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Abstract 

While the causal role of low-density lipoprotein cholesterol (LDL-C) in 

atherosclerosis and the clinical benefit of lipid lowering with statins are well 

established, the impact of triglyceride rich lipoproteins (TRL) in cardiovascular 

disease is less well understood. Given the important association between 

hypertriglyceridaemia and both obesity and type 2 diabetes, mechanistic 

studies are required to further understand the role of TRL as both a causal 

factor and potential target for therapeutic modification.  

This thesis aims to investigate the impact of both TRL and Apolipoprotein C-III 

(ApoC-III), an important factor that regulates TRL metabolism, in 

atherosclerosis. It demonstrated the adverse effect of oxidised TRL on 

endothelial cells following co-incubation studies in vitro. It also described the 

presence of ApoC-III within atherosclerotic lesions in an animal model of 

diabetes and dyslipidaemia, with evidence of a direct correlation between 

plaque levels of ApoC-III with both the burden and inflammatory composition of 

plaques. Additional studies demonstrated inverse correlations between hepatic 

levels of triglyceride and ApoC-III with expression of factors involved in the 

generation of high-density liporptoeins (HDL) and the promotion of reverse 

cholesterol transport.  

Modification of LDL by myeloperoxidase (MPO), a peroxidase enzyme secreted 

by leukocytes, has been established to promote vascular inflammation and 

cholesterol uptake by macrophages, a critical step in foam cell formation. In cell 

studies, we demonstrated that MPO modified TRL (MPO-TRL) exerted an 
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adverse effect in human umbilical vein endothelial cells (HUVEC), as evidenced 

by an upregulation of mRNA expression of pro-inflammatory adhesion 

molecules. MPO-TRL co-incubation also resulted in a reduction in endothelial 

cell proliferation which can be restored by co-incubation with HDL. Cells treated 

with MPO-TRL also demonstrated an increase in expression of proteins 

involved in responses to hypoxia (HIF1ɑ) and in angiogenesis (VEGF) and a 

reduced expression of the cholesterol transporter ABCG1. 

We are further interested in whether triglyceride mediator ApoC-III exerts 

similar adverse effect in atherosclerosis in the settings of mouse models with 

dyslipidaemia and diabetes. We demonstrated that ApoC-III was present within 

plaque and the presence was positively associated with lesion size and 

inflammatory marker CD68. ApoC-III has been well characterised to induce 

endothelial cell inflammation, whether ApoC-III will induce inflammation in other 

vascular cells will be of additional interest in future studies.  

We have also found that using patients’ serum stratified with different levels of 

triglyceride, ApoC-III levels inversely correlated with HepG2 expression of both 

PPARɑ and cholesterol transporter ABCA1, important factors which involved in 

the synthesis of both ApoAI and HDL and subsequent effects on lipid transport. 

Further experiments are needed to demonstrate the correlation of ApoC-III in 

HDL metabolism in large, prospective cohorts. 

In summary, these observations described potential adverse effects of 

triglycerides and ApoC-III on vascular cells, atherosclerosis and lipid 

metabolism. The findings support potential causal effets and novel targets for 

therapeutic targeting to prevent atherosclerotic disease.   
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  Burden of cardiovascular disease 

Cardiovascular disease (CVD), encompassing a range of disorders involving 

coronary, cerebrovascular and peripheral vascular territories, are among the 

leading causes of morbidity and mortality worldwide. In Australia, CVD caused 

45,392 deaths in 2015, accounting for nearly 30% of all deaths nationally (1). 

CVD also produces a large financial and hospitalisation burden. In Australia, 

there are more than 500,000 cardiovascular hospitalisations per year, with a 

disproportionate representation of individuals from lower socio-economic 

groups, indigenous communities and those living in remote areas (2). In 

addition, there were 84 million CVD prescriptions in Australia in 2008, at a cost 

of $3 billion (3), making CVD the most expensive disease group in direct health 

care. 

Extensive epidemiology investigations of large population cohort studies have 

identified a number of factors to associate with a greater prospective risk of 

CVD. Common CVD risk factors include diabetes, high blood pressure, 

dyslipidaemia, obesity, alcohol, smoking and family history of premature CVD 

events (4). The importance of obesity in CVD has been further emphasised on 

the basis of its association with a number of these established CVD risk factors, 

in addition to its role in promoting additional factors, such as inflammation and 

oxidative stress, which are also likely to exacerbate CVD risk. Given the rising 

prevalence of obesity in the community, the importance of these risk factors, 

with a particular focus on type 2 diabetes and the metabolic syndrome have 

received increasing importance (5) (6). Identifying risk factors associated with 
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CVD have been important in the development of risk prediction algorithms and 

new therapies aimed to lower CVD risk.  

  Lipid lowering treatments and CVD risk 

Over the course of the last four decades, clinical trials have established the 

benefits of targeting a number of these risk factors to lower risk in both patients 

with clinically manifest atherosclerotic CVD (ASCVD) and in asymptomatic 

individuals who are deemed to be at high CVD risk. These studies have 

demonstrated the benefit of using lipid modifying agents, antihypertensives and 

anti-platelet/anti-thrombotic therapies, in addition to lifestyle modification. From 

a lipid perspective, the cornerstone for treatment of high CVD risk patients has 

focused on lowering levels of low-density lipoprotein cholesterol (LDL-C). 

Population (7) and genetic (8) studies have established the role of LDL-C in 

promotion of CVD. Large clinical trials have demonstrated that lowering LDL-C 

with statins by 18-55% associate with a reduction in clinical events by more 

than 30% (9, 10). Meta-analyses of these trials have demonstrated that each 1 

mmol/L reduction in LDL-C associates with a 21% reduction in CVD risk (11). 

More recent studies with ezetimibe (12) and inhibitors of proprotein convertase 

subtilisin kexin type 9 (PCSK9) (13, 14) have also demonstrated that 

incremental lowering of LDL-C further reduces CVD risk in the statin-treated 

patient. As a result, treatment guidelines for the prevention of CVD risk highlight 

the importance of LDL-C lowering, with a specific emphasis on the use of statin 

therapy (15, 16).  

However, a substantial residual risk of clinical events continues to be observed 

even in the setting of good LDL-C control with statins (6). In addition, many 
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patients fail to achieve LDL-C treatment goals with statins, while others 

experience difficulty with long term adherence due to intolerance (17). While 

these findings have supported the need to develop additional approaches to 

lowering LDL-C, they also highlight the potential importance of targeting 

alternative lipid factors. Population studies have demonstrated that 

hypertriglyceridaemia (18, 19) and low levels of high-density lipoprotein 

cholesterol (HDL-C) (20) also associate with CVD risk. Observations from 

genetic studies have suggested that factors leading to high triglyceride levels, 

but not HDL-C (21, 22), also associate with CVD risk. These observations have 

led to a number of clinical trials, yielding variable effects. Fibric acid derivatives 

(fibrates) lower triglycerides and raise HDL-C, with variable effects on CVD 

events (23, 24). Meta-analyses of these trials have suggested a borderline 

impact of fibrates on CVD risk, with the most striking benefit observed in 

patients with hypertriglyceridaemia at baseline (25). Reports of genetic 

polymorphisms of factors regulating triglyceride rich lipoprotein metabolism 

associating with CVD risk have led to increased interest in developing 

therapeutics directly targeting these factors (26, 27). This provides some hope 

that directly lowering triglyceride levels in the future may reduce CVD event 

rates in high risk patients.  

In parallel, clinical trials of agents targeting HDL-C have proven to be 

disappointing. Studies of agents that raise HDL-C, including niacin and 

cholesteryl ester transfer protein (CETP) inhibitors, have not produced robust 

reductions in CVD risk in statin-treated patients (28, 29). While additional 

approaches involving the intravenous infusion of HDL mimetics have produced 

variable effects on atherosclerotic plaque in imaging studies (30-32), their 
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impact on CVD events remains unknown. Given the intimate association 

between obesity, diabetes and the combination of elevated triglycerides and 

low HDL-C levels (33, 34), there continues to be immense interest in 

understanding how these factors influence the artery wall and in the 

development of new therapies, with the potential to reduce CVD risk. 

  Role of LDL in atherosclerosis  

Extensive preclinical investigation has delineated the role of LDL in the 

pathogenesis of ASCVD. Atherosclerosis starts early in life and represents a 

chronic, progressive process with the artery wall. A range of stages of the 

disease process have been identified, spanning from its initial development, 

long term progression and ultimate disruption leading to acute ischaemic 

events. In parallel, the role of LDL has been well established to associate with 

each of these processes, suggesting the potential to impact the disease across 

the life course by lowering LDL-C.  

The earliest changes in the artery wall are evidenced by dysfunction of the 

endothelial layer of the artery wall. The endothelium plays an important role in 

maintenance of vascular homeostasis, regulating vascular tone and expressing 

factors that influence inflammation and thrombosis (35-37). Laboratory studies 

have demonstrated that elevated LDL concentrations promotes dysfunction of 

endothelial cells, including a reduction in nitric oxide production and increasing 

expression of proinflammatory adhesion molecules and chemokines and 

altering the balance of thrombotic and anti-thrombotic factors (38). Using 

surrogate markers of endothelial function in clinical studies, the presence of 

elevated LDL-C levels associates with abnormal vascular reactivity and greater 
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circulating levels of these inflammatory and pro-thrombotic markers (39, 40). 

Clinical trials of LDL-C lowering have reported favourable changes in these 

factors (41).  

The development of endothelial dysfunction promotes adhesion of circulating 

leukocytes, with subsequent migration into artery wall (42). The combined 

migration of both LDL particles and monocyte-derived macrophages into the 

artery wall lead to the formation of atherosclerotic plaque. Within the artery wall, 

macrophages engulf modified forms of LDL to become foam cells, in a process 

that is facilitated by CD36 and class A scavenger receptor (SR-A1) on the 

macrophage surface (42) (Figure 1-1). The formation of the lipid laden 

macrophage (foam cell) within the artery wall is a pivotal step in the 

establishment of the fatty streak. The foam cell elaborates a range of factors 

promoting ongoing accumulation of both inflammatory cells and smooth muscle 

cells within the artery wall. Subsequent production of collagen by smooth 

muscle cells forms a fibrous cap overlying the cellular and lipid accumulation 

with the artery wall, with the combination of these features reflecting transition 

of an early fatty streak to a mature atheroma (43). 

The majority of atheromatous lesions remain clinically silent, while some 

progress, resulting in a state of vulnerability or development of obstructive 

disease. The presence of free cholesterol within macrophages stimulates 

apoptosis, a form of programmed cell death, and appearance of necrotic 

cellular material within the artery wall (42). While the body has mechanisms 

designed to clear this necrotic material, this process can be overwhelmed, 

leading to the appearance of a necrotic material within a plaque, covered by a 
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thin fibrous cap, reflects transition of a lesion from a stable to vulnerable state. 

This vulnerable plaque is at a greater risk of undergoing rupture, exposing 

circulating blood to plaque contents (43). The vulnerable plaque core is a potent 

thrombogenic environment, which leads to the clot formation and potential 

occlusion of the artery lumen (44). It is this sudden, arterial occlusion that 

underscores the development of most episodes of acute ischaemia. The clinical 

manifestation of ASCVD involves the development of obstructive lesions within 

vascular territories. Progressively obstructive disease is likely reflect the 

outcomes of either (i) increasing accumulation of lipid and inflammatory 

material within a fibroatheroma or (ii) the result of repetitive episodes of plaque 

rupture and healing (45). 

As a result, the presence of LDL lipid in the artery wall plays a critical role in the 

promotion of all of the stages of atherosclerosis from its formation and 

progression, through to the factors implicated in its transition to clinical 

complications. Intervention studies have consistently demonstrated that 

lowering LDL-C levels has a favourable impact on atherosclerotic plaque. This 

has been demonstrated in animal models of atherosclerosis, where both dietary 

reductions in cholesterol and use of statins have both been reported to 

favourably modulate both the size and composition of atherosclerosis (46). 

More recently, clinical trials using arterial wall imaging have demonstrated that 

lowering LDL-C with statins and PCSK9 inhibitors has beneficial effects on 

atherosclerotic plaque in patients with ASCVD (47, 48). The totality of these 

investigations provides a clear biological rationale for the role of LDL in the 

pathogenesis of ASCVD and provides an important model for the study of other 

lipid factors in the disease process.   
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Figure 1-1 Molecular mechanisms of atherosclerosis from early atherosclerosis 

to later stage of advanced plaque formation [figure adapted from (42)]. 
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  Oxidative modification of lipoproteins 

  Oxidation of LDL and atherosclerosis 

A number of chemical processes, including oxidation, glycation and 

carbamylation, have each been reported to modify LDL particles to render them 

more pro-atherosclerotic property such as increased uptake by macrophages 

(49-51). Population study has also demonstrated that plasma oxidised LDL (ox-

LDL) were positively correlated with furture occurrence of CHD events, after 

multivariable adjustment in 88 healthy men from the general population (52). In 

addition, oxidation of LDL by copper (Cu2+) activates the scavenger receptor 

and inhibits the formation of nitric oxide, an endothelium derived vessel relaxing 

factor, on endothelial cells (53). 

  Myeloperoxidase, LDL and HDL  

LDL also can be oxidised by myeloperoxidase (MPO), which is a more 

physiological way. MPO is an enzyme originally secreted by neutrophils and 

macrophages for induction of antimicrobial/native immune response. Upon 

secretion, MPO uses hydrogen peroxide (H2O2) as a substrate to catalyse 

chloride (Cl-) to hypochlorous acid (HOCl), the latter being one of the main host 

defenders against invading bacteria, viruses and tumor cells. Once the heme 

enzyme is detected within human atheroma (54), numerous studies emerged 

to focus on its detrimental effect on the histological (55-57), mechanistical (58-

61) and epidemiological (62, 63) evolution of atherosclerosis. Circulating MPO 

independently predicts CVD (63) and recurrent acute coronary syndromes 

(ACS) (64). Importantly, recent identification of MPO positively correlated with 
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the occurrence of plaque erosion (62), which renewed our interests in studying 

MPO modified TRL; since during use of statin era, a potential triglyceride-

related pathology has been hypothesised for superficial erosion (65).  

MPO by working with H2O2 can either initiate lipid peroxidation, or perform an 

array of post-translational modifications to apolipoproteins, such as 

halogenation (66), nitration (58) and chlorination (67). MPO by H2O2/SCN 

system generates carbamylated LDL, a hallmark of lipoprotein modification in 

patients with chronic kidney disease (CKD) owing to extensive exposure to urea 

(68). LDL-Carbamyl-lysines, generated by MPO modification can usually be 

found on the lysine residues within Apolipoprotein B (ApoB), which result in the 

activation of the LOX-1 receptor, the production of reactive oxygen species 

(ROS) and diminished activity of endothelial nitric oxide synthase (eNOS) (61). 

Another MPO modification system H2O2/nitrite ion (NO2
-) converts native LDL 

into NO2-LDL, a highly pro-inflammatory form that can be uptaken by 

macrophages (58), leading to intracellular lipid deposition and foam cell 

formation. In vitro LDL modification, by MPO/H2O2/Cl- via tyrosine chlorination 

and oxidation, has also been detected by fast protein liquid chromatography 

(FPLC) and mass spectrometry (69), though chlorinated LDL exhibiting lesser 

affinity than NO2-LDL for macrophage uptake (70).  

In HDL, HOCl and MPO preferentially target Apolipoprotein A1 (ApoA-I), 

leading to the formation of 3-chlorotyrosine-192 and methionine-148 oxidation 

in ApoA-I, and subsequently compromising ATP-binding cassette subfamily A 

member 1 (ABCA1) dependent cholesterol efflux, a pathway associated with 
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exacerbated coronary artery disease (CAD) status stratified as control, stable 

CAD and acute coronary syndrome (ACS) (60).  

  MPO and lipid peroxidation 

MPO also initiates a cascade of peroxidative reactions with lipids such as 

double-bond phospholipids, cholesterol and fatty acids. By assessing the 

production levels of thiobarbituric acid reactive substances (TBARS), it is 

evidenced that MPO can oxidise phospholipids (66) and liposomes (egg yolk 

phosphatidylcholine), leading to enhanced oxidative damages in cells (71) and 

atherosclerotic tissues (67). Additionally, increasing evidence also highlighted 

a pivotal role of MPO in FFA oxidation. By comparing FFA types between 

wildtype and MPO deficient mice, it has been revealed that MPO is able to 

modify the most common FFA within the murine body— arachidonic acid (AA) 

and linoleic acid (LA) (72). MPO knockout mice exhibited a pronounced 

reduction in oxidative metabolites derived from AA and LA: epoxyeicosatrienoic 

acids (EETs) and epoxyoctadecenoic acids (EpOMEs) from AA; 

dihydroxeicosatrienoic acids (DHETs) and dihydroxyoctadecenoic acids 

(DHOMEs) from LA, respectively. All these oxidised products have been shown 

to be pro-inflammatory (72). The fact that triglycerides are composed of glycerol 

and fatty acids implies that oxidation of triglycerides, potentially within the sites 

of fatty acids may contribute to the progression of inflammation. 
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  Role of triglycerides in atherosclerosis 

  Structure of triglycerides 

In addition to cholesterol, triglyceride (TG) or triacylglyceride (TAG) is another 

form of lipid within the core of lipoproteins. Triglycerides are named as 

chemically structured, which is tri-esters of glycerol with three fatty acid 

molecules (Figure 1-2). Under normal conditions, triglycerides are the main 

body fat builders in mammals and the main components of vegetable fat. Blood 

triglycerides, mostly transported in very low-density lipoproteins (VLDL) and 

chylomicrons, are fundamental lipids in aiding the bi-directional transference 

between adipose fat and liver.  
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Figure 1-2 Chemical formula of a triglyceride molecule as an ester composed 

from ester reaction by one glycerol and three fatty acids. 

(https://en.wikipedia.org/wiki/Fatty_acid). 
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  Triglycerides and ASCVD 

Under pathological conditions, when the levels of circulated triglycerides go out 

of normal range, TRL are emerged as a factor in promoting CVD, though 

whether correlatively or causatively is under debating. Circulated triglyceride 

levels are considered as: normal: < 150 mg/dl (< 1.69 mmol/L), borderline high: 

150-199 mg/dl (1.69-2.2 mmol/L), high: 200-499 mg/dl (2.3 mmol/L-5.6 mmol/L) 

and very high: > 500 mg/dl (> 5.6 mmol/L). Prospective studies suggested that 

non-fasting triglycerides are associated with ischemic stroke (73), 

cardiovascular events (18) and mortality (19). The parameter of nonfasting 

triglycerides also is observed to be a stronger predictor of CHD than fasting 

triglycerides, after multifactorial adjustment of other risk factors (18, 19), 

potentially on the account that postprandial triglycerides can reflect a metabolic 

dysfunction presented as intolerance of oral fat challenge. Among on-statin 

treat patients, persistent elevated triglycerides also remained as a residual risk 

of acute cardiovascular events independent of cholesterol: with LDL-C < 70 

mg/dl, patients shows 1.6% increase in risk of the recurrent CHD as function of 

each 10 mg/dl raise in triglyceride levels (74).  

