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Leveraging prior known vector Green func-
tions in solving perturbed Dirac equation in
Clifford algebra

Morteza Shahpari and Andrew Seagar

Abstract. Solving boundary value problems with boundary element meth-
ods requires specific Green functions suited to the boundary conditions
of the problem. Using vector algebra, one often needs to use a Green
function for the Helmholtz equation whereas it is a solution of the per-
turbed Dirac equation that is required for solving electromagnetic prob-
lems using Clifford algebra. A wealth of different Green functions of the
Helmholtz equation are already documented in the literature. However,
perturbed Dirac equation is only solved for the generic case and only
its fundamental solution is reported. In this paper, we present a sim-
ple framework to use known Green functions of Helmholtz equation to
construct the corresponding Green functions of perturbed Dirac equa-
tion which are essential in finding the appropriate kernels for integral
equations of electromagnetic problems. The procedure is further demon-
strated in a few examples.

Mathematics Subject Classification (2010). 35J08, 65N80.

Keywords.Green functions, fundamental solutions, Maxwell’s equations,
Dirac equation, Electromagnetism.

1. Introduction

Electromagnetism is well developed using vector algebra and a great variety
of problems are treated in-depth. Boundary value problems in electromag-
netic theory are often formulated by the help of fundamental solutions and
Green functions which can be written easily for the unbounded homogeneous
medium (e.g. classical source in free space). However, if a problem has addi-
tional boundary conditions like infinite planar layers (stratified medium) or
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a wedge that is extended to infinity, we have to also incorporate those into
the Green function [1–3].

Another algebraic tool chain to solve electromagnetic problems is the
geometric algebra which is often also called Clifford algebra to honourWilliam

Kingdon Clifford [4]. Clifford generated his geometric algebra using two sets
of mutually commutative quaternions producing what today would be called
a four-dimensional Clifford algebra Cl(0, 4), supporting bivectors and trivec-
tors in addition to vectors. Due to its flexibility, Clifford algebra has been
used with different conventions and assumptions in the literature. A good
review of early developments of using Clifford algebra for electromagnetic
problems is provided in [5]. Development of new techniques in quaternion-
valued functions and their associated boundary value problems (e.g. [6–9])
in around 1990s opened new horizons and made it possible to attempt solve
new class of problems. For instance in [9], Laplace operator was extended
to Helmoltz operator with complex quaternionic wave numbers and funda-
mental solutions for different types of wavenumbers (scalar only, vector only,
mixed quaternion) for Helmholtz operator were developed.

In Clifford algebra it is convenient to combine four Maxwell’s equations
using a single first order Dirac operator in the transient domain while per-
turbed Dirac operator is used for time harmonic electromagnetic waves [10].
Some studied Dirac operator and massive Dirac operator mostly for quantum
applications [11–13] while some others studied scattering problems on un-
bounded domains [14]. Meanwhile, radiation conditions were also specifically
developed for Clifford boundary value problems by McIntosh & Mitrea [15]
and Kravchenko [16].

Aforementioned boundary conditions are often solved using some in-
tegral equation formulations. More notably, the theory of singular integral
operators were used in [14, 17] to formulate the wave problem using some
modified Cauchy integral formula. An iterative approach to calculate the
fields using Teodorescu transform was proposed in [18] and elaborated in [5].

Seagar & Chantaveerod [10, 19] followed some of the ideas and argue-
ments of McIntosh, Axelsson, Grognard, Mitrea and Hogan [15,20] to develop
a computational algorithm to solve scattering from the arbitrary objects in up
to three dimensions [10, 19]. The method is known as the Clifford-Cauchy-
Dirac (CCD) method and its competency is demonstrated with numerical
examples [21, 22] in one and two dimensions.

