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Abstract

Background: Adolescents born extremely preterm (EP; ,28 weeks’ gestation) and/or extremely low birthweight (ELBW;
,1000 g) experience high rates of visual impairments, however the potential neural correlates of visual impairments in EP/
ELBW adolescents require further investigation. This study aimed to: 1) compare optic radiation and primary visual cortical
structure between EP/ELBW adolescents and normal birthweight controls; 2) investigate associations between perinatal
factors and optic radiation and primary visual cortical structure in EP/ELBW adolescents; 3) investigate associations between
optic radiation and primary visual cortical structure in EP/ELBW adolescents and the odds of impaired vision.

Methods: 196 EP/ELBW adolescents and 143 controls underwent magnetic resonance imaging at a mean age of 18 years.
Optic radiations were delineated using constrained spherical deconvolution based probabilistic tractography. Primary visual
cortices were segmented using FreeSurfer software. Diffusion tensor variables and tract volume of the optic radiations, as
well as volume, surface area and thickness of the primary visual cortices, were estimated.

Results: Axial, radial and mean diffusivities within the optic radiations, and primary visual cortical thickness, were higher in
the EP/ELBW adolescents than controls. Within EP/ELBW adolescents, postnatal corticosteroid exposure was associated with
altered optic radiation diffusion values and lower tract volume, while decreasing gestational age at birth was associated
with increased primary visual cortical volume, area and thickness. Furthermore, decreasing optic radiation fractional
anisotropy and tract volume, and increasing optic radiation diffusivity in EP/ELBW adolescents were associated with
increased odds of impaired vision, whereas primary visual cortical measures were not associated with the odds of impaired
vision.

Conclusions: Optic radiation and primary visual cortical structure are altered in EP/ELBW adolescents compared with
controls, with the greatest alterations seen in those exposed to postnatal corticosteroids and those born earliest. Structural
alterations to the optic radiations may increase the risk of impaired vision in EP/ELBW adolescents.
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Introduction

Around 50% of infants born extremely preterm (EP; ,28

weeks’ gestation) and/or extremely low birthweight (ELBW;

,1000 g) experience long-term impairment in one or more visual

functions, such as visual acuity, stereopsis (binocular depth

perception), vergence eye movements or visual perception [1–4].

Several perinatal factors have been associated with visual

impairment in EP/ELBW children, including retinopathy of

prematurity (ROP), major brain injury [intraventricular hemor-

rhage grade 3/4 or cystic periventricular leukomalacia] [5,6], and

exposure to postnatal corticosteroids, which are used to treat

chronic lung disease but may have adverse side effects on neural

structure and function [7]. Despite the documented associations

between perinatal factors and later visual impairments in EP/

ELBW children, visual impairments can arise even in the absence

of a history of complications such as ROP and major brain injury

[8,9]. This suggests that additional factors may be associated with

visual impairment in EP/ELBW children.

Neurohistopathological and magnetic resonance imaging (MRI)

studies have highlighted the susceptibility of the preterm brain to
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cerebral white matter and cortical gray matter injuries [10].

Altered patterns of cortical volume, surface area and thickness

have been described using structural MRI in preterm children and

adolescents compared with term-born controls, and have been

associated with adverse neurodevelopmental outcomes [11–13].

Characteristics of white matter microstructure, such as fiber

density and myelination, can be studied indirectly using diffusion-

weighted MRI and diffusion tensor parameters such as the

fractional anisotropy (FA). Using diffusion-weighted MRI, previ-

ous studies have shown that lower FA within the major white

matter tracts of the visual pathways, the optic radiations, is

associated with impaired visual function in neonates born preterm

[14–16]. However, data are limited concerning relationships

between optic radiation and primary visual cortex (V1) structure in

older EP/ELBW children and contemporaneous visual function.

