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Abstract 20 

 21 

Conservation genomics research often relies on accurate sex information to make inferences 22 

about species demography, dispersal, and population structure. However, field determined sex 23 

data are not always available and can be subject to human error, while laboratory sex 24 

assignment methods such as PCR assays can often be costly and challenging for non-model 25 

species. Conservation genomics programs increasingly use reduced-representation genome 26 

sequencing to assess neutral and functional genetic diversity, population structure, gene flow 27 

and pedigrees in threatened species. Here we demonstrate that sex can be determined from 28 

reduced-representation sequencing data produced by the increasingly popular Diversity Arrays 29 

Technology sequencing workflow (DArT-seq) using a program originally designed for 30 

application to shotgun data. This program – sexassign – compares the “dosage” of sequencing 31 

reads mapping to autosomes versus the X chromosome. In the present study, sexassign was 32 

used to identify the sex of 60 field-collected Greater Stick-Nest Rat (Leporillus conditor) 33 

samples, despite the absence of an annotated reference genome for the species. This “read-34 

dosage” approach is not only more accurate and affordable than traditional sex assignment 35 

methods, but can be applied to any diploid organism with a heterogametic sex determination 36 

system – including non-model and understudied species of conservation importance – by using 37 

FASTQs generated by DArT. 38 
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Introduction 93 

 94 

Accurate sex assignment is an integral aspect of conservation genomics research, particularly 95 

when studying parameters such as relatedness, dispersal, and philopatry. Sexing of individuals 96 

used in conservation genomics studies typically takes place in the field at the time of collection. 97 

However, sex assignments recorded in the field are not always reliable and there is a wide 98 

margin for human error, particularly for species that do not demonstrate sexual dimorphism or 99 

when researchers are working in difficult conditions. Further, field records can easily be lost 100 

or incorrectly transcribed during trapping and monitoring. Genetic sex assignment is a 101 

favourable alternative or complement to field identification, as it is an objective, highly 102 

standardised, and accurate approach that eliminates the possibility of upstream sex 103 

misidentification confounding genomic studies (Hrovatin & Kunej, 2017).  104 

 105 

While PCR-based sex identification methods have been used for several decades to identify 106 

and amplify sex chromosomes in individual samples (Akane et al., 1992; Clapcote & Roder, 107 

2005; McFarlane et al., 2013), such processes can be time consuming and expensive. In 108 

addition, they require taxon-specific primers that are not always available or applicable to the 109 

target species. With the advent of high-throughput sequencing (HTS) technology it is now 110 

possible to produce high-resolution genomic data that may allow researchers to determine the 111 

sex of sequenced individuals bioinformatically. For example, single nucleotide polymorphisms 112 

(SNPs) in the genome can often be linked to the sex chromosomes in model organisms, 113 

allowing sex to be determined on chromosomal presence-absence basis (Fowler & 114 

Buonaccorsi, 2016; Lambert et al., 2016). For non-model organisms where a well-assembled 115 

and well-annotated reference genome is unavailable, the overall “dosage” of sequencing reads 116 
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mapping to the sex chromosomes can be assessed to determine whether the individual is 117 

heterogametic or homogametic and thus to identify the sex (Bover et al., 2018; Gamble, 2016; 118 

Gower et al., 2019; Pečnerová et al., 2017). 119 

 120 

Read-dosage-based approaches to sex assignment have only been applied using shotgun 121 

sequencing data, where molecules are randomly sampled and sequenced (Flamingh et al., 2020; 122 

Motahari et al., 2013; Skoglund et al., 2013). However, many conservation programs employ 123 

reduced-representation sequencing approaches (e.g. RADseq), where sequenced molecules 124 

belong to a subset of genomic loci. One commercial provider of reduced-representation 125 

sequencing that is growing in popularity in the conservation genomics field is Diversity Arrays 126 

Technology (DArT) (Cummins et al., 2019; Ewart et al., 2019; Pazmiño et al., 2018; Sansaloni 127 

et al., 2011; Schultz et al., 2018; van Deventer et al., 2020). The DArT workflow uses 128 

restriction enzymes to reduce genomic complexity, allowing identification of informative 129 

markers that are subsequently sequenced for all submitted samples (Kilian et al., 2012). 130 

However, despite the growing popularity of DArT for conservation genomics projects, no 131 

simple and widely applicable sex-assignment framework has emerged that can be applied to 132 

DArT data. In the present study we apply a read-dosage sex-determination approach to DArT 133 

data from an Australian rodent, the Greater Stick-Nest Rat (Leporillus conditor), and 134 

demonstrate that - despite being originally designed for application to shotgun data - this 135 

method remains robust when applied to FASTQ files generated as part of the DArT workflow. 136 

 137 

Materials and Methods 138 

 139 
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DNA submitted to DArT was extracted from 60 L. conditor tissue samples collected by staff 140 

during routine trapping events at Arid Recovery Reserve, South Australia, between 1999 and 141 