To the best of our knowledge, so far, only the fundamental solution of
perturbed Dirac equation [23,24] is known and utilised in electromagnetism.
As a result, methods like CCD can only solve for the isolated objects in
free space. Here, we propose a simple method to use results from vector
calculus and their already known Green functions in that context to find
Green function of Dirac equation in the context of Clifford algebra. Similar
to fundamental solutions used in the Cauchy integral formulas of previous
works, Green functions found in this paper are essential to construct the
Cauchy kernels for problems with boundary conditions.
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In section 2, we review the conventions of Clifford algebra. Section 3
briefly discusses how Maxwell’s equations in time and frequency domains
are considered in the Clifford algebra. We try to make clear illustration of
the five boundary value problems in section 4. The first three problems are
formulated in vector algebra as Maxwell problem (MP), Helmholtz problem
for electric (HP − E) and magnetic fields (HP −H). The next two problems
(DP − F) and (DP − G) are formulated as perturbed Dirac operator on F
and GD, respectively. Section 5 is the main result of the paper that provides
a powerful and yet simple procedure to find the Green function of Dirac
equation. The use of the method is further illustrated by three examples in
Section 6. The first two examples are the classical cases that reproduce the
fundamental solutions, reassuring the validity of the proposed procedure. The
last example is for a rectangular waveguide, that although popular with many
engineering applications, but it has not been solved in Clifford framework,
while a vector based solution has been available for more than half a century.

2. Conventions

Throughout the paper, a four-dimensional Clifford algebra Cl(0, 4) is used.
We use different notations for the vector elements and Clifford elements. An
arbitrary vector A is reported with x̂, ŷ and ẑ:

A = Axx̂+Ay ŷ +Az ẑ (2.1)

while a Clifford number in grade one is denoted by e1, e2 and e3:

A = Axe1 +Aye2 +Aze3. (2.2)

It should be noted that a vector and a grade one Clifford number can both
be used to represent the same kinds of geometric entities. However, we show
them with different unit elements to emphasise that the Clifford operations
and rules are applied on the latter.

The Clifford product of any two vectors is:

AB =
3

∑

i=1

3
∑

j=1

AiBjeiej (2.3)

The product of two Clifford units ei and ej is defined 1 as:

eiej =

{

−ejei i 6= j
−1 i = j

(2.4)

1It is possible to use an alternative convention with +1 instead of −1 for the product when

i = j. Here, the convention adopted by Clifford and Grassmann is used to align the algebra

as they did with the quaternions adopted by Maxwell for his electromagnetic equations,

and with the vector calculus extracted later by Gibbs from the quaternion algebra.



4 Shahpari and Seagar

In the other words, Clifford units are anti-commutative and constructed as a
imaginary units e2i = −1. This leads to:

A2 = −|A|2 = −
3

∑

i=1

A2
i (2.5)

where the | · | operator returns the norm of the quantity.
It is often helpful to imagine a Clifford product through a relationship

with dot and cross products of vector algebra. Using (2.4), we have

AB = (A×B)σ −A ·B (2.6)

where σ = −e1e2e3 is the unit volume in three dimensions. It should be noted
that (2.6) is only valid if both A and B are vectors, and it fails if one of them
is constructed as a Clifford number of any grade other than one. In that case,
the general formula (2.3) should be used.

It is possible to divide to some geometric quantities in Clifford algebra.
For example, the inverse of a Clifford vector with unit product as in (2.4) is:

A−1 = − A

|A|2 . (2.7)

A projection operator Qm is defined by:

QmA = (A− nAn)/2 (2.8)

and splitting operators S and T are considered as [10, Ch.5]

SA = (A+ σAσ)/2 (2.9)

TA = (A− σAσ)/2 (2.10)

A time harmonic convention of exp(iωt) is assumed throughout the
paper.

3. Clifford Formalism for Maxwell’s equations

3.1. Time Domain

Maxwell’s equations of electromagnetism for a region containing a material of
spatially uniform and temporally constant properties as written in the time
domain using vector calculus:



















ǫ∇ ·E = ρ

∇×H − ǫ ∂E
∂t

= J

∇×E + µ ∂H
∂t

= 0

µ∇ ·H = 0

(3.1)

require three spatial dimensions and one temporal dimension. HereE=Exx̂+
Eyŷ+Ezẑ and H =Hxx̂+Hyŷ+Hzẑ are the electric and magnetic fields
respectively in Cartesian components, µ and ǫ are the (uniform and constant)
values of magnetic permeability and electric permittivity, J=Jxx̂+Jyŷ+Jzẑ
is the electric conduction current density and ρ is the (scalar) electric charge
density. The curl and divergence partial differential operators are constructed
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by subjecting the entities on their right sides to the spatial gradient ∇ =
∂
∂x

x̂+ ∂
∂y

ŷ+ ∂
∂z
ẑ under the three-dimensional vector cross (×) and dot (·)

multiplications respectively .
For a Clifford formalism of Maxwell’s equations the unit vectors x̂, ŷ, ẑ, t̂

for spatial and temporal dimensions are identified with Clifford units:














t̂ ↔ ie0
x̂ ↔ e1
ŷ ↔ e2
ẑ ↔ e3

(3.2)

where i is the imaginary unit and the signature epep=−1 for all four values
of p.