The current study aimed to address this knowledge gap, as well

as to expand upon previous studies by assessing a large and

representative sample of EP/ELBW adolescents and concurrent

normal birthweight (.2499 g) control adolescents, followed up

from birth. This study also aimed to utilize constrained spherical

deconvolution (CSD), an advanced diffusion-weighted MRI

analysis method that resolves multiple white matter fiber

orientations within image voxels, enabling robust delineation of

white matter tracts, such as the optic radiations, even in crossing

fiber regions [17]. Specific aims of the current study were to: 1)

compare optic radiation and V1 structure between adolescents

born EP/ELBW and normal birthweight; 2) investigate associa-

tions between perinatal variables and optic radiation and V1

structure in EP/ELBW adolescents; 3) investigate associations

between optic radiation and V1 structure in EP/ELBW adoles-

cents and the odds of impaired vision. It was hypothesized that

optic radiation and V1 structure would be altered in EP/ELBW

adolescents compared with controls, that perinatal complications

would be associated with altered optic radiation and V1 structure

in EP/ELBW adolescents, and that altered optic radiation and V1

structure in EP/ELBW adolescents would be associated with

increased odds of impaired vision.

Methods

Participants
Participants were from a population-based study of all 298

survivors born EP (,28 weeks’ gestation) and/or ELBW

(,1000 g) between January 1991 and December 1992 in the

state of Victoria, Australia. Controls were derived from a cohort of

262 infants born normal birthweight (.2499 g) and contempora-

neously recruited from the three tertiary Victorian perinatal

centers. Controls were matched to EP/ELBW survivors for

expected date of birth, sex, mother’s health insurance status and

mother’s country of origin. The cohorts have been assessed at 2

[18], 5 [19] and 8 [20] years of age. At approximately 18 years of

age, all participants were invited to attend an extensive health and

developmental assessment, including visual function assessments

and MRI. Figure 1 details reasons for participant attrition and

exclusions at the 18 year follow-up.

Ethics statement
Ethical approval for the original and all follow-up studies was

obtained from the Human Research and Ethics Committees of all

participating hospitals (the Royal Women’s Hospital, Mercy

Hospital for Women, Monash Medical Centre and the Royal

Children’s Hospital, Melbourne). Informed written consent was

obtained from all participants, as well as from parents if the

participant was younger than 18 years of age at the time of

assessment.

Visual assessments
Visual assessments were performed by an examiner blind to

clinical history. Participants wore habitual corrective eyewear, if

required (e.g. glasses). Visual acuity was assessed monocularly

using the 3 m Early Treatment Diabetic Retinopathy Study

(ETDRS) logMAR chart [21]. Participants scoring $0.2 (Snellen

equivalent 6/9 or 20/32) in the better eye were classified as

impaired. Stereopsis (binocular depth perception) was assessed

using the Randot Stereotest [22]; impairment was defined as a

resolution $70 seconds of arc [23]. Vergence (simultaneous

movement of both eyes in opposite directions) was assessed with

the Prentice card from the Phoria test [24]; impairment was

defined as a near point of convergence $7 cm [25]. Five aspects of

visual-spatial perception were assessed with the Test of Visual-

Perceptual Skills 3rd Edition: visual discrimination, visual-spatial

relationships, visual figure-ground, visual form constancy and

visual closure [26]. Impairment in each visual perception subtest

was defined as .1.5 standard deviations below the normative

mean. A total visual perception score was calculated based on the

scaled scores of the five subtests, and impairment was defined as

,10th percentile of the control group. Participants who were too

visually impaired to complete a visual assessment were subse-

quently classified as impaired for that assessment.

MRI acquisition
MRI was performed using a 3 T Siemens Magnetom Trio,

Tim system. T1-weighted images were acquired with 3D

MPRAGE sequences [voxel size = 0.760.761.2 mm3; coronal

slices; echo time (TE)/repetition time (TR) = 2.67/1800 ms; field

of view = 2306230 mm; matrix size = 3206320]. Diffusion-

weighted images were acquired with echo planar imaging

sequences (voxel size = 2.5 mm3; axial slices; TE = 110 ms;

field of view = 2406240 mm; matrix size = 96696) at two

gradient strengths: 1. b = 1000 s/mm2, 25 gradient directions,

TR = 8800 ms; 2. b = 3000 s/mm2, 45 gradient directions,

TR = 8100 ms.

