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Abstract 

 

 

Bio-inspired chemical plume-tracing methods have been applied to mobile 

robots to detect chemical emissions in the form of plumes and localise the plume 

sources in various indoor environments. Nevertheless, it has been found from 

the literature that most of the research has focused on plume tracing in free-

stream plumes, such as indoor plumes where the chemical sources are located 

away from walls. Moreover, most of the experimental and numerical studies 

regarding the assessment of indoor plume-tracing algorithms have been 

undertaken in laboratory-scale environments. Since fluid fields and chemical 

concentration distributions of plumes near walls can be different from those of 

free-stream plumes, understanding of the performance of existing plume-tracing 

algorithms in near-wall regions is needed. In addition, the performance of 

different plume-tracing algorithms in detecting and tracing wall plumes in large-

scale indoor environments is still unclear. In this research, a simulation 

framework combining ANSYS/FLUENT, which is used for simulating fluid fields 

and chemical concentration distributions of the environment, and MATLAB, with 

which plume-tracing algorithms are coded, is applied. 

In general, a plume-tracing algorithm can be divided into three stages: plume 

sensing, plume tracking and source localisation for analysis and discussion. In the 

first part of this research, an assessment of the performance of sixteen widely-

used plume-tracing algorithms equipped with a concentration-distance obstacle 

avoidance method, was undertaken in two different scenarios. In one scenario, a 

single chemical source is located away from the walls in a wind-tunnel-like 

channel and in the other scenario, the chemical source is located near a wall. It is 

found that normal casting, surge anemotaxis and constant stepsize together 
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performed the best, when compared with all the other algorithms. Also, the 

performance of the concentration-distance obstacle avoidance method is 

unsatisfactory. By applying an along-wall obstacle avoidance method, an 

algorithm called vallumtaxis, has been proposed and proved to contribute to 

higher efficiencies for plume tracing especially when searching in wall plumes. 

The results and discussion of the first part are presented in Chapter 4 of this 

thesis.  

In the second part, ten plume-tracing algorithms were tested and compared in 

four scenarios in a large-scale indoor environment: an underground warehouse. 

In these four scenarios, the sources are all on walls while their locations are 

different. The preliminary testing results of five algorithms show that for most 

failure cases, the robot failed at source localisation stage. Consequently, with 

different searching strategies at source localisation stage, this research 

investigated five further algorithms. The results demonstrated that the algorithm 

with a specially-designed pseudo casting source localisation method is the best 

approach to localising hazardous plume sources in the underground warehouse 

given in this research or other similar environments, among all the tested 

algorithms. The second part of the study is reported in Chapter 5 of this thesis. 
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Chapter 1 Introduction  

 

 

1.1 Introductory background 

Unmanned mobile robots navigated by plume-tracing algorithms, which evolved 

from bionics, can be employed to detect and localise hazardous plume sources 

in indoor environments, to protect people from unsafe circumstances [3-5, 7-43]. 

It was first reported in a large and growing body of literature that insects and 

underwater organisms, such as moths and lobsters are able to track odour 

plumes in air or under water [24]. For instance, researchers have undertaken 

studies on the behaviours of male moths when they search for the source of 

released pheromones within plumes [44-46]. Following the moths’ searching 

strategy of surging upwind, various plume-tracing algorithms were further 

developed in subsequent investigations [4, 40]. Plume-tracing algorithms have 

been adopted to search for contaminant and chemical sources in indoor 

environments such as laboratories and they have proven to be powerful search 

tools [15]. With efficient algorithms, plume-tracing mobile robots are promising 

to provide an effective approach to preventing hazards and reducing health risks 

in more indoor environments. 

Generally, a typical plume-tracing algorithm can be divided into three stages: 

plume sensing (PS), plume tracking (PT), and source localisation (SL) for 

discussion and analysis. The boundaries between them are defined by the local 

concentration of the target chemical [30, 32, 38, 47]. The first stage, plume 
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sensing, compounds different types of casting behaviours aiming to find a plume 

under the condition that the robot locates outside the plume [28]. Plume tracking 

is the stage at which the robot remains within the plume and manoeuvres 

towards the source. Normally after plume tracking, source localisation stage 

takes place where the robot is deemed to be near the source and prepares to 

declare its location.  

 

1.2 Plume tracing in experiments 

Different plume-tracing algorithms have been proposed, assessed and applied 

[25]. A comparison across four plume-tracing algorithms in the localisation of a 

source of an ion plume was carried out experimentally by Harvey, et al. [40]. The 

experiments were conducted in a wind tunnel with an ion generator positioned 

on the central line of the wind tunnel and the wind speed was set at three 

different values: 0.55 m/s, 0.95 m/s, and 1.4 m/s. Surge anemotaxis, which is the 

plume-tracing algorithm that navigates the robot to surge upwind continuously, 

proved to be the most effective algorithm among four algorithms: surge 

anemotaxis, two bounded search algorithms and counterturning [40]. A 

subsequent comparison by Harvey, et al. [4] was undertaken within the same 

wind tunnel and location of the source. However, in this research, a robot coded 

with different plume-tracing algorithms was tested in a shifting wind field [4]. The 

experimental results showed that plume tracing in shifting wind fields is 

applicable [4]. Moreover, by partly improving simple algorithms, for instance, by 

revising turning angles modestly, the performances of the robot could be 

improved [4]. Lu [2] proposed a novel searching strategy whereby a robot moves 

at a shorter distance every step when the chemical concentration increases as 

the robot approaches the source to reduce the possibility of missing the source 

when moving near it. Moreover, some researchers have tried to apply visual 
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technology to estimate the position of a plume source [33]. For example, a 

firefighting robot with real-time visual detection technology was recently 

developed by Kim and Lattimer [7]. The unmanned firefighting robot performed 

well in searching for a fire source by analysing the images of the smoke in an on-

fire building. However, this robot, despite its visual detection technology, can 

only be used for detecting visible smoke when the fire is large and the source 

obvious. The same problem applies to other investigations using visual detection 

technology, for instance, the firefighting robot developed in [8]. In order to 

minimise the damage, it is best to detect and localise the hazardous plume source 

at an early stage and this can be achieved by plume tracing methods. 

 

1.3 Plume tracing in a simulation framework 

Apart from the experiments, a simulation framework was developed to test and 

train plume-tracing algorithms [2, 11, 16, 47, 48]. Simulations were conducted in 

an environment created by computational fluid dynamics (CFD), providing a novel 

and repeatable method of testing and training robots coded with different 

plume-tracing algorithms. One such simulation framework, combining FLUENT 

(ANSYS Inc.) and MATLAB (Mathworks Inc.), was presented by Liu [10], Liu and Lu 

[11], Liu and Lu [16]. It has been validated that the combination of the CFD-

produced environment and MATLAB-based robot(s) with plume-tracing 

algorithms is appropriate and applicable. For example, Lu [2] undertook a case 

study using this simulation framework to investigate the effects of initial location, 

initial orientation and moving distance on the performance of the robots with 

plume-tracing algorithms. Initially, the simulation framework was two-dimension 

(2D), meaning that the data produced in CFD were from only one particular 

height, focused for the simulation. However, data, including the chemical 

concentration distribution and the wind field from a 2D simulation framework 



4 | P a g e  
 

are not sufficient, as all plumes are strong three-dimension (3D) domains. A 3D 

simulation framework using data from different horizontal levels, was 

subsequently developed by Awadalla, et al. [49] to create a realistic environment 

for testing and training plume-tracing robots. Other research concerning 

scenarios in a 3D simulation framework can be found in the literature [22, 29, 42, 

47].  

 

1.4 Significance of this research 

Despite the various attempts made by researchers to either design novel 

algorithms or improve existing algorithms, most of these efforts were aimed at 

free plumes such as plumes in an outdoor environment or indoor plumes where 

the chemical sources are located away from walls. To the best of the author’s 

knowledge, none of these research projects were targeted to discover how 

plume-tracing algorithms and robots perform when a plume source is on or near 

a wall, where a wall plume forms. A possible scenario for such wall plumes is 

smouldering caused by a short-circuit cable on a wall. Plume-tracing robots that 

are designed for indoor environments should be able to avoid obstacles such as 

walls and still be able to trace wall plumes efficiently. Since the performance of 

plume-tracing robots could be different in wall plumes, investigations about how 

the plume-tracing algorithms and the obstacle avoidance system perform 

together when localising the gas sources of wall plumes in indoor environments 

are needed. In addition, research into the performance of plume-tracing 

algorithms in large-scale indoor environments such as warehouses, grocery 

stores and workshops are still lacking.  

Therefore, the overall aim of the project is to assess the performance of widely-

used plume-tracing algorithms in several indoor environments, especially for wall 

plumes and, based on the assessment, to propose and test more efficient 
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algorithms for plume-tracing robots. Employing the 3D simulation framework, 

this study first assesses the performance of several widely-used plume-tracing 

algorithms in detecting and localising the source of ion plumes in two scenarios, 

where the air is flowing in a wind-tunnel-like channel. In one scenario, the plume 

source is located at a position on the centreline of a confined environment. In the 

other scenario, the source is located next to one wall of the channel, where a wall 

plume forms from this source. Two types of plume sensing and source localisation 

methods, four types of plume tracking methods, and thus sixteen different 

plume-tracing algorithms were selected and tested in both scenarios. Robots 

coded with different algorithms were released from five different initial locations 

near the air outlet boundary. After testing and analysing all the plume-tracing 

algorithms, the algorithm with the lowest number of steps, costing the least and 

consequently showing the highest efficiency among the sixteen algorithms was 

identified and further improved with a special along-wall obstacle avoidance 

method (Vallumtaxis), which navigates the robot to surge along a detected wall 

instead of leaving. The searching strategy of moving along a wall or obstacle was 

previously called wall following and mentioned and developed in [10, 41, 50]. 

Different from the previous wall following searching strategies, the robot coded 

with vallumtaxis is not only capable of moving along a wall, but also able to leave 

the wall if the wind field or chemical concentration near the wall changes 

significantly when searching in wall plumes. When a wall is detected in front by 

ultrasonic sensors, the robot turns to the direction that is parallel to the wall, with 

an acute angle to the upwind direction. Moreover, when being too near to an 

obstacle, the robot will move away from it to provide random chances for the 

robot to leave a wall when searching.  

In the second part, ten different plume-tracing algorithms, including vallumtaxis 

are further tested in an underground warehouse with a single hazardous plume 
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source in four scenarios, where the locations of the source are different. 

Chemotaxis is not tested in the second part of the research, as the robot coded 

with chemotaxis fails in all the cases in the wind tunnel. Based on the simulation 

results created in CFD, the fluid field, as well as the chemical concentration 

distribution are more complex in large-scale environments, as recalculating flows 

were found. Five plume-tracing algorithms, including the original vallumtaxis was 

firstly assessed. Five more plume-tracing algorithms with different searching 

strategies at source localisation stage, including a novel searching strategy called 

pseudo casting, were subsequently presented and tested.   
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Chapter 2 Literature review 

In Chapter 2, a literature review regarding plumes and plume tracing, the 

application of plume-tracing robots and comparisons among different plume-

tracing algorithms is presented. At the end of this chapter, the research gaps, the 

research aims and objectives are summarised and presented. 

 

2.1 Plumes and plume tracing 

It is of paramount importance to detect and localise the sources of hazardous 

contaminant and chemical plumes in indoor environments, which may come 

from explosives, early-stage fires, and gas leaks [47]. A plume, in this research, is 

defined as the downwind trail formed from the mixture of the chemical 

molecules in fluid movements [47]. Numerical models can be used to describe 

the time-average chemical concentration distribution in a plume and thus, the 

shape of a plume [51]. A free stream plume can be governed by a reactive plume 

Figure 2.1: Schematic of plume expansion as a function of downwind distance [1] 
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model and a schematic view of the numerical model of a plume is shown in Figure 

2.1 [1]. It is shown that as a plume moves towards the downwind direction, the 

width of the plume increases. In this model, several equal-mass cells are used to 

define the concentration distribution of the chemicals within the plume and the 

expansion of equal-mass cells is given in Figure 2.1 [1].  

A cross-section of the plume is presented as an array of well-mixed cells 

perpendicular to the plume centreline, which contains a fixed amount of the 

chemical masses following the simple translation given in Equation 2.1 [1]:  

𝑠 = ∫ 𝑢(𝑡)𝑑𝑡
𝑡

0

               (2.1) 

where 𝑠 is the cross-section of the plume, 𝑡 is the time since emission and 𝑢 is 

the wind speed along the plume trajectory. Moreover, as it is shown in Figure 2.1, 

the total width and depth of the plume can be governed by Equations 2.2 and 2.3 

[1]: 

𝑊(𝑠) = 4𝜎𝑦(𝑠)               (2.2) 

and 

𝐻(𝑠) = 4𝜎𝑧(𝑠)                (2.3) 

where 𝜎𝑦 and 𝜎𝑧 are the horizontal and vertical dispersion coefficients described 

as [1]: 

𝑟2 =
𝑦2

𝜎𝑦
2
+
𝑧2

𝜎𝑧
2
                         (2.4) 

where 𝑟 is the polar coordinate, 𝑦 and 𝑧 are the horizontal and vertical extents 

of the cells, respectively. In summary, the peak chemical concentration reduces 

gradually and the width of the plume increases following the plume trajectory. 

