THE UNIVERSITY
of ADELAIDE

Analysis of Treatment Efficacy and Molecular and

Cellular Outcomes in Mouse Models of Congenital

Epilepsy and Intellectual Disability.

Karagh Loring
BSc. (Biomedical Science) Hons.
Intellectual Disability Laboratory
Primary Supervisor: A/Prof Cheryl Shoubridge
External Supervisor: A/Prof Quenten Schwarz
Thesis submitted for the degree of
Doctor of Philosophy
in
Discipline of Paediatrics, Adelaide Medical School
Faculty of Health and Medical Sciences
The University of Adelaide 2020

Contents

List of Tables 6
List of Figures 8
Abstract 11
Thesis Format 13
Thesis Declaration 14
Acknowledgments 15
List of Abbreviations 18
Chapter One: The Aristaless-related homeobox gene: understanding its role in intellectual disability and seizures and the search for effective treatments 20
1.1 Introduction 21
1.2 ARX \& neurodevelopmental disorders 22
1.2.1 The Aristaless-related homeobox gene 22
1.2.2 Mutations in $A R X$ 23
1.2.3 Expanded polyalanine tract mutations 24
1.2.4 Current treatments for seizures in ARX patients 30
1.3 ARX \& interneurons 31
1.3.1 Interneuron function 31
1.3.2 Interneuron migration 32
1.3.3 Interneuron subtypes 35
1.3.4 ARX \& interneuron migration and function 37
1.4 Arx mouse models 45
1.4.1 Expanded polyalanine tract mutations 45
1.4.2 Other Arx mouse models 50
1.4.3 Benefits and limitations of mouse models for research 53
1.5 Exogenous steroids as a treatment for infantile spasms and seizures 55
1.6 Concluding remarks 59
1.7 Project overview 60
Chapter Two: Materials and Methods 62
2.1 General reagents 63
2.2 Animals 63
2.2.1 Animal husbandry 63
2.2.2 Drug preparation and injections 64
2.2.3 Genotyping 66
2.2.4 Behavioural analyses 70
2.2.5 Seizure monitoring and analysis 76
2.2.6 Animal dissections and tissue collection 77
2.2.7 Statistical analysis 77
2.3 Gene expression analysis 78
2.3.1 RNA extraction 78
2.3.2 RNA sequencing 78
2.3.3 RNA sequencing validation 79
2.3.4 Gene enrichment analysis 83
2.4 Immunofluorescence 84
2.4.1 Tissue sectioning 84
2.4.2 Immunofluorescence. 84
2.4.3 Microscopy 85
2.4.4 Interneuron analysis 85
2.4.5 Statistical analysis 85
Chapter Three: Short-term 17ß-estradiol treatment alleviates the seizure phenotype but not behavioural outcomes in PA1 and PA2 mouse models. 87
3.1 Abstract 90
3.2 Introduction 91
3.3.1 Optimisation of drug preparation and injections 94
3.4 Results. 96
3.4.1 Estradiol treatment trial strategy 96
3.4.2 Estradiol treatment reduces seizure frequency and severity in PA mutant mice. 98
3.4.3 Estradiol treatment does not improve mortality in PA mutant mice 104
3.4.4 Body and tissue weights are unaffected by estradiol in PA mutant mice 107
3.4.5 Behavioural deficits are present in PA mutant mice prior to seizure onset, and do not improve with estradiol treatment 112
3.5 Discussion 133
3.5.1 Reproducibility of phenotypic outcomes in different mouse models 133
3.5.2 Relating behavioural testing to patient phenotypes 134
3.5.3 No change to the survival of mice with estradiol treatment 136
3.5.4 Behavioural deficits are present prior to seizure onset 136
3.5.5 Estradiol and cognition and behaviour 138
3.5.6 Reproducibility of behaviour testing outcomes 139
3.5.7 Side effects of estradiol treatment 142
3.6 Study outcomes 143
Chapter Four: The deregulated transcriptome in PA1 and PA2 Arx mutant mice is not restored by early postnatal 17β-estradiol treatment. 144
4.1 Abstract 146
4.2 Introduction 147
4.3 Results 150
4.3.1 PA1 and PA2 mice have a deregulated cortical transcriptome at postnatal day 10. 150
4.3.2 Estradiol treatment targets genes outsides of the deregulated transcriptome of PA1 and PA2 mutant mice. 160
4.4 Discussion 171
4.4.1 Ongoing effects to the transcriptome from a partial loss of Arx 171
4.4.2 Interneuron genes and genes associated with neurodevelopmental disorders are deregulated by disease and estradiol treatment. 173
4.4.3 Differences between PA1 and PA2 mutant mice 175
4.4.4 Estrogen response genes in our analysis 176
4.4.5 Environmental effects on transcriptomic results. 177
4.5 Study outcomes 178
Chapter Five: Interneuron genes are deregulated with Arx PA mutations, but are not rescued directly with 17β-estradiol treatment 179
5.1 Abstract 180
5.2 Introduction 181
5.3 Results 184
5.3.1 Deregulated interneurons in untreated PA1 and PA2 mutant mice at postnatal day 3 and postnatal day 10 184
5.3.2 Estradiol treatment does not alter interneuron abundance in the PA1 and PA2 mouse prefrontal cortex 194
5.4 Discussion 198
5.4.1 Novel findings from this study 198
5.4.2 Differences in interneuron findings between studies 203
5.4.3 Future experiments for interneurons in PA mutant mice 205
5.5 Study Outcomes 206
Chapter Six: Discussion 207
6.1 Novel findings of this project 208
6.2 Reproducibility of pre-clinical trials 210
6.3 Separating behaviour and seizures in PA mice 212
6.4 Understanding the transcriptome of the developing PA brain in early postnatal life 214
6.5 Future directions 215
6.6 Concluding remarks 218
References 220
Appendices 230

List of Tables

Table 1.1: Overview of interneuron markers and their respective interneuron subtypes.

Table 1.2: Overview of phenotypic differences between the two different PA1 and PA2 mouse models.

Table 2.1: Mouse weight range brackets with lower and upper weight limits, with correct volume of drug to inject.

Table 2.2: Mouse genotyping PCR primers.

Table 2.3: Parameters measured for each behavioural test using the AnyMaze software.

Table 2.4: Housekeeping primer set.

Table 2.5: TaqMan® assay details.

Table 2.6: Primary antibodies used for immunofluorescence.

Table 2.7: Secondary antibodies used for immunofluorescence.

Table 4.1: Genes deregulated by disease in PA1, PA2 and PA ${ }^{\text {pool }}$ mice compared to wild-type littermates.

Table 4.2: Neurodevelopmental disorder and key brain development genes deregulated by disease in PA1, PA2, $\mathrm{PA}^{\text {pool }}$ and core overlap gene lists.

Table 4.3: Pathways enriched through PANTHER analysis in $\mathrm{PA}^{\text {pool }}$ (green), PA1 (orange) and PA2 (blue) mice.

Table 4.4: Genes deregulated by estradiol treatment and those containing estrogen response elements (EREs) in PA1, PA2 and PA ${ }^{\text {pool }}$ mice compared to wild-type littermates.

Table 4.5: Neurodevelopmental disorder and key brain development genes deregulated by estradiol in PA1, PA2 and PA ${ }^{\text {pool }}$.

Table 4.6: Pathways enriched through PANTHER analysis in $\mathrm{PA}^{\text {pool }}$, PA1 and PA2 mice.

Table 5.1: Genes deregulated by disease in untreated PA1, PA2 and $\mathrm{PA}^{\text {pool }}$ mice compared to untreated wild-type littermates at the same time points.

Table 5.2: Interneuron associated genes enriched in untreated PA1, PA2 and PA $^{\text {pool }}$ mice at postnatal day 3 and day 10 .

Table 5.3: Interneuron deficits present in the PA1 and PA2 mouse models from different studies at different timepoints.

Table 5.4: Interneuron deficits in PA mutant mice in this study.

List of Figures

Figure 1.1: Pathogenic mutations within the ARX gene and their associated phenotypes.

Figure 1.2: Phenotypic variability associated with expansions of the first and second polyalanine tracts in ARX.

Figure 1.3: Mouse cortical development.

Figure 1.4: Expression and migration of Arx positive cells in the developing brain.

Figure 1.5: Comparison of normal cortical development and impaired development with loss of ARX function.

Figure 1.6: Accumulation of arrested calbindin positive $(\mathrm{Cb}+)$ cells in the ventral cortex.

Figure 2.1: Mouse toe tagging numbering system.

Figure 3.1: DMSO toxicity curve for apoptosis of neurons in P7 mice.

Figure 3.2: Estradiol study timeline.

Figure 3.3: Early estradiol treatment diminishes observed seizure severity and frequency in PA mutant mice.

Figure 3.4: Estradiol treatment did not delay the age of first observed seizure in PA mutant mice.

Figure 3.5: Seizure severity and frequency are reduced in PA mutant mice treated with estradiol.

Figure 3.6: Early estradiol does not improve mortality in PA mutant mice.

Figure 3.7: Age of death in PA mutant mice treated with vehicle or estradiol.

Figure 3.8: Body weights of PA mutant mice treated with vehicle or estradiol.

Figure 3.9: Testes and cortex weights of PA mutant mice treated with vehicle or estradiol.

Figure 3.10: Estradiol does not improve anxiety-like behavioural deficits in PA mutant mice.

Figure 3.11: PA mutant mice do not exhibit an anxiety-like deficit in the elevated zero maze.

Figure 3.12: PA mutant mice do not show significant differences in number of explorative head dips in the elevated zero maze.

Figure 3.13: Estradiol does not improve social deficits in PA mutant mice.

Figure 3.14: Estradiol does not improve social preference deficits in PA mutant mice.

Figure 3.15: Estradiol does not improve social deficits in $\mathrm{PA}^{\text {pool }}$ mutant mice.

Figure 3.16: Estradiol does not improve social preference deficits in $\mathrm{PA}^{\text {pool }}$ mutant mice.

Figure 3.17: PA mutant do not exhibit a short-term memory deficit in the Y-maze.

Figure 3.18: PA mutant mice do not display learning and memory deficits in the Barnes maze.

Figure 3.19: PA mutant mice display reduced neuromuscular strength.

Figure 4.1: Overlapping genes deregulated in PA1 and PA2 mutant mice with disease.

Figure 4.2: Genes associated with interneurons are downregulated in PA1 and PA2 mutant mice.

Figure 4.3: Enrichment analysis of genes deregulated by disease in PA mutant mice.

Figure 4.4: Overlapping response between the disease deregulated transcriptome and the estradiol deregulated transcriptome of PA mutant mice.

Figure 4.5: Estradiol treatment reverses the expression of genes deregulated by disease in PA mutant mice.

Figure 4.6: Comparison of response size to estradiol treatment in PA mice.

Figure 4.7: Enrichment analysis of genes deregulated with estradiol treatment in PA mutant mice.

Figure 5.1: RNA sequencing outcomes of key interneuron associated genes in untreated PA mutant mice at postnatal day 3 and day 10 .

Figure 5.2: Enrichment of different interneuron subtypes in genes deregulated in untreated postnatal day 3 and day 10 PA mutant mice.

Figure 5.3: Region of the cortex used for immunofluorescence analysis.

Figure 5.4: Abundance of calbindin and neuropeptide-Y positive cells counted in the prefrontal cortex.

Abstract

Children with severe intellectual disability have an increased prevalence of refractory seizures. Steroid treatment may improve seizure outcomes, but the mechanism remains unknown. Here we demonstrate that short term, daily delivery of an exogenous steroid 17β-estradiol ($40 \mathrm{ng} / \mathrm{g}$) in early postnatal life significantly reduced the number and severity of seizures, but did not improve behavioural deficits, in mice modelling mutations in the Aristaless-related homeobox gene (ARX), expanding the first (PA1) or second (PA2) polyalanine tract. ARX polyalanine expansion mutations in children cause intellectual disability and developmental delay, frequently presenting with comorbidities such as autism, dystonia, and refractory seizures and infantile spasms. Frequency of observed seizures on handling ($n=14 /$ treatment/genotype) were significantly reduced in PA1 (32% reduction) and more modestly reduced in PA2 mice (14\% reduction) with steroid treatment compared to vehicle. Spontaneous seizures were assessed (n $=7 /$ treatment/genotype) at 7 weeks of age coinciding with a peak of seizure activity in untreated mice. PA1 mice treated with steroids no longer present with the most severe category of prolonged myoclonic seizures, while treated PA2 mice had a complete absence of any seizures during this analysis. Despite the reduction in seizures, 17β-estradiol treated mice showed no improvement in behavioural or cognitive outcomes in adulthood. For the first time we show that these deficits due to mutations in Arx are already present before seizure onset and do not worsen with seizures. ARX is a transcription factor and Arx PA mutant mice have deregulated transcriptome profiles in the developing embryonic brain. At postnatal day 10, treatment completion, RNAseq identified 129 genes significantly deregulated $(\log 2 \mathrm{FC}> \pm 0.5$, $\mathrm{P}-$ value <0.05) in the frontal cortex of mutant compared to wild-type mice. This list reflects genes deregulated in disease and was particularly enriched for known genes in neurodevelopmental disorders and those involved in signalling and developmental pathways. 17β-estradiol treatment of mutant mice significantly deregulated 295 genes, with only 23 deregulated genes overlapping between vehicle and steroid treated mutant mice. Furthermore, when we investigated

populations of inhibitory interneurons in the cortex of PA mice immediately following estradiol treatment at P10, we saw no improvement to cell density, despite seeing a marked change in the expression of interneuron associated genes both due to disease, and changing with administration of estradiol at the same developmental timepoint. We conclude that 17β estradiol treatment recruits processes and pathways to reduce the frequency and severity of seizures in the Arx PA mutant mice but does not precisely correct the deregulated transcriptome, cellular deficits, mortality, or behavioural and cognitive deficits. Our outcomes show that although estradiol may not represent the ideal therapeutic option for PA patients currently, our data provides insights into developing novel drugs by broadening our understanding of the mechanisms of disease caused by Arx PA mutations, particularly by uncovering pathways that may overlap with other neurodevelopmental disorders and present convergent targets for future treatment options.

Thesis Format

This thesis is presented in a conventional format, consisting of an introduction covering the background of the research conducted in this thesis and a thorough review of the current literature (Chapter 1), a chapter containing materials and methods (Chapter 2), followed by three results chapters (Chapters 3-5) and a final discussion and conclusions chapter (Chapter 6). Figures and tables are independently numbered within each chapter. While Chapters 3 and 4 provide the basis for my published paper, here they are presented in the conventional format, and include additional data. The publication (submitted to Neurobiology of Disease) is included in Appendix 1.

Thesis Declaration

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution, and to the best of my knowledge, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide. I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act of 1968. I acknowledge that copyright of published works contained within this thesis resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available of the web, via the University's digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

I acknowledge the support I have received for my research through provision of an Australian Government Research Training Program Scholarship.

Karagh Loring
Bachelor of Science (Biomedical Science) Hons.
Student Number: al606960
DATE: 01/11/2020

Acknowledgments

I wish to thank all the people whose assistance was invaluable in the completion of my PhD project. First and foremost, I wish to express my sincere appreciation to my supervisor, Associate Professor Cheryl Shoubridge, for her guidance, patience, and never-ending knowledge. Without her knowledge of ARX, as well as knowing all there is to know about molecular and functional experiments, I would not have been able to survive this PhD . Thank you for being so patient with me when I was hesitant about trying new things, or when I slowly learned how to write manuscripts, and during all of my practice presentations for conferences. Cheryl has provided so much of her time for meetings, valuable advice, reading drafts, helping edit my work, and having tissues on hand in her office when I was stressed about science. I am so grateful for the opportunity to be mentored by her, professionally and personally.

A special thank you to Dr Kristie Lee, who was originally my co-supervisor before going on maternity leave. Kristie taught me so much about animal models and developmental biology in the short time we worked together and set me down the right path for my project. I will forever be grateful for her guidance and wisdom over the phone, email and at coffee dates, even when you were still on leave with a newborn and a toddler. I would also like to thank my external supervisor, Associate Professor Quenten Schwarz, for providing so much knowledge about interneurons and how to quantify them. Thank you for being there with whatever antibody I wanted to try out next, listening to my next experiment idea, reading drafts, and helping edit, as well coming along to all my review meetings.

I would like to say thank you to the members of the Intellectual Disability Research Group, past and present; Kristie Lee, Matilda Jackson, Aneta Zysk, Tessa Mattiske, Laura Redpath, Oliver Dearsley and Monica Thai. I would like to especially thank Matilda, Kristie and Aneta for their assistance with the animal breeding colonies, behavioural studies, and helping with all of my
mouse injections, particularly on Sunday mornings. Additionally, I would like to thank all of the members of the Neurogenetics Laboratory, for offering feedback, lab resources and guidance when required (and an extra special thank you for all the birthday morning teas).

I am very grateful to Laboratory Animal Services at the University of Adelaide for their assistance with caring for our mouse colonies and providing valuable advice for breeding and environmental enrichment for our animals. I would also like to thank Catherine Jawahar and Bernard Baune for the generous use of their behavioural testing equipment and software.

My village extends beyond the confines of academia, however. Thank to you the wonderful scientist friends I have made throughout my time in the lab; Laura, Aneta, Monica, Bec, and Thomas. Without you, lunchtimes would have been incredibly boring, and I appreciate your understanding, love, support, and for always being there to lean on. You've become some of my best friends and I wouldn't have been able to write this thesis without you. Thank you to my parents, Kirrily and Jeff, for always encouraging me to keep going, even when I questioned myself and my studies. You have always supported my education and motivated me at every stage, from primary school to PhD , and for that I will always be grateful. Thank you to my little brother, Dale, my grandparents, Lynette and Geoff, and my parents-in-law, Bruce and Marina, for your support, and pretending to understand what I was researching. Another special acknowledgment to my sister-in-law Nicole, and my beautiful friend, Alanna. You have provided some of the best hugs when the PhD stress became a little bit too much and I needed extra encouragement. My PhD has been a process of self-discovery, and at times has had a dramatic impact on my mental health. Alongside my friends, partner and family, my support network extended to others who had my back and helped me find reprieve from stress and sadness. I want to thank my GP, and my psychologist, for countless hours of support and guidance.

Last but not least, Gregory, my fiancé. Without you supporting me and helping me grow, laugh, and learn, I would not be here, finishing my PhD, and writing this thesis. Thank you encouraging me, for convincing me to keep going when I wanted to give up, for loving me unconditionally, and for all the dinners you cooked and dishes you did when I was too stressed or tired. You have been the ray of sunshine in my life over the last four years. I love you. You have helped me more than you will ever know.

List of Abbreviations

Abbreviation	Full Description
ACTH	Adrenocorticotropic hormone
ADHD	Attention deficit hyperactivity disorder
AEC	Animal ethics committee
ARX	Aristaless-related homeobox
ASD	Autism spectrum disorder
BSA	Bovine serum albumin
CB	Calbindin
CB	Cannabidiol receptor
CGE	Caudal ganglionic eminence
CR	Calretinin
DAVID	Database for Annotation, Visualisation, and Integrated Discovery
DMSO	Dimethyl sulfoxide
DNA	Deoxyribonucleic acid
DTT	Dithiothreitol
E2	17β-estradiol
EEG	Electroencephalogram
EIEE	Early infantile epileptic encephalopathy
ER	Estrogen receptor
ERE	Estrogen response element
GABA	Gamma aminobutyric acid
ID	Intellectual disability
IEDE	Intellectual epileptic dyskinetic encephalopathy
IGTP	Interferon gamma induced GTPase
IQ	Intelligence quotient
LGE	Lateral ganglionic eminence
MGE	Medial ganglionic eminence
MRI	Magnetic resonance image
NDD	Neurodevelopmental disorder
NDNF	Neuron derived neurotrophic factor
NMDA	N-methyl-D-aspartic acid
NPY	Neuropeptide-Y
OAR	Opt/Aristaless/Rax domain
OCT	Optimal cutting temperature compound
OS	Ohtahara syndrome
P	Postnatal day
PA	Polyalanine
PANTHER	Protein Analysis Through Evolutionary Relationships
PBS	Phosphate buffered saline
PCR	Polymerase chain reaction

PFA	Paraformaldehyde
PTZ	Pentylenetetrazol
PVALB	Parvalbumin
RNA	Ribonucleic acid
RT	Room temperature
SEM	Standard error of the mean
SERM	Selective estrogen receptor modulator
SNCG	γ-synuclein
SST	Somatostatin
SUDEP	Sudden unexpected death in epilepsy
TBE	Tris-borate-EDTA buffer
TBS	Tris buffered saline
TMM	Trimmed mean of M values
VIP	Vasoactive intestinal peptide
WHO	World Health Organisation
WT	Wild-type
XLAG	X-linked lissencephaly with abnormal
	genitalia

Chapter One:

The Aristaless-related homeobox gene: understanding its role in intellectual disability and seizures and the search for effective treatments

1.1 Introduction

Intellectual disability (ID) is defined as impaired cognitive function paired with a deficit in adaptive behaviour before the age of 18 . ID affects approximately 1 in 50 people worldwide and is estimated to cost Australia $\$ 14$ billion per year (WHO, 2019, Australian Institute of Health and Welfare 2008). In first world countries, a genetic cause is responsible for approximately 40\% of cases (Willemsen and Kleefstra, 2014, Chiurazzi and Pirozzi, 2016, Ellis et al., 2020). Children with ID often have a range of debilitating comorbidities, including autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), dystonia, and intractable epilepsy and infantile spasms. It is often not understood whether the causes of these comorbidities have a singular causative mechanism, or whether there are multiple pathways at play. In terms of understanding these disorders in order to treat them, it is vital to investigate the mechanisms behind their pathogenesis.

Epileptic conditions are complex and often have significant long-term implications on ongoing health and cognition. Cognitive function is suspected to be impaired with persistent and severe seizures, particularly early in childhood and infancy. The distribution of IQ scores in children with epilepsy are often skewed to lower values and learning difficulties are frequently reported (Farwell et al., 1985, Neyens et al., 1999, Prasad et al., 2014). Many children also regress in mental development after experiencing severe seizures (Neyens et al., 1999). While cognition is a source of concern for infants with spasms very early in life, it can be difficult to elucidate how much of a child's intellectual disability was pre-existing and the extent that was caused by spasms early in key periods of brain development (Nabbout and Dulac, 2003).

The brain is a highly complex organ, comprised of multiple cell types, acting in synchrony to perform cognitive functions. Neurons in the brain can be classed as excitatory (output of neuronal activity) or inhibitory (inhibiting excitation). The development, migration and function of these cells is dependent on tightly controlled regulation of genes during embryonic
development, and throughout childhood, adolescence, and adulthood. Disruption of these genes can lead to the neurodevelopmental disorders (NDDs), such as intellectual disability, epilepsy and autism (Paciorkowski et al., 2011, Olivetti and Noebels, 2012). There are currently more than 1200 genes implicated in intellectual disability, each with small numbers of cases, making this disorder a collection of rare genetic diseases (Chiurazzi and Pirozzi, 2016). One such gene is the Aristaless-related homeobox gene (ARX), a highly conserved transcription factor, playing a regulatory role in key events of proliferation and migration of inhibitory neurons in the brain (Kitamura et al., 2002, Stromme et al., 2002, Turner et al., 2002). When ARX function is interrupted in humans, phenotypes arising include intellectual disability and developmental delay as key features, as well as varying comorbidities of infantile spasms, epileptic syndromes, dystonia, ADHD and ASD, through to severe brain malformations (Shoubridge et al., 2010). Seizures and spasms associated with $A R X$ mutations, like many other genetic NDDs, are often resistant to current anti-epileptic therapies. In addition, intellectual disability and developmental delay can have a serious impact on the quality of life of affected children and their families. We need to better understand the pathogenesis of ARX mutations, to enable identification of novel strategies to treat children with these disorders.

1.2 ARX \& neurodevelopmental disorders

1.2.1 The Aristaless-related homeobox gene

The Aristaless-related homeobox gene $(A R X)$ is located on the X -chromosome and spans a 12.25 kB genomic region. The $A R X$ gene has five coding exons, with a 1686 bp open reading frame and a 562 amino acid length protein (Gécz et al., 2006). ARX is a paired-like homeodomain transcription factor, comprised of various domains, including a highly conserved DNA-binding homeodomain, an Aristaless or OAR domain, and four polyalanine tracts (Figure 1.1). Consistent with critical roles in development for homeobox transcription factors, ARX is a transcriptional regulator consistently implicated in the development and migration of cholinergic and cortical interneurons (Kitamura et al., 2002, Poirier et al., 2004, Colombo et
al., 2007). When $A R X$ function is interrupted in humans, phenotypes arise that invariably include intellectual disability and developmental delay.

1.2.2 Mutations in $A R X$

The number and profile of mutations in ARX has grown since 2002 when this was first identified as an intellectual disability gene (Bienvenu et al., 2002, Stromme et al., 2002). In addition to the variable degrees of intellectual disability, mutations in $A R X$ frequently present with a wide spectrum of comorbidities, including autism, dystonia, and childhood-onset epilepsy and malformation phenotypes of the brain and genitalia (Bienvenu et al., 2002, Kitamura et al., 2002, Stromme et al., 2002, Turner et al., 2002). While all patients with $A R X$ variants have intellectual disability, the broad spectrum of specific cognitive deficits and behavioural phenotypes of $A R X$ patients makes it difficult to determine the aetiologies of their intellectual disability, particularly when the pathophysiological mechanisms of the disease are complex and poorly understood. The varied nature of these mutations, their positions within the domains of the ARX protein, and their associated phenotypes is outlined in Figure 1.1.

ARX function is critical to normal brain development and postnatal life. When mutations in $A R X$ result in a complete loss of function, patients have a catastrophic malformation phenotype of X-linked lissencephaly with abnormal genitalia (XLAG or now called LIS2, OMIM \#257320) and die early in life (Kitamura et al., 2002). This syndrome results in severe brain malformations, like lissencephaly and hydrocephaly, with abnormally developed genitalia such as a small penis and undescended testes. Mutations contributing to these severe phenotypes include nonsense mutations as well as some missense mutations in the conserved homeodomain of ARX, shown to interfere with or abolish the normal DNA-binding properties of this region (Shoubridge et al., 2010). Missense mutations that occur across the length of the ARX gene lead to milder phenotypes of intellectual disability with and without comorbidities (Stromme et al., 2002, Wallerstein et al., 2008, Shoubridge et al., 2010, Sirisena et al., 2014). While mutations
occur across the entire gene, approximately 60% of all reported mutations result in expansions of the first and second polyalanine tracts of $A R X$ (Shoubridge et al., 2010).

1.2.3 Expanded polyalanine tract mutations

There are four polyalanine tracts in ARX, and expansion mutations of the first two tracts make up more than half of reported cases of mutations found in patients. Mutations in these tracts cause a wide variety of different phenotypes, with all patients featuring intellectual disability of varying degrees of severity, with some exhibiting severe infantile spasms, epilepsy and dystonia. The length of the expansion generally correlates with the severity of the phenotype (Figure 1.2) (Marques et al., 2015).

Del ex2-5

Figure 1.1: Pathogenic mutations within the ARX gene and their associated phenotypes. A schematic of the ARX genes and various functional domains with their respective amino acid positions listed. Mutations are associated with the broad range of phenotypes seen in patients, with phenotypes listed from most severe to least severe. Mutations are listed with position and amino acid change. Functional domains of ARX; OP (octopeptide), NLS (nuclear location sequence), PA (polyalanine tract), acid (acidic), arist (Aristaless), and homeodomain. Phenotypes associated with ARX mutations; XLAG (Xlinked lissencephaly with abnormal genitalia), HYD-AG (hydrocephaly with abnormal genitalia), PROUD (Proud syndrome), OHTAHARA (Ohtahara syndrome), IEDE (idiopathic epileptic-dyskinetic encephalopathy), WEST (West syndrome), XMESID (Xlinked myoclonic seizures, spasticity and intellectual disability), PRTS (Partington syndrome) and MRX (non-specific X-linked mental retardation). Figure from (Friocourt and Parnavelas, 2010).

Figure 1.2: Phenotypic variability associated with expansions of the first and second polyalanine tracts in $\boldsymbol{A R X}$. Diagram shows the expansion of the first (orange) and second (blue) polyalanine tracts of the $A R X$ gene. Each circle represents the proportion of patients with the number of alanines per tract, and where this number places them on the spectrum of clinical phenotypes (ranging from infantile spasms to severe infantile spasms and Ohtahara syndrome). With increasing numbers of alanines per tract, there is an increase in clinical severity. Other domains of ARX include the DNA-binding homeodomain and the Aristaless (OAR) domains pictured. Figure adapted from (Marques et al., 2015).

Expansions in the first polyalanine tract result in a variety of clinical presentations. The most common expansion mutation is the c .340ins(GCG$)_{7}$ mutation, which leads to the addition of seven alanines, resulting in a total of 23 alanines compared to the normal 16. X-linked infantile spasms with associated comorbidities make up the phenotype of about half of reported families with expansions of the first polyalanine tract expansions. These comorbidities include severe intellectual disability, dystonia, autism spectrum disorder, developmental delay and a hypsarrhythmic EEG patterns, also termed West syndrome (Wohlrab et al., 2005, Guerrini et al., 2007, Poirier et al., 2008, Wallerstein et al., 2008). Several severe and often early onset seizure phenotypes have been reported, including early infantile epileptic encephalopathy (EIEE) and infantile epileptic-dyskinetic encephalopathy (IEDE) (Guerrini et al., 2007) (Shinozaki et al., 2009, Absoud et al., 2010). Interestingly, the same mutation in this tract has resulted in different phenotypes, patients with or without infantile spasms. The mechanisms contributing to this pleiotropy are not yet understood.

Expansions of the second polyalanine tract are overwhelmingly the most common mutation in $A R X$, resulting from the mutation c.429-452dup, expanding the tract from 12 to 20 alanines. The mutation accounts for 40% of all mutations in $A R X$, and of those with expanded polyalanine tract mutations, makes up almost 70% (Shoubridge et al., 2010). In comparison to patients with mutations of the first polyalanine tract, with quite a severe epileptic phenotype, the majority of patients with mutations of the second tract present with Partington syndrome, a phenotype comprised of non-syndromic intellectual disability, associated with dystonic movement of the hands (Stromme et al., 2002, Partington et al., 2004). A smaller subset of patients present with X-linked infantile spasms/West syndrome (Stromme et al., 2002, Kato et al., 2004, Partington et al., 2004). Furthermore, the behavioural aspects of PA2 patients shine light on the finer details of psychiatric disturbances in these patients. Children with PA2 mutations have been described as having emotional instability, self-aggression, and deficits in social behaviour, with
only 56.3% of patients described to have "adequate personal relationships" (Bienvenu et al., 2002, Stromme et al., 2002, Dubos et al., 2018). Again, the spectrum of phenotypes observed within patients with the same mutation, and indeed even within families, has been noted but not explained (Turner et al., 2002).

While few studies have investigated the effects of these polyalanine expansion mutations in human patients, one study by Curie and colleagues in 2018, performed post-mortem brain examinations, to examine human ARX expression at different foetal stages, and the adult brain, in patients with c.429-452dup mutations. There was strong expression of ARX in the second trimester brain, particularly in neuronal progenitor cells in the cortex, in migratory streams of cells leaving the ganglionic eminences. Interestingly, while there were no major brain malformations in these patients, striatal volume and hippocampal size were decreased, and there was reduced grey matter in the brain, possibly caused by a loss of neurons. The precentral gyrus, part of the primary motor cortex, was also thinner in these patients. This structural malformation may explain the specific motor phenotype of Partington syndrome in c.429-452dup patients (Curie et al., 2018).

1.2.4 Current treatments for seizures in $A R X$ patients

The current intervention for infantile spasms includes adrenocorticotropic hormone (ACTH) and vigabatrin as first-line treatments (Pellock et al., 2010). ACTH therapy induces the release of adrenal steroids, through which steroid-dependent action on melanocortin receptors, reduces neuronal excitability (Brunson et al., 2002). Vigabatrin serves as a gamma aminobutyric acid (GABA) analogue for the enzyme responsible for GABA catabolism. Thereby, it acts to inhibit GABA being broken down within the brain, increasing inhibition and reducing excitability (Pesaturo et al., 2011). New anti-epileptic drugs as topiramate, and diet regimes such as the ketogenic or Atkins diet have shown promising effectiveness (Song et al., 2017). However, in many $A R X$ patients, spasms and seizures are refractory to these treatments, and in fact, ACTH
can have very severe side effects. These include increased susceptibility to infection due to immunosuppression, hypertension, osteoporosis and metabolic disorders (Riikonen and Donner, 1980, Riikonen, 2004). Among children treated for infantile spasms with ACTH, the most common form of death in childhood was infection (Riikonen, 1996). Furthermore, follow up studies in children receiving ACTH therapy show that only 16% of the patients had normal development following treatment, with 47% continuing to have refractory seizures (Hancock et al., 2013).

West syndrome and infantile spasms are notoriously difficult to treat. Spasms persist in 33-56\% of patients treated with ACTH therapy (Song et al., 2017). Further to the lack of effectiveness of ACTH, there have been no new treatments discovered for infantile spasms in the last few years (Specchio et al., 2020). While the lack of reliable animal models for infantile spasms is a contributing factor, the variability in the causes of infantile spasms has made pre-clinical and clinical studies difficult (Specchio et al., 2020). The outlook for patients and their families at this stage is poor, but pre-clinical trials using exogenous steroids have shown promising results for future treatments. Understanding the role that ARX plays in brain development and function is critical to understanding what is happening in the brains of patients, and why current treatments are not effective for treating these disorders.

1.3 ARX \& interneurons

1.3.1 Interneuron function

The prefrontal cortex (here after referred to as cortex) of the brain is a highly complex region, comprising approximately 80% of all cells in the brain, and performing intricate functions that are dependent on balanced circuitry. The circuits of the cortex are comprised of two types of cells: excitatory neurons, and inhibitory interneurons. Interneurons comprise approximately 20% of neural cells in this region (Meinecke and Peters, 1987). The diverse cell populations of
the cortex assist in the control of excitatory activity, providing balance of excitation and inhibition. These circuits play an important role in the control of information processing in the cortex. GABA is a neurotransmitter found exclusively in interneurons. GABAergic signalling is required to drive key developmental processes, such as cell migration, axonal and dendritic remodelling, and synapse formation (Sernagor et al., 2010). Hence, interneurons are key regulators of both excitatory and inhibitory outputs of the cortex, as well as modulators of cortical developmental and plasticity.

There are a variety of ways in which interneurons control inhibition in the cortex. Direct inhibition achieves local inhibitory action from a distant interneuron. An example of this is the axons of neocortical interneurons that cross the corpus callosum of the brain to directly innervate their contralateral hemispheric targets (Higo et al., 2007, Tomioka and Rockland, 2007). Feedforward inhibition, on the other hand, reduces the excitatory spike counts of pyramidal (excitatory) neurons by competing with dendritic excitation or reducing spike output. This process involves interneurons receiving excitatory input from an external sources, and in turn inhibiting pyramidal neurons (Buzsáki, 1984). The various dendritic domains of excitatory neurons have dedicated classes of interneurons that target them, and these form the feedforward circuits.

1.3.2 Interneuron migration

Interneurons migrate from the ganglionic eminences, a transitory brain structure in the telencephalon that is present only in early, embryonic brain development. The ganglionic eminences form at approximately embryonic day 11 in the mouse and can be divided into three distinct sub-areas; the lateral ganglionic eminence (LGE), medial ganglionic eminence (MGE) and the caudal ganglionic eminence (CGE). Early in development, most interneurons residing in the cortex are derived from the MGE and CGE, with the LGE aiding in the migration of interneurons during the mid-stage of cortical development (Tan and Breen, 1993, De Carlos et
al., 1996, Buchsbaum and Cappello, 2019). GABAergic interneurons migrate tangentially from the MGE primarily, to the cortex, where they can then migrate radially into the cortical layers (described in Figure 1.3). Labelling cells of the MGE with DiI crystals demonstrates that these cells migrate to the developing cortex, where they are dispersed as GABAergic interneurons (Lavdas et al., 1999). Furthermore, MGE and LGE tissue from embryonic mice transplanted into the adult mouse brain, showed that transplanted neuronal precursors from the MGE dispersed and differentiated into multiple adult brain regions, extensively towards the cortex (Wichterle et al., 1999).

Interneuron migration is a tightly regulated process influenced in particular by homeobox transcription factors. The vertebrate distal-less ($D l x$) genes, encoding the homeobox proteins Dlx-1 and Dlx-2, are expressed in the striatum and pallidum structures of the developing brain. A role for these genes in interneuron migration is demonstrated by a $D l x-1$ and $D l x-2$ double knockout mouse model showing a 70% reduction in the number of cortical interneurons coupled with abnormal migration of interneurons out of the LGE, resulting in the accumulation of only partially differentiated neurons in the LGE, and a loss of normal olfactory bulb interneurons. These double knockout mice do not survive into postnatal life, dying on postnatal day 0 (Anderson et al., 1997). The thyroid transcription factor 1 ($N k x 2.1$) is another homeobox gene expressed in the precursor cells of the pallidum. $N k x 2.1$ knock out mice not only die at postnatal day 0 , but do not develop a MGE structure at all, due to a loss of cells migrating from the pallidum to the striatum (Sussel et al., 1999). These studies highlight that homeobox genes are vital to the proper development and migration of interneurons in the developing brain.

Figure 1.3: Mouse cortical development. (A) Provides a schematic diagram of a coronal section of the developing telencephalon of a mouse at embryonic day 14 . The grey box is enlarged in (B). (B) Provides a schematic diagram of the cellular composition of the developing mouse cortex, with radially migrating excitatory pyramidal neurons, and tangentially migrating inhibitory interneurons, which then switch to radial migration in the dorsal cortex. Key: Ctx: cerebral cortex; CP: cortical plate; GE: ganglionic eminences; IZ: intermediate zone; LGE: lateral ganglionic eminence; MGE: medial ganglionic eminence; MZ: marginal zone; SP: subplate; Str: striatum; SVZ: sub ventricular zone; VZ: ventricular zone. Figure taken from (Buchsbaum and Cappello, 2019)

1.3.3 Interneuron subtypes

When considering the cells in the brain, interneurons have the largest diversity in terms of their morphology, connectivity, and physiology. Interneurons can be categorised based on their morphology, the markers they possess on their surface, and their subsequent function. Interneuron progenitor cells undergo complex migration. Both the site of origin and the migratory path influence the differentiation into the eventual subtype of the mature interneuron. For example, during migration to the cortex interneurons from the MGE gives rise to parvalbumin-positive and somatostatin-positive (STT) interneurons, while the CGE gives rise to less common interneuron subtypes, such as neurogliaform, bipolar and vasoactive intestinal polypeptide (VIP) positive interneurons (Wichterle et al., 2001, Fogarty et al., 2007). This indicates that there are dedicated progenitor populations designated to differentiate into specific subtypes, defined by the gene expression within different regions. From the population of Nkx2.1 expressing progenitors, expression of Lhx6, a known target of Nkx 2.1 , is required for the differentiation of parvalbumin and somatostatin-positive interneurons (Sussel et al., 1999, Fogarty et al., 2007). The most prevalent interneuron subtypes are parvalbumin and somatostatin-positive interneurons (Jinno and Kosaka, 2003). Parvalbumin is present on the surface of basket or chandelier interneurons. These subtypes specifically target the soma of excitatory neurons. Somatostatin is present on the membranes of Martinotti cells, which target the dendrites of excitatory neurons. Approximately 10-12\% of GABAergic interneurons are calbindin-positive, and other smaller subsets include VIP, calretinin and neuropeptide-Ypositive interneurons (Gulyás et al., 1991). The functional diversity of the most common interneuron markers and subtypes is outlined in Table 1.1.

Table 1.1: Overview of interneuron markers and their respective interneuron subtypes.

	Developmental origin	Cell types	Targets
Parvalbumin (PV+)	MGE	Basket interneurons	Excitatory cell dendrites and axons
Somatostatin (STT+)	MGE	Martinotti cells	Excitatory cell dendrites
Vasoactive intestinal peptide (VIP+)	CGE	Bipolar interneurons	Interneurons
Non-VIP+	CGE	Single bouquet cells	

1.3.4 ARX \& interneuron migration and function

ARX expression peaks between embryonic days 12.5 and 15.5 , continuing to be expressed throughout embryogenesis, before being downregulated in postnatal life (Figure 1.4 A) (Miura et al., 1997, Kitamura et al., 2002). ARX is highly expressed in the embryonic brain, ovaries, and testes and to a lesser degree in other tissues including skeletal muscle and pancreas (Figure 1.4 A) (Miura et al., 1997, Kitamura et al., 2002, Heller et al., 2005, Biressi et al., 2007). Within the embryonic brain ARX is expressed in neural progenitor cells and immature neurons through the subpallium, a region which includes the LGE and MGE (Figure 1.4 B) (Lee et al., 2014). These cells further develop into various regions of the brain; the striatum, globus pallious and cholinergic nuclei, as well as differentiating into the interneurons that migrate tangentially to the cortex, olfactory bulb and hippocampus (Miura et al., 1997, Poirier et al., 2004). In human patients with loss of function mutations in $A R X$, a classical lissencephaly phenotype can arise, seen in MRIs of patients (Figure 1.5). This is the result of disorganised neuronal migration. The abnormal neuronal migration leads to a smooth and thickened cortex without gyri, with an accumulation of cells in the sub cortical layers, and a wider, extra layer resulting below the normal cortical plate (Figure 1.5) (Romero et al., 2018). This phenotype is a result of the loss of ARX's function in migration of both inhibitory and excitatory neural progenitor cells (Kitamura et al., 2002, Romero et al., 2018).

Figure 1.4: Expression and migration of Arx positive cells in the developing brain. (A) Expression of Arx in the mouse telencephalon from embryonic day 8.5 to postnatal day 8 . Expression of Arx peaks with proliferation and differentiation of developing neuronal cells. (B) Migration patterns of interneurons from the ganglionic eminences to the cortex, with Arx expression highlighted in orange. Arrows indicate direction of migration of neuronal progenitor cells. Figure (B) adapted from (Lee et al., 2014).

Figure 1.5: Comparison of normal cortical development and impaired development with loss of ARX function. MRI images from patients describe normal imaging of the brain compared to the agryia/classical lissencephaly phenotype seen in patients with loss of function mutations in ARX. Schematic diagrams show mechanism leading to lissencephaly. Key: mature neurons (blue), immature neurons (red), radial glial cells (purple), intermediate progenitors (green), ventricular zone (VZ), intermediate zone (IZ), cortical plate (CP), marginal zone (MZ) and inner and outer sub ventricular zones (ISVC \& OSVC). Figure adapted from (Romero et al., 2018).

Some of the most compelling studies on ARX function come from knocking out the Arx gene in mice. A study by Kitamura and colleagues showed that when Arx was knocked out in male mice by disrupting exon 2 , the mice had severe brain malformations and died early in postnatal life, generally around postnatal day 2 . Compared to wild-type mice, the brains were smaller, the cortical plate was thinner, and there was a deficit in tangential migration of GABAergic interneurons from the MGE to the cortex, and a complete failure of radial migration from the LGE. The mice also showed a reduction in the proliferation and migration of excitatory neurons (Kitamura et al., 2002). Focusing on interneuron migration, a study by Colombo and colleagues in 2007 used these Arx deficient mice to show that not only was tangential migration towards the cortex reduced, radial migration of cells towards the cortex was also reduced, and these deficits lead to abnormal accumulation of neuropeptide- Y and calretinin-positive interneurons in the MGE. These mice had reduced expression of Map2 in the brain, a marker of differentiated neurons. Together, this data highlights the critical function of Arx in promoting interneuron migration in the brain, but also in differentiating cells to allow proper targeting to their correct position in the layers of the cortex (Colombo et al., 2007).

Using a different approach, Friocourt and colleagues in 2008 used in uteru electroporation to either knock down or overexpress $A r x$ in the progeny of pregnant female mice. Here, inhibition of Arx caused cortical progenitor cells to exit the cell cycle prematurely and impaired their migration towards the cortex. Conversely, overexpression of Arx lengthened the cell cycle. Interestingly, both inhibition and overexpression of Arx impaired the migration of GABAergic interneurons from the ganglionic eminences to the cortex. Inhibition of Arx also decreased neuronal motility, while overexpression of Arx affected the radial migration of pyramidal neurons. This study demonstrates the importance of Arx regulation and strict control of cellular migration for proper brain development (Friocourt et al., 2008).

ARX is thought to regulate neuronal migration through transcriptional activity. A study by Colasante and colleagues in 2009 used microarrays, quantitative PCR and RNA in situ hybridisation techniques with the Arx deficient mouse model, to investigate the role of Arx regulating gene expression in the telencephalon. They found that when Arx was lost, many critical developmental genes were upregulated or downregulated. Ebfl, a neuronal transcription factor, with roles in the radial migration of neurons, had increased expression with the loss of Arx, indicating a strong interaction between the two proteins. Cxcr4 and Cxcr7, genes found to be repressed with loss of Arx, also have critical roles in neuronal migration, and are present in developing interneurons. Interestingly, it was found that genes Lmo1, Lmo3 and Lmo4, were more strongly upregulated in the MGE compared to the LGE, indicating differing impacts of the repressive role of Arx in different regions of the brain (Figure 1.4 B) (Colasante et al., 2009, Lee et al., 2014). A subsequent study focusing specifically on the cortical interneurons between embryonic days 13.5 and 15.5, highlight 14 known Arx target genes enriched and five downregulated in migrating interneurons (Friocourt and Parnavelas, 2011).

An indirect way of studying Arx and its transcriptional activity, is by studying knock out mouse models of Npasl and Npas3. These genes are expressed in the progenitor neurons of the basal ganglia, and have opposing effects on the brain when their function is lost. Npasl knock out mice exhibit increased inhibition in the cortex, with excess STT and VIP interneurons. There was also increased expression of Arx in the MGE and CGE. Contrary, Npas3 knock out mice featured a loss of cortical inhibition, with a reduction of STT and VIP interneurons, and decreased expression of Arx in the ganglionic eminences (Stanco et al., 2014). Importantly, this study shows that Npas1 is a key regulator of Arx enhancer activity, and overexpression of Arx leads to an increase of progenitor cells in the CGE, leading to this excess inhibition and increased interneuron density in the cortex (Stanco et al., 2014).

When partial loss of Arx is modelled by expansion mutations of the first and second polyalanine tracts of the gene, disruptions to gene regulation are observed. A transcriptome wide RNA sequencing study performed within our laboratory, analysed the developing telencephalon of these mouse models at embryonic day 12.5 found a large number of deregulated genes in mice with mutations of the first and second polyalanine tracts of Arx. This allowed a thorough transcriptomic profile of "Arx responsive genes" to be compiled. These genes were enriched in pathways involved in key neurodevelopmental processes, such as cell to cell adhesion, neuronal development and neuronal membrane properties, or were strongly associated with neurodevelopmental disorders like intellectual disability and epilepsy (Mattiske et al., 2016). Furthermore, another mouse model with an expansion of the second polyalanine tract features deregulated interneuron development genes in the forebrain of pups at embryonic day 15.5. Genes involved in processes involving synaptic transmission, central nervous system development and DNA interaction (Dubos et al., 2018). These gene expression studies are particularly interesting, as these partial loss of function models of Arx still have a significant impact on the transcriptome of these mice and can help to investigate pathophysiology and pathways associated with neurodevelopmental disorders in which Arx is implicated.

In terms of specific interneuron deficits in these mice, there are prominent features in two mouse models with expansion mutations of the first polyalanine tract (PA1). In one of these mouse models, there was an overall reduction in calbindin and neuropeptide-Y positive interneurons in the cortex and striatum of six week old mice (Price et al., 2009). Furthermore, there is a wave of elevated apoptosis in the cortex in the first postnatal week of life in these mice (Siehr et al., 2020). Interestingly, in an alternate PA1 mouse model, the model used in our laboratory, while there is a scarcity of neuropeptide- Y, somatostatin, and GABA positive cells in the cortex, there is no overall loss of calbindin positive interneurons, but instead a deficit in normal migration of these cells (Kitamura et al., 2009, Lee et al., 2017). Lee et al. found that there was a specific spatial loss of approximately 50% of calbindin positive cells in the cortex of these mice at
postnatal day 0 compared to wild-type mice. When looking at specific regions of the brain, this was shown to be due to a lag in migration of these cells. Calbindin positive cells were found to be arrested in the ventral subpallium of the cortex, while migrating to the cortex through the process of tangential migration, which Arx is known to play a pivotal role in (Figure 1.6). This suggested that the halt in migration of the calbindin positive cells was in fact due to slowed migration rather than changes to cell proliferation or the cells exiting the mitotic cycle (Lee et al., 2017). Tangential migration of somatostatin positive interneurons is also suppressed in this PA1 mouse model (Kitamura et al., 2009). Importantly, this research indicates that even a partial loss of Arx function can have drastic effects on correct interneuron positioning and abundance in the developing cortex of mice.

Figure 1.6: Accumulation of arrested calbindin positive ($\mathbf{C b}+$) cells in the ventral cortex. Coronal sections were used to investigate the density of $\mathrm{Cb}+$ cells in the ventral telencephalon of PA1 and PA2 mice at postnatal day 0 . The region screened is seen in (A) in the yellow box. Yellow arrow indicates direction of normal migration of $\mathrm{Cb}+$ positive cells. Cells were counted within bins 1,2 and 3, identified in (A). Quantification of $\mathrm{Cb}+$ cells was conducted within these boxes, demonstrating the distribution of $\mathrm{Cb}+$ cells was increased in Bin 1 in PA mutant mice (B). Scale bar in (A): 500μ M. Figure taken from (Lee et al., 2017).

1.4 Arx mouse models

1.4.1 Expanded polyalanine tract mutations

There have been several mouse models created with the mutations expanding the polyalanine tracts of Arx, representative of those present in patients. At present, there are two PA1 mouse models. Kitamura and colleagues developed a mouse modelling the expansion of the first polyalanine tract (PA1), an $\operatorname{Arx}{ }^{(\mathrm{GCG}) 7 / \mathrm{Y}}$ mouse model. This mouse presents with a phenotype of X-linked infantile spasms, or West syndrome, recapitulating the phenotype seen in PA1 patients. This mouse has $40-60 \%$ less Arx protein when compared to the wild-type mice. Most of the mice with this mutation died before three months of age, with some living to 5-6 months, with deaths presumably caused by the seizures observed in 70% of mutant mice. The mice also presented with impaired learning and cognitive function, with deficits in spatial learning and procedural learning. $A r x^{(\mathrm{GCG}) 7 / \mathrm{Y}}$ mice also had increased locomotor activity and high anxiety when compared to the wild-type mice (Kitamura et al., 2009). This is the PA1 mouse model we have used in our study.

Price and colleagues developed an independent PA1 model in 2009, the $\operatorname{Arx}{ }^{(\mathrm{GCG}) 10+7}$ mouse (Price et al., 2009). The seizure phenotype of the $\operatorname{Arx} x^{(\mathrm{GCG}) 10+7}$ mouse is similar to the $A r x^{(\mathrm{GCG}) 7 / \mathrm{Y}}$ mouse model, with 75% of adult mice having abnormal EEG results (reminiscent of a seizure), compared to 70% in the $A r x^{(G C G) 7 / Y}$ mouse model. The $A r x^{(G C G) 10+7}$ mouse also presented with infantile spasms quite early in development. The $\operatorname{Arx}{ }^{(\mathrm{GCG}) 10+7}$ mouse display subnormal anxiety levels, presenting as a less fearful model than their wild-type counterparts. Similar to the Kitamura PA1 model these mice showed a lack of learned fear responses and autistic-like behaviour (Price et al., 2009). We refer to this model as the alternate PA1 mouse.

Although both PA1 models show similar phenotypes, there are some distinct differences reported (Table 1.2). While it is unknown why exactly the two models differ, it is interesting to note the differences in the expansion of the PA1 tract in each model. The Kitamura mouse
model ($\left.A r x^{(G C G) 7 / Y}\right)$ mimics the length of the expansion of the tract seen in mice, with the addition of seven GCG repeats (the human codon usage) (Kitamura et al., 2009). The Price et al. mouse model, the $A r x^{(G C G) 10+7}$ mouse, utilised the mixed codon usage seen in mice (GCG, GCC and GCT), and added eight repeats to expand the tract to 23 alanines, the length seen in human patients (Price et al., 2009). While both models present with seizures and behavioural deficits, the interneuron subtypes determined to be affected in these models differ, which may contribute to differences in the phenotype of each model.

Kitamura and colleagues also generated a mouse model of the most commonly mutated polyalanine tract 2 , but the $A r x^{432-455 d u p / Y}$ mice were not as extensively studied in the initial report (Kitamura et al., 2009). The Shoubridge laboratory has been investigating the $A r x^{(\mathrm{GCG}) 7 / \mathrm{Y}}$ or PA1 and Arx ${ }^{432-455 d u p / Y}$ or PA2 models derived from the Kitamura laboratory in a comparative manner. Overwhelmingly, they have shown that the PA2 model presents with a very similar phenotype to the PA1 model in terms of seizures and behavioural deficits (Jackson et al., 2017). This is the second of the two mouse models utilised in my study.

In terms of seizures, video-EEG analysis, all PA2 mutant males showed abnormal epileptic activity, with bursts of high frequency spikes, and low amplitude oscillatory discharges. These episodes of abnormal epileptic activity lasted up to 90 seconds in duration. This was visually correlated to physical movement capture by video monitoring, varying from mouth movement, head movement, tail extension, and mild myoclonic seizures or rearing and falling with clonus of the forelimbs. Seizures were categorised (in conjunction with the Video-EEG data) into four categories, providing a powerful tool to assess the severity and frequency of the types of seizure in these mouse models using non-invasive video seizure monitoring. Category 1 was movement phenotypes, such as head and tail movements; category 2 was mild myoclonic seizures; category 3 was severe myoclonic seizures, lasting longer than 10 seconds; with category 4 where mice were found dead presumably from a lack of recovery after a seizure. There was a
wide variability in seizure severity and frequency between individual mice, similar to that seen in patients with these mutations. However, the first myoclonic seizures were observed at postnatal days 18 and 19 in the PA1 and PA2 mice, with most seizures observed after one month of age. By weaning (postnatal day 21), myoclonic seizures had been witnessed in 18% of PA1 mice and 42% of PA2 mice. By postnatal day 70 , as many as 73% of PA1 and 97% of PA2 mice had an observed seizure. Both PA1 and PA2 mice likely died from their seizures, with 45% of the PA1 cohort dying and only 15% of PA2 mice surviving to postnatal day 70 .

Behavioural testing in these two strains also demonstrated similar phenotypic presentations between the PA1 and PA2 mice generated by Kitamura. Prior to this study, no behavioural phenotyping data had been published on the PA2 mouse. There was increased anxiety in both mice coupled to decreased exploratory behaviour in the open field apparatus. Increased exploratory behaviour with a decreased fear response was demonstrated in both strains using an elevated zero maze. Despite these seemingly conflicting data, these tests assess different types of anxiety, in relation to open spaces and height respectively. Further testing of cognitive function indicated a decreased capacity in both mouse models (Y-maze test) with autistic-like traits (sociability testing) demonstrated in these mice, both characteristic features of human patients with these mutations (Jackson et al., 2017). The similarities between these two mouse models was thought to be driven by overlapping deregulated transcriptomes of these two mutations, as described by Mattiske and colleagues, in early embryogenesis at embryonic day 12.5 (Mattiske et al., 2016).

An independent PA2 mouse model has more recently been developed by Dubos and colleagues (Dubos et al., 2018). These mice are a partially humanised model, with the c.428_451 dup24 mutation duplication, creating the $A r x^{d u p 24 / 0}$ mouse. Interneuron migration was altered in these mice, with a deficit in cells expressing Arx, calretinin, calbindin, somatostatin and Chat (expressed by cholinergic cells), in the embryonic brain and at postnatal day 0 . Interestingly,
only 8% of mutant pups had infantile spasms, and at the adult stage, mutant mice had no spontaneous seizures. When injected with a pro-epileptic drug, pentylenetetrazol (PTZ), mutant mice had no difference to seizure susceptibility. The mice exhibited hyperactivity in the open field test and displayed altered anxiety and contextual fear learning in the fear conditioning test. The mice also had significant deficits to fine motor skills such as grasping and reaching, comparative to patients with expansions of the second polyalanine tract (Dubos et al., 2018). These mice recapitulate the milder PA2 phenotype of patients, thus providing a useful future model to compare alongside the Kitamura et al. mice, to examine the convergent cell and molecular contributors to the phenotype in PA2 patients.

While the phenotypes reported do vary slightly between the two PA1 and the two PA2 mouse models, the spectrum of phenotypes between the different models, and within individual mice, recapitulates the spectrum of phenotypes reported in human patients. Differences align between the varied interneuron subtype deficits we see between the two PA1 mouse models, indicating a possible difference in pathogenesis at the cellular model of these mice, though both show a very similar seizure phenotype. The Kitamura et al. PA2 mouse model represents the more severe end of the seizure phenotype that is reported in a small number of PA2 patients. Although PA2 patients show a variety of seizure phenotypes, generally PA1 patients all have severe epileptic phenotypes. The interneuron deficits between the Kitamura PA2 mouse and the Kitamura PA1 are also quite similar, shown in Lee et al. (Lee et al., 2017). The Dubos Arx ${ }^{d u p 24 / 0}$ mice show the milder phenotype seen in the majority of PA2 patients. Meanwhile, both PA1 mouse models closely align to the spectrum of phenotype seen in patients.

Table 1.2: Overview of phenotypic differences between the two different PA1 and PA2 mouse models.

	PA1		PA2	
	Kitamura et al. 2009 model	Price et al. 2009 model	Kitamura et al. 2009 model	Dubos et al. 2018 model
Seizures	70\% mice had abnormal EEG patterns 70\% mice with observed seizures	75% mice had abnormal EEG patterns Pups had infantile spasms	100\% mice had abnormal EEG patterns 97\% mice with observed seizures	8% of pups had infantile spasms No seizures in adult mice No increase to induced seizure susceptibility
Fear/anxiety	\downarrow Fear response \uparrow Anxiety	\downarrow Fear response Subnormal anxiety	\uparrow Anxiety \downarrow Fear response	Hyperactivity Altered anxiety
Locomotion/exploration	\uparrow Locomotor activity \downarrow Exploratory behaviour		\uparrow Locomotor activity \downarrow Exploratory behaviour	\downarrow Fine motor skills
Cognition	\downarrow Cognitive function		\downarrow Cognitive function	\downarrow Contextual fear learning
Autistic-like behaviour	Yes	Yes	Yes	No
Mortality	45% mice died before two months of age		85% mice died before two months of age	

1.4.2 Other Arx mouse models

Looking at conditional loss of Arx can have advantages to studying the function of Arx without other severe sides of a phenotype interfering with studying brain development. Two main conditional knock-out models will be discussed. One such model is the $\operatorname{Arx}{ }^{-1 \mathrm{Y}} ; D l x 5 / 6^{\mathrm{CIG}}$ (hemizygous males) and $A r x^{-1+} ; D l x 5 / 6^{\text {CIG }}$ (heterozygous females) mice. These mice have a near complete loss of Arx from the ventral forebrain from embryonic day 14.5 onwards. All hemizygous males exhibit abnormal EEG activity and spontaneous seizures, with similar features to the epileptic spasms seen in infantile spasms patients and the PA1 and PA2 Arx mouse models described, such as whole body flexion and extension, forelimb clonus and rearing. Interestingly, heterozygous females also showed a seizure phenotype, not seen in the other Arx mouse models, with about 50% presenting with seizures, similar to those seen in the hemizygous male mice (Marsh et al., 2009).

No major anatomical differences were seen in the brains of the hemizygous or heterozygous mice, nor were there any differences to body or brain weights. However, specific interneuron deficits were observed at P14, P17 and in the adult brain. Similar to the Price et al. PA1 mouse, the most severe loss was seen in calbindin positive interneurons. Smaller reductions were observed in calretinin positive cells, and no change was observed in parvalbumin positive cells. This shows that when Arx is knocked out in the interneurons of the brain, interneuron subtype specific development is supressed (Marsh et al., 2009).

More extensive studies of specific interneuron development have since gone on to be studied in this mouse model, involving crossing the mouse with a fluorescent marker to study migration and development of the affected cell types. There was a great deal of variability in the number of Arx positive cells in the brain at embryonic day 18.5, P14 and in the adult brain, but an almost complete loss of Arx was still seen. At P14, there was a reduction of Arx positive neurons in the upper layers of the cortex, but with some preseveration of these cells in the
deeper layers. This study also found that the calbindin positive cells were actually increased in the ventral regions of the cortex, including the striatum, at embryonic day 14.5 , but decreased in the dorsal telencephalon (Marsh et al., 2009). This indicates that Arx is pivotal for migration of these cells, and without this migratory guidance, these cells are halted, shown in the expanded polyalanine tract mutation models as well (Lee et al., 2017).

Further, no differences were observed at embryonic day 18.5 or postnatal day 14 in the cortex, but there was a loss in the hippocampus at this later time point. While there was a trend towards loss of calretinin positive cells in the cortex, this did not reach significance. However, the study did show a loss of neuropeptide-Y positive cells in the ventral region of the forebrain, which persisted to postnatal day 14. No differences in somatostatin positive cells were observed. Parvalbumin, not expressed until postnatal day 14 , was shown to be reduced in the hippocampus but increased in the cortex (Marsh et al., 2016).

Another mouse model, a conditional knock-out $A r x^{-/ Y} ; E m x l^{C r e}$ mouse, selectively removes Arx from the dorsal telencephalon. Interestingly, this mouse model did not show any difference to the number of interneurons compared to the brains of their wild-type litter mates. Predictably, these mice did not present with the seizure phenotype we see in most of the other Arx mouse models. When a large battery of behaviour tests was performed on these mice, spatial learning and memory was found to be comparable to wild-type mice, but fear-based memory was impaired, something seen in other Arx models. These mice were less anxious however, and more exploratory, and, comparable to the PA1 and PA2 mice, were more hyperactive than wildtype mice. These mice also presented with autistic-like behaviour, with social deficits shown through sociability testing (Simonet et al., 2015).

Anatomically, the $A r x^{-/ Y} ; E m x I^{C r e}$ mouse had smaller cortices, amygdalas and white matter tracts compared to wild-type, hypothesised to be the cause of the decreased anxiety phenotype
seen in this model. This study, while surprising compared to the usual phenotype seen in patients with ARX mutations, with no seizures or spatial leaning deficits, sheds light on the function of Arx in different regions of the brain. The loss of Arx in the progenitor cells in the mouse led to structural, function and behavioural deficits, through a loss of cortical connections and reduced cortical and amygdala volumes, but showed a longer lifespan due to the lack of a seizure phenotype (Simonet et al., 2015). The lack of interneuron deficits coupled with a no seizures or grip strength deficiency, provides further evidence to the importance of interneurons on these particular aspects of $\operatorname{Arx} / A R X$ mutant phenotypes. This mouse also further shows that cognitive dysfunction is not simply due to the epilepsy phenotype of these patients, and that some behaviours are due to the Arx mutation itself, further shown in that some patients present without seizures but with intellectual disability, particularly PA2 patients (Turner et al., 2002).

A mouse model with selective Arx loss in the cerebral cortex has proven useful to understanding the spatial importance of the gene in the brain. The developing brains of this model had a specific loss of cortical progenitor cells, particularly in the intermediate zone. Furthermore, later in brain development, there was a loss of neurons in the upper layers of the cortex, but not within the deeper layers (Colasante et al., 2015). Transcriptional profiling in embryonic life at E14.5, interestingly showed that with this loss of Arx, there was overexpression of Cdkn1c, a key inhibitor of cell cycle progression. This data provides evidence that Arx is a direct regulator of Cdknclc transcription, and inhibition of this process contributes to the loss of neurons and progenitor cells in the brains of these mice (Colasante et al., 2015).

1.4.3 Benefits and limitations of mouse models for research

Animal models remain vital to understanding mechanisms of disease and to find methods and drugs to treat diseases. When using mouse models for research however, it is important to consider the benefits and limitations. The mouse is closely related to humans, being a mammal, can produce multiple progeny reasonably quickly, and strains are inbred, meaning they will be highly conserved and similar between individuals. The mouse is genetically and physiologically like humans, making it a useful model for pre-clinical screening of potential therapies for disorders. Furthermore, mice being inbred means they do not capture the genetic variation existing in the human population, something that could be key to the phenotypic variation seen in patients with Arx mutations. In general, however, mice are not human, and using mouse models to test novel therapeutic strategies is only part of pre-clinical investigation.

Embryonic development differs in the mouse, with gestation being 18 days compared to 270 days in humans. This means that the timing of key developmental milestones between mouse and human do not readily match up, and much of what occurs while still in utero in human development occurs postnatally in the mouse, particularly in the brain. For instance, neurogenesis occurs up to postnatal day 0 in the mouse, with neuronal pruning occurring up to day 21 postnatal, while this all occurs in utero in humans. Telencephalic neuronal migration occurs before 20 weeks gestation in humans, while this occurs up to embryonic day 16 in mouse, with cortical positioning occurring to postnatal day 10 (Pressler and Auvin, 2013, Semple et al., 2013, Olivetti et al., 2014). The mouse does recapitulate many aspects of human brain development however, with the basic steps of neurogenesis remaining conserved between both models, as well as the general migratory patterns of inhibitory and excitatory neurons (Buchsbaum and Cappello, 2019). However, there are differences in the numbers of neuronal progenitors, their expansion and division capacity, as well as the complexity of the human
cortex compared to that of the mouse. This unsurprisingly results in the higher cognitive functions a human can perform (Buchsbaum and Cappello, 2019).

Cognitive testing batteries are thorough and allow research into intellectual disability in mouse models. These behavioural tests investigate both exploratory behaviours through open field test for example, as well as learned behaviour like Y-maze and Barnes maze, which test more complex memory, both working and long-term (Wahlsten, 2011). However, these tests have their limitations. Many memory-based tests work from hippocampal or spatial memory. If the hippocampus is not the most weakened region of the brain in a disease of interest, these tests may not show the full extent of impaired learning, compared to a test that works from cortical learning (Wahlsten, 2011). High mortality rates of mouse models can also impair the ability to perform cognitive testing, as it can be difficult to reach the required sample sizes for large scale studies.

Additionally, there can be discrepancies between clinical trials and treatment studies between mice and humans, often having quite different outcomes (Lee et al., 2012). An increased understanding of the molecular mechanisms behind neurodevelopmental disorders has since lead to the production of more physiologically or genetically relevant mouse models which recapitulate the human phenotypes, providing a platform to enhance the capacity for translatable outcomes arising from pre-clinical trials (Gross et al., 2015, Berry-Kravis et al., 2018). Although limitations do need to be considered when using these models, particularly differences in brain structure and development, overall, genetically modified mice provide a clinically relevant model for assessing cognitive function and investigating the neuropathological basis of diseases and testing drugs. Mouse models provide important information on the mechanisms of disease and subsequent treatments, allowing for more robust and reproducible results when moving to human clinical trials. One relevant example for ARX
and my project, is the recent work investigating the role of exogenous steroids to alleviate the severity of otherwise intractable seizures.

1.5 Exogenous steroids as a treatment for infantile spasms and seizures

While conventional therapies aren't effective for the refractory seizures we see in some patients with ARX mutations, a study performed by our collaborators, Olivetti and colleagues, found that short-term β-estradiol (E2) given to the $\operatorname{Arx}{ }^{(\mathrm{GCG}) 10+7} \mathrm{PA} 1$ mouse model between postnatal days 3 and 10 improved the seizure outcomes of these mice (Olivetti et al., 2014). In the developing male mouse brain, there is a surge of E2 due to the conversion of testicular testosterone to E2, and heightened estrogen receptor expression in the brain (Wonders and Anderson, 2006, McCarthy, 2008, Sugiyama et al., 2008). This period overlaps with interneuron migration and the positioning of interneurons in the cortical layers, occurring between embryonic day 11 and postnatal day 10 . E 2 is a short-acting exogenous steroid and has roles in modulating neuronal excitability and neurotransmitter release. E2 induces changes to gene expression via the estrogen receptor, inducing effects on developing neurons, to produce long-term transcriptional changes. These pathways have been shown to play roles in the proliferation of progenitor cells, neuronal migration, synaptogenesis and dendritic spine formation, all key developmental milestones in the brain (McCarthy, 2008, Boulware and Mermelstein, 2009). These processes are part of the normal maturation process of neuronal cells, and it was hypothesised that by improving these processes in the brains of PA1 mice, their phenotype would be improved.

To determine the appropriate timing of treatment, E2 was given both at an early postnatal age and again later in life, between postnatal days 33 and 40. The late-treated group of mice showed no difference to seizure frequency as determined through EEG, while the early-treated group, given E2 between postnatal days 3 and 10, showed a 64% reduction in seizures. This mouse
model shows spasms between postnatal days 7 and 11, and when treated with E2 no mice displayed spontaneous spasms compared to about one third of mice treated with a vehicle (Olivetti et al., 2014).

To investigate a potential mechanism of action for E 2 , the interneurons of mice treated with E2 or a vehicle were investigated. With E2 treatment, mice had 30% more neuropeptide-Y interneurons in the somatosensory cortex compared to wild-type mice, where vehicle treated mutants had a 36% decrease in this subtype of interneuron, meaning E2 rescued the phenotype to above the wild-type level. This was shown for calbindin-positive interneurons as well, however no deficit in this subtype was seen in the vehicle treated mutants, indicating that estradiol increased the calbindin-positive cell number in the brain to 42% above wild-type mice treated with vehicle. Interestingly, E2 also increased calbindin-positive interneurons in wildtype mice, who do not show a deficit in these cells in the normal brain. E2 rescued the reduced numbers of cholinergic interneurons to wild-type levels (Olivetti et al., 2014). These results show that E2 promotes migration and recovery of neurons in the brain, even independent of the impact of a mutation in Arx.

Furthermore, E2 also changed the expression of genes normally regulated by Arx. Normally Arx represses Ebf3, Lmol and Shox2 and activates Lhx7, Cxcr4, Cxcr 7 and Lgil in interneurons (Friocourt and Parnavelas, 2010, Mattiske et al., 2016). Quantitative real-time PCR was performed on the brains of mutant mice treated with E2. Shox2 expression was decreased, Lgil expression was upregulated, and Ebf3 expression was repressed (Olivetti et al., 2014). These results show that not only does E2 improve the interneuron deficits in PA1 mutant mice, it also acts upon downstream targets of Arx. The findings of this study provide promising research for exploring exogenous steroids as potential treatment options for infantile spasms and epilepsy.

Further to this initial study on the Price et al. PA1 mouse model, investigations on apoptosis in the brain of these mice, found that E2 treatment did not diminish this wave of cell death. The treatment however did still rescue the populations of Arx positive cells in the cortex. This indicates the apoptosis in the brain is not solely responsible for the seizure phenotype in this PA1 mouse model, as the treatment was still effective at improving seizure outcomes in the mice (Siehr et al., 2020). This study shows the importance of using treatment trials to help understand the pathophysiological mechanisms of disease.

Following the Olivetti study, other research groups have attempted to reproduce the effect of E2 on alleviating infantile spasms in different models of the disorder. One such study used a betamethasone-NMDA model of infantile spasms in rats, where betamethasone is given in utero around embryonic day 15 . The rats were then treated with the same dosage of E2 used in the Olivetti study, between postnatal days 3 and 10. At postnatal days 12, 13 and 15, the rats were subject to NMDA triggered spasms. ACTH was used as a positive control, as this treatment is known to alleviate these induced spasms in this animal model. It was shown that E 2 treatment had no effect on the spasms in this model (Chachua et al., 2016).

Interneuron populations were investigated in these rats, the number of GAD67 positive cells, a marker for interneurons, was 23% higher in the brains of E2 treated rats compared to those treated with vehicle. A battery of behavioural tests was also performed, showing no difference to anxiety traits but instead altered the exploration pattern in the novel objection recognition test. The behavioural results found in this study showed a trend towards E2 treated male rats shifting to a more female style of exploratory behaviour. Weight gain was also noted in E2 treated rats, not noted in the Olivetti study (Chachua et al., 2016).

While this study provided behavioural data for animals treated with E2, an investigation not performed in the Olivetti study was to show any difference in cognition in the mice. There are
limitations to this study when looking at E2 for a model other than one with an Arx mutation. Given that the primary deficit in the PA1 mouse brain is an interneuron deficiency, which E2 rescued to treat seizures in the mouse, it is reasonable to say that E2 may not have worked in this model as it did not show a deficit in interneurons in the first place, therefore not providing any additional benefits to rescue spasms. It is likely that given ACTH is used as a positive control in this study, the pathophysiology of the spasms is different to those seen in the Arx mouse models, and hence E2 may not rescue the phenotype in this induced spasm rat model. Another study performed in a different induced spasm rat model also attempted to validate whether E2 could alleviate infantile spasms. This model was induced at postnatal day 3 and presents with multiple clusters of spasms between postnatal days 4 and 13, with other seizure types also occurring after postnatal day 9 . This model also presents with cognitive deficits to learning, memory and sociability behaviour, so has a phenotype more similar to the PA1 Arx mouse model. However, when treated with the same dosage of E2 as the Olivetti study between postnatal days 3 and 10, no difference was seen in spasm or seizure frequency, and there were no differences to mortality, or behavioural deficits. There was also no difference in weight between vehicle and E2 treated rats, different again to the Chachua study (Galanopoulou et al., 2017).

This induced spasm model does present with a deficit in interneurons, however these are predominantly in parvalbumin-positive cells, and this subtype was not affected by E2 in the Olivetti study. Again, it was concluded that different types of interneuron deficits can cause spasms, and that E2 may not act upon all the cellular causes of these spasms. It is also interesting to note that mice and rats, though genetically close, have different neurodevelopment milestones at different times. It is possible that the postnatal day 3 to 10 timing of the E2 treatment is not when this cortical positioning occurs in rats.

While not an infantile spasms model, a study into the effects of E2 on prematurely born rabbits has also been performed. Premature birth can lead to disrupted interneuron migration and development, due to neurological complications and a drop in estrogen levels. Estrogen can drop 100-fold in premature newborns, due to the termination of the in utero environment. This change in estrogen can interrupt neurogenesis and the maturation of interneurons. This study found that parvalbumin and somatostatin-positive interneurons were significantly deficient in the brains of prematurely born rabbits, and an overall loss of GAD67 positive cells. Estradiol treatment not only restored parvalbumin-positive interneurons in the cortex of prematurely born rabbit pups, but also increased the number of Arx expressing interneuron progenitor cells (Panda et al., 2018).

1.6 Concluding remarks

The seizures and intellectual disability associated with mutations in ARX can be devastating for children and their families. However, these pre-clinical studies show promise for exogenous steroids like estradiol as a potential therapy to alleviate the burden of comorbidities that are strongly associated with intellectual disability that may lead to damage to cognitive functioning, impaired quality of life due to the side effects of current anti-epileptic therapies, seizures interfering with day to day activities, or even early death. The mouse models developed for the expanded polyalanine tract mutations mirror the spectrum of patient phenotypes and provide an excellent resource for investigating E2 and other potential treatments. Understanding the molecular and cellular effects of these mutations will not only help us find potential pathways to be targeted by therapeutic interventions, but also to help us further understand the pathophysiology of disorders associated with ARX.

1.7 Project overview

By understanding how treatment affects these mice and the mechanisms behind the improvement to the clinical phenotype, we may be able to understand the relatively unknown pathophysiological mechanisms of mutations in $A R X$, and their involvement in intellectual disability and its associated comorbidities. The experimental aims of my PhD project addressed the following questions.

1. Does estradiol treatment alleviate seizure frequency and severity in a different model of PA1 mice, as well as in PA2 mice, modelling the most common human mutation of ARX ?
2. Does the reduction of seizures driven by estradiol treatment, change the behavioural and cognitive outcomes in PA1 and PA2 mice? Or does estradiol treatment directly change these behavioural deficits?
3. What are the molecular and cellular effects underpinning the mechanisms of pathogenesis in PA1 and PA2 mice? What are the improvements to these when PA1 and PA2 mice are treated with estradiol?

To dissect our research questions, I undertook the following aims.
Aim 1: To study the effects of short-term, daily estradiol treatment between postnatal days 3 and 10 , in PA1 and PA2 mice, on seizure severity and frequency.

Aim 2: To investigate if estradiol treatment can improve behavioural and cognitive outcomes in PA1 and PA2 mice. We will examine if improvements are due to a direct effect of estradiol treatment or due to improving seizure outcomes.

Aim 3: To perform unbiased transcriptomic analysis using RNA sequencing on the brains of PA1 and PA2 mice compared to wild-type mice at postnatal day 10 , to determine the impact of $A R X$ mutations on the postnatal cortex and assess the changes to gene expression being driven by estradiol treatment.

I hypothesised that estradiol treatment given early in postnatal life, would improve seizure outcomes in PA1 mice, as well as PA2 mice, given the overlapping phenotype of these two mouse models. Further, I predicted that the improvement in seizure severity and frequency early in brain development, due to estradiol treatment, would improve the cognitive deficits in both PA1 and PA2 mice. I hypothesised that these treatment effects would be due to estradiol's strong action on gene expression in the brain, by impacting pathways and genes targeted or associated with Arx, and those involved with brain development and cellular migration, particularly of interneurons.

Chapter Two:

Materials and Methods

2.1 General reagents

PBS: Phosphate Buffered Saline; 10X: $1.37 \mathrm{M} \mathrm{NaCl}, 27 \mathrm{mM} \mathrm{KCl}, 100 \mathrm{mM} \mathrm{Na} 2 \mathrm{HPO}_{4}, 20 \mathrm{mM}$ $\mathrm{KH}_{2} \mathrm{PO}_{4}$, adjusted to pH 7.4

TBS: Tris Buffered Saline; 10X: 50 mM Tris-Cl, 150 mM NaCl , adjusted to pH 7.4
TBE: Tris/Borate/EDTA; 10X: 89mM Tris, 89 mM boric acid, 2 mM EDTA, pH 7.6
4\% PFA: Paraformaldehyde; 0.1M NaOP, $4 \mathrm{M} \mathrm{NaOH}, 4 \mathrm{M} \mathrm{NaCl}, 4 \%$ PFA powder, pH 7.4

2.2 Animals

2.2.1 Animal husbandry

All animal procedures were approved by the Animal Ethics Committee (AEC) of The University of Adelaide, Adelaide. $A r x^{G C G 7 /+}$ (RBRC03654) and Arx ${ }^{432-455 d u p /+}$ (RBRC03653) heterozygous females, called PA1 and PA2 mice respectively throughout this thesis, were imported from RIKEN Bioresource Centre, Japan (Kitamura et al., 2009), and were maintained on the C57BL/6N-Hsd background.

Breeding animals were housed in individually ventilated cages under constant temperature and humidity with a 12 -hour light/dark cycle, with standard chow and sterile water available ad libitum. PA1 and PA2 heterozygous females were bred as trios with wild-type C57BL/6N-Hsd stud males to produce wild-type and hemizygous males for this study. There were no abnormal parenting behaviours in our heterozygous female mothers to report. Multiple breeding trios were set up concurrently to ensure an adequate number of litters (and hemizygous male pups) would be born within the same time frame. Females were separated and single housed once visibly pregnant (approximately two weeks post-conception) with access to autoclaved sunflower seeds and crushed standard chow soaked in sterile water, refreshed daily.

Litters of male mice were weaned from their mothers at approximately postnatal day 21 to day 23 (P21-P23) upon the smallest pup reaching 8 grams of body weight as a minimum. Mice
were co-weaned with male pups from other litters of the same mutant strain and treatment group where possible. Hemizygous males were weighed, monitored and scored daily from P3 on a Clinical Record Sheet for general health and welfare, appearance and any observed seizure activity. Experimental male mice were housed in individually ventilated cages under constant temperature and humidity with a 12 -hour light/dark cycle. Mice were given environmental enrichment in the form of red plastic dome houses, crinkled nesting paper, and a cardboard toilet roll or small cardboard box. Experimental mice were given a diet of 10% fat chow, autoclaved sunflower seeds and sterile water available ad libitum, as well as standard chow soaked in sterile water in an accessible feeding dish, refreshed daily.

2.2.2 Drug preparation and injections

A $5 \mathrm{mg} / \mathrm{mL}$ stock of 17β-estradiol (E2) (Sigma) was dissolved in sterile-filtered 100% dimethyl sulfoxide (DMSO) (Sigma). This was stored in a glass bottle away from light for up to four months at $4^{\circ} \mathrm{C}$. For injection, $4 \mathrm{ng} / \mu \mathrm{L}$ of E 2 in 0.75% DMSO was prepared in sterile sesame oil (Sigma). The vehicle injection control was similarly prepared, minus the E2. Aliquots of E2 and vehicle injection stocks were given batch numbers, and stored away from light in 2 mL amber glass vials (Sigma) at $4^{\circ} \mathrm{C}$. Each batch was re-labelled with a colour code by a 'noninvolved' member of the lab, with the information stored in a secure location until the end of the study. Drugs were referred to by their codes throughout the experimental trials until data analysis was complete, ensuring the investigators were blinded to treatment identity.

For these studies, only male pups were injected. Expansions of the first and second polyalanine tracts of Arx result in an X-linked disorder, meaning only male mice are affected by the disease. We treated hemizygous male mice, as well as wild-type male control mice. Daily injections were performed for seven days, between P3 and P10 inclusive, at the same time of day between 8:00 am and 10:00 am. Drugs were taken out of $4^{\circ} \mathrm{C}$ storage 15 minutes prior to injection and warmed to $37^{\circ} \mathrm{C}$. Pups were gently removed from their home cage and placed in a plastic tub
with tissue and used bedding from their home cage and placed on a $37^{\circ} \mathrm{C}$ slide warmer. Mice were visually sexed at P3. Pups were weighed before injection, with the dose of E2 achieving $40 \mathrm{ng} / \mathrm{g}$. For example, mice weighing 1.5 g received 50 ng of E2. Table 2.1 shows the upper and lower weight limits for each weight range, and the subsequent dose of E2 given if the mouse weighed within that bracket. A sterile BD Ultra-Fine II short needle insulin syringe (0.3 mL , $0.25 \mathrm{~mm} 31 \mathrm{G} \times 8 \mathrm{~mm}$) (Becton-Dickinson) was used for injections. Pups were injected subcutaneously with the drug, alternating injecting site daily between the neck and left and right hips of the pup. Pups were toe tagged for identification and genotyping purposes on P4. Once injected, pups were returned to dam in home cage and monitored post-injection, to ensure the mother did not reject injected pups. All male mice in each litter were treated with the same drug (blinded to the investigator by colour code). To reduce the cannibalisation/rejection rates of litters during the treatment phase, the female littermates (within an experimental litter) were injected with vehicle, ensuring all pups in the litter smelt the same to the mother.

At the end of the injection phase, male mice were humanely killed by decapitation for tissue collection for RNA sequencing analysis at P10 in the afternoon following their last injection, no less than six hours after injection, between 14:00 and 16:00. Otherwise, animals for behavioural/seizure monitoring analysis were carried through to weaning as described in 2.2.1 above.

2.2.3 Genotyping

A small piece of toe tissue was removed with sterile technique at postnatal day 4 or 5 for genotyping and to provide an individual identification mark (Figure 2.1). Tissue was stored at $-20^{\circ} \mathrm{C}$ until analysed. Genomic DNA was extracted as per manufacturer's instructions for the High Pure PCR Template Preparation Kit (Roche) or the Maxwell® RSC Tissue DNA kit (Promega).

Genotyping polymerase chain reaction (PCR) of all pups was performed using Taq polymerase (cloned in house) and FailSafe ${ }^{\text {TM }}$ PCR 2X PreMix J (Epicentre) for 35 cycles of 30 seconds denaturation at $94^{\circ} \mathrm{C}, 20$ seconds annealing at $60^{\circ} \mathrm{C}$ and 40 seconds elongation at $72^{\circ} \mathrm{C}$. Primers to amplify the $A r x$ knock-in region were described previously (Kitamura et al., 2009). We also included an Sry sexing PCR as part of our genotyping protocol as described previously (Lee et al., 2014). All genotyping primers are listed in Table 2.2. PCR products were separated by electrophoresis at 110 V for 25 minutes on a 2% agarose (w / v) in 1X TBE gel, and the correct PCR product was confirmed by comparison to the migration measured against a $1 \mathrm{kB}+$ molecular weight ladder, viewed under UV light using GeneSnap software (SynGene).

In addition to the genotyping described above, all heterozygous female breeders and experimental male pups were genotyped to confirm either the PA1 or PA2 genotype. This specific genotyping PCR was performed using Long Template Expand Taq polymerase (Roche) and FailSafe ${ }^{\mathrm{TM}}$ PCR 2X PreMix J (Epicentre) for 35 cycles of 30 seconds denaturation at 94C, 40 seconds annealing at 60 C and 40 seconds elongation at 68C. Primers used to amplify the PA1 and PA2 regions are listed in Table 2.2. PCR products were separated by gel electrophoresis at 80 V for 45 minutes on a 2% agarose (w / v) in 1 X TBE gel, and the correct PCR product was confirmed by comparison to the migration measured again a $1 \mathrm{kB}+$ molecular weight ladder, viewed using GeneSnap software (SynGene).

Figure 2.1: Mouse toe tagging numbering system. Diagram showing numbering system for toe tagging identification (mouse viewed from below). In this example, the third toe of the paw on the right fore limb, and of the paw on the left hind limb (circled in red) would be cut, giving a mouse identification number of 48. Diagram adapted from (Paluch et al., 2014).

Table 2.1: Mouse weight range brackets with lower and upper weight limits, with correct volume of drug to inject.

Lower weight (g)	1.375	1.625	1.875	2.125	2.375	2.625	2.875	3.125	3.375
Higher weight (g)	1.624	1.874	2.124	2.374	2.624	2.874	3.124	3.374	3.624
Volume injected $(\boldsymbol{\mu L})$	15	17.5	20	22.5	25	27.5	30	32.5	35
Lower weight (\mathbf{g})	3.625	3.875	4.125	4.375	4.625	4.875	5.125	5.375	5.625
Higher weight (g)	3.874	4.124	4.374	4.624	4.874	5.124	5.374	5.624	5.874
Volume injected $(\boldsymbol{\mu L})$	37.5	40	42.5	45	47.5	50	52.5	55	57.5
Lower weight (\mathbf{g})	5.875	6.125	6.375	6.625	6.875	7.125	7.375	7.625	7.875
Higher weight (\mathbf{g})	6.124	6.374	6.624	6.874	7.124	7.374	7.624	7.874	8.124
Volume injected $(\boldsymbol{\mu L})$	60	62.5	65	67.5	70	72.5	75	77.5	80
Lower weight (\mathbf{g})	8.125	8.375	8.625	8.875	9.125	9.375	9.625	9.875	
Higher weight (\mathbf{g})	8.374	8.624	8.874	9.124	9.374	9.624	9.874	10.124	
Volume injected $(\boldsymbol{\mu L})$	82.5	85	87.5	90	92.5	95	97.5	100	

Table 2.2: Mouse genotyping PCR primers.

Detection	Primer Name	Direction	Primer Sequence	Length (bp)	PCR annealing Tm $\left({ }^{\circ} \mathrm{C}\right)$	PCR product (bp)
Sex	Sry-F	Forward	CACTGGCCTTTTCTCCTACC	20	60	349
	Sry-R	Reverse	CATGGCATGCTGTATTGACC	20		
Knock-In	pMC1 neo ATGr	Reverse	TGTTCAATGGCCGATCCCAT	20	60	
	mArx jjr	Reverse	СтTTAGCTCCCCTTCCTGGCACAC	24		
	mArx kkf	Forward	AAAGGCGAAAAGGACGAGGAAAGG	24		
PA1 mutation	mARX-GCG	Forward	GCGCTGACCACTTTTCCTT	19	60	208
	$\begin{gathered} \text { mARX-GCG } \\ \text { v2 } \end{gathered}$	Reverse	ACCTCTCCACGGGGACCT	18		
PA2 mutation	mARX-Dp24	Forward	AGGGGAGCGTCAGGACAG	18	60	282
	mARX-Dp24	Reverse	AACAGCTCCTCCTCGTCGT	19		

2.2.4 Behavioural analyses

Behavioural testing was performed at approximately one and two months of age. Tests were conducted in the light cycle, always beginning at 9:00 and ending by 13:00. Tests at one month of age ran for one week and were performed in a conventional order for behaviour testing, running from the least stressful to the most stressful test (Wahlsten, 2011): open field and inverted grid (day 1), elevated zero maze (day 2), Y-maze (day 3) and sociability and social novelty (day 4). Tests at two months of age ran for two weeks and were performed in the same order in the first week, followed by Barnes maze for five days in the second week of testing. All testing was conducted using ANYmaze video tracking software (Stoelting). Behavioural apparatuses were thoroughly cleaned with F10 Veterinary Detergent between mice to remove olfactory traces. Environment (room appearance, lighting, background noise, temperature, humidity, and clothing of tester) was kept consistent for each round of behavioural testing. For all behaviour tests performed, several parameters could be measured using the AnyMaze software. While we have only reported those of interest or with significant differences, we have included a table with these parameters listed (Table 2.3).

Table 2.3: Parameters measured for each behavioural test using the AnyMaze software.

Behavioural test	Parameters measured
Open field	Time spent in zones Distance spent in zones* Total distance travelled* Average speed of mouse Speed of mice in zones Time spent stationery in zones Total time spent stationery
Elevated zero maze	Time spent in zones* Distance spent in zones Total distance travelled* Average speed of mouse Speed of mice in zones Time spent stationery in zones Total time spent stationery Number of head dips*
Y-maze	Time spent in zones* Distance spent in zones Total distance travelled* Average speed of mouse
Sociability \& social novelty	Time spent interacting with stranger/familiar mice* Time spent in stranger/familiar mouse zone Total distance travelled Average speed of mouse
Barnes maze	Latency to find escape hole* Distance travelled to find escape hole Number of false entries

*indicates parameter reported in this thesis (Chapter 3)

2.2.4.1 Inverted grid

Mice were placed on a wire grid (bar diameter of $1 \mathrm{~mm}, 1 \mathrm{~cm}$ apart) with an area of 10 cm by 18 cm taped off around the edge to prevent mice from climbing on to the top of the wire grid. The mouse's tail was pulled gently so that it gripped on to the grid, and the grid was quickly flipped to suspend the mouse upside down. The grid was suspended approximately 50 cm above a plastic-coated pillow surface. Mice were timed for the duration they remained suspended from the wire grid for a maximum time of 120 seconds, which was considered a successful trial. If the mouse fell in the first 10 seconds it was trialled for a second time, and if it fell again it was counted as a fail. Time the mice held on to the grid was measured as 'latency to fall'. Numbers of successful and failed attempts were also recorded.

2.2.4.2 Open field

Baseline locomotor activity and anxiety-like behaviour was quantified in the open-field, under stress-inducing conditions. Mice were placed in a 40 cm by 40 cm , well-lit (overhead light) plexiglass box, lined with black contact, in the south-west corner. Wild-type mice will typically spend time exploring the entire box, while mice with an abnormal fear and anxiety response will spend more time in the outer, darker areas of the open field apparatus (periphery), and won't spend as much time in the central zone of the apparatus. Wild-type mice will typically spend time exploring the entire box, while mice with an abnormal fear and anxiety response will spend more time in the outer, darker areas of the open field apparatus (Wahlsten, 2011). Time and distance spent in the periphery or centre zone of the open field was recorded over a 5-minute period.

2.2.4.3 Elevated zero maze

Anxiety-like and exploratory behaviours were investigated using the elevated zero maze. The elevated zero maze is comprised of a circular elevated platform, 40 cm above the floor (a diameter of 50 cm , and a platform 5 cm wide). The maze is split into four quadrants; two closed quadrants with 27 cm high walls and two open quadrants with no walls. Mice were alternately placed in the centre of the northern or southern open quadrant and allowed to explore. Wildtype mice typically explore the open quadrants of the elevated zero maze more than mice with an abnormal fear response, who tend to spend more time in the closed, darker quadrants (Wahlsten, 2011). Mice were recorded for a 5-minute period, measuring distance and time spent in open or closed quadrants. Head dipping behaviour was manually recorded (exploratory behaviour where a mouse looks over the side of the maze platform).

2.2.4.4 Y-maze

Hippocampal dependent spatial memory and exploratory behaviour was measured using the Ymaze. The Y-maze is comprised of three arms shaped as a ' Y ', each 35 cm long and 5 cm wide with 10 cm walls. The arms are at a 120° angle to each other. Each of the test walls had a different marking in black tape to allow mice to spatially differentiate between the left and right arms. There are two stages of the Y-maze test; training and testing.

2.2.4.4.1 Stage 1: Training

During Stage 1, mice were placed in the southern arm of the Y-maze. The mice explored the maze for a ten-minute period, with one of the lateral arms closed and the other open (alternated to the left and right arms between animals).

2.2.4.4.2 Stage 2: Testing

Thirty minutes after Stage 1, mice were placed in the southern arm of the Y-maze for Stage 2 of this test. All three arms were open for exploration for a duration of five minutes. Mice with intact hippocampal learning and memory will display a preference for the novel environment of a previously unexplored arm, and mice with a memory impairment will not recognise the novel arm, resulting in a greater or equal amount of time spent in the familiar, previously explored arm of the maze (Wahlsten, 2011).

2.2.4.5 Sociability

Sociability testing was carried out to investigate social behaviour and autistic-like traits. The test is comprised of a rectangular, plexiglass box with three separate chambers divided by walls. Each chamber it 20 cm by 40.5 cm with 22 cm high walls connected by closable doors. The sociability test is conducted in three stages. Each stage is five minutes long, and all stages are performed in a row for each mouse, before moving on to the next mouse.

2.2.4.5.1 Stage 1: Habituation

The mouse was placed in the middle chamber with doors to the left and right chambers left open, for a duration of five minutes.

2.2.4.5.2 Stage 2: Sociability

A wild-type, age-matched male stranger mouse (Stranger 1; no previous interaction with the testing mice) was placed in a round wire cage, with bars wide enough to allow nose contact. The stranger cage was placed in the left or right chamber (alternating between each test mouse). An empty cage was placed in the opposite chamber. The test mouse was placed in the middle chamber and allowed to access all chambers for a period of five minutes. The time the test mouse spent interacting with Stranger 1 was recorded as an index of social behaviour.

Interaction was measured manually and defined as the time the test mouse spent sniffing, interacting with, or climbing on the cage of Stranger 1.

2.2.4.5.3 Stage 3: Preference for social novelty

A second wild-type, age-matched male stranger mouse (Stranger 2) was placed in the previously empty cage in the previously empty chamber. The test mouse was allowed to access all chambers for a five-minute period. The time the test mouse spent interacting with Stranger 1 and Stranger 2 was measured as an index of preference for social novelty.