The Clifford valued equation:

DF = S (3.3)

with four-dimensional k-Dirac operator D=e1
∂
∂x
+e2

∂
∂y
+e3

∂
∂z

− i
c
e0

∂
∂t

(where

c=1/(
√
µ
√
ǫ) is the speed of propagation), electromagnetic field F=

√
µHσ−

i
√
ǫEe0 (where H = Hxe1+Hye2+Hze3, E = Exe1+Eye2+Eze3 and σ =

−e1e2e3), and source S=
√
µJ+ i√

ǫ
ρe0 (where J=Jxe1+Jye2+Jze3) expands

using the identities a · b = − 1

2
(ab+ba) and a × b = + 1

2
(ab−ba)σ for three-

dimensional Clifford valued spatial vectors a and b, as:

S = DF
√
µJ+ i√

ǫ
ρe0 = ( − i

c
e0

∂
∂t
)(
√
µHσ−i

√
ǫEe0)

=
√
µ(− ·H+ ×Hσ)σ − i

√
ǫ(− ·E + ×Eσ)e0

− i
c
e0
√
µ∂H

∂t
σ− 1

c
e0
√
ǫ∂E
∂t

e0

= −√
µ ·Hσ+

√
µ ×H + i

√
ǫ ·Ee0+i

√
ǫ ×Ee0σ

+ i
√
ǫµ∂H

∂t
e0σ−

√
µǫ∂E

∂t

(3.4)
where =e1

∂
∂x
+e2

∂
∂y
+e3

∂
∂z

is the three-dimensional Clifford valued gradient

(k-Dirac) operator. The equation then separates according to the quaternion
units (1, I=e0, J=−iσ, K=−ie0σ) as a result of their linear independence,
giving:



















i√
ǫ
(ǫ ·E)e0 = i√

ǫ
(ρ) e0√

µ( ×H − ǫ∂E
∂t

) =
√
µ(J)

−√
ǫ( ×E + µ∂H

∂t
)(−ie0σ) = 0

− i√
µ
(µ ·H)(−iσ) = 0

(3.5)

Reference to equation 3.1 verifies that each of these equations is a copy of one
of Maxwell’s equations in its vector form, scaled outside the parentheses on
the left by a constant and on the right by a quaternion unit (1, I = e0, J =
−iσ, K=−ie0σ).

As a consequence, any electric and magnetic fields E and H which
solve Maxwell’s equations in the form of equation 3.1 when cast in the form
of the Clifford valued electromagnetic field F also solve Maxwell equations
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in the form of equation 3.3. Furthermore, the electric and magnetic compo-
nents E and H of the electromagnetic field F which solve Maxwell equations
in the form of equation 3.3 also solve Maxwell’s equations in the form of
equation 3.1.

3.2. Frequency Domain

If an electromagnetic field F(r, t) is periodic in time then it can be composed
of a Fourier series, a sum of individual monochromatic sinusoidal components:

F(r, t) =
∑

k

Fk(r)e
iωkt (3.6)

where ωk is the angular frequency for each component and k=ωk/c is the cor-
responding wavenumber. The spectral components Fk(r) are complex scalars.

Applying the differential operator D to a monochromatic field in the
time domain is equivalent to first applying the differential operator Dk =
+ke0 to the corresponding spectral component in the frequency domain

and then multiplying by the temporal factor eiωkt:

DF(r, t) = D
[

Fk(r)e
iωkt

]

= ( − i
c
e0

∂
∂t
)[Fk(r)e

iωkt ]

= [ ( + ke0)Fk(r) ]e
iωkt = [DkFk(r) ] e

iωkt

(3.7)
In the frequency domain the temporal factor appears on both sides of all equa-
tions. For simplicity it can be eliminated, leaving only the spectral compo-
nents, and restored at any later time if required. In the frequency domain the
four-dimensional Dirac operator D takes spectral form as a three-dimensional
k-Dirac operator perturbed by the spectral parameter, wavenumber2 k.

