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A B S T R A C T   

Background: The link between heat exposure and adverse health outcomes in workers is well documented and a 
growing body of epidemiological evidence from various countries suggests that extreme heat may also contribute 
to increased risk of occupational injuries (OI). Previously, there have been no comparative reviews assessing the 
risk of OI due to extreme heat within a wide range of global climate zones. The present review therefore aims to 
summarise the existing epidemiological evidence on the impact of extreme heat (hot temperatures and heat
waves (HW)) on OI in different climate zones and to assess the individual risk factors associated with workers 
and workplace that contribute to heat-associated OI risks. 
Methods: A systematic review of published peer-reviewed articles that assessed the effects of extreme heat on OI 
among non-military workers was undertaken using three databases (PubMed, Embase and Scopus) without 
temporal or geographical limits from database inception until July 2020. Extreme heat exposure was assessed in 
terms of hot temperatures and HW periods. For hot temperatures, the effect estimates were converted to relative 
risks (RR) associated with 1 ◦C increase in temperature above reference values, while for HW, effect estimates 
were RR comparing heatwave with non-heatwave periods. The patterns of heat associated OI risk were inves
tigated in different climate zones (according to Köppen Geiger classification) based on the study locations and 
were estimated using random-effects meta-analysis models. 
Subgroup analyses according to workers’ characteristics (e.g. gender, age group, experience), nature of work (e. 
g. physical demands, location of work i.e. indoor/outdoor) and workplace characteristics (e.g. industries, busi
ness size) were also conducted. 
Results: A total of 24 studies published between 2005 and 2020 were included in the review. Among these, 22 
studies met the eligibility criteria, representing almost 22 million OI across six countries (Australia, Canada, 
China, Italy, Spain, and USA) and were included in the meta-analysis. The pooled results suggested that the 
overall risk of OI increased by 1% (RR 1.010, 95% CI: 1.009–1.011) for 1 ◦C increase in temperature above 
reference values and 17.4% (RR 1.174, 95% CI: 1.057–1.291) during HW. 
Among different climate zones, the highest risk of OI during hot temperatures was identified in Humid Subtropical 
Climates (RR 1.017, 95% CI: 1.014–1.020) followed by Oceanic (RR 1.010, 95% CI: 1.008–1.012) and Hot Med
iterranean Climates (RR 1.009, 95% CI: 1.008–1.011). Similarly, Oceanic (RR 1.218, 95% CI: 1.093–1.343) and 
Humid Subtropical Climates (RR 1.213, 95% CI: 0.995–1.431) had the highest risk of OI during HW periods. No 
studies assessing the risk of OI in Tropical regions were found. The effects of hot temperatures on the risk of OI were 
acute with a lag effect of 1–2 days in all climate zones. Young workers (age < 35 years), male workers and workers 
in agriculture, forestry or fishing, construction and manufacturing industries were at high risk of OI during hot 
temperatures. Further young workers (age < 35 years), male workers and those working in electricity, gas and 
water and manufacturing industries were found to be at high risk of OI during HW. 
Conclusions: This review strengthens the evidence on the risk of heat-associated OI in different climate zones. The 
risk of OI associated with extreme heat is not evenly distributed and is dependent on underlying climatic con
ditions, workers’ attributes, the nature of work and workplace characteristics. The differences in the risk of OI 
across different climate zones and worker subgroups warrant further investigation along with the development of 
climate and work-specific intervention strategies.  
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1. Introduction 

Climate change has led to a significant rise of 0.8 ◦C–0.9 ◦C in global 
mean temperature, leading to frequent and severe heatwaves (HW) 
(Glaser et al., 2016). Increasing temperatures and HW have and will 
continue to pose adverse effects on human health, ranging from minor 
discomfort to death, as documented in numerous epidemiological 
studies across the world (Amegah et al., 2016; Åström et al., 2011; 
Azongo et al., 2012; Song et al., 2017). It is predicted that the trend of 
increasing temperatures and frequent occurrences of HW will continue 
into the future placing populations at further risk. Recent studies have 
raised serious concerns about the impacts of extreme heat on workers’ 
health (Kjellstrom et al., 2016; Yang et al., 2017). Workers, as opposed 
to the general public are usually required to work under exposed con
ditions for extended periods. The combined effects of prolonged expo
sure to heat and hot environments, physical work demands and work 
uniform requirements contribute to heat stress experienced by workers 
in several occupations and industries (Gao et al., 2018; McCarthy et al., 
2018). Thermal exposure can elicit heat stress, acute impairment of 
work capacity, heat-related illness, loss of productivity and even death 
among workers (Cheung et al., 2016). Diminished performance and 
work capacity may further lead to an increased risk of occupational 
injuries (OI) in the workplace (Binazzi et al., 2019). 

A growing body of epidemiological evidence suggests that the risk of 
OI increases at hot temperatures as compared to an intermediate 
‘comfortable’ temperature range (Adam-Poupart et al., 2015; Ricco, 
2018; Tawatsupa et al., 2013). A majority of studies assessing the risk of 
heat-related OI have found a curvilinear response with a steeper slope at 
higher temperature thresholds (Marinaccio et al., 2019; Martínez-Sol
anas et al., 2018; Varghese et al., 2019). Most of these studies were 
conducted in developed countries with Temperate Climates (Marinaccio 
et al., 2019; Spector et al., 2016; McInnes et al., 2017; Xiang et al., 
2014), while two studies were from developing countries with Humid 
Subtropical Climates (Guangzhou, China) (Sheng et al., 2018; Ma et al., 
2019). However, the thermal exposure thresholds at which the risk of OI 
increases varies from region to region because of the underlying climate. 
For example a study from Adelaide, Australia with a dry Warm Medi
terranean Climate showed that 1 ◦C increase in maximum temperature 
(Tmax) above 14.2 ◦C and below 37 ◦C was associated with an increased 
risk of OI (Xiang et al., 2014), while in Guangzhou, China, Tmax above 
30 ◦C was found to be linearly associated with an increased risk of OI 
(Sheng et al., 2018). Particularly noteworthy here are the differences in 
thermal exposure limits. It appears that the threshold above which the 
risk of OI increases is higher in Guangzhou than Adelaide, suggesting 
that the heat impacts vary. This geographic variability is due to the 
underlying local climatic conditions because human health is primarily 
affected by the long-term climate and seasonal trends rather than daily 
weather variability (Kalkstein et al., 1996). People are largely adapted 
to the local climate, in their physiology, culture and engineered sup
porting infrastructure (Nairn and Fawcett, 2015). 

Previously conducted reviews have explored the risk of OI associated 
with heat exposure (Binazzi et al., 2019; Bonafede et al., 2016; Levi 
et al., 2018; Spector et al., 2019; Varghese et al., 2018; Xiang et al., 
2013). Three comprehensive reviews of the literature (Spector et al., 
2019; Varghese et al., 2018; Xiang et al., 2013) published until 
December 2019, provided evidence on the relationship between heat 
exposure and the risk of OI and identified specific individual and 
occupational characteristics that contribute to the vulnerability of 
workers. These reviews of ecological observational studies have indi
cated that a linear relationship exists between hot weather and the risk 
of OI. Further, male workers and young workers (age < 25 years) and 
those working in outdoor intensive industries such as agriculture, 
forestry and fishing and construction were found to be at high risk 
(Binazzi et al., 2019; Xiang et al., 2013). 

Occupational injuries including both serious and traumatic injuries 
arising from slips, trips and falls, exposure to harmful objects, blunt 

forces and hitting objects, wounds, lacerations and amputations, burns 
and minor cuts etc. have been reported to increase in hot weather 
conditions (Bonafede et al., 2016; Spector et al., 2019; Varghese et al., 
2018). Varghese et al. (2018) shed light on the potential mechanisms of 
heat-associated risk of OI involving a combination of physiological and 
psycho-behavioral responses which upon interaction with other work
place hazards result in OI. Further, a systematic review (Bonafede et al., 
2016) explored the associations between extreme weather conditions 
(both heat and cold) and OI. This systematic review included eight 
studies published till November 2014 in the qualitative synthesis and 
showed an association between high temperatures/HW and risk of work- 
related injuries. More recently, Binazzi et al. (2019) carried out a meta- 
analysis to summarize the evidence on the heat associated risk of OI and 
identified specific subgroups of workers at higher risk. A total of eight 
studies published till October 2018 were included in this meta-analysis 
and estimated an increased risk of 0.5% (RR 1.005, 95% CI: 
1.001–1.009) of OI associated with heat exposure. However, Binazzi 
et al. (2019) pooled estimates from eight studies irrespective of under
lying climates and exposures variables (hot temperatures and HW). For 
example, the estimates from four city-based (Garzon-Villalba et al., 
2016; McInnes et al., 2017; Xiang et al., 2014; Sheng et al., 2018) and 
three province/state-based studies (Adam-Poupart et al., 2015; Ricco, 
2018; Spector et al., 2016) were pooled with that from a whole country 
based study (Martínez-Solanas et al., 2018), without considering the 
possible geographical variability of the effect estimates across different 
locations. Subgroup analyses based on a limited number of variables 
such as gender, age and industries revealed increased risk for male 
workers, young workers (with age < 25 years) and those working in the 
agricultural industry. Other characteristics such as work experience, 
physical demands of the occupation, business size and industries where 
heat has been shown previously to be problematic (e.g. electricity, gas, 
and water, transport etc.) were not considered. 

Between 2018 and early 2020, multiple studies have been published 
concerning the heat-associated risk of OI and covering a range of oc
cupations and geographical locations with diverse climates. While both 
previous systematic reviews (Binazzi et al., 2019; Bonafede et al., 2016) 
assessed the risk of bias in individual studies, the strength and quality of 
their synthesized evidence were not systematically assessed. We there
fore systematically reviewed observational ecological studies regarding 
heat exposure, considering both hot temperatures and HW, and OI risk 
including more recent studies and undertook an extended meta-analysis 
using location-specific estimates at the city/province-level classified by 
Köppen Geiger climate zones. Our primary research question in terms of 
Population, Exposure, Comparator, Outcome and Study design (PECOS) 
(Morgan et al., 2018) was: 

Among non-military workers (Population) what is the effect of 
extreme heat assessed in terms of hot temperatures and heatwaves 
(Exposure) estimated per 1 ◦C increase in temperature or HW vs non-HW 
periods (Comparator) on the incidence of Occupational Injuries 
(Outcome) in observational ecological studies (Study design)? 

Further, we also aimed to address the following two specific research 
questions:  

1. How does the risk of OI associated with extreme heat vary in 
different climate zones of the world?  

2. Which workers are at high risk of OI associated with extreme heat in 
terms of workers’ characteristics, nature of work and workplace 
characteristics? 

2. Methods 

2.1. Search strategy and selection criteria 

A systematic review of published literature for studies that assessed 
the effects of extreme heat on OI was undertaken using three databases 
(PubMed, Embase and Scopus). A comprehensive search strategy 
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focused on “Extreme Heat” and “Occupational Injuries” was developed 
in consultation with the University librarian (Tables A1–A3, Appendix A 
of Supplementary Material - SM). The search strategy was designed 
using the PECOS framework (Morgan et al., 2018; Moola et al., 2015). 
Briefly, it included keywords such as “hot temperatures” and “heat
waves”, “occupations” and “industries”, “occupational injuries”, “risk 
assessment” and “epidemiological studies”. The study selection criteria 
based on our PECOS statement is presented in Table 1. Studies were 
considered eligible after full-text evaluation, if: (a) they explicitly 
examined and quantitatively reported a risk estimate including odds 
ratios (OR), incidence rate ratios (IRR) or relative risks (RR) for the 
relationship between heat exposure (hot temperatures and HW) and OI 
in non-military workers and (b) they were peer-reviewed publications in 
English (Table 1). Studies were excluded if: (a) they examined the risk in 
military workers (b) they addressed process-generated heat, (c) they 
qualitatively evaluated heat exposure, for example in a questionnaire 
survey and (d) they were conference abstracts without full-text or non- 
English articles, editorials, or review articles. No additional filter was 
applied for publication date. 

The search was initially run on November 23, 2019 and was last 
updated on July 20, 2020 before the finalization of this review. 

2.2. Study selection process 

Studies retrieved from the three electronic databases were imported 
into the Endnote X9 reference management system and duplicates were 
subsequently removed. The study selection process is shown in Fig. 1. All 
retrieved studies were then identified by initial screening of titles fol
lowed by abstract screening. If the information in titles or abstracts was 
not sufficient to decide on inclusion or exclusion of the study, then the 
full text was reviewed for eligibility. The studies were screened against 
inclusion exclusion criteria by two authors independently (SHF and 
BMV). Inconsistencies between the two authors were discussed for 
clarification and agreement on final reporting with the other authors. 
References in each of the identified papers were also examined for any 
additional studies that may have been missed in our electronic database 
searches. As the health impacts of HW are different from that of a single 

hot day, evidence available on the risk of OI associated with extreme 
heat were categorized into studies assessing the risk at hot temperature 
and studies assessing the risk during HW periods. 

2.3. Data extraction 

Relevant study characteristics were extracted from eligible hot 
temperature and HW studies into a Microsoft Excel spreadsheet. The 
characteristics included: authors, year of publication, location, (where 
the study was conducted), climate zones, region (Asia, Australia, Europe 
and North America), type of industry (agriculture, construction etc.) 
study population (smelter workers, disaster relief workers etc.), expo
sure metrics (Tmax, Tmin, Tmean, Humidex or WBGT etc.), minimum 
reference temperature, highest threshold temperature associated with 
risk, study design (time series or case crossover), type of statistical 
models (examples such as Distributed Lag Nonlinear Models or Gener
alized Additive Models etc.), number of injury records, study duration, 
time span (short < 5 years or long > 5 years), yearly trend (i.e. whole 
year or warm season only), effect estimates (RR/OR/IRR) and confi
dence intervals or mean difference and standard deviation. 

