framework proposed in Reference [59] also supports

distributed endpoints with DXL over an enterprise network. DXL is built on top of

Enterprise Service Bus (ESB) technology and provides an abstraction layer between

different types of connected endpoint devices. Through a SOAR platform, organizations

can provide constant protection, irrespective of where an endpoint device is located.

2.6.1.2 Private and Public Cloud Computing

Cloud computing and its related technologies have created the need for a new generation

of security technologies. A SOAR platform can be built as a single integrated solution to

provide cloud-delivered data security [18, 127]. The motive for a cloud platform is to

build software as a service, with the required levels of performance and availability. An

organization can easily integrate their security tools (i.e., service) into a cloud [127].

Example of such services includes web protection, sandboxing, security brokers, data

loss prevention and encryption. A cloud security platform continues to support next-

generation platforms that are built beyond VMware and Amazon web services to add

Azure, OpenStack, Docker containers and emerging services. McAfee has proposed

McAfee cloud ePO software to support consolidated management across their cloud

management technology [18]. The work proposed in Reference [21] is designed to deal

with heterogeneous cloud environments and automated security operations in a Software

Defined Infrastructure (SDI) environment. The proposed solutions handle VM

movement over dynamic infrastructures and provide transparent security management

facilities. The resilience security technology for rapid recovery from cyberattacks also

works for network services in cloud environments [90]. The enterprise-level security

orchestrator installs a mirror of the SOAR platform in a cloud [58]. The authorshave

proposed a security orchestration engine for both the server and the client and the SOAR

platform can be used in public, private or even external cloud facilities [58]. Using the

cloud as an execution environment helps an organization to have scalable, flexible and

adaptable infrastructure.

2.6.1.3 Hybrid Data Centers

The evolvement of a data centre to SDDC has created new security-related challenges

for organizations. Additionally, the increasing trend of distributing more workload on

data centers and public clouds has also increased security challenges. The SOAR

64

Literature Review 64

platform and resilience engine proposed by NTT are mainly designed for a data centre

[72, 90]. McAfee aims to build an integrated platform to deliver visibility and security to

a cloud-enabled data centre [18]. cAfee’s SOAR platform includes global load

balancing infrastructure with a Content Delivery Network (CDN)/ peering data centre

[18]. Intel has introduced the open security controller, a SOAR platform to orchestrate

virtual security in SDDC [71]. The purpose of this platform is to make security

management visible, effective, agile and scalable by providing automated, dynamic and

synchronized security services for software-defined infrastructure. It provides seamless

brokering services between SDN and VNF. It is optimized for an OpenStack and

VMware cloud environment.

A SOAR platform gives visibility across the network and server tiers and

public/private cloud data centers [127]. Dynamic micro-segmentation is performed for

private clouds and workload auto-discovery is undertaken for public clouds [18, 71]. The

concept of micro-segmentation restricts access and tailors security configurations. This

gives better threat protection and faster remediation than siloed approaches. A SOAR

platform helps security administrators to span their security model from an

organizational data centre [127].

2.6.1.4 Threat Management

A SOC suffers from a large volume of data, events and Indicators of Compromises (IOC)

to prioritize true attacks in process or in the golden hour of post-breach [84, 86, 87]. A

SOAR platform helps to analyze the security threat data by providing security analysis,

threat and vulnerability management, attack detection, attack investigation and

streamlines incident responses [18, 72, 90, 98, 127, 130]. Threat management includes

prioritizing threats in progress and also in the golden hour post breaches [18]. It helps

security analytics to continue advanced data management, risk assessment, correlation

and deal with both the volume of security data and increasing sophistication of analysis

[23, 92, 93, 98]. It automatically investigates attacks during and after a breach. It also

provides both on-premise and cloud-based analysis. Threat Connect has proposed an

intelligence-driven platform to manage both internal and external threat data and turn

them into actionable threat intelligence [122]. A SOAR platform provides a central place

for data aggregation, analysis and enrichment of security threat data. It allows security

65

Literature Review 65

teams to provide technologies like attack reconstruction that help an organization to

identify and respond at a full attack level, not just at an event or malware level. An

organization can use a SOAR platform to centrally manage the threat and automate the

entire life cycle of threat defense.

2.6.2 Automation Strategy

Our review has revealed that a SOAR platform uses a combination of several types of

automation strategies. Orchestration of different automated steps is needed for effective

incident responses that suit all types of organizational activities, such as integration,

aggregation of data, auto investigation or analysis, finding proper courses of action and

deciding on remediation processes. The security automation realization approaches

concern specific methods/tools. HEXADITE has highlighted five distinct approaches to

security automation adopted by current vendors: workflow tools, orchestration tools,

scripting tools, prioritization tools and intelligence security automation [139]. From the

analysis of the reviewed literature, we consider intelligence security automation to be a

SOAR platform that includes some of the available automation tools to orchestrate and

automate the incident response process. Demisto has mentioned automation and human

tasks need to be interwoven and worked together in a seamless fashion to achieve a

desirable goal [148]. We have outlined the automation strategies that are used by

practitioners in various organizations.

2.6.2.1 Auto Integration

We have placed the connecting or integration tools that are used to automatically connect

existing security tools through APIs to streamline an incident response process under this

category. Whilst some practitioners have mentioned the connecting tools as orchestration

tools [139], this is not the only purpose of using a SOAR platform. A SOAR platform

needs to have tools to automatically connect and integrate a full stack of security tools

[17, 118, 139]. Several reviewed papers have also proposed the connection of

organizational hardware, software and control unit into a SOAR platform [146, 154].

This work as a layer of connective fabric that makes the security tools work together.

The integration tools help isolated security tools to interoperate with each other.

Organizations can easily buy a new point of product, as the integration tools

automatically connect and integrate new systems into existing ones, and make the

66

Literature Review 66

necessary changes in a system. An organization can dynamically insert security functions

into any workgroup, based on their policies [71]. The ControlFabric interface by

ForeScout uses an open standard based API to perform bi-directional integration [136].

Building a fully autonomous, integrated set of tools is very difficult due to the

heterogeneous nature of multivendor security tools. The work reported in [59] enables

the integration of third party software. Security management software can connect to the

orchestration framework by connecting to DXL. It provides all the command control

functions across the entire network. The DXL also provides API embedded with McAfee

agents. However, if a security orchestration process is not well-defined [139], there are

few benefits in simply connecting the existing security tools. A SOAR platform must

have a well-designed framework and workflow to perform the required actions.

2.6.2.2 Workflow

Organizations usually use workflow tools to streamline an incident response flow and

communication. Workflow tools are depicted as a solution to gather and enhance alerts

that automatically send instructions to analysts, auditors and other security tools [17, 71,

125, 136, 139, 148]. Some workflow tools provide a standard framework, specifying user

roles and types of actions that are needed to perform during certain types of alerts [70,

121, 122, 125, 130, 139]. FireEye has built a security orchestrator to design a workflow

[118]. A SOAR platform can help organizations to organize incident response flows

more efficiently with a built-in ticketing system. According to HEXADITE and

KOMAND, the workflow tools automate data gathering and communication processes,

leaving the investigation and remediation actions for the security team [17, 139]. The

security team creates a sequence of automated tasks to perform the tasks in a logical

sequence with a chained data flow [61, 63, 121, 122, 148]. Demisto mentions designing

the workflow for automation of playbooks to weave human analysts into the middle of

these workflows and playbooks. Some practitioners have designed the workflow in such

a way that it will also trigger investigation and remediation actions [71, 121]. Some

workflow tools, like the one proposed by McAfee, drive cross endpoint workflows and

are built natively into an endpoint security architecture [18].

ForeScout has built CounterACT, which uses both a rule engine and a workflow

engine to automate the workflow for instant decision-making to deal with security

67

Literature Review 67

incidents [136]. This helps an organization to automate the security process across

mobility management and endpoint platforms. Invotas Inc. has designed a multistage

workflow, which includes the workflow of automatically connecting different security

tools [154]. The majority of SOAR practitioners have built workflow based on use case

scenarios [17, 19, 118, 125, 136, 147]. An organization can define its strategies about

how to respond to certain security events. The cybersecurity playbooks keep a record of

this in the form of a workflow rule that an orchestrator uses to autonomously control

attacks [21, 65, 121, 125]. Workflow tools do not enable the integration of heterogeneous

inter-organizational information and security tools.

2.6.2.3 Scripting

Scripting tools perform actions based on custom code written by security teams, who use

the scripting tools to configure existing playbooks, security tools and policies. An

organization requires skilled developers to consistently write and maintain code by

performing in-depth investigations [65, 125, 139]. Scripting tools can be considered to

be an execution engine that executes the script or configurable code. The SOAR platform

proposed in [72, 90] uses scenario-based autonomous control of multiple virtual

appliances to implement security measures. A security team can implement the measures

regardless of their skill level. Scripting capabilities also include writing custom workflow

and integration codes [125]. An organization with the resources to investigate and

remediate threats can use scripting tools to perform automation. An organization needs

to have both budgets and resources for using scripting tools. Defining new policies and

designing scripts according to organizations’ budgets and resources can be considered

under this category. The policy maker explicitly writes code to reconfigure some parts

of a network. The enterprise-level security orchestration has an orchestrator routine to

make calls to safeguard software packages via automated interfaces provided by

safeguard interface modules [58].

2.6.2.4 Prioritization

Prioritization tools help security teams to decide on critical security alerts. These types

of tools normally assign a score to alerts to reflect more critical and urgent alerts and

prioritize security events [63, 83, 105, 114, 122, 139]. Most organizations have some sort

of prioritization tools within their detection system that automatically investigate and

68

Literature Review 68

correlate alerts to reduce false assumptions and give experts a list of critical alerts, which

are produced by the organizational detection system. Major data breaches show that, in

most cases, organizational security teams have missed critical alerts. SIEM [83, 121, 147]

is a popular prioritization tool that collects and aggregates alerts from different security

tools and prioritizes true alerts and discards false alerts. Tayeb et al. [83] propose

ontological reasoning approaches to reduce the false alerts by correlating alerts. Some of

the SOAR platforms use the existing SIEM technology to prioritize the alerts.

2.6.2.5 Learning

A set of studies have used Artificial Intelligence (AI) techniques and game theory models

to make security tools intelligent [63, 84, 88, 105, 112, 116]. McAfee has proposed an

expansion of the SOAR platforms’ capabilities by including behavioral security; for

example, pre-execution, post-execution, machine learning and more [18]. Several of the

reviewed studies [18, 20, 63] use machine learning based solutions to analyze security

behaviors. The AIRS platform, a SOAR platform proposed by HEXADITE, uses AI to

automate the activities of several security tools [142]. HEXADITE has proposed the use

of AI as a critical capability for automated security technology [142]. Without

automatically learning, it is not possible for any SOAR platform to predict uncertainties.

Demisto has introduced ChatBot, a learning tool which combines intelligent automation

with collaborative, human, social learning and experience [147]. For certain threat

behaviors, defining rules and designing workflows works well. With a world full of

uncertainty, a SOAR platform must be able to learn from a security team’s behavior and

threat data. A combination of AI techniques (such as Machine Learning and Genetic

Algorithms) has been used in SOAR platforms’ automated learning modules. Seclius

[82] uses a set of instruments to learn from the dependency of systems’ assets and

captures information flows between files and processes. The authors have also developed

an algorithm to use with the set of instruments [82]. As a result, an administrator does

not need to define low-level input.

2.6.2.6 Plugin and Module

For this category, we have classified small programs or software that organizations that

can independently select and install, based on the required configuration. A SOAR

platform can integrate plugins to automate various activities and create workflow [104,

69

Literature Review 69

125]. Siemplify has introduced a plugin framework for security orchestration that makes

security tools accessible and easy to integrate into incident response workflows and

automation [125]. Komand has introduced several plugins to include in an organization’s

environment [17]. Each plugin has a set of tasks for a specific set of activities. FireEye

orchestrator also uses predefined plugins to perform workflow integration [118]. This

makes a security team more agile. A module-based automation strategy helps an

organization to choose an integration module based on organizational infrastructure,

policies and configuration. The ForeScout SOAR platform supports more than 70 third

party solutions to automate various activities of security tools [136]. ForeScouts’ open

integration module allows customers, system integrators and third-party product vendors

to integrate their products with ForeScout’s CounterACT and communicate with each

other. Both modules and plugins add specific features to a SOAR platform, which is why

we have placed them under a single category.

2.6.3 Deployment Model

A SOAR platform includes several types of components. It might have several structures

to manage its components and activities. Some of them form a distributed structure, while

others become part of a central management site for a large-scale deployment [65].

ForeScout mentions three deployment models for their proposed SOAR platform:

centralized, distributed and hybrid deployment architecture [144].

2.6.3.1 Centralized Deployment

In a centralized deployment architecture, an organization has a centralized orchestration

manager to communicate, manage and deploy policies to multiple orchestration

appliances in a data centre or major sites. Several papers [61, 104, 122, 124, 125, 128,

151] have indicated that a centralized SOAR platform is needed to provide security teams

with a better understanding of the state of security throughout an organization for faster

and more efficient incident response actions. For example, NetSec has proposed a central

management approach for large-scale deployment of SOAR platforms [104]; whereas

ThreatConnect [122] has proposed a central intelligence-driven platform to manage

threat data in a single place. A centralized management configuration is necessary for

optimal security enforcement. In this type of deployment, the appliances need IP

connectivity to remote sites in order to manage devices and other endpoints located there.

70

Literature Review 70

Traffic from the remote location is sent to a centralized SOAR platform via a predefined

interface for monitoring and assessment. A SOAR platform can monitor the activities of

the user directory, DNS and DHCP to detect threats or potential rogue activity and initial

remediation [144]. An organization manager contains the database of endpoints (active

or passive) from the appliances it manages [103].

2.6.3.2 Distributed Deployment

An organization can use a decentralized deployment model for a mixture of security

orchestration components located in both a central facility and various remote sites [98].

A controller manages and controls the activities, provides policies to orchestration

service consumers, and maintains a database of active and inactive endpoints. A

distributed deployment enables the use of virtual firewalls, virtual security services,

browser redirection and endpoint authentication to a server when a local SOAR platform

is at that site. A distributed organization, large data centre, cloud platform and large IT

infrastructure require distributed deployment of security policies and protocols that can

be achieved by distributed SOAR components over multiple endpoints.

Incorporating distributed security analysis and monitoring allows an organization

to deliver tighter security policies and better protection against emerging cyber threats

[127]. ForeScout [144] has introduced SOAR organizational controller functions that are

the central notification points, where the communication occurs via email or syslog and

bi-directional SIEM services via CEF or LEEF messaging to perform endpoint actions

and to notify systems about each endpoint’s status. Radwane et al. [86] have proposed a

distributed collaborative architecture to perform cooperation and placement of defense

entities on organizational systems to defend against DDoS attacks. They have utilized

the concept of a distributed hash table and overlay network to perform the distribution

and placement of security tools. Fung et al. [88] have used a Chord overlay network to

implement the protocol of their distributed system.

2.6.3.3 Hybrid Deployment

The hybrid deployment model uses a mixture of SOAR platform components in a central

location and at remote sites. A SOAR controller maintains a database of the infrastructure

and issues policies for the applications and components. Chen et al. propose a centralized

controller for managing the distribution of applications and components [103]. A hybrid

71

Literature Review 71

deployment implementation supports virtual firewalls, browser redirection and

authentication verification of an endpoint to a server when a local SOAR application is

deployed at that site [111]. Elshoush et al. [44] highlight several hybrid deployment

models for a collaborative intrusion detection system. Their proposed architecture can

also be considered a hybrid architecture. The security orchestration framework reported

in Reference [59] has performed distributed sensing over both the server and clients. The

proposed system performs a centralized aggregation of data and enforcement policies on

both the server and clients. In Reference [59], a centralized server has the visibility to see

the entire context and communication layer DXL, which is highly scalable, based on an

elastic architecture that supports multiple deployment options. Multiple security tools

can be connected and deployed at diverse locations with distinct types of capability and

visibility where a data exchange layer (DXL) provides a fabric to help them operate as a

unified system (super-control).

2.6.4 Mode of Task

A SOAR platform generates remediation actions that are both automated and semi-

automated [80, 104]. Some actions need human involvement, depending on

organizational policies and rules. SOAR platforms require a combination of machine-

driven and human-led processes and workflows to optimize security operations [90, 115].

Actions can be triggered either by a security team or when a new artifact is added to an

incident [115]. A SOAR platform works as an intelligence assistant for security teams,

who should conduct automation selectively, based on their resources and needs. The

incident response can be fully automated or semi-automated [84, 90], depending on the

nature of the tasks to be carried out. For example, a task such as notifying stakeholders,

assigning incidents and enriching data with context can be automated safely, but the

actual containment of a data breach and analysis of unknown threats frequently requires

humans to be in the loop [84]. The online evaluation framework proposed in Reference

[42] does not respond automatically to an attack. Instead, it is designed to help security

administrators by providing situational awareness capability. Xiaojing et al. [47] have

made feature extraction and analysis of threat intelligence data fully automated. They

propose a fully automated cyber threat intelligence gathering solution to lessen the

manual task of threat intelligence analysis.

72

Literature Review 72

A SOAR platform integrated with a global threat intelligence platform provides

both fully automated and semi-automated tasks [90] that help to automatically classify

the detected cybersecurity attack, and investigate whether or not the available

countermeasures are possible. The system also investigates the possibilities of automated

responses (i.e., automatic generation and notification of response recommendations that

guide the decisions of a security team). An administrator specifies the service

requirements based on security tools and needs in the system proposed in Reference [31].

A SOAR platform allows security teams to choose their level of security and types of

responses. A SOC can take control of an organizations’ cybersecurity tools to combine

various security tools and applications.

2.6.5 Resource Type

Analysis of the reviewed material reveals that the functionality and performance of a

SOAR platform depend on the human expertise and security tools of an organization. We

consider organizations’ security tools and human resources as the two most important

resources of a SOAR platform. Building a SOAR platform on top of a clumsy list of

security tools that is supported by an unskilled security team will bring few benefits to

organizations.

2.6.5.1 Security Tool Resource

In this category, we consider the existing security tools provided by third party vendors

or owned by an organization. Most SOAR platforms assume that organizations already

own multivendor security tools. Several papers have mentioned a range of security tools

while designing a SOAR platform for small to the medium organizations [19, 23, 29, 59,

71, 99, 105, 116, 136]. Some key types of security tools used by organizations are SIEM,

forensics tools, signature-based control tools, firewalls, IDS/IPS, anti-malware,

antivirus, perimeter security tools, ticketing solutions, traffic inspection tools,

compliance tools and vulnerability scanners [29, 83, 148]. McAfee classifies the existing

security tools into attack detection and attack investigation [18]. Komand mentions IDSs,

firewalls, ticketing tools and team communication tools as the minimum number of tools

an organization must have to build a SOAR platform [17]. To further enhance

performance, Komand considers threat intelligence, malware analysis tools and forensics

tools as the next layer of security tools [17]. Komand has also considered some additional

73

Literature Review 73

security tools, such as applications for vulnerability scanning, phishing investigations,

threat hunting, monitoring tools and malware protection tools [17].

Most of the reviewed literature has considered anomaly detectors to analyze

traffic for identification of potential attacks and abnormal traffic. Kenaza et al. [83] have

performed cooperation among IDS, network scanners and vulnerability scanners to

reduce alerts volumes. Feitosa et al. [23] mention two types of anomaly detectors:

hardware and software based. They mention several hardware tools to capture network

traffic [23]. These security tools can also inspect network traffic in real time. Several

tools, techniques and systems are used as software-based anomaly detectors, such as IDS

(Snort, BrO, & Prelude), Honeypots (Honeyd, & Nepenthes) and open software

prototypes [21, 23]. The security tools give alerts to an orchestrator and receive script

commands from the orchestrator to respond to security incidents.

2.6.5.2 Human Resources

Human Resources are an essential part of a SOAR platform. Security analysts, security

engineers, forensic experts, network administrators, security administrators, directors of

security operation centers, including security orchestration designers and security

orchestration and automation engineers, are considered human resources for a SOAR

platform [62, 84, 100, 104, 107, 112-114, 116, 133]. Demisto considers any security team

who perform day to day security operations as a human resource [147]. An organization

must have experts to assess organizations’ security infrastructures. According to a report

by NSSLab, [62], the security architecture can ensure the organization’s security for an

assigned level across the entire threat defense life cycle by assessing organizations’

existing security infrastructures. Before setting up an orchestration process, the security

orchestration designers need to communicate and work closely with security analysts to

make sure that the orchestrated process is well-understood [65, 125, 129, 131]. Security

teams are the ones who perform coordination, timing, moderation, prioritization and

enforcement algorithms for policies based on organizational requirements [62]. Human

resources must be able to fully leverage the power of a SOAR platform [125].

A human-centric SOAR platform is necessary where the dashboard and planning

tools will be used to make automation work. A SOAR platform is built to work as an

intelligence assistant of a security team. According to Bruce Schneier, automation is only

74

Literature Review 74

possible in an environment of strong certainty, where everything is related to the planning

of certain actions and synchronization of activities [56]. On the other hand, an uncertain

world needs direct execution, initiative and prioritization commands. He emphasizes that

it is not possible to replace humans; rather, humans are required in security orchestration

to make the machine intelligence effective for security response actions. Zonouz et al.

[82] mention an online evaluation framework to help administrators. For a coordination

model, the work reported in Reference [116] proposes four groups of users, where they

consider the security and business continuity teams as a group and the administrator as

another group. The further two groups are a group of local users and a group of external

or corporate users [116]. Security teams vary by size, vertical and expertise, and their

perceptions of what an organization needs from threat intelligence [122]. A SOAR

platform should be designed in a way that can work with all sizes, maturity levels and

groups of security teams.

2.7 DISCUSSION

This chapter has introduced and analyzed the relevant aspects that motivate the need for

a SOAR platform. Throughout this chapter, we have identified and categorized existing

SOAR platforms. There is an increasing realization that SOAR platforms can enable

significant progress towards achieving the goal of security as a service/ utility. Over the

years, several technologies, such as SIEM and Distributed Intrusion Detection Systems

(DIDS), have been proposed as solutions to the challenge of providing security as a

service. However, security orchestration is still in its early stages of development and has

significant potential for research and innovation.

One of the areas of research is standardization, as most of the security vendors are

coming up with their own SOAR platforms that have proprietary interfaces or plugins to

integrate and access different security tools and services. This heterogeneity works as

one of the major barriers to large-scale implementation and realization of security

orchestration. Hence, SOAR platforms require new levels of collaboration and

performance; the solutions also need to be adaptive to organizational structures that are

quite dynamic these days. According to a report by Research and Markets [156], by 2021,

the security orchestration market price will hit 1.6 billion USD. A SOAR platform needs

to engage security teams fast enough to make a significant difference in the response

75

Literature Review 75

time. Security orchestration needs significant amount of research to create results for

immediate incident response applications to unforeseen cybersecurity events. This

review has enabled us to assert that large scale empirical studies of SOAR platforms and

practices under real circumstances will greatly benefit those efforts aimed at addressing

the obstacles to security orchestration in different organizational settings.

2.7.1 Open Issues in Security Orchestration

This chapter constitutes a first step towards reaching a common consensus as we

examined several state-of-the-art and state-of-the-practice SOAR platforms and

compared them with the existing literature. Our review has revealed that the existing

SOAR platforms suffer from several open issues. We have analyzed the open issues from

three key aspects of security orchestration: people, processes and technology, as shown

in Figure 2.10.

• Security orchestration is mainly aimed at increasing automation of security activities

that primarily rely on human expertise. The humans need to be involved in the loop

of orchestration and automation. With automation, security orchestration requires

experts who can easily take the benefit of the automated decisions and take control

when automation is inappropriate. There needs to be significant collaboration

among different level of staffs involved in dealing with the security orchestration

processes and technologies, as each team may have different responsibilities,

priorities and metrics.

• Whilst security orchestration and automation efforts are based on scenarios known

to security practitioners, security vendors and organizations need to develop and

deploy more formal workflows and playbooks for a SOAR platform. Experts

involved in the process of orchestration and automation require proper training to

gain a common understanding of the workflow, tools and techniques. An

organization requires a security architect who can ensure the involvement of risk

management and guidance to managed policies. Though one of the motivations

behind security orchestration is to handle the collaboration among stakeholders and

security experts, a SOAR platform itself requires strong collaboration among

business risk owners, risk assessment teams, security operation centers and IT

infrastructure managers. The analysis of our review has identified that the current

76

Literature Review 76

security industry lacks training related to secure practices. That means that

organizations and the security community both need to train current and future staff

to keep pace with the wide adoption of security orchestration platforms and

conceptualize the data needed to acquire the required insight into security events.

Figure 2.10 Open issues in security orchestration platforms

Open
Issues

People

Little involvement and collaboration among different levels of
staff during orchestration and automation

Lack of security architect for risk and policy management

No holistic training for staff to understand the security orchestration
platform, integrated tools and incident response workflow

Process

Insufficient alignment of the incident response process with the
organization's existing IT operational framework

No clear agreement among vendors on what needs to be
orchestrated and what can be automated

Privacy and policy violations due to incorporating a learning
capability into the orchestration platform

Lack of willingness to share knowledge and experience

No guideline to assess the maturity of the orchestration process
and incorporate automation into the system

Technology

Lack of modeling notation and language to support integraiton
of securlty information at runtime

Increasing diversity of integrated security solutions due to
dynamic changes of attack patterns

Insecure communication among different components of the
system

Increasing vulnerability due to integration of new tools

Little research on AI for scalable and flexible security
orchestration and integration

77

Literature Review 77

• The incident response process must be aligned with an organization’s existing IT

operation framework. An organization needs to have a clear idea of what they can

automate and what they need to orchestrate. Hence, there is no agreement on what

to automate and what to orchestrate. Nevertheless, some research also refers to

orchestration but does not specify its meaning: the focus is often on building plugins

to integrate with existing tools. A SOAR platform needs to access organizations’

policies and other security tools data to make relevant decisions. Whilst the security

team is empowered to streamline incidents, including addressing the issues raised

by a SOAR platform, most organizations do not share their threat intelligence with

others. This situation can lead to trust issues among organizations.

• Whilst there is an increasing recognition of the importance of security orchestration

and automation, the practice of security orchestration and automation is unbalanced.

Technology should reach a level such that is able to further support the development

of agreement on the definition of orchestration and automation in cybersecurity

space. With the advancement of technologies, new vulnerabilities are found and

exploited every day. The dynamic change of attack patterns causes the increase in

diverse security tools. A SOAR platform should be adaptable with emerging

technologies. As stated in the previous sections, orchestration in cybersecurity

constitutes an interdisciplinary research area that adopts concepts from research in

cybersecurity solutions, SIEM, cooperative IDS, distributed IDS and orchestrated

and automated incident responses. There is a need for significant research into

modeling notations and languages to support the integration of security-relevant

information into streamlining incident response workflows at runtime. There has

been no systematic approach to provide a standard API to perform such integration

and handle communication among different components of a SOAR platform. There

are very few SOAR platforms that provide plugins or support for all the existing

multi-vendor security tools.

• One key challenge is to secure the integration and communication of security tools.

Another area of future research and development is the application of AI into

security automation technology, which can extend, and/or replace where possible,

human cognitive processes for security decisions. The existing SOAR platforms are

78

Literature Review 78

not currently scalable and flexible enough to handle the heterogeneity of security

team structures, sizes and expertise levels.

2.7.2 Architecture Level Support for Security Orchestration

Security orchestration is an emerging area of research and practice. There is little

accumulated knowledge and experience available to support industrial decision-making

for different aspects of security processes and tools for security orchestration. Siemplify

[151] suggested the importance of having a delicate balance between human intervention

and automation. New security tools are expected to be adaptable to the existing SOAR

platforms. However, a centralized SOAR platform usually incurs huge overhead costs

and can be a single point of failure. Due to the ubiquitous realization of cloud, edge, fog

and mobile computing, we need to make suitable changes to the ways of deploying

SOAR platforms, considering certain properties such as context specifics, knowledge

sharing, self-reinforcing and dynamicity. The services provided by SOAR platforms

should be fragmented into siloes. Each silo should perform multiple actions in parallel to

unleash the best results and act against a threat without delay. This requires choosing an

appropriate architecture; for example, microservice, layered, service-oriented,

monolithic and so forth.

A SOAR platform needs a well-designed and rigorously evaluated architecture

that can support easy integration and smooth interoperability of components and tools

developed for various domains by different vendors. There needs to be architecture level

support for visibility and comprehensibility of the functionalities and interactions of

different components of a SOAR platform that should operate transparently. A SOAR

platform’s architecture is expected to be dynamically adaptable to the changing threat

environment. The MLR has identified the essential components of a SOAR platform that

is expected to have certain quality attributes, such as usability, interoperability and

flexibility. We can conclude that there is an urgent need to conduct research into

identifying and leveraging suitable architectural styles/patterns when designing and

evaluating architectures for a SOAR platform.

79

Literature Review 79

2.7.3 Limitations of This Review

The MLR we have conducted has some potential limitations. Since security orchestration

is an emerging paradigm with mixed and inconsistent terms, the search string used to

identify the relevant papers may not have included some words that might be used for

security orchestration. The inclusion and exclusion criteria used to assess and select the

reviewed studies have been defined by the research team. The focus of this review does

not include an in-depth discussion of the limitations of the reported solutions.

 The findings of this review are based on the studies related to security

orchestration that were found during the time period of January 2007 to July 2017. New

technology and platform may appear after that time period. Nevertheless, to determine

the research trends on the topic of security orchestration from 2017 to October 2020, we

ran our search string on the considered three databases (i.e., IEEE Xplore, ACM DL and

Scopus). The number of articles that were found from these databases for the two time

periods are shown on Table 2.7. Table 2.7 also reports the number of results that were

returned by Google search engine for search string “security AND orchestration” on

November 2017 and October 2020. Table 2.7 shows that increasing number of articles

have been published in 2017 to July 2020. It also shows substantial increase in the

number of grey literatures published between 2017 to 2020. Growing focus on security

orchestration from both academic and industry emphasizes our findings that

incorporation of SOAR technologies and platforms in a SOC environment is on the rise.

Table 2.7 Number of papers that were returned during 2007 – July 2017 and 2017 –

October 2020 for our proposed search string

Source
2007 – July 2017 2017 – October 2020

Total
of articles % # of articles %

IEEE Xplore 600 77.22% 177 22.78% 777

Scopus 1017 57.92% 739 42.08% 1756

ACM DL 271 65.30% 117 28.19% 415

Grey literature

Source
November 2017 October 2020

- Results Results

Google Search Engine 45900 249,000

We encourage the reader to take the above-mentioned limitations into

consideration while using the findings from this chapter. Moreover, some organizations’

80

Literature Review 80

security orchestration requirements may not fully be met by any of the reported security

orchestration technologies.

2.8 CHAPTER SUMMARY

Security teams may become overwhelmed by the task of monitoring and handling an

increasingly huge pool of security alerts generated by a diverse set of security tools.

Hence, they may fail to act in a timely manner to deal with security incidents due to the

manual and repetitive job of receiving and combining security alert information from

multi-vendor security tools. A SOAR platform aims to support security teams to monitor

monitoring and deal with security incidents effectively and efficiently by enabling

coordination and collaboration among the heterogeneous independent security tools.

Integrating and orchestrating the various activities of security tools in an organization

needs a comprehensive view of a SOAR platform. Recently, all sort of organizations

have started taking interest in adopting SOAR platforms. However, academic research is

yet to catch up with the increasing trend of technological innovation and practical

adoption of SOAR platforms. Security tool vendors do not share a common/similar

understanding while developing and supporting tools, process and technologies for

SOAR platforms.

We have systematically selected and rigorously analyzed the SOAR platforms

provided by various practitioners and researchers to gain a good understanding of this

emerging paradigm. We have also explored the challenges and possible future trends for

security orchestration research and practice. Our review has addressed three research

questions: (i) What is Security Orchestration? (ii) What challenges is security

orchestration intended to solve? and (iii) What types of solutions have been proposed?

We have identified and analyzed critical aspects of SOAR platforms found in 95 papers,

which were selected based on a pre-designed review protocol. To the best of our

knowledge, this MLR can be considered as the first attempt towards systematically

reviewing and analyzing the literature on security orchestration.

The analysis of the extracted data to answer RQ1 (i.e., What is Security

Orchestration?) enabled us to explore several definitions of security orchestration

provided by practitioners and come up with a working definition for the research on the

81

Literature Review 81

topic of security orchestration. The definition of security orchestration provided in this

chapter is expected to help practitioners and researchers interested in this topic. Most of

the reviewed literature has considered security orchestration as a platform that integrates

and unifies various security tools and activities for prompt response to security incidents.

The review has identified the key functional and non-functional requirements of a

security orchestration platform. Our analysis of the identified functional requirements

has revealed three key areas of focus for security orchestration: (i) unification, which is

to unify security tools’ activities (ii) orchestration, which relates to the process of

translating complex processes into streamlined workflow and (iii) automation, which is

the process of selecting suitable courses of action to enable automated incident responses.

Our review has also identified the key components of a SOAR platform.

A SOAR platform is expected to address several technical and socio-technical

challenges for which the review has identified the key techniques, tools and strategies.

We have proposed a taxonomy for a security orchestration platform from five key

dimensions: (i) execution environment, (ii) automation strategies, (iii) deployment type,

(iv) task mode and (v) resource type; which is further split into sub-dimensions. This

taxonomy gives a perception of the multidisciplinary nature of a SOAR platform. An

organization can compare several security orchestration solutions using the reported

taxonomy, which can provide security practitioners with insights into SOAR platforms’

usability in different but interdependent processes.

Research is required into designing suitable architectures for supporting the

activities of humancentric SOAR platforms, whose common and variable layers can be

known to security tools developers and integrators, who are responsible for integrating a

diverse set of security tools into a SOAR platform. Such an architecture will also help

security experts to decide where to automate incident response processes and where a

security orchestration engine is required.

82

Security Orchestration and Automation Architecture 82

Chapter 3

3 Security Orchestration and Automation

Architecture

Chapter 2 shows most SOCs leverage a number of security tools to detect, thwart

and deal with security attacks. One of the key issues of SOC is to quickly integrate

security tools and operational activities. To address these challenges, an increasing

number of organizations are using SOAR platforms, which are mostly designed in

an ad-hoc manner. In chapter 2, we observed that the existing SOAR platform design

lacks suitable architecture support. This chapter presents our work on architecture-

centric support for designing a SOAR platform. Our approach consists of a

conceptual map of SOAR platforms and the key dimensions of an architecture design

space. This chapter demonstrates the use of the approach in designing and

implementing a Proof of Concept (PoC) SOAR platform. We also report a

preliminary evaluation of the proposed architecture support for improving a SOAR’s

design.

3.1 INTRODUCTION

The adoption of Security Orchestration, Automation and Response (SOAR) platforms

has recently gained major popularity among security analysts, Security Operation

Centers (SOC) and incident response teams [21-23, 59]. SOAR platforms enable

integration, orchestration and automation of the activities (e.g., blocking IPs, scanning

endpoints and isolating hosts) performed by security tools and human experts [22].

Chapter 2 shows that existing SOAR platforms lack proper abstractions for

designing a platform at the architectural level. Most of the existing SOAR platforms are

implemented in an ad-hoc manner, without much attention to the underlying

83

Security Orchestration and Automation Architecture 83

infrastructure [21-23, 34, 136, 143, 157]. As a result, there can be several engineering

challenges involved in embedding agility in a SOAR platform [26, 27, 43, 158, 159]. For

example, managing interoperability among isolated and heterogenous security tools with

changing environments, integrating new security tools and defining playbooks to adapt

with the dynamic changes in attack patterns and advanced technologies and so forth.

These challenges result in a highly complex and monolithic design that is hard to evolve.

A SOAR’s design complexity may also be worsened by a lack of conceptual and practical

guidelines for optimal architectural design decisions [22, 158]. The existing SOAR

platforms lack any systematic approach to provide a standard set of Application

Programming Interfaces (APIs) to integrate security tools or the activities performed by

individual security tools or enabling interoperability among different security tools.

An architecture-centric approach [44, 45, 160] is expected to help in reducing the

design complexity of a SOAR by modularizing the functionalities and non-functional

requirements. The architectural design decision provides a foundation for analyzing and

understanding the sub-optimal design choices [44], which can be improved by leveraging

suitable architectural styles and patterns. Design space is required to capture and

characterize design decisions for integrating techniques and tools that underpin a SOAR

platform [22]. Developing design spaces for different domains of software systems is a

growing trend [44]. The design space of a SOAR platform involves many architectural

design decisions and trade-offs that are impacted by the security tools and applications

integrated into these platforms. We propose a concept map considering the functionalities

performed by a SOAR platform. It enables the modularization of the functions and

separation of the concerns of the components that provide the design space of a SOAR

platform.

In this chapter, we present an architecture-centric approach to design and

implement a SOAR platform. The proposed approach consists of three parts:

• Abstraction to model a SOAR platform design space: We provide a concept map

of a SOAR platform that defines and relates the key concepts of SOAR to support

understanding of security tools’ integration and orchestration. The design space is

useful for understanding and analyzing the requirements of emerging SOAR

platforms and integration technologies for faster responses and efficiency.

84

Security Orchestration and Automation Architecture 84

• Layered Architecture for SOAR platforms: We provide a layered architecture that

modularizes the components into different layers based on two key functionalities:

integration and orchestration. These two key requirements are to guide architects to

design and deploy a SOAR platform to integrate security tools and orchestrate

activities based on integrated security tools. We further consider the architecture style

and pattern as a means for delimiting the design space.

• Proof of concept SOAR platform support: We have developed a Proof of Concept

(PoC) SOAR platform that has been designed to fulfill the quality requirements:

integrability, interoperability, interpretability, usability and modifiability, following

the proposed architecture. We have used seven security tools with different

capabilities. The evaluation results show the feasibility of the proposed architecture

approach for (i) automated integration of security tools and (ii) automated

interpretation of incident response activities.

This chapter is organized as follows. Section 3.2 introduces a concept map of a

SOAR platforms' design space. Section 3.3 presents the modularized architecture of a

SOAR platform. Section 3.4 details the dimensions of a SOAR platform’s integration

design space. Section 3.5 presents a case study. Section 3.6 demonstrates an evaluation

of the PoC. Section 3.7 discusses related work and section 3.8 concludes the chapter.

3.2 SECURITY ORCHESTRATION AND AUTOMATION

SOAR platforms are integrated solutions for an organization's SOC. The underlying

technologies of SOAR platforms are designed to interweave people, processes and

technologies. In a SOAR platform, people are responsible for intelligence-based

decision-making and technologies are used to streamline complex processes. The key

purpose of a SOAR platform is to power automation through orchestration. The

functionalities of a SOAR are mainly categorized into integration, orchestration and

automation [22].

The development of any SOAR platform first needs to focus on integrating the

security tools in a single platform. Depending on the organization, the security tools can

be open source, commercial, proprietary, packaged or even legacy scripts. Security tools

are generally integrated using plugins, scripts, APIs and modules. Mostly SOAR vendors

85

Security Orchestration and Automation Architecture 85

provide plugins and API-based support for 150 – 200 security tools [143, 161]. Security

tools generate data in a variety of formats. Furthermore, the data are unified to enable

interoperability among security tools.

The second key task of a SOAR is orchestration. It allows organizations to deploy

and operationalize their security process or Incident Response Process (IRP) using a

piece of code or script, also known as a playbook. An IRP is a set of activities performed

by security experts and security tools. Playbooks contain a set of instructions that make

security tools interoperate in a manner whereby the output of one tool is used as an input

to other tools. An orchestration process improves the response to a security incident by

reducing the manual and repetitive tasks done by human experts.

The third task of a SOAR is automation or response. An organization needs to

identify what they need to orchestrate and what can be automated. Mostly validation,

prioritization, reducing false alarms and checking for access control authorization are the

different types of activities that are automated through orchestration processes. The

SOAR community has not quite reached a consensus on any standard mechanism of

automation of security activities.

The following subsections (section 3.2.1 and section 3.2.2) present the key

functional and non-functional requirements that we have considered for designing and

implementing a humancentric SOAR platform.

3.2.1 Functional Requirements of Security Orchestration and Automation

We consider two core functional requirements of a SOAR platform for integrating

security tools and streamlining the incident response process. We adopt the functionality

of a SOAR platform outlined in section 2.3.2 of chapter 2.

3.2.1.1 SOAR as a unifier or hub

We consider a SOAR platform as a hub that unifies the activities of security tools and

provides a single pane for supporting the operations of a SOC. Security tool integration

is one of the most important resource-intensive and time-consuming activities in a SOC.

Security tools can be integrated using several architectural integration styles [162].

Semantic technology can be leveraged for integrating security tools. A semantic

integration mechanism ensures that a SOAR platform can interpret the data consumed

86

Security Orchestration and Automation Architecture 86

and generated by security tools for interoperability. A SOAR platform first needs to

integrate the security tools and then, based on integration mechanisms, it interprets the

IRPs. It can enable organizations to use playbooks from different vendors to model an

orchestration process by unifying the semantics provided in playbooks. Most SOAR

platforms filter incoming alerts based on their syntactic and semantic correctness before

delivering them to analytics tools. A SOAR’s architecture should support semantics

integration among the artifacts produced and consumed by the security tools.

3.2.1.2 SOAR as a coordinator or orchestrator

A SOAR platform orchestrates the security tools’ activities and streamlines complex

security processes into simplified processes. The orchestration processes can be

considered as a sequence of actions, where the output of one tool needs to be the input

of other tools. A simplified process is easy to follow and enables a SOC to differentiate

between manual and automated processes. It also helps to keep track of the ongoing scans

and activities that require immediate human involvement. It should be noted that several

pieces of literature about SOAR tend to use integration mechanisms or connecting tools

as an umbrella term to cover all processes that happen under the banner of security

orchestration. Whilst this abstraction is helpful to gain an initial understanding of security

orchestration, we argue that architects would benefit from a more modularized model

that clearly distinguishes the activities related to integration, orchestration and

automation within SOAR platforms.

3.2.2 Quality Attributes Requirements

A SOAR platform should satisfy certain quality attributes requirements or Non-

Functional Requirements (NFRs). The essential quality attributes requirements of a

SOAR are categorized into design time and runtime requirements. To design the

architecture of a SOAR platform, we focus on the following NFRs.

• Integrability: Andersson et al. have defined “the ability of a system to easily

integrate separate systems or components of a system” as integrability [162]. Security

tools integrated into a SOAR platform come from different vendors. An architecture

of a SOAR platform is expected to seamlessly integrate security tools and quickly

adapt the modification of security tools’ functionalities.

87

Security Orchestration and Automation Architecture 87

• Interoperability: According to Bass et al. “interoperability is about the degree to

which two or more systems can usefully exchange meaningful information via

interfaces in a particular context”. A SOAR platform should support semantic

integration of different types of artifacts generated by security tools and data sources.

The integration mechanism needs to ensure that security tools can interoperate with

each other. Security tools integrated into a SOAR platform need to have the ability

to both syntactically and semantically interoperate with each other. A SOAR platform

should be able to semantically interpret the data and artifacts generated and consumed

by security tools.

• Interpretability: Interpretability is mainly defined as “the degree to which a human

can understand the cause of a decision” [163]. In this thesis, for interpretability, we

consider both the ability of a SOAR platform to understand security tools’ artifacts

and for a human observer to understand the cause of a decision made by a SOAR

platform. A SOAR platform has several components with Artificial Intelligence (AI)

capabilities (refer to chapter 2). Thus, the decisions taken by a SOAR platform need

to be interpretable to security teams.

• Usability: Bass et al. have considered that “usability is concerned with how easy it

is for the user to accomplish a desired task and the kind of user support the system

provides.” Andersson et al. have defined usability as the “effort to learn, operate,

prepare input and interpret output of a program” [162]. A SOAR’s architecture needs

to be easily understandable, so that a SOC can easily learn and operate a SOAR

platform and interpret the input, output and activities of the components.

• Modifiability: According to Bass et al. modifiability is all about changes [45]. In a

SOAR platform, changes can happen for incorporation of new features, tools,

technologies, standards, platforms and so on. Gorton has proposed modifiability as a

“measure of how easy it may be to change an application to cater for new functional

and non-functional requirements” [164]. A SOAR platform’s tasks depend on

integrated security tools, IRPs and emerging threat behaviors, which change

continuously. A SOAR architecture should be flexible enough to provide mapping

support for security tools and IRPs to adopt the changes.

88

Security Orchestration and Automation Architecture 88

Maintainability and flexibility are considered as two aspects of modifiability [153].

Maintainability refers to the degree of effectiveness of modifying a product or system by

end-users or maintainers of that a system [35, 153]. It is often considered as the ability

of a system to support changes. Flexibility is considered as “the ease with which a system

or component can be modified for use in applications or environments other than those

for which it was specifically designed”.

Due to the limited time and scope of the thesis, we only considered the

abovementioned quality attributes for integration of security tools and IRPs in a SOAR

platform. These attributes are required for the evolvement of a SOAR platform where

security tools can be easily integrated and data generated and ingested by these tools can

be seamlessly interpreted. Other quality attributes that are mentioned in Figure 2.6 of

chapter 2 are equally important, hence will be considered in future research.

3.2.3 Abstraction for Security Orchestration and Automation

Organizations generically deploy and run a SOAR platform on top of existing security

tools, information systems and organizational infrastructures to fulfill their security

requirements and business needs. An architect must understand the core concepts of a

SOAR platform to design and communicate about the orchestration process and required

integration and automation technologies with stakeholders and developers of a SOAR

platform. The lack of a comprehensive view might result in concept overlapping and

ambiguity. To address this issue, we propose a conceptual map to capture the common

terminologies of a SOAR. Figure 3.1 shows the conceptual map of a SOAR platform that

provides the key elements and relationships among these elements.

A SOAR platform connects a wide variety of security tools that have different

capabilities. By capability, we mean the features and characteristics of security tools,

which can support different types of activities. Security tools are generally categorized

as detection, analysis and response tools depending on their capabilities (Figure 3.1).

This categorization is made based on the activities performed by security tools while

responding to an incident. For example, monitoring tools can be considered under

detection or analysis tools depending on their contribution to an IRP. A detailed

description of the security tools used for this research is beyond the scope of this chapter.

89

Security Orchestration and Automation Architecture 89

Incident Response Plan

Playbook
Designer

SOAR
Developer

Detection

Analysis

Response

implements

requires

provides

integrates
Activity

Security Tool

Task

executes

executes

Unification

Orchestration

Automation

Playbook

Orchestration Process
runs and
manages

supports

Organization

SOAR Platform

Capability

Legend A B A B
Composition Generalization A Brelation

uses

Figure 3.1 Conceptual map of security orchestration and automation

A SOAR platform is designed and deployed based on an organization’s security

requirements and the available security tools. A SOAR developer needs to design and

develop different types of integration mechanisms (e.g., APIs, plugins or modules) to

integrate security tools (Figure 3.1). A SOAR platform performs a set of tasks that can

be categorized under unification, orchestration and automation. It runs the orchestration

process that invokes security tools to perform certain activities. An orchestration process

is the composition of tasks performed by a SOAR platform and activities performed by

security tools. It contains the invocation actions, scripts to invoke tools and the responses

of security tools. Orchestration processes govern the integration, orchestration and

automation tasks to respond to a security incident.