Mice usually have a preference for social novelty, and those with normal social behaviour will typically spend more time interacting with Stranger 2 (novel mouse) than the Stranger 1 mouse (familiar mouse) in Stage 3, and a preference for social interaction by spending time with Stranger 1 in Stage 2. Mice displaying autistic-like behaviour will have altered social behaviour and will not interact with stranger mice as preferentially as wild-type mice do in sociability or preference for social novelty tests (Wahlsten, 2011).

2.2.4.6 Barnes maze

The Barnes maze was used to investigate spatial learning and memory as well as cognitive flexibility. The Barnes maze is comprised of a round table 91 cm in diameter, with an overhead light above the table. The maze has 20 equally spaced holes around the outside edge. However only one leads to a real escape box underneath the table. All other holes are blocked and have no escape box. The Barnes maze was conducted over four training days.

2.2.4.6.1 Days 1-4: Training

A four-day training period was used to measure spatial learning. Each day, the test mouse was placed in the centre of the Barnes maze table under an opaque plastic container. Once the container was lifted, the test mouse was given three minutes to find the escape box and learn its location. If the mouse failed to find the escape box, it was guided to the box and had the
plastic container kept over it for one minute in order to learn its location. Mice were tested three times on each testing day, with the score averaged. Outcomes were recorded as latency to locate the escape box over the training period.

2.2.5 Seizure monitoring and analysis

Mice received daily injections between day 3 and day 10 and remained with their mothers until weaning. From the start of treatment (postnatal day 3) until postnatal day 70, all mice for behavioural testing and seizure monitoring were handled and weighed daily. Any observed seizures occurring during this daily handling were recorded. Spontaneous seizures were assessed during non-invasive video monitoring (with offline analysis) across the peak period of seizures (previously determined in untreated mice to occur between postnatal days 35 and 60) (Jackson et al., 2017). Video monitoring for seizure activity was conducted three times a week in four hour blocks from 11:00 until 15:00 during light cycle, on PA1 and PA2 hemizygous males and age matched control wild-type littermates, between the ages of P38 and P56. Cage mates were placed in a Perspex covered 17.5 cm by 31 cm cage, with a small piece of Nectragel (Able Scientific) and food available ad libitum during the filming period. Natural behaviour was captured and automatically saved in 50-minute video files by a Sony FDR-AXP35 4K Handycam or a Panasonic HC-VX980M 4K Video Camera. Activity levels and seizure activity were viewed offline using VLC Media Player (version 2.1.3). Videos were analysed by observers blinded to genotype and treatment. Seizure activity was scored using a defined scoring system based on categorisation of seizures compared directly to videoelectroencephalography in untreated mutant mice from a previous study (Jackson et al., 2017). In brief, seizures in mutant mice were characterised into four categories: (1) rapid and jerky movements around the cage and stationary seizures, (2) mild repetitive myoclonic jerks (duration less than 10 secs), (3) prolonged myoclonic seizures lasting longer than 10 seconds and (4) found dead. Myoclonic seizures were recorded for length of seizure in seconds.

2.2.6 Animal dissections and tissue collection

Animals for RNA sequencing analysis were humanely killed by decapitation at postnatal day 10, and behavioural/seizure monitoring animals were humanely killed at approximately postnatal day 70 by CO_{2} asphyxiation, if not euthanised for humane reasons prior to end point. The brain was dissected, and the cortex was separated from the cerebellum and cut in half sagitally along the cerebral fissure. The left half of the cortex was minced and snap frozen in liquid nitrogen and stored at $-80^{\circ} \mathrm{C}$. The right half of the cortex was fixed in either 4% PFA or 10% formalin (Sigma).

Samples fixed in 4% PFA were washed three times in high-volume, cold 1X PBS for five minutes per wash on a rocker, before being transferred to 30% sucrose in PBS to equilibrate. Samples were then embedded in OCT medium (TissueTek, ProSciTech) and stored at $-80^{\circ} \mathrm{C}$. Samples fixed in 10% formalin were washed three times in high-volume, cold 1X PBS for five minutes per wash on a rocker, and stored in 70% ethanol at $4^{\circ} \mathrm{C}$.

Other tissue was also dissected from the animals; testes, pancreas, and forelimb muscle. The left testis, left forelimb muscle and pancreas were snap frozen in liquid nitrogen and stored at $80^{\circ} \mathrm{C}$. The right testis and right forelimb muscle were fixed in either 4% PFA or 10% formalin. Fixed samples were washed and embedded as per procedures described above.

2.2.7 Statistical analysis

All data analysis was performed using GraphPad Prism version 7.0 (GraphPad Software Inc.). Data normality was confirmed using a D'Agostino and Pearson normality test. Statistical significance of the difference between means of each genotype (PA1 and PA2), treatment groups, and wild-type littermates was determined using either a one-way or two-way analysis of variance (ANOVA) followed by a Tukey's HSD post-hoc test. Where comparisons were
made between two treatment groups of the same genotype (PA1 or PA2), without wild-type littermates included, a two-tailed unpaired t-test was performed to determine significance.

2.3 Gene expression analysis

2.3.1 RNA extraction

RNA was extracted from the cortex of hemizygous male mice and age-matched male wild-type littermates using Trizol (ThermoFisher). Frozen cortex samples were thoroughly homogenised in 1 mL of Trizol, and the sample passed through a P1000 pipette tip until completely homogenised. Samples were left at room temperature (RT) for five minutes. $200 \mu \mathrm{~L}$ of chloroform was then added to the tube, and shaken vigorously for one minute, then left for two minutes at RT for layers to separate. The tube was then centrifuged at $10,000 \times g$ for 15 minutes at $4^{\circ} \mathrm{C}$. The RNA was then extracted and purified as per manufacturer's instructions for the RNeasy Mini Kit (Qiagen) and RNase-Free DNase kit (Qiagen). RNA was eluted in $50 \mu \mathrm{~L}$ of RNase-Free $\mathrm{H}_{2} \mathrm{O}$. RNA concentration was determined using a UV spectrophotometer (Nanodrop). RNA quality was also determined using gel electrophoresis. $3 \mu \mathrm{~L}$ of RNA was combined with $5 \mu \mathrm{~L}$ of 2 X loading dye, with RNA then separated by electrophoresis at 80 V for 60 minutes on a 1% agarose (w / v) in 1X TBE gel. The correct products were confirmed by comparison to the migration measured again a $1 \mathrm{kB}+$ molecular weight ladder, viewed under UB light using GeneSnap software (SynGene).

2.3.2 RNA sequencing

Illumina's TruSeq stranded RNA sample preparation protocol was used to process samples prior to sequencing. 56 mouse RNA samples were sequenced on an Illumina NextSeq Platform. The primary sequence data was generated using the Illumina bc 12fastq.2.19.1.403 pipeline. The per base sequence quality was $>95 \%$ bases above Q30 across all samples. The reads were also screened for the presence of any Illumina adapter/overrepresented sequences and cross-species contamination. The cleaned sequence reads were then aligned against the Mus musculus
genome (build version nm10). The TopHat aligner (v2.1.1) was used to map reads to the genomic sequences. The counts of reads mapping to each known gene were summarised and used for computing differential gene expression with 'edgeR'. edgeR version 3.12.1 was used to perform differential expression analysis. Low counts were filtered out ($\mathrm{cpm}<1$) and the default TMM normalisation method of edgeR was used to normalise the counts between samples. A generalised linear model was then used to quantify the differential expression between the groups (treatment and genotype). Transcripts that were significantly different within genotype and treatment group comparison, were then selected by applying a p-value cut off of <0.05 and a $\log 2$ fold-change of ± 0.5.

2.3.3 RNA sequencing validation

2.3.3.1 Reverse transcription cDNA synthesis

cDNA was prepared as described in SuperScriptIII reverse transcriptase (ThermoFisher) manual, with $1 \mu \mathrm{~g}$ of RNA primed by random hexanucleotides. Template negative and reverse transcriptase negative controls (where template or SuperScriptIII was replaced with $\mathrm{H}_{2} \mathrm{O}$) were included to determine product specificity. Synthesised cDNA was diluted by adding $20 \mu \mathrm{~L}$ of $\mathrm{H}_{2} \mathrm{O}$. Samples were stored at $-20^{\circ} \mathrm{C}$.

2.3.3.2 Polymerase chain reaction (PCR)

The efficiency of reverse transcription was determined using PCR. The primers used were specific to the ubiquitously expressed housekeeping gene, Beta-Actin. Primers used are listed in Table 2.4. For this reaction, cDNA was amplified with $1 \mu \mathrm{~L}$ of Taq DNA polymerase (Roche), 1x PCR buffer with MgCl_{2} (Roche), single stranded DNA primers (Table 2.4) and $\mathrm{H}_{2} \mathrm{O}$ to make the reaction up to $50 \mu \mathrm{~L}$. The PCR cycle conditions were as follows: initial denaturation at $94^{\circ} \mathrm{C}$ for 5 minutes, 35 cycles of denaturation at $94^{\circ} \mathrm{C}$ for 30 seconds, annealing for 30 seconds at $60^{\circ} \mathrm{C}$, extension at $72^{\circ} \mathrm{C}$ for 30 seconds, and a final extension at $72^{\circ} \mathrm{C}$ for 10 minutes. PCR products were visualised on a 1% agarose (w / v) gel in 1X TBE buffer with ethidium bromide
added $(0.2 \mu \mathrm{~g} / \mathrm{mL})$ for 45 minutes at 100 V , with $1 \mathrm{kB}+$ molecular weight ladder, and viewed under UV light using GeneSnap software (SynGene).

Table 2.4: Housekeeping primer set.

Name	Species	Primer Sequence (5'-3')	Length	PCR annealing Tm ($\left.{ }^{\circ} \mathrm{C}\right)$	PCR product (bp)
Beta-					
Actin	Mouse	GATATCGCTGCGCTGGTCGTC	21		177
Forward			60		
Beta-			23		
Actin	Mouse	TCTCTTGCTCTGGGCCTCGTCAC	2		
Reverse					

2.3.3.3 Quantitative real-time PCR (RT-PCR)

Genes selected for validation studies were assayed as described in the TaqMan® PreAmp Master Mix Kit user guide (Applied Biosystems). Pre-designed TaqMan® Gene Expression Assays were selected from ThermoFisher. Reactions were set up in a 96-well plate, with each well containing $2 \mu \mathrm{~L}$ of cDNA template (of a $1 \mathrm{ng} / \mu \mathrm{L}$ to $50 \mathrm{ng} / \mu \mathrm{L}$ stock), $1 \mu \mathrm{~L}$ of the 20 X TaqMan® Gene Expression Assay ($\mathrm{FAM}^{\mathrm{TM}}$ dye-labelled MGB probe) and $1 \mu \mathrm{~L}$ of the 20 x TaqMan® Endogenous Control Assay (VIC® dye-labelled MGB probe), $10 \mu \mathrm{~L}$ of the 2 x TaqMan® Gene Expression Master Mix and RNase-free $\mathrm{H}_{2} \mathrm{O}$. Each validation gene was quantified using a FAM labelled TaqMan® probe, with the expression values normalised to the reference gene, Beta-Actin, labelled with VIC.

Reactions were run on the Applied Biosystems StepOnePlus ${ }^{\text {TM }}$ Real-Time PCR System using a standard run with the following conditions: activation at $50^{\circ} \mathrm{C}$ for 2 minutes, $95^{\circ} \mathrm{C}$ incubation for 10 minutes, 40 cycles of denaturation at $95^{\circ} \mathrm{C}$ for 15 seconds and extension at $60^{\circ} \mathrm{C}$ for 1 minute. The signal emitted from the dye was recorded at the end of each cycle. All samples were analysed in triplicate. The efficiency of the assay was determined by amplification of the standard curve of a diluted control cDNA sample (in this case, an untreated wild-type cortical sample from an age-matched control). Expression values were calculated using the StepOnePlus ${ }^{\text {TM }}$ software (v2.3), using the standard curve method. Table 2.5 refers to all TaqMan® probes used in this thesis.

Table 2.5: TaqMan® assay details.

Gene name	Oligo name	Probe label	Species	Amplicon length
Arc	Mm01204954_g1	FAM	Mouse	145
Arx	Mm00545903_m1	FAM	Mouse	104
Beta-Actin	ACTB Control Mix, pre-developed Taqman assay reagent	VIC	Mouse	
Calb2	Mm00801461_m1	FAM	Mouse	80
Chrna2	Mm00460630_m1	FAM	Mouse	63
Egr1	Mm00656724_m1	FAM	Mouse	182
Fos	Mm00487425_m1	FAM	Mouse	59
Gbp3	Mm00497606_m1	FAM	Mouse	79
Inhba	Mm00434339_m1	FAM	Mouse	65
Lgi3	Mm00507490_m1	FAM	Mouse	95
Lhx1	Mm01297482_m1	FAM	Mouse	60
Lmol	Mm01168131_m1	FAM	Mouse	70
Ncald	Mm01137205_m1	FAM	Mouse	64
Ndnf	Mm00549567_m1	FAM	Mouse	74
Nkx2-1	Mm00447558_m1	FAM	Mouse	95
Npy	Mm01410146_m1	FAM	Mouse	130
Npy2r	Mm01218209_m1	FAM	Mouse	86
Nt5e	Mm00501910_m1	FAM	Mouse	77
Nxph2	Mm00801892_m1	FAM	Mouse	91
Pcp4l1	Mm01295270_m1	FAM	Mouse	63
Spp1	Mm00436767_m1	FAM	Mouse	114
Th	Mm00447557_m1	FAM	Mouse	61
Wnt10a	Mm00437325_m1	FAM	Mouse	69

2.3.4 Gene enrichment analysis

Venn diagrams for gene expression data analyses were created using http://bioinformatics.psb.ugent.be/webtools/Venn. Statistical analysis of the enrichment of gene expression data was performed using Database for Annotation, Visualisation and Integrated Discovery (DAVID) Functional Annotation Bioinformatics Microarray Analysis (Huang da et al., 2009, Huang da et al., 2009). DAVID uses multiple databases to create annotation clusters. These clusters are then given overarching theme names and ranked. Annotation clusters were ranked by enrichment score calculated by DAVID. PANTHER (Protein Analysis Through Evolutionary Relationships) was used for pathway enrichment analysis (Thomas et al., 2003, Mi et al., 2013).

Our lists of deregulated genes were compared with a number of reference lists of genes associated with autism and intellectual disability, epilepsy, inhibitory neurons, and estrogen response element containing genes. The statistical significance of the overlap of genes between two groups was calculated using hypergeometric probability (http://nemates.org/MA/progs/overlap_stats.html).

2.4 Immunofluorescence

2.4.1 Tissue sectioning

Cortex from mice was coronally embedded in OCT and stored at $-80^{\circ} \mathrm{C}$ until sectioning. The samples were sectioned by the University of Adelaide Histology Department. Coronal sections of $10 \mu \mathrm{~m}$ thickness ($\sim 2-3$ cells thick) at $100 \mu \mathrm{M}$ apart were taken serially using a Leica Crytostat (Leica Biosystems) at $-24^{\circ} \mathrm{C}$. Sections were fixed to Superfrost ${ }^{\mathrm{TM}}$ Plus microscope slides (ThermoFisher). Frozen cortical sections were stored at $-20^{\circ} \mathrm{C}$ until analysis. At least four sections across the right hemisphere were used for immunofluorescence analysis. Sections analysed align to sections $100-124$ of the Nissl stained postnatal day 7 coronal brain of the Allan Brain Atlas reference guide.

2.4.2 Immunofluorescence

Frozen cortical sections were first air-dried for one hour at room temperature prior to immunofluorescence staining. The following procedure was performed in a humidified chamber (a dark box lined with damp paper towel) to prevent tissue from drying. Rinses and washes were performed in Coplin jars.

Tissue sections were permeabilised in 1X PBS $+0.5 \%$ Triton-X for 5 minutes. Slides were then rinsed in 1X PBS, before being incubated with blocking solution (10% horse serum and 10% BSA in 1X PBS $+0.1 \%$ Triton) at room temperature, for 30 minutes. Slides were incubated with primary antibodies overnight at $4^{\circ} \mathrm{C}$, followed by incubation with secondary antibodies at room temperature for 2 hours. Between each antibody staining, slides were washed three times with 1X PBS $+0.01 \%$ Tween 20 . Following secondary staining and washing, slides were mounted with ProLong Gold Antifade Reagent with DAPI (Life Technologies) to stain the cell nuclei and mount coverslips. All antibodies used and antibody dilutions are listed in Table 2.6 and Table 2.7.

2.4.3 Microscopy

All immunofluorescence images were captured using a Zeiss Axio Imager.M2 microscope equipped with Axio Vision software (version 5.1). Immunofluorescence imagers were acquired by Zeiss AxioCam mRM camera. All comparative images within the same batch were captured with the same exposure times.

Captured images were processed by Image \mathbf{J} for quantification analysis. To ensure comparable signals were obtained across all genotypes within an independent experiment for quantification, all images within the same batch were captured with the same microscope settings within one session.

2.4.4 Interneuron analysis

Images from a section were first stitched together using Microsoft Image Compositor (Microsoft), and imported into Image J (FIJI) for processing and analysis. Manual cell counts were performed using the Cell Counter plugin for Image J. The counting method used was derived from Lee et al. 2017. Cells that were considered for analysis had a circular-like cell body (calbindin) or cytoplasmic and/or nuclear staining (neuropeptide-Y) with clear boundaries of the structure, with a clear nucleus from DAPI staining. Counts were exported into Excel and a cell density of number of cells $/ \mathrm{mm}^{2}$ were derived as an outcome (positive cells counted/area of section counted in mm^{2}).

2.4.5 Statistical analysis

For statistical analysis of interneuron cell counts, PA1 and PA2 mice were pooled. A one-way ANOVA was performed to determine statistical significance between $\mathrm{PA}^{\text {pool }}$ mice treated with vehicle or estradiol, followed by a Tukey's post-hoc test to determine individual differences

Table 2.6: Primary antibodies used for immunofluorescence.

Protein	Species	Affinity	Cat \#	Company	Dilution
Calbindin	Rabbit	Polyclonal	PC253L	Merck	$1: 1000$
Neuropeptide-Y	Sheep	Polyclonal	AB1583	Merck	$1: 1000$

Table 2.7: Secondary antibodies used for immunofluorescence.

Host	Target	Conjugate	Clonality	Cat \#	Company	Dilution
Goat	α Rabbit	Alexa 555	Polyclonal	A27039	ThermoFisher	$1: 400$
Donkey	α Sheep	Alexa 488	Polyclonal	A11015	ThermoFisher	$1: 400$

Chapter Three:

Short-term 17 β-estradiol treatment alleviates the seizure phenotype but not behavioural outcomes in PA1 and PA2 mouse models.

Publications and presentations from this work:

Publications

Loring, K.E., Lee, K., Mattiske, T., Zysk, A., Jackson, M.R., Noebels, J.L. and Shoubridge, C. (2020) "17- β estradiol reduces seizures but does not improve abnormal behaviour in mice with expanded polyalanine tracts in the Aristaless-related homeobox gene (ARX)."

Manuscript is Appendix 1. Submitted to Neurobiology of Disease.

In addition to this publication, I assisted with the animal husbandry, seizure monitoring and behavioural analysis for another study in a similar mouse model, as part of the work I performed for this chapter. While this work will not be contributing to the examination of this thesis, this work resulted in the following publication, with my inclusion as a co-author.

Jackson, M.R., Loring, K.E., Homan, C.C., Thai, M.H.N., Määttänen, L., Arvio, M., Jarvela, I., Shaw, M., Gardner, A., Gecz, J. and Shoubridge, C. (2019) "Heterozygous loss of function of IQSEC2/Iqsec2 leads to increased activated Arf6 and severe neurocognitive seizure phenotype in females." Life Science Alliance, 2 (4). (DOI: 10.26508/lsa.201900386) Manuscript is Appendix 2.

Conferences

Loring, K.E., Lee, K., Mattiske, T., Zysk, A., Jackson, M.R. and Shoubridge, C. "Can estradiol improve phenotypic outcomes in mice with mutations in Arx?"

Presented as an oral presentation at the following conferences:

Japanese Neuroscience Society Annual Meeting (2019), Niigata, Japan.
Australian Neuroscience Society Annual Meeting (2018), Adelaide, SA.
Australian Society of Medical Research SA Meeting (2018), Adelaide, SA.
Australian Society of Medical Research SA Meeting (2017), Adelaide, SA.

Presented as a poster at the following conferences:

Australian Neuroscience Society Annual Meeting (2018), Adelaide, SA.
Florey Conference at the University of Adelaide (2018), Adelaide, SA.
Florey Conference at the University of Adelaide, (2017), Adelaide, SA.

3.1 Abstract

Children with severe intellectual disability have an increased prevalence of refractory seizures. Exogenous steroid treatment may improve seizure outcomes, but the mechanism responsible for these improvements remains unknown. Further, it is unclear whether these treatments can improve cognition and behavioural deficits, either through direct action, or by improving seizure outcomes. Here we demonstrate that short term, daily delivery of the exogenous steroid, 17β-estradiol ($40 \mathrm{ng} / \mathrm{g}$) in early postnatal life significantly reduced the number and severity of seizures, but did not improve behavioural deficits, in mice modelling mutations in the Aristaless-related homeobox gene (ARX), expanding the first (PA1) or second (PA2) polyalanine tract. Frequency of observed seizures on handling ($n=14 /$ treatment/genotype) were significantly reduced in PA1 (32% reduction) and more modestly reduced in PA2 mice (14% reduction) with treatment compared to vehicle. Spontaneous seizures were assessed ($\mathrm{n}=$ 7/treatment/genotype) at 7 weeks of age coinciding with a peak of seizure activity in untreated mice. PA1 mice treated with estradiol no longer present with the most severe category of prolonged myoclonic seizures, while treated PA2 mice had a complete absence of any seizures during this analysis. Despite the reduction in seizures, 17β-estradiol treated mice showed no improvement in behavioural or cognitive outcomes after peak seizure onset. For the first time we show that these deficits due to mutations in Arx are already present prior to seizure onset and do not worsen with seizures. This comprehensive seizure and behavioural analysis provides a basis for further investigations into the molecular mechanism of estradiol treatment, and an understanding of the pathways that are impacted to achieve a reduction in the frequency and severity of seizures in the Arx PA mutant mice, and why the behavioural outcomes are not improved with early estradiol intervention.

3.2 Introduction

Epilepsy is a devastating neurodevelopmental disorder that affects approximately 50 million people worldwide with recent estimates of active epilepsy as high as 1.2% in developed Western countries (Zack and Kobau, 2017). This disorder is characterised by involuntary seizures, due to an imbalance of excitatory and inhibitory neuronal activity in the brain (WHO, 2019). One form of epilepsy in early infancy is infantile spasms, including X-linked infantile spasms syndrome (ISSX; MIM\# 308350). This disorder has a prognosis of severe epilepsy coupled with intellectual disability persisting throughout childhood and adolescence (Olivetti and Noebels, 2012, Hrachovy and Frost, 2013). Children with neurodevelopmental disorders often have complex overlapping phenotypes. For example, patients with severe intellectual disability have a $15-20 \%$ greater incidence than the general population of co-morbid features including recurrent seizures and autism spectrum disorder (ASD). As many as half of intellectual disability cases and epileptic syndromes are believed to be caused by genetic mutations (Willemsen and Kleefstra, 2014, Chiurazzi and Pirozzi, 2016, Ellis et al., 2020). The increasing list of genes responsible are involved in various pathways including development and maintenance of neuronal and brain function and cortical architecture (Paciorkowski et al., 2011, Olivetti and Noebels, 2012).

The Aristaless-related homeobox gene (ARX) [NM_139058.2] (MIM\#300382) is known to play a pivotal role in the development of the brain, specifically the migration and differentiation of interneurons (Miura et al., 1997, Kitamura et al., 2002, Kitamura et al., 2009, Lee et al., 2014). Interneurons are small, locally projecting neurons that use the neurotransmitters γ-aminobutyric acid (GABA), acetylcholine and other neuropeptides, to modulate excitation within neural networks. Due to the importance of excitatory and inhibitory balance, it is not surprising that dysfunction of GABA interneurons in the cerebral cortex is involved in neuropathology including epilepsy, schizophrenia, autism and intellectual disability syndromes (Le Magueresse and Monyer, 2013, Smith-Hicks, 2013). Mutations in ARX invariably lead to intellectual
disability, with a wide spectrum of other neurological comorbidities, including autism, dystonia, and epilepsy (Kitamura et al., 2002, Shoubridge et al., 2010). Over half of all mutations in $A R X$ patients are expansions of the first or second polyalanine tracts. Clinical presentation of families with expansion mutations in the first tract (PA1) generally present with phenotypes of infantile spasms and seizures (81\%) (Shoubridge et al., 2010, Marques et al., 2015), while patients with mutations in the second tract (PA2) present with non-syndromic intellectual disability (68\%), with dysarthria, dystonic hand movements (20\%) and infantile spasms (26\%) (Partington et al., 2004, Shoubridge et al., 2010, Marques et al., 2015, Jackson et al., 2017). The mechanisms underpinning this clinical variability remain unclear.

Children with infantile spasms associated with severe intellectual disabilities respond poorly to anti-convulsant medication. Adrenocorticotrophic hormone (ACTH) therapy is known to stimulate production and release of corticosteroids, as a frontline treatment for these disorders but often has low efficacy, high relapse rates and severe side effects that alongside early-onset seizures, are thought to further exacerbate the behavioural and cognitive deficits in affected children (Hrachovy and Frost, 2013). Second to the effects of anti-convulsant therapy, persistent and severe seizures can have dramatic effects on the regression of cognition of children with epilepsy (Farwell et al., 1985, Neyens et al., 1999, Prasad et al., 2014). A preclinical trial in a different Arx PA1 mouse model (Price et al., 2009) found that short-term 17β-estradiol (E2) given daily in the first postnatal week alleviated the severe seizure phenotype in adult male mice (Price et al., 2009, Olivetti et al., 2014). Estradiol being a exogenous steroid, plays important roles in the developing brain in synaptogenesis and morphology of neurons and glial cells, and can induce long-term changes in gene expression in the brain via activation of estrogen receptor and non-receptor pathways. 17β-estradiol treatment of PA1 mice partially restored the interneuron migration deficits in the neocortex, increased populations of neuropeptide- Y and calbindin positive interneurons, and changed the expression of several genes normally regulated by Arx (Olivetti et al., 2014).

The migration of these inhibitory cells along with other stages of cortical laminar positioning occur in mice from embryonic day 9 until postnatal day (P) 10. In the developing male mouse brain, there is a surge of intrinsic estradiol and conversion of testicular testosterone into estradiol during this period of brain development (McCarthy, 2008). While much research into estradiol's effects on the epileptic brain has been focused on the pro-epileptic activity of the hormone in the adult brain, its neuroprotective effects in the developing nervous system are still being explored. Estradiol has long-lasting transcriptional actions via estrogen receptors α and β, with genes regulated by estradiol being involved in cell proliferation, neuronal migration, synaptogenesis and cell survival. Estradiol also regulates GABAergic neuronal populations and increases the numbers of inhibitory neurons in the pyramidal layers of the cortex (Nakamura and McEwen, 2005, Velíšková, 2006).

Here we investigate the role of early estradiol treatment in mice modelling the PA1 and the more frequent PA2 ARX mutations (originally reported by Kitamura et al. 2009). Our study explores the effect of estradiol on the seizure phenotype in Arx mutant mice and extends the investigation to the impact of this treatment on cognitive outcomes before and after the peak onset of seizures. We hypothesised that estradiol would reduce the severity and frequency of seizures in both PA1 and PA2 mice, given their overlapping phenotypes. We predicted that by improving the epilepsy phenotype, the impact of seizures on cognitive and behavioural deficits in these mice might be improved.

3.3 Materials and Methods

3.3.1 Optimisation of drug preparation and injections

We performed a pilot study to optimise the drug preparation and injections. The original protocol was to dissolve 17β-estradiol in vegetable oil. As vegetable oil can contain high levels of phytoestrogens, we chose sterile sesame oil (Sigma) for the vehicle (Kuhnle et al., 2008). 17β-estradiol was first dissolved in 100% dimethyl sulfoxide (DMSO) (Sigma). The LD_{50} of DMSO is $6.2 \mathrm{~mL} / \mathrm{kg}$. Doses of DMSO above 10% can cause increased apoptosis in the brain as well as Tau protein phosphorylation (Hanslick et al., 2009). The concentration of DMSO required to dissolve our dose of 17β-estradiol was $0.075 \mathrm{~mL} / \mathrm{kg}$ in the final solution of sesame oil, estradiol and DMSO, or 0.075%. The concentration we used is in a non-toxic range of the DMSO toxicity curve (Figure 3.1).

The DMSO, 17β-estradiol and sesame oil solution needed to be warmed in a water bath or incubator at $37^{\circ} \mathrm{C}$ to form a homogenous solution before pipetting into glass vials ready for injection. Injection of the drug was optimised in an injection pilot study prior to the experimental study performed for this chapter. As the sesame oil solution for injections was viscous, a larger volume than needed for each pup was drawn up into the syringe, and then adjusted to the volume required based on the weight of the pup. This procedure was also made easier with warming, by leaving syringes on a microscope slide warmer before injecting pups.

When injecting the pups, we first used the back of the neck as the subcutaneous injection site. This process left pockets of sesame oil when the mice were euthanised on P10, after seven days of injections. For the next litter, we trialled swapping the injection site from the neck, to the left hip and the right hip, for the seven days of injection. This protocol resolved the issues with oil pockets upon euthanisation on P10. During the pilot study, we found above average rates of cannibalisation and neglect of injected pups by the mother, compared to their uninjected, female littermates. We hypothesised this was due to the smell of the estradiol/vehicle solution
remaining on the skin following injections. To overcome this, we trialled injecting the nonexperimental, female pups of the litter with vehicle, to ensure all pups smelt the same. This protocol reduced rates of cannibalisation. These injection protocols were adopted for the larger experimental study described in this chapter.

Figure 3.1: DMSO toxicity curve for apoptosis of neurons in P7 mice. Number of apoptotic neurons recorded for mice at P7 treated with different doses of DMSO. Mice did not have significantly greater apoptosis than mice treated with $9 \mathrm{~mL} / \mathrm{kg}$ until the dose was greater than $0.1 \mathrm{~mL} / \mathrm{kg}$. The dose of DMSO used for estradiol preparation in our study is marked with a red cross. Figure from Hanslick et al. 2009.

3.4 Results

3.4.1 Estradiol treatment trial strategy

Four staggered rounds of breeding were conducted for this study. A variety of dams from different lineages within the two mouse colonies were chosen for breeding purposes. This ensured adequate genetic diversity within our experimental cohort. A list of the mice used for estradiol treatment trial is in Appendix 3.

PA1 and PA2 mutant male mice and their wild-type male littermates were treated with daily subcutaneous injection of 17β-estradiol ($40 \mathrm{ng} / \mathrm{g}$) for seven days between P3 and P10, as described in Chapter 2 (2.2.2). Following treatment, mice remained with their mothers until weaned at P21. We then performed behaviour testing before and after the peak period of seizures, where we performed video seizure monitoring. Mice were euthanised at the end of the study, at P70 (Figure 3.2).

Figure 3.2: Estradiol study timeline. Timeline showing the experimental course of the mouse treatment study. Estradiol or vehicle was administered between P3 and P10 (green). Behaviour testing (blue) was performed before and after the peak of seizures, and video seizure monitoring (purple) was performed between P42 and P56. Spontaneous seizures upon handling were recorded across the entire lifespan of the mice ($\mathrm{P} 0-\mathrm{P} 70$). PA1 mice are consistently represented in light orange (vehicle treated) and dark orange (estradiol treated), while PA2 mice are represented in light blue (vehicle treated) and dark blue (estradiol treated).

3.4.2 Estradiol treatment reduces seizure frequency and severity in PA mutant mice.

To address the hypothesis that 17β-estradiol would reduce seizure severity in Arx PA1 and PA2 mutant mice, we chose to measure seizure outcomes using two methods; observed seizures occurring on handling and recorded across the lifespan of the mice (until P70), and spontaneous seizures occurring during non-invasive video monitoring during the peak period of seizures in untreated mice (between P35 and P60). An established scoring system was used throughout the evaluation of seizures, with a score of 1 applied to rapid, jerky movement around the cage, a score of 2 given to myoclonic seizures less than 10 seconds in duration, and a score of 3 given to prolonged myoclonic seizures, lasting longer than 10 seconds (Jackson et al., 2017).

Estradiol treatment significantly reduced the overall proportion of adult PA1 mutant mice experiencing seizures on handling, with a 32% reduction compared to vehicle treated mice. Within the PA2 cohort, a 14\% reduction was noted with estradiol treatment (44\% versus 58\%, respectively) but this did not reach significance $(\mathrm{p}=0.4243)$ (Figure 3.3 A). In PA1 mice, both the total number of observed seizure events and the number of severe seizures (scores of 3 or 4) were significantly reduced in estradiol treated animals compared to vehicle treated mutant mice. However, this was not significant in the PA2 cohort. (Figure 3.3 B).

Despite these dramatic reductions to the number and severity of observed seizures recorded on daily handling of the mice, the age of seizure onset remained unchanged between PA1 mice treated with either vehicle or estradiol. The average age of seizure onset in mice treated with vehicle was postnatal day 40.78 ± 6.71 (mean \pm SEM), compared to postnatal day 44.50 ± 1.50 in the estradiol treated cohort (Figure 3.4). However, the effect of estradiol on the age of seizure onset differed between the two Arx mutations. Estradiol actually accelerated the onset of seizures in the PA2 mice, with estradiol treated mice having their first seizure at postnatal day 26 ± 2.5 (mean \pm SEM) (Figure 3.4). These data demonstrate that observed seizures on handling the Arx mutant mice are reduced in both severity and frequency with estradiol treatment,
however, the specific intragenic mutation produced a differential response to estradiol, with accelerated epileptogenesis in PA2 mice compared to PA1. Mice observed having a seizure upon daily handling that subsequently went on to die from a presumed seizure (found dead in their cage) within 2-4 days of having seizure are shown as stars on Figure 3.4. Interestingly, two of the three PA2 mice treated with estradiol in this category died during this early time point, whilst the third mouse died after a subsequent seizure at a later time point (P56). Within the PA2 vehicle cohort, five mice were found dead between P12 and P25 but none of these mice were recorded as having an observed seizure on handling during this period. However, we cannot rule out that seizures may have occurred outside of the times we were handling and observing the animals as part of daily health checks (P 3 to P 70) or outside the times captured by video seizure monitoring during P35 to P60.

In untreated mutant mice the peak of observed seizures clustered between P35 and P60 (Jackson et al., 2017). To exclude any influence of induced stress due to handling of the mice, we investigated seizures in a spontaneous setting via non-invasive video monitoring (12 hours per mouse over a period of four days) during this peak period. At P45 to P48, 36\% (4/11) of PA1 mice treated with vehicle displayed a large number of clusters of individual seizure events ranging from rapid, jerky movement around the cage (score 1) through to severe myoclonic seizures of increasing duration (score 2 and 3) (Figure 3.5). Although 30\% (3/10) of the estradiol treated PA1 mice displayed seizures across this same period of time, both the number and severity of seizure events were significantly reduced (Figure 3.5). This trend is even more striking in the PA2 cohort; 33\% (4/12) of vehicle treated mice displaying a total of 28 seizure events across all scoring categories, compared to seizures being completely absent in the estradiol treated mice (0/7) during this same monitoring period (Figure 3.5). Further, when looking at the observed seizures on handling that PA2 mice experienced, only one mutant mouse treated with estradiol experienced seizures during this same period of time. We observed
that there were no seizures in vehicle or estradiol treated wild-type mice by either the observed seizures on handling or non-invasive video seizure monitoring analysis.

Observed seizure proportions

Figure 3.3: Early estradiol treatment diminishes observed seizure severity and frequency in PA mutant mice. PA1 and PA2 mutant mice exhibit reduced seizure frequency (A) and seizure severity (B) when treated with estradiol compared to their vehicle treated counterparts (percentage seizure occurrence - percentages do not include repeated seizures from the same mouse). (B) Shows increasing seizure severity with darker shade of grey (key). (PA1: (A) twotailed t-test, $p<0.0001, d f=70$; (B) Chi square test, $p=0.0036, d f=11.26,2)$). Analysis across five separate breeding rounds each for PA1 mice (estradiol; $\mathrm{n}=14$; dark orange (dashed line); vehicle; $n=13$ light orange (solid line)) and PA2 mice (estradiol; $n=16$; dark blue (dashed line) vs vehicle; $\mathrm{n}=19$; light blue (solid line)). \# $\mathrm{p}<0.05$ indicates significant difference between estradiol and vehicle treated animals across the duration of the study.

Figure 3.4: Estradiol treatment did not delay the age of first observed seizure in PA mutant mice. Estradiol treatment did not delay the age of first seizure in either mutant strain (PA2: two-tailed t-test, $p=0.0002, F=1.463(10,7), d f=17)$. Mice marked with a star died of a seizure (found dead in cage) within 2-4 days of having an observed seizure on handling. Median $\pm \mathrm{min} / \mathrm{max}$ is presented for PA1 and PA2 mice from vehicle and estradiol treatment groups. Each dot represents an individual animal at the age of their first seizure. Analysis across five separate breeding rounds each for PA1 mice (estradiol; $\mathrm{n}=14$; dark orange; vehicle; $\mathrm{n}=$ 13 light orange and PA2 mice (estradiol; $\mathrm{n}=16$; dark blue; vehicle; $\mathrm{n}=19$; light blue. $\# \mathrm{p}<0.05$ indicates significant difference between estradiol and vehicle treated animals across the duration of the study.

Figure 3.5: Seizure severity and frequency are reduced in PA mutant mice treated with estradiol. PA1 and PA2 mice exhibit reduced seizure frequency and severity when treated with estradiol (PA1; $\mathrm{n}=10$; dark orange) (PA2; $\mathrm{n}=7$; dark blue) compared to their vehicle treated counterparts (PA1; $\mathrm{n}=11$ light orange) and (PA2; $\mathrm{n}=12$; light blue). Each dot represents an individual seizure event measured during 12 hours of video footage per mouse. Increased seizure scores increase with severity from "no seizure" (0) to "prolonged myoclonic seizure" (3) on the Y-axis. \# indicates significant difference between estradiol and vehicle treated PA mice (one-way ANOVA, Tukey's HSD post hoc analysis, $F(3,135)=11.28, p<0.0001)$.

3.4.3 Estradiol treatment does not improve mortality in PA mutant mice

Despite the significant improvements in frequency and severity of seizures in both the PA1 and PA2 mutant mice treated with estradiol, the median survival rates of these animals were not significantly extended compared to vehicle treated animals (Figure 3.6). Survival was recorded from P0 to P70. These data excluded mice that were cannibalised by their mother prior to P10 as this occurred in both WT and mutant mice and was not considered to be due to the mutant phenotype. Mice still alive at the completion of the experimental period were culled at P70. Considering the animals that died before the experimental end point at P70, 62% of PA1 mice treated with vehicle died compared to 64% treated with estradiol (Figure 3.6). Similarly, 37% of PA2 mice treated with vehicle died before the experimental end point at P70, compared to 31% treated with estradiol (Figure 3.6). The mean age of death (excluding survival to end point cull) in vehicle treated compared to estradiol treated mutant mice was not significantly different for either PA1 or PA2 mice; PA1 vehicle treated mice 53 ± 5.1 (mean \pm SEM) compared to 52 ± 5.5 in PA1 estradiol treated mice, with PA2 vehicle treated mice was 45 ± 4.6, compared to 37 ± 5.2 in PA2 estradiol treated mice (Figure 3.7). While it appeared that PA2 mice treated with estradiol may exhibit a faster rate of death compared to their vehicle treated counterparts, this was not significant.

Figure 3.6: Early estradiol does not improve mortality in PA mutant mice. Estradiol did not improve mortality in either PA1 or PA2 mice. Analysis across five separate breeding rounds each for PA1 mice (estradiol; $\mathrm{n}=14$; dark orange (dashed line) vs vehicle; $\mathrm{n}=13$ light orange (solid line)) and PA2 mice (estradiol; $\mathrm{n}=16$; dark blue (dashed line) vs vehicle; $\mathrm{n}=19$; light blue (solid line)). There were no WT mice treated with vehicle and estradiol that died during the trial with data pooled into one group (grey line).

Age of Death

Figure 3.7: Age of death in PA mutant mice treated with vehicle or estradiol. PA1 and PA2 mice treated with estradiol (PA1; $\mathrm{n}=13$; dark orange) (PA2; $\mathrm{n}=18$; dark blue) do not exhibit any improvement to age of death when compared to their vehicle treated counterparts (PA1; n $=14$; light orange) (PA2; $\mathrm{n}=21$; light blue). Individual dots represent individual mice throughout the duration of the study (up to P70). Data is shown as mean age \pm SEM.

3.4.4 Body and tissue weights are unaffected by estradiol in PA mutant mice

Further to our seizure and mortality findings, we confirm in this study that compared to WT littermates, the PA mutant mice have reduced testes weight and reduced body weight, consistent with previous reports (Kitamura et al., 2009, Jackson et al., 2017). Here we demonstrate that there were no improvements to the reduced body weight of mutant mice compared to WT littermates with estradiol treatment (significance tested and shown at four different stages of their lifespan) (Figure 3.8).

Cortex and testes were collected from PA1, PA2 and WT mice treated with estradiol or vehicle upon euthanisation at P70. These tissues were weighed for analysis. Similarly, there was no change to the weight of the testes or brain in WT, PA1 or PA2 mice following estradiol treatment (Figure 3.9). However, we demonstrated that PA1 and PA2 mutant mice have significantly reduced testes weight compared to their WT littermates (Figure 3.9).

Figure 3.8: Body weights of PA mutant mice treated with vehicle or estradiol. PA1 and PA2 mice treated with estradiol (PA1; $\mathrm{n}=13$; dark orange) (PA2; $\mathrm{n}=18$; dark blue) or vehicle (PA1; $\mathrm{n}=14$; light orange) (PA2; $\mathrm{n}=21$; light blue) do not exhibit any improvement to body weight through the duration of the study (postnatal day 0 to postnatal day 70), compared to their WT littermates, treated with either estradiol ($\mathrm{n}=30$; dark grey) or vehicle ($\mathrm{n}=23$; light grey). Data is shown at mean weight on each day of the study \pm SEM. Data analysed across all groups in one-way ANOVA, Tukey’s HSD post hoc analysis at each time point. *p<0.05 significance compared to WT littermates at postnatal $\mathrm{P} 10(F(5,91)=7.668, p<0.0001), \mathrm{P} 21(F(5,81)=$ $14.31, p<0.0001), \mathrm{P} 45(F(5,65)=7.979, p<0.0001)$, and $\operatorname{P60}(F(5,44)=8.797, p<0.0001)$ shown on graphs.

Testes

Cortex

Figure 3.9: Testes and cortex weights of PA mutant mice treated with vehicle or estradiol. Testes (left and right combined) and cortex (left and right combined) were weighed following euthanised and tissue collection of mice at postnatal day 70. From WT mice, 27 vehicle-treated testes were weighed (light grey) and 18 estradiol-treated testes were weighed (dark grey), and 26 vehicle-treated cortices were weighed (light grey) and 18 estradiol-treated cortices were weighed (dark grey). From PA1 mice, 5 vehicle-treated testes and 5 vehicle-treated cortices were weighed (light orange), and 2 estradiol-treated testes and 3 estradiol treated cortices were weighed (dark orange). From PA2 mice, 6 vehicle-treated testes were weighed (light blue) and 4 estradiol-treated testes were weighed (dark blue), along with 7 vehicle-treated cortices (light blue) and 4 estradiol-treated cortices (dark blue). * $\mathrm{p}<0.05$ significance compared to WT littermates (one-way ANOVA, Tukey's HSD post hoc analysis; testes data: $F(5,56)=8.337$, $p<0.0001)$; cortex data: $F(5,57)=4.747, p=0.0011)$.

3.4.5 Behavioural deficits are present in PA mutant mice prior to seizure onset, and do not improve with estradiol treatment.

Both PA1 and PA2 mice have been shown to exhibit increased locomotor activity, abnormal anxiety-like behaviour and reduced sociability and autistic-like behaviour at two months of age (Kitamura et al., 2009, Jackson et al., 2017). Here we undertook a battery of behavioural tests between P30 and P37 (one month of age - prior to peak seizure onset), and again at P56 and P70 (two months of age - after peak seizure onset), with and without estradiol treatment. Open field, elevated zero maze, Y-maze, three-chambered sociability tests, inverted grid and the Barnes maze (two months only), were performed to determine the locomotor, anxiety-like and autistic-like behaviour, neuromuscular strength, and memory of PA mutant mice, at one and two months of age, to investigate their cognitive function over disease progression, and in response to estradiol treatment.

3.4.5.1 Anxiety-like behaviour

We demonstrated that the anxiety-response in the open field test in PA mutant mice was different compared to WT littermates. There was no significant difference in the total distance the mice travelled during the five minute duration of the open field test in PA mutant mice compared to their wild-type littermates (Figure 3.10 A). We demonstrated that the anxietyresponse in PA mutant mice was different compared to WT littermates and did not regress over the duration of the study. At two months of age, WT littermates displayed normal exploratory behaviour with an average of 84% (vehicle) and 80% (estradiol) of the total distance travelled in the open field periphery. Contrary to this, PA1 mutant mice spent significantly more time in the periphery versus the central field of the open field apparatus, with an average of 91% (vehicle) and 96% (estradiol) (Figure 3.10 B). This was also observed in the PA2 cohort, in both treatment groups with an average of 95% (vehicle) and 93% (estradiol) (Figure 3.10 B). These results are indicative of decreased exploratory behaviour in both PA mutant mice compared to WT littermates, with increased anxiety-like behaviour (increased fear of venturing
into the central field, choosing to stay in the safety of the periphery). These differences are shown in the tracking maps from the respective genotypes in the open field test (Figure 3.10 C). We also analysed the time PA mutant mice spent immobile during the test, to determine if this was the cause of decreased distance in the periphery. There was no significant difference in the time immobile versus mobile in PA mutant mice compared to their WT littermates, with or without treatment. There were no significant differences observed between the two ages sampled in either PA mutant cohort, indicating there was little change due to disease progression or age of the mice in either genotype. This data indicates that early estradiol treatment did not improve anxiety or fear behaviour in adult PA mutant mice.

The elevated zero maze was also used to investigate anxiety-like behaviour in PA mutant mice. As with the open field test, there was no significant difference observed in the total distance PA mutant mice travelled during the five minute duration of the test, indicating no deficits in total activity during the testing period compared to WT mice (Figure 3.11 A). We showed no significant differences in the outcomes of this test, even having previously shown a deficit to fear response and anxiety-like behaviour in untreated PA1 and PA2 mice using this apparatus. Mice with an altered anxiety or fear response tend to spend more time in the closed arms of the test, fearing the open spaces. We observed no significant differences in the time PA mutant mice spent in the open versus the closed arms of the test at either one or two months of age with no difference due to estradiol treatment (Figure 3.11 B). There appeared to be a trend towards less head dips in PA1 mice treated with vehicle compared to WT mice, indicative of reduced exploratory behaviour (Figure 3.12). However, this was not significant, possibly due to the broad range in the number of head dips recorded in mice during this test, indicated by the large SEM in this data set.

Total Distance

A

B

C

Figure 3.10: Estradiol does not improve anxiety-like behavioural deficits in PA mutant mice. Anxiety-like and fear response behaviour was measured using the open field test. (A) The total distance the mice travelled in the open field apparatus during the duration of the test at one month and two months of age. (B) The percentage of the total distance travelled that the mice spend in the periphery of the open field test measured in distance (m) is shown at one month and two months of age. WT mice treated with vehicle ($\mathrm{n}=17 / 12$; light grey) and estradiol ($\mathrm{n}=8 / 8$; dark grey); PA1 mice treated with vehicle $(\mathrm{n}=6 / 5$; light orange) and estradiol ($\mathrm{n}=$ $4 / 3$; dark orange); PA2 mice treated with vehicle ($\mathrm{n}=11 / 6$; light blue) and estradiol ($\mathrm{n}=5 / 5$; dark blue). *p<0.05 (two-way ANOVA with Tukey's HSD post hoc analysis; PA1: $F(3,55)=$ 14.801, $p<0.0001$); PA2: $F(3,64)=24.91, p<0.0001)$. (C) Representative tracking maps of mice travelling in the open field apparatus from wild-type ($\mathrm{n}=2$; grey), PA1 $(\mathrm{n}=1$; orange) and PA2 ($\mathrm{n}=1$; blue) mice.

Total Distance

B
\% time in open and closed arms

Figure 3.11: PA mutant mice do not exhibit an anxiety-like deficit in the elevated zero maze. Anxiety-like and fear response behaviour was measured using the elevated zero maze. (A) The total distance the mice travelled in the elevated zero maze apparatus during the duration of the test at one month and two months of age. (B) The percentage of the total time that mice travelled in the open arms or closed arms of the elevated zero maze, measured in seconds (s) is shown at one month and two months of age. WT mice treated with vehicle ($\mathrm{n}=17 / 12$; light grey) and estradiol ($\mathrm{n}=8 / 8$; dark grey); PA1 mice treated with vehicle ($\mathrm{n}=6 / 5$; light orange) and estradiol ($n=4 / 3$; dark orange); PA2 mice treated with vehicle ($n=11 / 6$; light blue) and estradiol ($\mathrm{n}=5 / 5$; dark blue).

Head Dips

Figure 3.12: PA mutant mice do not show significant differences in number of explorative head dips in the elevated zero maze. Anxiety-like and fear response behaviour was measured using the elevated zero maze. The number of head dips recorded manually during the duration of the elevated zero maze at one and two months of age. WT mice treated with vehicle ($\mathrm{n}=$ $17 / 12$; light grey) and estradiol ($\mathrm{n}=8 / 8$; dark grey); PA1 mice treated with vehicle ($\mathrm{n}=6 / 5$; light orange) and estradiol ($\mathrm{n}=4 / 3$; dark orange); PA2 mice treated with vehicle ($\mathrm{n}=11 / 6$; light blue) and estradiol ($\mathrm{n}=5 / 5$; dark blue).

3.4.5.2 Autistic-like behaviour

Sociability testing measures several behavioural traits seen in mouse autism models. The mouse being tested is placed in a central chamber, with an empty chamber on one side and a chamber containing another mouse in the other. The time spent interacting with the other mouse is measured (sociability). The next phase of the test includes placing a novel mouse in third (previously empty) chamber. The time the test mouse then spends interacting with this new and novel mouse (social novelty: novel) is compared to the time spent interacting with the existing or familiar mouse (social novelty: familiar). As expected, WT littermates chose to interact with another mouse over an inanimate object (empty chamber) (sociability phase: Figure 3.13), and then chose to interact with novel (or stranger) animal over the familiar (or known) animal (social novelty phase: Figure 3.14). This pattern of behaviour is indicative of normal social interaction and memory recall. In contrast, the PA1 mutant mice of both vehicle and estradiol treatment groups showed significantly reduced sociability (Figure 3.13) and social novelty (Figure 3.14) compared to WT mice. The interaction times with other mice in the test chambers were reduced, regardless of whether the mouse occupant was novel or familiar. This behavioural deficit was the same for PA2 mutant mice. There was no significant difference between the two age points in either PA cohort, indicating reduced sociability was already present at one month of age and did not change with disease progression or age.

Interestingly, in PA1 estradiol treated mice there was a significant difference between the time spent interacting with both stranger and familiar mice in the social novelty phase compared to vehicle treated mice, but only at one month of age. Similarly, PA2 mice treated with estradiol spent an increased amount of time interacting with stranger and familiar mice compared to their vehicle treated counterparts, but this was only significant at two months of age. This may indicate small improvements to social cognitive behaviour in PA mice treated with estradiol, however, the samples sizes for these groups were small, and given the similarities in phenotype between PA1 and PA2 mice in this test, we combined PA1 and PA2 mice to create a PA ${ }^{\text {pool }}$
group (green) for these measures to strengthen our findings. We demonstrated that $\mathrm{PA}^{\text {pool }}$ mutant mice of both vehicle and estradiol treatment groups showed significantly reduced sociability (Figure 3.15) and social novelty (Figure 3.16) compared to WT mice. Again, the overall time interacting was reduced in mutant mice, regardless of whether it was with the stranger or familiar mouse. There was no significant difference between the two time points in the $\mathrm{PA}^{\text {pool }}$ cohort.

Sociability

Figure 3.13: Estradiol does not improve social deficits in PA mutant mice. Autistic-like behaviour was measured using the sociability test. Social interaction of PA mutant mice at one and two months of age was measured by the time in seconds (s) the mice spent interacting with a stranger mouse. WT mice treated with vehicle ($\mathrm{n}=15 / 9$; light grey) and estradiol ($\mathrm{n}=8 / 6$; dark grey); PA1 mice treated with vehicle ($\mathrm{n}=6 / 4$; light orange) and estradiol ($\mathrm{n}=3 / 2$; dark orange); PA2 mice treated with vehicle ($n=9 / 5$; light blue) and estradiol $(\mathrm{n}=5 / 4$; dark blue). *p <0.05 (two months; one-way ANOVA, $F(5,24)=12.34, P<0.0001$).

Social Novelty

Figure 3.14: Estradiol does not improve social preference deficits in PA mutant mice. Autistic-like behaviour was measured using the social novelty test. Social interaction of PA mutant mice at one and two months of age was measured by the time in seconds (s) the mice spent interacting with either a stranger or familiar mouse. WT mice treated with vehicle ($\mathrm{n}=$ $15 / 9$; light grey) and estradiol ($n=8 / 6$; dark grey); PA1 mice treated with vehicle ($n=6 / 4$; light orange) and estradiol ($\mathrm{n}=3 / 2$; dark orange); PA2 mice treated with vehicle ($\mathrm{n}=9 / 5$; light blue) and estradiol ($\mathrm{n}=5 / 4$; dark blue). ${ }^{*} \mathrm{p}<0.05$ (one-way ANOVA with Tukey's HSD post-hoc analysis of PA mutant mice compared to WT). \# indicates significant difference between PA mutant mice treated with either vehicle or estradiol. ${ }^{*} \mathrm{p}<0.05$ (PA1; two-way ANOVA, F (3 , $45)=19.37, P<0.0001)$.

Figure 3.15: Estradiol does not improve social deficits in PA ${ }^{\text {pool }}$ mutant mice. Autistic-like behaviour was measured at one and two months of age by the time in seconds (s) the mice spent interacting with a new mouse in the sociability test. WT mice treated with vehicle ($n=15 / 9$; light grey) and estradiol ($n=8 / 6$; dark grey); $\mathrm{PA}^{\text {pool }}$ mice treated with vehicle ($n=15 / 9$; light green) and estradiol ($n=8 / 6$; dark green). ${ }^{*} \mathrm{p}<0.05$ (two months; one-way ANOVA, $F(3,26)$ $=21.85, P<0.0001)$.

Figure 3.16: Estradiol does not improve social preference deficits in $\mathbf{P A}^{\text {pool }}$ mutant mice. Autistic-like behaviour was measured at one and two months of age by the time in seconds (s) the mice spent interacting with a familiar mouse (white bars) or stranger mouse (coloured bars) in the social novelty test. WT mice treated with vehicle ($n=15 / 9$; light grey) and estradiol ($n=$ $8 / 6$; dark grey); $\mathrm{PA}^{\text {pool }}$ mice treated with vehicle ($n=15 / 9$; light green) and estradiol ($n=8 / 6$; dark green). *p<0.05 (two months; two-way ANOVA, $F(3,52)=13.44, P<0.0001)$.

3.4.5.3 Learning and memory

Spatial learning and memory were assessed in PA mutant mice using two different behavioural tests; Y-maze and Barnes maze. Y-maze assesses short-term memory while the Barnes maze assesses the learning and memory of mice over a one week duration. In the Y-maze, mice were exposed to one arm of a Y-shaped apparatus, which became the familiar arm to the mice. After 30 minutes, mice were re-exposed to the Y-maze, with both arms open for them to explore. The time that the mouse spends in the familiar or novel arm is then assessed, with WT mice usually preferring to spend more time exploring the novel arm. The arms of the Y-maze have shapes on them to assist the mice in remembering which the familiar and novel arms are.

Interestingly, when looking at the total distance mice travelled during the duration of the final exploration of testing in the Y-maze, there were groups of PA mutant mice that travelled significantly more distance than WT mice, possibly indicative of hyperactivity in the PA cohorts (Figure 3.17 A). A memory deficit in the Y-maze in untreated PA1 and PA2 mutant mice has been reported previously (Jackson et al., 2017). In this study however, we did not see a significant difference between the time the mutant mice spent in the familiar arm versus the novel arm compared to their WT littermates, at either one or two months of age (Figure 3.17 B). There was also no significant difference in the time spent in each arm between mice treated with either vehicle or estradiol (Figure 3.17 B). These results indicated no deficits in short-term memory in PA mutant mice either before or after the peak of seizure onset.

To assess the impact of treatment on cognition and learning, the Barnes maze tested the amount of time each mouse required to locate an escape hole (in relation to false holes) in the testing apparatus, with improving or shorter times gained during subsequent testing. This test is conducted at two months of age. All groups tested showed normal adaptive function and memory, demonstrating shorter times to find the escape hole over a progressive four-day testing period (Figure 3.18). This was shown through a multi-way ANOVA using mixed effects for
multiple comparisons. We found that when analysing four groups together (WT and $\mathrm{PA}^{\mathrm{poo}} \mathrm{I}$ from each treatment), there was a significant difference in latency to find the escape hole between days 1 and 4 of testing ($p=0.0003$). However, while this tells us that the mice are learning in this test, we are not seeing any difference due to genotype or treatment. Although we have previously demonstrated a memory deficit when testing via the Barnes maze in untreated PA mutant mice (Jackson et al., 2017), in the current trial we did not detect a significant difference between the PA mutant mice of either treatment group and their WT littermates. This difference is likely due to the limited numbers of animals achieving the age required to perform this test. Of note, there was no difference in the performance of WT or mutant animals when vehicle treated animals were compared to estradiol treated animals.

Total distance

A

B
\% time in familiar and novel arms

Familiar
Novel

Figure 3.17: PA mutant do not exhibit a short-term memory deficit in the Y-maze. Shortterm memory and exploratory behaviour were measured using the Y-maze. (A) The total distance the mice travelled in the Y-maze during the duration of the test at one month and two months of age. (B) The percentage of total time travelled that the mice spent in either the familiar or novel arms of the Y-maze, measured in seconds (s) is shown at one and two months of age. (C) WT mice treated with vehicle ($\mathrm{n}=17 / 12$; light grey) and estradiol ($\mathrm{n}=8 / 8$; dark grey); PA1 mice treated with vehicle ($\mathrm{n}=6 / 5$; light orange) and estradiol ($\mathrm{n}=4 / 3$; dark orange); PA2 mice treated with vehicle ($\mathrm{n}=11 / 6$; light blue) and estradiol $\left(\mathrm{n}=5 / 5\right.$; dark blue). ${ }^{*} \mathrm{p}<0.05$ (two-way ANOVA with Tukey's HSD post hoc analysis; PA1: $F(3,56)=8.303 p=0.0001$); PA2: $F(3,62)=25.81, p<0.0001)$.

A

B

Figure 3.18: PA mutant mice do not display learning and memory deficits in the Barnes maze. Learning and memory was measured using the Barnes maze at two months of age only. The latency to find the escape hole was measured in seconds (s) across a four-day testing period. Mice were measured from WT treated with estradiol ($n=10$; dark grey) or vehicle ($n=8$; light grey) with A) PA1 and PA2 mice were combined as a PA ${ }^{\text {pool }}$ group. $\mathrm{PA}^{\text {pool }}$ treated with estradiol ($n=6$; dark green) or vehicle ($n=6$; light green). B) PA1 mice treated with estradiol ($\mathrm{n}=4$; dark orange) and vehicle ($n=2$; light orange). C) PA2 mice treated with estradiol ($n=4$; dark blue) and vehicle ($\mathrm{n}=4$; light blue). Latency to find (mean \pm SEM).

3.4.5.4 Neuromuscular strength

We chose to test neuromuscular strength due to the prominent phenotype of dystonia, particularly in the hands, of PA2 patients. The impact of Arx genotype and 17β-estradiol treatment on the neuromuscular strength in PA mutant mice was determined using the inverted grid test, at two months of age. WT littermates decreased latency to fall from the grid averaged 76 seconds (vehicle) and 90 seconds (estradiol) compared to PA1 mice with 25 seconds (vehicle) and PA2 mice for 23 seconds (estradiol) (Figure 3.19 A). Pooling the data for the mutant mice ($\mathrm{PA}^{\text {pool }}$ group) to increase the sample size, both vehicle and estradiol had significantly decreased latency to fall from the grid compared to their respective WT groups (Figure 3.19 B).

Figure 3.19: PA mutant mice display reduced neuromuscular strength. Neuromuscular strength measured using the inverted grid test at two months of age (one-way ANOVA, $F(3,31)$ $=7.920, P=0.0005$). The latency for mice to fall from the inverted grid was measured in seconds (s). WT mice treated with vehicle ($n=11$; light grey) and estradiol ($n=7$; dark grey); PA1 mice treated with vehicle ($n=6$; light orange) and estradiol ($n=3$; dark orange); PA2 mice treated with vehicle ($n=4$; light blue) and estradiol ($n=4$; dark blue). In the second graph, PA1 and PA2 mice were combined as a $\mathrm{PA}^{\text {pool }}$ group. WT mice treated with vehicle ($n=11$; light grey) and estradiol ($n=7$; dark grey); $\mathrm{PA}^{\text {pool }}$ mice treated with vehicle ($n=10$; light green) and estradiol ($n=7$; dark green). *p<0.05 (PA ${ }^{\text {pool }}$; one-way ANOVA, $\left.F(3,31)=7.920, P=0.0005\right)$.

3.5 Discussion

3.5.1 Reproducibility of phenotypic outcomes in different mouse models

Here we present a comprehensive seizure and behavioural assessment of the impact of early postnatal estradiol treatment on the development of seizures in mice modelling the two most common ARX polyalanine expansion mutations. Our data demonstrates that despite the sustained benefit of short term 17β - estradiol treatment early in postnatal life on the frequency and severity of seizures in both PA1 and PA2 mutant mouse models, there were no significant improvements to survival, anxiety, sociability, cognitive or neuromuscular deficits in treated mice in adult life.

Importantly, our data provides support for reproducible anti-epileptogenic outcomes previously reported in a comparable Arx PA1 mutant mouse, studied on a different genetic background (Olivetti et al., 2014). We have characterised the reduction in seizure frequency and severity in both PA mutant mice using a scoring matrix via video monitoring correlated to video-EEG (Jackson et al., 2017). Here we expand these findings to indicate that short term, early 17β estradiol administration also reduced seizures in the PA2 mutant mouse that models the most frequently reported polyalanine tract expansion mutation in ARX patients. The findings from our study also demonstrates that behavioural deficits in these models are present prior to seizure onset, and that seizure onset does not appreciably exacerbate deficits to intellectual and adaptive functioning or autistic-like behaviour, at least in these genetic mice modelling Arx mutations.

There were some interesting outcomes from our seizure analysis approach that require addressing. Unsurprisingly, there was a stark difference in the outcomes of seizures recorded on handling of the mice, compared to seizures recorded during video seizure monitoring. Seizures recorded on handling are likely to be higher due to the impact of stress on the mice. While measures are taken to make weighing and observing have minimal impact on the mice, it is still time away from their home environment in the hands of a human observer. Video
seizure monitoring on the other hand allows the mice to remain in a home cage environment with their littermates for a portion of time, a much less stressful situation. This allows a more "natural" occurrence of seizures, so that we may determine a truer incidence of frequency.

There was also a surprising increase in the occurrence of observed seizures in estradiol treated PA2 early in postnatal life compared to their vehicle treated counterparts, whereas treated PA1 mice had no difference in the onset of observed seizures. It is possible that estradiol treatment can induce seizures in specific situations and studies, however these differences are usually observed in females (Hom et al., 1993, Velíšková, 2006, Younus and Reddy, 2016, Azcoitia et al., 2019). There was no increase in seizure occurrence in PA2 mice with estradiol treatment in our seizure monitoring results, however this is performed at approximately 1.5 months of age. It is difficult to determine the reason for this increase in seizure onset PA2 mice, but this result may be limited by the caveats of recording seizures on handling as described above.

3.5.2 Relating behavioural testing to patient phenotypes

The battery of behavioural tests performed in my study builds on our extensive phenotyping of these mice (Jackson et al., 2017) and assesses a variety of different behavioural domains. The open field and elevated zero maze measure anxiety-like behaviour, the Y-maze measures exploration, the sociability test measures aspects of social cognition, the Barnes maze measures spatial learning, and the inverted grid measure motor deficits and neuromuscular strength (Wahlsten, 2011). These behavioural domains align closely with behavioural deficits reported in patients with expansion mutations in $A R X$. For example, in a cohort of French patients carrying the dup24 mutation in PA2 deeply phenotyped hyperactivity was detected in 47.6% of patients (Dubos et al., 2018). In the Y-maze, we found that both PA1 and PA2 mice spent significantly more time moving during the test than their wild-type littermates, leading to a higher total distance travelled, a measure of hyperactivity. Dubos et al. also demonstrated that
only 14.3% of PA2 patients were assessed as "calm", with 19% having a diagnosis of severe anxiety (Dubos et al., 2018). In our mice we show that PA2, and PA1 mice, display anxietylike behaviour in the open field test, with mice spending more time in the periphery, indicative of increased fear. We also found strong evidence for reduced social cognition in PA mutant mice. In agreement, only 56.3% of PA2 patients displayed what is described as adequate interpersonal relationships, defined by the Vineland Adaptive Behavioural Scale (Dubos et al., 2018). Other studies on PA2 patients have reported deficits in social behaviour, autism spectrum disorder, severe developmental delay and mental retardation, emotional instability, self-aggression and language delays (Bienvenu et al., 2002, Stromme et al., 2002, Partington et al., 2004, Gestinari-Duarte Rde et al., 2006, Reish et al., 2009). Hence, anxiety-like and hyperactivity behaviour and social behaviour in the PA mouse models closely mimics phenotypes in the $A R X$ PA2 patients. We contend that the PA mutant mice provide a useful tool to examine the effectiveness of treatments on behaviour. Interestingly, many studies into the clinical phenotypes of PA1 patients lack the detailed reports of behavioural phonotypes, likely due to a combination of severe intellectual disability phenotypes and limited affected patient numbers. This lack of deep phenotyping of PA1 patients makes it difficult to compare the profile of human behaviour to the outcomes we measure in our mouse model.

3.5.3 No change to the survival of mice with estradiol treatment

Despite a striking reduction in the frequency and severity of seizures there was no improvement to mortality of either PA1 or PA2 mice with estradiol treatment. We report that there was no statistical difference in the numbers of estradiol and vehicle treated PA1 or PA2 hemizygous male mice that were found dead. This was a novel finding. The cause of death could not be confirmed by post-mortem examination due to the timing of death occurring overnight. However, death due to a seizure can be hypothesised when deceased mice show extension of the hind legs, a marker of death according to a modified Racine scale (Butler et al., 1995). On examination in the mornings, we could not contribute death to any obvious cause. While the immediate cause of death in PA mutant mice is unclear, the lack of progressive deterioration and presence of convulsive seizures suggests that sudden unexpected death in epilepsy (SUDEP), or prolonged status epilepticus, is a possible diagnosis. Although 17β-estradiol treatment decreased the frequency and severity seizures in mutant PA Arx mouse models, the residual amount of seizures still present particularly evident upon handling, could account for the premature mortality in these mice.

3.5.4 Behavioural deficits are present prior to seizure onset

The distribution of IQ scores in children with epilepsy and infantile spasms are often skewed to lower values, and patients experience difficulties learning in school, or regress in mental development (Farwell et al., 1985, Neyens et al., 1999, Prasad et al., 2014). However, it can often be difficult to elucidate how much of a child's intellectual disability was pre-existing and how much was caused by epilepsy in key periods of brain development (Nabbout and Dulac, 2003). In the case of genetic conditions in which intellectual disability is an invariable feature, such as $A R X$ mutations, determining the impact of persistent and severe seizures, particularly early in childhood and infancy, upon cognitive function remains challenging. A cardinal finding of our study is the relative differential response of seizure severity compared to behavioural and cognitive deficits following estradiol treatment. We predicted that seizure onset would lead to
a worsening of cognitive and behavioural impairments in the PA1 and PA2 mutant mice. An extension of this prediction would be that 17β-estradiol treatment alleviating seizures might improve cognitive and behavioural deficits. In contrast to our predictions, we demonstrate that behaviour did not improve with alleviation of seizures and that the deficits were already present before and did not decline further after the point of seizure onset. This provides important evidence separating the impact of seizures upon behavioural deficits in PA1 and PA2 mice.

An epileptic encephalopathy is defined as a condition where seizures or frequent interictal discharges exacerbate neurocognitive dysfunction beyond what would be expected on the basis of underlying aetiology (Nickels and Wirrell, 2017). This occurs in intractable epileptic disorders that start early in life, such as Ohtahara syndrome (OS), also known as Early Infantile Epileptic Encephalopathy (EIEE). Infants with these severe epileptic encephalopathies generally present with poor cognitive outcomes, with profound intellectual disability in 50% of patients if they survive severe spasms and seizures in infancy. These disorders have many different genetic aetiologies. Both of these conditions are reported in patients with expanded polyalanine tract mutations in ARX (Shoubridge et al., 2010, Marques et al., 2015). Closer examination of the clinical spectrum in patients with ARX mutations in the first polyalanine tract (100% of who had seizures), indicates that developmental delay is reported in 25% of cases. The onset of seizures spanning from 0 to 18 months of age (median 4 months). Furthermore, only 26% of individuals with expansions of the second polyalanine tract exhibit seizures, despite 100% of these patients having intellectual disability (Jackson et al., 2017). Our findings on the broader behavioural phenotypes of PA1 and PA2 mice support the idea that the mechanisms underlying the cognitive deficits in PA patients are complex.

3.5.5 Estradiol and cognition and behaviour

In this study we demonstrated that estradiol did not improve behavioural and cognitive outcomes in PA1 or PA2 mice. Studies predict that estradiol exerts pro-cognitive effects through two mechanisms; by enhancing synaptic plasticity, and inducing long-term potentiation of NMDA receptors (Gould et al., 1990, Woolley and McEwen, 1992, Woolley and McEwen, 1994, Smith et al., 2016). However, to this date, no studies have shown an effect on intellectual disability with estrogen. In fact, many studies on the cognitive effects of estradiol are focused on the complete abolition of estrogens by ovariectomy in female mice. When menopause is induced in female mice, spatial memory performance in the Y-maze is impaired. Long-term estradiol treatment then recovered this cognitive deficit (Schroeder et al., 2017). In a surgical menopause rat model, seven months of estradiol treatment also had benefits to spatial memory (Koebele et al., 2020). These studies however are difficult to compare to our experiments, as they show that a baseline level of estrogen in female rodents is key to normal cognition, rather than supplementing the existing estrogens in the brain with a lower dose such as the $40 \mathrm{ng} / \mathrm{g}$ given to our PA mutant mice.

In general, few studies have been conducted on the effects of estradiol treatment in nonovarectomised, female rodent models. Estradiol treatment has been explored in an induced Alzheimer's disease model, where estradiol given in the early stages of pathogenesis ameliorated memory impairment (tested using the Morris water maze) and restored numbers of depleted hippocampal neurons (Zheng et al., 2017). This treatment was given over a 60 day period in a continuous release pellet. A further study investigated the effects of knocking out estrogen receptor $\beta(\mathrm{ER} \beta$) in the nervous system, on behaviour in male mice. ER β abolition resulted in decreased social interaction and aggressive behaviour, as well as increased locomotor activity (Dombret et al., 2020).

Estradiol, 17β-estradiol in particular, has been shown to have strong anti-inflammatory action in the brain, by stimulating a non-genomic, signalling cascade that inhibits the translocation of the nuclear factor kappa (NF-kB) transcription factor, which activates inflammatory genes (Ghisletti et al., 2005). This might indicate that any effects estradiol is having on cognition in inflammatory diseases such as Alzheimer's disease, is possibly due to its anti-inflammatory properties. Estradiol has been shown to have positive influences in other inflammatory neurological diseases, such as Parkinson's disease, schizophrenia and multiple sclerosis (Pozzi et al., 2006). We did not see any effects of estradiol treatment on social, memory or locomotor outcomes in our cohort. The phenotype of Arx mutations are not associated with an increase of inflammation in the brain. This could be the reason for estradiol not eliciting positive effects on behavioural deficits in our models. When considering these studies, it is also possible that in our study, estradiol was not given for a long enough duration of time for behavioural effects to become apparent, or at a high enough dose to improve behavioural deficits. The behavioural deficits in PA mutant mice, particularly in social interaction, may also be too severe to expect an improvement with short term estradiol treatment. The mechanisms behind estradiol and cognition in male mice, remain unclear, and requires further investigation.

3.5.6 Reproducibility of behaviour testing outcomes

We have previously demonstrated a memory deficit in the Barnes maze and the Y-maze in untreated PA mutant mice (Jackson et al., 2017). However, in this study, we did not detect any differences between PA1 and PA2 mice and their WT counterparts in either of these behavioural tests. This could be due to a number of reasons for each test.

The limited sample size of mice reaching the age required to perform the Barnes maze (two months of age), due to the mortality of more severely affected animals meant that many were dead prior to the two month time point. This may have resulted in a less robust result from this study compared to Jackson et al. (2017). Untreated PA mutant mice also have a severe
phenotype and many die before reaching behaviour testing milestones. In the current work, due to the intensive injection protocol in early postnatal life, this limited the number of mice able to be tested across different time points. However, numerous studies have examined the reproducibility and replicability of behaviour tests in rodents, and despite these two studies being performed on the same colonies of mice within the same laboratory, variations between studies from the same research groups have been documented before. In our case, it appeared that neither WT nor mutant mice seemed to exhibit "learning" in the Barnes maze. This is a potential caveat of this test as a measure of cognition in this model, and makes it difficult to determine any differences between genotypes in this instance.

Variability in the experimenter has been shown to have an effect on the outcomes of behavioural testing. This can include the experimenter's stress levels or mood, and even body odour (Hånell and Marklund, 2014). Increased handling of animals over time, such as over the progression of a study, has also been shown to alter behavioural outcomes, as the mice become more accustomed to human handling (Hånell and Marklund, 2014). Nevertheless, for this study we performed testing across four separate cohorts at different times throughout the study to decrease any effects of situational factors such as stress and mood, and variability in the experimenter was kept to a minimum, ensuring the same colour clothing was worn, perfumes were not used, and handling was kept the same across all rounds of testing.

In a study by Crabbe et al., identical mouse strains and a mutant mouse strain were tested simultaneously in three different laboratories (Crabbe et al., 1999). They showed that despite their best efforts to keep laboratory environments the same, they found large effects at each site on behavioural variables. Six of eight behavioural measures had differing effects based on the site of the experiments (Crabbe et al., 1999). Locomotor tests show robust replicability between different studies (Wahlsten et al., 2006). Short-term anxiety tests on the other hand have been reported to be particularly susceptible to environmental factors, giving different outcomes in
behavioural phenotypes of mice (Hurst \& West 2010). This may explain the different outcomes we observed between tests measuring anxiety-like behaviour in our study, with significant results seen in the open field test, but not the elevated zero maze for example. Tests of spontaneous behaviour, such as the three-chambered sociability tests, can be considered more robust than tests that use hunger or fear as a motivator however, as these tests reduce the stress on the animal. All tests used in our study use spontaneous behaviour, with the exception of an overhead light which causes the animals to want to "hide" during the open field and elevated zero maze.

Despite the variation we observe between the current study and the previous study on untreated mice by Jackson and colleagues (2017), all variables were maintained as constant as possible in these experiments, shown by reduced variability between individual rounds of behavioural testing, indicating that differences between these studies may be due to laboratory factors, or potential small genetic differences in the inbred mouse strain, including short DNA repeat sequences or copy number variations, which can impact gene expression and hence mouse behaviour (Lathe, 2004). It can be argued that having some level of variation between behavioural studies is important for improving the validity of behaviour research, as this mimics the "real" world more than an extremely controlled behavioural testing environment.

3.5.7 Side effects of estradiol treatment

During this study, the systemic effects of estradiol on infant male mice, even though given at a relatively low dose for a short period of time, were considered. Testes were weighed at postnatal day 70 upon euthanisation, and we observed no difference in weight in WT or PA mutant mice when treated with estradiol. There was also no impact to testes descent (physically observed) in treated mice. We observed no difference in body weight, including no "rescue" of the small body weight of PA mutants compared to their WT littermates. This was considered interesting given the weight gain and arrested testes descent in the Chachua et al. study in 2016, where the same dose of estradiol was given to an induced infantile spasms rat model. It is likely that our Arx mutant mouse models and the induced seizure model have different underlying pathogenesis and hence a different response to estradiol treatment. The weight difference between PA1 and PA2 mutant mice is significant and has been reported previously and may be too large to be rescued to WT baseline weight with a short dose of estradiol treatment. Longterm seizures over the duration of the PA mouse's lifetime may also be impacting their decreased body weight.

3.6 Study outcomes

In this study we provide evidence to begin understanding the relationship between seizures and cognitive and behavioural deficits in a genetic model of a neurodevelopmental disorder. We demonstrated that behavioural and cognitive outcomes did not improve in the Arx PA mutant mice, despite significant alleviation of the frequency and severity of seizures achieved with early, postnatal estradiol intervention. Behavioural deficits were already present prior to the peak onset of seizures in these mice, and did not appear to regress with seizures, providing evidence for separating the impact of seizures upon behavioural deficits in Arx expanded polyalanine tract mutant mice. Furthermore, we provide reproducible outcomes of seizure alleviation in a different PA1 mouse model, as well as the more frequent mutation seen in human patients, PA2. Reproducible outcomes are key for finding novel therapies for disorders, particularly those with a lack of effective treatments for intellectual disability, behavioural impairments and early onset seizures, which remain a therapeutic challenge. This study highlights the need to elucidate molecular mechanisms of the intellectual disability phenotype, as necessary first steps towards a treatment for neurodevelopmental disorders, as the multiple comorbidities often present in these patients, remain a significant clinical challenge.

Chapter Four:

The deregulated transcriptome in PA1 and PA2 Arx mutant mice is not restored by early postnatal 17ק-estradiol treatment.

Publications and presentations from this work:

Publications

Loring, K.E., Lee, K., Mattiske, T., Zysk, A., Jackson, M.R., Noebels, J.L. and Shoubridge, C. (2020) " $17-\beta$ estradiol reduces seizures but does not improve abnormal behaviour in mice with expanded polyalanine tracts in the Aristaless-related homeobox gene $(A R X)$." Manuscript is Appendix 1. Submitted to Neurobiology of Disease.

Conferences

Loring, K.E., Lee, K., Mattiske, T., Zysk, A., Jackson, M.R. and Shoubridge, C. 'Can estradiol improve phenotypic outcomes in mice with mutations in Arx?"

Presented as an oral presentation at the following conferences:
Japanese Neuroscience Society Annual Meeting (2019), Niigata, Japan.
Australian Neuroscience Society Annual Meeting (2018), Adelaide, SA.

Presented as a poster at the following conferences:

Australian Neuroscience Society Annual Meeting (2018), Adelaide, SA.

Florey Conference at the University of Adelaide (2018), Adelaide, SA.

4.1 Abstract

ARX is a transcription factor, which is key to the development and migration of neurons in the developing brain. Arx PA mutant mice have deregulated transcriptome profiles in embryonic development. It remains unclear to what extent the transcriptome at postnatal day 10 would remain deregulated from the downstream effects of a partial loss of Arx expression early in development. Further, the impact of early postnatal treatment with estradiol would have on the transcriptome of PA1 and PA2 mutant mice remains to be elucidated. At postnatal day 10, following completion of seven days of daily delivery of 17β-estradiol or vehicle treatment, RNAseq identified 129 genes significantly deregulated (Log2FC $> \pm 0.5$, P -value <0.05) in the frontal cortex of mutant compared to wild-type mice. When comparing genes deregulated in PA mutant mice to wild-type littermates, these were particularly enriched for known genes in neurodevelopmental disorders and those involved in signalling and developmental pathways. Following completion of seven days of daily delivery of 17β-estradiol, mutant mice had 295 significantly deregulated genes, with only 23 deregulated genes overlapping between vehicle and estradiol treated mutant mice. Estradiol treatment did not "restore" deficits due to the loss of function of Arx, but instead acted through a different mechanism to reduce seizure frequency and severity in PA1 and PA2 mice. Many of the genes estradiol treatment deregulated were Arx responsive genes, and neurodevelopmental disorder associated genes. We conclude that 17β estradiol treatment recruits processes and pathways to reduce the frequency and severity of seizures in the Arx PA mutant mice but does not precisely correct the deregulated transcriptome nor improve mortality or behavioural and cognitive deficits.

4.2 Introduction

The Aristaless-related homeobox gene (ARX) [NM_139058.2] (MIM\#300382) is known to play an important role in the migration and differentiation of inhibitory and excitatory neurons, particularly interneurons (Miura et al., 1997, Kitamura et al., 2002, Kitamura et al., 2009, Lee et al., 2014). ARX encodes a transcription factor, and regulates the migration of interneurons through regulation of gene expression during neurodevelopment. Arx is highly expressed in the developing (embryonic) brain during cellular proliferation and the first wave of neuron migration from the ganglionic eminence to the developing cortex (Colombo et al., 2007, Friocourt et al., 2008, Colasante et al., 2009, Lee et al., 2014). Although few studies have investigated ARX expression in human patients, one study of ARX in patients with expansion mutations of the second polyalanine tracts found that there was very strong expression of ARX in neuronal progenitor cells of the cortex in the second trimester brain during foetal development (Curie et al., 2018).

Given the embryonic expression pattern of Arx, previous investigations focused on disruption of the transcriptome in forebrain of PA mutant mice at embryonic day 12.5 (Mattiske et al., 2016). Mattiske et al. (2016) found 852 genes deregulated in PA1 mice, and 78 in PA2 mice, in the developing telencephalon. These genes were enriched in pathways involved in key neurodevelopmental processes, such as neuron development, cell adhesion, and neuronal membranes. Deregulated genes were also found to be strongly associated with causative genes for neurodevelopmental disorders, including intellectual disability, autism and epilepsy, such as Twistl and Hdac4. Other Arx deficient mouse models demonstrate an impact on many critical neurodevelopment genes in the key brain regions involved in neuron migration, including other neuronal transcription factors such as Ebfl (Colasante et al., 2009). Our laboratory has also demonstrated that there was a delayed migration of calbindin-positive interneurons in the cortex of newborn PA mice (Lee et al., 2017). These studies in Arx mouse models show that disruption of Arx's transcriptional regulation activity disrupts critical stages of brain development,
particularly in inhibitory interneurons, leading to an imbalance of excitation in the cortex, and the subsequent phenotypes of patients and mice.

The preclinical trial in the Price et al. Arx PA1 mouse model, utilising short-term 17 β-estradiol (E2) given daily in the first postnatal week, alleviated the severe seizure phenotype for an extended period, through to adulthood in male mice (Price et al., 2009, Olivetti et al., 2014). Estradiol can induce long-term changes in gene expression in the brain via activation of estrogen receptors and non-receptor pathways. 17β-estradiol treatment of PA1 mice partially restored the interneuron migration deficits in the neocortex, increased populations of neuropeptide- Y and calbindin positive interneurons, and impacted the expression of several genes normally regulated by Arx (Olivetti et al., 2014). Interestingly, 17β-estradiol also changed the expression of genes normally regulated by Arx. Arx represses Ebf3, Lmol and Shox2 and activates Lhx7, Cxcr4, Cxcr7 and Lgil in interneurons (Colasante et al., 2008, Mattiske et al., 2016). Gene expression analysis (quantitative real-time PCR) in the brains of mutant mice treated with E2, showed that Shox2 expression was decreased, Lgil expression was up regulated, and Ebf3 expression was repressed (Olivetti et al., 2014). E2 is known to have strong transcriptional behaviour in the central nervous system, with signalling mediated by classical estrogen receptors, $\mathrm{ER} \alpha$ and $\mathrm{ER} \beta$, in the nucleus, cell membrane and cytoplasm, as well as ER-independent signalling mechanisms (Azcoitia et al., 2019). These signalling pathways regulate transcriptional activity in neurons and glial cells (McCarthy, 2008, Azcoitia et al., 2019). The findings of this study provide evidence to support the notion of exogenous steroids such as estradiol as potential treatment options for infantile spasms and epilepsy. However, potential mechanisms of action need to be determined. Exploring how estradiol acts in the brain to alleviate seizures may also illuminate the pathogenesis of Arx mutations in the mouse brain.

The aim of the current study was to generate an unbiased map of mRNA expression changes in the cortical transcriptome at P10 due to Arx PA mutations. We first analysed genome wide transcriptomic changes using RNA sequencing in the neocortex of PA1 and PA2 mutant mice compared to their wild-type littermates. This was to establish the impact of these Arx mutations on gene expression in the brain at postnatal day 10. Building on this, we investigated the effects of seven days of E2 treatment (postnatal days 3-10) on the transcriptome of the neocortex of PA mutant mice at postnatal day 10 . Here our comparison was between mutant mice treated with either E2 or a vehicle. This strategy was adopted to elucidate the molecular mechanisms driving the seizures and intellectual disability due to Arx PA mutations, persisting in early postnatal life, and to address if E2 would "repair" the dysregulated transcriptome, or recruit new pathways, diminish the frequency of seizures in these mice.

4.3 Results

4.3.1 PA1 and PA2 mice have a deregulated cortical transcriptome at postnatal day 10 .

To capture the molecular disruptions that persist in early postnatal life contributing to Arx associated clinical phenotypes, we undertook transcriptome wide RNA sequencing from brains of mice at postnatal day 10 . The first consideration was what I will term "genes changed by disease", with mutant mice being compared to wild-type (WT) littermates. Compared to agematched, vehicle treated WT mice $(\mathrm{n}=6)$, analysis of PA1 mice $(\mathrm{n}=4)$ revealed 63 genes deregulated by Log 2 fold change greater than ± 0.5 with a p-value of less than 0.05 . The majority (65%) of these genes were found at a decreased level of expression compared to WT (Table 4.1). PA2 mice $(n=4)$ demonstrated 80 genes deregulated using the same fold cut-off, with 46% of genes having decreased expression when compared to WT mice (Table 4.1). These gene lists are outlined in Appendix 4.

Given the highly similar neurological phenotypes between the PA1 and PA2 mice coupled with similar reductions in Arx protein abundance (Jackson et al., 2017) and the similar responses to estradiol treatment observed in our current study we chose to also analyse the gene expression data combining the four males from each of the PA1 and PA2 mice as a single mutant group $\left(\mathrm{PA}^{\text {pool }}\right)$. This analysis indicates 58 genes are deregulated using the same fold cut-off, with 62% demonstrating a decreased level of expression compared to the pooled WT controls (Table 4.1). Prior to gene enrichment analysis, we chose twelve genes for biological validation of our RNA sequencing approach by gold standard quantitative real-time PCR (qRT-PCR), on a different set of mouse cortical samples to those used for RNA sequencing analysis. Of these genes, 100% (12/12) validated in PA1 mice, and 60% (7/12) validated in PA2 mice (Appendix 5).

Table 4.1: Number of genes deregulated by disease in PA1, PA2 and PA ${ }^{\text {pool }}$ mice compared to wild-type littermates.

Genes deregulated by disease			
	PA1	PA2	PA $^{\text {pool }}$
vs WT	63	80	58
\uparrow	$22(35 \%)$	$43(54 \%)$	$22(38 \%)$
\downarrow	$41(65 \%)$	$37(46 \%)$	$36(62 \%)$

Figure 4.1: Overlapping genes deregulated in PA1 and PA2 mutant mice with disease. (A) Venn diagram displaying overlap of deregulated genes in PA1 (orange), PA2 (blue) and PA ${ }^{\text {pool }}$ (green) groups, as well as core overlapping genes (yellow). (B) Graph showing log fold change values of genes from the core overlap lists in (A). Key interneuron genes are highlighted in the dashed box in (B).

There were only fourteen genes deregulated that overlapped in both mutant mice. This equated to 22% and 18% of genes deregulated in PA1 and PA2 mice respectively (Figure 4.1 A). Of this core overlap group, 57% (8/14) of genes were decreased in expression (Figure 4.1 B). On examination, three of the downregulated genes in this core overlap group, Th, Tacrl and Akrlc18, are highly associated with interneuron development and function (Figure 4.1 B). Interestingly, the genes in the core overlap group repressed due to disease have a larger change in expression (log fold change) than genes with increased expression in this group.

To better understand the profile of genes deregulated by disease at P10, we identified enriched genes by comparing deregulated genes in PA1, PA2 and $\mathrm{PA}^{\text {pool }}$ to relevant gene lists (Appendix 6). To do this, we sought to determine the number of known neurodevelopmental disease associated genes, Arx responsive genes and interneuron associated genes enriched in our data set, to investigate the functions of the gene expression that was deregulated with PA mutations.

Arx target and responsive genes (that were identified in Mattiske et al. 2016), were significantly enriched in the list of deregulated genes in the $\mathrm{PA}^{\text {pool }}$ group ($10 / 58,17 \% \mathrm{p}<1.288 \mathrm{e}^{-5}$), and in each of the PA1 ($\left.13 / 63,21 \%, \mathrm{p}<7.366 \mathrm{e}^{-8}\right)$ and PA2 groups $\left(9 / 80,11 \%, \mathrm{p}<9.641 \mathrm{e}^{-4}\right)$ (Table 4.2). Genes known to be associated with autism and intellectual disability (Gene Dx Xpanded Panel (GeneDx, 2020)) were significantly enriched in the $\mathrm{PA}^{\text {pool }}$ group (5/58, $12 \%, \mathrm{p}<0.001$), as well as in the PA2 group (7/80, 11\%, p<0.0004067) (Table 4.2). Known epilepsy genes (from colleagues in the Neurogenetics Research Program/Professor Jozef Gecz) were not significantly enriched in any group of genes deregulated by disease (PA1; 2/63, 3\%, p<0.100: PA2; 2/80, $2 \%, \mathrm{p}<0.343$: $\mathrm{PA}^{\mathrm{pool}} ; 3 / 58,5 \%, \mathrm{p}<0.058$) (Table 4.2). Furthermore, we found that genes containing high-affinity estrogen response elements (EREs) were significantly enriched in the PA1 group (13/63, 21\%, $\mathrm{p}<0.013$) and the $\mathrm{PA}^{\text {pool }}$ group ($11 / 58,19 \%, \mathrm{p}<0.038$).

Genes associated with inhibitory neuron regulation or development (in house curated reference list) were also significantly enriched in the $\mathrm{PA}^{\text {pool }}$ group ($10 / 58,17 \%, \mathrm{p}<6.957 \mathrm{e}-16$), as well as in the PA1 ($5 / 63,8 \%, \mathrm{p}<8.197 \mathrm{e}^{-7}$) and PA2 groups ($8 / 80,10 \%, \mathrm{p}<5.649 \mathrm{e}^{-8}$) (Table 4.2). Interestingly, the majority of these enriched interneuron genes were downregulated in their expression for all three genotypes (PA1, PA2 and $\mathrm{PA}^{\text {pool }}$) (11/13, 84.6\%) (Figure 4.2). These included Th and Tacrl, associated with somatostatin positive interneurons, Akrlc18, associated with the function and development of parvalbumin interneurons, and Chat, which plays a key role in cholinergic interneurons. We contend that reduced expression of these inhibitory neuron genes, as well as the genes associated with autism and intellectual disability, are likely contributing to the seizure and cognitive phenotype of the PA mice.

Table 4.2: Neurodevelopmental disorder and key brain development genes deregulated by disease in PA1, PA2, PA $^{\text {pool }}$ and core overlap gene lists.

Neurodevelopmental disorder genes deregulated by disease

	Core Overlap	PA1	PA2	PA ${ }^{\text {pool }}$
Autism/ ID	Cpz, Th	6\%	11\%*	12\%*
		Dnah11, Enpp1	Chat, Chrna2, Lrp2, Ntkr1, Prima1, Slc5a7, Sp7	Chat, Chrna2, Msx1, Ntrk1, Sp7
Epilepsy	Isg15, Th	3\%	2\%	5\%
		$\begin{gathered} \text { Col3a1, } \\ \text { Npy } \end{gathered}$	Chrna2, Lrp2	Chrna2, Cyp27a1, Msx2
ARX target genes		21\%*	11\%*	17\%*
		4932411E22Rik, Ankfh1, Fam124b, Fau, Gprin2, Isg15, Lmo1, Npy, Pde3a, Rsg1, Syt15, Th, Thbs4	$\begin{aligned} & \text { 1700007G11Rik, Ccdc60, } \\ & \text { Crabp1, Fam183b, Isg15, } \\ & \text { Lrp2, Meis1, Myh8, Th } \end{aligned}$	Crabp1, Fosb, Frmd7, Gpnmb, Isg15, Mafa, Myh8, Th, Thbs4
		8\%*	10\%*	17\%*
Interneuron genes	Akr1c18, Tacr1, Th	Akr1c18, Npy, Pdlim3, Tacr1, Th	Akr1c18, Chat, Chrna2, Col14a1, Myh8, Slc18a3, Tacr1, Th	Akr1c18, Chat, Chrna2, Fosb, Frmd7, Myh8, Pdlim3, Spp1, Tacr1, Th

[^0]

Figure 4.2: Genes associated with interneurons are downregulated in PA1 and PA2 mutant mice. Graph showing log fold change values of genes from enriched interneuron genes. Genes from core overlap group are in the dashed box.

To extend our consideration of the profile of genes deregulated by PA mutants in early postnatal life, we used the Database for Annotation, Visualisation and Integrated Discovery (DAVID) to analyse pathways and ontology terms enriched within disease-deregulated transcriptomes. Enrichment clusters were ranked by enrichment score, with two clusters overlapping between PA1 and PA2 mice: glycoproteins and glycoprotein receptors (Figure 4.3). Other enriched functions of note were PI3K-Akt signalling, neurotransmitter biosynthesis, and synaptic processes (Figure 4.3). Many of the clusters are associated with brain and neuron development or signalling that when disrupted may be predicted to contribute to the phenotypic features of the PA mutant mice.