Optic radiation tractography
CSD was computed on the b = 3000 s/mm2 diffusion-weighted

data using MRtrix software [17], with a maximum harmonic

order of 6. Using CSD’s fiber orientations, optic radiations were

delineated by generating streamlines probabilistically from seeds

placed slightly lateral to the lateral geniculate nuclei (LGN), by an

operator blind to clinical history (Figure 2). The LGN were

identified on an axial slice depicting the transition from the

posterior limb of the internal capsule to the cerebral peduncle, as

described previously [27]. Streamlines were retained only if they

entered target regions placed just anterior to V1, passed anterior-

posteriorly from the seeds, entered voxels with CSD orientation

amplitudes .0.2, and contained angles with ,2 mm radii of

curvature. 1000 streamlines were selected. Extraneous voxels

containing ,5/1000 streamlines were discarded.

Diffusion tensor values were obtained for within the optic

radiations by multiplying the binary tract volumes by diffusion

tensor maps that had been generated from the b = 1000 s/mm2

data and registered to the b = 3000 s/mm2 data using the linear

image registration tool (FLIRT) within the functional MRI of the

brain software library (FSL) [28]. The b = 1000 s/mm2 diffusion

tensor maps [FA, axial diffusivity (lll), radial diffusivity (lH) and

mean diffusivity (MD)] were generated using the weighted linear

least squares method within ExploreDTI, version 4.8.2. [29]. Pre-
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processing of the b = 1000 s/mm2 data within ExploreDTI

involved correction for motion and eddy current induced

distortions, and appropriate B-matrix re-orientation [30]. The

reasons for obtaining diffusion tensor values from the co-registered

b = 1000 s/mm2 maps rather than directly from the b = 3000 s/

mm2 maps were: 1) Diffusion tensor values, particularly MD, vary

according to the strength and number of b-values in the

acquisition [31]; 2) Increasing b-values are accompanied by

Figure 1. Breakdown of participant attrition and exclusion at the 18-year follow-up study. DWI = diffusion-weighted images; ELBW =
extremely low birthweight; EP = extremely preterm; MRI = magnetic resonance imaging; T1 = T1-weighted images. *Died (n = 1), too disabled to
attend the assessment (n = 7), interstate/international (n = 3), unknown reason for not attending the assessment (n = 4). ‘Died (n = 2), too disabled to
attend the assessment (n = 3), interstate/international (n = 5). uDWI were unusable due to movement artefact (n = 4), signal dropout due to dental
braces (n = 6) or incomplete acquisitions (n = 1). ?T1-weighted images were unusable due to artefact or major cerebral structural abnormalities that
affected registration during the FreeSurfer processing pipeline.
doi:10.1371/journal.pone.0093188.g001
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decreasing signal-to-noise ratios [32]. As such, the b = 1000 s/

mm2 sequences may be expected to provide more accurate

estimates of the diffusion tensor values than the b = 3000 s/mm2

sequences. All co-registered images were visually examined for

registration errors. Diffusion tensor variables (FA, lll, lH, MD)

were obtained for the average of all voxels in each of the left and

right hemisphere optic radiations. Additionally, tract volume was

estimated as the number of voxels in the binary tract volumes

multiplied by the voxel size. Intra-class correlations, averaged for

the left and right hemisphere optic radiations, for tractography

repeated on 10 cases were $0.99 for FA, lll, lH and MD and 0.89

for tract volume, indicating high intra-rater reliability.

Primary visual cortex segmentation
Cortical reconstruction and volumetric segmentation based on

the T1-weighted data was performed with the FreeSurfer image

analysis suite, version 5.0 (http://surfer.nmr.mgh.harvard.edu/)

[33]. The cerebral cortex was subdivided into gyral-based regions

of interest [34]. During the processing pipeline, data were visually

inspected and manually edited as required, by an operator blind to

clinical history. Estimates of cortical volume, surface area and

thickness [35] were extracted from the left and right hemisphere

pericalcarine cortices, which are the anatomical locations of V1.

Intracranial volumes were also segmented using FreeSurfer, or

using Statistical Parametric Mapping software if segmentation

using FreeSurfer was not possible due to inadequate image quality

(n = 10). Given that overall head size has been shown to influence

white matter diffusion tensor values due to differential partial

volume effects [36], intracranial volumes were used to control for

head size related partial volume effects on diffusion tensor values.