The orchestration process is primarily designed in the form of a set of playbooks,

which are generally dedicated to a particular security incident and have a dedicated set

of security tools that are deployed in an organization’s environment. ost organizations

also have dedicated Security Incident Response Teams (CSIRT) who mainly design IRPs

for security incidents based on an organization’s preferred security requirements (i.e.,

confidentiality, integrity and availability), policies and quality requirements. SOAR

developers or playbook designers design and develop playbooks based on the available

security tools and well-known integration mechanisms.

90

Security Orchestration and Automation Architecture 90

3.3 SOAR ARCHITECTURE

We propose an architecture to ensure the functional and non-functional requirements of

a SOAR platform. The key research objective is “how software architecture can play a

role in improving the design practices of a SOAR platform?”. We design the architecture

of a SOAR platform at two levels of abstraction. The architecture is first designed

following the layered architectural style, which provides the first level of abstraction.

There are six layers: (i) security tools, (ii) integration, (iii) data processing, (iv)

semantics, (v) orchestration and (vi) User Interface (UI) layers, as shown in Figure 3.2.

Each layer has both logical and physical aspects. The logical aspects cover the

architectural building blocks and design decisions of a SOAR platform. The physical

aspects include the realization of the logical aspects by using organizations' technologies

and products. Each layer has a separation of concerns that allows security teams to freely

choose their preferred components and deploy a SOAR based on their requirements.

Semantic Layer

Integration

Layer

Orchestration

Layer

Data Processing

Layer

Tool Registry

Interpreter

Data Extractor

PlannerOrchestratorTask Manager

Query Engine

Plugin Repositories

UI Layer

Abstraction Layer

API GatewayWrapper

Security Tool Layer

Knowledge Base

Data Analyzer

Security Tool Security Tool Security Tool Security Tool

Users

Integration Manager

Data Curator

Figure 3.2 High-level architecture for a SOAR platform

Each layer is decomposed into components and sub-components. We consider the

components as the lower level of abstractions. Figure 3.2 shows the core components and

91

Security Orchestration and Automation Architecture 91

interactions among the components that are required to achieve the desired goals of a

SOAR platform. Different functionalities of a SOAR platform require different

combinations of these components. We specify the components as a principle

computation element that implement different tasks of a SOAR to execute IRPs.

3.3.1 UI layer

Security teams initiate existing IRPs or define new plans using a SOAR’s ser Interfaces

(UIs) such as interactive dashboards or Integrated Development Environments (IDE), or

Command Line Interfaces (CLI). The UI layer supports flexibility in designing UIs that

help define IRPs and integrate security tools. A SOC can easily learn and operate a SOAR

platform using the UI. An abstraction layer or API layer is implemented as part of the UI

layers to maintain and encapsulate the interaction among a SOAR’s users and its

components (Figure 3.2). The abstraction layer hides the inherent complexity of SOAR

platforms from security teams. To increase the usability of a SOAR platform, the APIs

of abstraction layers need to be easily interpretable and understandable by security teams,

so that they can modify, update and interact with a SOAR to provide commands and

execute IRPs.

3.3.2 Orchestration layer

The orchestrator and task manager together form the coordinator of a SOAR platform

(Figure 3.2). The orchestrator is responsible for coordinating and forming configurations

to achieve interoperability and automate the execution of IRPs. The planner in the

orchestration layer has a set of ‘playbooks’ to automate the execution of an IRP and keep

track of the tasks being executed. Each playbook has a set of tasks that contain the details

of the process about the input required to execute a task and the output that is generated

after task execution. The playbooks further contain the conditions that trigger the

execution of a task. A playbook’s tasks vary depending on the requirements of a SOC

and the types of security tools available. The orchestrator monitors the successful or

unsuccessful execution of tasks. The planner provides a set of APIs through which a user

can update or modify the orchestration process. An orchestrator may use a set of APIs to

govern the execution of an IRP and enable interoperability among security tools.

92

Security Orchestration and Automation Architecture 92

3.3.3 Semantic layer

The semantic layer is responsible for the semantic interpretation of data that flows across

a SOAR platform. It consists of a knowledge base, query engine and interpreter. The

knowledge base consists of an ontology of security tools, their capabilities and the

activities of an IRP, which enables the interpreter to semantically interpret security tools’

capabilities and IRPs’ activities. Ontology is commonly used for formalizing semantic

knowledge and defining semantic relationships among data. The query engine is

responsible for extracting data from a knowledge base. In our proposed architecture, we

consider the semantic layer to be separate from other layers to give the SOC the flexibility

to define or modify an ontology without affecting the other components.

3.3.4 Data processing layer

The information used by a SOAR ranges from business-critical data to usage systems

logs, alerts logs and malicious activities that are processed by the data processing layer.

The data curator, data extractor and data analyzer are the three main components of the

data processing layer. The data curator gathers the data produced by tools for analysis.

This layer contributes toward interoperability and interpretability by processing the

heterogeneous structured and unstructured data of different security tools and playbooks.

It is responsible for sharing semantically structured data among different components of

a SOAR through an IRP execution process. An architect can incorporate any automation

algorithm or data analysis techniques as part of the data analyzer without affecting the

other components of a SOAR.

3.3.5 Integration layer

The integration layer has five components: the integration manager, wrapper, tool

registry, plugin repository and API gateway. This layer is designed for seamless

integration of security tools to achieve integrability. The integration manager works as

a description module through which security tools are integrated and information is

provided to enable interoperability among them. A tool registry is responsible for

discovering and registering available security tools to monitor their status and report any

changes. Security tools are registered in terms of their capabilities (i.e., input, output and

functions) and types. The wrapper, API gateway and plugins are intermediary

components that provide interfaces to encapsulate security tools for data translation or

93

Security Orchestration and Automation Architecture 93

imposing orchestration. An integration manager uses these components to initiate a

request and become the ultimate recipient of the orchestrator’s commands. The

difference between the wrapper, plugins and API gateway lies in the security tools’

integration and communication protocols.

3.3.6 Security tool layer

The security tools layer consists of multivendor heterogeneous security tools, which are

typically a mix of open source, proprietary, custom and commercial-off-the shelf (COT)

products. These tools are mainly characterized as unmodifiable components of a SOAR

platform. Given most of the security tools are required to interact with each other, an in-

depth understanding of the security tools’ data structures and capabilities is necessary to

integrate them into a SOAR platform and streamline the IRPs.

Figure 3.3 shows an example UML sequence diagram for responding to a security

incident that comprises of components from each layer.

:Security Tool :APIs/plugins :Data Analyzer :Interpreter :Orchestrator

Generate Data
Send Data Collected Data

Interpreted Data

Find Capability

Capability

Invoke Tool
Interpreted Tool

Generate Command

Send Command

Invoke Tool

Find Tool

Tool

Figure 3.3 An example sequence diagram showing the flow of data and interaction of

components

94

Security Orchestration and Automation Architecture 94

3.4 DIMENSIONS OF THE DESIGN SPACE OF SOAR PLATFORM

The design space of a SOAR platform reveals that the integrated security tools and

orchestration process mainly govern the tasks of a SOAR platform. Hence, we have

considered the architectural design decisions from the process and technology

perspective for automatically integrating security tools and orchestrating IRPs.

3.4.1 Process decision

Along with defining the orchestration process, it is important to define the process for

integrating security tools and analyzing data. A SOAR’s process varies depending on the

mode of a task – automated, semi-automated or manual. The automation of the

integration process relies on five design decisions for the integration process,

interpretation process, security tools to capability mapping process, security tool

discovery process and security tool invocation process.

A decomposition of the functions based on layers helps in selecting a suitable

technology, depending on the required process. For example, the task to manually

integrate security tools is separated from automatically interpreting the security tools’

data. Security tools are first required to integrate into a SOAR platform, then processes

are designed to interpret the security tools’ data and the IRP’s activities. Here, the

modular architecture helps to define different processes, which are mainly the

orchestration of the security tools, the SOAR’s components and organizational

information systems. A SOAR platform can be centralized, distributed or hybrid,

depending on an organization’s infrastructure [22]. For centralized or distributed

applications, the communication protocols are different. In most cases, these

communication protocols (i.e., REST API, RPC and event-driven) are hidden under the

internal structures of security tools, which expose their functions through APIs. A

communication process can be designed to manage distributed communication among

different security tools.

3.4.2 Technology decisions

From a technology perspective, we mainly consider the integration technologies,

interpretation mechanisms and tools discovery mechanisms that are required for

integrating security tools, designing the orchestration process and powering automation.

95

Security Orchestration and Automation Architecture 95

Chapter 2 shows six automation strategies (section 2.6.2) that are adopted by the existing

SOAR platform. An underlying technology infrastructure consists of the assets of an

organization, depending on the type of the automation strategy. An example of assets

includes the various hardware and software infrastructures (i.e., computer systems,

operating systems and applications) that an organization needs to protect from security

attacks. Orchestrations can take place in different types of environments, which can be

open or restricted. We need to consider different architectural integration styles to ensure

that the integration constraints related to different security tools and stakeholders (e.g.,

semantic, performance and component constraints) are addressed [162].

In the following section, we provide a set of design decisions that need to be made

by an architect.

• Building a generic block of a SOAR platform. An architect can choose to design a

playbook and script for orchestration and automation.

• Disseminating tools that are integrated and participate in orchestration. Architects

have to decide on how to map security tools to the IRP and where to deploy them in

an organization’s environment so that the orchestrator can invoke the tools when

required.

• Setting up a mechanism for an orchestrator to discover security tools. An architect

has to choose integration styles and define processes for the discovery of the security

tools.

• Setting up and starting an orchestration process. An architect has to decide who has

the right to modify the process and provide an interface to modify or add new IRPs.

• Designing APIs for hiding the architectural complexity from end-users. An architect

has to design APIs through which end-users can interact easily with a SOAR

platform.

Table 3.1 shows a summary of the architectural design decisions for achieving the desired

functional and non-functional requirements of a SOAR platform. By architectural design

decisions, we mean the design decisions that would have a system-wide impact and/or

impact on more than one non-functional requirement [45].

96

Security Orchestration and Automation Architecture 96

Table 3.1 Summary of the architectural design decisions

Design Decisions Expected Benefits

Ontology for formalizing security

tools and activities of IRPs

Make a SOAR architecture flexible enough to

integrate different types of security tools with varied

data formats

Use of ontology for semantic

integration and information

discovery

Support tools’ specific integration and automated

execution of IRPs in a dynamic environment

Layered architectural style Easy evolution of the SOAR’s components and easy

modularization of functionalities and components

Abstractions of SOAR’s

components tasks with a set of

APIs

Make a SOAR platform easy to use, manage and learn

for end-users

Automated integration and

interpretation processes

Enable reuse of existing components with changes in

IRPs and security tools

Share ontology template in a

centralized repository pattern

Provide access to the ontology to its end users and

support flexibility for updates

3.5 CASE STUDY – PROTOTYPE IMPLEMENTATION

In this section, we present a Proof of Concept (PoC) SOAR platform namely STUn –

Security Tool Unifier) [165] that we have designed and implemented based on the

proposed architectural approach. The functional requirements of STUn are to automate

the process of integrating security tools, automate the selection of security tools to

execute an IRP and automate the execution of a set of IRPs. We designed STUn such that

it is easily evolvable for future changes and supports agility with the emergence of new

technologies, processes and tools. In this implementation, we considered two types of

changes that are most common in a SOAR’s execution environment: changes in security

tools and changes in IRPs. Figure 3.4 presents the implementation architecture of STUn.

We analyzed the instructions for integration and orchestration to select the technologies

and identify the design decisions. We designed automated integration processes and

selected semantic technologies to enable semantic integration and interpretation of

security tools’ data. We further identify the requirements for and designed a set of

declarative APIs to hide the complexity of the architecture from the security team.

Security teams can use the declarative APIs to interact with the SOAR platform.

97

Security Orchestration and Automation Architecture 97

MISP API

LimaCharlie API

Splunk API MISP API

LimaCharlie API

Splunk API

InputOutput
Wrapper

Wrapper

Wrapper

Wrapper

Ontology

Collector

Process

Orchestration

Collected data

Integration

Security Tools

Send data (alert, log, report, packet)

Interpreted
data

invoke process

Invoke tools

MISP

Splunk

LimaCharlie

Snort

Wireshark

WinPcap

WinDefender

command

Data
Analyzer

SPARQL query
engine

IRP Orchestrator

Interpreter

Output
Handler

Input
Constructor

Command
Interpreter

Declarative
API

API generator

Command in declarative API form

User command

Figure 3.4 Implementation architecture of the PoC for security tool integration

We selected seven open-source tools with varied capabilities. The selected tools

are Snort, Splunk, LimaCharlie, MISP, Windows defender, Wireshark and WinPCap

which are IDS (Intrusion Detection System), SIEM (Security Information and Event

Management Tools), EDR (Endpoint Detection and Response) tools, Open Source Threat

Intelligence and Sharing Platforms (OSINT), Firewall and packet monitoring and

logging tools, respectively. The security tools were selected based on the diversity in

their capabilities because the execution of an IRP would require multiple security tools.

For instance, Snort is an open-source Intrusion Detection System (IDS). It usually

generates alerts upon detection of anomalies or malicious activities in network traffic. It

also works as a sniffing tool that can sniff network traffic and perform packet logging.

Splunk is a widely-used Security Information and Event Management (SIEM) tool. It

performs a variety of operations. Among them, the most popular is to collect log data

from various sources, normalize data, correlate the collected data and present the results

98

Security Orchestration and Automation Architecture 98

to SOC for further analysis. Limacharlie is a cloud-based Endpoint Detection and

Response (EDR) tool that operates by running sensors on endpoints. It collects data from

different endpoints and enforces detection and response rules. It can send commands to

an endpoint to isolate malicious endpoints, terminate or suspend a malicious process, and

even delete malicious files from endpoints. MISP is an open-source threat intelligence

platform, widely used by security teams for sharing, gathering and storing Indicators of

Compromises (IOC) of targeted attacks, threat intelligence and vulnerabilities in a

structured manner.

We used 24 different capabilities of the selected tools, with MISP as a new tool to

be integrated later. We have curated a set of IRPs from Demisto’s (i.e., a SOAR platform

provider) collaborative playbooks [166]. We have selected 21 IRPs and slightly modified

them to fit the capabilities of the seven security tools used for our research. We designed

another 48 IRPs as a new set of IRPs that PoC would be required to execute without user

intervention. The list of capabilities and IRPs are available at [165].

The implementation decision incorporated an API-based integration style as our

primary mechanism to integrate security tools into a SOAR. The data from security tools

such as MISP and Splunk have been made accessible through their APIs. Besides this,

we have built wrappers for security tools that do not provide specific APIs such as Snort.

Integrating a new tool required us to identify the security tool’s APIs, or information

sharing protocols, and implement a suitable integration mechanism. The API and

wrappers of Figure 3.4 are part of the integration layer of the PoC. Figure 3.5 shows

examples of the method of the interface of SIEM, EDR and IDS’ API. Splunk,

Limacharlie and Snort are considered as instances of SIEM and EDR, respectively.

<<Interface>>

SIEM

+ connect(String): boolean
+ logManagement(String, String,
String, boolean): boolean
+ runReport(String, boolean):
boolean
+ fileIntegrityMonitor(String, String):
boolean
+ correlate(String, String[]): double[]

<<Interface>>

EDR

+ isolateNode(String): boolean
+ rejoinNode (String): boolean
+ newDetectionRule(String): boolean
+ deleteFile(String, String): boolean
+ getFile(String, String, String): String
+ getFileInfo(String, String): String
+ killProcess(String, String): boolean
+ getProcess(String): List<String>

<<Interface>>

IDS

+ detectIntrusion(String): boolean
+ SniffPacket(String, String, String,
boolean): boolean
+ LogPacket(String): boolean
+ detectIntrusionFile(String, String):
boolean
+ detectIntrusionHost(String, String):
boolean

Figure 3.5 Interfaces of EDR, SIEM and IDS in UML class diagram form showing only

the methods of each security tool

99

Security Orchestration and Automation Architecture 99

We also designed an ontology to formalize the security tools, their capabilities and

IRP’s activities to enable semantic interpretation of the security tools’ data. The detailed

design of the ontology is presented in chapter 4. Each security tool can execute multiple

activities and each activity can be executed by multiple security tools. We used an

Apache Jena Fuseki server to store the ontology. Security tools are formalized based on

their capabilities and the activities of IRPs are mapped with the security tool class of an

ontology. Table 3.2 and Table 3.3 illustrate how the security tools and IRPs have been

mapped onto an ontology. We designed a SPARQL query engine to retrieve the required

information from the ontology. The retrieve data are interpreted through an interpreter,

which mainly deconstructs the data for further processing. The designed ontology, along

with the interpreter, built the semantic layer.

Table 3.2. Illustration of a selected set of object properties of the security tool class of an

ontology

Security tool Security

Tool class

has Capability Capability class Execute

Activity

snort_s IDS intrusion_detection_s IntrusionDetection detectIncident

limaCharlie_l EDR intrusion_detection_l

process_killing_l

IntrusionDetection

ProcessKilling

detectIncident

killProcess

splunk_s SIEM log_collection_s

alert_analysis_a

LogCollection

AlertAnalysis

collectAlertLog

investigateAlert

Table 3.3. Illustration of a selected set of data properties of the security tool class of an

ontology

Security tool Security Tool

class

Is

Integrated

Has

InputType

Has

Rule

Has

ConfigFile

snort_s IDS True network

traffic
False snorts.config

limaCharlie_l EDR True Payloads True inputs.conf

splunk_s SIEM True Logs True LCConf

100

Security Orchestration and Automation Architecture 100

We built a collector to gather the security tools’ data, which are sent to an

orchestrator via the interpreter for actions, e.g., Splunk's API is configured to receive

system logs of various endpoints. This data is searched and processed to find programs,

files or users that could be malicious. To formulate the commands further, an input

constructor was built. Figure 3.6 shows the example Splunk and Limacharlie collectors

that are instantiated from the collector interface.

SplunkCollector

- dir: String
- handlers: ArrayList<OutputHandler>
- running: java.util.concurrent.atomic.AtomicBoolean
- thread: Thread
- Interpreter: Interpreter
+ getSplunkData(String, Interpreter)
+ getDir(): String
+ getHandlers(): ArrayList<OutputHandler>
+ getThread(): Thread
+ stopRunning(): void
+ run(): void

LimaCharlieCollector

- dir: String
- handlers: ArrayList<OutputHandler>
- running: java.util.concurrent.atomic.AtomicBoolean
- thread: Thread
- Interpreter: Interpreter
+ getLimaCharlieData(String, Interpreter)
+ getDir(): String
+ getHandlers(): ArrayList<OutputHandler>
+ getThread(): Thread
+ stopRunning(): void
+ run(): void

Figure 3.6 Example of Splunk and Limacharlie collector class UML diagram

The automation algorithms or processes have mainly been built as integration

processes that are the parts of the orchestration layer (Figure 3.4). We designed and

implemented scripts to define the automated integration process, which includes

selecting the security tools based on activity descriptions, interpreting their capabilities,

formulating the input commands and finally invoking the security tool by calling

appropriate APIs. We have presented the detail of the integration process in Chapter 5.

We have also shown how the ontology is leveraged to automate the integration process.

An example is shown in Figure 3.7, where the output of Splunk is sent to LimaCharlie.

The orchestrator is required to collect the output of Splunk and then interpret it. All the

data generated by Splunk may not be required by LimaCharlie; so, STUn would be

required to construct the input of LimaCharlie from Splunk’s output to invoke

LimaCharlie.

Figure 3.8 shows an example process where the output of Limacharlie is sent to

Splunk. Similar to the above process, the commands are required to construct the input

of Splunk from Limacharlie’s output to invoke Splunk. We developed and designed this

process as part of the integration process to automate the interpretation of the security

tools’ data, which enables seamless interoperability among the security tools. sing the

101

Security Orchestration and Automation Architecture 101

integration process, data sharing among the security tools of Figure 3.7 and Figure 3.8

happened seamlessly.

Figure 3.7 Example of data transfer from Splunk to LimaCharlie

Figure 3.8 Example of data transfer from Limacharlie to Splunk

102

Security Orchestration and Automation Architecture 102

We present an example to illustrate how STUn enables interoperability among

different security tools and automates the response process. We consider an IRP is

available to perform “deletion of malicious file” which contains three main steps:

collection of system logs, detection of a malicious file and deletion of a malicious file.

In ST n, Splunk works as a log analyser that collects a system’s logs and performs

correlations among them. It can also monitor a system’s logs and detect malicious files.

Specific rules are designed to detect malicious files. Upon detection of malicious files,

Splunk generates an alert or report.

Figure 3.9 shows a sequence diagram of how, based on the alerts generated by

Splunk, Limacharlie deletes the malicious file, which demonstrates how the components

of STUn enable interoperability between Splunk and Limacharlie. As shown in Figure

3.9, the alerts are collected by the collector, which is sent to the interpreter for

interpretation of alerts. Features of Splunk alerts or outputs are defined in an ontology.

The interpreter invokes the query engine that queries an ontology to interpret the alerts

and identify the details of the malicious file. Next, it sends the details to the orchestrator,

which finds an IRP is available to respond to a malicious file that is to delete the files. It

requests the interpreter to identify the security tools that can delete a file. The details of

the security tools are available in an ontology; thus, the interpreter returns Limacharlie

to the orchestrator. The orchestrator selects Limacharlie to delete the file and send a

message to the input constructor to invoke LimaCharlie. To formulate the commands,

the input constructor requires the details of the file that it retrieves from the output

handler. Based on the message from the input constructor, the output handler

deconstructs the output of Splunk and sends the file details to the input constructor. The

input constructor formulates the input commands and invokes Limacharlie to execute the

activity, delete file. Upon getting the commands, Limacharlie deletes the malicious files.

 We designed a set of declarative APIs to hide the details of the components of

STUn from security teams. We proposed a set of declarative APIs through which a user

can provide text-based commands or interact with the SOAR through the declarative

APIs. The requirements and design of the declarative APIs are proposed in chapter 6.

The declarative APIs and commands interpreter were designed leveraging well- known

AI tools and techniques, such as semantic technologies and NLP. The declarative APIs

103

Security Orchestration and Automation Architecture 103

are mainly designed for the security teams to interact with STUn to integrate new tools,

update the ontologies, and define or execute IRPs. The declarative APIs and command

interpreter of STUn (refer to Figure 3.4) form the abstraction layer of the proposed

architecture (refer to Figure 3.2).

Splunk Collector Interpreter Query Engine Orchestrator InputConstructor LimaCharlieOutputHandler

Collect Log

Alert

Alert type

MaliciousFile

RequestTool to
deleteMaliciousFile

Request Tool

LimaCharlie

Tools details

Invoke tools

Store output

Construct input to invoke limaCharlie

Request
capability

Capability

Request files deails

Files details
Construct
Command

Invoke tool

MaliciousFile

Figure 3.9 Sequence diagram for deletion of a malicious file that is detected by Splunk

and deleted by Limacharlie

3.6 EVALUATION

In this section, we report on how the PoC has been evaluated to demonstrate the

feasibility of the proposed architecture approach, based on two scenarios.

3.6.1 Automating the Integration of Security Tools

Let’s assume that a user has expressed a goal of integrating security tools and we have

decided to use the proposed architecture for automating security tools’ integration. In the

104

Security Orchestration and Automation Architecture 104

current implementation, an ontology is available that works as a knowledge base of a set

of existing security tools. To integrate the available security tools, the orchestrator

provides a template of an ontology to users to specify the tools’ capabilities and map

them onto the available activities or an activity it can execute. A user can also provide

text-based commands or use declarative APIs to integrate security tools. In this chapter,

we did not discuss the declarative APIs. The details of the declarative APIs and how the

user can provide text-based commands are discussed in chapter 6. This process stores the

security tools’ information in an ontology that makes the information available to the

orchestrator. If the security tools have different capabilities, the information is updated

in the ontology. Furthermore, the process for automating the integration of the security

tools is invoked, which enables the collector to collect the security tools’ output and the

orchestrator to formulate and send commands to the security tool for executing the

desired activities.

Other integration approaches, such as designing static APIs for communicating

with security tools or plugin-based integration, require the development of a wrapper,

along with connection with the data curator and the orchestrator, to collect the security

tool data. The collector needs to be configured to access the data generated by security

tools. Thus, integrating a single tool would require the development of at least one

component and connection of that component with the orchestrator. For a security tool

with multiple capabilities, for instance, Splunk and Limacharlie have different sets of

APIs to invoke different capabilities, a single API or wrapper would fail to invoke

different capabilities.

For example, for LimaCharlie with static API based integration, we have designed

two sets of scripts to kill a process and isolate a process. For seven security tools with

24 capabilities, at least 48 connections are required among the orchestrator and security

tools when considering API and wrapper-based integration to take the output and provide

the commands to execute an activity. Any increase in the connections and components

increases the design space of a SOAR. With the inclusion of new security tools, a new

connection emerges, and a user would be required to go through the existing APIs,

wrapper and connection to integrate a security tool in a playbook to execute an IRP. An

update in the existing security tool features, for example, the addition of new capabilities

105

Security Orchestration and Automation Architecture 105

or a change in the existing API parameters, also requires the design of connections and

updating of the playbook where the security tools have been used.

With the semantic-based integration approach, we only need to update the security

tools’ details in an ontology. The connections between the ontology and other

components have already been designed and do not require any changes. Thus, with the

PoC, the number of components and connections remains constant with the integration

of new security tools: that is MISP. Without considering the proposed architecture

approach, the number of components would increase by at least 2 upon integration of

new security tools. We found that semantic-based integration is more suitable in this

case. This demonstrates that the proposed architecture-based implementation keeps the

number of components and connections lower by reusing the existing components.

Our observation from running the experiment reveals that building wrappers and

APIs requires more time than updating the security tool details in an ontology. Hence,

ontology-based automated integration processes free up the SOC’s time.

3.6.2 Automating the Interpretation of the Activities to Execute an IRP

We assume a user has expressed his/her goal is to identify and isolate suspicious

endpoints. Using the current implementation, the orchestrator can identify the

capabilities required to execute the activities and then select the security tools that can

execute that capability. As the process for automatically identifying the capabilities

required to execute an activity and selecting the security tools are already defined, a user

would not be required to manually identify the security tools. He/she simply needs to

request the orchestrator to give them access to those security tools that can perform the

required activities. The orchestrator runs the process and returns the available security

tools. Then the user can also define which security tools should be used for each activity.

Next, the orchestrator automatically generates the commands to invoke the security tools

to execute a sequence of activities. In this whole process, the current architectural-based

implementation has reused the existing process, components and protocols.

With the non-modular and monolithic implementation of a SOAR platform, a

playbook is required to design to fulfill the user’s goal. Developing a playbook would

require an understanding of a playbook’s structure, knowledge of the available security

106

Security Orchestration and Automation Architecture 106

tools, developing scripts to access the data generated by the security tools and their

specific APIs to execute an activity. In the monolithic approach, each playbook is

designed for a specific IRP, which cannot be reused even if the new IRP is a subset of

the existing IRPs. A user is required to modify the existing playbook to execute the new

IRP.

 odularizing a SOAR’s architecture provides a clear understanding of which part

would require an update and which components can be reused without modification.

Reusing the existing components provides the following benefits: a SOC spends less time

adapting the changes and the evolution of a system does not increase the complexity of

the architecture. Furthermore, it reduces the overhead for users by adopting the changes

and providing processes that can be reused. The evaluation shows that, without

separating the concerns, the number of changes would require more than our proposed

architectural-based implementation.

The PoC has accurately executed 45 IRPs among the new 48 IRPs. For three of the

IRPs, the orchestrator could not find any security tools with the required capabilities to

execute some of the activities, thus those were executed partially. The successful

execution of the 45 IRPs demonstrates that the developed PoC has accurately interpreted

the data generated by the security tools being used without user intervention. The security

tool MISP is also used by some of the new IRPs; thus, it has also been successfully

integrated. From the evaluation, we also observe that incorporating the changes in the

PoC is easier than for other approaches.

This chapter has demonstrated the feasibility of the proposed architecture for

security tool integration and IRP interpretation based on three quality attributes:

integrability, interoperability and interpretability. The details of the realization of the

architecture for semantic integration, the automated integration process and

encapsulation of architecture complexity through a set of declarative API are presented

in chapters 4, 5 and 6 respectively. These chapters also present how the semantics layer

has been realized and the challenges associated with building the different components.

These chapters also demonstrate how the proposed layered architectural style helps to

achieve usability and modifiability along with integrability, interoperability and

interpretability.

107

Security Orchestration and Automation Architecture 107

Other quality attributes of a SOAR can be evaluated by following different

architectural evaluation techniques, such as the Scenario-based Architecture Analysis

Method (SAAM) and Architecture Tradeoff Analysis Method (ATAM) [42, 45].

3.7 RELATED WORK

The leading security service providers aim to provide SOAR platforms to deliver end to

end security services [32, 143, 161, 167]. For example, FireEye (i.e., a leading

cybersecurity company) designs a SOAR platform to integrate its endpoint products and

offer support to its industry partners [143]. Meanwhile, the start-ups mainly focus on

developing APIs to integrate different third-party solutions and provide playbooks for

automated and semi-automated IRPs [35]. The ad-hoc implementations of a SOAR

platform increase the design complexity of such a platform as these platforms are built

as a whole, without separating the concerns of the deployed components. Furthermore, a

SOAR is a large-scale system that integrates an organization's information and security

tools. Organizations face several challenges in managing these solutions while any

changes occur in the underlying operating environment, such as integrating new security

tools and defining new IRPs [22, 159]. Our work addresses these kinds of challenges.

The current state-of-the-practices and state-of-the-arts of SOARs lack a shared

understanding between the vendors and stakeholders of SOAR [21, 23, 58, 59, 73]. For

example, there is no shared understanding of the key software components and

technologies that are necessary to integrate and enable interoperability among various

security tools and bring automation to the IRPs’ execution. In these studies, the SOAR

platform has mainly focused on security tool interactions, isolated processes and low-

level infrastructures, while paying less attention to the problems of how different

components of a SOAR and security tools coordinate.

A security team requires an understanding of the internal structure of a SOAR (i.e.,

libraries to integrate new security tools or requirements) to adopt the changes in a SOAR

platform execution environment. Adopting the changes remains a tedious and difficult

undertaking for end-users. State-of-the-art approaches for security process modeling

provide limited or no decomposition mechanisms, which easily results in monolithic

processes that address multiple concerns in a single model [21, 23, 59, 73].

108

Security Orchestration and Automation Architecture 108

None of the existing work provides the architectural design space that could inform

architects of the decisions to be made where multiple components are interconnected.

Software architecture is composed of early design decisions, which can help to address

some of the existing challenges to be addressed by SOAR platform designers [44, 45,

158]. An increased focus on the architectural aspects of SOAR can also facilitate further

research on the design decisions of the existing SOAR platforms to form guidelines, rules

and design techniques. The rise of security incidents has increased the demand for

knowledge, processes and techniques for designing and deploying highly configurable

and scalable SOAR platforms. As most organizations prefer to utilize their available

software and security tools, it would be helpful to consider architectural design decisions

for trade-off analysis before deploying a SOAR platform to enhance a SOC’s efficiency.

3.8 CHAPTER SUMMARY

Exploring and understanding architectural design decisions before designing and

implementing a SOAR platform is a valuable task. The captured design decisions would

help developers as well as the SOC staff of an organization to systemize their decision

processes and trade-off analysis. The architectural design decisions would serve as a

standalone lexicon to describe and evaluate the existing and new SOAR platforms. In

this chapter, we have designed a conceptual diagram of a SOAR platform to support an

architect's understanding of the design space of SOAR. We have further identified the

requirement of a SOAR in terms of unification, orchestration and automation and

proposed a layered architecture to modularize the functions and separate the concerns of

the components of a SOAR platform. The architecture design decisions are chosen from

process and technology perspectives. We have used the proposed approach to design and

implement a PoC SOAR platform for an ad-hoc SOC infrastructure and observe its

impact on the automated integration and interpretation process. We have leveraged well-

known architectural styles and patterns to implement the PoC. We have observed that

consideration of the principal dimension of the architecture design space has improved

SOAR design practices.

109

Automated Interpretation and Integration of Security Tools 109

Chapter 4

4 Automated Interpretation and Integration

of Security Tools

In chapter 2, we observed that a security orchestration and automation platform

aims to integrate the activities performed by multi-vendor security tools to

streamline the required incident response process. Chapter 3 has proposed a layered

architecture for a SOAR platform, considering some of the key functional and

nonfunctional requirements of a SOAR platform. To make such a platform useful

in practice in a Security Operation Centre (SOC), in this chapter we address three

key challenges: integrability, interoperability and interpretability. We proposed a

novel semantic integration approach to automatically select and integrate security

tools with an essential capability for auto-execution of an incident response process

in a security orchestration and automation platform. The capability of security tools

and the activities of the incident response process are formalized using ontologies,

which have been used for an NLP-based approach to classify the activities for the

emerging incident response processes. The developed ontologies and NLP

approaches have been used for an interoperability model for selection and

integration of security tools at runtime for the successful execution of an incident

response process. Experimental results demonstrate the feasibility of the classifier

and interoperability model to achieve integrability, interpretability and

interoperability of security tools integrated into a SOAR platform.

4.1 INTRODUCTION

Emerging threat behaviors and variations in organizations’ infrastructure cause security

experts to change the deployment and execution environment of SOAR, such as the

110

Automated Interpretation and Integration of Security Tools 110

integration of new tools, updates of tools’ capabilities or modification of an IRP [21, 23,

74]. Existing SOAR platforms, however, are not adaptive towards such changes [21, 23,

74]. Security teams must sufficiently understand the APIs and rules of SOAR platforms

to adapt to the changes by defining new rules or developing new APIs [20, 61, 168].

Human intervention is required to adjust the changes because security tools are not

interoperable and SOAR cannot interpret security tools’ activities, their input and

generated data [142, 168]. According to a recent report by the Enterprise Strategy Group

[169], on average, a SOC has 25 different security tools, and this number goes up to 100

for some SOCs. Most of these tools work independently. The SANS Institute (Escal

Institute of Advanced Technologies) has revealed that the integration of security tools is

the third most challenging task for SOC [170].

A SOAR platform requires the semantic knowledge to formalize various inputs,

outputs and activities of security tools. The formalized concepts enable a SOAR to

interpret the changes in runtime environment and automate the execution of modified or

new IRP without any human intervention. Ontologies can be used to provide the required

formal specification to support integrability, interoperability and semantic integration of

security tools in a SOAR without any human involvement [171, 172]. Semantic

integration refers to the ability of a SOAR to understand the semantics of the input or

output of security tools. A SOAR can semantically interpret the activities of security

tools when the formalization incorporates semantic integration of security tools.

The process of defining a suitable ontology is not straightforward [158]. A well-

built ontology depends on domain expertise. Formalizing various security tools and the

activities of IRPs is challenging due to the ambiguity of the terminology used by different

vendors. The features of security tools and activities are defined using Natural Language;

the same activity is defined using different terms in different IRPs. As the development

of an ontology is an incremental process, domain experts are required to perform manual

tasks to keep the ontologies updated, as per the new knowledge.

We propose an integration framework for SOAR that integrates the data generated

by different security tools to automate the execution of an IRP by making security tools

interoperable. The proposed integration framework consists of an ontological model, a

prediction module and an annotation module. We have formalized the core concepts of

111

Automated Interpretation and Integration of Security Tools 111

a SOAR platform that are discussed in chapter 3 in an ontology. The developed ontology

is required to automate the execution of an IRP. We have followed a systematic approach

to define the classes of the proposed ontology and the relationships among the classes.

We have designed and developed a prediction module utilizing the existing Natural

Language Processing (NLP) and Machine Learning (ML) techniques to automatically

classify the activities with text descriptions according to the ontology. For a new activity

description in an IRP, we have performed a text-based similarity measure with the

existing list of activities descriptions. We have defined a threshold for the similarity

measure that is used to invoke the prediction module when the similarity score is above

the threshold. For a similarity score below the threshold, we have designed an annotation

module to generate and recommend the possible classes to experts and automatically

annotate the new classes in the ontology after an expert selects the classes.

We have designed and implemented an interoperability model to select the best

suite of tools that have the required capability to execute an IRP. We checked the

compatibility of the set of selected tools for interoperability based on their capabilities in

terms of their input, output and execution environment. In this chapter, we do not show

the development and evaluation of the ontology; instead, we demonstrate the use of the

ontology by the prediction module and interoperability model for auto-execution of IRPs.

The development and evaluation of the ontology for security tool integration is shown in

chapter 5. The following are the key contributions expected in this chapter:

• An ontological model to formalize the diverse activities and capabilities of security

tools (refer to section 4.4.1).

• A prediction module to automatically classify activities according to the ontology

and an annotation module to annotate the unmatched activities with the existing

ontology (refer to section 4.4.2 & 4.4.3).

• An interoperability model to select the security tools to automate the sequence of

activities in an IRP (refer to section 4.5).

4.2 RELATED WORK

A large-scale SOAR platform requires formalization of the concepts of different security

tools and their respective activities. Most of the existing literature on SOAR only focuses

112

Automated Interpretation and Integration of Security Tools 112

on providing APIs or plugins for multi-vendor tools, without considering the importance

of formalizing the standard features or concepts used by different tools [20, 23 , 24, 35].

STIX, CyBox, and Unified Cybersecurity Ontologies (UCO) are examples of some of

the known ontologies for the security domain. UCO combines the existing ontologies;

however, it does not provide an ontology for security tools and their activities; nor does

 CO support an IRP’s activities, which are required by a SOAR. A few studies formalize

various concepts of information security, threat and attack related information for sharing

the information amongst the security community [171-173]. None of these studies focus

on formalizing the concepts of IRPs or the diverse nature of security tools.

One recent study has developed ontologies for enabling tool-as-service (TSPACE)

for cloud-platforms [158]. Based on the stakeholder’s requirements and tools’ artifacts,

the required tools are selected using the ontologies, which helps the stakeholder to

alleviate the semantic conflict while integrating multiple tools. The proposed ontology

in TSPACE cannot automate the execution of the activities or enable interoperability

among security tools. Moreover, TSPACE does not capture the capabilities of tools

essential for interpretability and interoperability. Conversely, our proposed ontological

model provides the capabilities of security tools to support interpretability and

interoperability of security tools in a SOAR. Our work supports the interoperability issue

by mapping the capabilities of the security tools with the activities of an IRP. Using the

ontological model, a SOAR is able to interpret the diverse security tools' capabilities to

make them work together to automate the execution of the security tools’ activities

without any human intervention.

 Alongside the general lack of interpretability and interoperability among multi-

vendor security tools, we could not find any work that addresses the issues with changing

IRP due to emerging threat behaviors. Our proposed prediction module supports the auto-

classification of new activity descriptions according to the ontology for automatic

execution of IRP. To the best of our knowledge, this is the first work that has enabled

auto-integration of security tools in a SOAR based on an ontology, and developed a

prediction module to classify activity descriptions based on the ontology. The automation

is achieved by enabling interpretability and interoperability among a variety of security

113

Automated Interpretation and Integration of Security Tools 113

tools from different vendors and auto-classification of activity descriptions according to

the ontology.

4.3 MOTIVATION SCENARIO

An incident is any unwanted event that violates specific security objectives

(confidentiality, integrity, and availability) of an organization’s assets. An IRP aims to

provide the best sequence of activities to be performed in response to an incident, e.g.,

alerts for phishing emails, DDoS attacks, and so forth. Table 4.1 shows an IRP for one

such incident, spear-phishing email. A phishing email is used to obtain sensitive

information by disguising as a trustworthy entity in electronic communication.

Table 4.1. The incident response plan for a phishing attack

Response Activity Description

ac1 Is this a Phishing attack? Validate if this is a phishing attack.

ac2
Scan Endpoint – Malware

found?

After running a scan, determine whether malware was

found.

ac3
Remove Malware –

Success?

Determine whether the malware was successfully

removed.

ac4 Wipe and reimage
If you did not successfully remove the malware found,
this task instructs you to perform a wipe and reimage of

the infected computer

ac5
Update email protection

software

If it was determined as phishing attack, you are
prompted to update the email protection software

accordingly

ac6
Remove unread phishing

emails

Perform the steps necessary to remove unread phishing

emails still in the queue.

Figure 4.1 shows a scenario for SOAR where it collects the details of an incident,

checks in the playbook for the corresponding IRP and rules therein, selects the tools to

perform the activities based on the rules, orchestrates the activities and automates the

execution of an IRP. Most SOARs have a playbook, as shown in Figure 4.1, where a

SOC defines the rules based on their respective IRPs. The SOAR shows the scan and

ongoing operation through its dashboard, based on which a SOC team makes the required

decisions, defines new rules in the playbook and performs complex analysis. We refer to

the activities that are performed by SOAR to orchestrate and automate an IRP as Tasks.

114

Automated Interpretation and Integration of Security Tools 114

To address the interoperability issue, an existing SOAR offers APIs or plugins to

communicate with different security tools. ost of these APIs or plugins are not vendors’

or tools specific and fail when updates or changes are required [20, 32, 35]. There are

several challenges associated with existing SOAR; however, in this work, we only focus

on the challenges mentioned below. We use the example of Table 4.1 to illustrate the

challenges that arise during the auto-execution of IRP by SOAR platform.

Figure 4.1 Overview of a security orchestration platform

Firstly, the IRP of Table 4.1 is written in text and does not follow a formal

structure. There exists ambiguity among different words. Different words are used to

define the same types of activities. For example, both Response and Activity Description

in Table 4.1, i.e., “Is this a Phishing attack?” and “Validate if this is a phishing attack”,

are referring to the same activity. A SOC does not follow any specific structure while

defining the activities of an IRP. The similar types of activities performed for different

security incidents require different tools. For example, “remove malware” and “remove

phishing email” both refer to the activity “remove”, even though the execution of these

activities requires two different types of security tools. A SOAR cannot automatically

interpret the abovementioned similarities or ambiguity.

Secondly, a SOAR needs to deal with different tools that are not interoperable to

automate the execution of an IRP’s activities. For example, to execute an activity ac1 of

115

Automated Interpretation and Integration of Security Tools 115

Table 4.1, a threat intelligence platform, e.g., Malware Information Sharing Platform

(MISP), is needed. A MISP is used by a SOAR to validate the incident. The execution of

ac2 requires an EDR tool to scan endpoints and a SIEM to identify the malware from

EDR logs. Each activity has one or multiple rules associated with it. A SOAR uses these

rules to orchestrate and automate an IRP by using different security tools. For example,

if ac1 is true, then only it executes ac2. Based on the results of ac2, it further executes ac3

or other activities. shows an IRP for one such incident, a spear-phishing email. A

phishing email is used to obtain sensitive information by disguising itself as a trustworthy

entity in electronic communication.

Thirdly, a SOAR needs to control the flow of the activities performed by different

tools. Experts modify the activities based on the tool’s availability and preferences. For

example, an expert may change one activity description in an IRP from “analyzing the

alert log” to “correlating alert log” after installation of a new IDS in the network router.

Installation of a new server requires the security tools’ capabilities to fulfil the security

requirements of a server. An IRP team defines the plan to protect the server from security

incidents. In case existing tools are unable to provide the required capability, a SOC

integrates new security tools to protect the server.

Fourthly, there may be multiple tools available for execution of a single activity.

For example, different EDR tools and dedicated malware detection tools are used to

perform “scan endpoint for malware.” There is a lack of a systematic approach that can

be followed to perform the selection of security tools that are interoperable.

In terms of changing activities in an IRP that needs integration of new tools, the

challenge is how to provide an interoperability model for a variety of security tools to

automatically execute different sets of IRPs. In the next sections, we first propose the

semantic integration framework and then an interoperability model that uses the correct

component of the integration framework to address the abovementioned challenges.

4.4 AN INTEGRATION FRAMEWORK FOR A SOAR PLATFORM

4.4.1 An Ontological Model to Enable Semantic Integration

A SOAR deals with various types of data produced by heterogeneous security tools.

These data can be structured, semi-structured, or unstructured. Data produced by one tool

116

Automated Interpretation and Integration of Security Tools 116

are not always interpretable by another tool. Therefore, these heterogeneous security

tools are not interoperable. We develop an ontological model to represent multi-sourced

data and enable semantic-based data integration among heterogeneous security tools in

a SOAR [171, 172]. We define the classes of the required ontology by following a

structured approach to keep consistency among the classes.

4.4.1.1 Design and Development of an Ontology Class

We follow a bottom-up approach to develop the main concepts of our ontology, which

contains three main classes: SecurityTool, Capability, and Activity. These classes are

defined to represent heterogenous security tools from different vendors formally. We

leverage the TSPACE work [158] to design the capabilities of security tools in terms of

their functional and non-functional features. The functional feature is the ability of a

security tool to execute an activity such as packet capturing, log management, intrusion

detection and so forth. The non-functional features include input and output data

structures, and the configuration details required to execute an activity. For example, a

network-based IDS takes network traffic or packet (i.e., tcpdump), where a host-based

IDS works with system logs (i.e., syslog). Even though both types of IDSs produce alerts

as an output, the output format (i.e., PCAP, CSV) and data (e.g., IP address, Port, MD5,

and URL) also vary, depending on the SOC’s preferences.

The Capability class of the ontology consists of the two subclasses,

FunctionalCapability and NonFunctionalCapability, to capture the features of security

tools, as shown in Figure 4.2. The diversity among input and output data structures is

apprehended using three subclasses under the Non-FunctionalCapability class: Input,

Output, and RuntimeEnvironment. The input and output of the security tools need to be

explicitly defined to be analyzed by a SOAR. A well-designed Capability class enables

SOAR to auto-generate the APIs between security tools by retrieving the information

about required input commands and produced output. The ability of a SOAR to

deconstruct the output of one tool and then to use the output to formulate the input of

another tool enables interoperability between isolated security tools.

We analyze the functional capabilities of multiple security tools to identify the

subclasses of the SecurityTool class, where each tool has more than one functional

capability. The SecurityTool class is categorized based on the main functionalities of the

117

Automated Interpretation and Integration of Security Tools 117

security tools. We define the first level of the subclass of the security tool based on the

types of activities (e.g., detect, monitor, scan, validate and so on) they provide. For

example, IDS, SIEM, Antivirus, and Firewall are different types of security tools that are

defined as a subclass of the SecurityTool class. The available commercial and open

source security tools are categorized under each of these subclasses, based on the

benchmark of their functional capabilities. For example, different types of SIEM, i.e.,

Splunk and RSA NetWitness, are subclasses of SIEM.

Figure 4.2 Excerpt of our Ontology

We define and categorize different types of activities as the subclass of the Activity

class. The activities are associated with the detection, prevention, recovery and

remediation actions of a threat defense and response life cycle. We follow a systematic

set of guidelines to define the subclasses of the Activity class manually. First, we only

use the verb and noun of the sentence of activity description to define the subclasses of

the Activity class. For example, for the activities of Table 4.1, Validate, Remove, Scan,

Wipe, Reimage and Update are the subclasses of level 1 of the Activity class. Then, we

combine the adjacent verb, noun, and adjective and discard all other parts of speech to

define the categories of the subclasses, as shown in Figure 4.3.