This model is based on the Gaussian model given in Equation 2.5 [52]: 

𝐶(𝑥,𝑦,𝑧,𝐻) =
𝑄

2𝜋𝜎𝑦𝜎𝑧𝑢̅
 exp [−

1

2
(
𝑦2

𝜎𝑦
2
+
(𝑧 − 𝐻)2

𝜎𝑧
2

)]             (2.5) 

where 𝐶(𝑥,𝑦,𝑧,𝐻) is the chemical concentration at points (𝑥, 𝑦, 𝑧, 𝐻). In Equation 
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2.5, 𝑥  is defined as the distance in the downwind direction, and 𝑦  is the 

crosswind distance. 𝑧  is the vertical direction and 𝐻  is the height above the 

ground. Q is the releasing rate of the chemical from the plume source, 𝜎𝑦 and 𝜎𝑧 

are the same coefficients given in Equation 2.4 and 𝑢̅ is the mean wind speed. 

Equations 2.1 and 2.5 define the shape of a plume that forms from a point source 

[52]. However, since nearly all the plumes are not laminar, turbulence influences 

not only the chemical concentration distribution but also the fluid field [34]. 

Variables at different points within a plume were measured by a number of 

researchers to examine the structure of a plume [34]. It was found that mean 

instantaneous measurements showed that the plume is highly intermittent, and 

concentration measurements may produce the distribution of the Gaussian 

model [34]. A plume forms in the downwind direction of a point hazardous plume 

source and according to the Gaussian model [34], the width of the plume 

becomes higher following the downwind direction. A point source may produce 

a wide and detectable plume in the downwind direction. In this case, mobile 

robots with chemical sensors may potentially be applied to tracing the source of 

a chemical plume. 

The method to detect and localise the sources of various plumes is called the 

plume-tracing method. The plume-tracing method is a searching strategy 

inspired by the behaviours of different organisms on locating food and their 

mates over long distances [46]. It was first documented in the 1970s that some 

insects are able to move from an area with lower chemical concentrations to 

areas with higher chemical concentrations continuously within a plume under a 

changing wind field and concentration of the chemical [53]. Various plume-

tracing algorithms were subsequently developed by researchers according to the 

searching strategies of different organisms, such as moths, lobsters, and birds 

[24, 33]. Plume-tracing robots have now been used globally in different indoor 
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and outdoor environments. Research concerning the application of the plume-

tracing method on mobile robots has grown substantially [7, 31]. Most of the 

plume-tracing algorithms can be divided into two categories: chemotaxis and 

anemotaxis [31].  Chemotaxis, which is inspired by bird flocking and capable of 

navigating the robot to move from an area with lower chemical concentrations 

to that with higher chemical concentrations, was the basis for several algorithms 

in this research. Chemotaxis relies on the chemical concentration distribution 

only. Different from chemotaxis, anemotaxis tends to navigate the robot to move 

upwind within the plume. Figure 2.2 shows the searching strategy of anemotaxis, 

which is continuously moving in the upwind direction within the plume. A number 

of plume-tracing algorithms are designed and developed based on these two 

algorithms. 

 

Figure 2.2: Illustration of Robotic lobster performing Odour Gated Rheotaxis based strategy (after 
[19]) 

 

2.2 The application of plume-tracing robots 

Chemical plume-tracing algorithms have been tested in various experimental and 

virtual environments. The experimental research demonstrates that a plume-

tracing algorithm is compatible with mobile robots equipped with wind and 
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chemical sensors [28, 29]. Unmanned robots equipped with plume-tracing 

algorithms are capable of undertaking dangerous tasks in order to keep people 

safe [2]. In this case, an obstacle avoidance system is needed for indoor plume-

tracing robots. Various obstacle avoidances, such as the Virtual Force Field 

Method [54], Virtual Field Histogram Method [55], Dynamic Window Approach 

[56], and Fuzzy-based Obstacle Avoidance Method [57] can be used; however, 

they are either designed for either a robot that moves continuously or for an 

application in certain known environments. A Wall-following Method [10, 41, 50] 

has been performed for indoor plume-tracing robots, which usually move step by 

step. For the Wall-following obstacle avoidance method, the robot moves 

following a wall. To the best of the author’s knowledge, most current obstacle 

avoidance methods for mobile robots rely on distance-measuring sensors. Other 

information, for example, the wind velocity near the obstacle, has not been used 

for obstacle avoidance systems.  

An obstacle avoidance system for plume-tracing robots using ultrasonic sensors 

was designed by Awadalla, et al. [47] and then widely validated in subsequent 

works [2, 5, 14, 15, 25]. Figure 2.3 shows the covering areas of the four ultrasonic 

sensors in [2], and Figure 2.4 shows the covering areas of the five ultrasonic 

Figure 2.3: The covering angles of four ultrasonic sensors [45] 
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sensors in [15]. The robot reacts differently according to the data measured by 

these sensors. For instance, for some obstacle avoidance methods, if an obstacle 

is detected on the left hand side of the robot, the robot will move slightly to the 

right in order to avoid it [2]. Also, the robot surges along an obstacle for some 

other obstacle avoidance methods [10]. In this condition, the robot would 

calculate the angle between the obstacle and the robot heading using multiple 

ultrasonic sensors [10]. Equipped with such sensors, the plume-tracing robot is 

capable of avoiding obstacles and has the potential to be applied safely in 

environments with walls and obstacles. 

 

Figure 2.4: Ultrasonic sensors setting for measuring five directions [15] 

 

  

(a) (b) 

Figure 2.5: (a) Simulation results of the robot following a chemical trail using the E. coli algorithm, (b) 
Simulation results for trail following (robot released on the outer edge of the chemical plume) [38] 
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A number of tests regarding the application of plume-tracing algorithms on 

mobile robots have been performed by researchers. For instance, several plume-

tracing algorithms, namely the E. coli algorithm, dung beetle algorithm, gradient-

based algorithm and silkworm moth algorithm were tested using a mobile robot 

in [38]. Figures 2.5 (a) and (b) represent the trajectories of the robots driven by 

different plume-tracing algorithms. The results show that, with a steady airflow, 

the four plume-tracing algorithms tested are all capable of localising the source 

of the plume. The E. coli algorithm, with a randomly-moving mechanism towards 

the direction of the area with higher concentration, was found to require the 

least effort in sensing and controlling the robot [38]. However, being tested on a 

small scale with a laminar flow field, this E. coli algorithm is only proven to be 

effective in very small scale systems or areas with low turbulence affecting the 

concentration distribution [38]. Furthermore, the silkworm moth algorithm, 

which is similar to the surge anemotaxis performed in [40] was identified as being 

capable of supporting a robot to search in a turbulent chemical plume [38]. In 

this series of studies, plume-tracing algorithms were tested in a small area with a 

steady airflow and with the source away from walls.  

 

  

(a) (b) 

Figure 2.6: (a) A successful experiment using the E.coli algorithm, (b) A successful experiment 
using the hex-path algorithm [5] 
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Another test was performed in indoor environments with low-speed airflows 

(approximate 0.3 m/s) by Yang, et al. [5]. Figures 2.6 (a) and (b) show the 

trajectories of two successful experimental cases using a robot coded with 

several plume-tracing algorithms. The results show that a single plume-tracing 

robot is capable of detecting and localising the source of ethanol in experimental 

work in an environment with low wind speed; for example, an indoor 

environment [5]. Since the plume-tracing algorithms developed based on surge 

anemotaxis rely significantly on wind direction, this experimental study shows 

that a plume-tracing mobile robot can be widely used in various indoor 

environments with high or low airflow speed. 

Despite the tests of plume-tracing algorithms in the experiments in wind tunnels, 

it can be challenging to undertake experiments to detect and localise hazardous 

plume sources or test plume-tracing algorithms in large industrial buildings, such 

as warehouses and workshops. Therefore, beyond these experiments, a novel 

simulation framework was developed to test and train plume-tracing algorithms 

and robots. This simulation framework was firstly presented by Liu and Lu [16] 

and involved combining CFD-predicted virtual environments with MATLAB-based 

plume-tracing algorithms. With the rapid development of computing 

technologies, CFD has been applied to simulate various fluid fields like chemical 

concentration distributions and wind fields in warehouses [47]. The CFD-

produced fluid field, as well as the chemical concentration distributions, are 

exported to MATLAB for access. The CFD simulation framework has been 

validated in the work conducted by Lu [2]; Li, et al. [25] and Liu [10]. A good match 

of the simulated robot trajectories and measured robot trajectories was found in 

the validation work [2], indicating a simulation framework combining 

ANSYS/FLUENT and MATLAB-based plume-tracing algorithms is a valid research 

tool to test and train plume-tracing robots in a low-cost, fast-created and reliable 
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environment. Employing this simulation framework, Lu [2] proposed a novel 

plume-tracing algorithm, namely “inverso Surge Chemo-Anemotaxis” (iSCA-

taxis), which depends not only on wind direction but also on chemical 

concentration levels. Different from surge anemotaxis with a constant stepsize, 

for the novel iSCA-taxis proposed in Lu [2], the robot moves at a larger step size 

when the target chemical concentration decreases. Conversely, the robot moves 

at a smaller step size when the local chemical concentration increases. When the 

chemical concentration is low, this mechanism can help the robot move faster, 

thereby reducing the searching time and improving the searching efficiency. 

Figure 2.7 shows a success case of iSCA-taxis in a relatively large-scale 

environment. The environment in this study is part of Level 2 of the Engineering 

South building at the University of Adelaide, and its size is 25 m on one side and 

26 m on the other side, which is much larger than the arena of the previous 

experiments (about 9 m2). The results show that before entering the room, the 

robot went in the wrong direction once and then went back because it sensed a 

Figure 2.7: A successful case of iSCA-taxis [2] 
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decreasing chemical concentration (Figure 7). However, the source is still in the 

central part of a room, and so the performance of a plume-tracing robot in tracing 

wall plumes remains unclear.  

 

Another test of a plume-tracing robot under the simulation framework is where 

Chen, et al. [6] investigated a plume-tracing task in a similar (small) indoor 

environment using the multi-robot active olfaction method. In this case study, 

FLUENT with the k-Ɛ transient model was used to simulate an indoor airflow field 

(Figure 2.8). Compared with the environment investigated by Lu [2], the scale in 

this study is smaller but the inlet airspeed changes with time, resulting in a more 

complex wind field. Figure 2.8 shows the chemical concentration distribution, as 

well as the position of the plume-tracing robot at that time. Under the application 

of a multi-robot active olfaction method on a swarm of robots, the chemical 

source was successfully localised by the robots. This study further proved that 

Figure 2.8: Procedure of contaminant source localisation (after [6]) 
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the application of this simulation framework on testing various plume-tracing 

algorithms is feasible. However, the geometry of the room in this investigation is 

very simple and there are no obstacles inside. Normally there are various objects 

and walls influencing the wind field as well as the movement of a plume-tracing 

robot in a room occupied by people. Hence, more tests need to be undertaken in 

 

(a) 

 

(b) 

Figure 2.9: (a) Searching trajectory of the robot (b) 3D searching trajectory in 3D simulation 
framework [49] 
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complex indoor environments because walls and obstacles can influence wind 

fields and chemical concentration distribution and therefore influence the 

performance of different plume-tracing algorithms.  

All the above simulation studies are based on a 2D simulation framework, which 

means that only one horizontal level of CFD results, including chemical 

concentration distributions and wind fields, is imported into MATLAB for further 

processing. Since plumes are mainly strong 3D flows, a 3D simulation framework 

is necessary for these strong 3D plumes. Awadalla, et al. [47] developed a 3D 

simulation framework using ANSYS/FLUENT and MATLAB. In this 3D simulation 

framework, data, including chemical concentration distributions and fluid fields 

on multiple horizontal levels, are exported to MATLAB for further processing. It 

can be concluded from Figures 2.9 (a) and (b) that the application of a plume-

tracing robot using a 3D simulation framework that provided wind fields and 

chemical concentration distributions on different horizontal levels is feasible.  

Although a number of successful cases of plume-tracing robots are found in the 

literature, problems still remain. Firstly, the locations of sources are away from 

the walls. Since it can be normal that a hazardous plume source is near to or on 

a wall and wall plumes are different from free-stream plumes, it is important that 

plume-tracing algorithms can be tested on wall plumes. Moreover, most of the 

tests were performed in lab-scale environments. To apply plume-tracing 

algorithms in more indoor environments, such as warehouses, more tests need 

to be performed in large-scale environments. 

 

2.3 Comparisons among different plume-tracing algorithms 

To understand the performance of different plume-tracing algorithms, 

assessments of different plume-tracing algorithms have been conducted 
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experimentally and numerically. A number of research projects assessing 

different plume-tracing algorithms using experimental methods can be found in 

the literature [5, 14, 35, 38, 39]. A parametric study regarding the speed limit of 

plume-tracing robots using two different algorithms plume-maintaining 

behaviour with active strategy and spiral-surge algorithm, was undertaken by Li, 

et al. [3]. Figures 2.10 (a) and (b) show the searching strategies of these two 

algorithms, respectively. The testing results show that in a given indoor airflow, 

the average approaching indexes generally increase as the maximum speed of 

the robot goes up [3]. Also, the overall performance of the Spiral-surge algorithm 

is better than that of Plume-maintaining behaviour with active strategy [3]. 

However, it can be seen that the plume-tracing robot in this study was tested in 

an indoor environment away from any walls and obstacles [3]. It can be observed 

from the depiction drawing of the spiral-surge algorithm that a large space is 

needed for a spiral motion. Consequently, even though the average approaching 

indexes of the spiral-surge algorithm is shown to perform better, there is not 

enough space for the spiral-surge algorithm in many indoor environments. 

In addition, Harvey et al. [40] assessed several insect-inspired chemical plume-

tracing algorithms using a mobile robot equipped with a wind and an ion sensor. 