To identify specifically enriched pathways populated by genes deregulated by disease, we used the PANTHER (Protein Analysis Through Evolutionary Relationships) Classification System. This database allowed us to rank pathways using the p -value calculated by PANTHER following the input of lists of deregulated genes. Outcomes were reported as the overlap of genes in our data, out of the total number of genes involved in that process (Table 4.3). In the $\mathrm{PA}^{\text {pool }}$ group, six pathways were found to be significant using this tool. Of interest were the nicotinic acetylcholine receptor signalling pathway (neuroprotective), the JAK/STAT signalling pathway (regulation of cell division and apoptosis), and the 5HT receptor mediated pathway (mediating excitatory and inhibitory neurotransmission) (Table 4.3). The JAK/STAT pathway was also enriched in genes deregulated in the PA1 mice, and the nicotinic acetylcholine receptor signalling pathway was enriched in genes deregulated in PA2 mice (Table 4.3).

Enrichment Cluster	PA pool	PA1	PA2	Enrichment Score
Glycoprotein receptors				
Glycoproteins				Max. (3.1)
PI3K-Akt signalling				$50^{\text {th }}$ perc. (1.5)
Neurotransmitter biosynthesis				Min. (0.9)
Synaptic processes				Min. (0.9)
Leucine-rich repeats				
Extracellular matrix				
Synapse and cell junctions				
Secreted glycoproteins				
Neurogenesis				
Inflammation				

Figure 4.3: Enrichment analysis of genes deregulated by disease in PA mutant mice. Heat map showing significant gene enrichment terms in deregulated genes in PA1, PA2 and PApool groups from DAVID cluster annotation analysis. Clusters with enrichment scores of <0.9 are not shown. Heat map is based on maximum, minimum and $50^{\text {th }}$ percentile score in data set (legend in figure).

Table 4.3: Pathways enriched through PANTHER analysis in PA ${ }^{\text {pool }}$ (green), PA1 (orange) and PA2 (blue) mice.

Term	Overlap	P-value	Genes
Nicotinic acetylcholine receptor signalling pathway	$3 / 68$	0.00101467	Chrna2, Chat, Myh8
Vitamin D metabolism and pathway	$1 / 8$	0.0229697	Cyp27a1
JAK/STAT signalling pathway	$1 / 14$	0.03985599	Socs1
Plasminogen activating cascade	$1 / 15$	0.04264235	Plaur
5HT3 type receptor mediated signalling pathway	$1 / 16$	0.04542077	S/c6a4
5HT4 type receptor mediated signalling pathway	$1 / 16$	0.04542077	S/c6a4
Blood coagulation	$2 / 38$	0.006381749	Procr, Plaur

4.3.2 Estradiol treatment targets genes outsides of the deregulated transcriptome of PA1 and PA2 mutant mice.

To investigate the impact of estradiol treatment at the transcriptome level, we first analysed WT mice treated with vehicle compared to WT mice treated with estradiol. There were 56 genes deregulated by $\log 2$ fold change greater than ± 0.5 with a p-value of less than 0.05 in the WT cohort when treated with estradiol (Table 4.4). Genes deregulated in the WT mice estradiol treatment group that overlapped with the PA mutant groups were removed from subsequent analysis of PA1, PA2 and $\mathrm{PA}^{\text {pool }}$ groups (Appendix 7). This included only four genes in PA1 and two genes in each of PA2 and PA ${ }^{\text {pool }}$ that overlapped with WT mice.

The aim of this experiment was to determine the impact of estradiol treatment on PA mutant mice, by comparing them to their vehicle treated PA mutant counterparts. Analysis of PA1 mice with estradiol treatment compared to PA1 mice treated with vehicle resulted in 124 genes deregulated by $\log 2$ fold change greater than ± 0.5 with a p-value of less than 0.05 (Table 4.6). The majority (75%) of genes were found to have increased levels of expression compared to vehicle treated PA1 mice (Table 4.4). This was in contrast to the smaller response of genes with increased expression due to genotype alone (PA1 mice compared to WT (35\% upregulated)). PA2 mice treated with estradiol treatment compared to PA2 mice treated with vehicle, resulted in 158 genes deregulated at the same cut off values (Table 4.4). Estradiol treated PA2 mice, in contrast to PA1 mice, showed a larger proportion of genes with decreased levels of expression (77%). Again, this differed to the response of gene expression of disease changed genes (PA2 versus WT mice) having increased or decreased expression (54\% versus 46\%, respectively). In the estradiol treated $\mathrm{PA}^{\text {pool }}$ mice there were 55 genes deregulated by the same cut off, with 64% having increased expression (Table 4.4). Genes changed with estradiol treatment are listed in Appendix 8.

We randomly chose nine genes for the validation of our RNA sequencing data, using gold standard quantitative real-time PCR. For this biological validation, we used a different set of mouse cortical samples than those used for RNAseq analysis, with 44% (4/9), 22\% (2/9) and 56% (5/9) validating in PA1, PA2 and PA $^{\text {pool }}$ mice respectively (Appendix 9).

Table 4.4: Number of genes deregulated by estradiol treatment and those containing estrogen response elements (EREs) in PA1, PA2 and PA ${ }^{\text {pool }}$ mice compared to wild-type littermates.

Genes deregulated by E2 treatment				
	WT	PA1	PA2	PA $^{\text {pool }}$
vs VEH	56	124	158	53
个	$27(48 \%)$	$93(75 \%)$	$36(23 \%)$	$33(62 \%)$
\downarrow	$29(52 \%)$	$31(25 \%)$	$122(77 \%)$	$20(38 \%)$
ERE	$12(21 \%)^{*}$	$22(18 \%)^{*}$	$22(15 \%)$	$8(15 \%)$

[^1]We next determined if the profile of genes deregulated by estradiol treatment were enriched for genes containing estrogen response elements (EREs). To achieve this, I compared genes changed with treatment to a list of mouse genes containing high-affinity mouse EREs (Bourdeau et al., 2004). ERE-containing genes were significantly enriched in the WT gene list (12/56, 21\%, $\mathrm{p}<0.012$) and in PA1 mice treated with estradiol ($22 / 124,18 \%, \mathrm{p}<0.010$) but not in $\mathrm{PA}^{\text {pool }}(8 / 53,15 \%, \mathrm{p}<0.190)$ or PA2 mice $(22 / 158,15 \%, \mathrm{p}<0.106)$ (Table 4.4).

The number of genes with altered expression in response to estradiol treatment in PA1 and PA2 mice was much larger in comparison to genes deregulated by the Arx mutations alone. Moreover, there was very little overlap (Figure 4.4). Genes deregulated by estradiol treatment were quite different between genotypes, with only small numbers of overlapping genes (8 genes in PA1 mice, 12 genes in PA2 mice and 3 in $\mathrm{PA}^{\text {pool }}$) (Figure 4.4). Interestingly, all of the genes deregulated by disease that were also changed with estradiol treatment were deregulated in the opposite direction with treatment (Figure 4.5). When we analysed the proportion of genes deregulated by estradiol in all three mutant groups (PA1, PA2 and $\mathrm{PA}^{\text {pool }}$), the response to estradiol treatment between these three groups was strikingly different. Only 11 genes overlapped between the PA1 and PA2 estradiol response (Figure 4.6).

Figure 4.4: Overlapping response between the disease deregulated transcriptome and the estradiol deregulated transcriptome of PA mutant mice. Venn diagram showing genes overlapping between the disease-deregulated transcriptome and the estradiol-treated transcriptome of PA1, PA2 and $\mathrm{PA}^{\text {pool }}$ mice.

Figure 4.5: Estradiol treatment reverses the expression of genes deregulated by disease in PA mutant mice. Table gives numbers of overlapping genes between disease and estradiol deregulated transcriptomes of PA mutant mice. Graphs showing the direction of deregulation between genes overlapping between disease (light bars) and estradiol (dark bars) changed genes in PA1, PA2 and $\mathrm{PA}^{\text {pool }}$, shown by log fold change values of genes.

Overlapping in

Figure 4.6: Comparison of response size to estradiol treatment in PA mice. Venn diagram displaying overlapping genes between the estradiol treated transcriptomes of PA1 (orange),
 mutant mouse response to estradiol treatment.

Extending the data from genes deregulated by Arx mutations, both neurodevelopmental disorder and inhibitory neuron associated genes were enriched in the genes deregulated in estradiol treated mice. Genes associated with inhibitory neurons were significantly enriched in the list of genes deregulated with estradiol treatment $\left(\mathrm{PA}^{\mathrm{pool}} ; 6 / 55,11 \%, \mathrm{p}<8.962 \mathrm{e}^{-9}: \mathrm{PA} 1\right.$; $7 / 128,6 \%, \mathrm{p}<6.424 \mathrm{e}^{-8} ;$ PA2; $9 / 161,6 \%, \mathrm{p}<6.609 \mathrm{e}^{-10}$) (Table 4.5). In contrast to the consistent downregulation of interneuron associated genes due to genotype alone, these genes were not trending in a particular direction with estradiol, with approximately equal proportions being increased or decreased in expression with treatment in PA mutant mice. Genes associated with autism and intellectual disability were significantly enriched in all groups treated with estradiol (PA ${ }^{\text {pool. }} 9 / 53,13 \%, \mathrm{p}<2.083 \mathrm{e}^{-5}:$ PA1; $15 / 124,10 \%, \mathrm{p}<0.000003$: PA2; $10 / 158,6 \%, \mathrm{p}<0.016$) (Table 4.5). Epilepsy associated genes were enriched to a very low level, and variably depending upon the mutant group considered ($\mathrm{PA} 1 ; 6 / 124,5 \%, \mathrm{P}<0.014$: $\mathrm{PA}^{\text {pool }} ; 1 / 53,2 \%$, $\mathrm{p}<0.431$: PA2; 3/158, 2\%, $\mathrm{P}<0.442$) (Table 4.5).

Analysis of deregulated genes that overlap with known Arx target and responsive genes (Mattiske et al., 2016) showed these were also significantly enriched in genes deregulated by E2 treatment in all three genotype; $\mathrm{PA}^{\mathrm{pool}}\left(12 / 53,22 \%, \mathrm{p}<1.215 \mathrm{e}^{-7}\right)$, PA1 $(15 / 124,12 \%$, $\left.\mathrm{p}<1.404 \mathrm{e}^{-5}\right)$ and PA2 (20/158, $12 \%, \mathrm{p}<2.166 \mathrm{e}^{-7}$) (Table 4.5). Interestingly, there were no Arx responsive genes deregulated due to disease that were altered by estradiol treatment. This suggests that while estradiol treatment is impacting genes that are Arx targets, they are different to those that were initially affected by disease. Of note, Twistl was identified as being downregulated in estradiol changed genes in the $\mathrm{PA}^{\text {pool }}$ group. T wistl has also been identified as a key gene deregulated in the forebrain of PA1 and PA2 mutant mice at embryonic day 12.5. Dysregulation of the Arx-Hdac4-Twistl pathway was predicted to contribute to phenotypic outcomes, with Twistl thought to be a facilitator for a portion of genes deregulated in PA mutant mice (Mattiske et al., 2016).

Table 4.5: Neurodevelopmental disorder and key brain development genes deregulated by estradiol in PA1, PA2 and PA ${ }^{\text {pool. }}$.

Neurodevelopmental disorder genes deregulated by E2

	PA1	PA2	$P A^{\text {pool }}$
Autism/ID	10\%*	6\%*	13\%*
	Bdnf, Cacna1h, Col1a1, Cpz, Dbh, Eln, Flna, Fos, Iyd, Med12, Nlrp3, Npas4, Pabpc4I, Traip, Unc13d	Clrn1, Ebf3, Fos, Gabrq, Hap1, Lhx1, Nkx2-1, Npas4, Sim1, Trhr	Col1a1, Cpz, Dbh, Ebf3, Lhx1, NIrp3, Nr4a2, Shox2, Twist1
Epilepsy	5\%*	2\%	2\%
	Bdnf, Cacna1h, Eln, Flna, Med12, Rbp4	Gata3, Magel2, Nod2	Gata3
Arx target genes	12\%*	12\%*	22\%*
	Cckbr, Dcdc2b, Egr3, Fhod1, Fos, Fosb, Ggnbp1, Nox4, Nr3c2, Pdgfrl, Prox1, Slc2a9, Thbs4, Zfp69, Zkscan2	Calcr, Cox7a1, Crb1, Ebf3, Egfl6, Egr1, Fos, Gabrq, Gata3, Hap1, Hspb3, Lars2, Lhx5, Magel2, Meig1, Rn45s, Serpinb1b, Slc47a1, Tbx15, Ttc32	Ebf3, Fosb, Gata3, Ido1, Lhx5, Nr4a2, Serpinb1b, Shox2, Siglece, Twist1, Uncx, Upp2
Interneuron genes	6\%*	6\%*	11\%*
	Bdnf, Cox6a2, Fosb, Mab21/1, Npy2r, Nt5e, Spp1	Calca, Cbln4, Chodl, Hspb3, Irs4, Mab21/1, Npy2r, Nr2f2, Tacr3	Calca, Cbln4, Fosb, Mab21/1, Nr4a2, Spp1

* indicates significant enrichment of genes

When we consider the functionality or pathways responding to estradiol (via DAVID analysis), there are four enrichment clusters that overlap between two or three of the mutant groups, including transcription regulation and glycoproteins. Many of the enriched clusters identified by DAVID analysis are known to be direct responses to the estrogen receptor pathway according to KEGG (Kanehisa and Goto, 2000, Kanehisa, 2019, Kanehisa et al., 2019), and include transcription regulation, glycoproteins, synaptic function, and G-coupled protein receptors (Figure 4.7). Of note, genes involved in transcription regulation included Shox2 and Ebf3. In the Olivetti et al. estradiol study in a different PA1 mouse model, both of these genes were significantly downregulated with treatment (Olivetti et al., 2014). We see this same downregulation in Shox2 and Ebf3 in PA2 mice in our study, however not in the PA1 mice, possibly due to the variation between samples.

To extend our functional analysis, we used the PANTHER database to analyse specific pathways enriched the deregulated genes with estradiol treatment. The nicotinic acetylcholine receptor signalling pathway was significantly enriched in both the $\mathrm{PA}^{\text {pool }}$ and PA2 groups (Table 4.6). Of further interest in the $\mathrm{PA}^{\text {pool }}$ list was the Wnt signalling pathway (key signalling pathway in neurodevelopment) (Table 4.6). This was quite interesting, as ARX has been shown to interact with components of the Wnt signalling pathway in a proteomics study (Cho et al., 2017). Furthermore, the dopamine receptor mediated signalling pathway was enriched in PA1 mice (regulation of motor behaviour, memory, and reward) (Table 4.6). Interestingly, the only pathway overlapping between the PANTHER analysis of disease deregulated genes and estradiol changed genes was the nicotinic acetylcholine receptor signalling pathway.

Enrichment Cluster	PApool	PA1	PA2	Enrichment Score
Transcription regulation \#				Max. (7.4)
Glycoproteins \#				
Extracellular matrix				$50^{\text {th }}$ perc. (1.7)
Synapse \#				Min. (1.0)
Oxioreductase activity				
Extracellular regions				
Collagen				
Cell adhesion \#				
Cytoplasmic vesicle \#				
GPI anchor				
Signal transduction \#				
Transmembrane domains				
Oxioreductase activity				
Neuroactive ligand-receptor interaction				
G-protein coupled receptor \#				
Transcription \#				
Complement proteins				
Synaptic function \#				
Hormone activity \#				
cAMP signaling				
DNA-binding				
EGF-like domain				
GABAergic synapse \#				
Cholinergic synapse				

Figure 4.7: Enrichment analysis of genes deregulated with estradiol treatment in PA mutant mice. Heat map showing significant gene enrichment terms in deregulated genes in PA1, PA2 and PA ${ }^{\text {pool }}$ groups from DAVID cluster annotation analysis. Clusters with enrichment scores of <1.0 are not shown. Heat map is based on maximum, minimum and $50^{\text {th }}$ percentile score in data set (legend in figure). Clusters with \# are pathways and functions known to be regulated by the estrogen receptor pathway.

Table 4.6: Pathways enriched through PANTHER analysis in PA ${ }^{\text {pool }}$, PA1 and PA2 mice.

Term	Overlap	P-value	Genes Myh2, Myo3b,
Nicotinic acetylcholine receptor signalling pathway	$3 / 68$	$8.69 \mathrm{E}-04$	Chrna6
5-Hydroxytryptamine degradation	$1 / 5$	0.01367582	Aldh3a1
Inflammation mediated by chemokine and cytokine signalling pathway	$3 / 188$	0.014993079	Myh2, Myo3b, C5ar1
Cytoskeletal regulation by Rho GTPase	$2 / 70$	0.015912295	Myh2, Myo3b

4.4 Discussion

4.4.1 Ongoing effects to the transcriptome from a partial loss of Arx.

My study found that the postnatal brain transcriptome remains deregulated in early postnatal life, with genes deregulated in PA1 and PA2 mutant mice at P10, compared to their WT littermates. These genes were involved with key neurodevelopmental processes and inhibitory interneurons, as well as including known Arx target and responsive genes. Arx is highly expressed during embryonic brain development in mice and humans, with expression detected as early as 8 days post conception (dpc) in the mouse brain (Bienvenu et al., 2002). Arx expression decreases throughout development, with lower levels of expression detected in newborn mouse brains, and throughout postnatal life and adulthood (Bienvenu et al., 2002, Mattiske et al., 2016). While it has also been shown that Arx remains expressed in the adult brain at low levels, it is likely that this is within a small population of neural precursor cells (Poirier et al., 2004). As such, the majority of studies into the effects of a partial loss of Arx on gene expression have been focused in the embryonic brain.

In gene expression studies on the developing brain in mice, from embryonic day 12.5, 14.5, 15.5 and 18.5, with a loss of Arx or due to expanded PA mutations, Arx has consistently been shown to repress Ebf3, Lmo1, Lmo3, Lmo4 and Shox2 (Fulp et al., 2008, Colasante et al., 2009, Quillé et al., 2011, Mattiske et al., 2016). This repressive function has also been identified in neuroblastoma cells transfected with Arx (Quillé et al., 2011). However, at P3, in the brains of the Price et al. PA1 mouse model, there was no difference noted to Ebf3 and Lmol due to Arx mutations, while Shox2 expression was increased (Olivetti et al., 2014). From these studies, a comprehensive list of Arx target genes, or genes impacted by Arx dosage, was devised in our laboratory and was used to determine the numbers of known Arx target or responsive genes in our data sets at P10. Arx target genes were significantly increased in our disease changed gene analysis, in PA1, PA2 and $\mathrm{PA}^{\text {pool }}$ mice ($21 \%, 11 \%$ and 17% of genes respectively). These genes included Lmol which showed increased expression in PA1 mice. This was fascinating, as even
though Arx expression is low at P10, may still elicit some repressive function on Lmol, which when lost leads to increased expression of the gene. These high proportions of Arx responsive genes expressed at postnatal day 10 in PA mutant mice may indicate "ripple effects" in gene expression caused by the early partial loss of Arx due to the expanded polyalanine tract mutations, even when Arx's expression is minimal.

The gene enrichment clusters found in our study are similar to those reported in these studies into embryonic gene expression with loss of Arx. In genes with expression changed by disease, we found neurogenesis, cell signalling, and processes associated with cell migration were deregulated. Cell cycle processes and neurogenesis were both found to be deregulated by Arx mutations in the embryonic, developing brain, indicating that these functions appear to remain deregulated in postnatal life (Fulp et al., 2008, Dubos et al., 2018). It has also been shown that in the Price et al. PA1 mouse model, there was elevated apoptosis in the cortex of mice in the first postnatal week of life (Siehr et al., 2020). Our PANTHER analysis showed that the apoptotic pathway was deregulated by the PA1 mutation, however not in PA2 mice. This was an interesting finding and may warrant further investigation in the future. Furthermore, genes involved in autism, epilepsy and intellectual disability were deregulated in embryonic studies of gene expression with Arx mutations, again, similar to our study in postnatal life. From our analysis, the disturbed transcriptomic profiles of mice with Arx mutations closely aligned from embryonic development to early postnatal life, and despite the lower levels of Arx expression, indicate these "ripple effects" from early, embryonic loss of Arx may cause sustained perturbation of these processes throughout brain development.

Interestingly, with estradiol treatment, the expression of Shox2 and Ebf3 was decreased in this PA1 model (Olivetti et al., 2014). In PA2 mice in our study, estradiol treatment also decreased the expression of both Shox2 and Ebf3, however, these were both unchanged in PA1 mice, largely due the variation between samples in both of these genes. Further to these genes, Twistl,
a key Arx target gene and validated to be part of a core pathway of transcriptional regulators controlled by Arx function at embryonic day 12.5, was decreased with estradiol treatment in our $\mathrm{PA}^{\text {pool }}$ group (Mattiske et al., 2016). It is attractive to speculate that the expression of these key Arx target genes being decreased with estradiol treatment may be contributing to the improvements to severity and frequency of seizures we observed in this study (Chapter 3 of this thesis).

4.4.2 Interneuron genes and genes associated with neurodevelopmental disorders are deregulated by disease and estradiol treatment.

Arx is strongly expressed in the developing brain during the key events of proliferation and migration of interneurons to the cortex but has very limited expression in postnatal life (Colombo et al., 2007, Friocourt et al., 2008, Colasante et al., 2009, Lee et al., 2014). Given this expression pattern, our laboratory's previous investigations focused on understanding the disruption of the transcriptome in the forebrain of PA mutant mice at embryonic day 12.5 (Mattiske et al., 2016). Further, it was also demonstrated that there was a delayed migration of calbindin-positive interneurons in the cortex of newborn PA mice (Lee et al., 2017). Interneuron associated genes were also downregulated in the forebrain of PA2 mice at embryonic day 15.5 (Dubos et al., 2018). From these studies we contend that the initial disruption to the transcriptome and subsequent impaired interneuron migrations caused by these mutations in Arx drive the seizures and behavioural deficits measured in the PA mutant mice. Later in postnatal life (genes deregulated due to altered functionality of mutant Arx) in particular, interneuron associated genes were enriched for, with overwhelmingly decreased expression. Interestingly, of the interneuron genes overlapping between PA1 and PA2 mutant mice, $T h$ and Tacrl are associated with somatostatin positive interneurons, while $\operatorname{Akrlcl} 8$ is associated with parvalbumin positive interneurons. Neither of these subtypes have been previously shown to be disturbed in our PA1 and PA2 models at P10, so this is a novel finding.

Despite the significantly enriched number of inhibitory neuron genes deregulated by disease and with estradiol treatment, we did not see changes in genes coding for Calb1 and Calb2, involved in calbindin positive interneurons. Previously, this interneuron subtype was shown to have delayed migration in our PA mutant mouse models. However, from this data, we cannot speculate on potential migratory deficits in these cells due in part to the bulk RNA sequencing approach taken within this study. Many subsets of interneurons are lowly expressed in the brain. Given their importance to the PA mutant phenotype and in Arx function more broadly, singlecell RNA sequencing could be a useful future strategy to determine the impact of disease and treatment on these specific subtypes of inhibitory neurons.

In the current study we demonstrate a modest number of deregulated genes from the cortex at P10. This is in comparison to the larger number of deregulated genes detected at embryonic day 12.5 in wildtype compared to Arx PA mutant mice (vehicle treated mice only) (Mattiske et al., 2016). Genes included Tnn and Ngfr, regulators of differentiation, growth, and migration of neuronal populations (Degen et al., 2007, Lin et al., 2015), while Tacrl is part of the family of G coupled-protein receptors, highly concentrated in the central nervous system (UniProt, 2020). Consistent with clinical phenotypes known to present in patients with ARX expansion mutations, $C p z$ is associated with autism spectrum disorders and/or intellectual disability (Loch et al., 2018). Despite reduced Arx expression within the brain at P10, the genes with deregulated expression in mutant mice were enriched for Arx responsive genes and genes known to be associated with autism and intellectual disability. The genes overlapping in mutant animals at P10 are important in brain development, including metal ion binding, known to be involved in cognitive decline in Down syndrome (Malakooti et al., 2014) and Alzheimer's disease (Cristóvão et al., 2016), as well as signal transduction and glycoproteins, both heavily involved in neurotransmitter release and modifying neuronal functioning (as shown in KEGG pathway analysis) (Kanehisa and Goto, 2000, Kanehisa, 2019, Kanehisa et al., 2019). Although epilepsy associated genes were not significantly enriched in the mutant mice at P10, genes associated
with inhibitory neurons were. $T h$ is a gene of particular interest. Downregulation of $T h$ was validated in both PA1 and PA2 vehicle-treated mice compared to WT and is an enzyme that assists in the formation of dopamine, a neurotransmitter, as well as having an association with interneurons (Mao et al., 2019, Yang et al., 2020, Zhang et al., 2020). Th was unaltered with estradiol treatment, as well as other interneuron genes downregulated with disease. This supports the notion that disturbed function of these inhibitory cells are likely to play a critical role in the seizure phenotype due to mutations in Arx, and that the lack of "rescuing" of these genes might be associated with the remaining seizures we see with treatment in mutant mice, as well as the unaltered cognitive and behavioural phenotype.

Of note, we did not find that epilepsy associated genes were significantly enriched in genes deregulated by disease in PA mutant mice. This was perhaps not surprising, as many known epilepsy causative genes are overwhelmingly associated with excitatory neurons. While mutations in Arx can cause seizures and epilepsy in patients, these are due to a disruption to inhibition in the brain, with dysregulation of interneuron migration and function. Arx mutations therefore do not cause channelopathies as many epilepsy disorders are, and rather, cause "interneuronopathies", a smaller subset of epilepsy-associated disorders.

4.4.3 Differences between PA1 and PA2 mutant mice.

Given the striking similarity in behavioural and seizure phenotypes, we were somewhat surprised by the difference in gene expression in PA1 and PA2 mice. This difference related to both genes changed by disease and in response to estradiol treatment. This difference in the number of genes changed in each of the two genotypes was also observed at embryonic day 12.5 (Mattiske et al., 2016). We were also uncertain if 17β-estradiol treatment would "rescue" the deregulated transcriptome of the PA mutant mice at P10, or if this treatment would target alternative pathways to reduce seizure frequency and severity. In the previous study in an alternate PA1 mutant mouse model, the same strategy of 17β-estradiol treatment altered
expression of three downstream targets of Arx, namely Shox2, Ebf3 and Lgil (Olivetti et al., 2014). In the current study, we demonstrated only minimal overlap in the genes deregulated by disease (PA mutant mice compared to WT mice - vehicle treated only) compared to genes deregulated by 17β-estradiol treatment (vehicle treated mice compared to estradiol treated mice - PA mutant mice only). Despite these small numbers of genes that overlapped between these two comparisons, the genes that did overlap in PA1 and PA2, were deregulated in the opposite direction when treated with estradiol. In the PA1 gene list, there were some key genes of note, including Ptgs2 (involved in schizophrenia, another neurodevelopmental disorder) and Slc17a8 (highly involved in synaptic vesicle function in excitatory neurons) (Wei and Hemmings, 2004, UniProt, 2020). In PA2, these genes included Arc (a master regulator of synaptic plasticity, and associated with epilepsy and schizophrenia), and Nppa (a regulator of neuropeptide hormone activity) (Haug et al., 2000, Huentelman et al., 2015). Though these genes may play a role in the alleviation of the seizure phenotype of PA mutant mice, these modest number of disease genes deregulated when treated with estradiol indicates that treatment in early postnatal life is less likely to be "repairing" the gene expression pathways deregulated by the PA mutant genotype and more likely recruiting new pathways to affect the reduction in seizures.

4.4.4 Estrogen response genes in our analysis.

Genes containing known conserved estrogen response elements (ERE) were only enriched to very low levels in PA mutant mice with estrogen treatment compared to vehicle treatment. Estradiol signalling can occur by direct genomic signalling where there is estrogen receptor dimerization and binding to EREs, as well as via indirect signalling, where estradiol can influence the expression of genes without EREs. As many as one third of estrogen responsive genes lack ERE-like elements (Vrtačnik et al., 2014). Hence, using DAVID, we analysed pathways and ontology terms enriched within the data that were known effects of 17β-estradiol signalling. Many of our enriched clusters were known to be direct or indirect effects of the estradiol pathway (Kanehisa and Goto, 2000, Kanehisa, 2019, Kanehisa et al., 2019). Our data
demonstrates that 17β-estradiol treatment in early postnatal life recruits pathways impacting synaptic function, signal transduction, transcriptional regulation, and hormone activity responsible in reducing the frequency and severity of seizures in PA mutant mice.

4.4.5 Environmental effects on transcriptomic results.

An obviously surprising outcome in our transcriptomic findings is the striking difference between PA1 and PA2 mice, despite their similar phenotype. There are some limitations in the RNAseq approach taken that may partially contribute to this result. Cortex samples used for this RNAseq analysis were only taken at P10, one time point. This means that environmental overlay may have impacted the transcriptomic results of individual samples, and without a larger group of mice at multiple time points, these effects may lead to differences that were not averaged out. These environmental effects may include stress, seizure activity (though no seizures were observed in our mice this early), or maternal parenting differences. However, we attempted to keep the study as robust as possible, by treating all cohorts of mice the same from birth to collection point at P10, and collecting samples at the same time of day.

4.5 Study outcomes

This investigation provides an unbiased study into the transcriptomic profile of PA1 and PA2 mice at postnatal day 10 (without estradiol treatment) to determine the impact of partial loss of Arx early in development. In addition, the impact of estradiol treatment on these mice was investigated to understand how estrogen might be improving the seizure frequency and severity in adolescence. We have shown that significant numbers of genes associated with neurodevelopmental disorders and interneuron genes, and known Arx target and responsive genes had deregulated expression in both PA mice. Given the dramatic reduction to seizure occurrence, we were somewhat surprised to find that estradiol treatment did not appear to "rescue" the deregulated transcriptome of PA mutant mice at postnatal day 10. Instead, estradiol treatment recruited molecular and cellular pathways to reduce the frequency and severity of seizures rather than restoring pathways initially deregulated in Arx PA mutant mice driving pathogenesis. Investigating gene expression and pathways disrupted due to mutations in Arx and the subsequent response to treatment is vital for looking for therapeutic targets, even those that could potentially be delivered prenatally to the foetus in utero. We conclude that 17β estradiol treatment recruits processes and pathways to reduce the frequency and severity of seizures in the Arx PA mutant mice but does not precisely correct the deregulated transcriptome nor improve mortality or behavioural and cognitive deficits. We chose to focus our investigations on the effects of these expanded polyalanine tract mutations on the interneurons in the brain, with and without treatment.

Chapter Five:

Interneuron genes are deregulated with Arx PA mutations, but are not rescued directly with 17β-estradiol treatment.

5.1 Abstract

The lack of effective treatments for intellectual disability and neuropsychiatric disturbances remains a significant challenge and highlights the continued need to elucidate the molecular and cellular drivers of the intellectual disability phenotype as the first necessary steps toward a treatment. Many NDD genes have been linked to the function, development and migration of interneurons, an inhibitory cell type in the brain. Interneurons balance excitation and inhibition in the cortex, providing a balance to the overall network. The Aristaless-related homeobox gene, $A R X$, is a transcription factor strongly expressed in immature neurons and interneurons in the embryonic brain. When ARX function is compromised, intellectual disability with associated comorbidities like severe epilepsy and infantile spasms can be the result. The transcriptomic profile of interneuron genes at postnatal days 3 and 10 in untreated PA mutant mice was analysed, demonstrating that many interneuron deficits were already present at this early stage of postnatal brain development, particularly somatostatin and parvalbumin positive interneurons. We contend that early disruption of Arx function results in deregulation of interneuron associated genes early in postnatal life, contributing to the disease phenotype. Further, to determine the effect of estradiol on the abundance of calbindin and neuropeptide-Y interneurons, we used immunofluorescent microscopy at postnatal day 10 , immediately following treatment. These two interneuron subtypes have been previously shown to be deficient in PA mutant mice, and rescued with estradiol. Despite differences in the expression of multiple interneuron genes at postnatal day 10 following estradiol treatment, we did not determine any significant differences in the number of calbindin and neuropeptide-Y interneurons in PA mutant mice. Despite changes to gene expression of specific interneurons, our data suggests that rescue of interneuron deficits/cell density, is unlikely to be the sole cause of estradiol's effect on seizure alleviation in PA mice.

5.2 Introduction

The cortex of the brain is highly diverse, made up of a number of cell types which perform a variety of functions, dependent on balanced neural circuits. GABAergic inhibitory interneurons are vital to controlling neuronal excitability and balancing the synchrony of neural networks in the brain. If there is a dysfunction in interneurons in the brain, this can lead to aberrant firing of excitatory cells, due to a lack of inhibition and an imbalance of these networks. These networks play a pivotal role in the control of memory and information processing functions of the cortex, and if disrupted, can be associated with a wide spectrum of neurodevelopmental disorders such as intellectual disability, epilepsy, schizophrenia and autism (Benes and Berretta, 2001, Lewis et al., 2005, Rubenstein, 2010, Olivetti and Noebels, 2012).

Many neurodevelopmental disorders, particularly intellectual disability and epilepsy, share similar developmental origins, with causative genes for these disorders overlapping. Of these disease associated genes, some have been linked to the function, development, and migration of cortical interneurons. The Aristaless-related homeobox gene, $A R X$, is a transcriptional repressor, strongly expressed in neural progenitor cells and immature neurons in the developing, embryonic brain, peaking between embryonic days 12.5 and 15.5 in the mouse cortex in particular (Miura et al., 1997, Kitamura et al., 2002, Poirier et al., 2004, Colombo et al., 2007). When Arx is completely knocked out in a mouse model, the male mice have severe brain malformations, with a thinner cortical plate, a deficit in tangential migration of interneurons to the cortex, and a complete lack of radial migration of interneurons. These mice also had significantly reduced numbers of excitatory neurons (Kitamura et al., 2002). In utero knock down of Arx causes progenitor cells to prematurely exit the cell cycle and impaired the migration of interneurons into the cortex, as well as the radial migration of excitatory neurons (Friocourt et al., 2008). This demonstrates the dramatic effects of a loss of Arx on interneuron migration, and is reflected in the severe phenotypes in human patients due to complete loss of function mutations.

In mice with mutations expanding the first and second polyalanine tracts of Arx, there is a deficit in the number of interneurons, as well as their migration. In 2017 Lee et al. showed an overall reduction in GABAergic interneurons in the postnatal day 0 brain of both PA1 and PA2 mice. When looking at specific interneuron subtypes, there was a $40-50 \%$ loss of calbindin positive cells in the cortex. These cells were found to be arrested in the ventral subpallium of the cortex, where migration of these cells had been halted or delayed (Lee et al., 2017). This same PA1 mouse has also been shown to have reduced numbers of neuropeptide-Y positive interneurons in the brain at one month of age (Kitamura et al., 2009). Furthermore, transcriptomic studies of the embryonic brain of PA mutant mice have shown deregulation of key interneuron functional and developmental genes, however we have not yet performed RNA sequencing of the brain in postnatal life (Mattiske et al., 2016, Dubos et al., 2018). These mouse models have demonstrated that even a partial loss of Arx due to these expanded tracts can impact the normal functioning and migration of these key inhibitory cells of the brain.

Arx is mostly expressed embryonically. To understand the ongoing effects of these mutations throughout postnatal life, there have been few studies in the postnatal brain of these PA1 and PA2 mouse model. A recent study involving an alternate PA1 mouse model found that early postnatal treatment with 17β-estradiol restored some of the interneuron deficits at approximately one month of age, particularly in neuropeptide- Y and cholinergic cells (Olivetti et al., 2014). Furthermore, in rats, treatment with estradiol increased the number of inhibitory cells in an induced seizure rat model, and in a premature birth model in rabbits (Chachua et al., 2016, Panda et al., 2018). Taken together, these studies suggest that estradiol may be able to improve interneuron populations in the brain, even in the presence of a functional deficit in Arx.

To investigate the effects of these mutations in early postnatal life, we established the status of the expression of interneuron associated genes aligned with the commencement of estradiol treatment at P3, and immediately following treatment at P10, using RNA sequencing. We
suspected that genes involved with the development, migration and function of interneurons would be deregulated in PA mutant mice. RNA sequencing was used to determine the changes to gene expression in the prefrontal cortices of PA1 and PA2 mutant mice and their wild-type littermates. We then investigated the effects of early estradiol treatment on the cell density of interneuron subtypes within the cortex. Previous studies in PA1 and PA2 mice, with and without estradiol treatment, have shown deficits to calbindin and neuropeptide- Y positive interneurons in the cortex, early and later in development (Kitamura et al., 2009, Olivetti and Noebels, 2012, Olivetti et al., 2014, Lee et al., 2017). Hence, I chose to focus on these two interneuron subtypes, investigating with immunofluorescent analysis of a specified region of the prefrontal cortex at postnatal day 10 . We hypothesised that treatment with estradiol would improve the numbers of neuropeptide- Y and calbindin positive interneurons in the postnatal day 10 cortex of PA1 and PA2 mice, restoring deficits in migration observed at birth.

5.3 Results

5.3.1 Deregulated interneurons in untreated PA1 and PA2 mutant mice at postnatal day 3 and postnatal day 10.

Further to our RNA sequencing analysis comparing vehicle and estradiol treated PA mutant and WT mice at postnatal day 10, discussed extensively in Chapter Four of this thesis, we also performed RNA sequencing of postnatal day $3(\mathrm{P} 3)$ and day 10 (P10) cortex samples from completely untreated PA mutant and their WT littermates. Here we complete a characterisation of the impact of disrupted Arx function on the expression of interneuron associated genes at these two early postnatal time points.

We demonstrate that the transcriptomes of mutant mice at P3 and P10 were disrupted due to expanded polyalanine tract mutations, compared to their WT counterparts. Compared to agematched, untreated WT mice $(\mathrm{n}=6)$, analysis of PA1 at P3 $(\mathrm{n}=4)$ found 497 genes deregulated with a $\log 2$ fold change greater than ± 0.5 and a p-value of less than 0.05 . PA2 mice had 110 genes deregulated with the same cut-off value, and when combining these two groups to create a $\mathrm{PA}^{\text {pool }}$ group, we found 130 genes deregulated. At P10, compared to age-matched, untreated WT mice $(n=6)$, PA1 mice $(n=4)$ had 179 genes deregulated with a $\log 2$ fold change greater than ± 0.5 and a p-value of less than 0.05 . PA2 mice had 135 genes deregulated, and $\mathrm{PA}^{\text {pool }}$ mice had 134 genes deregulated (Table 5.1).

Table 5.1: Genes deregulated by disease in untreated PA1, PA2 and PA ${ }^{\text {pool }}$ mice compared to untreated wild-type littermates at the same time points.

	Untreated	PA1	PA2	PA $^{\text {pool }}$
P3	vs. P3 WT	497	110	130
P10	vs. P10 WT	179	135	134

To understand the interneuron genes disrupted by the disease genotype in PA mutant mice, we investigated enriched genes within these lists. Utilising the in house curated reference list of inhibitory neuron associated genes. At P3, there were 15, five and seven interneuron associated genes disrupted in PA1, PA2 and PA $^{\text {pool }}$ groups, respectively (Table 5.2). Interestingly, these genes were significantly enriched in all three groups; PA1 ($15 / 497,3 \%, \mathrm{p}<9.212 \mathrm{e}^{-13}$), PA2 $\left(5 / 110,5 \%, \mathrm{p}<6.271 \mathrm{e}^{-6}\right)$ and $\mathrm{PA}^{\text {pool }}\left(7 / 130,5 \%, \mathrm{p}<2.573 \mathrm{e}^{-8}\right)$ (Table 5.2).

At P10, there were 13 interneuron associated genes disrupted in PA1 mice, six disrupted in PA2, followed by eleven genes disrupted in the $\mathrm{PA}^{\text {pool }}$ group (Table 5.2). As we also saw at P3, there was significant enrichment of interneuron genes in PA1 mice ($13 / 179,7 \%, \mathrm{p}<4.491 \mathrm{e}^{-16}$), PA2 mice ($6 / 135,4 \%, \mathrm{p}<8.183 \mathrm{e}^{-7}$) and $\mathrm{PA}^{\text {pool }}$ mice $\left(11 / 134,8 \%, \mathrm{p}<2.233 \mathrm{e}^{-14}\right.$) (Table 5.2). Perhaps not surprisingly, these percentages are similar to those in vehicle treated mutant mice at P10, with $8 \%, 10 \%$ and 17% of deregulated genes being interneuron genes, including Akr1c18, Chat, Th and Tacr1.

Table 5.2: Interneuron associated genes enriched in untreated PA1, PA2 and PA ${ }^{\text {pool }}$ mice at postnatal day 3 and day 10.

	PA1	PA2	$P A^{\text {pool }}$
P3	Col25a1, Cryab, Fign, Frem1, Hspb3, Itih5, Ndst4, Npy, Pvalb, Slc18a3, Sncg, Spp1, Tac2, Th, TII1	Cartpt, Crh, Fosb, Npy, Tac2	Cryab, Hspb3, Npy, Slc18a3, Spp1, Tac2, TII1
Significant enrichment of interneuron genes	*	*	*
P-value	$p=9.212 e^{-13}$	$p=6.271 e^{-6}$	$\mathrm{p}=2.573 \mathrm{e}^{-8}$
P10	Akr1c18, Chat, Chrna2, Fosb, Frmd7, Has2, Mybpc1, Pde11a, Pvalb, Sla18a3, Spp1, Tacr1, Th	Akr1c18, Fosb, Frmd7, Mybpc1, Myh8, Spp1	Akrc1c18, Chat, Chrna2, Fosb, Frmd7, Has2, Mybpc1, Pvalb, Spp1, Tacr1, Th
Significant enrichment of interneuron genes	*	*	*
P-value	$p=4.491 e^{-16}$	$p=8.183 e^{-7}$	$p=2.233 e^{-14}$

Focusing our investigation of the disruptions to key interneuron genes and the pattern of deregulation between the two time points of P3 or P10, the Calbl gene, responsible for the calbindin protein expressed by calbindin positive interneurons, was not significantly different between WT or PA mutant mice at either time point (Figure 5.1). This was interesting given the migration impediment in these interneuron subtypes exhibited at P0 in PA1 and PA2 mice, previously established by Lee et al. 2017. Disruption to the Pvalb gene, responsible for the parvalbumin protein on parvalbumin positive interneurons, was observed at both timepoints in PA1 group, and at P10 in the $\mathrm{PA}^{\text {pool }}$ group (Figure 5.1). The disruption to $P v a l b$ persisted from P3 and was still present at P10. There was no deficit to parvalbumin abundance reported in Lee et al. 2017, however this gene is not strongly expressed until approximately postnatal day 14 (Allen Brain Atlas).

Disruption to expression of the Chat gene at P10 in PA1, PA2 and PA ${ }^{\text {pool }}$ groups was also found from our RNAseq analysis (Figure 5.1). This gene plays key roles in cholinergic interneurons, a subtype previously shown to be deficient in the alternate PA1 mutant mouse model (Olivetti et al., 2014). We also detected disruption to the Th gene in all three mutant groups, at both P3 and at P10 (Figure 5.1). Th is also a key player in cholinergic interneurons. This is the first time deregulated expression of these genes in PA1 and PA2 mice has been reported. We demonstrated significant deregulation of the Npy gene at P 3 in all three mutant groups (Figure 5.1). At postnatal day 3 this deregulation was significant in meeting our cut off values for our RNA sequencing data, being a p-value >0.05 paired with a $\log 2$ fold change of ± 0.5, however at P10, Npy was deregulated with a p-value >0.05, but did not meet the $\log 2$ fold change criteria. Fascinatingly, all interneuron gene deficits in PA1 and PA2 mice, apart from Chat which was not detected at P3, persisted from P3 to P10.

Three additional interneuron associated genes were also disrupted in these mutant groups. These genes did not overlap completely with each mutant group. Sppl was downregulated in

PA1 and PA ${ }^{\text {pool }}$ at both P3 and P10, and Slc18a3 downregulated in PA1 only. Fosb was an interesting finding, being significantly upregulated in PA2 mice at P3, but significantly downregulated compared to WT littermates at P10 (data not shown).

Figure 5.1: RNA sequencing outcomes of key interneuron associated genes in untreated PA mutant mice at postnatal day 3 and day 10. Gene expression as counts per million (CPM) for selected interneuron associated genes enriched in untreated PA mutant mice compared to untreated WT littermates. Dots represent values for individual animals. PA1 mice at P3 ($\mathrm{n}=4$; blue) and P10 $(\mathrm{n}=4$; blue $)$; PA2 mice at P3 $(\mathrm{n}=4$; blue $)$ and P10 $(\mathrm{n}=3$; blue $)$; $\mathrm{PA}^{\text {pool }}$ mice at P3 ($\mathrm{n}=8$; green) and P10 $(\mathrm{n}=7$; green $)$; WT mice at P3 $(\mathrm{n}=6$; grey) and P10 $(\mathrm{n}=6$; grey). * $\mathrm{p}<0.05$ and \log fold change ± 0.5. $^{\wedge} \mathrm{p}<0.05$ but did not meet \log fold change cut off.

To identify which genes corresponded to specific interneuron subtypes, we analysed expression data using Gemma to assign cell populations to the gene most abundantly expressed (Zoubarev et al., 2012). A table of these interneuron subtypes with the genetic markers identified in our analysis is listed in Appendix 10. From this investigation, we found that these interneuron genes enriched in PA1, PA2 and $\mathrm{PA}^{\text {pool }}$ mice were primarily associated with vasoactive intestinal polypeptide (VIP), somatostatin (SST), neuron-derived neurotrophic factor (NDNF), parvalbumin (PVALB), interferon gamma-induced GTPase (IGTP) and synuclein- γ (SNCG) interneuron subtypes. The types of interneurons most enriched for genes deregulated in PA mutant mice at both P3 and P10 included VIP, SST and PVALB (Figure 5.2). In the case of PA2 mice, there was a change from P3 (VIP and SST) to also include PVALB at P10 (Figure 5.2). In the pooled data, we see a change in the enrichment of genes expressed in interneuron subtypes, with VIP at P3 disrupted, to SST and PVALB at P10 (Figure 5.2). This investigation identified SST, VIP and PVALB as the most common interneuron subtypes with deregulated gene expression in Arx mutant groups.

Figure 5.2: Enrichment of different interneuron subtypes with genes deregulated in untreated postnatal day 3 and day 10 PA mice. Pie charts display subtypes of interneurons based on deregulated interneuron gene expression in untreated PA mutant mice at P3 and P10 $\left(\mathrm{PA} 1=\right.$ orange, $\mathrm{PA} 2=$ blue, $\mathrm{PA}^{\text {pool }}=$ green $)$. Patterns represent each interneuron subtype, as described in figure. Proportions of each subtype is based on deregulated interneuron associated genes in Table 5.2. Key for interneuron subtypes is as follows; VIP: vasoactive intestinal polypeptide; SST: somatostatin; NDNF: neuron-derived neurotrophic factor; PVALB: parvalbumin; IGTP: interferon gamma-induced GTPase; SNCG: synuclein- γ.

5.3.2 Estradiol treatment does not alter interneuron abundance in the PA1 and PA2 mouse prefrontal cortex.

Immunofluorescence microscopy of the prefrontal cortex at P10 was performed in a specific region of the cortex for all animals studied (Figure 5.3). Representative examples of calbindin and neuropeptide-Y positive cells were observed (Figure 5.4 A\&B). The cell density analysis first separated WT mice treated with either estradiol or vehicle. For this experiment we chose to combine these into a WT combined treatment group, to look for any changes in interneuron populations compared to mutant mice. We did not observe any deficits to calbindin-positive cell density in vehicle treated $\mathrm{PA}^{\text {pool }}$ mice compared to their WT littermates (Figure 5.4 C). Again, with neuropeptide-Y, we did not observe any decrease or difference in cell density due to disease, when comparing mutant mice to their WT littermates (Figure 5.4 D). We did not see any differences to cell density in either of these interneuron subtypes in mutant mice immediately following cessation of estradiol treatment (Figure 5.4 C\&D).

Figure 5.3: Region of the cortex used for immunofluorescence analysis. Representative DAPI stained image of the brain in a WT mouse illustrating the region of the brain analysed (within dashed lines). Scale bar 200 μ M.

Figure 5.4: Abundance of calbindin and neuropeptide-Y positive interneurons in the prefrontal cortex. (A) Immunofluorescence analysis of calbindin (Cb) interneurons in coronal brain sections of PA mutant mice at P10 and was superimposed with DAPI staining and imaged with 20x objective. Arrows depict representative examples of Cb positive cells in a WT and a PA mouse. Scale bar 100μ m. (B) Immunofluorescence analysis of neuropeptide-Y (Npy) interneurons in coronal brain sections of PA mutant mice at P10 and was superimposed with DAPI staining and imaged with 20x objective. Arrows depict representative examples of Npy positive cells in a WT and a PA mouse. Scale bar $100 \mu \mathrm{~m}$. (C) Density of Cb positive cells in WT mice $(\mathrm{n}=6$; white; vehicle $=$ solid dots; estradiol $=$ circles $)$ and $\mathrm{PA}^{\text {pool }}$ mice $(\mathrm{PA} 1=$ squares; PA2 $=$ triangles $)$ treated with vehicle $(\mathrm{n}=6$; light green) or estradiol $(\mathrm{n}=5$; dark green). (D) Density of Npy positive cells in WT mice ($\mathrm{n}=6$; white; vehicle $=$ solid dots; estradiol $=$ circles) and $\mathrm{PA}^{\text {pool }}$ mice $(\mathrm{PA} 1=$ squares; PA2 $=$ triangles $)$ treated with vehicle $(\mathrm{n}=4$; light green $)$ or estradiol ($n=5$; dark green).

5.4 Discussion

5.4.1 Novel findings from this study

As part of our investigation into the effects of short-term 17β-estradiol treatment on PA1 and PA2 mutant mice, we performed microscopy analysis of the cortex at postnatal day 10 , immediately following treatment. Interestingly, at the cessation of treatment, we reported no significant difference in the cell density of calbindin and neuropeptide- Y interneurons with estradiol. However, we also did not observe any significant deficit in these cells in mutant mice compared to WT. Previously our laboratory reported a lag in the migration of calbindin positive interneurons at P0 in both PA1 and PA2 mice, with an accumulation of cells being arrested when they should have migrated into the cortical layers (Lee et al., 2017). This outcomes was supported by our analysis, demonstrating no difference to Calb1 (encoding calbindin) in our gene expression data at P 10 either with or without treatment. This could indicate that this deficit of calbindin positive cells in the cortex is in fact caused by slow migration, as opposed to a complete loss of this interneuron subtype. As we did not carry out detailed microdissection of the cortical tissue, our results are based on the entire cortical region studied. This is a limitation in determining any lag in the migration of these cells at P10, manifested by changes to the density of calbindin cells in different layers.

Furthermore, our collaborators showed reduced density of neuropeptide- Y cells in the adult brain, and an increase with estradiol treatment (Olivetti et al., 2014). In agreement, we determined a modest reduction in the expression of the Npy gene expression in PA1 mutant mice compared to WT animals at the earlier time point of P10. However, we did not find any significant differences to density of Npy positive interneurons. The expression of Npy is known to increase in the brain from approximately P14, meaning we cannot rule out that changes to the density of Npy positive interneurons at later stages of development may occur and contribute to the sustained reduction in seizures observed in estradiol treated mice (Lein et al.,
2007). Although we detect differences in gene expression of multiple interneuron associated genes at P10 of development, our data indicates to us that the many other genes (and pathways) regulated by estradiol treatment are likely to be participating in the alleviation of seizures, as opposed to increased inhibition in the brain as the sole mechanism.

We also completed a comprehensive investigation of key genes involved in interneuron function, migration and development, in untreated PA1 and PA2 mutant mice at P3 and P10. This is the first time the transcriptomic profile of these mice has been investigated at these time points. We demonstrated a substantial and significant deregulation of interneuron associated genes at both time points in PA1, PA2 and $\mathrm{PA}^{\text {pool }}$ mice. Most of these interneuron deficits were sustained from P3 through to P10, indicating no improvement throughout brain development during this period. Parv and Th both increased in expression from P3 to P10, remaining decreased compared to WT still, however Npy maintained around the same expression. This decrease in Npy expression in PA mutant mice compared to WT was not reflected in our immunofluorescence data. Interestingly, key interneuron subtypes that were deregulated were somatostatin and parvalbumin positive interneurons. At postnatal day 0, Lee et al. did not observe any differences to these two interneuron subtypes in the cortex of mutant mice (Lee et al., 2017). However, both of these cells increase in population throughout postnatal life. The differences in interneuron deficits between studies in each of the two mouse models for the PA1 and PA2 mutations are outlined in Table 5.3, with results from this study summarised in Table 5.4. These will be discussed further in 5.4.2.

An interesting outcome of our gene expression data was the reduction in Chat and Th at P10 in both PA1 and PA2 mice. Chat and Th are expressed by cholinergic neurons, which use acetylcholine (ACh) as their primary neurotransmitter (Ahmed et al., 2019). Changes to the function of cholinergic neurons can lead to disruptions in motor control, which provides a possible explanation for the reduced neuromuscular strength we observed in PA mutant mice
in Chapter 3 (Bordia et al., 2016, Ahmed et al., 2019). Disruptions of these neurons can also reduce the capacity of behavioural flexibility, memory and social behaviour in mice. As such, our findings are consistent with these deficits not being rescued with estradiol treatment, and are likely to contribute to the sustained intellectual disability phenotype, despite the reduction in seizures we observed (Albert-Gascó et al., 2017, Martos et al., 2017, Okada et al., 2018, Ahmed et al., 2019).

Table 5.3: Interneuron deficits present in the PA1 and PA2 mouse models from different studies at different timepoints.

	Embryonic	Postnatal day 0	Approx. 1 month	Adult	Publication
PA1		\downarrow Npy, Sst, GABA	\downarrow Chat		Kitamura et al. 2009
Kitamura model		$\downarrow \mathrm{Cb}, \mathrm{GABA}$			Lee et al. 2017
			\downarrow Npy, Cb		Price et al. 2009
Price model				$\downarrow \mathrm{Npy}, \mathrm{Cb}$ Npy, Cb \uparrow with E2	Olivetti et al. 2014
PA2			\downarrow Chat		Kitamura et al. 2009
Kitamura model		$\downarrow \mathrm{Cb}, \mathrm{GABA}$			Lee et al. 2017
PA2 Dubos model	$\downarrow \mathrm{Cb}, \mathrm{Cr}$, Chat	$\downarrow \mathrm{Cb}$, Sst		\downarrow Cb, Chat	Dubos et al. 2018

Legend: Neuropeptide-Y (Npy), calbindin (Cb), calretinin (Cr), somatostatin (Sst), cholinergic (Chat), parvalbumin (Parv), gamma aminobutyric acid (GABA).

Table 5.4: Interneuron deficits in PA mutant mice in this study.

		P3		P10	
		Untreated	Untreated	Vehicle	E2
PA1	Gene expression	\downarrow Npy, Sst, Parv	\downarrow Npy, Sst, Parv, Chat	\downarrow Sst, Parv, Chat	
	Cell density			No change - Npy, Cb	No change - Npy, Cb
PA2	Gene expression	\downarrow Npy, Sst	\downarrow Npy, Sst, Chat	\downarrow Sst, Parv, Chat	
	Cell density			No change - Npy, Cb	No change - Npy, Cb

Legend: Neuropeptide-Y (Npy), calbindin (Cb), somatostatin (Sst), cholinergic (Chat), parvalbumin (Parv).

5.4.2 Differences in interneuron findings between studies

The discrepancies in interneuron findings between our findings and published studies, are described in Tables 5.3 and 5.4. A major contributor in differences reported may be due to the time period studied. Most interneuron investigations in the Kitamura et al. mouse models have been performed early in development, while many of the Price et al. PA1 mouse studies have been performed in adulthood. The expression of interneuron populations changes across different stages of brain development. For example somatostatin and parvalbumin subtypes primarily disturbed in our gene expression data, are expressed highly from P14-P28 compared to embryonic and early postnatal life (Lein et al., 2007). This highlights that a systematic evaluation of changes to interneuron subtype expression and changes to cell density of interneuron populations within different cortical layers, with and without treatment, is warranted.

We also observed some differences in the interneuron subtypes improved with estradiol treatment, when compared to the study in the Price et al. PA1 mouse model. Olivetti and colleagues showed an improvement in neuropeptide- Y and calbindin interneuron density in response to treatment. Again, this was reported in the adult brain in specific brain regions. It is possible that the effects of estradiol on this subset of interneurons requires additional time to manifest in a significant change to cellular density in the brain, as opposed to our study, where we examined the brain immediately following treatment. This may contribute to the increase in interneuron associated genes we observed at P10, immediately following treatment cessation, but no with limited effect at the cellular level.

From our studies, we contend that the effect of estradiol on interneurons is only part of the impact of estradiol treatment leading to alleviation of seizures in PA mutant mice. A number of pathways and genes are deregulated with estradiol treatment. As such, the direct effects of treatment may not be easily detected at the cellular level in the brains of these mice. The exciting
aspect of this conclusion is that the additional pathways estradiol is targeting may provide potential targets for the treatment for other epileptic disorders, not just those caused by interneuron deficits.

5.4.3 Future experiments for interneurons in PA mutant mice

There are multiple ways interneurons are able to be investigated in the brains of PA mutant mice, and with advances in transcriptomic techniques we believe a single-cell RNA sequencing approach would be beneficial. This would allow a comprehensive investigation of the gene expression profiles of individual cell types impacted by mutations in Arx, including progenitor inhibitory and excitatory neurons. Given the small number of cells of the brain that are affected by the mutations in Arx, this approach would have the ability to determine small and direct effects in different subsets of specific neural cell types (Aevermann et al., 2018, Chen et al., 2019). This type of deep investigation could potentially determine specific and novel treatment targets to treat multiple aspects of the disease phenotype, including cognition and mortality, not just seizures.

By investigating treatments that target interneurons more directly, we could potentially treat the intellectual disability side of the PA mutant phenotype. Despite improving seizure frequency and severity with estradiol, cognitive effects remained unchanged, with deficits to anxiety, social cognition, and hyperactivity. Interneuron dysfunction is responsible for a number of neurodevelopmental disorders, such as autism, epileptic syndromes, and even schizophrenia, and hence treatments targeting these specific cells may help alleviate phenotypes for patients with these other disorders. Hence, investigating these important cells is key for not just patients with $A R X$ mutations, but those with a broad umbrella of disorders termed "interneuronopathies".

5.5 Study Outcomes

Through a comprehensive study of interneuron associated genes in untreated mutant mice at P3 and P10, we showed disruptions to Npy, as well as deregulation of somatostatin, parvalbumin and vasoactive intestinal protein positive interneurons. This disruption to interneurons was sustained throughout this early period of development. We conclude that this early disruption to genes involved in the function and development of interneurons, caused by these partial loss of function mutations in Arx, is at least partially responsible for the intellectual disability and seizure phenotype we see in PA mutant mice. However, despite estradiol improving seizure frequency and severity in both PA1 and PA2 mice, we did not detect any increase to the cell density of calbindin and neuropeptide-Y positive interneurons at P10, immediately following the last dose of treatment. We believe that further analysis on the interneuron deficits in PA mutant mice would be beneficial for finding novel treatment targets for children with these mutation, but also for patients with other interneuronopathies, such as epilepsy, autism and schizophrenia.

Chapter Six:

Discussion

6.1 Novel findings of this project

My PhD project provides novel insights into the behavioural and molecular phenotype of the Arx PA1 and PA2 mouse models, and contributes to the understanding of how 17β-estradiol treatment works to reduce the frequency and severity of seizures in these mice. For the first time, I have shown that there are abnormal behavioural traits present early in postnatal life prior to the peak of seizure onset in PA mutant mice, and that there is no regression of behavioural deficits or cognition between one and two months of age. PA1 and PA2 mutant mice have been shown to have deficits to social cognition, anxiety and fear response, and learning and memory at two months of age (Jackson et al., 2017). However, determining the impact of severe and recurring seizures on the behavioural profile of these mice had not yet been examined. The behavioural deficits I established allowed me to determine whether or not improving seizures in PA mice via 17β-estradiol treatment would subsequently improve these behaviour deficits. Unfortunately, despite my hypothesis, a cardinal finding of my project was that 17β-estradiol treatment had no effect on behaviour in these mice, nor did the reduction in seizures reduce behavioural deficits later in development. Despite 17β-estradiol treatment not improving the behavioural and cognitive phenotype of PA mutant mice, I showed efficacy in its use as antiepileptic treatment when given in early postnatal life, at least in mice. This is the first time that 17β-estradiol treatment has been shown to reduce seizure frequency and severity in the Kitamura et al. PA1 mouse model, as well as the PA2 mouse model, with the second model mirroring the most frequent $A R X$ mutation seen in humans. This provides much needed reproducibility of results in two independent models of Arx mutations, with our collaborators demonstrating a reduction in seizures in a different PA1 mouse model (Price et al. model). Despite our work demonstrating the effectiveness of 17β-estradiol as a treatment for seizures, we unfortunately cannot report that the improvement by reduction in seizure frequency and severity increased the survival of PA mutant mice.

To better understand the role of Arx in early postnatal life and the effects of estradiol treatment, we performed unbiased RNA sequencing on postnatal day 10 brains of PA1 and PA2 mice following treatment with 17β-estradiol. This provided novel results on the ongoing effect of a partial loss of Arx early in brain development on the transcriptome of PA mutant mice in early postnatal life. We established the deregulated transcriptomic profile in PA1 and PA2 mutant mice (untreated) compared to wild-type littermates, and found that despite low Arx expression in the brain, genes associated with neurodevelopmental processes were deregulated. We determined that 17β-estradiol treatment did not repair the deregulated transcriptome but instead recruited alternative gene pathways that we conclude contribute to the reduced seizure frequency and severity.

Another important finding of our study was the comprehensive analysis we performed of interneuron associated genes at P3 and P10 in untreated PA1 and PA2 mice. This analysis of interneuron genes across developmental time points has not been performed in these mutant mice, and we determined that many genes with deregulated expression persist from P3 to P10. Despite our immunofluorescence analysis at P10 showing no deficits in calbindin or neuropeptide- Y positive interneuron populations, we provided evidence for somatostatin, parvalbumin, neuropeptide- Y and cholinergic interneurons being deregulated in PA mutant mice early in postnatal day life. This analysis provides insight into specific subtypes of inhibitory cells that might be affected by the expanded polyalanine tract mutations in Arx, and provide evidence for mechanisms of disease.

We demonstrate neuromuscular deficits are present in both PA mutant mice for the first time. Patients with expansion mutations, particularly of the second polyalanine tract, feature dystonia of the hands as a significant part of their phenotype (Stromme et al., 2002, Shoubridge et al., 2010). This phenotype is referred to as Partington Syndrome with 63% of patients with expansions of PA2 having dystonic movements of the hands (Partington et al., 2004). This
aspect of the phenotype was further characterised by Dubos et al. with impaired grasping movements of the hands in PA2 patients (Partington et al., 2004, Dubos et al., 2018). Generalised dystonia has been reported in patients with expansions of the first polyalanine tract. A report by Guerrini et al. reported six male patients with generalised dystonia that worsened to severe quadriplegic dyskinesia by two years of age (Guerrini et al., 2007). My study found that PA2 mice had decreased grip strength in the inverted grid test compared to their wild-type littermates, perhaps not surprising as this is such a prominent feature in PA2 patients. Interestingly, PA1 mice also had reduced grip strength at two months of age (trending at one month but non-significant). The Price et al. PA1 mouse model presents with better performance in the rotarod test than their wild-type littermates, indicative of increased locomotor coordination (Price et al., 2009). A different PA2 mouse model that has since been developed since the beginning of my project, has been reported to have a deficit in reaching and grasping (Dubos et al., 2018). However, these two studies are the only reported information of neuromuscular strength deficits in any PA mouse models. My study provides novel findings for a neuromuscular strength deficit in the Kitamura et al. PA1 and PA2 mouse models. Unfortunately, estradiol treatment at the current dosage and timing of treatment did not improve this phenotypic outcome.

6.2 Reproducibility of pre-clinical trials

Reproducibility between preclinical trials is vital to the process of eventually getting novel therapies to human clinical trials. The rate of translation from preclinical trials to human clinical application is approximately 8% (Mak et al., 2014). This low translation level is partially due to treatment and clinical studies from mice and humans often having quite different outcomes. However, increased understanding of molecular mechanisms behind inherited disorders has led to more relevant mouse models for treatment trials being established (Berry-Kravis et al., 2018). The Kitamura and Price PA1 mouse models differ slightly in their seizure, behavioural and
cellular phenotypes, but both mice strongly recapitulate many aspects of the human phenotype in patients with PA1 expansion mutations in $A R X$.

Estradiol treatment early in postnatal life modelled in our study, based on the previous study by our collaborators (Olivetti et al., 2014), shows vast effectiveness in reducing aspects of the seizure burden in PA1 mice, as well as PA2 mice. Moreover, treatment given very early in postnatal life provided lasting impact on reductions in seizures for up to 2 months of age (study end point) which spans the normal peak of seizures in these models. However, this regime of estradiol treatment failed to improve cognitive and behavioural outcomes in either mouse model. Reproducibility of behavioural testing can be difficult to measure in mice, using the Fmrl-KO mouse model of Fragile X Syndrome as an example, we can begin to understand why preclinical trials in intellectual disability models are challenging. Fragile X Syndrome is the most common genetic form of intellectual disability and autism in humans (Berry-Kravis et al., 2018). The Fmrl-KO mouse model shows variability and small effect size in cognitive deficits, displaying differing results in standard behaviour tests in different laboratories and on different genetic backgrounds (Kazdoba et al., 2014, Gross et al., 2015, Leach et al., 2016).

The effects of this early intervention with estradiol treatment on seizure outcomes in PA1 and PA2 mice is striking. This is the first study reporting the effects (or lack thereof) of estradiol on behaviour in the PA1 and PA2 mouse models. While intellectual disability is a cardinal feature of ARX mutations, inconsistent or small deficits in cognition and behaviour in a mouse model have the potential to limit the value of these particular mouse models for evaluating the effects of early estradiol treatment on behaviour. Future studies investigating the effects of a treatment outcome on intellectual disability models may benefit from using a touchscreen platform to investigate subtle changes to cognitive outcomes, with high translation of the behavioural phenotype to human cognitive outcomes (Horner et al., 2013). Touchscreen testing in rodents
requires several months of training prior to testing. As such, the high and early mortality rate in the Arx mutant mice means this platform was not a viable option for us to consider.

6.3 Separating behaviour and seizures in PA mice

Separating behaviour from seizures is notoriously difficult, particularly when many neurodevelopmental disorders feature seizures as a co-morbidity, and many patients with epilepsy are known to have cognitive disabilities. As many as 30% of autistic children have epilepsy (Chow et al. 2019). There is a high number of genes that when mutated lead to not only intellectual disability but also present with autism and epilepsy. This suggests that convergent molecular processes are being impacted by a variety of genetic insults early in development. Epileptic encephalopathies are defined as disorders in which early, severe seizures contribute to cognitive and behavioural impairments (Nickels and Wirrell, 2017). While the exact mechanisms are yet to be determined, seizures early in development are thought to impair neurogenesis, synaptic reorganisation, and spinal loss in hippocampal neurons (Nickels and Wirrell, 2017). Individuals predisposed to epileptic syndromes are highly correlated with intellectual disability, even in the absence of seizures (Nickels and Wirrell, 2017). All patients with mutations in $A R X$ have intellectual disability, but the extent to which seizures contribute to the cognitive impairment is not clear.

Analysing the behavioural comorbidities in children with severe epilepsy can be challenging. In humans, it can be difficult to interpret whether behavioural abnormalities and cognitive regression are primary or secondary conditions, occurring before or after the onset of seizures, and if these phenotypic aspects worsen with seizures. This can be further complicated by the effects that anti-epileptic drugs may have on cognition and behaviour (Thompson et al., 2000, Mazarati, 2019). Animal models like the PA mutant mice provide the capacity to test if the primary cognitive deficits are present (and at what level) before the onset of seizures. For the first time in an Arx mutant mouse model, we have demonstrated that behavioural deficits in
sociability, anxiety, neuromuscular strength and hyperactivity, are all present prior to the major peak of seizure onset compared to wild-type littermates. Furthermore, we have shown that these traits do not change between one and two months of age despite the frequency and severity of seizures that PA1 and PA2 mice present with (with or without estradiol treatment). This leads us to suggest that expanded PA mutations in ARX may not cause traditional epileptic encephalopathies in humans. This is supported by the lack of cognitive regression observed in the mouse models, and limited evidence of regression of cognitive or behavioural deficits in patients. This is a cardinal finding for novel therapeutic development for these disorders, as a drug that targets seizures may not necessarily be effective for the intellectual disability in these patients, as observed in our study. Hence, treating intellectual disability in ARX patients remains problematic to address, particularly with such an early onset of phenotype, and the embryonic expression of the gene.

The timing of treatment remains one of the most significant challenges in treating children with genetic mutations that cause neurodevelopmental disorders, such as $A R X$. The timing of key neurodevelopmental events, particularly interneuron development, takes part in mostly prenatal period in humans. In contrast, this process is still being completed in early postnatal life in mice. Hence, this time is available to target in the Arx mutant mice used in my PhD project with the period of estradiol treatment from postnatal days 3 to 10 but is equivalent to prenatal development of the brain in humans. In addition, the initial genetic insult we are modelling reflects $A R X$ expression that is largely restricted to embryonic life. This undoubtedly presents a limitation of my study. However, given estradiol treatment during early postnatal period is effective at treating seizure frequency and severity in the PA mouse models, it provides important results for how exogenous steroids may impact the transcriptome of the brain, and enable identification of the potential pathways activated.

6.4 Understanding the transcriptome of the developing PA brain in early postnatal life

Despite low levels of Arx expression in the postnatal brain we wanted to establish the impact of PA mutations in Arx on the transcriptome in PA1 and PA2 mutant mice during early postnatal development. The genes that were deregulated in the PA1 and PA2 mutant mice at P10 were enriched for those involved with neurodevelopment, especially interneuron function. It is attractive to speculate that these deregulated interneuron genes contribute to the sustained seizures and behavioural phenotype reported in these PA mouse models. Arx is a transcriptional regulator and activator in embryonic brain development, so it was fascinating to see how the effects of a partial loss of function of this gene early in embryonic life impacts the brains of these mice, still at postnatal day 10. Many Arx target and responsive genes remain deregulated in our P10 data. This is interesting given that Arx expression is normally very low in the postnatal brain. Hence, I hypothesise that the loss of Arx during early development causes a "ripple" effect, with these genes and downstream targets being dysregulated even when Arx expression (and function) would normally be minimal.

My original hypothesis was that estradiol treatment would improve seizure frequency and severity by rescuing the interneuron deficits present in the brain of PA mutant mice. This is the mechanism of action proposed by our collaborators when estradiol proved effective in the alternate Price et al. PA1 mouse model (Olivetti et al., 2014). However, while interneuron associated genes were deregulated without estradiol treatment, the majority of the deregulated transcriptome was unchanged by estradiol treatment. There was only a small overlap in genes deregulated by disease alone and the subsequent response to estradiol treatment. Furthermore, our immunofluorescence analysis of the brain did not indicate any increase to interneurons positive for calbindin or neuropeptide- Y with estradiol treatment. My analysis of the transcriptome following estradiol treatment indicates different pathways and processes are impacted compared to those initially disrupted. This is a potentially exciting finding as the beneficial effect of estradiol treatment may be useful for diminishing the severity of seizures
across a number of genetic causes of neurodevelopmental disorders where interneuron deficiency is not the mechanism of pathogenesis, such as epilepsies caused by disturbed excitatory neuron output. Instead our data leads us to propose that estradiol treatment acts via direct and non-direct estrogen signalling to change gene expression in pathways involved in transcriptional regulation, synaptic activity, neuronal development and other key brain related processes, to activate and repress genes outside of the disturbed PA transcriptome. The fact that estradiol did not act upon the same inhibitory neuron processes disrupted by the PA mutations may provide some explanation as to why treatment did not improve the cognitive phenotype in these mice.

6.5 Future directions

We have shown a reproducible effect of estradiol on the seizure phenotype of the PA1 and PA2 mice in my study compared to an independent PA mouse model. However, my findings are in contrast when compared to induced models of seizures in mice. In an induced rat model of infantile spasms, the same dose ($40 \mathrm{ng} / \mathrm{g}$) of estradiol did not reduce spasms, even while increasing the number of GABAergic cells in the neocortex (Chachua et al., 2016). The investigators concluded that estradiol treatment may only be effective in genetic models of interneuronopathies, and not in artificially induced seizure models, in this case, by using betamethasone and N-methyl-D-aspartic acid (NMDA). Genetic models of epilepsy and seizures have an advantage in regards to induced seizures models of implementing treatments early in development, prior to seizure onset. This is the case with the Olivetti et al. (2014) study, where early postnatal (P3-10) but not late (P33-40) estradiol treatment produced prolonged activation of estrogen receptors and gave an extended anti-epileptogenic effect. These antiepileptogenic effects of estradiol remain relatively unexplored. Much of the field has focused on the pro-epileptogenic effects of estradiol in female rodents, with oral contraceptives facilitating increased seizure activity and accelerating the rate of seizure onset in female mice (Younus and Reddy, 2016). Further investigation into the effects of estradiol in
neurodevelopmental models exhibiting seizures, even if not associated with interneuron deficits, would be particularly useful to further understand the anti-epileptogenic effects of low dose estradiol treatment.

Fortunately, we found no adverse effects of $40 \mathrm{ng} / \mathrm{g} 17 \beta$-estradiol for the seven-day period mice were treated in our study. Selective estrogen receptor modulators (SERMs) may be a potential treatment for epilepsy, without side effects that may come with higher doses of estradiol. While the research is still in early stages, raloxifene, a SERM currently authorised for treatment of osteoporosis, has shown promising results for treating epilepsy in post-menopausal women, for whom estradiol treatment is inadvisable (Pottoo et al., 2014). However, these preliminary studies have been in post-menopausal women (as with many studies into estradiol and epilepsy). In contrast, my project provides insight into low dose estradiol treatment in young, male mice. Interestingly, adjunct treatment of raloxifene may improve cognitive functioning, something we did not find estradiol treatment improved. A pilot study in schizophrenia patients using raloxifene with a calcium channel blocker, found that cognitive tests assessing memory were significantly improved with treatment (Pottoo et al., 2020). SERMs may provide a potential therapeutic target for neurodevelopmental disorders with both epilepsy and intellectual disability as key components of the clinical phenotype.

My project utilised a bulk RNA sequencing technique to investigate the broad effects of Arx PA expansion mutations on the cortex of the brain. This approach has several limitations, including that gene expression levels are impacted by the proportion of individual cell types within the tissue, and the relative abundance of these cells, which in this case include excitatory and inhibitory neurons, as well as other cell lineages of the brain, such as abundant astrocytes (Sutton and Voineagu, 2020). With the advances in the techniques (including availability and cost) future experiments in these PA mice would benefit from using single cell RNA sequencing approaches to study the gene expression profiles deregulated by Arx mutations. The increased
resolution would have the capacity to determine the small but direct effects of a partial loss of Arx in subsets of cells and cell types. This approach could potentially determine the impact of these mutations and subsequent treatment on interneurons within the cortex specifically. Whilst potentially very powerful, this technology still has limitations. Due to the lower input of single cell RNA sequencing, there is often higher levels of "noise" within the sample which requires additional analysis power. This method provides a sparse data set, with only a small subset of genes detected per cell (Sutton and Voineagu, 2020). To overcome these challenges a process of deconvolution could be utilised to enhance the usefulness of the pre-existing bulk RNA sequencing data obtained in my study. Deconvolution estimates the cellular composition of a tissue sample from its gene expression profile. This then allows approximate separation of gene expression patterns of each individual cell type within the tissue (Sutton and Voineagu, 2020). This method could allow separation of inhibitory interneuron gene expression from our data set of the postnatal day 10 cortex. Colleagues within my collaborator's laboratory (Prof. Jozef Gecz, University of Adelaide, Australia) are currently building upon the limited methods for deconvolution of bulk RNA sequencing brain data, developing expertise in this growing field. Application of this analysis to gene expression studies in neurodevelopmental mouse models, including the Arx PA1 and PA2 mice would be of great interest to discovery and translational scientists alike.

Currently there are only 34 clinical trials underway for infantile spasms in North America (www.clinicaltrials.gov). The discovery of new anti-epileptic drugs has been limited in recent times, and newer drugs have not yet shown increased efficacy over traditional therapies to date (Rho and White, 2018). The traditional anti-epileptic drugs are often of limited use against the refractory seizures in infantile spasms patients, including those with PA expansion mutations. While estradiol may provide a unique therapeutic approach to treating infantile spasms, the research is currently still limited, and treating male patients with high doses may prove problematic. Cannabidiol is currently being used in five clinical trials in North America
(www.clinicaltrials.gov). Cannabidiol is the non-hallucinogenic component of cannabis, and while its direct anti-epileptic mechanism of action is unknown, there are promising studies emerging. The endocannabinoid system is being increasingly associated with seizure activity, and uses endocannabinoid receptors CB_{1} and CB_{2} (Gaston and Szaflarski, 2018). Cannabidiol may have antagonist activity for these receptors, as well as blocking amandamide uptake, increasing its availability to activate CB_{1} and CB_{2} (Wallace et al., 2001, Thomas et al., 2007). Interestingly in terms of my study, there are now overlapping molecular pathways associated with CB_{1} and CB_{2} and estrogens (Dobovišek et al., 2016). 17 β-estradiol has been shown to regulate the expression of CB_{1} in the brain in particular, and can increase the expression of both CB_{1} and CB_{2} in osteoblasts (Riebe et al., 2010, Rossi et al., 2013). Estrogen and cannabinoid receptors both activate the protein kinase A, cAMP, MAPK and PI3K pathways, and selective estrogen receptor modulating drugs have been shown to also act as agonists to CB_{1} and CB_{2} (Dobovišek et al., 2016, Dobovišek et al., 2020). Cannabidiol has recently been shown to be effective in treating refractory seizures (with sustained results) in Dravet syndrome patients, providing promising results for neurodevelopmental disorders with refractory epilepsy as a comorbidity (Moore and Robinson, 2018, Devinsky et al., 2019). With the interactions between estradiol and Cannabidiol becoming increasingly known, it is possible that the two drugs could act as adjunct therapies in treating these refractory seizures in neurodevelopmental patients.

6.6 Concluding remarks

Throughout my PhD project, I have investigated the effects of daily, short-term estradiol treatment given for 7 days in early postnatal life, to mice with expansion mutations in the first and second polyalanine tracts of Arx. I have documented the impact of estradiol treatment on seizures, cognition and behaviour, and investigated the transcriptomic profile of the brain in these mice. Estradiol treatment significantly reduced both the frequency and severity of seizures in the PA1 mouse model, and a model of the most common $A R X$ mutation, PA2, in agreement with previous studies in an alternate PA1 mouse model. This provides reproducibility in pre-
clinical animal studies, an important outcome of my project. Animal studies involving therapeutic targets for neurodevelopmental disorders are notoriously difficult to reproduce, but with the remarkable recapitulation of the patient phenotype in both of these PA mouse model, this reproducibility is promising in a field where new therapies for spasms and seizures have been lacking. However, the challenge remains in treating a disorder which impacts the brain in embryonic life, and we have still yet to show improvement to the debilitating intellectual disability aspect of $A R X$ PA mutations. Importantly, we continue to uncover novel insights into the pathogenesis of PA mutations, showing the ongoing effects of a partial loss of Arx to the transcriptome at postnatal day 10 , even with limited expression of Arx at this age. The association of interneurons of the cortex uncovered in my studies provides new insights into the cortex of these mice, and how different gene pathways contribute to the dramatic seizure phenotype of these mice, as well as the persistent anxiety and autistic-like behaviour. Although estradiol may not represent a clinical therapy for PA patients currently, by bettering our understanding of the mechanisms of disease and the impacts of estradiol treatment and outcomes on phenotype may provide critical insights to develop this as a potential adjunct therapy with other novel anti-epileptic drugs. Taken together, my data indicates strongly that estradiol treatment recruits processes and pathways reducing the frequency and severity of seizures in the Arx PA mutant mice, without precisely correcting the deregulated transcriptome, nor improving mortality or cognitive deficits. It is my firm belief that future studies will find my investigation into estradiol treatment for PA mutant mice valuable. It is my sincere hope that my studies may contribute to development of an effective therapy for infantile spasms and seizures with associated intellectual disability for patients and their families in the near future.

References

Absoud M, Parr JR, Halliday D, Pretorius P, Zaiwalla Z, Jayawant S. A novel ARX phenotype: rapid neurodegeneration with Ohtahara syndrome and a dyskinetic movement disorder. Developmental Medicine \& Child Neurology. 2010;52(3):305-7.
Aevermann BD, Novotny M, Bakken T, Miller JA, Diehl AD, Osumi-Sutherland D, et al. Cell type discovery using single-cell transcriptomics: implications for ontological representation. Human Molecular Genetics. 2018;27(R1):R40-R7.
Ahmed NY, Knowles R, Dehorter N. New Insights Into Cholinergic Neuron Diversity. Frontiers in Molecular Neuroscience. 2019;12(204).
Albert-Gascó H, García-Avilés Á, Moustafa S, Sánchez-Sarasua S, Gundlach AL, OluchaBordonau FE, et al. Central relaxin-3 receptor (RXFP3) activation increases ERK phosphorylation in septal cholinergic neurons and impairs spatial working memory. Brain Struct Funct. 2017;222(1):449-63.
Anderson SA, Eisenstat DD, Shi L, Rubenstein JLR. Interneuron Migration from Basal Forebrain to Neocortex: Dependence on \<em\>Dlx \</em\>Genes. Science. 1997;278(5337):474.
Azcoitia I, Barreto GE, Garcia-Segura LM. Molecular mechanisms and cellular events involved in the neuroprotective actions of estradiol. Analysis of sex differences. Frontiers in Neuroendocrinology. 2019;55:100787.
Benes FM, Berretta S. GABAergic Interneurons: Implications for Understanding
Schizophrenia and Bipolar Disorder. Neuropsychopharmacology. 2001;25:1.
Berry-Kravis EM, Lindemann L, Jønch AE, Apostol G, Bear MF, Carpenter RL, et al. Drug development for neurodevelopmental disorders: lessons learned from fragile X syndrome. Nat Rev Drug Discov. 2018;17(4):280-99.
Bienvenu T, Poirier K, Friocourt G, Bahi N, Beaumont D, Fauchereau F, et al. ARX, a novel Prd-class-homeobox gene highly expressed in the telencephalon, is mutated in X-linked mental retardation. Human Molecular Genetics. 2002;11(8):981-91.
Bienvenu T, Poirier K, Friocourt G, Bahi N, Beaumont D, Fauchereau F, et al. ARX, a novel Prd-class-homeobox gene highly expressed in the telencephalon, is mutated in X-linked mental retardation. Hum Mol Genet. 2002;11(8):981-91.
Biressi S, Messina G, Collombat P, Tagliafico E, Monteverde S, Benedetti L, et al. The homeobox gene Arx is a novel positive regulator of embryonic myogenesis. Cell Death Differ. 2007;15(1):94-104.
Bordia T, Zhang D, Perez XA, Quik M. Striatal cholinergic interneurons and D2 receptorexpressing GABAergic medium spiny neurons regulate tardive dyskinesia. Exp Neurol. 2016;286:32-9.
Boulware MI, Mermelstein PG. Membrane estrogen receptors activate metabotropic glutamate receptors to influence nervous system physiology. Steroids. 2009;74(7):608-13. Bourdeau V, Deschênes J, Métivier R, Nagai Y, Nguyen D, Bretschneider N, et al. Genomewide identification of high-affinity estrogen response elements in human and mouse. Mol Endocrinol. 2004;18(6):1411-27.
Brunson KL, Avishai-Eliner S, Baram TZ. ACTH TREATMENT OF INFANTILE SPASMS: MECHANISMS OF ITS EFFECTS IN MODULATION OF NEURONAL EXCITABILITY. International review of neurobiology. 2002;49:185-97.
Buchsbaum IY, Cappello S. Neuronal migration in the CNS during development and disease: insights from \<em\>in vivo\</em\> and \<em\>in vitro\</em\> models. Development. 2019;146(1):dev163766.
Butler LS, Silva AJ, Abeliovich A, Watanabe Y, Tonegawa S, McNamara JO. Limbic epilepsy in transgenic mice carrying a Ca2+/calmodulin-dependent kinase II alpha-subunit mutation. Proceedings of the National Academy of Sciences. 1995;92(15):6852.
Buzsáki G. Feed-forward inhibition in the hippocampal formation. Progress in Neurobiology. 1984;22(2):131-53.

Chachua T, Di Grazia P, Chern C-R, Johnkutty M, Hellman B, Lau HA, et al. Estradiol does not affect spasms in the betamethasone-NMDA rat model of infantile spasms. Epilepsia. 2016;57(8):1326-36.
Chen G, Ning B, Shi T. Single-Cell RNA-Seq Technologies and Related Computational Data Analysis. Front Genet. 2019;10:317-.
Chiurazzi P, Pirozzi F. Advances in understanding - genetic basis of intellectual disability. F1000Res. 2016;5.
Cho IT, Lim Y, Golden JA, Cho G. Aristaless Related Homeobox (ARX) Interacts with β Catenin, BCL9, and P300 to Regulate Canonical Wnt Signaling. PLoS One.
2017;12(1):e0170282.
Colasante G, Collombat P, Raimondi V, Bonanomi D, Ferrai C, Maira M, et al. Arx Is a Direct Target of Dlx2 and Thereby Contributes to the Tangential Migration of GABAergic Interneurons. The Journal of Neuroscience. 2008;28(42):10674-86.
Colasante G, Sessa A, Crispi S, Calogero R, Mansouri A, Collombat P, et al. Arx acts as a regional key selector gene in the ventral telencephalon mainly through its transcriptional repression activity. Developmental Biology. 2009;334(1):59-71.
Colasante G, Simonet JC, Calogero R, Crispi S, Sessa A, Cho G, et al. ARX regulates cortical intermediate progenitor cell expansion and upper layer neuron formation through repression of Cdkn1c. Cereb Cortex. 2015;25(2):322-35.
Colombo E, Collombat P, Colasante G, Bianchi M, Long J, Mansouri A, et al. Inactivation of Arx, the Murine Ortholog of the X-Linked Lissencephaly with Ambiguous Genitalia Gene, Leads to Severe Disorganization of the Ventral Telencephalon with Impaired Neuronal Migration and Differentiation. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2007;27(17):4786-98.
Crabbe JC, Wahlsten D, Dudek BC. Genetics of mouse behavior: Interactions with laboratory environment. Science. 1999;284(5420):1670-2.
Cristóvão JS, Santos R, Gomes CM. Metals and Neuronal Metal Binding Proteins Implicated in Alzheimer's Disease. Oxid Med Cell Longev. 2016;2016:9812178-.
Curie A, Friocourt G, des Portes V, Roy A, Nazir T, Brun A, et al. Basal ganglia involvement in ARX patients: The reason for ARX patients very specific grasping? NeuroImage : Clinical. 2018;19:454-65.
De Carlos JA, López-Mascaraque L, Valverde F. Dynamics of Cell Migration from the Lateral Ganglionic Eminence in the Rat. The Journal of Neuroscience. 1996;16(19):6146. Degen M, Brellier F, Kain R, Ruiz C, Terracciano L, Orend G, et al. Tenascin-W is a novel marker for activated tumor stroma in low-grade human breast cancer and influences cell behavior. Cancer Res. 2007;67(19):9169-79.
Devinsky O, Nabbout R, Miller I, Laux L, Zolnowska M, Wright S, et al. Long-term cannabidiol treatment in patients with Dravet syndrome: An open-label extension trial. Epilepsia. 2019;60(2):294-302.
Dobovišek L, Hojnik M, Ferk P. Overlapping molecular pathways between cannabinoid receptors type 1 and 2 and estrogens/androgens on the periphery and their involvement in the pathogenesis of common diseases (Review). Int J Mol Med. 2016;38(6):1642-51.
Dobovišek L, Krstanović F, Borštnar S, Debeljak N. Cannabinoids and Hormone ReceptorPositive Breast Cancer Treatment. Cancers (Basel). 2020;12(3):525.
Dombret C, Naulé L, Trouillet A-C, Parmentier C, Hardin-Pouzet H, Mhaouty-Kodja S. Effects of neural estrogen receptor beta deletion on social and mood-related behaviors and underlying mechanisms in male mice. Scientific Reports. 2020;10(1):6242.
Dubos A, Meziane H, Iacono G, Curie A, Riet F, Martin C, et al. A new mouse model of ARX dup24 recapitulates the patients' behavioral and fine motor alterations. Hum Mol Genet. 2018;27(12):2138-53.
Ellis CA, Petrovski S, Berkovic SF. Epilepsy genetics: clinical impacts and biological insights. Lancet Neurol. 2020;19(1):93-100.

Farwell JR, Dodrill CB, Batzel LW. Neuropsychological Abilities of Children with Epilepsy. Epilepsia. 1985;26(5):395-400.
Fogarty M, Grist M, Gelman D, Marín O, Pachnis V, Kessaris N. Spatial Genetic Patterning of the Embryonic Neuroepithelium Generates GABAergic Interneuron Diversity in the Adult Cortex. The Journal of Neuroscience. 2007;27(41):10935.
Friocourt G, Kanatani S, Tabata H, Yozu M, Takahashi T, Antypa M, et al. Cell-Autonomous Roles of ARX in Cell Proliferation and Neuronal Migration during Corticogenesis. The Journal of Neuroscience. 2008;28(22):5794.
Friocourt G, Parnavelas JG. Mutations in ARX Result in Several Defects Involving GABAergic Neurons. Frontiers in Cellular Neuroscience. 2010;4:4.
Friocourt G, Parnavelas JG. Identification of Arx targets unveils new candidates for controlling cortical interneuron migration and differentiation. Frontiers in Cellular Neuroscience. 2011;5:28.
Fulp CT, Cho G, Marsh ED, Nasrallah IM, Labosky PA, Golden JA. Identification of Arx transcriptional targets in the developing basal forebrain. Hum Mol Genet. 2008;17(23):374060.

Galanopoulou AS, Mowrey WB, Liu W, Li Q, Shandra O, Moshé SL. Preclinical Screening for Treatments for Infantile Spasms in the Multiple Hit Rat Model of Infantile Spasms: An Update. Neurochemical Research. 2017;42(7):1949-61.
Gaston TE, Szaflarski JP. Cannabis for the Treatment of Epilepsy: an Update. Curr Neurol Neurosci Rep. 2018;18(11):73.
Gécz J, Cloosterman D, Partington M. ARX: a gene for all seasons. Current Opinion in Genetics \& Development. 2006;16(3):308-16.
Gestinari-Duarte Rde S, Santos-Rebouças CB, Boy RT, Pimentel MM. ARX mutation c.428451dup (24bp) in a Brazilian family with X-linked mental retardation. Eur J Med Genet. 2006;49(3):269-75.
Ghisletti S, Meda C, Maggi A, Vegeto E. 17beta-estradiol inhibits inflammatory gene expression by controlling NF-kappaB intracellular localization. Mol Cell Biol. 2005;25(8):2957-68.
Gould E, Woolley CS, Frankfurt M, McEwen BS. Gonadal steroids regulate dendritic spine density in hippocampal pyramidal cells in adulthood. Journal of Neuroscience.
1990;10(4):1286-91.
Gross C, Hoffmann A, Bassell GJ, Berry-Kravis EM. Therapeutic Strategies in Fragile X Syndrome: From Bench to Bedside and Back. Neurotherapeutics. 2015;12(3):584-608.
Guerrini R, Moro F, Kato M, Barkovich AJ, Shiihara T, McShane MA, et al. Expansion of the first PolyA tract of ARX causes infantile spasms and status dystonicus. Neurology. 2007;69(5):427-33.
Gulyás AI, Tóth K, Dános P, Freund TF. Subpopulations of GABAergic neurons containing parvalbumin, calbindin D28k, and cholecystokinin in the rat hippocampus. The Journal of Comparative Neurology. 1991;312(3):371-8.
Hancock EC, Osborne JP, Edwards SW. Treatment of infantile spasms. Cochrane Database of Systematic Reviews. 2013(6).
Hånell A, Marklund N. Structured evaluation of rodent behavioral tests used in drug discovery research. Frontiers in Behavioral Neuroscience. 2014;8(252).
Hanslick JL, Lau K, Noguchi KK, Olney JW, Zorumski CF, Mennerick S, et al. Dimethyl sulfoxide (DMSO) produces widespread apoptosis in the developing central nervous system. Neurobiol Dis. 2009;34(1):1-10.
Haug K, Kremerskothen J, Hallmann K, Sander T, Dullinger J, Rau B, et al. Mutation screening of the chromosome 8q24.3-human activity-regulated cytoskeleton-associated gene (ARC) in idiopathic generalized epilepsy. Mol Cell Probes. 2000;14(4):255-60.
Heller RS, Jenny M, Collombat P, Mansouri A, Tomasetto C, Madsen OD, et al. Genetic determinants of pancreatic ε-cell development. Developmental Biology. 2005;286(1):217-24.