Each subclass of the Activity class contains multiple subclasses, based on the

capabilities required to execute the activity. For example, the execution of two validation

118

Automated Interpretation and Integration of Security Tools 118

activities: validation of a phishing email and validation of exposure of confidential

information require different capabilities; therefore, they are categorized under different

subclasses: ValidatePhishingAttack and ValidateDataExposure. We also consider the

activity “Is this a phishing attack?” under the class Validate, as this is more similar to

validating whether an alert/attack is phishing or not. We consider a different sentence

with similar meaning in the same class. For example, the activity “scan endpoint for

malware” and “scan host for malware” requires the same types of capabilities and thus

they are categorized under the same class, ScanEndpointMalware. These subclasses can

have more subclasses, depending on the requirements to execute the activities. Figure 4.2

shows part of the subclasses of the Activity class that we have built following the

abovementioned process.

ac1 : Is (Verb) this (Det) a (Det) phishing (Verb) Attack (Noun) ? (Punc) = Is (Validate)

Phishing Attack

Subclass: Validate → Validate Phishing → Validate Phishing Email

ac2: Determine (Verb) whether (Adp) the (Det) data (Noun) associated (Verb) with

(Adp) this (Det)

is (Verb) sensitive (Adj) = Determine Data Sensitivity

Subclass: Determine → Determine Data → Determine Data Sensitivity

Figure 4.3 The parts of speech tagging of the incident response plan and removing stop words

4.4.1.2 Defining Relationships and Constraints.

We define the relationship between the classes to select the tools with appropriate

capabilities to execute an activity. The relationships between the classes are shown in

Figure 4.2. We define a set of reasoning rules to enhance the relationships between

different classes for error-free integration. These rules enable us to express conditions

about the occurrence or non-occurrence of the required activities, the creation of

instances, tracking and managing activities of a SOAR. For example, each security tool

must have at least one functional capability associated with threat defense and incident

response to execute an activity. The security tools must satisfy the capabilities associated

with a class to be part of that class.

Execution of each activity depends on the availability of the relevant security tools

and the preference of an organization’s security requirements. Auto-execution of an

119

Automated Interpretation and Integration of Security Tools 119

activity requires at least one tool with the required functional capability to execute a

desired activity. We impose different types of restrictions for creating the instance of a

class that must satisfy the relationship it holds with other classes. The defined rules

enable a SOAR to avoid ambiguity, while creating an instance of a class. A SOAR

executes the activities sequentially; as a result, the security tool that is selected to execute

aci+1 must have access to the output of a security tool that executes aci. For example, if

Splunk is required to analyze the alert log produce by Snort, it must have access to the

output file of Snort. Similarly, a SOAR needs to have the authorization to run and stop

every security tool that is integrated into it.

 The proposed ontological model enables a SOAR to interpret activities and

security tools’ capabilities. Retrieving the information of the non-functional capability

class, SOAR can interpret the data generated in various forms and formulate the input

command to invoke a tool for auto-execution of the activity.

4.4.2 Classification of Activities based on Text Similarity

A SOC adds new types of activities or updates the existing IRP to keep the playbook

updated for emerging threats. Considering the tools available to execute IRPs, we

leverage existing NLP and ML techniques to automatically classify the new activity

description according to the activity ontology. This process makes the SOAR capable of

analyzing an IRP and transforming the data into a representation that gives both an

analyst and a machine insights about the data. We consider the classes of Activity classes

in different levels separately (Figure 4.2). An example of a class on each level would

include: level 1 {Remove, Scan, Validate}, level 2 {RemoveSpam, RemoveMalware,

ScanFile}, and level 3 {RemovePhishingEmail, ValidatePhishingEmail}. From the

perspective of ML, this problem is designed as a multiclass supervised text classification

problem.

Given a new activity description in an IRP, we design the prediction module to

classify the activity description according to the classes of the ontology. The overall

workflow of building an ML-based prediction module is given in Figure 4.4. The dataset

consists of the activity descriptions labelled according to the ontology. Table 4.2 shows

examples of the labels that correspond to the activity described in each level of the

ontology for each Activity class. Initially, the dataset is divided into training and testing

120

Automated Interpretation and Integration of Security Tools 120

sets. The key components of building the ML model include text pre-processing, model

selection, model building, and prediction. The model selection and model building

processes work on the training set and the prediction process works on the testing set or

with new activity descriptions.

Activity
description

Activity class
from ontology

Text
preprocessing

Data
splitting

N-gram
generation

Feature
transformation

Model training
and evaluation

Model selection based on K fold cross validation

N-gram
generation

Optimal
classifier

Model
training

Feature
transformation

Feature
configuration

New activity
description

Text
preprocessing

Feature
transformation

Classification of
activity description

Model building

Dataset

Prediction

Trained
model

Feature model

Figure 4.4 Development of the prediction module

Table 4.2. Activity description and corresponding class label

Activity Description Level 1 Level 2 Level 3

Scan endpoint to see whether

malware was found
Scan ScanEndpoint ScanEndpointMalware

Is this a phishing email Validate ValidatePhishing ValidatePhishingEmail

Isolate the malicious node from the

network
Isolate IsolateMalicious IsolateMaliciousNode

Text pre-processing: We start with a corpus of activity descriptions and follow the

standard process of text wrangling and pre-processing. During the preprocessing step,

we remove the null-value, punctuation, stop words, and meaningless words for the

121

Automated Interpretation and Integration of Security Tools 121

analysis. We perform part-of-speech tagging of the text before removing the stop words

and only retain the verbs, adjectives, and nouns.

Model Selection: We use the preprocessed text to perform k-fold cross-validation to

select the optimal classifiers for the prediction module. As shown in Figure 4.4, the model

selection method has four steps: data splitting, n-gram generation, feature

transformation and model training and evaluation. The preprocessed text in each fold is

split into the training and validation sets with equal sample sizes. We generate word-

based n-grams for the training and validation sets that are merely the combinations of

adjacent words of length n. We combine the n-gram with the Term Frequency-Inverse

Document Frequency (TF-IDF) for each activity description.

The ML-based classifiers cannot directly process the text documents. Most of them

expect numerical feature vectors of a fixed size, whereas the raw text documents are of

variable lengths. The features generated from the n-gram are presented into Document-

Term Matrix (DTM), where each row corresponds to an activity description and each

column corresponds with a word in the term.

In the model training and evaluation steps, we train the four classifiers (Random

Forest, Linear Support Vector, Multinomial Model of Naïve Bayes, and Logistic

Regression) on the training set and then evaluate the model on the validation set using

different evaluation metrics (accuracy, recall, precision, and f1-score). The classifier

with the highest average cross-validation score is selected as an optimal classifier. The

process is repeated for each level (levels 1, 2 and 3). The optimal classifiers and feature

representations are returned for all three levels.

Model building: The model building process uses the whole set of pre-processed

training sets to generate the word n-gram. Here, n-gram generation and feature

transformation are based on the identified feature configurations for each level of class.

The generated n-gram vocabularies are combined with the feature configurations to

create the feature model. The feature model is saved to transform the data for future

predictions. The extracted features are trained with the optimal classifiers returned in the

model selection process to build the prediction model for each level.

122

Automated Interpretation and Integration of Security Tools 122

Prediction: The prediction process is used for both testing the trained model and

classifying the new activity descriptions. In this process, the activity descriptions are first

preprocessed and then, using the saved feature model, transformed into a feature set.

Finally, the features set is used by the saved trained model to determine the class of the

activity descriptions in terms of the ontology for each level. The prediction module

reduces the manual analysis of the activity description by classifying the activities

according to the ontology.

4.4.3 Design and Development of the Annotation Module

A new activity description may not always fall in any of the existing activity classes of

the ontology. In this context, we are considering these types of description as outliers. To

identify the outlier descriptions, we perform text-based similarity checking of the

updated or new description with the existing activity description and measure the cosine

similarity. We define a threshold for considering whether the description is an outlier in

terms of the existing set of activity descriptions. If the new description is not an outlier,

then only the description is sent to the prediction module. If the new description is

considered as an outlier, we develop the annotation module to automate the generation

of the possible list of classes, following the same set of guidelines proposed to design the

Activity class in section 4.4.1. The generated classes are matched with the existing set of

classes, and if none of the classes are found in the ontology, the annotation module

recommends a possible list of classes to the user. Once the user selects the corresponding

classes, it creates new classes for the activity description and, if required, requests

additional details about the classes from the user to keep the ontology consistent.

4.5 INTEROPERABILITY MODEL FOR EXECUTION OF IRP

A SOAR may need to invoke a different set of security tools in a different order to

execute a variable sequence of IRPs. For example, one IRP may include an activity scan

endpoint, followed by another activity correlate alerts log, whereas another IRP may

include correlating alerts logs followed by scan endpoint. Both of these IRPs require the

same security tools in different orders. We provide the interoperability model for auto-

execution of the required IRPs, whereby one tool can understand the output of other tools.

The model also helps SOAR to interpret the output and input of different security tools.

123

Automated Interpretation and Integration of Security Tools 123

For example, a SIEM tool needs an output of alerts produced by IDS and a system log

produced by EDR to perform correlations. Figure 4.5 shows the overall workflow of the

interoperability model, starting from gathering a security incident to notifying a SOC.

Start
Security
Incident

Look up for
IRP

Match
found?

Tool found?

Execution
successful?

Formulate input and
send execution

command

Classify activity
description

Similarity
exist?

Generate
classes

Prediction
module

Look up for activity
class in the ontology

Yes

Yes

Yes
For each activity ack

in IRP

Ontology

Look up for required
functional capability (fj)

to execute ack

No

Yes

Notify SOC
No

No

No

Annotation
module

Check text
similarity

Search for available
tools with the

functional capability fj

Look up for tool s
non functional

capability

Figure 4.5 Workflow of the proposed solution

Two key tasks of the interoperability model are: select the desired tools based on

their functional and non-functional capabilities and invoke the tools to execute an IRP.

The key components of the integration framework (ontological model, prediction and

annotation module), as shown in Figure 4.5, are used to design the interoperability model.

We have designed a Query Engine (QE) to retrieve information from the ontology.

Given a set of Security tools S = {s1, s2,…, sm ,…}, a list of the required activities AC =

{ac1,ac2,…, ack,…} and a list of capabilities, 𝐹 = {f1, f2,…, fj,…}, a SOAR looks up the

corresponding IRP for each security incident. For each activity ack of IRP, SOAR

invokes the QE to search for the corresponding Activity class. If the activity is found in

the ontology, the SOAR invokes QE to retrieve the capability required to execute the

activity. Considering fj is the required functional capability, a SOAR sends queries to

retrieve the security tool that has the functional capability, fj. In cases where multiple

tools are available, the SOAR selects the right tool from the list. In the next step, the

124

Automated Interpretation and Integration of Security Tools 124

SOAR retrieves the non-functional capability of the selected security tool to formulate

the input command for instructing the tool to execute the activity. The QE extracts the

necessary information from the ontology to formulate the input for the tool. After

constructing the input command, the SOAR calls the tool’s corresponding routine to

execute the activities. If the execution is successful, the next activity in the IRP is

executed by following the same sequence of tasks (performed by SOAR).

Considering the output produced by one tool, sm, is provided as an input to another

tool, sp, the SOAR checks for the interoperability of the two security tools. The SOAR

deconstructs the output of sm to formulates the input of the sp. This action is only possible

if the tools are interoperable; otherwise, the SOAR notifies the SOC. An activity’s

description may change continuously; if no class is found for a particular activity, a

SOAR first invokes the AU unit to determine the possibility that new description is part

of the existing ontology. Based on the similarity measurement, it either generates the list

of classes or invokes the prediction module to classify the activity description. After

receiving the appropriate class from the prediction module, the same steps of looking for

the required functional capability and non-functional capability to execute the activity

are carried out.

Following the abovementioned process, a SOAR can automate the sequence of

activities in an IRP even when changes occur in the underlying execution environment.

The interoperability model enhances the capability of a SOAR to automate the execution

of an IRP by interpreting the activity, required capability, and tools’ interoperability.

4.6 EXPERIMENTS AND RESULTS

We carried out a set of experiments to assess the feasibility of the proposed prediction

module and the interoperability model. The flexibility of the proposed ontology-based

sematic integration is discussed in chapter 5.

4.6.1 Preparing the dataset for a prediction module

Our experimental dataset is based on the IRP crawled from the website of ServiceNow,

which resulted in 1080 activity descriptions. For each activity description, we labeled the

classes manually, according to the ontology, as shown in Table 4.2. We have 34

categories under level 1, 67 categories under level 2 and 74 categories under level 3.

125

Automated Interpretation and Integration of Security Tools 125

4.6.2 Implementing the prediction module

We used the scikit-learn, NLTK and spaCy packages of python to build a classifier. For

each level, we first implemented four classification algorithms with different hyper-

parameter settings separately. We performed k-fold cross validation for each

configuration by splitting the data set into different training and validation sets. We used

the function GridSearchCV() to select the optimal configuration and perform cross-

validation for each classifier. For both Support Vector Machine (SVM) and Linear

Regression (LR), we considered different values for the regularization parameter (i.e.,

0.01., 0.1, 1, 10, and 100). For Multinomial Naïve Bayes (NB), we considered the prior

probability of the class True and False. For Random Forest (RF), we considered different

values for estimators (i.e., 10, 100, 20, 200, 50, and 500) and the maximum number of

leaves (i.e., 10, 50, 100, and 200).

Figure 4.6 (a) shows the results of different classifiers for the optimal

configuration. We examined the performance of the classifiers in terms of accuracy and

F1-score [174]. An F1 score is considered more reliable than accuracy. Accuracy reflects

the total of the correct predictions divided by the total number of cases. The F-1 score is

the harmonic mean of Precision and Recall. The precision represents the total of the

correct predictions for each class, divided by the total number of activities predicted for

that class. The recall is the correct prediction for each category, divided by the total

number that belongs to this category. Comparing the results of the classifier, we found

that RF outperformed other classifiers. We built the final model with the RF classifier.

The optimal configuration for RF (estimators, maximum leaf) for levels 1, 2 and 3 are

(50, 100), (100, 100) and (10, 200), respectively. We used 70% of the activities for each

level as the training data and 30% as the testing data. Figure 4.6 (b) shows the results of

the RF for different evaluation metrics.

4.6.3 Developing the Interoperability model

We implemented a Proof of Concept (POC) system using seven security tools (Snort,

Splunk, LimaCharlie, Wireshark, WinPcap, Microsoft essential, and MISP) to study the

viability of the interoperability model. We described their capabilities in terms of the

ontological model and used a list of IRPs with different activities. We used the network

traffic and system logs as the input to identify the security incidents. The experimental

126

Automated Interpretation and Integration of Security Tools 126

study used 21 different capabilities and 9 IRPs with 17 activities. We only considered

the activities for which the capabilities were available. We changed the activities and

observed the corresponding changes in the operation’s execution.

 (a) Validated Weighted average of F1-Score (b) Testing results of the Random Forest classifier

Figure 4.6 Bar plot of (a) validated weighted average of the F1-score for optimal

configuration of different classifiers and (b) testing results of Random Forest for three

levels of class

Discussion: The results showed that in more than 90% of cases (Figure 4.6 (b)) the

prediction module classified the activity descriptions accurately. The performance in

classifying the activities in levels 2 and 3 is lower than that in level 1. The reason for this

appears to be the number of members in these classes is lower than that in level 1. The

more input data we can provide to the classifier, the more accurate results it will produce.

Furthermore, the activity description was passed to the prediction module only when the

text similarity was found, which makes the classifiers less error-prone towards the new

activity description that does not belong to any of the existing classes. Out of the 17 IRPs,

the POC was able to automate 15 IRPs successfully and 2 IRPs partially. While

modifying the activity descriptions, there were two activities (update email protection

software and detect phishing email) for which security tools were not available. For these

two activities, the interoperability model was unable to find suitable security tools, thus

failed to automate the execution of that particular IRP. Except for these two activities,

the POC automatically (a) retrieved the information from the developed ontology; (b)

generated the configuration details to call the desired security tools; and (c) enabled

interpretability and interoperability among the different security tools and SOAR.

0
.9

2
6

0
.9

0
9

0
.8

6
50

.9
3

0
.9

1
1

0
.8

6
9

0
.8

3
3

0
.8

1
7

0
.7

9
2

0
.9

1
8

0
.9

0
5

0
.8

6
4

LEVEL 1 LEVEL 2 LEVEL 3

SVM RF NB LR

0
.9

6

0
.9

4

0
.90

.9
7

0
.9

3

0
.8

7

0
.9

6

0
.9

4

0
.90
.9

6

0
.9

3

0
.8

8

LEVEL 1 LEVEL 2 LEVEL 3

Accuracy Precision Recall F1-score

127

Automated Interpretation and Integration of Security Tools 127

4.6.4 Threats to validity

We developed the ontology based on freely available and open source security tools’

capabilities, and activity descriptions, which might not fully represent the situations or

scenarios of an organization. Considering the development of an ontology is an

incremental process, a human expert can easily extend the ontology to incorporate the

tools used in an organization. The selected optimal may not guarantee the highest

performance for classifying the new and updated activity descriptions since an infinite

number of configurations are available to tune the hyper-parameters of ML classifiers.

The selected classifiers might not be the best, but the system provides a learning-based

approach to classify any activity description, which can be further improved and

extended with different classifiers and configurations. The model we built is retrainable

and can be easily trained with a new dataset.

4.7 CHAPTER SUMMARY

Given the widespread adoption of SOAR over the last couple of years, there is an

increasing demand for self-adaptive SOARs. Our research seeks to devise a solution that

can enhance the integrability, interpretability and interoperability of security tools

integrated into a SOAR. The proposed approach allows a SOAR to select the required

security tools that are interoperable for auto-execution of an IRP. We have introduced an

ontological model to formalize the security tools, their capabilities, and the activities of

an IRP. A learning-based prediction module is proposed to reduce the manual work of a

security team to define the classes for activity in a playbook. The proposed

interoperability model successfully automates the execution of most of the IRPs at

runtime. In future work, we will extend the system to automate the generation of the APIs

from the ontology. We also aim to use the semantic definition of tools’ capabilities to

auto-create the APIs when new security tools with new capabilities are integrated, and

design a probabilistic model for selecting and integrating security tools.

128

An Ontology-driven Integration of Security Tools 128

Chapter 5

5 An Ontology-driven Integration of Security

Tools

As discussed in Chapter 4, the lack of interpretability and interoperability among

security tools is considered a key challenge to fully leveraging the potential of the

collective capabilities of different security tools. The processes of integrating

security tools are repetitive, time-consuming and error-prone; these processes are

carried out manually by human experts or using ad-hoc methods. To help automate

security tools’ integration processes, in this chapter, we propose an Ontology-driven

approach for a SOAR platform (OnSOAR). The developed solution enables

interpretability and interoperability among security tools, which may exist in

operational silos. We demonstrate OnSOAR’s support for automated integration of

security tools to execute the incident response process with three security tools

(Splunk, Limacharlie and Snort) for a Distributed Denial of Service (DDoS) attack.

The evaluation results show that OnSOAR enables a SOAR platform to interpret the

input and output of different security tools, produce error-free integration details,

and make security tools interoperable with each other to automate and accelerate an

incident response process.

5.1 INTRODUCTION

A SOAR platform aims to minimize dependency on human experts for a streamlined

incident response process [70, 175]. However, most of the existing SOAR platforms

cannot automatically adapt to changes in organizational systems’ operational processes,

such as the installation of new software, deployment of new servers, and rolling out of

new access control policies [21, 22, 72]. Security teams need to integrate different

129

An Ontology-driven Integration of Security Tools 129

security tools with a SOAR platform manually and map their activities into an incident

response process [18, 118, 176].

Human-centric intervention is required in the existing SOAR platforms because

security tools are not designed to interoperate with each other [168]; for example, an IDS

cannot automatically send an output alert to a SIEM. The messages generated by a

security tool are also not semantically interpretable [35, 177]; for example, an IDS may

generate an alert in its proprietary format, and such an alert may contain different features

of an attack. A SIEM cannot ingest and interpret the meaning of those alerts unless the

alerts’ definitions are explicitly defined for a particular type of SIEM [35, 83]. Chapter

1 provides an overview of a SOAR platform that shows that, before deploying a SOAR

platform, an organization assesses the existing security tools to identify the configuration

details, such as dependency among different activities, process flow within a security

tool, input and output data formats and runtime environments [35, 176]. Based on such

an assessment, a SOAR is designed, and different security tools are integrated using

plugins or APIs [21, 118, 176, 178].

Human intervention can be minimized by providing SOAR platforms with a formal

specification of the security data format, configuration, and structural specifications of

security tools to automate the process of integrating different security tools. A SOAR can

use such formal specifications to continuously integrate and invoke security tools, based

on the activities in the incident response process. Ontologies can be used to provide the

required formal specifications to support semantic integration [172, 179-181]. In the

context of SOAR, semantic integration means one security tool can understand the

semantics of the input and output of another security tool. A SOAR can semantically

interpret the activities when the formalization incorporates semantic integration of

heterogeneous security tools.

Several studies have developed ontologies to formalize heterogeneous threat

intelligence information for cybersecurity tools [172, 179-182], including ontologies to

help stakeholders deal with any semantic conflict that arises while integrating multiple

security tools [158]. These approaches focus on providing an effective method of

information sharing and exchanging among cybersecurity communities, and

stakeholders. None of these approaches provides support for sharing information

130

An Ontology-driven Integration of Security Tools 130

between different security tools and the SOAR. Security tools (e.g., IDS, SIEM, or EDR)

are software-intensive systems that can be integrated and interoperate at the software

level, based on data integration. Hence, ontological approaches can be leveraged to

automate the process of integrating and interoperating heterogeneous security tools in a

SOAR platform.

We have developed an Ontology-driven approach for a SOAR platform,

OnSOAR, to automate the process of integration of security tools. At the core of

OnSOAR is an ontological model that involves both high-level and fine-grained classes

for different security tools, their capabilities and the activities of an incident response

process. The developed ontology provides a formal specification of the core concepts of

a SOAR, i.e., security tools, their capabilities and the activities of the incident response

processes. Based on the ontology, OnSOAR automatically annotates a set of security

tools, their capabilities and an incident response process at a much finer-grained scale.

We have also designed a set of queries, rules, and constraints for the orchestration

process that enables OnSOAR to extract the required information from the ontology and

invoke the required functionalities of a security tool. OnSOAR ensures error-free and

automated integration of different security tools in a SOAR.

We have developed and evaluated OnSOAR with a robust incident response

application. As a use case scenario, we have investigated an incident response plan for a

Distributed Denial of Service attack (DDoS) with three different security tools. This can

be extended for any other use case scenario and security tools. By composing a set of

simple rules and defining structured queries for the orchestration process, we have shown

that the developed OnSOAR can automatically select and invoke an appropriate set of

functionalities from the available security tools. We have also shown that the developed

OnSOAR can provide automation support to the process of integrating and interoperating

security tools. The following are the main contributions of this chapter:

• Design and implementation of an ontology-driven approach, OnSOAR, that supports

the process of automated integration and interpretation of a variety of security tools

(Section 5.3, 5.4, 5.5, 5.6).

• Demonstration of the use of OnSOAR to automate the execution of an incident

response process for a DDoS attack with three security tools (Section 5.7).

131

An Ontology-driven Integration of Security Tools 131

• Evaluation of OnSOAR’s ability to automatically generate accurate configuration

details for enabling security tools to interoperate and remove operational silos for a

DDoS attack (Section 5.8).

5.2 PRELIMINARIES

5.2.1 Challenges in Automated Integration

Given the diverse nature of security tools, the integration process of SOAR has several

challenges [183]. It is not possible to know all the requirements of an organization at the

design and installation phases of a SOAR platform [171]. A SOAR platform needs to

control the flow of the activities performed by different security tools. A security expert

modifies the activities based on a system’s availability and preferences. For example, a

security expert may change an activity in the incident response process from analyzing

alert log to correlating alert log after installation of a new IDS in a network router.

However, there is a lack of a systematic way of automating the process of integrating

security tools [22, 158].

A security expert adds or removes security tools or changes their configuration and

deployment strategies; for example, a security team may change the preferred format of

an alerts log file based on the SIEM system being used. A security expert manually maps

the newly-integrated security tool’s functionalities with the activities of an incident

response process and vice versa. Figure 5.1 depicts a scenario of an organization that has

a SOAR platform (i.e., similar to Figure 4.1 of chapter 4). However, the SOAR platform

shown in Figure 5.1 cannot automatically perform the mentioned changes due to the

heterogeneity and isolated nature of most security tools, which lack interoperability and

interpretation of the generated messages.

5.2.2 Problem Formulation

Consider a scenario where an application of an organizations’ website is being

overused with a superfluous request. Detecting the scenario as a malicious one, an IDS

generates alerts that consider the behaviors as a DDoS attack. Upon gathering such alerts,

the SOAR orchestrates and automates the incident response process to prevent and

recover from the DDoS attack. For illustration purposes, we assume the actions

automated by a SOAR are detecting incidents, collecting alerts and system logs,

132

An Ontology-driven Integration of Security Tools 132

identifying the affected systems, and generating an incident report. Let us assume that an

organization has a set of security tools 𝑆, that are integrated into a SOAR, where 𝑆 =

 {𝑠1, 𝑠2, 𝑠3, … , 𝑠𝑖, … , 𝑠𝑛}. An example of 𝑠𝑖 can be Snort, Bro, Splunk, or Limacharlie.

Each security tool, 𝑠𝑖, performs a set of activities, 𝐴𝐶 = {𝑎𝑐1, 𝑎𝑐2, … , 𝑎𝑐𝑗 … , 𝑎𝑐𝑚} to

protect against potential security attacks.

Figure 5.1 An example of execution of an incident response process in a security

orchestration platform

Definition: 5.1. (Activity). An Activity is an action performed by a security tool or

a human expert to detect, prevent, remediate, recover or respond to security incidents.

Examples of the activities include detecting security incidents, investigating threats, and

analyzing threat behaviors. A SOAR has a playbook that has a list of Incident Response

Plans (IRP), 𝐼𝑅𝑃 = {𝑖𝑟𝑝1, 𝑖𝑟𝑝2, … , 𝑖𝑟𝑝𝑘, … , 𝑖𝑟𝑝𝑝}, where, 𝑖𝑟𝑝𝑘 = { 𝑎𝑐1, 𝑎𝑐2 … , 𝑎𝑐𝑗} is a

sequence of activities that needs to be executed in response to a security incident. The

playbook contains the rules associated with the execution of an IRP.

Definition: 5.2. (Security Incident). A security incident is an unwanted or

unexpected event/events that has a significant probability of compromising the security

of an organization’s assets. Examples of security incidents include security threats,

breaches, attacks and so forth. For example, for a security incident, 𝐼 (𝐷𝐷𝑜𝑆 𝐴𝑡𝑡𝑎𝑐𝑘),

the response process includes activities: DetectIncident, CollectLog, AnalyzeLog,

GenerateReport, and so on.

133

An Ontology-driven Integration of Security Tools 133

 Figure 5.1 shows a scenario for auto-execution of an incident response plan 𝑖𝑟𝑝𝑘

to respond to a security incident. In the scenario, a security tool, 𝑠𝑖, detects suspicious

traffic on asset 𝑎𝑙 and generates an alert that it is considered as a security incident I (i.e.,

an alert “DDoS attack”).

Definition: 5.3 (Asset): An asset is any system, data, resources, hardware, or

software that an organization wants to protect. Examples of assets include databases,

servers, hosts, applications, and websites.

 A SOAR gathers the incident details and searches for an appropriate IRP in the

playbook. For example, for the incident, I, shown in Figure 5.1, a SOAR finds the best

match IRP 𝑖𝑟𝑝1, which has a list of activities 𝑖𝑟𝑝1 = {𝑎𝑐1, 𝑎𝑐2, 𝑎𝑐3}. The SOAR then

searches for a security tool that can execute those activities and finds the artifacts

required to automate the execution of the activities. Then SOAR performs a set of tasks,

T for each activity, where 𝑇 = { 𝑡1, 𝑡2, … , 𝑡𝑞, … , 𝑡𝑟}.

Definition: 5.4 (Artifact): We consider the alerts and logs generated by different

security tools as the artifacts of a SOAR, which deal with different structured, semi-

structured and unstructured data that come in various formats and languages from

different security tools.

Definition: 5.5 (Task). A task is an action that a SOAR performs to automate the

execution of the activities in an IRP. For example, the execution of an activity

DetectMaliciousTraffic requires a SOAR to perform three tasks: searchDetectionSystem

(t1): looking for an available security tool that purports to detect intrusion,

selectDetectionSystem (t2): if multiple systems are available, selecting one, and

invokeDetectionSystem (t3): invoking a security tool to run in detection mode.

 We assume that a SOAR selects a security tool 𝑠𝑖 (Snort), which can scan the

asset 𝑎𝑙 (endpoint) to detect incidents. A SOAR invokes 𝑠𝑖 to run in intrusion detection

mode. These tasks are performed by a SOAR to automate the execution of the activity

𝑎𝑐𝑗 (DetectIncident). Finally, 𝑠𝑖 scans 𝑎𝑙 to detect suspicious traffic. We refer to this as

the execution of the activity 𝑎𝑐𝑗, that is performed by a security tool 𝑠𝑖. We consider the

combined activities performed by security tools and the tasks performed by SOAR to

automate the execution of activities to be an automated integration process.

134

An Ontology-driven Integration of Security Tools 134

5.2.3 Motivation

Our research aims to automate the process of integrating different security tools into a

SOAR platform. The integration process is a combination of interpretation, selection,

formulation, and invocation. A SOAR platform performs different types of tasks to

manage different aspects of threat defense and incident response. For example, a SOAR

connects different activities of different security tools to remove operational silos. We

refer to this type of task as an integration task. A SOAR also orchestrates the flow of

data and activities to make security tools interoperable and enables machine to machine

automation by providing machine interpretability semantics. We consider these types of

tasks as orchestration, and automation of security activities. The process of automated

integration of security tools for the execution of an IRP depends on the combination of

these three tasks.

 In this work, we focus on developing suitable support for automating the process

of integrating security tools in a SOAR for a seamless incident response without human

effort in performing activities.

5.3 THE PROPOSED SOLUTION

Figure 5.2 provides an overview of the developed OnSOAR. It mainly comprises three

layers: a semantic layer, data processing layer and security tool layer. It is composed of

core concepts of a SOAR’s platform and provides (i) the unified capability of a SOAR

platform, which can be achieved through a number of security tools, (ii) the semantics of

different security tools’ generated data and (iii) the rules to avoid conflict and invalid

integration of security tools. It can make different security tools interoperable, so that the

output of one security tool can be used as input to another security tool without human

intervention.

Security Tool Layer (Sec 5.5): The security tool layer provides the fine-grained

information about security tools, running processes and the current state of an

organization. In this layer, the artifacts generated by different security tools and assets

are forwarded to the upper layers (Figure 5.2), which then extract the features (e.g., alert

Auto-Integration Process = task (Integration, Orchestration, Automation)

= Interpretation + Selection + Formulation + Invocation + Execution

135

An Ontology-driven Integration of Security Tools 135

types) from logs. Figure 5.2 shows that the raw data are passed through the integration

layer to the data processing layer, which applies pre-processing rules to map the raw

events onto the classes of the developed ontology (e.g., maps the alerts log to the IDS

that generated it). The integration layer mainly consists of APIs, plugins and wrappers

that are used to integrate security tools in a SOAR platform (chapter 3). As the focus of

this chapter is on automating the process for integrating the security tools, we do not

discuss the integration layers at this point.

Integration layer

Data Processing Layer

Security Tool
Layer

Semantic Layer

Collector

Output Handler

InterpreterQuery Engine

ReasonerOntology

Input Constrcutor

4

5

5

Pre-processed
output

Query classes

Extracted Features

3

1
Annotated

Artifacts

Annotated
capability

2

Execution Command
6

Orchestration Layer
IRPOrchestrator

Security Tool

Output of Security tool

Figure 5.2 A high-level overview of OnSOAR

Semantic Layer (Sec 5.4): The semantic layer provides the semantic details about

the input, output, and activities performed by security tools to the data processing layer

and orchestration layer. It supports the integration process of the security tools to

OnSOAR through which (i) security tools’ capabilities (functional and non-functional

features) are captured, (ii) the capabilities required by IRPs are identified, (iii) the related

artifacts and data maintained among different security tools are identified and (iv) the

configuration details of security tools are retrieved. It also stores abstract knowledge

about the tasks performed by SOAR.

Data Processing Layer (Sec 5.6): The data processing layer is responsible for

collecting and analyzing security tools’ data and invoking security tools. The collector

136

An Ontology-driven Integration of Security Tools 136

collects the system logs and output of security tools. The output produced by different

security tools are passed to the interpreter. Furthermore, the annotated artifacts from the

semantic layer are passed to the data processing layers’ input constructor to formulate

commands for invoking a security tool.

The orchestrator of the orchestration layer mainly controls the integration process.

The orchestration layer is responsible for invoking appropriate tasks for automating the

process of integration of several security tools based on the activities of an IRP (details

in chapter 3).

5.4 SEMANTIC LAYER

Interpretation of security tools’ capabilities requires formalization of various concepts

(i.e., activities, inputs and outputs). The semantic layer uses an ontology to represent the

domain knowledge of the SOAR platform through a set of concepts and their

relationships, as described in the following section. It leverages the ontologies’ capability

to represent multi-sourced data [179, 182], taking into account the semantic integration

process among heterogeneous data produced by different security software systems.

5.4.1 Ontological Model

To build the ontological model for OnSOAR, we have cataloged the existing security

tools based on their key features, different data types and runtime environments. Our

ontology engineering focuses on leveraging existing and widely-adopted ontologies

[158]. We used the ontological model to formalize the semantics of some of the key

security tools’ capabilities (e.g., intrusion detection and the command to invoke a

system), artifacts (i.e., windows log, Syslog) or context data (affected assets) and the

activities of IRPs. The proposed ontology model consists of the following classes, shown

in Figure 5.3. The security tool class (SecurityTool) represents all types of security tools.

These systems are designed to protect assets, based on an organization’s requirements.

We modeled different features of security tools under this ontology class. The activity

class (Activity) formalizes the actions of the IRP. The activities are presented with respect

to a system’s required functional features. The capability class (Capability) is used to

capture functional and non-functional features of an individual security tool. This class

is used to instantiate the underlying ontology model in response to a security incident to

137

An Ontology-driven Integration of Security Tools 137

execute the selected activities. It also formalizes the types of data with which security

tools deal. As shown in Figure 5.3, the Activity class has a relation requireUseOf with

SecurityTool class, where the SecurityTool class has a relation hasCapability with the

class Capability. The relationship between classes is defined as the object property. Here

the hasCapability is the object property of the SecurityTool class. These types of

relationships can also be presented as a triplet in RDF or XML, for example,

(SecurityTool, hasCapability, Capability) where SecurityTool is the domain of the object

property and Capability is the range.

Figure 5.3 Part of our ontology: the dashed arrow represents the subclass and the solid

line represents the relationship among classes

5.4.1.1 Security Tools

Different types of security tool have been categorized under the abstract class

SecurityTool, which has different subclasses, with some subclasses based on their

functionality, as shown in Figure 5.3. For example, both Bro and Snort in Figure 5.3 are

considered as the subclass of IDS due to their extensive use of intrusion detection.

Though Snort can be used for both intrusion detection and packet sniffing, most

organizations use Snort to detect intrusions, which is the main functionality of Snort.

We express the necessary conditions for a security tool to execute an activity

through the semantics of the Capability class. The SecurityTool class can be extended to

incorporate new security tools with new types of behaviors. When OnSOAR intends to

integrate a security tool, it creates an instance of a security tool by instantiating the

138

An Ontology-driven Integration of Security Tools 138

associated properties required for the security tool’s integration. For example, an instance

of SecurityTool, SnortInstance represents the instance of Snort class, which indicates a

Snort system is integrated into OnSOAR. To categorize a security tool under a particular

subclass, the security tool must satisfy the capability associated with that subclass. We

impose different types of restrictions for creating an instance of a class that must satisfy

the relations with other classes. For example, as shown in Figure 5.3, the SecurityTool

class has a relation execute with the Activity class. An instance of a SecurityTool class

must execute an activity. We describe more details on the rules for imposing different

constraints and restrictions in section 5.4.1.

5.4.1.2 Activity

We categorize each activity of the IRP under the Activity class. This class is instantiated

in response to an incident I (i.e., DDOS attack). An instance 𝑎𝑐𝑖

(i. e., DetectMaliciousTraffic) of an activity class 𝑎𝑐𝑗, 𝑎𝑐𝑗 ∈ 𝐴𝐶 represents the execution

of 𝑎𝑐𝑗 in response to the incident I. DetectMaliciousTraffic and CollectSnortAlertLog are

instances of the subclass of the Activity class. Figure 5.3 shows the details of the

subclasses and their relationships. Execution of each activity further depends on the

availability of security tools and the preferences of an organization’s security

requirements.

A SOAR executes an orchestration routine to call individual security tools to

execute an activity. Execution of activities generates artifacts, i.e., system and alert logs.

Artifacts are also required before executing the activities. For each activity, a SOAR

performs a set of tasks T (i.e., select security tool and invoke security tool) to collect and

manage artifacts, automate, and track execution of the activities performed by the

security tools. The execution of these tasks generates further events, i.e., system found

and endpoint protection system running successfully, through which OnSOAR keeps

track of the tasks and the activities being executed by a security tool.

5.4.1.3 Capability

We define the capability of a security tool under the class Capability with two subclasses:

FunctionalCapability and NonFunctionalCapability. We consider each security tool can

be represented in terms of their functional and non-functional capability.

139

An Ontology-driven Integration of Security Tools 139

Definition 4.1. (Functional Capability). The functional capability is the capability

of a security tool to perform activities to achieve security objectives. We denote a set 𝔽 as

the functional capability of a security tool. Each security tool, 𝑠𝑖, can have a list of

functions denoted by 𝛿𝑠𝑖
 where 𝛿𝑠𝑖

⊂ 𝔽. For example, IntrusionDetection and

LogManagement support the activities DetectIncident and ManageLog, respectively.

Definition 4.2. (Non-Functional Capability). The non-functional capability is the

ability of a security tool to support the quality requirement, while providing the

functional features. Examples of a security tool’s non-functional capabilities include the

command syntax, input parameter format, and data type. For instance, alerts generated

by Snort in various file formats (i.e., CSV or binary) are considered as the non-functional

capability.

Each security tool has a different data structure, preferred configuration, generated

workflow and a way to share information with security experts [21-23, 72]. We define

these kinds of the knowledge required by OnSOAR to run and maintain a security tool

under non-functional capability. The Non-Functional capability class has three further

subclasses: Input, Output, and RuntimeEnvironment. The proposed ontology model

requires the Input class for executing an activity. The SnortInputForIntrusion has the

information to run Snort on IntrusionDetection mode. The Input class has the

configuration details for Snort in intrusion detection mode. We have designed the Output

class to capture different types of outputs that are generated by security tools after the

execution of an activity. The inputs and outputs of each security tool vary with the

activities executed and depend on the runtime environment. Whenever a new security

tool is installed in an organization, a security expert can populate the ontological model

by defining the capabilities of the installed security tool. More details on the relationship

between the classes are shown in Figure 5.4. Figure 5.5 shows some of the instances of

the SecurityTool, FunctionalCapability, Input and Output class.

5.4.1 Ontological Reasoning

Our proposed OnSOAR has a Reasoner that uses rule-based reasoning to derive the

semantic correlation among the activities, security tool and capabilities. We have defined

various rules within the ontology to provide inferred information and some constraints

140

An Ontology-driven Integration of Security Tools 140

Figure 5.4 The relationship between the SecurityTool class and subclass of the

Capability class

Figure 5.5 Instances of classes of the ontological model and their relationship with

other instances. Blue lines represent the data property of the instance of the class Input

and Output

for error-free integration. These rules help OnSOAR avoid ambiguity, while creating an

instance of classes. Based on the rule-based reasoning of an ontology, the Reasoner

provides the inferred information. For example, Figure 5.5 shows that SnortInstance

141

An Ontology-driven Integration of Security Tools 141

hasFuncCap IntrusionDetection, and hasOutput OutputForIntrusion.

OutputForIntrusion hasOutputType Alert. Based on the reasoning, the Reasoner infers

the relation SnortInstance hasOutputType Alert. Using the Reasoner, we can derive the

following information: “If Snort generates an alert in intrusion detection mode, then the

execution of activity DetectIncident by Snort must generate an alert while seeing

malicious traffic”.

We provide the examples of some rules (Rules 1 to 9) that are defined in our

ontology. The rules enable OnSOAR to satisfy the need for reliable automation of the

activities. These rules enable us to express the conditions about the occurrence or non-

occurrence of auto execution of the activities, the creation of instances, and tracking and

managing the activities of IRP. Each security tool must have at least one functional

capability to execute an activity (Rule 1). For example, Snort must have a functional

capability Intrusion Detection that can execute an activity detection intrusion. Auto-

execution of an activity requires at least one system with the functional capability

required to execute the activity (Rule 2 & 3).

The input and output of security tools need to be explicitly defined to be

integrated into a SOAR. For example, every security tool must have an input command

(Rule 4) so that OnSOAR can automatically invoke a security tool to execute different

types of activities. Most of the output produced by different security tools needs to have

an output file location from where the SOAR reads the file to interpret the output (Rule

5). For example, if Snort runs in intrusion detection mode and generates output, then the

output type must be an Alert (Rule 6).

We have also defined the rules for each security tool class. Rules 7 to 9 are

examples of such rules, where Rules 7 and 8 are dedicated to security tool SIEM and

Rule 9 is for IDS. We impose the criteria to categorize a security tool under a subclass

Rule 1: SecurityTool hasFuncCap min 1 FunctionalCapability

Rule 2: Activity requireUseOf exactly 1 SecurityTool

Rule 3: Activity requireFuncCap some FunctionalCapability

Rule 4: Input hasCommandSyntax some xsd:string

Rule 5: Output hasOutputFileLoc some xsd:string

Rule 6: OutputForIntrusion hasOutputType only Alert

142

An Ontology-driven Integration of Security Tools 142

of the SecurityTool class. For example, using Rules 7 and 8, we restrict the creation of a

SIEM system instance. Any instance of a SIEM system must satisfy Rules 7 and 8.

OnSOAR executes the activities sequentially; that causes the input to execute 𝑎𝑐𝑗+1 which

relies on the output of 𝑎𝑐𝑗. As a result, a security tool that is selected to execute 𝑎𝑐𝑗+1

must have access to the output of a security tool that executes 𝑎𝑐𝑗. For example, if Splunk

needs to analyze the alert log produced by Snort, it must have access to the output file of

Snort. As per our rules, if the Splunk input type is equivalent to the Snort output, then the

Splunk input file location must be the same as the Snort output file location. Similarly,

OnSOAR needs to have the authorization to invoke and stop every security tool that is

integrated into its platform.

5.4.2 Querying the Ontology

The semantic layer deploys a Query engine to extract the necessary features from the

ontology. The Query engine is responsible for communicating with our ontology. It

queries the ontology based on the requirement of an Interpreter. We designed a set of

queries for OnSOAR to retrieve the necessary information from the ontology. The queries

have three different structures, depending on the required information, as shown in Table

5.1. The Interpreter of the orchestration layer invokes the appropriate query to select the

security tools (Q1), functional capabilities required by the activities (Q2), and capabilities

of a security tool (Q3). Query Q3 has three different structures: query to extract the input

details, query to extract the output details and query about the runtime environment. If

an incident response process has an activity DetectIncident, and execution of that activity

requires the capability IntrusionDetection, then the Query engines queries the ontology

for a security tool that has the capability IntrusionDetection. Assuming an instance of

Snort is available, the query returns SnortInstance.

 Rule 7: SIEM hasFuncCap min 3 FunctionalCapability

 Rule 8: SIEM hasFuncCap some (EventManagement or EventMonitoring or

LogAnalysis or LogCollection or LogManagement)

 Rule 9: IDS hasFuncCap only (IntrusionDetection or PacketLogging or

PacketSniffing)

143

An Ontology-driven Integration of Security Tools 143

Table 5.1. Different types of query

Query Type Query Details

Q1 Query to identify the functional capability required to execute an activity 𝑎𝑐𝑗.

Q2
Query to search for a security software system 𝑠𝑖 that has functional

capability 𝔽.

Q3
Query to retrieve the non-functional capability required by 𝑠𝑖 to execute
functional capability Fa

5.5 SECURITY TOOL LAYER

The security tool layer consists of the various security tools. The security tools send

outputs to the collector of the data processing layer. The integration layer lies between

the security tool layer and the data processing layer, which mainly consist of the

integration mechanism through which security tools are integrated (chapter 3). Raw

events, system logs, network packets, alerts, security incidents, configuration changes,

or commands from experts are sent from the security tool layer. The security tool layer

also consists of tools to integrate the knowledge in the ontology and security tool. An

ontology Editor can also be deployed in the security layer to create, update and modify

the ontology classes. In this thesis, we consider a security team will update the ontology’s

details. Chapter 6 provides a set of APIs that can be used by security teams to interact

with the ontology. OnSOAR uses the reasoner in every step to check the consistency of

the operation that is performed via the editor. For example, if the editor attempts to create

an instance of Snort with functional capability MonitorFile, the reasoner considers the

ontology inconsistent because, based on rule 9, Snort has three capabilities that do not

include MonitorFile.

5.6 DATA PROCESSING LAYER

This section describes the process of automating the integration of security tools

performed in a data processing layer which is coordinated by the orchestration layer in

four stages: (i) interpretation of incident, (ii) identification of activities and functional

capabilities required to respond to an incident (iii) selection of security tools, and (iv)

formulation of command to invoke a security tool. The data processing layer mainly

144

An Ontology-driven Integration of Security Tools 144

consist of a collector, output handler and input handler. Given the logs collected from

different security tools, the Collector pre-processes the raw events data before sending

data to the Output handler. The output handler annotates the output with the context

details, such as types of log (i.e., Syslog, server logs, event logs, and message logs), the

location from where the logs (i.e., the directory) have been collected, the environment

(OS, endpoint, sensor, server) and timestamps.

5.6.1 Interpretation of the Incident

The output handler of data processing receives the output of a security tool from the

Collector. Upon receiving the alert event, it sends the output (i.e., alert log produced by

𝑠𝑖 Snort) to the Interpreter to interpret the incident type I. Figure 5.6 shows an example

process of interpreting the incident type from the alert log generated by a security tool.

To semantically interpret the incident, the interpreter first identifies a security tool 𝑠𝑖 that

generates the alert. It invokes the Query engine to get the output format of 𝑠𝑖 . Upon

receiving the output, it semantically annotates the incident type I among the list of

features in the alert. The Interpreter returns the annotated alert (e.g., alert type,

description, and source IP) to the Output handler and sends the incident I to the

Orchestrator to take the response action.