 

 

 

(a) (b) 

Figure 2.10: (a) Depiction of the plume-maintaining behaviour; (b) Depiction of the spiral-surge 
algorithm [3] 
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In this case study, the source of the plume is an ion generator, which can be 

treated as a point source, and a plume formed in a wind tunnel. The wind tunnel 

provides indoor environments with a steady airflow. Four plume-tracing 

algorithms, namely surge anemotaxis, two bounded search algorithms and a 

counterturning algorithm were tested in this study. The experimental results 

show that the bounded triangular algorithm presents the highest overall success 

rate for searching; while in terms of efficiencies, the robot with surge anemotaxis 

spent the minimum time localising the source. Across the whole process of the 

experiment, when the wind speed was set to be 0.95 m/s (a typical airspeed in 

indoor environments), the robot with surge anemotaxis achieved the highest 

success rates. Figure 2.11 shows the trajectories of the robot coded with different 

algorithms when searching. It could be seen from Figure 2.12 that the robot 

coded with surge anemotaxis moves in a nearly straight line after entering the 

plume, thereby contributing to a lower total surge distance and a higher 

efficiency than the robot driven by other algorithms.  

 

Figure 2.11: The trajectory of robots using different searching algorithms [40] 
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Targeting searching along an increasing gradient of chemical concentration, 

another novel plume-tracing algorithm called the pseudo gradient-based 

algorithm, with a special PT stage, was investigated by Neumann, et al. [35]. 

 

 

 

 

Figure 2.12: (a)–(c) Trajectories of successful simulation runs of all three bio-inspired plume-
tracing algorithms, (d) Particles of the PF-based gas source localisation algorithm using the pseudo 

gradient-based algorithm after 133 iterations. [35] 
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Navigated by this algorithm, an unmanned aerial vehicle (UAV) at plume tracking 

stage moves towards the area with an increasing chemical concentration based 

on surging upwind. Figure 2.12 shows the trajectories of the UAV equipped with 

different plume-tracing algorithms. It can be seen that the Surge-cast algorithm 

(anemotaxis) remains the best (see Figure 2.12). This research shows that the 

application of the pseudo gradient-based algorithm, which is a novel algorithm 

navigating the robot to move towards the increasing concentration direction 

when moving upwind, on a micro-drone in an outdoor environment, is feasible. 

Also, since air flow usually has low speed and turbulence in indoor environments, 

this algorithm has the potential to be applied to plume-tracing robots in the 

detection and localisation of hazardous plume sources in various indoor 

environments.  

Harvey, et al. [4] also undertook an experimental study to compare the 

effectiveness of different plume-tracing algorithms in a shifting wind field (Note: 

the direction of the wind varies with time). In this research, novel plume-tracing 

algorithms especially designed for a shifting wind field are presented [40]. The 

surge anemotaxis with shift adjustment is an improved surge anemotaxis, with a 

moving orientation adjustment mechanism equipped particularly for adjusting to 

the shifting wind direction. Various methods, including adjusting turning angles 

or decreasing surge time, were tested to get higher searching efficiency for plume 

tracing in environments with shifting wind [4]. Table 2.1 shows the success rates 

of the algorithms applied in this series of experiments. It can be seen that 

traditional simple algorithms (e.g. surge anemotaxis) presented by Harvey, et al. 

[40] still performed the best in terms of success rates (Table 2.1). All the 

algorithms give perform success rates higher than 0.8. 
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Naeem, et al. [24] compared two searching strategies inspired by bacterium, 

namely pure random walk and biased random walk. Pure random walk (termed 

chemotaxis in this report) relies on the gradient of increasing concentration 

alone. It can be observed from Figure 2.13 that it could be challenging for the 

robot equipped with chemotaxis without a biased moving strategy to find the 

location of the source. Figure 2.13 shows that the Biased Random Walk 

performed better than the Pure Random Walk in the indoor environment given 

in this study.  

 

Figure 2.13: Pure random walk vs. biased random walk [23] 

In summary, it has been shown that the plume-tracing method has been widely 

used and tested in different indoor environments. Also, the simulation 

framework has proved to be a reliable and useful search tool. It is promising for 

applying a plume-tracing robot to detect and localise hazardous plume sources 

Table 2.1: Success rates of different algorithms [4] 
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in large buildings. Also, research concerning the assessment of different plume-

tracing algorithms presents better algorithms in different specific environments. 

However, there are still some questions in the current literature. As hazardous 

plume sources, such as gas leakage, explosives and fires could be near a wall, 

research in the scenarios where the chemical source is near a wall is definitely 

needed. Also, in previous investigations, plume-tracing algorithms were mostly 

compared in small-scale spaces, such as laboratories, offices and classrooms. 

Research on the assessment of plume-tracing algorithms in large-scale 

environments, for example, warehouses, is needed.  

 

2.4 Research gaps 

1. The performance of different plume-tracing algorithms in tracing wall plumes 

is not yet understood. 

In previous literature, various plume-tracing algorithms have been tested and 

compared numerically and experimentally in a number of indoor environments, 

where the plume sources are usually away from walls or obstacles. However, wall 

plumes can be formed from hazardous plume sources such as gas leakages, 

smouldering and explosives that are located near a wall. Due to the current 

algorithms not being assessed in scenarios where the plume source is near a wall, 

the performance of different plume-tracing algorithms for wall plumes needs to 

be investigated and understood. 

2. The proposed concentration-distance obstacle avoidance method is inefficient. 

For many existing plume-tracing algorithms, when a wall or an obstacle is 

detected in front of a plume-tracing robot, the robot usually moves away from it. 

However, preliminary simulations conducted in this project showed that when a 

wall plume is thin (thinner than the step size of the robot), this obstacle-

avoidance method does not perform well because the robot repeats moving 
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towards and away from the wall, sometimes remaining in an endless loop. 

Therefore, a novel obstacle-avoidance method based on a wall-following search 

strategy, is necessary especially for plume-tracing robots searching in the thin 

wall plumes that can be found in indoor environments. 

3. The performance of several algorithms in tracing wall plumes in large indoor 

environments is not clear. 

Plume-tracing algorithms have been tested in some indoor environments such as 

laboratories, offices and classrooms and have proved to be capable of detecting 

and localising hazardous plume sources in such indoor environments. However, 

to the best of the author’s knowledge, there is no research targeting on the 

performance of different plume-tracing algorithms in tracing plumes in large-

scale indoor environments such as warehouses. Study regarding the performance 

of different plume-tracing algorithms in large-scale environments, such as 

warehouses, is therefore needed. 

 

2.5 Aim and objectives 

This research aims to understand the performance of different plume-tracing 

algorithms in indoor plumes in both small and large environments. Based on the 

understanding and analysis of this scenario, a new search algorithm that 

outperforms the existing algorithms has been proposed and tested.  

1. To understand the performance of different plume-tracing algorithms for 

indoor wall plumes.  

To identify the most efficient plume-tracing algorithm that fits different 

circumstances where the plume source is either away from or near a wall, 

different plume-tracing algorithms need to be tested and compared in two 

different scenarios. In one scenario the plume source is away from walls and in 

the other scenario the plume source is near a wall. Under the circumstance that 
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currently existing algorithms do not perform well in tracing indoor plumes, a new 

searching strategy is needed.  

2. To propose and test an efficient plume-tracing algorithm including an obstacle 

avoidance method. 

Since the strategy of navigating the robot away from the wall does not perform 

well when searching in wall plumes in indoor environments, a plume-tracing 

algorithm, called vallumtaxis, which includes a novel obstacle-avoidance method, 

has been proposed and tested in both scenarios proposed in objective 1.  

3. To test the proposed plume-tracing algorithms in the detection and localisation 

of hazardous plume sources in large-scale indoor environments.  

A new algorithm which outperforms the existing algorithms for wall plume 

tracing and other plume-tracing algorithms will be further tested and analysed in 

large indoor environments. To be more specific, these algorithms will be further 

tested in different scenarios, where large-scale indoor plumes are formed from 

near-wall sources. 
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Chapter 3 Methodology 

In this research, a simulation framework combining CFD-created virtual 

environments and MATLAB-based plume-tracing algorithms is used. In Chapter 

3, the methodology including the overall procedure of the simulation framework 

and the simulation setups in this study is introduced.  

 

 

3.1 The simulation framework 

3.1.1 Introduction of the simulation framework 

The simulation framework applied in this study was firstly proposed by Liu and Lu 

[16]. Subsequent validation of this simulation framework can be found in the 

work undertaken by Awadalla, et al. [49], Awadalla, et al. [47], Lu [2], Chen, et al. 

[15] and Li, et al. [25]. The overall procedure is given in Figure 3.1, which shows 

that data, including the concentration distribution of chemicals or contaminants 

and the flow field generated from CFD, are exported to MATLAB for further 

processing. The geometry design of the environment is first modelled.  Boundary 

conditions, such as the mass flow rate of the chemical coming from the source 

and the inlet wind velocity are input to and processed using CFD. Steady state 

CFD simulation using a Reynolds-averaged Navier-Stokes (RANS) model (the k-ω-

SST turbulence model), was applied in the simulation framework. Therefore, the 

turbulence field is a Reynolds-averaged field not changing with time and thus the 

plumes in the fluid field are continuous. Steady state CFD simulation has been 

widely used in testing plume-tracing algorithms created by steady state CFD in 
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[2, 10, 13, 15, 16, 19-21, 25, 26, 48, 58]. Figure 3.1 represents the overall 

procedure of the simulation framework. Data, including the chemical 

concentration distributions of the chemical, flow fields and contours of the 

concentration distribution of the chemicals, which are produced by CFD, are 

processed by MATLAB to simulate the robot tracing plumes under different 

virtual circumstances. The simulation framework was 2D-based at first, meaning 

that the concentration distribution and fluid field from only one horizontal level 

were processed [16]. Since plumes are all 3D domains, the simulation framework 

was soon developed to be 3D, which means data from several different horizontal 

levels could be utilised [25, 47].  

 

 

Figure 3.1: The overall procedure of the simulation framework 

 

3.1.2 Validation of the simulation framework 

Experimental validation of the simulation framework was first carried out by Liu 
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and Lu [16] by comparing the trajectories of robots between experimental and 

simulation results. The experiments are performed in an office with an ion source 

and a fan providing an ion plume. The simulation results are performed in a CFD-

predicted virtual environment. Subsequent validations of the simulation 

framework, combining CFD and MATLAB, were carried out for both indoor and 

outdoor experiments with obstacles by Liu and Lu [11] or without obstacles by Lu 

[9]. In the current research, further validation was conducted based on the 

experiments undertaken by Harvey, et al. [40]. Figures 3.2 (a) and (b) represent 

the trajectories of a robot in the experiments and simulation framework. In the 

experiments [40], the arena is a wind tunnel. The size of the experimental area is 

approximately 2700 mm in the X direction and 2400 mm in the Y direction (Figure 

3.2). The arena in the simulation framework is modelled as a wind-tunnel-like 

channel that has the same domain as the one in the experiments (Figure 3.2). In 

the arenas, there is an inlet boundary providing a steady airflow and an outlet 

boundary on the opposite side. The wind direction can be seen in Figure 3.2. The 

wind velocity in the CFD model is the same as that in the experiments (0.55 m/s). 

The ion generator, which is the plume source, is cylindrical (50 mm height and 5 

mm diameter) and it emits ion at a mass flow rate of 0.449 g/s to ambient air 

through the cylindrical side. Data, including the flow field and ion concentration 

distribution generated in FLUENT 2019 R1, were imported into the plume-tracing 

codes based on MATLAB R2018b for processing. Figures 3.2 (a) and (b) show that 

the trajectories of the robot in the experiments and simulation framework are 

very similar. Hence, a level of confidence in the simulation framework is further 

obtained and the simulation framework can be regarded as a useful tool for 

training and testing the plume-tracing robots in this study.  



30 | P a g e  
 

 

 Figure 3.2: (a) Surge anemotaxis robot trajectory in experiments (after Harvey, et al. [40]) and a 
virtual environment, (b) Zigzags robot trajectory in experiments (after Harvey, et al. [40]) and a virtual 

environment 

 

3.2 Computational fluid dynamics 

Computational fluid dynamics was used to create the environments for 

investigating the performance of the robot coded with different plume-tracing 

algorithms. 

3.2.1 Simulation setup of the wind tunnel 

Figures 3.3 (a) and (b) present two scenarios in the flow confined in a long wind-
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tunnel-like channel investigated in Chapter 4. This long channel is specially 

designed for testing and training plume-tracing robots referring to the domain 

used by Harvey, et al. [40] and Lochmatter, et al. [39]. The dimension of the 

current domain in each scenario are 2400 mm (millimetres) in the X direction and 

8000 mm in the Y direction. Each boundary of this channel is set as a 5-pixel-thick 

blank area for testing the obstacle avoidance method. In this research, the source 

of the plume is an ion generator, which is modelled following the real ion 

generator applied in the previous investigations [4, 34, 40]. In Scenario M, the 

coordinate of the centre of the source is (1200 mm, 7715 mm, 175 mm), which 

is 1200 mm away from both side walls; while in Scenario S the source is located 

at (80 mm, 7715 mm, 175 mm), which is near the left side wall.  In both Scenario 

M and Scenario S, there is an inlet boundary and an outlet boundary contributing 

to steady wind flow. The inlet velocity in both scenarios is 1 m/s. A plume that 

mixes air and ions forms downstream from the source. Five initial locations A-E 

are shown in Figure 3.3, and their coordinates are A (304 mm, 459 mm), B (650 

mm, 546 mm), C ( 1238 mm, 459 mm), D (1819 mm, 546 mm) and E (2165 mm, 

459 mm), respectively. The ion concentration distribution along a horizontal 

plane 15 cm above the ground is shown in Figure 3.3. The colour legend of the 

ion mass fraction in the air in Figure 3.3 is logarithmic for better visualisation and 

it applies to all the following figures in Chapter 4 of this thesis. When the robot 

declares a location where the distance between the location and the source is 

less than 350 mm in real scale, which follows the previous experimental 

investigation undertaken by [40], it is considered a successful search. 