Higo S, Udaka N, Tamamaki N. Long-range GABAergic projection neurons in the cat neocortex. The Journal of Comparative Neurology. 2007;503(3):421-31.
Hom AC, Leppik IE, Rask CA. Effects of estradiol and progesterone on seizure sensitivity in oophorectomized DBA/2J mice and C57/EL hybrid mice. Neurology. 1993;43(1):198-204.
Horner AE, Heath CJ, Hvoslef-Eide M, Kent BA, Kim CH, Nilsson SRO, et al. The touchscreen operant platform for testing learning and memory in rats and mice. Nature protocols. 2013;8(10):1961-84.
Hrachovy RA, Frost JD. Chapter 63 - Infantile spasms. In: Dulac O, Lassonde M, Sarnat HB, editors. Handbook of Clinical Neurology: Elsevier; 2013. p. 611-8.
Huang da W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37(1):1-13. Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44-57.
Huentelman MJ, Muppana L, Corneveaux JJ, Dinu V, Pruzin JJ, Reiman R, et al. Association of SNPs in EGR3 and ARC with Schizophrenia Supports a Biological Pathway for Schizophrenia Risk. PLoS One. 2015;10(10):e0135076.
Jackson MR, Lee K, Mattiske T, Jaehne EJ, Ozturk E, Baune BT, et al. Extensive phenotyping of two ARX polyalanine expansion mutation mouse models that span clinical spectrum of intellectual disability and epilepsy. Neurobiology of Disease. 2017;105:245-56. Jinno S, Kosaka T. Patterns of expression of neuropeptides in GABAergic nonprincipal neurons in the mouse hippocampus: Quantitative analysis with optical disector. The Journal of Comparative Neurology. 2003;461(3):333-49.
Kanehisa M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 2019;28(11):1947-51.
Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27-30.
Kanehisa M, Sato Y, Furumichi M, Morishima K, Tanabe M. New approach for understanding genome variations in KEGG. Nucleic Acids Res. 2019;47(D1):D590-D5. Kato M, Das S, Petras K, Kitamura K, Morohashi K-i, Abuelo DN, et al. Mutations of ARX are associated with striking pleiotropy and consistent genotype-phenotype correlation. Human Mutation. 2004;23(2):147-59.
Kazdoba TM, Leach PT, Silverman JL, Crawley JN. Modeling fragile X syndrome in the Fmr1 knockout mouse. Intractable Rare Dis Res. 2014;3(4):118-33.
Kitamura K, Itou Y, Yanazawa M, Ohsawa M, Suzuki-Migishima R, Umeki Y, et al. Three human ARX mutations cause the lissencephaly-like and mental retardation with epilepsy-like pleiotropic phenotypes in mice. Human Molecular Genetics. 2009;18(19):3708-24.
Kitamura K, Yanazawa M, Sugiyama N, Miura H, Iizuka-Kogo A, Kusaka M, et al. Mutation of ARX causes abnormal development of forebrain and testes in mice and X-linked lissencephaly with abnormal genitalia in humans. Nat Genet. 2002;32(3):359-69.
Koebele SV, Nishimura KJ, Bimonte-Nelson HA, Kemmou S, Ortiz JB, Judd JM, et al. A long-term cyclic plus tonic regimen of 17β-estradiol improves the ability to handle a high spatial working memory load in ovariectomized middle-aged female rats. Hormones and Behavior. 2020;118:104656.
Kuhnle GGC, Dell'Aquila C, Aspinall SM, Runswick SA, Mulligan AA, Bingham SA. Phytoestrogen Content of Beverages, Nuts, Seeds, and Oils. Journal of Agricultural and Food Chemistry. 2008;56(16):7311-5.
Lathe R. The individuality of mice. Genes, Brain and Behavior. 2004;3(6):317-27.
Lavdas AA, Grigoriou M, Pachnis V, Parnavelas JG. The Medial Ganglionic Eminence Gives Rise to a Population of Early Neurons in the Developing Cerebral Cortex. The Journal of Neuroscience. 1999;19(18):7881.
Le Magueresse C, Monyer H. GABAergic interneurons shape the functional maturation of the cortex. Neuron. 2013;77(3):388-405.

Leach PT, Hayes J, Pride M, Silverman JL, Crawley JN. Normal Performance of Fmr1 Mice on a Touchscreen Delayed Nonmatching to Position Working Memory Task. eneuro. 2016;3(1):ENEURO.0143-15.2016.
Lee K, Ireland K, Bleeze M, Shoubridge C. ARX polyalanine expansion mutations lead to migration impediment in the rostral cortex coupled with a developmental deficit of calbindinpositive cortical GABAergic interneurons. Neuroscience. 2017;357:220-31.
Lee K, Mattiske T, Kitamura K, Gecz J, Shoubridge C. Reduced polyalanine-expanded Arx mutant protein in developing mouse subpallium alters Lmo1 transcriptional regulation. Human Molecular Genetics. 2014;23(4):1084-94.
Lee MJ, Hatton BA, Villavicencio EH, Khanna PC, Friedman SD, Ditzler S, et al. Hedgehog pathway inhibitor saridegib (IPI-926) increases lifespan in a mouse medulloblastoma model. Proc Natl Acad Sci U S A. 2012;109(20):7859-64.
Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A, et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature. 2007;445(7124):168-76.
Lewis DA, Hashimoto T, Volk DW. Cortical inhibitory neurons and schizophrenia. Nature Reviews Neuroscience. 2005;6:312.
Lin Z, Tann JY, Goh ET, Kelly C, Lim KB, Gao JF, et al. Structural basis of death domain signaling in the p75 neurotrophin receptor. Elife. 2015;4:e11692.
Loch JI, Bonarek P, Tworzydło M, Łazińska I, Szydłowska J, Lipowska J, et al. The engineered β-lactoglobulin with complementarity to the chlorpromazine chiral conformers. Int J Biol Macromol. 2018;114:85-96.
Mak IW, Evaniew N, Ghert M. Lost in translation: animal models and clinical trials in cancer treatment. Am J Transl Res. 2014;6(2):114-8.
Malakooti N, Pritchard MA, Adlard PA, Finkelstein DI. Role of metal ions in the cognitive decline of Down syndrome. Front Aging Neurosci. 2014;6:136-.
Mao M, Nair A, Augustine GJ. A Novel Type of Neuron Within the Dorsal Striatum. Front Neural Circuits. 2019;13:32.
Marques I, Sá MJ, Soares G, Mota MdC, Pinheiro C, Aguiar L, et al. Unraveling the pathogenesis of ARX polyalanine tract variants using a clinical and molecular interfacing approach. Molecular Genetics \& Genomic Medicine. 2015;3(3):203-14.
Marsh E, Fulp C, Gomez E, Nasrallah I, Minarcik J, Sudi J, et al. Targeted loss of Arx results in a developmental epilepsy mouse model and recapitulates the human phenotype in heterozygous females. Brain. 2009;132(6):1563-76.
Marsh ED, Nasrallah MP, Walsh C, Murray KA, Nicole Sunnen C, McCoy A, et al. Developmental interneuron subtype deficits after targeted loss of Arx. BMC Neuroscience. 2016;17:35.
Martos YV, Braz BY, Beccaria JP, Murer MG, Belforte JE. Compulsive Social Behavior Emerges after Selective Ablation of Striatal Cholinergic Interneurons. J Neurosci.
2017;37(11):2849-58.
Mattiske T, Lee K, Gecz J, Friocourt G, Shoubridge C. Embryonic forebrain transcriptome of mice with polyalanine expansion mutations in the ARX homeobox gene. Human Molecular Genetics. 2016;25(24):5433-43.
Mazarati A. Can we and should we use animal models to study neurobehavioral comorbidities of epilepsy? Epilepsy Behav. 2019;101(Pt A):106566.
McCarthy MM. Estradiol and the Developing Brain. Physiological reviews. 2008;88(1):91124.

Meinecke DL, Peters A. GABA immunoreactive neurons in rat visual cortex. The Journal of Comparative Neurology. 1987;261(3):388-404.
Mi H, Muruganujan A, Thomas PD. PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucleic Acids Res. 2013;41(Database issue):D377-86.

Miura H, Yanazawa M, Kato K, Kitamura K. Expression of a novel aristaless related homeobox gene 'Arx' in the vertebrate telencephalon, diencephalon and floor plate. Mechanisms of Development. 1997;65(1-2):99-109.
Moore Y, Robinson R. Cannabidiol reduced frequency of convulsive seizures in drug resistant Dravet syndrome. Arch Dis Child Educ Pract Ed. 2018;103(5):278-9.
Nabbout R, Dulac O. Epileptic Encephalopathies: A Brief Overview. Journal of Clinical Neurophysiology November/December. 2003;20(6):393-7.
Nakamura NH, McEwen BS. Changes in interneuronal phenotypes regulated by estradiol in the adult rat hippocampus: a potential role for neuropeptide Y. Neuroscience.
2005;136(1):357-69.
Neyens LGJ, Aldenkamp AP, Meinardi HM. Prospective follow-up of intellectual development in children with a recent onset of epilepsy. Epilepsy Research. 1999;34(2):8590.

Nickels KC, Wirrell EC. Cognitive and Social Outcomes of Epileptic Encephalopathies. Seminars in Pediatric Neurology. 2017;24(4):264-75.
Okada K, Nishizawa K, Setogawa S, Hashimoto K, Kobayashi K. Task-dependent function of striatal cholinergic interneurons in behavioural flexibility. Eur J Neurosci. 2018;47(10):117483.

Olivetti PR, Maheshwari A, Noebels JL. Neonatal Estradiol Stimulation Prevents Epilepsy in Arx Model of X-Linked Infantile Spasms Syndrome. Science Translational Medicine. 2014;6(220):220ra12.
Olivetti PR, Noebels JL. Interneuron, interrupted: molecular pathogenesis of ARX mutations and X-linked infantile spasms. Curr Opin Neurobiol. 2012;22(5):859-65.
Paciorkowski AR, Thio LL, Dobyns WB. Genetic and biologic classification of infantile spasms. Pediatr Neurol. 2011;45(6):355-67.
Paluch LR, Lieggi CC, Dumont M, Monette S, Riedel ER, Lipman NS. Developmental and behavioral effects of toe clipping on neonatal and preweanling mice with and without vapocoolant anesthesia. J Am Assoc Lab Anim Sci. 2014;53(2):132-40.
Panda S, Dohare P, Jain S, Parikh N, Singla P, Mehdizadeh R, et al. Estrogen Treatment Reverses Prematurity-Induced Disruption in Cortical Interneuron Population. J Neurosci. 2018;38(34):7378-91.
Partington MW, Turner G, Boyle J, Gécz J. Three new families with X-linked mental retardation caused by the $428-451$ dup $(24 \mathrm{bp})$ mutation in ARX. Clinical Genetics. 2004;66(1):39-45.
Pellock JM, Hrachovy R, Shinnar S, Baram TZ, Bettis D, Dlugos DJ, et al. Infantile spasms: A U.S. consensus report. Epilepsia. 2010;51(10):2175-89.
Pesaturo KA, Spooner LM, Belliveau P. Vigabatrin for Infantile Spasms. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy. 2011;31(3):298-311.
Poirier K, Eisermann M, Caubel I, Kaminska A, Peudonnier S, Boddaert N, et al.
Combination of infantile spasms, non-epileptic seizures and complex movement disorder: A new case of ARX-related epilepsy. Epilepsy Research. 2008;80(2):224-8.
Poirier K, Van Esch H, Friocourt G, Saillour Y, Bahi N, Backer S, et al. Neuroanatomical distribution of ARX in brain and its localisation in GABAergic neurons. Molecular Brain Research. 2004;122(1):35-46.
Pottoo FH, Bhowmik M, Vohora D. Raloxifene protects against seizures and neurodegeneration in a mouse model mimicking epilepsy in postmenopausal woman. Eur J Pharm Sci. 2014;65:167-73.
Pottoo FH, Tabassum N, Javed MN, Nigar S, Sharma S, Barkat MA, et al. Raloxifene potentiates the effect of fluoxetine against maximal electroshock induced seizures in mice. Eur J Pharm Sci. 2020;146:105261.
Pozzi S, Benedusi V, Maggi A, Vegeto E. Estrogen Action in Neuroprotection and Brain Inflammation. Annals of the New York Academy of Sciences. 2006;1089(1):302-23.

Prasad AN, Burneo JG, Corbett B. Epilepsy, comorbid conditions in Canadian children: Analysis of cross-sectional data from Cycle 3 of the National Longitudinal Study of Children and Youth. Seizure. 2014;23(10):869-73.
Pressler R, Auvin S. Comparison of Brain Maturation among Species: An Example in Translational Research Suggesting the Possible Use of Bumetanide in Newborn. Frontiers in Neurology. 2013;4:36.
Price MG, Yoo JW, Burgess DL, Deng F, Hrachovy RA, Frost JD, et al. A Triplet Repeat Expansion Genetic Mouse Model of Infantile Spasms Syndrome, $\operatorname{Arx}($ (GCG)10+7), with Interneuronopathy, Spasms in Infancy, Persistent Seizures, and Adult Cognitive and Behavioral Impairment. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2009;29(27):8752-63.
Quillé ML, Carat S, Quéméner-Redon S, Hirchaud E, Baron D, Benech C, et al. Highthroughput analysis of promoter occupancy reveals new targets for Arx, a gene mutated in mental retardation and interneuronopathies. PLoS One. 2011;6(9):e25181.
Reish O, Fullston T, Regev M, Heyman E, Gecz J. A novel de novo 27 bp duplication of the ARX gene, resulting from postzygotic mosaicism and leading to three severely affected males in two generations. Am J Med Genet A. 2009;149A(8):1655-60.
Rho JM, White HS. Brief history of anti-seizure drug development. Epilepsia open. 2018;3(Suppl Suppl 2):114-9.
Riebe CJN, Hill MN, Lee TTY, Hillard CJ, Gorzalka BB. Estrogenic regulation of limbic cannabinoid receptor binding. Psychoneuroendocrinology. 2010;35(8):1265-9.
Riikonen R. Long-Term Outcome of West Syndrome: A Study of Adults with a History of Infantile Spasms. Epilepsia. 1996;37(4):367-72.
Riikonen R. Topical Review: Infantile Spasms: Therapy and Outcome. Journal of Child Neurology. 2004;19(6):401-4.
Riikonen R, Donner M. ACTH therapy in infantile spasms: side effects. Archives of Disease in Childhood. 1980;55(9):664-72.
Romero DM, Bahi-Buisson N, Francis F. Genetics and mechanisms leading to human cortical malformations. Seminars in Cell \& Developmental Biology. 2018;76:33-75.
Rossi F, Bellini G, Luongo L, Mancusi S, Torella M, Tortora C, et al. The $17-\beta$-oestradiol inhibits osteoclast activity by increasing the cannabinoid CB 2 receptor expression.
Pharmacological Research. 2013;68(1):7-15.
Rubenstein JLR. Three hypotheses for developmental defects that may underlie some forms of autism spectrum disorder. Current Opinion in Neurology. 2010;23(2):118-23.
Schroeder A, Hudson M, Du X, Wu YWC, Nakamura J, van den Buuse M, et al. Estradiol and raloxifene modulate hippocampal gamma oscillations during a spatial memory task. Psychoneuroendocrinology. 2017;78:85-92.
Semple BD, Blomgren K, Gimlin K, Ferriero DM, Noble-Haeusslein LJ. Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species. Progress in neurobiology. 2013;0:1-16.
Sernagor E, Chabrol F, Bony G, Cancedda L. GABAergic control of neurite outgrowth and remodeling during development and adult neurogenesis: general rules and differences in diverse systems. Frontiers in Cellular Neuroscience. 2010;4(11).
Shinozaki Y, Osawa M, Sakuma H, Komaki H, Nakagawa E, Sugai K, et al. Expansion of the first polyalanine tract of the ARX gene in a boy presenting with generalized dystonia in the absence of infantile spasms. Brain and Development. 2009;31(6):469-72.
Shoubridge C, Fullston T, Gécz J. ARX spectrum disorders: making inroads into the molecular pathology. Human Mutation. 2010;31(8):889-900.
Siehr MS, Massey CA, Noebels JL. Arx expansion mutation perturbs cortical development by augmenting apoptosis without activating innate immunity in a mouse model of X-linked infantile spasms syndrome. Dis Model Mech. 2020;13(3).

Simonet JC, Sunnen CN, Wu J, Golden JA, Marsh ED. Conditional Loss of Arx From the Developing Dorsal Telencephalon Results in Behavioral Phenotypes Resembling Mild Human ARX Mutations. Cerebral Cortex (New York, NY). 2015;25(9):2939-50.
Sirisena ND, McElreavey K, Bashamboo A, de Silva KSH, Jayasekara RW, Dissanayake VHW. A Child with a Novel de novo Mutation in the Aristaless Domain of the AristalessRelated Homeobox <i>(ARX)</i> Gene Presenting with Ambiguous Genitalia and Psychomotor Delay. Sexual Development. 2014;8(4):156-9.
Smith-Hicks CL. GABAergic dysfunction in pediatric neuro-developmental disorders. Front Cell Neurosci. 2013;7:269.
Smith CC, Smith LA, Bredemann TM, McMahon LL. 17β estradiol recruits GluN2Bcontaining NMDARs and ERK during induction of long-term potentiation at temporoammonic-CA1 synapses. Hippocampus. 2016;26(1):110-7.
Song JM, Hahn J, Kim SH, Chang MJ. Efficacy of Treatments for Infantile Spasms: A Systematic Review. Clin Neuropharmacol. 2017;40(2):63-84.
Specchio N, Pietrafusa N, Ferretti A, De Palma L, Santarone ME, Pepi C, et al. Treatment of infantile spasms: why do we know so little? Expert Rev Neurother. 2020;20(6):551-66.
Stanco A, Pla R, Vogt D, Chen Y, Mandal S, Walker J, et al. NPAS1 represses the generation of specific subtypes of cortical interneurons. Neuron. 2014;84(5):940-53.
Stromme P, Mangelsdorf ME, Shaw MA, Lower KM, Lewis SME, Bruyere H, et al.
Mutations in the human ortholog of Aristaless cause X-linked mental retardation and epilepsy. Nat Genet. 2002;30(4):441-5.
Sugiyama N, Andersson S, Lathe R, Fan X, Alonso-Magdalena P, Schwend T, et al. Spatiotemporal dynamics of the expression of estrogen receptors in the postnatal mouse brain. Molecular Psychiatry. 2008;14:223.
Sussel L, Marin O, Kimura S, Rubenstein JL. Loss of Nkx2.1 homeobox gene function results in a ventral to dorsal molecular respecification within the basal telencephalon: evidence for a transformation of the pallidum into the striatum. Development. 1999;126(15):3359. Sutton GJ, Voineagu I. Comprehensive evaluation of human brain gene expression deconvolution methods. bioRxiv. 2020:2020.06.01.126839.
Tan S-S, Breen S. Radial mosaicism and tangential cell dispersion both contribute to mouse neocortical development. Nature. 1993;362:638.
Thomas A, Baillie GL, Phillips AM, Razdan RK, Ross RA, Pertwee RG. Cannabidiol displays unexpectedly high potency as an antagonist of CB1 and CB2 receptor agonists in vitro. Br J Pharmacol. 2007;150(5):613-23.
Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, Daverman R, et al. PANTHER: a library of protein families and subfamilies indexed by function. Genome Res. 2003;13(9):2129-41.
Thompson PJ, Baxendale SA, Duncan JS, Sander JW. Effects of topiramate on cognitive function. J Neurol Neurosurg Psychiatry. 2000;69(5):636-41.
Tomioka R, Rockland KS. Long-distance corticocortical GABAergic neurons in the adult monkey white and gray matter. The Journal of Comparative Neurology. 2007;505(5):526-38. Turner G, Partington M, Kerr B, Mangelsdorf M, Gecz J. Variable expression of mental retardation, autism, seizures, and dystonic hand movements in two families with an identical ARX gene mutation. American Journal of Medical Genetics. 2002;112(4):405-11.
UniProt. SLC17A8 - Vesicular glutamate transporter 3. 2020 [cited 2020; Available from: https://www.uniprot.org/uniprot/Q8NDX2\#function
UniProt. TACR1 - Substance-P receptor. 2020 [cited 2020; Available from: https://www.uniprot.org/uniprot/P25103
Velíšková J. The role of estrogens in seizures and epilepsy: The bad guys or the good guys? Neuroscience. 2006;138(3):837-44.
Vrtačnik P, Ostanek B, Mencej-Bedrač S, Marc J. The many faces of estrogen signaling. Biochem Med (Zagreb). 2014;24(3):329-42.

Wahlsten D. Chapter 3 - Tests of Mouse Behavior. Mouse Behavioral Testing. London: Academic Press; 2011. p. 39-51.
Wahlsten D, Bachmanov A, Finn DA, Crabbe JC. Stability of inbred mouse strain differences in behavior and brain size between laboratories and across decades. Proceedings of the National Academy of Sciences of the United States of America. 2006;103(44):16364-9. Wallace MJ, Wiley JL, Martin BR, DeLorenzo RJ. Assessment of the role of CB1 receptors in cannabinoid anticonvulsant effects. Eur J Pharmacol. 2001;428(1):51-7.
Wallerstein R, Sugalski R, Cohn L, Jawetz R, Friez M. Expansion of the ARX spectrum. Clinical Neurology and Neurosurgery. 2008;110(6):631-4.
Wei J, Hemmings GP. A study of a genetic association between the PTGS2/PLA2G4A locus and schizophrenia. Prostaglandins Leukot Essent Fatty Acids. 2004;70(4):413-5.
WHO. Epilepsy. 2019 [cited 2019; Available from: https://www.who.int/news-room/factsheets/detail/epilepsy
Wichterle H, Garcia-Verdugo JM, Herrera DG, Alvarez-Buylla A. Young neurons from medial ganglionic eminence disperse in adult and embryonic brain. 1999;2:461.
Wichterle H, Turnbull DH, Nery S, Fishell G, Alvarez-Buylla A. In utero fate mapping reveals distinct migratory pathways and fates of neurons born in the mammalian basal forebrain. Development. 2001;128(19):3759.
Willemsen MH, Kleefstra T. Making headway with genetic diagnostics of intellectual disabilities. Clin Genet. 2014;85(2):101-10.
Wohlrab G, Uyanik G, Gross C, Hehr U, Winkler J, Schmitt B, et al. Familial West syndrome and dystonia caused by an Aristaless related homeobox gene mutation. European Journal of Pediatrics. 2005;164(5):326-8.
Wonders CP, Anderson SA. The origin and specification of cortical interneurons. Nature Reviews Neuroscience. 2006;7:687.
Woolley CS, McEwen BS. Estradiol mediates fluctuation in hippocampal synapse density during the estrous cycle in the adult rat. Journal of Neuroscience. 1992;12(7):2549-54. Woolley CS, McEwen BS. Estradiol regulates hippocampal dendritic spine density via an N-methyl- D-aspartate receptor-dependent mechanism. Journal of Neuroscience. 1994;14(12):7680-7.
Yang X, Li Y, Chen L, Xu M, Wu J, Zhang P, et al. Protective effect of hydroxysafflor yellow A on dopaminergic neurons against 6-hydroxydopamine, activating anti-apoptotic and anti-neuroinflammatory pathways. Pharm Biol. 2020;58(1):686-94.
Younus I, Reddy DS. Seizure facilitating activity of the oral contraceptive ethinyl estradiol. Epilepsy Res. 2016;121:29-32.
Zack MM, Kobau R. National and State Estimates of the Numbers of Adults and Children with Active Epilepsy - United States, 2015. MMWR Morb Mortal Wkly Rep.
2017;66(31):821-5.
Zhang W, Zhou M, Lu W, Gong J, Gao F, Li Y, et al. CNTNAP4 deficiency in dopaminergic neurons initiates parkinsonian phenotypes. Theranostics. 2020;10(7):3000-21.
Zheng J-y, Liang K-s, Wang X-j, Zhou X-y, Sun J, Zhou S-n. Chronic Estradiol
Administration During the Early Stage of Alzheimer's Disease Pathology Rescues Adult Hippocampal Neurogenesis and Ameliorates Cognitive Deficits in A $\beta 1-42$ Mice. Molecular Neurobiology. 2017;54(10):7656-69.
Zoubarev A, Hamer KM, Keshav KD, McCarthy EL, Santos JRC, Van Rossum T, et al. Gemma: a resource for the reuse, sharing and meta-analysis of expression profiling data. Bioinformatics. 2012;28(17):2272-3.

Appendices

Appendix 1

Statement of Authorship

Principal Author

Co-Author Contributions

By signing the Statement of Authorship, each author certifies that:
I. the candidate's stated contribution to the publication is accurate (as detailed above);
ii. permission is granted for the candidate in Include the publication in the thesis; and
iii. the sum of all co-author contributions is equal to 100% less the candidate's slated contribution.

Name of C 0 -Author	Tessa mattiske
Contribution to the Paper	validation, formal analysis, investigation, review and declining.
Signature	

Please cut and paste additional co-aulhor panels here as required.

Statement of Authorship

Co-Author Contributions

By signing the Statement of Authorship, each author certifies that:
I. The candidate's slated contribution to the publication is accurate (as detailed above);
iI. permission is granted for the candidate in include the publication in the thesis; and
iii. the sum of all co-author contributions is equal to 100% less the candidate's stated contribution.

Statement of Authorship

Titte of Paper
Publication Status
Publication Details
Principal Author
Name of Principal Author (Candidate)
Contribution to the Paper

Co-Author Contributions

By slgning the Statement of Authorship, each author certifies that:
I. the candidate's slated contribution to the publication is accurale (as detalled above);
ii. permission is granted for the candidate in include the publication in the thesis; and
iil. the sum of all co-author contributions is equal to 100% less the candidale's stated contribution.

Name of co-Aulhor	matilda Jadeson		
Contribution to the Paper	methodology, review arel edining, supervision.		
Slgnature		Date	$02 / 11 / 2020$

Name of Co-Aulhor	Jeffrey Noebels	
Contribution to the Paper	Review and editing, funding acquisition	
Signature		

Please cut and paste additlonal co-author panelsthere as required.

Full title:

Early 17β-estradiol treatment reduces seizures but not abnormal behaviour in mice with expanded polyalanine tracts in the Aristaless related homeobox gene (ARX).

Short title:

Estradiol reduces seizures in mice with Arx mutations.

Karagh E. Loring ${ }^{1,2}$, Tessa Mattiske ${ }^{1,2}$, Kristie Lee ${ }^{1,2}$, Aneta Zysk ${ }^{1,2}$, Matilda R. Jackson ${ }^{1,2}$, Jeffrey L. Noebels ${ }^{3}$ and Cheryl Shoubridge ${ }^{* 1,2}$.
${ }^{1}$ Intellectual Disability Research, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
${ }^{2}$ Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
${ }^{3}$ Department of Neurology, Baylor College of Medicine, Houston, USA

[^2]
Abstract

Children with severe intellectual disability have an increased prevalence of refractory seizures. Steroid treatment may improve seizure outcomes, but the mechanism remains unknown. Here we demonstrate that short term, daily delivery of an exogenous steroid 17β-estradiol ($40 \mathrm{ng} / \mathrm{g}$) in early postnatal life significantly reduced the number and severity of seizures, but did not improve behavioural deficits, in mice modelling mutations in the Aristaless-related homeobox gene (ARX), expanding the first (PA1) or second (PA2) polyalanine tract. Frequency of observed seizures on handling ($\mathrm{n}=14 /$ treatment/genotype) were significantly reduced in PA1 (32\% reduction) and more modestly reduced in PA2 mice (14\% reduction) with steroid treatment compared to vehicle. Spontaneous seizures were assessed ($n=7 /$ treatment/genotype) at 7 weeks of age coinciding with a peak of seizure activity in untreated mice. PA1 mice treated with steroids no longer present with the most severe category of prolonged myoclonic seizures, while treated PA2 mice had a complete absence of any seizures during this analysis. Despite the reduction in seizures, 17β-estradiol treated mice showed no improvement in behavioural or cognitive outcomes in adulthood. For the first time we show that these deficits due to mutations in Arx are already present before seizure onset and do not worsen with seizures. ARX is a transcription factor and Arx PA mutant mice have deregulated transcriptome profiles in the developing embryonic brain. At postnatal day 10, treatment completion, RNAseq identified 129 genes significantly deregulated (Log2FC $> \pm 0.5, \mathrm{P}$-value <0.05) in the frontal cortex of mutant compared to wild-type mice. This list reflects genes deregulated in disease and was particularly enriched for known genes in neurodevelopmental disorders and those involved in signalling and developmental pathways. 17β-estradiol treatment of mutant mice significantly deregulated 295 genes, with only 23 deregulated genes overlapping between vehicle and steroid treated mutant mice. We conclude that 17β-estradiol treatment recruits processes and pathways to reduce the frequency and severity of seizures in the Arx PA mutant mice but does not precisely correct the deregulated transcriptome nor improve mortality or behavioural and cognitive deficits.

Highlights

- Mice with PA expansions in Arx present with severe seizures and behavioural deficits.
- 17β-estradiol treatment in early postnatal life reduced seizure frequency and severity.
- Treatment with 17β-estradiol did not improve abnormal behaviour or mortality.
- Behavioural deficits were present prior to and did not worsen with seizures.
- 17β-estradiol treatment activated alternate gene pathways to those disturbed due to mutant genotype to improve seizure outcomes.

Key Words

Childhood epilepsy

Genetics: epilepsy

Genetics: learning disability

Epilepsy: co-morbidity

Molecular genetics

Transcriptomics

List of abbreviations

ACTH: adrenocorticotrophic hormone

DAVID: Database for Annotation, Visualisation and Integrated Discovery

DMSO: dimethyl sulfoxide

E2: 17β-estradiol

EIEE: early infantile epileptic encephalopathy

ERE: estrogen response element

ID: intellectual disability

OS: Ohtahara syndrome

PA: polyalanine

SUDEP: sudden unexpected death in epilepsy

WT: wild-type

Introduction

Epilepsy is a devastating disorder that affects more than 50 million people worldwide (WHO, 2019), with recent estimates of active epilepsy as high as 1.2% in developed western countries (Zack and Kobau, 2015). This disorder is characterised by involuntary seizures, due to an imbalance of excitatory and inhibitory neuronal activity in the brain. One form of epilepsy in infancy is epileptic spasms, including X-linked infantile spasms syndrome (ISSX; MIM\# 308350). This disorder has a prognosis of severe epilepsy coupled with intellectual disability persisting throughout childhood and adolescence (Olivetti and Noebels, 2012, Hrachovy and Frost, 2013). Children with neurodevelopmental disorders often have complex overlapping phenotypes. For example, patients with severe intellectual disability have a $15-20 \%$ incidence higher than the general population of co-morbid features including recurrent seizures and autism spectrum disorder (ASD). As many as half of intellectual disability cases and epileptic syndromes are believed to be caused by genetic mutations, with an increasing list of genes responsible (Willemsen and Kleefstra, 2014, Chiurazzi and Pirozzi, 2016, Ellis et al., 2020), with genes involved in various pathways including development and maintenance of the brain function and architecture, and neuronal functioning often mutated (Paciorkowski et al., 2011, Olivetti and Noebels, 2012).

The Aristaless-related homeobox gene (ARX) [NM_139058.2] (MIM\#300382) is known to play a pivotal role in the development of the brain, specifically the migration and differentiation of interneurons (Miura et al., 1997, Kitamura et al., 2002, Kitamura et al., 2009, Lee et al., 2014). Interneurons are small, locally projecting neurons that use the neurotransmitters γ aminobutyric acid (GABA), acetylcholine and neuropeptides, to modulate excitation within neural networks. It is not surprising that dysfunction of GABA interneurons in the cerebral cortex is involved in neuropathology including epilepsy, schizophrenia, autism and intellectual disability syndromes (Le Magueresse and Monyer, 2013, Smith-Hicks, 2013). Mutations in ARX invariably lead to intellectual disability, with a wide spectrum of other neurological
comorbidities, including autism, dystonia, and epilepsy (Kitamura et al., 2002, Shoubridge et al., 2010). Over half of all inherited mutations in $A R X$ patients leads to expansion of the first or second polyalanine tracts. Clinical presentation of families with expansion mutations in the first tract (PA1) generally present with phenotypes of infantile spasms and seizures (81\%) (Shoubridge et al., 2010, Marques et al., 2015), while patients with mutations in the second tract (PA2) present with non-syndromic intellectual disability (68\%), with dysarthria, dystonic hand movements (20\%) and infantile spasms (26\%) (Partington et al., 2004, Shoubridge et al., 2010, Marques et al., 2015, Jackson et al., 2017). The mechanisms underpinning this clinical variability remain unclear.

Children with infantile spasms associated with severe intellectual disabilities respond poorly to anti-convulsant medication. Adrenocorticotrophic hormone (ACTH) therapy known to stimulate production and release of corticosteroids is a frontline treatment for these disorders but often has low efficacy, high relapse rates and severe side effects that alongside early-onset seizures, are thought to further exacerbate the behavioural and cognitive deficits in affected children (Hrachovy and Frost, 2013). A preclinical trial in the Arx PA1 mouse (Price et al., 2009) model found that short-term 17β-estradiol (E2) given daily in the first postnatal week alleviated the severe seizure phenotype in adult male mice (Price et al., 2009, Olivetti et al., 2014). Estradiol is a neurosteroid produced in the nervous system which plays important roles in the developing brain in synaptogenesis and morphometry of neurons and glial cells and can induce long-term changes in gene expression in the brain via activation of estrogen receptors and non-receptor pathways. 17β-estradiol treatment of PA1 mice partially restored the interneuron migration deficits in the neocortex, increased populations of neuropeptide-Y and calbindin positive interneurons, and changed the expression of several genes normally regulated by Arx (Olivetti et al., 2014).

The migration of these inhibitory cells and other stages of cortical laminar positioning occurs in mice from embryonic day 9 until postnatal day (P) 10. In the developing male mouse brain,
there is a surge of intrinsic estradiol and conversion of testicular testosterone into estradiol during this period of brain development (McCarthy, 2008). While much research into estradiol's effects on the epileptic brain has been focused on the pro-epileptic activity of the hormone in the adult brain, its neuroprotective effects in the developing nervous system are still being explored. Estradiol has long-lasting transcriptional actions via estrogen receptors α and β, with genes regulated by estradiol being involved in cell proliferation, neuronal migration, synaptogenesis and cell survival. Estradiol also regulates of GABAergic neuronal populations and increases the numbers of inhibitory neurons in the pyramidal layers of the cortex (Nakamura and McEwen, 2005, Velíšková, 2006).

Here we investigate the role of early estradiol treatment in mice modelling both the common PA1 and the more frequent PA2 ARX mutations (originally reported by Kitamura et al. 2009). Our study explores the effect of estradiol on the seizure phenotype in Arx mutant mice and extends the investigation to the impact of this treatment on cognitive outcomes before and after the peak onset of seizures. We also analysed genome wide transcriptomic changes in the postnatal neocortex in PA1 and PA2 mutant mice with and without estradiol treatment to elucidate molecular mechanisms driving infantile spasms, seizures and intellectual disability due to $A R X$ mutations.

Materials and Methods

Animals. All animal procedures were approved by the Animal Ethics Committee of The University of Adelaide, Adelaide. Arx ${ }^{G C G 7 / 4}$ (RBRC03654) and Arx ${ }^{432-455 d u p / 4}$ (RBRC03653) heterozygous females, called PA1 and PA2 mice respectively, originally imported from RIKEN Bioresource Centre, Japan were maintained on the C57BL/6N-Hsd background (Kitamura et al., 2009). Animals were housed in individually ventilated cages under constant temperature and humidity with an 8:00 to 20:00 light/dark cycle. Animals were given a diet of 10% fat food and water available ad libitum, as well as crushed standard chow soaked in sterile water in an accessible feeding dish, refreshed daily. PA1 and PA2 heterozygous females were bred as trios with wild-type C57BL/6N-Hsd stud males to produce wild-type and hemizygous mutant males. There were no abnormal parenting behaviours in our heterozygous female mothers to report. Five rounds of staggered breeding were performed to generate experimental cohorts. Litters of male mice were weaned from their mothers at approximately postnatal day 21 to day 23 ($\mathrm{P} 21-\mathrm{P} 23$) upon the smallest pup reaching 8 grams of body weight as a minimum. All pups were weighed from P3 and monitored and scored daily for general health and welfare, appearance, and any observed seizure activity.

Genotyping. A small piece of toe tissue was removed by sterile technique at postnatal day 5 or 6 for genotyping and to provide an individual identification mark. Genomic DNA was extracted as per manufacturers' instructions for the High Pure PCR Template Preparation Kit (Roche) or the Maxwell® RSC Tissue DNA kit (Promega). Genotyping PCR was performed as described in (Lee et al., 2014).

Drug preparation and injections. In all cases, male mice were studied. 17β-estradiol (E2) (Sigma) was diluted in sterile sesame oil (Sigma) containing 0.75% (v / v) dimethyl sulfoxide (DMSO) (Sigma). Vehicle comprised sesame oil with 0.75% (v/v) DMSO. Estradiol and vehicle were stored in amber glass bottles at $4^{\circ} \mathrm{C}$ until required. Mice were visually sexed on

P3 and all males from one litter were injected subcutaneously with either estradiol or vehicle daily from P3 until P10 inclusive, alternating injection site daily between the neck and left and right hips of the pup. The estradiol dose used was $40 \mathrm{ng} / \mathrm{g}$, therefore mice weighing 1.5 g received 60 ng of estradiol (Olivetti et al., 2014).

Treatment groups. All male mice in each litter were injected with either estradiol or vehicle treatment (Drug 1 or Drug 2 as these were blinded for the duration of the study). Genotypes and drugs were unblinded at the end of the study. This resulted in six different treatment groups for subsequent analysis: wild-type mice treated with either vehicle or estradiol, PA1 mice treated with either vehicle or estradiol, and PA2 mice treated with either vehicle or estradiol.

Behavioural analyses. Repeat behavioural testing was performed at approximately one and two months of age. Tests were conducted in the light phase of the cycle, always beginning by 9:00 and ending by 13:00. Testing at one month of age ran for one week and were performed in the following order: open field and inverted grid; sociability and social novelty. Testing at two months of age ran for two weeks and were performed in the same order in the first week, followed by Barnes maze in the second week. All testing was analysed using ANYmaze video tracking software (Stoelting). Behavioural apparatuses were thoroughly cleaned with F10 Veterinary Detergent between mice to remove olfactory traces. The behavioural testing protocols were previously described (Jackson et al., 2017). A more detailed description of the behaviour testing protocols used for this study is outlined in Supplementary File 1.

Seizure monitoring and analysis. Mice received daily injections between day 3 and day 10 and remained with their mothers until weaning. From the start of treatment (postnatal day 3) until postnatal day 70, all mice for behavioural testing and seizure monitoring were handled and weighed daily. Any observed seizures occurring during this daily handling were recorded. Spontaneous seizures were assessed during non-invasive video monitoring (with offline analysis) across the peak period of seizures (previously determined in untreated mice to occur between postnatal days 35 and 60) (Jackson et al., 2017). Video monitoring for seizure activity
was conducted three times a week in four hour blocks from 11:00 until 15:00 during light cycle, on PA1 and PA2 hemizygous males and age matched control wild-type littermates, between the ages of P38 and P56. Cage mates were placed in a Perspex covered 17.5 cm by 31 cm cage, with a small piece of Nectragel (Able Scientific) and food available ad libitum during the filming period. Natural behaviour was captured and automatically saved in 50-minute video files by a Sony FDR-AXP35 4K Handycam or a Panasonic HC-VX980M 4K Video Camera. Activity levels and seizure activity were viewed offline using VLC Media Player (version 2.1.3). Videos were analysed by observers blinded to genotype and treatment. Seizure activity was scored using a defined scoring system based on categorisation of seizures compared directly to video-electroencephalography in untreated mutant mice from a previous study (Jackson et al., 2017). In brief, seizures in mutant mice were characterised into four categories: (1) rapid and jerky movements around the cage and stationary seizures, (2) mild repetitive myoclonic jerks (duration less than 10 secs), (3) prolonged myoclonic seizures lasting longer than 10 seconds and (4) found dead. Myoclonic seizures were recorded for length of seizure in seconds.

Tissue collection. Animals for RNA sequencing analysis were humanely killed by decapitation at P10, and behavioural/seizure monitoring animals were humanely killed at approximately P70 by CO_{2} asphyxiation, if not euthanised for humane reasons prior to endpoint. The brain was dissected, and the forebrain separated from the cerebellum and cut in half sagittally along the cerebral fissure. The left hemisphere of the brain was minced and snap frozen in liquid nitrogen and stored at $-80^{\circ} \mathrm{C}$.

RNA isolation and sequencing. RNA was extracted from the cortex of hemizygous male mice from each of the two strains, PA1 and PA2, and matched wild-type littermates, using Trizol (Sigma) and RNAeasy Mini Kit (Qiagen). RNA was prepared using Illumina's TruSeq stranded RNA sample preparation protocol and sequenced on an Illumina NextSeq Platform ($n=6$ wildtype samples and $n=4$ PA1 and PA2 samples for each treatment group). The primary sequence
data was generated using the Illumina bcl2fastq 2.19.1.403 pipeline. The per base sequence quality was $>95 \%$ bases above Q30 across all samples. The reads were also screened for the presence of any Illumina adaptor/overrepresented sequences and cross-species contamination. The cleaned sequence reads were then aligned against the Mus musculus genome (Build version mm10). The Tophat aligner (v2.1.1) was used to map read to the genomic sequences. The counts of reads mapping to each known gene were summarised and used for computing differential gene expression with 'edgeR' version 3.12.1 to assess differential expression. Low counts were filtered out (cpm<1) and the default TMM normalisation method of edgeR was used to normalise the counts between samples. A generalised linear model was then used to quantify the differential expression between the groups. Transcripts that were significantly different within genotype and treatment group comparisons were selected by applying a p value cut off <0.05 and a $\log 2$ fold-change of ± 0.5.

RT-qPCR for RNAseq validation. RNAseq results were validated using Taqman RT-qPCR on two groups of RNA; a technical validation cohort on the samples used for RNAseq, and a biological validation cohort, using RNA from mouse samples ($n=6$ wild-type samples and n $=4$ PA1 and PA2 samples for each treatment group). RNA was extracted as described above. cDNA was prepared and RT-qPCR was performed as previously described (Mattiske et al., 2016). Expression of genes was determined using Taqman probes labelled with FAM with expression normalised to the reference gene, Beta-Actin assayed within the same sample using a Taqman probe labelled with VIC. Taqman probes used in this study are listed in Supplementary Table 1.

Gene enrichment analysis. Venn diagrams for gene expression data analysis were created using http://bioinformatics.psb.ugent.be/webtools/Venn. Statistical analysis of the enrichment of gene expression data was performed using Database for Annotation, Visualization and Integrated Discovery (DAVID) Functional Annotation Bioinformatics Microarray Analysis. DAVID uses multiple databases to create annotation clusters (Huang da et al., 2009, Huang da
et al., 2009). These clusters were given overarching theme names and ranked. To rank the enrichment results we used enrichment scores calculated by DAVID.

Interneuron quantification - Tissue sectioning. Cortex from mice was coronally embedded in OCT and stored at $-80^{\circ} \mathrm{C}$ until sectioning. Coronal sections of $10 \mu \mathrm{~m}$ thickness ($\sim 2-3$ cells thick) at $100 \mu \mathrm{M}$ apart were taken serially using a Leica Crytostat (Leica Biosystems) at $-24^{\circ} \mathrm{C}$. Sections were fixed to Superfrost ${ }^{\text {TM }}$ Plus microscope slides (ThermoFisher). Frozen cortical sections were stored at $-20^{\circ} \mathrm{C}$ until analysis. Sections analysed align to sections $100-124$ of the Nissl stained postnatal day 7 coronal brain of the Allan Brain Atlas reference guide.

Staining and microscopy. Immunofluorescence staining was performed as described in Lee et al. 2017. Primary antibodies: rabbit anti-calbindin (1:1000, Merck PC252L) and sheep antineuropeptide Y (1:1000, Sigma T2200). Secondary antibodies: goat anti-rabbit (1:500, Alexa 555, Thermo Fisher A27039) and donkey anti-sheep (1:500, Alexa 488, Thermo Fisher A11015). Immunofluorescent images were captured using a Zeiss AxioCam mRM camera attached to a Zeiss Axio Imager.M2 microscope equipped with Axio Vision software (version 5.1). All comparative images were captured with the same exposure times.

Interneuron analysis. At least four sections across the right hemisphere were analysed. Images were stitched together using Microsoft Image Compositor (Microsoft, version X) and imported into Image J (FIJI, version X) for processing and analysis. Manual cell counts were performed using the Cell Counter plugin for Image J, using method described in Lee et al. 2017. Calbindin positive cells had a circular-like cell body with neuropeptide-Y cells displaying cytoplasmic and/or nuclear staining with clear boundaries of the structure, correlating to a clear nucleus DAPI stained. Counts were exported into Excel and a cell density of number of cells $/ \mathrm{mm}^{2}$ were derived as an outcome (positive cells counted/area of section counted in mm^{2}).

Statistical analysis. Data analysis was performed using GraphPad Prism version 7.0 (GraphPad Software Inc.). Data normality was confirmed using a D'Agostino and Pearson normality test. Statistical significance of the difference between means of each genotype (PA1 or PA2), treatment groups (estradiol or vehicle) and wild-type littermates was determined using a oneway analysis of variance (ANOVA) followed by a Tukey's HSD post-hoc test. When comparisons were made between two treatment groups of the same genotype (PA1 or PA2), without wild-type littermates included in the comparisons (seizure data), a two-tailed, unpaired t -test was performed to determine statistical significance. The statistical significance of the overlap of genes between two groups was calculated using exact hypergeometric probability (http://nemates.org/MA/progs/overlap_stats.html; date last accessed April 19, 2020). For statistical analysis of interneuron cell counts, PA1 and PA2 mice were pooled. A one-way ANOVA was performed to determine statistical significance between $\mathrm{PA}^{\text {pool }}$ mice treated with vehicle or estradiol, followed by a Tukey's post-hoc test.

Results

Estradiol treatment reduces seizure frequency and severity but does not improve mortality in PA mutant mice.

PA1 and PA2 mutant males and wild-type (WT) male littermates were treated with daily subcutaneous injections of estradiol ($40 \mathrm{ng} / \mathrm{g}$) for seven days between P3 and P10 (Figure 1A). Estradiol treatment significantly reduced the overall proportion of adult PA1 mutant mice experiencing seizures on daily handling, with a 32% reduction compared to vehicle treated mice (14% and 46% respectively, Figure 1B). Within the PA2 cohort, a 14% reduction was noted with estradiol treatment (44% versus 58%, respectively) but this did not reach significance ($\mathrm{p}=0.4243$). In PA1 mice, both the total number of observed seizure events and the number of severe seizures (scores of 2 or 3) were significantly reduced in estradiol treated animals compared to vehicle treated mutant mice (Figure 1C).

However, the effect of estradiol on the age of seizure onset differed between the two mutations. Estradiol actually accelerated the onset of seizures in PA2 mice, with estradiol-treated mice having their first seizure at postnatal day 26 ± 2.5 (mean \pm SEM) (Figure 1D), while treatment had no effect on PA1 mutants (45 ± 1.5) and vehicle treatment (43 ± 2.6) (Figure 1D). These data demonstrate that observed seizures on handling the Arx mutant mice are reduced in both severity and frequency with estradiol treatment, however, the specific intragenic mutation produced a differential response with estradiol, with accelerated epileptogenesis in PA2 mice compared to PA1. Mice observed having a seizure upon daily handling that subsequently went on to die from a presumed seizure (found dead in their cage) within 2-4 days of having seizure are shown as stars on Figure 1D. Interestingly, 2 of the 3 PA2 mice treated with estradiol in this category died during this early time point (Supplementary Figure 1), whilst the third mouse died after a subsequent seizure at a later time point (postnatal day 56). Within the PA2 vehicle cohort, five mice were found dead between days 12 and 25 but none of these mice were
recorded as having an observed seizure on handling during this period. However, we cannot rule out that seizures may have occurred outside of the times we were handling and observing the animals as part of daily health checks (P 3 to P 70) or outside the times captured by video seizure monitoring during P35 to P60.

In untreated mutant mice the peak of observed seizures was clustered between P35 and P60 (Jackson et al., 2017). To exclude any influence of induced stress due to handling of the mice, we investigated seizures in a spontaneous setting via non-invasive video monitoring (12 hours per mouse over a period of four days) during this peak period. At P45 to P48, 36\% (4/11) of PA1 mice treated with vehicle displayed a large number of clusters of individual seizure events ranging from rapid, jerky movement around the cage (score 1) through to increasingly severe myoclonic seizures (score 2 and 3) (Figure 2). Video clips of seizures in these mice are available (Jackson et al., 2017). Although 30% (3/10) of the estradiol treated PA1 mice displayed seizures across this same period of time, both the number and severity of seizure events were significantly reduced (Figure 2). This trend is even more striking in the PA2 cohort; 33% (4/12) of vehicle treated mice displaying a total of 28 seizure events across all scoring categories, compared to seizures being completely absent in the estradiol treated mice (0/7) during this same monitoring period (Figure 2). Further, when looking at the observed seizures on handling that PA2 mice experienced during this time, only one mutant mouse treated with estradiol experienced seizures during this same period of time. We observed that there were no seizures in vehicle or estradiol treated wild-type mice by either the observed seizures on handling or non-invasive video seizure monitoring analysis.

Despite the significant improvements in frequency and severity of seizures in both the PA1 and PA2 mutant mice treated with estradiol, the median survival rates of these animals were not significantly extended compared to vehicle treated animals (Figure 3). Survival was recorded from P0 to P70. These data excluded mice that were cannibalised by their mother prior to P10 as this occurred in both WT and mutant mice and was not considered to be due to the mutant
phenotype. Mice still alive at the completion of the experimental period were culled at P70. Considering the animals that died before the experimental end point at P70, 62% of PA1 mice treated with vehicle died compared to 64% treated with estradiol (Figure 3). Similarly, 37% of PA2 mice treated with vehicle died before the experimental end point at P70, compared to 31% treated with estradiol (Figure 3). The mean age of death (excluding survival to end point cull) in vehicle treated compared to estradiol treated mutant mice was not significantly different for either PA1 or PA2 mice; PA1 vehicle treated mice 53 ± 5.1 (mean \pm SEM) compared to $52 \pm$ 5.5 in PA1 estradiol treated mice, with PA2 vehicle treated mice was 45 ± 4.6, compared to 37 ± 5.2 in PA2 estradiol treated mice (Supplementary Figure 1). There were no deaths among the WT group (vehicle or estradiol) other than animals culled to provide age matched littermate samples for mutant mice where required.

Further to our seizure and mortality findings, we confirm in this study that compared to WT littermates the PA mutant mice have reduced testes weight and reduced body weight, consistent with previous reports (Kitamura et al., 2009, Jackson et al., 2017). Here we demonstrate that there was no change to the weight of the testes or brain in WT, PA1 or PA2 mice following estradiol treatment (Supplementary Figure 2). Similarly, there were no improvements to the reduced body weight of mutant mice compared to WT littermates with estradiol treatment (Supplementary Figure 3).

Behavioural deficits are present in PA mice prior to seizure onset, and do not improve with estradiol treatment.

Both PA1 and PA2 mutant mice exhibit increased locomotor activity, abnormal anxiety traits and reduced sociability and autistic-like behaviour at two months of age (Kitamura et al., 2009, Jackson et al., 2017). To examine disease progression in relation to seizure onset, we tested these behavioural traits between P30 and P37 (one month of age - prior to peak seizure onset),
and again at P56 to P70 (two months of age - after peak seizure onset) with and without estradiol treatment. We did not observe any significant difference in the total distance travelled, nor time spent immobile by PA mutant mice compared to wild-type littermates (Supplementary Figure 4). In contrast, we demonstrated that the anxiety-response in PA mutant mice was different compared to WT littermates and did not regress over the duration of the study. At 2 months of age, WT littermates displayed normal exploratory behaviour with an average of 84% (vehicle) and 80% (estradiol) of the total distance travelled in the open field periphery. Contrary to this, PA1 mutant mice spent significantly more time in the periphery versus the central field of the open field apparatus, with an average of 91% (vehicle) and 96% (estradiol) (Figure 4A). This was also observed in the PA2 cohort, in both treatment groups with an average of 95% (vehicle) and 93% (estradiol) (Figure 4A). These results are indicative of decreased exploratory behaviour in both PA mutant mice compared to WT littermates, with increased anxiety-like behaviour (increased fear of venturing into the central field, choosing to stay in the safety of the periphery). These differences are shown in the tracking maps from the respective genotypes in the open field test (Figure 4B). There were no significant differences observed between the two ages sampled in either PA mutant cohort, indicating there was little change due to disease progression or age of the mice in either genotype. This data indicates that early estradiol treatment did not improve anxiety or fear behaviour in adult PA mutant mice.

Sociability testing measures several behavioural traits seen in mouse autism models. As expected, WT littermates chose to interact with another mouse over an inanimate object (empty chamber) (sociability phase: Figure 4C), and then chose to interact with novel (or stranger) animal over the familiar (or known) animal (social novelty phase: Figure 4D). This pattern of behaviour is indicative of normal social interaction and memory recall. Combining the mutant PA1 and PA2 data to create a PA ${ }^{\text {pool }}$ group compared to wild-type littermates, we demonstrate the $\mathrm{PA}^{\text {pool }}$ mutant mice of both vehicle and estradiol treatment groups showed significantly reduced sociability (Figure 4C) and social novelty (Figure 4D) compared to WT mice
(individual PA graphs are supplied in Supplementary Figure 5). The interaction times with other mice in the test chambers were reduced, regardless of whether the mouse occupant was novel or familiar. There was no significant difference between the two time points in the $\mathrm{PA}^{\text {pool }}$ cohort, indicating reduced sociability was already present at one month of age and did not change with disease progression or age.

Next we determined the impact of genotype and treatment on the neuromuscular strength in PA mice at two months of age using the inverted grid test. WT littermates decreased latency to fall from the grid averaged 76 seconds (vehicle) and 90 seconds (estradiol) compared to PA1 mice with 25 seconds (vehicle) and PA2 mice for 23 seconds (estradiol) (Figure 4E). Pooling the data for the mutant mice $\left(\mathrm{PA}^{\text {pool }}\right.$ group) to increase the sample size, both vehicle and estradiol had significantly decreased latency to fall from the grid compared to their respective WT groups (Figure 4E).

To assess the impact of treatment on cognition and learning, the Barnes maze tested the amount of time each mouse required to locate an escape hole (in relation to false holes) in the testing apparatus, with improving or shorter times gained during subsequent testing. This test is conducted at two months of age. All groups tested showed normal adaptive function and memory, demonstrating shorter times to find the escape hole over a progressive four-day testing period (Supplementary Figure 6). Although we have previously demonstrated a memory deficit when testing via the Barnes maze in untreated PA mutant mice (Jackson et al., 2017), in the current trial we did not detect a significant difference between the PA mutant mice of either treatment group and their WT littermates. This difference is likely due to the limited numbers of animals achieving the age required to perform this test. Of note, there was no difference in the performance of WT or mutant animals when vehicle treated animals were compared to estradiol treated animals.

Since Arx is a transcription factor, our next aim was to generate an unbiased map of RNAseq mRNA copy number changes in the cortical transcriptome at P10 due to Arx PA mutations. Compared to age-matched, vehicle treated WT mice analysis of PA1 mice revealed 63 genes deregulated by $\log 2$ fold change greater than ± 0.5 with a P-value of less than 0.05 (Supplementary Table 2). The majority (65%) of genes were found at a decreased level of expression compared to WT (Figure 5A). PA2 mice demonstrated 80 genes deregulated using the same fold cut-off (Supplementary Table 2), with 46\% of genes having decreased expression when compared to WT mice (Figure 5A). Of the twelve genes chosen for biological validation by quantitative PCR, 100% (12/12) validated in PA1 mice and 60% (7/12) validated in PA2 mice (Supplementary Figure 7). There were fourteen genes deregulated in both PA1 (22%) and PA2 (18\%) mice (Figure 5B). Of this core overlap group, 57% ($8 / 14$) of genes were downregulated in their expression and included genes important in neuronal development and associated with neurodevelopmental disorders (Figure 5C). Given the highly similar neurological phenotypes between the PA1 and PA2 mice coupled with similar responses to estradiol treatment observed in this study we chose to combine the data of the four males from each of the PA1 and PA2 mice as a single mutant group ($\left.\mathrm{PA}^{\text {pool }}\right)$. This analysis showed 58 genes deregulated using the same fold cut-off, with 62% demonstrating a decreased level of expression compared to the pooled WT controls (Figure 5A).

Arx target genes (identified in Mattiske et al. 2016) were significantly enriched in the list of deregulated genes in the $\mathrm{PA}^{\text {pool }}$ group $\left(10 / 58,17 \%, \mathrm{p}<1.288 \mathrm{e}^{-5}\right)$ and in each of the PA1 (13/63, $21 \%, \mathrm{p}<7.366 \mathrm{e}^{-8}$) and PA2 groups ($9 / 80,11 \%, \mathrm{p}<9.641 \mathrm{e}^{-4}$). Known epilepsy genes (in house curated reference list) were not significantly enriched in any group of genes deregulated by disease (PA1; 2/63, 3\%, $\mathrm{p}<0.100: \mathrm{PA} 2 ; 2 / 80,2 \%, \mathrm{p}<0.343$: $\mathrm{PA}^{\text {pool. }} ; 3 / 58,5 \%, \mathrm{p}<0.058$). Genes associated with autism and ID (Gene Dx Xpanded Panel, (GeneDx, 2020)) were significantly enriched in the $\mathrm{PA}^{\text {pool }}$ group ($5 / 58,12 \%, \mathrm{p}<0.001$), as were genes associated with inhibitory
neuron regulation or development (in house curated reference list) ($10 / 58,17 \%$, $\mathrm{p}<6.957 \mathrm{e}^{-16}$) compared to WT mice (Figure 5D). Interestingly, the majority of these enriched interneuron genes were downregulated in their expression for all three genotypes (PA1, PA2 and $\mathrm{PA}^{\text {pool }}$) (11/13, 84.6\%) (Figure 5E).

Using the Database for Annotation, Visualization and Integrated Discovery (DAVID) we analysed pathways and ontology terms enriched within the disease-deregulated transcriptomes of PA mutant mice (Supplementary Figure 8). These clusters were ranked by enrichment score, with two clusters overlapping between PA1 and PA2; glycoproteins and glycoprotein receptors. Other enriched functions of note were PI3K-Akt signalling, neurotransmitter biosynthesis, and synaptic processes (Supplementary Figure 8). Many of the clusters are associated with brain and neuron development or signalling that when disrupted may be predicted to contribute to the phenotypic features of the PA mutant mice.

Estradiol targets genes outside of the deregulated transcriptome of PA mutant mice.

To investigate the impact of estradiol treatment at the transcriptome level, we first analysed WT mice treated with vehicle compared to estradiol. There were 56 genes deregulated by $\log 2$ fold change greater than ± 0.5 with a P-value of less than 0.05 in the WT cohort when treated with estradiol. Genes deregulated in the WT mice estradiol treatment group that overlapped with the PA mutant groups were removed from subsequent analysis of PA1, PA2 and PA pool (Supplementary Table 3).

Analysis of PA1 mice with estradiol treatment compared to vehicle resulted in 124 genes deregulated by Log2 fold change greater than ± 0.5 with a p-value of less than 0.05 (Supplementary Table 4). The majority (75\%) of genes were found with an increased level of expression compared to vehicle treated PA1 mice. This was in contrast to the smaller response of disease changed genes in PA1 mice compared to WT (35\% upregulated) (Figure 5A). PA2
mice with estradiol treatment compared to vehicle resulted in 158 genes deregulated at the same cut-off (Figure 6A).

In contrast to the PA1 mice, in the estradiol treated PA2 mice had 77% of genes with a decreased level of expression (Figure 6A). This is compared to the similar numbers of disease changed genes (PA2 vs WT) having increased or decreased expression (54% vs 46%, respectively). In the estradiol treated $\mathrm{PA}^{\text {pool }}$ mice there were 55 genes deregulated by the same cut-off, with 62% having increased expression (Figure 6A). We randomly chose nine genes for biological validation by quantitative PCR, with 44% (4/9), 22% (2/9) and 56% (5/9) validating in PA1, PA2 and PA ${ }^{\text {pool }}$ mice respectively (Supplementary Figure 9).

We next determined if genes deregulated by estradiol were enriched for genes containing estrogen response elements by comparing to a list of mouse genes containing high-affinity estrogen response elements (EREs) (Bourdeau et al., 2004). ERE-containing genes were significantly enriched in WT (12/56, 21\%, p<0.012) and in PA1 mice treated with estradiol $(22 / 124,18 \%, \mathrm{p}<0.010)$ but not in $\mathrm{PA}^{\mathrm{pool}}(8 / 53,15 \%, \mathrm{p}<0.190)$ or PA2 mice $(22 / 158,15 \%$, $\mathrm{p}<0.106$) (Figure 6A).

The size of the gene expression response to estradiol treatment in PA1 and PA2 mice was larger in comparison to genes deregulated by the Arx mutation alone and with little overlap (Figure 6B). Genes deregulated by estradiol treatment were quite different between genotypes, with only small numbers of overlapping genes (8 genes in PA1 mice, 12 genes in PA2 mice and 3 in $\mathrm{PA}^{\text {pool }}$) (Figure 6C). Interestingly, all of the genes deregulated by disease that were also changed with estradiol treatment were deregulated in the opposite direction with treatment (Figure 6C). When we analysed the proportion of genes deregulated by estradiol in all three mutant groups (PA1, PA2 and $\mathrm{PA}^{\text {pool }}$) the response to estradiol treatment between these three groups is strikingly different (Figure 6D). Only 11 genes overlapped between the PA1 and PA2 estradiol response (Figure 6D). When we consider the functionality or pathways responding to estradiol (via DAVID analysis), there are four enrichment clusters that overlap between two or
three of the mutant groups, including transcription regulation and glycoproteins (Supplementary Figure 10). Of note, genes involved in transcription regulation included Shox2 and $E b f 3$. Both of these genes were significantly downregulated with treatment (Olivetti et al., 2014). We see this in PA2 mice in our study, however not in the PA1 mice, largely due to the variation between samples.

Extending the data from genes deregulated by Arx mutation (Figure 5D), both neurodevelopmental disorder and inhibitory neuron associated genes were enriched in estradiol-treated mice (Figure 6E). However, in comparison to disease changed genes, interneuron associated genes were not trending in a particular direction with estradiol, with approximately equal proportions being increased or decreased in expression with treatment in the PA mutant mice (data not shown). Genes associated with autism and intellectual disability were significantly enriched in all groups treated with estradiol ($\mathrm{PA}^{\text {pool. }}: 9 / 53,13 \%, \mathrm{p}<2.083 \mathrm{e}^{-5}$: PA1; 15/124, 10\%, p<0.000003: PA2; 10/158, $6 \%, \mathrm{p}<0.016$). Epilepsy associated genes were enriched to a very low level, and variably depending upon the mutant group considered (PA1; $6 / 124,5 \%, \mathrm{P}<0.014$: $^{\text {PA }}{ }^{\text {pool. }} ; 1 / 53,2 \%, \mathrm{p}<0.431: \mathrm{PA} 2 ; 3 / 158,2 \%, \mathrm{P}<0.442$) (Figure 6E). Genes associated with inhibitory neurons were significantly enriched in the list of genes deregulated with estradiol treatment $\left(\mathrm{PA}^{\text {pool }} ; 6 / 55,11 \%, \mathrm{p}<8.962 \mathrm{e}^{-9}: \mathrm{PA} 1 ; 7 / 128,6 \%, \mathrm{p}<6.424 \mathrm{e}^{-8} ; \mathrm{PA} 2\right.$; $9 / 161,6 \%, \mathrm{p}<6.609 \mathrm{e}^{-10}$) (Figure 6E).

Next we performed immunofluorescent microscopy to determine the abundance of calbindin (Cb) and neuropeptide- $\mathrm{Y}(\mathrm{Npy})$ positive interneurons in the prefrontal cortex of mutant and WT mice at postnatal day 10 . There were no significant deficits in the density of Cb or Npy positive interneurons in PApool mice compared to WT at postnatal day 10 across all layer of the cortex (Figure 7A-B). Nor did we see any difference to cell density of either of these interneurons in the mutant mice immediately following cessation of estradiol treatment (Figure 7C).

Discussion

Here we present a comprehensive behavioural and transcriptomic assessment of the impact of early postnatal steroid treatment on the development of seizures in mice modelling the two most common ARX polyalanine expansion mutations. Our data demonstrates that despite the sustained benefit of short term 17β - estradiol treatment early in postnatal life on the frequency and severity of seizures in both PA1 and PA2 mutant mouse models, there were no significant improvements to survival, anxiety, sociability, cognitive or neuromuscular deficits in treated mice in adult life. Importantly, our data provides support for reproducible anti-epileptogenic outcomes previously reported in a comparable Arx PA1 mutant mouse, studied on a different genetic background (Olivetti et al., 2014). We have characterised the reduction in seizure frequency and severity in both PA mutant mice using a scoring matrix via video monitoring correlated to video-EEG (Jackson et al., 2017). Here we expand these findings to indicate that short term, early 17β-estradiol administration also reduced seizures in the PA2 mutant mouse that models the most frequently reported polyalanine tract expansion mutation in ARX patients. In contrast to the reproducible effect of estradiol on the seizure phenotype of the PA1 and PA2 mice, the same dose ($40 \mathrm{ng} / \mathrm{g}$) of estradiol in an induced rat model of infantile spasms (via betamethasone and N -methyl-D-aspartic acid) did not improve spasms, even while increasing the number of GABAergic cells in the neocortex (Chachua et al., 2016). Similarly, estradiol treatment was demonstrated to have no effect in an induced infantile spasms rat model (Galanopoulou and Moshé, 2015). The anti-epileptogenic effects of estradiol remain relatively unexplored with much of the field focused on the pro-epileptogenic effects of estradiol in female rodents (Younus and Reddy, 2016). Investigation into the effects of estradiol in other neurodevelopmental models exhibiting seizures, with and without associated interneuron deficits, would be particularly useful to better understand the anti-epileptogenic effects of estradiol treatment.

Despite the reduction in the frequency and severity of seizures there was no reduction in mortality of either PA1 or PA2 mice with steroid treatment. This was a novel finding. The cause of death could not be confirmed by post-mortem due to the timing of death occurring overnight. On examination in the mornings, we could not contribute death to any obvious cause. While the immediate cause of death in PA mutant mice is unclear, the lack of progressive deterioration and presence of convulsive seizures suggests that sudden unexpected death in epilepsy (SUDEP), or prolonged status epilepticus, as a possible diagnosis. Although 17ßestradiol treatment decreased the frequency and severity seizures in mutant PA Arx mouse models, the residual amount of seizures still present particularly evident upon handling, could account for the premature mortality in these mice.

An epileptic encephalopathy is defined as a condition where seizures or frequent interictal discharges exacerbate neurocognitive dysfunction beyond what would be expected on the basis of underlying aetiology (Nickels and Wirrell, 2017). This occurs in intractable epileptic disorders that start early in life, such as Ohtahara syndrome (OS), or Early Infantile Epileptic Encephalopathy (EIEE). Infants with these severe epileptic encephalopathies generally present with poor cognitive outcomes, with profound intellectual disability in 50% of patients if they survive severe spasms and seizures in infancy. Although these disorders have many different genetic aetiologies, both of these conditions are reported in patients with expanded polyalanine tract mutations in ARX (Shoubridge et al., 2010, Marques et al., 2015). Closer examination of the clinical spectrum in patients with $A R X$ mutations in the first polyalanine tract $(100 \%$ of who had seizures), indicates that developmental delay is reported in 25% of cases. The onset of seizures spanning from 0 to 18 months of age (median 4 months). Furthermore, only 26% of individuals with expansions of the second polyalanine tract exhibit seizures, despite 100% of these patients having intellectual disability (Jackson et al., 2017).

The distribution of IQ scores in children with epilepsy and infantile spasms are often skewed to lower values, and patients experience difficulties learning in school, or regress in mental
development (Farwell et al., 1985, Neyens et al., 1999, Prasad et al., 2014). However, it can often be difficult to elucidate how much of a child's intellectual disability was pre-existing and how much was caused by epilepsy early in key points of brain development (Nabbout and Dulac, 2003). A cardinal finding of our study is the relative differential response of seizure severity compared to behavioural and cognitive deficits following estradiol treatment. We predicted that seizure onset would lead to a worsening of cognitive and behavioural impairments in the PA1 and PA2 mutant mice. An extension of this prediction would be that 17β-estradiol treatment alleviating seizures might improve cognitive and behavioural deficits. In contrast to our predictions, we demonstrate that behaviour did not improve with alleviation of seizures and that the deficits were already present before and did not decline further after the point of seizure onset. This provides important evidence separating the impact of seizures upon behavioural deficits in PA1 and PA2 mice.

Arx is highly expressed in the developing (embryonic) brain during cellular proliferation and the first wave of neuron migration from the ganglionic eminence to the developing cortex (Colombo et al., 2007, Friocourt et al., 2008, Colasante et al., 2009, Lee et al., 2014). The transcriptome in forebrain of PA mutant mice at embryonic day 12.5 demonstrated that interneuron associated genes were enriched in this data, with the majority having decreased expression (Mattiske et al., 2016). In the newborn period, there is a delayed migration of calbindin-positive interneurons in the cortex of PA mutant mice (Lee et al., 2017). From these studies we contend that the initial disruption to the transcriptome and subsequent impaired interneuron migration caused by these mutations in Arx drive the seizures and behavioural deficits measured in the PA mutant mice. In the current study we demonstrate a modest number of deregulated genes from the cortex at P10. This is in comparison to the larger number of deregulated genes detected at embryonic day 12.5 in wildtype compared to Arx PA mutant mice (vehicle treated mice only) (Mattiske et al., 2016). Genes included Tnn and Ngfr, regulators of differentiation, growth, and migration of neuronal populations (Degen et al.,

2007, Lin et al., 2015), while Tacrl is part of the family of G coupled-protein receptors, highly concentrated in the central nervous system (UniProt, 2020). Consistent with clinical phenotypes known to present in patients with $A R X$ expansion mutations, $C p z$ is associated with autism spectrum disorders and/or intellectual disability (Loch et al., 2018). Despite the reduced expression of Arx within the brain at P10, the genes deregulated in mutant mice were enriched for Arx target genes and genes known to be associated with autism and intellectual disability. The genes overlapping in mutant animals at P10 are important in brain development, including metal ion binding, known to be involved in cognitive decline in Down syndrome (Malakooti et al., 2014) and Alzheimer’s disease (Cristóvão et al., 2016), as well as signal transduction and glycoproteins, both heavily involved in neurotransmitter release and modifying neuronal functioning (as shown in KEGG pathway analysis) (Kanehisa and Goto, 2000, Kanehisa, 2019, Kanehisa et al., 2019). Although epilepsy associated genes were not significantly enriched in the mutant mice at P10, genes associated with inhibitory neurons were enriched.

Of the interneuron genes overlapping between PA1 and PA2 mutant mice, Th and Tacrl are associated with somatostatin positive interneurons, Akrlc18 is associated with parvalbumin positive interneurons and Chat is known to play key roles in cholinergic interneurons. Neither of these subtypes have been previously shown to be disturbed in the PA1 and PA2 models at P10. Th is a gene of particular interest. Downregulation of $T h$ was validated in both PA1 and PA2 vehicle-treated mice compared to WT and is an enzyme that assists in the formation of dopamine, a neurotransmitter, as well as having an association with interneurons. Th was unaltered with estradiol treatment, as well as other interneuron genes downregulated with disease. This supports the notion that disturbed function of these inhibitory cells are likely to play a critical role in the seizure phenotype due to mutations in $A r x$, and that the lack of "rescuing" of these genes might be associated with the remaining seizures we see with treatment in mutant mice, as well as the unaltered cognitive and behavioural phenotype. Many subsets of interneurons are lowly expressed in the brain. Given their importance to the PA
mutant phenotype and in Arx function more generally, single cell RNA sequencing would be a useful future strategy to determine the impact of disease and treatment on specific subtypes of inhibitory neurons.

We were somewhat surprised by the difference in gene expression in PA1 and PA2 mice, given their strikingly similar behavioural and seizure phenotypes, both in disease changed genes, and in their response to estradiol treatment. In terms of $\log 2$ fold change and counts per million (gene expression level) we saw that PA2 had a greater number of genes with reduced expression compared to PA1 (Supplementary Figure 11). It was also unclear if 17β-estradiol treatment would "rescue" the deregulated transcriptome of the PA mutant mice at P10, or if this treatment would target alternative pathways to reduce seizure frequency and severity. In the previous study in an alternate PA1 mutant mouse model the same strategy of 17β-estradiol treatment altered expression of three downstream targets of Arx, namely Shox2, Ebf3 and Lgi1 (Olivetti et al., 2014). In the current study, we demonstrated only minimal overlap in the genes deregulated by disease (PA mutant mice compared to WT mice - vehicle treated only) compared to genes deregulated by 17β-estradiol treatment (vehicle treated mice compared to estradiol treated mice - PA mutant mice only). Despite these small numbers of genes that overlapped between these two comparisons, the genes that did overlap in PA1 and PA2, were deregulated in the opposite direction when treated with estradiol. In the PA1 gene list, there were some key genes of note, including Ptgs2 (involved in schizophrenia, another neurodevelopmental disorder) and Slc17a8 (highly involved in synaptic vesicle function in excitatory neurons) (Wei and Hemmings, 2004, UniProt, 2020). In PA2, these genes included Arc (a master regulator of synaptic plasticity, and associated with epilepsy and schizophrenia), and Nppa (a regulator of neuropeptide hormone activity) (Haug et al., 2000, Huentelman et al., 2015). Though these genes may play a role in the alleviation of the seizure phenotype of PA mutant mice, these modest number of disease genes deregulated when treated with estradiol indicates that treatment in early postnatal life is less likely to be "repairing" the gene expression
pathways deregulated by the PA mutant genotype and more likely recruiting new pathways to affect the reduction in seizures.

Genes containing known conserved estrogen response elements (ERE) were only enriched to very low levels in PA mutant mice with estrogen treatment (Figure 6A, Supplementary Figure 5). Estradiol signalling can occur by direct genomic signalling where there is estrogen receptor dimerization and binding to EREs, as well as via indirect signalling, where estradiol can influence the expression of genes without EREs. As many as one third of estrogen responsive genes lack ERE-like elements (Vrtačnik et al., 2014). Hence, using DAVID, we analysed pathways and ontology terms enriched within the data that were known effects of 17β-estradiol signalling. Many of our enriched clusters were known to be direct responses to the estrogen receptor pathway according to KEGG or indirect effects of the estradiol pathway (Kanehisa and Goto, 2000, Kanehisa, 2019, Kanehisa et al., 2019). Our data demonstrates that 17β estradiol treatment in early postnatal life recruits pathways impacting synaptic function, signal transduction, transcriptional regulation, and hormone activity responsible in reducing the frequency and severity of seizures in PA mutant mice.

We have previously reported specific spatial differences in the density of Cb interneurons at postnatal day 0 in PA1 and PA2 mutant mice, suggestive of a lag in migration at this developmental period compared to WT mice (Lee et al. 2017). At the cessation of estradiol treatment at postnatal day 10, we did not detect any significant differences between WT and mutant animals, with or without treatment, in the gene expression of markers for Cb interneurons, nor in the density of these neurons within the cortical layers of the brain. In the case of Npy positive interneurons, the alternative PA1 mouse displayed a reduced density of these cells in adult brain, which was ameliorated with early postnatal E2 treatment (Olivetti et al., 2014). In agreement, we determined a modest reduction in the expression of the Npy gene expression in PA1 mutant mice compared to WT animals at the earlier time point of P10. However, we did not find any significant differences to density of Npy interneurons within the
cortex at this time point, with or without estradiol treatment. The expression of $N p y 2 r$ is known to increase in the brain from approximately P14 (Allen brain atlas), meaning we cannot rule out that changes to the density of Npy positive interneurons at later stages of development may occur and contribute to the sustained reduction in seizures observed in estradiol treated mice. Although we detect differences in gene expression of multiple interneuron associated genes at P10 of development, our data indicates to us that the many other genes (and pathways) regulated by estradiol treatment are likely to be participating in the alleviation of seizures, as opposed to increased inhibition in the brain as the sole mechanism.

Conclusion

Here we provide evidence to begin separating the relationship between seizures and cognitive and behavioural deficits in a genetic model of a neurodevelopmental disorder. We demonstrate that behaviour and cognitive outcomes did not improve in the Arx PA mutant mice despite significant reductions to the frequency and severity of seizures achieved with early postnatal steroid treatment. Indeed, behavioural deficits were already present prior to peak of seizure onset and do not decline with seizures. Our findings on the broader behavioural phenotypes of PA1 and PA2 mice support the idea that the mechanisms underlying the cognitive deficits in PA patients are complex. The 17- β estradiol treatment early in postnatal life recruited molecular and cellular pathways to reduce the frequency and severity of seizures rather than restoring pathways initially deregulated in Arx PA mutant mice driving pathogenesis. Taken together, our data strongly indicates that reduced expression of the inhibitory neuron genes, as well as the genes associated with autism/ID contribute to the seizure and cognitive phenotype of the PA mice. The lack of effective treatments for intellectual disability and neuropsychiatric disturbances, let alone associated early onset seizures, remains a significant challenge and highlights the continued need to elucidate the molecular and cellular drivers of the intellectual disability phenotype as the first necessary steps toward a treatment.

Acknowledgements

We are grateful to Monica Thai and Laboratory Animal Services at The University of Adelaide for their kind assistance with the mice. We wish to acknowledge the guidance and use of behavioural testing equipment and software from Dr Catherine Jawahar and Professor Bernhard Baune.

Data Availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

Funding

This research, undertaken by the Intellectual Disability Research program in the Adelaide Medical School, University of Adelaide, Australia, was funded by the Australian National Health and Medical Research Council (Grant No. 1099538). CS was supported by the Australian Research Council (Future Fellowship FT120100086). KL was supported by an Australian Research Training Program Stipend (RTPS).

Competing Interests

The authors have no competing interests to declare.

References

Bourdeau V, Deschênes J, Métivier R, Nagai Y, Nguyen D, Bretschneider N, et al. Genomewide identification of high-affinity estrogen response elements in human and mouse. Mol Endocrinol. 2004;18(6):1411-27.

Chachua T, Di Grazia P, Chern C-R, Johnkutty M, Hellman B, Lau HA, et al. Estradiol does not affect spasms in the betamethasone-NMDA rat model of infantile spasms. Epilepsia. 2016;57(8):1326-36.

Chiurazzi P, Pirozzi F. Advances in understanding - genetic basis of intellectual disability. F1000Res. 2016;5.

Colasante G, Sessa A, Crispi S, Calogero R, Mansouri A, Collombat P, et al. Arx acts as a regional key selector gene in the ventral telencephalon mainly through its transcriptional repression activity. Developmental Biology. 2009;334(1):59-71.

Colombo E, Collombat P, Colasante G, Bianchi M, Long J, Mansouri A, et al. Inactivation of Arx, the Murine Ortholog of the X-Linked Lissencephaly with Ambiguous Genitalia Gene, Leads to Severe Disorganization of the Ventral Telencephalon with Impaired Neuronal Migration and Differentiation. Journal of neuroscience, 2007;27(17):4786-98.

Cristóvão JS, Santos R, Gomes CM. Metals and Neuronal Metal Binding Proteins Implicated in Alzheimer's Disease. Oxid Med Cell Longev. 2016;2016:9812178-.

Degen M, Brellier F, Kain R, Ruiz C, Terracciano L, Orend G, et al. Tenascin-W is a novel marker for activated tumor stroma in low-grade human breast cancer and influences cell behavior. Cancer Res. 2007;67(19):9169-79.

Ellis CA, Petrovski S, Berkovic SF. Epilepsy genetics: clinical impacts and biological insights. Lancet Neurol. 2020;19(1):93-100.

Farwell JR, Dodrill CB, Batzel LW. Neuropsychological Abilities of Children with Epilepsy. Epilepsia. 1985;26(5):395-400.

Friocourt G, Kanatani S, Tabata H, Yozu M, Takahashi T, Antypa M, et al. Cell-Autonomous Roles of ARX in Cell Proliferation and Neuronal Migration during Corticogenesis. The Journal of Neuroscience. 2008;28(22):5794.

Galanopoulou AS, Moshé SL. Pathogenesis and new candidate treatments for infantile spasms and early life epileptic encephalopathies: A view from preclinical studies. Neurobiology of Disease. 2015;79:135-49.

GeneDx. Autism/ID Xpanded Panel. 2020 [cited 2020; Available from: https://www.genedx.com/test-catalog/available-tests/autismid-xpanded-panel/

Haug K, Kremerskothen J, Hallmann K, Sander T, Dullinger J, Rau B, et al. Mutation screening of the chromosome 8q24.3-human activity-regulated cytoskeleton-associated gene (ARC) in idiopathic generalized epilepsy. Mol Cell Probes. 2000;14(4):255-60.

Hrachovy RA, Frost JD. Chapter 63 - Infantile spasms. In: Dulac O, Lassonde M, Sarnat HB, editors. Handbook of Clinical Neurology: Elsevier; 2013. p. 611-8.

Huang da W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37:1-13.

Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44-57.

Huentelman MJ, Muppana L, Corneveaux JJ, Dinu V, Pruzin JJ, Reiman R, et al. Association of SNPs in EGR3 and ARC with Schizophrenia Supports a Biological Pathway for Schizophrenia Risk. PLoS One. 2015;10(10):e0135076.

Jackson MR, Lee K, Mattiske T, Jaehne EJ, Ozturk E, Baune BT, et al. Extensive phenotyping of two ARX polyalanine expansion mutation mouse models that span clinical spectrum of intellectual disability and epilepsy. Neurobiology of Disease. 2017;105:245-56.

Kanehisa M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 2019;28(11):1947-51.

Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27-30.

Kanehisa M, Sato Y, Furumichi M, Morishima K, Tanabe M. New approach for understanding genome variations in KEGG. Nucleic Acids Res. 2019;47(D1):D590-D5.

Kitamura K, Itou Y, Yanazawa M, Ohsawa M, Suzuki-Migishima R, Umeki Y, et al. Three human ARX mutations cause the lissencephaly-like and mental retardation with epilepsy-like pleiotropic phenotypes in mice. Human Molecular Genetics. 2009;18(19):3708-24.

Kitamura K, Yanazawa M, Sugiyama N, Miura H, Iizuka-Kogo A, Kusaka M, et al. Mutation of ARX causes abnormal development of forebrain and testes in mice and X-linked lissencephaly with abnormal genitalia in humans. Nat Genet. 2002;32(3):359-69.
Le Magueresse C, Monyer H. GABAergic interneurons shape the functional maturation of the cortex. Neuron. 2013;77(3):388-405.

Lee K, Ireland K, Bleeze M, Shoubridge C. ARX polyalanine expansion mutations lead to migration impediment in the rostral cortex coupled with a developmental deficit of calbindin-positive cortical GABAergic interneurons. Neuroscience. 2017;357:220-31.

Lee K, Mattiske T, Kitamura K, Gecz J, Shoubridge C. Reduced polyalanine-expanded Arx mutant protein in developing mouse subpallium alters Lmo1 transcriptional regulation. Human Molecular Genetics. 2014;23(4):1084-94.

Lin Z, Tann JY, Goh ET, Kelly C, Lim KB, Gao JF, et al. Structural basis of death domain signaling in the p75 neurotrophin receptor. Elife. 2015;4:e11692.

Loch JI, Bonarek P, Tworzydło M, Łazińska I, Szydłowska J, Lipowska J, et al. The engineered β-lactoglobulin with complementarity to the chlorpromazine chiral conformers. Int J Biol Macromol. 2018;114:85-96.

Malakooti N, Pritchard MA, Adlard PA, Finkelstein DI. Role of metal ions in the cognitive decline of Down syndrome. Front Aging Neurosci. 2014;6:136-

Marques I, Sá MJ, Soares G, Mota MdC, Pinheiro C, Aguiar L, et al. Unraveling the pathogenesis of ARX polyalanine tract variants using a clinical and molecular interfacing approach. Molecular Genetics \& Genomic Medicine. 2015;3(3):203-14.

Mattiske T, Lee K, Gecz J, Friocourt G, Shoubridge C. Embryonic forebrain transcriptome of mice with polyalanine expansion mutations in the ARX homeobox gene. Human Molecular Genetics. 2016;25(24):5433-43.
McCarthy MM. Estradiol and the Developing Brain. Physiological reviews. 2008;88(1):91124.

Miura H, Yanazawa M, Kato K, Kitamura K. Expression of a novel aristaless related homeobox gene 'Arx' in the vertebrate telencephalon, diencephalon and floor plate. Mechanisms of Development. 1997;65(1-2):99-109.

Nabbout R, Dulac O. Epileptic Encephalopathies: A Brief Overview. Journal of Clinical Neurophysiology November/December. 2003;20(6):393-7.

Nakamura NH, McEwen BS. Changes in interneuronal phenotypes regulated by estradiol in the adult rat hippocampus: a potential role for neuropeptide Y. Neuroscience. 2005;136(1):357-69.

Neyens LGJ, Aldenkamp AP, Meinardi HM. Prospective follow-up of intellectual development in children with a recent onset of epilepsy. Epilepsy Research. 1999;34(2):85-90.

Nickels KC, Wirrell EC. Cognitive and Social Outcomes of Epileptic Encephalopathies. Seminars in Pediatric Neurology. 2017;24(4):264-75.

Olivetti PR, Maheshwari A, Noebels JL. Neonatal Estradiol Stimulation Prevents Epilepsy in Arx Model of X-Linked Infantile Spasms Syndrome. Science Translational Medicine. 2014;6(220):220ra12.

Olivetti PR, Noebels JL. Interneuron, interrupted: molecular pathogenesis of ARX mutations and X-linked infantile spasms. Curr Opin Neurobiol. 2012;22(5):859-65.

Paciorkowski AR, Thio LL, Dobyns WB. Genetic and biologic classification of infantile spasms. Pediatr Neurol. 2011;45(6):355-67.

Partington MW, Turner G, Boyle J, Gécz J. Three new families with X-linked mental retardation caused by the 428-451dup(24bp) mutation in ARX. Clinical Genetics. 2004;66(1):39-45.

Prasad AN, Burneo JG, Corbett B. Epilepsy, comorbid conditions in Canadian children: Analysis of cross-sectional data from Cycle 3 of the National Longitudinal Study of Children and Youth. Seizure. 2014;23(10):869-73.

Price MG, Yoo JW, Burgess DL, Deng F, Hrachovy RA, Frost JD, et al. A Triplet Repeat Expansion Genetic Mouse Model of Infantile Spasms Syndrome, Arx((GCG)10+7), with Interneuronopathy, Spasms in Infancy, Persistent Seizures, and Adult Cognitive and Behavioral Impairment. Journal of Neuroscience, 2009;29(27):8752-63.

Shoubridge C, Fullston T, Gécz J. ARX spectrum disorders: making inroads into the molecular pathology. Human Mutation. 2010;31(8):889-900.

Smith-Hicks CL. GABAergic dysfunction in pediatric neuro-developmental disorders. Front Cell Neurosci. 2013;7:269.

UniProt. SLC17A8 - Vesicular glutamate transporter 3. 2020 [cited 2020; Available from: https://www.uniprot.org/uniprot/Q8NDX2\#function

UniProt. TACR1 - Substance-P receptor. 2020 [cited 2020; Available from: https://www.uniprot.org/uniprot/P25103

Velišková J. The role of estrogens in seizures and epilepsy: The bad guys or the good guys? Neuroscience. 2006;138(3):837-44.

Vrtačnik P, Ostanek B, Mencej-Bedrač S, Marc J. The many faces of estrogen signaling. Biochem Med (Zagreb). 2014;24(3):329-42.

Wei J, Hemmings GP. A study of a genetic association between the PTGS2/PLA2G4A locus and schizophrenia. Prostaglandins Leukot Essent Fatty Acids. 2004;70(4):413-5.

WHO. Epilepsy. 2019 [cited 2019; Available from: https://www.who.int/news-room/factsheets/detail/epilepsy

Willemsen MH, Kleefstra T. Making headway with genetic diagnostics of intellectual disabilities. Clin Genet. 2014;85(2):101-10.

Younus, I. and D. S. Reddy (2016). "Seizure facilitating activity of the oral contraceptive ethinyl estradiol." Epilepsy Res 121: 29-32.

Zack, M. M. and R. Kobau (2017). "National and State Estimates of the Numbers of Adults and Children with Active Epilepsy - United States, 2015." MMWR Morb Mortal Wkly Rep 66(31): 821-825.

Figure Legends

Figure 1: Early estradiol treatment diminishes observed seizure severity and frequency in PA mutant mice. Timeline showing the experimental course of the mouse treatment study (A). PA1 and PA2 mutant mice exhibit reduced seizure frequency (B) and seizure severity (C) when treated with estradiol compared to their vehicle treated counterparts (percentage seizure occurrence - percentages do not include repeated seizures from the same mouse). (PA1: (B) two-tailed t-test, $p<0.0001, d f=70$; (C) Chi square test, $p=0.0036, d f=11.26,2$)). Estradiol treatment did not delay the age of first seizure (D) in either mutant strain (PA2: two-tailed ttest, $p=0.0002, F=1.463(10,7), d f=17$). Mice marked with a star died of a seizure (found dead in cage) within 2-4 days of having an observed seizure on handling. Median $\pm \mathrm{min} / \mathrm{max}$ is presented for PA1 and PA2 mice from vehicle and estradiol treatment groups. Each dot represents an individual animal at the age of their first seizure. Analysis across five separate breeding rounds each for PA1 mice (Estradiol; $n=14$; dark orange (dashed line/square dots) vs vehicle; $n=13$ light orange (solid line/circles)) and PA2 mice (Estradiol; $n=16$; dark blue (dashed line/square dots) vs vehicle; $n=19$; light blue (solid line/circles)). \# $\mathrm{p}<0.05$ indicates significant difference between estradiol and vehicle treated animals across the duration of the study.

Figure 2: Seizure severity and frequency during video seizure monitoring are reduced in PA mutant mice treated with estradiol. PA1 and PA2 mice exhibit reduced seizure frequency and severity when treated with estradiol (PA1; $n=10$; dark orange) (PA2; $n=7$; dark blue) compared to their vehicle treated counterparts (PA1; $n=11$ light orange) and (PA2; $n=12$; light blue). Each dot represents an individual seizure event measured during 12 hours of video footage per mouse across multiple days. Seizure scores increase with severity from "no seizure" to "prolonged myoclonic seizure" on the Y-axis. \# indicates significant difference
between estradiol and vehicle treated PA mice (one-way ANOVA, Tukey's HSD post hoc analysis, $F(3,135)=11.28, p<0.0001)$.

Figure 3: Early estradiol does not improve survival in PA mutant mice. Estradiol did not improve mortality in either PA1 or PA2 mice. Analysis across five separate breeding rounds each for PA1 mice (Estradiol; $n=14$; dark orange (dashed line) vs vehicle; $n=13$ light orange (solid line)) and PA2 mice (Estradiol; $n=16$; dark blue (dashed line) vs vehicle; $n=19$; light blue (solid line)). There were no WT mice treated with vehicle and estradiol that died during the trial with data pooled into one group (grey line).

Figure 4: Early estradiol does not improve behavioural deficits in PA mutant mice. Anxiety-like behaviour was measured using the open field test. (A) The distance the mice travelled in the periphery versus the central field of the open field was measured in metres (m) is shown at one month and two months of age. WT mice treated with vehicle ($n=17 / 12$; light grey) and estradiol ($n=8 / 8$; dark grey); PA1 mice treated with vehicle ($n=6 / 5$; light orange) and estradiol ($n=4 / 3$; dark orange); PA2 mice treated with vehicle ($n=11 / 6$; light blue) and estradiol ($n=5 / 5$; dark blue) (Two months \sim one-way ANOVA, $F(5,33)=12.25, P<0.0001$). (B) Representative tracking maps from WT ($n=2$; grey), PA1 ($n=1$; orange) and PA2 ($n=1$; blue). (C) Autistic-like behaviour was measured at one and two months of age by the time in seconds (s) the mice spent interacting with a new mouse in the sociability test (Two months~ one-way ANOVA, $F(3,26)=21.85, P<0.0001$), (D) or the familiar (white bars) or stranger (coloured bars) mouse in the social novelty test. WT mice treated with vehicle ($n=15 / 9$; light grey) and estradiol ($n=8 / 6$; dark grey); $\mathrm{PA}^{\text {pool }}$ mice treated with vehicle ($n=15 / 9$; light green) and estradiol ($n=8 / 6$; dark green); (E) Neuromuscular strength measured using the inverted
grid test at two months of age (one-way ANOVA, $F(3,31)=7.920, P=0.0005)$. The latency for mice to fall from the inverted grid was measured in seconds (s). WT mice treated with vehicle ($n=11$; light grey) and estradiol ($n=7$; dark grey); PA1 mice treated with vehicle (n $=6$; light orange) and estradiol ($n=3$; dark orange); PA2 mice treated with vehicle ($n=4$; light blue) and estradiol ($n=4$; dark blue). In the second graph, PA1 and PA2 mice were combined as a $\mathrm{PA}^{\text {pool }}$ group. WT mice treated with vehicle ($n=11$; light grey) and estradiol ($n=7$; dark grey); $\mathrm{PA}^{\text {pool }}$ mice treated with vehicle ($n=10$; light green) and estradiol ($n=7$; dark green). * indicates significant difference between PA mutant mice and WT control littermates across the duration of the study, $\mathrm{p}<0.05$, Tukey's HSD post hoc analysis.

Figure 5: Transcriptome is deregulated by disease in PA mutant mice. Transcriptomic analysis of postnatal day (P) 10 brains of PA mutant mice. Differential expression of genes from P10 mice was determined using EdgeR and selected based on a Log2 fold change greater than ± 0.5 with a p -value <0.05. (A) Total number of deregulated genes and the percentage of either upregulated or downregulated genes from our analysis of vehicle treated PA1, PA2 and $\mathrm{PA}^{\text {pool }}$ mice compared to vehicle treated WT littermates. (B) Venn diagram displaying overlap of deregulated genes in PA1 (orange), PA2 (blue) and PA ${ }^{\text {pool }}$ (dotted circle) groups, as well as core overlapping genes (green with list of genes). (C) Graph showing log fold change values of genes from the core overlap lists in (B). Interneuron genes are highlighted in the grey dashed box. (D) Table showing overlap of deregulated genes from vehicle treated PA1, PA2 and PA ${ }^{\text {pool }}$ mice with known neurodevelopmental disorder (NDD), inhibitory cell and ARX target genes. (E) Graph showing log fold change values of genes from enriched interneuron genes in (D). Genes from core overlap are in the grey dashed box. * indicates significant overlap with reference gene lists ($\mathrm{p}<0.05$).

Figure 6: Estradiol alters the transcriptome of PA mutant mice. Transcriptomic analysis of postnatal day (P) 10 brains of PA mutant mice. Differential expression of genes from P10 mice was determined using EdgeR and selected based on a Log2 fold change greater than ± 0.5 with a p -value <0.05. (A) Total number of deregulated genes and the percentage of either upregulated or downregulated genes from our analysis of estradiol treated PA1, PA2 and PA ${ }^{\text {pool }}$ mice compared to vehicle treated PA mutant mice. Table also shows number and percentage of genes known to contain a high-affinity mouse estrogen-response element (ERE). * indicates significant overlap between genes deregulated by estradiol and ERE-containing mouse genes ($\mathrm{p}<0.05$). (B) Venn diagram showing overlapping between the disease-deregulated transcriptome and the estradiol-treated transcriptome of PA1, PA2 and PA ${ }^{\text {pool }}$ mice. (C) Graphs showing the opposite deregulation direction between genes overlapping between disease and estradiol changed genes in PA1 and PA2. (D) Venn diagram displaying overlapping genes between the estradiol-treated transcriptomes of PA1 (orange), PA2 (blue) and PA ${ }^{\text {pool }}$ (green) mice. (E) Overlap of deregulated genes from estradiol treated PA1, PA2 and PA ${ }^{\text {pool }}$ mice with known neurodevelopmental disorder (NDD) and inhibitory cell genes. * indicates significant overlap with reference gene lists ($\mathrm{p}<0.05$).