4. Equivalent boundary value problems

We assume an infinitesimal current J = δ(R−R′)u0, where u0 is an arbitrary
unit vector and δ is the Dirac delta function within an isotropic homogeneous
medium with permittivity ǫ and permeability µ. We take Ge and Gm to
represent the appropriate Green functions for electric and magnetic fields
respectively.

Let ∂Ω be a surface boundary on a bounded domain Ω ⊂ R
3 and unit

normal vector n pointing from the interior region Ω+ into exterior region Ω−.

2Care must be taken to avoid confusion since the symbol k represents, by two separate

conventions, in one case the wavenumber and the other case the dimension of the Dirac

operator.
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One can use the Maxwell’s equations to build a boundary value problem
using the vector algebra that we refer to as Maxwell problem (MP):

(MP)























∇×Ge + iωµGm = 0 in Ω±

∇×Gm − iωǫGe = δ(R−R′)u0 in Ω±, R′ /∈ ∂Ω
n×G+

e − n×G−
e = 0

n · µ+G+

m − n · µ−G−
m = 0

G−
e ,G

−
m satisfy SMRC

(4.1)

where boundary conditions on the tangential component of Ge and normal
component of Gm are general boundary conditions on electric and magnetic
vectors. The ± superscripts denote different side of the boundary ∂Ω. Also,
fields in R

3\Ω should satify Silver-Müller Radiation Condition [25,26] at large
distances e.g.

lim
R→∞

R
(

ηG−
m − R̂ ×G−

e

)

= 0 (4.2)

where η ,
√
µ/

√
ǫ is the characteristic impedance of the medium.

It should be noted that radiation conditions are only to be fulfilled for
problems with unbounded Ω−. However, we can assume Ω− as the perfect
conductors for bounded problems leading to E− = H− = 0.

Another class of boundary value problem in the vector algebra is the
Helmholtz equation which is obtained from the Maxwell equation. When
applied on electric field, we call it the Helmholtz equation on electric field
(HP − E)

(HP − E)















∇×∇×Ge − k2Ge = δ(R −R′)u0, in Ω±, R′ /∈ ∂Ω
n×G+

e − n×G−
e = 0

n · ǫ+G+

e − n · ǫ−G−
e = f

G−
e satisfy SRC

(4.3)

where k , ω
√
µ
√
ǫ is the wave number. The function f is the surface electric

charge density on the boundary ∂Ω which should be at least square integrable
in the Lebesgue sense f ∈ L2(∂Ω).

Similarly, one can write a Helmholtz problem on magnetic field (HP −H):

(HP −H)















∇×∇×Gm − k2Gm = ∇× δ(R −R′)u0, in Ω±, R′ /∈ ∂Ω
n×G+

m − n×G−
m = g

n · µ+G+

m − n · µ−G−
m = 0

G−
m satisfy SRC

(4.4)

where g is the surface current density on the boundary g ∈ L2(∂Ω). One
should note that in (HP − E) and (HP −H), the solutions G−

e and G−
m

should satisfy the Sommerfeld radiation conditions which is stated for a time
convention of eiωt as [27, 28]:

lim
R→∞

R

(

∂G−

∂R
+ ikG−

)

= 0 (4.5)
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One can also formulate an electromagnetic problem using the Clifford
algebra and the perturbed Dirac operator as Dirac problem (DP − F):

(DP − F)















F + ke0F =
√
µδ(R −R′)u0 in Ω±, R′ /∈ ∂Ω

TQmF+ − TQmF− = 0
SQmF+ − SQmF− = 0
F− satisfy KRC

(4.6)

where the projection Qm and splitting operators S and T are defined in
section 2. An analogue of the Sommerfeld radiation condition is proposed by
Kravchenko and Castillo [16] for the Dirac operator that is stated for the
electromagnetic problems as [24]:

lim
R→∞

(

kf(R) +
iR

|R|f(R)k

)

= 0 (4.7)

Lastly, we define another problem (DP − G) on the perturbed Dirac
operator where the problem is formulated as a grade one on GD rather grade
two problem on F .