The Reynolds number of this confined channel flow can be governed by Equation 

3.1: 

𝑅𝑒 =
𝑢𝐷𝐻
𝑣
                  (3.1) 

where 𝑢 is the mean velocity of the flow, 𝐷𝐻  is the hydraulic diameter of the 
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channel and 𝑣 is the kinematic viscosity of air at room temperature. The wind 

velocity 𝑢 is 1 m/s. The hydraulic diameter 𝐷𝐻 can be calculated by Equation 3.2: 

𝐷𝐻 =
2𝑎𝑏

𝑎 + 𝑏
                 (3.2) 

where 𝑎 and 𝑏 are the width and height of the wind tunnel, respectively. 𝑅𝑒 is 

around 56000, which shows that the airflow is a turbulent flow. Moreover, the 

thickness of the boundary layer 𝛿 of the flow can be given in Equation 3.3: 

𝛿 = 0.37
𝑥

𝑅𝑒
1
5⁄
            (3.3) 

where 𝑥 is distance downstream from the start of the boundary layer and 𝑅𝑒 is 

the Reynolds number. It can be calculated that the boundary layer is small 

Figure 3.3: Simulation setup (a) Scenario M (b) Scenario S 
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(maximum 0.33 m) and does not affect the robot significantly.  

The simulation framework applied in this research is based on steady state CFD. 

The advantage of this steady state CFD approach is that the exact same flow fields 

and plumes are used to compare different plume-tracing algorithms. These 

consistent environments make the results fair and repeatable. This CFD approach 

Figure 3.4: Comparison of predicted chemical concentration distribution at 0.3 m high 
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has been widely adopted for indoor airflows and plume-tracing algorithms 

research, for example, in [2, 10, 13, 15, 16, 19-21, 26, 45, 48]. Moreover, it has 

been found to be valid as shown in the validations of the simulation framework 

reported in the literature in Section 3.1.2.  

A mesh independent test is conducted for the case in the first part of this 

research. An initial mesh with about 190000 nodes was generated in the 

computational domain. The mesh was then refined in finer meshes with 290000 

and 590000 nodes. A comparison of the predicted chemical concentration 

distribution at 0.3 m high is presented in Figure 3.4. It can be seen that the fine 

mesh (590000 nodes) and medium-density mesh (290000 nodes) yield results 

that are close to each other. Therefore, a mesh density of 290000 is determined 

as sufficient and used in the subsequent part of this research. The mesh size may 

slightly affect the CFD results and plume tracing; however, the algorithm 

comparison results and the conclusion of this study are not affected by the mesh 

size used in the CFD simulations. 

 

3.2.2 Simulation setup of an underground warehouse 

The warehouse model in this research was developed with reference to the 

underground warehouse demonstrated in the previous literature [59]. The 

simulation is conducted in 3D framework. However, all the results are presented 

in 2D format for better visualisation. The geometry design of the warehouse, as 

well as the positions of hazardous plume sources, are shown in Figures 3.5 (a) 

and (b). This is a typical underground facility with an inlet boundary forcing air to 

enter and an air outlet boundary to maintain good ventilation (Figure 3.5 (a)). 

There is a door on a side wall and, since it is normally closed, it is not treated as 

an air outlet boundary in this research. The length of the warehouse is 78.7 m in 

the X direction and 29.4 m in the Y direction (Figure 3.5 (a)). The height of this 
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warehouse is 8 m in the Z direction (Figure 3.5 (a)). There is only one air inlet and 

one air outlet boundary. Fresh air comes from the air inlet boundary at 1 m/s. 

The area of the air inlet boundary is 36 m2, and the area of the air outlet boundary 

is 12.566 m2 (Figure 3.5 (a)). There are ten piles of cargo in total and they are 

assumed to be impermeable to air. Figure 3.5 (b) shows the 2D streamline at a 

horizontal level, 1 m above the ground. Figures 3.5 (c) and (d) show the 2D 

streamlines at horizontal levels, 0.3 m and 0.5 m above the ground, respectively. 

It can be seen from Figure 3.5 (b) that the fluid field in such a large-scale 

environment is complex, as many large and small recirculating airflows form 

between the piles of cargo. These large recirculation may significantly affect the 

performance of plume-tracing robots since, on the one hand, a number of plume-

tracing algorithms rely on moving following the wind direction, and, on the other 

hand, these recalculating flows influence the chemical concentration 

distribution. More details regarding the geometry design can be seen in the 

research conducted by Stefopoulos and Damigos [59]. Sources 1, 2, 3, and 4 are 

(a) 
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the simulated hazardous chemical sources in Scenarios 1, 2, 3, and 4, separately. 

 

 

(b) 

 

(c) 

 

(d) 

Figure 3.5: (a) The geometry design of the underground warehouse, the fluid field at the 
horizontal level (b) 1 m, (c) 0.3 m and (d) 0.5 m above the ground 
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For the coordinate system given in Figure 3.5 (a), the locations of Sources 1, 2, 3, 

and 4 are (28 m, 22.05 m, 0.5 m), (33.4 m, 7.35 m, 0.5 m), (54.7 m, 17.4 m, 1 m) 

and (70.05 m, 0 m, 1 m), respectively. Carbon monoxide comes out from the 

source at a mass flow rate of 0.66 g/s and a temperature of 300K. The robot was 

released from (1.82 m, 14.7 m) on the floor, a location near the air outlet 

boundary. The Reynolds number 𝑅𝑒  at the air inlet boundary, which can be 

calculated by Equations 3.1, 3.2 and 3.3, is 3.8 ×105. The flows near the air inlet 

boundary are turbulent flows. The number of the mesh nodes in the model of the 

underground warehouse is 1784840. A maximum-5-layer inflation is inserted for 

the enhancement of the mesh near the walls. A steady state k-ω SST model is 

used to simulate the airflows in the underground warehouse. It should be noted 

that, as the focus of this research is assessing the performances of different 

plume-tracing algorithms on wall plumes, most of the sources in this study are 

located on walls. When designing the cases, the sources that could be either near 

to or far from, or on the left side or the right hand side of the releasing location 

of the robot are considered. 

 

3.3 MATLAB-based plume-tracing algorithms 

A plume-tracing process can be divided into three stages for discussion: plume 

sensing (PS), plume tracking (PT) and source localisation (SL) [30, 32, 38, 47]. In 

this study, the transition between different stages is defined by the local chemical 

concentration. Two concentration thresholds, threshold I and threshold II, are set 

to distinguish different stages. All the plume-tracing algorithms with these three 

steps are programmed in MATLAB. Figure 3.6 explains how a robot with a three-

stage plume-tracing algorithm works. When the plume-tracing robot starts 

working, it first detects the existence of obstacles. Having sufficient space for 

plume-tracing, it will then measure the local concentration. If the local 
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concentration is below threshold I, the robot is seen to be outside the plume, so 

the robot will move at PS stage. If the local concentration is between threshold I 

and threshold II, PT will be triggered. If the local concentration is higher than 

threshold II, the robot is supposed to be near the source and should get ready for 

source declaration, thereby moving at SL stage. For instance, in the wind-tunnel-

like channel, the values of the ion mass fractions of threshold I and threshold II 

are set to be 10-5 and 0.1, respectively. Threshold I and threshold II are set to 

distinguish the different stages of plume tracing. When applied in other cases, 

the values of these two thresholds can be set case by case, according to the 

Figure 3.6: The logic flow chart of a typical plume-tracing algorithm 
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different chemical concentrations and environments. Threshold I is decided 

following the criteria: higher than the low limit of the range of the chemical 

sensor and the normal concentration of the target chemical in the environment. 

Threshold II, which distinguishes PT and SL stages, defines an area near the source 

and this area varies with different source strengths. Nevertheless, the robot 

keeps moving towards the source at either PT or SL stage, and the conclusion of 

the comparison of different algorithms is believed to be consistent.  
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Chapter 4 Assessment of different plume-tracing 

algorithms in indoor plumes 

The work presented in Chapter 4 is partially based on the results that have been 

published in [25]. In this chapter, the performance of different plume-tracing 

algorithms for tracing a single plume source in a wind-tunnel-like channel is 

investigated.  

 

 

4.1 The robot 

The plume-tracing robot simulated in this study is a differential drive robot 

equipped with chemical, wind and ultrasonic sensors and was designed in 

conjunction with the robots used in the studies undertaken in our wider research 

group by Awadalla, et al. [47] and Lu [2]. The diameter of the robot is about 10 

cm, and the height of the robot is about 30 cm. As shown in Figure 4.1, two driving 

wheels are set on two sides of the robot to drive it the robot and two small idle 

wheels are set in the front and back for balance the robot. Please note that, for 

simplicity, the robot’s control box and batteries are not included in Figure 4.1. 

Different from the earlier robots used by Awadalla, et al. [47] and Lu [2], which 

only one fixed chemical and where one fixed wind sensor was applied, the robot 

in this case study is equipped with multiple chemical sensors on the edge for both 

plume tracing and obstacle avoidance (shown in Figure 4.1). Moreover, unlike the 

previous robots, the locations of the sensors of the current robot are not fixed 

and the sensors can move vertically along two cylindrical holders (see Figure 4.1 
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(b)) to work at different horizontal levels. The chemical sensors are equipped to 

measure the local chemical concentration, and the wind sensors are equipped to 

measure the local wind speed and direction. Generally, plume-tracing robots 

move step by step, which is the definition of ‘surge’, because the wind and 

 

(a) 

 

  

(b) 

Figure 4.1: An overview of the robot (a) top view (b) isometric view 
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chemical sensors need to work in a steady condition (both the robot and the 

sensor module plate stay still) to obtain accurate readings. In other words, at 

different heights, chemical concentrations and wind directions are measured 

after the robot stops moving horizontally and the sensor module plate stops 

moving vertically. As shown in Figures 4.1 (a) and (b), one chemical sensor and 

one wind sensor are located at the centre of the robots, and four chemical 

sensors are located in four directions: left, right, forward and back on the edge 

of the robot. Four ultrasonic sensors are used to measure the shortest distance 

between the robot and an obstacle in their covering sections termed sections L, 

ML, MR and R (illustrated in Figure 4.1). To avoid striking obstacles, a novel 

concentration-distance obstacle avoidance method was proposed using the 

information from the ultrasonic sensors and the chemical sensors on the edges 

of the robot. Here, the responding distance is defined as the sum of the surge 

distance and the diameter of the robot. If an ultrasonic sensor measures a 

distance longer than the responding distance, an obstacle is confirmed in its 

corresponding covering section. When the ultrasonic sensors detect the 

existence of an obstacle(s), the robot will tend to move away from the obstacle 

in order to leave sufficient space for the robot to surge following plume-tracing 

algorithms at the next step. For instance, when the robot is moving towards an 

obstacle wall in a direction normal to the wall, ultrasonic sensors will detect the 

wall and the chemical sensors on the edge will help navigate the robot away from 

the wall with respect to the concentration distribution around the robot.  

The concentration-distance obstacle avoidance method is designed to use the 

concentration measured by multiple sensors. Table 4.1 shows how the robot 

reacts when detecting different data in different directions. In Table 4.1, using 

the data measured by ultrasonic sensors L, ML, MR and R, the whole obstacle 

avoidance method is categorised into sixteen cases. The letter Y denotes yes, 
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which means an obstacle is detected in the covering area. The letter N denotes 

that no obstacle is detected in the corresponding covering area. For example, for 

case 1, an obstacle is detected by Sensor L, and no obstacles are detected by the 

other sensors. 𝐶𝑓 , 𝐶𝑟  and 𝐶𝑙  are the concentrations measured by the chemical 

sensor in the forward, right and left directions, respectively. Thus, for Case 8, 

obstacles are detected by Sensors ML and MR and no obstacles are detected by 

Sensors L and R. Under this circumstance, if 𝐶𝑟 , which is the concentration 

measured by the chemical sensor on the right, is higher than that measured by 

all other sensors, the robot will turn 90° to the right and surge for a long distance. 

Meanwhile if 𝐶𝑙 is the highest among all the reading, the robot will turn 90° to 

the left and surge for a long distance. Otherwise the robot will turn back and 

surge for a long distance.  

Table 4.1: Algorithm of the concentration-distance obstacle avoidance method 

Case 

No. 