However there remains a long-lasting habitually belief that the atherogenicity of 

TRL is due to their small cholesterol rich remnant, but triglyceride is not 

atherogenic. Genetic variants affecting remnant cholesterol alone are causally 

correlated with increased cardiovascular risk (75), whereas epidemiological 

observations found the attenuation of fasting triglycerides in capacity of 

predicting vascular diseases after adjustment for HDL-C, sex and fasting status 

in (18, 76). Mechanistically, these cholesterol rich remnants are able to induce 
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EC dysfunction and vascular inflammation (77). They are also able to enter the 

sub-endothelial layer and activate monocytes and macrophages. whereas large 

chylomicrons and TRL are unable to penetrate endothelium due to their size 

(78). Nevertheless small nucleotide polymorphisms (SNPs) identified from 

Genome-wide association study (GWAS), which harbor loci exclusively 

regulating triglycerides such as loss-of-function (Lof) Apolipoprotein A5 

(APOA5), Lof TRIB1 and gain-of-function (Gof) apolipoprotein C3 (APOC3) 

gene, established a causal role of TRL in the development of CHD (22).  

Therefore, it is still puzzling whether triglycerides directly contribute to the 

activation of atherogenesis in vascular cells. Indeed, the cardiovascular filed 

still awaits further mechanistic studies. Here, we hypothesised that 

oxidative/myeloperoxidase (MPO) modification of TRL has a direct adverse 

impact in EC. 

  Apolipoprotein C-III and ASCVD 

  ApoC-III structure  

ApoC-III, identified over 40 years ago (79), recently becomes a hot spot in the 

field of lipidology and pathology, due to the findings of contributions to elevated 

triglycerides and risk of CVD (26, 27). Complete pre-cursor of ApoC-III as 

illustrated in Figure 1-3 is made up of 99 amino acids (AA) residues: signal 

peptide (AA 1-20) will be cleaved once ApoC-III is secreted and a mature ApoC-

III main chain (AA 21-99) which has a lipid binding region (AA68-99). Within the 

lipid binding region, there were couple of known coding domain (CD) mutations 

taken place to influence its association with lipids. Mature ApoC-III, sized 8.8 
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kilodalton (kDa), is usually found in glycosylated forms (commonly at 

threonine74), and can reside on the surface of both ApoA (HDL) and ApoB 

[primary apolipoprotein of chylomicrons, VLDL, intermediate density 

lipoproteins (IDL) and LDL] lipoproteins (79). Mature ApoC-III wraps around the 

surface of micelles like a necklace via six helical regions, resulting in curved 

spanning and connecting to each other via semi-flexible hinges (80).   
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Figure 1-3 Schematic presentation of primary and secondary structures of 

ApoC-III.  
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  The regulation of ApoC-III messenger ribonucleic 

acid (mRNA) and protein levels  

Regulation of circulating ApoC-III level can be attributed to various factors. 

Fenofibrate, an activator of peroxisome proliferator activated receptor α 

(PPARα), can down-regulate ApoC-III levels (81, 82) by antagonising activity 

of Forkhead box protein O1 (FoxO1), an important APOC3 gene transcription 

factor (83). Patients treated with tesaglitazar, a dual activator of PPARα-PPARγ, 

also have a reduction in serum ApoC-III levels (84). A landmark mechanistic 

study has unravelled that insulin can attenuate APOC3 gene transcription 

through the activation of insulin receptor substrate (IRS)-phosphoinositide 3-

kinase (PI3K)-protein kinase B (Akt) pathway, leading to FoxO1 

phosphorylation and nuclear exclusion (85). ApoC-III levels can be up-

regulated by activation of hepatic nuclear factor-4 (HNF-4), one of the 

transcription factors which binds and activates APOC3 promoter, in human 

hepatoma cells (HepG2) (86) as well as in intestinal carcinoma cells (CaCo2) 

(87). Hepatic ApoC-III mRNA production can also be stimulated by glucose, 

which involves the participation of HNF4 and carbohydrate response element–

binding protein (ChREBP) (81). Levels of ApoC-III are elevated in serum from 

patients having type 1 diabetes (T1DM) and in vitro study demonstrated that 

aforementioned serum promoted pancreatic β cell apoptosis via deranged 

intracellular calcium ions (Ca2+). Similar detrimental effect of serum ApoC-III on 

β cell also has been found in Lepob/ob mice with type 2 diabetes (T2DM) (88, 

89). To summarise, serum ApoC-III levels are regulated by several cellular 

metabolism related factors (e.g., PPARs, insulin and glucose), and elevated 

ApoC-III, in turn, can exacerbate T1DM (90) and T2DM (81, 89). 
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  Regulation of lipid metabolism by ApoC-III 

ApoC-III can affect CVD development through mediating lipid metabolism, such 

as the regulation of triglyceride levels (91-93) and HDL functionality (94). 

Exogenously expressing ApoC-III in cultured primary mouse hepatocytes 

promotes the assembly and secretion of VLDL1 (91), a form of larger VLDL 

(Svedberg flotation rate, Sf >100) which positively correlated with insulin 

resistance and hypertriglyceridemia (95, 96). By comparing lipid levels 

produced from cells transfected with virus producing wildtype ApoC-III and 

ApoC-III mutants within lipid domain (A25T and K58E), it was further revealed 

that the VLDL1 secretion highly demands the lipid binding capacity of ApoC-III 

(97, 98) and is under strict lipid rich condition (91, 97). However, the role of 

ApoC-III in VLDL1 production does not convincingly explain the atherogenicity 

of ApoC-III in CVD, as large VLDL1 scarcely penetrate under the endothelium 

but small LDL and TRL remnants do. Therefore, other mechanisms to 

supplement the story is required. 

Researches also find that ApoC-III delays triglycerides clearance by either 

inhibiting the activity of lipoprotein lipase (LPL) (92) or preventing TRL 

remnants uptake (93, 99). The inhibitory effect of ApoC-III on the activity of LPL 

and HL, key enzymes hydrolyse VLDL into smaller remnants which are more 

easily removed from circulation, delays large TRL metabolism. In addition, 

ApoC-III also replaces ApoE and ApoB, proteins with a higher affinity to hepatic 

receptors including LDL receptor and proteoglycan receptor (100, 101), leading 

to the slow down of hepatic uptake of TRL remnants. Subsequent study also 
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shows that ApoC-III can completely abolish ApoE mediated LDL uptake by 

HepG2 cells (hepatocytes) through inhibition of LDL family receptors (93, 99). 

In addition to its inhibitory role in triglycerides clearance, the presence of ApoC-

III on HDL leads to a compromised cholesterol efflux capacity as well as 

delayed metabolism (102, 103). HDL isolated from patients with CAD having 

higher ApoC-III content demonstrated weaker cholesterol efflux capacity 

compared to non-CAD subjects (102). Metabolic analysis further reveals that 

ApoC-III slows HDL metabolic turnover including HDL hepatic clearance and 

HDL size expansion, resulting in small HDL particles which are believed to be 

less cardioprotective (103). Taken these together, it is postulated that 

lipoproteins (VLDL, LDL and HDL) harbouring ApoC-III, potentially due to 

ApoC-III’s “inert” structural and biochemical properties to receptors and 

enzymes, are rendered delayed metabolism.  

  hAPOC3 transgenic mice 

The structure and biochemical property of ApoC-III that inhibits the activity of 

LPL, possibly via displacing enzymes from the lipid droplets, enabled its 

capacity in regulating the levels of serum triglyceride (104). Correspondingly, 

ApoC-III is highly expressed in the liver and to some extent in the intestine, two 

major tissues where triglycerides are produced. Overexpression of ApoC-III in 

rabbits (105) and miniature pigs (106) leads to severely hypertriglyceridemia. 

Couple of studies further explored the importance of ApoC-III in lipidology and 

atherosclerosis by manipulating human APO3 transgenic (hAPOC3 Tg) mice, 

which are summarised in Table 1-1. Generally, all hAPOC3 Tg mice exhibited 

markedly raised serum ApoC-III and triglyceride levels, while with variations in 
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HDL-C and size of atherosclerotic lesion. When human APOC3 cross with LDL 

receptor (LDLr) knockout mice (hAPOC3 Tg/LDLr-/- mice) and hAPOC3 

Tg/LDLr-/- mice cross with mice overexpress cholesterylester transfer protein 

(CETP), these mice showed the familial hyperlipidaemia combined with 

elevation of VLDL and LDL. These mice also exhibited 2-3 fold accelerated 

progression of atherosclerosis compared to the single LDLr-/- mice (107). 

However, when hAPOC3 Tg mice cross with ApoE-/- mice, virtually no 

difference in lesion size were demonstrated compared to ApoE-/- after 16 weeks 

on chow diet (108). Furthermore, Hu ApoA-I/CIII/AIVTg/ApoE-/- mice even had 

regressed plaque size compared to ApoE-/- mice, potentially due to substantially 

elevated HuApoA-I and HDL-C in transgenic species (109, 110). The role of 

ApoC-III in elevating TRL and TRL remnants has been well elicited in mice 

hAPOC3 Tg mice, nevertheless lefting the role of APOC3 overexpression in 

size of atherosclerotic lesion ambiguous.  
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Table 1-1 ApoC-III transgenic mice, hyperlipidemia and atherosclerosis 

 

Animals Diet Disease model Lipids/ glucose profile Others Reference 

hAPOC3 Tg 

Line 2721(100 copies) 

Line 2674 (1-2 copies) 

10% sucrose 
feeding/ bolus fat 
feeding 

Hypertriglyceridemia 
Increase triglycerides and ApoC-III 
concentrations 

- (111) 

hAPOC3 Tg/ApoE-/- Chow diet Hypertriglyceridemia 
Increased VLDL and VLDL size, decreased 
HDL, decrease VLDL glycosaminoglycan 
binding 

No difference in 
atherosclerotic lesion 
size 

(108) 

hAPOC3 Tg / LDLr-/- 

hAPOC3 Tg/ LDLr-/-/ CETP Tg 

Western diet 
Familial combined 
hyperlipidaemia (FCHL) 

Increased VLDL, LDL-C 

Enhanced 
atherosclerotic lesion 
size compared to LDLr-/- 
mice 

 

(107) 

Hu ApoA-I/ CIII/ AIV transgenic Atherogenic diet - Hyperlipidaemia, increased HDL-C 

Reduced atherosclerotic 
lesion, increased 
scavenge receptor class 
B type 1 (SRB1), ABCA1 

(109, 110) 

hAPOC3 Tg High-fat, 
cholesterol-rich diet 

Restenosis model Hyperlipidaemia Increased neointimal 
formation 

(112) 
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  ApoC3 gene polymorphism and human CVD 

Unlike in animals, APOC3 gene variants shows undoubtably positive relation to 

CVD, supported by studies ranged from clinical evidences (113, 114) to genetic 

polymorphism analysis (115, 116). Plasma levels of free ApoC-III and ApoC-III 

concentration in VLDL and LDL can independently predict the risk for coronary 

events with logistic regression analysis adjusted for age, sex and blood lipids 

(113, 114). ApoC-III also marked a subspecies of HDL, which predispose 

individuals with higher risk of CHD, whereas HDL without ApoC-III is associated 

with lower risk of coronary events, supported by meta-analysis from four 

prospective studies (94). Upon isolation of HDL from ACS patients, 

experiments further mechanistically explored that these HDL with increased 

ApoC-III content loses its protective capacity as it fails to activate anti-apoptotic 

B-cell lymphoma-extra large (Bcl-xL) pathway but stimulates pro-apoptotic p38-

mitogen activated protein kinase (MAPK) in EC (117). Elevated levels of ApoC-

III have also been found in young and aged survivors of myocardial infarction 

(MI), a symptom normally resulted from unstable plaque thrombosis (118-120).  

Genetic studies identified several APOC3 polymorphisms including Gof 

mutations in APOC3 promoter region (115, 116) and Lof mutations (26, 27, 

121), which link to pro-atherogenic and cardioprotective lipid profile respectively 

(summarised in Table 1-2). S2 alleles, with mutations found within the Sst-1 

restriction site, are associated with MI (122), higher blood pressure (116) and 

insulin resistance (123). Additionally, Gof mutations in the APOC3 promoter 

region (-482C→ T, -455T → C) are correlated with MetS, hypertriglyceridemia 

(124, 125) and non-alcoholic fatty liver disease (NAFLD) (126). Nonetheless, 
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using a Mendelian randomization approach. the causal role of APOC3 in 

triglycerides has recently been established (26, 27). These Lof mutations 

including a nonsense mutation R19X (rs76353203) (121), missense A43T (127) 

and two splice-site mutations (IVS2+1G→A and IVS3+1G→T) (26, 27) are 

causally in relation with cardio-protective lipid profile, characterised by reduced 

levels of triglyceride and LDL-C.
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Table 1-2 Summary of the roles of ApoC3 polymorphism in ApoC-III levels, serum lipid profile and CVD 

  

ApoC3 polymorphism Participants Associated disease Lipids profile Other Reference 

Allele S2 73 type 2 diabetes 
mellitus/  

 MI Hypertriglyceridemia Greater systolic blood 
pressure, less hemoglobin 
A1c (HbA1c) 

(116) 

Promoter variants (-482C → 
T, -455T → C) 

110 diabetes patients 
from Chennai Urban 
Population Study 

MI and MetS Dyslipidaemia (odds ratio = 
10.03%) 

Other gene polymorphism 
also mentioned  Fatty acid-
binding protein 2 (FABP2), 
ApoE, beta 3 adrenergic 
receptor (B3AR),  G Protein 
Subunit Beta 3 (GNB3), LPL, 
PPARα, PPARγ 

(124, 125) 

Allele S2 48 post-myocardial 
infarction patients and 
47 control 

MI Higher triglycerides but no difference insulin gene 
linkage 

(128) 

Promoter variants (-482C → 
T, -455T → C) 

7,983 prospective 
cohort 

Lean carriers with type 
2 diabetes 

Hypertriglyceridemia Associated with insulin 
treatment 

(129) 
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ApoC3 
polymorphism 

Participants Disease Lipids profile Other Reference 

Allele S2 115 male students Healthy volunteers - Increased insulin response in oral 
glucose tolerance test indicating 
preposition of insulin resistance 

(123) 

1100C →T, 3175 C 
→ G, 3206 T → G 

77 nuclear families 
of Caucasian origin 

Associated with carotid intima-
media thickness (CIMT) 

- Associated with CETP, fibrinogen 
and  Methylenetetrahydrofolate 
reductase (MTHFR)  

(130) 

R19X mutation 809 Lancaster 
Amish/1,267 Greek 

Reduction in coronary artery 
calcification 

Reduction in serum 
triglycerides, LDL-C and 
higher HDL-C 

- (121, 131) 

Promoter variants (-
482C → T, -455T → 
C) 

163 healthy non-
Asian Indian men 

38% in NAFLD  30% increase in ApoC-III, 
60% increase in 
triglycerides,46% reduction 
in triglycerides clearance 

Associated with insulin resistance (126) 

Loss-of-function 
polymorphism 
(R19X, 
IVS2+1G→A and 
IVS3+1G→T), 
A43T, D65N, A10T 

75,725 in Denmark 

3734 of European 
or African ancestry 

110,970 people 

40-41% reductions in risk of 
Ischemic vascular disease 
(hazard ration, 0.59) and 
coronary heart disease (odds 
ratio, 0.60) 

39% -44% reduction in 
triglyceride level 

- (26, 27) 
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  The effect of ApoC-III on vascular cell signaling 

Apart from ApoC-III mediated hypertriglyceridemia, intracellular signaling 

pathways (Figure 1-4) by which ApoC-III directly exerts its detrimental impact 

on vascular cells have also been elicited. In THP-1 monocytes, ApoC-III 

induces expression of inflammatory biomarker including phospholipase A2 (Lp-

PLA2) and Vascular cell adhesion protein 1 (VCAM-1), through the activation 

of extracellular regulated protein kinase phospho-p42/44 (Erk 42/44)→ NF-κB 

(132) and protein kinase C ɑ/β (PKCɑ/β)→NF-κB pathway (133) respectively. 

ApoC-III is also able to activate EC by driving NF-kB→VCAM-1 and ICAM-1 

expression, which can be suppressed by statin treatment (134). In myotubes, 

via activation of toll-like receptor 2 (TLR2)→Erk 42/44 pathway, ApoC-III 

induces endoplasmic reticulum (ER) stress and attenuates mitochondrial 

metabolism. This was demonstrated by reduced levels of PPARγ and its co-

activator 1alpha (PGC-1ɑ), which can subsequently slow down protein 

translation in ER via increased phosphorylation of eukaryotic initiation factor 

(eIF2ɑ) (135). The fact that ApoC-III promotes cell inflammation and ER stress 

implies potential mechanisms that link intraplaque ApoC-III to the development 

of inflammatory plaque.  
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Figure 1-4 Schematic representation of cellular signaling pathways induced by 

ApoC-III. ERK serves as a central hub that senses ApoC-III to induce a variety 

of cellular processes, such as inflammation (Erk42/44-NF-κB), ER stress 

(Erk42/44-eIF2ɑ) and mitochondrial metabolism (Erk42/44-PGC-1ɑ). The 

ApoC-III promoted PI3K-proliferating cell nuclear antigen (PCNA) and PCKɑ/β-

NF-κB pathways have also been reported. ApoC-III is also suggested to 

activate Erk through TLR2, a process which in turn downregulates insulin 

signaling pathway by attenuating IRS-1 signaling.  
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  Thesis aims 

As extensively described in this chapter, there are strong associations between 

triglycerides, ApoC-III and atherosclerotic CVD. However, the potential 

mechanism linking these factors are not fully understood. Accordingly, the aims 

of this doctorial studies are to perform a series of translational investigations of 

TRL and ApoC-III in the settings of atherosclerosis, diabetes, obesity and 

hypertriglyceridemia.  

Diabetes mellitus and insulin resistance result in hypertriglyceridemia and low 

HDL-C levels, all of which are associated with increased incidence of CVD (136, 

137). The mechanisms linking TRL and atherosclerosis remains unclear. 

Cellular studies have demonstrated that chemical modification of LDL, primarily 

by oxidation, is required to render LDL atherogenic. Recent study has revealed 

that oxidized phospholipids induced inflammatory signalling and promote ox-

LDL uptake mainly in macrophages (138). While oxidized LDL have been 

extensively investigated, the impact of TRL oxidation has not. In addition, given 

the potential role for ApoC-III mediating atherosclerosis (139) and the 

metabolism of TRL (91), the expression of ApoC-III in animal models of 

atherosclerosis has not been well investigated.  