Statistical analysis
Data were analyzed using SPSS version 20.0. Perinatal

characteristics of the participants who contributed optic radiation

or V1 data and the non-participants who did not contribute data

were compared using t-tests and chi-squared tests for continuous

and categorical variables respectively. Baseline characteristics and

visual outcomes of the EP/ELBW and control participants were

also compared in a similar manner.

Optic radiation and V1 variables in the left and right

hemispheres of the brain were compared between the EP/ELBW

and control participants using linear regression fitted to both

hemispheres simultaneously. Modelling was carried out using

generalized estimating equations to account for within-subject

correlations between data from the left and right hemispheres. The

regressions were performed with robust (Huber/White/sandwich)

estimation of covariance and with an exchangeable correlation

structure. The regressions were also performed with and without

including corrected age at MRI and intracranial volume in the

models as covariates, to adjust for their potential effect.

Interactions between birth group and hemisphere were checked

for, to assess whether the results differed by hemisphere.

Amongst EP/ELBW participants, associations between perina-

tal variables and optic radiation and V1 variables in the left and

right hemispheres of the brain were investigated using linear

regression, again fitted using generalized estimating equations with

robust covariance estimation and an exchangeable correlation

structure, to account for the multiple observations for each

individual. The perinatal variables considered were gestational age

(GA) at birth, birthweight standard deviation score (BWSDS [37]),

male sex, major brain injury as diagnosed by cranial ultrasound in

the newborn period (intraventricular hemorrhage grade 3/4 and/

or cystic periventricular leukomalacia), postnatal corticosteroid

exposure and severe ROP ($stage 3 in either eye). Firstly, each

perinatal variable was entered into separate univariable regression

models. Secondly, all perinatal variables were entered simulta-

neously into a single regression model, along with corrected age at

MRI and intracranial volume, so that the effect of each perinatal

variable was adjusted for the effects of all the other variables in the

model, to investigate independent predictors.

Figure 2. Examples of the optic radiations delineated using probabilistic tractography based on constrained spherical
deconvolution. R = right; L = left; A = anterior; P = posterior.
doi:10.1371/journal.pone.0093188.g002
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Finally, associations between optic radiation and V1 variables in

EP/ELBW participants and the odds of impaired visual acuity,

stereopsis, vergence and visual perception were investigated using

logistic regression, with separate regression models for the left and

right hemisphere variables. The regressions were performed with

and without including corrected age at MRI and intracranial

volume in the models as covariates to adjust for their potential

effect.

Given the multiple comparisons performed, the results were

interpreted based on overall patterns and magnitudes of differ-

ences, rather than individual p-values.

Results

Participants
Optic radiation data could be analyzed for 196 EP/ELBW

participants and 143 controls. Perinatal characteristics were

similar between the EP/ELBW participants who contributed

optic radiation data and the EP/ELBW non-participants, except

fewer EP/ELBW participants had cystic periventricular leukoma-

lacia (4% vs. 10%, p = 0.05). Baseline characteristics were similar

between control participants and non-participants, except there

were fewer male control participants (42% vs. 55%, p = 0.03). V1

data could be analyzed for 190 EP/ELBW participants and 138

controls. Differences between the participants who contributed V1

data and non-participants were similar to differences between

participants who contributed optic radiation data and non-

participants (data not shown).

Amongst participants with optic radiation data, the proportion

of males was similar between the EP/ELBW and control groups,

but there were expected differences in other perinatal variables

(Table 1). Additionally, more EP/ELBW participants than

controls had impaired visual function in most areas assessed, as

expected (Table 2). Differences in perinatal characteristics and

visual outcomes between the EP/ELBW participants and controls

with V1 data were similar to those with optic radiation data (data

not shown).

EP/ELBW participants vs. controls: optic radiation and V1
measures

Optic radiation volume and FA were similar between the EP/

ELBW and control participants. However, optic radiation lll, lH

and MD were higher in the EP/ELBW participants than controls,

even after adjustment for corrected age at MRI and intracranial

volume (Table 3). There was little evidence of interactions between

birth group and hemisphere for the optic radiation variables (all p-

values.0.05).