Sensor 

L 

Sensor 

ML 

Sensor 

MR 

Sensor 

R 

Condition Action 

1 Y N N N All Turn 60° to the right and 

surge for a long distance 

2 N Y N N All Turn 90° to the right and 

surge for a long distance 

3 N N Y N All Turn 90° to the left and 

surge for a long distance 

4 N N N Y All Turn 60° to the left and 

surge for a long distance 

5 Y Y N N All Turn 90° to the right and 

surge for a long distance 

6 Y N Y N 𝐶𝑓=Max Turn 45° to the left and 

surge for a long distance 

Other Turn 90° to the right and 

surge for a long distance 

7 Y N N Y All Surge forward for a long 
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distance 

8 N Y Y N 𝐶𝑟=Max Turn 90° to the right and 

surge for a long distance 

𝐶𝑙=Max Turn 90° to the left and 

surge for a long distance 

Other Turn back and surge for a 

long distance 

9 N Y N Y 𝐶𝑓=Max Turn 45° to the right and 

surge for a long distance 

Other Turn 90° to the left and 

surge for a long distance 

10 N N Y Y All Turn 90° to the left and 

surge for a long distance 

11 Y Y Y N All Turn 135° to the right and 

surge for a long distance 

12 Y N Y Y All Turn 45° to the left and 

surge for a long distance 

13 Y Y N Y All Turn 45° to the right and 

surge for a long distance 

14 N Y Y Y All Turn 135° to the left and 

surge for a long distance 

15 Y Y Y Y 𝐶𝑟=Max Turn 150° to the right and 

surge for a long distance 

𝐶𝑙=Max Turn 150° to the left and 

surge for a long distance 

Other Turn back and surge for a 

long distance 

16 N N N N All Follow the plume tracing 

algorithm 
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4.2 Plume-tracing algorithms 

Figures 4.2 (a) and (b) show examples of how the plume-tracing robot work in 

two different scenarios. Please note that in all Figures 4.2, 4.5, 4.7, 4.8, 4.9 and 

4.11, the background contour represents the chemical concentration distribution 

along the horizontal plane, where the simulation data was used by the robot at 

the last step. In both scenarios shown in Figure 4.2, the robot was released at a 

location outside of the plume. In both scenarios, as the chemical concentration 

at the releasing location is lower than threshold I, the robot began plume sensing 

to look for the plume. In Scenario M, as shown in Figure 4.2 (a), the robot moved 

left and right searching for the plume. After three steps, the chemical sensors 

detected that the ion concentration was higher than 10-5, then the robot started 

plume tracking stage. The robot moved upward at a constant step length until 

Figure 4.2: (a) An example of how the plume-tracing robot works in Scenario M, (b) An 
example of how the plume-tracing robot works in Scenario S 
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the chemical sensors detected that the ion concentration was higher than 0.1 at 

a location around y=5800 mm. Then the robot started source localisation stage 

and reduced the length of steps. After 28 steps, the distance between the robot 

and the source was less than 350 mm, and the robot reported that the source 

was detected. In Scenario S, the robot found and left the plume four times when 

searching because of either wind direction or obstacle avoidance and finally it 

ended without SL because the robot did not gain contact with the area where the 

chemical concentration was above threshold II.  

4.2.1 Plume sensing 

Plume sensing is the process whereby a robot that is initially located outside a 

plume moves to find a plume that comes from a chemical source. This process, 

inspired by insects, is also termed casting. There are two types of casting, normal 

casting and special casting, in this study that have been proposed in the previous 

literature. The performance of these two casting methods is compared by 

searching in both the wall plume (Scenario S) and the free stream plume 

(Scenario M). 

4.2.1.1 Normal casting 

This first kind of casting method, called normal casting in this chapter is the same 

as the casting method used in the experiments undertaken by Harvey, et al. [40]. 

During the normal casting process, the robot moves in a direction that is 

perpendicular to the wind direction and moves forth and back in a gradually 

increasing step length at each step. Meanwhile, the chemical sensor keeps 

measuring the chemical concentration and once the concentration is above 

threshold I, the robot enters a plume through one plume boundary and it will 

immediately stop PS and begin the next stage, either plume tracking or source 

localisation, depending on whether the chemical concentration is lower or higher 

than threshold II.   
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4.2.1.2 Special casting 

Under the special casting process, the robot searches for the centreline of a 

plume, which is located in the middle of two well-developed boundary layers of 

a plume [17, 18]. Differing from normal casting, in special casting the robot keeps 

moving straight, aiming to find the next boundary of the plume after entering the 

plume through one plume boundary. As long as the concentration is above 

threshold I, the robot continues to move across the wind and the plume until 

either the concentration is again lower than threshold I or the robot meets a wall, 

meaning that the other boundary of the plume is found. Then the robot moves 

back to the centre between the two boundaries and starts the next stage. The 

advantage of the special casting is that the initial position of the next stage to be 

commenced will be near the centreline of the plume and theoretically the 

possibility of leaving the plume when surging upwind is lower than that when 

moving near the plume boundary, which is normally found in the case of normal 

casting. 

4.2.2 Plume tracking 

Plume tracking is the process by which the robot surges within the plume after 

finding it and normally takes a longer time, thereby influencing the efficiency 

significantly (see Figure 4.2). All the PT methods compared in this part of the 

study were previously presented either in experiments or in a simulation 

framework and were already proved to be applicable (see Chapter 1). The 

distance that the robot surged at every step was constant. 

4.2.2.1 Surge anemotaxis 

Surge anemotaxis is one of the simplest of the implemented algorithms, and it 

was identified as performing well in experiments [40]. Here, surge is defined as 

moving step by step. When the local chemical concentration is above threshold I, 

the robot surges towards the wind direction measured by the wind sensor. Under 
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surge anemotaxis, the robot continuously adjusts its direction to ensure that it is 

orienting to the wind with every step and then surges upwind.  

4.2.2.2 Chemotaxis 

Chemotaxis is defined as surging towards the area with the highest chemical 

concentration regardless of wind direction; i.e. the robot will not surge based on 

wind direction but will surge based on chemical concentration. In this study, 

there are four chemical sensors located on the edge of the robot (explained in 

Section 4.1) and the robot moves in the direction of the sensor that reports the 

highest chemical concentration among four. For example, when the robot is 

moving, if the sensors detect the highest concentration in the forward direction, 

the robot will surge forward. 

4.2.2.3 Zigzags 

The strategy of this algorithm was inspired by the moving behaviours of Dung 

beetles. As its name indicates, the trajectories of the robot using this algorithm 

are like zigzags. The overall strategy is surging upwind; however, differing from 

surge anemotaxis, after turning to face the wind, the robot continues to turn at 

a certain angle and then surges. The turning angle is constant in most cases. In 

this study, 45° was selected. 

4.2.2.4 Pseudo gradient-based algorithm 

The idea of the pseudo gradient-based algorithm was first presented by Lilienthal 

and Duckett [60], and was developed into a formal algorithm and tested in the 

experiments undertaken by Neumann, et al. [35]. The strategy of this specially 

designed PT method is actually a combination of surge anemotaxis and 

chemotaxis. Under the pseudo gradient-based algorithm, after facing upwind, the 

robot continues to turn β towards the area with a higher chemical concentration 

(as illustrated in Figure 4.3). In general, β can be calculated by using Equations 

4.1 and 4.2: 
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𝛽 = {

0, 𝜇 = 0.5
(1 − 2𝜇) × 90°, (𝑡𝑢𝑟𝑛 𝑙𝑒𝑓𝑡), 𝜇 < 0.5
(2𝜇 − 1) × 90°, (𝑡𝑢𝑟𝑛 𝑟𝑖𝑔ℎ𝑡), 𝜇 > 0.5 

       (4.1) 

𝜇 =
𝐶𝐿

𝐶𝐿 + 𝐶𝑅
                     (4.2)   

where µ is a coefficient that is used to determine the value of β. In previous 

experiments, CL and CR were measured by moving left and right but in this study 

they are measured by taking advantage of multiple chemical sensors. CL is the 

chemical concentration measured by the chemical sensor on the left hand side, 

and CR is measured by the one on the right hand side. 

 

Figure 4.3: Schematic diagram of the working principle of pseudo gradient-based algorithm 

 

4.2.3 Source localisation 

Source localisation is the process of identifying and declaring the location of the 

source after the robot enters the plume zone where the chemical concentration 

is higher than threshold II. During the source localisation process, the robot can 

move either following constant stepsize or variable stepsizes. In this part of the 
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study, the stepsize is defined as the distance that the robot surges at each step. 

4.2.3.1 Constant stepsize 

For the constant stepsize SL, the robot moves in a constant stepsize that can be 

the same as that in the plume tracking stage. One drawback of the constant 

stepsize source localisation is that, when the stepsize is large, the robot may surge 

out of the plume when searching near the chemical source. 

4.2.3.2 Variable stepsize 

To solve the problem of the robot surging out of the plume near the chemical 

source, a novel source localisation method with a variable stepsize strategy was 

proposed by Lu [2]. During this variable stepsize SL, the higher the chemical 

concentration is, the shorter the distance the robot surges at each step. An 

equation between the chemical concentration and surge distance was adopted 

as [2]: 

𝑋𝑌 = 𝐶                      (4.6) 

where 𝑋  is the chemical concentration that is normalised by the highest 

concentration, i.e. the concentration at the source. Therefore, the 𝑋  value is 

normalised within the range from 0 to 1. 𝑌  is the surge stepsize, and 𝐶  is a 

constant value that can vary according to different environments. Following the 

work of Lu [2], 𝐶 = 5 was selected. 

 

4.2.4 Table of algorithms 

One of the main objectives of this research is to assess the performance of the 

algorithms with different PS, PT or SL stages when tracing the sources of two 

plumes confined in a channel (Scenario S and Scenario M). Therefore, a total of 

16 different combined plume-tracing algorithms are compared in this study. 

Table 4.2 shows a list of these 16 combined algorithms. 
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Table 4.2: Different plume-tracing algorithms and their origins 

Algorithm 

No. 

Plume Sensing Plume Tracking Source 

Localisation 

1 Normal casting 

[40] 

Surge anemotaxis 

[40] 

Constant stepsize 

[2] 

2 Normal casting Surge anemotaxis Variable stepsize 

[2] 

3 Normal casting Chemotaxis [32] Constant stepsize 

4 Normal casting Chemotaxis Variable stepsize 

5 Normal casting Zigzags [35, 40] Constant stepsize 

6 Normal casting Zigzags Variable stepsize 

7 Normal casting Pseudo gradient-

based algorithm [35] 

Constant stepsize 

8 Normal casting Pseudo gradient-

based algorithm 

Variable stepsize 

9 Special casting  

[17] 

Surge anemotaxis Constant stepsize 

10 Special casting Surge anemotaxis Variable stepsize 

11 Special casting Chemotaxis Constant stepsize 

12 Special casting Chemotaxis Variable stepsize 

13 Special casting Zigzags Constant stepsize 

14 Special casting Zigzags Variable stepsize 

15 Special casting Pseudo gradient-

based algorithm 

Constant stepsize 

16 Special casting Pseudo gradient-

based algorithm 

Variable stepsize 

 



52 | P a g e  
 

4.2.5 Stepsize 

The stepsize in the experiments carried out by Harvey, et al. [40] was 18cm. In 

the current study, four different stepsizes: 9cm, 13cm, 18cm and 23cm were 

tested and compared in two different scenarios using Algorithm 1 (please see 

Table 4.2 for the details of Algorithm 1). For example, the robots in both Figures 

4.2 (a) and (b) have a stepsize of 18 cm. It can be seen in Figure 4.4 that the total 

number of steps tends to decrease when the stepsize increases in Scenario M. In 

Scenario S, the total number of steps decreases when the stepsize increases from 

9 cm to 13 cm, however, there are no obvious advantages when the stepsize 

increases from 13 cm to 18 cm. An accident happened when the stepsize 

increased to 23 cm, as Figure 4.5 shows: the robot became trapped and failed to 

approach the source because of the increasing responding distance for obstacle 

avoidance. To balance the performance of the robots in the two scenarios, an 

18cm stepsize is selected. In this study, the robot is assumed to surge once at 

each time step, as per the work undertaken by Lu [2]. Therefore, the lower 

number of steps indicates the lower time spent, representing higher efficiency. 

 

Figure 4.4: The total numbers of steps in two scenarios with different stepsize, searching with 
Algorithm 1 
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Figure 4.5: The trajectory of the robot in Scenario S when the stepsize is 23 cm, searching with 
Algorithm 1 

 

4.3 Simulation results and comparison 

In this section, an overall view of all results is presented, and subsequently an 

analysis is offered as to whether initial locations matter and comparisons are 

made across the different PS, PT and SL methods. The results are shown in Figures 

4.6 (a) and (b). These indicate that the robot’s performances differ in different 

scenarios, PS, PT, SL stages and initial locations. The total number for steps of 

each algorithm with chemotaxis for PT stage is not shown because of its 

unsatisfactory performance (see Section 4.4.3). It costs the robot considerably 

more steps when searching in Scenario S, indicating that these algorithms need 

to be improved to fit the condition that the source is located near a wall. In Figure 
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4.6, the different line style indicates different SL stages. Solid lines represent the 
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algorithms with normal casting while dash lines represent the algorithm with 

 

(b) 

Note: Algorithms refer to Table 4.1, solid line – normal casting, dash line – special casting, yellow 
– surge anemotaxis, green – zigzags, blue – pseudo gradient-based algorithm, O – constant 

stepsize, X - variable stepsize 

Figure 4.6: (a) Statistical results of the number of steps in Scenario M, (b) Statistical results of the 
number of steps in Scenario S 
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special casting. Similarly, the colour green represents the zigzags, and yellow 

represents the surge anemotaxis and blue means the pseudo gradient-based 

algorithm for PT stage. Also, for the markers, ‘O’ means the constant stepsize and 

‘X’ means the variable stepsize for SL stage. In Figures 4.7, 4.8, 4.9 and 4.11, 

‘algorithm’, ‘scenario’, ‘corresponding method’, ‘initial location’ and ‘total 

number of steps’ are labelled following every Figure in this chapter. For instance, 

the trajectory of the robot coded with Algorithm 5 where normal casting is 

applied and released from position E in Scenario M is shown in Figure 4.7 (a), and 

the total number of steps is 64. More results can be seen in Appendix A of this 

thesis.  