(DP − G)















GD + ke0GD =
√
µδ(R −R′)u0 in Ω±, R′ /∈ ∂Ω

TQmG+

Du0 − TQmG−
Du0 = 0

SQmG+

Du0 − SQmG−
Du0 = 0

G−
D satisfy KRC

(4.8)

It might seem rudimentary at the first glance why two similar problems
(DP − F) and (DP − G) are defined above. It should be noted that we use
(4.6) as an auxiliary problem that can be solved relatively easily (by the help
of solutions from vector algebra) to solve (4.8).

While solving the scattering problems in the Clifford algebra, one often
ends up with some sort of integral equation that is formulated similarly as
the Lippmann-Schwinger [24, 29] or the Cauchy integral [10] or in the more
general form as the Borel-Pompeiu [9, 11, 14, 30]. The common point in all
of the above formulations is the need to use a fundamental solution of the
problem in constructing the integral kernels. However, when the boundaries
are present (e.g. waveguide, cavities), one needs to use the Green functions
for the specific problem. As far as the authors are aware of, the Green func-
tion of the perturbed Dirac operator with boundary conditions of interest
in electromagnetic applications are not reported yet. Here, a general method
is presented to indirectly find Green function GD using the already known
solutions of electromagnetic problems in vector algebra.

5. Green function of the Dirac equation

Transmission boundary problems of electromagnetics are discussed in detail
in [31]. Recently, the results are extended to higher dimensions in [32] and an
equivalence between the solutions of Helmholtz equation and Dirac equation
is proved rigorously.
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One can also solve an electromagnetic problem using geometric al-
gebra [33]. One of the remarkable properties of geometric algebra is that
Maxwell four partial differential equations are simply cast into the single
first order ordinary differential equation of Dirac [10] for linear homogenous
isotropic time-invariant medium as

DkF = S (5.1)

where the Dirac operator Dk , bivector field F (which is constructed from
both electric and magentic fields), and source vector S are defined [10] as:

Dk = e1
∂

∂x
+ e2

∂

∂y
+ e3

∂

∂z
+ ke0 (5.2)

F =
√
µHσ − j

√
ǫEe0, (5.3)

S =
√
µJ +

j√
ǫ
ρe0, (5.4)

and where the Clifford unit e0 is introduced to accommodate the dimension
of time.

We reduce the excitation S to δ(R −R′)u0, therefore, making a Dirac
problem (DP − F) as defined in previous section. Therefore, we have a phys-
ical phenomenon of the electromagnetism that fits into vector algebra with
(4.1)-(4.4) as well as the geometric algebra with (4.6). One can solve (DP − F)
rather easily by constructing the bivector field as F that incorporates known
Green functions for electric and magnetic fields:

F =
√
µGmσ − j

√
ǫGee0 (5.5)

We can rewrite (5.1) and replace the impulse function by (4.8)

DkF =
√
µδ(R−R′)u0 =

√
µDkGDu0 (5.6)

We assume = e1
∂
∂x

+ e2
∂
∂y

+ e3
∂
∂z

= Dk − ke0 and rewrite (5.6):

F + ke0F =
√
µ ( + ke0)GDu0 (5.7)

F −√
µ GDu0 + ke0F − k

√
µe0GDu0 = 0 (5.8)

We construct the following relations from (5.8):

F −√
µ GDu0 = 0 (5.9)

ke0F − ke0
√
µGDu0 = 0 (5.10)

Since (5.9) is the differential form of (5.10) scaled by a constant Clifford
vector, we argue a solution to (5.10) also satisfies (5.9) and ultimately (5.8).
It should be noted that the inverse of the above argument is not true as (5.9)
contains extra spurious solutions. From (5.10), we have

ke0F = k
√
µe0GDu0 (5.11)

Since the Clifford product is not commutative and the result is sensitive to
the order of the appearance, extra care must be taken to simplify (5.11). We
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Figure 1. Uniform current J = δ(z − z′)x̂ over a plane z = z′

multiply both sides by 1

k
√
µ
e0 from the left:

1√
µ
e0e0F = e0e0GDu0 (5.12)

One can further simplify (5.12) by multiplying both sides of (5.12) by u0

from the right and using (2.4) for unit vectors e0 and u0. Therefore, the
Green function for the Dirac equation is simply found as:

GD = − 1√
µ
Fu0. (5.13)

where F is compose of the Green functions for electric and magnetic fields
using (5.5).