Figure 5.6 Example of sub processes of the integration process for interpreting the

incident

145

An Ontology-driven Integration of Security Tools 145

5.6.2 Identification of Capability to Respond to an Incident

Upon receiving the incident, I, the orchestrator looks for the possible IRP in the incident

response playbook. Assuming 𝑖𝑟𝑝𝑘 = {𝑎𝑐1, 𝑎𝑐2, 𝑎𝑐3} is the IRP for incident I, the

Orchestrator extracts the list of activities from 𝑖𝑟𝑝𝑘 and invokes the interpreter to

identify the functional capability required to perform an incident response against an

incident. For each activity, the Interpreter invokes the query engine to run query Q1 (

Table 5.1), which returns the functional capability required to execute an activity and

send it to the Orchestrator.

5.6.3 Selection of Security tools

According to the proposed scenario (5.2.2), the auto-execution of the IRP requires

OnSOAR to identify security tool𝑠𝑖 , with the functional capability 𝐹𝑎, to execute the

activity. The query Q2 is used to identify a security tool with functional capability 𝐹𝑎,

where 𝐹𝑎 ∈ 𝔽 (Figure 5.7). Each security tool has a relationship with the functional

capability class. The Interpreter queries the ontology to find the list of security tools

required to execute 𝑖𝑟𝑝𝑘.

Figure 5.7 Example of sub processes of the integration process for identification of

capabilities to automatically respond to an incident

146

An Ontology-driven Integration of Security Tools 146

5.6.4 Formulation of Commands to Invoke a Security tool

The Input constructor requires the knowledge to formulate the instruction to run 𝑠𝑖 in 𝐹𝑎

mode. The formulation of commands requires the Orchestrator to invoke the interpreter

to interpret the input features of a security tool. The ontological model has that

information as a data property in the Input class (5.4.1.3). The Interpreter invokes query

Q3 of Query engine to extract the details of the input command. The annotated inputs are

passed to the Input constructor, which ultimately generates the command details to

invoke a particular security tool (Figure 5.7).

In some cases, the execution of specific activities requires the output from previous

activities. The Input constructor needs to generate the script to invoke a security tool and

sends an integration command to execute the activities sequentially. To execute a

sequence of activities, the Input constructor needs the annotated output of the previous

activities. The Output handler is invoked to send the annotated output to the Input

constructor to execute this activity. OnSOAR also has a set of rules to manage

interoperability among the security tools. The Orchestrator controls the flow of the

operation in these cases and invokes appropriate modules, rules and queries to automate

the execution of 𝑖𝑟𝑝𝑘. The orchestration layer enables direct interpretation of the input

and output of security tools in order to make them interoperable.

This whole process of integration of security tools is automated by OnSOAR using the

proposed ontology, a set of rules and queries.

5.7 EXPERIMENTAL DESIGN AND SETUP

In this section, we describe the experimental setup used for demonstrating and evaluating

OnSOAR’s ability to automate the process of integrating various security tools. We have

developed the required components based on Figure 5.2.

5.7.1 Gathering Input Data for OnSOAR

We gathered a list of activities and identified the functional capabilities required to

execute these activities. Table 5.2 shows the part of the activities gathered. The activities were

extracted from the IRP for different types of attacks. We extracted the IRP from the website ServiceNow

for different incidents. We slightly modified the IRP to match with the capabilities of the security tools

we were using. We used the IRP for DDoS attack shown in

147

An Ontology-driven Integration of Security Tools 147

Table 5.3 for our experiment. The purpose of this experiment is to demonstrate

OnSOAR’s ability to automate the integration process that enables auto-execution of the

IRP in a SOAR platform.

Table 5.2. Functional capability mapped with activity

Activity Functional capability

𝑎𝑐1 Detect incident Intrusion detection F1

𝑎𝑐2 Collect alert log Log collection F2

𝑎𝑐3 Identify affected system Alert Analysis F3

𝑎𝑐4 Generate incident report Report generation F4

𝑎𝑐5 Sniff network packet Packet sniffing F5

𝑎𝑐6 Log network packet Packet Logging F6

𝑎𝑐7 Isolate affected node Node Isolation F7

𝑎𝑐8 Kill malicious process Process killing F8

𝑎𝑐9 Generate report Report Generation F9

𝑎𝑐10 Monitor Event Event monitoring F10

𝑎𝑐11 Manage log Log management F11

𝑎𝑐12 Investigate alert Alert analysis F3

𝑎𝑐13 Generate alerts Intrusion detection F1

𝑎𝑐14 Scan endpoint Intrusion detection F1

𝑎𝑐15 Remove malware Process killing F8

Table 5.3. Use case scenario with IRP

Incident type Incident response plan (IRP)

𝐼1 DDoS attack 𝑎𝑐2, 𝑎𝑐12, 𝑎𝑐5, 𝑎𝑐3, 𝑎𝑐13, 𝑎𝑐10, 𝑎𝑐7, 𝑎𝑐9

𝐼2 Malicious process 𝑎𝑐10, 𝑎𝑐11, 𝑎𝑐3, 𝑎𝑐9, 𝑎𝑐8

𝐼3 Malware 𝑎𝑐14, 𝑎𝑐12, 𝑎𝑐15, 𝑎𝑐9

5.7.2 Application Environment Setup

To set up the application environment, we chose three different types of security tools,

Snort as IDS, Splunk as SIEM and Limacharlie as EDR, that have the capabilities to

148

An Ontology-driven Integration of Security Tools 148

execute the activities of Table 5.2. Among these security tools, Snort and Limacharlie

are open source security tools, whereas Splunk is commercial. We used the free trial of

Splunk enterprise version due to its wide range of functional capabilities. We mapped the

functional capability of the security tools with Table 5.2, which gave δSplunk = {F2, F3,

F4, F9, F10, F11}, δSnort= {F1, F5, F6} and δLimacharlie = {F2, F7, F8, F12}. Both Limacharlie

and Splunk can perform other activities that are not listed here. We used a centralized

directory to collect alerts logs produced by Snort, the event and process log sent by a

Limacharlie sensor to a Limacharlie cloud and gathered the reports generated by Splunk.

We defined variables to preserve the information following from the application layer to

orchestration layer, for example, variable SystemFrom to store security tools that

produced the output and variable filePath to store the location of the output file (Sec 5.5).

We installed the Snort and Limacharlie sensor applications on the local host.

Limacharlie’s cloud server and Splunk’s server application were deployed on a virtual

machine. We also defined the detection and response rules for Limacharlie and Splunk.

5.7.3 Development of the Ontological Model

We developed the ontology of OnSOAR using protégé [184], an ontology editor. We

defined the details of the abovementioned three security tools, the capabilities of these

systems and activities of the incident response plan in the ontology. We used RDF/XML

serialization to store the ontology. We followed the similar approaches discussed in

section 5.4.1. We used the OntOlogy Pitfall Scanner [185] to evaluate the functional and

structural dimensions, conciseness, and completeness of the ontology. We maintained

the consistency of the ontology, while developing the concepts and populating it. We

defined the reasoning rules discussed in section 5.4.1 and used Pellet reasoner to remove

any ambiguity. Whenever any class instance does not satisfy the rules imposed on the

class, the ontology becomes inconsistent. The reasoner generated error notifications if it

found any inconsistency within the classes of the ontology. A violation of the restriction

imposed on the classes also caused the reasoner to give an error notification. Thus, the

reasoner ensured the consistency of our developed ontological model. We developed an

Interpreter to semantically interpret the input and output and communicate with an

orchestrator. We also developed a Query engine that can access the ontology through

149

An Ontology-driven Integration of Security Tools 149

SPARQL queries and an interpreter. We loaded the ontology meta model into an Apache

Jena Fuseki server, an open source SPARQL server.

5.7.4 Development of the Data Processing Layer

Language. We have used both Java and Python for developing OnSOAR. Splunk has an

SDK that allows interfacing with Java-based programs. It has a REST API to send a

command to a security tool through HTTP requests. Limacharlie has a Python API

available on GitHub. It is simply an interface to a REST API service. Whilst the API

provides an easy way to interface with Limacharlie services, it is not tool agnostic.

Because the Limacharlie API has been implemented in Python with the Limacharlie

package, the Limacharlie class in Java is not able to send commands to endpoints by

itself. It needs to execute Python scripts and passes the required arguments to the

appropriate command to an agent on an endpoint.

Module. We defined a task associated with each activity, as discussed in section 5.2.1.

We developed rules for the Collector, Output handler and the Input constructor to collect

the events log, interpret output and issue commands to invoke security tool(s). We

developed the processes described in sections 5.6.1, 5.6.2, 5.6.2, and 5.6.4 for automating

the process of integration. For example, to interpret the output of security tools, the

developed interpreter extracted the information about a security tool’s capabilities and

returned hash maps, which contain the information about the output file’s location and

the action that generated the output.

5.7.5 Baseline Approaches

We used two baseline approaches to perform comparative analysis: a manual integration

process (BL1) and an API-based integration process with a static interpreter (BL2).

In BL1, the response process depends on a human. The security team performed

the tasks using the security tool. For example, during the monitoring process, if the

security team found alerts, they looked in the playbook for the response actions or used

previous experience to investigate the alerts.

In the BL2 solution, we developed a set of APIs between security tools to automate

the sequence of activities. This process needed pre-developed APIs in both directions for

each security tool, i.e., API to send data from Splunk to Limacharlie, from Snort to Splunk

150

An Ontology-driven Integration of Security Tools 150

and Limacharlie to Splunk as well. The goal of these APIs was to capture the essential

expected capabilities of each security tool that allowed the implementation of the

interface by any that kinds of security tools. We developed a static interpreter along with

an output handler to automate responses for the DDoS attack in

Table 5.3.

5.8 EVALUATION

We have evaluated OnSOAR using the following Research Questions (RQ).

5.8.1 RQ1: How Effective is OnSOAR’s Process for Automating the Integration

of Security tools?

Motivation. OnSOAR leverages the semantic interpretation of both activities and

security tools’ capabilities to integrate security tools through the orchestration process.

However, the integration process still works if the APIs are designed and developed

between security tools. Thus, we would like to investigate whether the combination of

semantic integration and orchestration results in a better-automated process. The RQ1

answers how effective OnSOAR is in making security tools interoperable where one

system can directly use the output of another system as its input. It also investigates

whether or not the system interprets the output of a security tool to formulate the input

of another security tool with different capabilities.

Approaches. We used network traffic with malicious behavior that has DDoS attacks.

The Snort security tool generated alerts for the security incident I1 DDoS attack, which

triggers the whole integration process. We compared the process for OnSOAR with the

two baseline approaches. We monitored the actions performed by human experts for each

activity for the IRP of I1. We also considered the different numbers of APIs needed for

automation of the process using the BL2. Finally, we investigated the developed

OnSOAR to execute the same list of activities.

Results. Considering all three approaches use the same IRP, for each alert the security

team first searched for the alert types and then looked for the possible list of actions and,

based on the list, performed the actions. For the standard case, the staff used their

previous experience to select security tools to perform each activity. For example, to

perform the activities 𝑎𝑐2 and 𝑎𝑐12 , which are collect and investigate alerts logs, the

151

An Ontology-driven Integration of Security Tools 151

security team collected the alerts generated by Snort, and then uploaded those alerts to

Splunk. For this, the experts needed to log into Splunk manually and upload the alert logs

and then define the rules to investigate alerts. In case the same types of alerts were seen

next, the security team needed to go through the same manual process again. The expert

also needed to read the reports generated by Splunk and then send the commands to

Limacharlie to isolate the affected nodes. For similar types of alerts, the manual process

requires staff to repeat the same sequence of actions, which requires huge amounts of

man-hours and also delays the response process.

For BL2, APIs were available to perform the same sequence of actions. The APIs

used a shared directory, where Snort stored the alerts and Splunk collected those alerts.

A separate collector needed to be designed for each security tool to automate the process

and interpret which security tool produced the alerts. BL2 also required definitions of the

APIs for each function before the execution of an IRP. For example, execution of I1

required the design of eight different APIs for each activity, even though the number of

security tools was three. If the same set of operations needed to be performed in a

different host and server, the APIs would need to be redesigned to work with that host

and server.

With OnSOAR, once Snort generated the alerts, the Interpreter automatically

identified the incident as a DDoS attack and triggered the incident response process. We

discuss the effectiveness of OnSOAR regarding the challenges mentioned above.

OnSOAR chose the security tool based on its functional capabilities. It gathered the list

of the security tools that can perform the activities in the IRP for incident I1. The input

command syntax has the command needed by the security tools to run the security

software. The commandSyntax has the sequence of the parameters to formulate the

commands. Retrieving this information, OnSOAR successfully generated the scripts to

run Snort, Splunk and Limacharlie in a different mode. Thus, OnSOAR successfully

invoked each security tool to perform the sequence of activities without the intervention

of human experts. Our developed system executed all the activities where it generated

three different types of command to run Splunk in three different modes. We state that

the program removes the operational silos by enabling the security tool to execute

different activities.

152

An Ontology-driven Integration of Security Tools 152

Given the developed OnSOAR selected Splunk to execute the activity 𝑎𝑐2 , it

generated the configuration commands for Splunk to collect the Snort log. It queried the

Ontology to identify the input command to invoke Splunk to gather Snort alert logs, as

well as the location of the output of the Snort alert log. Based on the results, OnSOAR

generated the scripts to run Splunk to collect Snort output. Finally, it invoked Splunk to

analyze logs (𝑎𝑐3) that were based on the rules defined in Splunk to identify the affected

assets or cluster malicious assets. OnSOAR interpreted the output of the security tool to

formulate the input of another security tool with different capabilities. A similar process

is performed when OnSOAR selects Splunk to identify the malicious nodes and

Limacharlie to isolate those nodes (𝑎𝑐3). OnSOAR extracted the node details from Splunk

and generated the commands details for Limacharlie. Through the same process, the

system auto-executed a sequence of activities where the output of one system has been

used by another system. The system is able to interpret the data generated by the security

tool and also interpret the actions performed by the security tool. With BL2, the same

API that was used to send the Snort log to Splunk was not applicable. To interpret and

extract the message of Splunk, BL2 needed to define the rules in the interpreter and then

develop the API to send a message to Limacharlie.

From the evaluation of OnSOAR in comparison with traditional approaches, we

state our proposed approach for automating the process of integrating security tools

successfully executes the IRP. The same process can be used to automate a different

number of IRPs with different types of security tools, whereas, with BL2, new rules and

APIs needs to be defined for different IRPs.

5.8.2 RQ2: How Efficient is OnSOAR for Practical Use?

Motivation. During the ontology development process, OnSOAR needs a domain expert

to design the classes of security tool capabilities. Developing the ontology requires a

substantial understanding of the security tools being used. Another time-consuming

process is designing the incident response plan and orchestration process. If OnSOAR

cannot alleviate challenges related to the manual integration process, and substantial

efforts are needed to build the ontology, security experts may not be willing to use it in

practice.

153

An Ontology-driven Integration of Security Tools 153

Approaches. We introduced new incidents (I2 and I3) which includes a list of activities

and investigates the results of OnSOAR. Among these activities, some activities were

executed during incident I1, and some are new. For the new activities, we compared the

amount of effort required for OnSOAR in terms of the information an expert needed to

include in the ontology and the efforts of BL2 in terms of the number of new APIs

needing to be designed.

Results. For all the three incidents, the security team required a substantial understanding

of the security tools. Also, for both BL2 and OnSOAR, the IRP and the automation

processes must be defined. For BL2, the security team needed to select security tools,

develop the APIs accordingly, and then define the rules to automate the process. For

OnSOAR, the staff only need to define the capabilities of the security tools to execute

those activities. For the already-defined capabilities, no further action needs to be taken.

The same integration process of extracting incidents, selecting security tools, interpreting

output and formulating input works for executing the IRP for I2 and I3. The evaluation

shows that little effort and few changes are required in OnSOAR to change the IRP.

5.8.3 Threat to Validity

Our work is focused on security tools that are used by the SOC of an organization.

Gathering the security tool capabilities was challenging, as the information is not freely

accessible. The developed system is limited to security tools that are widely used, freely

available and open source. Currently, the evaluation of the proposed method is carried

out in a University laboratory environment, which also limits the scope of the experiment.

The proposed evaluation approach does not provide any quantitative measurement,

which we plan to carry out in future work.

5.9 RELATED WORK

Much research effort is dedicated to using security ontologies to formalize several

concepts in the cyber security domain [83, 179-181]. Such concepts include security

mechanisms, security objectives, attacks, alerts, threats, vulnerabilities, and

countermeasures. Most studies are focused on modelling various types of attacks using

ontologies [83, 186], whilst others use ontologies to detect and prevent attacks [180, 187].

None of the abovementioned ontologies can be used by SOAR to make security tools

154

An Ontology-driven Integration of Security Tools 154

work together as these ontologies do not have the capabilities of security tools to

streamline the incident response process.

Several studies [172, 180, 181] have developed ontologies to formalize

heterogenous threat intelligence information for cybersecurity tools. These studies focus

on providing effective ways of information sharing and exchanging among cybersecurity

communities. One study [172] has developed a Unified Cyber Security (UCO) ontology

by combining and mapping widely used ontologies, i.e., STIX and CybOX. UCO

provides a standard semantic representation of cybersecurity tools for information

integration and cyber situational awareness. Although UCO has enriched the threat

vocabulary, it does not provide any support for interoperability among heterogeneous

security tools. The work also lacks ontologies that SOARs can use to interpret the

activities performed by different security tools to make them work together as a

requirement for auto-execution of IRP.

Recently, a set of ontologies have been developed to enable tool-as-service

(TSPACE) for a cloud-based platform [158]. Ontologies are used to select and provision

tools, based on a stakeholder’s requirements, and semantically integrate the artifacts of

the tools. A platform provides the stakeholder with a set of tools by using the ontology

proposed by the authors; further stakeholders use those tools to perform the required

activities. Ontologies help stakeholders to deal with semantic conflicts that arise while

integrating multiple tools in the same platform. The ontologies of TSPACE do not

provide any support to automate the execution of activities or make the tools

interoperable. Thus, the ontologies are not applicable to SOAR. The features of the tools,

needed to make them interoperable and remove the operational silos, are not captured in

the ontologies of TSPACE. Unlike this generic work, our proposed OnSOAR provides

the features of security tools that address the issues of interoperability and

interpretability, and an automated process for integrating security tools, which can

execute their respective activities for working together without human intervention.

We have not found any other work that addresses the interpretability and

interoperability issues, which need to be addressed to integrate, automate and orchestrate

security tools’ activities for seamless incident response processes. Our thesis supports

the interoperability and interpretability issues by mapping the capabilities of the security

155

An Ontology-driven Integration of Security Tools 155

tools with the activities of the IRP and providing an orchestration process to automate

the execution of the IRP. Our ontology formalizes the security tools in detail by capturing

their functional and non-functional features. OnSOAR can interpret the capability of

security tools and generate the commands required to invoke a tool. Hence, it is uniquely

positioned to address the challenges. To the best of our knowledge, this is the first work

that has developed an ontology to automate the process of integrating security tools in

SOAR. The automation is achieved by enabling interpretability, interoperability, and

removing operational silos from multivendor heterogeneous security tools.

5.10 CHAPTER SUMMARY

We propose an ontology-driven approach to automating the process of integrating

different security tools in a security orchestration platform. By formalizing the concepts

of security tools, we aim to support automation in the integration process for security

tools that further enables interoperability among different security tools. We provide an

ontological model that characterizes all the concepts and relationships of SOAR

platforms that are required for the integration process. We assert that OnSOAR can

interpret the semantics of the output shared by different security tools and formulate the

input required by security tools. Furthermore, OnSOAR glues security tools to execute

the incident response process automatically. We have demonstrated the viability of the

proposed approach by developing and using a proof-of-concept system. The results show

that OnSOAR can (i) interpret the output of security tools, (ii) invoke a security tool to

analyze the data of anothersecurity tool and (iii) automate the integration process to

execute an incident response plan. We assert that our approach can minimize the

challenges characterized by the manual integration process and effectively automate the

integration process of different security tools. The findings from developing and

evaluating our approach enable us to believe that OnSOAR can be easily integrated with

an existing SOAR platform for the large-scale realization of security orchestration and

automation in an organization’s SOC.

156

Declarative API for Security Orchestration Platforms 156

Chapter 6

6 Declarative API for Security Orchestration

Platforms

The proposed semantic-based integration framework (chapter 4) and automated

process for integrating security tools (chapter 5) has simplified the way security tools

are combined in a security orchestration platform to automate an Incident Response

Process (IRP). As discussed in the previous chapters, the emerging and dynamic

threat landscape changes the underlying execution environment (i.e., security tools,

IRPs and components) of a security orchestration platform. However, the users of

security orchestration solutions have difficulty in adapting to these changes because

of the ad-hoc and complex architecture of such platforms. This chapter introduces a

Declarative API-driven Orchestration approach, DecOr, to resolve these

difficulties. DecOr forms the abstraction layer of our proposed layers in chapter 3.

DecOr comprises of (i) three sets of declarative APIs to encapsulate the activities

related to security orchestration, (ii) a semantic framework to support an Artificial

Intelligence (AI)-enabled design and generation of declarative APIs from task

descriptions, leveraging Natural Language Processing (NLP) techniques, and (iii) a

semi-automated approach to identify the concepts of an ontology from the available

playbooks (i.e., an automated IRP) that are required by a security orchestration

platform to automatically interpret the generated declarative APIs. We

experimentally evaluate the effectiveness and efficiency of our proposed approach

based on a benchmark of 147 task and declarative API pairs that are curated from a

set of real-world playbooks. The evaluation results show that DecOr accurately

generates declarative APIs in near real-time, with precision and recall values over

80%.

157

Declarative API for Security Orchestration Platforms 157

6.1 INTRODUCTION

The dynamic and unpredictable threat landscape causes constant change in the Incident

Response Process (IRP) and security tools, requiring the security orchestration and

automation platform (also known as Security Orchestration, Automation and Response

(SOAR or SOA)) to be easily adaptable and modifiable to the needs of a Security

Operation Centre (SOC) [21-23, 33, 159, 188].

The process of updating the relevant components of a SOAR platform is time-

consuming and may hinder faster responses as it involves interactions between different

levels of expertise and continuous human interventions [22, 26, 189]. In addition, a

SOAR platform is difficult to maintain, as it requires an extensive understanding of the

underlying libraries and infrastructures to accommodate changes. We assert that the

changes associated with the existing SOARs are usually designed in an ad-hoc manner

by blending several software components (i.e., proprietary, open-source or third party)

through a complex architecture. We believe that, despite the inherent complexity of the

existing solutions it should be possible to hide the complex design of SOARs behind an

easy-to-use and flexible user interface, so a security team does not need to worry about

the details of the libraries, plugins and tools to be used for an IRP.

The architectural complexity of a SOAR platform comes from different factors.

For example, to automate the execution of IRPs (i.e., defined in natural language), a

SOAR’s or playbook’s developers build the automated workflow (i.e., playbook) or write

executable scripts for IRPs [21-23]. The developed automated workflow is mostly static

and cannot be changed with changing needs. Besides this, multiple security tools are

required to execute an IRP. Security teams are expected to modify playbooks when

security tools are installed and/or modified. It is quite difficult to seamlessly modify and

develop new IRPs and integrate new security tools without fully knowing the playbooks

or libraries of a SOAR [22, 26, 189]. A security team needs to have extensive domain

expertise and understanding of the available tools, libraries and security requirements for

developing IRPs. A security team in a SOC uses SOAR for different purposes, such as

network administration or incident response planning. However, it should not be

necessary for him/her to have extensive domain knowledge about the underlying

execution environments.

158

Declarative API for Security Orchestration Platforms 158

Another factor contributing to the complexity is enabling interpretability and

interoperability between security tools and the SOAR. Semantic technologies (e.g.,

ontological knowledge bases, RDF and OWL) are usually leveraged to support

interpretability and interoperability among heterogeneous security tools and components

[21, 23, 159, 188]. In chapters 4 and 5, an ontology has been designed to semantically

describe the concepts of security tools, their actions, relationships between different

concepts and the categories of the concepts. Whilst the existing semantic-based solutions

automate the interpretation of security tools through semantic integration [21, 23, 159,

188], human experts still need to update the ontology whenever changes occur.

Development of an ontology requires substantial understanding of the domain of security

orchestration. Furthermore, to integrate an updated IRP, a human expert needs to map

that IRP with suitable concepts from an ontology, which further requires them to identify

the semantic concepts and the relationship between the different categories of the

ontology.

In this chapter, we propose an Artificial Intelligence (AI) enabled Declarative API

driven Orchestration approach, namely DecOr, to design a flexible, scalable and easy to

modify SOAR to overcome the above-mentioned challenges. DecOr enables end-users

of a SOAR to focus on the WHAT (e.g., run a playbook or block an IP) through a set of

declarative APIs (dAPI) that hides a SOAR’s operating complexities at different levels

of abstraction. The use of AI techniques, such as Natural Language Processing (NLP)

and semantic technologies, in designing dAPI enables easy adoption of changing IRPs

and security tools, which also contributes towards automating the manual and labor-

intensive tasks. The dAPIs are designed to provide the security team with flexibility to

define IRPs or execute their desired tasks without having detailed knowledge about the

underlying libraries and tools. We identify three sets of dAPIs: (i) orchestration API, (ii)

integration API and (iii) execution API, as shown in Figure 6.3 (discussed in section

6.3.2).

DecOr's input can be a text-based query or commands to perform a task in response

to a security incident. An organization’s security team can provide a description of the

tasks or use a dAPI to update IRPs or provide commands. We have categorized the main

operations of DecOr into two phases: understanding the commands or tasks and

159

Declarative API for Security Orchestration Platforms 159

interpreting dAPIs. For the first stage, we developed a semantic framework, SecAPIGen,

that accepts a command or task description and translates that into a dAPI. SecAPIGen

uses NLP techniques to interpret a command or task of SOAR and automatically

generates a dAPI. For example, to invoke a task “block the IP address using the

Checkpoint Firewall”, the generated dAPI is “block.IP.firewall(Checkpoint)”.

For the second stage of our DecOr, we have developed a semi-automated approach,

SemOnto, to identify concepts from IRP playbooks for the relevant ontology, which are

required to interpret a dAPI. SemOnto automatically extracts the properties of the

generated dAPI elements, which are incorporated in the form of the concepts of an

ontology. In this way, SemOnto reduces the burden on security teams, who manually

analyze and identify concepts for an ontology. We have modified the existing ontology

of a SOAR to map the generated dAPI elements with the classes of an ontology. Mapping

dAPIs with an ontology allows automated interpretation of dAPIs by a SOAR. Hence,

AI-enabled declarative API-driven orchestration, DecOr, enables automated adaption

and integration of IRPs and security tools by hiding the underlying complexity of the

SOAR.

We have evaluated the effectiveness and efficiency of our approach using 147 tasks

from 194 playbooks. Our evaluation explores three key questions: (i) How effective is

SecAPIGen in generating and identifying dAPIs for different tasks? (ii) Can SemOnto

identify the concepts of an ontology from a playbook? and (iii) How efficient is DecOr in

terms of required time? The results of our evaluation demonstrate the effectiveness of

using AI-based approaches (i.e., NLP and semantic technologies) to automate the

generation of a dAPI from a task description in terms of accuracy and response time.

Across the benchmark, DecOr generates dAPIs with precision and recall above 90% and

80% respectively. On average, for 90% of the cases, DecOr successfully identifies the

properties of the generated dAPI elements as a concept of ontology. Moreover, the

average response time to generate different parts of a dAPI is close to 170 milliseconds.

The following are the key contributions of this work:

• A set of requirements for designing three sets of dAPIs for AI-enabled dAPI driven

orchestration to integrate security tools and execute IRPs in a SOAR.

160

Declarative API for Security Orchestration Platforms 160

• A semantic framework, SecAPIGen, to automate the generation of dAPIs from task

descriptions by leveraging NLP tools and techniques. SecAPIGen allows both

technical and non-technical users to interact with a SOAR without requiring detailed

knowledge about the underlying libraries and configurations.

• A semi-automated approach, SemOnto, to identify the properties of the generated

dAPI elements as a part of the concepts of an ontology from the playbooks of a

SOAR.

• Design and execution of rigorous evaluation of the developed solution using 194

playbooks.

In section 6.2, we provide the background and preliminaries of security orchestration and

ontologies, and a detailed motivation scenario for proposing declarative API driven

orchestration. We describe the proposed approach in Section 6.3. The experiment design,

proof of concept system and evaluation of our proposed approach are discussed in

Section 4. Section 5 discusses the benefits, limitations, and future directions and

opportunities. Section 6.6 provides the related works. Section 6.7 concludes the chapter.

6.2 PRELIMINARIES AND MOTIVATION

This section provides the background information on the playbooks and ontology of a

SOAR platform. We start with an example playbook and provide a brief overview of the

ontology proposed in chapters 4 and 5. Then we introduce a running example that we use

to illustrate the motivations of this chapter. Finally, we formulate the problem and

introduce the key notations that are used throughout this chapter.

6.2.1 Playbook for Security Orchestration and Automation

A SOAR platform executes playbooks to respond to specific incidents. The playbooks

contain automated workflows designed from an IRP of an incident. The SOAR platform

developers or playbook designers explicitly code all possible action flows and forecast

all possible exceptions in a playbook. Figure 6.1 shows a code snippet of a playbook

from Demisto (i.e., a SOAR platform) [166]. The playbook script is written in YML

[190] and expresses the code for “blocking malicious IP using all available security

tools”. Figure 6.1(a) shows that a playbook has a set of tasks (line 13), inputs (line 430)

161

Declarative API for Security Orchestration Platforms 161

and outputs (line 439). Figure 6.1(b) shows a snippet of one of the tasks (line 91) of that

playbook. It shows that, to execute a task, a SOAR platform runs a script (line 93). The

details of the script, such as names and arguments, are also defined in a playbook (lines

100-108). The playbook also contains the names of the security tools (lines 8-11) that

will be used to execute a task (Figure 6.1(a)). For example, for a task block IP (Figure

6.1(b)), the security tool is “Checkpoint Firewall”. Several things can go wrong while

executing a playbook, such as a task may fail due to the unavailability of the scripts or

argument settings of security tools; or a security tool might not have the authority to

block a particular IP, making it impossible to execute a task and so forth.

(a) An example of the script of a playbook – Block IP (b) Code snippet of task block the IPs using Check Point Firewall

Figure 6.1 Example (a) snippet of a playbook for block IP which contains the list of

tasks, inputs and outputs of a playbook and (b) snippet of a task of a playbook to run a

script to “block IP with Check Point Firewall”, where the task consists of the script

arguments that are required to execute it

6.2.2 Ontological Knowledge Base

Whilst a playbook helps to bring automation in a SOAR platform, the interpretability and

interoperability of a SOAR platform are achieved by formalizing and storing the

semantic knowledge of security tools and IRPs in an ontological knowledge base. A

SOAR platform can automatically use a knowledge base to interpret the data generated

and ingested by heterogeneous security tools. We have analyzed different security tools

and built an ontology based on different security tools’ and playbooks’ activities (refer

to chapters 4 and 5). The key concepts in an ontological knowledge base are security

tools, their capabilities and tasks of IRPs (see Figure 6.2(a)).

162

Declarative API for Security Orchestration Platforms 162

A = select.capability (block.IP.firewall(checkpoint))

X = get.capability (A) Y = get.tool(X) B = interpret.input(Y) Z = get.input(Z)

C = select.tool (Y, Z) D = formulate.input(C, Z) E = execute.command(D)

(e) Declarative API driven orchestration

Dependency tree showing the dependency and POS

 block.IP.firewall(checkpoint)

(c) Modified ontology with semi automated

generation of concepts

(b) SPARQL query to extract required capability and tools

?y1: IP_blocking

SELECT ?y2 where

{ ?x Func_Cap IP_blocking .

 ?x hasFuncCap Func_Capability.

 ?x type ?y2.}

?y2: CheckPoint

 PaloAlto

SELECT ?y1 where

{ ?x Activity block_external_IP .

 ?x requireCap Func_Capability.

 ?x type ?y1.}

SPARQL Query Engine

CheckPoint

<type>

Firewall

SecurityTool

<type>

Activity

<type>

block

<type>

IP_blocking

Func_Capability

<type>

execute

requireCap

(a) Existing ontology

block_IP

<type>

Ɲ1: Block the IP using check point firewall

block_IP_use_CheckpointFirewall

<type>
block_external_IP

PaloAlto

<type>

<type>

Firewall

SecurityTool

<type>

Activity

<type>

block

block_IP

<type>IP_blocking

Func_Capability

hasFuncCap

<type>

execute

requireCapPaloAlto

<type>

CheckPoint

dobj

det

the check firewall

advcl dobj

VERB PRONDET Noun Noun NOUN

Block Using

Verb

compound compound

pointIPs

Security

 Staff

E
x
is

ti
n

g
 A

p
p

ro
a
c
h

P
ro

p
o

se
d

 A
p

p
ro

a
c
h

SecAPIGen

(d) Generating declarative API using dependency parsing

2

1

6

Q1

Q2

Declarative APIs

2

4

5

1

3

3

5

4

hasFuncCap

SemOnto

Figure 6.2 An example execution of a command based on the existing approaches of

semantic interpretation and integration and our proposed approach

Figure 6.2(a) shows an excerpt of an ontology for a SOAR platform proposed in

chapter 4. The ontology of Figure 6.2(a) has three key classes: SecurityTool, Activity and

Func_Capability. The classes are designed in such a way that a SOAR platform can

easily select the required category of security tools and automatically interpret their

capabilities (i.e., functionality, inputs and outputs) to execute a task. Security tools such

as Checkpoint and PaloAlto are categorized as a Firewall under the SecurityTool class

(see Figure 6.2(a)). The Func_Capability class presents the capabilities of security tools

that are required for the execution of an activity. The Activity class defines the tasks of a

SOAR platform (i.e., defined in a playbook) and actions of security tools. The task

descriptions are mapped with the Activity classes of an ontology. For example, the key

task of Figure 6.1 (i.e., blocking malicious IP using all available security tools) is

mapped with block_IP, which is a subclass of block that is categorized under Activity

class.

An ontology also shows the relationships (presented using an edge) between

classes. For example, Figure 6.2(a) shows the relationship between the SecurityTool class

163

Declarative API for Security Orchestration Platforms 163

and Activity class is execute. The SecurityTool class also has a relationship, hasFuncCap,

with FuncCapability class. The ontology of Figure 6.2(a) further shows that the

execution of an activity block_IP needs the capability IP_blocking and security tools of

type Firewall that have that capability. Considering these relationships between different

classes and the properties of each class, a SOAR platform interprets that Checkpoint and

PaloAlto (i.e., a type of Firewall) can execute the activity block_IP. Furthermore, the

rules are defined to maintain the consistency of the ontology. Using an ontology, a SOAR

platform generates the scripts to invoke security tools by querying inputs of security tools

that are selected to execute a task. To enable interpretability and interoperability, an

ontology needs to be continuously updated as a result of changes in IRPs and security

tools. A SOAR platform may fail to interpret the available data or may select the wrong

security tools if its ontology is not up to date.

The following subsection presents the difficulties with managing and updating

existing playbooks and ontology-based approaches adopted by a SOAR platform with a

scenario. Using the same scenario, it also highlights the potential benefits of using a set

of dAPIs for orchestration in a SOC.

6.2.3 Motivation Scenario

We provide a running example to illustrate the limitations of the existing approaches (i.e.,

playbooks and ontological knowledgebases) that are used to automate the execution of

IRPs and enable semantic interpretations and integrations of security tools in SOAR

platforms. We also show the motivation for, need and importance of the reported work

on dAPI.

Example 1. An organization needs to defend against DDoS (i.e., Distributed

Denial of Service) attacks. The idea is to design an IRP to scan the organization’s host

or endpoints for malicious activities, quarantine the affected endpoint and, if required,

block the malicious IPs. We assume an IRP is available to periodically scan an

organization’s infrastructure for malicious activities and isolate or quarantine the affected

endpoints. We further consider that such a system would require an IRP, a network to be

scanned and a security tool (or tools) to be used. The requirements can be gathered and

implemented in multiple ways to achieve the overall goal, which can be accomplished in

several ways. There might be a preferred ordering among different tasks that builds

164

Declarative API for Security Orchestration Platforms 164

orchestration (e.g., the task of visualizing the alerts data comes after the task of scanning).

In particular, some workflows are alternatives, while others operate in a particular

sequence.

We assume an IRP provided by an incident response planning team is (i) scan an

organization network, (ii) analyze the traffic, (iii) identify the affected endpoint, (iv)

isolate endpoint and (v) block malicious IPs. A playbook developer designs a playbook

for the corresponding IRP as an orchestration of the existing security tools' capabilities

and events. They may design different playbooks for each step, where the execution of

each step requires the following of a sequence of tasks. For example, Figure 6.1 shows a

playbook for a task (v) block Malicious IPs of an IRP. A SOAR platform or security team

executes the playbook when required. However, the emergent threat behaviors cause a

continuous change in a SOAR platform’s IRPs. As shown in Figure 6.1, a playbook is a

hardcoded script or code that is designed to execute a sequence of tasks. Security teams

may want to execute part of a playbook during the analysis of an incident, for example,

if security teams just want to perform the task shown in Figure 6.1(b). For this, a separate

playbook is needed that will perform the task in Figure 6.1(b). This incurs an overhead

of defining all the possible combinations of tasks in a playbook or designing a playbook

at runtime. Knowing all possible sequences of tasks is not possible due to the emergent

threat behavior. On the other hand, defining new playbooks requires knowledge about

the underlying libraries and security tools’ APIs.

Another alternative approach is to semantically represent and store security tools’

capabilities and tasks from playbooks in an ontology (as discussed in section 6.2.2)

instead of designing all possible playbooks. For this approach, we assume an ontology

designer formalizes the available security tools, their capabilities and tasks of the related

IRPs using semantic knowledge (e.g., Figure 6.2(a)). The corresponding query is also

designed to extract the relevant classes and instances from an ontology. Figure 6.2(b)

shows examples of SPARQL queries that are used to query an ontology. In many

instances, security teams need to select from the alternatives which tools to use, and

modify queries to get the required features. A SOAR platform is unable to execute IRPs

or interpret the security tools’ capabilities if these are not explicitly defined in an

ontology. For this reason, an ontology needs to be updated with changes in any playbook

165

Declarative API for Security Orchestration Platforms 165

or IRP. Adding a new IRP, modifying an IRP, or adding/modifying a security tool will

require the addition of a definition in an ontology if the tasks or security tools are new.

Irrespective of the approaches used (i.e., playbook or ontology), security teams should

be able to use a SOAR platform to modify and update IRPs and add new security tools.

Furthermore, a SOAR platform should be able to interpret an IRP and automate its

execution.

We assume a security team wants to express a task in the natural language form Ɲ1

= “Block IP with Check Point Firewall” instead of the task (v) block malicious IPs. An

ontological knowledge base of the existing security tools, their capabilities and activities

is available and Ɲ1 is mapped with the Activity class owl_ac1 =

“block_IP_use_checkpointFirewall” (step 1 Figure 6.2(a)). Next, the SPARQL queries

of Figure 6.2(b) are executed to identify the capability “IP_blocking” (step 2) and

security tools with that capability (step 4). The classes associated with the security tools

(i.e., Palo Alto [191] and Checkpoint [192]) are suggested to the security team (step 5).

The security team then selects a suitable class that represents the requested security tool.

A relationship is defined between checkpoint and owl_ac1 to automate the execution of

Ɲ1 with Checkpoint. If a SPARQL query is not available to identify a specific security

tool for a specific capability, the security team needs to design a suitable query, which

requires an understanding of the ontology and SPARQL.

We address these issues by designing a framework, SecAPIGen, to generate

different elements of a dAPI from Ɲ1. Figure 6.2(d) shows the dependency parsing of Ɲ1.

The SecAPIGen extracts the semantic relationships, based on the dependency parse tree

of Ɲ1 for generating dAPIs (step 1 Figure 6.2(d)) which is “block.IP.Firewall

(Checkpoint)”. SecAPIGen recommends a set of dAPIs to the security team (step 4),

through which they modify the plan, define new plans, integrate security tools and even

update the ontology (step 3). We resolved the issue of manual identification of an

ontology’s classes for each command by developing SemOnto, a semi-automated

approach to identify an ontology’s concepts. We modified the existing ontology (see

Figure 6.2(c)) using SemOnto, which maps the dAPIs with the classes of an ontology

(steps 2 and 3) and recommends a potential list of classes and their properties to the

security team (Step 3). SemOnto makes subclasses of block_IP, shown in Figure 6.2(a),

166

Declarative API for Security Orchestration Platforms 166

redundant. Using the dAPIs, the security team can easily execute task Ɲ1 by providing

the sequence of commands shown in Figure 6.2(e). The complexity of interacting with

the ontology, modifying the IRPs or selecting a security tool to execute a task is hidden

through dAPIs. The proposed approach of using dAPI-driven orchestration to execute

Ɲ1, as shown in Figure 6.2(e), also hides the complexity of interacting with different

components of the SOAR platform and makes the SOAR platform easy to manage and

interact with. In the following section, we formulate the components that we have

discussed previously (in sections 6.2.1, 6.2.2 and 6.2.3) and which are required to explain

our proposed approach, DecOr.

6.2.4 Problem Formulation

We formulate the problem considering the scenario discussed in section 6.2.3, where an

organization already has a set of security tools, S= {S1, S2… Si …}, a set of playbooks, Ƥ

= {Ƥ1, Ƥ2 … Ƥm …}, and an ontology O. Examples of Si include Snort, Splunk, Firewall

and so forth. Each playbook, Ƥm, provides an automated workflow of an IRP with a set

of tasks Ƭ, where T = {Ƭ1, Ƭ2… Ƭn …}. Each task T has an unstructured text description

Ɲ, input and output. Each IRP is a set of tasks and their descriptions, where the IRP =

{Ɲ1, Ɲ2… Ɲk …}. For simplicity of the experiments, this work only considers a task

description that contains an imperative and a simple sentence structure [193, 194]; hence,

we have not considered any complex or compound sentences (detailed in section 6.4.1.3).

The tasks of a playbook are mapped with the security tools’ capabilities. The function δ

(Si, Ƭn) defines that a security tool, Si, has the capability to perform a task Ƭn. The set of

security tools, tasks and capabilities are formalized in an ontology under the class

SecurityTool (𝑜𝑤𝑙_𝑠𝑡), Activity (𝑜𝑤𝑙_𝑎𝑐), and Capability (𝑜𝑤𝑙_𝑐𝑎𝑝) respectively. We

consider 𝑜𝑤𝑙_𝑐𝑙𝑎𝑠𝑠 to be the set of different types of classes of O, where 𝑜𝑤𝑙_𝑐𝑙𝑎𝑠𝑠 =

{𝑜𝑤𝑙𝑠𝑡 , 𝑜𝑤𝑙𝑎𝑐 , 𝑜𝑤𝑙𝑐𝑎𝑝 . . . 𝑜𝑤𝑙_𝑖𝑛𝑝𝑢𝑡, 𝑜𝑤𝑙_𝑜𝑢𝑡𝑝𝑢𝑡, 𝑜𝑤𝑙_𝑟𝑒 …}. For simplicity, again,

here we consider three major classes: 𝑜𝑤𝑙_𝑠𝑡, 𝑜𝑤𝑙_𝑎𝑐, and 𝑜𝑤𝑙_𝑐𝑎𝑝. The goal of this

work is to provide a dAPI-driven orchestration approach for the end-users of a SOAR

platform that enables easy ways to manage, interact and update IRPs and security tools.

Given an IRP or a single task description Ɲ, we identify the set of dAPIs (detailed in

section 6.3.2) that are required to execute Ɲ.

167

Declarative API for Security Orchestration Platforms 167

Definition (Declarative API-driven Orchestration). In declarative API-driven

orchestration, users provide a command (or a task) through a set of dAPIs, without

specifying the detailed steps and rules for its execution. The complex details are hidden

behind the commands. The security team do not define the sequence of actions that are

needed to execute the task.

Table 6.1 shows the summary of notations that are used in this chapter.

Table 6.1 Summary of Notations

Notation Meaning Notation Meaning

SOAR
Security orchestration and

automation
Ɲ

Task description in natural

language

SOC Security operation center δ Capability function

IRP Incident response process/ plan Ƭ Set of tasks

AI Artificial intelligence 𝒜I Set of integration APIs

NLP Natural language processing Ƥ Set of playbooks

dAPI Declarative APIs O Set of ontologies

Synset Synonym set 𝑎𝑖
Ɗ An element of 𝒜Ɗ

S Set of security tools 𝑎𝑖𝑗
Ɗ jth part of declarative API 𝑎𝑖

Ɗ

𝒜Ɗ Set of declarative APIs 𝑎𝑘
ξ
 An element of 𝒜ξ

𝒜ξ Set of execution APIs 𝑎𝑗
Ơ An element of 𝒜Ơ

𝒜Ơ Set of orchestration APIs 𝑎𝑗
𝐼 An element of 𝒜I

6.3 OUR APPROACH

This section presents our AI-enabled Declarative API-driven Orchestration approach,

DecOr. We first provide the overall structure of a system overview of Decor. We then

introduce (i) dAPIs that are designed to hide the inherent complexity of a SOAR from a

SOC (ii) SecAPIGen, a framework that automates the generation of the dAPIs from task

descriptions and (iii) SemOnto, which Semantically interprets the concepts of an

Ontology related to dAPIs, and recommend a possible set of an ontology’s classes.

6.3.1 Overview

Figure 6.3 provides an overview of our proposed approach for AI-enabled Declarative

API-driven Orchestration, DecOr. It comprises three core components: dAPIs,

SecAPIGen, and SemOnto. DecOr is built on top of an existing SOAR. Based on an in-

depth analysis of the SOAR’s activities, we designed three sets of dAPIs. Our approach

168

Declarative API for Security Orchestration Platforms 168

supports interactions between the SOAR and the security team through these three sets

of dAPIs.

Knowledge

Base

Ontology

SemOnto

Query Engine

Security Operation Centre

S
e
c
u

ri
ty

 T
o

o
ls

Legend

Existing

Components

Declarative

API

Proposed

Components

Modified

Components

Security Orchestration

Platform

E
x
e
c
u

ti
o

n
 A

P
I

In
te

g
ra

tio
n

 A
P

I

Orchestration API

SecAPIGen

Organisation Infrastructure

User Interface

Figure 6.3 System overview of DecOr; security tools, security operation center, the

playbooks, knowledge base and organizational infrastructure form the underlying

execution environment of a SOAR platform

Declarative APIs (dAPI) (section 6.3.2) The interactions among different

components of the SOAR and SOC are maintained using dAPIs. DecOr has three sets of

declarative APIs: orchestration APIs, integration APIs and execution APIs, which are

designed to manage tasks related to orchestration, integration and automation,

respectively. The set of orchestration APIs is mainly defined to support interaction

between the security team and the SOAR platform to define or update IRPs or running

playbooks. Some of examples of orchestration APIs include

“scan.traffic(malicious).IDS”, “block.IP”, and “run.playbook(alert.enrichment)”. We

design integration APIs to integrate and update an ontology’s concepts. Some examples

of the tasks that can be encapsulated through integration APIs include querying,

updating, or crafting the concepts of an ontology. The dAPI “get.tool” is an example of

an integration API. The set of execution APIs is designed to automatically interpret the

data generated and ingested by multiple security tools to execute an IRP. The tasks

encapsulated through the execution APIs are interpretation of the data generated by

security tools, identification of the commands’ parameters, formulation of the commands

to invoke security tools and so on. The dAPIs “interpret.input”, and

“formulate.command” are the examples of execution APIs.