 

4.3.1 Initial location matters? 

The question as to whether or not there are advantageous initial locations when 

releasing a plume-tracing robot in an environment for which the robot is without 

prior knowledge was proposed by Lu [2] and the simulation results indicated that 

there are no obvious advantageous initial positions for higher efficiency when 

releasing a plume-tracing robot in a corridor in a given office-like indoor 

environment [2]. However, the simulations conducted by Lu [2] were based on 

only one algorithm. To discuss this problem further, the robot was released from 

five different initial locations when testing different algorithms in the two 

scenarios in this study. (These five initial locations are illustrated in Figure 3.3) 

From Figures 4.6 (a) and (b), it is found that the total numbers of steps varies 

depending on different initial locations. In Scenario M, it can be seen that for 

most algorithms, the robots released from location C, which is inside the plume, 

have a lower total number of steps. However, in Scenario S, even though location 

A is inside the plume, the robot released from location A shows no advantages in 

terms of the total number of steps. Therefore, for an indoor environment that is 
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similar to the one given in this case study, it may be concluded that for a plume 

that is away from walls, it is better to release the plume-tracing robot from a 

position that is inside the plume if possible. However, when there is a wall plume, 

statistical results in the study indicate that the robot is not better being placed 

initially within the plume when searching with either the algorithms or the 

obstacle avoidance method mentioned in this part of the study. 

 

4.3.2 Comparison of PS methods 

According to the testing results, both normal casting and special casting prove to 

be capable of navigating the robot outside the plume to find the plume. Figure 

4.7 shows the trajectories of the robot in four selected cases; two cases with 

normal casting and two cases with special casting. For the normal casting used 

in both scenarios (see Figures 4.7 (a) and (c)), once the robot found the plume, it 

immediately tracked within the plume. While for the special casting used in both 

scenarios (Figures 4.7 (b) and (d)), the robot continued moving forward after 

entering the plume until it either moved out of the plume (Figure 4.7 (b)) or 

reached the wall (Figure 4.7 (d)), then it moved back to the centre of the plume 

and started PT. The results shown in Figure 4.7 indicate that a robot with normal 

casting spends less time than that with special casting in total. Special casting did 

help the robot find the centreline of the plume, but this did not reduce the total 

time cost. To summarise, the normal casting is selected in terms of the total time 

cost. 
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(a) Algorithm 5, 
Scenario M, normal 

casting, released from 
location E, step 

number 64 

(b) Algorithm 13, 
Scenario M, special 

casting, released from 
location E, step 

number 67 

(c) Algorithm 1, 
Scenario S, normal 

casting, released from 
location B, step 

number 51 

(d) Algorithm 9, 
Scenario S, special 

casting, released from 
location B, step 

number 71 

Figure 4.7: Selected cases of different PS 

 

4.3.3 Comparison of PT methods 

In total, four plume tracking methods were tested and compared in this part of 
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study. Among these four methods, the surge anemotaxis, zigzags and pseudo 

gradient-based algorithm proved to be capable of navigating the robot to 

approach the source of the plume (see Figure 4.8). For surge anemotaxis as 

shown in Figure 4.8 (a), after PS, the robot found the centreline of the plume and 

surged upwind for plume tracking. The trajectory of the robot was basically a 

straight line. Figures 4.8 (b) and (f) show that for a single robot that is coded with 

chemotaxis (illustrated in Section 4.2.2), the robot was trapped in the 

downstream of the plume after the PS stage. In all the tests with chemotaxis, 

regardless of PS and SL, initial locations and scenarios, the robot failed in 

searching. A further examination of the trajectories of the robot with chemotaxis 

shown in Figure 4.8 (b) finds that the robot entered the plume at point 4, then it 

moved towards point 5 and then point 6 following the measured highest chemical 

concentration. At point 6, the robot kept moving a step further to step 7 as the 

front chemical sensor detected the highest concentration. From step 6 to step 7, 

however, the robot passed the region where the highest concentration zone was 

located. At step 7, as the highest concentration was found at the back of the 

robot, the robot moved back to the location of step 6.  The robot trajectory 

started repeating between step 6 and 7, and the robot was therefore trapped. 

The chemotaxis failed in Scenario S as shown in Figure 4.8 (f) as well. For the 

zigzags as shown in Figure 4.8 (c), the trajectory of the robot is a zigzag in 

Scenario M. However, in Scenario S (see Figure 4.8 (g)), the trajectory is initially a 

zigzag but then became complex after z=5000 mm. This can be attributed to the 

fact that the distance between the robot and the wall was getting closer after 

z=5000 mm, and so obstacle avoidance was frequently triggered, thereby 

increasing the number of steps. For the pseudo gradient-based algorithm, in 

Scenario M, the robot moved along an approximately straight line first of all and 

then a zigzag after z=7000 mm since the difference between the concentration 
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measured by the chemical sensors on the left and right hand side is more 

significant. In Scenario S, since the concentration near the wall is higher, the 

robot surged towards the wall in the first instance and then surged away from 

the wall because of obstacle avoidance. Hence, the total number of steps of the 

robots coded with the pseudo gradient-based algorithm in the scenario were 

high. In summary, considering the stability and total time cost, surge anemotaxis 

performs better than the other methods in these two scenarios. 

 

    

(a) Algorithm 9, 
Scenario M, surge 

anemotaxis, released 
from location A, step 

number 51 

(b) Algorithm 3, 
Scenario M, 

chemotaxis, released 
from location D, failed 

(c) Algorithm 5, 
Scenario M, zigzags, 

released from location 
C, step number 56 

(d) Algorithm 7, 
Scenario M, pseudo 

gradient-based 
algorithm, released 

from location E, step 
number 46 
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(e) Algorithm 2, 
Scenario S, surge 

anemotaxis, released 
from location E, step 

number 62 

(f) Algorithm 4, 
Scenario S, 

chemotaxis, released  
from location A, failed 

(g) Algorithm 13, 
Scenario S, zigzags, 

released from location 
D, step number 180 

(h) Algorithm 7, 
Scenario S, pseudo 

gradient-based 
algorithm, released 

from location A, step 
number 135 

Figure 4.8: Selected cases of different PT 

 

4.3.4 Comparison of SL methods 

Two types of SL, a constant stepsize method and a variable stepsize method, were 

tested in this study. Compared with the trajectories of the robot with constant 

stepsize shown in Figure 4.9 (a), the robot with variable stepsize (Figure 4.9 (b)) 

moved in more numerous but smaller steps when approaching the source in 

Scenario M. When getting closer to the source, the stepsize decreased drastically. 

It did not perform as expected (the stepsize gradually reducing) as per the 

simulation conducted by Lu [2], whose scenario was a larger indoor environment. 
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In Scenario S, there are no significant differences of trajectories and numbers of 

steps between the robots with constant stepsize and variable stepsize SL (see 

Figures 4.9 (c), (d) and Figure 4.6 (b)). This is because the motion of the robot is 

dominated by the obstacle avoidance motions when it moves close to the source 

in Scenario S. This observation is also confirmed in Figure 4.8. Generally, the 

variable stepsize SL stage fits a large indoor environment such as the one 

presented by Lu [2]. However, constant stepsize works better in the relatively 

smaller domain presented in this study. As a result, for the localisation of the 

indoor plume sources in this study, constant stepsize is selected for source 

localisation. 

    

(a) Algorithm 5, 
Scenario M, constant 

stepsize, released from 
location A, step 

number 61  

(b) Algorithm 6, 
Scenario M, variable 

stepsize, released from 
location A, step 

number 66 

(c) Algorithm 9, 
Scenario S, constant 

stepsize, released from  
location C, step 

number 73 

(d) Algorithm 10, 
Scenario S, variable 

stepsize, released from 
location C, step 

number 73 

Figure 4.9: Selected cases of different SL 
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4.3.5 Vallumtaxis 

Normally there is no prior knowledge about the possible location of the source 

when releasing a robot to undertake chemical plume tracing and subsequent 

source localisation tasks. As a result, a more comprehensive plume-tracing 

algorithm that is capable of navigating a robot in searching in indoor 

environments, where the sources are located on or near a wall, is needed, 

especially when an urgent situation, which needs to be solved as soon as possible, 

emerges. The investigations and findings presented in the previous sections 

indicate that normal casting, surge anemotaxis and constant stepsize are the best 

for PS, PT and SL, respectively. Therefore, a combination of all of them, Algorithm 

1, was proved to perform the best and is selected for further development into a 

novel algorithm with higher efficiency. From the trajectories of the robot shown 

in Figure 4.9 (a), it is concluded that a robot navigated by Algorithm 1 approaches 

the source in an almost straight-line trajectory. This makes the total search 

distance and time cost already very low. However, in Scenario S, it can be seen 

that the concentration-distance obstacle avoidance method (explained in Section 

4.1) slows down the robot by making it repeat PS (see Figure 4.8 (g)). In fact, the 

plume goes along the wall in Scenario S so getting away from the wall equates to 

leaving the plume. In this case, to achieve a higher efficiency, an algorithm called 

vallumtaxis, which is based on Algorithm 1, but with an along-wall obstacle 

avoidance method, was proposed in this study. Obstacle avoidance methods 

using multiple ultrasonic sensors have already been applied in many studies [2, 

15, 47, 49]. Previously in this research, when detecting a wall, a robot would try 

to move away from the wall by moving back. Due to the characteristics of wall 

plumes, it was found in this study that it is more efficient for a plume-tracing 

robot to move along the wall when wall plumes are detected, and this was 

realised by the proposed along-wall obstacle avoidance method, which was 
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developed with the help of multiple ultrasonic sensors. The searching strategy of 

moving along a wall or obstacle has already been presented in the literature (see 

Chapters 1 and 2). The distances measured by ultrasonic sensors were used to 

ensure the robot moves parallel to the wall, which is the fundamental principle 

of this along-wall obstacle avoidance method. An overall logic flow of the along-

wall obstacle method is presented in Figure 4.10 (a). Figure 4.10 (b) represents 

how the robot turns and surges along a wall when the wall is detected. The 

turning angle 𝛼 is governed by the equation: 

𝛼 =
𝜋

4
− arccos (

𝑂𝐴

𝑂𝐵
)                      (4.7) 

where 𝑂𝐴 is the distance between the wall and the centre of the robot measured 

by the ultrasonic sensor that covers the L section, and 𝑂𝐵  is the distance 

between Point B and the centre of the robot. Here, 𝑂𝐵 is the sum of the diameter 

of the robot and the distance (mentioned in Section 4.1) measured by the 

ultrasonic sensor that covers the ML section (see Figure 4.10 (b)). For every step 

(a) 
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surging along the wall, the robot can revise its heading to make it parallel to the 

wall. Either leaving the plume or the end of a wall will stop this ‘along-wall’ 

process, then the robot will return to the normal plume-tracing status. Moreover, 

when meeting a wall, the robot utilises not only the data measured by ultrasonic 

sensors, but also the wind direction measured by the wind sensor. Different from 

the previous wall following obstacle avoidance [10], when facing a wall, the robot 

is able to turn towards the upwind direction and surge along it. For example, 

when the robot heads to the downwind direction after turning 𝛼, the robot will 

turn back in order to surge along the wall and, meanwhile, surge towards the 

upwind direction. 

In terms of the simulation results presented in Figure 4.11 and Figure 4.12, the 

robot with vallumtaxis is capable of detecting and localising the chemical source 

successfully. In Scenario M, the total number of steps as well as the trajectories 

of the robot coded with vallumtaxis are the same as that of the robot with 

Algorithm 1. In Scenario S, the trajectories of the robot with vallumtaxis show 

(b) 

Figure 4.10: (a) The overall logic flow of the ‘along-wall’ obstacle avoidance method, (b) Calculation of 
the turning angle 
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that the robot went along the wall without moving back and with vallumtaxis the 

total number of steps significantly reduced (See Figure 4.11 and Figure 4.12). It 

can be concluded that, when compared with the algorithms with the 

concentration-distance obstacle avoidance method (explained in Section 4.1), 

vallumtaxis successfully avoids repeating movements near a wall (where the 

plume is slim) and helps to achieve higher efficiencies. Therefore, vallumtaxis can 

be adopted for plume-tracing robots for locating a gas leakage source in an 

indoor environment like Scenario M and Scenario S in this study, particularly 

when the source is near a wall, such as in Scenario S.  

    

(a) Algorithm 1, 
Scenario M, 

concentration-
distance obstacle 

avoidance, released 
from location A, step 

number 46 

(b) Vallumtaxis, 
Scenario M, along-wall 

obstacle avoidance, 
released from  

location A, step 
number 46 

(c) Algorithm 1, 
Scenario S, 

concentration-
distance obstacle 

avoidance, released 
from location C, step 

number 63 

(d) Vallumtaxis, 
Scenario S, along-wall 
obstacle avoidance, 

released from location 
C, step number 51 

Figure 4.11: Comparison of trajectories between vallumtaxis and Algorithm 1  
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Figure 4.12: Comparison of the number of steps between Algorithm 1 and vallumtaxis 
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Chapter 5 Application of plume-tracing robots in an 

underground warehouse 

The work presented in Chapter 5 is based on the material of a journal article that 

is going to be submitted. In this chapter, the performance of different plume-

tracing algorithms in an underground warehouse is investigated. 