6. Examples

6.1. One-dimensional case

As a first example (see Fig. 1), we consider a one-dimensional problem with
an infinite plane of current sheet J = δ(z − z′)x̂. For instance, this problem
can be formulated as (MP) while the only boundary condition is the Silver-
Müller radiation condition (4.2). The corresponding E and H fields radiated
from the sheet are [3, 34]:

E = −η

2
e−jk|z−z′|x̂ (6.1)

H = −1

2
e−jk|z−z′|ŷ (6.2)

It should be noted that fields E and H are the corresponding Green electric
and magnetic functions, since their generating function has the shape of an
impulse.

Following the method of section 5, we assume F as in (5.5).

F =

√
µ

2
e−jk|z−z′|e1e3 + j

√
µ

2
e−jk|z−z′|e1e0 (6.3)
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Figure 2. An infinite current line on z-axis J = δ(ρ)ẑ

We emphasise that even for this one-dimensional case σ is defined as −e1e2e3
which is due to the fact that we have three-dimensional fields, although they
are only dependent on one dimension (z coordinate).

Using (5.13), we find the Green function of perturbed Dirac equation
with Kravchenko radiation condition as:

GD = −1

2
e−jk|z−z′|(e3 + je0) (6.4)

It should be noted that (6.4) is identical to the fundamental solution of
the Dirac equation for 1D problems. Since in this problem, boundary con-
ditions are not specified at any points, the Green function is reduced to the
fundamental solution [35]. The key point to observe is that the Clifford valued
solution has been obtained directly from the vector-valued solution, without
any need to perform any manipulations using Clifford algebra.

6.2. Two-dimensional case

As a second example, we consider an infinite line of current J = δ(ρ)ẑ on
the z axis which is illustrated in Fig. 2. This problem can be formulated as
(HP −H) and solved for Sommerfeld radiation conditions. Using the tradi-
tional methods, one easily finds the following vector potentials and fields [34]:

A =
1

4j
H2

0 (kρ)ẑ (6.5)

E = −kη

4
H2

0 (kρ)ẑ (6.6)

H = − jk

4
H2

1 (kρ)φ̂ (6.7)

Using a similar approach and directly from (5.5), we have:

F =
jk

√
µ

4

[

H2
1 (kρ)ρ̂e3 +H2

0 (kρ)e3e0
]

(6.8)
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Figure 3. Rectangular waveguide with a current J

stretched between waveguide plates.

where

φ̂σ = (− sinφe1 + cosφe2)(−e1e2e3)

= − sinφ e2e3 − cosφ e1e3

= −ρ̂e3, (6.9)

and we then find the Green function of the Dirac equation directly from
(5.13) as:

GD =
jk

4

[

H2
1 (kρ)ρ̂−H2

0 (kρ)e0
]

. (6.10)

In Clifford algebra, one finds the fundamental solution of the Dirac
equation for two-dimensional problems by differentiating the two-dimensional
Bessel potential [10, Ch.7]. That also leads to (6.10). However again, the
Clifford-valued solution can be obtained directly without recourse to Clifford
algebra.

6.3. Rectangular Waveguide

As the third example, a more general but extensively used geometry of the
rectangular waveguide is examined. The cross section of the waveguide is
assumed to be on x − y plane and the long side of the waveguide is aligned
with x axis. Waveguide walls are assumed to be made of perfect electric
conductors (PEC), therefore, E and H fields can not penetrate into it. This
dictates the boundary conditions for this problem. A typical source for our
problem is a line current J = δ(x−x′)δ(z−z′)ŷ. Figure 3 shows the geometry
of the waveguide and source. It is evident that only transverse electric modes
of TE are excited by the source since the E should be in the same direction as
the current J . Furthermore, since there is no dependency on the y coordinate,
only TEn0 modes are to be excited in the waveguide.
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The problem can be formulated as the Helmholtz problem (HP − E):






∇×∇×E − k2E = δ(x− x′) δ(z − z′)ŷ,
x̂×E = 0 on x = 0, a
ŷ ×E = 0 on y = 0, b

(6.11)

The complex propagation constant for mode n is determined by the
waveguide dimensions and the operating frequency.