Climate zones were extracted for each study location (city, state or 
provinces) from the 1 Km resolution Köppen Geiger climate classifica
tion maps (Beck et al., 2018) and was verified with the climate data 
developed for cities across the world (Climate-Data.org. Climate data for 
cities worldwide, 2020). To enable investigation of heat associated risk 
of OI in different climate zones, location-specific risk estimates were 
extracted at city, state or province level from the published studies. For 
studies reporting regional-level results (i.e. province or state level) or 
national level results, location-specific estimates were obtained from 
published tables, through textual/graphical descriptions and supple
mentary materials. When information from figures seemed imprecise, or 
when data seemed available but was not given in the articles, the rele
vant studies’ authors were contacted at least twice to request for addi
tional data. A unique combination of authors, year of publication and 
location was used to identify the location-specific effect estimates which 
were further classified into nine Köppen Geiger climate zones (Humid 
and Warm Continental, Warm Mediterranean, Hot Mediterranean, 
Oceanic, Humid Subtropical, Hot Semi-arid, Cold Semi-arid, Subarctic, 
Hot Deserts Climates) based on Köppen Geiger classification (Köppen 
and Geiger, 1930). 

For hot temperature studies, the effect estimates were reported either 
as “1◦C increase in temperature” (Adam-Poupart et al., 2015; Spector 
et al., 2016; McInnes et al., 2017; Xiang et al., 2014; Sheng et al., 2018) 
or as a “comparison between temperature percentiles” (e.g. 90th 
percentile vs 50th percentile (Varghese et al., 2019; Schifano et al., 
2019) or as a “comparison between extreme heat and the reference value 
where the injury risk was minimal” (e.g. 99th percentile vs. the mini
mum injury temperature percentile (Marinaccio et al., 2019; Martínez- 
Solanas et al., 2018; Varghese et al., 2019). Different estimates of effect 
sizes (e.g. OR, RR, IRR and percent change) have been used to quantify 
the risk of OI in the reference studies. In studies where ORs were re
ported, (Ricco, 2018; Spector et al., 2016; McInnes et al., 2017; Schifano 
et al., 2019; Calkins et al., 2019; Ricco et al., 2020; Ricco et al., 2019) the 
effect estimates were converted to RR under the assumption that OR 
approximate RR when the outcome is rare (Diaz-Quijano, 2012). In one 
study (Rameezdeen and Elmualim, 2017), results were presented as ef
fect sizes and p-values. The method of Altman and Bland (2011) was 
used to estimate the risk confidence intervals for that study. In another 
study by Martínez-Solanas et al. (2018) effect estimate sizes were not 
available numerically at the provincial level. The percentage change was 
manually estimated from the exposure–response graphs for each prov
ince from the study’s supplementary material and was converted to RR 
and 95% confidence intervals. 

All effect estimates for hot temperature studies were converted into a 
common exposure unit of 1 ◦C increase above reference temperature to 
quantitatively pool the estimates following the approach of Luo et al. 

Table 1 
Studies eligibility criteria.  

Studies eligibility criteria based on PECOS elements 

Population All epidemiological studies assessing the risk of occupational injuries 
among non-military workers associated with extreme heat, published 
from database inception until July 20, 2020 were eligible for inclusion. 

Exposure All epidemiological studies where extreme heat was quantified in terms of 
hot temperature and HW. The following heat exposure metrics were 
considered: maximum temperature (Tmax), minimum temperature 
(Tmin), mean temperature (Tmean) or composite measures of the 
thermal indices that take into account additional atmospheric variables 
such as humidity, wind speed, and solar exposure (e.g. Wet Bulb Globe 
Temperature (WBGT), apparent temperature (AT), Humidex) and HW 
classifications. HW have been previously defined as extended periods of 
hot temperatures with three or more days above 35 ◦C or using indices 
such as Excess Heat Factor (EHF) to measure intensity, load and 
duration of HW events (Nairn and Fawcett, 2015). 

Comparator Study design did not use any comparators, however the risk is estimated 
with reference to lower level of exposure. For example for hot 
temperatures studies there are generally- reference temperatures or 
thresholds beyond which there is an increase in risk or is a comparison 
between temperature percentiles while for heatwave studies the reference 
is made to non-heatwave periods. 

Outcome “Occupational Injuries” were defined as any personal injury (injury, 
illness or death) taking place at the workplace as the result of an 
occupational accident (ABS, 2018). Occupational illnesses with long 
latency periods, symptoms of heat stress and loss of productivity were 
excluded. 

Study 
Design 

Observational studies including ecological studies, prospective and 
retrospective cohort studies and case-control studies were considered for 
inclusion.  
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(2019). For studies assessing the risk using 1 ◦C increase in temperature, 
we recorded the reference temperature values and effect estimates 
associated with each 1 ◦C increase above the reference values. When 
percentile-based RR were given, we recorded the temperature values at 
the reference percentiles (e.g. 25th or 50th percentiles) and maximum 
percentiles (e.g. 75th, 95th or 99th) and the effect estimates between 
those percentile ranges. To quantify the effect estimates associated with 
a 1 ◦C increase in temperature above the reference value, we calculated 
the effect as the log RR divided by the range of temperature values at 
reference percentiles and maximum percentile in each city assuming a 
log-linear association of OI and heat beyond reference temperature (Luo 
et al., 2019; Ma et al., 2014; Sun et al., 2018). For HW studies, the effect 
estimates were extracted as RR and no conversion was performed as they 
compared the risk of OI in HW versus non-HW periods. For studies that 
focused on the same city during the same time period but stratified their 
analysis based on subgroups (e.g. one study assessing the impacts of heat 
on migrants workers (Ricco et al., 2019) and stratified their analysis into 
Islamic and non-Islamic holiday periods), we pooled the RRs using fixed- 
effect models to arrive at one estimate for city and time specific period. 

2.4. Assessment of evidence 

We used the Navigation Guide framework (Johnson et al., 2014; 
Johnson et al., 2016) to assess the strength of evidence in the reviewed 
articles. This framework offers a rigorous and transparent methodology 
for translating environmental studies including separate guidelines 
specifically for observational studies (Johnson et al., 2014; Johnson 

et al., 2016; Goodman et al., 2017; Woodruff and Sutton, 2014). The 
assessment of evidence was carried out in three steps for both hot 
temperatures studies and HW studies: Step 1: Assessment of risk of bias 
in individual studies, Step 2: Assessment of quality of evidence across 
the studies and Step 3: Assessment of the strength of evidence across the 
studies for each outcome type. 

Each stage of assessment was carried out by two authors indepen
dently (SHF and BMV) resolving any disagreement through discussion. 

2.4.1. Step 1: Assessment of risk of bias in individual studies 
The risk of bias across individual studies was assessed in the 

following domains: exposure assessment, outcome assessment, recruit
ment/selection strategy, confounding bias, incomplete outcome data, 
selective reporting and conflict of interest based on the predefined 
criteria. A predefined, unequivocal criteria was developed in each of the 
domains, modified from (Johnson et al., 2014; Woodruff and Sutton, 
2014; Achilleos et al., 2017) (Appendix B of SM). Each study was rated 
as having “Low” (L), “Probably Low” (PL), “Probably High” (PH) or 
“High” (H) probability of bias. Any disagreements among the reviewers 
were resolved through discussions until a consensus on quality was 
reached. 

2.4.2. Step 2: Assessment of quality of evidence across the studies 
The Navigation Guide framework follows the approach developed by 

the Grading of recommendations, assessment, development and evalu
ation methods (GRADE), i.e. first assigning a pre-specified rating to the 
body of evidence and then considering adjustments (upgrading and 

Fig. 1. Flow chart of the selection process to retrieve relevant studies (n = 24).  
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downgrading) based on the characteristics of the included studies 
(Johnson et al., 2016; Balshem et al., 2011). The quality ratings are not 
additive scores but serve as qualitative guidance in assessing the overall 
quality of evidence (Johnson et al., 2016). GRADE guidelines evaluate 
clinical interventions and experimental human studies i.e. randomized 
control trials as “high” quality of evidence (Guyatt et al., 2011) and 
assign “low” quality to observational studies (Balshem et al., 2011). 
However, not all observational studies are of low quality (Johnson et al., 
2014; Viswanathan et al., 2013) and the decision in the context of 
environmental health is primarily dependent on human observational 
data (Johnson et al., 2014). Therefore, in line with other methodological 
reviews (Johnson et al., 2014; Viswanathan et al., 2013) we initially 
assigned “moderate” quality to the overall body of evidence across all 
observational studies, in recognition of the value and limitations of such 
data in examining the associations between environmental exposures 
and health outcomes. 

The upgrading and downgrading of the overall body of evidence is 
based on eight specific factors including: (1) risk of bias, (2) indirect
ness, (3) inconsistency, (4) imprecision, (5) publication bias, (6) large 
magnitude of effect, (7) dose response and (8) whether confounding 
minimizes the effect. These eight factors are based on GRADE guidelines 
(Johnson et al., 2014; Balshem et al., 2011) and their criteria for eval
uation of the quality of evidence is detailed in Table C1, Appendix C of 
SM. Various statistical tests were performed to check the overall quality 
of evidence for risk of bias across the studies, inconsistencies (measured 
in terms of heterogeneity) and risk of publication bias (Higgins et al., 
2003; Higgins and Green, 2008). As a result, the possible ratings were 
0 (no change from initial quality rating), − 1 (1 level downgrade) or − 2 
(2 level downgrade); +1 (1 level upgrade) or +2 (2 level upgrade). 

Each reviewer independently evaluated the quality of evidence and 
then compared the ratings and rational for each quality factor. The 
downgrading and upgrading were conservative, and only when there 
was a compelling evidence to do so. The weighting of downgrades and 
upgrades in the overall quality assessment was done after thorough 
judgements and evidence from statistical tests. 

2.4.3. Step 3: Assessment of strength of evidence across the studies 
We rated the strength of the body of evidence provided in reviewed 

papers based on four considerations: (1) “quality of the body of evi
dence” (i.e. the study ratings from steps 1 and 2 of the assessment); (2) 
“direction of effect” (i.e. consistency in findings across studies on the risk 
of OI associated with hot temperatures or HW); (3) “confidence in the 
effects” (i.e. the likelihood of a new study changing our conclusions); 
and (4) “any other attributes that affect certainty”, as highlighted by 
Johnson and colleagues (Johnson et al., 2016; Johnson et al., 2014; 
Woodruff & Sutton, 2014). We used these considerations to assign the 
overall strength rating, according to the definitions specified in the 
Navigation Guide for “sufficient evidence”, “limited evidence”, “inade
quate evidence” or “lack of evidence” (Table C2, Appendix C of SM). 

2.5. Synthesis of results 

Quantitative synthesis was conducted in the form of meta-analysis 
and forest plots for studies assessing the risk during hot temperatures 
and HW periods. The meta-analyses were further classified into different 
climate zones for both categories of heat exposures (where possible). In 
case of studies not suitable for inclusion in the meta-analysis, we syn
thesized the study findings narratively and added these to the relevant 
climate zone results section. 

2.5.1. Meta-analyses 
There were two steps in the statistical analysis to meet the specific 

research questions of the study: (1) separately pooling estimates for hot 
temperatures and HW overall and by climate zones using random-effects 
models; and (2) performing subgroups analysis. 

We estimated the pooled RR of OI associated with exposure to hot 

temperature overall and separately for each of the climate zones where 
possible (when total number of city/province-specific effect estimates 
(K) were greater than equal to two i.e. K ≥ 2). While different temper
ature metrics were used in the included studies, we pooled the RR 
regardless of the exposure metric due to the strong correlation between 
different measurements of temperature which suggests that on average, 
they have the similar predictive ability (Varghese et al., 2019). 

For HW studies separate meta-analyses were conducted to pool RR of 
OI during HW compared to non-HW periods overall and in each climate 
zone where possible (i.e. K ≥ 2). The studies included in this review used 
different definitions of HW. In some studies, HW were defined as Tmax 
≥ 35 ◦C for three or more consecutive days (Ricco, 2018; Ricco et al., 
2020; Ricco et al., 2019; Rameezdeen and Elmualim, 2017; McInnes 
et al., 2018; Xiang et al., 2014). Varghese et al. (2019, 2018) used the 
dimensionless location-specific EHF index to assess HW, developed by 
Nairn and Fawcett (2015). EHF accounts for both short-term and long- 
term temperature anomalies by comparing the location specific three 
day Tmean with the 95th percentile of Tmean and the preceding 30 days 
Tmean (Nairn and Fawcett, 2015; Scalley et al., 2015). EHF is thus a 
potentially useful indicator to assess the effect of HW at a local popu
lation level on health outcomes. 

While the HW definitions used in these studies differ, they quantify 
the risk of heat-related OI in relation to temperatures above the 95th 
percentile (i.e. 35 ◦C) (Rameezdeen and Elmualim, 2017; McInnes et al., 
2018; Xiang et al., 2014). That is also captured by the studies using the 
EHF definition (Varghese et al., 2019; Varghese et al., 2018). Hence, we 
combined all the HW studies together for meta-analysis and presented 
them separately for different climate zones (where possible). It should 
be noted that for HW studies temperature variable was not included in 
the models and all studies modelled HW as the lagged effect of three or 
more days of hot temperatures. A random-effects meta-analysis was 
performed to obtain pooled results in different climate zones for both 
hot temperatures and HW studies considering the heterogeneity in 
included studies (for example based on different study designs, 
geographical locations, workforce characteristics etc.). Random-effects 
models assume that there may be different underlying true effects esti
mated in each trial which are distributed about an overall mean and are 
appropriate when heterogeneity between studies is anticipated. The I2 

statistic was calculated to quantify the degree of heterogeneity (Higgins 
et al., 2003). I2 values of 0–25%, 25–50% and >50% were taken as 
indicative of low, moderate and high heterogeneity, respectively (Hig
gins et al., 2003). 