 

 

5.1 The robot 

As the geometry size of the environments being different, the fluid field proposed 

in the underground warehouse is different from that in the wind-tunnel-like 

channel reported in Chapter 4. The proposed mobile plume-tracing robot in 

Chapter 5 is also designed for plume tracing in strong 3D plumes following the 

robot presented in Chapter 4 of this thesis (Figure 5.1). Generally, plume-tracing 

robots move step by step, which is the definition of ‘surge’ because the wind and 

chemical sensors need to work in a steady condition to obtain an accurate 

reading. All the sensors are located on a plane as is shown in Figure 5.1, and the 

plane is capable of moving vertically. Therefore, the sensors are able to work at 

different horizontal levels. Data, including the chemical concentration and wind 

direction, are only measured when both the robot and the sensor module plate 

are still. Also, to reduce the influence of the moving plate on the measurement 

of the sensors, normally there is a short delay on measurement after the robot 

and the plate stops moving. Figure 5.1 represents the distribution of wind and 

chemical sensors, as well as the covering areas of four ultrasonic sensors. The 
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wind sensor is used to measure the wind velocity and it locates at the centre of 

the plane. In total four chemical sensors are equipped at the centre, in the front, 

and to the left hand side and right hand side, respectively. Four ultrasonic sensors 

are armed to measure the distance between the robot and the nearest obstacles 

in different directions. In this study, the distance between the robot and an 

obstacle together with the wind direction measured by wind sensors are used for 

obstacle avoidance. In real scenarios, wind sensor, ultrasonic sensors and 

chemical sensors measure the wind direction, working at different horizontal 

levels (in this part of research, 0.3 m, 0.5 m and 1 m above the ground, 

respectively). The robot uses the data on the height where the highest chemical 

concentration is detected. In the simulation framework, the fluid field and 

concentration distribution at the horizontal level at 0.3 m, 0.5 m and 1 m above 

the ground are accessed by MATLAB. According to the dimensions of this large 

indoor environment, the stepsize is determined to be 0.7 m. When the distance 

between the robot and the source is less than 1 m, it is considered to be a 

successful plume-tracing case.  

 

Figure 5.1: Covering areas of ultrasonic sensors and positions of wind and chemical sensors 

 

5.2 Plume-tracing algorithms 

As afore demonstrated, single plume-tracing algorithm is divided into three 

stages for discussion. The plume-tracing algorithms applied in this part are all 
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designed based on vallumtaxis, which is a combination of normal casting, surge 

anemotaxis, constant stepsize and along-wall obstacle avoidance method [2, 15, 

25, 47]. In this research, when the robot gets trapped circling for many steps 

(more than 30 steps) or surges obviously away from the source, it is determined 

to be a failure case.  

5.2.1 Plume sensing  

Two different plume sensing methods, namely normal casting and special casting 

were applied. Normal casting and special casting are illustrated in Section 4.2.1.  

5.2.2 Plume tracking 

Three plume tracking methods including surge anemotaxis, zigzags, and pseudo 

gradient-based algorithm were tested. These three methods at PT stage are 

demonstrated in Section 4.2.2. 

5.2.3 Source localisation 

Initially, two different searching strategies at source localisation stage were 

applied. Constant stepsize means that at source localisation stage the robot 

moves at the same stepsize as that at plume tracking stage. For variable stepsize, 

the higher the concentration is, the smaller the stepsize is. The stepsize in variable 

stepsize in this part can be calculated by the following equations: 

𝑆𝑠𝑙 =

{
 

 (
1

3
+
2(log𝑇3 − log𝐶)

3(log𝑇3 − log𝑇2)
) × 𝑆𝑝𝑡 ,           𝑇2 ≤ 𝐶 ≤ 𝑇3

𝑆𝑝𝑡
3
, 𝐶 > 𝑇3

       (5.1) 

where 𝑆𝑠𝑙 is the stepsize at source localisation stage, and 𝑆𝑝𝑡 is the stepsize at 

plume tracking stage. 𝐶  is the local chemical concentration measured by the 

chemical sensor in the centre of the robot. 𝑇2 and 𝑇3 are the two thresholds set 

for plume tracing. 𝑇2  is the threshold that distinguishes plume tracking and 

source localisation stages. 𝑇3 is a value higher than 𝑇2 and a novel threshold set 
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for the variable stepsize in this part of the research to ensure that the robot is 

moving at a proper stepsize when approaching the source. Equation 5.1 is 

designed referring to [2] and [25]. All the variables regarding the chemical 

concentration are logarithmic for better performances. It is different from the 

calculation in Section 4.2.3, [2] and [25] because it was found in [25] that the 

stepsize could decrease significantly when approaching the source, which lowers 

the efficiencies of algorithms with variable stepsize. Therefore, in this part of the 

research, a minimum stepsize was set. When the concentration 𝐶 is between 𝑇2 

and 𝑇3 , the robot gradually moves more slowly when the concentration 

increases. However, when the concentration 𝐶  is higher than 𝑇3 , the stepsize 

remains at 
𝑆𝑝𝑡

3
⁄ . Under this circumstance, the robot will still move at a proper 

speed when the environmental concentration is high. 𝑇2 and 𝑇3 are subject to 

simulation studies before any applications of the plume-tracing robot. 

5.2.4 Plume-tracing algorithms 

This part of the research aims to test different plume-tracing algorithms in large-

space areas, where large recalculating flows and complex fluid fields emerge. 

Table 5.1 presents searching methods at different stages for Algorithms 1 to 5. 

All the algorithms are designed based on the vallumtaxis conducted in [25], 

Algorithm No. Plume sensing Plume tracking Source localisation 

Algorithm 1 Normal casting Surge anemotaxis Constant stepsize 

Algorithm 2 Special casting Surge anemotaxis Constant stepsize 

Algorithm 3 Normal casting Zigzags Constant stepsize 

Algorithm 4 Normal casting Pseudo gradient-based 

algorithm  

Constant stepsize 

Algorithm 5 Normal casting Surge anemotaxis Variable stepsize 

Table 5.1: Searching methods of Algorithms 1 to 5 
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Algorithm 1 is the original vallumtaxis. Vallumtaxis has proved to be an effective 

tool for plume tracing in wall plumes in laboratory-scale environments [25]. In 

this part of study, different searching methods for the plume sensing, plume 

tracking and source localisation stage are applied for further investigation. 

Algorithm 2 is the vallumtaxis equipped with special casting. Algorithms 3 and 4 

are the vallumtaxis equipped with different plume tracking methods, 

respectively, and Algorithm 5 is vallumtaxis equipped with a different SL method. 

 

5.3 Results and discussion 

Table 5.2 shows the preliminary results in all four scenarios. The letter s in Table 

5.2 denotes ‘steps’ and the numbers denote the numbers of steps from the initial 

position to the source. Referring to previous research [2, 4, 25, 40], when the 

distance between a robot and a source is lower than 1 m in real scenarios, it is 

seen as a success case. The ‘Algorithm No.’ corresponds to Table 5.1 in Section 

5.2.4. A higher number of steps for plume tracing indicates higher time cost and 

lower efficiency. Fewer steps denotes less plume-tracing time and therefore a 

higher efficiency. It can be seen that it is easier (with higher success rates) for the 

robot to locate the source in Scenarios 2 and 3 than in Scenarios 1 and 4. Also, it 

Algorithm No. Scenario A Scenario B Scenario C Scenario D 

Algorithm 1 123 s 57 s 80 s F-SL 

Algorithm 2 F-SL F-SL 86 s F-SL 

Algorithm 3 F-SL F-PT 107 s F-SL 

Algorithm 4 F-PT 60 s F-SL F-SL 

Algorithm 5 127 s 58 s 80 s F-SL 

Table 5.2: Assessed results of Algorithms 1 to 5 in four scenarios 

 

Note: ‘s’ equals ‘steps’. ‘F-PS’ equals ‘Failed at plume sensing stage’. ‘F-PT’ equals ‘Failed at plume 
tracking stage’. ‘F-SL’ equals ‘Failed at source localisation stage’. 
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costs the robot with Algorithm 1 less time to localise the source than the robot 

using other algorithms in the same scenario. The stage at which the robots failed 

is also shown in Table 5.2. For instance, the robot coded with Algorithm 1 failed 

in Scenario 4 at source localisation. More results are given in Appendix B.  

 

5.3.1 Assessment on plume sensing 

Figures 5.2 (a) and (b) present a success case and a failure case of the robot coded 

with Algorithm 1 searching in Scenarios 1 and 4, respectively. Please note that all 

following figures in Chapter 5 show the contours of the concentration 

distribution of carbon monoxide in the warehouse. The colour legend in Figure 

5.2, which is logarithmic for better visualisation, applies to Figures 5.2-5.11. It can 

be seen from the results of Algorithm 1 and 2 that no evidence showing that 

special casting helps improving the efficiency of the plume-tracing robot working 

in large-scale environments, was found (Table 5.2, Figures 5.2 (a), (b), 5.3 (a) and 

(b)). Originally, the special casting was designed for finding the centreline of the 

plume before the next stage. The concentration distributions shown in all of 

Figures 5.2 and 5.3 indicate that the shape of the plumes in the large-scale 

warehouse can be irregular and influenced significantly by the geometry of the 

environment. It can be seen from Figures 5.3 and 5.4 that with special casting, 

the robot is able to find the centreline between the plume boundaries and walls. 

In Figures 5.3 (a) and (b), the robot left the plume five and three times, 

respectively, and then came back and started the next stage at the centre of the 

two plume boundaries. However, compared with Algorithm 1, the robot with 

special casting did not perform at a lower time cost. Under this circumstance, 

there is no evidence that special casting helps reduce the time cost of plume-

tracing robots in large-scale environments.  
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(a) t= 123 steps 

 

(b) failed 

Figure 5.2: The trajectories of the (a) robot with Algorithm 1 searching in Scenario 1, (b) Robot 
with Algorithm 1 searching in Scenario 4  
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5.3.2 Assessment on plume tracking 

Typical testing results of vallumtaxis with zigzags and a pseudo gradient-based 

algorithm are shown in Figures 5.4 and 5.5, respectively. According to Table 5.2, 

both zigzags and the pseudo gradient-based algorithm show lower success rates 

than that of the original vallumtaxis (Algorithm 1). Table 5.2 reveals that zigzags 

and the pseudo gradient-based algorithm do not perform with a higher efficiency 

and greater success rates than surge anemotaxis. It can be seen in Figure 5.4 (a) 

 

(a) t= 86 steps 

 

 

(b) failed 

Figure 5.3: The trajectories of the (a) robot with Algorithm 2 searching in Scenario 3, (b) robot 
with Algorithm 2 searching in Scenario 4 
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that the robot succeeds in localising the source following zigzags at plume 

tracking stage. However, it cost more time for the robot with Algorithm 3 to 

localise the source than that with Algorithm 1. Moreover, it can be observed from 

Figures 5.5 (a) and (b) that the robot with Algorithm 4 is able to turn to the 

direction with higher concentrations; it then moves and localises the source in 

Scenario 2. However, the robot with Algorithm 4 failed with endless circling in 

Scenario 1 (Figure 5.5 (b)). It can be seen from Figures 5.2, 5.3, 5.4, and 5.5 that, 

at plume tracking stage, by moving along the walls, the robot successfully avoided 

most influences from the recalculating flows in the fluid field. However, according 

to the failure cases shown in Figures 5.2 (b), 5.3 (b), 5.4 (b), and 5.5 (b), the robots 

all ended by being with trapped in an endless circle. In Figures 5.2 (b), 5.3 (b), and 

5.4 (b) the robot failed at SL stage while in Figure 5.5 (b) the robot lost at PT stage. 

According to the testing results above, the distance that the robot with surge 

anemotaxis at plume tracking stage moves made shorter due to following upwind 

direction. Therefore, it can be concluded that surge anemotaxis is the most 

successful searching strategy at plume tracking stage among the compared ones 

for a robot searching in this underground warehouse. 

 

 

(a) t= 107 steps 
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(b) failed 

Figure 5.4: The trajectories of the (a) robot with Algorithm 3 searching in Scenario 3, (b) robot with 
Algorithm 3 searching in Scenario 4 

 

(a) t = 60 steps 

 

(b) failed 

Figure 5.5: The trajectories of the (a) robot with Algorithm 4 searching in Scenario 2, (b) robot with 
Algorithm 4 searching in Scenario 1 
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5.3.3 Assessment on source localisation  

Figures 5.6 (a) and (b) show that variable stepsize navigates the robot to move 

more slowly when near the source. However, the robot still failed and ended up 

with circling in Scenario 4, where all the tested algorithms failed. In conclusion, it 

is shown in Table 5.2 that, for most of the failure plume tracing cases, the robot 

failed at source localisation stage, which indicates that the current source 

localisation method is not able to trace plumes in large-scale environments. In 

this situation, to obtain higher success rates and efficiencies for plume-tracing 

algorithms searching in large-scale environments, it is recommended to focus on 

enhancing the method at source localisation stage. Hence, several more plume-

tracing algorithms, all with the same normal casting and surge anemotaxis but 

with different searching methods at source localisation stage, are further 

assessed. 

 

 

(a) t= 127 steps 



79 | P a g e  
 

 

(b) failed 

Figure 5.6: The trajectories of the (a) robot with Algorithm 5 searching in Scenario 1, (b) robot with 
Algorithm 5 searching in Scenario 4 

 

5.4 Follow-up research on source localisation 

It had already been found in Section 5.3 that for most failure cases, the robot 

failed at source localisation stage ending up circling. Therefore, a method that 

could help the robot get out of the circle is needed. Searching methods, such as 

variable stepsize, zigzags, pseudo gradient-based algorithm and chemotaxis are 

able to navigate the robot to surge in another direction instead of following the 

upwind direction completely. Consequently, different methods at source 

localisation stage, on which this research focuses, mixing with normal casting, 

zigzags, and along-wall obstacle avoidance method, were tested further. This 

research applies more different methods at source localisation to get higher 

efficiency when searching in large-scale indoor environments. Table 5.3 shows 

the searching methods of Algorithms 6 to 10 at different stages and Table 5.4 

shows the assessed results of these algorithms in four different scenarios. It can 

be seen that for Scenario B, the robot with Algorithms 6 to 10 succeeded in 

plume-tracing, while in Scenario D, only the robot with Algorithm 10 succeeded. 

Algorithm 10 performed the best among all other tested algorithms on its success 
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rate.  