V1 volume was similar between the groups (Table 3). V1 area

was lower in the EP/ELBW participants than controls in the

unadjusted analysis [mean difference (95% confidence interval

(CI)): 20.9 (21.4, 20.3) cm2, p = 0.002], however this difference

was less marked and the evidence was weaker after adjusting for

corrected age at MRI and intracranial volume (Table 3). V1

thickness was higher in the EP/ELBW participants than controls,

even after adjustment for corrected age at MRI and intracranial

volume (Table 3). There was little evidence of interactions between

birth group and hemisphere for the V1 variables (all p-

values.0.05).

Associations with perinatal variables
Postnatal corticosteroid exposure was associated with lower

optic radiation FA and volume, and higher optic radiation

diffusivity in EP/ELBW participants, even after adjustment for

corrected age at MRI, intracranial volume and all of the tested

perinatal variables (Figures 3A and B). There was also some

evidence that decreasing GA at birth, major neonatal brain injury

and severe ROP were associated with higher optic radiation

lll, lH and MD in EP/ELBW participants, however these

Table 1. Characteristics of the extremely preterm/extremely low birthweight and control participants with optic radiation data.

EP/ELBW, n = 196 Controls, n = 143

Gestational age at birth (weeks), mean (SD) 26.6 (2.0) 39.2 (1.5)

Birthweight (g), mean (SD) 894 (161) 3423 (458)

Birthweight SD score, mean (SD) 20.7 (1.2) 0.08 (0.9)

Male, n (%) 90 (46) 60 (42)

Postnatal corticosteroids, n (%) 60 (31) 0 (0)

Intraventricular hemorrhage grade 3/4, n (%) 12 (6) 0 (0)

Cystic periventricular leukomalacia, n (%) 8 (4) 0 (0)

Retinopathy of prematurity $stage 3 either eye, n (%) 22 (12)a 0 (0)

Corrected age at MRI (years), mean (SD) 18.2 (0.8) 18.1 (0.8)

Intracranial volume (cm3), mean (SD) 1439 (160)b 1524 (168)c

ELBW = extremely low birth weight; EP = extremely preterm; MRI = magnetic resonance imaging; SD = standard deviation. an = 191; bn = 194; cn = 140.
doi:10.1371/journal.pone.0093188.t001

Table 2. Visual outcomes of the extremely preterm/
extremely low birthweight and control participants with optic
radiation data.

Visual test Impaired, n (%)
Odds ratio
(95% CI) p

EP/ELBW Controls

Visual acuity (log score) 37 (19)a 26 (18)b 0.9 (0.5, 1.7) 0.8

Stereopsis (seconds
of arc)

43 (23)c 12 (9)b 0.3 (0.2, 0.6) 0.001

Vergence 32 (16)d 10 (7)e 0.4 (0.2, 0.8) 0.01

Total visual perception
score

42 (22)d 12 (9)b 0.3 (0.2, 0.7) 0.001

ELBW = extremely low birth weight; EP = extremely preterm; SD = standard
deviation.
an = 192; bn = 141; cn = 191; dn = 194; en = 138.
doi:10.1371/journal.pone.0093188.t002
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associations weakened in the adjusted analyses (Figure 3A). There

was little evidence that BWSDS or sex were associated with the

optic radiation variables in EP/ELBW participants (Figures 3A

and B).

Decreasing GA at birth was associated with increasing V1

volume in EP/ELBW participants, as well as with increasing V1

area and thickness with slightly weaker evidence, even after

adjustment for corrected age at MRI, intracranial volume and all

of the tested perinatal variables (Figure 3C). Increasing BWSDS

and male sex were associated with higher V1 volume and area in

EP/ELBW participants, however these associations weakened in

the adjusted analyses (Figure 3C). There was weak evidence that

major neonatal brain injury, postnatal corticosteroid exposure and

severe ROP were associated with V1 volume, area or thickness in

EP/ELBW participants (Figure 3C).