In summary, this thesis aims to investigate 1) a potential direct impact of both 

oxidized TRL in endothelial cells; 2) expression of ApoC-III within vulnerable 
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atherosclerotic plaque and the liver in the settings of diabetes and obesity; 3) 

whether the presence of hypertriglyceridemia influences hepatic expression of 

factors involved in lipid metabolism and inflammation. It is hypothesised that 

TRL and ApoC-III exert adverse effect on vascular cells, atherosclerosis and 

lipid metabolism. These studies will provide further evidence linking triglyceride 

and ASCVD.  
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Figure 1-5 Triglyceride rich lipoproteins metabolism. VLDL, very low-density 

lipoproteins; IDL, intermediate density lipoproteins; LDL, low density 

lipoproteins; HDL, high density lipoprotein; FFA, free fatty acids; S. Intestine, 

small intestine.  
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  Methods 

Unless detailed below, all laboratory supplies were purchased from Sigma 

Aldrich (NSW, Australia). General methods are found in Chapter 2. Specific 

methods related in individual chapters are found in each chapter.  

  Human umbilical vein endothelial cells (HUVEC) 

cell culture 

HUVEC were kindly provided by the Vascular Biology and Cell Trafficking 

Laboratory, Institute of Medical and Veterinary Science (IMVS, SA, Australia). 

Cells were routinely grown in T75 flasks in Mesoendo cell growth medium 

(Sigma, 212-500) containing equivalent 5% Fetal bovine serum (FBS). Cells 

underwent serum starvation by culturing either in 2% FBS or 0.2% bovine 

serum albumine (BSA) in medium 199 (M199) for 4 or 16 hours (h) before 

subsequent experiments. Cell functional assays and signalling assays were 

carried out in fresh M199 medium. 

  Cell Cryopreservation 

Cells were harvested and resuspended in a cryopreservation mixture of 10% 

dimethyl sulfoxide (DMSO) in 90% fetal calf serum (FCS). 90% FCS was added 

to prevent cells being starved of nutrients. Cells in cryopreservation mixture 

were aliquoted [1 millilitre (ml)] into CryoTubes and kept into a Cryo 1-degree 
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Mr. Frosty freezing container for 48 h at -80 degree Celsius (C). Cells were 

then transferred into ultra-low temperatures (-196 C, liquid nitrogen).  

  Lipoproteins 

Plasma was obtained from Australian Red Cross Blood Service. TRL [density 

1.019 gram per millilitre (g/ml)] and HDL (density 1.21 g/ml) were isolated by 

sequential ultracentrifugation [50,000 round per minute (rpm), 18 h at 4 C] 

using potassium bromide. Before using for cell culture, lipoproteins were 

dialysed against 1X phosphate buffered saline (PBS) for 24 h and then filter 

sterilised using a 0.45 micrometre (µm) (for TRL) and 0.22 µm (for HDL) filter. 

Protein concentrations in lipoproteins were measured by Pierce bicinchoninic 

acid (BCA) protein assay kit (Thermo scientific, 23225).  

  Determination of plasma lipoprotein and lipid levels 

Measuring of total plasma triglycerides and cholesterol of these mice were 

followed by enzymatic analysis of cholerol E (WAKO LabAssay, NovaChem, 

439-17501) and Triglyceride E (NovaChem, 432-40201). The non-ApoB portion 

was obtained by Dextran-sulfate-Mg2+ precipitation methods (140) and Non-

ApoB cholesterol and triglycerides levels were measured. For hyperlipidaemic 

plasma samples, dextran precipitation was carried out twice to ensure all the 

ApoB lipids had precipitated out (140). Total serum ApoC-III levels were diluted 
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according to manufactory requirement using enzyme-linked immunosorbent 

assay (ELISA) kit (Abcam, ab217777).  

  RNA-extraction 

Aiming to quantify mRNA levels and assess cell polysome status, mRNA were 

first extracted by TRI reagent, following manufacture’s instructions. Briefly, cells 

were washed with PBS and harvested in TRI reagent (Sigma, T9424). Followed 

by 1-Bromo-3-chloropropane (BCP, Sigma, B9673-200ML), proteins, 

deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) were resolved into 

lower organic phase, milky interphase and upper clear phase respectively. The 

RNAs were precipitated out by iso-propanol, dissolved in RNases free water 

and at -80 C.  

  Real-time (RT) quantitative polymerase chain 

reaction (qPCR) 

Following TRI reagent extraction, RNA samples were quantified and 

normalised using a NanoDrop (Thermo Fisher, Australia). Purified total RNA 

was then used as a template for complementary DNA (cDNA) synthesis, 

prepared by using iScriptTM cDNA synthesis kit (BioRad, 1708841). 

Transcripts were assessed by RT-qPCR amplification [50 ºC /2 minutes (min), 

95 ºC /10 min, 95 ºC /15 sec, 60 ºC /30 sec, 72 ºC /10 sec — 39 cycles] using 
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the BioRad CFX RealTime Thermal Cycler. The cycle threshold (CT) values 

were used to calculate relative mRNA copy number. All results normalised to 

the housekeeping gene β-Actin content for each sample and reactions were 

performed in triplicate and validated by the presence of a single peak in the 

melt curve analysis.  

  Western Blot analysis 

Cells and tissues were homogenised by ice incubation or Precellys 24 tissue 

homonogeniser (Bertin Technologies, Paris). All proteins were extracted in 

Triton X-100 lysis buffer [1% Triton X-100, 150 millimolar (mM) NaCl, 1 mM 

Ethylene glycol tetraacetic acid (EGTA), 1 mM Ethylenediaminetetraacetic acid 

(EDTA), 1 mM Dithiothreitol (DTT) in 20 mM Tris hydrochloride (Tris-HCl) 

(power of hydrogen (pH7.5)] and loaded into Invitrogen Bis (2-hydroxyethyl) 

amino-tris(hydroxymethyl) methane (Bis-Tris) 4% - 12% pre-cast gels 

(Thermofisher, NW04127BOX). Proteins were transferred to nitrocellulose 

membranes and probed with primary antibodies overnight at 4 ºC. For detection 

of ABCA1 expression in the HepG2 and liver lysate, protein samples were 

heated at 65 ºC and room temperature (RT) for 30 min, respectively in the 

presence of 1 mM DTT. Secondary antibodies anti-mouse alexa fluor 680 and 

anti-rabbit alexa fluor 680 were used for detection of bands by Li-Cor Odyssey 

CLX.  
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  Statistics 

Detailed statistical approaches can be found in each chapter. Generally, in vivo 

animal data were represented as mean  standard deviation (STD) and in vitro 

cell data was performed in three biological replicates and shown as mean  

standard error mean (SEM), unless otherwise described. Statistical 

comparisons between two groups were performed using Student’s t-test 

(Mann-Whitney test) or one-way ANOVA where appropriate (Kruskal-Wallis 

test). A linear regression model was used for correlation analysis. *p < 0.05 was 

considered as statistically significant for all analyses.   
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  Materials 

  Equipment 

Equipment Specifications and Supplier 

Centrifuges Eppendorf, Centrifuge 5430R 

ELISA plate reader 1 iMarkTM Microplate Absorbance 

Reader, BioRad (NSW, Australia) 

Microscopes Olympus innovation, USA 

ELISA plate reader 2 GloMax® Explorer Multimode 

Microplate Reader, Promega (NSW, 

Australia) 

Real Time Thermal Cycler CFX connect real-time PCR detection 

system, BioRad (NSW, Australia) 

Scales XS105 Dual Range, Mettler Toledo 

(QLD, Australia) 

Scintillation & Luminescence 

counter 

Tri-Cab 2810R, Perkin Elmer (VIC, 

Australia) 

Invitrogen Novex gel system Invitrogen Bolt Mini Gel Tank, 

Thermofisher Sicentific (VIC, 

Australia) 

iBlot 2 dry blotting system iBlot 2 Gel Transfer Device, 

Thermofisher  Sicentific (VIC, 

Australia) 

Microtome blade Premier blade MX35, Thermofisher 

Scientific 3051835 (VIC, Australia) 

Western Blot Imaging Odyssey CLX, Li-Cor Biosciences 

Millenium Sciences (VIC, Australia) 

Shandon cryotome Shandon cryotome E, Thermo 

Scientific (VIC, Australia) 

iBlot 2 Transfer Stack iBlot 2 NC regular stacks, 

thermoIB23001 (VIC, Australia) 
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Equipment Specifications and supplier 

Thermal Cycler T100 thermocycler, BioRad (NSW, Australia) 

Vecto PEP pen  ImmEdge® Hydrophobic Barrier PAP Pen  

H-4000, Vectorlaboratories (Abacus DX, QLD, 

Australia) 

Cryomolds Cyromolds biopsy style Y565, Tissue Tek 

(QLD, Australia)  

IHC slides SuperFrost Plus adhesion slides, 

Thermoscientific J1800AMNZ (VIC, Australia) 

Ultracentrifuge Rotor 50.2Ti 337901, Beckman Coulter Life 

Sciences (NSW, Australia) 

EDTA-containing tubes Plastic K2EDTA Tube, BD 367839 (Australia)  

Scintillation vials Scintiliation vials, Sigma Z376817, (Merck, 

NSW, Australia) 

Spectrophotometer NanoDrop, Thermofisher, USA 

Ultracentrifuge tubes Quick-Seal, polyallomer, 39ml, Beckman, 

342414 (NSW, Australia) 

Ultracentrifuge Ultracentrifuge, Beckman Optima XPN1 

(NSW, Australia)  

Mr. Frosty Freezing 

container 

Nalgene Cryo, thermofisher 5100-001 (VIC, 

Australia)  

Invitrogen Tris-Bis 4%-12% 

gel 

NW04127BOX, Thermofisher (VIC, Australia) 
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  Culture Medium 

Medium Recipe 

 Solutions Stock 

Conc.  

Final Conc./ 

vol. 

Company catalog.  

HUVEC medium 

 FCS - 20% CellSera1013113 

 Sodium 

Bicarbonate 

7.5%- 1.125% Sigma, S8761 

 1M HEPES 1 M 0.02 M Sigma, H0887 

 Non-essential 

AA 

100X 1X Sigma, M7145 

 Sodium 

Pyruvate 

100 mM 1 mM Sigma, S8636 

 P/S 100X 1:100 dilution Sigma, P4333 

 L-glutamine 200 mM 2 mM Sigma, G7513 

 ECG 15 mg/ml 15 µg/ml Sigma, E9640 

 M199 medium - 500 ml Sigma M4530-

500ML 

MedoEndo Cell Medium 

 MesoEndo 

Medium 

- 500 ml Cell applications, 

212-500 

THP-1 Cell Medium 

 FBS - 10 % CellSera1013113 

 Antibiotic-

antimycotic 

100X 1X ThermoFisher, 

15240096 

 RPMI-1640 - 500 ml Sigma, R7388 

HepG2 cell medium 

 FBS - 10% CellSera,1013113 
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 Antibiotic-

antimycotic 

100X 1X ThermoFisher, 

15240096 

 L-glutamine 200 mM 2 mM Sigma, G7513 

 DMEM-low 

glucose 

- 500 ml Sigma, D6046 
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  Buffers and solutions 

  

Reagents Recipe 

 Solutions Final 

Conc./ vol. 

Company 

catalog.  

RIPA Buffer 

 NaCl 150 mM Thermo, AJA465 

 Triton X-100 1% Sigma, T8787 

 Sodium deoxycholate (Na-

Doc) 

0.5% Sigma, D6750 

 Sodium dodecyl sulfate (SDS) 0.1% Sigma, L3771 

 EDTA, pH8.0 1 mM Sigma E5134 

 Protease Inhibitor 1 tablet in 

10 ml 

Sigma, 

4693159001 

 Phenylmethanesulfonylfluoride 

(PMSF) 

1 mM Sigma, 93482 

 Phosphatase Inhibitor 1 tablet in 

10 ml 

Sigma, 

4906845001 

 Tris-HCl ph8.0 50 mM Sigma, T1503 

Triton X-100 buffer 

 NaCl 150 mM Thermo, AJA465 

 Triton X-100 1% Sigma, T8787 

 EGTA ph8.0 1 mM Sigma, E 3889 

 EDTA ph8.0 1 mM Sigma, E5134 

 DTT 1 mM BioRad, 1610611 

 Protease. inhibitor  1 tablet in 

10 ml 

Sigma, 

4693159001 

 Tris-HCl, pH7.5 20 mM Sigma, T1378 
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Reagents Recipe 

 Solutions Final 

Conc./ vol. 

Company catalog.  

Western blot running buffer 

 20X Bolt MES SDS - Life tech, B0002 

Immunohisothcemistry (IHC) blocking buffer  

 Donkey serum 3% Jackson, 017-000-121 

 Bovine Serum Albumin 3% Sigma, A7906-50g 

 Triton X-100 0.3% Sigma, T8787 

 Tween- 20 0.2% BioRad, 1706531 

 PBS - Sigma, D8537 

Scott’s bluing solution 

 Sodium bicarbonate 0.35%  

 Magnesium sulphate 2% Sigma, M7506 

 H2O - - 

3% Acid alcohol 

 Hydrochloric acid 3 ml Sigma, H1758 

 70% ethanol 97 ml Fisher Scientific,  

A962P-4  

0.25% Oil red O (ORO) solutions 

 ORO powder 1 g Sigma, O0625-25G 

 Propan-2-ol 250 ml Fisher chemical, 

FSBP/7500/17 

 ddH2O 150 ml - 

https://www.fishersci.com/shop/products/alcohol-reagent-histological-fisher-chemical-poly-bottle-4l/a962p4
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Reagents Recipe 

 Solutions Final Con./Vol.  Company log # 

Trichrome Stain (Masson) Kit, Sigma, HT15-1KT 

 Biebrich Scarlet-Acid 

fusion solution 

250 ml Sigma, HT15-1 

 Phosphomolybdic 

acid solution 

250 ml Sigma, HT 15-3 

 Phosphotungstic acid 

solution 

250 ml Sigma, HT 15-2 

 Anilline Blue solution 250 ml HT15-1KT 
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  Reagents 

Reagents Information 

Iscript reverse 

transcriptase 

BioRad, 1708841 

Trizol Sigma, T9424 

BCP Sigma, B9673-200ML 

IQ SYBR green supermix BioRad, 170-8886 

WST-1 Roche, 11644807001 

Urea Ajax Finechem, AJA817 

Acetone Acetone (HPLC), fisher chemical, FSBA949-4 

Endotoxin quantification 

kit 

Pierce LAL chromogenic endotoxin quantitation 

kit, Thermo scientific, 88282 

OCT Optimal cutting temperature, Tissue Tek, IA018 

Dextran [molecular weight 

(MW) 50,000] 

Dextran sulfate sodium salt-50 kDa, Chem 

supply, GC2426 

Lillie Mayer Haematoxylin Australian Biostain, AHLM.2.5L 

Bouin’s fixative reagent Sigma, H10132-1L 

Eosin MP biomedicals, 17372-87-1 

Weigert’s haematoxylin Sigma, HT1079-1SET 

Cholesterol Kit WAKO LabAssay, NovaChem, 439-17501 

Triglyceride Kit Triglyceride E, NovaChem, 432-40201 

Guanidine hydrochloride Sigma, G4505-1KG 

DMSO Dimethyl sulphoxide hybri-MAX, Sigma, D2650 

Agarose Sigma, A9539-100g 

Citric acid monohydrate Sjgma, C1909-500g 
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Reagents Information 

Coomassie Blue Coomassie blue R250, Fisher bioreagents, 

BP101-25 

Tryptone Sigma, 16922-500G 

Yeast extract Sigma, Y1625-250G 

Formalin Formalin, neutral buffered (10%), Sigma, 

HT501128-4L 

Distyrene, plasticizer, 

xylene (DPX) mounting 

DPX Mountant for histoloty, Sigma, 06522 

IHC mounting with 4’,6-

Diamidino-2-phenylindole 

dihyrochloride hydrate 

(DAPI) 

Invitrogen prolong gold antifade mountant with 

DAPI, P36935 

0.25% Trypsin-EDTA (1X) Life technologies, 25200-056 

Streptozotocin Sigma, S0130 

Mouse ApoC-III ELISA kit Abcam, ab217777 

Human ApoC-III ELISA kit Abcam, ab154131 

Iso-pentane Ajax Finechem, AJA 1521 

Glycerol Ajax Finechem, AJA242-500 ML 

Potassium Bromide Chem supply, PA006-5 KG 
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  Antibodies 

Antibody Catalogue No.  Opt. 

Conc. 

ABCA1 Abcam, ab18180 1:200 

ABCG1 Abcam, ab52617 1:200 

SRB1 Abcam, ab52629 1:200 

ApoC-III (Immuno 

Staining) 

Santa Cruz, sc-50378 1:200 

ApoC-III (WB) Cloud Clone, PAB890Mu01 1:200 

CD31 Abcam, ab7619 1:200 

CD68 BioRad, MCA1957GA 1:250 

ApoB Abcam, ab20737 1:1000 

SMC-actin Sigma, C6198 1:400 

p-S6K1 Cell signalling, #9205 1:500 

Actin Cell signalling, #4970 1:1000 

Anti-His Tag Cell signalling, #2365 1:1000 

Cy5 donkey anti-rat Jackson immunoresearch, 712-175-

153 

1:400 

Cy3 donkey anti-rabbit Jackson immunoresearch, 711-165-

152 

1:400 

Cy5 donkey anti-mouse Jackson Immunoresearch, 715-605-

150 

1:400 



Chapter 3 Cellular studies of the potential atherogenicity of TRLs 

   48 

  

 

 

 

 

 

 

Chapter 3.  Cellular studies of the 

potential atherogenicity of TRL  



Chapter 3 Cellular studies of the potential atherogenicity of TRLs 

   49 

  Abstract 

Introduction— Increasing evidence has implicated TRL in atherosclerotic CVD, 

although preclinical studies have not fully elucidated their impact on the artery 

wall. 

Methods and Results—TRL were isolated from the plasma of healthy human 

subjects by ultracentrifugation and subsequently modified by MPO. The impact 

of incubation of native or MPO-TRL (50 μg/ml) with HUVEC, in the presence or 

absence of HDL (2 mg/ml), was assessed. MPO resulted in oxidation of ApoC-

III and lipids within TRL. MPO-TRL were unable to maintain EC survival and 

early wound closure capacity, which was restored by HDL co-incubation. An 

increase in proinflammatory adhesion molecules and chemokines by EC was 

also observed in the setting of MPO-TRL co-incubation. Further investigation 

revealed a translation switch, whereby co-incubation with MPO-TRL resulted in 

greater EC expression of angiogenesis factors (HIF-1ɑ and VEGF) and reduced 

expression of ABCG1 and mTORC1 activity.  