In addition to I2, we also used the 80% prediction intervals (PI) to 
assess heterogeneity between studies in line with previous systematic 
reviews (Orellano et al., 2020; Lee et al., 2020). We considered severe 
heterogeneity when the 80% PI contained unity and was twice the width 
of confidence intervals. A series of sensitivity analyses were conducted 
to explore the potential causes of heterogeneity using overall pooled 
estimates from all studies. Leave-one-out analysis was performed by 
iteratively removing one study at a time to confirm that our findings 
were not driven by any single study. Further, a set of sensitivity analyses 
were also conducted to calculate the pooled estimates for hot tempera
ture studies based on different exposure metrics (Tmax, Tmean, thermal 
indices), exposure assessment datasets (single/multiple weather station 
data vs gridded, geolocated or satellite data) and unit of estimate (1 ◦C 
increase in temperature vs comparing percentiles). For HW studies 
sensitivity analysis was carried out based on exposure assessment 
datasets and different definitions of HW. Publication bias was evaluated 
for both hot temperature and HW studies (where possible) using Funnel 
plots, Begg’s and Egger’s tests (Egger et al., 1997). We further used 
Duval and Tweedie’s Trim and Fill procedure (Duval and Tweedie, 
2000) with random-effects model to recompute the pooled effect sizes 
after adjusting for small study bias. 

2.5.2. Subgroup analyses 
Subgroup analyses were conducted by workers characteristics (such 
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as gender, age, experienced vs new workers), nature of work (such as 
physical demands and location of work outdoors and indoors) and 
workplace characteristics (such as type of industries and business size). 
Additional subgroup analysis based on study characteristics (such as 
region, study design and modelling techniques) was also carried out. To 
accommodate the different age group categories across included studies, 
we stratified pooled estimates for different age groups as age below 35 
years and above 35 years and excluded Adam-Poupart et al. (2015) and 
Ricco et al. (2020) as the age groups did not match with other studies. 
Subgroup analysis by workers, nature of work, and workplace charac
teristics was not conducted in different climate zones because of limited 
number of studies (K < 2). 

All analyses were performed using ‘Metan’ command in Stata version 
15 (Stata Corp 2013, Harris et al., 2008). 

3. Results 

3.1. Included studies 

Our search retrieved a total of 5841 records. After eliminating 
duplicate records, 4822 unique records remained. Another 738 articles 
were excluded because they were either reviews, editorials, conference 
papers or in other languages. A total of 4023 articles out of the 
remaining 4084 were excluded as a result of initial screening of titles 
and abstracts based on inclusion and exclusion criteria. The remaining 
61 articles were assessed for full-text eligibility. Thirty-seven articles 
were excluded because they did not report an association between 
extreme heat and risk of OI or did not use a direct measure of extreme 
heat to quantify the risk. The remaining 24 articles were selected for the 
full-text review as shown in Fig. 1. 

3.2. Characteristics of included studies 

All studies included in the full text review were published in the past 
fifteen years between January 2005 and July 2020, although no date 
restriction was applied to the search. All studies used either a time series 

(n = 14) or case-crossover (n = 10) study designs. Two nationwide 
studies (Marinaccio et al., 2019; Martínez-Solanas et al., 2018) esti
mated the location-specific risk in all provinces of Italy and Spain. Three 
studies from Italy and Australia were multi-city studies representative of 
different climates, and 19 studies were representative of only one city/ 
state/province from various countries such as Australia, Canada, USA, 
and China. Together, all studies encompass nine climate zones, with a 
majority of studies representative of mid-latitude temperate climatic 
zones. Fig. 2 shows the geographic distribution of studies within 
different climate zones. Sixteen studies were focused on all workers, 
whereas, eight studies were focused on specific group of workers such as 
agriculture workers (Ricco, 2018; Spector et al., 2016), construction 
workers (Calkins et al., 2019; Ricco et al., 2020; Rameezdeen and 
Elmualim, 2017), aluminum smelter workers (Fogleman et al., 2005), 
disaster relief workers (Garzon-Villalba et al., 2016) and migrant 
workers (Ricco et al., 2019). 

Sixteen studies assessed the risk of OI in hot temperatures only, while 
three studies estimated the risk in both hot temperatures and HW pe
riods, and five studies assessed the risk exclusively during HW. In total, 
19 studies were used to assess the risk of OI associated with hot tem
peratures. The study characteristics are given in Table 2. Eight studies 
were used to assess the risk of OI during HW periods, and their study 
characteristics are presented in Table 3. 

3.3. Assessment of evidence 

3.3.1. Assessment of risk of bias in individual studies 
The risk of bias assessment of the included studies (hot temperature 

and HW studies) is summarized in Figs. 3 and 4. Detailed risk of bias 
assessment of all individual studies is presented in Tables D1–D24, 
Appendix D of SM. 

3.3.1.1. Hot temperature studies. Two out of 19 (11%) hot temperature 
studies (Sheng et al., 2018; Ma et al., 2019) assessing the risk of OI had a 
“probably high” risk of bias in recruitment/selection strategy, as the 
baseline data were representative of only 54% of the workers’ 

Fig. 2. Geographic distribution of published studies included in the review (n = 24) within nine climate zones.  
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Table 2 
Study characteristics and key findings of all studies assessing the risk of OI in hot temperature conditions (n = 19).  

First Author, 
Year 

Location Climate Study Population Study 
Design 

Exposure metric and 
source 

Key findings ES(CI) 

Fogleman 
et al., 2005 

Midwest US Humid and Warm Continental Climates Aluminum smelter 
workers 

TS Daily Heat Index 
Comparing Percentiles: 
Ref Heat Index: 13.5 
Threshold Heat Index: 
38 

RR: 1.050 (1.024–1.076) 

Morabito 
et al., 2006 

Tuscany, Italy Hot Mediterranean Climates All occupations TS Daily maximum AT 
Daily average AT 
Maximum AT ≥ 31.1 ◦C 

X2 = 9.3 
P-value = 0.025 
Reversed U shape response 

Xiang et al., 
2014 

Adelaide, 
Australia 

Warm Mediterranean Climates All occupations TS 1 ◦C increase in Tmax IRR: 1.002 (1.001–1.004) 
Gender 
M: 1.004 (1.002–1.006) 
F: 0.998 (0.994–1.001) 
Age 
≤24: 1.005 (1.002–1.008) 
25–34: 1.002 
(0.999–1.003) 
35–54: 1.001 
(0.999–1.003) 
≥55: 1.000 (0.997–1.003) 
Industries 
Agriculture: 1.007 
(1.001–1.013) 
Construction: 1.006 
(1.002–1.011) 
Reverse U shaped response 
with no lagged effect 

Adam-Poupart 
et al., 2015 

Quebec, 
Canada 

Humid and Warm Continental Climates: 
Bas-Saint Laurent, Capitale Nationale, 
Maurice, Estrie, Montreal, Outaoais, Abitibi- 
Temiscamingue, Chaudere-Appalaches, 
Laval, Lanaudiere, Laurentides, Montrege 
Subarctic: Sanguenay-Lac-Saint_Jaen, Cote- 
Nord, Nord-du-Quebec, Gaspesia-lies-de-la- 
Madeleine 

All occupations TS 1 ◦C increase in Tmax IRR: 1.002 (1.001–1.003) 
Gender 
M: 1.003 (1.002–1.005) 
F: 1.000 (0.998–1.003) 
Age 
15–24: 1.008 
(1.005–1.010) 
25–44: 1.003 
(1.001–1.004) 
≥45: 1.000 (0.999–1.001) 
Industries 
Forestry and logging: 1.011 
(1.001–1.020) 
Construction: 1.003 
(1.000–1.006) 
Linear and lagged response 

Garzon- 
Villalba 
et al., 2016 

Gulf of Mexico, 
US 

Humid Subtropical Climates Disaster relief workers TS 1 ◦C increase in 
WBGTmax 

RR: 1.060 (1.040–1.070) 
No delayed effect for acute 
injuries 

Spector et al., 
2016 

Washington, US Warm Mediterranean Climates Agriculture Workers CCO 1 ◦C increase in 
Humidex 

OR: 1.010 (1.010–1.020) 
Reverse U shaped curve 

Martínez- 
Solanas 
et al., 2018 

Spain Oceanic: Alava, Asturias, Burgos, Cantabria, 
Guipzcoa, Huesca, La Rioja, Leon, Lugo, 
Navarra, Palencia, Soria, Teruel, Vallodoid, 
VizcayaWarm Mediterranean: A coruna, 
Avila, Pontevedra, Salamanca, Segovia, 
Hot Mediterranean: Badajoz, Barcelona, 
Caceres, Cadiz, Cordoba, Cuenca, Granada, 
Girona, Guadalajara, Huelva, Jaen, Madrid, 
Malaga, Ourense, Sevilla, Tarragona Hot 
Semi-arid: Alicante, Murcia, Santa Cruz de 
Tenerife, Cold Semi-arid: Albacante, 
Almeria, Castellon, Ciudad Real, Illes 
Balears, Lleida, Toledo, Valencia, Zamora, 
Zaragoza. Hot Desert: Las Palmas 

All occupations CCO Comparing percentiles: 
Average Ref Tmax: 
14.98 ◦C 
Average Threshold 
Tmax: 34.9 ◦C 

Overall RR: 1.004 
(1.003–1.005) 
Gender 
M: 1.004 (1.003–1.005) 
F: 1.002 (1.000–1.003) 
Age 
≤24: 1.005 (1.003–1.006) 
25–34: 1.003 
(1.002–1.004) 
35–54: 1.003 
(1.002–1.004) 
≥55: 1.002 (1.001–1.004) 
Industries 
Agriculture: 1.012 
(1.010–1.015) 
Construction: 1.004 
(1.002–1.005) 
U shaped trend and lag effect 
of 1 or 2 days and to less 
extent 3and 4 days 

McInnes et al., 
2017 

Melbourne, 
Australia 

Oceanic Climates All occupations CCO 1 ◦C increase in Tmax OR: 1.002 (0.999–1.004) 
Gender 
M: 1.003 (1.000–1.006) 
F: 0.999 (0.994–1.005) 
Age 
<25: 1.008 (1.001–1.015) 

(continued on next page) 
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Table 2 (continued ) 

First Author, 
Year 

Location Climate Study Population Study 
Design 

Exposure metric and 
source 

Key findings ES(CI) 

25–34: 1.002 
(0.996–1.007) 
35–44: 1.004 
(0.999–1.009) 
45–54: 0.999 
(0.994–1.003) 
≥55: 0.998 (0.987–1.002) 

Sheng et al., 
2018 

Guangzhou, 
China 

Humid Subtropical Climates All occupations CCO 1 ◦C increase in daily 
Tmax and Tmin 

RR: 1.014 (1.012–1.017) 
Gender 
M: 1.014 (1.011–1.016) 
F: 1.015 (1.008–1.021) 
Age 
≤24: 1.005 (0.998–1.012) 
25–34: 1.018 
(1.013–1.024) 
35–44: 1.021 
(1.017–1.024) 
45–54:1.009 (1.001–1.016) 
≥55: 0.989 (-) 
Industries 
Manufacturing: 1.019 
(1.015–1.022) 
Finance, property and 
business: 1.014 
(1.009–1.019) 

Ricco, 2018 Trento, Italy Humid Subtropical Climates Agricultural workers TS Comparing percentiles, 
Ref Tmax: 33.2 ◦C 
Threshold Tmax >
37.1 ◦C 

RR: 1.034 (1.007–1.060) 
Lagged effect and linear 
increase 

Calkins et al., 
2019 

Washington, US Warm Mediterranean Climates Construction Workers CCO 1 ◦C increase in dry 
bulb temperature 

OR: 1.007 (1.005–1.009) 
Age 
18–24: 1.008 
(1.004–1.014) 
25–34: 1.005 
(1.002–1.008) 
35–44: 1.003 (0.98–1.005) 
45–54: 1.004 (0.99–1.008) 
≥55: 1.010 (1.002–1.080) 
Linear increase in risk 

Dillender, 
2019 

Texas, US Humid Subtropical Climates All occupations TS Comparing percentiles, 
Ref Tmax: 15.5 ◦C 
Threshold Tmax >
37.7 ◦C 

RR: 1.019 (1.009–1.027) 
Age 
Statistically significant risk 
in workers younger then 40 
years of age at 37.7 ◦C 

Ma et al., 2019 Guangzhou, 
China 

Humid Subtropical Climates All occupations TS Comparing percentiles, 
Ref WBGTmax: 24 ◦C 
Threshold WBGTmax 
> 30 ◦C 

RR: 1.023 (1.008–1.033) 
Gender 
M: 1.023 (1.015–1.034) 
F: 1.021 (1.001–1.042) 
Age 
<35: 1.021 (1.006–1.035) 
35–44: 1.024 
(1.009–1.041) 
>44: 1.023 (0.998–1.046) 
No evidence of delayed effect 
between WBGTmax and OI 

Marinaccio 
et al., 2019 

All provinces of 
Italy (110) 