2003. DNA extraction was completed following the methods described by Barclay et al. (2006) 142 

and samples were subsequently stored at -20°C prior to sequencing by DArT. Following library 143 

preparation and sequencing by DArT using their proprietary workflow, we obtained the raw 144 

Illumina data in FASTQ format. We used the Paleomix v1.2.14 pipeline to process these data: 145 

AdapterRemoval2 v2.3.1 was used to trim residual adapter sequences (using default 146 

parameters) and filter reads shorter than 30 bp, after which all remaining reads were mapped 147 

against the repeat-masked house mouse genome assembly (GRCm38) using BWA v0.7.17 148 

mem algorithm. We then used the idxstats command in SAMtools v1.10 to extract the number 149 

of reads mapping to each scaffold of the reference assembly. 150 

 151 

To determine the sex of the Greater Stick-Nest Rat samples we used Gower et al.’s (2019) 152 

python script sexassign (https://github.com/grahamgower/sexassign), which uses a likelihood 153 

ratio test to assign samples to either male or female on the basis of the observed ratio of reads 154 

mapping to the X chromosome versus the autosomes. Following Gower et al. (2019), X 155 

chromosome read-dosage is used in preference to the Y chromosome because references for 156 

the latter are either unavailable or poorly assembled for most species (Janečka et al., 2018). 157 

However, sexassign assumes that the X chromosome in homogametes (females, in this case) 158 

should receive the same read-dosage as an autosome of the same length (i.e. read dosage of 159 

~1X versus ~0.5X in heterogametic males), so we first checked that our data conformed to this 160 

assumption by visualising read-dosage (proportion of total reads mapped versus scaffold 161 

length) for each sample using RStudio v1.3.1073 (Fig. 1). We observed that the mean 162 

proportion of reads mapping to the X chromosome (length = 171,031,299 bp) for the putatively 163 
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female samples (0.0308) was substantially lower than the expectation (0.0656) based on the 164 

relationship between the proportion of reads mapped and scaffold length inferred from the 165 

autosomes, perhaps due to the DArT marker-selection and filtering process or a depletion of 166 

the restriction motif on the X chromosome. Consequently, before proceeding with analysis 167 

using sexassign we first multiplied the number of reads mapping to the X chromosome for all 168 

samples (regardless of putative sex) by a factor of 2.12 (the expected read-dosage for the X 169 

chromosome in a female, 0.0656, divided by the observed mean read-dosage for the X 170 

chromosome in the putatively female samples, 0.0308).  171 

 172 

Results 173 

 174 

The proportion of reads mapping to each of the autosomes was highly consistent between 175 

samples (Fig. 1). Further, autosomal read-dosage appeared to be positively correlated with 176 

scaffold length, as expected if restriction motifs are randomly distributed. We tested this 177 

correlation by performing a linear regression in RStudio (proportion of reads ~ scaffold length), 178 

which resulted in a slope coefficient of 3.833e-10 (adjusted R2 = 0.7, p < 2e-16). Unlike the 179 

autosomes, values for the proportion of reads mapping to the X chromosome formed two 180 

clusters, putatively representing females (with higher read-dosage values) and males (with 181 

lower read-dosage values).  182 

 183 

The read-dosage sex-assignment program (sexassign) allowed us to successfully assign all 184 

individuals in the dataset as either male (heterogametic, XY; X read-dosage = ~0.5X) or female 185 

(homogametic, XX; X read-dosage = ~1X, Fig. 2, Table 1). Of the 60 individuals sequenced, 186 

33 were determined to be female and 27 to be male, consistent with the typical sex ratio in 187 
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rodent populations under normal conditions (Labov et al., 1986; Rosenfeld et al., 2003). 188 

Genetic sex assignment had a ~94% concurrence rate with field determined sex, a typical 189 

human error margin considering the lack of obvious sexual dimorphism within the species and 190 

the difficulty of accurately sexing rodents in the field, particularly during non-reproductive 191 

periods (Hoffmann et al., 2010; Jacques et al., 2015).  192 

 193 

Discussion 194 

 195 

Our results demonstrate that the FASTQ-formatted data routinely generated by Diversity 196 

Arrays Technology (DArT) as an intermediate step in their workflow can reliably be used to 197 

determine the sex of samples from non-model organisms, confirming or replacing field-based 198 

sex identification and  eliminating the need for additional costly laboratory sexing analyses. 199 

Importantly, a reference genome from the species of interest does not appear to be necessary, 200 

as we obtained robust results by mapping our data to the reference assembly for the house 201 

mouse (Mus musculus), which shared a common ancestor with L. conditor 10 million years 202 

ago (Steppan & Schenk, 2017). While the house mouse genome is assembled to the 203 

chromosome-level, making identification of reads mapping to the X chromosome 204 

straightforward, this approach should also work with scaffold-level reference assemblies.  205 