Conclusions—MPO modification generates TRL that have adverse effects on 

factors implicated in vascular repair and inflammation, suggesting that oxidative 

modification may be one factor involved in potential atherogenicity of TRL. 
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  Introduction 

The association of LDL-C and CVD has been well established by population (7, 

141, 142) and genomic studies (8, 143, 144). Mechanistic studies have 

demonstrated that modification of LDL, by a range of factors including oxidation 

and carbamylation, increases their ability to promote vascular inflammation 

(145, 146), foam cell formation (58, 147) and impairment of vascular repair 

(148). In parallel, hypertriglyceridaemia has also been demonstrated to 

associate with cardiovascular risk, a finding which persists after controlling for 

the presence of additional metabolic risk factors (18, 19). However, the 

mechanisms that directly link TRL to vascular dysfunction have not been well 

elucidated. While some groups have postulated that cholesterol content of 

these particles may underscore any adverse effect on the arterial wall (75, 149, 

150), limited studies have directly investigated their impact on the endothelium 

(78). Furthermore, it is unkown whether chemical modification of TRL, such as 

observed with LDL, alters their impact on the vasculature.   

MPO has been identified to play a biological role in both lipoprotein modification 

and atherosclerosis in vivo (59). Chemical studies have revealed that MPO 

catalyses the formation of chlorinating oxidants from an MPO/Cl-/H2O2 system 

by converting Cl- into hypochlorous acid (OCl-). The generation of tyrosyl 

radicals by hypothlorous acid or MPO directly plays a role in the initiation of 
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oxidation of lipid species within LDL particles. While systemic MPO levels 

associated with cardiovascular risk (63, 64). MPO has been identified within 

eroded plaque of ACS patients (62) and mechanistic studies have implicated a 

role for MPO in progression of atherosclerotic disease (58), the impact of MPO 

modification of TRL have their influence on the arterial wall is not known.  

A potential role for HDL in the protection against atherosclerotic cardiovascular 

disease has been established (151, 152). In addition to population studies 

demonstrating an inverse association between HDL-C levels and 

cardiovascular risk (20, 153), preclinical studies have revealed that HDL 

possess a range of functional properties that may confer this benefit (154-156). 

In particular, cellular studies have demonstrated that co-incubation with HDL 

inhibits the deleterious effects of inflammatory and oxidative stimuli (157-159). 

However, the impact of HDL on the potential effects of TRL has not been fully 

investigated.  

The aim of the studies described in this chapter were to investigate the impact 

of TRL, in the presence and absence of MPO modification on endothelial 

factors involved in the pathogenesis of vascular disease. The specific aims 

included: 

1. To determine whether native and MPO-modified TRL promote pro-

inflammatory changes in EC. 
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2. To determine whether native and MPO-modified TRL influence EC 

migration and proliferation and associated signalling pathways.  

3. To determine whether co-incubation of HDL influences the impact of native 

and MPO-modified TRL on EC.  

The hypothesis of these studies was that oxidation of TRL, as previously 

described with LDL, would results in more adverse effects on endothelial 

pathways involved in inflammation and vascular repair.  

 Methods 

  Myeloperoxidase modification of lipoproteins 

Isolated and dialysed native-TRL were immediately used for MPO modification. 

A 4 h incubation period was selected on the account that the half-life of TRL in 

human plasma is 6 h (160). Human TRL (10 ml) were incubated with 1 U 

myeloperoxidase MPO: Sigma, M6908), 200 micromolar (M) H2O2, 100 mM 

Cl- at 37 C for 4 h, at pH 7.4. The concentrations of the H2O2 was verified 

spectrophotometrically using molar extinction coefficients of 39.4 centimetres 

(cm)-1M-1 at 240 nM. MPO activity was confirmed by OCl- generation using 

EnzCheck MPO activity assay kit (Thermofisher, 33856). All studies were 

performed by using paired lipoproteins (native-TRL and oxidised -TRL from the 

same pool of donors) that had been stored for less than 4 weeks. Apolipoprotein 
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modification and lipid oxidation were assessed by mass spectrometry and 

TBARS assay respectively.  

  TBARS assay 

0, 0.1, 0.2, 0.4, 0.6 and 1 nanomole (nmol) of Malondialdehyde bis (dimethyl 

acetal) or Tetramethoxypropane (TMP) (Sigma, 10, 838-3) were used as 

standard. TMP standards and 20 g of TRL were mixed with 25% trichloroacetic 

acid (TCA), 1% 2-thiobarbituric acid (TBA) and incubate for 45 min at < 95 C. 

The reacted mixtures were centrifuged for 20 min at 2000 rpm and the 

supernatants were quantified by colorimetric spectrometer at 520 nm. Results 

were calculated and presented as nmol of malondialdehyde (MDA) in 100 µg 

of TRL.  

  Apolipoprotein 2-dimensional (2D) gel purification  

Apolipoproteins (300 µg) were precipitated by acetone wash from native-TRL 

and MPO-TRL. Methods were modified and adapted from previously published 

methods (161). Briefly, samples were loaded onto isoelectric focusing gels from 

pH 3-11. After 8,000 volts (V)-hours, the gels were equilibrated with SDS and 

the proteins were separated by sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis (SDS-PAGE) using an ALL-kDa precast gel (BioRad, 5671121). 

Ingel digestion was performed after protein detection by Coomassie-blue R250 
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staining (Coomassie blue R250, Fisher bioreagents, BP101-25). Aiming to 

isolate protein for proteomics analysis, Coomassie-stained spots were de-

stained and washed with 100 mM ammonium bicarbonate and acetonitrile, 

reduced with either Tris (2-carboxyethyl) phosphine (TCEP) at room RT for 20 

min or DTT at 60 ºC for 40 min, and then alkylated by  iodoacetamide (IAA) in 

a dark place for 30 min. The gel was incubated in 50 µl of a 12 nanogram per 

liter (ng/l) modified trypsin solution in 50 mM ammonium bicarbonate, pH 8.6, 

and incubated at 60 ºC overnight. The resulting peptides were extracted first 

with a 1 : 1 solution of 25 mM ammonium bicarbonate and acetonitrile and then 

twice with a 1 : 1 solution of 5% formic acid and acetonitrile. The extracted 

tryptic peptides were lyophilised and resuspended with 15-20 µl of 5% formic 

acid for mass spectrometric analysis.  

  Wst-1 cell proliferation assay 

EC (4,000 cells /well) were plated in 96-well plates. Following overnight 

incubation at 37 ºC in a 5% CO2 incubator, the media was removed and 

replaced with various concentrations of native-TRL, MPO-TRL, HDL and 

control in M199 medium. Cultures were then co-incubated for further 24 h. Prior 

to final reading of the assay, the existing media was aspirated from each well 

and replaced with the WST-1 solution [10% volume/volume (v/v), Roche, 

Australia] in Roswell Park Memorial Institute Medium -1640 (RPMI-1640). 
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Plates were then incubated for 2 h at 37 ºC, 5% CO2 and cell proliferation was 

assessed by measuring absorbance at 450 nM, using an ELISA microplate 

reader (BioRad iMarkTM Microplate Absorbance Reader). 

  Wound healing (scratch) assay for HUVEC 

HUVEC wound healing ability was studied using an in vitro wound (scratch) 

assay. 200,000 HUVEC were seeded in 24-well plates. Once the cell monolayer 

was confluent, a cross / two lines were made in each well with a p200 pipette 

tip, to create consistent “wounds” (Figure 3-1). The cell debris was removed 

and fresh M199 medium was added with corresponding treatment. Images of 

the scratches were acquired under light microscopy at time 0 h, 6 h and 12 h, 

at 4X magnification (Olympus innovation, USA). Image J software (NIH, USA) 

was used to measure scratch areas. Wound healing abilities were calculated 

as the percentage reduction in scratch area relative to the wound area from 

starting time.  
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Figure 3-1 Scratch pattern. Wounds were introduced in a two-direction / cross 

pattern. Over time, images were captured, and wound area were quantified by 

ImageJ (NIH, USA).  
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  Polysome analysis 

Aiming to investigate the translational status of protein production, polysome 

analysis was assessed as described previously (162). Briefly, polyribosomes 

were resolved by sucrose-gradient-density centrifugation with ten fractions 

collected as per gradient. For RNA extraction, 1% (w/v) SDS and 0.15 mg/ml 

proteinase K were added to each fraction, and RNAs were extracted from upper 

phase of mixture of TRI reagent (TRI reagent, Sigma, T9424), and 1-Bromo-3-

chloropropane (BCP, Sigma, B9673-200ML). The RNAs were then precipitated 

out by iso-propanol and dissolved in RNase free water. 

  Azidohomoalanine (AHA) and stable isotope 

labelling of amino acids in cell culture (SILAC) 

Dulbecco's Modified Eagle's medium (DMEM) medium without methione, lysine 

and arginine (Dundee Cell Products, Dundee, UK) was used in cell isotope 

labeling. At plating, methione was added to the same concentration as in 

normal DMEM medium and lysine and arginine were substituted with either 

‘light’, ‘medium’ Arginine (Arg, 13C6) and Lysine (Lys, 2H4) or heavy Arg 

(13C6+15N4) and Lys (13C6+15N2) and cells were cultured for 24 h for labeling in 

10 cm dishes until confluent. HUVEC were then underwent serum starvation by 

culturing in 0.2% BSA DMEM medium for 4 h, and 30 min for methione 

starvation. Cells were then supplemented with AHA and corresponding 
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treatment (native-TRL, MPO-TRL or non-treatment) simutaneously in 20% FBS 

DMEM medium for 4 h. Isolation of newly synthesised proteins and preparation 

for mass spectrometry were performed as described (163, 164) (Figure 3-2). 

  Mass Spectrometry and protein analysis 

Mass spectrometry was performed essentially as previously described (164). 

M /H values were used for analysis of protein profiles of MPO-TRL/native-TRL. 

Light Arg/Lys containing peptides were used only as reference values for 

analysis due to an overabundance of these peptides. The PANTHER database 

were employed to assign protein changes by MPO-TRL stimulation, according 

to the signalling pathways and biological processes (http://www.pantherdb.org/). 
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Figure 3-2 Schematic of method combining stable isotope labelling of amino 

acids in cell culture with azidohomoalanine.   
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  Results 

  MPO modification increases protein oxidation and 

lipid peroxidation of TRL 

MPO modifies lipoproteins, either via targeting AA residues such as tyrosine 

and methionine (59, 60) or initiating lipid peroxides (165). The impact of MPO 

modification on isolated TRL illustrated in Figure 3-3. After incubation with 

MPO/H2O2/Cl-, ApoC-III and ApoE on the surface of MPO-TRL demonstrated 

change on 2D gel analysis (Figure 3-3 a), with an increase in the abundance of 

ApoC-III (Figure 3-3 b) and spots shift of ApoE towards low pH, compared to 

native-TRL. By measuring formation of peroxidative MDA (166), augmented 

oxidised lipids were observed in MPO-TRL compared to native-TRL (2.0 ± 0.03 

vs. 0.4 nM ± 0.27/100 µg, *p < 0.05, Figure 3-3 c).  
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Figure 3-3 Characterisation of MPO modification. On TRL compared with their 

native form.(a) Oxidation of ApoC-III and ApoE, demonstrated by running 500 

µg proteins precipitated from native-TRL and MPO-TRL in 2D gels. (b) 

Quantification of ApoC-III abundance in gel a. (c) Lipid oxidation levels of 

native-TRL and MPO-TRL, pooled from serum samples, n = 6. *p < 0.05 by 

Student’s t-test. Expected molecular weight of ApoC-III: 8.8 kDa; ApoE: 36 kDa. 
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  Impact of MPO modification of TRL on EC 

proliferation and and inflammatory activity 

Local replication of mature EC has been recognised as an important 

mechanism involved in the maintenance of endothelial health (167) and 

protects against endothelium loss (168). This is evidenced by the capacity of 

EC to self-recover in denudated area overlying plaque erosion (169). Using cell 

viability WST-1 assay, native-TRL were able to sustain cell survival whereas 

MPO-TRL were not (Figure 3-4 a). For subsequent experiments, a 

concentration of 50 µg/ml of TRL was chosen based on prior literature (170). 

Additionally, at this concentration MPO-TRL exerted a reduction in live cell 

number compared to native-TRL (Figure 3-4 a, b), which was inhibited by co-

incubation with 2 mg/ml HDL (Figure 3-4 c). 

Using an established model of EC desquamative injury, we observed 

impairment of wound closure in the setting of incubation of MPO-TRL compared 

with native-TRL at 6 h (Figure 3-4 d, e). However, we did not observe a 

difference between TRL groups with regard to the rate of wound area closure 

after 12 h (Figure 3-4 d, f). The potential implications of early, but not later, 

differences in wound healing are uncertain and require futher investigation. 

In addition to studies of EC and their role in wound closure, as a measure of 

vascular repair, we also investigated the impact of TRL co-incubation on EC 
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expression of inflammatory factors observed in the setting of endothelial 

dysfunction (169). Incubation of HUVEC with non-modified TRL (50 µg/ml) 

produced no significant increase in EC expression of inflammatory factors 

(Figure 3-4). In contrast, 4 h co-incubtation of HUVEC with MPO-TRL resulted 

in an increase in expression of VCAM-1 by 1.30 fold (1.3 ± 0.04, p = 0.05, Figure 

3-4 g), interleukin-8 (IL-8) by 2.00 fold (2 ± 0.125, p = 0.05) and monocyte 

chemosattractant protein -1 (MCP-1) by 1.58 fold (1.58 ± 0.19, p = 0.05), while 

no alteration in inercellular adhesion molecule 1 (ICAM-1) mRNA was observed 

(Figure 3-4 g). After 8 h of co-incubation with MPO-TRL, increasing expression 

of IL-8 and MCP-1, but not VCAM-1 persisted (Figure 3-4 h).   
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Figure 3-4 Assessment of HUVEC viability, wound closure capacity and 

expression of pro-inflammatory proteins with MPO-TRL co-incubation. (a, b) 

Cell viability following incubation with native or MPO modified TRL at indicated 

concentrations. (c) HDL recovery effect on cells co-incubated without or with 

HDL up to 24 h. (d) Scratch wound healing assays (n = 6) in response to TRL 

for incubation of (e) 6 h and up to (f) 12 h. Assessment of adhesion molecule 

expressions (n = 3) showing mRNA levels of VCAM-1, ICAM-1, IL-8 and MCP-

1 by HUVEC co-incubated with serum for either (g) 4 h or (h) 8 h. Original 

magnification 4X. Control (Ctrl): vehicle-treated cell culture in M199 medium 

supplemented with 2% FBS. All data were expressed as mean ± SEM, *p < 

0.05 by Student’s t-test.  
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  MPO-TRL and regulation of protein expression 

To globally assess changes in EC proteome treated with MPO-TRL, stable 

isotope labelling using amino acids in cell culture (SILAC), coupled with mass 

spectrometry for protein identification and quantification was used. We 

substituted methionine with AHA and simultaneously treated cells with MPO-

TRL. The AHA-containing synthesised proteins can be pulled down and 

analysed. Consistent with phenotypic assays, we observed that EC treated with 

MPO-TRL up-regulated factors involved in fibroblast growth factor (FGF), 

vascular endothelial growth factor (VEGF) and aigogenesis while down-

regulated proteins involved in cellular proliferation, compared to EC treated with 

native-TRL (Figure 3-5).  

We subequently performed polysome analysis to assess changes of specific 

proteins, with a focus on a possible influence of MPO-TRL on angiogenesis and 

potentially protective effects of HDL. Hypoxia-inducible factor 1-alpha (HIF1ɑ) 

regulates VEGF and platelet-derived growth factor (PDGF) (171, 172). 

Translational efficiency was determined by the P/M ratio between polysome 

fractions (fraction 6-10) and monosome fractions (fraction 1-5) (Figure 3-6 a). 

We observed that native-TRL promoted general translation (P/M ratio: 1.50), 

whereas co-incubation with MPO-TRL and serum starved control demonstrated 

similar low translation rate (P/M ratio: 1.08 vs. P/M ratio: 1.07) (Figure 3-6 a). 
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Co-incubation of EC with MPO-TRL demonstrated a delayed translation of 

ATP-binding cassette sub-family G member 1 (ABCG1) (Figure 3-6 b, P/M: 0.42) 

and accelerated translation of HIF1ɑ (Figure 3-6 d, P/M: 18.39) and VEGF 

(Figure 3-6 e, P/M: 5.38) compared to control (ABCG1 P/M:2.46; HIF1ɑ: 3.04; 

VEGF P/M: 0.5). MPO-TRL co-incubation failed to activate mammalian target 

of rapamycin complex 1 (mTORC1) activity, as assessed by levels of phospho-

ribosomal protein S6 kinase beta-1 (p-S6K1) (Figure 3-6 f, g), reflecting factors 

regulating cell protein synthesis and cell cycle progression when it is active 

(173).   
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Figure 3-5 MPO-TRL treated EC protein profiles up to 4 hours, compared to 

incubation with native-TRL, indicating (a) upregulated proteins involved in 

angiogenesis, VEGF and FGF signaling pathway, and (b) down-regulated 

proteins involved in cell proliferation. Ctrl: vehicle-treated cell culture in M199 

medium supplemented with 20% FBS.  
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Figure 3-6 The effects of MPO-TRL on EC mTORC1 activity and mRNA 

translation under its incubation for up to 4 h. HUVEC were lysed and subjected 

to (a) General translational efficiency polysome analysis and relative 

distributions of individual mRNAs of (b) ABCG1 (c) ABCA1, (d) HIF1ɑ and (e) 

VEGF in each of the polysome fractions assessed by RT-qPCR; and (f) 

immunoblotting analysis of (g) p-SK61, (h) ABCG1 or (i) SRB1. Ctrl: vehicle-

treated cell culture in M199 medium supplemented with 0.2% BSA. Data were 

shown as means ± SEM from n = 3 experiments; * p < 0.05 by Student’s t-test.   
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  Discussion 

In this chapter, we have demonstrated that oxidative modification of TRL by 

MPO results in an increase in lipid peroxidation and when incubated with EC 

has a number of potential effects, including (i) impaired vascular repair and (ii) 

increased expression of pro-inflammatory factors, compared with TRL that 

have not undergone oxidative modification. Additional investigations revealed 

a potential restorative effect of HDL, a preliminary observation that requires 

further investigation. These findings parallel obaservations that chemical 

modification of LDL enhances its atherogenic properties and provides an 

additional mechanistic link between MPO and CVD risk.  

Local EC cellular proliferation and migration are essential factors in protecting 

a healthy endothelium, which is critical in regulation of vascular function. Lipid 

species such as cholesterol and triglyceride are critical for maintaining EC 

vasodilation and signalling (174, 175). We observed that incubation of EC with 

TRL that have not undergone MPO catalysed oxidation have no adverse effects. 