169

Declarative API for Security Orchestration Platforms 169

SecAPIGen (section 6.3.3): SecAPIGen is a semantic framework that generates,

manages and recommends dAPIs leveraging NLP technologies (i.e., tools and

techniques). SemAPIGen provides a user interface to the SOC (Figure 6.3) through which

the security team can define new plans or request execution of an incident or a playbook.

Common forms of user interfaces are GUI, interactive dashboard or an IDE that provides

access to a dAPI and renders the activities’ responses according to the security

requirements. We consider two modes of a user interface: a novice mode for non-

technical users and an expert mode for technical users. On novice mode, SecAPIGen

receives text-based commands or imperative sentences (i.e., Ɲ1 = block the IPs using the

checkpoint Firewall) from the SOC. The commands or requests are passed to

SecAPIGen. pon receiving Ɲ1, SecAPIGen interprets the commands and identifies that

a block operation needs to be performed by a security tool, Checkpoint Firewall, on an

IP. On expert mode, the security team gives commands directly through the dAPIs (e.g.,

block.IP.Firewall(Checkpoint)) to SecAPIGen. Table 6.2 shows examples of dAPIs and

the corresponding task descriptions.

SemOnto (section 6.3.4): SemOnto gives SOC the flexibility to define their

ontology or modify the bootstrapping ontology (i.e., the existing ontology) with changing

playbooks and IRPs. The interactions of SemOnto and other components are exposed

through an integration API. SemOnto uses the integration API to query an ontology to

interpret the security tools’ data and integrate the knowledge about security tools with

the ontology. To execute dAPIs, a SOAR platform needs to understand the input and

output of the different components. SemOnto automatically identifies these details and

relationships among different components from the playbook of the SOAR platform. For

example, to perform a task “block the IPs using the checkpoint Firewall”, the SOAR

platform needs to interpret the IP and its properties and the Firewall’s inputs, which

SemOnto automatically extracts from the available playbooks.

6.3.2 DecOr Declarative API (dAPI)

We propose a semantic framework, SecAPIGen, leveraging NLP technologies to design

and generate a set of declarative APIs (dAPIs). We define a dAPI by combining similar

functions and mapping from a high level. For example, both the tasks “block malicious

IPs” and “block the IP with Checkpoint Firewall” come under the dAPI “block”. The

170

Declarative API for Security Orchestration Platforms 170

dAPI is used to provide direct commands without highlighting how the commands need

to be executed. In this section, we discuss the design and categories of dAPIs.

6.3.2.1 Description of dAPI

We consider 𝒜Ɗ as a set of dAPIs. Each dAPI, 𝑎𝑖
Ɗ ∈ 𝒜Ɗ has three parts 𝑎𝑖1

Ɗ , 𝑎𝑖2
Ɗ , and 𝑎𝑖3

Ɗ ,

as shown in Table 6.2. The first part, 𝑎𝑖1,
Ɗ consists of the key abstract functions such as

block, scan, verify and detonate. The second part, 𝑎𝑖2,
Ɗ provides an object (e.g., IP and

capability) on which a task needs to be performed. The third part, 𝑎𝑖3
Ɗ , identifies the

specific elements corresponding to an object (i.e., endpoint and ontology), which provide

fine-grained details about a task or the types of tools (i.e., firewall) to be used. The last

two parts of a dAPI take parameters that provide the modifiers or attributes of an object

and its components. For example, the task “block external IPs in the Firewall” specifies

the type of IPs. To capture these types of information, we designed 𝑎𝑖2
Ɗ and 𝑎𝑖3

Ɗ to take

parameters. Table 6.2 shows an example, “block.IP(external).firewall” where 𝑎𝑖2
Ɗ takes

“external” as a parameter. We have followed a systematic approach and proposed the

semantic framework SecAPIGen to generate a set of 𝒜Ɗ (the details are given in section

6.3.3). Enabling auto-creation of the APIs reduces human efforts to identify libraries

manually ident to execute a task. In the following subsections (i.e., sections 6.3.2.2,

6.3.2.3 and 6.3.2.4), we present the three sets of 𝒜Ɗ
.

Table 6.2 Examples of declarative APIs

 Description

Declarative API

First

Part
Second Part Third Part

𝑎1
Ɗ

Block the external IPs in the

Firewall
block IP(external) firewall

𝑎2
Ɗ

Interpret the capability of

checkpoint Firewall
interpret capability firewall(checkpoint)

𝑎3
Ɗ

Check the activity class block in

the ontology
check activity(block) ontology

6.3.2.2 Orchestration API to Update and Define New Plans

A SOC’s security team (e.g., an IRP planner) uses a set of orchestration API 𝒜Ơ
, where

𝒜Ơ ⊂ 𝒜Ɗ and 𝒜Ơ = {𝑎1
Ơ, 𝑎2

Ơ … 𝑎𝑖
Ơ … } to execute, modify or update IRPs without having

a detailed knowledge of the available security tools. Using 𝒜Ơ, a security team provides

171

Declarative API for Security Orchestration Platforms 171

commands to the SOAR platform or designs IRPs. 𝒜Ơ is built based on the available

IRPs and task descriptions of the existing playbooks. Each orchestration API 𝑎𝑖
Ơ is

dedicated to perform a specific type of task, such as scan, block and retrieve, as shown

in Table 6.3. Each API element has several variations, depending on the objects on which

a task is performed or the security tool that is used to perform a task. For example, Table

6.3 shows two variations of an API element block, where 𝑎1
Ơ:

block.IP.firewall(checkpoint) and 𝑎2
Ơ: block.IP(external).firewall. In both instances,

three elements of the two dAPIs are similar; they vary in terms of their parameters. 𝒜Ơ

is used to execute or update the existing plans or define the new plans of the SOAR

platform. The elements of dAPIs are mapped with classes of an ontology. For example,

the first part of the dAPI is categorized and mapped with Activity class, 𝑜𝑤𝑙_𝑎𝑐. In this

way, an ontology is modified and designed to have three levels of class, such as a class

block that has subclass block_IP, as shown in Figure 6.2(c).

Table 6.3 Examples of the selected set of orchestration APIs

API Example API Description

block
block.IP.firewall(checkpoint)

block.IP(external).Firewall

Perform block operations on IPs using

different types of security tools.

scan
scan.networktraffic

scan.Endpoint

Scan network traffic, host and other

resources for malicious behavior.

retrieve retrieve.information.account(user)
Retrieve information from different data

source(s).

verify
verify.account(source.user).address

(email)

Verify information such as account

details, email address, credentials and so

forth.

Unlike the existing ontology, which has a separate class for block_IP_firewall,

the modified ontology omits these sets of classes by mapping the activity with the

corresponding security tools. The details of a firewall are mapped under the SecurityTool

class, which enables us to systematically define the classes of an ontology and remove

ambiguity. In most cases, security teams use the orchestration API to interact with a

SOAR platform to execute or define an IRP or run a playbook. Changing threat behavior,

integration of new tools or modification of IRP, requires frequent access to and updates

172

Declarative API for Security Orchestration Platforms 172

of the orchestration API. Thus, changes and updates of 𝒜Ơ are more frequent than

integration APIs and execution APIs.

6.3.2.3 Integration APIs to Communicate with an Ontology

The goal of integration APIs is to automatically incorporate security tools’ details into

and from an ontology. We design a set of integration APIs 𝒜I, where 𝒜I ⊂ 𝒜Ɗ and 𝒜I

= {𝑎1
𝐼 , 𝑎2

𝐼 … 𝑎𝑖
𝐼 … } to interact with an ontology and integrate the security tools’ data. An

existing ontology is modified and extended to incorporate auto-identification of

semantics from the available playbooks of the SOAR platform. The interaction of the

SOAR platform with the ontological knowledge base is encapsulated through 𝒜I, which

encapsulates certain tasks such as querying an ontology, updating an ontology or crafting

the concept of ontology by analyzing a playbook. 𝒜I enables a SOAR platform to

integrate, interpret and select a security tool based on an IRP’s commands, and frees the

security team from knowing the details of the underlying query language (e.g., SPARQL)

or ontological knowledge base. For example, DecOr queries an ontology using

integration API “get.securityTool”. Table 6.4 shows examples of 𝒜I. For instance, if a

SOAR platform needs a security tool with the capability block, an ontology has a class

block. We have designed an 𝑎𝑖
𝐼 “check” to find out whether such a class exists in an

ontology and then another 𝑎𝑖
𝐼 “get” to query an ontology and retrieve the security tools’

details. An integration API “update” is used to update the features of a particular class

of an ontology, such as modify an ontology or add a new feature. nlike “update” or

“post”, dAPI is used to add new classes in an ontology.

6.3.2.4 Execution API to Invoke Security Tools

Execution APIs play an important role in making the process of integration and execution

seamless and automated. We have leveraged the process of automating the integration of

security tools proposed in chapter 5 and designed a set of execution APIs 𝒜ξ, where

𝒜ξ ⊂ 𝒜Ɗ and 𝒜ξ = {𝑎1
ξ
, 𝑎2

ξ
… 𝑎𝑖

ξ
… } to encapsulate the individual tasks of a process. In

this way, components can be designed individually without affecting each other’s

performance or exposing their functionalities through 𝒜ξ. For example, a process of

automated integration of security tools involves (i) selecting the security tools, (ii)

interpreting the security tools’ input and output features, (iii) checking the security tools’

173

Declarative API for Security Orchestration Platforms 173

capability, and then (iv) form the input commands to invoke the security tool and finally

(v) execute a given task.

Table 6.4 Examples of a selected set of integration APIs

API Example API Description

identify identify.activity.playbook
Identify the activity details from the playbook’s

description

validate validate.activity(scan).ontology Validate the new activity scan in an ontology

update update.output.ontology
Integrate the newly identified output into the

existing ontology

get get.activity(block) Query to select a class of an ontology

post post.input(IP) Query to create a class in an ontology

delete delete.tool(snort) Query to select and remove a class in an ontology

check check.activity(block) Check whether a class exists in an ontology

As an example, where one security tool needs to use the outputs of other security tools,

the process changes to (i) interpreting the security tools’ outputs, (ii) deconstructing the

outputs, then (iii) extracting the required features, (iv) interpreting the features, and

finally (v) formulating the inputs. We design 𝒜ξ to hide the details of the process of

automating the integration of security tools using semantic knowledge. Some of the

examples of integration APIs are “select.securityTool” and “interpret.capability”. The

interpretation of the security tools’ input and formation of the commands is done through

𝒜ξ. Thus, 𝒜ξ enables security teams to control and modify the process based on their

required task. Table 6.5 shows examples of 𝒜ξ that we have designed.

Similar to an orchestration API and integration API, an execution API 𝑎𝑖
ξ
 has

different parts. The first part 𝑎𝑖1
ξ

 defines the main tasks, such as select and interpret,

where the second part 𝑎𝑖12
ξ

 defines an object (i.e., security tools and input) on which a

task needs to be performed. We have designed the second part based on the classes of an

ontology. As most of the features are extracted from an ontology, an easy to map 𝑎𝑖
ξ
 with

an ontology helps to keep task execution seamless and interpretable. An example of a

process that uses 𝒜ξ to invoke security tools involves a combination of “select. tool”,

“interpret. capability” and “formulate. input”.

174

Declarative API for Security Orchestration Platforms 174

Table 6.5 Examples of a selected set of execution APIs

API Example API Description

select
select.tool.capability

select.capability

Select security tools from a list of available tools or

tools explicitly specified by the security team, and the

capabilities of the security tool required to perform an

action

interpret
interpret.output

interpret.input

Semantically interpret data generated and ingested by

security tools and different components of DecOr

deconstruct
deconstruct.input

deconstruct.command

Deconstruct generated outputs or commands to extract

required features

formulate
formulate.input

formulate.command

Formulate input commands of security tools based on

the script’s arguments

execute
execute.command

execute.script

Send execution commands or invoke security tools by

calling appropriate API with passing right arguments

in right formats

To select security tools, the first task is to get the list of the available security

tools and their inputs, outputs and the runtime environments to check the compatibility

of the security tool with the ongoing execution environment. For this reason, a query to

the ontology “get.securityTool.capability(IP_blocking)” is performed, which returns

Palo_Alto and Check_Point. To interpret security tools’ capabilities, an appropriate

security tool is selected. Next, to formulate the input, the features of a host are checked,

and an input is constructed. The security tools’ details are available in the ontology. After

formulating the command, “execute.command” is used to invoke a security tool that

executes the requested task. We leverage the existing work on building a semantic

knowledge base (i.e., an ontological model) to unify the heterogeneous security tools in

a structured way [171, 172, 188]. Our ontological model stores information about the

inputs required to invoke a security tool, for example, function calls, the number of

parameters, the list of parameters and also different variations of a single function call.

6.3.3 SecAPIGen: Semantic Framework for dAPI Generation

Figure 6.4 provides the system level overview of the SecAPIGen framework, which

generates and recommends dAPIs based on users’ requests. One of the main goals of

SecAPIGen is auto-generation of dAPIs, along with the parameters to execute a

command Ɲk. There are two aspects of automating the generation of a dAPI. First,

175

Declarative API for Security Orchestration Platforms 175

SecAPIGen needs to automate the generation of different elements of a dAPI. Second,

based on the generated dAPI, SecAPIGen should be able to identify semantically similar

dAPI elements (detailed in section 0) from the available dAPI list. For example, two

dAPIs “quarantine.endpoint” and “isolate.endpoint” are semantically similar and can

be mapped as a single dAPI.

Generate

Declarative API

Similarity

Computation

Find Similar

Declarative APIs

Recommend

Declarative APIs

Declarative

APIs

SecAPIGen Framework

SOAR User Interface

User (Expert) 2 User (Novice) 1 User (Novice) n

Figure 6.4 System overview of the SecAPIGen framework

As shown in Figure 6.4, SecAPIGen provides support for both novice (i.e., user

1) and expert users (i.e., user 2). In novice mode, a security team with little or no prior

knowledge about dAPIs and security tools directly provide text descriptions of a task

(e.g., “block a malicious IP”) that they want to carry out. SecAPIGen automatically

generates a dAPI from a task description using Algorithm 1 and Algorithm 2. In expert

mode, a security team who frequently interact with SOAR call on a dAPI related to a

task. For example, for “block the malicious IP”, instead of providing a text description,

the security team provides the dAPI with “block.malicious.IP”. SecAPIGen executes

“block.malicious.IP” which requires a language model to search for similar dAPIs and

recommend a suitable dAPI. Algorithm 3 identifies semantically similar dAPIs and

recommends the most similar dAPIs to security the experts. In both modes, modules

under the dashed box in Figure 6.4 are executed, where the dAPI generation module is

only executed for inputs from novice users. In the following sections, we present three

algorithms of SecAPIGen, using an example.

176

Declarative API for Security Orchestration Platforms 176

6.3.3.1 Automatic Generation of dAPIs from Task Description

We use dependency parsing [195, 196] to achieve our goal of automating the generation

of different parts of a dAPI, 𝑎𝑖
Ɗ. Dependency parsing extracts a dependency parse tree of

a sentence that represents grammatical structures of a sentence and defines the

relationships between a root word of a sentence and the words which modify the root

[195, 196]. It identifies both syntactical and semantic parsing of a sentence structure.

Syntactical parsing provides a parse tree, whereas the semantic analysis provides the

subject, object and different attributes of a sentence.

Token Token

dep

POS of

Token

Token

head

Token

head

dep

POS of

Token

head

Token

child

Block root VERB Block root VERB IP, In

The det DET IPs dobj PROP -

External amod ADJ IPs dobj PROPN -

IPs dobj PROP Block root VERB The,

External

In Prep ADP Block root VERB Firewall

The det DET Firewall pboj NOUN -

Firewall pobj NOUN In prep ADP the

dobj

Block IPsexternal

amod
det

the in the Firewall

prep

det

pboj

VERB PRONADJDET ADP DET NOUN

Block. IP (external). FirewallBlock the external IPs in the firewall

Natural Language Command Generated declarative API

(b) Dependency tree showing the dependency and POS for

 block the external IPs in the firewall
(c) The different linguistic associated with each word (here

token) of sentence block the external IPs in the firewall

(a) Dependency tree for block the IPs using check point firewall

Block the IPs using check point firewall

Natural Language Command

Block. IP. Firewall (Check point)

Generated declarative API

dobj

det

the check firewall

advcl dobj

VERB PRONDET Noun Noun NOUN

Block using

Verb

compound compound

pointIPs

Figure 6.5 Example of (a) dependency parsing for “block the IPs using checkpoint

Firewall” (b) dependency parsing for “block the external IP in the Firewall” and (c)

other linguistic features of a token (each word is considered as a token) such as token

head, token head dependency, and token child

Given a task description Ɲk, our problem is to automate the generation of a dAPI.

Figure 6.5(a) and Figure 6.5(b) show examples of dependency parsing for two tasks with

description Ɲ1 = “block the IPs using checkpoint Firewall” and Ɲ2 = “Block the external

IP in the Firewall”. An arrow shows the dependency between two words. Several types

of dependency (i.e., nominal subject and direct object) exist between different words of

177

Declarative API for Security Orchestration Platforms 177

a sentence [195-197]. We have used the spaCy NLP library to identify the dependencies

and parts of speech (POS) of different words [197]. The spaCy NLP library takes a

sentence and returns a dependency parse tree. Each node of a tree corresponds to a word

of a sentence and contains several features such as dependency, POS, and the

lemmatization form of a word (i.e. lemma). Figure 6.5(c) shows other linguistic features

associated with each word (i.e., each node of a parse tree).

The root of a dependency parse tree is considered as an ancestor of all other nodes

of a parse tree. From Figure 6.5(a) and Figure 6.5(b), we can see that the root of both

sentences is “block”. Usually, a root word is used to identify the main verb of a sentence.

We consider a root that POS is verb as the first part of a dAPI. Among many

dependencies, the most common ones are the nominal subject (nsubj) and direct object

(dobj). A nominal subject modifies a nonverbal predicate of a sentence, where an object

is either a direct object (dobj) of a root or a prepositional object (pobj) [196]. In Figure

6.5, “IP” is the dobj of the root. Other characteristics that we have considered are

modifiers of roots, objects and subjects, which are defined as a compound dependency

or attribute dependency. Another common dependency that we have considered is the

clausal complement (ccom) of a word. The compound words are a modifier of a

compound word sequence, where an attribute is any miscellaneous properties of an object

or subject. Leveraging these properties, we have designed Algorithm 1 to identify three

parts (i.e., API elements) of a dAPI, 𝑎𝑖
Ɗ where 𝑎𝑖

Ɗ = 𝑎𝑖1
Ɗ . 𝑎𝑖2

Ɗ . 𝑎𝑖3
Ɗ .

Algorithm 1 generates a declarative API, 𝑎𝑖
Ɗ, utilizing the dependency parsing

techniques that give a dependency parse tree of a sentence Ɲk. It considers the root of the

sentence Ɲk as the first part (𝑎𝑖1
Ɗ) of an API 𝑎𝑖

Ɗ (line 1). From lines 2-25, Algorithm 1

takes each child token of a root and considers the dependencies of each child with root.

If a root has a dependency of a nominal subject with its child, only then does Algorithm

1 consider the nominal subject in 𝑎𝑖1
Ɗ and the root in 𝑎𝑖2

Ɗ (lines 3-5). If a root has a direct

object dependency with a child, the word of that child is considered in the second part

𝑎𝑖2
Ɗ (lines 6-7). For cases where a child has a dependency of clausal complement with a

root, Algorithm 1 takes each node (that is the child of the root’s child) of that child

separately to identify the possible elements of a dAPI (lines 8-6). For each node of a child

with a dependency clausal complement, if a child is a nominal subject, it is considered

178

Declarative API for Security Orchestration Platforms 178

as 𝑎𝑖2
Ɗ and if a child is a direct object, it is assigned to 𝑎𝑖3

Ɗ (lines 11-15). Lines 17-24

consider the children of a child of root that has a dependency of preposition object and

assign it to 𝑎𝑖3
Ɗ . The operation discussed above is repeated for each child token of a root

which generates the elements (i.e., 𝑎𝑖1
Ɗ , 𝑎𝑖2

Ɗ and 𝑎𝑖3
Ɗ) of a dAPI 𝑎𝑖

Ɗ.

Algorithm 1. Generating a declarative API from task description using dependency parsing

Input: Dependency tree of Ɲk with dependency and Parts of Speech (POS) of each word

Output: Different parts of a dAPI 𝑎𝑖
Ɗ

1

2

Initialize 𝑡𝑜𝑘𝑒𝑛 ← root of the dependency tree, 𝑎𝑖1
Ɗ ← extract_text(token)

For each child ∈ token . children do

3
 IF dependency of a child is a nominal subject of root and POS of that child is “verb” or

“noun”

4 𝑎𝑖1
Ɗ ← extract_text(child)

5 𝑎𝑖2
Ɗ ← extract_text (token)

6
 ELSE IF dependency of a child is a direct object of root and POS of that child is “verb”

or “noun”

7 𝑎𝑖2
Ɗ ← extract_text(child)

8
 ELSE IF dependency of a child is an adverbial or clausal complement or modifier of root

& POS of that child is a “verb”

9 Consider the children of child

 For each node ∈ child . children do 10

11 IF dependency of a node is a nominal subject of child and POS of that node is “verb”

12 𝑎𝑖2
Ɗ ← extact_text(node)

13 ELSE IF dependency of a node is a direct object of child

14 𝑎𝑖3
Ɗ ← extract_text(node)

15 End IF

16 End For

17 ELSE IF dependency of a child is preposition and POS of a node is “adverbial position”

18

19

 Consider the children of child

 For each node ∈ child . children do

20
 IF dependency of a node is prepositional object of child and POS of node is a “verb”

or “noun”

21 𝑎𝑖3
Ɗ ← extract_text(node)

22 End IF

23 End For

24 End IF

25

26

End For

Return 𝑎𝑖1,
Ɗ 𝑎𝑖2

Ɗ , 𝑎𝑖3
Ɗ

Each object and subject have further modifiers (i.e., adverbial modifiers, noun

compound modifiers), which we utilized to get the properties of an object and subject

Ɲk. Consider an example task “block the external IPs in the Firewall”, where external is

a modifier (i.e., adjective modifier: amod) of IP (Figure 6.5(b)). Leveraging the modifier

179

Declarative API for Security Orchestration Platforms 179

dependencies, Algorithm 2 is designed to identify the parameters of 𝑎𝑖2
Ɗ and 𝑎𝑖3

Ɗ . Lines

1-6 take each of them separately and look for their modifier dependencies from the

corresponding parse tree. Several cases exist where a single object or subject has multiple

dependencies; for example, “send a message to the source user email address”. Here, the

“source user email” is considered as a modifier of the object address. Lines 8-21 identify

such forms of multiple modifiers of a dAPI element. Algorithm 2 returns the list of

parameters for 𝑎𝑖2
Ɗ and 𝑎𝑖3

Ɗ .

Algorithm 2. Identify declarative API (dAPI) parameters using dependency parsing

Input: Generated dAPI 𝑎𝑖
Ɗ= 𝑎𝑖1,

Ɗ 𝑎𝑖2
Ɗ , 𝑎𝑖3

Ɗ for Ɲk, and dependency tree of Ɲk with

dependency and Parts of Speech (POS) of each word

Output: List of dAPI elements’ parameters

1 For the second and third part of 𝑎𝑖
Ɗ

2

3

 𝑡𝑜𝑘𝑒𝑛 ← 𝑒𝑥𝑡𝑟𝑎𝑐𝑡_𝑡𝑜𝑘𝑒𝑛(𝑎𝑖𝑗
Ɗ)

 𝑡𝑜𝑘𝑒𝑛_param j ← identify_api_param (token, 𝑎𝑖𝑗
Ɗ)

4 remove 𝑎𝑖𝑗
Ɗ from 𝑡𝑜𝑘𝑒𝑛_param j

5 End For

6 Return 𝑡𝑜𝑘𝑒𝑛_𝑝𝑎𝑟𝑎𝑚 list

7 𝒊𝒅𝒆𝒏𝒕𝒊𝒇𝒚_𝒂𝒑𝒊_𝒑𝒂𝒓𝒂𝒎(𝑡𝑜𝑘𝑒𝑛, 𝑡𝑜𝑘𝑒𝑛_parameter)

8 Consider the children of token

For each child ∈ 𝑡𝑜𝑘𝑒𝑛 . children 9

10 IF dependency of a child is noun compound, adjective or adverbial modifier

11

12

13

 𝑡𝑜𝑘𝑒𝑛_𝑡𝑒𝑥𝑡 ← extract_text (𝑡𝑜𝑘𝑒𝑛)

 𝑛𝑒𝑤_𝑝𝑎𝑟𝑎𝑚_𝑙𝑖𝑠𝑡 ← extract_text (child) + . + token_text

 𝑡𝑜𝑘𝑒𝑛_𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 ← replace 𝑡𝑜𝑘𝑒𝑛_𝑣𝑎𝑙𝑢𝑒 with 𝑛𝑒𝑤_𝑝𝑎𝑟𝑎𝑚_𝑙𝑖𝑠𝑡 in

 𝑡𝑜𝑘𝑒𝑛_𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟

14

15

 Consider the children of child

 For each node ∈ child. Children

16 IF dependency of a node is noun compound, adjective or adverbial modifier

17 𝑡𝑜𝑘𝑒𝑛_parameter = 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑦_𝑎𝑝𝑖_𝑝𝑎𝑟𝑎𝑚(child, 𝑡𝑜𝑘𝑒𝑛_parameter)

18 End IF

19 End For

20 End IF

21

22

End For

Return 𝑡𝑜𝑘𝑒𝑛_parameter

6.3.3.2 Identifying Semantically Similar dAPIs

The problem in this section is to identify whether (i) the dAPI elements generated

using Algorithm 1 or (ii) a dAPI element provided by the security team exists in the

180

Declarative API for Security Orchestration Platforms 180

existing set of dAPIs 𝒜Ɗ with a different name. The dAPI elements generated using

Algorithm 1 may exist with a different name in the initial set of 𝒜Ɗ. The reason behind

this is the word ambiguity in defining a task. For example, both Ɲ3: “quarantine the

endpoint” and Ɲ4: “Isolate the affected endpoint”, are referring to a similar task.

Algorithm 1, generates two dAPI “quarantine.endpoint” and “isolate.endpoint”

respectively for Ɲ3 and Ɲ4. We consider “quarantine” and “isolate” as semantically

similar because both of them ultimately do similar types of tasks. Thus, we propose

Algorithm 3 to minimize the number of dAPIs in 𝒜Ɗ by linking these types of

semantically similar dAPI elements under a single dAPI element. For example, instead

of having both quarantine and isolate, 𝒜Ɗ has one dAPI element “quarantine” in its

first part, which is used to perform both Ɲ3 and Ɲ4.

Algorithm 3. Identify semantically similar declarative API (dAPI)

 Input: List of an initial set of declarative APIs 𝒜
Ɗ and generated declarative API 𝑎𝑛

Ɗ =
𝑎𝑛 1

Ɗ . 𝑎𝑛 2
Ɗ . 𝑎𝑛 3

Ɗ

Output: Suggested declarative API 𝑎𝑠
Ɗ

1 Initialize 𝑎𝑠
Ɗ ← 𝑎𝑛

Ɗ, 𝑚𝑎𝑥_𝑠𝑐𝑜𝑟𝑒 ← 0, 𝑠𝑖𝑚_𝑠𝑐𝑜𝑟𝑒

2 IF 𝑎𝑛𝑖
Ɗ not in 𝒜Ɗ:

3 For each 𝑎𝑛𝑗
Ɗ ∈ 𝑎𝑖

Ɗ:

4 For each 𝑎𝑖𝑗
Ɗ ∈ 𝒜𝑗

Ɗ :

5 Syn_api = return the synonym set of 𝑎𝑖𝑗
Ɗ from Wordnet synsets

6 Syn_newapi= return synonym set of 𝑎𝑛𝑖𝑗
Ɗ from Wordnet synsets

7 For each s_api ∈ Syn_api:

8 For each s_newapi ∈ Syn_api:

9 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦_𝑠𝑐𝑜𝑟𝑒 = the similarity between s_api and s_newapi

10 IF 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦_𝑠𝑐𝑜𝑟𝑒 ≥ 𝑠𝑖𝑚_𝑠𝑐𝑜𝑟𝑒 and Pos of s_api is equal to Pos of

s_newapi:

11 IF 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦_𝑠𝑐𝑜𝑟𝑒 > 𝑚𝑎𝑥_𝑠𝑐𝑜𝑟𝑒 :

12

13

 𝑚𝑎𝑥_𝑠𝑐𝑜𝑟𝑒 ← 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦_𝑠𝑐𝑜𝑟𝑒

𝑎𝑠𝑗
Ɗ ← 𝑎𝑖𝑗

Ɗ

14 End IF

15 End IF

16 End For

17 End For

18 End For

19 End IF

20 Return 𝑎𝑠
Ɗ

Algorithm 3 identifies semantically similar words that remove word ambiguity and

represent a set of tasks with a minimal set of dAPIs. The reason behind representing an

181

Declarative API for Security Orchestration Platforms 181

abstract set of functions with a set of minimum dAPI elements is to keep the ontology

and commands (i.e., dAPI) straightforward, which enables security teams to easily

accommodate the set of commands supported by DecOr.

Two critical issues with a dAPI generated using Algorithm 1 or provided by expert

users are (i) how to identify whether a dAPI element is semantically similar to the

available list of dAPI elements and (ii) how to address the ambiguity of natural language

Ɲ. Algorithm 3 considers each part (ai1
Ɗ , ai2

Ɗ and ai3,
Ɗ) of a dAPI ai

Ɗ that is generated

using Algorithm 1 (lines 1-2). Algorithm 3 utilizes the concepts of Word-Net, which is a

lexical database (i.e., dictionary for the English language) [198-200], mainly used for

NLP related tasks. For each part aij
Ɗ of ai

Ɗ, Algorithm 3 finds semantically similar words

of aij
Ɗ by considering the lexical structure of the two words and the semantics of sense of

these words (lines 3-19). For example, NLTK has an interface (i.e., synset) to look up

words in WordNet, which returns the instances of a synonymous set (synset) [198-200].

Synonymous words that express similar concepts are grouped together and return as

instances of a synset. A single word can have one synset or multiple synsets, depending

on the datasets used to build Wordnet.

Algorithm 3 calls Wordnet.synset(words) to get a list of synonym words and

calculates the similarity score between two words (lines 7-17). The similarity score

indicates how close the two words are in terms of their semantics. We consider different

types of similarity metrics (e.g., Wu-Palmer metric and Resnik) [200, 201] to compare

the semantic similarity (line 9). We define a threshold for the similarity score, 𝑠𝑖𝑚_𝑠𝑐𝑜𝑟𝑒

and discard words with a similarity score lower than the threshold (line 10). The

similarity function and similarity scores’ threshold were chosen during the experiment,

as discussed in section 6.4.2.1. The input of Algorithm 3 can also be a dAPI from an

expert user. The same set of steps are carried on to identify whether the provided dAPI

exists or not. We consider that for some queries or commands a SOAR platform might

not have any dAPI. This can happen when a SOAR platform does not have any IRPs or

playbooks to perform the requested tasks, or the security tools that are required to execute

the requested task.

182

Declarative API for Security Orchestration Platforms 182

SecAPIGen automatically generates different parts of a dAPI, leveraging NLP

techniques. These API elements are further required to incorporate into an existing

ontology [21, 23, 159, 188] of the SOAR platform to keep its ontology up to date and

enable automatic interpretation of activities, inputs and outputs. We consider a

bootstrapping ontology (i.e., the existing ontology) is available for semantic

interpretation of security tools and activities which are utilized by the SOAR platform to

execute an IRP [21, 23, 159, 188]. In the next section, we provide a semi-automated

approach to identify properties of generated dAPI elements from the detailed descriptions

(i.e., inputs, outputs, and scripts) of available playbooks.

6.3.4 SemOnto: Identification of Ontological Concepts from Playbooks

We map the generated dAPI elements with the classes of an ontology, so that a SOAR

can interpret a dAPI. For example, as shown in Figure 6.2(c) dAPI “block.IP” is mapped

with an Activity class 𝑜𝑤𝑙_𝑎𝑐i: block which has a subclass block_IP. To select a security-

suitable tool for executing “block.IP”, a SOAR must semantically interpret what an “IP”

is and find the properties of an IP. The reason is that, instead of “block.IP”, the command

could be “block.account”. Here, a SOAR needs to semantically differentiate “IP” and

“account”, as it might require two different security tools to execute these two tasks.

Furthermore, the properties of an account (i.e., type, domain, and user) may vary,

depending on the task, which might also require different types of security tools to block

it. As a result, the ontology of a SOAR needs to have classes that formalize IP and

account. It enables the SOAR to extract information for interpreting and selecting

security tools for providing IP and account as inputs. It also reflects the properties of a

particular class of an ontology. For example, consider a class Account that has specific

properties, such as type, email and username. A playbook has the detail of the input and

output descriptions (Figure 6.1), which can be utilized to identify those properties of a

dAPI element that are required by a SOAR platform to invoke a security tool.

We provide a semi-automated approach, SemOnto, to identify the properties of a

dAPI element from available playbooks, which are further incorporated as concepts (i.e.,

class, subclass and link between two classes) of an ontology. These properties are

required by a SOAR platform to automate the interpretation of a dAPI and generate the

183

Declarative API for Security Orchestration Platforms 183

commands or scripts required to invoke a security tool for execution of a task. SemOnto

analyzes a playbook to extract the key features of a task.

As the structure of playbooks may vary from vendor to vendor, the key features

(i.e., input, output and tasks) of a playbook that SemOnto is required to analyze are

provided manually by human experts. Each playbook has a sequence of tasks that are

performed by different security tools and a SOAR platform. As a result, identifying the

inputs and outputs of a task also reflects the inputs and outputs of the security tools. In

this work, we have considered the playbooks of Demisto, a collaborative playbook that

provides output in the form of an output context path (lines 440-452 of Figure 6.1(a)).

The context path is a dot-notation representation of the path to access the context object

of an incident. SemOnto analyzes the output context path of Demisto’s available

playbooks to understand the key properties associated with a dAPI element (e.g., IP,

email and account). We have designed Algorithm 4, which is at the core of SemOnto, to

identify the key concepts (i.e., the properties of dAPI elements) of an ontology,

relationships between classes and the data properties of a class.

Algorithm 4. Identification of ontological concepts from a playbooks’ description

Input: Set of playbooks

Output: Set of classes and class properties

1 Extract the input, output and context path from the playbook and pre-process the data.

2

3

Extract context path from the output and build a dictionary, 𝐿𝑖𝑠𝑡_𝑜𝑏𝑗 separating the

objects in the context path

For each pair of adjacent objects (𝑜𝑏𝑗𝑖 . 𝑜𝑏𝑗𝑘) in the context path

4 Calculate the occurrence of each pair and store in an adjacent matrix 𝐴𝑑𝑗_𝑚𝑎𝑡.

5 End For

6
For each object 𝑜𝑏𝑗𝑖 in 𝐿𝑖𝑠𝑡_𝑜𝑏𝑗, consider all the rows and columns in the 𝐴𝑑𝑗_𝑚𝑎𝑡

associated with 𝑜𝑏𝑗𝑖

7 IF all the row of 𝐴𝑑𝑗_𝑚𝑎𝑡 for 𝑜𝑏𝑗𝑖is zero, assign the type(𝑜𝑏𝑗𝑖) as a class object

8 ELSE IF all the column of 𝐴𝑑𝑗_𝑚𝑎𝑡 for 𝑜𝑏𝑗𝑖 is zero, assign the type(𝑜𝑏𝑗𝑖) as attribute

9

10

End For

For each object pair (𝑜𝑏𝑗𝑖 𝑜𝑏𝑗𝑘) in 𝐴𝑑𝑗_𝑚𝑎𝑡 where 𝐴𝑑𝑗_𝑚𝑎𝑡 (𝑜𝑏𝑗𝑖 𝑜𝑏𝑗𝑘) is not zero:

11 IF both type(𝑜𝑏𝑗𝑖) and type(𝑜𝑏𝑗𝑘) are class then 𝑜𝑏𝑗𝑖has a relation with 𝑜𝑏𝑗𝑘:

12
 IF the properties of 𝑜𝑏𝑗𝑘 properties of 𝑜𝑏𝑗𝑖, 𝐴𝑑𝑗_𝑚𝑎𝑡 (𝑜𝑏𝑗𝑘 𝑜𝑏𝑗𝑖) is 0 then 𝑜𝑏𝑗𝑘 is a

subclass of 𝑜𝑏𝑗𝑖

13
 ELSE IF type(𝑜𝑏𝑗𝑖) is a class and type(𝑜𝑏𝑗𝑘) is an attribute, then 𝑜𝑏𝑗𝑘 is a data

property of 𝑜𝑏𝑗𝑖

14 End For

15 Return the class list with the properties

184

Declarative API for Security Orchestration Platforms 184

Algorithm 4 takes each context path and separate objects from a context path based

on the dot (.) and builds a vocabulary for objects (lines 1-2). We have found that the

objects are similar to different parts of a dAPI element, except the first part refers to an

action (i.e., block, scan and isolate). Algorithm 4 develops an adjacent matrix 𝐴𝑑𝑗_𝑚𝑎𝑡

that stores neighbors of each object in an ordered form to highlight the occurrence of

pairs of objects (lines 3-5). For an ordered pair 𝑜𝑏𝑗𝑖.𝑜𝑏𝑗𝑘, 𝐴𝑑𝑗_𝑚𝑎𝑡[𝑜𝑏𝑗𝑖][𝑜𝑏𝑗𝑘] = total

number of occurrences of 𝑜𝑏𝑗𝑖.𝑜𝑏𝑗𝑘 . For example, if a pair “account. email” is seen in 20

output context paths, 𝐴𝑑𝑗_𝑚𝑎𝑡[𝑎𝑐𝑐𝑜𝑢𝑛𝑡][𝑒𝑚𝑎𝑖𝑙] = 20. If “email. account” is not seen

in any of the context paths other than 𝐴𝑑𝑗_𝑚𝑎𝑡[email][account] = 0. The order of the

objects’ pair in the context path is considered as identifying the classes, their data

properties and object properties. The order of the pairs of objects can also be shown as a

directed graph (Figure 6.6(a)).

Lines 6-9 consider each object and its adjacency matrix to identify the classes and

properties of the classes of an ontology. If all rows of an object are zero, Algorithm 4

considers that object as a class (line 7). On the other hand, if all columns for an object

are zero, then that object is considered as a data property (line 8). For example, based on

the graph in Figure 6.6(a), which shows the ordered pairs of objects, account, email and

domain are considered as classes of an ontology. For each pair, Algorithm 4 uses the

adjacency matrix to identify related classes and attributes (both data property and object

property) of each class (lines 10-14). If for two objects 𝑜𝑏𝑗𝑖 and

𝑜𝑏𝑗𝑘, 𝐴𝑑𝑗_𝑚𝑎𝑡[𝑜𝑏𝑗𝑖][𝑜𝑏𝑗𝑘] is not zero, then it considers a relation (i.e., an object

property) exists between these two classes (line 11). If 𝐴𝑑𝑗_𝑚𝑎𝑡[𝑜𝑏𝑗𝑖][𝑜𝑏𝑗𝑘] is zero, then

𝑜𝑏𝑗𝑘 is considered as a data property of 𝑜𝑏𝑗𝑖 (line 13). Figure 6.6(a) shows an example

where email is an object property of account and domain is an object property of email.

It also shows the account class has the data properties id, username and type.

The heat map of Figure 6.6(b) shows the frequencies of each pair of objects that

occur together. The x-axis indicates an object and the y-axis indicates the neighbors of

that object. It shows which two objects are related. SemOnto generates such heatmaps to

provide insight about the related objects that are identified by Algorithm 4. The

relationships of Figure 6.6(a) can also be noticed in the heatmap of Figure 6.6(b).

SemOnto automatically generates the discussed properties by analyzing playbook data.

185

Declarative API for Security Orchestration Platforms 185

It can identify whether two classes are related. However, the name of the object property

is not automatically generated by SemOnto, which requires an expert to define the object

properties. The heatmap can be used by domain experts to verify the identified concepts

and define the relationship of the related classes.

email

id

type

name

address

User

name

analysis

id

domain

account

 (a) (b)

Figure 6.6 (a) Examples of classes and properties of the classes account, email and

domain that are automatically analyzed (b) Part of a heat map generated from context

paths of the Demisto playbook, showing the properties of classes of an ontology. The

Y-axis indicates class and the X-axis indicates the properties of a class.

DecOr uses SemOnto to identify properties of a dAPI element generated by

SecAPIGen and the relationships between different dAPI elements. SemOnto automates

the generation of semantic definitions of different dAPI elements from playbooks’

descriptions. It should be noted that playbooks from different vendors might have

different structures. To extract features from playbooks with different structures, a

human expert (e.g., playbook designer) needs to define the key fields of their playbooks

(i.e., description, tasks, inputs and outputs) to SemOnto. SemOnto can be modified to

identify the relevant ontological concepts of dAPI elements from different types of

playbooks. As the focus of this chapter is mainly on design and automatic generation of

dAPIs, this chapter does not show how SemOnto automatically integrates new concepts

to update an ontology. However, SemOnto can be modified to fully or partially update

an ontology, depending on the features of security tools and playbooks. To do so, first,

the concept of the ontology can be identified by analyzing the input and output

descriptions of available playbooks. Then SemOnto can integrate new classes or features

of classes with an existing ontology. Before integrating the latest concepts, SemOnto

must check whether the class exists in an ontology and verify the consistency. Depending

186

Declarative API for Security Orchestration Platforms 186

on an organization’s preference, the security team can either modify the concepts or use

the standard defined or imposed by a SOAR platform.

The integration of new concepts generated through SemOnto with a bootstrapping

ontology is two-fold. Firstly, it performs a manual update and secondly, a semi-

automated update. In the manual update, SemOnto suggests a form to the experts to fill

in when they make any changes in the underlying execution environment. For example,

if a new security tool is added, it requests the security tool’s name, type, functional

capabilities, input, output and runtime environment. For a semi-automated update,

SemOnto uses the playbook to interpret the input and output, identify key classes of

ontology from the playbook and recommends them to users. It minimizes the overhead

of users manually identifying the concepts. Furthermore, upon being verified by users,

dAPIs are used to include new concepts and update an ontology. For example, an

organization has a new security tool, Firewall that they want to integrate. Three

integration APIs are used to identify (identify.SecurityTool(firewall).ontology) and

validate (validate.securityTool(firewall).ontology) the concepts of the ontology and

further integrate (integrate.ontology) them with the bootstrapping ontology (as shown in

Figure 6.2(e)).

6.4 EXPERIMENT

This section presents the experimental setups, implementation details and evaluation

procedures that we have followed to answer the main Research Questions (RQ) for

evaluation.

• RQ1. How effective is SecAPIGen in generating and identifying dAPIs for different

tasks?

• RQ2. Can SemOnto identify the concepts of an ontology from a playbook?

• RQ3. How efficient is DecOr in terms of time?

The goal of these RQs is to evaluate the effectiveness and efficiency of AI technologies

to generate dAPIs that support a paradigm shift from traditional SOAR solutions. Section

6.4.1 discusses how we have performed the experiments and section 6.4.2 presents the

results we obtained.

187

Declarative API for Security Orchestration Platforms 187

6.4.1 Data Collection and Tool Implementation

In this section, we describe the data collection, experimental design and tool

implementation procedure that we followed for the evaluation of our proposed approach,

DecOr. We used a computer as our experiment environment that has the following

configuration: Intel(R) Core™ i7-6600U CPU, 8GB RAM, and Window 10 (64-bit).

6.4.1.1 Task and Object Corpus

We downloaded the open-source playbooks of Demisto [166, 189]. A playbook of

Demisto is written in YAML format. We extracted the descriptions of the available

playbooks’ tasks with a focus on generating dAPIs. We separated each task’s description

from the details of each task to build a task corpus (Figure 6.1). We further extracted

outputs descriptions from each playbook and extracted the context paths from each

output with a focus on generating the properties of dAPI elements from the output context

path. We extracted the objects from the context path that were similar to the dAPI

elements. Table 6.6 shows the statistics of the data that we collected in this way, which

consist of 2000 unique task descriptions, 194 unique descriptions of the playbook, 448

unique context paths and 292 unique objects.

Table 6.6 Statistics of Demisto playbook

Features Number

Number of playbooks 194

Number of tasks 2000

Number of context paths 448

Number of objects 292

6.4.1.2 Benchmark for Generation of dAPI

The results from using NLP to automate the generation of particular information are

usually evaluated based on a benchmark data set [202]. Most of the time, these

benchmarks are manually annotated by human experts [202-204]. Unfortunately, there

was no such corpus for the dAPIs of a SOAR platform that we could use as a reference

benchmark. One of the key reasons behind this situation may be that SOAR platform

technologies are still in their early stages of development, evaluation and adoption. To

the best of our knowledge, this work is the first one to identify the requirements and

188

Declarative API for Security Orchestration Platforms 188

design of dAPI for a SOAR platform. That is why we decided to develop the required

benchmark based on the textual descriptions of the tasks, e.g., line 92 of Figure 6.1(b)

explicitly describes what task it performs and which security tool it uses. The text

description of a task can be considered as an input to SecAPIGen. Following that, dAPI

can be manually assigned each task which can also be used as a ground truth. As a result,

we manually labeled the dAPIs for 147 tasks that were selected from the playbooks’ task

corpus. We considered each task as a query from an end-user of a SOAR platform and

assigned each task only one dAPI. The generated ground truth served as a benchmark for

our experiment. In the following section, we explain how we selected a suitable task

description to be used as an input text and annotation instruction for labeling the dAPIs

manually.

6.4.1.3 Ground Truth of Experimental Queries, Commands and dAPIs

We built two sets of ground truth for SecAPIGen: (i) ground truth 1 to evaluate the

generation of dAPIs from the task descriptions (i.e., Algorithm 1) and the identification

of dAPIs’ parameters (i.e., Algorithm 2) using dependency parsing and (ii) ground truth

2 to evaluate all the generated dAPI elements (i.e., Algorithm 1 and Algorithm 2) and the

identification of semantically similar APIs (i.e., Algorithm 3).