Associations with visual outcomes
In both the left and right hemispheres of the EP/ELBW

participants, increasing FA and volume and decreasing diffusivity

in the optic radiations were associated with reduced odds of

impaired visual acuity; adjustment for corrected age at MRI and

intracranial volume had little effect (Figure 4A). There were

similar patterns of associations between optic radiation variables in

EP/ELBW participants and the odds of impaired stereopsis and

visual perception, but with slightly smaller magnitudes and slightly

weaker evidence, with even weaker evidence for vergence

(Figure 4A).

There was little evidence that V1 volume, area or thickness in

either the left or right hemispheres were associated with the odds

of impaired visual acuity, stereopsis, vergence or visual perception

in EP/ELBW participants, before or after adjusting for corrected

age at MRI and intracranial volume (Figure 4B).

Discussion

In summary, optic radiation lll, lH and MD, and V1 thickness,

were higher in the EP/ELBW adolescents than controls. Within

the EP/ELBW adolescents, postnatal corticosteroid exposure was

associated with altered optic radiation diffusion values and

reduced optic radiation volume, while decreasing GA at birth

was associated with increased V1 volume, and increased V1 area

and thickness to a lesser extent. Finally, decreasing optic radiation

FA and volume, and increasing optic radiation diffusivity within

EP/ELBW adolescents were associated with increased odds of

impaired visual acuity, and to a lesser extent increased odds of

impaired stereopsis and visual perception.

The finding of higher lll, lH and MD within the optic

radiations of EP/ELBW adolescents than controls suggests that

optic radiation microstructure is altered in EP/ELBW adolescents

compared with controls. Higher lll, lH, and MD in EP/ELBW

adolescents than controls may reflect altered optic radiation

development, given that lll, lH, and MD decrease in the white

matter over time in typically developing children and adolescents

[38]. The lll, lH and MD are thought to be sensitive to changes in

one or more properties of white matter microstructure, including

white matter fiber density, fiber diameter, myelination or

membrane permeability [32].

Additionally, higher V1 thickness in the EP/ELBW adolescents

than controls suggests that V1 structure is altered compared with

controls. Cortical thickness peaks during early to middle childhood

and declines thereafter in typically developing children [42]; thus

the current finding may suggest that EP/ELBW birth is associated

with delayed development or delayed synaptic pruning of V1.

Additionally, it is possible that altered V1 structure in EP/ELBW

adolescents compared with controls may to some extent reflect

cortical reorganisation as a mechanism to compensate for visual

impairment and early brain injury associated with EP/ELBW

birth [43]. The current finding is in agreement with previous

reports of increased cortical thickness in various neuroanatomical

regions of children born preterm relative to controls [11,39–41].

Postnatal corticosteroid exposure, major neonatal brain injury,

severe ROP and decreasing GA at birth were associated with

altered optic radiation diffusion values within EP/ELBW adoles-

cents, when investigated individually. However, these associations

weakened after adjusting for the remaining tested perinatal

variables, corrected age at MRI and intracranial volume, with

the exception of postnatal corticosteroid exposure. This finding

highlights the importance of postnatal corticosteroid exposure as a

predictor of altered optic radiation structure in EP/ELBW

adolescents, independent of other clinically important perinatal

variables. Additionally, this finding may provide an explanation

for previous reports of associations between postnatal corticoste-

roid exposure and later visual impairments in preterm children

[7]. Comparable with the current finding, previous studies have

Table 3. Optic radiation and primary visual cortical data in the extremely preterm/extremely low birthweight participants vs.
controls.