It is well established that oxidative modification of LDL results in an increase in 

atherogenic effects (58, 61). In our studies, MPO modification not only resulted 

in generation of oxidative species on TRL, but also led to a range of effects 

implicated in the formation and progression of vascular disease. 
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These findings highlight not only potential mechanisms associating TRL and 

atherosclerosis, but also provide additional factors that underscore the 

association between MPO and CVD. Population studies have demonstrated a 

direct association between circulating MPO levels and CVD risk (62, 64), while 

animal models of atherosclerotic plaque have reported the presence of MPO 

and its oxidative products within lesions (176, 177). Mechanistic studies hae 

demonstrated that MPO has a number of properties that promote vascular 

disease, including its role as a catalytic sink for nitric oxide and promotion of 

inflammatory and thrombotic pathways (50, 61, 178). Increasing lipid 

peroxidation with MPO is likely to stimulate these effects, as evidence by 

increased atherogenicity of LDL in cellular studies (179, 180). Additional 

investigations have revealed that HDL and its major protein, ApoA-I, are also 

oxidatively modified by MPO, resulting in impairment in their ability to promote 

cholesterol efflux and lipid transport (60). Our findings extend these potential 

lipid effects to suggest that MPO induced modification of TRL may also result 

in adverse effects on the vasculature.  

To further investigate proteins involved in the regulation of cell proliferation and 

migration, we applied AHA-SILAC which enables identification and 

quantification of newly synthesised proteins. In the setting of incubation with 

MPO-TRL, we observed a cellular metabolic switch similar to that seen in 

response to hypoxia (181), with a decrease in proteins involved in cell 
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proliferation but an increase in angiogenesis factors. We also observed 

downregulation of expression of ABCG1, a lipid transporting factor well 

recognised for its interaction with HDL and role in cholesterol efflux. This finding 

may be relevant from a number of perspectives. Firstly, downregulation of 

ABCG1 can deactivate mTORC1, a protein kinase serving as a central 

regulator of cell cycle and protein synthesis (173, 182). It is therefore of interest 

that we observed HDL to rescue EC proliferation in the setting of MPO-TRL 

incubation. Furthermore, HDL mediated removal of oxysterol from 

macrophages via a number of transporters, including ABCG1, may play an 

important role in minimising cellular apoptosis within the artery wall (150). While 

our HDL investigations in this study were minimal, they warrant further 

exporation in the future.  

In summary, oxidative modification of TRL by MPO generates lipoproteins 

which confer a range of adverse cellular effects at the level of the endothelium. 

This provides supportive evidence for the potential mechanistic role of TRL in 

the early stages of atherosclerosis and its subsequent progression. These 

findings suggest that interventions looking to reduce circulating TRL levels may 

have the potential to protect against the early stages of atherosclerosis. 
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  Abstract 

Introduction—ApoC-III is an important regulator of TRL metabolism. While 

genetic studies implicate ApoC-III in the pathogenesis of atherosclerosis of 

atherosclerosis, it is uncertain whether ApoC-III exerts additional effects 

beyong raising TRL levels.  

Methods and Results—The plaque distribution of ApoC-III was investigated in 

mouse models of atherosclerosis in the presence and absence of diabetes. 

Compared with a chow diet, 16 weeks of a high cholesterol diet (HCD) resulted 

in greater serum levels of triglycerides and cholesterol in ApoE-/- mice, which 

was exacerbated in the setting of streptozotocin induced diabetes and 

associated with greater serum ApoC-III levels. These lipid changes associated 

with more extensive plaque burde and immunofluorescent staining of plaque 

ApoC-III in the atherogenic and diabetic mouse models. Within plaque, ApoC-

III accumulation correlated direct with the extent of both ApoB and 

macrophages. Diabetic ApoE-/- also demonstrated grater hepatic accumulation 

of ApoC-III, which inversely correlated with liver expression of the lipid 

transporting factors ABCA1 and SRB1.  

Conclusion—Dyslipidaemia and diabtetes associate with more extensive 

atherosclerotic plaque and vessel wall staining of ApoC-III. The functional 

consequences of ApoC-III within the artery wall requires further investigation.   
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  Background 

In the last chapter, we investigated the impact of incubation of EC with TRL. 

We observed that non-modified TRL had no adverse effect on a range of 

cellular assays. In contrast, when TRL underwent oxidative modification by 

MPO, co-incubation with HUVEC had an adverse effect on a validated wound 

closure model and resulted in an increase in cellular expression of pro-

inflammatory chemokines and adhesion molecules. These findings suggest 

that TRL have the potential to exert direct atherogenic effects, following 

oxidative modification, analogous to previous reports with LDL.  

In addition to understanding to the potential atherogenic properties of TRL, 

there is considerable interest in the influence of factors that regulate their 

metabolism. ApoC-III is a small 8.8 kDa protein, usually found in glycosylated 

forms (80), which resides on the surface of chylomicrons, VLDL and their 

remnants (79). Metabolic studies have revealed that ApoC-III delays TRL 

clearance by inhibiting lipoprotein lipase activity (92) and ApoE mediated VLDL 

uptake via LDL receptors (93, 99). Overexpression of ApoC-III in mice (183), 

rabbits (105), and pigs (106) results in severe hypertriglyceridemia and 

chylomicronemia.  

In humans, circulating ApoC-III levels independently associate with CVD risk 

(74). Genome wide association studies of large cohorts revealed that loss-of-
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function APOC3 variants including variants including R19X (nonsense) (121), 

A43T (missense) (127), K58E (missense) (184), IVS2+1G>A and IVS23+1G>T 

(splice sites) associate with lower triglyceride levels and CVD risk (26, 27). 

These findings suggest that ApoC-III plays an important role in the 

pathogenesis of ASCVD. Whether this is exclusively due to the elevation in 

triglyceride levels or if ApoC-III exerts direct atherogenic effects remains 

uncertain.  

ApoC-III has been demonstrated to possess a number of additional properties 

in cellular studies. Co-incubation of HUVEC with ApoC-III results in an increase 

in cellular expression of the pro-inflammatory adhesion molecules, VCAM-1 

and ICAM-1, an effect that is inhibited by co-administration of statins (134). In 

studies of mouse derived adipocytes, incubation with ApoC-III induces 

expression of MCP-1 and interleukin 6 (IL-6) via TLR2, in a process involving 

activation of the extracellular signal-regulated kinase p38 and NF-κB (185). To 

what degrees these pro-inflammatory effects of ApoC-III influence 

atherosclerosis in the in vivo setting remain to be characterised.  

Additional cellular studies have suggested that ApoC-III has other properties 

that may also contribute to CVD risk. ApoC-III has been demonstrated to 

promotes β-cell apoptosis, suggesting a potential role in glucose homeostasis 

and generation of diabetes (90). In addition to residing on the surface of 
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atherogenic ApoC-III has also been demonstrated on the surface of HDL 

particles and identifies a subspecies of HDL, which may associate with a higer 

CVD risk (186). To what degree this reflects the presence of elevated TRL, 

further promotion of a pro-inflammatory state via HDL or generation of 

dysfunctional HDL particles is uncertain.   

The aim of the studies describe in this chapter were to investigate the arterial 

wall expression and distribution of ApoC-III in dyslipidaemic and diabetes 

mouse models of atherosclerosis. The specific aims included: 

1. To determine whether ApoC-III is present within atherosclerotic plaque 

2. To determine whether plaque ApoC-III correlates with both lesion burden 

and inflammatory phenotype.  

3. To determine the hepatic accumulation of ApoC-III in these models.  

The hypothesis of these studies was that ApoC-III would be identified within 

more extensive and inflammatory atherosclerotic plaque, suggesting the 

potential to exert direct adverse effects within the artery wall.   
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  Methods 

  Animals 

Animal studies were approved by the Animal Ethics Committees of South 

Australia Health and Medical Institute (SAHMRI) (approval No. SAM186) and 

the University of Adelaide (approval No. M-2015-254).  

The experimental designed is outline in Figure 4-1. All mice (n = 48) were fed 

chow diet (CD) as baseline control. At week 8, mice were divided into four 

experimental groups: 

1. Wild type C57Bl6 mice (n = 12) continued CD until the end of the 26 week 

experimental period.  

2. ApoE-/- mice (n = 12) continued CD until the end of the 26 week experimental 

period.  

3. ApoE-/- mice (n = 12) were fed a high cholesterol diet (0.5% cholesterol, 21% 

total fat from week 10 to 26. 

4. ApoE-/- mice (n = 12) underwent generation of diabetes at week 8 by 

treatment with 50 mg/kg/day streptozozotocin (STZ) injection for 5 consecutive 

days and subsequently fed a high cholesterol diet from week 10 to 26.  
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All mice were fed their assigned diet ad libitum. Mice were bled, weighted and 

underwent an intraperitoneal glucose tolerance test at week 10 (baseline), 

week 18 (mid) and week 26 (final). Tissues were collected at the end of the 

study.  

The sample size for the study (n = 10 animals per group) was based on a 5% 

increase of atherosclerotic lesion area for ApoE-/- mice fed a HCD compared 

with ApoE-/- mice fed a CD (187), providing statistical power of 80% with p < 

0.05. An additional two mice pergroup were included to account for any attrition 

during the entire study.  
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Figure 4-1 Schematic diagram of the disease mouse models. All mice were fed 

CD until week 8. At week 8, one arm of the ApoE-/- mice were treated with 

streptozotocin, inducing hyperglycaemia. All mice continued on CD until week 

10. At week 10, two groups of ApoE-/- mice were transitioned onto a high 

cholesterol diet (including the STZ treated mice). Blood samples to test for 

hyperglycaemic and hyperlipiaemia were collected at week 10, 18 and 26. Mice 

were bled and weighed at week 10, 18 and 26. Mice were culled at the end of 

the study and a range of tissues were collected.   
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  Streptozotocin injection to induce hyperglycaemia 

mice 

At 8 weeks of age, mice underwent induction of diabetes by administration of 

50 mg/kg body weight STZ (Sigma, S0130) for 5 consecutive days via 

intraperitoneal injection. STZ was prepared in 0.1 M sodium citrate buffer (pH 

4.5, pH adjusted with citric acid monohydrate) prior to injection. Fasting blood 

glucose was assessed after 1 week of STZ injection before mice were placed 

on a high cholesterol diet (HCD: 0.15% cholesterol, 21% total fat).  

  Intraperitoneal glucose tolerance test (IPGTT) 

Glucose tolerance was assessed by intraperitoneal glucose tolerance test 

(188). Briefly, mice were fasted overnight, and baseline (T0) glucose levels 

were determined before any administration of glucose. After intraperitoneal 

(IP) injection of glucose solution [20% weight/volume (w/v) glucose in 0.9% 

sodium chloride (NaCl) and injected 10 µl/body weight (g)], the blood glucose 

levels were measured at 0.5, 1 and 2 h (T0.5, T1 and T2). 

  Tissue processing and histological analysis 

Animals were humanely sacrificed by carbon dioxide (CO2) asphyxiation. 

Immediately after, blood samples were collected by cardiac puncture, using a 

syringe containing 10 ml PBS which was placed into the left ventricle for 
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perfusion. After perfusion, perivascular fat was cleaned, and heart, 

brachiocephalic artery, carotid artery and aorta were collected and fixed in 

neutral buffered formalin (10%, Sigma, HT501128-4L) overnight. Tissues then 

underwent sucrose drop for two days and imbedded in optimal cutting 

temperature compound (OCT, Tissue Tek, IA018), frozen over iso-pentane and 

stored at -80 ºC until sectioning. Another group of mice were dissected, and 

their organs were snap frozen in liquid nitrogen and stored at -80 ºC for Western 

blot analysis.  

  Immunofluorescent staining of atherosclerotic 

lesions 

Immunofluorescent staining was performed on cryostat sections, using an 

indirect immunofluorescence technique. Mouse brachiocephalic artery, 

subclavian, common carotid artery and aortic arch were sliced. At least four 

sections of each animal were randomly picked for staining: three were 

experimental slices and one were stained with secondary antibody only as a 

background control. Briefly, sections on poly-l-lysine coated slides 

(Thermoscientific SuperFrost Plus adhesion slides, J1800AMNZ) were fixed 

with ice cold formalin [neutral buffered (10%), Sigma, HT501128-4L], followed 

by permeablisation/blockage in IHC blocking buffer (3% BSA, 0.3% of triton X-

100 and 3% donkey serum in PBS) for 30 min. Sections were then incubated 
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with corresponding primary antibodies overnight at 4 ºC, followed by incubation 

with the appropriated secondary antibodies. Sections were excluded found with 

dirty lipid staining, high background fluorescence in control slides or uncertainty 

of protein presence, resulting in 1-5 optimal slides from each animal artery 

analysed and quantified. Images were acquired using fluorescent microscopy 

(Olympus, USA). Images were separated into single fluorescence channels and 

positive signal of Cy3/Cy5 were analysed by ImageJ (NIH, USA).  

  Cloning of mature ApoC-III into pET23b vector 

The human mature APOC3 cDNA was obtained from the pANT7-cGST 

template (DNASU plasmid repository, HsCD00077989). The mature APOC3 

cDNA was then digested with NdeI (NEB, R0111S) and XhoI (NEB, R0146S) 

and sub-cloned into the template vector pET23 (Millipore, 69771-3). The 

ligation mixtures were then transformed into competent cells and the 

transformed cells were selected with ampicillin (50 g/ml) on Luria-Bertani (LB)-

agar plates. The entire APOC3 cDNA was sequenced from both directions, by 

Flinders Sequencing Facility (Flinders University, Adelaide).  
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  ApoC-III recombinant protein expression and 

purification 

pET23b-wildtype (WT)-APOC3 plasmid was transformed into competent 

Escherichia coli (E.Coli) B834, which were sequentially used to inoculate a 

culture in super optimal broth (SOC) medium containing ampicillin at 100 g/ml 

and shaken at 200 rpm/min at 37 C. After 5 h incubation, recombinant ApoC-

III expression was induced with 1 mM isopropyl--d-thiogalactopyranosdie 

(IPTG; Sigma) for 2 h. Cells were lysed in lysis buffer (8 M Urea, 10 mM Tris-

HCl, 500 mM NaCl in 50 mM phosphate buffer), lysates were centrifuged at 

16,000X g (10 min at 4 C). The supernatant was purified through Talon cobalt 

metal affinity resin (TALON® Superflow™, GE Healthcare, 28-9575-02, pack 

of 50 mL) for 3 h at 4 C.  

  Endotoxin remover by FLPC 

After purification by Talon Cobalt, ApoC-III fusion proteins were loaded on an 

anion-exchange column, MonoQ (GE healthcare) and were eluted with a linear 

NaCl gradient (from 0.1 to 0.25 M) in 4 M urea, 5 mM NH4HCO3 (pH 8.0) buffer. 

The fractions containing the pure protein (eluted at a NaCl concentration of 

approximately 0.15 M) were pooled and the final purity of the product was 

verified on a 14.5% SDS-PAGE gel by Western blot. Endotoxin levels of the 

final product was measured using Limulus Amebocyte Lysate (LAL) endotoxin 
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quantification kit (Pierce LAL chromogenic endotoxin quantitation kit, Thermo 

scientific, 88282).  

  LPL assay 

Methods were adapted from published protocols (189) to assess the influence 

of ApoC-III in LPL activity. LPL (Sigma, 62335) was mixed with ApoC-III (in 5 

M Urea, 50 mM tris-HCl buffer) and lipids (10% intralipid, 1 Ci H3-triolein, 0.1 

M NaCl, 60 mg/ml BSA, 0.15 M Tris-HCl, pH 8.5, and 16.7 U/ml heparin). The 

mixture was pre-incubated with ApoC-III for at least 20 min before addition of 

LPL (0.25 g/ml) in a final 200 l mixture. After 30 min incubation under 

agitation at RT, the reaction was stopped by adding 2 ml of mixture of 

isopropanol, heptane and 1 M H2SO4 (40 : 48 : 3), plus 0.5 ml of water. FFA 

were separated using sequential centrifugations in glass tubes for 10 min at 

1500 g to separate the mixture into two phases. After the first centrifugation, 

800 l of the upper phase was transferred and mixed with 1 ml alkaline and 3 

ml heptane before centrifugation. The supernatant (heptane phase) was 

removed and 800 l of the lower phase was transferred to a vial containing 4 

ml of scintillation liquid to count radioactivity using scintillation counter (Perkin 

Elmer, USA). The LPL activity was then expressed as percentage of the H3 -

FFA (dpm) released in the absence of ApoC-III. 
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  Adhesive molecule mRNA assessment (RT-

qPCR) 

After overnight serum starvation in 2% FBS M199 medium, HUVEC were 

treated with recombinant protein ApoC-III-WT, ApoC-III-58E or vehicle control 

for 4 h. Cells were then harvested and RNA was extracted in TRI reagent. 

Subsequent mRNA assessment was done as described in general methods 

(Chapter 2) subtitled real-time quantitative PCR.  

  Statistics 

In vivo animal data were represented as mean  STD and in vitro cell data was 

performed in three biological replicates and shown as mean  SEM. Statistical 

comparisons between two groups were performed using Student’s t-test 

(Mann-Whitney’s test) or one-way ANOVA (Kruskal-Wallis test) where 

appropriate. A linear regression model was used for correlation analysis. *p < 

0.05 was considered as statistically significant for all analyses.   
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  Results 

  Biochemical parameters and conventional lipid 

parameters of the mice models 

All ApoE-/- mice developed dyslipidemia compared with the C57Bl6 baseline 

control (Table 4-1). As expected, mice fed the high cholesterol diet had higher 

serum triglycerides by the middle of the study (18 weeks) and all ApoE-/- mice, 

independent of treatment and diet, had raised total triglycerides by the end of 

the study. By the final time point, the ApoE-/- mice on the high cholesterol diet 

had elevated total cholesterol, which interestingly, and similarly to triglycerides, 

was elevated prior to the diet intervention in the hyperglycemic ApoE-/- mice. 

Serum ApoC-III levels were elevated in mice with hyperglycemia (996 ± 62 

mg/dL) compared with ApoE-/- mice fed either a CD (385 ± 122 mg/dL) or high 

cholesterol diet (400 ± 132 mg/dL) achieving statistical significance (p < 0.05) 

for both comparisons (Figure 4-2). 

As expected, the ApoE-/- mice fed a high cholesterol diet after STZ 

administration exhibited impaired glucose tolerance at all stages of the 

experiments, compared to all other models (Figure 4-3).  
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Table 4-1 Characteristics of mouse serum biochemistry 

 

 

 

 

 

 

 

 

Blood lipid results are presented as mean ± STD (n = 8-10 pooled plasma, 

n=3/pool) or individual mouse plasma compared to wild-type control, *p < 0.05, 

**p < 0.005 by ANOVA (Kruskal-Wallis test). B Results were median, IQR (n = 

8-10) compared to ApoE-/- mice fed a high cholesterol diet by Student’s t-test. 