 206 

Gower et al. (2019) identified X-linked scaffolds in the polar bear genome (UrsMar1.0) by first 207 

mapping all scaffolds against the chromosome-level dog reference assembly (CanFam3.1), 208 

then applied sexassign to shotgun sequencing data from a third species – brown bears (Ursus 209 

arctos) – that they mapped to the putative polar bear X-linked scaffolds. Given that scaffold-210 

level assemblies are increasingly available for a wide range of taxa, our results suggest that 211 
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most DArT end-users working on mammals should be able use their FASTQ data to determine 212 

the sex of their samples. Indeed, the read-dosage approach to sex assignment should be 213 

applicable to any diploid organism with a heterogametic sex-determination system, such as 214 

birds, lizards, and many invertebrates, regardless of which sex is homogametic.  215 
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Table 1. Results of DNA-based sex assignment using sexassign compared to sex determined 321 
in the field for 60 greater stick-nest rats. The length of the X chromosome was 171,031,299 322 
bp and the total length of the autosomes was 2,462,745,373 bp (Gower, 2019). 323 
 324 

ID† Field Sex MX
‡ Sex NX

§ NA
¶ 

ET002 nd 0.474 M 26392 802947 

ET101 nd 0.962 F 23290 349580 

ET102 nd 0.480 M 12663 380070 

ET103 nd 0.953 F 25446 385924 

ET106 M 0.515 M 12856 359385 

ET119 F 0.930 F 60581 941980 

ET133 F 0.963 F 26462 396880 

ET146 M 0.517 M 8416 234263 

ET147 F 0.979 F 26407 388782 

ET147B nd 0.976 F 12858 190022 

ET148 M 0.507 M 14526 412334 

ET149 F 1.020 F 29618 417327 

ET151 F 0.975 F 24507 362393 

ET152 F 1.002 F 28024 402617 

ET153 nd 0.970 F 26335 391810 

ET154 nd 0.946 F 25894 395471 

ET155 nd 0.482 M 14054 420275 

ET157 M 1.026 F 28484 399170 

ET158 nd 0.950 F 26525 403485 

ET162 nd 0.503 M 13867 397200 

ET163 nd 0.946 F 24215 370137 

ET163B nd 0.473 M 14299 436150 

ET17 F 0.942 F 58158 892183 

ET173 F 0.956 F 27789 419868 

ET176 F 0.938 F 22451 346121 

ET177 nd 0.952 F 26275 398926 

ET18 F 0.905 F 39676 635045 

ET183 nd 0.495 M 13220 384279 

ET184 nd 0.487 M 32640 966813 

ET185 F 1.010 F 26952 384146 

ET186 nd 0.473 M 28294 863292 

ET187 nd 0.996 F 25964 375434 

ET188 nd 0.503 M 12563 359345 

ET189 nd 0.972 F 22913 339929 

ET192 M 0.500 M 14444 416297 

ET193 M 0.489 M 13108 386485 
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ET195 nd 0.960 F 25194 378761 

ET196 F 0.977 F 27030 398915 

ET198 M 0.512 M 28970 813496 

ET198B nd 0.484 M 12733 378965 

ET203 M 0.475 M 11469 348138 

ET209 F 0.971 F 25533 379373 

ET217 M 0.480 M 13460 404344 

ET231 nd 0.493 M 12745 372720 

ET233 nd 0.480 M 12353 370852 

ET255 F 0.952 F 24282 368459 

ET259 M 0.478 M 11357 342534 

ET261 F 0.958 F 26557 400394 

ET277 M 0.488 M 29029 857827 

ET29 F 0.939 F 30250 465742 

ET29B nd 0.959 F 23511 354200 

ET3 F 0.991 F 27316 397077 

ET32 M 0.509 M 13059 369309 

ET37 M 0.467 M 26816 828029 

ET5 M 0.491 M 27564 809456 

ET50 F 0.485 M 11802 350729 

ET50.2 nd 0.981 F 23708 348582 

ET5967 nd 0.958 F 26131 393719 

ET61 M 0.491 M 7566 222226 

ET62 F 0.987 F 36015 526076 
† ID = ear tag number for L. conditor individual, nd = not determined, ‡ MX = read dosage on X 325 
chromosome, § NX = count of reads mapped to the X chromosome (after multiplying by 2.12), ¶ NA = 326 
count of reads mapped to the autosome. 327 
 328 
 329 
Figure Legends 330 
 331 
Fig 1 Proportion of reads mapped to autosomes and the X chromosome in the L. conditor 332 

DArT dataset. Colour/symbol combinations represent different individuals. Read dosage of 333 

autosomes was positively correlated with scaffold length, while reads for the X chromosome 334 

form two distinct “dosage” clusters indicative of homogametic (XX) and heterogametic (XY) 335 

individuals  336 

 337 

Fig 2 Plot of X chromosome read dosages for all sequenced L. conditor individuals, with 338 

confidence intervals for male heterogametes (red) and female homogametes (blue) 339 