γn =

√

nπ

a

2

− ω2µǫ (6.12)

Green function for the geometry illustrated in Fig. 3 is given in [36,
Sec.2.7] for the vector potential A as the summation of the eigenfunctions.
We deduce the electric Green function using E = iωA

E =− 1

a

∞
∑

n=1

Zn sin
nπx

a
sin

nπx′

a
e−γn|z−z′|ŷ, (6.13)

where Zn , iωµ/γn is the characteristic impedance of the TEn0 mode. Using
the first relation in (4.1), one simply finds the excited H field as:

H =± 1

a

∞
∑

n=1

sin
nπx

a
sin

nπx′

a
e−γn|z−z′| x̂

− 1

a2

∞
∑

n=1

nπ

γn
cos

nπx

a
sin

nπx′

a
e−iγn|z−z′|ẑ. (6.14)

In this section, in the terms with double signs (e.g.±) the top sign is for
z > z′ and bottom sign is related to z < z′.

Alternatively, one can arrive at (6.13) and (6.14) by following the method
of [3, Sec 5.2] by dropping the dependencies on y coordinates and reducing
the dyads to vectors for the excitation pointing towards ŷ.

The equivalent problem in Clifford form can be constructed as:






GD + ke0GD =
√
µδ(x − x′)δ(z − z′)

TQm
1 GDe2 = 0 on x = 0, a

TQm
2 GDe2 = 0 on y = 0, b

(6.15)

where Qm
1 and Qm

2 are defined by setting n in (2.8) to e1 and e2, respectively.

Bivector F is found as:

F =±
√
µ

a

∞
∑

n=1

sin
nπx

a
sin

nπx′

a
e−γn|z−z′| e2e3

−
√
µ

a2

∞
∑

n=1

nπ

γn
cos

nπx

a
sin

nπx′

a
e−iγn|z−z′|e1e2

+
j
√
ǫ

a

∞
∑

n=1

Zn sin
nπx

a
sin

nπx′

a
e−γn|z−z′|e2e0. (6.16)
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Using the (5.13) and setting u0 = e2, we find the Green function for the
Dirac equation in the following form:

GD =∓ 1

a

∞
∑

n=1

sin
nπx

a
sin

nπx′

a
e−γn|z−z′| e3

+
1

a2

∞
∑

n=1

nπ

γn
cos

nπx

a
sin

nπx′

a
e−iγn|z−z′|e1

− i

a

√

ǫ

µ

∞
∑

n=1

Zn sin
nπx

a
sin

nπx′

a
e−γn|z−z′|e0. (6.17)

As far as the authors are aware of, it is the first time a Green function is
provided for the Dirac equation with the boundary conditions of a rectangular
waveguide. A direct solution in Clifford algebra remains an unsolved problem.
Therefore, (6.17) cannot be verified with direct comparison to the results of
others. A quick check on the validity of (6.17) is to verify if the GD satisfies
the boundary conditions.

7. Conclusion

In this paper, we demonstrated a simple method to find the Green function
of Dirac equation for electromagnetic problems. Particularly, we use prior
known Green functions of the Helmholtz equation with the same bound-
ary conditions. The method is further illustrated by three different exam-
ples for one and two dimensions. The value here is in being able to obtain
the Clifford-valued Green functions corresponding to all known vector-valued
Green functions without needing to perform any Clifford algebra or repeat
and derivations already known for vectors.

Occasionally, Green function is reported for various quantities A rather
E and H. For example, Green function of the rectangular waveguide in 6.3
is extracted from [36] that actually provides a Green function for the mag-
netic potential A. While constructing F , one should take extra care to use
appropriate Green functions to ensure the calculated Green function of the
Dirac equation is a proper answer.

Green function has different forms that are equivalent to each other (e.g.
spectral form, spatial form) [1]. Here we showed eigenfunction expansion form
in Section 6.3, but the method should also work for other forms of Green
function (e.g. spectral form).
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