Oceanic: Aosta, Arezzo, Belluno, Biella, 
Bolzano, Campobasso, Como, Cuneo, 
L’Aquilla, Varese, Verbano-Cusio-Ossola, 
Warm Mediterranean: Ogliastra, Potenza, 
Humid Subtropical: Alessandria, Ancona, 
Ascoli Piceno, Asti, 
Barletta-Andria-Trani, Bergamo, Bologna, 
Brescia, Chieti, Cremona, Fermo, Ferrara, 
Foggia, Forlì-Cesena, Genova, Gorizia, 
Macerata, Lecco, Mantova, Milano, Modena, 
Monza e della, Brianza, Novara, Padova, 
Parma, Pavia, Perugia, Pesaro e Urbino, 
Pescara, Piacenza, Pordenone, 
Ravenna, Reggio nell’Emilia, Rieti, Rimini, 
Rovigo, Sondrio, Teramo, Trento, Torino, 
Treviso, Trieste, Venezia, Udine, Vercelli, 
Verona, Vicenza Hot Mediterranean: 
Agrigento, Avellino, Bari, Benevento, 
Brindisi, Cagliari, Caltanissetta, Carbonia- 
Iglesias, Caserta, Catania, Catanzaro, 

Specific occupations TS Comparing percentiles: 
Average Ref Tmean 
(25th Percentile): 
11.5 ◦C 
Average Threshold 
Tmean (75th 
Percentile): 20.5 ◦C 

Overall RR: 1.017 
(1.015–1.020) 
Gender 
M: 1.019 (1.015–1.023) 
F: 1.007 (1.002–1.013) 
Age 
15–34: 1.023 
(1.017–1.027) 
35–60: 1.013 
(1.009–1.060) 
>60: 0.989 (0.974–1.007) 
Industries 
Construction: 1.027 
(1.020–1.033) 
Lag effect up to 2 days and U 
shaped relationship between 
daily mean temperature and 
OI 

(continued on next page) 
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Table 2 (continued ) 

First Author, 
Year 

Location Climate Study Population Study 
Design 

Exposure metric and 
source 

Key findings ES(CI) 

Cosenza, Crotone, Enna, Firenze, Frosinone, 
Grosseto, Imperia, Isernia, La Spezia Latina 
Lecce Livorno, Lodi, Lucca, Massa Carrara, 
Matera, Medio Campidano Messina, Napoli 
Nuoro Olbia-Tempio Oristano Palermo 
Pistoia, Prato,Pisa, Ragusa, Reggio di 
Calabria, Roma, Salerno, Sassari Savona 
Siena Siracusa Terni, Trapani, Vibo Valentia, 
Viterbo, Cold Semi Arid: Tarranto, 

Ricco et al., 
2019 

Trento, Italy Humid Subtropical Climates All occupations in 
Migrant workers in 
comparison to local 
workers 

TS Pooled the estimates for 
Islamic and non-Islamic 
holiday periods for 
warm season 
Ref Tmax: 21.4 ◦C 
Threshold Tmax >
25 ◦C  

RR: 0.965 (0.871–1.035) 

Schifano et al., 
2019 

Turin, Milan 
and Rome, Italy 

Humid Subtropical: Turin and Milan 
Hot Mediterranean: Rome 

All occupations CCO Comparing percentiles, 
Turin: 
Ref Tmax:26 ◦C 
Threshold Tmax:33 ◦C 
Milan: 
Ref Tmax:21 ◦C 
Threshold Tmax:34 ◦C 
Rome: 
Ref Tmax:24 ◦C 
Threshold Tmax:32 ◦C  

Turin 
RR: 1.002 (0.998–1.008) 
Industries 
Agriculture: 0.976 
(0.927–1.063) 
Construction: 1.009 
(0.992–1.027) 
Electricity: 1.063 
(0.992–1.135) 
Transportation: 1.000 
(0.983–1.017) 
Milan 
RR: 1.000 (0.998–1.003) 
Industries 
Agriculture: 0.998 
(0.946–1.067) 
Construction: 1.005 
(0.997–1.021) 
Electricity: 1.034 
(1.002–1.066) 
Transportation: 1.003 
(0.996–1.010) 
Rome 
RR: 1.000 (0.998–1.002) 
Industries 
Agriculture: 1.004 
(0.975–1.035) 
Construction: 1.007 
(1.001–1.014) 
Electricity: 1.000 
(0.979–1.020) 
Transportation: 1.004 
(1.000–1.016) 

Varghese 
et al., 2019 

Adelaide, 
Australia 

Warm Mediterranean Climates All occupations CCO Comparing percentiles, 
Ref Tmax: 25 ◦C 
Threshold Tmax: 
40.6 ◦C 

RR: 1.016 (1.010–1.023) 
Gender 
M: 1.015 (1.007–1.023) 
F: 1.019 (1.008–1.030) 
Age 
15–24: 1.026 
(1.011–1.041) 
25–34: 1.004 
(0.990–1.018) 
35–54: 1.021 
(1.011–1.030) 
>55: 1.011 (0.993–1.028) 
Industries 
Agriculture: 1.091 
(1.014–1.169) 
Electricity: 1.141 
(1.067–1.215) 
Non-Linear Increase in risk (J 
shaped curve) 

Varghese 
et al., 2019 

Melbourne 
Brisbane 
Perth, Australia 

Oceanic: Melbourne 
Humid Subtropical: Brisbane 
Hot Mediterranean: Perth 

All occupations CCO Comparing percentiles, 
Melbourne: 
Ref Tmax: 20 ◦C 
Threshold Tmax >
38.9 ◦C 
Brisbane: 

Melbourne 
RR: 1.006 (1.001–1.011) 
Gender 
M: 1.003 (0.996–1.010) 
F: 1.012 (1.003–1.021) 
Age 

(continued on next page) 
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population. Sixty eight percent of the hot temperature studies (Adam- 
Poupart et al., 2015; Ricco, 2018; Martínez-Solanas et al., 2018; Var
ghese et al., 2019; Garzon-Villalba et al., 2016; Schifano et al., 2019; 
Varghese et al., 2019; Fogleman et al., 2005; Morabito et al., 2006; 
McInnes et al., 2017; Xiang et al., 2014; Sheng et al., 2018; Ma et al., 
2019) had “probably high” risk in exposure assessment. A majority of 
the studies used meteorological data from a single weather station or an 

average of multiple stations. Relatively few studies used gridded data 
(Spector et al., 2016; Calkins et al., 2019; Dillender, 2019) or satellite 
data (Marinaccio et al., 2019) or geolocated data (Ricco et al., 2020; 
Ricco et al., 2019) for exposure assessment. For outcome assessment, all 
studies had “probably low” to “low” risk of bias because of the use of 
national or regional databases that used standard measures of OI, 
although underreporting is possible. Around 32% of the studies (Ricco, 

Table 2 (continued ) 

First Author, 
Year 

Location Climate Study Population Study 
Design 

Exposure metric and 
source 

Key findings ES(CI) 

Ref Tmax: 26.7 ◦C 
Threshold Tmax >
34.7 ◦C 
Perth: 
Ref Tmax: 23.7 ◦C 
Threshold Tmax >
40.1 ◦C  

15–24: 1.007 
(0.992–1.022) 
25–34: 1.011 
(1.000–1.023) 
35–54: 1.005 
(0.998–1.013) 
>55: 1.002 (0.989–1.015) 
Industries 
Transport and 
warehousing: 1.024 
(1.008–1.040) 
Brisbane 
RR: 0.997 (0.985–1.010) 
Gender 
M: 1.001 (0.985–1.016) 
F: 0.992 (0.972–1.013) 
Age 
15–24: 1.018 
(0.986–1.049) 
25–34: 1.006 
(0.978–1.031) 
35–54: 0.998 
(0.981–1.016) 
>55: 0.962 (0.929–0.993) 
Industries 
Agriculture: 1.080 
(0.958–1.201) 
Perth 
RR: 1.009 (1.001–1.018) 
(Traumatic injuries only) 
Gender 
M: 1.004 (0.997–1.010) 
F: 0.994 (0.985–1.004) 
Age 
15–24: 1.008 
(0.996–1.020) 
25–34: 0.994 
(0.983–1.005) 
35–54: 1.001 
(0.993–1.009) 
>55: 0.998 (0.984–1.013) 
Industries 
Electricity, gas and water: 
1.025 (0.978–1.074) 
Non-Linear relationship and 
the impacts of hot 
temperatures on OI were 
acute 

Ricco et al., 
2020 

Trento, Italy Humid Subtropical Climates Construction workers TS Comparing percentiles, 
Ref Tmean: 21 ◦C 
Threshold Tmax > 25.3 

RR: 1.031 (1.013–1.040) 
Age 
<20: 1.115 (1.016–1.213) 
20–29: 1.088 
(1.042–1.134) 
30–39: 1.046 
(1.000–1.092) 
40–49: 1.057 
(1.006–1.107) 
≥50: 0.983 (0.910–1.057) 
Lagged effect and linear 
increase 

Note: All values are converted to increase in risk associated with 1 ◦C increase in temperature above reference value. Risk is estimated in terms of overall risk and risk in 
subgroups such as age, gender and type of industries where available. * Two studies (Marinaccio et al., 2019; Martínez-Solanas et al., 2018) are representative of 
nationwide estimates. The results given in this table represent the overall estimates. Risk is measured in terms of effect sizes and confidence intervals ES(CI). For 
exposure metrics, following abbreviations were used: AT (Apparent temperature), WBGT (Wet Bulb Globe Temperature) and study design TS (Time Series), CCO (case 
crossover). 
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Table 3 
Study characteristics and key findings of all studies assessing the risk of OI during HW periods.  

First Author, Year Location Climate Study Population Study 
Design 

Exposure metric and source Key findings ES(CI) 

Xiang et al., 2014 Adelaide, 
Australia 

Warm Mediterranean 
Climates 

All occupations TS HW (3 consecutive days Tmax ≥
35 ◦C) 

IRR: 0.983 (0.943–1.024) 
Gender 
M: 1.001 (0.947–1.012) 
F: 0.935 (0.897–0.974) 
Age 
≤ 24 1.035 (0.981–1.091) 
25–34 0.973 
(0.928–1.019) 
35–54 0.951 
(0.898–1.007) 
≥55 1.024 (0.940–1.115) 
Industries 
Agriculture 1.447 
(1.125–1.861) 
Electricity, gas and water 
1.297 (1.049–1.604) 

Rameezdeen and 
Elmualim, 2017 

Adelaide, 
Australia 

Warm Mediterranean 
Climates 

Construction workers TS HW (3 consecutive days Tmax ≥
35 ◦C) 

IRR: 0.970 (0.960–1.010) 

McInnes et al., 2018 Melbourne, 
Australia 

Oceanic Climates All occupations CCO HW (3 consecutive days Tmax ≥
35 ◦C) 

OR: 1.090 (0.870–1.360) 
Gender 
M: 1.170 (0.900–1.510) 
F: 0.930 (0.610–1.420) 
Age 
<35: 0.970 (0.650–1.450) 
35–49: 1.280 
(0.930–1.780) 
≥50: 0.940 (0.590–1.480) 

Ricco, 2018 Trento, Italy Humid Subtropical 
Climates 

Agriculture workers TS HW (3 consecutive days Tmax ≥
35 ◦C) 

OR: 1.090 (1.020–1.170) 

Varghese et al., 2018 Adelaide, 
Australia 

Warm Mediterranean 
Climates 

All occupations CCO EHF (moderate/high-severity HW 
days) 

RR: 1.080 (1.010–1.160) 
Gender 
M: 1.130 (1.030–1.230) 
F: 0.990 (0.870–1.130) 
Age 
15–24: 1.150 
(0.970–1.360) 
25–34: 1.110 
(0.950–1.300) 
35–54: 1.080 
(0.970–1.200) 
>55: 0.970 (0.78–1.18) 

Ricco et al., 2019 Trento, Italy Humid Subtropical 
Climates 

All occupations in 
migrant workers 

TS Risk of OI in migrant workers during 
HW (3 consecutive days Tmax ≥
35 ◦C) 

OR: 1.749 (1.014–3.017) 

Varghese et al., 2019 Melbourne, 
Australia 
Brisbane, 
Australia 
Perth, Australia 

Oceanic: Melbourne 
Humid Subtropical: 
Brisbane 
Hot Mediterranean: 
Perth 

All occupations CCO EHF (moderate/high-severity HW 
days) 

Melbourne 
RR: 1.250 (1.220–1.280) 
Gender 
M: 1.290 (1.250–1.330) 
F: 1.180 (1.150–1.230) 
Age 
15–24: 1.270 
(1.190–1.350) 
25–34: 1.310 
(1.240–1.370) 
35–54: 1.260 
(1.220–1.300) 
>55: 1.180 (1.120–1.240) 
Brisbane 
RR: 1.450 (1.420–1.480) 
Gender 
M: 1.500 (1.460–1.540) 
F: 1.350 (1.300–1.400) 
Age 
15–24: 1.550 
(1.470–1.630) 
25–34: 1.560 
(1.490–1.630) 
35–54: 1.420 
(1.370–1.460) 
>55: 1.300 (1.230–1.370) 
Perth 
RR: 1.260 (1.240–1.290) 
Gender 

(continued on next page) 
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2018; Xiang et al., 2014; Ma et al., 2019; Garzon-Villalba et al., 2016; 
Fogleman et al., 2005; Morabito et al., 2006) had “probably high” risk of 
confounding bias because some of the critical confounders (Peng et al., 

2006) such as seasonality, time trends, day of the week, size of the 
workforce and additional confounders such as weather parameters and 
holidays were not taken into account. All studies had a “probably low” 

Table 3 (continued ) 

First Author, Year Location Climate Study Population Study 
Design 

Exposure metric and source Key findings ES(CI) 

M: 1.290 (1.260–1.320) 
F: 1.200 (1.160–1.240) 
Age 
15–24: 1.290 
(1.230–1.350) 
25–34: 1.270 
(1.220–1.330) 
35–54: 1.260 
(1.220–1.300) 
>55: 1.210 (1.150–1.280) 

Ricco et al., 2020 Trento, Italy Humid Subtropical 
Climates 

Construction workers TS HW (3 consecutive days Tmax ≥
35 ◦C) 

OR: 1.230 (1.144–1.322) 
Age 
< 20: 1.892 (1.449–2.470) 
20–29: 1.125 
(1.971–1.305) 
30–39: 1.168 
(1.020–1.337) 
40–49: 1.323 
(1.146–1.527) 
≥50: 1.156 (0.958–1.396) 

Note: Risk is estimated in terms of overall risk and risk in subgroups such as age, gender and type of industries where available. Risk is measured in terms of effect sizes 
and confidence intervals ES(CI). 