Figure 7: Abundance of calbindin (Cb) and neuropeptide-Y (Npy) positive cells in the prefrontal cortex. (A) Representative DAPI stained image of the brain in a WT mouse illustrating the region of the brain analysed (within dashed lines). Scale bar 200 μ M. (B) Pictomicrographs of brain sections with arrows indicating positive cells corresponding to Cb and Npy interneurons. Scale bar $50 \mu \mathrm{M}$. (C) Density of Cb and Npy positive cells $/ \mathrm{mm}^{2}$ in WT (Veh and E2 combined) (circles) and PA ${ }^{\text {pool }}$ mice (PA1; squares and PA2; triangles). treated with vehicle or estradiol. Cb: WT mice ($n=5$; white), $\mathrm{PA}^{\text {pool }}$ mice treated with vehicle ($n=6$; light grey) and estradiol ($n=5$; dark grey). Npy: WT mice ($n=7$; white); $\mathrm{PA}^{\text {pool }}$ mice treated with vehicle ($n=4$; light grey) and estradiol ($n=5$; dark grey).

Supplementary Figure Legends

Supplementary File 1: Detailed behaviour testing protocols.

Supplementary Table 1: Taqman assay details. RNA sequencing validation experiments were prepared as described in the Taqman PreAmp Master Mix Kit user guide (Applied Biosystems). Expression values were normalised to reference gene β-Actin.

Supplementary Figure 1: Ages of death in PA mutant mice treated with vehicle or estradiol. PA1 and PA2 mice treated with estradiol (PA1; $n=13$; dark orange) (PA2; $n=18$; dark blue) do not exhibit improved survival when compared to their vehicle treated counterparts (PA1; $n=14$; light orange) (PA2; $n=21$; light blue). Individual circles represent individual mice throughout the duration of the study (up to 70 days postnatal). Data is shown as mean age \pm SEM.

Abstract

Supplementary Figure 2: Testes and brain weights of PA mutant mice treated with vehicle or estradiol. Testes (left and right combined) and cerebral hemispheres (left and right combined) were weighed at postnatal day 70. WT mice, vehicle-treated (light grey) testes $(\mathrm{n}=27)$ and brain ($\mathrm{n}=26$) and estradiol-treated (dark grey) testes and brain ($\mathrm{n}=18$). PA1 mice, vehicle-treated (light orange) testes and brain ($\mathrm{n}=5$) and estradiol treated (dark orange) testes $(\mathrm{n}=2)$ and brain ($\mathrm{n}=3$). PA2 mice, vehicle-treated (light blue) testes $(\mathrm{n}=6)$ brain ($\mathrm{n}=7$) estradioltreated (dark blue) testes and brain $(\mathrm{n}=4)$. * indicates significant difference between PA mutant mice and WT littermates, $\mathrm{p}<0.05$, one-way ANOVA with Tukey's HSD.

Supplementary Figure 3: Body weights of PA mutant mice treated with vehicle or estradiol. PA1 and PA2 mice treated with estradiol (PA1; $n=13$; dark orange) (PA2; $n=18$; dark blue) or vehicle (PA1; $n=14$; light orange) (PA2; $n=21$; light blue) do not exhibit any improvement to body weight through the duration of the study (postnatal day 0 to postnatal day 70), compared to their WT littermates, treated with either estradiol (WT; $n=30$; dark grey) or vehicle (WT; $n=23$; light grey). Data is shown at mean weight on each day of the study \pm SEM. * indicates significant difference at postnatal days $10,21,45$ and 60 between PA mutant mice and WT littermates, $\mathrm{p}<0.05$, one-way ANOVA with Tukey's HSD.

Supplementary Figure 4: PA mutant mice do not display hyperactivity as measured by

 total distance in the open field test. Anxiety-like and fear response behaviour was measured using the open field test. (A) The total distance the mice travelled in the open field apparatus during the duration of the test at one month and two months of age. Wild-type mice treated with vehicle ($\mathrm{n}=17 / 12$; light grey) and estradiol ($\mathrm{n}=8 / 8$; dark grey); PA1 mice treated with vehicle ($\mathrm{n}=6 / 5$; light orange) and estradiol ($\mathrm{n}=4 / 3$; dark orange); PA2 mice treated with vehicle ($\mathrm{n}=11 / 6$; light blue) and estradiol ($\mathrm{n}=5 / 5$; dark blue).Supplementary Figure 5: PA1 and PA2 mutant mice display autistic-like behaviour as measured by sociability and social novelty tests. (A) Autistic-like behaviour was measured at one and two months of age by the time in seconds (s) the mice spent interacting with a new mouse in the sociability test, (B) or the familiar (white) or stranger (black) mouse in the social novelty test. WT mice treated with vehicle ($\mathrm{n}=15 / 9$; light grey) and estradiol ($\mathrm{n}=8 / 6$; dark grey); PA1 mice treated with vehicle ($n=6 / 4$; light orange) and estradiol ($n=3 / 2$; dark orange); PA2 mice treated with vehicle $(\mathrm{n}=9 / 5$; light blue) and estradiol $(\mathrm{n}=5 / 4$; dark blue). $*$ indicates significant difference between PA mutant mice and WT control littermates across the duration of the study, $\mathrm{p}<0.05$, one-way ANOVA with Tukey's HSD. \# indicates significant difference between estradiol and vehicle treated mutant animals across the duration of the study, $\mathrm{p}<0.05$, one-way ANOVA with Tukey's HSD.

Supplementary Figure 6: PA mutant mice do not display learning and memory deficits in the Barnes maze. Learning and memory was measured using the Barnes maze at two months of age only. The latency to find the escape hole was measured in seconds (s) across a four-day testing period. Mice were measured from WT treated with estradiol ($n=10$; dark grey) or vehicle ($n=8$; light grey) with A) PA1 and PA2 mice were combined as a PA ${ }^{\text {pool }}$ group and $\mathrm{PA}^{\text {pool }}$ treated with estradiol ($n=6$; dark green) or vehicle ($n=6$; light green). B) PA1 mice treated with estradiol ($\mathrm{n}=4$; dark orange) and vehicle ($\mathrm{n}=2$; light orange). C) PA2 mice treated with estradiol ($\mathrm{n}=4$; dark blue) and vehicle ($\mathrm{n}=4$; light blue).

Supplementary Figure 7: Biological validation of genes deregulated by disease in PA mutant mice by quantitative PCR (qPCR) analysis. Samples tested were RNA samples prepared from the cortex of vehicle-treated mice at postnatal day 10 across each genotype (WT; $n=6 ;$ PA1 $; n=4 ;$ PA2 $; n=4 ; \mathrm{PA}^{\text {pool. }} ; n=4 \mathrm{PA} 1+4 \mathrm{PA} 2$ samples combined). Expression values were normalised to the reference gene, β-Actin. (A) Represents genes of mostly higher
counts per million from our RNAseq data, where $q P C R$ results agreed with RNAseq results. (B) Represents control genes that were non-significant in both RNAseq and qPCR analysis. (C) Represents genes where the breadth of signal was variable across the three genotype groups between the RNAseq and qPCR analysis. Summary tables show results of these genes in RNAseq and qPCR data, with final column showing whether the qPCR results agreed with the RNAseq data. Grayscale colours in significance tables represent significance of result (lightest grey $\mathrm{p}<0.05$, medium grey $\mathrm{p}<0.005$ and darkest grey $\mathrm{p}<0.0001$). Individual graphs show relative quantity for each gene for WT (grey), PA1 (orange), PA2 (blue) and $\mathrm{PA}^{\text {pool }}$ (green). * $\mathrm{p}<0.05,{ }^{* *} \mathrm{p}<0.005,{ }^{* * *} \mathrm{p}<0.0001$ (one-tailed t -test of PA1, PA2 or PA ${ }^{\text {pool }}$ compared to WT).

Supplementary Figure 8: Enrichment analysis of genes deregulated by disease in PA

 mutant mice. Table showing significant gene enrichment terms in deregulated genes in PA1, PA2 and PA ${ }^{\text {pool }}$ groups from DAVID cluster annotation analysis. Clusters with enrichment scores of <0.9 are not shown. Heat map is based on maximum, minimum and $50^{\text {th }}$ percentile score in data set (legend in figure).Supplementary Figure 9: Biological validation of genes deregulated by estradiol in PA mutant mice by quantitative PCR analysis. Samples tested were pooled RNA samples prepared form the cortex of vehicle and estradiol treated mice at postnatal day 10 across each genotype. WT pooled samples contained RNA from $n=6$ cortex samples for each treatment group. PA1 and PA2 pooled samples contained RNA from $n=4$ cortex samples for each treatment group. Expression values were normalised to the reference gene, β-Actin. (A) Summary table shows results of these genes in RNAseq and qPCR data, with final column showing whether the qPCR results agreed with the RNAseq data. Grayscale colours in significance tables represent significance of result (lightest grey $\mathrm{p}<0.05$, medium grey $\mathrm{p}<0.005$
and darkest grey $\mathrm{p}<0.0001$). (B) Individual graphs of relative quantity for each gene for WT (vehicle $=$ light grey; estradiol $=$ dark grey), PA1 (vehicle $=$ light orange; estradiol $=$ dark orange), and PA2 (vehicle = light blue; estradiol = dark blue). Significance indicated by * $\mathrm{p}<0.05, * * \mathrm{p}<0.005, * * * \mathrm{p}<0.0001$, one-tailed t -test of vehicle treated WT, PA1 and PA2 compared to estradiol treated WT, PA1 and PA2).

Supplementary Figure 10: Enrichment analysis of genes deregulated by estradiol in PA

 mutant mice. Significant gene enrichment terms in genes deregulated by estradiol in PA1, PA2 and PA ${ }^{\text {pool }}$ groups from DAVID cluster annotation analysis. Heat map is based on maximum, minimum and $50^{\text {th }}$ percentile score in data set (legend in figure). No clusters with enrichment scores of <1.0 are shown. Clusters with \# are pathways and functions known to be regulated by the estrogen receptor pathway.
Supplementary Figure 11: Technical validation of genes deregulated by disease in PA

 mutant mice by quantitative PCR analysis. Scatter plots showing relationship between $\log 2$ fold change and average log count per million (CPM) of genes changed with estradiol treatment in PA1 (A) and PA2 (B) mice. Orange lines show log2fold change ± 1 and black lines show $\log 2$ fold change ± 0.5. (C) shows individual quantitative PCR results, from untreated pooled samples of those used for RNAseq analysis (WT; $n=6 ;$ PA1; $n=4 ;$ PA2; $n=4$). Expression values were normalised to the reference gene, β-Actin. Frmd7 was significantly decreased in PA1 in our RNAseq analysis and this was validated by qPCR. Shox2 was significantly decreased compared to their WT littermates in PA2 in our RNAseq analysis, however, this was not validated by qPCR. Th was significantly decreased in PA1 and PA2 in our RNAseq analysis and this was validated in PA1 but not PA2 by qPCR.
Figure 1

C

Observed seizure scores

D
Age of first seizure

Figure 2

Figure 3

Figure 4

Neuromuscular strength: inverted grid

Figure 5

A	Genes deregulated by disease		
	PA1	PA2	PAPool
Vs WT	63	80	58
\uparrow	$22(35 \%)$	$43(54 \%)$	$22(38 \%)$
\downarrow	$41(65 \%)$	$37(46 \%)$	$36(62 \%)$
ERE	$13(21 \%)$	$11(14 \%)$	$11(19 \%)$

Figure 6
B
PA1

Genes deregulated by E 2 treatment				
	wT	PA1	PA2	PApool
vs VEH	56	124	158	53
\uparrow	27 (48\%)	93 (75\%)	36 (23\%)	33 (62\%)
\downarrow	29 (52\%)	$31(25 \%)$	122 (77\%)	20 (38\%)
ERE	12 (21\%)*	22 (18\%)**	22 (15\%)	8 (15\%)

C Overlapping genes deregulated by E 2 and disease

	PA1	PA2	PA $^{\text {pool }}$
\# genes	8	12	3

PA2

E

Neurodevelopmental disorder genes deregulated by E2			
	PA1	PA2	PA ${ }^{\text {pool }}$
Autism/ID	10\%*	6\%*	13\%*
	Bdnf, Cacna1h, Col1a1, Cpz, Dbh, Eln, Flna, Fos, Iyd, Med12, NIrp3, Npas4, Pabpc4I, Traip, Unc13d	Clrn1, Ebf3, Fos, Gabrq, Hap1, Lhx1, Nkx2-1, Npas4, Sim1, Trhr	Col1a1, Cpz, Dbh, Ebf3, Lhx1, NIrp3, Nr4a2, Shox2, Twist1
Epilepsy	5\%*	2\%	2\%
	Bdnf, Cacna1h, Eln, Flna, Med12, Rbp4	Gata3, Magel2, Nod2	Gata3
	6\%*	6\%*	11\%*
Interneuron genes	Bdnf, Cox6a2, Fosb, Mab21/1, Npy2r, Nt5e, Spp1	Calca, CbIn4, Chodl, Hspb3, Irs4, Mab21/1, Npy2r, Nr2f2, Tacr3	Calca, Cbln4, Fosb, Mab21/1, Nr4a2, Spp1

Figure 7

Appendix 2

Heterozygous loss of function of IQSEC2/Iqsec2 leads to increased activated Arf6 and severe neurocognitive seizure phenotype in females

Matilda R Jackson ${ }^{1,2}$, Karagh E Loring ${ }^{1,2}$, Claire C Homan ${ }^{2}$, Monica HN Thai', Laura Määttänen ${ }^{3}$, Maria Arvio ${ }^{3,4,5} \oplus$, Irma Jarvela ${ }^{6}$, Marie Shaw ${ }^{2}$, Alison Gardner ${ }^{2}$, Jozef Gecz ${ }^{2,7}$ © Cheryl Shoubridge ${ }^{1,2}$ ©

Clinical presentations of mutations in the IQSEC2 gene on the x-chromosome initially implicated to cause non-syndromic intellectual disability (ID) in males have expanded to include early onset seizures in males as well as in females. The molecular pathogenesis is not well understood, nor the mechanisms driving disease expression in heterozygous females. Using a CRISPR/Cas9-edited Iqsec2 KO mouse model, we confirm the loss of Iqsec2 mRNA expression and lack of Iqsec2 protein within the brain of both founder and progeny mice. Both male (52\%) and female (46\%) Iqsec2 KO mice present with frequent and recurrent seizures. Focusing on Iqsec2 KO heterozygous female mice, we demonstrate increased hyperactivity, altered anxiety and fear responses, decreased social interactions, delayed learning capacity and decreased memory retention/novel recognition, recapitulating psychiatric issues, autistic-like features, and cognitive deficits present in female patients with loss-of-function IQSEC2 variants. Despite Iqsec2 normally acting to activate Arf6 substrate, we demonstrate that mice modelling the loss of Iqsec2 function present with increased levels of activated Arf6. We contend that loss of Iqsec2 function leads to altered regulation of activated Arf6-mediated responses to synaptic signalling and immature synaptic networks. We highlight the importance of IQSEC2 function for females by reporting a novel nonsense variant c.566C > A, p.(S189*) in an elderly female patient with profound intellectual disability, generalised seizures, and behavioural disturbances. Our human and mouse data reaffirm IQSEC2 as another disease gene with an unexpected X-chromosome heterozygous female phenotype. Our Iqsec2 mouse model recapitulates the phenotypes observed in human patients despite the differences in the IQSEC2/Iqsec2 gene X-chromosome inactivation between the species.

DOI 10.26508/Isa.201900386 | Received 20 March 2019 | Revised 25 July 2019 | Accepted 15 August 2019 | Published online 22 August 2019

Introduction

X-linked intellectual disability is a common, clinically complex disease arising from mutations in more than 140 genes on the X-chromosome (1), affecting between $1 / 600$ and $1 / 1,000$ males and a substantial number of females (2). X -linked inheritance is more complex than simply X-linked recessive or dominant (3) with both X-inactivation (including associated tissue specific selection) and the impact of individual mutations contributing to this complexity. In mammals, the sex determination system used is $\mathrm{XX} / \mathrm{XY}$, with dosage compensation in females as a result of random inactivation of one of the two X chromosomes in every cell. As a consequence, heterozygous females typically have a milder disease phenotype or are not affected. Despite this, there is a growing list of X-chromosome genes which are subject to X-inactivation or escape X-inactivation, including, for example, PHF6, CLCN4, ALG13, ARX, or USP9X, DDX3X, which display distinct phenotypes in males and females depending on the functional severity of the variant, as well as manifesting in a more severe female phenotype than the heterozygous state would predict ($4,5,6,7,8,9,10$). We contend that the IQ motif and Sec7 domain 2 protein (IQSEC2) (NM_001111125) (MIM 300522) is another X-chromosome disease gene in which we see a severe female phenotype because of heterozygous loss-of-function mutation.

We previously implicated IQSEC2 as an X-linked intellectual disability (XLID) gene through identification of variants in affected males in four separate families (11). These missense variants were clustered around the Sec7 and IQ-like domains and resulted in reduced enzymatic activity (11). Clinical features within these nonsyndromic XLID families included moderate to severe intellectual disability (ID) in all affected males, with variable seizures, autistic traits, and psychiatric problems (11). Since then, unbiased, highthroughput sequencing in ID and epilepsy cohorts have identified familial and increasingly de novo loss-of-function IQSEC2 variants,

[^3]typically leading to phenotypic outcomes, including severe ID with epileptic encephalopathy, and a high prevalence of speech development deficits and psychiatric features, including autistic spectrum disorder. Interestingly, these severe phenotypes are noted not only in affected males but also in affected, heterozygous females (12). The mechanisms contributing to the disease severity, particularly in heterozygous females is unknown and perplexing.

IQSEC2 is a guanine nucleotide exchange factor, which catalyzes exchange of GDP for GTP in a number of ARF superfamily of proteins. IQSEC2 is highly expressed in the forebrain, specifically localized to excitatory synapses as part of the N-methyl-D-aspartate receptor (NMDAR) complex $(13,14)$. The exact role IQSEC2 plays at excitatory synapses remains unclear. Limited studies indicate a role in the activity-dependent removal of α-amino-3-hydroxy-5-methyl-4isoxazolepropionic acid receptors (AMPAR) and activity-dependent synaptic plasticity (15,16). Our own studies have shown that IQSEC2 also has a fundamental role in controlling neuronal morphology (17). However, there is currently no published research investigating the impact of loss or altered Iqsec2 function on the development and resulting cognitive outcomes in any animal model. It is not certain if severe loss-of-function mutations in IQSEC2 can be transmitted in the human setting, with only missense variants giving rise to milder nonsyndromic features being maternally inherited. Hence, it was unclear if the loss of Iqsec2 function modelled in mice would survive into postnatal life, be reproductively viable or useful to model disease pathogenicity observed in humans. Here, we show that mice with the complete loss of function of Iqsec2 by successfully targeting exon 3 using CRISPR/Cas9 technology survive into postnatal life and are viable. In this study, we investigate the effect of severe loss-of-function mutations driving the phenotype in patients, including the emerging female-specific phenotype using a mouse modelling the KO of Iqsec2.

We present an elderly female patient with profound ID and generalised seizures with a novel loss-of-function IQSEC2 variant, providing important life span information for other patients diagnosed with this typically early onset neurodevelopmental disorder. We review the present literature of the growing number of females with loss-of-function variants in IQSEC2, who have a more severe phenotype than the heterozygous state would predict. In humans, the prevailing evidence suggests that IQSEC2 escapes X-inactivation (18, 19); however, in mice, Iqsec2 is subject to X-inactivation (20). Hence, the mouse modelling heterozygous KO of Iqsec2 provides an opportunity to assess the impact of X-inactivation and altered Iqsec2 gene dosage in females. Here, we show that the loss of Iqsec2 function in mice recapitulates key aspects of the human phenotype, irrespective of the X-inactivation status of the gene in the two species, highlighting that our understanding of the traditional X-chromosome inheritance with heterozygous female sparing needs to be revisited.

Materials and Methods

Animal generation

All animal procedures were approved by the Animal Ethics Committee of The University of Adelaide, Adelaide, Australia, and undertaken in accordance with their regulatory guidelines. Founding Iqsec2 KO mice
were generated by CRISPR/Cas9 by the South Australian Genome Editing facility (SAGE), University of Adelaide, Adelaide; details given below. Mice were maintained in the C57Bl/6N-Hsd background. Animals were of same sex and housed in individually ventilated cages, with sterile food and water available ad libitum. Iqsec2 KO hemizygous male founder A was bred with a wild-type female to generate Iqsec2 KO heterozygous progeny, which were subsequently bred with a wild-type stud male to generate Iqsec2 KO hemizygous, Iqsec2 KO heterozygous, and wild-type littermates. Iqsec2 KO hemizygous males ($n=46$) and Iqsec2 KO heterozygous females ($n=153$) were monitored and scored daily (from postnatal day [P] 14) for general health and welfare, appearance, weight, and the presence of seizure activity. In addition to standard food available ad libitum, crushed chow was soaked in sterile water and placed in an easily accessible feeding dish, which was refreshed daily.

CRISPR/Cas9 guide design

Guides were designed by the SAGE facility, University of Adelaide, under the guidance of Professor Paul Q Thomas as part of a fee for service for the generation of CRISPR/Cas9 Iqsec2 KO mice. The online tool (http://crispr.mit.edu/) was used to search for appropriate CRISPR guide sites targeting the removal of Iqsec2 exon 3. The most appropriate guide was determined by total score, cut site in target gene, and number of off-target mismatches. Guides' sequences determined most suitable were upstream CRISPR guide 5'-TCTAGTGTACTCACTCAGTT-3' and downstream CRISPR guide 5'-AGGCTGGAACTGGCGAAAAC-3'. The CRISPR/Cas9 complex will cause double strand breaks in intron 2-3 of Iqsec2 and intron 3-4, causing exon 3 to be deleted by a process of non-homologous end joining. CRISPR gRNA generation, microinjections of zygotes, and transfer to pseudopregnant recipients were performed by the SAGE facility as previously described (21, 22, 23).

Genotyping

A small segment of toe tissue was removed by sterile technique at P5 from all pups for genotyping and identification purposes. Genomic DNA was extracted as per the manufacturer's instructions for Phire Hot Start II DNA polymerase (Thermo Fisher Scientific). Genotyping PCR was performed using $10 \mu \mathrm{M}$ forward and reverse primer pairs (Table S1), 2x Phire Tissue Direct PCR Master Mix, and made up to $20 \mu \mathrm{l}$ with MilliQ water. Reactions were placed in a thermocycler for one cycle at $98^{\circ} \mathrm{C}$ for $5 \mathrm{~min}, 32$ cycles at $98^{\circ} \mathrm{C}$ for $30 \mathrm{~s}, 62^{\circ} \mathrm{C}$ for $30 \mathrm{~s}, 72^{\circ} \mathrm{C}$ for 1 min , and one cycle at $72^{\circ} \mathrm{C}$ for 1 min . PCR products were held at $4^{\circ} \mathrm{C}$ before visualising on a 1.5% (wt/vol) agarose gel with $0.2 \mu \mathrm{~g} / \mathrm{ml}$ ethidium bromide in TBE buffer (1.1 M Tris, 900 mM borate, and 25 mM EDTA, pH 8.3) alongside $1 \mathrm{~kb}+$ molecular weight marker. Images were captured on a SynGene UV dock at 400 ms exposure on GeneSnap v7.05 for SynGene. DNA sequencing analysis was performed using SeqMan Pro version 10.1.2 (DNASTAR, Inc) against Iqsec2 cDNA reference sequence NM_001114664.

Analysis of Iqsec2 mRNA and Iqsec2 protein

Animals were humanely killed by cervical dislocation. Brain was dissected from the skull and cut into two halves sagittally along the
cerebral fissure. The right-hand side brain was separated and minced into cortex ($\mathrm{n}=2$, one each for protein and RNA) and cerebellum, snap-frozen in liquid nitrogen, and stored at $-80^{\circ} \mathrm{C}$ pending analysis. RNA was extracted from 40 mg homogenised brain cortical tissue in TRIzol reagent and converted to CDNA using SuperScript RT (Thermo Fisher Scientific) as described previously (24). Iqsec2 gene expression was performed using both RT-PCR and qPCR. RT-PCR was performed using 50 pmol forward and reverse primer pairs (Table S1), 20U Roche Taq DNA polymerase, FailSafe PCR $2 X$ PreMix J (Epicentre), and made up to 50μ l with MilliQ water. Reactions were placed in a thermocycler for one cycle at $94^{\circ} \mathrm{C}$ for 2 min, 35 cycles at $94^{\circ} \mathrm{C}$ for $30 \mathrm{~s}, 57-60^{\circ} \mathrm{C}$ for $30 \mathrm{~s}, 72^{\circ} \mathrm{C}$ for 30 s , and one cycle at $72^{\circ} \mathrm{C}$ for 5 min . Images were captured as described above. qPCR was performed using TaqMan gene expression assay probes (Thermo Fisher Scientific) spanning exon 3-4 boundary (Mm02344188_m1), exon 11-12 boundary (Mm02344183_m1), and exon 13-14 boundary (Mm02344185_m1) with gapdh used as a housekeeper (Mm99999915_g1). Wild types were pooled and averaged based on sex ($\mathrm{n}=4$ female wild type, $\mathrm{n}=5$ male wild type). Each individual Iqsec2 KO hemizygous male or heterozygous female sample was normalised to the averaged wild-type data for their respective sex, with resulting data displayed as relative Iqsec2 expression to their respective sexed wild-type controls. Protein extraction, SDS-PAGE, and Western blot analysis of protein levels were performed as described previously (17). The primary antibodies were rabbit anti-IQSEC2 (1:2,000) as previously described (17), rabbit anti-IQSEC1 and rabbit anti-IQSEC3, both used at 1:1,000 (Invitrogen), and mouse β-actin (AC-74; 1:20,000; Sigma-Aldrich A2228). Secondary antibodies from DAKO (Santa Clara) were goat antimouse HRP (1:2,000 P0447) and goat antirabbit HRP (1:2,000 P0448). Images were imported into Image Studio (Li-Cor Biosciences), and band intensities of Iqsec proteins were normalised to their respective β-actin loading control, and where required were harmonized across multiple immunoblots using a consistent control sample. Each individual Iqsec2 KO hemizygous or heterozygous sample was normalised to the averaged pooled wild-type data for their respective sex, with relative intensities presented (n for each as described in figure legends).

Behavioural assessment

Iqsec2 KO heterozygous and wild-type females underwent monthly behavioural testing from one to 6 mo of age ($\mathrm{n}=4$ Iqsec2 KO heterozygous and $\mathrm{n}=3$ wild-type controls at $1 \mathrm{mo}, \mathrm{n}=8 \mathrm{Iqsec} 2 \mathrm{KO}$ heterozygous, and $\mathrm{n}=6$ wild-type controls at all other time points) as previously described (25).

Neuroanatomy

The left-hand side brain, separated along the cerebral fissure, was fixed at 4 degrees in 10\% neutral buffered formalin overnight, before being washed three times in cold PBS, and stored in 70\% ethanol at 4 degrees. The samples were processed and paraffinembedded by the Adelaide University Histology Department. Semiserial sections, measuring $10 \mu \mathrm{~m}$ thick, were collected using a strategy of mounting every fifth serial section across five slides (series 1-5) with up to five replicates of this strategy per sample
(A-E) to span the breadth of the mouse brain in sagittal or coronal orientation. The sections were stained by haematoxylin and eosin or Nissl and scanned using a Hamamatsu NanoZoomer 2.0-HT whole slide imager (Meyer Instruments). Images were imported into ImageJ (Fiji; version 2.0.0-rc-59/1.51k, build fab6e1a004) for processing and measurement.

Multielectrode array

Cortical neuronal were isolated from embryonic day (E) 17.5 Iqsec2 KO heterozygous female $(\mathrm{n}=12)$ and wild-type littermates ($\mathrm{n}=7$ female) as per Hinze et al (17). Neuronal suspensions were plated at 2.97×10^{5} cells/well on 0.1% polyethyleneimine $/ 20 \mu \mathrm{~g} / \mathrm{ml}$ laminincoated 24 -well glass bottomed multielectorde array (MEA) plate (product: 24W300/30G-288; MultiChannel Systems). After 21 d in culture, 15 -min recordings were captured using MultiScreen (version 1.5.9.0; MultiChannel Systems) at a sampling rate of $20,000 \mathrm{~Hz}$ and 1,000 ms baseline duration. Spike binning was performed at $100-\mathrm{ms}$ intervals, with minimum burst duration set at 50 ms , with a minimum spike count in burst set at four spikes. Captured data were uploaded and exported using MultiAnalyser (version 1.2.90; MultiChannel Systems). Data obtained from each individual Iqsec2 heterozygous female embryo was normalised to the averaged wild-type data.

G-LISA Arf6 activation assay

Protein was extracted from snap-frozen cortical tissue of wild-type male mice $(n=4)$, KO male mice $(n=6)$, wild-type female mice ($n=5$) and HetKO female mice ($n=9$) following the manufacturer's instructions for use in a G-LISA Arf6 Activation assay Biochem Kit (absorbance based) (Cytoskeleton). The levels of activated Arf6 measured in the cortical tissue were from mice ranging in age from 2 to 9 mo. Each sample was measured with an $\mathrm{n}=4$ replicates. Within each assay, the levels of activated Arf6 measured in the wildtype animals for each sex was set to 1 , and values for each of the KO or HetKO samples were determined relative to these age and sexmatched wild-type controls. The relative levels of activated Arf6 for all WT animals measured in a single assay were used to normalise activated Arf6 levels across multiple assays. An aliquot of protein from each cortical sample analysed in the GLISA assays was also prepared for SDS-PAGE and Western blot analysis and probed for Iqsec2 as described (17) and Arf6 protein abundance using polyclonal Arf6 antibody (PA1-093; Thermo Fisher Scientific) and quantitated as indicated above for Iqsec2 protein abundance.

Molecular analysis of IQSEC2 variant

The screening protocols were approved by the Women's and Children's Health Network Human Research Ethics Committee and the Human Ethics Committee of The University of Adelaide, Adelaide, Australia (approval number REC2361/03/2020) and conforms with the principles set out in the WMA Declaration of Helsinki and Australian National Statement on Ethical Conduct in Human Research (2018). Informed consent was obtained from carers of the patient, including consent to publish images. DNA from the affected female was whole-exome sequenced on an Illumina HiSeq2500 by the Australian Genome Research Facility. Reads were mapped to

C
i

ii

iii

D

Figure 1. CRISPR/Cas9 targeting of Iqsec2 resulted in absent (KO males) or reduced (KO HET females) Iqsec2/Iqsec2 expression.
(A) Schematic of the exon-intron structure of Iqsec2 long (NM_001114664) and short (NM_001005475) isoforms, with the dashed box indicating consensus sequence. Zoomed-in schematic of Iqsec2 exon 2-4 (exon 2 long $=2 \mathrm{~L}$ and exon 2 short $=2$ S) with CRISPR guides (arrows) flanking exon 3 (diagonal line fill), resulting in a predicted 445-bp deletion. Actual deletion size (highlighted by an orange box) shown flanking CRISPR guide putative cut sites in Founder A, with sex and total deletion size shown on left-hand side. (B) RT-PCR amplification of exon $2 / 3$ boundary, exon 1 (short isoform), and exon 1 (long isoform) to exon 4 of 3 male founders, and subsequent progeny from founder A. (C) qPCR of three founder males (grouped) and subsequent progeny from founder A. Results are expressed as mean relative expression (\pm SEM; $n=3$
the human genome (hg19) using BWA-MEM (26) and mapping refined using Genome Analysis Toolkit version 3.5 (27). Mapping achieved a minimum median target coverage depth of 49 reads/ sample and covered 87.67% of intended targets with at least 20 reads. Single-nucleotide variants and small insertions and deletions were called by the genome analysis toolkit haplotype caller version 3.5 (27). Whole-exome sequencing data are available upon request.

All variants were annotated for allele frequency, clinical significance, locus identity, and likely pathogenicity using ANNOVAR (28).

Statistical analysis

The statistical significance ($P<0.05$) of the difference between means of each strain, namely, Iqsec2 KO hemizygous males, Iqsec2 KO heterozygous females, and their respective age-matched control littermates, was determined using multiple statistical means. A one-way ANOVA followed by Tukey's HSD post hoc test was used for qPCR and MEA analysis, whereas a two-way ANOVA followed by Tukey's HSD was used to assess behavioural differences across time. A two-tailed, unpaired t test was used to compute statistical significance of the difference between means for the GLISA analysis, and when wild-type littermates were omitted from statistical analysis (seizure propensity). All data analyses were performed using GraphPad Prism version 7 (GraphPad Software Inc.).

Results

Generation of loss-of-function Iqsec2 KO mice by CRISPR/Cas9 deletion of exon 3

Generation of a knockout (KO) mouse line to model the loss of Iqsec2 function was achieved by targeting exon 3 of Iqsec2 for deletion by CRISPR/Cas9 editing (17). The sequence and targeting of CRISPR guides to remove exon 3 in both isoforms are detailed in Fig S1. Exon 3 is invariable between the two main isoforms of Iqsec2, with exons 3-13 comprising consensus sequence (Fig 1A). Injection of the CRISPR/Cas9 guides was performed as a fee for service (South Australian Genome Editing facility, University of Adelaide, Adelaide) (21). PCR amplification of genomic DNA (Fig S2A) and subsequent breakpoint mapping and sequencing of amplicons demonstrate that Founder A (male) had exon 3 removed with neighbouring exon 2 (short and long isoforms), exon 4, and exon 5 unaffected by the deletion, demonstrating successful targeted deletion of exon 3 (Fig 1A). Although exon 3 did not amplify in any of the four founders generated (Fig S2B), founders B and C (males) had larger deletions than expected (Fig S2A), both impacting exon 4, and
founder D (female) had a homozygous deletion of exon 3 (Fig S2C) The homozygous loss of IQSEC2 has not been reported in the human population. Given the increasing incidence of mutations in girls (heterozygous) with early-onset seizure phenotypes, it was not unexpected that this female homozygous KO mouse was found dead early in postnatal life, negating the opportunity to collect samples for expression analysis, or attempt breeding. This animal was not included in any further analysis. Overall, the editing of all founders extended past the recognised CRISPR/Cas9 guide cut sites in both directions by nonstandard amounts, with larger deletion sizes of this X -chromosome region noted in males. This finding demonstrates that CRISPR/Cas9, although an effective genome editing tool, requires careful validation.

To confirm that deletion of exon 3 by CRIPSR/Cas9 editing resulted in loss of Iqsec2/Iqsec2, we analysed the gene expression and protein level from cortical brain tissue in which Iqsec2 is highly expressed during postnatal life. We demonstrate in the three founder males and progeny of founder A that Iqsec2 expression was reduced or absent when detected by RT-PCR (Fig 1B) and significantly reduced compared with sex-matched wild-type progeny when analysed by qPCR (Fig 1C). Founder A and founder B had no detectable Iqsec2 expression by either analysis. The negligible expression levels of Iqsec2 short isoform detected for founder C in the RT-PCR analysis was not replicated by qPCR. Iqsec2 KO hemizygous male progeny from founder A also had no detectable Iqsec2 expression by RT-PCR (Fig 1B) but demonstrated minimal Iqsec2 expression by qPCR with the probe spanning across the exon 11-12 boundary Fig 1C. (ii) This result is consistent with very low levels of transcript ($\sim 5 \%$ of normal) being present before nonsensemediated mRNA decay. Iqsec2 KO heterozygous female progeny showed that Iqsec2 expression by RT-PCR for both the short and long isoforms were reduced to less than half the levels of wild-type female controls (Fig 1B). Similarly, reduced Iqsec2 expression in these females was also noted by qPCR, with expression levels dependent on the probe used (range $0-79 \%$, mean 35%), but were still significantly elevated above both founder males and Iqsec2 KO hemizygous male progeny (Fig 1C). We note that expression levels were quite varied between individual heterozygous females and cannot discount differences due to levels of X-inactivation in these animals. The three male founders had no discernible Iqsec2 protein in the cortex (Fig 1D). Similarly, there was no discernible Iqsec2 protein in KO hemizygous male progeny and reduced levels of Iqsec2 protein (~half of the wild-type control levels) in KO heterozygous female progeny (Fig 1D). Off-target analysis of CRISPR/ Cas9 editing using computational tools (CRISPR design tool by MIT: http://crispr.mit.edu/ and COSMID: https://crispr.bme.gatech.edu) identified that the majority (92%) of predicted off-targets were located in regions that did not harbour genes or impacted intronic regions within genes and were unlikely to effect the coding region

[^4]of the genome (Table S2). For the 31 genes identified to potentially be impacted by off-target effects, 28 were reported with high numbers of mismatch ($n=4$). In contrast, Iqsec3 was the only gene predicted to be impacted by either CRISPR guide that was identified by both computational tools (Table S2). IQSEC3 is highly expressed within multiple regions of the brain, including the cortex. Our analysis of the three founder males demonstrates that Iqsec3 protein levels in the cortex were reduced ($27 \%, 14 \%$, and 36% of wild-type, respectively) but were normalised to wild-type levels in subsequent founder A progeny (Fig 1D). Taken together, these data suggest successful outbreeding of the potential off-target effects.

To investigate if the loss (or partial loss) of Iqsec2 protein in the Iqsec2 KO mice elicited a compensatory effect by other members of the Iqsec protein family, we measured the protein abundance of Iqsec1 and Iqsec3 in cortical samples of the wild-type and Iqsec2 KO mice by immunoblot. The levels of Iqsec1 protein were very low compared with the ready detection of Iqsec3 protein in the same samples and were not robust enough for semiquantitative analysis. Despite this, we did not see any empirical evidence of a consistent or stronger signal in the Iqsec2 KO animals. In the case of Iqsec3, there was no significant increase in protein abundance in the
brains of Iqsec2 KO hemizygous male or KO heterozygous female mice compared with wild-type sex-matched mice (Fig S3). Hence, we demonstrate that Iqsec protein family members are unlikely to provide a compensatory role to ameliorate the loss or partial loss of Iqsec2.

Iqsec2 KO male and female mice present with spontaneous seizures

We observed severe spontaneous seizures in both Iqsec2 KO hemizygous male and heterozygous female mice modelling loss of Iqsec2 function. We saw a combination of four seizure subtypes that although distinctive in appearance, were often observed in a single seizure episode in both sexes. The seizures included (i) sudden onset of irregular generalised clonic jerks, where the mouse demonstrated involuntary, uncontrolled, unilateral head movements (Video 1); (ii) repetitive forelimb clonus that commenced with intermittent clonic jerking of the head and forelimbs, which then became rhythmic, associated with tonic posturing of the forelimbs, evolving to rearing and generalised tonic-clonic activity lasting ~60 s (Video 2); (iii) uncontrolled convulsions with bilateral forelimb

Figure 2. Iqsec2 KO hemizygous males and heterozygous females exhibit spontaneous seizures and reduced survival, which was not observed in their wild-type control littermates. The total number of animals phenotyped include KO; $\mathrm{n}=46$ (blue) and HET; $\mathrm{n}=153$ (pink). (A, B, C, D, E) Percentage seizure occurrence and (B) survival presented at daily intervals from birth, with both further subclassified as (C) age at observed first seizure, (D) age at unexpected death, and (E) occurrence of repeat seizures presented as median ($\pm \mathrm{min} / \mathrm{max}$), where each dot represents an individual animal. Unexpected death was classified as humane euthanasia or found dead presumed because of seizure or status epilepticus and does not include those individuals taken for experimental end point. These data do not include any movement phenotypes observed. (F) Iqsec2 heterozygous females (Het/pink; $\mathrm{n}=13$) have reduced levels of Iqsec2 protein compared with female wild-type animals (WT/grey; $\mathrm{n}=11$). Mean (\pm SEM) data presented. The animals with observed seizures are denoted as stars. There were no significant differences in Iqsec2 protein abundance between male (WT/ Black; n = 10) and female wild-type animals (WT/grey; n = 11). * indicates significant difference between KO males and HET females, $P<0.05$, two-tailed, unpaired t test, \# indicates $P<0.0001$, two-tailed, paired t test, ^ indicates $P<0.05$ between HET/KO and female WT controls, two-tailed, unpaired t test.
outward stretching were also noted which commenced with the sudden onset of irregular generalised clonic jerks followed by hypermotor activity, which lasted ~ 5 s before ceasing (and often reinitiating; Video 3); and (iv) and full body tonic-clonic seizures that started with symmetrical tonic extension of both forelimbs and hindlimbs, which develop into rhythmic generalised clonic activity after $\sim 15 \mathrm{~s}$, continuing for an additional 30 s before ceasing (Video 4). Seizure episodes were frequently accompanied by twitching ears, a straight tail, and an increase in facial grooming/washing pre- and post-seizure occurrence. Iqsec2 KO mice that were found dead in their cage were classified as having died because of either a seizure or status epilepticus, as no wild-type control littermates were found dead in this study.

In concordance with the clinical variability noted in both male and female human patients with loss-of-function mutations, we measured large variations in age of onset, seizure severity, and progression amongst individual Iqsec2 KO mice. The proportion of Iqsec2 KO hemizygous males exhibiting seizures (all sub-types combined) from birth to 4 mo of age ($7-54 \%$, respectively) was
significantly increased when compared with heterozygous females ($2-37 \%$, respectively; Fig 2A). However, after 5 mo of age, the proportion of Iqsec2 KO mice exhibiting seizures plateaued, with males ranging from 57 up to 65% at the study end point (~ 300 d of postnatal life) and females ranging from 54 to 60% across the same time period. The survival from birth to 3 mo of age in Iqsec2 KO hemizygous males (87\%) was significantly decreased compared with heterozygous females (91%; Fig 2B). From 4 mo of age, Iqsec2 KO males reached a plateau (80%), whereas survival of heterozygous females continued to significantly decline until 8 mo of age (69\%). The first observed seizure occurred with similar timing in both Iqsec2 KO male and female mice, at postnatal day (P) 29 and P23, respectively (Fig 2C), with the first unexplained death occurring at P16 and P7, respectively (Fig 2D). The majority of male (52\%) and female (46\%) Iqsec2 KO mice were observed to have only one seizure. The proportion of mice observed to have two or more seizures spanning their postnatal life were similar between male and female KO mice (13% and 2% versus 12% and 3%, respectively; Fig 2 E). The levels of Iqsec2 protein abundance in cortical tissue

Figure 3. Iqsec2 KO heterozygous females display altered anxiety, increased locomotor activity and reduced spatial learning and memory.
(A, B, C, D, E, F, G) Behavioural tests undertaken at monthly intervals between 1 and 6 mo of age show that Iqsec2 KO heterozygous females (HET/pink) ($\mathrm{n}=4$ at $1 \mathrm{mo} ; \mathrm{n}=8$ at 2-3 mo, $\mathrm{n}=7$ at $4-6 \mathrm{mo}$) compared with their wild-type female controls (WT/grey) ($\mathrm{n}=3$ at $1 \mathrm{mo} ; \mathrm{n}=6$ at 2-6 mo) demonstrate (A) increased speed across multiple apparatus (sociability apparatus shown), (B) increased exploratory behaviour in the open field test, (C) increased anxiety in open field test, (D) decreased fear response in the elevated zero maze, (E) reduced total interaction time in the sociability apparatus regardless of familiar or novel cage occupant, (F) decreased novel recognition in the Y-maze, (G) and reduced spatial learning in the Barnes maze (conducted at 6 mo of age). Mean (\pm SEM) data presented, where * indicates significance between HET/KO and WT controls, \# indicates significant between HET time points, two-way ANOVA with Tukey's HSD.
were reduced in heterozygous female mice compared with wildtype female littermates (1.8 fold, $P=0.0264$) as measured by semiquantitative immunoblot (Fig 2F). Iqsec2 protein abundance was not impacted by the presence of an observed seizure (indicated by stars instead of circles).

Iqsec2 KO heterozygous female mice demonstrate altered behavioural phenotyping

Given the striking similarity in the seizure phenotype displayed by the Iqsec2 KO hemizygous male and heterozygous female mice, coupled with the marked overlap in phenotypic outcomes in loss-of-function male and females patients in the human setting, we contend that the Iqsec2 KO heterozygous females provide a representative model for this disorder. Interestingly, the male KO progeny were able to breed and transmit the loss-of-function Iqsec2 mutation with minimal difficulty. In contrast, the Iqsec2 KO heterozygous females displayed reduced breeding success (Fig S4). However limited, this indicates that a loss-of-function mutation
in Iqsec2 is able to be transmitted, at least in mice. Due largely to the limited breeding success of our Iqsec2 KO heterozygous females, generating the required number of age appropriate KO males for behavioural testing was challenging and precluded testing in hemizygous males. Hence, we undertook a battery of behavioural tests at monthly intervals up to 6 mo of age in the Iqsec2 KO heterozygous females compared with female wild-type controls.

Iqsec2 KO heterozygous females demonstrate an increased locomotor activity and exploratory behaviour. Iqsec2 KO heterozygous females exhibit reduced neuromuscular strength at 3,5 , and 6 mo of age using the inverted grid test (Fig S5A). Although the difference in overall performance by each genotype on the apparatus was significant ($P=0.0031$), the variability amongst individuals meant that significance was not reached at any individual time point. Hyperactivity was indicated by a significant (P < 0.0001) increase in the overall average speed (Fig 3A; sociability apparatus shown), and overall total distance travelled (Fig 3B; open field test shown) compared with wild-type littermates on multiple apparatus.

Figure 4. Neuroanatomy changes in Iqsec2 KO mouse brains.
(A, B) Nissl staining of brain sections in both (A) coronal and (B) sagittal orientations from adult wild-type and heterozygous KO females demonstrate there is no gross disturbance to brain morphology. Scale bars shown for each set of pictomicrographs. (C) The thickness of the corpus callosum (CC) measured where the (1) start and (2) end of the cingulum intercepts the CC in three coronal sections for each of $n=4$ animals per genotype is significantly thinner in heterozygous female (HET/pink) mice compared with wild-type female (WT/Grey) mice. (D) Heterozygous females have increased total hippocampal and dentate gyrus volume compared with wild-type littermates ($n=4$ each). (E) The area of the brain was measured in animals from 60 to 155 d postnatal age in sagittal sections in HET/pink and WT/grey females (a total 36 sections measured per genotype: nine sections each for $n=4$ animals). The Iqsec2 HetKO animals with observed seizures are denoted by stars. Mean (\pm SEM) data presented where \# indicates $P<0.001$, and \#\# indicates $P<0.0001$, two-tailed, unpaired t test between wild-type and heterozygous females.

Altered anxiety and fear response was also noted in Iqsec2 KO female mice, with a significant increase in percentage total distance travelled in the inner third of the open-field apparatus (Fig 3C and P $=0.0006$), increased number of head dips on the elevated zero maze (Fig 3D and $P<0.0001$), and an initial increase in percentage total distance travelled in the open arms of the elevated zero maze (Fig S5B and $P=0.0007$). This is in comparison with wild-type females, which from 4 mo of age travelled a greater percentage of total distance on the open arms of the elevated zero maze, suggesting habituation (Fig S5B).

Normal social interaction and memory recall is demonstrated by mice choosing to interact with a mouse rather than an empty cage and a preference to interact with a novel mouse over a familiar mouse when tested in a three-chamber sociability apparatus. The Iqsec2 KO heterozygous females displayed autistic-like behaviour evident by a significant decrease in the total overall time of interaction, regardless of the other cage occupant (Fig 3E and $P<$ $0.03)$. In addition, the behaviour of the Iqsec2 KO heterozygous females suggests reduced learning capacity and spatial memory retention in contrast to wild-type females. Iqsec2 KO heterozygous
females had a significant preference toward exploring the familiar arm of the Y-maze increasing over time (Fig 3F and $P=0.0261$) and took significantly longer and travelled further distance to find the escape hole in the Barnes maze (Fig 3G and $P<0.0265$).

Altered neuroanatomy in Iqsec2 KO heterozygous female mice

Nissl stain of both the coronal (Fig 4A) and sagittal (Fig 4B) orientations demonstrate there is no gross disturbance to the overall anatomical structure of the brain in heterozygous female compared with wild-type mice. Emerging evidence suggests that severely affected patients with IQSEC2 loss-of-function mutations display a phenotype that includes thinning of the corpus callosum. We examined the thickness of the corpus callosum at two distinct points, each in three semi-serial coronal sections from an $n=4$ animals per genotype (sections relative to the reference Allen Brain Atlas, Mouse, P56, and coronal images 44-46 of 132). Using this approach, we demonstrate that the thickness of these regions was significantly diminished in the heterozygous female mice compared with the wild-type female mice (Fig 4C). In line with the increase in

A i

Spike count

Mean burst duration

Burst count

Mean interburst interval

E

Figure 5. Embryonic (E)17.5 cultured cortical neurons from Iqsec2 heterozygous females (HET/pink; $\mathrm{n}=$ 449 electrodes from $\mathrm{n}=12$ embryos) exhibit hallmarks of immature synaptic networks when compared with their respective wild-type (WT) control littermates (WT female/grey $\mathbf{n}=256$ electrodes from $\mathbf{n}=7$ embryos).
(A, B, C, D) Representative raster plots for (A.i) WT female and (A.ii) HET female after 21 d in culture. Quantitatively, HET cultures showed an increased (B) spike count, (C) burst count, and (D) mean burst duration compared with wild-type control littermates. Mean (\pm SEM) data presented, where * indicates significance between HET and WT control, two-tailed, unpaired t test, where $P<0.05$.
hyperactivity and anxiety noted in our Iqsec2 KO heterozygous females, we observed an increase in total hippocampal volume in heterozygous KO female mice (34\%, P = 0.0008 HET versus WT females) and an increase in the volume of the dentate gyrus ($48 \%, P=$ 0.0006 for HET females) shown in Fig 4D (sections relative to the reference Allen Brain Atlas, Mouse, P56, sagittal images 9-10 of 21). Despite these discreet changes to specific neuroanatomical regions of the brain, our analysis indicates there were no significant differences in the area of the brain sections measured between wildtype females and the heterozygous KO females (Fig 4E) (sections relative to the reference Allen Brain Atlas, Mouse, P56, sagittal images 11-12 of 21).

Iqsec2 female mice display hallmarks of immature synaptic networks ex vivo

To investigate the impact of Iqsec2 on the activity of synaptic networks, we analysed cultured cortical neurons using a multielectrode array. Neurons isolated from individual Iqsec2 KO heterozygous female embryos grown for 21 d in culture display hallmarks of immature synaptic networks when compared with neurons from wild-type littermates (Fig 5). Burst activity and bursting behaviour is considered one of the most important properties for analysing synaptic plasticity and information processing within the central nervous system. Wild-type cultures demonstrated consistent, evenly spaced bursts of closely clustered action potentials, suggestive of a highly synchronised culture (Fig 5A.i). In contrast, Iqsec2 KO heterozygous cultures showed aberrant synchronicity; with action potentials not consistently clustered in large bursts, but included smaller, randomly spaced events (Fig 5A.ii). In line with this observation, cultures from heterozygous females exhibited significantly elevated spike count (121\%; Fig 5B and $P<0.0001$), burst count (113%; Fig 5C and $P=0.0002$), and mean burst duration (114\%; Fig 5D and $P=0.003$), but no difference in mean burst interval (Fig 5E) when compared with sex-matched wild-type controls. It must be noted that large variations existed in Iqsec2 KO heterozygous cultures, with some embryos demonstrating burst patterning similar to that of their wild-type counterparts.

Loss of Iqsec2 function leads to an increased level of activated Arf6 in cortical tissues

There are multiple ArfGEFs, each with a conserved Sec7 domain responsible for catalysing nucleotide exchange and activating members of the small G protein Arfs. Hence, it was not clear what impact the loss-of-function of a single ArfGEF would have on regulating activated Arf-mediated responses to synaptic signalling in vivo. As Iqsec2 is an ArfGEF particularly for the small GTPase Arf6, we analysed the levels of activated (or GTP bound) Arf6 in cortical tissues from individual mice of each genotype. There was no change in the level of Arf6 activation with increasing postnatal age (range 2-9 mo), and although the levels of activated Arf6 were higher in wild-type females relative to wild-type males, this difference was not significant (1.5 fold; Fig 6A). In contrast, cortical tissues from heterozygous females exhibited significantly elevated levels of activated Arf6 (2.6 fold; $P=0.0186$) when compared with sex-

Levels of Activated Arf6 in cortical tissue

Figure 6. The levels of activated Arf6 in cortical tissue are elevated because of Iqsec2 KO.
(A) Biochemical assays to measure the levels of activated Arf6 (G-LISA) undertaken in cortical tissues of animals across postnatal development between 2 and 9 mo of age show that (A) the levels of activated Arf6 in wild-type male mice (WT/black) ($\mathrm{n}=4$) are elevated in age-matched wild-type female mice (WT/ grey) $(n=5$). (B) Iqsec2 KO hemizygous males (KO/blue, $n=6$) and heterozygous KO females (Het/pink; $n=9$) both display increased levels of activated Arf6 compared with the sex-matched wild-type controls listed above. (C) The abundance of Arf6 protein measured by immunoblot was not significantly different between any genotype groups. The Iqsec2 KO animals with observed seizures are denoted by stars. Mean (\pm SEM) data presented, where * indicates significance between WT female control and HET/KO, $P<0.05$, 2-tailed, unpaired t test.
matched and age-matched wild-type controls (Fig 6B). A similar outcome was observed in cortical tissues from hemizygous males with an elevated, although not statistically significant, level of activated Arf6 (2.45 fold; $P=0.0536$) (Fig 6B). The increases in activated Arf6 levels in Iqsec2 KO hemizygous and heterozygous mice were not reflected by a significant increase in Arf6 protein abundance relative to wild-type for either sex (detected in the same [and additional] cortical tissue) (Fig 6C). Nor was Arf6 protein abundance impacted by the presence of an observed seizure (indicated by stars instead of circles; $P=0.1009$).

Heterozygous loss-of-function variant in IQSEC2 in a female with a neurocognitive seizure phenotype

Here, we report an elderly, 68-yr-old female (II-2) (Fig 7A) with severe-to-profound ID, early onset of seizures who is nonverbal,
and communicates primarily using sounds and gestures. She has a history of normal early development, learning to sit at 8-10 mo and walk at age 18 mo . After seizure onset at 17 mo , she developed repeated, generalised seizures during the daytime and regression was observed. She later developed additional atypical absence and atonic seizure types. Since the age of 11 , she has been living in residential care. Her daily functioning skills are poor, and she needs assistance in every-day life. Facial features include low-set, large ears, and asymmetric facial features with prominent angle of the jaw, thick upper lip with mild hypertrichosis over the upper lip and deep-set eyes (Fig 7B). No brain MRI has been performed because of the requirement of general anaesthesia. A detailed clinical description of the proband is described in Supplemental Data 1. Whole-exome analysis of four Finnish families identified a novel, heterozygous single-nucleotide polymorphism at genomic position ChrX:g.53,349,756 (GRCh37/19) in the female proband of one family. The variant has been submitted to the gene variant database at https://databases.lovd.nl/shared/genes/IQSEC2 (patient ID 00174867; DB-ID \#0000398628). Sanger sequencing confirmed the presence of this variant in the proband (Fig 7C). Samples were not available for the twin brother or parents of the affected female proband to confirm the inheritance status of this variant. This variant in exon 1 of the NM_001111125.2 long isoform substitutes a single nucleotide at c.566C>A, generating a predicted premature stop codon, p.(S189*)
(NP_001104595) in IQSEC2 (Fig 7D). This variant was not found in ExAC, GnomAD, or dbSNP150 project databases. This predicted premature stop codon is located 141 nucleotides from the exon 1-2 junction, with the transcript predicted to be degraded via the nonsense-mediated mRNA decay pathway, resulting in loss of the IQSEC2 protein.

Review of the literature shows that the affected female proband adds to the growing number of affected females with loss-of-function variants in IQSEC2 gene presenting with severe ID and early-onset seizures (Table 1) (29-42) recently reviewed (12). Table 1 details 31 different variants in IQSEC2 in 38 separate cases of affected female(s) predicted to cause pathogenic loss of IQSEC2 function. Of these 31 variants, 28 are known to have arisen de novo, one case of gonadal mosaicism in a family of four affected girls, and one case of monozygotic twins, with discordant phenotypes. The inheritance in the proband of the current report was unable to be determined. Although not all cases were accompanied by complete clinical descriptions, 33 of the 38 cases report developmental delay or ID ranging from mild-to-severe or profound and present with a range of comorbid behavioural and psychiatric features (Table 1). Interestingly, 28 of the 38 cases reported a range of seizure types in the affected females, including epileptic encephalopathies (Table 1). In a recent review of the phenotypic spectrum of epileptic encephalopathies in male and female patients with pathogenic IQSEC2 variants, it was noted that there was no specific electroclinical syndrome that could

Table 1. Pathogenic loss-of-function variants in IQSEC2 in females with intellectual disability and other comorbidities.

cDNA	Ex	Protein	Dom	Family	DD/ID	Seizures	Behavioural/Psychiatric/ Physical features	Ref
c.55_151delinsAT	1	p.Ala19Ilefs*32	-	P1	Mild ID	None	Speech deficits-pronunciation, syntax issues at 6.5 years. Tantrums, anxiety	(29)
c.83_85del	1	p.Asp28del	CC	108286	Rett like	None	Loss of language. Regression stabilization, gait abnormalities	(30)
c.273_282del	1	p.Asp91Lysfs*112	-	P7	Rett like		Regression stabilization, gait abnormalities, stereotypic hand movements, inappropriate laughing/ screaming spells. Partial or loss of spoken language.	(31)
c.566C>A	1	p.(S189*)	-	Fin2	Severeprofound ID	Generalised seizures (18 mo)	Limited speech, low-set large ears, asymmetric facial features, mild hypertrichosis, mild ASD.	This report
c.804delC	3	p.Tyr269Thrfs*3	-	48		Seizures	Limited phenotype reported.	(32)
c. 854 del	3	p.Pro285Leufs*21	-	P11	Severe ID	Seizures (12 mo) tonic-clonic	Says words at 16 years. Limb rigidity, walking instability.	(29)
c. $928 \mathrm{G}>$ T	3	p.Glu310*	-	P16	Mild-mod DD	FE	No ASD or other features. Nonverbal at 3 years.	(33)
c.1556_1599delACCT	5	p.Tyr519Trpfs*87	-	P10	DD, Severe to profound ID	None	Hypotonia, first word at 2 years, stereotypies, and dysmorphic features.	(34)
c. $1591 \mathrm{C}>\mathrm{T}$	5	p.Arg531*	-	P3	DD, Severe to profound ID	Tonic-clonic, absence	Autism, first words at 11 mo , hypotonia, stereotypies, ataxic gait	(34)
c.1744_1763del	5	p.Arg582Cysfs*9	-	P16	Mild DD	Focal epilepsy (17 mo)	50-60 words at 3 years. Autistic behaviour, hypertonia.	(29)
c.1983_1999del	5	p.Leu662Glnfs*25	-	P17	Global DD	Focal epilepsy (11 mo)	Babbling at 16 mo Hypertonia.	(29)
c.2052_2053delCG	5	p.Cys684*	-	47		Seizures	Limited phenotype reported.	(32)
c.2078delG	5	p.Gly693Valfs*29		P18	Mod global DD	None	Nonverbal at 2.8 years. Selfinjurious behaviour, hypotonia	(29)
c. $2203 \mathrm{C}>$ T	5	p.Gln735*	-	T17563	Mild ID	SGE (5 years)-regression with nonconvulsive $S E$. Absence to tonic-clonic and myoclonic seizures, drop attacks. Offset at 38 years.	(35)	
c. $2272 \mathrm{C}>$ T	5	p.Arg758*	-	P19	Severe ID	Multifocal epilepsy (23 mo)	3 words at 11.3 years. Selfinjurious behaviours.	(29)
				P20	Mod ID	Seizures (9 years 4 mo) GTCS, focal, atypical absences	Speaks sentences, reasoning difficulties	
c. 2317 C> ${ }^{\text {T }}$	6	p.Gln773*	Sec7	P6	Global DD	Seizures (18 mo)	Hypotonic, strabismus, dysmorphic face	(36)
				P23	Mod ID	Seizures (14 years), GTCS, absences	Few words at 43 years. ASD (13 years) aggressive.	(29)
c.2317_2332del	6	p.Gln773Glyfs*25	Sec7	P24		Seizures (6 years)	Sentences at 11.3 years	(29)

(Continued on following page)

Table 1. Continued

cDNA	Ex	Protein	Dom	Family	DD/ID	Seizures	Behavioural/Psychiatric/ Physical features	Ref
c.2679_2680insA	8	p.Asp894fs*10	Sec7	K2	DD, Modsevere ID	Epilepsy	4 affected sisters, nonverbal (2), language delay (1), aggressive when young and ASD traits (2)	(37)
c. $2776 \mathrm{C}>$ T	9	p.Arg926*	Sec7	P3	Severe ID Rett like	EE	ASD (balance \& hand stereotypies), pain sensitivity \& aggressive. Speech delay, regression at 2 years. Now nonverbal	(38)
				P26	Profound ID	LGS (23 mo)	Nonverbal at 11.3 years. Autistic behaviour, truncal hypotonia, strabismus.	(29)
	9	p.Tyr933*	Sec7	M2189	Global DD Mod ID		ASD, sleep disturbances, behavioural aspects, oral motor dyspraxia, strabismus. Marked speech delay, nonverbal at 14 years.	(39)
c. $2854 \mathrm{C}>$ T	9	p.Gln952*	PH	P27	Severe ID	EE (12 years), absences, GTCS	Nonverbal at 16 years. Autistic behaviour, dystonia, tremor, ataxia.	(29)
c. $2911 \mathrm{C}>$ T	10	p.Arg971*	PH	P8	DD, Severe to profound ID	Seizures	No ASD. Stereotypies and dysmorphic features.	(34)
				P11	DD, Severe to profound ID	Seizures	Autism, first word at 2.3-3 years, stereotypies and dysmorphic features, ataxic gait	(34)
c.3079delC	11	p.Leu1027Serfs*75	PH	P29	Mod-severe ID	None	10 words at 8 years	(29)
c. $3163 C>$ T	12	p.Arg1055*	PH	Pat19	Severe ID	Epilepsy	Borderline macrocephaly, skewed X-inactivation (97:3)	(40)
				P31	Mod-severe ID	Seizures (5 years 8 mo) GTCS, focal dyscognitive	3 word sentences, and 20 words at 8 years. Autistic behaviour, Global hypotonia, aggression, hyperactivity.	(29)
c. $3278 \mathrm{C}>\mathrm{A}$	13	p.Ser1093*	-	P36	Severe ID	None	Few words, rare sentences at 13 years.	(29)
c. $3322 \mathrm{C}>$ T	13	p.Gln1108*	-	KO		EE		(41)
c.3433C>T	13	p.Arg1145*	-	P39	Severe ID	Focal epilepsy (11 mo) focal, tonic, tonic-clonic	Nonverbal at 11 years. Autistic behaviour.	(29)
c.3457del	14	p.Arg1153Glyfs*244	-	P40	Severe ID	IS (7 mo) spasms, focal, absence, tonic, myoclonic jerks	Nonverbal at 20 years. Autistic behaviour, truncal hypotonia. MRI mild atrophy and cerebral white matter hyperintensities.	(29)
c.4039dupG	15	p.Ala1347Glyfs*40	-	1098 M		EE (19 mo)	ASD, macrocephaly	(42)
				P41	Mild-mod ID	Seizures (3 years) absence and falls	Speaks sentences, writes first name, counts to 15 at 11 years. Mild autistic behaviour.	(29)
c.4401del	15	p.Gly1468Alafs*27	-	P42	Mod-severe ID	None	Short sentences at 11 years. Attention deficit/ hyperactivity	(29)

(Continued on following page)

Table 1. Continued

| cDNA | Ex | Protein | Dom | Family | DD/ID | Seizures |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | | Behavioural/Psychiatric/ |
| :--- |
| Physical features |

ASD, autistic spectrum disorder; DD, developmental delay; EE, epileptic encephalopathy; GTCS, generalised tonic-clonic seizures; IS, infantile spasms; SGE, symptomatic generalised epilepsy.
Del, deletion; dup, duplication. Numbers (alone) in brackets indicate number of affected individuals.
Nucleotide numbering reflects CDNA numbering with +1 corresponding to the A of the ATG translation initiation codon in the reference sequence for IQSEC2 (GenBank: NM_001111125.2).
be defined, with all patients displaying multiple seizure types consisting mainly of atonic, myoclonic, or epileptic spasms. The seizure phenotypes were accompanied with a variety of electroencephalogram (EEG) patterning, including hypsarrhythmia, polyspikes and waves, generalised spikes and waves, slow spikes and waves, as well as background slowing (33). The advanced age of the female proband (68 yr old) we identify and present as part of this study underscores the importance of considering IQSEC2 as an explanation of ID and, particularly, seizures in females across their life span. Furthermore, this finding reinforces the fact that a female IQSEC2 phenotype may still be under-ascertained.

Discussion

The cellular and molecular pathogenesis of IQSEC2 mutations is not well understood. To address this, we used CRISPR/Cas9-targeted editing to generate an Iqsec2 KO mouse model with no (Iqsec2 KO hemizygous males) or reduced (Iqsec2 KO heterozygous females) Iqsec2 mRNA and protein. We validated both successful genome editing and germline transmission. To date, there have been no reports of transmission of loss-of-function mutations in IQSEC2 in the human setting, with the exception of gonadal mosaicism in a family of four affected female siblings (37). We demonstrate that hemizygous KO males were viable and able to breed and generate healthy female heterozygous KO offspring. This suggests a potential difference in mouse to human phenotypic outcomes related to brain and sexual development (43, 44). Despite some difficulties, the successful breeding of the Iqsec2 KO heterozygous female mice shows that a loss-of-function mutation in Iqsec2 can be transmitted, at least in mice.

In agreement with the expanding phenotypic spectrum and the 67% penetrance of seizures in patients with de novo pathogenic variants in IQSEC2 (33), we demonstrate that severe spontaneous seizures are observed in approximately half of all the Iqsec2 KO mice. In these mice, we observed four distinct seizure types: (i) involuntary, uncontrolled, unilateral head movements, (ii) repetitive forelimb clonus, (iii) uncontrolled convulsions with bilateral forelimb outward stretching, and (iv) full body tonic-clonic seizures. Using the (human) International League Against Epilepsy classification system, these seizures can be considered equivalent to a (i) generalised clonic seizure, (ii) focal seizure evolving to
bilateral tonic-clonic seizure, (iii) focal motor seizure (likely frontal lobe onset), and (iv) generalised tonic-clonic seizure (Personal communication: A/Prof Nigel C Jones, Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia). Although EEG analysis was not undertaken in this study, aberrant firing and abnormal burst activity was noted in neuronal cultures of Iqsec2 KO affected embryos. This abnormal activity is consistent with immature synaptic networks, previously associated with neurodevelopmental disorders ($45,46,47$).

Ionotropic glutamate receptors are ligand-gated cation channels that mediate most of the excitatory neurotransmission in the brain and are classified based on pharmacological selectivity to AMPA, kainic acid, and N-methyl-D-aspartic acid (NMDA). Activation of these receptors couples the electrical signal at the synapse to downstream biochemical signalling pathways. Selected NMDAR subunit genes have been implicated in the pathogenesis of ID $(48,49,50)$. Synaptic plasticity associated with changes to spine morphology has been shown to be dependent on activation of these receptors $(51,52,53,54)$. IQSEC2 is localized to excitatory synapses as part of the protein scaffold downstream of the NMDA receptor complex. Through enzyme activity, IQSEC2 activates ARF6, a member of the Ras superfamily (55) to facilitate downstream remodelling of actin cytoskeleton, a site of convergence with other ID and autism genes. In the present study, we demonstrate that neurons in culture isolated from individual heterozygous female embryos display hallmarks of immature synaptic networks. Investigating which critical components of synaptic signalling are altered in response to Iqsec2 dosage, we show surprisingly the loss of Iqsec2 leads to an increase in the levels of activated Arf6 in cortical tissue during postnatal life. The increase in the active form of Arf6 is independent of changes to the overall abundance of Arf6 protein. Taken together, these data indicate that increased levels of activated Arf6 in the presence of Iqsec2 loss of function are likely to be at the local, dendritic environment in response to neuron signalling. Using the novel and powerful Iqsec2 KO hemizygous male and heterozygous female mouse models will enable further investigations into the critical components altered in response to reduced Iqsec2 dosage and the downstream events contributing to disease outcomes.

Review of the female patients with complete loss-of-function mutations in IQSEC2 shows that comorbid behavioural and

Table 2. Correlation of behavioural findings in Iqsec2 KO mice and patients with loss-of-function mutations.

Test	Measure	Finding
Inverted Grid	Neuromuscular strength	Reduced

psychiatric features are frequently present in addition to ID (Table 1). Hence, it was not surprising that mice modelling Iqsec2 KO in the heterozygous female state displayed a range of phenotypic traits across a series of behavioural tests corresponding to these additional features (Table 2). Notably, the Iqsec2 KO heterozygous females recapitulated a reduction in intellectual functioning and autistic-like behaviours, demonstrated through a loss of novel recognition on the Y -maze, a reduction in learning and memory during the Barnes maze trial, and an overall reduction in interaction time during the sociability test. Altered anxiety-like/fear responses and hyperactivity in the Iqsec2 KO heterozygous female mice on multiple apparatus correlate with an increase in hippocampal volume, which has been associated with mental retardation and psychiatric issues such as autism, attention-deficit disorder, and schizophrenia $(56,57)$. We also observe a thinning of the corpus callosum in the Iqsec2 KO heterozygous female mice, a phenotype emerging in several cases (29). Taken together, these findings highlight that our Iqsec2 KO mouse model recapitulates the complex phenotypic spectrum observed in female patients with loss-of function IQSEC2 variants ($31,32,33,35,36,37,38,39,40,41$). Interestingly, the emergence of a speech phenotype is noted in the proband reported in this study and 26 of the 38 published female cases with loss-of-function variants (Table 1). Although we have not yet addressed this clinical feature in mice, it would be interesting to investigate it, particularly in view of the observations of reduced mothering skills of the breeding heterozygous females.

Female patients with de novo loss-of-function mutations in IQSEC2 often have a more severe phenotype than the heterozygous state would traditionally predict, particularly if IQSEC2 is thought to escape X-inactivation. The capacity of genes on the X-chromosome to be silenced, or to escape to some degree X-inactivation is not fully understood. Escape from X-inactivation for IQSEC2 in humans has long been the prevailing view, as demonstrated by evidence measuring DNA methylation as a predictor of inactivation status across a panel of 27 tissues from 1,875 females (58). In contrast, recent large-scale expression studies from the GTEX consortium demonstrate that the expression of IQSEC2 is similar in males and females across a broad range of tissues, including regions of the brain (19). This would suggest either dosage compensation in males (up-regulation) or females (down-regulation) or X-chromsome inactivation (XCI) in females. The degree by which incomplete XCI manifests as detectable sex differences in gene expression and phenotypic traits remains poorly understood (58, 59). The Iqsec2 KO
mouse model studied here shows severe phenotypic presentation in the heterozygous state. This fact would suggest that the severity of the phenotype in heterozygous females with loss-of-function IQSEC2/Iqsec2 allele is generally independent of X-chromosome inactivation. Given that X-inactivation leads to cellular mosaicism in heterozygous females one may speculate that the function and impact of IQSEC2/Iqsec2 is cell nonautonomous, that is, loss of IQSEC2/Iqsec2 impacts wild-type (i.e., where the mutant X is inactivated) as well as mutant (i.e., cells where the wild-type X is inactivated) cells. As such, this genetic KO model will provide an excellent tool to investigate the molecular mechanisms of X-linked inheritance underpinning the male and female phenotypes, providing valuable information not only for Iqsec2, but other X-linked genes with an emerging female phenotype (4, 5, 6, 37).

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa. 201900386.

Acknowledgements

We would like to thank the members of the South Australian Genome Editing facility, Melissa White and Sandy Piltz, University of Adelaide, under the guidance of Professor Paul Q Thomas, for the expertise generating the Iqsec2 KO mouse model. We would also like to thank the Laboratory Animal Services, Medical School South (Adelaide), and Aneta Zysk and Laura Redpath (Intellectual Disability Research Group) for their kind assistance with the mice, and Susan Hinze for her initial assistance with the CRISPR guide design, and Carl Campugan and Joel Chan for assistance in histology analysis and breakpoint mapping, respectively. Use of a laptop and behavioural tracking software, Anymaze (Wood Dale, United States of America), were kindly donated by Professor Bernhard Baune and Dr Catharine Jawahar, University of Adelaide. This research undertaken by the Intellectual Disability Research program in the Adelaide Medical School, University of Adelaide, Australia, was funded by the Australian National Health and Medical Research Council (Grant No 1063025) and Channel 7 Children's Research Foundation (Grant 161263). C Shoubridge was supported by the Australian Research Council (Future Fellowship FT120100086).

Author Contributions

MR Jackson: investigation, formal anlaysis and writing-original draft. KE Loring: investigation and writing-review and editing.

CC Homan: investigation, formal analysis.
MHN Thai: investigation.
L Määttänen: investigation.
M Arvio: investigation.
I Jarvela: investigation and writing-review and editing.
M Shaw: data curation.
A Gardner: investigation.
J Gecz: investigation, review and editing.
C Shoubridge: conceptualization, formal analysis, funding acquisition, investigation, and writing-original draft, review, and editing.

Conflict of Interest Statement

The authors declare that they have no conflict of interest.

References

1. Neri G, Schwartz CE, Lubs HA, Stevenson RE (2018) X-linked intellectual disability update 2017. Am J Med Genet A 176: 1375-1388. doi:10.1002/ ajmg.a. 38710
2. Gecz J, Shoubridge C, Corbett M (2009) The genetic landscape of intellectual disability arising from chromosome X. Trends Genet 25: 308-316. doi:10.1016/j.tig.2009.05.002
3. Dobyns WB (2006) The pattern of inheritance of X-linked traits is not dominant or recessive, just X-linked. Acta Paediatr Suppl 95: 11-15. doi:10.1080/08035320600618759
4. Reijnders MR, Zachariadis V, Latour B, Jolly L, Mancini GM, Pfundt R, Wu KM, van Ravenswaaij-Arts CM, Veenstra-Knol HE, Anderlid BM, et al (2016) De novo loss-of-function mutations in USP9X cause a female-specific recognizable syndrome with developmental delay and congenital malformations. Am J Hum Genet 98: 373-381. doi:10.1016/ j.ajhg.2015.12.015
5. Zweier C, Kraus C, Brueton L, Cole T, Degenhardt F, Engels H, GillessenKaesbach G, Graul-Neumann L, Horn D, Hoyer J, et al (2013) A new face of Borjeson-Forssman-Lehmann syndrome? De novo mutations in PHF6 in seven females with a distinct phenotype. J Med Genet 50: 838-847. doi:10.1136/jmedgenet-2013-101918
6. Snijders Blok L, Madsen E, Juusola J, Gilissen C, Baralle D, Reijnders MR, Venselaar H, Helsmoortel C, Cho MT, Hoischen A, et al (2015) Mutations in DDX3X are a common cause of unexplained intellectual disability with gender-specific effects on Wht signaling. Am J Hum Genet 97: 343-352. doi:10.1016/j.ajhg.2015.07.004
7. Mattiske T, Moey C, Vissers LE, Thorne N, Georgeson P, Bakshi M, Shoubridge C (2017) An emerging female phenotype with loss-offunction mutations in the Aristaless-related homeodomain transcription factor ARX. Hum Mutat 38: 548-555. doi:10.1002/ humu. 23190
8. Marsh E, Fulp C, Gomez E, Nasrallah I, Minarcik J, Sudi J, Christian SL, Mancini G, Labosky P, Dobyns W, et al (2009) Targeted loss of Arx results in a developmental epilepsy mouse model and recapitulates the human phenotype in heterozygous females. Brain 132: 1563-1576. doi:10.1093/ brain/awp107
9. Palmer EE, Stuhlmann T, Weinert S, Haan E, Van Esch H, Holvoet M, Boyle J, Leffler M, Raynaud M, Moraine C, et al (2018) De novo and inherited mutations in the X-linked gene CLCN4 are associated with syndromic intellectual disability and behavior and seizure disorders in males and females. Mol Psychiatry 23: 222-230. doi:10.1038/mp.2016.135
10. Hamici S, Bastaki F, Khalifa M (2017) Exome sequence identified a c.320A > G ALG13 variant in a female with infantile epileptic encephalopathy with normal glycosylation and random X inactivation:

Review of the literature. Eur J Med Genet 60: 541-547. doi:10.1016/ j.ejmg.2017.07.014
11. Shoubridge C, Tarpey PS, Abidi F, Ramsden SL, Rujirabanjerd S, Murphy JA, Boyle J, Shaw M, Gardner A, Proos A, et al (2010) Mutations in the guanine nucleotide exchange factor gene IQSEC2 cause nonsyndromic intellectual disability. Nat Genet 42: 486-488. doi:10.1038/ng. 588
12. Shoubridge C, Harvey RJ, Dudding-Byth T (2019) IQSEC2 mutation update and review of the female-specific phenotype spectrum including intellectual disability and epilepsy. Hum Mutat 40: 5-24. doi:10.1002/ humu. 23670
13. Murphy JA, Jensen ON, Walikonis RS (2006) BRAG1, a Sec7 domaincontaining protein, is a component of the postsynaptic density of excitatory synapses. Brain Res 1120: 35-45. doi:10.1016/
j.brainres.2006.08.096
14. Sakagami H, Sanda M, Fukaya M, Miyazaki T, Sukegawa J, Yanagisawa T, Suzuki T, Fukunaga K, Watanabe M, Kondo H (2008) IQ-ArfGEF/BRAG1 is a guanine nucleotide exchange factor for Arf6 that interacts with PSD-95 at postsynaptic density of excitatory synapses. Neurosci Res 60: 199-212. doi:10.1016/j.neures.2007.10.013
15. Myers KR, Wang G, Sheng Y, Conger KK, Casanova JE, Zhu JJ (2012) Arf6-GEF BRAG1 regulates JNK-mediated synaptic removal of GluA1containing AMPA receptors: A new mechanism for nonsyndromic X-linked mental disorder. J Neurosci 32: 11716-11726. doi:10.1523/ jneurosci.1942-12.2012
16. Brown JC, Petersen A, Zhong L, Himelright ML, Murphy JA, Walikonis RS, Gerges NZ (2016) Bidirectional regulation of synaptic transmission by BRAG1/IQSEC2 and its requirement in long-term depression. Nat Commun 7: 11080. doi:10.1038/ncomms11080
17. Hinze SJ, Jackson MR, Lie S, Jolly L, Field M, Barry SC, Harvey RJ, Shoubridge C (2017) Incorrect dosage of IQSEC2, a known intellectual disability and epilepsy gene, disrupts dendritic spine morphogenesis. Transl Psychiatry 7: e1110. doi:10.1038/tp.2017.81
18. Balaton BP, Cotton AM, Brown CJ (2015) Derivation of consensus inactivation status for X-linked genes from genome-wide studies. Biol Sex Differ 6: 35. doi:10.1186/s13293-015-0053-7
19. Tukiainen T, Villani AC, Yen A, Rivas MA, Marshall JL, Satija R, Aguirre M, Gauthier L, Fleharty M, Kirby A, et al (2018) Landscape of X chromosome inactivation across human tissues. Nature 555: 274. doi:10.1038/ nature2599
20. Tsuchiya KD, Greally JM, Yi Y, Noel KP, Truong JP, Disteche CM (2004) Comparative sequence and x-inactivation analyses of a domain of escape in human xp11.2 and the conserved segment in mouse. Genome Res 14: 1275-1284. doi:10.1101/gr. 2575904
21. Van der Hoek KH, Eyre NS, Shue B, Khantisitthiporn O, Glab-Ampi K, Carr JM, Gartner MJ, Jolly LA, Thomas PQ, Adikusuma F, et al (2017) Viperin is an important host restriction factor in control of Zika virus infection. Sci Rep 7: 4475. doi:10.1038/s41598-017-04138-1
22. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339: 819-823. doi:10.1126/ science. 1231143
23. Yang H, Wang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R (2013) One-step generation of mice carrying reporter and conditional alleles by CRISPR/ Cas-mediated genome engineering. Cell 154: 1370-1379. doi:10.1016/ j.cell.2013.08.022
24. Mattiske T, Lee K, Gecz J, Friocourt G, Shoubridge C (2016) Embryonic forebrain transcriptome of mice with polyalanine expansion mutations in the ARX homeobox gene. Hum Mol Genet 25: 5433-5443. doi:10.1093/ hmg/ddw360
25. Jackson MR, Lee K, Mattiske T, Jaehne EJ, Ozturk E, Baune BT, O’Brien TJ, Jones N, Shoubridge C (2017) Extensive phenotyping of two ARX polyalanine expansion mutation mouse models that span clinical
spectrum of intellectual disability and epilepsy. Neurobiol Dis 105: 245-256. doi:10.1016/j.nbd.2017.05.012
26. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25: 1754-1760. doi:10.1093/ bioinformatics/btp324
27. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, del Angel G, Rivas MA, Hanna M, et al (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43: 491. doi:10.1038/ng. 806
28. Wang K, Li MY, Hakonarson H (2010) ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38: e164. doi:10.1093/nar/gkq603
29. Mignot C, McMahon AC, Bar C, Campeau PM, Davidson C, Buratti J, Nava C, Jacquemont ML, Tallot M, Milh M, et al (2018) IQSEC2-related encephalopathy in males and females: A comparative study including 37 novel patients. Genet Med 21: 837-849. doi:10.1038/s41436-018-0268-1
30. Sajan SA, Jhangiani SN, Muzny DM, Gibbs RA, Lupski JR, Glaze DG, Kaufmann WE, Skinner SA, Annese F, Friez MJ, et al (2017) Enrichment of mutations in chromatin regulators in people with Rett syndrome lacking mutations in MECP2. Genet Med 19: 13-19. doi:10.1038/gim.2016.42
31. Olson HE, Tambunan D, LaCoursiere C, Goldenberg M, Pinsky R, Martin E, Ho E, Khwaja O, Kaufmann WE, Poduri A (2015) Mutations in epilepsy and intellectual disability genes in patients with features of Rett syndrome. Am J Med Genet A 167A: 2017-2025. doi:10.1002/ajmg.a. 37132
32. Helbig KL, Farwell Hagman KD, Shinde DN, Mroske C, Powis Z, Li S, Tang S, Helbig I (2016) Diagnostic exome sequencing provides a molecular diagnosis for a significant proportion of patients with epilepsy. Genet Med 18: 898-905. doi:10.1038/gim.2015.186
33. Zerem A, Haginoya K, Lev D, Blumkin L, Kivity S, Linder I, Shoubridge C, Palmer EE, Field M, Boyle J, et al (2016) The molecular and phenotypic spectrum of IQSEC2-related epilepsy. Epilepsia 57: 1858-1869. doi:10.1111/epi. 13560
34. Radley JA, O’Sullivan RBG, Turton SE, Cox H, Vogt J, Morton J, Jones E, Smithson S, Lachlan K, Rankin J, et al (2019) Deep phenotyping of fourteen new patients with IQSEC2 variants, including monozygotic twins of discordant phenotype. Clin Genet 95: 496-506. doi:10.1111/ cge. 13507
35. Epi4K Consortium (2016) De novo mutations in SLC1A2 and CACNA1A are important causes of epileptic encephalopathies. Am J Hum Genet 99: 287-298. doi:10.1016/j.ajhg.2016.06.003
36. Helm BM, Powis Z, Prada CE, Casasbuenas-Alarcon OL, Balmakund T, Schaefer GB, Kahler SG, Kaylor J, Winter S, Zarate YA, et al (2017) The role of IQSEC2 in syndromic intellectual disability: Narrowing the diagnostic odyssey. Am J Med Genet A 173: 2814-2820. doi:10.1002/ajmg.a. 38404
37. Ewans LJ, Field M, Zhu Y, Turner G, Leffler M, Dinger ME, Cowley MJ, Buckley MF, Scheffer IE, Jackson MR, et al (2017) Gonadal mosaicism of a novel IQSEC2 variant causing female limited intellectual disability and epilepsy. Eur J Hum Genet 25: 763-767. doi:10.1038/ejhg.2017.29
38. Allou L, Julia S, Amsallem D, El Chehadeh S, Lambert L, Thevenon J, Duffourd Y, Saunier A, Bouquet P, Pere S, et al (2017) Rett-like phenotypes: Expanding the genetic heterogeneity to the KCNA2 gene and first familial case of CDKL5-related disease. Clin Genet 91: 431-440. doi:10.1111/cge. 12784
39. Berger SI, Ciccone C, Simon KL, Malicdan MC, Vilboux T, Billington C, Fischer R, Introne WJ, Gropman A, Blancato JK, et al (2017) Exome analysis of Smith-Magenis-like syndrome cohort identifies de novo likely pathogenic variants. Hum Genet 136: 409-420. doi:10.1007/s00439-017-1767-x
40. Tzschach A, Grasshoff U, Beck-Woedl S, Dufke C, Bauer C, Kehrer M, Evers C, Moog U, Oehl-Jaschkowitz B, Di Donato N, et al (2015) Next-generation sequencing in X-linked intellectual disability. Eur J Hum Genet 23: 1513-1518. doi:10.1038/ejhg.2015.5
41. Epi $4 K$, Allen AS, Berkovic SF, Cossette P, Delanty N, Dlugos D, Eichler EE, Epstein MP, Glauser T, et al;Epilepsy Phenome/Genome Project, (2013) De novo mutations in epileptic encephalopathies. Nature 501: 217-221. doi:10.1038/nature12439
42. Parrini E, Marini C, Mei D, Galuppi A, Cellini E, Pucatti D, Chiti L, Rutigliano D, Bianchini C, Virdo S, et al (2017) Diagnostic targeted resequencing in 349 patients with drug-resistant pediatric epilepsies identifies causative mutations in 30 different genes. Hum Mutat 38: 216-225. doi:10.1002/ humu. 23149
43. Clancy B, Darlington RB, Finlay BL (2001) Translating developmental time across mammalian species. Neuroscience 105: 7-17. doi:10.1016/s0306-4522(01)00171-3
44. Semple BD, Blomgren K, Gimlin K, Ferriero DM, Noble-Haeusslein LJ (2013) Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species. Prog Neurobiol 106-107: 1-16. doi:10.1016/j.pneurobio.2013.04.001
45. Liu MG, Chen XF, He T, Li Z, Chen J (2012) Use of multi-electrode array recordings in studies of network synaptic plasticity in both time and space. Neurosci Bull 28: 409-422. doi:10.1007/s12264-012-1251-5
46. Lisman JE (1997) Bursts as a unit of neural information: Making unreliable synapses reliable. Trends Neurosci 20: 38-43. doi:10.1016/ s0166-2236(96)10070-9
47. Izhikevich EM, Desai NS, Walcott EC, Hoppensteadt FC (2003) Bursts as a unit of neural information: Selective communication via resonance. Trends Neurosci 26: 161-167. doi:10.1016/s0166-2236(03)00034-1
48. Endele S, Rosenberger G, Geider K, Popp B, Tamer C, Stefanova I, Milh M, Kortum F, Fritsch A, Pientka FK, et al (2010) Mutations in GRIN2A and GRIN2B encoding regulatory subunits of NMDA receptors cause variable neurodevelopmental phenotypes. Nat Genet 42: 1021-1026. doi:10.1038/ ng. 677
49. Lemke JR, Hendrickx R, Geider K, Laube B, Schwake M, Harvey RJ, James VM, Pepler A, Steiner I, Hortnagel K, et al (2014) GRIN2B mutations in West syndrome and intellectual disability with focal epilepsy. Ann Neurol 75: 147-154. doi:10.1002/ana. 24073
50. Hamdan FF, Srour M, Capo-Chichi JM, Daoud H, Nassif C, Patry L, Massicotte C, Ambalavanan A, Spiegelman D, Diallo O, et al (2014) De novo mutations in moderate or severe intellectual disability. PLoS Genet 10: e1004772. doi:10.1371/journal.pgen. 1004772
51. Chen BS, Thomas EV, Sanz-Clemente A, Roche KW (2011) NMDA receptordependent regulation of dendritic spine morphology by SAP102 splice variants. J Neurosci 31: 89-96. doi:10.1523/jneurosci.1034-10.2011
52. Hill TC, Zito K (2013) LTP-induced long-term stabilization of individual nascent dendritic spines. J Neurosci 33: 678-686. doi:10.1523/ jneurosci.1404-12.2013
53. Tada T, Sheng M (2006) Molecular mechanisms of dendritic spine morphogenesis. Curr Opin Neurobiol 16: 95-101. doi:10.1016/ j.conb.2005.12.001
54. Tian L, Stefanidakis M, Ning L, Van Lint P, Nyman-Huttunen H, Libert C, Itohara S, Mishina M, Rauvala H, Gahmberg CG (2007) Activation of NMDA receptors promotes dendritic spine development through MMPmediated ICAM-5 cleavage. J Cell Biol 178: 687-700. doi:10.1083/ jcb. 200612097
55. Casanova JE (2007) Regulation of Arf activation: The Sec7 family of guanine nucleotide exchange factors. Traffic 8: 1476-1485. doi:10.1111/ j.1600-0854.2007.00634.x
56. Plessen KJ, Bansal R, Zhu H, Whiteman R, Amat J, Quackenbush GA, Martin L, Durkin K, Blair C, Royal J, et al (2006) Hippocampus and amygdala morphology in attention-deficit/hyperactivity disorder. Arch Gen Psychiatry 63: 795-807. doi:10.1001/archpsyc.63.7.795
57. Schumann CM, Hamstra J, Goodlin-Jones BL, Lotspeich LJ, Kwon H, Buonocore MH, Lammers CR, Reiss AL, Amaral DG (2004) The amygdala is enlarged in children but not adolescents with autism; the hippocampus
is enlarged at all ages. J Neurosci 24: 6392-6401. doi:10.1523/ jneurosci.1297-04.2004
58. Cotton AM, Price EM, Jones MJ, Balaton BP, Kobor MS, Brown CJ (2015) Landscape of DNA methylation on the X chromosome reflects CpG density, functional chromatin state and X -chromosome inactivation. Hum Mol Genet 24: 1528-1539. doi:10.1093/hmg/ddu564
59. Schultz MD, He YP, Whitaker JW, Hariharan M, Mukamel EA, Leung D, Rajagopal N, Nery JR, Urich MA, Chen HM, et al (2015) Human body
epigenome maps reveal noncanonical DNA methylation variation. Nature 523: 212-U189. doi:10.1038/nature14465

License: This article is available under a Creative Commons License (Attribution 4.0 International, as described at https://creativecommons.org/ licenses/by/4.0/).