C Weight data are presented as mean ± STD (n = 8-10) compared to ApoE-/- 

mice fed a CD by by Student’s t-test.  
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Figure 4-2 Serum ApoC-III levels wre measured at 26 weeks of age in control 

(C57Bl6), ApoE-/- mice fed a CD, ApoE-/- mice fed a high cholesterol diet (HCD) 

and ApoE-/- mice fed a high cholesterol diet after administration of STZ 

(HCD+STZ). ApoE-/-
 mice with diabetes fed a HCD demonstrated increased 

serum ApoC-III levels assessed by enzymatic analysis, at week 26. Results are 

presented as mean ± STD (n = 8-10), **p < 0.005 for comparison between 

C57Bl6 mice and ApoE-/- mice fed a high cholesterol diet after administration of 

STZ.  
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Figure 4-3 The glucose concentrations during the IPGTT of various disease 

mice models (A) week 10 (baseline) and, (B) week 18 (mid). Results are 

presented as mean ± STD (n = 8-10) *p < 0.05, **p < 0.005 by ANOVA (Kruskal-

Wallis test).  
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  ApoC-III is present in atherosclerotic plaque and is 

exacerbated in the setting of hyperglycemia 

To explore whether ApoC-III is potentially implicated in atherogenesis within the 

artery wall, and whether it is exacerbated by hyperglycaemia, the 

brachiocephalic artery, subclavian, common carotid artery and aortic arch were 

dissected and assessed for the presence, size and composition of lesions, lipid 

accumulation and ApoC-III.  

As expected, ApoE-/- mice fed a high cholesterol diet demonstrated lipid 

accumulation in aorta, as evidenced by en face ORO staining (Figure 4-4), 

which was extensive in the diabetic mice (23% compared to 9% in ApoE-/-mice 

fed a high cholesterol diet only). Hyperglycaemic mice also demonstrated a 1.6 

fold narrowed vessel lumen (ratio of intima to media), when compared to ApoE-

/- mice only fed a high cholesterol diet.  

To further characterise plaque composition, the aortic root was examined as 

cross section. ORO staining revealed that ApoE-/- mice fed a high cholesterol 

diet after STZ administration developed lesions containing more lipid (24.3% 

v.s. 14.0%) in ApoE-/- mice fed a CD). Cluster of Differentiation 68 (CD68) 

staining revealed a more intense inflammatory composition, with 5-fold greater 

macrophage infiltration in the setting of high cholesterol diet and diabetes 

compared with CD. In association with greater lipid and macrophage content, 
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the mice fed a high cholesterol diet on a background of diabetes demonstrated 

30-40% lower content of fibrous tissue on Masson’s Trichrome staining. One 

STZ treated mouse also demonstrated intra plaque neovascularization, as 

evidenced by CD31 staining, while no mice in the other groups developed such 

intraplaque vascular changes. No difference n smooth muscle cell (SMC-ɑ) 

content was observed between the groups (Figure 4-5).  

Using Western blot analysis to characterise the presence of ApoC-III, we 

identified a greater presence of ApoC-III in the aorta of diabetic Apoe-/- mice fed 

a high cholesterol diet, compared with ApoE-/- mice fed either a high cholesterol 

or CD (Figure 4-6). Immunohistochemistry staining of cross sections of 

bracheochaplic artery demonstrated the presence of ApoC-III depositied within 

the plaques of the STZ-treated mice (Figure 4-7 A, B). There was no significant 

difference in ApoB positive area within plaques of any of the mouse models 

(Figure 4-7 A, C). To examine the potential relationship between presence of 

intraplaque ApoC-III and atherosclerosis, linear regression analysis was 

performed. The degree of ApoC-III deposition was positively associated with 

lesion size (r = 0.59, p = 0.005) and CD68 macrophage staining (r = 0.63, p = 

0.005) in the dyslipidaemic ApoE-/- mice cohort. However, ApoB did not show 

the same correlation, although a non-significant trend of association between 

ApoB staining and plaque size (r = 0.34, p = 0.13) was observed (Figure 4-8 E).   
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Figure 4-4 ApoE-/- mice fed a high cholesterol diet after STZ administration 

demonstrated a greater lesion area in the aorta, assessed by (A) oil red o 

staining (B) Quantification of en face lesion area, n = 4/group, (C) cross 

sectional plaque burden analysis calculated by the ratio of intima to media area. 

*p < 0.05, **p < 0.005 by Mann-Whitney test. 
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Figure 4-5 ApoE-/- mice fed a high cholesterol diet after STZ administration 

developed evidence of a vulnerable plaque phenotype. (A) Histology and 

immunofluorescence of plaque cellular content and plaque morphology 

analysis of (B) lipid infiltration by ORO (C) smooth muscle content (SMC-actin) 

within the plaque, (D) fibrous content by Masson’s thrichrome and CD68 

content normalised to vessel media area. Plaque angiogensis assessed by 



. 

   95 

CD31 staining. Results are presented as mean ± STD (n = 4-10/group) *p < 

0.05, **p < 0.005 by Mann-Whitney test.  
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Figure 4-6 ApoE-/- mice fed a high cholesterol diet after STZ administration have 

increased ApoC-III content in the whole aorta assessed by Western blot, n = 

4/group, *p < 0.05, **p < 0.005 by Mann-Whitney test. 
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Figure 4-7 ApoE-/- mice fed a high cholesterol diet after STZ administration have 

increased ApoC-III plaque infiltration, but not ApoB assessed by (A) 

immunofluorescent ApoC-III staining in ApoE-/- mice fed CD (CD, n = 6), ApoE-

/- mice fed high cholesterol diet (HCD, n = 7), ApoE-/- mice fed a high cholesterol 

diet after STZ administration (HCD + STZ, n = 8). Analysis of proportion of 

plaque staining positive for (B) ApoC-III and (C) ApoB. Results are presented 

as mean ± STD (n = 4-10/group), *p < 0.05, **p < 0.005 by Mann-Whitney test.  
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Figure 4-8 Incrased plaque ApoC-III staining was positively associated with 

more extensive and inflammatory atherosclerotic plaque. Linear regression 

analysis of plaque (A) ApoC-III v.s. lesion size, (B) ApoC-III v.s. CD68, (C) 

ApoC-III v.s. ApoB, (D) CD68 v.s. lesion size and (E) ApoB v.s. lesion size.  
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  Liver and adipose analysis 

To investigate the presence of ApoC-III in organs involved in lipid metabolism, 

liver and adipose tissue were homogenised and analysed by Western blot for 

the abundance of ApoC-III, ABCA1 and SRB1. ApoE-/- mice fed a high 

cholesterol diet after STZ administration demonstrated a 1.5 fold greater ApoC-

III accumulation within liver tissue, which was inversely associated with hepatic 

ABCA1 expression (r = 0.65, p = 0.003). ApoE-/- mice fed a high cholesterol diet 

after STZ administration demonstrated lower hepatic content of both ABCA1 

and SRB1. A non-significant trend towards an inverse association between 

hepatic content of ApoC-III and SRB1 (r = 0.50, p = 0.11) was observed (Figure 

4-9, Figure 4-10).  

In contrast, Western blot analysis of homogenised adipose tissue found very 

low or non-quantifiable amounts of ApoC-III within adipose tissue in all groups 

(data not shown). Furthermore, there was no difference between groups with 

regard to visceral adipose content of ABCA1 and SRB1. All ApoE-/- mice fed a 

high cholesterol diet did demonstrate greater SRB1 levels within subcutaneous 

adipose tissue (Figure 4-11).  
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Figure 4-9 Hepatic ApoC-III, ABCA1 and SRB1 levels. Western blot analysis of 

hepatic levels of ApoC-III (A, C), ABCA1 (B, D) and SRB1 (B, E). Results are 

presented as mean ± STD (n = 4/group) *p < 0.05, **p < 0.005 by Mann-Whitney 

test.  
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Figure 4-10 Abundance of hepatic ApoC-III was negatively associated with 

levels of ABCA1 but not SRB1 in liver. Linear regression analysis of (A) ApoC-

III v.s. ABCA1, (B) ApoC-III v.s. SRB1 in the liver. Regression analysis were 

performed using pearson correlation coefficient.  
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Figure 4-11 Abundance of ABCA1 (A, B, C) and SRB1(A, D, E) in visceral and 

subcutaneous adipose tissue. Results are presented as mean ± STD (n = 

4/group) *p < 0.05, **p < 0.005 by Mann-Whitney test.  
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  Recombinant APOC3-6x histidine (His) protein 

expression 

Based on finding of ApoC-III within plaque, we sought to generate recombinant 

ApoC-III and assess its potential inflammatory activity. Given its presence 

within plaque, the ability to demonstrate that ApoC-III possesses pro-

inflammatory activity might provide further evidence linking it to atherosclerotic 

CVD. Wildtype ApoC-III 6xHis recombinant protein was successfully expressed 

in B385 strain (Figure 4-12). The raw bacteria lysates were followed by nickel 

(Ni)-resin purification and proteins were resolved on 14.5% SDS-PAGE, 

deteted by Coomassie Blue (Figure 4-12 A). The expressed proteins were 

further confirmed by Western blot, as demonstrated by two clear and sharp 

bands approximately 10 kDa (Figure 4-12 B).  
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Figure 4-12 Recombinant ApoC-III-WT and its non-functional mutants were 

expressed in SOC (with 20 mM glucose) medium and inducted by 1 mM IPTG 

at 37 ºC for 2 h. Whole E.coli lysates were run in 14% SDS-PAGE and assessed 

by (A) Coomassie blue staining shown in lane 1-4 and (B) Western blot shown 

in lane 9-12 using anti-6 histidine antibody. E.coli lysate were then roughly 

purified through Talon cobalt metal affinity resin and assessed by (A) 

Commassie blue staining shown in lane 5-8 and (B) Western blot shown in lane 

13-16.  
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  Recombinant ApoC3-6x His inhibits lipoprotein 

lipase activity and induces EC inflammation in 

culture 

After rough purification by Ni-resin, the protein needed to be further purified with 

a MonoQ column, in order to eliminate endotoxin contamination, which is a 

known stimulator of inflammation (190). Aiming to utilise the proteins for further 

experiments, ApoC-III-WT and endotoxins were separated based on their 

polarity with an ascending linear NaCl gradient (0-1000 mM) buffer. ApoC-III 

began to elute at around NaCl concentration 250-400 mM which corresponds 

to fraction 6-8 (Figure 4-13). The endotoxin concentrations were reduced to 

less than 1 endotoxin units per milliliter (EU/ml), which was suitable for use in 

subsequent cell studies (Figure 4-13 B).  

The primary functional property of ApoC-III is the inhibition of lipoprotein lipase 

activity. It has also been reported that ApoC-III may also promote vascular 

expression of pro-inflammatory factors. To confirm the functionality of 

recombinant ApoC-III-WT, LPL activity assays were performed. As expected 

ApoC-III-WT inhibited LPL activity by up to 50%, at a concentration of 2 µM (**p 

< 0.005) (Figure 4-14). Purified ApoC-III-WT was also found to induce HUVEC 

expression of VCAM-1 (1.5 fold, *p < 0.05) and ICAM-1 (2 fold, *p < 0.05), but 

not MCP-1 and IL-8 compared to 2% FBS control (Figure 4-15).   
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Figure 4-13 Endotoxin level assessment of FPLC purified/eluted recombinant 

ApoC-III-WT fractions assessed by Pierce LAL chromogenic endotoxin 

quantification kit. (A) standard curve of endotoxin EU/ml generated from LPS. 

(B) endotoxin level (EU/ml) of fraction 6-8 eluted from FPLC monoQ column, 

which are all < 1 EU/ml.   
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Figure 4-14 The inhibitory effect of purified ApoC-III on LPL hydrolysis of H3-

Triolein (triglycerides). LPL (3 ng/ml) was incubated for 30 min at 37 ºC in a 

total volume of 100 µl with 3H-triolein labelled intralipid in the presence of 

various concentrations of ApoC-III. LPL activity is expressed as the percentage 

of 3H-FFA released in the absence of ApoC-III. Results are mean ± SEM (n = 

3) *p < 0.05, **p < 0.005 by ANOVA (Kruskal-Wallis’ test).  
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Figure 4-15 EC expression (RT-qPCR) of inflammatory markers (VCAM-1, 

ICAM-1, MCP-1 and IL-8) by treating cells with purified ApoC-III-WT (n=3) after 

4 h incubation with 2% FBS control, 10 µg/ml ApoC-III-WT and 2% FBS control 

+ TNFɑ. All data are expressed as mean ± SEM, *p < 0.05 by Student’s t-test. 
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  Discussion 

ApoC-III is well characterised as a regulator of TRL metabolism, via its role in 

the inhiting LPL activity (92, 104), delayed hepatic TRL uptake by LDL receptor 

family (93) and increase hepatic VLDL secretion (91). Additional studies have 

reported that ApoC-III may possess pro-inflammatory effects that may 

contribute to its potential role in promoting CVD risk. In the studies reported in 

this chapter, we investigated the distribution of ApoC-III in mouse models 

dyslipidaemia and diabetes. In the most atherogenic model, the ApoE-/- mouse 

fed a high cholesterol diet on a background of STZ-induced diabetes, we 

observed greater circulating levels of ApoC-III in association with elevations in 

both triglycerides, cholesterol and glucose levels. This associated with the 

presence of ApoC-III within plaque, the extent of which correlated with both the 

size and macrophage content of atherosclerotic lesions. These findings provide 

additional evidence implicating ApoC-III in atherosclerotic CVD.  

Given the role of ApoC-III in the regulation of TRL metabolism and common 

presence of hypertriglyceridaemia in the setting of diabetes, we were 

particularly interested in studying the potential distribution of ApoC-III in a 

mouse model of diabetic dyslipidaemia. These animals demonstrated more 

extensive atherosclerosis and lesions with a vulnerable phenotype, as 

evidenced by more lipid and inflammatory components. This is consistent with 
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prior reports from human studies that diabetic atherosclerosis demonstrates 

greater lipid content, in association with adventitial inflammation and 

neovascularisation, hallmark features of plaque vulnerability (191). The 

demonstrated presence of ApoC-III within these lesions raises the question 

what pathogenic role does intra-plaque ApoC-III play? 

It has been previously reported that ApoC-III may possess pro-inflammatory 

properties in addition to its role in TRL metabolism. These findings include the 

ability of ApoC-III to induces both endothelial expression of VCAM-1 in an NF-

κB mediated process (139) and endoplasmic reticulum stress in smooth muscle 

cells via the Akt pathway (192). In preliminary work, we expressed a 

recombinant form of wild type ApoC-III and demonstrated that it not only 

resulted in LPL inhibition, but also reproduced endothelial expression of pro-

inflammatory adhesion molecules. While these findings are supportive of a 

potential role for ApoC-III within the artery wall, this will require further 

investigation to fully establish. Future work should also enable characterisation 

of the impact of ApoC-III on other inflammatory factors and to determine 

whether ApoC-III mutants, which do not inhibit lipoprotein lipase, similary lose 

their pro-inflammatory activity.  

We also investigated the potential association of ApoC-III with diabetic 

dyslipidaemia through analysis of the liver and adipose tissue, two organs 
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involved in lipid metabolism (193, 194). A greater accumulation of hepatic 

ApoC-III was observed and associated inversely with hepatic ABCA1 

expression. Given the role of ABCA1 in regulation of reverse cholesterol 

transport, these findings may provide support for additional factors promoting 

both hypertriglyceridaemia and low HDL-C levels in the setting of diabetes. 

Studies have reported that hepatic specific ABCA1 deletion resulted in higher 

plasma triglyceride levels, decreased HDL-C and accelerate renal clearance of 

HDL in mice (195). In contrast, we did not observe such a relationship in 

adipose tissue, in which our analytic approach failed to detect quantifiable 

levels of ApoC-III. While these findings suggest that the liver may play an 

important role in lipid homeostasis, future work can explore the specific impact 

on both lipid metabolism and HDL functionality.  

In summary, our observational analysis revealed the presence of ApoC-III 

within both atherosclerotic plaque and the liver in a well validated model of 

diabetic dyslipidaemia. The presence of ApoC-III in association with features of 

more extensive and vulnerable atherosclerotic plaque, combined with 

preliminary observations of potential pro-inflammatory activity of ApoC-III 

suggest that there may be alternative links between ApoC-III and 

atherosclerosis, beyond its role in elevating triglyceride levels. Whether 

additional anti-atherosclerotic benefits may be derived from use of interventions 

aiming to reduce ApoC-III function require further investigation.  
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Chapter 5.  Apolipoprotein C-III in 

an obese mouse model   
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  Abstract 

Introduction—The role of ApoC-III in the regulation of TRL metabolism may 

provide an important link between obesity, diabetes and atherosclerosis. In the 

preceding chapter, we have observed accumulation of ApoC-III within 

atherscletoric plaque and liver in mouse models of dyslipidaemia and diabetes. 

The tissue distribution of ApoC-III in the setting of obesity is a subjet of interest, 

with the potential to further influence lipid metabolism and atherogenesis. 

Methods and Results—Obese mice (LepOb/Ob) were fed either a chow or high 

cholesterol diet for 16 weeks. Plasma glucose, lipid parameters and ApoC-III 

were measured. Harvested tissue samples of aorta, liver and adipose tissue 

were analysed by immunocytochemistry and Western blot to characterise the 

expression of ApoC-III and lipid transporters. Compared with C57Bl6 controls, 

Lepob/ob mice demonstrated higher serum ApoC-III concentrations. However, 

this did not associate with greater accumulation of ApoC-III within the liver. In 

contrast to our prior observations of diabetic mice, we did not observe an 

inverse correlation between hepatic levels of ApoC-III and ABCA1.  

Conclusion—The increase in serum ApoC-III levels in LepOb/Ob mice, in 

contrast to the results observed in ApoE-/- mice, did not associate with greater 

hepatic ApoC-III accumulation.  
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  Introduction 

In the previous chapter, we observed that the setting of diabetic dyslipidaemia 

associated with elevated serum ApoC-III levels and expression of ApoC-III 

within atherosclerotic plaque. This vessel wall staining of ApoC-III associated 

with both the burden and macrophage content of plaque. Furthermore, greater 

accumulation of ApoC-III within the liver was observed, which inversely 

associated with its expression of the lipid transporter ABCA1. The studies in 

this chatper aim to further characterise the distribution of ApoC-III and its 

association with hepatic ABCA1 in a well validated mouse model of obesity. 

Obesity and type 2 diabetes have become increasingly prevalent, resulting in 

major medical complications and mortality worldwide. The association of 

obesity and diabetes with atherogenic dyslipidaemia, hypertension and 

activation of inflammatory and oxidative pathways are likely to underscore the 

increase in CVD risk observed with these states (33, 34). Mechanistic studies 

have demonstrated that adipocyte biology is altered in the setting of abdominal 

obesity and diabetes, leading to a greater elaboration of factors that have the 

potential to activate inflammation, oxidative stress and thrombosis (196-198). 