Fig. 3. Summary of the risk of bias assessment in the individual studies (hot temperatures studies n = 19) (A) shows the traffic plot of individual assessments and (B) 
shows the percentage plot given as percentages across all included hot temperature studies). Note: The probability of bias is assessed as High (H), Probably High (PH), 
Probably Low (PL) and low (L). The plots were created using Risk of Bias Visualization (ROBVIS) tool (McGuinness and Higgins, 2020). 
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risk of bias in other domains i.e. incomplete datasets, selective reporting 
and conflict of interest. 

3.3.1.2. Heatwave studies. All HW studies were found to be at “low” risk 
of recruitment/selection bias. Seventy five percent of HW studies (Ricco, 
2018; Rameezdeen and Elmualim, 2017; McInnes et al., 2018; Xiang 
et al., 2014; Varghese et al., 2019; Varghese et al., 2018) had “probably 
high” risk in exposure assessment. For outcome assessment, all studies 
had “low” to “probably low” risk of bias. Thirty eight percent of HW 
studies (Ricco, 2018; Rameezdeen and Elmualim, 2017; Xiang et al., 
2014) had “probably high” risk of confounding bias because some of the 
critical confounders such as seasonality, time trends, day of the week, 
size of the workforce and additional confounders such as weather pa
rameters and holidays were not taken into account. All studies had a 
“low” probability of bias in other domains: incomplete datasets, selec
tive reporting and conflict of interest. 

3.3.2. Assessment of quality of evidence across the studies 
The description and rationale of the assessment of the overall cer

tainty of evidence assessing the risk of OI associated with extreme heat 
(hot temperatures and HW) is given in Table 4. 

3.3.2.1. Hot temperature studies. The certainty of evidence for hot 
temperature studies was not downgraded for any of the downgrading 
factors but was upgraded for dose response category as all studies sug
gested an exposure response gradient. The overall certainty of evidence 
was therefore upgraded to “high” for the observational studies assessing 
the risk of OI associated with hot temperatures. 

3.3.2.2. Heatwave studies. We downgraded the certainty of evidence for 
HW studies for high risk of bias and inconsistencies and upgraded the 
certainty of evidence for dose response category. The overall quality of 
evidence was therefore downgraded to “low” for the observational 
studies assessing the risk of OI associated with heatwaves. 

3.3.3. Assessment of strength of evidence across the studies 
The quality of the body of evidence was found to be “high” for hot 

temperature studies and “low” for HW studies (Table 4). 

3.3.3.1. Hot temperature studies. The direction of the effect estimates 
indicated an increase in the risk of OI with exposure to hot temperatures. 
There is high confidence in effect estimates and it is unlikely that a new 
study would make the results of the meta-analysis null or statistically 
insignificant for evidence. The assessment of strength of evidence sug
gested that there was “sufficient” evidence that exposure to hot tem
peratures affect OI in non-military workers. 

3.3.3.2. Heatwave studies. The direction of the effect estimates indi
cated an increase in the risk of OI with exposure to HW. However, the 
assessment of strength of evidence suggested that there was “limited” 
evidence that exposure to HW affects OI in non-military workers. 

3.4. Synthesis of findings on extreme heat exposure on OI 

Extreme heat exposure were assessed in terms of hot temperatures 
and HW. The following sections synthesize the evidence for hot tem
perature and HW studies in different climate zones (where possible). 

3.4.1. Hot temperatures and the risk of OI 
In total, 194 observations from 17 studies were considered for the 

meta-analysis in nine different climate zones. Two studies were 
excluded from the meta-analysis; Morabito et al., (Morabito et al., 2006) 
used a different outcome assessment metric and Ma et al., (Ma et al., 
2019) was excluded because of the use of overlapping datasets. A 
summary of our meta-analysis results for all included hot temperature 
studies is presented in Table 5. For every 1 ◦C increase above reference 
temperature (mean reference temperature across all observations =
20.9 ◦C), the heat associated risk of OI increased by 1% (RR 1.010, 95% 
CI: 1.009–1.011). The results of meta-analyses by each climate zone are 
further presented in next sections. 

3.4.1.1. Humid Subtropical Climates. Based on 56 effect estimates from 
nine studies (Ricco, 2018; Marinaccio et al., 2019; Varghese et al., 2019; 
Sheng et al., 2018; Garzon-Villalba et al., 2016; Schifano et al., 2019; 

Fig. 4. Summary of the risk of bias assessment in the individual studies (HW studies n = 8) (A) shows the traffic plot and (B) shows the percentage plot given as 
percentages across all included HW studies. Note: The probability of bias is assessed as High (H), Probably High (PH), Probably Low (PL) and low (L). The plots were 
created using Risk of Bias Visualization (ROBVIS) tool (McGuinness and Higgins, 2020). 
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Table 4 
Summary of findings, quality of evidence and strength of evidence for hot temperature exposure (n = 19) and HW periods (n = 8) and the risk of OI.   

Hot temperature studies (n = 19) Heatwave studies (n = 8) 
Quality  
factor  
Categories 

Ratings Rationale Ratings  

Downgrade considerations 
Risk of Bias across 

studies 
(0) We have found “probably high risk of bias” for 32% of the 

studies. The sensitivity analysis of high risk of bias studies 
revealed statistical differences between studies with low/ 
probably low versus probably high risk of bias, but majority of 
studies showing high risk of bias had small weight on the results, 
therefore we did not downgrade for risk of bias (Fig. E1, 
Appendix E of SM). 

(− 1) We have found “probably high risk of bias” in 38% of studies in 
overall risk of bias. The sensitivity analysis of high risk of bias 
studies revealed significant statistical differences between 
studies with low/probably low versus probably high risk of bias 
(Fig. F1, Appendix F of SM). Therefore we downgraded the 
rating based on risk of bias assessment. 

Indirectness (0) Most studies are representative of appropriate proportion of 
population of interest. OI were identified under standard 
definitions in most studies. Direct measures of exposure are used 
in most studies. 

(0) Most studies are representative of appropriate proportion of 
population of interest. OI were identified under standard 
definitions in most studies. Direct measures of exposure are used 
in most studies. 

Inconsistency (0) The evidence of quality was not downgraded for inconsistencies. 
The I2 value of heterogeneity was found to be I2 = 95.1% for 
overall all hot temperatures studies but 80% prediction intervals 
did not contain unity and were narrow as compared to 
confidence intervals (Fig. E2, Appendix E of SM).Further, “Leave 
One Out Analysis” also showed that the risk estimates were not 
significantly affected by individual studies (Table E1, Appendix 
E of SM).Sensitivity analysis based on exposure metrics (such as 
Tmax, Tmin, or thermal indices) indicated slightly higher 
estimates for studies that used heat indices instead of Tmax and 
Tmean. Different exposure assessment datasets (such as single or 
average weather station data or gridded/geolocated or satellite 
data) or the unit of estimate (i.e. 1 ◦C increase in temperature or 
comparing percentiles) (Table E2, Appendix E of SM) did not 
reveal major differences.It should also be noted that the I2 value 
of heterogeneity reduced to 89.3% after classifying the studies 
into different climate zones and standardizing the data and 
conversion to increase in risk per 1 ◦C temperature (Table E3, 
Appendix E of SM). 

(− 1) Considerable heterogeneity was found across the studies, I2 =

98.9%. Moreover, prediction intervals contain unity and are 
double of confidence intervals (Fig. F2, Appendix F of SM). 
Therefore we downgraded the quality of evidence for 
heterogeneity.Leave One Out Analysis and Sensitivity analysis 
based on different exposure assessment datasets (such as single 
or average weather station data or gridded/geolocated or 
satellite data) and different HW definitions (i.e. three or more 
days of Tmax ≥ 35 ◦C or heat indices such as EHF) are given in 
Table F1 and F2, Appendix F of SM. The results indicated higher 
estimates for studies using EHF definition of HW. 

Imprecision (0) Most studies had sufficiently narrow confidence intervals. (0) Most studies had sufficiently narrow confidence intervals. 
Publication Bias (0) Funnel plots of hot temperature studies (Fig. E3, Appendix E of 

SM) showed an asymmetrical distribution and Egger’s test were 
significant (p = 0.015), indicating a potential risk of publication 
bias. The Trim and Fill method was carried out imputing three 
studies adding to a total of 21 hot temperature studies (Fig. E4, 
Appendix E of SM) to adjust for pooled RR from small study bias. 
The observed pooled RR was 1.010 (95% CI: 1.007–1.013) and 
the imputed point RR was very similar (1.009, 95% CI: 
1.006–1.012). Therefore we did not downgrade the quality of 
evidence for potential risk of publication bias. 

(0) Number of studies included in the meta-analysis were too small 
(<10) for a statistical evaluation of potential publication bias.  

Upgrade considerations 
Large effect 

magnitude 
(0) Overall effect magnitude (RR) was below 2 (RR < 2) times 

increase in the outcome prevalence in all studies. 
(0) Overall effect magnitude (RR) was below 2 (RR < 2) times 

increase in the outcome prevalence in all studies. 
Dose response (1) All of the studies suggested an exposure–response gradient, i.e. 

exposure to high temperatures increases the risk of OI in most 
instances. 

(1) All of the studies suggested an exposure–response gradient, i.e. 
exposure to HW increases or decreases the risk of OI. 

Confounding 
minimizes effect 

(0) Time series and case crossover study design take into account 
the potential confounders by modeling and by design. However, 
we identified some studies that might have residual confounding 
because they did not account for all potential confounders. We 
do not expect that omission of any of these confounders would 
have led to underestimating our meta-analysis association 
estimate and therefore did not upgrade for this consideration. 

(0) We identified some studies that might have residual 
confounding because they did not account for all potential 
confounders. However, we do not expect that omission of any of 
these confounders would have led to underestimating our meta- 
analysis association estimate and therefore we did not upgrade 
for this consideration.  

Summary of Quality Assessment 
Overall quality of 

evidence 
High Moderate+(0)+(0)+(0)+(+1) = High - Downgrading and 

upgrading, brought the quality of studies to “high”. 
Low Moderate+(0)+(− 1)+(− 1)+(+1) = Low - Downgrading and 

upgrading, brought the quality of studies to “low”. 
Summary of 

findings for Meta- 
analysis 

NA Studies included in meta-analysis provided consistent results i.e. 
the risk of OI increases with hot temperatures. 

NA Studies included in meta-analysis provided consistent results i.e. 
the risk of OI increases during HW periods.  

Strength of evidence assessment 
Quality of evidence NA High NA Low 
Direction of effect 

estimates 
NA Risk of OI increase among workers with increasing exposure to 

hot temperatures. 
NA Risk of OI increase among workers with increasing exposure to 

HW. 
Confidence in effect 

estimates 
NA It is unlikely that a new study would have an effect estimate that 

would make the results of the meta-analysis null or insignificant. 
NA The evidence is limited 

Other aspects NA None NA None 
Overall strength of 

evidence 
Sufficient Overall, we rated the strength of evidence as “sufficient”. We 

found that that there is a positive association between hot 
Limited Overall, we rated the strength of evidence as “limited”. A causal 

interpretation of the positive association observed in the body of 

(continued on next page) 
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Ricco et al., 2020; Ricco et al., 2019; Dillender, 2019) included in the 
meta-analysis, Humid Subtropical Climates had the highest risk of OI 
during warm periods. An increased risk of 1.7% (RR 1.017, 95% CI: 
1.014–1.020) was found to be associated with 1 ◦C increase in temper
ature above reference value (Table 5 and Fig. G1, Appendix G of SM). 
The results were consistent across various studies with risk of OI ranging 
from 1% to 1.7% in majority of instances. However, Dillender (2019) 
and Marinaccio et al. (2019) estimated slightly increased risk in Texas 
(1.6%) and a few provinces of Italy (up to 6.6%) respectively. Garzon- 
Villalba et al. (2016) found a particularly higher risk (around 6%) for 
disaster relief workers. One study Morabito et al. (2006) was not 
included in the meta-analysis but also suggested an increased incidence 
in occupational accidents on days characterized by hot weather condi
tions in Tuscany Italy. 

The exposure response relationship was found to be linear (Ma et al., 
2019; Garzon-Villalba et al., 2016) and delayed with lag effect of up to 
two days (Ricco, 2018; Ricco et al., 2020). 