Appendix 3

Colony	ID	Genotype	DOB	Drug	Breeding Round	Date of death	Reason for death
PA1	2208G	PA1 hemizygous male	17/07/2017	Vehicle	2	26/09/2017	End point
PA1	2209G	PA1 hemizygous male	17/07/2017	Vehicle	2	1/09/2017	Found dead in cage
PA1	2258G	PA1 hemizygous male	21/07/2017	Vehicle	2	26/09/2017	End point
PA1	2302G	PA1 hemizygous male	3/08/2017	Vehicle	3	6/10/2017	End point
PA1	2327G	PA1 hemizygous male	8/09/2017	Vehicle	4	1/10/2017	Found dead in cage
PA1	2330G	PA1 hemizygous male	8/09/2017	Vehicle	4	6/11/2017	End point
PA1	2352G	PA1 hemizygous male	9/09/2017	Vehicle	4	8/11/2017	End point
PA1	2205G	Wild-type male	17/07/2017	Vehicle	2	26/09/2017	End point
PA1	2206G	Wild-type male	17/07/2017	Vehicle	2	26/09/2017	End point
PA1	2207G	Wild-type male	17/07/2017	Vehicle	2	26/09/2017	End point
PA1	2259G	Wild-type male	21/07/2017	Vehicle	2	26/09/2017	End point
PA1	2260G	Wild-type male	21/07/2017	Vehicle	2	26/09/2017	End point
PA1	2300G	Wild-type male	3/08/2017	Vehicle	3	6/10/2017	End point
PA1	2301G	Wild-type male	3/08/2017	Vehicle	3	6/10/2017	End point
PA1	2303G	Wild-type male	3/08/2017	Vehicle	3	6/10/2017	End point
PA1	2304G	Wild-type male	3/08/2017	Vehicle	3	6/10/2017	End point
PA1	2305G	Wild-type male	3/08/2017	Vehicle	3	6/10/2017	End point
PA1	2328G	Wild-type male	8/09/2017	Vehicle	4	8/11/2017	End point
PA1	2329G	Wild-type male	8/09/2017	Vehicle	4	6/11/2017	End point
PA1	2351G	Wild-type male	9/09/2017	Vehicle	4	8/11/2017	End point
PA1	2353G	Wild-type male	9/09/2017	Vehicle	4	8/11/2017	End point
PA1	2354G	Wild-type male	9/09/2017	Vehicle	4	8/11/2017	End point
PA1	2188G	PA1 hemizygous male	29/06/2017	E2	1	7/09/2017	End point
PA1	2217G	PA1 hemizygous male	18/07/2017	E2	2	11/08/2017	Found dead in cage
PA1	2219G	PA1 hemizygous male	18/07/2017	E2	2	3/08/2017	Cannibalised
PA1	2220G	PA1 hemizygous male	18/07/2017	E2	2	4/08/2017	Cannibalised
PA1	2332G	PA1 hemizygous male	8/09/2017	E2	4	8/11/2017	End point
PA1	2337G	PA1 hemizygous male	8/09/2017	E2	4	6/11/2017	End point
PA1	2340G	PA1 hemizygous male	8/09/2017	E2	4	8/11/2017	End point
PA1	2185G	Wild-type male	29/06/2017	E2	1	7/09/2017	End point
PA1	2186G	Wild-type male	29/06/2017	E2	1	7/09/2017	End point
PA1	2187G	Wild-type male	29/06/2017	E2	1	7/09/2017	End point
PA1	2218G	Wild-type male	18/07/2017	E2	2	11/08/2017	Wild-type control
PA1	2333G	Wild-type male	8/09/2017	E2	4	8/11/2017	End point
PA1	2334G	Wild-type male	8/09/2017	E2	4	6/11/2017	End point
PA1	2338G	Wild-type male	8/09/2017	E2	4	27/09/2017	Humane - runt
PA1	2339G	Wild-type male	8/09/2017	E2	4	8/11/2017	End point
Colony	ID	Genotype	DOB	Drug	Breeding Round	Date of death	Reason for death
PA2	2149D	PA2 hemizygous male	28/06/2017	Vehicle	1	7/09/2017	End point
PA2	2151D	PA2 hemizygous male	28/06/2017	Vehicle	1	24/08/2017	Found dead in cage
PA2	2152D	PA2 hemizygous male	28/06/2017	Vehicle	1	18/07/2017	Found dead in cage
PA2	2170D	PA2 hemizygous male	29/06/2017	Vehicle	1	7/09/2017	End point
PA2	2178D	PA2 hemizygous male	29/06/2017	Vehicle	1	11/08/2017	Humane - seizures
PA2	2180D	PA2 hemizygous male	29/06/2017	Vehicle	1	11/08/2017	Humane - seizures
PA2	2181D	PA2 hemizygous male	29/06/2017	Vehicle	1	20/07/2017	Humane - runt
PA2	2232D	PA2 hemizygous male	21/07/2017	Vehicle	2	26/09/2017	End point
PA2	2234D	PA2 hemizygous male	21/07/2017	Vehicle	2	27/07/2017	Cannibalised
PA2	2235D	PA2 hemizygous male	21/07/2017	Vehicle	2	26/09/2017	End point

PA2	2238D	PA2 hemizygous male
PA2	2280D	PA2 hemizygous male
PA2	2281D	PA2 hemizygous male
PA2	2282D	PA2 hemizygous male
PA2	2283D	PA2 hemizygous male
PA2	2361D	PA2 hemizygous male
PA2	2362D	PA2 hemizygous male
PA2	2364D	PA2 hemizygous male
PA2	2150D	Wild-type male
PA2	2169D	Wild-type male
PA2	2171D	Wild-type male
PA2	2177D	Wild-type male
PA2	2179D	Wild-type male
PA2	2231D	Wild-type male
PA2	2233D	Wild-type male
PA2	2236D	Wild-type male
PA2	2237D	Wild-type male
PA2	2273D	Wild-type male
PA2	2274D	Wild-type male
PA2	2275D	Wild-type male
PA2	2359D	Wild-type male
PA2	2360D	Wild-type male
PA2	2363D	Wild-type male
PA2	2157D	PA2 hemizygous male
PA2	2158D	PA2 hemizygous male
PA2	2159D	PA2 hemizygous male
PA2	2160D	PA2 hemizygous male
PA2	2161D	PA2 hemizygous male
PA2	2162D	PA2 hemizygous male
PA2	2210D	PA2 hemizygous male
PA2	2213D	PA2 hemizygous male
PA2	2223D	PA2 hemizygous male
PA2	2294D	PA2 hemizygous male
PA2	2309D	PA2 hemizygous male
PA2	2311D	PA2 hemizygous male
PA2	2343D	PA2 hemizygous male
PA2	2345D	PA2 hemizygous male
PA2	2367D	PA2 hemizygous male
PA2	2155D	Wild-type male
PA2	2156D	Wild-type male
PA2	2211D	Wild-type male
PA2	2212D	Wild-type male
PA2	2224D	Wild-type male
PA2	2225D	Wild-type male
PA2	2286D	Wild-type male
PA2	2287D	Wild-type male
PA2	2288D	Wild-type male
PA2	2293D	Wild-type male
PA2	2310D	Wild-type male
PA2	2312D	Wild-type male

21/07/2017	Vehicle	2
30/07/2017	Vehicle	3
10/09/2017	Vehicle	4
10/09/2017	Vehicle	4
10/09/2017	Vehicle	4
28/06/2017	Vehicle	1
29/06/2017	Vehicle	1
21/07/2017	Vehicle	2
30/07/2017	Vehicle	3
30/07/2017	Vehicle	3
30/07/2017	Vehicle	3
10/09/2017	Vehicle	4
10/09/2017	Vehicle	4
10/09/2017	Vehicle	4
28/06/2017	E2	1
17/07/2017	E2	2
17/07/2017	E2	2
19/07/2017	E2	2
1/08/2017	E2	3
5/08/2017	E2	3
5/08/2017	E2	3
8/09/2017	E2	4
8/09/2017	E2	4
10/09/2017	E2	4
28/06/2017	E2	1
28/06/2017	E2	1
17/07/2017	E2	2
17/07/2017	E2	2
19/07/2017	E2	2
19/07/2017	E2	2
1/08/2017	E2	3
5/08/2017	E2	3
5/08/20	E2	3

26/09/2017	End point
21/08/2017	Found dead in cage
24/08/2017	Found dead in cage
22/08/2017	Found dead in cage
11/08/2017	Found dead in cage
6/11/2017	End point
6/11/2017	End point
31/10/2017	Found dead in cage
7/09/2017	End point
26/09/2017	End point
26/09/2017	End point
26/07/2017	Cannibalised
26/09/2017	End point
6/10/2017	End point
6/10/2017	End point
6/10/2017	End point
6/11/2017	End point
6/11/2017	End point
6/11/2017	End point
15/07/2017	Humane - runt
7/09/2017	End point
20/07/2017	Found dead in cage
13/07/2017	Found dead in cage
7/07/2017	Humane - runt
18/07/2017	Found dead in cage
10/08/2017	Found dead in cage
26/09/2017	End point
12/08/2017	Found dead in cage
30/09/2017	Found dead in cage
8/09/2017	Humane - seizures
26/08/2017	Found dead in cage
8/11/2017	End point
2/10/2017	Found dead in cage
8/11/2017	End point
7/09/2017	End point
7/09/2017	End point
26/09/2017	End point
6/10/2017	End point
8/09/2017	Wild-type control
8/09/2017	Wild-type control

PA2	2344D	Wild-type male	$8 / 09 / 2017$	E2	4	$8 / 11 / 2017$	End point
PA2	2365D	Wild-type male	$10 / 09 / 2017$	E2	4	$8 / 11 / 2017$	End point
PA2	$2366 D$	Wild-type male	$10 / 09 / 2017$	E2	4	$8 / 11 / 2017$	End point

Appendix 4

GeneID	logFC	logCPM	LR	PValue	FDR
1700007G11Rik	0.593699697	0.101188128	4.517789545	0.033544144	0.999830311
1700010I14Rik	0.675700367	0.60179567	7.661481133	0.005641217	0.999830311
4930481A15Rik	0.549233248	0.224790427	4.292578945	0.03827906	0.999830311
4933408B17Rik	0.82816721	0.091874136	7.109956592	0.007665697	0.999830311
9430083A17Rik	0.629609892	1.574897233	10.52467324	0.001177912	0.999830311
Acad12	0.527730136	0.560155887	4.57762345	0.032392111	0.999830311
Akr1c18	-1.565972532	0.365068516	7.048213896	0.007934433	0.999830311
Arc	-0.622817614	5.388169925	10.09935598	0.001483211	0.999830311
Armc3	0.520583145	0.874715913	5.340100357	0.020840273	0.999830311
B3gn	-0.680465861	0.239804633	4.34478577	0.037122437	0.999830311
BC006965	-0.574952206	0.807649024	4.887206363	0.027056432	0.999830311
Bves	0.738581978	0.665178896	8.844287959	0.002940076	0.999830311
Catip	0.514483972	1.150724217	6.117209697	0.013387195	0.999830311
Ccdc60	0.728797038	0.53253956	8.96313191	0.002754822	0.999830311
Ccl17	0.660450468	0.483802352	4.51569288	0.03358528	1
Cfap52	0.531688623	1.531096669	5.804853128	0.015982003	0.999830311
Chat	-1.352475754	0.495423795	8.049329446	0.00455205	0.999830311
Chrna2	-0.977895842	0.397850957	6.413861415	0.011323291	0.999830311
Clca3a1	0.502468008	1.121170823	5.340103599	0.020840235	0.999830311
Col14a1	-0.510081924	1.4861254	4.884867163	0.027093119	0.999830311
Colq	-0.610360067	1.022193381	4.31220005	0.037839994	0.999830311
Cpz	-0.558674617	0.814003639	5.130996181	0.023502235	0.999830311
Crabp1	-0.705827664	2.84839265	8.218560723	0.004146407	0.999830311
Dmrt2	0.502511095	1.694868683	3.913056025	0.047912397	0.999830311
Ercc6l	-0.643148248	0.634568213	6.251646067	0.012407795	0.999830311
Exoc314	0.693532137	0.334401455	5.817781335	0.015864945	0.999830311
Fam183b	0.532865749	1.225288501	7.192648545	0.007320285	0.999830311
Fam221a	0.800498427	0.310502229	9.605207641	0.001940263	0.999830311
Fgf16	-0.813595344	0.485286679	9.19519943	0.002426507	0.999830311
Flnc	0.52665066	2.35741235	7.322328686	0.006810311	0.999830311
Gm11992	0.625126263	1.012205227	6.781842578	0.009208978	0.999830311
H2-Q4	0.640163253	1.845653462	4.146921308	0.041710295	0.999830311
Hmga2-ps1	-0.56990098	0.48193279	4.353702546	0.036928579	0.999830311
Hrc	-0.548340431	0.296751047	4.169869844	0.041148961	0.999830311
Isg15	-1.39988018	1.002738235	4.26796578	0.038837398	0.999830311
Lgr5	-0.909630825	2.992426639	4.659321254	0.030885398	0.999830311
Lrguk	0.646383874	0.681334626	7.563287537	0.005956923	0.999830311
Lrp2	0.5267983	0.746314771	5.106913395	0.023830681	0.999830311
Lrrc36	0.888871994	0.485750388	12.08455705	0.000508412	0.999830311
Lrrc74b	0.814932142	1.035340038	13.09750257	0.00029569	0.999830311
Mc 5 r	0.650483735	0.744673761	6.809573715	0.009067041	0.999830311
Meis1	-0.516355843	3.352135448	6.262989208	0.012328601	0.999830311
Mir17hg	-0.71102073	0.793262421	4.636487075	0.031299008	0.999830311
Mme	-0.54302654	3.66271461	4.364221385	0.036701252	0.999830311
Mybl2	0.669436309	0.777960791	8.84346731	0.002941398	0.999830311
Myh8	0.829062204	1.488904463	14.8318672	0.000117533	0.999830311
Ngfr	-0.724033455	2.450204564	5.187995979	0.022743428	0.999830311
Nppa	-0.88782949	1.002833453	4.425983199	0.035395715	0.999830311
Ntrk1	-1.683517417	0.166494995	11.15227791	0.000839286	0.999830311

Nxph2	0.747031405	2.524576563	10.95326832	0.000934387	0.999830311
Omp	-1.463505316	1.147093552	4.374600031	0.036478391	0.999830311
Ovgp1	0.569559485	2.365067256	4.838094441	0.027837639	0.999830311
Pappa2	-0.537589652	2.478917336	6.015116362	0.014183843	0.999830311
Pcp4l1	-0.571950362	6.909373509	4.082339897	0.043333611	0.999830311
Prima1	-0.858012921	0.76991666	7.049692721	0.007927885	0.999830311
Prlr	0.512276845	2.263934458	5.223087009	0.02228895	0.999830311
Rgs22	0.660191102	0.802873638	5.557171784	0.018405125	0.999830311
Rxfp3	0.549120607	2.596764152	11.15223931	0.000839303	0.999830311
S100a4	0.541616536	2.285095409	4.424180296	0.035433129	0.999830311
Serpina3n	0.544280102	4.211210994	8.467382642	0.003615713	0.999830311
Serpinb1a	0.536163649	0.667529972	5.386037733	0.020298512	0.999830311
Slc18a3	-0.853818879	1.242835005	9.365482772	0.002211098	0.999830311
Slc5a7	-0.58622272	2.648774517	4.089652276	0.043146518	0.999830311
Slc6a4	-1.356413819	1.303224165	4.350837972	0.036990741	0.999830311
Snord22	0.658422054	0.175634165	4.324815012	0.037560497	0.999830311
Socs1	-0.874431233	0.972939037	10.63966541	0.001106877	0.999830311
Sp6	0.504067161	0.63286386	4.649511124	0.031062393	0.999830311
Sp7	-1.460781938	1.499571632	6.532105991	0.010594445	0.999830311
Spata1	-0.597826355	0.919980252	5.988433399	0.014399986	0.999830311
Spata18	0.563877026	0.374753	4.175078205	0.041022669	0.999830311
Spon2	-0.525922724	0.408704717	3.97416775	0.04620328	0.999830311
Sspo	1.333888522	1.221211028	4.641952331	0.03119949	0.999830311
Sytl4	0.681548408	0.475658157	5.983235248	0.014442486	0.999830311
Tacr1	-0.561922395	3.20321107	8.059301766	0.004527063	0.999830311
Th	-1.055313381	4.11335111	5.252397762	0.02191655	0.999830311
Tmco5	-0.875754764	-0.0584237	5.785250739	0.016161192	0.999830311
Tnn	0.78929072	0.035977058	7.351152959	0.006701976	0.999830311
Ush1g	-1.533398729	0.768563578	7.51051853	0.006133971	0.999830311
Zc2hc1c	0.504126973	1.183312694	5.498768471	0.019029871	0.999830311
Zfp953	0.629094648	0.736161227	7.095231696	0.00772893	0.999830311

P10VWT_1	P10VWT_2	_3	P10VWT_4	-5	P10VWT_6
0.900221253	仡	0.881080883	0.647081127	0.920424551	0.495140325
1.050258129	1.504970477	9	60026	827	0.919546318
0.975239691	1.053479334	0.9545042	912	14	
1.050258129	0.902982286	0.95450429	0.705906684	0.287632672	3
1.800442506	2.407952762	2.936936275	1.882417825	2.818800189	2.122029964
1.200295004	1.580219	1.395044731	0.941208912	0.862898017	
1.125276566	0.82773376	2.7900	0.352953342	1.610742965	90
37.	44.	63.	41	47.74702361	56.87040303
2.02	1.5	1.321621324	1.470638925	1.380636827	0.99028065
1.800442506	1.504970477	0.88108088	1.470638925	1.03547762	. 77807765
2.475608446	1.80	2.3	53	34	
. 9	1.279224905	1.027927696	1.235336697	0.862898017	1.556155307
2.175534695	2.031710143	1.835585172	1.411813368	1.840849103	1.414686643
0.825	1.053479334	1.101351103	1.2	0.862898017	1.131749314
0.75	1.5	1.3	0.7	0.977951086	0.7
2.475608446	3.386183572	2.3	2.294196724	1.55	2.051295632
0.600147502	2.78	1.982	2.941277851	1.03547762	0.848811986
1.5	1.65	1.90	0.	0.63	2.617170289
2.1		2.20270220	1.823592268	1.725796034	
3.600885013	2.031710143	2.863	3.882486763	3.106	2.68
2.100	2.40	3.3	2.4	1.093004155	1.909826968
2.47	2.1				
6.37656721	7.90	8.88	11	5.00	10.75161848
2.925	1.6	3.891440565	3.0	189	1.556155307
1.950	1.8	1.835585	1.529464482	1.2	63
1.200295004	1.429721953	0.6608106	0.411778899	0.862898017	0.919546318
1.6	2.03	1.688738358	1.705941153	2.07	2.0
1.050258129	0.90	0.8	0.9	0.5	0.8
1.35033188	1.7307	1.7	1.529464482	321	. 34395231
5.4763	5.	4.47882782	4.	3.56	2.758638953
1.350	1.88	1.39	2.17654561	1.03547762	1.414686643
3.525	4.2			2.18600831	
1.8	1.429721953	1.17477451	1.4	1.553216431	. 34395231
1.350	1.4	1.027927696	1.17651114	1.2	1.34395231
1.275313442	8.50308319	2.643	0.6	0.805	1.48542097
9.6023	5.417	17.9	3.176580079	6.730604533	15.20788141
0.97	1.4	0.88	1.05	1.2	. 55
1.725424069	1.35	1.10	1.2	1.265583758	1.1
1.050258129	1.5049	0.587387255	0.823557798	0.862898017	0.8488
1.87	1.730	1.321	1.47	1.610742965	0.778077653
1.3	1.1	0.9	1.4	1.5	. 9
9.752396909	10.61004186	14.4644111	9.235612452	8.11124136	. 76
2.625645322	1.881213096	1.0279276	2.000068939	1.323110293	2.61717028
9.902433	14.9744	17.03	24.7067	10.06714353	9.26
1.050258129	1.504	1.0	1.17651114	1.26	1.626889639
2.175534695	1.95646162	1.688738358	1.470638925	2.761273654	2.1220299
6.076493459	10.53479334	4.625674634	6.235509044	6.788131067	3.819653935
1.35033188	1.655467524	4.258557	0.882383355	1.898375637	3.890388267
0.525129064	2.633698334	1.615314951	2.058894496	0.460212276	1.061014

3.825940326	2.182207191	5.727025737	6.176683487	4.774702361	3.678185271
9.002212532	1.354473429	4.038287379	0.470604456	1.150530689	1.202483646
6.076493459	6.019881906	2.643242648	3.411882307	3.394065534	3.748919603
5.476345957	4.063420287	7.268917282	7.706147969	6.327918792	6.436824224
93.54799189	107.0786494	208.1553585	115.533394	80.76725439	224.0863642
2.100516257	2.483201286	2.1292788	2.17654561	0.862898017	1.909826968
3.000737511	5.493142239	2.863512869	5.11782346	3.509118603	3.890388267
1.200295004	1.881213096	1.17477451	1.764766711	0.632791879	1.202483646
4.801180017	4.740657001	4.772521448	4.588393447	6.615551464	4.31479426
4.426087828	5.041651096	3.450900124	2.823626737	3.566645137	4.809934585
14.55357693	21.59632634	10.27927696	12.76514587	17.54559301	16.48109939
1.200295004	1.279224905	1.248197917	0.941208912	1.323110293	1.414686643
2.175534695	3.988171763	3.157206496	2.647150066	1.438163362	3.112310614
5.926456583	10.30904776	6.82837684	8.294403539	3.394065534	7.922245199
7.576862214	2.784195382	0.660810662	0.941208912	1.093004155	5.870949567
1.275313442	0.752485238	0.95450429	0.647081127	0.690318414	0.565874657
2.70066376	2.784195382	2.276125613	2.117720053	1.265583758	2.475701625
1.275313442	1.580219	1.321621324	1.058860026	1.150530689	0.919546318
3.825940326	1.580219	5.800449144	0.941208912	2.761273654	7.073433213
3.000737511	1.805964572	2.055855393	2.058894496	1.898375637	1.485420975
0.750184378	1.128727857	1.101351103	1.17651114	1.208057224	0.424405993
1.875460944	1.128727857	1.395044731	1.117685583	1.438163362	1.273217978
2.250553133	2.182207191	0.734234069	0.58825557	1.208057224	1.273217978
1.050258129	1.504970477	1.027927696	0.941208912	0.862898017	0.707343321
7.576862214	10.53479334	11.67432169	14.58873814	8.744033239	9.407666173
18.15446194	31.67962853	32.08602881	5.470776803	11.6778865	31.40604347
1.35033188	0.225745571	1.321621324	0.941208912	1.265583758	0.99028065
0.375092189	0.601988191	0.807657476	0.58825557	0.747844948	0.99028065
2.02549782	1.279224905	4.405404413	0.705906684	1.495689896	3.112310614
1.575387193	2.55844981	1.541891545	1.764766711	1.840849103	1.697623971
0.900221253	1.504970477	1.101351103	1.000034469	1.323110293	1.697623971

| P1OVDP24_1 | P1OVDP24_2 | P1OVDP24_3 | P1OVDP24_4 |
| ---: | ---: | ---: | ---: | ---: |
| 1.199913934 | 1.417322473 | 0.994715813 | 1.087346529 |
| 1.976328833 | 1.700786967 | 1.521330067 | 1.970815583 |
| 1.270497107 | 1.247243776 | 1.111741202 | 1.495101477 |
| 1.482246625 | 1.133857978 | 1.345791982 | 1.087346529 |
| 3.176242767 | 4.025195822 | 3.276710913 | 3.941631167 |
| 1.90574566 | 1.53070827 | 1.638355456 | 1.495101477 |
| 0.141166345 | 1.133857978 | 0.292563474 | 0.543673264 |
| 21.45728447 | 44.44723274 | 26.79881425 | 33.3679466 |
| 2.117495178 | 1.814172765 | 2.39902049 | 1.970815583 |
| 0.494082208 | 0.793700585 | 0.585126949 | 1.223264845 |
| 1.482246625 | 1.02047218 | 0.994715813 | 1.563060635 |
| 2.399827868 | 1.587401169 | 2.106457015 | 1.563060635 |
| 3.105659594 | 2.551180451 | 2.223482405 | 2.310611374 |
| 1.270497107 | 1.984251462 | 1.755380846 | 1.834897267 |
| 2.258661523 | 1.984251462 | 1.228766592 | 1.019387371 |
| 3.458575457 | 3.685038429 | 3.803325166 | 2.514488848 |
| 0.846998071 | 0.396850292 | 0.994715813 | 0.407754948 |
| 0.635248553 | 0.737007686 | 0.702152338 | 0.951428213 |
| 2.682160559 | 2.494487552 | 2.04794432 | 2.718366322 |
| 1.90574566 | 2.551180451 | 2.516045879 | 1.495101477 |
| 1.199913934 | 1.870865664 | 1.521330067 | 1.155305687 |
| 0.988164416 | 1.53070827 | 1.170253897 | 1.359183161 |
| 3.387992285 | 5.215746699 | 6.37788374 | 5.504691802 |
| 3.952657666 | 2.834644945 | 4.622502894 | 3.669794535 |
| 0.776414899 | 0.963779281 | 1.521330067 | 0.951428213 |
| 1.270497107 | 1.474015372 | 1.579842761 | 1.495101477 |
| 2.682160559 | 3.004723642 | 3.042660133 | 2.038774742 |
| 1.62341297 | 1.247243776 | 1.521330067 | 1.563060635 |
| 0.846998071 | 1.133857978 | 1.053228508 | 0.407754948 |
| 5.858403326 | 6.292911778 | 7.255574163 | 4.961018538 |
| 2.893910077 | 2.494487552 | 1.872406236 | 2.310611374 |
| 7.411233123 | 3.174802339 | 4.32993942 | 2.78632548 |
| 0.846998071 | 1.53070827 | 0.819177728 | 0.679591581 |
| 0.564665381 | 1.077165079 | 0.936203118 | 0.815509897 |
| 0.494082208 | 0.850393484 | 1.872406236 | 0.611632422 |
| 3.176242767 | 7.653541352 | 4.271426725 | 5.436732644 |
| 1.835162488 | 1.927558563 | 1.579842761 | 2.174693058 |
| 1.693996142 | 1.474015372 | 2.223482405 | 2.174693058 |
| 1.835162488 | 1.927558563 | 1.579842761 | 1.631019793 |
| 2.117495178 | 2.834644945 | 2.750096659 | 2.582448006 |
| 2.258661523 | 2.154330158 | 2.223482405 | 1.223264845 |
| 6.705401397 | 7.993698746 | 8.308802671 | 9.038568021 |
| 0.564665381 | 1.190550877 | 1.755380846 | 1.087346529 |
| 8.68173023 | 9.014170926 | 10.2397216 | 11.41713855 |
| 1.835162488 | 1.927558563 | 1.930918931 | 2.44652969 |
| 3.387992285 | 3.855117126 | 4.388452115 | 2.78632548 |
| 1.693996142 | 3.968502923 | 5.558706012 | 4.077549483 |
| 0.776414899 | 1.474015372 | 1.228766592 | 1.495101477 |
| 0.494082208 | 0.226771596 | 0.585126949 | 0.407754948 |
| | | | |

7.05831726	7.029919464	7.957726502	7.611425702
0.494082208	1.757479866	0.643639644	1.223264845
8.540563885	6.74645497	4.798040979	4.89305938
4.164407183	3.911810024	5.968294876	3.058162112
65.14826831	104.0314695	85.66258528	116.957711
0.917581244	1.644094068	0.643639644	1.019387371
4.234990356	6.689762071	6.845985299	4.89305938
1.62341297	1.814172765	2.106457015	2.718366322
7.834732159	7.086612363	8.367315366	5.91244675
9.316978783	5.952754385	3.920350556	4.213467799
26.39810655	26.41889089	19.25067661	18.55285015
1.835162488	1.927558563	1.989431625	1.359183161
1.764579315	1.474015372	1.579842761	1.223264845
3.740908148	3.741731328	7.314086858	4.077549483
0.776414899	0.623621888	1.930918931	1.563060635
1.693996142	1.02047218	0.760665033	1.698978951
1.199913934	1.02047218	1.638355456	1.019387371
2.046912005	1.644094068	1.579842761	1.631019793
0.28233269	2.097637259	0.994715813	1.902856425
1.341080279	1.644094068	1.228766592	1.155305687
1.129330762	1.360629574	1.579842761	1.698978951
1.058747589	0.793700585	0.877690423	1.087346529
0.917581244	3.11810944	0.585126949	9.242445495
0.917581244	2.040944361	1.638355456	1.834897267
5.999569671	5.782675688	7.665163027	8.834690547
4.940822082	16.78109808	7.021523384	13.04815835
0.635248553	0.51023609	0.468101559	0.611632422
1.199913934	1.077165079	1.462817372	1.019387371
0.141166345	1.587401169	0.526614254	0.679591581
2.823326904	2.154330158	3.159685523	2.242652216
2.117495178	1.587401169	1.989431625	2.1067339

GenelD	logFC	logCPM	LR	PValue	FDR	P10VWT_1
2410018L13Rik	0.569725479	1.368331647	4.157618842	0.041447633	0.999950496	3.208763614
4932411E22Rik	-0.584489418	1.886244206	4.214961994	0.040068964	0.999950496	3.059518795
9430065F17Rik	0.674140549	0.220405825	4.056751342	0.043995061	0.999950496	0.373112048
Akr1c18	-1.086824274	0.450216638	4.752258041	0.029259875	0.999950496	119336145
Ankfn1	-0.794999238	1.337453417	4.283619606	0.038481318	0.999950496	1.641693012
Atf3	1.026767858	0.561814485	6.108430848	0.013453852	0.999950496	1.492448193
Bves	0.72333052	0.652708874	4.494131865	0.034011379	0.999950496	0.895468916
Car12	-0.618329863	3.187336041	4.014046777	0.045122724	0.999950496	11.6410959
Ccdc125	-0.778216653	0.114336848	6.35031117	0.011736071	0.999950496	. 193958554
Ccdc33	-0.625819082	0.253872364	4.046787543	0.044255486	0.999950496	1.343203373
Ccl17	0.65318629	0.473255755	4.029994408	0.044698089	0.999950496	0.746224096
Cdc42ep5	0.517484528	1.144708651	4.532932748	0.033248592	0.999950496	2.01480506
Chrdl1	-0.579294139	4.327482335	8.472064888	0.003606418	0.999950496	29.92358626
Col3a1	-0.671763689	5.597464858	4.274630124	0.038685383	0.999950496	24899903
Cpz	-1.270908824	0.629546401	13.92444283	0.000190308	0.999950496	2.462539518
Cybrd1	-0.562704877	4.255167109	7.704134675	0.005509448	0.999950496	30.44594313
Dmgdh	0.673213975	0.429710774	4.920207515	0.026544329	0.999950496	1.193958554
Dmrt2	0.707757415	1.787678706	6.48293492	0.0108915	0.999950496	2.910273976
Dnah11	-0.671441508	1.614234652	4.611154507	0.031764641	0.999950496	4.551966988
Enpp1	-0.763783999	2.382504183	10.70924429	0.001066016	0.999950496	6.641394457
Fam124b	-0.792765411	0.186873444	5.434335823	0.019744598	0.999950496	1.343203373
Fau	0.727718998	0.569239239	6.869139885	0.008769685	0.999950496	1.044713735
Gbp9	-0.684664956	1.630312456	3.937820483	0.047211908	0.999950496	3.283386024
Gem	0.715813254	1.461190797	4.133536156	0.042041414	0.999950496	1.865560241
Gpr139	-0.837909327	0.373321548	3.949576245	0.046883172	0.999950496	0.447734458
Gprin2	-0.652382262	0.537745427	4.619945848	0.031602236	0.999950496	1.044713735
Hcrt	-2.848471734	1.039234119	11.29059645	0.000779007	0.999950496	1.567070602
Hgf	-0.558037521	1.577448753	3.885503021	0.04870467	0.999950496	3.358008434
Ifi44	-1.482104307	0.457670279	3.88595688	0.048691509	0.999950496	1.119336145
$1 f i t 3$	-1.069615045	1.39716801	4.38883107	0.036175107	0.999950496	1.865560241
Irf6	0.511516581	1.17634579	4.088578321	0.043173942	0.999950496	1.567070602
Isg15	-1.63340756	0.949065547	5.874939532	0.0153579	0.999950496	1.268580964
Itprip	0.664016697	1.846866079	4.280989638	0.038540902	0.999950496	4.253477349
Lama3	-0.705424073	2.507138622	7.280907788	0.006969131	0.999950496	9.103933975
Lgr5	-1.216975174	2.909316086	7.869996189	0.005026176	0.999950496	9.551668433
Lmo1	0.53731941	4.309506179	5.025220293	0.024980748	0.999950496	17.8347559
Lrriq1	-0.684613919	0.518181032	4.137777903	0.041936185	0.999950496	1.119336145
Ndnf	-0.749761705	4.079744347	6.782823964	0.009203916	0.999950496	20.52116265
Ngfr	-0.559622232	2.490528207	4.575237869	0.032437242	0.999950496	6.04441518
Npsr1	-0.764242944	1.011314198	4.803524705	0.028401574	0.999950496	0.895468916
Npy	-0.542887972	5.687831324	20.39473468	$6.30 \mathrm{E}-06$	0.090648577	56.41454168
Nxph2	0.811575913	2.550277869	8.676164277	0.003223988	0.999950496	3.805742891
Pde3a	-0.519372652	2.081456878	4.0276598	0.044759988	0.999950496	4.02961012
Pdlim3	-0.84269185	0.364487813	5.27306195	0.021657885	0.999950496	0.820846506
Plaur	0.715639709	0.515372154	5.10949819	0.023795202	0.999950496	0.970091325
Procr	-0.772270218	0.423875759	5.638071891	0.017574524	0.999950496	1.716315422
Ptch2	-0.596638528	1.3310543	4.15929674	0.041406593	0.999950496	2.611784337
Ptgs2	1.294763252	2.146588135	4.25862426	0.039051535	0.999950496	2.462539518
Rsg1	-0.765850199	0.123862497	5.645872938	0.017496503	0.999950496	1.044713735

SIc17a8	0.675206627	3.498275692	7.202822208	0.007278902	0.999950496	7.611485783
Slfn5	-0.612101932	3.480450754	4.179400266	0.040918178	0.999950496	15.29759397
Sp6	0.651640133	0.694490878	6.488371732	0.010858239	0.999950496	1.268580964
Stat5a	-0.595781701	1.59077568	6.150648903	0.013136389	0.999950496	4.02961012
Sypl2	0.509677159	1.943978912	3.943965755	0.047039761	0.999950496	4.328099759
Syt15	-0.536869419	1.532643159	5.196396669	0.02263376	0.999950496	4.253477349
Tacr1	-0.680489784	3.159452115	7.210685768	0.00724708	0.999950496	7.536863373
Th	-1.172384632	4.077428075	4.027208774	0.044771957	0.999950496	18.05862313
Thbs4	0.801379171	2.103129008	5.970080765	0.014550614	0.999950496	4.328099759
Tktl2	0.607309669	0.480938091	4.314552526	0.037787708	0.999950496	1.268580964
Tnfsf10	-0.658015965	1.578522245	4.036667645	0.044521653	0.999950496	3.805742891
Tnn	1.03194014	0.151517913	8.472932997	0.003604697	0.999950496	0.373112048
Ush1g	-1.173075378	0.828904162	4.857412336	0.027527594	0.999950496	2.01480506
Zfp831	-0.513799202	2.775137871	7.685720158	0.005565946	0.999950496	5.895170361

P10VWT_2	P10VWT_3	P10VWT_4	P10VWT_5	P10VWT_6	P10VGCG_1
2.395347905	1.387459964	2.165214015	1.487396305	1.688630346	3.524123542
3.443312614	5.111694603	4.798582412	3.661283213	4.643733451	2.610461883
1.272528575	1.022338921	0.702231572	0.972528353	0.63323638	6627713
0.823400842	2.774919927	0.351115786	1.601811406	2.884743508	0.717877018
2.769621016	3.797258848	2.80892629	2.574339759	3.799418278	1.1094463
0.673691598	1.022338921	0.877789466	0.800905703	0.773955575	0.978923206
1.272528575	1.022338921	1.228905252	0.858113253	1.54791115	2.479938789
13.39897735	6.645202984	7.724547297	16.93343486	6.2620042	7.048247084
1.197673953	0.876290503	1.228905252	1.258566104	1.125753564	0.391569282
1.497092441	1.387459964	0.994828061	1.086943454	1.196113162	1.239969394
1.571947063	1.387459964	0.702231572	0.972528353	0.773955575	1.370492489
1.721656307	1.60653259	1.228905252	1.830641606	2.251507128	2.349415695
14.22237819	27.74919927	22.17881383	22.88302008	21.03751973	16.90274069
54.3444556	51.99323654	55.47629422	56.97872	42.49719704	54.16708407
2.095929417	1.60653259	1.52150174	2.116679357	1.407191955	1.370492489
24.7768799	14.60484172	18.72617526	21.56724642	20.68572174	19.44794103
0.823400842	0.730242086	1.111866656	1.315773655	0.63323638	1.305230941
1.646801685	3.870283057	3.04300348	2.80316996	1.54791115	3.002031165
3.218748748	3.943307265	3.394119267	2.459924658	3.236541496	2.936769618
5.83866052	6.426130358	5.85192977	6.064000321	5.769487015	4.698831389
1.347383197	1.022338921	1.697059633	0.858113253	1.055393966	1.1094463
0.973110087	0.803266295	1.053347359	0.972528353	1.54791115	1.892584865
6.063224386	4.162379891	2.516329801	2.002264257	3.166181899	2.610461883
2.021074795	3.213065179	1.287424549	1.659018956	2.462585921	2.414677242
2.095929417	1.460484172	1.697059633	1.659018956	1.125753564	0.326307735
1.871365551	1.825605215	1.931136824	1.430188755	1.196113162	1.305230941
7.186043716	0.219072626	5.85192977	0.286037751	2.744024312	0.522092377
2.91933026	5.25774302	3.56967716	2.059471807	2.603305117	1.892584865
6.138079008	1.752581007	0.585192977	0.400452851	0.422157586	0.587353924
8.383717669	3.578186222	1.345943847	1.372981205	2.81438391	1.305230941
2.245638661	2.482823093	1.404463145	1.887849157	1.336832357	1.957846412
8.458572291	2.62887151	0.643712275	0.800905703	1.477551553	0.913661659
2.54505715	1.679556798	2.984484183	2.91758506	2.392226323	3.132554259
6.811770606	7.521493488	5.442294686	4.233358715	6.543442591	5.547231501
5.389532787	17.8179069	3.160042076	6.693283373	15.12731352	5.155662219
18.18967316	9.858268163	12.52312971	25.05690699	16.53450547	23.95098778
1.122819331	1.460484172	2.574849099	1.716226506	1.125753564	0.717877018
13.77325046	26.87290877	16.03428757	20.07985012	23.00758846	13.77018643
10.47964709	4.600525143	6.203045556	6.750490923	3.799418278	3.915692824
1.721656307	2.409798884	2.28225261	2.631547309	3.588339485	1.044184753
48.35608584	70.97953078	60.15783804	53.20302168	63.74579556	39.41797443
2.170784039	5.695888272	6.144526259	4.748226666	3.658699083	5.677754595
4.341568079	5.038670395	4.974140305	4.576604016	5.065891038	3.654646636
2.470202527	1.460484172	1.697059633	1.144151004	0.914674771	0.652615471
0.823400842	1.095363129	0.643712275	0.972528353	1.688630346	0.913661659
1.721656307	0.730242086	1.580021038	1.773434056	1.196113162	0.978923206
4.266713457	2.336774676	3.101522778	1.887849157	2.462585921	2.610461883
3.218748748	3.359113596	1.814098229	3.489660562	1.758989944	1.305230941
1.122819331	1.168387338	1.228905252	1.029735904	1.336832357	0.45683083

9.281973134	12.7062123	9.480126228	7.036528674	7.950634545	8.679785761
22.30667737	10.95363129	10.35791569	8.924377831	9.217107305	8.745047308
1.571947063	1.314435755	1.053347359	1.144151004	0.914674771	2.349415695
4.04214959	2.920968345	2.457810503	3.432453012	3.236541496	2.023107959
3.443312614	3.578186222	2.223733313	3.203622811	2.321866726	3.589385089
3.742731102	2.701895719	2.574849099	2.631547309	3.166181899	2.349415695
10.47964709	11.61084917	14.51278583	8.69554763	9.3578265	6.982985537
31.51379588	31.91157917	5.442294686	11.61313269	31.2396614	19.25215639
4.640986567	3.870283057	1.287424549	2.688754859	2.532945519	6.134585425
0.973110087	0.949314712	0.819270168	1.315773655	0.914674771	2.284154148
5.688951275	2.482823093	3.335599969	2.116679357	2.81438391	2.871508071
0.598836976	0.803266295	0.585192977	0.743698153	0.985034368	1.174707847
1.272528575	4.381452517	0.702231572	1.487396305	3.095822301	1.762061771
7.036334472	9.055001869	8.543817464	8.352302329	6.895240579	4.89461603

P10VGCG_2	P10VGCG_3	P10VGCG_4
3.888239686	2.266648977	2.470737529
1.543859875	4.417059546	2.400145028
1.715399861	1.220503295	0.776517509
0.972059921	0.63931125	0.635332507
0.628979949	3.022198636	1.905997522
4.059779672	1.452980114	1.129480013
2.858999769	1.162384091	0.988295012
4.116959667	8.078569432	7.976952593
0.914879926	0.63931125	0.705925008
0.571799954	0.523072841	0.917702511
2.23001982	0.988026477	1.835405021
3.316439732	2.441006591	1.976590023
11.72189905	15.34347	17.64812521
11.32163908	44.98426432	32.04899538
0.343079972	0.813668864	0.564740007
13.83755888	13.01870182	12.70665015
1.944119843	1.046145682	1.976590023
5.374919565	3.952105909	4.941475058
0.800519935	2.441006591	2.54133003
1.772579857	4.184582727	3.741402544
0.457439963	0.813668864	0.423555005
2.34437981	1.336741705	1.482442517
1.200779903	3.022198636	1.905997522
6.404159482	2.324768182	2.470737529
0.571799954	1.336741705	0.917702511
0.571799954	1.162384091	0.917702511
0.343079972	0.406834432	0.352962504
1.772579857	2.382887386	2.894292534
0.343079972	1.162384091	0.352962504
0.972059921	2.208529773	1.623627519
3.316439732	2.441006591	2.611922531
1.029239917	0.871788068	0.423555005
7.833659366	3.545271477	3.176662537
2.858999769	4.707655568	3.035477536
2.401559806	4.533297955	4.447327552
32.59259736	17.31952295	22.94256277
0.686159945	1.220503295	1.200072514
4.745939616	13.89048989	15.31857268
4.460039639	4.765774773	3.953180046
1.200779903	1.91793375	1.129480013
38.65367687	44.22871466	39.10824546
10.86419912	6.683708523	7.553397588
1.429499884	3.777748296	4.23555005
0.514619958	0.871788068	1.129480013
1.944119843	1.91793375	1.976590023
0.514619958	0.755549659	1.200072514
1.200779903	1.569218523	1.976590023
20.64197833	1.859814546	2.54133003
0.457439963	0.63931125	1.200072514

22.41455819	11.5076025	14.89501767
4.745939616	11.39136409	8.682877602
1.772579857	1.452980114	2.047182524
1.658219866	3.022198636	2.117775025
6.289799491	3.312794659	4.870882557
1.601039871	2.382887386	2.400145028
3.602339709	8.9503575	6.353325074
1.601039871	11.15888727	6.353325074
3.202079741	6.858066137	6.212140073
1.200779903	1.162384091	1.764812521
1.48667988	2.731602614	1.411850017
2.34437981	0.871788068	1.200072514
0.285899977	0.988026477	0.776517509
5.31773957	6.683708523	4.447327552

GeneID	logFC	logCPM	LR	PValue	FDR
4933408B17Rik	0.579091639	0.055006113	4.177739051	0.040958307	0.999997108
9430083A17Rik	0.511784765	1.596558445	9.815551584	0.001730424	0.999997108
Akr1c18	-1.306520236	0.218075601	9.291332147	0.002302407	0.999997108
Bves	0.732521579	0.770939191	7.865188531	0.005039557	0.999997108
Ccl17	0.657693847	0.577792674	5.970376851	0.014548171	0.999997108
Cdsn	0.766204185	0.122257474	7.331907227	0.006774114	0.999997108
Chat	-1.004878675	0.411526518	4.106280334	0.042724231	0.999997108
Chrna2	-0.781840639	0.324703269	4.937960158	0.026273025	0.999997108
Cpz	-0.874211602	0.588078007	11.0690786	0.000877793	0.999997108
Crabp1	-0.615887168	2.767550531	5.033426658	0.02486266	0.999997108
Cyp27a1	-0.520204545	1.13217301	4.375327001	0.036462833	0.999997108
Ddx60	-0.848814172	-0.065859197	4.267018651	0.038859053	0.999997108
Dmrt2	0.609282635	1.83983127	8.08326508	0.004467588	0.999997108
Dock2	-0.576500465	0.291119246	4.896960901	0.026904003	0.999997108
Fam221a	0.636753421	0.322481535	7.92717509	0.004869777	0.999997108
Fgf16	-0.536823144	0.472141141	6.112877953	0.013420043	0.999997108
Fosb	1.434050578	2.892021766	4.012353069	0.045168071	0.999997108
Frmd7	-1.053950365	3.619401436	4.94964099	0.026096087	0.999997108
Gbp3	-0.666946419	2.861058238	5.016479307	0.025107168	0.999997108
Gpnmb	-0.638373319	0.190695286	4.571925797	0.032500011	0.999997108
Hmga2-ps1	-0.595649193	0.377617527	5.423347727	0.019869228	0.999997108
Ifi44	-1.395168149	0.27854544	6.414527664	0.011319043	0.999997108
Isg15	-1.510403778	0.755149307	9.023310517	0.002665582	0.999997108
Lgr5	-1.054594756	2.780517629	10.42380186	0.001244015	0.999997108
Lrrc36	0.756823768	0.53066812	7.965104013	0.004768775	0.999997108
Mafa	-0.752019433	-0.186687922	5.08209059	0.024174205	0.999997108
Mdh1b	0.594036323	-0.082773357	4.697138863	0.030212873	0.999997108
Mmrn1	-0.538129271	0.373935057	4.08565078	0.043248794	0.999997108
Msx2	0.574294618	-0.049511746	4.565814677	0.032616158	0.999997108
Mybl2	0.57436258	0.818172394	7.510647209	0.006133533	0.999997108
Myh8	0.618988174	1.478142104	9.070499819	0.002597661	0.999997108
Myo1h	0.580207447	-0.076515013	4.283988923	0.038472958	0.999997108
Ndnf	-0.519147734	4.064452846	5.482124398	0.019211897	0.999997108
Ngfr	-0.640121005	2.364216324	7.446091057	0.006357437	0.999997108
Nppa	-0.713923751	0.931222648	4.507493911	0.033746651	0.999997108
Npsr1	-0.598819316	0.965220669	5.705296066	0.016913802	0.999997108
Ntrk1	-1.418805036	0.005712389	9.094583129	0.002563676	0.999997108
Nxph2	0.779916044	2.664626199	15.31221476	9.11E-05	0.991034909
Oas12	-0.876637933	2.055484402	5.165194742	0.023043874	0.999997108
Omp	-1.183439856	1.019075338	4.530174278	0.033302226	0.999997108
Pdlim3	-0.734268072	0.282395684	6.852004689	0.008854187	0.999997108
Plaur	0.567339328	0.533250439	5.248496747	0.02196574	0.999997108
Ptch2	-0.531197132	1.267085526	6.418782657	0.011291954	0.999997108
Rtp4	-0.831170566	1.623862664	4.296373064	0.038193744	0.999997108
S100a9	1.340227201	-0.044727568	4.570201523	0.032532738	0.999997108
Shisa8	-0.593407597	2.634608296	4.767398538	0.02900362	0.999997108
SIc6a4	-1.112597706	1.180794923	4.783078366	0.028740699	0.999997108
Socs1	-0.506307264	0.99054595	4.774918448	0.028877214	0.999997108
Sp6	0.579487448	0.752565491	8.662943914	0.003247462	0.999997108

Sp7	-1.228274434	1.351471364	7.531766124	0.006062045	0.999997108
Spata20	0.519803	$4.66 \mathrm{E}-05$	4.56747633	0.032584534	0.999997108
Spp1	-0.736192874	2.804216922	4.365552611	0.036672587	0.999997108
Tacr1	-0.619582515	3.076895606	10.781435	0.001025232	0.999997108
Th	-1.11329817	3.915012525	6.354401152	0.011709046	0.999997108
Thbs4	0.757292611	2.208675033	5.612890708	0.017828828	0.999997108
Tktl2	0.50859598	0.517997152	4.950712812	0.026079913	0.999997108
Tnn	0.916596369	0.228018801	10.74692262	0.001044529	0.999997108
Ush1g	-1.34298255	0.598968186	8.757294781	0.003083661	0.999997108

P10VWT_1	P10VWT_2			P10VWT_5	P10VWT_6	
247840564	45548	0.944284673	0.70158202	0.288105706	0.4247521	0.718483227
		1				65
1.122686319	0.	2.760216736				
0.898149055	1.2	1.016921955	1.227768548	0.8	7	2.482032966
0.748457546	1.5	1.380108368	0.7	0.9795594	0.778712285	1.371649797
	0.5	0.435823695	0.876977534	0.806695977	0.707920259	0.783799884
0.598766037	2.77640441					
1.496915092	1.650835054	1.8	0.	0.633832553	2.619304958	1.436966454
2.469909902	2.	1.5	1.5	2.	1.415840518	97
6.36188	7.878985	8.789111187	2837776	5.01303928	10.7603	6.596982358
1.0	3.0	0.5	0.6	1.0	0.424752155	55
2.9189	1.650835054	3.849775974	3.040188784	2.823435918	1.55742457	3.004566222
	1.05	0.9	0.99	1.210043965	2.477720907	884
1.0	0.9	0.7	0.9	0.5		
1.347223	1.72	1.743294781	1.52	1.5	1.345048492	169
3.89	2.32	5.	1.8	3.63	5.238609917	082
	6.7					
7.933649988	23.5619185	7.5	4.5	5.30114499		33
1.422069337	0.675	2.03	1.227768548	0.7	1.6	0.914433198
1.79629811	1.	1.162196521	1.4	1.555770812		69
1.122686319	6.1		0.5	0.4		13
1.2	8.47	2.6	0.64	0.80	1.	98
9.5	5.4	17.72349694	3.1	6.741673519	15.22028557	04
1.0	1.50075914	0.5	0.8	0.8	0.849504311	66
1.1	0.75037957	1.598020216	0.5	1.03	0.9	41
	0.7	0.58109826	0.93	0.5	0.495544181	69
2.2	1.200607312	0.87164739	1.5	1.9591188	0.707920259	0.587849913
0.6	0.82541	0.363186413	0.701582027	0.	0.566336207	512
1.0	1.50075914	1.016921955	1.1	1.2	1.6	396
2.1	1.9	1.6	1.4	2.7	2.1	95
0.6	0.6	0.3	1.1	0.576211412	0.283168104	1.110383169
20	13	26.7	16.01945629	20.22502056	23.14899247	13.78181463
6.0	10.5	4.5761488	6.19	6.	3.82	3.91899942
1.347223	1.65083	4.212962	0.8769	1.901497	3.8935	2.351399652
0.89814905	1.72	2.3970303	2.28	2.6505	3.61039	512
0.	2.62	1.5	2.04	0.46096913	1.06	0.65316657
3.8	2.176100	5.66570803	6.138	4.7825	3.68	5.68254916
4.19136225	17.1086	3.995050539	2.6893	2.708193636	2.33613	652
8.98	1.350	3.995050	0.46	1.15	1.20346444	3.396466164
0.8	2.4	1.4	1.6	1.152	0.9	0.6
0.97299	0.825417	1.089559238	0.643	0.9795594	99008622	0.914433198
2.619601411	4.2771635	2.324393	3.098653953	1.90149	2.477720	628
692	12.38126291	3.4139	1.75	1.728634236	1.91138	1.959
0.4	0.075037957	0.363186413	0.175395507	0.40334798	1.20346	0.457216599
5.239202822	6.828454089	11.91251434	3.098653953	6.626431237	11.6806842	5.747865817
7.559421215	2.77640441	0.653735543	0.935442703	1.094801683	5.87573815	3.004566222
2.694447166	2.7764044	2.251755759	2.104746082	1.267665106	2.477720907	1.763549739
1.272377828	1.575797097	1.307471086	1.052373041	1.152422824	0.92029633	2.351399652

3.817133485	1.575797097	5.73834532	0.935442703	2.765814777	7.07920259	3.135199536
0.673611791	0.600303656	0.58109826	0.818512365	0.749074835	0.707920259	1.110383169
15.71760847	3.451746023	13.51053455	3.80023598	7.029779225	10.05246768	9.536231923
7.559421215	10.50531398	11.54932792	14.49936189	8.758413461	9.415339445	6.9888823
18.11267261	31.59097991	31.74249247	5.437260711	11.69709166	31.4316595	19.26841382
4.341053767	4.652353335	3.849775974	1.286233716	2.708193636	2.548512932	6.139765759
1.272377828	0.975493441	0.944284673	0.818512365	1.325286247	0.920296337	2.286082995
0.374228773	0.600303656	0.799010108	0.584651689	0.749074835	0.991088363	1.175699826
2.020835374	1.275645269	4.358236952	0.701582027	1.498149671	3.11484914	1.763549739

P	P10VGCG_3	P10VGCG_4				
48	0.642020109	0.9156042	1.485283841	1.130931713	1.336552702	69
						3.918000376
2.873862207	1.	0.	2.	1.583304398	2.091995534	4
0.17243173						4
				0.735105613	0.697331845	
0.3	0.8		0.	1.526757812		
1.66684008	8.754819662	6.127505228			6.334097589	5.471690181
092067639						
0.172431	0.				0.755442832	5
5.402860949	3.96885158		3.960756909			4
0.9	0.9		1.	1.130931713	0.	0.607965576
1.034590395	1.108943824	1.479052986	1.626739445		1.510885663	
1.37945385			0.8			0.405310384
56.21274	5.369622726		2.19256186			6
1.724317324	7.704241303	8.522162444	3.748573503	11.76168981	5.985431667	14.45607035
5.345383705	6.3			5.	6.275986602	45
0.229908977	0.700385573	1.126897513	0.990189227	1.017838542	0.697331845	9
0.517295197	1.					6
0.34	1.167309288	0.	0.	0.735105613	1.104108754	3
1.034590395	0.	0	0	0.848198785	1.859551586	0.607965576
2.414044					4.2	5.40413845
0.804681418	1.	1.479052986	1.838922851	1.922583912	1.56899665	1.621241535
0.287386221	0.	0.	0.	0.	0.	1
0.74720417	0.5	0.77474		1.074385127	0.871664806	9
1.092067639	0.	1.	0.	0.	0	1.013275959
0.517295197						0.675517306
1.149544883	1.	2.	1.	1.922583912	1.917662573	3
3.391157404	2.1	2.6	3.	3.	4.358324029	2.769620956
1.0345	0.8	0.	1.	1.017838542	1.045997767	5
4.770611264	13	15	12	15.83304398	17	18.71182938
4.483225043	4.		1.	3.	5.52054377	38
1.034590395	1.8				1.220330728	+
1.207022127	1.9	1.1	1.	1.	1.9	1.621241535
0.114954488	1.400771146		0.	0.	0.	4
0.92067639	6.712028408	7.	7.	7.01177662	7.903094239	7.56579383
99089	3.9		3.	3.	3.	2.566965764
68	0.99	0.7	0.	1.	0.	1
0.517295197	0.	1.126897513	1.	0.	0.871664806	5
1.954226	1.9260	1.9	1.	1.583304398	1.278441715	43
1.20702212	1.575867539	1.9	1.9096	1.80949	2.324439482	1.959000188
1.6668400	2.976638685	1.9	1.980	2.54	3.2	1.486138074
17243173	1.45913661	0.35215	0.919461425	0.3958	1.627107638	3.715345184
47152149	5.661450048	5.000607	4.385123	7.237962963	5.113766861	4.390862491
1.724317324	0.583654644	1.408621	0.778005821	0.622012442	1.917662573	1.553689804
2.414044254	1.98442579	1.549484081	1.202372633	1.017838542	1.627107638	1.013275959
1.781794568	1.45913661	2.042501743	2.051106256	1.639850984	1.56899665	1.621241535

0.747204174	1.517502075	1.760777364	0.282911208	2.092223669	0.98788678	1.891448458
1.149544883	0.992212895	1.056466419	0.848733623	0.848198785	1.220330728	0.743069037
2.011703545	4.902699011	3.944141296	3.394934493	6.389764178	6.740874498	5.877000565
3.621066381	8.98828152	6.338798512	6.011863165	5.767751736	7.612539304	8.781724982
1.609362836	11.20616917	6.338798512	4.950946136	16.73778935	6.973318446	12.96993228
3.218725672	6.887124801	6.197936323	7.072780195	8.595081018	2.150106521	3.310034801
1.207022127	1.167309288	1.760777364	1.697467247	1.244024884	1.162219741	1.486138074
2.35656701	0.875481966	1.197328608	1.202372633	1.074385127	1.452774676	1.013275959
0.287386221	0.992212895	0.77474204	0.141455604	1.583304398	0.522998883	0.675517306

Appendix 5

A

Gene	RNAseq			qPCR			Validated?		
	PA1	PA2	PAPooL	PA1	PA2	PA POOL 2	PA1	PA2	PAPPOL 2
Lmo1	\uparrow	ns	ns	\uparrow	\uparrow	\uparrow	\checkmark	x	x
Npy	\downarrow	ns	ns	\downarrow	ns	\downarrow	\checkmark	\checkmark	x
Nxph2	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\checkmark	\checkmark	\checkmark
Th	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\checkmark	\checkmark	\checkmark

B

Gene	RNAseq			qPCR			Validated?		
	PA1	PA2	PA ${ }^{\text {Pool }}$	PA1	PA2	PA Pool	PA1	PA2	PA ${ }^{\text {Pool }}$
Arx	ns			ns			\checkmark	\checkmark	\checkmark
Calb2	ns			ns			\checkmark	\checkmark	\checkmark

Arx

Calb2

C

	RNAseq			qPCR			Validated?		
	PA1	PA2	PA ${ }^{\text {POOL }}$	PA1	PA2	PA ${ }^{\text {POOL }}$	PA1	PA2	PA ${ }^{\text {POOL }}$
Arc	ns	\downarrow	ns	ns			\checkmark	X	\checkmark
Chrna2	ns	\downarrow	\downarrow	ns			\checkmark	X	X
Gbp3	ns	ns	\downarrow	ns			\checkmark	\checkmark	X
Pcp4/1	ns	\downarrow	ns	ns	ns	\downarrow	\checkmark	X	x
Spp1	ns	ns	\downarrow	ns			\checkmark	\checkmark	x

Pcp4l1

Figure 1: Biological validation of genes deregulated by disease in PA mutant mice by quantitative PCR (qPCR) analysis. Samples tested were RNA samples prepared from the cortex of vehicle-treated mice at postnatal day 10 across each genotype (WT; $n=6$; PA1; $n=$ 4; PA2; $n=4 ; \mathrm{PA}^{\text {pool }} ; n=4 \mathrm{PA} 1+4 \mathrm{PA} 2$ samples combined). Expression values were normalised to the reference gene, β-Actin. (A) Genes of mostly higher counts per million from our RNAseq data, where qPCR results agreed with RNAseq results. (B) Control genes that were non-significant in both RNAseq and qPCR analysis. (C) Genes where the breadth of signal was variable across the three genotype groups between the RNAseq and qPCR analysis. Summary tables show results of these genes in RNAseq and qPCR data, with final column showing whether the qPCR results agreed with the RNAseq data. Grayscale colours in significance tables represent significance of result (lightest grey $p<0.05$, medium grey $p<0.005$ and darkest grey $\mathrm{p}<0.0001$). Individual graphs show relative quantity for each gene for WT (grey), PA1 (orange), PA2 (blue) and $\mathrm{PA}^{\text {pool }}$ (green). $* \mathrm{p}<0.05$, ${ }^{* *} \mathrm{p}<0.005,{ }^{* * *} \mathrm{p}<0.0001$ (onetailed t -test of PA1, PA2 or PA ${ }^{\text {pool }}$ compared to WT).

Appendix 6

Autism and intellectual disability genes

A2M	ADCY1	ALOXE3	ARID2	ATP6V0C	BMPER
A2ML1	ADD3	ALPL	ARID4A	ATP6V1B2	BOD1
AASS	ADNP	ALX1	ARL13B	ATP7A	BOLA3
ABAT	ADRA2B	ALX4	ARL14EP	ATP7B	BRAF
ABCA1	AFF3	AMACR	ARL2BP	ATP8A2	BRCC3
ABCA2	AFG3L2	AMMECR1	ARL6	ARP	ATR

CAMK2G	CHAMPI	CLPB	COXIO	DAG1	DLX3
CAMTAI	CHAT	CLPP	COX15	DAOA	DLX6
CANT1	CHD1	CLRN1	COX4I2	DARS	DMBX1
CAPNIO	CHDIL	CLTC	COX7B	DARS2	DMXL1
CARD9	CHD2	CLTCL1	COX8A	DBH	DNA2
CARS2	CHD4	CMIP	CPQ	DBX2	DNAHIO
CBL	CHD6	CNGAI	CPS1	DCHS1	DNAH11
CBS	CHD7	CNGA3	CPTIA	DCX	DNAJC12
CC2D2A	CHD8	CNKSR2	CPT1B	DDB2	DNAJC19
CCAR2	CHI3L1	CNNM2	CPZ	DDC	DNAJC3
CCDC22	CHMPIA	CNOT3	CREB3L1	DDHD2	DNAJC5
CCDC88A	CHRNAI	CNTN2	CREBBP	DDOST	DNAJC6
CCM2	CHRNA2	CNTN3	CRIPT	DDR2	DNASEIL3
CCR1	CHRNA7	CNTN4	CRKL	DDX11	DNM1
CD96	CHRNB2	CNTN6	CSNK2B	DDX24	DNM1L
CDC42BPB	CHRND	CNTNAPI	CSPP1	DDX3X	DNM2
CDC6	CHRNG	CNTNAP3	CTBP1	DDX53	DNMT3A
CDH11	CHST14	COA3	CTC1	DDX59	DNMT3B
CDH15	CHST3	COASY	CTCF	DEAF1	DOCK6
CDH3	CIAO1	COCH	CTDP1	DENND5A	DOCK7
CDH8	CIB2	COG1	CTNNB1	DENR	DOLK
CDK5R1	CIC	COG2	CTNND2	DEPDC5	DPAGTI
CDK6	CIT	COG4	CTSA	DGCR2	DPH1
CDKL5	CKAP2L	COG6	CTSD	DGCR6	DPM1
CEACAM16	CLASP2	COG8	CTSF	DGKD	DPM2
CECRI	CLCN4	COL18AI	CTSH	DGUOK	DPM3
CELSR2	CLCN7	COL1A1	CUL3	DHCR24	DPP6
CELSR3	CLCNKA	COL25A1	CULAB	DHCR7	DPYD
CENPE	CLCNKB	COLAAI	CUL5	DHFR	DRAM2
CENPJ	CLDN14	COLAA3BP	CUX2	DHTKD1	DRD2
CEP104	CLDN16	COL5A2	CWF19L1	DIAPH1	DRD3
CEP120	CLEC7A	COLEC10	CXCR4	DISC1	DRP2
CEP152	CLIC2	COLEC11	CYB5R3	DISP1	DSE
CEP164	CLIC5	COQ4	CYC1	DLAT	DTNB
CEP19	CLIP2	COQ5	CYFIP1	DLD	DTNBP1
CEP290	CLMP	COQ6	CYP27B1	DLG1	DUOX2
CEP83	CLN5	COQ7	CYP2C9	DLG3	DUOXA2
CEP89	CLN6	COQ9	CYP2U1	DLG4	DVL1
CERS3	CLN8	CORIN	D2HGDH	DLL1	DYM

DYNClH1	EPG5	FASN	FRMD4A	GEmin4	GRIN1
DYNC2LII	EPHA3	FASTKD2	FRMPD4	GFAP	GRIN2A
DYRK1A	EPHA4	FAT4	FRY	GFM2	GRIN2B
EBF3	EPHA5	FBXLA	FTL	GFPT1	GRIPI
ECE1	EPHA7	FBXO18	FXYD2	GJA1	GRM1
ECHS1	ERAPI	FBXO28	G6PC3	GJB1	GRM5
EDA2R	ERC1	FBXO31	GAA	GJC2	GRM7
EDC3	ERCCI	FEZF1	GABBR2	GK	GRM8
EDN1	ERCC5	FEZF2	GABRAI	GLA	GRN
EED	ERCC8	FGF12	GABRA3	GLRB	GRXCR1
EEFIA2	ERF	FGF17	GABRA5	GLUL	GRXCR2
EEF1B2	ERLIN2	FGF23	GABRA6	GM2A	GSPT2
EFCAB5	ERMARD	FGF3	GABRG2	GMNN	GSS
EFHCI	ESCO2	FGF8	GABRG3	GMPPA	GTF2H5
EFHC2	ETFA	FGFRI	GABRQ	GMPPB	GTPBP3
EFNB1	ETFB	FGFR3	GABRR1	GNAII	GUCAIA
EFR3A	ETFDH	FGFRL1	GABRR3	GNAI3	GUCAlB
EFTUD2	ETHE1	FH	GAL	GNAL	GUCYIA3
EGF	EVC	FHL1	GALE	GNAO1	GUSB
EIF2AK3	EXOSC2	FIBP	GALNT9	GNAQ	GYG2
EIF2B1	EXOSC3	FIG4	GALNTL5	GNAS	GYSI
EIF2B2	EXT2	FKBP14	GAMT	GNE	GYS2
EIF2B3	EZR	FKRP	GAN	GNPTG	H3F3B
EIF2B4	FAAH2	FKTN	GAP43	GNRH1	HACEI
EIF2B5	FADD	FLII	GARS	GNRHR	HADH
EIF4A3	FAM111A	FLNA	GASI	GNS	HAPI
EIF4ENIF1	FAM120A	FLRT3	GATAI	GORAB	HAXI
ELAC2	FAM126A	FLVCR1	GATA6	GOSR2	HCFCl
ELMOD3	FAM134B	FLVCR2	GATM	GP1BB	HCN1
ELN	FAM177A1	FMN1	GBA	GPD2	HDAC8
ELP4	FAM2OC	FMN2	GBE1	GPHN	HDX
EMC1	FAM58A	FOS	GCH1	GPI	HECW2
EML1	FANCC	FOXE 1	GCM2	GPR37	HELLS
EMX2	FANCE	FOXGI	GCNT2	GPR88	HEPACAM
ENG	FANCF	FOXH1	GCSH	GPSM2	HERC2
ENPP1	FANCI	FOXRED 1	GDF2	GRIAI	HES7
EP300	FAR1	FRAS1	GDF5	GRIA3	HESX1
EPC2	FARS2	FREM2	GDII	GRID2	HGSNAT
EPCAM	FAS	FRG1	GDNF	GRIK2	HIBCH

HIC1	IFT140	KCNA 1	KIF4A	LRP2	MDN1
HIRA	IFTI72	KCNAB1	KIF5C	LRRC4	ME2
HISTIHIE	IFT43	KCNAB2	KISS1	LTBPI	MECP2
HIST3H3	IGF1	KCNC1	KIZ	LTBP4	MED12
HIVEP 2	IGF1R	KCNC3	KLC2	LYRM4	MEDI3
HLCS	IKBKAP	KCND2	KLHL15	LYRM 7	MED13L
HMBS	ILI2A	KCND3	KLHLA1	LZTFL1	MEDI7
HMGA2	IL17F	KCNH7	KLHL7	MAB21L2	MED23
HMGB1	ILI7RA	KCNJI	KLRC4	MACF1	MED25
HMGB3	ILI7RC	KCNJIO	KMT2C	MAFB	MEF2C
HMGCL	ILI7RD	KCNJ13	KMT2E	MAG	MEFV
HMGCS2	ILIRAPL1	KCNJ2	KPNA7	MAGII	MEGF10
HNMT	IL23R	KCNJ6	KRT25	MAGT1	MEIS2
HNRNPH2	IL27RA	KCNJ8	KRT83	MAK	MET
HNRNPK	IMPAI	KCNMAI	KSR2	MANIBI	METTL23
HNRNPL	IMPADI	KCNN3	L2HGDH	MAN2B1	MFAP5
HNRNPU	IMPDH2	KCNQ3	LAMA 1	MAOA	MFF
HOXA1	INPP5E	KCNT1	LAMA2	MAP2K1	MFN2
НОХА2	INS	KCNV2	LAMB1	MAP2K2	MFSD2A
Нохв1	INSR	KCTD13	LAMC3	MAPK1	MFSD8
HPCA	INVS	KCTD 3	LAMP2	MAPK10	MGAT2
HPRTI	IQGAP3	KDM1A	LARP7	MAPRE2	MGAT4C
HPS3	IQSEC2	KDM2B	LBR	MAPT	MGME1
HRAS	IRX5	KDM5A	LDHB	MARVELD2	MGP
HSD17B10	ISCA2	KDM5B	LEP	MASP1	MIB1
HSD17B4	ISCU	KDM5C	LFNG	MATN4	MID2
HSPD1	ISPD	KDM6A	LHX1	MBD1	MKKS
HSPG2	ITGA3	KDM6B	LIMK1	MBD4	MKRN3
HTR1A	ITGA7	KIAA0196	LIN7A	MBD5	MLC1
HTR2A	ITGA9	KIAA0556	LIN7B	MBOAT7	MLX
HTR3A	ITGB6	KIAA0586	LINGO1	MBTPS2	MLXIPL
HUWE1	ITK	KIAA1033	LINS	MC2R	MMAA
HYLSI	ITSN1	KIAAI210	LIPT1	MCCCl	MMAB
IARS	IVD	KIAA1279	LMAN2L	MCEE	MMADHC
IBA57	IYD	KIF14	LMBR1	MCM3AP	MMP13
IDH2	JRK	KIFI7	LMBRD 1	MCM4	MMP19
IDS	KANK1	KIFIA	LMNB2	MCOLN1	MNX1
IER3IP1	KAT6B	KIF22	LONP 1	MCTP2	MOCSI
IFIHI	KATNB1	KIF2A	LRFN2	MDH2	MOGS

MORC2	NAV1	NKAIN2	OGDH	PDE10A	PIGS
MPCI	NAV2	NKX2-1	OMG	PDE4D	PIGT
MPDU1	NBN	NKX2-5	OPAI	PDE6D	PIGV
MPLKIP	NCS1	NLGN2	OPA3	PDE6G	PIK3AP1
MPP7	NDN	NLGN3	OPHN1	PDGFB	PIK3R2
MPV17	NDP	NLGN4Y	OPRL1	PDGFRB	PIK3R5
MRAP	NDUFAI	NLRP3	ORC1	PDHAI	PITRM1
MRPL10	NDUFA2	NME8	ORC4	PDHX	PLA2G6
MRPL3	NDUFA4	NMNATI	ORC6	PDP1	PLAGL1
MRPS22	NDUFA9	NODAL	OSBPL2	PDSS1	PLAT
MSL3	NDUFAF1	NOL3	OTOGL	PDSS2	PLCB1
MSRB3	NDUFAF2	NONO	OTUD4	PECR	PLEKHG2
MSX2	NDUFAF3	NOP10	OXTR	PEPD	PLP1
MTFMT	NDUFAF4	NOSIAP	P4HB	PETIOO	PLXNB3
MTHFS	NDUFAF5	NPAP1	PABPC4L	PEXI2	PLXND1
MTMR2	NDUFAF6	NPAS4	PAFAHIB1	PEX13	PMPCA
MTOR	NDUFSI	NPC2	PAFAHIB3	PEX14	PNKD
MTPAP	NDUFS2	NPEPPS	PAH	PEX16	PNKP
MTR	NDUFS4	NPHP1	PAM16	PEX19	PNP
MTRR	NDUFS6	NPHP3	PANK2	PEX2	PNPLA6
MTSSIL	NDUFV1	NPHP4	PANX1	PEX26	PNPO
MVK	NDUFV2	NPRL2	PARK2	PEX5	PNPT1
MXRA5	NEDD4L	NR2F1	PARN	PEX6	POC1A
MXRA8	NELFA	NR4A2	PARS2	PFKFB1	POC1B
MYCN	NEU1	NRGN	PAX1	PGAP3	PODXL
MYEF2	NEUROD2	NRXN1	PAX2	PGK1	POGZ
MYO18B	NF1	NSD1	PAX5	PGM1	POLAI
MYO5A	NFASC	NSDHL	PAX8	PHC1	POLG
MYO7B	NFAT5	NSUN7	PBXI	PHF21A	POLRIC
MYOCD	NFIA	NTRK1	PCCA	PHF3	POMGNT1
MYOF	NFIB	NTRK2	PCCB	PHGDH	POMK
NAA15	NFIX	NUP107	PCDH11X	PHKA2	POMT1
NACC1	NGLY1	NUP62	PCDH19	PHKG2	POP1
NAGA	NHS	NXF5	PCDH7	PHYH	POR
NAGLU	NID1	NXPH3	PCDHB4	PIEZO2	POU3F2
NAGPA	NIN	OBSCN	PCLO	PIGA	POU4F3
NAGS	NIPAI	OCLN	PCM1	PIGG	PPARG
NALCN	NIPA2	OCRL	PCNT	PIGL	PPARGCIA
NAT8L	NIPBL	OFD1	PCSK1	PIGN	PPIB

PPM1B	PTPRK	RIMS1	SCNIB	SLCl6A3	SMARCALI
PPM1D	PTS	RIPK4	SCN3A	SLCI7A3	SMARCEI
PPM1K	PUF60	RIPPLY2	SCN3B	SLCl7A5	SMClA
PPOX	PUS3	RIT1	SCN4B	SLCITA9	SMC3
PPPICB	PYCR2	RMND1	SCO1	SLCI8A2	SMCHD1
PPPIR15B	QDPR	RNASEH2C	SCO2	SLC1A3	SMO
PPP2R1A	QRICH1	RNASET2	SCP2	SLCIA4	SMOC1
PPP2R2C	RAB11B	RNF113A	SCRIB	SLC20A2	SMPDI
PPP2R5D	RAB11FIP5	RNF135	SCUBE2	SLC22A25	SMS
PRCD	RAB18	RNF216	SCYL1	SLC25A15	SNAP29
PREPL	RAB23	ROBO2	SDHAF1	SLC25A19	SNIPI
PRF1	RAB28	ROGDI	SEC23A	SLC25A3	SNRNP200
PRICKLE1	RAB39B	ROR2	SEC24C	SLC25A46	SNRPB
PRIMAI	RAC1	RORA	SEMA3C	SLC26A1	SNRPN
PRKARIA	RAD50	ROS1	SEMA3D	SLC26A5	SNTG2
PRKCD	RAD51	RP2	SEMA4G	SLC2A1	SNX10
PRKD1	RALGDS	RPGRIP1L	SEMA5A	SLC2A10	SNX14
PRKDC	RAPIA	RPL10	SEMA6D	SLC2A3	SOBP
PRKRA	RARB	RPL11	SESN2	SLC33A1	SOGA3
PRMT9	RARS2	RPL15	SET	SLC35A1	SON
PRODH	RASA2	RPL26	SETBPI	SLC35A3	SOS1
PRODH2	RAX2	RPS28	SETDIA	SLC35C1	SOST
PROKR2	RBFOXI	RPS6KA3	SETD1B	SLC39A13	SOX10
PROP1	RBM10	RPS7	SETDB2	SLC39A5	SOX11
PROSC	RBPJ	RSPRY1	SGSH	SLC39A8	SOX2
PRPF31	RD3	RTEL1	SH2B1	SLC3AI	SOX3
PRPF8	RDH11	RTN4R	SH3PXD2B	SLC46A1	SOX5
PRSS12	RDX	RTTN	SHANK1	SLC5A5	SOX9
PRUNE	RECQLA	RUNXITI	SHANK2	SLC5A7	SP7
PSAP	REEP1	SAG	SHANK3	SLC6A1	SPARC
PSPH	REEP6	SALL1	SHH	SLC6Al3	SPAST
PTCHD1	RELN	SALLA	SHOX2	SLC6A8	SPATA7
PTDSS 1	REPS2	SARIB	SIM1	SLC9A1	SPECCIL
PTF1A	RERE	SARS2	SIPAIL1	SLC9A9	SPG11
PTH	REST	SATL1	SIX6	SLCOIC1	SPG20
PTH2R	REV3L	SC5D	SLC12A6	SLIT2	SPG7
PTPN11	RFTI	SCN10A	SLC13A5	SLX4	SPINK5
PTPN22	RFWD2	SCN11A	SLC16A1	SMARCA2	SPN
PTPN23	RILP	SCNIA	SLC16A2	SMARCA4	SPOCK1

SPP2	SYP	THRA	TPM2	TUBB	VPS13C
SPR	SYT1	THRB	TPM3	TUBB3	VPS33B
SPTBN2	SZT2	TINF2	TPP1	TUBB4A	VPS4A
SPTBN5	TAC3	TJP2	TPP2	TUBG1	VPS53
SRCAP	TAF2	TK2	TRAF3IPI	TUBGCP4	VRK1
SRD5A3	TAF6	TKT	TRAF3IP2	TUBGCP5	VSIG1
SRGAP3	TALDO1	TLK2	TRAF7	TUBGCP6	VSX2
SRPK2	TANC2	TLR4	TRAIP	TUFM	WAC
SRPX2	TANGO2	TM4SF20	TRAPPC11	TWIST1	WDFY3
SSTR5	TAOK2	TMEM107	TRAPPC9	TXN2	WDPCP
ST3GAL5	TAT	TMEM114	TREM2	TYMP	WDR13
ST7	TBC1D20	TMEM126A	TREXI	UBA1	WDR19
ST8SIA2	TBC1D23	TMEM126B	TRH	UBE2T	WDR26
STAG2	TBC1D24	TMEM135	TRHR	UBE3A	WDR34
Stati	TBCK	TMEM216	TRIM8	UBE3B	WDR45
STAT2	TBR1	TMEM237	TRIP 12	UBR3	WDR60
STIL	TBX1	TMEM240	TRIP4	UCP2	WDR62
STIM1	TBX19	TMEM38B	TRIT1	ULK4	WDR73
STOX1	TBX4	TMEM5	TRMTIOA	UMPS	WFSI
STRA6	TCF12	TMEM67	TRMT5	UNC119	WHSC1
STRADA	TCF20	TMEM70	TRNT1	UNC13A	WNT1
STT3B	TCF3	TMEM92	TRPC5	UNC13B	WNT5A
STX16	TCF4	TMIE	TRPC6	UNC13D	WRAP53
STXBP1	TCN2	TMLHE	TRPM6	UQCRB	WWOX
STXBP2	TCTNI	TMPRSS6	TRPSI	UQCRQ	XK
STXBP5L	TDGF1	TNC	TSC1	UROC1	XPA
SUCLA2	TDP2	TNFRSF11A	TSC2	USB1	XPC
SUCO	TECPR2	TNFRSF11B	TSEN2	USP7	XPNPEP3
SUMF1	TECR	TNFRSFIA	TSEN34	USP9X	XPRI
SUPT16H	TECTA	TNFSF11	TSEN54	VAMP2	XRCC1
SURF1	TELO2	TNIK	TSHB	VARS2	XRCC4
SUV420H1	TENM1	TNNT1	TSPAN7	VAX1	XYLT2
SV2A	TEX15	TNS3	TTC19	$V C P$	YARS
SV2B	TFAP2B	TOE1	TTC21B	VCX3A	ZBTB18
SVIL	TFG	TONSL	TTLL5	VDR	ZBTB20
SYN1	TGDS	TOP3B	TUB	VIPR2	ZBTB33
SYN2	TGFB1	TOR1AIP1	TUBA1A	VMA21	ZC3H14
SYNCRIP	TH	TP63	tuba3e	VPS11	ZC4H2
SYNGAPI	THBSI	TPII	TUBA8	VPS13A	ZCCHC12

ZCCHC8	ZFP57	ZIC2	ZNF365	ZNF41	ZNF71
ZDHHC15	ZFPM2	ZMYM2	ZNF385B	ZNF513	
ZEB1	ZFYVE26	ZNF277	ZNF407	ZNF526	
ZFHX4	ZIC1	ZNF292	ZNF408	ZNF592	
ZNF778					
ZNHIT3					
ZSCAN29					
ZSWIM6					

Epilepsy gene list (in house)

AAAS	ALPL	ATP6V0C	CALM2	CIT
AARS	AMACR	ATP7A	CAMTA1	CLCN1
AASS	AMER1	ATPAF2	CARD9	CLCN2
ABCA5	AMPD2	ATRX	CARS2	CLCN4
ABCC8	AMPH	ATXN10	CASK	CHE

CRYAB	DNMIL	FADD	GATA3	GRIA3
CSFIR	DNMT3A	FAM111A	gatab	GRIK2
CSMD1	DOCK7	FAM126A	GATAD2B	GRIN1
CSNK1G1	DOCK8	FARS2	GBA	GRIN2A
CSPP1	DOLK	FASTKD2	GCH1	GRIN2B
CSTB	DPAGT1	FAT4	GCK	GRIN2D
CTC1	DPM1	FBP1	GCM2	GRINA
CTH	DPM2	FBXLA	GCSH	GRIP1
CTSA	DPYD	FCGR2B	GDII	GRM1
CTSD	DPYS	FGD1	GFAP	GRPR
CTSF	DYNCIHI	FGF12	GFM1	GTPBP3
CULAB	EARS2	FGF8	GFRA1	GUCYIAI
CUX1	EBP	FGFR2	GGT1	GUF1
CXCR4	ECM1	FGFR3	GIPCI	GYS1
CYB5R3	EFHCl	FLG	GIPC3	HADHA
CYP26C1	EFHC2	FLNA	GJAI	HADHB
CYP27A1	EGF	FLT4	GJC2	HAXI
CYP27B1	EHMT1	FMC1	GJD2	HCFCl
D2HGDH	EIF2B1	FMRI	GK	HCK
DAO	EIF2B4	FOLR1	GLB1	HCNI
DARS2	EIF2B5	FOXGI	GLDC	HCN2
DBT	EIF3E	FOXRED1	GLI2	HCN4
DCAF17	ELMO1	FRRSIL	GLI3	HDAC4
DCLK2	ELN	FSTL5	GLRA1	HEG1
DCX	ELOVLA	FTL	GLRB	HEPACAM
DEAF1	EMX2	FTO	GLUD1	HERC2
DEPDC5	ENG	FTSJI	GLUL	HESX1
DGKD	EPHA5	GABBR2	GLYCTK	HEXA
DHCR24	EPM2A	GABRAI	GM2A	HFE
DHFR	ERBB4	GABRA6	GMEB2	HGSNAT
DHTKD1	ERCC6	GABRB1	GMPPB	HLCS
DIP2B	ERLIN2	GABRB3	GNAOI	HMGCS2
DKC1	ERMARD	GABRD	GNAQ	HNFIB
DLD	ESCO2	GABRG2	GNB1	HOXAI
DLG2	ETFDH	GAD1	GNPAT	HRAS
DLG3	ETHE1	GAL	GPC3	HSD17B10
DMBX1	EXOC6B	GALC	GPHN	HSDI7B4
DNAJC6	F2	GAS1	GPSM 2	HSPD1
DNASE1	FA2H	GAS2L2	GPX4	HTRIA

HTR2A	KCNQ1	MAOA	MTMR11	NECAP1
HTT	KCNQ2	MAOB	MT-ND1	NEDD4
HUWE1	KCNQ3	MAP2K1	MT-ND4	NEDD4L
IDH2	KCNT1	MAPK10	MTO1	NELL1
IDS	KCNV1	MAPRE2	MTOR	NEU1
IER3IP1	KCTD7	MBD5	MTR	NEXMIF
IFIH1	KDM5C	MBTPS2	MYCN	NFIA
IFNAR2	KIF11	MCCC1	MCCC2	MYH6

OFD1	PHGDH	PRODH	RMND1	SLC12A5
OPAI	PHKG2	PROK2	RNASET2	SLCI2A6
OPHN1	PHOX2B	PROSI	RNU4ATAC	SLCl3A5
OPLAH	PHYKPL	PRPSI	RPGRIPIL	SLC16AI
OPRM1	PIGA	PRRC2B	RPIA	SLC17A5
OTC	PIGG	PRRT2	RPLIO	SLC19A3
OTX2	PIGL	PSAP	RPS6KA3	SLClal
PAK3	PIGM	PSATI	RRM2B	SLCIA2
PAQR8	PIGN	PSEN1	RTN4R	SLCla3
PC	PIGO	PSEN2	RUBCN	SLCla4
PCDH12	PIGV	PSMB8	RYR1	SLC20A2
PCDH15	PIGY	PSPH	RYR2	SLC25A1
PCDH19	PIK3CA	PTEN	SACS	SLC25A12
PCDHB4	PLA2G6	PTH	SASS6	SLC25A15
PCK1	PLP1	PTPN22	SATB2	SLC25A2
PCNT	PMP22	PTS	SCARB2	SLC25A20
PDCD6	PNKP	PUF60	SCNIA	SLC25A22
PDEIOA	PNPO	PURA	SCN2A	SLC26A1
PDHAI	PNPT1	PUS3	SCN2B	SLC2A1
PDHX	POGZ	QARS	SCN3A	SLC30A3
PDP1	POLG	QDPR	SCN4A	SLC33AI
PDSS2	POLR3A	RAB18	SCN5A	SLC35A2
PDX1	POLR3B	RAB27A	SCN8A	SLC35A3
PEX1	POMC	RAB39B	SCN9A	SLC35C1
PEX10	POMGNT1	RAB3GAPI	SCO2	SLC39A8
PEX13	POMT1	RAII	SDHD	SLC4A10
PEX14	POMT2	RANBP2	SEPSECS	SLC4A3
PEX16	PPOX	RANGAPI	SERACI	SLC6A1
PEX2	PPP1R3C	RAPGEF6	SERPINII	SLC6A19
PEX3	PPP2R1A	RAPSN	SETBP1	SLC6A2O
PEX5	PPT1	RARS2	SETD2	SLC6A3
PEX6	PQBPI	RB1	SETD5	SLC6A8
PEX7	PRAGI	RBFOXI	SEZ6	SLC7Al1
PGAPI	PRDM8	RBM10	SGCE	SLC7A6OS
PGAP2	PRF1	RBM8A	SHH	SLC9AI
PGK1	PRICKLE1	RBP4	SHROOM4	SLC9A6
PGM3	PRICKLE2	RBSN	SIK1	SLC9A9
PHF6	PRKDC	RELN	SIL1	SLCO1B7
PHF8	PRKN	RFTI	SIX3	SMAD4

SMARCA2	ST8SIA2	TBCE	TRMT44	VARS2
SMARCA4	STAMBP	TBLIXRI	TRMT9B	VLDLR
SMARCAL1	Stati	TBP	TRPM1	VPS11
SMARCEI	STAT2	TBX1	TRPM6	VPS13A
SMC1A	STIL	TBX19	TSC1	VPS13B
SMG9	STRADA	TDP1	TSC2	WDR19
SMS	STT3A	TDP2	TSEN15	WDR45
SNIP1	STT3B	TECPR2	TSEN2	WDR62
SNRPN	STXBPI	TELO2	TSEN34	WFSI
SOBP	SUCLA2	TENM2	TSEN54	XK
SON	SUCO	THRB	TTN	XPNPEP3
SORL1	SUOX	TICAM1	tubala	XPR1
SOX2	SV2A	TK2	TUBA8	YWHAE
SOX5	SYN1	TMEM67	TUBB	YWHAG
SPAST	SYN2	TMEM70	TUBB2A	ZBTB18
SPR	SYNGAPI	TMLHE	TUBB2B	ZC4H2
SPTAN1	SYNJI	TNK2	TUBB3	ZDHHC1
SPTLC2	SYP	TORIA	TUBGCP6	ZEB2
SQSTM1	SYT14	TPK1	TWNK	ZFP57
SRGAP2	SYT2	TPP1	TXN2	ZFYVE26
SRPX2	SZT2	TRAF3	UBE2A	ZMYND 11
ST3GAL3	TANGO2	TRAPPC11	UBE3A	
ST3GAL5	TAP1	TRAPPC9	UCHL1	
ST5	TBC1D32	TREM2	UQCC2	
ST7	TBCD	TREX 1	USP9X	

Interneuron gene list (in house)

9430021M05RIK	EDN3	KRT73	PVRLA
ACSBG1	EDNRB	LAMP5	RASL11A
ADAMTS18	EFCAB6	LHX6	RELN
AEBP1	EFEMP1	LRRC61	RGS12
AKR1C18	EGLN3	MAB21L1	RSPO2
ALOXE3	ETV1	MAN1A	SCMLA
ANO3	FAM107A	MEGF10	SEMA5B
ATP6AP1L	FIGN	MPPED1	$S G P P 2$
BACE2	FOSB	MYBPC1	SLC18A3
BCAR3	FREM1	MYH8	SMAD3
BDNF	FRMD7	MYO5B	SNCA
CACNA2D3	FXYD6	NDST4	SNCG
CADPS2	$G A B R D$	NELL1	SPP1
CALB1	GABRG1	NFIB	SST
CALCA	GFRA2	NOS1	ST6GALNAC5
CALN1	GLRA3	$N P Y$	TAC1
CAR4	GPC3	NPY2R	TAC2
CARTPT	GPR151	NR2F2	TACR1
CBLN4	GPR88	NR4A2	TACR3
CCDC109B	GPX3	NRP1	TACSTD2
CD34	GRM3	NT5E	TH
CDCA7	GSTM6	NTF3	THSD7A
CHAT	HAS2	NTS	THSD7B
CHODL	HCRTR1	OLFM3	TIMP3
CHRNA2	HSPB3	PARM1	TLL1
CHRNB3	HTR2A	PBX3	TNFAIP8L3
CNTNAP5B	HTR7	PCDH15	TNNT1
COL14A1	IL1RAPL2	PCDH18	TPBG
COL25A1	IRS4	PCDH8	TPD52L1
COX6A2	ITIH5	PDE11A	TPM2
CPNE5	KCNS3	PDLIM3	TRPV6
CRH	KIT	PHLDA1	VIP
CRISPLD2	KLHL14	PLA2G4A	
CRYAB	KRT12	PPAPDC1A	
CXCL14	KRT18	PVALB	

Arx target genes (Mattiske et al. 2016)

0610010B08RIK	4930578M01RIK	ADAMTSL3
0610010F05RIK	4932411E22RIK	ADARB2
0610012G03RIK	4932418E24RIK	ADCY9
O610040B10RIK	4932438A13RIK	ADGRL3
1110001J03RIK	4933409G03RIK	ADORA3
1190005I06RIK	5031434O11RIK	AEBP1
1600002 K03RIK	5330426P16RIK	AEN
1700007G11RIK	5730408 K05RIK	AFF2
1700007J10RIK	5830454E08RIK	AFF4
1700008003 RIK	6330415B21RIK	AFP
1700016K19RIK	6330418 K02RIK	AGER
1700020I14RIK	6330549D23RIK	AGO2
1700029I15RIK	8030462N17RIK	AGO3
1700048O20RIK	9430020K01RIK	AHII
1700067 K01RIK	9430076 C15RIK	AI118078
1700113A16RIK	9530082P21RIK	AI413582
1700123 K08RIK	A330023F24RIK	AI506816
2010320M18RIK	A630001G21RIK	AI597479
2310002D06RIK	A630089N07RIK	AI606473
2310057J18RIK	A730008H23RIK	AIMP1
2610002M06RIK	AASDHPPT	AKAP6
2610005L07RIK	ABCA5	ALAD
2610020H08RIK	ABCA8B	ALDH1B1
2610318N02RIK	ABHD1	ALDH8A1
2810405F15RIK	ABHD11	ALG10B
2810428I15RIK	ABHD14A	ALG2
3110021A11RIK	ABHD2	ALK
3110021N24RIK	ACBD4	ALKBH2
3300002 IOPRIK	ACE	ALKBH8
4632427E13RIK	ACKR3	ALS2CR12
4632428 N05RIK	ACOT10	ALX1
4921511 H03RIK	ACTN2	AMD1
4930404N11RIK	ACTR3	AMH
4930444P10RIK	ACVR2B	AMPD2
4930447C04RIK	ACVRL1	ANAPC13
4930455C13RIK	ADAMTS 12	ANK1
4930506C21RIK	ADAMTS6	ANK3
4930565N06RIK	ADAMTS8	ANKFN1

ANKK1	ATG101
ANKRD22	ATG2B
ANKRD26	ATG4C
ANKRD7	ATG5
ANO4	ATL2
ANXA10	ATP13A4
AOX4	ATP2B3
AP1S3	ATP5E
AP2A1	ATP5G1
APLP2	ATP5G2
APOA1	ATP5H
APOM	ATP5J
AQP4	ATP5K
ARFGEF3	ATP6V0E
ARHGAP12	ATP7A
ARHGAP32	ATP7B
ARHGAP5	ATP8A2
ARHGDIG	ATRNL1
ARHGEF38	ATRX
ARID1A	AU040320
ARID4B	AXIN2
ARID5A	B230119M05RIK
ARID5B	B3GNT7
ARL5B	B4GALT1
ARMCX2	BAHD1
ARNTL	BARX1
ARX	BATF
AS3MT	$B A X$
ASCC1	BBS12
ASH1L	BC002163
ASIC5	BC003331
ASL	BC005537
ASPDH	BC005561
ASPHD1	BC031181
ASPM	BC094916
ASPRV1	BEX2
ATF7	BFSP2
ATF7IP	BHLHE22

BHLHE40	CAPNS 1	CDH13	CHRNG	CPEB4
BICD1	CARII	CDH2	CHTF18	CPNE2
BIRC6	CAR3	CDH3	CIB2	CPSF1
BIVM	CARF	CDH5	CISD3	CRABPI
BMPER	CARTPT	CDH6	CIT	CRABP2
BMPR2	CASC4	CDH8	CLCN5	CRB1
BOLA2	CASC5	CDK17	CLDN3	CREB3L1
BRD1	CASD1	CDK2AP2	CLDN6	CREB5
BRD2	CASQ1	CDK5RAP2	CLEC1B	CREBBP
BRICD5	CATSPERB	CDK6	CLEC9A	CRIP1
BRMS1	CAV1	CDKL5	CLOCK	CRIP3
BRS3	CBL	CDKNIA	CLUH	CRIPT
BRWD3	CBLC	CDKN2AIP	CMA1	CRTACI
BTBD7	CBX3	CDKN2C	CNKSR2	CRY2
BTBD8	CBY1	CDON	CNN2	CRYGE
BTD	CCDC101	CDX1	CNNM3	CRYM
BTG4	CCDC106	CEACAM9	CNOT6	CSF2RB2
BTNIAI	CCDC107	CELF2	CNTN1	CSMD1
C130021I20RIK	CCDC12	CELSR2	CNTN2	CSMD3
C130071C03RIK	CCDC124	CENPC1	CNTN5	CSNISI
ClGALTI	CCDC171	CEP135	CNTNAP3	CSRNP3
CIQL3	CCDC23	CEP290	CNTNAP5A	CST13
C5AR2	CCDC24	CEP350	CNTNAP5B	CST7
C77370	CCDC28A	CEP85	COA3	CSTF2T
C78339	CCDC32	CEP85L	COLIOAI	CTNNA2
C8B	CCDC38	CERS6	COL6A2	CTR9
CABP1	CCDC60	CFAP97	COL8AI	CUEDC2
CACFDI	CCDC88C	CFH	COLGALT2	CWC22
CACNAIB	CCHCR1	CGGBPI	COMTD 1	CWH43
CACNAIE	CCKBR	CHCHD 1	COTL1	CXCLIO
CACNA2D1	CCL2	CHCHD6	COX17	CXCL11
CACNG4	CCNT1	CHD9	COX4II	CXCL14
CADM3	CCR10	CHGA	COX6B2	CXCR2
CADPS2	CCRL2	СНКВ	COX7A1	CXCR4
CALB1	CCT6A	CHMP2A	COX7A2L	CXCR5
CALB2	CD177	CHN1	COX7B2	CXXIA
CALCR	CD274	CHRM3	COX8B	CXX1B
CALN1	CD2AP	CHRM4	CPA2	CXXC4
CALU	CD84	CHRNA7	CPEB1	CXXC5

CYB5R4	DGKZ	DYNC2H1	EPHA3	FAM57B
CYBB	DHRS3	DYNLRB2	EPHB1	FAM83G
CYP1B1	DHX37	DYNLTIF	EPHX2	FAM92B
CYP26B1	DIP2B	DYRK2	EPPK1	FAP
CYP2B10	DISC1	E330009J07RIK	EPYC	FAT1
CYP2C55	DKKL1	EBF1	ERBB4	FAT3
CYP2C66	DLEU2	EBF3	ERICH5	FAU
CYP2R1	DLGAP2	EDA	ERMN	FBF1
CYP4X1	DLK2	EDA2R	ERN1	FBXL18
D030047H15RIK	DMP1	EDNRA	ESAM	FBXO15
DIOJHU81E	DMRT3	EFCAB8	ESPN	FBXO40
D130040H23RIK	DMRTA2	EFNB3	ESRPI	FBXO48
D330041H03RIK	DMRTCIA	EFS	ESX1	FBXW4
D430020J02RIK	DMTF1	EGFL6	ESYT3	FCAMR
D630041G03RIK	DMXL2	EGFL8	ETS2	FCNA
D830031N03RIK	DNAH5	EGR1	ETV1	FER
D8ERTD738E	DNAJB14	EGR3	EVX2	FEV
D930028M14RIK	DNM2	EIF1	EXOC4	FGD4
DAND5	DNM3OS	EIF2AK3	EXOSC4	FGF13
DBNDD2	DOC2B	EIF2S1	F730043M19RIK	FGF20
DBNL	DOC2G	EIF2S3Y	FA2H	FGF4
DBPHT2	DOCK4	EIF3F	FABP3	FGFBP3
DBX1	DОК3	EIF4A2	FAM107B	FGFR1OP2
DCAF13	DOK6	EIF4EBP3	FAM124B	FGFR2
DCDC2B	DOPEY1	EIF5	FAM135B	FGR
DCT	DPM2	ELFN2	FAM159A	FHAD1
DCUNID1	DPM3	ELK4	FAM160A1	FHOD1
DDI2	DPPA3	ELL3	FAM168B	FIBCD1
DDIT4	DPY19LA	EMC7	FAM171A2	FIGNL1
DDT	DPYD	EML6	FAM171B	FISI
DDX3Y	DPYS	ENC1	FAM183B	FKBP11
DEFB2	DPYSL2	ENDOG	FAM204A	FKBP2
DEFB29	DPYSL3	ENO3	FAM212B	FKTN
DEFB50	DRAP1	ENPP4	FAM217B	FLRT1
DENNDIC	DTNBP1	ENPP5	FAM2 19B	FLRT2
DEPTOR	DTX2	EOMES	FAM26F	FLYWCH2
DERL3	DUSP11	EPB4.1L1	FAM45A	FMNL1
DGKH	DUSP19	EPG5	FAM50A	FNDC3C1
DGKI	DUSP4	EPGN	FAM53B	FNIP1