MRI variable EP/ELBW Controls Mean difference* 95% CI p

Mean SD Mean SD Lower Upper

OR FA 0.45 0.02 0.45 0.02 0.0002 20.004 0.005 0.9

OR lll (61023 mm2/s) 1.37 0.09 1.32 0.05 0.058 0.043 0.072 ,0.001

OR lH (61023 mm2/s) 0.67 0.07 0.63 0.04 0.044 0.033 0.055 ,0.001

OR MD (61023 mm2/s) 0.91 0.07 0.86 0.04 0.048 0.037 0.06 ,0.001

OR volume (cm3) 13.07 1.64 13.14 1.5 20.029 20.362 0.305 0.9

V1 volume (cm3) 2.19 0.41 2.24 0.43 0.057 20.027 0.142 0.2

V1 area (cm2) 13.92 2.23 14.8 2.65 20.252 20.742 0.237 0.3

V1 thickness (mm) 1.71 0.12 1.66 0.1 0.055 0.030 0.080 ,0.001

CI = confidence interval; ELBW = extremely low birthweight; EP = extremely preterm; FA = fractional anisotropy; MD = mean diffusivity; MRI = magnetic resonance
imaging; OR = optic radiation; SD = standard deviation; V1 = primary visual cortex; lll = axial diffusivity; lH = radial diffusivity. *Adjusted for corrected age at MRI and
intracranial volume.
doi:10.1371/journal.pone.0093188.t003
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reported reduced cerebral tissue volume in preterm infants [44,45]

and in EP/ELBW adolescents [46] who were exposed to postnatal

corticosteroids compared with unexposed preterm infants or

adolescents, indicating a relationship between postnatal cortico-

steroid exposure and altered brain structure in preterm children.

However, no previous studies have investigated the relationship

between postnatal corticosteroid exposure and optic radiation

diffusion values in preterm children.

Additionally, there was evidence that decreasing GA at birth

was associated with increased V1 volume, area and thickness in

EP/ELBW adolescents, independent of the other tested perinatal

variables. This finding suggests that EP/ELBW adolescents who

are born earliest are at greatest risk of altered V1 structure in

adolescence, and may not demonstrate the normal developmental

decline in synaptic density that occurs after middle childhood in

typically developing children [42]. The current finding is similar to

Nagy et al.’s finding of several regions of thicker cortex in

adolescents born #28 weeks’ GA compared with adolescents born

.28 but #36 weeks’ GA [11].

Importantly, altered optic radiation diffusion values and

decreased optic radiation volume in EP/ELBW adolescents were

associated with increased odds of impaired vision, particularly

impaired visual acuity, and also impaired stereopsis and visual

perception to a lesser extent. This finding suggests that optic

radiation structure-function relationships with visual impairment

exist in EP/ELBW adolescents. This concurs with previous reports

of associations between FA within the optic radiations and visual

function in preterm infants at term equivalent age [47] and up to 6–

20 months of age [16], but extends previous studies by suggesting

that optic radiation structure-function relationships with visual

impairment persist in adolescence in individuals born preterm.

However, there was little evidence that optic radiation diffusion

values or volume in EP/ELBW adolescents were associated with

the odds of impaired vergence. Vergence, which rotates both eyes

in opposite directions, may be associated with the functioning of

the extra-ocular muscles or subcortical projections to brainstem

neurons, rather than connectivity to or processing by the visual

cortices [48]. Previously, cystic periventricular leukomalacia

affecting the optic radiations has been associated with impaired

eye movements [49], however the current results suggest that

subtler microstructural optic radiation alterations may not

preclude vergence in EP/ELBW adolescents.

Additionally, despite finding relationships between optic radi-

ation variables and the odds of impaired vision, there was little

evidence that V1 volume, area or thickness were associated with

the odds of impaired vision in EP/ELBW adolescents. This

suggests that V1 structure may not be sensitive to detecting

structure-function relationships with impaired vision in EP/ELBW

Figure 3. Perinatal predictors of optic radiation and primary visual cortex measures in EP/ELBW adolescents. The x-axes represent the
regression coefficients and 95% confidence intervals (CI) for the associations between perinatal variables and optic radiation diffusion tensor variables
(A), optic radiation volume (B), and primary visual cortical volume, area and thickness (C) in EP/ELBW adolescents, from linear regression models
incorporating both the left and right hemisphere measurements. Solid lines represent the unadjusted analyses and dashed lines represent the
analyses adjusted for corrected age at MRI, intracranial volume and all of the other perinatal variables. BWSDS = birthweight standard deviation
score; CI = confidence interval; FA = fractional anisotropy; GA = gestational age at birth (weeks); MD = mean diffusivity; PCS = postnatal
corticosteroid exposure; ROP = severe retinopathy of prematurity; b= regression coefficient (the change in the optic radiation or primary visual
cortex variable per unit change in the predictor); lll = axial diffusivity; lH = radial diffusivity. The units of the optic radiation and primary visual
cortex variables are as follows: Axial, radial and mean diffusivities, 61023 mm2/s; Optic radiation volume, cm3; Primary visual cortical volume, cm3;
Primary visual cortical area, 61021 cm2; Primary visual cortical thickness, mm.
doi:10.1371/journal.pone.0093188.g003
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adolescents. A previous study reported associations between