3.4.1.2. Oceanic Climates. In temperate Oceanic Climates, 28 effect 
estimates from four studies (McInnes et al., 2017; Marinaccio et al., 
2019; Martínez-Solanas et al., 2018; Varghese et al., 2019) were used to 
estimate the pooled RR. An overall 1% increased risk of heat-related OI 
(RR 1.010, 95% CI: 1.008–1.012) was noted for each 1 ◦C increase in 
temperature above reference value (Table 5 and Fig. G2, Appendix G of 
SM). All studies reported an increased risk of OI associated with hot 
temperatures ranging from 0.1% to 4.8%. For instance in Melbourne, 
Australia, Varghese et al. (2019) reported a 0.6% increased risk of OI 
(above Tmax 20 ◦C) and McInnes et al. (2017) discovered a 0.2% 
increased risk with each 1 ◦C increase in temperature above Tmax of 
14 ◦C (Table 2). Consistent with this, Martínez-Solanas et al. (2018) 
found an increased risk ranging between 0.3 and 0.9% (above Tmax 
12 ◦C) in various provinces of Spain. Marinaccio et al. (2019) particu
larly found an increased risk above 1.4% in most provinces of Italy 
(above Tmean 7.5 ◦C). Studies (Martínez-Solanas et al., 2018; Varghese 
et al., 2019) that assessed the exposure–response curve in oceanic cli
mates found a linear increase in the risk and the effects were found to be 
acute (Varghese et al., 2019). 

3.4.1.3. Hot Mediterranean Climates. Sixty seven effect estimates from 
four studies (Schifano et al., 2019; Marinaccio et al., 2019; Martínez- 
Solanas et al., 2018; Varghese et al., 2019) were included in the meta- 
analysis. The pooled RR of heat-attributable OI was estimated to be 
0.9% (RR 1.009, 95% CI: 1.008–1.011) with each 1 ◦C increase in 
temperature above reference value in these regions (Table 5 and Fig. G3, 
Appendix G of SM). All four studies reported positive associations be
tween extreme heat and OI. The risk of OI varied between 0.1 and 0.9% 
in most instances in three studies (Martínez-Solanas et al., 2018; Var
ghese et al., 2019; Schifano et al., 2019), while Marinaccio et al. (2019) 
estimated a higher effect of OI up to 9% in many Provinces of Italy 
including Rome. All four studies indicated a linear increase in the risk of 
injuries in Hot Mediterranean Climates. Two nation-wide studies pre
dominantly from Hot Mediterranean Climates revealed a lag effect up to 

two days (Marinaccio et al., 2019; Martínez-Solanas et al., 2018) and up 
to four days in some instances (Martínez-Solanas et al., 2018). 

3.4.1.4. Warm Mediterranean Climates. Our pooled estimates of 11 ef
fect estimates from six studies (Marinaccio et al., 2019; Martínez-Sol
anas et al., 2018; Spector et al., 2016; Xiang et al., 2014; Varghese et al., 
2019; Calkins et al., 2019) in Warm Mediterranean Climates suggested 
an increased risk of 0.6% (RR 1.006, 95% CI: 1.004–1.007) for OI for 
each 1 ◦C increase in temperature above reference value (Table 5 and 
Fig. G4, Appendix G of SM). All studies reported an increased risk of OI 
(ranging between 0.1% − 1.7%) and the results were consistent across 
the studies. For example, in Adelaide, Australia, a time-series study by 
Xiang et al. (2014) reported 0.2% increased risk of OI with every 1 ◦C 
increase in Tmax (above 14 ◦C) during warm periods. Similarly, Var
ghese et al. (2019) observed an increase in the OI risk of 1.7% during hot 
summers (above Tmax 25 ◦C). In Washington State, Spector et al. (2016) 
reported an increased risk of OI (1% per 1 ◦C increase in humidex) for 
agricultural workers; while Calkins et al. (2019) noted an increased risk 
of 0.7% per 1 ◦C increase in dry temperature for construction workers. 

Five studies (Martínez-Solanas et al., 2018; Spector et al., 2016; 
Xiang et al., 2014; Varghese et al., 2019; Calkins et al., 2019) assessed 
the exposure–response curve in Warm Mediterranean Climates and re
ported mixed results. All studies reported a linear increase in risk above 
reference temperatures during warm seasons; however two studies 
(Spector et al., 2016; Xiang et al., 2014) reported a decline in the risk of 
OI at extremely hot temperatures indicating a reverse U-shaped curve. 

3.4.1.5. Hot Semi-Arid Climates. One nation-wide study from Spain 
(Martínez-Solanas et al., 2018) provided three effect estimates for meta- 
analysis in Hot Semi-arid Climates. The results suggested a statistically 
significant risk of OI (RR 1.005, 95% CI: 1.004–1.007) with each 1 ◦C 
increase in hot temperatures above reference temperatures (Table 5 and 
Fig. G5, Appendix G of SM). The exposure–response relationship 
assessed by Martínez-Solanas et al. (2018) in various semi-arid prov
inces of Spain indicated a linear increase in the risk of OI. 

3.4.1.6. Cold Semi-arid Climates. Eleven estimates from Italy and Spain 
(Marinaccio et al., 2019; Martínez-Solanas et al., 2018) were used in 
meta-analysis of Cold Semi-arid climates. An increased risk of 0.5% (RR 
1.005, 95% CI: 1.004–1.005) associated with 1 ◦C increase in temper
ature above reference values was found in these climates (Table 5 and 
Fig. G6, Appendix G of SM). The exposure response relationship was 
found to be linear in all instances. 

3.4.1.7. Humid and Warm Continental Climates. Our meta-analysis re
sults of 13 effect estimates from two studies (Adam-Poupart et al., 2015; 
Fogleman et al., 2005) identified a 0.3% increase in OI (RR 1.003, 95% 
CI: 1.001–1.004) in Humid and Warm Continental Climates with 1 ◦C 
increase above reference temperature (Table 5 and Fig. G7, Appendix G 
of SM). Adam-Poupart et al., (Adam-Poupart et al., 2015) assessed the 
exposure–response curve and observed a linear and lagged effect of up to 

Table 4 (continued )  

Hot temperature studies (n = 19) Heatwave studies (n = 8) 
Quality  
factor  
Categories 

Ratings Rationale Ratings  

temperatures and OI, and conclude with reasonable confidence 
that chance, bias and confounding could be ruled out as an 
explanation for the association. The available evidence included 
results from one or more well-designed, well-conducted studies, 
and we believe that our conclusion is unlikely to be strongly 
affected by the results of future studies 

evidence on exposure and the outcome is credible, but chance, 
bias, or confounding could not be ruled out with reasonable 
confidence. 

Note: Two studies (Ma et al., 2019; Morabito et al., 2006) were removed from the meta-analysis and therefore were not included in heterogeneity and publication bias 
tests. 
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two days in the risk of OI associated with hot temperatures. 

3.4.1.8. Subarctic Climates. One study (Adam-Poupart et al., 2015) 
conducted in sixteen health regions of Quebec Province, Canada pro
vided four estimates of risk of OI associated with hot temperatures in 
Subarctic Climates. No association was found between OI and hot tem
peratures in these mild to cool summer regions (RR 1.000, 95% CI: 
0.996–1.005) (Table 5 and Fig. G8, Appendix G of SM). 

3.4.2. Heatwaves and the risk of OI 
The impacts of heat exposure on the risk of OI were pronounced 

during HW periods. Ten effect estimates from eight studies were used to 
estimate the risk of OI during HW (Ricco, 2018; Ricco et al., 2020; Ricco 
et al., 2019; Rameezdeen and Elmualim, 2017; McInnes et al., 2018; 

Xiang et al., 2014; Varghese et al., 2019; Varghese et al., 2018). The 
overall effect estimate was 17.4% (RR 1.174, 95% CI: 1.057–1.291) 
during HW periods. Further, among climate zones, the risk of OI was 
found to be highest in Oceanic Climates and Humid Subtropical Climates 
(Table 6 and Figs. H1–H3, Appendix H of SM). 

3.5. Subgroup analyses 

3.5.1. Subgroup analysis of hot temperatures 
Subgroup analyses of workers’ characteristics, nature of work and 

workplace characteristics identified specific group of workers which are 
at high risk during hot weather conditions. Summary of the subgroup 
analysis is given in Table 7. Male workers and young workers (age < 35 
years) were found to be at high risk of OI during high temperatures. 
Outdoor intensive industries including: agriculture and construction 
were found to be at highest risk of OI although indoor industries such as 
manufacturing industries also had significant risk of OI associated with 
hot temperatures. Physical workload was also an important factor 
contributing towards increased risk of OI in hot weather conditions. 
Among various types of businesses, small and medium sized businesses 
were at high risk of OI associated with hot temperatures. 

Further, subgroup analysis based on study characteristics (Table I1, 
Appendix I of SM) revealed that workers in North America and Asia were 
at higher risk of OI, however caution must be taken in interpreting the 
results because of small number of studies. Time series study design 
estimated higher values for heat attributable risk of OI. Studies using 
Distributed lag nonlinear models (n = 6) and those using other models 
(n = 11) (such as generalized linear models, condition logistics regres
sion, generalized estimated equation) estimated similar risk of OI 
(Table I1, Appendix I of SM). 

3.5.2. Subgroup analysis of heatwaves studies 
Male workers, young workers (age < 35 years) and new workers 

were found to be at higher risk of OI associated with HW periods. 
Moreover, indoor industries had higher effect estimates for the risk of OI 
as compared to outdoor industries, high risk industries during HW 
included: Electricity gas and water and manufacturing. A summary of 
the subgroup analysis of HW studies is given in Table 8. 

4. Discussions 

4.1. Summary of research findings 

Our systematic evaluation of the available literature representing 
around 22 millions of OI showed that the risk of OI associated with 
extreme heat has been extensively studied across different countries in 
nine climate zones. All studies suggested that working in hot environ
mental conditions increased the likelihood of experiencing OI (overall 
1% increase in risk with 1 ◦C increase in temperature above reference 
value). Furthermore during extended periods of HW the risk of OI 
significantly increased by 17.4%. The additional classification of the 
available literature into different climate zones suggested that the risk of 
OI is not uniformly distributed and showed a geographic pattern asso
ciated with underlying local climate conditions. The heat associated risk 
of OI was highest in temperate climates with hot summers (for example 
Humid Subtropical Climates and Hot Mediterranean Climates) and in 
temperate climates with warm summers (for example Oceanic Cli
mates). Subgroup analysis further revealed that male workers and young 
workers were at highest risk of OI during hot weather conditions. Among 
various industries; outdoor intensive industries such as agriculture and 
construction were at high risk during high temperatures, while elec
tricity, gas and water supply, and manufacturing industries were at high 
risk during HW. The available evidence includes results from one or 
more well-designed and well-conducted studies. Overall, the strength of 
evidence across the studies was found to be sufficient for hot tempera
ture studies but limited for HW studies. 

Table 5 
Random-effects meta-analysis estimates of RR and (95% CI) for risk of OI at hot 
temperatures (n = 17*).  

Climate Zones (Studies) Risk of OI 
RR(95% CI) 

Humid Subtropical Climates (Ricco, 2018; 
Marinaccio et al., 2019; Varghese et al., 
2019; Sheng et al., 2018; Garzon-Villalba 
et al., 2016; Schifano et al., 2019; Ricco 
et al., 2020; Ricco et al., 2019; Dillender, 
2019) 

1.017 
(1.014–1.020) 

K = 56 
I2 = 89.8% 
P < 0.001 
N =
2,352,778** 

Oceanic Climates (McInnes et al., 2017; 
Marinaccio et al., 2019; Martínez-Solanas 
et al., 2018; Varghese et al., 2019) 

1.010 
(1.008–1.012) 

K = 28 
I2 = 91.3% 
P < 0.001 
N =
2,842,807** 

Hot Mediterranean Climates (Schifano et al., 
2019; Marinaccio et al., 2019; Martínez- 
Solanas et al., 2018; Varghese et al., 2019) 

1.009 
(1.008–1.011) 

K = 67 
I2 = 86.5% 
P < 0.001 
N =
10,716,074** 

Warm Mediterranean Climates (Marinaccio 
et al., 2019; Martínez-Solanas et al., 2018; 
Spector et al., 2016; Xiang et al., 2014; 
Varghese et al., 2019; Calkins et al., 2019) 

1.006 
(1.004–1.007) 

K = 11 
I2 = 75.3% 
P < 0.001 
N =
1,262,274** 

Hot Semi-arid Climates (Martínez-Solanas 
et al., 2018) 

1.005 
(1.004–1.007) 

K = 3 
I2 0.0% 
P = 0.918 
N = 1,347,551 

Cold Semi-arid Climates (Marinaccio et al., 
2019; Martínez-Solanas et al., 2018) 

1.005 
(1.004–1.005) 

K = 11 
I2 = 0.0% 
P = 0.816 
N =
2,958,103** 

Humid and Warm Continental Climates ( 
Adam-Poupart et al., 2015; Fogleman 
et al., 2005) 

1.003 
(1.001–1.004) 

K = 13 
I2 = 53.1% 
P = 0.012 
N = 350,196** 

Subarctic Climates (Adam-Poupart et al., 
2015) 

1.000 
(0.996–1.005) 

K = 4 
I2 = 20.8% 
P = 0.286 
N = 24,439 

Hot Desert Climates (Martínez-Solanas et al., 
2018) 

1.004 
(1.001–1.008) 

K = 1 
– 
– 
N = 416,609 

Overall 1.010 
(1.009–1.011) 

K = 194 
I2 = 89.3% 
P < 0.001 
N =
22,270,831 

Note: *Two studies were (Ma et al., 2019; Morabito et al., 2006) not included in 
meta-analyses. K represents the number of city/province-specific estimates, and 
meta-analysis is conducted when K ≥ 2. I2 is the heterogeneity score. P is the P- 
value of X2 test of heterogeneity. N represents the total number of injury records. 
**The sample size was not obtainable for province specific observations for two 
studies; Schifano et al. (2019) and Marinaccio et al. (2019) representative of 
different climate zones. 
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4.2. Main findings in different climate zones 

The results from the statistical analyses from various climate zones 
indicate that the risk of OI increased by 1.7% with 1 ◦C increase in 
temperature above reference value in Humid Subtropical Climates. 
Average reference temperature associated with risk of OI was found to 
be 13.3 ◦C (Ricco, 2018; Marinaccio et al., 2019; Varghese et al., 2019; 
Ricco et al., 2020; Ricco et al., 2019; Dillender, 2019). High humidity 
during warm periods plays a significant role in the risk of OI in these 
climates. Humidity limits bodily heat loss at hot temperatures, which 
leads to heat stress and an increased risk of OI (Xiang et al., 2014; Lucas 
et al., 2014). Similarly, temperate Hot Mediterranean Climates with hot 
summers and Oceanic Climates with warm summers were also found to 
be at increased risk of OI, ranging from 0.9 to 1% with 1 ◦C increase 
above reference temperature. Previously conducted multi-country ana
lyses (Di Napoli et al., 2018; Gasparrini et al., 2015) on temperature and 
health associations from similar climates (for example from Spain, UK, 
France) also indicated increased risk of health outcomes associated with 
heat stress in these climate zones. Mediterranean climates are charac
terized by dry summers with several extremely hot days. Studies 
revealed that these regions are vulnerable to an increasing number of 
hot days under the climate change scenarios which can potentially 
contribute to increased risk in future (Hanna et al., 2011). The evidence 
is limited from Hot Semi-arid and Hot Desert Climates but our results 
indicate a high risk in these climate zones and warrant further 
investigations. 