Ground truth 1. We randomly selected a small number of tasks to label the dAPIs

manually. The goal is to create experimental queries for our proposed algorithms. We

considered a case where a security team will be using DecOr to support security

orchestration. Thus, they would already have knowledge about the tasks and incidents

being considered. As a result, we assumed that a user would provide queries in imperative

sentence form and would not provide any incomplete descriptions. Furthermore, we

assumed a single query would be associated with a single task. Hence, the task

description should not be in a complex or compound sentence structure [193, 194].

 Considering the goal of dAPI is to hide the details of the SOAR’s task at different

levels, we also assumed each task should be self-explainable and should not refer to an

object or element of the previous task. The task descriptions gathered from the playbooks

were written in a mixed form. For example, some descriptions were in a question form

and some were contained in multiple sentences. Considering the above-mentioned

assumptions, we defined the following criteria that selected task descriptions to be

189

Declarative API for Security Orchestration Platforms 189

satisfied: (i) each description should explain only a single task; thus, we discarded any

task that had a complex or compound sentence structure or clause. An example of a

discarded task according to this criterion is “if you identify suspicious URL, then analyze

in-depth in next steps”, (ii) a task should have a complete description; if the first two

parts of a dAPI could not be identified from the description, we considered them to be

incomplete tasks. (iii) the tasks should be in an imperative sentence form; thus we

removed the tasks that were in question or interrogative sentence forms (e.g., “are there

any files to hunt?”). (iv) A task should not refer to an entity of the previous task. Hence,

we removed or modified tasks that were referring to an entity of the previous task. For

example, “block these on the proxy gateway”. If a task contained words such as ‘this’,

‘that’, and ‘them’, then we replaced those words with exact object or entities if they had

been identified from previous tasks. Otherwise, we removed those sets of tasks. In this

way, we labeled the dAPIs for 147 tasks in total. Table 6.7 shows the average length of

the selected tasks is 6 words. An average length of 6 words is acceptable considering the

descriptions represent commands that are given to a SOAR platform for a specific task.

Table 6.7 Statistics of ground truth for the generation of dAPI

of task

Statistics of task length
No. of unique methods and parameters in

dAPI

Mean Median Mode 𝐚𝐢𝟏
Ɗ 𝐚𝐢𝟐

Ɗ 𝐚𝐢𝟑
Ɗ

Param of

𝐚𝐢𝟐
Ɗ

Param of

𝐚𝐢𝟑
Ɗ

147 6.5 6 7 17 46 50/76 33/38 19/41

We labeled the dAPI following an annotation instruction which further

implemented as the algorithms proposed in sections 6.3.2.1 and 6.3.3.1. The detailed

annotation instruction to label a dAPI from a task description is provided in Appendix

A1. Any annotator can follow that instruction to design dAPIs for a particular set of tasks.

We considered the first part the main method (or dAPI element) of creating a dAPI.

Multiple tasks can be performed by a similar method. For example, among the 147 tasks,

23 tasks are performed by the dAPI method verify and 11 tasks are performed by block

(more details in Appendix A2). Table 6.7 shows the number of unique API elements seen

in each part of dAPIs in our ground truth. Some dAPIs might not have all the parts. Table

190

Declarative API for Security Orchestration Platforms 190

6.7 further shows the number of unique API elements that were seen in each part (x) and

the total number of unique API elements (y) in that part in the form of x/y. For example,

for parameters of the third part, from 41 unique API elements only 19 were seen in this

part and others were also seen in the previous parts (i.e., the second part ai2
Ɗ , third part

ai3
Ɗ or a parameter of the second part) of APIs for different tasks. However, as mentioned

before each dAPI must have the first two parts, which are ai1
Ɗ and ai2

Ɗ . For example, Table

6.8 shows that the third part i.e., ai3
Ɗ of task t1 is empty and the parameters of ai3

Ɗ for a

task t2 are empty. In all the examples in Table 6.8, 𝐚𝐢𝟏
Ɗ and 𝐚𝐢𝟐

Ɗ are available.

Table 6.8 Examples of ground truth for evaluation of SecAPIGen

Task

description
dAPI 𝐚𝐢𝟏

Ɗ 𝐚𝐢𝟐
Ɗ 𝐚𝐢𝟑

Ɗ
Param of

𝐚𝐢𝟐
Ɗ

Param of

𝐚𝐢𝟑
Ɗ

t1
Block the

malicious IP
block.IP(malicious) block IP - malicious -

t2

Block the

malicious IP

using the firewall

block.IP

(malicious). firewall
block IP firewall malicious -

t3

Block the

malicious IP

using checkpoint

firewall

block.IP(malicious).

firewall(checkpoint)
block IP firewall external checkpoint

Ground truth 2. We further combined the annotated dAPI elements into a single

dAPI element based on their semantics and the task they were performing. For example,

“quarantine the endpoint” and “isolate the endpoint” refer semantically to the same

task. With the above annotation, there are two different API elements in the first part:

quarantine and isolate of ground truth 1. To build ground truth 2, we combined these

API elements and presented them as a single API element. For example, we used

quarantine instead of isolate. Thus, ground truth 2 refers to tasks that are related to isolate

and quarantine using the API element quarantine. Considering 𝐚𝐢𝟏
Ɗ and 𝐚𝐣𝟏

Ɗ were

semantically similar to 𝐚𝐤𝟏,
Ɗ which were then combined to execute by ak1

Ɗ , we presented

this in the form: ak1
Ɗ : (ai1

Ɗ , aj1
Ɗ , ak1

Ɗ). Appendix A3 shows which dAPI elements are

combined into a single dAPI element for the first part in the form of ak1
Ɗ : (ai1

Ɗ , aj1
Ɗ , ak1

Ɗ).

After combining semantically similar dAPIs, ground truth 2 had 17 unique dAPI methods

in the first part, and 36 in the second part of the APIs. Unlike the first part, for later parts,

191

Declarative API for Security Orchestration Platforms 191

the annotated dAPIs tend to have fewer similarities. We used 70% of ground truth 2 as

the validation set to build and select the similarity measurement types and similarity

scores for Algorithm 3. The remaining 30% was considered as the testing set to evaluate

the performance of SecAPIGen, when combining semantically similar APIs.

Two authors independently labeled the dAPIs following the annotation instruction

in Appendix A1. For some tasks, the annotator identified the dAPI object elements in the

second part, third part and the parameter of these parts in an alternative order. An

example of such a task is “send an sms alert using Twilio”, for which two annotated

dAPIs by annotator 1 and annotator 2 were “send.sms(alert).twilio” and

“send.alert(sms).twilio”. The annotated dAPIs showed that annotator 1 labeled “sms” in

the second part and “alert” as a parameter of the second part and annotator 2 labeled

“alert” in the second part and “sms” as a parameter of the second part. dAPI

“send.sms(alert).twilio” will first identify the way to send an object and then send that

object; whereas dAPI “send.alert(sms). twilio” will first identify the object and then the

way to send that object. Execution of both these dAPIs will successfully send an alert to

Twilio via SMS. As both of these APIs were fulfilling the objective of a requested task,

we considered both of them to be a correct label and used the second form in our ground

truth. For some tasks, partial matching was noticed in the parameters of the second and

third parts. We considered partial matching to be an agreement between the annotators.

We used the Cohen Kappa score [205-207] to measure the agreement between the two

labelers after resolving the abovementioned issues. We calculated the agreement between

the two annotators for each part of the dAPI elements and also the overall agreement

score for annotating all dAPI elements. The overall kappa score was 0.82. Both

annotators had 100% agreement on the first part, thus the kappa score for the first part

was 1. For the second and third parts, the scores were 0.86 and 0.7 respectively. We

noticed the score reduces for identifying parameters of the second and third parts, at 0.68

and 0.6 respectively. Based on the kappa score, the ground truth was considered to have

a good reliability score [205-207].

6.4.1.4 Evaluation Metrics

We first evaluated the correctness of DecOr using precision, recall and F1-measure,

which are important, classic metrics to evaluate NLP-based models [202, 208, 209].

192

Declarative API for Security Orchestration Platforms 192

Precision referred to the ratio of correct dAPI elements and the total number of dAPIs

that were generated by SecAPIGen for the corresponding tasks. Recall referred to the

proportion of the actual number of dAPIs SecAPIGen successfully generated. To

understand precision and recall, we need to first understand the concept of true positive

and false positive. For our experiment, true positive referred to the fact that SecAPIGen

generated a dAPI element for a task, and in fact the corresponding dAPI element was

recommended for that task in the ground truth. Whereas, false-positive referred to the

fact that SecAPIGen generated a dAPI element for a task but in actuality the dAPI

element was not recommended for that specific task. Alongside the notions of true

positive and false positive, we also considered false negatives. False-negative referred to

the cases where SecAPIGen predicted that dAPIs were not available to predict a task, but

in fact dAPI elements were available to execute the task. The following are equations for

precision and recall in terms of true positive, false positive and false negative.

Precision =
True positive

True Positive+False Positive

Recall =
True positive

True Positive+False Negative

F1-measure = 2 ×
Precision ×Recall

Precision+Recall

The F1 measure is considered a good performance metric because it leverages both

precision and recall metrics. We obtained the f1-measure simply by taking a harmonic

mean of precision and recall. From the equation of precision and recall, we can see that

true positive precision considers only false-positives and recall considers false negatives.

Conversely, the f1-measure focuses both on false positives and false negatives.

In addition to the correctness, we considered the average time DecOr took to

generate a dAPI from a task description and the average time it took to find similar APIs.

6.4.1.5 Evaluation Procedure

Evaluation with Ground Truth (E1): We compared the dAPIs that were generated by

SecAPIGen against the two ground truths. As discussed in section 6.3.3, SecAPIGen has

two modes: novice mode for non-technical users and expert mode for the technical user.

In novice mode, users with little knowledge about the available dAPI provide the task

193

Declarative API for Security Orchestration Platforms 193

description/query in imperative sentence form. In expert mode, users have knowledge

about some of the available dAPIs. Hence, an expert user provides a dAPI to perform a

task instead of a task description. As a result, we first experimented with the use case of

novice mode using ground truth 1, where SecAPIGen generated the dAPI elements from

task descriptions. Next, we conducted the experiment with the use case of expert mode

using ground truth 2, where SecAPIGen identified the semantically similar API elements.

Evaluation based on Expertise (E2): To evaluate the identified ontological concepts,

we manually selected the generated concepts that had a higher frequency and checked

whether they were able to capture information about an object. We also compared the

generated concepts with the existing ontology if a match was found, to check the

similarities in terms of the identified properties and related classes.

Procedure: Our evaluation includes the following steps:

• Use Algorithm 1 and Algorithm 2 to take inputs in novice mode and generate a dAPI.

• Evaluate the generated dAPI with ground truth 1.

• Use Algorithm 3 to identify the semantically similar dAPIs of the generated dAPI.

• Use 70% of ground truth 2 to build and select the similarity measurement metrics and

similarity scores, and 30% as the testing sets for performance evaluation.

• Use Algorithm 4 to identify the concepts of the ontology.

• In evaluation E1, calculate precision, recall and f1-measures for each element of the

dAPIs to answer RQ1.

• In evaluation E1, calculate the response time to generate a dAPI from the task

description to answer RQ3.

• In evaluation E2, based on human expertise, identify the correctness of the generated

concepts and check with respect to the dAPI elements to answer RQ2.

6.4.1.6 Language and Libraries

We used spaCy, which is a free open source python library [197] widely used for NLP-

related tasks, to find the dependency parse tree for an input task [196, 210, 211]. We

developed Algorithm 1 and Algorithm 2 using spaCy. We further used python NTLK

wordnet packages for Algorithm 3 to identify the wordnet and synonym sets (synsets)

for each word (i.e., the elements of an API) [198-200]. We tried the different similarity

194

Declarative API for Security Orchestration Platforms 194

measurement metrics that are provided by wordnet to find similarity measurement

metrics types and scores that best suit our experiment and datasets [201, 212]. We further

used the python Networkx package [213] to automatically draw the classes and properties

of the classes through a network graph. We used the network graph to manually evaluate

the identified concepts of the ontology.

6.4.2 Results and Analysis

We conducted experiments for the design and generation of dAPI using AI technologies

(i.e., NLP and semantics) to answer the three research questions. We evaluated each

component of DecOr (i.e., SecAPIGen and SemOnto) separately, which ultimately

provided the overall evaluation of DecOr.

6.4.2.1 RQ1. How effective is SecAPIGen in Generating and Identifying dAPIs for

Different Tasks?

RQ1 mainly focuses on evaluating the effectiveness of SecAPIGen. We ran extensive

experiments for the generation of dAPI to answer RQ1, which is essentially about the

generation of each API element. Based on the results of the experiment, we explored

three sub-questions:

• RQ1.1. Does dependency parsing help in generating different parts of a dAPI?

• RQ1.2. Which similarity functions should we choose for identifying semantically

similar words?

• RQ1.3. Does SecAPIGen help in identifying the semantically similar API elements

that are generated using dependency parsing?

To answer RQ1.1, we evaluated the use of dependency parsing in generating different

API elements, which mainly evaluated the performance of Algorithm 1 and Algorithm

2. Figure 6.7 shows the performance of SecAPIGen when generating different parts of

the dAPIs using dependency parsing. It shows that the precision and recall of SecAPIGen

are higher in identifying the first two parts of an API, whilst it has lower precision and

recall for identifying the third part of a dAPI. Furthermore, we can see that the precision

for identifying the parameters of the second and third API elements is higher than for

recall. The reason behind the higher precision is that most of the dAPI elements for the

second and third parameters were empty, which the algorithm identified correctly. For

195

Declarative API for Security Orchestration Platforms 195

some test cases, the second and third parts of the parameter had multiple dAPI elements.

SecAPIGen failed to identify all the dAPI elements for all cases; however, it partially

identified them for most cases. Besides considering there were some errors involved in

human judgment, the ground truth might not be 100% correct.

We considered two popular similarity functions, Wu-palmer and Resnik, among

several available similarity measure functions to answer RQ1.2 [201, 212]. The Wu-

palmer similarity function is a structure-based measure and the Resnik similarity function

is an information content-based measure. The similarity score for Wu-palmer (WP) is

between 0 and 1 and Resnik (Res) is integer values greater than or equal to zero. We ran

Algorithm 3 to consider the different similarity scores of WP and Res to select a suitable

value for the similarity score of Algorithm 3. Figure 6.8 shows the results from

identifying the first two parts of dAPI elements using both of the similarity metrics with

different values of the similarity score. For the later parts of the dAPI elements, there

were not many similar API elements that could be combined. As a result, we simply

demonstrate the results in Figure 6.8 for the first two parts of the dAPIs.

Figure 6.7 Performance of SecAPIGen when generating declarative API elements using

dependency parsing

The results of Figure 6.8 reveal that even though Algorithm 3 has higher precision

with a higher similarity score, the recall decreases to below 60% with higher similarity

scores. We considered the recall value to select the similarity functions and similarity

0
.9

7

0
.9

4

0
.7

9

0
.9

5

0
.9

1

0
.8

8

0
.8

2

0
.7

8

0
.7

3

0
.7

90
.9

2

0
.8

8

0
.7

8

0
.8

3

0
.8

5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

First part Second part Third part Second part's

parameter

Third part's

parameter

precision recall f1-measure

196

Declarative API for Security Orchestration Platforms 196

scores. If the recall were similar, then we considered the F1-measure. The reason for

choosing recall is that recall reflects the actual dAPI elements that were correctly

identified by the algorithm, where precision considers the ratio of correct dAPI elements

that were identified. Even though the F1-measure provides the mean of precision and

recall, we did not entirely rely on the F1-measure, because with higher precision and

lower recall (e.g., less than 60%), the value of the F1-measure seems to be higher.

(a) Performance of Res for identifying the first part (b) Performance of Res for identifying the second part

(c) Performance of WP for identifying the first part (d) Performance of WP for identifying the second part

Figure 6.8 Performance of SecAPIGen to generate first part and the second part of

dAPI using two types of similarity measurements: Resnik (Res) and Wu-palmer (WP)

similarity; precision, recall and f1-measures with respect to different RES scores for

identifying (a) the first part and (b) the second part of dAPI; precision, recall and f1-

measures with respect to different wp similarity scores for identifying (c) the first part

and (d) the second part of dAPI

All four graphs in Figure 6.8 show higher precision values (close to 1) with higher

similarity scores. Mostly, with higher similarity scores, the dAPI elements that did not

have any similar dAPI were identified accurately. However, with higher similarity

precision

recall
f1-measure

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 7 8 9

precision recall f1-measure

Precision

recall f1-measure

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 7 8 9

precision recall f1-measure

precision

recall
f1-measure

0

0.2

0.4

0.6

0.8

1

0 .2 0 .3 0 .4 0 .5 0 .6 0 .7 0 .8 0 .9

precision recall f1-measure

precision

recall 0.79
f1-measure

0

0.2

0.4

0.6

0.8

1

0.2 0 .3 0 .4 0 .5 0 .6 0 .7 0 .8 0 .9

precision recall f1-measure

197

Declarative API for Security Orchestration Platforms 197

scores, semantically similar dAPI elements were not identified, which resulted in lower

recall. For example, “quarantine” and “isolate” were semantically similar API elements

that were categorized under the dAPI element “quarantine”. With a higher similarity

score, Algorithm 3 failed to identify “isolate” as similar to “quarantine”. Figure 6.8(a)

shows that for the RES similarity function, the value of recall decreases when the

similarity score is greater than 5.

Similarly, Figure 6.8(c) shows that the recall of similarity function WP degrades

when the similarity score is greater than 0.5. Furthermore, it also shows that the recall

for WP degrades when the similarity score is less than 0.3. The f1-measures for WP with

similarity scores 0.4 and 0.5 are 0.78. As shown in Figure 6.8(b) and Figure 6.8(d), the

performances of both similarity functions are quite similar in identifying the second part

of dAPI elements. Both graphs also show steady values of recall and f1-measure. We

identified the lack of similar dAPI elements in the second part of dAPI as the reason

behind this similar and steady performance. Moreover, the performances in Figure 6.8(b)

and Figure 6.8(d) are quite similar to the performance in Figure 6.7, which ultimately

reflects the performance for generating dAPI elements without considering semantically

similar dAPI elements. By observing the value of the f1-measure and recall for both

similarity functions, we considered both as suitable similar functions for identifying

semantically similar dAPI. We chose 4 as the similarity score threshold for RES and 0.5

as the similarity score threshold for WP.

After selecting the similarity score, we reported how accurately SecAPIGen

generated dAPIs for different tasks with similar dAPI elements to evaluate RQ1.3, which

mainly evaluated the overall performance of SecAPIGen. Table 6.9 shows the

performance of SecAPIGen when identifying the first and second parts of dAPIs using

the testing dataset. The precision, recall and f1-measure for identifying the first part of

dAPI are 0.88, 0.8 and 0.84, respectively. Table 6.9 shows the precision, recall and f1-

measure for identifying the second part of dAPI are above 88% for Resnik. On the other

hand, the precision, recall and f1-measure for identifying the second part of dAPI for

Wu-Palmer are above 90%. The results show that SecAPIGen accurately generated

dAPIs and identified the semantically similar APIs 80% of the time for the first part and

89% of the time for the second part.

198

Declarative API for Security Orchestration Platforms 198

Table 6.9 Performance of SecAPIGen

dAPI element
Similarity function and

score
Precision Recall F1-measure

First Part Wu-palmer, 0.5 0.88 0.8 0.84

Second Part Wu-palmer, 0.5 0.95 0.91 0.93

Second Part Resnik, 4 0.93 0.89 0.91

6.4.2.2 RQ2. Can SemOnto Identify the Concepts of an Ontology from the

Playbook?

To evaluate the performance of SemOnto, we first extracted the objects from the context

path and then generated the concepts of the ontology following the steps of Algorithm 4.

Analyzing 448 output context paths and 292 objects, it returned 71 concepts. Among

these 71 classes, 37 classes were similar to generated dAPI elements. We further

analyzed these classes to evaluate the data properties and object properties associated

with each class. For example, considering the ontological concept file, we found the

object properties (i.e., classes associated with a file) and data properties of a file. To

automate the execution of a task, an ontology of a SOAR platform needs to have these

concepts. The analysis of these classes revealed details of the security tools. For example,

the identified classes, Atd, Cuckoo, Anyrun, Checkpointfwrule, Joe, Wildfire and Vmray

refer to McAfee Advanced Threat Defence, Cuckoo Sandbox, Checkpoint firewall, Joe

security sandbox, PaloAlto Wildfire and Vmray malware sandbox, respectively. As we

were directly using context paths and each company had its own notation to refer to

different attributes in a playbook, some of the class names might not directly match with

the name of a dAPI element. Furthermore, we also saw “Sndbox” as a class that was

referring to a sandbox.

 By closely analyzing the name of each class, we removed the above-mentioned

ambiguity, while integrating these concepts in an ontology. We further compared these

classes with an existing ontology of the SOAR platform and security tools to identify the

concepts that were missing. The manual analysis of 71 classes reveals that, for 90% of

cases, SemOnto successfully identified the properties of API elements. Thus,

recommending the ontological concepts to the security experts will help them to validate

the concepts and reduce their burden of manually crafting the concepts of an ontology.

199

Declarative API for Security Orchestration Platforms 199

Also, it will help with the cases where the dAPI elements are not identified correctly by

SecAPIGen.

We showed that, by analyzing playbooks’ inputs and outputs, SemOnto

automatically identified the semantic concepts of an ontology, which provided further

details about the dAPI elements. The results demonstrate the feasibility of using the

playbooks to identify the concepts of an ontology. Using SemOnto, a security team or

ontology developer can easily identify the core concepts that are required for the

execution of a task. Considering different vendors use playbooks of different types and

structures where the tools and tasks also vary, SemOnto helps to gain an overall insight

from a playbook about the tools, input and output. As a result, an end-user does not need

to learn the structure or libraries of a playbook to incorporate changes that reduce the

time taken for manual analysis.

6.4.2.3 RQ3. How Efficient is DecOr in Terms of Time?

To evaluate the efficiency of DecOr, we recorded the time to generate and identify

the similarity of dAPIs; which is the query processing time for SecAPIGen to recommend

a dAPI. If SecAPIGen cannot generate a dAPI in a reasonable amount of time, the

security team may show no interest in using it at run time to define or update their plans.

During the dAPI recommendation phase, given a query, SecAPIGen generated a dAPI

element using dependency parsing and then identified synonym sets (synsets) of the

generated dAPI element and available dAPI elements to compute the similarity score of

two dAPI elements. We considered the time that was required to generate all parts of a

dAPI. We recorded the time to generate different elements of a dAPI using dependency

parsing and the time to identify semantically similar dAPI elements separately.

Table 6.10 presents the average processing time that SecAPIGen took to generate

a dAPI from the task description. It shows that the average time to generate different

parts of an API is 9.8 milliseconds (ms), which is the processing time for Algorithm 1

and Algorithm 2. On the other hand, the average time for Algorithm 3 is 160 ms, which

is the time taken to identify the semantically similar elements of a dAPI. Algorithm 3

first identified all synsets of two dAPI elements and then performed one to one checking

to identify the most similar dAPI element, which resulted in higher processing time, as

shown in Table 6.10. It performed the similarity checking, for each part of a dAPI. Hence,

200

Declarative API for Security Orchestration Platforms 200

it took a longer time to calculate the semantic similarity of dAPI elements than generating

different parts of a dAPI. Overall SecAPIGen took 170 ms on average to generate a dAPI,

which included both use of dependency parsing to generate the API elements and then

complete the semantics similarity checking. Hence, the semantic framework, SecAPIGen

recommends a dAPI in near real-time to the end-user.

Table 6.10. Response times of SecAPIGen for different algorithms

Algorithm Algorithm 1 and 2 Algorithm 3 SecAPIGen

Average Response Time 9.8ms 160ms 170ms

To sum up, we evaluated DecOr in terms of accuracy and response time to generate

dAPIs and dAPI elements using AI technologies. We first showed that using dependency

parsing and wordnet, DecOr generated dAPI elements with 90% accuracy, taking only

170 ms on average to generate a dAPI. Furthermore, we showed that SemOnto identified

most of the concepts of an ontology that were required to integrate with an existing

ontology related to the dAPI elements. Hence, SemOnto contributes to reducing the

manual overhead of a security team identifying and crafting the ontologies for the

different playbooks provided by different vendors.

6.5 DISCUSSION

6.5.1 Benefits of DecOr

In this section, we discuss the key challenges of the existing SOAR platforms that can be

addressed to a certain extent with our proposed dAPI-driven orchestration platform,

DecOr.

Wide variety of security tools, technologies and solutions. The first and foremost

problem with the adaptability of a SOAR platform is the diversity of security tools with

heterogeneous capabilities and requirements. An organization needs to keep pace with

the changing threat landscape. For this reason, most organizations end up deploying a

wide variety of security tools, each dedicated to a specific set of tasks. Even though a

SOAR platform is designed to enable interoperability among security tools, diversity is

also found in the SOAR platforms, ranging from plugin-supported to scripts-oriented

201

Declarative API for Security Orchestration Platforms 201

(chapter 2). dAPI can easily handle a wide variety of security tools, technologies and

solutions. As most of the underlying technologies and tools are abstracted through the

three sets of dAPIs, a security team can easily interact with a wide range of security tools

and technologies as a result.

Declaration Ambiguity. The commands or the task descriptions in playbooks are

defined in natural language (see Figure 6.1), whereas an IRP team uses words or phrases

they are familiar with or which are popular in their context. For example, consider two

tasks Ɲ3 and Ɲ4: “quarantine the affected endpoint” and “isolate malicious host”. Ɲ3

and Ɲ4 share the same semantics and require similar types of security tools. However,

both of these tasks can be found in several playbooks, which are defined by the same

company. DecOr handles this sort of ambiguity by identifying these two tasks as similar

and provides a single dAPI for both of these tasks.

Technical Expertise. An example is illustrated in Figure 6.2(a) and (b), which

shows at least three different types of domain expertise required in existing SOAR

solutions. However, most organizations have very few security experts. Even so, many

organizations are not able to adopt SOARs due to the lack of a dedicated security team

or because they have a smaller size of SOC. In a recent study, Gartner predicts that by

2022 even an organization with a security team of five or more will start leveraging

SOAR tools for orchestration and automation, where currently it is fewer than 5% [27].

Besides this, the different teams of a SOC require different forms of expertise. As a

consequence, instead of building all the required expertise in a single SOC, an

organization needs a SOAR that supports the activities of any team and is easy to manage,

modify and adapt due to the changing threat landscape. Abstracting the underlying

complex architecture through the three sets of dAPI, DecOr can enable a security team

to focus on their task alone, without the need to learn the underlying infrastructure.

Manual Creation of Semantics. The existing solutions proposed for enabling

semantic integration focus on manually crafting the semantics and defining ontologies to

integrate data in a unified way. Extensive domain knowledge is required to create

ontologies manually, which makes it difficult for a SOC to keep the ontology up to date.

DecOr addresses this issue by identifying the semantics concepts from the playbooks'

input and output, which ultimately provide the properties of the security tools and assets

202

Declarative API for Security Orchestration Platforms 202

of an organization through which most tasks are performed. Instead of spending the time

to craft the semantics concepts, a security team can use the concepts suggested by DecOr

and spend time on verifying the concepts and then including them in an ontology.

Proprietary security tools. Of the wide variety of available security tools, most are

proprietary. External users have limited access to their API, or vendors publish a set of

APIs that other tools or SOAR can use or modify. Developers of SOAR platforms (i.e.,

designers of playbooks or plugins) need to have extensive knowledge about the usage

and constraints of the proprietary security tools. In many cases, several plugins and

wrappers of the APIs are designed to integrate the security tools in a SOAR platform.

While designing a playbook, a developer also needs to keep in mind the interoperability

and compatibility issues associated with different security tools. This issue can easily be

addressed if the security vendors expose the properties of their security tools, which can

then be integrated easily through the use of integration API, where the playbook

developer simply focuses on defining the plans without worrying about the security tools’

features.

DecOr aims to address the abovementioned issues by hiding the complexity of the

SOAR platform from the security team, so that they can focus on utilizing the SOAR

platform to take proactive and informed decisions rather than worrying about underlying

security tools, playbooks, diversity in their libraries, configurations and ambiguities in

the declarations. We claim that using the dAPI-driven orchestration approach, an

organization can easily incorporate different playbooks and security tools into their

SOAR platform, thus removing them from being locked into a single vendor. Also, by

abstracting their activities through dAPIs, security tools and playbook vendors can ease

the path to using multivendor products.

6.5.2 Threat to validity

In this work, we assume each task in the playbooks has only one dAPI through which it

can be executed. Nevertheless, there might be multiple dAPIs suitable for executing a

single task. In our future work, we plan to extend the design of dAPI, such that each task

can be executed by multiple dAPIs. The dAPIs will be recommended to users so they can

choose the most suitable dAPI for their respective needs. Furthermore, within the

approaches we have used here, several approaches exist to find word similarities [196,

203

Declarative API for Security Orchestration Platforms 203

197, 210]. We did not apply all the possible approaches. As a result, there might be some

more suitable similarity metrics or approaches that we might have missed. Depending on

the datasets used to build the wordnet, the similarity scores can also vary.

To build the used ground truth for SecAPIGen, we only considered imperative

sentences with clearly defined task descriptions. We ignored sentences with complex and

compound structures because we assume each task description will be given for the

execution of a single task. In a practical scenario, this may not always be the case. This

issue can be resolved by identifying semantically similar tasks based on sentence

similarity, which will identify the semantic similarity between two sentences and thus

generate dAPIs for them. Moreover, we have not considered cases where a single dAPI

element might have similarities with multiple dAPI elements. We observed cases where

a single API element has a similar similarity score with multiple existing dAPI elements.

The developed system presented semantically similar dAPI elements (i.e., two

synonymous API elements/words) with one dAPI element even if the tasks are executed

by different security tools. The tasks and security tools are mapped with an ontology,

which also mapped the user semantics model (i.e., the task defined by the user) with the

tools semantic model (i.e., the task performed by the security tool). Though we have not

explored the consequences when a user’s semantic model cannot be mapped with a task

semantic model, this will be an interesting area for future work, to avoid executing tasks

that are different from those the user intends to execute.

The experimental results show that the precision of DecOr in generating dAPI

elements is lower than 100%. This may result in the wrong execution of a task if the

whole process is automated. However, we have designed DecOr to hide the complex

internal details of a SOAR platform from its end-user, so that the security team can use

it as an intelligence advisory (i.e., a recommendation tool). DecOr is designed to

transform a user query into a dAPI and suggests that dAPI to its end-user as an IDE (i.e.,

python or Java IDE). Depending on the suggested dAPI, the security team can then

choose whether to use that dAPI or not. Hence, we consider a precision of lower than

100% is acceptable and applicable in this scenario. The dAPI elements are designed so

that they can be mapped with the ontology of a SOAR platform and security tools, which

204

Declarative API for Security Orchestration Platforms 204

we believe will help to avoid false execution of tasks by security tools and the SOAR

platform.

SemOnto relies on the structure of a playbook’s output. Playbooks from different

vendors might not follow the same structure, template or notation. However, the purpose

of this study is to show that by analyzing an output of a playbook, SemOnto can identify

the properties of dAPI elements. A playbook’s output also reflects the output of the

security tools, so the proposed approach demonstrates the feasibility of using a playbook

to identify an API’s elements.

SemOnto analyzes the output produced by a playbook and finds the properties

associated with a class that must be presented as the core class of an ontology. An existing

ontology can also be incorporated during the phase where semantically similar dAPI are

identified. Using the combination of ontology and SecAPIGen to identify an API is

beyond of the scope of this chapter, which we plan to extend in future work. In this work,

we did not show how to automatically use the generated set of dAPI to define the classes

of an ontology. Also, the interaction of the three types of dAPI to execute IRPs is not

shown in this work and will also be covered in future work.

The evaluation of SemOnto was undertaken manually by one author based on the

existing ontology and their domain expertise. This choice may have caused some bias in

the evaluation. As the ontologies of the security tools and SOAR platforms are not freely

available, it was not possible to perform an automatic comparison of the identified

concepts. To minimize the potential impact of the bias of manual analysis, this work can

be extended by carrying out a case study where the identified concepts can be shared

with domain experts, who can verify the identified concepts as correct or not. The manual

validation of the identified concepts of ontologies can be automated by using advanced

NLP and Machine Learning (ML) techniques. A future direction to extend SemOnto is

to make it fully automated. We plan to extend SemOnto by bringing automation to the

manual validation process. One approach to automatically validate the ontological

concepts is to update the concepts in an ontology and use that to generate the execution

API, running the execution API to invoke a security tool. A fully automated approach

can also use the advanced feature extraction techniques of NLP to perform validation of

the generated concepts of an ontology.

205

Declarative API for Security Orchestration Platforms 205

In this work, we have evaluated DecOr in terms of effectiveness and efficiency. A

qualitative evaluation of dAPIs is yet to be performed. We plan to design a study to

collect feedback from novice users of a SOAR platform and thereby evaluate the

designed dAPIs. The work can also be extended to collect a SOAR platform users’

feedback to find the usefulness of dAPI within a changing execution environment.

6.6 RELATED WORK

In this section, we provide an overview of the most relevant research in the area of

security orchestration in the light of AI-enabled design and generation of dAPI for a

SOAR.

6.6.1 Security Orchestration and Automation Solutions

In chapter 2, we conducted a multivocal literature review on security orchestration. The

review identified several strategies for orchestration and automation that are incorporated

in the state-of-the-practice and state-of-the-art. Our proposed approach here is partially

motivated by the results of this review. The multivocal review showed that even though

the existing SOAR incorporates a combination of different automation strategies, the

planning and decision-making processes largely rely on human expertise. Security

analysts, network administrators, security engineers, forensic teams, incident response

teams, a staff of SOC, including a designer, developer and engineer for SOAR are

involved in the decision-making and response actions of such a platform. As a

consequence, they must be able to interact easily with a SOAR platform to leverage the

power of automation and orchestration. However, we noticed little focus from vendors

or researchers on making such a solution easily adaptable and modifiable for end-users.

SOAR platform vendors or designers perform pre-assessment of an organizations’

security requirements, hardware, software system(s) and available security tools, which

form the underlying execution environment of a SOAR platform. The key functionalities

of a SOAR platform mainly include the integration, orchestration and automation of

security tools’ activities and repetitive tasks of security experts. Most commercial SOAR

platforms support the integration of the full stack of security tools and information

systems (i.e., open-source and proprietary) through APIs, plugins or modules [32, 143,

161, 167, 214]. As most of the security tools are proprietary and each tool has its own

206

Declarative API for Security Orchestration Platforms 206

form of API, the integration process is mostly reliant on human experts. A wide range of

solutions is seen in security tools’ integration. However, the integration of technologies

and APIs does not follow a standard that can be followed by end-users to integrate a new

set of security tools. Without a well-defined orchestration process, a SOC cannot take

the full benefit of integrating existing security tools. The objective is eventually to drive

the automated workflow from an incident response plan.

As discussed earlier, an incident response team defines a set of tasks that are

required to be executed in response to an incident. These sets of tasks are logically

sequenced with chained data flow in a playbook. A playbook contains the automated

workflow, which is integrated into a SOAR platform. The majority of practitioners build

the workflow based on known use case scenarios. Even though the ultimate goal of a

playbook is orchestration and automation, differences are seen in the ways playbooks are

built and managed. For example, commercial vendors such as Demisto [35] and

Forescout [136] have different forms of playbooks and different ways to interact with

them. ForeScout has built a dedicated rule-based engine to automate the workflow [146],

whereas Demisto is working toward building a collaborative playbook where anyone can

contribute to the design of a playbook. Most of the tools built for workflow design are

not suitable for automating the integration of security tools required for task execution.

As a result, scripting tools are used to perform automation, which mostly comprise

custom codes written by SOAR developers [166, 215]. A developer usually writes scripts

to configure a SOAR platform and playbook to integrate security tools in the automated

workflow. Execution of such scripts automates a playbook and thus automates a response

against an incident.

The continuous changes in the threat landscape require consistent involvement of

a SOC team, with designers and engineers of the aforementioned systems even for an

instance where changes could be few. For example, after buying a new point of the

product, the security team relies on integration tools to connect and integrate the new

system into an existing SOAR platform. Moreover, including the new product

information in a playbook requires skilled personal in a SOC to write and update

corresponding code efficiently. As a consequence, a security team ends up spending a

great deal of time learning the underlying libraries and technologies of a SOAR platform

207

Declarative API for Security Orchestration Platforms 207

execution environment. Otherwise, the SOC needs to have a dedicated orchestration team

to develop the APIs and write the scripts, modifying or updating the workflow across

multiple technology paradigms.

Unlike the aforementioned solutions, this chapter has proposed a framework that

eases the use of existing SOARs, irrespective of integration tools and vendors. To do so,

instead of proposing or developing new tools, we call for a paradigm shift that requires

abstraction of the functionalities of the integration, orchestration and automation

technologies. Along with abstracting the task of the abovementioned solutions with sets

of APIs, we provide a solution to select the correct set of dAPIs for a task easily. This

will enable a security team to interact with a SOAR or security tools integrated into a

SOAR for different purposes without having an extensive understanding of the

underlying technologies.

We assert that the architecture of security orchestration solution needs to be

designed in a way that the complex approaches can be integrated easily with the existing

SOAR system, such that little involvement of end-users should be required to adopt any

new technology (i.e., security tools, APIs, or plugins). However, most of the SOARs are

proprietary and designed in an ad-hoc manner, therefore they do not follow any specific

architectural styles or patterns. Vendors of SOAR have little consensus among them

about where different industries have different requirements for orchestration and

automation based on the capabilities of their security team and product requirements. We

believe that our proposed framework is a contribution towards tackling the challenges

associated with large scale adaption of SOAR platforms.

6.6.2 AI in Automated Interpretation and Integration

Building a fully autonomous process for integrating security tools in a SOAR platform

is quite challenging because of the diverse nature of security tools, which are provided

by multiple vendors. The use of AI technologies such as semantic knowledge, ontology,

NLP and ML is increasingly gaining attention to automate the interpretation and

integration of security tools. Chapter 5 proposes semantic representation of the security

tools’ capabilities and the tasks of IRPs using ontology instead of designing all possible

workflows and scripts for integration of security tools. It considered the process of

automating the integration of security tools as a combination of subprocesses:

208

Declarative API for Security Orchestration Platforms 208

interpretation (interpret the input and output), selection (select security tools),

formulation (formulate the input), invocation (invoke a security tool) and execution

(execute a task). However, the work considered the process as a whole, while changes in

one part might require changing the whole process. Furthermore, we consider each

subprocess of selection, interpretation, integration, invocation and execution as

standalone processes and encapsulate them through a set of APIs, which will enable any

security team to easily choose the point where they want to make the changes.

Several studies focus on developing semantic knowledge for formalizing security-

related information (e.g., attacks, vulnerabilities, resources and countermeasures) to

enable automated interpretation and automation in the identification of relevant incidents

[171, 172, 180, 182, 187]. In chapters 4 and 5, we have also focused on incorporating

semantic technologies to formalize different types of tools, based on their capabilities to

enable interoperability and interpretability among heterogenous tools. The set of

ontologies proposed in chapter 4 has enabled a SOAR platform to interpret the task and

command of the security tools. Chapter 4 explicitly refers to the involvement of experts

during the development of the ontologies. It proposes a semi-automated approach,

leveraging NLP and ML techniques to classify the classes of ontologies from the

descriptions in incident response plans. Here, the activities are automatically classified

to map with the classes of an ontology. The study did not utilize the playbooks, which

are mainly structured to identify the concepts of an ontology. The automation here

focused on identifying a suitable class of activity from its description. With the same

goal of making a SOAR platform adaptable, but with different objectives, one of the foci

of our work is on reducing the human effort of learning the details of the semantic

technologies by abstracting the interactions across a SOAR platform and its knowledge

base.

We further investigate whether the existing automation techniques could be used

to identify the concepts of an ontology from the structured documents. The approaches

we found fail to satisfy our objective for many reasons. For instances, significant data

are not captured in documentation in the existing SOAR platforms. Research has been

seen in the area of information extraction and retrieval to automate the identification of

ontological concepts, generation of SPARQL from a keyword or text-based query and

209

Declarative API for Security Orchestration Platforms 209

annotation of the classes [216-221], which are mostly applicable for the domain of web

services or service composition. A SOAR platform deals with the heterogeneous system

(i.e., security tools and information systems) which are mostly software systems that are

proprietary and open source. Most of the security tools are proprietary and their manuals,

guidelines and API documentation are also heterogeneous in nature and vary based on

their purpose. Moreover, the documentation details of these systems vary hugely in terms

of their structure and content. As a result, to hide the complex details of querying and

crafting the concepts of ontologies, we propose to abstract the task to communicate with

the semantic knowledge base (i.e., ontologies and query engines) through a set of dAPIs.

6.6.3 AI in API Generation

Recent studies have been seen on the use of AI technologies, mostly NLP, ML and deep

learning, for API mining. They recommend increases in the efficiency of software

developers [203, 204, 222-224]. Several studies focus on Python or Java-based projects.

The purpose of these chapters is to suggest API and API usages based on developer

requests by mining APIs from software documentation, GitHub issues and question

answering forums or websites. These studies rely on the available documentation from

Python and Java and question answering websites’ stack overflow. Unfortunately, these

sets of studies are not suitable for the security orchestration domain, as a SOAR platform

has a diverse set of security tools and each tool has a specific form of APIs and formats,

which varies in terms of classes, methods, parameters and so on. As the design and

development of a SOAR platform are mostly done in an ad-hoc manner, vendors share

little consensus. As previously mentioned, most of the SOAR platforms are proprietary

and their documentation and architecture are not available for mining and analysis like

open source repositories. Consequently, for a SOAR platform, a standard set of APIs is

not available to end-users like Java and Python, for development purposes. Moreover,

Security orchestration is still in its early stages and only at the exploration phase, which

results in a few queries in question-answering websites like stack overflow. The incident

response plans are dynamic, whereby continuous human involvement is required to

update ontologies by extracting features of security tools and then defining plans. Similar

to the work on API mining, where a system is designed to take both structured and

210

Declarative API for Security Orchestration Platforms 210

unstructured queries, we designed DecOr to work with both structured and unstructured

queries provided by end-users.

6.7 CHAPTER SUMMARY

This chapter provides an AI-enabled framework, Declarative API-driven Orchestration

(DecOr), that supports security teams to leverage the advanced features of security

orchestration platforms without expecting them to know the inherent operational

complexities. DecOr is built on top of an existing SOAR platform. The key idea for

DecOr is to free security teams from worrying about the underlying libraries, plugins or

modules of a SOAR while executing tasks, modifying or updating IRPs, or integrating

new security tools. As part of DecOr, there are three sets of dAPIs: orchestration API,

integration API and execution API. These dAPIs encapsulate the task of a SOAR

platform at different levels of abstraction. The dAPIs are required for the easy

maintenance of a SOAR. We have also developed a semantic framework, SecAPIGen,

that leverages existing AI technologies (i.e., NLP technologies, and semantics

relationships) to design and generate the dAPIs from the security tasks’ descriptions. We

further leverage the synonym sets of WordNet, which is the semantics knowledgebase of

words, to identify and combine semantically similar words. Finally, we have proposed a

semi-automated approach, SemOnto, which uses the playbooks' output to automatically

identify the concepts of an ontology (i.e., an AI approach to semantically formalize

heterogenous concepts). These concepts are required for a SOAR to automatically

interpret the generated dAPIs.

We ran a detailed experiment with a manually curated benchmark of 147 pairs of

tasks and dAPIs where the task descriptions are taken from collaborative playbooks from

Demisto (i.e., a SOAR platform). We have shown that the dAPIs are automatically

generated using dependency parsing, with an average precision higher than 80% and

recall higher than 70%. The results of our experiment have demonstrated that

semantically similar words are identified with a precision and recall of 88% and 80%,

respectively. The analysis of ontological concepts generated by SemOnto further reveals

that among the 71 classes, 37 were related to the generated API elements. The reason

behind this result is that we did not consider all the tasks in the playbooks and some

classes have different names from the API elements generated by SecAPIGen. On

211

Declarative API for Security Orchestration Platforms 211

average, DecOr takes 170 milliseconds to generate a dAPI from a task, which is near

real-time. Thus, while using DecOr as intelligence assistance or advisory, a SOCs’

security team can obtain the corresponding dAPIs and their properties required for task

execution instantly. dAPIs free security teams from understanding the underlying

libraries and security tools’ details. As a result, the team can focus more on analysis of

security incidents and preparing response actions.

Conclusion 212

Chapter 7

7 Conclusion

Over the past few years, we have witnessed increasing adoption of security

orchestration and automation platforms in Security Operation Centers (SOC).

Utilization and implementation of a SOAR platform requires skilled and

experienced cybersecurity professionals, including (but not limited to) experienced

designers and developers, cybersecurity incident response teams, playbook

developers and security analysts. A SOAR platform demands collaboration among

SOAR vendors and different security teams in a SOC to quickly adapt to the changes

in its underlying execution environment and keep updated with the dynamic threat

landscape. A SOAR platform should support an increased level of agility and

customization to fulfill security teams’ requirements. Lack of a comprehensive view

and variations in security team requirements leads to ad-hoc design and development

of SOAR platforms. These factors pose several further challenges related to seamless

integration, managing interoperation and building skilled teams for the incorporation

of new tools and technologies.

In this thesis, we have aimed to provide architecture-level support for designing

and implementing an easily evolvable human-centric SOAR platform, which

enables smooth integration and interoperation of existing and new security tools.

We have proposed, implemented and evaluated a layered architecture style for a

SOAR platform. We have implemented a set of frameworks and toolsets leveraging

AI technologies to realize the proposed architecture. Our findings show that

consideration of architectural design decisions can improve the design and

development of a SOAR platform. Security orchestration and automation is

undeniably the next line of research that requires more attention from cybersecurity

researchers and practitioners. We urge the relevant research and industry

Conclusion 213

communities to come forward to contribute to R&D for developing and evaluating

appropriate architectural support for advanced security orchestration and

automation solutions.

7.1 FINDINGS AND CONTRIBUTIONS

This section summarizes the significant contributions and the main findings of this thesis.

7.1.1 Understanding of Security Orchestration and the Automation Landscape

This thesis has provided a holistic insight into the current state-of-the-art and state-of-

the-practice of security orchestration. Through a Multivocal Literature Review (MLR),

which covers 95 key studies, we have presented an overview of a SOAR platform in

Chapter 2. We have provided a working definition of security orchestration. A SOAR

platform is designed to work as intelligence assistance for human experts, who can

benefit from an automated process and make informed decisions proactively. Most of the

security vendors provide SOAR platforms to build a connection layer for security tools,

through which isolated and heterogenous security tools can interoperate with each other

and security teams can interact with security tools from a single pane of glass. Repetitive

labor-intensive tasks are automated and orchestrated through a SOAR platform, which

increases the operational efficiency of security teams.