Table 5.3: Searching methods of Algorithms 6 to 10 

Algorithm No. Plume 

sensing 

Plume tracking Source localisation 

Algorithm 6 Normal 

casting 

Surge anemotaxis Variable stepsize & zigzags 

Algorithm 7 Normal 

casting 

Surge anemotaxis Pseudo gradient-based 

algorithm 

Algorithm 8 Normal 

casting 

Surge anemotaxis Variable stepsize & Pseudo 

gradient-based algorithm 

Algorithm 9 Normal 

casting 

Surge anemotaxis Surge anemotaxis & 

Chemotaxis 

Algorithm 10 Normal 

casting 

Surge anemotaxis Surge anemotaxis & 

Pseudo casting 

 

Table 5.4: Assessed results of Algorithms 6 to 10 in four scenarios 

Algorithm No. Scenario A Scenario B Scenario C Scenario D 

Algorithm 6 130 s 62 s 83 s F-SL 

Algorithm 7 F-PT 57 s F-SL F-SL 

Algorithm 8 F-SL 57 s 136 s F-SL 

Algorithm 9 F-SL 57 s 80 s F-SL 

Algorithm 10 178 s 57 s 80 s 124 s 

Note: ‘s’ equals ‘steps’. ‘F-PS’ equals ‘Failed at plume sensing stage’. ‘F-PT’ equals ‘Failed at plume 
tracking stage’. ‘F-SL’ equals ‘Failed at source localisation stage’. 

 
Figures 5.7 to 5.11 present selected results of applying variable stepsize & 

zigzags, pseudo gradient-based algorithm, variable stepsize & pseudo gradient-

based algorithm, surge anemotaxis & chemotaxis and surge anemotaxis & pseudo 

casting on vallumtaxis, respectively. Variable stepsize & zigzags is the searching 

strategy that combines variable stepsize and zigzags together meaning that the 

robot moves following zigzags, and meanwhile the stepsize varies with 
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concentration. Pseudo gradient-based algorithm is the same as the one 

demonstrated in Section 4.3.2 of this thesis, only triggered at source localisation 

stage. Variable stepsize & pseudo gradient-based algorithm is that the robot 

moves following the mechanism of pseudo gradient-based algorithm while the 

stepsize varies with concentration following Equation 5.1. Algorithms 9 and 10 

are equipped with a feedback regulation, which means when the robot is 

detecting a gradual decrease of concentration when moving, the robot will move 

back to the previous step and then move following surge anemotaxis & 

chemotaxis (Algorithm 9) or surge anemotaxis & pseudo casting (Algorithm 10). 

For surge anemotaxis & chemotaxis, the robot normally moves following surge 

anemotaxis at a constant stepsize. After moving back due to the decreasing 

chemical concentration, the robot will move following chemotaxis (illustrated in 

Section 5.2) at the next step. While for surge anemotaxis & pseudo casting, after 

getting back one step, the robot will soon move across the wind (in the direction 

perpendicular to the wind direction) to gather the concentration at several 

locations at the cross-section linear area. The robot stops moving when detecting 

a wall or leaving the plume and then turns back and begins to search on the other 

side. Pseudo casting ends with finishing searching both the right and left hand 

sides and moving back to the location with the highest concentration. This 

searching strategy is named pseudo casting due to being inspired by casting at 

plume sensing stage. Details of surge anemotaxis, chemotaxis, and casting are 

illustrated in Section 4.2. 

For Algorithm 6, as was demonstrated in Tables 5.2 and 5.4 and Figure 5.7 that 

the success rate of Algorithm 6 is the same as that of Algorithm 1 while it costs 

the robot with Algorithm 6 a little more time to localise the source than the robot 

with Algorithm 1. Variable stepsize & zigzags still did not help the robot localise 

the source in Scenario 4 successfully. For Algorithm 7 with pseudo gradient-based 
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algorithm for source localisation, the robot could go in the wrong direction (away 

from the source) near the source. Figures 5.8 and 5.9 indicate that both variable 

stepsize & pseudo gradient-based algorithm and pseudo gradient-based 

algorithm at source localisation stage did not perform better than the variable 

stepsize. 

Since the robot should be able to avoid missing the source, searching strategies 

that combine wind direction and concentration data together could be 

appropriate approaches. It is shown in Figure 5.10 that for anemotaxis & 

chemotaxis, the robot could change its pathway by moving back one step and 

then moving towards the area with higher concentration. However, it can be 

found from Table 5.4 and Figure 5.10 that anemotaxis & chemotaxis did not 

achieve higher success rate or efficiencies.  

Figures 5.11 (a) and (b) show the trajectories of the robot with Algorithm 10 

searching in Scenario 1 and Scenario 4, respectively. It is shown in Table 5.4 that 

Algorithm 10, with pseudo casting, has the highest success rate among all ten 

tested algorithms in this part of study. In Scenario 1, it costs more time for the 

robot with Algorithm 10 to reach the source than the robot with Algorithm 1. As 

is demonstrated in Figure 5.11 (a), pseudo casting was triggered several times as 

the chemical concentration distribution could be complex due to large eddies. 

Finally the robot successfully localised the plume source in Scenario 1. The 

trajectories of the robot with Algorithm 10 in Scenarios 2 and 3 are similar with 

that of Algorithm 4 and Algorithm 2 in Figures 5.5 (a) and 5.3 (a), respectively. In 

Scenario 4, it can be seen in Figure 5.11 (b) that after leaving the wall near the 

source, the robot sensed a negative gradient of concentration, moved back and 

then moved in the direction perpendicular to the wind direction. Eventually, the 

robot ended with the location with the highest concentration and succeeded in 

localising the source. Analysing the chemical concentration at several different 
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positions, pseudo casting successfully navigated the robot with Algorithm 10 to 

localise the source in Scenario 4, and this is the only success case for plume 

tracing in Scenario 4. 

 

Figure 5.7: The trajectory of the robot with Algorithm 6 searching in Scenario 4 (failed) 

 

Figure 5.8: The trajectory of the robot with Algorithm 7 searching in Scenario 3 (failed) 

 

Figure 5.9: The trajectory of the robot with Algorithm 8 searching in Scenario 1 (failed) 
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Figure 5.10: The trajectory of the robot with Algorithm 9 searching in Scenario 1 (failed) 

 

(a) t= 178 steps 

 

(b) t= 124 steps 

Figure 5.11: The trajectories of the (a) robot with Algorithm 10 searching in Scenario 1, (b) robot with 
Algorithm 10 searching in Scenario 4  
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Chapter 6 Conclusion and future work 

 

 

6.1 Conclusion 

In conclusion, a total of twenty-one plume-tracing algorithms were tested in two 

indoor environments this research. Sixteen plume-tracing algorithms were tested 

in two laboratory-scale environments, and ten were tested in four scenarios in 

an underground warehouse. In particular, a novel plume-tracing algorithm called 

vallumtaxis has been proposed and tested in both the channel flow and the 

underground warehouse.  

In the first part of this research, normal casting, surge anemotaxis, and constant 

stepsize together performed the best, when compared with other algorithms. 

When a plume is away from walls, a plume-tracing robot released from a position 

that is inside the plume resulted in higher efficiencies in terms of total step 

numbers. While for a wall plume, no advantageous initial locations for the robot 

were found. The concentration-distance obstacle avoidance method proved to be 

able to protect the robot from obstacles; however, its performance was 

unsatisfactory when the robot is searching in wall plumes. Summarising all the 

comparison results, a novel plume-tracing algorithm called vallumtaxis, which is 

made up with normal casting, surge anemotaxis, constant stepsize and a specially 

designed along-wall obstacle avoidance method was proposed. It is found that 

Vallumtaxis achieves higher efficiencies than other tested algorithms especially 

when searching in wall plumes in this laboratory-scale indoor environment.  
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In the second part, the detection and localisation of hazardous plume sources in 

an underground warehouse, such as the one given in Chapter 5, using a plume 

tracing robot proves to be applicable. There are both free-stream plumes and 

wall plumes in this large-scale environment. It was found that algorithms based 

on vallumtaxis, coupled with the along-wall obstacle avoidance method 

successfully avoided most recalculating flows in the underground warehouse by 

moving along the walls. However, the robot still ended up circling in recalculating 

flows under many circumstances. The plume sensing method including special 

casting and plume tracking methods, such as including zigzags and a pseudo 

gradient-based algorithm show no enhancements on plume tracing in large-scale 

indoor environments. Also, the robot did not benefit from applying a searching 

method called variable stepsize at source localisation stage. Furthermore, since 

source localisation is the most important stage based on preliminary testing 

results of Algorithms 1-5, this research further focuses on different methods at 

source localisation stage, for plume tracing in this large-scale indoor case. 

Different searching strategies were undertaken at source localisation stage to 

help the robot move out of recirculating airflows and it was found the algorithm 

with the novel pseudo casting is capable of achieving a higher success rate of 

plume tracing in the underground warehouse. 

In conclusion, the confined flow simulated in the current study is a fundamental 

and essential flow that is often encountered in indoor environments. Also, the 

warehouse is a typical underground facility, presented in several previous case 

studies. The conclusion and findings of this research could, therefore, be applied 

to many other laboratory-scale or large-scale indoor environments.  

 

6.2 Future work 

Plume-tracing methods have been applied to micro drones searching for 
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hazardous plume sources in outdoor environments [42]. For some large-scale 

indoor environments, such as the underground warehouse given in Chapter 5, 

the height of the domain can be much larger than the height of the robot. Testing 

the performance of different plume-tracing algorithms indoor plumes with 

multiple sources is one of the future tasks deriving from this study. Also, it is 

challenging for robots that move on the ground to search for hazardous plume 

sources that are high above the ground (for instance, higher than 2 m). Under 

this circumstance, a micro drone with the capability of searching at different 

horizontal levels may provide a better approach for plume tracing. Secondly, a 

potential approach to reducing the total time for searching for such plume-

tracing robot is to use more sensors instead of moving the sensor module. For 

example, using multiple sensors at different horizontal levels could save time of 

the plume-tracing progress. Nevertheless, the cost of applying multiple sensors 

can be much higher than that of the current design. Therefore it is recommended 

that the optimisation of the setup of sensors without high cost could be 

investigated in the future. Thirdly, in Chapter 4, vallumtaxis is only tested in a 

simple wind-tunnel-like channel and in Chapter 5, the vallumtaxis with pseudo 

casting at SL stage is tested in different scenarios with only one hazardous plume 

source. Since wind fields and chemical concentration distributions could vary 

significantly if multiple sources emerge, vallumtaxis will soon be tested in other 

scenarios where there are multiple sources. Moreover, according to Chapter 2, 

most of the studies regarding plume tracing are performed in indoor 

environments. Therefore, more tests and assessments of the performance of 

different plume-tracing algorithms in outdoor environments should be 

investigated.  
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Appendix A Case 1 

In Appendix A, supplementary results of testing the performances of different 

plume-tracing algorithms in the wind-tunnel-like channel are provided. The 

algorithm No. refers to Table 4.2.  

 

 

    

(a) Algorithm 1, 
Scenario M, released 

location D, step 
number 43 

(b) Algorithm 2, 
Scenario M, released 

location C, step 
number 41 

(c) Algorithm 3, 
Scenario S, released 

location C, failed 

(d) Algorithm 4, 
Scenario S, released 

location D, failed 
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(e) Algorithm 5, 
Scenario M, released 

location B, step 
number 62 

(f) Algorithm 6, 
Scenario M, released 

location B, step 
number 83 

(g) Algorithm 7, 
Scenario S, released 

location B, step 
number 203 

(h) Algorithm 8, 
Scenario M, released 

location B, step 
number 63 
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(i) Algorithm 9, 
Scenario M, released 

location D, step 
number 49 

(j) Algorithm 10, 
Scenario M, released 

location B, step 
number 49 

(k) Algorithm 11, 
Scenario M, released 

location B, failed 

(l) Algorithm 12, 
Scenario M, released 

location D, failed 
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(m) Algorithm 13, 
Scenario M, released 

location B, step 
number 72 

(n) Algorithm 14, 
Scenario M, released 

location D, step 
number 86 

(o) Algorithm 15, 
Scenario M, released 

location D, step 
number 49 

(p) Algorithm 16, 
Scenario M, released 

location C, step 
number 58 
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Appendix B Case 2 

In Appendix B, supplementary results of testing the performances of different 

plume-tracing algorithms in the underground warehouse are provided. The 

algorithm No. refers to Tables 5.1 and 5.3.  

 

 

 

(a) The trajectory of the robot with Algorithm 1 searching in Scenario 2 (t= 57 steps) 

 

(b) The trajectory of the robot with Algorithm 2 searching in Scenario 2 (failed) 
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(c) The trajectory of the robot with Algorithm 3 searching in Scenario 1 (failed) 

 

 

(d) The trajectory of the robot with Algorithm 4 searching in Scenario 4 (failed)

 

(e) The trajectory of the robot with Algorithm 5 searching in Scenario 3 (t= 80 steps) 
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(f) The trajectory of the robot with Algorithm 6 searching in Scenario 2 (t= 62 steps) 

 

 

(g) The trajectory of the robot with Algorithm 7 searching in Scenario 4 (failed) 

 

(h) The trajectory of the robot with Algorithm 8 searching in Scenario 2 (t= 57 steps) 
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(i) The trajectory of the robot with Algorithm 9 searching in Scenario 3 (t= 80 steps) 

 

 

(j) The trajectory of the robot with Algorithm 10 searching in Scenario 2 (t= 57 steps) 
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Appendix C Journal article published 

In Appendix C, the journal article that has been published with Building and 

Environment is attached [25]. 
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Appendix D Conference paper published 

In Appendix D, the conference paper that was presented in ICCM 2020 is given 

[43]. 
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