The impacts of hot temperatures on OI were estimated to be acute 
with a lag effect of 1 or 2 days and to a lesser extent 3–4 days (Ricco, 
2018; Marinaccio et al., 2019; Martínez-Solanas et al., 2018). Under
standing such lagged effects is important as it would help local Occu
pational Health Safety regulators and industries to take preventative 
actions. The exposure–response relationship was found to be linear or 

curvilinear in the majority of the studies (Adam-Poupart et al., 2015; 
Marinaccio et al., 2019; Martínez-Solanas et al., 2018; Varghese et al., 
2019; Varghese et al., 2019; Calkins et al., 2019; Ricco et al., 2020) 
while two studies from dry summer Warm Mediterraean Climates 
(Spector et al., 2016; Xiang et al., 2014) and one from Oceanic Climates 
(McInnes et al., 2017) found a non-linear response with a reversal of 
effects at extremely hot temperatures. Some studies (Ricco, 2018; 
McInnes et al., 2017; Calkins et al., 2019) suggested that the observed 
differences can be attributed to different prevention and control 
measured adapted in different countries to limit the occurrence of OI. 
Further investigation of the effectiveness of preventative strategies is 
needed. It has been observed that the methodological differences be
tween studies also led to conflicting results in some regions. For 
example, in Adelaide, Australia, Xiang et al. (2014) noted that the po
tential decrease in risk at extremely hot temperatures was due to the 
exclusion of the total workforce population as the denominator. The 
association between temperature and OI appears to be curvilinear (with 
a linear response during warm seasons) when the denominator infor
mation is taken into account because it partly captures the extent of 
short-term adaptation to temperature through a reduction of units 
worked. Varghese et al. (2019) confirmed the observation of Xiang et al. 
(2014) as a J-shaped non-linear response was reported for the associa
tion between heat and OI in Adelaide, Australia, using a time-stratified 
case-crossover study design. 

Table 6 
Random-effects meta-analytic estimates of RR and (95% CI) for risk of OI during 
HW (n = 8).  

Climate Zones (Studies) Risk of OI 
RR(95%CI) 

Oceanic Climate (McInnes et al., 2018; Varghese 
et al., 2019) 

1.218 
(1.093–1.343) 

K = 2 
I2 =

38.0% 
P = 0.204 
N =
155,734 

Humid Subtropical Climates (Ricco, 2018; Ricco 
et al., 2020; Ricco et al., 2019; Varghese et al., 
2019) 

1.213 
(0.995–1.431) 

K = 4 
I2 =

96.9% 
P < 0.001 
N =
180,114 

Warm Mediterranean Climates (Rameezdeen and 
Elmualim, 2017; Xiang et al., 2014; Varghese 
et al., 2018) 

1.088 
(0.860–1.316) 

K = 3 
I2 =

99.4% 
P < 0.001 
N =
392,875 

Hot Mediterranean Climates (Varghese et al., 2019) 1.260 
(1.235–1.283) 

K = 1 
– 
– 
N =
12,207 

Overall 1.174 
(1.057–1.291) 

K = 10 
I2 =

98.9% 
P < 0.001 
N =
740,930 

Note: K represents the number of city/province-specific observations, and meta- 
analysis is conducted when K ≥ 2. I2 is the heterogeneity score. P is the P-value of 
X2 test of heterogeneity. N represents the total number of injury records. 

Table 7 
Summary of subgroup analysis of hot temperature studies (n = 17*) conducted 
by workers’ characteristics, nature of work and workplace characteristics.  

Subgroups N K RR LCI UCI I2 P value 

Workers 
characteristics        

Gender        
Male 8 10 1.018 1.010 1.026 95.2% <0.001 
Female 8 10 1.008 1.000 1.016 85.2% <0.001  

Age        
<35 years old 8 10 1.009 1.005 1.013 89.9% <0.001 
≥35 years old 8 10 1.006 1.002 1.010 93.3% <0.001  

Experience        
New workers 3 5 1.008 1.004 1.012 0.0% 0.844 
Experienced 3 5 1.007 1.000 1.014 75.5% 0.018  

Type of workers        
Specific workers 5 5 1.032 1.003 1.061 91.8% <0.001 
All workers 12 12 1.008 1.005 1.011 95.6% <0.001  

Nature of Work 
Physical Demands        
Heavy and Manual 

work with MET >
5 

6 9 1.003 1.002 1.004 12.9% 0.327  

Location of work        
Outdoor 13 17 1.009 1.005 1.012 80.4% <0.001 
Indoor 8 12 1.005 1.002 1.008 92.6% <0.001  

Workplace characteristics 
Type of Industries        
Construction 10 14 1.009 1.006 1.013 81.9% <0.001 
Agriculture 9 13 1.010 1.006 1.014 28.8% 0.155 
Manufacturing 6 8 1.007 1.001 1.012 92.0% <0.001 
Transport 8 12 1.005 1.003 1.008 20.7% 0.241 
Electricity, Gas and 

Water 
7 11 1.005 0.995 1.014 58.7% 0.007  

Business size        
Small 5 5 1.011 1.005 1.016 90.2% <0.001 
Medium 5 5 1.012 1.006 1.018 91.7% <0.001 
Large 5 5 1.005 1.000 1.010 79.7% 0.001 

Note: *Two studies (Ma et al., 2019; Morabito et al., 2006) were not included in 
the meta-analysis. N is the total number of studies. K is the total number of 
location-specific observations (where available) from each study. LCI is the low 
confidence interval and UCI is the upper confidence interval. 
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A significant cumulative association was found (RR 1.174, 95% CI: 
1.057–1.291) between OI and HW in various studies. This is in contrast 
to three studies that suggested the risk of OI reduced during extended 
periods of extremely hot conditions (Rameezdeen and Elmualim, 2017; 
McInnes et al., 2018; Xiang et al., 2014). These differences may attribute 
to varying definitions of HW (Varghese et al., 2019). For example in 
Adelaide three studies were conducted; two studies (Rameezdeen and 
Elmualim, 2017; Xiang et al., 2014) defined HW as three or more 
consecutive days of daily maximum temperature of 35 ◦C or above and 
Varghese et al. (2018) used EHF index to define HW and the studies 
found statistically varying results. Varghese et al. (2018) argued that 
three days of Tmax ≥ 35 ◦C is a stringent measure of HW and it does not 
take into account the minimum temperature variations when consid
ering impacts of HW on human health (Nairn and Fawcett, 2015). 
Further, the differences can possibly be due to the methodological var
iations (Hajat et al., 2006) and due to prevention and control measured 
adapted to reduce the risk. For example Xiang et al. (2014) suggested 
that preventive measures adapted in the workplace or workers may stop 
work or self-pace if the ambient temperature is extremely high, can 
result in the unexpected decline in the number of injuries. 

The effect of HW was assessed in three climate zones and risk was 
found to be highest in Oceanic and Humid Subtropical Climates. How
ever, caution should be taken in interpreting these results, as these es
timates are based on fewer number of observations and require further 
evidence to increase the statistical power of the estimates to quantify the 
risk of HW in different climate zones. It is also pertinent to note that all 
studies characterizing the impacts of HW were conducted in mid- 
latitude, high-income countries with low to medium population den
sity. Regions most at risk of experiencing extreme HW such as Tropical 
regions (Campbell et al., 2018) were under-represented. 

4.3. Subgroup analyses 

Subgroups analysis based on workers’ characteristics revealed that 
male workers and young workers (<35 years of age) were found to be at 

higher risk of OI during hot weather conditions, although the risk was 
statistically significant in both genders and different age groups. The 
higher risk of OI in men (1.8% with 1 ◦C increase in hot temperatures 
above reference point and 27% increased risk during HW) could be 
attributed to gender-based differences in the workforce, because males 
usually represent a higher proportion of workers performing heavy, 
outdoor labour (Adam-Poupart et al., 2015; Xiang et al., 2014). In 
Australia, for example, most temperature-sensitive industries that 
mostly involve outdoor work are male dominated (less than 40% rep
resentation of females) (Australian Bureau of Statistics, 2018). Females 
are usually more represented in indoor, regulated environments but are 
still found to be at increased risk of OI (0.8% increased risk associated 
with hot temperature and 16% increased risk during HW) (Varghese 
et al., 2019; Sheng et al., 2018; Ma et al., 2019). Poor acclimatization, 
insufficient training, low competency in performing assigned tasks, low 
compliance with preventive measures, the strenous nature of jobs 
assigned and peer pressure are important factors contributing towards 
the risk of OI in young workers (0.9%) and new workers (0.8%) (Adam- 
Poupart et al., 2015; McInnes et al., 2017; Xiang et al., 2014). Our 
findings suggested that workers above the age of 35 years were also at 
increased risk (0.6%). Evidence from a recent physiological study 
(Flouris et al., 2018) indicated that the risk of heat stress during hot 
weather conditions is higher among older workers particularly because 
of the comorbidities (Kenny et al., 2010) and the loss of cooling mech
naisms that are more likely in elderly (Barnett et al., 2010). 

We also found that experienced workers (i.e. with more than one 
year of experience) were at increased risk of OI at high temperatures 
(0.7%). The increased risk can possibly be attributed to their increased 
self-confidence due to which they ignore, underestimate or misjudge any 
hazards irrespective of their age (Dumrak et al., 2013). 

When assessing the nature of work, we found that workers engaged 
in outdoor work were particularly at high risk to the impacts of hot 
temperatures (0.9% increased risk of OI vs 0.5% risk in indoor industries 
with 1 ◦C increase in temperature above reference value). Outdoor 
intensive industries mainly include agriculture, forestry, fishing, con
struction, and utilities supplies where workers are likely to do intense 
physical work in direct exposure to sunlight and high humidity (Xiang 
et al., 2014; Acharya et al., 2018; Moda and Minhas, 2019). Recently it 
has been suggested that direct exposure to solar radiation can poten
tially impair motor-cognitive performance (Piil et al., 2020) and there
fore a combination of high ambient temperature and solar radiation 
increases the overall thermal stress experienced by outdoor workers 
leading to increased risk of OI. Furthermore, there is a high prevalence 
of hypo-hydration in occupations with elevated heat stress, affecting 
combined motor tasks (Piil et al., 2018). During HW the risk was higher 
in indoor industries (24% vs 17% in outdoor settings) mainly in 
manufacturing industries (41% increased risk of OI). These differences 
in risk of OI in outdoor and indoor settings warrant further in
vestigations. Previous studies suggest that the effects on indoor workers 
are less clear and the impact more complex as industrial heat production 
and building architecture become factors of importance (Ciuha et al., 
2019). Indoor workers in settings with high industrial heat production 
are exposed to significant thermal stress that may increase during HW. 
Moreover, the exposure to overall heat (outside working hours) is also 
an important contributing factor. During HW (when the minimum 
temperature is also significantly high) the workers do not adequately 
recover the impacts of heat stress between their work shifts which in
creases the risk of OI (Ciuha et al., 2019). Therefore, the exposure to heat 
during the day as well as night is important in assessing the risk of OI 
associated with HW. Workers with social disadvantage would be at 
higher risk of extreme periods of HW, particularly if there are financial 
impediments in maintaining thermal comfort (Hansen et al., 2013). 
Identifying high risk industries is particularly important for target-based 
interventions designed to reduce exposure to occupational hazards 
associated with heat stress. Although the underlying explanations 
behind the occurrence of injuries in non-optimal thermal conditions is 

Table 8 
Summary of subgroup analysis of HW studies (n = 8) conducted by workers 
characteristics and workplace characteristics.  