By analyzing the existing studies, we have identified three key paradigms,

unification, orchestration and automation, that drive our perception of security

orchestration. We have analyzed the key functionalities and components of a SOAR

platform in terms of these paradigms. The results of the analysis further show most of

the SOAR platforms leverage six automation strategies and focus on four execution

environments. We have provided a taxonomy of security orchestration, analyzing the key

techniques, tools and strategies used by practitioners and researchers for the design and

development of a SOAR platform. The reported taxonomy has covered five key

dimensions: (i) automation strategies, (ii) execution environments, (iii) task execution

modes (iv) deployment types and (v) resource types. Based on the research, we have

further identified a few open issues in security orchestration practice and research,

including the design of an evolvable SOAR platform, integration mechanism,

Conclusion 214

orchestration process and the requirement for skilled professionals and human

involvement in the automation loop.

7.1.2 Layered Architecture for a SOAR platform

We have proposed a layered architecture of a SOAR platform and an associated design

space to support architectural design decisions for a SOAR platform in chapter 3. The

proposed SOAR platform’s architectural design is based on two key functions and five

non-functional requirements. The two key functions are (i) that the SOAR is perceived

as a unifier or hub and (ii) that is SOAR is recognized as a coordinator or orchestrator.

The five NFR include integrability, interoperability, interpretability, usability and

modifiability. The proposed six layers are: the user interface, orchestration, semantic,

data processing, integration and security tool layers. They help in the design and

implementation of a SOAR platform that provides a security team with the desired

functionalities, while fulfilling the NFR.

A layered architecture of a SOAR has been designed, separating the concerns of a

SOAR platform into different layers by modularizing the functionalities and components.

The separation of the semantic layers has helped to achieve interpretability and also

enabled semantic interoperability among the security tools and SOAR platforms.

Furthermore, the integration layer has been designed to enable security teams to flexibly

integrate heterogeneous security tools (i.e., proprietary, open-source, legacy and COTs),

based on their preferred integration mechanism (i.e., plugins, scripts, APIs and modules).

Employing a layered architectural style has addressed issues with the evolution of SOAR

platforms by providing security teams with the flexibility to choose, modify or add

preferred components for deployment and evolution of a SOAR platform. We have

developed a Proof of Concept (PoC) SOAR platform, STUn (i.e., Security Tool Unifier),

giving consideration to the structure of an ad-hoc SOC infrastructure. Observing the

impact of automated integration and interpretation of security tools and incident response

processes, we have found that consideration of architectural design decisions has

improved the SOAR design practices.

Conclusion 215

7.1.3 Semantic-based Integration Framework

We have devised and implemented a semantic-based integration framework for

automatic integration and interpretation of security tools’ data and IRPs’ activities in

chapter 4. The semantic-based integration of security tools has enabled interoperability

among isolated, heterogenous and multi-vendor security tools. We have formalized the

key concepts of a SOAR platform as: security tools, their functional and non-functional

capabilities and the activities of IRPs. We have introduced an ontological model for

SOAR platforms that has three main classes: security tools, capabilities and activities.

The relationships among these classes have been defined for automatic selection and

invocation of security tools in chapters 4 and chapter 5. We have designed the classes of

the ontological model following a systematic and structured approach. Furthermore, we

have implemented an annotation and prediction module, leveraging popular NLP and

ML techniques. The prediction module has automatically classified the activity

descriptions of IRPs in an ontology class, enabling automatic adaption to changes in the

activity descriptions, and thereby generating new IRPs. It has also removed ambiguity in

activity descriptions when different security teams have defined similar tasks in different

words.

The ontological model, annotation module, and prediction module form the

integration framework that has been used to create an interoperability model. The

interoperability model has been designed to automate the execution of an IRP that has

been performed by automatically predicting the classes of activities from their

descriptions, identifying the security tools needed and invoking those security tools. The

feasibility of the proposed prediction model and interoperability model has been

evaluated experimentally. We have found that consideration of NLP and ML techniques

have enabled automated interpretation of text-based activity descriptions and the

execution of IRPs.

7.1.4 Ontology-driven Integration Process

In order to provide further support for automation, we have proposed a novel ontology-

driven integration process in chapter 5. We have observed that to adapt the changes in

security tools or IRPs, a SOC requires skilled professionals, who are familiar with the

underlying libraries and components of a SOAR platform. APIs, plugins or scripts must

Conclusion 216

be designed and developed by human experts to adopt the changes, which are usually

repetitive, time-consuming and error prone. Most SOCs already suffer from a shortage

of skilled professionals; hence, the manual and repetitive process may result in further

challenges for the organizations interested in leveraging the benefits of a SOAR platform.

We have found that human interventions can be minimized in the integration

process by formalizing the input, output, execution environment and functionalities of

security tools. We have proposed and designed a set of ontologies to provide the required

formal specifications. We have further proposed an approach, OnSOAR, to automate the

process for integration of security tools in four stages: (i) interpretation of the incident,

(ii) identification of activities, (iii) selection of security tools and (iv) formulation of

commands. Furthermore, a set of rules and structured queries have been defined to keep

the ontology consistent and retrieve data from it. The proposed approach has been

experimentally evaluated and compared with two existing baseline approaches. The

evaluation has demonstrated the effectiveness and efficiency of the proposed approach.

This research has demonstrated that the proposed approach can contribute towards an

integrable, interpretable, interoperable and modifiable SOAR platform.

7.1.5 AI-enabled Declarative API for Security Orchestration and Automation

We have presented an AI-enabled declarative API-driven orchestration approach, namely

DecOr, in chapter 6, for a flexible, scalable and easy to modify SOAR platform. DecOr

has mainly been designed as part of the abstraction layer of the proposed layered

architecture (chapter 3). Thus, the inherent complexity of a SOAR platform has been

hidden from its end users using a set of declarative APIs (dAPIs). We have identified

three sets of dAPIs: (i) orchestration APIs, (ii) integration APIs and (iii) execution APIs,

to encapsulate the activities related to orchestration, integration and execution of the

activities of a SOAR platform. Each dAPI (e.g., block. IP (malicious). Firewall

(checkpoint)) has been designed to represent a task (e.g., scan, block and correlate), an

object (e.g., IP, and endpoint), properties of an object (e.g., malicious IP) and, for some

cases, the security tools (e.g., checkpoint firewall and SIEM) that are required to execute

the needed task(s). The dAPIs can enable an end-user to interact with a SOAR without

having detailed knowledge about the underlying libraries and configurations of a SOAR

platform.

Conclusion 217

We have also developed a semantic framework, SecAPIGen, to automate the

design and generation of dAPIs elements from task descriptions (i.e., activity

descriptions or user queries). SecAPIGen leverages the NLP tools and techniques, such

as dependency parsing and WordNet, to generate different parts of a dAPI and identify

semantically similar dAPIs. We have observed that the playbooks of a SOAR platform

are mostly structured, which can be utilized to automatically identify the concepts of an

ontology and map the elements of dAPIs with the classes and elements of an ontology.

Our proposed solution also includes SemOnto, which uses playbooks’ output to

automatically identify the concepts of a SOAR’s ontology (i.e., it is required for semantic

integration and interpretation). The concepts generated by SemOnto can enable semantic

interpretation of a dAPI’s elements. DecOr has been experimentally evaluated with a

detailed experiment of 147 pairs of tasks and dAPIs. The experimental results

demonstrate that DecOr has successfully generated dAPIs in near real-time with high

precision. Our proposed approach has provided support for an easy to learn, interact with

and modify SOAR platform. Based on the reported solutions and the results of the

evaluation of the proposed solutions, we can assert that the declarative APIs and the

utilization of AI technologies in the design and development of a SOAR platform are

able to address several of the challenges of a SOAR platform identified in Chapter 2

effectively.

7.2 FUTURE DIRECTIONS

This thesis has made a significant contribution to the growing body of knowledge and

technologies (i.e., methods, processes and tools) for designing and evolving a SOAR

platform that can support ease of integration and interoperability of different types of

security tools. The findings from the reported research also lay the foundation for several

future research opportunities in this area. We consider two key potential areas for future

research below.

7.2.1 Software Engineering for Security Orchestration and Automation

Despite the widespread adoption of security orchestration technologies and practices in

recent years, several engineering and management issues (such as legal issues, trust

Conclusion 218

management, adaptability, scalability and usability) have mostly been neglected and need

to be addressed. Below we discuss some important points for future research:

7.2.1.1 Empirical evaluation of the proposed architecture and frameworks

The proposed architecture and toolsets of this thesis have been evaluated through

rigorous experimentation using seven open-source, freely-available security tools, a set

of IRPs and 189 playbooks from one SOAR vendor. Further research is needed for a

large-scale evaluation of the proposed architecture, toolsets and frameworks with

multiple proprietary and enterprise editions of security tools, IRPs, playbooks and use

case scenarios. Chapter 2 has identified a dearth of solid studies in the security

orchestration domain. There is an important need to define evaluation criteria and metrics

to empirically evaluate different aspects of a SOAR platform, including the promised

functional and non-functional requirements. Further research is also required for

developing and applying a framework for evidence-based evaluation of the security

orchestration tools and techniques.

In this thesis, we have proposed a paradigm shift for large-scale realization of a

SOAR platform. To the best of our knowledge, this thesis is the first step towards

encapsulating the tasks of a SOAR platform through a set of dAPIs. SOAR platform

vendors, or security tools vendors, may consider abstracting the activities of their

products and tools through a set of standard dAPIs and their underpinning AI techniques

to empirically understand whether or not the proposed solution can improve the

efficiency and productivity of a SOC team who are dealing with a continuously changing

threat landscape.

A useful area of empirical exploration could be conducting large-scale mapping of

the existing SOAR platforms and IRPs onto their architecture design decisions to

generate patterns and hide interactions among the different components across multiple

technology paradigms. Such a large-scale evaluation would provide the usefulness and

generalizability of the findings of this thesis.

Another potential area of future research is to evaluate the practical value of the

findings of this thesis by seeking feedback from practitioners by performing industry-

scale evaluations, whose findings could help improve the proposed architecture and

toolsets. For such an evaluation, domain experts should be tasked with designing a

Conclusion 219

suitable ontology for the security tools used to study the amount of efficiency that can be

increased with the use of semantic integration.

Another empirical study could invite a security team to use the semantic integration

framework to devise an ontology and cause the declarative APIs to interact with a given

SOAR for integrating and interoperating security toolsets.

7.2.1.2 Reference architecture for security orchestration and automation

Whilst this research has proposed a generic layered architecture that supports security

tools’ integration in a SOAR platform, there is need to develop and evaluate a reference

architecture for the security orchestration domain. A reference architecture often serves

as a guideline or starting point for designing concrete architecture for a software system

in a particular domain. Emerging large-scale systems that include the integration of a

wide variety of software and new technologies such as cloud, fog, IoT, big data and

blockchain have benefited from having a reference architecture [225-228]. Hence, an

emerging domain like security orchestration will benefit from research efforts aimed at

developing a suitable reference architecture for a security orchestration platform. A

reference architecture for security orchestration will help define a model to characterize

different components of a SOAR platform and the relationships across the different

components of the platform. We assert that the design and evaluation of a suitable

reference architecture for large-scale realization and materialization of security

orchestration platforms is a significant research challenge. There is an important need for

close collaboration between industry and academic researchers from the cybersecurity

and software engineering domains to develop a reference architecture for security

orchestration.

7.2.1.3 Evaluating the quality and design of incident response process

Responding to a security incident as soon as possible is an intricate task for security

experts. Despite significant efforts over the decades to detect incidents, the response

process is still manual and poorly designed. IRPs can be considered as one of the pre-

requisites of a SOAR, based on the IRPs’ playbook as it is designed and developed. For

successful automation and orchestration, it is important to empirically study and

understand different aspects of the existing approaches to developing and assessing IRPs.

There are no clear evaluation criteria to assess the quality of an IRP. Given an incident,

Conclusion 220

a SOC should be able to derive how good an IRP is regarding an automated process.

There is an urgent need for evaluation metrics that can be used to evaluate and assess the

quality of IRPs. Besides this, following a standard template to define the IRPs will hugely

benefit a security team’s efforts to respond proactively to a security incident. It is

necessary to identify the key features of an IRP: for example, the required security tool

that can be used, which part can be automated, whom to contact if a critical system has

been compromised, what countermeasures to be followed, and so on.

7.2.2 AI and ML for Security Orchestration and Automation

This research has also identified several opportunities for leveraging AI/ML technologies

for developing advanced security orchestration and automation solutions ranging from

threat management to automated identification of security tools’ features. In the

following subsections, we first discuss the potential applications of AI and ML to

enhance our proposed frameworks and then highlight how a SOAR platform can benefit

from AI technologies.

7.2.2.1 API generation at runtime

Several opportunities exist to enhance and leverage the proposed framework, DecOr (i.e.,

Declarative API driven orchestration), reported in chapter 6, by using AI technologies.

One way is to consider that multiple declarative APIs (dAPIs) can be made available to

execute a single task due to the diversity of security tools and organizational preferences.

NLP and AI technologies can be used to recommend suitable dAPI when multiple dAPIs

are available to execute a single task. Another potential area for using AI is to automate

the semi-automated approach, SemOnto, which identifies the concepts of an ontology

(proposed in chapter 6). For this objective, AI technologies can be explored to extract

features from existing semantic knowledge bases (i.e., ontologies, RDF, or structure

documents), analyzing different playbooks’ structures, and use that information to

predict or classify similar features from the structured and unstructured documents of a

SOAR (e.g., playbook documentation, security tool documentation and so on).

7.2.2.2 Automated identification of security tools’ features

This thesis has proposed an ontology-driven integration approach (chapter 4), which

requires a detailed definition of the features of different security tools and incident

Conclusion 221

response plans. Without suitable definitions of a security tool’s functional and non-

functional capabilities, the proposed approach will not be able to perform the

abovementioned tasks. A probabilistic learning model can also be designed to automate

the integration process, using the ontological model and the existing security tools’

configurations to generate the APIs when an exact match is missing. The use of advanced

NLP and ML techniques can help to automate the identification of the security tools’

features that are required to automate the execution of an IRP. For example, an AI-

enabled automation framework could be developed to recommend the features of

security tools from their documentation. This can be achieved by using existing NLP

techniques (i.e., Word2Vec and word embedding) and the ML/ Deep Learning (DL)

model for analysis of security tools’ descriptions or documentation. At the core of such

a framework will be a security tool features-centric language model that will be built

with the existing security tools and ML/DL models.

7.2.2.3 Automated analysis and recommendations of a security incident response

plan

There is also a need for future research to develop an automated framework that can

recommend a set of IRPs based on different characteristics of an incident to security

experts. NLP techniques (e.g., word embedding) and ML techniques (e.g., traditional or

deep learning models) can be used for analysis of and recommendations for the existing

IRPs. There will need to be a development of incident response-centric language models,

which can recommend the possible IRPs to the security team for a real-time response. A

tool for automatic analysis of IRPs may also help to identify the key features of an IRP

and automate the generation of playbooks from IRPs and other, available security tools.

Appendices 222

Appendices

Appendix A1. Annotation Instruction

Annotate the different parts of a dAPI element from the task description: The annotator

needs to take each task description from the “raw_file.xls” and annotate the different

parts (i.e., dAPI element) of a dAPI element. Certain things need to be considered.

(a) Each annotated dAPI will have three parts.

(b) The first part, consists of the key abstract functions such as block, scan, verify and

detonate.

(c) The second part provides details about the task and compromises of the object (e.g.,

IP and capability) on which the task needs to be performed.

(d) The third part is to identify the specific components (i.e., endpoint and ontology) on

which the task needs to be done or the types of tools (i.e., firewall) that need to be

used.

(e) The last two parts of a dAPI take parameters that provide more fine-grained detail

about a task. For example, the task “block external IPs in the Firewall” specifies

the types of IPs. The dAPI for the task will be “block. IP (external). firewall” where

the second part takes “external” as an input parameter. Follow the annotation

instruction below to label the task with the corresponding dAPI.

(f) The third part and the parameters of the second and third parts of a dAPI might be

empty depending on the task description.

Following are the step by step annotation instruction

Step 1: Identify the Part of speech of a sentence from the list of the task description and

the relationship between different words of a sentence or build the dependency parse tree.

Step 2: Annotation of the first part of the dAPI

(g) Identify the root word of a sentence and consider the root of a sentence as the first

part of a dAPI.

(h) if a word is the nominal subject of the root of a sentence and the part of speech of

the word is verb or noun then consider the word as a first part of the.

Step 3: Annotation of the second part of the dAPI

Appendices 223

(i) If the root has a nominal subject where the parts of speech of the nominal subject

are either verb or noun only then consider the root as a second part of the dAPI

(j) If a word is a direct object of a root consider it as the second part of the dAPI

(k) If a word is a modifier (adverbial modifier or clausal complement) of the root

consider the child of the word that is a nominal subject of the word a. If the child is

a nominal subject of the word and the part of speech of the child is a verb then

consider it as the second part of the dAPI

Step 4: Annotation of the third part of the dAPI

(l) if a word is a modifier (adverbial modifier or clausal complement) of the root

consider the child of the word that is a nominal subject of the word a. If a child is a

direct object of the word and the part of speech of the child is a verb then consider

it as the third part of the dAPI

(m) If a word is a preposition of the root and the part of speech of the word is the

adverbial position then consider the child of the word that is a prepositional object

of the word a. If the child of the word is a preposition object and its part of speech

is a verb or noun consider the child of the word as a third part of the API ii. Consider

the modifier of an API element as the parameter of that API element. For example,

block the external IPs in the Firewall, here external is a modifier (i.e., adjective

modifier) of IP.

(n) Several cases exist where a single object or subject has multiple dependencies, for

example, “send a message to the source user email address”, here the “source user

email” is the modifier of the object address and parameter of the address API

element. Identify the multiple modifiers of the dAPI element and consider them as

the list of parameters for that part. Example: address (source user email)

For annotation of the parameter of the second part of the dAPI and the parameter of the

third part of the API follow

Step 5: Annotation of the parameter of the second and third part of the dAPI

(b) Each object and subject of the second and third part of the dAPI (also referred to as

dAPI element) have further modifiers (e.g., adverbial modifier, adjective modifier

and noun compound modifier).

Save the file as “annotated_API_AnnotatorName.xls”

Appendices 224

Combine the semantically similar words: Some of the annotated dAPI elements can

be combined into a single API element based on their semantics and the task they are

performing. For example, “quarantine the endpoint” and “isolate the endpoint” referring

to the same task. With the above annotation, there will be two different API elements in

the first part: quarantine and isolate. The job of the annotator here is to combine the API

elements and present them with a single API element. For example: use quarantine

instead of isolate or vice versa. In the new annotated API element, the API element

quarantine refers to the task related to isolate and quarantine that is quarantine →

(quarantine, isolate)

Quarantine the endpoint: quarantine. endpoint

Isolate the endpoint: quarantine. endpoint

Similarity retrieve can be used instead of acquire, and get

Instruction:

(o) Take each API element and consider the rest of the API elements and see whether

they seem to be the synonym of each other or tends to have a semantically similar

meaning in the context of the task.

(p) Provide the API element list that can be combined in the following form and save

the file with the name “semanticAPI_AnnotatorName.docs”

“semantics_api_annotatorName.pdf”

o quarantine →(quarantine, isolate)

o retrieve → (acquire, get, retrieve)

Save the new annotated file as “annotate_Semantic_API_AnnotatorName.xls”.

Appendix A2. Frequent dAPI Elements

Frequent API elements with the frequency of each element in different parts of the dAPI

Frequency of each dAPI element in first part: retrieve: 28, verify: 23, send: 21, set: 16,

block: 11, enrich: 9, detonate: 9, query: 6, create: 5, quarantine: 4, close: 3, parse: 3,

categorise: 3, download: 2, print: 2, use: 1, disable: 1

Frequency of frequent dAPI elements in second part: file: 14, information: 9, url: 9,

report: 9, ips: 8, severity: 7, incident: 7, account: 6, directory: 6, sample: 5, device: 5,

email: 4, object: 4, username: 4, input: 4, endpoint: 3, address: 3, operation: 3, list: 3,

domain: 3, result: 2, host: 2, classifier: 2, alert: 2, task: 2

Appendices 225

Frequency of frequent dAPI elements in third part: integration: 11, sandbox: 5, room:

4, address: 3, high: 3, url: 3, analysis: 3, repository: 3, domain: 3, account: 2, low: 2,

siem: 2, firewall: 2, qradar: 2, information: 2, username: 2, service: 2, zscaler: 2, cuckoo:

2, context: 2, crowdstrike: 2, hash: 2

Frequent API elements for parameter for second part of dAPI: incident: 7, active: 5,

account: 4, playbook: 4, user: 3, host: 3, cve: 3, logs: 2, external: 2, email: 2, file: 2, md5:

2, malicious: 2

Frequent dAPI elements for parameter of third part: user: 4, mcafee: 4, email: 3,

source: 3, carbonblack: 3, war: 3, joe: 3, security: 3, sandbox: 3, network: 2, crowdstrike:

2, falcon: 2, advanced: 2, threat: 2, defence: 2, blacklist: 2

Most frequent dAPI elements (i.e., objects) except the first part in ground truth: file:

18, incident: 15, account: 12, url: 12, information: 11, report: 11, integration: 11, ips: 10,

email: 9, severity: 8, sandbox: 8, directory: 7, username: 7, user: 7, address: 6, host: 6,

device: 6, playbook: 6, domain: 6, active: 6, endpoint: 5, sample: 5, input: 5, crowd strike:

5, object: 4, operation: 4, md5: 4, cve: 4, room: 4, source: 4, mcafee: 4, hash: 3, list: 3,

task: 3, high: 3, blacklist: 3, analysis: 3, repository: 3, network: 3, carbon black: 3

Appendix A3. Semantically Similar API Element

 Following we show the API elements that are considered under an API element for the

first part of an API.

retrieve: (acquire, get, retrieve), categorize: (categorize, classify), enrich: (add, enrich),

quarantine: (isolate, quarantine), send: (dump, submit, send, return, upload), set:

(assign, change, initiate, poll, set), verify: (check, review, verify), block, close, create,

detonate, disable, download, parse, print, query, use

Appendix A4. Identified Concepts of an Ontology that are dAPI Elements

Class: account, analysis, anyrun, atd, bitdam, cuckoo, cve, email, endpoint, file, hash,

ip, joe, log, malicious, nexpose, qradar, report, result, sample, search, task, threat, url,

user.

References 226

References

[1] Deloitte and MAPI, Cyber risk in advanced manufacturing, [Online]. Available:

https://www2.deloitte.com/content/dam/Deloitte/us/Documents/manufacturing/us-manu-cyber-

risk-in-advanced-manufacturing.pdf.

[2] Verizon, 2020 Data Breach Investigations Report, 2020, [Online]. Available:

https://enterprise.verizon.com/en-au/resources/reports/dbir/.

[3] F. Ullah, M. Edwards, R. Ramdhany, R. Chitchyan, M. A. Babar, and A. Rashid, Data

exfiltration: A review of external attack vectors and countermeasures, Journal of Network and

Computer Applications, vol. 101, pp. 18-54, 2018.

[4] K. L. Offner, E. Sitnikova, K. Joiner, and C. R. MacIntyre, Towards understanding

cybersecurity capability in Australian healthcare organisations: a systematic review of recent

trends, threats and mitigation, Intelligence and National Security, vol. 35, no. 4, pp. 556-585,

2020.

[5] F. Luh and Y. Yen, Cybersecurity in Science and Medicine: Threats and Challenges, Trends

Biotechnol., 2020.

[6] Z. El-Rewini, K. Sadatsharan, D. F. Selvaraj, S. J. Plathottam, and P. Ranganathan,

Cybersecurity challenges in vehicular communications, Vehicular Communications, vol. 23, p.

100214, 2020.

[7] A. Hassanzadeh et al., A Review of Cybersecurity Incidents in the Water Sector, J. Environ.

Eng., vol. 146, no. 5, p. 03120003, 2020.

[8] C. Ventures. 2019 Official Annual Cybercrime Report, 2019.

[9] S. Morgan, (2019), Global Cybersecurity Spending Predicted To Exceed $1 Trillion From

2017-2021, [Online]. Available: https://cybersecurityventures.com/cybersecurity-market-

report/.

[10] ACSC, (July 10, 2020), COVID-19 malicious cyber activity, [Online]. Available:

https://www.cyber.gov.au/acsc/view-all-content/alerts/covid-19-malicious-cyber-

activity#:~:text=The%20malicious%20COVID%2D19%20websites,in%20order%20to%20gene

rate%20profit.

[11] K. Ho, (July 10, 2020), Australia targeted by sophisticated cyber attacks, [Online]. Available:

https://infrastructuremagazine.com.au/2020/06/23/australia-targeted-by-sophisticated-cyber-

attacks/.

[12] D. Maguire, (July 10, 2020), What we know about the 'sophisticated, state-based' cyber attack

on Australia, [Online]. Available: https://www.abc.net.au/news/2020-06-19/cyber-attack-no-

australian-government-organisations-explained/12373190.

[13] C. P. Crowley, John, The Definition of SOC-cess? SANS 2018 Security Operations Center

Survey, SANS Institute, August 2018 2018.

[14] Kaspersky, (June 19, 2019), Return on security investment: internal SOCs halve the financial

impact of enterprise data breaches, [Online]. Available:

https://www.kaspersky.com/about/press-releases/2019_internal-socs-halve-the-financial-impact-

of-enterprise-data-breaches.

[15] McAfee, (July 10, 2020), What Is a Security Operations Center (SOC)? , [Online]. Available:

https://www.mcafee.com/enterprise/en-au/security-awareness/operations/what-is-

soc.html#:~:text=A%20Security%20Operation%20Center%20(SOC,and%20responding%20to

%20cybersecurity%20incidents.

[16] M. Ahmed, A. Naser Mahmood, and J. Hu, A survey of network anomaly detection techniques,

Journal of Network and Computer Applications, vol. 60, pp. 19-31, 2016.

[17] Komand, (September 23, 2017), [Online]. Available: https://www.komand.com/.

[18] Intel Security, (October 20, 2017), Automating the Threat Defence Lifecycle, [Online].

Available: https://www.mcafee.com/au/solutions/orchestration.aspx.

[19] HEXADITE, (August 07), [Online]. Available: https://www.hexadite.com/.

https://www2.deloitte.com/content/dam/Deloitte/us/Documents/manufacturing/us-manu-cyber-risk-in-advanced-manufacturing.pdf
https://www2.deloitte.com/content/dam/Deloitte/us/Documents/manufacturing/us-manu-cyber-risk-in-advanced-manufacturing.pdf
https://enterprise.verizon.com/en-au/resources/reports/dbir/
https://cybersecurityventures.com/cybersecurity-market-report/
https://cybersecurityventures.com/cybersecurity-market-report/
https://www.cyber.gov.au/acsc/view-all-content/alerts/covid-19-malicious-cyber-activity#:~:text=The%20malicious%20COVID%2D19%20websites,in%20order%20to%20generate%20profit
https://www.cyber.gov.au/acsc/view-all-content/alerts/covid-19-malicious-cyber-activity#:~:text=The%20malicious%20COVID%2D19%20websites,in%20order%20to%20generate%20profit
https://www.cyber.gov.au/acsc/view-all-content/alerts/covid-19-malicious-cyber-activity#:~:text=The%20malicious%20COVID%2D19%20websites,in%20order%20to%20generate%20profit
https://infrastructuremagazine.com.au/2020/06/23/australia-targeted-by-sophisticated-cyber-attacks/
https://infrastructuremagazine.com.au/2020/06/23/australia-targeted-by-sophisticated-cyber-attacks/
https://www.abc.net.au/news/2020-06-19/cyber-attack-no-australian-government-organisations-explained/12373190
https://www.abc.net.au/news/2020-06-19/cyber-attack-no-australian-government-organisations-explained/12373190
https://www.kaspersky.com/about/press-releases/2019_internal-socs-halve-the-financial-impact-of-enterprise-data-breaches
https://www.kaspersky.com/about/press-releases/2019_internal-socs-halve-the-financial-impact-of-enterprise-data-breaches
https://www.mcafee.com/enterprise/en-au/security-awareness/operations/what-is-soc.html#:~:text=A%20Security%20Operation%20Center%20(SOC,and%20responding%20to%20cybersecurity%20incidents
https://www.mcafee.com/enterprise/en-au/security-awareness/operations/what-is-soc.html#:~:text=A%20Security%20Operation%20Center%20(SOC,and%20responding%20to%20cybersecurity%20incidents
https://www.mcafee.com/enterprise/en-au/security-awareness/operations/what-is-soc.html#:~:text=A%20Security%20Operation%20Center%20(SOC,and%20responding%20to%20cybersecurity%20incidents
https://www.komand.com/
https://www.mcafee.com/au/solutions/orchestration.aspx
https://www.hexadite.com/

References 227

[20] McAfee, (October 20), MacAfee Orchestration Platform, [Online]. Available:

https://www.mcafee.com/au/solutions/orchestration.aspx

[21] S. Luo and M. B. Salem, "Orchestration of software-defined security services," in 2016 IEEE

International Conference on Communications Workshops, ICC 2016, Kuala Lumpur, Malaysia,

2016, Conference Paper.

[22] C. Islam, M. A. Babar, and S. Nepal, A Multi-Vocal Review of Security Orchestration, ACM

Computing Surveys (CSUR), vol. 52, no. 2, p. 37, April 2019.

[23] E. Feitosa, E. Souto, and D. H. Sadok, An orchestration approach for unwanted Internet traffic

identification, Computer Networks, Article vol. 56, no. 12, pp. 2805-2831, 2012.

[24] Komand, (21/10/2017), Security automation best practice, [Online]. Available:

https://www.komand.com/.

[25] (ISC)2, Strategies for Building and Growing Strong Cybersecurity Teams, in

CYBERSECURITY WORKFORCE STUDY, 2019, 2019 2019, [Online]. Available:

https://www.isc2.org/Research/2019-Cybersecurity-Workforce-Study#.

[26] D. VIB, The state of SOAR report, 2019, in The Third annual state of incident response report,

Demisto: A Palo Alto networks' company, 2019, [Online]. Available:

https://www.paloaltonetworks.com/content/dam/pan/en_US/assets/pdf/demisto/Stat-of-SOAR-

Report-2019.pdf.

[27] Gartner, Market Guide for Security Orchestration, Automation and Response Solutions, 2019,

[Online]. Available: https://www.gartner.com/doc/reprints?id=1-

1OA93LZ7&ct=190716&st=sb.

[28] McAfee, (10/20/2017, 2017), MacAfee Orchestration Platform, [Online]. Available:

https://www.mcafee.com/au/solutions/orchestration.aspx

[29] FireEye, (November 21), Security orchestration - best practice for any organization [Online].

Available: https://www.fireeye.com/solutions/security-orchestrator/wp-best-practices-in-

orchestration.html.

[30] I. Security, (October 23, 2017), Open Security Controller: A security Orchestration Platform

for the software-defined datacentre, [Online]. Available:

https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/open-security-

controller-datasheet.pdf.

[31] alienvault, (November 23, 2017), Security Automation & Orchestration [Online]. Available:

https://www.alienvault.com/solutions/security-automation-and-orchestration.

[32] Swimlane, (November 20, 2017), Security Automation and Orchestration, [Online]. Available:

https://swimlane.com/use-cases/security-orchestration-for-automated-defense/.

[33] LogRhythm, (November 20), Security Automation and Orchestration, Respond to Incidents in

Seconds—Not Days, [Online]. Available: https://logrhythm.com/solutions/security/security-

automation-and-orchestration/.

[34] Demisto, (October 20, 2017), Collaborative and Automated Security Operations - A

comprehensive Incident Management Platform, [Online]. Available: https://www.demisto.com/.

[35] Demisto, (December 5, 2017), Security orchestration and automation, [Online]. Available:

https://www.demisto.com/wp-content/uploads/2017/04/MH-Demisto-Security-Automation-

WP.pdf

[36] WHO, (2020), WHO reports fivefold increase in cyber attacks, urges vigilance, [Online].

Available: https://www.who.int/news-room/detail/23-04-2020-who-reports-fivefold-increase-in-

cyber-attacks-urges-vigilance.

[37] E. Richardson and J. Mahle, (July 10, 2020), Cyberattacks on the rise during the Covid-19

pandemic, [Online]. Available:

https://www.bizjournals.com/cincinnati/news/2020/06/01/cyberattacks-on-the-rise-during-

covid-19.html.

[38] ACSC, (July 10, 2020), Advanced Persistent Threat (APT) actors targeting Australian health

sector organisations and COVID-19 essential services, [Online]. Available:

https://www.cyber.gov.au/acsc/view-all-content/advisories/advisory-2020-009-

recommendations-mitigate-apt-actors-targeting-health-sector-and-covid-19-essential-services.

https://www.mcafee.com/au/solutions/orchestration.aspx
https://www.komand.com/
https://www.isc2.org/Research/2019-Cybersecurity-Workforce-Study
https://www.paloaltonetworks.com/content/dam/pan/en_US/assets/pdf/demisto/Stat-of-SOAR-Report-2019.pdf
https://www.paloaltonetworks.com/content/dam/pan/en_US/assets/pdf/demisto/Stat-of-SOAR-Report-2019.pdf
https://www.gartner.com/doc/reprints?id=1-1OA93LZ7&ct=190716&st=sb
https://www.gartner.com/doc/reprints?id=1-1OA93LZ7&ct=190716&st=sb
https://www.mcafee.com/au/solutions/orchestration.aspx
https://www.fireeye.com/solutions/security-orchestrator/wp-best-practices-in-orchestration.html
https://www.fireeye.com/solutions/security-orchestrator/wp-best-practices-in-orchestration.html
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/open-security-controller-datasheet.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/open-security-controller-datasheet.pdf
https://www.alienvault.com/solutions/security-automation-and-orchestration
https://swimlane.com/use-cases/security-orchestration-for-automated-defense/
https://logrhythm.com/solutions/security/security-automation-and-orchestration/
https://logrhythm.com/solutions/security/security-automation-and-orchestration/
https://www.demisto.com/
https://www.demisto.com/wp-content/uploads/2017/04/MH-Demisto-Security-Automation-WP.pdf
https://www.demisto.com/wp-content/uploads/2017/04/MH-Demisto-Security-Automation-WP.pdf
https://www.who.int/news-room/detail/23-04-2020-who-reports-fivefold-increase-in-cyber-attacks-urges-vigilance
https://www.who.int/news-room/detail/23-04-2020-who-reports-fivefold-increase-in-cyber-attacks-urges-vigilance
https://www.bizjournals.com/cincinnati/news/2020/06/01/cyberattacks-on-the-rise-during-covid-19.html
https://www.bizjournals.com/cincinnati/news/2020/06/01/cyberattacks-on-the-rise-during-covid-19.html
https://www.cyber.gov.au/acsc/view-all-content/advisories/advisory-2020-009-recommendations-mitigate-apt-actors-targeting-health-sector-and-covid-19-essential-services
https://www.cyber.gov.au/acsc/view-all-content/advisories/advisory-2020-009-recommendations-mitigate-apt-actors-targeting-health-sector-and-covid-19-essential-services

References 228

[39] D. Grober, (July 10, 2020), Roundup: COVID-19 pandemic delivers extraordinary array of

cybersecurity challenges, [Online]. Available: https://www.zdnet.com/article/roundup-the-

coronavirus-pandemic-delivers-an-array-of-cyber-security-challenges/.

[40] ACSC, (July 10, 2020), Threat update: COVID-19 malicious cyber activity 20 April 2020,

[Online]. Available: https://www.cyber.gov.au/acsc/view-all-content/advisories/threat-update-

covid-19-malicious-cyber-activity-20-april-2020.

[41] AustCyber, (June 18, 2020), SCP - Chapter 1 - The global outlook for cyber security, [Online].

Available: austcyber.com/resources/sector-competitiveness-plan/chapter1.

[42] M. A. Babar, L. Zhu, and R. Jeffery, "A framework for classifying and comparing software

architecture evaluation methods," in 2004 Australian Software Engineering Conference.

Proceedings., 2004, pp. 309-318.

[43] M. A. Chauhan, M. A. Babar, A. Wasowski, C. W. Probst, and R. Bahsoon, Foundations for

Tools as a Service Workspace: A Reference Architecture. IT University of Copenhagen,

Software and Systems Section, 2016.

[44] A. Jansen and J. Bosch, "Software Architecture as a Set of Architectural Design Decisions," in

Proceedings of the 5th Working IEEE/IFIP Conference on Software Architecture, USA, 2005.

[45] L. Bass, P. Clements, and R. Kazman, Software architecture in practice. Addison-Wesley

Professional, 2003.

[46] V. Garousi, M. Felderer, and M. V. M, "The need for multivocal literature reviews in software

engineering: complementing systematic literature reviews with grey literature," in Proceedings

of the 20th International Conference on Evaluation and Assessment in Software Engineering,

Limerick, Ireland, 2016.

[47] G. Deepa and P. S. Thilagam, Securing web applications from injection and logic

vulnerabilities: Approaches and challenges, Information and Software Technology, vol. 74, pp.

160-180, 2016.

[48] M. Leitner and S. Rinderle-Ma, A systematic review on security in Process-Aware Information

Systems – Constitution, challenges, and future directions, Information and Software

Technology, vol. 56, no. 3, pp. 273-293, 2014.

[49] Verizon, (December 5, 2017), Verizon 2017 Data Breach Investigations Report, [Online].

Available: http://www.verizonenterprise.com/verizon-insights-lab/dbir/2017/.

[50] S. IBM, (December, 2017), 2017 Cost of Data Breach Study: Global Overview, [Online].

Available: https://www.ibm.com/security/data-breach.

[51] Equifax, (November 10), [Online]. Available: https://www.equifax.com/personal/.

[52] W.-M. Ethan, (January 5, 2017), Equifax: The company that screwed consumers the most in

2017, [Online]. Available: https://finance.yahoo.com/news/equifax-company-screwed-

consumers-2017-163011368.html.

[53] M. Lee, (December 5, 2017), Equifax Data Breach Impacts 143 Milion Americans, [Online].

Available: https://www.forbes.com/sites/leemathews/2017/09/07/equifax-data-breach-impacts-

143-million-americans/#1abcaed0356f.

[54] H. Todd, (October 30, 2017), Credit reporting firm Equifax says data breach could potentially

affect 143 million US consumers, [Online]. Available: https://www.cnbc.com/2017/09/07/credit-

reporting-firm-equifax-says-cybersecurity-incident-could-potentially-affect-143-million-us-

consumers.html.

[55] P. L. Goethals and M. E. Hunt, A review of scientific research in defensive cyberspace

operation tools and technologies, Journal of Cyber Security Technology, vol. 3, no. 1, pp. 1-46,

2019.

[56] B. Schneier, (April 30, 2017), Security Orchestration for an Uncertain World, [Online].

Available: https://securityintelligence.com/security-orchestration-for-an-uncertain-world/.

[57] M. Dave and V. Viswanathan, (November 20, 2017), Open Security Controller: Security

Orchestration for OpenStack, [Online]. Available:

https://www.rsaconference.com/events/us17/agenda/sessions/6582-open-security-controller-

security-orchestration-for.

[58] E. Digiambattista, Enterprise level security orchestration, US Patent 2017/0017795 A1, 2017.

[59] H. Nadkarni, Security orchestration framework, US Patent 9,807,118, 2017.

https://www.zdnet.com/article/roundup-the-coronavirus-pandemic-delivers-an-array-of-cyber-security-challenges/
https://www.zdnet.com/article/roundup-the-coronavirus-pandemic-delivers-an-array-of-cyber-security-challenges/
https://www.cyber.gov.au/acsc/view-all-content/advisories/threat-update-covid-19-malicious-cyber-activity-20-april-2020
https://www.cyber.gov.au/acsc/view-all-content/advisories/threat-update-covid-19-malicious-cyber-activity-20-april-2020
http://www.verizonenterprise.com/verizon-insights-lab/dbir/2017/
https://www.ibm.com/security/data-breach
https://www.equifax.com/personal/
https://finance.yahoo.com/news/equifax-company-screwed-consumers-2017-163011368.html
https://finance.yahoo.com/news/equifax-company-screwed-consumers-2017-163011368.html
https://www.forbes.com/sites/leemathews/2017/09/07/equifax-data-breach-impacts-143-million-americans/#1abcaed0356f
https://www.forbes.com/sites/leemathews/2017/09/07/equifax-data-breach-impacts-143-million-americans/#1abcaed0356f
https://www.cnbc.com/2017/09/07/credit-reporting-firm-equifax-says-cybersecurity-incident-could-potentially-affect-143-million-us-consumers.html
https://www.cnbc.com/2017/09/07/credit-reporting-firm-equifax-says-cybersecurity-incident-could-potentially-affect-143-million-us-consumers.html
https://www.cnbc.com/2017/09/07/credit-reporting-firm-equifax-says-cybersecurity-incident-could-potentially-affect-143-million-us-consumers.html
https://securityintelligence.com/security-orchestration-for-an-uncertain-world/
https://www.rsaconference.com/events/us17/agenda/sessions/6582-open-security-controller-security-orchestration-for
https://www.rsaconference.com/events/us17/agenda/sessions/6582-open-security-controller-security-orchestration-for

References 229

[60] O. Rochford, (October 29, 2017), When is Security Automation and Orchestration a Must-Have

Technology? – Addressing Gartner’s SOAR Question, [Online]. Available:

https://www.dflabs.com/blog/when-is-security-automation-and-orchestration-a-must-have-

technology-addressing-gartner-soar-question/.

[61] SWIMLANE, (20/10/2017), Security Automation and Orchestration (SAO) Capabilities,

[Online]. Available: https://swimlane.com/ebook-sao-capabilities/.

[62] M. Spanbauer, (October 21, 2015), Security Orchestration – Integration, Process, and Wise

Investments Driven by a Security Conductor, [Online]. Available:

https://www.nsslabs.com/blog/analyst-insights/security-orchestration-integration-process-and-

wise-investments-driven-by-a-security-conductor/.

[63] J. TRULL, (September 5, 2017), Top 5 best practices to automate security operations, [Online].

Available: https://cloudblogs.microsoft.com/microsoftsecure/2017/08/03/top-5-best-practices-

to-automate-security-operations/.

[64] I. Resilient, (October 28), Security Module, [Online]. Available:

https://www.resilientsystems.com/our-platform/incident-response-security/.

[65] TDG, (October 25, 2017), Security Orchestration Fine-Tunes the Incident Response Process,

[Online]. Available: https://www.turremgroup.com/security-orchestration-fine-tunes-the-

incident-response-process/.

[66] Verizon, (September 2, 2016), Verizon 2016 Data Breach Investigations Report, [Online].

Available: http://www.verizonenterprise.com/verizon-insights-lab/dbir/.

[67] BakerHosteller, (August 20, 2017), Be Compromise Ready: Go Back to the Basics - 2017 Data

Security Incident Response Report, [Online]. Available:

https://www.bakerlaw.com/events/webinar-be-compromise-ready-go-back-to-the-basics.

[68] l. Dave, (September 20, 2016), Food chain Wendy's hit by massive hack, [Online]. Available:

http://www.bbc.com/news/technology-36742599.

[69] KrebsonSecurity, (November 20, 2016), Wendy's Breach, [Online]. Available:

https://krebsonsecurity.com/tag/wendys-breach/.

[70] O. Rochford and P. E. Proctor, Innovation Tech Insight for Security Operations, Analytics and

Reporting, Gartner 2015, [Online]. Available:

https://www.gartner.com/doc/3166239/innovation-tech-insight-security-operations, Accessed

on: October 21, 2017.

[71] I. Security, (October 23), Open Security Controller: A security Orchestration Platform for the

software-defined datacentre, [Online]. Available:

https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/open-security-

controller-datasheet.pdf.

[72] T. Koyama, B. Hu, Y. Nagafuchi, E. Shioji, and K. Takahashi, Security orchestration with a

global threat intelligence platform, NTT Technical Review, Article vol. 13, no. 12, 2015.

[73] R. Poornachandran, S. Shahidzadeh, S. Das, V. J. Zimmer, S. Vashisth, and P. Sharma,

Premises-aware security and policy orchestration, US Patent 14/560,141, 2016.

[74] T. Yu, S. K. Fayaz, M. Collins, V. Sekar, and S. Seshan, "PSI: Precise Security Instrumentation

for Enterprise Networks," in In Network and Distributed System Security Symposium (NDSS),

San Diego, CA, USA, 2017.

[75] E. Tom, A. Aurum, and R. Vidgen, An exploration of technical debt, Journal of Systems and

Software, vol. 86, no. 6, pp. 1498-1516, 2013/06/01/ 2013.

[76] B. Kitchenham, O. Pearl Brereton, D. Budgen, M. Turner, J. Bailey, and S. Linkman,

Systematic literature reviews in software engineering – A systematic literature review,

Information and Software Technology, vol. 51, no. 1, pp. 7-15, 2009.

[77] V. Garousi, . Felderer, and T. Hacaloğlu, Software test maturity assessment and test process

improvement: A multivocal literature review, Information and Software Technology, vol. 85,

no. Supplement C, pp. 16-42, 2017.

[78] V. Garousi and M. V. Mäntylä, When and what to automate in software testing? A multi-vocal

literature review, Information and Software Technology, vol. 76, pp. 92-117, 2016.

[79] S. Keele, "Guidelines for performing systematic literature reviews in software engineering," in

Technical report, Ver. 2.3 EBSE Technical Report. EBSE: sn, 2007.

https://www.dflabs.com/blog/when-is-security-automation-and-orchestration-a-must-have-technology-addressing-gartner-soar-question/
https://www.dflabs.com/blog/when-is-security-automation-and-orchestration-a-must-have-technology-addressing-gartner-soar-question/
https://swimlane.com/ebook-sao-capabilities/
https://www.nsslabs.com/blog/analyst-insights/security-orchestration-integration-process-and-wise-investments-driven-by-a-security-conductor/
https://www.nsslabs.com/blog/analyst-insights/security-orchestration-integration-process-and-wise-investments-driven-by-a-security-conductor/
https://cloudblogs.microsoft.com/microsoftsecure/2017/08/03/top-5-best-practices-to-automate-security-operations/
https://cloudblogs.microsoft.com/microsoftsecure/2017/08/03/top-5-best-practices-to-automate-security-operations/
https://www.resilientsystems.com/our-platform/incident-response-security/
https://www.turremgroup.com/security-orchestration-fine-tunes-the-incident-response-process/
https://www.turremgroup.com/security-orchestration-fine-tunes-the-incident-response-process/
http://www.verizonenterprise.com/verizon-insights-lab/dbir/
https://www.bakerlaw.com/events/webinar-be-compromise-ready-go-back-to-the-basics
http://www.bbc.com/news/technology-36742599
https://krebsonsecurity.com/tag/wendys-breach/
https://www.gartner.com/doc/3166239/innovation-tech-insight-security-operations
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/open-security-controller-datasheet.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/open-security-controller-datasheet.pdf

References 230

[80] M. Shahin, P. Liang, and M. A. Babar, A systematic review of software architecture

visualization techniques, Journal of Systems and Software, vol. 94, pp. 161-185, 2014.

[81] M. Zahedi, M. Shahin, and M. Ali Babar, A systematic review of knowledge sharing challenges

and practices in global software development, International Journal of Information

Management, vol. 36, no. 6, Part A, pp. 995-1019, 2016.