FOS	GBX2	GM5617	GRID2	HIST1HIE
FOSB	GDAP10	GM5635	GRM1	HIST1H2AB
FOXAI	GDF1	GM5796	GSS	HIST1H2AC
FOXB2	GFIIB	GM6377	GSTK1	HIST1H2AD
FOXF1	GFOD1	GM6402	GTF2B	HIST1H2AE
FOXN4	GGCX	GM973	GUCY2C	HIST1H2AF
FOXO3	GGNBPI	GM9839	GVIN1	HIST1H2AG
FOXP1	GHDC	GM996	H2-DMA	HIST1H2AI
FREM2	GHRH	GMDS	H2-Q6	HISTIH2AN
FRMD6	GIMAP8	GNAII	H2-Q8	HIST1H2AO
FRMD7	GJB2	GNAI3	H2-T24	HIST1H2BC
FRRSIL	GJD4	GNAOI	HAOI	HIST1H2BE
FRY	GK5	GNAS	HAP1	HIST1H2BF
FRYL	GLG1	GNB2	HAS3	HIST1H2BG
FTL1	GLIS3	GNG11	HAUS3	HIST1H2BJ
FUT7	GLRA3	GNG13	HAUS5	HIST1H2BL
FXYD6	GLRX3	GNG8	HBB-BH1	HIST1H2BN
FXYD 7	GM10406	GNGT2	HBP1	HISTIH3B
FZD1	GM11974	GNL2	HC	HIST1H3C
GOS2	GM12060	GNMT	HCFCl	HIST1H3E
G6PD2	GM12070	GP1BB	HCRTRI	HISTIH3F
GAB3	GM12709	GPAM	HDAC4	HIST1H4A
GABARAP	GM14827	GPATCH2	HDGFL1	HIST1H4B
GABBR2	GM15421	GPD1	HDX	HISTlH4C
GABRB3	GM16386	GPNMB	HECTD2	HIST1H4D
GABRE	GM16576	GPR161	HECW1	HIST1H4F
GABRQ	GM16617	GPR165	HEG1	HIST1H4H
GAD2	GM1673	GPR21	HELZ	HIST1H4I
GADD45G	GM16982	GPR26	HEMGN	HISTIH4J
GALNTI4	GM19557	GPR37	HEPACAM2	HIST1H4K
GALNTL6	GM19757	GPR50	HEPH	HIST1H4M
GAN	GM2694	GPR63	HERC1	HISTIH4N
GAPDHS	GM3414	GPRIN2	HERC2	HIST2H2BB
GARI	GM3500	GPS2	HES6	HIST2H3B
GAREM	GM382	GPSM1	HHIPL1	HIST2H3C1
GATA3	GM4070	GRAMDIB	HIPK2	HIST2H4
GATAD2B	GM4861	GRCC10	HISTIHIA	HIST4H4
GATSL2	GM5176	GRIAI	HISTIHIB	HIVEP 1
GBP6	GM5415	GRIA3	HIST1HID	HIVEP3

HMBOX1	INPP5K	KCTD5	LCOR	LRRTM2
HMCNI	IPO4	KDM5D	LENEP	LSM3
HMGB3	IPW	KHDRBS2	LGALS4	LSM5
HMGN3	IQUB	KIDINS220	LGALS 7	LSM 7
HNF1A	IRS1	KIF13B	LGIl	LY6G5B
HNRNPF	IRX5	KIF26B	LHX5	LY75
НООК1	ISG15	KIRREL3	LIMCH1	LYPD6
HPN	ITGA6	KITL	LIN7C	LYST
HPS5	ITGAV	KL	LINGOI	LZTSI
HR	ITGB1BP1	KLF10	LMBRD2	LZTS3
HS3ST1	ITGB3BP	KLFI2	LMLN	MAF
HS3ST3A1	ITGB8	KLF13	LMNB2	MAFA
HSF2	ITM2C	KLF7	LMOI	MAGEL2
HSPA4L	IWSI	KLF9	LMO3	MAMDC2
HSPA5	IZUMOI	KLHDC9	LMO4	MANIA2
HSPB1	JADE3	KLHL11	LNP	MANEA
HSPB3	JOSD2	KLHL15	LNPEP	MAP1B
HTATIP2	JPH4	KLHL22	LONRF3	MAPILC3A
HTR7	KANK3	KLHL28	LPARI	MAP3K13
HUWE1	KANSL3	KLHL3	LPAR4	MAP4
HYALI	KAT6A	KLK1B11	LPP	MARK3
HYI	KBTBD8	KLRC1	LPPR2	MARK4
ID2	KCNAI	KLRGI	LRCH3	MASPI
IDOI	KCNA3	KRCCI	LRP1B	MBD3L2
IFNA15	KCNA5	KRTI	LRP2	MBIP
IFNA9	KCNAB1	KRT222	LRP6	MBOATI
IFNB1	KCNAB3	KRT40	LRRC18	MC2R
IFT46	KCNB2	KRT78	LRRC23	MCM4
IGFI	KCNE3	KRT8	LRRC26	MDFI
IGFBP4	KCNH5	KRTAP6-2	LRRC3	MDK
IGFLRI	KCNH7	KSR2	LRRC46	MDM4
IGSF21	KCNJ14	LICAM	LRRC49	MDN1
IGSF6	KCNJ3	LAMC2	LRRC7	ME3
IGSF9B	KCNMAI	LAMTOR3	LRRC8A	MED12L
IL17RD	KCNN3	LANCL3	LRRC8B	MED13L
IL18RAP	KCNQ3	LARS2	LRRC8D	MEF2A
ILIF5	KCNT1	LCAT	LRRC9	MEF2C
IL3RA	KCTD19	LCEIE	LRRD1	MEG3
IMP3	KCTD4	LCN12	LRRTM1	MEGF9

MEIGI	MRPL54	NAV3	NR2C2	OXRI
MEISI	MRPS16	NBEA	NR2C2AP	P2RXI
MEIS2	MRPS22	NBEALI	NR3C2	P2RX7
MEPIA	MRS2	NCAM2	NR4AI	P2RYIO
MESDC2	MSX2	NDE1	NR4A2	PADII
METTL15	MSX3	NDN	NRBP2	PAGR1A
METTLI6	MT1	NDNL2	NRIP1	PALM2
MEX3D	MT2	NDRG1	NRL	PALMD
MGAT5	MT3	NDST1	NRP	PANK1
MIA	MTCH2	NDUFAI3	NRP1	PARM1
MIB1	MTERF3	NDUFA2	NRSN2	PARP12
MID2	MTRFIL	NDUFA5	NRXN1	PARP8
MINOS 1	MUC4	NDUFA8	NT5C1B	PATLI
MIOX	MUSK	NEDD8	NTNG1	PAX1
MIR1191	MVD	NEIL1	NTS	PBLD 1
MIR124A-2	MX2	NENF	NTSR2	PCBD2
MIR16-1	MYCBP	NEO1	NUB1	PCDH11X
MIR186	MYCBP2	NFE2L3	NUDT16	PCDH17
MIR25	MYEOV2	NFIB	NUP98	PCDH19
MIR703	MYF5	NFIX	NWD1	PCDH9
MIRG	MYH8	NHLRC2	NXF1	PCDHA12
MLLT1	MYL6	NHLRC3	NXT2	PCDHA2
MLXIP	MYLPF	NHS	NYAP1	PCDHA3
MMP9	MYO16	NID2	NYAP2	PCDHA5
MNATI	MYT1	NIPALA	OAZ1	PCDHA6
MOBIA	MYTIL	NKAIN3	OCLN	PCDHA7
MOB1B	N28178	NLRP1A	ODAM	PCDHA9
MOSPD2	N4BP2	NMB	ODF3L1	PCDHACI
MOXD 1	NAA25	NME8	OLFM3	PCDHAC2
MPST	NAA35	NMS	OLFML3	PCDHB10
MPV17	NAALAD2	NOS 1	OLFR856-PSI	PCDHB2
MPVI7L2	NALCN	NOS1AP	OLIG3	PCDHB5
MRO	NANOS2	NOX4	ONECUT1	PCDHGAI
MRPL14	NANOS3	NPFF	OOSP1	PCDHGAIO
MRPL23	NAPIL1	NPM2	OPRM1	PCDHGAl1
MRPL27	NAP1L5	NPNT	ORMDL3	PCDHGA12
MRPL32	NAPEPLD	NPPC	OTP	PCDHGA2
MRPL33	NAT9	$N P Y$	OTX1	PCDHGA3
MRPL52	NATD1	NPY6R	OVOL1	PCDHGA4

PCDHGA5	PFDN6	POLD4	PRL8A6	RAB43
PCDHGA6	PFN2	POLK	PRL8A9	RAB5A
PCDHGA7	PGF	POLL	PRMT6	RAD23B
PCDHGA8	PHF19	POLR2J	PROX1	RAD54L2
PCDHGA9	PHKG2	POLR2L	PRPF39	RALB
PCDHGB1	PHLDAI	POLR3E	PRPH	RALGPS 1
PCDHGB2	PHOX2A	POMC	PRPSAPI	RAMP3
PCDHGB4	PHTF2	POP5	PRR19	RANBP10
PCDHGB5	PHYH	POR	PRR22	RANBP3
PCDHGB6	PIASI	POSTN	PRRC2C	RANGRF
PCDHGC3	PIBF1	POTIA	PRSS12	RAPGEF3
PCDHGC4	PIGR	POUIFI	PRSS58	RAPGEF5
PCGF3	PIK3CA	POU3F4	PSD3	RASGEF1B
PCNXL4	PIK3R3	POU4F2	PSMAI	RASSF5
PCSKIN	PITPNB	POU4F3	PSMB3	RASSF8
РСТК2	PITX2	PPAP2A	PSMD7	RAVER1-FDXIL
PCYT1B	PKHDIL1	PPAP2B	PSMG3	RBBP5
PDAP1	PKMYT1	PPARG	PSMG4	RBCK1
PDCD5	PKP4	PPARGClA	PTAR1	RBL1
PDCD6	PLA2G15	PPFIBP 2	PTCH1	RBM26
PDEIOA	PLA2G7	PPM1L	PTCRA	RBM38
PDEIA	PLAC1	PPPIR12A	PTEN	RBM42
PDE1C	PLAC9B	PPPIR12B	PTGER4	RBM47
PDE3A	PLAGI	PPPIR3A	PTGR1	RBMS2
PDE4DIP	PLCXD 3	PPP2R1A	PTP4A1	RCL1
PDE6B	PLEC	PPP3CC	PTPN4	RCORI
PDE8B	PLEKHF1	PQLC1	PTPRT	RDH11
PDE9A	PLEKHG5	PRC1	PXT1	RELN
PDGFRL	PLEKHG6	PRDM10	PXYLP1	REPS1
PDK3	PLGRKT	PRDM11	PYGO1	REST
PDLIM1	PLS3	PRDM8	PZP	REXO1
PDPR	PLSCR2	PRDX5	QK	RFFL
PDS5A	PLXNA2	PRG4	RAB11FIP4	RIMS1
PDSS1	PLXNA4	PRKCB	RAB15	RIMS3
PDZD9	PLXND1	PRKCD	RAB21	RMII
PEG10	PMAIPI	PRKD3	RAB24	RMRP
PEG3	PNMALI	PRKRIR	RAB2B	RN45S
PERP	PNMT	PRL	RAB39B	RNASEH2C
PETIOO	POCIB	PRL5A1	RAB3IP	RNF223

RNFT2	RPS21	SDC3	SIAHIB	SLC46A2
ROMO1	RPS24	SDC4	SIAH3	SLC46A3
RPE	RPS27L	SDK2	SIGLECE	SLC47AI
RPL12	RPS28	SDR39U1	SIGLECF	SLC48A1
RPL13	RPS5	SDR42EI	SIGMARI	SLC4A4
RPL13A	RPS8	SEC22C	SIK1	SLC52A3
RPL18	RPS9	SELM	SIK2	SLC6A2
RPL18A	RPUSD4	SEMA3C	SIKEI	SLC6A20B
RPL21	RRAGA	SEMA3E	SIX2	SLC6A5
RPL23	RRAGB	SEMA3G	SIX6	SLC7A10
RPL28	RRP1B	SEMA6A	SKINTIO	SLC7A5
RPL29	RSBNI	SEPSECS	SKINT11	SLC8AI
RPL31	RSG1	SEPW1	SKOR1	SLC9A7
RPL31-PS12	RSPHI	SERF2	SLA2	SLFN9
RPL35	RSPO3	SERP1	SLCIOA5	SLITI
RPL35A	RTN4R	SERP2	SLCIOA7	SLIT2
RPL36	RTP1	SERPINAIO	SLC12A5	SMAD1
RPL36AL	RTP2	SERPINBIB	SLCI4AI	SMAD4
RPL37	RWDD1	SERPINB7	SLC16A10	SMARCD2
RPL37A	SIOOA1	SERPINB9C	SLCl6Al4	SMC6
RPL37RT	SlOOAIO	SERPINI2	SLC16A4	SMIM11
RPL38	S100A16	SERTAD1	SLClAI	SMIM4
RPL39	Sl00A6	SESN3	SLC22A23	SMU1
RPL41	Sloopbr	SETD5	SLC25A10	SNAPC5
RPL8	SIPR5	SETD6	SLC26A1	SNAPIN
RPLP1	SAAI	SF1	SLC26A2	SNF8
RPLP2	SACS	SF3A2	SLC2A13	SNHG8
RPN1	SALL3	SFN	SLC2A2	SNORA28
RPP21	SAMD5	SFXN5	SLC2A3	SNORA31
RPPH1	SARS	SH2D7	SLC2A9	SNORA68
RPS12	SBF1	SH3BGRL3	SLC30A3	SNORD104
RPS14	SBK1	SH3TC2	SLC35B4	SNORD17
RPS15	SCAMP1	SHANK2	SLC35D1	SNORD2
RPS15A-PS6	SCARB2	SHC3	SLC35E1	SNORD64
RPS16	SCARNA9	SHFM1	SLC35F6	SNORD99
RPS18	SCFD2	SHOC2	SLC36A4	SNRNP70
RPS19	SCOC	SHOX2	SLC39A5	SNRPB
RPS19-PS3	SCTR	SHROOM3	SLC43A3	SNRPD2
RPS20	SCUBE2	SHROOM4	SLC44AI	SNRPG

SNRPN	SST	TCEB2	TMEM179B	TPPP3
SNTB2	ST6GAL2	TCERG1	TMEM191C	TRAPPC6A
SNURF	STAC3	TCF7	TMEM196	TRDMTI
SNX15	Stag3	TCL1	TMEM200A	TRIL
SNX2	STAM2	TCP11L2	TMEM222	TRIM21
SNX22	STARDIO	TEDDM 2	TMEM232	TRIM40
SNX29	STK11	TEKT1	TMEM245	TRIM43C
SNX30	STK33	TEKT4	TMEM246	TRIM44
SOCS2	STKLD1	TENM1	TMEM256	TRIM56
SOCS4	STMN1	TENM3	TMEM259	TRIP11
SOCS6	STMN4	TENM4	TMEM35	TRP53BP1
SOD1	STOX2	TFAP2A	TMEM42	TRP53INP2
SORCS3	STRA13	TFRC	TMEM47	TRPS1
SORL1	STRN	TGFB3	TMEM53	TSC22D3
SOX4	STXIB	TGFBI	TMEM65	TSPAN2
SOX8	STX8	TH	TMEM67	TSPAN3
SPA17	SUCNR1	THBS4	TMEM74	TSPAN32
SPAG16	SULT2B1	THEMIS	TMEM88	TSPAN4
SPAG9	SUPT4A	THNSL2	TMOD 1	TSPAN7
SPATAIG	SUSD4	THPO	TNFAIP8L2	TSPYL1
SPHKAP	SV2A	TIMM13	TNFRSF18	TSSC4
SPIC	SV2C	TIMM21	TNFRSF19	TST
SPOCK3	SVS4	TIMM8AI	TNFRSF4	TSTD1
SPPL2A	SYNDIGIL	TIMM8B	TNFSF18	TTВК2
SPRED2	SYNE2	TIPARP	TNKS	TTC28
SPRR2E	SYT14	TLE1	TNNI3	TTC3
SPRR2F	SYT15	TLE4	TNPO1	TTC32
SPRTN	SYTL5	TLE6	TNPO2	TTC37
SPRY2	TACR2	TLX2	TNR	TTC9B
SPTSSA	TAF10	TMC7	TNRC6B	TTK
SPTSSB	TAS2R102	TMCC2	TOB1	TTLLA
SPTY2D1	TAS2R113	TMCO4	томM6	tUbala
SREK1	TAS2R125	TMED9	TOMM7	TWIST1
SRPX	TAS2R129	TMEFF2	TOX	TXN1
SRRM3	TBCK	TMEM132D	TPBPA	UACA
SRSF1	TBLIX	TMEM136	TPBPB	UBA52
SRSF5	TBX15	TMEM150B	TPD52	UBALD2
SRSF7	TCEAL3	TMEM154	TPH1	UBE2I
SSH1	TCEAL8	TMEM178B	TPP2	UBQLN4

UBR4	UTP6	WFDC21	ZDBF2	ZFP551
UBR7	VAMP5	WFSI	ZDHHC2	ZFP579
UBXN 1	VAMP8	WNK3	ZDHHC9	ZFP580
UBXN4	VARS	WRAP53	ZERI	ZFP618
UCN	VATI	XKR4	ZFAND2B	ZFP619
UGCG	VCAN	XKR7	ZFAND5	ZFP64
UGT2A2	VGLL2	XPNPEP3	ZFAND6	ZFP644
UGT2B37	VKORCI	XPO4	ZFHX4	ZFP688
UHMK1	VNN1	XPO7	ZFP109	ZFP69
UNC13C	VPS13A	XRN1	ZFP169	ZFP81
UNC50	VPS13B	XYLTI	ZFP296	ZFPM 2
UNC5D	VPS13C	YME1L1	ZFP35	ZGLP1
UNCX	VPS13D	YOD1	ZFP358	ZHX2
UPF3A	VPS4B	ZBED6	ZFP369	ZIC5
UPK1A	VSTM2B	ZBTB18	ZFP36L2	ZIM1
UPP2	VTIIB	ZBTB20	ZFP382	ZKSCAN16
UPRT	VWA2	ZBTB37	ZFP39	ZKSCAN2
UQCC2	WAC	ZBTB38	ZFP398	ZKSCAN7
USE1	WASF1	ZBTB41	ZFP408	ZPBP
USP3	WASF3	ZВTB7C	ZFP428	ZRANB1
USP34	WBSCR27	ZC3H11A	ZFP442	ZRSR2
USP47	WDFY2	ZC3H12B	ZFP458	
USP53	WDFY3	ZC3H12C	ZFP503	
USP8	WDR17	ZC3H12D	ZFP516	
UTP14B	WFDCI	ZC3HAVIL	ZFP536	

Estrogen response element containing mouse genes (Bordeau et al. 2014)

0610006I08RIK	0610030E20RIK	1100001D10RIK
0610006K04RIK	0610030G03RIK	1100001F19RIK
0610006O14RIK	0610030H11RIK	1100001H23RIK
0610006O17RIK	0610033H09RIK	1100001I23RIK
0610007A03RIK	0610033M06RIK	1110001A07RIK
0610007H07RIK	0610034P02RIK	1110001E17RIK
0610007L01RIK	0610037B21RIK	1110001J12RIK
0610007P22RIK	0610037D15RIK	1110001M19RIK
0610008F14RIK	0610037H22RIK	1110001P11RIK
O610009B14RIK	0610038D11RIK	1110002H13RIK
0610009D10RIK	0610038F07RIK	1110002H14RIK
0610009H04RIK	0610038O04RIK	1110002O23RIK
0610009J22RIK	0610039C21RIK	1110003E01RIK
0610009K11RIK	0610039G24RIK	1110003N12RIK
0610009M14RIK	0610039J01RIK	1110003P16RIK
0610009O03RIK	0610039K22RIK	1110003P22RIK
0610009O20RIK	0610039P13RIK	1110004B15RIK
O610010E03RIK	0610040D20RIK	1110004D19RIK
0610010I12RIK	0610040F04RIK	1110004E09RIK
0610010I20RIK	0610040H15RIK	1110005F07RIK
0610010O12RIK	0610041D19RIK	1110005L13RIK
0610011B16RIK	0610041L09RIK	1110005N04RIK
0610011C19RIK	0610042E07RIK	1110006G06RIK
0610011D08RIK	0610043A03RIK	1110006I15RIK
0610011H20RIK	0610043B10RIK	1110007A10RIK
0610011L13RIK	0710001E19RIK	1110007A14RIK
0610011L14RIK	0710001F19RIK	1110007C09RIK
0610011N22RIK	0710001P18RIK	1110007C24RIK
0610012A05RIK	0710007C18RIK	1110007F12RIK
0610012F07RIK	0710008A13RIK	1110007F23RIK
0610012J09RIK	0710008C12RIK	1110007H17RIK
0610012P18RIK	0710008D09RIK	1110008B24RIK
0610013E23RIK	0910001 B06RIK	1110008E08RIK
0610013I17RIK	1010001D01RIK	1110008F13RIK
0610016J10RIK	1010001J12RIK	$1110008114 R I K$
0610016O18RIK	1010001M12RIK	1110008J03RIK
0610025O11RIK	1010001N08RIK	1110008L20RIK
0610027O18RIK	1010001P06RIK	1110008P14RIK

1110011F09RIK	1110027L01RIK
1110012D08RIK	1110028E10RIK
1110012E06RIK	1110028 N05RIK
1110012J17RIK	1110030J09RIK
1110012M11RIK	1110030M18RIK
1110013H04RIK	1110031C13RIK
1110013O17RIK	1110031E24RIK
$1110014 \mathrm{C03RIK}$	1110031 K21RIK
1110014F12RIK	1110032A10RIK
1110014F24RIK	1110032N12RIK
1110014H17RIK	1110033A15RIK
1110014 P06RIK	1110033G01RIK
1110015E18RIK	1110033 K02RIK
1110015 K06RIK	1110033O10RIK
1110015M06RIK	1110034A24RIK
1110017L09RIK	1110034C04RIK
1110017N23RIK	1110035G07RIK
1110017P05RIK	1110035H23RIK
1110018D06RIK	1110036B12RIK
1110018E21RIK	1110036C17RIK
1110018H23RIK	1110036H21RIK
1110018J12RIK	1110037D04RIK
1110018J18RIK	1110038F21RIK
1110018J23RIK	1110038G02RIK
1110018N15RIK	1110038G14RIK
1110018008 RIK	1110038I05RIK
1110018O12RIK	1110038O14RIK
1110019J04RIK	1110039B18RIK
1110019O13RIK	1110049G11RIK
1110020B03RIK	1110051N18RIK
1110020E07RIK	1110053F04RIK
1110021E09RIK	1110054M18RIK
1110021H13RIK	1110054N06RIK
1110025F24RIK	1110054O05RIK
1110025G12RIK	1110055B05RIK
1110025H10RIK	1110055J05RIK
1110025I09RIK	1110058B13RIK
1110025J15RIK	1110059G10RIK

1110059H15RIK	1200011118RIK	1300017C10RIK	1600002 O04RIK	1700008P20RIK
1110061N23RIK	1200013B07RIK	1300017 K07RIK	1600010M23RIK	1700009B20RIK
1110063B05RIK	1200013B22RIK	1300018G05RIK	1600012P17RIK	1700009P17RIK
1110063G11RIK	1200013P24RIK	1300018J18RIK	1600013K19RIK	1700010D01RIK
1110064A23RIK	1200014D22RIK	1300019H02RIK	1600013L13RIK	1700010H22RIK
1110064N10RIK	1200014F01RIK	1500001M20RIK	1600013P15RIK	1700010L19RIK
1110064 P04RIK	1200014H14RIK	1500002I10RIK	1600014C23RIK	1700010O16RIK
1110065L07RIK	1200014J11RIK	1500003O22RIK	1600014E20RIK	1700010P07RIK
1110067B02RIK	1200014K04RIK	1500004C10RIK	1600015I10RIK	1700011F03RIK
1110067D22RIK	1200015A19RIK	1500005N04RIK	1600016B17RIK	1700011I11RIK
1110068E08RIK	1200016B10RIK	1500006O09RIK	1600016N20RIK	1700012A03RIK
1110069M14RIK	1200016D23RIK	1500009 C09RIK	1600017L04RIK	1700012B07RIK
1190003K14RIK	1200016G03RIK	1500009M05RIK	1600017N11RIK	1700012B15RIK
1190005L05RIK	1200017K05RIK	1500010G04RIK	1600020E01RIK	1700012P16RIK
1190005L06RIK	1210002B07RIK	1500010J02RIK	1600022D10RIK	1700013B14RIK
1190005P08RIK	1210002E11RIK	1500010M16RIK	1600025M17RIK	1700013B16RIK
1190005P17RIK	1300002F13RIK	1500011H22RIK	1600025P05RIK	1700013E18RIK
1190006A08RIK	1300002K09RIK	1500012D09RIK	1600029N02RIK	1700013G24RIK
1190006E07RIK	1300003D03RIK	1500012F11RIK	1620401A02RIK	1700013J11RIK
1190006F07RIK	1300003K24RIK	1500015A01RIK	1700001A24RIK	1700013L23RIK
1190007F08RIK	1300003O07RIK	1500015O20RIK	1700001C02RIK	1700013O04RIK
1200002H13RIK	1300003P13RIK	1500019G21RIK	1700001E04RIK	1700014D04RIK
1200003G01RIK	1300004C08RIK	1500019J17RIK	1700001F22RIK	1700014N06RIK
1200003M09RIK	1300004G08RIK	1500019M23RIK	1700003M02RIK	1700014P03RIK
1200003O06RIK	1300006C06RIK	1500031H04RIK	1700006C06RIK	1700016C15RIK
1200004M23RIK	1300006E06RIK	1500031J01RIK	1700006C19RIK	1700016M24RIK
1200006P13RIK	1300006L01RIK	1500031K13RIK	1700006E09RIK	1700017B05RIK
1200007B05RIK	1300006N24RIK	1500032A09RIK	1700007B13RIK	1700017F11RIK
1200007D18RIK	1300006O23RIK	1500032B08RIK	1700007D07RIK	1700017G19RIK
1200008A18RIK	1300007F04RIK	1500032D16RIK	1700007H16RIK	1700017G21RIK
1200009A02RIK	1300007K12RIK	1500032H18RIK	1700007H20RIK	1700018A14RIK
1200009C21RIK	1300010C19RIK	1500032L24RIK	1700007I06RIK	1700018B08RIK
1200009I24RIK	1300011C24RIK	1500032M01RIK	1700007N03RIK	1700018F16RIK
1200009K13RIK	1300011L04RIK	1500034J20RIK	1700007N18RIK	1700018H16RIK
1200010B10RIK	1300011P19RIK	1500035H01RIK	1700008A05RIK	1700018L24RIK
1200010C09RIK	1300012G16RIK	1500041J02RIK	1700008C22RIK	1700019B03RIK
1200011C15RIK	1300013F15RIK	1500041N16RIK	1700008E09RIK	1700019D03RIK
1200011D03RIK	1300013J15RIK	1520402A15RIK	1700008H23RIK	1700019D05RIK
1200011I03RIK	1300015D01RIK	1600002H07RIK	1700008O03RIK	1700019E19RIK

1700019F09RIK	1700028J19RIK	1700084J12RIK	1810015A11RIK	1810046J19RIK
1700019L13RIK	1700028 K03RIK	1700086N05RIK	1810015C04RIK	1810046K07RIK
1700019N12RIK	1700028N11RIK	1700092K14RIK	1810015E19RIK	1810047H21RIK
1700019N19RIK	1700028P14RIK	1700095G12RIK	1810015P03RIK	1810049H13RIK
1700019P01RIK	1700029F22RIK	1700095J03RIK	1810018L02RIK	1810054G18RIK
1700020A23RIK	1700029G01RIK	1700096C12RIK	1810018L08RIK	1810054O13RIK
1700020C07RIK	1700029I08RIK	1700102P08RIK	1810018M05RIK	1810055E12RIK
1700020F09RIK	1700029J11RIK	1700104B16RIK	1810019C21RIK	1810057P16RIK
1700020G18RIK	1700029M07RIK	1700105P06RIK	1810020M02RIK	1810058I14RIK
1700020H17RIK	1700030B21RIK	1700109H08RIK	1810021J13RIK	1810058N15RIK
1700020L11RIK	1700030F18RIK	1700110C19RIK	1810022C01RIK	1810059G22RIK
1700020L13RIK	1700030G11RIK	1700111105 RIK	1810022F11RIK	1810059J10RIK
1700020O03RIK	1700030K09RIK	1700112C13RIK	1810022O10RIK	1810061H24RIK
1700021A07RIK	1700034J04RIK	1700112N14RIK	1810024J13RIK	1810061M12RIK
1700021B12RIK	1700034J06RIK	1700112P19RIK	1810024K12RIK	1810062G17RIK
1700021F07RIK	1700034K16RIK	1700113I22RIK	1810027I20RIK	1810062O14RIK
1700021I09RIK	1700036D21RIK	1700120K04RIK	1810028F09RIK	1810063B07RIK
1700021 K02RIK	1700043E15RIK	1700121 K02RIK	1810029B16RIK	1810073J13RIK
1700021 K07RIK	1700045I19RIK	1700122O11RIK	1810029C22RIK	1810073N04RIK
1700021O15RIK	1700048E23RIK	1700123D08RIK	1810029F08RIK	1810073P09RIK
1700021P10RIK	1700051A21RIK	1700123O20RIK	1810030J14RIK	1810074D23RIK
1700021P22RIK	1700051I12RIK	1700124B08RIK	1810030M08RIK	1810074K20RIK
1700022A21RIK	1700054A03RIK	1700126L06RIK	1810030N24RIK	2010000G05RIK
1700022P22RIK	1700054O13RIK	1700127B04RIK	1810031L05RIK	2010001C14RIK
1700023A16RIK	1700054O19RIK	1700127D06RIK	1810033B17RIK	2010001K21RIK
1700023E05RIK	1700058F15RIK	1810008A18RIK	1810033K10RIK	2010001 O09RIK
1700023F20RIK	1700058M13RIK	1810009A15RIK	1810033M07RIK	2010002E04RIK
1700023H08RIK	1700060E18RIK	1810009J06RIK	1810034B16RIK	2010002I23RIK
1700023M09RIK	1700060H10RIK	1810009K13RIK	1810034K20RIK	2010002L15RIK
1700024B07RIK	1700061A03RIK	1810010E01RIK	1810035I07RIK	2010003I19RIK
1700024G10RIK	1700061I17RIK	1810010L20RIK	1810036J22RIK	2010003J03RIK
1700024G13RIK	1700061J05RIK	1810011E08RIK	1810037K07RIK	2010003K11RIK
1700025B11RIK	1700063H04RIK	1810011O10RIK	1810037O03RIK	2010004A03RIK
1700025E21RIK	1700064K09RIK	1810011O16RIK	1810038L18RIK	2010005B09RIK
1700025J14RIK	1700067P10RIK	1810012H11RIK	1810038N03RIK	2010005I16RIK
1700026A16RIK	1700069L16RIK	1810013P09RIK	1810038N08RIK	2010005J08RIK
1700026N20RIK	1700072E05RIK	1810014F10RIK	1810041F13RIK	2010008K16RIK
1700027D21RIK	1700081D17RIK	1810014J18RIK	1810041L15RIK	2010009K05RIK
1700027J07RIK	1700081O22RIK	1810014L12RIK	1810046I24RIK	2010011I20RIK

2010012C16RIK	2210401N16RIK	2310003L22RIK	2310024K08RIK	2310046M08RIK
2010012D11RIK	2210402A09RIK	2310003P10RIK	2310026E23RIK	2310046N15RIK
2010012F05RIK	2210402C18RIK	2310004L02RIK	2310028H24RIK	2310047B19RIK
2010013M14RIK	2210403B10RIK	2310004N24RIK	2310030G06RIK	2310047D01
2010015A21RIK	2210403N08RIK	2310005D12RIK	2310030N02RIK	2310047D07RIK
2010015J01RIK	2210404D11RIK	2310005E10RIK	2310031A18RIK	2310047E01RIK
2010015L04RIK	2210404E10RIK	2310005E17RIK	2310032D16RIK	2310047H23RIK
2010100O12RIK	2210404G23RIK	2310005K03RIK	2310032K21RIK	2310047M15RIK
2010109A12RIK	2210407C18RIK	2310005N03RIK	2310034J19RIK	2310047N01RIK
2010109K11RIK	2210407P13RIK	2310005O14RIK	2310034K10RIK	2310047 O13RIK
2010110O04RIK	2210409B11RIK	2310007A19RIK	2310034L21RIK	2310050C09RIK
2010111I01RIK	2210409H23RIK	2310007D09RIK	2310035K24RIK	2310051B21RIK
2010200P20RIK	2210412D01RIK	2310007F21RIK	2310036D04RIK	2310051D06RIK
2010203J19RIK	2210413I17RIK	2310008H09RIK	2310036D22RIK	2310051M13RIK
2010208K18RIK	2210414K06RIK	2310008J16RIK	2310037B18RIK	2310051N18RIK
2010301N04RIK	2210415F13RIK	2310009E07RIK	2310037I18RIK	2310056K19RIK
2010305A19RIK	2210415M20RIK	2310009M18RIK	2310037I24RIK	2310057D15RIK
2010305C02RIK	2210417D09RIK	2310010I16RIK	2310039D24RIK	2310057H16RIK
2010306G19RIK	2210418J09RIK	2310011D08RIK	2310039E09RIK	2310057J18RIK
2010308M01RIK	2210421G13RIK	2310011J03RIK	2310039L15RIK	2310057M21RIK
2010315L10RIK	2300001E01RIK	2310012I10RIK	2310040A13RIK	2310058A11RIK
2010316F05RIK	2300002L21RIK	2310012M03RIK	2310040C09RIK	2310061 B02RIK
2010317E24RIK	2300002M23RIK	2310012P17RIK	2310040G17RIK	2310061C15RIK
2010320B01RIK	2300003P22RIK	2310014L03RIK	2310040101 RIK	2310061F22RIK
2200001G21RIK	2300005B03RIK	2310014L17RIK	2310040M23RIK	2310061 I09RIK
2200002K21RIK	2300006M17RIK	2310015C21RIK	2310041H06RIK	2310061 K06RIK
2200008D09RIK	2300006N05RIK	2310015G09RIK	2310042D10RIK	2310061 O04RIK
2210003I03RIK	2300007F24RIK	2310015I10RIK	2310042D19RIK	2310066I10RIK
2210008F15RIK	2300008B03RIK	2310015K15RIK	2310042E05RIK	2310066K23RIK
2210010C17RIK	2300009A05RIK	2310015N21RIK	2310042M24RIK	2310067B10RIK
2210010N10RIK	2310001H12RIK	2310016C19RIK	2310043 I08RIK	2310067E08RIK
2210013M04RIK	2310001H13RIK	2310016K04RIK	2310043L02RIK	2310067L16RIK
2210018M03RIK	2310001H17RIK	2310020D23RIK	2310044F10RIK	2310068 O22RIK
2210018M11RIK	2310001L23RIK	2310020H20RIK	2310044H10RIK	2310069I04RIK
2210021A15RIK	2310001O04RIK	2310020P08RIK	2310044P18RIK	2310075E07RIK
2210021G21RIK	2310002A08RIK	2310021G01RIK	2310045A20RIK	2310075G12RIK
2210021J22RIK	2310002J15RIK	2310021 J05RIK	2310045I24RIK	2310075M15RIK
2210023 K21RIK	2310003C23RIK	2310024D23RIK	2310045021 RIK	2310076N22RIK
2210401K11RIK	2310003F16RIK	2310024J23RIK	2310046K01RIK	2310076O14RIK

2310079F23RIK	2410015N17RIK	2510009N07RIK	2610020J05RIK	2610205J15RIK
2310079H06RIK	2410017E24RIK	2510010F15RIK	2610020P18RIK	2610207I05RIK
2400002F02RIK	2410018E23RIK	2510012J08RIK	2610022G08RIK	2610207I16RIK
2400003B06RIK	2410018G23RIK	2510019J09RIK	2610022K04RIK	2610207P08RIK
2400003L07RIK	2410018I08RIK	2510026C23RIK	2610023M21RIK	2610209L21RIK
2400004H09RIK	2410018M14RIK	2510027D20RIK	2610024I03RIK	2610300B10RIK
2400006A19RIK	2410021P16RIK	2510027J23RIK	2610024N24RIK	2610301B20RIK
2400008B06RIK	2410025L10RIK	2510027N19RIK	2610025M23RIK	2610301D06RIK
2400009B11RIK	2410027J01RIK	2510038A11RIK	2610027L16RIK	2610301K12RIK
2400010D15RIK	2410039E07RIK	2510039O18RIK	2610028F08RIK	2610304F08RIK
2400010G15RIK	2410043F08RIK	2510040D07RIK	2610028H14RIK	2610307C23RIK
2410001C21RIK	2410043G19RIK	2510048O06RIK	2610028I09RIK	2610315E15RIK
2410001H17RIK	2410050E11RIK	2510049I19RIK	2610029G23RIK	2610318I18RIK
2410002F23RIK	2410075D05RIK	2600002E23RIK	2610029I01RIK	2610507B11RIK
2410002I01RIK	2410077I05RIK	2600005C20RIK	2610030J16RIK	2610507L03RIK
2410002L19RIK	2410081M15RIK	$2600005003 R I K$	2610030N08RIK	2610507N02RIK
2410003 C07RIK	2410089B13RIK	2600009E05RIK	2610033C09RIK	2610510D14RIK
2410003H12RIK	2410089E03RIK	2600010N21RIK	2610034B18RIK	2610510H01RIK
2410003M15RIK	2410090P21RIK	2600011L02RIK	2610034E13RIK	2610510J17RIK
2410004A20RIK	2410095B20RIK	2600013E07RIK	2610034H20RIK	2610510L01RIK
2410004B18RIK	2410104C19RIK	2600013G09RIK	2610034N03RIK	2610511E03RIK
2410004D18RIK	2410112O06RIK	2600016J21RIK	2610036L13RIK	2610511M17RIK
2410004H02RIK	2410116105 RIK	2600017A12RIK	2610037M15RIK	2610524H06RIK
2410004I17RIK	2410124H12RIK	2600017H08RIK	2610039C10RIK	2610528B01RIK
2410004K13RIK	2410133M08RIK	2610001E06RIK	2610039E05RIK	2610528C06RIK
2410004N11RIK	2410141K03RIK	2610002K22RIK	2610040C18RIK	2610528H13RIK
2410005C22RIK	2410153K17RIK	2610003J06RIK	2610041P16RIK	2610528J11RIK
2410005K20RIK	2410166I05RIK	2610005H11RIK	2610042J10RIK	2610528J18RIK
2410005O16RIK	2500002A22RIK	2610010O19RIK	2610042L04RIK	2610529I12RIK
2410008A19RIK	2500002E12RIK	2610011N19RIK	2610043O12RIK	2700002I20RIK
2410008J05RIK	2500002G23RIK	2610014H22RIK	2610100E10RIK	2700002L06RIK
2410008M22RIK	2500002K03RIK	2610016F04RIK	2610100K07RIK	2700008G24RIK
2410011D02RIK	2500003O20RIK	2610016K11RIK	2610101J03RIK	2700018N07RIK
2410012A13RIK	2510002A14RIK	2610018I03RIK	2610101N07RIK	2700019D07RIK
2410012H22RIK	2510002D24RIK	2610019A05RIK	2610108D09RIK	2700023B17RIK
2410012M04RIK	2510004M07RIK	2610019I03RIK	2610200G18RIK	2700027J02RIK
2410015B03RIK	2510006C20RIK	2610019M19RIK	2610202E01RIK	2700029C06RIK
2410015C20RIK	2510006D16RIK	2610019P18RIK	2610204L23RIK	2700029E10RIK
2410015K21RIK	2510008M08RIK	2610020C11RIK	2610205E22RIK	2700029M09RIK

2700033G17RIK	2810013J18RIK	2810433K01RIK	2900083111RIK	3110052D19RIK
2700033I16RIK	2810014D17RIK	2810439M11RIK	2900083L08RIK	3110054G10RIK
2700038 C24RIK	2810014I23RIK	2810441 C07RIK	2900084M21RIK	3110056H04RIK
2700038N03RIK	2810017C20RIK	2810441O16RIK	2900090M10RIK	3110057M17RIK
2700038P16RIK	2810019K23RIK	2810449C13RIK	2900092E17RIK	$3110065 C 23 R I K$
2700048G21RIK	2810022L02RIK	2810449K13RIK	3000003F02RIK	3110079 O15RIK
2700049A03RIK	$2810027 J 07$	2810451D06RIK	$3000004 C 01$ RIK	$3200001104 R I K$
2700050F09RIK	2810028A01RIK	2810452K22RIK	3010015 K02RIK	3200002I06RIK
2700055K07RIK	2810029C07RIK	2810457 IO6RIK	3010020C06	3200002M13RIK
2700059D02RIK	2810031J10RIK	2810459M11RIK	3010027C24RIK	3222401G21RIK
2700060E02RIK	2810032G03RIK	2810460C24RIK	3010027G13RIK	3222401L13RIK
2700061N24RIK	2810036M19RIK	2810465F10RIK	3010033P07RIK	3222401M22RIK
2700062C07RIK	2810037C14RIK	2810474O19RIK	3100001N19RIK	3230401 I01RIK
2700063A19RIK	2810037F07RIK	2810477H02RIK	3100002H09RIK	3230401M21RIK
2700063P19RIK	2810039F03RIK	2810484M10RIK	3100002P13RIK	3230401N03RIK
2700067D09RIK	2810043G13RIK	2810489O06RIK	3100004P22RIK	3230401 O13RIK
2700068H02RIK	2810047M21RIK	2900002H16RIK	3110001A13RIK	3230402J05RIK
2700069E09RIK	2810048G17RIK	2900005C20RIK	3110001E11RIK	3300001M08RIK
2700071E21RIK	2810052M02RIK	2900006B13RIK	$3110001117 R I K$	3300002C04RIK
2700082D03RIK	2810055F11RIK	2900006N09RIK	3110001M13RIK	3300002N10RIK
2700083B01RIK	2810403B08RIK	2900008M13RIK	3110002K08RIK	3322402E17RIK
2700083B06RIK	2810403L02RIK	2900010D03RIK	3110005G23RIK	3632410F03RIK
2700084L22RIK	2810406K24RIK	2900010J23RIK	3110006E14RIK	3632410G24RIK
2700085A14RIK	2810407E01RIK	2900024D24RIK	3110007G05RIK	3632451 O06RIK
2700085E05RIK	2810410C14RIK	2900029I10RIK	3110010F15RIK	3830408D24RIK
2700086I23RIK	2810411G20RIK	2900040K06RIK	3110018I06RIK	3830408 P06RIK
2700087H15RIK	2810418J22RIK	2900045N06RIK	3110023B02RIK	3830421G21RIK
2700091H24RIK	2810422O20RIK	2900052E22RIK	3110027H23RIK	$3830613 O 22 R I K$
2700094F01RIK	2810423G08RIK	2900052L18RIK	3110030K17RIK	3930402F13RIK
2700094L05RIK	2810425K19RIK	2900052N01RIK	3110031B13RIK	3930402F23RIK
2700097 O09RIK	2810427I04RIK	2900053E13RIK	3110037I16RIK	3930402I10RIK
2810003C17RIK	2810428J06RIK	2900054P12RIK	3110038K10RIK	4021401A16RIK
2810003H13RIK	2810429I04RIK	2900055D03RIK	3110038L01RIK	425018-1
2810003K23RIK	2810429K17RIK	2900057C04RIK	3110041 O18RIK	4430402 O11RIK
2810008P14RIK	2810430B18RIK	2900057D21RIK	3110041P15RIK	4432405 B04RIK
2810011G06RIK	2810431B21RIK	2900069M18RIK	3110043J09RIK	4432409B16
2810011K15RIK	2810432D09RIK	2900073H19RIK	3110043021 RIK	4432409D24RIK
2810011L19RIK	2810432L12RIK	2900075A18RIK	3110048E14RIK	4432411E13RIK
2810013E07RIK	2810432O22RIK	2900076A07RIK	3110049J23RIK	4432412D04RIK

4432412E01RIK	4732481H14RIK	4833444A01RIK	4922502J04RIK	4930455C21RIK
4432416J03RIK	4732486J07RIK	4921501 M 07	4930400E23RIK	4930463 O16RIK
4432417N03RIK	4732490B19RIK	4921501M20RIK	4930400K19RIK	4930466G16RIK
$4631409 J 12$	4732493F09RIK	4921503C21RIK	4930401A09RIK	4930467B06RIK
4631412G21RIK	4732496G21RIK	4921504K03RIK	4930401F20	4930467B22RIK
4631422 C05RIK	4732497003 RIK	4921507I02RIK	4930402E16RIK	4930468A15RIK
4631426H08RIK	4733401H18RIK	4921508E09RIK	4930402F06RIK	4930469P12RIK
4631427C17RIK	4733401 K02RIK	4921508011 RIK	4930402H05RIK	4930470G03RIK
$4631428 G 15$	4733401L19RIK	4921509B22RIK	4930404K22RIK	4930470H14RIK
4632408A20RIK	4733401N12RIK	4921509E05RIK	4930412C18RIK	4930470P17RIK
4632411J06RIK	$4733401 O 11$ RIK	4921510J17RIK	4930414C09RIK	4930471A21RIK
4632412N22RIK	4733401P19RIK	$4921511105 R 1 K$	4930415 K 13	4930471D02RIK
4632413C14RIK	4831440E17RIK	4921513D09RIK	4930415K17RIK	4930471 O16RIK
4632413E21RIK	4831440I19RIK	4921513E08RIK	4930415M08RIK	4930474F22RIK
4632415K11RIK	4832406C22	$4921513103 R I K$	4930418 P06RIK	4930479F15RIK
4632415N18RIK	4832412O06RIK	4921513 O20RIK	4930425K24RIK	4930479M11RIK
4632416I05RIK	4832426G23RIK	4921517A06RIK	4930425N13RIK	4930481A15RIK
4632417N05RIK	4832428G11	4921517B04RIK	4930429B21RIK	4930481 F22RIK
4632419I22RIK	4833403 I15RIK	4921517D21RIK	4930429J24RIK	4930483110
4632427C23RIK	4833406P10RIK	4921517J23RIK	4930430E16RIK	4930485G23RIK
4632428M11RIK	4833408P15RIK	4921517 O11RIK	4930431 L18RIK	4930488P06RIK
4632432J16RIK	4833411B01RIK	4921520P21RIK	4930432 K21RIK	4930500E24RIK
4632435A09RIK	4833412C19RIK	4921521 K07RIK	4930432N10RIK	4930500J03RIK
4633401M22RIK	4833413E03RIK	4921522D01RIK	4930435 C18RIK	4930503E15RIK
4633402 C03RIK	4833413G11RIK	4921522K05RIK	4930438 C08RIK	4930503L19RIK
4731413G05RIK	4833414G05RIK	4921524J06RIK	4930438005 RIK	4930504H06RIK
4732406D01RIK	$4833414107 R I K$	4921524P20RIK	4930441 O14RIK	4930505A04RIK
4732415M23RIK	4833419 K08RIK	4921525D22	4930442 L21RIK	4930505107 RIK
4732416F18	4833420N02RIK	4921528H16RIK	4930444G20RIK	4930506C02RIK
4732427B05	4833422F24RIK	4921528101 RIK	4930445E18RIK	4930506D01RIK
4732429I09RIK	4833424K13RIK	4921530G04RIK	4930447F04RIK	4930506F14RIK
4732437J24RIK	4833424O15RIK	4921532D18RIK	4930447P04RIK	4930509E16RIK
4732440 A06	4833425H18RIK	4921533L14RIK	4930449E01RIK	4930510E17RIK
4732452J19RIK	4833426H19RIK	4921535101 RIK	4930451C15RIK	4930511H01RIK
4732459H24RIK	4833427P12RIK	4921536121 RIK	4930451 E13RIK	4930511H11RIK
4732461B14RIK	4833431A01RIK	4921536K21RIK	4930451 G09RIK	4930511J24RIK
4732462 I11RIK	4833435D08RIK	4921538N17RIK	4930451 I11RIK	4930511N13RIK
4732465I17RIK	4833436C18RIK	4921539K22RIK	4930453N24RIK	4930511011 RIK
4732474A20RIK	4833438B11RIK	4922501H04RIK	4930455B06RIK	4930512M02RIK

4930513F16RIK	4930555F03RIK	4931417G12RIK	4933406B17RIK	4933427G17RIK
$4930513 O 06 R I K$	4930555 I21RIK	4931417M11RIK	4933406 J08RIK	4933428C20RIK
4930515G01RIK	4930556L07RIK	4931426N11RIK	4933407A11RIK	4933428G20RIK
4930517G15RIK	4930557A04RIK	4931428L18RIK	4933407H18RIK	4933429D11RIK
4930519G04RIK	4930560D03RIK	4931429L15RIK	4933407K12RIK	4933430F08RIK
4930519L02RIK	4930562A09RIK	4931431 L11RIK	4933407L21RIK	4933430L12RIK
4930519N13RIK	4930562N12RIK	4932408B21	$4933408 F 15$	4933432B09RIK
4930521A18RIK	4930563C04RIK	4932409F11RIK	4933409E02RIK	4933432I09RIK
4930523 C07RIK	4930563D23RIK	$4932414 K 18$	4933409N07RIK	4933432K11RIK
4930523M17RIK	4930564N15RIK	4932414N04RIK	4933411 B09RIK	4933433B15RIK
4930524E20RIK	4930565D16RIK	4932415019	4933411 C14RIK	4933433 C09RIK
4930525N13RIK	4930568D16RIK	4932416A11RIK	4933411 G06RIK	4933433D23RIK
4930526B11RIK	4930569K13RIK	4932416A15	4933411 J24RIK	4933434G05RIK
4930527G07RIK	4930571C24RIK	4932417H02RIK	4933413B09RIK	4933434I20RIK
4930527J03RIK	4930572G02RIK	$4932418 K 24$	4933413G11RIK	4933434M16RIK
4930527L09RIK	4930572 I07RIK	4932420K09	4933413G19RIK	4933435A13RIK
4930528H02RIK	4930572L20RIK	4932422M17RIK	4933414E04RIK	4933435E02RIK
4930528H21RIK	$4930572 O 07$ RIK	4932432N04RIK	4933415A04RIK	4933435E20RIK
4930529C04RIK	4930573H18RIK	4932434G09RIK	$4933415103 R I K$	4933436101 RIK
4930529M08RIK	4930578F03RIK	4932437H03	4933415L06RIK	4933436 O18RIK
4930529M09RIK	4930578I06RIK	4932438A13RIK	4933416E05RIK	4933439B08RIK
4930532L20RIK	4930579A11RIK	4932438H23RIK	4933417L02RIK	4933439F10RIK
4930533G20RIK	4930579F01RIK	4932438M10	4933417L10RIK	$4933439 J 11$ RIK
4930534P07RIK	4930579G24RIK	4932443D16RIK	4933417N20RIK	4933440J22RIK
4930535B06RIK	4930579J09RIK	$4932703 P 14$	4933417008 RIK	4933440M02RIK
4930535F04RIK	4930580F03RIK	4933400E14RIK	4933421G18RIK	5031401C21RIK
4930538D17RIK	4930581F22RIK	4933402G07RIK	4933421 L13RIK	5031407H10
4930539A06RIK	4930583C14RIK	4933402J24RIK	4933424B01RIK	5031409G22RIK
4930544L10RIK	4930583K01RIK	4933402K10RIK	4933424G06RIK	5031425F14RIK
4930545 L08RIK	4930588G17RIK	4933402P03RIK	4933424M23RIK	5031434M05RIK
4930546 K05RIK	4930588N13RIK	4933403C17RIK	4933425 F06RIK	5031439G07RIK
4930547 K05RIK	4930590A17RIK	4933403G14RIK	4933425 K02RIK	5033402L14RIK
4930550B20RIK	4930592A21RIK	4933403M22RIK	4933425 L03RIK	5033406L14RIK
4930550C14RIK	4931405B09RIK	4933404A18RIK	4933425 L06RIK	5033413A03RIK
4930550G17RIK	4931406C07RIK	4933404G15RIK	4933425 O20RIK	5033415K03RIK
$4930550 L 24 R I K$	4931406O17RIK	4933405H16RIK	4933426E21RIK	5033430I15RIK
4930552P12RIK	$4931412 F 17$	4933405K01RIK	4933426G20RIK	5133400C09RIK
4930553M18RIK	4931413A09RIK	4933405L10RIK	4933426L22RIK	5133401N09RIK
4930554C01RIK	4931417E11RIK	4933405P08RIK	4933427E13RIK	5230400G24RIK

5230400J09RIK	5730409F23RIK	5730599O09RIK	6030470M02RIK	6430550D23RIK
5330410G16RIK	5730409G15RIK	5830400A04RIK	6230400G14RIK	6430571 L13RIK
5330415H22RIK	5730414C17RIK	5830400N10RIK	6230418K12RIK	6430573B13RIK
5330421 F07RIK	5730415P04RIK	5830403F22RIK	6230420N16RIK	6430573F11RIK
5330426D11RIK	5730419109RIK	5830405N20RIK	6230421J19RIK	6430584G11RIK
5330426L24RIK	$5730419 O 14$ RIK	5830406C15RIK	6230425C21RIK	6430598A04RIK
5330427D05RIK	5730420B22RIK	5830406J20RIK	6230429P13RIK	6430598J10RIK
5330435L01RIK	5730422A13RIK	5830408F06RIK	6330404A12RIK	6430601A21RIK
5330439J01RIK	5730427C23RIK	5830411E10RIK	6330404M18RIK	$6430703 N 11$
5330440G10RIK	5730427N09RIK	5830411N06RIK	6330406P08RIK	6430704M03RIK
5430400H23RIK	5730442K12RIK	5830415F09RIK	6330408J11RIK	6430706C13RIK
5430401O09RIK	5730445F03RIK	5830417 C01RIK	6330408P19RIK	6530401 L14RIK
5430402E10RIK	5730448P06RIK	5830426C09RIK	6330410L21RIK	6530403F17RIK
5430405K24RIK	5730453I16RIK	5830426I05RIK	6330410P18RIK	6530406P05RIK
5430408M01RIK	5730455O13RIK	5830427H10RIK	6330415L08RIK	6530409C15RIK
5430411C10RIK	5730463C12RIK	5830433M19RIK	6330415 N05RIK	6530415H11RIK
5430411K18RIK	5730469M1ORIK	5830443 C21RIK	6330416C07RIK	6530416A09RIK
5430416 O09RIK	5730470L24RIK	5830443 L24RIK	6330416L11RIK	6530418L21RIK
5430420C16RIK	5730476P14RIK	5830457J20RIK	6330417 G02RIK	6530420C11RIK
5430425 C04RIK	5730478M09RIK	5830457 O10RIK	6330500A18RIK	6620401 K05RIK
5430425K04RIK	5730485C17RIK	5830458K16RIK	6330516 O20RIK	6720407G21RIK
5430428G01RIK	5730493B19RIK	5830462 I21RIK	6330530A05RIK	6720456B07RIK
5430429M05RIK	5730494G16RIK	5830467P10RIK	6330544B05RIK	6720460F02RIK
5430431G03RIK	5730502D15RIK	5830480G12RIK	6330548 O06RIK	6720460I06RIK
5430437K10RIK	5730505K17RIK	5830482F20RIK	6330551 K01RIK	6720461J16RIK
5430438H03RIK	5730507A09RIK	5832424M12	6330563 C09RIK	6720465F12RIK
5530400B01RIK	5730509E04RIK	5930402B05RIK	6330576B01RIK	6720469N11RIK
5530401A14RIK	5730510P18RIK	5930405J04RIK	6330577E15RIK	6720474K14RIK
5530601I19RIK	5730519E19RIK	5930416I19RIK	6330580J24RIK	6720480F16RIK
5630401D06RIK	5730522G15RIK	5930422O12RIK	6330591 G05RIK	6720481112
5630401M14RIK	5730525G14RIK	5930431H10	6430407N22	6720484B16
5730402C15RIK	5730537D05RIK	5930434B04RIK	6430511D02RIK	$6820401 C 03$
5730403J10RIK	5730544D12RIK	6030430C21	6430513E09RIK	$6820428 L 09$
5730405M13RIK	5730551F12RIK	6030430011	6430517J16RIK	6820429M01
5730406I15RIK	5730552M22RIK	6030432N09RIK	6430526J12RIK	7420700F21
5730407K14RIK	5730576P14RIK	$6030435 N 04$	6430526N21RIK	7420700M05RIK
5730408111 RIK	5730583K22RIK	6030449 J21	6430527G18RIK	7530419J18RIK
5730408121 RIK	5730589K01RIK	6030465J18RIK	6430529J03RIK	8030423J24RIK
5730409E15RIK	5730592L21RIK	6030466N05RIK	6430549H08RIK	8030425L21

$8030448 \mathrm{M07}$	9130011 B11RIK	9330166104	9530004P13RIK	9930035G10RIK
8030460J03RIK	9130011E15RIK	9330170P05RIK	9530006B08RIK	9930038B18RIK
8030475D13RIK	9130011J15RIK	9330175N02	9530006G20RIK	9930039Al1RIK
8430401C09RIK	9130012B15RIK	9330182LO6RIK	9530018I07RIK	9930111118RIK
8430401K06RIK	9130012G04RIK	9330186A19RIK	9530019H02RIK	A030002D08RIK
8430404F20RIK	9130017A15RIK	9330196J05RIK	9530020I12RIK	A030004J04RIK
8430406N16RIK	9130017 Cl7RIK	9330199A09RIK	9530021D13RIK	A030005L19RIK
8430408H12RIK	9130017N09RIK	9430010P06RIK	9530023G02	A030009A06
8430410JIORIK	9130019O22RIK	9430020K01	9530029I04RIK	A030009H04RIK
8430415E04RIK	9130020GIORIK	9430022A14	9530033F24RIK	A030014E15RIK
8430417G17RIK	9130022A11RIK	9430023L20RIK	9530034F03RIK	Al30006I12RIK
8430417G19RIK	9130023G24RIK	9430024C03RIK	9530043P15RIK	Al30010J15RIK
8430419L09RIK	9130023NI7RIK	9430024E24RIK	9530044G19	A130010L24
8430427K15	9130206I24RIK	9430025F20RIK	9530051K01RIK	Al30012E19RIK
8430430L24RIK	$9130208 G 10$	9430027B09RIK	9530056K15RIK	Al30038L21RIK
8430437G08RIK	9130222L19RIK	9430029K10RIK	9530074EIORIK	Al30039120RIK
8430437G11RIK	9130402CI2RIK	9430031J16RIK	9530077C24RIK	A130042E20
9030012M21	9130403P13RIK	9430034D17RIK	9530091C08RIK	Al30077B15RIK
9030022EI2RIK	9130404D14RIK	9430038B09RIK	9530098N22RIK	Al30092J06RIK
9030227G01RIK	9130411117 RIK	9430059D04RIK	$9630005 C 02$	A230016E22
9030406N13RIK	9130413I22RIK	9430060M22RIK	$9630008 F 14$	A230025G20
9030409C19RIK	9130417107RIK	9430065N20RIK	9630016P15RIK	A230025018
9030409G11RIK	9230101F08RIK	9430066I12RIK	9630020GIORIK	A230034F01RIK
9030420J04RIK	9230102I19RIK	9430069 J07	$9630036 J 22$	A230048G03RIK
9030421L11RIK	9230102NI7RIK	$9430070 G 18$	9630036L12RIK	A230051G13
9030425C21RIK	9230106D23	9430073N08RIK	9630039I18RIK	A230053A07RIK
9030425E11RIK	9230106L14RIK	9430075G12RIK	9630050M13RIK	A230058J24
9030612E09RIK	9230110F15RIK	9430077A04RIK	9630054P07RIK	A230062G08RIK
9030612I22RIK	9230111 C08RIK	9430077 C05RIK	$9630059 J 11$	A230067G21
$9030616 F 16$	9230116L04RIK	9430078C22RIK	9630060C05RIK	A230072II6RIK
9030623N16RIK	9330104G04RIK	9430078K24RIK	9830006J20RIK	A230084G12RIK
9030624C24RIK	9330128H1ORIK	$9430088 F 20$	$9830131 G 07$	A230084J22
9030625A04RIK	9330132E09RIK	9430092A03RIK	9830160G03RIK	A230085M13RIK
9030625G08RIK	$9330132005 R$ IK	9430095K15RIK	9830160H19RIK	A230102L03RIK
9130006A14RIK	9330140115RIK	9430096LO6RIK	9830169C18RIK	A230106M20
9130008F23RIK	9330151F09RIK	9430097D07RIK	9930014A18RIK	A230108P17
9130009C22RIK	9330155M09RIK	9430098E02RIK	9930016013	A330015D16RIK
9130009D18RIK	9330158F14RIK	9530002B09RIK	9930022D16RIK	A330021E22RIK
9130010J17RIK	9330166G04RIK	9530003A05	9930033G19RIK	A330041G23RIK

A330041N06	A630031M04RIK	A930013K19	AATK	ACR
A330042I05RIK	A630056B2IRIK	A930014C2IRIK	AB030188	ACRBP
A330051M14RIK	A630065K24RIK	A930017N06RIK	AB030198	ACRV1
A330070M20RIK	A630076007	A930019C19RIK	AB041544	ACTAI
A330097D03RIK	A630077B13RIK	A930019D11RIK	AB041545	ACTG
A330103J02RIK	A630086P08RIK	A930021C24RIK	AB041549	ACTG2
A330104H05RIK	A630091E08RIK	A930025D01RIK	AB041550	ACTL
A330106H01RIK	A730011E05RIK	A930026L03RIK	AB041568	ACTL 6
A430025D11RIK	A730011F23RIK	A930027H06RIK	AB041661	ACTL7A
A430081P20RIK	A730016F12RIK	A930027K05RIK	AB041662	ACTL7B
A430103C15RIK	A730017C20RIK	A930031E15RIK	AB041803	ACTN1
A430105119	A730018C14RIK	A930031F18RIK	ABCAl	ACTN4
A430106B11RIK	A730032D07RIK	A930031L14RIK	ABCA6	ACT
A430107J06RIK	A730039N16RIK	A930033C23RIK	ABCA7	ACVR1B
A430107P09RIK	A730055F12RIK	A930038C07RIK	ABCB11	ACVRIPI
A430109M18RIK	A730055L17RIK	A930040J07	ABCB1A	ACY1
A430109M19RIK	A730060M23RIK	AA238765	ABCB6	ADA
A430110D14RIK	A730063M14RIK	AA407306	ABCB9	ADAM12
A530016006RIK	A730069N07RIK	AA407588	ABCC10	ADAM19
A530023P05	A730096F01	AA407995	ABCC3	ADAM23
A530024P18	A730098A19RIK	AA409164	ABCD3	ADAM25
A530027J04RIK	A830007P12RIK	AA409446	ABCGI	ADAM28
A530037C04RIK	A830014L09RIK	AA410078	ABO	ADAM33
A530053G22RIK	A830021K08RIK	AA536972	ABP1	ADAM5
A530057A03	A830039B04RIK	AA589507	ABTB1	ADAM 7
A530057M15RIK	A830048P05	AA589632	ACAAI	ADAMTS-12
A530081C03RIK	A830053021RIK	AA591047	ACADS	ADAMTS16
A530081L18RIK	A830059A17RIK	AA617276	ACAS2L	ADAMTS19
A530088H08RIK	A830073021RIK	AA673488	ACATI	ADAMTS4
A530089G06	A830084F09RIK	AA691260	ACATE3	ADAMTS8
A530094D01	A830094I09RIK	AA959601	ACCN2	ADAMTS9
A530095G11	A830096DIORIK	AA959742	ACF	ADAT1
A630014C11RIK	A830097C19	AA960365	ACINUS	ADCY2
A630014H24	A930001N09RIK	AA968343	ACO2	ADCY3
A630018G05RIK	A930009E05RIK	AA986709	ACOX1	ADCY4
A630023P12RIK	A930010E21RIK	AAMP	ACOX2	ADCY6
A630024J02RIK	A930011L17	AANAT	ACOX3	ADCY7
A630026L20	A930011012RIK	AASS	ACP2	ADCY8
A630029F06	A930012L18RIK	AATF	ACP5	ADCY9

ADD2	A1267078	AI481105	AI845279	AL033311
ADH5	AI314111	AI481402	AI850305	ALASI
ADH7	AI314783	A1481750	AI851877	ALCAM
ADN	A1315068	Al504353	AI853319	ALDHIA3
ADORA2B	AI315208	AI504701	AI853514	ALDHIBI
ADORA3	AI323585	A1504961	AI854251	ALDH2
ADPRTL2	AI326867	Al505034	AI874665	ALDH3AI
ADPRTL3	AI326906	Al552599	AI876593	ALDH7A1
ADRAIB	AI326939	Al573938	AI894218	ALDH9A
ADRA2C	A1413471	Al591529	A1931714	ALG12
ADRM1	AI414849	Al593353	Al956815	ALKBH
ADSSI	AI415282	AI607300	AI987662	ALOX12B
AEBP1	A1415330	A1643885	AIBZIP	ALOX12E
AF006998	AI426038	Al646725	AICDA	ALOX15
AF229032	AI426465	AI647528	AIF1	ALOXE3
AF261233	AI426782	A1647760	AIG1	ALX3
AFG3L1	AI427833	Al648866	AIPL1	AMBP
AFM	AI428238	AI649009	AIRE	AMY2
AGA	AI428804	A1649385	AJ237586	ANAPC5
AGPAT1	AI428889	Al661311	AJ430384	ANGPTL
AGPAT3	AI429152	Al661438	AK3L	ANGRP
AGPT4	AI429612	Al661919	AK4	ANK
AGRP	AI429613	AI664004	AK5	ANK1
AGT	AI447493	Al666698	AKAP10	ANK3
AHCY	AI447729	Al666765	AKAP12	ANKHZN
AHCYL1	AI447804	Al785303	AKAP2	ANKRD2
AI047808	AI447928	Al787289	AKAP8	ANKRD5
AIO60904	AI447930	Al788959	AKP5	ANP32B
Al115348	AI448302	AI790298	AKR1A4	ANXA1
Al1 18089	AI448583	AI790326	AKR1B7	ANXA13
Al1 18201	A1451006	AI790744	AKR1C18	ANXA3
AI173001	AI451340	A1834978	AL022610	ANXA5
Al181996	AI461653	A1836109	AL022641	ANXA6
AI194308	AI461933	A1837757	AL023001	ANXA7
Al195023	A1462012	A1840044	AL024016	ANXA9
AI195350	AI463271	A1840675	AL024077	AOAH
AI255964	AI467246	AI841135	AL024210	AOC3
AI256840	AI480570	AI841487	AL024221	AP1G1
AI266900	A1480612	AI842396	AL024279	AP1G2

APIM2	ARHV	ATP5L	AW121933	B230210E21RIK
AP2A2	ARL2	ATP6V0D1	AW124591	B230214N19RIK
AP2M1	ARL6IP	ATP6V1D	AW125391	B230219123
AP3D	ARL6IP4	ATP6V1E2	AW125441	B230312A22RIK
AP4M1	ARPCIA	ATP6V1G1	AW125446	B230331L10RIK
APBA2BP	ARPC2	ATP6V1G2	AW209491	B230339H12RIK
APBA3	ART1	ATP7A	AW212394	B230340J04RIK
APBBIIP	ART5	ATP7B	AW259676	B230354B21RIK
APBB2	ARTS1	ATP8A1	ATP9B	AW319638

BAAT	BC024092	BHLHB2	C030001A19RIK	CIQG
BACE2	BC024131	BHLHB4	C030002O17RIK	CIQRI
BACH	BC025519	BICCI	C030005H24RIK	CIQRF
$B A D$	BC025586	BICD2	C030006K11RIK	CISB
BAG3	BC025890	BID3	C030014M07RIK	C2
BAII	BC026401	BIKLK	C030017C09RIK	C230001H08RIK
BARD1	BC027342	BIN3	C030018L16RIK	C230008H04RIK
BARXI	BC028953	BING4	C030022K24RIK	C230009HIORIK
BASPI	BC030314	BIRCIA	C030025P15RIK	C230030N03
BATIA	BC030934	BIRC2	C030033M19RIK	C230055H22RIK
BAT8	BC031365	BLK	C030039E19RIK	C230075L19RIK
BATF	BC031407	BLM	C030044C12RIK	C230078B22
BB026216	BC031748	BLU	C030044P22RIK	C230078M14
BBP	BC034099	BM88	C030048B08RIK	C230088J01RIK
BC002292	BC034204	BMF	C030048H19RIK	C230094F14RIK
BC003236	BC034653	BMP2	C030048H21RIK	C230097P10
BC003251	BC038058	BMP8A	C030048J01RIK	C330001H22RIK
BC003266	BCAS3	BMP8B	Cl30010K08RIK	C330001K17RIK
BC003332	BCAT2	BMPR1B	C130023C01RIK	C330006K01RIK
BC003494	BCDO1	BOK	C130031G21RIK	C330008I15RIK
BC003945	BCKDHA	BRAL1	C130031J23	C330013D05RIK
BC005471	BCKDHB	BRAP	C130032F08	C330016E03RIK
BC005494	BCL11B	BRD8	C130035G06RIK	C330019F22RIK
BC005662	BCL2	BRF1	C130036J11	C330021B20RIK
BC006705	BCL2L10	BRF2	C130039016	C330023M02RIK
BC006909	BCL2L13	BRP16	C130044A18RIK	C330026P08RIK
BC007145	BCL2L2	BRP17	C130052G03RIK	C4
BC010245	BCL6	BRP44L	C130064B19RIK	C430003P19RIK
BC013712	BCL7A	BRS3	C130070B15RIK	C430014N20RIK
BC016493	BCRP1	BSG	Cl30070J12RIK	C430041M20
BC017545	BCSIL	BSND	Cl30073D16RIK	C430046P22RIK
BC017634	BDH	BST1	C130074G19RIK	C4BP
BC019776	BDNF	BTBD2	C130076007RIK	C4ST2
BC019977	BEAN	BTG1	C130078N17RIK	C4ST
BC020175	BET1	BTG2	Cl30080N23RIK	C530002L11RIK
BC021367	BEX2	BTK	Cl30099A20RIK	C530008M07
BC021530	BFZB	BVES	ClGALTI	C530008M17RIK
BC021611	BGLAP1	BZRP	CIQA	C530024P05RIK
BC023845	BGLAP2	BZW2	CIQB	C530025M09RIK

C530043A13RIK	CABPI	CASP1	CD22	CEACAM13
C530046K05RIK	CABP7	CASP2	CD24A	CEBPB
C6	CACNAIA	CASP3	CD2AP	CEBPD
C630004H02RIK	CACNAIC	CASP4	CD2BP2	CECR2
C630005D06RIK	CACNAID	CASP6	CD37	CEL
C630007C17RIK	CACNAIF	CASP7	CD3D	CELSR1
C630016B22RIK	CACNA2D2	CASP9	CD4	CEP2
C630016021RIK	CACNB2	CASQ2	CD47	CETN2
C630024K23RIK	CACNG1	CATNAI	CD59A	CFH
C630025L14	CACNG4	CATNALI	CD68	CFLAR
C630028L02RIK	CACNG5	CATNBIPI	CD7	CFTR
C630029C19RIK	CACYBP	Catns	CD79A	CGBP
C630035N08RIK	CALM3	CAV	CD81	CHAFIA
C630036E02RIK	CALP	CAV3	CD83	CHEK1
C630041L24RIK	CALR3	CBFA2T3H	CD97	CHGA
C630046B20RIK	CAMK2B	CBL	CDC25A	CHI3L3
C730007L20RIK	CAMK2D	CBLN1	CDC2A	CHIA
C730015A02RIK	CAMK2G	CBX1	CDC2L2	СНK
C730024G19RIK	CAMKK1	CCC9	CDC42	CHKL
C730025P13RIK	CANX	CCK	CDC42EP1	CHL12
C730026E2IRIK	CAPI	CCKAR	CDC42EP4	СНм
C730027J19RIK	CAPN12	CCKBR	CDH1	CHML
C730034F03RIK	CAPN8	CCL1	CDH2	CHORDCI
C730036H08	CAPN9	CCL25	CDH22	CHRAC1
C730042F17RIK	CAPNSI	CCL6	CDH23	CHRM 1
C77020	CAPPAI	CCL7	CDH3	CHRM3
C78541	CAPZB	CCNB2	CDH4	CHRNA3
C78606	CARI1	CCND3	CDK2	CHRNA4
C79672	CAR13	CCNH	CDK3	CHRNB4
C80633	CARI4	CCR8	CDK4	CHRND
C820010P03RIK	CAR3	CCR9	CDK5	CHRNE
C86045	CAR4	CCRL1	CDKNIA	CHST2
C87750	CAR6	CCRN4L	CDKNIB	CHST3
C8A	CAR7	CCT6A	CDKN2C	CHST4
C920006CIORIK	CAR9	CD14	CDON	CHST5
C920008G01RIK	CARD14	CDID1	CDR2	CHST8
CAB140	CARKL	CD2	CDX1	CHX10
CABLES	CASK	CD209C	CEACAMIO	CIAOI
CABLES2	CASKIN2	CD209E	CEACAM12	CIB1

CIDEB	CML2	COX5A	CRYAB	CXCL16
CIP 1	CNBP	COX6AI	CRYBA4	CXCL2
CIPP	CNIH	COX6C	CRYBB2	CXCL9
CIRBP	CNK	COX7A2L	CRYGD	CXCR3
CISH	CNN2	COX7C	CRYL1	CYB5
CITED1	CNNM1	CPA5	CRYZ	CYBA
CITED2	CNNM3	CPD	CRYZL1	CYLN2
CITED 4	CNNM4	CPEB	CSAD	CYP11A
CKLF	CNOT7	CPNE1	CSDA	CYP19
CKN1	CNP1	CPNE3	CSEIL	CYPIAI
CKT2	CNR2	CPNE4	CSF2	CYP1B1
CLASPI	CNTN1	CPNE5	CSF2RA	CYP24
CLCN1	CNTN2	CPO	CSF3	CYP2B13
CLCN3	COG1	CPR2	CSH1	CYP2B9
CLCNK1	COG2	CPSF2	CSK	CYP2D10
CLCNK1L	COG4	CPSF4	CSMD1	CYP2D9
CLDN10	COL11A2	CPT1B	CSNG	CYP2E1
CLDN2	COL16A1	CPTIC	CSNK	CYP2F2
CLDN3	COLI8A1	CPXM1	CSNKID	CYP39A1
CLDN4	COL23A1	CRABPI	CSNKIE	CYP3A25
CLDN6	COLAA2	CRADD	CSNK2A1	CYP40
CLDN7	COLAA3BP	CRAD-L	CSNK2A2	CYP4AIO
CLDN9	COLAA5	CRCP	CSRP1	CYP4B1
CLECSF13	COL5AI	CRELD1	CSRP3	CYP4F14
CLECSF6	COL6A1	CREM	CST6	CYP8B1
CLIC1	COL6A2	CRF2-12	CST8	CYPF13
CLK	Colga3	CRHR1	CTNS	CYS1
CLK4	COL7A1	CRIM 1	CTSB	CYSLTR1
CLN3	COMP	CRIPT	CTSD	CYSLTR2
CLN5	COMT	CRK	CTSH	D030010E02
CLN8	COP1	CRLF3	CTSZ	D030011O10RIK
CLNK	COPE	CRMP5	CTTN	D030014N22RIK
CLP1	COPS3	CRNKL1	CUTL1	D030020D09RIK
CLSTN1	COPZ2	CRRY	CX39	D030020G18RIK
CLSTN2	COQ6	CRSP3	CX3CL1	D030024H03RIK
CLSTN3	CORO6	CRTR1	CX3CR1	D030026A2 IRIK
CLTA	CORS	CRY1	CXCL11	D030059C06RIK
CMAS	CORT	CRY2	CXCL12	D030060M11RIK
CMKORI	COX4A	CRYAA	CXCL13	D030068E18RIK

D030070L09RIK	D17H6S56E-2	D430024F16RIK	D830007E07	DDB2
D030073L15RIK	D17H6S56E-3	D430024K22RIK	D830007G01RIK	DDC8
DOHXS9928E	D17WSU92E	D430038H04RIK	D830019J24RIK	DDEF1
DIOUCLAI	DITWSU94E	D430042O09RIK	D830019K17RIK	DDT
D11ERTDI75E	D19397	D430043L16	D830044D21RIK	DDX1
D11ERTD497E	D19ERTD703E	D430044G18RIK	D830044I16RIK	DDX19
D11ERTD498E	D19WSU55E	D4BWG0593E	D8ERTD531E	DDX24
D11ERTD736E	D1BWG0212E	D4ERTD174E	D8ERTD633E	DDX25
D11ERTD759E	D1BWG1363E	D4ERTD22E	D8ERTD812E	DDX5
D11ERTD99E	DIERTD251E	D4ERTD421E	D930001121RIK	DDX50
D11LGPIE	DIERTD8E	D4ERTD89E	D930001I22RIK	DEB1
DIILGP2E	D230005F13RIK	D530039E11RIK	D930020E02	DEF6
D12ERTD482E	D230014K01RIK	D5ERTD33E	D930035B09RIK	DEF8
D12ERTD647E	D230016K05	DSERTD593E	D930036B08RIK	DEFB2
D12ERTD748E	D230018M15RIK	D5ERTD689E	D930036F22RIK	DEFB4
D130006K24RIK	D230019K24RIK	DSWSU45E	D930040F23RIK	DEFB5
D130017D06RIK	D230022C05RIK	D630024B06RIK	D930047P17	DEFCR3
D130023A07RIK	D230039K05RIK	D630032B01RIK	D9WSUI49E	DEFCR6
D130026O08RIK	D2BWG1335E	D630032F02	D9WSU18E	DEFCR-RS1
D130029J02	D2ERTD391E	D630039A03RIK	DAAM2	DEP1
D130040H23RIK	D2ERTD435E	D630042P16RIK	DAB2	DERMOI
D130043K22	D2WSU81E	D630045D17RIK	DAD1	DES
D130067I03RIK	D330001F17RIK	D630049P08RIK	DAP3	DFFA
D130071N24RIK	D330008N11RIK	D6ERTD263E	DAPK2	DFFB
D130075J17RIK	D330010C22	D6H12S2489E	DAZAP1	DFY
D130086K05RIK	D330012D11RIK	D6WSU116E	DBCCR1	DGAT1
D13BWG1146E	D330012D13	D6WSU157E	DBHL1	DGAT2L1
D13WSU177E	D330012F22RIK	D730001G18RIK	DBIL5	DGCR8
D13WSU50E	D330015H01RIK	D730005E14RIK	DBNL	DGUOK
D14ERTD484E	D330023I21RIK	D730039F16RIK	DBX1	DHCR24
D15ERTD417E	D330028D13RIK	D730040F13RIK	DCL1	DHCR 7
D15ERTD747E	D3ERTD250E	D730042P09RIK	DCT	DHFR
D15ERTD785E	D3ERTD330E	D730043B02RIK	DCTN3	DHODH
D15ERTD806E	D3JFR1	D7BWG0575E	DCTN4	DIAP3
D15WSU59E	D3UCLA1	D7ERTD458E	DCTN5	DIDO1
D15WSU75E	D430004I08RIK	D7ERTD671E	DCX	DIRASI
D16ERTD36E	D430005B17	D7ERTD743E	DDA3	DISP2
D16ERTD454E	D430019H16RIK	D7ERTD753E	DDAH2	DJI
D16IUM22E	D430020F16	D7WSUI28E	DDB1	DKFZP761A132

DKFZP761L0424	DPEP1	E030011D16RIK	E330017M15	EGFR
DKK3	DPF3	E030011K20	E330017O07RIK	EGFR-RS
DLGH1	DPM1	E030011O05RIK	E330036I19RIK	EGLN2
DLGH3	DPM2	E030019A03RIK	E330036L07RIK	EGR1
DLL3	DPP7	E030022H21	E330039K12RIK	EHD2
DLX2	DPT	E030029A11RIK	E430004N23	EHD3
DLX4	DPYSLA	E130013P03	E430012M05RIK	EIF2A
DM15	DRCTNNB1A	E130016E03RIK	E430016J11RIK	EIF2AK1
DM9	DRD2	El30103II7RIK	E430019B13RIK	EIF2AK4
DMBXI	DRD4	E130104F11	E430021K24RIK	EIF2B
DMRT3	DRD5	E130107N23RIK	E430029F06	EIF2C1
DMTAP1	DRG11	E130115E03RIK	E530005C20RIK	EIF2C2
DNAJAI	DRI2	E130115J16RIK	EAR4	EIF2S2
DNAJA3	DRPLA	E130201N16RIK	EAR5	EIF2S3X
DNAJA4	DSC2	E130203B14RIK	EBAG9	EIF2S3Y
DNAJB11	DSC3	E130206H14RIK	EBF4	EIF3S2
DNAJB12	DSCR2	E130207K11	EBNA1BP2	EIF3S3
DNAJB3	DSCR3	E130301F19	EBP	EIF3S7
DNAJB5	DSCR5	E130306D19	ECE2	EIF3S8
DNAJB6	DSG2	E130306M17RIK	ECEL1	EIF4A2
DNAJC3	DTNB	E130307D12	ECM1	EIF4EBP1
DNAJC4	DTR	E130307M08RIK	EDA	ELA2
DNAJC5	DTX1	El30308H01	EDARADD	ELA3B
DNASE1	DTX2	E130309D02RIK	EDEM	ELAC2
DNASEIL3	DULLARD	E130314M08RIK	EDF1	ELAVL3
DNCL2A	DUSP12	E130315B21RIK	EDG2	ELF1
DNCL2B	DUSP15	E130319N12RIK	EDG5	ELF3
DNCLIC1	DUSP19	E230011G24RIK	EDN3	ELF5
DNMT3A	DUSP2	E230012L24	EDR1	ELK1
DNMT3L	DUSP3	E230015B07RIK	EEF1A2	ELL
DOC2G	DUSP7	E230015K02RIK	EEF1B2	ELMO2
DOCK1	DUTP	E230025K04RIK	EEFSEC	ELN
DOCK2	DVL3	E2F5	EEG1	ELOVL2
DOCK3	DXHXS1008E	E330005F07RIK	EFNA1	ELOVL3
DOKL	DXIMX38E	E330009J07RIK	EFNA2	ELOVL4
DOM3Z	DXIMX40E	E330009O14RIK	EFNB1	ELP4
DP1	DXIMX4IE	E330010H22RIK	EFNB3	EMCN
DP1L1	E030002B02RIK	E330016A19RIK	EGF	EMX1
DPAGT1	E030002L01RIK	E330017A01	EGFL6	ENAH

ENDOG	ESR2	FABP7	FGF8	FPR-RS4
ENOI	ESRRB	FABP9	FGF9	FRABIN
ENO2	EST478828	FADD	FGLS	FRG1
ENPEP	ETFA	FADS2	FHL3	FRZB
ENPP5	ETSI	FADS3	FIBP	FSHR
ENTPD1	ETSRP71	FAF1	FIGLA	FSP27
ENTPD3	ETV3	FANCG	FIGN	FS
ENTPD5	ETV4	FARP2	FIGNL1	FTH
ENTPD6	ETV5	FASN	FIN15	FTHFD
EPASI	EVC	FATH	FIZ1	FTHL17
EPB4	EVII	FAU	FKBP4	FTS
EPB7	EVI2	FBLN2	FKBP5	FTSJ
EPHA2	EVI5	FBP2	FKH3	FUT1
ЕРНАЗ	EVL	FBXL10	FKRP	FUT9
EPHA4	EVPL	FBXLI2	FKSG27	FXR1H
EPHA6	EVX2	FBXL3A	FLIZ1	FXYD1
EPHB1	EXO70	FBXL6	FLTI	FXYD3
EPHB3	EXPI	FBXO13	FLT3	FXYD7
EPHB4	EXT2	FBXO24	FMIP	FZD2
EPN1	EXTL1	FBXO34	FMN2	FZD6
EPO	EXTL2	FBXW5	FMNL	FZD7
EPOR	EYA3	FBXW7	FMOD	FZD8
EPSI5-RS	EZH1	FCAMR	FN3K	FZD9
EPS8	F10	FCERIG	FNBP1	GIRZFP
ERAL1	F13B	FCGR3	FNTB	G22P1
ERCCI	F2RL2	FCNA	FOLH1	G2AN
ERCC2	F2RL3	FCNB	FOSB	G3BP
ERCC3	F3	FDPS	FOSL2	G430029E23RIK
ERCC4	F63002 1108RIK	FDX1	FOXA1	G430055L02RIK
ERH	F630111L10RIK	FEM1A	FOXB2	G430127E12RIK
ERMELIN	F7	FEM1B	FOXC1	G431004K08RIK
ERN1	F730001G15RIK	FES	FOXD2	G630009D10RIK
ERN2	F730001J03	FGF10	FOXII	G630024C07RIK
EROIL	F730007C19RIK	FGF11	FOXJI	G630049C14RIK
ERP29	F730011J02	FGF15	FOXJ2	G630080D20RIK
ESAM	F730040C21	FGF17	FOXK1	G6PDX
ESDN	F730108M23RIK	FGF2	FOXLI	G6PT1
ESM1	FABPI	FGF21	FOXN1	GAB1
ESPN	FABP5	FGF3	FPR-RS3	GAB2

GABBRI	GDAP2	GNA 3	GPR97	GTLF3B
GABRA6	GDAP3	GNA15	GPRC5B	GTPBP3
GABT3	GDF10	GNAI2	GPS1	GTRGEO22
GABT4	GDF3	GNAI3	GPSN2	GUCAIA
GAD2	GDII	GNAQ	GPX1	GUCAlB
GADD45A	GDI3	GNA-RSI	GPX2	GUCA2
GADD45B	GEmin4	GNAT2	GPX5	GUCA2B
GALE	GEmin5	GNB1	GRAP	GUCY1A3
GALGT1	GEmIN7	GNB2-RSI	GRCC2F	GUCY2E
GALNT1	GFAP	GNB3	GRCC3F	GYK
GALNT6	GFIIB	GNB4	GRCC9	GYPA
GALNT9	GFM	GNB5	GRHL1	GYS1
GALR2	GFPT2	GNG4	GRHPR	GZMA
GALR3	GFRAI	GNG7	GRIAI	GZMD
GAP43	GGA3	GNG8	GRIA4	GZME
GAPD	GGCX	GNGT2	GRID2IP	GZMG
GAPDS	GGT1	GNT-IVA	GRIFIN	GZMK
GAS41	GGTLAI	GOLGA3	GRIK3	H2AFX
GAS5	GIT2	GOLPH3	GRIK5	H2-BF
GAS6	GJA3	GOSR1	GRIN1	H2-D1
GAS7	GJA4	GPC4	GRIN2A	H2-DMA
GAS8	GJA5	GPCR12	GRIN2B	H2-DMB1
GATA2	GJB3	GPLD1	GRINLIA	H2-DMB2
GATA6	GJB4	GPR1	GRM8	H2-EB1
GATS	GJB5	GPR14	GRN	H2-KE4
GBA2	GLA	GPR3	GRPEL1	H2-KE6
GBI	GLCCII	GPR33	GRPEL2	H2-OB
GBIF	GLI6	GPR37	GSBS	HAAO
GBL	GLIPR1	GPR37L1	GSC	HAGH
GBP2	GLIPR2	GPR4	GSDM	HALAPX
GCAT	GLRAI	GPR44	GSH2	HAO3
GCGR	GLRP1	GPR49	GSN	HARS
GCK	GLTP	GPR54	GSPT1	HARSL
GCL	GLUD	GPR56	GSR	HBA-Al
GCM1	GMEBI	GPR73L1	GSTTI	HBA-X
GCN5L2	GMFB	GPR81	GT(ROSA)26ASSO R	HBB
GCNT1	GMFG	GPR86	GTF2E2	HCAPG
GCS1	GMPR	GPR87	GT2E2	HCK
GDA	GNAll	GPR90	GILF3A	HCN1

HCNGP	HMGB2L1	HSDI7B12	IDB1	ILI7B
HCRT	HMGCL	HSDI7B9	IDH3A	IL17BR
HCRTRI	HMGCR	HSD3B1	IDH3G	IL17D
HCST	HMGCS2	HSD3B2	IFI202A	ILI7RL
HDAC10	HMGN1	HSD3B6	IFI203	IL18BP
HDAC2	HMGN3	HSF1	IFIT2	ILIF9
HDAC7A	HNF4G	HSF2BP	IFITM3L	ILIRAP
HDGF	HNRPAI	HSP70-4	IFLDI	IL1RAPL2
HEBP1	HNRPAB	HSP86-1	IFLD2	IL1RL1
HEBP2	HNRPDL	HSPAIB	IFNA2	IL2
HELB	HNRPH2	HSPAIL	IFNA4	IL21
HELLS	HNRPL	HSPA2	IFNA5	IL2RB
HERC1	HNRPU	HSPA8	IFNA6	IL3RA
HERC3	НОХА9	HSPB2	IFNAB	IL4II
HERPUD1	HOXB1	HSPB7	IFNAR1	IL5
HES3	НОхв5	HSPD1	IFNG	ILSST
HES5	Нохв6	HSPE1	IFNGR2	$I L T R$
HEXA	НОХВ9	HSPG2	IFRD1	ILF2
HEXB	HOXC12	HTR1A	IFRD2	ILF3
HEY2	HOXC13	HTRID	IGBPI	ILK
HEYL	HOXD13	HTR2A	IGFI	IMAP38
HGF	HOXD4	HTR3A	IGFBP3	IMMT
HGFAC	HP	HTR3B	IGFBP4	IMP4A
HGS	HP1BP3	HTR5B	IGSF11	IMPA1
HHIP	HPS3	HTR6	IGTP	IMPA2
HIC1	HPVC2	HURP	IHH	INAC
HIF1A	HR	HYAL3	II	INCENP
HIPIR	HRASI	IANI	$I K$	INGAPRP
HIPK1	HRASRS	IAP	IKAPPABNS	INHA
HIPK2	HRC	ICAM1	IКВКВ	INSL5
HIST1H1A	HRH1	ICAM2	IKBKE	INSM2
HIST1H3F	HRH2	ICAM4	IKBKG	INSRR
HIST2H2AAI	HRH3	ICAM5	IL10	IQGAPI
HIST2H4	HRMP1	ICMT	IL11	IRAK1
HLCS	HRSP12	ICOS	IL12A	IRAK3
HLXB9	HSIBPI	ICOSL	IL12B	IRAK4
HMBS	HSD11B1	ICRFP703B1614Q 5	IL15	IRF4
HMGAI	HSD11B2	ICTI	IL15RA	IRF6
HMGA2	HSDI7B1		IL16	IRSI

IRS4	KCNH2	KLB	LARS2	LITAF
IRX3	KCNIP2	KLC2	LASS 1	LLGLH
IRX6	KCNJ11	KLF16	LATS1	LMNA
ISG15	KCNJ14	KLK16	LBCL1	LMNB1
ISPI	KCNJ 2	KLK21	LBX2H	LMO6
ISP2	KCNJ4	KLK26	LCN2	LNX1
ITCH	KCNJ 5	KLK7	LCN5	LOBEL
ITGA4	KCNK1	KLK8	LCTL	LOXL4
ITGA6	KCNK2	KLK9	LDB1	LPD
ITGA9	KCNK3	KLRA13	LDH2	LPIN1
ITGAM	KCNK4	KLRA2	LDH3	LPL
ITGB1	KCNK5	KLRA4	LECT1	LRAT
ITGB2	KCNK7	KLRBIC	LECT2	LRBA
ITGB2L	KCNMA1	KLRC3	LENEP	LRDD
ITIH1	KCNMA3	KNS2	LEP	LRP4
ITIH2	KCNMB1	KPNA2	LEPR	LRPAPI
ITIH4	KCNMB4	KPNA6	LEPRE1	LRPB7
ITM2B	KCNN2	KREMEN2	LGALS1	LRRC2
ITM2C	KCNQ2	KRT1-10	LGALS3	LRRC3
ITPA	KCNS2	KRT1-12	LGI2	LRRC6
ITPR3	KDT1	KRT1-17	LGI3	LRRN1
ITPR5	KEAP1	KRT2-1	LGI4	LRRN2
ITSN	KEL	KRT2-17	LGMN	LSM4
JAG1	KHDRBS2	KRTAPI2-1	LGS	LSP1
JAG2	KHDRBS3	KSR	LGTN	LTA
JAK3	KIF12	KY	LHB	LTB
JMJ	KIF17	KYNU	LHCGR	LTB4R1
JUB	KIFIA	L259	LHX3	LTB4R2
KAII	KIFIC	LAD1	LHX8	LTF
KAISO	KIF20A	LAMAI	LHX9	LU
KARS	KIF21A	LAMB1-1	LIF	LUC7L
KCNAI	KIF24	LAMC2	LIFR	LUM
KCNA2	KIF2B	LAMP1	LIG3	LY108
KCNA7	KIF2C	LAMP3	LIMK1	LY64
KCNAB1	KIF3B	LAMR1	LIMK2	LY6A
KCNAB2	KIF5C	LANCL1	LIMS 1	LY6F
KCNE1	KIFC3	LAO1	LIN7B	LY6G5C
KCNE2	KIT	LAPTM5	LIPC	LY6G6C
KCNE4	KL	LARGE	LIPH	LY6G6D