reduced occipital volume, encompassing gray matter from both

V1 and extrastriate visual cortices, in very preterm infants at term

equivalent age and impaired oculomotor function in early

childhood [50]. However, no studies have investigated the

relationship between V1 structure and visual function in EP/

ELBW adolescents.

The current study is the first reported long-term study of optic

radiation and V1 structure in EP/ELBW adolescents in relation to

visual outcome. Other strengths of the current study include the

large and representative sample of EP/ELBW adolescents and

concurrent controls, followed up from birth. Additionally,

advanced tractography based on CSD was employed, providing

robust tractography results. A range of visual tests was utilized,

enabling a comprehensive investigation of the potential role of the

optic radiations and V1 in the visual functioning of EP/ELBW

adolescents.

This study had certain limitations. Firstly, previous studies have

shown that the exact size, shape and location of V1 are variable

between individuals [51], and it is acknowledged that this

variability may increase the likelihood of segmentation errors

during the automated FreeSurfer pipeline. Additionally, while the

current study focussed on V1 and its relationship to visual

impairment in EP/ELBW adolescents, future studies would

benefit from investigating other visual cortical regions, such as

the extrastriate cortices or the LGN, to identify other potential

Figure 4. Associations between optic radiation and primary visual cortex measures in EP/ELBW adolescents and the odds of
impaired visual outcomes. The x-axes represent the odds ratios and 95% confidence intervals (CI) for the associations between optic radiation
variables (A) and primary visual cortex variables (B) in the left and right hemispheres of EP/ELBW adolescents and the odds of impaired visual acuity,
stereopsis, vergence or visual perception, from separate logistic regression models. Solid lines represent analyses with variables from the left
hemisphere of the brain; dashed lines represent analyses with variables from the right hemisphere. All results presented are adjusted for corrected
age at MRI and intracranial volume. CI = confidence interval; FA = fractional anisotropy; MD = mean diffusivity; lll = axial diffusivity; lH = radial
diffusivity. The units of the optic radiation and primary visual cortex variables are as follows: Fractional anisotropy, 6100; Axial, radial and mean
diffusivities, 61021 mm2/s; Optic radiation volume, cm3; Primary visual cortical volume, cm3; Primary visual cortical area, cm2; Primary visual cortical
thickness, 610 mm.
doi:10.1371/journal.pone.0093188.g004
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structural abnormalities relative to controls and other potential

structure-function relationships. Secondly, although the tracto-

graphy results followed the known anatomical course of the optic

radiations, Meyer’s loop was not delineated, possibly due to

limitations with the chosen seed placement [52]. Thirdly, the

diffusion tensor model cannot sensitively distinguish between

different aspects of white matter microstructure such as fiber

density and myelination, and may also be affected by partial

volume effects from non-white matter tissue and crossing fibers

[32].

In conclusion, optic radiation and V1 structure are altered in

EP/ELBW adolescents compared with controls. Postnatal corti-

costeroid exposure and decreasing GA at birth are associated with

altered optic radiation and V1 structure in EP/ELBW adolescents.

Furthermore, altered optic radiation structure in EP/ELBW

adolescents is associated with increased odds of impaired vision,

and thus may further explain the high rates of impaired vision in

EP/ELBW adolescents. Conversely, V1 structure is not as

sensitive to detecting structure-function relationships with im-

paired vision in EP/ELBW adolescents. Elucidating the neural

correlates of impaired vision in EP/ELBW adolescents is an

important requisite for improving visual outcome in this popula-

tion.
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