[82] S. A. Zonouz, R. Berthier, H. Khurana, W. H. Sanders, and T. Yardley, Seclius: An Information

Flow-Based, Consequence-Centric Security Metric, IEEE Transactions on Parallel and

Distributed Systems, vol. 26, no. 2, pp. 562-573, 2015.

[83] T. Kenaza and M. Aiash, "Toward an Efficient Ontology-Based Event Correlation in SIEM," in

The 7th International Conference on Ambient Systems, Networks and Technologies, Madrid,

Spain 2016, Conference Paper.

[84] H. T. Elshoush and I. M. Osman, "Reducing false positives through fuzzy alert correlation in

collaborative intelligent intrusion detection systems - A review," in International Conference on

Fuzzy Systems, Barcelona, Spain, 2010: IEEE, pp. 1-8.

[85] M. Kamal, A. J. Davis, J. Nabukenya, T. V. Schoonover, L. R. Pietron, and G. j. D. Vreede,

"Collaboration Engineering For Incident Response Planning: Process Development and

Validation," in System Sciences, 2007. HICSS 2007. 40th Annual Hawaii International

Conference on, Waikoloa, HI, USA, Jan. 2007, 2007.

[86] R. Saad, F. Nait-Abdesselam, and A. Serhrouchni, "A collaborative peer-to-peer architecture to

defend against DDoS attacks," in 2008 33rd IEEE Conference on Local Computer Networks

(LCN), Montreal, Que, Canada, 14-17 Oct. 2008, 2008.

[87] X. Liao, K. Yuan, X. Wang, Z. Li, L. Xing, and R. Beyah, "Acing the IOC Game: Toward

Automatic Discovery and Analysis of Open-Source Cyber Threat Intelligence," in Proceedings

of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna,

Austria, 2016.

[88] C. Fung, Q. Zhu, R. Boutaba, and T. Basar, "SMURFEN: a system framework for rule sharing

collaborative intrusion detection," in Proceedings of the 7th International Conference on

Network and Services Management, Paris, France, 2011.

[89] A. Poller, S. Turpe, and K. Kinder-Kurlanda, "An Asset to Security Modeling?: Analyzing

Stakeholder Collaborations Instead of Threats to Assets," in Proceedings of the 2014 New

Security Paradigms Workshop, Victoria, British Columbia, Canada, 2014.

[90] T. Koyama, K. Hato, H. Kitazume, and M. Nagafuchi, Resilient security technolgoy for rapid

recovery from cyber attacks, NTT Technical Review, vol. 12, p. 6, July 7 2014.

[91] B. Jaeger, Security Orchestrator: Introducing a Security Orchestrator in the Context of the ETSI

NFV Reference Architecture, pp. 1255-1260, 2015.

[92] C. Sillaber, C. Sauerwein, A. Mussmann, and R. Breu, "Data Quality Challenges and Future

Research Directions in Threat Intelligence Sharing Practice," in Proceedings of the 2016 ACM

on Workshop on Information Sharing and Collaborative Security, Vienna, Austria, 2016.

[93] X. Pan, V. Yegneswaran, Y. Chen, P. Porras, and S. Shin, "HogMap: Using SDNs to Incentivize

Collaborative Security Monitoring," in Proceedings of the 2016 ACM International Workshop

on Security in Software Defined Networks & Network Function Virtualization, New

Orleans, Louisiana, USA, 2016.

[94] S. Chen, C. Guo, X. Yuan, F. Merkle, H. Schaefer, and T. Ertl, "OCEANS: online collaborative

explorative analysis on network security," in Proceedings of the Eleventh Workshop on

Visualization for Cyber Security, Paris, France, 2014.

[95] M. O. Kalinin, "Permanent protection of information systems with method of automated

security and integrity control," in Proceedings of the 3rd international conference on Security of

information and networks, Taganrog, Rostov-on-Don, Russian Federation, 2010.

[96] H. Gascon, B. Grobauer, T. Schreck, L. Rist, D. Arp, and K. Rieck, "Mining Attributed Graphs

for Threat Intelligence," in Proceedings of the Seventh ACM on Conference on Data and

Application Security and Privacy, Scottsdale, Arizona, USA, 2017.

[97] N. Afzali Seresht and R. Azmi, MAIS-IDS: A distributed intrusion detection system using

multi-agent AIS approach, Engineering Applications of Artificial Intelligence, Article vol. 35,

pp. 286-298, 2014.

References 231

[98] W. Zhao and G. White, "Designing a Formal Model Facilitating Collaborative Information

Sharing for Community Cyber Security," in 2014 47th Hawaii International Conference on

System Sciences, Waikoloa, HI, USA, 6-9 Jan. 2014, 2014.

[99] K. Alsubhi, I. Aib, J. Francois, and R. Boutaba, "Policy-Based Security Configuration

Management, Application to Intrusion Detection and Prevention," in 2009 IEEE International

Conference on Communications, Dresden, Germany, 14-18 June 2009, 2009.

[100] W. Zhao and G. White, "A collaborative information sharing framework for Community Cyber

Security," in 2012 IEEE Conference on Technologies for Homeland Security (HST), Waltham,

MA, USA, 13-15 Nov. 2012, 2012.

[101] M. Sourour, B. Adel, and A. Tarek, "Collaboration between Security Devices toward improving

Network Defense," in Seventh IEEE/ACIS International Conference on Computer and

Information Science (icis 2008), Portland, OR, USA, 14-16 May 2008, 2008.

[102] A. Sadighian, S. T. Zargar, J. M. Fernandez, and A. Lemay, "Semantic-based context-aware

alert fusion for distributed Intrusion Detection Systems," in 2013 International Conference on

Risks and Security of Internet and Systems (CRiSIS), La Rochelle, France, 23-25 Oct. 2013,

2013.

[103] A. Modi et al., "Towards Automated Threat Intelligence Fusion," in 2016 IEEE 2nd

International Conference on Collaboration and Internet Computing (CIC), Pittsburgh, PA,

USA, 1-3 Nov. 2016, 2016.

[104] X. Chen, B. Mu, and Z. Chen, "NetSecu: A Collaborative Network Security Platform for In-

network Security," in 2011 Third International Conference on Communications and Mobile

Computing, Qingdao, China, 18-20 April 2011, 2011.

[105] H. W. Njogu, L. Jiawei, J. N. Kiere, and D. Hanyurwimfura, A comprehensive vulnerability

based alert management approach for large networks, Future Generation Computer Systems,

Article vol. 29, no. 1, pp. 27-45, 2013.

[106] E. Bou-Harb, M. Debbabi, and C. Assi, "Behavioral analytics for inferring large-scale

orchestrated probing events," in Proceedings - IEEE INFOCOM, 2014, pp. 506-511.

[107] R. Werlinger, K. Hawkey, D. Botta, and K. Beznosov, Security practitioners in context: Their

activities and interactions with other stakeholders within organizations, International Journal of

Human Computer Studies, Article vol. 67, no. 7, pp. 584-606, 2009.

[108] F. D'Aubeterre, R. Singh, and L. Iyer, A Semantic Approach to Secure Collaborative Inter-

Organizational eBusiness Proceses (SSCIOBP), Journal of the Association of Information

Systems, Article vol. 9, no. 3-4, pp. 231-266, 2008.

[109] A. J. Varela-Vaca and R. M. Gasca, Towards the automatic and optimal selection of risk

treatments for business processes using a constraint programming approach, Information and

Software Technology, Article vol. 55, no. 11, pp. 1948-1973, 2013.

[110] E. Al-Shaer, X. Ou, and G. Xie, Automated security management: Springer International

Publishing, 2013, pp. 1-187. [Online]. Available:

https://www.scopus.com/inward/record.uri?eid=2-s2.0-84948111330&doi=10.1007%2f978-3-

319-01433-3&partnerID=40&md5=331858d13f0a89fa7babffcd92eeaf58.

[111] R. A. Jones and B. Horowitz, A System-Aware cyber security architecture, Systems

Engineering, Article vol. 15, no. 2, pp. 225-240, 2012.

[112] F. Tanemo, I. Hayashi, M. Tanikawa, and T. Abe, Tighter security operations to help provide

brands that are safer and more secure, NTT Technical Review, Review vol. 10, no. 10, 2012.

[113] J. S. Li, C. J. Hsieh, and H. Y. Lin, A hierarchical mobile-agent-based security operation center,

International Journal of Communication Systems, Article vol. 26, no. 12, pp. 1503-1519, 2013.

[114] T. Sadamatsu, Y. Yoneyama, and K. Yajima, Practice within fujitsu of security operations

center: Operation and security dashboard, Fujitsu Scientific and Technical Journal, Article vol.

52, no. 3, pp. 52-58, 2016.

[115] R. Floodeen, J. Haller, and B. Tjaden, "Identifying a shared mental model among incident

responders," in Proceedings - 7th International Conference on IT Security Incident

Management and IT Forensics, IMF 2013, Nuremberg, Germany, 2013, Conference Paper.

[116] T. Ntouskas, G. Pentafronimos, and S. Papastergiou. STORM - Collaborative security

management environment, Lecture Notes in Computer Science (including subseries Lecture

https://www.scopus.com/inward/record.uri?eid=2-s2.0-84948111330&doi=10.1007%2f978-3-319-01433-3&partnerID=40&md5=331858d13f0a89fa7babffcd92eeaf58
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84948111330&doi=10.1007%2f978-3-319-01433-3&partnerID=40&md5=331858d13f0a89fa7babffcd92eeaf58

References 232

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 6633 LNCS, pp. 320-

335, 2011.

[117] K. Jeong, J. Park, M. Kim, and B. Noh, "A security coordination model for an inter-

organizational information incidents response supporting forensic process," in Proceedings - 4th

International Conference on Networked Computing and Advanced Information Management,

NCM 2008, Gyeongju, South Korea, 2008, vol. 2: IEEE, pp. 143-148.

[118] FireEye, (October 31, 2017, 2017), Security Orchestrator: Simplify threat response through

integration and automation, [Online]. Available: https://www.fireeye.com/solutions/security-

orchestrator.html.

[119] IBM, (August 20), IBM Resilient, [Online]. Available: https://www.resilientsystems.com/.

[120] J. Blankership, S. Balaouras, B. Barringham, and R. Birrell, (October 10, 2017), Breakout

Vendors: Security Automation And Orchestration (SAO), [Online]. Available:

https://www.forrester.com/report/Breakout+Vendors+Security+Automation+And+Orchestration

+SAO/-/E-RES136903.

[121] D. Forte, (September, 2017), Security orchestration & Automation: parsing the Options,

[Online]. Available: https://www.darkreading.com/threat-intelligence/security-orchestration-

and-automation-parsing-the-options/a/d-id/1329886?piddl_msgid=329392.

[122] THREATCONNECT, (October 20), Security Automation and Orchestration, [Online].

Available: https://www.threatconnect.com/security-automation-orchestration/.

[123] R. a. Market, (November 4, 2016), Security Orchestration Market by Component (Solution and

Service), Application (Threat Intelligence, Network Forensics, Ticketing Solutions, and

Compliance Management), Deployment Mode, End User, and Vertical, Region - Global

Forecast to 2021, [Online]. Available:

https://www.researchandmarkets.com/research/jcmnbx/security.

[124] alienvault, (November 23), Security Automation & Orchestration [Online]. Available:

https://www.alienvault.com/solutions/security-automation-and-orchestration.

[125] Siemplify, (December 5), Automation & Orchestration, Security Orchestration introduces order

and consistency to your SOC, [Online]. Available: https://www.siemplify.co/security-

orchestration-automation.

[126] MarketsANDMarkets, (January 12), Security Orchestration Market worth 1682.4 Million USD

by 2021, [Online]. Available: https://www.marketsandmarkets.com/PressReleases/security-

orchestration.asp.

[127] B. Kleyman, (October 10, 2014), Security Orchestration - From data center to cloud, [Online].

Available: https://blog.algosec.com/2014/04/security-orchestration-data-center-cloud.html.

[128] D. Greenfield, (October 12, 2017), Should OT Follow IT’s Centralized Security Orchestration?

, [Online]. Available: https://www.automationworld.com/should-ot-follow-its-centralized-

security-orchestration.

[129] P. Weeden, (October 12, 2017), Security Orchestration for Improved Incident Response,

[Online]. Available: https://www.foration.com/blog/security-orchestration-improved-incident-

response.

[130] RiskVision, (October 12, 2017), RiskVision Launches First Out-of-the-Box Security

Orchestration Solution with Business, IT and Security Collaboration, Remediation and

Analytics, [Online]. Available: https://www.riskvisioninc.com/riskvision-launches-first-box-

security-orchestration-solution-business-security-collaboration-remediation-analytics/.

[131] CyberSponse, (October 13, 2016), How to Measure the ROI of Security Orchestration and

Automation, [Online]. Available: https://cybersponse.com/how-to-measure-the-roi-of-security-

orchestration-and-automation.

[132] S. Bhadra, (October 13, 2015), Process as code: Security ops orchestration for a brave new

world, [Online]. Available: https://techcrunch.com/2016/03/06/process-as-code-security-ops-

orchestration-for-a-brave-new-world/.

[133] Cylance, (January 17), Security Orchestration and Automation Engineer, [Online]. Available:

https://www.linkedin.com/jobs/view/security-orchestration-and-automation-engineer-at-

cylance-inc.-470600981.

[134] L. Musthaler, (October 13, 2013), Automate security orchestration across platforms,

environments, [Online]. Available:

https://www.fireeye.com/solutions/security-orchestrator.html
https://www.fireeye.com/solutions/security-orchestrator.html
https://www.resilientsystems.com/
https://www.forrester.com/report/Breakout+Vendors+Security+Automation+And+Orchestration+SAO/-/E-RES136903
https://www.forrester.com/report/Breakout+Vendors+Security+Automation+And+Orchestration+SAO/-/E-RES136903
https://www.darkreading.com/threat-intelligence/security-orchestration-and-automation-parsing-the-options/a/d-id/1329886?piddl_msgid=329392
https://www.darkreading.com/threat-intelligence/security-orchestration-and-automation-parsing-the-options/a/d-id/1329886?piddl_msgid=329392
https://www.threatconnect.com/security-automation-orchestration/
https://www.researchandmarkets.com/research/jcmnbx/security
https://www.alienvault.com/solutions/security-automation-and-orchestration
https://www.siemplify.co/security-orchestration-automation
https://www.siemplify.co/security-orchestration-automation
https://www.marketsandmarkets.com/PressReleases/security-orchestration.asp
https://www.marketsandmarkets.com/PressReleases/security-orchestration.asp
https://blog.algosec.com/2014/04/security-orchestration-data-center-cloud.html
https://www.automationworld.com/should-ot-follow-its-centralized-security-orchestration
https://www.automationworld.com/should-ot-follow-its-centralized-security-orchestration
https://www.foration.com/blog/security-orchestration-improved-incident-response
https://www.foration.com/blog/security-orchestration-improved-incident-response
https://www.riskvisioninc.com/riskvision-launches-first-box-security-orchestration-solution-business-security-collaboration-remediation-analytics/
https://www.riskvisioninc.com/riskvision-launches-first-box-security-orchestration-solution-business-security-collaboration-remediation-analytics/
https://cybersponse.com/how-to-measure-the-roi-of-security-orchestration-and-automation
https://cybersponse.com/how-to-measure-the-roi-of-security-orchestration-and-automation
https://techcrunch.com/2016/03/06/process-as-code-security-ops-orchestration-for-a-brave-new-world/
https://techcrunch.com/2016/03/06/process-as-code-security-ops-orchestration-for-a-brave-new-world/
https://www.linkedin.com/jobs/view/security-orchestration-and-automation-engineer-at-cylance-inc.-470600981
https://www.linkedin.com/jobs/view/security-orchestration-and-automation-engineer-at-cylance-inc.-470600981

References 233

https://www.networkworld.com/article/2163387/infrastructure-management/automate-security-

orchestration-across-platforms-environments.html.

[135] H. N. Security, (October 19, 2016), Security Orchestration and automation: Closign the gap in

incident response, [Online]. Available: https://www.helpnetsecurity.com/2016/10/07/security-

orchestration/.

[136] ForeScout, Automating System - wide Security response through orchestration, White Paper.

March 2018, [Online]. Available: https://www.forescout.com/wp-content/uploads/2018/07/FS-

WP-Automating_System-Wide_Security-Orchestration_073118.pdf.

[137] R. Howard, The Next Board Problem: Automatic Enterprise Security Orchestration — a Radical

Change in Direction, Paloalto Networks, Paloalto Network, Report. Accessed on: August 2017.

[138] M. Wellins, (November 10), Orchestrating Security Policies - Microsegmentation v Legacy

Coonects - Heterogeneous Networks and Hybrid Clouds [Online]. Available:

https://www.tufin.com/resources/videos/video-tufin-orchestrating-security-policies-across-

physical-networks-hybrid-cloud.

[139] HEXADITE, (October 31), What is Security Automation? A guide for an evolving Landscape,

[Online]. Available: http://Hexadite.com.

[140] HEXADITE, (October 23), Evaluating security orchestration and automation solutions,

[Online]. Available: http://Hexadite.com.

[141] HEXADITE, (October 21), Security orchestraiton and Automation: Closing the gap in incident

response, [Online]. Available: htttp://Hexadite.com.

[142] Microsoft, (21/01/2018), Windows Defender Advanced Threat Protection, [Online]. Available:

https://www.microsoft.com/en-us/windowsforbusiness/windows-atp.

[143] FireEye, (November 20, 2017), Security Orchestration In Action: Integrate – Automate –

Manage, [Online]. Available: https://www2.fireeye.com/Webinar-FSO-

EMEA.html?utm_source=fireeye&utm_medium=webinar-page.

[144] ForeScout, ForeScout Agentless Visibility and Control, https://www.forescout.com/wp-

content/uploads/2018/08/Agentless-Visibility-and-Control-ForeScout-White-Paper.pdf, White

Paper.

[145] ForeScout, Protecting the connection lifecycle - extening visibility, control and orchestration

beyond cyber security environments, https://www.forescout.com/wp-

content/uploads/2017/04/Protecting-the-Connection-Lifecycle-ForeScout-White-Paper.pdf,

White Paper.

[146] ForeScout, ForeScout CounterACT- advanced endpoint visibility for ITAM and CMDB, White

Paper. June 2017, [Online]. Available: https://www.forescout.com/wp-

content/uploads/2016/12/ForeScout-Advanced-Endpoint-Visibility-for-ITAM-and-CMDB-

White-Paper.pdf, Accessed on: August 2017.

[147] Demisto, (October 20), Collaborative and Automated Security Operations - A comprehensive

Incident Management Platform, [Online]. Available: https://www.demisto.com/.

[148] Demisto, Security Automation and Orchestration - the human perspective.

[149] I. Resilient, (October 23), Orchestration Platform, [Online]. Available:

https://www.resilientsystems.com/our-platform/ir-orchestration-platform/.

[150] SWIMLANE, (October 20), Security Orchestration | What is Security Orchestration? ,

[Online]. Available: https://swimlane.com/solutions/security-automation-and-

orchestration/security-orchestration/.

[151] A. Stern, (September 24, 2017), Security Orchestration is more than automation, [Online].

Available: https://www.siemplify.co/blog/security-orchestration-automation-myth-unmanned-

soc.

[152] D. S. Cruzes and T. Dyba, Research synthesis in software engineering: A tertiary study,

Information and Software Technology, vol. 53, no. 5, pp. 440-455, 2011.

[153] M. B. Miles and A. M. Huberman, Qualitative data analysis: An expanded sourcebook. SAGE,

1994.

[154] C. Invotas, (September 21), Invotas Security Orchestrator, [Online]. Available:

http://invotas.csgi.com/.

[155] C. Seek, (November 20), [Online]. Available: http://cyberseek.org/index.html#about.

https://www.networkworld.com/article/2163387/infrastructure-management/automate-security-orchestration-across-platforms-environments.html
https://www.networkworld.com/article/2163387/infrastructure-management/automate-security-orchestration-across-platforms-environments.html
https://www.helpnetsecurity.com/2016/10/07/security-orchestration/
https://www.helpnetsecurity.com/2016/10/07/security-orchestration/
https://www.forescout.com/wp-content/uploads/2018/07/FS-WP-Automating_System-Wide_Security-Orchestration_073118.pdf
https://www.forescout.com/wp-content/uploads/2018/07/FS-WP-Automating_System-Wide_Security-Orchestration_073118.pdf
https://www.tufin.com/resources/videos/video-tufin-orchestrating-security-policies-across-physical-networks-hybrid-cloud
https://www.tufin.com/resources/videos/video-tufin-orchestrating-security-policies-across-physical-networks-hybrid-cloud
http://hexadite.com/
http://hexadite.com/
https://www.microsoft.com/en-us/windowsforbusiness/windows-atp
https://www2.fireeye.com/Webinar-FSO-EMEA.html?utm_source=fireeye&utm_medium=webinar-page
https://www2.fireeye.com/Webinar-FSO-EMEA.html?utm_source=fireeye&utm_medium=webinar-page
https://www.forescout.com/wp-content/uploads/2018/08/Agentless-Visibility-and-Control-ForeScout-White-Paper.pdf
https://www.forescout.com/wp-content/uploads/2018/08/Agentless-Visibility-and-Control-ForeScout-White-Paper.pdf
https://www.forescout.com/wp-content/uploads/2017/04/Protecting-the-Connection-Lifecycle-ForeScout-White-Paper.pdf
https://www.forescout.com/wp-content/uploads/2017/04/Protecting-the-Connection-Lifecycle-ForeScout-White-Paper.pdf
https://www.forescout.com/wp-content/uploads/2016/12/ForeScout-Advanced-Endpoint-Visibility-for-ITAM-and-CMDB-White-Paper.pdf
https://www.forescout.com/wp-content/uploads/2016/12/ForeScout-Advanced-Endpoint-Visibility-for-ITAM-and-CMDB-White-Paper.pdf
https://www.forescout.com/wp-content/uploads/2016/12/ForeScout-Advanced-Endpoint-Visibility-for-ITAM-and-CMDB-White-Paper.pdf
https://www.demisto.com/
https://www.resilientsystems.com/our-platform/ir-orchestration-platform/
https://swimlane.com/solutions/security-automation-and-orchestration/security-orchestration/
https://swimlane.com/solutions/security-automation-and-orchestration/security-orchestration/
https://www.siemplify.co/blog/security-orchestration-automation-myth-unmanned-soc
https://www.siemplify.co/blog/security-orchestration-automation-myth-unmanned-soc
http://invotas.csgi.com/
http://cyberseek.org/index.html#about

References 234

[156] R. a. Market, (November 21, 2016), Security Orchestration Market to Reach $1.6 Billion by

2021 - Rise in Security Breaches & Incidents - Research and Markets, [Online]. Available:

https://www.prnewswire.com/news-releases/security-orchestration-market-to-reach-16-billion-

by-2021---rise-in-security-breaches--incidents---research-and-markets-300373845.html.

[157] T. H. Koyama, Kunio; Kitazume, Hideo; Nagafuchi, Mitsuhiro. (2015) Security Orchestration

with a Global Threat Intelligence Platform. NTT Technical Review.

[158] M. A. Chauhan, M. A. Babar, and Q. Z. Sheng, A Reference Architecture for provisioning of

Tools as a Service: Meta-model, Ontologies and Design Elements, Future Generation Computer

Systems, vol. 69, pp. 41-65, 4// 2017.

[159] C. Islam, M. A. Babar, and S. Nepal, "Automated Interpretation and Integration of Security

Tools Using Semantic Knowledge," in Advanced Information Systems Engineering (CAiSE '19),

Rome, Italy, 2019.

[160] R. Haesevoets, D. Weyns, and T. Holvoet, Architecture-centric support for adaptive service

collaborations, ACM Trans. Softw. Eng. Methodol., vol. 23, no. 1, pp. 1-40, 2014.

[161] IBM, (November 1, 2019), Orchestrate Incident Response, [Online]. Available:

https://www.ibm.com/security/solutions/orchestrate-incident-response.

[162] J. Andersson and P. Johnson, "Architectural integration styles for large-scale enterprise software

systems," in Proceedings Fifth IEEE International Enterprise Distributed Object Computing

Conference, Seattle, WA, USA, 2001, pp. 224-236.

[163] T. Miller, Explanation in artificial intelligence: Insights from the social sciences, Artif. Intell.,

vol. 267, pp. 1-38, 2019.

[164] I. Gorton, Essential software architecture. Springer Science & Business Media, 2006.

[165] C. Islam, (2020), Proof of Concept SOAR, [Online]. Available: https://github.com/Chadni-

Islam/Security-Orchestration-PoC.

[166] Demisto, (January 21, 2020), Demisto Platform Content Repository, [Online]. Available:

https://github.com/demisto/content.

[167] Siemplify, (December 5, 2019), What is security orchestration and automation, [Online].

Available: https://www.siemplify.co/resources/what-is-security-orchestration-automation/.

[168] FireEye, (11/01/2018), Security Orchestration In Action: Integrate – Automate –Manage,

[Online]. Available: https://www.fireeye.com/solutions/security-orchestrator.html.

[169] J. Oltsik, (25/02/2019, 2017), ESG Research Report: Cybersecurity Analytics and Operations in

Transition, [Online]. Available: https://www.esg-global.com/research/esg-research-report-

cybersecurity-analytics-and-operations-in-transition.

[170] C. Crowley and J. Pescatore, The Definition of SOC-cess? SANS 2018 Security Operations

Center Survey, SANS, SANS, 2018, [Online]. Available: https://www.sans.org/reading-

room/whitepapers/analyst/membership/38570.

[171] A. Evesti and E. Ovaska, "Ontology-based security adaptation at run-time," in 4th IEEE

International Conference on Self-Adaptive and Self-Organizing Systems (SASO '10), Budapest,

Hungary, 2010.

[172] Z. Syed, A. Padia, T. Finin, M. L. Mathews, and A. Joshi, "UCO: A Unified Cybersecurity

Ontology," in AAAI Workshop: Artificial Intelligence for Cyber Security (AAAI, 16), 2016.

[173] D. Krauß and C. Thomalla, "Ontology-based detection of cyber-attacks to SCADA-systems in

critical infrastructures," in 2016 6th International Conference on Digital Information and

Communication Technology and Its Applications, DICTAP 2016, 2016, Conference Paper.

[174] S. Dua and X. Du, Data mining and machine learning in cybersecurity. Auerbach Publications,

2016.

[175] F. Dario, Security orchestration & Automation: parsign the Options, vol. 2017, ed: darkreading,

2017.

[176] Komand, (October 21), Security automation best practice, [Online]. Available:

https://www.komand.com/.

[177] T. Kenaza and M. Aiash, "Toward an Efficient Ontology-Based Event Correlation in SIEM," in

Procedia Computer Science, 2016, vol. 83, pp. 139-146.

[178] Demisto, Collaborative and Automated Security Operations - A comprehensive Incident

Management Platform, [Online]. Available: https://www.demisto.com/resources/.

https://www.prnewswire.com/news-releases/security-orchestration-market-to-reach-16-billion-by-2021---rise-in-security-breaches--incidents---research-and-markets-300373845.html
https://www.prnewswire.com/news-releases/security-orchestration-market-to-reach-16-billion-by-2021---rise-in-security-breaches--incidents---research-and-markets-300373845.html
https://www.ibm.com/security/solutions/orchestrate-incident-response
https://github.com/Chadni-Islam/Security-Orchestration-PoC
https://github.com/Chadni-Islam/Security-Orchestration-PoC
https://github.com/demisto/content
https://www.siemplify.co/resources/what-is-security-orchestration-automation/
https://www.fireeye.com/solutions/security-orchestrator.html
https://www.esg-global.com/research/esg-research-report-cybersecurity-analytics-and-operations-in-transition
https://www.esg-global.com/research/esg-research-report-cybersecurity-analytics-and-operations-in-transition
https://www.sans.org/reading-room/whitepapers/analyst/membership/38570
https://www.sans.org/reading-room/whitepapers/analyst/membership/38570
https://www.komand.com/
https://www.demisto.com/resources/

References 235

[179] A. Evesti and E. Ovaska, "Ontology-based security adaptation at run-time," in 4th IEEE

International Conference on Self-Adaptive and Self-Organizing Systems (SASO), 2010 2010:

IEEE, pp. 204-212.

[180] E. Casey, G. Back, and S. Barnum, Leveraging CybOX™ to standardize representation and

exchange of digital forensic information, Digital Investigation, Article vol. 12, no. S1, pp.

S102-S110, March 2015.

[181] S. Barnum, Standardizing cyber threat intelligence information with the Structured Threat

Information eXpression (STIX), MITRE Corporation, vol. 11, pp. 1-22, 2012.

[182] A. Kim, J. Luo, and M. Kang, "Security ontology for annotating resources," in OTM

Confederated International Conferences" On the Move to Meaningful Internet Systems" (OTM

'05), Agia Napa, Cyprus, 2005.

[183] F. Asplund and M. Törngren, The discourse on tool integration beyond technology, a literature

survey, Journal of Systems and Software, vol. 106, pp. 117-131, 2015.

[184] Protege, [Online]. Available: https://protege.stanford.edu/products.php#desktop-protege.

[185] Poveda-Villalón, María, A. Gómez-Pérez, and M. C. Suárez-Figueroa, OOPS! (OntOlogy Pitfall

Scanner!): An On-line Tool for Ontology Evaluation, International Journal on Semantic Web

and Information Systems (IJSWIS), vol. 10.2, pp. 7-34, 2014.

[186] M. Bist, A. P. S. Panwar, and V. Kumar, "An agent based architecture using ontology for

intrusion detection system," in 2016 2nd International Conference on Next Generation

Computing Technologies (NGCT), 2016, pp. 579-587.

[187] A. Razzaq, Z. Anwar, H. F. Ahmad, K. Latif, and F. Munir, Ontology for attack detection: An

intelligent approach to web application security, Computers & Security, vol. 45, pp. 124-146,

September 2014.

[188] C. Islam, M. A. Babar, and S. Nepal, "An Ontology-Driven Approach to Automate the Process

of Integration Security Software Systems," in IEEE/ACM International Conference on Software

and System Processes (ICSSP '19), Montreal, Canada, 25-26 June, 2019.

[189] Demisto, (January 21, 2020), Automate the future with Demisto, [Online]. Available:

https://demisto.pan.dev/.

[190] FileExt, (October 5), [Online]. Available: https://filext.com/file-extension/YML.

[191] PaloAlto, (November 20, 2019), PaloAlto Firewall, [Online]. Available:

https://www.paloaltonetworks.com/.

[192] C. Point, Check point firewall, [Online]. Available: https://www.checkpoint.com/products/next-

generation-firewall/.

[193] R. Hunddleston, Introduction to the Grammar of English. Cambridge University Press, 1984.

[194] L. Rozakis, The Complete Idiot's Guide to Grammar and Style. Alpha, 2003.

[195] R. McDonald et al., "Universal dependency annotation for multilingual parsing," in 51st Annual

Meeting of the Association for Computational Linguistics (ACL '13), Sofia, Bulgaria, 2013.

[196] M.-C. De Marneffe and C. D. Manning, Stanford typed dependencies manual, Technical report,

Stanford University, 2008, [Online]. Available:

https://nlp.stanford.edu/software/dependencies_manual.pdf.

[197] Spacy, (October 10), Linguistic Features, [Online]. Available: https://spacy.io/usage/linguistic-

features.

[198] C. Fellbaum, "Theory and applications of ontology: computer applications," 1st ed.: Springer

Publishing Company, Incorporated, 2010, pp. 231-243.

[199] G. A. Miller, WordNet: An electronic lexical database. MIT press, 1998.

[200] G. A. Miller, WordNet: a lexical database for English, Communications of the ACM, vol. 38, no.

11, pp. 39-41, November 1995.

[201] NLTK, (January 17), WordNet Interface, [Online]. Available:

https://www.nltk.org/howto/wordnet.html.

[202] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa, Natural language

processing (almost) from scratch, Journal of machine learning research, vol. 12, pp. 2493-

2537, August 2011.

[203] Q. Huang, X. Xia, Z. Xing, D. Lo, and X. Wang, "API method recommendation without

worrying about the task-API knowledge gap," in 33rd ACM/IEEE International Conference on

Automated Software Engineering (ASE '18), Montpellier, France, 2018.

https://protege.stanford.edu/products.php#desktop-protege
https://demisto.pan.dev/
https://filext.com/file-extension/YML
https://www.paloaltonetworks.com/
https://www.checkpoint.com/products/next-generation-firewall/
https://www.checkpoint.com/products/next-generation-firewall/
https://nlp.stanford.edu/software/dependencies_manual.pdf
https://spacy.io/usage/linguistic-features
https://spacy.io/usage/linguistic-features
https://www.nltk.org/howto/wordnet.html

References 236

[204] X. Ye, H. Shen, X. Ma, R. Bunescu, and C. Liu, "From word embeddings to document

similarities for improved information retrieval in software engineering," in 38th International

Conference on Software Engineering (ICSE '16), Austin, Texas, 2016.

[205] M. L. McHugh, Interrater reliability: the kappa statistic, Biochemia medica: Biochemia medica,

vol. 22, no. 3, pp. 276-282, October 2012.

[206] J. R. Landis and G. G. Koch, The measurement of observer agreement for categorical data,

Biometrics, pp. 159-174, March 1977.

[207] J. Cohen, A coefficient of agreement for nominal scales, Educational and psychological

measurement, vol. 20, no. 1, pp. 37-46, 1960.

[208] D. M. Jurafsky, James H, Speech & language processing: An introduction to natural language

processing, computational linguistics, and speech recognition, 2nd ed. Prentice Hall, 2008.

[209] C. D. Manning, C. D. Manning, and H. Schütze, Foundations of statistical natural language

processing. 55 Hayward St., Cambridge, MA, United States: MIT Press, 1999.

[210] P. University, (2010), "About WordNet." WordNet, [Online]. Available:

https://wordnet.princeton.edu/.

[211] E. NLP, (November 1), Deep Dependency, [Online]. Available:

https://emorynlp.github.io/ddr/doc/pages/overview.html.

[212] T. Slimani, Description and evaluation of semantic similarity measures approaches,

International Journal of Computer Applications, vol. 80, no. 10, pp. 25-33, 2013.

[213] NetworkX, (October 20, 2019), Software for complex networks, [Online]. Available:

https://networkx.github.io/.

[214] C. Ott, Introducing the Security Orchestration and Automation Playbook: Your Practical Guide

to Implementing SOAR, vol. 2019, ed. Rapid 7: Rapid 7, 2019.

[215] SIEMPLIFY, (December 5), Automation & Orchestration, Security Orchestration introduces

order and consistency to your SOC, [Online]. Available: https://www.siemplify.co/security-

orchestration-automation.

[216] D. M. Riehle, S. Jannaber, P. Delfmann, O. Thomas, and J. Becker, "Automatically Annotating

Business Process Models with Ontology Concepts at Design-Time," in International

Conference on Conceptual Modeling (ICCM '17), 2017.

[217] M. A. Paredes-Valverde, M. Á. Rodríguez-García, A. Ruiz-Martínez, R. Valencia-García, and

G. Alor-Hernández, ONLI: An ontology-based system for querying DBpedia using natural

language paradigm, Expert Systems with Applications, vol. 42, no. 12, pp. 5163-5176, July

2015.

[218] M. Á. Rodríguez-García, R. Valencia-García, F. García-Sánchez, and J. J. Samper-Zapater,

Ontology-based annotation and retrieval of services in the cloud, Knowledge-Based Systems,

vol. 56, pp. 15-25, January 2014.

[219] F. Roda and E. Musulin, An ontology-based framework to support intelligent data analysis of

sensor measurements, Expert Systems with Applications, vol. 41, no. 17, pp. 7914-7926,

December 2014.

[220] M. Reformat and C. Ly, Ontological approach to development of computing with words based

systems, International Journal of Approximate Reasoning, vol. 50, no. 1, pp. 72-91, January

2009.

[221] R. Y. Lau, C. C. Lai, J. Ma, and Y. Li, "Automatic domain ontology extraction for context-

sensitive opinion mining," in International Conference on Information Systems (ICIS '09),

Phoenix, Arizona, USA, 2009.

[222] T. D. Nguyen, A. T. Nguyen, H. D. Phan, and T. N. Nguyen, "Exploring API embedding for

API usages and applications," in 2017 IEEE/ACM 39th International Conference on Software

Engineering (ICSE '17), Buenos Aires, Argentina, 2017.

[223] A. T. Nguyen, P. C. Rigby, T. V. Nguyen, M. Karanfil, and T. N. Nguyen, "Statistical

Translation of English Texts to API Code Templates," in 2017 IEEE/ACM 39th International

Conference on Software Engineering Companion (ICSE-C), Buenos Aires, Argentina, 20-28

May 2017, 2017.

[224] M. M. Rahman, C. K. Roy, and D. Lo, "Rack: Automatic api recommendation using

crowdsourced knowledge," in 2016 IEEE 23rd International Conference on Software Analysis,

Evolution, and Reengineering (SANER '16), Suita, Japan, 2016.

https://wordnet.princeton.edu/
https://emorynlp.github.io/ddr/doc/pages/overview.html
https://networkx.github.io/
https://www.siemplify.co/security-orchestration-automation
https://www.siemplify.co/security-orchestration-automation

References 237

[225] R. B. Bohn, J. Messina, F. Liu, J. Tong, and J. Mao, "NIST cloud computing reference

architecture," in 2011 IEEE World Congress on Services, 2011: IEEE, pp. 594-596.

[226] O. C. A. W. Group, OpenFog reference architecture for fog computing, OPFRA001, vol. 20817,

p. 162, 2017.

[227] M.-K. Shin, K.-H. Nam, and H.-J. Kim, "Software-defined networking (SDN): A reference

architecture and open APIs," in 2012 International Conference on ICT Convergence (ICTC),

2012: IEEE, pp. 360-361.

[228] N. K. Tran, "A Reference Architecture and a Software Platform for Engineering Internet of

Things Search Engines," 2018.

	List of Figures
	List of Tables
	Abstract
	Declaration
	Acknowledgments
	1 Introduction
	1.1 Objectives and Research Questions
	1.2 Thesis Overview
	1.3 Thesis Contributions
	1.4 Thesis Organization

	2 Literature Review
	2.1 Introduction
	2.2 Research Method
	2.2.1 Research Identification
	2.2.2 Search Strategy
	2.2.2.1 Data Sources
	2.2.2.2 Search Strings 

	2.2.3 Eligibility Criteria
	2.2.4 Study Selection
	2.2.4.1 Selection of Academic Literature 
	2.2.4.2 Selection of Grey Literature 

	2.2.5 Data Extractions, Synthesis, and Analysis
	2.2.5.1 Data Extraction
	2.2.5.2 Synthesis and Analysis

	2.3 Security Orchestration: Definitions, Functionalities, and Elements
	2.3.1 Definitions
	2.3.2 Functionalities of Security Orchestration and the Automation Platform
	2.3.2.1 Middleware/ Hub
	2.3.2.2 Orchestrate Security Activities
	2.3.2.3 Enable Automated Responses 

	2.3.3 Quality Requirements for Security Orchestration Platforms

	2.4 Key Components of Security Orchestration
	2.4.1 Unification Unit
	2.4.1.1 Description Module
	2.4.1.2 Collector
	2.4.1.3 Pre-processor
	2.4.1.4 Dashboard

	2.4.2 Orchestration Unit
	2.4.2.1 Threat Intelligence Unit 
	2.4.2.2 Planning Module
	2.4.2.3 Detection Module

	2.4.3 Automation Unit
	2.4.3.1 Remediation Module
	2.4.3.2 Action Performer 

	2.5 Motivation behind Security Orchestration
	2.5.1 Technical Challenges
	2.5.1.1 Lack of Interoperability Among Isolated Security Tools 
	2.5.1.2 Lack of Tools to Automate a Proactive Response
	2.5.1.3 Limitations of Existing Security Tools to Provide Required Services

	2.5.2 Socio-Technical Challenges
	2.5.2.1 More Responsibility and Workload on Human Experts 
	2.5.2.2 Lack of Skills and Expertise 
	2.5.2.3 Lack of Regulation and Policy Framework 
	2.5.2.4 Lack of Coordination and Collaboration among Stakeholders and Security Teams 

	2.6 Taxonomy of Security Orchestration
	2.6.1 Execution Environment
	2.6.1.1 Endpoint
	2.6.1.2 Private and Public Cloud Computing
	2.6.1.3 Hybrid Data Centers
	2.6.1.4 Threat Management

	2.6.2 Automation Strategy
	2.6.2.1 Auto Integration
	2.6.2.2 Workflow 
	2.6.2.3 Scripting 
	2.6.2.4 Prioritization 
	2.6.2.5 Learning 
	2.6.2.6 Plugin and Module 

	2.6.3 Deployment Model
	2.6.3.1 Centralized Deployment
	2.6.3.2 Distributed Deployment
	2.6.3.3 Hybrid Deployment

	2.6.4 Mode of Task
	2.6.5 Resource Type
	2.6.5.1 Security Tool Resource 
	2.6.5.2 Human Resources 

	2.7 Discussion
	2.7.1 Open Issues in Security Orchestration
	2.7.2 Architecture Level Support for Security Orchestration
	2.7.3 Limitations of This Review

	2.8 Chapter Summary

	3 Security Orchestration and Automation Architecture
	3.1 Introduction
	3.2 Security Orchestration and Automation
	3.2.1 Functional Requirements of Security Orchestration and Automation
	3.2.1.1 SOAR as a unifier or hub
	3.2.1.2 SOAR as a coordinator or orchestrator

	3.2.2 Quality Attributes Requirements
	3.2.3 Abstraction for Security Orchestration and Automation

	3.3 SOAR Architecture
	3.3.1 UI layer
	3.3.2 Orchestration layer
	3.3.3 Semantic layer
	3.3.4 Data processing layer
	3.3.5 Integration layer
	3.3.6 Security tool layer

	3.4 Dimensions of the Design Space of SOAR Platform
	3.4.1 Process decision
	3.4.2 Technology decisions

	3.5 Case Study – Prototype Implementation
	3.6 Evaluation
	3.6.1 Automating the Integration of Security Tools
	3.6.2 Automating the Interpretation of the Activities to Execute an IRP

	3.7 Related Work
	3.8 Chapter Summary

	4 Automated Interpretation and Integration of Security Tools
	4.1 Introduction
	4.2 Related Work
	4.3 Motivation Scenario
	4.4 An Integration framework for A SOAR Platform
	4.4.1 An Ontological Model to Enable Semantic Integration
	4.4.1.1 Design and Development of an Ontology Class
	4.4.1.2 Defining Relationships and Constraints.

	4.4.2 Classification of Activities based on Text Similarity
	4.4.3 Design and Development of the Annotation Module

	4.5 Interoperability Model for Execution of IRP
	4.6 Experiments and Results
	4.6.1 Preparing the dataset for a prediction module
	4.6.2 Implementing the prediction module
	4.6.3 Developing the Interoperability model
	4.6.4 Threats to validity

	4.7 Chapter Summary

	5 An Ontology-driven Integration of Security Tools
	5.1 Introduction
	5.2 Preliminaries
	5.2.1 Challenges in Automated Integration
	5.2.2 Problem Formulation
	5.2.3 Motivation

	5.3 The Proposed Solution
	5.4 Semantic Layer
	5.4.1 Ontological Model
	5.4.1.1 Security Tools
	5.4.1.2 Activity
	5.4.1.3 Capability

	5.4.1 Ontological Reasoning
	5.4.2 Querying the Ontology

	5.5 Security Tool Layer
	5.6 Data Processing Layer
	5.6.1 Interpretation of the Incident
	5.6.2 Identification of Capability to Respond to an Incident
	5.6.3 Selection of Security tools
	5.6.4 Formulation of Commands to Invoke a Security tool

	5.7 Experimental Design and Setup
	5.7.1 Gathering Input Data for OnSOAR
	5.7.2 Application Environment Setup
	5.7.3 Development of the Ontological Model
	5.7.4 Development of the Data Processing Layer
	5.7.5 Baseline Approaches

	5.8 Evaluation
	5.8.1 RQ1: How Effective is OnSOAR’s Process for Automating the Integration of Security tools?
	5.8.2 RQ2: How Efficient is OnSOAR for Practical Use?
	5.8.3 Threat to Validity

	5.9 Related Work
	5.10 Chapter Summary

	6 Declarative API for Security Orchestration Platforms
	6.1 Introduction
	6.2 Preliminaries and Motivation
	6.2.1 Playbook for Security Orchestration and Automation
	6.2.2 Ontological Knowledge Base
	6.2.3 Motivation Scenario
	6.2.4 Problem Formulation

	6.3 Our Approach
	6.3.1 Overview
	6.3.2 DecOr Declarative API (dAPI)
	6.3.2.1 Description of dAPI
	6.3.2.2 Orchestration API to Update and Define New Plans
	6.3.2.3 Integration APIs to Communicate with an Ontology
	6.3.2.4 Execution API to Invoke Security Tools

	6.3.3 SecAPIGen: Semantic Framework for dAPI Generation
	6.3.3.1 Automatic Generation of dAPIs from Task Description
	6.3.3.2 Identifying Semantically Similar dAPIs

	6.3.4 SemOnto: Identification of Ontological Concepts from Playbooks

	6.4 Experiment
	6.4.1 Data Collection and Tool Implementation
	6.4.1.1 Task and Object Corpus
	6.4.1.2 Benchmark for Generation of dAPI
	6.4.1.3 Ground Truth of Experimental Queries, Commands and dAPIs
	6.4.1.4 Evaluation Metrics
	6.4.1.5 Evaluation Procedure
	6.4.1.6 Language and Libraries

	6.4.2 Results and Analysis
	6.4.2.1 RQ1. How effective is SecAPIGen in Generating and Identifying dAPIs for Different Tasks?
	6.4.2.2 RQ2. Can SemOnto Identify the Concepts of an Ontology from the Playbook?
	6.4.2.3 RQ3. How Efficient is DecOr in Terms of Time?

	6.5 Discussion
	6.5.1 Benefits of DecOr
	6.5.2 Threat to validity

	6.6 Related Work
	6.6.1 Security Orchestration and Automation Solutions
	6.6.2 AI in Automated Interpretation and Integration
	6.6.3 AI in API Generation

	6.7 Chapter Summary

	7 Conclusion
	7.1 Findings and Contributions
	7.1.1 Understanding of Security Orchestration and the Automation Landscape
	7.1.2 Layered Architecture for a SOAR platform
	7.1.3 Semantic-based Integration Framework
	7.1.4 Ontology-driven Integration Process
	7.1.5 AI-enabled Declarative API for Security Orchestration and Automation

	7.2 Future Directions
	7.2.1 Software Engineering for Security Orchestration and Automation
	7.2.1.1 Empirical evaluation of the proposed architecture and frameworks
	7.2.1.2 Reference architecture for security orchestration and automation
	7.2.1.3 Evaluating the quality and design of incident response process

	7.2.2 AI and ML for Security Orchestration and Automation
	7.2.2.1 API generation at runtime
	7.2.2.2 Automated identification of security tools’ features
	7.2.2.3 Automated analysis and recommendations of a security incident response plan

	Appendices
	References