These factors are likely to contribute to observations of more extensive and 

vulnerable atherosclerotic plaque on imaging in the setting of obesity (199, 200).  
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Obesity associates with an atherogenic dyslipidaemic phenotype, 

characterised by hypertriglyceridaemia, low levels of HDL cholesterol and a 

preponderance of low, dense LDL particles (34, 201, 202). While greater activity 

of ApoC-III is likely to contribute to less LPL activity and greater TRL 

concentrations (92), the relationship between adipose and ApoC-III has not 

been fully established. Recent studies using an antisense oligonucleotide 

against ApoC-III (ASO-ApoC-III) in ApoE-/-Ndst1fl/flAlb-Cre+ mice resulted in an 

increase in LPL activity within adipose tissue and a reduction in circulating 

triglyceride levels (203). While this supports the concept that ApoC-III may play 

an important role in the setting of obesity, further investigations are needed. 

The aim of the studies described in this chapter were to investigate the 

expression and distribution of ApoC-III in a well validated mouse model of 

obesity. The specific aims included: 

1. To determine expression of ApoC-III within the liver and adipose tissue. 

2. To determine whether the inverse association of hepatic expression of 

ApoC-III and ABCA1 observed with diabetic dislipidaemia is also seen in 

obesity. 

The hypothesis of these studies was that the pattern of ApoC-III expression and 

its association with cholesterol transporters regulating lipid metabolism in 

diabetic dyslipidaemia would also be observed in obesity.   
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  Methods 

  Animals 

The animal studies were approved by the Animal Ethics Committees of South 

Australian Health and Medical Institute (SAHMRI) (SAM186) and the University 

of Adelaide (M-2015-254). At 8 weeks of age, LepOb/Ob (ObOb) mice were 

allocated into two groups: (1) ObOb mice fed a CD for 18 weeks and (2) ObOb 

mice fed a high cholesterol diet (0.15% cholesterol, 21% total fat) ad libitum for 

16 weeks. In parallel, wild-type C57BL6 mice were fed on a CD. High 

cholesterol diet feeding commenced at 10 weeks in the animals allocated to 

that group. Mice were bled and weighed at age of week 10 (baseline), week 18 

(mid) and week 26 (final).  
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Figure 5-1. Schematic diagram of the experimental design of wild-type and 

Lepob/ob mice fed a chow or high cholesterol diet. C57Bl6 mice (wild-type control) 

and Lepob/ob at the age of 8 weeks were placed on either a chow or high 

cholesterol diet ad libitum until 26 weeks of age. Mice were weighed and bled 

at week 10 (baseline), week 18 (mid) and week 26 (final).  
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  Dextran precipitation of HDL and determination of 

lipoprotein and lipid levels 

Method for small volume HDL extraction was dapted from (140). Briefly, serum 

were incubated with Dextran-sulfate (MW: 50,000) in Mg2+ working solution for 

10 min at room temperature and followed by a refrigenrate centrifugation (4 ºC) 

for 30 min. Large molecular protein ApoB were precipitated. The top clear 

supernant was used for assessment of total triglyceride, cholesterol and ApoC-

III levels as described in Chapter 2 (general methods).  

  Statistics 

In vivo animal data were presented as mean  STD and in vitro cell experiments 

were performed in three biological replicates and the data were shown as mean 

 SEM. Statistical comparisons among groups were performed using Student’s 

t-test (Mann-Whitney’s test) or one-way ANOVA where appropriate (Kruskal-

Wallis’ test). A linear regression model was used for correlation analysis. *p < 

0.05 was considered as statistically significant for all analyses.  
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  Results 

  Biochemical parameters in mice 

Predicatably, Lepob/ob mice demonstrated a greater weight in both dietary 

groups compared with the C57Bl6 control animals. Serum measures of lipid 

paramters, glucose and ApoC-III are summarised in Table 5-1. As previously 

reported, Lepob/ob mice developed persistent hyperglycaemia from age of week 

18, which was more pronounced in animals fed a high cholesterol diet. No 

significant difference in triglyceride levels was observed between the groups. 

In contrast, at week 26, Lepob/ob mice demonstrated greater levels of total 

cholesterol and HDL cholesterol, more pronounced with high cholesterol 

feeding, compared with C57Bl6 mice. Serum ApoC-III levels were greater in 

Lepob/ob mice fed a chow (949 ± 119 mg/dL) or high cholesterol (1023 ± 33.46 

mg/dL) diet compared with C57Bl6 mice (323 ± 122 mg/dL, p = 0.0003).  
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Table 5-1 Biochemical and conventional lipid parameters of Lepob/ob mice. 

 

 

 

 

 

 

 

 

 

 

 

A Results were expressed as mean ± STD (n = 8-12) from tests of pooled (n = 

3/pool) or individual mouse plasma compared to the wild-type C57Bl6 control, 

*p < 0.05, **p < 0.005 by ANOVA (Kruskal-Wallis test). B Results were 

expressed as median, IQR compared to CD-fed Lepob/ob mice by Student’s t-

test (Mann-Whitney’s test). C Results were mean ± STD compared to the wild-

type C57Bl6 mice by Student’s t-test (Mann-Whitney’s test).   
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  Tissue expression of ApoC-III and ABCA1 

In contrast to our observations in the preceding chapter of the impact of high 

cholesterol feeding in ApoE-/- mice rendered diabetic with STZ, We did not 

observe the development of aortic atherosclerosis with the same diet at week 

26 (Figure 5-2 a). This was observed despite the obese mice demonstrating 

elevated levels of glucose, cholesterol and ApoC-III, yet paradoxically these 

animals also had higher HDL-C levels, which has been previously reported 

(204). Despite greater circulating ApoC-III levels, Lepob/ob mice did not 

associate with greater hepatic accumulation. In fact, these obese mice 

demonstrated a reduction in both hepatic ApoC-III and SRB1 levels when fed 

a high cholesterol diet, compared with C57Bl6 controls (Figure 5-2 b). In a 

similar fashion, analysis of adipose tissue demonstrated no difference in ApoC-

III, ABCA1 or SRB1 levels in the Lepob/ob groups compared with non-obese 

control mice (Figure 5-2 j, k).   
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Figure 5-2 Increased serum ApoC-III levels did not associate with changes in 

hepatic accumulation of ApoC-III and was not inversely correlated with hepatic 

contnt of ABCA1 and SRB1 in Lepob/ob mice. (a) ORO and Masson’s trichrome 

staining to assess aortic root of LepOb/Ob mice. (b) Western blot analysis of 

hepatic (f) ApoC-III protein, (g) ABCA1 and (h) SRB1. Western blot analysis of 

(j) visceral adipose and (k) subcutaneous adipose in expression of (I, n) ABCA1 

and (m, o) SRB1. Results were mean ±STD (n = 4/group), *p < 0.05, **p < 0.005 

by one-way ANOVA (Kruskal-Wallis’ test) or Mann-Whitney’s test.  
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  Discussion 

In mouse models of dyslipidaemia and diabetes we had presented in Chapter 

4 that elevated serum ApoC-III levels associated with accumulation of ApoC-III 

within atherosclerotic plaque and the liver. While the vascular ApoC-III directly 

correlated with the presence of more extensive and vulnerable atherosclerosis, 

its accumulation within the liver associated inversely with factors implicated in 

lipid transport. Given the association between obesity and diabetes, we sought 

to determine whether hepatic and adipose ApoC-III accumulation was altered 

in the setting of adiposity. While we observed greater ApoC-III levels within the 

serum of obese Lepob/ob mice, this did not translate to greater content of ApoC-

III within both the liver and adipose tissue. Furthermore, the inverse association 

between hepatic ApoC-III and ABCA1 observed in a diabetes model was not 

replicated in this mouse model of obesity. 

A number of observations from this study highlights the distinction between the 

Lepob/ob mouse and models of diabetes. The Lepob/ob mice fed a high cholesterol 

diet demonstrated greater weight, glucose and total cholesterol levels. However, 

despite greater levels of ApoC-III, there were no differences in triglycerides 

compared with control mice. Furthermore, HDL-C levels were elevated in the 

Lepob/ob mice, consistent with prior reports. These findings with regard to 

triglyceride and HDL-C levels contrast with typical findings of atherogenic 
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dyslipidemia in obesity in human studies. While this is a commonly used mouse 

model for the study of obesity, it does not reflect fundamental differences from 

humans that should be considered with regard to interpretation and potential 

implications of the findings.  

In contrast to our findings of diabetic dyslipidaemia, the elevated serum ApoC-

III levels in the Lepob/ob mice did not associate with greater hepatic accumulation. 

We also failed to demonstrate an inverse correlation between ApoC-III and 

ABCA1 levels within the liver. Whether this is a consequence of elevated ApoA-

I and HDL-C levels in these animals is unkown (204). As lipid transporter 

expression within the liver plays a role in reverse cholesterol transport, it is 

possible that effects on hepatic ABCA1 may influence circulating levels of HDL 

biomarkers. ABCA1 expression is regulated in various tissues in reponse to a 

range of transcription factors, predominantly PPARɑ and liver X receptor ɑ 

(LXRɑ) (205, 206). Given the pivotal role of ApoC-III in the inhibition of 

lipoprotein lipase activity (92, 207) and the subsequent ability of TRL lipolysis 

to generate PPAR ligands (208), it is possible that ApoC-III could play a role in 

down-regulation of hepatic ABCA1 levels. Given the greater accumulation of 

hepatic ApoC-III in the diabetes model compared with the Lepob/ob mice, this 

may contribute to the differences we observed in the two studies. It is also 

acknowledged that the relationship between humans and mouse models in 

terms of PPARɑ activity and ApoA-I metabolism are variable (204, 206, 209, 
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210), further confounding the ability to delineate the role of these factors in 

obesity. Additional studies will be required to determine the full impact of ApoC-

III on PPARɑ and LXRɑ activity in the liver and its ultimate effect on lipid 

metabolism. 

We also failed to observe the development of atherosclerotic plaque in these 

obese mouse models, even in the setting of high cholesterol feeding. To what 

degree this reflects the elevated HDL-C levels encountered in the Lepob/ob 

mouse and the reported protective properties of HDL are unknown. It is also 

possible that longer term studies may ultimately results in the formation of 

plaque, which would contrast from the rapid atherosclerotic process observed 

with diabetic dyslipidaemia. Whether alternative models of obesity may produce 

difference results would also require further investigation. 

In summary, an elevation in circulating ApoC-III levels in a well validated mouse 

model of obesity did not translate to vascular wall infiltration or hepatic 

accumulation. Furthermore, the distribution of ApoC-III in the setting of diabetes 

and its association with expression of lipid transporters was different. These 

findings suggest potential differences between obesity and diabetes with regard 

to tissue distribution of ApoC-III and subsequent influence on lipid metabolism. 
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Chapter 6.  Effect of human 

hypertriglyceridaemic serum on 

hepatic expression of factors 

regulating lipid metabolism  
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  Abstract 

Introduction—While ApoC-III inhibits lipoprotein lipase and potentially impairs 

HDL cholesterol efflux capacity, its influence on other factors involved in HDL 

metabolism are not well defined. In Chapter 4, we observed that hepatic 

accumulation of ApoC-III in a mouse model of diabetic dyslipidaemia inversely 

correlated with ABCA1 levels. Accordingly, the study in this chapter aimed to 

evaluate the impact of co-incubating serum from individuals with different 

triglyceride levels on hepatic expression of factors regulating lipid metabolism.  

Methods and Results— Serum from patients (n = 15) in a cardiology clinic, 

categorised as having normal (< 2 mmol/L), high (2 mmol/L-6 mmol/L) and very 

high (> 6 mmol/L) triglyceride levels, was co-incubated with HepG2 cells. Co-

incubation of serum from the very high triglyceride group associated with lower 

expression of PPARɑ and cytoplasmic ABCA1. On correlation analysis, serum 

levels of ApoC-III, but not HDL-C, inversely correlated with expression of 

PPARɑ and cytoplasmic ABCA1.  

Conclusion—Incubation of serum from hypertriglyceridaemic patients with 

HepG2 cells resulted in less expression of PPARɑ and cytoplasmic ABCA1, 

which associated with ApoC-III levels. This raises the possibility that ApoC-III 

may influene lipid metabolism beyond its effects on lipoprotein lipase.  
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  Introduction 

The major focus of the studies performed in this thesis have been to 

characterise the potential relationship between atherosclerosis and both TRL 

and ApoC-III. The findings have extended from observations that TRL modified 

by MPO have adverse effects on EC and that ApoC-III is found within more 

extensive and inflammatory atherosclerotic plaque in a mouse model of diabetic 

dyslipidaemia. In parallel, we have also observed that MPO-modified TRL 

incubation with EC associated with lower expression of ABCG1 and the diabetic 

dyslipidaemia mouse model demonstrated lower levels of hepatic ABCA1, 

which correlated inversely with increasing levels of ApoC-III. These findings 

suggest potential mehcanisms by which TRL and ApoC-III may modulate 

reverse cholesterol transport and lipid metabolism.  

Cohort studies have commonly demonstrated the association between 

elevated triglycerides and low levels of HDL cholesterol (6, 25, 211, 212). This 

combinantion, along with the presence of small, dense LDL particles is typically 

referred to as atherogenic dyslipidaemia and associates with the presence of 

type 2 diabetes and an increased risk of atherosclerotic CVD (213-215). The 

finding that HDL cholesterol levels inversely associate with CVD risk (20, 152) 

and that HDL possess functional properties (154-156) that may confer a 

favourable effect on atherosclerosis have promoted interest in understanding 
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the factors that regulate HDL metabolism. Nascent, lipid-deplete forms of HDL 

are formed by the packing of ApoA-I with phospholipid into discoidal particles. 

ApoA-I is derived from both the liver and small intestine, produced in response 

to the activity of a number of transcription factors, including PPARɑ and LXRɑ 

(206). These lipid-deplete HDL particles are avid recipients of cholesterol 

effluxed from cells via ABCA1 (60, 216). The presence of free cholesterol on 

the HDL surface is esterified in a process facilitated by lecithin-cholesterol 

acyltransferase (LCAT) and subsequently stored within the particle core (217). 

The resulting larger, spherical HDL particles can continue to promote 

cholesterol efflux, albeit via different transporters such as ABCG1 and SRB1 

(218, 219). Ultimately, cholesterol is delivered to the liver and other ograns, 

such as the adrenal glands, with uptake promoted via the same families of 

transporters (220). In parallel, some cholesterol ester is transferred from HDL 

to VLDL and LDL particles, in a process facilitated by CETP (221). This 

provides an alternative pathway for cholesterol delivery to the liver via the LDL 

receptor. Within the circulation, HDL particles are remodeled by a number of 

factors including the family of lipases (liporptein, hepatic, endothelial) (222) and 

phospholipid transfer protein (PLTP) (223, 224), which serve to influence the 

size and composition of HDL, with consequent effects on their metabolism. 

Given the impact of elevated triglyceride levels on a number of these factors, it 
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is therefore likely that the presence of hypertriglyceridaemia is likely to influence 

HDL metabolism. 

In the preceding chapters, we have made a number of interesting observations 

involving factors implicated in HDL metabolism. The cellular studies in Chapter 

3 demonstrated that incubation of EC with MPO modified TRL demonstrated 

reduced expression of ABCG1. The subsequent mouse studies, particularly in 

the setting of diabetic dyslipidaemia, revealed that hepatic accumulation of 

ApoC-III inversely correlated with expression of ABCA1. A similar trend was 

observed from hepatic SRB1 expression, although this just failed to meet 

statistical significance. These findings suggest potential mechanisms that may 

underscore links between hypertriglyceridaemia and HDL metabolism. 

The aims of the study described in this chapter were to investigate the impact 

of incubating serum from patients with different triglyceride levels on hepatic 

expression of factors involved in lipid metabolism using a HepG2 cell model. 

The specific aims included: 

1. To determine expression of transcription factors implicated in ApoA-I 

synthesis 

2. To determine expression of transporters involved in reverse cholesterol 

transport. 
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The hypothesis of this study was that the presence of higher triglyceride levels 

would associated with reductions in expression of factors involved in the 

formation and remodeling of HDL particles.  

 Methods 

  Subjects 

Serum samples were collected from patients aged between 18 years and 85 

years found in the cardiology outpatient clinics at the Royal Adelaide Hospital 

(RAH). Medical history and concomitant medication use was recorded. Serum 

was isolated from blood samples for use in the cellular studies. Patients were 

categorised into three groups according to their levels of serum triglycerides. 

Patients treated with a fibrate, pregnant and breastfeeding women and those 

unable to provide written and informed consent were excluded from the study. 

All protocols were approved by Central Adelaide Local Health Network/Royal 

Adelaide Hospital Research Ethics Committee/Royal Adelaide Hospital 

(CALHN/RAH). For the purpose of the cellular experiments, serum from 

patients with normal (normal < 2 mmol/L), high (2 mmol/L-6 mmol/L) and very 

high (> 6 mmol/L) triglyceride levels (n = 5 per group) were assessed. 



. 

   132 

  Cell culture 

HepG2 cells were cultured in Low-glucose DMEM supplemented with 10% FBS 

and 10 mM L-glutamine. Cells were serum starved for 3 h to bring all the signal 

down and treated with serums from patients for 1 h. Cells were harvested, and 

cell lysates were analysed by Western blotting to assess expression of 

transporters involved in reverse cholesterol transport (SRB1, ABCA1) and 

transcription factors implicated in biosynthesis of ApoA-I (LXRɑ, PPARɑ, 

PPARγ). 

  Statistical analysis 

Patients were stratified into three groups according to their serum triglyceride 

levels: normal triglycerides (normal TG, < 2 mmol/L, n = 5), high triglycerides 

(high TG, 2 mmol/L-6 mmol/L, n = 5) and very high triglycerides (very high TG, > 

6 mmol/L, n = 5). Continuous clinical variables were presented as means and 

STD and categorical varibles are presented as integers. Age, height, weight 

and triglyceride levels were presented as median and interquartile range (IQR). 

To identify the relationship between ApoC-III, triglycerides and HDL-C, 

correlations were performed using spearman correlation coefficient as sample 

size was less than 10. Statistical significance was assessed using one way 

ANOVA (Kruskal-Wallis’ test). All statistical analyses were performed with 

Prism.   
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  Results 

  Biochemical and conventional lipids parameters  

Demographic information, clinical and lipid parameters of subjects were 

summarised in Table 6-1. Patients with the highest triglyceride levels also 

demonstrated the highest serum level of total cholesterol (p = 0.0009) and 

known history of hypercheolesterolemia (p = 0.04). This was associated with 

non-significant trends towards higher levels of LDL cholesterol and lower levels 

of HDL cholesterol. Patients with the highest triglyceride levels also 

demonstrated the highest levels of ApoC-III (p = 0.04).   
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Table 6-1 Characteristics of the study population 

 

 

 

 

 

 

 

 

 

 

 

  

Triglycerides, TG; LDL, low-density lipoprotein; HDL, high density lipoprotein. 