Subgroups N K RR LCI UCI I2 P value 

Workers characteristics 
Gender        
Male 4 6 1.270 1.120 1.430 98.8% <0.001 
Female 4 6 1.160 1.030 1.290 97.5% <0.001  

Age        
<35 years old 4 6 1.260 1.090 1.440 98.6% <0.001 
≥35 years old 4 6 1.220 1.110 1.330 97.4% <0.001  

Experience*        
New workers 2 4 1.450 1.280 1.610 75.1% 0.007 
Experienced 2 4 1.310 1.230 1.400 96.9% <0.001  

Nature of Work 
Location of work        
Outdoor 6 8 1.170 1.060 1.290 94.5% <0.001 
Indoor 3 5 1.240 1.120 1.360 98.5% <0.001  

Workplace characteristics 
Type of Industries        
Construction 4 6 1.300 1.150 1.440 93.3% <0.001 
Agriculture 4 6 1.380 1.150 1.610 75.0% 0.001 
Manufacturing 3 5 1.410 1.210 1.600 97.2% <0.001 
Transport 3 5 1.270 1.070 1.460 95.1% <0.001 
Electricity, Gas and 

Water 
3 5 1.500 1.340 1.660 20.1% 0.286 

Note: *Caution in interpreting results because of fewer number of studies. N is 
the total number of studies. K is the total number of location-specific observa
tions (where available) from each study. LCI is the low confidence interval and 
UCI is the upper confidence interval. 
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complex, the increased risk is likely to be related to physiological 
mechanisms, where the body is unable to cool itself to maintain the 
internal temperature (Parsons, 2014) resulting in adverse behavioral 
effects such as disorientation, impaired judgement, loss of concentra
tion, reduced vigilance, carelessness and fatigue (Varghese et al., 2018). 
This may affect workers’ physical, cognitive and psychomotor perfor
mance and may reduce their ability to take protective measures such as 
staying hydrated or moving to shaded areas. This reduced performance 
and the inability to follow protective measures can increase the risk of OI 
(McInnes et al., 2017; Varghese et al., 2019). In addition, we also found 
that heavy physical workload was also positively associated with high 
risk of OI (0.3%) during hot weather conditions. Intense physical work 
can further contribute to internally generated body heat which poses an 
additional risk of heat stress and associated health effects (Adam-Pou
part et al., 2015; Varghese et al., 2019; McInnes et al., 2017). 

Only one study assessed the risk of OI in migrant workers (Ricco 
et al., 2019). Migrant workers are known to be a vulnerable subgroup 
with language and cultural barriers, extended work hours, demanding 
jobs, limited safety training and lack of acclimatization (Ricco et al., 
2019; Messeri et al., 2019). Future research should be carried out to 
assess the impacts of hot weather conditions in migrant workers and 
explore relevant adaptation mechanism. 

4.4. Validity of findings/Certainty assessment of available evidence 

Risk of bias assessment in individual studies clearly indicated that 
the quality of studies on this topic was generally high because all studies 
(100%) (both hot temperature and HW studies) used an appropriate and 
standard measure of OI outcome provided by national or regional da
tabases. For observational studies, the existence of unmeasured con
founders always impacts the quality of the evidence, however we 
identified that the majority of studies (68% of hot temperature studies 
and 62% of HW studies) accounted for potential confounders (e.g. time 
trends, seasonality, day of the week, size of the workforce, holidays and 
weather parameters (Peng et al., 2006). Exposure assessment was 
however, a critical point of bias as many studies; 68% of hot temperature 
studies used single station data or an average of several weather sta
tions’ data. This may lead to an underestimation of the local or indi
vidual risk level as weather station data fails to account for spatial 
variations in the exposure (Xiang et al., 2014; Varghese et al., 2019). 
Sensitivity analysis based on different exposure assessment datasets 
indicated that studies using satellite, gridded or geo-located metrolog
ical data for exposure assessment, estimated stronger effects for the risk 
of OI. This implies that the relationship between temperature and OI 
appears to be stronger when using exposure data with more spatial 
variability than using exposure data based on single weather station data 
(Lee et al., 2016). 

Inter-study heterogeneity (I2) was generally high (I2 scores ranging 
from 0.0% to 91.3% in different climate zones and overall (I2 89.3%) but 
as the 80% prediction intervals did not include unity and were suffi
ciently narrow, we did not downgrade the quality of evidence for the hot 
temperature studies (Orellano et al., 2020). Heterogeneity is likely and 
can be attributed to several factors including differences in location, 
exposure variable, exposure metrics, modelling preferences, type of 
population, health outcomes etc. In the present systematic review we 
classified the studies based on different exposure variables i.e. hot 
temperatures and HW, study locations and climatic zones. We stan
dardized all the estimates to one unit of analysis i.e. assessing the risk 
per 1 ◦C increase in temperatures above a reference point. The I2 value of 
heterogeneity reduced after classifying the evidence based on climate 
zones (For I2 = 95.1% to 89.3%) and standardizing the data and con
version to increase in risk per 1 ◦C temperature (Table E3, Appendix E of 
SM). However, studies using different exposure metrics (Tmax, Tmean 
or Thermal indices) were combined based on the assumptions that the 
strong correlation between different exposure measures of temperature 
means that on average they have the same predictive ability in 

estimating mortality and potentially injuries (Varghese et al., 2019; 
Barnett et al., 2010). Exposure characterization is one of the most sig
nificant sources of heterogeneity in environmental epidemiology studies 
(Blair et al., 1995). The sensitivity analyses carried out for studies using 
different exposure metrics (for example Tmax, Tmean and Thermal 
indices) (Table E2, Appendix E of SM) revealed statistically significant 
risks of OI (0.8% for studies using Tmax, 1.2% for studies using Tmean 
and 2.6% for studies using thermal indices) indicating similar predictive 
ability of various exposure metrics. The risk was estimated to be slightly 
higher for studies that used thermal indices (Spector et al., 2016; 
Garzon-Villalba et al., 2016; Schifano et al., 2019; Fogleman et al., 
2005), however it should be noted that three of these studies (Spector 
et al., 2016; Garzon-Villalba et al., 2016; Fogleman et al., 2005) were 
carried out for highly exposed occupations (agricultural workers, 
aluminum smelter workers and disaster relief workers), which can be 
attributed to higher risk estimates. To date, a large number of exposure 
metrics have been used to assess the temperature associated health ef
fects. One study assessing the predictive ability of several temperature 
indices suggested that there is no best exposure metric and the selection 
of exposure metric should depend on the availability of reliable and 
complete datasets (Barnett et al., 2010). The effects of humidity are 
secondary to the effects of temperature and may be incorporated in the 
models when data is from regions characterized by hot and humid 
summers. 

Funnel plots and Egger’s test were indicative of risk of publication 
bias for hot temperature studies. However, caution must be taken in 
interpreting the results from funnel plots and other tests. There could be 
other possible sources of asymmetry in funnel plots such as high het
erogeneity (Egger et al., 1997). Moreover, the Trim and Fill test sug
gested that any new hypothetical study with effects in the opposite 
direction would be unlikely to change the effects of our meta-analysis. 
Therefore, we did not downgrade the quality of evidence of hot tem
perature studies based on asymmetric funnel plots. Overall, the quality 
of evidence on the risk of OI associated with hot temperatures was 
“high” suggesting the results of our meta-analyses were sourced from 
well-designed and well-conducted studies. 

The existing quality of studies on the effects of HW on OI was “low” 
primarily because of high heterogeneity in the evidence and high risk of 
bias across the studies. The high risk of bias is found to be attributable to 
unmeasured confounding variables in various studies and the risk of 
exposure misclassification because majority of the studies used single or 
average of multiple weather station data. Significant heterogeneity 
among studies can be attributed to the use of different definitions of 
heatwaves, which may vary in terms of duration, intensity and tem
perature metric (Hajat et al., 2006). Different study designs and statis
tical approaches used may contribute to high heterogeneity. Further, a 
study (Xu et al., 2016) suggested that different climates in study sites 
may play a significant role in driving the variability, because location- 
specific climatic variations are important in assessing the risk of HW. 
The present systematic review of literature suggests that more research 
is required to strengthen the existing evidence on the risk of OI during 
HW in different climate zones. 

4.5. Gaps and future work 

There is limited evidence from Tropical Climates on the potential risk 
of OI due to a lack of studies in these regions. Tropical Climates are 
inhabited by the majority of the world’s population and are at the 
highest risk of extreme heat events. Most of the countries in hot Tropical 
Climates are low and middle-income countries, where national data on 
OI are either unavailable or underreported (Hämäläinen et al., 2017). 
Studies conducted in these regions have mostly focused on heat stress 
symptoms or productivity loss in various industries. Evidence from 
empirical studies suggested that the occupational burden is very high in 
tropical developing countries (Tawatsupa et al., 2013; Kjellstrom et al., 
2009; Quiller et al., 2017; Sahu et al., 2013; Spector and Sheffield, 
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2014). The level of summer heat exposure reported at outdoor occu
pational sites in the tropics is also significantly higher than international 
thresholds. Thus, there is a need for future studies to determine the risk 
of OI in these regions so that effective intervention strategies can be 
developed (Moda and Minhas, 2019). Hot Semi-arid and Hot Desert 
Climates in the Middle East host millions of unacclimatized migrant 
workers, evidence is required from these regions to assess the impacts of 
hot temperatures on OI particularly in migrant workers. Furthermore, as 
the number of HW are predicted to increase there is an urgent need to 
understand the local impacts of HW on occupational health in different 
climate zones, which is currently an underexplored area of research and 
require crucial attention. 

4.6. Strengths and limitations 

We adapted a standardized and comprehensive search approaches 
for the identification, screening and extraction of evidence, in this sys
tematic review, which we believe is the first comprehensive review to 
comparatively estimate the risk of OI associated with both hot temper
atures and HW. Furthermore, we classified the location-specific studies 
into different climate zones. We have introduced a geographical 
breakdown in identifying the heat associated risk of OI, and propose that 
future work should consider geographical and global climatic variations 
as both are important factors in contextualizing the risk associated with 
temperature related mortality and morbidity. This has been largely 
neglected to date. 

The present study has some limitations. We limited our search for 
language and considered only English language articles. Studies con
ducted for athletes and military personals were not included as their 
health and job requirements vary significantly from regular workers. 
Further, to combine estimates from different type of studies for example 
those assessing the risk per 1 ◦C increase in temperature and those using 
minimum reference temperature and maximum temperature values (or 
percentiles) we standardized the data to 1 ◦C increase in risk above 
reference temperature. For standardization, we assumed a log-linear 
relationship for studies that used temperature percentiles to assess the 
risk, this may have resulted in overestimation or underestimation of the 
results. However, sensitivity analysis (Table E2, Appendix E of SM) did 
not reveal any major differences in the results. It should be noted that we 
used location-specific estimates from various studies instead of pooled 
estimates and in some cases the data (both effect estimates and reference 
temperatures) was extracted manually from the textual/graphical de
scriptions if it was not available directly in the studies so the datasets 
were susceptible to imprecision. Nonetheless, the study used the best 
available data and contacted the authors of relevant studies twice to get 
the required data. It is also worth mentioning that the risk is estimated at 
city, state or province level in all studies, therefore we also assumed one 
type of climate in each location and did not take into account local 
climatic variations at intra-city level. This is not a limitation of the 
present study, but rather a shortcoming of research in this field and 
warrant future investigation at a finer spatial scale. Further, it should be 
noted that the critical appraisal of individual studies was carried out 
quite thoroughly by two authors independently following Johnson et al. 
(2014) however, the contextual support for each judgement is missing 
from the present systematic review and should be addressed in future 
work. 

5. Conclusions 

Our findings clearly suggest that the risk of OI increases with expo
sure to hot weather conditions. There is an urgent need to mitigate the 
impacts of occupational heat stress in the context of climate change and 
the anticipated rise in environmental heat stress. The risk of OI associ
ated with extreme heat is not evenly distributed and is dependent on 
underlying climatic conditions, workers’ characteristics, nature of work, 
and workplace characteristics. The differences in the risk of OI across 

different climate zones and worker subgroups warrants further investi
gation along with the development of climate- and work-specific inter
vention strategies. With this knowledge, relevant policies and ensuing 
actions can then be taken to mitigate the risk of OI. 
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Gao, C., Kuklane, K., Östergren, P.O., Kjellstrom, T., 2018. Occupational heat stress 
assessment and protective strategies in the context of climate change. Int. J. 
Biometeorol. 62 (3), 359–371. 

Garzon-Villalba, X.P., Mbah, A., Wu, Y., Hiles, M., Moore, H., Schwartz, S.W., et al., 
2016. Exertional heat illness and acute injury related to ambient wet bulb globe 
temperature. Am. J. Ind. Med. 59 (12), 1169–1176. 

Gasparrini, A., Guo, Y., Hashizume, M., Lavigne, E., Zanobetti, A., Schwartz, J., et al., 
2015. Mortality risk attributable to high and low ambient temperature: a 
multicountry observational study. The Lancet. 386 (9991), 369–375. 

Glaser, J., Lemery, J., Rajagopalan, B., Diaz, H.F., García-Trabanino, R., Taduri, G., et al., 
2016. Climate change and the emergent epidemic of CKD from heat stress in rural 
communities: The case for heat stress nephropathy. Clin. J. Am. Soc. Nephrol. 11 (8), 
1472–1483. 

Goodman, J.E., Lynch, H.N., Beck, N.B., 2017. More clarity needed in the Navigation 
Guide systematic review framework. Environ. Int. 102, 74–75. 

Guyatt, G.H., Oxman, A.D., Vist, G., Kunz, R., Brozek, J., Alonso-Coello, P., et al., 2011. 
GRADE guidelines: 4. Rating the quality of evidence—study limitations (risk of bias). 
J. Clin. Epidemiol. 64 (4), 407–415. 

Hajat, S., Armstrong, B., Baccini, M., Biggeri, A., Bisanti, L., Russo, A., et al., 2006. 
Impact of high temperatures on mortality: is there an added heat wave effect? 
Epidemiology 632–638. 
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