LY6I	MAP4K1	MDM2	MGC27784	MGC36672
LYL1	MAP4K2	MEAI	MGC27795	MGC37079
LYNX1	MAP4K4	MEF2D	MGC27915	MGC37309
LYPLAI	MAPA	MEG3	MGC27931	MGC37389
LZTR1	MAPBPIP	MELL1	MGC27952	MGC37548
M32486	MAPK11	MEN1	MGC28116	MGC37568
M6PR	MAPK13	MEOX1	MGC28149	MGC37569
MAD	MAPK14	MEPIA	MGC28394	MGC37588
MAD1L1	MAPK8IP2	MESP1	MGC28622	MGC37805
MAD2L1	MAPK9	METAP2	MGC28646	MGC37820
MAD4	MARCO	METTL1	MGC28663	MGC37938
MADCAM1	MASSI	MFAP2	MGC28751	MGC37950
MADH2	MATIA	MFAP5	MGC28864	MGC38046
MADH6	MATA2	MFI2	MGC28888	MGC38133
MADH7	MATN2	MFN2	MGC28924	MGC38417
MADH9	MATN4	MFNG	MGC28931	MGC38710
MAFF	MATR3	MGA	MGC28972	MGC38715
MAFG	MAZ	MGAT3	MGC28978	MGC38922
MAGEA4	MB	MGAT5	MGC29251	MGC38960
MAGED 1	MBD1	MGC11742	MGC29260	MGC40669
MAID	MBD3L2	MGC18745	MGC29331	MGC40768
MAN2A2	MBL1	MGC18752	MGC29978	MGC40815
MAN2B1	MBNL	MGC19022	MGC30456	MGC40840
MANBA	MBP	MGC19067	MGC30495	MGC40841
MAOB	MBTD1	MGC19382	MGC30595	MGC41750
MAP17	MC3R	MGC25352	MGC30806	MGC47001
MAPILC3	MC7	MGC25529	MGC30809	MGC47262
MAP2K1	MCF2L	MGC25558	MGC30955	MGC47306
MAP2K3	MCM3AP	MGC25719	MGC31216	MGC49785
MAP2K4	MCMD	MGC25852	MGC31423	MGC6696
MAP2K5	MCMD2	MGC25863	MGC31450	MGC6835
MAP2K6	MCMD4	MGC25878	MGC32391	MGC6998
MAP2K7	MCMD7	MGC25910	MGC32441	MGC7221
MAP3K11	MCOLN3	MGC25951	MGC36238	MGC7793
MAP3K14	MCPT5	MGC25977	MGC36320	MGLAP
MAP3K2	MCPT7	MGC27560	MGC36325	MGLL
MAP3K5	MCPT8	MGC27631	MGC36374	MGMT
MAP3K6	MDFI	MGC27648	MGC36471	MIA
MAP3K7	MDK	MGC27770	MGC36491	MICAL-3

MIDN	MOR123-2	MOR184-1	MOR231-3	MOR283-6
MIP	MOR126-2	MOR184-4	MOR231-6	MOR31-6
MIST1	MOR127-1	MOR184-5	MOR231-8	MOR32-1
MIZ1	MOR127-3	MOR184-7	MOR234-1	MOR32-3
MIZF	MOR127-4	MOR185-1	MOR234-3	MOR34-6
MKNK1	MOR128-2	MOR185-4	MOR238-1	MOR35-1
MKRN1	MOR130-1	MOR185-7	MOR239-1	MOR36-1
MLLT10	MOR13-4	MOR186-1	MOR245-21	MOR5-1
MLLT3	MOR136-11	MOR186-2	MOR139-2	MOR194-1

MRPS12	MUC1	NAPA	NEUROD6	NPFF
MRPSI8A	MUC4	NAPB	NEUROG3	NPHP1
MRPS21	MUC5B	NARS	NFE2L1	NPHP4
MRPS23	MUG2	NAT1	NFE2L2	NPHS1
MRPS25	MUSK	NAT2	NFE2L3	NPM3
MRPS6	MVK	NAT6	NFKBIA	NPPC
MRPS7	MVP	NAV1	NFKBIL1	NPR1
MRS3	M ${ }^{1} 1$	NCDN	NFSI	NPR3
MS4AIO	MYB	NCF2	NFX1	NPTX1
MS4A3	MYBL1	NCL	NFYA	NPTX2
MS4A8A	MYD116	NCOA3	$N G B$	NPY6R
MSCP	MYD88	NCOAGIP	NGP	NQO1
MSGN1	MYEF2	ND1	NHLH1	NQO2
MSH3	MYH2	NDR1	NIBAN	NROB2
MSH4	MYH4	NDR2	NIF3L1	NRID1
MSH5	MYL9	NDR3	NINJ2	NR1H3
MSIIH	MYLA	NDST2	NIPAI	NR4AI
MSL3L1	MYLC2PL	NDUFA6	NISCH	NR4A3
MSMB	MYLN	NDUFB5	NKTR	NR6Al
MSR2	MYLPF	NDUFSI	NKX2-2	NRAP
MST1	MYO15	NDUFS3	NKX2-4	NRARP
MST1R	MYOIA	NDUFV2	NKX2-5	NRAS
MSX3	MYO1B	NEDD4L	NKX6-1	NRBP
MT1	MYOIC	NEDD7	NME3	NRIPI
MT1A	MYO3A	NEF3	NMRK	NRN1
MTA1	MYO5B	NEIL1	NMU	NRTN
MTAP6	МYO7B	NEK1	NMYC1	NSAPIL
MTCP1	MYO9B	NEK3	NOA36	NSCCN1
MTE1	MYOG	NEK4	NOC4	NSD1
MTF1	MYOM2	NEK7	NODAL	NSDHL
MTF2	MYOZ1	NEK8	NOG	NSG1
MTMR1	MYRIP	NELF	NOLC1	NSSR
MTMR2	NGAMTI	NETO1	NOPE	NT5C
MTMR4	NAALAD2	NETO2	NOS 1	NT5M
MTNR1A	NAGA	NEU1	NOS3	NTAN1
MTOI	NAGLU	NEU2	NOTCH4	NTRK3
MTR3	NAGS	NEUD4	NP15	NTT4
MTSSK	NANS	NEURL	NP220	NUBP1
MTX1	NAPIL3	NEUROD2	NPDC1	NUCB

NUCB2	OLFR73	P4HA2	PCDHB1	PEPF
NUDC	OLIG2	PACE4	PCDHB2	PERI
NUDT1	OMT2A	PADII	PCG	PER2
NUDT2	ONECUT1	PADI3	PCK1	PERP
NUDT7	ONECUT3	PADI4	PCM1	PEX1
NUFIP 1	OPN3	PAFAHIBI	PCMT1	PEXI3
NULP1	OPN4	PAFAHIB3	PCNXL3	PEX14
NUMBL	ORA16	PAICS	PCSK4	PEX16
NUP153	ORC5L	PALD	PCSK7	PEX5
NUP155	ORF11	PALM2	PCTK1	PEX6
NUP62	ORF19	PANK1	РСТК2	PFKFB1
NXPH3	ORF5	PANK2	PCX	PFKFB2
NYRENI8	ORF6	PANK3	PDCD6IP	PFPL
OASIB	ORNT2	PAP	PDCD7	PGAMI
OASIC	ORS16	PAPK	PDCD8	PGAM2
OASIE	OSBP2	PAPLN	PDCL	PGBD5
OASL2	OSBPLIA	PAPOLA	PDE10A	PGBPLL
OAZ1	OSBPL3	PAPPA	PDE1B	PGCP
OAZ2	OSBPL5	PAPSSI	PDE3B	PGGTB1
OC90	OSF2	PARD3	PDE4D	PGK2
OCIL	OSR1	PARD6A	PDE6B	PGLS
ODF1	OSR2	PARG	PDE7A	PGM3
OFD1	OTG1	PARK2	PDE8A	PHAX
OG2X	OTOA	PARVA	PDGFA	PHB
OGG1	OTOF	PARVG	PDGFC	PHC3
OGN	OtT	PAX3	PDGFD	PHEX
OIT3	OVCA2	PAX6	PDGFRB	PHF2
OLFM3	ovCovi	PAX7	PDHAI	PHF5A
OLFR15	OVOL1	PAX8	PDK4	PHKAI
OLFR19	OXCT	PAX9	PDLIM1	PHOSPHOI
OLFR23	OXT	PBP	PDLIM 3	PHOX2A
OLFR30	OXTR	PBX4	PDPK1	PHXRI
OLFR33	P	PCBP1	PDZK3	PIGA
OLFR37E	P2RX2	PCBP3	PEA15	PIGB
OLFR47	P2RX5	PCBP4	PECI	PIGH
OLFR51	P2RXL1	PCDH12	PELO	PIGM
OLFR62	P2RY12	PCDH13	PEM	PIK3C2G
OLFR70	P2RY4	PCDH8	PEMT	PIK3CA
OLFR71	P42POP	PCDHA@	PEP4	PIK3CD

PIK3R2	PLN	PPIB	PRKR	PTBP1
PIM 2	PLOD1	PPICAP	PRKRA	PTBP2
PIN1	PLSCR1	PPL	PRKRIR	PTCH
PIP5K1A	PLVAP	PPN	PRLPC1	PTDSR
PIP5K1B	PLXNB3	PPOX	PRLPI	PTDSS2
PIP5K1C	PLXNC1	PPPICA	PRM3	PTE1
PIP5K2C	PM5	PPPIR12A	PRND	PTE2A
PIT1	PML	PPPIR14A	PRNPIPI	PTF1A
PITPNB	PMM1	PPPIR14B	PROCR	PTGDS
PITX1	PMS2	PPPIR14C	PRODH2	PTGER1
PITX2	PMSCL1	PPPIR16B	PROK2	PTGES2
PIWIL2	PMSCL2	PPPIRIA	PROSC	PTGIS
PKD1	PNLIPRPI	PPPIR2	PRPS2	PTGS2
PKDIL1	PODXL	PPPIR3A	PRPSAP2	PTHR2
PKD2	POLAI	PPP2CB	PRRG2	PTK6
PKM2	POLA2	PPP2R1A	PRRX2	PTK9L
PKNOX2	POLB	PPP4R1	PRSS11	PTOV1
PKP1	POLD2	PPP5C	PRSS8	PTPN13
PKP3	POLE	PPY	PSID	PTPN14
PL6	POLE2	PRAMELI	PSA	PTPN18
PLA2G10	POLH	PRAMEL3	PSAP	PTPRB
PLA2Glbr	POLI	PRCAD	PSAT	PTPRC
PLA2G2A	POLM	PRCC	PSCD2	PTPRCAP
PLA2G2E	POLR2C	PRDC	PSEN2	PTRF
PLA2G4A	POLR2E	PRDX1	PSE	PTTG1
PLA2G5	POLR2I	PRDX5	PSG16	PTX3
PLA2G7	POLYDOM	PREI3	PSG19	PUM1
PLAGL1	POR	PRG4	PSG30	PUMAG
PLAUR	POU2F3	PRIM1	PSMB2	PURA
PLCE1	POU3F1	PRKAB1	PSMB5	PURB
PLCG1	POU3F2	PRKAB2	PSMB7	PURG
PLD2	POU5F1	PRKARIA	PSMB8	PVA
PLDN	PPAP2A	PRKAR2A	PSMC4	PVRL2
PLEC1	PPAP2C	PRKAR2B	PSMD5	PVRL3
PLEK2	PPARA	PRKCABP	PSMD9	PWDMP
PLEKHB1	PPARBP	PRKCB	PSO	PXMP2
PLFR	PPEF2	PRKCD	PSP	PXMP3
PLG	PPFIBP1	PRKCQ	PSTPIP1	PXMP4
PLIN	PPGB	PRKDC	PSX2	PXN

PYCS	RARB	RFNG	RP2H	RPS6KA4
PYGB	RARG	RFX4	RP9H	RPS6KB2
QDPR	RASGRF2	RGA	RPAI	RRAS
R74613	RASGRP1	RGL2	RPE	RRH
R74720	RASSF1	RGPR	RPGR	RRM2
R74726	RASSF5	RGS11	RPH3A	RTN2
R74862	RB1	RGS12	RPIA	RTN3
R75183	RB1CC1	RGS13	RPL10	RTN4
RAB11A	RBBP9	RGS19IP3-	RPLIOA	RTN4IP1
RAB12	RBL1	RGS20	RPL12	RTN4R
RAB14	RBL2	RGS3	RPL17	RTTN
RAB17	RBM6	RGS4	RPL22	RUFY1
RAB18	RBMX	RGS9BP	RPL27	RUVBL2
RAB19	RBP1	RHAG	RPL27A	RXRB
RAB20	RBP2	RHBDL	RPL3	SIOOA3
RAB21	RBP7	RHBG	RPL30	SIOOA4
RAB27B	RBPSUHL	RHCED	RPL32	SIOOA5
RAB33A	RCE1	RHOK	RPL35	Sl00A6
RAB34	RCOR	RHPN1	RPLA1	Slooas
RAB37	RCVRN	RIB1	RPLA4	Sloob
RAB3B	RDBP	RIL	RPL7A	S3-12
RAB3D	RDH-S2	RING1	RPLP2	SAAI
RAB40C	RDS	RIPK2	RPO1-1	SAA2
RAB5C	REC8	RIS2	RPS14	SACM2L
RAB5EF	RECC1	RIT1	RPS15	SALPR
RAB5EP	RECK	RNASEP 2	RPS16	SAMSN1
RAB9	RECQL5	RNF10	RPS17	SANG
RAC2	REG2	RNF11	RPS18	SAP18
RAD17	REG3A	RNF14	RPS19	SARA
RAD50	REL	RNF25	RPS2	SARSI
RAD54L	RELA	RNF5	RPS24	SART3
RAE1	REM	ROCK1	RPS25	SAT
RAII2	REM2	ROCK2	RPS26	SATB1
RAI2	REN2	ROG	RPS27L	SBK
RALBP1	REPS1	ROPN1	RPS3	SCA2
RAPIA	RESP18	ROR1	RPS4X	SCAMP2
RAPIGA1	RETN	ROR2	RPS5	SCAMP5
RAPSN	RFC3	RORA	RPS6	SCD3
RARA	RFC5	RORC	RPS6KAI	SCGB1AI

SCGB3AI	SERF2	SIAT6	SLC24A3	SLC8AI
SCGF	SERPINA6	SIAT7B	SLC24A4	SLC8A2
SCN11A	SERPINB5	SIAT7D	SLC25A1	SLC9A3RI
SCNIB	SERPINB7	SIAT7E	SLC25A12	SLFNI
SCN3A	SERPINE1	SIAT7F	SLC25A13	SLITL2
SCNN1B	SERPINE2	SIAT8F	SLC25A17	SLPI
SCOTIN	SERPINF2	SIAT9	SLC25A18	SLU7
SCRGI	SET	SIGIRR	SLC25A19	SMAFI
SCRT1	SET7	SIL	SLC26A8	SMARCA5
SCT	SFPII	SIL1	SLC27A1	SMARCBI
SCUBE1	SFPQ	SILG41	SLC27A5	SMARCD3
SDBCAG84	SFRP4	SIM2	SLC28A3	SMCILI
SDC1	SFRS14	SIN	SLC29A1	SMOC1
SDC3	SFRS2	SIN3B	SLC29A2	SMOX
SDC4	SFRS4	SIPAI	SLC29A3	SMPX
SDCBP	SFTPB	SIRT6	SLC29A4	SMTN
SDF2	SFTPC	SIRT7	SLC2A8	SN
SDF2L1	SFTPD	SITPEC	SLC30AI	SNAI2
SDF4	SFXN3	SIVA	SLC30A3	SNCAIP
SDHA	SGK	SKIV2L	SLC30A4	SNRK
SEC22L3	SGPL1	SKZ1	SLC31AI	SNRPA
SEC23B	SGT	SLAM	SLC34AI	SNRPB2
SEC61G	SGY1	SLCIOA2	SLC34A2	SNRPE
SEC63	SH2D3C	SLCl1Al	SLC38A3	SNTAI
SECTM1	SH3BGRL3	SLC11A2	SLC39A3	SNTB2
SEL1H	SH3BP1	SLC12A3	SLC3A2	SNX17
SELEL	SH3BP5	SLCI2A4	SLC4AIO	SNX4
SELENBP1	SH3GL1	SLC12A7	SLC4A2	SNX9
SELENBP2	SH3GL2	SLC13A1	SLC4A4	SOAT1
SEMA3C	SH3KBPI	SLCI4AI	SLC5A2	SOCS1
SEMA4A	SHANK3	SLC16A1	SLC5A4B	SOCS3
SEMA4B	SHFDG1	SLC16A8	SLC5A5	SOCS4
SEMA4G	SHH	SLCli7al	SLC5A7	SOCS5
SEMA6B	SHRM	SLClal	SLC6A2	SOCS7
SEMA6D	SHYC	SLC21A13	SLC6A4	SOD1
SEMA7A	SI	SLC22A2	SLC7AIO	SOLH
SEPM	SIAHIB	SLC22A4	SLC7A12	SORL1
SEPW1	SIAT4A	SLC22A6	SLC7A2	SOSI
SERF1	SIAT4C	SLC23A2	SLC7A9	SOX1

SOX10	SREBF1	STK23	SYNPO2	TCF12
SOX13	SRFCP	STK31	SYT12	TCF15
SOX15	SRP54	STK33	SYT13	TCF21
SOX18	SRP9	STK39	SYT3	TCF3
SOX5	SSB4	STK4	SYT7	TCF7
SOX6	SSBP3	STMN3	SYT8	TCFAP2A
SOX7	SSFA2	STMN4	SYTL1	TCFAP2C
SOX9	SSH3BPI	STRAI3	SYTL2	TCFE3
SP1	SSPN	STRA6	T	TCFL1
SP100	SSR1	STRA8	T2	TCIRG1
SP4	SSR4	STRAP	TAC1	TCL1
SPAGI	SSRP1	STRM	TAC2	TCL1B1
SPAG4	SST	STRN4	TACSTD 1	TCL1B3
SPEER2	SSTR1	STUB1	TACTILE	TCL1B5
SPHK1	SSTR3	STX18	TAFIC	TCN2
SPHK2	ST7	STXIA	TAF6	TCRB-V13
SPIIO	ST7L	STX5A	TAF9	TCTE3
SPII2	Stac	STX8	TAGLN	TCTEX3
SPII3	STARD3	STXBP1	TAP2	TDGF1
SPII4	STARD4	SUDD	TAR1	TDH
SPII-4	STARD5	SULTIAI	TARBP2	TDRD1
SPIN	STARD6	SULT1A2	TARDBP	TEAD2
SPINT2	STAT2	SULTIB1	TASIR2	TEAD4
SPN	STAT3	SULTICI	TBCID1	TEMT
SPNA2	STAT5A	SULT2B1	TBCE	TENR
SPNB2	STATSB	SUPT5H	TBK1	TEP1
SPNB4	STATIP1	SUPT6H	TBL2	TERF2IP
SPNR	STC2	SURF1	TBN	TESC
SPO11	STEAP	SURF2	TBPL1	TESK1
SPOCK2	STELLA	SURF4	TBR1	TESP2
SPRR2B	STFA2	SURF5	TBRG1	TEX15
SPRR2F	STH2	SURF6	TBX4	TEX16
SPRY1	STIP1	SV2A	TBX6	TEX292
SPRY4	STK10	SVIL	TC10	TFAP2D
SPS2	STK12	SWAM2	TCAM1	TFDP1
SQLE	STK13	SYCP3	TCEA2	TFF3
SQRDL	STK19	SYK	TCEA3	TFIP11
SQSTM1	STK22A	SYN1	TCEB1L	TGFB2
SRC	STK22C	SYNC	TCF1	TGFB3

TGFBI	TM4SF11	TNFSF14	TREM3	TTC3
TGFBR2	TM4SF2	TNFSF4	TREML1	TTGN1
TGM1	TM4SF3	TNFSF5	TREXI	TTK
TGM2	TM6SF1	TNK1	TREX2	TTN
TGTP	TM9SF2	TNKS	TRFR2	TTPA
tgut	TMC1	TNNII	TRIF	TUBA4
THBS2	TMEFF2	TNNI2	TRIM11	TUBA6
THBS3	TMEM5	TNNT2	TRIM2	TUBB2
THEA	TMEM 7	TNNT3	TRIM26	TUBB4
THEG	TMEM8	TNP1	TRIM27	TUBGCP5
THOP1	TMOD1	TNP2	TRIM30	TUFT1
THRSP	TMOD3	TNXB	TRIM41	TXNDC1
THY1	TMOD4	томм40	TRIM6	TXNL2
TIAM2	TMPO	TOP1	TRNT1	TXNRD1
TIEG	TMPRSS2	TOP2A	TRP53	TXNRD2
TIF2	TMPRSS4	TOP3A	TRP53BP1	TYKI
TIFP39	TMPRSS5	TPARL	TRP63	U2AF1
TIGD4	TMPRSS6	TPBG	TRPC2	U2AF2
TIMD2	TMSB10	TPBPA	TRPC3	U2AF26
TIMELESS	TMSB4X	TPC1	TRPC4	U3-55K
TIMM17B	TNA	TPD52	TRPC4AP	UBA52
TIMM23	TNCC	TPI	TRPM1	UBAPI
TIMM8B	TNCS	TPK1	TRPM2	UBCE7IP 3
TIMM9	TNF	TPM2	TRPM5	UBCE7IP
TIMP3	TNFAIPI	TPM3	TRPM6	UBD
TIRAP	TNFAIP3	TPRA40	TRPM7	UBE2D2
TISP78	TNFRSF12A	TPT1	TRPV2	UBE2E1
TJP3	TNFRSF13B	TPTIH	TRPV3	UBE2G2
TK1	TNFRSF13C	TPTF	TRPV4	UBE2R2
TLE3	TNFRSF17	TRAF2	TSBP	UBE2V2
TLMP	TNFRSFI9	TRAF3	TSG101	UBE4A
TLR1	TNFRSF21	TRAF4	TSHB	UBE4B
TLR2	TNFRSF22	TRAF5	TSLP	UBL1
TLR4	TNFRSF23	TRAPIA	TSNAXIP1	UBL3
TLR5	TNFRSF25	TRB-2	TSSC4	UBLA
TLR8	TNFRSF4	TREM1	TST	UBL5
TLR9	TNFRSF6	TREM2A	TSTAP35B	UBP1
TLX1	TNFRSF7	TREM2B	TSX	UBTF
TLX3	TNFRSF9	TREM2C	TTBK1	UCP2

UCP3	VIRC3	VPREB3	WWP4	ZFP30
UGALT2	V1RC30	VPS11	X61497	ZFP316
UGCG	VIRC4	VPS26	X83328	ZFP354A
UGT2B5	VIRE11	VPS28	XIN	ZFP358
ULK1	VIRE8	VPS29	XLR	ZFP36
UMPK	VIRF4	VPS45	XLR4	ZFP364
UNC119H	VIRGI	$V R P$	XLR5	ZFP369
UNC13H1	V1RG6	WAP	XPC	ZFP36L1
UNC13H3	VlRHI4	WASBP	XPNPEP1	ZFP37
UNC5H1	V1RH16	WASL	XPNPEP2	ZFP371
UNC93B	V1RH17	WAVE2	XPOT	ZFP46
UNG	VIRH5	WBPI	XRCC2	ZFP51
UPK1A	V1RH8	WBP11	XTRP3S1	ZFP52
UPK3	VIRJ2	WBP5	YAF2	ZFP64
UROD	V2R16	WBSCR14	YкT6	ZFP68
USF1	V3R1	WBSCR5	YME1L1	ZFP92
USHIC	VAMP2	WDRIO	YWHAH	ZFP93
USH2A	VAPA	WDR13	YY1	ZFP96
USP14	VAPB	WDR4	ZAN	ZIPROI
USP2	VASP	WDR6	ZAP3	ZMPSTE24
USP21	VATI	WDR8	ZAP70	ZNFNIA4
USP4	VAV1	WDT3	ZDHHC3	ZP1
USP5	VAV2	WEE1	ZDHHC7	ZP2
UTRN	VAXI	WFSI	ZEC	ZP3
UXS 1	VAX2	WIZ	ZFA	ZPBP
UXT	VCAM1	WNTIOB	ZFP105	ZYX
VIRA5	$V C P$	WNT16	ZFP109	
VIRA8	VDAC1	WNT2B	ZFP133	
VIRB4	VDP	WNT4	ZFP142	
VIRB9	VDU1	WNT7A	ZFP143	
VIRCIO	VEGFA	WNT7B	ZFP162	
V1RC11	VEGFB	WNT8B	ZFP185	
V1RC14	VIG1	WNT9B	ZFP216	
V1RC16	VIL	WSB1	ZFP219	
V1RC23	VIP	WT1	ZFP265	
V1RC24	VMD2	WTAP	ZFP288	
V1RC25	VMD2L1	WWOX	ZFP289	
V1RC27	VNN1	WWP1	ZFP296	
V1RC28	VNN3	WWP2	ZFP297B	

Appendix 7

Supplementary Table 3: WT and PA overlapping E2 genes

Overlapping genes - WT + PA1		Overlapping genes - WT + PA2		Overlapping genes - WT + PA ${ }^{\text {PoOL }}$		
WT	PA1	WT	PA2	WT	$\mathrm{PA}^{\text {POOL }}$	
Pitx2	2210408F21Rik	Pitx2	1700001L05Rik	Pitx2	Aldh1a3	
Pou4f1	A230057D06Rik	Pou4f1	1700010114Rik	Pou4f1	Aldh3a1	
Lmx1a	A830009L08Rik	Lmx1a	1700019D03Rik	Lmx1a	Atp8b3	Overlapping genes in
Plekhg4	Acr	Plekhg4	2310002FO9Rik	Plekhg4	AW822252	each group are
Dsc1	Adam33	Dsc1	3632454L22Rik	Dsc1	Barhl1	highlighted
Crybb3	Adamts/4	Crybb3	4930594C11Rik	Crybb3	C5ar1	
Edn3	Amy1	Edn3	A330074K22Rik	Edn3	Calca	
Apoc1	Ap1g2	Apoc1	Abi3bp	Apoc1	Cbln3	
N/rp3	Arc	N/rp3	Acad10	NIrp3	CbIn4	
Ptpn18	Arhgap28	Ptpn18	Acta2	Ptpn18	Chrna6	
Cldn1	Bdnf	Cldn1	Adcy 4	Cldn1	Col17a1	
Uba52	C5ar1	Uba52	Adgrg2	Uba52	Col1a1	
Recql4	C920006011Rik	Recq/4	Agt	Recql4	Cpz	
Ebi3	Cacna1h	Ebi3	Akr1c14	Ebi3	Dbh	
Bmp3	Cckbr	Bmp3	Aldh1a3	Bmp3	Dhrs7c	
Gpr151	Cdk3-ps	Gpr151	Arc	Gpr151	Dock2	
Cdk3-ps	Col16a1	Cdk3-ps	Arhgap6	Cdk3-ps	Dpy1912	
Cd163	Collal	Cd163	Arhgef33	Cd163	Ebf3	
Mirg	Col1a2	Mirg	Arsj	Mirg	En2	
Pparg	Col6a5	Pparg	Atp6v1c2	Pparg	Eps812	
Fmod	Cola	Fmod	AW551984	Fmod	Fat2	
Slc22a6	Cox6a2	Slc22a6	B330016D10Rik	Slc22a6	Fosb	
Syt15	Cpz	Syt15	Barhl2	Syt15	Foxl2os	
Cryba4	Dbh	Cryba4	BC048546	Cryba4	Galr1	
Pgm5	Dcdc2b	Pgm5	Best1	Pgm5	Gata3	
Slc13a4	Dnah9	Slc13a4	C1q/2	Slc13a4	Gbgt1	
Six 3	Dusp5	Six 3	C2	Six 3	Gmnc	
Rxfp2	Efna1	Rxfp2	Calca	Rxfp2	Hsbp1/1	
Lat2	Egr2	Lat2	Calcr	Lat2	Hspb2	
Pcdhb6	Egr3	Pcdhb6	Car13	Pcdhb6	Ido1	
Ttn	Egr4	Ttn	Cbln3	Ttn	Lhx1	
Ush1g	Eln	Ush1g	Cbln4	Ush1g	Lhx1os	
4930426D051 Eps811		4930426D05F Ccdc180		4930426D05F Lhx5		
Henmt1	Epx	Henmt1	Ccdc36	Henmt1	Mab21/1	
Myoc	Exoc31	Myoc	Ccl12	Myoc	Mybpc3	
Rsg1	Fam129c	Rsg1	Chodl	Rsg1	Myh2	
Arhgef39	Fanca	Arhgef39	Chrm5	Arhgef39	Муозb	
Tusc5	Fat2	Tusc5	Chrna6	Tusc5	N/rp3	
Slc6a20a	Fbln5	Slc6a20a	Clrn1	Slc6a20a	Nr4a2	
Pin1rt1	Fhod1	Pin1rt1	Cmbl	Pin1rt1	Olfr1344	
Dnase1/1	Flna	Dnase1/1	Cngb1	Dnase111	Pex11g	
Dsc3	Fos	Dsc3	Col6a6	Dsc3	Phex	
Lect1	Fosb	Lect1	Colq	Lect1	Ppp1r17	
C230091D08t Foxl2os		C230091D08F Cox7a1		C230091D08t Rmi2		
Aox3	Ggnbp1	Aox3	Crb1	Aox3	Rps13	
Gngt2	Gipr	Gngt2	Crhr2	Gngt2	Serpinb1b	
C4a	Gm11549	C4a	Ctxn2	C4a	Shox2	
Scara5	Gm14420	Scara5	Dcn	Scara5	Siglec1	
Msx1	Gm15446	Msx1	Des	Msx1	Siglece	
4930481A15F Gm20219		4930481A15F Diap3		4930481A15F Spp1		
Ccdc33	Gm2115	Ccdc33	Dnaaf3	Ccdc33	T2	
Ybx2	Gm38413	Ybx2	Dock2	Ybx2	Twist1	
Aldh1a2	Gpr139	Aldh1a2	Drd5	Aldh1a2	Uncx	
Gm20219	Gpr3	Gm20219	Dsc3	Gm20219	Upp2	
Cpz	Gsap	Cpz	Ebf2	Cpz	Zfp114	
Pabpc5	H19	Pabpc5	Ebf3	Pabpc5		
	H2-M5		Edar			
	Hcrt		Egfl6			
	Hspa1b		Egr1			
	Ifit3b		Egr2			
	Il18bp		Eps812			
	Inhba		Exoc3/4			
	Itgbl 1		F13a1			
	lyd		Fam221a			
	Kif20b		Fam228a			
	Leng8		Fat2			
	Mab2111		Fos			
	Mbd6		Foxr2			
	Med12		Gabrq			
	Mfsd2b		Galr1			
	Mvp		Gata3			
	Myh11		Gats/3			
	Neat1		Gimap1			

N/rp3	Gm10638
Nox4	Gm14634
Npas4	Gm5148
Npy2r	Gm5741
Nr3c2	Gm694
Nt5e	Gmnc
Ovgp1	Gpr101
P3h3	Hap1
Pabpc41	Hpcal1
Parp3	Hspb2
Pdgfrl	Hspb3
Pisd-ps1	Ifit3
Pisd-ps2	Igfbp6
Plekha4	Inhba
Plscr4	Irs4
Pmch	Itgal
Procr	Itgb3
Prox1	Jph2
Psd4	Lars2
Ptch2	Lhx1
Ptgs2	Lhx1os
Rad9b	Lhx5
Rbp4	Lppos
Reck	Lrrn4
S100a4	Ltbp2
Scarf2	Mab21/1
Serpinb1a	Magel2
Sgk2	Map3k15
Siglec1	Map3k6
Slc17a8	Meig1
Slc2a9	Mir6236
Slc9a2	Mxd3
Sowahb	Myh2
Spaca6	Муозb
Spp1	муос
Ssc5d	Myzap
Styk1	Neil2
Susd5	Neurl2
Sypl2	Nhej1
Tbxa2r	Nkx2-1
Tcap	Nod2
Thbs3	Npas4
Thbs4	Nppa
Tme4	Npy2r
Tnxb	Nr2f2
Traip	Nrtn
Trim68	Nupr1
Tspan18	Olfm4
Unc13d	Optc
Wnt10a	Ovgp1
Wnt10b	Ovol2
Zan	Oxt
Zfp456	Pappa2
Zfp69	Pdzd3
Zkscan2	Pex11g
	Pla2g3
	Plk5
	Plp2
	Popdc3
	Ppp1r17
	Prlr
	Prr15
	Ptafr
	Rad54l
	Rhoh
	Rn45s
	Rt/1
	Rxfp2
	Samd11
	Serpinb1b
	Sim1
	Slc35d3
	Slc47a1
	Snord22
	Stpg1
	Susd3
	Tacr3

Appendix 8

GeneID	logFC	logCPM	PValue	P10VDP24_1	P10VDP24_2
1700001L05Rik	-0.549307505	2.660856812	0.000859115	7.154181856	8.479808966
1700010114Rik	-0.571938331	0.688133884	0.01784733	1.983337544	1.695961793
1700019D03Rik	-0.517201126	1.930462873	0.001333566	4.391675991	4.239904483
2310002F09Rik	-0.736804454	0.402394742	0.028815468	2.195837995	1.639429733
3632454L22Rik	-0.582488424	0.969988783	0.013696485	1.629170126	2.091686212
4930594C11Rik	0.840589064	0.483544537	0.002410886	0.920835288	0.961045016
A330074K22Rik	-0.698796869	1.148481724	0.025362551	2.408338446	3.109263288
Abi3bp	0.619292845	4.539483008	0.047830099	14.30836371	14.01995082
Acad10	0.509319601	0.947677941	0.048266045	1.983337544	1.413301494
Acta2	-0.644476103	3.027348345	$2.87 \mathrm{E}-05$	10.76668953	10.79762342
Adcy 4	-0.506918624	2.159981449	0.00369895	5.241677795	4.861757141
Adgrg2	-0.512675545	2.498275354	0.008100158	7.650016242	4.692160961
Agt	-0.851770933	5.802526808	0.00302737	95.12936864	82.42374315
Akr1c14	0.587391514	0.953038247	0.033913869	1.062502256	1.695961793
Aldh1a3	1.232775852	2.770964656	5.56E-09	4.462509474	3.278859467
Arc	0.795810351	5.432898654	5.37E-06	21.53337905	44.32113486
Arhgap6	-0.539956197	3.169433608	0.000216181	9.1375194	11.64560431
Arhgef33	-0.83115306	0.760976838	0.002787027	1.700003609	1.582897674
Arsj	-0.728127665	0.664229303	0.010701483	2.054171028	1.695961793
Atp6v1c2	-0.564812394	1.425933274	0.010014596	3.61250767	2.54394269
AW551984	-0.521050177	6.323952466	0.00061255	74.87099229	92.65604597
B330016D10Rik	-0.806756957	1.320261613	0.000324941	3.470840702	3.731115945
Barhl2	-0.526840604	0.883494109	0.025655224	2.195837995	1.469833554
BC048546	-0.598660592	3.037014903	0.000202402	11.19169043	10.23230282
Best1	-0.696510936	0.768786747	0.024068527	2.266671479	1.469833554
C1ql2	-0.896486173	2.55314801	5.50E-05	8.00418366	9.214725743
C2	-0.825074841	0.697092565	0.004087788	2.054171028	2.035154152
Calca	-0.759765168	1.666031595	0.004524027	3.541674186	2.939667108
Calcr	-0.961979029	2.128444014	0.00346846	4.250009023	8.027552488
Car13	-0.522402284	0.795087221	0.042424594	1.91250406	1.582897674
Cbln3	-1.379505424	1.154088077	0.005243862	1.770837093	1.752493853
Cbln4	-0.615818384	4.393837061	0.007635041	19.83337544	23.06508039
Ccdc180	0.564508695	0.419900477	0.039850967	0.991668772	0.791448837
Ccdc36	-0.62074907	0.201906001	0.03920111	0.779168321	1.187173255
Ccl12	-1.087574982	0.387352079	0.001078468	2.125004512	1.526365614
Chodl	-0.608026959	1.922042899	0.021348597	3.470840702	4.409500662
Chrm5	-0.588433106	1.030076817	0.048865113	1.700003609	2.939667108
Chrna6	-0.623380073	0.810345714	0.031100526	1.91250406	2.204750331
Clrn1	-0.986186656	0.657538298	0.000941506	2.054171028	1.074109136
Cmbl	-0.51632138	3.349774382	5.41E-06	10.76668953	12.60664933
Cngb1	-0.783294764	0.910377019	0.000922595	2.833339349	2.204750331
Col6a6	-0.701383213	0.264266538	0.0181173	1.13333574	1.300237375
Colq	1.166550494	1.309075148	$1.28 \mathrm{E}-05$	1.204169223	1.865557973
Cox7a1	-0.612802848	0.327789773	0.025680217	1.416669674	1.300237375
Crb1	-0.746358644	0.320065684	0.033289232	1.700003609	0.904512956
Crhr2	-0.559319101	1.387679743	0.004817913	2.833339349	2.770070929
Ctxn2	-0.639245301	3.079211745	0.000256724	11.12085694	9.553918102
Dcn	-0.590803258	4.911261766	$2.25 \mathrm{E}-05$	27.69589213	35.50213354
Des	-0.510558407	0.935272044	0.022759757	1.770837093	2.43087857

Diap3	0.531886419	1.770088088	0.001576148	2.904172833	2.826602989
Dnaaf3	-0.505199738	1.258109255	0.012953568	2.904172833	2.317814451
Dock2	0.869947243	0.518838913	0.042597151	1.275002707	1.130641196
Drd5	-0.525878699	2.023702233	0.00103474	4.604176442	4.409500662
Dsc3	-1.698558181	0.686757234	0.000223312	1.558336642	1.413301494
Ebf2	-0.546404738	1.973014418	0.017130966	5.383344763	3.222327407
Ebf3	-1.046697432	2.936468318	7.05E-06	9.987521205	6.727315113
Edar	0.575064425	0.700672298	0.036688968	1.13333574	1.243705315
Egfl6	-0.574574231	2.461171062	0.004375609	5.52501173	8.197148667
Egr1	0.583569124	6.716375583	7.62E-05	78.12933254	107.3543815
Egr2	0.507039653	2.075545777	0.046574087	3.754174637	3.674583885
Eps812	-0.768386981	0.519216865	0.008738003	1.345836191	2.204750331
Exoc314	-1.010427447	0.276221055	0.000274261	1.275002707	1.469833554
F13a1	-0.543167544	2.627029301	0.00027507	7.154181856	6.388122755
Fam221a	-0.597715223	0.430492014	0.025670824	1.629170126	1.243705315
Fam228a	-0.523418326	1.260148294	0.021729284	2.691672381	2.60047475
Fat2	-2.109760698	1.560372716	0.00172836	1.275002707	2.148218271
Fos	0.748196804	3.989772994	0.004775958	8.712518498	17.92066295
Foxr2	-0.763097493	0.295111557	0.020410778	1.13333574	1.639429733
Gabrq	-0.78364339	3.582694775	0.000607423	10.41252211	17.52493853
Galr1	-1.162476107	0.313516424	8.03E-05	1.770837093	1.413301494
Gata3	-1.506613043	0.569032866	0.016371184	2.125004512	1.695961793
Gatsl3	-0.70137311	1.671835727	0.023377931	5.170844312	4.013776244
Gimap1	-0.635233482	0.720801311	0.01970221	1.629170126	1.922090032
Gm10638	-0.852853638	0.637356845	0.000549851	1.983337544	2.035154152
Gm14634	0.56476181	0.478066587	0.046441724	1.204169223	1.130641196
Gm5148	-0.908688177	1.020648391	4.92E-05	2.620838898	2.374346511
Gm5741	1.429372892	0.837061647	0.007161992	0.850001805	0.847980897
Gm694	-0.583473456	1.009063991	0.018080516	3.116673284	2.148218271
Gmnc	0.543328893	0.89780242	0.022550812	1.416669674	1.526365614
Gpr101	-0.951275984	3.445337264	1.77E-05	10.48335559	15.0375279
Hap1	-0.555217443	8.331017058	7.41E-06	336.6007146	402.90399
Hpcal1	-0.745957857	5.273685971	$1.12 \mathrm{E}-11$	45.82926397	45.28217988
Hspb2	-0.849722798	-0.090504847	0.034810484	1.13333574	1.300237375
Hspb3	0.546816808	1.886553055	0.014774251	3.683341153	2.43087857
1 fit3	-0.761526682	1.167095966	0.009739468	3.400007219	2.317814451
Igfbp6	-0.593038149	1.661429398	0.002953991	3.258340251	3.222327407
Inhba	0.640387239	1.632606656	0.004135228	1.275002707	2.60047475
Irs4	-0.950640859	4.15176908	0.004235182	14.73336461	32.11020995
Itgal	0.618338999	1.382972308	0.030650726	1.204169223	2.317814451
Itgb3	0.510084927	3.59440939	0.000921226	8.145850628	10.1192387
Jph2	-0.585561001	0.908579209	0.011115651	2.47917193	1.809025913
Lars2	-1.381902691	8.022417582	0.010659213	1031.052189	189.7781247
Lhx1	-1.329399586	0.701683655	0.000126513	1.629170126	1.865557973
Lhx1os	-1.105021105	-0.093650864	0.007687635	1.204169223	1.130641196
Lhx5	-1.079821303	0.861267896	0.000186777	1.841670577	1.978622092
Lppos	-0.640686073	1.915404911	0.002803928	5.666678698	4.013776244
Lrrn4	-0.663228127	0.181797258	0.036284918	1.345836191	0.904512956
Ltbp2	-0.730504335	0.531037207	0.022816693	0.850001805	1.752493853
Mab21I1	-1.088427769	1.52475113	0.008873557	3.825008121	1.469833554

Magel2	-0.544449928	4.190142226	4.20E-06	17.14170306	22.38669567
Map3k15	-0.525457931	1.797921025	0.00665973	3.470840702	3.618051826
Map3k6	-0.592279469	0.969037419	0.010920734	1.91250406	1.809025913
Meig1	-0.718685131	0.881639444	0.001974246	2.125004512	2.60047475
Mir6236	-1.60565234	3.109078172	0.011313831	37.25841244	6.953443352
Mxd3	0.541522451	1.709036838	0.006395974	2.408338446	2.60047475
Myh2	0.748552127	0.111796155	0.019195139	0.991668772	0.282660299
Myo3b	0.654563127	1.947198763	0.030464264	2.762505865	3.222327407
Myoc	-0.560624468	4.633742219	0.001921645	36.19591018	26.45700397
Myzap	-0.6118644	0.58600323	0.01700407	1.558336642	1.469833554
Neil2	0.545197699	0.582578782	0.031089758	0.920835288	1.243705315
Neurl2	-0.551910458	1.636129641	0.0145674	3.754174637	3.957244184
Nhej1	-0.509870458	0.74452257	0.043822089	1.91250406	1.469833554
Nkx2-1	-0.53649901	1.548311462	0.006105182	2.762505865	3.109263288
Nod2	0.582757232	0.347834207	0.039667372	0.991668772	0.734916777
Npas4	0.656331832	4.280686133	0.000146658	12.89169404	16.56389351
Nppa	0.709438979	0.82606896	0.028002682	0.779168321	1.469833554
Npy2r	-0.600519259	3.74784331	0.000342937	16.57503519	15.15059202
Nr2f2	-0.982605987	5.295544397	2.29E-16	42.28758978	49.97434084
Nrtn	-0.663598452	0.382545385	0.028990401	1.91250406	1.187173255
Nupr1	-0.511514896	2.366949083	0.005275089	7.508349274	5.540141858
Olfm4	-0.966636044	0.4887757	0.000442045	2.125004512	1.526365614
Optc	-1.007264125	0.744057509	5.69E-05	1.983337544	1.695961793
Ovgp1	-0.557637272	2.419598884	0.013924717	8.57085153	6.727315113
Ovol2	0.500896073	1.544067859	0.044761248	2.125004512	2.317814451
Oxt	-1.639510519	2.125680412	0.005305517	7.862516693	10.1192387
Pappa2	0.705780221	2.525549017	0.001611913	4.17917554	3.900712125
Pdzd3	-0.568235987	0.27143488	0.042616204	1.062502256	1.469833554
Pex11g	0.95731891	0.370746507	0.001046017	1.275002707	0.678384717
Pla2g3	-0.660991552	3.833960394	$9.37 \mathrm{E}-05$	19.19587409	13.34156611
Plk5	-0.750674265	1.777138632	0.000213676	3.825008121	3.448455646
Plp2	0.502276716	0.81375429	0.043301738	1.345836191	1.469833554
Popdc3	-0.898611909	0.955414205	0.000555148	2.054171028	2.148218271
Ppp1r17	-0.886806475	0.816385772	0.00369195	1.983337544	1.922090032
Prlr	-0.754911938	2.215536284	0.000126486	4.250009023	6.670783053
Prr15	-0.635388033	0.163471275	0.035463452	1.558336642	0.904512956
Ptafr	0.716442103	0.228950685	0.032973218	0.495834386	1.017577076
Rad54l	0.547830202	0.628356178	0.043653579	0.850001805	1.130641196
Rhoh	-0.639289976	0.367541151	0.02734038	1.983337544	1.356769435
Rn45s	-1.921240752	11.52914222	0.002048231	13815.15016	2256.251038
Rt11	-0.697110488	0.628865117	0.013664534	1.487503158	2.035154152
Rxfp2	0.790696298	1.474896967	0.009960121	2.266671479	3.278859467
Samd11	-0.614468378	1.720608327	0.001040268	3.61250767	3.391923587
Serpinb1b	-0.960536454	0.653870227	0.010611567	1.275002707	1.300237375
Sim1	-1.829660546	0.075187105	3.07E-07	1.558336642	1.639429733
Slc35d3	0.653330751	2.654289655	0.012187972	3.683341153	4.126840364
Slc47a1	-0.597631308	1.456896324	0.022563926	2.266671479	2.883135049
Snord22	-0.757731199	0.18233395	0.039092995	1.700003609	1.017577076
Stpg1	-0.877421689	0.934117682	0.02234336	4.037508572	1.413301494
Susd3	-0.5364457	0.938315698	0.021091606	2.47917193	2.261282391

Tacr3	-0.687975349	2.671502996	0.00142822	5.808345665	5.766270097
Tal1	-0.610358651	2.363857239	0.002447418	6.233346567	5.483609798
Tbx15	-0.608360846	0.827812141	0.018753528	1.629170126	2.148218271
Tmem140	-0.646798546	0.765574011	0.009902117	2.195837995	2.204750331
Trhr	-0.59270469	3.017885633	0.00051864	7.295848823	9.327789863
Trim34a	-0.506103054	0.912992197	0.037050871	1.770837093	1.922090032
Ttc32	-0.649185273	1.127953054	0.002757828	2.47917193	2.770070929
Wnt9b	-0.867764859	0.921635301	0.021396757	1.700003609	1.243705315
Zan	-0.76634195	0.828515348	0.001404795	1.91250406	1.922090032
Zc2hc1c	-0.66473974	1.161650432	0.003681833	2.833339349	2.148218271
Zfp599	0.529158817	2.349606859	0.00679351	3.400007219	3.278859467
Zfp953	-0.533881312	0.818050571	0.022950094	2.125004512	1.582897674

P10VDP24_3	P10VDP24_4	P10E2DP24_1	P10E2DP24_2	P10E2DP24_3
5.9440069	7.92877395	4.514040982	5.821495552	4.349446577
1.515139014	1.965251663	1.057978355	1.133388515	1.175526102
4.312318732	4.472641715	2.891807504	3.142577245	3.35024939
0.932393239	1.287578676	0.634787013	1.287941494	1.116749797
2.680630563	2.371855455	1.340105917	1.236423834	1.763289153
0.757569507	1.016509481	0.987446465	1.906153411	1.880841763
2.97200345	1.829717065	2.609679943	0.824282556	1.234302407
33.68270577	10.84276779	23.27552381	28.74685414	40.02666377
1.165491549	1.423113273	1.97489293	1.648565112	1.939618068
9.149108661	8.403145041	7.546912267	4.997212996	6.289064645
4.953339084	5.353616599	3.667658298	2.678918307	4.349446577
6.992949295	6.776729872	3.808722079	5.769977892	4.408222882
55.71049605	53.46839869	59.52891545	31.42577245	19.51373329
1.748237324	1.219811377	1.904361039	1.390976813	2.762486339
2.97200345	5.353616599	7.970103609	9.685320033	7.758472272
26.68975647	33.27374367	56.00232094	58.73013212	47.55003082
10.19805105	10.97830239	7.758507938	5.615424913	7.582143357
2.855454295	1.897484364	1.410637807	1.339459154	0.822868271
1.923061056	1.626415169	0.846382684	0.618211917	1.234302407
2.622355986	3.523899533	1.97489293	1.751600432	1.880841763
122.2017889	87.28428075	55.64966148	65.06680426	59.30529184
2.389257676	2.507390053	1.551701588	1.648565112	1.939618068
2.272708521	2.236320858	1.410637807	1.442494473	1.234302407
10.02322732	7.454402859	7.687976048	5.357836614	6.23028834
2.214433943	1.897484364	1.340105917	0.669729577	0.881644576
5.769183168	6.912264469	5.642551228	4.12141278	2.644933729
2.447532253	1.084276779	1.410637807	0.978835535	0.764091966
5.186437394	3.659434131	2.327552381	1.442494473	1.998394373
6.701576407	3.388364936	3.314998846	2.16374171	1.645736543
1.981335633	2.168553559	0.775850794	1.597047452	1.116749797
7.167773027	1.355345974	1.057978355	1.442494473	0.705315661
35.37266852	22.83757967	12.62520837	17.25841602	11.69648471
1.048942394	1.084276779	1.410637807	1.030353195	1.704512848
1.689962746	1.287578676	0.634787013	0.875800216	0.705315661
1.165491549	1.694182468	1.410637807	0.618211917	0.705315661
6.701576407	3.049528442	2.11595671	2.627400647	3.35024939
3.263376338	1.219811377	1.763297259	1.597047452	1.351855017
1.748237324	2.033018962	2.11595671	0.875800216	0.764091966
1.923061056	2.778459247	0.916914575	1.081870855	0.999197187
11.8880138	12.13034647	8.675422513	8.603449178	8.052353797
1.864786479	2.033018962	1.269574026	1.236423834	1.116749797
1.340315281	1.558647871	0.916914575	0.618211917	0.528986746
1.515139014	1.152044078	3.667658298	2.00918873	3.996788746
1.340315281	1.423113273	0.987446465	0.721247237	0.705315661
1.282040704	1.829717065	0.846382684	1.442494473	0.470210441
2.73890514	3.591666832	1.97489293	2.266777029	1.763289153
12.12111211	7.725472054	7.405848487	5.821495552	5.289867458
43.47283478	37.33978159	27.43690535	26.27400647	21.57090397
2.214433943	1.965251663	1.199042136	1.597047452	1.528183932

2.505806831	2.507390053	4.09084964	3.966859801	3.702907221
2.73890514	2.710691949	1.904361039	1.545529793	2.115946983
0.699294929	0.609905688	1.057978355	0.927317876	1.293078712
4.545417042	5.082547404	3.667658298	3.245612564	3.11514417
4.836789929	1.219811377	1.057978355	0.618211917	0.705315661
4.079220422	5.489151196	2.04542482	3.245612564	3.761683526
8.508088309	15.51871141	4.937232324	4.842660017	4.290670272
1.515139014	0.880974883	1.833829149	1.236423834	1.704512848
6.526752675	5.421383897	5.007764215	4.12141278	3.056367865
59.84799105	90.94371488	128.2975085	135.4914451	131.8940286
1.923061056	4.20157252	3.738190188	6.542742788	4.819657017
1.223766127	1.829717065	0.916914575	1.184906174	1.175526102
1.573413591	1.490880572	0.846382684	0.669729577	0.646539356
7.517420492	7.657704755	4.796168544	4.12141278	5.113538543
1.515139014	1.558647871	0.916914575	1.287941494	0.764091966
2.505806831	2.913993845	2.11595671	1.184906174	1.822065458
13.28660366	1.423113273	0.564255123	1.081870855	1.645736543
7.867067957	12.46918296	15.30542021	29.67417202	16.75124695
1.981335633	0.745440286	0.634787013	1.133388515	0.646539356
18.06511901	13.89229624	9.028081965	6.23363683	6.935604001
1.864786479	1.152044078	0.493723232	0.618211917	0.646539356
2.156159366	2.168553559	0.916914575	0.10303532	0.058776305
2.272708521	3.794968728	3.385530737	2.781953627	1.234302407
1.631688169	2.236320858	1.481169697	0.978835535	0.705315661
1.689962746	1.694182468	0.987446465	1.184906174	1.057973492
0.757569507	1.016509481	0.916914575	1.648565112	1.998394373
2.330983098	2.64292465	1.340105917	1.184906174	1.057973492
1.107216972	0.813207585	1.481169697	0.618211917	1.822065458
2.156159366	1.694182468	1.199042136	1.390976813	1.880841763
1.048942394	1.694182468	1.622233478	2.369812349	2.292275899
18.82268852	12.33364837	7.476380377	4.688107037	7.640919662
422.9568832	369.7383818	254.4790604	242.1330008	215.2976055
58.21630288	43.77767497	30.89296797	24.831512	29.21182363
0.699294929	1.084276779	1.340105917	0.309105959	0.352657831
2.389257676	3.18506304	3.879253969	5.563907253	4.290670272
3.67129838	1.287578676	1.410637807	1.545529793	1.645736543
4.079220422	4.066037923	1.97489293	2.215259369	2.351052204
2.389257676	2.981761144	3.526594517	3.245612564	4.173117661
28.03007176	18.09386876	12.62520837	7.160954705	7.288261831
1.515139014	2.778459247	2.962339395	2.215259369	4.231893966
10.13977648	11.04606969	10.79137922	17.30993368	13.57732648
2.156159366	2.033018962	1.128510246	1.648565112	1.234302407
108.7986361	173.3487501	180.3500436	143.4766824	131.7176997
2.797179718	2.304088156	0.916914575	0.824282556	0.23510522
1.048942394	1.084276779	1.269574026	0.463658938	0.11755261
3.379925492	1.965251663	1.269574026	1.287941494	0.646539356
4.661966196	3.456132235	3.667658298	2.421330008	2.292275899
1.573413591	1.152044078	0.916914575	0.566694257	1.175526102
2.564081408	1.355345974	1.199042136	1.081870855	0.940420881
5.9440069	3.794968728	1.763297259	2.215259369	0.646539356

. 60120387	22.83757967	13.8947824	14.73405069	14.34141844
4.254044154	4.540409014	2.327552381	3.451683203	2.821262644
2.73890514	2.371855455	1.269574026	1.648565112	1.351855017
1.981335633	1.829717065	1.128510246	1.236423834	1.351855017
2.564081408	4.879245508	6.559465802	3.863824481	3.35024939
2.505806831	2.710691949	4.302445311	4.018377461	2.644933729
0.990667817	0.609905688	1.269574026	1.030353195	1.234302407
2.097884788	3.523899533	5.219359886	2.524365328	7.111932916
28.90419042	26.2259446	27.7895648	14.27039175	20.68925939
1.689962746	1.965251663	1.340105917	0.927317876	1.293078712
1.048942394	1.219811377	1.763297259	1.442494473	1.410631322
3.321650915	3.18506304	2.327552381	2.575882988	3.291473085
2.214433943	1.694182468	1.551701588	1.133388515	0.940420881
3.962671267	3.388364936	2.398084272	2.16374171	1.998394373
0.815844084	1.152044078	1.622233478	1.030353195	1.234302407
11.3635426	19.17814554	21.9354179	30.24086627	20.7480357
1.223766127	1.490880572	1.269574026	2.678918307	1.293078712
16.54998	15.9253152	13.68318673	12.415756	8.640116848
57.16736048	58.48317879	28.07169236	27.51043031	21.62968027
1.689962746	1.016509481	1.269574026	0.566694257	1.057973492
5.302986548	5.353616599	5.007764215	3.503200863	3.58535461
1.631688169	1.558647871	0.916914575	1.133388515	0.881644576
2.389257676	2.236320858	1.128510246	0.978835535	0.764091966
4.778515351	4.879245508	5.148827995	4.739624697	3.056367865
1.515139014	3.320597637	3.173935066	2.421330008	3.879236136
5.9440069	1.761949767	2.11595671	0.360623618	1.410631322
5.9440069	3.049528442	5.924678789	8.809519817	7.758472272
1.456864436	1.152044078	0.705318903	0.772764896	0.881644576
0.641020352	0.609905688	1.763297259	1.390976813	1.234302407
20.45437669	16.33191899	13.75371862	11.07629685	10.75606383
4.079220422	5.2858493	2.891807504	2.472847668	2.586157424
1.223766127	1.355345974	1.692765368	2.00918873	1.410631322
3.088552605	2.168553559	1.199042136	1.803118091	1.116749797
3.20510176	1.355345974	0.916914575	1.236423834	0.822868271
6.818125562	4.879245508	2.962339395	3.091059585	3.644130916
1.223766127	1.219811377	0.493723232	0.669729577	1.057973492
1.048942394	0.54213839	1.763297259	0.721247237	1.528183932
1.689962746	0.880974883	1.551701588	1.390976813	1.763289153
1.165491549	1.219811377	1.199042136	0.772764896	0.646539356
944.3395277	1688.761084	1313.162735	1158.529132	1302.776802
2.039610211	1.423113273	1.269574026	0.824282556	0.705315661
1.107216972	1.084276779	3.456062627	2.988024266	3.526578305
4.195769577	4.20157252	2.04542482	2.988024266	2.292275899
1.631688169	3.523899533	0.987446465	1.390976813	0.528986746
1.515139014	1.084276779	0.775850794	0.206070639	0.11755261
4.545417042	6.84449717	7.053189035	4.482036398	10.52095861
4.370593309	3.049528442	2.327552381	1.390976813	1.939618068
0.757569507	1.694182468	0.564255123	0.412141278	1.293078712
2.797179718	1.084276779	1.481169697	1.339459154	1.469407627
1.923061056	1.829717065	1.481169697	1.081870855	1.645736543

10.83907141	8.403145041	4.796168544	5.151765975	3.996788746
7.167773027	5.353616599	5.007764215	2.936506606	3.23269678
2.156159366	2.033018962	1.340105917	1.236423834	1.880841763
1.923061056	1.355345974	1.340105917	1.184906174	0.940420881
11.8880138	9.758491015	6.559465802	5.203283635	6.34784095
2.389257676	2.168553559	1.199042136	1.133388515	1.998394373
2.447532253	2.371855455	1.692765368	1.390976813	2.057170678
3.962671267	2.236320858	1.057978355	1.184906174	0.764091966
2.330983098	2.168553559	0.916914575	1.030353195	1.586960237
3.146827183	2.236320858	1.763297259	1.339459154	1.469407627
5.361261126	4.20157252	5.99521068	4.945695336	7.111932916
1.981335633	2.10078626	1.622233478	1.133388515	1.351855017

P10E2DP24_4

5.404507218
1.418683145
2.702253609
0.472894382
1.553795825
1.688908506
1.824021186
19.92912037
2.97247897
6.350295981
3.715598712
4.120936754
48.50545228
2.702253609
12.16014124
56.40954409
8.106760827
0.945788763
1.756464846
2.702253609
82.82407312
1.756464846
1.553795825
6.552965002
2.026690207
3.715598712
1.216014124
3.377817011
4.458718455
1.756464846
1.418683145
24.45539516
1.688908506
1.013345103
0.337781701
3.512929692
1.418683145
1.486239485
0.878232423
7.836535466
1.553795825
1.283570464
3.445373352
1.216014124
0.540450722
2.026690207
7.633866446
20.40201475
1.553795825
3.783155053
1.959133867
3.580486032
2.90492263
0.405338041
3.242704331
5.607176239
2.499584588
5.201838197
108.225257
3.985824073
0.540450722
0.743119742
5.742288919
0.878232423
2.432028248
0.878232423
17.15931042
0.810676083
12.7681483
1.013345103
1.824021186
1.959133867
1.688908506
0.810676083
1.418683145
1.756464846
5.94495794
1.553795825
1.891577526
9.660556652
331.0936235
30.46790944
0.405338041
3.10759165
1.688908506
3.175147991
3.580486032
21.14513449
2.634697269
14.38950047
1.553795825
121.128518
1.486239485
0.270225361
1.148457784
3.10759165
0.472894382
0.743119742
2.432028248
16.07840897
2.296915568
1.553795825
1.486239485
3.175147991
3.985824073
1.283570464
3.445373352
17.22686676
0.810676083
1.959133867
1.418683145
1.553795825
2.634697269
1.688908506
21.48291619
2.90492263
7.566310105
28.10343753
0.810676083
4.593831135
0.472894382
1.283570464
3.985824073
3.648042372
4.391162115
5.336950878
1.148457784
1.824021186
8.241873508
1.891577526
2.567140929
0.878232423
1.621352165
3.783155053
0.878232423
1.283570464
2.094246547
1.080901444
1163.995742
1.621352165
3.512929692
2.634697269
1.013345103
0.608007062
8.174317167
2.769809949
0.743119742
0.743119742
1.688908506
5.201838197
4.864056496
0.743119742
1.486239485
7.431197425
1.486239485
1.283570464
2.026690207
1.351126805
2.026690207
5.472063558
1.283570464

GenelD	logFC	IogCPM	LR	PValue	FDR
2210408F21Rik	-0.759162358	1.251211064	6.493864233	0.010824743	0.999653626
A230057D06Rik	0.555101373	3.91578165	3.842465461	0.049969992	0.999653626
A830009L08Rik	-0.731944179	3.081118602	6.612625905	0.010125824	0.999653626
Acr	1.037587941	1.622797584	6.013162452	0.014199557	0.999653626
Adam33	0.836408024	1.137070443	4.324690243	0.03756325	0.999653626
Adamtsl4	0.76962167	0.586742654	4.053797317	0.044072102	0.999653626
Amy1	0.553694355	4.556351508	4.707940521	0.030023599	0.999653626
Ap1g2	0.856297264	3.778797342	6.993636794	0.008179998	0.999653626
Arc	-0.774576505	5.539478364	5.006457181	0.025252936	0.999653626
Arhgap28	0.609261921	1.800554488	3.913556359	0.047898137	0.999653626
Bdnf	-0.899492726	4.599640648	4.517356392	0.033552638	0.999653626
C5ar1	-0.62675033	0.178717324	3.902033536	0.048227699	0.999653626
C920006011Rik	0.559633876	2.11059746	3.877875189	0.048926441	0.999653626
Cacna1h	0.501852579	6.939577112	6.84962669	0.00886598	0.999653626
Cckbr	-0.510537023	4.97296319	5.30456556	0.021269603	0.999653626
Cdk3-ps	0.810724991	0.794706566	6.918613864	0.008530307	0.999653626
Col16a1	0.661219232	4.804803438	5.970745655	0.014545129	0.999653626
Col1a1	1.540626123	5.699305577	6.354883146	0.011705865	0.999653626
Col1a2	1.000509612	6.425939194	4.337970749	0.03727132	0.999653626
Col6a5	0.77958306	2.269000509	9.64110415	0.001902708	0.999653626
Colq	-0.679869376	1.162029433	5.82025	0.015842693	0.999653626
Cox6a2	-0.587363472	2.931830524	4.991069653	0.025478455	0.999653626
Cpz	1.15484745	0.457326883	6.935147745	0.008451808	0.999653626
Dbh	-0.778118363	0.638984858	6.476673381	0.010929936	0.999653626
Dcdc2b	0.81347127	1.341862146	5.925346689	0.014924602	0.999653626
Dnah9	0.542181405	3.279520589	5.259981308	0.021821253	0.999653626
Dusp5	-0.949066417	1.65754125	8.061700668	0.004521073	0.999653626
Efna1	0.597445364	1.992440197	5.454365749	0.019519489	0.999653626
Egr2	-0.95577968	2.323781921	5.287099968	0.021483968	0.999653626
Egr3	-0.503452287	6.333761214	3.898890784	0.048317999	0.999653626
Egr4	-0.676765863	4.586887556	4.003619295	0.04540267	0.999653626
Eln	0.524253847	6.171277639	7.510992652	0.006132357	0.999653626
Eps811	1.049504998	2.687805992	8.249603999	0.004076089	0.999653626
Epx	0.746256739	0.769960717	4.089327171	0.043154818	0.999653626
Exoc31	0.521242146	1.54861144	3.926232598	0.047538329	0.999653626
Fam129c	0.793130797	1.264273805	5.573239117	0.018236994	0.999653626
Fanca	0.560715757	1.655094244	4.168924445	0.041171928	0.999653626
Fat2	-2.163391836	1.557570217	5.617399892	0.017783012	0.999653626
Fbln5	0.652932515	3.497344082	4.115064045	0.042502916	0.999653626
Fhod1	0.515588942	2.631281248	4.085847844	0.043243751	0.999653626
Flna	0.602402583	8.347645551	4.346756473	0.037079501	0.999653626
Fos	-1.966085887	4.741566263	8.355720634	0.00384475	0.999653626
Fosb	-2.649958106	3.313165948	9.443622029	0.002118846	0.999653626
Foxl2os	0.948509972	0.487133768	7.69960929	0.005523278	0.999653626
Ggnbp1	0.599276992	1.841457763	4.245364643	0.039357617	0.999653626
Gipr	0.66580427	2.420428231	5.077996891	0.024231349	0.999653626
Gm11549	-0.673495311	3.954163291	4.939141981	0.026255067	0.999653626
Gm14420	0.519165745	2.743985417	6.925118505	0.008499336	0.999653626
Gm15446	0.555511497	1.95039307	5.007950056	0.025231167	0.999653626

Gm20219	0.671093929	0.871451874	4.026478044	0.044791356	0.999653626
Gm2115	0.532924828	2.299878677	4.808938961	0.028312473	0.999653626
Gm38413	0.697335382	1.797752118	5.425296758	0.019847062	0.999653626
Gpr139	0.957985069	0.3871237	3.97380912	0.04621312	0.999653626
Gpr3	-0.767662745	2.365167089	4.828426394	0.02799417	0.999653626
Gsap	0.542411201	3.299187408	5.942721621	0.014778181	0.999653626
H19	0.845585875	3.602456815	4.854353987	0.027576439	0.999653626
H2-M5	0.714857007	1.280508136	3.963448521	0.046498353	0.999653626
Hcrt	2.470962514	0.561586301	58.03014508	2.58E-14	$3.69 \mathrm{E}-10$
Hspa1b	0.785413988	0.37512913	4.702300451	0.030122273	0.999653626
Ifit3b	0.827880798	0.115659743	4.071432763	0.043614266	0.999653626
ll18bp	0.653485735	2.84729028	3.929749473	0.047439011	0.999653626
Inhba	-0.896404249	1.75697806	5.647548431	0.017479793	0.999653626
\|tgbl1	0.819722011	1.900606517	7.010329459	0.008104077	0.999653626
lyd	0.68856293	0.922230463	5.262586751	0.021788611	0.999653626
Kif20b	0.640476073	1.719353099	4.117577286	0.042439814	0.999653626
Leng8	0.563860987	8.097117936	5.352405015	0.020693708	0.999653626
Mab2111	-1.023393437	1.737385452	7.5867821	0.005879781	0.999653626
Mbd6	0.521607723	5.706722635	3.865887281	0.049277132	0.999653626
Med12	0.52390389	5.844013941	4.8154693	0.02820539	0.999653626
Mfsd2b	0.85121248	0.91014852	5.227493118	0.022232554	0.999653626
Mvp	0.522835214	2.539313509	4.506756244	0.033761209	0.999653626
Myh11	0.673175889	1.953005733	6.948980188	0.008386703	0.999653626
Neat1	0.536084871	4.25445683	5.39809624	0.020158729	0.999653626
Nirp3	0.98343933	0.837486468	5.965131063	0.014591516	0.999653626
Nox4	0.742560764	0.41876705	4.456600876	0.034766615	0.999653626
Npas4	-1.051955805	4.90900969	4.039438556	0.044448607	0.999653626
Npy2r	0.542532447	3.723825768	8.470099753	0.003610316	0.999653626
Nr3c2	0.541137389	4.725291674	6.872081397	0.008755262	0.999653626
Nt5e	0.513565843	2.999846341	4.608934891	0.031805782	0.999653626
Ovgp1	0.772626957	2.841867095	6.348235648	0.01174981	0.999653626
P3h3	0.530616649	5.088759879	5.487155296	0.019156688	0.999653626
Pabpc4l	0.776582445	0.245345344	4.581809457	0.032313076	0.999653626
Parp3	0.595308254	1.991607527	4.577579375	0.032392944	0.999653626
Pdgfrl	0.587796562	1.500301881	4.736739688	0.029524974	0.999653626
Pisd-ps1	0.798962305	7.991185456	9.586162483	0.001960493	0.999653626
Pisd-ps2	0.649741903	4.818221331	6.819578951	0.009016382	0.999653626
Plekha4	0.749728474	1.142912177	3.865573888	0.049286336	0.999653626
Plscr4	0.654969842	1.906280726	7.177871393	0.007380822	0.999653626
Pmch	1.664355273	2.763694178	11.1894817	0.000822623	0.999653626
Procr	1.044416091	0.524335015	10.69958633	0.001071595	0.999653626
Prox1	0.611709851	4.033802576	4.948154692	0.026118532	0.999653626
Psd4	0.519554307	1.441286582	4.32281241	0.037604722	0.999653626
Ptch2	0.660880189	1.319549442	4.475791601	0.034378274	0.999653626
Ptgs2	-1.820204728	2.148191997	5.669289227	0.01726445	0.999653626
Rad9b	0.507601256	1.962003239	5.352047474	0.020697951	0.999653626
Rbp4	-0.514938228	2.613112251	4.376571767	0.036436212	0.999653626
Reck	0.534352597	3.752343588	4.748285941	0.029327493	0.999653626
S100a4	0.556240528	2.4510559	4.5516354	0.03288732	0.999653626
Scarf2	0.630198689	2.909973262	5.988962517	0.014395667	9996

Serpinb1a	0.902416035	0.765036277	4.941658283	0.026216873	0.999653626
Sgk2	-0.975747782	0.231753845	5.032175326	0.024880629	0.999653626
Siglec1	1.186676245	0.33010555	9.806439362	0.001739019	0.999653626
Slc17a8	-0.791277768	3.530067994	7.951773928	0.004804027	0.999653626
SIc2a9	0.549806852	1.340202041	4.716502883	0.029874441	0.999653626
SIc9a2	0.769307499	2.584793202	7.782463303	0.005275581	0.999653626
Sowahb	-0.896552949	1.904390482	7.287037527	0.006945391	0.999653626
Spaca6	0.577753548	3.343848033	5.444553328	0.019629434	0.999653626
Spp1	1.326876452	3.176984413	5.930533097	0.014880739	0.999653626
Ssc5d	0.685446162	1.969938591	4.327324511	0.037505154	0.999653626
Styk1	0.663099102	1.512869545	4.981755762	0.025615973	0.999653626
Susd5	-0.562771788	3.521261858	6.212056426	0.012688315	0.999653626
Sypl2	-0.629678258	1.952012576	5.495142851	0.01906937	0.999653626
Tbxa2r	0.501138824	1.280391664	4.20210566	0.040373818	0.999653626
Tcap	-0.733411791	1.125609971	5.957080005	0.014658298	0.999653626
Thbs3	0.658815486	4.664721446	5.877942365	0.015331729	0.999653626
Thbs4	-0.688177908	2.226860505	6.022715353	0.014122901	0.999653626
Tmc4	0.693735655	2.348737178	4.244527921	0.039377016	0.999653626
Tnxb	0.758237408	1.787081262	4.388582302	0.036180386	0.999653626
Traip	0.519505122	4.240608831	7.940969838	0.004832793	0.999653626
Trim68	0.532847689	2.702668612	5.70880699	0.016880007	0.999653626
Tspan18	0.519315543	4.086700933	4.210003456	0.040186255	0.999653626
Unc13d	0.705475979	0.016883508	4.003185479	0.045414356	0.999653626
Wnt10a	-0.867485153	0.435822321	5.586126361	0.018103288	0.999653626
Wnt10b	0.939770383	0.369623528	4.151538942	0.041596702	0.999653626
Zan	0.591957772	1.026495554	4.044898217	0.04430505	0.999653626
Zfp456	0.787272514	0.344390315	5.312419882	0.021173926	0.999653626
Zfp69	0.842840359	0.955455495	4.004963673	0.045366475	0.999653626
Zkscan2	0.555746738	4.657923513	5.070458717	0.024336943	0.999653626

P10VGCG_1	P10VGCG_2	P10VGCG_3	P10VGCG_4	P10E2GCG_1	P10E2GCG_2
2.345823628	2.424230407	3.528213934	3.045333253	1.337990494	1.491964563
17.13754484	8.427086652	10.87865963	12.11051131	20.00295789	14.74749588
7.884573862	16.0460965	7.526856393	10.12750361	6.355454847	4.361127185
2.997441303	1.500714061	1.528892705	1.770542589	5.084363878	2.754396117
2.085176558	1.269834975	1.822910533	0.779038739	4.013971482	1.664114321
1.694205954	0.577197716	0.823249918	0.99150385	2.073885266	1.549347816
27.23761879	13.56414632	19.22876594	15.8640616	35.45674809	23.46975025
13.29300056	7.388130763	8.467713442	9.631751685	25.15422129	11.13235097
32.18991312	104.4727866	63.97827934	33.35702238	33.78425998	37.29911408
3.32325014	1.731593148	1.764106967	3.895193696	5.017464353	4.303743933
16.68141247	72.3228738	18.58192672	17.8470693	16.39038355	16.92805947
1.238073582	1.154395432	1.293678443	1.203968961	0.869693821	0.975515291
4.105191349	2.943708351	3.410606803	3.116154957	4.883665304	4.074210923
114.4892254	76.82501598	98.5547759	116.2184156	169.9247928	118.6111828
26.65116289	53.04447009	37.63428197	29.60347209	23.14723555	21.97778568
1.824529489	0.865796574	0.940857049	1.062325554	2.475282414	1.951030583
34.34025145	13.39098701	19.6403909	18.90939485	44.4212844	25.47816408
40.59578112	5.137059671	31.22469332	29.24936357	60.61096938	1.83239103
86.20901834	16.91189308	69.79983233	56.09078923	99.54649276	70.92570001
4.235514884	2.943708351	2.587356885	4.107658807	6.221655798	5.853091748
1.824529489	2.424230407	3.175392541	2.97451155	1.471789544	1.205048301
7.363279722	13.56414632	8.585320573	6.444775025	5.418861501	6.541690778
1.368397116	0.34631863	0.823249918	0.566573629	3.010478612	1.319814806
1.824529489	2.308790864	1.646499836	1.416434071	0.869693821	0.975515291
2.345823628	1.038955889	1.528892705	2.124651107	4.348469106	1.89364733
10.42588279	4.963900357	6.350785082	9.560929982	11.77431635	10.09945243
2.020014791	6.291455103	3.763428197	3.824371993	2.341483365	2.12318034
3.518735442	2.53966995	3.175392541	3.045333253	5.218162927	4.188977428
2.671632466	13.10238815	5.115910205	4.745054139	2.876679562	2.983929127
52.6507081	150.5331643	78.5615636	95.96340834	59.54057699	69.89280147
11.92460344	52.17867352	26.8144259	26.62896054	15.05239306	18.24787427
72.00375303	40.2306808	68.44735032	55.38257219	100.8175837	69.26158569
6.581338513	1.44299429	3.528213934	4.95751925	10.36942633	9.009170632
1.759367721	0.981236117	0.940857049	1.062325554	2.140784791	1.836264078
3.06260307	2.308790864	1.646499836	2.195472811	4.080871007	2.869162622
2.801956	1.038955889	1.234874877	1.628899182	3.010478612	2.926545874
2.671632466	2.135631549	1.764106967	3.257798364	3.612574334	3.213462136
1.954853024	0.230879086	0.999660615	15.72241819	1.271090969	1.032898544
10.62136809	3.751785153	12.58396303	7.790387393	18.39736929	10.44375194
6.711662047	3.001428123	5.762749426	4.532589028	8.563139162	6.082624758
345.3573675	171.7740402	194.9926234	322.4512163	481.8103769	297.8764634
9.252970978	126.0022614	19.6403909	14.30598412	12.04191445	11.53403374
1.694205954	56.44993661	5.409928033	3.682728586	2.609081464	2.926545874
1.172911814	0.634917487	0.646839221	1.062325554	1.940086216	1.262431554
3.58389721	1.847032691	2.704964016	2.903689846	5.351961977	2.926545874
4.887132559	3.347746752	2.352142623	5.665736285	7.225148668	5.049726214
11.72911814	22.62615046	19.40517664	21.8130847	9.232134409	7.804122331
6.38585321	4.271263098	5.939160123	5.028340953	7.626545817	7.05814005
3.06260307	2.308790864	3.763428197	2.97451155	5.218162927	3.672528156

1.498720651	0.981236117	1.646499836	1.133147257	2.675980988	1.319814806
4.170353117	4.675301499	3.351803238	3.470263475	5.619560075	4.418510438
2.736794233	2.885988579	2.469749754	2.124651107	5.619560075	3.385611894
0.325808837	0.577197716	1.352482008	0.920682146	0.735894772	2.869162622
4.235514884	11.89027295	4.704285246	4.390945621	3.344976235	4.016827671
10.36072102	5.425658529	7.762070655	8.14449591	13.71440256	10.90281796
15.37817712	2.943708351	7.468052827	8.640247835	19.60156074	17.32974224
2.801956	1.385274518	0.999660615	1.841364293	2.876679562	2.467479855
0.52129414	0.34631863	0.411624959	0.354108518	2.542181939	2.065797088
1.107750047	1.09667566	0.705642787	0.495751925	1.471789544	1.377198058
0.781941209	0.34631863	1.117267746	0.495751925	1.070392395	0.803365534
8.014897397	3.98266424	4.527874549	5.524092878	11.84121587	6.59907403
2.476147163	6.580053961	2.822571147	5.028340953	1.806287167	3.156078884
2.997441303	2.481950178	1.411285574	3.611906882	5.820258649	3.442995146
1.107750047	1.731593148	0.823249918	1.770542589	1.940086216	2.12318034
3.32325014	1.154395432	2.293339057	3.186976661	4.616067205	4.24636068
277.393644	148.5129723	215.9854963	241.7144743	425.3471781	238.7717134
6.841985582	2.077911777	2.881374713	5.524092878	1.873186692	2.008413835
55.0616935	26.72425425	42.04454938	47.37971969	78.74074058	46.36566797
60.53528196	27.30145196	45.86678115	54.46189004	77.46964961	57.32586918
1.824529489	0.808076802	0.999660615	1.416434071	3.211177186	1.549347816
5.669073768	3.463186295	4.821892377	4.745054139	7.091349619	4.877576457
3.453573675	2.135631549	3.410606803	2.549581328	4.749866254	3.270845389
21.11241265	11.54395432	14.70089139	14.58927094	27.8971018	15.95254418
1.629044186	0.692637259	1.176071311	0.99150385	1.538689068	1.262431554
0.716779442	0.865796574	1.176071311	0.849860443	2.006985741	1.549347816
19.67885377	106.6084181	19.22876594	15.72241819	21.74234553	19.9119886
11.66395637	8.138487794	11.99592738	10.83572065	14.11579971	12.73908204
17.46335368	16.73873376	22.05133709	29.60347209	25.02042224	29.4376085
5.603912001	4.386702641	8.056088483	7.9320308	8.763837737	10.78805146
8.471029769	4.098103783	3.822231762	4.461767325	10.36942633	6.312157768
35.70864856	19.97104097	25.16792606	30.17004572	51.31193545	30.35574054
0.716779442	0.461758173	0.646839221	1.345612368	1.739387642	1.434581311
3.714220745	2.251071092	3.410606803	2.903689846	3.612574334	3.328228641
2.606470698	1.789312919	1.470089139	2.832868143	3.278076711	3.270845389
205.2595675	128.7150906	196.0510876	212.6067541	415.9143451	221.3845879
25.217604	15.00714061	23.28621197	24.00855751	41.94600199	23.87143301
2.997441303	0.750357031	1.293678443	1.203968961	2.943579087	2.524863107
3.518735442	2.943708351	2.646160451	2.124651107	5.619560075	4.361127185
4.105191349	4.617581727	3.410606803	0.566573629	7.492746767	8.72225437
0.977426512	0.519477944	0.764446352	1.203968961	2.207684315	1.836264078
13.8142947	6.291455103	12.2899452	19.12185996	17.92907262	21.28918665
2.345823628	1.673873376	2.116928361	2.407937921	3.41187576	2.811779369
2.606470698	1.212115203	1.58769627	1.9830077	3.344976235	2.524863107
1.303235349	20.83683754	1.881714098	2.549581328	1.940086216	0.975515291
3.909706047	3.059147894	3.05778541	2.407937921	4.415368631	4.820193205
5.929720838	10.27411934	6.056767254	5.878201396	4.749866254	4.074210923
13.29300056	7.388130763	11.58430242	11.40229427	18.1297712	12.39478253
5.538750233	4.271263098	3.05778541	4.461767325	5.820258649	4.303743933
5.669073768	3.98266424	7.409249262	6.16148821	11.17222063	8.607487865

1.629044186	0.519477944	1.05846418	1.203968961	2.341483365	2.983929127
1.238073582	0.692637259	2.410946188	1.203968961	0.602095722	0.573832524
0.781941209	0.404038401	1.05846418	0.495751925	1.873186692	1.090281796
8.666515071	22.62615046	11.64310598	14.94337945	8.696938212	8.894404128
1.954853024	2.077911777	2.116928361	1.628899182	3.144277661	2.295330097
6.060044373	3.059147894	3.704624631	4.603410732	8.630038687	6.36954102
2.345823628	7.041812134	3.822231762	5.594914582	2.542181939	2.12318034
9.904588653	6.17601556	7.232838565	8.92353465	14.38339781	8.148421846
9.513618048	2.020192006	4.939499508	3.9660154	9.031435835	8.205805098
4.626485489	1.44299429	3.116588975	2.478759625	5.485761026	3.557761651
2.541308931	2.597389721	1.528892705	1.770542589	3.679473859	3.844677913
11.07750047	13.56414632	12.23114164	17.35131737	9.365933459	6.943373545
3.58389721	6.349174875	3.351803238	4.886697546	2.943579087	2.467479855
2.150338326	1.731593148	2.234535492	1.487255775	2.341483365	2.58224636
2.280661861	2.53966995	3.292999672	2.124651107	1.404890019	1.090281796
25.93438345	15.98837673	15.75935557	20.67993744	40.94250912	21.05965364
6.12520614	3.232307209	6.938820737	6.232309914	2.809780038	3.557761651
5.538750233	2.712829265	2.822571147	4.178480511	8.696938212	3.615144903
3.32325014	1.44299429	1.940517664	3.257798364	3.813272908	2.869162622
16.48592717	15.98837673	13.87764147	15.36830967	26.89360893	17.38712549
6.516176745	3.809504925	4.586678115	6.019844803	8.228641539	6.254774515
19.74401554	8.253927337	14.11285574	13.38530197	19.53466121	20.94488714
0.977426512	0.634917487	0.705642787	0.354108518	1.204191445	1.262431554
1.889691256	1.327554747	2.234535492	0.849860443	0.735894772	1.262431554
1.238073582	0.230879086	0.823249918	0.920682146	1.13729192	0.918132039
1.824529489	1.558433833	1.234874877	1.487255775	3.278076711	1.606731068
0.977426512	0.519477944	0.823249918	1.062325554	1.204191445	2.008413835
1.368397116	0.750357031	1.764106967	1.345612368	3.077378136	1.032898544
23.00210391	12.35203112	24.16826545	21.8839064	32.64696806	23.35498374

P10E2GCG_3	P10E2GCG_4
2.57252079	1.23411323
10.87474697	25.77118804
8.302226185	6.025376358
1.637058684	6.606135525
1.520125921	3.557149898
2.338655263	0.943733646
18.65077572	33.90181638
9.822352106	24.17410033
42.68045855	23.01258199
3.157184605	3.774934586
19.11850678	14.80935876
0.643130197	0.653354063
3.391050132	7.767653859
108.1043395	178.4382541
33.15043836	24.90004929
1.637058684	2.177846876
29.46705632	37.0959918
27.36226658	179.2367979
59.46031007	228.3109475
4.326512237	7.40467938
1.870924211	1.960062189
7.308297698	4.646073336
1.169327632	1.451897918
0.876995724	1.524492814
2.923319079	3.194175419
12.33640651	11.25220886
2.163256119	1.597087709
3.157184605	6.097971254
4.092646711	3.266770315
64.66381803	72.37711119
20.28783441	19.96359637
77.00022454	92.48589735
8.243759803	6.460945733
0.993928487	3.048985627
2.747919934	3.557149898
2.046323355	3.629744794
2.806386316	4.863858024
0.584663816	1.306708126
12.6872048	13.13967615
6.782100263	7.186894692
242.4600844	548.5996282
13.38880138	6.315755942
3.33258375	1.814872397
1.286260395	2.323036668
3.33258375	5.154237608
5.203507961	8.27581813
19.9955025	10.30847522
8.945356382	7.332084484
3.624915658	5.372022295

1.578592303	2.903795835
7.77602875	4.863858024
2.397121645	5.299427399
1.403193158	1.161518334
4.326512237	3.121580523
9.120755527	12.4137272
11.7517427	13.13967615
1.929390592	4.283098857
2.338655263	2.250441772
2.163256119	0.871138751
1.929390592	1.088923438
4.677310527	11.61518334
2.747919934	1.306708126
3.741848421	5.517212087
2.689453553	1.960062189
3.449516513	3.121580523
229.5390141	412.5567933
1.929390592	2.686011148
40.28333691	80.43514464
51.68428132	84.06488943
1.403193158	2.976390731
5.963570921	9.001767089
5.086575198	5.372022295
19.17697316	26.86011148
2.2217225	3.920124378
0.760062961	1.814872397
17.24758257	18.87467293
17.18911618	18.07612907
39.46480757	30.85283075
7.132898553	10.38107011
7.01596579	11.97815782
30.4609848	48.27560576
1.227794013	0.943733646
6.314369211	5.299427399
2.630987171	3.847529482
212.2329651	442.6110802
24.67281303	46.89630274
1.987856974	3.048985627
3.507982895	4.283098857
17.65684724	6.533540629
1.578592303	1.451897918
22.56802329	16.76942095
3.624915658	2.323036668
1.987856974	3.847529482
2.923319079	1.669682605
.917247566	4.573478441
1.51787717	21.27030449

0.935462105	1.960062189
1.169327632	0.435569375
2.163256119	1.161518334
9.646952961	6.17056615
2.455588026	3.629744794
5.145041579	9.582526256
3.098718224	2.323036668
9.880818487	15.75309241
5.145041579	28.96536346
4.151113092	5.589806983
1.987856974	3.920124378
12.62873842	7.695058963
2.747919934	3.629744794
2.981785461	2.903795835
2.338655263	1.306708126
20.11243526	41.66947024
4.560377763	2.976390731
4.618844145	7.767653859
3.215650987	6.969110005
17.77378	26.56973189
7.132898553	8.63879261
14.38272987	24.6822646
1.11086125	0.798543855
0.643130197	0.798543855
2.689453553	1.379303022
2.046323355	2.323036668
1.052394868	1.524492814
1.578592303	3.774934586
22.56802329	41.16130596

Appendix 9

A

Gene	RNAseq			qPCR			Validated?		
	PA1	PA2	PA ${ }^{\text {Pool }}$	PA1	PA2	PA ${ }^{\text {POOL }}$	PA1	PA2	PA ${ }^{\text {Pool }}$
Egr1	ns	\uparrow	ns	ns			\checkmark	x	\checkmark
Nkx2-1	ns	\downarrow	ns	ns			\checkmark	x	\checkmark
Inhba	\downarrow	\uparrow	ns	ns	\uparrow	ns	x	\checkmark	\checkmark
Lhx1	ns	\downarrow	\downarrow	ns			\checkmark	x	x
Ncald	ns			ns	\uparrow	\uparrow	\checkmark	x	x
Spp1	\uparrow	ns	\uparrow	ns			x	\checkmark	x
Npy2r	\uparrow	\downarrow	ns	ns	\uparrow	ns	x	x	\checkmark
Fos	\downarrow	\uparrow	ns	\uparrow	ns	\uparrow	x	x	x
Nt5e	\uparrow	ns	ns	ns	\uparrow	\uparrow	x	x	x

Npyzr

Spp1

Whtioa

Figure 2: Biological validation of genes deregulated by estradiol in PA mutant mice by quantitative PCR (qPCR) analysis. Samples tested were pooled RNA samples prepared from the cortex of vehicle and estradiol treated mice at postnatal day 10 across each genotype. WT pooled samples contained RNA from $n=6$ cortex samples for each treatment group. PA1 and PA2 pooled samples contained RNA from $n=4$ cortex samples for each treatment group. Expression values were normalised to the reference gene, B-Actin. (A) Summary table shows results of these genes in RNAseq and qPCR data, with final column showing whether the qPCR results agreed with the RNAseq data. Grayscale colours in significance tables represent significance of result (lightest grey $\mathrm{p}<0.05$, medium grey $\mathrm{p}<0.005$ and darkest grey $\mathrm{p}<0.0001$). (B) Individual graphs of relative quantity for each genes for WT (vehicle = light grey; estradiol $=$ dark grey $),$ PA1 (vehicle $=$ light orange $;$ estradiol $=$ dark orange $)$, and PA2 $($ vehicle $=$ light blue; estradiol $=$ dark blue). Significance indicated by $* \mathrm{p}<0.05,{ }^{* *} \mathrm{p}<0.005$ and ${ }^{* * *} \mathrm{p}<0.0001$, one-tailed t-test of vehicle treated WT, PA1 and PA2 mice compared to estradiol treated WT, PA1 and PA2.

Appendix 10

Final
Cluster ID

			Nt5e, Cntnap5b, Thsd7a, Snca, f19	Pvalb	Cpne5

f41	L5b	Tph2	Qrfpr, Samd3, Stac, Ddit4I, 2310042E22Rik, Kcns3, Mc4r, Coro6, Sema3c, Kctd8, Crym, Fam84b, Ptgfr, Depdc7	Anxa1, Man1a, Pvalb
f42	L5b	Cdh13	Qrfpr, Col6a1, Syt17, 2310042E22Rik, Crym, Man1a, Fam84b, Ctxn3	4921511H03Rik, Igfbp2
f43	Astro	Aqp4	F3, Rorb, Acsbg1, Slc39a12, Ntsr2, Plcd4, Gja1, Gjb6, Cbs, Chrdl1, Prodh, Mlc1, AcsI6, Slc4a4, Gabrg1, Cxcl14, Slco1c1, Vcam1, Ednrb, Scrg1, Bcan	Gfap
f44	OPC	Pdgfra	Cspg4, Pcdh15, Gria3, Cacng4, E130309F12Rik, Vcan, Ednrb, Scrg1, Bcan, Gpr17	F3, 1110015O18Rik
f45	Oligo	9630013A20Rik	Brca1, Rnf122, Mbp, Zcchc12, Enpp6, Kif19a, Enpp6, Dct, Tmeff2, Gpr17, 1700040N02Rik, 1810041L15Rik, St18, Vcan, Bcan, 9530059O14Rik, Cldn11, 1700047M11Rik	
f46	Oligo	Opalin	Mbp, Mog, Aspa, Mobp, Gpr37, Ppp1r14a, Gjb1, Tmeff2, St18, Cldn11, 1700047M11Rik, Kctd13, Cntn2, Eml1, A530088E08Rik	
f47	Micro	Ctss	Cx3cr1, C1qb, Cd53, Csf1r, Itgam, Abi3, C1qa, Aif1, Trem2, P2ry13, Tmem119, C1qc, Cd14, Fcgr3, Gpr34, Inpp5d, Nckap1I, Mpeg1, Siglech, Susd3, Hk2, Ly86, Sparc, Fli1	1700110IO1Rik, 1810011H11Rik
f48	Endo	Xdh	Tbc1d4, Al467606, Exosc7, Eltd1, Fas, Hmgcs2, Nostrin, Paqr5, Slc16a4, Id1, Ptprb, Cd93, Sparc, Fli1, Ly6a, Ly6c1, Ly6c2, Flt1, Pglyrp1, SIco1a4, Ifitm3, Abcb1a, Ahnak	Edn3, Tgfbr3
f49	SMC	Myl9	Bgn, Nupr1, Casq2, Mylk, Gprc5c, Slc38a11, Slc6a20a, Pcolce, Vtn, Cnn2, Nid1, Gpr30, Higd1b, Ifitm1, P2ry14, Serping1, Sparc, Fli1, Cald1, Abcb1a, Flt1, Ly6a, Ly6c1, Ly6c2, Pglyrp1, Slco1a4, Ahnak	Plac9, 0610007N19Rik, Ace2, Vtn, Edn3, Sncg

[^0]: * indicates significant enrichment of genes

[^1]: * indicates significant enrichment of genes containing estrogen response elements (ERE)

[^2]: * Correspondence should be addressed to Associate Professor Cheryl Shoubridge, Robinson Research Institute, Adelaide Medical School, Faculty of Health Sciences, Adelaide Health and Medical Sciences Building, University of Adelaide, Adelaide, South Australia, Australia. Postal Address: Level 8, Adelaide Health and Medical Sciences Building, University of Adelaide, Adelaide, 5005, Australia.

 Phone: Intl 61-8-8313-2355

 E-mail: cheryl.shoubridge@adelaide.edu.au

[^3]: ${ }^{1}$ Intellectual Disability Research, Adelaide Medical School, The University of Adelaide, Adelaide, Australia ${ }^{2}$ Department of Paediatrics, Robinson Research Institute, University of Adelaide, Adelaide, Australia ${ }^{3}$ Department of Child Neurology, Turku University Hospital, Turku, Finland ${ }^{4}$ Joint Authority for Päijät-Häme Social and Health Care, Lahti, Finland ${ }^{5}$ PEDEGO, Oulu University Hospital, Oulu, Finland ${ }^{6}$ Department of Medical Genetics, University of Helsinki, Helsinki, Finland ${ }^{7}$ South Australian Health and Medical Research Institute, Adelaide, Australia

 Correspondence: Cheryl.shoubridge@adelaide.edu.au

[^4]: founders, $\mathrm{n}=6$ Iqsec2 KO hemizygous males (KO), $\mathrm{n}=6$ Iqsec2 KO heterozygous females [HET]) normalised to wild types, which were pooled and averaged dependent on sex ($n=4$ female wild type, $n=5$ male wild type). (C) TaqMan gene expression assay probes spanning (i) exon 3-4 boundary, (ii) exon 11-12 boundary, and (iii) exon $13-14$ boundary with gapdh used as a housekeeper. (D) Western blot analysis of Iqsec2 and Iqsec3 expression in three founder males and subsequent progeny from founder A. Blots were imported into Image Studio (Li-Cor Biosciences) and band intensities normalised to their respective beta-actin (Actb) loading control. Wild types were pooled and averaged dependent on sex ($n=2$ female wild type, $n=2$ male wild type). White spaces indicate a cropped image. \# indicates significant difference between HET and founder, $P<0.0001$ one-way ANOVA, Tukey's HSD, ${ }^{\wedge}$ indicates significant difference between HET and KO, $P<0.0001$; one-way ANOVA, Tukey's HSD.