Results were presented as mean ± STD or as median, IQR. *p < 0.05, **p < 

0.005, ***p < 0.0005 by one-way ANOVA (Kruskal-Wallis’ test).   
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  HepG2 expression of lipid regulating factors 

Human hepatocarcinoma cells HepG2 cells were treated with serum from 

patients with different triglyceride levels for 1 h. Cell lysates underwent analysis 

of expression of factors involved in the regulation of lipid metabolism by 

Western blotting. Serum with highest levels of triglyceride and ApoC-III 

demonstrated the lowest cellular expression of PPARɑ (p = 0.04, Figure 6-1 f) 

and cytoplasmic ABCA1 (p = 0.02, Figure 6-1 c), and in contrast, an increase 

in SRB1 (p = 0.01, Figure 6-1 d). While the reduced expression of LXRɑ when 

cells treated with serum from patients with high triglycerides (p = 0.0004), this 

was no longer observed in the presence of serum from those with very high 

triglyceride levels (Figure 6-1 a, e ).  

Predictably, a direct correlation was observed between HepG2 expression of 

PPARɑ and ABCA1 (r = 0.83, p = 0.008). Expression of LXRɑ, however, did not 

significantly associate with ABCA1 (r = 0.55, p = 0.13) (Figure 6-2). An inverse 

correlation was observed between serum ApoC-III levels and HepG2 

expression of both PPARɑ (r = -0.77, p = 0.02) and cytoplasmic ABCA1 (r = -

0.86, p = 0.0045), but not LXRɑ (r = 0.18, p = 0.64). As opposed to serum ApoC-

III, HDL cholesterol levels did not significantly associate with HepG2 expression 

of any of the factors investigated (Figure 6-3).  
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Figure 6-1 Inhibition of PPARɑ-cytoplasmic ABCA1 expression in HepG2 cells 

treated with serums with elevated TG and ApoC-III. (a) Western blot analysis 

and histograms represent the protein levels normalised to either laminB or actin: 

(b) nuclear ABCA1, (c) cytoplasmic ABCA1, (d) SRB1, (e) LXRɑ, (f) PPARɑ, (g) 

PPAR. Results were means ± STD (n = 8-10) *p < 0.05, **p < 0.005 by one-

way ANOVA (Kruskal-Wallis’ test).   
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Figure 6-2 Linear regression analysis demonstrated that cytoplasmic ABCA1 

expression was correlated with PPARɑ but not LXRɑ: (a) ABCA1 (cytoplasmic) 

v.s. PPARɑ, (b) ABCA1 (cytoplasmic) v.s. PPARɑ. Regression analysis were 

performed using non-parametric Spearman correlation coefficient as sample 

size was less than 10.  
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Figure 6-3 Serum ApoC-III was correlated with PPARɑ-ABCA1 but not LXRɑ, 

however HDL-C was not correlated with PPARɑ-ABCA1: (a) ApoC-III v.s. 

ABCA1, (b) ApoC-III v.s. PPARɑ, (c) ApoC-III v.s. LXRɑ, (d) HDL-C v.s. ApoC-

III, (e) HDL-C v.s. ABCA1 and (f) HDL-C v.s. PPARɑ. Regression analyses 

were using non-parametric Spearman correlation coefficient as sample size 

was less than 10.  
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  Discussion 

While the primary objective of this thesis was to investigate the potential role of 

TRL and ApoC-III in the pathogenesis of atherosclerosis, a number of additional 

findings have suggested they may also have a relationship with expression of 

factors involved in HDL metabolism. We sought to investigate this further by 

incubating serum from patients with different triglyceride levels and hepatic 

cellular expression of transcription factors and lipid transporters. Serum from 

patients with the highest triglyceride levels associated with the lowest cellular 

expression of both PPARɑ and ABCA1, with further evidence that this 

correlated inversely with ApoC-III, but not HDL cholesterol levels.  

While the clinical association of high triglycerides and low levels of HDL 

cholesterol is well recognised, particularly in the settings of obesity, insulin 

resistance and diabetes (33, 225, 226), the factors linking these lipid 

abnormalities are not completely established. The presence of 

hypertriglyceridaemia stimulates activity of a family of lipases, which remodel 

both LDL and HDL particles (227, 228). The generation of smaller HDL particles 

alters their catabolic rate, contributing to lower circulating HDL cholesterol 

levels (229, 230). To what degree, the presence of more TRL influences other 

factors that regulate the synthesis and metabolism of HDL particles remains 

uncertain. In addition, the impact of elevated triglyceride levels on a range of 
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HDL functional properties, particularly those involved in lipid transport, require 

further investigation.  

A number of potential limitations of the current study should be noted. A small 

number of participants was enrolled, thus the findings can be interpreted as 

preliminary at best and warrant more extensive investigate in larger cohorts. 

Some patients were treated with a statin, which can influence regulation of 

factors implicated in cholesterol metabolism. The findings are observational 

and reflect a limited duration of cellular exposure to serum. To what degree 

these findings persist over longer periods of time are uncertain. As evidenced 

in the setting of postprandial elevation in TRL concentrations, transit changes 

in plasma lipids may have different effects than long term fasting levels. The 

findings also reflect observations involving one hepatic cellular line, whether 

they can be translated to the in vivo setting requires further investigation. 

Ultimately, whether these features can be modified with triglyceride lowering 

would require a serial study. 

In summary, this pilot study demonstrated that serum from patients with very 

high triglyceride levels associates with reduced expression of some factors 

involved in the regulation of HDL synthesis and lipid transporting activity in a 

cellular study. While observational in nature, the findings suggest potentially 

additional mechanisms that may link the presence of high triglycerides and low 
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levels of HDL cholesterol. How these features contribute to cardiometabolic risk 

requires further investigation in large, prospective cohorts. 
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Chapter 7.  Final discussion 
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  General summary 

With all increasing prevalence of obesity and type 2 diabetes, there is 

considerable interest in understanding the factors that underscore the 

heightened cardiovascular risk observed in these settings. While the role of 

dyslipidaemia in atherosclerosis has largely focused on the causal role of LDL 

and potential protective properties of HDL, triglycerides and associated factors 

have received recent attention. The studies in this thesis aimed to investigate 

the potential role of TRL and ApoC-III, a major factor regulating their 

metabolism, in cellular and animal models of metabolic disease and 

atherosclerosis. Three major observations were made in these studies, 

including (i) MPO-modified TRL exert adverse effects on entodhelial cells 

implicated in vascular repair and early stages of atherosclerosis, (ii) the 

presence of ApoC-III within extensive and inflammatory atherosclerotic plaque 

in a mouse model of diabetic dyslipiaemia and (iii) that triglycerides and ApoC-

III may inversely correlated with factors that regulated HDL metabolism. These 

observational findings provide further potential mechanisms that may 

underscore hypertriglyceridaemia and atherosclerotic CVD. 

  Atherogenicity of TRL 

Increasing evidence from both population studies and genomic analyses have 

demonstrated an association between TRL and atherosclerotic cardiovascular 
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disease. While the causal role of LDL in atherosclerosis has been well 

established, the impact of TRL has not been clearly established. In our studies 

we aimed to investigate the effect of TRL coincubation on EC properties 

implicated in cardiovascular disease. The studies in Chapter 3 demonstrated 

no adverse effect of TRL in their native state. However, when TRL had 

undergone oxidative modification by MPO, they resulted in endothelial changes 

characterised by an increase in expression of pro-inflammatory factors and 

impairment of cellular proliferation and migration pivotal in vascular repair. 

These findings support the conpcet of direct atherogenicity of oxidised forms of 

TRL, in a process that is analogous to that observed with LDL.  

In parallel, we observed that the adverse effects of MPO modified TRL on EC 

were attenuated in the setting of co-incubation with HDL. This suggests the 

potential for additional protective properties of HDL that require further 

investigation. Contributing to the complexity of the relationship between 

triglycerides and HDL, we also observed that incubation of EC with TRL 

regulated in a reduction in expression of the lipid transporter, ABCG1, which 

plays an important role in regulation of HDL metabolism. Additional cellular 

studies should investigate the impact of alternative forms of TRL modification 

and their potential atherogenic effects. Furthermore, studies in 

hypertriglyceridemic mouse models will provide the opportunity to directly 

investigate their effect on vascular inflammation and repair in the in vivo setting.  
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  ApoC-III and atherosclerotic plaque 

With increasing evidence implicating TRL in atherosclerotic cardiovascular 

disease, there has been interest in the factors that regulate their metabolism. 

ApoC-III has been demonstrated to have a number of functional properties, 

including inhibition of LPL (92), preventing binding of lipoproteins to the LDL 

receptor (93) and promoting β-cell death within the pancreas, providing a 

potential common link between obesity, dyslipidemia and diabetes. In our 

mouse studies, we demonstrated that diabetic dyslipidemia associated with an 

increase in circulating ApoC-III levels, more extensive atherosclerotic plaque 

and the presence of ApoC-III within these lesions in the artery wall. Subsequent 

examination revealed that the extent of artery wall staining of ApoC-III directly 

associated with both the extent and macrophage composition of atherosclerotic 

plaque. These findings suggest not only the presence of ApoC-III within plaque, 

but also the potential for direct functional activity inside the vessel wall. Wether 

these findings would also be present in other mouse models of atherosclerosis 

is unknown. 

Understanding the functional effects of ApoC-III within the artery wall can be 

realised by performing a number of different studies. In preliminary experiments, 

we investigated the functional properties of ApoC-III generated by an E.coli 

expression system. In additionl to inhibiting LPL, this form of ApoC-III resulted 
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in greater endothelial expression of pro-inflammatory adhesion molecules 

following incubation. Further studies will enable characterisation of additional 

inflammatory effects, not only on EC, but importantly on other cellular 

components of atherosclerotic plaque. This expression system also permits the 

generation of ApoC-III mutants, which lack the capapcity of inhibit LPL. Whether 

this will result in similar reduction in th potential pro-inflammtory effects remains 

to be determined, but may provide insights with regard to site-specific mutations 

and functional properties of ApoC-III.  

  ApoC-III and factors regulating HDL metabolism  

In addition to the observations of a potential role of ApoC-III directly within 

atherosclerotic plaque accumulating within the artery wall, our studies also 

suggest a potential association with factors regulating HDL metabolism. In the 

setting of diabetic dyslipidaemia, we observed that greater circulating levels of 

ApoC-III associated with an increased presence of ApoC-III within the liver. 

Correlation analysis demonstrated an inverse association between hepatic 

levels of ApoC-III with both ABCA1 and PPARɑ, both factors involved in HDL 

metabolism. Subsequent incubation of serum from patients with very high 

triglyceride levels resulted in lower expression of both ABCA1 and PPARɑ by 

HepG2 cells in an inverse association with ApoC-III levels. These findings 

further suggest a potential link between ApoC-III, TRL and HDL metabolism. In 
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contrast, the greater circulating levels of ApoC-III in an oberse model moudel 

did not associate with changes in either levels of ApoC-III, ABCA1 or PPARɑ 

within the liver.  

The findings suggest that ApoC-III and impaired TRL metabolism may 

contribute to an alterations in HDL metabolism via changes in both 

apolipoprotein synthesis and expression of co-transporters involved in lipid 

transport. In parallel, there are some reports that increasing ApoC-III content of 

HDL associates with an impairment of their ability to promote cholesterol efflux 

in cellular studies (102). The degree to which this influences reverse cholesterol 

transport and other functional properties of HDL remains to be determined in 

additional cellular and animal studies. The findings also raise the potential for 

therapies that either lower triglycerides or inhibit ApoC-III may influence the 

level or functional quality of HDL. The early experience with agents that target 

ApoC-III have yielded variable results, with a lack of HDL-C raising using ASO-

ApoC-III (231) and a monoclonal antibody-ApoC-III (127), in most mouse 

models (93, 203), while in contrast a N-acetyle alactosamine-conjugated ASO-

ApoC-III produced a dose-dependent elevation in HDL-C (232)  

  Future directions 

The findings of our studies are observational and while they propose a number 

of mechanistic interactions between TRL and ApoC-III with atherosclerosis and 
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HDL metabolism, this will require more extensive investigate. This will involved 

elucidation of the specific factors that link TRL and ApoC-III with pathways 

involved in atherosclerosis in both cell and animal studies. The ability to express 

both wild type and mutant forms of ApoC-III and generate different forms of 

chemical modification of TRL, particularly when isolated from patients with 

different metabolic states, will provide further insight into their potential impact 

on cardiometabolic risk. More extensive studies of atherosclerotic plaque using 

both animal and human marterial will permit a greater understanding of the 

potential impact of TRL and ApoC-III within the artery wall. As increasing 

attention focuses on the development of a range of therapeutic interventions 

targeting triglycerides or ApoC-III, their impact on these biological properties 

will be of interest. 

  Conclusion 

The increase in abdominal adiposity has seen a rise in the prevalence of 

diabetes, atherogenic dyslipidaemia and cardiovascular risk. Accordingly, there 

is considerable interest in determining optimal approaches to reducing this risk, 

which remains substantial despite use of evidence based therapies. Our studies 

suggesting a potential link between TRL, diabetes, HDL metabolism and 

atherosclerosis provides a number of mechanistic pathways that warrant further 
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investigation, in order to develop more effective approaches to treating 

cardiometabolic risk.   
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Appendix  

ApoC-III WT and mutants sequencing  

  APOC3-WT-1 Combined Sequences 

 

Blasted  

 

Translated sequences: 

 

  

AGGACCCAACGCTGCCCGAGATCTCGATCCCGCGAAATTAATACGACTCAC
TATAGGGAGACCACAACGGTTTCCCTCTAGAAATAATTTTGTTTAACTTTAAG
AAGGAGATATACATATGTCAGAGGCCGAGGATGCCTCCCTTCTCAGCTTCA

TGCAGGGTTACATGAAGCACGCCACCAAGACCGCCAAGGATGCACTGAGCAGC
GTGCAGGAGTCCCAGGTGGCCCAGCAGGCCAGGGGCTGGGTGACCGATGGCTTCA
GTTCCCTGAAAGACTACTGGAGCACCGTTAAGGACAAGTTCTCTGAGTTCTGGGA
TTTGGACCCTGAGGTCAGACCAACTTCAGCCGTGGCTGCCCTCGAGCACCACCACC
ACCACCACTGAGATCCGGCTGCTAACAAAGCCCGAAAGGAAGCTGAGTTGGCTGC
TGCCACCGCTGAGCAATAACTAGCATAACCCCTTGGGGCCTCTAAACGGGTCTTGA
GGGGTTTTTTGCTGAAAGGAGGAACTATATCCGGATTGGCG	

MSEAEDASLLSFMQGYMKHATKTAKDALSSVQESQVAQQARGWVTDGFSSLK
DYWSTVKDKFSEFWDLDPEVRPTSAVAALEHHHHHH	
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  APOC3-58E-1 Combined Sequences 

 

Blasted 

 

 

  

TCAGGGTCAATGCCAGCGCTTCGTTAATACAGATGTAGGTGTTCCACAGGG
TAGCCAGCAGCATCCTGCGATGCAGATCCGGAACATAATGGTGCAGGGCG
CTGACTTCCGCGTTTCCAGACTTTACGAAACACGGAAACCGAAGACCATTCA
TGTTGTTGCTCAGGTCGCAGACGTTTTGCAGCAGCAGTCGCTTCACGTTCG
CTCGCGTATCGGTGATTCATTCTGCTAACCAGTAAGGCAACCCCGCCAGCC
TAGCCGGGTCCTCAACGACAGGAGCACGATCATGCGCACCCGTGGCCAGG
ACCCAACGCTGCCCGAGATCTCGATCCCGCGAAATTAATACGACTCACTAT
AGGGAGACCACAACGGTTTCCCTCTAGAAATAATTTTGTTTAACTTTAAGAA
GGAGATATACATATGTCAGAGGCCGAGGATGCCTCCCTTCTCAGCTTCATG
CAGGGTTACATGAAGCACGCCACCAAGACCGCCAAGGATGCACTGAGCAGCGTGCAGGAGTC
CCAGGTGGCCCAGCAGGCCAGGGGCTGGGTGACCGATGGCTTCAGTTCCCTGAAAGACTACTGGA
GCACCGTTGAGGACAAGTTCTCTGAGTTCTGGGATTTGGACCCTGAGGTCAGACCAACTTCAGCC

GTGGCTGCCCTCGAGCACCACCACCACCACCACTGAGATCCGGCTGCTAACAAAGCCCGAAAGG
AAGCTGAGTTGGCTGCTGCCACCGCTGAGCAATAACTAGCATAACCCCTTGGGGCCTCTAAACGG
GTCTTGAGGGGTTTTTTGCTGAAAGGAGGAACTATATCCGGATTGGCGAATGGGACGCGCCCTG
TAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCA	
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  APOC3-58R-3 combined sequences 

 

 

Blasted 

 

 

  

GACAGGAGCACGATCATGCGCACCCGTGGCCAGGACCCAACGCTGCCCGA
GATCTCGATCCCGCGAAATTAATACGACTCACTATAGGGAGACCACAACGG
TTTCCCTCTAGAAATAATTTTGTTTAACTTTAAGAAGGAGATATACATATGTC
AGAGGCCGAGGATGCCTCCCTTCTCAGCTTCATGCAGGGTTACATGAAGCACG
CCACCAAGACCGCCAAGGATGCACTGAGCAGCGTGCAGGAGTCCCAGGTGACCCAGCAGGCCAGG
GGCTGGGTGACCGATGGCTTCAGTTCCCTGAAAGACTACTGGAGCACCGTTAGGGACAAGTTCTC
TGAGTTCTGGGATTTGGACCCTGAGGTCAGACCAACTTCAGCCGTGGCTGCCCTCGAGCACCACC
ACCACCACCACTGAGATCCGGCTGCTAACAAAGCCCGAAAGGAAGCTGAGTTGGCTGCTGCCACC
GCTGAGCAATAACTAGCATAACCCCTTGGGGCCTCTAAACGGGTCTTGAGGGGTTTTTTGCTGAA
AGGAGGAACTATATCCGGATTGGCGAATGGGACGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGG
TGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTT
CTTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTT
AGGGTTCCGATTTAGTGCTTTACG	
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  APOC3-74T combined sequences 

 

Blasted 

 

 

CGAAATTAATACGACTCACTATAGGGAGACCACAACGGTTTCCCTCTAGAAA
TAATTTTGTTTAACTTTAAGAAGGAGATATACATATGTCAGAGGCCGAGGAT
GCCTCCCTTCTCAGCTTCATGCAGGGTTACATGAAGCACGCCACCAAGACC
GCCAAGGATGCACTGAGCAGCGTGCAGGAGTCCCAGGTGGCCCAGCAGGCCAGGGGCTGG
GTGACCGATGGCTTCAGTTCCCTGAAAGACTACTGGAGCACCGTTAAGGACAAGTTCTCTGAGTT
CTGGGATTTGGACCCTGAGGTCAGACCAGCTTCAGCCGTGGCTGCCCTCGAGCACCACCACCACC
ACCACTGAGATCCGGCTGCTAACAAAGCCCGAAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAG
CAATAACTAGCATAACCCCTTGGGGCCTCTAAACGGGTCTTGAGGGGTTTTTTGCTGAAAGGA	
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